hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
4b396d7ef57b81a9da0897b5335821bdb75365f3
703
py
Python
final_project/machinetranslation/tests/test_translator.py
iamnikaa/xzceb-flask_eng_fr
7bfcfc14c301b783cd2fa12b77970d8dcd11e02c
[ "Apache-2.0" ]
null
null
null
final_project/machinetranslation/tests/test_translator.py
iamnikaa/xzceb-flask_eng_fr
7bfcfc14c301b783cd2fa12b77970d8dcd11e02c
[ "Apache-2.0" ]
null
null
null
final_project/machinetranslation/tests/test_translator.py
iamnikaa/xzceb-flask_eng_fr
7bfcfc14c301b783cd2fa12b77970d8dcd11e02c
[ "Apache-2.0" ]
null
null
null
"""Unittest module for testing translator module""" import unittest from translator import englishToFrench from translator import frenchToEnglish class TranslatorTest(unittest.TestCase): """Test functions for english to french and french to english translator functions""" def test_englishToFrench(self): """Tests english_to_french function""" self.assertNotEqual(englishToFrench("Hello"), "") self.assertEqual(englishToFrench("Hello"), "Bonjour") def test_frenchToEnglish(self): """Tests french_to_english function""" self.assertNotEqual(frenchToEnglish("Hello"), "") self.assertEqual(frenchToEnglish("Bonjour"), "Hello") unittest.main()
35.15
89
0.72973
cc8d41d87b3706845606fa4c1c65216f03301cb9
1,870
py
Python
StringMatching.py
tasselcui/misc
4dfe0d9386b472a574d419492df0cdc9dedb164a
[ "MIT" ]
null
null
null
StringMatching.py
tasselcui/misc
4dfe0d9386b472a574d419492df0cdc9dedb164a
[ "MIT" ]
null
null
null
StringMatching.py
tasselcui/misc
4dfe0d9386b472a574d419492df0cdc9dedb164a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Jul 10 21:30:42 2018 @author: lenovo """ P = 'ababaca' T = 'cuiababacababaca' # 3 and 9 shifts #------------------------------------------------------------------------------ def Naive(T, P): n = len(T) m = len(P) for s in range(n - m + 1): if P == T[s : s + m]: print(P,' occurs in ', T, ' with ', s, ' shifts') #------------------------------------------------------------------------------ def RabinKarp(T, P, d, q): n = len(T) m = len(P) h = pow(d, m - 1) % q p = 0 t = 0 for i in range(m): p = (d * p + ord(P[i]) - 97) % q t = (d * t + ord(T[i]) - 97) % q for s in range(n - m + 1): if p == t: if P == T[s : s + m]: print(P,' occurs in ', T, ' with ', s, ' shifts') if s < n - m: t = (d * (t - h * (ord(T[s]) - 97)) + (ord(T[s + m]) - 97)) % q #------------------------------------------------------------------------------ def compute(P): m = len(P) pi = [0 for i in range(m)] k = -1 for q in range(1, m): while k > -1 and P[k + 1] != P[q]: k = pi[k] if P[k + 1] == P[q]: k += 1 k += 1 pi[q] = k print(k) return pi #------------------------------------------------------------------------------ def KMP(T, P): n = len(T) m = len(P) pi = compute(P) q = 0 for i in range(n): while q > 0 and T[q + 1] != T[i]: q = pi[q] if T[q + 1] == T[i]: q += 1 if q == m - 1: print(P,' occurs in ', T, ' with ', i - m + 2, ' shifts') q = pi[q] #Naive(T, P) #RabinKarp(T, P, 26, 13) test = compute(P) #KMP(T, P)
26.714286
80
0.28877
ef71e4a404c2846a5bd9c00b112836b1c4378c11
1,220
py
Python
perfkitbenchmarker/scripts/object_storage_api_test_scripts/gcs.py
msidana/PerfKitBenchmarker
2784642d3e6b20b3f474c4e27edb1ef163804f66
[ "Apache-2.0" ]
1
2018-08-28T19:33:21.000Z
2018-08-28T19:33:21.000Z
perfkitbenchmarker/scripts/object_storage_api_test_scripts/gcs.py
msidana/PerfKitBenchmarker
2784642d3e6b20b3f474c4e27edb1ef163804f66
[ "Apache-2.0" ]
1
2021-03-26T00:41:05.000Z
2021-03-26T00:41:05.000Z
perfkitbenchmarker/scripts/object_storage_api_test_scripts/gcs.py
msidana/PerfKitBenchmarker
2784642d3e6b20b3f474c4e27edb1ef163804f66
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An interface to Google Cloud Storage, using the boto library.""" import time from absl import flags import boto_service import gcs_oauth2_boto_plugin # noqa FLAGS = flags.FLAGS class GCSService(boto_service.BotoService): def __init__(self): super(GCSService, self).__init__('gs', host_to_connect=None) def WriteObjectFromBuffer(self, bucket, object, stream, size): stream.seek(0) start_time = time.time() object_uri = self._StorageURI(bucket, object) object_uri.set_contents_from_file(stream, size=size) latency = time.time() - start_time return start_time, latency
32.105263
74
0.759016
12d392a9f839c3bb37aa64da265c1d6d4d7f5aed
7,552
py
Python
train.py
jmnickerson05/Udacity_ImageClassifier_CLI
9305db86ed3789e187548d52197e7c7c857e3701
[ "MIT" ]
null
null
null
train.py
jmnickerson05/Udacity_ImageClassifier_CLI
9305db86ed3789e187548d52197e7c7c857e3701
[ "MIT" ]
null
null
null
train.py
jmnickerson05/Udacity_ImageClassifier_CLI
9305db86ed3789e187548d52197e7c7c857e3701
[ "MIT" ]
null
null
null
from workspace_utils import active_session import torch from torch import nn, optim from torchvision import datasets, transforms, models import os, copy, time, json, argparse def main(): parser = argparse.ArgumentParser() parser.add_argument('data_directory') parser.add_argument('--save_dir', default='.') parser.add_argument('--learning_rate', default=0.01) parser.add_argument('--epochs', default=25) parser.add_argument('--gpu', default=True) # NOPE -- Not sure I would just change models on the fly in the real world. # parser.add_argument('--arch', default='vgg16') # IS THIS NEEDED? # parser.add_argument('--hidden_units', default=512) global args args = parser.parse_args() model = initialize_model(num_classes=102, feature_extract=True)[0] train_and_save(model) # Adapted From: https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html def set_parameter_requires_grad(model, feature_extracting): if feature_extracting: for param in model.parameters(): param.requires_grad = False def initialize_model(num_classes, feature_extract, use_pretrained=True): model_ft = None input_size = 0 model_ft = models.vgg16_bn(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes) input_size = 224 return model_ft, input_size # Adapted From: https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False): since = time.time() val_acc_history = [] best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 device = torch.device("cuda:0" if (torch.cuda.is_available() and args.gpu is True) else "cpu") print(device) model.to(device) for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) for phase in ['train', 'valid']: if phase == 'train': model.train() else: model.eval() running_loss = 0.0 running_corrects = 0 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): if is_inception and phase == 'train': # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958 outputs, aux_outputs = model(inputs) loss1 = criterion(outputs, labels) loss2 = criterion(aux_outputs, labels) loss = loss1 + 0.4 * loss2 else: outputs = model(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(dataloaders[phase].dataset) epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset) print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) if phase == 'valid' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) if phase == 'valid': val_acc_history.append(epoch_acc) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model, val_acc_history # Adapted From: https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html def train_and_save(model): with active_session(): data_dir = args.data_directory data_transforms = {'train': transforms.Compose([transforms.RandomRotation(30), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'test': transforms.Compose([transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'valid': transforms.Compose([transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) } image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'test', 'valid']} dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=8, shuffle=True, num_workers=4) for x in ['train', 'valid']} feature_extract = True params_to_update = model.parameters() print("Params to learn:") if feature_extract: params_to_update = [] for name, param in model.named_parameters(): if param.requires_grad == True: params_to_update.append(param) print("\t", name) else: for name, param in model.named_parameters(): if param.requires_grad == True: print("\t", name) optimizer_ft = optim.SGD(params_to_update, lr=args.learning_rate, momentum=0.9) criterion = nn.CrossEntropyLoss() model, hist = train_model(model, dataloaders_dict, num_epochs=args.epochs, criterion=criterion, optimizer=optimizer_ft) # Uncomment this to save the model during an unattended run torch.save(model, f'{args.save_dir}/cli_checkpoint.pth') main()
44.163743
124
0.521319
2d17582f56c15c4883c16e11279f690712571482
833
py
Python
CCC-2019/WaterlooWinningScoreProblem2019J1.py
akkik04/University-of-Waterloo-CCC-Solutions
c5398a0aff36ccfc472413390a293db20637a5be
[ "MIT" ]
3
2021-06-26T21:47:35.000Z
2021-08-25T01:37:11.000Z
CCC-2019/WaterlooWinningScoreProblem2019J1.py
akkik04/University-of-Waterloo-CCC-Solutions
c5398a0aff36ccfc472413390a293db20637a5be
[ "MIT" ]
null
null
null
CCC-2019/WaterlooWinningScoreProblem2019J1.py
akkik04/University-of-Waterloo-CCC-Solutions
c5398a0aff36ccfc472413390a293db20637a5be
[ "MIT" ]
null
null
null
# 2019 CCC PROBLEM J1'S SOLUTION: # declaring variables to store input for the apples team. three_point_apples = int(input()) two_point_apples = int(input()) one_point_apples = int(input()) # declaring variables to store input for the bananas team. three_point_bananas = int(input()) two_point_bananas = int(input()) one_point_bananas = int(input()) # arithmetic calculation to determine the sum of points for both of the teams. sum_points_apple = (3 * three_point_apples) + (2 * two_point_apples) + one_point_apples sum_points_bananas = (3 * three_point_bananas) + (2 * two_point_bananas) + one_point_bananas # if-statement to determine which team has more points. if sum_points_apple > sum_points_bananas: print("A") elif sum_points_bananas > sum_points_apple: print("B") else: print("T")
33.32
93
0.735894
cbf5638ab4dba5f4bfc8f4433c8d6b173b7a80a1
47,105
py
Python
tensorflow/python/keras/distribute/distributed_training_utils.py
Caochuanhao/tensorflow
9aaf74d733a38cf587a75f2ffaa05d8a51d8c32b
[ "Apache-2.0" ]
1
2019-07-18T09:16:43.000Z
2019-07-18T09:16:43.000Z
tensorflow/python/keras/distribute/distributed_training_utils.py
Caochuanhao/tensorflow
9aaf74d733a38cf587a75f2ffaa05d8a51d8c32b
[ "Apache-2.0" ]
null
null
null
tensorflow/python/keras/distribute/distributed_training_utils.py
Caochuanhao/tensorflow
9aaf74d733a38cf587a75f2ffaa05d8a51d8c32b
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities related to distributed training.""" # pylint:disable=protected-access from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import iterator_ops from tensorflow.python.distribute import distribute_coordinator_context as dc_context from tensorflow.python.distribute import distribution_strategy_context as ds_context from tensorflow.python.distribute import multi_worker_util from tensorflow.python.distribute import reduce_util from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.keras import backend as K from tensorflow.python.keras import callbacks from tensorflow.python.keras import metrics as metrics_module from tensorflow.python.keras import optimizers from tensorflow.python.keras.engine import training_utils from tensorflow.python.keras.optimizer_v2 import optimizer_v2 from tensorflow.python.keras.utils.mode_keys import ModeKeys from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import nest from tensorflow.python.util import tf_contextlib def set_weights(distribution_strategy, dist_model, weights): """Sets the weights of the replicated models. The weights of the replicated models are set to the weights of the original model. The weights of the replicated model are Mirrored variables and hence we need to use the `update` call within a DistributionStrategy scope. Args: distribution_strategy: DistributionStrategy used to distribute training and validation. dist_model: The replicated models on the different devices. weights: The weights of the original model. """ assign_ops = [] for layer in dist_model.layers: num_param = len(layer.weights) layer_weights = weights[:num_param] for sw, w in zip(layer.weights, layer_weights): if ops.executing_eagerly_outside_functions(): sw.assign(w) else: assign_ops.append(distribution_strategy.unwrap(sw.assign(w))) weights = weights[num_param:] if not ops.executing_eagerly_outside_functions(): K.get_session(assign_ops).run(assign_ops) def unwrap_values(distribution_strategy, grouped_inputs, grouped_outputs, grouped_updates=None, grouped_session_args=None, with_loss_tensor=False): """Unwrap the list of values contained in the PerReplica parameters. This function calls `flatten_per_replica_values` to parse each of the input parameters into a list of values on the different devices. If we set `with_loss_tensor` to be True, we also call `reduce` on the list of losses on the different devices to give us one loss tensor. Args: distribution_strategy: DistributionStrategy used to distribute training and validation. grouped_inputs: PerReplica inputs returned from the train or test function that we ran on each device. grouped_outputs: PerReplica outputs returned from the train or test function that we ran on each device. grouped_updates: PerReplica updates returned from the train or test function that we ran on each device. grouped_session_args: PerReplica session args returned from the train or test function that we ran on each device. with_loss_tensor: Boolean that indicates if we need to add the reduced loss tensor as one of the outputs. Returns: Values of each of the PerReplica parameters. """ # Unwrap per device values returned from each model's train function. # This will be used to construct the main train function. all_inputs = flatten_per_replica_values(distribution_strategy, grouped_inputs) all_outputs = unwrap_outputs(distribution_strategy, grouped_outputs, with_loss_tensor) if grouped_updates: all_updates = flatten_per_replica_values(distribution_strategy, grouped_updates) else: all_updates = None all_session_args = {} if grouped_session_args: grouped_feed_dict = grouped_session_args.get('feed_dict') if grouped_feed_dict: all_session_args['feed_dict'] = flatten_per_replica_values( distribution_strategy, grouped_feed_dict) grouped_fetches = grouped_session_args.get('fetches') if grouped_fetches: all_session_args['fetches'] = flatten_per_replica_values( distribution_strategy, grouped_fetches) # TODO(priyag): Return only non empty/None values return all_inputs, all_outputs, all_updates, all_session_args def unwrap_outputs(distribution_strategy, grouped_outputs, with_loss_tensor=False): """Unwrap the list of outputs contained in the PerReplica parameters. This function calls `flatten_per_replica_values` to parse each of the input parameters into a list of outputs on the different devices. If we set `with_loss_tensor` to be True, we also call `reduce` on the list of losses on the different devices to give us one loss tensor. Args: distribution_strategy: DistributionStrategy used to distribute training and validation. grouped_outputs: PerReplica outputs returned from the train or test function that we ran on each device. with_loss_tensor: Boolean that indicates if we need to add the reduced loss tensor as one of the outputs. Returns: Values of each of the PerReplica outputs. """ if not with_loss_tensor: return flatten_per_replica_values(distribution_strategy, grouped_outputs) if not isinstance(grouped_outputs, list): grouped_outputs = [grouped_outputs] # reduce loss tensor before adding it to the list of fetches loss = distribution_strategy.reduce(reduce_util.ReduceOp.SUM, grouped_outputs[0], axis=None) all_outputs = flatten_per_replica_values(distribution_strategy, grouped_outputs[1:]) if (is_tpu_strategy(distribution_strategy) and ops.executing_eagerly_outside_functions()): # Choose 1 value per replica in the TPU case since all replicas produce the # same output. # We only do this in eager mode for now since this function is used in # both graph and eager mode and in the graph case we currently don't use # experimental_run so would need to be removed when we converge the graph # code path as well. all_outputs = all_outputs[::distribution_strategy.num_replicas_in_sync] return [loss] + all_outputs def flatten_per_replica_values(distribution_strategy, per_replica_values): """Unwraps and flattens a nest of PerReplica parameters. PerReplica values have one value associated with each device. Each entry in the PerReplica dict has a device `key` and the corresponding value on the device as the `value`. In this function we take a PerReplica value or a list of PerReplica values and return all the values in the PerReplica dict. Args: distribution_strategy: DistributionStrategy used to distribute training and validation. per_replica_values: List of PerReplica object or a single PerReplica object. Returns: List of values of all the PerReplica objects. """ # pylint: disable=g-complex-comprehension # This function takes a PerReplica object or a list of PerReplica objects and # returns all the values associated with it. return [e for flattened in nest.flatten(per_replica_values) for e in distribution_strategy.unwrap(flattened)] def validate_callbacks(input_callbacks, optimizer): """Validate whether given callbacks are supported by DistributionStrategy. Args: input_callbacks: List of callbacks passed by the user to fit. optimizer: Optimizer instance used to train the model. Raises: ValueError: If `LearningRateScheduler` or `ReduceLROnPlateau` is one of the callbacks passed. ValueError: If `histogram_freq` or `write_grads` is one of the parameters passed as part of the TensorBoard callback. """ if input_callbacks: for callback in input_callbacks: if isinstance(callback, (callbacks.LearningRateScheduler, callbacks.ReduceLROnPlateau)): if not isinstance(optimizer, optimizer_v2.OptimizerV2): raise ValueError('You must specify a Keras Optimizer V2 when using ' '%s callback with DistributionStrategy.' % callback) # If users want to use the TensorBoard callback they cannot use certain # features of the callback that involve accessing model attributes and # running ops. if isinstance(callback, callbacks.TensorBoard): if getattr(callback, 'histogram_freq', False): logging.warning( UserWarning( '`histogram_freq` in the TensorBoard callback is not ' 'supported when using DistributionStrategy. Setting ' '`histogram_freq` to `0`.')) callback.histogram_freq = 0 if getattr(callback, 'write_grads', False): logging.warning( UserWarning( '`write_grads` in the TensorBoard callback is not supported ' 'when using DistributionStrategy. Setting `write_grads` ' 'to `False`.')) callback.histogram_freq = False def validate_distributed_dataset_inputs(distribution_strategy, x, y, sample_weights=None): """Validate all the components of a DistributedValue Dataset input. Args: distribution_strategy: The current DistributionStrategy used to call `fit`/`evaluate`. x: Input Dataset DistributedValue object. For example, when we use `MirroredStrategy` this is a PerReplica object with a tensor for each device set in the dict. x can also be a tuple or dict. The keys of the dict should match the names of the input layers of the model. y: Target Dataset DistributedValue object. For example, when we use `MirroredStrategy` this is a PerReplica object with a tensor for each device set in the dict. y can also be a tuple or dict. The keys of the dict should match the names of the output layers of the model. sample_weights: Sample weights Dataset DistributedValue object. For example, when we use `MirroredStrategy` this is a PerReplica object with a tensor for each device set in the dict. Returns: The unwrapped values list of the x and y DistributedValues inputs. Raises: ValueError: If x and y do not have support for being evaluated as tensors. or if x and y contain elements that are not tensors or if x and y contain elements that have a shape or dtype mismatch. """ # If the input and target used to call the model are not dataset tensors, # we need to raise an error. When using a DistributionStrategy, the input # and targets to a model should be from a `tf.data.Dataset`. # If each element of x and y are not tensors, we cannot standardize and # validate the input and targets. x_values_list = validate_per_replica_inputs(distribution_strategy, x) if y is not None: y_values_list = validate_per_replica_inputs(distribution_strategy, y) else: y_values_list = None if sample_weights is not None: sample_weights_list = validate_per_replica_inputs(distribution_strategy, sample_weights) else: sample_weights_list = None # Return the unwrapped values to avoid calling `unwrap` a second time. return x_values_list, y_values_list, sample_weights_list def validate_per_replica_inputs(distribution_strategy, x): """Validates PerReplica dataset input list. Args: distribution_strategy: The current DistributionStrategy used to call `fit`, `evaluate` and `predict`. x: A list of PerReplica objects that represent the input or target values. Returns: List containing the first element of each of the PerReplica objects in the input list. Raises: ValueError: If any of the objects in the `per_replica_list` is not a tensor. """ # Convert the inputs and targets into a list of PerReplica objects. per_replica_list = nest.flatten(x) x_values_list = [] for x in per_replica_list: if not tensor_util.is_tensor(x): raise ValueError('Dataset input to the model should be tensors instead ' 'they are of type {}'.format(type(x))) # At this point both x and y contain tensors in the `DistributedValues` # structure. x_values = distribution_strategy.unwrap(x) if not context.executing_eagerly(): # Validate that the shape and dtype of all the elements in x are the same. validate_all_tensor_shapes(x, x_values) validate_all_tensor_types(x, x_values) x_values_list.append(x_values[0]) return x_values_list def validate_all_tensor_types(x, x_values): x_dtype = x_values[0].dtype for i in range(1, len(x_values)): if x_dtype != x_values[i].dtype: raise ValueError('Input tensor dtypes do not match for distributed tensor' ' inputs {}'.format(x)) def validate_all_tensor_shapes(x, x_values): # Validate that the shape of all the elements in x have the same shape x_shape = x_values[0].shape.as_list() for i in range(1, len(x_values)): if x_shape != x_values[i].shape.as_list(): raise ValueError('Input tensor shapes do not match for distributed tensor' ' inputs {}'.format(x)) def _wait_for_variable_initialization(session): """Utility to wait for variables to be initialized.""" all_variables = K._get_variables(K.get_graph()) # pylint: disable=protected-access candidate_vars = [] for v in all_variables: if not getattr(v, '_keras_initialized', False): candidate_vars.append(v) if not candidate_vars: return while True: is_initialized = session.run( [variables.is_variable_initialized(v) for v in candidate_vars]) uninitialized_vars = [] for flag, v in zip(is_initialized, candidate_vars): if not flag: uninitialized_vars.append(v) v._keras_initialized = True # pylint: disable=protected-access if not uninitialized_vars: break def init_restore_or_wait_for_variables(): """Initialize or restore variables or wait for variables to be initialized.""" session = K._get_session() # pylint: disable=protected-access if not multi_worker_util.has_worker_context( ) or multi_worker_util.should_load_checkpoint(): # TODO(yuefengz): if checkpoints exist, restore from checkpoint. K._initialize_variables(session) # pylint: disable=protected-access else: _wait_for_variable_initialization(session) def validate_inputs(x, y): """Validate inputs when using DistributionStrategy. Args: x: Model Inputs. y: Model Targets. Raises: ValueError: if input is not a Dataset or a numpy array(when we use MirroredStrategy). """ if (isinstance(x, iterator_ops.Iterator) or isinstance(y, iterator_ops.Iterator)): raise ValueError('`DistributionStrategy` does not support inputs of type ' 'Iterator. You must pass a `tf.data.Dataset` object or a ' 'numpy array as input.') # TODO(b/118776054): Currently we support global batch size for TPUStrategy and # core MirroredStrategy only. Remove this check when contrib MirroredStrategy is # no longer needed. def global_batch_size_supported(distribution_strategy): return distribution_strategy.extended._global_batch_size # pylint: disable=protected-access # TODO(sourabhbajaj): Remove this once we use the same API for all strategies. def is_tpu_strategy(strategy): """We're executing TPU Strategy.""" return (strategy is not None and strategy.__class__.__name__.startswith('TPUStrategy')) def is_dataset_shape_fully_defined(dataset): """Returns whether a dataset contains a final partial batch.""" shapes = nest.flatten(dataset_ops.get_legacy_output_shapes(dataset)) unknown_shapes = [s for s in shapes if not s.is_fully_defined()] return not unknown_shapes def process_batch_and_step_size( strategy, inputs, batch_size, steps_per_epoch, mode): """Process the batch size and step size based on input and dist strategy.""" first_x_value = nest.flatten(inputs)[0] if isinstance(first_x_value, np.ndarray): # Until support for partial batch is implemented across all # functions and distribution strategy, we pass `mode` to selectively # relax the constraint to consume all the training samples. steps_per_epoch, batch_size = get_input_params(strategy, first_x_value, steps_per_epoch, batch_size, mode=mode) return batch_size, steps_per_epoch def get_input_params(distribution_strategy, first_x_value, steps, batch_size, mode=None): """Calculate the number of batches and steps/steps_per_epoch. Args: distribution_strategy: The DistributionStrategy used to compile the model. first_x_value: This is the first input numpy array that is passed in as the model input. steps: The specified number of steps. batch_size: The specified batch_size. mode: ModeKey representing whether input will be used for training, evaluation, or prediction. This is used to relax the constraints on consuming all the training samples to keep compatibility till we support partial batches. If none, then partial batches are not allowed. Returns: steps: The steps or steps_per_epoch argument depending on if a user is calling `fit`, `evaluate` or `predict`. If the is_training flag is set we don't require the number of samples to be used completely. batch_size: The batch size to be used in model iterations. Raises: ValueError: If the number of batches or steps evaluates to 0. """ num_samples = first_x_value.shape[0] # TODO(b/118776054): Use global batch size for Keras/DS support. # Currently this is only supported in TPUStrategy and CoreMirroredStrategy. use_per_replica_batch = not global_batch_size_supported( distribution_strategy) # TODO(b/128995245): In eager mode, uneven batch sizes are allowed except for # `fit()` on TPUStrategy. # In graph mode, the zero batch case in batch norm is not handled due to # XLA-GPU regression. Uneven batch sizes are not allowed except # for `test()` and `predict()` on TPUStrategy. if context.executing_eagerly(): allow_partial_batch = (mode != ModeKeys.TRAIN or not is_tpu_strategy(distribution_strategy)) else: allow_partial_batch = (mode == ModeKeys.TRAIN or ((mode == ModeKeys.PREDICT or mode == ModeKeys.TEST) and is_tpu_strategy(distribution_strategy))) if steps is None: if batch_size is None: # If neither the batch size or number of steps are set. We choose the # global batch size as the minimum of number of samples and 32. 32 is # chosen to provide backward compatibility. global_batch_size = min(num_samples, 32) else: # If the user provided the batch size we need to handle the case # between different strategies that use the global/per-replica batch size global_batch_size = batch_size if use_per_replica_batch: global_batch_size *= distribution_strategy.num_replicas_in_sync if allow_partial_batch: steps = np.ceil(num_samples / global_batch_size).astype(int) else: if num_samples % global_batch_size: raise ValueError('The number of samples %s is not divisible by ' 'batch size %s.' % (num_samples, global_batch_size)) steps = num_samples // global_batch_size else: if batch_size is None: # We calculate the batch size based on the number of steps specified if num_samples % steps: raise ValueError('The number of samples %s is not divisible by ' 'steps %s. Please change the number of steps to a ' 'value that can consume all the samples' % ( num_samples, steps)) global_batch_size = num_samples // steps else: # If the user provided the batch size we need to handle the case # between different strategies that use the global/per-replica batch size global_batch_size = batch_size if use_per_replica_batch: global_batch_size *= distribution_strategy.num_replicas_in_sync min_num_samples = global_batch_size * steps if allow_partial_batch: min_num_samples = global_batch_size * (steps-1) + 1 if steps > 1 else 0 if num_samples < min_num_samples: raise ValueError('Number of samples %s is less than samples required ' 'for specified batch_size %s and steps %s' % ( num_samples, global_batch_size, steps)) # We need to return the per replica or global batch size based on the strategy if use_per_replica_batch: if global_batch_size % distribution_strategy.num_replicas_in_sync: raise ValueError( 'The batch size (%s) could not be sharded evenly across the sync ' 'replicas (%s) in the distribution strategy.' % ( global_batch_size, distribution_strategy.num_replicas_in_sync)) batch_size = global_batch_size // distribution_strategy.num_replicas_in_sync else: batch_size = global_batch_size return steps, batch_size def get_batch_dimension(iterator): shapes = nest.flatten(dataset_ops.get_legacy_output_shapes(iterator)) # Take the batch size from the first element, as it should be the same for # all. dims = shapes[0].dims return dims[0] if dims else None def get_iterator(dataset, distribution_strategy): with distribution_strategy.scope(): iterator = distribution_strategy.make_dataset_iterator(dataset) initialize_iterator(iterator, distribution_strategy) return iterator def initialize_iterator(iterator, distribution_strategy): with distribution_strategy.scope(): init_op = control_flow_ops.group(iterator.initialize()) if not context.executing_eagerly(): K.get_session((init_op,)).run(init_op) def _get_input_from_iterator(iterator, model): """Get elements from the iterator and verify the input shape and type.""" next_element = iterator.get_next() # `len(nest.flatten(x))` is going to not count empty elements such as {}. # len(nest.flatten([[0,1,2], {}])) is 3 and not 4. The `next_element` is # going to get flattened in `_prepare_feed_values` to work around that. Empty # elements are going to get filtered out as part of the flattening. if len(nest.flatten(next_element)) == len(model.inputs): x = next_element y = None sample_weights = None elif len(nest.flatten(next_element)) == (len(model.inputs) + len(model.outputs)): x, y = next_element sample_weights = None else: x, y, sample_weights = next_element # Validate that all the elements in x and y are of the same type and shape. validate_distributed_dataset_inputs( model._distribution_strategy, x, y, sample_weights) return x, y, sample_weights def _prepare_feed_values(model, inputs, targets, sample_weights, mode): """Prepare feed values to the model execution function. Arguments: model: Model to prepare feed values for. inputs: List or dict of model inputs. targets: Optional list of model targets. sample_weights: Optional list of sample weight arrays. mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. Returns: Feed values for the model in the given mode. """ strategy = model._distribution_strategy inputs, targets, sample_weights = _get_input_from_iterator(inputs, model) if is_tpu_strategy(strategy): if sample_weights is not None: raise ValueError('TPUStrategy does not support sample weights.') # When the inputs are dict, then we want to flatten it in the same order as # the input layers, such that the data are fed into the input layers in the # correct order. if isinstance(inputs, dict): inputs = [inputs[key] for key in model._feed_input_names] if is_distributing_by_cloning(model): inputs = flatten_per_replica_values(strategy, inputs) targets = flatten_per_replica_values(strategy, targets) # Expand 1-dimensional inputs. # TODO(b/124535720): Remove once this standarize data logic is shared with # main flow. inputs, targets = nest.map_structure( training_utils.standardize_single_array, (inputs, targets)) else: inputs = training_utils.ModelInputs(inputs).as_list() if mode == ModeKeys.PREDICT: sample_weights = [] targets = [] elif sample_weights is not None and is_distributing_by_cloning(model): if context.executing_eagerly() and not model._compile_distribution: raise NotImplementedError('`sample_weight` is not supported when using ' 'tf.distribute.Strategy in eager mode and ' 'cloning=True.') sample_weights = flatten_per_replica_values(strategy, sample_weights) ins = [inputs, targets, sample_weights] return tuple(ins) def is_distributing_by_cloning(model): """Decide whether this model is going to be distributed via cloning. We are going to distribute the model by cloning if the user has signaled that intent by setting `cloning=True` in `Model.compile()` unless we are in graph mode. Args: model: Keras model to distribute. Returns: True if the `model` is going to be distributed using cloning and False otherwise. """ if (is_tpu_strategy(model._distribution_strategy) and context.executing_eagerly): # b/137580852 return False elif ops.executing_eagerly_outside_functions(): return bool(model._compile_distribution) return True def _custom_compile_for_predict(model): """Custom compile for TPU predict mode.""" if not model.built: # Model is not compilable because it does not know its number of inputs # and outputs, nor their shapes and names. We will compile after the first # time the model gets called on training data. return model._is_compiled = True model.total_loss = None model.train_function = None model.test_function = None model.predict_function = None def _build_network_on_replica(model, mode, inputs=None, targets=None): """Build an updated model on replicas. We create a new Keras model while sharing the variables from the old graph. Building a new sub-graph is required since the original keras model creates placeholders for the input and the output that are not accessible till we call iterator.get_next() inside the step_fn for `fit`/`evaluate`/`predict`. The sharing of weights and layers between the old and the new model gaurantee that we're using Strategy variables and any updates on either model are reflected correctly in callbacks and loop iterations. We need to make sure we share the optimizers between the old and the new model as well so that optimizer state is not lost if the user is running fit multiple times. Args: model: Model to be replicated across Replicas mode: Which of fit/eval/predict is building the distributed network inputs: Input variables to be passed to the model targets: Target tensor to be passed to model.compile Returns: A new model with shared layers with the old model. """ # Need to do imports here since we run into a circular dependency error. from tensorflow.python.keras import models # pylint: disable=g-import-not-at-top from tensorflow.python.keras.engine import sequential # pylint: disable=g-import-not-at-top # We rely on the internal methods to avoid having share_weights weights in the # public API. if isinstance(model, sequential.Sequential): updated_model = models._clone_sequential_model( model, input_tensors=inputs, layer_fn=models.share_weights) else: updated_model = models._clone_functional_model( model, input_tensors=inputs, layer_fn=models.share_weights) # Callable losses added directly to a functional Model need to be added # here. updated_model._callable_losses = model._callable_losses # Recast all low precision outputs back to float32 since we only casted # the inputs to bfloat16 and not targets. This is done so that we can preserve # precision when calculating the loss value. def _upcast_low_precision_outputs(output): if output.dtype == dtypes.bfloat16: return math_ops.cast(output, dtypes.float32) else: return output updated_model.outputs = [_upcast_low_precision_outputs(o) for o in updated_model.outputs] if isinstance(targets, tuple): targets = nest.flatten(targets) if mode == ModeKeys.PREDICT and inputs is not None: # TPU predict case _custom_compile_for_predict(updated_model) else: updated_model.compile( model.optimizer, model.loss, metrics=metrics_module.clone_metrics(model._compile_metrics), loss_weights=model.loss_weights, sample_weight_mode=model.sample_weight_mode, weighted_metrics=metrics_module.clone_metrics( model._compile_weighted_metrics), target_tensors=targets) return updated_model def _build_distributed_network(model, strategy, mode, inputs=None, targets=None): """Create a cloned model on each replica.""" with K.get_graph().as_default(), strategy.scope(): distributed_model = strategy.extended.call_for_each_replica( _build_network_on_replica, args=(model, mode, inputs, targets)) set_distributed_model(model, mode, distributed_model) def _clone_and_build_model(model, mode, inputs=None, targets=None): """Clone and build the given keras_model.""" # We need to set the import here since we run into a circular dependency # error. from tensorflow.python.keras import models # pylint: disable=g-import-not-at-top cloned_model = models.clone_model(model, input_tensors=inputs) # Compile and build model. if isinstance(model.optimizer, optimizers.TFOptimizer): optimizer = model.optimizer else: optimizer_config = model.optimizer.get_config() optimizer = model.optimizer.__class__.from_config(optimizer_config) # Recast all low precision outputs back to float32 since we only casted # the inputs to bfloat16 and not targets. This is done so that we can preserve # precision when calculating the loss value. def _upcast_low_precision_outputs(output): if output.dtype == dtypes.bfloat16: return math_ops.cast(output, dtypes.float32) else: return output cloned_model.outputs = [_upcast_low_precision_outputs(o) for o in cloned_model.outputs] if isinstance(targets, tuple): targets = nest.flatten(targets) if mode == ModeKeys.PREDICT and inputs is not None: # TPU predict case _custom_compile_for_predict(cloned_model) else: cloned_model.compile( optimizer, model.loss, metrics=metrics_module.clone_metrics(model._compile_metrics), loss_weights=model.loss_weights, sample_weight_mode=model.sample_weight_mode, weighted_metrics=metrics_module.clone_metrics( model._compile_weighted_metrics), target_tensors=targets) return cloned_model def clone_model_on_replicas(model, strategy, mode, inputs=None, targets=None): """Create a cloned model on each replica.""" with K.get_graph().as_default(), strategy.scope(): distributed_model = strategy.extended.call_for_each_replica( _clone_and_build_model, args=(model, mode, inputs, targets)) set_distributed_model(model, mode, distributed_model) if mode == ModeKeys.TRAIN: model._make_callback_model(distributed_model) def _make_execution_function(model, mode): """Makes or reuses function to run one step of distributed model execution.""" if is_distributing_by_cloning(model): return _make_execution_function_with_cloning(model, mode) distributed_function = get_distributed_function(model, mode) if distributed_function: return distributed_function distribution_function = _make_execution_function_without_cloning(model, mode) set_distributed_function(model, mode, distribution_function) return distribution_function def _make_execution_function_without_cloning(model, mode): """Creates a function to run one step of distributed model execution.""" strategy = model._distribution_strategy with strategy.scope(): per_replica_function = _make_replica_execution_function(model, mode) def distributed_function(input_fn): """A single step of the distributed execution across replicas.""" x, y, sample_weights = input_fn() # Call `Model.{train,test,predict}_on_batch` on every replica passing # PerReplicas as arguments. On every replica inside this call, each # PerReplica object will return the value for that replica. The outputs # are PerReplicas too. outputs = strategy.experimental_run_v2( per_replica_function, args=(x, y, sample_weights)) # Out of PerReplica outputs reduce or pick values to return. all_outputs = unwrap_outputs( strategy, outputs, with_loss_tensor=(mode != ModeKeys.PREDICT)) return all_outputs if not model.run_eagerly: distributed_function = def_function.function(distributed_function) def execution_function(input_fn): # `numpy` translates Tensors to values in Eager mode. return [out.numpy() for out in distributed_function(input_fn)] else: execution_function = distributed_function return execution_function def _make_replica_execution_function(model, mode): """A single step of the distributed execution on a replica.""" if mode == ModeKeys.TRAIN: func = model.train_on_batch elif mode == ModeKeys.TEST: func = model.test_on_batch else: def predict_on_batch(x, y=None, sample_weights=None): del y, sample_weights return model.predict_on_batch(x) func = predict_on_batch if mode != ModeKeys.PREDICT: # `reset_metrics` is set to False to maintain stateful metrics across # batch-level calls. func = functools.partial(func, reset_metrics=False) return func def _make_replicated_models_with_cloning(model, mode): """Build models on each replica.""" strategy = model._distribution_strategy # If distributed_model is not built, create one for `mode`. if model._compile_distribution: clone_model_on_replicas(model, strategy, mode) else: _build_distributed_network(model, strategy, mode) def _make_execution_function_with_cloning(model, mode): """Clones or re-uses models to run one step of distributed model execution.""" distributed_model = get_distributed_model(model, mode) # TODO(b/134069401): Create a cache for the distributed model and exec # function that incorporates additional attributes to be part of the cache key # than just the mode. # If distributed model for a particular `mode` is already built, use the # `_distribution_function` on that distributed model. # If you have updated the sample_weight_mode on the model, then you will need # to recompile metrics and recreate the execution function. This is indicated # by the `_recompile_exec_function` property. if (distributed_model and hasattr(distributed_model, '_distribution_function') and not (hasattr(distributed_model, '_recompile_exec_function') and distributed_model._recompile_exec_function)): return distributed_model._distributed_function if not distributed_model: _make_replicated_models_with_cloning(model, mode) distributed_model = get_distributed_model(model, mode) assert distributed_model # Also create an execution fuction on that distributed model. if context.executing_eagerly(): distributed_function = _make_eager_execution_function(model, mode) else: distributed_function = _make_graph_execution_function(model, mode) # We cache the distributed execution function on the model since creating # distributed models and execution functions are expensive. distributed_model._distributed_function = distributed_function distributed_model._recompile_exec_function = False return distributed_function def _make_graph_execution_function(model, mode): """Makes function to run one step of distributed model in graph mode.""" def _per_replica_function(model): f = model._make_execution_function(mode) return (f.inputs, f.outputs, f.updates_op, f.session_kwargs) strategy = model._distribution_strategy with strategy.scope(): # Create train ops on each of the devices when we call # `_per_replica_fit_function`. (grouped_inputs, grouped_outputs, grouped_updates, grouped_session_args) = strategy.extended.call_for_each_replica( _per_replica_function, args=(get_distributed_model(model, mode),)) # Initialize the variables in the replicated model. This is necessary for # multi-worker training because on some workers, initialization is not # needed. This method does initialization or waiting for initialization # according to the context object of distribute coordinator. init_restore_or_wait_for_variables() # Unwrap all the per device values returned from `call_for_each_replica`. # Unwrapping per device values gives you a list of values that can be # used to construct a new train function that is composed of update ops on # all the devices over which the model is distributed. (all_inputs, all_outputs, all_updates, all_session_args) = unwrap_values( strategy, grouped_inputs, grouped_outputs, grouped_updates, grouped_session_args, with_loss_tensor=(mode != ModeKeys.PREDICT)) return K.function( all_inputs, all_outputs, updates=all_updates, name='distributed_{}_function'.format(mode), **all_session_args) def _make_eager_execution_function(model, mode): """Makes function to run one step of distributed model eager execution.""" def _per_replica_function(model): f = model._make_execution_function(mode) return (f.inputs, f.outputs) # NOTE(priyag): Try creating a new FuncGraph within DS scope instead of using # the global one. strategy = model._distribution_strategy global_graph = K.get_graph() with global_graph.as_default(), strategy.scope(): # First we gather the relevant portions of the model across all replicas. # `K._scratch_graph(global_graph)` signals to Keras that it should not # lift to a separate graph when creating the per-replica functions. with K._scratch_graph(global_graph): # Create train ops on each of the devices when we call # `_per_replica_fit_function`. grouped = strategy.extended.call_for_each_replica( _per_replica_function, args=(get_distributed_model(model, mode),)) grouped_inputs, grouped_outputs = grouped # Unwrap all the per device values returned from `call_for_each_replica`. # Unwrapping per device values gives you a list of values that can be # used to construct a new train function that is composed of # inputs/outputs on all the devices over which the model is distributed. (all_inputs, all_outputs, _, _) = unwrap_values( strategy, grouped_inputs, grouped_outputs, with_loss_tensor=(mode != ModeKeys.PREDICT)) # Finally, a joint Keras function is created; this one will be created in # a separate FuncGraph. return K.function( all_inputs, all_outputs, name='eager_distributed_{}_function'.format(mode)) def _copy_weights_to_distributed_model(original_model, mode): """Copies weights from original model to distributed models.""" strategy = original_model._distribution_strategy distributed_model = get_distributed_model(original_model, mode) if strategy: # Copy the weights from the original model to each of the replicated # models. orig_model_weights = original_model.get_weights() first_model = strategy.unwrap(distributed_model)[0] set_weights(strategy, first_model, orig_model_weights) def _copy_weights_to_original_model(model, mode): """Copies weights from first distributed model back to original model.""" if model._distribution_strategy and mode == ModeKeys.TRAIN: distributed_model = get_distributed_model(model, mode) updated_weights = model._distribution_strategy.unwrap( distributed_model)[0].get_weights() model.set_weights(updated_weights) def _per_replica_aggregate_batch(batch_outs, model, mode): """Aggregates the per-replica batch-level outputs from a distributed step.""" if model._distribution_strategy is not None and mode == ModeKeys.PREDICT: total_batch_outs = [] for i in range(len(model.outputs)): num_replicas = model._distribution_strategy.num_replicas_in_sync nested_outs = batch_outs[i * num_replicas:i * num_replicas + num_replicas] total_batch_outs.append(np.concatenate(nest.flatten(nested_outs))) return total_batch_outs return batch_outs def _reset_metrics(model): if model._distribution_strategy: for mode in [ModeKeys.TRAIN, ModeKeys.TEST, ModeKeys.PREDICT]: distributed_model = get_distributed_model(model, mode) if distributed_model: first_model = model._distribution_strategy.unwrap(distributed_model)[0] first_model.reset_metrics() def get_distributed_model(model, mode): key = _generate_cache_key(mode) return model._distributed_model_cache.get(key, None) def set_distributed_model(model, mode, distributed_model): key = _generate_cache_key(mode) model._distributed_model_cache[key] = distributed_model def get_distributed_function(model, mode): key = _generate_cache_key(mode) return model._distributed_function_cache.get(key, None) def set_distributed_function(model, mode, distributed_function): key = _generate_cache_key(mode) model._distributed_function_cache[key] = distributed_function def _generate_cache_key(mode): key = hash(mode) return key @tf_contextlib.contextmanager def distributed_scope(strategy, learning_phase): with strategy.scope(), K.learning_phase_scope(learning_phase): yield def call_replica_local_fn(fn, *args, **kwargs): """Call a function that uses replica-local variables. This function correctly handles calling `fn` in a cross-replica context. Arguments: fn: The function to call. *args: Positional arguments to the `fn`. **kwargs: Keyword argument to `fn`. Returns: The result of calling `fn`. """ # TODO(b/132666209): Remove this function when we support assign_* # for replica-local variables. strategy = None if 'strategy' in kwargs: strategy = kwargs.pop('strategy') else: if ds_context.has_strategy(): strategy = ds_context.get_strategy() # TODO(b/120571621): TPUStrategy does not implement replica-local variables. is_tpu = is_tpu_strategy(strategy) if ((not is_tpu) and strategy and ds_context.in_cross_replica_context()): with strategy.scope(): return strategy.extended.call_for_each_replica(fn, args, kwargs) return fn(*args, **kwargs) def is_current_worker_chief(): return dc_context.get_current_worker_context().is_chief def filter_distributed_callbacks(callbacks_list): """Filter Callbacks based on the worker context when running multi-worker. Arguments: callbacks_list: A list of `Callback` instances. Returns: The list of `Callback` instances that should be run on this worker. """ if not multi_worker_util.in_multi_worker_mode(): raise ValueError( 'filter_distributed_callbacks() should only be called when Keras ' 'is in multi worker mode.') callbacks_list = callbacks_list or [] if not [ c for c in callbacks_list if isinstance(c, callbacks.ModelCheckpoint) ]: # TODO(rchao): Consider providing a ModelCheckpoint here if the user # fails to (possibly with tempfile directory). logging.warning('ModelCheckpoint callback is not provided. ' 'Workers will need to restart training if any fails.') if callbacks_list is None or is_current_worker_chief(): return callbacks_list # Some Callbacks should only run on the chief worker. return [ callback for callback in callbacks_list if not callback._chief_worker_only ] # pylint: disable=protected-access def _update_sample_weight_modes(model, mode, sample_weights): """Update sample_weight_mode of the distributed model.""" if is_distributing_by_cloning(model): distributed_model = get_distributed_model(model, mode) if not distributed_model: _make_replicated_models_with_cloning(model, mode) distributed_model = get_distributed_model(model, mode) distributed_model._recompile_exec_function = any( [e.sample_weights_mismatch() for e in model._training_endpoints]) if sample_weights: distributed_models = flatten_per_replica_values( model._distribution_strategy, distributed_model) # sample_weights is a tuple of 1 list where the number of elements in the # list is equal to the number of replicas in sync. sample_weights = sample_weights[0] if sample_weights and None not in sample_weights: for m, sw in zip(distributed_models, sample_weights): m._update_sample_weight_modes(sample_weights=[sw])
40.607759
94
0.728458
113003d6f60040230b1a5cf46f7d7ff2d1f6fca0
226
py
Python
SimPEG/EM/__init__.py
kimjaed/simpeg
b8d716f86a4ea07ba3085fabb24c2bc974788040
[ "MIT" ]
3
2020-11-27T03:18:28.000Z
2022-03-18T01:29:58.000Z
SimPEG/EM/__init__.py
kimjaed/simpeg
b8d716f86a4ea07ba3085fabb24c2bc974788040
[ "MIT" ]
null
null
null
SimPEG/EM/__init__.py
kimjaed/simpeg
b8d716f86a4ea07ba3085fabb24c2bc974788040
[ "MIT" ]
1
2019-12-27T15:58:49.000Z
2019-12-27T15:58:49.000Z
from __future__ import absolute_import from scipy.constants import mu_0, epsilon_0 from . import TDEM from . import FDEM from . import NSEM from . import Static from . import Base from . import Analytics from . import Utils
18.833333
43
0.787611
8ce6c67ce5f5c768169c5ad457994ee099e207c5
46,185
py
Python
tests/functions/test_conditional_join.py
samukweku/pyjanitor
9a6cadfc7fa6e109e805722703af6247a6707711
[ "MIT" ]
null
null
null
tests/functions/test_conditional_join.py
samukweku/pyjanitor
9a6cadfc7fa6e109e805722703af6247a6707711
[ "MIT" ]
3
2020-09-29T04:41:33.000Z
2021-07-26T07:11:23.000Z
tests/functions/test_conditional_join.py
samukweku/pyjanitor
9a6cadfc7fa6e109e805722703af6247a6707711
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import pytest from hypothesis import given, settings from pandas.testing import assert_frame_equal from janitor.testing_utils.strategies import ( conditional_df, conditional_right, conditional_series, ) @pytest.mark.xfail(reason="empty object will pass thru") @given(s=conditional_series()) def test_df_empty(s): """Raise ValueError if `df` is empty.""" df = pd.DataFrame([], dtype="int", columns=["A"]) with pytest.raises(ValueError): df.conditional_join(s, ("A", "non", "==")) @pytest.mark.xfail(reason="empty object will pass thru") @given(df=conditional_df()) def test_right_empty(df): """Raise ValueError if `right` is empty.""" s = pd.Series([], dtype="int", name="A") with pytest.raises(ValueError): df.conditional_join(s, ("A", "non", "==")) @given(df=conditional_df()) def test_right_df(df): """Raise TypeError if `right` is not a Series/DataFrame.""" with pytest.raises(TypeError): df.conditional_join({"non": [2, 3, 4]}, ("A", "non", "==")) @given(df=conditional_df(), s=conditional_series()) def test_right_series(df, s): """Raise ValueError if `right` is not a named Series.""" with pytest.raises(ValueError): df.conditional_join(s, ("A", "non", "==")) @given(df=conditional_df()) def test_df_MultiIndex(df): """Raise ValueError if `df` columns is a MultiIndex.""" with pytest.raises(ValueError): df.columns = [list("ABCDE"), list("FGHIJ")] df.conditional_join( pd.Series([2, 3, 4], name="A"), (("A", "F"), "non", "==") ) @given(df=conditional_df()) def test_right_MultiIndex(df): """Raise ValueError if `right` columns is a MultiIndex.""" with pytest.raises(ValueError): right = df.copy() right.columns = [list("ABCDE"), list("FGHIJ")] df.conditional_join(right, (("A", "F"), "non", ">=")) @given(df=conditional_df(), s=conditional_series()) def test_check_conditions_exist(df, s): """Raise ValueError if no condition is provided.""" with pytest.raises(ValueError): s.name = "B" df.conditional_join(s) @given(df=conditional_df(), s=conditional_series()) def test_check_condition_type(df, s): """Raise TypeError if any condition in conditions is not a tuple.""" with pytest.raises(TypeError): s.name = "B" df.conditional_join(s, ("A", "B", ""), ["A", "B"]) @given(df=conditional_df(), s=conditional_series()) def test_check_condition_length(df, s): """Raise ValueError if any condition is not length 3.""" with pytest.raises(ValueError): s.name = "B" df.conditional_join(s, ("A", "B", "C", "<")) df.conditional_join(s, ("A", "B", ""), ("A", "B")) @given(df=conditional_df(), s=conditional_series()) def test_check_left_on_type(df, s): """Raise TypeError if left_on is not a string.""" with pytest.raises(TypeError): s.name = "B" df.conditional_join(s, (1, "B", "<")) @given(df=conditional_df(), s=conditional_series()) def test_check_right_on_type(df, s): """Raise TypeError if right_on is not a string.""" with pytest.raises(TypeError): s.name = "B" df.conditional_join(s, ("B", 1, "<")) @given(df=conditional_df(), s=conditional_series()) def test_check_op_type(df, s): """Raise TypeError if the operator is not a string.""" with pytest.raises(TypeError): s.name = "B" df.conditional_join(s, ("B", "B", 1)) @given(df=conditional_df(), s=conditional_series()) def test_check_column_exists_df(df, s): """ Raise ValueError if `left_on` can not be found in `df`. """ with pytest.raises(ValueError): s.name = "B" df.conditional_join(s, ("C", "B", "<")) @given(df=conditional_df(), s=conditional_series()) def test_check_column_exists_right(df, s): """ Raise ValueError if `right_on` can not be found in `right`. """ with pytest.raises(ValueError): s.name = "B" df.conditional_join(s, ("B", "A", ">=")) @given(df=conditional_df(), s=conditional_series()) def test_check_op_correct(df, s): """ Raise ValueError if `op` is not any of `!=`, `<`, `>`, `>=`, `<=`. """ with pytest.raises(ValueError): s.name = "B" df.conditional_join(s, ("B", "B", "=!")) @given(df=conditional_df(), s=conditional_series()) def test_check_how_type(df, s): """ Raise TypeError if `how` is not a string. """ with pytest.raises(TypeError): s.name = "B" df.conditional_join(s, ("B", "B", "<"), how=1) @given(df=conditional_df(), s=conditional_series()) def test_check_how_value(df, s): """ Raise ValueError if `how` is not one of `inner`, `left`, or `right`. """ with pytest.raises(ValueError): s.name = "B" df.conditional_join(s, ("B", "B", "<"), how="INNER") @given(df=conditional_df(), right=conditional_right()) def test_dtype_strings_non_equi(df, right): """ Raise ValueError if the dtypes are both strings on a non-equi operator. """ with pytest.raises(ValueError): df.conditional_join(right, ("C", "Strings", "<")) @given(df=conditional_df(), s=conditional_series()) def test_dtype_not_permitted(df, s): """ Raise ValueError if dtype of column in `df` is not an acceptable type. """ df["F"] = pd.Timedelta("1 days") with pytest.raises(ValueError): s.name = "A" df.conditional_join(s, ("F", "A", "<")) @given(df=conditional_df(), s=conditional_series()) def test_dtype_str(df, s): """ Raise ValueError if dtype of column in `df` does not match the dtype of column from `right`. """ with pytest.raises(ValueError): s.name = "A" df.conditional_join(s, ("C", "A", "<")) @given(df=conditional_df(), s=conditional_series()) def test_dtype_category_non_equi(df, s): """ Raise ValueError if dtype is category, and op is non-equi. """ with pytest.raises(ValueError): s.name = "A" s = s.astype("category") df["C"] = df["C"].astype("category") df.conditional_join(s, ("C", "A", "<")) @given(df=conditional_df(), s=conditional_series()) def test_check_sort_by_appearance_type(df, s): """ Raise TypeError if `sort_by_appearance` is not a boolean. """ with pytest.raises(TypeError): s.name = "B" df.conditional_join(s, ("B", "B", "<"), sort_by_appearance="True") @given(df=conditional_df(), right=conditional_right()) def test_single_condition_less_than_floats(df, right): """Test output for a single condition. "<".""" left_on, right_on = ["B", "Numeric"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} < {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "<"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_less_than_ints(df, right): """Test output for a single condition. "<".""" left_on, right_on = ["A", "Integers"] expected = ( df.assign(t=1) .merge(right.assign(t=1, C="2"), on="t") .query(f"{left_on} < {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "<"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_less_than_ints_extension_array(df, right): """Test output for a single condition. "<".""" df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) left_on, right_on = ["A", "Integers"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} < {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "<"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_less_than_equal(df, right): """Test output for a single condition. "<=". DateTimes""" left_on, right_on = ["E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} <= {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "<="), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_less_than_date(df, right): """Test output for a single condition. "<". Dates""" left_on, right_on = ["E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} < {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "<"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_greater_than_datetime(df, right): """Test output for a single condition. ">". Datetimes""" left_on, right_on = ["E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} > {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, ">"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_greater_than_ints(df, right): """Test output for a single condition. ">=".""" left_on, right_on = ["A", "Integers"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} >= {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, ">="), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_greater_than_floats_floats(df, right): """Test output for a single condition. ">".""" left_on, right_on = ["B", "Numeric"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} > {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, ">"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_greater_than_ints_extension_array(df, right): """Test output for a single condition. ">=".""" left_on, right_on = ["A", "Integers"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} > {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, ">"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_not_equal_numeric(df, right): """Test output for a single condition. "!=".""" left_on, right_on = ["A", "Integers"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .dropna(subset=["A", "Integers"]) .query(f"{left_on} != {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "!="), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_not_equal_ints_only(df, right): """Test output for a single condition. "!=".""" left_on, right_on = ["A", "Integers"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .dropna(subset=["A", "Integers"]) .query(f"{left_on} != {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "!="), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_not_equal_floats_only(df, right): """Test output for a single condition. "!=".""" left_on, right_on = ["B", "Numeric"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .dropna(subset=["B", "Numeric"]) .query(f"{left_on} != {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "!="), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_not_equal_datetime(df, right): """Test output for a single condition. "!=".""" left_on, right_on = ["E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .dropna(subset=["E", "Dates"]) .query(f"{left_on} != {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "!="), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_equality_string(df, right): """Test output for a single condition. "==".""" left_on, right_on = ["C", "Strings"] expected = df.dropna(subset=[left_on]).merge( right.dropna(subset=[right_on]), left_on=left_on, right_on=right_on ) expected = expected.reset_index(drop=True) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "=="), how="inner", sort_by_appearance=False ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @pytest.mark.xfail( reason="""sometimes, categories are coerced to objects; might be a pandas version issue. """ ) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_equality_category(df, right): """Test output for a single condition. "==".""" left_on, right_on = ["C", "Strings"] df = df.assign(C=df["C"].astype("category")) right = right.assign(Strings=right["Strings"].astype("category")) expected = df.dropna(subset=[left_on]).merge( right.dropna(subset=[right_on]), left_on=left_on, right_on=right_on ) expected = expected.reset_index(drop=True) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "=="), how="inner", sort_by_appearance=False ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_equality_numeric(df, right): """Test output for a single condition. "==".""" left_on, right_on = ["A", "Integers"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) df.loc[0, "A"] = pd.NA right.loc[0, "Integers"] = pd.NA expected = df.dropna(subset=[left_on]).merge( right.dropna(subset=[right_on]), left_on=left_on, right_on=right_on ) expected = expected.reset_index(drop=True) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "=="), how="inner", sort_by_appearance=False ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_equality_datetime(df, right): """Test output for a single condition. "==".""" left_on, right_on = ["E", "Dates"] expected = df.dropna(subset=[left_on]).merge( right.dropna(subset=[right_on]), left_on=left_on, right_on=right_on ) expected = expected.reset_index(drop=True) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "=="), how="inner", sort_by_appearance=False ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_how_left(df, right): """Test output when `how==left`. "<=".""" left_on, right_on = ["A", "Integers"] expected = ( df.assign(t=1, index=np.arange(len(df))) .merge(right.assign(t=1), on="t") .query(f"{left_on} <= {right_on}") ) expected = expected.set_index("index") expected.index.name = None expected = df.join( expected.filter(right.columns), how="left", sort=False ).reset_index(drop=True) actual = df.conditional_join( right, (left_on, right_on, "<="), how="left", sort_by_appearance=True ) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_how_right(df, right): """Test output when `how==right`. ">".""" left_on, right_on = ["E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1, index=np.arange(len(right))), on="t") .query(f"{left_on} > {right_on}") ) expected = expected.set_index("index") expected.index.name = None expected = ( expected.filter(df.columns) .join(right, how="right", sort=False) .reset_index(drop=True) ) actual = df.conditional_join( right, (left_on, right_on, ">"), how="right", sort_by_appearance=True ) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_gt_and_lt_dates(df, right): """Test output for interval conditions.""" middle, left_on, right_on = ("E", "Dates", "Dates_Right") expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} < {middle} < {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, middle, right_on]) actual = df.conditional_join( right, (middle, left_on, ">"), (middle, right_on, "<"), how="inner", sort_by_appearance=True, ) actual = actual.filter([left_on, middle, right_on]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_ge_and_le_dates(df, right): """Test output for interval conditions.""" middle, left_on, right_on = ("E", "Dates", "Dates_Right") expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} <= {middle} <= {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, middle, right_on]) actual = df.conditional_join( right, (middle, left_on, ">="), (middle, right_on, "<="), how="inner", sort_by_appearance=True, ) actual = actual.filter([left_on, middle, right_on]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_le_and_ge_dates(df, right): """Test output for interval conditions.""" middle, left_on, right_on = ("E", "Dates", "Dates_Right") expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} <= {middle} <= {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, middle, right_on]) actual = df.conditional_join( right, (middle, right_on, "<="), (middle, left_on, ">="), how="inner", sort_by_appearance=True, ) actual = actual.filter([left_on, middle, right_on]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_ge_and_le_numbers(df, right): """Test output for interval conditions.""" middle, left_on, right_on = ("B", "Numeric", "Floats") expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} <= {middle} <= {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, middle, right_on]) actual = df.conditional_join( right, (middle, left_on, ">="), (middle, right_on, "<="), how="inner", sort_by_appearance=True, ) actual = actual.filter([left_on, middle, right_on]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_le_and_ge_numbers(df, right): """Test output for interval conditions.""" middle, left_on, right_on = ("B", "Numeric", "Floats") expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} <= {middle} <= {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, middle, right_on]) actual = df.conditional_join( right, (middle, right_on, "<="), (middle, left_on, ">="), how="inner", sort_by_appearance=True, ) actual = actual.filter([left_on, middle, right_on]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_gt_and_lt_numbers(df, right): """Test output for interval conditions.""" middle, left_on, right_on = ("B", "Numeric", "Floats") expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} < {middle} < {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, middle, right_on]) actual = df.conditional_join( right, (middle, left_on, ">"), (middle, right_on, "<"), how="inner", sort_by_appearance=True, ) actual = actual.filter([left_on, middle, right_on]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_gt_and_lt_numbers_(df, right): """ Test output for multiple conditions. """ first, second, third = ("Numeric", "Floats", "B") expected = ( right.assign(t=1) .merge(df.assign(t=1), on="t") .query(f"{first} > {third} and {second} < {third}") .reset_index(drop=True) ) expected = expected.filter([first, second, third]) actual = right.conditional_join( df, (first, third, ">"), (second, third, "<"), how="inner", sort_by_appearance=True, ) actual = actual.filter([first, second, third]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_gt_and_lt_numbers_left_join(df, right): """ Test output for multiple conditions, and how is `left`. """ first, second, third = ("Numeric", "Floats", "B") right = right.assign(t=1, check=range(len(right))) df = df.assign(t=1) expected = right.merge(df, on="t").query( f"{first} > {third} and {second} < {third}" ) drop = right.columns.difference(["check"]) expected = right.merge( expected.drop(columns=[*drop]), on="check", how="left", sort=False ) expected = expected.filter([first, second, third]) actual = right.conditional_join( df, (first, third, ">"), (second, third, "<"), how="left", sort_by_appearance=True, ) actual = actual.droplevel(0, 1) actual = actual.loc[:, [first, second, third]] assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_gt_and_lt_numbers_right_join(df, right): """ Test output for multiple conditions, and how is `right`. """ first, second, third = ("Numeric", "Floats", "B") df = df.assign(t=1, check=range(len(df))) right = right.assign(t=1) expected = right.merge(df, on="t").query( f"{first} > {third} and {second} < {third}" ) drop = df.columns.difference(["check"]) expected = expected.drop(columns=[*drop]).merge( df, on="check", how="right", sort=False ) expected = expected.filter([first, second, third]) actual = right.conditional_join( df, (first, third, ">"), (second, third, "<"), how="right", sort_by_appearance=True, ) actual = actual.droplevel(0, 1) actual = actual.loc[:, [first, second, third]] assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_ne(df, right): """ Test output for multiple conditions. `!=` """ filters = ["A", "Integers", "B", "Numeric"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A != Integers and B != Numeric") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("A", "Integers", "!="), ("B", "Numeric", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_ne_extension(df, right): """ Test output for multiple conditions. `!=` """ filters = ["A", "Integers", "B", "Numeric"] df = df.assign(A=df["A"].astype("Int64")) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A != Integers and B != Numeric") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("A", "Integers", "!="), ("B", "Numeric", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_ne_extension_right(df, right): """ Test output for multiple conditions. `!=` """ filters = ["A", "Integers", "B", "Numeric"] right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A != Integers and B != Numeric") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("A", "Integers", "!="), ("B", "Numeric", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_ne_dates(df, right): """ Test output for multiple conditions. `!=` """ filters = ["A", "Integers", "E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A != Integers and E != Dates") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("A", "Integers", "!="), ("E", "Dates", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_multiple_ne_dates(df, right): """ Test output for multiple conditions. `!=` """ filters = ["A", "Integers", "E", "Dates", "B", "Numeric"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A != Integers and E != Dates and B != Numeric") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("A", "Integers", "!="), ("E", "Dates", "!="), ("B", "Numeric", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_eq_and_ne(df, right): """Test output for equal and not equal conditions.""" A, B, C, D = ("B", "Numeric", "E", "Dates") expected = ( df.merge(right, left_on=A, right_on=B) .dropna(subset=[A, B]) .query(f"{C} != {D}") .reset_index(drop=True) ) expected = expected.filter([A, B, C, D]) actual = df.conditional_join( right, (A, B, "=="), (C, D, "!="), how="inner", sort_by_appearance=False, ) actual = actual.filter([A, B, C, D]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_ne_and_eq(df, right): """Test output for equal and not equal conditions.""" A, B, C, D = ("A", "Integers", "E", "Dates") expected = ( df.merge(right, left_on=C, right_on=D) .dropna(subset=[C, D]) .query(f"{A} != {B}") .reset_index(drop=True) ) expected = expected.filter([A, B, C, D]) actual = df.conditional_join( right, (A, B, "!="), (C, D, "=="), how="inner", sort_by_appearance=False, ) actual = actual.filter([A, B, C, D]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_gt_lt_ne_conditions(df, right): """ Test output for multiple conditions. """ filters = ["A", "Integers", "B", "Numeric", "E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A > Integers and B < Numeric and E != Dates") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("A", "Integers", ">"), ("B", "Numeric", "<"), ("E", "Dates", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_gt_lt_ne_start(df, right): """ Test output for multiple conditions. """ filters = ["A", "Integers", "B", "Numeric", "E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1, C="C"), on="t") .query("A > Integers and B < Numeric and E != Dates") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("E", "Dates", "!="), ("A", "Integers", ">"), ("B", "Numeric", "<"), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_ge_le_ne_extension_array(df, right): """ Test output for multiple conditions. """ filters = ["A", "Integers", "B", "Numeric", "E", "Dates"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A != Integers and B < Numeric and E >= Dates") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("E", "Dates", ">="), ("A", "Integers", "!="), ("B", "Numeric", "<"), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_ge_lt_ne_extension(df, right): """ Test output for multiple conditions. """ filters = ["A", "Integers", "B", "Numeric", "E", "Dates"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query( "A < Integers and B != Numeric and E >= Dates and E != Dates_Right" ) .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("E", "Dates", ">="), ("B", "Numeric", "!="), ("A", "Integers", "<"), ("E", "Dates_Right", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_eq_ge_and_le_numbers(df, right): """Test output for multiple conditions.""" l_eq, l_ge, l_le = ["B", "A", "E"] r_eq, r_ge, r_le = ["Floats", "Integers", "Dates"] columns = ["B", "A", "E", "Floats", "Integers", "Dates"] expected = ( df.merge(right, left_on=l_eq, right_on=r_eq, how="inner", sort=False) .dropna(subset=[l_eq, r_eq]) .query(f"{l_ge} >= {r_ge} and {l_le} <= {r_le}") .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, (l_eq, r_eq, "=="), (l_ge, r_ge, ">="), (l_le, r_le, "<="), how="inner", sort_by_appearance=False, ) actual = actual.filter(columns) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_ge_and_le_diff_numbers(df, right): """Test output for multiple conditions.""" l_ge, l_le = ["A", "E"] r_ge, r_le = ["Integers", "Dates"] columns = ["B", "A", "E", "Floats", "Integers", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t", how="inner", sort=False) .query(f"{l_ge} > {r_ge} and {l_le} <= {r_le}") .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, (l_le, r_le, "<="), (l_ge, r_ge, ">"), how="inner", sort_by_appearance=True, ) actual = actual.filter(columns) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_ge_lt_ne_extension_variant(df, right): """ Test output for multiple conditions. """ filters = ["A", "Integers", "B", "Numeric", "E", "Dates"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query( "A != Integers and B < Numeric and E >= Dates and E != Dates_Right" ) .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("E", "Dates", ">="), ("B", "Numeric", "<"), ("A", "Integers", "!="), ("E", "Dates_Right", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_ge_eq_and_le_numbers_variant(df, right): """Test output for multiple conditions.""" l_eq, l_ge, l_le = ["B", "A", "E"] r_eq, r_ge, r_le = ["Floats", "Integers", "Dates"] columns = ["B", "A", "E", "Floats", "Integers", "Dates"] expected = ( df.merge(right, left_on=l_eq, right_on=r_eq, how="inner", sort=False) .dropna(subset=[l_eq, r_eq]) .query(f"{l_ge} >= {r_ge} and {l_le} <= {r_le}") .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, (l_ge, r_ge, ">="), (l_le, r_le, "<="), (l_eq, r_eq, "=="), how="inner", sort_by_appearance=True, ) # actual = actual.droplevel(0, 1) actual = actual.filter(columns) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_multiple_eqs_variant(df, right): """Test output for multiple conditions.""" columns = ["B", "A", "E", "Floats", "Integers", "Dates"] expected = ( df.merge( right, left_on=["B", "A"], right_on=["Floats", "Integers"], how="inner", sort=False, ) .dropna(subset=["B", "A", "Floats", "Integers"]) .query("E != Dates") .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, ("E", "Dates", "!="), ("B", "Floats", "=="), ("A", "Integers", "=="), how="inner", sort_by_appearance=False, ) actual = actual.filter(columns) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_ge_and_le_range_numbers(df, right): """Test output for multiple conditions.""" l_ge, l_le = ["A", "E"] r_ge, r_le = ["Integers", "Dates"] columns = ["B", "A", "E", "Floats", "Integers", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t", how="inner", sort=False) .query(f"{l_ge} >= {r_ge} and {l_le} < {r_le}") .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, (l_le, r_le, "<"), (l_ge, r_ge, ">="), how="inner", sort_by_appearance=True, ) actual = actual.filter(columns) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_ge_eq_and_le_numbers(df, right): """Test output for multiple conditions.""" l_eq, l_ge, l_le = ["B", "A", "E"] r_eq, r_ge, r_le = ["Floats", "Integers", "Dates"] columns = ["B", "A", "E", "Floats", "Integers", "Dates"] expected = ( df.merge(right, left_on=l_eq, right_on=r_eq, how="inner", sort=False) .dropna(subset=[l_eq, r_eq]) .query(f"{l_ge} >= {r_ge} and {l_le} <= {r_le}") .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, (l_ge, r_ge, ">="), (l_le, r_le, "<="), (l_eq, r_eq, "=="), how="inner", sort_by_appearance=True, ) # actual = actual.droplevel(0, 1) actual = actual.filter(columns) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_multiple_non_equi(df, right): """Test output for multiple conditions.""" l_eq, l_ge, l_le = ["B", "A", "E"] r_eq, r_ge, r_le = ["Floats", "Integers", "Dates"] columns = ["B", "A", "E", "Floats", "Integers", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t", how="inner", sort=False) .query(f"{l_ge} >= {r_ge} and {l_le} <= {r_le} and {l_eq} < {r_eq}") .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, (l_ge, r_ge, ">="), (l_le, r_le, "<="), (l_eq, r_eq, "<"), how="inner", sort_by_appearance=True, ) # actual = actual.droplevel(0, 1) actual = actual.filter(columns) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_multiple_non_equii(df, right): """Test output for multiple conditions.""" l_eq, l_ge, l_le, ex1 = ["B", "A", "E", "B"] r_eq, r_ge, r_le, ex2 = ["Floats", "Integers", "Dates", "Numeric"] columns = ["B", "A", "E", "Floats", "Integers", "Dates", "Numeric"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t", how="inner", sort=False) .query( f"{l_ge} >= {r_ge} and {l_le} <= {r_le} and {l_eq} < {r_eq} and {ex1} > {ex2}" # noqa: E501 ) .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, (l_ge, r_ge, ">="), (l_le, r_le, "<="), (l_eq, r_eq, "<"), (ex1, ex2, ">"), how="inner", sort_by_appearance=True, ) # actual = actual.droplevel(0, 1) actual = actual.filter(columns) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_multiple_eqs(df, right): """Test output for multiple conditions.""" columns = ["B", "A", "E", "Floats", "Integers", "Dates"] expected = ( df.merge( right, left_on=["B", "A"], right_on=["Floats", "Integers"], how="inner", sort=False, ) .dropna(subset=["B", "A", "Floats", "Integers"]) .query("E != Dates") .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, ("E", "Dates", "!="), ("B", "Floats", "=="), ("A", "Integers", "=="), how="inner", sort_by_appearance=False, ) actual = actual.filter(columns) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_multiple_eqs_extension_array(df, right): """Test output for multiple conditions.""" columns = ["B", "A", "E", "Floats", "Integers", "Dates"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) expected = ( df.merge( right, left_on=["B", "E"], right_on=["Floats", "Dates"], how="inner", sort=False, ) .dropna(subset=["B", "E", "Floats", "Integers"]) .query("A != Integers") .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, ("E", "Dates", "=="), ("B", "Floats", "=="), ("A", "Integers", "!="), how="inner", sort_by_appearance=False, ) actual = actual.filter(columns) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_multiple_eqs_only(df, right): """Test output for multiple conditions.""" columns = ["B", "A", "E", "Floats", "Integers", "Dates"] df = df.assign(A=df["A"].astype("Int64"), C=df["C"].astype("string")) right = right.assign( Integers=right["Integers"].astype(pd.Int64Dtype()), Strings=right["Strings"].astype("string"), ) df.loc[0, "A"] = pd.NA right.loc[0, "Integers"] = pd.NA expected = ( df.merge( right, left_on=["B", "A", "E"], right_on=["Floats", "Integers", "Dates"], how="inner", sort=False, ) .dropna(subset=columns) .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, ("E", "Dates", "=="), ("B", "Floats", "=="), ("A", "Integers", "=="), how="inner", sort_by_appearance=False, ) actual = actual.filter(columns) assert_frame_equal(expected, actual)
29.81601
104
0.598744
7755937efb9ed31f4b4e28eecd0bb9a221a20dc0
2,913
py
Python
elementary_datastructures/linked_list/Sentinel_LinkedList.py
apri-me/datastructure-journey
315cbce29a263a899a966fd6041293c08db7a8d0
[ "MIT" ]
3
2021-11-01T22:53:03.000Z
2022-01-22T11:49:56.000Z
elementary_datastructures/linked_list/Sentinel_LinkedList.py
MobinNesari81/datastructure-journey
d6ad2e710fe9238fcf75f8838bab6e813e408789
[ "MIT" ]
null
null
null
elementary_datastructures/linked_list/Sentinel_LinkedList.py
MobinNesari81/datastructure-journey
d6ad2e710fe9238fcf75f8838bab6e813e408789
[ "MIT" ]
4
2021-11-28T07:44:20.000Z
2021-12-12T08:49:17.000Z
''' Implementing Linked list data structure with respect to Sentinel element method. In this program Sentinel element will be a node which is called nil. For safe programming reasons, nil.val will be None which will return some exceptions if in any part of the program we want to compare it with another node. ''' class Node: # Node class which contain an arbitrary data type as value and two node which are the next and previous nodes. def __init__(self, value) -> None: # Constructor self.val = value self.next = None self.prev = None class Linked_List: # Implementing Linked List def __init__(self) -> None: # Constructor for Linked_List which will construct nil node. self.nil = Node(None) self.nil.next = self.nil self.nil.prev = self.nil def get_head(self) -> Node: # get_head() function will return head of the link list. return self.nil.next def get_tail(self) -> Node: # get_tail() function will return tail of the link list. return self.nil.prev def append(self, key) -> None: # append() function will add new node to link list. tmp = Node(key) tail = self.get_tail() tail.next = tmp tmp.prev = tail tmp.next = self.nil self.nil.prev = tmp def prepend(self, key) -> None: # prepend() function will add new node to linked list head. tmp = Node(key) head = self.get_head() head.prev = tmp tmp.next = head self.nil.next = tmp def printer(self) -> None: # printer() function will print every nodes' value. head = self.get_head() while head != self.nil: print(head.val) head = head.next def get_all_elements(self) -> list: # get_all_elements() function will return a list of nodes' values. answer = [] head = self.get_head() while head != self.nil: answer.append(head.val) head = head.next return answer def search(self, key) -> Node: # search() function will find a specific node with given key. If there is no node with that key, it will return None. head = self.get_head() while head != self.nil: if head.val == key: return head head = head.next return None def delete_node(self, key) -> None: # delete_node() function is using search function to find specific node and delete that node from linked list. target = self.search(key) if target: target.prev.next = target.next target.next.prev = target.prev def __str__(self) -> str: # this function will return all of elements in one string. answer = self.get_all_elements() string = "" for i in answer: string += str(i) + ' ' return string[:len(string) - 1]
39.90411
159
0.611397
e968d90f2cae63e521cd8445a62d3b7ccd981fa1
14,739
py
Python
examples/classify/semi_supervised/img/libml/augment/randaugment/augment_ops.py
parmarsuraj99/objax
111cd78960f5812885505b5ec02552b98a789973
[ "Apache-2.0" ]
715
2020-08-20T07:23:03.000Z
2022-03-31T18:17:54.000Z
examples/classify/semi_supervised/img/libml/augment/randaugment/augment_ops.py
parmarsuraj99/objax
111cd78960f5812885505b5ec02552b98a789973
[ "Apache-2.0" ]
145
2020-08-21T07:42:36.000Z
2022-03-18T16:51:37.000Z
examples/classify/semi_supervised/img/libml/augment/randaugment/augment_ops.py
parmarsuraj99/objax
111cd78960f5812885505b5ec02552b98a789973
[ "Apache-2.0" ]
59
2020-08-20T07:30:53.000Z
2022-01-05T23:00:06.000Z
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Various ops for augmentation.""" import math import tensorflow as tf import tensorflow_addons as tfa # Default replace value REPLACE_VALUE = 128 def blend(image1, image2, factor): """Blend image1 and image2 using 'factor'. A value of factor 0.0 means only image1 is used. A value of 1.0 means only image2 is used. A value between 0.0 and 1.0 means we linearly interpolate the pixel values between the two images. A value greater than 1.0 "extrapolates" the difference between the two pixel values, and we clip the results to values between 0 and 255. Args: image1: An image Tensor. image2: An image Tensor. factor: A floating point value above 0.0. Returns: A blended image Tensor. """ image1 = tf.cast(image1, tf.float32) image2 = tf.cast(image2, tf.float32) return tf.saturate_cast(image1 + factor * (image2 - image1), tf.uint8) def wrap(image): """Returns 'image' with an extra channel set to all 1s.""" shape = tf.shape(image) extended_channel = tf.ones([shape[0], shape[1], 1], image.dtype) extended = tf.concat([image, extended_channel], 2) return extended def unwrap(image): """Unwraps an image produced by wrap. Where there is a 0 in the last channel for every spatial position, the rest of the three channels in that spatial dimension are grayed (set to 128). Operations like translate and shear on a wrapped Tensor will leave 0s in empty locations. Some transformations look at the intensity of values to do preprocessing, and we want these empty pixels to assume the 'average' value, rather than pure black. Args: image: A 3D Image Tensor with 4 channels. Returns: image: A 3D image Tensor with 3 channels. """ image_shape = tf.shape(image) # Flatten the spatial dimensions. flattened_image = tf.reshape(image, [-1, image_shape[2]]) # Find all pixels where the last channel is zero. alpha_channel = tf.expand_dims(flattened_image[:, image_shape[2] - 1], 1) replace = tf.constant([REPLACE_VALUE, REPLACE_VALUE, REPLACE_VALUE, 1], image.dtype) # Where they are zero, fill them in with 'replace'. flattened_image = tf.where( tf.equal(alpha_channel, 0), tf.ones_like(flattened_image, dtype=image.dtype) * replace, flattened_image) image = tf.reshape(flattened_image, image_shape) image = tf.slice( image, [0, 0, 0], [image_shape[0], image_shape[1], image_shape[2] - 1]) return image def solarize(image, threshold=128): # For each pixel in the image, select the pixel # if the value is less than the threshold. # Otherwise, subtract 255 from the pixel. threshold = tf.saturate_cast(threshold, image.dtype) return tf.where(image < threshold, image, 255 - image) def solarize_add(image, addition=0, threshold=128): # For each pixel in the image less than threshold # we add 'addition' amount to it and then clip the # pixel value to be between 0 and 255. The value # of 'addition' is between -128 and 128 threshold = tf.saturate_cast(threshold, image.dtype) added_im = tf.cast(image, tf.int32) + tf.cast(addition, tf.int32) added_im = tf.saturate_cast(added_im, tf.uint8) return tf.where(image < threshold, added_im, image) def invert(image): """Inverts the image pixels.""" return 255 - tf.convert_to_tensor(image) def invert_blend(image, factor): """Implements blend of invert with original image.""" return blend(invert(image), image, factor) def color(image, factor): """Equivalent of PIL Color.""" degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image)) return blend(degenerate, image, factor) def contrast(image, factor): """Equivalent of PIL Contrast.""" grayscale_im = tf.image.rgb_to_grayscale(image) mean = tf.reduce_mean(tf.cast(grayscale_im, tf.float32)) mean = tf.saturate_cast(mean + 0.5, tf.uint8) degenerate = tf.ones_like(grayscale_im, dtype=tf.uint8) * mean degenerate = tf.image.grayscale_to_rgb(degenerate) return blend(degenerate, image, factor) def brightness(image, factor): """Equivalent of PIL Brightness.""" degenerate = tf.zeros_like(image) return blend(degenerate, image, factor) def posterize(image, bits): """Equivalent of PIL Posterize.""" shift = tf.cast(8 - bits, image.dtype) return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift) def rotate(image, degrees): """Equivalent of PIL Rotation.""" # Convert from degrees to radians degrees_to_radians = math.pi / 180.0 radians = degrees * degrees_to_radians # In practice, we should randomize the rotation degrees by flipping # it negatively half the time, but that's done on 'degrees' outside # of the function. image = tfa.image.transform_ops.rotate(wrap(image), radians) return unwrap(image) def translate_x(image, pixels): """Equivalent of PIL Translate in X dimension.""" image = tfa.image.translate_ops.translate(wrap(image), [-pixels, 0]) return unwrap(image) def translate_y(image, pixels): """Equivalent of PIL Translate in Y dimension.""" image = tfa.image.translate_ops.translate(wrap(image), [0, -pixels]) return unwrap(image) def shear_x(image, level): """Equivalent of PIL Shearing in X dimension.""" # Shear parallel to x axis is a projective transform # with a matrix form of: # [1 level # 0 1] image = tfa.image.transform_ops.transform( wrap(image), [1., level, 0., 0., 1., 0., 0., 0.]) return unwrap(image) def shear_y(image, level): """Equivalent of PIL Shearing in Y dimension.""" # Shear parallel to y axis is a projective transform # with a matrix form of: # [1 0 # level 1] image = tfa.image.transform_ops.transform( wrap(image), [1., 0., 0., level, 1., 0., 0., 0.]) return unwrap(image) def autocontrast(image): """Implements Autocontrast function from PIL using TF ops.""" def scale_channel(channel): """Scale the 2D image using the autocontrast rule.""" # A possibly cheaper version can be done using cumsum/unique_with_counts # over the histogram values, rather than iterating over the entire image. # to compute mins and maxes. lo = tf.cast(tf.reduce_min(channel), tf.float32) hi = tf.cast(tf.reduce_max(channel), tf.float32) # Scale the image, making the lowest value 0 and the highest value 255. def scale_values(im): scale = 255.0 / (hi - lo) offset = -lo * scale im = tf.cast(im, tf.float32) * scale + offset return tf.saturate_cast(im, tf.uint8) result = tf.cond(hi > lo, lambda: scale_values(channel), lambda: channel) return result # Assumes RGB for now. Scales each channel independently # and then stacks the result. s1 = scale_channel(image[:, :, 0]) s2 = scale_channel(image[:, :, 1]) s3 = scale_channel(image[:, :, 2]) image = tf.stack([s1, s2, s3], 2) return image def autocontrast_blend(image, factor): """Implements blend of autocontrast with original image.""" return blend(autocontrast(image), image, factor) def sharpness(image, factor): """Implements Sharpness function from PIL using TF ops.""" orig_im = image image = tf.cast(image, tf.float32) # Make image 4D for conv operation image = tf.expand_dims(image, 0) # SMOOTH PIL Kernel kernel = tf.constant( [[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=tf.float32, shape=[3, 3, 1, 1]) / 13. # Tile across channel dimension kernel = tf.tile(kernel, [1, 1, 3, 1]) strides = [1, 1, 1, 1] degenerate = tf.nn.depthwise_conv2d( image, kernel, strides, padding='VALID', dilations=[1, 1]) degenerate = tf.squeeze(tf.saturate_cast(degenerate, tf.uint8), [0]) # For the borders of the resulting image, fill in the values of the # original image. mask = tf.ones_like(degenerate) padded_mask = tf.pad(mask, [[1, 1], [1, 1], [0, 0]]) padded_degenerate = tf.pad(degenerate, [[1, 1], [1, 1], [0, 0]]) result = tf.where(tf.equal(padded_mask, 1), padded_degenerate, orig_im) # Blend the final result return blend(result, orig_im, factor) def equalize(image): """Implements Equalize function from PIL using TF ops.""" def scale_channel(im, c): """Scale the data in the channel to implement equalize.""" im = tf.cast(im[:, :, c], tf.int32) # Compute the histogram of the image channel. histo = tf.histogram_fixed_width(im, [0, 255], nbins=256) # For the purposes of computing the step, filter out the nonzeros. nonzero = tf.where(tf.not_equal(histo, 0)) nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1]) step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255 def build_lut(histo, step): # Compute the cumulative sum, shifting by step // 2 # and then normalization by step. lut = (tf.cumsum(histo) + (step // 2)) // step # Shift lut, prepending with 0. lut = tf.concat([[0], lut[:-1]], 0) # Clip the counts to be in range. This is done # in the C code for image.point. return tf.clip_by_value(lut, 0, 255) # If step is zero, return the original image. Otherwise, build # lut from the full histogram and step and then index from it. result = tf.cond(tf.equal(step, 0), lambda: im, lambda: tf.gather(build_lut(histo, step), im)) return tf.cast(result, tf.uint8) # Assumes RGB for now. Scales each channel independently # and then stacks the result. s1 = scale_channel(image, 0) s2 = scale_channel(image, 1) s3 = scale_channel(image, 2) image = tf.stack([s1, s2, s3], 2) return image def equalize_blend(image, factor): """Implements blend of equalize with original image.""" return blend(equalize(image), image, factor) def _convolve_image_with_kernel(image, kernel): num_channels = tf.shape(image)[-1] kernel = tf.tile(kernel, [1, 1, num_channels, 1]) image = tf.expand_dims(image, axis=0) convolved_im = tf.nn.depthwise_conv2d( tf.cast(image, tf.float32), kernel, strides=[1, 1, 1, 1], padding='SAME') # adding 0.5 for future rounding, same as in PIL: # https://github.com/python-pillow/Pillow/blob/555e305a60d7fcefd1ad4aa6c8fd879e2f474192/src/libImaging/Filter.c#L101 # pylint: disable=line-too-long convolved_im = convolved_im + 0.5 return tf.squeeze(convolved_im, axis=0) def blur(image, factor): """Blur with the same kernel as ImageFilter.BLUR.""" # See https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageFilter.py # pylint: disable=line-too-long # class BLUR(BuiltinFilter): # name = "Blur" # # fmt: off # filterargs = (5, 5), 16, 0, ( # 1, 1, 1, 1, 1, # 1, 0, 0, 0, 1, # 1, 0, 0, 0, 1, # 1, 0, 0, 0, 1, # 1, 1, 1, 1, 1, # ) # # fmt: on # # filterargs are following: # (kernel_size_x, kernel_size_y), divisor, offset, kernel # blur_kernel = tf.constant([[1., 1., 1., 1., 1.], [1., 0., 0., 0., 1.], [1., 0., 0., 0., 1.], [1., 0., 0., 0., 1.], [1., 1., 1., 1., 1.]], dtype=tf.float32, shape=[5, 5, 1, 1]) / 16.0 blurred_im = _convolve_image_with_kernel(image, blur_kernel) return blend(image, blurred_im, factor) def smooth(image, factor): """Smooth with the same kernel as ImageFilter.SMOOTH.""" # See https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageFilter.py # pylint: disable=line-too-long # class SMOOTH(BuiltinFilter): # name = "Smooth" # # fmt: off # filterargs = (3, 3), 13, 0, ( # 1, 1, 1, # 1, 5, 1, # 1, 1, 1, # ) # # fmt: on # # filterargs are following: # (kernel_size_x, kernel_size_y), divisor, offset, kernel # smooth_kernel = tf.constant([[1., 1., 1.], [1., 5., 1.], [1., 1., 1.]], dtype=tf.float32, shape=[3, 3, 1, 1]) / 13.0 smoothed_im = _convolve_image_with_kernel(image, smooth_kernel) return blend(image, smoothed_im, factor) def rescale(image, level): """Rescales image and enlarged cornet.""" # TODO: should we do center crop instead? # TODO: add support of other resize methods # See tf.image.ResizeMethod for full list size = image.shape[:2] scale = level * 0.25 scale_height = tf.cast(scale * size[0], tf.int32) scale_width = tf.cast(scale * size[1], tf.int32) cropped_image = tf.image.crop_to_bounding_box( image, offset_height=scale_height, offset_width=scale_width, target_height=size[0] - scale_height, target_width=size[1] - scale_width) rescaled = tf.image.resize(cropped_image, size, tf.image.ResizeMethod.BICUBIC) return tf.saturate_cast(rescaled, tf.uint8) NAME_TO_FUNC = { 'Identity': tf.identity, 'AutoContrast': autocontrast, 'AutoContrastBlend': autocontrast_blend, 'Equalize': equalize, 'EqualizeBlend': equalize_blend, 'Invert': invert, 'InvertBlend': invert_blend, 'Rotate': rotate, 'Posterize': posterize, 'Solarize': solarize, 'SolarizeAdd': solarize_add, 'Color': color, 'Contrast': contrast, 'Brightness': brightness, 'Sharpness': sharpness, 'ShearX': shear_x, 'ShearY': shear_y, 'TranslateX': translate_x, 'TranslateY': translate_y, 'Blur': blur, 'Smooth': smooth, 'Rescale': rescale, }
34.92654
153
0.631997
ea07bcd1f5518f5c822e44897090367504b6191b
2,757
py
Python
tests/test_prep_tasks.py
rednafi/rush
216d0a8f85ec90853608de4226fb61b2d287cf9f
[ "MIT" ]
32
2019-12-20T15:01:32.000Z
2021-04-30T18:58:17.000Z
tests/test_prep_tasks.py
rednafi/rush
216d0a8f85ec90853608de4226fb61b2d287cf9f
[ "MIT" ]
22
2019-12-21T08:24:26.000Z
2020-01-22T19:30:53.000Z
tests/test_prep_tasks.py
rednafi/rush
216d0a8f85ec90853608de4226fb61b2d287cf9f
[ "MIT" ]
4
2020-01-16T22:41:28.000Z
2021-05-31T21:30:01.000Z
from collections import OrderedDict import pytest import yaml from mock import patch from rush_cli.prep_tasks import PrepTasks from rush_cli.prep_tasks import Views @pytest.fixture def make_preptasks(): obj = PrepTasks() return obj def test_clean_tasks(make_preptasks): obj = make_preptasks assert obj._clean_tasks( { "task_1": 'echo "task1 is running"\n', "task_2": 'task_1\necho "task2 is running"\n', } ) == OrderedDict( [ ("task_1", ['echo "task1 is running"']), ("task_2", ["task_1", 'echo "task2 is running"']), ] ) def test_replace_placeholder_tasks(make_preptasks): obj = make_preptasks assert obj._replace_placeholder_tasks( ["task_1", 'echo "task"'], {"task_1": "hello"} ) == ["hello", 'echo "task"'] def test_flatten_task_chunk(make_preptasks): obj = make_preptasks assert obj._flatten_task_chunk( [["hello"], ["from", ["the", ["other"]], "side"]] ) == ["hello", "from", "the", "other", "side"] def test_filter_tasks(make_preptasks): obj = make_preptasks assert obj._filter_tasks( {"task_1": "ay", "task_2": "g", "task_3": "homie"}, "task_1", "task_3" ) == {"task_1": "ay", "task_3": "homie"} with pytest.raises(SystemExit): obj._filter_tasks( {"task_1": "ay", "task_2": "g", "task_3": "homie"}, "task_1", "task_4" ) @pytest.fixture(autouse=True) def make_tmpdir(tmpdir): tmp_dir = tmpdir.mkdir("folder") tmp_path = tmp_dir.join("rushfile.yml") return tmp_dir, tmp_path @pytest.fixture(autouse=True) def make_cwd(request, make_tmpdir): tmp_dir, tmp_path = make_tmpdir patched = patch("os.getcwd", return_value=tmp_dir) request.addfinalizer(lambda: patched.__exit__()) return patched.__enter__() # find_rushfile @pytest.fixture(autouse=True) def make_rushfile(make_tmpdir): """Creating dummy rushfile.yml.""" # dummy rushfile path tmp_dir, tmp_path = make_tmpdir # dummy rushfile contents content = """task_1: | echo "task1 is running" task_2: | # Task chaining [task_1 is a dependency of task_2] task_1 echo "task2 is running" """ # loading dummy rushfile yml_content = yaml.load(content, Loader=yaml.FullLoader) # saving dummy rushfile to tmp dir with open(tmp_path, "w") as f: yaml.dump(yml_content, f) return yml_content @pytest.fixture def make_views(): obj = Views() return obj def test_view_rushpath(capsys, make_views): obj = make_views obj.view_rushpath captured = capsys.readouterr() print(captured.out) assert captured.out.rstrip().split("/")[-1] == "rushfile.yml"
23.168067
82
0.635111
db741988bd36b8dd8cb04415185731c74e951572
63,899
py
Python
Test.py
Tony031218/manim-projects
b243dec0f0a007649a92938e90d60eccb4c7dd15
[ "Apache-2.0" ]
45
2019-10-08T23:58:20.000Z
2020-05-20T03:49:15.000Z
Test.py
Tony031218/manim-projects
b243dec0f0a007649a92938e90d60eccb4c7dd15
[ "Apache-2.0" ]
null
null
null
Test.py
Tony031218/manim-projects
b243dec0f0a007649a92938e90d60eccb4c7dd15
[ "Apache-2.0" ]
12
2019-08-15T08:07:22.000Z
2020-05-09T12:34:14.000Z
from manimlib.imports import * from manim_projects.tony_useful.imports import * from random import randint ''' 这个文件中是群友问问题时我写的测试代码(2020.02.03开始) 一些目的和效果已经通过文档字符串的形式给出 ''' class Test0(Scene): def construct(self): circle = Circle(radius=3) poly = [] for i in range(3, 11): po = Polygon( *[ UP * np.sin(j * 2 * PI / i) + RIGHT * np.cos(j * 2 * PI / i) for j in range(i) ] ) poly.append(po.scale(3, about_point=ORIGIN)) self.play(ShowCreation(circle)) self.play(ShowCreation(poly[0])) self.wait() for i in range(1, 8): self.play(Transform(poly[0], poly[i])) self.wait() self.wait(2) class Test1(Scene): '''Matrix类中间元素的下标布局''' def construct(self): mat = Matrix([['0', '-1', '2'], ['1', '0', '12'], ['3', '2', 'x']]) self.add(mat) debugTeX(self, mat[0]) class Test2(Scene): '''使用\tt调TextMobject打字机字体''' def construct(self): text = VGroup( TextMobject("\\tt UR=np.array([ 1, 1, 0])", tex_to_color_map={"=":RED, "array":BLUE}), TextMobject("\\tt UL=np.array([-1, 1, 0])", tex_to_color_map={"=":RED, "array":BLUE}), TextMobject("\\tt DR=np.array([ 1,-1, 0])", tex_to_color_map={"=":RED, "array":BLUE}), TextMobject("\\tt DL=np.array([-1,-1, 0])", tex_to_color_map={"=":RED, "array":BLUE}) ).arrange_submobjects(DOWN) self.add(text) class Test3(Scene): '''坐标可以用ndarray,也可以用列表''' def construct(self): l = Line([0, 0, 0], [3, 3, 0]) self.add(l) class Test4(Scene): '''aligned_edge的用法''' def construct(self): sq1 = Square().shift(LEFT * 2) sq2 = Square().next_to(sq1.get_corner(DR), DOWN) sq3 = Square().shift(RIGHT * 2) sq4 = Square().next_to(sq3.get_corner(DR), DOWN, aligned_edge=LEFT) self.add(sq1, sq2, sq3, sq4) class Test5(Scene): '''加号强制next_to对齐''' def construct(self): text = TextMobject("LOVE\\ DEATH\\ ", "$+$", "\\ ROBOTS", color=RED) text[1].next_to(text[0], RIGHT) text[2].next_to(text[1], RIGHT) self.add(text) class Test6(Scene): '''FocusOn和Flash的动画效果''' def construct(self): title1 = TextMobject("FocusOn").scale(2).to_corner(UL) self.add(title1) dot = Dot(radius=0.5, color=BLUE) self.play(ShowCreation(dot)) self.wait() self.play(FocusOn(dot)) self.wait(2) title2 = TextMobject("Flash").scale(2).to_corner(UL) self.play(Transform(title1, title2)) self.wait() self.play(Flash(dot, flash_radius=0.55)) self.wait(3) class Test7(Scene): '''白底黑字''' def construct(self): txt = TexMobject("0", fill_color=BLACK, fill_opacity=1.0, stroke_color=BLACK, stroke_opacity=1.0, ).scale(3) self.add(txt) class Test8(Scene): '''使用Rectangle或者Line来强制Brace宽度''' def construct(self): rec = Rectangle(width=4) brac = Brace(rec, DOWN) self.add(brac) class Test9(ThreeDScene): '''立方体三维旋转''' def construct(self): self.set_to_default_angled_camera_orientation() cube = Cube() self.add(cube) self.wait() self.play(Rotating(cube, axis=UP, radians=PI / 6)) self.wait(2) class Test10(Scene): '''文字渐变色''' def construct(self): text = TextMobject("test").scale(2).set_color_by_gradient(BLUE, RED) self.add(text) class Test11(Scene): '''LaTeX的cases可行''' def construct(self): text = TexMobject( r""" \begin{cases} u^3+v^3=-q\\ uv=-\frac{p}{3}\\ \end{cases} """ ) self.add(text) class Test12(Scene): def construct(self): circle0 = Circle(color=WHITE,radius=2) text0 = TextMobject("Gaussian \\\\ Elimination") vec1 =Vector(1.4*LEFT).move_to(circle0.get_center()+2.8*LEFT) circle1 = Circle(color=RED,radius=1.6).next_to(vec1, LEFT) text1 = TextMobject("System of \\\\ linear equation").move_to(circle1.get_center()+ORIGIN).scale(0.8) vgr1 = VGroup(text1, circle1) self.add(circle0, text0) self.add(vec1) self.add(vgr1) self.wait(2) pos = Dot(fill_opacity=0).move_to(circle1.get_center()) def update_text(obj): obj.move_to(pos) vgr1.add_updater(update_text) self.add(vgr1) self.play( Rotating(vec1, radians = 6 * PI, about_point = ORIGIN, axis = IN), Rotating(pos , radians = 6 * PI, about_point = ORIGIN, axis = IN), run_time=20 ) class Test13(Scene): '''Uncreate效果,注意不是UnCreate''' def construct(self): sq = Square() self.add(sq) self.wait() self.play(Uncreate(sq)) self.wait() class Test14(Scene): def construct(self): rec1 = Rectangle(height=2, width=6) rec2 = Rectangle(height=1, width=1).shift(LEFT*2) rec3 = Rectangle(height=1, width=1).shift(RIGHT*2) rec4 = Rectangle(height=1, width=1) recs = VGroup(rec1, rec2, rec3, rec4) self.add(recs) self.wait() self.play(recs.shift, UP*2.5) self.wait() circle = Circle(radius=0.5).move_to(rec3) self.play(Transform(rec3, circle)) self.wait() class Test15(GraphScene): '''GraphScene的坐标轴可以FadeOut''' def construct(self): self.setup_axes(animate=True) self.wait() self.play(FadeOut(self.axes)) self.wait() class Test16(Scene): def construct(self): objs = [ Square().shift(LEFT * 3), Square(), Square().shift(RIGHT * 3) ] self.add(*objs) self.wait() self.play( *[ ApplyMethod(obj.shift, UP) for obj in objs ] ) self.wait() class Test17(Scene): '''使用index_of_submobject_to_align来对齐,注意要get_center()''' def construct(self): vg1 = VGroup( Circle(radius = 0.5).shift(LEFT*2), Circle(radius = 0.5).shift(LEFT*1), Circle(radius = 0.5), Circle(radius = 0.5).shift(RIGHT*1), Circle(radius = 0.5).shift(RIGHT*2), ) vg2 = VGroup( Square(side_length=1).shift(LEFT*1), Square(side_length=1), Square(side_length=1).shift(RIGHT*1), ) vg2.next_to(vg1[3].get_center(), DOWN, index_of_submobject_to_align=1) self.add(vg1, vg2) class Test18(Scene): '''使用tex[0]来对TexMobject的每个字符进行分解''' def construct(self): tex = TexMobject("a^2+b^2=c^2") self.add(tex) debugTeX(self, tex[0]) class Test19(Scene): '''用AnimatedBoundary实现Line的颜色变化''' def construct(self): l = Line(LEFT * 3, RIGHT * 3) self.add(l) self.wait() l2 = AnimatedBoundary(l, colors=[BLUE]) self.add(l2) self.wait(3) class Test20(Scene): '''使用set_opacity实现闪烁效果''' def construct(self): text = TextMobject("颓废最不要脸") self.add(text) for i in range(20): self.play(text.set_opacity, 0, run_time=0.2) self.play(text.set_opacity, 1, run_time=0.2) self.wait() class Test21(Scene): '''圆弧flip的默认轴''' def construct(self): grid = NumberPlane() arc = Arc(0, PI / 2, color = BLUE) arc2 = arc.copy().flip().set_color(YELLOW) self.add(grid, arc, arc2) class Test22(Scene): def construct(self): text = TextMobject("abcd") self.add(text) class Test23(Scene): '''move_arc_center_to和不同run_time的动画同时播放''' def construct(self): sq = Square(side_length=4) ci = Arc(0, PI / 2, color=BLUE, radius=4).move_arc_center_to(sq.get_corner(DL)) self.wait() self.play(ShowCreation(sq, run_time=2), ShowCreation(ci, run_time=4)) self.wait() class Test24(Scene): '''环绕每个字符''' def construct(self): text = TextMobject("abcdefgh") rec = VGroup() for i in text[0]: rec.add(SurroundingRectangle(i, buff=0)) self.add(text, rec) class Test25(Scene): '''使用LaTeX的表格''' def construct(self): tab = TextMobject( r""" \begin{table}[] \begin{tabular}{|l|l|l|l|l|l|} \hline a & b & c & d & e & f \\ \hline \end{tabular} \end{table} """ ) self.add(tab) debugTeX(self, tab[0]) class Test26(Scene): '''Succession,其实和多个play没什么区别''' def construct(self): group = VGroup( Circle(radius = 0.5).shift(LEFT*2), Circle(radius = 0.5).shift(LEFT*1), Circle(radius = 0.5), Circle(radius = 0.5).shift(RIGHT*1), Circle(radius = 0.5).shift(RIGHT*2), ).set_opacity(0) self.wait() self.play( Succession( *[ ApplyMethod(obj.set_opacity, 1) for obj in group ] ) ) self.wait() class Test27(Scene): '''UP和TOP在to_corner时的区别''' def construct(self): text = TextMobject("to\_corner UP").to_corner(UP) text2 = TextMobject("to\_corner TOP").to_corner(TOP) # 非标准用法 text3 = TextMobject("move\_to TOP").move_to(TOP).set_color(YELLOW) self.add(text, text2, text3) class Test28(Scene): '''将所有物体都FadeOut,没有add的物体也不会强制add再FadeOut''' def construct(self): sq = Square() ci = Circle() self.add(sq) self.wait() self.play( *[ FadeOut(obj) for obj in self.mobjects ] ) self.wait() class Test29(Scene): '''Text不会自动换行''' def construct(self): text = Text("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", font="Consolas") self.add(text) class Test30(Scene): '''字符上弧''' def construct(self): text = TextMobject("\\overarc{AB}") self.add(text) class Test31(Scene): def construct(self): Gc = VGroup() colors = color_gradient([BLACK, WHITE], 9) Gc.add(Square(side_length=1).shift(LEFT*6).set_fill(colors[0], 1).set_color(colors[0])) for i in range(1, 9): Gc.add(Gc[-1].copy().set_fill(colors[i], 1).set_color(colors[i]).shift(RIGHT*1.2)) self.play(Transform(Gc[-2], Gc[-1], rate_func=linear)) self.wait() class Test32(GraphScene): '''get_graph必须在setup_axes之后''' def construct(self): self.setup_axes(animate=True) graph = self.get_graph(lambda x : x**2, color = GREEN, x_min = None, x_max = None ) self.play( ShowCreation(graph), run_time = 2 ) self.wait() class Test33(Scene): '''用颜色灰度来实现透明度的效果,防止两透明度颜色相叠加,导致亮度突变''' def construct(self): colors = color_gradient(["#6C6C00", YELLOW], 9) sq = Square(side_length=1).shift(LEFT*6).set_fill(colors[0], 1).set_color(colors[0]) for i in range(1, 9): self.play( ApplyMethod(sq.shift, RIGHT * 1.2, rate_func=linear), ApplyMethod(sq.set_color, colors[i]), ApplyMethod(sq.set_fill, colors[i], 1) ) self.wait() class Test34(ThreeDScene): '''cube的面''' def construct(self): self.set_to_default_angled_camera_orientation() cube = Cube(fill_opacity=0, stroke_width=3).set_fill(opacity=0).set_color(WHITE) cube[5].set_color(BLUE) self.add(cube) debugTeX(self, cube) class Test35(GraphScene): '''使用updater来实现graph的更新''' def construct(self): self.setup_axes() line = self.get_graph(lambda x: x + 2) val = ValueTracker(1) line.add_updater(lambda m: m.become(self.get_graph(lambda x: val.get_value() * x + 2, color=BLUE))) self.add(line) self.play(val.increment_value, 4) self.wait() class Test36(ThreeDScene): '''抛物面''' def construct(self): self.set_to_default_angled_camera_orientation() 颓废曲面 = ParametricSurface( lambda u, v: [u, v, u ** 2 + v ** 2], u_min=-1, u_max=1, v_min=-1, v_max=1 ) self.add(颓废曲面) class Test37(Scene): '''Transfrom前统一方向,使动画更顺滑''' def construct(self): ci = Circle() # sq = Square() sq = Square().flip() self.play(ShowCreation(ci)) self.play(Transform(ci, sq)) self.wait() class Test38(Scene): '''根式上色''' def construct(self): text = TexMobject("\\sqrt{x^2+y^2+z^2}") text[0][2:4].set_color(RED) self.add(text) debugTeX(self, text[0]) class Test39(Scene): '''上色''' def construct(self): text4 = TexMobject( r"ds=\vert d\vec r \vert=", r"\sqrt{x^2+y^2+z^2}" ) VGroup( text4 ).set_color(YELLOW) VGroup( text4[1][2:4] ).set_color(RED) self.add(text4) debugTeX(self, text4[1]) class Test40(Scene): '''一个self.play中无法处理两个针对同一物体的ApplyMethod,但不加ApplyMethod可以''' def construct(self): dot = Dot(color=BLUE) up = Dot(color=YELLOW).to_edge(UP) self.add(dot) self.wait() # self.play( # ApplyMethod(dot.next_to, up, DOWN), # ApplyMethod(dot.scale, 3) # ) self.play( dot.next_to, up, DOWN, dot.scale, 3 ) self.wait() class Test41(Scene): '''replace的作用''' def construct(self): sq = Square().scale(2) ci = Circle().shift(RIGHT*3) self.add(sq, ci) self.play(sq.replace, ci) self.wait() class Test42(Scene): '''使用updater时不能使用循环变量i''' def construct(self): ups = VGroup( *[ Dot(color=BLUE).move_to([i, 1, 0]) for i in range(-3, 4) ] ) downs = VGroup( *[ Dot(color=YELLOW).move_to([i, -1, 0]) for i in range(-3, 4) ] ) lines = VGroup( *[ Line(ups[i], downs[i]) for i in range(0, 7) ] ) lines.add_updater( lambda m: m.become( VGroup( *[ Line(ups[i], downs[i]) for i in range(0, 7) ] ) ) ) # for i in range(7): # lines[i].add_updater(lambda m: m.put_start_and_end_on(ups[i].get_bottom(), downs[i].get_top())) self.add(ups, downs, lines) self.wait() self.play( ups.shift, LEFT * 2 ) self.play( downs.shift, RIGHT * 2 ) self.wait() class Test43(Scene): '''和Test40同理''' def construct(self): dot = Dot(color=BLUE) self.add(dot) self.wait() self.play( ApplyMethod(dot.scale, 3), # 这个被淹没了 ApplyMethod(dot.set_color, YELLOW) ) self.wait() class Test44(ThreeDScene): def construct(self): axes = ThreeDAxes() spheres = VGroup( *[ Sphere(radius=i, opacity=0.5, resolution=(20, 40)) for i in np.arange(1, 3.1, 0.4) ] ) self.set_to_default_angled_camera_orientation() self.add(axes) old = VGroup() new = VGroup() for i in range(len(spheres[0])): old.add(spheres[randint(1, 5)][i].set_opacity(randint(1, 6) / 10)) new.add(spheres[0][i]) self.wait() self.wait() self.play( FadeIn(old), *[ Transform(i, j) for i, j in zip(old, new) ], run_time=6 ) self.wait() class Test45(ThreeDScene): def construct(self): axes = ThreeDAxes() self.set_to_default_angled_camera_orientation() self.add(axes) surface = ParametricSurface( lambda y, z: [ -np.sqrt( 1 - 9 * y ** 2 / 4 + (320 * 2 ** (1 / 3) * z ** 3) / (( 99532800 * y ** 2 * z ** 2 + 884736000 * z ** 3 - \ 1990656000 * y ** 2 * z ** 3 - 884736000 * z ** 5 + np.sqrt( (-115964116992000000 * z ** 9 + (99532800 * y ** 2 * z ** 2 + \ 884736000 * z ** 3 - 1990656000 * y ** 2 * z ** 3 - 884736000 * z ** 5) ** 2) ** 2) ) ** (1 / 3)) + (1 / 960 * 2 ** (1 / 3)) * (99532800 * y ** 2 * z ** 2 + \ 884736000 * z ** 3 - 1990656000 * y ** 2 * z ** 3 - 884736000 * z ** 5 + np.sqrt( (-115964116992000000 * z ** 9 + (99532800 * y ** 2 * z ** 2 + 884736000 * z ** 3 -\ 1990656000 * y ** 2 * z ** 3 - 884736000 * z ** 5) ** 2) )) ** (1 / 3) ), y, z ] ) self.add(surface) class Test46(Scene): '''Brace''' def construct(self): text = TextMobject("test") brace = Brace(text, DOWN) self.play(Write(brace)) self.play(Write(text)) class Test47(Scene): '''LaTeX的dancers小人,需要下载字体包并且更改ctex_template''' def construct(self): Test = VGroup() for i in range(51): test = TextMobject("\\Pisymbol{dancers}{%d}" % i, stroke_width=1, fill_opacity=1, stroke_opacity=1).scale(200) Test.add(test) self.wait() self.play(Write(Test[0])) for i in range(1, 51): self.wait(0.8) self.play(Transform(Test[0], Test[i])) self.wait(2) class Test48(Scene): '''plot_depth''' CONFIG = { "camera_config": {"use_plot_depth": True} } def construct(self): sq = Square(stroke_width=5).set_plot_depth(1) sq2 = Square(side_length=1, stroke_width=5).shift(RIGHT).set_color(BLUE).set_plot_depth(0) self.add(sq, sq2) self.wait() self.play(sq2.set_plot_depth, 2) self.wait() class Test49(Scene): '''使用LaTeX的lstlisting写代码,需要改ctex_template''' def construct(self): text = TextMobject(""" \\begin{lstlisting} int main() { } \\end{lstlisting} """) self.add(text) class Test50(ThreeDScene): '''正劈锥体,渲染贼慢''' def construct(self): axes = ThreeDAxes() self.set_camera_orientation(phi=70 * DEGREES, theta=45 * DEGREES) self.add(axes) a = VGroup() b = VGroup() c = VGroup() for i in np.arange(-1, 1.00001, 0.0005): tri = Polygon([i, np.sqrt(1 - i ** 2), 0], [i, -np.sqrt(1 - i ** 2), 0], [i, 0, 2], stroke_width=0, fill_color=BLUE, fill_opacity=0.75) a.add(tri) cnt = 1 self.begin_ambient_camera_rotation(rate=0.5) for tri in a: if cnt % 2 == 0: self.add(tri.set_fill(color=YELLOW, opacity=0.5)) self.wait(0.01) tri.set_fill(color=BLUE, opacity=0.75) else: self.add(tri) cnt += 1 self.wait(5) class Test51(ThreeDScene): '''棱锥到近似圆锥''' def construct(self): axes = ThreeDAxes() self.set_camera_orientation(phi=70 * DEGREES, theta=45 * DEGREES) self.add(axes) circle = Circle(radius=2) polys = [] faces = [] for i in range(3, 16): po = Polygon( *[ UP * np.sin(j * 2 * PI / i) + RIGHT * np.cos(j * 2 * PI / i) for j in range(i) ], stroke_width=1, stroke_color=BLUE, fill_color=BLUE, fill_opacity=0.75 ).scale(2, about_point=ORIGIN) polys.append(po) verts = po.get_vertices() faces_ = VGroup() for j in range(i): if j == i - 1: face = Polygon(verts[j], verts[0], [0, 0, 3]) else: face = Polygon(verts[j], verts[j + 1], [0, 0, 3]) face.set_stroke(width=1, color=BLUE) face.set_fill(color=BLUE, opacity=0.75) faces_.add(face) faces.append(faces_) self.play(ShowCreation(circle)) self.play(ShowCreation(polys[0]), ShowCreation(faces[0])) self.wait() self.begin_ambient_camera_rotation(rate=0.5) self.wait() for i in range(1, 13): self.play( Transform(polys[0], polys[i]), Transform(faces[0], faces[i]) ) self.wait() self.wait(2) class Test52(SpecialThreeDScene): '''Boxes类的test''' CONFIG = { "default_angled_camera_position": { "phi": 70 * DEGREES, "theta": -45 * DEGREES, "distance": 50, }, } def construct(self): self.set_camera_to_default_position() axes = self.get_axes() boxes = MyBoxes(fill_color=GRAY, resolution=(20, 20), bottom_size=(0.25, 0.25), gap=0.05) self.var_phi = 0 func_01 = lambda x, y: np.sin(x ** 2 / 2.4 + y ** 2 / 2.4 + self.var_phi) * 1. func_02 = lambda x, y: np.sin(x ** 2 / 2.4 + y ** 2 / 2.4 + self.var_phi) * 1. - 0.25 boxes.update_top_and_bottom_by_func(func_01, func_02) boxes.update_color_by_func(func_01) def update_boxes(b, dt): b.update_top_and_bottom_by_func(func_01, func_02) b.update_color_by_func(func_01) self.var_phi += 1 * DEGREES self.add(boxes) boxes.add_updater(update_boxes) # self.wait(2) # boxes.remove_updater(update_boxes) self.wait(12) class Test53(ThreeDScene): '''MyBoxes的序号分布''' def construct(self): axes = ThreeDAxes() # self.set_camera_orientation(phi=70 * DEGREES, theta=225 * DEGREES) self.add(axes) boxes = MyBoxes(fill_color=GRAY, resolution=(9, 18), bottom_size=(0.5, 0.7), gap=0.2, box_height=0.5) self.add(boxes) debugTeX(self, boxes) class Test54(ThreeDScene): '''测试元素周期表''' CONFIG = { "camera_config": { "background_color": WHITE, "should_apply_shading": False, } } def construct(self): self.set_camera_orientation(phi=50 * DEGREES, theta=240 * DEGREES, distance=50) boxes = ChemicalBoxes(fill_color=BLUE_E).add_label().set_block_color() self.add(boxes) self.begin_ambient_camera_rotation(rate=1) # self.wait(10) class Test55(Scene): '''无法像这样获取圆上某一方向的点''' def construct(self): ci = Circle() self.add(ci) dot = Dot().move_to(ci.get_boundary_point(UP * 2 * np.sqrt(5) / 5 + RIGHT * np.sqrt(5) / 5)) self.add(dot) class Test56(Scene): '''带dt的updater''' def construct(self): dot = Dot().to_edge(UP) dot.add_updater(lambda m, dt: m.shift(0.1 * DOWN)) self.add(dot) self.wait(6) class Test57(Scene): '''文字上下标''' def construct(self): text = TextMobject("正文A$_{\\text{下标B}}^{\\text{上标C}}$").scale(3) self.add(text) class Test58(Scene): '''rate_func''' def construct(self): func = ParametricFunction( lambda x: [x, smooth(x), 0], t_min=0, t_max=1 ).scale(3, about_point=ORIGIN) self.add(func) class Test59(Scene): '''save_image''' def construct(self): sq = Square() sq.save_image() self.add(sq) class Test60(Scene): '''根据等号对齐''' def construct(self): tex1 = TexMobject("A=\\frac{\\displaystyle\\sum^n_{i=0}}{x}") tex2 = TexMobject("=", "\\frac{x}{\\displaystyle\\sum^n_{i=0}}") tex2.next_to(tex1, RIGHT) tex2.next_to(tex1[0][1].get_center(), RIGHT, index_of_submobject_to_align=0, coor_mask=np.array([0, 1, 1])) self.add(tex1, tex2) texs = [ "A=\\frac{\\displaystyle\\sum^n_{i=0}}{x}", "=\\frac{x}{\\displaystyle\\sum^n_{i=0}}" ] tex = TexMobject(*texs) self.add(tex) class Test61(Scene): def construct(self): for1 = TexMobject(r"G(x)=\displaystyle\sum_{p=0}^{\infty}{\left( \frac{S^{p}(n)}{p!}x^p\right)}").scale(0.7).to_edge(UP+LEFT) for1_bg = SurroundingRectangle(for1, fill_opacity = .2) for2 = TexMobject(r"G(x) = \left( \frac{e^{(n+1)x}-1}{x} \right) \left( \frac{x}{e^x-1} \right)") forrs = [ r"\frac{e^{(n+1)x}-1}{x}", # for3 r"= \frac{ \left( \displaystyle\sum_{p=0}^{\infty}{\frac{{((n+1)x)}^p}{p!}} \right) -1}{x}}", #for4 r"=\frac{1+\left( \displaystyle\sum_{p=1}^{\infty}{\frac{{((n+1)x)}^p}{p!}} \right) -1}{x}}",#for5 r"=\displaystyle\sum_{p=1}^{\infty}{\frac{(n+1)^p}{p!}x^{p-1}}",#for6 r"=\displaystyle\sum_{p=0}^{\infty}{\frac{(n+1)^{p+1}}{(p+1)!}x^{p}}"#for7 ] forr = TexMobject(*forrs).scale(0.9) self.add(forr) class Test62(Scene): '''三角形绕边翻转''' def construct(self): tri = Triangle() vert = tri.get_vertices() tri.generate_target() tri.target.flip(axis=vert[0]-vert[1], about_point=(vert[0]+vert[1])/2) self.add(tri) self.wait() self.play(MoveToTarget(tri)) self.wait() class Test63(Scene): '''文字渐变色的区别''' def construct(self): vg = VGroup( TextMobject("abcde").set_color([RED, BLUE, WHITE]), TextMobject("abcde").set_color_by_gradient(RED, BLUE, WHITE), TextMobject("abcde") ).arrange(DOWN) vg[2].shuffle(True) vg[2].set_color_by_gradient(RED, BLUE, WHITE) self.add(vg) class Test64(Scene): '''CubicBezier的points只有四个点,即锚点和控制点,但ParametricFunction是好多贝塞尔曲线,好多点''' def construct(self): # line = CubicBezier([np.array([ -3, -1.5, 0]), np.array([-3.6, 1.5, 0]), np.array([ 0, 1.5, 0]), np.array([ 3, -1.5, 0])]) line = ParametricFunction( bezier([np.array([ -3, -1.5, 0]), np.array([-3.6, 1.5, 0]), np.array([ 0, 1.5, 0]), np.array([ 3, -1.5, 0])]), t_min=0, t_max=1 ) self.add(line) points = line.get_points() debugTeX(self, points) class Test65(Scene): '''渐变色的方向,用sheen_direction来设定''' def construct(self): sq = Square() sq.set_color([RED, BLUE]) # sq.set_opacity([0, 1]) # sq.set_fill([RED, BLUE], [0, 1]) sq.set_sheen_direction(UP) self.add(sq) # self.wait() # self.play(sq.flip) # self.wait() class Test66(Scene): '''digest_config的很愚蠢的用法''' CONFIG = { "stroke_width": 15, } def construct(self): line = Line() digest_config(line, self.CONFIG) self.add(line) class Test67(Scene): '''arc的points,用好多贝塞尔曲线来拟合的''' def construct(self): arc = Arc().scale(3) self.add(arc) points = arc.get_points() debugTeX(self, points, 0.3) class Test68(Scene): def construct(self): tex = TexMobject("{\\sin\\alpha\\over\\sin\\gamma}={n_1\\over n_2}") self.add(tex) debugTeX(self, tex[0]) class Test69(ThreeDScene): '''无法将三维物体Transform到fixed_in_frame_mobjects的二维物体,但可以通过z_to_vector等变换得到类似的效果''' def construct(self): self.set_camera_orientation(phi=60*DEGREES, theta=45*DEGREES) vec = [ np.cos(45*DEGREES) * np.sin(60*DEGREES), np.sin(45*DEGREES) * np.sin(60*DEGREES), np.cos(60*DEGREES) ] n = z_to_vector(vec) tex = TexMobject("a").apply_matrix(n).rotate(PI/2, vec) # self.camera.add_fixed_in_frame_mobjects(tex) # tex.to_corner(UL) surface = Cube() self.add(surface) self.play(Transform(surface, tex), run_time=2) self.wait() class Test70(Scene): '''无法通过get_points获取TexMobject的点''' def construct(self): tex = TexMobject("S").scale(2) self.add(tex) p = tex.get_points() print(p) class Test71(Scene): def construct(self): grid = NumberPlane() vector = np.array([1, 2, 0]) matrix = np.identity(3) - np.outer(vector, vector) self.add(grid, Dot([1, 2, 0], color=RED)) self.wait() self.play(grid.apply_matrix, matrix, run_time=3) self.wait() class Test72(Scene): '''光源''' def construct(self): light = AmbientLight() self.add(light) class Test73(Scene): '''running_start的写法是六次贝塞尔曲线''' def construct(self): grid = NumberPlane().scale(3) func = ParametricFunction( lambda x: [x, running_start(x), 0], t_min=0, t_max=1 ).scale(3, about_point=ORIGIN) func2 = ParametricFunction( bezier([ np.array([0/6, 0, 0]), np.array([1/6, 0, 0]), np.array([2/6, -0.5, 0]), np.array([3/6, -0.5, 0]), np.array([4/6, 1, 0]), np.array([5/6, 1, 0]), np.array([6/6, 1, 0]), ]), t_min=0, t_max=1, color=RED ).scale(3, about_point=ORIGIN) self.add(grid, func, func2) class Test74(Scene): '''幼儿园小练习1''' CONFIG = { "camera_config": { "use_plot_depth": True, }, } def setup(self): self.A = np.array([1, 0, 0]) self.B = np.array([-1, 0, 0]) self.C = np.array([-0.3, 1.3, 0]) self.main_tri = Polygon( self.A, self.B, self.C, color=BLUE, fill_color=BLUE, fill_opacity=0.8 ) label_a = TexMobject("a").scale(0.7).next_to((self.B+self.C)/2, UL, buff=0.08) label_b = TexMobject("b").scale(0.7).next_to((self.A+self.C)/2, UR, buff=0.08) label_c = TexMobject("c").scale(0.7).next_to((self.B+self.A)/2, DOWN, buff=0.08) self.labels = VGroup(label_a, label_b, label_c).set_plot_depth(5) sq_a = Polygon(self.B, self.C, np.array([-1.6, 2, 0]), np.array([-2.3, 0.7, 0]), color=WHITE) sq_b = Polygon(self.C, self.A, np.array([2.3, 1.3, 0]), np.array([1, 2.6, 0]), color=WHITE) sq_c = Polygon(self.A, self.B, np.array([-1, -2, 0]), np.array([1, -2, 0]), color=WHITE) self.sq = VGroup(sq_a, sq_b, sq_c).set_plot_depth(-1) tri_a = Polygon(self.A, np.array([1, -2, 0]), np.array([2.3, 1.3, 0]), color=RED, fill_color=RED, fill_opacity=0.8) tri_b = Polygon(self.B, np.array([-2.3, 0.7, 0]), np.array([-1, -2, 0]), color=YELLOW, fill_color=YELLOW, fill_opacity=0.8) tri_c = Polygon(self.C, np.array([1, 2.6, 0]), np.array([-1.6, 2, 0]), color=GREEN, fill_color=GREEN, fill_opacity=0.8) self.tri = VGroup(tri_a, tri_b, tri_c) equation = TexMobject("S_{\\ } = S_{\\ } = S_{\\ } = S_{\\ }").scale(1.5).to_corner(UR, buff=1.1) tri_1 = self.main_tri.copy().set_stroke(width=0).set_fill(opacity=1).scale(0.2).next_to(equation[0][0], RIGHT+DOWN*3, buff=-0.08) tri_2 = tri_a.copy().rotate(PI/2).set_stroke(width=0).set_fill(opacity=1).scale(0.2).next_to(equation[0][2], RIGHT+DOWN*3, buff=-0.08) tri_3 = tri_b.copy().rotate(PI/2, axis=IN).set_stroke(width=0).set_fill(opacity=1).scale(0.2).next_to(equation[0][4], RIGHT+DOWN*3, buff=-0.08) tri_4 = tri_c.copy().rotate(PI/4, axis=IN).set_stroke(width=0).set_fill(opacity=1).scale(0.2).next_to(equation[0][6], RIGHT+DOWN*3, buff=-0.08) self.equation = VGroup(equation, tri_1, tri_2, tri_3, tri_4) # self.add(self.main_tri, self.labels, self.sq, self.tri, equation, tri_1, tri_2, tri_3, tri_4) def construct(self): self.wait() self.play(ShowCreation(self.main_tri)) self.wait() self.play(FadeIn(self.labels)) self.wait(2) self.play(*[ShowCreation(i.set_plot_depth(-5)) for i in self.sq], run_time=2) self.wait() self.play(*[ShowCreation(i) for i in self.tri], run_time=2) self.wait() self.play( *[ WiggleOutThenIn(i) for i in self.tri ], run_time=2 ) self.wait(2) self.play( FadeOut(self.sq), Rotating(self.tri[0], radians=PI/2, about_point=self.A), Rotating(self.tri[1], radians=PI/2, about_point=self.B), Rotating(self.tri[2], radians=PI/2, about_point=self.C), run_time=3 ) self.wait() self.play( self.main_tri.shift, LEFT*2.5+DOWN, self.tri.shift, LEFT*2.5+DOWN, self.labels.shift, LEFT*2.5+DOWN, ) self.labels.set_plot_depth(6) self.wait(2) self.play( WiggleOutThenIn(self.tri[0]), WiggleOutThenIn(self.main_tri) ) self.play( FadeIn(self.equation[0][0][:3]), TransformFromCopy(self.main_tri, self.equation[1]), TransformFromCopy(self.tri[0], self.equation[2]), run_time=2 ) self.wait(2) self.play( WiggleOutThenIn(self.tri[1]), WiggleOutThenIn(self.main_tri) ) equation_copy_1 = self.equation[1].copy() equation_copy_2 = self.equation[1].copy() self.play( FadeIn(self.equation[0][0][3:5]), TransformFromCopy(self.main_tri, equation_copy_1), TransformFromCopy(self.tri[1], self.equation[3]), run_time=2 ) self.wait(2) self.play( WiggleOutThenIn(self.tri[2]), WiggleOutThenIn(self.main_tri) ) self.play( FadeIn(self.equation[0][0][5:]), TransformFromCopy(self.main_tri, equation_copy_2), TransformFromCopy(self.tri[2], self.equation[4]), run_time=2 ) self.wait(3) self.play(FadeOut(VGroup(self.equation[0][0][:2], self.equation[1], equation_copy_1, equation_copy_2))) self.equation[0][0][:2].set_opacity(0) self.equation[1].set_fill(opacity=0) self.equation.generate_target() self.equation.target.scale(1.3).shift(DOWN+LEFT) self.play(MoveToTarget(self.equation)) self.wait(5) class Test75(Scene): '''对坐标轴的非线性变换''' def construct(self): grid = ComplexPlane().prepare_for_nonlinear_transform(50) self.add(grid) self.wait() self.play( grid.apply_function, lambda point: complex_to_R3(R3_to_complex(point)**2), run_time=5 ) self.wait() class Test76(Scene): '''交换点的顺序实现五角星''' def construct(self): poly = RegularPolygon(5) verts = poly.get_vertices() poly2 = Polygon(verts[0], verts[2], verts[4], verts[1], verts[3]).set_fill(BLUE, opacity=0.5) self.add(poly2) debugTeX(self, verts) class Test77(Scene): '''对Imageset_color,所有rgb均替换为指定颜色,但保留alpha''' def construct(self): image = ImageMobject("GZTime.png").set_color(RED) self.add(image) class MyTransform(Animation): '''继承Animation类,自定义动画,用于下一个场景''' CONFIG = { "radians": PI/2, "axis": OUT, "about_point": None, "remover": True, } def __init__(self, mobject, target, **kwargs): digest_config(self, kwargs) self.mobject = mobject.copy() self.target = target def clean_up_from_scene(self, scene): if self.is_remover(): scene.remove(self.mobject) scene.add(self.target) def interpolate_mobject(self, alpha): now = self.starting_mobject.copy() now.rotate( alpha * self.radians, axis=self.axis, about_point=self.about_point, ) for i in range(3): now[i].set_color(interpolate_color(self.starting_mobject[i].get_color(), self.target[i].get_color(), alpha)) self.mobject.become(now) class Test78(Scene): '''logo的一种动画方案''' def construct(self): logo1 = VGroup( Polygon(np.array([0, 0, 0]), np.array([1, 0, 0]), np.array([0, 2, 0])), Polygon(np.array([1.5, 0, 0]), np.array([3, 3, 0]), np.array([0, 3, 0])), Polygon(np.array([2, 0, 0]), np.array([3, 0, 0]), np.array([3, 2, 0])), ).set_stroke(width=0).center() logo1[0].set_fill(WHITE, 1) logo1[1].set_fill(BLUE_B, 1) logo1[2].set_fill(BLUE_C, 1) logo1.move_to(np.array([2.5, 1, 0])) logo2 = logo1.copy().rotate(PI/2, about_point=ORIGIN) logo3 = logo2.copy().rotate(PI/2, about_point=ORIGIN) logo4 = logo3.copy().rotate(PI/2, about_point=ORIGIN) logo = VGroup(logo1, logo2, logo3, logo4).scale(1/3) logo[0][1].set_fill("#C59978", 1) logo[0][2].set_fill("#8D5630", 1) text = VGroup( Text("Manim", font="Nexa Bold"), Text("Kindergarten", font="Nexa Bold") ).arrange(DOWN, aligned_edge=LEFT, buff=0.3).set_height(2).next_to(logo, buff=0.8).shift(DOWN*0.2) all_logo = VGroup(logo, text).center() bg = Rectangle(height=10, width=10, fill_color=BLACK, fill_opacity=1, stroke_width=0) bg.add_updater(lambda m: m.move_to(logo, aligned_edge=RIGHT)) text.save_state() text.shift((text.get_right()[0]-bg.get_right()[0]+0.2)*LEFT) logo.save_state() logo.center().scale(1.5) self.add(text, bg) self.play(FadeIn(logo[0])) self.wait() for i in range(3): self.play(MyTransform(logo[i], logo[i+1], about_point=logo.get_center()), run_time=0.25, rate_func=smooth) self.wait(2) self.play( text.restore, logo.restore, rate_func=smooth, run_time=1 ) self.wait() class Test79(Scene): '''逐字上颜色''' def construct(self): tex = TextMobject("text or object") self.add(tex) self.wait(0.5) for letter in tex: self.play( LaggedStart( *[ ApplyMethod(i.set_color, YELLOW) for i in letter ], run_time=2 ) ) self.wait() class Test80(Scene): '''rate_func的细节效果''' def construct(self): dot = Dot() self.add(dot) self.wait() self.play(dot.shift, RIGHT*3, rate_func=func, run_time=2) self.wait() class Test81(Scene): '''白底logo的配色方案''' CONFIG = { "camera_config": { "background_color": WHITE, }, } def construct(self): logo1 = VGroup( Polygon(np.array([0, 0, 0]), np.array([1, 0, 0]), np.array([0, 2, 0])), Polygon(np.array([1.5, 0, 0]), np.array([3, 3, 0]), np.array([0, 3, 0])), Polygon(np.array([2, 0, 0]), np.array([3, 0, 0]), np.array([3, 2, 0])), ).set_stroke(width=0).center() logo1[0].set_fill("#cccccc", 1) logo1[1].set_fill(BLUE_D, 1) logo1[2].set_fill(BLUE_E, 1) logo1.move_to(np.array([2.5, 1, 0])) logo2 = logo1.copy().rotate(PI/2, about_point=ORIGIN) logo3 = logo2.copy().rotate(PI/2, about_point=ORIGIN) logo4 = logo3.copy().rotate(PI/2, about_point=ORIGIN) logo = VGroup(logo1, logo2, logo3, logo4).scale(0.7).center() logo[0][1].set_fill("#C59978", 1) logo[0][2].set_fill("#8D5630", 1) self.add(logo) class Test82(Scene): def construct(self): tex = TextMobject("ab") self.add(tex) class Test83(LogoGenerationTemplate): '''3B1B的logo动效,并不是想要的效果''' CONFIG = { "random_seed": 2, } def get_logo_animations(self, logo): layers = logo.spike_layers for layer in layers: random.shuffle(layer.submobjects) for spike in layer: spike.save_state() spike.scale(0.5) spike.apply_complex_function(np.log) spike.rotate(-90 * DEGREES, about_point=ORIGIN) spike.set_fill(opacity=0) return [ FadeIn( logo.iris_background, rate_func=squish_rate_func(smooth, 0.25, 1), run_time=3, ), AnimationGroup(*[ LaggedStartMap( Restore, layer, run_time=3, path_arc=180 * DEGREES, rate_func=squish_rate_func(smooth, a / 3.0, (a + 0.9) / 3.0), lag_ratio=0.8, ) for layer, a in zip(layers, [0, 2, 1, 0]) ]), Animation(logo.pupil), ] class Test84(Scene): '''坐标系非线性复变换''' def construct(self): grid = ComplexPlane().prepare_for_nonlinear_transform(50) self.add(grid) self.wait() self.play(grid.apply_complex_function, np.exp, run_time=3, rate_func=linear) self.wait() class Test85(Scene): '''由Line+VGroup拼成的多边形无法上色''' def construct(self): vg = VGroup( Line(ORIGIN, RIGHT), Line(RIGHT, UP), Line(UP, ORIGIN) ).set_fill(BLUE, 1) self.add(vg) class Test86(Scene): '''PointCouldDot的细节,有一个个像素点构成的点''' def construct(self): test = PointCloudDot().scale(30) self.add(test) class Test87(Scene): '''无法用Polygon表示折线,因为Polygon强制首尾相接''' def construct(self): lines = Polygon(ORIGIN, UP, RIGHT) self.add(lines) class Lines(VMobject): '''利用set_points_as_corner实现的折线类''' def __init__(self, *points, **kwargs): VMobject.__init__(self, **kwargs) self.set_points_as_corners(points) class Test88(Scene): '''上面的折线类和VGroup+Line构造的折线的ShowCreation效果相同''' def construct(self): # lines = Lines(ORIGIN, UP, RIGHT) lines = VGroup( Line(ORIGIN, UP), Line(UP, RIGHT) ) self.play(ShowCreation(lines)) class Test89(Scene): '''测试PMobject,用于画点,stroke_width表示点大小''' def construct(self): points = PMobject(stroke_width=1080) points.add_points([ORIGIN], color=BLUE) self.add(points) class Test90(Scene): '''mk的一次作业,测试包络线''' CONFIG = { "camera_config": { "background_color": WHITE, "use_plot_depth": True, }, } def construct(self): circle = Circle(radius = 3, color = DARK_BLUE, plot_depth=3).flip() center = Dot(color=GREEN) A = Dot(np.array([-2, 0, 0]), color = RED) alpha = ValueTracker(0.0001) B = Dot(color=BLUE, radius=0.07, plot_depth=4) B.add_updater(lambda m: m.move_to(circle.point_from_proportion(alpha.get_value()))) line1 = DashedLine(A.get_center(), B.get_center(), color=DARK_BROWN) line1.add_updater(lambda m: m.put_start_and_end_on(A.get_center(), B.get_center())) C = Dot(color=BLUE, radius=0.07, plot_depth=4) C.add_updater(lambda m: m.move_to(circle.point_from_proportion(alpha.get_value())).flip(axis=B.get_center()-A.get_center(), about_point=ORIGIN)) line2 = Line(B.get_center(), C.get_center(), color=ORANGE, stroke_width=3) line2.add_updater(lambda m: m.put_start_and_end_on(B.get_center(), C.get_center())) trace = VGroup() self.i = 0 def update_trace(m): self.i += 1 if self.i % 4 == 0: m.add(line2.copy().clear_updaters()) self.wait(3) self.play(ShowCreation(circle), ShowCreation(center)) self.wait() self.play(ShowCreation(A)) alpha.set_value(0.2) self.play(ShowCreation(B)) self.play(alpha.increment_value, 0.6, run_time=1.5) self.play(alpha.increment_value, -0.6, run_time=1.6) self.play(ShowCreation(line1)) self.wait() ra = Right_angle(corner=B.get_center(), on_the_right=False, stroke_color=BLUE) ra.move_corner_to(B.get_center()) ra.change_angle_to(line1.get_angle()+PI/2) self.play(ShowCreation(C), ShowCreation(line2), ShowCreation(ra)) self.wait(2) self.play(FadeOut(ra)) self.play(alpha.increment_value, 0.6, run_time=1.5) self.play(alpha.increment_value, -0.7999, run_time=2, rate_func=linear) self.wait() self.add(trace) line2.set_stroke(width=2) self.wait(2) trace.add_updater(update_trace) alpha.set_value(0) anim = ApplyMethod(alpha.increment_value, 1, run_time=8, rate_func=linear) self.play(anim) self.wait(2) ellipse = Ellipse(width=6, height=2*np.sqrt(5), color=GREEN, plot_depth=10, run_time=2.5) self.play(ShowCreationThenDestruction(ellipse)) self.wait(5) class Test91(Scene): '''tex上色后会拆开''' def construct(self): tex = TexMobject("abcdefghijk") VGroup(tex[0][:2], tex[0][3:5]).set_color(RED) self.add(tex) self.wait() tex2 = VGroup(tex[0][2], tex[0][5]) self.play(tex2.set_color, BLUE) self.wait(2) self.remove(*tex[0]) self.wait(2) class Test92(Scene): '''测试shift多参数''' def construct(self): plane = NumberPlane() dot = Dot().shift(RIGHT, UP, LEFT) self.add(plane, dot) class Test93(Scene): '''测试切线,适用于所有带路径的,包括文字''' def construct(self): circle = Circle() text = SingleStringTexMobject("j").scale(8) tl = TangentLine(text[0], 0, length=5, stroke_width=1, color=BLUE) value = ValueTracker(0) tl.add_updater( lambda m: m.become( TangentLine(text[0], value.get_value(), length=5, stroke_wodth=1, color=BLUE) ) ) self.add(text, tl) self.wait() self.play(value.increment_value, 1, run_time=10, rate_func=linear) self.wait() class Test94(ThreeDScene): '''3D移动相机中心,但是好像没有动画效果''' def construct(self): self.set_to_default_angled_camera_orientation() cube = Cube() axes = ThreeDAxes() self.add(axes, cube) self.wait() self.play(self.camera.frame_center.move_to, LEFT*2, run_time=3) self.wait() class Test95(Scene): '''修Text的bug时用的,现在应该不好使了''' def construct(self): text = Text("abcdefghijklmnopqrstuvwkyz", font="庞门正道标题体", fill_opacity=0, debug=True).scale(1).set_stroke(width=5, opacity=1) diff = VGroup( Text("庞门正道标题体", font="庞门正道标题体", fill_opacity=0).scale(1).set_stroke(width=5, opacity=1), Text("庞门正道标题体", font="庞门正道标题体", fill_opacity=0, debug=True).scale(1).set_stroke(width=5, opacity=1) ).arrange(DOWN) # points = text[0].get_points() # print(points) self.add(diff) # debugTeX(self, points, 0.2) class Test96(Scene): '''修Text的bug时用的,现在应该不好使了''' def construct(self): text = Text("a b", font="庞门正道标题体", debug=True).scale(3).shift(UP*2) text3 = Text("abcd", font="庞门正道标题体", debug=True).scale(3).shift(DOWN*2) text4 = Text("啦 啦 啦", font="庞门正道标题体", debug=True).scale(3).shift(UP*2) dot = Dot(ORIGIN, color=BLUE) self.add(dot) self.wait() self.play(Write(text)) self.wait(2) self.play(Transform(text, text3)) self.wait(2) self.play(Transform(text, text4)) self.wait(3) class Test97(Scene): '''修Text的bug时用的,现在应该不好使了''' def construct(self): text = VGroup( Text("manim", font="庞门正道标题体", debug=True).set_stroke(width=15, opacity=0.5), Text("manim", font="庞门正道标题体", debug=True, fill_opacity=0).set_stroke(width=5) ).scale(8).arrange(DOWN) self.add(text) for i in range(5): points = text[1][i].get_points() debugTeX(self, points) class Test98(Scene): '''修Text的bug时用的,现在应该不好使了''' def construct(self): text = VGroup( Text("a b", font="庞门正道标题体", debug=False).scale(3).shift(UP*1.5), Text("a b", font="庞门正道标题体").scale(3).shift(DOWN*1.5), ) comment = VGroup( Text("before:", font="Consolas").scale(2).next_to(text[0], LEFT, buff=1), Text("after:", font="Consolas").scale(2).next_to(text[1], LEFT, buff=1), ) self.add(text, comment) for i in text: debugTeX(self, i, 0.8) class Test99(Scene): '''修Text的bug时用的,现在应该不好使了''' def construct(self): title = Text("default size compare", font="Consolas", color=BLUE).scale(1.5).shift(UP*2) text = VGroup( VGroup( Text("before", font="Consolas").scale(2), TextMobject("before"), ).arrange(RIGHT), VGroup( Text("after", font="Consolas"), TextMobject("after"), ).arrange(RIGHT), ).arrange(DOWN, buff=1) self.add(text, title) class Test100(Scene): '''测试ImageMobject导入gif,只保留第一帧,无动图''' def construct(self): img = ImageMobject("Test96.gif") self.add(img) self.wait(5) class Test101(Scene): '''试验黑背景遮罩''' CONFIG = { "reverse_order": False, } def construct(self): img = ImageMobject("latexlive.png", height=8) self.add(img) rects = VGroup(*[Rectangle() for x in range(2)]) rects.set_stroke(width=0) rects.set_fill(GREY, 0.5) rects.set_height(2.2, stretch=True) rects.set_width(7.4, stretch=True) rects[0].move_to(DOWN*0.1) rects[1].set_height(1.5, stretch=True) rects[1].set_width(3, stretch=True) rects[1].move_to(DOWN*2.75) inv_rects = VGroup() for rect in rects: fsr = FullScreenFadeRectangle() fsr.append_points(rect.points[::-1]) inv_rects.add(fsr) inv_rects.set_fill(BLACK, 0.7) self.wait(2) self.play(VFadeIn(inv_rects[0])) self.wait(2) self.play(Transform(inv_rects[0], inv_rects[1])) self.wait(2) self.play(VFadeOut(inv_rects[0])) self.wait(2) class Test102(Scene): '''同大小Image的Transform''' def construct(self): img1 = ImageMobject("latexlive.png", height=8) img2 = ImageMobject("latexhelp.png", height=8) self.add(img1) self.wait(2) self.play( Transform(img1, img2), run_time=2 ) self.wait(2) class Test103(Scene): '''测试Code''' def construct(self): helloworldcpp = Code( "helloworldcpp.cpp", tab_width=4, insert_line_no=True, style="autumn", background_stroke_color=BLACK, background="window", language="cpp", ) self.add(helloworldcpp) class Test104(Scene): '''修Text的bug时用的''' def construct(self): text1 = Text(" ab\ncd", font="Consolas", size=2) text2 = Text("ef\ngh", font="Consolas", size=2) self.add(text1) self.wait() self.play(Transform(text1, text2)) self.wait() class Test105(Scene): '''修Text的bug时用的''' def construct(self): text = Text(" ab\ncd\nef", font="Consolas", size=2) text2 = Text("ab\n cd\nef", font="Consolas", size=2) text[2].set_color(YELLOW) self.add(text) self.wait() self.play(Transform(text, text2)) self.wait() debugTeX(self, text) class Test106(Scene): '''https://github.com/3b1b/manim/pull/1072''' CONFIG = { "camera_config": { "background_color": WHITE, }, } def construct(self): plane = NumberPlane(axis_config={"stroke_color": BLACK}) plane.add_coordinates(number_config={"color": BLACK}) self.add(plane) class Test107(Scene): '''临时做的一张图''' CONFIG = { "camera_config": { "background_color": WHITE, }, } def construct(self): main = Text("粉丝问答", font="思源黑体 CN Heavy", color=BLACK).set_width(6) comment = Text("(凑够9张图)", font="思源黑体 CN Light", color=BLUE_D) comment.next_to(main, DOWN) self.add(main, comment) class Test108(Scene): '''https://github.com/3b1b/manim/issues/1095''' CONFIG = { "v_coord_strings" : ["-1", "2"], } def construct(self): rule = TexMobject( "\\text{Transformed}\\vec{\\textbf{v}}", " = %s"%self.v_coord_strings[0], "(\\text{Transformed}\\hat{\\imath})", "+%s"%self.v_coord_strings[1], "(\\text{Transformed}\\hat{\\jmath})", ) self.add(rule) class Test109(Scene): '''生成README中的头图''' CONFIG = { "camera_config": { "background_color": WHITE, }, } def construct(self): logo = Logo(black_bg=False).set_height(2) img = ImageMobject("Tony.png").set_height(2) Group(logo, img).arrange(RIGHT, buff=1.5).center() line = Line(UP, DOWN, stroke_width=8, color=BLACK).move_to(mid(logo.get_right(), img.get_left())) line.set_length(1.4) text = VGroup( Text("Manim-Kindergarten", font="Orbitron", color=DARK_GRAY), Text("鹤翔万里", font="庞门正道标题体", color=BLACK, size=2.3) ).arrange(DOWN, aligned_edge=LEFT, buff=0.1).next_to(img, buff=0.5) text[0][0].set_color(logo.color_2[2]) text[0][6].set_color(logo.color_1[2]) self.add(logo, img, line, text) Group(*self.mobjects).center() class Test110(Scene): """给cigar的头图,效果不太好""" CONFIG = { "camera_config": { "background_color": WHITE, }, } def construct(self): logo = Logo(black_bg=False).set_height(2) img = ImageMobject("cigar.png").set_height(2) Group(logo, img).arrange(RIGHT, buff=1.5).center() line = Line(UP, DOWN, stroke_width=8, color=BLACK).move_to(mid(logo.get_right(), img.get_left())) line.set_length(1.4) text = VGroup( Text("Manim-Kindergarten", font="Orbitron", color=DARK_GRAY), Text("cigar666", font="庞门正道标题体", color=BLACK, size=2.1) ).arrange(DOWN, aligned_edge=LEFT, buff=0.1).next_to(img, buff=0.5) text[0][0].set_color(logo.color_2[2]) text[0][6].set_color(logo.color_1[2]) self.add(logo, img, line, text) Group(*self.mobjects).center() class Test111(Scene): """Fade和VFade的区别""" def construct(self): sq = VGroup( Square(stroke_width=15, color=RED, opacity=0.5, fill_opacity=0.8), Square(stroke_width=15, color=RED, opacity=0.5, fill_opacity=0.8), ).arrange(RIGHT, buff=1) texts = VGroup( Text("FadeIn", font="Consolas", size=1.3).next_to(sq[0], DOWN), Text("VFadeIn", font="Consolas", size=1.3).next_to(sq[1], DOWN), ) text = VGroup( Text("FadeOut", font="Consolas", size=1.3).next_to(sq[0], DOWN), Text("VFadeOut", font="Consolas", size=1.3).next_to(sq[1], DOWN), ) self.add(texts) self.wait() self.play( FadeIn(sq[0]), VFadeIn(sq[1]), run_time=3 ) self.wait() self.play(Transform(texts[0], text[0]), Transform(texts[1], text[1])) self.wait() self.play( FadeOut(sq[0]), VFadeOut(sq[1]), run_time=3 ) self.wait() class Test112(Scene): """给VGroup用for循环施加updater,需要转换全局变量i为局部变量n""" def construct(self): ups = VGroup( *[ Dot(color=BLUE).move_to([i, 1, 0]) for i in range(-3, 4) ] ) downs = VGroup( *[ Dot(color=YELLOW).move_to([i, -1, 0]) for i in range(-3, 4) ] ) lines = VGroup( *[ Line(ups[i], downs[i]) for i in range(0, 7) ] ) for i in range(7): lines[i].add_updater(lambda m, n=i: m.put_start_and_end_on(ups[n].get_bottom(), downs[n].get_top())) self.add(ups, downs, lines) self.wait() self.play( ups.shift, LEFT * 2 ) self.play( downs.shift, RIGHT * 2 ) self.wait() class Test113(Scene): def construct(self): svg = SVGMobject("afed61182cb6d368.svg") self.add(svg) class Test114(Scene): """字母也能做切线""" def construct(self): ratio = ValueTracker(0) text = TexMobject("S", fill_opacity=0, stroke_width=2).set_height(7) point = Dot().add_updater( lambda m: m.move_to(text[0][0].point_from_proportion(ratio.get_value())) ) self.add(text, point) self.wait() self.play(ratio.set_value, 1, run_time=3, rate_func=linear) self.wait() class Test115(Scene): """Write的具体细节""" def construct(self): text = TextMobject("+").set_height(5) self.wait() progress = NumberLine(x_min=0, x_max=1, unit_size=10, tick_frequency=0.5).center().to_edge(DOWN) alpha = ValueTracker(0) tick = Triangle(fill_opacity=1).scale(0.2).rotate(PI) tick.add_updater(lambda m: m.move_to(progress.n2p(alpha.get_value()), aligned_edge=DOWN)) self.add(progress, tick) self.play(Write(text, stroke_width=30), alpha.set_value, 1, run_time=5, rate_func=linear) self.wait() class Test116(Scene): def construct(self): test = ParametricFunction( lambda t: np.array([ 2*np.sin(3*t)*np.cos(t), 2*np.sin(3*t)*np.sin(t), 0 ]), t_min=0, t_max=2*PI, ) debugTeX(self, test.points) self.add(test) class Test117(Scene): def construct(self): grid = NumberPlane( center_point=LEFT*3, x_max=15 ) self.add(grid) class Test118(Scene): """好像是测试妈咪叔的latexlive写的""" def construct(self): text = TextMobject("\\begin{equation} x = a_0 \+ \\cfrac{1}{a_1 \+ \\cfrac{1}{a_2 \+ \\cfrac{1}{a_3 \+ \\cfrac{1}{a_4} } } }\\end{equation}") self.add(text) class Test119(Scene): """mk的logo""" def construct(self): logo = Logo().set_height(8) self.add(logo) class Test120(Scene): """MaintainPositionRelativeTo""" def construct(self): dot = Dot() circle = Circle() triangle = Triangle() self.play( Write(circle), Write(dot), Write(triangle), run_time=3 ) self.play( dot.shift, UP, MaintainPositionRelativeTo(triangle, dot) ) class Test121(Scene): """VectorizedPoint不会被显示""" def construct(self): v = VectorizedPoint([1, 1, 0], stroke_width=10, stroke_opacity=1, fill_opacity=0, color=YELLOW, artificial_width=10, artificial_height=10) self.add(v) class Test122(Scene): """StreamLines""" def construct(self): sl = StreamLines( lambda p: rotate_vector(p / 3, 90 * DEGREES), color_by_magnitude=True, color_by_arc_length=False ) self.add(sl) self.wait() self.play(ShowPassingFlashWithThinningStrokeWidth(sl)) self.wait() class Test123(Scene): """和Test112类似""" def construct(self): heights = [2, 3, 5, 7, 9] trackers = [ValueTracker(h) for h in heights] num_tex = [DecimalNumber(t.get_value())\ .add_updater(lambda v, x=t: v.set_value(x.get_value()))\ for t in trackers ] for i in range(len(num_tex)): tex = num_tex[i] tex.shift(i*RIGHT) self.play(Write(tex)) class Test124(Scene): """discord上有个人问的动画""" def construct(self): tex = TexMobject("f(n)+f(n)=2f(n)") self.wait() self.play(Write(tex[0][:9])) self.play(Write(tex[0][9])) self.wait() self.play( TransformFromCopy(tex[0][:4], tex[0][-4:]), TransformFromCopy(tex[0][5:9], tex[0][-4:].copy()), FadeInFrom(tex[0][-5], RIGHT) ) self.wait() class Test125(Scene): """同上""" def construct(self): tex = TexMobject("f(n)+f(n)") two = TexMobject("2").next_to(tex, LEFT, buff=0.02) self.wait() self.play(Write(tex)) self.wait() self.play( Transform(tex[0][5:], tex[0][:4].copy()), FadeOut(tex[0][4]), Write(two) ) self.wait() class Test126(Scene): """给LaTeX改字体,失败了qwq""" def construct(self): text = TextMobject("测试字体test") self.add(text) class Test127(Scene): """和Axes有关的测试""" def construct(self): axes = Axes( x_min=-14, x_max=14, y_min=-8, y_max=8, number_line_config={ "unit_size": 0.5, "tick_frequency": 2, } ) axes.add_coordinates( [-6, -4, -2, 2, 4, 6], [-4, -2, 2, 4] ) graph = VGroup() graph.add(axes.get_graph(lambda x: -(np.exp(-x)-3), color=RED, x_min=-2.9)) graph.add(axes.get_graph(lambda x: x, color=PURPLE)) graph.add(axes.get_graph(lambda x: -np.log(3-x), color=BLUE, step_size=0.001)) self.add(axes, graph) class Test128(Scene): """给action_renderer项目做的头图""" CONFIG = { "camera_config": { "background_color": WHITE, }, } def construct(self): logo = Logo(black_bg=False).set_height(2) img = ImageMobject("action.png").set_height(2) Group(logo, img).arrange(RIGHT, buff=1.3).center() line = Line(UP, DOWN, stroke_width=8, color=BLACK).move_to(mid(logo.get_right(), img.get_left())) line.set_length(1.4) text = VGroup( Text("Manim-Kindergarten", font="Orbitron", color=DARK_GRAY), Text("manim_action_renderer", font="庞门正道标题体", color=BLACK, size=1.4) ).arrange(DOWN, aligned_edge=LEFT, buff=0.25).next_to(img, buff=0.5) text[0][0].set_color(logo.color_2[2]) text[0][6].set_color(logo.color_1[2]) self.add(logo, img, line, text) Group(*self.mobjects).center() class Test129(Scene): """updater中特判点重合""" def construct(self): A = Dot(3 * RIGHT) B = Dot(2 * RIGHT) label_A = TexMobject('A').next_to(A, DOWN, buff=SMALL_BUFF) label_B = TexMobject('B').next_to(B, DOWN, buff=SMALL_BUFF) m = -5*RIGHT C = A.copy() l = Line(A.get_center(), C.get_center()) label_C = TexMobject('C').next_to(C, UP, buff=SMALL_BUFF) label_C.add_updater(lambda m: m.next_to(C, UP, buff=SMALL_BUFF)) def up_loca(mbj): if all(A.get_center() == C.get_center()): pass else: mbj.put_start_and_end_on(A.get_center(), C.get_center()) l.add_updater(up_loca) self.add(A, B, label_A, label_B, label_C, l) self.play(C.move_to, m, run_time=5)
32.584906
170
0.53896
08cb4c8064d8360c27a8321c672012078a2b889f
4,013
py
Python
virtool/jobs/create_sample.py
jinxuchen/virtool
5a6e48fab986d77ad76d5583fa560798babe3f25
[ "MIT" ]
null
null
null
virtool/jobs/create_sample.py
jinxuchen/virtool
5a6e48fab986d77ad76d5583fa560798babe3f25
[ "MIT" ]
null
null
null
virtool/jobs/create_sample.py
jinxuchen/virtool
5a6e48fab986d77ad76d5583fa560798babe3f25
[ "MIT" ]
null
null
null
import os import shutil import virtool.files.db import virtool.samples.db import virtool.jobs.fastqc import virtool.jobs.job import virtool.jobs.utils import virtool.samples.utils import virtool.utils class Job(virtool.jobs.job.Job): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) #: The ordered list of :ref:`stage methods <stage-methods>` that are called by the job. self._stage_list = [ self.make_sample_dir, self.copy_files, self.fastqc, self.parse_fastqc, self.clean_watch ] def check_db(self): self.params = virtool.jobs.utils.get_sample_params( self.db, self.settings, self.task_args ) def make_sample_dir(self): """ Make a data directory for the sample and a subdirectory for analyses. Read files, quality data from FastQC, and analysis data will be stored here. """ try: os.makedirs(self.params["sample_path"]) os.makedirs(self.params["analysis_path"]) os.makedirs(self.params["fastqc_path"]) except OSError: # If the path already exists, remove it and try again. shutil.rmtree(self.params["sample_path"]) self.make_sample_dir() def copy_files(self): """ Copy the files from the files directory to the nascent sample directory. """ files = self.params["files"] sample_id = self.params["sample_id"] paths = [os.path.join(self.settings["data_path"], "files", file["id"]) for file in files] sizes = virtool.jobs.utils.copy_files_to_sample( paths, self.params["sample_path"], self.proc ) raw = list() for index, file in enumerate(files): name = f"reads_{index + 1}.fq.gz" raw.append({ "name": name, "download_url": f"/download/samples/{sample_id}/{name}", "size": sizes[index], "from": file, "raw": True }) self.db.samples.update_one({"_id": sample_id}, { "$set": { "files": raw } }) def fastqc(self): """ Runs FastQC on the renamed, trimmed read files. """ read_paths = virtool.samples.utils.join_read_paths(self.params["sample_path"], self.params["paired"]) virtool.jobs.fastqc.run_fastqc( self.run_subprocess, self.proc, read_paths, self.params["fastqc_path"] ) def parse_fastqc(self): """ Capture the desired data from the FastQC output. The data is added to the samples database in the main run() method """ qc = virtool.jobs.fastqc.parse_fastqc(self.params["fastqc_path"], self.params["sample_path"]) self.db.samples.update_one({"_id": self.params["sample_id"]}, { "$set": { "quality": qc, "imported": False } }) self.dispatch("samples", "update", [self.params["sample_id"]]) def clean_watch(self): """ Remove the original read files from the files directory """ self.db.files.delete_many({"_id": {"$in": self.params["files"]}}) self.dispatch("files", "delete", self.params["files"]) def cleanup(self): for file_id in self.params["files"]: self.db.files.update_many({"_id": file_id}, { "$set": { "reserved": False } }) self.dispatch("files", "update", self.params["files"]) try: shutil.rmtree(self.params["sample_path"]) except FileNotFoundError: pass self.db.samples.delete_one({"_id": self.params["sample_id"]}) self.dispatch("samples", "delete", [self.params["sample_id"]])
29.07971
119
0.552455
a9ab94c5cb1f497cd06a0d2b775b38b37eb47da0
2,549
py
Python
evaluation/gekko/statistics.py
mczero80/japonicus
d183f24a7e1d0e52052f4c6e5e82604d9e7700d3
[ "MIT" ]
229
2018-01-05T13:32:52.000Z
2021-12-18T00:57:49.000Z
evaluation/gekko/statistics.py
mczero80/japonicus
d183f24a7e1d0e52052f4c6e5e82604d9e7700d3
[ "MIT" ]
142
2018-01-04T23:39:28.000Z
2019-12-14T16:38:24.000Z
evaluation/gekko/statistics.py
mczero80/japonicus
d183f24a7e1d0e52052f4c6e5e82604d9e7700d3
[ "MIT" ]
95
2018-01-06T05:35:23.000Z
2021-12-13T16:42:22.000Z
#!/bin/python from deap import tools import numpy as np epochStatisticsNames = { 'avg': 'Average profit', 'std': 'Profit variation', 'min': 'Minimum profit', 'max': 'Maximum profit', 'size': 'Population size', 'maxsize': 'Max population size', 'avgTrades': 'Avg trade number', 'sharpe': 'Avg sharpe ratio', 'avgExposure': "Avg exposure time", 'nbElderDies': 'Elder dies count' } periodicStatisticsNames = { 'evaluationScore': "Evaluation Score", 'evaluationScoreOnSecondary': "Score on Secondary Dataset" } def compileStats(locale): # --get proper evolution statistics; Stats = locale.stats.compile(locale.population) Stats['dateRange'] = ' '.join([DR.textDaterange() for DR in locale.Dataset])\ if not locale.EPOCH else None Stats['maxsize'] = locale.POP_SIZE Stats['size'] = len(locale.population) Stats['avgTrades'] = locale.extraStats['avgTrades'] Stats['avgExposure'] = locale.extraStats['avgExposure'] #Stats['nbElderDies'] = locale.extraStats['nbElderDies'] Stats['sharpe'] = np.mean([x.fitness.values[1] for x in locale.population]) Stats['evaluationScoreOnSecondary'] = locale.lastEvaluationOnSecondary Stats['evaluationScore'] = locale.lastEvaluation locale.lastEvaluationOnSecondary = None locale.lastEvaluation = None Stats['id'] = locale.EPOCH locale.EvolutionStatistics.append(Stats) locale.World.logger.write_evolution_logs( locale.EPOCH, locale.EvolutionStatistics, locale.name ) def showStatistics(locale): # show information; Stats = locale.EvolutionStatistics[locale.EPOCH] print("EPOCH %i\t&%i" % (locale.EPOCH, locale.extraStats['nb_evaluated'])) statnames = ['max', 'avg', 'min', 'std', 'size', 'maxsize', 'avgTrades', 'sharpe', 'avgExposure', # 'nbElderDies' ] statisticsText = [] for s in range(len(statnames)): SNAME = statnames[s] SVAL = Stats[SNAME] currentStatisticsText = "%s" % epochStatisticsNames[SNAME] if not SVAL % 1: currentStatisticsText += " %i" % SVAL else: currentStatisticsText += " %.3f" % SVAL statisticsText.append(currentStatisticsText) columnWidth = max([len(STXT) for STXT in statisticsText]) + 3 for j in range(0, len(statisticsText), 2): print(''.join(word.ljust(columnWidth) for word in statisticsText[j:j+2])) print()
34.445946
81
0.635151
f34623c6dadd4553f2cf87709c2d932fca3c52ef
13,521
py
Python
python/ray/serve/api.py
hekaisheng/ray
05fe6dc278126352e830a21b408027bd7a8cfd78
[ "Apache-2.0" ]
1
2021-04-08T12:02:58.000Z
2021-04-08T12:02:58.000Z
python/ray/serve/api.py
hekaisheng/ray
05fe6dc278126352e830a21b408027bd7a8cfd78
[ "Apache-2.0" ]
null
null
null
python/ray/serve/api.py
hekaisheng/ray
05fe6dc278126352e830a21b408027bd7a8cfd78
[ "Apache-2.0" ]
null
null
null
from functools import wraps import ray from ray.serve.constants import (DEFAULT_HTTP_HOST, DEFAULT_HTTP_PORT, SERVE_CONTROLLER_NAME, HTTP_PROXY_TIMEOUT) from ray.serve.controller import ServeController from ray.serve.handle import RayServeHandle from ray.serve.utils import (block_until_http_ready, format_actor_name) from ray.serve.exceptions import RayServeException from ray.serve.config import BackendConfig, ReplicaConfig from ray.actor import ActorHandle from typing import Any, Callable, Dict, List, Optional, Type, Union controller = None def _get_controller() -> ActorHandle: """Used for internal purpose because using just import serve.global_state will always reference the original None object. """ global controller if controller is None: raise RayServeException("Please run serve.init to initialize or " "connect to existing ray serve cluster.") return controller def _ensure_connected(f: Callable) -> Callable: @wraps(f) def check(*args, **kwargs): _get_controller() return f(*args, **kwargs) return check def accept_batch(f: Callable) -> Callable: """Annotation to mark a serving function that batch is accepted. This annotation need to be used to mark a function expect all arguments to be passed into a list. Example: >>> @serve.accept_batch def serving_func(flask_request): assert isinstance(flask_request, list) ... >>> class ServingActor: @serve.accept_batch def __call__(self, *, python_arg=None): assert isinstance(python_arg, list) """ f._serve_accept_batch = True return f def init(name: Optional[str] = None, http_host: str = DEFAULT_HTTP_HOST, http_port: int = DEFAULT_HTTP_PORT, _http_middlewares: List[Any] = []) -> None: """Initialize or connect to a serve cluster. If serve cluster is already initialized, this function will just return. If `ray.init` has not been called in this process, it will be called with no arguments. To specify kwargs to `ray.init`, it should be called separately before calling `serve.init`. Args: name (str): A unique name for this serve instance. This allows multiple serve instances to run on the same ray cluster. Must be specified in all subsequent serve.init() calls. http_host (str): Host for HTTP servers. Default to "0.0.0.0". Serve starts one HTTP server per node in the Ray cluster. http_port (int, List[int]): Port for HTTP server. Default to 8000. """ if name is not None and not isinstance(name, str): raise TypeError("name must be a string.") # Initialize ray if needed. if not ray.is_initialized(): ray.init() # Try to get serve controller if it exists global controller controller_name = format_actor_name(SERVE_CONTROLLER_NAME, name) try: controller = ray.get_actor(controller_name) return except ValueError: pass controller = ServeController.options( name=controller_name, lifetime="detached", max_restarts=-1, max_task_retries=-1, ).remote(name, http_host, http_port, _http_middlewares) futures = [] for node_id in ray.state.node_ids(): future = block_until_http_ready.options( num_cpus=0, resources={ node_id: 0.01 }).remote( "http://{}:{}/-/routes".format(http_host, http_port), timeout=HTTP_PROXY_TIMEOUT) futures.append(future) ray.get(futures) @_ensure_connected def shutdown() -> None: """Completely shut down the connected Serve instance. Shuts down all processes and deletes all state associated with the Serve instance that's currently connected to (via serve.init). """ global controller ray.get(controller.shutdown.remote()) ray.kill(controller, no_restart=True) controller = None @_ensure_connected def create_endpoint(endpoint_name: str, *, backend: str = None, route: Optional[str] = None, methods: List[str] = ["GET"]) -> None: """Create a service endpoint given route_expression. Args: endpoint_name (str): A name to associate to with the endpoint. backend (str, required): The backend that will serve requests to this endpoint. To change this or split traffic among backends, use `serve.set_traffic`. route (str, optional): A string begin with "/". HTTP server will use the string to match the path. methods(List[str], optional): The HTTP methods that are valid for this endpoint. """ if backend is None: raise TypeError("backend must be specified when creating " "an endpoint.") elif not isinstance(backend, str): raise TypeError("backend must be a string, got {}.".format( type(backend))) if route is not None: if not isinstance(route, str) or not route.startswith("/"): raise TypeError("route must be a string starting with '/'.") if not isinstance(methods, list): raise TypeError( "methods must be a list of strings, but got type {}".format( type(methods))) endpoints = list_endpoints() if endpoint_name in endpoints: methods_old = endpoints[endpoint_name]["methods"] route_old = endpoints[endpoint_name]["route"] if methods_old.sort() == methods.sort() and route_old == route: raise ValueError( "Route '{}' is already registered to endpoint '{}' " "with methods '{}'. To set the backend for this " "endpoint, please use serve.set_traffic().".format( route, endpoint_name, methods)) upper_methods = [] for method in methods: if not isinstance(method, str): raise TypeError("methods must be a list of strings, but contained " "an element of type {}".format(type(method))) upper_methods.append(method.upper()) ray.get( controller.create_endpoint.remote(endpoint_name, {backend: 1.0}, route, upper_methods)) @_ensure_connected def delete_endpoint(endpoint: str) -> None: """Delete the given endpoint. Does not delete any associated backends. """ ray.get(controller.delete_endpoint.remote(endpoint)) @_ensure_connected def list_endpoints() -> Dict[str, Dict[str, Any]]: """Returns a dictionary of all registered endpoints. The dictionary keys are endpoint names and values are dictionaries of the form: {"methods": List[str], "traffic": Dict[str, float]}. """ return ray.get(controller.get_all_endpoints.remote()) @_ensure_connected def update_backend_config(backend_tag: str, config_options: Dict[str, Any]) -> None: """Update a backend configuration for a backend tag. Keys not specified in the passed will be left unchanged. Args: backend_tag(str): A registered backend. config_options(dict): Backend config options to update. Supported options: - "num_replicas": number of worker processes to start up that will handle requests to this backend. - "max_batch_size": the maximum number of requests that will be processed in one batch by this backend. - "batch_wait_timeout": time in seconds that backend replicas will wait for a full batch of requests before processing a partial batch. - "max_concurrent_queries": the maximum number of queries that will be sent to a replica of this backend without receiving a response. """ if not isinstance(config_options, dict): raise ValueError("config_options must be a dictionary.") ray.get( controller.update_backend_config.remote(backend_tag, config_options)) @_ensure_connected def get_backend_config(backend_tag: str): """Get the backend configuration for a backend tag. Args: backend_tag(str): A registered backend. """ return ray.get(controller.get_backend_config.remote(backend_tag)) @_ensure_connected def create_backend(backend_tag: str, func_or_class: Union[Callable, Type[Callable]], *actor_init_args: Any, ray_actor_options: Optional[Dict] = None, config: Optional[Dict[str, Any]] = None) -> None: """Create a backend with the provided tag. The backend will serve requests with func_or_class. Args: backend_tag (str): a unique tag assign to identify this backend. func_or_class (callable, class): a function or a class implementing __call__. actor_init_args (optional): the arguments to pass to the class. initialization method. ray_actor_options (optional): options to be passed into the @ray.remote decorator for the backend actor. config (optional): configuration options for this backend. Supported options: - "num_replicas": number of worker processes to start up that will handle requests to this backend. - "max_batch_size": the maximum number of requests that will be processed in one batch by this backend. - "batch_wait_timeout": time in seconds that backend replicas will wait for a full batch of requests before processing a partial batch. - "max_concurrent_queries": the maximum number of queries that will be sent to a replica of this backend without receiving a response. """ if backend_tag in list_backends(): raise ValueError( "Cannot create backend. " "Backend '{}' is already registered.".format(backend_tag)) if config is None: config = {} if not isinstance(config, dict): raise TypeError("config must be a dictionary.") replica_config = ReplicaConfig( func_or_class, *actor_init_args, ray_actor_options=ray_actor_options) backend_config = BackendConfig(config, replica_config.accepts_batches, replica_config.is_blocking) ray.get( controller.create_backend.remote(backend_tag, backend_config, replica_config)) @_ensure_connected def list_backends() -> Dict[str, Dict[str, Any]]: """Returns a dictionary of all registered backends. Dictionary maps backend tags to backend configs. """ return ray.get(controller.get_all_backends.remote()) @_ensure_connected def delete_backend(backend_tag: str) -> None: """Delete the given backend. The backend must not currently be used by any endpoints. """ ray.get(controller.delete_backend.remote(backend_tag)) @_ensure_connected def set_traffic(endpoint_name: str, traffic_policy_dictionary: Dict[str, float]) -> None: """Associate a service endpoint with traffic policy. Example: >>> serve.set_traffic("service-name", { "backend:v1": 0.5, "backend:v2": 0.5 }) Args: endpoint_name (str): A registered service endpoint. traffic_policy_dictionary (dict): a dictionary maps backend names to their traffic weights. The weights must sum to 1. """ ray.get( controller.set_traffic.remote(endpoint_name, traffic_policy_dictionary)) @_ensure_connected def shadow_traffic(endpoint_name: str, backend_tag: str, proportion: float) -> None: """Shadow traffic from an endpoint to a backend. The specified proportion of requests will be duplicated and sent to the backend. Responses of the duplicated traffic will be ignored. The backend must not already be in use. To stop shadowing traffic to a backend, call `shadow_traffic` with proportion equal to 0. Args: endpoint_name (str): A registered service endpoint. backend_tag (str): A registered backend. proportion (float): The proportion of traffic from 0 to 1. """ if not isinstance(proportion, (float, int)) or not 0 <= proportion <= 1: raise TypeError("proportion must be a float from 0 to 1.") ray.get( controller.shadow_traffic.remote(endpoint_name, backend_tag, proportion)) @_ensure_connected def get_handle(endpoint_name: str, missing_ok: bool = False) -> RayServeHandle: """Retrieve RayServeHandle for service endpoint to invoke it from Python. Args: endpoint_name (str): A registered service endpoint. missing_ok (bool): If true, skip the check for the endpoint existence. It can be useful when the endpoint has not been registered. Returns: RayServeHandle """ if not missing_ok: assert endpoint_name in ray.get(controller.get_all_endpoints.remote()) # TODO(edoakes): we should choose the router on the same node. routers = ray.get(controller.get_routers.remote()) return RayServeHandle( list(routers.values())[0], endpoint_name, )
35.675462
79
0.647585
c7b7b939485e16388731e8ee8401ca172479b7f5
1,297
py
Python
ensysmod/model/energy_model_parameter.py
NOWUM/EnSysMod
18c8a2198db3510e667c1f0298d00a3dfcb0aab7
[ "MIT" ]
1
2021-12-10T19:41:01.000Z
2021-12-10T19:41:01.000Z
ensysmod/model/energy_model_parameter.py
NOWUM/EnSysMod
18c8a2198db3510e667c1f0298d00a3dfcb0aab7
[ "MIT" ]
83
2021-10-20T22:54:28.000Z
2022-03-24T19:07:06.000Z
ensysmod/model/energy_model_parameter.py
NOWUM/EnSysMod
18c8a2198db3510e667c1f0298d00a3dfcb0aab7
[ "MIT" ]
null
null
null
import enum from sqlalchemy import Column, Integer, ForeignKey, Float, UniqueConstraint, Enum from sqlalchemy.orm import relationship from ensysmod.database.base_class import Base from ensysmod.database.ref_base_class import RefCRBase class EnergyModelParameterAttribute(enum.Enum): yearly_limit = 'yearly_limit' class EnergyModelParameterOperation(enum.Enum): add = 'add' multiply = 'multiply' set = 'set' class EnergyModelParameter(RefCRBase, Base): """ A energy model parameter is referenced to a model and a component. It can be used to overwrite different attributes from the component. """ ref_model = Column(Integer, ForeignKey('energy_model.id'), nullable=False) # The region reference is optional. ref_region = Column(Integer, ForeignKey('region.id'), nullable=True) attribute = Column(Enum(EnergyModelParameterAttribute), nullable=False) operation = Column(Enum(EnergyModelParameterOperation), nullable=False) value = Column(Float, nullable=False) # relationships component = relationship('EnergyComponent') model = relationship('EnergyModel', back_populates='parameters') # table constraints __table_args__ = ( UniqueConstraint("ref_model", "attribute", name="_model_attribute_uc"), )
30.162791
81
0.744796
46ee8802a906a482bf4c5a6763d312084ea1718c
4,602
py
Python
explorer/utils.py
thecardcheat/django-sql-explorer
30676258bdbd1614d26bb89ca5f07c2cff2321c1
[ "MIT" ]
null
null
null
explorer/utils.py
thecardcheat/django-sql-explorer
30676258bdbd1614d26bb89ca5f07c2cff2321c1
[ "MIT" ]
null
null
null
explorer/utils.py
thecardcheat/django-sql-explorer
30676258bdbd1614d26bb89ca5f07c2cff2321c1
[ "MIT" ]
1
2020-06-15T16:44:58.000Z
2020-06-15T16:44:58.000Z
import functools import re from django.contrib.auth.forms import AuthenticationForm from django.contrib.auth.views import LoginView from django.contrib.auth import REDIRECT_FIELD_NAME from six import text_type import sqlparse from explorer import app_settings EXPLORER_PARAM_TOKEN = "$$" def passes_blacklist(sql): clean = functools.reduce(lambda sql, term: sql.upper().replace(term, ""), [t.upper() for t in app_settings.EXPLORER_SQL_WHITELIST], sql) fails = [bl_word for bl_word in app_settings.EXPLORER_SQL_BLACKLIST if bl_word in clean.upper()] return not any(fails), fails def _format_field(field): return field.get_attname_column()[1], field.get_internal_type() def param(name): return "%s%s%s" % (EXPLORER_PARAM_TOKEN, name, EXPLORER_PARAM_TOKEN) def swap_params(sql, params): p = params.items() if params else {} for k, v in p: regex = re.compile("\$\$%s(?:\:([^\$]+))?\$\$" % str(k).lower(), re.I) sql = regex.sub(text_type(v), sql) return sql def extract_params(text): regex = re.compile("\$\$([a-z0-9_]+)(?:\:([^\$]+))?\$\$") params = re.findall(regex, text.lower()) return {p[0]: p[1] if len(p) > 1 else '' for p in params} def safe_login_prompt(request): defaults = { 'template_name': 'admin/login.html', 'authentication_form': AuthenticationForm, 'extra_context': { 'title': 'Log in', 'app_path': request.get_full_path(), REDIRECT_FIELD_NAME: request.get_full_path(), }, } return LoginView.as_view(**defaults)(request) def shared_dict_update(target, source): for k_d1 in target: if k_d1 in source: target[k_d1] = source[k_d1] return target def safe_cast(val, to_type, default=None): try: return to_type(val) except ValueError: return default def get_int_from_request(request, name, default): val = request.GET.get(name, default) return safe_cast(val, int, default) if val else None def get_params_from_request(request): val = request.GET.get('params', None) try: d = {} tuples = val.split('|') for t in tuples: res = t.split(':') d[res[0]] = res[1] return d except Exception: return None def get_params_for_url(query): if query.params: return '|'.join(['%s:%s' % (p, v) for p, v in query.params.items()]) def url_get_rows(request): return get_int_from_request(request, 'rows', app_settings.EXPLORER_DEFAULT_ROWS) def url_get_query_id(request): return get_int_from_request(request, 'query_id', None) def url_get_log_id(request): return get_int_from_request(request, 'querylog_id', None) def url_get_show(request): return bool(get_int_from_request(request, 'show', 1)) def url_get_fullscreen(request): return bool(get_int_from_request(request, 'fullscreen', 0)) def url_get_params(request): return get_params_from_request(request) def allowed_query_pks(user_id): return app_settings.EXPLORER_GET_USER_QUERY_VIEWS().get(user_id, []) def user_can_see_query(request, **kwargs): # In Django<1.10, is_anonymous was a method. try: is_anonymous = request.user.is_anonymous() except TypeError: is_anonymous = request.user.is_anonymous if not is_anonymous and 'query_id' in kwargs: return int(kwargs['query_id']) in allowed_query_pks(request.user.id) return False def fmt_sql(sql): return sqlparse.format(sql, reindent=True, keyword_case='upper') def noop_decorator(f): return f class InvalidExplorerConnectionException(Exception): pass def get_valid_connection(alias=None): from explorer.connections import connections if not alias: return connections[app_settings.EXPLORER_DEFAULT_CONNECTION] if alias not in connections: raise InvalidExplorerConnectionException( 'Attempted to access connection %s, but that is not a registered Explorer connection.' % alias ) return connections[alias] def get_s3_bucket(): from boto.s3.connection import S3Connection conn = S3Connection(app_settings.S3_ACCESS_KEY, app_settings.S3_SECRET_KEY) return conn.get_bucket(app_settings.S3_BUCKET) def s3_upload(key, data): from boto.s3.key import Key bucket = get_s3_bucket() k = Key(bucket) k.key = key k.set_contents_from_file(data, rewind=True) k.set_acl('public-read') k.set_metadata('Content-Type', 'text/csv') return k.generate_url(expires_in=0, query_auth=False)
26.297143
140
0.680791
675666cce1eeca3da6459cea3e1ab142af48330c
3,765
py
Python
third_party/sqlalchemy_migrate_0_7_1/migrate/changeset/databases/firebird.py
bopopescu/build
4e95fd33456e552bfaf7d94f7d04b19273d1c534
[ "BSD-3-Clause" ]
null
null
null
third_party/sqlalchemy_migrate_0_7_1/migrate/changeset/databases/firebird.py
bopopescu/build
4e95fd33456e552bfaf7d94f7d04b19273d1c534
[ "BSD-3-Clause" ]
null
null
null
third_party/sqlalchemy_migrate_0_7_1/migrate/changeset/databases/firebird.py
bopopescu/build
4e95fd33456e552bfaf7d94f7d04b19273d1c534
[ "BSD-3-Clause" ]
1
2020-07-23T11:05:06.000Z
2020-07-23T11:05:06.000Z
""" Firebird database specific implementations of changeset classes. """ from sqlalchemy.databases import firebird as sa_base from sqlalchemy.schema import PrimaryKeyConstraint from migrate import exceptions from migrate.changeset import ansisql, SQLA_06 if SQLA_06: FBSchemaGenerator = sa_base.FBDDLCompiler else: FBSchemaGenerator = sa_base.FBSchemaGenerator class FBColumnGenerator(FBSchemaGenerator, ansisql.ANSIColumnGenerator): """Firebird column generator implementation.""" class FBColumnDropper(ansisql.ANSIColumnDropper): """Firebird column dropper implementation.""" def visit_column(self, column): """Firebird supports 'DROP col' instead of 'DROP COLUMN col' syntax Drop primary key and unique constraints if dropped column is referencing it.""" if column.primary_key: if column.table.primary_key.columns.contains_column(column): column.table.primary_key.drop() # TODO: recreate primary key if it references more than this column for index in column.table.indexes: # "column in index.columns" causes problems as all # column objects compare equal and return a SQL expression if column.name in [col.name for col in index.columns]: index.drop() # TODO: recreate index if it references more than this column for cons in column.table.constraints: if isinstance(cons,PrimaryKeyConstraint): # will be deleted only when the column its on # is deleted! continue if SQLA_06: should_drop = column.name in cons.columns else: should_drop = cons.contains_column(column) and cons.name if should_drop: self.start_alter_table(column) self.append("DROP CONSTRAINT ") self.append(self.preparer.format_constraint(cons)) self.execute() # TODO: recreate unique constraint if it refenrences more than this column self.start_alter_table(column) self.append('DROP %s' % self.preparer.format_column(column)) self.execute() class FBSchemaChanger(ansisql.ANSISchemaChanger): """Firebird schema changer implementation.""" def visit_table(self, table): """Rename table not supported""" raise exceptions.NotSupportedError( "Firebird does not support renaming tables.") def _visit_column_name(self, table, column, delta): self.start_alter_table(table) col_name = self.preparer.quote(delta.current_name, table.quote) new_name = self.preparer.format_column(delta.result_column) self.append('ALTER COLUMN %s TO %s' % (col_name, new_name)) def _visit_column_nullable(self, table, column, delta): """Changing NULL is not supported""" # TODO: http://www.firebirdfaq.org/faq103/ raise exceptions.NotSupportedError( "Firebird does not support altering NULL bevahior.") class FBConstraintGenerator(ansisql.ANSIConstraintGenerator): """Firebird constraint generator implementation.""" class FBConstraintDropper(ansisql.ANSIConstraintDropper): """Firebird constaint dropper implementation.""" def cascade_constraint(self, constraint): """Cascading constraints is not supported""" raise exceptions.NotSupportedError( "Firebird does not support cascading constraints") class FBDialect(ansisql.ANSIDialect): columngenerator = FBColumnGenerator columndropper = FBColumnDropper schemachanger = FBSchemaChanger constraintgenerator = FBConstraintGenerator constraintdropper = FBConstraintDropper
37.65
87
0.683931
b35cae32a94630e5b3d757e76d76dddf64a5eb61
9,369
py
Python
ad-insertion/frontend/manifest_dash.py
jhou5/Ad-Insertion-Sample
c944c7386f0645ba935c1f9f6ddb9c244a4167f1
[ "BSD-3-Clause" ]
null
null
null
ad-insertion/frontend/manifest_dash.py
jhou5/Ad-Insertion-Sample
c944c7386f0645ba935c1f9f6ddb9c244a4167f1
[ "BSD-3-Clause" ]
1
2019-05-03T23:14:50.000Z
2019-05-03T23:14:50.000Z
ad-insertion/frontend/manifest_dash.py
jhou5/Ad-Insertion-Sample
c944c7386f0645ba935c1f9f6ddb9c244a4167f1
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python3 import xml.etree.ElementTree as ET from copy import deepcopy import re import time #PT0H1M59.89S def _to_seconds(time): s=0 m=re.search("([0-9.]+)H",time) if m: s=s+float(m.group(1))*3600 m=re.search("([0-9.]+)M",time) if m: s=s+float(m.group(1))*60 m=re.search("([0-9.]+)S",time) if m: s=s+float(m.group(1)) return s def _to_iso8601(s): h=int(s/3600) s=s-h*3600 m=int(s/60) s=s-m*60 return 'PT{0:1g}H{1:1g}M{2:1g}S'.format(h,m,s) def _to_stream(template, RepresentationID, Number=0): template=template.replace("$RepresentationID$","{0}") template=re.sub("\$Number\%([0-9]*)d\$",r"{1:\1d}",template) return template.format(RepresentationID, Number) def _ns(tag): return "{urn:mpeg:dash:schema:mpd:2011}"+tag; ET.register_namespace('','urn:mpeg:dash:schema:mpd:2011') _ad_template=ET.fromstring("""<?xml version="1.0" encoding="utf-8"?> <MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="urn:mpeg:dash:schema:mpd:2011" xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="urn:mpeg:DASH:schema:MPD:2011 http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-DASH_schema_files/DASH-MPD.xsd" profiles="urn:mpeg:dash:profile:isoff-live:2011" type="static" mediaPresentationDuration="PT5S" minBufferTime="PT16.6S"> <ProgramInformation> </ProgramInformation> <Period id="0" start="PT0.0S"> <AdaptationSet id="0" contentType="video" segmentAlignment="true" bitstreamSwitching="true" lang="und"> <Representation id="0" mimeType="video/mp4" codecs="avc1.640028" bandwidth="2027988" width="1920" height="1080" frameRate="30000/1001"> <SegmentTemplate timescale="1000000" duration="5000000" initialization="init-stream0.m4s" media="chunk-stream0-$Number%05d$.m4s" startNumber="1"> </SegmentTemplate> </Representation> </AdaptationSet> <AdaptationSet id="1" contentType="audio" segmentAlignment="true" bitstreamSwitching="true" lang="und"> <Representation id="1" mimeType="audio/mp4" codecs="mp4a.40.2" bandwidth="128000" audioSamplingRate="48000"> <AudioChannelConfiguration schemeIdUri="urn:mpeg:dash:23003:3:audio_channel_configuration:2011" value="2" /> <SegmentTemplate timescale="1000000" duration="5000000" initialization="init-stream1.m4s" media="chunk-stream1-$Number%05d$.m4s" startNumber="1"> </SegmentTemplate> </Representation> </AdaptationSet> </Period> </MPD>""") def _ad_time(ad_spec, seq): time=0 for i in range(seq): time=time+ad_spec["duration"][i%len(ad_spec["duration"])] return time def _start_number(ad_spec, number, seq): for i in range(seq): number=number+ad_spec["interval"][i%len(ad_spec["interval"])] return number def _period_index(ad_spec, s): i=0 while True: interval=ad_spec["interval"][i%len(ad_spec["interval"])] if s<interval: return i s=s-interval i=i+1 def parse_dash(stream_cp_url, mpd, ad_spec, ad_segment=5.0): stream_cp_url="/".join(stream_cp_url.split("/")[:-1]) root=ET.fromstring(mpd) mediaPresentationDuration = 0 if 'mediaPresentationDuration' in root.attrib: mediaPresentationDuration=_to_seconds(root.attrib["mediaPresentationDuration"]) Period=root.find(_ns("Period")) formats={ "video": list(Period.findall(_ns("AdaptationSet[@contentType='video']")+"/"+_ns("Representation"))), "audio": list(Period.findall(_ns("AdaptationSet[@contentType='audio']")+"/"+_ns("Representation"))), } # scan all segs into structure periods=[] for AdaptationSet in Period.findall(_ns("AdaptationSet")): sidx=0 for S in AdaptationSet.findall(_ns("Representation")+"/"+_ns("SegmentTemplate")+"/"+_ns("SegmentTimeline")+"/"+_ns("S")): if "t" in S.attrib: t=int(S.attrib["t"]) d=int(S.attrib["d"]) r=int(S.attrib["r"]) if "r" in S.attrib else 0 for repeat in range(r+1): pidx=_period_index(ad_spec, sidx) if pidx>=len(periods): periods.append({}) if AdaptationSet not in periods[pidx]: periods[pidx][AdaptationSet]=[] periods[pidx][AdaptationSet].append((t,d,sidx)) sidx=sidx+1 t=t+d # create new periods with ADs minfo={"segs":{}, "streams":{} } manifest=ET.Element(root.tag, root.attrib) for i in range(len(periods)): Period1=ET.SubElement(manifest,_ns("Period"),{"id":str(i*2)}) duration_min=0 for AdaptationSet in periods[i]: AdaptationSet1=ET.SubElement(Period1,_ns("AdaptationSet"),AdaptationSet.attrib) Representation1=ET.SubElement(AdaptationSet1,_ns("Representation"),AdaptationSet.find(_ns("Representation")).attrib) SegmentTemplate1=ET.SubElement(Representation1,_ns("SegmentTemplate"),AdaptationSet.find(_ns("Representation")+"/"+_ns("SegmentTemplate")).attrib) timescale=float(SegmentTemplate1.attrib["timescale"]) SegmentTemplate1.attrib["presentationTimeOffset"]=str(periods[i][AdaptationSet][0][0]) SegmentTimeline1=ET.SubElement(SegmentTemplate1,_ns("SegmentTimeline")) sidx=0 duration=0 for S in periods[i][AdaptationSet]: S1=ET.SubElement(SegmentTimeline1,_ns("S"),{"t":str(S[0]),"d":str(S[1])}) duration=duration+S[1] # schedule analytics if AdaptationSet.attrib["contentType"]!="video": continue # decipher streams stream=_to_stream(SegmentTemplate1.attrib["media"],Representation1.attrib["id"],int(SegmentTemplate1.attrib["startNumber"])+S[2]) init_stream=_to_stream(SegmentTemplate1.attrib["initialization"],Representation1.attrib["id"],int(SegmentTemplate1.attrib["startNumber"])+S[2]) minfo["segs"][stream]={ "stream": stream_cp_url.split("/")[-1], "bandwidth": int(Representation1.attrib["bandwidth"]), "resolution": { "width": int(Representation1.attrib["width"]), "height": int(Representation1.attrib["height"]), }, "seg_time": S[0]/timescale+_ad_time(ad_spec,i), "seg_duration": S[1]/timescale, "codec": Representation1.attrib["codecs"], "streaming_type": "dash", "initSeg": stream_cp_url+"/"+init_stream, "analytics": stream_cp_url+"/"+stream, "ad_duration": ad_spec["duration"][i%len(ad_spec["duration"])], "ad_segment": ad_segment, } sidx=sidx+1 if sidx>=3: minfo["segs"][stream]["transcode"]=ad_spec["path"]+"/"+ad_spec["prefix"]+"/"+str(i)+"/"+Representation1.attrib["height"]+"p.mpd" SegmentTemplate1.attrib["startNumber"]=str(_start_number(ad_spec, int(SegmentTemplate1.attrib["startNumber"]), i)) duration=float(duration)/timescale if duration<duration_min or duration_min==0: duration_min=duration Period1.attrib["duration"]=_to_iso8601(duration_min) if(mediaPresentationDuration == 0): mediaPresentationDuration += duration_min # insert AD if i==len(periods)-1: continue # do not insert AD at the last period duration=ad_spec["duration"][i%len(ad_spec["duration"])] mediaPresentationDuration += duration Period2=ET.SubElement(manifest, _ns("Period"),{"id":str(i*2+1),"duration":_to_iso8601(duration)}) k=0 for j in range(len(formats["video"])): for AdaptationSet in _ad_template.find(_ns("Period")): AdaptationSet1=deepcopy(AdaptationSet) contentType=AdaptationSet1.attrib["contentType"] if not formats[contentType]: continue AdaptationSet1.attrib["id"]=str(k) Period2.append(AdaptationSet1) k=k+1 Representation=AdaptationSet1.find(_ns("Representation")) for f in ["id","bandwidth","width","height"]: if f in formats[contentType][j].attrib: Representation.attrib[f]=formats[contentType][j].attrib[f] SegmentTemplate=Representation.find(_ns("SegmentTemplate")) timescale=int(SegmentTemplate.attrib["timescale"]) SegmentTemplate.attrib["duration"]=str(int(ad_segment*timescale)) for f in ["initialization","media"]: SegmentTemplate.attrib[f]=ad_spec["prefix"]+"/"+str(i)+"/"+formats["video"][j].attrib["height"]+"p-"+SegmentTemplate.attrib[f] manifest.set('mediaPresentationDuration', _to_iso8601(mediaPresentationDuration)) minfo["manifest"]=ET.tostring(manifest,encoding='utf-8',method='xml') minfo["content-type"]="application/xml" return minfo
47.558376
177
0.607642
de33d4372dd0b40cbb5871debc1a44f93fe6c1eb
5,607
py
Python
layout_rpt.py
dstreev/hive_llap_calculator
5630d55a8bda182996388dc976ee97e2b6cb58b2
[ "Apache-2.0" ]
15
2019-06-13T00:02:15.000Z
2021-02-08T03:13:23.000Z
layout_rpt.py
dstreev/hive_llap_calculator
5630d55a8bda182996388dc976ee97e2b6cb58b2
[ "Apache-2.0" ]
21
2019-08-14T18:46:40.000Z
2021-02-18T20:56:46.000Z
layout_rpt.py
dstreev/hive_llap_calculator
5630d55a8bda182996388dc976ee97e2b6cb58b2
[ "Apache-2.0" ]
4
2019-06-21T15:26:36.000Z
2020-07-10T13:22:14.000Z
#!/usr/bin/env python # use this to parse the Ambari Layout Report that's generated with: # http://${AMBARI_HOST_PORT}/api/v1/clusters/${CLUSTER_NAME}/hosts?fields=Hosts/host_name,host_components,Hosts/ip,Hosts/total_mem,Hosts/os_arch,Hosts/os_type,Hosts/rack_info,Hosts/cpu_count,Hosts/disk_info,metrics/disk,Hosts/ph_cpu_count import optparse import logging import sys import json from common import pprinttable logger = logging.getLogger('LLAPConfig') def get_hostname( item ): host_info = item["Hosts"] return host_info["host_name"] def is_component( item, componentName ): components = item["host_components"] for component in components: for ckey, cvalue in component.items(): if ckey == "HostRoles": for hkey, hvalue in cvalue.items(): if hkey == "component_name": if hvalue == componentName: return True return False def get_info(layoutFile): layout = json.loads(open(layoutFile).read()) items = layout['items'] hosttable, compute_count, other_count = gen_hosttable( items ) return hosttable, compute_count, other_count def report(layoutFile): layout = json.loads(open(layoutFile).read()) items = layout['items'] hosttable, compute_count, other_count = gen_hosttable( items ) rpt_hosttable(hosttable) rpt_count_type('Compute', compute_count) rpt_count_type('Other', other_count) rpt_totals(hosttable) def gen_hosttable( items ): records = [] compute_count = {} other_count = {} for item in items: record = [] host = item["Hosts"] record.append(host["host_name"]) record.append(host["cpu_count"]) record.append(host["os_type"]) record.append(host["total_mem"] / (1024 * 1024)) record.append(host["rack_info"]) record.append(is_component(item, "DATANODE")) record.append(is_component(item, "NODEMANAGER")) records.append(record) compute = is_component(item, "NODEMANAGER") key = str(compute) + str(record[3]) + str(record[1]) memory = record[3] cores = record[1] if compute and key not in compute_count: compute_count[key] = {'count': 1, 'memory': memory, 'cores': cores, } elif compute: compute_count[key]['count'] += 1 elif not compute and key not in other_count: other_count[key] = {'count': 1, 'memory': memory, 'cores': cores, } elif not compute: other_count[key]['count'] += 1 # print key + str(memory) + str(cores) return records, compute_count, other_count def rpt_hosttable ( hosttable ): # master = datanode & compute fields = [[0, 'Host'], [1, 'CPU Count'], [2, 'OS'], [3, 'Memory'], [4, 'Rack'], [5, 'Data Node'], [6, 'Compute Node']] pprinttable(hosttable, fields) def rpt_count_type ( type, count_type ): # master = datanode & compute print type fields = [[0, 'Count'], [1, 'Memory'], [2, 'Cores']] count_type_rows = [] for key in count_type: count_type_record = [count_type[key]['count'], count_type[key]['memory'], count_type[key]['cores']] count_type_rows.append(count_type_record) pprinttable(count_type_rows, fields) def rpt_totals ( hosttable ): totalFields = [[0,"Type"],[1,"Count"],[2, "OS"],[3,"CPU-Min"], [4,"CPU-Max"], [5,"Mem-Min"],[6,"Mem-Max"]] totalType = [] datanodes = ["Data Nodes", 0, [], 10000, 0, 100000, 0] for record in hosttable: if record[5]: datanodes[1] += 1 if (record[2] not in datanodes[2]): datanodes[2].append(record[2]) # CPU Min if record[1] < datanodes[3]: datanodes[3] = record[1] # CPU Max if record[1] > datanodes[4]: datanodes[4] = record[1] # Mem Min if record[3] < datanodes[5]: datanodes[5] = record[3] # Mem Max if record[3] > datanodes[6]: datanodes[6] = record[3] totalType.append(datanodes) computeNodes = ["Compute Nodes", 0, [], 10000, 0, 100000, 0] for record in hosttable: if record[6]: computeNodes[1] += 1 if (record[2] not in computeNodes[2]): computeNodes[2].append(record[2]) # CPU Min if record[1] < computeNodes[3]: computeNodes[3] = record[1] # CPU Max if record[1] > computeNodes[4]: computeNodes[4] = record[1] # Mem Min if record[3] < computeNodes[5]: computeNodes[5] = record[3] # Mem Max if record[3] > computeNodes[6]: computeNodes[6] = record[3] totalType.append(computeNodes) pprinttable(totalType, totalFields) def main(): # global ambari_integration global cluster # global version_note # global ambari_accessor_api parser = optparse.OptionParser(usage="usage: %prog [options]") parser.add_option("-l", "--ambari-layout", dest="ambari_layout", help=".") (options, args) = parser.parse_args() logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') stdout_handler = logging.StreamHandler(sys.stdout) stdout_handler.setLevel(logging.INFO) stdout_handler.setFormatter(formatter) logger.addHandler(stdout_handler) if options.ambari_layout: report(options.ambari_layout) main()
32.224138
238
0.600856
c376cc4fedcf016ce4dcc8b91ce81970799a6e01
579
py
Python
disdata/migrations/0005_auto_20200708_2003.py
biswajitpatra/KB198_TechOverflow
cb1dc1c080db792c2a9d7723c67ca7ca0e8baae9
[ "MIT" ]
2
2020-09-01T18:17:30.000Z
2020-09-03T09:04:53.000Z
disdata/migrations/0005_auto_20200708_2003.py
biswajitpatra/KB198_TechOverflow
cb1dc1c080db792c2a9d7723c67ca7ca0e8baae9
[ "MIT" ]
3
2021-04-04T15:41:27.000Z
2021-06-10T18:24:08.000Z
disdata/migrations/0005_auto_20200708_2003.py
biswajitpatra/KB198_TechOverflow
cb1dc1c080db792c2a9d7723c67ca7ca0e8baae9
[ "MIT" ]
2
2021-04-04T15:04:05.000Z
2021-11-15T02:58:47.000Z
# Generated by Django 3.0.7 on 2020-07-08 20:03 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('disdata', '0004_auto_20200708_1957'), ] operations = [ migrations.AlterField( model_name='report', name='source', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
26.318182
110
0.677029
36b216d60d84aedcabe48545c354b1a5d9701192
4,382
py
Python
echobot/plugins/admin/title.py
jks15satoshi/echobot
b8f980b330123068f2e9edaa7fd143e70e0ac0fe
[ "MIT" ]
9
2021-01-21T18:08:11.000Z
2021-04-29T13:40:24.000Z
echobot/plugins/admin/title.py
jks15satoshi/echobot
b8f980b330123068f2e9edaa7fd143e70e0ac0fe
[ "MIT" ]
16
2021-01-22T11:41:11.000Z
2021-08-23T09:40:56.000Z
echobot/plugins/admin/title.py
jks15satoshi/echobot
b8f980b330123068f2e9edaa7fd143e70e0ac0fe
[ "MIT" ]
1
2021-02-22T17:05:06.000Z
2021-02-22T17:05:06.000Z
"""群头衔申请""" from typing import Optional import jieba.posseg as posseg from echobot.permission import is_owner as owner from echobot.utils import confirm_intent from echobot.utils.segment_parser import AtSegmentParser from nonebot import require from nonebot.adapters.cqhttp import GROUP, Bot, Event, exception from nonebot.log import logger from nonebot.typing import T_State from .glob import admin, str_parser title = admin.on_keyword({'头衔'}, permission=GROUP) cd = require('nonebot_plugin_cooldown').cooldown @title.handle() async def first_receive(bot: Bot, event: Event, state: T_State) -> None: if not await should_continue(bot, event): await title.finish() else: segment = AtSegmentParser(str(event.message)) # 解析 at 消息段 if (user_id := segment.get_data('qq')) and user_id.isdigit(): state['at_userid'] = int(user_id) # 解析指令 message = segment.filter_segment(any_segments=True).split('头衔') words = posseg.cut(message[0]) for word, flag in words: if flag == 'v': action = word if action in ('申请', '设置', '设定', '应用', '修改', '更改', '变更'): state['action'] = 'apply' if (contents := message[1].strip()): state['contents'] = contents elif action in ('移除', '删除', '撤销', '取消'): state['action'] = 'remove' state['contents'] = '' else: await title.reject(str_parser.parse('admin.title.action_rejected')) async def contents_parse(bot: Bot, event: Event, state: T_State) -> None: state[state['_current_key']] = str(event.raw_message) @title.got('contents', str_parser.parse('admin.title.contents_prompt'), args_parser=contents_parse) async def handle(bot: Bot, event: Event, state: T_State) -> None: segment = AtSegmentParser(state.get('contents').strip()) action = state.get('action') contents = segment.filter_segment(any_segments=True) userid = (int(segment.get_data('qq')) if segment.get_data('qq') else state.get('at_userid')) # 检查用户权限验证 at 成员有效性 if (userid and userid != event.user_id and event.sender.role != 'admin'): await title.reject(str_parser.parse('admin.title.permission_rejected')) # 申请群头衔 elif action == 'apply': if not contents: await title.reject(str_parser.parse( 'admin.title.apply_invalid_rejected')) elif confirm_intent(contents) == 'decline': await title.finish(str_parser.parse('admin.title.apply_cancel')) elif (length := len(bytes(contents, encoding='utf-8'))) > 18: await title.reject(str_parser.parse( 'admin.title.apply_length_rejected', length=length)) else: await set_title(bot, event, contents, user=userid) await title.finish(str_parser.parse('admin.title.apply_success')) # 移除群头衔 elif action == 'remove': await set_title(bot, event, '', user=userid) await title.finish(str_parser.parse('admin.title.remove_success')) async def set_title(bot: Bot, event: Event, contents: str, /, user: Optional[int] = None) -> None: group_id = event.group_id user_id = user if user else event.user_id try: await bot.set_group_special_title(group_id=group_id, user_id=user_id, special_title=contents) if contents: cd.set_event('admin.title', 86400, group=group_id, user=user_id) except (exception.NetworkError, exception.ActionFailed) as err: logger.error(err) await bot.send(event, str_parser.parse('admin.title.on_err')) async def should_continue(bot: Bot, event: Event) -> bool: info = cd.get_event('admin.title', group=event.group_id, user=event.user_id) is_owner = await owner(bot, event) is_cooled_down = not info.get('status') if is_owner and is_cooled_down: return True elif is_owner: if event.sender.role == 'admin': return True else: msg = str_parser.parse('admin.title.on_cooldown', time=cd.time_format(info.get('remaining'), preset='zh')) await bot.send(event, msg) return False
36.214876
79
0.619808
6b5f57500e4329d5a6f89cf9c89a9d05126cba10
503
py
Python
src/compgrid/__main__.py
Ro-Data/compgrid
c848fb50aa432edc0666154a22bcf2ab128d37d5
[ "0BSD" ]
null
null
null
src/compgrid/__main__.py
Ro-Data/compgrid
c848fb50aa432edc0666154a22bcf2ab128d37d5
[ "0BSD" ]
null
null
null
src/compgrid/__main__.py
Ro-Data/compgrid
c848fb50aa432edc0666154a22bcf2ab128d37d5
[ "0BSD" ]
null
null
null
from . import compgrid, snowflake TARGETS = { "email": compgrid.email, "slack": compgrid.slack, "slackimg": compgrid.slackimg, } if __name__ == "__main__": import argparse import pathlib parser = argparse.ArgumentParser() parser.add_argument("target", choices=TARGETS.keys()) parser.add_argument("config") args = parser.parse_args() connection = snowflake.get_engine() target_function = TARGETS[args.target] target_function(connection, args.config)
21.869565
57
0.693837
a05053b897ae382f14266f7bcb11051c780c8287
1,103
py
Python
src/ggrc/migrations/versions/20160901125710_173b800a28f3_update_event_enum_field.py
acidburn0zzz/ggrc-core
386781d08172102eb51030b65db8212974651628
[ "ECL-2.0", "Apache-2.0" ]
1
2016-11-06T05:21:24.000Z
2016-11-06T05:21:24.000Z
src/ggrc/migrations/versions/20160901125710_173b800a28f3_update_event_enum_field.py
acidburn0zzz/ggrc-core
386781d08172102eb51030b65db8212974651628
[ "ECL-2.0", "Apache-2.0" ]
2
2021-02-02T23:09:40.000Z
2021-02-08T21:00:48.000Z
src/ggrc/migrations/versions/20160901125710_173b800a28f3_update_event_enum_field.py
Acidburn0zzz/ggrc-core
386781d08172102eb51030b65db8212974651628
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright (C) 2016 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """ Update event enum field Create Date: 2016-09-01 12:57:10.984592 """ # disable Invalid constant name pylint warning for mandatory Alembic variables. # pylint: disable=invalid-name import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = '173b800a28f3' down_revision = '31fbfc1bc608' def upgrade(): """Upgrade database schema and/or data, creating a new revision.""" op.alter_column( 'events', 'action', type_=sa.Enum(u'POST', u'PUT', u'DELETE', u'IMPORT', u'BULK', u'GET'), existing_type=sa.Enum(u'POST', u'PUT', u'DELETE', u'IMPORT', u'GET'), nullable=False ) def downgrade(): """Downgrade database schema and/or data back to the previous revision.""" op.alter_column( 'events', 'action', type_=sa.Enum(u'POST', u'PUT', u'DELETE', u'IMPORT', u'GET'), existing_type=sa.Enum(u'POST', u'PUT', u'DELETE', u'IMPORT', u'BULK', u'GET'), nullable=False )
26.902439
79
0.657298
96183c791f09f53640155f00cbb637bf11306a4e
58,417
py
Python
torchaudio/transforms.py
brianjo/audio
1d6b15ea0439d84a0804c0bb645456b985e26696
[ "BSD-2-Clause" ]
null
null
null
torchaudio/transforms.py
brianjo/audio
1d6b15ea0439d84a0804c0bb645456b985e26696
[ "BSD-2-Clause" ]
1
2020-10-14T09:45:32.000Z
2020-10-14T09:46:12.000Z
torchaudio/transforms.py
brianjo/audio
1d6b15ea0439d84a0804c0bb645456b985e26696
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import math import warnings from typing import Callable, Optional import torch from torch import Tensor from torchaudio import functional as F from .functional.functional import ( _get_sinc_resample_kernel, _apply_sinc_resample_kernel, ) __all__ = [ 'Spectrogram', 'GriffinLim', 'AmplitudeToDB', 'MelScale', 'InverseMelScale', 'MelSpectrogram', 'MFCC', 'LFCC', 'MuLawEncoding', 'MuLawDecoding', 'Resample', 'ComplexNorm', 'TimeStretch', 'Fade', 'FrequencyMasking', 'TimeMasking', 'SlidingWindowCmn', 'Vad', 'SpectralCentroid', 'Vol', 'ComputeDeltas', 'PitchShift', ] class Spectrogram(torch.nn.Module): r"""Create a spectrogram from a audio signal. Args: n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins. (Default: ``400``) win_length (int or None, optional): Window size. (Default: ``n_fft``) hop_length (int or None, optional): Length of hop between STFT windows. (Default: ``win_length // 2``) pad (int, optional): Two sided padding of signal. (Default: ``0``) window_fn (Callable[..., Tensor], optional): A function to create a window tensor that is applied/multiplied to each frame/window. (Default: ``torch.hann_window``) power (float or None, optional): Exponent for the magnitude spectrogram, (must be > 0) e.g., 1 for energy, 2 for power, etc. If None, then the complex spectrum is returned instead. (Default: ``2``) normalized (bool, optional): Whether to normalize by magnitude after stft. (Default: ``False``) wkwargs (dict or None, optional): Arguments for window function. (Default: ``None``) center (bool, optional): whether to pad :attr:`waveform` on both sides so that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`. (Default: ``True``) pad_mode (string, optional): controls the padding method used when :attr:`center` is ``True``. (Default: ``"reflect"``) onesided (bool, optional): controls whether to return half of results to avoid redundancy (Default: ``True``) return_complex (bool, optional): Indicates whether the resulting complex-valued Tensor should be represented with native complex dtype, such as `torch.cfloat` and `torch.cdouble`, or real dtype mimicking complex value with an extra dimension for real and imaginary parts. (See also ``torch.view_as_real``.) This argument is only effective when ``power=None``. It is ignored for cases where ``power`` is a number as in those cases, the returned tensor is power spectrogram, which is a real-valued tensor. Example >>> waveform, sample_rate = torchaudio.load('test.wav', normalize=True) >>> transform = torchaudio.transforms.Spectrogram(n_fft=800) >>> spectrogram = transform(waveform) """ __constants__ = ['n_fft', 'win_length', 'hop_length', 'pad', 'power', 'normalized'] def __init__(self, n_fft: int = 400, win_length: Optional[int] = None, hop_length: Optional[int] = None, pad: int = 0, window_fn: Callable[..., Tensor] = torch.hann_window, power: Optional[float] = 2., normalized: bool = False, wkwargs: Optional[dict] = None, center: bool = True, pad_mode: str = "reflect", onesided: bool = True, return_complex: bool = True) -> None: super(Spectrogram, self).__init__() self.n_fft = n_fft # number of FFT bins. the returned STFT result will have n_fft // 2 + 1 # number of frequencies due to onesided=True in torch.stft self.win_length = win_length if win_length is not None else n_fft self.hop_length = hop_length if hop_length is not None else self.win_length // 2 window = window_fn(self.win_length) if wkwargs is None else window_fn(self.win_length, **wkwargs) self.register_buffer('window', window) self.pad = pad self.power = power self.normalized = normalized self.center = center self.pad_mode = pad_mode self.onesided = onesided self.return_complex = return_complex def forward(self, waveform: Tensor) -> Tensor: r""" Args: waveform (Tensor): Tensor of audio of dimension (..., time). Returns: Tensor: Dimension (..., freq, time), where freq is ``n_fft // 2 + 1`` where ``n_fft`` is the number of Fourier bins, and time is the number of window hops (n_frame). """ return F.spectrogram( waveform, self.pad, self.window, self.n_fft, self.hop_length, self.win_length, self.power, self.normalized, self.center, self.pad_mode, self.onesided, self.return_complex, ) class GriffinLim(torch.nn.Module): r"""Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation. Implementation ported from *librosa* [:footcite:`brian_mcfee-proc-scipy-2015`], *A fast Griffin-Lim algorithm* [:footcite:`6701851`] and *Signal estimation from modified short-time Fourier transform* [:footcite:`1172092`]. Args: n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins. (Default: ``400``) n_iter (int, optional): Number of iteration for phase recovery process. (Default: ``32``) win_length (int or None, optional): Window size. (Default: ``n_fft``) hop_length (int or None, optional): Length of hop between STFT windows. (Default: ``win_length // 2``) window_fn (Callable[..., Tensor], optional): A function to create a window tensor that is applied/multiplied to each frame/window. (Default: ``torch.hann_window``) power (float, optional): Exponent for the magnitude spectrogram, (must be > 0) e.g., 1 for energy, 2 for power, etc. (Default: ``2``) wkwargs (dict or None, optional): Arguments for window function. (Default: ``None``) momentum (float, optional): The momentum parameter for fast Griffin-Lim. Setting this to 0 recovers the original Griffin-Lim method. Values near 1 can lead to faster convergence, but above 1 may not converge. (Default: ``0.99``) length (int, optional): Array length of the expected output. (Default: ``None``) rand_init (bool, optional): Initializes phase randomly if True and to zero otherwise. (Default: ``True``) """ __constants__ = ['n_fft', 'n_iter', 'win_length', 'hop_length', 'power', 'length', 'momentum', 'rand_init'] def __init__(self, n_fft: int = 400, n_iter: int = 32, win_length: Optional[int] = None, hop_length: Optional[int] = None, window_fn: Callable[..., Tensor] = torch.hann_window, power: float = 2., wkwargs: Optional[dict] = None, momentum: float = 0.99, length: Optional[int] = None, rand_init: bool = True) -> None: super(GriffinLim, self).__init__() assert momentum < 1, 'momentum={} > 1 can be unstable'.format(momentum) assert momentum >= 0, 'momentum={} < 0'.format(momentum) self.n_fft = n_fft self.n_iter = n_iter self.win_length = win_length if win_length is not None else n_fft self.hop_length = hop_length if hop_length is not None else self.win_length // 2 window = window_fn(self.win_length) if wkwargs is None else window_fn(self.win_length, **wkwargs) self.register_buffer('window', window) self.length = length self.power = power self.momentum = momentum / (1 + momentum) self.rand_init = rand_init def forward(self, specgram: Tensor) -> Tensor: r""" Args: specgram (Tensor): A magnitude-only STFT spectrogram of dimension (..., freq, frames) where freq is ``n_fft // 2 + 1``. Returns: Tensor: waveform of (..., time), where time equals the ``length`` parameter if given. """ return F.griffinlim(specgram, self.window, self.n_fft, self.hop_length, self.win_length, self.power, self.n_iter, self.momentum, self.length, self.rand_init) class AmplitudeToDB(torch.nn.Module): r"""Turn a tensor from the power/amplitude scale to the decibel scale. This output depends on the maximum value in the input tensor, and so may return different values for an audio clip split into snippets vs. a a full clip. Args: stype (str, optional): scale of input tensor ('power' or 'magnitude'). The power being the elementwise square of the magnitude. (Default: ``'power'``) top_db (float, optional): minimum negative cut-off in decibels. A reasonable number is 80. (Default: ``None``) """ __constants__ = ['multiplier', 'amin', 'ref_value', 'db_multiplier'] def __init__(self, stype: str = 'power', top_db: Optional[float] = None) -> None: super(AmplitudeToDB, self).__init__() self.stype = stype if top_db is not None and top_db < 0: raise ValueError('top_db must be positive value') self.top_db = top_db self.multiplier = 10.0 if stype == 'power' else 20.0 self.amin = 1e-10 self.ref_value = 1.0 self.db_multiplier = math.log10(max(self.amin, self.ref_value)) def forward(self, x: Tensor) -> Tensor: r"""Numerically stable implementation from Librosa. https://librosa.org/doc/latest/generated/librosa.amplitude_to_db.html Args: x (Tensor): Input tensor before being converted to decibel scale. Returns: Tensor: Output tensor in decibel scale. """ return F.amplitude_to_DB(x, self.multiplier, self.amin, self.db_multiplier, self.top_db) class MelScale(torch.nn.Module): r"""Turn a normal STFT into a mel frequency STFT, using a conversion matrix. This uses triangular filter banks. User can control which device the filter bank (`fb`) is (e.g. fb.to(spec_f.device)). Args: n_mels (int, optional): Number of mel filterbanks. (Default: ``128``) sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``) f_min (float, optional): Minimum frequency. (Default: ``0.``) f_max (float or None, optional): Maximum frequency. (Default: ``sample_rate // 2``) n_stft (int, optional): Number of bins in STFT. See ``n_fft`` in :class:`Spectrogram`. (Default: ``201``) norm (str or None, optional): If 'slaney', divide the triangular mel weights by the width of the mel band (area normalization). (Default: ``None``) mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``) """ __constants__ = ['n_mels', 'sample_rate', 'f_min', 'f_max'] def __init__(self, n_mels: int = 128, sample_rate: int = 16000, f_min: float = 0., f_max: Optional[float] = None, n_stft: int = 201, norm: Optional[str] = None, mel_scale: str = "htk") -> None: super(MelScale, self).__init__() self.n_mels = n_mels self.sample_rate = sample_rate self.f_max = f_max if f_max is not None else float(sample_rate // 2) self.f_min = f_min self.norm = norm self.mel_scale = mel_scale assert f_min <= self.f_max, 'Require f_min: {} < f_max: {}'.format(f_min, self.f_max) fb = F.melscale_fbanks( n_stft, self.f_min, self.f_max, self.n_mels, self.sample_rate, self.norm, self.mel_scale) self.register_buffer('fb', fb) def forward(self, specgram: Tensor) -> Tensor: r""" Args: specgram (Tensor): A spectrogram STFT of dimension (..., freq, time). Returns: Tensor: Mel frequency spectrogram of size (..., ``n_mels``, time). """ # (..., time, freq) dot (freq, n_mels) -> (..., n_mels, time) mel_specgram = torch.matmul(specgram.transpose(-1, -2), self.fb).transpose(-1, -2) return mel_specgram class InverseMelScale(torch.nn.Module): r"""Solve for a normal STFT from a mel frequency STFT, using a conversion matrix. This uses triangular filter banks. It minimizes the euclidian norm between the input mel-spectrogram and the product between the estimated spectrogram and the filter banks using SGD. Args: n_stft (int): Number of bins in STFT. See ``n_fft`` in :class:`Spectrogram`. n_mels (int, optional): Number of mel filterbanks. (Default: ``128``) sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``) f_min (float, optional): Minimum frequency. (Default: ``0.``) f_max (float or None, optional): Maximum frequency. (Default: ``sample_rate // 2``) max_iter (int, optional): Maximum number of optimization iterations. (Default: ``100000``) tolerance_loss (float, optional): Value of loss to stop optimization at. (Default: ``1e-5``) tolerance_change (float, optional): Difference in losses to stop optimization at. (Default: ``1e-8``) sgdargs (dict or None, optional): Arguments for the SGD optimizer. (Default: ``None``) norm (Optional[str]): If 'slaney', divide the triangular mel weights by the width of the mel band (area normalization). (Default: ``None``) mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``) """ __constants__ = ['n_stft', 'n_mels', 'sample_rate', 'f_min', 'f_max', 'max_iter', 'tolerance_loss', 'tolerance_change', 'sgdargs'] def __init__(self, n_stft: int, n_mels: int = 128, sample_rate: int = 16000, f_min: float = 0., f_max: Optional[float] = None, max_iter: int = 100000, tolerance_loss: float = 1e-5, tolerance_change: float = 1e-8, sgdargs: Optional[dict] = None, norm: Optional[str] = None, mel_scale: str = "htk") -> None: super(InverseMelScale, self).__init__() self.n_mels = n_mels self.sample_rate = sample_rate self.f_max = f_max or float(sample_rate // 2) self.f_min = f_min self.max_iter = max_iter self.tolerance_loss = tolerance_loss self.tolerance_change = tolerance_change self.sgdargs = sgdargs or {'lr': 0.1, 'momentum': 0.9} assert f_min <= self.f_max, 'Require f_min: {} < f_max: {}'.format(f_min, self.f_max) fb = F.melscale_fbanks(n_stft, self.f_min, self.f_max, self.n_mels, self.sample_rate, norm, mel_scale) self.register_buffer('fb', fb) def forward(self, melspec: Tensor) -> Tensor: r""" Args: melspec (Tensor): A Mel frequency spectrogram of dimension (..., ``n_mels``, time) Returns: Tensor: Linear scale spectrogram of size (..., freq, time) """ # pack batch shape = melspec.size() melspec = melspec.view(-1, shape[-2], shape[-1]) n_mels, time = shape[-2], shape[-1] freq, _ = self.fb.size() # (freq, n_mels) melspec = melspec.transpose(-1, -2) assert self.n_mels == n_mels specgram = torch.rand(melspec.size()[0], time, freq, requires_grad=True, dtype=melspec.dtype, device=melspec.device) optim = torch.optim.SGD([specgram], **self.sgdargs) loss = float('inf') for _ in range(self.max_iter): optim.zero_grad() diff = melspec - specgram.matmul(self.fb) new_loss = diff.pow(2).sum(axis=-1).mean() # take sum over mel-frequency then average over other dimensions # so that loss threshold is applied par unit timeframe new_loss.backward() optim.step() specgram.data = specgram.data.clamp(min=0) new_loss = new_loss.item() if new_loss < self.tolerance_loss or abs(loss - new_loss) < self.tolerance_change: break loss = new_loss specgram.requires_grad_(False) specgram = specgram.clamp(min=0).transpose(-1, -2) # unpack batch specgram = specgram.view(shape[:-2] + (freq, time)) return specgram class MelSpectrogram(torch.nn.Module): r"""Create MelSpectrogram for a raw audio signal. This is a composition of Spectrogram and MelScale. Sources * https://gist.github.com/kastnerkyle/179d6e9a88202ab0a2fe * https://timsainb.github.io/spectrograms-mfccs-and-inversion-in-python.html * http://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html Args: sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``) n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins. (Default: ``400``) win_length (int or None, optional): Window size. (Default: ``n_fft``) hop_length (int or None, optional): Length of hop between STFT windows. (Default: ``win_length // 2``) f_min (float, optional): Minimum frequency. (Default: ``0.``) f_max (float or None, optional): Maximum frequency. (Default: ``None``) pad (int, optional): Two sided padding of signal. (Default: ``0``) n_mels (int, optional): Number of mel filterbanks. (Default: ``128``) window_fn (Callable[..., Tensor], optional): A function to create a window tensor that is applied/multiplied to each frame/window. (Default: ``torch.hann_window``) power (float, optional): Exponent for the magnitude spectrogram, (must be > 0) e.g., 1 for energy, 2 for power, etc. (Default: ``2``) normalized (bool, optional): Whether to normalize by magnitude after stft. (Default: ``False``) wkwargs (Dict[..., ...] or None, optional): Arguments for window function. (Default: ``None``) center (bool, optional): whether to pad :attr:`waveform` on both sides so that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`. (Default: ``True``) pad_mode (string, optional): controls the padding method used when :attr:`center` is ``True``. (Default: ``"reflect"``) onesided (bool, optional): controls whether to return half of results to avoid redundancy. (Default: ``True``) norm (Optional[str]): If 'slaney', divide the triangular mel weights by the width of the mel band (area normalization). (Default: ``None``) mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``) Example >>> waveform, sample_rate = torchaudio.load('test.wav', normalize=True) >>> transform = transforms.MelSpectrogram(sample_rate) >>> mel_specgram = transform(waveform) # (channel, n_mels, time) """ __constants__ = ['sample_rate', 'n_fft', 'win_length', 'hop_length', 'pad', 'n_mels', 'f_min'] def __init__(self, sample_rate: int = 16000, n_fft: int = 400, win_length: Optional[int] = None, hop_length: Optional[int] = None, f_min: float = 0., f_max: Optional[float] = None, pad: int = 0, n_mels: int = 128, window_fn: Callable[..., Tensor] = torch.hann_window, power: float = 2., normalized: bool = False, wkwargs: Optional[dict] = None, center: bool = True, pad_mode: str = "reflect", onesided: bool = True, norm: Optional[str] = None, mel_scale: str = "htk") -> None: super(MelSpectrogram, self).__init__() self.sample_rate = sample_rate self.n_fft = n_fft self.win_length = win_length if win_length is not None else n_fft self.hop_length = hop_length if hop_length is not None else self.win_length // 2 self.pad = pad self.power = power self.normalized = normalized self.n_mels = n_mels # number of mel frequency bins self.f_max = f_max self.f_min = f_min self.spectrogram = Spectrogram(n_fft=self.n_fft, win_length=self.win_length, hop_length=self.hop_length, pad=self.pad, window_fn=window_fn, power=self.power, normalized=self.normalized, wkwargs=wkwargs, center=center, pad_mode=pad_mode, onesided=onesided) self.mel_scale = MelScale( self.n_mels, self.sample_rate, self.f_min, self.f_max, self.n_fft // 2 + 1, norm, mel_scale ) def forward(self, waveform: Tensor) -> Tensor: r""" Args: waveform (Tensor): Tensor of audio of dimension (..., time). Returns: Tensor: Mel frequency spectrogram of size (..., ``n_mels``, time). """ specgram = self.spectrogram(waveform) mel_specgram = self.mel_scale(specgram) return mel_specgram class MFCC(torch.nn.Module): r"""Create the Mel-frequency cepstrum coefficients from an audio signal. By default, this calculates the MFCC on the DB-scaled Mel spectrogram. This is not the textbook implementation, but is implemented here to give consistency with librosa. This output depends on the maximum value in the input spectrogram, and so may return different values for an audio clip split into snippets vs. a a full clip. Args: sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``) n_mfcc (int, optional): Number of mfc coefficients to retain. (Default: ``40``) dct_type (int, optional): type of DCT (discrete cosine transform) to use. (Default: ``2``) norm (str, optional): norm to use. (Default: ``'ortho'``) log_mels (bool, optional): whether to use log-mel spectrograms instead of db-scaled. (Default: ``False``) melkwargs (dict or None, optional): arguments for MelSpectrogram. (Default: ``None``) """ __constants__ = ['sample_rate', 'n_mfcc', 'dct_type', 'top_db', 'log_mels'] def __init__(self, sample_rate: int = 16000, n_mfcc: int = 40, dct_type: int = 2, norm: str = 'ortho', log_mels: bool = False, melkwargs: Optional[dict] = None) -> None: super(MFCC, self).__init__() supported_dct_types = [2] if dct_type not in supported_dct_types: raise ValueError('DCT type not supported: {}'.format(dct_type)) self.sample_rate = sample_rate self.n_mfcc = n_mfcc self.dct_type = dct_type self.norm = norm self.top_db = 80.0 self.amplitude_to_DB = AmplitudeToDB('power', self.top_db) melkwargs = melkwargs or {} self.MelSpectrogram = MelSpectrogram(sample_rate=self.sample_rate, **melkwargs) if self.n_mfcc > self.MelSpectrogram.n_mels: raise ValueError('Cannot select more MFCC coefficients than # mel bins') dct_mat = F.create_dct(self.n_mfcc, self.MelSpectrogram.n_mels, self.norm) self.register_buffer('dct_mat', dct_mat) self.log_mels = log_mels def forward(self, waveform: Tensor) -> Tensor: r""" Args: waveform (Tensor): Tensor of audio of dimension (..., time). Returns: Tensor: specgram_mel_db of size (..., ``n_mfcc``, time). """ mel_specgram = self.MelSpectrogram(waveform) if self.log_mels: log_offset = 1e-6 mel_specgram = torch.log(mel_specgram + log_offset) else: mel_specgram = self.amplitude_to_DB(mel_specgram) # (..., time, n_mels) dot (n_mels, n_mfcc) -> (..., n_nfcc, time) mfcc = torch.matmul(mel_specgram.transpose(-1, -2), self.dct_mat).transpose(-1, -2) return mfcc class LFCC(torch.nn.Module): r"""Create the linear-frequency cepstrum coefficients from an audio signal. By default, this calculates the LFCC on the DB-scaled linear filtered spectrogram. This is not the textbook implementation, but is implemented here to give consistency with librosa. This output depends on the maximum value in the input spectrogram, and so may return different values for an audio clip split into snippets vs. a a full clip. Args: sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``) n_filter (int, optional): Number of linear filters to apply. (Default: ``128``) n_lfcc (int, optional): Number of lfc coefficients to retain. (Default: ``40``) f_min (float, optional): Minimum frequency. (Default: ``0.``) f_max (float or None, optional): Maximum frequency. (Default: ``None``) dct_type (int, optional): type of DCT (discrete cosine transform) to use. (Default: ``2``) norm (str, optional): norm to use. (Default: ``'ortho'``) log_lf (bool, optional): whether to use log-lf spectrograms instead of db-scaled. (Default: ``False``) speckwargs (dict or None, optional): arguments for Spectrogram. (Default: ``None``) """ __constants__ = ['sample_rate', 'n_filter', 'n_lfcc', 'dct_type', 'top_db', 'log_lf'] def __init__(self, sample_rate: int = 16000, n_filter: int = 128, f_min: float = 0., f_max: Optional[float] = None, n_lfcc: int = 40, dct_type: int = 2, norm: str = 'ortho', log_lf: bool = False, speckwargs: Optional[dict] = None) -> None: super(LFCC, self).__init__() supported_dct_types = [2] if dct_type not in supported_dct_types: raise ValueError('DCT type not supported: {}'.format(dct_type)) self.sample_rate = sample_rate self.f_min = f_min self.f_max = f_max if f_max is not None else float(sample_rate // 2) self.n_filter = n_filter self.n_lfcc = n_lfcc self.dct_type = dct_type self.norm = norm self.top_db = 80.0 self.amplitude_to_DB = AmplitudeToDB('power', self.top_db) speckwargs = speckwargs or {} self.Spectrogram = Spectrogram(**speckwargs) if self.n_lfcc > self.Spectrogram.n_fft: raise ValueError('Cannot select more LFCC coefficients than # fft bins') filter_mat = F.linear_fbanks( n_freqs=self.Spectrogram.n_fft // 2 + 1, f_min=self.f_min, f_max=self.f_max, n_filter=self.n_filter, sample_rate=self.sample_rate, ) self.register_buffer("filter_mat", filter_mat) dct_mat = F.create_dct(self.n_lfcc, self.n_filter, self.norm) self.register_buffer('dct_mat', dct_mat) self.log_lf = log_lf def forward(self, waveform: Tensor) -> Tensor: r""" Args: waveform (Tensor): Tensor of audio of dimension (..., time). Returns: Tensor: Linear Frequency Cepstral Coefficients of size (..., ``n_lfcc``, time). """ specgram = self.Spectrogram(waveform) # (..., time, freq) dot (freq, n_filter) -> (..., n_filter, time) specgram = torch.matmul(specgram.transpose(-1, -2), self.filter_mat).transpose(-1, -2) if self.log_lf: log_offset = 1e-6 specgram = torch.log(specgram + log_offset) else: specgram = self.amplitude_to_DB(specgram) # (..., time, n_filter) dot (n_filter, n_lfcc) -> (..., n_lfcc, time) lfcc = torch.matmul(specgram.transpose(-1, -2), self.dct_mat).transpose(-1, -2) return lfcc class MuLawEncoding(torch.nn.Module): r"""Encode signal based on mu-law companding. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This algorithm assumes the signal has been scaled to between -1 and 1 and returns a signal encoded with values from 0 to quantization_channels - 1 Args: quantization_channels (int, optional): Number of channels. (Default: ``256``) Example >>> waveform, sample_rate = torchaudio.load('test.wav', normalize=True) >>> transform = torchaudio.transforms.MuLawEncoding(quantization_channels=512) >>> mulawtrans = transform(waveform) """ __constants__ = ['quantization_channels'] def __init__(self, quantization_channels: int = 256) -> None: super(MuLawEncoding, self).__init__() self.quantization_channels = quantization_channels def forward(self, x: Tensor) -> Tensor: r""" Args: x (Tensor): A signal to be encoded. Returns: x_mu (Tensor): An encoded signal. """ return F.mu_law_encoding(x, self.quantization_channels) class MuLawDecoding(torch.nn.Module): r"""Decode mu-law encoded signal. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This expects an input with values between 0 and quantization_channels - 1 and returns a signal scaled between -1 and 1. Args: quantization_channels (int, optional): Number of channels. (Default: ``256``) """ __constants__ = ['quantization_channels'] def __init__(self, quantization_channels: int = 256) -> None: super(MuLawDecoding, self).__init__() self.quantization_channels = quantization_channels def forward(self, x_mu: Tensor) -> Tensor: r""" Args: x_mu (Tensor): A mu-law encoded signal which needs to be decoded. Returns: Tensor: The signal decoded. """ return F.mu_law_decoding(x_mu, self.quantization_channels) class Resample(torch.nn.Module): r"""Resample a signal from one frequency to another. A resampling method can be given. Note: If resampling on waveforms of higher precision than float32, there may be a small loss of precision because the kernel is cached once as float32. If high precision resampling is important for your application, the functional form will retain higher precision, but run slower because it does not cache the kernel. Alternatively, you could rewrite a transform that caches a higher precision kernel. Args: orig_freq (float, optional): The original frequency of the signal. (Default: ``16000``) new_freq (float, optional): The desired frequency. (Default: ``16000``) resampling_method (str, optional): The resampling method to use. Options: [``sinc_interpolation``, ``kaiser_window``] (Default: ``'sinc_interpolation'``) lowpass_filter_width (int, optional): Controls the sharpness of the filter, more == sharper but less efficient. (Default: ``6``) rolloff (float, optional): The roll-off frequency of the filter, as a fraction of the Nyquist. Lower values reduce anti-aliasing, but also reduce some of the highest frequencies. (Default: ``0.99``) beta (float or None): The shape parameter used for kaiser window. dtype (torch.device, optional): Determnines the precision that resampling kernel is pre-computed and cached. If not provided, kernel is computed with ``torch.float64`` then cached as ``torch.float32``. If you need higher precision, provide ``torch.float64``, and the pre-computed kernel is computed and cached as ``torch.float64``. If you use resample with lower precision, then instead of providing this providing this argument, please use ``Resample.to(dtype)``, so that the kernel generation is still carried out on ``torch.float64``. Example >>> waveform, sample_rate = torchaudio.load('test.wav', normalize=True) >>> transform = transforms.Resample(sample_rate, sample_rate/10) >>> waveform = transform(waveform) """ def __init__( self, orig_freq: float = 16000, new_freq: float = 16000, resampling_method: str = 'sinc_interpolation', lowpass_filter_width: int = 6, rolloff: float = 0.99, beta: Optional[float] = None, *, dtype: Optional[torch.dtype] = None, ) -> None: super().__init__() self.orig_freq = orig_freq self.new_freq = new_freq self.gcd = math.gcd(int(self.orig_freq), int(self.new_freq)) self.resampling_method = resampling_method self.lowpass_filter_width = lowpass_filter_width self.rolloff = rolloff self.beta = beta if self.orig_freq != self.new_freq: kernel, self.width = _get_sinc_resample_kernel( self.orig_freq, self.new_freq, self.gcd, self.lowpass_filter_width, self.rolloff, self.resampling_method, beta, dtype=dtype) self.register_buffer('kernel', kernel) def forward(self, waveform: Tensor) -> Tensor: r""" Args: waveform (Tensor): Tensor of audio of dimension (..., time). Returns: Tensor: Output signal of dimension (..., time). """ if self.orig_freq == self.new_freq: return waveform return _apply_sinc_resample_kernel( waveform, self.orig_freq, self.new_freq, self.gcd, self.kernel, self.width) class ComplexNorm(torch.nn.Module): r"""Compute the norm of complex tensor input. Args: power (float, optional): Power of the norm. (Default: to ``1.0``) Example >>> complex_tensor = ... # Tensor shape of (…, complex=2) >>> transform = transforms.ComplexNorm(power=2) >>> complex_norm = transform(complex_tensor) """ __constants__ = ['power'] def __init__(self, power: float = 1.0) -> None: warnings.warn( 'torchaudio.transforms.ComplexNorm has been deprecated ' 'and will be removed from future release.' 'Please convert the input Tensor to complex type with `torch.view_as_complex` then ' 'use `torch.abs` and `torch.angle`. ' 'Please refer to https://github.com/pytorch/audio/issues/1337 ' "for more details about torchaudio's plan to migrate to native complex type." ) super(ComplexNorm, self).__init__() self.power = power def forward(self, complex_tensor: Tensor) -> Tensor: r""" Args: complex_tensor (Tensor): Tensor shape of `(..., complex=2)`. Returns: Tensor: norm of the input tensor, shape of `(..., )`. """ return F.complex_norm(complex_tensor, self.power) class ComputeDeltas(torch.nn.Module): r"""Compute delta coefficients of a tensor, usually a spectrogram. See `torchaudio.functional.compute_deltas` for more details. Args: win_length (int): The window length used for computing delta. (Default: ``5``) mode (str): Mode parameter passed to padding. (Default: ``'replicate'``) """ __constants__ = ['win_length'] def __init__(self, win_length: int = 5, mode: str = "replicate") -> None: super(ComputeDeltas, self).__init__() self.win_length = win_length self.mode = mode def forward(self, specgram: Tensor) -> Tensor: r""" Args: specgram (Tensor): Tensor of audio of dimension (..., freq, time). Returns: Tensor: Tensor of deltas of dimension (..., freq, time). """ return F.compute_deltas(specgram, win_length=self.win_length, mode=self.mode) class TimeStretch(torch.nn.Module): r"""Stretch stft in time without modifying pitch for a given rate. Args: hop_length (int or None, optional): Length of hop between STFT windows. (Default: ``win_length // 2``) n_freq (int, optional): number of filter banks from stft. (Default: ``201``) fixed_rate (float or None, optional): rate to speed up or slow down by. If None is provided, rate must be passed to the forward method. (Default: ``None``) """ __constants__ = ['fixed_rate'] def __init__(self, hop_length: Optional[int] = None, n_freq: int = 201, fixed_rate: Optional[float] = None) -> None: super(TimeStretch, self).__init__() self.fixed_rate = fixed_rate n_fft = (n_freq - 1) * 2 hop_length = hop_length if hop_length is not None else n_fft // 2 self.register_buffer('phase_advance', torch.linspace(0, math.pi * hop_length, n_freq)[..., None]) def forward(self, complex_specgrams: Tensor, overriding_rate: Optional[float] = None) -> Tensor: r""" Args: complex_specgrams (Tensor): Either a real tensor of dimension of ``(..., freq, num_frame, complex=2)`` or a tensor of dimension ``(..., freq, num_frame)`` with complex dtype. overriding_rate (float or None, optional): speed up to apply to this batch. If no rate is passed, use ``self.fixed_rate``. (Default: ``None``) Returns: Tensor: Stretched spectrogram. The resulting tensor is of the same dtype as the input spectrogram, but the number of frames is changed to ``ceil(num_frame / rate)``. """ if overriding_rate is None: if self.fixed_rate is None: raise ValueError( "If no fixed_rate is specified, must pass a valid rate to the forward method.") rate = self.fixed_rate else: rate = overriding_rate return F.phase_vocoder(complex_specgrams, rate, self.phase_advance) class Fade(torch.nn.Module): r"""Add a fade in and/or fade out to an waveform. Args: fade_in_len (int, optional): Length of fade-in (time frames). (Default: ``0``) fade_out_len (int, optional): Length of fade-out (time frames). (Default: ``0``) fade_shape (str, optional): Shape of fade. Must be one of: "quarter_sine", "half_sine", "linear", "logarithmic", "exponential". (Default: ``"linear"``) """ def __init__(self, fade_in_len: int = 0, fade_out_len: int = 0, fade_shape: str = "linear") -> None: super(Fade, self).__init__() self.fade_in_len = fade_in_len self.fade_out_len = fade_out_len self.fade_shape = fade_shape def forward(self, waveform: Tensor) -> Tensor: r""" Args: waveform (Tensor): Tensor of audio of dimension (..., time). Returns: Tensor: Tensor of audio of dimension (..., time). """ waveform_length = waveform.size()[-1] device = waveform.device return self._fade_in(waveform_length).to(device) * \ self._fade_out(waveform_length).to(device) * waveform def _fade_in(self, waveform_length: int) -> Tensor: fade = torch.linspace(0, 1, self.fade_in_len) ones = torch.ones(waveform_length - self.fade_in_len) if self.fade_shape == "linear": fade = fade if self.fade_shape == "exponential": fade = torch.pow(2, (fade - 1)) * fade if self.fade_shape == "logarithmic": fade = torch.log10(.1 + fade) + 1 if self.fade_shape == "quarter_sine": fade = torch.sin(fade * math.pi / 2) if self.fade_shape == "half_sine": fade = torch.sin(fade * math.pi - math.pi / 2) / 2 + 0.5 return torch.cat((fade, ones)).clamp_(0, 1) def _fade_out(self, waveform_length: int) -> Tensor: fade = torch.linspace(0, 1, self.fade_out_len) ones = torch.ones(waveform_length - self.fade_out_len) if self.fade_shape == "linear": fade = - fade + 1 if self.fade_shape == "exponential": fade = torch.pow(2, - fade) * (1 - fade) if self.fade_shape == "logarithmic": fade = torch.log10(1.1 - fade) + 1 if self.fade_shape == "quarter_sine": fade = torch.sin(fade * math.pi / 2 + math.pi / 2) if self.fade_shape == "half_sine": fade = torch.sin(fade * math.pi + math.pi / 2) / 2 + 0.5 return torch.cat((ones, fade)).clamp_(0, 1) class _AxisMasking(torch.nn.Module): r"""Apply masking to a spectrogram. Args: mask_param (int): Maximum possible length of the mask. axis (int): What dimension the mask is applied on. iid_masks (bool): Applies iid masks to each of the examples in the batch dimension. This option is applicable only when the input tensor is 4D. """ __constants__ = ['mask_param', 'axis', 'iid_masks'] def __init__(self, mask_param: int, axis: int, iid_masks: bool) -> None: super(_AxisMasking, self).__init__() self.mask_param = mask_param self.axis = axis self.iid_masks = iid_masks def forward(self, specgram: Tensor, mask_value: float = 0.) -> Tensor: r""" Args: specgram (Tensor): Tensor of dimension (..., freq, time). mask_value (float): Value to assign to the masked columns. Returns: Tensor: Masked spectrogram of dimensions (..., freq, time). """ # if iid_masks flag marked and specgram has a batch dimension if self.iid_masks and specgram.dim() == 4: return F.mask_along_axis_iid(specgram, self.mask_param, mask_value, self.axis + 1) else: return F.mask_along_axis(specgram, self.mask_param, mask_value, self.axis) class FrequencyMasking(_AxisMasking): r"""Apply masking to a spectrogram in the frequency domain. Args: freq_mask_param (int): maximum possible length of the mask. Indices uniformly sampled from [0, freq_mask_param). iid_masks (bool, optional): whether to apply different masks to each example/channel in the batch. (Default: ``False``) This option is applicable only when the input tensor is 4D. """ def __init__(self, freq_mask_param: int, iid_masks: bool = False) -> None: super(FrequencyMasking, self).__init__(freq_mask_param, 1, iid_masks) class TimeMasking(_AxisMasking): r"""Apply masking to a spectrogram in the time domain. Args: time_mask_param (int): maximum possible length of the mask. Indices uniformly sampled from [0, time_mask_param). iid_masks (bool, optional): whether to apply different masks to each example/channel in the batch. (Default: ``False``) This option is applicable only when the input tensor is 4D. """ def __init__(self, time_mask_param: int, iid_masks: bool = False) -> None: super(TimeMasking, self).__init__(time_mask_param, 2, iid_masks) class Vol(torch.nn.Module): r"""Add a volume to an waveform. Args: gain (float): Interpreted according to the given gain_type: If ``gain_type`` = ``amplitude``, ``gain`` is a positive amplitude ratio. If ``gain_type`` = ``power``, ``gain`` is a power (voltage squared). If ``gain_type`` = ``db``, ``gain`` is in decibels. gain_type (str, optional): Type of gain. One of: ``amplitude``, ``power``, ``db`` (Default: ``amplitude``) """ def __init__(self, gain: float, gain_type: str = 'amplitude'): super(Vol, self).__init__() self.gain = gain self.gain_type = gain_type if gain_type in ['amplitude', 'power'] and gain < 0: raise ValueError("If gain_type = amplitude or power, gain must be positive.") def forward(self, waveform: Tensor) -> Tensor: r""" Args: waveform (Tensor): Tensor of audio of dimension (..., time). Returns: Tensor: Tensor of audio of dimension (..., time). """ if self.gain_type == "amplitude": waveform = waveform * self.gain if self.gain_type == "db": waveform = F.gain(waveform, self.gain) if self.gain_type == "power": waveform = F.gain(waveform, 10 * math.log10(self.gain)) return torch.clamp(waveform, -1, 1) class SlidingWindowCmn(torch.nn.Module): r""" Apply sliding-window cepstral mean (and optionally variance) normalization per utterance. Args: cmn_window (int, optional): Window in frames for running average CMN computation (int, default = 600) min_cmn_window (int, optional): Minimum CMN window used at start of decoding (adds latency only at start). Only applicable if center == false, ignored if center==true (int, default = 100) center (bool, optional): If true, use a window centered on the current frame (to the extent possible, modulo end effects). If false, window is to the left. (bool, default = false) norm_vars (bool, optional): If true, normalize variance to one. (bool, default = false) """ def __init__(self, cmn_window: int = 600, min_cmn_window: int = 100, center: bool = False, norm_vars: bool = False) -> None: super().__init__() self.cmn_window = cmn_window self.min_cmn_window = min_cmn_window self.center = center self.norm_vars = norm_vars def forward(self, waveform: Tensor) -> Tensor: r""" Args: waveform (Tensor): Tensor of audio of dimension (..., time). Returns: Tensor: Tensor of audio of dimension (..., time). """ cmn_waveform = F.sliding_window_cmn( waveform, self.cmn_window, self.min_cmn_window, self.center, self.norm_vars) return cmn_waveform class Vad(torch.nn.Module): r"""Voice Activity Detector. Similar to SoX implementation. Attempts to trim silence and quiet background sounds from the ends of recordings of speech. The algorithm currently uses a simple cepstral power measurement to detect voice, so may be fooled by other things, especially music. The effect can trim only from the front of the audio, so in order to trim from the back, the reverse effect must also be used. Args: sample_rate (int): Sample rate of audio signal. trigger_level (float, optional): The measurement level used to trigger activity detection. This may need to be cahnged depending on the noise level, signal level, and other characteristics of the input audio. (Default: 7.0) trigger_time (float, optional): The time constant (in seconds) used to help ignore short bursts of sound. (Default: 0.25) search_time (float, optional): The amount of audio (in seconds) to search for quieter/shorter bursts of audio to include prior to the detected trigger point. (Default: 1.0) allowed_gap (float, optional): The allowed gap (in seconds) between quiteter/shorter bursts of audio to include prior to the detected trigger point. (Default: 0.25) pre_trigger_time (float, optional): The amount of audio (in seconds) to preserve before the trigger point and any found quieter/shorter bursts. (Default: 0.0) boot_time (float, optional) The algorithm (internally) uses adaptive noise estimation/reduction in order to detect the start of the wanted audio. This option sets the time for the initial noise estimate. (Default: 0.35) noise_up_time (float, optional) Time constant used by the adaptive noise estimator for when the noise level is increasing. (Default: 0.1) noise_down_time (float, optional) Time constant used by the adaptive noise estimator for when the noise level is decreasing. (Default: 0.01) noise_reduction_amount (float, optional) Amount of noise reduction to use in the detection algorithm (e.g. 0, 0.5, ...). (Default: 1.35) measure_freq (float, optional) Frequency of the algorithm’s processing/measurements. (Default: 20.0) measure_duration: (float, optional) Measurement duration. (Default: Twice the measurement period; i.e. with overlap.) measure_smooth_time (float, optional) Time constant used to smooth spectral measurements. (Default: 0.4) hp_filter_freq (float, optional) "Brick-wall" frequency of high-pass filter applied at the input to the detector algorithm. (Default: 50.0) lp_filter_freq (float, optional) "Brick-wall" frequency of low-pass filter applied at the input to the detector algorithm. (Default: 6000.0) hp_lifter_freq (float, optional) "Brick-wall" frequency of high-pass lifter used in the detector algorithm. (Default: 150.0) lp_lifter_freq (float, optional) "Brick-wall" frequency of low-pass lifter used in the detector algorithm. (Default: 2000.0) Reference: - http://sox.sourceforge.net/sox.html """ def __init__(self, sample_rate: int, trigger_level: float = 7.0, trigger_time: float = 0.25, search_time: float = 1.0, allowed_gap: float = 0.25, pre_trigger_time: float = 0.0, boot_time: float = .35, noise_up_time: float = .1, noise_down_time: float = .01, noise_reduction_amount: float = 1.35, measure_freq: float = 20.0, measure_duration: Optional[float] = None, measure_smooth_time: float = .4, hp_filter_freq: float = 50., lp_filter_freq: float = 6000., hp_lifter_freq: float = 150., lp_lifter_freq: float = 2000.) -> None: super().__init__() self.sample_rate = sample_rate self.trigger_level = trigger_level self.trigger_time = trigger_time self.search_time = search_time self.allowed_gap = allowed_gap self.pre_trigger_time = pre_trigger_time self.boot_time = boot_time self.noise_up_time = noise_up_time self.noise_down_time = noise_down_time self.noise_reduction_amount = noise_reduction_amount self.measure_freq = measure_freq self.measure_duration = measure_duration self.measure_smooth_time = measure_smooth_time self.hp_filter_freq = hp_filter_freq self.lp_filter_freq = lp_filter_freq self.hp_lifter_freq = hp_lifter_freq self.lp_lifter_freq = lp_lifter_freq def forward(self, waveform: Tensor) -> Tensor: r""" Args: waveform (Tensor): Tensor of audio of dimension `(channels, time)` or `(time)` Tensor of shape `(channels, time)` is treated as a multi-channel recording of the same event and the resulting output will be trimmed to the earliest voice activity in any channel. """ return F.vad( waveform=waveform, sample_rate=self.sample_rate, trigger_level=self.trigger_level, trigger_time=self.trigger_time, search_time=self.search_time, allowed_gap=self.allowed_gap, pre_trigger_time=self.pre_trigger_time, boot_time=self.boot_time, noise_up_time=self.noise_up_time, noise_down_time=self.noise_down_time, noise_reduction_amount=self.noise_reduction_amount, measure_freq=self.measure_freq, measure_duration=self.measure_duration, measure_smooth_time=self.measure_smooth_time, hp_filter_freq=self.hp_filter_freq, lp_filter_freq=self.lp_filter_freq, hp_lifter_freq=self.hp_lifter_freq, lp_lifter_freq=self.lp_lifter_freq, ) class SpectralCentroid(torch.nn.Module): r"""Compute the spectral centroid for each channel along the time axis. The spectral centroid is defined as the weighted average of the frequency values, weighted by their magnitude. Args: sample_rate (int): Sample rate of audio signal. n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins. (Default: ``400``) win_length (int or None, optional): Window size. (Default: ``n_fft``) hop_length (int or None, optional): Length of hop between STFT windows. (Default: ``win_length // 2``) pad (int, optional): Two sided padding of signal. (Default: ``0``) window_fn (Callable[..., Tensor], optional): A function to create a window tensor that is applied/multiplied to each frame/window. (Default: ``torch.hann_window``) wkwargs (dict or None, optional): Arguments for window function. (Default: ``None``) Example >>> waveform, sample_rate = torchaudio.load('test.wav', normalize=True) >>> transform = transforms.SpectralCentroid(sample_rate) >>> spectral_centroid = transform(waveform) # (channel, time) """ __constants__ = ['sample_rate', 'n_fft', 'win_length', 'hop_length', 'pad'] def __init__(self, sample_rate: int, n_fft: int = 400, win_length: Optional[int] = None, hop_length: Optional[int] = None, pad: int = 0, window_fn: Callable[..., Tensor] = torch.hann_window, wkwargs: Optional[dict] = None) -> None: super(SpectralCentroid, self).__init__() self.sample_rate = sample_rate self.n_fft = n_fft self.win_length = win_length if win_length is not None else n_fft self.hop_length = hop_length if hop_length is not None else self.win_length // 2 window = window_fn(self.win_length) if wkwargs is None else window_fn(self.win_length, **wkwargs) self.register_buffer('window', window) self.pad = pad def forward(self, waveform: Tensor) -> Tensor: r""" Args: waveform (Tensor): Tensor of audio of dimension (..., time). Returns: Tensor: Spectral Centroid of size (..., time). """ return F.spectral_centroid(waveform, self.sample_rate, self.pad, self.window, self.n_fft, self.hop_length, self.win_length) class PitchShift(torch.nn.Module): r"""Shift the pitch of a waveform by ``n_steps`` steps. Args: waveform (Tensor): The input waveform of shape `(..., time)`. sample_rate (float): Sample rate of `waveform`. n_steps (int): The (fractional) steps to shift `waveform`. bins_per_octave (int, optional): The number of steps per octave (Default : ``12``). n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins (Default: ``512``). win_length (int or None, optional): Window size. If None, then ``n_fft`` is used. (Default: ``None``). hop_length (int or None, optional): Length of hop between STFT windows. If None, then ``win_length // 4`` is used (Default: ``None``). window (Tensor or None, optional): Window tensor that is applied/multiplied to each frame/window. If None, then ``torch.hann_window(win_length)`` is used (Default: ``None``). Example >>> waveform, sample_rate = torchaudio.load('test.wav', normalize=True) >>> transform = transforms.PitchShift(sample_rate, 4) >>> waveform_shift = transform(waveform) # (channel, time) """ __constants__ = ['sample_rate', 'n_steps', 'bins_per_octave', 'n_fft', 'win_length', 'hop_length'] def __init__(self, sample_rate: int, n_steps: int, bins_per_octave: int = 12, n_fft: int = 512, win_length: Optional[int] = None, hop_length: Optional[int] = None, window_fn: Callable[..., Tensor] = torch.hann_window, wkwargs: Optional[dict] = None) -> None: super(PitchShift, self).__init__() self.n_steps = n_steps self.bins_per_octave = bins_per_octave self.sample_rate = sample_rate self.n_fft = n_fft self.win_length = win_length if win_length is not None else n_fft self.hop_length = hop_length if hop_length is not None else self.win_length // 4 window = window_fn(self.win_length) if wkwargs is None else window_fn(self.win_length, **wkwargs) self.register_buffer('window', window) def forward(self, waveform: Tensor) -> Tensor: r""" Args: waveform (Tensor): Tensor of audio of dimension (..., time). Returns: Tensor: The pitch-shifted audio of shape `(..., time)`. """ return F.pitch_shift(waveform, self.sample_rate, self.n_steps, self.bins_per_octave, self.n_fft, self.win_length, self.hop_length, self.window)
43.594776
117
0.610678
24ba42fb04c4f9c013d2e725e681622dacba5787
5,074
py
Python
django/contrib/comments/views/moderation.py
fizista/django
16f3a6a4c7bab11644d11c2be029374e5095cb56
[ "BSD-3-Clause" ]
1
2019-02-10T19:33:27.000Z
2019-02-10T19:33:27.000Z
django/contrib/comments/views/moderation.py
fizista/django
16f3a6a4c7bab11644d11c2be029374e5095cb56
[ "BSD-3-Clause" ]
null
null
null
django/contrib/comments/views/moderation.py
fizista/django
16f3a6a4c7bab11644d11c2be029374e5095cb56
[ "BSD-3-Clause" ]
1
2020-05-03T20:42:29.000Z
2020-05-03T20:42:29.000Z
from django import template from django.conf import settings from django.contrib import comments from django.contrib.auth.decorators import login_required, permission_required from django.contrib.comments import signals from django.contrib.comments.views.utils import next_redirect, confirmation_view from django.shortcuts import get_object_or_404, render_to_response from django.views.decorators.csrf import csrf_protect @csrf_protect @login_required def flag(request, comment_id, next=None): """ Flags a comment. Confirmation on GET, action on POST. Templates: :template:`comments/flag.html`, Context: comment the flagged `comments.comment` object """ comment = get_object_or_404(comments.get_model(), pk=comment_id, site__pk=settings.SITE_ID) # Flag on POST if request.method == 'POST': perform_flag(request, comment) return next_redirect(request, fallback=next or 'comments-flag-done', c=comment.pk) # Render a form on GET else: return render_to_response('comments/flag.html', {'comment': comment, "next": next}, template.RequestContext(request) ) @csrf_protect @permission_required("comments.can_moderate") def delete(request, comment_id, next=None): """ Deletes a comment. Confirmation on GET, action on POST. Requires the "can moderate comments" permission. Templates: :template:`comments/delete.html`, Context: comment the flagged `comments.comment` object """ comment = get_object_or_404(comments.get_model(), pk=comment_id, site__pk=settings.SITE_ID) # Delete on POST if request.method == 'POST': # Flag the comment as deleted instead of actually deleting it. perform_delete(request, comment) return next_redirect(request, fallback=next or 'comments-delete-done', c=comment.pk) # Render a form on GET else: return render_to_response('comments/delete.html', {'comment': comment, "next": next}, template.RequestContext(request) ) @csrf_protect @permission_required("comments.can_moderate") def approve(request, comment_id, next=None): """ Approve a comment (that is, mark it as public and non-removed). Confirmation on GET, action on POST. Requires the "can moderate comments" permission. Templates: :template:`comments/approve.html`, Context: comment the `comments.comment` object for approval """ comment = get_object_or_404(comments.get_model(), pk=comment_id, site__pk=settings.SITE_ID) # Delete on POST if request.method == 'POST': # Flag the comment as approved. perform_approve(request, comment) return next_redirect(request, fallback=next or 'comments-approve-done', c=comment.pk) # Render a form on GET else: return render_to_response('comments/approve.html', {'comment': comment, "next": next}, template.RequestContext(request) ) # The following functions actually perform the various flag/aprove/delete # actions. They've been broken out into separate functions to that they # may be called from admin actions. def perform_flag(request, comment): """ Actually perform the flagging of a comment from a request. """ flag, created = comments.models.CommentFlag.objects.get_or_create( comment=comment, user=request.user, flag=comments.models.CommentFlag.SUGGEST_REMOVAL ) signals.comment_was_flagged.send( sender=comment.__class__, comment=comment, flag=flag, created=created, request=request, ) def perform_delete(request, comment): flag, created = comments.models.CommentFlag.objects.get_or_create( comment=comment, user=request.user, flag=comments.models.CommentFlag.MODERATOR_DELETION ) comment.is_removed = True comment.save() signals.comment_was_flagged.send( sender=comment.__class__, comment=comment, flag=flag, created=created, request=request, ) def perform_approve(request, comment): flag, created = comments.models.CommentFlag.objects.get_or_create( comment=comment, user=request.user, flag=comments.models.CommentFlag.MODERATOR_APPROVAL, ) comment.is_removed = False comment.is_public = True comment.save() signals.comment_was_flagged.send( sender=comment.__class__, comment=comment, flag=flag, created=created, request=request, ) # Confirmation views. flag_done = confirmation_view( template="comments/flagged.html", doc='Displays a "comment was flagged" success page.' ) delete_done = confirmation_view( template="comments/deleted.html", doc='Displays a "comment was deleted" success page.' ) approve_done = confirmation_view( template="comments/approved.html", doc='Displays a "comment was approved" success page.' )
30.939024
95
0.684667
3a0aa67ef0e46228765eb8549d2d3f59625a0392
4,292
py
Python
etc/results.py
sublee/etc
f2be64604da5af0d7739cfacf36f55712f0fc5cb
[ "BSD-3-Clause" ]
4
2016-05-02T07:37:55.000Z
2019-12-24T03:25:26.000Z
etc/results.py
sublee/etc
f2be64604da5af0d7739cfacf36f55712f0fc5cb
[ "BSD-3-Clause" ]
null
null
null
etc/results.py
sublee/etc
f2be64604da5af0d7739cfacf36f55712f0fc5cb
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ etc.results ~~~~~~~~~~~ """ from __future__ import absolute_import import six from etc.helpers import gen_repr, registry __all__ = ['ComparedThenDeleted', 'ComparedThenSwapped', 'Created', 'Deleted', 'Directory', 'EtcdResult', 'Expired', 'Got', 'Node', 'Set', 'Updated', 'Value'] def __eq__(self, other): """Common `__eq__` implementation for classes which has `__slots__`.""" if self.__class__ is not other.__class__: return False return all(getattr(self, attr) == getattr(other, attr) for attr in self.__slots__) class Node(object): __slots__ = ('key', 'modified_index', 'created_index', 'ttl', 'expiration') def __init__(self, key, modified_index=None, created_index=None, ttl=None, expiration=None): self.key = key self.modified_index = modified_index self.created_index = created_index self.ttl = ttl self.expiration = expiration @property def index(self): """Alias for `modified_index`.""" return self.modified_index @property def expires_at(self): """Alias for `expiration`.""" return self.expiration __eq__ = __eq__ class Value(Node): """An etcd value Node.""" __slots__ = Node.__slots__ + ('value',) def __init__(self, key, value, *args, **kwargs): super(Value, self).__init__(key, *args, **kwargs) self.value = value def __repr__(self): options = [('modified_index', self.modified_index), ('created_index', self.created_index), ('ttl', self.ttl), ('expiration', self.expiration)] return gen_repr(self.__class__, u'{0}={1}', self.key, self.value, options=options) class Directory(Node): """An etcd directory Node.""" __slots__ = Node.__slots__ + ('nodes',) def __init__(self, key, nodes=(), *args, **kwargs): super(Directory, self).__init__(key, *args, **kwargs) self.nodes = nodes @property def values(self): return [node.value for node in self.nodes] def __repr__(self): key = self.key if not key.endswith(u'/'): key += u'/' return gen_repr(self.__class__, u'{0}[{1}]', self.key, len(self.nodes), short=True) class EtcdResult(six.with_metaclass(registry('action'))): """A successful etcd result. Don't use this class directly. There're specific sub classes to be used instead. """ __slots__ = ('node', 'prev_node', 'etcd_index', 'raft_index', 'raft_term') action = NotImplemented def __init__(self, node, prev_node=None, etcd_index=None, raft_index=None, raft_term=None): self.node = node self.prev_node = prev_node self.etcd_index = etcd_index self.raft_index = raft_index self.raft_term = raft_term # Node accessors. key = property(lambda x: x.node.key) modified_index = property(lambda x: x.node.modified_index) created_index = property(lambda x: x.node.created_index) ttl = property(lambda x: x.node.ttl) expiration = property(lambda x: x.node.expiration) index = property(lambda x: x.node.index) expires_at = property(lambda x: x.node.expires_at) value = property(lambda x: x.node.value) nodes = property(lambda x: x.node.nodes) values = property(lambda x: x.node.values) def __repr__(self): return gen_repr(self.__class__, u'{0}', self.node, options=[ ('prev_node', self.prev_node), ('etcd_index', self.etcd_index), ('raft_index', self.raft_index), ('raft_term', self.raft_term), ]) __eq__ = __eq__ def def_(name, action=NotImplemented, base=EtcdResult): return type(name, (base,), {'action': action}) Got = def_('Got', 'get') Set = def_('Set', 'set') Deleted = def_('Deleted', 'delete') Updated = def_('Updated', 'update', Set) Created = def_('Created', 'create', Set) Expired = def_('Expired', 'expire', Deleted) ComparedThenSwapped = def_('ComparedThenSwapped', 'compareAndSwap', Set) ComparedThenDeleted = def_('ComparedThenDeleted', 'compareAndDelete', Deleted)
29
79
0.6137
f4791de4dc6ba437cbee536401a78b1114b243b6
5,340
py
Python
adi_study_watch/nrf5_sdk_15.2.0/adi_study_watch/cli/m2m2/inc/python/ppg_application_interface_def.py
ArrowElectronics/Vital-Signs-Monitoring
ba43fe9a116d94170561433910fd7bffba5726e7
[ "Unlicense" ]
5
2021-06-13T17:11:19.000Z
2021-12-01T18:20:38.000Z
adi_study_watch/nrf5_sdk_15.2.0/adi_study_watch/cli/m2m2/inc/python/ppg_application_interface_def.py
ArrowElectronics/Vital-Signs-Monitoring
ba43fe9a116d94170561433910fd7bffba5726e7
[ "Unlicense" ]
null
null
null
adi_study_watch/nrf5_sdk_15.2.0/adi_study_watch/cli/m2m2/inc/python/ppg_application_interface_def.py
ArrowElectronics/Vital-Signs-Monitoring
ba43fe9a116d94170561433910fd7bffba5726e7
[ "Unlicense" ]
1
2022-01-08T15:01:44.000Z
2022-01-08T15:01:44.000Z
from ctypes import * from common_application_interface_def import * from common_sensor_interface_def import * from dcb_interface_def import * from m2m2_core_def import * class M2M2_PPG_APP_CMD_ENUM_t(c_ubyte): _M2M2_PPG_APP_CMD_LOWEST = 0x40 M2M2_PPG_APP_CMD_GET_LAST_STATES_REQ = 0x42 M2M2_PPG_APP_CMD_GET_LAST_STATES_RESP = 0x43 M2M2_PPG_APP_CMD_GET_STATES_INFO_REQ = 0x44 M2M2_PPG_APP_CMD_GET_STATES_INFO_RESP = 0x45 M2M2_PPG_APP_CMD_GET_ALGO_VENDOR_VERSION_REQ = 0x46 M2M2_PPG_APP_CMD_GET_ALGO_VENDOR_VERSION_RESP = 0x47 M2M2_PPG_APP_CMD_SYNC_DATA_REQ = 0x48 M2M2_PPG_APP_CMD_SYNC_DATA_RESP = 0x49 M2M2_PPG_APP_CMD_DEBUG_DATA_REQ = 0x4A M2M2_PPG_APP_CMD_DEBUG_DATA_RESP = 0x4B M2M2_PPG_APP_CMD_GET_CTRVALUE_REQ = 0x4C M2M2_PPG_APP_CMD_GET_CTRVALUE_RESP = 0x4D M2M2_PPG_APP_CMD_GET_SMETRICS_REQ = 0x4E M2M2_PPG_APP_CMD_GET_SMETRICS_RESP = 0x4F class M2M2_PPG_APP_SYNC_ENUM_t(c_ubyte): M2M2_PPG_APP_SOFTWARE_SYNC = 0x0 M2M2_PPG_APP_HARDWARE_SYNC = 0x3 class M2M2_SENSOR_PPG_SYNC_NSAMPLES_ENUM_t(c_ubyte): M2M2_SENSOR_PPG_SYNC_NSAMPLES = 0x3 class M2M2_SENSOR_HRV_NSAMPLES_ENUM_t(c_ubyte): M2M2_SENSOR_HRV_NSAMPLES = 0x4 class M2M2_SENSOR_PPG_SYNC_DATA_TYPES_ENUM_t(c_ubyte): M2M2_SENSOR_PPG_SYNC_DATA_TYPES_NO_SYNC = 0x0 M2M2_SENSOR_PPG_SYNC_DATA_TYPES_HW_SYNC1 = 0x1 M2M2_SENSOR_PPG_SYNC_DATA_TYPES_HW_SYNC2 = 0x2 M2M2_SENSOR_PPG_SYNC_DATA_TYPES_HW_SYNC3 = 0x3 M2M2_SENSOR_PPG_SYNC_DATA_TYPES_SW_SYNC = 0x4 class M2M2_SENSOR_PPG_LCFG_ID_ENUM_t(c_ubyte): M2M2_SENSOR_PPG_LCFG_ID_ADPD4000 = 0x28 M2M2_SENSOR_PPG_LCFG_ID_ADPD107 = 0x6B M2M2_SENSOR_PPG_LCFG_ID_ADPD108 = 0x6C M2M2_SENSOR_PPG_LCFG_ID_ADPD185 = 0xB9 M2M2_SENSOR_PPG_LCFG_ID_ADPD188 = 0xBC class ppg_app_lib_state_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("states", c_ubyte * 10), ] class ppg_app_ctrValue_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("ctrValue", c_ushort), ] class ppg_app_signal_metrics_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("metrics", c_ushort * 3), ] class ppg_app_lcfg_op_t(Structure): _pack_ = 1 _fields_ = [ ("field", c_ubyte), ("value", c_ulong), ] def ppg_app_lcfg_op_hdr_t(array_size): class ppg_app_lcfg_op_hdr_t_internal(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("num_ops", c_ubyte), ("ops", ppg_app_lcfg_op_t * array_size), ] return ppg_app_lcfg_op_hdr_t_internal() class ppg_app_hr_debug_stream_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("sequence_num", c_ushort), ("timestamp", c_ulong), ("adpdlibstate", c_ushort), ("hr", c_ushort), ("confidence", c_ushort), ("hr_type", c_ushort), ("rr_interval", c_ushort), ("debugInfo", c_ushort * 10), ] class ppg_app_state_info_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("state", c_ubyte), ("info", c_ubyte * 20), ] class ppg_app_cmd_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("commandVal", c_ushort), ] class ppg_app_set_lcfg_req_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("lcfgid", c_ubyte), ] class ppg_app_set_lcfg_resp_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ] class ppg_app_dynamic_agc_stream_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("sequence_num", c_ushort), ("timestamp", c_ulong), ("mts", c_ushort * 6), ("setting", c_ushort * 10), ] class hrv_data_set_t(Structure): _pack_ = 1 _fields_ = [ ("timestamp", c_ushort), ("rr_interval", c_short), ("is_gap", c_ushort), ("rmssd", c_ushort), ] class ppg_app_hrv_info_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("sequence_num", c_ushort), ("timestamp", c_ulong), ("first_rr_interval", c_short), ("first_is_gap", c_ushort), ("first_rmssd", c_ushort), ("hrv_data", hrv_data_set_t * 3), ] class m2m2_ppg_lcfg_data_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("size", c_ubyte), ("lcfgdata", c_long * 56), ]
29.021739
56
0.591199
8340984ac4236eb711586f512c20608bf4e8704e
14,111
py
Python
project/apps/birth_registration/migrations/0030_auto_20150921_1750.py
kostik/vrs
a347c2d901e1a6b60a85480c9d2b247157881fce
[ "BSD-3-Clause" ]
1
2016-11-09T18:57:23.000Z
2016-11-09T18:57:23.000Z
project/apps/birth_registration/migrations/0030_auto_20150921_1750.py
kostik/vrs
a347c2d901e1a6b60a85480c9d2b247157881fce
[ "BSD-3-Clause" ]
null
null
null
project/apps/birth_registration/migrations/0030_auto_20150921_1750.py
kostik/vrs
a347c2d901e1a6b60a85480c9d2b247157881fce
[ "BSD-3-Clause" ]
4
2016-09-30T08:24:09.000Z
2019-02-28T14:09:19.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import birth_registration.fields import birth_registration.validators class Migration(migrations.Migration): dependencies = [ ('birth_registration', '0029_auto_20150921_1714'), ] operations = [ migrations.AlterField( model_name='f201', name='Father_name', field=birth_registration.fields.Char100Field(max_length=100, null=True, verbose_name="Father's name", blank=True), ), migrations.AlterField( model_name='f201', name='Mother_name', field=birth_registration.fields.Char100Field(max_length=100, null=True, verbose_name="Mother's name", blank=True), ), migrations.AlterField( model_name='f201', name='UPCR', field=birth_registration.fields.TownshipField(blank=True, help_text='Township or town', null=True, verbose_name='Usual place of residence', choices=[('01 - Myitkyina', [(1, '01 - Myitkyina'), (2, '02 - Waingmaw'), (3, '03 - Ingyan Yan'), (4, '04 - Moekaung'), (5, '05 - Moehnyin'), (6, '06 - Phakant'), (7, '07 - Karmine*'), (8, '08 - Ta Naing'), (9, '09 - Chibway'), (10, '10 - Sautlaw')]), ('02 - Bamaw', [(11, '01 - Bamaw'), (12, '02 - Shwegu'), (13, '03 - Moemauk'), (14, '04 - Mansi')]), ('03 - Puta O', [(15, '01 - Puta O'), (16, '02 - Swanprabum'), (17, '03 - Machanbaw'), (18, '04 - Khaunglanphoo'), (19, '05 - Naungmon')]), ('04 - Loikaw', [(20, '01 - Loikaw'), (21, '02 - Dimawsoe'), (22, '03 - Phrusoe'), (23, '04 - Shartaw')]), ('05 - Bawlakhei', [(24, '01 - Bawlakhei'), (25, '02 - Pharsaung'), (26, '03 - Meiseit')]), ('06 - Pha An', [(27, '01 - Pha An'), (28, '02 - Hlaingbweit'), (29, '03 - Pharpon'), (30, '04 - Thandaung'), (31, '05 - Thandaungkyee')]), ('07 - Myawaddy', [(32, '01 - Myawaddy')]), ('08 - Kawtkaraik', [(33, '01 - Kawtkaraik'), (34, '02 - Kyarinseikkyi'), (35, '03 - Phayathonesu*'), (36, '04 - Kyoandoe')]), ('09 - Phalan', [(37, '01 - Phalan'), (38, '02 - Hakha'), (39, '03 - Htantalan'), (40, '04 - Teetain'), (41, '05 - Tunzan')]), ('10 - Mintatt', [(42, '01 - Mintatt'), (43, '02 - Matupi'), (44, '03 - Kanpetlet'), (45, '04 - Paletwa')]), ('11 - Sagaing', [(46, '01 - Sagaing'), (47, '02 - Myinmu'), (48, '03 - Myaung')]), ('12 - Shwebo', [(49, '01 - Shwebo'), (50, '02 - Khin Oo'), (51, '03 - Wetlet'), (52, '04 - Kantbalu'), (53, '05 - Kyunhla'), (54, '06 - Yay Oo'), (55, '07 - Dipeiyin'), (56, '08 - Tantsei')]), ('13 - Monywar', [(57, '01 - Monywar'), (58, '02 - Butalin'), (59, '03 - Ahyartaw'), (60, '04 - Chaung Oo'), (61, '05 - Yinmarbin'), (62, '06 - Kani'), (63, '07 - Salingyee'), (64, '08 - Palei')]), ('14 - Kathar', [(65, '01 - Kathar'), (66, '02 - Indaw'), (67, '03 - Hteechaink'), (68, '04 - Bamauk'), (69, '05 - Kawlin'), (70, '06 - Wuntho'), (71, '07 - Pinleibu')]), ('15 - Kalay', [(72, '01 - Kalay'), (73, '02 - Kalaywa'), (74, '03 - Minkin')]), ('16 - Tamu', [(75, '01 - Tamu')]), ('17 - Mawlaik', [(76, '01 - Mawlaik'), (77, '02 - Phaungpyin')]), ('18 - Khantee', [(78, '01 - Khantee'), (79, '02 - Hoamalin'), (80, '03 - Layshee'), (81, '04 - Lahei'), (82, '05 - Nanyon')]), ('19 - Dawei', [(83, '01 - Dawei'), (84, '02 - Launglon'), (85, '03 - Thayetchaung'), (86, '04 - Yayphyu')]), ('20 - Myeik', [(87, '01 - Myeik'), (88, '02 - Kyunsu'), (89, '03 - Pulaw'), (90, '04 - Tanintharyi')]), ('21 - Kautthaung', [(91, '01 - Kautthaung'), (92, '02 - Boatpyin')]), ('22 - Bago', [(93, '01 - Bago'), (94, '02 - Thanatpin'), (95, '03 - Kawa'), (96, '04 - Waw'), (97, '05 - Nyaunglaybin'), (98, '06 - Madauk*'), (99, '07 - Pyuntanzar*'), (100, '08 - Kyauktaga'), (101, '09 - Peinweikone*'), (102, '10 - Daik Oo'), (103, '11 - Shwekyin')]), ('23 - Pyay', [(104, '01 - Pyay'), (105, '02 - Pauk Khaung'), (106, '03 - Padaung'), (107, '04 - Paungtei'), (108, '05 - Theikone'), (109, '06 - Shwetaung')]), ('24 - Tharyarwaddy', [(110, '01 - Tharyarwaddy'), (111, '02 - Thonesei*'), (112, '03 - Letpandan'), (113, '04 - Minhla'), (114, '05 - Oakpho'), (115, '06 - Zeekone'), (116, '07 - Nattalin'), (117, '08 - Moenyo'), (118, '09 - Kyoetbinkaut')]), ('25 - Taungoo', [(119, '01 - Taungoo'), (120, '02 - Yaytarshay'), (121, '03 - Kyaukyee'), (122, '04 - Phyu'), (123, '05 - Oaktwin'), (124, '06 - Htandabin')]), ('26 - Magway', [(125, '01 - Magway'), (126, '02 - Yenanchaung'), (127, '03 - Chauk'), (128, '04 - Taungtwingyee'), (129, '05 - Myoethit'), (130, '06 - Natmauk')]), ('27 - Minbu', [(131, '01 - Minbu'), (132, '02 - Saku*'), (133, '03 - Pwintphyu'), (134, '04 - Ngaphei'), (135, '05 - Salin'), (136, '06 - Sinphyukyun*'), (137, '07 - Saytoattaya')]), ('28 - Thayet', [(138, '01 - Thayet'), (139, '02 - Minhla'), (140, '03 - Mintone'), (141, '04 - Kanma'), (142, '05 - Aunglan'), (143, '06 - Sinpaungwei')]), ('29 - Pakokku', [(144, '01 - Pakokku'), (145, '02 - Yesagyo'), (146, '03 - Myaing'), (147, '04 - Pauk'), (148, '05 - Saikphyu')]), ('30 - Gantgaw', [(149, '01 - Gantgaw'), (150, '02 - Hteelin'), (151, '03 - Saw')]), ('31 - Mandalay', [(152, '01 - Aungmyaytharzan'), (153, '02 - Chanayetharzan'), (154, '03 - MahaAungmyay'), (155, '04 - Chanmyatharsi'), (156, '05 - Pyigyeetakhun'), (157, '06 - Amarapura'), (158, '07 - Myitnge*'), (159, '08 - Patheingyee')]), ('32 - Pyin Oo Lwin', [(160, '01 - Pyin Oo Lwin'), (161, '02 - Madayar'), (162, '03 - Sintkuu'), (163, '04 - Moegauk'), (164, '05 - Thabaikkyin')]), ('33 - Kyaukse', [(165, '01 - Kyaukse'), (166, '02 - Sintkai'), (167, '03 - Myitthar'), (168, '04 - Tadaoo')]), ('34 - Myingyan', [(169, '01 - Myingyan'), (170, '02 - Taungthar'), (171, '03 - Nahtoegyee'), (172, '04 - Kyaukbadaung'), (173, '05 - Nganzun')]), ('35 - Nyaung Oo', [(174, '01 - Nyaung Oo'), (175, '02 - Bagan*'), (176, '03 - Ngatharauk*')]), ('36 - Yameithinn', [(177, '01 - Yameithinn'), (178, '02 - Pyawbwei'), (179, '03 - Tatkone'), (180, '04 - Pyinmana'), (181, '05 - Leiway')]), ('37 - Meikhtila', [(182, '01 - Meikhtila'), (183, '02 - Mahlaing'), (184, '03 - Tharzi'), (185, '04 - Wantwin')]), ('38 - Mawlamyaing', [(186, '01 - Mawlamyaing'), (187, '02 - Kyaikmayaw'), (188, '03 - Chaungzon'), (189, '04 - Thanphyuzayat'), (190, '05 - Kyaikkhami*'), (191, '06 - Mudon'), (192, '07 - Yay')]), ('39 - Thahton', [(193, '01 - Thahton'), (194, '02 - Paung'), (195, '03 - Kyaikhto'), (196, '04 - Beelin')]), ('40 - Sittwe', [(197, '01 - Sittwe'), (198, '02 - Poannakyun'), (199, '03 - Myauk Oo'), (200, '04 - Kyauktaw'), (201, '05 - Minbya'), (202, '06 - Pauktaw'), (203, '07 - Myaybon')]), ('41 - Maungdaw', [(204, '01 - Maungdaw')]), ('42 - Buthidaung', [(205, '01 - Buthidaung'), (206, '02 - Rathedaung')]), ('43 - Kyaukphyu', [(207, '01 - Kyaukphyu'), (208, '02 - Man Aung'), (209, '03 - Ranbyei'), (210, '04 - Ann')]), ('44 - Thandwe', [(211, '01 - Thandwe'), (212, '02 - Taungkauk'), (213, '03 - Gwa')]), ('45 - Ahshaytbine (East)', [(214, '01 - Thingankyun'), (215, '02 - Yankin'), (216, '03 - Taung Okkalapa'), (217, '04 - Myauk Okkalapa'), (218, '05 - Tharketa'), (219, '06 - Dawbon'), (220, '07 - Tarmwe'), (221, '08 - Pazuntaung'), (222, '09 - Botahtaung'), (223, '10 - Dagon Myothit Taung (Sounth)'), (224, '11 - Dagon Myothi Myauk (North)'), (225, '12 - Dagon Myothit Ahshayt (East)'), (226, '13 - Dagon Myothit (Seikkan)'), (227, '14 - Mingalataungnyunt')]), ('46 - Ahnoutpine (West)', [(228, '01 - Kyauktada'), (229, '02 - Panbedan'), (230, '03 - Lanmadaw'), (231, '04 - Lathar'), (232, '05 - Ahlon'), (233, '06 - Kyeemyindine'), (234, '07 - Sanchaung'), (235, '08 - Hlaing'), (236, '09 - Kamaryut'), (237, '10 - Mayangone'), (238, '11 - Dagon'), (239, '12 - Bahan'), (240, '13 - Seikkan')]), ('47 - Taungbine (South)', [(241, '01 - Thanhlyin'), (242, '02 - Kyauktan'), (243, '03 - Thonekhwa'), (244, '04 - Khayan'), (245, '05 - Tonte'), (246, '06 - Kauthmu'), (247, '07 - Kunchangone'), (248, '08 - Dala'), (249, '09 - Seikkyee'), (250, '10 - Khanaungto'), (251, '11 - Kokoe Island')]), ('48 - Myaukpine (North)', [(252, '01 - Insein'), (253, '02 - Mingalardon'), (254, '03 - Htaunkkyant*'), (255, '04 - Hmawbi'), (256, '05 - Hlegu'), (257, '06 - Tiakkyee'), (258, '07 - Oakkan*'), (259, '08 - Htantabin'), (260, '09 - Shwepyithar'), (261, '10 - Hlaingtharyar'), (262, '11 - Ahphyauk*')]), ('49 - Taungyi', [(263, '01 - Taungyi'), (264, '02 - Ayetharyar*'), (265, '03 - Hopone'), (266, '04 - Nyaungshwe'), (267, '05 - Sisaing'), (268, '06 - Kalaw'), (269, '07 - Aungban*'), (270, '08 - Pindaya'), (271, '09 - Ywarngan'), (272, '10 - Yatsauk'), (273, '11 - Pinlaung'), (274, '12 - Phekhoan')]), ('50 - Loilin', [(275, '01 - Loilin'), (276, '02 - Pinlon'), (277, '03 - Leichar'), (278, '04 - Nantsam(South)'), (279, '05 - Kunhein'), (280, '06 - Moenei'), (281, '07 - Linkhay'), (282, '08 - Maukmei'), (283, '09 - Minepan'), (284, '10 - Kyaythee'), (285, '11 - Minekaing'), (286, '12 - Mineshu')]), ('51 - Lahsio', [(287, '01 - Lashio'), (288, '02 - Theinni'), (289, '03 - Mineyei'), (290, '04 - Tantyan'), (291, '05 - Minephant'), (292, '06 - Panyang'), (293, '07 - Narphan'), (294, '08 - Panwaing'), (295, '09 - Minemaw'), (296, '10 - Pansan (Pankhan)')]), ('52 - Muse', [(297, '01 - Muse'), (298, '02 - Nantkhan'), (299, '03 - Kutkhaing'), (300, '04 - Monkoe'), (301, '05 - Kyukoak')]), ('53 - Kyaukmei', [(302, '01 - Kyaukmei'), (303, '02 - Naungcho'), (304, '03 - Thibaw'), (305, '04 - Namtu'), (306, '05 - Nantsam(North)'), (307, '06 - Moemaik'), (308, '07 - Mabain'), (309, '08 - Mantoan')]), ('54 - Kunloan', [(310, '01 - Kunloan'), (311, '02 - Hopan')]), ('55 - Laukkaing', [(312, '01 - Laukkaing'), (313, '02 - Chinshwehaw*'), (314, '03 - Koankyan')]), ('56 - Kyaington', [(315, '01 - Kyaington'), (316, '02 - Minekhat'), (317, '03 - Mineyang'), (318, '04 - Minelar'), (319, '05 - Metman')]), ('57 - Minesatt', [(320, '01 - Minesatt'), (321, '02 - Minepyinn'), (322, '03 - Minetoan')]), ('58 - Tachilaik', [(323, '01 - Tachilaik')]), ('59 - Minephyat', [(324, '01 - Minephyat'), (325, '02 - Mineyaung')]), ('60 - Pathein', [(326, '01 - Pathein'), (327, '02 - Kangyidaunt'), (328, '03 - Tharpaung'), (329, '04 - Ngaputaw'), (330, '05 - Kyoanpyaw'), (331, '06 - Yaykyi'), (332, '07 - Ngathaingchaung'), (333, '08 - Kyaungkone'), (334, '09 - Haigyikyun')]), ('61 - Hinthada', [(335, '01 - Hinthada'), (336, '02 - Zalun'), (337, '03 - Laymyethnar'), (338, '04 - Myan Aung'), (339, '05 - Ka Naung'), (340, '06 - Kyankhin'), (341, '07 - Ingapu')]), ('62 - Myaungmya', [(342, '01 - Myaungmya'), (343, '02 - Ainmei'), (344, '03 - Laputta'), (345, '04 - Warkhema'), (346, '05 - Mawlamyaingkyun')]), ('63 - Ma U Bin', [(347, '01 - Ma U Bin'), (348, '02 - Pantanaw'), (349, '03 - Nyaungtone'), (350, '04 - Danubyu')]), ('64 - Phyarpon', [(351, '01 - Phyarpon'), (352, '02 - Bogalay'), (353, '03 - Kyaiklatt'), (354, '04 - Daydayei')]), ('65 - Zayarthiri', [(355, '01 - Zayarthiri')]), ('66 - Dakhenathiri', [(356, '01 - Dakhenathiri')]), ('67 - Oktayathiri', [(357, '01 - Oktayathiri')]), ('68 - Potebathiri', [(358, '01 - Potebathiri')]), ('69 - Zabuthiri', [(359, '01 - Zabuthiri')]), ('70 - Tatkon', [(360, '01 - Tatkon')]), ('71 - Pyinmana', [(361, '01 - Pyinmana')]), ('72 - Lewe', [(362, '01 - Lewe')])]), ), migrations.AlterField( model_name='f201', name='UPRS', field=birth_registration.fields.StateDivisionField(validators=[birth_registration.validators.validate_2digits], choices=[(1, '01 - Kachin'), (2, '02 - Kayh'), (3, '03 - Kayin'), (4, '04 - Chin'), (5, '05 - Sagaing'), (6, '06 - Tanintharyi'), (7, '07 - Bago'), (8, '08 - Magway'), (9, '09 - Mandalay'), (10, '10 - Mon'), (11, '11 - Rakhine'), (12, '12 - Yangon'), (13, '13 - Shan'), (14, '14 - Ayyarwaddy'), (15, '15 - NayPyiTaw')], blank=True, help_text=' State Division', null=True, verbose_name='Usual place of residence'), ), migrations.AlterField( model_name='f201', name='UPRS1', field=birth_registration.fields.DistrictField(validators=[birth_registration.validators.validate_2digits], choices=[('01 - Kachin', [(1, '01 - Myitkyina'), (2, '02 - Bamaw'), (3, '03 - Puta O')]), ('02 - Kayh', [(4, '04 - Loikaw'), (5, '05 - Bawlakhei')]), ('03 - Kayin', [(6, '06 - Pha An'), (7, '07 - Myawaddy'), (8, '08 - Kawtkaraik')]), ('04 - Chin', [(9, '09 - Phalan'), (10, '10 - Mintatt')]), ('05 - Sagaing', [(11, '11 - Sagaing'), (12, '12 - Shwebo'), (13, '13 - Monywar'), (14, '14 - Kathar'), (15, '15 - Kalay'), (16, '16 - Tamu'), (17, '17 - Mawlaik'), (18, '18 - Khantee')]), ('06 - Tanintharyi', [(19, '19 - Dawei'), (20, '20 - Myeik'), (21, '21 - Kautthaung')]), ('07 - Bago', [(22, '22 - Bago'), (23, '23 - Pyay'), (24, '24 - Tharyarwaddy'), (25, '25 - Taungoo')]), ('08 - Magway', [(26, '26 - Magway'), (27, '27 - Minbu'), (28, '28 - Thayet'), (29, '29 - Pakokku'), (30, '30 - Gantgaw')]), ('09 - Mandalay', [(31, '31 - Mandalay'), (32, '32 - Pyin Oo Lwin'), (33, '33 - Kyaukse'), (34, '34 - Myingyan'), (35, '35 - Nyaung Oo'), (36, '36 - Yameithinn'), (37, '37 - Meikhtila')]), ('10 - Mon', [(38, '38 - Mawlamyaing'), (39, '39 - Thahton')]), ('11 - Rakhine', [(40, '40 - Sittwe'), (41, '41 - Maungdaw'), (42, '42 - Buthidaung'), (43, '43 - Kyaukphyu'), (44, '44 - Thandwe')]), ('12 - Yangon', [(45, '45 - Ahshaytbine (East)'), (46, '46 - Ahnoutpine (West)'), (47, '47 - Taungbine (South)'), (48, '48 - Myaukpine (North)')]), ('13 - Shan', [(49, '49 - Taungyi'), (50, '50 - Loilin'), (51, '51 - Lahsio'), (52, '52 - Muse'), (53, '53 - Kyaukmei'), (54, '54 - Kunloan'), (55, '55 - Laukkaing'), (56, '56 - Kyaington'), (57, '57 - Minesatt'), (58, '58 - Tachilaik'), (59, '59 - Minephyat')]), ('14 - Ayyarwaddy', [(60, '60 - Pathein'), (61, '61 - Hinthada'), (62, '62 - Myaungmya'), (63, '63 - Ma U Bin'), (64, '64 - Phyarpon')]), ('15 - NayPyiTaw', [(65, '65 - Zayarthiri'), (66, '66 - Dakhenathiri'), (67, '67 - Oktayathiri'), (68, '68 - Potebathiri'), (69, '69 - Zabuthiri'), (70, '70 - Tatkon'), (71, '71 - Pyinmana'), (72, '72 - Lewe')])], blank=True, help_text='District', null=True, verbose_name='Usual place of residence'), ), ]
335.97619
10,325
0.534406
0aa274baae2cbfa6ecb08ccff1d7cfa9712c2151
6,193
py
Python
crontab_module/crons/get_audience_network.py
openmaker-eu/watchtower
af4d3e92b4cf0bf93c10e288a8b8ea97079da86d
[ "MIT" ]
2
2017-05-16T10:57:29.000Z
2017-12-14T11:33:18.000Z
crontab_module/crons/get_audience_network.py
openmaker-eu/watchtower
af4d3e92b4cf0bf93c10e288a8b8ea97079da86d
[ "MIT" ]
9
2018-11-29T07:44:15.000Z
2021-12-13T19:54:18.000Z
crontab_module/crons/get_audience_network.py
openmaker-eu/watchtower
af4d3e92b4cf0bf93c10e288a8b8ea97079da86d
[ "MIT" ]
1
2019-03-17T13:58:18.000Z
2019-03-17T13:58:18.000Z
# Author: Kemal Berk Kocabagli import sys from decouple import config # to get current working directory sys.path.insert(0, config("ROOT_DIR")) from application.utils.basic import * import tweepy # Twitter API helper package from tweepy import OAuthHandler import pymongo # for pymongo functions from datetime import datetime # to print the date & time in the output log whenever this script is run OR for time related checks from application.Connections import Connection consumer_key = config("TWITTER_CONSUMER_KEY") # API key consumer_secret = config("TWITTER_CONSUMER_SECRET") # API secret access_token = config("TWITTER_ACCESS_TOKEN") access_secret = config("TWITTER_ACCESS_SECRET") auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_secret) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) # Decorator for measuring execution time of functions def timeit(method): def timed(*args, **kw): start = time.time() result = method(*args, **kw) end = time.time() print("... {} seconds".format(end - start)) return result return timed @timeit def construct_audience_members(topicID, location): regx = location_regex.getLocationRegex(location) # upsert many operations = [] for audience_member in Connection.Instance().audienceDB[str(topicID)].find({'location':regx},{'id':1,'location':1}): operations.append( pymongo.UpdateOne( {'id': audience_member['id']}, { '$addToSet':{ 'topics': topicID, 'locations': audience_member['location'], }, '$setOnInsert' : { 'last_processed' : None, 'last_cursor' : None, 'finished_last_time' : False, 'followers':[], # initialize followers list empty, } }, upsert=True) ) #print(operations[:10]) try: Connection.Instance().audience_networks_DB['all_audience_members'].bulk_write(operations, ordered=False) except Exception as e: print("Exception in bulk_write." + str(e)) def construct_all_audience_members (): Connection.Instance().audience_networks_DB['all_audience_members'].create_index("id",unique=True) locations = ['italy', 'slovakia', 'spain', 'uk', 'tr'] # relevant locations with Connection.Instance().get_cursor() as cur: sql = ( "SELECT topic_id, topic_name " "FROM topics " ) cur.execute(sql) topics = cur.fetchall() # list of all topics print("There are {} many topic-location pairs.".format(len(topics) * len(locations))) index = 0 for topicID,topicName in topics: for location in locations: print("{}) {}-{}".format(index + 1 , topicName, location) , end='', flush=True) index += 1 construct_audience_members(topicID, location) def is_processable(member, threshold_in_day): # Do we need this or should the script get followers no matter what ??? if not member: return False if member["last_processed"] and (datetime.today()- member['last_processed']).days < threshold_in_day: return False return True @timeit def get_network_twitter_profiles(MIN_FOLLOWERS_COUNT, MAX_FOLLOWERS_COUNT): network_member_ids = Connection.Instance().audience_networks_DB['all_audience_members'].distinct('id') network_members = list(Connection.Instance().audienceDB['all_audience'].find({'id': {'$in': network_member_ids}, 'followers_count':{'$gt':MIN_FOLLOWERS_COUNT,'$lt':MAX_FOLLOWERS_COUNT}}, {'_id':0, 'id':1, 'followers_count':1})) return network_members def get_start_cursor(member): if member["last_cursor"]: cursor = member['last_cursor'] else: cursor = -1 tweepy_cursor = tweepy.Cursor(api.followers_ids, id=member["id"], cursor=cursor) # if this member is totally processed last time, move one cursor if possible if member["finished_last_time"] and tweepy_cursor.iterator.next_cursor != 0: cursor = tweepy_cursor.iterator.next_cursor tweepy_cursor = tweepy.Cursor(api.followers_ids, id=member["id"], cursor=cursor) return (cursor, tweepy_cursor) def process_member(member): print("Processing user : {}".format(member["id"])) last_cursor, cursor = get_start_cursor(member) requests = [] try: for page in cursor.pages(): if (cursor.iterator.next_cursor != 0): last_cursor = cursor.iterator.next_cursor requests.append(pymongo.UpdateOne( {"id" : member["id"]}, { "$addToSet" : {"followers" : {"$each" : page}}, "$set" : { "last_cursor" : last_cursor, "last_processed" : datetime.today(), "finished_last_time" : (cursor.iterator.next_cursor == 0) } } )) except (tweepy.TweepError , tweepy.error.TweepError) as twperr: print(twperr) # in case of errors due to protected accounts try: if (len(requests)!=0): Connection.Instance().audience_networks_DB['all_audience_members'].bulk_write(requests,ordered=False) except Exception as e: print("Exception in bulk_write:" + str(e)) @timeit def get_followers_of_network_members(MIN_FOLLOWERS_COUNT, MAX_FOLLOWERS_COUNT): print("Getting twitter profiles of the members in the network") network_twitter_profiles = get_network_twitter_profiles(MIN_FOLLOWERS_COUNT, MAX_FOLLOWERS_COUNT) print("There are {} many members that satisfy given follower count criteria".format(len(network_twitter_profiles))) for twitter_profile in network_twitter_profiles: member = Connection.Instance().audience_networks_DB['all_audience_members'].find_one({'id':twitter_profile["id"]}) if is_processable(member,1): process_member(member) def main(): construct_all_audience_members() if __name__ == "__main__": main()
37.762195
231
0.653641
e1dbdd4f3d3791312c3ab8161b0e4e99e9139361
4,104
py
Python
dnacentersdk/models/validators/v1_3_0/jsd_948ea8194348bc0b.py
daxm/dnacentersdk
5baa0cb151fb9e72cf7af1ae29e7541d89c3f06b
[ "MIT" ]
null
null
null
dnacentersdk/models/validators/v1_3_0/jsd_948ea8194348bc0b.py
daxm/dnacentersdk
5baa0cb151fb9e72cf7af1ae29e7541d89c3f06b
[ "MIT" ]
null
null
null
dnacentersdk/models/validators/v1_3_0/jsd_948ea8194348bc0b.py
daxm/dnacentersdk
5baa0cb151fb9e72cf7af1ae29e7541d89c3f06b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """DNA Center Create CLI credentials data model. Copyright (c) 2019 Cisco and/or its affiliates. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import ( absolute_import, division, print_function, unicode_literals, ) import fastjsonschema import json from dnacentersdk.exceptions import MalformedRequest from builtins import * class JSONSchemaValidator948EA8194348Bc0B(object): """Create CLI credentials request schema definition.""" def __init__(self): super(JSONSchemaValidator948EA8194348Bc0B, self).__init__() self._validator = fastjsonschema.compile(json.loads( '''{ "items": { "properties": { "comments": { "description": "", "type": [ "string", "null" ] }, "credentialType": { "description": "", "enum": [ "GLOBAL", "APP", null ], "type": [ "string", "null" ] }, "description": { "description": "", "type": [ "string", "null" ] }, "enablePassword": { "description": "", "type": [ "string", "null" ] }, "id": { "description": "", "type": [ "string", "null" ] }, "instanceTenantId": { "description": "", "type": [ "string", "null" ] }, "instanceUuid": { "description": "", "type": [ "string", "null" ] }, "password": { "description": "", "type": [ "string", "null" ] }, "username": { "description": "", "type": [ "string", "null" ] } }, "type": [ "object", "null" ] }, "type": "array" }'''.replace("\n" + ' ' * 16, '') )) def validate(self, request): try: self._validator(request) except fastjsonschema.exceptions.JsonSchemaException as e: raise MalformedRequest( '{} is invalid. Reason: {}'.format(request, e.message) )
28.699301
78
0.442982
8c4a5c502afac2dabcdc6624b86db300b6d192ab
17,413
py
Python
cbi_toolbox/parallel/mpi.py
idiap/cbi_toolbox
01e1f4ebc0a4156cfc5bbf65da9d932906b304d8
[ "BSD-3-Clause" ]
3
2021-04-21T12:19:54.000Z
2021-11-25T10:31:17.000Z
cbi_toolbox/parallel/mpi.py
idiap/cbi_toolbox
01e1f4ebc0a4156cfc5bbf65da9d932906b304d8
[ "BSD-3-Clause" ]
null
null
null
cbi_toolbox/parallel/mpi.py
idiap/cbi_toolbox
01e1f4ebc0a4156cfc5bbf65da9d932906b304d8
[ "BSD-3-Clause" ]
null
null
null
""" The mpi module allows to distribute operations in MPI communicators. It is an optional feature of cbi_toolbox that requires a working implementation of MPI. """ # Copyright (c) 2020 Idiap Research Institute, http://www.idiap.ch/ # Written by François Marelli <francois.marelli@idiap.ch> # # This file is part of CBI Toolbox. # # CBI Toolbox is free software: you can redistribute it and/or modify # it under the terms of the 3-Clause BSD License. # # CBI Toolbox is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # 3-Clause BSD License for more details. # # You should have received a copy of the 3-Clause BSD License along # with CBI Toolbox. If not, see https://opensource.org/licenses/BSD-3-Clause. # # SPDX-License-Identifier: BSD-3-Clause import mpi4py.MPI as MPI import numpy as np import numpy.lib.format as npformat from cbi_toolbox import utils from . import distribute_bin, distribute_bin_all _MPI_dtypes = {'float64': MPI.DOUBLE} def get_size(mpi_comm=MPI.COMM_WORLD): """ Get the process count in the communicator. Parameters ---------- mpi_comm : mpi4py.MPI.Comm, optional The MPI communicator, by default MPI.COMM_WORLD. Returns ------- int The size of the MPI communicator. """ return mpi_comm.Get_size() def is_root_process(mpi_comm=MPI.COMM_WORLD): """ Check if the current process is root. Parameters ---------- mpi_comm : mpi4py.MPI.Comm, optional The MPI communicator, by default MPI.COMM_WORLD. Returns ------- bool True if the current process is the root of the communicator. """ return mpi_comm.Get_rank() == 0 def get_rank(mpi_comm=MPI.COMM_WORLD): """ Get this process number in the communicator. Parameters ---------- mpi_comm : mpi4py.MPI.Comm, optional The communicator, by default MPI.COMM_WORLD. Returns ------- int The rank of the process. """ return mpi_comm.Get_rank() def wait_all(mpi_comm=MPI.COMM_WORLD): """ Wait for all processes to reach this line (MPI barrier) This is just a wrapper for ease. Parameters ---------- mpi_comm : mpi4py.MPI.Comm, optional The communicator, by default MPI.COMM_WORLD. """ mpi_comm.Barrier() def distribute_mpi(dimension, mpi_comm=MPI.COMM_WORLD): """ Computes the start index and bin size to evenly split array-like data into multiple bins on an MPI communicator. Parameters ---------- dimension : int The size of the array to distribute. mpi_comm : mpi4py.MPI.Comm, optional The communicator, by default MPI.COMM_WORLD. Returns ------- (int, int) The start index of this bin, and its size. The distributed data should be array[start:start + bin_size]. """ return distribute_bin(dimension, mpi_comm.Get_rank(), mpi_comm.Get_size()) def distribute_mpi_all(dimension, mpi_comm=MPI.COMM_WORLD): """ Computes the start indexes and bin sizes of all splits to distribute computations across an MPI communicator. Parameters ---------- dimension : int the size of the array to be distributed mpi_comm : mpi4py.MPI.Comm, optional the communicator, by default MPI.COMM_WORLD Returns ------- ([int], [int]) The list of start indexes and the list of bin sizes to distribute data. """ return distribute_bin_all(dimension, mpi_comm.Get_size()) def to_mpi_datatype(np_datatype): """ Returns the MPI datatype corresponding to the numpy dtype provided. Parameters ---------- np_datatype : numpy.dtype or str The numpy datatype, or name. Returns ------- mpi4py.MPI.Datatype The corresponding MPI datatype. Raises ------ NotImplementedError If the numpy datatype is not listed in the conversion table. """ if isinstance(np_datatype, np.dtype): dtype = np_datatype.name else: dtype = np_datatype try: return _MPI_dtypes[dtype] except KeyError: raise NotImplementedError( 'Type not in conversion table: {}'.format(dtype)) def create_slice_view(axis, n_slices, array=None, shape=None, dtype=None): """ Create a MPI vector datatype to access given slices of a non distributed array. If the array is not provided, its shape and dtype must be specified. Parameters ---------- axis : int The axis on which to slice. n_slices : int How many contiguous slices to take. array : numpy.ndarray, optional The array to slice, by default None (then shape and dtype must be given). shape : the shape of the array to slice, optional The shape of the array, by default None. dtype : numpy.dtype or str, optional The datatype of the array, by default None. Returns ------- mpi4py.MPI.Datatype The strided datatype allowing to access slices in the array. Raises ------ ValueError If array, shape and dtype are all None. """ if array is not None: shape = array.shape dtype = array.dtype elif shape is None or dtype is None: raise ValueError("array, or shape and dtype must be not None") axis = utils.positive_index(axis, len(shape)) base_type = to_mpi_datatype(dtype) stride = np.prod(shape[axis:], dtype=int) block = np.prod(shape[axis + 1:], dtype=int) * n_slices count = np.prod(shape[:axis], dtype=int) extent = block * base_type.extent return base_type.Create_vector(count, block, stride).Create_resized(0, extent) def compute_vector_extent(axis, array=None, shape=None, dtype=None): """ Compute the extent in bytes of a sliced view of a given array. Parameters ---------- axis : int Axis on which the slices are taken. array : numpy.ndarray, optional The array to slice, by default None (then shape and dtype must be given). shape : the shape of the array to slice, optional The shape of the array, by default None. dtype : numpy.dtype or str, optional The datatype of the array, by default None. Returns ------- int The extent of the slices underlying data. Raises ------ ValueError If array, shape and dtype are all None. """ if array is not None: shape = array.shape dtype = array.dtype elif shape is None or dtype is None: raise ValueError("array, or shape and dtype must be not None") ndims = len(shape) axis = utils.positive_index(axis, ndims) base_type = to_mpi_datatype(dtype) return np.prod(shape[axis + 1:], dtype=int) * base_type.extent def create_vector_type(src_axis, tgt_axis, array=None, shape=None, dtype=None, block_size=1): """ Create a MPI vector datatype to communicate a distributed array and split it along a different axis. Parameters ---------- src_axis : int The original axis on which the array is distributed. tgt_axis : int The axis on which the array is to be distributed. array : numpy.ndarray, optional The array to slice, by default None (then shape and dtype must be given). shape : the shape of the array to slice, optional The shape of the array, by default None. dtype : numpy.dtype or str, optional The datatype of the array, by default None. block_size : int, optional The size of the distributed bin, by default 1. Returns ------- mpi4py.MPI.Datatype The vector datatype used for transmission/reception of the data. Raises ------ ValueError If array, shape and dtype are all None. ValueError If the source and destination axes are the same. NotImplementedError If the array has more than 4 axes (should work, but tests needed). ValueError If the block size is bigger than the source axis. """ if array is not None: shape = array.shape dtype = array.dtype elif shape is None or dtype is None: raise ValueError("array, or shape and dtype must be not None") ndims = len(shape) src_axis = utils.positive_index(src_axis, ndims) tgt_axis = utils.positive_index(tgt_axis, ndims) if src_axis == tgt_axis: raise ValueError( "Source and target are identical, no communication should be " "performed") if len(shape) > 4: raise NotImplementedError( "This has never been tested for arrays with more than 4 axes.\n" "It will probably work, but please run a test before" "(and if works, tell me!)") if block_size > shape[src_axis]: raise ValueError( "Block size cannot be bigger than the dimension of the source axis") base_type = to_mpi_datatype(dtype) min_axis = min(src_axis, tgt_axis) max_axis = max(src_axis, tgt_axis) i_count = np.prod(shape[min_axis + 1:max_axis], dtype=int) i_block = np.prod(shape[max_axis + 1:], dtype=int) i_stride = np.prod(shape[max_axis:], dtype=int) i_extent = np.prod(shape[src_axis + 1:], dtype=int) * base_type.extent # only happens if the array is empty, avoid division by zero warnings if i_extent == 0: i_extent = 1 inner_stride = base_type.Create_vector( i_count, i_block, i_stride).Create_resized(0, i_extent) o_count = np.prod(shape[:min_axis], dtype=int) o_block = block_size o_stride = (np.prod(shape[min_axis:], dtype=int) * base_type.extent) // i_extent o_extent = np.prod(shape[tgt_axis + 1:], dtype=int) * base_type.extent outer_stride = inner_stride.Create_vector( o_count, o_block, o_stride).Create_resized(0, o_extent) return outer_stride def gather_full_shape(array, axis, mpi_comm=MPI.COMM_WORLD): """ Gather the full shape of an array distributed across an MPI communicator along a given axis. Parameters ---------- array : numpy.ndarray The distributed array. axis : int The axis on which the array is distributed. mpi_comm : mpi4py.MPI.Comm, optional The communicator, by default MPI.COMM_WORLD. Raises ------ NotImplementedError This is not implemented yet. """ raise NotImplementedError def load(file_name, axis, mpi_comm=MPI.COMM_WORLD): """ Load a numpy array across parallel jobs in the MPI communicator. The array is sliced along the chosen dimension, with minimal bandwidth. Parameters ---------- file_name : str The numpy array file to load. axis : int The axis on which to distribute the array. mpi_comm : mpi4py.MPI.Comm, optional The MPI communicator used to distribute, by default MPI.COMM_WORLD. Returns ------- (numpy.ndarray, tuple(int)) The distributed array, and the size of the full array. Raises ------ ValueError If the numpy version used to save the file is not supported. NotImplementedError If the array is saved in Fortran order. """ header = None if is_root_process(mpi_comm): with open(file_name, 'rb') as fp: version, _ = npformat.read_magic(fp) if version == 1: header = npformat.read_array_header_1_0(fp) elif version == 2: header = npformat.read_array_header_2_0(fp) else: raise ValueError( "Invalid numpy format version: {}".format(version)) header = *header, fp.tell() header = mpi_comm.bcast(header, root=0) full_shape, fortran, dtype, header_offset = header if fortran: raise NotImplementedError( "Fortran-ordered (column-major) arrays are not supported") ndims = len(full_shape) axis = utils.positive_index(axis, ndims) i_start, bin_size = distribute_mpi(full_shape[axis], mpi_comm) l_shape = list(full_shape) l_shape[axis] = bin_size l_array = np.empty(l_shape, dtype=dtype) slice_type = create_slice_view( axis, bin_size, shape=full_shape, dtype=dtype) slice_type.Commit() single_slice_extent = slice_type.extent if bin_size != 0: single_slice_extent /= bin_size displacement = header_offset + i_start * single_slice_extent base_type = to_mpi_datatype(l_array.dtype) fh = MPI.File.Open(mpi_comm, file_name, MPI.MODE_RDONLY) fh.Set_view(displacement, filetype=slice_type) fh.Read_all([l_array, l_array.size, base_type]) fh.Close() slice_type.Free() return l_array, full_shape def save(file_name, array, axis, full_shape=None, mpi_comm=MPI.COMM_WORLD): """ Save a numpy array from parallel jobs in the MPI communicator. The array is gathered along the chosen dimension. Parameters ---------- file_name : str The numpy array file to load. array : numpy.ndarray The distributed array. axis : int The axis on which to distribute the array. full_shape : tuple(int), optional The size of the full array, by default None. mpi_comm : mpi4py.MPI.Comm, optional The MPI communicator used to distribute, by default MPI.COMM_WORLD. """ if full_shape is None: full_shape = gather_full_shape(array, axis, mpi_comm) axis = utils.positive_index(axis, len(full_shape)) header_offset = None if is_root_process(mpi_comm): header_dict = {'shape': full_shape, 'fortran_order': False, 'descr': npformat.dtype_to_descr(array.dtype)} with open(file_name, 'wb') as fp: try: npformat.write_array_header_1_0(fp, header_dict) except ValueError: npformat.write_array_header_2_0(fp, header_dict) header_offset = fp.tell() header_offset = mpi_comm.bcast(header_offset, root=0) i_start, bin_size = distribute_mpi(full_shape[axis], mpi_comm) slice_type = create_slice_view( axis, bin_size, shape=full_shape, dtype=array.dtype) slice_type.Commit() single_slice_extent = slice_type.extent if bin_size != 0: single_slice_extent /= bin_size displacement = header_offset + i_start * single_slice_extent base_type = to_mpi_datatype(array.dtype) fh = MPI.File.Open(mpi_comm, file_name, MPI.MODE_WRONLY | MPI.MODE_APPEND) fh.Set_view(displacement, filetype=slice_type) fh.Write_all([array, array.size, base_type]) fh.Close() slice_type.Free() def redistribute(array, src_axis, tgt_axis, full_shape=None, mpi_comm=MPI.COMM_WORLD): """ Redistribute an array along a different dimension. Parameters ---------- array : numpy.ndarray The distributed array. src_axis : int The original axis on which the array is distributed. tgt_axis : int The axis on which the array is to be distributed. full_shape : tuple(int), optional The full shape of the array, by default None. mpi_comm : mpi4py.MPI.Comm, optional The MPI communicator used to distribute, by default MPI.COMM_WORLD. Returns ------- np.ndarray The array distributed along the new axis. """ if full_shape is None: full_shape = gather_full_shape(array, src_axis, mpi_comm) ndims = len(full_shape) src_axis = utils.positive_index(src_axis, ndims) tgt_axis = utils.positive_index(tgt_axis, ndims) if src_axis == tgt_axis: return array rank = mpi_comm.Get_rank() size = mpi_comm.Get_size() src_starts, src_bins = distribute_mpi_all(full_shape[src_axis], mpi_comm) tgt_starts, tgt_bins = distribute_mpi_all(full_shape[tgt_axis], mpi_comm) src_has_data = np.atleast_1d(src_bins) src_has_data[src_has_data > 0] = 1 tgt_has_data = np.atleast_1d(tgt_bins) tgt_has_data[tgt_has_data > 0] = 1 n_shape = list(full_shape) n_shape[tgt_axis] = tgt_bins[rank] n_array = np.empty(n_shape, dtype=array.dtype) send_datatypes = [] recv_datatypes = [] for ji in range(size): send_datatypes.append(create_vector_type( src_axis, tgt_axis, array, block_size=src_bins[rank])) recv_datatypes.append(create_vector_type( src_axis, tgt_axis, n_array, block_size=src_bins[ji])) send_extent = compute_vector_extent(tgt_axis, array) recv_extent = compute_vector_extent(src_axis, n_array) send_counts = np.multiply(tgt_bins, src_has_data[rank]) send_displs = np.multiply(tgt_starts, send_extent) sendbuf = [array, send_counts, send_displs, send_datatypes] recv_counts = np.multiply(src_has_data, tgt_bins[rank]) recv_displs = np.multiply(src_starts, recv_extent) recvbuf = [n_array, recv_counts, recv_displs, recv_datatypes] for ji in range(size): send_datatypes[ji].Commit() recv_datatypes[ji].Commit() mpi_comm.Alltoallw(sendbuf, recvbuf) for ji in range(size): send_datatypes[ji].Free() recv_datatypes[ji].Free() return n_array
28.87728
82
0.65721
e9dbafcdbb2ba6426befcd0979083233f5688117
111
py
Python
api/app/routes/index.py
BD103/Reflux
a00b8ec51249f2d59aa5164d46237899c69ff2a7
[ "MIT" ]
30
2021-01-27T22:55:56.000Z
2021-12-26T10:54:48.000Z
api/app/routes/index.py
BD103/Reflux
a00b8ec51249f2d59aa5164d46237899c69ff2a7
[ "MIT" ]
12
2021-01-26T14:48:59.000Z
2021-12-24T17:37:48.000Z
api/app/routes/index.py
BD103/Reflux
a00b8ec51249f2d59aa5164d46237899c69ff2a7
[ "MIT" ]
7
2021-01-29T13:39:53.000Z
2022-01-15T10:17:41.000Z
import flask from app import app @app.route("/") def index_route(): return flask.jsonify({"status": 200})
15.857143
41
0.684685
7cf600ec0f47e7f373da654d3e4c88668a2da1c8
8,008
py
Python
test/widgets/test_cmus.py
1kyu/qtile
da93518b2ab924e803552decdb364d64de46088d
[ "MIT" ]
1
2021-11-15T04:03:59.000Z
2021-11-15T04:03:59.000Z
test/widgets/test_cmus.py
1kyu/qtile
da93518b2ab924e803552decdb364d64de46088d
[ "MIT" ]
null
null
null
test/widgets/test_cmus.py
1kyu/qtile
da93518b2ab924e803552decdb364d64de46088d
[ "MIT" ]
1
2020-04-27T22:20:11.000Z
2020-04-27T22:20:11.000Z
# Copyright (c) 2021 elParaguayo # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Widget specific tests import subprocess import pytest import libqtile.config from libqtile.bar import Bar from libqtile.widget import cmus class MockCmusRemoteProcess: CalledProcessError = None EXTRA = [ "set aaa_mode all", "set continue true", "set play_library true", "set play_sorted false", "set replaygain disabled", "set replaygain_limit true", "set replaygain_preamp 0.000000", "set repeat false", "set repeat_current false", "set shuffle false", "set softvol false", "set vol_left 100", "set vol_right 100" ] info = {} is_error = False index = 0 @classmethod def reset(cls): cls.info = [ [ "status playing", "file /playing/file/rickroll.mp3", "duration 222", "position 14", "tag artist Rick Astley", "tag album Whenever You Need Somebody", "tag title Never Gonna Give You Up" ], [ "status playing", "file http://playing/file/sweetcaroline.mp3", "duration 222", "position 14", "tag artist Neil Diamond", "tag album Greatest Hits", "tag title Sweet Caroline" ], [ "status stopped", "file http://streaming.source/tomjones.m3u", "duration -1", "position -9", "tag title It's Not Unusual", "stream tomjones" ], [ "status playing", "file /playing/file/always.mp3", "duration 222", "position 14", "tag artist Above & Beyond", "tag album Anjunabeats 14", "tag title Always - Tinlicker Extended Mix" ], ] cls.index = 0 cls.is_error = False @classmethod def call_process(cls, cmd): if cls.is_error: raise subprocess.CalledProcessError( -1, cmd=cmd, output="Couldn't connect to cmus." ) if cmd[1:] == ["-C", "status"]: track = cls.info[cls.index] track.extend(cls.EXTRA) output = "\n".join(track) return output elif cmd[1] == "-p": cls.info[cls.index][0] = "status playing" elif cmd[1] == "-u": if cls.info[cls.index][0] == "status playing": cls.info[cls.index][0] = "status paused" elif cls.info[cls.index][0] == "status paused": cls.info[cls.index][0] = "status playing" elif cmd[1] == "-n": cls.index = (cls.index + 1) % len(cls.info) elif cmd[1] == "-r": cls.index = (cls.index - 1) % len(cls.info) @classmethod def Popen(cls, cmd): # noqa: N802 cls.call_process(cmd) def no_op(*args, **kwargs): pass @pytest.fixture def patched_cmus(monkeypatch): MockCmusRemoteProcess.reset() monkeypatch.setattr("libqtile.widget.cmus.subprocess", MockCmusRemoteProcess) monkeypatch.setattr("libqtile.widget.cmus.subprocess.CalledProcessError", subprocess.CalledProcessError) monkeypatch.setattr("libqtile.widget.cmus.base.ThreadPoolText.call_process", MockCmusRemoteProcess.call_process) return cmus def test_cmus(fake_qtile, patched_cmus, fake_window): widget = patched_cmus.Cmus() fakebar = Bar([widget], 24) fakebar.window = fake_window fakebar.width = 10 fakebar.height = 10 fakebar.draw = no_op widget._configure(fake_qtile, fakebar) text = widget.poll() assert text == "♫ Rick Astley - Never Gonna Give You Up" assert widget.layout.colour == widget.play_color widget.play() text = widget.poll() assert text == "♫ Rick Astley - Never Gonna Give You Up" assert widget.layout.colour == widget.noplay_color def test_cmus_play_stopped(fake_qtile, patched_cmus, fake_window): widget = patched_cmus.Cmus() # Set track to a stopped item MockCmusRemoteProcess.index = 2 fakebar = Bar([widget], 24) fakebar.window = fake_window fakebar.width = 10 fakebar.height = 10 fakebar.draw = no_op widget._configure(fake_qtile, fakebar) text = widget.poll() # It's stopped so colour should reflect this assert text == "♫ tomjones" assert widget.layout.colour == widget.noplay_color widget.play() text = widget.poll() assert text == "♫ tomjones" assert widget.layout.colour == widget.play_color def test_cmus_buttons(minimal_conf_noscreen, manager_nospawn, patched_cmus): widget = patched_cmus.Cmus(update_interval=30) config = minimal_conf_noscreen config.screens = [ libqtile.config.Screen( top=libqtile.bar.Bar([widget], 10) ) ] manager_nospawn.start(config) topbar = manager_nospawn.c.bar["top"] cmuswidget = manager_nospawn.c.widget["cmus"] assert cmuswidget.info()["text"] == "♫ Rick Astley - Never Gonna Give You Up" # Play next track # Non-local file source so widget just displays title topbar.fake_button_press(0, "top", 0, 0, button=4) cmuswidget.eval("self.update(self.poll())") assert cmuswidget.info()["text"] == "♫ Sweet Caroline" # Play next track # Stream source so widget just displays stream info topbar.fake_button_press(0, "top", 0, 0, button=4) cmuswidget.eval("self.update(self.poll())") assert cmuswidget.info()["text"] == "♫ tomjones" # Play previous track # Non-local file source so widget just displays title topbar.fake_button_press(0, "top", 0, 0, button=5) cmuswidget.eval("self.update(self.poll())") assert cmuswidget.info()["text"] == "♫ Sweet Caroline" def test_cmus_error_handling(fake_qtile, patched_cmus, fake_window): widget = patched_cmus.Cmus() MockCmusRemoteProcess.is_error = True fakebar = Bar([widget], 24) fakebar.window = fake_window fakebar.width = 10 fakebar.height = 10 fakebar.draw = no_op widget._configure(fake_qtile, fakebar) text = widget.poll() # Widget does nothing with error message so text is blank # TODO: update widget to show error? assert text == "" def test_escape_text(fake_qtile, patched_cmus, fake_window): widget = patched_cmus.Cmus() # Set track to a stopped item MockCmusRemoteProcess.index = 3 fakebar = Bar([widget], 24) fakebar.window = fake_window fakebar.width = 10 fakebar.height = 10 fakebar.draw = no_op widget._configure(fake_qtile, fakebar) text = widget.poll() # It's stopped so colour should reflect this assert text == "♫ Above &amp; Beyond - Always - Tinlicker Extended Mix"
32.032
116
0.622378
6a15c3ce0d6e3fcadf9ce916fc80384f6bdfc4fc
478
py
Python
accounts/views.py
lobo-death/uvfriendly-web
af69b2ceafcb3bad5e2f28840846bf97f1b85748
[ "CC0-1.0" ]
null
null
null
accounts/views.py
lobo-death/uvfriendly-web
af69b2ceafcb3bad5e2f28840846bf97f1b85748
[ "CC0-1.0" ]
null
null
null
accounts/views.py
lobo-death/uvfriendly-web
af69b2ceafcb3bad5e2f28840846bf97f1b85748
[ "CC0-1.0" ]
null
null
null
from django.contrib.auth.forms import UserCreationForm from django.urls import reverse_lazy from django.views import generic from django.shortcuts import render template_name = 'accounts' def forgot_password(request): return render(request, 'forgot-password.html') def login(request): return render(request, 'login.html') class SignUp(generic.CreateView): form_class = UserCreationForm success_url = reverse_lazy('login') template_name = 'register.html'
26.555556
54
0.778243
d3ebe854b305638644258300223827afa4e6b6a1
11,316
py
Python
pch2csd/app.py
holotape/pch2csd
9fab9dcc8d9fe9c4ff272461685d4dfc586d38a9
[ "MIT" ]
null
null
null
pch2csd/app.py
holotape/pch2csd
9fab9dcc8d9fe9c4ff272461685d4dfc586d38a9
[ "MIT" ]
null
null
null
pch2csd/app.py
holotape/pch2csd
9fab9dcc8d9fe9c4ff272461685d4dfc586d38a9
[ "MIT" ]
null
null
null
import argparse import os import sys from io import StringIO from tabulate import tabulate from pch2csd import __version__, __homepage__ from pch2csd.csdgen import ZakSpace, Csd, UdoTemplate, UdoTemplateValidation, Udo from pch2csd.parse import parse_pch2 from pch2csd.patch import Patch, Location from pch2csd.resources import get_template_module_path, ProjectData def get_test_resource(path: str) -> str: return os.path.abspath( os.path.join(os.path.dirname(__file__), '..', 'tests', 'resources', path)) def _all_modules_implemented(patch: Patch): not_implemented = [x.type_name for x in patch.modules if not os.path.isfile(get_template_module_path(x.type))] if len(not_implemented) > 0: print('The patch file contains some modules that has not been implemented yet:') print(', '.join(not_implemented)) print('Please, consider contributing these modules, following our tutorial:') print('https://github.com/gleb812/pch2csd/wiki/How-to-add-new-modules') return False return True def validate_udo(type_id: int, io=sys.stdout, print_action=True): if print_action: print("checking module type '{id}' ({id}.txt)".format(id=type_id), file=io) pch2_files = [get_test_resource(s) for s in ['test_all_modules_1.pch2', 'test_all_modules_2.pch2']] data, mod, patch = ProjectData(), None, None for p in map(lambda x: parse_pch2(data, x), pch2_files): for m in p.modules: if m.type == type_id: mod, patch = m, p break if mod is not None: if print_action: print('module name: {}'.format(mod.type_name), file=io) udo = UdoTemplate(mod) v = UdoTemplateValidation(data, udo) v.print_errors(io) return v.is_valid(with_todos=True) else: print("error: unknown module type '{}'".format(type_id), file=io) return False def print_module(fn_pch2: str, mod_id: int, loc: Location): if not fn_pch2.lower().endswith('.pch2'): print("error: patch file should have extension '.pch2'") exit(-1) data = ProjectData() path = os.path.abspath(os.path.expanduser(fn_pch2)) p = parse_pch2(data, path) m = p.find_module(mod_id, loc) if m is None: print('error: cannot find module with id {} in the {} location'.format(mod_id, loc.short_str())) exit(-1) udo = Udo(p, m) params_midi = p.find_mod_params(loc, mod_id) params_mapped = udo.get_params() assert params_midi.num_params == len(params_mapped) tbl = [['Type', 'Raw', 'Mapped']] for raw, mapped in zip(params_midi.values, params_mapped): tbl.append(['Parameter', str(raw), str(mapped)]) for mode in m.modes: tbl.append(['Mode', str(mode), '']) print('Patch: {}'.format(fn_pch2)) print('Details of the module:\n{}'.format(m)) print() print(tabulate(tbl, headers='firstrow', tablefmt='simple')) def print_pch2(fn: str): if not fn.lower().endswith('.pch2'): print("error: patch file should have extension '.pch2'") exit(-1) data = ProjectData() path = os.path.abspath(os.path.expanduser(fn)) patch = parse_pch2(data, path) mod_table = [['Name', 'ID', 'Type', 'Parameters', 'Modes', 'Area']] for m in patch.modules: p = patch.find_mod_params(m.location, m.id) mod_table.append([m.type_name, m.id, m.type, str(p.values), str(m.modes), m.location.short_str()]) cab_table = [['From', '', 'To', 'Color', 'Type', 'Area']] for c in patch.cables: mf_name = patch.find_module(c.module_from, c.loc).type_name mt_name = patch.find_module(c.module_to, c.loc).type_name pin1, pin2 = c.type.short_str().split('-') cab_table.append([ '{}(id={}, {}={})'.format(mf_name, c.module_from, pin1, c.jack_from), '->', '{}(id={}, {}={})'.format(mt_name, c.module_to, pin2, c.jack_to), c.color.short_str(), c.type.short_str(), c.loc.short_str()]) print('Patch file: {}\n'.format(os.path.basename(path))) print('Modules') print(tabulate(mod_table, headers='firstrow', tablefmt='simple')) print('\nCables') print(tabulate(cab_table, headers='firstrow', tablefmt='simple')) def convert_pch2(fn: str): if not fn.lower().endswith('.pch2'): print("error: the patch file should have extension '.pch2'") exit(-1) data = ProjectData() path = os.path.abspath(os.path.expanduser(fn)) p = parse_pch2(data, path) zak = ZakSpace() try: udos = zak.connect_patch(p) except ValueError as e: print('error: {}'.format(e)) exit(-1) csd = Csd(p, zak, udos) dirname = os.path.dirname(path) csd_save_path = os.path.join(dirname, os.path.basename(path) + '.csd') with open(csd_save_path, 'w') as f: f.write(csd.get_code()) def gen_udo_status_doc(): tpl_url = 'https://github.com/gleb812/pch2csd/blob/master/pch2csd/resources/templates/modules/{}.txt' data = ProjectData() with open('Module-implementation-status.md', 'w') as md: md.write('This file is automatically generated.\n\n') md.write('| Template | Module name | Status |\n') md.write('|----------|-------------|--------|\n') for p in [parse_pch2(data, get_test_resource(pch2file)) for pch2file in ['test_all_modules_1.pch2', 'test_all_modules_2.pch2']]: for m in p.modules: status = StringIO() validate_udo(m.type, status, print_action=False) md.write('| [{}]({}) | {} | {} |\n'.format( '{}.txt'.format(m.type), tpl_url.format(m.type), m.type_name, '<br>'.join(status.getvalue().splitlines()))) def main(): arg_parser = argparse.ArgumentParser( prog='pch2csd', description='convert Clavia Nord Modular G2 patches to the Csound code', epilog='Version {}, homepage: {}'.format(__version__, __homepage__)) arg_parser.add_argument('arg', metavar='arg', nargs='?', default='patch.pch2', help='a pch2 file path or an UDO numerical ID') arg_parser.add_argument('-d', '--debug', action='store_const', const=True, help='print a stack trace in case of error') group = arg_parser.add_mutually_exclusive_group() group.add_argument('-p', '--print', action='store_const', const=True, help='parse the patch file and print its content') group.add_argument('-m', '--mod-print', nargs=2, metavar=('module_id', '{voice,fx}'), help='print extensive information about the module in' 'the file {arg}. You should provide two values:' 'an integer module id and an area.') group.add_argument('-c', '--check-udo', action='store_const', const=True, help="validate the UDO template file (overrides '-p')") group.add_argument('-v', '--version', action='version', version='%(prog)s ' + __version__) group.add_argument('-e', action='store_const', const=True, help='show the elephant and exit') args = arg_parser.parse_args() if args.check_udo: try: type_id = int(args.arg) validate_udo(type_id) except ValueError: print("you should pass the integer as the 'arg' parameter when using '--check-udo'") elif args.mod_print: print_module(args.arg, int(args.mod_print[0]), Location.from_str(args.mod_print[1])) elif args.print: print_pch2(args.arg) elif args.e: show_elephant() else: if args.arg == 'gen_udo_status_doc': gen_udo_status_doc() else: try: convert_pch2(args.arg) except Exception as e: print(e) if args.debug: import traceback _, _, tb = sys.exc_info() print() print('-----------') traceback.print_tb(tb, file=sys.stdout) def show_elephant(): print('///////////////////osyyo///////////////////////////////////////////////////////') print('//////////////+oshmNMMMmNmhyso+//////////////////+++++////////////////////+o///') print('///////////+oshydNMMMMMMMMMMMNh++++++++++ossssyysssyshhys+//////////////+hNmhys') print('/////////+oydmmNNNNNNNNNNNMMNNdhyyyyyyyhhddy+++::/ooossyyhs+///////////omMMMNNN') print('///////+oyyhhhdhhhhhhdmdmmddhyshhyysys++ossys+--+syyyyyysoo++/////////+hmmmmmdy') print('///+++++++++ooooooosossssoo+++syyyssyyss+-..`.ydmmddyo+/+++/++++++++++shhhhhyys') print('+++ oooyhyyhyyyhhdso+/:sddyo+//++/////++++++++++ooosssss') print('+++ Clavia Nord Modular G2 sshhhyyyyyys+-+hho/ys+///++/////:+++++++++++++++++++') print('+++ Patch Converter ooossosyyy+:``.--`.//+/+/://+/o+++++++++++++++++++++') print('+++ oo+oysysso/:-.``````.-:/+/-/+syso+++++++++++++++++++') print('++oooooooooooooooooooooooooooosssysoosys+-``` ``-:////://oosooooooooo++++++++++') print('ooooooooooooosssssooosssssssssshyyso+shdh.` `-/:-:-:--/++ooooooooooooooooyso') print('ssssssssyyyyyyyyyyyyyyyyyssssooooso+++yhh- .:/--````-::-/oooooooooooosyhhdd') print('ossosssssssssssssssssssssssss/++++/--/+hs` `.`-...````-..`oooooooosssyssssyyy') print('ooooooosssssssssssssssyysssss/////-` sNm ` .` ``` /oooosoosyhdhysooyhd') print('oooooosssssssssssssshdyysssym/:::-`/.:mmo ` :sssssyyyyyysoosyyyyy') print('osssssssssssssssyyhdy+++shmNs-.```.Ny`` +ssssyyyhhyyyyyssssoo') print('sssshddhysyssyyyhdds/oyhsdysh-. omm- -. :.+yssssyyyyysyhyyysyh') print('yhhhdhhhhhyyyyyhhhh/.:ysydmNh. .hmmy `:-` `` `yo-ohyyyyyyyyyyyysssss') print('syyyyyyyyyyhddhddmmy.`.:/++o/` `yhhdh. ..` ```` ohhyyyyyyyyyyyyyyyyyyss') print('hysyyyyhhhyhhhhhyyhhy/` `-:. `/yyhhhyo `.` `` +yyyyyyyyyyyyysyssssssss') print('hyyhhyyhhdhhhhyyyyyyyyyo+///+syyyyyyyhy- ..``:yo` :hhyyyyysyyyssyysssssssss') print('yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyo .-.``syy- syyyyyyssssssssssssssssss') print('ssssyyyyyyyyyyyyyyyysssssosssoooooooooos-`--.`-sss. `ssssooooooooooooooooooooo') print('sssyyysssssssssssssooooooooossssssssssss+-:-.`oysy -yyyyyyyyyyyyyyyyyysyysyyy') print('yyyyyyyyyyyyyhhhhyhhhhhdhhdddddddhdddddd/.:-``yddy :ddddhhdddddddddhhhhhhdhhh') print('hhddddddddddddddddddddddmmmmmmmdddmmdddh/.:.../hd+ .ddddddddddddhhhyhhhhhhhhh') print('hhhhhhhhhhhhdddhdddddddddhhhhhhhhdhhhhhh-.o+/--hy. -osyhhhddddhhhhyyyyyyyyys') print('dddhhhhhhhhhhhhdddhdhhhhhhhhhhyyyssyo//:`-hyys:` ```.-::/+osyyysyyyyyyyyyhyyhys') print('hhhyyhhhhhdhddhhhhyyysosoysosooo//:----.`+yysssssossooyyysyhhhhyhhyyyyyyhhyyyyy') if __name__ == '__main__': main()
45.813765
105
0.58351
22cc25fbf63fb6f4acec09e62a7550166b4e7eab
63
py
Python
count.py
jtr4fh/cs3240-labdemo
f909e93439610e760e289cea032d2fd6ddbbf19e
[ "MIT" ]
null
null
null
count.py
jtr4fh/cs3240-labdemo
f909e93439610e760e289cea032d2fd6ddbbf19e
[ "MIT" ]
null
null
null
count.py
jtr4fh/cs3240-labdemo
f909e93439610e760e289cea032d2fd6ddbbf19e
[ "MIT" ]
null
null
null
def countdown(): print(3) print(2) print(1) print('PARTY!')
12.6
16
0.634921
3846cc3507730ee89781e439dbeccf981b0af744
147
py
Python
tests/classification/FourClass_100/ws_FourClass_100_LogisticRegression_sqlite_code_gen.py
antoinecarme/sklearn2sql_heroku
d680db10683daa419324461eeea851dd8b103ad5
[ "BSD-3-Clause" ]
1
2019-07-09T14:45:18.000Z
2019-07-09T14:45:18.000Z
tests/classification/FourClass_100/ws_FourClass_100_LogisticRegression_sqlite_code_gen.py
antoinecarme/sklearn2sql_heroku
d680db10683daa419324461eeea851dd8b103ad5
[ "BSD-3-Clause" ]
5
2017-11-13T13:35:37.000Z
2021-11-11T12:57:20.000Z
tests/classification/FourClass_100/ws_FourClass_100_LogisticRegression_sqlite_code_gen.py
antoinecarme/sklearn2sql_heroku
d680db10683daa419324461eeea851dd8b103ad5
[ "BSD-3-Clause" ]
1
2021-09-19T15:05:33.000Z
2021-09-19T15:05:33.000Z
from sklearn2sql_heroku.tests.classification import generic as class_gen class_gen.test_model("LogisticRegression" , "FourClass_100" , "sqlite")
29.4
72
0.823129
5bcad05c8f92b1c3d9e9fa44388f7d05e513ed5c
398
py
Python
Scripts/Discord Nitro Generator.py
Wtf-Is-This-x1337/Useful-Scripts
0f51ad216849e3f1dd05b1699d9f1c168b05a5d5
[ "Unlicense" ]
1
2021-02-03T17:48:15.000Z
2021-02-03T17:48:15.000Z
Scripts/Discord Nitro Generator.py
Wtf-Is-This-x1337/Useful-Scripts
0f51ad216849e3f1dd05b1699d9f1c168b05a5d5
[ "Unlicense" ]
null
null
null
Scripts/Discord Nitro Generator.py
Wtf-Is-This-x1337/Useful-Scripts
0f51ad216849e3f1dd05b1699d9f1c168b05a5d5
[ "Unlicense" ]
null
null
null
import random, string amount = int(input('! (all the codes are unchecked) How many Nitro codes do you want to be generated?: ')) value = 1 while value <= amount: code = "https://discord.gift/" + ('').join(random.choices(string.ascii_letters + string.digits, k=16)) f = open('Codes.txt', "a+") f.write(f'{code}\n') f.close() print(f'[GENERATED] {code}') value += 1
36.181818
107
0.613065
a55c2b964f4ad73639e884d274d84577c231c158
5,627
py
Python
sdk/python/pulumi_azure_native/botservice/v20210301/list_channel_with_keys.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/botservice/v20210301/list_channel_with_keys.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/botservice/v20210301/list_channel_with_keys.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'ListChannelWithKeysResult', 'AwaitableListChannelWithKeysResult', 'list_channel_with_keys', ] @pulumi.output_type class ListChannelWithKeysResult: """ Bot channel resource definition """ def __init__(__self__, etag=None, id=None, kind=None, location=None, name=None, properties=None, sku=None, tags=None, type=None): if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if kind and not isinstance(kind, str): raise TypeError("Expected argument 'kind' to be a str") pulumi.set(__self__, "kind", kind) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if properties and not isinstance(properties, dict): raise TypeError("Expected argument 'properties' to be a dict") pulumi.set(__self__, "properties", properties) if sku and not isinstance(sku, dict): raise TypeError("Expected argument 'sku' to be a dict") pulumi.set(__self__, "sku", sku) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def etag(self) -> Optional[str]: """ Entity Tag """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> str: """ Specifies the resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def kind(self) -> Optional[str]: """ Required. Gets or sets the Kind of the resource. """ return pulumi.get(self, "kind") @property @pulumi.getter def location(self) -> Optional[str]: """ Specifies the location of the resource. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Specifies the name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> Any: """ The set of properties specific to bot channel resource """ return pulumi.get(self, "properties") @property @pulumi.getter def sku(self) -> Optional['outputs.SkuResponse']: """ Gets or sets the SKU of the resource. """ return pulumi.get(self, "sku") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Contains resource tags defined as key/value pairs. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Specifies the type of the resource. """ return pulumi.get(self, "type") class AwaitableListChannelWithKeysResult(ListChannelWithKeysResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListChannelWithKeysResult( etag=self.etag, id=self.id, kind=self.kind, location=self.location, name=self.name, properties=self.properties, sku=self.sku, tags=self.tags, type=self.type) def list_channel_with_keys(channel_name: Optional[str] = None, resource_group_name: Optional[str] = None, resource_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListChannelWithKeysResult: """ Bot channel resource definition :param str channel_name: The name of the Channel resource. :param str resource_group_name: The name of the Bot resource group in the user subscription. :param str resource_name: The name of the Bot resource. """ __args__ = dict() __args__['channelName'] = channel_name __args__['resourceGroupName'] = resource_group_name __args__['resourceName'] = resource_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:botservice/v20210301:listChannelWithKeys', __args__, opts=opts, typ=ListChannelWithKeysResult).value return AwaitableListChannelWithKeysResult( etag=__ret__.etag, id=__ret__.id, kind=__ret__.kind, location=__ret__.location, name=__ret__.name, properties=__ret__.properties, sku=__ret__.sku, tags=__ret__.tags, type=__ret__.type)
32.33908
150
0.615426
96d2e399ec14c8c01a8c0eaf6c0f045006803fce
2,900
py
Python
examples/versioned_rows/versioned_rows.py
petit87/sqlalchemy
67d674bd63ca36ac32b23f96e2b19e9dac6b0863
[ "MIT" ]
1
2020-07-21T16:06:40.000Z
2020-07-21T16:06:40.000Z
examples/versioned_rows/versioned_rows.py
petit87/sqlalchemy
67d674bd63ca36ac32b23f96e2b19e9dac6b0863
[ "MIT" ]
4
2020-04-23T19:00:28.000Z
2021-09-28T18:14:58.000Z
examples/versioned_rows/versioned_rows.py
petit87/sqlalchemy
67d674bd63ca36ac32b23f96e2b19e9dac6b0863
[ "MIT" ]
1
2022-02-28T20:16:29.000Z
2022-02-28T20:16:29.000Z
"""Illustrates a method to intercept changes on objects, turning an UPDATE statement on a single row into an INSERT statement, so that a new row is inserted with the new data, keeping the old row intact. """ from sqlalchemy import Column from sqlalchemy import create_engine from sqlalchemy import event from sqlalchemy import ForeignKey from sqlalchemy import Integer from sqlalchemy import String from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import attributes from sqlalchemy.orm import backref from sqlalchemy.orm import make_transient from sqlalchemy.orm import relationship from sqlalchemy.orm import Session from sqlalchemy.orm import sessionmaker class Versioned: def new_version(self, session): # make us transient (removes persistent # identity). make_transient(self) # set 'id' to None. # a new PK will be generated on INSERT. self.id = None @event.listens_for(Session, "before_flush") def before_flush(session, flush_context, instances): for instance in session.dirty: if not isinstance(instance, Versioned): continue if not session.is_modified(instance): continue if not attributes.instance_state(instance).has_identity: continue # make it transient instance.new_version(session) # re-add session.add(instance) Base = declarative_base() engine = create_engine("sqlite://", echo=True) Session = sessionmaker(engine) # example 1, simple versioning class Example(Versioned, Base): __tablename__ = "example" id = Column(Integer, primary_key=True) data = Column(String) Base.metadata.create_all(engine) session = Session() e1 = Example(data="e1") session.add(e1) session.commit() e1.data = "e2" session.commit() assert session.query(Example.id, Example.data).order_by(Example.id).all() == ( [(1, "e1"), (2, "e2")] ) # example 2, versioning with a parent class Parent(Base): __tablename__ = "parent" id = Column(Integer, primary_key=True) child_id = Column(Integer, ForeignKey("child.id")) child = relationship("Child", backref=backref("parent", uselist=False)) class Child(Versioned, Base): __tablename__ = "child" id = Column(Integer, primary_key=True) data = Column(String) def new_version(self, session): # expire parent's reference to us session.expire(self.parent, ["child"]) # create new version Versioned.new_version(self, session) # re-add ourselves to the parent self.parent.child = self Base.metadata.create_all(engine) session = Session() p1 = Parent(child=Child(data="c1")) session.add(p1) session.commit() p1.child.data = "c2" session.commit() assert p1.child_id == 2 assert session.query(Child.id, Child.data).order_by(Child.id).all() == ( [(1, "c1"), (2, "c2")] )
24.166667
78
0.697586
89a2b4dae766e12e0ae1757a1fa9046b37cf3af5
502
py
Python
sampleapp/migrations/0004_job_title.py
ptevans/django-thresher
3a82d7e3828c2537eb9a56bd2e9fffa554f8fbd3
[ "MIT" ]
null
null
null
sampleapp/migrations/0004_job_title.py
ptevans/django-thresher
3a82d7e3828c2537eb9a56bd2e9fffa554f8fbd3
[ "MIT" ]
null
null
null
sampleapp/migrations/0004_job_title.py
ptevans/django-thresher
3a82d7e3828c2537eb9a56bd2e9fffa554f8fbd3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2018-02-26 01:53 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sampleapp', '0003_auto_20180226_0138'), ] operations = [ migrations.AddField( model_name='job', name='title', field=models.CharField(default='Worker', max_length=100), preserve_default=False, ), ]
22.818182
69
0.615538
cf41a6aa2751c841adda537d92a9f589edc64e77
16,770
py
Python
deps/protobuf/objectivec/DevTools/pddm_tests.py
dlminvestments/coremltools
cf6db67bab18346e132124783d46a32b8a7f52c6
[ "BSD-3-Clause" ]
null
null
null
deps/protobuf/objectivec/DevTools/pddm_tests.py
dlminvestments/coremltools
cf6db67bab18346e132124783d46a32b8a7f52c6
[ "BSD-3-Clause" ]
75
2020-11-24T05:37:45.000Z
2022-02-25T15:14:23.000Z
deps/protobuf/objectivec/DevTools/pddm_tests.py
dlminvestments/coremltools
cf6db67bab18346e132124783d46a32b8a7f52c6
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/python # # Protocol Buffers - Google's data interchange format # Copyright 2015 Google Inc. All rights reserved. # https://developers.google.com/protocol-buffers/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Tests for pddm.py.""" import io import unittest import pddm class TestParsingMacros(unittest.TestCase): def testParseEmpty(self): f = io.StringIO(u'') result = pddm.MacroCollection(f) self.assertEqual(len(result._macros), 0) def testParseOne(self): f = io.StringIO(u"""PDDM-DEFINE foo( ) body""") result = pddm.MacroCollection(f) self.assertEqual(len(result._macros), 1) macro = result._macros.get('foo') self.assertIsNotNone(macro) self.assertEqual(macro.name, 'foo') self.assertEqual(macro.args, tuple()) self.assertEqual(macro.body, 'body') def testParseGeneral(self): # Tests multiple defines, spaces in all places, etc. f = io.StringIO(u""" PDDM-DEFINE noArgs( ) body1 body2 PDDM-DEFINE-END PDDM-DEFINE oneArg(foo) body3 PDDM-DEFINE twoArgs( bar_ , baz ) body4 body5""") result = pddm.MacroCollection(f) self.assertEqual(len(result._macros), 3) macro = result._macros.get('noArgs') self.assertIsNotNone(macro) self.assertEqual(macro.name, 'noArgs') self.assertEqual(macro.args, tuple()) self.assertEqual(macro.body, 'body1\nbody2\n') macro = result._macros.get('oneArg') self.assertIsNotNone(macro) self.assertEqual(macro.name, 'oneArg') self.assertEqual(macro.args, ('foo',)) self.assertEqual(macro.body, 'body3') macro = result._macros.get('twoArgs') self.assertIsNotNone(macro) self.assertEqual(macro.name, 'twoArgs') self.assertEqual(macro.args, ('bar_', 'baz')) self.assertEqual(macro.body, 'body4\nbody5') # Add into existing collection f = io.StringIO(u""" PDDM-DEFINE another(a,b,c) body1 body2""") result.ParseInput(f) self.assertEqual(len(result._macros), 4) macro = result._macros.get('another') self.assertIsNotNone(macro) self.assertEqual(macro.name, 'another') self.assertEqual(macro.args, ('a', 'b', 'c')) self.assertEqual(macro.body, 'body1\nbody2') def testParseDirectiveIssues(self): test_list = [ # Unknown directive (u'PDDM-DEFINE foo()\nbody\nPDDM-DEFINED foo\nbaz', 'Hit a line with an unknown directive: '), # End without begin (u'PDDM-DEFINE foo()\nbody\nPDDM-DEFINE-END\nPDDM-DEFINE-END\n', 'Got DEFINE-END directive without an active macro: '), # Line not in macro block (u'PDDM-DEFINE foo()\nbody\nPDDM-DEFINE-END\nmumble\n', 'Hit a line that wasn\'t a directive and no open macro definition: '), # Redefine macro (u'PDDM-DEFINE foo()\nbody\nPDDM-DEFINE foo(a)\nmumble\n', 'Attempt to redefine macro: '), ] for idx, (input_str, expected_prefix) in enumerate(test_list, 1): f = io.StringIO(input_str) try: result = pddm.MacroCollection(f) self.fail('Should throw exception, entry %d' % idx) except pddm.PDDMError as e: self.assertTrue(e.message.startswith(expected_prefix), 'Entry %d failed: %r' % (idx, e)) def testParseBeginIssues(self): test_list = [ # 1. No name (u'PDDM-DEFINE\nmumble', 'Failed to parse macro definition: '), # 2. No name (with spaces) (u'PDDM-DEFINE \nmumble', 'Failed to parse macro definition: '), # 3. No open paren (u'PDDM-DEFINE foo\nmumble', 'Failed to parse macro definition: '), # 4. No close paren (u'PDDM-DEFINE foo(\nmumble', 'Failed to parse macro definition: '), # 5. No close paren (with args) (u'PDDM-DEFINE foo(a, b\nmumble', 'Failed to parse macro definition: '), # 6. No name before args (u'PDDM-DEFINE (a, b)\nmumble', 'Failed to parse macro definition: '), # 7. No name before args (u'PDDM-DEFINE foo bar(a, b)\nmumble', 'Failed to parse macro definition: '), # 8. Empty arg name (u'PDDM-DEFINE foo(a, ,b)\nmumble', 'Empty arg name in macro definition: '), (u'PDDM-DEFINE foo(a,,b)\nmumble', 'Empty arg name in macro definition: '), # 10. Duplicate name (u'PDDM-DEFINE foo(a,b,a,c)\nmumble', 'Arg name "a" used more than once in macro definition: '), # 11. Invalid arg name (u'PDDM-DEFINE foo(a b,c)\nmumble', 'Invalid arg name "a b" in macro definition: '), (u'PDDM-DEFINE foo(a.b,c)\nmumble', 'Invalid arg name "a.b" in macro definition: '), (u'PDDM-DEFINE foo(a-b,c)\nmumble', 'Invalid arg name "a-b" in macro definition: '), (u'PDDM-DEFINE foo(a,b,c.)\nmumble', 'Invalid arg name "c." in macro definition: '), # 15. Extra stuff after the name (u'PDDM-DEFINE foo(a,c) foo\nmumble', 'Failed to parse macro definition: '), (u'PDDM-DEFINE foo(a,c) foo)\nmumble', 'Failed to parse macro definition: '), ] for idx, (input_str, expected_prefix) in enumerate(test_list, 1): f = io.StringIO(input_str) try: result = pddm.MacroCollection(f) self.fail('Should throw exception, entry %d' % idx) except pddm.PDDMError as e: self.assertTrue(e.message.startswith(expected_prefix), 'Entry %d failed: %r' % (idx, e)) class TestExpandingMacros(unittest.TestCase): def testExpandBasics(self): f = io.StringIO(u""" PDDM-DEFINE noArgs( ) body1 body2 PDDM-DEFINE-END PDDM-DEFINE oneArg(a) body3 a PDDM-DEFINE-END PDDM-DEFINE twoArgs(b,c) body4 b c body5 PDDM-DEFINE-END """) mc = pddm.MacroCollection(f) test_list = [ (u'noArgs()', 'body1\nbody2\n'), (u'oneArg(wee)', 'body3 wee\n'), (u'twoArgs(having some, fun)', 'body4 having some fun\nbody5'), # One arg, pass empty. (u'oneArg()', 'body3 \n'), # Two args, gets empty in each slot. (u'twoArgs(, empty)', 'body4 empty\nbody5'), (u'twoArgs(empty, )', 'body4 empty \nbody5'), (u'twoArgs(, )', 'body4 \nbody5'), ] for idx, (input_str, expected) in enumerate(test_list, 1): result = mc.Expand(input_str) self.assertEqual(result, expected, 'Entry %d --\n Result: %r\n Expected: %r' % (idx, result, expected)) def testExpandArgOptions(self): f = io.StringIO(u""" PDDM-DEFINE bar(a) a-a$S-a$l-a$L-a$u-a$U PDDM-DEFINE-END """) mc = pddm.MacroCollection(f) self.assertEqual(mc.Expand('bar(xYz)'), 'xYz- -xYz-xyz-XYz-XYZ') self.assertEqual(mc.Expand('bar(MnoP)'), 'MnoP- -mnoP-mnop-MnoP-MNOP') # Test empty self.assertEqual(mc.Expand('bar()'), '-----') def testExpandSimpleMacroErrors(self): f = io.StringIO(u""" PDDM-DEFINE foo(a, b) <a-z> PDDM-DEFINE baz(a) a - a$z """) mc = pddm.MacroCollection(f) test_list = [ # 1. Unknown macro (u'bar()', 'No macro named "bar".'), (u'bar(a)', 'No macro named "bar".'), # 3. Arg mismatch (u'foo()', 'Expected 2 args, got: "foo()".'), (u'foo(a b)', 'Expected 2 args, got: "foo(a b)".'), (u'foo(a,b,c)', 'Expected 2 args, got: "foo(a,b,c)".'), # 6. Unknown option in expansion (u'baz(mumble)', 'Unknown arg option "a$z" while expanding "baz(mumble)".'), ] for idx, (input_str, expected_err) in enumerate(test_list, 1): try: result = mc.Expand(input_str) self.fail('Should throw exception, entry %d' % idx) except pddm.PDDMError as e: self.assertEqual(e.message, expected_err, 'Entry %d failed: %r' % (idx, e)) def testExpandReferences(self): f = io.StringIO(u""" PDDM-DEFINE StartIt() foo(abc, def) foo(ghi, jkl) PDDM-DEFINE foo(a, b) bar(a, int) bar(b, NSString *) PDDM-DEFINE bar(n, t) - (t)n; - (void)set##n$u##:(t)value; """) mc = pddm.MacroCollection(f) expected = """- (int)abc; - (void)setAbc:(int)value; - (NSString *)def; - (void)setDef:(NSString *)value; - (int)ghi; - (void)setGhi:(int)value; - (NSString *)jkl; - (void)setJkl:(NSString *)value; """ self.assertEqual(mc.Expand('StartIt()'), expected) def testCatchRecursion(self): f = io.StringIO(u""" PDDM-DEFINE foo(a, b) bar(1, a) bar(2, b) PDDM-DEFINE bar(x, y) foo(x, y) """) mc = pddm.MacroCollection(f) try: result = mc.Expand('foo(A,B)') self.fail('Should throw exception, entry %d' % idx) except pddm.PDDMError as e: self.assertEqual(e.message, 'Found macro recusion, invoking "foo(1, A)":\n...while expanding "bar(1, A)".\n...while expanding "foo(A,B)".') class TestParsingSource(unittest.TestCase): def testBasicParse(self): test_list = [ # 1. no directives (u'a\nb\nc', (3,) ), # 2. One define (u'a\n//%PDDM-DEFINE foo()\n//%body\nc', (1, 2, 1) ), # 3. Two defines (u'a\n//%PDDM-DEFINE foo()\n//%body\n//%PDDM-DEFINE bar()\n//%body2\nc', (1, 4, 1) ), # 4. Two defines with ends (u'a\n//%PDDM-DEFINE foo()\n//%body\n//%PDDM-DEFINE-END\n' u'//%PDDM-DEFINE bar()\n//%body2\n//%PDDM-DEFINE-END\nc', (1, 6, 1) ), # 5. One expand, one define (that runs to end of file) (u'a\n//%PDDM-EXPAND foo()\nbody\n//%PDDM-EXPAND-END\n' u'//%PDDM-DEFINE bar()\n//%body2\n', (1, 1, 2) ), # 6. One define ended with an expand. (u'a\nb\n//%PDDM-DEFINE bar()\n//%body2\n' u'//%PDDM-EXPAND bar()\nbody2\n//%PDDM-EXPAND-END\n', (2, 2, 1) ), # 7. Two expands (one end), one define. (u'a\n//%PDDM-EXPAND foo(1)\nbody\n//%PDDM-EXPAND foo(2)\nbody2\n//%PDDM-EXPAND-END\n' u'//%PDDM-DEFINE foo()\n//%body2\n', (1, 2, 2) ), ] for idx, (input_str, line_counts) in enumerate(test_list, 1): f = io.StringIO(input_str) sf = pddm.SourceFile(f) sf._ParseFile() self.assertEqual(len(sf._sections), len(line_counts), 'Entry %d -- %d != %d' % (idx, len(sf._sections), len(line_counts))) for idx2, (sec, expected) in enumerate(zip(sf._sections, line_counts), 1): self.assertEqual(sec.num_lines_captured, expected, 'Entry %d, section %d -- %d != %d' % (idx, idx2, sec.num_lines_captured, expected)) def testErrors(self): test_list = [ # 1. Directive within expansion (u'//%PDDM-EXPAND a()\n//%PDDM-BOGUS', 'Ran into directive ("//%PDDM-BOGUS", line 2) while in "//%PDDM-EXPAND a()".'), (u'//%PDDM-EXPAND a()\n//%PDDM-DEFINE a()\n//%body\n', 'Ran into directive ("//%PDDM-DEFINE", line 2) while in "//%PDDM-EXPAND a()".'), # 3. Expansion ran off end of file (u'//%PDDM-EXPAND a()\na\nb\n', 'Hit the end of the file while in "//%PDDM-EXPAND a()".'), # 4. Directive within define (u'//%PDDM-DEFINE a()\n//%body\n//%PDDM-BOGUS', 'Ran into directive ("//%PDDM-BOGUS", line 3) while in "//%PDDM-DEFINE a()".'), (u'//%PDDM-DEFINE a()\n//%body\n//%PDDM-EXPAND-END a()', 'Ran into directive ("//%PDDM-EXPAND-END", line 3) while in "//%PDDM-DEFINE a()".'), # 6. Directives that shouldn't start sections (u'a\n//%PDDM-DEFINE-END a()\n//a\n', 'Unexpected line 2: "//%PDDM-DEFINE-END a()".'), (u'a\n//%PDDM-EXPAND-END a()\n//a\n', 'Unexpected line 2: "//%PDDM-EXPAND-END a()".'), (u'//%PDDM-BOGUS\n//a\n', 'Unexpected line 1: "//%PDDM-BOGUS".'), ] for idx, (input_str, expected_err) in enumerate(test_list, 1): f = io.StringIO(input_str) try: pddm.SourceFile(f)._ParseFile() self.fail('Should throw exception, entry %d' % idx) except pddm.PDDMError as e: self.assertEqual(e.message, expected_err, 'Entry %d failed: %r' % (idx, e)) class TestProcessingSource(unittest.TestCase): def testBasics(self): input_str = u""" //%PDDM-IMPORT-DEFINES ImportFile foo //%PDDM-EXPAND mumble(abc) //%PDDM-EXPAND-END bar //%PDDM-EXPAND mumble(def) //%PDDM-EXPAND mumble(ghi) //%PDDM-EXPAND-END baz //%PDDM-DEFINE mumble(a_) //%a_: getName(a_) """ input_str2 = u""" //%PDDM-DEFINE getName(x_) //%do##x_$u##(int x_); """ expected = u""" //%PDDM-IMPORT-DEFINES ImportFile foo //%PDDM-EXPAND mumble(abc) // This block of code is generated, do not edit it directly. abc: doAbc(int abc); //%PDDM-EXPAND-END mumble(abc) bar //%PDDM-EXPAND mumble(def) // This block of code is generated, do not edit it directly. def: doDef(int def); //%PDDM-EXPAND mumble(ghi) // This block of code is generated, do not edit it directly. ghi: doGhi(int ghi); //%PDDM-EXPAND-END (2 expansions) baz //%PDDM-DEFINE mumble(a_) //%a_: getName(a_) """ expected_stripped = u""" //%PDDM-IMPORT-DEFINES ImportFile foo //%PDDM-EXPAND mumble(abc) //%PDDM-EXPAND-END mumble(abc) bar //%PDDM-EXPAND mumble(def) //%PDDM-EXPAND mumble(ghi) //%PDDM-EXPAND-END (2 expansions) baz //%PDDM-DEFINE mumble(a_) //%a_: getName(a_) """ def _Resolver(name): self.assertEqual(name, 'ImportFile') return io.StringIO(input_str2) f = io.StringIO(input_str) sf = pddm.SourceFile(f, _Resolver) sf.ProcessContent() self.assertEqual(sf.processed_content, expected) # Feed it through and nothing should change. f2 = io.StringIO(sf.processed_content) sf2 = pddm.SourceFile(f2, _Resolver) sf2.ProcessContent() self.assertEqual(sf2.processed_content, expected) self.assertEqual(sf2.processed_content, sf.processed_content) # Test stripping (with the original input and expanded version). f2 = io.StringIO(input_str) sf2 = pddm.SourceFile(f2) sf2.ProcessContent(strip_expansion=True) self.assertEqual(sf2.processed_content, expected_stripped) f2 = io.StringIO(sf.processed_content) sf2 = pddm.SourceFile(f2, _Resolver) sf2.ProcessContent(strip_expansion=True) self.assertEqual(sf2.processed_content, expected_stripped) def testProcessFileWithMacroParseError(self): input_str = u""" foo //%PDDM-DEFINE mumble(a_) //%body //%PDDM-DEFINE mumble(x_) //%body2 """ f = io.StringIO(input_str) sf = pddm.SourceFile(f) try: sf.ProcessContent() self.fail('Should throw exception, entry %d' % idx) except pddm.PDDMError as e: self.assertEqual(e.message, 'Attempt to redefine macro: "PDDM-DEFINE mumble(x_)"\n' '...while parsing section that started:\n' ' Line 3: //%PDDM-DEFINE mumble(a_)') def testProcessFileWithExpandError(self): input_str = u""" foo //%PDDM-DEFINE mumble(a_) //%body //%PDDM-EXPAND foobar(x_) //%PDDM-EXPAND-END """ f = io.StringIO(input_str) sf = pddm.SourceFile(f) try: sf.ProcessContent() self.fail('Should throw exception, entry %d' % idx) except pddm.PDDMError as e: self.assertEqual(e.message, 'No macro named "foobar".\n' '...while expanding "foobar(x_)" from the section that' ' started:\n Line 5: //%PDDM-EXPAND foobar(x_)') if __name__ == '__main__': unittest.main()
32.5
134
0.620215
c28d2c158a84a3cc09db3d92a668b046d12ad578
15,047
py
Python
grafanalib/elasticsearch.py
locan11/grafanalib
002b819ae307674d03e60bacdc3abc7092faa35b
[ "Apache-2.0" ]
null
null
null
grafanalib/elasticsearch.py
locan11/grafanalib
002b819ae307674d03e60bacdc3abc7092faa35b
[ "Apache-2.0" ]
null
null
null
grafanalib/elasticsearch.py
locan11/grafanalib
002b819ae307674d03e60bacdc3abc7092faa35b
[ "Apache-2.0" ]
null
null
null
"""Helpers to create Elasticsearch-specific Grafana queries.""" import attr import itertools from attr.validators import instance_of from grafanalib.core import AlertCondition DATE_HISTOGRAM_DEFAULT_FIELD = 'time_iso8601' ORDER_ASC = 'asc' ORDER_DESC = 'desc' @attr.s class CountMetricAgg(object): """An aggregator that counts the number of values. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-valuecount-aggregation.html It's the default aggregator for elasticsearch queries. :param hide: show/hide the metric in the final panel display :param id: id of the metric :param inline: script to apply to the data, using '_value' """ id = attr.ib(default=0, validator=instance_of(int)) hide = attr.ib(default=False, validator=instance_of(bool)) inline = attr.ib(default="", validator=instance_of(str)) def to_json_data(self): self.settings = {} if self.inline: self.settings['script'] = {'inline': self.inline} return { 'id': str(self.id), 'hide': self.hide, 'type': 'count', 'field': 'select field', 'inlineScript': self.inline, 'settings': self.settings, } @attr.s class MaxMetricAgg(object): """An aggregator that provides the max. value among the values. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-max-aggregation.html :param field: name of elasticsearch field to provide the maximum for :param hide: show/hide the metric in the final panel display :param id: id of the metric :param inline: script to apply to the data, using '_value' """ field = attr.ib(default="", validator=instance_of(str)) id = attr.ib(default=0, validator=instance_of(int)) hide = attr.ib(default=False, validator=instance_of(bool)) inline = attr.ib(default="", validator=instance_of(str)) def to_json_data(self): self.settings = {} if self.inline: self.settings['script'] = {'inline': self.inline} return { 'id': str(self.id), 'hide': self.hide, 'type': 'max', 'field': self.field, 'inlineScript': self.inline, 'settings': self.settings, } @attr.s class CardinalityMetricAgg(object): """An aggregator that provides the cardinality. value among the values. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-cardinality-aggregation.html :param field: name of elasticsearch field to provide the maximum for :param id: id of the metric :param hide: show/hide the metric in the final panel display :param inline: script to apply to the data, using '_value' """ field = attr.ib(default="", validator=instance_of(str)) id = attr.ib(default=0, validator=instance_of(int)) hide = attr.ib(default=False, validator=instance_of(bool)) inline = attr.ib(default="", validator=instance_of(str)) def to_json_data(self): self.settings = {} if self.inline: self.settings['script'] = {'inline': self.inline} return { 'id': str(self.id), 'hide': self.hide, 'type': 'cardinality', 'field': self.field, 'inlineScript': self.inline, 'settings': self.settings, } @attr.s class AverageMetricAgg(object): """An aggregator that provides the average. value among the values. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-avg-aggregation.html :param field: name of elasticsearch field to provide the maximum for :param id: id of the metric :param hide: show/hide the metric in the final panel display :param inline: script to apply to the data, using '_value' """ field = attr.ib(default="", validator=instance_of(str)) id = attr.ib(default=0, validator=instance_of(int)) hide = attr.ib(default=False, validator=instance_of(bool)) inline = attr.ib(default="", validator=instance_of(str)) def to_json_data(self): self.settings = {} if self.inline: self.settings['script'] = {'inline': self.inline} return { 'id': str(self.id), 'hide': self.hide, 'type': 'avg', 'field': self.field, 'inlineScript': self.inline, 'settings': self.settings, 'meta': {} } @attr.s class DerivativeMetricAgg(object): """An aggregator that takes the derivative of another metric aggregator. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-pipeline-derivative-aggregation.html :param field: id of elasticsearch metric aggregator to provide the derivative of :param hide: show/hide the metric in the final panel display :param id: id of the metric :param pipelineAgg: pipeline aggregator id :param unit: derivative units """ field = attr.ib(default="", validator=instance_of(str)) hide = attr.ib(default=False, validator=instance_of(bool)) id = attr.ib(default=0, validator=instance_of(int)) pipelineAgg = attr.ib(default=1, validator=instance_of(int)) unit = attr.ib(default="", validator=instance_of(str)) def to_json_data(self): settings = {} if self.unit != "": settings['unit'] = self.unit return { 'id': str(self.id), 'pipelineAgg': str(self.pipelineAgg), 'hide': self.hide, 'type': 'derivative', 'field': self.field, 'settings': settings, } @attr.s class SumMetricAgg(object): """An aggregator that provides the sum of the values. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-sum-aggregation.html :param field: name of elasticsearch field to provide the sum over :param hide: show/hide the metric in the final panel display :param id: id of the metric :param inline: script to apply to the data, using '_value' """ field = attr.ib(default="", validator=instance_of(str)) id = attr.ib(default=0, validator=instance_of(int)) hide = attr.ib(default=False, validator=instance_of(bool)) inline = attr.ib(default="", validator=instance_of(str)) def to_json_data(self): self.settings = {} if self.inline: self.settings['script'] = {'inline': self.inline} return { 'id': str(self.id), 'hide': self.hide, 'type': 'sum', 'field': self.field, 'inlineScript': self.inline, 'settings': self.settings, } @attr.s class DateHistogramGroupBy(object): """A bucket aggregator that groups results by date. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-datehistogram-aggregation.html :param id: ascending unique number per GroupBy clause :param field: name of the elasticsearch field to group by :param interval: interval to group by :param minDocCount: min. amount of records in the timespan to return a result """ id = attr.ib(default=0, validator=instance_of(int)) field = attr.ib( default=DATE_HISTOGRAM_DEFAULT_FIELD, validator=instance_of(str), ) interval = attr.ib(default='auto', validator=instance_of(str)) minDocCount = attr.ib(default=0, validator=instance_of(int)) def to_json_data(self): return { 'field': self.field, 'id': str(self.id), 'settings': { 'interval': self.interval, 'min_doc_count': self.minDocCount, 'trimEdges': 0, }, 'type': 'date_histogram', } @attr.s class BucketScriptAgg(object): """An aggregator that applies a bucket script to the results of previous aggregations. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-pipeline-bucket-script-aggregation.html :param fields: dictionary of field names mapped to aggregation IDs to be used in the bucket script e.g. { "field1":1 }, which allows the output of aggregate ID 1 to be referenced as params.field1 in the bucket script :param script: script to apply to the data using the variables specified in 'fields' :param id: id of the aggregator :param hide: show/hide the metric in the final panel display """ fields = attr.ib(default={}, validator=instance_of(dict)) id = attr.ib(default=0, validator=instance_of(int)) hide = attr.ib(default=False, validator=instance_of(bool)) script = attr.ib(default="", validator=instance_of(str)) def to_json_data(self): pipelineVars = [] for field in self.fields: pipelineVars.append({ 'name': str(field), 'pipelineAgg': str(self.fields[field]) }) return { 'field': 'select field', 'type': 'bucket_script', 'id': str(self.id), 'hide': self.hide, 'pipelineVariables': pipelineVars, 'settings': { 'script': self.script }, } @attr.s class Filter(object): """ A Filter for a FilterGroupBy aggregator. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-filter-aggregation.html :param label: label for the metric that is shown in the graph :param query: the query to filter by """ label = attr.ib(default="", validator=instance_of(str)) query = attr.ib(default="", validator=instance_of(str)) def to_json_data(self): return { 'label': self.label, 'query': self.query, } @attr.s class FiltersGroupBy(object): """ A bucket aggregator that groups records by a filter expression. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-filter-aggregation.html :param id: ascending unique number per GroupBy clause :param filters: list of Filter objects """ id = attr.ib(default=0, validator=instance_of(int)) filters = attr.ib(default=attr.Factory(list)) def to_json_data(self): return { 'id': str(self.id), 'settings': { 'filters': self.filters, }, 'type': 'filters', } @attr.s class TermsGroupBy(object): """ A multi-bucket aggregator based on field values. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-terms-aggregation.html :param id: ascending unique number per GroupBy clause :param field: name of the field to group by :param minDocCount: min. amount of matching records to return a result :param order: ORDER_ASC or ORDER_DESC :param orderBy: term to order the bucket Term value: '_term', Doc Count: '_count' or to use metric function use the string value "2" :param size: how many buckets are returned """ field = attr.ib(validator=instance_of(str)) id = attr.ib(default=0, validator=instance_of(int)) minDocCount = attr.ib(default=1, validator=instance_of(int)) order = attr.ib(default=ORDER_DESC, validator=instance_of(str)) orderBy = attr.ib(default='_term', validator=instance_of(str)) size = attr.ib(default=0, validator=instance_of(int)) def to_json_data(self): return { 'id': str(self.id), 'type': 'terms', 'field': self.field, 'settings': { 'min_doc_count': self.minDocCount, 'order': self.order, 'orderBy': self.orderBy, 'size': self.size, }, } @attr.s class ElasticsearchTarget(object): """Generates Elasticsearch target JSON structure. Grafana docs on using Elasticsearch: http://docs.grafana.org/features/datasources/elasticsearch/ Elasticsearch docs on querying or reading data: https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html :param alias: legend alias :param bucketAggs: Bucket aggregators :param metricAggs: Metric Aggregators :param query: query :param refId: target reference id :param timeField: name of the elasticsearch time field """ alias = attr.ib(default=None) bucketAggs = attr.ib( default=attr.Factory(lambda: [DateHistogramGroupBy()]), ) metricAggs = attr.ib(default=attr.Factory(lambda: [CountMetricAgg()])) query = attr.ib(default="", validator=instance_of(str)) refId = attr.ib(default="", validator=instance_of(str)) timeField = attr.ib(default="@timestamp", validator=instance_of(str)) def _map_bucket_aggs(self, f): return attr.evolve(self, bucketAggs=list(map(f, self.bucketAggs))) def auto_bucket_agg_ids(self): """Give unique IDs all bucketAggs without ID. Returns a new ``ElasticsearchTarget`` that is the same as this one, except all of the bucketAggs have their ``id`` property set. Any panels which had an ``id`` property set will keep that property, all others will have auto-generated IDs provided for them. If the bucketAggs don't have unique ID associated with it, the generated graph will be broken. """ ids = set([agg.id for agg in self.bucketAggs if agg.id]) auto_ids = (i for i in itertools.count(1) if i not in ids) def set_id(agg): if agg.id: return agg return attr.evolve(agg, id=next(auto_ids)) return self._map_bucket_aggs(set_id) def to_json_data(self): return { 'alias': self.alias, 'bucketAggs': self.bucketAggs, 'metrics': self.metricAggs, 'query': self.query, 'refId': self.refId, 'timeField': self.timeField, } @attr.s class ElasticsearchAlertCondition(AlertCondition): """ Override alert condition to support Elasticseach target. See AlertCondition for more information. :param Target target: Metric the alert condition is based on. :param Evaluator evaluator: How we decide whether we should alert on the metric. e.g. ``GreaterThan(5)`` means the metric must be greater than 5 to trigger the condition. See ``GreaterThan``, ``LowerThan``, ``WithinRange``, ``OutsideRange``, ``NoValue``. :param TimeRange timeRange: How long the condition must be true for before we alert. :param operator: One of ``OP_AND`` or ``OP_OR``. How this condition combines with other conditions. :param reducerType: RTYPE_* :param type: CTYPE_* """ target = attr.ib(validator=instance_of(ElasticsearchTarget))
34.670507
127
0.639131
059e0f450521da36cb63c0b8fe990f3e468a744c
2,979
py
Python
nevow/taglibrary/tabbedPane.py
wthie/nevow
e630de8f640f27df85c38bc37ecdaf4e7b931afc
[ "MIT" ]
49
2015-03-18T15:29:16.000Z
2021-11-17T12:30:51.000Z
nevow/taglibrary/tabbedPane.py
wthie/nevow
e630de8f640f27df85c38bc37ecdaf4e7b931afc
[ "MIT" ]
62
2015-01-21T08:48:08.000Z
2021-04-02T17:31:29.000Z
nevow/taglibrary/tabbedPane.py
wthie/nevow
e630de8f640f27df85c38bc37ecdaf4e7b931afc
[ "MIT" ]
30
2015-02-26T09:35:39.000Z
2021-07-24T12:45:04.000Z
from nevow import tags as t, static, util, loaders, athena, inevow class tabbedPaneGlue: """ Record which holds information about the Javascript & CSS requirements of L{TabbedPane} and L{TabbedPaneFragment}. @type stylesheetPath: C{str} @ivar stylesheetPath: Filesystem path of the tabbed pane stylesheet. @type fileCSS: L{static.File} @ivar fileCSS: Resource which serves L{stylesheetPath}. @type inlineCSS: L{t.style} @ivar inlineCSS: <style> tag containing the tabbedpane CSS inline. """ stylesheetPath = util.resource_filename('nevow', 'css/Nevow/TagLibrary/TabbedPane.css') fileCSS = static.File(stylesheetPath, 'text/css') inlineCSS = t.style(type_='text/css')[ t.xml(file(stylesheetPath).read()) ] class TabbedPaneFragment(athena.LiveFragment): jsClass = u'Nevow.TagLibrary.TabbedPane.TabbedPane' cssModule = u'Nevow.TagLibrary.TabbedPane' docFactory = loaders.xmlstr(""" <div class="nevow-tabbedpane" xmlns:nevow="http://nevow.com/ns/nevow/0.1" xmlns:athena="http://divmod.org/ns/athena/0.7" nevow:render="liveFragment" style="opacity: .3"> <ul class="nevow-tabbedpane-tabs" id="tab-container"> <nevow:invisible nevow:render="tabs" /> </ul> <li nevow:pattern="tab" ><athena:handler event="onclick" handler="dom_tabClicked" /><nevow:attr name="class"><nevow:slot name="class" /></nevow:attr><nevow:slot name="tab-name" /></li> <div nevow:pattern="page"> <nevow:attr name="class"><nevow:slot name="class" /></nevow:attr> <nevow:slot name="page-content" /> </div> <div id="pane-container"><nevow:invisible nevow:render="pages" /></div> </div>""".replace('\n', '')) def __init__(self, pages, selected=0, name='default'): self.pages = pages self.selected = selected self.name = name super(TabbedPaneFragment, self).__init__() def getInitialArguments(self): return (unicode(self.pages[self.selected][0], 'utf-8'),) def render_tabs(self, ctx, data): tabPattern = inevow.IQ(self.docFactory).patternGenerator('tab') for (i, (name, content)) in enumerate(self.pages): if self.selected == i: cls = 'nevow-tabbedpane-selected-tab' else: cls = 'nevow-tabbedpane-tab' yield tabPattern.fillSlots( 'tab-name', name).fillSlots( 'class', cls) def render_pages(self, ctx, data): pagePattern = inevow.IQ(self.docFactory).patternGenerator('page') for (i, (name, content)) in enumerate(self.pages): if self.selected == i: cls = 'nevow-tabbedpane-selected-pane' else: cls = 'nevow-tabbedpane-pane' yield pagePattern.fillSlots( 'page-content', content).fillSlots( 'class', cls) __all__ = [ "tabbedPaneGlue", "TabbedPaneFragment" ]
35.047059
91
0.627056
ea502194a3b41abbc1bfb3f8a8b660e376fd83ee
268
py
Python
api/app/util/request.py
Test01DezWebSite/covidex
ce5afe7185a2c3cb02aaf23aca8b185c832a88f5
[ "Apache-2.0" ]
1
2020-05-18T10:09:35.000Z
2020-05-18T10:09:35.000Z
api/app/util/request.py
Test01DezWebSite/covidex
ce5afe7185a2c3cb02aaf23aca8b185c832a88f5
[ "Apache-2.0" ]
null
null
null
api/app/util/request.py
Test01DezWebSite/covidex
ce5afe7185a2c3cb02aaf23aca8b185c832a88f5
[ "Apache-2.0" ]
null
null
null
from fastapi import Request def get_request_ip(request: Request): forwarded_header = 'X-Forwarded-For' request_ip = request.client.host if forwarded_header in request.headers: request_ip = request.headers[forwarded_header] return request_ip
24.363636
54
0.75
243a46dc71994534bc3d49e7e45ba5adfcca3119
1,134
py
Python
lib/matplotlib/tests/test_table.py
adrn/matplotlib
7a9f2347a3b1c1efaef6e547930661a547c20ef2
[ "MIT", "BSD-3-Clause" ]
null
null
null
lib/matplotlib/tests/test_table.py
adrn/matplotlib
7a9f2347a3b1c1efaef6e547930661a547c20ef2
[ "MIT", "BSD-3-Clause" ]
null
null
null
lib/matplotlib/tests/test_table.py
adrn/matplotlib
7a9f2347a3b1c1efaef6e547930661a547c20ef2
[ "MIT", "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import, division, print_function, unicode_literals import six import matplotlib.pyplot as plt import numpy as np from matplotlib.testing.decorators import image_comparison @image_comparison(baseline_images=['table_zorder'], extensions=['png'], remove_text=True) def test_zorder(): data = [[ 66386, 174296,], [ 58230, 381139,]] colLabels = ('Freeze', 'Wind') rowLabels = ['%d year' % x for x in (100, 50)] cellText = [] yoff = np.array([0.0] * len(colLabels)) for row in reversed(data): yoff += row cellText.append(['%1.1f' % (x/1000.0) for x in yoff]) t = np.linspace(0, 2*np.pi, 100) plt.plot(t, np.cos(t), lw=4, zorder=2) plt.table(cellText=cellText, rowLabels=rowLabels, colLabels=colLabels, loc='center', zorder=-2, ) plt.table(cellText=cellText, rowLabels=rowLabels, colLabels=colLabels, loc='upper center', zorder=4, ) plt.yticks([])
25.772727
82
0.560847
0709381537b1d79edefff323acd6fb3fa557bc25
3,333
py
Python
pyconnectomist/tests/test_wrappers.py
neurospin/pyconnectomist
81881fd88d94b3c2bd401602783261a64e818a05
[ "CECILL-B" ]
1
2018-05-24T13:02:41.000Z
2018-05-24T13:02:41.000Z
pyconnectomist/tests/test_wrappers.py
neurospin/pyconnectomist
81881fd88d94b3c2bd401602783261a64e818a05
[ "CECILL-B" ]
null
null
null
pyconnectomist/tests/test_wrappers.py
neurospin/pyconnectomist
81881fd88d94b3c2bd401602783261a64e818a05
[ "CECILL-B" ]
2
2018-06-25T14:20:34.000Z
2022-03-02T14:43:38.000Z
########################################################################## # NSAp - Copyright (C) CEA, 2016 # Distributed under the terms of the CeCILL-B license, as published by # the CEA-CNRS-INRIA. Refer to the LICENSE file or to # http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html # for details. ########################################################################## # System import import unittest import sys import os # COMPATIBILITY: since python 3.3 mock is included in unittest module python_version = sys.version_info if python_version[:2] <= (3, 3): import mock from mock import patch mock_builtin = "__builtin__" else: import unittest.mock as mock from unittest.mock import patch mock_builtin = "builtins" # pyConnectomist import from pyconnectomist.wrappers import ConnectomistWrapper class ConnectomistWrappers(unittest.TestCase): """ Test the Connectomist wrappers: 'pyconnectomist.wrappers.ConnectomistWrapper' """ @mock.patch("os.path") def test_badfileerror_raise(self, mock_path): """ Bad configuration file -> raise ValueError. """ # Set the mocked functions returned values mock_path.isfile.side_effect = [False] # Test execution self.assertRaises(ValueError, ConnectomistWrapper._connectomist_version_check, "/my/path/mock_conf") @mock.patch("{0}.ValueError".format(mock_builtin)) @mock.patch("{0}.open".format(mock_builtin)) @mock.patch("os.path") def test_noreleaseerror_raise(self, mock_path, mock_open, mock_error): """ No PTK release found -> raise ValueError. """ # Set the mocked functions returned values mock_path.isfile.side_effect = [True] mock_context_manager = mock.Mock() mock_open.return_value = mock_context_manager mock_file = mock.Mock() mock_file.read.return_value = "WRONG" mock_enter = mock.Mock() mock_enter.return_value = mock_file mock_exit = mock.Mock() setattr(mock_context_manager, "__enter__", mock_enter) setattr(mock_context_manager, "__exit__", mock_exit) # Test execution ConnectomistWrapper._connectomist_version_check("/my/path/mock_conf") self.assertEqual(len(mock_error.call_args_list), 1) @mock.patch("warnings.warn") @mock.patch("{0}.open".format(mock_builtin)) @mock.patch("os.path") def test_normal_execution(self, mock_path, mock_open, mock_warn): """ Test the normal behaviour of the function. """ # Set the mocked functions returned values mock_path.isfile.side_effect = [True] mock_context_manager = mock.Mock() mock_open.return_value = mock_context_manager mock_file = mock.Mock() mock_file.read.return_value = "PTK_RELEASE=4.0\n" mock_enter = mock.Mock() mock_enter.return_value = mock_file mock_exit = mock.Mock() setattr(mock_context_manager, "__enter__", mock_enter) setattr(mock_context_manager, "__exit__", mock_exit) # Test execution ConnectomistWrapper._connectomist_version_check("/my/path/mock_conf") self.assertEqual(len(mock_warn.call_args_list), 1) if __name__ == "__main__": unittest.main()
36.626374
77
0.649865
a285a3d45e0f8d8b4b47b43187b2799fae6e9eb7
1,038
py
Python
pydron/test_picklesupport.py
DelphianCalamity/pydron
1518dc71b5cf64fde563b864db2a4de74e092c8e
[ "MIT" ]
5
2020-04-06T15:20:56.000Z
2022-01-05T23:11:13.000Z
pydron/test_picklesupport.py
mahmoudimus/pydron
a7b484dec8bcc2730ba9bd76bc63bf3362c05e4d
[ "MIT" ]
null
null
null
pydron/test_picklesupport.py
mahmoudimus/pydron
a7b484dec8bcc2730ba9bd76bc63bf3362c05e4d
[ "MIT" ]
2
2020-11-27T20:21:34.000Z
2021-02-26T23:02:11.000Z
# Copyright (C) 2015 Stefan C. Mueller import unittest import datetime import pickle import pydron.picklesupport class Dummy(object): def __init__(self): self.value = 1 def f(self): return 42 + self.value class TestPickleSupport(unittest.TestCase): def test_module(self): dump = pickle.dumps(unittest, pickle.HIGHEST_PROTOCOL) load = pickle.loads(dump) self.assertIs(load, unittest) def test_builtin_function(self): dump = pickle.dumps(map, pickle.HIGHEST_PROTOCOL) load = pickle.loads(dump) self.assertIs(load, map) def test_builtin_method(self): delta = datetime.timedelta(seconds=10) func = delta.total_seconds dump = pickle.dumps(func, pickle.HIGHEST_PROTOCOL) load = pickle.loads(dump) self.assertEqual(10, load()) def test_method(self): x = Dummy() dump = pickle.dumps(x.f, pickle.HIGHEST_PROTOCOL) load = pickle.loads(dump) self.assertEqual(43, load())
28.054054
62
0.647399
98e955afb14680b3e1758ee0286635da84160e1e
20,766
py
Python
malmo/MalmoEnv/malmoenv/core.py
SmaleZ/vcl_diayn
b2c47a681675b405d2011bc4a43c3914f3af4ecc
[ "MIT" ]
null
null
null
malmo/MalmoEnv/malmoenv/core.py
SmaleZ/vcl_diayn
b2c47a681675b405d2011bc4a43c3914f3af4ecc
[ "MIT" ]
null
null
null
malmo/MalmoEnv/malmoenv/core.py
SmaleZ/vcl_diayn
b2c47a681675b405d2011bc4a43c3914f3af4ecc
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------------------------------ # Copyright (c) 2018 Microsoft Corporation # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and # associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT # NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # ------------------------------------------------------------------------------------------------ from lxml import etree import struct import socket import time import random import numpy as np from malmoenv import comms from malmoenv.commands import CommandParser import uuid import gym.spaces from malmoenv.comms import retry from malmoenv.version import malmo_version class StringActionSpace(gym.spaces.Discrete): """Malmo actions as their strings.""" def __init__(self): gym.spaces.Discrete.__init__(self, 1) def __getitem__(self, action): return action class ActionSpace(gym.spaces.Box): """Malmo actions as gym action space""" def __init__(self, actions): self.actions = actions # gym.spaces.Discrete.__init__(self, len(self.actions)) # gym.spaces.Box.__init__(self, -1, 1, shape=(3, )) gym.spaces.Box.__init__(self, low=0, high=5, shape=(1,)) def sample(self): return random.randint(1, len(self.actions)) - 1 def __getitem__(self, action): #print("the actions input is:") #print(action) curr_action = 0 # continue space to discrete space # TODU: nomolize the action space to [-1, 1] if 0 <= action < 1.0: curr_action = 0 elif 1.0 <= action < 2.0: curr_action = 1 elif 2.0 <= action < 3.0: curr_action = 2 elif 3.0 <= action < 4.0: curr_action = 3 else: curr_action = random.randint(1, len(self.actions)) - 1 pass # curr_action = 4 #print("the next action is:") #print(self.actions[curr_action]) return self.actions[curr_action] def __len__(self): return len(self.actions) class VisualObservationSpace(gym.spaces.Box): """Space for visual observations: width x height x depth as a flat array. Where depth is 3 or 4 if encoding scene depth. """ def __init__(self, width, height, depth): gym.spaces.Box.__init__(self, low=np.iinfo(np.uint8).min, high=np.iinfo(np.uint8).max, shape=(height, width, depth), dtype=np.uint8) class EnvException(Exception): def __init__(self, message): super(EnvException, self).__init__(message) class MissionInitException(Exception): def __init__(self, message): super(MissionInitException, self).__init__(message) MAX_WAIT = 60 * 3 class Env: """Malmo "Env" open ai gym compatible environment API""" def __init__(self, reshape=False): self.action_space = None self.observation_space = None self.metadata = {'render.modes': ['rgb_array']} self.xml = None self.integratedServerPort = 0 self.role = 0 self.agent_count = 0 self.resets = 0 self.ns = '{http://ProjectMalmo.microsoft.com}' self.client_socket = None self.server = 'localhost' # The mission server self.port = 9000 # The mission server port self.server2 = self.server # optional server for agent (role <> 0) self.port2 = self.port + self.role # optional server port for agent self.resync_period = 0 self.turn_key = "" self.exp_uid = "" self.done = True self.step_options = None self.width = 0 self.height = 0 self.depth = 0 self.reshape = reshape self.last_obs = None self.reward_range = None def init(self, xml, port, server=None, server2=None, port2=None, role=0, exp_uid=None, episode=0, action_filter=None, resync=0, step_options=0, action_space=None, reshape=False): """"Initialize a Malmo environment. xml - the mission xml. port - the MalmoEnv service's port. server - the MalmoEnv service address. Default is localhost. server2 - the MalmoEnv service address for given role if not 0. port2 - the MalmoEnv service port for given role if not 0. role - the agent role (0..N-1) for missions with N agents. Defaults to 0. exp_uid - the experiment's unique identifier. Generated if not given. episode - the "reset" start count for experiment re-starts. Defaults to 0. action_filter - an optional list of valid actions to filter by. Defaults to simple commands. step_options - encodes withTurnKey and withInfo in step messages. Defaults to info included, turn if required. """ if action_filter is None: action_filter = {"move", "turn", "use", "attack"} if not xml.startswith('<Mission'): i = xml.index("<Mission") if i == -1: raise EnvException("Mission xml must contain <Mission> tag.") xml = xml[i:] self.xml = etree.fromstring(xml) self.role = role if exp_uid is None: self.exp_uid = str(uuid.uuid4()) else: self.exp_uid = exp_uid command_parser = CommandParser(action_filter) commands = command_parser.get_commands_from_xml(self.xml, self.role) actions = command_parser.get_actions(commands) # print("role " + str(self.role) + " actions " + str(actions) print("test") print(actions) if action_space: self.action_space = action_space else: self.action_space = ActionSpace(actions) self.port = port if server is not None: self.server = server if server2 is not None: self.server2 = server2 else: self.server2 = self.server if port2 is not None: self.port2 = port2 else: self.port2 = self.port + self.role self.agent_count = len(self.xml.findall(self.ns + 'AgentSection')) turn_based = self.xml.find('.//' + self.ns + 'TurnBasedCommands') is not None if turn_based: self.turn_key = 'AKWozEre' else: self.turn_key = "" if step_options is None: self.step_options = 0 if not turn_based else 2 else: self.step_options = step_options self.done = True # print("agent count " + str(self.agent_count) + " turn based " + turn_based) self.resync_period = resync self.resets = episode e = etree.fromstring("""<MissionInit xmlns="http://ProjectMalmo.microsoft.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" SchemaVersion="" PlatformVersion=""" + '\"' + malmo_version + '\"' + """> <ExperimentUID></ExperimentUID> <ClientRole>0</ClientRole> <ClientAgentConnection> <ClientIPAddress>127.0.0.1</ClientIPAddress> <ClientMissionControlPort>0</ClientMissionControlPort> <ClientCommandsPort>0</ClientCommandsPort> <AgentIPAddress>127.0.0.1</AgentIPAddress> <AgentMissionControlPort>0</AgentMissionControlPort> <AgentVideoPort>0</AgentVideoPort> <AgentDepthPort>0</AgentDepthPort> <AgentLuminancePort>0</AgentLuminancePort> <AgentObservationsPort>0</AgentObservationsPort> <AgentRewardsPort>0</AgentRewardsPort> <AgentColourMapPort>0</AgentColourMapPort> </ClientAgentConnection> </MissionInit>""") e.insert(0, self.xml) self.xml = e self.xml.find(self.ns + 'ClientRole').text = str(self.role) self.xml.find(self.ns + 'ExperimentUID').text = self.exp_uid if self.role != 0 and self.agent_count > 1: e = etree.Element(self.ns + 'MinecraftServerConnection', attrib={'address': self.server, 'port': str(0) }) self.xml.insert(2, e) self.reshape = reshape video_producers = self.xml.findall('.//' + self.ns + 'VideoProducer') assert len(video_producers) == self.agent_count video_producer = video_producers[self.role] self.width = int(video_producer.find(self.ns + 'Width').text) self.height = int(video_producer.find(self.ns + 'Height').text) want_depth = video_producer.attrib["want_depth"] self.depth = 4 if want_depth is not None and (want_depth == "true" or want_depth == "1") else 3 # print(str(self.width) + "x" + str(self.height) + "x" + str(self.depth)) self.observation_space = VisualObservationSpace(self.width, self.height, self.depth) # print(etree.tostring(self.xml)) self.reward_range = (-float("inf"), float("inf")) @staticmethod def _hello(sock): comms.send_message(sock, ("<MalmoEnv" + malmo_version + "/>").encode()) def reset(self): """gym api reset""" if self.resync_period > 0 and (self.resets + 1) % self.resync_period == 0: self.exit_resync() while not self.done: self.done = self._quit_episode() if not self.done: time.sleep(0.1) return self._start_up() @retry def _start_up(self): self.last_obs = None self.resets += 1 if self.role != 0: self._find_server() if not self.client_socket: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # print("connect " + self.server2 + ":" + str(self.port2)) sock.connect((self.server2, self.port2)) self._hello(sock) self.client_socket = sock # Now retries will use connected socket. self._init_mission() self.done = False return self._peek_obs() def _peek_obs(self): obs = None start_time = time.time() while not self.done and (obs is None or len(obs) == 0): peek_message = "<Peek/>" comms.send_message(self.client_socket, peek_message.encode()) obs = comms.recv_message(self.client_socket) reply = comms.recv_message(self.client_socket) done, = struct.unpack('!b', reply) self.done = done == 1 if obs is None or len(obs) == 0: if time.time() - start_time > MAX_WAIT: self.client_socket.close() self.client_socket = None raise MissionInitException('too long waiting for first observation') time.sleep(0.1) obs = np.frombuffer(obs, dtype=np.uint8) if obs is None or len(obs) == 0 or obs.size == 0: if self.reshape: obs = np.zeros((self.height, self.width, self.depth), dtype=np.uint8) else: obs = np.zeros(self.height * self.width * self.depth, dtype=np.uint8) elif self.reshape: obs = obs.reshape((self.height, self.width, self.depth)).astype(np.uint8) self.last_obs = obs return obs def _quit_episode(self): comms.send_message(self.client_socket, "<Quit/>".encode()) reply = comms.recv_message(self.client_socket) ok, = struct.unpack('!I', reply) return ok != 0 def render(self, mode=None): """gym api render""" if self.last_obs is None: if self.reshape: self.last_obs = np.zeros((self.height, self.width, self.depth), dtype=np.uint8) else: self.last_obs = np.zeros(self.height * self.width * self.depth, dtype=np.uint8) return np.flipud(self.last_obs) def seed(self): pass def step(self, action): """gym api step""" obs = None reward = None info = None turn = True withturnkey = self.step_options < 2 withinfo = self.step_options == 0 or self.step_options == 2 while not self.done and \ ((obs is None or len(obs) == 0) or (withinfo and info is None) or turn): step_message = "<Step" + str(self.step_options) + ">" + \ self.action_space[action] + \ "</Step" + str(self.step_options) + " >" comms.send_message(self.client_socket, step_message.encode()) if withturnkey: comms.send_message(self.client_socket, self.turn_key.encode()) obs = comms.recv_message(self.client_socket) reply = comms.recv_message(self.client_socket) reward, done, sent = struct.unpack('!dbb', reply) self.done = done == 1 if withinfo: info = comms.recv_message(self.client_socket).decode('utf-8') turn_key = comms.recv_message(self.client_socket).decode('utf-8') if withturnkey else "" # print("[" + str(self.role) + "] TK " + turn_key + " self.TK " + str(self.turn_key)) if turn_key != "": if sent != 0: turn = False # Done turns if: turn = self.turn_key == turn_key self.turn_key = turn_key else: turn = sent == 0 if (obs is None or len(obs) == 0) or turn: time.sleep(0.1) obs = np.frombuffer(obs, dtype=np.uint8) #print("obs before reshap : ") #print(obs.shape) if self.reshape: if obs.size == 0: obs = np.zeros((self.height, self.width, self.depth), dtype=np.uint8) else: obs = obs.reshape((self.height, self.width, self.depth)).astype(np.uint8) self.last_obs = obs #print("obs after reshap : ") # print(obs.shape) if self.done: print("has done") else: print("continue") # print(info) # return obs, reward, self.done, info return obs, reward, self.done, {} def close(self): """gym api close""" try: # Purge last token from head node with <Close> message. sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((self.server, self.port)) self._hello(sock) comms.send_message(sock, ("<Close>" + self._get_token() + "</Close>").encode()) reply = comms.recv_message(sock) ok, = struct.unpack('!I', reply) assert ok sock.close() except Exception as e: self._log_error(e) if self.client_socket: self.client_socket.close() self.client_socket = None def reinit(self): """Use carefully to reset the episode count to 0.""" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((self.server, self.port)) self._hello(sock) comms.send_message(sock, ("<Init>" + self._get_token() + "</Init>").encode()) reply = comms.recv_message(sock) sock.close() ok, = struct.unpack('!I', reply) return ok != 0 def status(self, head): """Get status from server. head - Ping the the head node if True. """ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if head: sock.connect((self.server, self.port)) else: sock.connect((self.server2, self.port2)) self._hello(sock) comms.send_message(sock, "<Status/>".encode()) status = comms.recv_message(sock).decode('utf-8') sock.close() return status def exit(self): """Use carefully to cause the Minecraft service to exit (and hopefully restart). Likely to throw communication errors so wrap in exception handler. """ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((self.server2, self.port2)) self._hello(sock) comms.send_message(sock, ("<Exit>" + self._get_token() + "</Exit>").encode()) reply = comms.recv_message(sock) sock.close() ok, = struct.unpack('!I', reply) return ok != 0 def resync(self): """make sure we can ping the head and assigned node. Possibly after an env.exit()""" success = 0 for head in [True, False]: for _ in range(30): try: self.status(head) success += 1 break except Exception as e: self._log_error(e) time.sleep(10) if success != 2: raise EnvException("Failed to contact service" + (" head" if success == 0 else "")) def exit_resync(self): """Exit the current Minecraft and wait for new one to replace it.""" print("********** exit & resync **********") try: if self.client_socket: self.client_socket.close() self.client_socket = None try: self.exit() except Exception as e: self._log_error(e) print("Pause for exit(s) ...") time.sleep(60) except (socket.error, ConnectionError): pass self.resync() def _log_error(self, exn): pass # Keeping pylint happy def _find_server(self): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((self.server, self.port)) self._hello(sock) start_time = time.time() port = 0 while port == 0: comms.send_message(sock, ("<Find>" + self._get_token() + "</Find>").encode()) reply = comms.recv_message(sock) port, = struct.unpack('!I', reply) if port == 0: if time.time() - start_time > MAX_WAIT: if self.client_socket: self.client_socket.close() self.client_socket = None raise MissionInitException('too long finding mission to join') time.sleep(1) sock.close() # print("Found mission integrated server port " + str(port)) self.integratedServerPort = port e = self.xml.find(self.ns + 'MinecraftServerConnection') if e is not None: e.attrib['port'] = str(self.integratedServerPort) def _init_mission(self): ok = 0 while ok != 1: xml = etree.tostring(self.xml) token = (self._get_token() + ":" + str(self.agent_count)).encode() # print(xml.decode()) comms.send_message(self.client_socket, xml) comms.send_message(self.client_socket, token) reply = comms.recv_message(self.client_socket) ok, = struct.unpack('!I', reply) self.turn_key = comms.recv_message(self.client_socket).decode('utf-8') if ok != 1: time.sleep(1) def _get_token(self): return self.exp_uid + ":" + str(self.role) + ":" + str(self.resets) def make(): return Env()
38.742537
104
0.558943
dcc8ca9f110c22976bf2e69ea393e13ab9d5c9c0
2,202
py
Python
cove_cli.py
iainelder/aws-org-inventory
4e433699695d6b740a0995d70705d30792d803df
[ "MIT" ]
1
2021-12-24T12:43:11.000Z
2021-12-24T12:43:11.000Z
cove_cli.py
iainelder/aws-org-inventory
4e433699695d6b740a0995d70705d30792d803df
[ "MIT" ]
6
2021-11-01T15:03:20.000Z
2022-03-19T22:42:16.000Z
cove_cli.py
iainelder/aws-org-inventory
4e433699695d6b740a0995d70705d30792d803df
[ "MIT" ]
null
null
null
import json import sys from argparse import ArgumentParser, Namespace from datetime import datetime from inspect import getfullargspec from typing import Any, Callable, Dict, TextIO, get_args from boto3 import Session from botocove import CoveOutput, cove # type: ignore[import] from typing_inspect import is_generic_type, is_optional_type # type: ignore[import] class Encoder(json.JSONEncoder): def default(self, obj: Any) -> Any: if isinstance(obj, Exception): return repr(obj) if isinstance(obj, datetime): return obj.isoformat() return json.JSONEncoder.default(self, obj) def main() -> None: cove_args = get_cove_arg_parser().parse_args() cove_func = make_cove_func(sys.stdin.read(), cove_args) result = cove_func() dump_json(result, sys.stdout) # Inspired by sqlite_utils' _compile_code. def make_cove_func(body: str, cove_args: Namespace) -> Callable[..., CoveOutput]: body = body if body else "pass" header = "def func(session: Session):" func_source = "\n".join([header] + [f" {line}" for line in body.splitlines()]) code = compile(source=func_source, filename="<string>", mode="exec") locals: Dict[str, Any] = {} exec(code, None, locals) func = locals["func"] # TODO: Fix cove typing. return cove( # type: ignore[no-any-return] func, **{k: v for k, v in vars(cove_args).items() if v is not None} ) def dump_json(result: CoveOutput, file: TextIO) -> None: json.dump(result, file, indent=4, cls=Encoder) def get_cove_arg_parser() -> ArgumentParser: spec = getfullargspec(cove) parser = ArgumentParser() for arg in spec.kwonlyargs: hint = spec.annotations[arg] if is_optional_type(hint): type_arg = get_args(hint)[0] if is_generic_type(type_arg): type_arg = get_args(type_arg)[0] nargs = "*" else: nargs = "?" else: type_arg = hint print(f"{arg=} {hint=} {type_arg=}", file=sys.stderr) parser.add_argument(f"--{arg}", type=type_arg, nargs=nargs) return parser if __name__ == "__main__": main()
28.973684
85
0.642598
83cb6554eccc51ed9baa5ce2d4d53b192a95ab94
9,115
py
Python
python/ingestion/standardized_columns.py
vanshkumar/health-equity-tracker
e3be05ee665f1c6aecab761527f6faf8a5183ea6
[ "MIT" ]
null
null
null
python/ingestion/standardized_columns.py
vanshkumar/health-equity-tracker
e3be05ee665f1c6aecab761527f6faf8a5183ea6
[ "MIT" ]
null
null
null
python/ingestion/standardized_columns.py
vanshkumar/health-equity-tracker
e3be05ee665f1c6aecab761527f6faf8a5183ea6
[ "MIT" ]
null
null
null
from enum import Enum, unique from collections import namedtuple import pandas # The name of the column for a unique string id for the race category. Should be # semi-human readable. See Race enum below for values. RACE_CATEGORY_ID_COL = "race_category_id" # The name of the column that displays the fully-qualified race name, including # whether Hispanic/Latino are included. RACE_OR_HISPANIC_COL = "race_and_ethnicity" # The name of the column for Whether a person is Hispanic/Latino or not. HISPANIC_COL = "hispanic_or_latino" # The name of the column for whether the race category includes Hispanic/Latino # people. RACE_INCLUDES_HISPANIC_COL = "race_includes_hispanic" # The name of the column that displays the basic race name, not specifying # whether Hispanic/Latino people are included. RACE_COL = "race" AGE_COL = "age" SEX_COL = "sex" STATE_FIPS_COL = "state_fips" STATE_NAME_COL = "state_name" STATE_POSTAL_COL = "state_postal" # State 2-letter postal abberviation. COUNTY_FIPS_COL = "county_fips" COUNTY_NAME_COL = "county_name" POPULATION_COL = "population" INCOME_COL = "income" TOTAL_VALUE = "Total" ALL_VALUE = "All" # Standardized column names for Covid cases, hospitalizations, and deaths. COVID_CASES = "cases" COVID_HOSP_Y = "hosp_y" COVID_HOSP_N = "hosp_n" COVID_HOSP_UNKNOWN = "hosp_unknown" COVID_DEATH_Y = "death_y" COVID_DEATH_N = "death_n" COVID_DEATH_UNKNOWN = "death_unknown" # Standard Health Insurance Population Cols TOTAL_HEALTH_INSURANCE_COL = "total_health_insurance" WITH_HEALTH_INSURANCE_COL = "with_health_insurance" WITHOUT_HEALTH_INSURANCE_COL = "without_health_insurance" ABOVE_POVERTY_COL = "above_poverty_line" BELOW_POVERTY_COL = "below_poverty_line" COPD_PCT = "copd_pct" DIABETES_PCT = "diabetes_pct" RaceTuple = namedtuple("RaceTuple", [ "race_category_id", "race", "race_includes_hispanic", "race_and_ethnicity" ]) @unique class Race(Enum): # These categories are one format of standard categories used in ACS data, # where categories are mutually exclusive but each one includes # Hispanic/Latino. The sum of these values is equal to the total population. # OTHER_STANDARD is defined as anyone who does not fall into one of the # other categories in this format. AIAN = ("AIAN", "American Indian and Alaska Native", True) ASIAN = ("ASIAN", "Asian", True) BLACK = ("BLACK", "Black or African American", True) NHPI = ("NHPI", "Native Hawaiian and Pacific Islander", True) MULTI = ("MULTI", "Two or more races", True) WHITE = ("WHITE", "White", True) OTHER_STANDARD = ("OTHER_STANDARD", "Some other race", True) # These categories are another format of standard categories used in ACS # data, where categories are mutually exclusive and exclude Hispanic/Latino. # Hispanic/Latino is its own category. Each one of these is a strict subset # of its counterpart in the above format. OTHER_STANDARD_NH is defined as # anyone who does not fall into one of the other categories in this format. # Where possible, this format is preferred. AIAN_NH = ("AIAN_NH", "American Indian and Alaska Native", False) ASIAN_NH = ("ASIAN_NH", "Asian", False) BLACK_NH = ("BLACK_NH", "Black or African American", False) NHPI_NH = ("NHPI_NH", "Native Hawaiian and Pacific Islander", False) MULTI_NH = ("MULTI_NH", "Two or more races", False) WHITE_NH = ("WHITE_NH", "White", False) HISP = ("HISP", "Hispanic or Latino", True) OTHER_STANDARD_NH = ("OTHER_STANDARD_NH", "Some other race", False) # Below are special values that have slightly different characteristics. # Hispanic vs Non-Hispanic can be defined differently across datasets. # Sometimes Hispanic/Latino is treated as mutually exclusive with other # racial categories, so when a person is categorized as Hispanic or Latino # they are excluded from the data for any other racial category they belong # to. Other times, a person may be reported as both Hispanic/Latino and as # another race. In some datasets, these are reported entirely independently # so we do not know the relationship between Hispanic/Latino and race. # ETHNICITY_UNKNOWN refers to data that does not know whether the person is # Hispanic or Latino. (Some datasets use "ethnicity" to refer to whether # someone is Hispanic or Latino) NH = ("NH", "Not Hispanic or Latino", False) ETHNICITY_UNKNOWN = ("ETHNICITY_UNKNOWN", "Unknown ethnicity", None) # OTHER_STANDARD and OTHER_STANDARD_NH define "other" in a specific way (see # above). Some datasets may group additional races into "other" # when reporting (for example "other" may sometimes include AIAN or NHPI). # These datasets should use OTHER_NONSTANDARD/OTHER_NONSTANDARD_NH to # prevent joining with the incorrect population data. # TODO: The frontend uses the race_and_ethnicity column as a unique # identifier in some places. Until we migrate to using race_category_id, # we add a * for the non-standard other so it doesn't accidentally get # joined with the standard other on the frontend. OTHER_NONSTANDARD = ("OTHER_NONSTANDARD", "Some other race*", True) OTHER_NONSTANDARD_NH = ("OTHER_NONSTANDARD_NH", "Some other race*", False) # Categories that are combinations of other categories API = ("API", "Asian and Pacific Islander", True) API_NH = ("API_NH", "Asian and Pacific Islander", False) # Combines AIAN and NHPI INDIGENOUS = ("INDIGENOUS", "Indigenous", True) # Combines AIAN_NH and NHPI_NH INDIGENOUS_NH = ("INDIGENOUS_NH", "Indigenous", False) MULTI_OR_OTHER_STANDARD = ( "MULTI_OR_OTHER_STANDARD", "Two or more races & Some other race", True) MULTI_OR_OTHER_STANDARD_NH = ( "MULTI_OR_OTHER_STANDARD_NH", "Two or more races & Some other race", False) # When the race is unknown. Different from ETHNICITY_UNKNOWN, which # specifically refers to whether Hispanic/Latino is unknown. UNKNOWN = ("UNKNOWN", "Unknown race", True) UNKNOWN_NH = ("UNKNOWN_NH", "Unknown race", False) # The total across races. This must always be included when the other race # values do not sum to 100% TOTAL = ("TOTAL", TOTAL_VALUE, None) ALL = ("ALL", ALL_VALUE, None) # We set the enum value to the first arg, which is the race category id, or # a unique code that can be used to reference that race. Race category ids # should be set to the same value as the enum name. # Arguments are set as optional to accommodate a mypy bug with enums: # https://github.com/python/mypy/issues/1021. def __new__(cls, value, race=None, includes_hispanic=None): obj = object.__new__(cls) obj._value_ = value obj._race = race obj._includes_hispanic = includes_hispanic return obj @property def race_category_id(self) -> str: """The race category id; uniquely identifies this enum member.""" return self.value @property def race(self): """The basic display name for this race.""" return self._race @property def includes_hispanic(self): """Whether this race includes Hispanic or Latino.""" return self._includes_hispanic @property def race_and_ethnicity(self) -> str: """The fully-qualified dispaly name that specifies both race and whether the category includes Hispanic or Latino.""" if (self.includes_hispanic is True or self.includes_hispanic is None or self.race in ["Hispanic or Latino", "Not Hispanic or Latino"]): return self.race else: return self.race + " (Non-Hispanic)" @staticmethod def get_col_names() -> list: """The list of column names for putting the race attributes into a table. Columns are returned in the same order as `as_tuple()`.""" return list(RaceTuple._fields) @staticmethod def from_category_id(category_id: str): """Gets an instance of this Enum from the provided race category id.""" # Instances of an enum can be constructed from their value, and since we # set the enum value to the category id, we can construct an instance # without providing other params. # pylint: disable=no-value-for-parameter return Race(category_id) def as_tuple(self) -> RaceTuple: """The race attributes, in the same order as `get_col_names()`.""" return RaceTuple(self.race_category_id, self.race, self.includes_hispanic, self.race_and_ethnicity) def add_race_columns_from_category_id(df): """Adds all race-related columns to the dataframe using the race category id to determine these values.""" df["race_tuple"] = df.apply( lambda r: Race.from_category_id(r[RACE_CATEGORY_ID_COL]).as_tuple(), axis=1) df[Race.get_col_names()] = pandas.DataFrame( df["race_tuple"].tolist(), index=df.index) df.drop("race_tuple", axis=1, inplace=True)
41.811927
80
0.707296
f76f1fb954ada0f955275d43f302adf3b1516bfd
8,875
py
Python
openbb_terminal/cryptocurrency/overview/coinpaprika_view.py
JerBouma/OpenBBTerminal
0c60d70cb29b0a6e4db41d6dd0d34f79a6169b27
[ "MIT" ]
null
null
null
openbb_terminal/cryptocurrency/overview/coinpaprika_view.py
JerBouma/OpenBBTerminal
0c60d70cb29b0a6e4db41d6dd0d34f79a6169b27
[ "MIT" ]
null
null
null
openbb_terminal/cryptocurrency/overview/coinpaprika_view.py
JerBouma/OpenBBTerminal
0c60d70cb29b0a6e4db41d6dd0d34f79a6169b27
[ "MIT" ]
null
null
null
"""CoinPaprika view""" __docformat__ = "numpy" import logging import os from pandas.plotting import register_matplotlib_converters import openbb_terminal.cryptocurrency.overview.coinpaprika_model as paprika from openbb_terminal.cryptocurrency.dataframe_helpers import ( lambda_long_number_format_with_type_check, ) from openbb_terminal.decorators import log_start_end from openbb_terminal.helper_funcs import export_data, print_rich_table from openbb_terminal.rich_config import console logger = logging.getLogger(__name__) register_matplotlib_converters() # pylint: disable=inconsistent-return-statements # pylint: disable=C0302, too-many-lines CURRENCIES = [ "BTC", "ETH", "USD", "EUR", "PLN", "KRW", "GBP", "CAD", "JPY", "RUB", "TRY", "NZD", "AUD", "CHF", "UAH", "HKD", "SGD", "NGN", "PHP", "MXN", "BRL", "THB", "CLP", "CNY", "CZK", "DKK", "HUF", "IDR", "ILS", "INR", "MYR", "NOK", "PKR", "SEK", "TWD", "ZAR", "VND", "BOB", "COP", "PEN", "ARS", "ISK", ] # see https://github.com/OpenBB-finance/OpenBBTerminal/pull/562#issuecomment-887842888 # EXCHANGES = paprika.get_list_of_exchanges() @log_start_end(log=logger) def display_global_market(export: str) -> None: """Return data frame with most important global crypto statistics like: market_cap_usd, volume_24h_usd, bitcoin_dominance_percentage, cryptocurrencies_number, market_cap_ath_value, market_cap_ath_date, volume_24h_ath_value, volume_24h_ath_date, market_cap_change_24h, volume_24h_change_24h, last_updated [Source: CoinPaprika] Parameters ---------- export : str Export dataframe data to csv,json,xlsx file """ df = paprika.get_global_market() df_data = df.copy() df["Value"] = df["Value"].apply( # pylint:disable=unsupported-assignment-operation lambda x: lambda_long_number_format_with_type_check(x) ) print_rich_table( df, headers=list(df.columns), show_index=False, title="Global Crypto Statistics" ) export_data( export, os.path.dirname(os.path.abspath(__file__)), "global", df_data, ) @log_start_end(log=logger) def display_all_coins_market_info( currency: str, sortby: str, descend: bool, top: int, export: str ) -> None: """Displays basic market information for all coins from CoinPaprika API. [Source: CoinPaprika] Parameters ---------- currency: str Quoted currency top: int Number of records to display sortby: str Key by which to sort data descend: bool Flag to sort data descending links: bool Flag to display urls export : str Export dataframe data to csv,json,xlsx file """ df = paprika.get_coins_market_info(quotes=currency).sort_values( by=sortby, ascending=descend ) df_data = df.copy() if df.empty: console.print("No data found", "\n") return cols = [col for col in df.columns if col != "rank"] df[cols] = df[cols].applymap(lambda x: lambda_long_number_format_with_type_check(x)) console.print(f"\nDisplaying data vs {currency}") print_rich_table( df.head(top), headers=list(df.columns), show_index=False, title="Basic Market Information", ) export_data( export, os.path.dirname(os.path.abspath(__file__)), "markets", df_data, ) @log_start_end(log=logger) def display_all_coins_info( currency: str, sortby: str, descend: bool, top: int, export: str ) -> None: """Displays basic coin information for all coins from CoinPaprika API. [Source: CoinPaprika] Parameters ---------- currency: str Quoted currency top: int Number of records to display sortby: str Key by which to sort data descend: bool Flag to sort data descending links: bool Flag to display urls export : str Export dataframe data to csv,json,xlsx file """ df = paprika.get_coins_info(quotes=currency).sort_values( by=sortby, ascending=descend ) df_data = df.copy() if df.empty: console.print("Not data found", "\n") return cols = [col for col in df.columns if col != "rank"] df[cols] = df[cols].applymap(lambda x: lambda_long_number_format_with_type_check(x)) console.print(f"\nDisplaying data vs {currency}") print_rich_table( df.head(top), headers=list(df.columns), show_index=False, title="Basic Coin Information", ) export_data( export, os.path.dirname(os.path.abspath(__file__)), "info", df_data, ) @log_start_end(log=logger) def display_all_exchanges( currency: str, sortby: str, descend: bool, top: int, export: str ) -> None: """List exchanges from CoinPaprika API. [Source: CoinPaprika] Parameters ---------- currency: str Quoted currency top: int Number of records to display sortby: str Key by which to sort data descend: bool Flag to sort data descending links: bool Flag to display urls export : str Export dataframe data to csv,json,xlsx file """ df = paprika.get_list_of_exchanges(quotes=currency).sort_values( by=sortby, ascending=descend ) df_data = df.copy() if df.empty: console.print("No data found", "\n") return cols = [col for col in df.columns if col != "rank"] df[cols] = df[cols].applymap(lambda x: lambda_long_number_format_with_type_check(x)) console.print(f"\nDisplaying data vs {currency}") print_rich_table( df.head(top), headers=list(df.columns), show_index=False, title="List Exchanges" ) export_data( export, os.path.dirname(os.path.abspath(__file__)), "exchanges", df_data, ) @log_start_end(log=logger) def display_exchange_markets( exchange: str, sortby: str, descend: bool, top: int, links: bool, export: str ) -> None: """Get all markets for given exchange [Source: CoinPaprika] Parameters ---------- exchange: str Exchange identifier e.g Binance top: int Number of records to display sortby: str Key by which to sort data descend: bool Flag to sort data descending links: bool Flag to display urls export : str Export dataframe data to csv,json,xlsx file """ df = paprika.get_exchanges_market(exchange_id=exchange) df_data = df.copy() if df.empty: console.print("No data found", "\n") return df = df.sort_values(by=sortby, ascending=descend) if links is True: df = df[["exchange_id", "pair", "trust_score", "market_url"]] else: df.drop("market_url", axis=1, inplace=True) print_rich_table( df.head(top), headers=list(df.columns), show_index=False, title="Exchange Markets", ) export_data( export, os.path.dirname(os.path.abspath(__file__)), "exmarkets", df_data, ) @log_start_end(log=logger) def display_all_platforms(export: str) -> None: """List all smart contract platforms like ethereum, solana, cosmos, polkadot, kusama. [Source: CoinPaprika] Parameters ---------- export : str Export dataframe data to csv,json,xlsx file """ df = paprika.get_all_contract_platforms() print_rich_table( df, headers=list(df.columns), show_index=False, title="Smart Contract Platforms" ) export_data( export, os.path.dirname(os.path.abspath(__file__)), "platforms", df, ) @log_start_end(log=logger) def display_contracts( platform: str, sortby: str, descend: bool, top: int, export: str ) -> None: """Gets all contract addresses for given platform. [Source: CoinPaprika] Parameters ---------- platform: str Blockchain platform like eth-ethereum top: int Number of records to display sortby: str Key by which to sort data descend: bool Flag to sort data descending export : str Export dataframe data to csv,json,xlsx file """ df = paprika.get_contract_platform(platform) if df.empty: console.print(f"Nothing found for platform: {platform}", "\n") return df = df.sort_values(by=sortby, ascending=descend) print_rich_table( df.head(top), headers=list(df.columns), show_index=False, title="Contract Addresses", ) export_data( export, os.path.dirname(os.path.abspath(__file__)), "contracts", df, )
23.729947
111
0.629296
822e9b586a1bab13972c7713ade7befedb9466b9
1,180
py
Python
python/product_annoter/mapper/votable_merger.py
loumir/modelinstanceinvot-code
246bd04b9eab558813ef09ad69a2a2f3ed7d2d92
[ "Unlicense" ]
null
null
null
python/product_annoter/mapper/votable_merger.py
loumir/modelinstanceinvot-code
246bd04b9eab558813ef09ad69a2a2f3ed7d2d92
[ "Unlicense" ]
2
2022-03-09T18:39:21.000Z
2022-03-11T16:27:45.000Z
python/product_annoter/mapper/votable_merger.py
loumir/modelinstanceinvot-code
246bd04b9eab558813ef09ad69a2a2f3ed7d2d92
[ "Unlicense" ]
1
2021-07-09T12:30:57.000Z
2021-07-09T12:30:57.000Z
''' Created on 16 avr. 2020 @author: laurentmichel ''' from product_annoter.mapper import logger class VOTableMerger(object): ''' classdocs ''' def __init__(self, raw_votable_path, mapping_block_path, output_path): ''' Constructor ''' self.raw_votable_path = raw_votable_path self.mapping_block_path = mapping_block_path self.output_path = output_path def _get_mapping(self): with open(self.mapping_block_path, 'r') as mapping: return mapping.read() def insert_mapping(self): logger.info("save annotated VOTable in %s", self.output_path) with open(self.output_path, 'w') as output_votable: with open(self.raw_votable_path, 'r') as raw_votable: prelude = False for line in raw_votable: output_votable.write(line) if line.startswith("<VOTABLE") is True: prelude = True if prelude is True and ">" in line: output_votable.write(self._get_mapping()) prelude = False
30.25641
74
0.570339
359e10528bbce247d42f091c6aa0f7830af3bf57
3,067
py
Python
evaluate.py
seanjh/DSRecommendationSystems
a08630b0113d35227f56c89e1d1b9394516f6ff6
[ "Apache-2.0" ]
1
2017-04-13T20:15:43.000Z
2017-04-13T20:15:43.000Z
evaluate.py
seanjh/DSRecommendationSystems
a08630b0113d35227f56c89e1d1b9394516f6ff6
[ "Apache-2.0" ]
null
null
null
evaluate.py
seanjh/DSRecommendationSystems
a08630b0113d35227f56c89e1d1b9394516f6ff6
[ "Apache-2.0" ]
null
null
null
import os import math import config import configspark import ml_parse from pyspark.mllib.recommendation import ALS RANKS = [10, 20, 30, 40, 50] LAMBDA_VALUES = [0.01, 0.1, 1.0, 10.0] ITERATIONS = 10 sc = configspark.SPARK_CONTEXT def report_mse_results(outfile, rank, lambda_value, mse, rmse): print("\nRank=%2d, Lambda=%4.3f\n\tMSE=%0f, RMSE=%0f\n" % ( rank, lambda_value, mse, rmse)) outfile.write("%d,%f,%f,%f\n" % (rank, lambda_value, mse, rmse)) def evaluate_parameters(train, validation, ranks, iterations, lambda_values, implicit): print("\n") if implicit: print("Training with implicit feedback") trainFunc = ALS.trainImplicit else: print("Training with explicit feedback") trainFunc = ALS.train print("\n") for rank in ranks: for lambda_val in lambda_values: model = trainFunc(train, rank, iterations, lambda_val, nonnegative=True) mse, rmse = evaluate_model(model, validation) yield { "rank": rank, "lambda": lambda_val, "mse": mse, "rmse": rmse, "model": model } # Evaluate the model on test data def evaluate_model(model, validation): users_products = validation.map(lambda row: ml_parse.user_product(row)) users_products_ratings = validation.map(ml_parse.user_product_rating) predictions = ( model .predictAll(users_products) .map(ml_parse.user_product_rating)) # RDD of [((user, movie), (real_rating, predicted_rating)), ...] ratesAndPreds = users_products_ratings.join(predictions).values() print("\nRatings and predictions (sample 10):\n%s" % ratesAndPreds.take(10)) mse = ratesAndPreds.map(lambda result: (result[0] - result[1]) ** 2).mean() return mse, math.sqrt(mse) def evaluate(train, validation, results_filename, implicit=False): min_rmse = None best_result = None best_model = None with open(results_filename, "w") as outfile: # CSV header outfile.write("%s\n" % ",".join(["rank", "lambda", "mse", "rmse"])) for result in evaluate_parameters(train, validation, RANKS, ITERATIONS, LAMBDA_VALUES, implicit): report_mse_results( outfile, result.get("rank"), result.get("lambda"), result.get("mse"), result.get("rmse") ) if best_result is None or result.get("rmse") < min_rmse: best_result = result min_rmse = result.get("rmse") return best_result def load_best_params(filename): if not os.path.exists(filename): raise RuntimeError("Cannot locate best ALS parameters file %s" % filename) with open(filename) as infile: lines = [line for line in infile] parts = lines[1].strip().split(",") return parts[0], parts[1]
30.67
80
0.59374
f7684a51897ca7b66db658b118e9ab886946c37f
3,165
py
Python
src/olympia/files/tests/test_decorators.py
leplatrem/addons-server
8b5ebda6f33194aa9fce12c0453574e7f850e6ad
[ "BSD-3-Clause" ]
1
2020-04-07T07:21:25.000Z
2020-04-07T07:21:25.000Z
src/olympia/files/tests/test_decorators.py
leplatrem/addons-server
8b5ebda6f33194aa9fce12c0453574e7f850e6ad
[ "BSD-3-Clause" ]
null
null
null
src/olympia/files/tests/test_decorators.py
leplatrem/addons-server
8b5ebda6f33194aa9fce12c0453574e7f850e6ad
[ "BSD-3-Clause" ]
2
2018-03-04T00:11:22.000Z
2019-12-14T09:45:55.000Z
from django import http from django.core.exceptions import PermissionDenied, ObjectDoesNotExist import pytest from mock import Mock, patch from olympia import amo from olympia.amo.tests import TestCase from olympia.access import acl from olympia.files.decorators import allowed class AllowedTest(TestCase): def setUp(self): super(AllowedTest, self).setUp() self.request = Mock() self.file = Mock() @patch.object(acl, 'check_addons_reviewer', lambda x: False) @patch.object(acl, 'check_unlisted_addons_reviewer', lambda x: False) @patch.object(acl, 'check_addon_ownership', lambda *args, **kwargs: True) def test_owner_allowed(self): assert allowed(self.request, self.file) @patch.object(acl, 'check_addons_reviewer', lambda x: True) @patch.object(acl, 'check_unlisted_addons_reviewer', lambda x: False) def test_reviewer_allowed(self): assert allowed(self.request, self.file) @patch.object(acl, 'check_addons_reviewer', lambda x: False) @patch.object(acl, 'check_unlisted_addons_reviewer', lambda x: False) @patch.object(acl, 'check_addon_ownership', lambda *args, **kwargs: False) def test_viewer_unallowed(self): self.assertRaises(PermissionDenied, allowed, self.request, self.file) def test_addon_not_found(self): class MockVersion: @property def addon(self): raise ObjectDoesNotExist self.file.version = MockVersion() self.assertRaises(http.Http404, allowed, self.request, self.file) def get_unlisted_addon_file(self): addon = amo.tests.addon_factory(is_listed=False) return addon, addon.versions.get().files.get() @patch.object(acl, 'check_addons_reviewer', lambda x: False) @patch.object(acl, 'check_unlisted_addons_reviewer', lambda x: False) @patch.object(acl, 'check_addon_ownership', lambda *args, **kwargs: False) def test_unlisted_viewer_unallowed(self): addon, file_ = self.get_unlisted_addon_file() with pytest.raises(http.Http404): allowed(self.request, file_) @patch.object(acl, 'check_addons_reviewer', lambda x: True) @patch.object(acl, 'check_unlisted_addons_reviewer', lambda x: False) @patch.object(acl, 'check_addon_ownership', lambda *args, **kwargs: False) def test_unlisted_reviewer_unallowed(self): addon, file_ = self.get_unlisted_addon_file() with pytest.raises(http.Http404): allowed(self.request, file_) @patch.object(acl, 'check_addons_reviewer', lambda x: True) @patch.object(acl, 'check_unlisted_addons_reviewer', lambda x: True) def test_unlisted_admin_reviewer_allowed(self): addon, file_ = self.get_unlisted_addon_file() assert allowed(self.request, file_) @patch.object(acl, 'check_addons_reviewer', lambda x: False) @patch.object(acl, 'check_unlisted_addons_reviewer', lambda x: False) @patch.object(acl, 'check_addon_ownership', lambda *args, **kwargs: True) def test_unlisted_owner_allowed(self): addon, file_ = self.get_unlisted_addon_file() assert allowed(self.request, file_)
41.103896
78
0.711532
ec6177b844824b535c33d169371e0ffac3b07db2
570
py
Python
olist_ecommerce/config.py
mara/mara-olist-ecommerce-data
663660edff1b4cd711a172027081915771628b9f
[ "MIT" ]
1
2021-03-12T04:47:05.000Z
2021-03-12T04:47:05.000Z
olist_ecommerce/config.py
mara/mara-olist-ecommerce-data
663660edff1b4cd711a172027081915771628b9f
[ "MIT" ]
null
null
null
olist_ecommerce/config.py
mara/mara-olist-ecommerce-data
663660edff1b4cd711a172027081915771628b9f
[ "MIT" ]
null
null
null
"""Configuration of loading olist e-commerce dataset to Postgres""" import pathlib def data_dir() -> str: """The directory where the csv files are located""" return pathlib.Path(__file__).parent.parent/'data' def db_name() -> str: """Database name""" return 'olist_ecommerce' def db_user() -> str: """Database user""" return 'root' def db_password() -> str: """Database password""" return '' def db_host() -> str: """Database host""" return 'localhost' def db_port() -> str: """Database port""" return '5432'
16.764706
67
0.621053
760f4e45c0081323f7c0be0a88b943045eed3a42
2,682
py
Python
experiments/adversarial_training/cluster_cifar10.py
srakrnxKU/adversarial-project
b75b45d4e24461b804db5ab2b4b28217ed09908f
[ "MIT" ]
3
2020-08-07T12:13:14.000Z
2020-12-11T02:26:17.000Z
experiments/adversarial_training/cluster_cifar10.py
srakrnxKU/adversarial-project
b75b45d4e24461b804db5ab2b4b28217ed09908f
[ "MIT" ]
5
2021-04-30T21:07:02.000Z
2022-01-25T11:50:36.000Z
experiments/adversarial_training/cluster_cifar10.py
srakrnxKU/adversarial-project
b75b45d4e24461b804db5ab2b4b28217ed09908f
[ "MIT" ]
null
null
null
# %% import logging import os import sys import torch from clustre.adversarial_training import cluster_training from clustre.helpers.datasets import cifar10_testloader, cifar10_trainloader from clustre.helpers.metrics import ( classification_report, classification_report_fgsm, classification_report_pgd, ) from clustre.models import cifar10_cnn, cifar10_wide_resnet34_10 from clustre.models.state_dicts import ( cifar10_cnn_state, cifar10_wide_resnet34_10_state, ) from torch import nn, optim # %% DEVICE = "cuda:0" LOG_FILENAME = os.path.abspath(__file__)[:-3] + "_log.txt" SCRIPT_PATH = os.path.dirname(__file__) FORMAT = "%(message)s" logging.basicConfig(filename=LOG_FILENAME, level=logging.INFO, format=FORMAT) log = logging.getLogger() # %% models = { # "CIFAR-10 CNN": [ # cifar10_cnn, # cifar10_cnn_state, # cifar10_trainloader, # cifar10_testloader, # ], "CIFAR-10 Wide ResNet34-10": [ cifar10_wide_resnet34_10, cifar10_wide_resnet34_10_state, cifar10_trainloader, cifar10_testloader, ], } global_param = {"n_init": 3, "n_epoches": 40} # %% for model_name, (model, state, trainloader, testloader) in models.items(): for cluster_with in ["original_data", "fgsm_perturb"]: for n_clusters in [500, 1000, 3000, 5000, 10000]: model.load_state_dict(state) logging.info(f"Training {model_name}") logging.info( "n_cluster = {}, cluster_with = {}".format( n_clusters, cluster_with ) ) new_model = cluster_training( model, trainloader, device=DEVICE, log=log, n_clusters=n_clusters, cluster_with=cluster_with, **global_param, ) torch.save( new_model.state_dict(), os.path.join( SCRIPT_PATH, f"Cluster {model_name} {cluster_with} {n_clusters}.model", ), ) logging.info(f"Unattacked {model_name}") logging.info( classification_report(new_model, testloader, device=DEVICE) ) logging.info(f"FGSM attacked {model_name}") logging.info( classification_report_fgsm( new_model, testloader, device=DEVICE ) ) logging.info(f"PGD attacked {model_name}") logging.info( classification_report_pgd(new_model, testloader, device=DEVICE) )
29.472527
79
0.592095
98f485b591a0b705a9d8146f0ce629e0eef3c925
926
py
Python
I_PROYECTO_DJANGO_ICIT/colegio/estudiantes/migrations/0002_apoderados.py
fernandopacco71/PROGRAMACION-WEB-II-ICIT-REPOSITORIO
edf53e534c7c3d561981813c5cf0af061ea5c601
[ "MIT" ]
2
2021-09-03T00:02:38.000Z
2021-09-09T15:59:42.000Z
I_PROYECTO_DJANGO_ICIT/colegio/estudiantes/migrations/0002_apoderados.py
fernandopacco71/PROGRAMACION-WEB-II-ICIT-REPOSITORIO
edf53e534c7c3d561981813c5cf0af061ea5c601
[ "MIT" ]
null
null
null
I_PROYECTO_DJANGO_ICIT/colegio/estudiantes/migrations/0002_apoderados.py
fernandopacco71/PROGRAMACION-WEB-II-ICIT-REPOSITORIO
edf53e534c7c3d561981813c5cf0af061ea5c601
[ "MIT" ]
null
null
null
# Generated by Django 3.2.6 on 2021-08-25 15:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('estudiantes', '0001_initial'), ] operations = [ migrations.CreateModel( name='Apoderados', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('idApoderados', models.IntegerField(unique=True)), ('nombreApoderados', models.TextField(default='', max_length=60)), ('apellidosApoderados', models.TextField(default='', max_length=60)), ('dniApoderados', models.CharField(max_length=8, unique=True)), ('domicilioApoderados', models.TextField(default='', max_length=100)), ('sexoApoderados', models.CharField(max_length=1)), ], ), ]
35.615385
117
0.596112
46562259897ef343769e60cee48f6dbfe76c8f05
10,307
py
Python
register.py
chripell/yaaca
9048ca5dc458f9a7dde9ca745f057f7499b19972
[ "Apache-2.0" ]
1
2020-09-23T19:56:17.000Z
2020-09-23T19:56:17.000Z
register.py
chripell/yaaca
9048ca5dc458f9a7dde9ca745f057f7499b19972
[ "Apache-2.0" ]
null
null
null
register.py
chripell/yaaca
9048ca5dc458f9a7dde9ca745f057f7499b19972
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # register.py # outputs: [x] [y] offset for every image import sys import os import multiprocessing sys.path.append(os.path.join(os.path.dirname(__file__), "astrolove")) sys.path.append("/usr/lib/astrolove") import numpy as np import astrolib as AL import scipy.signal import scipy.ndimage.interpolation import imreg from optparse import OptionParser parser = OptionParser(usage = "usage: %prog [opts] [files or @file_list ...]") parser.add_option("--method", type = "int", default = 0, help = "0 FFT, 1 FFT Canny, 2 geometric, 3 imreg, 100 none") parser.add_option("--filter", type = "int", default = 0, help = "0 none 1 median 2 wavelet only ROI: 101 median 102 wavelet") parser.add_option("--filter-par", type = "int", default = 0, help = "parameter for filter") parser.add_option("--zoom", type = "int", default = 0, help = "zoom if > 0") parser.add_option("--dark", type = "string", default = "N", help = "dark frame to subtract") parser.add_option("--imtype", type = "int", default = 0, help = AL.imtype_help) parser.add_option("--flat", type = "string", default = "N", help = "npy file with flat to divide with") parser.add_option("--crop-x", type = "int", default = 0, help = "crop x") parser.add_option("--crop-y", type = "int", default = 0, help = "crop y") parser.add_option("--crop-w", type = "int", default = -1, help = "crop w") parser.add_option("--crop-h", type = "int", default = -1, help = "crop h") parser.add_option("--roi-x", type = "int", default = -1, help = "roi x") parser.add_option("--roi-y", type = "int", default = -1, help = "roi y") parser.add_option("--roi-w", type = "int", default = -1, help = "roi w") parser.add_option("--roi-h", type = "int", default = -1, help = "roi h") parser.add_option("--out-dir", type = "string", default = "./", help = "output dir, default to current") parser.add_option("--defect", type = "string", default = "", help = "defect list: x,y one per line") parser.add_option("--defect-col", type = "string", default = "", help = "defect column list: one per line") parser.add_option("--debayer-pattern", type = "int", default = 2, help = "0:none 1:bggr 2:grbg") parser.add_option("--debayer-method", type = "int", default = 3, help = "0:median 1:mean 2:super_pixel 3:opencv") parser.add_option("--save-npy", type = "int", default = 0, help = "if non zero save npy of image as well") parser.add_option("--cores", type = "int", default = 1, help = "number of workers to use") (options, args) = parser.parse_args() debayer_method = options.debayer_method debayer_pattern = options.debayer_pattern method = options.method filter = options.filter filter_par = options.filter_par zoom = options.zoom dark = options.dark im_mode = options.imtype if options.flat != 'N' : flat = np.load(options.flat) else: flat = None crop_x = options.crop_x crop_y = options.crop_y crop_w = options.crop_w crop_h = options.crop_h roi_x = options.roi_x roi_y = options.roi_y roi_w = options.roi_w roi_h = options.roi_h dir = options.out_dir save_npy = options.save_npy cores = options.cores def bin_ndarray(ndarray, new_shape, operation='sum'): """ Bins an ndarray in all axes based on the target shape, by summing or averaging. Number of output dimensions must match number of input dimensions. Example ------- >>> m = np.arange(0,100,1).reshape((10,10)) >>> n = bin_ndarray(m, new_shape=(5,5), operation='sum') >>> print(n) [[ 22 30 38 46 54] [102 110 118 126 134] [182 190 198 206 214] [262 270 278 286 294] [342 350 358 366 374]] """ if not operation.lower() in ['sum', 'mean', 'average', 'avg']: raise ValueError("Operation {} not supported.".format(operation)) if ndarray.ndim != len(new_shape): raise ValueError("Shape mismatch: {} -> {}".format(ndarray.shape, new_shape)) compression_pairs = [(d, c//d) for d, c in zip(new_shape, ndarray.shape)] flattened = [l for p in compression_pairs for l in p] ndarray = ndarray.reshape(flattened) for i in range(len(new_shape)): if operation.lower() == "sum": ndarray = ndarray.sum(-1*(i+1)) elif operation.lower() in ["mean", "average", "avg"]: ndarray = ndarray.mean(-1*(i+1)) return ndarray def prev_pow(x): p = 1 while p < x: p *= 2 return p // 2 def prepare_image(n): global crop_w, crop_h, roi_w, roi_h, roi_x, roi_y imSP = None imRGB = AL.load_pic(n, im_mode) if crop_w == -1 : crop_w = imRGB[0].shape[0] if crop_h == -1 : crop_h = imRGB[0].shape[1] if roi_w == -1 : roi_w = prev_pow(crop_w // 2) if roi_h == -1 : roi_h = prev_pow(crop_h // 2) if roi_x == -1 : roi_x = (imRGB[0].shape[0] - roi_w) // 2 if roi_y == -1 : roi_y = (imRGB[0].shape[1] - roi_h) // 2 imRGB = [x.astype(AL.myfloat) for x in imRGB] if dark != "N": imRGB = [x - y for x,y in zip(imRGB, darkf)] imRGB = [x.clip(0, 65535) for x in imRGB] for defect in defects: x = defect[0] y = defect[1] if x > 0 and x < (crop_w - 1) and y > 0 and y < (crop_h - 1): for im in imRGB: im[x,y] = (im[x-1,y] + im[x+1,y] + im[x,y-1] + im[x,y+1]) / 4 for x in defect_cols: if x > 0 and x < (crop_w - 1) : for im in imRGB: im[x,:] = (im[x-1,:] + im[x+1,:]) / 2.0 imRAW = imRGB[0].astype(np.uint16) if im_mode == 7 or im_mode == 8 or im_mode == 16: imRGB = AL.demosaic(imRAW, debayer_pattern, debayer_method) imRGB = [x.astype(AL.myfloat) for x in imRGB] if not flat is None : if imRGB[0].shape != flat.shape: fl = bin_ndarray(flat, imRGB[0].shape, operation='mean') imRGB = [x / fl for x in imRGB] else: imRGB = [x / flat for x in imRGB] imRGB = [x[crop_x : (crop_x + crop_w), crop_y : (crop_y + crop_h)] for x in imRGB] if im_mode == 16: imSP1 = AL.demosaic(imRAW, debayer_pattern, AL.DEBAYER_SUPER_PIXEL) imSP = [np.repeat(np.repeat(x, 2, axis=0), 2, axis=1) for x in imSP1] imSP = [x.astype(AL.myfloat) for x in imSP] if not flat is None : if imSP[0].shape != flat.shape: fl = bin_ndarray(flat, imSP[0].shape, operation='mean') imSP = [x / fl for x in imSP] else: imSP = [x / flat for x in imSP] imSP = [x[crop_x : (crop_x + crop_w), crop_y : (crop_y + crop_h)] for x in imSP] if filter == 1 : imRGB = [scipy.signal.medfilt2d(x, kernel_size = int(filter_par)) for x in imRGB] elif filter == 2 : imRGB = [AL.waveletDenoise(x, filter_par) for x in imRGB] if zoom > 0 : imRGB = [scipy.ndimage.interpolation.zoom(x, zoom) for x in imRGB] if len(imRGB) == 1 : imL = imRGB[0] else: imL = 0.299 * imRGB[0] + 0.587 * imRGB[1] + 0.114 * imRGB[2] if zoom > 1 : nim = imL[(roi_x - crop_x)*zoom : (roi_x - crop_x + roi_w)*zoom, (roi_y - crop_y)*zoom : (roi_y - crop_y + roi_h)*zoom] else: nim = imL[(roi_x - crop_x) : (roi_x - crop_x + roi_w), (roi_y - crop_y) : (roi_y - crop_y + roi_h)] if filter == 101 : nim = scipy.signal.medfilt2d(nim, kernel_size = int(filter_par)) elif filter == 102 : nim = AL.waveletDenoise(nim, filter_par) if debug : AL.save_pic(dir + "roi_area_%s"%(os.path.basename(n)), 1, [nim]) if method == 1 : nim = AL.canny(nim, sigma = 3) return imRGB, nim, imL, imSP def get_ref(nim): if method == 0 or method == 1 : ref = np.fft.fft2(nim) elif method == 2: yref,xref = AL.geometric_median(nim,threshold=0.8*np.max(nim)) ref = (yref,xref) elif method == 3: ref = nim else: ref = None return ref def save_image(idx, imout, mode, prefix = ""): fname = dir + prefix + "registered_%05d"%(idx) AL.save_pic(fname, mode, imout) if save_npy != 0: if len(imout) == 3: nim = np.dstack(imout) np.save(fname, nim) else: np.save(fname, imout[0]) def process_image(ii): (idx, n, ref) = ii (imRGB, nim, imL, imSP) = prepare_image(n) angle = 0 success = 1 if method == 0 or method == 1 : fft = np.fft.fft2(nim,s=ref.shape) xshift,yshift = AL.registration_dft(ref, fft) elif method == 2: (yref,xref) = ref my,mx = AL.geometric_median(nim,threshold=0.8*np.max(nim)) yshift,xshift = int(yref-my), int(xref-mx) elif method == 3: tran = imreg.translation(ref, nim) xshift = int(round(tran['tvec'][0])) yshift = int(round(tran['tvec'][1])) angle = tran['angle'] success = tran['success'] else: xshift = 0 yshift = 0 print(("%s: %d,%d %f %d" % (n, xshift, yshift, angle, success))) imout = [np.roll(np.roll(x, xshift, axis=0), yshift, axis=1) for x in imRGB] save_image(idx + 1, imout, im_mode) if im_mode == 16: imout = np.roll(np.roll(imL, xshift, axis=0), yshift, axis=1) save_image(idx + 1, [imout], 1, "bw_") imout = [np.roll(np.roll(x, xshift, axis=0), yshift, axis=1) for x in imSP] save_image(idx + 1, imout, 0, "sp_") if __name__ == "__main__": defects = [] if options.defect != "" : with open(options.defect) as fp: for line in fp: defects.append([int(x) for x in line.split(",")]) defect_cols = [] if options.defect_col != "" : with open(options.defect_col) as fp: for line in fp: defect_cols.append(int(line)) if dark != "N" : darkf = AL.load_pic(dark, im_mode) ref = None debug = False all = AL.expand_args(args) base, nim, baseL, baseSP = prepare_image(all[0]) ref = get_ref(nim) save_image(0, base, im_mode) if im_mode == 16: save_image(0, [baseL], 1, "bw_") save_image(0, baseSP, 0, "sp_") todo = [(idx, im, ref) for idx, im in enumerate(all[1:])] with multiprocessing.Pool(cores) as pool: pool.map(process_image, todo)
38.602996
127
0.582905
43b9334c530cccb48ad6908bc13c1fbae678dd59
10,515
py
Python
train_ee.py
jaykay233/-
9e9d78cde55d9f1a7a0a431f6438b673b86ab510
[ "Apache-2.0" ]
10
2020-08-01T16:47:32.000Z
2022-03-30T04:05:53.000Z
train_ee.py
jaykay233/-
9e9d78cde55d9f1a7a0a431f6438b673b86ab510
[ "Apache-2.0" ]
2
2020-07-14T07:05:48.000Z
2021-11-03T13:20:15.000Z
train_ee.py
jaykay233/-
9e9d78cde55d9f1a7a0a431f6438b673b86ab510
[ "Apache-2.0" ]
2
2021-03-02T07:29:15.000Z
2021-11-08T12:45:40.000Z
import pytorch_lightning as pl import torch from pytorch_lightning import Trainer from torchcrf import CRF from data_process import role2label, trigger2label,label2role,label2trigger from data_process import train_loader, dev_loader, test_loader import json NUM_TAGS = len(role2label) NUM_RELATIONS = len(trigger2label) root_path = 'chinese_roberta/' from transformers import BertModel class DiceLoss(torch.nn.Module): def __init__(self): super(DiceLoss, self).__init__() def forward(self, input, target): N = target.size(0) smooth = 1 input_flat = input.view(N, -1) target_flat = target.view(N, -1) intersection = input_flat * target_flat loss = 2 * (intersection.sum(1) + smooth) / (input_flat.sum(1) + target_flat.sum(1) + smooth) loss = 1 - loss.sum() / N return loss class MulticlassDiceLoss(torch.nn.Module): """ requires one hot encoded target. Applies DiceLoss on each class iteratively. requires input.shape[0:1] and target.shape[0:1] to be (N, C) where N is batch size and C is number of classes """ def __init__(self): super(MulticlassDiceLoss, self).__init__() def forward(self, input, target, weights=None): C = target.shape[1] # if weights is None: # weights = torch.ones(C) #uniform weights for all classes dice = DiceLoss() totalLoss = 0 for i in range(C): diceLoss = dice(input[:, i], target[:, i]) if weights is not None: diceLoss *= weights[i] totalLoss += diceLoss return totalLoss def viterbi_decode(emissions,transitions,length,num_tags=NUM_TAGS,k=5): prev = torch.zeros(length,num_tags) probs = torch.zeros(length,num_tags) for i in range(length): if i == 0: for j in range(num_tags): prev[0][j] = -1 probs[0][j] = torch.log(emissions[0][j]) else: for j in range(num_tags): res = [] for k in range(num_tags): probs[i][j] = torch.log(probs[i-1][k]) + torch.log(transitions[k][j]) + torch.log(emissions[i][j]) res.append((k,probs[i][j])) sorted(res,key=lambda x:x[1],reverse=True) prev[i][j] = res[0][0] seq_res = [] for j in range(NUM_TAGS): last = length - 1 score = -1e10 res = [] while last!=-1: if last == length-1: score = probs[last][j] prev = j res.append(trigger2label[prev]) prev = prev[last][prev] last -= 1 seq_res.append((score,res)) sorted(seq_res,key=lambda x:x[0]) if len(seq_res) < k: return seq_res else: return seq_res[:k] class JointModel(pl.LightningModule): def __init__(self, root_path, num_layers, hidden_size, num_tags, num_relations, bidirectional=True, dropout=0.3, soft_embedding_dim=1024): super().__init__() self.model = BertModel.from_pretrained(root_path) self.lstm = torch.nn.LSTM(1024, hidden_size, batch_first=True, bidirectional=bidirectional) self.num_layers = num_layers self.hidden_size = hidden_size if bidirectional: self.num_directions = 2 else: self.num_directions = 1 self.num_tags = num_tags self.num_relations = num_relations self.embedding = torch.nn.Embedding(num_tags, embedding_dim=soft_embedding_dim) ## project_layer self.dense = torch.nn.Linear(self.num_directions * self.hidden_size, self.num_tags) ### crf decode layer self.crf = CRF(self.num_tags, batch_first=True) self.subject_dense = torch.nn.Linear(soft_embedding_dim, num_relations) self.object_dense = torch.nn.Linear(soft_embedding_dim, num_relations) self.relation_dense = torch.nn.Linear(num_relations*num_relations,num_relations) self.doc_dense = torch.nn.Sequential(torch.nn.Linear(1024, 256), torch.nn.ReLU(), torch.nn.Linear(256, 10), torch.nn.Softmax(dim=-1)) def training_step(self, batch, batch_idx): input, label, relation_matrix, classes, length = batch maxlen = input.shape[-1] emissions, predicted_relation_matrix, cls_ = self(input) tags = label.long() mask = self.sequence_mask(length,max_len=maxlen) log_loss = -self.crf(emissions, tags, mask=mask) rel_loss = MulticlassDiceLoss()(predicted_relation_matrix,relation_matrix) classes = classes.squeeze(dim=1) cls_loss = torch.nn.functional.binary_cross_entropy_with_logits(cls_,classes.float()) return {'loss': log_loss + rel_loss + cls_loss} def validation_step(self,batch,batch_idx): output = self.training_step(batch,batch_idx) val_loss = output['loss'] return {'val_loss':val_loss} def validation_epoch_end(self,outputs): outputs = torch.stack([x['val_loss'] for x in outputs]).mean() print("validation_loss: {}".format(outputs.data)) return {'val_loss':outputs.data} def test_step(self, batch, batch_idx): input, id, length,original_text = batch maxlen = input.shape[-1] mask = self.sequence_mask(length,max_len=maxlen) emissions, predicted_relation_matrix, cls = self(input) return {'emissions':emissions, 'predicted_relation_matrix':predicted_relation_matrix, 'cls':cls,'length':length,'id':id,'original_text':original_text} def write_by_line(self,path, data, t_code="utf-8"): with open(path,'w') as outfile: outfile.write(data.encode(t_code)+'\n') def test_step_end(self, outputs): emissions = outputs['emissions'] predicted_relation_matrix = outputs['predicted_relation_matrix'] cls = outputs['cls'] length = outputs['length'] id = outputs['id'] original_text = outputs['original_text'] if emissions.shape == 4: emissions = emissions.squeeze(dim=0) decoded_sequence = viterbi_decode(emissions,self.crf.transitions,length=length,num_tags=NUM_TAGS) predicted_relation_matrix = torch.round(predicted_relation_matrix) events = {} events['text'] = original_text events['id'] = id events['event_list'] = [] for i in range(length): for j in range(length): for k in range(NUM_RELATIONS): if predicted_relation_matrix[i][j][k]>0.8: event = {} event_type = label2trigger[k] event['event_type'] = event_type event['arguments'] = [] for seq in decoded_sequence: start_i = i start_j = j while start_i>=0: if seq[start_i]=='O': continue elif seq[start_i].start_with('B-'): role = seq[start_i][2:] argument = original_text[start_i:i+1] event['arguments'].append({'role':role,'argument':argument}) while start_j >=0: if seq[start_j] == 'O': continue elif seq[start_j].start_with('B-'): role = seq[start_j][2:] argument = original_text[start_j:j+1] event['arguments'].append({'role':role,'argument':argument}) events['event_list'].append(event) data = json.dumps(events) self.write_by_line('test1_pred.json',data) return {} def sequence_mask(self,sequence_length, max_len=None): if max_len is None: max_len = sequence_length.data.max() batch_size = sequence_length.size(0) seq_range = torch.range(0, max_len - 1).long() seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) # seq_range_expand = torch.tensor(seq_range_expand) if sequence_length.is_cuda: seq_range_expand = seq_range_expand.cuda() seq_length_expand = (sequence_length.unsqueeze(1) .expand_as(seq_range_expand)) return seq_range_expand < seq_length_expand def forward(self, inputs): batch_size = inputs.shape[0] max_len = inputs.shape[-1] inputs = inputs.squeeze(dim=1) words_embedding, seq_embedding = self.model(inputs) ## words_embedding: batch_size, seq_len,1024 output, (hn, cn) = self.lstm(words_embedding) ## output: batch_size seq_len, num_directions * hidden_size ## hn: batch, num_layers*num_directions, hidden_size ## cn: batch, num_layers*num_directions, hidden_size ## num_tag: 243, num_relations: 66 emissions = self.dense(output) emissions = torch.nn.functional.softmax(emissions, dim=-1) soft_label = torch.einsum('bsn,nf->bsnf', emissions, self.embedding.weight) ### batch seqlen embedding_dim soft_label = soft_label.mean(dim=2) ### batch seqlen relation_num subject_embedding = self.subject_dense(soft_label) ### batch seqlen relation_num object_embedding = self.object_dense(soft_label) predicted_relation_matrix = torch.einsum('bsr,bfh->bsfrh', subject_embedding, object_embedding) predicted_relation_matrix = predicted_relation_matrix.reshape(batch_size,max_len,max_len,-1) predicted_relation_matrix = self.relation_dense(predicted_relation_matrix) cls_ = self.doc_dense(seq_embedding) return emissions, predicted_relation_matrix, cls_ def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0.001) def train_dataloader(self): return train_loader def val_dataloader(self): return dev_loader def test_loader(self): return test_loader model = JointModel(root_path=root_path,num_layers=2, hidden_size=1024, num_tags=NUM_TAGS, num_relations=NUM_RELATIONS) trainer = Trainer() trainer.fit(model)
38.097826
158
0.602853
8fae9e04abeed7a7b78776dc79f145cf806698e4
12,097
py
Python
art/estimators/generation/tensorflow.py
synergit/adversarial-robustness-toolbox
192c4beda1f66776f6ede94a11808eb7b4651f01
[ "MIT" ]
null
null
null
art/estimators/generation/tensorflow.py
synergit/adversarial-robustness-toolbox
192c4beda1f66776f6ede94a11808eb7b4651f01
[ "MIT" ]
null
null
null
art/estimators/generation/tensorflow.py
synergit/adversarial-robustness-toolbox
192c4beda1f66776f6ede94a11808eb7b4651f01
[ "MIT" ]
null
null
null
# MIT License # # Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2020 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module implements the classifier `TensorFlowGenerator` for TensorFlow models. """ from __future__ import absolute_import, division, print_function, unicode_literals import logging from typing import Any, Dict, List, Optional, Union, Tuple, TYPE_CHECKING import numpy as np from art.estimators.generation.generator import GeneratorMixin from art.estimators.tensorflow import TensorFlowEstimator, TensorFlowV2Estimator if TYPE_CHECKING: # pylint: disable=C0412 import tensorflow.compat.v1 as tf from art.utils import CLIP_VALUES_TYPE, PREPROCESSING_TYPE from art.defences.preprocessor import Preprocessor from art.defences.postprocessor import Postprocessor logger = logging.getLogger(__name__) class TensorFlowGenerator(GeneratorMixin, TensorFlowEstimator): # lgtm [py/missing-call-to-init] """ This class implements a DGM with the TensorFlow framework. """ estimator_params = TensorFlowEstimator.estimator_params + [ "input_ph", "loss", "sess", "feed_dict", ] def __init__( self, input_ph: "tf.Placeholder", model: "tf.Tensor", loss: Optional["tf.Tensor"] = None, sess: Optional["tf.compat.v1.Session"] = None, channels_first=False, clip_values: Optional["CLIP_VALUES_TYPE"] = None, preprocessing_defences: Union["Preprocessor", List["Preprocessor"], None] = None, postprocessing_defences: Union["Postprocessor", List["Postprocessor"], None] = None, preprocessing: "PREPROCESSING_TYPE" = (0.0, 1.0), feed_dict: Optional[Dict[Any, Any]] = None, ): """ Initialization specific to TensorFlow generator implementations. :param input_ph: The input placeholder. :param model: TensorFlow model, neural network or other. :param loss: The loss function for which to compute gradients. This parameter is necessary when training the model and when computing gradients w.r.t. the loss function. :param sess: Computation session. :param channels_first: Set channels first or last. :param clip_values: Tuple of the form `(min, max)` of floats or `np.ndarray` representing the minimum and maximum values allowed for features. If floats are provided, these will be used as the range of all features. If arrays are provided, each value will be considered the bound for a feature, thus the shape of clip values needs to match the total number of features. :param preprocessing_defences: Preprocessing defence(s) to be applied by the classifier. :param postprocessing_defences: Postprocessing defence(s) to be applied by the classifier. :param preprocessing: Tuple of the form `(subtrahend, divisor)` of floats or `np.ndarray` of values to be used for data preprocessing. The first value will be subtracted from the input. The input will then be divided by the second one. :param feed_dict: A feed dictionary for the session run evaluating the classifier. This dictionary includes all additionally required placeholders except the placeholders defined in this class. """ import tensorflow.compat.v1 as tf # lgtm [py/repeated-import] super().__init__( model=model, clip_values=clip_values, channels_first=channels_first, preprocessing_defences=preprocessing_defences, postprocessing_defences=postprocessing_defences, preprocessing=preprocessing, ) self._input_ph = input_ph self._encoding_length = self.input_ph.shape[1] self._loss = loss if self.loss is not None: self._grad = tf.gradients(self.loss, self.input_ph) if feed_dict is None: self._feed_dict = {} else: self._feed_dict = feed_dict # Assign session if sess is None: # pragma: no cover raise ValueError("A session cannot be None.") # TODO do the same thing for all not None variables self._sess = sess @property def input_shape(self) -> Tuple[int, ...]: """ Return the shape of one input sample. :return: Shape of one input sample. """ return self._input_shape # type: ignore @property def input_ph(self) -> "tf.Placeholder": """ Return the input placeholder. :return: The input placeholder. """ return self._input_ph # type: ignore @property def loss(self) -> "tf.Tensor": """ Return the loss function :return: The loss function. """ return self._loss # type: ignore @property def feed_dict(self) -> Dict[Any, Any]: """ Return the feed dictionary for the session run evaluating the classifier. :return: The feed dictionary for the session run evaluating the classifier. """ return self._feed_dict # type: ignore def predict(self, x: np.ndarray, batch_size: int = 128, **kwargs) -> np.ndarray: """ Perform projections over a batch of encodings. :param x: Encodings. :param batch_size: Batch size. :return: Array of prediction projections of shape `(num_inputs, nb_classes)`. """ logging.info("Projecting new sample from z value") feed_dict = {self.input_ph: x} if self.feed_dict is not None: feed_dict.update(self.feed_dict) y = self._sess.run(self._model, feed_dict=feed_dict) return y def loss_gradient(self, x, y, training_mode: bool = False, **kwargs) -> np.ndarray: # pylint: disable=W0221 raise NotImplementedError def fit(self, x, y, batch_size=128, nb_epochs=10, **kwargs): """ Do nothing. """ raise NotImplementedError def get_activations( self, x: np.ndarray, layer: Union[int, str], batch_size: int, framework: bool = False ) -> np.ndarray: """ Do nothing. """ raise NotImplementedError def compute_loss(self, x: np.ndarray, y: np.ndarray, **kwargs) -> np.ndarray: raise NotImplementedError @property def model(self) -> "tf.Tensor": """ Returns the generator tensor. :return: The generator tensor. """ return self._model @property def encoding_length(self) -> int: """ Returns the length of the encoding size output. :return: The length of the encoding size output. """ return self._encoding_length class TensorFlowV2Generator(GeneratorMixin, TensorFlowV2Estimator): # lgtm [py/missing-call-to-init] """ This class implements a DGM with the TensorFlow framework. """ estimator_params = TensorFlowV2Estimator.estimator_params + [ "encoding_length", ] def __init__( self, encoding_length: int, model: "tf.Tensor", channels_first: bool = False, clip_values: Optional["CLIP_VALUES_TYPE"] = None, preprocessing_defences: Union["Preprocessor", List["Preprocessor"], None] = None, postprocessing_defences: Union["Postprocessor", List["Postprocessor"], None] = None, preprocessing: "PREPROCESSING_TYPE" = (0.0, 1.0), ): """ Initialization specific to TensorFlow generator implementations. :encoding_length: length of the input seed :model: TensorFlow model, neural network or other. :param channels_first: Set channels first or last. :param clip_values: Tuple of the form `(min, max)` of floats or `np.ndarray` representing the minimum and maximum values allowed for features. If floats are provided, these will be used as the range of all features. If arrays are provided, each value will be considered the bound for a feature, thus the shape of clip values needs to match the total number of features. :param preprocessing_defences: Preprocessing defence(s) to be applied by the classifier. :param postprocessing_defences: Postprocessing defence(s) to be applied by the classifier. :param preprocessing: Tuple of the form `(subtrahend, divisor)` of floats or `np.ndarray` of values to be used for data preprocessing. The first value will be subtracted from the input. The input will then be divided by the second one. """ super().__init__( model=model, clip_values=clip_values, channels_first=channels_first, preprocessing_defences=preprocessing_defences, postprocessing_defences=postprocessing_defences, preprocessing=preprocessing, ) self._encoding_length = encoding_length @property def model(self) -> "tf.Tensor": """ :return: The generator tensor. """ return self._model @property def encoding_length(self) -> int: """ :return: The length of the encoding size output. """ return self._encoding_length @property def input_shape(self) -> Tuple[int, ...]: raise NotImplementedError def predict( # pylint: disable=W0221 self, x: np.ndarray, batch_size: int = 128, training_mode: bool = False, **kwargs ) -> np.ndarray: """ Perform projections over a batch of encodings. :param x: Encodings. :param batch_size: Batch size. :param training_mode: `True` for model set to training mode and `'False` for model set to evaluation mode. :return: Array of prediction projections of shape `(num_inputs, nb_classes)`. """ # Run prediction with batch processing results_list = [] num_batch = int(np.ceil(len(x) / float(batch_size))) for m in range(num_batch): # Batch indexes begin, end = ( m * batch_size, min((m + 1) * batch_size, x.shape[0]), ) # Run prediction results_list.append(self._model(x[begin:end], training=training_mode).numpy()) results = np.vstack(results_list) return results def loss_gradient(self, x, y, **kwargs) -> np.ndarray: raise NotImplementedError def fit(self, x, y, batch_size=128, nb_epochs=10, **kwargs): """ Do nothing. """ raise NotImplementedError def get_activations( self, x: np.ndarray, layer: Union[int, str], batch_size: int, framework: bool = False ) -> np.ndarray: """ Do nothing. """ raise NotImplementedError
39.53268
120
0.642473
dc95ba9b445ea680f0e358c5a7d6a16c3eb525e8
10,248
py
Python
contrib/spendfrom/spendfrom.py
hss5747/HashShare-Core
d448f7cad7f6a3947154017bdfe432cdc772d2b9
[ "MIT" ]
2
2019-11-13T09:21:40.000Z
2019-12-09T00:49:25.000Z
contrib/spendfrom/spendfrom.py
hss5747/HashShare-Core
d448f7cad7f6a3947154017bdfe432cdc772d2b9
[ "MIT" ]
null
null
null
contrib/spendfrom/spendfrom.py
hss5747/HashShare-Core
d448f7cad7f6a3947154017bdfe432cdc772d2b9
[ "MIT" ]
1
2019-10-31T00:51:52.000Z
2019-10-31T00:51:52.000Z
#!/usr/bin/env python # # Use the raw transactions API to spend HSSs received on particular addresses, # and send any change back to that same address. # # Example usage: # spendfrom.py # Lists available funds # spendfrom.py --from=ADDRESS --to=ADDRESS --amount=11.00 # # Assumes it will talk to a hashsharecoind or hashsharecoin-Qt running # on localhost. # # Depends on jsonrpc # from decimal import * import getpass import math import os import os.path import platform import sys import time from jsonrpc import ServiceProxy, json BASE_FEE=Decimal("0.001") def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def determine_db_dir(): """Return the default location of the hashsharecoin data directory""" if platform.system() == "Darwin": return os.path.expanduser("~/Library/Application Support/HashShareCoin/") elif platform.system() == "Windows": return os.path.join(os.environ['APPDATA'], "HashShareCoin") return os.path.expanduser("~/.hashsharecoin") def read_bitcoin_config(dbdir): """Read the hashsharecoin.conf file from dbdir, returns dictionary of settings""" from ConfigParser import SafeConfigParser class FakeSecHead(object): def __init__(self, fp): self.fp = fp self.sechead = '[all]\n' def readline(self): if self.sechead: try: return self.sechead finally: self.sechead = None else: s = self.fp.readline() if s.find('#') != -1: s = s[0:s.find('#')].strip() +"\n" return s config_parser = SafeConfigParser() config_parser.readfp(FakeSecHead(open(os.path.join(dbdir, "hashsharecoin.conf")))) return dict(config_parser.items("all")) def connect_JSON(config): """Connect to a hashsharecoin JSON-RPC server""" testnet = config.get('testnet', '0') testnet = (int(testnet) > 0) # 0/1 in config file, convert to True/False if not 'rpcport' in config: config['rpcport'] = 51475 if testnet else 15113 connect = "http://%s:%s@127.0.0.1:%s"%(config['rpcuser'], config['rpcpassword'], config['rpcport']) try: result = ServiceProxy(connect) # ServiceProxy is lazy-connect, so send an RPC command mostly to catch connection errors, # but also make sure the hashsharecoind we're talking to is/isn't testnet: if result.getmininginfo()['testnet'] != testnet: sys.stderr.write("RPC server at "+connect+" testnet setting mismatch\n") sys.exit(1) return result except: sys.stderr.write("Error connecting to RPC server at "+connect+"\n") sys.exit(1) def unlock_wallet(hashsharecoind): info = hashsharecoind.getinfo() if 'unlocked_until' not in info: return True # wallet is not encrypted t = int(info['unlocked_until']) if t <= time.time(): try: passphrase = getpass.getpass("Wallet is locked; enter passphrase: ") hashsharecoind.walletpassphrase(passphrase, 5) except: sys.stderr.write("Wrong passphrase\n") info = hashsharecoind.getinfo() return int(info['unlocked_until']) > time.time() def list_available(hashsharecoind): address_summary = dict() address_to_account = dict() for info in hashsharecoind.listreceivedbyaddress(0): address_to_account[info["address"]] = info["account"] unspent = hashsharecoind.listunspent(0) for output in unspent: # listunspent doesn't give addresses, so: rawtx = hashsharecoind.getrawtransaction(output['txid'], 1) vout = rawtx["vout"][output['vout']] pk = vout["scriptPubKey"] # This code only deals with ordinary pay-to-hashsharecoin-address # or pay-to-script-hash outputs right now; anything exotic is ignored. if pk["type"] != "pubkeyhash" and pk["type"] != "scripthash": continue address = pk["addresses"][0] if address in address_summary: address_summary[address]["total"] += vout["value"] address_summary[address]["outputs"].append(output) else: address_summary[address] = { "total" : vout["value"], "outputs" : [output], "account" : address_to_account.get(address, "") } return address_summary def select_coins(needed, inputs): # Feel free to improve this, this is good enough for my simple needs: outputs = [] have = Decimal("0.0") n = 0 while have < needed and n < len(inputs): outputs.append({ "txid":inputs[n]["txid"], "vout":inputs[n]["vout"]}) have += inputs[n]["amount"] n += 1 return (outputs, have-needed) def create_tx(hashsharecoind, fromaddresses, toaddress, amount, fee): all_coins = list_available(hashsharecoind) total_available = Decimal("0.0") needed = amount+fee potential_inputs = [] for addr in fromaddresses: if addr not in all_coins: continue potential_inputs.extend(all_coins[addr]["outputs"]) total_available += all_coins[addr]["total"] if total_available < needed: sys.stderr.write("Error, only %f BTC available, need %f\n"%(total_available, needed)); sys.exit(1) # # Note: # Python's json/jsonrpc modules have inconsistent support for Decimal numbers. # Instead of wrestling with getting json.dumps() (used by jsonrpc) to encode # Decimals, I'm casting amounts to float before sending them to hashsharecoind. # outputs = { toaddress : float(amount) } (inputs, change_amount) = select_coins(needed, potential_inputs) if change_amount > BASE_FEE: # don't bother with zero or tiny change change_address = fromaddresses[-1] if change_address in outputs: outputs[change_address] += float(change_amount) else: outputs[change_address] = float(change_amount) rawtx = hashsharecoind.createrawtransaction(inputs, outputs) signed_rawtx = hashsharecoind.signrawtransaction(rawtx) if not signed_rawtx["complete"]: sys.stderr.write("signrawtransaction failed\n") sys.exit(1) txdata = signed_rawtx["hex"] return txdata def compute_amount_in(hashsharecoind, txinfo): result = Decimal("0.0") for vin in txinfo['vin']: in_info = hashsharecoind.getrawtransaction(vin['txid'], 1) vout = in_info['vout'][vin['vout']] result = result + vout['value'] return result def compute_amount_out(txinfo): result = Decimal("0.0") for vout in txinfo['vout']: result = result + vout['value'] return result def sanity_test_fee(hashsharecoind, txdata_hex, max_fee): class FeeError(RuntimeError): pass try: txinfo = hashsharecoind.decoderawtransaction(txdata_hex) total_in = compute_amount_in(hashsharecoind, txinfo) total_out = compute_amount_out(txinfo) if total_in-total_out > max_fee: raise FeeError("Rejecting transaction, unreasonable fee of "+str(total_in-total_out)) tx_size = len(txdata_hex)/2 kb = tx_size/1000 # integer division rounds down if kb > 1 and fee < BASE_FEE: raise FeeError("Rejecting no-fee transaction, larger than 1000 bytes") if total_in < 0.01 and fee < BASE_FEE: raise FeeError("Rejecting no-fee, tiny-amount transaction") # Exercise for the reader: compute transaction priority, and # warn if this is a very-low-priority transaction except FeeError as err: sys.stderr.write((str(err)+"\n")) sys.exit(1) def main(): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--from", dest="fromaddresses", default=None, help="addresses to get HSSs from") parser.add_option("--to", dest="to", default=None, help="address to get send HSSs to") parser.add_option("--amount", dest="amount", default=None, help="amount to send") parser.add_option("--fee", dest="fee", default="0.0", help="fee to include") parser.add_option("--datadir", dest="datadir", default=determine_db_dir(), help="location of hashsharecoin.conf file with RPC username/password (default: %default)") parser.add_option("--testnet", dest="testnet", default=False, action="store_true", help="Use the test network") parser.add_option("--dry_run", dest="dry_run", default=False, action="store_true", help="Don't broadcast the transaction, just create and print the transaction data") (options, args) = parser.parse_args() check_json_precision() config = read_bitcoin_config(options.datadir) if options.testnet: config['testnet'] = True hashsharecoind = connect_JSON(config) if options.amount is None: address_summary = list_available(hashsharecoind) for address,info in address_summary.iteritems(): n_transactions = len(info['outputs']) if n_transactions > 1: print("%s %.8f %s (%d transactions)"%(address, info['total'], info['account'], n_transactions)) else: print("%s %.8f %s"%(address, info['total'], info['account'])) else: fee = Decimal(options.fee) amount = Decimal(options.amount) while unlock_wallet(hashsharecoind) == False: pass # Keep asking for passphrase until they get it right txdata = create_tx(hashsharecoind, options.fromaddresses.split(","), options.to, amount, fee) sanity_test_fee(hashsharecoind, txdata, amount*Decimal("0.01")) if options.dry_run: print(txdata) else: txid = hashsharecoind.sendrawtransaction(txdata) print(txid) if __name__ == '__main__': main()
38.238806
112
0.640222
12ccffc815de32595d9539fec0cced5913f799e1
2,588
py
Python
tutorials/01-basics/logistic_regression/main.py
NegatioN/pytorch-tutorial
1ec90fad7260e7871a4912fce552cad90f6c2f4a
[ "MIT" ]
12
2018-03-07T00:44:56.000Z
2019-01-25T11:07:43.000Z
tutorials/01-basics/logistic_regression/main.py
NegatioN/pytorch-tutorial
1ec90fad7260e7871a4912fce552cad90f6c2f4a
[ "MIT" ]
3
2018-03-02T03:38:41.000Z
2018-03-20T00:45:06.000Z
tutorials/01-basics/logistic_regression/main.py
NegatioN/pytorch-tutorial
1ec90fad7260e7871a4912fce552cad90f6c2f4a
[ "MIT" ]
16
2017-10-04T19:38:09.000Z
2021-10-04T14:26:14.000Z
import torch import torch.nn as nn import torchvision.datasets as dsets import torchvision.transforms as transforms from torch.autograd import Variable # Hyper Parameters input_size = 784 num_classes = 10 num_epochs = 5 batch_size = 100 learning_rate = 0.001 # MNIST Dataset (Images and Labels) train_dataset = dsets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = dsets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # Dataset Loader (Input Pipline) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # Model class LogisticRegression(nn.Module): def __init__(self, input_size, num_classes): super(LogisticRegression, self).__init__() self.linear = nn.Linear(input_size, num_classes) def forward(self, x): out = self.linear(x) return out model = LogisticRegression(input_size, num_classes) # Loss and Optimizer # Softmax is internally computed. # Set parameters to be updated. criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) # Training the Model for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): images = Variable(images.view(-1, 28*28)) labels = Variable(labels) # Forward + Backward + Optimize optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0])) # Test the Model correct = 0 total = 0 for images, labels in test_loader: images = Variable(images.view(-1, 28*28)) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total)) # Save the Model torch.save(model.state_dict(), 'model.pkl')
31.560976
94
0.601236
ad506c384debff1a78fb376464e22afdaa4f199d
166
py
Python
actors/actions/damage_action.py
Catsuko/Westward
3c04df668f7e04ca45e622017ffa9dfe6d3c242c
[ "MIT" ]
3
2019-12-22T22:44:43.000Z
2020-02-11T11:14:10.000Z
actors/actions/damage_action.py
Catsuko/Westward
3c04df668f7e04ca45e622017ffa9dfe6d3c242c
[ "MIT" ]
null
null
null
actors/actions/damage_action.py
Catsuko/Westward
3c04df668f7e04ca45e622017ffa9dfe6d3c242c
[ "MIT" ]
null
null
null
from actors.actions.action import Action class DamageAction(Action): def on(self, actor, tile, root): return actor.attempt("damage", root, tile), self
20.75
56
0.698795
40f93829d398d4a48129be0b51cfe9554cb5f143
2,671
py
Python
model/loss.py
happygirlzt/soft_alignment_model_bug_deduplication
9c529542749a52e377baeb99d1782920bc72df49
[ "Unlicense" ]
2
2020-11-11T00:26:25.000Z
2020-12-21T16:17:28.000Z
model/loss.py
happygirlzt/soft_alignment_model_bug_deduplication
9c529542749a52e377baeb99d1782920bc72df49
[ "Unlicense" ]
5
2020-12-22T10:59:38.000Z
2021-07-13T15:00:46.000Z
model/loss.py
irving-muller/soft_alignment_model_bug_deduplication
abf786a17f526d965f1b6c303b06f26662d22f32
[ "Unlicense" ]
6
2020-09-25T01:01:37.000Z
2022-02-20T19:29:31.000Z
import logging from torch.nn.modules.loss import _Loss import torch import torch.nn as nn import torch.nn.functional as F class NeculoiuLoss(_Loss): """ Learning Text Similarity with Siamese Recurrent Networks - Paul Neculoiu, Maarten Versteegh and Mihai Rotaru Contrastive loss for cosine similarity """ def __init__(self, margin=0.0, size_average=None, reduce=None, reduction='mean'): super(NeculoiuLoss, self).__init__(size_average, reduce, reduction) self.margin = margin def forward(self, similarity, y): lossPos = y * 0.25 * (1 - similarity) ** 2 lossNegative = (1 - y) * torch.where(similarity < self.margin, torch.zeros(similarity.shape), similarity) ** 2 loss = lossPos + lossNegative if self.reduction == 'none': return loss elif self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() class CosineLoss(_Loss): def __init__(self, margin=0.0, size_average=None, reduce=None, reduction='mean'): super(CosineLoss, self).__init__(size_average, reduce, reduction) self.margin = margin def forward(self, similarity, y): loss = y * (1 - similarity) + (1 - y) * F.relu(similarity - self.margin) if self.reduction == 'none': return loss elif self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() class CosineLoss(_Loss): def __init__(self, margin=0.0, size_average=None, reduce=None, reduction='mean'): super(CosineLoss, self).__init__(size_average, reduce, reduction) self.margin = margin def forward(self, similarity, y): loss = y * (1 - similarity) + (1 - y) * F.relu(similarity - self.margin) if self.reduction == 'none': return loss elif self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() class TripletLoss(_Loss): def __init__(self, margin=1, size_average=None, reduce=None, reduction='mean'): super(TripletLoss, self).__init__(size_average, reduce, reduction) self.margin = margin self.logger = logging.getLogger(__name__) def forward(self, output, target): simAnchorPos, simAnchorNeg = output rs = self.margin - simAnchorPos + simAnchorNeg loss = F.relu(rs) if self.reduction == 'none': return loss elif self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum()
31.05814
118
0.618121
7cb5ed77a1b707b0a1e1c138808c0b5df9d68291
458
py
Python
numba/tests/test_typenames.py
tolysz/numba
d7953a18dbf5ea231dc16e967ce8e9b754578ea6
[ "Apache-2.0", "BSD-2-Clause" ]
null
null
null
numba/tests/test_typenames.py
tolysz/numba
d7953a18dbf5ea231dc16e967ce8e9b754578ea6
[ "Apache-2.0", "BSD-2-Clause" ]
1
2019-02-11T13:46:30.000Z
2019-02-11T13:46:30.000Z
numba/tests/test_typenames.py
asodeur/numba
d7953a18dbf5ea231dc16e967ce8e9b754578ea6
[ "Apache-2.0", "BSD-2-Clause" ]
null
null
null
import numpy as np from numba import types from numba import unittest_support as unittest class TestTypeNames(unittest.TestCase): def test_numpy_integers(self): expect = getattr(types, "int%d" % (np.dtype("int").itemsize * 8)) self.assertEqual(types.int_, expect) expect = getattr(types, "uint%d" % (np.dtype("uint").itemsize * 8)) self.assertEqual(types.uint, expect) if __name__ == '__main__': unittest.main()
25.444444
75
0.676856
e0fc1b9fecabf3876f2450f7fd47bcdbe8e92635
6,503
py
Python
lib/googlecloudsdk/command_lib/iot/resource_args.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/command_lib/iot/resource_args.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/command_lib/iot/resource_args.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Shared resource flags for Cloud IoT commands.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.calliope.concepts import concepts from googlecloudsdk.command_lib.util.concepts import concept_parsers from googlecloudsdk.command_lib.util.concepts import presentation_specs def DeviceAttributeConfig(name='device'): return concepts.ResourceParameterAttributeConfig( name=name, help_text='The device of the {resource}.', completion_request_params={'fieldMask': 'name'}, completion_id_field='id') def RegistryAttributeConfig(): return concepts.ResourceParameterAttributeConfig( name='registry', help_text='The device registry for the {resource}.') def RegionAttributeConfig(): return concepts.ResourceParameterAttributeConfig( name='region', help_text='The Cloud region for the {resource}.') def GetDeviceResourceSpec(resource_name='device'): return concepts.ResourceSpec( 'cloudiot.projects.locations.registries.devices', resource_name=resource_name, devicesId=DeviceAttributeConfig(name=resource_name), registriesId=RegistryAttributeConfig(), locationsId=RegionAttributeConfig(), projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG, disable_auto_completers=False) def GetRegistryResourceSpec(): return concepts.ResourceSpec( 'cloudiot.projects.locations.registries', resource_name='registry', registriesId=RegistryAttributeConfig(), locationsId=RegionAttributeConfig(), projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG, disable_auto_completers=False) def GetRegionResourceSpec(): return concepts.ResourceSpec( 'cloudiot.projects.locations', resource_name='region', locationsId=RegionAttributeConfig(), projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG) def AddDeviceResourceArg(parser, verb, positional=True): """Add a resource argument for a cloud IOT device. NOTE: Must be used only if it's the only resource arg in the command. Args: parser: the parser for the command. verb: str, the verb to describe the resource, such as 'to update'. positional: bool, if True, means that the device ID is a positional rather than a flag. """ if positional: name = 'device' else: name = '--device' concept_parsers.ConceptParser.ForResource( name, GetDeviceResourceSpec(), 'The device {}.'.format(verb), required=True).AddToParser(parser) def AddRegistryResourceArg(parser, verb, positional=True): """Add a resource argument for a cloud IOT device registry. NOTE: Must be used only if it's the only resource arg in the command. Args: parser: the parser for the command. verb: str, the verb to describe the resource, such as 'to update'. positional: bool, if True, means that the device ID is a positional rather than a flag. """ if positional: name = 'registry' else: name = '--registry' concept_parsers.ConceptParser.ForResource( name, GetRegistryResourceSpec(), 'The device registry {}.'.format(verb), required=True).AddToParser(parser) def AddRegionResourceArg(parser, verb): """Add a resource argument for a cloud IOT region. NOTE: Must be used only if it's the only resource arg in the command. Args: parser: the parser for the command. verb: str, the verb to describe the resource, such as 'to update'. """ concept_parsers.ConceptParser.ForResource( '--region', GetRegionResourceSpec(), 'The Cloud region {}.'.format(verb), required=True).AddToParser(parser) def CreateDevicePresentationSpec(verb, help_text='The device {}.', name='device', required=False, prefixes=True, positional=False): """Build ResourcePresentationSpec for generic device Resource. NOTE: Should be used when there are multiple resources args in the command. Args: verb: string, the verb to describe the resource, such as 'to bind'. help_text: string, the help text for the entire resource arg group. Should have a format specifier (`{}`) to insert verb. name: string, name of resource anchor argument. required: bool, whether or not this resource arg is required. prefixes: bool, if True the resource name will be used as a prefix for the flags in the resource group. positional: bool, if True, means that the device ID is a positional rather than a flag. Returns: ResourcePresentationSpec, presentation spec for device. """ arg_name = name if positional else '--' + name arg_help = help_text.format(verb) return presentation_specs.ResourcePresentationSpec( arg_name, GetDeviceResourceSpec(name), arg_help, required=required, prefixes=prefixes ) def _GetBindResourceConcepts(verb='to bind to'): """Build ConceptParser for (un)bind commands resource args.""" arg_specs = [ CreateDevicePresentationSpec( # gateway spec verb, help_text='The gateway device {}.', name='gateway', required=True), CreateDevicePresentationSpec( # device spec verb, help_text='The device {} the gateway.', required=True), ] fallthroughs = { '--device.registry': ['--gateway.registry'], '--gateway.registry': ['--device.registry'] } return concept_parsers.ConceptParser(arg_specs, fallthroughs) def AddBindResourceArgsToParser(parser): """Add resource args for gateways (un)bind commands to parser.""" _GetBindResourceConcepts().AddToParser(parser) def BindAdditionalArgsHook(): return [_GetBindResourceConcepts()] def UnBindAdditionalArgsHook(): return [_GetBindResourceConcepts('to unbind from')]
32.193069
78
0.714901
ea2c9b4aeb5c7d3e5cafc9ff3b448f6112901a24
21,074
py
Python
django_q/tasks.py
ashkov/django-q
49e57a6d548ab2bc69b3372bf9eed1617cb59b62
[ "MIT" ]
null
null
null
django_q/tasks.py
ashkov/django-q
49e57a6d548ab2bc69b3372bf9eed1617cb59b62
[ "MIT" ]
null
null
null
django_q/tasks.py
ashkov/django-q
49e57a6d548ab2bc69b3372bf9eed1617cb59b62
[ "MIT" ]
2
2020-11-10T01:14:24.000Z
2021-06-11T12:50:19.000Z
"""Provides task functionality.""" # Standard from time import sleep, time # django from django.db import IntegrityError from django.utils import timezone from multiprocessing import Value from django_q.brokers import get_broker # local from django_q.conf import Conf, logger from django_q.humanhash import uuid from django_q.models import Schedule, Task from django_q.queues import Queue from django_q.signals import pre_enqueue from django_q.signing import SignedPackage def async_task(func, *args, **kwargs): """Queue a task for the cluster.""" keywords = kwargs.copy() opt_keys = ( 'hook', 'group', 'save', 'sync', 'cached', 'ack_failure', 'iter_count', 'iter_cached', 'chain', 'broker', 'timeout') q_options = keywords.pop('q_options', {}) # get an id tag = uuid() # build the task package task = {'id': tag[1], 'name': keywords.pop('task_name', None) or q_options.pop('task_name', None) or tag[0], 'func': func, 'args': args} # push optionals for key in opt_keys: if q_options and key in q_options: task[key] = q_options[key] elif key in keywords: task[key] = keywords.pop(key) # don't serialize the broker broker = task.pop('broker', get_broker()) # overrides if 'cached' not in task and Conf.CACHED: task['cached'] = Conf.CACHED if 'sync' not in task and Conf.SYNC: task['sync'] = Conf.SYNC if 'ack_failure' not in task and Conf.ACK_FAILURES: task['ack_failure'] = Conf.ACK_FAILURES # finalize task['kwargs'] = keywords task['started'] = timezone.now() # signal it pre_enqueue.send(sender="django_q", task=task) # sign it pack = SignedPackage.dumps(task) if task.get('sync', False): return _sync(pack) # push it enqueue_id = broker.enqueue(pack) logger.info('Enqueued {}'.format(enqueue_id)) logger.debug('Pushed {}'.format(tag)) return task['id'] def schedule(func, *args, **kwargs): """ Create a schedule. :param func: function to schedule. :param args: function arguments. :param name: optional name for the schedule. :param hook: optional result hook function. :type schedule_type: Schedule.TYPE :param repeats: how many times to repeat. 0=never, -1=always. :param next_run: Next scheduled run. :type next_run: datetime.datetime :param kwargs: function keyword arguments. :return: the schedule object. :rtype: Schedule """ name = kwargs.pop('name', None) hook = kwargs.pop('hook', None) schedule_type = kwargs.pop('schedule_type', Schedule.ONCE) minutes = kwargs.pop('minutes', None) repeats = kwargs.pop('repeats', -1) next_run = kwargs.pop('next_run', timezone.now()) # check for name duplicates instead of am unique constraint if name and Schedule.objects.filter(name=name).exists(): raise IntegrityError("A schedule with the same name already exists.") # create and return the schedule return Schedule.objects.create(name=name, func=func, hook=hook, args=args, kwargs=kwargs, schedule_type=schedule_type, minutes=minutes, repeats=repeats, next_run=next_run ) def result(task_id, wait=0, cached=Conf.CACHED): """ Return the result of the named task. :type task_id: str or uuid :param task_id: the task name or uuid :type wait: int :param wait: number of milliseconds to wait for a result :param bool cached: run this against the cache backend :return: the result object of this task :rtype: object """ if cached: return result_cached(task_id, wait) start = time() while True: r = Task.get_result(task_id) if r: return r if (time() - start) * 1000 >= wait >= 0: break sleep(0.01) def result_cached(task_id, wait=0, broker=None): """ Return the result from the cache backend """ if not broker: broker = get_broker() start = time() while True: r = broker.cache.get('{}:{}'.format(broker.list_key, task_id)) if r: return SignedPackage.loads(r)['result'] if (time() - start) * 1000 >= wait >= 0: break sleep(0.01) def result_group(group_id, failures=False, wait=0, count=None, cached=Conf.CACHED): """ Return a list of results for a task group. :param str group_id: the group id :param bool failures: set to True to include failures :param int count: Block until there are this many results in the group :param bool cached: run this against the cache backend :return: list or results """ if cached: return result_group_cached(group_id, failures, wait, count) start = time() if count: while True: if count_group(group_id) == count or wait and (time() - start) * 1000 >= wait >= 0: break sleep(0.01) while True: r = Task.get_result_group(group_id, failures) if r: return r if (time() - start) * 1000 >= wait >= 0: break sleep(0.01) def result_group_cached(group_id, failures=False, wait=0, count=None, broker=None): """ Return a list of results for a task group from the cache backend """ if not broker: broker = get_broker() start = time() if count: while True: if count_group_cached(group_id) == count or wait and (time() - start) * 1000 >= wait > 0: break sleep(0.01) while True: group_list = broker.cache.get('{}:{}:keys'.format(broker.list_key, group_id)) if group_list: result_list = [] for task_key in group_list: task = SignedPackage.loads(broker.cache.get(task_key)) if task['success'] or failures: result_list.append(task['result']) return result_list if (time() - start) * 1000 >= wait >= 0: break sleep(0.01) def fetch(task_id, wait=0, cached=Conf.CACHED): """ Return the processed task. :param task_id: the task name or uuid :type task_id: str or uuid :param wait: the number of milliseconds to wait for a result :type wait: int :param bool cached: run this against the cache backend :return: the full task object :rtype: Task """ if cached: return fetch_cached(task_id, wait) start = time() while True: t = Task.get_task(task_id) if t: return t if (time() - start) * 1000 >= wait >= 0: break sleep(0.01) def fetch_cached(task_id, wait=0, broker=None): """ Return the processed task from the cache backend """ if not broker: broker = get_broker() start = time() while True: r = broker.cache.get('{}:{}'.format(broker.list_key, task_id)) if r: task = SignedPackage.loads(r) t = Task(id=task['id'], name=task['name'], func=task['func'], hook=task.get('hook'), args=task['args'], kwargs=task['kwargs'], started=task['started'], stopped=task['stopped'], result=task['result'], success=task['success']) return t if (time() - start) * 1000 >= wait >= 0: break sleep(0.01) def fetch_group(group_id, failures=True, wait=0, count=None, cached=Conf.CACHED): """ Return a list of Tasks for a task group. :param str group_id: the group id :param bool failures: set to False to exclude failures :param bool cached: run this against the cache backend :return: list of Tasks """ if cached: return fetch_group_cached(group_id, failures, wait, count) start = time() if count: while True: if count_group(group_id) == count or wait and (time() - start) * 1000 >= wait >= 0: break sleep(0.01) while True: r = Task.get_task_group(group_id, failures) if r: return r if (time() - start) * 1000 >= wait >= 0: break sleep(0.01) def fetch_group_cached(group_id, failures=True, wait=0, count=None, broker=None): """ Return a list of Tasks for a task group in the cache backend """ if not broker: broker = get_broker() start = time() if count: while True: if count_group_cached(group_id) == count or wait and (time() - start) * 1000 >= wait >= 0: break sleep(0.01) while True: group_list = broker.cache.get('{}:{}:keys'.format(broker.list_key, group_id)) if group_list: task_list = [] for task_key in group_list: task = SignedPackage.loads(broker.cache.get(task_key)) if task['success'] or failures: t = Task(id=task['id'], name=task['name'], func=task['func'], hook=task.get('hook'), args=task['args'], kwargs=task['kwargs'], started=task['started'], stopped=task['stopped'], result=task['result'], group=task.get('group'), success=task['success']) task_list.append(t) return task_list if (time() - start) * 1000 >= wait >= 0: break sleep(0.01) def count_group(group_id, failures=False, cached=Conf.CACHED): """ Count the results in a group. :param str group_id: the group id :param bool failures: Returns failure count if True :param bool cached: run this against the cache backend :return: the number of tasks/results in a group :rtype: int """ if cached: return count_group_cached(group_id, failures) return Task.get_group_count(group_id, failures) def count_group_cached(group_id, failures=False, broker=None): """ Count the results in a group in the cache backend """ if not broker: broker = get_broker() group_list = broker.cache.get('{}:{}:keys'.format(broker.list_key, group_id)) if group_list: if not failures: return len(group_list) failure_count = 0 for task_key in group_list: task = SignedPackage.loads(broker.cache.get(task_key)) if not task['success']: failure_count += 1 return failure_count def delete_group(group_id, tasks=False, cached=Conf.CACHED): """ Delete a group. :param str group_id: the group id :param bool tasks: If set to True this will also delete the group tasks. Otherwise just the group label is removed. :param bool cached: run this against the cache backend :return: """ if cached: return delete_group_cached(group_id) return Task.delete_group(group_id, tasks) def delete_group_cached(group_id, broker=None): """ Delete a group from the cache backend """ if not broker: broker = get_broker() group_key = '{}:{}:keys'.format(broker.list_key, group_id) group_list = broker.cache.get(group_key) broker.cache.delete_many(group_list) broker.cache.delete(group_key) def delete_cached(task_id, broker=None): """ Delete a task from the cache backend """ if not broker: broker = get_broker() return broker.cache.delete('{}:{}'.format(broker.list_key, task_id)) def queue_size(broker=None): """ Returns the current queue size. Note that this doesn't count any tasks currently being processed by workers. :param broker: optional broker :return: current queue size :rtype: int """ if not broker: broker = get_broker() return broker.queue_size() def async_iter(func, args_iter, **kwargs): """ enqueues a function with iterable arguments """ iter_count = len(args_iter) iter_group = uuid()[1] # clean up the kwargs options = kwargs.get('q_options', kwargs) options.pop('hook', None) options['broker'] = options.get('broker', get_broker()) options['group'] = iter_group options['iter_count'] = iter_count if options.get('cached', None): options['iter_cached'] = options['cached'] options['cached'] = True # save the original arguments broker = options['broker'] broker.cache.set('{}:{}:args'.format(broker.list_key, iter_group), SignedPackage.dumps(args_iter)) for args in args_iter: if not isinstance(args, tuple): args = (args,) async_task(func, *args, **options) return iter_group def async_chain(chain, group=None, cached=Conf.CACHED, sync=Conf.SYNC, broker=None): """ enqueues a chain of tasks the chain must be in the format [(func,(args),{kwargs}),(func,(args),{kwargs})] """ if not group: group = uuid()[1] args = () kwargs = {} task = chain.pop(0) if type(task) is not tuple: task = (task,) if len(task) > 1: args = task[1] if len(task) > 2: kwargs = task[2] kwargs['chain'] = chain kwargs['group'] = group kwargs['cached'] = cached kwargs['sync'] = sync kwargs['broker'] = broker or get_broker() async_task(task[0], *args, **kwargs) return group class Iter(object): """ An async task with iterable arguments """ def __init__(self, func=None, args=None, kwargs=None, cached=Conf.CACHED, sync=Conf.SYNC, broker=None): self.func = func self.args = args or [] self.kwargs = kwargs or {} self.id = '' self.broker = broker or get_broker() self.cached = cached self.sync = sync self.started = False def append(self, *args): """ add arguments to the set """ self.args.append(args) if self.started: self.started = False return self.length() def run(self): """ Start queueing the tasks to the worker cluster :return: the task id """ self.kwargs['cached'] = self.cached self.kwargs['sync'] = self.sync self.kwargs['broker'] = self.broker self.id = async_iter(self.func, self.args, **self.kwargs) self.started = True return self.id def result(self, wait=0): """ return the full list of results. :param int wait: how many milliseconds to wait for a result :return: an unsorted list of results """ if self.started: return result(self.id, wait=wait, cached=self.cached) def fetch(self, wait=0): """ get the task result objects. :param int wait: how many milliseconds to wait for a result :return: an unsorted list of task objects """ if self.started: return fetch(self.id, wait=wait, cached=self.cached) def length(self): """ get the length of the arguments list :return int: length of the argument list """ return len(self.args) class Chain(object): """ A sequential chain of tasks """ def __init__(self, chain=None, group=None, cached=Conf.CACHED, sync=Conf.SYNC): self.chain = chain or [] self.group = group or '' self.broker = get_broker() self.cached = cached self.sync = sync self.started = False def append(self, func, *args, **kwargs): """ add a task to the chain takes the same parameters as async_task() """ self.chain.append((func, args, kwargs)) # remove existing results if self.started: delete_group(self.group) self.started = False return self.length() def run(self): """ Start queueing the chain to the worker cluster :return: the chain's group id """ self.group = async_chain(chain=self.chain[:], group=self.group, cached=self.cached, sync=self.sync, broker=self.broker) self.started = True return self.group def result(self, wait=0): """ return the full list of results from the chain when it finishes. blocks until timeout. :param int wait: how many milliseconds to wait for a result :return: an unsorted list of results """ if self.started: return result_group(self.group, wait=wait, count=self.length(), cached=self.cached) def fetch(self, failures=True, wait=0): """ get the task result objects from the chain when it finishes. blocks until timeout. :param failures: include failed tasks :param int wait: how many milliseconds to wait for a result :return: an unsorted list of task objects """ if self.started: return fetch_group(self.group, failures=failures, wait=wait, count=self.length(), cached=self.cached) def current(self): """ get the index of the currently executing chain element :return int: current chain index """ if not self.started: return None return count_group(self.group, cached=self.cached) def length(self): """ get the length of the chain :return int: length of the chain """ return len(self.chain) class AsyncTask(object): """ an async task """ def __init__(self, func, *args, **kwargs): self.id = '' self.started = False self.func = func self.args = args self.kwargs = kwargs @property def broker(self): return self._get_option('broker', None) @broker.setter def broker(self, value): self._set_option('broker', value) @property def sync(self): return self._get_option('sync', None) @sync.setter def sync(self, value): self._set_option('sync', value) @property def save(self): return self._get_option('save', None) @save.setter def save(self, value): self._set_option('save', value) @property def hook(self): return self._get_option('hook', None) @hook.setter def hook(self, value): self._set_option('hook', value) @property def group(self): return self._get_option('group', None) @group.setter def group(self, value): self._set_option('group', value) @property def cached(self): return self._get_option('cached', Conf.CACHED) @cached.setter def cached(self, value): self._set_option('cached', value) def _set_option(self, key, value): if 'q_options' in self.kwargs: self.kwargs['q_options'][key] = value else: self.kwargs[key] = value self.started = False def _get_option(self, key, default=None): if 'q_options' in self.kwargs: return self.kwargs['q_options'].get(key, default) else: return self.kwargs.get(key, default) def run(self): self.id = async_task(self.func, *self.args, **self.kwargs) self.started = True return self.id def result(self, wait=0): if self.started: return result(self.id, wait=wait, cached=self.cached) def fetch(self, wait=0): if self.started: return fetch(self.id, wait=wait, cached=self.cached) def result_group(self, failures=False, wait=0, count=None): if self.started and self.group: return result_group(self.group, failures=failures, wait=wait, count=count, cached=self.cached) def fetch_group(self, failures=True, wait=0, count=None): if self.started and self.group: return fetch_group(self.group, failures=failures, wait=wait, count=count, cached=self.cached) def _sync(pack): """Simulate a package travelling through the cluster.""" from django_q.cluster import worker, monitor task_queue = Queue() result_queue = Queue() task = SignedPackage.loads(pack) task_queue.put(task) task_queue.put('STOP') worker(task_queue, result_queue, Value('f', -1)) result_queue.put('STOP') monitor(result_queue) task_queue.close() task_queue.join_thread() result_queue.close() result_queue.join_thread() return task['id']
30.453757
120
0.583847
b8d0e8d35667e990fb2df7966b0da79a825c94a0
1,115
py
Python
thetools/users/tests/test_forms.py
sarthaksahni/pseudo-code-flow
516b23af817252729679e3ddcd2c2ebed5b74c6c
[ "MIT" ]
null
null
null
thetools/users/tests/test_forms.py
sarthaksahni/pseudo-code-flow
516b23af817252729679e3ddcd2c2ebed5b74c6c
[ "MIT" ]
null
null
null
thetools/users/tests/test_forms.py
sarthaksahni/pseudo-code-flow
516b23af817252729679e3ddcd2c2ebed5b74c6c
[ "MIT" ]
null
null
null
import pytest from thetools.users.forms import UserCreationForm from thetools.users.tests.factories import UserFactory pytestmark = pytest.mark.django_db class TestUserCreationForm: def test_clean_username(self): # A user with proto_user params does not exist yet. proto_user = UserFactory.build() form = UserCreationForm( { "username": proto_user.username, "password1": proto_user._password, "password2": proto_user._password, } ) assert form.is_valid() assert form.clean_username() == proto_user.username # Creating a user. form.save() # The user with proto_user params already exists, # hence cannot be created. form = UserCreationForm( { "username": proto_user.username, "password1": proto_user._password, "password2": proto_user._password, } ) assert not form.is_valid() assert len(form.errors) == 1 assert "username" in form.errors
27.195122
59
0.593722
867f6a85b8994bfcf2de66269d8ab6bbc4d8f56e
15,268
py
Python
qa/L0_shared_memory/shared_memory_test.py
jiweibo/triton_server
a0f7868eb0cad9d6a119edf845387ceae808d350
[ "BSD-3-Clause" ]
2,159
2020-08-26T06:21:38.000Z
2022-03-31T16:13:46.000Z
qa/L0_shared_memory/shared_memory_test.py
jiweibo/triton_server
a0f7868eb0cad9d6a119edf845387ceae808d350
[ "BSD-3-Clause" ]
1,482
2020-08-26T08:26:36.000Z
2022-03-31T23:11:19.000Z
qa/L0_shared_memory/shared_memory_test.py
jiweibo/triton_server
a0f7868eb0cad9d6a119edf845387ceae808d350
[ "BSD-3-Clause" ]
592
2020-08-26T06:09:25.000Z
2022-03-31T00:37:41.000Z
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import sys sys.path.append("../common") import numpy as np import unittest import os import test_util as tu import tritonclient.grpc as grpcclient import tritonclient.http as httpclient import tritonclient.utils.shared_memory as shm from tritonclient import utils class SharedMemoryTest(tu.TestResultCollector): def test_invalid_create_shm(self): # Raises error since tried to create invalid system shared memory region try: shm_op0_handle = shm.create_shared_memory_region( "dummy_data", "/dummy_data", -1) shm.destroy_shared_memory_region(shm_op0_handle) except Exception as ex: self.assertTrue(str(ex) == "unable to initialize the size") def test_valid_create_set_register(self): # Create a valid system shared memory region, fill data in it and register if _protocol == "http": triton_client = httpclient.InferenceServerClient(_url, verbose=True) else: triton_client = grpcclient.InferenceServerClient(_url, verbose=True) shm_op0_handle = shm.create_shared_memory_region( "dummy_data", "/dummy_data", 8) shm.set_shared_memory_region(shm_op0_handle, [np.array([1, 2], dtype=np.float32)]) triton_client.register_system_shared_memory("dummy_data", "/dummy_data", 8) shm_status = triton_client.get_system_shared_memory_status() if _protocol == "http": self.assertTrue(len(shm_status) == 1) else: self.assertTrue(len(shm_status.regions) == 1) shm.destroy_shared_memory_region(shm_op0_handle) def test_unregister_before_register(self): # Create a valid system shared memory region and unregister before register if _protocol == "http": triton_client = httpclient.InferenceServerClient(_url, verbose=True) else: triton_client = grpcclient.InferenceServerClient(_url, verbose=True) shm_op0_handle = shm.create_shared_memory_region( "dummy_data", "/dummy_data", 8) triton_client.unregister_system_shared_memory("dummy_data") shm_status = triton_client.get_system_shared_memory_status() if _protocol == "http": self.assertTrue(len(shm_status) == 0) else: self.assertTrue(len(shm_status.regions) == 0) shm.destroy_shared_memory_region(shm_op0_handle) def test_unregister_after_register(self): # Create a valid system shared memory region and unregister after register if _protocol == "http": triton_client = httpclient.InferenceServerClient(_url, verbose=True) else: triton_client = grpcclient.InferenceServerClient(_url, verbose=True) shm_op0_handle = shm.create_shared_memory_region( "dummy_data", "/dummy_data", 8) triton_client.register_system_shared_memory("dummy_data", "/dummy_data", 8) triton_client.unregister_system_shared_memory("dummy_data") shm_status = triton_client.get_system_shared_memory_status() if _protocol == "http": self.assertTrue(len(shm_status) == 0) else: self.assertTrue(len(shm_status.regions) == 0) shm.destroy_shared_memory_region(shm_op0_handle) def test_reregister_after_register(self): # Create a valid system shared memory region and unregister after register if _protocol == "http": triton_client = httpclient.InferenceServerClient(_url, verbose=True) else: triton_client = grpcclient.InferenceServerClient(_url, verbose=True) shm_op0_handle = shm.create_shared_memory_region( "dummy_data", "/dummy_data", 8) triton_client.register_system_shared_memory("dummy_data", "/dummy_data", 8) try: triton_client.register_system_shared_memory("dummy_data", "/dummy_data", 8) except Exception as ex: self.assertTrue( "shared memory region 'dummy_data' already in manager" in str( ex)) shm_status = triton_client.get_system_shared_memory_status() if _protocol == "http": self.assertTrue(len(shm_status) == 1) else: self.assertTrue(len(shm_status.regions) == 1) shm.destroy_shared_memory_region(shm_op0_handle) def _configure_sever(self): shm_ip0_handle = shm.create_shared_memory_region( "input0_data", "/input0_data", 64) shm_ip1_handle = shm.create_shared_memory_region( "input1_data", "/input1_data", 64) shm_op0_handle = shm.create_shared_memory_region( "output0_data", "/output0_data", 64) shm_op1_handle = shm.create_shared_memory_region( "output1_data", "/output1_data", 64) input0_data = np.arange(start=0, stop=16, dtype=np.int32) input1_data = np.ones(shape=16, dtype=np.int32) shm.set_shared_memory_region(shm_ip0_handle, [input0_data]) shm.set_shared_memory_region(shm_ip1_handle, [input1_data]) if _protocol == "http": triton_client = httpclient.InferenceServerClient(_url, verbose=True) else: triton_client = grpcclient.InferenceServerClient(_url, verbose=True) triton_client.register_system_shared_memory("input0_data", "/input0_data", 64) triton_client.register_system_shared_memory("input1_data", "/input1_data", 64) triton_client.register_system_shared_memory("output0_data", "/output0_data", 64) triton_client.register_system_shared_memory("output1_data", "/output1_data", 64) return [shm_ip0_handle, shm_ip1_handle, shm_op0_handle, shm_op1_handle] def _cleanup_server(self, shm_handles): for shm_handle in shm_handles: shm.destroy_shared_memory_region(shm_handle) def _basic_inference(self, shm_ip0_handle, shm_ip1_handle, shm_op0_handle, shm_op1_handle, error_msg, big_shm_name="", big_shm_size=64): input0_data = np.arange(start=0, stop=16, dtype=np.int32) input1_data = np.ones(shape=16, dtype=np.int32) inputs = [] outputs = [] if _protocol == "http": triton_client = httpclient.InferenceServerClient(_url, verbose=True) inputs.append(httpclient.InferInput("INPUT0", [1, 16], "INT32")) inputs.append(httpclient.InferInput("INPUT1", [1, 16], "INT32")) outputs.append( httpclient.InferRequestedOutput('OUTPUT0', binary_data=True)) outputs.append( httpclient.InferRequestedOutput('OUTPUT1', binary_data=False)) else: triton_client = grpcclient.InferenceServerClient(_url, verbose=True) inputs.append(grpcclient.InferInput("INPUT0", [1, 16], "INT32")) inputs.append(grpcclient.InferInput("INPUT1", [1, 16], "INT32")) outputs.append(grpcclient.InferRequestedOutput('OUTPUT0')) outputs.append(grpcclient.InferRequestedOutput('OUTPUT1')) inputs[0].set_shared_memory("input0_data", 64) if type(shm_ip1_handle) == np.array: inputs[1].set_data_from_numpy(input0_data, binary_data=True) elif big_shm_name != "": inputs[1].set_shared_memory(big_shm_name, big_shm_size) else: inputs[1].set_shared_memory("input1_data", 64) outputs[0].set_shared_memory("output0_data", 64) outputs[1].set_shared_memory("output1_data", 64) try: results = triton_client.infer("simple", inputs, model_version="", outputs=outputs) output = results.get_output('OUTPUT0') if _protocol == "http": output_datatype = output['datatype'] output_shape = output['shape'] else: output_datatype = output.datatype output_shape = output.shape output_dtype = utils.triton_to_np_dtype(output_datatype) output_data = shm.get_contents_as_numpy(shm_op0_handle, output_dtype, output_shape) self.assertTrue( (output_data[0] == (input0_data + input1_data)).all(), "Model output does not match expected output") except Exception as ex: error_msg.append(str(ex)) def test_unregister_after_inference(self): # Unregister after inference error_msg = [] shm_handles = self._configure_sever() self._basic_inference(shm_handles[0], shm_handles[1], shm_handles[2], shm_handles[3], error_msg) if len(error_msg) > 0: raise Exception(str(error_msg)) if _protocol == "http": triton_client = httpclient.InferenceServerClient(_url, verbose=True) else: triton_client = grpcclient.InferenceServerClient(_url, verbose=True) triton_client.unregister_system_shared_memory("output0_data") shm_status = triton_client.get_system_shared_memory_status() if _protocol == "http": self.assertTrue(len(shm_status) == 3) else: self.assertTrue(len(shm_status.regions) == 3) self._cleanup_server(shm_handles) def test_register_after_inference(self): # Register after inference error_msg = [] shm_handles = self._configure_sever() if _protocol == "http": triton_client = httpclient.InferenceServerClient(_url, verbose=True) else: triton_client = grpcclient.InferenceServerClient(_url, verbose=True) self._basic_inference(shm_handles[0], shm_handles[1], shm_handles[2], shm_handles[3], error_msg) if len(error_msg) > 0: raise Exception(str(error_msg)) shm_ip2_handle = shm.create_shared_memory_region( "input2_data", "/input2_data", 64) triton_client.register_system_shared_memory("input2_data", "/input2_data", 64) shm_status = triton_client.get_system_shared_memory_status() if _protocol == "http": self.assertTrue(len(shm_status) == 5) else: self.assertTrue(len(shm_status.regions) == 5) shm_handles.append(shm_ip2_handle) self._cleanup_server(shm_handles) def test_too_big_shm(self): # Shared memory input region larger than needed - Throws error error_msg = [] shm_handles = self._configure_sever() shm_ip2_handle = shm.create_shared_memory_region( "input2_data", "/input2_data", 128) if _protocol == "http": triton_client = httpclient.InferenceServerClient(_url, verbose=True) else: triton_client = grpcclient.InferenceServerClient(_url, verbose=True) triton_client.register_system_shared_memory("input2_data", "/input2_data", 128) self._basic_inference(shm_handles[0], shm_ip2_handle, shm_handles[2], shm_handles[3], error_msg, "input2_data", 128) if len(error_msg) > 0: self.assertTrue( "unexpected total byte size 128 for input 'INPUT1', expecting 64" in error_msg[-1]) shm_handles.append(shm_ip2_handle) self._cleanup_server(shm_handles) def test_mixed_raw_shm(self): # Mix of shared memory and RAW inputs error_msg = [] shm_handles = self._configure_sever() input1_data = np.ones(shape=16, dtype=np.int32) self._basic_inference(shm_handles[0], [input1_data], shm_handles[2], shm_handles[3], error_msg) if len(error_msg) > 0: raise Exception(error_msg[-1]) self._cleanup_server(shm_handles) def test_unregisterall(self): # Unregister all shared memory blocks shm_handles = self._configure_sever() if _protocol == "http": triton_client = httpclient.InferenceServerClient(_url, verbose=True) else: triton_client = grpcclient.InferenceServerClient(_url, verbose=True) status_before = triton_client.get_system_shared_memory_status() if _protocol == "http": self.assertTrue(len(status_before) == 4) else: self.assertTrue(len(status_before.regions) == 4) triton_client.unregister_system_shared_memory() status_after = triton_client.get_system_shared_memory_status() if _protocol == "http": self.assertTrue(len(status_after) == 0) else: self.assertTrue(len(status_after.regions) == 0) self._cleanup_server(shm_handles) if __name__ == '__main__': _protocol = os.environ.get('CLIENT_TYPE', "http") if _protocol == "http": _url = "localhost:8000" else: _url = "localhost:8001" unittest.main()
47.26935
83
0.629945
b840af50fd282f34ead02c3cb1ea91de3c4f1595
4,128
py
Python
openshift/test/test_v1_config_map.py
flaper87/openshift-restclient-python
13d5d86ca89035b9f596032e7a34f3cc33bf8f18
[ "Apache-2.0" ]
null
null
null
openshift/test/test_v1_config_map.py
flaper87/openshift-restclient-python
13d5d86ca89035b9f596032e7a34f3cc33bf8f18
[ "Apache-2.0" ]
null
null
null
openshift/test/test_v1_config_map.py
flaper87/openshift-restclient-python
13d5d86ca89035b9f596032e7a34f3cc33bf8f18
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ OpenShift API (with Kubernetes) OpenShift provides builds, application lifecycle, image content management, and administrative policy on top of Kubernetes. The API allows consistent management of those objects. All API operations are authenticated via an Authorization bearer token that is provided for service accounts as a generated secret (in JWT form) or via the native OAuth endpoint located at /oauth/authorize. Core infrastructure components may use openshift.client certificates that require no authentication. All API operations return a 'resourceVersion' string that represents the version of the object in the underlying storage. The standard LIST operation performs a snapshot read of the underlying objects, returning a resourceVersion representing a consistent version of the listed objects. The WATCH operation allows all updates to a set of objects after the provided resourceVersion to be observed by a openshift.client. By listing and beginning a watch from the returned resourceVersion, openshift.clients may observe a consistent view of the state of one or more objects. Note that WATCH always returns the update after the provided resourceVersion. Watch may be extended a limited time in the past - using etcd 2 the watch window is 1000 events (which on a large cluster may only be a few tens of seconds) so openshift.clients must explicitly handle the \"watch to old error\" by re-listing. Objects are divided into two rough categories - those that have a lifecycle and must reflect the state of the cluster, and those that have no state. Objects with lifecycle typically have three main sections: * 'metadata' common to all objects * a 'spec' that represents the desired state * a 'status' that represents how much of the desired state is reflected on the cluster at the current time Objects that have no state have 'metadata' but may lack a 'spec' or 'status' section. Objects are divided into those that are namespace scoped (only exist inside of a namespace) and those that are cluster scoped (exist outside of a namespace). A namespace scoped resource will be deleted when the namespace is deleted and cannot be created if the namespace has not yet been created or is in the process of deletion. Cluster scoped resources are typically only accessible to admins - resources like nodes, persistent volumes, and cluster policy. All objects have a schema that is a combination of the 'kind' and 'apiVersion' fields. This schema is additive only for any given version - no backwards incompatible changes are allowed without incrementing the apiVersion. The server will return and accept a number of standard responses that share a common schema - for instance, the common error type is 'unversioned.Status' (described below) and will be returned on any error from the API server. The API is available in multiple serialization formats - the default is JSON (Accept: application/json and Content-Type: application/json) but openshift.clients may also use YAML (application/yaml) or the native Protobuf schema (application/vnd.kubernetes.protobuf). Note that the format of the WATCH API call is slightly different - for JSON it returns newline delimited objects while for Protobuf it returns length-delimited frames (4 bytes in network-order) that contain a 'versioned.Watch' Protobuf object. See the OpenShift documentation at https://docs.openshift.org for more information. OpenAPI spec version: v3.6.0-alpha.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import openshift.client from kubernetes.client.rest import ApiException from openshift.client.models.v1_config_map import V1ConfigMap class TestV1ConfigMap(unittest.TestCase): """ V1ConfigMap unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1ConfigMap(self): """ Test V1ConfigMap """ model = openshift.client.models.v1_config_map.V1ConfigMap() if __name__ == '__main__': unittest.main()
96
3,380
0.787064
b3e204b69561604583a039eadc9b607c6042296d
12,586
py
Python
pyscandl/modules/Pyscandl.py
Annwan/pyscandl
afec7b410699f1bb6289a8653fc7cfa5b0d03406
[ "BSD-3-Clause" ]
null
null
null
pyscandl/modules/Pyscandl.py
Annwan/pyscandl
afec7b410699f1bb6289a8653fc7cfa5b0d03406
[ "BSD-3-Clause" ]
null
null
null
pyscandl/modules/Pyscandl.py
Annwan/pyscandl
afec7b410699f1bb6289a8653fc7cfa5b0d03406
[ "BSD-3-Clause" ]
null
null
null
import contextlib from .excepts import DryNoSauceHere, TooManySauce, EmptyChapter, DelayedRelease from .fetchers.fetcher import StandaloneFetcher from PIL import Image import requests import os from re import sub as re_sub from sys import stderr from wand.image import Image class Pyscandl: """ The main object of the program. It is responsible of the downloads and controls the fetchers for you. """ def __init__(self, fetcher, chapstart=1, output:str=".", pdf:bool=True, keep:bool=False, image:bool=False, all:bool=False, link:str=None, manga:str=None, download_number:int=1, chapend=0, quiet:bool=False, skip:int=0, tiny:bool=False): """ Initialize this instance of the pyscandl downloader, it needs either manga or link to work. :param fetcher: fetcher object related to the download :param chapstart: first chapter to be downloaded :type chapstart: int/float/str :param output: output folder :type output: str :param pdf: tell if the result should be kept as a pdf :type pdf: bool :param keep: tell if the result should be kept as a pdf and as a collection of images :type keep: bool :param image: tell if the result should be kept as a collection of images :type image: bool :param all: download all the chapters that are available after chapstart :type all: bool :param link: link of the manga to download :type link: str :param manga: identification tag of the manga *(see every fetcher for their different variations)* :type manga: str :param download_number: number of chapters to download :type download_number: int :param chapend: chapter to end the download on, if non exstant the download will stop once the next to download chapter number is greater than it :type chapend: int/float/str :param quiet: should the program not output any information about what it is doing in the console :type quiet: bool :param skip: number of images to skip on the first chapter being downloaded *(useful if running in image mode)* :type skip: int :param tiny: should the name of every downloaded scan be minified and only include the chapter number and the chapter title :type tiny: bool :raises DryNoSauceHere: neither link or manga was specified :raises TooManySauce: both link and manga were specified """ if link is not None and manga is None or link is None and manga is not None: if issubclass(fetcher, StandaloneFetcher): self.fetcher = fetcher(link=link, manga=manga) else: self.fetcher = fetcher(link=link, manga=manga, chapstart=chapstart) elif link is None and manga is None: raise DryNoSauceHere else: raise TooManySauce # in case windows is the os, remove the banned characters if os.name == "nt": manga_name = re_sub(r'[\\/*?:"<>|]', u"█", self.fetcher.manga_name) else: manga_name = self.fetcher.manga_name # creating output folder self._output = (output[-1] == "/" and output or output + "/") + manga_name + "/" if not os.path.exists(self._output): os.makedirs(self._output) self._header = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36", "Set-Cookie": f"domain={self.fetcher.domain}"} self._header.update(self.fetcher.headers) self._nskip = skip self._quiet = quiet # select download mode self._pdf = pdf self._keep = keep self._image = image self._all = all self._download_number = download_number self._chapend = float(chapend) if "." in str(chapend) else int(chapend) self._path = f"{self._output}ch.{self.fetcher.chapter_number} {self.fetcher.chapter_name}/" # save path for images self._img_bin_list = [] self._tiny = tiny # in case windows is the os, remove the banned characters if os.name == "nt": chapter_name = re_sub(r'[\\/*?:"<>|]', u"█", self.fetcher.chapter_name) else: chapter_name = self.fetcher.chapter_name if self._tiny: if isinstance(self.fetcher, StandaloneFetcher): self._pdf_path = f"{self._output}{chapter_name}.pdf" self._name_metadata_pdf = f"{self.fetcher.chapter_name}" else: self._pdf_path = f"{self._output}ch.{self.fetcher.chapter_number} {chapter_name}.pdf" self._name_metadata_pdf = f"ch.{self.fetcher.chapter_number} {self.fetcher.chapter_name}" else: if isinstance(self.fetcher, StandaloneFetcher): self._pdf_path = f"{self._output}{manga_name} - {chapter_name}.pdf" self._name_metadata_pdf = f"{self.fetcher.manga_name} - {self.fetcher.chapter_name}" else: self._pdf_path = f"{self._output}{manga_name} - ch.{self.fetcher.chapter_number} {chapter_name}.pdf" self._name_metadata_pdf = f"{self.fetcher.manga_name} - ch.{self.fetcher.chapter_number} {self.fetcher.chapter_name}" self._banlist = [] ban_path = f"{os.path.dirname(os.path.abspath(__file__))}/../banlist" for img in os.listdir(ban_path): with open(f"{ban_path}/{img}", "rb") as img_bin: self._banlist.append(img_bin.read()) def _dl_image(self): """ Downloads the currently selected image. """ if not os.path.exists(self._path): os.makedirs(self._path) with open(f"{self._path}{self.fetcher.npage}.{self.fetcher.ext}", "wb") as img: img.write(requests.get(self.fetcher.image, headers=self._header).content) if not self._quiet: print(".", end="", flush=True) def full_chapter(self): """ Fetching all the images of the chapter and storing them in RAM. """ if not self._quiet: if isinstance(self.fetcher, StandaloneFetcher): print(f"fetching: {self.fetcher.chapter_name}") else: print(f"fetching: ch.{self.fetcher.chapter_number} {self.fetcher.chapter_name}") while not self.fetcher.is_last_image(): self._img_bin_list.append(requests.get(self.fetcher.image, headers=self._header).content) if not self._quiet: print(".", end="", flush=True) self.fetcher.next_image() self._img_bin_list.append(requests.get(self.fetcher.image, headers=self._header).content) if not self._quiet: print(".", end="", flush=True) def keep_full_chapter(self): """ Downloading all the images of the chapters and storing them where the output was specified. """ if not self._quiet: if isinstance(self.fetcher, StandaloneFetcher): print(f"downloading: {self.fetcher.chapter_name}") else: print(f"downloading: ch.{self.fetcher.chapter_number} {self.fetcher.chapter_name}") while not self.fetcher.is_last_image(): if self._keep: self._img_bin_list.append(requests.get(self.fetcher.image, headers=self._header).content) self._dl_image() self.fetcher.next_image() if self._keep: self._img_bin_list.append(requests.get(self.fetcher.image, headers=self._header).content) self._dl_image() if not self._quiet and self._image: print("") def _skip(self): """ Skips the images as asked with the skip parameter. """ for loop in range(self._nskip): self.fetcher.next_image() def create_pdf(self): """ Creates the pdf at the output location with the fetched or the downloaded images of the current chapter. :raises EmptyChapter: the images of the current chapter were all blacklisted images and the pdf was empty """ print("Warning: the pdf creation engine will be changed for Wand in the next major release (3.0.0). Please do not forget to install imagemagick at that time", file=stderr) if not self._quiet: print("\nconverting...", end=" ") # loading the downloaded images if keep mode # removing the images found in the banlist self._img_bin_list = [img for img in self._img_bin_list if img not in self._banlist] if len(self._img_bin_list) > 0: # creating the pdf with Image() as pdf: for img_bin in self._img_bin_list: with contextlib.redirect_stderr(None): # to mute alpha channel and ICC warnings as wand processes the image well anyway with Image(blob=img_bin) as img: pdf.sequence.append(img) pdf.save(filename=self._pdf_path) with open(self._pdf_path, "rb") as file: pdf = file.read() with open(self._pdf_path, "wb") as file: file.write(pdf.replace(b"/Producer (https://imagemagick.org)", b"/Producer (https://pypi.org/project/pyscandl/)") .replace( b"/CreationDate", b"/Author <feff"+self.fetcher.author.encode("utf-16_be").hex().encode()+ b">\n/Keywords <feff"+self.fetcher.manga_name.encode("utf-16_be").hex().encode()+b">\n/CreationDate") ) # manually adding the missing metadate from the pdf creation if not self._quiet: print("converted") else: raise EmptyChapter(self.fetcher.manga_name, self.fetcher.chapter_number) def go_to_chapter(self, chap_num): """ Make Pyscandl go to the asked chapter. :param chap_num: chapter number that was asked for :type chap_num: int/str/float """ # in case windows is the os, remove the banned characters if os.name == "nt": chapter_name = re_sub(r'[\\/*?:"<>|]', u"█", self.fetcher.chapter_name) else: chapter_name = self.fetcher.chapter_name self.fetcher.go_to_chapter(chap_num) self._path = f"{self._output}ch.{self.fetcher.chapter_number} {chapter_name}/" self._img_bin_list = [] # prepares the next pdf path and name if self._tiny: if isinstance(self.fetcher, StandaloneFetcher): self._pdf_path = f"{self._output}{chapter_name}.pdf" self._name_metadata_pdf = f"{self.fetcher.chapter_name}" else: self._pdf_path = f"{self._output}ch.{self.fetcher.chapter_number} {chapter_name}.pdf" self._name_metadata_pdf = f"ch.{self.fetcher.chapter_number} {self.fetcher.chapter_name}" else: if isinstance(self.fetcher, StandaloneFetcher): self._pdf_path = f"{self._output}{self.fetcher.manga_name} - {chapter_name}.pdf" self._name_metadata_pdf = f"{self.fetcher.manga_name} - {self.fetcher.chapter_name}" else: self._pdf_path = f"{self._output}{self.fetcher.manga_name} - ch.{self.fetcher.chapter_number} {chapter_name}.pdf" self._name_metadata_pdf = f"{self.fetcher.manga_name} - ch.{self.fetcher.chapter_number} {self.fetcher.chapter_name}" def next_chapter(self): """ Goes to the next chapter """ self.fetcher.next_chapter() # in case windows is the os, remove the banned characters if os.name == "nt": chapter_name = re_sub(r'[\\/*?:"<>|]', u"█", self.fetcher.chapter_name) else: chapter_name = self.fetcher.chapter_name self._path = f"{self._output}ch.{self.fetcher.chapter_number} {chapter_name}/" self._img_bin_list = [] # prepares the next pdf path and name if self._tiny: if isinstance(self.fetcher, StandaloneFetcher): self._pdf_path = f"{self._output}{chapter_name}.pdf" self._name_metadata_pdf = f"{self.fetcher.chapter_name}" else: self._pdf_path = f"{self._output}ch.{self.fetcher.chapter_number} {chapter_name}.pdf" self._name_metadata_pdf = f"ch.{self.fetcher.chapter_number} {self.fetcher.chapter_name}" else: if isinstance(self.fetcher, StandaloneFetcher): self._pdf_path = f"{self._output}{self.fetcher.manga_name} - {chapter_name}.pdf" self._name_metadata_pdf = f"{self.fetcher.manga_name} - {self.fetcher.chapter_name}" else: self._pdf_path = f"{self._output}{self.fetcher.manga_name} - ch.{self.fetcher.chapter_number} {chapter_name}.pdf" self._name_metadata_pdf = f"{self.fetcher.manga_name} - ch.{self.fetcher.chapter_number} {self.fetcher.chapter_name}" def full_download(self): """ Does the full download process with what is specified when initializing the Pyscandl object """ try: # emulating a do while self._skip() counter = 1 try: if self._keep or self._image: self.keep_full_chapter() else: self.full_chapter() if not self._image: try: self.create_pdf() except EmptyChapter: if not self._quiet: print("empty") except DelayedRelease as e: if not self._quiet: print(e) while not isinstance(self.fetcher, StandaloneFetcher) and not self.fetcher.is_last_chapter() and (self._all or counter < self._download_number or float(self.fetcher.chapter_number) < self._chapend): self.next_chapter() try: if self._keep or self._image: self.keep_full_chapter() else: self.full_chapter() if not self._image: try: self.create_pdf() except EmptyChapter: if not self._quiet: print("empty") except DelayedRelease as e: if not self._quiet: print(e) counter += 1 except KeyboardInterrupt: if not self._quiet: print("\nmanual interruption") finally: self.fetcher.quit() if not self._quiet: print("end of the download")
37.570149
236
0.713094
5b5e84d4963f0fb3455c3bcb63fb12f2b6eb800d
4,135
py
Python
alipay/aop/api/request/AlipayEbppMerchantExternalbillUploadRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/request/AlipayEbppMerchantExternalbillUploadRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/request/AlipayEbppMerchantExternalbillUploadRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * class AlipayEbppMerchantExternalbillUploadRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._community_short_name = None self._content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def community_short_name(self): return self._community_short_name @community_short_name.setter def community_short_name(self, value): self._community_short_name = value @property def content(self): return self._content @content.setter def content(self, value): if not isinstance(value, FileItem): return self._content = value @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.ebpp.merchant.externalbill.upload' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.community_short_name: if hasattr(self.community_short_name, 'to_alipay_dict'): params['community_short_name'] = json.dumps(obj=self.community_short_name.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['community_short_name'] = self.community_short_name if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() if self.content: multipart_params['content'] = self.content return multipart_params
27.026144
166
0.640387
d65cb5c26438ae7017fb24a43d98d8c39ada4174
657
py
Python
pp/samples/13_component_yaml.py
flaport/gdsfactory
1f2e844c1fe27b9c6340e2d51500fd3358fa16e5
[ "MIT" ]
8
2020-08-25T11:25:18.000Z
2022-03-27T11:32:11.000Z
pp/samples/13_component_yaml.py
flaport/gdsfactory
1f2e844c1fe27b9c6340e2d51500fd3358fa16e5
[ "MIT" ]
null
null
null
pp/samples/13_component_yaml.py
flaport/gdsfactory
1f2e844c1fe27b9c6340e2d51500fd3358fa16e5
[ "MIT" ]
1
2022-03-04T07:03:29.000Z
2022-03-04T07:03:29.000Z
import pp netlist = """ instances: CP1: component: mmi1x2 settings: width_mmi: 4.5 length_mmi: 10 CP2: component: mmi1x2 settings: width_mmi: 4.5 length_mmi: 5 arm_top: component: mzi_arm arm_bot: component: mzi_arm placements: arm_bot: mirror: True ports: W0: CP1,W0 E0: CP2,W0 connections: arm_bot,W0: CP1,E0 arm_top,W0: CP1,E1 CP2,E0: arm_bot,E0 CP2,E1: arm_top,E0 """ def test_mzi(): return pp.component_from_yaml(netlist) if __name__ == "__main__": c = test_mzi() pp.show(c) pp.plotgds(c)
15.27907
42
0.561644
1ddc0a132b27f5d50057b083d7485063e98b031d
3,632
py
Python
configs/ttfnet/ttfnet_r18_dyndila_param10_scale1e4_1e4_1x.py
mrsempress/mmdetection
cb650560c97a2fe56a9b369a1abc8ec17e06583a
[ "Apache-2.0" ]
null
null
null
configs/ttfnet/ttfnet_r18_dyndila_param10_scale1e4_1e4_1x.py
mrsempress/mmdetection
cb650560c97a2fe56a9b369a1abc8ec17e06583a
[ "Apache-2.0" ]
null
null
null
configs/ttfnet/ttfnet_r18_dyndila_param10_scale1e4_1e4_1x.py
mrsempress/mmdetection
cb650560c97a2fe56a9b369a1abc8ec17e06583a
[ "Apache-2.0" ]
null
null
null
# model settings model = dict( type='TTFNet', pretrained='modelzoo://resnet18', backbone=dict( type='ResNet', depth=18, num_stages=4, local_conv_cfg=dict(type='DynDilaConv', param_multiply=10., alpha_scale=1e-4, split=8), stage_with_local_conv_cfg=(False, False, True, True), out_indices=(0, 1, 2, 3), frozen_stages=1, norm_eval=False, style='pytorch'), neck=None, bbox_head=dict( type='TTFHead', inplanes=(64, 128, 256, 512), head_conv=128, wh_conv=64, hm_head_conv_num=2, wh_head_conv_num=1, num_classes=81, wh_offset_base=16, wh_agnostic=True, wh_gaussian=True, shortcut_cfg=(1, 2, 3), norm_cfg=dict(type='BN'), alpha=0.54, hm_weight=1., wh_weight=5.)) cudnn_benchmark = True # training and testing settings train_cfg = dict( vis_every_n_iters=100, debug=False) test_cfg = dict( score_thr=0.01, max_per_img=100) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(512, 512), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(512, 512), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=16, workers_per_gpu=4, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.002, momentum=0.9, weight_decay=0.0004, paramwise_options=dict(bias_lr_mult=2., bias_decay_mult=0., arch_lr_mult=1e4, arch_decay_mult=0.)) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 5, step=[9, 11]) checkpoint_config = dict(save_every_n_steps=200, max_to_keep=1, keep_every_n_epochs=9) bbox_head_hist_config = dict( model_type=['ConvModule', 'DeformConvPack'], sub_modules=['bbox_head'], save_every_n_steps=200) # yapf:disable log_config = dict(interval=20) # yapf:enable # runtime settings total_epochs = 12 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/ttfnet18_1x' load_from = None resume_from = None workflow = [('train', 1)]
31.310345
95
0.631883
fc0429962d81fe7351780331d2200adeaf0f515d
5,610
py
Python
examples/kalman/helpers/feature_handler.py
mfkiwl/laika-gnss
dc38f251dbc7ebb535a3c220de8424634d297248
[ "MIT" ]
365
2018-12-17T07:43:34.000Z
2022-03-29T22:23:39.000Z
examples/kalman/helpers/feature_handler.py
mfkiwl/laika-gnss
dc38f251dbc7ebb535a3c220de8424634d297248
[ "MIT" ]
36
2019-07-24T10:20:45.000Z
2022-02-14T22:11:24.000Z
examples/kalman/helpers/feature_handler.py
mfkiwl/laika-gnss
dc38f251dbc7ebb535a3c220de8424634d297248
[ "MIT" ]
156
2018-12-17T05:06:23.000Z
2022-03-31T12:06:07.000Z
#!/usr/bin/env python3 import os import numpy as np import kalman.helpers.orientation as orient from selfdrive.locationd.kalman.helpers import (TEMPLATE_DIR, load_code, write_code) from selfdrive.locationd.kalman.helpers.sympy_helpers import quat_matrix_l def sane(track): img_pos = track[1:, 2:4] diffs_x = abs(img_pos[1:, 0] - img_pos[:-1, 0]) diffs_y = abs(img_pos[1:, 1] - img_pos[:-1, 1]) for i in range(1, len(diffs_x)): if ((diffs_x[i] > 0.05 or diffs_x[i - 1] > 0.05) and (diffs_x[i] > 2 * diffs_x[i - 1] or diffs_x[i] < .5 * diffs_x[i - 1])) or \ ((diffs_y[i] > 0.05 or diffs_y[i - 1] > 0.05) and (diffs_y[i] > 2 * diffs_y[i - 1] or diffs_y[i] < .5 * diffs_y[i - 1])): return False return True class FeatureHandler(): name = 'feature_handler' @staticmethod def generate_code(K=5): # Wrap c code for slow matching c_header = "\nvoid merge_features(double *tracks, double *features, long long *empty_idxs);" c_code = "#include <math.h>\n" c_code += "#include <string.h>\n" c_code += "#define K %d\n" % K c_code += "\n" + open(os.path.join(TEMPLATE_DIR, "feature_handler.c")).read() filename = f"{FeatureHandler.name}_{K}" write_code(filename, c_code, c_header) def __init__(self, K=5): self.MAX_TRACKS = 6000 self.K = K # Array of tracks, each track has K 5D features preceded # by 5 params that inidicate [f_idx, last_idx, updated, complete, valid] # f_idx: idx of current last feature in track # idx of of last feature in frame # bool for whether this track has been update # bool for whether this track is complete # bool for whether this track is valid self.tracks = np.zeros((self.MAX_TRACKS, K + 1, 5)) self.tracks[:] = np.nan name = f"{FeatureHandler.name}_{K}" ffi, lib = load_code(name) def merge_features_c(tracks, features, empty_idxs): lib.merge_features(ffi.cast("double *", tracks.ctypes.data), ffi.cast("double *", features.ctypes.data), ffi.cast("long long *", empty_idxs.ctypes.data)) # self.merge_features = self.merge_features_python self.merge_features = merge_features_c def reset(self): self.tracks[:] = np.nan def merge_features_python(self, tracks, features, empty_idxs): empty_idx = 0 for f in features: match_idx = int(f[4]) if tracks[match_idx, 0, 1] == match_idx and tracks[match_idx, 0, 2] == 0: tracks[match_idx, 0, 0] += 1 tracks[match_idx, 0, 1] = f[1] tracks[match_idx, 0, 2] = 1 tracks[match_idx, int(tracks[match_idx, 0, 0])] = f if tracks[match_idx, 0, 0] == self.K: tracks[match_idx, 0, 3] = 1 if sane(tracks[match_idx]): tracks[match_idx, 0, 4] = 1 else: if empty_idx == len(empty_idxs): print('need more empty space') continue tracks[empty_idxs[empty_idx], 0, 0] = 1 tracks[empty_idxs[empty_idx], 0, 1] = f[1] tracks[empty_idxs[empty_idx], 0, 2] = 1 tracks[empty_idxs[empty_idx], 1] = f empty_idx += 1 def update_tracks(self, features): last_idxs = np.copy(self.tracks[:, 0, 1]) real = np.isfinite(last_idxs) self.tracks[last_idxs[real].astype(int)] = self.tracks[real] mask = np.ones(self.MAX_TRACKS, np.bool) mask[last_idxs[real].astype(int)] = 0 empty_idxs = np.arange(self.MAX_TRACKS)[mask] self.tracks[empty_idxs] = np.nan self.tracks[:, 0, 2] = 0 self.merge_features(self.tracks, features, empty_idxs) def handle_features(self, features): self.update_tracks(features) valid_idxs = self.tracks[:, 0, 4] == 1 complete_idxs = self.tracks[:, 0, 3] == 1 stale_idxs = self.tracks[:, 0, 2] == 0 valid_tracks = self.tracks[valid_idxs] self.tracks[complete_idxs] = np.nan self.tracks[stale_idxs] = np.nan return valid_tracks[:, 1:, :4].reshape((len(valid_tracks), self.K * 4)) def generate_orient_error_jac(K): import sympy as sp from selfdrive.locationd.kalman.helpers.sympy_helpers import quat_rotate x_sym = sp.MatrixSymbol('abr', 3, 1) dtheta = sp.MatrixSymbol('dtheta', 3, 1) delta_quat = sp.Matrix(np.ones(4)) delta_quat[1:, :] = sp.Matrix(0.5 * dtheta[0:3, :]) poses_sym = sp.MatrixSymbol('poses', 7 * K, 1) img_pos_sym = sp.MatrixSymbol('img_positions', 2 * K, 1) alpha, beta, rho = x_sym to_c = sp.Matrix(orient.rot_matrix(-np.pi / 2, -np.pi / 2, 0)) pos_0 = sp.Matrix(np.array(poses_sym[K * 7 - 7:K * 7 - 4])[:, 0]) q = quat_matrix_l(poses_sym[K * 7 - 4:K * 7]) * delta_quat quat_rot = quat_rotate(*q) rot_g_to_0 = to_c * quat_rot.T rows = [] for i in range(K): pos_i = sp.Matrix(np.array(poses_sym[i * 7:i * 7 + 3])[:, 0]) q = quat_matrix_l(poses_sym[7 * i + 3:7 * i + 7]) * delta_quat quat_rot = quat_rotate(*q) rot_g_to_i = to_c * quat_rot.T rot_0_to_i = rot_g_to_i * (rot_g_to_0.T) trans_0_to_i = rot_g_to_i * (pos_0 - pos_i) funct_vec = rot_0_to_i * sp.Matrix([alpha, beta, 1]) + rho * trans_0_to_i h1, h2, h3 = funct_vec rows.append(h1 / h3 - img_pos_sym[i * 2 + 0]) rows.append(h2 / h3 - img_pos_sym[i * 2 + 1]) img_pos_residual_sym = sp.Matrix(rows) # sympy into c sympy_functions = [] sympy_functions.append(('orient_error_jac', img_pos_residual_sym.jacobian(dtheta), [x_sym, poses_sym, img_pos_sym, dtheta])) return sympy_functions if __name__ == "__main__": # TODO: get K from argparse FeatureHandler.generate_code()
35.283019
126
0.630838
8ad2b9e351092d6ffc399778dec20e3648d74fed
4,285
py
Python
examples/mlx90640_pygamer.py
dglaude/Adafruit_CircuitPython_MLX90640
874651ca04b0aea92d54c984203a360784e3acd6
[ "MIT" ]
null
null
null
examples/mlx90640_pygamer.py
dglaude/Adafruit_CircuitPython_MLX90640
874651ca04b0aea92d54c984203a360784e3acd6
[ "MIT" ]
null
null
null
examples/mlx90640_pygamer.py
dglaude/Adafruit_CircuitPython_MLX90640
874651ca04b0aea92d54c984203a360784e3acd6
[ "MIT" ]
null
null
null
import time import board import busio import adafruit_mlx90640 import displayio import terminalio from adafruit_display_text.label import Label number_of_colors = 64 palette = displayio.Palette(number_of_colors) # Palette with all our colors ## Heatmap code inspired from: http://www.andrewnoske.com/wiki/Code_-_heatmaps_and_color_gradients color_A = [[0, 0, 0], [0, 0, 255], [0, 255, 255], [0, 255, 0], [255, 255, 0], \ [255, 0, 0], [255, 255, 255]] color_B = [[0, 0, 255], [0, 255, 255] , [0, 255, 0], [255, 255, 0], [255, 0, 0]] color_C = [[0, 0, 0], [255, 255, 255]] color_D = [[0, 0, 255], [255, 0, 0]] color = color_B NUM_COLORS = len (color) def MakeHeatMapColor(): for c in range(number_of_colors): value = c * (NUM_COLORS-1) / (number_of_colors - 1) idx1 = int(value) # Our desired color will be after this index. if idx1 == value : # This is the corner case red = color[idx1][0] green = color[idx1][1] blue = color[idx1][2] else: idx2 = idx1+1 # ... and before this index (inclusive). fractBetween = value - idx1 # Distance between the two indexes (0-1). red = int(round((color[idx2][0] - color[idx1][0]) * fractBetween + color[idx1][0])) green = int(round((color[idx2][1] - color[idx1][1]) * fractBetween + color[idx1][1])) blue = int(round((color[idx2][2] - color[idx1][2]) * fractBetween + color[idx1][2])) palette[c]= ( 0x010000 * red ) + ( 0x000100 * green ) + ( 0x000001 * blue ) MakeHeatMapColor() # Bitmap for colour coded thermal value image_bitmap = displayio.Bitmap( 32, 24, number_of_colors ) # Create a TileGrid using the Bitmap and Palette image_tile= displayio.TileGrid(image_bitmap, pixel_shader=palette) # Create a Group that scale 32*24 to 128*96 image_group = displayio.Group(scale=4) image_group.append(image_tile) scale_bitmap = displayio.Bitmap( number_of_colors, 1, number_of_colors ) # Create a Group Scale must be 128 divided by number_of_colors scale_group = displayio.Group(scale=2) scale_tile = displayio.TileGrid(scale_bitmap, pixel_shader=palette, x = 0, y = 60) scale_group.append(scale_tile) for i in range(number_of_colors): scale_bitmap[i, 0] = i # Fill the scale with the palette gradian # Create the super Group group = displayio.Group() min_label = Label(terminalio.FONT, max_glyphs=10, color=palette[0], x = 0, y = 110) max_label = Label(terminalio.FONT, max_glyphs=10, color=palette[number_of_colors-1], \ x = 80, y = 110) # Add all the sub-group to the SuperGroup group.append(image_group) group.append(scale_group) group.append(min_label) group.append(max_label) # Add the SuperGroup to the Display board.DISPLAY.show(group) mini = 0 maxi = 0 my_a1 = 20 my_a2 = 37 def temp2index(s, a1, a2): b1 = 0 b2 = number_of_colors - 1 if s < a1: r = b1 elif s > a2: r = b2 else: r = int( round( b1 + ( (s - a1) * (b2 - b1) / (a2 - a1) ) ) ) return r i2c = busio.I2C(board.SCL, board.SDA, frequency=800000) mlx = adafruit_mlx90640.MLX90640(i2c) print("MLX addr detected on I2C") print([hex(i) for i in mlx.serial_number]) #mlx.refresh_rate = adafruit_mlx90640.RefreshRate.REFRESH_2_HZ mlx.refresh_rate = adafruit_mlx90640.RefreshRate.REFRESH_4_HZ frame = [0] * 768 while True: stamp = time.monotonic() try: mlx.getFrame(frame) except ValueError: # these happen, no biggie - retry continue print("Read 2 frames in %0.2f s" % (time.monotonic()-stamp)) mini = frame[0] # Define a default min and max value maxi = frame[0] # Will be updated by temp2index function for h in range(24): for w in range(32): t = frame[h*32 + w] if t > maxi: maxi = t if t < mini: mini = t image_bitmap[w, (23-h)] = temp2index(t, my_a1, my_a2) min_label.text="%0.2f" % (my_a1) max_string="%0.2f" % (my_a2) max_label.x=120-(5*len(max_string)) # Tricky calculation to left align max_label.text=max_string my_a1 = mini # Automatically change the color scale my_a2 = maxi
32.709924
98
0.631039
44f4fa4b8d5ba73aa49967d05978fb2db978bbb3
4,724
py
Python
vega/metrics/mindspore/detection_metric.py
zjzh/vega
aa6e7b8c69024262fc483ee06113b4d1bd5156d8
[ "Apache-2.0" ]
null
null
null
vega/metrics/mindspore/detection_metric.py
zjzh/vega
aa6e7b8c69024262fc483ee06113b4d1bd5156d8
[ "Apache-2.0" ]
null
null
null
vega/metrics/mindspore/detection_metric.py
zjzh/vega
aa6e7b8c69024262fc483ee06113b4d1bd5156d8
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metric of detection task by using coco tools.""" import os import json from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from vega.common import ClassFactory, ClassType from vega.metrics.mindspore.metrics import MetricBase from vega.common.task_ops import TaskOps @ClassFactory.register(ClassType.METRIC, alias='coco') class CocoMetric(MetricBase): """Save and summary metric from mdc dataset using coco tools.""" __metric_name__ = "coco" def __init__(self, anno_path=None, category=None): self.anno_path = anno_path or os.path.join(TaskOps().local_output_path, 'instances.json') self.category = category or [] self.result_record = [] @property def objective(self): """Define reward mode, default is max.""" return {'mAP': 'MAX', 'AP50': 'MAX', 'AP_small': 'MAX', 'AP_medium': 'MAX', 'AP_large': 'MAX'} def __call__(self, output, targets, *args, **kwargs): """Append input into result record cache. :param output: output data :param target: target data :return: """ if isinstance(output, dict): return None coco_results = [] for id, prediction in enumerate(output): boxes = xyxy2xywh(prediction['boxes']) scores = prediction["scores"].asnumpy().tolist() labels = prediction["labels"].asnumpy().tolist() img_id = targets[id]['image_id'].asnumpy().tolist()[0] for idx, box in enumerate(boxes): data = {} data['image_id'] = img_id data['bbox'] = box data['score'] = scores[idx] data['category_id'] = labels[idx] coco_results.append(data) self.result_record.extend(coco_results) return None def reset(self): """Reset states for new evaluation after each epoch.""" self.result_record = [] def summary(self): """Summary all record from result cache, and get performance.""" if not self.result_record: return {"mAP": -1, "AP_small": -1, "AP_medium": -1, "AP_large": -1} det_json_file = os.path.join(TaskOps().local_output_path, 'det_json_file.json') with open(det_json_file, 'w') as f: json.dump(self.result_record, f) eval_result = self.print_scores(det_json_file, self.anno_path) ap_result = eval_result.pop('AP(bbox)') ap_result = list(ap_result) ap_result = { "mAP": ap_result[0] * 100, "AP50": ap_result[1] * 100, "AP_small": ap_result[3] * 100, "AP_medium": ap_result[4] * 100, "AP_large": ap_result[5] * 100 } if eval_result: ap_result.update(eval_result) return ap_result def print_scores(self, det_json_file, json_file): """Print scores. :param det_json_file: dest json file :param json_file: gt json file :return: """ ret = {} coco = COCO(json_file) cocoDt = coco.loadRes(det_json_file) cocoEval = COCOeval(coco, cocoDt, 'bbox') cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() ret['AP(bbox)'] = cocoEval.stats for id, item in enumerate(self.category): cocoEval = COCOeval(coco, cocoDt, 'bbox') cocoEval.params.catIds = [id + 1] cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if len(cocoEval.stats) > 0: ret[item] = cocoEval.stats[1] * 100 return ret def xyxy2xywh(boxes): """Transform the bbox coordinate to [x,y ,w,h]. :param bbox: the predict bounding box coordinate :type bbox: list :return: [x,y ,w,h] :rtype: list """ from mindspore import ops ms_unbind = ops.Unstack(axis=1) ms_stack = ops.Stack(axis=1) xmin, ymin, xmax, ymax = ms_unbind(boxes) return ms_stack((xmin, ymin, xmax - xmin, ymax - ymin)).asnumpy().tolist()
35.787879
102
0.614733
ac8f5ce5dbbbcdd0e54bb4eef17b551f445fa66c
8,956
py
Python
tests/test_headers.py
RedisLabs/jsonrpclib-1
7b3659d2ae373b4f63af81f371494fd3c0e4b74b
[ "Apache-2.0" ]
35
2015-01-16T16:54:03.000Z
2022-03-29T09:07:13.000Z
tests/test_headers.py
RedisLabs/jsonrpclib-1
7b3659d2ae373b4f63af81f371494fd3c0e4b74b
[ "Apache-2.0" ]
43
2015-01-15T23:27:26.000Z
2022-02-19T16:40:56.000Z
tests/test_headers.py
RedisLabs/jsonrpclib-1
7b3659d2ae373b4f63af81f371494fd3c0e4b74b
[ "Apache-2.0" ]
24
2015-02-12T14:11:24.000Z
2021-11-01T03:35:05.000Z
#!/usr/bin/python # -- Content-Encoding: UTF-8 -- """ Tests to verify the additional headers feature :license: Apache License 2.0 """ # Standard library import contextlib import re import sys import unittest import jsonrpclib try: # Python 2 from StringIO import StringIO except ImportError: # Python 3 from io import StringIO # JSON-RPC library from jsonrpclib.utils import from_bytes # Tests utilities from tests.utilities import UtilityServer # ------------------------------------------------------------------------------ class HeadersTests(unittest.TestCase): """ These tests verify functionality of additional headers. """ REQUEST_LINE = "^send: POST" def setUp(self): """ Sets up the test """ # Set up the server self.server = UtilityServer().start("", 0) self.port = self.server.get_port() def tearDown(self): """ Post-test clean up """ # Stop the server self.server.stop() @contextlib.contextmanager def captured_headers(self, check_duplicates=True): """ Captures the request headers. Yields the {header : value} dictionary, where keys are in lower case. :param check_duplicates: If True, raises an error if a header appears twice """ # Redirect the standard output, to catch jsonrpclib verbose messages stdout = sys.stdout sys.stdout = f = StringIO() headers = {} yield headers sys.stdout = stdout # Extract the sent request content request_lines = f.getvalue().splitlines() request_lines = list( filter(lambda l: l.startswith("send:"), request_lines) ) request_line = request_lines[0].split("send: ")[-1] # Convert it to a string try: # Use eval to convert the representation into a string request_line = from_bytes(eval(request_line)) except: # Keep the received version pass # Extract headers raw_headers = request_line.splitlines()[1:-1] raw_headers = map(lambda h: re.split(r":\s?", h, 1), raw_headers) for header, value in raw_headers: header = header.lower() if check_duplicates and header in headers: raise KeyError("Header defined twice: {0}".format(header)) headers[header] = value def test_should_extract_headers(self): """ Check client headers capture """ # given client = jsonrpclib.ServerProxy( "http://localhost:{0}".format(self.port), verbose=1 ) # when with self.captured_headers() as headers: response = client.ping() self.assertTrue(response) # then self.assertTrue(len(headers) > 0) self.assertTrue("content-type" in headers) self.assertEqual(headers["content-type"], "application/json-rpc") def test_should_add_additional_headers(self): """ Check sending of custom headers """ # given client = jsonrpclib.ServerProxy( "http://localhost:{0}".format(self.port), verbose=1, headers={"X-My-Header": "Test"}, ) # when with self.captured_headers() as headers: response = client.ping() self.assertTrue(response) # then self.assertTrue("x-my-header" in headers) self.assertEqual(headers["x-my-header"], "Test") def test_should_add_additional_headers_to_notifications(self): """ Check custom headers on notifications """ # given client = jsonrpclib.ServerProxy( "http://localhost:{0}".format(self.port), verbose=1, headers={"X-My-Header": "Test"}, ) # when with self.captured_headers() as headers: client._notify.ping() # then self.assertTrue("x-my-header" in headers) self.assertEqual(headers["x-my-header"], "Test") def test_should_override_headers(self): """ Custom headers must override default ones """ # given client = jsonrpclib.ServerProxy( "http://localhost:{0}".format(self.port), verbose=1, headers={"User-Agent": "jsonrpclib test", "Host": "example.com"}, ) # when with self.captured_headers(False) as headers: response = client.ping() self.assertTrue(response) # then self.assertEqual(headers["user-agent"], "jsonrpclib test") self.assertEqual(headers["host"], "example.com") def test_should_not_override_content_length(self): """ Custom headers can't override Content-Length """ # given client = jsonrpclib.ServerProxy( "http://localhost:{0}".format(self.port), verbose=1, headers={"Content-Length": "invalid value"}, ) # when with self.captured_headers() as headers: response = client.ping() self.assertTrue(response) # then self.assertTrue("content-length" in headers) self.assertNotEqual(headers["content-length"], "invalid value") def test_should_convert_header_values_to_basestring(self): """ Custom headers values should be converted to str """ # given client = jsonrpclib.ServerProxy( "http://localhost:{0}".format(self.port), verbose=1, headers={"X-Test": 123}, ) # when with self.captured_headers() as headers: response = client.ping() self.assertTrue(response) # then self.assertTrue("x-test" in headers) self.assertEqual(headers["x-test"], "123") def test_should_add_custom_headers_to_methods(self): """ Check method-based custom headers """ # given client = jsonrpclib.ServerProxy( "http://localhost:{0}".format(self.port), verbose=1 ) # when with self.captured_headers() as headers: with client._additional_headers({"X-Method": "Method"}) as cl: response = cl.ping() self.assertTrue(response) # then self.assertTrue("x-method" in headers) self.assertEqual(headers["x-method"], "Method") def test_should_override_global_headers(self): """ Method-based custom headers override context ones """ # given client = jsonrpclib.ServerProxy( "http://localhost:{0}".format(self.port), verbose=1, headers={"X-Test": "Global"}, ) # when with self.captured_headers() as headers: with client._additional_headers({"X-Test": "Method"}) as cl: response = cl.ping() self.assertTrue(response) # then self.assertTrue("x-test" in headers) self.assertEqual(headers["x-test"], "Method") def test_should_restore_global_headers(self): """ Check custom headers context clean up """ # given client = jsonrpclib.ServerProxy( "http://localhost:{0}".format(self.port), verbose=1, headers={"X-Test": "Global"}, ) # when with self.captured_headers() as headers: with client._additional_headers({"X-Test": "Method"}) as cl: response = cl.ping() self.assertTrue(response) self.assertTrue("x-test" in headers) self.assertEqual(headers["x-test"], "Method") with self.captured_headers() as headers: response = cl.ping() self.assertTrue(response) # then self.assertTrue("x-test" in headers) self.assertEqual(headers["x-test"], "Global") def test_should_allow_to_nest_additional_header_blocks(self): """ Check nested additional headers """ # given client = jsonrpclib.ServerProxy( "http://localhost:{0}".format(self.port), verbose=1 ) # when with client._additional_headers({"X-Level-1": "1"}) as cl_level1: with self.captured_headers() as headers1: response = cl_level1.ping() self.assertTrue(response) with cl_level1._additional_headers({"X-Level-2": "2"}) as cl: with self.captured_headers() as headers2: response = cl.ping() self.assertTrue(response) # then self.assertTrue("x-level-1" in headers1) self.assertEqual(headers1["x-level-1"], "1") self.assertTrue("x-level-1" in headers2) self.assertEqual(headers1["x-level-1"], "1") self.assertTrue("x-level-2" in headers2) self.assertEqual(headers2["x-level-2"], "2")
30.882759
80
0.574252
f99a7cd3235455578928e65caf4dff1f1ea7b1ee
9,397
py
Python
examples/trials/mnist-annotation/mnist.py
kant/nni
ff390b4d5457cd5dec9e5c1c3a98892e5f2aed2a
[ "MIT" ]
1
2019-06-27T16:31:20.000Z
2019-06-27T16:31:20.000Z
examples/trials/mnist-annotation/mnist.py
0Deer0/nni
b4e9f0878d3f74742ae3acd783ddff303b4732cb
[ "MIT" ]
null
null
null
examples/trials/mnist-annotation/mnist.py
0Deer0/nni
b4e9f0878d3f74742ae3acd783ddff303b4732cb
[ "MIT" ]
1
2019-01-04T00:32:14.000Z
2019-01-04T00:32:14.000Z
"""A deep MNIST classifier using convolutional layers.""" import logging import math import tempfile import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data FLAGS = None logger = logging.getLogger('mnist_AutoML') class MnistNetwork(object): ''' MnistNetwork is for initlizing and building basic network for mnist. ''' def __init__(self, channel_1_num, channel_2_num, conv_size, hidden_size, pool_size, learning_rate, x_dim=784, y_dim=10): self.channel_1_num = channel_1_num self.channel_2_num = channel_2_num """@nni.variable(nni.choice(2, 3, 5, 7),name=self.conv_size)""" self.conv_size = conv_size """@nni.variable(nni.choice(124, 512, 1024), name=self.hidden_size)""" self.hidden_size = hidden_size self.pool_size = pool_size """@nni.variable(nni.uniform(0.0001, 0.1), name=self.learning_rate)""" self.learning_rate = learning_rate self.x_dim = x_dim self.y_dim = y_dim self.images = tf.placeholder(tf.float32, [None, self.x_dim], name='input_x') self.labels = tf.placeholder(tf.float32, [None, self.y_dim], name='input_y') self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') self.train_step = None self.accuracy = None def build_network(self): ''' Building network for mnist ''' # Reshape to use within a convolutional neural net. # Last dimension is for "features" - there is only one here, since images are # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc. with tf.name_scope('reshape'): try: input_dim = int(math.sqrt(self.x_dim)) except: print( 'input dim cannot be sqrt and reshape. input dim: ' + str(self.x_dim)) logger.debug( 'input dim cannot be sqrt and reshape. input dim: %s', str(self.x_dim)) raise x_image = tf.reshape(self.images, [-1, input_dim, input_dim, 1]) # First convolutional layer - maps one grayscale image to 32 feature maps. with tf.name_scope('conv1'): w_conv1 = weight_variable( [self.conv_size, self.conv_size, 1, self.channel_1_num]) b_conv1 = bias_variable([self.channel_1_num]) """@nni.function_choice(tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1), tf.nn.sigmoid(conv2d(x_image, w_conv1) + b_conv1), tf.nn.tanh(conv2d(x_image, w_conv1) + b_conv1), name=tf.nn.relu)""" h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1) # Pooling layer - downsamples by 2X. with tf.name_scope('pool1'): """@nni.function_choice(max_pool(h_conv1, self.pool_size), avg_pool(h_conv1, self.pool_size), name=max_pool)""" h_pool1 = max_pool(h_conv1, self.pool_size) # Second convolutional layer -- maps 32 feature maps to 64. with tf.name_scope('conv2'): w_conv2 = weight_variable([self.conv_size, self.conv_size, self.channel_1_num, self.channel_2_num]) b_conv2 = bias_variable([self.channel_2_num]) h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2) # Second pooling layer. with tf.name_scope('pool2'): h_pool2 = max_pool(h_conv2, self.pool_size) # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image # is down to 7x7x64 feature maps -- maps this to 1024 features. last_dim = int(input_dim / (self.pool_size * self.pool_size)) with tf.name_scope('fc1'): w_fc1 = weight_variable( [last_dim * last_dim * self.channel_2_num, self.hidden_size]) b_fc1 = bias_variable([self.hidden_size]) h_pool2_flat = tf.reshape( h_pool2, [-1, last_dim * last_dim * self.channel_2_num]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1) # Dropout - controls the complexity of the model, prevents co-adaptation of features. with tf.name_scope('dropout'): h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob) # Map the 1024 features to 10 classes, one for each digit with tf.name_scope('fc2'): w_fc2 = weight_variable([self.hidden_size, self.y_dim]) b_fc2 = bias_variable([self.y_dim]) y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2 with tf.name_scope('loss'): cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=self.labels, logits=y_conv)) with tf.name_scope('adam_optimizer'): self.train_step = tf.train.AdamOptimizer( self.learning_rate).minimize(cross_entropy) with tf.name_scope('accuracy'): correct_prediction = tf.equal( tf.argmax(y_conv, 1), tf.argmax(self.labels, 1)) self.accuracy = tf.reduce_mean( tf.cast(correct_prediction, tf.float32)) def conv2d(x_input, w_matrix): """conv2d returns a 2d convolution layer with full stride.""" return tf.nn.conv2d(x_input, w_matrix, strides=[1, 1, 1, 1], padding='SAME') def max_pool(x_input, pool_size): """max_pool downsamples a feature map by 2X.""" return tf.nn.max_pool(x_input, ksize=[1, pool_size, pool_size, 1], strides=[1, pool_size, pool_size, 1], padding='SAME') def avg_pool(x_input, pool_size): return tf.nn.avg_pool(x_input, ksize=[1, pool_size, pool_size, 1], strides=[1, pool_size, pool_size, 1], padding='SAME') def weight_variable(shape): """weight_variable generates a weight variable of a given shape.""" initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): """bias_variable generates a bias variable of a given shape.""" initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def main(params): ''' Main function, build mnist network, run and send result to NNI. ''' # Import data mnist = input_data.read_data_sets(params['data_dir'], one_hot=True) print('Mnist download data down.') logger.debug('Mnist download data down.') # Create the model # Build the graph for the deep net mnist_network = MnistNetwork(channel_1_num=params['channel_1_num'], channel_2_num=params['channel_2_num'], conv_size=params['conv_size'], hidden_size=params['hidden_size'], pool_size=params['pool_size'], learning_rate=params['learning_rate']) mnist_network.build_network() logger.debug('Mnist build network done.') # Write log graph_location = tempfile.mkdtemp() logger.debug('Saving graph to: %s', graph_location) train_writer = tf.summary.FileWriter(graph_location) train_writer.add_graph(tf.get_default_graph()) test_acc = 0.0 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) """@nni.variable(nni.choice(50, 250, 500), name=batch_num)""" batch_num = params['batch_num'] for i in range(batch_num): batch = mnist.train.next_batch(batch_num) """@nni.variable(nni.choice(1, 5), name=dropout_rate)""" dropout_rate = params['dropout_rate'] mnist_network.train_step.run(feed_dict={mnist_network.images: batch[0], mnist_network.labels: batch[1], mnist_network.keep_prob: dropout_rate} ) if i % 100 == 0: test_acc = mnist_network.accuracy.eval( feed_dict={mnist_network.images: mnist.test.images, mnist_network.labels: mnist.test.labels, mnist_network.keep_prob: 1.0}) """@nni.report_intermediate_result(test_acc)""" logger.debug('test accuracy %g', test_acc) logger.debug('Pipe send intermediate result done.') test_acc = mnist_network.accuracy.eval( feed_dict={mnist_network.images: mnist.test.images, mnist_network.labels: mnist.test.labels, mnist_network.keep_prob: 1.0}) """@nni.report_final_result(test_acc)""" logger.debug('Final result is %g', test_acc) logger.debug('Send final result done.') def generate_defualt_params(): ''' Generate default parameters for mnist network. ''' params = { 'data_dir': '/tmp/tensorflow/mnist/input_data', 'dropout_rate': 0.5, 'channel_1_num': 32, 'channel_2_num': 64, 'conv_size': 5, 'pool_size': 2, 'hidden_size': 1024, 'learning_rate': 1e-4, 'batch_num': 200} return params if __name__ == '__main__': try: main(generate_defualt_params()) except Exception as exception: logger.exception(exception) raise
39.649789
202
0.599766
122ae92db8c0fba7f33754fcbab35f9e25571cce
1,032
py
Python
rsp2/src/python/rsp2/io/structure_dir.py
colin-daniels/agnr-ml
fc936cb8b6a68c37dfaf64c74796e0cf795c1bb8
[ "MIT" ]
null
null
null
rsp2/src/python/rsp2/io/structure_dir.py
colin-daniels/agnr-ml
fc936cb8b6a68c37dfaf64c74796e0cf795c1bb8
[ "MIT" ]
null
null
null
rsp2/src/python/rsp2/io/structure_dir.py
colin-daniels/agnr-ml
fc936cb8b6a68c37dfaf64c74796e0cf795c1bb8
[ "MIT" ]
null
null
null
import json import os from pymatgen.io.vasp import Poscar def from_path(path): # TODO: should maybe support .tar.gz or .tar.xz return StructureDir.from_dir(path) class StructureDir: def __init__(self, *, layers, masses, layer_sc_matrices, structure): self.layers = layers self.masses = masses self.layer_sc_matrices = layer_sc_matrices self.structure = structure @classmethod def from_dir(cls, path): structure = Poscar.from_file(os.path.join(path, 'POSCAR')).structure with open(os.path.join(path, 'meta.json')) as f: meta = json.load(f) layer_sc_matrices = meta.pop('layer_sc_matrices', None) or meta.pop('layer-sc-matrices', None) if layer_sc_matrices: layer_sc_matrices = [x['matrix'] for x in layer_sc_matrices] return cls( layers=meta.pop('layers', None), masses=meta.pop('masses', None), layer_sc_matrices=layer_sc_matrices, structure=structure, )
32.25
102
0.643411
0276a00a250a94c7b7e52ba7fc6141e96292263b
803
py
Python
app_shop/urls.py
saoguang/hnist2
cac02dd1f9e860a24c99cdf10499307df33dad3b
[ "MIT" ]
null
null
null
app_shop/urls.py
saoguang/hnist2
cac02dd1f9e860a24c99cdf10499307df33dad3b
[ "MIT" ]
1
2020-11-30T01:23:53.000Z
2020-11-30T01:23:53.000Z
app_shop/urls.py
saoguang/hnist2
cac02dd1f9e860a24c99cdf10499307df33dad3b
[ "MIT" ]
null
null
null
"""hnist2 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from app_shop import views app_name = 'shop' urlpatterns = [ path('index/', views.index, name='index'), ]
33.458333
77
0.711083
869faab6c6664ae441633d4ca2dd843121da41a1
667
py
Python
dbt_gen/py3env/bin/rst2s5.py
norton120/dbt_gen
712fc8698a77c3372f5a403a5ae50711d0cb3c7d
[ "MIT" ]
null
null
null
dbt_gen/py3env/bin/rst2s5.py
norton120/dbt_gen
712fc8698a77c3372f5a403a5ae50711d0cb3c7d
[ "MIT" ]
null
null
null
dbt_gen/py3env/bin/rst2s5.py
norton120/dbt_gen
712fc8698a77c3372f5a403a5ae50711d0cb3c7d
[ "MIT" ]
null
null
null
#!/home/ethan/dbt_gen/dbt_gen/py3env/bin/python3 # $Id: rst2s5.py 4564 2006-05-21 20:44:42Z wiemann $ # Author: Chris Liechti <cliechti@gmx.net> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing HTML slides using the S5 template system. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description description = ('Generates S5 (X)HTML slideshow documents from standalone ' 'reStructuredText sources. ' + default_description) publish_cmdline(writer_name='s5', description=description)
26.68
74
0.743628
55b0ac1b94393a479b7e3b28497638147b763376
10,187
py
Python
kardioml/segmentation/teijeiro/model/automata.py
Seb-Good/physionet-challenge-2020
c6f1648a148335babc0a26d8a589120616327548
[ "BSD-2-Clause" ]
13
2020-12-18T08:09:34.000Z
2022-03-15T04:51:46.000Z
kardioml/segmentation/teijeiro/model/automata.py
Seb-Good/physionet-challenge-2020
c6f1648a148335babc0a26d8a589120616327548
[ "BSD-2-Clause" ]
null
null
null
kardioml/segmentation/teijeiro/model/automata.py
Seb-Good/physionet-challenge-2020
c6f1648a148335babc0a26d8a589120616327548
[ "BSD-2-Clause" ]
14
2020-09-16T21:07:38.000Z
2022-03-23T14:01:24.000Z
# -*- coding: utf-8 -*- # pylint: disable-msg= """ Created on Thu Dec 19 18:02:37 2013 This module contains the model definition for the automata-based abstraction patterns. Since abstraction patterns are defined by regular grammars, the internal representation is based on finite automatas. @author: T. Teijeiro """ from .FreezableObject import FreezableObject from .observable import Observable from .constraint_network import verify from collections import defaultdict import itertools as it ABSTRACTED = True ENVIRONMENT = False def NULL_CONST(pattern, obs): """Default constraint definition""" return None def NULL_PROC(pattern): """Default observation procedure""" return None def BASIC_TCONST(pattern, obs): """ This function defines the basic temporal constraints that should contain any observation within an abstraction pattern. This constraints set that the beginning of an observation has to occur before its ending. """ if obs.start is not obs.time: pattern.last_tnet.set_before(obs.start, obs.time) if obs.time is not obs.end: pattern.last_tnet.set_before(obs.time, obs.end) class Transition(FreezableObject): """ Model for the transition of an automata, allowing the attribute specification as a function on a partial-recognized pattern. It also includes a specific attribute to indicate the property of the observable that allows the transition as an Abstracted observation or an Environment observation. """ __slots__ = ('istate', 'fstate', 'observable', 'abstracted', 'tconst', 'gconst') def __init__( self, istate=None, fstate=None, observable=None, abstracted=ABSTRACTED, tconst=BASIC_TCONST, gconst=NULL_CONST, ): """ Creates a new transition that can be added to a DFA definition. All the attributes of the transition must be set on the creation, and no posterior modifications are allowed. Parameters ---------- istate: Initial state of the transition. fstate: Final state of the transition. observable: Observable type that allows the transition. It can be None, to determine such transitions that simply add constraints, but no new observations. abstracted: Flag that indicates if the observation that allows the transition should be considered as an Abstracted observation or an Environment observation. tconst: Function that receives as a parameter the AbstractionPattern object, and adds the temporal constraints introduced by this transition with the rest of the variables of the pattern, including the hypothesis. These constraints are added before the matching of the predicted finding with an actual observation. gconst: Function that receives as a parameter the AbstractionPattern object, and checks any additional constraint in the value of the observations. These constraints are checked after the matching of the finding with an actual observation. """ super(Transition, self).__init__() if istate is None or fstate is None: raise ValueError('Initial and final states must be != None') self.istate = istate self.fstate = fstate self.observable = observable self.abstracted = abstracted self.tconst = tconst self.gconst = gconst # We don't allow any posterior modification of a transition. self.freeze() def __str__(self): """Obtains the representation of a transition as a string""" return '{0} --{1}{2}--> {3}'.format( self.istate, self.observable, '@' if self.abstracted == ABSTRACTED else '#', self.fstate ) def __repr__(self): return str(self) class PatternAutomata(FreezableObject): """ This class represents an automata created by adding *Transition* instances. It also includes the definition of the final states of the pattern, and the Observable class that represents the hypothesis of the pattern. """ __slots__ = ('name', 'Hypothesis', 'transitions', 'abstractions', 'final_states', 'obs_proc') def __init__(self): """ Creates a new empty pattern automata. Instance properties ------------------- name: String representing the name of the pattern. Hypothesis: Observable type that constitutes the hypothesis of the pattern. transitions: List of transitions of the pattern automata. abstractions: Dictionary that maps each abstracted observable with the transitions that can be used to perform that abstraction in an abductive way. final_states: Set of states of the automata that are final or accepting states. obs_proc: Observation procedure that is executed once the necessary evidence for the pattern has been observed. It receives a single parameter, the abstraction pattern to apply the procedure. """ super(PatternAutomata, self).__init__() self.name = '' self.Hypothesis = Observable self.transitions = [] self.abstractions = defaultdict(tuple) self.final_states = set() self.obs_proc = NULL_PROC def __str__(self): return self.name def __repr__(self): return self.name if len(self.name) > 0 else object.__repr__(self) def freeze(self): """We override the freeze method to check additional constraints""" verify(self.final_states, 'The automata does not have any final state') # We use a tuple to avoid posterior changes on the transitions self.transitions = tuple(self.transitions) super(PatternAutomata, self).freeze() def add_transition( self, istate=None, fstate=None, observable=None, abstracted=ABSTRACTED, tconst=NULL_CONST, gconst=NULL_CONST, ): """ Adds a new *Transition* to this automata. Parameters ---------- istate: Initial state of the transition. fstate: Final state of the transition. observable: Observable type that allows the transition. abstracted: Flag that indicates if the observation that allows the transition should be considered as an Abstracted observation or an Environment observation. tconst: Function that receives as a parameter the AbstractionPattern object, and adds the temporal constraints introduced by this transition with the rest of the variables of the pattern, including the hypothesis. These constraints are added before the matching of the predicted finding with an actual observation. gconst: Function that receives as a parameter the AbstractionPattern object, and checks any additional constraint in the value of the observations. These constraints are checked after the matching of the finding with an actual observation. """ assert abstracted in (ABSTRACTED, ENVIRONMENT), 'Invalid abstraction' transition = Transition(istate, fstate, observable, abstracted, tconst, gconst) self.transitions.append(transition) # All states (except the initial one) must be reached by at least one # transition. for state in self.states: if state != self.start_state: verify(self.tr_to(state)) @property def states(self): """Obtains the set of states of this automata""" return set(it.chain.from_iterable((t.istate, t.fstate) for t in self.transitions)) @property def start_state(self): """Obtains the initial state of this automata""" if not self.transitions: raise IndexError('This automata does not contain any state') return self.transitions[0].istate @property def abstracted(self): """Obtains the set of observables abstracted by this pattern""" return { t.observable for t in self.transitions if t.abstracted is ABSTRACTED and t.observable is not None } @property def environment(self): """ Obtains the set of observables that are the environment of this pattern. """ return { t.observable for t in self.transitions if t.abstracted is ENVIRONMENT and t.observable is not None } @property def manifestations(self): """ Obtains the set of observables over which this pattern is created. It corresponds to the alphabet of the pattern in the classical DFA nomenclature. """ return set.union(self.abstracted, self.environment) def tr_from(self, state): """ Obtains the list of transitions starting in a given state. """ return [t for t in self.transitions if t.istate == state] def tr_to(self, state): """ Obtains the list of transitions finishing in a given state. """ return [t for t in self.transitions if t.fstate == state] if __name__ == "__main__": # Small test for automata creation. DFA = PatternAutomata() DFA.add_transition('S', 'A', 'a', ENVIRONMENT) DFA.add_transition('A', 'A', 'a') DFA.add_transition('A', 'B', 'b') DFA.add_transition('B', 'B', 'b') DFA.add_transition('B', 'C', 'c') DFA.add_transition('C', 'D', 'c') DFA.add_transition('D', 'E', 'd') DFA.add_transition('E', 'E', 'd') DFA.add_transition('E', 'F', 'e') DFA.add_transition('F', 'G', 'f') DFA.add_transition('G', 'F', 'e') DFA.add_transition('F', 'H', 'f', ENVIRONMENT) DFA.final_states.add('H') DFA.freeze()
35.494774
109
0.640326
91a3b0b288114f05d07d3b80c229fe0ffeebd59d
17,014
py
Python
lib/tool_shed/util/metadata_util.py
rikeshi/galaxy
c536a877e4a9b3d12aa0d00fd4d5e705109a0d0a
[ "CC-BY-3.0" ]
4
2015-05-12T20:36:41.000Z
2017-06-26T15:34:02.000Z
lib/tool_shed/util/metadata_util.py
rikeshi/galaxy
c536a877e4a9b3d12aa0d00fd4d5e705109a0d0a
[ "CC-BY-3.0" ]
52
2015-03-16T14:02:14.000Z
2021-12-24T09:50:23.000Z
lib/tool_shed/util/metadata_util.py
rikeshi/galaxy
c536a877e4a9b3d12aa0d00fd4d5e705109a0d0a
[ "CC-BY-3.0" ]
1
2016-03-21T12:54:06.000Z
2016-03-21T12:54:06.000Z
import logging from operator import itemgetter from sqlalchemy import and_ from galaxy.tool_shed.util.hg_util import ( INITIAL_CHANGELOG_HASH, reversed_lower_upper_bounded_changelog, ) from galaxy.tool_shed.util.repository_util import get_repository_by_name_and_owner from galaxy.util.tool_shed.common_util import parse_repository_dependency_tuple from tool_shed.util.hg_util import changeset2rev log = logging.getLogger(__name__) def get_all_dependencies(app, metadata_entry, processed_dependency_links=[]): encoder = app.security.encode_id value_mapper = {'repository_id': encoder, 'id': encoder, 'user_id': encoder} metadata = metadata_entry.to_dict(value_mapper=value_mapper, view='element') db = app.model.context.current returned_dependencies = [] required_metadata = get_dependencies_for_metadata_revision(app, metadata) if required_metadata is None: return metadata for dependency_metadata in required_metadata: dependency_dict = dependency_metadata.to_dict(value_mapper=value_mapper, view='element') dependency_link = (metadata['id'], dependency_dict['id']) if dependency_link in processed_dependency_links: continue processed_dependency_links.append(dependency_link) repository = db.query(app.model.Repository).get(app.security.decode_id(dependency_dict['repository_id'])) dependency_dict['repository'] = repository.to_dict(value_mapper=value_mapper) if dependency_metadata.includes_tools: dependency_dict['tools'] = dependency_metadata.metadata['tools'] dependency_dict['repository_dependencies'] = [] if dependency_dict['includes_tool_dependencies']: dependency_dict['tool_dependencies'] = repository.get_tool_dependencies(app, dependency_dict['changeset_revision']) if dependency_dict['has_repository_dependencies']: dependency_dict['repository_dependencies'] = get_all_dependencies(app, dependency_metadata, processed_dependency_links) else: dependency_dict['repository_dependencies'] = [] returned_dependencies.append(dependency_dict) return returned_dependencies def get_current_repository_metadata_for_changeset_revision(app, repository, changeset_revision): encoded_repository_id = app.security.encode_id(repository.id) repository_metadata = get_repository_metadata_by_changeset_revision(app, encoded_repository_id, changeset_revision) if repository_metadata: return repository_metadata # The installable changeset_revision may have been changed because it was "moved ahead" # in the repository changelog. updated_changeset_revision = get_next_downloadable_changeset_revision(app, repository, after_changeset_revision=changeset_revision) if updated_changeset_revision and updated_changeset_revision != changeset_revision: repository_metadata = get_repository_metadata_by_changeset_revision(app, encoded_repository_id, updated_changeset_revision) if repository_metadata: return repository_metadata return None def get_dependencies_for_metadata_revision(app, metadata): dependencies = [] for shed, name, owner, changeset, prior, _ in metadata['repository_dependencies']: required_repository = get_repository_by_name_and_owner(app, name, owner) updated_changeset = get_next_downloadable_changeset_revision(app, required_repository, changeset) if updated_changeset is None: continue metadata_entry = get_repository_metadata_by_changeset_revision(app, app.security.encode_id(required_repository.id), updated_changeset) dependencies.append(metadata_entry) return dependencies def get_latest_changeset_revision(app, repository): repository_tip = repository.tip() repository_metadata = get_repository_metadata_by_changeset_revision(app, app.security.encode_id(repository.id), repository_tip) if repository_metadata and repository_metadata.downloadable: return repository_tip changeset_revisions = [revision[1] for revision in get_metadata_revisions(app, repository)] if changeset_revisions: return changeset_revisions[-1] return INITIAL_CHANGELOG_HASH def get_latest_downloadable_changeset_revision(app, repository): repository_tip = repository.tip() repository_metadata = get_repository_metadata_by_changeset_revision(app, app.security.encode_id(repository.id), repository_tip) if repository_metadata and repository_metadata.downloadable: return repository_tip changeset_revisions = [revision[1] for revision in get_metadata_revisions(app, repository)] if changeset_revisions: return changeset_revisions[-1] return INITIAL_CHANGELOG_HASH def get_latest_repository_metadata(app, decoded_repository_id, downloadable=False): """Get last metadata defined for a specified repository from the database.""" sa_session = app.model.context.current repository = sa_session.query(app.model.Repository).get(decoded_repository_id) if downloadable: changeset_revision = get_latest_downloadable_changeset_revision(app, repository) else: changeset_revision = get_latest_changeset_revision(app, repository) return get_repository_metadata_by_changeset_revision(app, app.security.encode_id(repository.id), changeset_revision) def get_metadata_revisions(app, repository, sort_revisions=True, reverse=False, downloadable=True): """ Return a list of changesets for the provided repository. """ sa_session = app.model.context.current if downloadable: metadata_revisions = repository.downloadable_revisions else: metadata_revisions = repository.metadata_revisions repo_path = repository.repo_path(app) changeset_tups = [] for repository_metadata in metadata_revisions: if repository_metadata.numeric_revision == -1 or repository_metadata.numeric_revision is None: try: rev = changeset2rev(repo_path, repository_metadata.changeset_revision) repository_metadata.numeric_revision = rev sa_session.add(repository_metadata) sa_session.flush() except Exception: rev = -1 else: rev = repository_metadata.numeric_revision changeset_tups.append((rev, repository_metadata.changeset_revision)) if sort_revisions: changeset_tups.sort(key=itemgetter(0), reverse=reverse) return changeset_tups def get_next_downloadable_changeset_revision(app, repository, after_changeset_revision): """ Return the installable changeset_revision in the repository changelog after the changeset to which after_changeset_revision refers. If there isn't one, return None. If there is only one installable changeset, and that matches the requested revision, return it. """ changeset_revisions = [revision[1] for revision in get_metadata_revisions(app, repository)] if len(changeset_revisions) == 1: changeset_revision = changeset_revisions[0] if changeset_revision == after_changeset_revision: return after_changeset_revision found_after_changeset_revision = False repo = repository.hg_repo for changeset in repo.changelog: changeset_revision = str(repo[changeset]) if found_after_changeset_revision: if changeset_revision in changeset_revisions: return changeset_revision elif changeset_revision == after_changeset_revision: # We've found the changeset in the changelog for which we need to get the next downloadable changeset. found_after_changeset_revision = True return None def get_previous_metadata_changeset_revision(app, repository, before_changeset_revision, downloadable=True): """ Return the changeset_revision in the repository changelog that has associated metadata prior to the changeset to which before_changeset_revision refers. If there isn't one, return the hash value of an empty repository changelog, INITIAL_CHANGELOG_HASH. """ changeset_revisions = [revision[1] for revision in get_metadata_revisions(app, repository)] if len(changeset_revisions) == 1: changeset_revision = changeset_revisions[0] if changeset_revision == before_changeset_revision: return INITIAL_CHANGELOG_HASH return changeset_revision previous_changeset_revision = None for changeset_revision in changeset_revisions: if changeset_revision == before_changeset_revision: if previous_changeset_revision: return previous_changeset_revision else: # Return the hash value of an empty repository changelog - note that this will not be a valid changeset revision. return INITIAL_CHANGELOG_HASH else: previous_changeset_revision = changeset_revision def get_repository_dependency_tups_from_repository_metadata(app, repository_metadata, deprecated_only=False): """ Return a list of of tuples defining repository objects required by the received repository. The returned list defines the entire repository dependency tree. This method is called only from the Tool Shed. """ dependency_tups = [] if repository_metadata is not None: metadata = repository_metadata.metadata if metadata: repository_dependencies_dict = metadata.get('repository_dependencies', None) if repository_dependencies_dict is not None: repository_dependency_tups = repository_dependencies_dict.get('repository_dependencies', None) if repository_dependency_tups is not None: # The value of repository_dependency_tups is a list of repository dependency tuples like this: # ['http://localhost:9009', 'package_samtools_0_1_18', 'devteam', 'ef37fc635cb9', 'False', 'False'] for repository_dependency_tup in repository_dependency_tups: toolshed, name, owner, changeset_revision, pir, oicct = \ parse_repository_dependency_tuple(repository_dependency_tup) repository = get_repository_by_name_and_owner(app, name, owner) if repository: if deprecated_only: if repository.deprecated: dependency_tups.append(repository_dependency_tup) else: dependency_tups.append(repository_dependency_tup) else: log.debug("Cannot locate repository %s owned by %s for inclusion in repository dependency tups." % (name, owner)) return dependency_tups def get_repository_metadata_by_changeset_revision(app, id, changeset_revision): """Get metadata for a specified repository change set from the database.""" # Make sure there are no duplicate records, and return the single unique record for the changeset_revision. # Duplicate records were somehow created in the past. The cause of this issue has been resolved, but we'll # leave this method as is for a while longer to ensure all duplicate records are removed. sa_session = app.model.context.current all_metadata_records = sa_session.query(app.model.RepositoryMetadata) \ .filter(and_(app.model.RepositoryMetadata.table.c.repository_id == app.security.decode_id(id), app.model.RepositoryMetadata.table.c.changeset_revision == changeset_revision)) \ .all() if len(all_metadata_records) > 1: # Delete all records older than the last one updated. for repository_metadata in all_metadata_records[1:]: sa_session.delete(repository_metadata) sa_session.flush() return all_metadata_records[0] elif all_metadata_records: return all_metadata_records[0] return None def get_repository_metadata_by_id(app, id): """Get repository metadata from the database""" sa_session = app.model.context.current return sa_session.query(app.model.RepositoryMetadata).get(app.security.decode_id(id)) def get_repository_metadata_by_repository_id_changeset_revision(app, id, changeset_revision, metadata_only=False): """Get a specified metadata record for a specified repository in the tool shed.""" if metadata_only: repository_metadata = get_repository_metadata_by_changeset_revision(app, id, changeset_revision) if repository_metadata and repository_metadata.metadata: return repository_metadata.metadata return None return get_repository_metadata_by_changeset_revision(app, id, changeset_revision) def get_repository_metadata_revisions_for_review(repository, reviewed=True): repository_metadata_revisions = [] metadata_changeset_revision_hashes = [] if reviewed: for metadata_revision in repository.metadata_revisions: metadata_changeset_revision_hashes.append(metadata_revision.changeset_revision) for review in repository.reviews: if review.changeset_revision in metadata_changeset_revision_hashes: rmcr_hashes = [rmr.changeset_revision for rmr in repository_metadata_revisions] if review.changeset_revision not in rmcr_hashes: repository_metadata_revisions.append(review.repository_metadata) else: for review in repository.reviews: if review.changeset_revision not in metadata_changeset_revision_hashes: metadata_changeset_revision_hashes.append(review.changeset_revision) for metadata_revision in repository.metadata_revisions: if metadata_revision.changeset_revision not in metadata_changeset_revision_hashes: repository_metadata_revisions.append(metadata_revision) return repository_metadata_revisions def get_updated_changeset_revisions(app, name, owner, changeset_revision): """ Return a string of comma-separated changeset revision hashes for all available updates to the received changeset revision for the repository defined by the received name and owner. """ repository = get_repository_by_name_and_owner(app, name, owner) # Get the upper bound changeset revision. upper_bound_changeset_revision = get_next_downloadable_changeset_revision(app, repository, changeset_revision) # Build the list of changeset revision hashes defining each available update up to, but excluding # upper_bound_changeset_revision. repo = repository.hg_repo changeset_hashes = [] for changeset in reversed_lower_upper_bounded_changelog(repo, changeset_revision, upper_bound_changeset_revision): # Make sure to exclude upper_bound_changeset_revision. if changeset != upper_bound_changeset_revision: changeset_hashes.append(str(repo[changeset])) if changeset_hashes: changeset_hashes_str = ','.join(changeset_hashes) return changeset_hashes_str return '' def is_downloadable(metadata_dict): # NOTE: although repository README files are considered Galaxy utilities, they have no # effect on determining if a revision is installable. See the comments in the # compare_readme_files() method. if 'datatypes' in metadata_dict: # We have proprietary datatypes. return True if 'repository_dependencies' in metadata_dict: # We have repository_dependencies. return True if 'tools' in metadata_dict: # We have tools. return True if 'tool_dependencies' in metadata_dict: # We have tool dependencies, and perhaps only tool dependencies! return True if 'workflows' in metadata_dict: # We have exported workflows. return True return False def is_malicious(app, id, changeset_revision, **kwd): """Check the malicious flag in repository metadata for a specified change set revision.""" repository_metadata = get_repository_metadata_by_changeset_revision(app, id, changeset_revision) if repository_metadata: return repository_metadata.malicious return False
51.557576
142
0.710709
819eea4fcc3e07dc862b3203251c4ed0a37f1297
5,332
py
Python
client_ser_simulation/mvsc_server/server/app.py
klautenschlaeger/mvsc
9cc04ad2353b48e0a6715c859812e1afb67f8bbb
[ "MIT" ]
null
null
null
client_ser_simulation/mvsc_server/server/app.py
klautenschlaeger/mvsc
9cc04ad2353b48e0a6715c859812e1afb67f8bbb
[ "MIT" ]
null
null
null
client_ser_simulation/mvsc_server/server/app.py
klautenschlaeger/mvsc
9cc04ad2353b48e0a6715c859812e1afb67f8bbb
[ "MIT" ]
1
2021-11-09T01:42:40.000Z
2021-11-09T01:42:40.000Z
from flask import Flask, jsonify, request from flask_cors import CORS import distanceCalculator POLYS = [[], [], []] GROUP = [[], [], [1, 2]] MACHINES = [ { 'driverid': 1, 'drivername': 'test', 'forename': 'test', 'machineid': 'John Deere 5430i_12', 'one': False, 'two': False, 'three': True } ] # configuration DEBUG = True # instantiate the app app = Flask(__name__) app.config.from_object(__name__) # enable CORS CORS(app, resources={r'/*': {'origins': '*'}}) disCalci = distanceCalculator.DistanceCalculator() global driver_id driver_id = 2 @app.route('/mv', methods=['GET', 'POST']) def all_machines(): response_object = {'status': 'success', 'machines': MACHINES} return jsonify(response_object) @app.route('/machine', methods=['POST']) def new_machines(): response_object = {'status': 'success'} global driver_id post_data = request.get_json() MACHINES.append({ 'driverid': driver_id, 'drivername': post_data.get('drivername'), 'forename': post_data.get('forename'), 'machineid': post_data.get('machineid'), 'one': post_data.get('one'), 'two': post_data.get('two'), 'three': post_data.get('three') }) response_object['driverid'] = driver_id MACHINES2 = [{ 'driverid': driver_id, 'drivername': post_data.get('drivername'), 'forename': post_data.get('forename'), 'machineid': post_data.get('machineid'), 'one': post_data.get('one'), 'two': post_data.get('two'), 'three': post_data.get('three') }] ids = [driver_id] if post_data.get('one'): GROUP[0].append(driver_id) if post_data.get('two'): GROUP[1].append(driver_id) if post_data.get('three'): GROUP[2].append(driver_id) for machine in MACHINES: if post_data.get('one'): if machine.get('one'): if machine.get("driverid") not in ids: MACHINES2.append(machine) ids.append(machine.get('driverid')) if post_data.get('two'): if machine.get('two'): if machine.get("driverid") not in ids: MACHINES2.append(machine) ids.append(machine.get('driverid')) if post_data.get('three'): if machine.get('three'): if machine.get("driverid") not in ids: MACHINES2.append(machine) ids.append(machine.get("driverid")) response_object['message'] = 'Machine added!' response_object['machines'] = MACHINES2 driver_id = driver_id + 1 return jsonify(response_object) @app.route('/mv/poly', methods=['POST']) def all_polys(): response_object = {'status': 'success'} post_data = request.get_json() counters = post_data.get('counters') for i in range(0, 3, 1): coordinates = [] if POLYS[i].__len__() > 0: if POLYS[i].__len__() > counters[i]: workareas = POLYS[i][counters[i]:] counters[i] = POLYS[i].__len__() - 1 coordinates = [] for e in workareas: coordinates.append(e.get('w')) response_object['polys' + str(i + 1)] = coordinates response_object['counters'] = counters return jsonify(response_object) @app.route('/mv/update', methods=['POST']) def update_polys(): response_object = {'status': 'success'} post_data = request.get_json() driver = int(post_data.get('driverid')) poly_id = post_data.get('workareaid') polygon = post_data.get('area') centre = disCalci.calcCenter(poly=polygon) structure = { "w_id": poly_id, "d_id": driver, "w": polygon, "centre": centre } needed = [] disCalci.setCentre(polygon) for i in range(0, 3, 1): if driver in GROUP[i]: if POLYS[i].__len__() > 0: for poly in POLYS[i]: if poly.get("d_id") != driver: distance = disCalci.calcDistance(centre_end=poly.get("centre")) if distance < 150: print(distance) code = poly.get("w_id") * 100 + poly.get("d_id") if code not in needed: needed.append(code) POLYS[i].append(structure) response_object['needed'] = needed return jsonify(response_object) @app.route('/missing', methods=['POST']) def send_polys(): response_object = {'status': 'success'} post_data = request.get_json() needed = post_data.get('needed') needed_polys = [] for code in needed: driver = code % 100 p_id = int((code - driver)/100) found = False i = 0 while not found and i < 3: for structure in POLYS[i]: if structure.get("d_id") == driver and structure.get("w_id") == p_id: needed_polys.append(structure) found = True break i = i + 1 response_object["needed"] = needed_polys return jsonify(response_object) if __name__ == '__main__': app.run(host="localhost", port=5001, debug=True)
31
87
0.554764
8bb7a2deefabfd854edc9a2906e13a0d6c0a27a3
7,444
py
Python
enemy.py
cxong/Slappa
bb601734db07ee1f1e1d3763d2c5f6146248fd76
[ "MIT" ]
7
2015-02-24T22:24:45.000Z
2021-05-15T16:39:27.000Z
enemy.py
cxong/Slappa
bb601734db07ee1f1e1d3763d2c5f6146248fd76
[ "MIT" ]
null
null
null
enemy.py
cxong/Slappa
bb601734db07ee1f1e1d3763d2c5f6146248fd76
[ "MIT" ]
1
2016-06-22T11:50:22.000Z
2016-06-22T11:50:22.000Z
from simple_character import * class Enemy(SimpleCharacter): def __init__(self, game, x, y, key, players, thing_keys, things): self.moves = True if key == 'zombie': self.init_zombie(game, x, y) elif key == 'monster': self.init_monster(game, x, y) elif key == 'flying': self.init_flying(game, x, y) self.body.width = self.width * 0.5 self.body.height = self.height * 0.5 # Random behaviour self.delay = 60 self.action = 'idle' # Counter for throwing at a delay self.throw_counter = 0 self.players = players self.thing_key = random.choice(thing_keys) self.thing_group = things self.hit_offset = Point(0, -25) self.sounds['swings'] = game.audio['growls'] self.sounds['hurts'] = game.audio['deaths'] self.sounds['deaths'] = game.audio['deaths'] def init_zombie(self, game, x, y): super(Enemy, self).__init__(game, x, y, 'zombie', (64, 64)) self.body.y = -35 self.anchor.y = 0.95 width = 4 self.animations.animations['idle'] = Animation(game, [0, 1, 2, 3], 20, True) row = 1 * width self.animations.animations['walk'] = Animation( game, [row + x for x in [0, 1, 2, 3]], 20, True) row = 2 * width self.animations.animations['hit'] = Animation( game, [row + x for x in [1, 2, 3]], 10) row = 3 * width self.animations.animations['hurt'] = Animation( game, [row + x for x in [0, 1]], 20) self.animations.animations['die'] = Animation( game, [row + x for x in [0, 1, 2, 3]], 5) self.health = 2 self.speed = 0.1 self.max_speed = 0.05 def init_monster(self, game, x, y): super(Enemy, self).__init__(game, x, y, 'monster', (64, 64)) self.body.y = -25 self.anchor.y = 0.84 width = 4 self.animations.animations['idle'] = Animation(game, [0, 1, 2, 3], 20, True) row = width * 1 self.animations.animations['walk'] = Animation( game, [row + x for x in [0, 1, 2, 3]], 20, True) row = width * 4 self.animations.animations['jump'] = Animation( game, [row + x for x in [0, 1, 2, 3, 2, 3, 2, 3]], 14) row = width * 2 self.animations.animations['hit'] = Animation( game, [row + x for x in [0, 1, 2, 3, 0]], 7) row = width * 3 self.animations.animations['hurt'] = Animation( game, [row + x for x in [0, 1]], 20) self.animations.animations['die'] = Animation( game, [row + x for x in [0, 1, 2, 3]], 5) self.health = 2 self.speed = 0.1 self.max_speed = 0.05 self.gravity = 0.0003 self.jump_force = 0.3 self.moves = False def init_flying(self, game, x, y): super(Enemy, self).__init__(game, x, y, 'flying', (64, 64)) width = 4 self.animations.animations['idle'] = Animation(game, [0, 1, 2, 3], 12, True) self.animations.animations['walk'] = Animation(game, [0, 1, 2, 3], 10, True) row = width * 1 self.animations.animations['hit'] = Animation( game, [row + x for x in [0, 1, 2, 3]], 7) row = width * 2 self.animations.animations['hurt'] = Animation( game, [row + x for x in [0, 1]], 20) self.animations.animations['die'] = Animation( game, [row + x for x in [0, 1, 2, 3]], 5) self.health = 1 self.speed = 0.2 self.max_speed = 0.1 def update(self, time): super(Enemy, self).update(time) if self.throw_counter > 0 and self.health > 0: self.throw_counter -= time if self.throw_counter <= 0: self.throw() if self.y > self.game.config.FLOOR_Y: self.y = self.game.config.FLOOR_Y if self.is_hitting: return self.delay -= self.game.config.ANIM_FRAME_RATE / self.game.config.FRAME_RATE # Perform the action if self.action == 'idle': # Idle; don't do anything pass elif self.action == 'hit': self.hit(random.choice(['left', 'right'])) # TODO: hit player elif self.action == 'move_left': self.move(-1) elif self.action == 'move_right': self.move(1) elif self.action == 'jump_left': if not self.is_jumping: self.jump() self.move(-1) elif self.action == 'jump_right': if not self.is_jumping: self.jump() self.move(1) if self.delay <= 0 or self.action == 'hit': self.delay = random.randint(40, 60) # Switch to new action while True: new_action = random.choice([ 'idle', 'hit', 'move_left', 'move_right', 'jump_left', 'jump_right']) # Reject impossible actions (need to place hits between idles) if self.action != 'idle' and new_action == 'hit': continue if self.action == 'hit' and new_action != 'idle': continue # Don't do same thing twice if self.action == new_action: continue # Try to move towards center of screen if (new_action in ('move_left', 'jump_left') and self.x < self.game.width / 4): continue if (new_action in ('move_right', 'jump_right') and self.x > self.game.width * 3 / 4): continue # See if we can jump if self.gravity == 0.0 and ( new_action in ('jump_left', 'jump_right')): continue # See if we can move if not self.moves and ( new_action in ('move_left', 'move_right')): continue self.action = new_action break def do_hit(self, direction): players_alive = [p for p in self.players.children if p.health > 0] if len(players_alive) == 0: return super(Enemy, self).do_hit(direction) self.throw_counter = 500 def throw(self): players_alive = [p for p in self.players.children if p.health > 0] if len(players_alive) == 0: return # Throw a thing at a player player = random.choice(players_alive) player_center = player.get_body_center() # Randomly offset target player_center.add(Point( random.uniform(-self.game.config.ENEMY_TARGET_OFFSET, self.game.config.ENEMY_TARGET_OFFSET), random.uniform(-self.game.config.ENEMY_TARGET_OFFSET, self.game.config.ENEMY_TARGET_OFFSET))) player_center.y = min([self.game.config.FLOOR_Y + player.body.y, player_center.y]) self.thing_group.add(Thing(self.game, self.x + self.hit_offset.x, self.y + self.hit_offset.y, self.thing_key, player_center))
38.371134
84
0.510075
aebfe2728148f79689e01069f184a23b76e6fd06
6,484
py
Python
Heat_Transfer/4.3_Pipe_with_&_out_cover.py
Daz-Riza-Seriog/Transport_Phenomena
822b89556fa56ef57494a318cbb03524e3a4d237
[ "MIT" ]
4
2021-03-19T00:15:20.000Z
2021-11-17T11:32:28.000Z
Heat_Transfer/4.3_Pipe_with_&_out_cover.py
Daz-Riza-Seriog/Transport_Phenomena
822b89556fa56ef57494a318cbb03524e3a4d237
[ "MIT" ]
null
null
null
Heat_Transfer/4.3_Pipe_with_&_out_cover.py
Daz-Riza-Seriog/Transport_Phenomena
822b89556fa56ef57494a318cbb03524e3a4d237
[ "MIT" ]
1
2021-03-22T23:26:50.000Z
2021-03-22T23:26:50.000Z
# Code made for Sergio Andrés Díaz Ariza # 12 Abril 2021 # License MIT # Transport Phenomena: Python Program-Assessment 4.3 import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy.optimize import minimize sns.set() # Solve for Temperature of Steam at given Pressure class enviroment_convective: def temp_steam_sat_reg(self, Sat_pressure_1, Sat_pressure_2, Temp_from_pressure_1, Temp_from_pressure_2, Sat_pressure_system): p1 = Sat_pressure_1 # [kPa] p2 = Sat_pressure_2 # [kPa] T1 = Temp_from_pressure_1 + 273.15 # [K] T2 = Temp_from_pressure_2 + 273.15 # [K] P_x = Sat_pressure_system # [kPa] m = (T2 - T1) / (p2 - p1) T = m * P_x - (m * p1) + T1 return T # Optimice for the maximum difference allow class Optimice: def objective_T(self, x, *args): T_supp, r = args[0], args[1] thk = 0.015 x1 = x[0] # C1 x2 = x[1] # C2 return T_supp - ((x1 * np.log(r + thk)) - x2) def constraint_BC1_BC2(self, x): r, T_in = (0.025, 484.8362745098039) K, thk, h_in, T_out, h_out, e = (15.6, 0.015, 30, 25 + 273.15, 5, 0.3) x1 = x[0] # C1 x2 = x[1] # C2 R_conv_1 = (1 / (2 * np.pi * (r)) * h_in) h_comb = (2 * np.pi * (r + thk)) * (h_out + e * 5.670e-8 * (x1 * np.log(r + thk) + x2 - T_out) * ((x1 * np.log(r + thk) + x2) ** 2 + T_out ** 2)) R_cond = np.log(thk) / (2 * np.pi * K) return ((T_in - T_out) / (R_conv_1 + R_cond + (1 / h_comb))) + ((K * x1) / r) def objective_T_II(self, x, *args): T_supp, r = args[0], args[1] x1 = x[0] # C1 x2 = x[1] # C2 return T_supp - ((x1 * np.log(r)) - x2) def constraint_BC1_BC2_II(self, x): r, T_in = (0.025, 484.8362745098039) K, thk_1, h_in, T_out, h_out = (15.6, 0.015, 30, 25 + 273.15, 5) K_2, thk_2, e = (0.25, 0.012, 0.8) x1 = x[0] # C1 x2 = x[1] # C2 R_conv_1 = (1 / (2 * np.pi * r) * h_in) R_cond = np.log(thk_1) / (2 * np.pi * K) R_cond_2 = np.log(thk_2) / (2 * np.pi * K_2) h_comb = (2 * np.pi * (r + thk_1 + thk_2)) * ( h_out + e * 5.670e-8 * (x1 * np.log(r + thk_1 + thk_2) + x2 - T_out) * ((x1 * np.log(r + thk_1 + thk_2) + x2) ** 2 + T_out ** 2)) return ((T_in - T_out) / (R_conv_1 + R_cond + R_cond_2 + (1 / h_comb))) + ((K * x1) / r) # Determine the Q flux with cover and without cover class Q_determine: def Q_uncover(self, r, T_in, K, thk, h_in, T_out, h_out, e, Delta_T): T_surf = (T_int - Delta_T) + 273.15 R_conv_1 = (1 / (2 * np.pi * r) * h_in) h_comb = (2 * np.pi * (r + thk)) * (h_out + e * 5.670e-8 * (T_surf - T_out) * (T_surf ** 2 + T_out ** 2)) R_cond = np.log(thk) / (2 * np.pi * K) Q = ((T_in - T_out) / (R_conv_1 + R_cond + (1 / h_comb))) return Q def Q_cover(self, r, T_in, K, K_2, thk_1, thk_2, h_in, T_out, h_out, e, Delta_T): T_surf = (T_int - Delta_T) + 273.15 R_conv_1 = (1 / (2 * np.pi * r) * h_in) R_cond = np.log(thk_1) / (2 * np.pi * K) R_cond_2 = np.log(thk_2) / (2 * np.pi * K_2) h_comb = (2 * np.pi * (r + thk_1 + thk_2)) * ( h_out + e * 5.670e-8 * (T_surf - T_out) * (T_surf ** 2 + T_out ** 2)) Q = ((T_in - T_out) / (R_conv_1 + R_cond + R_cond_2 + (1 / h_comb))) return Q # Temperature of T in of the cylinder iron class T_profile_iron: def T_in_II(self, Q_tot, r, K, thk, T_surf_out): R_cond = np.log(r - thk) / (2 * np.pi * K) T_surf_in = (-Q_tot * R_cond) + T_surf_out return T_surf_in env_conv = enviroment_convective() Opt = Optimice() Q_s = Q_determine() T_iron = T_profile_iron() T_int = env_conv.temp_steam_sat_reg(1553, 2318, 200, 220, 2000) constraint_equal1 = {'type': 'eq', 'fun': Opt.constraint_BC1_BC2} constraint = [constraint_equal1] # T_suppose, Radius_max, T_in arguments = (T_int, 0.025) x0 = [0, 0] # This initial values are extracted from a first solution given by the method sol = minimize(Opt.objective_T, x0, method='SLSQP', args=arguments, constraints=constraint, options={'maxiter': 5}) # BIG NOTE: modify the iteration to reach values according to reality--> You need more restrictions # In the result you find the maximum difference that the system reach between the suppose and the reality Q_1 = Q_s.Q_uncover(0.025, T_int, 15.6, 0.015, 30, 25 + 273.15, 5, 0.3, sol.fun) T_in_iron = T_iron.T_in_II(Q_1, 0.025, 30, 0.015, (T_int - sol.fun) + 273.15) ########################################### Case 2 ##################################################################### constraint_equal1_II = {'type': 'eq', 'fun': Opt.constraint_BC1_BC2_II} constraint_II = [constraint_equal1_II] # T_suppose, Radius_max arguments_II = (T_int, 0.025 + 0.015 + 0.012) x0 = [0, 0] # This initial values are extracted from a first solution given by the method sol_II = minimize(Opt.objective_T, x0, method='SLSQP', args=arguments_II, constraints=constraint_II, options={'maxiter': 5}) # BIG NOTE: modify the iteration to reach values according to reality--> You need more restrictions # In the result you find the maximum difference that the system reach between the suppose and the reality Q_2 = Q_s.Q_cover(0.025, T_int, 15.6, 0.25, 0.015, 0.012, 30, 25 + 273.15, 5, 0.3, sol_II.fun) print("========================= WITH UNCOVER ==============================================\n") print("Temperature in the convective enviro. 1: {} [K]".format(T_int)) print("Temperature at the start of the cylinder: {} [K]".format(T_in_iron)) print("Temperature at the end of the cylinder: {} [K]".format((T_int - sol.fun) + 273.15)) print("Q for meter of cylinder: {} [W/m]\n".format(Q_1)) print("================================================================================") print("========================= WITH COVER ==============================================\n") print("Temperature in the convective enviro. 1: {} [K]".format(T_int)) print("Temperature at the end of the cylinder: {} [K]".format((T_int - sol_II.fun) + 273.15)) print("Q for meter of cylinder: {} [W/m]\n".format(Q_2)) print("================================================================================\n")
43.516779
120
0.543492
5fe2d14815e4a00c8ea1ad59d3c645f16e53b4ef
30,532
py
Python
spyder/widgets/fileswitcher.py
sharmalabs/spyder
7d2201699b6df6d4e72c73379dca0510f643bef9
[ "MIT" ]
null
null
null
spyder/widgets/fileswitcher.py
sharmalabs/spyder
7d2201699b6df6d4e72c73379dca0510f643bef9
[ "MIT" ]
null
null
null
spyder/widgets/fileswitcher.py
sharmalabs/spyder
7d2201699b6df6d4e72c73379dca0510f643bef9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) # Standard library imports from __future__ import print_function import os import os.path as osp # Third party imports from qtpy.QtCore import Signal, QEvent, QObject, QRegExp, QSize, Qt from qtpy.QtGui import (QIcon, QRegExpValidator, QTextCursor) from qtpy.QtWidgets import (QDialog, QHBoxLayout, QLabel, QLineEdit, QListWidget, QListWidgetItem, QVBoxLayout, QMainWindow) # Local imports from spyder.config.base import _ from spyder.py3compat import iteritems, to_text_string from spyder.utils import icon_manager as ima from spyder.utils.stringmatching import get_search_scores from spyder.widgets.helperwidgets import HelperToolButton, HTMLDelegate # --- Python Outline explorer helpers def process_python_symbol_data(oedata): """Returns a list with line number, definition name, fold and token.""" symbol_list = [] for key in oedata: val = oedata[key] if val and key != 'found_cell_separators': if val.is_class_or_function(): symbol_list.append((key, val.def_name, val.fold_level, val.get_token())) return sorted(symbol_list) def get_python_symbol_icons(oedata): """Return a list of icons for oedata of a python file.""" class_icon = ima.icon('class') method_icon = ima.icon('method') function_icon = ima.icon('function') private_icon = ima.icon('private1') super_private_icon = ima.icon('private2') symbols = process_python_symbol_data(oedata) # line - 1, name, fold level fold_levels = sorted(list(set([s[2] for s in symbols]))) parents = [None]*len(symbols) icons = [None]*len(symbols) indexes = [] parent = None for level in fold_levels: for index, item in enumerate(symbols): line, name, fold_level, token = item if index in indexes: continue if fold_level == level: indexes.append(index) parent = item else: parents[index] = parent for index, item in enumerate(symbols): parent = parents[index] if item[-1] == 'def': icons[index] = function_icon elif item[-1] == 'class': icons[index] = class_icon else: icons[index] = QIcon() if parent is not None: if parent[-1] == 'class': if item[-1] == 'def' and item[1].startswith('__'): icons[index] = super_private_icon elif item[-1] == 'def' and item[1].startswith('_'): icons[index] = private_icon else: icons[index] = method_icon return icons def shorten_paths(path_list, is_unsaved): """ Takes a list of paths and tries to "intelligently" shorten them all. The aim is to make it clear to the user where the paths differ, as that is likely what they care about. Note that this operates on a list of paths not on individual paths. If the path ends in an actual file name, it will be trimmed off. """ # TODO: at the end, if the path is too long, should do a more dumb kind of # shortening, but not completely dumb. # Convert the path strings to a list of tokens and start building the # new_path using the drive path_list = path_list[:] # Make a local copy new_path_list = [] for ii, (path, is_unsav) in enumerate(zip(path_list, is_unsaved)): if is_unsav: new_path_list.append(_('unsaved file')) path_list[ii] = None else: drive, path = osp.splitdrive(osp.dirname(path)) new_path_list.append(drive + osp.sep) path_list[ii] = [part for part in path.split(osp.sep) if part] def recurse_level(level_idx): sep = os.sep # If toks are all empty we need not have recursed here if not any(level_idx.values()): return # Firstly, find the longest common prefix for all in the level # s = len of longest common prefix sample_toks = list(level_idx.values())[0] if not sample_toks: s = 0 else: for s, sample_val in enumerate(sample_toks): if not all(len(toks) > s and toks[s] == sample_val for toks in level_idx.values()): break # Shorten longest common prefix if s == 0: short_form = '' else: if s == 1: short_form = sample_toks[0] elif s == 2: short_form = sample_toks[0] + sep + sample_toks[1] else: short_form = "..." + sep + sample_toks[s-1] for idx in level_idx: new_path_list[idx] += short_form + sep level_idx[idx] = level_idx[idx][s:] # Group the remaining bit after the common prefix, shorten, and recurse while level_idx: k, group = 0, level_idx # k is length of the group's common prefix while True: # Abort if we've gone beyond end of one or more in the group prospective_group = {idx: toks for idx, toks in group.items() if len(toks) == k} if prospective_group: if k == 0: # we spit out the group with no suffix group = prospective_group break # Only keep going if all n still match on the kth token _, sample_toks = next(iteritems(group)) prospective_group = {idx: toks for idx, toks in group.items() if toks[k] == sample_toks[k]} if len(prospective_group) == len(group) or k == 0: group = prospective_group k += 1 else: break _, sample_toks = next(iteritems(group)) if k == 0: short_form = '' elif k == 1: short_form = sample_toks[0] elif k == 2: short_form = sample_toks[0] + sep + sample_toks[1] else: # k > 2 short_form = sample_toks[0] + "..." + sep + sample_toks[k-1] for idx in group.keys(): new_path_list[idx] += short_form + (sep if k > 0 else '') del level_idx[idx] recurse_level({idx: toks[k:] for idx, toks in group.items()}) recurse_level({i: pl for i, pl in enumerate(path_list) if pl}) return [path.rstrip(os.sep) for path in new_path_list] class KeyPressFilter(QObject): """Use with `installEventFilter` to get up/down arrow key press signal.""" UP, DOWN = [-1, 1] # Step constants sig_up_key_pressed = Signal() sig_down_key_pressed = Signal() def eventFilter(self, src, e): if e.type() == QEvent.KeyPress: if e.key() == Qt.Key_Up: self.sig_up_key_pressed.emit() elif e.key() == Qt.Key_Down: self.sig_down_key_pressed.emit() return super(KeyPressFilter, self).eventFilter(src, e) class FilesFilterLine(QLineEdit): """QLineEdit used to filter files by name.""" # User has not clicked outside this widget clicked_outside = False def focusOutEvent(self, event): """ Detect when the focus goes out of this widget. This is used to make the file switcher leave focus on the last selected file by the user. """ self.clicked_outside = True return super(QLineEdit, self).focusOutEvent(event) class FileSwitcher(QDialog): """A Sublime-like file switcher.""" sig_goto_file = Signal(int, object) # Constants that define the mode in which the list widget is working # FILE_MODE is for a list of files, SYMBOL_MODE if for a list of symbols # in a given file when using the '@' symbol. FILE_MODE, SYMBOL_MODE = [1, 2] MAX_WIDTH = 600 def __init__(self, parent, plugin, tabs, data, icon): QDialog.__init__(self, parent) # Variables self.plugins_tabs = [] self.plugins_data = [] self.plugins_instances = [] self.add_plugin(plugin, tabs, data, icon) self.plugin = None # Last plugin with focus self.mode = self.FILE_MODE # By default start in this mode self.initial_cursors = None # {fullpath: QCursor} self.initial_path = None # Fullpath of initial active editor self.initial_widget = None # Initial active editor self.line_number = None # Selected line number in filer self.is_visible = False # Is the switcher visible? help_text = _("Press <b>Enter</b> to switch files or <b>Esc</b> to " "cancel.<br><br>Type to filter filenames.<br><br>" "Use <b>:number</b> to go to a line, e.g. " "<b><code>main:42</code></b><br>" "Use <b>@symbol_text</b> to go to a symbol, e.g. " "<b><code>@init</code></b>" "<br><br> Press <b>Ctrl+W</b> to close current tab.<br>") # Either allow searching for a line number or a symbol but not both regex = QRegExp("([A-Za-z0-9_]{0,100}@[A-Za-z0-9_]{0,100})|" + "([A-Za-z0-9_]{0,100}:{0,1}[0-9]{0,100})") # Widgets self.edit = FilesFilterLine(self) self.help = HelperToolButton() self.list = QListWidget(self) self.filter = KeyPressFilter() regex_validator = QRegExpValidator(regex, self.edit) # Widgets setup self.setWindowFlags(Qt.Popup | Qt.FramelessWindowHint) self.setWindowOpacity(0.95) self.edit.installEventFilter(self.filter) self.edit.setValidator(regex_validator) self.help.setToolTip(help_text) self.list.setItemDelegate(HTMLDelegate(self)) # Layout edit_layout = QHBoxLayout() edit_layout.addWidget(self.edit) edit_layout.addWidget(self.help) layout = QVBoxLayout() layout.addLayout(edit_layout) layout.addWidget(self.list) self.setLayout(layout) # Signals self.rejected.connect(self.restore_initial_state) self.filter.sig_up_key_pressed.connect(self.previous_row) self.filter.sig_down_key_pressed.connect(self.next_row) self.edit.returnPressed.connect(self.accept) self.edit.textChanged.connect(self.setup) self.list.itemSelectionChanged.connect(self.item_selection_changed) self.list.clicked.connect(self.edit.setFocus) # --- Properties @property def widgets(self): widgets = [] for plugin in self.plugins_instances: tabs = self.get_plugin_tabwidget(plugin) widgets += [(tabs.widget(index), plugin) for index in range(tabs.count())] return widgets @property def line_count(self): line_count = [] for widget in self.widgets: try: current_line_count = widget[0].get_line_count() except AttributeError: current_line_count = 0 line_count.append(current_line_count) return line_count @property def save_status(self): save_status = [] for da, icon in self.plugins_data: save_status += [getattr(td, 'newly_created', False) for td in da] return save_status @property def paths(self): paths = [] for plugin in self.plugins_instances: da = self.get_plugin_data(plugin) paths += [getattr(td, 'filename', None) for td in da] return paths @property def filenames(self): filenames = [] for plugin in self.plugins_instances: da = self.get_plugin_data(plugin) filenames += [os.path.basename(getattr(td, 'filename', None)) for td in da] return filenames @property def icons(self): icons = [] for da, icon in self.plugins_data: icons += [icon for td in da] return icons @property def current_path(self): return self.paths_by_widget.get(self.get_widget(), None) @property def paths_by_widget(self): widgets = [w[0] for w in self.widgets] return dict(zip(widgets, self.paths)) @property def widgets_by_path(self): widgets = [w[0] for w in self.widgets] return dict(zip(self.paths, widgets)) @property def filter_text(self): """Get the normalized (lowecase) content of the filter text.""" return to_text_string(self.edit.text()).lower() def set_search_text(self, _str): self.edit.setText(_str) def save_initial_state(self): """Save initial cursors and initial active widget.""" paths = self.paths self.initial_widget = self.get_widget() self.initial_cursors = {} for i, editor in enumerate(self.widgets): if editor is self.initial_widget: self.initial_path = paths[i] # This try is needed to make the fileswitcher work with # plugins that does not have a textCursor. try: self.initial_cursors[paths[i]] = editor.textCursor() except AttributeError: pass def accept(self): self.is_visible = False QDialog.accept(self) self.list.clear() def restore_initial_state(self): """Restores initial cursors and initial active editor.""" self.list.clear() self.is_visible = False widgets = self.widgets_by_path if not self.edit.clicked_outside: for path in self.initial_cursors: cursor = self.initial_cursors[path] if path in widgets: self.set_editor_cursor(widgets[path], cursor) if self.initial_widget in self.paths_by_widget: index = self.paths.index(self.initial_path) self.sig_goto_file.emit(index) def set_dialog_position(self): """Positions the file switcher dialog.""" parent = self.parent() geo = parent.geometry() width = self.list.width() # This has been set in setup left = parent.geometry().width()/2 - width/2 # Note: the +1 pixel on the top makes it look better if isinstance(parent, QMainWindow): top = (parent.toolbars_menu.geometry().height() + parent.menuBar().geometry().height() + 1) else: top = self.plugins_tabs[0][0].tabBar().geometry().height() + 1 while parent: geo = parent.geometry() top += geo.top() left += geo.left() parent = parent.parent() self.move(left, top) def get_item_size(self, content): """ Get the max size (width and height) for the elements of a list of strings as a QLabel. """ strings = [] if content: for rich_text in content: label = QLabel(rich_text) label.setTextFormat(Qt.PlainText) strings.append(label.text()) fm = label.fontMetrics() return (max([fm.width(s) * 1.3 for s in strings]), fm.height()) def fix_size(self, content): """ Adjusts the width and height of the file switcher based on the relative size of the parent and content. """ # Update size of dialog based on relative size of the parent if content: width, height = self.get_item_size(content) # Width parent = self.parent() relative_width = parent.geometry().width() * 0.65 if relative_width > self.MAX_WIDTH: relative_width = self.MAX_WIDTH self.list.setMinimumWidth(relative_width) # Height if len(content) < 8: max_entries = len(content) else: max_entries = 8 max_height = height * max_entries * 2.5 self.list.setMinimumHeight(max_height) # Resize self.list.resize(relative_width, self.list.height()) # --- Helper methods: List widget def count(self): """Gets the item count in the list widget.""" return self.list.count() def current_row(self): """Returns the current selected row in the list widget.""" return self.list.currentRow() def set_current_row(self, row): """Sets the current selected row in the list widget.""" return self.list.setCurrentRow(row) def select_row(self, steps): """Select row in list widget based on a number of steps with direction. Steps can be positive (next rows) or negative (previous rows). """ row = self.current_row() + steps if 0 <= row < self.count(): self.set_current_row(row) def previous_row(self): """Select previous row in list widget.""" if self.mode == self.SYMBOL_MODE: self.select_row(-1) return prev_row = self.current_row() - 1 if prev_row >= 0: title = self.list.item(prev_row).text() else: title = '' if prev_row == 0 and '</b></big><br>' in title: self.list.scrollToTop() elif '</b></big><br>' in title: # Select the next previous row, the one following is a title self.select_row(-2) else: self.select_row(-1) def next_row(self): """Select next row in list widget.""" if self.mode == self.SYMBOL_MODE: self.select_row(+1) return next_row = self.current_row() + 1 if next_row < self.count(): if '</b></big><br>' in self.list.item(next_row).text(): # Select the next next row, the one following is a title self.select_row(+2) else: self.select_row(+1) def get_stack_index(self, stack_index, plugin_index): """Get the real index of the selected item.""" other_plugins_count = sum([other_tabs[0].count() \ for other_tabs in \ self.plugins_tabs[:plugin_index]]) real_index = stack_index - other_plugins_count return real_index # --- Helper methods: Widget def get_plugin_data(self, plugin): """Get the data object of the plugin's current tab manager.""" # The data object is named "data" in the editor plugin while it is # named "clients" in the notebook plugin. try: data = plugin.get_current_tab_manager().data except AttributeError: data = plugin.get_current_tab_manager().clients return data def get_plugin_tabwidget(self, plugin): """Get the tabwidget of the plugin's current tab manager.""" # The tab widget is named "tabs" in the editor plugin while it is # named "tabwidget" in the notebook plugin. try: tabwidget = plugin.get_current_tab_manager().tabs except AttributeError: tabwidget = plugin.get_current_tab_manager().tabwidget return tabwidget def get_widget(self, index=None, path=None, tabs=None): """Get widget by index. If no tabs and index specified the current active widget is returned. """ if (index and tabs) or (path and tabs): return tabs.widget(index) elif self.plugin: return self.get_plugin_tabwidget(self.plugin).currentWidget() else: return self.plugins_tabs[0][0].currentWidget() def set_editor_cursor(self, editor, cursor): """Set the cursor of an editor.""" pos = cursor.position() anchor = cursor.anchor() new_cursor = QTextCursor() if pos == anchor: new_cursor.movePosition(pos) else: new_cursor.movePosition(anchor) new_cursor.movePosition(pos, QTextCursor.KeepAnchor) editor.setTextCursor(cursor) def goto_line(self, line_number): """Go to specified line number in current active editor.""" if line_number: line_number = int(line_number) try: self.plugin.go_to_line(line_number) except AttributeError: pass # --- Helper methods: Outline explorer def get_symbol_list(self): """Get the list of symbols present in the file.""" try: oedata = self.get_widget().get_outlineexplorer_data() except AttributeError: oedata = {} return oedata # --- Handlers def item_selection_changed(self): """List widget item selection change handler.""" row = self.current_row() if self.count() and row >= 0: if '</b></big><br>' in self.list.currentItem().text() and row == 0: self.next_row() if self.mode == self.FILE_MODE: try: stack_index = self.paths.index(self.filtered_path[row]) self.plugin = self.widgets[stack_index][1] plugin_index = self.plugins_instances.index(self.plugin) # Count the real index in the tabWidget of the # current plugin real_index = self.get_stack_index(stack_index, plugin_index) self.sig_goto_file.emit(real_index, self.plugin.get_current_tab_manager()) self.goto_line(self.line_number) try: self.plugin.switch_to_plugin() self.raise_() except AttributeError: # The widget using the fileswitcher is not a plugin pass self.edit.setFocus() except ValueError: pass else: line_number = self.filtered_symbol_lines[row] self.goto_line(line_number) def setup_file_list(self, filter_text, current_path): """Setup list widget content for file list display.""" short_paths = shorten_paths(self.paths, self.save_status) paths = self.paths icons = self.icons results = [] trying_for_line_number = ':' in filter_text # Get optional line number if trying_for_line_number: filter_text, line_number = filter_text.split(':') if line_number == '': line_number = None # Get all the available filenames scores = get_search_scores('', self.filenames, template="<b>{0}</b>") else: line_number = None # Get all available filenames and get the scores for # "fuzzy" matching scores = get_search_scores(filter_text, self.filenames, template="<b>{0}</b>") # Get max width to determine if shortpaths should be used max_width = self.get_item_size(paths)[0] self.fix_size(paths) # Build the text that will appear on the list widget for index, score in enumerate(scores): text, rich_text, score_value = score if score_value != -1: text_item = "<big style='color:{0:}'>{1:}</big>".format( ima.MAIN_FG_COLOR, rich_text.replace('&', '')) if trying_for_line_number: text_item += " [{0:} {1:}]".format(self.line_count[index], _("lines")) if max_width > self.list.width(): text_item += u"<br><i style='color:{0:}'>{1:}</i>".format( ima.MAIN_FG_COLOR, short_paths[index]) else: text_item += u"<br><i style='color:{0:}'>{1:}</i>".format( ima.MAIN_FG_COLOR, paths[index]) if (trying_for_line_number and self.line_count[index] != 0 or not trying_for_line_number): results.append((score_value, index, text_item)) # Sort the obtained scores and populate the list widget self.filtered_path = [] plugin = None for result in sorted(results): index = result[1] path = paths[index] icon = icons[index] text = '' try: title = self.widgets[index][1].get_plugin_title().split(' - ') if plugin != title[0]: plugin = title[0] text += ("<br><big style='color:{0:}'>" "<b>{1:}</b></big><br>").format(ima.MAIN_FG_COLOR, plugin) item = QListWidgetItem(text) item.setToolTip(path) item.setSizeHint(QSize(0, 25)) item.setFlags(Qt.ItemIsEditable) self.list.addItem(item) self.filtered_path.append(path) except: # The widget using the fileswitcher is not a plugin pass text = '' text += result[-1] item = QListWidgetItem(icon, text) item.setToolTip(path) item.setSizeHint(QSize(0, 25)) self.list.addItem(item) self.filtered_path.append(path) # To adjust the delegate layout for KDE themes self.list.files_list = True # Move selected item in list accordingly and update list size if current_path in self.filtered_path: self.set_current_row(self.filtered_path.index(current_path)) elif self.filtered_path: self.set_current_row(0) # If a line number is searched look for it self.line_number = line_number self.goto_line(line_number) def setup_symbol_list(self, filter_text, current_path): """Setup list widget content for symbol list display.""" # Get optional symbol name filter_text, symbol_text = filter_text.split('@') # Fetch the Outline explorer data, get the icons and values oedata = self.get_symbol_list() icons = get_python_symbol_icons(oedata) # The list of paths here is needed in order to have the same # point of measurement for the list widget size as in the file list # See issue 4648 paths = self.paths # Update list size self.fix_size(paths) symbol_list = process_python_symbol_data(oedata) line_fold_token = [(item[0], item[2], item[3]) for item in symbol_list] choices = [item[1] for item in symbol_list] scores = get_search_scores(symbol_text, choices, template="<b>{0}</b>") # Build the text that will appear on the list widget results = [] lines = [] self.filtered_symbol_lines = [] for index, score in enumerate(scores): text, rich_text, score_value = score line, fold_level, token = line_fold_token[index] lines.append(text) if score_value != -1: results.append((score_value, line, text, rich_text, fold_level, icons[index], token)) template = '{{0}}<span style="color:{0}">{{1}}</span>'.format( ima.MAIN_FG_COLOR) for (score, line, text, rich_text, fold_level, icon, token) in sorted(results): fold_space = '&nbsp;'*(fold_level) line_number = line + 1 self.filtered_symbol_lines.append(line_number) textline = template.format(fold_space, rich_text) item = QListWidgetItem(icon, textline) item.setSizeHint(QSize(0, 16)) self.list.addItem(item) # To adjust the delegate layout for KDE themes self.list.files_list = False # Select edit line when using symbol search initially. # See issue 5661 self.edit.setFocus() # Move selected item in list accordingly # NOTE: Doing this is causing two problems: # 1. It makes the cursor to auto-jump to the last selected # symbol after opening or closing a different file # 2. It moves the cursor to the first symbol by default, # which is very distracting. # That's why this line is commented! # self.set_current_row(0) def setup(self): """Setup list widget content.""" if len(self.plugins_tabs) == 0: self.close() return self.list.clear() current_path = self.current_path filter_text = self.filter_text # Get optional line or symbol to define mode and method handler trying_for_symbol = ('@' in self.filter_text) if trying_for_symbol: self.mode = self.SYMBOL_MODE self.setup_symbol_list(filter_text, current_path) else: self.mode = self.FILE_MODE self.setup_file_list(filter_text, current_path) # Set position according to size self.set_dialog_position() def show(self): """ Override Qt method to force an update of the fileswitcher before showing it. See Issue #5317 and PR #5389. """ self.setup() super(FileSwitcher, self).show() def add_plugin(self, plugin, tabs, data, icon): """Add a plugin to display its files.""" self.plugins_tabs.append((tabs, plugin)) self.plugins_data.append((data, icon)) self.plugins_instances.append(plugin)
37.325183
82
0.566127
bbb0af8e20a48242e7cfbe7031a3b7969faa2459
5,339
py
Python
twisted/cred/portal.py
ioggstream/twisted
34f9b1e3f097685839000c656332c66ee85be5d8
[ "Unlicense", "MIT" ]
7
2015-04-28T13:26:11.000Z
2020-02-09T17:01:04.000Z
twisted/cred/portal.py
ioggstream/twisted
34f9b1e3f097685839000c656332c66ee85be5d8
[ "Unlicense", "MIT" ]
4
2017-02-19T23:58:13.000Z
2019-11-01T15:31:22.000Z
twisted/cred/portal.py
ioggstream/twisted
34f9b1e3f097685839000c656332c66ee85be5d8
[ "Unlicense", "MIT" ]
6
2017-02-13T09:11:02.000Z
2021-06-29T11:22:18.000Z
# -*- test-case-name: twisted.test.test_newcred -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ The point of integration of application and authentication. """ from twisted.internet import defer from twisted.internet.defer import maybeDeferred from twisted.python import failure, reflect from twisted.cred import error from zope.interface import providedBy, Interface class IRealm(Interface): """ The realm connects application-specific objects to the authentication system. """ def requestAvatar(avatarId, mind, *interfaces): """ Return avatar which provides one of the given interfaces. @param avatarId: a string that identifies an avatar, as returned by L{ICredentialsChecker.requestAvatarId<twisted.cred.checkers.ICredentialsChecker.requestAvatarId>} (via a Deferred). Alternatively, it may be C{twisted.cred.checkers.ANONYMOUS}. @param mind: usually None. See the description of mind in L{Portal.login}. @param interfaces: the interface(s) the returned avatar should implement, e.g. C{IMailAccount}. See the description of L{Portal.login}. @returns: a deferred which will fire a tuple of (interface, avatarAspect, logout), or the tuple itself. The interface will be one of the interfaces passed in the 'interfaces' argument. The 'avatarAspect' will implement that interface. The 'logout' object is a callable which will detach the mind from the avatar. """ class Portal: """ A mediator between clients and a realm. A portal is associated with one Realm and zero or more credentials checkers. When a login is attempted, the portal finds the appropriate credentials checker for the credentials given, invokes it, and if the credentials are valid, retrieves the appropriate avatar from the Realm. This class is not intended to be subclassed. Customization should be done in the realm object and in the credentials checker objects. """ def __init__(self, realm, checkers=()): """ Create a Portal to a L{IRealm}. """ self.realm = realm self.checkers = {} for checker in checkers: self.registerChecker(checker) def listCredentialsInterfaces(self): """ Return list of credentials interfaces that can be used to login. """ return self.checkers.keys() def registerChecker(self, checker, *credentialInterfaces): if not credentialInterfaces: credentialInterfaces = checker.credentialInterfaces for credentialInterface in credentialInterfaces: self.checkers[credentialInterface] = checker def login(self, credentials, mind, *interfaces): """ @param credentials: an implementor of L{twisted.cred.credentials.ICredentials} @param mind: an object which implements a client-side interface for your particular realm. In many cases, this may be None, so if the word 'mind' confuses you, just ignore it. @param interfaces: list of interfaces for the perspective that the mind wishes to attach to. Usually, this will be only one interface, for example IMailAccount. For highly dynamic protocols, however, this may be a list like (IMailAccount, IUserChooser, IServiceInfo). To expand: if we are speaking to the system over IMAP, any information that will be relayed to the user MUST be returned as an IMailAccount implementor; IMAP clients would not be able to understand anything else. Any information about unusual status would have to be relayed as a single mail message in an otherwise-empty mailbox. However, in a web-based mail system, or a PB-based client, the ``mind'' object inside the web server (implemented with a dynamic page-viewing mechanism such as a Twisted Web Resource) or on the user's client program may be intelligent enough to respond to several ``server''-side interfaces. @return: A deferred which will fire a tuple of (interface, avatarAspect, logout). The interface will be one of the interfaces passed in the 'interfaces' argument. The 'avatarAspect' will implement that interface. The 'logout' object is a callable which will detach the mind from the avatar. It must be called when the user has conceptually disconnected from the service. Although in some cases this will not be in connectionLost (such as in a web-based session), it will always be at the end of a user's interactive session. """ for i in self.checkers: if i.providedBy(credentials): return maybeDeferred(self.checkers[i].requestAvatarId, credentials ).addCallback(self.realm.requestAvatar, mind, *interfaces ) ifac = providedBy(credentials) return defer.fail(failure.Failure(error.UnhandledCredentials( "No checker for %s" % ', '.join(map(reflect.qual, ifac)))))
43.762295
109
0.664731
8547d70127c1b02e8ff2087b2c3735f6be111b0c
123
py
Python
examples/docker/app/metrics/testmetric.py
defreng/python-pagr
352623d8c1a5b8d59f9c223c4f6cecc7a585bf9a
[ "MIT" ]
null
null
null
examples/docker/app/metrics/testmetric.py
defreng/python-pagr
352623d8c1a5b8d59f9c223c4f6cecc7a585bf9a
[ "MIT" ]
null
null
null
examples/docker/app/metrics/testmetric.py
defreng/python-pagr
352623d8c1a5b8d59f9c223c4f6cecc7a585bf9a
[ "MIT" ]
null
null
null
class TestMetric: def __init__(self, services): pass def run(self): print('Executing Testmetric')
17.571429
37
0.617886
9b33a3d47c8155ed85a6b9762a0303551ba5a627
2,854
py
Python
scripts/RunCosmicShear.py
lshuns/CosmicShearRB
84d682fc09dc8be0e12b82894cfb2c2c272b616b
[ "MIT" ]
null
null
null
scripts/RunCosmicShear.py
lshuns/CosmicShearRB
84d682fc09dc8be0e12b82894cfb2c2c272b616b
[ "MIT" ]
null
null
null
scripts/RunCosmicShear.py
lshuns/CosmicShearRB
84d682fc09dc8be0e12b82894cfb2c2c272b616b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Feb 10 15:49:41 2020 @author: ssli Running the module of cosmic shear signal prediction Please modify necessary configurations in Cosmo/cosmic_shear_signal/input """ import time import os import sys # Self-defined package sys.path.insert(0,os.path.realpath('../Cosmo/cosmic_shear_signal')) import CosmicShear, initialise # +++++++++++++++++++ General setting # parameter files name_param_files = ['kv450_cf_best.param', 'kv450_cf_Planck.param'] # Set the output folder out_folder = 'theory_vector' out_suffix_s = ['KV450_best', 'Planck'] # path for all necessary input paths = {} # cosmological code path (CLASS) paths['cosmo'] = '/net/eemmeer/data1/ssli/class_public' # father path for all the input and output paths['data'] = '/disks/shear15/ssli/CosmicShear' # parameter/configure file path paths['param'] = '/net/raam/data1/surfdrive_ssli/Projects/6CosmicShear_RB/CosmicShearRB/Cosmo/cosmic_shear_signal/input' # +++++++++++++++++++ Running scripts Start = time.time() # Initialisation # class: data and cosmo created cosmo, data = initialise.initialise(paths) for i in range(len(name_param_files)): # parameter file (with cosmological and nuisance parameters) name_param_file = name_param_files[i] data.read_file(name_param_file, 'data', field='', separate=False) # output folder data.conf['out_folder'] = out_folder data.conf['out_suffix'] = out_suffix_s[i] # # ++++++++++++++++++++++++++++++++++++++++++ whole # # name of configure files # name_conf_file = 'kv450_cf.conf' # # data filled with input files # # configure file (with configure and hardly changed setting parameters) # data.read_file(name_conf_file, 'data', field='', separate=False) # # cosmic shear signal calculation # CosmicShear.CSsignalFunc(data, cosmo, save_theory_vector=True) # ++++++++++++++++++++++++++++++++++++++++++ red # name of parameter/configure files name_conf_file = 'kv450_cf_red.conf' # data filled with input files # configure file (with configure and hardly changed setting parameters) data.read_file(name_conf_file, 'data', field='', separate=False) # cosmic shear signal calculation CosmicShear.CSsignalFunc(data, cosmo, save_theory_vector=True) # ++++++++++++++++++++++++++++++++++++++++++ blue # name of parameter/configure files name_conf_file = 'kv450_cf_blue.conf' # data filled with input files # configure file (with configure and hardly changed setting parameters) data.read_file(name_conf_file, 'data', field='', separate=False) # cosmic shear signal calculation CosmicShear.CSsignalFunc(data, cosmo, save_theory_vector=True) print("All finished in", time.time()-Start) # eemmeer (2020-04-23) # ('All finished in', 23.075681924819946)
30.688172
121
0.689208
d1976f4e8d45b6060179a89540c740f71dc82f0e
2,039
py
Python
easyadmin/pages/admin_table.py
codemation/easyadmin
0f305a92174a151fe08b2c8db4cf893a34055407
[ "MIT" ]
6
2021-03-30T01:28:15.000Z
2021-12-18T00:51:14.000Z
easyadmin/pages/admin_table.py
codemation/easyadmin
0f305a92174a151fe08b2c8db4cf893a34055407
[ "MIT" ]
1
2021-05-24T01:10:35.000Z
2021-05-24T10:17:13.000Z
easyadmin/pages/admin_table.py
codemation/easyadmin
0f305a92174a151fe08b2c8db4cf893a34055407
[ "MIT" ]
null
null
null
from .admin import get_admin_page def get_table_body( name: str, table_headers_html: str, table_rows_html: str, above: str = '', below: str = '', ): return f""" <!-- Page Heading --> {above} <!-- DataTales Example --> <div class="card shadow mb-4"> <div class="card-header py-3"> <h6 class="m-0 font-weight-bold text-primary">{name}</h6> </div> <div class="card-body"> <div class="table-responsive"> <table class="table table-bordered" id="dataTable" width="100%" cellspacing="0"> <thead> <tr> {table_headers_html} </tr> </thead> <tfoot> <tr> {table_headers_html} </tr> </tfoot> <tbody> {table_rows_html} </tbody> </table> </div> </div> </div> {below} """ def get_table_page( name: str, data: list, sidebar: str, current_user: str, modals: str = "", above: str = "", below: str = "", root_path: str = '/', google: str = '', ): navbar = sidebar table_headers = [th for th in data[0]] table_headers_html = ''.join( [f'<th>{th}</th>\n' for th in table_headers] ) table_rows = [list(tr.values()) for tr in data] table_rows_html = [] for tr in table_rows: row = [f"<td>{td}</td>\n" for td in tr] row_html = ''.join(row) table_rows_html.append(f""" <tr>\n {row_html} </tr> """) table_rows_html = ''.join(table_rows_html) admin_page = get_admin_page( name=name, sidebar=sidebar, body=get_table_body( name, table_headers_html, table_rows_html, above=above, below=below ), current_user=current_user, modals=modals, root_path=root_path, google=google ) return admin_page
23.709302
92
0.491908
aad9b3c42f839efa859efeda30f87ff4a9b7ad7a
124
py
Python
crash_course/ch02/exec/name_cases.py
dantin/python-by-example
5769c7a332ebd60fd54e477b6813f2f2a0f3f37f
[ "BSD-3-Clause" ]
null
null
null
crash_course/ch02/exec/name_cases.py
dantin/python-by-example
5769c7a332ebd60fd54e477b6813f2f2a0f3f37f
[ "BSD-3-Clause" ]
null
null
null
crash_course/ch02/exec/name_cases.py
dantin/python-by-example
5769c7a332ebd60fd54e477b6813f2f2a0f3f37f
[ "BSD-3-Clause" ]
null
null
null
name = 'david ding' print('lowercase:', name.lower()) print('uppercase:', name.upper()) print('titlecase:', name.title())
17.714286
33
0.66129
4fa24060276f935262300ba79923e9dd008767ca
5,333
py
Python
card_detection_module/yolov5/TabDetectDewarp/yolov5/utils/experimental.py
nhatnxn/ID_Passport-OCR
78322ec2b9648d0b027326dced7c4aec967bcab3
[ "MIT" ]
1
2021-06-30T11:01:25.000Z
2021-06-30T11:01:25.000Z
card_detection_module/yolov5/TabDetectDewarp/yolov5/utils/experimental.py
nhatnxn/ID_Passport-OCR
78322ec2b9648d0b027326dced7c4aec967bcab3
[ "MIT" ]
null
null
null
card_detection_module/yolov5/TabDetectDewarp/yolov5/utils/experimental.py
nhatnxn/ID_Passport-OCR
78322ec2b9648d0b027326dced7c4aec967bcab3
[ "MIT" ]
null
null
null
# YOLOv5 experimental modules import numpy as np import torch import torch.nn as nn import sys sys.path.append('..') from models.common import Conv, DWConv from .google_utils import attempt_download class CrossConv(nn.Module): # Cross Convolution Downsample def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): # ch_in, ch_out, kernel, stride, groups, expansion, shortcut super(CrossConv, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, (1, k), (1, s)) self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) self.add = shortcut and c1 == c2 def forward(self, x): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class Sum(nn.Module): # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, n, weight=False): # n: number of inputs super(Sum, self).__init__() self.weight = weight # apply weights boolean self.iter = range(n - 1) # iter object if weight: self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights def forward(self, x): y = x[0] # no weight if self.weight: w = torch.sigmoid(self.w) * 2 for i in self.iter: y = y + x[i + 1] * w[i] else: for i in self.iter: y = y + x[i + 1] return y class GhostConv(nn.Module): # Ghost Convolution https://github.com/huawei-noah/ghostnet def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups super(GhostConv, self).__init__() c_ = c2 // 2 # hidden channels self.cv1 = Conv(c1, c_, k, s, None, g, act) self.cv2 = Conv(c_, c_, 5, 1, None, c_, act) def forward(self, x): y = self.cv1(x) return torch.cat([y, self.cv2(y)], 1) class GhostBottleneck(nn.Module): # Ghost Bottleneck https://github.com/huawei-noah/ghostnet def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride super(GhostBottleneck, self).__init__() c_ = c2 // 2 self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw GhostConv(c_, c2, 1, 1, act=False)) # pw-linear self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity() def forward(self, x): return self.conv(x) + self.shortcut(x) class MixConv2d(nn.Module): # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): super(MixConv2d, self).__init__() groups = len(k) if equal_ch: # equal c_ per group i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices c_ = [(i == g).sum() for g in range(groups)] # intermediate channels else: # equal weight.numel() per group b = [c2] + [0] * groups a = np.eye(groups + 1, groups, k=-1) a -= np.roll(a, 1, axis=1) a *= np.array(k) ** 2 a[0] = 1 c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) self.bn = nn.BatchNorm2d(c2) self.act = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) class Ensemble(nn.ModuleList): # Ensemble of models def __init__(self): super(Ensemble, self).__init__() def forward(self, x, augment=False): y = [] for module in self: y.append(module(x, augment)[0]) # y = torch.stack(y).max(0)[0] # max ensemble # y = torch.stack(y).mean(0) # mean ensemble y = torch.cat(y, 1) # nms ensemble return y, None # inference, train output def attempt_load(weights, map_location=None, inplace=True): from models.yolo import Detect, Model # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a model = Ensemble() for w in weights if isinstance(weights, list) else [weights]: ckpt = torch.load(attempt_download(w), map_location=map_location) # load model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model # Compatibility updates for m in model.modules(): if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]: m.inplace = inplace # pytorch 1.7.0 compatibility elif type(m) is Conv: m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility if len(model) == 1: return model[-1] # return model else: print(f'Ensemble created with {weights}\n') for k in ['names']: setattr(model, k, getattr(model[-1], k)) model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride return model # return ensemble
38.092857
116
0.574161
3f3e5441cd5e6990fec7b1d369ae3c881bdfd53d
4,424
py
Python
wagtail_checklist/serializers.py
StocksDigital/wagtail-checklist
7883a397c09b3c86834de2428631c9374341682a
[ "MIT" ]
null
null
null
wagtail_checklist/serializers.py
StocksDigital/wagtail-checklist
7883a397c09b3c86834de2428631c9374341682a
[ "MIT" ]
null
null
null
wagtail_checklist/serializers.py
StocksDigital/wagtail-checklist
7883a397c09b3c86834de2428631c9374341682a
[ "MIT" ]
null
null
null
import re from django.contrib.contenttypes.models import ContentType from rest_framework import serializers from wagtail.core.models import Page from .rules import check_form_rules, check_rules class PageActions: EDIT = 'EDIT' CREATE = 'CREATE' class ChecklistSerializer(serializers.Serializer): EDIT_REGEX = r'/pages/(?P<page_id>\d+)/edit/$' CREATE_REGEX = r'/pages/add/(?P<app_name>\w+)/(?P<model_name>\w+)/(?P<parent_id>\d+)/$' url = serializers.URLField() action = serializers.ChoiceField([PageActions.EDIT, PageActions.CREATE]) page = serializers.JSONField() def validate(self, data): """ Ensure that the provided URL is from the Wagtail edit or create views, so that we can extract some required information using EDIT_REGEX / CREATE_REGEX """ validated = super().validate(data) action = validated['action'] is_valid_url = ( (action == PageActions.EDIT and re.search(self.EDIT_REGEX, validated['url'])) or (action == PageActions.CREATE and re.search(self.CREATE_REGEX, validated['url'])) ) if not is_valid_url: raise serializers.ValidationError('Invalid URL for action {}'.format(action)) return validated def create(self, validated_data): """ Construct a Page instance and validate the instance against the built-in Wagtail form, as well as any rules that are registered. """ # Use information encoded in the URL to build a page instance. if validated_data['action'] == PageActions.EDIT: page_class, page, parent_page = self.get_edit_page(validated_data) else: page_class, page, parent_page = self.get_create_page(validated_data) # Construct and validate a model-specific form so that we can add Wagtail's built-in # validation to our response. edit_handler = page_class.get_edit_handler() form_class = edit_handler.get_form_class() form = form_class(validated_data['page'], instance=page, parent_page=parent_page) # Build a list of Wagtail built-in form errors form_rules = check_form_rules(page_class, form) # Build a list of custom rules error_rules, warning_rules = check_rules(page_class, page, parent_page) rule_lists = [ ('ERROR', form_rules), ('ERROR', error_rules), ('WARNING', warning_rules) ] # Build the checklist from the rule lists checklist = {} for error_type, rule_list in rule_lists: for rule in rule_list: serialized_rule = { 'isValid': rule.is_valid, 'hasError': rule.has_error, 'type': error_type, 'message': rule.message, } name = rule.name.lower().replace('_', ' ') try: checklist[name].append(serialized_rule) except (KeyError, AttributeError): checklist[name] = [serialized_rule] return {'checklist': checklist} def get_edit_page(self, validated_data): """ Construct a Page instance using data the Wagtail editor's 'edit' page. Use the Page pk to fetch the instance from the database. """ url_data = re.search(self.EDIT_REGEX, validated_data['url']).groupdict() page = Page.objects.get(pk=url_data['page_id']).specific content_type = ContentType.objects.get_for_model(page) page_class = content_type.model_class() parent_page = page.get_parent() if not parent_page: raise serializers.ValidationError('Page must have a parent') return page_class, page, parent_page def get_create_page(self, validated_data): """ Construct a Page instance using data the Wagtail editor's 'add' page. Use the app name and model name to construct a new Page model. """ url_data = re.search(self.CREATE_REGEX, validated_data['url']).groupdict() content_type = ContentType.objects.get_by_natural_key(url_data['app_name'], url_data['model_name']) page_class = content_type.model_class() parent_page = Page.objects.get(pk=url_data['parent_id']).specific page = page_class() return page_class, page, parent_page
39.855856
107
0.635624
cf051fa5c0ef57f45cfbf34d85e8d24b4bbed3f5
899
py
Python
brain_games/games/progression.py
ilitili/python-project-lvl1
a2f5e836f5ce6992cdf543beb06ff20555025cc8
[ "MIT" ]
2
2020-08-19T09:34:18.000Z
2020-08-30T20:43:15.000Z
brain_games/games/progression.py
ilitili/python-project-lvl1
a2f5e836f5ce6992cdf543beb06ff20555025cc8
[ "MIT" ]
11
2020-08-25T20:46:35.000Z
2021-07-30T03:40:55.000Z
brain_games/games/progression.py
ilitili/python-project-lvl1
a2f5e836f5ce6992cdf543beb06ff20555025cc8
[ "MIT" ]
11
2020-09-09T06:06:46.000Z
2022-01-08T10:08:46.000Z
"""Progression game engine.""" import random GAME_DESCRIPTION = 'What number is missing in the progression?' START_MIN = 1 START_MAX = 20 STEP_MIN = 1 STEP_MAX = 10 PROGERSSION_LENGTH = 10 def get_challenge(): """Progression game Q&A generation. It forms an arithmetic progression, replacing one of the numbers with two points. Returns: question{str} : arithmetic progression; answer{str} : hidden number """ start = random.randint(START_MIN, START_MAX) step = random.randint(STEP_MIN, STEP_MAX) progression = [(start + (ind * step)) for ind in range(PROGERSSION_LENGTH)] hidden_element_index = random.randint(0, PROGERSSION_LENGTH - 1) answer = str(progression[hidden_element_index]) progression[hidden_element_index] = '..' question = ' '.join(str(ind) for ind in progression) return (question, answer)
27.242424
68
0.68743
72690bba5957e632c271e2c6696bd907cccc3c32
5,835
py
Python
deca/gui/dataviewwidget.py
kk49/deca
8a03ea5d1b7ae0d787638f1797b6e2cb46de4bae
[ "MIT" ]
50
2019-06-05T04:01:04.000Z
2022-03-05T14:56:43.000Z
deca/gui/dataviewwidget.py
kk49/deca
8a03ea5d1b7ae0d787638f1797b6e2cb46de4bae
[ "MIT" ]
115
2019-03-27T13:34:00.000Z
2022-03-11T23:43:12.000Z
deca/gui/dataviewwidget.py
kk49/deca
8a03ea5d1b7ae0d787638f1797b6e2cb46de4bae
[ "MIT" ]
13
2020-01-25T01:15:49.000Z
2022-02-08T02:20:05.000Z
from typing import Optional, List from deca.db_processor import VfsNode from deca.db_view import VfsView from deca.db_processor import VfsNode, VfsProcessor from deca.ff_types import * from deca.gui.viewer_adf import DataViewerAdf from deca.gui.viewer_rtpc import DataViewerRtpc from deca.gui.viewer_image import DataViewerImage from deca.gui.viewer_raw import DataViewerRaw from deca.gui.viewer_info import DataViewerInfo from deca.gui.viewer_text import DataViewerText from deca.gui.viewer_sarc import DataViewerSarc from deca.gui.viewer_obc import DataViewerObc from deca.gui.deca_interfaces import IVfsViewSrc from PySide2.QtCore import Signal from PySide2.QtWidgets import QSizePolicy, QWidget, QVBoxLayout, QTabWidget class DataViewWidget(QWidget): def __init__(self, *args, **kwargs): QWidget.__init__(self, *args, **kwargs) self.data_source: Optional[IVfsViewSrc] = None self.tab_info = DataViewerInfo() self.tab_raw = DataViewerRaw() self.tab_text = DataViewerText() self.tab_sarc = DataViewerSarc() self.tab_image = DataViewerImage() self.tab_adf = DataViewerAdf() self.tab_adf_gdc = DataViewerAdf() self.tab_rtpc = DataViewerRtpc() self.tab_obc = DataViewerObc() self.tab_widget = QTabWidget() self.tab_info_index = self.tab_widget.addTab(self.tab_info, 'Info') self.tab_raw_index = self.tab_widget.addTab(self.tab_raw, 'Raw/Hex') self.tab_text_index = self.tab_widget.addTab(self.tab_text, 'Text') self.tab_sarc_index = self.tab_widget.addTab(self.tab_sarc, 'SARC') self.tab_image_index = self.tab_widget.addTab(self.tab_image, 'Image') self.tab_adf_index = self.tab_widget.addTab(self.tab_adf, 'ADF') self.tab_adf_gdc_index = self.tab_widget.addTab(self.tab_adf_gdc, 'ADF/GDC') self.tab_rtpc_index = self.tab_widget.addTab(self.tab_rtpc, 'RTPC') self.tab_obc_index = self.tab_widget.addTab(self.tab_obc, 'OBC') size = QSizePolicy(QSizePolicy.Preferred, QSizePolicy.Preferred) size.setVerticalStretch(1) self.tab_widget.setSizePolicy(size) self.main_layout = QVBoxLayout() self.main_layout.addWidget(self.tab_widget) self.setLayout(self.main_layout) def data_source_set(self, data_source: IVfsViewSrc): self.data_source = data_source self.data_source.signal_selection_changed.connect(self.vnode_selection_changed) self.tab_sarc.signal_archive_open.connect(self.data_source.archive_open) def vnode_selection_changed(self): print('DataViewWidget:vnode_selection_changed') def vnode_2click_selected(self, uids: List[int]): vfs: VfsProcessor = self.data_source.vfs_get() vnodes = [vfs.node_where_uid(uid) for uid in uids] for uid, vnode in zip(uids, vnodes): print(f'DataViewWidget:vnode_2click_selected: {uid}: {vnode}') vnode = vnodes[0] self.tab_widget.setTabEnabled(self.tab_info_index, True) self.tab_info.vnode_process(vfs, vnode) self.tab_widget.setTabEnabled(self.tab_raw_index, True) self.tab_raw.vnode_process(vfs, vnode) self.tab_widget.setTabEnabled(self.tab_text_index, False) self.tab_widget.setTabEnabled(self.tab_sarc_index, False) self.tab_widget.setTabEnabled(self.tab_image_index, False) self.tab_widget.setTabEnabled(self.tab_adf_index, False) self.tab_widget.setTabEnabled(self.tab_adf_gdc_index, False) self.tab_widget.setTabEnabled(self.tab_rtpc_index, False) self.tab_widget.setTabEnabled(self.tab_obc_index, False) if vnode.file_type in {FTYPE_TXT}: self.tab_widget.setTabEnabled(self.tab_text_index, True) self.tab_text.vnode_process(vfs, vnode) self.tab_widget.setCurrentIndex(self.tab_text_index) elif vnode.file_type in {FTYPE_SARC}: self.tab_widget.setTabEnabled(self.tab_sarc_index, True) self.tab_sarc.vnode_process(vfs, vnode) self.tab_widget.setCurrentIndex(self.tab_sarc_index) elif vnode.file_type in {FTYPE_AVTX, FTYPE_ATX, FTYPE_HMDDSC, FTYPE_DDS, FTYPE_BMP}: self.tab_widget.setTabEnabled(self.tab_image_index, True) self.tab_image.vnode_process(vfs, vnode) self.tab_widget.setCurrentIndex(self.tab_image_index) elif vnode.file_type in {FTYPE_ADF, FTYPE_ADF_BARE, FTYPE_ADF0}: # handle the case for GenZero where ADF files can be in the vnodes_adf = [] vnodes_adfb = [] for vnode in vnodes: if vnode.file_type == FTYPE_ADF_BARE: vnodes_adfb.append(vnode) else: vnodes_adf.append(vnode) if len(vnodes_adf) > 0: self.tab_widget.setTabEnabled(self.tab_adf_index, True) self.tab_adf.vnode_process(vfs, vnodes_adf[0]) self.tab_widget.setCurrentIndex(self.tab_adf_index) if len(vnodes_adfb) > 0: self.tab_widget.setTabEnabled(self.tab_adf_gdc_index, True) self.tab_adf_gdc.vnode_process(vfs, vnodes_adfb[0]) self.tab_widget.setCurrentIndex(self.tab_adf_index) elif vnode.file_type in {FTYPE_RTPC}: self.tab_widget.setTabEnabled(self.tab_rtpc_index, True) self.tab_rtpc.vnode_process(vfs, vnode) self.tab_widget.setCurrentIndex(self.tab_rtpc_index) elif vnode.file_type in {FTYPE_OBC}: self.tab_widget.setTabEnabled(self.tab_obc_index, True) self.tab_obc.vnode_process(vfs, vnode) self.tab_widget.setCurrentIndex(self.tab_obc_index) else: self.tab_widget.setCurrentIndex(self.tab_raw_index)
45.585938
92
0.700086
f4d5acd8ba2bb300b0c4a05c9d4505d31f3c3803
2,660
py
Python
data/p3BR/R2/benchmark/startCirq165.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R2/benchmark/startCirq165.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R2/benchmark/startCirq165.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=3 # total number=31 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[2])) # number=28 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=29 c.append(cirq.H.on(input_qubit[2])) # number=30 c.append(cirq.X.on(input_qubit[2])) # number=12 c.append(cirq.H.on(input_qubit[2])) # number=25 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=26 c.append(cirq.H.on(input_qubit[2])) # number=27 c.append(cirq.H.on(input_qubit[1])) # number=7 c.append(cirq.CZ.on(input_qubit[2],input_qubit[1])) # number=8 c.append(cirq.H.on(input_qubit[1])) # number=9 c.append(cirq.H.on(input_qubit[1])) # number=18 c.append(cirq.CZ.on(input_qubit[2],input_qubit[1])) # number=19 c.append(cirq.H.on(input_qubit[1])) # number=20 c.append(cirq.Y.on(input_qubit[1])) # number=14 c.append(cirq.H.on(input_qubit[1])) # number=22 c.append(cirq.CZ.on(input_qubit[2],input_qubit[1])) # number=23 c.append(cirq.H.on(input_qubit[1])) # number=24 c.append(cirq.Z.on(input_qubit[2])) # number=3 c.append(cirq.X.on(input_qubit[1])) # number=17 c.append(cirq.Y.on(input_qubit[2])) # number=5 c.append(cirq.X.on(input_qubit[2])) # number=21 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=15 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=16 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq165.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
33.670886
77
0.684962