hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
711ec939f77114f558ae32de6989f06e57d48c3a
1,223
py
Python
best_new_music_digest/email.py
vanillaSlice/best-new-music-digest
feaa01cf477d3fef944ad2b4047b4f2b9cd44d1c
[ "MIT" ]
1
2021-01-16T17:48:05.000Z
2021-01-16T17:48:05.000Z
best_new_music_digest/email.py
vanillaSlice/best-new-music-digest
feaa01cf477d3fef944ad2b4047b4f2b9cd44d1c
[ "MIT" ]
2
2021-01-21T12:53:47.000Z
2021-10-20T06:30:38.000Z
best_new_music_digest/email.py
vanillaSlice/best-new-music-digest
feaa01cf477d3fef944ad2b4047b4f2b9cd44d1c
[ "MIT" ]
null
null
null
# pylint: disable=broad-except """ Emails. """ from datetime import datetime from sendgrid import SendGridAPIClient from sendgrid.helpers.mail import Mail from best_new_music_digest import settings def send_email(digest, dad_joke=None, albums_playlist_url=None, tracks_playlist_url=None): """ Sends out digest email. """ if settings.ALWAYS_EMAIL: print("Always email is enabled") should_send = any(d["items"] or d["errors"] for d in digest) or settings.ALWAYS_EMAIL if not should_send: print("No items or errors to email about") return message = Mail( from_email=(settings.SENDER_EMAIL, settings.SENDER_NAME), to_emails=settings.RECIPIENT_EMAIL, ) message.template_id = settings.SENDGRID_TEMPLATE_ID message.dynamic_template_data = { "date": datetime.utcnow().strftime("%d/%m/%Y"), "dad_joke": dad_joke, "digest": digest, "albums_playlist_url": albums_playlist_url, "tracks_playlist_url": tracks_playlist_url, } try: SendGridAPIClient(settings.SENDGRID_API_KEY).send(message) except Exception as exception: print("Failed to send email") print(exception)
24.959184
90
0.686018
97513dfea26c9288a06e091593ec2f86912a9ff0
303
py
Python
iotbx/pdb/nucleic_acid_codes.py
toastisme/cctbx_project
d1a25147b5958822b6923fb55260749ccf9350ff
[ "BSD-3-Clause-LBNL" ]
2
2018-02-01T14:25:48.000Z
2021-09-15T16:36:29.000Z
iotbx/pdb/nucleic_acid_codes.py
toastisme/cctbx_project
d1a25147b5958822b6923fb55260749ccf9350ff
[ "BSD-3-Clause-LBNL" ]
2
2018-06-14T17:04:17.000Z
2019-06-24T20:54:12.000Z
iotbx/pdb/nucleic_acid_codes.py
toastisme/cctbx_project
d1a25147b5958822b6923fb55260749ccf9350ff
[ "BSD-3-Clause-LBNL" ]
1
2022-02-08T10:11:07.000Z
2022-02-08T10:11:07.000Z
from __future__ import absolute_import, division, print_function rna_one_letter_code_dict = { 'ADE':'A', 'CYT':'C', 'URI':'U', 'GUA':'G', 'A':'A', 'C':'C', 'U':'U', 'G':'G',} dna_one_letter_code_dict = { 'ADE':'A', 'CYT':'C', 'THY':'T', 'GUA':'G', 'A':'A', 'C':'C', 'T':'T', 'G':'G',}
13.772727
64
0.50495
d0029b373720e5025b49232c97c5e79a8120486a
448
py
Python
django_geo/admin.py
roverdotcom/django-geo
f832a7f434fa4e2baa54a859596468a283ce7f43
[ "MIT" ]
null
null
null
django_geo/admin.py
roverdotcom/django-geo
f832a7f434fa4e2baa54a859596468a283ce7f43
[ "MIT" ]
1
2018-05-14T20:04:03.000Z
2018-05-17T22:11:09.000Z
django_geo/admin.py
roverdotcom/django-geo
f832a7f434fa4e2baa54a859596468a283ce7f43
[ "MIT" ]
null
null
null
from __future__ import print_function from __future__ import division from __future__ import absolute_import from __future__ import unicode_literals from django.contrib import admin from .models import ZipCode class ZipCodeAdmin(admin.ModelAdmin): list_display = ('zip_code', 'latitude', 'longitude', 'state', 'city') list_filter = ('state',) search_fields = ('zip_code', 'state', 'city') admin.site.register(ZipCode, ZipCodeAdmin)
28
73
0.767857
c2a75185eca108ec3066c1510e4e8604764fa009
41,300
py
Python
venv/Lib/site-packages/sklearn/datasets/_base.py
star10919/drf
77c005794087484d72ffc0d76612a6ac9845821e
[ "BSD-3-Clause" ]
7
2021-01-30T17:42:00.000Z
2022-01-09T08:08:48.000Z
venv/Lib/site-packages/sklearn/datasets/_base.py
star10919/drf
77c005794087484d72ffc0d76612a6ac9845821e
[ "BSD-3-Clause" ]
25
2020-11-16T15:36:41.000Z
2021-06-01T05:15:31.000Z
venv/Lib/site-packages/sklearn/datasets/_base.py
star10919/drf
77c005794087484d72ffc0d76612a6ac9845821e
[ "BSD-3-Clause" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
""" Base IO code for all datasets """ # Copyright (c) 2007 David Cournapeau <cournape@gmail.com> # 2010 Fabian Pedregosa <fabian.pedregosa@inria.fr> # 2010 Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause import csv import hashlib import os import shutil from collections import namedtuple from os import environ, listdir, makedirs from os.path import dirname, expanduser, isdir, join, splitext from ..utils import Bunch from ..utils import check_random_state from ..utils import check_pandas_support from ..utils.validation import _deprecate_positional_args import numpy as np from urllib.request import urlretrieve RemoteFileMetadata = namedtuple('RemoteFileMetadata', ['filename', 'url', 'checksum']) def get_data_home(data_home=None) -> str: """Return the path of the scikit-learn data dir. This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'scikit_learn_data' in the user home folder. Alternatively, it can be set by the 'SCIKIT_LEARN_DATA' environment variable or programmatically by giving an explicit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. Parameters ---------- data_home : str, default=None The path to scikit-learn data directory. If `None`, the default path is `~/sklearn_learn_data`. """ if data_home is None: data_home = environ.get('SCIKIT_LEARN_DATA', join('~', 'scikit_learn_data')) data_home = expanduser(data_home) makedirs(data_home, exist_ok=True) return data_home def clear_data_home(data_home=None): """Delete all the content of the data home cache. Parameters ---------- data_home : str, default=None The path to scikit-learn data directory. If `None`, the default path is `~/sklearn_learn_data`. """ data_home = get_data_home(data_home) shutil.rmtree(data_home) def _convert_data_dataframe(caller_name, data, target, feature_names, target_names, sparse_data=False): pd = check_pandas_support('{} with as_frame=True'.format(caller_name)) if not sparse_data: data_df = pd.DataFrame(data, columns=feature_names) else: data_df = pd.DataFrame.sparse.from_spmatrix( data, columns=feature_names ) target_df = pd.DataFrame(target, columns=target_names) combined_df = pd.concat([data_df, target_df], axis=1) X = combined_df[feature_names] y = combined_df[target_names] if y.shape[1] == 1: y = y.iloc[:, 0] return combined_df, X, y @_deprecate_positional_args def load_files(container_path, *, description=None, categories=None, load_content=True, shuffle=True, encoding=None, decode_error='strict', random_state=0): """Load text files with categories as subfolder names. Individual samples are assumed to be files stored a two levels folder structure such as the following: container_folder/ category_1_folder/ file_1.txt file_2.txt ... file_42.txt category_2_folder/ file_43.txt file_44.txt ... The folder names are used as supervised signal label names. The individual file names are not important. This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if load_content is false it does not try to load the files in memory. To use text files in a scikit-learn classification or clustering algorithm, you will need to use the :mod`~sklearn.feature_extraction.text` module to build a feature extraction transformer that suits your problem. If you set load_content=True, you should also specify the encoding of the text using the 'encoding' parameter. For many modern text files, 'utf-8' will be the correct encoding. If you leave encoding equal to None, then the content will be made of bytes instead of Unicode, and you will not be able to use most functions in :mod:`~sklearn.feature_extraction.text`. Similar feature extractors should be built for other kind of unstructured data input such as images, audio, video, ... Read more in the :ref:`User Guide <datasets>`. Parameters ---------- container_path : str or unicode Path to the main folder holding one subfolder per category description : str or unicode, default=None A paragraph describing the characteristic of the dataset: its source, reference, etc. categories : list of str, default=None If None (default), load all the categories. If not None, list of category names to load (other categories ignored). load_content : bool, default=True Whether to load or not the content of the different files. If true a 'data' attribute containing the text information is present in the data structure returned. If not, a filenames attribute gives the path to the files. shuffle : bool, default=True Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. encoding : str, default=None If None, do not try to decode the content of the files (e.g. for images or other non-text content). If not None, encoding to use to decode text files to Unicode if load_content is True. decode_error : {'strict', 'ignore', 'replace'}, default='strict' Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. Passed as keyword argument 'errors' to bytes.decode. random_state : int, RandomState instance or None, default=0 Determines random number generation for dataset shuffling. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : list of str Only present when `load_content=True`. The raw text data to learn. target : ndarray The target labels (integer index). target_names : list The names of target classes. DESCR : str The full description of the dataset. filenames: ndarray The filenames holding the dataset. """ target = [] target_names = [] filenames = [] folders = [f for f in sorted(listdir(container_path)) if isdir(join(container_path, f))] if categories is not None: folders = [f for f in folders if f in categories] for label, folder in enumerate(folders): target_names.append(folder) folder_path = join(container_path, folder) documents = [join(folder_path, d) for d in sorted(listdir(folder_path))] target.extend(len(documents) * [label]) filenames.extend(documents) # convert to array for fancy indexing filenames = np.array(filenames) target = np.array(target) if shuffle: random_state = check_random_state(random_state) indices = np.arange(filenames.shape[0]) random_state.shuffle(indices) filenames = filenames[indices] target = target[indices] if load_content: data = [] for filename in filenames: with open(filename, 'rb') as f: data.append(f.read()) if encoding is not None: data = [d.decode(encoding, decode_error) for d in data] return Bunch(data=data, filenames=filenames, target_names=target_names, target=target, DESCR=description) return Bunch(filenames=filenames, target_names=target_names, target=target, DESCR=description) def load_data(module_path, data_file_name): """Loads data from module_path/data/data_file_name. Parameters ---------- module_path : string The module path. data_file_name : string Name of csv file to be loaded from module_path/data/data_file_name. For example 'wine_data.csv'. Returns ------- data : Numpy array A 2D array with each row representing one sample and each column representing the features of a given sample. target : Numpy array A 1D array holding target variables for all the samples in `data. For example target[0] is the target varible for data[0]. target_names : Numpy array A 1D array containing the names of the classifications. For example target_names[0] is the name of the target[0] class. """ with open(join(module_path, 'data', data_file_name)) as csv_file: data_file = csv.reader(csv_file) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) target_names = np.array(temp[2:]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=int) for i, ir in enumerate(data_file): data[i] = np.asarray(ir[:-1], dtype=np.float64) target[i] = np.asarray(ir[-1], dtype=int) return data, target, target_names @_deprecate_positional_args def load_wine(*, return_X_y=False, as_frame=False): """Load and return the wine dataset (classification). .. versionadded:: 0.18 The wine dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class [59,71,48] Samples total 178 Dimensionality 13 Features real, positive ================= ============== Read more in the :ref:`User Guide <wine_dataset>`. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (178, 13) The data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, Series} of shape (178,) The classification target. If `as_frame=True`, `target` will be a pandas Series. feature_names: list The names of the dataset columns. target_names: list The names of target classes. frame: DataFrame of shape (178, 14) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 DESCR: str The full description of the dataset. (data, target) : tuple if ``return_X_y`` is True The copy of UCI ML Wine Data Set dataset is downloaded and modified to fit standard format from: https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data Examples -------- Let's say you are interested in the samples 10, 80, and 140, and want to know their class name. >>> from sklearn.datasets import load_wine >>> data = load_wine() >>> data.target[[10, 80, 140]] array([0, 1, 2]) >>> list(data.target_names) ['class_0', 'class_1', 'class_2'] """ module_path = dirname(__file__) data, target, target_names = load_data(module_path, 'wine_data.csv') with open(join(module_path, 'descr', 'wine_data.rst')) as rst_file: fdescr = rst_file.read() feature_names = ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline'] frame = None target_columns = ['target', ] if as_frame: frame, data, target = _convert_data_dataframe("load_wine", data, target, feature_names, target_columns) if return_X_y: return data, target return Bunch(data=data, target=target, frame=frame, target_names=target_names, DESCR=fdescr, feature_names=feature_names) @_deprecate_positional_args def load_iris(*, return_X_y=False, as_frame=False): """Load and return the iris dataset (classification). The iris dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class 50 Samples total 150 Dimensionality 4 Features real, positive ================= ============== Read more in the :ref:`User Guide <iris_dataset>`. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (150, 4) The data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, Series} of shape (150,) The classification target. If `as_frame=True`, `target` will be a pandas Series. feature_names: list The names of the dataset columns. target_names: list The names of target classes. frame: DataFrame of shape (150, 5) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 DESCR: str The full description of the dataset. filename: str The path to the location of the data. .. versionadded:: 0.20 (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 Notes ----- .. versionchanged:: 0.20 Fixed two wrong data points according to Fisher's paper. The new version is the same as in R, but not as in the UCI Machine Learning Repository. Examples -------- Let's say you are interested in the samples 10, 25, and 50, and want to know their class name. >>> from sklearn.datasets import load_iris >>> data = load_iris() >>> data.target[[10, 25, 50]] array([0, 0, 1]) >>> list(data.target_names) ['setosa', 'versicolor', 'virginica'] """ module_path = dirname(__file__) data, target, target_names = load_data(module_path, 'iris.csv') iris_csv_filename = join(module_path, 'data', 'iris.csv') with open(join(module_path, 'descr', 'iris.rst')) as rst_file: fdescr = rst_file.read() feature_names = ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] frame = None target_columns = ['target', ] if as_frame: frame, data, target = _convert_data_dataframe("load_iris", data, target, feature_names, target_columns) if return_X_y: return data, target return Bunch(data=data, target=target, frame=frame, target_names=target_names, DESCR=fdescr, feature_names=feature_names, filename=iris_csv_filename) @_deprecate_positional_args def load_breast_cancer(*, return_X_y=False, as_frame=False): """Load and return the breast cancer wisconsin dataset (classification). The breast cancer dataset is a classic and very easy binary classification dataset. ================= ============== Classes 2 Samples per class 212(M),357(B) Samples total 569 Dimensionality 30 Features real, positive ================= ============== Read more in the :ref:`User Guide <breast_cancer_dataset>`. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (569, 30) The data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, Series} of shape (569,) The classification target. If `as_frame=True`, `target` will be a pandas Series. feature_names: list The names of the dataset columns. target_names: list The names of target classes. frame: DataFrame of shape (569, 31) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 DESCR: str The full description of the dataset. filename: str The path to the location of the data. .. versionadded:: 0.20 (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is downloaded from: https://goo.gl/U2Uwz2 Examples -------- Let's say you are interested in the samples 10, 50, and 85, and want to know their class name. >>> from sklearn.datasets import load_breast_cancer >>> data = load_breast_cancer() >>> data.target[[10, 50, 85]] array([0, 1, 0]) >>> list(data.target_names) ['malignant', 'benign'] """ module_path = dirname(__file__) data, target, target_names = load_data(module_path, 'breast_cancer.csv') csv_filename = join(module_path, 'data', 'breast_cancer.csv') with open(join(module_path, 'descr', 'breast_cancer.rst')) as rst_file: fdescr = rst_file.read() feature_names = np.array(['mean radius', 'mean texture', 'mean perimeter', 'mean area', 'mean smoothness', 'mean compactness', 'mean concavity', 'mean concave points', 'mean symmetry', 'mean fractal dimension', 'radius error', 'texture error', 'perimeter error', 'area error', 'smoothness error', 'compactness error', 'concavity error', 'concave points error', 'symmetry error', 'fractal dimension error', 'worst radius', 'worst texture', 'worst perimeter', 'worst area', 'worst smoothness', 'worst compactness', 'worst concavity', 'worst concave points', 'worst symmetry', 'worst fractal dimension']) frame = None target_columns = ['target', ] if as_frame: frame, data, target = _convert_data_dataframe("load_breast_cancer", data, target, feature_names, target_columns) if return_X_y: return data, target return Bunch(data=data, target=target, frame=frame, target_names=target_names, DESCR=fdescr, feature_names=feature_names, filename=csv_filename) @_deprecate_positional_args def load_digits(*, n_class=10, return_X_y=False, as_frame=False): """Load and return the digits dataset (classification). Each datapoint is a 8x8 image of a digit. ================= ============== Classes 10 Samples per class ~180 Samples total 1797 Dimensionality 64 Features integers 0-16 ================= ============== Read more in the :ref:`User Guide <digits_dataset>`. Parameters ---------- n_class : int, default=10 The number of classes to return. Between 0 and 10. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (1797, 64) The flattened data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, Series} of shape (1797,) The classification target. If `as_frame=True`, `target` will be a pandas Series. feature_names: list The names of the dataset columns. target_names: list The names of target classes. .. versionadded:: 0.20 frame: DataFrame of shape (1797, 65) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 images: {ndarray} of shape (1797, 8, 8) The raw image data. DESCR: str The full description of the dataset. (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 This is a copy of the test set of the UCI ML hand-written digits datasets https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits Examples -------- To load the data and visualize the images:: >>> from sklearn.datasets import load_digits >>> digits = load_digits() >>> print(digits.data.shape) (1797, 64) >>> import matplotlib.pyplot as plt #doctest: +SKIP >>> plt.gray() #doctest: +SKIP >>> plt.matshow(digits.images[0]) #doctest: +SKIP >>> plt.show() #doctest: +SKIP """ module_path = dirname(__file__) data = np.loadtxt(join(module_path, 'data', 'digits.csv.gz'), delimiter=',') with open(join(module_path, 'descr', 'digits.rst')) as f: descr = f.read() target = data[:, -1].astype(int, copy=False) flat_data = data[:, :-1] images = flat_data.view() images.shape = (-1, 8, 8) if n_class < 10: idx = target < n_class flat_data, target = flat_data[idx], target[idx] images = images[idx] feature_names = ['pixel_{}_{}'.format(row_idx, col_idx) for row_idx in range(8) for col_idx in range(8)] frame = None target_columns = ['target', ] if as_frame: frame, flat_data, target = _convert_data_dataframe("load_digits", flat_data, target, feature_names, target_columns) if return_X_y: return flat_data, target return Bunch(data=flat_data, target=target, frame=frame, feature_names=feature_names, target_names=np.arange(10), images=images, DESCR=descr) @_deprecate_positional_args def load_diabetes(*, return_X_y=False, as_frame=False): """Load and return the diabetes dataset (regression). ============== ================== Samples total 442 Dimensionality 10 Features real, -.2 < x < .2 Targets integer 25 - 346 ============== ================== .. note:: The meaning of each feature (i.e. `feature_names`) might be unclear (especially for `ltg`) as the documentation of the original dataset is not explicit. We provide information that seems correct in regard with the scientific literature in this field of research. Read more in the :ref:`User Guide <diabetes_dataset>`. Parameters ---------- return_X_y : bool, default=False. If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (442, 10) The data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, Series} of shape (442,) The regression target. If `as_frame=True`, `target` will be a pandas Series. feature_names: list The names of the dataset columns. frame: DataFrame of shape (442, 11) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 DESCR: str The full description of the dataset. data_filename: str The path to the location of the data. target_filename: str The path to the location of the target. (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 """ module_path = dirname(__file__) base_dir = join(module_path, 'data') data_filename = join(base_dir, 'diabetes_data.csv.gz') data = np.loadtxt(data_filename) target_filename = join(base_dir, 'diabetes_target.csv.gz') target = np.loadtxt(target_filename) with open(join(module_path, 'descr', 'diabetes.rst')) as rst_file: fdescr = rst_file.read() feature_names = ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6'] frame = None target_columns = ['target', ] if as_frame: frame, data, target = _convert_data_dataframe("load_diabetes", data, target, feature_names, target_columns) if return_X_y: return data, target return Bunch(data=data, target=target, frame=frame, DESCR=fdescr, feature_names=feature_names, data_filename=data_filename, target_filename=target_filename) @_deprecate_positional_args def load_linnerud(*, return_X_y=False, as_frame=False): """Load and return the physical excercise linnerud dataset. This dataset is suitable for multi-ouput regression tasks. ============== ============================ Samples total 20 Dimensionality 3 (for both data and target) Features integer Targets integer ============== ============================ Read more in the :ref:`User Guide <linnerrud_dataset>`. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric, string or categorical). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (20, 3) The data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, dataframe} of shape (20, 3) The regression targets. If `as_frame=True`, `target` will be a pandas DataFrame. feature_names: list The names of the dataset columns. target_names: list The names of the target columns. frame: DataFrame of shape (20, 6) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 DESCR: str The full description of the dataset. data_filename: str The path to the location of the data. target_filename: str The path to the location of the target. .. versionadded:: 0.20 (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 """ base_dir = join(dirname(__file__), 'data/') data_filename = join(base_dir, 'linnerud_exercise.csv') target_filename = join(base_dir, 'linnerud_physiological.csv') # Read data data_exercise = np.loadtxt(data_filename, skiprows=1) data_physiological = np.loadtxt(target_filename, skiprows=1) # Read header with open(data_filename) as f: header_exercise = f.readline().split() with open(target_filename) as f: header_physiological = f.readline().split() with open(dirname(__file__) + '/descr/linnerud.rst') as f: descr = f.read() frame = None if as_frame: (frame, data_exercise, data_physiological) = _convert_data_dataframe("load_linnerud", data_exercise, data_physiological, header_exercise, header_physiological) if return_X_y: return data_exercise, data_physiological return Bunch(data=data_exercise, feature_names=header_exercise, target=data_physiological, target_names=header_physiological, frame=frame, DESCR=descr, data_filename=data_filename, target_filename=target_filename) @_deprecate_positional_args def load_boston(*, return_X_y=False): """Load and return the boston house-prices dataset (regression). ============== ============== Samples total 506 Dimensionality 13 Features real, positive Targets real 5. - 50. ============== ============== Read more in the :ref:`User Guide <boston_dataset>`. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : ndarray of shape (506, 13) The data matrix. target : ndarray of shape (506, ) The regression target. filename : str The physical location of boston csv dataset. .. versionadded:: 0.20 DESCR : str The full description of the dataset. feature_names : ndarray The names of features (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 Notes ----- .. versionchanged:: 0.20 Fixed a wrong data point at [445, 0]. Examples -------- >>> from sklearn.datasets import load_boston >>> X, y = load_boston(return_X_y=True) >>> print(X.shape) (506, 13) """ module_path = dirname(__file__) fdescr_name = join(module_path, 'descr', 'boston_house_prices.rst') with open(fdescr_name) as f: descr_text = f.read() data_file_name = join(module_path, 'data', 'boston_house_prices.csv') with open(data_file_name) as f: data_file = csv.reader(f) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,)) temp = next(data_file) # names of features feature_names = np.array(temp) for i, d in enumerate(data_file): data[i] = np.asarray(d[:-1], dtype=np.float64) target[i] = np.asarray(d[-1], dtype=np.float64) if return_X_y: return data, target return Bunch(data=data, target=target, # last column is target value feature_names=feature_names[:-1], DESCR=descr_text, filename=data_file_name) def load_sample_images(): """Load sample images for image manipulation. Loads both, ``china`` and ``flower``. Read more in the :ref:`User Guide <sample_images>`. Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. images : list of ndarray of shape (427, 640, 3) The two sample image. filenames : list The filenames for the images. DESCR : str The full description of the dataset. Examples -------- To load the data and visualize the images: >>> from sklearn.datasets import load_sample_images >>> dataset = load_sample_images() #doctest: +SKIP >>> len(dataset.images) #doctest: +SKIP 2 >>> first_img_data = dataset.images[0] #doctest: +SKIP >>> first_img_data.shape #doctest: +SKIP (427, 640, 3) >>> first_img_data.dtype #doctest: +SKIP dtype('uint8') """ # import PIL only when needed from ..externals._pilutil import imread module_path = join(dirname(__file__), "images") with open(join(module_path, 'README.txt')) as f: descr = f.read() filenames = [join(module_path, filename) for filename in sorted(os.listdir(module_path)) if filename.endswith(".jpg")] # Load image data for each image in the source folder. images = [imread(filename) for filename in filenames] return Bunch(images=images, filenames=filenames, DESCR=descr) def load_sample_image(image_name): """Load the numpy array of a single sample image Read more in the :ref:`User Guide <sample_images>`. Parameters ---------- image_name : {`china.jpg`, `flower.jpg`} The name of the sample image loaded Returns ------- img : 3D array The image as a numpy array: height x width x color Examples -------- >>> from sklearn.datasets import load_sample_image >>> china = load_sample_image('china.jpg') # doctest: +SKIP >>> china.dtype # doctest: +SKIP dtype('uint8') >>> china.shape # doctest: +SKIP (427, 640, 3) >>> flower = load_sample_image('flower.jpg') # doctest: +SKIP >>> flower.dtype # doctest: +SKIP dtype('uint8') >>> flower.shape # doctest: +SKIP (427, 640, 3) """ images = load_sample_images() index = None for i, filename in enumerate(images.filenames): if filename.endswith(image_name): index = i break if index is None: raise AttributeError("Cannot find sample image: %s" % image_name) return images.images[index] def _pkl_filepath(*args, **kwargs): """Return filename for Python 3 pickles args[-1] is expected to be the ".pkl" filename. For compatibility with older scikit-learn versions, a suffix is inserted before the extension. _pkl_filepath('/path/to/folder', 'filename.pkl') returns '/path/to/folder/filename_py3.pkl' """ py3_suffix = kwargs.get("py3_suffix", "_py3") basename, ext = splitext(args[-1]) basename += py3_suffix new_args = args[:-1] + (basename + ext,) return join(*new_args) def _sha256(path): """Calculate the sha256 hash of the file at path.""" sha256hash = hashlib.sha256() chunk_size = 8192 with open(path, "rb") as f: while True: buffer = f.read(chunk_size) if not buffer: break sha256hash.update(buffer) return sha256hash.hexdigest() def _fetch_remote(remote, dirname=None): """Helper function to download a remote dataset into path Fetch a dataset pointed by remote's url, save into path using remote's filename and ensure its integrity based on the SHA256 Checksum of the downloaded file. Parameters ---------- remote : RemoteFileMetadata Named tuple containing remote dataset meta information: url, filename and checksum dirname : string Directory to save the file to. Returns ------- file_path: string Full path of the created file. """ file_path = (remote.filename if dirname is None else join(dirname, remote.filename)) urlretrieve(remote.url, file_path) checksum = _sha256(file_path) if remote.checksum != checksum: raise IOError("{} has an SHA256 checksum ({}) " "differing from expected ({}), " "file may be corrupted.".format(file_path, checksum, remote.checksum)) return file_path
34.359401
85
0.578523
e1e58615ee4d6023ecaa9b21ca669b84f6d26279
387
py
Python
src/unittest/02/survey.py
mrdulin/python-codelab
3d960a14a96b3a673b7dc2277d202069b1f8e778
[ "MIT" ]
null
null
null
src/unittest/02/survey.py
mrdulin/python-codelab
3d960a14a96b3a673b7dc2277d202069b1f8e778
[ "MIT" ]
null
null
null
src/unittest/02/survey.py
mrdulin/python-codelab
3d960a14a96b3a673b7dc2277d202069b1f8e778
[ "MIT" ]
3
2020-02-19T08:02:04.000Z
2021-06-08T13:27:51.000Z
class AnonymousSurvey(): def __init__(self, question): self.question = question self.responses = [] def show_question(self): print(self.question) def store_response(self, response): self.responses.append(response) def show_results(self): print('Survey results:') for res in self.responses: print('- ' + res)
24.1875
39
0.607235
5b38fc13c035f7e4111b7500aceaf1d13cea58b0
4,848
py
Python
pypisd/main.py
fegoa89/pypisd
1fefbf77fd2535c415a1342ffa4a0b10c87d657b
[ "MIT" ]
null
null
null
pypisd/main.py
fegoa89/pypisd
1fefbf77fd2535c415a1342ffa4a0b10c87d657b
[ "MIT" ]
null
null
null
pypisd/main.py
fegoa89/pypisd
1fefbf77fd2535c415a1342ffa4a0b10c87d657b
[ "MIT" ]
null
null
null
import sys import os import re import csv import toml import argparse import requests import pathlib from subprocess import Popen, PIPE, STDOUT import concurrent.futures from bs4 import BeautifulSoup def cli(): parser = argparse.ArgumentParser() parser.add_argument( "-i", "--input_file", help="File use to read libraries from instead of the environment", ) parser.add_argument( "-o", "--output_file", help="File where the source distribution links will be saved, default 'pypi_sd_links.csv'", ) args = parser.parse_args() if args.input_file: # Get libraries from file lib_list = fetch_libraries_from_file(args.input_file) else: # Get libraries from environment lib_list = fetch_libraries_from_environment() # Fetch source distribution download link for each library & version source_distribution_list = fetch_and_extract_details_for_library_list(lib_list) # Write source distribution list to CSV write_library_info_to_csv(source_distribution_list, args.output_file) def fetch_libraries_from_environment() -> list(list()): lib_list_bytes = get_pip_list_stdout() return extract_lib_list_from_bytes_output(lib_list_bytes) def fetch_libraries_from_file(file_path: str) -> list(list()): if not os.path.isfile(file_path): print(f"Input file {file_path} do not exist") sys.exit(1) file_suffix = pathlib.Path(file_path).suffix if file_suffix == ".toml": return fetch_lib_list_from_toml_file(file_path) else: return fetch_lib_list_from_standard_file(file_path) def fetch_lib_list_from_toml_file(file_path: str) -> list(list()): data = toml.load(file_path) dependencies = data["tool"]["poetry"]["dependencies"] return [ [key, re.sub(r"[(\^\s*)|(\~\s*)]", "", val)] for key, val in dependencies.items() ] def fetch_lib_list_from_standard_file(file_path: str) -> list(list()): with open(file_path) as f: lines = f.readlines() return [ re.split("[<|>|~=|==|!=|<=|>=|===|, \!?:]+", line.strip()) for line in lines ] def fetch_and_extract_details_for_library_list(lib_list: list) -> list(list()): source_distribution_list = list() with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor: futures = [] for library in lib_list: version = library[1] if len(library) == 2 else None futures.append( executor.submit( get_source_distribution_link_for_library, library=library[0], version=version, ) ) for future in concurrent.futures.as_completed(futures): source_distribution_list.append(future.result()) return source_distribution_list def get_pip_list_stdout() -> bytes: pip_freeze_process = Popen(["pip", "list"], stdout=PIPE, stderr=STDOUT) output, error = pip_freeze_process.communicate() if error: print(f"Error while getting list of libraries from environment {error}") sys.exit(1) return output def extract_lib_list_from_bytes_output(pip_stdout: bytes) -> list: lib_list = list() for output_line in pip_stdout.splitlines()[2:]: line = output_line.decode("utf-8").split() if len(line) == 2: lib_list.append(line) return lib_list def get_source_distribution_link_for_library(library: str, version: str) -> list: if version: url = f"https://pypi.org/project/{library}/{version}/#files" else: url = f"https://pypi.org/project/{library}/#files" page = requests.get(url) soup = BeautifulSoup(page.text, "html.parser") library_license = soup.find("strong", text="License:") library_license = ( library_license.next_sibling.strip() if library_license else "Not found" ) get_download_link_div = soup.find("div", {"class": "card file__card"}) source_download_link = ( get_download_link_div.find("a")["href"] if get_download_link_div else f"Can not find download link for {library}, version {version}" ) return [ library, version if version else "using latest version", library_license, source_download_link, ] def write_library_info_to_csv(sd_list: list(list()), file_name: str): file_name = file_name if file_name else "pypi_sd_links.csv" with open(file_name, "w", encoding="UTF8", newline="") as f: writer = csv.writer(f) # write the header writer.writerow( ["library_name", "version", "license", "source_distribution_link"] ) # write multiple rows writer.writerows(sd_list) print(f"Results available in {file_name}")
32.10596
99
0.656147
0c4553cf4f13caa3177d80fc3fa1ede7061c60a9
1,172
py
Python
moredata/parser/__init__.py
thomassonobe/more-data
b3d4a8e32f385a69749c8139915e3638fcced37b
[ "BSD-3-Clause" ]
null
null
null
moredata/parser/__init__.py
thomassonobe/more-data
b3d4a8e32f385a69749c8139915e3638fcced37b
[ "BSD-3-Clause" ]
null
null
null
moredata/parser/__init__.py
thomassonobe/more-data
b3d4a8e32f385a69749c8139915e3638fcced37b
[ "BSD-3-Clause" ]
null
null
null
import json import csv from h3 import h3 from ..utils import read_json_from_file, load_json from shapely.geometry import asPoint from numpy import array def _add_geo_location(doc): doc["geo_location"] = asPoint(array([doc["longitude"], doc["latitude"]])).wkt return doc def _add_code_point(doc): doc["code_h3"] = h3.geo_to_h3(doc["latitude"], doc["longitude"], 8) return doc def parse_document(data, **kwargs): array_point_field = kwargs.get("array_point_field") geo_location = kwargs.get("geo_location") code_h3 = kwargs.get("code_h3") for doc in read_json_from_file(data): if geo_location: if array_point_field != None: doc[array_point_field] = [ _add_geo_location(points) for points in doc[array_point_field] ] else: doc = _add_geo_location(doc) if code_h3: if array_point_field != None: doc[array_point_field] = [ _add_code_point(points) for points in doc[array_point_field] ] else: doc = _add_code_point(doc) yield doc
28.585366
82
0.614334
4acc2ff137c1fe5fa06cfd0748f65746ddb51daa
13,176
py
Python
python/IndividualizedSpatialModels/ProgramFinal/ccobra_models/spatial_model_prem3_understood.py
ShiroDevC/portfolio
f31ce2bc4a5a2725d4de40a22997dca2b361d367
[ "MIT" ]
null
null
null
python/IndividualizedSpatialModels/ProgramFinal/ccobra_models/spatial_model_prem3_understood.py
ShiroDevC/portfolio
f31ce2bc4a5a2725d4de40a22997dca2b361d367
[ "MIT" ]
null
null
null
python/IndividualizedSpatialModels/ProgramFinal/ccobra_models/spatial_model_prem3_understood.py
ShiroDevC/portfolio
f31ce2bc4a5a2725d4de40a22997dca2b361d367
[ "MIT" ]
null
null
null
''' Module for a individualized spatial model to be used in the CCOBRA Framework. Each individualized model uses one or more individualizations implemented in the modified spatial model. This Module uses the 'premise three misinterpreted' individualization. @author: Christian Breu <breuch@web.de> ''' from copy import deepcopy import ccobra from spatial_reasoner import main_module_param class SpatialModelParam(ccobra.CCobraModel): """ Model to test the individualization, which is responsible for the third premise. If the individualization is active, the third premise will be inverted. The individualization can be activated in the adapt function. The individualization can be activated and deactivated dynamically. The rating and prior values need to be over a specified threshold, to activate the individualization. """ # list for the previously given answers by the model previous_model_ans = [] # Variable for the parameter assignment for the spatial model parameter_assignment = [[False, False, False, False, False, False], [False, False, False, False, False]] # rating value for the individualization ind_rating = 0 # prior of the individualization ind_rating_prior = 0 def __init__(self, name='SpatialModelPrem3Understood'): """ Initializes the Model by calling the parent-class constructor and passing information about the name as well as supported domains and response-types. Each individualized model(except the categories model) can solve problems of the "verify" and "single-choice" type. Parameters ---------- name : str Name of the model. Will be used as an identifier throughout the evaluation phase. Should be unique. """ super(SpatialModelParam, self).__init__( name, ["spatial-relational"], ["verify", "single-choice"]) # initializes the spatial model and the parameter settings def start_participant(self, **kwargs): """ Model initialization method. Used to setup the initial state of its datastructures, memory, etc. Resets the individualization's rating, activation and the stored problem answers. **Attention**: Should reset the internal state of the model. """ # reset the stored answers of the spatial model for each participant self.previous_model_ans = [] # reset the parameters for the next participant self.parameter_assignment = [[False, False, False, False, False, False], [False, False, False, False, False]] # reset the rating of the individualization. self.ind_rating = 0 def predict(self, item, parameters=None, **kwargs): """ Generates a prediction based on a given task item. Can make a prediction with verify and single-choice tasks. The prediction will be made with the spatial model with individualizations. The spatial model takes a list of activation parameters. With these parameters, the spatial model will perform the task and return an appropriate answer. Depending on the task type, different answer types are returned(see below) Parameters ---------- item : ccobra.data.Item Task item container. Holds information about the task, domain, response type and response choices. parameters : list The list with the activation values for all the individualizations in the model. (e.g., [[False, False, False, False, False, False], [False, False, False, False, False]]). Returns ------- list(str) Single-choice relational response in list representation (e.g., ['A', 'left', 'B']) or a verification relational response in Boolean representation. """ if parameters is None: # no parameters were given, use the current general assignment. parameters = self.parameter_assignment # initialize the spatial model spatial_model = main_module_param.MainModule() rel_prob = deepcopy(item.task) # get the problem premises # convert the premises to the form [A, relation, B] to be used by the spatial model for rel_prem in rel_prob: relation = rel_prem[0] rel_prem[0] = rel_prem[1] rel_prem[1] = relation # checks for the response type to choose an appropriate function from the # spatial model and a correct conversion of the question premise format. if item.response_type == "single-choice": # for single choice problems, the format of the question premises # is different. rel_questions = deepcopy(item.choices) for rel_pre in rel_questions: rel_pr = rel_pre[0] # unwrap the list of the actual premise relation = rel_pr[0] rel_pr[0] = rel_pr[1] rel_pr[1] = relation rel_pre = rel_pr rel_prob.append(rel_pr) # calls an apropriate function from the spatial model that will return # the given answer with the correct format for the evaluation in the framework. answer = spatial_model.interpret_spatial2exp_parameters(rel_prob, deepcopy(parameters)) # store the answer given by the model for later use in the adapt function. self.previous_model_ans.append(answer) return answer # for all verification problems the standard function will be called from the # spatial model. The format of the question premises is different, that's # why the conversion is different. rel_questions = deepcopy(item.choices[0]) # get the question premise for rel_pre in rel_questions: relation = rel_pre[0] rel_pre[0] = rel_pre[1] rel_pre[1] = relation rel_prob.append(rel_pre) answer = spatial_model.interpret_spatial_parameters(rel_prob, deepcopy(parameters)) # store the answer given by the model for later use in the adapt function. self.previous_model_ans.append(answer) return answer def adapt(self, item, target, **kwargs): """This function will rate the effect of the individualizations used in the model on the current task. The individualizations will only be rated, if the answer given by the model and the participant is different. The model will make the previous prediction again with the activated individualization. If the answer is now the same as the participant answer, the rating will be increased. If the answer is still different, the rating will be decreased. After all individualzations are rated, they will be activaed or deactivated depending on their rating and their prior value, which is computed in the pretrain function. For the activation of an individualization, a threshold has to be passed( e.g. rating + x * prior >= threshold; where x is a multiplicator, to give the prior a certain weight) For each individualization and each experiment, the threshold, x and the gains of the rating(positive and negative) need to be optimized, to use the individualization only, and only if the model benefits from it. configurations for the experiments: -premiseorder: (0.5 * self.ind_rating_prior) >= 1, gains +0.1/-0.1 -figural: no configuration, since the individualization has no activation at all -verification: (10 * self.ind_rating_prior) >= 0.8, gain +0.2/-0.1 Parameters ---------- item : ccobra.data.Item Task information container. Holds the task text, response type, response choices, etc. target : str True response given by the human reasoner. """ # first of all, check if the answer was correct with regard to the participant answer if target != self.previous_model_ans[-1]: # compute the answer that the model would've given with the individualisation ans_ind = self.predict(item, [[False, False, False, False, True, False], [False, False, False, False, False]]) # check if the answer would be correct now: if ans_ind == target: # now add something to the rating of the individualisation self.ind_rating += 0.1 # 0.1 #print("increase rating", self.ind_rating) else: # decrease the rating of the individualisaitons if self.ind_rating >= 0.1: #print("decrease rating", self.ind_rating) self.ind_rating -= 0.1 if self.ind_rating + (0.5 * self.ind_rating_prior) >= 1: #print("individualization activated") self.parameter_assignment[0][4] = True else: #print("deactivate individualization") self.parameter_assignment[0][4] = False def pre_train(self, dataset): """ In the pre_train function, a prior value for all individualizations will be computed. The prior value represents, how often the corresponding individualization was able to correct the answer of the original model. This function works similarily to the adapt function, but the rating will be a counter for the corrected answers by the individualization. The pre_train function uses a given set of problems and answers for several participants. The prior will be computed using all these data, so it this a general pre tuning for the model. Parameters ---------- dataset : list(list(dict(str, object))) Training data for the model. List of participants which each contain lists of tasks represented as dictionaries with the corresponding task information (e.g., the item container and given response). """ for participant_data in dataset: part_data = deepcopy(participant_data) # refresh working copy of problems etx. # reset the parameter assignment for each participant self.parameter_assignment = [[False, False, False, False, False, False], [False, False, False, False, False]] self.previous_model_ans = [] for problem_data in part_data: prob_item = problem_data['item'] # the data of the problem prob_ans = problem_data['response'] # the response from the participant self.predict(prob_item) # predict the answer with the currect parameters # call adapt_prior to check if the individualization # can change the result to the better self.adapt_prior(prob_item, prob_ans) self.ind_rating_prior += self.ind_rating self.ind_rating = 0 # reset the rating counter # compute the actual prior self.ind_rating_prior /= (len(dataset) * len(part_data)) print("rating after pretrain ", self.ind_rating_prior) def adapt_prior(self, item, target): """ This adapt function only counts the times when the individualization lead to a better result than the baseline. In the pre_train function this function will be used. Changes the self.ind_rating, to be used in the pre_train function. All priors are normed like this, because they represent a percentual value. In the adapt function of the model, this prior value will be used to decide whether to activate an individualization or not. In this function, no individualization will be activated or deactivated. Parameters ---------- item : ccobra.data.Item Task information container. Holds the task text, response type, response choices, etc. target : str True response given by the human reasoner. """ # first of all, check if the answer was correct with regard to the participant answer if target != self.previous_model_ans[-1]: # compute the answer that the model would've given with the individualisation ans_ind = self.predict(item, [[False, False, False, False, True, False], [False, False, False, False, False]]) # check if the answer would be correct now: if ans_ind == target: # now add something to the rating of the individualisation self.ind_rating += 1
50.872587
100
0.631755
3a3caffa97f0ee75275c85a6d2d15c7613e0be2e
11,357
py
Python
featuremapper/analysis/pinwheels.py
fcr/featuremapper
b999110dce9bbbdf4b6dbd2d13bfca1596064c6a
[ "BSD-3-Clause" ]
2
2018-03-29T18:52:58.000Z
2019-05-07T17:36:35.000Z
featuremapper/analysis/pinwheels.py
fcr/featuremapper
b999110dce9bbbdf4b6dbd2d13bfca1596064c6a
[ "BSD-3-Clause" ]
7
2016-11-15T13:02:41.000Z
2019-10-21T19:59:31.000Z
featuremapper/analysis/pinwheels.py
fcr/featuremapper
b999110dce9bbbdf4b6dbd2d13bfca1596064c6a
[ "BSD-3-Clause" ]
5
2015-09-06T18:11:55.000Z
2018-12-19T10:48:52.000Z
import sys import cmath import math import numpy as np from matplotlib import pyplot as plt import param from holoviews.core.options import Store, Options from holoviews import Points, Overlay from holoviews.element import Contours from holoviews.operation import Operation __author__ = "Jean-Luc Stevens" class WarningCounter(object): """ A simple class to count 'divide by zero' and 'invalid value' exceptions to allow a suitable warning message to be generated. """ def __init__(self): self.div_by_zeros = 0 self.invalid_values = 0 def __call__(self, errtype, flag): if errtype == "divide by zero": self.div_by_zeros += 1 elif errtype == "invalid value": self.invalid_values += 1 def warn(self): total_events = self.div_by_zeros + self.invalid_values if total_events == 0: return info = (total_events, self.div_by_zeros, self.invalid_values) self.div_by_zeros = 0; self.invalid_values = 0 message = ("Warning: There were %d invalid intersection events:" "\n\tNumpy 'divide by zero' events: %d" "\n\tNumpy 'invalid value' events: %d\n") sys.stderr.write(message % info) class PinwheelAnalysis(Operation): """ Given a Matrix or HoloMap of a cyclic feature preference, compute the position of all pinwheel singularities in the map. Optionally includes the contours for the real and imaginary components of the preference map used to determine the pinwheel locations. Returns the original Matrix input overlayed with a Points object containing the computed pinwheel locations and (optionally) Contours overlays including the real and imaginary contour lines respectively. """ output_type = Overlay # TODO: Optional computation of pinwheel polarities. include_contours = param.Boolean(default=True, doc=""" Whether or not to include the computed contours for the real and imaginary components of the map.""") silence_warnings =param.Boolean(default=True, doc=""" Whether or not to show warnings about invalid intersection events when locating pinwheels.""") label = param.String(None, allow_None=True, precedence=-1, constant=True, doc="""Label suffixes are fixed as there are too many labels to specify.""") def _process(self, view, key=None): cyclic_matrix = None inputs = view.values() if isinstance(view, Overlay) else [view] for input_element in inputs: if input_element.vdims[0].cyclic: cyclic_matrix = input_element bounds = cyclic_matrix.bounds cyclic_range = input_element.vdims[0].range label = cyclic_matrix.label break else: raise Exception("Pinwheel analysis requires a Matrix over a cyclic quantity") if None in cyclic_range: raise Exception("Pinwheel analysis requires a Matrix with defined cyclic range") cyclic_data = cyclic_matrix.data / (cyclic_range[1] - cyclic_range[0]) polar_map = self.polar_preference(cyclic_data) try: contour_info = self.polarmap_contours(polar_map, bounds) except Exception as e: self.warning("Contour identification failed:\n%s" % str(e)) contour_info = None pinwheels = None if contour_info is not None: (re_contours, im_contours, intersections) = contour_info pinwheels = self.identify_pinwheels(*(re_contours, im_contours, intersections), silence_warnings=self.p.silence_warnings) else: re_contours, im_contours = [], [] if not pinwheels: pinwheels = np.zeros((0, 2)) pinwheels = Points(np.array(pinwheels), label=label, group='Pinwheels') if self.p.include_contours: re_lines = Contours(re_contours, label=label, group='Real') im_lines = Contours(im_contours, label=label, group='Imaginary') overlay = cyclic_matrix * re_lines * im_lines * pinwheels else: overlay = (cyclic_matrix * pinwheels) return overlay.relabel(group='PinwheelAnalysis', label=label) def polar_preference(self, pref): """ Turns hue representation to polar representation. Hue representation uses values expected in the range 0-1.0 """ polarfn = lambda x: cmath.rect(1.0, x * 2 * math.pi) polar_vecfn = np.vectorize(polarfn) return polar_vecfn(pref) def normalize_polar_channel(self, polar_channel): """ This functions normalizes an OR map (polar_channel) taking into account the region of interest (ROI). The ROI is specified by values set to 99. Note that this functionality is implemented to reproduce the experimental approach and has not been tested (not required for Topographica simulations) """ def grad(r): (r_x, r_y) = np.gradient(r) (r_xx, r_xy) = np.gradient(r_x); (r_yx, r_yy) = np.gradient(r_y); return r_xx ** 2 + r_yy ** 2 + 2 * r_xy ** 2 # Set ROI to 0 to ignore values of -99. roi = np.ones(polar_channel.shape) # In Matlab: roi(find(z==-99))=0 roi[roi == -99] = 0 fst_grad = grad(roi) snd_grad = grad(fst_grad) # Find non-zero elements in second grad and sets to unity snd_grad[snd_grad != 0] = 1 # These elements now mask out ROI region (set to zero) roi[snd_grad == 1] = 0 # Find the unmasked coordinates ind = (polar_channel != 99) # The complex abs of unmasked normalisation = np.mean(np.abs(polar_channel)) # Only normalize with unmasked return polar_channel / normalisation def polarmap_contours(self, polarmap, bounds): """ Identifies the real and imaginary contours in a polar map. Returns the real and imaginary contours as 2D vertex arrays together with the pairs of contours known to intersect. The coordinate system used is specified by the supplied bounds. Contour plotting requires origin='upper' for consistency with image coordinate system. """ l,b,r,t = bounds.lbrt() # Convert to polar and normalise normalized_polar = self.normalize_polar_channel(polarmap) figure_handle = plt.figure() # Real component re_contours_plot = plt.contour(normalized_polar.real, 0, origin='upper', extent=[l,r,b,t]) re_path_collections = re_contours_plot.collections[0] re_contour_paths = re_path_collections.get_paths() # Imaginary component im_contours_plot = plt.contour(normalized_polar.imag, 0, origin='upper', extent=[l,r,b,t]) im_path_collections = im_contours_plot.collections[0] im_contour_paths = im_path_collections.get_paths() plt.close(figure_handle) intersections = [(re_ind, im_ind) for (re_ind, re_path) in enumerate(re_contour_paths) for (im_ind, im_path) in enumerate(im_contour_paths) if im_path.intersects_path(re_path)] # Contour vertices 0.5 pixel inset. Eg. (0,0)-(48,48)=>(0.5, 0.5)-(47.5, 47.5) # Returned values will not therefore reach limits of 0.0 and 1.0 re_contours = [self.remove_path_duplicates(re_path.vertices) for re_path in re_contour_paths] im_contours = [self.remove_path_duplicates(im_path.vertices) for im_path in im_contour_paths] return (re_contours, im_contours, intersections) def remove_path_duplicates(self, vertices): "Removes successive duplicates along a path of vertices." zero_diff_bools = np.all(np.diff(vertices, axis=0) == 0, axis=1) duplicate_indices, = np.nonzero(zero_diff_bools) return np.delete(vertices, duplicate_indices, axis=0) def find_intersections(self, contour1, contour2): """ Vectorized code to find intersections between contours. All successive duplicate vertices along the input contours must be removed to help avoid division-by-zero errors. There are cases were no intersection exists (eg. parallel lines) where division by zero and invalid value exceptions occur. These exceptions should be caught as warnings: these edge cases are unavoidable with this algorithm and do not indicate that the output is erroneous. """ # Elementwise min selection amin = lambda x1, x2: np.where(x1 < x2, x1, x2) # Elementwise max selection amax = lambda x1, x2: np.where(x1 > x2, x1, x2) # dstacks, checks True depthwise aall = lambda abools: np.dstack(abools).all(axis=2) # Uses delta (using np.diff) to find successive slopes along path slope = lambda line: (lambda d: d[:, 1] / d[:, 0])(np.diff(line, axis=0)) # Meshgrids between both paths (x and y). One element sliced off end/beginning x11, x21 = np.meshgrid(contour1[:-1, 0], contour2[:-1, 0]) x12, x22 = np.meshgrid(contour1[1:, 0], contour2[1:, 0]) y11, y21 = np.meshgrid(contour1[:-1, 1], contour2[:-1, 1]) y12, y22 = np.meshgrid(contour1[1:, 1], contour2[1:, 1]) # Meshgrid of all slopes for both paths m1, m2 = np.meshgrid(slope(contour1), slope(contour2)) m2inv = 1 / m2 # m1inv was not used. yi = (m1 * (x21 - x11 - m2inv * y21) + y11) / (1 - m1 * m2inv) xi = (yi - y21) * m2inv + x21 # (xi, yi) is intersection candidate # Bounding box type conditions for intersection candidates xconds = (amin(x11, x12) < xi, xi <= amax(x11, x12), amin(x21, x22) < xi, xi <= amax(x21, x22) ) yconds = (amin(y11, y12) < yi, yi <= amax(y11, y12), amin(y21, y22) < yi, yi <= amax(y21, y22) ) return xi[aall(xconds)], yi[aall(yconds)] def identify_pinwheels(self, re_contours, im_contours, intersections, silence_warnings=True): """ Locates the pinwheels from the intersection of the real and imaginary contours of of polar OR map. """ warning_counter = WarningCounter() pinwheels = [] np.seterrcall(warning_counter) for (re_ind, im_ind) in intersections: re_contour = re_contours[re_ind] im_contour = im_contours[im_ind] np.seterr(divide='call', invalid='call') x, y = self.find_intersections(re_contour, im_contour) np.seterr(divide='raise', invalid='raise') pinwheels += zip(x, y) if not silence_warnings: warning_counter.warn() return pinwheels options = Store.options(backend='matplotlib') options.Points.Pinwheels = Options('style', color= '#f0f0f0', marker= 'o', edgecolors= 'k') options.Contours.Imaginary = Options('style', color= 'k', linewidth=1.5) options.Contours.Real = Options('style', color= 'w', linewidth=1.5)
40.27305
101
0.630888
45d7dcaa1aef4f6d87741360cd8e4efcfb7bc1aa
4,709
py
Python
catboost/python-package/catboost/monoforest.py
jochenater/catboost
de2786fbc633b0d6ea6a23b3862496c6151b95c2
[ "Apache-2.0" ]
6,989
2017-07-18T06:23:18.000Z
2022-03-31T15:58:36.000Z
catboost/python-package/catboost/monoforest.py
birichie/catboost
de75c6af12cf490700e76c22072fbdc15b35d679
[ "Apache-2.0" ]
1,978
2017-07-18T09:17:58.000Z
2022-03-31T14:28:43.000Z
catboost/python-package/catboost/monoforest.py
birichie/catboost
de75c6af12cf490700e76c22072fbdc15b35d679
[ "Apache-2.0" ]
1,228
2017-07-18T09:03:13.000Z
2022-03-29T05:57:40.000Z
import math from . import _catboost from .core import CatBoost, CatBoostError from .utils import _import_matplotlib FeatureExplanation = _catboost.FeatureExplanation def _check_model(model): if not isinstance(model, CatBoost): raise CatBoostError("Model should be CatBoost") def to_polynom(model): _check_model(model) return _catboost.to_polynom(model._object) def to_polynom_string(model): _check_model(model) return _catboost.to_polynom_string(model._object) def explain_features(model): _check_model(model) return _catboost.explain_features(model._object) def calc_features_strength(model): explanations = explain_features(model) features_strength = [expl.calc_strength() for expl in explanations] return features_strength def plot_pdp(arg, size_per_plot=(5, 5), plots_per_row=None): with _import_matplotlib() as _plt: plt = _plt if isinstance(arg, CatBoost): arg = explain_features(arg) if isinstance(arg, _catboost.FeatureExplanation): arg = [arg] assert len(arg) > 0 assert isinstance(arg, list) for element in arg: assert isinstance(element, _catboost.FeatureExplanation) figs = [] for feature_explanation in arg: dimension = feature_explanation.dimension() if not plots_per_row: plots_per_row = min(5, dimension) rows = int(math.ceil(dimension / plots_per_row)) fig, axes = plt.subplots(rows, plots_per_row) fig.suptitle("Feature #{}".format(feature_explanation.feature)) if rows == 1: axes = [axes] if plots_per_row == 1: axes = [[row_axes] for row_axes in axes] fig.set_size_inches(size_per_plot[0] * plots_per_row, size_per_plot[1] * rows) for dim in range(dimension): ax = axes[dim // plots_per_row][dim % plots_per_row] ax.set_title("Dimension={}".format(dim)) ax.set_xlabel("feature value") ax.set_ylabel("model value") borders, values = feature_explanation.calc_pdp(dim) xs = [] ys = [] if feature_explanation.type == "Float": if len(borders) == 0: xs.append(-0.1) xs.append(0.1) ys.append(feature_explanation.expected_bias[dim]) ys.append(feature_explanation.expected_bias[dim]) ax.plot(xs, ys) else: offset = max(0.1, (borders[0] + borders[-1]) / 2) xs.append(borders[0] - offset) ys.append(feature_explanation.expected_bias[dim]) for border, value in zip(borders, values): xs.append(border) ys.append(ys[-1]) xs.append(border) ys.append(value) xs.append(borders[-1] + offset) ys.append(ys[-1]) ax.plot(xs, ys) else: xs = ['bias'] + list(map(str, borders)) ys = feature_explanation.expected_bias[dim] + values ax.bar(xs, ys) figs.append(fig) return figs def plot_features_strength(model, height_per_feature=0.5, width_per_plot=5, plots_per_row=None): with _import_matplotlib() as _plt: plt = _plt strengths = calc_features_strength(model) dimension = len(strengths[0]) features = len(strengths) if not plots_per_row: plots_per_row = min(5, dimension) rows = int(math.ceil(dimension / plots_per_row)) fig, axes = plt.subplots(rows, plots_per_row) if rows == 1: axes = [axes] if plots_per_row == 1: axes = [[row_axes] for row_axes in axes] fig.suptitle("Features Strength") fig.set_size_inches(width_per_plot * plots_per_row, height_per_feature * features * rows) for dim in range(dimension): strengths = [(s[dim], i) for i, s in enumerate(strengths)] # strengths = list(reversed(sorted(strengths))) strengths = list(sorted(strengths)) labels = ["Feature #{}".format(f) for _, f in strengths] strengths = [s for s, _ in strengths] ax = axes[dim // plots_per_row][dim % plots_per_row] colors = [(1, 0, 0) if s > 0 else (0, 0, 1) for s in strengths] ax.set_title("Dimension={}".format(dim)) ax.barh(range(len(strengths)), strengths, align='center', color=colors) ax.set_yticks(range(len(strengths))) ax.set_yticklabels(labels) # ax.invert_yaxis() # labels read top-to-bottom ax.set_xlabel('Prediction value change') return fig
35.141791
96
0.606498
021197105c68c266681d3e275ea490207944f64d
3,063
py
Python
cvxpy/atoms/affine/sum.py
dougalsutherland/cvxpy
34349b5e41c124a6a1e32426e68af95b5044498c
[ "ECL-2.0", "Apache-2.0" ]
1
2019-04-15T14:01:03.000Z
2019-04-15T14:01:03.000Z
cvxpy/atoms/affine/sum.py
dougalsutherland/cvxpy
34349b5e41c124a6a1e32426e68af95b5044498c
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cvxpy/atoms/affine/sum.py
dougalsutherland/cvxpy
34349b5e41c124a6a1e32426e68af95b5044498c
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
""" Copyright 2013 Steven Diamond Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from cvxpy.atoms.affine.affine_atom import AffAtom from cvxpy.atoms.axis_atom import AxisAtom import cvxpy.lin_ops.lin_utils as lu import cvxpy.interface as intf import numpy as np from functools import wraps class Sum(AxisAtom, AffAtom): """Sum the entries of an expression. Parameters ---------- expr : Expression The expression to sum the entries of. axis : int The axis along which to sum. keepdims : bool Whether to drop dimensions after summing. """ def __init__(self, expr, axis=None, keepdims=False): super(Sum, self).__init__(expr, axis=axis, keepdims=keepdims) def numeric(self, values): """Sums the entries of value. """ if intf.is_sparse(values[0]): result = np.sum(values[0], axis=self.axis) if not self.keepdims and self.axis is not None: result = result.A.flatten() else: result = np.sum(values[0], axis=self.axis, keepdims=self.keepdims) return result @staticmethod def graph_implementation(arg_objs, shape, data=None): """Sum the linear expression's entries. Parameters ---------- arg_objs : list LinExpr for each argument. shape : tuple The shape of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ axis = data[0] keepdims = data[1] if axis is None: obj = lu.sum_entries(arg_objs[0], shape=shape) elif axis == 1: if keepdims: const_shape = (arg_objs[0].shape[1], 1) else: const_shape = (arg_objs[0].shape[1],) ones = lu.create_const(np.ones(const_shape), const_shape) obj = lu.rmul_expr(arg_objs[0], ones, shape) else: # axis == 0 if keepdims: const_shape = (1, arg_objs[0].shape[0]) else: const_shape = (arg_objs[0].shape[0],) ones = lu.create_const(np.ones(const_shape), const_shape) obj = lu.mul_expr(ones, arg_objs[0], shape) return (obj, []) @wraps(Sum) def sum(expr, axis=None, keepdims=False): """Wrapper for Sum class. """ if isinstance(expr, list): return __builtins__['sum'](expr) else: return Sum(expr, axis, keepdims)
30.63
78
0.611166
e08e673ef380ac0202ad464ea9f497a05b63cb31
4,845
py
Python
hw_06/linear_regression_sgd.py
coinflip112/ml_101
9e56ffdb99ac241ed396e25d7f7818a58ee5c4de
[ "MIT" ]
null
null
null
hw_06/linear_regression_sgd.py
coinflip112/ml_101
9e56ffdb99ac241ed396e25d7f7818a58ee5c4de
[ "MIT" ]
null
null
null
hw_06/linear_regression_sgd.py
coinflip112/ml_101
9e56ffdb99ac241ed396e25d7f7818a58ee5c4de
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import argparse import sys import matplotlib.pyplot as plt import numpy as np import sklearn.datasets import sklearn.linear_model import sklearn.metrics import sklearn.model_selection if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--batch_size", default=10, type=int, help="Batch size") parser.add_argument("--examples", default=100, type=int, help="Number of examples") parser.add_argument( "--iterations", default=50, type=int, help="Number of iterations over the data" ) parser.add_argument("--folds", default=10, type=int, help="Number of folds") parser.add_argument( "--learning_rate", default=0.01, type=float, help="Learning rate" ) parser.add_argument( "--plot", default=False, action="store_true", help="Plot progress" ) parser.add_argument("--seed", default=42, type=int, help="Random seed") args = parser.parse_args() # Set random seed np.random.seed(args.seed) # Generate an artifical regression dataset data, target = sklearn.datasets.make_regression( n_samples=args.examples, random_state=args.seed ) # TODO: Append a constant feature with value 1 to the end of every input data data = np.column_stack([data, np.ones(shape=(args.examples))]) rmses = [] # TODO: Using `split` method of `sklearn.model_selection.KFold(args.folds)`, # generate the required number of folds. The folds are returned as # a generator of (train_data_indices, test_data_indices) pairs. folds = sklearn.model_selection.KFold(n_splits=args.folds) for train_indices, test_indices in folds.split(X=data): # TODO: Generate train_data, train_target, test_data, test_target using the fold indices train_data, test_data = data[train_indices], data[test_indices] train_target, test_target = target[train_indices], target[test_indices] # Generate initial linear regression weights weights = np.random.uniform(size=train_data.shape[1]) rmses.append([]) for iteration in range(args.iterations): permutation = np.random.permutation(train_data.shape[0]) permuted_x_train, permuted_y_train = ( train_data[permutation], train_target[permutation], ) batch_count = int(train_data.shape[0] / args.batch_size) for batch_x, batch_y in zip( np.split(permuted_x_train, batch_count), np.split(permuted_y_train, batch_count), ): grads = [] for x_i, t_i in zip(batch_x, batch_y): grad_i = (np.dot(x_i, weights) - t_i) * x_i grads.append(grad_i) grads = np.array(grads) weights = weights - args.learning_rate * np.mean(grads, axis=0) # TODO: Process the data in the order of `permutation`. # For every `args.batch_size`, average their gradient, and update the weights. # A gradient for example (x_i, t_i) is `(x_i^T weights - t_i) * x_i`, # and the SGD update is `weights = weights - learning_rate * gradient`. # You can assume that `args.batch_size` exactly divides `train_data.shape[0]`. # We evaluate RMSE on train and test rmses[-1].append( { "train": np.sqrt( sklearn.metrics.mean_squared_error( train_target, train_data @ weights ) ), "test": np.sqrt( sklearn.metrics.mean_squared_error( test_target, test_data @ weights ) ), } ) lr = sklearn.linear_model.LinearRegression() lr.fit(train_data, train_target) y_pred = lr.predict(test_data) explicit_rmse = np.sqrt(sklearn.metrics.mean_squared_error(y_pred, test_target)) # TODO: Compute into `explicit_rmse` test data RMSE when # fitting `sklearn.linear_model.LinearRegression` on train_data. print( "Test RMSE on fold {}: SGD {:.2f}, explicit {:.2f}".format( len(rmses), rmses[-1][-1]["test"], explicit_rmse ) ) if args.plot: for i in range(len(rmses)): plt.plot( range(args.iterations), [x["train"] for x in rmses[i]], label="train-{}".format(i), ) plt.plot( range(args.iterations), [x["test"] for x in rmses[i]], label="test-{}".format(i), ) plt.legend(loc="lower right") plt.show()
38.149606
96
0.586997
5f24abbe9e57fd1d66a74759fa00ed135875596e
4,685
py
Python
tests/nodeos_chainbase_allocation_test.py
Remmeauth/core
578996ce408ca0adbe6a6b895177199017ee907b
[ "MIT" ]
140
2019-07-01T13:13:06.000Z
2021-11-23T12:50:39.000Z
tests/nodeos_chainbase_allocation_test.py
Remmeauth/core
578996ce408ca0adbe6a6b895177199017ee907b
[ "MIT" ]
26
2019-07-12T09:07:36.000Z
2020-05-20T20:33:06.000Z
tests/nodeos_chainbase_allocation_test.py
Remmeauth/core
578996ce408ca0adbe6a6b895177199017ee907b
[ "MIT" ]
7
2019-08-30T08:29:46.000Z
2020-07-30T15:35:10.000Z
#!/usr/bin/env python3 from testUtils import Utils, Account from Cluster import Cluster from TestHelper import TestHelper from WalletMgr import WalletMgr from Node import Node import signal import json import time import os import filecmp ############################################################### # nodeos_chainbase_allocation_test # # Test snapshot creation and restarting from snapshot # ############################################################### # Parse command line arguments args = TestHelper.parse_args({"-v","--clean-run","--dump-error-details","--leave-running","--keep-logs"}) Utils.Debug = args.v killAll=args.clean_run dumpErrorDetails=args.dump_error_details dontKill=args.leave_running killEosInstances=not dontKill killWallet=not dontKill keepLogs=args.keep_logs walletMgr=WalletMgr(True) cluster=Cluster(walletd=True) cluster.setWalletMgr(walletMgr) testSuccessful = False try: TestHelper.printSystemInfo("BEGIN") cluster.killall(allInstances=killAll) cluster.cleanup() # The following is the list of chainbase objects that need to be verified: # - account_object (bootstrap) # - code_object (bootstrap) # - generated_transaction_object # - global_property_object # - key_value_object (bootstrap) # - protocol_state_object (bootstrap) # - permission_object (bootstrap) # The bootstrap process has created account_object and code_object (by uploading the bios contract), # key_value_object (token creation), protocol_state_object (preactivation feature), and permission_object # (automatically taken care by the automatically generated rem account) assert cluster.launch( pnodes=1, prodCount=1, totalProducers=1, totalNodes=2, useBiosBootFile=False, loadSystemContract=False, specificExtraNodeosArgs={ 1:"--read-mode irreversible --plugin eosio::producer_api_plugin"}) producerNodeId = 0 irrNodeId = 1 producerNode = cluster.getNode(producerNodeId) irrNode = cluster.getNode(irrNodeId) # Create delayed transaction to create "generated_transaction_object" cmd = "create account -j rem sample EOS6MRyAjQq8ud7hVNYcfnVPJqcVpscN5So8BhtHuGYqET5GDW5CV\ EOS6MRyAjQq8ud7hVNYcfnVPJqcVpscN5So8BhtHuGYqET5GDW5CV --delay-sec 600 -p rem" trans = producerNode.processCleosCmd(cmd, cmd, silentErrors=False) assert trans # Schedule a new producer to trigger new producer schedule for "global_property_object" newProducerAcc = Account("newprod") newProducerAcc.ownerPublicKey = "EOS6MRyAjQq8ud7hVNYcfnVPJqcVpscN5So8BhtHuGYqET5GDW5CV" newProducerAcc.activePublicKey = "EOS6MRyAjQq8ud7hVNYcfnVPJqcVpscN5So8BhtHuGYqET5GDW5CV" producerNode.createAccount(newProducerAcc, cluster.eosioAccount) setProdsStr = '{"schedule": [' setProdsStr += '{"producer_name":' + newProducerAcc.name + ',"block_signing_key":' + newProducerAcc.activePublicKey + '}' setProdsStr += ']}' cmd="push action -j rem setprods '{}' -p rem".format(setProdsStr) trans = producerNode.processCleosCmd(cmd, cmd, silentErrors=False) assert trans setProdsBlockNum = int(trans["processed"]["block_num"]) # Wait until the block where set prods is executed become irreversible so the producer schedule def isSetProdsBlockNumIrr(): return producerNode.getIrreversibleBlockNum() >= setProdsBlockNum Utils.waitForBool(isSetProdsBlockNumIrr, timeout=30, sleepTime=0.1) # Once it is irreversible, immediately pause the producer so the promoted producer schedule is not cleared producerNode.processCurlCmd("producer", "pause", "") producerNode.kill(signal.SIGTERM) # Create the snapshot and rename it to avoid name conflict later on res = irrNode.createSnapshot() beforeShutdownSnapshotPath = res["snapshot_name"] snapshotPathWithoutExt, snapshotExt = os.path.splitext(beforeShutdownSnapshotPath) os.rename(beforeShutdownSnapshotPath, snapshotPathWithoutExt + "_before_shutdown" + snapshotExt) # Restart irr node and ensure the snapshot is still identical irrNode.kill(signal.SIGTERM) isRelaunchSuccess = irrNode.relaunch(irrNodeId, "", timeout=5, cachePopen=True) assert isRelaunchSuccess, "Fail to relaunch" res = irrNode.createSnapshot() afterShutdownSnapshotPath = res["snapshot_name"] assert filecmp.cmp(beforeShutdownSnapshotPath, afterShutdownSnapshotPath), "snapshot is not identical" testSuccessful = True finally: TestHelper.shutdown(cluster, walletMgr, testSuccessful, killEosInstances, killWallet, keepLogs, killAll, dumpErrorDetails) exitCode = 0 if testSuccessful else 1 exit(exitCode)
40.042735
126
0.740021
799ade49c144ac5aa0523477678e891766a1a380
4,496
py
Python
azure-mgmt-compute/azure/mgmt/compute/v2018_06_01/operations/virtual_machine_sizes_operations.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-mgmt-compute/azure/mgmt/compute/v2018_06_01/operations/virtual_machine_sizes_operations.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-mgmt-compute/azure/mgmt/compute/v2018_06_01/operations/virtual_machine_sizes_operations.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2019-06-17T22:18:23.000Z
2019-06-17T22:18:23.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from .. import models class VirtualMachineSizesOperations(object): """VirtualMachineSizesOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: Client Api Version. Constant value: "2018-06-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2018-06-01" self.config = config def list( self, location, custom_headers=None, raw=False, **operation_config): """This API is deprecated. Use [Resources Skus](https://docs.microsoft.com/en-us/rest/api/compute/resourceskus/list). :param location: The location upon which virtual-machine-sizes is queried. :type location: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of VirtualMachineSize :rtype: ~azure.mgmt.compute.v2018_06_01.models.VirtualMachineSizePaged[~azure.mgmt.compute.v2018_06_01.models.VirtualMachineSize] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list.metadata['url'] path_format_arguments = { 'location': self._serialize.url("location", location, 'str', pattern=r'^[-\w\._]+$'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.VirtualMachineSizePaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.VirtualMachineSizePaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/vmSizes'}
41.62963
144
0.636121
fadf4bda0342b2659bf95ce65ff827da298ea257
808
py
Python
dataloader/__init__.py
entn-at/AGAIN-VC
dbf94bf55882f897c312c7760cd892c51c93c9ab
[ "MIT" ]
78
2020-10-24T02:55:59.000Z
2022-03-08T03:09:13.000Z
dataloader/__init__.py
entn-at/AGAIN-VC
dbf94bf55882f897c312c7760cd892c51c93c9ab
[ "MIT" ]
15
2020-11-03T18:34:15.000Z
2022-03-26T19:47:59.000Z
dataloader/__init__.py
entn-at/AGAIN-VC
dbf94bf55882f897c312c7760cd892c51c93c9ab
[ "MIT" ]
16
2020-11-09T21:17:53.000Z
2022-03-17T04:07:26.000Z
from torch.utils.data import DataLoader import logging import importlib logger = logging.getLogger(__name__) def get_dataset(dset, dataset_config, njobs, metadata=None): # dataset = 'Dataset' # l = locals() # exec(f'from .{name} import Dataset', globals(), l) # exec(f'ret = {dataset}(config, args, dset, metadata)', globals(), l) # ret = l['ret'] # return ret Dataset = importlib.import_module(f'.{dataset_config.dataset_name}', package=__package__).Dataset return Dataset(dset, dataset_config.indexes_path, dataset_config.feat, dataset_config.feat_path, dataset_config.seglen, njobs, metadata) def get_dataloader(dset, dataloader_config, dataset): ret = DataLoader(dataset, **dataloader_config[dset]) return ret
29.925926
101
0.680693
1ec098314b7460cacb7dbe6d4867e77378ab4a04
363
py
Python
exercicios/Mundo1/Pintando_paredes.py
soualeques/Curso-em-Video-Python
ea651c687ce7daf810fc235ab2fcd0fb6c218a2c
[ "MIT" ]
null
null
null
exercicios/Mundo1/Pintando_paredes.py
soualeques/Curso-em-Video-Python
ea651c687ce7daf810fc235ab2fcd0fb6c218a2c
[ "MIT" ]
null
null
null
exercicios/Mundo1/Pintando_paredes.py
soualeques/Curso-em-Video-Python
ea651c687ce7daf810fc235ab2fcd0fb6c218a2c
[ "MIT" ]
null
null
null
#Faça um programa que leia a altura e largura de uma parede e pinte ela, sabendo que cada litro pinta 2M²# alt = float(input("Digite a altura em metros da parede a ser pintada: ")) larg = float(input("Digite a largura em metros da parede a ser pintada: ")) área = larg * alt tinta = área / 2 print("sera necesario {}L de tinta para pintar a parede".format(tinta))
60.5
106
0.732782
45d3bcec38b72a6d7740164f34515579516273b1
328
py
Python
day09/tests.py
Moremar/advent_of_code_2018
db57f2c6858dc4a1b70888ddb45c9bdbeccab9bb
[ "MIT" ]
null
null
null
day09/tests.py
Moremar/advent_of_code_2018
db57f2c6858dc4a1b70888ddb45c9bdbeccab9bb
[ "MIT" ]
null
null
null
day09/tests.py
Moremar/advent_of_code_2018
db57f2c6858dc4a1b70888ddb45c9bdbeccab9bb
[ "MIT" ]
null
null
null
import unittest import script1 import script2 test_file = "sample.txt" class Tests(unittest.TestCase): def test_part_1(self): self.assertEqual(script1.compute(test_file), 32) def test_part_2(self): self.assertEqual(script2.compute(test_file), 22563) if __name__ == '__main__': unittest.main()
17.263158
59
0.710366
a06e480c5d9a5547bd7119728195abfeec3dd851
7,374
py
Python
draft/truefx/truefx_api.py
movermeyer/pandas_datareaders_unofficial
458dcf473d070cd7686d53d4a9b479cbe0ab9218
[ "BSD-3-Clause" ]
18
2015-02-05T01:42:51.000Z
2020-12-27T19:24:25.000Z
draft/truefx/truefx_api.py
movermeyer/pandas_datareaders_unofficial
458dcf473d070cd7686d53d4a9b479cbe0ab9218
[ "BSD-3-Clause" ]
1
2015-01-12T11:08:02.000Z
2015-01-13T09:14:47.000Z
draft/truefx/truefx_api.py
femtotrader/pandas_datareaders
458dcf473d070cd7686d53d4a9b479cbe0ab9218
[ "BSD-3-Clause" ]
13
2015-09-10T19:39:51.000Z
2022-01-06T17:08:35.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ API to get FX prices from TrueFX http://www.truefx.com/ http://www.truefx.com/?page=download&description=api http://www.truefx.com/dev/data/TrueFX_MarketDataWebAPI_DeveloperGuide.pdf """ import logging logger = logging.getLogger(__name__) import click import os import requests import requests_cache import datetime import pandas as pd #pd.set_option('max_rows', 10) pd.set_option('expand_frame_repr', False) pd.set_option('max_columns', 8) from datetime import timedelta from pandas.io.common import urlencode import pandas.compat as compat SYMBOLS_NOT_AUTH = ['EUR/USD', 'USD/JPY', 'GBP/USD', 'EUR/GBP', 'USD/CHF', \ 'EUR/JPY', 'EUR/CHF', 'USD/CAD', 'AUD/USD', 'GBP/JPY'] SYMBOLS_ALL = ['EUR/USD', 'USD/JPY', 'GBP/USD', 'EUR/GBP', 'USD/CHF', 'AUD/NZD', \ 'CAD/CHF', 'CHF/JPY', 'EUR/AUD', 'EUR/CAD', 'EUR/JPY', 'EUR/CHF', 'USD/CAD', \ 'AUD/USD', 'GBP/JPY', 'AUD/CAD', 'AUD/CHF', 'AUD/JPY', 'EUR/NOK', 'EUR/NZD', \ 'GBP/CAD', 'GBP/CHF', 'NZD/JPY', 'NZD/USD', 'USD/NOK', 'USD/SEK'] def _send_request(session, params): base_url = "http://webrates.truefx.com/rates" endpoint = "/connect.html" url = base_url + endpoint s_url = url+'?'+urlencode(params) logging.debug("Request to '%s' with '%s' using '%s'" % (url, params, s_url)) response = session.get(url, params=params) return(response) def _connect(session, username, password, lst_symbols, qualifier, \ api_format, snapshot): s = 'y' if snapshot else 'n' params = { 'u': username, 'p': password, 'q': qualifier, 'c': ','.join(lst_symbols), 'f': api_format, 's': s } response = _send_request(session, params) if response.status_code != 200: raise(Exception("Can't connect")) session_data = response.text session_data = session_data.strip() return(session_data) def _disconnect(session, session_data): params = { 'di': session_data, } response = _send_request(session, params) return(response) def _query_auth_send(session, session_data): params = { 'id': session_data, } response = _send_request(session, params) return(response) def _parse_data(data): data_io = compat.StringIO(data) df = pd.read_csv(data_io, header=None, \ names=['Symbol', 'Date', 'Bid', 'Bid_point', \ 'Ask', 'Ask_point', 'High', 'Low', 'Open']) df['Date'] = pd.to_datetime(df['Date'], unit='ms') df = df.set_index('Symbol') return(df) def _query_not_auth(session, lst_symbols, api_format, snapshot): s = 'y' if snapshot else 'n' params = { 'c': ','.join(lst_symbols), 'f': api_format, 's': s } response = _send_request(session, params) if response.status_code != 200: raise(Exception("Can't connect")) return(response) def _is_registered(username, password): return(not (username=='' and password=='')) def _init_session(session=None): if session is None: return(requests.Session()) else: return(session) def _query(symbols='', qualifier='default', api_format='csv', snapshot=True, \ username='', password='', force_unregistered=False, flag_parse_data=True, session=None): (username, password) = _init_credentials(username, password) session = _init_session(session) is_registered = _is_registered(username, password) if isinstance(symbols, compat.string_types): symbols = symbols.upper() symbols = symbols.split(',') else: symbols = list(map(lambda s: s.upper(), symbols)) if symbols == ['']: if not is_registered: symbols = SYMBOLS_NOT_AUTH else: symbols = SYMBOLS_ALL if not is_registered or force_unregistered: response = _query_not_auth(session, symbols, api_format, snapshot) data = response.text else: session_data = _connect(session, username, password, symbols, qualifier, \ api_format, snapshot) error_msg = 'not authorized' if error_msg in session_data: raise(Exception(error_msg)) response = _query_auth_send(session, session_data) data = response.text response = _disconnect(session, session_data) if flag_parse_data: df = _parse_data(data) return(df) else: return(data) def read(symbols, username, password, force_unregistered, session): qualifier = 'default' api_format = 'csv' snapshot = True flag_parse_data = True data = _query(symbols, qualifier, api_format, snapshot, username, password, \ force_unregistered, flag_parse_data, session) return data def _init_credentials(username='', password=''): if username=='': username = os.getenv('TRUEFX_USERNAME') if password=='': password = os.getenv('TRUEFX_PASSWORD') return(username, password) def _get_session(expire_after, cache_name='cache'): """ Returns a `requests.Session` or a `requests_cache.CachedSession` Parameters ---------- expire_after : `str` cache expiration delay '-1' : no cache '0' : no expiration '00:15:00.0' : expiration delay cache_filename : `str` Name of cache file """ if expire_after=='-1': expire_after = None logger.debug("expire_after==0 no cache") session = requests.Session() else: if expire_after=='0': expire_after = 0 logger.debug("Installing cache '%s.sqlite' without expiration" % cache_name) else: expire_after = pd.to_timedelta(expire_after, unit='s') logger.debug("Installing cache '%s.sqlite' with expire_after=%s (d days hh:mm:ss)" % (cache_name, expire_after)) session = requests_cache.CachedSession(\ cache_name=cache_name, expire_after=expire_after) return session @click.command() @click.option('--symbols', default='', help="Symbols list (separated with ','") @click.option('--username', default='', help="TrueFX username") @click.option('--password', default='', help="TrueFX password") @click.option('--force-unregistered/--no-force-unregistered', default=False, \ help=u"Force unregistered") @click.option('--expire_after', default='00:15:00.0', \ help=u"Cache expiration (-1: no cache, 0: no expiration, 00:15:00.0: expiration delay)") def main(symbols, username, password, force_unregistered, expire_after): logging.basicConfig(level=logging.DEBUG) print("""TrueFX - Python API call ======================== """) session = _get_session(expire_after) (username, password) = _init_credentials(username, password) is_registered = _is_registered(username, password) if not is_registered or force_unregistered: print("""You should register to TrueFX at http://www.truefx.com/ and pass username and password using CLI flag --username your_username --password your_password or setting environment variables using: export TRUEFX_USERNAME="your_username" export TRUEFX_PASSWORD="your_password" """) data = read(symbols, username=username, password=password, force_unregistered=force_unregistered, session=session) print(data) if __name__ == "__main__": main()
29.733871
124
0.644833
4b73d21d5a2080bf486cac24935cf83477810267
5,009
py
Python
adaptor/tests/test_adaptor.py
LeoComandini/adaptor-py
b9157b18718fed11115d6f3f59b2067411193306
[ "MIT" ]
1
2021-08-30T11:18:02.000Z
2021-08-30T11:18:02.000Z
adaptor/tests/test_adaptor.py
LeoComandini/adaptor-py
b9157b18718fed11115d6f3f59b2067411193306
[ "MIT" ]
null
null
null
adaptor/tests/test_adaptor.py
LeoComandini/adaptor-py
b9157b18718fed11115d6f3f59b2067411193306
[ "MIT" ]
null
null
null
import os import unittest from adaptor.adaptor import * from adaptor.ecdsa import * from adaptor.schnorr import * def rand32(): return int_from_bytes(os.urandom(32)) class TestsAdaptor(unittest.TestCase): def test_adaptor_ecdsa(self): x = 10 y = 14 message_hash = b'\xaa'*32 Y = y * G X = x * G a = ecdsa_adaptor_encrypt(x, Y, message_hash) self.assertTrue(ecdsa_adaptor_verify(X, Y, message_hash, a)) sig = ecdsa_adaptor_decrypt(a, y) y_recovered = ecdsa_adaptor_recover(Y, a, sig) self.assertEqual(y, y_recovered) def test_adaptor_schnorr(self): x = 10 y = 14 message_hash = b'\xaa'*32 Y = y * G X = x * G a = schnorr_adaptor_encrypt(x, y, message_hash) self.assertTrue(schnorr_adaptor_verify(X, Y, message_hash, a)) sig = schnorr_adaptor_decrypt(a, y) y_recovered = schnorr_adaptor_recover(a, sig) self.assertEqual(y, y_recovered) def test_dlc_bet_ecdsa(self): # Source: https://github.com/discreetlogcontracts/dlcspecs/blob/master/Introduction.md # Alice and Bob want to bet on an outcome of some event. # For the sake of simplicity, the event has a binary outcome, either # Alice or Bob wins. # Alice and Bob have access to an Oracle. # The Oracle will publish its pubkey P and the nonce R that it will use # for the event. # Alice's keys a = rand32() A = a * G # Bob's keys b = rand32() B = b * G # Oracle's keys p = rand32() P = p * G # Oracle's event nonces k = rand32() R = k * G # Alice and Bob create a "Funding Transaction" sending funds to a 2of2 # output multi(2, A, B) without signing it. # We need to know the txid of the tx even if it's not signed, thus all # tx inputs must be segwit. # Each gambler constructs a tx spending such output and sending the # funds to his/her desired destination, such tx are called Contract # Execution Transactions (CET). # CETs require some signature hashes to be signed, CET sending funds to # Alice requires m_ta, CET sending funds to Bob requires m_tb. # They associate m_ea and m_eb to the outcomes of the event. # If Alice wins, Oracle will schnorr sign m_ea. # If Bob wins, Oracle will schnorr sign m_eb. # Why schnorr? We need linearity. m_ta = b'\x1a' * 32 # signature hash to be signed if Alice wins m_tb = b'\x1b' * 32 # signature hash to be signed if Bob wins m_ea = b'\xea' * 32 # message that Oracle will sign if Alice wins m_eb = b'\xeb' * 32 # message that Oracle will sign if Bob wins # Alice and Bob compute the signature points for the two messages. S_a = R + schnorr_challenge(P, R, m_ea) * P S_b = R + schnorr_challenge(P, R, m_eb) * P # What is the signature point? # s, R = schnorr_sign(p, m) # S = s * G # signature point # Note that the signature points can be computed without secrets. # If Alice wins, Oracle will sign m_ea, and thus reveal the discrete # logarithm of S_a. # Alice produces an adaptor signature for message m_tb, encrypted with # signature point S_b. adaptor_sig_a = ecdsa_adaptor_encrypt(a, S_b, m_tb) # Bob produces an adaptor signature for message m_ta, encrypted with # signature point S_a. adaptor_sig_b = ecdsa_adaptor_encrypt(b, S_a, m_ta) # They both exchange the adaptor signatures. # Alice verifies Bob's adaptor signature: self.assertTrue(ecdsa_adaptor_verify(B, S_a, m_ta, adaptor_sig_b)) # Bob verifies Alice's adaptor signature: self.assertTrue(ecdsa_adaptor_verify(A, S_b, m_tb, adaptor_sig_a)) # After verification succeeds, each party signs the Funding # Transaction, which can then be broadcast. # Alice and Bob wait for the event to happen. # If the Oracle becomes unavailable, Alice and Bob can cooperate to # spend, ignoring the event result. # Now suppose WLOG that Alice wins. # Oracle signs m_ea, using nonce (k, R) and publishes the signature. sig = schnorr_sign(p, m_ea, k=k) # Alice sees the signature and extracts the decryption key s_a for the # adaptor signature produced by Bob. s_a, R_recovered = sig self.assertEqual(R_recovered, R) # Alice decrypts Bob's adaptor signature and extract a valid signature # from Bob for message m_ta. sig_b = ecdsa_adaptor_decrypt(adaptor_sig_b, s_a) self.assertTrue(ecdsa_verify(B, m_ta, sig_b)) # Finally Alice sings message m_ta and is now able to spend the 2of2 # output. sig_a = ecdsa_sign(a, m_ta) self.assertTrue(ecdsa_verify(A, m_ta, sig_a))
41.741667
94
0.632262
67d68ee1688ac8435826dd8515a39dd2adb213bb
2,089
py
Python
certbot-dns-dnsimple/setup.py
mausinixterra/letsencrypt
2d4f36cc9fedafa91b9877ec2ec1f9f83da4ecd3
[ "Apache-2.0" ]
2
2018-10-03T15:33:57.000Z
2020-06-09T20:28:29.000Z
certbot-dns-dnsimple/setup.py
mausinixterra/letsencrypt
2d4f36cc9fedafa91b9877ec2ec1f9f83da4ecd3
[ "Apache-2.0" ]
null
null
null
certbot-dns-dnsimple/setup.py
mausinixterra/letsencrypt
2d4f36cc9fedafa91b9877ec2ec1f9f83da4ecd3
[ "Apache-2.0" ]
3
2018-02-09T21:05:38.000Z
2019-06-10T00:39:00.000Z
import sys from setuptools import setup from setuptools import find_packages version = '0.20.0.dev0' # Please update tox.ini when modifying dependency version requirements install_requires = [ 'acme=={0}'.format(version), 'certbot=={0}'.format(version), 'dns-lexicon', 'mock', # For pkg_resources. >=1.0 so pip resolves it to a version cryptography # will tolerate; see #2599: 'setuptools>=1.0', 'zope.interface', ] docs_extras = [ 'Sphinx>=1.0', # autodoc_member_order = 'bysource', autodoc_default_flags 'sphinx_rtd_theme', ] setup( name='certbot-dns-dnsimple', version=version, description="DNSimple DNS Authenticator plugin for Certbot", url='https://github.com/certbot/certbot', author="Certbot Project", author_email='client-dev@letsencrypt.org', license='Apache License 2.0', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Plugins', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Security', 'Topic :: System :: Installation/Setup', 'Topic :: System :: Networking', 'Topic :: System :: Systems Administration', 'Topic :: Utilities', ], packages=find_packages(), include_package_data=True, install_requires=install_requires, extras_require={ 'docs': docs_extras, }, entry_points={ 'certbot.plugins': [ 'dns-dnsimple = certbot_dns_dnsimple.dns_dnsimple:Authenticator', ], }, test_suite='certbot_dns_dnsimple', )
30.275362
78
0.624222
46bbbcc46a2cbb459fc8e6e53592378049997cf8
24,092
py
Python
leanerp/helpdesk/tests/test_get_email.py
seLain/Leaf
f02e15576071429a29f76a06328d024b58a2d69e
[ "Apache-2.0" ]
null
null
null
leanerp/helpdesk/tests/test_get_email.py
seLain/Leaf
f02e15576071429a29f76a06328d024b58a2d69e
[ "Apache-2.0" ]
6
2018-02-20T13:59:07.000Z
2018-03-06T17:35:41.000Z
leanerp/helpdesk/tests/test_get_email.py
seLain/Leaf
f02e15576071429a29f76a06328d024b58a2d69e
[ "Apache-2.0" ]
1
2018-03-06T17:28:07.000Z
2018-03-06T17:28:07.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from helpdesk.models import Queue, Ticket, TicketCC, FollowUp, Attachment from django.test import TestCase from django.core.management import call_command from django.utils import six from django.shortcuts import get_object_or_404 from django.contrib.auth.models import User from django.contrib.auth.hashers import make_password import itertools from shutil import rmtree import sys from tempfile import mkdtemp try: # python 3 from urllib.parse import urlparse except ImportError: # python 2 from urlparse import urlparse try: # Python >= 3.3 from unittest import mock except ImportError: # Python < 3.3 import mock # class A addresses can't have first octet of 0 unrouted_socks_server = "0.0.0.1" unrouted_email_server = "0.0.0.1" # the last user port, reserved by IANA unused_port = "49151" class GetEmailCommonTests(TestCase): # tests correct syntax for command line option def test_get_email_quiet_option(self): """Test quiet option is properly propagated""" with mock.patch('helpdesk.management.commands.get_email.process_email') as mocked_processemail: call_command('get_email', quiet=True) mocked_processemail.assert_called_with(quiet=True) call_command('get_email') mocked_processemail.assert_called_with(quiet=False) class GetEmailParametricTemplate(object): """TestCase that checks basic email functionality across methods and socks configs.""" def setUp(self): self.temp_logdir = mkdtemp() kwargs = { "title": 'Basic Queue', "slug": 'QQ', "allow_public_submission": True, "allow_email_submission": True, "email_box_type": self.method, "logging_dir": self.temp_logdir, "logging_type": 'none' } if self.method == 'local': kwargs["email_box_local_dir"] = '/var/lib/mail/helpdesk/' else: kwargs["email_box_host"] = unrouted_email_server kwargs["email_box_port"] = unused_port if self.socks: kwargs["socks_proxy_type"] = self.socks kwargs["socks_proxy_host"] = unrouted_socks_server kwargs["socks_proxy_port"] = unused_port self.queue_public = Queue.objects.create(**kwargs) def tearDown(self): rmtree(self.temp_logdir) def test_read_plain_email(self): """Tests reading plain text emails from a queue and creating tickets. For each email source supported, we mock the backend to provide authentically formatted responses containing our test data.""" # example email text from Django docs: https://docs.djangoproject.com/en/1.10/ref/unicode/ test_email_from = "Arnbjörg Ráðormsdóttir <arnbjorg@example.com>" test_email_subject = "My visit to Sør-Trøndelag" test_email_body = "Unicode helpdesk comment with an s-hat (ŝ) via email." test_email = "To: helpdesk@example.com\nFrom: " + test_email_from + "\nSubject: " + test_email_subject + "\n\n" + test_email_body test_mail_len = len(test_email) if self.socks: from socks import ProxyConnectionError with self.assertRaisesRegexp(ProxyConnectionError, '%s:%s' % (unrouted_socks_server, unused_port)): call_command('get_email') else: # Test local email reading if self.method == 'local': with mock.patch('helpdesk.management.commands.get_email.listdir') as mocked_listdir, \ mock.patch('helpdesk.management.commands.get_email.isfile') as mocked_isfile, \ mock.patch('builtins.open' if six.PY3 else '__builtin__.open', mock.mock_open(read_data=test_email)): mocked_isfile.return_value = True mocked_listdir.return_value = ['filename1', 'filename2'] call_command('get_email') mocked_listdir.assert_called_with('/var/lib/mail/helpdesk/') mocked_isfile.assert_any_call('/var/lib/mail/helpdesk/filename1') mocked_isfile.assert_any_call('/var/lib/mail/helpdesk/filename2') elif self.method == 'pop3': # mock poplib.POP3's list and retr methods to provide responses as per RFC 1939 pop3_emails = { '1': ("+OK", test_email.split('\n')), '2': ("+OK", test_email.split('\n')), } pop3_mail_list = ("+OK 2 messages", ("1 %d" % test_mail_len, "2 %d" % test_mail_len)) mocked_poplib_server = mock.Mock() mocked_poplib_server.list = mock.Mock(return_value=pop3_mail_list) mocked_poplib_server.retr = mock.Mock(side_effect=lambda x: pop3_emails[x]) with mock.patch('helpdesk.management.commands.get_email.poplib', autospec=True) as mocked_poplib: mocked_poplib.POP3 = mock.Mock(return_value=mocked_poplib_server) call_command('get_email') elif self.method == 'imap': # mock imaplib.IMAP4's search and fetch methods with responses from RFC 3501 imap_emails = { "1": ("OK", (("1", test_email),)), "2": ("OK", (("2", test_email),)), } imap_mail_list = ("OK", ("1 2",)) mocked_imaplib_server = mock.Mock() mocked_imaplib_server.search = mock.Mock(return_value=imap_mail_list) # we ignore the second arg as the data item/mime-part is constant (RFC822) mocked_imaplib_server.fetch = mock.Mock(side_effect=lambda x, _: imap_emails[x]) with mock.patch('helpdesk.management.commands.get_email.imaplib', autospec=True) as mocked_imaplib: mocked_imaplib.IMAP4 = mock.Mock(return_value=mocked_imaplib_server) call_command('get_email') ticket1 = get_object_or_404(Ticket, pk=1) self.assertEqual(ticket1.ticket_for_url, "QQ-%s" % ticket1.id) self.assertEqual(ticket1.title, test_email_subject) self.assertEqual(ticket1.description, test_email_body) ticket2 = get_object_or_404(Ticket, pk=2) self.assertEqual(ticket2.ticket_for_url, "QQ-%s" % ticket2.id) self.assertEqual(ticket2.title, test_email_subject) self.assertEqual(ticket2.description, test_email_body) def test_read_email_with_template_tag(self): """Tests reading plain text emails from a queue and creating tickets, except this time the email body contains a Django template tag. For each email source supported, we mock the backend to provide authentically formatted responses containing our test data.""" # example email text from Django docs: https://docs.djangoproject.com/en/1.10/ref/unicode/ test_email_from = "Arnbjörg Ráðormsdóttir <arnbjorg@example.com>" test_email_subject = "My visit to Sør-Trøndelag" test_email_body = "Reporting some issue with the template tag: {% if helpdesk %}." test_email = "To: helpdesk@example.com\nFrom: " + test_email_from + "\nSubject: " + test_email_subject + "\n\n" + test_email_body test_mail_len = len(test_email) if self.socks: from socks import ProxyConnectionError with self.assertRaisesRegexp(ProxyConnectionError, '%s:%s' % (unrouted_socks_server, unused_port)): call_command('get_email') else: # Test local email reading if self.method == 'local': with mock.patch('helpdesk.management.commands.get_email.listdir') as mocked_listdir, \ mock.patch('helpdesk.management.commands.get_email.isfile') as mocked_isfile, \ mock.patch('builtins.open' if six.PY3 else '__builtin__.open', mock.mock_open(read_data=test_email)): mocked_isfile.return_value = True mocked_listdir.return_value = ['filename1', 'filename2'] call_command('get_email') mocked_listdir.assert_called_with('/var/lib/mail/helpdesk/') mocked_isfile.assert_any_call('/var/lib/mail/helpdesk/filename1') mocked_isfile.assert_any_call('/var/lib/mail/helpdesk/filename2') elif self.method == 'pop3': # mock poplib.POP3's list and retr methods to provide responses as per RFC 1939 pop3_emails = { '1': ("+OK", test_email.split('\n')), '2': ("+OK", test_email.split('\n')), } pop3_mail_list = ("+OK 2 messages", ("1 %d" % test_mail_len, "2 %d" % test_mail_len)) mocked_poplib_server = mock.Mock() mocked_poplib_server.list = mock.Mock(return_value=pop3_mail_list) mocked_poplib_server.retr = mock.Mock(side_effect=lambda x: pop3_emails[x]) with mock.patch('helpdesk.management.commands.get_email.poplib', autospec=True) as mocked_poplib: mocked_poplib.POP3 = mock.Mock(return_value=mocked_poplib_server) call_command('get_email') elif self.method == 'imap': # mock imaplib.IMAP4's search and fetch methods with responses from RFC 3501 imap_emails = { "1": ("OK", (("1", test_email),)), "2": ("OK", (("2", test_email),)), } imap_mail_list = ("OK", ("1 2",)) mocked_imaplib_server = mock.Mock() mocked_imaplib_server.search = mock.Mock(return_value=imap_mail_list) # we ignore the second arg as the data item/mime-part is constant (RFC822) mocked_imaplib_server.fetch = mock.Mock(side_effect=lambda x, _: imap_emails[x]) with mock.patch('helpdesk.management.commands.get_email.imaplib', autospec=True) as mocked_imaplib: mocked_imaplib.IMAP4 = mock.Mock(return_value=mocked_imaplib_server) call_command('get_email') ticket1 = get_object_or_404(Ticket, pk=1) self.assertEqual(ticket1.ticket_for_url, "QQ-%s" % ticket1.id) self.assertEqual(ticket1.title, test_email_subject) self.assertEqual(ticket1.description, test_email_body) ticket2 = get_object_or_404(Ticket, pk=2) self.assertEqual(ticket2.ticket_for_url, "QQ-%s" % ticket2.id) self.assertEqual(ticket2.title, test_email_subject) self.assertEqual(ticket2.description, test_email_body) def test_read_html_multipart_email(self): """Tests reading multipart MIME (HTML body and plain text alternative) emails from a queue and creating tickets. For each email source supported, we mock the backend to provide authentically formatted responses containing our test data.""" # example email text from Python docs: https://docs.python.org/3/library/email-examples.html from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText me = "my@example.com" you = "your@example.com" # NOTE: CC'd emails need to be alphabetical and tested as such! # implementation uses sets, so only way to ensure tickets created # in right order is to change set to list and sort it cc_one = "nobody@example.com" cc_two = "other@example.com" cc = cc_one + ", " + cc_two subject = "Link" # Create message container - the correct MIME type is multipart/alternative. msg = MIMEMultipart('alternative') msg['Subject'] = subject msg['From'] = me msg['To'] = you msg['Cc'] = cc # Create the body of the message (a plain-text and an HTML version). text = "Hi!\nHow are you?\nHere is the link you wanted:\nhttps://www.python.org" html = """\ <html> <head></head> <body> <p>Hi!<br> How are you?<br> Here is the <a href="https://www.python.org">link</a> you wanted. </p> </body> </html> """ # Record the MIME types of both parts - text/plain and text/html. part1 = MIMEText(text, 'plain') part2 = MIMEText(html, 'html') # Attach parts into message container. # According to RFC 2046, the last part of a multipart message, in this case # the HTML message, is best and preferred. msg.attach(part1) msg.attach(part2) test_mail_len = len(msg) if self.socks: from socks import ProxyConnectionError with self.assertRaisesRegexp(ProxyConnectionError, '%s:%s' % (unrouted_socks_server, unused_port)): call_command('get_email') else: # Test local email reading if self.method == 'local': with mock.patch('helpdesk.management.commands.get_email.listdir') as mocked_listdir, \ mock.patch('helpdesk.management.commands.get_email.isfile') as mocked_isfile, \ mock.patch('builtins.open' if six.PY3 else '__builtin__.open', mock.mock_open(read_data=msg.as_string())): mocked_isfile.return_value = True mocked_listdir.return_value = ['filename1', 'filename2'] call_command('get_email') mocked_listdir.assert_called_with('/var/lib/mail/helpdesk/') mocked_isfile.assert_any_call('/var/lib/mail/helpdesk/filename1') mocked_isfile.assert_any_call('/var/lib/mail/helpdesk/filename2') elif self.method == 'pop3': # mock poplib.POP3's list and retr methods to provide responses as per RFC 1939 pop3_emails = { '1': ("+OK", msg.as_string().split('\n')), '2': ("+OK", msg.as_string().split('\n')), } pop3_mail_list = ("+OK 2 messages", ("1 %d" % test_mail_len, "2 %d" % test_mail_len)) mocked_poplib_server = mock.Mock() mocked_poplib_server.list = mock.Mock(return_value=pop3_mail_list) mocked_poplib_server.retr = mock.Mock(side_effect=lambda x: pop3_emails[x]) with mock.patch('helpdesk.management.commands.get_email.poplib', autospec=True) as mocked_poplib: mocked_poplib.POP3 = mock.Mock(return_value=mocked_poplib_server) call_command('get_email') elif self.method == 'imap': # mock imaplib.IMAP4's search and fetch methods with responses from RFC 3501 imap_emails = { "1": ("OK", (("1", msg.as_string()),)), "2": ("OK", (("2", msg.as_string()),)), } imap_mail_list = ("OK", ("1 2",)) mocked_imaplib_server = mock.Mock() mocked_imaplib_server.search = mock.Mock(return_value=imap_mail_list) # we ignore the second arg as the data item/mime-part is constant (RFC822) mocked_imaplib_server.fetch = mock.Mock(side_effect=lambda x, _: imap_emails[x]) with mock.patch('helpdesk.management.commands.get_email.imaplib', autospec=True) as mocked_imaplib: mocked_imaplib.IMAP4 = mock.Mock(return_value=mocked_imaplib_server) call_command('get_email') ticket1 = get_object_or_404(Ticket, pk=1) self.assertEqual(ticket1.ticket_for_url, "QQ-%s" % ticket1.id) self.assertEqual(ticket1.title, subject) # plain text should become description self.assertEqual(ticket1.description, text) # HTML MIME part should be attached to follow up followup1 = get_object_or_404(FollowUp, pk=1) self.assertEqual(followup1.ticket.id, 1) attach1 = get_object_or_404(Attachment, pk=1) self.assertEqual(attach1.followup.id, 1) self.assertEqual(attach1.filename, 'email_html_body.html') cc1 = get_object_or_404(TicketCC, pk=1) self.assertEqual(cc1.email, cc_one) cc2 = get_object_or_404(TicketCC, pk=2) self.assertEqual(cc2.email, cc_two) self.assertEqual(len(TicketCC.objects.filter(ticket=1)), 2) ticket2 = get_object_or_404(Ticket, pk=2) self.assertEqual(ticket2.ticket_for_url, "QQ-%s" % ticket2.id) self.assertEqual(ticket2.title, subject) # plain text should become description self.assertEqual(ticket2.description, text) # HTML MIME part should be attached to follow up followup2 = get_object_or_404(FollowUp, pk=2) self.assertEqual(followup2.ticket.id, 2) attach2 = get_object_or_404(Attachment, pk=2) self.assertEqual(attach2.followup.id, 2) self.assertEqual(attach2.filename, 'email_html_body.html') class GetEmailCCHandling(TestCase): """TestCase that checks CC handling in email. Needs its own test harness.""" def setUp(self): self.temp_logdir = mkdtemp() kwargs = { "title": 'CC Queue', "slug": 'CC', "allow_public_submission": True, "allow_email_submission": True, "email_address": 'queue@example.com', "email_box_type": 'local', "email_box_local_dir": '/var/lib/mail/helpdesk/', "logging_dir": self.temp_logdir, "logging_type": 'none' } self.queue_public = Queue.objects.create(**kwargs) user1_kwargs = { 'username': 'staff', 'email': 'staff@example.com', 'password': make_password('Test1234'), 'is_staff': True, 'is_superuser': False, 'is_active': True } self.staff_user = User.objects.create(**user1_kwargs) user2_kwargs = { 'username': 'assigned', 'email': 'assigned@example.com', 'password': make_password('Test1234'), 'is_staff': True, 'is_superuser': False, 'is_active': True } self.assigned_user = User.objects.create(**user2_kwargs) user3_kwargs = { 'username': 'observer', 'email': 'observer@example.com', 'password': make_password('Test1234'), 'is_staff': True, 'is_superuser': False, 'is_active': True } self.observer_user = User.objects.create(**user3_kwargs) ticket_kwargs = { 'title': 'Original Ticket', 'queue': self.queue_public, 'submitter_email': 'submitter@example.com', 'assigned_to': self.assigned_user, 'status': 1 } self.original_ticket = Ticket.objects.create(**ticket_kwargs) cc_kwargs = { 'ticket': self.original_ticket, 'user': self.staff_user, 'can_view': True, 'can_update': True } self.original_cc = TicketCC.objects.create(**cc_kwargs) def tearDown(self): rmtree(self.temp_logdir) def test_read_email_cc(self): """Tests reading plain text emails from a queue and adding to a ticket, particularly to test appropriate handling of CC'd emails.""" # first, check that test ticket exists ticket1 = get_object_or_404(Ticket, pk=1) self.assertEqual(ticket1.ticket_for_url, "CC-1") self.assertEqual(ticket1.title, "Original Ticket") # only the staff_user is CC'd for now self.assertEqual(len(TicketCC.objects.filter(ticket=1)), 1) ccstaff = get_object_or_404(TicketCC, pk=1) self.assertEqual(ccstaff.user, User.objects.get(username='staff')) self.assertEqual(ticket1.assigned_to, User.objects.get(username='assigned')) # example email text from Django docs: https://docs.djangoproject.com/en/1.10/ref/unicode/ test_email_from = "submitter@example.com" # NOTE: CC emails are in alphabetical order and must be tested as such! # implementation uses sets, so only way to ensure tickets created # in right order is to change set to list and sort it test_email_cc_one = "Alice Ráðormsdóttir <alice@example.com>" test_email_cc_two = "nobody@example.com" test_email_cc_three = "other@example.com" test_email_cc_four = "someone@example.com" ticket_user_emails = "assigned@example.com, staff@example.com, submitter@example.com, observer@example.com, queue@example.com" test_email_subject = "[CC-1] My visit to Sør-Trøndelag" test_email_body = "Unicode helpdesk comment with an s-hat (ŝ) via email." test_email = "To: queue@example.com\nCc: " + test_email_cc_one + ", " + test_email_cc_one + ", " + test_email_cc_two + ", " + test_email_cc_three + "\nCC: " + test_email_cc_one + ", " + test_email_cc_three + ", " + test_email_cc_four + ", " + ticket_user_emails + "\nFrom: " + test_email_from + "\nSubject: " + test_email_subject + "\n\n" + test_email_body test_mail_len = len(test_email) with mock.patch('helpdesk.management.commands.get_email.listdir') as mocked_listdir, \ mock.patch('helpdesk.management.commands.get_email.isfile') as mocked_isfile, \ mock.patch('builtins.open' if six.PY3 else '__builtin__.open', mock.mock_open(read_data=test_email)): mocked_isfile.return_value = True mocked_listdir.return_value = ['filename1'] call_command('get_email') mocked_listdir.assert_called_with('/var/lib/mail/helpdesk/') mocked_isfile.assert_any_call('/var/lib/mail/helpdesk/filename1') # ensure these 4 CCs (test_email_cc one thru four) are the only ones # created and added to the existing staff_user that was CC'd, # and the observer user that gets CC'd to new email., # and that submitter and assignee are not added as CC either # (in other words, even though everyone was CC'd to this email, # we should come out with only 6 CCs after filtering) self.assertEqual(len(TicketCC.objects.filter(ticket=1)), 6) # next we make sure no duplicates were added, and the # staff users nor submitter were not re-added as email TicketCCs cc0 = get_object_or_404(TicketCC, pk=2) self.assertEqual(cc0.user, User.objects.get(username='observer')) cc1 = get_object_or_404(TicketCC, pk=3) self.assertEqual(cc1.email, test_email_cc_one) cc2 = get_object_or_404(TicketCC, pk=4) self.assertEqual(cc2.email, test_email_cc_two) cc3 = get_object_or_404(TicketCC, pk=5) self.assertEqual(cc3.email, test_email_cc_three) cc4 = get_object_or_404(TicketCC, pk=6) self.assertEqual(cc4.email, test_email_cc_four) # build matrix of test cases case_methods = [c[0] for c in Queue._meta.get_field('email_box_type').choices] case_socks = [False] + [c[0] for c in Queue._meta.get_field('socks_proxy_type').choices] case_matrix = list(itertools.product(case_methods, case_socks)) # Populate TestCases from the matrix of parameters thismodule = sys.modules[__name__] for method, socks in case_matrix: if method == "local" and socks: continue socks_str = "Nosocks" if socks: socks_str = socks.capitalize() test_name = str( "TestGetEmail%s%s" % (method.capitalize(), socks_str)) cl = type(test_name, (GetEmailParametricTemplate, TestCase), {"method": method, "socks": socks}) setattr(thismodule, test_name, cl)
47.054688
364
0.620538
f8d7050e863c1b7756d6e8ce317fc81c05ed12dd
915
py
Python
utils/minSubArrayLen.py
wisesky/LeetCode-Practice
65549f72c565d9f11641c86d6cef9c7988805817
[ "MIT" ]
null
null
null
utils/minSubArrayLen.py
wisesky/LeetCode-Practice
65549f72c565d9f11641c86d6cef9c7988805817
[ "MIT" ]
null
null
null
utils/minSubArrayLen.py
wisesky/LeetCode-Practice
65549f72c565d9f11641c86d6cef9c7988805817
[ "MIT" ]
null
null
null
""" 题目描述 给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和≥ s的长度最小的连续子数组。如果不存在符合条件的连续子数组,返回 0。 示例: 输入: s = 7, nums = [2,3,1,2,4,3] 输出: 2 解释: 子数组 [4,3] 是该条件下的长度最小的连续子数组。 """ class Solution: def minSubArrayLen(self, s, nums): pre = 0 su = 0 le = 0 for i,num in enumerate(nums): # print(su) if num >= s: return 1 su += num if i == 0 or su < s: continue for j in range(pre, i): resu = su - nums[j] if resu >= s: su = resu else: break pre = j le = i - pre + 1 if le == 0 else min(i-pre+1, le) return le if __name__ == "__main__": s = 7 nums = [2, 3, 1, 2, 4, 3, 7] nums = [1,1] so = Solution() # so.minSubArrayLen(s, nums) print(so.minSubArrayLen(s, nums))
22.875
72
0.437158
de3b59c604e89af117a582b1e1d355dc24c9efc0
8,060
py
Python
event_three.py
Malcolm1998/CS412T1C2
5a79bc27452c162dcd0ac94fa32b5fb717345bb5
[ "MIT" ]
null
null
null
event_three.py
Malcolm1998/CS412T1C2
5a79bc27452c162dcd0ac94fa32b5fb717345bb5
[ "MIT" ]
null
null
null
event_three.py
Malcolm1998/CS412T1C2
5a79bc27452c162dcd0ac94fa32b5fb717345bb5
[ "MIT" ]
null
null
null
import signal import rospy import smach import smach_ros import math import time import cv2 from math import tanh from geometry_msgs.msg import Twist from sensor_msgs.msg import Image import numpy as np from sensor_msgs.msg import LaserScan from sensor_msgs.msg import Joy from kobuki_msgs.msg import Sound import detect_shape import event_two global shutdown_requested global number_of_checks class OdomFollow(smach.State): def __init__(self, callbacks): smach.State.__init__(self, outcomes=['done3', 'rotate_left']) self.callbacks = callbacks self.twist = Twist() self.cmd_vel_pub = rospy.Publisher('cmd_vel_mux/input/teleop', Twist, queue_size=1) self.prev_error = None self.Kp = 1.0 / 50.0 self.Ki = 1.0 / 50.0 self.Kd = 1.0 / 50.0 self.speed = 0.8 def execute(self, userdata): global shutdown_requested global number_of_checks if number_of_checks == 0: distance = 0.6 else: distance = 0.3 while self.callbacks.pose is None: time.sleep(1) sp = self.callbacks.pose ep = sp while math.sqrt((sp.x - ep.x) ** 2 + (sp.y - ep.y) ** 2) < distance: if shutdown_requested: return 'done3' h = self.callbacks.h w = self.callbacks.w search_top = 3 * h / 4 search_bot = h bottom_white_mask = self.callbacks.white_mask.copy() bottom_white_mask[0:search_top, 0:w] = 0 bottom_white_mask[search_bot:h, 0:w] = 0 M = cv2.moments(bottom_white_mask) if M['m00'] > 0: cx = int(M['m10'] / M['m00']) cy = int(M['m01'] / M['m00']) # BEGIN CONTROL if self.prev_error is None: error = cx - self.callbacks.w / 2 rotation = -(self.Kp * float(error)) self.prev_error = error else: error = cx - self.callbacks.w / 2 rotation = -(self.Kp * float(error) + self.Kd * (error - self.prev_error)) self.prev_error = error self.twist.linear.x = self.speed self.twist.angular.z = rotation self.cmd_vel_pub.publish(self.twist) # END CONTROL ep = self.callbacks.pose self.twist.linear.x = 0 self.twist.angular.z = 0 self.cmd_vel_pub.publish(self.twist) return 'rotate_left' class RotateLeft(smach.State): def __init__(self, callbacks): smach.State.__init__(self, outcomes=['done3', 'check']) self.callbacks = callbacks self.twist = Twist() self.cmd_vel_pub = rospy.Publisher('cmd_vel_mux/input/teleop', Twist, queue_size=1) def execute(self, userdata): global shutdown_requested while not shutdown_requested: target_heading = (self.callbacks.heading + 90) % 360 turning = True previous_difference = None while turning: if shutdown_requested: return 'done3' difference = minimum_angle_between_headings(target_heading, self.callbacks.heading) #print(difference) if previous_difference is None: self.twist.angular.z = 0.4 self.cmd_vel_pub.publish(self.twist) else: if difference < 1: turning = False self.twist.angular.z = 0 self.cmd_vel_pub.publish(self.twist) else: self.twist.angular.z = 0.4 self.cmd_vel_pub.publish(self.twist) if previous_difference != difference: previous_difference = difference return 'check' return 'done3' class Check(smach.State): def __init__(self, callbacks): smach.State.__init__(self, outcomes=['done3', 'rotate_right']) self.callbacks = callbacks self.twist = Twist() self.cmd_vel_pub = rospy.Publisher('cmd_vel_mux/input/teleop', Twist, queue_size=1) self.sound_pub = rospy.Publisher('/mobile_base/commands/sound', Sound, queue_size=1) def execute(self, userdata): global shutdown_requested global number_of_checks while not shutdown_requested: number_of_checks += 1 h = self.callbacks.h w = self.callbacks.w symbol_red_mask = self.callbacks.symbol_red_mask.copy() symbol_red_mask[0:h / 2, 0:w] = 0 shapes = detect_shape.detect_shape(symbol_red_mask)[0] if len(shapes) > 0: current_shape = shapes[0] print(current_shape) if current_shape.value == event_two.previous_shape: self.sound_pub.publish(1) if current_shape.value == 3: if event_two.previous_shape in [-1, 5]: self.sound_pub.publish(1) time.sleep(1) return "rotate_right" return 'done3' class RotateRight(smach.State): def __init__(self, callbacks): smach.State.__init__(self, outcomes=['done3', 'success3', 'odom_follow']) self.callbacks = callbacks self.twist = Twist() self.cmd_vel_pub = rospy.Publisher('cmd_vel_mux/input/teleop', Twist, queue_size=1) def execute(self, userdata): global shutdown_requested global number_of_checks while not shutdown_requested: target_heading = self.callbacks.heading - 90 if target_heading < 0: target_heading = target_heading + 360 turning = True previous_difference = None while turning: if shutdown_requested: return 'done3' difference = minimum_angle_between_headings(target_heading, self.callbacks.heading) if previous_difference is None: self.twist.angular.z = -0.4 self.cmd_vel_pub.publish(self.twist) else: if difference < 0.5: turning = False self.twist.angular.z = 0 self.cmd_vel_pub.publish(self.twist) else: self.twist.angular.z = -0.4 self.cmd_vel_pub.publish(self.twist) if previous_difference != difference: previous_difference = difference if number_of_checks >= 3: return 'success3' else: return 'odom_follow' return 'done3' def minimum_angle_between_headings(a, b): heading_difference = a - b if heading_difference < 0: heading_difference += 360 if heading_difference > 180: heading_difference = b - a if heading_difference < 0: heading_difference += 360 return heading_difference def get_state_machine(callbacks): global number_of_checks number_of_checks = 0 sm_event_3 = smach.StateMachine(outcomes=['DONE3', 'SUCCESS3']) with sm_event_3: smach.StateMachine.add('ODOM_FOLLOW', OdomFollow(callbacks), transitions={'done3': 'DONE3', 'rotate_left': 'ROTATE_LEFT'}) smach.StateMachine.add('ROTATE_LEFT', RotateLeft(callbacks), transitions={'done3': 'DONE3', 'check': 'CHECK'}) smach.StateMachine.add('CHECK', Check(callbacks), transitions={'done3': 'DONE3', 'rotate_right': 'ROTATE_RIGHT'}) smach.StateMachine.add('ROTATE_RIGHT', RotateRight(callbacks), transitions={'done3': 'DONE3', 'success3': 'SUCCESS3', 'odom_follow': 'ODOM_FOLLOW'}) return sm_event_3
34.444444
116
0.562779
82b42c28b9a4f60f1f0cb9cfd7c51c57dab7ffb9
16,977
py
Python
collector.py
couchbase/healthchecker
a43acce50fe273772205270f41a6f2a13ea6a7b5
[ "Apache-2.0" ]
2
2016-01-14T18:25:14.000Z
2018-10-24T10:16:58.000Z
collector.py
couchbase/healthchecker
a43acce50fe273772205270f41a6f2a13ea6a7b5
[ "Apache-2.0" ]
null
null
null
collector.py
couchbase/healthchecker
a43acce50fe273772205270f41a6f2a13ea6a7b5
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import os import sys import traceback import copy import logging import simplejson as json import listservers import buckets import info import util_cli as util import cb_bin_client import stats_buffer class StatsCollector: def __init__(self, log): self.log = log def seg(self, k, v): # Parse ('some_stat_x_y', 'v') into (('some_stat', x, y), v) ka = k.split('_') k = '_'.join(ka[0:-1]) kstart, kend = [int(x) for x in ka[-1].split(',')] return ((k, kstart, kend), int(v)) def write_file(self, filename, info): f = open(filename, 'w') print >> f, util.pretty_print(info) f.close() def retrieve_node_stats(self, nodeInfo, nodeStats): nodeStats['portDirect'] = nodeInfo['ports']['direct'] nodeStats['portProxy'] = nodeInfo['ports']['proxy'] nodeStats['clusterMembership'] = nodeInfo['clusterMembership'] nodeStats['os'] = nodeInfo['os'] nodeStats['uptime'] = nodeInfo['uptime'] nodeStats['version'] = nodeInfo['version'] nodeStats['num_processor'] = 1 #TODO: read from cbcollectinfo #memory nodeStats['memory'] = {} nodeStats['memory']['allocated'] = nodeInfo['mcdMemoryAllocated'] nodeStats['memory']['reserved'] = nodeInfo['mcdMemoryReserved'] nodeStats['memory']['free'] = nodeInfo['memoryFree'] nodeStats['memory']['quota'] = nodeInfo['memoryQuota'] nodeStats['memory']['total'] = nodeInfo['memoryTotal'] #availableStorage nodeStats['availableStorage'] = copy.deepcopy(nodeInfo['availableStorage']) #storageInfo nodeStats['StorageInfo'] = {} if nodeInfo['storageTotals'] and nodeInfo['storage']: #print nodeInfo hdd = nodeInfo['storageTotals']['hdd'] if hdd: nodeStats['StorageInfo']['hdd'] = {} nodeStats['StorageInfo']['hdd']['free'] = hdd['free'] nodeStats['StorageInfo']['hdd']['quotaTotal'] = hdd['quotaTotal'] nodeStats['StorageInfo']['hdd']['total'] = hdd['total'] nodeStats['StorageInfo']['hdd']['used'] = hdd['used'] nodeStats['StorageInfo']['hdd']['usedByData'] = hdd['usedByData'] if nodeInfo['storage']['hdd']: nodeStats['StorageInfo']['type'] = 'hdd' nodeStats['StorageInfo']['storage'] = copy.deepcopy(nodeInfo['storage']['hdd']) elif nodeinfo['storage']['ssd']: nodeStats['StorageInfo']['type'] = 'ssd' nodeStats['StorageInfo']['storage'] = copy.deepcopy(nodeInfo['storage']['ssd']) else: nodeStats['StorageInfo']['type'] = None nodeStats['StorageInfo']['storage'] = {} ram = nodeInfo['storageTotals']['ram'] if ram: nodeStats['StorageInfo']['ram'] = {} nodeStats['StorageInfo']['ram']['quotaTotal'] = ram['quotaTotal'] nodeStats['StorageInfo']['ram']['total'] = ram['total'] nodeStats['StorageInfo']['ram']['used'] = ram['used'] nodeStats['StorageInfo']['ram']['usedByData'] = ram['usedByData'] if ram.has_key('quotaUsed'): nodeStats['StorageInfo']['ram']['quotaUsed'] = ram['quotaUsed'] else: nodeStats['StorageInfo']['ram']['quotaUsed'] = 0 #system stats nodeStats['systemStats'] = {} nodeStats['systemStats']['cpu_utilization_rate'] = nodeInfo['systemStats']['cpu_utilization_rate'] nodeStats['systemStats']['swap_total'] = nodeInfo['systemStats']['swap_total'] nodeStats['systemStats']['swap_used'] = nodeInfo['systemStats']['swap_used'] curr_items = 0 curr_items_tot = 0 vb_rep_curr_items = 0 if nodeInfo['interestingStats']: if nodeInfo['interestingStats'].has_key('curr_items'): curr_items = nodeInfo['interestingStats']['curr_items'] else: curr_items = 0 if nodeInfo['interestingStats'].has_key('curr_items_tot'): curr_items_tot = nodeInfo['interestingStats']['curr_items_tot'] else: curr_items_tot = 0 if nodeInfo['interestingStats'].has_key('vb_replica_curr_items'): vb_rep_curr_items = nodeInfo['interestingStats']['vb_replica_curr_items'] else: vb_rep_curr_items = 0 nodeStats['systemStats']['currentItems'] = curr_items nodeStats['systemStats']['currentItemsTotal'] = curr_items_tot nodeStats['systemStats']['replicaCurrentItems'] = vb_rep_curr_items def get_hostlist(self, server, port, user, password, opts): try: opts.append(("-o", "return")) nodes = listservers.ListServers().runCmd('host-list', server, port, user, password, False, opts) for node in nodes: (node_server, node_port) = util.hostport(node['hostname']) node_stats = {"host" : node_server, "port" : node_port, "status" : node['status'], "master" : server} stats_buffer.nodes[node['hostname']] = node_stats if node['status'] == 'healthy': node_info = info.Info().runCmd('get-server-info', node_server, node_port, user, password, False, opts) self.retrieve_node_stats(node_info, node_stats) else: self.log.error("Unhealthy node: %s:%s" %(node_server, node['status'])) return nodes except Exception, err: traceback.print_exc() sys.exit(1) def get_bucketlist(self, server, port, user, password, bucketname, opts): try: bucketlist = buckets.Buckets().runCmd('bucket-get', server, port, user, password, False, opts) for bucket in bucketlist: bucket_name = bucket['name'] if bucketname == 'all' or bucket_name == bucketname: bucketinfo = {} bucketinfo['name'] = bucket_name bucketinfo['bucketType'] = bucket['bucketType'] bucketinfo['authType'] = bucket['authType'] bucketinfo['saslPassword'] = bucket['saslPassword'] bucketinfo['numReplica'] = bucket['replicaNumber'] bucketinfo['ramQuota'] = bucket['quota']['ram'] bucketinfo['master'] = server if bucket.has_key('vBucketServerMap'): bucketinfo['vBucketServerMap'] = bucket['vBucketServerMap'] else: if bucket['bucketType'] != "memcached": self.log.error("vBucketServerMap doesn't exist from bucket info") self.log.error(bucket) bucketinfo['numDdoc'], bucketinfo['numView'] = \ self.number_bucketddocs(server, port, user, password, bucket_name, \ bucket['bucketType'], opts) stats_buffer.bucket_info[bucket_name] = bucketinfo return bucketlist except Exception, err: traceback.print_exc() sys.exit(1) def number_bucketddocs(self, server, port, user, password, bucketname, buckettype, opts): if buckettype == 'memcached': return (0, 0) else: try: opts_tmp = opts opts_tmp.append(('-b', bucketname)) docs = buckets.Buckets().runCmd('bucket-ddocs', server, port, user, password, False, opts_tmp) total_ddocs = 0 total_view = 0 if docs: for row in docs["rows"]: if row["doc"]["meta"]["id"].find("_design/dev_") >= 0: continue total_ddocs += 1 total_view += len(row["doc"]["json"]["views"]) if total_ddocs: total_view /= total_ddocs return (total_ddocs, total_view) except Exception, err: traceback.print_exc() sys.exit(1) def process_histogram_data(self, histogram_data): vals = sorted([self.seg(*kv) for kv in histogram_data.items()]) dd = {} totals = {} for s in vals: if s[0][2] > util.BIG_VALUE: # Ignore the upper bound if it is exemely big avg = s[0][1] else: avg = (s[0][1] + s[0][2]) / 2 k = s[0][0] l = dd.get(k, []) l.append((avg, s[1])) dd[k] = l totals[k] = totals.get(k, 0) + s[1] return (dd, totals) def get_mc_stats_per_node(self, mc, stats): cmd_list = ["timings", "tap", "checkpoint", "memory", ""] try: for cmd in cmd_list: if mc: node_stats = mc.stats(cmd) else: node_stats = stats if node_stats: if cmd == "timings": dd = {} if mc: dd, totals = self.process_histogram_data(node_stats) else: for key in stats.iterkeys(): if key.find("timing_") >= 0 or key.find("timging_") >= 0: node_stats = stats[key] dd, totals = self.process_histogram_data(node_stats) break if dd: for k in sorted(dd): ccount = 0 for lbl,v in dd[k]: ccount += v * lbl stats[k] = ccount / totals[k] stats["timing_"] = node_stats else: for key, val in node_stats.items(): stats[key] = val except Exception, err: traceback.print_exc() def get_mc_stats(self, server, bucketlist, nodes, bucketname): for bucket in bucketlist: bucket_name = bucket['name'] if bucketname == 'all' or bucket_name == bucketname: self.log.info("bucket: %s" % bucket_name) stats_buffer.node_stats[bucket_name] = {} if stats_buffer.bucket_info[bucket_name]["bucketType"] == 'memcached': self.log.info("Skip memcached bucket: %s" % bucket_name) continue for node in nodes: (node_server, node_port) = util.hostport(node['hostname']) self.log.info(" node: %s %s" % (node_server, node['ports']['direct'])) if node['status'] == 'healthy': try: stats = {} mc = cb_bin_client.MemcachedClient(node_server, node['ports']['direct']) if bucket["name"] != "Default": mc.sasl_auth_plain(bucket_name.encode("utf8"), bucket["saslPassword"].encode("utf8")) self.get_mc_stats_per_node(mc, stats) stats_buffer.node_stats[bucket_name][node['hostname']] = stats except Exception, err: #stats_buffer.nodes[node['hostname']]['status'] = 'down' traceback.print_exc() def get_mc_stats_fromfile(self, bucketname, collected_buckets, collected_nodes): for bucket_name in collected_buckets.iterkeys(): if bucketname == 'all' or bucket_name == bucketname: #stats_buffer.node_stats[bucket_name] = {} if stats_buffer.bucket_info[bucket_name]["bucketType"] == 'memcached': self.log.info("Skip memcached bucket: %s" % bucket_name) continue for node in collected_nodes.iterkeys(): (node_server, node_port) = util.hostport(node) if collected_nodes[node]['status'] == 'healthy': try: self.get_mc_stats_per_node(None, stats_buffer.node_stats[bucket_name][node]) except Exception, err: traceback.print_exc() sys.exit(1) def get_ns_stats(self, bucketlist, server, port, user, password, bucketname, scale, opts): stats_buffer.stats[scale] = copy.deepcopy(stats_buffer.counters) for bucket in bucketlist: bucket_name = bucket['name'] if bucketname == 'all' or bucket_name == bucketname: if stats_buffer.bucket_info[bucket_name]["bucketType"] == 'memcached': continue stats_buffer.buckets[bucket_name] = copy.deepcopy(stats_buffer.stats) cmd = 'bucket-node-stats' for scale, stat_set in stats_buffer.buckets[bucket_name].iteritems(): for stat in stat_set.iterkeys(): try : sys.stderr.write('.') self.log.debug("retrieve: %s" % stat) c = buckets.BucketNodeStats(bucket_name, stat, scale) json = c.runCmd('bucket-node-stats', server, port, user, password, False, opts) for node, vals in json["nodeStats"].iteritems(): for i, val in enumerate(vals): if isinstance(val, basestring): vals[i] = 0 stats_buffer.buckets[bucket_name][scale][stat] = json except Exception, err: self.log.debug("%s doesn't exist from ns stats" % stat) stats_buffer.buckets[bucket_name][scale][stat] = None pass sys.stderr.write('\n') def collect_data(self, bucketname, cluster, user, password, inputfile, statsfile, scale_val, opts, output_dir): scale_set = [] if scale_val == 'all': scale_set = ['minute', 'hour', 'day', 'week', 'month', 'year'] else: scale_set = [scale_val] if not inputfile: server, port = util.hostport(cluster) #get node list info nodes = self.get_hostlist(server, port, user, password, opts) self.log.debug(util.pretty_print(stats_buffer.nodes)) #get bucket list bucketlist = self.get_bucketlist(server, port, user, password, bucketname, opts) self.log.debug(util.pretty_print(stats_buffer.bucket_info)) self.log.debug(util.pretty_print(stats_buffer.buckets_summary)) #get stats from ep-engine self.get_mc_stats(server, bucketlist, nodes, bucketname) self.log.debug(util.pretty_print(stats_buffer.node_stats)) collected_data = {} for scale in scale_set: #get stats from ns-server self.get_ns_stats(bucketlist, server, port, user, password, bucketname, scale, opts) self.log.debug(util.pretty_print(stats_buffer.buckets)) collected_data["scale"] = scale_val collected_data["nodes"] = stats_buffer.nodes collected_data["bucket_info"] = stats_buffer.bucket_info collected_data["buckets_summary"] = stats_buffer.buckets_summary collected_data["node_stats"] = stats_buffer.node_stats collected_data["buckets"] = stats_buffer.buckets self.write_file(os.path.join(output_dir, statsfile), collected_data) else: json_data=open(inputfile) collected_data = json.load(json_data) json_data.close() stats_buffer.nodes = collected_data["nodes"] stats_buffer.bucket_info = collected_data["bucket_info"] stats_buffer.buckets_summary = collected_data["buckets_summary"] stats_buffer.node_stats = collected_data["node_stats"] self.get_mc_stats_fromfile(bucketname, collected_data["buckets"], collected_data["nodes"]) stats_buffer.buckets = collected_data["buckets"] scale_val = collected_data["scale"] return scale_val
47.289694
122
0.523473
9551c1a2ca9c32f337034987d9fb0203d8b2b7cf
5,060
py
Python
tfplus/nn/cnn.py
renmengye/tfplus
9b1f71d33f24af510c701c7d6f6bb816720ed701
[ "MIT" ]
2
2016-10-11T11:01:07.000Z
2016-10-11T11:02:32.000Z
tfplus/nn/cnn.py
renmengye/tfplus
9b1f71d33f24af510c701c7d6f6bb816720ed701
[ "MIT" ]
null
null
null
tfplus/nn/cnn.py
renmengye/tfplus
9b1f71d33f24af510c701c7d6f6bb816720ed701
[ "MIT" ]
2
2016-08-03T19:20:48.000Z
2019-06-24T07:36:22.000Z
from __future__ import division from graph_builder import GraphBuilder import numpy as np import tensorflow as tf from ops import Conv2D, MaxPool from batch_norm import BatchNorm class CNN(GraphBuilder): def __init__(self, f, ch, pool, act, use_bn, wd=None, use_stride=False, scope='cnn', trainable=True, initialization='msra'): """Add CNN. N = number of layers. Args: f: filter size, list of N int ch: number of channels, list of (N + 1) int pool: pooling ratio, list of N int act: activation function, list of N function use_bn: whether to use batch normalization, list of N bool wd: weight decay """ self.filter_size = f self.channels = ch self.pool = pool self.act = act self.use_bn = use_bn self.wd = wd self.scope = scope self.trainable = trainable self.nlayers = len(f) self.w = [None] * self.nlayers self.b = [None] * self.nlayers self.batch_norm = [] self.num_copies = 0 if initialization == 'msra': self.compute_std = lambda s: np.sqrt(2 / s[0] * s[1] * s[3]) elif initialization is None: self.compute_std = lambda s: 0.01 else: self.compute_std = initialization super(CNN, self).__init__() self.log.info('CNN: {}'.format(scope)) self.log.info('Channels: {}'.format(ch)) self.log.info('Activation: {}'.format(act)) self.log.info('Pool: {}'.format(pool)) self.log.info('BN: {}'.format(use_bn)) pass def init_var(self): """Initialize variables.""" f = self.filter_size ch = self.channels wd = self.wd trainable = self.trainable with tf.variable_scope(self.scope): for ii in xrange(self.nlayers): with tf.variable_scope('layer_{}'.format(ii)): self.w[ii] = self.declare_var( [f[ii], f[ii], ch[ii], ch[ii + 1]], name='w', wd=wd, trainable=trainable, stddev=self.compute_std( [f[ii], f[ii], ch[ii], ch[ii + 1]]) ) self.b[ii] = self.declare_var( [ch[ii + 1]], name='b', trainable=trainable, stddev=0 ) self.log.info('Filter: {}, Trainable: {}'.format( [f[ii], f[ii], ch[ii], ch[ii + 1]], trainable)) pass pass pass pass def get_layer(self, n): """Get a layer.""" return self.hidden_layers[n] def build(self, inp): """Run CNN on an input. Args: input: input image, [B, H, W, D] phase_train: phase train, bool """ self.lazy_init_var() x = inp['input'] phase_train = inp['phase_train'] h = [None] * self.nlayers self.batch_norm.append([None] * self.nlayers) with tf.variable_scope(self.scope): for ii in xrange(self.nlayers): with tf.variable_scope('layer_{}'.format(ii)): out_ch = self.channels[ii + 1] if ii == 0: prev_inp = x else: prev_inp = h[ii - 1] h[ii] = Conv2D(self.w[ii])(prev_inp) + self.b[ii] if self.use_bn[ii]: self.batch_norm[self.num_copies][ ii] = BatchNorm(out_ch) h[ii] = self.batch_norm[self.num_copies][ii]( {'input': h[ii], 'phase_train': phase_train}) if self.act[ii] is not None: h[ii] = self.act[ii](h[ii]) if self.pool[ii] > 1: h[ii] = MaxPool(self.pool[ii])(h[ii]) pass # h[ii] = tf.Print(h[ii], [ii, tf.reduce_mean(h[ii])]) pass pass self.num_copies += 1 self.hidden_layers = h return h[-1] def get_save_var_dict(self): results = {} for ii in xrange(self.nlayers): prefix = 'layer_{}/'.format(ii) results[prefix + 'w'] = self.w[ii] results[prefix + 'b'] = self.b[ii] for cc in xrange(self.num_copies): for ii in xrange(self.nlayers): prefix = 'layer_{}/'.format(ii) if len(self.batch_norm) == 1: bn_name = 'bn' else: bn_name = 'bn_{}'.format(cc) bn = self.batch_norm[cc][ii] if bn is not None: self.add_prefix_to( prefix + bn_name, bn.get_save_var_dict(), results) return results pass
33.733333
75
0.470553
ce0a5fd236b8d2380b5c2266229e61e99e49953f
781
py
Python
common/slewlimiter.py
frc5024/RocketShip
db3aed3d169292663036a9f5fd047dc11d92ca6f
[ "MIT" ]
3
2019-04-29T02:47:30.000Z
2019-04-30T16:35:15.000Z
common/slewlimiter.py
frc5024/RocketShip
db3aed3d169292663036a9f5fd047dc11d92ca6f
[ "MIT" ]
null
null
null
common/slewlimiter.py
frc5024/RocketShip
db3aed3d169292663036a9f5fd047dc11d92ca6f
[ "MIT" ]
null
null
null
class SlewLimiter: def __init__(self, limit): self.limit = limit self.output = 0.0 def Feed(self, value): error = value - self.output if error > self.limit: error = self.limit elif error < (self.limit * -1): error = self.limit * -1 self.output += error return self.output class MultipleSlewLimiter: def __init__(self, limit): self.limit = limit self.output = 0.0 def Feed(self, value): error = value - self.output if error > value *self.limit: error = self.limit elif error < (value * self.limit * -1): error = self.limit * -1 self.output += error return self.output MultipleSlewLimiter
27.892857
47
0.541613
727fdb5c07ab90d6ac5e956a24cbec200adb8772
1,912
py
Python
gitmostwanted/tasks/repo_stars.py
JS555/YayanRuhianResearch_
313df2ff308b2c7444bcd64094dd64ff69a8911d
[ "MIT" ]
null
null
null
gitmostwanted/tasks/repo_stars.py
JS555/YayanRuhianResearch_
313df2ff308b2c7444bcd64094dd64ff69a8911d
[ "MIT" ]
null
null
null
gitmostwanted/tasks/repo_stars.py
JS555/YayanRuhianResearch_
313df2ff308b2c7444bcd64094dd64ff69a8911d
[ "MIT" ]
null
null
null
from datetime import datetime, timedelta from gitmostwanted.app import app, db, celery from gitmostwanted.lib.bigquery.job import Job from gitmostwanted.models.repo import Repo, RepoStars from gitmostwanted.services import bigquery from time import sleep def results_of(j: Job): # @todo #0:15m copy-paste code in multiple tasks while not j.complete: app.logger.debug('The job is not complete, waiting...') sleep(10) return j.results @celery.task() def stars_mature(num_days): service = bigquery.instance(app) jobs = [] repos = Repo.query\ .filter(Repo.mature.is_(True))\ .filter(Repo.status == 'new')\ .order_by(Repo.checked_at.asc())\ .limit(40) # we are at the free plan for repo in repos: query = query_stars_by_repo( repo_id=repo.id, date_from=datetime.now() + timedelta(days=num_days * -1), date_to=datetime.now() ) job = Job(service, query, batch=True) job.execute() jobs.append((job, repo)) for job in jobs: for row in results_of(job[0]): db.session.add(RepoStars(repo_id=job[1].id, stars=row[0], year=row[1], day=row[2])) job[1].status = 'unknown' db.session.commit() # @todo #192:1h move BQ queries to a separate place def query_stars_by_repo(repo_id: int, date_from: datetime, date_to: datetime): query = """ SELECT COUNT(1) AS stars, YEAR(created_at) AS y, DAYOFYEAR(created_at) AS doy, MONTH(created_at) as mon FROM TABLE_DATE_RANGE([githubarchive:day.], TIMESTAMP('{date_from}'), TIMESTAMP('{date_to}')) WHERE repo.id = {id} AND type IN ('WatchEvent', 'ForkEvent') GROUP BY y, mon, doy """ return query.format( id=repo_id, date_from=date_from.strftime('%Y-%m-%d'), date_to=date_to.strftime('%Y-%m-%d') )
30.83871
100
0.626046
62e947c0a594776834d00b0cc9f86070821186bd
15,188
py
Python
plugins/youtube_dl_button.py
Naysabots/Youtube-Downloader-Bot
643312dcd577625c257f72f1cc27da94d78d0b20
[ "MIT" ]
null
null
null
plugins/youtube_dl_button.py
Naysabots/Youtube-Downloader-Bot
643312dcd577625c257f72f1cc27da94d78d0b20
[ "MIT" ]
null
null
null
plugins/youtube_dl_button.py
Naysabots/Youtube-Downloader-Bot
643312dcd577625c257f72f1cc27da94d78d0b20
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # (C) Shrimadhav U K import logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) logging.getLogger("pyrogram").setLevel(logging.WARNING) import asyncio import json import os import shutil import time if bool(os.environ.get("WEBHOOK", False)): from sample_config import Config else: from sample_config import Config from datetime import datetime from hachoir.parser import createParser from hachoir.metadata import extractMetadata from pyrogram.types import InputMediaPhoto from translation import Translation from helper_funcs.help_Nekmo_ffmpeg import generate_screen_shots from helper_funcs.display_progress import progress_for_pyrogram, humanbytes from pyrogram.types import InlineKeyboardMarkup, InlineKeyboardButton from PIL import Image async def youtube_dl_call_back(bot, update): cb_data = update.data tg_send_type, youtube_dl_format, youtube_dl_ext = cb_data.split("|") thumb_image_path = Config.DOWNLOAD_LOCATION + \ "/" + str(update.from_user.id) + ".jpg" save_ytdl_json_path = Config.DOWNLOAD_LOCATION + \ "/" + str(update.from_user.id) + ".json" try: with open(save_ytdl_json_path, "r", encoding="utf8") as f: response_json = json.load(f) except (FileNotFoundError) as e: await bot.delete_messages( chat_id=update.message.chat.id, message_ids=update.message.message_id, revoke=True ) return False youtube_dl_url = update.message.reply_to_message.text custom_file_name = str(response_json.get("title")) + \ "_" + youtube_dl_format + "." + youtube_dl_ext youtube_dl_username = None youtube_dl_password = None if "|" in youtube_dl_url: url_parts = youtube_dl_url.split("|") if len(url_parts) == 2: youtube_dl_url = url_parts[0] custom_file_name = url_parts[1] elif len(url_parts) == 4: youtube_dl_url = url_parts[0] custom_file_name = url_parts[1] youtube_dl_username = url_parts[2] youtube_dl_password = url_parts[3] else: for entity in update.message.reply_to_message.entities: if entity.type == "text_link": youtube_dl_url = entity.url elif entity.type == "url": o = entity.offset l = entity.length youtube_dl_url = youtube_dl_url[o:o + l] if youtube_dl_url is not None: youtube_dl_url = youtube_dl_url.strip() if custom_file_name is not None: custom_file_name = custom_file_name.strip() if youtube_dl_username is not None: youtube_dl_username = youtube_dl_username.strip() if youtube_dl_password is not None: youtube_dl_password = youtube_dl_password.strip() else: for entity in update.message.reply_to_message.entities: if entity.type == "text_link": youtube_dl_url = entity.url elif entity.type == "url": o = entity.offset l = entity.length youtube_dl_url = youtube_dl_url[o:o + l] await bot.edit_message_text( text=Translation.DOWNLOAD_START, chat_id=update.message.chat.id, message_id=update.message.message_id ) description = Translation.CUSTOM_CAPTION_UL_FILE if "fulltitle" in response_json: description = response_json["fulltitle"][0:1021] tmp_directory_for_each_user = Config.DOWNLOAD_LOCATION + "/" + str(update.from_user.id) if not os.path.isdir(tmp_directory_for_each_user): os.makedirs(tmp_directory_for_each_user) download_directory = tmp_directory_for_each_user + "/" + custom_file_name command_to_exec = [] if tg_send_type == "audio": command_to_exec = [ "yt-dlp", "-c", "--max-filesize", str(Config.TG_MAX_FILE_SIZE), "--prefer-ffmpeg", "--extract-audio", "--audio-format", youtube_dl_ext, "--audio-quality", youtube_dl_format, youtube_dl_url, "-o", download_directory ] else: minus_f_format = youtube_dl_format if "youtu" in youtube_dl_url: minus_f_format = youtube_dl_format + "+bestaudio" command_to_exec = [ "yt-dlp", "-c", "--max-filesize", str(Config.TG_MAX_FILE_SIZE), "--embed-subs", "-f", minus_f_format, "--hls-prefer-ffmpeg", youtube_dl_url, "-o", download_directory ] if Config.HTTP_PROXY != "": command_to_exec.append("--proxy") command_to_exec.append(Config.HTTP_PROXY) if youtube_dl_username is not None: command_to_exec.append("--username") command_to_exec.append(youtube_dl_username) if youtube_dl_password is not None: command_to_exec.append("--password") command_to_exec.append(youtube_dl_password) command_to_exec.append("--no-warnings") if "hotstar" in youtube_dl_url: command_to_exec.append("--geo-bypass-country") command_to_exec.append("IN") start = datetime.now() process = await asyncio.create_subprocess_exec( *command_to_exec, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) stdout, stderr = await process.communicate() e_response = stderr.decode().strip() t_response = stdout.decode().strip() # logger.info(e_response) # logger.info(t_response) ad_string_to_replace = "please report this issue on https://yt-dl.org/bug . Make sure you are using the latest version; see https://yt-dl.org/update on how to update. Be sure to call youtube-dl with the --verbose flag and include its complete output." if e_response and ad_string_to_replace in e_response: error_message = e_response.replace(ad_string_to_replace, "") await bot.edit_message_text( chat_id=update.message.chat.id, message_id=update.message.message_id, text=error_message ) return False if t_response: try: os.remove(save_ytdl_json_path) except: pass end_one = datetime.now() time_taken_for_download = (end_one -start).seconds file_size = Config.TG_MAX_FILE_SIZE + 1 try: file_size = os.stat(download_directory).st_size except FileNotFoundError as exc: try: download_directory = os.path.splitext(download_directory)[0] + "." + "mkv" file_size = os.stat(download_directory).st_size except Exception as e: await bot.edit_message_text( chat_id=update.message.chat.id, text="Some errors occured while downloading video!", message_id=update.message.message_id ) logger.info("FnF error - " + str(e)) return if file_size > Config.TG_MAX_FILE_SIZE: await bot.edit_message_text( chat_id=update.message.chat.id, text=Translation.RCHD_TG_API_LIMIT.format(time_taken_for_download, humanbytes(file_size)), message_id=update.message.message_id ) else: if Config.SCREENSHOTS: is_w_f = False images = await generate_screen_shots( download_directory, tmp_directory_for_each_user, is_w_f, Config.DEF_WATER_MARK_FILE, 300, 9 ) try: await bot.edit_message_text(text=Translation.UPLOAD_START, chat_id=update.message.chat.id, message_id=update.message.message_id) except: pass # get the correct width, height, and duration for videos greater than 10MB width = 0 height = 0 duration = 0 if tg_send_type != "file": metadata = extractMetadata(createParser(download_directory)) if metadata is not None: if metadata.has("duration"): duration = metadata.get('duration').seconds if os.path.exists(thumb_image_path) or Config.DEF_THUMB_NAIL_VID_S: width = 0 height = 0 if os.path.exists(thumb_image_path): metadata = extractMetadata(createParser(thumb_image_path)) else: metadata = Config.DEF_THUMB_NAIL_VID_S if metadata.has("width"): width = metadata.get("width") if metadata.has("height"): height = metadata.get("height") if tg_send_type == "vm": height = width Image.open(thumb_image_path).convert( "RGB").save(thumb_image_path) img = Image.open(thumb_image_path) if tg_send_type == "file": img.resize((320, height)) else: img.resize((90, height)) img.save(thumb_image_path, "JPEG") else: thumb_image_path = None start_time = time.time() if tg_send_type == "audio": await update.message.reply_to_message.reply_chat_action("upload_audio") await bot.send_audio( chat_id=update.message.chat.id, audio=download_directory, caption=description, parse_mode="HTML", duration=duration, # performer=response_json["uploader"], # title=response_json["title"], reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton('⚙ Join Updates Channel ⚙', url='https://telegram.me/BX_Botz')]]), thumb=thumb_image_path, progress=progress_for_pyrogram, progress_args=( Translation.UPLOAD_START, update.message, start_time ) ) elif tg_send_type == "file": await update.message.reply_to_message.reply_chat_action("upload_document") await bot.send_document( chat_id=update.message.chat.id, document=download_directory, thumb=thumb_image_path, caption=description, parse_mode="HTML", reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton('⚙ Join Updates Channel ⚙', url='https://telegram.me/BX_Botz')]]), reply_to_message_id=update.message.reply_to_message.message_id, progress=progress_for_pyrogram, progress_args=( Translation.UPLOAD_START, update.message, start_time ) ) elif tg_send_type == "vm": await update.message.reply_to_message.reply_chat_action("upload_video_note") await bot.send_video_note( chat_id=update.message.chat.id, video_note=download_directory, duration=duration, length=width, thumb=thumb_image_path, reply_to_message_id=update.message.reply_to_message.message_id, progress=progress_for_pyrogram, progress_args=( Translation.UPLOAD_START, update.message, start_time ) ) elif tg_send_type == "video": await update.message.reply_to_message.reply_chat_action("upload_video") await bot.send_video( chat_id=update.message.chat.id, video=download_directory, caption=description, parse_mode="HTML", duration=duration, width=width, height=height, supports_streaming=True, reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton('⚙ Join Updates Channel ⚙', url='https://telegram.me/BX_Botz')]]), thumb=thumb_image_path, reply_to_message_id=update.message.reply_to_message.message_id, progress=progress_for_pyrogram, progress_args=( Translation.UPLOAD_START, update.message, start_time ) ) else: logger.info("Did this happen? :\\") end_two = datetime.now() time_taken_for_upload = (end_two - end_one).seconds media_album_p = [] if Config.SCREENSHOTS: if images is not None: i = 0 caption = "" if is_w_f: caption = "" for image in images: if os.path.exists(image): if i == 0: media_album_p.append( InputMediaPhoto( media=image, caption=caption, parse_mode="html" ) ) else: media_album_p.append( InputMediaPhoto( media=image ) ) i = i + 1 await bot.send_media_group( chat_id=update.message.chat.id, disable_notification=True, reply_to_message_id=update.message.message_id, media=media_album_p ) try: shutil.rmtree(tmp_directory_for_each_user) except: pass try: os.remove(thumb_image_path) except: pass await bot.edit_message_text( text=Translation.AFTER_SUCCESSFUL_UPLOAD_MSG_WITH_TS.format(time_taken_for_download, time_taken_for_upload), chat_id=update.message.chat.id, message_id=update.message.message_id, disable_web_page_preview=True )
41.610959
257
0.546023
946f477990f0af63c951062bf0630ea0a826ecfb
9,918
py
Python
src/yafowil/widget/dynatree/tests.py
conestack/yafowil.widget.dynatree
d9242c109030dd812b79208d221479c571806d20
[ "BSD-2-Clause" ]
1
2019-07-09T12:56:45.000Z
2019-07-09T12:56:45.000Z
src/yafowil/widget/dynatree/tests.py
conestack/yafowil.widget.dynatree
d9242c109030dd812b79208d221479c571806d20
[ "BSD-2-Clause" ]
1
2015-01-28T16:11:22.000Z
2015-01-28T16:11:22.000Z
src/yafowil/widget/dynatree/tests.py
conestack/yafowil.widget.dynatree
d9242c109030dd812b79208d221479c571806d20
[ "BSD-2-Clause" ]
1
2019-03-11T09:22:42.000Z
2019-03-11T09:22:42.000Z
from node.utils import UNSET from odict import odict from yafowil.base import factory from yafowil.compat import IS_PY2 from yafowil.tests import fxml from yafowil.tests import YafowilTestCase from yafowil.utils import tag from yafowil.widget.dynatree.widget import build_inline_dynatree import unittest import yafowil.loader # noqa if not IS_PY2: from importlib import reload class TestDynatreeWidget(YafowilTestCase): def setUp(self): super(TestDynatreeWidget, self).setUp() from yafowil.widget.dynatree import widget reload(widget) @property def mock_tree(self): # A test tree tree = odict() animals = odict() tree['animal'] = ('Animals', animals) mammal = odict() mammal['horse'] = ('Horse', None) mammal['ape'] = ('Ape', None) mammal['elephant'] = ('Elephant', None) animals['mammal'] = ('Mammals', mammal) bird = odict() bird['turkey'] = ('Turkey', None) bird['swan'] = ('Swan', None) bird['hummingbird'] = ('Hummingbird', None) bird['duck'] = ('Duck', None) animals['bird'] = ('Birds', bird) return tree def test_inline_tree_renderer(self): html = build_inline_dynatree( self.mock_tree, 'animal', tag, ulid='dynatree-source' ) self.check_output(""" <ul class="hiddenStructure" id="dynatree-source"> <li class="selected" id="animal">Animals<ul> <li id="mammal">Mammals<ul> <li id="horse">Horse </li><li id="ape">Ape </li><li id="elephant">Elephant </li></ul> </li><li id="bird">Birds<ul> <li id="turkey">Turkey </li><li id="swan">Swan </li><li id="hummingbird">Hummingbird </li><li id="duck">Duck </li></ul> </li></ul> </li></ul> """, fxml(html)) def test_plain_widget_source_is_string(self): # Render plain widget, source is string widget = factory( 'dynatree', name='root', props={ 'source': 'http://www.foo.bar/baz.json' }) self.check_output(""" <div class="yafowil-widget-dynatree"> <input id="input-root" name="root" type="hidden"/> <div class="dynatree-source hiddenStructure">http://www.foo.bar/baz.json</div> <div class="dynatree-params hiddenStructure">selectMode,1|minExpandLevel,1|rootVisible,False|autoCollapse,False|checkbox,True|imagePath,skin-bootstrap|type,remote</div> <div class="yafowil-widget-dynatree-tree"/> </div> """, fxml(widget())) def test_plain_widget_source_is_tree(self): # Render plain widget, source is tree widget = factory( 'dynatree', name='root', props={ 'source': self.mock_tree }) self.check_output(""" <div class="yafowil-widget-dynatree"> <input id="input-root" name="root" type="hidden"/> <ul class="hiddenStructure" id="dynatree-source-root"> <li id="animal">Animals<ul> <li id="mammal">Mammals<ul> <li id="horse">Horse </li><li id="ape">Ape </li><li id="elephant">Elephant </li></ul> </li><li id="bird">Birds<ul> <li id="turkey">Turkey </li><li id="swan">Swan </li><li id="hummingbird">Hummingbird </li><li id="duck">Duck </li></ul> </li></ul> </li></ul> <div class="dynatree-params hiddenStructure">selectMode,1|minExpandLevel,1|rootVisible,False|autoCollapse,False|checkbox,True|imagePath,skin-bootstrap|type,local|initId,dynatree-source-root</div> <div class="yafowil-widget-dynatree-tree"/> </div> """, fxml(widget())) def test_plain_widget_source_is_callable(self): # Render plain widget, source is callable def tree_callable(widget, data): return self.mock_tree widget = factory( 'dynatree', name='root', props={ 'source': tree_callable }) self.check_output(""" <div class="yafowil-widget-dynatree"> <input id="input-root" name="root" type="hidden"/> <ul class="hiddenStructure" id="dynatree-source-root"> <li id="animal">Animals<ul> <li id="mammal">Mammals<ul> <li id="horse">Horse </li><li id="ape">Ape </li><li id="elephant">Elephant </li></ul> </li><li id="bird">Birds<ul> <li id="turkey">Turkey </li><li id="swan">Swan </li><li id="hummingbird">Hummingbird </li><li id="duck">Duck </li></ul> </li></ul> </li></ul> <div class="dynatree-params hiddenStructure">selectMode,1|minExpandLevel,1|rootVisible,False|autoCollapse,False|checkbox,True|imagePath,skin-bootstrap|type,local|initId,dynatree-source-root</div> <div class="yafowil-widget-dynatree-tree"/> </div> """, fxml(widget())) def test_plain_widget_source_is_invalid(self): # Try to render plain widget, source is invalid widget = factory( 'dynatree', name='root', value='ape', props={ 'source': object() }) err = self.expect_error( ValueError, widget ) self.assertEqual(str(err), 'resulting source must be [o]dict or string') def test_plain_widget_source_is_tree_preset_values_single_select(self): # Render plain widget, source is tree, preselect ape, single select widget = factory( 'dynatree', name='root', value='ape', props={ 'source': self.mock_tree }) self.check_output(""" <div class="yafowil-widget-dynatree"> <input id="input-root" name="root" type="hidden" value="ape"/> <ul class="hiddenStructure" id="dynatree-source-root"> <li id="animal">Animals<ul> <li id="mammal">Mammals<ul> <li id="horse">Horse </li><li class="selected" id="ape">Ape </li><li id="elephant">Elephant </li></ul> </li><li id="bird">Birds<ul> <li id="turkey">Turkey </li><li id="swan">Swan </li><li id="hummingbird">Hummingbird </li><li id="duck">Duck </li></ul> </li></ul> </li></ul> <div class="dynatree-params hiddenStructure">selectMode,1|minExpandLevel,1|rootVisible,False|autoCollapse,False|checkbox,True|imagePath,skin-bootstrap|type,local|initId,dynatree-source-root</div> <div class="yafowil-widget-dynatree-tree"/> </div> """, fxml(widget())) def test_plain_widget_source_is_tree_preset_values_multi_select(self): # Render plain widget, source is tree, preselect ape and swan, # multi select widget = factory( 'dynatree', name='root', value=['ape', 'swan'], props={ 'source': self.mock_tree, 'selectMode': 1 }) self.check_output(""" <div class="yafowil-widget-dynatree"> <input id="input-root" name="root" type="hidden" value="ape|swan"/> <ul class="hiddenStructure" id="dynatree-source-root"> <li id="animal">Animals<ul> <li id="mammal">Mammals<ul> <li id="horse">Horse </li><li class="selected" id="ape">Ape </li><li id="elephant">Elephant </li></ul> </li><li id="bird">Birds<ul> <li id="turkey">Turkey </li><li class="selected" id="swan">Swan </li><li id="hummingbird">Hummingbird </li><li id="duck">Duck </li></ul> </li></ul> </li></ul> <div class="dynatree-params hiddenStructure">selectMode,1|minExpandLevel,1|rootVisible,False|autoCollapse,False|checkbox,True|imagePath,skin-bootstrap|type,local|initId,dynatree-source-root</div> <div class="yafowil-widget-dynatree-tree"/> </div> """, fxml(widget())) def test_extract_from_select_mode_1(self): # Extract from selectMode=1 - means single selection widget = factory( 'dynatree', name='root', props={ 'source': self.mock_tree, 'selectMode': 1 }) data = widget.extract({'root': 'somevalue|'}) self.assertEqual( [data.name, data.value, data.extracted, data.errors], ['root', UNSET, 'somevalue', []] ) data def test_extract_from_select_mode_2(self): # Extract from selectMode=2 - means multi selection widget = factory( 'dynatree', name='root', props={ 'source': self.mock_tree, 'selectMode': 2 }) data = widget.extract({'root': 'somevalue|'}) self.assertEqual( [data.name, data.value, data.extracted, data.errors], ['root', UNSET, ['somevalue'], []] ) data = widget.extract({'root': 'somevalue|othervalue'}) self.assertEqual( [data.name, data.value, data.extracted, data.errors], ['root', UNSET, ['somevalue', 'othervalue'], []] ) def test_extract_empty(self): widget = factory( 'dynatree', name='root', props={ 'source': self.mock_tree, 'selectMode': 2 }) data = widget.extract({}) self.assertEqual( [data.name, data.value, data.extracted, data.errors], ['root', UNSET, UNSET, []] ) if __name__ == '__main__': unittest.main()
34.557491
205
0.549708
4cae13c72a34f58c6725bd87fbe0c1a4b2118a68
418
py
Python
deproxy/request.py
malconis/deproxy
5e5366ef16ee77419ade1ca47547a75ba9125ec5
[ "MIT" ]
1
2015-10-12T07:56:41.000Z
2015-10-12T07:56:41.000Z
deproxy/request.py
malconis/deproxy
5e5366ef16ee77419ade1ca47547a75ba9125ec5
[ "MIT" ]
null
null
null
deproxy/request.py
malconis/deproxy
5e5366ef16ee77419ade1ca47547a75ba9125ec5
[ "MIT" ]
null
null
null
class Request: """A simple HTTP Request, with method, path, headers, and body.""" def __init__(self, method, path, headers, body): self.method = method self.path = path self.headers = dict(headers) self.body = body def __repr__(self): return ('Request(method=%r, path=%r, headers=%r, body=%r)' % (self.method, self.path, self.headers, self.body))
29.857143
70
0.588517
26d4f2c9a3517f6cfcc0bec7155d57519f59fa8a
3,054
py
Python
tests/demoproject/demo/sample/views.py
roman-karpovich/etools-validator
e5050a675d506f3d18a4703e8b73425d93919f0c
[ "Apache-2.0" ]
null
null
null
tests/demoproject/demo/sample/views.py
roman-karpovich/etools-validator
e5050a675d506f3d18a4703e8b73425d93919f0c
[ "Apache-2.0" ]
null
null
null
tests/demoproject/demo/sample/views.py
roman-karpovich/etools-validator
e5050a675d506f3d18a4703e8b73425d93919f0c
[ "Apache-2.0" ]
null
null
null
from rest_framework import status from rest_framework.generics import CreateAPIView, UpdateAPIView from rest_framework.response import Response from rest_framework.serializers import ValidationError from etools_validator.mixins import ValidatorViewMixin from .models import DemoModel from .serializers import DemoChildModelSerializer, DemoModelSerializer, SpecialModelSerializer from .validations import DemoModelValidation class DemoCreateView(ValidatorViewMixin, CreateAPIView): serializer_class = DemoModelSerializer SERIALIZER_MAP = { "children": DemoChildModelSerializer } def create(self, request, *args, **kwargs): related_fields = ['children'] serializer = self.my_create(request, related_fields, **kwargs) instance = serializer.instance validator = DemoModelValidation(instance, user=request.user) if not validator.is_valid: raise ValidationError({'errors': validator.errors}) headers = self.get_success_headers(serializer.data) data = DemoModelSerializer( instance, context=self.get_serializer_context() ).data return Response( data, status=status.HTTP_201_CREATED, headers=headers ) class DemoUpdateView(ValidatorViewMixin, UpdateAPIView): queryset = DemoModel.objects.all() serializer_class = DemoModelSerializer SERIALIZER_MAP = { "children": DemoChildModelSerializer, "special": SpecialModelSerializer, } def update(self, request, *args, **kwargs): related_fields = ['children', 'special'] instance, old_instance, serializer = self.my_update( request, related_fields, **kwargs ) validator = DemoModelValidation( instance, old=old_instance, user=request.user ) if not validator.is_valid: raise ValidationError(validator.errors) return Response( DemoModelSerializer( instance, context=self.get_serializer_context() ).data ) class DemoUpdateNonSerializedView(ValidatorViewMixin, UpdateAPIView): queryset = DemoModel.objects.all() serializer_class = DemoModelSerializer def update(self, request, *args, **kwargs): related_fields = [] related_non_serialized_fields = ['others'] instance, old_instance, serializer = self.my_update( request, related_fields, related_non_serialized_fields=related_non_serialized_fields, **kwargs ) validator = DemoModelValidation( instance, old=old_instance, user=request.user ) if not validator.is_valid: raise ValidationError(validator.errors) return Response( DemoModelSerializer( instance, context=self.get_serializer_context() ).data )
29.085714
94
0.646365
f168d843e436217f942a6654299c95766ebeed7c
56,256
py
Python
nova/api/openstack/compute/servers.py
teresa-ho/stx-nova
1f82323439da2449edbbaed2fe1c8414a550c86f
[ "Apache-2.0" ]
null
null
null
nova/api/openstack/compute/servers.py
teresa-ho/stx-nova
1f82323439da2449edbbaed2fe1c8414a550c86f
[ "Apache-2.0" ]
null
null
null
nova/api/openstack/compute/servers.py
teresa-ho/stx-nova
1f82323439da2449edbbaed2fe1c8414a550c86f
[ "Apache-2.0" ]
null
null
null
# Copyright 2010 OpenStack Foundation # Copyright 2011 Piston Cloud Computing, Inc # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # Copyright (c) 2013-2017 Wind River Systems, Inc. # import copy from oslo_log import log as logging import oslo_messaging as messaging from oslo_utils import strutils from oslo_utils import timeutils from oslo_utils import uuidutils import six import webob from webob import exc from nova.api.openstack import api_version_request from nova.api.openstack import common from nova.api.openstack.compute import availability_zone from nova.api.openstack.compute import block_device_mapping from nova.api.openstack.compute import block_device_mapping_v1 from nova.api.openstack.compute import config_drive from nova.api.openstack.compute import helpers from nova.api.openstack.compute import keypairs from nova.api.openstack.compute import multiple_create from nova.api.openstack.compute import scheduler_hints from nova.api.openstack.compute.schemas import servers as schema_servers from nova.api.openstack.compute import security_groups from nova.api.openstack.compute import user_data from nova.api.openstack.compute.views import servers as views_servers from nova.api.openstack import extensions from nova.api.openstack import wsgi from nova.api import validation from nova import compute from nova.compute import flavors from nova.compute import utils as compute_utils import nova.conf from nova import context as nova_context from nova import exception from nova.i18n import _ from nova.image import glance from nova import objects from nova.objects import service as service_obj from nova.pci import devspec from nova.pci import utils as pci_utils from nova.policies import servers as server_policies from nova import utils TAG_SEARCH_FILTERS = ('tags', 'tags-any', 'not-tags', 'not-tags-any') DEVICE_TAGGING_MIN_COMPUTE_VERSION = 14 CONF = nova.conf.CONF LOG = logging.getLogger(__name__) class ServersController(wsgi.Controller): """The Server API base controller class for the OpenStack API.""" _view_builder_class = views_servers.ViewBuilder schema_server_create = schema_servers.base_create schema_server_update = schema_servers.base_update schema_server_rebuild = schema_servers.base_rebuild schema_server_create_v20 = schema_servers.base_create_v20 schema_server_update_v20 = schema_servers.base_update_v20 schema_server_rebuild_v20 = schema_servers.base_rebuild_v20 schema_server_create_v219 = schema_servers.base_create_v219 schema_server_update_v219 = schema_servers.base_update_v219 schema_server_rebuild_v219 = schema_servers.base_rebuild_v219 schema_server_create_v232 = schema_servers.base_create_v232 schema_server_create_v237 = schema_servers.base_create_v237 schema_server_create_v242 = schema_servers.base_create_v242 schema_server_create_v252 = schema_servers.base_create_v252 # NOTE(alex_xu): Please do not add more items into this list. This list # should be removed in the future. schema_func_list = [ availability_zone.get_server_create_schema, block_device_mapping.get_server_create_schema, block_device_mapping_v1.get_server_create_schema, config_drive.get_server_create_schema, keypairs.get_server_create_schema, multiple_create.get_server_create_schema, scheduler_hints.get_server_create_schema, security_groups.get_server_create_schema, user_data.get_server_create_schema, ] # NOTE(alex_xu): Please do not add more items into this list. This list # should be removed in the future. server_create_func_list = [ availability_zone.server_create, block_device_mapping.server_create, block_device_mapping_v1.server_create, config_drive.server_create, keypairs.server_create, multiple_create.server_create, scheduler_hints.server_create, security_groups.server_create, user_data.server_create, ] @staticmethod def _add_location(robj): # Just in case... if 'server' not in robj.obj: return robj link = [l for l in robj.obj['server']['links'] if l['rel'] == 'self'] if link: robj['Location'] = utils.utf8(link[0]['href']) # Convenience return return robj def __init__(self, **kwargs): # TODO(alex_xu): Remove this line when 'extension_info' won't be passed # in when creating controller. kwargs.pop('extension_info', None) super(ServersController, self).__init__(**kwargs) self.compute_api = compute.API() # TODO(alex_xu): The final goal is that merging all of # extended json-schema into server main json-schema. self._create_schema(self.schema_server_create_v252, '2.52') self._create_schema(self.schema_server_create_v242, '2.42') self._create_schema(self.schema_server_create_v237, '2.37') self._create_schema(self.schema_server_create_v232, '2.32') self._create_schema(self.schema_server_create_v219, '2.19') self._create_schema(self.schema_server_create, '2.1') self._create_schema(self.schema_server_create_v20, '2.0') @extensions.expected_errors((400, 403)) @validation.query_schema(schema_servers.query_params_v226, '2.26') @validation.query_schema(schema_servers.query_params_v21, '2.1', '2.25') def index(self, req): """Returns a list of server names and ids for a given user.""" context = req.environ['nova.context'] context.can(server_policies.SERVERS % 'index') try: servers = self._get_servers(req, is_detail=False) except exception.Invalid as err: raise exc.HTTPBadRequest(explanation=err.format_message()) return servers @extensions.expected_errors((400, 403)) @validation.query_schema(schema_servers.query_params_v226, '2.26') @validation.query_schema(schema_servers.query_params_v21, '2.1', '2.25') def detail(self, req): """Returns a list of server details for a given user.""" context = req.environ['nova.context'] context.can(server_policies.SERVERS % 'detail') try: servers = self._get_servers(req, is_detail=True) except exception.Invalid as err: raise exc.HTTPBadRequest(explanation=err.format_message()) return servers def _get_servers(self, req, is_detail): """Returns a list of servers, based on any search options specified.""" search_opts = {} search_opts.update(req.GET) context = req.environ['nova.context'] remove_invalid_options(context, search_opts, self._get_server_search_options(req)) for search_opt in search_opts: if (search_opt in schema_servers.JOINED_TABLE_QUERY_PARAMS_SERVERS.keys() or search_opt.startswith('_')): msg = _("Invalid filter field: %s.") % search_opt raise exc.HTTPBadRequest(explanation=msg) # Verify search by 'status' contains a valid status. # Convert it to filter by vm_state or task_state for compute_api. # For non-admin user, vm_state and task_state are filtered through # remove_invalid_options function, based on value of status field. # Set value to vm_state and task_state to make search simple. search_opts.pop('status', None) if 'status' in req.GET.keys(): statuses = req.GET.getall('status') states = common.task_and_vm_state_from_status(statuses) vm_state, task_state = states if not vm_state and not task_state: if api_version_request.is_supported(req, min_version='2.38'): msg = _('Invalid status value') raise exc.HTTPBadRequest(explanation=msg) return {'servers': []} search_opts['vm_state'] = vm_state # When we search by vm state, task state will return 'default'. # So we don't need task_state search_opt. if 'default' not in task_state: search_opts['task_state'] = task_state if 'changes-since' in search_opts: search_opts['changes-since'] = timeutils.parse_isotime( search_opts['changes-since']) # By default, compute's get_all() will return deleted instances. # If an admin hasn't specified a 'deleted' search option, we need # to filter out deleted instances by setting the filter ourselves. # ... Unless 'changes-since' is specified, because 'changes-since' # should return recently deleted instances according to the API spec. if 'deleted' not in search_opts: if 'changes-since' not in search_opts: # No 'changes-since', so we only want non-deleted servers search_opts['deleted'] = False else: # Convert deleted filter value to a valid boolean. # Return non-deleted servers if an invalid value # is passed with deleted filter. search_opts['deleted'] = strutils.bool_from_string( search_opts['deleted'], default=False) if search_opts.get("vm_state") == ['deleted']: if context.is_admin: search_opts['deleted'] = True else: msg = _("Only administrators may list deleted instances") raise exc.HTTPForbidden(explanation=msg) if api_version_request.is_supported(req, min_version='2.26'): for tag_filter in TAG_SEARCH_FILTERS: if tag_filter in search_opts: search_opts[tag_filter] = search_opts[ tag_filter].split(',') # If tenant_id is passed as a search parameter this should # imply that all_tenants is also enabled unless explicitly # disabled. Note that the tenant_id parameter is filtered out # by remove_invalid_options above unless the requestor is an # admin. # TODO(gmann): 'all_tenants' flag should not be required while # searching with 'tenant_id'. Ref bug# 1185290 # +microversions to achieve above mentioned behavior by # uncommenting below code. # if 'tenant_id' in search_opts and 'all_tenants' not in search_opts: # We do not need to add the all_tenants flag if the tenant # id associated with the token is the tenant id # specified. This is done so a request that does not need # the all_tenants flag does not fail because of lack of # policy permission for compute:get_all_tenants when it # doesn't actually need it. # if context.project_id != search_opts.get('tenant_id'): # search_opts['all_tenants'] = 1 all_tenants = common.is_all_tenants(search_opts) # use the boolean from here on out so remove the entry from search_opts # if it's present search_opts.pop('all_tenants', None) elevated = None if all_tenants: if is_detail: context.can(server_policies.SERVERS % 'detail:get_all_tenants') else: context.can(server_policies.SERVERS % 'index:get_all_tenants') elevated = context.elevated() else: # As explained in lp:#1185290, if `all_tenants` is not passed # we must ignore the `tenant_id` search option. As explained # in a above code comment, any change to this behavior would # require a microversion bump. search_opts.pop('tenant_id', None) if context.project_id: search_opts['project_id'] = context.project_id else: search_opts['user_id'] = context.user_id limit, marker = common.get_limit_and_marker(req) sort_keys, sort_dirs = common.get_sort_params(req.params) sort_keys, sort_dirs = remove_invalid_sort_keys( context, sort_keys, sort_dirs, schema_servers.SERVER_LIST_IGNORE_SORT_KEY, ('host', 'node')) expected_attrs = [] if is_detail: expected_attrs.append('services') if api_version_request.is_supported(req, '2.26'): expected_attrs.append("tags") # merge our expected attrs with what the view builder needs for # showing details expected_attrs = self._view_builder.get_show_expected_attrs( expected_attrs) try: instance_list = self.compute_api.get_all(elevated or context, search_opts=search_opts, limit=limit, marker=marker, expected_attrs=expected_attrs, sort_keys=sort_keys, sort_dirs=sort_dirs) except exception.MarkerNotFound: msg = _('marker [%s] not found') % marker raise exc.HTTPBadRequest(explanation=msg) except exception.FlavorNotFound: LOG.debug("Flavor '%s' could not be found ", search_opts['flavor']) instance_list = objects.InstanceList() if is_detail: instance_list._context = context instance_list.fill_faults() response = self._view_builder.detail(req, instance_list) else: response = self._view_builder.index(req, instance_list) req.cache_db_instances(instance_list) return response def _get_server(self, context, req, instance_uuid, is_detail=False): """Utility function for looking up an instance by uuid. :param context: request context for auth :param req: HTTP request. The instance is cached in this request. :param instance_uuid: UUID of the server instance to get :param is_detail: True if you plan on showing the details of the instance in the response, False otherwise. """ expected_attrs = ['flavor', 'numa_topology'] if is_detail: if api_version_request.is_supported(req, '2.26'): expected_attrs.append("tags") expected_attrs = self._view_builder.get_show_expected_attrs( expected_attrs) instance = common.get_instance(self.compute_api, context, instance_uuid, expected_attrs=expected_attrs) req.cache_db_instance(instance) return instance # WRS: extension def _validate_vif_pci_address(self, vif_model, pci_address): domain, bus, slot, func = pci_utils.get_pci_address_fields(pci_address) if domain != '0000': msg = _("Only domain 0000 is supported") raise exc.HTTPBadRequest(explanation=msg) if bus == '00' and slot in ('00', '01'): msg = _("Slots 0,1 are reserved for PCI bus 0") raise exc.HTTPBadRequest(explanation=msg) if bus != '00' and slot == '00': msg = _("Slots 0 is reserved for any PCI bus") raise exc.HTTPBadRequest(explanation=msg) if func != '0': msg = _("Only function 0 is supported") raise exc.HTTPBadRequest(explanation=msg) # WRS: Max bus is 8, possibly kvm/qemu limitation. if int(bus, 16) > 8: msg = _("PCI bus maximum value is 8") raise exc.HTTPBadRequest(explanation=msg) if int(slot, 16) > devspec.MAX_SLOT: msg = _("PCI slot maximum value is %s") % devspec.MAX_SLOT raise exc.HTTPBadRequest(explanation=msg) @staticmethod def _validate_network_id(net_id, network_uuids): """Validates that a requested network id. This method performs two checks: 1. That the network id is in the proper uuid format. 2. That the network is not a duplicate when using nova-network. :param net_id: The network id to validate. :param network_uuids: A running list of requested network IDs that have passed validation already. :raises: webob.exc.HTTPBadRequest if validation fails """ if not uuidutils.is_uuid_like(net_id): # NOTE(mriedem): Neutron would allow a network id with a br- prefix # back in Folsom so continue to honor that. # TODO(mriedem): Need to figure out if this is still a valid case. br_uuid = net_id.split('-', 1)[-1] if not uuidutils.is_uuid_like(br_uuid): msg = _("Bad networks format: network uuid is " "not in proper format (%s)") % net_id raise exc.HTTPBadRequest(explanation=msg) # duplicate networks are allowed only for neutron v2.0 if net_id in network_uuids and not utils.is_neutron(): expl = _("Duplicate networks (%s) are not allowed") % net_id raise exc.HTTPBadRequest(explanation=expl) def _get_requested_networks(self, requested_networks, supports_device_tagging=False): """Create a list of requested networks from the networks attribute.""" # Starting in the 2.37 microversion, requested_networks is either a # list or a string enum with value 'auto' or 'none'. The auto/none # values are verified via jsonschema so we don't check them again here. if isinstance(requested_networks, six.string_types): return objects.NetworkRequestList( objects=[objects.NetworkRequest( network_id=requested_networks)]) networks = [] network_uuids = [] vif_pci_addresses = [] for network in requested_networks: request = objects.NetworkRequest() try: # fixed IP address is optional # if the fixed IP address is not provided then # it will use one of the available IP address from the network request.address = network.get('fixed_ip', None) request.port_id = network.get('port', None) request.tag = network.get('tag', None) if request.tag and not supports_device_tagging: msg = _('Network interface tags are not yet supported.') raise exc.HTTPBadRequest(explanation=msg) if request.port_id: request.network_id = None if not utils.is_neutron(): # port parameter is only for neutron v2.0 msg = _("Unknown argument: port") raise exc.HTTPBadRequest(explanation=msg) if request.address is not None: msg = _("Specified Fixed IP '%(addr)s' cannot be used " "with port '%(port)s': the two cannot be " "specified together.") % { "addr": request.address, "port": request.port_id} raise exc.HTTPBadRequest(explanation=msg) else: request.network_id = network['uuid'] self._validate_network_id( request.network_id, network_uuids) # WRS: vif_model and vif_pci_address are optional if utils.is_neutron(): request.vif_model = network.get('wrs-if:vif_model', None) request.vif_pci_address = network.get( 'wrs-if:vif_pci_address', None) if request.vif_pci_address is not None: try: pci_utils.parse_address(request.vif_pci_address) except exception.PciDeviceWrongAddressFormat: msg = _("Bad PCI address format") raise exc.HTTPBadRequest(explanation=msg) self._validate_vif_pci_address(request.vif_model, request.vif_pci_address) vif_pci_addresses.append(request.vif_pci_address) # duplicate networks are allowed only for neutron v2.0 if (not utils.is_neutron() and request.network_id and request.network_id in network_uuids): expl = (_("Duplicate networks" " (%s) are not allowed") % request.network_id) raise exc.HTTPBadRequest(explanation=expl) network_uuids.append(request.network_id) networks.append(request) except KeyError as key: expl = _('Bad network format: missing %s') % key raise exc.HTTPBadRequest(explanation=expl) except TypeError: expl = _('Bad networks format') raise exc.HTTPBadRequest(explanation=expl) # WRS: Verify that all virtual PCI addresses for network devices # are unique. duplicates = [x for x in vif_pci_addresses if vif_pci_addresses.count(x) > 1] if duplicates: expl = _('PCI addresses must be unique') raise exc.HTTPBadRequest(explanation=expl) return objects.NetworkRequestList(objects=networks) @extensions.expected_errors(404) def show(self, req, id): """Returns server details by server id.""" context = req.environ['nova.context'] context.can(server_policies.SERVERS % 'show') instance = self._get_server(context, req, id, is_detail=True) return self._view_builder.show(req, instance) @wsgi.response(202) @extensions.expected_errors((400, 403, 409)) @validation.schema(schema_server_create_v20, '2.0', '2.0') @validation.schema(schema_server_create, '2.1', '2.18') @validation.schema(schema_server_create_v219, '2.19', '2.31') @validation.schema(schema_server_create_v232, '2.32', '2.36') @validation.schema(schema_server_create_v237, '2.37', '2.41') @validation.schema(schema_server_create_v242, '2.42', '2.51') @validation.schema(schema_server_create_v252, '2.52') def create(self, req, body): """Creates a new server for a given user.""" context = req.environ['nova.context'] server_dict = body['server'] password = self._get_server_admin_password(server_dict) name = common.normalize_name(server_dict['name']) description = name # Validate Metadata before instance creation meta = server_dict.get('metadata', {}) if meta: common.validate_metadata(meta) if api_version_request.is_supported(req, min_version='2.19'): description = server_dict.get('description') # Arguments to be passed to instance create function create_kwargs = {} # TODO(alex_xu): This is for back-compatible with stevedore # extension interface. But the final goal is that merging # all of extended code into ServersController. self._create_by_func_list(server_dict, create_kwargs, body) availability_zone = create_kwargs.pop("availability_zone", None) if api_version_request.is_supported(req, min_version='2.52'): create_kwargs['tags'] = server_dict.get('tags') helpers.translate_attributes(helpers.CREATE, server_dict, create_kwargs) target = { 'project_id': context.project_id, 'user_id': context.user_id, 'availability_zone': availability_zone} context.can(server_policies.SERVERS % 'create', target) # TODO(Shao He, Feng) move this policy check to os-availability-zone # extension after refactor it. parse_az = self.compute_api.parse_availability_zone try: availability_zone, host, node = parse_az(context, availability_zone) except exception.InvalidInput as err: raise exc.HTTPBadRequest(explanation=six.text_type(err)) if host or node: context.can(server_policies.SERVERS % 'create:forced_host', {}) min_compute_version = service_obj.get_minimum_version_all_cells( nova_context.get_admin_context(), ['nova-compute']) supports_device_tagging = (min_compute_version >= DEVICE_TAGGING_MIN_COMPUTE_VERSION) block_device_mapping = create_kwargs.get("block_device_mapping") # TODO(Shao He, Feng) move this policy check to os-block-device-mapping # extension after refactor it. if block_device_mapping: context.can(server_policies.SERVERS % 'create:attach_volume', target) for bdm in block_device_mapping: if bdm.get('tag', None) and not supports_device_tagging: msg = _('Block device tags are not yet supported.') raise exc.HTTPBadRequest(explanation=msg) image_uuid = self._image_from_req_data(server_dict, create_kwargs) # NOTE(cyeoh): Although upper layer can set the value of # return_reservation_id in order to request that a reservation # id be returned to the client instead of the newly created # instance information we do not want to pass this parameter # to the compute create call which always returns both. We use # this flag after the instance create call to determine what # to return to the client return_reservation_id = create_kwargs.pop('return_reservation_id', False) requested_networks = server_dict.get('networks', None) if requested_networks is not None: requested_networks = self._get_requested_networks( requested_networks, supports_device_tagging) # Skip policy check for 'create:attach_network' if there is no # network allocation request. if requested_networks and len(requested_networks) and \ not requested_networks.no_allocate: context.can(server_policies.SERVERS % 'create:attach_network', target) flavor_id = self._flavor_id_from_req_data(body) try: inst_type = flavors.get_flavor_by_flavor_id( flavor_id, ctxt=context, read_deleted="no") (instances, resv_id) = self.compute_api.create(context, inst_type, image_uuid, display_name=name, display_description=description, availability_zone=availability_zone, forced_host=host, forced_node=node, metadata=server_dict.get('metadata', {}), admin_password=password, requested_networks=requested_networks, check_server_group_quota=True, **create_kwargs) except (exception.QuotaError, exception.PortLimitExceeded) as error: raise exc.HTTPForbidden( explanation=error.format_message()) except exception.ImageNotFound: msg = _("Can not find requested image") raise exc.HTTPBadRequest(explanation=msg) except exception.KeypairNotFound: msg = _("Invalid key_name provided.") raise exc.HTTPBadRequest(explanation=msg) except exception.ConfigDriveInvalidValue: msg = _("Invalid config_drive provided.") raise exc.HTTPBadRequest(explanation=msg) except exception.ExternalNetworkAttachForbidden as error: raise exc.HTTPForbidden(explanation=error.format_message()) except messaging.RemoteError as err: msg = "%(err_type)s: %(err_msg)s" % {'err_type': err.exc_type, 'err_msg': err.value} raise exc.HTTPBadRequest(explanation=msg) except UnicodeDecodeError as error: msg = "UnicodeError: %s" % error raise exc.HTTPBadRequest(explanation=msg) except (exception.CPUThreadPolicyConfigurationInvalid, exception.ImageNotActive, exception.ImageBadRequest, exception.ImageNotAuthorized, exception.FixedIpNotFoundForAddress, exception.FlavorNotFound, exception.FlavorDiskTooSmall, exception.FlavorMemoryTooSmall, exception.InvalidMetadata, exception.InvalidRequest, exception.InvalidVolume, exception.MultiplePortsNotApplicable, exception.InvalidFixedIpAndMaxCountRequest, exception.InstanceUserDataMalformed, exception.InstanceUserDataTooLarge, exception.PortNotFound, exception.FixedIpAlreadyInUse, exception.SecurityGroupNotFound, exception.PortRequiresFixedIP, exception.NetworkRequiresSubnet, exception.NetworkNotFound, exception.InvalidBDM, exception.InvalidBDMSnapshot, exception.InvalidBDMVolume, exception.InvalidBDMImage, exception.InvalidBDMBootSequence, exception.InvalidBDMLocalsLimit, exception.InvalidBDMVolumeNotBootable, exception.InvalidBDMEphemeralSize, exception.InvalidBDMFormat, exception.InvalidBDMSwapSize, exception.AutoDiskConfigDisabledByImage, exception.ImageCPUPinningForbidden, exception.ImageCPUThreadPolicyForbidden, exception.ImageNUMATopologyIncomplete, exception.ImageNUMATopologyForbidden, exception.ImageNUMATopologyAsymmetric, exception.ImageNUMATopologyCPUOutOfRange, exception.ImageNUMATopologyCPUDuplicates, exception.ImageNUMATopologyCPUsUnassigned, exception.ImageNUMATopologyNodesForbidden, exception.ImageNUMATopologyNodesIncomplete, exception.ImageNUMATopologyNodesDuplicates, exception.ImageNUMATopologyMemoryOutOfRange, exception.InvalidNUMANodesNumber, exception.InstanceGroupNotFound, exception.MemoryPageSizeInvalid, exception.MemoryPageSizeForbidden, exception.PciRequestAliasNotDefined, exception.RealtimeConfigurationInvalid, exception.RealtimeMaskNotFoundOrInvalid, exception.SnapshotNotFound, exception.UnableToAutoAllocateNetwork, exception.ImageVCPUModelForbidden) as error: raise exc.HTTPBadRequest(explanation=error.format_message()) except (exception.PortInUse, exception.InstanceExists, exception.NetworkAmbiguous, exception.NoUniqueMatch) as error: raise exc.HTTPConflict(explanation=error.format_message()) # If the caller wanted a reservation_id, return it if return_reservation_id: return wsgi.ResponseObject({'reservation_id': resv_id}) req.cache_db_instances(instances) server = self._view_builder.create(req, instances[0]) if CONF.api.enable_instance_password: server['server']['adminPass'] = password robj = wsgi.ResponseObject(server) return self._add_location(robj) # NOTE(gmann): Parameter 'req_body' is placed to handle scheduler_hint # extension for V2.1. No other extension supposed to use this as # it will be removed soon. def _create_by_func_list(self, server_dict, create_kwargs, req_body): for func in self.server_create_func_list: func(server_dict, create_kwargs, req_body) def _create_schema(self, create_schema, version): for schema_func in self.schema_func_list: self._create_schema_by_func(create_schema, version, schema_func) def _create_schema_by_func(self, create_schema, version, schema_func): schema = schema_func(version) if (schema_func.__module__ == 'nova.api.openstack.compute.scheduler_hints'): # NOTE(oomichi): The request parameter position of scheduler-hint # extension is different from the other extensions, so here handles # the difference. create_schema['properties'].update(schema) else: create_schema['properties']['server']['properties'].update(schema) def _delete(self, context, req, instance_uuid): instance = self._get_server(context, req, instance_uuid) context.can(server_policies.SERVERS % 'delete', target={'user_id': instance.user_id, 'project_id': instance.project_id}) if CONF.reclaim_instance_interval: try: self.compute_api.soft_delete(context, instance) except exception.InstanceInvalidState: # Note(yufang521247): instance which has never been active # is not allowed to be soft_deleted. Thus we have to call # delete() to clean up the instance. self.compute_api.delete(context, instance) else: self.compute_api.delete(context, instance) @extensions.expected_errors((400, 404)) @validation.schema(schema_server_update_v20, '2.0', '2.0') @validation.schema(schema_server_update, '2.1', '2.18') @validation.schema(schema_server_update_v219, '2.19') def update(self, req, id, body): """Update server then pass on to version-specific controller.""" ctxt = req.environ['nova.context'] update_dict = {} instance = self._get_server(ctxt, req, id, is_detail=True) ctxt.can(server_policies.SERVERS % 'update', target={'user_id': instance.user_id, 'project_id': instance.project_id}) server = body['server'] if 'name' in server: update_dict['display_name'] = common.normalize_name( server['name']) if 'description' in server: # This is allowed to be None (remove description) update_dict['display_description'] = server['description'] helpers.translate_attributes(helpers.UPDATE, server, update_dict) try: instance = self.compute_api.update_instance(ctxt, instance, update_dict) return self._view_builder.show(req, instance, extend_address=False) except exception.InstanceNotFound: msg = _("Instance could not be found") raise exc.HTTPNotFound(explanation=msg) # NOTE(gmann): Returns 204 for backwards compatibility but should be 202 # for representing async API as this API just accepts the request and # request hypervisor driver to complete the same in async mode. @wsgi.response(204) @extensions.expected_errors((400, 404, 409)) @wsgi.action('confirmResize') def _action_confirm_resize(self, req, id, body): context = req.environ['nova.context'] context.can(server_policies.SERVERS % 'confirm_resize') instance = self._get_server(context, req, id) try: self.compute_api.confirm_resize(context, instance) except exception.InstanceUnknownCell as e: raise exc.HTTPNotFound(explanation=e.format_message()) except exception.MigrationNotFound: msg = _("Instance has not been resized.") raise exc.HTTPBadRequest(explanation=msg) except exception.InstanceIsLocked as e: raise exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'confirmResize', id) @wsgi.response(202) @extensions.expected_errors((400, 404, 409)) @wsgi.action('revertResize') def _action_revert_resize(self, req, id, body): context = req.environ['nova.context'] context.can(server_policies.SERVERS % 'revert_resize') instance = self._get_server(context, req, id) try: self.compute_api.revert_resize(context, instance) except exception.InstanceUnknownCell as e: raise exc.HTTPNotFound(explanation=e.format_message()) except exception.MigrationNotFound: msg = _("Instance has not been resized.") raise exc.HTTPBadRequest(explanation=msg) except exception.FlavorNotFound: msg = _("Flavor used by the instance could not be found.") raise exc.HTTPBadRequest(explanation=msg) except exception.InstanceIsLocked as e: raise exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'revertResize', id) @wsgi.response(202) @extensions.expected_errors((404, 409)) @wsgi.action('reboot') @validation.schema(schema_servers.reboot) def _action_reboot(self, req, id, body): reboot_type = body['reboot']['type'].upper() context = req.environ['nova.context'] context.can(server_policies.SERVERS % 'reboot') instance = self._get_server(context, req, id) try: self.compute_api.reboot(context, instance, reboot_type) except exception.InstanceIsLocked as e: raise exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'reboot', id) def _resize(self, req, instance_id, flavor_id, **kwargs): """Begin the resize process with given instance/flavor.""" context = req.environ["nova.context"] instance = self._get_server(context, req, instance_id) context.can(server_policies.SERVERS % 'resize', target={'user_id': instance.user_id, 'project_id': instance.project_id}) try: self.compute_api.resize(context, instance, flavor_id, **kwargs) except exception.InstanceUnknownCell as e: raise exc.HTTPNotFound(explanation=e.format_message()) except exception.QuotaError as error: raise exc.HTTPForbidden( explanation=error.format_message()) except exception.InstanceIsLocked as e: raise exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'resize', instance_id) except exception.ImageNotAuthorized: msg = _("You are not authorized to access the image " "the instance was started with.") raise exc.HTTPUnauthorized(explanation=msg) except exception.ImageNotFound: msg = _("Image that the instance was started " "with could not be found.") raise exc.HTTPBadRequest(explanation=msg) except (exception.AutoDiskConfigDisabledByImage, exception.CannotResizeDisk, exception.CannotResizeToSameFlavor, exception.FlavorNotFound, exception.NoValidHost, exception.PciRequestAliasNotDefined) as e: raise exc.HTTPBadRequest(explanation=e.format_message()) except exception.Invalid: msg = _("Invalid instance image.") raise exc.HTTPBadRequest(explanation=msg) except exception.ResizeError as e: raise exc.HTTPBadRequest(explanation=e.format_message()) @wsgi.response(204) @extensions.expected_errors((404, 409)) def delete(self, req, id): """Destroys a server.""" try: self._delete(req.environ['nova.context'], req, id) except exception.InstanceNotFound: msg = _("Instance could not be found") raise exc.HTTPNotFound(explanation=msg) except exception.InstanceUnknownCell as e: raise exc.HTTPNotFound(explanation=e.format_message()) except exception.InstanceIsLocked as e: raise exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'delete', id) def _image_from_req_data(self, server_dict, create_kwargs): """Get image data from the request or raise appropriate exceptions. The field imageRef is mandatory when no block devices have been defined and must be a proper uuid when present. """ image_href = server_dict.get('imageRef') if not image_href and create_kwargs.get('block_device_mapping'): return '' elif image_href: return image_href else: msg = _("Missing imageRef attribute") raise exc.HTTPBadRequest(explanation=msg) def _flavor_id_from_req_data(self, data): flavor_ref = data['server']['flavorRef'] return common.get_id_from_href(flavor_ref) @wsgi.response(202) @extensions.expected_errors((400, 401, 403, 404, 409)) @wsgi.action('resize') @validation.schema(schema_servers.resize) def _action_resize(self, req, id, body): """Resizes a given instance to the flavor size requested.""" resize_dict = body['resize'] flavor_ref = str(resize_dict["flavorRef"]) kwargs = {} helpers.translate_attributes(helpers.RESIZE, resize_dict, kwargs) self._resize(req, id, flavor_ref, **kwargs) @wsgi.response(202) @extensions.expected_errors((400, 403, 404, 409)) @wsgi.action('rebuild') @validation.schema(schema_server_rebuild_v20, '2.0', '2.0') @validation.schema(schema_server_rebuild, '2.1', '2.18') @validation.schema(schema_server_rebuild_v219, '2.19') def _action_rebuild(self, req, id, body): """Rebuild an instance with the given attributes.""" rebuild_dict = body['rebuild'] image_href = rebuild_dict["imageRef"] # validate metadata before rebuilding meta = rebuild_dict.get('metadata', {}) if meta: common.validate_metadata(meta) password = self._get_server_admin_password(rebuild_dict) context = req.environ['nova.context'] instance = self._get_server(context, req, id) context.can(server_policies.SERVERS % 'rebuild', target={'user_id': instance.user_id, 'project_id': instance.project_id}) attr_map = { 'name': 'display_name', 'description': 'display_description', 'metadata': 'metadata', # WRS adding userdata to rebuild args 'userdata': 'userdata', } kwargs = {} helpers.translate_attributes(helpers.REBUILD, rebuild_dict, kwargs) for request_attribute, instance_attribute in attr_map.items(): try: if request_attribute == 'name': kwargs[instance_attribute] = common.normalize_name( rebuild_dict[request_attribute]) else: kwargs[instance_attribute] = rebuild_dict[ request_attribute] except (KeyError, TypeError): pass try: self.compute_api.rebuild(context, instance, image_href, password, **kwargs) except exception.InstanceIsLocked as e: raise exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'rebuild', id) except exception.InstanceNotFound: msg = _("Instance could not be found") raise exc.HTTPNotFound(explanation=msg) except exception.InstanceUnknownCell as e: raise exc.HTTPNotFound(explanation=e.format_message()) except exception.ImageNotFound: msg = _("Cannot find image for rebuild") raise exc.HTTPBadRequest(explanation=msg) except exception.QuotaError as error: raise exc.HTTPForbidden(explanation=error.format_message()) except (exception.ImageNotActive, exception.ImageUnacceptable, exception.FlavorDiskTooSmall, exception.FlavorMemoryTooSmall, exception.InvalidMetadata, exception.AutoDiskConfigDisabledByImage) as error: raise exc.HTTPBadRequest(explanation=error.format_message()) instance = self._get_server(context, req, id, is_detail=True) view = self._view_builder.show(req, instance, extend_address=False) # Add on the admin_password attribute since the view doesn't do it # unless instance passwords are disabled if CONF.api.enable_instance_password: view['server']['adminPass'] = password robj = wsgi.ResponseObject(view) return self._add_location(robj) @wsgi.response(202) @extensions.expected_errors((400, 403, 404, 409)) @wsgi.action('createImage') @common.check_snapshots_enabled @validation.schema(schema_servers.create_image, '2.0', '2.0') @validation.schema(schema_servers.create_image, '2.1') def _action_create_image(self, req, id, body): """Snapshot a server instance.""" context = req.environ['nova.context'] context.can(server_policies.SERVERS % 'create_image') entity = body["createImage"] image_name = common.normalize_name(entity["name"]) metadata = entity.get('metadata', {}) # Starting from microversion 2.39 we don't check quotas on createImage if api_version_request.is_supported( req, max_version= api_version_request.MAX_IMAGE_META_PROXY_API_VERSION): common.check_img_metadata_properties_quota(context, metadata) instance = self._get_server(context, req, id) bdms = objects.BlockDeviceMappingList.get_by_instance_uuid( context, instance.uuid) try: if compute_utils.is_volume_backed_instance(context, instance, bdms): context.can(server_policies.SERVERS % 'create_image:allow_volume_backed') image = self.compute_api.snapshot_volume_backed( context, instance, image_name, extra_properties= metadata) else: image = self.compute_api.snapshot(context, instance, image_name, extra_properties=metadata) except exception.InstanceUnknownCell as e: raise exc.HTTPNotFound(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'createImage', id) except exception.Invalid as err: raise exc.HTTPBadRequest(explanation=err.format_message()) except exception.OverQuota as e: raise exc.HTTPForbidden(explanation=e.format_message()) # Starting with microversion 2.45 we return a response body containing # the snapshot image id without the Location header. if api_version_request.is_supported(req, '2.45'): return {'image_id': image['id']} # build location of newly-created image entity image_id = str(image['id']) image_ref = glance.generate_image_url(image_id) resp = webob.Response(status_int=202) resp.headers['Location'] = image_ref return resp def _get_server_admin_password(self, server): """Determine the admin password for a server on creation.""" if 'adminPass' in server: password = server['adminPass'] else: password = utils.generate_password() return password def _get_server_search_options(self, req): """Return server search options allowed by non-admin.""" opt_list = ('reservation_id', 'name', 'status', 'image', 'flavor', 'ip', 'changes-since', 'all_tenants') if api_version_request.is_supported(req, min_version='2.5'): opt_list += ('ip6',) if api_version_request.is_supported(req, min_version='2.26'): opt_list += TAG_SEARCH_FILTERS return opt_list def _get_instance(self, context, instance_uuid): try: attrs = ['system_metadata', 'metadata'] if not CONF.cells.enable: # NOTE(danms): We can't target a cell database if we're # in cellsv1 otherwise we'll short-circuit the replication. mapping = objects.InstanceMapping.get_by_instance_uuid( context, instance_uuid) nova_context.set_target_cell(context, mapping.cell_mapping) return objects.Instance.get_by_uuid( context, instance_uuid, expected_attrs=attrs) except (exception.InstanceNotFound, exception.InstanceMappingNotFound) as e: raise webob.exc.HTTPNotFound(explanation=e.format_message()) @wsgi.response(202) @extensions.expected_errors((404, 409)) @wsgi.action('os-start') def _start_server(self, req, id, body): """Start an instance.""" context = req.environ['nova.context'] instance = self._get_instance(context, id) context.can(server_policies.SERVERS % 'start', instance) try: self.compute_api.start(context, instance) except (exception.InstanceNotReady, exception.InstanceIsLocked) as e: raise webob.exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceUnknownCell as e: raise exc.HTTPNotFound(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'start', id) @wsgi.response(202) @extensions.expected_errors((404, 409)) @wsgi.action('os-stop') def _stop_server(self, req, id, body): """Stop an instance.""" context = req.environ['nova.context'] instance = self._get_instance(context, id) context.can(server_policies.SERVERS % 'stop', target={'user_id': instance.user_id, 'project_id': instance.project_id}) try: self.compute_api.stop(context, instance) except (exception.InstanceNotReady, exception.InstanceIsLocked) as e: raise webob.exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceUnknownCell as e: raise exc.HTTPNotFound(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'stop', id) @wsgi.Controller.api_version("2.17") @wsgi.response(202) @extensions.expected_errors((400, 404, 409)) @wsgi.action('trigger_crash_dump') @validation.schema(schema_servers.trigger_crash_dump) def _action_trigger_crash_dump(self, req, id, body): """Trigger crash dump in an instance""" context = req.environ['nova.context'] instance = self._get_instance(context, id) context.can(server_policies.SERVERS % 'trigger_crash_dump', target={'user_id': instance.user_id, 'project_id': instance.project_id}) try: self.compute_api.trigger_crash_dump(context, instance) except (exception.InstanceNotReady, exception.InstanceIsLocked) as e: raise webob.exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'trigger_crash_dump', id) except exception.TriggerCrashDumpNotSupported as e: raise webob.exc.HTTPBadRequest(explanation=e.format_message()) def remove_invalid_options(context, search_options, allowed_search_options): """Remove search options that are not valid for non-admin API/context.""" if context.is_admin: # Only remove parameters for sorting and pagination for key in ('sort_key', 'sort_dir', 'limit', 'marker'): search_options.pop(key, None) return # Otherwise, strip out all unknown options unknown_options = [opt for opt in search_options if opt not in allowed_search_options] if unknown_options: LOG.debug("Removing options '%s' from query", ", ".join(unknown_options)) for opt in unknown_options: search_options.pop(opt, None) def remove_invalid_sort_keys(context, sort_keys, sort_dirs, blacklist, admin_only_fields): key_list = copy.deepcopy(sort_keys) for key in key_list: # NOTE(Kevin Zheng): We are intend to remove the sort_key # in the blacklist and its' corresponding sort_dir, since # the sort_key and sort_dir are not strict to be provide # in pairs in the current implement, sort_dirs could be # less than sort_keys, in order to avoid IndexError, we # only pop sort_dir when number of sort_dirs is no less # than the sort_key index. if key in blacklist: if len(sort_dirs) > sort_keys.index(key): sort_dirs.pop(sort_keys.index(key)) sort_keys.pop(sort_keys.index(key)) elif key in admin_only_fields and not context.is_admin: msg = _("Only administrators can sort servers " "by %s") % key raise exc.HTTPForbidden(explanation=msg) return sort_keys, sort_dirs
45.258246
79
0.629231
7000d909c236c7060d4f3ed6ef3d285f670f879e
9,264
py
Python
lpot/pruning.py
deb-intel/lp-opt-tool
881bde402db387b04c2f33cc96fb817f47c4d623
[ "Apache-2.0" ]
null
null
null
lpot/pruning.py
deb-intel/lp-opt-tool
881bde402db387b04c2f33cc96fb817f47c4d623
[ "Apache-2.0" ]
null
null
null
lpot/pruning.py
deb-intel/lp-opt-tool
881bde402db387b04c2f33cc96fb817f47c4d623
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .adaptor import FRAMEWORKS from .conf.config import Conf from .policy import POLICIES from .utils import logger from .utils.utility import singleton @singleton class Pruning(object): """This is base class of pruning object. Since DL use cases vary in the accuracy metrics (Top-1, MAP, ROC etc.), loss criteria (<1% or <0.1% etc.) and pruning objectives (performance, memory footprint etc.). Pruning class provides a flexible configuration interface via YAML for users to specify these parameters. Args: conf_fname (string): The path to the YAML configuration file containing accuracy goal, pruning objective and related dataloaders etc. """ def __init__(self, conf_fname): self.conf = Conf(conf_fname) def on_epoch_begin(self, epoch): """ called on the begining of epochs""" for policy in self.policies: policy.on_epoch_begin(epoch) def on_batch_begin(self, batch_id): """ called on the begining of batches""" for policy in self.policies: policy.on_batch_begin(batch_id) def on_batch_end(self): """ called on the end of batches""" for policy in self.policies: policy.on_batch_end() def on_epoch_end(self): """ called on the end of epochs""" for policy in self.policies: policy.on_epoch_end() stats, sparsity = self.adaptor.report_sparsity(self.model) logger.info(stats) logger.info(sparsity) def __call__(self, model, q_dataloader=None, q_func=None, eval_dataloader=None, eval_func=None): """The main entry point of pruning. This interface currently only works on pytorch and provides three usages: a) Fully yaml configuration: User specifies all the info through yaml, including dataloaders used in calibration and evaluation phases and quantization tuning settings. For this usage, only model parameter is mandotory. b) Partial yaml configuration: User specifies dataloaders used in calibration and evaluation phase by code. The tool provides built-in dataloaders and evaluators, user just need provide a dataset implemented __iter__ or __getitem__ methods and invoke dataloader() with dataset as input parameter to create lpot dataloader before calling this function. After that, User specifies fp32 "model", calibration dataset "q_dataloader" and evaluation dataset "eval_dataloader". The calibrated and quantized model is evaluated with "eval_dataloader" with evaluation metrics specified in the configuration file. The evaluation tells the tuner whether the quantized model meets the accuracy criteria. If not, the tuner starts a new calibration and tuning flow. For this usage, model, q_dataloader and eval_dataloader parameters are mandotory. c) Partial yaml configuration: User specifies dataloaders used in calibration phase by code. This usage is quite similar with b), just user specifies a custom "eval_func" which encapsulates the evaluation dataset by itself. The calibrated and quantized model is evaluated with "eval_func". The "eval_func" tells the tuner whether the quantized model meets the accuracy criteria. If not, the Tuner starts a new calibration and tuning flow. For this usage, model, q_dataloader and eval_func parameters are mandotory. Args: model (object): For PyTorch model, it's torch.nn.model instance. q_dataloader (generator): Data loader for calibration. It is iterable and should yield a tuple (input, label) for calibration dataset containing label, or yield (input, _) for label-free calibration dataset. The input could be a object, list, tuple or dict, depending on user implementation, as well as it can be taken as model input. q_func (function, optional): Training function for pruning. This function takes "model" as input parameter and executes entire training process with self contained training hyper-parameters. If this parameter specified, eval_dataloader parameter plus metric defined in yaml, or eval_func parameter should also be specified at same time. eval_dataloader (generator, optional): Data loader for evaluation. It is iterable and should yield a tuple of (input, label). The input could be a object, list, tuple or dict, depending on user implementation, as well as it can be taken as model input. The label should be able to take as input of supported metrics. If this parameter is not None, user needs to specify pre-defined evaluation metrics through configuration file and should set "eval_func" paramter as None. Tuner will combine model, eval_dataloader and pre-defined metrics to run evaluation process. eval_func (function, optional): The evaluation function provided by user. This function takes model as parameter, and evaluation dataset and metrics should be encapsulated in this function implementation and outputs a higher-is-better accuracy scalar value. The pseudo code should be something like: def eval_func(model): input, label = dataloader() output = model(input) accuracy = metric(output, label) return accuracy Returns: pruned model: best pruned model found, otherwise return None """ self.cfg = self.conf.usr_cfg framework_specific_info = {'device': self.cfg.device, 'approach': self.cfg.quantization.approach, 'random_seed': self.cfg.tuning.random_seed} framework = self.cfg.model.framework.lower() if framework == 'tensorflow': framework_specific_info.update( {"inputs": self.cfg.model.inputs, "outputs": self.cfg.model.outputs}) self.adaptor = FRAMEWORKS[framework](framework_specific_info) self.model = model policies = {} for policy in POLICIES: for name in self.cfg["pruning"][policy]: policies[name] = {"policy_name": policy, "policy_spec": self.cfg["pruning"][policy][name]} self.policies = [] for name, policy_spec in policies.items(): print(policy_spec) self.policies.append(POLICIES[policy_spec["policy_name"]]( self.model, policy_spec["policy_spec"], self.cfg, self.adaptor)) return q_func(model)
52.044944
99
0.542422
e5dc59c10802fd39cb3ac44833caf942a5c33b5a
1,840
py
Python
happiness/happiness/bokeh_utils.py
joshua-barber/bokeh_happiness
fce19a1002ebdace0f386a0e86e03bd14475bb9a
[ "MIT" ]
null
null
null
happiness/happiness/bokeh_utils.py
joshua-barber/bokeh_happiness
fce19a1002ebdace0f386a0e86e03bd14475bb9a
[ "MIT" ]
null
null
null
happiness/happiness/bokeh_utils.py
joshua-barber/bokeh_happiness
fce19a1002ebdace0f386a0e86e03bd14475bb9a
[ "MIT" ]
null
null
null
from contextlib import closing from bokeh.client import push_session, pull_session from bokeh.document import Document from bokeh.embed import autoload_server from .viz.individuals import update_individuals_data from .viz.team import update_team_data from .viz.teams import update_teams_data def get_bokeh_script(user, plot, suffix): from .models import UserSession document = Document() document.add_root(plot) document.title = suffix with closing(push_session(document)) as session: # Save the session id to a UserSession UserSession.objects.create(user=user, bokeh_session_id=session.id) # Get the script to pass into the template script = autoload_server(None, session_id=session.id) return script def update_bokeh_sessions(user_sessions): for us in user_sessions: with closing(pull_session(session_id=us.bokeh_session_id)) as session: if len(session.document.roots) == 0: # In this case, the session_id was from a dead session and # calling pull_session caused a new empty session to be # created. So we just delete the UserSession and move on. # It would be nice if there was a more efficient way - where I # could just ask bokeh if session x is a session. us.delete() else: # Call the appropriate update method based on the document's title if session.document.title == 'individuals': update_individuals_data(user=us.user, session=session) if session.document.title == 'team': update_team_data(user=us.user, session=session) if session.document.title == 'teams': update_teams_data(user=us.user, session=session)
40
82
0.665217
53138eb16e2c6bdeb13527f66a1187cdc0251d55
19,529
py
Python
pydl/tests/test_layers.py
nash911/PyDL
b0b6f599184c0046f503b9ee1703dc3dfe9a89f2
[ "MIT" ]
null
null
null
pydl/tests/test_layers.py
nash911/PyDL
b0b6f599184c0046f503b9ee1703dc3dfe9a89f2
[ "MIT" ]
null
null
null
pydl/tests/test_layers.py
nash911/PyDL
b0b6f599184c0046f503b9ee1703dc3dfe9a89f2
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------ # MIT License # # Copyright (c) [2021] [Avinash Ranganath] # # This code is part of the library PyDL <https://github.com/nash911/PyDL> # This code is licensed under MIT license (see LICENSE.txt for details) # ------------------------------------------------------------------------ import unittest import numpy as np import numpy.testing as npt import itertools from pydl.nn.layers import FC from pydl import conf class TestLayers(unittest.TestCase): def test_score_fn(self): def test(inp, w, true_out, bias=False): fc = FC(inp, w.shape[-1], w, bias) out_fc = fc.score_fn(inp) npt.assert_almost_equal(out_fc, true_out, decimal=5) # Manually calculated # ------------------- X = np.array([[1, 2, 3], [4, 5, 6]], dtype=conf.dtype) w = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=conf.dtype) bias = np.array([0.1, 0.2, 0.3, 0.4], dtype=conf.dtype) true_out = np.array([[38, 44, 50, 56], [83, 98, 113, 128]], dtype=conf.dtype) test(X, w, true_out) test(X, w, true_out + bias, bias) # Combinatorial Test Cases # ------------------------ batch_size = [1, 2, 3, 6, 11] feature_size = [1, 2, 3, 6, 11] num_neurons = [1, 2, 3, 6, 11] scale = [1e-6, 1e-3, 1e-1, 1e-0, 2, 3, 10] for batch, feat, neur, scl in list(itertools.product(batch_size, feature_size, num_neurons, scale)): X = np.random.uniform(-scl, scl, (batch, feat)) w = np.random.randn(feat, neur) * scl bias = np.zeros(neur) true_out = np.matmul(X, w) test(X, w, true_out) test(X, w, true_out + bias, bias) def test_forward(self): def test(inp, w, true_out, bias=False, actv_fn='Sigmoid', bchnorm=False, p=None, mask=None): fc = FC(inp, w.shape[-1], w, bias, activation_fn=actv_fn, batchnorm=bchnorm, dropout=p) out_fc = fc.forward(inp, mask=mask) npt.assert_almost_equal(out_fc, true_out, decimal=5) # Manually calculated X = np.array([[1, 2, 3], [4, 5, 6]], dtype=conf.dtype) w = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=conf.dtype) bias = np.array([0.1, 0.2, 0.3, 0.4], dtype=conf.dtype) score_out = np.array([[38, 44, 50, 56], [83, 98, 113, 128]], dtype=conf.dtype) true_out = 1.0 / (1.0 + np.exp(-score_out)) test(X, w, true_out) true_out = 1.0 / (1.0 + np.exp(-(score_out + bias))) test(X, w, true_out, bias) # Combinatorial Test Cases # ------------------------ batch_size = [1, 2, 3, 6, 11] feature_size = [1, 2, 3, 6, 11] num_neurons = [1, 2, 3, 6, 11] scale = [1e-6, 1e-3, 1e-1, 1e-0, 2] batchnorm = [True, False] dropout = [True, False] for batch, feat, scl, neur, bn, dout in \ list(itertools.product(batch_size, feature_size, scale, num_neurons, batchnorm, dropout)): X = np.random.uniform(-scl, scl, (batch, feat)) w = np.random.randn(feat, neur) * scl bias = np.zeros(neur) score = np.matmul(X, w) + bias if bn: score = (score - np.mean(score, axis=0)) / np.sqrt(np.var(score, axis=0) + 1e-32) if dout: p = np.random.rand() mask = np.array(np.random.rand(*score.shape) < p, dtype=conf.dtype) else: p = None mask = None true_out_sig = 1.0 / (1.0 + np.exp(-np.matmul(X, w))) if dout: true_out_sig *= mask test(X, w, true_out_sig, bias=False, actv_fn='Sigmoid', bchnorm=False, p=p, mask=mask) true_out_sig = 1.0 / (1.0 + np.exp(-score)) if dout: true_out_sig *= mask test(X, w, true_out_sig, bias, actv_fn='Sigmoid', bchnorm=bn, p=p, mask=mask) true_out_tanh = (2.0 / (1.0 + np.exp(-2.0 * score))) - 1.0 if dout: true_out_tanh *= mask test(X, w, true_out_tanh, bias, actv_fn='Tanh', bchnorm=bn, p=p, mask=mask) unnorm_prob = np.exp(score) true_out_softmax = unnorm_prob / np.sum(unnorm_prob, axis=-1, keepdims=True) if dout: true_out_softmax *= mask test(X, w, true_out_softmax, bias, actv_fn='Softmax', bchnorm=bn, p=p, mask=mask) true_out_relu = np.maximum(0, score) if dout: mask /= p true_out_relu *= mask test(X, w, true_out_relu, bias, actv_fn='ReLU', bchnorm=bn, p=p, mask=mask) true_out_linear = score if dout: true_out_linear *= mask test(X, w, true_out_linear, bias, actv_fn='Linear', bchnorm=bn, p=p, mask=mask) def test_gradients_manually(self): def test(inp, w, inp_grad, true_weights_grad, true_inputs_grad, bias=False, true_bias_grad=None): fc = FC(inp, w.shape[-1], w, bias) weights_grad = fc.weight_gradients(inp_grad, inputs=X) bias_grad = fc.bias_gradients(inp_grad) inputs_grad = fc.input_gradients(inp_grad) npt.assert_almost_equal(weights_grad, true_weights_grad, decimal=5) npt.assert_almost_equal(bias_grad, true_bias_grad, decimal=5) npt.assert_almost_equal(inputs_grad, true_inputs_grad, decimal=5) # Manually calculated - Unit input gradients X = np.array([[1, 2, 3], [4, 5, 6]], dtype=conf.dtype) w = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=conf.dtype) bias = np.array([0.1, 0.2, 0.3, 0.4], dtype=conf.dtype) inp_grad = np.ones((2, 4), dtype=conf.dtype) true_weights_grad = np.sum(X, axis=0, keepdims=True).T * np.ones(w.shape, dtype=conf.dtype) true_inputs_grad = np.sum(w, axis=-1, keepdims=True).T * np.ones(X.shape, dtype=conf.dtype) true_bias_grad = np.sum(inp_grad, axis=0, keepdims=False) test(X, w, inp_grad, true_weights_grad, true_inputs_grad, bias, true_bias_grad) # Manually calculated X = np.array([[1, 2, 3], [4, 5, 6]], dtype=conf.dtype) w = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=conf.dtype) bias = np.array([0.1, 0.2, 0.3, 0.4], dtype=conf.dtype) inp_grad = np.array([[3, 3, 3, 3], [2, 2, 2, 2]], dtype=conf.dtype) true_weights_grad = np.array([[11, 11, 11, 11], [16, 16, 16, 16], [21, 21, 21, 21]], dtype=conf.dtype) true_bias_grad = np.sum(inp_grad, axis=0, keepdims=False) true_inputs_grad = np.array([[30, 78, 126], [20, 52, 84]], dtype=conf.dtype) test(X, w, inp_grad, true_weights_grad, true_inputs_grad, bias, true_bias_grad) def test_gradients_finite_difference(self): self.delta = 1e-5 def test(inp, w, inp_grad, bias=False): fc = FC(inp, w.shape[-1], w, bias) weights_grad = fc.weight_gradients(inp_grad, inputs=X) bias_grad = fc.bias_gradients(inp_grad) inputs_grad = fc.input_gradients(inp_grad) # Weights finite difference gradients weights_finite_diff = np.empty(weights_grad.shape) for i in range(weights_grad.shape[0]): w_delta = np.zeros(w.shape, dtype=conf.dtype) w_delta[i] = self.delta weights_finite_diff[i] = np.sum(((fc.score_fn(inp, w + w_delta) - fc.score_fn(inp, w - w_delta)) / (2 * self.delta)) * inp_grad, axis=0) # Bias finite difference gradients fc.bias = bias + self.delta lhs = fc.score_fn(inp) fc.bias = bias - self.delta rhs = fc.score_fn(inp) bias_finite_diff = np.sum(((lhs - rhs) / (2 * self.delta)) * inp_grad, axis=0) fc.bias = bias # Inputs finite difference gradients inputs_finite_diff = np.empty(inputs_grad.shape) for i in range(inputs_grad.shape[1]): i_delta = np.zeros(inp.shape, dtype=conf.dtype) i_delta[:, i] = self.delta inputs_finite_diff[:, i] = np.sum(((fc.score_fn(inp + i_delta, w) - fc.score_fn(inp - i_delta, w)) / (2 * self.delta)) * inp_grad, axis=-1, keepdims=False) # Threshold Gradient Diff Check npt.assert_almost_equal(weights_grad, weights_finite_diff, decimal=5) npt.assert_almost_equal(bias_grad, bias_finite_diff, decimal=5) npt.assert_almost_equal(inputs_grad, inputs_finite_diff, decimal=5) # # Relative gradient error check # max_abs_w_grads = np.maximum(np.abs(weights_grad), np.abs(weights_finite_diff)) # max_abs_w_grads[max_abs_w_grads==0] = 1 # w_grads_accuracy = np.abs(weights_grad - weights_finite_diff) / max_abs_w_grads # npt.assert_almost_equal(np.zeros_like(w_grads_accuracy), w_grads_accuracy, decimal=5) # # max_abs_b_grads = np.maximum(np.abs(bias_grad), np.abs(bias_finite_diff)) # max_abs_b_grads[max_abs_b_grads==0] = 1 # b_grads_accuracy = np.abs(bias_grad - bias_finite_diff) / max_abs_b_grads # npt.assert_almost_equal(np.zeros_like(b_grads_accuracy), b_grads_accuracy, decimal=5) # # max_abs_inp_grads = np.maximum(np.abs(inputs_grad), np.abs(inputs_finite_diff)) # max_abs_inp_grads[max_abs_inp_grads==0] = 1 # inp_grads_accuracy = np.abs(inputs_grad - inputs_finite_diff) / max_abs_inp_grads # npt.assert_almost_equal(np.zeros_like(inp_grads_accuracy), inp_grads_accuracy, # decimal=5) # Manually calculated - Unit input gradients X = np.array([[1, 2, 3], [4, 5, 6]], dtype=conf.dtype) w = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=conf.dtype) bias = np.array([0.1, 0.2, 0.3, 0.4], dtype=conf.dtype) inp_grad = np.ones((2, 4), dtype=conf.dtype) test(X, w, inp_grad, bias) # Manually calculated X = np.array([[1, 2, 3], [4, 5, 6]], dtype=conf.dtype) w = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=conf.dtype) bias = np.array([0.1, 0.2, 0.3, 0.4], dtype=conf.dtype) inp_grad = np.array([[1, 2, 3, 4], [-5, -6, -7, -8]], dtype=conf.dtype) test(X, w, inp_grad, bias) # Combinatorial Test Cases # ------------------------ batch_size = [1, 2, 3, 6, 11] feature_size = [1, 2, 3, 6, 11] num_neurons = [1, 2, 3, 6, 11] scale = [1e-4, 1e-3, 1e-1, 1e-0, 2, 3, 10] unit_inp_grad = [True, False] for batch, feat, neur, scl, unit in list(itertools.product(batch_size, feature_size, num_neurons, scale, unit_inp_grad)): X = np.random.uniform(-scl, scl, (batch, feat)) w = np.random.randn(feat, neur) * scl bias = np.random.rand(neur) * scl inp_grad = np.ones((batch, neur), dtype=conf.dtype) if unit else \ np.random.uniform(-10, 10, (batch, neur)) test(X, w, inp_grad, bias) def test_backward_gradients_finite_difference(self): self.delta = 1e-8 def test(inp, w, inp_grad, bias=False, actv_fn='Sigmoid', batchnorm=False, p=None, mask=None): fc = FC(inp, w.shape[-1], w, bias, activation_fn=actv_fn, batchnorm=batchnorm, dropout=p) _ = fc.forward(inp, mask=mask) inputs_grad = fc.backward(inp_grad) weights_grad = fc.weights_grad bias_grad = fc.bias_grad # Weights finite difference gradients weights_finite_diff = np.empty(weights_grad.shape) for i in range(weights_grad.shape[0]): for j in range(weights_grad.shape[1]): w_delta = np.zeros(w.shape, dtype=conf.dtype) w_delta[i, j] = self.delta fc.weights = w + w_delta lhs = fc.forward(inp, mask=mask) fc.weights = w - w_delta rhs = fc.forward(inp, mask=mask) weights_finite_diff[i, j] = np.sum(((lhs - rhs) / (2 * self.delta)) * inp_grad) # Replace finite-diff gradients calculated close to 0 with NN calculated # gradients to pass assertion test grad_kink = np.sum(np.array(np.logical_xor(lhs > 0, rhs > 0), dtype=np.int32)) if grad_kink > 0: weights_finite_diff[i, j] = weights_grad[i, j] fc.weights = w # Bias finite difference gradients bias_finite_diff = np.empty(bias_grad.shape) for i in range(bias_grad.shape[0]): bias_delta = np.zeros(bias.shape, dtype=conf.dtype) bias_delta[i] = self.delta fc.bias = bias + bias_delta lhs = fc.forward(inp, mask=mask) fc.bias = bias - bias_delta rhs = fc.forward(inp, mask=mask) bias_finite_diff[i] = np.sum(((lhs - rhs) / (2 * self.delta)) * inp_grad) # Replace finite-diff gradients calculated close to 0 with NN calculated # gradients to pass assertion test grad_kink = np.sum(np.array(np.logical_xor(lhs > 0, rhs > 0), dtype=np.int32)) if grad_kink > 0: bias_finite_diff[i] = bias_grad[i] fc.bias = bias # Inputs finite difference gradients inputs_finite_diff = np.empty(inputs_grad.shape) for i in range(inputs_grad.shape[0]): for j in range(inputs_grad.shape[1]): i_delta = np.zeros(inp.shape, dtype=conf.dtype) i_delta[i, j] = self.delta lhs = fc.forward(inp + i_delta, mask=mask) rhs = fc.forward(inp - i_delta, mask=mask) inputs_finite_diff[i, j] = np.sum(((lhs - rhs) / (2 * self.delta)) * inp_grad, keepdims=False) # Replace finite-diff gradients calculated close to 0 with NN calculated # gradients to pass assertion test grad_kink = np.sum(np.array(np.logical_xor(lhs > 0, rhs > 0), dtype=np.int32)) if grad_kink > 0: inputs_finite_diff[i, j] = inputs_grad[i, j] npt.assert_almost_equal(weights_grad, weights_finite_diff, decimal=2) npt.assert_almost_equal(bias_grad, bias_finite_diff, decimal=2) npt.assert_almost_equal(inputs_grad, inputs_finite_diff, decimal=2) # Manually calculated - Unit input gradients X = np.array([[1, 2, 3], [4, 5, 6]], dtype=conf.dtype) w = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=conf.dtype) bias = np.array([0.1, 0.2, 0.3, 0.4], dtype=conf.dtype) inp_grad = np.ones((2, 4), dtype=conf.dtype) activation_fn = ['Linear', 'Sigmoid', 'Tanh', 'Softmax'] batchnorm = [True, False] dropout = [True, False] for actv, bn, dout in list(itertools.product(activation_fn, batchnorm, dropout)): if dout and actv == 'Softmax': continue if dout: p = np.random.rand() mask = np.array(np.random.rand(*inp_grad.shape) < p, dtype=conf.dtype) if actv in ['Linear', 'ReLU']: mask /= p else: p = None mask = None test(X, w, inp_grad, bias, actv, bn, p, mask) # Manually calculated X = np.array([[1, 2, 3], [4, 5, 6]], dtype=conf.dtype) w = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=conf.dtype) bias = np.array([0.1, 0.2, 0.3, 0.4], dtype=conf.dtype) inp_grad = np.array([[5, 6, 7, 8], [1, 2, 3, 4]], dtype=conf.dtype) activation_fn = ['Linear', 'Sigmoid', 'Tanh', 'Softmax'] batchnorm = [True, False] dropout = [True, False] for actv, bn, dout in list(itertools.product(activation_fn, batchnorm, dropout)): if dout and actv == 'Softmax': continue if dout: p = np.random.rand() mask = np.array(np.random.rand(*inp_grad.shape) < p, dtype=conf.dtype) if actv in ['Linear', 'ReLU']: mask /= p else: p = None mask = None test(X, w, inp_grad, bias, actv, bn, p, mask) # Combinatorial Test Cases # ------------------------ batch_size = [1, 2, 8, 11] feature_size = [1, 2, 3, 11] num_neurons = [1, 2, 3, 11] scale = [1e-3, 1e-0, 2] unit_inp_grad = [True, False] activation_fn = ['Linear', 'Sigmoid', 'Tanh', 'Softmax', 'ReLU'] batchnorm = [True, False] dropout = [True, False] for batch, feat, neur, scl, unit, actv, bn, dout in \ list(itertools.product(batch_size, feature_size, num_neurons, scale, unit_inp_grad, activation_fn, batchnorm, dropout)): if dout and actv == 'Softmax': continue X = np.random.uniform(-scl, scl, (batch, feat)) w = np.random.randn(feat, neur) * scl # bias = np.random.randn(neur) * scl bias = np.zeros(neur) inp_grad = np.ones((batch, neur), dtype=conf.dtype) if unit else \ np.random.uniform(-1, 1, (batch, neur)) if dout: p = np.random.rand() mask = np.array(np.random.rand(batch, neur) < p, dtype=conf.dtype) if actv in ['Linear', 'ReLU']: mask /= p else: p = None mask = None test(X, w, inp_grad, bias, actv, bn, p, mask) if __name__ == '__main__': unittest.main()
45.416279
100
0.503252
68982d195965d35d03a279ef1b45ceae82a47964
6,039
py
Python
automol/pot/_fit.py
lpratalimaffei/autochem
fd51f6899de17a014b4c1c7e18cefbc3df283b5e
[ "Apache-2.0" ]
2
2021-03-01T14:23:25.000Z
2021-11-28T19:17:08.000Z
automol/pot/_fit.py
lpratalimaffei/autochem
fd51f6899de17a014b4c1c7e18cefbc3df283b5e
[ "Apache-2.0" ]
1
2021-02-12T21:02:22.000Z
2021-02-12T21:35:33.000Z
automol/pot/_fit.py
lpratalimaffei/autochem
fd51f6899de17a014b4c1c7e18cefbc3df283b5e
[ "Apache-2.0" ]
6
2020-12-12T18:41:13.000Z
2021-11-11T20:12:14.000Z
""" Handle fits to potentials """ import numpy from scipy.interpolate import interp1d def fit_1d_potential(pot_dct, min_thresh=-0.0001, max_thresh=50.0): """ Get a physical hindered rotor potential via a series of spline fits """ pot = list(pot_dct.values()) # Initialize a variable for the size of the potential lpot = len(pot)+1 pot.append(0.0) # Print warning messages print_pot = False if any(val > max_thresh for val in pot): print_pot = True max_pot = max(pot) print('Warning: Found pot val of {0:.2f}'.format(max_pot), ' which is larger than', 'the typical maximum for a torsional potential') # reset any negative values for the first grid point to 0. if pot[0] < 0.: print('ERROR: The first potential value should be 0.') pot[0] = 0. if any(val < min_thresh for val in pot): print_pot = True min_pot = min(pot) print('Warning: Found pot val of {0:.2f}'.format(min_pot), ' which is below', '{0} kcal. Refit w/ positives'.format(min_thresh)) if print_pot: print('Potential before spline:', pot) # Build a potential list from only successful calculations # First replace high potential values with max_thresh # Then replace any negative potential values cubic spline fit values idx_success = [] pot_success = [] for idx in range(lpot): if pot[idx] < 600. and pot[idx] > min_thresh: idx_success.append(idx) if pot[idx] < max_thresh: pot_success.append(pot[idx]) else: pot_success.append(max_thresh) if len(pot_success) > 3: # Build a new potential list using a spline fit of the HR potential pot_spl = interp1d( numpy.array(idx_success), numpy.array(pot_success), kind='cubic') for idx in range(lpot): pot[idx] = float(pot_spl(idx)) # Do second spline fit of only positive values if any negative values found if any(val < min_thresh for val in pot): print('Still found negative potential values after first spline') print('Potential after spline:', pot) if len(pot_success) > 3: x_pos = numpy.array([i for i in range(lpot) if pot[i] >= min_thresh]) y_pos = numpy.array([pot[i] for i in range(lpot) if pot[i] >= min_thresh]) pos_pot_spl = interp1d(x_pos, y_pos, kind='cubic') pot_pos_fit = [] for idx in range(lpot): pot_pos_fit.append(pos_pot_spl(idx)) else: pot_pos_fit = [] for idx in range(lpot): pot_pos_fit.append(pot[idx]) print('Potential after spline:', pot_pos_fit) # Perform second check to see if negative potentials have been fixed if any(val < min_thresh for val in pot_pos_fit): print('Still found negative potential values after second spline') print('Replace with linear interpolation of positive values') neg_idxs = [i for i in range(lpot) if pot_pos_fit[i] < min_thresh] clean_pot = [] for i in range(lpot): if i in neg_idxs: # Find the indices for positive vals around negative value idx_0 = i - 1 while idx_0 in neg_idxs: idx_0 = idx_0 - 1 for j in range(i, lpot): if pot_pos_fit[j] >= min_thresh: idx_1 = j break # Get a new value for this point on the potential by # doing a linear interp of positives interp_val = ( pot_pos_fit[idx_0] * (1.0-((i-idx_0)/(idx_1-idx_0))) + pot_pos_fit[idx_1] * ((i-idx_0)/(idx_1-idx_0)) ) clean_pot.append(interp_val) else: clean_pot.append(pot_pos_fit[i]) final_potential = clean_pot.copy() else: final_potential = pot_pos_fit.copy() else: final_potential = pot.copy() final_potential = final_potential[:-1] fin_dct = {} for i, val in enumerate(final_potential): val_fin = min(val, max_thresh) fin_dct[(i,)] = val_fin return fin_dct # def spline_fitter(xarr, yarr): # """ # """ # x_pos = numpy.array([i for i in range(lpot) # if pot[i] >= min_thresh]) # y_pos = numpy.array([pot[i] for i in range(lpot) # if pot[i] >= min_thresh]) # pos_pot_spl = interp1d(x_pos, y_pos, kind='cubic') # # # def linear_fitter(pot): # """ Do a one-dimensional linear fitter # """ # # neg_idxs = [i for i in range(lpot) if pot_pos_fit[i] < min_thresh] # clean_pot = [] # if i in neg_idxs: # # Find the indices for positive vals around negative value # idx_0 = i - 1 # while idx_0 in neg_idxs: # idx_0 = idx_0 - 1 # for j in range(i, lpot): # if pot_pos_fit[j] >= min_thresh: # idx_1 = j # break # pot = _linear_fitter(pot) # # # def _linear_fit(pot, idx_0, idx_1): # """ Linear fitter # """ # interp_val = ( # pot[idx_0] * (1.0-((i-idx_0)/(idx_1-idx_0))) + # pot[idx_1] * ((i-idx_0)/(idx_1-idx_0)) # ) # # # def _re_set_high_values(pot, max_thresh=600., min_thresh=-0.0001): # """ Rebuild the potential # """ # # idx_success = [] # pot_success = [] # for idx in range(lpot): # if pot[idx] < 600. and pot[idx] > min_thresh: # idx_success.append(idx) # if pot[idx] < max_thresh: # pot_success.append(pot[idx]) # else: # pot_success.append(max_thresh) # # return pot
34.3125
79
0.545951
05cdb9409b9b7f779ffec46cf6c83cadf3cdc40d
19,712
py
Python
src/azure-cli/azure/cli/command_modules/storage/operations/account.py
heaths/azure-cli
baae1d17ffc4f3abfeccea17116bfd61de5770f1
[ "MIT" ]
null
null
null
src/azure-cli/azure/cli/command_modules/storage/operations/account.py
heaths/azure-cli
baae1d17ffc4f3abfeccea17116bfd61de5770f1
[ "MIT" ]
1
2021-06-02T00:40:34.000Z
2021-06-02T00:40:34.000Z
src/azure-cli/azure/cli/command_modules/storage/operations/account.py
heaths/azure-cli
baae1d17ffc4f3abfeccea17116bfd61de5770f1
[ "MIT" ]
1
2020-07-30T13:35:39.000Z
2020-07-30T13:35:39.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- """Custom operations for storage account commands""" import os from azure.cli.command_modules.storage._client_factory import storage_client_factory, cf_sa_for_keys from azure.cli.core.util import get_file_json, shell_safe_json_parse from knack.log import get_logger logger = get_logger(__name__) # pylint: disable=too-many-locals def create_storage_account(cmd, resource_group_name, account_name, sku=None, location=None, kind=None, tags=None, custom_domain=None, encryption_services=None, access_tier=None, https_only=None, enable_files_aadds=None, bypass=None, default_action=None, assign_identity=False, enable_large_file_share=None, enable_files_adds=None, domain_name=None, net_bios_domain_name=None, forest_name=None, domain_guid=None, domain_sid=None, azure_storage_sid=None): StorageAccountCreateParameters, Kind, Sku, CustomDomain, AccessTier, Identity, Encryption, NetworkRuleSet = \ cmd.get_models('StorageAccountCreateParameters', 'Kind', 'Sku', 'CustomDomain', 'AccessTier', 'Identity', 'Encryption', 'NetworkRuleSet') scf = storage_client_factory(cmd.cli_ctx) logger.warning("The default kind for created storage account will change to 'StorageV2' from 'Storage' " "in the future") params = StorageAccountCreateParameters(sku=Sku(name=sku), kind=Kind(kind), location=location, tags=tags) if custom_domain: params.custom_domain = CustomDomain(name=custom_domain, use_sub_domain=None) if encryption_services: params.encryption = Encryption(services=encryption_services) if access_tier: params.access_tier = AccessTier(access_tier) if assign_identity: params.identity = Identity() if https_only is not None: params.enable_https_traffic_only = https_only AzureFilesIdentityBasedAuthentication = cmd.get_models('AzureFilesIdentityBasedAuthentication') if enable_files_aadds is not None: params.azure_files_identity_based_authentication = AzureFilesIdentityBasedAuthentication( directory_service_options='AADDS' if enable_files_aadds else 'None') if enable_files_adds is not None: from knack.util import CLIError ActiveDirectoryProperties = cmd.get_models('ActiveDirectoryProperties') if enable_files_adds: # enable AD if not (domain_name and net_bios_domain_name and forest_name and domain_guid and domain_sid and azure_storage_sid): raise CLIError("To enable ActiveDirectoryDomainServicesForFile, user must specify all of: " "--domain-name, --net-bios-domain-name, --forest-name, --domain-guid, --domain-sid and " "--azure_storage_sid arguments in Azure Active Directory Properties Argument group.") active_directory_properties = ActiveDirectoryProperties(domain_name=domain_name, net_bios_domain_name=net_bios_domain_name, forest_name=forest_name, domain_guid=domain_guid, domain_sid=domain_sid, azure_storage_sid=azure_storage_sid) # TODO: Enabling AD will automatically disable AADDS. Maybe we should throw error message params.azure_files_identity_based_authentication = AzureFilesIdentityBasedAuthentication( directory_service_options='AD', active_directory_properties=active_directory_properties) else: # disable AD if domain_name or net_bios_domain_name or forest_name or domain_guid or domain_sid or azure_storage_sid: # pylint: disable=too-many-boolean-expressions raise CLIError("To disable ActiveDirectoryDomainServicesForFile, user can't specify any of: " "--domain-name, --net-bios-domain-name, --forest-name, --domain-guid, --domain-sid and " "--azure_storage_sid arguments in Azure Active Directory Properties Argument group.") params.azure_files_identity_based_authentication = AzureFilesIdentityBasedAuthentication( directory_service_options='None') if enable_large_file_share: LargeFileSharesState = cmd.get_models('LargeFileSharesState') params.large_file_shares_state = LargeFileSharesState("Enabled") if NetworkRuleSet and (bypass or default_action): if bypass and not default_action: from knack.util import CLIError raise CLIError('incorrect usage: --default-action ACTION [--bypass SERVICE ...]') params.network_rule_set = NetworkRuleSet(bypass=bypass, default_action=default_action, ip_rules=None, virtual_network_rules=None) return scf.storage_accounts.create(resource_group_name, account_name, params) def list_storage_accounts(cmd, resource_group_name=None): scf = storage_client_factory(cmd.cli_ctx) if resource_group_name: accounts = scf.storage_accounts.list_by_resource_group(resource_group_name) else: accounts = scf.storage_accounts.list() return list(accounts) def show_storage_account_connection_string(cmd, resource_group_name, account_name, protocol='https', blob_endpoint=None, file_endpoint=None, queue_endpoint=None, table_endpoint=None, sas_token=None, key_name='primary'): endpoint_suffix = cmd.cli_ctx.cloud.suffixes.storage_endpoint connection_string = 'DefaultEndpointsProtocol={};EndpointSuffix={}'.format(protocol, endpoint_suffix) if account_name is not None: scf = cf_sa_for_keys(cmd.cli_ctx, None) obj = scf.list_keys(resource_group_name, account_name) # pylint: disable=no-member try: keys = [obj.keys[0].value, obj.keys[1].value] # pylint: disable=no-member except AttributeError: # Older API versions have a slightly different structure keys = [obj.key1, obj.key2] # pylint: disable=no-member connection_string = '{}{}{}'.format( connection_string, ';AccountName={}'.format(account_name), ';AccountKey={}'.format(keys[0] if key_name == 'primary' else keys[1])) # pylint: disable=no-member connection_string = '{}{}'.format(connection_string, ';BlobEndpoint={}'.format(blob_endpoint) if blob_endpoint else '') connection_string = '{}{}'.format(connection_string, ';FileEndpoint={}'.format(file_endpoint) if file_endpoint else '') connection_string = '{}{}'.format(connection_string, ';QueueEndpoint={}'.format(queue_endpoint) if queue_endpoint else '') connection_string = '{}{}'.format(connection_string, ';TableEndpoint={}'.format(table_endpoint) if table_endpoint else '') connection_string = '{}{}'.format(connection_string, ';SharedAccessSignature={}'.format(sas_token) if sas_token else '') return {'connectionString': connection_string} def show_storage_account_usage(cmd, location): scf = storage_client_factory(cmd.cli_ctx) try: client = scf.usages except NotImplementedError: client = scf.usage return next((x for x in client.list_by_location(location) if x.name.value == 'StorageAccounts'), None) # pylint: disable=no-member def show_storage_account_usage_no_location(cmd): scf = storage_client_factory(cmd.cli_ctx) return next((x for x in scf.usage.list() if x.name.value == 'StorageAccounts'), None) # pylint: disable=no-member def get_storage_account_properties(cli_ctx, account_id): scf = storage_client_factory(cli_ctx) from msrestazure.tools import parse_resource_id result = parse_resource_id(account_id) return scf.storage_accounts.get_properties(result['resource_group'], result['name']) # pylint: disable=too-many-locals, too-many-statements, too-many-branches, too-many-boolean-expressions def update_storage_account(cmd, instance, sku=None, tags=None, custom_domain=None, use_subdomain=None, encryption_services=None, encryption_key_source=None, encryption_key_vault_properties=None, access_tier=None, https_only=None, enable_files_aadds=None, assign_identity=False, bypass=None, default_action=None, enable_large_file_share=None, enable_files_adds=None, domain_name=None, net_bios_domain_name=None, forest_name=None, domain_guid=None, domain_sid=None, azure_storage_sid=None): StorageAccountUpdateParameters, Sku, CustomDomain, AccessTier, Identity, Encryption, NetworkRuleSet = \ cmd.get_models('StorageAccountUpdateParameters', 'Sku', 'CustomDomain', 'AccessTier', 'Identity', 'Encryption', 'NetworkRuleSet') domain = instance.custom_domain if custom_domain is not None: domain = CustomDomain(name=custom_domain) if use_subdomain is not None: domain.use_sub_domain_name = use_subdomain == 'true' encryption = instance.encryption if not encryption and any((encryption_services, encryption_key_source, encryption_key_vault_properties)): encryption = Encryption() if encryption_services: encryption.services = encryption_services if encryption_key_source: encryption.key_source = encryption_key_source if encryption_key_vault_properties: if encryption.key_source != 'Microsoft.Keyvault': raise ValueError('Specify `--encryption-key-source=Microsoft.Keyvault` to configure key vault properties.') encryption.key_vault_properties = encryption_key_vault_properties params = StorageAccountUpdateParameters( sku=Sku(name=sku) if sku is not None else instance.sku, tags=tags if tags is not None else instance.tags, custom_domain=domain, encryption=encryption, access_tier=AccessTier(access_tier) if access_tier is not None else instance.access_tier, enable_https_traffic_only=https_only if https_only is not None else instance.enable_https_traffic_only ) AzureFilesIdentityBasedAuthentication = cmd.get_models('AzureFilesIdentityBasedAuthentication') from knack.util import CLIError if enable_files_aadds is not None: if enable_files_aadds: # enable AADDS origin_storage_account = get_storage_account_properties(cmd.cli_ctx, instance.id) if origin_storage_account.azure_files_identity_based_authentication and \ origin_storage_account.azure_files_identity_based_authentication.directory_service_options == 'AD': raise CLIError("The Storage account already enabled ActiveDirectoryDomainServicesForFile, " "please disable it by running this cmdlets with \"--enable-files-adds false\" " "before enable AzureActiveDirectoryDomainServicesForFile.") params.azure_files_identity_based_authentication = AzureFilesIdentityBasedAuthentication( directory_service_options='AADDS' if enable_files_aadds else 'None') else: # Only disable AADDS and keep others unchanged origin_storage_account = get_storage_account_properties(cmd.cli_ctx, instance.id) if not origin_storage_account.azure_files_identity_based_authentication or \ origin_storage_account.azure_files_identity_based_authentication.directory_service_options\ == 'AADDS': params.azure_files_identity_based_authentication = AzureFilesIdentityBasedAuthentication( directory_service_options='None') else: params.azure_files_identity_based_authentication = \ origin_storage_account.azure_files_identity_based_authentication if enable_files_adds is not None: ActiveDirectoryProperties = cmd.get_models('ActiveDirectoryProperties') if enable_files_adds: # enable AD if not(domain_name and net_bios_domain_name and forest_name and domain_guid and domain_sid and azure_storage_sid): raise CLIError("To enable ActiveDirectoryDomainServicesForFile, user must specify all of: " "--domain-name, --net-bios-domain-name, --forest-name, --domain-guid, --domain-sid and " "--azure_storage_sid arguments in Azure Active Directory Properties Argument group.") origin_storage_account = get_storage_account_properties(cmd.cli_ctx, instance.id) if origin_storage_account.azure_files_identity_based_authentication and \ origin_storage_account.azure_files_identity_based_authentication.directory_service_options \ == 'AADDS': raise CLIError("The Storage account already enabled AzureActiveDirectoryDomainServicesForFile, " "please disable it by running this cmdlets with \"--enable-files-aadds false\" " "before enable ActiveDirectoryDomainServicesForFile.") active_directory_properties = ActiveDirectoryProperties(domain_name=domain_name, net_bios_domain_name=net_bios_domain_name, forest_name=forest_name, domain_guid=domain_guid, domain_sid=domain_sid, azure_storage_sid=azure_storage_sid) # TODO: Enabling AD will automatically disable AADDS. Maybe we should throw error message params.azure_files_identity_based_authentication = AzureFilesIdentityBasedAuthentication( directory_service_options='AD', active_directory_properties=active_directory_properties) else: # disable AD if domain_name or net_bios_domain_name or forest_name or domain_guid or domain_sid or azure_storage_sid: raise CLIError("To disable ActiveDirectoryDomainServicesForFile, user can't specify any of: " "--domain-name, --net-bios-domain-name, --forest-name, --domain-guid, --domain-sid and " "--azure_storage_sid arguments in Azure Active Directory Properties Argument group.") # Only disable AD and keep others unchanged origin_storage_account = get_storage_account_properties(cmd.cli_ctx, instance.id) if not origin_storage_account.azure_files_identity_based_authentication or \ origin_storage_account.azure_files_identity_based_authentication.directory_service_options == 'AD': params.azure_files_identity_based_authentication = AzureFilesIdentityBasedAuthentication( directory_service_options='None') else: params.azure_files_identity_based_authentication = \ origin_storage_account.azure_files_identity_based_authentication if assign_identity: params.identity = Identity() if enable_large_file_share: LargeFileSharesState = cmd.get_models('LargeFileSharesState') params.large_file_shares_state = LargeFileSharesState("Enabled") if NetworkRuleSet: acl = instance.network_rule_set if acl: if bypass: acl.bypass = bypass if default_action: acl.default_action = default_action elif default_action: acl = NetworkRuleSet(bypass=bypass, virtual_network_rules=None, ip_rules=None, default_action=default_action) elif bypass: raise CLIError('incorrect usage: --default-action ACTION [--bypass SERVICE ...]') params.network_rule_set = acl return params def list_network_rules(client, resource_group_name, account_name): sa = client.get_properties(resource_group_name, account_name) rules = sa.network_rule_set delattr(rules, 'bypass') delattr(rules, 'default_action') return rules def add_network_rule(cmd, client, resource_group_name, account_name, action='Allow', subnet=None, vnet_name=None, ip_address=None): # pylint: disable=unused-argument sa = client.get_properties(resource_group_name, account_name) rules = sa.network_rule_set if subnet: from msrestazure.tools import is_valid_resource_id if not is_valid_resource_id(subnet): from knack.util import CLIError raise CLIError("Expected fully qualified resource ID: got '{}'".format(subnet)) VirtualNetworkRule = cmd.get_models('VirtualNetworkRule') if not rules.virtual_network_rules: rules.virtual_network_rules = [] rules.virtual_network_rules.append(VirtualNetworkRule(virtual_network_resource_id=subnet, action=action)) if ip_address: IpRule = cmd.get_models('IPRule') if not rules.ip_rules: rules.ip_rules = [] rules.ip_rules.append(IpRule(ip_address_or_range=ip_address, action=action)) StorageAccountUpdateParameters = cmd.get_models('StorageAccountUpdateParameters') params = StorageAccountUpdateParameters(network_rule_set=rules) return client.update(resource_group_name, account_name, params) def remove_network_rule(cmd, client, resource_group_name, account_name, ip_address=None, subnet=None, vnet_name=None): # pylint: disable=unused-argument sa = client.get_properties(resource_group_name, account_name) rules = sa.network_rule_set if subnet: rules.virtual_network_rules = [x for x in rules.virtual_network_rules if not x.virtual_network_resource_id.endswith(subnet)] if ip_address: rules.ip_rules = [x for x in rules.ip_rules if x.ip_address_or_range != ip_address] StorageAccountUpdateParameters = cmd.get_models('StorageAccountUpdateParameters') params = StorageAccountUpdateParameters(network_rule_set=rules) return client.update(resource_group_name, account_name, params) def create_management_policies(client, resource_group_name, account_name, policy=None): if policy: if os.path.exists(policy): policy = get_file_json(policy) else: policy = shell_safe_json_parse(policy) return client.create_or_update(resource_group_name, account_name, policy=policy) def update_management_policies(client, resource_group_name, account_name, parameters=None): if parameters: parameters = parameters.policy return client.create_or_update(resource_group_name, account_name, policy=parameters)
59.017964
164
0.674006
ae5041504f1564f14d2f8772091b64cf5ef5e8fb
1,844
py
Python
parsers/xilinx/virtex_six.py
bradysalz/fpga-pin-trends
19c489a1f14233f4f739a2b8a4a64bfca69c5807
[ "MIT" ]
null
null
null
parsers/xilinx/virtex_six.py
bradysalz/fpga-pin-trends
19c489a1f14233f4f739a2b8a4a64bfca69c5807
[ "MIT" ]
null
null
null
parsers/xilinx/virtex_six.py
bradysalz/fpga-pin-trends
19c489a1f14233f4f739a2b8a4a64bfca69c5807
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import csv from pathlib import Path from typing import Dict, List import toml from db.pin import Pin def _pin_type_cleanup(ptype: str) -> str: if 'VCC' in ptype: return 'VCC' if 'GND' in ptype: return 'GND' if 'IO' in ptype: return 'IO' return ptype def parse_xilinx_virtex_six(filepath: Path, config: Dict) -> List[Pin]: """Parse a Xilinx Virtex-6 pinout to a Pin list. Args: fname: filename as a string config: dictionary from loaded configuration TOML file Returns: Pin list of parsed data """ part_name = filepath.stem[:-3].upper() year = config['year'] node = config['node'] manufacturer = config['manufacturer'] family = config['family'] pins = [] with open(filepath, 'r') as f: reader = csv.reader(f, delimiter='\t') _, _, _, _, *data, _, _ = reader # removes junk rows for row in data: if len(row) == 0 or row[0] == '': continue pin_id = row[0] if len(row) == 2: pin_name = row[1] else: pin_name = row[2] pin_type = _pin_type_cleanup(pin_name) new_pin = Pin( year, node, manufacturer, family, part_name, pin_name, pin_id, pin_type, ) pins.append(new_pin) return pins if __name__ == '__main__': with open('data/xilinx/virtex_six/overview.toml', 'r') as f: config = toml.load(f) x = parse_xilinx_virtex_six( Path('data/xilinx/virtex_six/6vlx760ff1760pkg.txt'), config, ) for y in x: print(y.as_dict()) # print([y.as_dict() for y in x])
22.765432
71
0.527657
aaf35ee37c5ccca597620f9f4613cdba71f8d645
110,409
py
Python
django/db/models/sql/query.py
zeth/django
547656c85027eda85a24edcab907022ce313f772
[ "BSD-3-Clause", "0BSD" ]
null
null
null
django/db/models/sql/query.py
zeth/django
547656c85027eda85a24edcab907022ce313f772
[ "BSD-3-Clause", "0BSD" ]
null
null
null
django/db/models/sql/query.py
zeth/django
547656c85027eda85a24edcab907022ce313f772
[ "BSD-3-Clause", "0BSD" ]
null
null
null
""" Create SQL statements for QuerySets. The code in here encapsulates all of the SQL construction so that QuerySets themselves do not have to (and could be backed by things other than SQL databases). The abstraction barrier only works one way: this module has to know all about the internals of models in order to get the information it needs. """ import copy import difflib import functools import sys from collections import Counter, namedtuple from collections.abc import Iterator, Mapping from itertools import chain, count, product from string import ascii_uppercase from django.core.exceptions import FieldDoesNotExist, FieldError from django.db import DEFAULT_DB_ALIAS, NotSupportedError, connections from django.db.models.aggregates import Count from django.db.models.constants import LOOKUP_SEP from django.db.models.expressions import ( BaseExpression, Col, Exists, F, OuterRef, Ref, ResolvedOuterRef, ) from django.db.models.fields import Field from django.db.models.fields.related_lookups import MultiColSource from django.db.models.lookups import Lookup from django.db.models.query_utils import ( Q, check_rel_lookup_compatibility, refs_expression, ) from django.db.models.sql.constants import INNER, LOUTER, ORDER_DIR, SINGLE from django.db.models.sql.datastructures import ( BaseTable, Empty, Join, MultiJoin, ) from django.db.models.sql.where import ( AND, OR, ExtraWhere, NothingNode, WhereNode, ) from django.utils.functional import cached_property from django.utils.tree import Node __all__ = ['Query', 'RawQuery'] def get_field_names_from_opts(opts): return set(chain.from_iterable( (f.name, f.attname) if f.concrete else (f.name,) for f in opts.get_fields() )) def get_children_from_q(q): for child in q.children: if isinstance(child, Node): yield from get_children_from_q(child) else: yield child JoinInfo = namedtuple( 'JoinInfo', ('final_field', 'targets', 'opts', 'joins', 'path', 'transform_function') ) class RawQuery: """A single raw SQL query.""" def __init__(self, sql, using, params=()): self.params = params self.sql = sql self.using = using self.cursor = None # Mirror some properties of a normal query so that # the compiler can be used to process results. self.low_mark, self.high_mark = 0, None # Used for offset/limit self.extra_select = {} self.annotation_select = {} def chain(self, using): return self.clone(using) def clone(self, using): return RawQuery(self.sql, using, params=self.params) def get_columns(self): if self.cursor is None: self._execute_query() converter = connections[self.using].introspection.identifier_converter return [converter(column_meta[0]) for column_meta in self.cursor.description] def __iter__(self): # Always execute a new query for a new iterator. # This could be optimized with a cache at the expense of RAM. self._execute_query() if not connections[self.using].features.can_use_chunked_reads: # If the database can't use chunked reads we need to make sure we # evaluate the entire query up front. result = list(self.cursor) else: result = self.cursor return iter(result) def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, self) @property def params_type(self): if self.params is None: return None return dict if isinstance(self.params, Mapping) else tuple def __str__(self): if self.params_type is None: return self.sql return self.sql % self.params_type(self.params) def _execute_query(self): connection = connections[self.using] # Adapt parameters to the database, as much as possible considering # that the target type isn't known. See #17755. params_type = self.params_type adapter = connection.ops.adapt_unknown_value if params_type is tuple: params = tuple(adapter(val) for val in self.params) elif params_type is dict: params = {key: adapter(val) for key, val in self.params.items()} elif params_type is None: params = None else: raise RuntimeError("Unexpected params type: %s" % params_type) self.cursor = connection.cursor() self.cursor.execute(self.sql, params) ExplainInfo = namedtuple('ExplainInfo', ('format', 'options')) class Query(BaseExpression): """A single SQL query.""" alias_prefix = 'T' empty_result_set_value = None subq_aliases = frozenset([alias_prefix]) compiler = 'SQLCompiler' base_table_class = BaseTable join_class = Join def __init__(self, model, alias_cols=True): self.model = model self.alias_refcount = {} # alias_map is the most important data structure regarding joins. # It's used for recording which joins exist in the query and what # types they are. The key is the alias of the joined table (possibly # the table name) and the value is a Join-like object (see # sql.datastructures.Join for more information). self.alias_map = {} # Whether to provide alias to columns during reference resolving. self.alias_cols = alias_cols # Sometimes the query contains references to aliases in outer queries (as # a result of split_exclude). Correct alias quoting needs to know these # aliases too. # Map external tables to whether they are aliased. self.external_aliases = {} self.table_map = {} # Maps table names to list of aliases. self.default_cols = True self.default_ordering = True self.standard_ordering = True self.used_aliases = set() self.filter_is_sticky = False self.subquery = False # SQL-related attributes # Select and related select clauses are expressions to use in the # SELECT clause of the query. # The select is used for cases where we want to set up the select # clause to contain other than default fields (values(), subqueries...) # Note that annotations go to annotations dictionary. self.select = () self.where = WhereNode() # The group_by attribute can have one of the following forms: # - None: no group by at all in the query # - A tuple of expressions: group by (at least) those expressions. # String refs are also allowed for now. # - True: group by all select fields of the model # See compiler.get_group_by() for details. self.group_by = None self.order_by = () self.low_mark, self.high_mark = 0, None # Used for offset/limit self.distinct = False self.distinct_fields = () self.select_for_update = False self.select_for_update_nowait = False self.select_for_update_skip_locked = False self.select_for_update_of = () self.select_for_no_key_update = False self.select_related = False # Arbitrary limit for select_related to prevents infinite recursion. self.max_depth = 5 # Holds the selects defined by a call to values() or values_list() # excluding annotation_select and extra_select. self.values_select = () # SQL annotation-related attributes self.annotations = {} # Maps alias -> Annotation Expression self.annotation_select_mask = None self._annotation_select_cache = None # Set combination attributes self.combinator = None self.combinator_all = False self.combined_queries = () # These are for extensions. The contents are more or less appended # verbatim to the appropriate clause. self.extra = {} # Maps col_alias -> (col_sql, params). self.extra_select_mask = None self._extra_select_cache = None self.extra_tables = () self.extra_order_by = () # A tuple that is a set of model field names and either True, if these # are the fields to defer, or False if these are the only fields to # load. self.deferred_loading = (frozenset(), True) self._filtered_relations = {} self.explain_info = None @property def output_field(self): if len(self.select) == 1: select = self.select[0] return getattr(select, 'target', None) or select.field elif len(self.annotation_select) == 1: return next(iter(self.annotation_select.values())).output_field @property def has_select_fields(self): return bool(self.select or self.annotation_select_mask or self.extra_select_mask) @cached_property def base_table(self): for alias in self.alias_map: return alias def __str__(self): """ Return the query as a string of SQL with the parameter values substituted in (use sql_with_params() to see the unsubstituted string). Parameter values won't necessarily be quoted correctly, since that is done by the database interface at execution time. """ sql, params = self.sql_with_params() return sql % params def sql_with_params(self): """ Return the query as an SQL string and the parameters that will be substituted into the query. """ return self.get_compiler(DEFAULT_DB_ALIAS).as_sql() def __deepcopy__(self, memo): """Limit the amount of work when a Query is deepcopied.""" result = self.clone() memo[id(self)] = result return result def get_compiler(self, using=None, connection=None, elide_empty=True): if using is None and connection is None: raise ValueError("Need either using or connection") if using: connection = connections[using] return connection.ops.compiler(self.compiler)(self, connection, using, elide_empty) def get_meta(self): """ Return the Options instance (the model._meta) from which to start processing. Normally, this is self.model._meta, but it can be changed by subclasses. """ return self.model._meta def clone(self): """ Return a copy of the current Query. A lightweight alternative to to deepcopy(). """ obj = Empty() obj.__class__ = self.__class__ # Copy references to everything. obj.__dict__ = self.__dict__.copy() # Clone attributes that can't use shallow copy. obj.alias_refcount = self.alias_refcount.copy() obj.alias_map = self.alias_map.copy() obj.external_aliases = self.external_aliases.copy() obj.table_map = self.table_map.copy() obj.where = self.where.clone() obj.annotations = self.annotations.copy() if self.annotation_select_mask is not None: obj.annotation_select_mask = self.annotation_select_mask.copy() if self.combined_queries: obj.combined_queries = tuple([ query.clone() for query in self.combined_queries ]) # _annotation_select_cache cannot be copied, as doing so breaks the # (necessary) state in which both annotations and # _annotation_select_cache point to the same underlying objects. # It will get re-populated in the cloned queryset the next time it's # used. obj._annotation_select_cache = None obj.extra = self.extra.copy() if self.extra_select_mask is not None: obj.extra_select_mask = self.extra_select_mask.copy() if self._extra_select_cache is not None: obj._extra_select_cache = self._extra_select_cache.copy() if self.select_related is not False: # Use deepcopy because select_related stores fields in nested # dicts. obj.select_related = copy.deepcopy(obj.select_related) if 'subq_aliases' in self.__dict__: obj.subq_aliases = self.subq_aliases.copy() obj.used_aliases = self.used_aliases.copy() obj._filtered_relations = self._filtered_relations.copy() # Clear the cached_property try: del obj.base_table except AttributeError: pass return obj def chain(self, klass=None): """ Return a copy of the current Query that's ready for another operation. The klass argument changes the type of the Query, e.g. UpdateQuery. """ obj = self.clone() if klass and obj.__class__ != klass: obj.__class__ = klass if not obj.filter_is_sticky: obj.used_aliases = set() obj.filter_is_sticky = False if hasattr(obj, '_setup_query'): obj._setup_query() return obj def relabeled_clone(self, change_map): clone = self.clone() clone.change_aliases(change_map) return clone def _get_col(self, target, field, alias): if not self.alias_cols: alias = None return target.get_col(alias, field) def rewrite_cols(self, annotation, col_cnt): # We must make sure the inner query has the referred columns in it. # If we are aggregating over an annotation, then Django uses Ref() # instances to note this. However, if we are annotating over a column # of a related model, then it might be that column isn't part of the # SELECT clause of the inner query, and we must manually make sure # the column is selected. An example case is: # .aggregate(Sum('author__awards')) # Resolving this expression results in a join to author, but there # is no guarantee the awards column of author is in the select clause # of the query. Thus we must manually add the column to the inner # query. orig_exprs = annotation.get_source_expressions() new_exprs = [] for expr in orig_exprs: # FIXME: These conditions are fairly arbitrary. Identify a better # method of having expressions decide which code path they should # take. if isinstance(expr, Ref): # Its already a Ref to subquery (see resolve_ref() for # details) new_exprs.append(expr) elif isinstance(expr, (WhereNode, Lookup)): # Decompose the subexpressions further. The code here is # copied from the else clause, but this condition must appear # before the contains_aggregate/is_summary condition below. new_expr, col_cnt = self.rewrite_cols(expr, col_cnt) new_exprs.append(new_expr) else: # Reuse aliases of expressions already selected in subquery. for col_alias, selected_annotation in self.annotation_select.items(): if selected_annotation is expr: new_expr = Ref(col_alias, expr) break else: # An expression that is not selected the subquery. if isinstance(expr, Col) or (expr.contains_aggregate and not expr.is_summary): # Reference column or another aggregate. Select it # under a non-conflicting alias. col_cnt += 1 col_alias = '__col%d' % col_cnt self.annotations[col_alias] = expr self.append_annotation_mask([col_alias]) new_expr = Ref(col_alias, expr) else: # Some other expression not referencing database values # directly. Its subexpression might contain Cols. new_expr, col_cnt = self.rewrite_cols(expr, col_cnt) new_exprs.append(new_expr) annotation.set_source_expressions(new_exprs) return annotation, col_cnt def get_aggregation(self, using, added_aggregate_names): """ Return the dictionary with the values of the existing aggregations. """ if not self.annotation_select: return {} existing_annotations = [ annotation for alias, annotation in self.annotations.items() if alias not in added_aggregate_names ] # Decide if we need to use a subquery. # # Existing annotations would cause incorrect results as get_aggregation() # must produce just one result and thus must not use GROUP BY. But we # aren't smart enough to remove the existing annotations from the # query, so those would force us to use GROUP BY. # # If the query has limit or distinct, or uses set operations, then # those operations must be done in a subquery so that the query # aggregates on the limit and/or distinct results instead of applying # the distinct and limit after the aggregation. if (isinstance(self.group_by, tuple) or self.is_sliced or existing_annotations or self.distinct or self.combinator): from django.db.models.sql.subqueries import AggregateQuery inner_query = self.clone() inner_query.subquery = True outer_query = AggregateQuery(self.model, inner_query) inner_query.select_for_update = False inner_query.select_related = False inner_query.set_annotation_mask(self.annotation_select) # Queries with distinct_fields need ordering and when a limit is # applied we must take the slice from the ordered query. Otherwise # no need for ordering. inner_query.clear_ordering(force=False) if not inner_query.distinct: # If the inner query uses default select and it has some # aggregate annotations, then we must make sure the inner # query is grouped by the main model's primary key. However, # clearing the select clause can alter results if distinct is # used. has_existing_aggregate_annotations = any( annotation for annotation in existing_annotations if getattr(annotation, 'contains_aggregate', True) ) if inner_query.default_cols and has_existing_aggregate_annotations: inner_query.group_by = (self.model._meta.pk.get_col(inner_query.get_initial_alias()),) inner_query.default_cols = False relabels = {t: 'subquery' for t in inner_query.alias_map} relabels[None] = 'subquery' # Remove any aggregates marked for reduction from the subquery # and move them to the outer AggregateQuery. col_cnt = 0 for alias, expression in list(inner_query.annotation_select.items()): annotation_select_mask = inner_query.annotation_select_mask if expression.is_summary: expression, col_cnt = inner_query.rewrite_cols(expression, col_cnt) outer_query.annotations[alias] = expression.relabeled_clone(relabels) del inner_query.annotations[alias] annotation_select_mask.remove(alias) # Make sure the annotation_select wont use cached results. inner_query.set_annotation_mask(inner_query.annotation_select_mask) if inner_query.select == () and not inner_query.default_cols and not inner_query.annotation_select_mask: # In case of Model.objects[0:3].count(), there would be no # field selected in the inner query, yet we must use a subquery. # So, make sure at least one field is selected. inner_query.select = (self.model._meta.pk.get_col(inner_query.get_initial_alias()),) else: outer_query = self self.select = () self.default_cols = False self.extra = {} empty_set_result = [ expression.empty_result_set_value for expression in outer_query.annotation_select.values() ] elide_empty = not any(result is NotImplemented for result in empty_set_result) outer_query.clear_ordering(force=True) outer_query.clear_limits() outer_query.select_for_update = False outer_query.select_related = False compiler = outer_query.get_compiler(using, elide_empty=elide_empty) result = compiler.execute_sql(SINGLE) if result is None: result = empty_set_result converters = compiler.get_converters(outer_query.annotation_select.values()) result = next(compiler.apply_converters((result,), converters)) return dict(zip(outer_query.annotation_select, result)) def get_count(self, using): """ Perform a COUNT() query using the current filter constraints. """ obj = self.clone() obj.add_annotation(Count('*'), alias='__count', is_summary=True) return obj.get_aggregation(using, ['__count'])['__count'] def has_filters(self): return self.where def exists(self, using, limit=True): q = self.clone() if not q.distinct: if q.group_by is True: q.add_fields((f.attname for f in self.model._meta.concrete_fields), False) # Disable GROUP BY aliases to avoid orphaning references to the # SELECT clause which is about to be cleared. q.set_group_by(allow_aliases=False) q.clear_select_clause() if q.combined_queries and q.combinator == 'union': limit_combined = connections[using].features.supports_slicing_ordering_in_compound q.combined_queries = tuple( combined_query.exists(using, limit=limit_combined) for combined_query in q.combined_queries ) q.clear_ordering(force=True) if limit: q.set_limits(high=1) q.add_extra({'a': 1}, None, None, None, None, None) q.set_extra_mask(['a']) return q def has_results(self, using): q = self.exists(using) compiler = q.get_compiler(using=using) return compiler.has_results() def explain(self, using, format=None, **options): q = self.clone() q.explain_info = ExplainInfo(format, options) compiler = q.get_compiler(using=using) return '\n'.join(compiler.explain_query()) def combine(self, rhs, connector): """ Merge the 'rhs' query into the current one (with any 'rhs' effects being applied *after* (that is, "to the right of") anything in the current query. 'rhs' is not modified during a call to this function. The 'connector' parameter describes how to connect filters from the 'rhs' query. """ if self.model != rhs.model: raise TypeError('Cannot combine queries on two different base models.') if self.is_sliced: raise TypeError('Cannot combine queries once a slice has been taken.') if self.distinct != rhs.distinct: raise TypeError('Cannot combine a unique query with a non-unique query.') if self.distinct_fields != rhs.distinct_fields: raise TypeError('Cannot combine queries with different distinct fields.') # Work out how to relabel the rhs aliases, if necessary. change_map = {} conjunction = (connector == AND) # Determine which existing joins can be reused. When combining the # query with AND we must recreate all joins for m2m filters. When # combining with OR we can reuse joins. The reason is that in AND # case a single row can't fulfill a condition like: # revrel__col=1 & revrel__col=2 # But, there might be two different related rows matching this # condition. In OR case a single True is enough, so single row is # enough, too. # # Note that we will be creating duplicate joins for non-m2m joins in # the AND case. The results will be correct but this creates too many # joins. This is something that could be fixed later on. reuse = set() if conjunction else set(self.alias_map) # Base table must be present in the query - this is the same # table on both sides. self.get_initial_alias() joinpromoter = JoinPromoter(connector, 2, False) joinpromoter.add_votes( j for j in self.alias_map if self.alias_map[j].join_type == INNER) rhs_votes = set() # Now, add the joins from rhs query into the new query (skipping base # table). rhs_tables = list(rhs.alias_map)[1:] for alias in rhs_tables: join = rhs.alias_map[alias] # If the left side of the join was already relabeled, use the # updated alias. join = join.relabeled_clone(change_map) new_alias = self.join(join, reuse=reuse) if join.join_type == INNER: rhs_votes.add(new_alias) # We can't reuse the same join again in the query. If we have two # distinct joins for the same connection in rhs query, then the # combined query must have two joins, too. reuse.discard(new_alias) if alias != new_alias: change_map[alias] = new_alias if not rhs.alias_refcount[alias]: # The alias was unused in the rhs query. Unref it so that it # will be unused in the new query, too. We have to add and # unref the alias so that join promotion has information of # the join type for the unused alias. self.unref_alias(new_alias) joinpromoter.add_votes(rhs_votes) joinpromoter.update_join_types(self) # Combine subqueries aliases to ensure aliases relabelling properly # handle subqueries when combining where and select clauses. self.subq_aliases |= rhs.subq_aliases # Now relabel a copy of the rhs where-clause and add it to the current # one. w = rhs.where.clone() w.relabel_aliases(change_map) self.where.add(w, connector) # Selection columns and extra extensions are those provided by 'rhs'. if rhs.select: self.set_select([col.relabeled_clone(change_map) for col in rhs.select]) else: self.select = () if connector == OR: # It would be nice to be able to handle this, but the queries don't # really make sense (or return consistent value sets). Not worth # the extra complexity when you can write a real query instead. if self.extra and rhs.extra: raise ValueError("When merging querysets using 'or', you cannot have extra(select=...) on both sides.") self.extra.update(rhs.extra) extra_select_mask = set() if self.extra_select_mask is not None: extra_select_mask.update(self.extra_select_mask) if rhs.extra_select_mask is not None: extra_select_mask.update(rhs.extra_select_mask) if extra_select_mask: self.set_extra_mask(extra_select_mask) self.extra_tables += rhs.extra_tables # Ordering uses the 'rhs' ordering, unless it has none, in which case # the current ordering is used. self.order_by = rhs.order_by or self.order_by self.extra_order_by = rhs.extra_order_by or self.extra_order_by def deferred_to_data(self, target, callback): """ Convert the self.deferred_loading data structure to an alternate data structure, describing the field that *will* be loaded. This is used to compute the columns to select from the database and also by the QuerySet class to work out which fields are being initialized on each model. Models that have all their fields included aren't mentioned in the result, only those that have field restrictions in place. The "target" parameter is the instance that is populated (in place). The "callback" is a function that is called whenever a (model, field) pair need to be added to "target". It accepts three parameters: "target", and the model and list of fields being added for that model. """ field_names, defer = self.deferred_loading if not field_names: return orig_opts = self.get_meta() seen = {} must_include = {orig_opts.concrete_model: {orig_opts.pk}} for field_name in field_names: parts = field_name.split(LOOKUP_SEP) cur_model = self.model._meta.concrete_model opts = orig_opts for name in parts[:-1]: old_model = cur_model if name in self._filtered_relations: name = self._filtered_relations[name].relation_name source = opts.get_field(name) if is_reverse_o2o(source): cur_model = source.related_model else: cur_model = source.remote_field.model opts = cur_model._meta # Even if we're "just passing through" this model, we must add # both the current model's pk and the related reference field # (if it's not a reverse relation) to the things we select. if not is_reverse_o2o(source): must_include[old_model].add(source) add_to_dict(must_include, cur_model, opts.pk) field = opts.get_field(parts[-1]) is_reverse_object = field.auto_created and not field.concrete model = field.related_model if is_reverse_object else field.model model = model._meta.concrete_model if model == opts.model: model = cur_model if not is_reverse_o2o(field): add_to_dict(seen, model, field) if defer: # We need to load all fields for each model, except those that # appear in "seen" (for all models that appear in "seen"). The only # slight complexity here is handling fields that exist on parent # models. workset = {} for model, values in seen.items(): for field in model._meta.local_fields: if field not in values: m = field.model._meta.concrete_model add_to_dict(workset, m, field) for model, values in must_include.items(): # If we haven't included a model in workset, we don't add the # corresponding must_include fields for that model, since an # empty set means "include all fields". That's why there's no # "else" branch here. if model in workset: workset[model].update(values) for model, values in workset.items(): callback(target, model, values) else: for model, values in must_include.items(): if model in seen: seen[model].update(values) else: # As we've passed through this model, but not explicitly # included any fields, we have to make sure it's mentioned # so that only the "must include" fields are pulled in. seen[model] = values # Now ensure that every model in the inheritance chain is mentioned # in the parent list. Again, it must be mentioned to ensure that # only "must include" fields are pulled in. for model in orig_opts.get_parent_list(): seen.setdefault(model, set()) for model, values in seen.items(): callback(target, model, values) def table_alias(self, table_name, create=False, filtered_relation=None): """ Return a table alias for the given table_name and whether this is a new alias or not. If 'create' is true, a new alias is always created. Otherwise, the most recently created alias for the table (if one exists) is reused. """ alias_list = self.table_map.get(table_name) if not create and alias_list: alias = alias_list[0] self.alias_refcount[alias] += 1 return alias, False # Create a new alias for this table. if alias_list: alias = '%s%d' % (self.alias_prefix, len(self.alias_map) + 1) alias_list.append(alias) else: # The first occurrence of a table uses the table name directly. alias = filtered_relation.alias if filtered_relation is not None else table_name self.table_map[table_name] = [alias] self.alias_refcount[alias] = 1 return alias, True def ref_alias(self, alias): """Increases the reference count for this alias.""" self.alias_refcount[alias] += 1 def unref_alias(self, alias, amount=1): """Decreases the reference count for this alias.""" self.alias_refcount[alias] -= amount def promote_joins(self, aliases): """ Promote recursively the join type of given aliases and its children to an outer join. If 'unconditional' is False, only promote the join if it is nullable or the parent join is an outer join. The children promotion is done to avoid join chains that contain a LOUTER b INNER c. So, if we have currently a INNER b INNER c and a->b is promoted, then we must also promote b->c automatically, or otherwise the promotion of a->b doesn't actually change anything in the query results. """ aliases = list(aliases) while aliases: alias = aliases.pop(0) if self.alias_map[alias].join_type is None: # This is the base table (first FROM entry) - this table # isn't really joined at all in the query, so we should not # alter its join type. continue # Only the first alias (skipped above) should have None join_type assert self.alias_map[alias].join_type is not None parent_alias = self.alias_map[alias].parent_alias parent_louter = parent_alias and self.alias_map[parent_alias].join_type == LOUTER already_louter = self.alias_map[alias].join_type == LOUTER if ((self.alias_map[alias].nullable or parent_louter) and not already_louter): self.alias_map[alias] = self.alias_map[alias].promote() # Join type of 'alias' changed, so re-examine all aliases that # refer to this one. aliases.extend( join for join in self.alias_map if self.alias_map[join].parent_alias == alias and join not in aliases ) def demote_joins(self, aliases): """ Change join type from LOUTER to INNER for all joins in aliases. Similarly to promote_joins(), this method must ensure no join chains containing first an outer, then an inner join are generated. If we are demoting b->c join in chain a LOUTER b LOUTER c then we must demote a->b automatically, or otherwise the demotion of b->c doesn't actually change anything in the query results. . """ aliases = list(aliases) while aliases: alias = aliases.pop(0) if self.alias_map[alias].join_type == LOUTER: self.alias_map[alias] = self.alias_map[alias].demote() parent_alias = self.alias_map[alias].parent_alias if self.alias_map[parent_alias].join_type == INNER: aliases.append(parent_alias) def reset_refcounts(self, to_counts): """ Reset reference counts for aliases so that they match the value passed in `to_counts`. """ for alias, cur_refcount in self.alias_refcount.copy().items(): unref_amount = cur_refcount - to_counts.get(alias, 0) self.unref_alias(alias, unref_amount) def change_aliases(self, change_map): """ Change the aliases in change_map (which maps old-alias -> new-alias), relabelling any references to them in select columns and the where clause. """ assert set(change_map).isdisjoint(change_map.values()) # 1. Update references in "select" (normal columns plus aliases), # "group by" and "where". self.where.relabel_aliases(change_map) if isinstance(self.group_by, tuple): self.group_by = tuple([col.relabeled_clone(change_map) for col in self.group_by]) self.select = tuple([col.relabeled_clone(change_map) for col in self.select]) self.annotations = self.annotations and { key: col.relabeled_clone(change_map) for key, col in self.annotations.items() } # 2. Rename the alias in the internal table/alias datastructures. for old_alias, new_alias in change_map.items(): if old_alias not in self.alias_map: continue alias_data = self.alias_map[old_alias].relabeled_clone(change_map) self.alias_map[new_alias] = alias_data self.alias_refcount[new_alias] = self.alias_refcount[old_alias] del self.alias_refcount[old_alias] del self.alias_map[old_alias] table_aliases = self.table_map[alias_data.table_name] for pos, alias in enumerate(table_aliases): if alias == old_alias: table_aliases[pos] = new_alias break self.external_aliases = { # Table is aliased or it's being changed and thus is aliased. change_map.get(alias, alias): (aliased or alias in change_map) for alias, aliased in self.external_aliases.items() } def bump_prefix(self, outer_query): """ Change the alias prefix to the next letter in the alphabet in a way that the outer query's aliases and this query's aliases will not conflict. Even tables that previously had no alias will get an alias after this call. """ def prefix_gen(): """ Generate a sequence of characters in alphabetical order: -> 'A', 'B', 'C', ... When the alphabet is finished, the sequence will continue with the Cartesian product: -> 'AA', 'AB', 'AC', ... """ alphabet = ascii_uppercase prefix = chr(ord(self.alias_prefix) + 1) yield prefix for n in count(1): seq = alphabet[alphabet.index(prefix):] if prefix else alphabet for s in product(seq, repeat=n): yield ''.join(s) prefix = None if self.alias_prefix != outer_query.alias_prefix: # No clashes between self and outer query should be possible. return # Explicitly avoid infinite loop. The constant divider is based on how # much depth recursive subquery references add to the stack. This value # might need to be adjusted when adding or removing function calls from # the code path in charge of performing these operations. local_recursion_limit = sys.getrecursionlimit() // 16 for pos, prefix in enumerate(prefix_gen()): if prefix not in self.subq_aliases: self.alias_prefix = prefix break if pos > local_recursion_limit: raise RecursionError( 'Maximum recursion depth exceeded: too many subqueries.' ) self.subq_aliases = self.subq_aliases.union([self.alias_prefix]) outer_query.subq_aliases = outer_query.subq_aliases.union(self.subq_aliases) self.change_aliases({ alias: '%s%d' % (self.alias_prefix, pos) for pos, alias in enumerate(self.alias_map) }) def get_initial_alias(self): """ Return the first alias for this query, after increasing its reference count. """ if self.alias_map: alias = self.base_table self.ref_alias(alias) else: alias = self.join(self.base_table_class(self.get_meta().db_table, None)) return alias def count_active_tables(self): """ Return the number of tables in this query with a non-zero reference count. After execution, the reference counts are zeroed, so tables added in compiler will not be seen by this method. """ return len([1 for count in self.alias_refcount.values() if count]) def join(self, join, reuse=None): """ Return an alias for the 'join', either reusing an existing alias for that join or creating a new one. 'join' is either a base_table_class or join_class. The 'reuse' parameter can be either None which means all joins are reusable, or it can be a set containing the aliases that can be reused. A join is always created as LOUTER if the lhs alias is LOUTER to make sure chains like t1 LOUTER t2 INNER t3 aren't generated. All new joins are created as LOUTER if the join is nullable. """ reuse_aliases = [ a for a, j in self.alias_map.items() if (reuse is None or a in reuse) and j.equals(join) ] if reuse_aliases: if join.table_alias in reuse_aliases: reuse_alias = join.table_alias else: # Reuse the most recent alias of the joined table # (a many-to-many relation may be joined multiple times). reuse_alias = reuse_aliases[-1] self.ref_alias(reuse_alias) return reuse_alias # No reuse is possible, so we need a new alias. alias, _ = self.table_alias(join.table_name, create=True, filtered_relation=join.filtered_relation) if join.join_type: if self.alias_map[join.parent_alias].join_type == LOUTER or join.nullable: join_type = LOUTER else: join_type = INNER join.join_type = join_type join.table_alias = alias self.alias_map[alias] = join return alias def join_parent_model(self, opts, model, alias, seen): """ Make sure the given 'model' is joined in the query. If 'model' isn't a parent of 'opts' or if it is None this method is a no-op. The 'alias' is the root alias for starting the join, 'seen' is a dict of model -> alias of existing joins. It must also contain a mapping of None -> some alias. This will be returned in the no-op case. """ if model in seen: return seen[model] chain = opts.get_base_chain(model) if not chain: return alias curr_opts = opts for int_model in chain: if int_model in seen: curr_opts = int_model._meta alias = seen[int_model] continue # Proxy model have elements in base chain # with no parents, assign the new options # object and skip to the next base in that # case if not curr_opts.parents[int_model]: curr_opts = int_model._meta continue link_field = curr_opts.get_ancestor_link(int_model) join_info = self.setup_joins([link_field.name], curr_opts, alias) curr_opts = int_model._meta alias = seen[int_model] = join_info.joins[-1] return alias or seen[None] def add_annotation(self, annotation, alias, is_summary=False, select=True): """Add a single annotation expression to the Query.""" annotation = annotation.resolve_expression(self, allow_joins=True, reuse=None, summarize=is_summary) if select: self.append_annotation_mask([alias]) else: self.set_annotation_mask(set(self.annotation_select).difference({alias})) self.annotations[alias] = annotation def resolve_expression(self, query, *args, **kwargs): clone = self.clone() # Subqueries need to use a different set of aliases than the outer query. clone.bump_prefix(query) clone.subquery = True clone.where.resolve_expression(query, *args, **kwargs) for key, value in clone.annotations.items(): resolved = value.resolve_expression(query, *args, **kwargs) if hasattr(resolved, 'external_aliases'): resolved.external_aliases.update(clone.external_aliases) clone.annotations[key] = resolved # Outer query's aliases are considered external. for alias, table in query.alias_map.items(): clone.external_aliases[alias] = ( (isinstance(table, Join) and table.join_field.related_model._meta.db_table != alias) or (isinstance(table, BaseTable) and table.table_name != table.table_alias) ) return clone def get_external_cols(self): exprs = chain(self.annotations.values(), self.where.children) return [ col for col in self._gen_cols(exprs, include_external=True) if col.alias in self.external_aliases ] def get_group_by_cols(self, alias=None): if alias: return [Ref(alias, self)] external_cols = self.get_external_cols() if any(col.possibly_multivalued for col in external_cols): return [self] return external_cols def as_sql(self, compiler, connection): # Some backends (e.g. Oracle) raise an error when a subquery contains # unnecessary ORDER BY clause. if ( self.subquery and not connection.features.ignores_unnecessary_order_by_in_subqueries ): self.clear_ordering(force=False) sql, params = self.get_compiler(connection=connection).as_sql() if self.subquery: sql = '(%s)' % sql return sql, params def resolve_lookup_value(self, value, can_reuse, allow_joins): if hasattr(value, 'resolve_expression'): value = value.resolve_expression( self, reuse=can_reuse, allow_joins=allow_joins, ) elif isinstance(value, (list, tuple)): # The items of the iterable may be expressions and therefore need # to be resolved independently. values = ( self.resolve_lookup_value(sub_value, can_reuse, allow_joins) for sub_value in value ) type_ = type(value) if hasattr(type_, '_make'): # namedtuple return type_(*values) return type_(values) return value def solve_lookup_type(self, lookup): """ Solve the lookup type from the lookup (e.g.: 'foobar__id__icontains'). """ lookup_splitted = lookup.split(LOOKUP_SEP) if self.annotations: expression, expression_lookups = refs_expression(lookup_splitted, self.annotations) if expression: return expression_lookups, (), expression _, field, _, lookup_parts = self.names_to_path(lookup_splitted, self.get_meta()) field_parts = lookup_splitted[0:len(lookup_splitted) - len(lookup_parts)] if len(lookup_parts) > 1 and not field_parts: raise FieldError( 'Invalid lookup "%s" for model %s".' % (lookup, self.get_meta().model.__name__) ) return lookup_parts, field_parts, False def check_query_object_type(self, value, opts, field): """ Check whether the object passed while querying is of the correct type. If not, raise a ValueError specifying the wrong object. """ if hasattr(value, '_meta'): if not check_rel_lookup_compatibility(value._meta.model, opts, field): raise ValueError( 'Cannot query "%s": Must be "%s" instance.' % (value, opts.object_name)) def check_related_objects(self, field, value, opts): """Check the type of object passed to query relations.""" if field.is_relation: # Check that the field and the queryset use the same model in a # query like .filter(author=Author.objects.all()). For example, the # opts would be Author's (from the author field) and value.model # would be Author.objects.all() queryset's .model (Author also). # The field is the related field on the lhs side. if (isinstance(value, Query) and not value.has_select_fields and not check_rel_lookup_compatibility(value.model, opts, field)): raise ValueError( 'Cannot use QuerySet for "%s": Use a QuerySet for "%s".' % (value.model._meta.object_name, opts.object_name) ) elif hasattr(value, '_meta'): self.check_query_object_type(value, opts, field) elif hasattr(value, '__iter__'): for v in value: self.check_query_object_type(v, opts, field) def check_filterable(self, expression): """Raise an error if expression cannot be used in a WHERE clause.""" if ( hasattr(expression, 'resolve_expression') and not getattr(expression, 'filterable', True) ): raise NotSupportedError( expression.__class__.__name__ + ' is disallowed in the filter ' 'clause.' ) if hasattr(expression, 'get_source_expressions'): for expr in expression.get_source_expressions(): self.check_filterable(expr) def build_lookup(self, lookups, lhs, rhs): """ Try to extract transforms and lookup from given lhs. The lhs value is something that works like SQLExpression. The rhs value is what the lookup is going to compare against. The lookups is a list of names to extract using get_lookup() and get_transform(). """ # __exact is the default lookup if one isn't given. *transforms, lookup_name = lookups or ['exact'] for name in transforms: lhs = self.try_transform(lhs, name) # First try get_lookup() so that the lookup takes precedence if the lhs # supports both transform and lookup for the name. lookup_class = lhs.get_lookup(lookup_name) if not lookup_class: if lhs.field.is_relation: raise FieldError('Related Field got invalid lookup: {}'.format(lookup_name)) # A lookup wasn't found. Try to interpret the name as a transform # and do an Exact lookup against it. lhs = self.try_transform(lhs, lookup_name) lookup_name = 'exact' lookup_class = lhs.get_lookup(lookup_name) if not lookup_class: return lookup = lookup_class(lhs, rhs) # Interpret '__exact=None' as the sql 'is NULL'; otherwise, reject all # uses of None as a query value unless the lookup supports it. if lookup.rhs is None and not lookup.can_use_none_as_rhs: if lookup_name not in ('exact', 'iexact'): raise ValueError("Cannot use None as a query value") return lhs.get_lookup('isnull')(lhs, True) # For Oracle '' is equivalent to null. The check must be done at this # stage because join promotion can't be done in the compiler. Using # DEFAULT_DB_ALIAS isn't nice but it's the best that can be done here. # A similar thing is done in is_nullable(), too. if ( lookup_name == 'exact' and lookup.rhs == '' and connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls ): return lhs.get_lookup('isnull')(lhs, True) return lookup def try_transform(self, lhs, name): """ Helper method for build_lookup(). Try to fetch and initialize a transform for name parameter from lhs. """ transform_class = lhs.get_transform(name) if transform_class: return transform_class(lhs) else: output_field = lhs.output_field.__class__ suggested_lookups = difflib.get_close_matches(name, output_field.get_lookups()) if suggested_lookups: suggestion = ', perhaps you meant %s?' % ' or '.join(suggested_lookups) else: suggestion = '.' raise FieldError( "Unsupported lookup '%s' for %s or join on the field not " "permitted%s" % (name, output_field.__name__, suggestion) ) def build_filter(self, filter_expr, branch_negated=False, current_negated=False, can_reuse=None, allow_joins=True, split_subq=True, check_filterable=True): """ Build a WhereNode for a single filter clause but don't add it to this Query. Query.add_q() will then add this filter to the where Node. The 'branch_negated' tells us if the current branch contains any negations. This will be used to determine if subqueries are needed. The 'current_negated' is used to determine if the current filter is negated or not and this will be used to determine if IS NULL filtering is needed. The difference between current_negated and branch_negated is that branch_negated is set on first negation, but current_negated is flipped for each negation. Note that add_filter will not do any negating itself, that is done upper in the code by add_q(). The 'can_reuse' is a set of reusable joins for multijoins. The method will create a filter clause that can be added to the current query. However, if the filter isn't added to the query then the caller is responsible for unreffing the joins used. """ if isinstance(filter_expr, dict): raise FieldError("Cannot parse keyword query as dict") if isinstance(filter_expr, Q): return self._add_q( filter_expr, branch_negated=branch_negated, current_negated=current_negated, used_aliases=can_reuse, allow_joins=allow_joins, split_subq=split_subq, check_filterable=check_filterable, ) if hasattr(filter_expr, 'resolve_expression'): if not getattr(filter_expr, 'conditional', False): raise TypeError('Cannot filter against a non-conditional expression.') condition = filter_expr.resolve_expression(self, allow_joins=allow_joins) if not isinstance(condition, Lookup): condition = self.build_lookup(['exact'], condition, True) return WhereNode([condition], connector=AND), [] arg, value = filter_expr if not arg: raise FieldError("Cannot parse keyword query %r" % arg) lookups, parts, reffed_expression = self.solve_lookup_type(arg) if check_filterable: self.check_filterable(reffed_expression) if not allow_joins and len(parts) > 1: raise FieldError("Joined field references are not permitted in this query") pre_joins = self.alias_refcount.copy() value = self.resolve_lookup_value(value, can_reuse, allow_joins) used_joins = {k for k, v in self.alias_refcount.items() if v > pre_joins.get(k, 0)} if check_filterable: self.check_filterable(value) if reffed_expression: condition = self.build_lookup(lookups, reffed_expression, value) return WhereNode([condition], connector=AND), [] opts = self.get_meta() alias = self.get_initial_alias() allow_many = not branch_negated or not split_subq try: join_info = self.setup_joins( parts, opts, alias, can_reuse=can_reuse, allow_many=allow_many, ) # Prevent iterator from being consumed by check_related_objects() if isinstance(value, Iterator): value = list(value) self.check_related_objects(join_info.final_field, value, join_info.opts) # split_exclude() needs to know which joins were generated for the # lookup parts self._lookup_joins = join_info.joins except MultiJoin as e: return self.split_exclude(filter_expr, can_reuse, e.names_with_path) # Update used_joins before trimming since they are reused to determine # which joins could be later promoted to INNER. used_joins.update(join_info.joins) targets, alias, join_list = self.trim_joins(join_info.targets, join_info.joins, join_info.path) if can_reuse is not None: can_reuse.update(join_list) if join_info.final_field.is_relation: # No support for transforms for relational fields num_lookups = len(lookups) if num_lookups > 1: raise FieldError('Related Field got invalid lookup: {}'.format(lookups[0])) if len(targets) == 1: col = self._get_col(targets[0], join_info.final_field, alias) else: col = MultiColSource(alias, targets, join_info.targets, join_info.final_field) else: col = self._get_col(targets[0], join_info.final_field, alias) condition = self.build_lookup(lookups, col, value) lookup_type = condition.lookup_name clause = WhereNode([condition], connector=AND) require_outer = lookup_type == 'isnull' and condition.rhs is True and not current_negated if current_negated and (lookup_type != 'isnull' or condition.rhs is False) and condition.rhs is not None: require_outer = True if lookup_type != 'isnull': # The condition added here will be SQL like this: # NOT (col IS NOT NULL), where the first NOT is added in # upper layers of code. The reason for addition is that if col # is null, then col != someval will result in SQL "unknown" # which isn't the same as in Python. The Python None handling # is wanted, and it can be gotten by # (col IS NULL OR col != someval) # <=> # NOT (col IS NOT NULL AND col = someval). if ( self.is_nullable(targets[0]) or self.alias_map[join_list[-1]].join_type == LOUTER ): lookup_class = targets[0].get_lookup('isnull') col = self._get_col(targets[0], join_info.targets[0], alias) clause.add(lookup_class(col, False), AND) # If someval is a nullable column, someval IS NOT NULL is # added. if isinstance(value, Col) and self.is_nullable(value.target): lookup_class = value.target.get_lookup('isnull') clause.add(lookup_class(value, False), AND) return clause, used_joins if not require_outer else () def add_filter(self, filter_lhs, filter_rhs): self.add_q(Q((filter_lhs, filter_rhs))) def add_q(self, q_object): """ A preprocessor for the internal _add_q(). Responsible for doing final join promotion. """ # For join promotion this case is doing an AND for the added q_object # and existing conditions. So, any existing inner join forces the join # type to remain inner. Existing outer joins can however be demoted. # (Consider case where rel_a is LOUTER and rel_a__col=1 is added - if # rel_a doesn't produce any rows, then the whole condition must fail. # So, demotion is OK. existing_inner = {a for a in self.alias_map if self.alias_map[a].join_type == INNER} clause, _ = self._add_q(q_object, self.used_aliases) if clause: self.where.add(clause, AND) self.demote_joins(existing_inner) def build_where(self, filter_expr): return self.build_filter(filter_expr, allow_joins=False)[0] def clear_where(self): self.where = WhereNode() def _add_q(self, q_object, used_aliases, branch_negated=False, current_negated=False, allow_joins=True, split_subq=True, check_filterable=True): """Add a Q-object to the current filter.""" connector = q_object.connector current_negated = current_negated ^ q_object.negated branch_negated = branch_negated or q_object.negated target_clause = WhereNode(connector=connector, negated=q_object.negated) joinpromoter = JoinPromoter(q_object.connector, len(q_object.children), current_negated) for child in q_object.children: child_clause, needed_inner = self.build_filter( child, can_reuse=used_aliases, branch_negated=branch_negated, current_negated=current_negated, allow_joins=allow_joins, split_subq=split_subq, check_filterable=check_filterable, ) joinpromoter.add_votes(needed_inner) if child_clause: target_clause.add(child_clause, connector) needed_inner = joinpromoter.update_join_types(self) return target_clause, needed_inner def build_filtered_relation_q(self, q_object, reuse, branch_negated=False, current_negated=False): """Add a FilteredRelation object to the current filter.""" connector = q_object.connector current_negated ^= q_object.negated branch_negated = branch_negated or q_object.negated target_clause = WhereNode(connector=connector, negated=q_object.negated) for child in q_object.children: if isinstance(child, Node): child_clause = self.build_filtered_relation_q( child, reuse=reuse, branch_negated=branch_negated, current_negated=current_negated, ) else: child_clause, _ = self.build_filter( child, can_reuse=reuse, branch_negated=branch_negated, current_negated=current_negated, allow_joins=True, split_subq=False, ) target_clause.add(child_clause, connector) return target_clause def add_filtered_relation(self, filtered_relation, alias): filtered_relation.alias = alias lookups = dict(get_children_from_q(filtered_relation.condition)) relation_lookup_parts, relation_field_parts, _ = self.solve_lookup_type(filtered_relation.relation_name) if relation_lookup_parts: raise ValueError( "FilteredRelation's relation_name cannot contain lookups " "(got %r)." % filtered_relation.relation_name ) for lookup in chain(lookups): lookup_parts, lookup_field_parts, _ = self.solve_lookup_type(lookup) shift = 2 if not lookup_parts else 1 lookup_field_path = lookup_field_parts[:-shift] for idx, lookup_field_part in enumerate(lookup_field_path): if len(relation_field_parts) > idx: if relation_field_parts[idx] != lookup_field_part: raise ValueError( "FilteredRelation's condition doesn't support " "relations outside the %r (got %r)." % (filtered_relation.relation_name, lookup) ) else: raise ValueError( "FilteredRelation's condition doesn't support nested " "relations deeper than the relation_name (got %r for " "%r)." % (lookup, filtered_relation.relation_name) ) self._filtered_relations[filtered_relation.alias] = filtered_relation def names_to_path(self, names, opts, allow_many=True, fail_on_missing=False): """ Walk the list of names and turns them into PathInfo tuples. A single name in 'names' can generate multiple PathInfos (m2m, for example). 'names' is the path of names to travel, 'opts' is the model Options we start the name resolving from, 'allow_many' is as for setup_joins(). If fail_on_missing is set to True, then a name that can't be resolved will generate a FieldError. Return a list of PathInfo tuples. In addition return the final field (the last used join field) and target (which is a field guaranteed to contain the same value as the final field). Finally, return those names that weren't found (which are likely transforms and the final lookup). """ path, names_with_path = [], [] for pos, name in enumerate(names): cur_names_with_path = (name, []) if name == 'pk': name = opts.pk.name field = None filtered_relation = None try: field = opts.get_field(name) except FieldDoesNotExist: if name in self.annotation_select: field = self.annotation_select[name].output_field elif name in self._filtered_relations and pos == 0: filtered_relation = self._filtered_relations[name] if LOOKUP_SEP in filtered_relation.relation_name: parts = filtered_relation.relation_name.split(LOOKUP_SEP) filtered_relation_path, field, _, _ = self.names_to_path( parts, opts, allow_many, fail_on_missing, ) path.extend(filtered_relation_path[:-1]) else: field = opts.get_field(filtered_relation.relation_name) if field is not None: # Fields that contain one-to-many relations with a generic # model (like a GenericForeignKey) cannot generate reverse # relations and therefore cannot be used for reverse querying. if field.is_relation and not field.related_model: raise FieldError( "Field %r does not generate an automatic reverse " "relation and therefore cannot be used for reverse " "querying. If it is a GenericForeignKey, consider " "adding a GenericRelation." % name ) try: model = field.model._meta.concrete_model except AttributeError: # QuerySet.annotate() may introduce fields that aren't # attached to a model. model = None else: # We didn't find the current field, so move position back # one step. pos -= 1 if pos == -1 or fail_on_missing: available = sorted([ *get_field_names_from_opts(opts), *self.annotation_select, *self._filtered_relations, ]) raise FieldError("Cannot resolve keyword '%s' into field. " "Choices are: %s" % (name, ", ".join(available))) break # Check if we need any joins for concrete inheritance cases (the # field lives in parent, but we are currently in one of its # children) if model is not opts.model: path_to_parent = opts.get_path_to_parent(model) if path_to_parent: path.extend(path_to_parent) cur_names_with_path[1].extend(path_to_parent) opts = path_to_parent[-1].to_opts if hasattr(field, 'path_infos'): if filtered_relation: pathinfos = field.get_path_info(filtered_relation) else: pathinfos = field.path_infos if not allow_many: for inner_pos, p in enumerate(pathinfos): if p.m2m: cur_names_with_path[1].extend(pathinfos[0:inner_pos + 1]) names_with_path.append(cur_names_with_path) raise MultiJoin(pos + 1, names_with_path) last = pathinfos[-1] path.extend(pathinfos) final_field = last.join_field opts = last.to_opts targets = last.target_fields cur_names_with_path[1].extend(pathinfos) names_with_path.append(cur_names_with_path) else: # Local non-relational field. final_field = field targets = (field,) if fail_on_missing and pos + 1 != len(names): raise FieldError( "Cannot resolve keyword %r into field. Join on '%s'" " not permitted." % (names[pos + 1], name)) break return path, final_field, targets, names[pos + 1:] def setup_joins(self, names, opts, alias, can_reuse=None, allow_many=True): """ Compute the necessary table joins for the passage through the fields given in 'names'. 'opts' is the Options class for the current model (which gives the table we are starting from), 'alias' is the alias for the table to start the joining from. The 'can_reuse' defines the reverse foreign key joins we can reuse. It can be None in which case all joins are reusable or a set of aliases that can be reused. Note that non-reverse foreign keys are always reusable when using setup_joins(). If 'allow_many' is False, then any reverse foreign key seen will generate a MultiJoin exception. Return the final field involved in the joins, the target field (used for any 'where' constraint), the final 'opts' value, the joins, the field path traveled to generate the joins, and a transform function that takes a field and alias and is equivalent to `field.get_col(alias)` in the simple case but wraps field transforms if they were included in names. The target field is the field containing the concrete value. Final field can be something different, for example foreign key pointing to that value. Final field is needed for example in some value conversions (convert 'obj' in fk__id=obj to pk val using the foreign key field for example). """ joins = [alias] # The transform can't be applied yet, as joins must be trimmed later. # To avoid making every caller of this method look up transforms # directly, compute transforms here and create a partial that converts # fields to the appropriate wrapped version. def final_transformer(field, alias): if not self.alias_cols: alias = None return field.get_col(alias) # Try resolving all the names as fields first. If there's an error, # treat trailing names as lookups until a field can be resolved. last_field_exception = None for pivot in range(len(names), 0, -1): try: path, final_field, targets, rest = self.names_to_path( names[:pivot], opts, allow_many, fail_on_missing=True, ) except FieldError as exc: if pivot == 1: # The first item cannot be a lookup, so it's safe # to raise the field error here. raise else: last_field_exception = exc else: # The transforms are the remaining items that couldn't be # resolved into fields. transforms = names[pivot:] break for name in transforms: def transform(field, alias, *, name, previous): try: wrapped = previous(field, alias) return self.try_transform(wrapped, name) except FieldError: # FieldError is raised if the transform doesn't exist. if isinstance(final_field, Field) and last_field_exception: raise last_field_exception else: raise final_transformer = functools.partial(transform, name=name, previous=final_transformer) # Then, add the path to the query's joins. Note that we can't trim # joins at this stage - we will need the information about join type # of the trimmed joins. for join in path: if join.filtered_relation: filtered_relation = join.filtered_relation.clone() table_alias = filtered_relation.alias else: filtered_relation = None table_alias = None opts = join.to_opts if join.direct: nullable = self.is_nullable(join.join_field) else: nullable = True connection = self.join_class( opts.db_table, alias, table_alias, INNER, join.join_field, nullable, filtered_relation=filtered_relation, ) reuse = can_reuse if join.m2m else None alias = self.join(connection, reuse=reuse) joins.append(alias) if filtered_relation: filtered_relation.path = joins[:] return JoinInfo(final_field, targets, opts, joins, path, final_transformer) def trim_joins(self, targets, joins, path): """ The 'target' parameter is the final field being joined to, 'joins' is the full list of join aliases. The 'path' contain the PathInfos used to create the joins. Return the final target field and table alias and the new active joins. Always trim any direct join if the target column is already in the previous table. Can't trim reverse joins as it's unknown if there's anything on the other side of the join. """ joins = joins[:] for pos, info in enumerate(reversed(path)): if len(joins) == 1 or not info.direct: break if info.filtered_relation: break join_targets = {t.column for t in info.join_field.foreign_related_fields} cur_targets = {t.column for t in targets} if not cur_targets.issubset(join_targets): break targets_dict = {r[1].column: r[0] for r in info.join_field.related_fields if r[1].column in cur_targets} targets = tuple(targets_dict[t.column] for t in targets) self.unref_alias(joins.pop()) return targets, joins[-1], joins @classmethod def _gen_cols(cls, exprs, include_external=False): for expr in exprs: if isinstance(expr, Col): yield expr elif include_external and callable(getattr(expr, 'get_external_cols', None)): yield from expr.get_external_cols() elif hasattr(expr, 'get_source_expressions'): yield from cls._gen_cols( expr.get_source_expressions(), include_external=include_external, ) @classmethod def _gen_col_aliases(cls, exprs): yield from (expr.alias for expr in cls._gen_cols(exprs)) def resolve_ref(self, name, allow_joins=True, reuse=None, summarize=False): annotation = self.annotations.get(name) if annotation is not None: if not allow_joins: for alias in self._gen_col_aliases([annotation]): if isinstance(self.alias_map[alias], Join): raise FieldError( 'Joined field references are not permitted in ' 'this query' ) if summarize: # Summarize currently means we are doing an aggregate() query # which is executed as a wrapped subquery if any of the # aggregate() elements reference an existing annotation. In # that case we need to return a Ref to the subquery's annotation. if name not in self.annotation_select: raise FieldError( "Cannot aggregate over the '%s' alias. Use annotate() " "to promote it." % name ) return Ref(name, self.annotation_select[name]) else: return annotation else: field_list = name.split(LOOKUP_SEP) annotation = self.annotations.get(field_list[0]) if annotation is not None: for transform in field_list[1:]: annotation = self.try_transform(annotation, transform) return annotation join_info = self.setup_joins(field_list, self.get_meta(), self.get_initial_alias(), can_reuse=reuse) targets, final_alias, join_list = self.trim_joins(join_info.targets, join_info.joins, join_info.path) if not allow_joins and len(join_list) > 1: raise FieldError('Joined field references are not permitted in this query') if len(targets) > 1: raise FieldError("Referencing multicolumn fields with F() objects " "isn't supported") # Verify that the last lookup in name is a field or a transform: # transform_function() raises FieldError if not. transform = join_info.transform_function(targets[0], final_alias) if reuse is not None: reuse.update(join_list) return transform def split_exclude(self, filter_expr, can_reuse, names_with_path): """ When doing an exclude against any kind of N-to-many relation, we need to use a subquery. This method constructs the nested query, given the original exclude filter (filter_expr) and the portion up to the first N-to-many relation field. For example, if the origin filter is ~Q(child__name='foo'), filter_expr is ('child__name', 'foo') and can_reuse is a set of joins usable for filters in the original query. We will turn this into equivalent of: WHERE NOT EXISTS( SELECT 1 FROM child WHERE name = 'foo' AND child.parent_id = parent.id LIMIT 1 ) """ # Generate the inner query. query = self.__class__(self.model) query._filtered_relations = self._filtered_relations filter_lhs, filter_rhs = filter_expr if isinstance(filter_rhs, OuterRef): filter_rhs = OuterRef(filter_rhs) elif isinstance(filter_rhs, F): filter_rhs = OuterRef(filter_rhs.name) query.add_filter(filter_lhs, filter_rhs) query.clear_ordering(force=True) # Try to have as simple as possible subquery -> trim leading joins from # the subquery. trimmed_prefix, contains_louter = query.trim_start(names_with_path) col = query.select[0] select_field = col.target alias = col.alias if alias in can_reuse: pk = select_field.model._meta.pk # Need to add a restriction so that outer query's filters are in effect for # the subquery, too. query.bump_prefix(self) lookup_class = select_field.get_lookup('exact') # Note that the query.select[0].alias is different from alias # due to bump_prefix above. lookup = lookup_class(pk.get_col(query.select[0].alias), pk.get_col(alias)) query.where.add(lookup, AND) query.external_aliases[alias] = True lookup_class = select_field.get_lookup('exact') lookup = lookup_class(col, ResolvedOuterRef(trimmed_prefix)) query.where.add(lookup, AND) condition, needed_inner = self.build_filter(Exists(query)) if contains_louter: or_null_condition, _ = self.build_filter( ('%s__isnull' % trimmed_prefix, True), current_negated=True, branch_negated=True, can_reuse=can_reuse) condition.add(or_null_condition, OR) # Note that the end result will be: # (outercol NOT IN innerq AND outercol IS NOT NULL) OR outercol IS NULL. # This might look crazy but due to how IN works, this seems to be # correct. If the IS NOT NULL check is removed then outercol NOT # IN will return UNKNOWN. If the IS NULL check is removed, then if # outercol IS NULL we will not match the row. return condition, needed_inner def set_empty(self): self.where.add(NothingNode(), AND) for query in self.combined_queries: query.set_empty() def is_empty(self): return any(isinstance(c, NothingNode) for c in self.where.children) def set_limits(self, low=None, high=None): """ Adjust the limits on the rows retrieved. Use low/high to set these, as it makes it more Pythonic to read and write. When the SQL query is created, convert them to the appropriate offset and limit values. Apply any limits passed in here to the existing constraints. Add low to the current low value and clamp both to any existing high value. """ if high is not None: if self.high_mark is not None: self.high_mark = min(self.high_mark, self.low_mark + high) else: self.high_mark = self.low_mark + high if low is not None: if self.high_mark is not None: self.low_mark = min(self.high_mark, self.low_mark + low) else: self.low_mark = self.low_mark + low if self.low_mark == self.high_mark: self.set_empty() def clear_limits(self): """Clear any existing limits.""" self.low_mark, self.high_mark = 0, None @property def is_sliced(self): return self.low_mark != 0 or self.high_mark is not None def has_limit_one(self): return self.high_mark is not None and (self.high_mark - self.low_mark) == 1 def can_filter(self): """ Return True if adding filters to this instance is still possible. Typically, this means no limits or offsets have been put on the results. """ return not self.is_sliced def clear_select_clause(self): """Remove all fields from SELECT clause.""" self.select = () self.default_cols = False self.select_related = False self.set_extra_mask(()) self.set_annotation_mask(()) def clear_select_fields(self): """ Clear the list of fields to select (but not extra_select columns). Some queryset types completely replace any existing list of select columns. """ self.select = () self.values_select = () def add_select_col(self, col, name): self.select += col, self.values_select += name, def set_select(self, cols): self.default_cols = False self.select = tuple(cols) def add_distinct_fields(self, *field_names): """ Add and resolve the given fields to the query's "distinct on" clause. """ self.distinct_fields = field_names self.distinct = True def add_fields(self, field_names, allow_m2m=True): """ Add the given (model) fields to the select set. Add the field names in the order specified. """ alias = self.get_initial_alias() opts = self.get_meta() try: cols = [] for name in field_names: # Join promotion note - we must not remove any rows here, so # if there is no existing joins, use outer join. join_info = self.setup_joins(name.split(LOOKUP_SEP), opts, alias, allow_many=allow_m2m) targets, final_alias, joins = self.trim_joins( join_info.targets, join_info.joins, join_info.path, ) for target in targets: cols.append(join_info.transform_function(target, final_alias)) if cols: self.set_select(cols) except MultiJoin: raise FieldError("Invalid field name: '%s'" % name) except FieldError: if LOOKUP_SEP in name: # For lookups spanning over relationships, show the error # from the model on which the lookup failed. raise elif name in self.annotations: raise FieldError( "Cannot select the '%s' alias. Use annotate() to promote " "it." % name ) else: names = sorted([ *get_field_names_from_opts(opts), *self.extra, *self.annotation_select, *self._filtered_relations ]) raise FieldError("Cannot resolve keyword %r into field. " "Choices are: %s" % (name, ", ".join(names))) def add_ordering(self, *ordering): """ Add items from the 'ordering' sequence to the query's "order by" clause. These items are either field names (not column names) -- possibly with a direction prefix ('-' or '?') -- or OrderBy expressions. If 'ordering' is empty, clear all ordering from the query. """ errors = [] for item in ordering: if isinstance(item, str): if item == '?': continue if item.startswith('-'): item = item[1:] if item in self.annotations: continue if self.extra and item in self.extra: continue # names_to_path() validates the lookup. A descriptive # FieldError will be raise if it's not. self.names_to_path(item.split(LOOKUP_SEP), self.model._meta) elif not hasattr(item, 'resolve_expression'): errors.append(item) if getattr(item, 'contains_aggregate', False): raise FieldError( 'Using an aggregate in order_by() without also including ' 'it in annotate() is not allowed: %s' % item ) if errors: raise FieldError('Invalid order_by arguments: %s' % errors) if ordering: self.order_by += ordering else: self.default_ordering = False def clear_ordering(self, force=False, clear_default=True): """ Remove any ordering settings if the current query allows it without side effects, set 'force' to True to clear the ordering regardless. If 'clear_default' is True, there will be no ordering in the resulting query (not even the model's default). """ if not force and (self.is_sliced or self.distinct_fields or self.select_for_update): return self.order_by = () self.extra_order_by = () if clear_default: self.default_ordering = False def set_group_by(self, allow_aliases=True): """ Expand the GROUP BY clause required by the query. This will usually be the set of all non-aggregate fields in the return data. If the database backend supports grouping by the primary key, and the query would be equivalent, the optimization will be made automatically. """ # Column names from JOINs to check collisions with aliases. if allow_aliases: column_names = set() seen_models = set() for join in list(self.alias_map.values())[1:]: # Skip base table. model = join.join_field.related_model if model not in seen_models: column_names.update({ field.column for field in model._meta.local_concrete_fields }) seen_models.add(model) group_by = list(self.select) if self.annotation_select: for alias, annotation in self.annotation_select.items(): if not allow_aliases or alias in column_names: alias = None group_by_cols = annotation.get_group_by_cols(alias=alias) group_by.extend(group_by_cols) self.group_by = tuple(group_by) def add_select_related(self, fields): """ Set up the select_related data structure so that we only select certain related models (as opposed to all models, when self.select_related=True). """ if isinstance(self.select_related, bool): field_dict = {} else: field_dict = self.select_related for field in fields: d = field_dict for part in field.split(LOOKUP_SEP): d = d.setdefault(part, {}) self.select_related = field_dict def add_extra(self, select, select_params, where, params, tables, order_by): """ Add data to the various extra_* attributes for user-created additions to the query. """ if select: # We need to pair any placeholder markers in the 'select' # dictionary with their parameters in 'select_params' so that # subsequent updates to the select dictionary also adjust the # parameters appropriately. select_pairs = {} if select_params: param_iter = iter(select_params) else: param_iter = iter([]) for name, entry in select.items(): entry = str(entry) entry_params = [] pos = entry.find("%s") while pos != -1: if pos == 0 or entry[pos - 1] != '%': entry_params.append(next(param_iter)) pos = entry.find("%s", pos + 2) select_pairs[name] = (entry, entry_params) self.extra.update(select_pairs) if where or params: self.where.add(ExtraWhere(where, params), AND) if tables: self.extra_tables += tuple(tables) if order_by: self.extra_order_by = order_by def clear_deferred_loading(self): """Remove any fields from the deferred loading set.""" self.deferred_loading = (frozenset(), True) def add_deferred_loading(self, field_names): """ Add the given list of model field names to the set of fields to exclude from loading from the database when automatic column selection is done. Add the new field names to any existing field names that are deferred (or removed from any existing field names that are marked as the only ones for immediate loading). """ # Fields on related models are stored in the literal double-underscore # format, so that we can use a set datastructure. We do the foo__bar # splitting and handling when computing the SQL column names (as part of # get_columns()). existing, defer = self.deferred_loading if defer: # Add to existing deferred names. self.deferred_loading = existing.union(field_names), True else: # Remove names from the set of any existing "immediate load" names. if new_existing := existing.difference(field_names): self.deferred_loading = new_existing, False else: self.clear_deferred_loading() if new_only := set(field_names).difference(existing): self.deferred_loading = new_only, True def add_immediate_loading(self, field_names): """ Add the given list of model field names to the set of fields to retrieve when the SQL is executed ("immediate loading" fields). The field names replace any existing immediate loading field names. If there are field names already specified for deferred loading, remove those names from the new field_names before storing the new names for immediate loading. (That is, immediate loading overrides any existing immediate values, but respects existing deferrals.) """ existing, defer = self.deferred_loading field_names = set(field_names) if 'pk' in field_names: field_names.remove('pk') field_names.add(self.get_meta().pk.name) if defer: # Remove any existing deferred names from the current set before # setting the new names. self.deferred_loading = field_names.difference(existing), False else: # Replace any existing "immediate load" field names. self.deferred_loading = frozenset(field_names), False def get_loaded_field_names(self): """ If any fields are marked to be deferred, return a dictionary mapping models to a set of names in those fields that will be loaded. If a model is not in the returned dictionary, none of its fields are deferred. If no fields are marked for deferral, return an empty dictionary. """ # We cache this because we call this function multiple times # (compiler.fill_related_selections, query.iterator) try: return self._loaded_field_names_cache except AttributeError: collection = {} self.deferred_to_data(collection, self.get_loaded_field_names_cb) self._loaded_field_names_cache = collection return collection def get_loaded_field_names_cb(self, target, model, fields): """Callback used by get_deferred_field_names().""" target[model] = {f.attname for f in fields} def set_annotation_mask(self, names): """Set the mask of annotations that will be returned by the SELECT.""" if names is None: self.annotation_select_mask = None else: self.annotation_select_mask = set(names) self._annotation_select_cache = None def append_annotation_mask(self, names): if self.annotation_select_mask is not None: self.set_annotation_mask(self.annotation_select_mask.union(names)) def set_extra_mask(self, names): """ Set the mask of extra select items that will be returned by SELECT. Don't remove them from the Query since they might be used later. """ if names is None: self.extra_select_mask = None else: self.extra_select_mask = set(names) self._extra_select_cache = None def set_values(self, fields): self.select_related = False self.clear_deferred_loading() self.clear_select_fields() if fields: field_names = [] extra_names = [] annotation_names = [] if not self.extra and not self.annotations: # Shortcut - if there are no extra or annotations, then # the values() clause must be just field names. field_names = list(fields) else: self.default_cols = False for f in fields: if f in self.extra_select: extra_names.append(f) elif f in self.annotation_select: annotation_names.append(f) else: field_names.append(f) self.set_extra_mask(extra_names) self.set_annotation_mask(annotation_names) selected = frozenset(field_names + extra_names + annotation_names) else: field_names = [f.attname for f in self.model._meta.concrete_fields] selected = frozenset(field_names) # Selected annotations must be known before setting the GROUP BY # clause. if self.group_by is True: self.add_fields((f.attname for f in self.model._meta.concrete_fields), False) # Disable GROUP BY aliases to avoid orphaning references to the # SELECT clause which is about to be cleared. self.set_group_by(allow_aliases=False) self.clear_select_fields() elif self.group_by: # Resolve GROUP BY annotation references if they are not part of # the selected fields anymore. group_by = [] for expr in self.group_by: if isinstance(expr, Ref) and expr.refs not in selected: expr = self.annotations[expr.refs] group_by.append(expr) self.group_by = tuple(group_by) self.values_select = tuple(field_names) self.add_fields(field_names, True) @property def annotation_select(self): """ Return the dictionary of aggregate columns that are not masked and should be used in the SELECT clause. Cache this result for performance. """ if self._annotation_select_cache is not None: return self._annotation_select_cache elif not self.annotations: return {} elif self.annotation_select_mask is not None: self._annotation_select_cache = { k: v for k, v in self.annotations.items() if k in self.annotation_select_mask } return self._annotation_select_cache else: return self.annotations @property def extra_select(self): if self._extra_select_cache is not None: return self._extra_select_cache if not self.extra: return {} elif self.extra_select_mask is not None: self._extra_select_cache = { k: v for k, v in self.extra.items() if k in self.extra_select_mask } return self._extra_select_cache else: return self.extra def trim_start(self, names_with_path): """ Trim joins from the start of the join path. The candidates for trim are the PathInfos in names_with_path structure that are m2m joins. Also set the select column so the start matches the join. This method is meant to be used for generating the subquery joins & cols in split_exclude(). Return a lookup usable for doing outerq.filter(lookup=self) and a boolean indicating if the joins in the prefix contain a LEFT OUTER join. _""" all_paths = [] for _, paths in names_with_path: all_paths.extend(paths) contains_louter = False # Trim and operate only on tables that were generated for # the lookup part of the query. That is, avoid trimming # joins generated for F() expressions. lookup_tables = [ t for t in self.alias_map if t in self._lookup_joins or t == self.base_table ] for trimmed_paths, path in enumerate(all_paths): if path.m2m: break if self.alias_map[lookup_tables[trimmed_paths + 1]].join_type == LOUTER: contains_louter = True alias = lookup_tables[trimmed_paths] self.unref_alias(alias) # The path.join_field is a Rel, lets get the other side's field join_field = path.join_field.field # Build the filter prefix. paths_in_prefix = trimmed_paths trimmed_prefix = [] for name, path in names_with_path: if paths_in_prefix - len(path) < 0: break trimmed_prefix.append(name) paths_in_prefix -= len(path) trimmed_prefix.append( join_field.foreign_related_fields[0].name) trimmed_prefix = LOOKUP_SEP.join(trimmed_prefix) # Lets still see if we can trim the first join from the inner query # (that is, self). We can't do this for: # - LEFT JOINs because we would miss those rows that have nothing on # the outer side, # - INNER JOINs from filtered relations because we would miss their # filters. first_join = self.alias_map[lookup_tables[trimmed_paths + 1]] if first_join.join_type != LOUTER and not first_join.filtered_relation: select_fields = [r[0] for r in join_field.related_fields] select_alias = lookup_tables[trimmed_paths + 1] self.unref_alias(lookup_tables[trimmed_paths]) extra_restriction = join_field.get_extra_restriction(None, lookup_tables[trimmed_paths + 1]) if extra_restriction: self.where.add(extra_restriction, AND) else: # TODO: It might be possible to trim more joins from the start of the # inner query if it happens to have a longer join chain containing the # values in select_fields. Lets punt this one for now. select_fields = [r[1] for r in join_field.related_fields] select_alias = lookup_tables[trimmed_paths] # The found starting point is likely a join_class instead of a # base_table_class reference. But the first entry in the query's FROM # clause must not be a JOIN. for table in self.alias_map: if self.alias_refcount[table] > 0: self.alias_map[table] = self.base_table_class( self.alias_map[table].table_name, table, ) break self.set_select([f.get_col(select_alias) for f in select_fields]) return trimmed_prefix, contains_louter def is_nullable(self, field): """ Check if the given field should be treated as nullable. Some backends treat '' as null and Django treats such fields as nullable for those backends. In such situations field.null can be False even if we should treat the field as nullable. """ # We need to use DEFAULT_DB_ALIAS here, as QuerySet does not have # (nor should it have) knowledge of which connection is going to be # used. The proper fix would be to defer all decisions where # is_nullable() is needed to the compiler stage, but that is not easy # to do currently. return field.null or ( field.empty_strings_allowed and connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls ) def get_order_dir(field, default='ASC'): """ Return the field name and direction for an order specification. For example, '-foo' is returned as ('foo', 'DESC'). The 'default' param is used to indicate which way no prefix (or a '+' prefix) should sort. The '-' prefix always sorts the opposite way. """ dirn = ORDER_DIR[default] if field[0] == '-': return field[1:], dirn[1] return field, dirn[0] def add_to_dict(data, key, value): """ Add "value" to the set of values for "key", whether or not "key" already exists. """ if key in data: data[key].add(value) else: data[key] = {value} def is_reverse_o2o(field): """ Check if the given field is reverse-o2o. The field is expected to be some sort of relation field or related object. """ return field.is_relation and field.one_to_one and not field.concrete class JoinPromoter: """ A class to abstract away join promotion problems for complex filter conditions. """ def __init__(self, connector, num_children, negated): self.connector = connector self.negated = negated if self.negated: if connector == AND: self.effective_connector = OR else: self.effective_connector = AND else: self.effective_connector = self.connector self.num_children = num_children # Maps of table alias to how many times it is seen as required for # inner and/or outer joins. self.votes = Counter() def __repr__(self): return ( f'{self.__class__.__qualname__}(connector={self.connector!r}, ' f'num_children={self.num_children!r}, negated={self.negated!r})' ) def add_votes(self, votes): """ Add single vote per item to self.votes. Parameter can be any iterable. """ self.votes.update(votes) def update_join_types(self, query): """ Change join types so that the generated query is as efficient as possible, but still correct. So, change as many joins as possible to INNER, but don't make OUTER joins INNER if that could remove results from the query. """ to_promote = set() to_demote = set() # The effective_connector is used so that NOT (a AND b) is treated # similarly to (a OR b) for join promotion. for table, votes in self.votes.items(): # We must use outer joins in OR case when the join isn't contained # in all of the joins. Otherwise the INNER JOIN itself could remove # valid results. Consider the case where a model with rel_a and # rel_b relations is queried with rel_a__col=1 | rel_b__col=2. Now, # if rel_a join doesn't produce any results is null (for example # reverse foreign key or null value in direct foreign key), and # there is a matching row in rel_b with col=2, then an INNER join # to rel_a would remove a valid match from the query. So, we need # to promote any existing INNER to LOUTER (it is possible this # promotion in turn will be demoted later on). if self.effective_connector == 'OR' and votes < self.num_children: to_promote.add(table) # If connector is AND and there is a filter that can match only # when there is a joinable row, then use INNER. For example, in # rel_a__col=1 & rel_b__col=2, if either of the rels produce NULL # as join output, then the col=1 or col=2 can't match (as # NULL=anything is always false). # For the OR case, if all children voted for a join to be inner, # then we can use INNER for the join. For example: # (rel_a__col__icontains=Alex | rel_a__col__icontains=Russell) # then if rel_a doesn't produce any rows, the whole condition # can't match. Hence we can safely use INNER join. if self.effective_connector == 'AND' or ( self.effective_connector == 'OR' and votes == self.num_children): to_demote.add(table) # Finally, what happens in cases where we have: # (rel_a__col=1|rel_b__col=2) & rel_a__col__gte=0 # Now, we first generate the OR clause, and promote joins for it # in the first if branch above. Both rel_a and rel_b are promoted # to LOUTER joins. After that we do the AND case. The OR case # voted no inner joins but the rel_a__col__gte=0 votes inner join # for rel_a. We demote it back to INNER join (in AND case a single # vote is enough). The demotion is OK, if rel_a doesn't produce # rows, then the rel_a__col__gte=0 clause can't be true, and thus # the whole clause must be false. So, it is safe to use INNER # join. # Note that in this example we could just as well have the __gte # clause and the OR clause swapped. Or we could replace the __gte # clause with an OR clause containing rel_a__col=1|rel_a__col=2, # and again we could safely demote to INNER. query.promote_joins(to_promote) query.demote_joins(to_demote) return to_demote
44.537717
119
0.608474
4de14b1035336d91a0ebd3534175563333337507
3,459
py
Python
main/settings.py
RomeoEncinares/Dog-Classifier
1d1c5c78a2f7d2ac1fd3d20e0413c9a0ac9b0053
[ "MIT" ]
null
null
null
main/settings.py
RomeoEncinares/Dog-Classifier
1d1c5c78a2f7d2ac1fd3d20e0413c9a0ac9b0053
[ "MIT" ]
null
null
null
main/settings.py
RomeoEncinares/Dog-Classifier
1d1c5c78a2f7d2ac1fd3d20e0413c9a0ac9b0053
[ "MIT" ]
null
null
null
""" Django settings for main project. Generated by 'django-admin startproject' using Django 4.0.2. For more information on this file, see https://docs.djangoproject.com/en/4.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/4.0/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/4.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-$kkki071jwu_wxf2d=9ccaa@x1%z(w9ml$t&m=myg*=@bhp*5-' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'apps.classifier' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'main.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates/')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'main.wsgi.application' # Database # https://docs.djangoproject.com/en/4.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/4.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/4.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/4.0/howto/static-files/ STATIC_URL = 'static/' #STATIC_ROOT = os.path.join(BASE_DIR, 'static/') STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static'), ] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # Default primary key field type # https://docs.djangoproject.com/en/4.0/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
26.007519
91
0.700781
072a48225027dede7d3a427fdcb16b2f4aed8702
3,029
py
Python
tweetrssfeed/tweetrssfeed.py
gam-phon/tweetrssfeed
1bb21cf9bfe59af424328a221212a26814436ba4
[ "BSD-3-Clause" ]
null
null
null
tweetrssfeed/tweetrssfeed.py
gam-phon/tweetrssfeed
1bb21cf9bfe59af424328a221212a26814436ba4
[ "BSD-3-Clause" ]
null
null
null
tweetrssfeed/tweetrssfeed.py
gam-phon/tweetrssfeed
1bb21cf9bfe59af424328a221212a26814436ba4
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sqlite3 import tweepy import feedparser import bitly_api BITLY_ACCESS_TOKEN = "BITLY_ACCESS_TOKEN" TWITTER_CONSUMER_KEY = "TWITTER_CONSUMER_KEY" TWITTER_CONSUMER_SECRET = "TWITTER_CONSUMER_SECRET" TWITTER_ACCESS_TOKEN = "TWITTER_ACCESS_TOKEN" TWITTER_ACCESS_TOKEN_SECRET = "TWITTER_ACCESS_TOKEN_SECRET" DATABASE = "tweets.sqlite" def check_env(*args): for arg in args: if arg not in os.environ: raise ValueError("Environment variable '{}' required".format(arg)) def bitly_connection(username): #Check Environments env_access_token = "{}_{}".format(username, BITLY_ACCESS_TOKEN) check_env(env_access_token) #Get Environments access_token = os.getenv(env_access_token) #Access bitly = bitly_api.Connection(access_token=access_token) return bitly def twitter_connection(username): #Check Environments env_consumer_key = "{}_{}".format(username, TWITTER_CONSUMER_KEY) env_consumer_secret = "{}_{}".format(username, TWITTER_CONSUMER_SECRET) env_access_token = "{}_{}".format(username, TWITTER_ACCESS_TOKEN) env_access_token_secret = "{}_{}".format(username, TWITTER_ACCESS_TOKEN_SECRET) check_env(env_consumer_key, env_consumer_secret, env_access_token, env_access_token_secret) #Get Environments consumer_key = os.getenv(env_consumer_key) consumer_secret = os.getenv(env_consumer_secret) access_token = os.getenv(env_access_token) access_token_secret = os.getenv(env_access_token_secret) #Access auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) return api def tweet_rss(username, url, short=False, fetch=False, all=False): #Access api_bitly = bitly_connection(username) api_twitter = twitter_connection(username) #Database Connection conn = sqlite3.connect(DATABASE) conn.row_factory = sqlite3.Row c = conn.cursor() #create the table if it doesn't exist c.execute('CREATE TABLE IF NOT EXISTS RSSContent (key TEXT, value TEXT)') # Fetch Feed d = feedparser.parse(url) #print(len(d['entries'])) for entry in d['entries']: if not all: #check for duplicates c.execute('select * from RSSContent where key=? AND value=?', (username, entry['link'])) if not c.fetchall(): #Tweet feeds if not fetch: if short: bitly_short = api_bitly.shorten(entry['link']) api_twitter.update_status("%s %s" % (entry['title'][:115], bitly_short['url'])) else: api_twitter.update_status("%s %s" % (entry['title'][:115], entry['link'])) print("Tweeted \"%s\" to %s account." % (entry['title'][:115], username)) #Update database c.execute('insert into RSSContent values (?,?)', (username, entry['link'])) conn.commit()
32.923913
100
0.680753
bddee339ecc3e19e4bc8ad7186665b32614a5c1e
5,265
py
Python
benzinga/param_check.py
Benzinga/benzinga-python-client
62fb44e90dc3e3c8224e5dc1edf3e3426a8d0654
[ "MIT" ]
5
2020-01-10T03:39:00.000Z
2021-11-15T09:55:05.000Z
benzinga/param_check.py
infovisualnetwork/benzinga-python-client
62fb44e90dc3e3c8224e5dc1edf3e3426a8d0654
[ "MIT" ]
1
2019-06-13T14:13:43.000Z
2019-06-13T14:30:08.000Z
benzinga/param_check.py
infovisualnetwork/benzinga-python-client
62fb44e90dc3e3c8224e5dc1edf3e3426a8d0654
[ "MIT" ]
11
2019-06-11T19:24:51.000Z
2022-01-16T23:05:47.000Z
from .benzinga_errors import (TokenAuthenticationError, RequestAPIEndpointError, IncorrectParameterEntry, URLIncorrectlyFormattedError,MissingParameter) class Param_Check: def __init__(self): self.stri = "str" self.inte = "int" self.nonetype = "NoneType" self.float = "float" def __para_type_matching(self, param_metadata, para_dict): for param, value in para_dict.items(): if (type(value).__name__ != param_metadata[param]) and (type(value).__name__ != self.nonetype): raise IncorrectParameterEntry("Parameter Type for %s doesn't match: Correct Type: %s. " "You entered %s" % (param, param_metadata[param], type(value).__name__ )) def calendar_check(self, dict): param_type = { 'token': self.stri, "page": self.inte , "pagesize": self.inte, "parameters[date]": self.stri, "parameters[date_from]": self.stri, "parameters[date_to]": self.stri, "parameters[tickers]": self.stri, "parameters[importance]": self.inte, "parameters[date_sort]": self.stri, "parameters[updated]": self.inte, "paramaters[dividend_yield_operation]": self.stri, "parameters[dividend_yield]": self.float, "parameters[action]": self.stri, "country": self.stri, "parameters[eps_surprise_percent]": self.stri, "parameters[revenue_surprise_percent]": self.stri } self.__para_type_matching(param_type, dict) def fundamentals_check(self, dict): param_type = { 'apikey': self.stri, "symbols": self.stri, "symbol": self.stri, "isin": self.stri, "cik": self.stri, "asOf": self.stri, "period": self.stri, "reportType": self.stri, "token": self.stri } self.__para_type_matching(param_type, dict) def delayed_quote_check(self, dict): param_type = { 'token': self.stri, "symbols": self.stri, "isin": self.stri, "cik": self.stri } self.__para_type_matching(param_type, dict) def logos_check(self, dict): param_type = { 'token': self.stri, "symbols": self.stri, "filters": self.stri } self.__para_type_matching(param_type, dict) def instruments_check(self, dict): param_type = { "apikey": self.stri, "fields": self.stri, "query": self.stri, "to": self.stri, "from": self.stri, "asOf": self.stri, "sortfield": self.stri, "sortdir": self.stri } self.__para_type_matching(param_type, dict) def security_check(self, dict): param_type = { "apikey": self.stri, "symbol": self.stri, "cusip": self.stri } self.__para_type_matching(param_type, dict) def bars_check(self, dict): param_type = { "token": self.stri, "symbols": self.stri, "from": self.stri, "to": self.stri, "interval": self.stri } self.__para_type_matching(param_type, dict) def ticker_check(self, dict): param_type = { "apikey": self.stri, "symbols": self.stri } self.__para_type_matching(param_type, dict) def autocomplete_check(self, dict): param_type = { "token": self.stri, "query": self.stri, "limit": self.inte, "searchMethod": self.stri, "exchanges": self.stri, "types": self.stri } self.__para_type_matching(param_type, dict) def batchhistory_check(self, dict): param_type = { "apikey": self.stri, "symbol": self.stri } self.__para_type_matching(param_type, dict) def news_check(self, dict): param_type = { "token": self.stri, "pageSize": self.inte, "page": self.inte, "displayOutput": self.stri, "date": self.stri, "dateFrom": self.stri, "dateTo": self.stri, "lastId": self.stri, "updatedSince": self.stri, "publishedSince": self.stri, "tickers": self.stri, "channels": self.stri, "type": self.stri, "limit": self.inte, "channel": self.stri } self.__para_type_matching(param_type, dict) def options_check(self, dict): param_type = { "token": self.stri, "page": self.inte, "pagesize": self.inte, "parameters[date]": self.stri, "parameters[date_from]": self.stri, "parameters[date_to]": self.stri, "parameters[tickers]": self.stri, "parameters[updated]": self.inte } self.__para_type_matching(param_type, dict)
30.610465
107
0.524976
b5d063b39b71768d23c50ec91eee6a60c28ec353
2,720
py
Python
Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/lms/djangoapps/discussion/django_comment_client/tests/test_models.py
osoco/better-ways-of-thinking-about-software
83e70d23c873509e22362a09a10d3510e10f6992
[ "MIT" ]
3
2021-12-15T04:58:18.000Z
2022-02-06T12:15:37.000Z
Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/lms/djangoapps/discussion/django_comment_client/tests/test_models.py
osoco/better-ways-of-thinking-about-software
83e70d23c873509e22362a09a10d3510e10f6992
[ "MIT" ]
null
null
null
Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/lms/djangoapps/discussion/django_comment_client/tests/test_models.py
osoco/better-ways-of-thinking-about-software
83e70d23c873509e22362a09a10d3510e10f6992
[ "MIT" ]
1
2019-01-02T14:38:50.000Z
2019-01-02T14:38:50.000Z
""" Tests for the django comment client integration models """ from django.test.testcases import TestCase from opaque_keys.edx.keys import CourseKey import openedx.core.djangoapps.django_comment_common.models as models from xmodule.modulestore.tests.django_utils import TEST_DATA_MIXED_MODULESTORE, ModuleStoreTestCase from xmodule.modulestore.tests.factories import ToyCourseFactory class RoleClassTestCase(ModuleStoreTestCase): """ Tests for roles of the comment client service integration """ MODULESTORE = TEST_DATA_MIXED_MODULESTORE def setUp(self): super().setUp() # For course ID, syntax edx/classname/classdate is important # because xmodel.course_module.id_to_location looks for a string to split self.course_id = ToyCourseFactory.create().id self.student_role = models.Role.objects.get_or_create(name="Student", course_id=self.course_id)[0] self.student_role.add_permission("delete_thread") self.student_2_role = models.Role.objects.get_or_create(name="Student", course_id=self.course_id)[0] self.TA_role = models.Role.objects.get_or_create(name="Community TA", course_id=self.course_id)[0] self.course_id_2 = CourseKey.from_string("edX/6.002x/2012_Fall") self.TA_role_2 = models.Role.objects.get_or_create(name="Community TA", course_id=self.course_id_2)[0] def test_has_permission(self): # Whenever you add a permission to student_role, # Roles with the same FORUM_ROLE in same class also receives the same # permission. # Is this desirable behavior? assert self.student_role.has_permission('delete_thread') assert self.student_2_role.has_permission('delete_thread') assert not self.TA_role.has_permission('delete_thread') def test_inherit_permission(self): self.TA_role.inherit_permissions(self.student_role) assert self.TA_role.has_permission('delete_thread') # Despite being from 2 different courses, TA_role_2 can still inherit # permissions from TA_role without error self.TA_role_2.inherit_permissions(self.TA_role) class PermissionClassTestCase(TestCase): """ Tests for permissions of the comment client service integration """ def setUp(self): super().setUp() self.permission = models.Permission.objects.get_or_create(name="test")[0] def test_unicode(self): assert str(self.permission) == 'test'
41.212121
99
0.669853
48d6cd40388ee0d51def28d8391bb071fc1b9be1
5,107
py
Python
Example/callbacks.py
chrhansk/BayesianRNN
594e59737651db2eed9ab02869b4df417d631143
[ "MIT" ]
null
null
null
Example/callbacks.py
chrhansk/BayesianRNN
594e59737651db2eed9ab02869b4df417d631143
[ "MIT" ]
null
null
null
Example/callbacks.py
chrhansk/BayesianRNN
594e59737651db2eed9ab02869b4df417d631143
[ "MIT" ]
1
2020-07-31T08:28:00.000Z
2020-07-31T08:28:00.000Z
import numpy as np from keras.callbacks import Callback from keras import backend as K from keras import models class ModelTest(Callback): ''' Test model at the end of every X epochs. The model is tested using both MC dropout and the dropout approximation. Output metrics for various losses are supported. # Arguments Xt: model inputs to test. Yt: model outputs to get accuracy / error (ground truth). T: number of samples to use in MC dropout. test_every_X_epochs: test every test_every_X_epochs epochs. batch_size: number of data points to put in each batch (often larger than training batch size). verbose: verbosity mode, 0 or 1. loss: a string from ['binary', 'categorical', 'euclidean'] used to calculate the testing metric. mean_y_train: mean of outputs in regression cases to add back to model output ('euclidean' loss). std_y_train: std of outputs in regression cases to add back to model output ('euclidean' loss). # References - [Dropout: A simple way to prevent neural networks from overfitting](http://jmlr.org/papers/v15/srivastava14a.html) - [Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning](http://arxiv.org/abs/1506.02142) ''' def __init__(self, Xt, Yt, T=10, test_every_X_epochs=1, batch_size=500, verbose=1, loss=None, mean_y_train=None, std_y_train=None): super(ModelTest, self).__init__() self.Xt = Xt self.Yt = np.array(Yt) self.T = T self.test_every_X_epochs = test_every_X_epochs self.batch_size = batch_size self.verbose = verbose self.loss = loss self.mean_y_train = mean_y_train self.std_y_train = std_y_train self._predict_stochastic = None def predict_stochastic(self, X, batch_size=128, verbose=0): '''Generate output predictions for the input samples batch by batch, using stochastic forward passes. If dropout is used at training, during prediction network units will be dropped at random as well. This procedure can be used for MC dropout (see [ModelTest callbacks](callbacks.md)). # Arguments X: the input data, as a numpy array. batch_size: integer. verbose: verbosity mode, 0 or 1. # Returns A numpy array of predictions. # References - [Dropout: A simple way to prevent neural networks from overfitting](http://jmlr.org/papers/v15/srivastava14a.html) - [Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning](http://arxiv.org/abs/1506.02142) ''' X = models.standardize_X(X) if self._predict_stochastic is None: # we only get self.model after init self._predict_stochastic = K.function([self.model.X_test], [self.model.y_train]) return self.model._predict_loop(self._predict_stochastic, X, batch_size, verbose)[0] def on_epoch_begin(self, epoch, logs={}): if epoch % self.test_every_X_epochs != 0: return model_output = self.model.predict(self.Xt, batch_size=self.batch_size, verbose=self.verbose) MC_model_output = [] for _ in range(self.T): MC_model_output += [self.predict_stochastic(self.Xt, batch_size=self.batch_size, verbose=self.verbose)] MC_model_output = np.array(MC_model_output) MC_model_output_mean = np.mean(MC_model_output, 0) if self.loss == 'binary': standard_acc = np.mean(self.Yt == np.round(model_output.flatten())) MC_acc = np.mean(self.Yt == np.round(MC_model_output_mean.flatten())) print(("Standard accuracy at epoch %05d: %0.5f" % (epoch, float(standard_acc)))) print(("MC accuracy at epoch %05d: %0.5f" % (epoch, float(MC_acc)))) elif self.loss == 'categorical': standard_acc = np.mean(np.argmax(self.Yt, axis=-1) == np.argmax(model_output, axis=-1)) MC_acc = np.mean(np.argmax(self.Yt, axis=-1) == np.argmax(MC_model_output_mean, axis=-1)) print(("Standard accuracy at epoch %05d: %0.5f" % (epoch, float(standard_acc)))) print(("MC accuracy at epoch %05d: %0.5f" % (epoch, float(MC_acc)))) elif self.loss == 'euclidean': model_output = model_output * self.std_y_train + self.mean_y_train standard_err = np.mean((self.Yt - model_output)**2.0, 0)**0.5 MC_model_output_mean = MC_model_output_mean * self.std_y_train + self.mean_y_train MC_err = np.mean((self.Yt - MC_model_output_mean)**2.0, 0)**0.5 print(("Standard error at epoch %05d: %0.5f" % (epoch, float(standard_err)))) print(("MC error at epoch %05d: %0.5f" % (epoch, float(MC_err)))) else: raise Exception('No loss: ' + loss)
50.068627
133
0.628941
f2980776389746a98319b28669546605a63c76e7
3,343
py
Python
torchbench/semantic_segmentation/camvid.py
xvdp/torchbench
cf41be6be15b97ee8d82567d815bf8dafe5a0206
[ "Apache-2.0" ]
null
null
null
torchbench/semantic_segmentation/camvid.py
xvdp/torchbench
cf41be6be15b97ee8d82567d815bf8dafe5a0206
[ "Apache-2.0" ]
null
null
null
torchbench/semantic_segmentation/camvid.py
xvdp/torchbench
cf41be6be15b97ee8d82567d815bf8dafe5a0206
[ "Apache-2.0" ]
null
null
null
from torch.utils.data import DataLoader from sotabenchapi.core import BenchmarkResult from torchbench.datasets import CamVid from torchbench.utils import default_data_to_device, send_model_to_device from torchbench.semantic_segmentation.transforms import ( Normalize, ToTensor, Compose, ) from torchbench.semantic_segmentation.utils import ( default_seg_collate_fn, default_seg_output_transform, evaluate_segmentation, ) class CamVid: dataset = CamVid normalize = Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) transforms = Compose([ToTensor(), normalize]) send_data_to_device = default_data_to_device collate_fn = default_seg_collate_fn model_output_transform = default_seg_output_transform task = "Semantic Segmentation" @classmethod def benchmark( cls, model, model_description=None, input_transform=None, target_transform=None, transforms=None, model_output_transform=None, collate_fn=None, send_data_to_device=None, device: str = "cuda", data_root: str = "./.data/vision/camvid", num_workers: int = 4, batch_size: int = 32, num_gpu: int = 1, paper_model_name: str = None, paper_arxiv_id: str = None, paper_pwc_id: str = None, paper_results: dict = None, pytorch_hub_url: str = None, force: bool = False ) -> BenchmarkResult: config = locals() model, device = send_model_to_device( model, device=device, num_gpu=num_gpu ) model.eval() if not input_transform or target_transform or transforms: transforms = cls.transforms if not model_output_transform: model_output_transform = cls.model_output_transform if not send_data_to_device: send_data_to_device = cls.send_data_to_device if not collate_fn: collate_fn = cls.collate_fn test_dataset = cls.dataset( root=data_root, split="val", transform=input_transform, target_transform=target_transform, transforms=transforms, ) test_loader = DataLoader( test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=True, collate_fn=collate_fn, ) test_loader.no_classes = 12 # Number of classes for CamVid test_results, speed_mem_metrics, run_hash = evaluate_segmentation( model=model, test_loader=test_loader, model_output_transform=model_output_transform, send_data_to_device=send_data_to_device, device=device, force=force ) print(test_results) return BenchmarkResult( task=cls.task, config=config, dataset=cls.dataset.__name__, results=test_results, speed_mem_metrics=speed_mem_metrics, pytorch_hub_id=pytorch_hub_url, model=paper_model_name, model_description=model_description, arxiv_id=paper_arxiv_id, pwc_id=paper_pwc_id, paper_results=paper_results, )
29.584071
74
0.63117
e981ab7d535dc27a6a08faad856499422a942877
1,068
py
Python
model-optimizer/extensions/front/tf/bucketize_ext.py
calvinfeng/openvino
11f591c16852637506b1b40d083b450e56d0c8ac
[ "Apache-2.0" ]
null
null
null
model-optimizer/extensions/front/tf/bucketize_ext.py
calvinfeng/openvino
11f591c16852637506b1b40d083b450e56d0c8ac
[ "Apache-2.0" ]
19
2021-03-26T08:11:00.000Z
2022-02-21T13:06:26.000Z
model-optimizer/extensions/front/tf/bucketize_ext.py
calvinfeng/openvino
11f591c16852637506b1b40d083b450e56d0c8ac
[ "Apache-2.0" ]
1
2021-07-28T17:30:46.000Z
2021-07-28T17:30:46.000Z
""" Copyright (C) 2018-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from extensions.ops.bucketize import Bucketize from mo.front.extractor import FrontExtractorOp class BucketizeFrontExtractor(FrontExtractorOp): op = 'Bucketize' enabled = True @classmethod def extract(cls, node): boundaries = np.array(node.pb.attr['boundaries'].list.f, dtype=np.float) Bucketize.update_node_stat(node, {'boundaries': boundaries, 'with_right_bound': False, 'output_type': np.int32}) return cls.enabled
33.375
120
0.749064
65f23c8bcca0213c673a670e1ff6677c65044d97
40,664
py
Python
test/functional/feature_segwit.py
bugls/worldcoin
214767f3f2aaea7312bccc6593ad4dce10447576
[ "MIT" ]
3
2021-11-09T00:54:55.000Z
2022-01-14T04:28:47.000Z
test/functional/feature_segwit.py
bugls/worldcoin
214767f3f2aaea7312bccc6593ad4dce10447576
[ "MIT" ]
1
2021-10-31T18:00:16.000Z
2021-10-31T18:00:16.000Z
test/functional/feature_segwit.py
bugls/worldcoin
214767f3f2aaea7312bccc6593ad4dce10447576
[ "MIT" ]
2
2021-03-29T14:53:31.000Z
2022-02-06T22:17:04.000Z
#!/usr/bin/env python3 # Copyright (c) 2016-2018 The Worldcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the SegWit changeover logic.""" from decimal import Decimal from test_framework.address import ( key_to_p2pkh, key_to_p2sh_p2wpkh, key_to_p2wpkh, program_to_witness, script_to_p2sh, script_to_p2sh_p2wsh, script_to_p2wsh, ) from test_framework.blocktools import witness_script, send_to_witness from test_framework.messages import COIN, COutPoint, CTransaction, CTxIn, CTxOut, FromHex, sha256, ToHex from test_framework.script import CScript, OP_HASH160, OP_CHECKSIG, OP_0, hash160, OP_EQUAL, OP_DUP, OP_EQUALVERIFY, OP_1, OP_2, OP_CHECKMULTISIG, OP_TRUE, OP_DROP from test_framework.test_framework import WorldcoinTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error, bytes_to_hex_str, connect_nodes, hex_str_to_bytes, sync_blocks, try_rpc from io import BytesIO NODE_0 = 0 NODE_2 = 2 WIT_V0 = 0 WIT_V1 = 1 def getutxo(txid): utxo = {} utxo["vout"] = 0 utxo["txid"] = txid return utxo def find_spendable_utxo(node, min_value): for utxo in node.listunspent(query_options={'minimumAmount': min_value}): if utxo['spendable']: return utxo raise AssertionError("Unspent output equal or higher than %s not found" % min_value) class SegWitTest(WorldcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 # This test tests SegWit both pre and post-activation, so use the normal BIP9 activation. self.extra_args = [ [ "-rpcserialversion=0", "-vbparams=segwit:0:999999999999", "-addresstype=legacy", "-deprecatedrpc=addwitnessaddress", ], [ "-blockversion=4", "-rpcserialversion=1", "-vbparams=segwit:0:999999999999", "-addresstype=legacy", "-deprecatedrpc=addwitnessaddress", ], [ "-blockversion=536870915", "-vbparams=segwit:0:999999999999", "-addresstype=legacy", "-deprecatedrpc=addwitnessaddress", ], ] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_network(self): super().setup_network() connect_nodes(self.nodes[0], 2) self.sync_all() def success_mine(self, node, txid, sign, redeem_script=""): send_to_witness(1, node, getutxo(txid), self.pubkey[0], False, Decimal("49.998"), sign, redeem_script) block = node.generate(1) assert_equal(len(node.getblock(block[0])["tx"]), 2) sync_blocks(self.nodes) def skip_mine(self, node, txid, sign, redeem_script=""): send_to_witness(1, node, getutxo(txid), self.pubkey[0], False, Decimal("49.998"), sign, redeem_script) block = node.generate(1) assert_equal(len(node.getblock(block[0])["tx"]), 1) sync_blocks(self.nodes) def fail_accept(self, node, error_msg, txid, sign, redeem_script=""): assert_raises_rpc_error(-26, error_msg, send_to_witness, use_p2wsh=1, node=node, utxo=getutxo(txid), pubkey=self.pubkey[0], encode_p2sh=False, amount=Decimal("49.998"), sign=sign, insert_redeem_script=redeem_script) def run_test(self): self.nodes[0].generate(161) #block 161 self.log.info("Verify sigops are counted in GBT with pre-BIP141 rules before the fork") txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) tmpl = self.nodes[0].getblocktemplate({}) assert(tmpl['sizelimit'] == 1000000) assert('weightlimit' not in tmpl) assert(tmpl['sigoplimit'] == 20000) assert(tmpl['transactions'][0]['hash'] == txid) assert(tmpl['transactions'][0]['sigops'] == 2) tmpl = self.nodes[0].getblocktemplate({'rules':['segwit']}) assert(tmpl['sizelimit'] == 1000000) assert('weightlimit' not in tmpl) assert(tmpl['sigoplimit'] == 20000) assert(tmpl['transactions'][0]['hash'] == txid) assert(tmpl['transactions'][0]['sigops'] == 2) self.nodes[0].generate(1) #block 162 balance_presetup = self.nodes[0].getbalance() self.pubkey = [] p2sh_ids = [] # p2sh_ids[NODE][VER] is an array of txids that spend to a witness version VER pkscript to an address for NODE embedded in p2sh wit_ids = [] # wit_ids[NODE][VER] is an array of txids that spend to a witness version VER pkscript to an address for NODE via bare witness for i in range(3): newaddress = self.nodes[i].getnewaddress() self.pubkey.append(self.nodes[i].getaddressinfo(newaddress)["pubkey"]) multiscript = CScript([OP_1, hex_str_to_bytes(self.pubkey[-1]), OP_1, OP_CHECKMULTISIG]) p2sh_addr = self.nodes[i].addwitnessaddress(newaddress) bip173_addr = self.nodes[i].addwitnessaddress(newaddress, False) p2sh_ms_addr = self.nodes[i].addmultisigaddress(1, [self.pubkey[-1]], '', 'p2sh-segwit')['address'] bip173_ms_addr = self.nodes[i].addmultisigaddress(1, [self.pubkey[-1]], '', 'bech32')['address'] assert_equal(p2sh_addr, key_to_p2sh_p2wpkh(self.pubkey[-1])) assert_equal(bip173_addr, key_to_p2wpkh(self.pubkey[-1])) assert_equal(p2sh_ms_addr, script_to_p2sh_p2wsh(multiscript)) assert_equal(bip173_ms_addr, script_to_p2wsh(multiscript)) p2sh_ids.append([]) wit_ids.append([]) for v in range(2): p2sh_ids[i].append([]) wit_ids[i].append([]) for i in range(5): for n in range(3): for v in range(2): wit_ids[n][v].append(send_to_witness(v, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[n], False, Decimal("49.999"))) p2sh_ids[n][v].append(send_to_witness(v, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[n], True, Decimal("49.999"))) self.nodes[0].generate(1) #block 163 sync_blocks(self.nodes) # Make sure all nodes recognize the transactions as theirs assert_equal(self.nodes[0].getbalance(), balance_presetup - 60*50 + 20*Decimal("49.999") + 50) assert_equal(self.nodes[1].getbalance(), 20*Decimal("49.999")) assert_equal(self.nodes[2].getbalance(), 20*Decimal("49.999")) self.nodes[0].generate(260) #block 423 sync_blocks(self.nodes) self.log.info("Verify witness txs are skipped for mining before the fork") self.skip_mine(self.nodes[2], wit_ids[NODE_2][WIT_V0][0], True) #block 424 self.skip_mine(self.nodes[2], wit_ids[NODE_2][WIT_V1][0], True) #block 425 self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V0][0], True) #block 426 self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V1][0], True) #block 427 self.log.info("Verify unsigned p2sh witness txs without a redeem script are invalid") self.fail_accept(self.nodes[2], "mandatory-script-verify-flag", p2sh_ids[NODE_2][WIT_V0][1], False) self.fail_accept(self.nodes[2], "mandatory-script-verify-flag", p2sh_ids[NODE_2][WIT_V1][1], False) self.nodes[2].generate(4) # blocks 428-431 self.log.info("Verify previous witness txs skipped for mining can now be mined") assert_equal(len(self.nodes[2].getrawmempool()), 4) block = self.nodes[2].generate(1) #block 432 (first block with new rules; 432 = 144 * 3) sync_blocks(self.nodes) assert_equal(len(self.nodes[2].getrawmempool()), 0) segwit_tx_list = self.nodes[2].getblock(block[0])["tx"] assert_equal(len(segwit_tx_list), 5) self.log.info("Verify default node can't accept txs with missing witness") # unsigned, no scriptsig self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", wit_ids[NODE_0][WIT_V0][0], False) self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", wit_ids[NODE_0][WIT_V1][0], False) self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", p2sh_ids[NODE_0][WIT_V0][0], False) self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", p2sh_ids[NODE_0][WIT_V1][0], False) # unsigned with redeem script self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", p2sh_ids[NODE_0][WIT_V0][0], False, witness_script(False, self.pubkey[0])) self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", p2sh_ids[NODE_0][WIT_V1][0], False, witness_script(True, self.pubkey[0])) self.log.info("Verify block and transaction serialization rpcs return differing serializations depending on rpc serialization flag") assert(self.nodes[2].getblock(block[0], False) != self.nodes[0].getblock(block[0], False)) assert(self.nodes[1].getblock(block[0], False) == self.nodes[2].getblock(block[0], False)) for i in range(len(segwit_tx_list)): tx = FromHex(CTransaction(), self.nodes[2].gettransaction(segwit_tx_list[i])["hex"]) assert(self.nodes[2].getrawtransaction(segwit_tx_list[i]) != self.nodes[0].getrawtransaction(segwit_tx_list[i])) assert(self.nodes[1].getrawtransaction(segwit_tx_list[i], 0) == self.nodes[2].getrawtransaction(segwit_tx_list[i])) assert(self.nodes[0].getrawtransaction(segwit_tx_list[i]) != self.nodes[2].gettransaction(segwit_tx_list[i])["hex"]) assert(self.nodes[1].getrawtransaction(segwit_tx_list[i]) == self.nodes[2].gettransaction(segwit_tx_list[i])["hex"]) assert(self.nodes[0].getrawtransaction(segwit_tx_list[i]) == bytes_to_hex_str(tx.serialize_without_witness())) self.log.info("Verify witness txs without witness data are invalid after the fork") self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program hash mismatch) (code 64)', wit_ids[NODE_2][WIT_V0][2], sign=False) self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program was passed an empty witness) (code 64)', wit_ids[NODE_2][WIT_V1][2], sign=False) self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program hash mismatch) (code 64)', p2sh_ids[NODE_2][WIT_V0][2], sign=False, redeem_script=witness_script(False, self.pubkey[2])) self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program was passed an empty witness) (code 64)', p2sh_ids[NODE_2][WIT_V1][2], sign=False, redeem_script=witness_script(True, self.pubkey[2])) self.log.info("Verify default node can now use witness txs") self.success_mine(self.nodes[0], wit_ids[NODE_0][WIT_V0][0], True) #block 432 self.success_mine(self.nodes[0], wit_ids[NODE_0][WIT_V1][0], True) #block 433 self.success_mine(self.nodes[0], p2sh_ids[NODE_0][WIT_V0][0], True) #block 434 self.success_mine(self.nodes[0], p2sh_ids[NODE_0][WIT_V1][0], True) #block 435 self.log.info("Verify sigops are counted in GBT with BIP141 rules after the fork") txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) tmpl = self.nodes[0].getblocktemplate({'rules':['segwit']}) assert(tmpl['sizelimit'] >= 3999577) # actual maximum size is lower due to minimum mandatory non-witness data assert(tmpl['weightlimit'] == 4000000) assert(tmpl['sigoplimit'] == 80000) assert(tmpl['transactions'][0]['txid'] == txid) assert(tmpl['transactions'][0]['sigops'] == 8) self.nodes[0].generate(1) # Mine a block to clear the gbt cache self.log.info("Non-segwit miners are able to use GBT response after activation.") # Create a 3-tx chain: tx1 (non-segwit input, paying to a segwit output) -> # tx2 (segwit input, paying to a non-segwit output) -> # tx3 (non-segwit input, paying to a non-segwit output). # tx1 is allowed to appear in the block, but no others. txid1 = send_to_witness(1, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[0], False, Decimal("49.996")) hex_tx = self.nodes[0].gettransaction(txid)['hex'] tx = FromHex(CTransaction(), hex_tx) assert(tx.wit.is_null()) # This should not be a segwit input assert(txid1 in self.nodes[0].getrawmempool()) # Now create tx2, which will spend from txid1. tx = CTransaction() tx.vin.append(CTxIn(COutPoint(int(txid1, 16), 0), b'')) tx.vout.append(CTxOut(int(49.99 * COIN), CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) tx2_hex = self.nodes[0].signrawtransactionwithwallet(ToHex(tx))['hex'] txid2 = self.nodes[0].sendrawtransaction(tx2_hex) tx = FromHex(CTransaction(), tx2_hex) assert(not tx.wit.is_null()) # Now create tx3, which will spend from txid2 tx = CTransaction() tx.vin.append(CTxIn(COutPoint(int(txid2, 16), 0), b"")) tx.vout.append(CTxOut(int(49.95 * COIN), CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) # Huge fee tx.calc_sha256() txid3 = self.nodes[0].sendrawtransaction(ToHex(tx)) assert(tx.wit.is_null()) assert(txid3 in self.nodes[0].getrawmempool()) # Now try calling getblocktemplate() without segwit support. template = self.nodes[0].getblocktemplate() # Check that tx1 is the only transaction of the 3 in the template. template_txids = [ t['txid'] for t in template['transactions'] ] assert(txid2 not in template_txids and txid3 not in template_txids) assert(txid1 in template_txids) # Check that running with segwit support results in all 3 being included. template = self.nodes[0].getblocktemplate({"rules": ["segwit"]}) template_txids = [ t['txid'] for t in template['transactions'] ] assert(txid1 in template_txids) assert(txid2 in template_txids) assert(txid3 in template_txids) # Check that wtxid is properly reported in mempool entry assert_equal(int(self.nodes[0].getmempoolentry(txid3)["wtxid"], 16), tx.calc_sha256(True)) # Mine a block to clear the gbt cache again. self.nodes[0].generate(1) self.log.info("Verify behaviour of importaddress, addwitnessaddress and listunspent") # Some public keys to be used later pubkeys = [ "0363D44AABD0F1699138239DF2F042C3282C0671CC7A76826A55C8203D90E39242", # cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb "02D3E626B3E616FC8662B489C123349FECBFC611E778E5BE739B257EAE4721E5BF", # cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97 "04A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538A62F5BD8EC85C2477F39650BD391EA6250207065B2A81DA8B009FC891E898F0E", # 91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV "02A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538", # cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd "036722F784214129FEB9E8129D626324F3F6716555B603FFE8300BBCB882151228", # cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66 "0266A8396EE936BF6D99D17920DB21C6C7B1AB14C639D5CD72B300297E416FD2EC", # cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K "0450A38BD7F0AC212FEBA77354A9B036A32E0F7C81FC4E0C5ADCA7C549C4505D2522458C2D9AE3CEFD684E039194B72C8A10F9CB9D4764AB26FCC2718D421D3B84", # 92h2XPssjBpsJN5CqSP7v9a7cf2kgDunBC6PDFwJHMACM1rrVBJ ] # Import a compressed key and an uncompressed key, generate some multisig addresses self.nodes[0].importprivkey("92e6XLo5jVAVwrQKPNTs93oQco8f8sDNBcpv73Dsrs397fQtFQn") uncompressed_spendable_address = ["mvozP4UwyGD2mGZU4D2eMvMLPB9WkMmMQu"] self.nodes[0].importprivkey("cNC8eQ5dg3mFAVePDX4ddmPYpPbw41r9bm2jd1nLJT77e6RrzTRR") compressed_spendable_address = ["mmWQubrDomqpgSYekvsU7HWEVjLFHAakLe"] assert ((self.nodes[0].getaddressinfo(uncompressed_spendable_address[0])['iscompressed'] == False)) assert ((self.nodes[0].getaddressinfo(compressed_spendable_address[0])['iscompressed'] == True)) self.nodes[0].importpubkey(pubkeys[0]) compressed_solvable_address = [key_to_p2pkh(pubkeys[0])] self.nodes[0].importpubkey(pubkeys[1]) compressed_solvable_address.append(key_to_p2pkh(pubkeys[1])) self.nodes[0].importpubkey(pubkeys[2]) uncompressed_solvable_address = [key_to_p2pkh(pubkeys[2])] spendable_anytime = [] # These outputs should be seen anytime after importprivkey and addmultisigaddress spendable_after_importaddress = [] # These outputs should be seen after importaddress solvable_after_importaddress = [] # These outputs should be seen after importaddress but not spendable unsolvable_after_importaddress = [] # These outputs should be unsolvable after importaddress solvable_anytime = [] # These outputs should be solvable after importpubkey unseen_anytime = [] # These outputs should never be seen uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], compressed_spendable_address[0]])['address']) uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], uncompressed_spendable_address[0]])['address']) compressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_spendable_address[0]])['address']) uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], uncompressed_solvable_address[0]])['address']) compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_solvable_address[0]])['address']) compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_solvable_address[0], compressed_solvable_address[1]])['address']) unknown_address = ["mtKKyoHabkk6e4ppT7NaM7THqPUt7AzPrT", "2NDP3jLWAFT8NDAiUa9qiE6oBt2awmMq7Dx"] # Test multisig_without_privkey # We have 2 public keys without private keys, use addmultisigaddress to add to wallet. # Money sent to P2SH of multisig of this should only be seen after importaddress with the BASE58 P2SH address. multisig_without_privkey_address = self.nodes[0].addmultisigaddress(2, [pubkeys[3], pubkeys[4]])['address'] script = CScript([OP_2, hex_str_to_bytes(pubkeys[3]), hex_str_to_bytes(pubkeys[4]), OP_2, OP_CHECKMULTISIG]) solvable_after_importaddress.append(CScript([OP_HASH160, hash160(script), OP_EQUAL])) for i in compressed_spendable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # p2sh multisig with compressed keys should always be spendable spendable_anytime.extend([p2sh]) # bare multisig can be watched and signed, but is not treated as ours solvable_after_importaddress.extend([bare]) # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after direct importaddress spendable_after_importaddress.extend([p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # normal P2PKH and P2PK with compressed keys should always be spendable spendable_anytime.extend([p2pkh, p2pk]) # P2SH_P2PK, P2SH_P2PKH with compressed keys are spendable after direct importaddress spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]) # P2WPKH and P2SH_P2WPKH with compressed keys should always be spendable spendable_anytime.extend([p2wpkh, p2sh_p2wpkh]) for i in uncompressed_spendable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # p2sh multisig with uncompressed keys should always be spendable spendable_anytime.extend([p2sh]) # bare multisig can be watched and signed, but is not treated as ours solvable_after_importaddress.extend([bare]) # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen unseen_anytime.extend([p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # normal P2PKH and P2PK with uncompressed keys should always be spendable spendable_anytime.extend([p2pkh, p2pk]) # P2SH_P2PK and P2SH_P2PKH are spendable after direct importaddress spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh]) # Witness output types with uncompressed keys are never seen unseen_anytime.extend([p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]) for i in compressed_solvable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): # Multisig without private is not seen after addmultisigaddress, but seen after importaddress [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) solvable_after_importaddress.extend([bare, p2sh, p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # normal P2PKH, P2PK, P2WPKH and P2SH_P2WPKH with compressed keys should always be seen solvable_anytime.extend([p2pkh, p2pk, p2wpkh, p2sh_p2wpkh]) # P2SH_P2PK, P2SH_P2PKH with compressed keys are seen after direct importaddress solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]) for i in uncompressed_solvable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # Base uncompressed multisig without private is not seen after addmultisigaddress, but seen after importaddress solvable_after_importaddress.extend([bare, p2sh]) # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen unseen_anytime.extend([p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # normal P2PKH and P2PK with uncompressed keys should always be seen solvable_anytime.extend([p2pkh, p2pk]) # P2SH_P2PK, P2SH_P2PKH with uncompressed keys are seen after direct importaddress solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh]) # Witness output types with uncompressed keys are never seen unseen_anytime.extend([p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]) op1 = CScript([OP_1]) op0 = CScript([OP_0]) # 2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe is the P2SH(P2PKH) version of mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V unsolvable_address = ["mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V", "2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe", script_to_p2sh(op1), script_to_p2sh(op0)] unsolvable_address_key = hex_str_to_bytes("02341AEC7587A51CDE5279E0630A531AEA2615A9F80B17E8D9376327BAEAA59E3D") unsolvablep2pkh = CScript([OP_DUP, OP_HASH160, hash160(unsolvable_address_key), OP_EQUALVERIFY, OP_CHECKSIG]) unsolvablep2wshp2pkh = CScript([OP_0, sha256(unsolvablep2pkh)]) p2shop0 = CScript([OP_HASH160, hash160(op0), OP_EQUAL]) p2wshop1 = CScript([OP_0, sha256(op1)]) unsolvable_after_importaddress.append(unsolvablep2pkh) unsolvable_after_importaddress.append(unsolvablep2wshp2pkh) unsolvable_after_importaddress.append(op1) # OP_1 will be imported as script unsolvable_after_importaddress.append(p2wshop1) unseen_anytime.append(op0) # OP_0 will be imported as P2SH address with no script provided unsolvable_after_importaddress.append(p2shop0) spendable_txid = [] solvable_txid = [] spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime, 2)) solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime, 1)) self.mine_and_test_listunspent(spendable_after_importaddress + solvable_after_importaddress + unseen_anytime + unsolvable_after_importaddress, 0) importlist = [] for i in compressed_spendable_address + uncompressed_spendable_address + compressed_solvable_address + uncompressed_solvable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): bare = hex_str_to_bytes(v['hex']) importlist.append(bytes_to_hex_str(bare)) importlist.append(bytes_to_hex_str(CScript([OP_0, sha256(bare)]))) else: pubkey = hex_str_to_bytes(v['pubkey']) p2pk = CScript([pubkey, OP_CHECKSIG]) p2pkh = CScript([OP_DUP, OP_HASH160, hash160(pubkey), OP_EQUALVERIFY, OP_CHECKSIG]) importlist.append(bytes_to_hex_str(p2pk)) importlist.append(bytes_to_hex_str(p2pkh)) importlist.append(bytes_to_hex_str(CScript([OP_0, hash160(pubkey)]))) importlist.append(bytes_to_hex_str(CScript([OP_0, sha256(p2pk)]))) importlist.append(bytes_to_hex_str(CScript([OP_0, sha256(p2pkh)]))) importlist.append(bytes_to_hex_str(unsolvablep2pkh)) importlist.append(bytes_to_hex_str(unsolvablep2wshp2pkh)) importlist.append(bytes_to_hex_str(op1)) importlist.append(bytes_to_hex_str(p2wshop1)) for i in importlist: # import all generated addresses. The wallet already has the private keys for some of these, so catch JSON RPC # exceptions and continue. try_rpc(-4, "The wallet already contains the private key for this address or script", self.nodes[0].importaddress, i, "", False, True) self.nodes[0].importaddress(script_to_p2sh(op0)) # import OP_0 as address only self.nodes[0].importaddress(multisig_without_privkey_address) # Test multisig_without_privkey spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime + spendable_after_importaddress, 2)) solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime + solvable_after_importaddress, 1)) self.mine_and_test_listunspent(unsolvable_after_importaddress, 1) self.mine_and_test_listunspent(unseen_anytime, 0) # addwitnessaddress should refuse to return a witness address if an uncompressed key is used # note that no witness address should be returned by unsolvable addresses for i in uncompressed_spendable_address + uncompressed_solvable_address + unknown_address + unsolvable_address: assert_raises_rpc_error(-4, "Public key or redeemscript not known to wallet, or the key is uncompressed", self.nodes[0].addwitnessaddress, i) # addwitnessaddress should return a witness addresses even if keys are not in the wallet self.nodes[0].addwitnessaddress(multisig_without_privkey_address) for i in compressed_spendable_address + compressed_solvable_address: witaddress = self.nodes[0].addwitnessaddress(i) # addwitnessaddress should return the same address if it is a known P2SH-witness address assert_equal(witaddress, self.nodes[0].addwitnessaddress(witaddress)) spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime + spendable_after_importaddress, 2)) solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime + solvable_after_importaddress, 1)) self.mine_and_test_listunspent(unsolvable_after_importaddress, 1) self.mine_and_test_listunspent(unseen_anytime, 0) # Repeat some tests. This time we don't add witness scripts with importaddress # Import a compressed key and an uncompressed key, generate some multisig addresses self.nodes[0].importprivkey("927pw6RW8ZekycnXqBQ2JS5nPyo1yRfGNN8oq74HeddWSpafDJH") uncompressed_spendable_address = ["mguN2vNSCEUh6rJaXoAVwY3YZwZvEmf5xi"] self.nodes[0].importprivkey("cMcrXaaUC48ZKpcyydfFo8PxHAjpsYLhdsp6nmtB3E2ER9UUHWnw") compressed_spendable_address = ["n1UNmpmbVUJ9ytXYXiurmGPQ3TRrXqPWKL"] self.nodes[0].importpubkey(pubkeys[5]) compressed_solvable_address = [key_to_p2pkh(pubkeys[5])] self.nodes[0].importpubkey(pubkeys[6]) uncompressed_solvable_address = [key_to_p2pkh(pubkeys[6])] spendable_after_addwitnessaddress = [] # These outputs should be seen after importaddress solvable_after_addwitnessaddress=[] # These outputs should be seen after importaddress but not spendable unseen_anytime = [] # These outputs should never be seen solvable_anytime = [] # These outputs should be solvable after importpubkey unseen_anytime = [] # These outputs should never be seen uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], compressed_spendable_address[0]])['address']) uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], uncompressed_spendable_address[0]])['address']) compressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_spendable_address[0]])['address']) uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_solvable_address[0], uncompressed_solvable_address[0]])['address']) compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_solvable_address[0]])['address']) premature_witaddress = [] for i in compressed_spendable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after addwitnessaddress spendable_after_addwitnessaddress.extend([p2wsh, p2sh_p2wsh]) premature_witaddress.append(script_to_p2sh(p2wsh)) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # P2WPKH, P2SH_P2WPKH are always spendable spendable_anytime.extend([p2wpkh, p2sh_p2wpkh]) for i in uncompressed_spendable_address + uncompressed_solvable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen unseen_anytime.extend([p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # P2WPKH, P2SH_P2WPKH with uncompressed keys are never seen unseen_anytime.extend([p2wpkh, p2sh_p2wpkh]) for i in compressed_solvable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): # P2WSH multisig without private key are seen after addwitnessaddress [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) solvable_after_addwitnessaddress.extend([p2wsh, p2sh_p2wsh]) premature_witaddress.append(script_to_p2sh(p2wsh)) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # P2SH_P2PK, P2SH_P2PKH with compressed keys are always solvable solvable_anytime.extend([p2wpkh, p2sh_p2wpkh]) self.mine_and_test_listunspent(spendable_anytime, 2) self.mine_and_test_listunspent(solvable_anytime, 1) self.mine_and_test_listunspent(spendable_after_addwitnessaddress + solvable_after_addwitnessaddress + unseen_anytime, 0) # addwitnessaddress should refuse to return a witness address if an uncompressed key is used # note that a multisig address returned by addmultisigaddress is not solvable until it is added with importaddress # premature_witaddress are not accepted until the script is added with addwitnessaddress first for i in uncompressed_spendable_address + uncompressed_solvable_address + premature_witaddress: # This will raise an exception assert_raises_rpc_error(-4, "Public key or redeemscript not known to wallet, or the key is uncompressed", self.nodes[0].addwitnessaddress, i) # after importaddress it should pass addwitnessaddress v = self.nodes[0].getaddressinfo(compressed_solvable_address[1]) self.nodes[0].importaddress(v['hex'],"",False,True) for i in compressed_spendable_address + compressed_solvable_address + premature_witaddress: witaddress = self.nodes[0].addwitnessaddress(i) assert_equal(witaddress, self.nodes[0].addwitnessaddress(witaddress)) spendable_txid.append(self.mine_and_test_listunspent(spendable_after_addwitnessaddress + spendable_anytime, 2)) solvable_txid.append(self.mine_and_test_listunspent(solvable_after_addwitnessaddress + solvable_anytime, 1)) self.mine_and_test_listunspent(unseen_anytime, 0) # Check that createrawtransaction/decoderawtransaction with non-v0 Bech32 works v1_addr = program_to_witness(1, [3,5]) v1_tx = self.nodes[0].createrawtransaction([getutxo(spendable_txid[0])],{v1_addr: 1}) v1_decoded = self.nodes[1].decoderawtransaction(v1_tx) assert_equal(v1_decoded['vout'][0]['scriptPubKey']['addresses'][0], v1_addr) assert_equal(v1_decoded['vout'][0]['scriptPubKey']['hex'], "51020305") # Check that spendable outputs are really spendable self.create_and_mine_tx_from_txids(spendable_txid) # import all the private keys so solvable addresses become spendable self.nodes[0].importprivkey("cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb") self.nodes[0].importprivkey("cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97") self.nodes[0].importprivkey("91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV") self.nodes[0].importprivkey("cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd") self.nodes[0].importprivkey("cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66") self.nodes[0].importprivkey("cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K") self.create_and_mine_tx_from_txids(solvable_txid) # Test that importing native P2WPKH/P2WSH scripts works for use_p2wsh in [False, True]: if use_p2wsh: scriptPubKey = "00203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a" transaction = "01000000000100e1f505000000002200203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a00000000" else: scriptPubKey = "a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d87" transaction = "01000000000100e1f5050000000017a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d8700000000" self.nodes[1].importaddress(scriptPubKey, "", False) rawtxfund = self.nodes[1].fundrawtransaction(transaction)['hex'] rawtxfund = self.nodes[1].signrawtransactionwithwallet(rawtxfund)["hex"] txid = self.nodes[1].sendrawtransaction(rawtxfund) assert_equal(self.nodes[1].gettransaction(txid, True)["txid"], txid) assert_equal(self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"], txid) # Assert it is properly saved self.stop_node(1) self.start_node(1) assert_equal(self.nodes[1].gettransaction(txid, True)["txid"], txid) assert_equal(self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"], txid) def mine_and_test_listunspent(self, script_list, ismine): utxo = find_spendable_utxo(self.nodes[0], 50) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(int('0x'+utxo['txid'],0), utxo['vout']))) for i in script_list: tx.vout.append(CTxOut(10000000, i)) tx.rehash() signresults = self.nodes[0].signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize_without_witness()))['hex'] txid = self.nodes[0].sendrawtransaction(signresults, True) self.nodes[0].generate(1) sync_blocks(self.nodes) watchcount = 0 spendcount = 0 for i in self.nodes[0].listunspent(): if (i['txid'] == txid): watchcount += 1 if (i['spendable'] == True): spendcount += 1 if (ismine == 2): assert_equal(spendcount, len(script_list)) elif (ismine == 1): assert_equal(watchcount, len(script_list)) assert_equal(spendcount, 0) else: assert_equal(watchcount, 0) return txid def p2sh_address_to_script(self,v): bare = CScript(hex_str_to_bytes(v['hex'])) p2sh = CScript(hex_str_to_bytes(v['scriptPubKey'])) p2wsh = CScript([OP_0, sha256(bare)]) p2sh_p2wsh = CScript([OP_HASH160, hash160(p2wsh), OP_EQUAL]) return([bare, p2sh, p2wsh, p2sh_p2wsh]) def p2pkh_address_to_script(self,v): pubkey = hex_str_to_bytes(v['pubkey']) p2wpkh = CScript([OP_0, hash160(pubkey)]) p2sh_p2wpkh = CScript([OP_HASH160, hash160(p2wpkh), OP_EQUAL]) p2pk = CScript([pubkey, OP_CHECKSIG]) p2pkh = CScript(hex_str_to_bytes(v['scriptPubKey'])) p2sh_p2pk = CScript([OP_HASH160, hash160(p2pk), OP_EQUAL]) p2sh_p2pkh = CScript([OP_HASH160, hash160(p2pkh), OP_EQUAL]) p2wsh_p2pk = CScript([OP_0, sha256(p2pk)]) p2wsh_p2pkh = CScript([OP_0, sha256(p2pkh)]) p2sh_p2wsh_p2pk = CScript([OP_HASH160, hash160(p2wsh_p2pk), OP_EQUAL]) p2sh_p2wsh_p2pkh = CScript([OP_HASH160, hash160(p2wsh_p2pkh), OP_EQUAL]) return [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] def create_and_mine_tx_from_txids(self, txids, success = True): tx = CTransaction() for i in txids: txtmp = CTransaction() txraw = self.nodes[0].getrawtransaction(i) f = BytesIO(hex_str_to_bytes(txraw)) txtmp.deserialize(f) for j in range(len(txtmp.vout)): tx.vin.append(CTxIn(COutPoint(int('0x'+i,0), j))) tx.vout.append(CTxOut(0, CScript())) tx.rehash() signresults = self.nodes[0].signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize_without_witness()))['hex'] self.nodes[0].sendrawtransaction(signresults, True) self.nodes[0].generate(1) sync_blocks(self.nodes) if __name__ == '__main__': SegWitTest().main()
62.272588
224
0.688299
6ac3e01264c7cd59a4d56a205c71b7c01aeb2680
7,357
py
Python
src/habitat_sim2real/sims/ros/rosrobot_sim.py
WGW101/habitat_sim2real
04be5215af53122f166d6dfdfb131af3619d10a0
[ "MIT" ]
null
null
null
src/habitat_sim2real/sims/ros/rosrobot_sim.py
WGW101/habitat_sim2real
04be5215af53122f166d6dfdfb131af3619d10a0
[ "MIT" ]
null
null
null
src/habitat_sim2real/sims/ros/rosrobot_sim.py
WGW101/habitat_sim2real
04be5215af53122f166d6dfdfb131af3619d10a0
[ "MIT" ]
null
null
null
import numpy as np import cv2 import quaternion as quat import habitat from habitat.core.simulator import Simulator, RGBSensor, DepthSensor, SensorSuite from gym import spaces from .intf_node import HabitatInterfaceROSNode class ROSDepthSensor(DepthSensor): def _get_observation_space(self, *args, **kwargs): return spaces.Box(low=0 if self.config.NORMALIZE_DEPTH else self.config.MIN_DEPTH, high=1 if self.config.NORMALIZE_DEPTH else self.config.MAX_DEPTH, shape=(self.config.HEIGHT, self.config.WIDTH, 1), dtype=np.float32) def get_observation(self, sim_obs): out = cv2.resize(sim_obs[1], (self.config.WIDTH, self.config.HEIGHT)) out = out.astype(np.float32) * 0.001 out = np.clip(out, self.config.MIN_DEPTH, self.config.MAX_DEPTH) if self.config.NORMALIZE_DEPTH: out = (out - self.config.MIN_DEPTH) \ / (self.config.MAX_DEPTH - self.config.MIN_DEPTH) return out[:, :, np.newaxis] class ROSRGBSensor(RGBSensor): def _get_observation_space(self, *args, **kwargs): return spaces.Box(low=0, high=255, shape=(self.config.HEIGHT, self.config.WIDTH, 3), dtype=np.uint8) def get_observation(self, sim_obs): out = cv2.resize(sim_obs[0], (self.config.WIDTH, self.config.HEIGHT)) return out class AgentState: def __init__(self, p, q): self.position = np.array(p) self.rotation = quat.quaternion(q[3], *q[:3]) def __repr__(self): return "AgentState(position={}, rotation={})".format(self.position, self.rotation) class DummyROSAgent: def __init__(self, state): self.state = state class DummyROSPathfinder: def __init__(self, intf_node): self._intf_node = intf_node self._bounds = None self._topdown = None def get_bounds(self): if self._bounds is None: self._bounds = self._intf_node.get_map_bounds() return self._bounds def get_topdown_view(self, *args, **kwargs): if self._topdown is None: thresh = self._intf_node.cfg.MAP_FREE_THRESH grid = self._intf_node.get_map_grid() self._topdown = (grid < thresh) & (grid > -1) return self._topdown @habitat.registry.register_simulator(name="ROS-Robot-v0") class ROSRobot(Simulator): def __init__(self, config): self.habitat_config = config self.intf_node = HabitatInterfaceROSNode(config.ROS) self.pathfinder = DummyROSPathfinder(self.intf_node) self.cur_camera_tilt = 0 self._sensor_suite = SensorSuite([ROSRGBSensor(config=config.RGB_SENSOR), ROSDepthSensor(config=config.DEPTH_SENSOR)]) if config.ACTION_SPACE_CONFIG == "v0": self._action_space = spaces.Discrete(4) else: # v1 or pyrobotnoisy self._action_space = spaces.Discrete(6) self.has_published_goal = False self.previous_step_collided = False @property def sensor_suite(self): return self._sensor_suite @property def action_space(self): return self._action_space def reconfigure(self, config): self.habitat_config = config def reset(self): self.has_published_goal = False ag_cfg = getattr(self.habitat_config, self.habitat_config.AGENTS[self.habitat_config.DEFAULT_AGENT_ID]) if ag_cfg.IS_SET_START_STATE: pos = np.array(ag_cfg.START_POSITION) rot = quat.quaternion(ag_cfg.START_ROTATION[3], *ag_cfg.START_ROTATION[:3]) state = self.get_agent_state() if not (np.allclose(pos, state.position) and quat.isclose(rot, state.rotation)): self.intf_node.cancel_move_on_bump = False self.intf_node.move_to_absolute(ag_cfg.START_POSITION, ag_cfg.START_ROTATION) self.intf_node.cancel_move_on_bump = True self.intf_node.set_camera_tilt(self.habitat_config.RGB_SENSOR.ORIENTATION[0]) self.intf_node.clear_collided() self.previous_step_collided = False raw_images = self.intf_node.get_raw_images() return self._sensor_suite.get_observations(raw_images) def step(self, action): if action == 0: # STOP pass elif action == 1: # MOVE_FORWARD self.intf_node.move_to_relative(self.habitat_config.FORWARD_STEP_SIZE, 0) elif action == 2: # TURN_LEFT self.intf_node.move_to_relative(0, np.radians(self.habitat_config.TURN_ANGLE)) elif action == 3: # TURN_RIGHT self.intf_node.move_to_relative(0, -np.radians(self.habitat_config.TURN_ANGLE)) elif action == 4: # LOOK_UP self.cur_camera_tilt -= self.habitat_config.TILT_ANGLE self.cur_camera_tilt = max(-45, min(self.cur_camera_tilt, 45)) self.intf_node.set_camera_tilt(np.radians(self.cur_camera_tilt)) elif action == 5: # LOOK_DOWN self.cur_camera_tilt += self.habitat_config.TILT_ANGLE self.cur_camera_tilt = max(-45, min(self.cur_camera_tilt, 45)) self.intf_node.set_camera_tilt(np.radians(self.cur_camera_tilt)) has_collided = self.intf_node.has_collided() if not self.previous_step_collided and has_collided: self.intf_node.clear_collided() self.previous_step_collided = True raw_images = self.intf_node.get_raw_images() return self._sensor_suite.get_observations(raw_images) def get_observations_at(self, position=None, rotation=None, keep_agent_at_new_pose=False): if position is None and rotation is None: raw_images = self.intf_node.get_raw_images() return self._sensor_suite.get_observations(raw_images) else: raise RuntimeError("Can only query observations for current pose on a real robot.") def get_agent(self, agent_id=0): return DummyROSAgent(self.get_agent_state()) def get_agent_state(self, agent_id=0): p, q = self.intf_node.get_robot_pose() return AgentState(p, q) def geodesic_distance(self, src, destinations, episode=None): try: iter(destinations[0]) except TypeError: destinations = [destinations] # Kinda hacky... Sim has no way to know the goal when a new episode starts # But the first call to geodesic_distance is for the distance_to_goal measure... if not self.has_published_goal: self.publish_episode_goal(destinations[0]) self.has_published_goal = True return min(self.intf_node.get_distance(src, dst) for dst in destinations) def sample_navigable_point(self): return self.intf_node.sample_free_point() def get_topdown_map(self): return self.intf_node.get_map_grid() def seed(self, seed): self.intf_node.seed_rng(seed) @property def up_vector(self): return np.array([0.0, 1.0, 0.0]) @property def forward_vector(self): return np.array([0.0, 0.0, -1.0]) def publish_episode_goal(self, goal_pos): self.intf_node.publish_episode_goal(goal_pos)
38.317708
95
0.651896
7cece274eced4635192b66f3fec43f31dd269b95
777
py
Python
test/test_sphering.py
exepulveda/pymgt
c49a1de3d45b82ce8dd659693e3c41fc4c967b24
[ "MIT" ]
1
2021-07-10T00:58:30.000Z
2021-07-10T00:58:30.000Z
test/test_sphering.py
exepulveda/pymgt
c49a1de3d45b82ce8dd659693e3c41fc4c967b24
[ "MIT" ]
null
null
null
test/test_sphering.py
exepulveda/pymgt
c49a1de3d45b82ce8dd659693e3c41fc4c967b24
[ "MIT" ]
null
null
null
import numpy as np from pymgt import * from test_utils import * def test_simple(): sample_size = 10000 ndim = 5 t = SpheringTransform(name='sphering') x = np.random.uniform(10.0, 20.0, size=(sample_size, ndim)) y = t.fit_transform(x) assert_reversibility(t, x) def test_states(): sample_size = 1000 ndim = 4 t = SpheringTransform(name='sphering') x = np.random.uniform(-20.0, -10.0, size=(sample_size, ndim)) y, x_back = assert_reversibility(t, x) state = t.state # build new object t = SpheringTransform(name='sphering') t.state = state y2 = t.transform(x) x_back2 = t.inverse_transform(y2) np.testing.assert_array_almost_equal(y, y2) np.testing.assert_array_almost_equal(x_back, x_back2)
21.583333
65
0.666667
9421dbcce2d7beabaf59b4325be569e8e680769c
1,695
py
Python
train.py
sotirioszikas/Image-Classifier-Udacity-2nd-Project
74ef6490b642770ab37cf7d534c0b83a5f7f1606
[ "MIT" ]
null
null
null
train.py
sotirioszikas/Image-Classifier-Udacity-2nd-Project
74ef6490b642770ab37cf7d534c0b83a5f7f1606
[ "MIT" ]
null
null
null
train.py
sotirioszikas/Image-Classifier-Udacity-2nd-Project
74ef6490b642770ab37cf7d534c0b83a5f7f1606
[ "MIT" ]
null
null
null
#Imports import torch from torch import nn, optim, tensor import torch.nn.functional as F from torchvision import datasets, transforms, models import matplotlib.pyplot as plt import json import numpy as np from collections import OrderedDict from PIL import Image from torch.optim import lr_scheduler import os import copy import argparse import base #imports the functions in base.py in order to use them here. ap = argparse.ArgumentParser(description='train.py') ap.add_argument('--gpu', dest = "gpu", action = "store", default = "gpu") ap.add_argument('--save_dir', dest = "save_dir", action = "store", default = "/home/workspace/ImageClassifier/checkpoint.pth") ap.add_argument('--learning_rate', dest = "learning_rate", action = "store", default = 0.001) ap.add_argument('--dropout', dest = "dropout", action = "store", default = 0.5) ap.add_argument('--epochs', dest = "epochs", action = "store", type = int, default = 6) ap.add_argument('--arch', dest = "arch", action = "store", default = "vgg19", type = str) ap.add_argument('--hidden', type = int, dest = "hidden", action = "store", default = 4096) inputs = ap.parse_args() path = inputs.save_dir lr = inputs.learning_rate net = inputs.arch p = inputs.dropout hidden = inputs.hidden device = inputs.gpu epochs = inputs.epochs dataloaders,image_datasets = base.load_data() model, criterion, optimizer, scheduler = base.build_nn(p, hidden, lr, device, net) model = base.train_model(model, criterion, optimizer, scheduler, epochs, dataloaders, image_datasets, device = 'cuda') base.save_checkpoint(image_datasets, optimizer, p, hidden, lr, epochs, path, model) print("----Done! :) The model has been trained and saved!----\n")
36.06383
126
0.733333
422586408d6dbf2753cd617d82bb6a0852f5793a
14,141
py
Python
b2sdk/account_info/sqlite_account_info.py
phistrom/b2-sdk-python
b103939cc19020a5f7cae7a6e26f1073b5ba2232
[ "MIT" ]
null
null
null
b2sdk/account_info/sqlite_account_info.py
phistrom/b2-sdk-python
b103939cc19020a5f7cae7a6e26f1073b5ba2232
[ "MIT" ]
null
null
null
b2sdk/account_info/sqlite_account_info.py
phistrom/b2-sdk-python
b103939cc19020a5f7cae7a6e26f1073b5ba2232
[ "MIT" ]
null
null
null
###################################################################### # # File: b2sdk/account_info/sqlite_account_info.py # # Copyright 2019 Backblaze Inc. All Rights Reserved. # # License https://www.backblaze.com/using_b2_code.html # ###################################################################### import json import logging import os import stat import threading from .exception import (CorruptAccountInfo, MissingAccountData) from .upload_url_pool import UrlPoolAccountInfo import sqlite3 logger = logging.getLogger(__name__) B2_ACCOUNT_INFO_ENV_VAR = 'B2_ACCOUNT_INFO' B2_ACCOUNT_INFO_DEFAULT_FILE = '~/.b2_account_info' class SqliteAccountInfo(UrlPoolAccountInfo): """ Store account information in an `sqlite3 <https://www.sqlite.org>`_ database which is used to manage concurrent access to the data. The ``update_done`` table tracks the schema updates that have been completed. """ def __init__(self, file_name=None, last_upgrade_to_run=None): """ If ``file_name`` argument is empty or ``None``, path from ``B2_ACCOUNT_INFO`` environment variable is used. If that is not available, a default of ``~/.b2_account_info`` is used. :param str file_name: The sqlite file to use; overrides the default. :param int last_upgrade_to_run: For testing only, override the auto-update on the db. """ self.thread_local = threading.local() user_account_info_path = file_name or os.environ.get( B2_ACCOUNT_INFO_ENV_VAR, B2_ACCOUNT_INFO_DEFAULT_FILE ) self.filename = file_name or os.path.expanduser(user_account_info_path) logger.debug('%s file path to use: %s', self.__class__.__name__, self.filename) self._validate_database() with self._get_connection() as conn: self._create_tables(conn, last_upgrade_to_run) super(SqliteAccountInfo, self).__init__() def _validate_database(self, last_upgrade_to_run=None): """ Make sure that the database is openable. Removes the file if it's not. """ # If there is no file there, that's fine. It will get created when # we connect. if not os.path.exists(self.filename): self._create_database(last_upgrade_to_run) return # If we can connect to the database, and do anything, then all is good. try: with self._connect() as conn: self._create_tables(conn, last_upgrade_to_run) return except sqlite3.DatabaseError: pass # fall through to next case # If the file contains JSON with the right stuff in it, convert from # the old representation. try: with open(self.filename, 'rb') as f: data = json.loads(f.read().decode('utf-8')) keys = [ 'account_id', 'application_key', 'account_auth_token', 'api_url', 'download_url', 'minimum_part_size', 'realm' ] if all(k in data for k in keys): # remove the json file os.unlink(self.filename) # create a database self._create_database(last_upgrade_to_run) # add the data from the JSON file with self._connect() as conn: self._create_tables(conn, last_upgrade_to_run) insert_statement = """ INSERT INTO account (account_id, application_key, account_auth_token, api_url, download_url, minimum_part_size, realm) values (?, ?, ?, ?, ?, ?, ?); """ conn.execute(insert_statement, tuple(data[k] for k in keys)) # all is happy now return except ValueError: # includes json.decoder.JSONDecodeError pass # Remove the corrupted file and create a new database raise CorruptAccountInfo(self.filename) def _get_connection(self): """ Connections to sqlite cannot be shared across threads. """ try: return self.thread_local.connection except AttributeError: self.thread_local.connection = self._connect() return self.thread_local.connection def _connect(self): return sqlite3.connect(self.filename, isolation_level='EXCLUSIVE') def _create_database(self, last_upgrade_to_run): """ Make sure that the database is created and sets the file permissions. This should be done before storing any sensitive data in it. """ # Create the tables in the database conn = self._connect() try: with conn: self._create_tables(conn, last_upgrade_to_run) finally: conn.close() # Set the file permissions os.chmod(self.filename, stat.S_IRUSR | stat.S_IWUSR) def _create_tables(self, conn, last_upgrade_to_run): conn.execute( """ CREATE TABLE IF NOT EXISTS update_done ( update_number INT NOT NULL ); """ ) conn.execute( """ CREATE TABLE IF NOT EXISTS account ( account_id TEXT NOT NULL, application_key TEXT NOT NULL, account_auth_token TEXT NOT NULL, api_url TEXT NOT NULL, download_url TEXT NOT NULL, minimum_part_size INT NOT NULL, realm TEXT NOT NULL ); """ ) conn.execute( """ CREATE TABLE IF NOT EXISTS bucket ( bucket_name TEXT NOT NULL, bucket_id TEXT NOT NULL ); """ ) # This table is not used any more. We may use it again # someday if we save upload URLs across invocations of # the command-line tool. conn.execute( """ CREATE TABLE IF NOT EXISTS bucket_upload_url ( bucket_id TEXT NOT NULL, upload_url TEXT NOT NULL, upload_auth_token TEXT NOT NULL ); """ ) # By default, we run all the upgrades last_upgrade_to_run = 2 if last_upgrade_to_run is None else last_upgrade_to_run # Add the 'allowed' column if it hasn't been yet. if 1 <= last_upgrade_to_run: self._ensure_update(1, 'ALTER TABLE account ADD COLUMN allowed TEXT;') # Add the 'account_id_or_app_key_id' column if it hasn't been yet if 2 <= last_upgrade_to_run: self._ensure_update(2, 'ALTER TABLE account ADD COLUMN account_id_or_app_key_id TEXT;') def _ensure_update(self, update_number, update_command): """ Run the update with the given number if it hasn't been done yet. Does the update and stores the number as a single transaction, so they will always be in sync. """ with self._get_connection() as conn: conn.execute('BEGIN') cursor = conn.execute( 'SELECT COUNT(*) AS count FROM update_done WHERE update_number = ?;', (update_number,) ) update_count = cursor.fetchone()[0] assert update_count in [0, 1] if update_count == 0: conn.execute(update_command) conn.execute( 'INSERT INTO update_done (update_number) VALUES (?);', (update_number,) ) def clear(self): """ Remove all info about accounts and buckets. """ with self._get_connection() as conn: conn.execute('DELETE FROM account;') conn.execute('DELETE FROM bucket;') conn.execute('DELETE FROM bucket_upload_url;') def _set_auth_data( self, account_id, auth_token, api_url, download_url, minimum_part_size, application_key, realm, allowed, application_key_id, ): assert self.allowed_is_valid(allowed) with self._get_connection() as conn: conn.execute('DELETE FROM account;') conn.execute('DELETE FROM bucket;') conn.execute('DELETE FROM bucket_upload_url;') insert_statement = """ INSERT INTO account (account_id, account_id_or_app_key_id, application_key, account_auth_token, api_url, download_url, minimum_part_size, realm, allowed) values (?, ?, ?, ?, ?, ?, ?, ?, ?); """ conn.execute( insert_statement, ( account_id, application_key_id, application_key, auth_token, api_url, download_url, minimum_part_size, realm, json.dumps(allowed), ) ) def set_auth_data_with_schema_0_for_test( self, account_id, auth_token, api_url, download_url, minimum_part_size, application_key, realm, ): """ Set authentication data for tests. :param str account_id: an account ID :param str auth_token: an authentication token :param str api_url: an API URL :param str download_url: a download URL :param int minimum_part_size: a minimum part size :param str application_key: an application key :param str realm: a realm to authorize account in """ with self._get_connection() as conn: conn.execute('DELETE FROM account;') conn.execute('DELETE FROM bucket;') conn.execute('DELETE FROM bucket_upload_url;') insert_statement = """ INSERT INTO account (account_id, application_key, account_auth_token, api_url, download_url, minimum_part_size, realm) values (?, ?, ?, ?, ?, ?, ?); """ conn.execute( insert_statement, ( account_id, application_key, auth_token, api_url, download_url, minimum_part_size, realm, ) ) def get_application_key(self): return self._get_account_info_or_raise('application_key') def get_account_id(self): return self._get_account_info_or_raise('account_id') def get_application_key_id(self): """ Return an application key ID. The 'account_id_or_app_key_id' column was not in the original schema, so it may be NULL. Nota bene - this is the only place where we are not renaming account_id_or_app_key_id to application_key_id because it requires a column change. application_key_id == account_id_or_app_key_id :rtype: str """ result = self._get_account_info_or_raise('account_id_or_app_key_id') if result is None: return self.get_account_id() else: return result def get_api_url(self): return self._get_account_info_or_raise('api_url') def get_account_auth_token(self): return self._get_account_info_or_raise('account_auth_token') def get_download_url(self): return self._get_account_info_or_raise('download_url') def get_realm(self): return self._get_account_info_or_raise('realm') def get_minimum_part_size(self): return self._get_account_info_or_raise('minimum_part_size') def get_allowed(self): """ Return 'allowed' dictionary info. The 'allowed' column was not in the original schema, so it may be NULL. :rtype: dict """ allowed_json = self._get_account_info_or_raise('allowed') if allowed_json is None: return self.DEFAULT_ALLOWED else: return json.loads(allowed_json) def _get_account_info_or_raise(self, column_name): try: with self._get_connection() as conn: cursor = conn.execute('SELECT %s FROM account;' % (column_name,)) value = cursor.fetchone()[0] return value except Exception as e: logger.exception( '_get_account_info_or_raise encountered a problem while trying to retrieve "%s"', column_name ) raise MissingAccountData(str(e)) def refresh_entire_bucket_name_cache(self, name_id_iterable): with self._get_connection() as conn: conn.execute('DELETE FROM bucket;') for (bucket_name, bucket_id) in name_id_iterable: conn.execute( 'INSERT INTO bucket (bucket_name, bucket_id) VALUES (?, ?);', (bucket_name, bucket_id) ) def save_bucket(self, bucket): with self._get_connection() as conn: conn.execute('DELETE FROM bucket WHERE bucket_id = ?;', (bucket.id_,)) conn.execute( 'INSERT INTO bucket (bucket_id, bucket_name) VALUES (?, ?);', (bucket.id_, bucket.name) ) def remove_bucket_name(self, bucket_name): with self._get_connection() as conn: conn.execute('DELETE FROM bucket WHERE bucket_name = ?;', (bucket_name,)) def get_bucket_id_or_none_from_bucket_name(self, bucket_name): try: with self._get_connection() as conn: cursor = conn.execute( 'SELECT bucket_id FROM bucket WHERE bucket_name = ?;', (bucket_name,) ) return cursor.fetchone()[0] except TypeError: # TypeError: 'NoneType' object is unsubscriptable return None except sqlite3.Error: return None
35.8
186
0.575914
9749c48542e74e0055b2f949e6be734c5219c998
4,085
py
Python
ceilometer/ipmi/platform/ipmi_sensor.py
orbitfp7/ceilometer
9905da14bbdf06f95e1e056c9ca0e18087214d0f
[ "Apache-2.0" ]
2
2015-09-07T09:15:26.000Z
2015-09-30T02:13:23.000Z
ceilometer/ipmi/platform/ipmi_sensor.py
orbitfp7/ceilometer
9905da14bbdf06f95e1e056c9ca0e18087214d0f
[ "Apache-2.0" ]
null
null
null
ceilometer/ipmi/platform/ipmi_sensor.py
orbitfp7/ceilometer
9905da14bbdf06f95e1e056c9ca0e18087214d0f
[ "Apache-2.0" ]
1
2019-09-16T02:11:41.000Z
2019-09-16T02:11:41.000Z
# Copyright 2014 Intel Corporation. # # Author: Zhai Edwin <edwin.zhai@intel.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """IPMI sensor to collect various sensor data of compute node""" from ceilometer.ipmi.platform import exception as ipmiexcept from ceilometer.ipmi.platform import ipmitool from ceilometer.openstack.common.gettextutils import _ IPMICMD = {"sdr_dump": "sdr dump", "sdr_info": "sdr info", "sensor_dump": "sdr -v", "sensor_dump_temperature": "sdr -v type Temperature", "sensor_dump_current": "sdr -v type Current", "sensor_dump_fan": "sdr -v type Fan", "sensor_dump_voltage": "sdr -v type Voltage"} # Requires translation of output into dict DICT_TRANSLATE_TEMPLATE = {"translate": 1} class IPMISensor(object): """The python implementation of IPMI sensor using ipmitool The class implements the IPMI sensor to get various sensor data of compute node. It uses ipmitool to execute the IPMI command and parse the output into dict. """ _inited = False _instance = None def __new__(cls, *args, **kwargs): """Singleton to avoid duplicated initialization.""" if not cls._instance: cls._instance = super(IPMISensor, cls).__new__(cls, *args, **kwargs) return cls._instance def __init__(self): if not (self._instance and self._inited): self.ipmi_support = False self._inited = True self.ipmi_support = self.check_ipmi() @ipmitool.execute_ipmi_cmd() def _get_sdr_info(self): """Get the SDR info.""" return IPMICMD['sdr_info'] @ipmitool.execute_ipmi_cmd(DICT_TRANSLATE_TEMPLATE) def _read_sensor_all(self): """Get the sensor data for type.""" return IPMICMD['sensor_dump'] @ipmitool.execute_ipmi_cmd(DICT_TRANSLATE_TEMPLATE) def _read_sensor_temperature(self): """Get the sensor data for Temperature.""" return IPMICMD['sensor_dump_temperature'] @ipmitool.execute_ipmi_cmd(DICT_TRANSLATE_TEMPLATE) def _read_sensor_voltage(self): """Get the sensor data for Voltage.""" return IPMICMD['sensor_dump_voltage'] @ipmitool.execute_ipmi_cmd(DICT_TRANSLATE_TEMPLATE) def _read_sensor_current(self): """Get the sensor data for Current.""" return IPMICMD['sensor_dump_current'] @ipmitool.execute_ipmi_cmd(DICT_TRANSLATE_TEMPLATE) def _read_sensor_fan(self): """Get the sensor data for Fan.""" return IPMICMD['sensor_dump_fan'] def read_sensor_any(self, sensor_type=''): """Get the sensor data for type.""" if not self.ipmi_support: return {} mapping = {'': self._read_sensor_all, 'Temperature': self._read_sensor_temperature, 'Fan': self._read_sensor_fan, 'Voltage': self._read_sensor_voltage, 'Current': self._read_sensor_current} try: return mapping[sensor_type]() except KeyError: raise ipmiexcept.IPMIException(_('Wrong sensor type')) def check_ipmi(self): """IPMI capability checking This function is used to detect if compute node is IPMI capable platform. Just run a simple IPMI command to get SDR info for check. """ try: self._get_sdr_info() except ipmiexcept.IPMIException: return False return True
35.215517
78
0.651652
af7b853f5f85a13741b10f092862c1ce35d1a9e0
38,460
py
Python
Server/integrations/saml/SamlExternalAuthenticator.py
syntrydy/oxAuth
19c9a6cebd1377e3c347347e76b8070491d4944f
[ "MIT" ]
null
null
null
Server/integrations/saml/SamlExternalAuthenticator.py
syntrydy/oxAuth
19c9a6cebd1377e3c347347e76b8070491d4944f
[ "MIT" ]
null
null
null
Server/integrations/saml/SamlExternalAuthenticator.py
syntrydy/oxAuth
19c9a6cebd1377e3c347347e76b8070491d4944f
[ "MIT" ]
null
null
null
# oxAuth is available under the MIT License (2008). See http://opensource.org/licenses/MIT for full text. # Copyright (c) 2016, Gluu # # Author: Yuriy Movchan # import java import json from java.lang import StringBuilder from javax.faces.context import FacesContext from java.util import Arrays, ArrayList, HashMap, IdentityHashMap from javax.faces.application import FacesMessage from org.gluu.jsf2.message import FacesMessages from org.gluu.saml import SamlConfiguration, AuthRequest, Response from org.xdi.ldap.model import CustomAttribute from org.xdi.model.custom.script.type.auth import PersonAuthenticationType from org.xdi.oxauth.model.common import User from org.xdi.oxauth.security import Identity from org.xdi.oxauth.service import UserService, ClientService, AuthenticationService, AttributeService from org.xdi.oxauth.service.net import HttpService from org.xdi.service.cdi.util import CdiUtil from org.xdi.util import StringHelper, ArrayHelper, Util from org.gluu.jsf2.service import FacesService class PersonAuthentication(PersonAuthenticationType): def __init__(self, currentTimeMillis): self.currentTimeMillis = currentTimeMillis def init(self, configurationAttributes): print "Asimba. Initialization" asimba_saml_certificate_file = configurationAttributes.get("asimba_saml_certificate_file").getValue2() saml_idp_sso_target_url = configurationAttributes.get("saml_idp_sso_target_url").getValue2() asimba_entity_id = configurationAttributes.get("asimba_entity_id").getValue2() saml_use_authn_context = StringHelper.toBoolean(configurationAttributes.get("saml_use_authn_context").getValue2(), True) if saml_use_authn_context: saml_name_identifier_format = configurationAttributes.get("saml_name_identifier_format").getValue2() else: saml_name_identifier_format = None asimba_saml_certificate = self.loadCeritificate(asimba_saml_certificate_file) if StringHelper.isEmpty(asimba_saml_certificate): print "Asimba. Initialization. File with x509 certificate should be not empty" return False samlConfiguration = SamlConfiguration() # Set the issuer of the authentication request. This would usually be the URL of the issuing web application samlConfiguration.setIssuer(asimba_entity_id) # Tells the IdP to return a persistent identifier for the user samlConfiguration.setNameIdentifierFormat(saml_name_identifier_format) # The URL at the Identity Provider where to the authentication request should be sent samlConfiguration.setIdpSsoTargetUrl(saml_idp_sso_target_url) # Enablediable RequestedAuthnContext samlConfiguration.setUseRequestedAuthnContext(saml_use_authn_context) # Load x509 certificate samlConfiguration.loadCertificateFromString(asimba_saml_certificate) self.samlConfiguration = samlConfiguration self.generateNameId = False if configurationAttributes.containsKey("saml_generate_name_id"): self.generateNameId = StringHelper.toBoolean(configurationAttributes.get("saml_generate_name_id").getValue2(), False) print "Asimba. Initialization. The property saml_generate_name_id is %s" % self.generateNameId self.updateUser = False if configurationAttributes.containsKey("saml_update_user"): self.updateUser = StringHelper.toBoolean(configurationAttributes.get("saml_update_user").getValue2(), False) print "Asimba. Initialization. The property saml_update_user is %s" % self.updateUser self.userObjectClasses = None if configurationAttributes.containsKey("user_object_classes"): self.userObjectClasses = self.prepareUserObjectClasses(configurationAttributes) self.userEnforceAttributesUniqueness = None if configurationAttributes.containsKey("enforce_uniqueness_attr_list"): self.userEnforceAttributesUniqueness = self.prepareUserEnforceUniquenessAttributes(configurationAttributes) self.attributesMapping = None if configurationAttributes.containsKey("saml_idp_attributes_mapping"): saml_idp_attributes_mapping = configurationAttributes.get("saml_idp_attributes_mapping").getValue2() if StringHelper.isEmpty(saml_idp_attributes_mapping): print "Asimba. Initialization. The property saml_idp_attributes_mapping is empty" return False self.attributesMapping = self.prepareAttributesMapping(saml_idp_attributes_mapping) if self.attributesMapping == None: print "Asimba. Initialization. The attributes mapping isn't valid" return False self.samlExtensionModule = None if configurationAttributes.containsKey("saml_extension_module"): saml_extension_module_name = configurationAttributes.get("saml_extension_module").getValue2() try: self.samlExtensionModule = __import__(saml_extension_module_name) saml_extension_module_init_result = self.samlExtensionModule.init(configurationAttributes) if not saml_extension_module_init_result: return False except ImportError, ex: print "Asimba. Initialization. Failed to load saml_extension_module: '%s'" % saml_extension_module_name print "Asimba. Initialization. Unexpected error:", ex return False self.debugEnrollment = False print "Asimba. Initialized successfully" return True def destroy(self, configurationAttributes): print "Asimba. Destroy" print "Asimba. Destroyed successfully" return True def getApiVersion(self): return 1 def isValidAuthenticationMethod(self, usageType, configurationAttributes): return True def getAlternativeAuthenticationMethod(self, usageType, configurationAttributes): return None def authenticate(self, configurationAttributes, requestParameters, step): identity = CdiUtil.bean(Identity) credentials = identity.getCredentials() userService = CdiUtil.bean(UserService) authenticationService = CdiUtil.bean(AuthenticationService) saml_map_user = False saml_enroll_user = False saml_enroll_all_user_attr = False # Use saml_deployment_type only if there is no attributes mapping if configurationAttributes.containsKey("saml_deployment_type"): saml_deployment_type = StringHelper.toLowerCase(configurationAttributes.get("saml_deployment_type").getValue2()) if StringHelper.equalsIgnoreCase(saml_deployment_type, "map"): saml_map_user = True if StringHelper.equalsIgnoreCase(saml_deployment_type, "enroll"): saml_enroll_user = True if StringHelper.equalsIgnoreCase(saml_deployment_type, "enroll_all_attr"): saml_enroll_all_user_attr = True saml_allow_basic_login = False if configurationAttributes.containsKey("saml_allow_basic_login"): saml_allow_basic_login = StringHelper.toBoolean(configurationAttributes.get("saml_allow_basic_login").getValue2(), False) use_basic_auth = False if saml_allow_basic_login: # Detect if user used basic authnetication method user_name = credentials.getUsername() user_password = credentials.getPassword() if StringHelper.isNotEmpty(user_name) and StringHelper.isNotEmpty(user_password): use_basic_auth = True if (step == 1) and saml_allow_basic_login and use_basic_auth: print "Asimba. Authenticate for step 1. Basic authentication" identity.setWorkingParameter("saml_count_login_steps", 1) user_name = credentials.getUsername() user_password = credentials.getPassword() logged_in = False if StringHelper.isNotEmptyString(user_name) and StringHelper.isNotEmptyString(user_password): logged_in = authenticationService.authenticate(user_name, user_password) if (not logged_in): return False return True if (step == 1): print "Asimba. Authenticate for step 1" currentSamlConfiguration = self.getCurrentSamlConfiguration(self.samlConfiguration, configurationAttributes, requestParameters) if (currentSamlConfiguration == None): print "Asimba. Prepare for step 1. Client saml configuration is invalid" return False saml_response_array = requestParameters.get("SAMLResponse") if ArrayHelper.isEmpty(saml_response_array): print "Asimba. Authenticate for step 1. saml_response is empty" return False saml_response = saml_response_array[0] print "Asimba. Authenticate for step 1. saml_response: '%s'" % saml_response samlResponse = Response(currentSamlConfiguration) samlResponse.loadXmlFromBase64(saml_response) saml_validate_response = True if configurationAttributes.containsKey("saml_validate_response"): saml_validate_response = StringHelper.toBoolean(configurationAttributes.get("saml_validate_response").getValue2(), False) if saml_validate_response: if not samlResponse.isValid(): print "Asimba. Authenticate for step 1. saml_response isn't valid" return False if samlResponse.isAuthnFailed(): print "Asimba. Authenticate for step 1. saml_response AuthnFailed" return False saml_response_attributes = samlResponse.getAttributes() print "Asimba. Authenticate for step 1. attributes: '%s'" % saml_response_attributes if saml_map_user: saml_user_uid = self.getSamlNameId(samlResponse) if saml_user_uid == None: return False # Use mapping to local IDP user print "Asimba. Authenticate for step 1. Attempting to find user by oxExternalUid: saml: '%s'" % saml_user_uid # Check if the is user with specified saml_user_uid find_user_by_uid = userService.getUserByAttribute("oxExternalUid", "saml:%s" % saml_user_uid) if find_user_by_uid == None: print "Asimba. Authenticate for step 1. Failed to find user" print "Asimba. Authenticate for step 1. Setting count steps to 2" identity.setWorkingParameter("saml_count_login_steps", 2) identity.setWorkingParameter("saml_user_uid", saml_user_uid) return True found_user_name = find_user_by_uid.getUserId() print "Asimba. Authenticate for step 1. found_user_name: '%s'" % found_user_name user_authenticated = authenticationService.authenticate(found_user_name) if user_authenticated == False: print "Asimba. Authenticate for step 1. Failed to authenticate user" return False print "Asimba. Authenticate for step 1. Setting count steps to 1" identity.setWorkingParameter("saml_count_login_steps", 1) post_login_result = self.samlExtensionPostLogin(configurationAttributes, find_user_by_uid) print "Asimba. Authenticate for step 1. post_login_result: '%s'" % post_login_result return post_login_result elif saml_enroll_user: # Convert SAML response to user entry newUser = self.getMappedUser(configurationAttributes, requestParameters, saml_response_attributes) saml_user_uid = self.getNameId(samlResponse, newUser) if saml_user_uid == None: return False self.setDefaultUid(newUser, saml_user_uid) newUser.setAttribute("oxExternalUid", "saml:%s" % saml_user_uid) # Use auto enrollment to local IDP print "Asimba. Authenticate for step 1. Attempting to find user by oxExternalUid: saml: '%s'" % saml_user_uid # Check if there is user with specified saml_user_uid find_user_by_uid = userService.getUserByAttribute("oxExternalUid", "saml:%s" % saml_user_uid) if find_user_by_uid == None: # Auto user enrollment print "Asimba. Authenticate for step 1. There is no user in LDAP. Adding user to local LDAP" print "Asimba. Authenticate for step 1. Attempting to add user '%s' with next attributes: '%s'" % (saml_user_uid, newUser.getCustomAttributes()) user_unique = self.checkUserUniqueness(newUser) if not user_unique: print "Asimba. Authenticate for step 1. Failed to add user: '%s'. User not unique" % newUser.getUserId() facesMessages = CdiUtil.bean(FacesMessages) facesMessages.add(FacesMessage.SEVERITY_ERROR, "Failed to enroll. User with same key attributes exist already") facesMessages.setKeepMessages() return False find_user_by_uid = userService.addUser(newUser, True) print "Asimba. Authenticate for step 1. Added new user with UID: '%s'" % find_user_by_uid.getUserId() else: if self.updateUser: print "Asimba. Authenticate for step 1. Attempting to update user '%s' with next attributes: '%s'" % (saml_user_uid, newUser.getCustomAttributes()) find_user_by_uid.setCustomAttributes(newUser.getCustomAttributes()) userService.updateUser(find_user_by_uid) print "Asimba. Authenticate for step 1. Updated user with UID: '%s'" % saml_user_uid found_user_name = find_user_by_uid.getUserId() print "Asimba. Authenticate for step 1. found_user_name: '%s'" % found_user_name user_authenticated = authenticationService.authenticate(found_user_name) if user_authenticated == False: print "Asimba. Authenticate for step 1. Failed to authenticate user: '%s'" % found_user_name return False print "Asimba. Authenticate for step 1. Setting count steps to 1" identity.setWorkingParameter("saml_count_login_steps", 1) post_login_result = self.samlExtensionPostLogin(configurationAttributes, find_user_by_uid) print "Asimba. Authenticate for step 1. post_login_result: '%s'" % post_login_result return post_login_result elif saml_enroll_all_user_attr: # Convert SAML response to user entry newUser = self.getMappedAllAttributesUser(saml_response_attributes) saml_user_uid = self.getNameId(samlResponse, newUser) if saml_user_uid == None: return False self.setDefaultUid(newUser, saml_user_uid) newUser.setAttribute("oxExternalUid", "saml:%s" % saml_user_uid) print "Asimba. Authenticate for step 1. Attempting to find user by oxExternalUid: saml:%s" % saml_user_uid # Check if there is user with specified saml_user_uid find_user_by_uid = userService.getUserByAttribute("oxExternalUid", "saml:%s" % saml_user_uid) if find_user_by_uid == None: # Auto user enrollment print "Asimba. Authenticate for step 1. There is no user in LDAP. Adding user to local LDAP" print "Asimba. Authenticate for step 1. Attempting to add user '%s' with next attributes: '%s'" % (saml_user_uid, newUser.getCustomAttributes()) user_unique = self.checkUserUniqueness(newUser) if not user_unique: print "Asimba. Authenticate for step 1. Failed to add user: '%s'. User not unique" % newUser.getUserId() facesMessages = CdiUtil.bean(FacesMessages) facesMessages.add(FacesMessage.SEVERITY_ERROR, "Failed to enroll. User with same key attributes exist already") facesMessages.setKeepMessages() return False find_user_by_uid = userService.addUser(newUser, True) print "Asimba. Authenticate for step 1. Added new user with UID: '%s'" % find_user_by_uid.getUserId() else: if self.updateUser: print "Asimba. Authenticate for step 1. Attempting to update user '%s' with next attributes: '%s'" % (saml_user_uid, newUser.getCustomAttributes()) find_user_by_uid.setCustomAttributes(newUser.getCustomAttributes()) userService.updateUser(find_user_by_uid) print "Asimba. Authenticate for step 1. Updated user with UID: '%s'" % saml_user_uid found_user_name = find_user_by_uid.getUserId() print "Asimba. Authenticate for step 1. found_user_name: '%s'" % found_user_name user_authenticated = authenticationService.authenticate(found_user_name) if user_authenticated == False: print "Asimba. Authenticate for step 1. Failed to authenticate user" return False print "Asimba. Authenticate for step 1. Setting count steps to 1" identity.setWorkingParameter("saml_count_login_steps", 1) post_login_result = self.samlExtensionPostLogin(configurationAttributes, find_user_by_uid) print "Asimba. Authenticate for step 1. post_login_result: '%s'" % post_login_result return post_login_result else: if saml_user_uid == None: return False # Check if the is user with specified saml_user_uid print "Asimba. Authenticate for step 1. Attempting to find user by uid: '%s'" % saml_user_uid find_user_by_uid = userService.getUser(saml_user_uid) if find_user_by_uid == None: print "Asimba. Authenticate for step 1. Failed to find user" return False found_user_name = find_user_by_uid.getUserId() print "Asimba. Authenticate for step 1. found_user_name: '%s'" % found_user_name user_authenticated = authenticationService.authenticate(found_user_name) if user_authenticated == False: print "Asimba. Authenticate for step 1. Failed to authenticate user" return False print "Asimba. Authenticate for step 1. Setting count steps to 1" identity.setWorkingParameter("saml_count_login_steps", 1) post_login_result = self.samlExtensionPostLogin(configurationAttributes, find_user_by_uid) print "Asimba. Authenticate for step 1. post_login_result: '%s'" % post_login_result return post_login_result elif (step == 2): print "Asimba. Authenticate for step 2" sessionAttributes = identity.getSessionId().getSessionAttributes() if (sessionAttributes == None) or not sessionAttributes.containsKey("saml_user_uid"): print "Asimba. Authenticate for step 2. saml_user_uid is empty" return False saml_user_uid = sessionAttributes.get("saml_user_uid") passed_step1 = StringHelper.isNotEmptyString(saml_user_uid) if not passed_step1: return False user_name = credentials.getUsername() user_password = credentials.getPassword() logged_in = False if StringHelper.isNotEmptyString(user_name) and StringHelper.isNotEmptyString(user_password): logged_in = authenticationService.authenticate(user_name, user_password) if not logged_in: return False # Check if there is user which has saml_user_uid # Avoid mapping Saml account to more than one IDP account find_user_by_uid = userService.getUserByAttribute("oxExternalUid", "saml:%s" % saml_user_uid) if find_user_by_uid == None: # Add saml_user_uid to user one id UIDs find_user_by_uid = userService.addUserAttribute(user_name, "oxExternalUid", "saml:%s" % saml_user_uid) if find_user_by_uid == None: print "Asimba. Authenticate for step 2. Failed to update current user" return False post_login_result = self.samlExtensionPostLogin(configurationAttributes, find_user_by_uid) print "Asimba. Authenticate for step 2. post_login_result: '%s'" % post_login_result return post_login_result else: found_user_name = find_user_by_uid.getUserId() print "Asimba. Authenticate for step 2. found_user_name: '%s'" % found_user_name if StringHelper.equals(user_name, found_user_name): post_login_result = self.samlExtensionPostLogin(configurationAttributes, find_user_by_uid) print "Asimba. Authenticate for step 2. post_login_result: '%s'" % post_login_result return post_login_result return False else: return False def prepareForStep(self, configurationAttributes, requestParameters, step): authenticationService = CdiUtil.bean(AuthenticationService) if (step == 1): print "Asimba. Prepare for step 1" httpService = CdiUtil.bean(HttpService) facesContext = CdiUtil.bean(FacesContext) request = facesContext.getExternalContext().getRequest() assertionConsumerServiceUrl = httpService.constructServerUrl(request) + "/postlogin" print "Asimba. Prepare for step 1. Prepared assertionConsumerServiceUrl: '%s'" % assertionConsumerServiceUrl currentSamlConfiguration = self.getCurrentSamlConfiguration(self.samlConfiguration, configurationAttributes, requestParameters) if currentSamlConfiguration == None: print "Asimba. Prepare for step 1. Client saml configuration is invalid" return False # Generate an AuthRequest and send it to the identity provider samlAuthRequest = AuthRequest(currentSamlConfiguration) external_auth_request_uri = currentSamlConfiguration.getIdpSsoTargetUrl() + "?SAMLRequest=" + samlAuthRequest.getRequest(True, assertionConsumerServiceUrl) print "Asimba. Prepare for step 1. external_auth_request_uri: '%s'" % external_auth_request_uri facesService = CdiUtil.bean(FacesService) facesService.redirectToExternalURL(external_auth_request_uri) return True elif (step == 2): print "Asimba. Prepare for step 2" return True else: return False def getExtraParametersForStep(self, configurationAttributes, step): if (step == 2): return Arrays.asList("saml_user_uid") return None def getCountAuthenticationSteps(self, configurationAttributes): identity = CdiUtil.bean(Identity) if identity.isSetWorkingParameter("saml_count_login_steps"): return identity.getWorkingParameter("saml_count_login_steps") return 2 def getPageForStep(self, configurationAttributes, step): if (step == 1): saml_allow_basic_login = False if configurationAttributes.containsKey("saml_allow_basic_login"): saml_allow_basic_login = StringHelper.toBoolean(configurationAttributes.get("saml_allow_basic_login").getValue2(), False) if saml_allow_basic_login: return "/login.xhtml" else: return "/auth/saml/samllogin.xhtml" return "/auth/saml/samlpostlogin.xhtml" def logout(self, configurationAttributes, requestParameters): return True def isPassedStep1(): identity = CdiUtil.bean(Identity) credentials = identity.getCredentials() user_name = credentials.getUsername() passed_step1 = StringHelper.isNotEmptyString(user_name) return passed_step1 def loadCeritificate(self, asimba_saml_certificate_file): asimba_saml_certificate = None # Load certificate from file f = open(asimba_saml_certificate_file, 'r') try: asimba_saml_certificate = f.read() except: print "Asimba. Failed to load certificate from file: '%s'" % asimba_saml_certificate_file return None finally: f.close() return asimba_saml_certificate def getClientConfiguration(self, configurationAttributes, requestParameters): # Get client configuration if configurationAttributes.containsKey("saml_client_configuration_attribute"): saml_client_configuration_attribute = configurationAttributes.get("saml_client_configuration_attribute").getValue2() print "Asimba. GetClientConfiguration. Using client attribute: '%s'" % saml_client_configuration_attribute if requestParameters == None: return None client_id = None client_id_array = requestParameters.get("client_id") if ArrayHelper.isNotEmpty(client_id_array) and StringHelper.isNotEmptyString(client_id_array[0]): client_id = client_id_array[0] if client_id == None: identity = CdiUtil.bean(Identity) if identity.getSessionId() != None: client_id = identity.getSessionId().getSessionAttributes().get("client_id") if client_id == None: print "Asimba. GetClientConfiguration. client_id is empty" return None clientService = CdiUtil.bean(ClientService) client = clientService.getClient(client_id) if client == None: print "Asimba. GetClientConfiguration. Failed to find client '%s' in local LDAP" % client_id return None saml_client_configuration = clientService.getCustomAttribute(client, saml_client_configuration_attribute) if (saml_client_configuration == None) or StringHelper.isEmpty(saml_client_configuration.getValue()): print "Asimba. GetClientConfiguration. Client '%s' attribute '%s' is empty" % ( client_id, saml_client_configuration_attribute ) else: print "Asimba. GetClientConfiguration. Client '%s' attribute '%s' is '%s'" % ( client_id, saml_client_configuration_attribute, saml_client_configuration ) return saml_client_configuration return None def getCurrentSamlConfiguration(self, currentSamlConfiguration, configurationAttributes, requestParameters): saml_client_configuration = self.getClientConfiguration(configurationAttributes, requestParameters) if saml_client_configuration == None: return currentSamlConfiguration saml_client_configuration_value = json.loads(saml_client_configuration.getValue()) client_asimba_saml_certificate = None client_asimba_saml_certificate_file = saml_client_configuration_value["asimba_saml_certificate_file"] if StringHelper.isNotEmpty(client_asimba_saml_certificate_file): client_asimba_saml_certificate = self.loadCeritificate(client_asimba_saml_certificate_file) if StringHelper.isEmpty(client_asimba_saml_certificate): print "Asimba. BuildClientSamlConfiguration. File with x509 certificate should be not empty. Using default configuration" return currentSamlConfiguration clientSamlConfiguration = currentSamlConfiguration.clone() if client_asimba_saml_certificate != None: clientSamlConfiguration.loadCertificateFromString(client_asimba_saml_certificate) client_asimba_entity_id = saml_client_configuration_value["asimba_entity_id"] clientSamlConfiguration.setIssuer(client_asimba_entity_id) saml_use_authn_context = saml_client_configuration_value["saml_use_authn_context"] client_use_saml_use_authn_context = StringHelper.toBoolean(saml_use_authn_context, True) clientSamlConfiguration.setUseRequestedAuthnContext(client_use_saml_use_authn_context) return clientSamlConfiguration def prepareAttributesMapping(self, saml_idp_attributes_mapping): saml_idp_attributes_mapping_json = json.loads(saml_idp_attributes_mapping) if len(saml_idp_attributes_mapping_json) == 0: print "Asimba. PrepareAttributesMapping. There is no attributes mapping specified in saml_idp_attributes_mapping property" return None attributeMapping = IdentityHashMap() for local_attribute_name in saml_idp_attributes_mapping_json: localAttribute = StringHelper.toLowerCase(local_attribute_name) for idp_attribute_name in saml_idp_attributes_mapping_json[local_attribute_name]: idpAttribute = StringHelper.toLowerCase(idp_attribute_name) attributeMapping.put(idpAttribute, localAttribute) return attributeMapping def prepareUserObjectClasses(self, configurationAttributes): user_object_classes = configurationAttributes.get("user_object_classes").getValue2() user_object_classes_list_array = StringHelper.split(user_object_classes, ",") if ArrayHelper.isEmpty(user_object_classes_list_array): return None return user_object_classes_list_array def prepareUserEnforceUniquenessAttributes(self, configurationAttributes): enforce_uniqueness_attr_list = configurationAttributes.get("enforce_uniqueness_attr_list").getValue2() enforce_uniqueness_attr_list_array = StringHelper.split(enforce_uniqueness_attr_list, ",") if ArrayHelper.isEmpty(enforce_uniqueness_attr_list_array): return None return enforce_uniqueness_attr_list_array def prepareCurrentAttributesMapping(self, currentAttributesMapping, configurationAttributes, requestParameters): saml_client_configuration = self.getClientConfiguration(configurationAttributes, requestParameters) if saml_client_configuration == None: return currentAttributesMapping saml_client_configuration_value = json.loads(saml_client_configuration.getValue()) clientAttributesMapping = self.prepareAttributesMapping(saml_client_configuration_value["saml_idp_attributes_mapping"]) if clientAttributesMapping == None: print "Asimba. PrepareCurrentAttributesMapping. Client attributes mapping is invalid. Using default one" return currentAttributesMapping return clientAttributesMapping def samlExtensionPostLogin(self, configurationAttributes, user): if self.samlExtensionModule == None: return True try: post_login_result = self.samlExtensionModule.postLogin(configurationAttributes, user) print "Asimba. ExtensionPostlogin result: '%s'" % post_login_result return post_login_result except Exception, ex: print "Asimba. ExtensionPostlogin. Failed to execute postLogin method" print "Asimba. ExtensionPostlogin. Unexpected error:", ex return False except java.lang.Throwable, ex: print "Asimba. ExtensionPostlogin. Failed to execute postLogin method" ex.printStackTrace() return False def checkUserUniqueness(self, user): if self.userEnforceAttributesUniqueness == None: return True userService = CdiUtil.bean(UserService) # Prepare user object to search by pattern userBaseDn = userService.getDnForUser(None) userToSearch = User() userToSearch.setDn(userBaseDn) for userAttributeName in self.userEnforceAttributesUniqueness: attribute_values_list = user.getAttributeValues(userAttributeName) if (attribute_values_list != None) and (attribute_values_list.size() > 0): userToSearch.setAttribute(userAttributeName, attribute_values_list) users = userService.getUsersBySample(userToSearch, 1) if users.size() > 0: return False return True def getMappedUser(self, configurationAttributes, requestParameters, saml_response_attributes): # Convert Saml result attributes keys to lover case saml_response_normalized_attributes = HashMap() for saml_response_attribute_entry in saml_response_attributes.entrySet(): saml_response_normalized_attributes.put(StringHelper.toLowerCase(saml_response_attribute_entry.getKey()), saml_response_attribute_entry.getValue()) currentAttributesMapping = self.prepareCurrentAttributesMapping(self.attributesMapping, configurationAttributes, requestParameters) print "Asimba. Get mapped user. Using next attributes mapping '%s'" % currentAttributesMapping newUser = User() # Set custom object classes if self.userObjectClasses != None: print "Asimba. Get mapped user. User custom objectClasses to add persons: '%s'" % Util.array2ArrayList(self.userObjectClasses) newUser.setCustomObjectClasses(self.userObjectClasses) for attributesMappingEntry in currentAttributesMapping.entrySet(): idpAttribute = attributesMappingEntry.getKey() localAttribute = attributesMappingEntry.getValue() if self.debugEnrollment: print "Asimba. Get mapped user. Trying to map '%s' into '%s'" % (idpAttribute, localAttribute) localAttributeValue = saml_response_normalized_attributes.get(idpAttribute) if localAttributeValue != None: if self.debugEnrollment: print "Asimba. Get mapped user. Setting attribute '%s' value '%s'" % (localAttribute, localAttributeValue) newUser.setAttribute(localAttribute, localAttributeValue) else: if newUser.getAttribute(localAttribute) == None: newUser.setAttribute(localAttribute, ArrayList()) return newUser def getMappedAllAttributesUser(self, saml_response_attributes): user = User() # Set custom object classes if self.userObjectClasses != None: print "Asimba. Get mapped all attributes user. User custom objectClasses to add persons: '%s'" % Util.array2ArrayList(self.userObjectClasses) user.setCustomObjectClasses(self.userObjectClasses) # Prepare map to do quick mapping attributeService = CdiUtil.bean(AttributeService) ldapAttributes = attributeService.getAllAttributes() samlUriToAttributesMap = HashMap() for ldapAttribute in ldapAttributes: saml2Uri = ldapAttribute.getSaml2Uri() if saml2Uri == None: saml2Uri = attributeService.getDefaultSaml2Uri(ldapAttribute.getName()) samlUriToAttributesMap.put(saml2Uri, ldapAttribute.getName()) customAttributes = ArrayList() for key in saml_response_attributes.keySet(): ldapAttributeName = samlUriToAttributesMap.get(key) if ldapAttributeName == None: print "Asimba. Get mapped all attributes user. Skipping saml attribute: '%s'" % key continue if StringHelper.equalsIgnoreCase(ldapAttributeName, "uid"): continue attribute = CustomAttribute(ldapAttributeName) attribute.setValues(saml_response_attributes.get(key)) customAttributes.add(attribute) user.setCustomAttributes(customAttributes) return user def getNameId(self, samlResponse, newUser): if self.generateNameId: saml_user_uid = self.generateNameUid(newUser) else: saml_user_uid = self.getSamlNameId(samlResponse) return saml_user_uid def getSamlNameId(self, samlResponse): saml_response_name_id = samlResponse.getNameId() if StringHelper.isEmpty(saml_response_name_id): print "Asimba. Get Saml response. saml_response_name_id is invalid" return None print "Asimba. Get Saml response. saml_response_name_id: '%s'" % saml_response_name_id # Use persistent Id as saml_user_uid return saml_response_name_id def generateNameUid(self, user): if self.userEnforceAttributesUniqueness == None: print "Asimba. Build local external uid. User enforce attributes uniqueness not specified" return None sb = StringBuilder() first = True for userAttributeName in self.userEnforceAttributesUniqueness: if not first: sb.append("!") first = False attribute_values_list = user.getAttributeValues(userAttributeName) if (attribute_values_list != None) and (attribute_values_list.size() > 0): first_attribute_value = attribute_values_list.get(0) sb.append(first_attribute_value) return sb.toString() def setDefaultUid(self, user, saml_user_uid): if StringHelper.isEmpty(user.getUserId()): user.setUserId(saml_user_uid)
49.056122
171
0.672569
7c4cd509b8fc250851efee8685b875586928364a
345
py
Python
tests/cli_edge/test_cli_edge.py
Rdvp1514/test_junkie
9246a33abc9ac8d6584781dcbe95e1093507aa8f
[ "MIT" ]
72
2018-10-25T18:32:42.000Z
2022-02-02T03:03:09.000Z
tests/cli_edge/test_cli_edge.py
Rdvp1514/test_junkie
9246a33abc9ac8d6584781dcbe95e1093507aa8f
[ "MIT" ]
41
2018-12-13T22:30:35.000Z
2021-11-04T09:08:49.000Z
tests/cli_edge/test_cli_edge.py
Rdvp1514/test_junkie
9246a33abc9ac8d6584781dcbe95e1093507aa8f
[ "MIT" ]
10
2019-04-05T10:51:11.000Z
2021-12-06T15:18:56.000Z
import os from tests.cli.Cmd import Cmd ROOT = __file__.split("{0}tests".format(os.sep))[0] EXE = ROOT + "{0}test_junkie{0}cli{0}cli.py".format(os.sep) TESTS = ROOT + "{0}tests{0}cli_edge".format(os.sep) def test_interrupt(): Cmd.run(['python', EXE, 'config', 'restore', '--all']) print(Cmd.run(['python', EXE, 'run', '-s', TESTS]))
26.538462
59
0.634783
8ce333514ef73ce6c1f2fc8ccd3a6cfe0cd34441
11,861
py
Python
vive-dump/vivedump.py
unhcfreg/VR4Sec
2547afcd064b6f765f4003b90da2cb618d12bc62
[ "MIT" ]
null
null
null
vive-dump/vivedump.py
unhcfreg/VR4Sec
2547afcd064b6f765f4003b90da2cb618d12bc62
[ "MIT" ]
null
null
null
vive-dump/vivedump.py
unhcfreg/VR4Sec
2547afcd064b6f765f4003b90da2cb618d12bc62
[ "MIT" ]
1
2020-04-08T22:09:06.000Z
2020-04-08T22:09:06.000Z
# Vivedump # Team Front row # Dumps VR tracking information and whatever else we can find import json import struct import visualizer as vis import os import volatility.plugins.common as common import volatility.plugins.taskmods as taskmods import volatility.utils as utils import volatility.win32 as win32 import volatility.debug as debug from volatility.renderers import TreeGrid try: import yara HAS_YARA = True except ImportError: HAS_YARA = False # Using a hex string rather than trying to deal with escape characters # string = jsonid" : "chaperone_info" YARA_JSON = { 'chap_config': 'rule chap_config { strings: $p = {6a736f6e696422203a20226368617065726f6e655f696e666f} condition: $p}', } # The opcode that loads the pointer into rax #YARA_HMD = { # 'hmd_pointer': 'rule hmd_pointer { strings: $p = {48 8b 05 15 f9 10 00} condition: $p}', #} YARA_HMD = { 'hmd_pointer': 'rule hmd_pointer { strings: $p = {48 8b 05 05 cf 10 00} condition: $p}', } # Maximum length of data to read in when looking for the Chaperone config file max_size_of_file = 4096 # Tracked devices and the offsets to their data hmd = ["HMD", 0x5C] controller1 = ["Controller", 0x19C] controller2 = ["Controller", 0x14C] base_station1 = ["Base Station 1", 0xAC] base_station2 = ["Base Station 2", 0xFC] tracked_objects = [hmd , controller1, controller2, base_station1, base_station2] def deref(address, a, length=4): """Derefernces the pointer in that memory location""" return struct.unpack("<I", a.read(address, length))[0] def hex_to_float(hex): """Converts a hex string to float""" return struct.unpack('!f', str(hex).decode('hex'))[0] def tracked_result_dict(enum): """Converts the enumerator code for EtrackingResult to string, see openVR.h for documentation""" return { 1: 'TrackingResult_Uninitialized', 100: 'TrackingResult_Calibrating_InProgress', 101: 'TrackingResult_Calibrating_OutOfRange', 200: 'TrackingResult_Running_OK', 201: 'TrackingResult_Running_OutOfRange', }[enum] def parse_json(rdata): """ Takes in the block of data where the yarascan matched, Crops of the junk at the end and closes up the last bracket. The config file always ends in the version number so search for that and cut it off TODO Sloppy, should preserve version number """ end_file = rdata.rfind('version') fixed_end = "{\n\"" + rdata[:end_file] # Close out the rest of the JSON end_file = fixed_end.rfind("]") fixed_end = fixed_end[:end_file + 1] + "}" # Load the memory as a JSON parsed_json = json.loads(fixed_end, strict=False) return parsed_json def convert_to_matrix44(m): return [ m[0][0], m[1][0], m[2][0], 0.0, m[0][1], m[1][1], m[2][1], 0.0, m[0][2], m[1][2], m[2][2], 0.0, m[0][3], m[1][3], m[2][3], 1.0 ] class ViveDump(taskmods.DllList): """Extracts SteamVR information""" meta_info = dict( author='Peter Gromkowski', contact='pgrom1@unh.newhaven.edu', url='https://github.com/strat1892/vive-dump', version='1.0', ) visualizer = vis.Vis() # TODO add option to scan for jsons # add: specify number of devices def __init__(self, config, *args, **kwargs): taskmods.DllList.__init__(self, config, *args, **kwargs) config.add_option("NUM-DEVICES", short_option='N', default=1, help='Number of tracked devices to extract', action='store', type=int) config.add_option("FULL-SCAN", short_option='F', default=True, help='Scan the entire dump', action='store_false') config.add_option("CHAP-FILE", short_option='C', default=False, help='Provide Chaperone config file', type='str') config.remove_option("OFFSET") def build_obj(self, universe_number, parsed_json): """ Accepts a parsed json and converts the verticies into an obj file Create a new object file for each file found. There may be multiple universes per file TODO Account for mulitple universes: Standing and Room scale If there is both a standing and seating universe they will both be dumped into the same file """ filename = 'chaperone_visualization' + str(universe_number) + '.obj' with open(filename, 'w+') as data_file: wall_counter = 0 for room in parsed_json['universes']: # Parse each wall for wall in room['collision_bounds']: # We can assume there will be four corners to a wall for i in range(0, 4): # Prefix to specify a vertex data_file.write('v ') # Points are represented as x (left/right), y (verticle), z (front/back) coords = [] for j in range(0, 3): data_file.write(str(wall[i][j]) + ' ') coords.append(wall[i][j]) data_file.write('\n') # Add space to group walls self.visualizer.add_vert(coords[0], coords[1], coords[2]) wall_counter += 1 data_file.write('\n') # Space to separate vertices from faces for face in range(0, wall_counter): # Prefix to represent the line specifies a face data_file.write('f ') self.visualizer.add_edge(4 * face, 4 * face + 1) self.visualizer.add_edge(4 * face + 1, 4 * face + 2) self.visualizer.add_edge(4 * face + 2, 4 * face + 3) self.visualizer.add_edge(4 * face + 3, 4 * face) # obj file format refers to the first vertex as 1 # We can assume that all faces can be represented as quads for i in range(1, 5): data_file.write(str(4 * face + i) + ' ') data_file.write('\n') def get_coords(self, pointer, process_space): """ Pulls information from the HMD structgit The x coordinate is offset 0x68 from the pointer each following point is offset 0x10 TODO find the normal vector, hunch between coordinates Controller coordinates start at 0xB8 """ for i in range(self._config.NUM_DEVICES): print(tracked_objects[i][0]) matrix = [] for row_offset in [0, 0x10, 0x20]: row = [] for col_offset in [0, 4, 8, 12]: x_hex = deref(pointer + tracked_objects[i][1] + row_offset + col_offset, process_space) row.append(hex_to_float('%x' % x_hex)) print("{0}, {1}, {2}, {3}".format(row[0], row[1], row[2], row[3])) matrix.append(row) track_result = deref(pointer + tracked_objects[i][1] + 0x48, process_space) bool_vis_connected = deref(pointer + tracked_objects[i][1] + 0x4c, process_space) print("ETrackingResult: " + tracked_result_dict(track_result)) print("Bool values: {0}".format(hex(bool_vis_connected))) # Isolate the byte containing each bool value pose_is_valid = bool_vis_connected & 0x00000f00 device_is_connected = bool_vis_connected & 0x0000000f print('bPoseIsValid: {0}'.format(bool(pose_is_valid))) print('bDeviceIsConnected: {0}'.format(bool(device_is_connected))) print("\n") self.visualizer.set_device(convert_to_matrix44(matrix), tracked_objects[i][0]) return matrix def calculate(self): """Required: Use Filescan to find Chaperone config file""" if not HAS_YARA: debug.error('Yara must be installed for this plugin') # Load address space addr_space = utils.load_as(self._config) # Get list of processes tasks = win32.tasks.pslist(addr_space) universe_count = 0 # Append to dumpfile in case of multiple finds # Read the Chaperone information from the provided file if self._config.CHAP_FILE: print("Loading Chaperone information from file") file1 = open(self._config.CHAP_FILE, "r+") json_from_file = json.load(file1) self.build_obj(1, json_from_file) for task in tasks: if self._config.FULL_SCAN and str(task.ImageFileName) != "vrmonitor.exe": continue else: print("Scanning {0} pid: {1}".format(task.ImageFileName, task.UniqueProcessId)) vad_offset = 0 for vad, process_space in task.get_vads(): vad_offset += vad.Length # print " ".join(hex(ord(n)) for n in pointer) if vad.Length > 8*1024*1024*1024: continue # read Vad content data = process_space.zread(vad.Start, vad.Length) if not self._config.CHAP_FILE: # Complile yara signatures rules = yara.compile(sources=YARA_JSON) # match yara rules matches = rules.match(data=data) for match in matches: universe_count += 1 match_offset = vad.Start + match.strings[0][0] print("Found chaperone config file at {0}".format(hex(match_offset))) # Read the region matching the yara scan rdata = process_space.zread(match_offset, max_size_of_file) parsed_json = parse_json(rdata) self.build_obj(universe_count, parsed_json) rules = yara.compile(sources=YARA_HMD) matches = rules.match(data=data) for match in matches: # Find the opcode for that loads the pointer to RSI match_offset = vad.Start + match.strings[0][0] # Pointer is a DWORD so read and reconstruct # deref_pointer_lower = deref(match_offset + 1112348, process_space) # deref_pointer_upper = deref(match_offset + 1112352, process_space) deref_pointer_lower = deref(match_offset + 0x10CF0C, process_space) deref_pointer_upper = deref(match_offset + 0x10CF10, process_space) pointer = 4294967296 * deref_pointer_upper + deref_pointer_lower print("Pointer to HMD struct found: {0}".format(hex(pointer))) matrix = self.get_coords(pointer, process_space) yield matrix def generator(self, data): for task in data: yield (0, [ int(task.UniqueProcessId), str(task.CreateTime), str(task.ImageFileName) ]) def render_text(self, outfd, data): """ This method formats output to the terminal. :param outfd | <file> data | <generator> """ for matrix in data: outfd.write("{0}, {1}, {2}".format(matrix[0], matrix[1], matrix[2])) self.visualizer.on_execute() #def unified_output(self, data): # return TreeGrid([ # ("Matrix 0", float ), # ( "Matrix 2", float) # ], self.generator(data)) # self.visualizer.on_execute()
38.26129
122
0.573729
a530e77e2f290066bac111e11b742816060808a6
2,021
py
Python
Python/Examples/Macros/JointsPlayback.py
halmusaibeli/RoboDK-API
e017aa26715bc8d0fcbbc05e57acc32f2d2d6174
[ "MIT" ]
null
null
null
Python/Examples/Macros/JointsPlayback.py
halmusaibeli/RoboDK-API
e017aa26715bc8d0fcbbc05e57acc32f2d2d6174
[ "MIT" ]
null
null
null
Python/Examples/Macros/JointsPlayback.py
halmusaibeli/RoboDK-API
e017aa26715bc8d0fcbbc05e57acc32f2d2d6174
[ "MIT" ]
null
null
null
# This macro will move the robot along a list of joints in a CSV file # Tip: Use the macro MonitorJoints.py to record a CSV file that can be loaded by this script TIME_MATCH = False MEASURE_COLLISIONS = False from robodk.robolink import * # API to communicate with RoboDK from robodk.robomath import * # basic matrix operations from robodk.robofileio import * from time import gmtime, strftime RDK = Robolink() # Turn off collision checking RDK.setCollisionActive(COLLISION_OFF) # Ask the user to select a robot arm (mechanisms are ignored) robot = RDK.ItemUserPick('Select a robot', ITEM_TYPE_ROBOT_ARM) if not robot.Valid(): raise Exception("Robot is not available") # Generate a file in the same folder where we have the RDK file folder_path = RDK.getParam('PATH_OPENSTATION') # Ask the user to select a file #filename = getOpenFile(path_preference=folder_path, strfile='', strtitle='Open CSV file ...', defaultextension='.csv', filetypes=[('CSV files', '*.csv'), ('All files', '*.*')]) filename = RDK.getParam('PATH_OPENSTATION') + '/joints-test.csv' # Load the CSV file as a list of lists (each row is a list) csvdata = LoadList(filename) # Iterate through each row total_collision_time = 0 max_collision_time = 0 count = 0 last_row = None for row in csvdata: joints = row # Match timings if TIME_MATCH and last_row is not None: t_step = row[-1] - last_row[-1] pause(t_step) robot.setJoints(row) lastrow = row # Measure collision time if MEASURE_COLLISIONS: ncol = RDK.Collisions() collision_time = int(RDK.Command("CollisionCalcTime")) total_collision_time = total_collision_time + collision_time count = count + 1 max_collision_time = max(max_collision_time, collision_time) time_average = total_collision_time / count msg = "Collision time (ms): Max: %i | Average: %.1f | Last: %i" % (max_collision_time, time_average, collision_time) RDK.ShowMessage(msg, False) print(msg)
33.131148
177
0.711529
6c23855d1ef8eaae55e089847be6f418a2eb327b
95
py
Python
pet_booking/appointment/apps.py
bilbeyt/pet_booking
be362790be6faecd5cebb38256327b9acf399152
[ "MIT" ]
null
null
null
pet_booking/appointment/apps.py
bilbeyt/pet_booking
be362790be6faecd5cebb38256327b9acf399152
[ "MIT" ]
null
null
null
pet_booking/appointment/apps.py
bilbeyt/pet_booking
be362790be6faecd5cebb38256327b9acf399152
[ "MIT" ]
null
null
null
from django.apps import AppConfig class AppoinmentConfig(AppConfig): name = 'appoinment'
15.833333
34
0.768421
031817ba5116a9624713c415f7851d021da841ba
998
py
Python
CreateHeader.py
earney/WallaceSubmit
5a7ca3f03b4fb9a0d1e995489dd1259a386447cd
[ "MIT" ]
null
null
null
CreateHeader.py
earney/WallaceSubmit
5a7ca3f03b4fb9a0d1e995489dd1259a386447cd
[ "MIT" ]
null
null
null
CreateHeader.py
earney/WallaceSubmit
5a7ca3f03b4fb9a0d1e995489dd1259a386447cd
[ "MIT" ]
null
null
null
import datetime class CreateHeader: def __init__(self, comment=u'//'): self._comment=comment self._name='' self._submitDate='' self._assignment='' def setName(self, name): self._name=name def setSubmitDate(self, date=None): self._submitDate=date if date is None: _d=datetime.datetime.now() self._submitDate=_d.strftime('%Y-%m-%d %H:%M:%S') def setAssignment(self, assignment): self._assignment=assignment def getHeader(self): _str=self._comment + u'#'*60 _str+='\n' _str+=self._comment + '\n' _str+=self._comment + ' Assignment: %s\n' % self._assignment _str+=self._comment + ' Name: %s\n' % self._name _str+=self._comment + ' Submit Date: %s\n' % self._submitDate _str+=self._comment + '\n' _str+=self._comment + '#'*60 _str+='\n' return _str if __name__ == '__main__': _ch=CreateHeader(comment=u'#') _ch.setSubmitDate() print(_ch.getHeader())
24.95
67
0.608216
7f6b742d8ac0babee6ace46b8daa47f1ac92651d
460
py
Python
microservices/frontend/main.py
dlorenc/skaffold-demo
839dc3addef5700a42641afc1755c00ca3430543
[ "Apache-2.0" ]
null
null
null
microservices/frontend/main.py
dlorenc/skaffold-demo
839dc3addef5700a42641afc1755c00ca3430543
[ "Apache-2.0" ]
null
null
null
microservices/frontend/main.py
dlorenc/skaffold-demo
839dc3addef5700a42641afc1755c00ca3430543
[ "Apache-2.0" ]
null
null
null
import flask import requests application = flask.Flask(__name__) @application.route('/encrypt') def encrypt(): msg = flask.request.args.get("message") response = requests.get(url="http://backend:8000", params={"message": msg}) return flask.render_template('encrypted.html', result=response.text) @application.route('/') def index(): return flask.render_template('index.html') if __name__ == '__main__': application.run(host='0.0.0.0')
24.210526
79
0.706522
63c81ea8cad7ce45b3fd79752d7a4315f063f7a8
1,121
py
Python
apps/tracker/models.py
dlzou/csua-backend
a2a6642017b81c2fe2bcc497ecc772e9b7dfe210
[ "MIT" ]
null
null
null
apps/tracker/models.py
dlzou/csua-backend
a2a6642017b81c2fe2bcc497ecc772e9b7dfe210
[ "MIT" ]
null
null
null
apps/tracker/models.py
dlzou/csua-backend
a2a6642017b81c2fe2bcc497ecc772e9b7dfe210
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. def seconds_to_time(seconds: int) -> str: sign = "" if seconds >= 0 else "-" mag = abs(seconds) m, s = divmod(mag, 60) h, m = divmod(m, 60) return "%s%d:%02d:%02d" % (sign, h, m, s) class User(models.Model): username = models.CharField( max_length=32, primary_key=True, unique=True, editable=False ) last_ping = models.DateTimeField(auto_now=True, editable=True) time_spent = models.IntegerField(default=0) @property def time(self): return seconds_to_time(self.time_spent) @property def realname(self): # TODO: make an LDAP query here and cache the result. return self.username class Computer(models.Model): hostname = models.CharField(max_length=15, primary_key=True) user = models.ForeignKey("User", on_delete=models.PROTECT, null=True) local_timestamp = models.DateTimeField(auto_now=True) @property def open(self): return self.user.time_spent >= 7200 @property def time(self): return seconds_to_time(self.user.time_spent)
26.069767
73
0.665477
83e9a63bee8f443d1f7d2e578592c5e71db14905
2,193
py
Python
src/oci/data_safe/models/discovery_job_collection.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/data_safe/models/discovery_job_collection.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/data_safe/models/discovery_job_collection.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class DiscoveryJobCollection(object): """ A collection of discovery job summary objects. """ def __init__(self, **kwargs): """ Initializes a new DiscoveryJobCollection object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param items: The value to assign to the items property of this DiscoveryJobCollection. :type items: list[oci.data_safe.models.DiscoveryJobSummary] """ self.swagger_types = { 'items': 'list[DiscoveryJobSummary]' } self.attribute_map = { 'items': 'items' } self._items = None @property def items(self): """ **[Required]** Gets the items of this DiscoveryJobCollection. An array of discovery job summary objects. :return: The items of this DiscoveryJobCollection. :rtype: list[oci.data_safe.models.DiscoveryJobSummary] """ return self._items @items.setter def items(self, items): """ Sets the items of this DiscoveryJobCollection. An array of discovery job summary objects. :param items: The items of this DiscoveryJobCollection. :type: list[oci.data_safe.models.DiscoveryJobSummary] """ self._items = items def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
30.887324
245
0.664387
4d8287db44e6a29deea4f5c5131658055b3ae21d
1,359
py
Python
utils/data_generator/sessions_users_generator.py
aldoorozco/adaptive_data_pipelines
afdced109d5e76c95d68fa6935c2864ac926986f
[ "MIT" ]
1
2021-04-12T06:51:21.000Z
2021-04-12T06:51:21.000Z
utils/data_generator/sessions_users_generator.py
aldoorozco/adaptive_data_pipelines
afdced109d5e76c95d68fa6935c2864ac926986f
[ "MIT" ]
null
null
null
utils/data_generator/sessions_users_generator.py
aldoorozco/adaptive_data_pipelines
afdced109d5e76c95d68fa6935c2864ac926986f
[ "MIT" ]
null
null
null
import json from utils import * from collections import Counter def get_zipped_data(records, users): session_ids = (n for n in range(records)) user_ids = get_normal_dist(users, users/2, records) #cntr = Counter(sorted(user_ids)) #srted = {k: v for k, v in sorted(cntr.items(), key=lambda item: item[1])} return zip(session_ids, user_ids) def write_json(zipped, records, file_index): file_name = f'sessions_users/sessions_users_{file_index:03}.json' print(f'Creating file {file_name} with {records} records') try: with open(file_name, 'w+') as f: data = get_n_records_iter(zipped, records) written = 0 for session_id, user_id in data: record = {'session_id': int(session_id), 'user_id': int(user_id)} f.write(json.dumps(record) + '\n') written += 1 if written != records: print(f'ERROR: discrepancy between written {written} and expected {records}') except IOError: print('ERROR: Unable to write to file') def main(): records, files, users = get_records_files(3) records_per_file = int(records / files) zipped = get_zipped_data(records, users) for file_index in range(files): write_json(zipped, records_per_file, file_index) if __name__ == '__main__': main()
32.357143
93
0.642384
5dece45b351d0b531e8907dd524d69228a3f6a9d
17,151
py
Python
swipc-gen/hashes_gen.py
inspier/switch-reversing
577f363bfdef05c75708c9af9d1e690197fd9233
[ "MIT" ]
61
2019-02-28T11:38:58.000Z
2021-11-06T23:57:55.000Z
swipc-gen/hashes_gen.py
inspier/switch-reversing
577f363bfdef05c75708c9af9d1e690197fd9233
[ "MIT" ]
1
2021-01-04T23:26:09.000Z
2021-01-04T23:26:09.000Z
swipc-gen/hashes_gen.py
inspier/switch-reversing
577f363bfdef05c75708c9af9d1e690197fd9233
[ "MIT" ]
6
2019-03-13T17:03:10.000Z
2022-01-15T02:03:31.000Z
all_hashes = {'9dbc3be4561e89d1': ['nn::ncm::IContentManager'], 'ef572d053fbe0dd0': ['nn::spl::detail::IFsInterface'], '2171a2a3f43a01e2': ['nn::account::nas::IOAuthProcedureForUserRegistration'], '6072a19a5a95b12b': ['nn::bcat::detail::ipc::IDeliveryCacheProgressService'], '6a677c7d9d17ff0a': ['nn::pl::detail::ISharedFontManager'], 'a207109123aa9ee6': ['nn::am::service::IHomeMenuFunctions'], 'aa0c2c207c1ad820': ['nn::nfp::detail::ISystem'], '9a735d669435e452': ['nn::npns::INpnsUser'], '54eb1a88a4c29c49': ['nn::fssrv::sf::IFileSystemProxy'], '3eced0a96862ad10': ['nn::audio::detail::IFinalOutputRecorderManager'], '736d36f862942a6f': ['nn::account::profile::IProfile'], '9598cbef138ebfbf': ['nn::avm::srv::IAvmService'], 'b001441e42b94817': ['nn::clkrst::IClkrstManager'], 'dde489cb9efa1a59': ['nn::ssl::sf::ISslContext'], '7e7ca6d0175ba7bf': ['nn::npns::INpnsSystem'], '3066e14681acfab6': ['nn::ldn::detail::ISystemLocalCommunicationService'], '0fe24d77cf284316': ['nn::account::nas::IOAuthProcedureForExternalNsa'], '84f7f20db4ecb151': ['nn::nifm::detail::IRequest'], 'b8ca6e5433e79cb2': ['nn::timesrv::detail::service::IStaticService'], 'b3bb4bde9ecb224d': ['nn::arp::detail::IWriter'], '705b8aca306f6ff2': ['nn::ns::detail::IApplicationManagerInterface'], '5a6508384258ea2c': ['nns::hosbinder::IHOSBinderDriver'], 'b2da156762209730': ['nn::bcat::detail::ipc::IDeliveryCacheStorageService'], '72c4bcf58cf47efe': ['nn::fssrv::sf::ISaveDataDivisionExporter'], '1f088477c9a99fc8': ['nn::ns::detail::IFactoryResetInterface'], 'd14a028c2a3a2bc9': ['nn::sasbus::IManager', 'nn::fssrv::sf::ISaveDataTransferProhibiter', 'nn::ns::detail::IGameCardStopper', 'nn::ns::detail::IRequestServerStopper', 'nn::olsc::srv::IStopperObject', 'nn::friends::detail::ipc::IDaemonSuspendSessionService', 'nn::am::service::IWindow'], 'f97608292cb9e45a': ['nn::pctl::detail::ipc::IParentalControlServiceFactory'], 'ad95cda1f17d02d4': ['nn::gpio::IPadSession'], 'e3bfdfd72ff62112': ['nn::am::service::IMovieMaker'], '973f73b5a4c23f12': ['nn::account::baas::IManagerForSystemService'], '366ccafd9a88612d': ['nn::ovln::IReceiver'], 'd370e691cf84b160': ['nn::fssrv::sf::ISaveDataChunkExporter'], '47baca73a040292e': ['nn::ns::detail::IApplicationVersionInterface'], '074dc39d711d350c': ['nn::audio::detail::IAudioRendererManagerForApplet'], '52d58b4987c8e6a2': ['nn::nim::detail::IShopServiceManager'], '01526d24fab313d1': ['nn::am::service::IWindowController'], 'c7f6882dbbe76192': ['nn::am::service::ILibraryAppletAccessor'], '6c80c86b931a5598': ['nn::fgm::sf::IRequest'], '4653755c14f961f7': ['nn::erpt::sf::IReport', 'nn::erpt::sf::IAttachment'], 'b74095cc54d5fac2': ['nn::grcsrv::IGrcService'], 'a202525b1a8a98a9': ['nn::ldn::detail::ISystemLocalCommunicationService'], '98c3a246e850be98': ['nn::bgtc::IStateControlService'], '3675d0c8d0312f92': ['nn::capsrv::sf::IScreenShotService'], '86f2c1d0ef9ce65a': ['nn::settings::ISettingsServer'], '2e4ff497ce2ed08e': ['nn::am::service::ICommonStateGetter'], '1af536efc15cfa46': ['nn::am::service::IAudioController'], '7bad1b4f5bcfd278': ['nn::nifm::detail::IGeneralService'], '69547c20efe089af': ['nn::bluetooth::IBluetoothDriver'], 'a09e4f8e00d4e789': ['nn::i2c::ISession'], '09e11edc25c5fddc': ['nn::bcat::detail::ipc::IServiceCreator'], '7de5842c233a5940': ['nn::apm::ISystemManager'], 'd07c250ec43981d7': ['nn::fssrv::sf::ISaveDataExporter'], 'dd2e74efbec1b336': ['nn::hid::IHidServer'], 'a10e408d2022ffae': ['nn::olsc::srv::IOlscServiceForSystemService'], '562a2fb12839614a': ['nn::i2c::IManager'], '2f929cedb08800d2': ['nn::visrv::sf::IManagerRootService'], '3c3c0d8e93ea8fbd': ['nn::audio::detail::IAudioInManagerForDebugger', 'nn::audio::detail::IAudioOutManagerForDebugger', 'nn::audio::detail::IAudioRendererManagerForDebugger'], '9e41fd46d4b7a93f': ['nn::nfc::am::detail::IAmManager', 'nn::btm::IBtmSystem', 'nn::ldn::detail::ISystemServiceCreator', 'nn::fgm::sf::ISession', 'nn::ldn::detail::IMonitorServiceCreator', 'nn::nfc::detail::ISystemManager', 'nn::nfp::detail::ISystemManager', 'nn::ovln::IReceiverService'], '6f9db4402cc791f7': ['nn::capsrv::sf::IAlbumAccessorService'], 'e39cfdb37d61fa5d': ['nn::lm::ILogService', 'nn::am::service::IApplicationProxyService'], '3cf13869c273d105': ['nn::am::service::ISelfController'], '2f555efa2f8d506a': ['nn::hidbus::IHidbusSystemServer'], 'b70ca143ff309821': ['nn::ns::detail::IAsyncValue', 'nn::nim::detail::IAsyncValue'], 'd9d1a213c68756ea': ['nn::migration::savedata::IServer'], '44eafd8c5082b661': ['nn::nsd::detail::IManager'], 'cee0689a9a0b11ba': ['nn::audioctrl::detail::IAudioController'], 'f3824a893af85c91': ['nn::spl::detail::ISslInterface'], '09e103475160adc4': ['nn::bcat::detail::ipc::IDeliveryCacheFileService'], '8fa19d2fc41ca255': ['nn::pwm::IManager'], '942c96c0df18d3fd': ['nn::irsensor::IIrSensorSystemServer'], 'd297f7f4c55f2a99': ['nn::ns::detail::IDevelopInterface'], 'c2a342bd87e77823': ['nn::ntc::detail::service::IStaticService'], '76e2b39f1ee08dad': ['nn::fssrv::sf::ISaveDataTransferManagerWithDivision'], 'b947f9dbc37d5322': ['nn::grcsrv::IGameMovieTrimmer'], 'fb356508a0535b77': ['nn::am::service::ILibraryAppletSelfAccessor'], '311160d735d1918d': ['nn::ns::detail::IServiceGetterInterface'], 'e40baf330c502c08': ['nn::capsrv::sf::IAlbumControlSession'], '4c68e46daece7a9a': ['nn::olsc::srv::ITransferTaskListController'], '5eab6ed6bcdcc324': ['nn::sm::detail::IUserInterface'], '61346617995cb585': ['nn::fatalsrv::IService'], '66070958073744f1': ['nn::fssrv::sf::IFileSystemProxy'], 'f53b458f6e874c1b': ['nn::audio::detail::IAudioOutManager'], 'ffb1ed1d3467e2a7': ['nn::am::service::IGlobalStateController'], '247e674c7d7c9942': ['nn::ns::detail::IDynamicRightsInterface'], '443a5456dfc61051': ['nn::pctl::detail::ipc::IParentalControlService'], 'a8ee81247c3a9384': ['nn::am::service::IProcessWindingController'], '78ba94f758d51102': ['nn::prepo::detail::ipc::IPrepoService'], 'a86c6f7cb5a6d7e7': ['nn::spl::detail::IGeneralInterface'], 'ea5e8ecd4fa6e4bd': ['nn::settings::IFactorySettingsServer'], 'ed64283144cce438': ['nn::timesrv::detail::service::ISystemClock'], 'de50b78b3b860d4f': ['nn::ns::detail::IReadOnlyApplicationRecordInterface'], 'fb9dd96747bea4c4': ['nn::account::baas::IAsyncContextForLoginForOnlinePlay', 'nn::migration::detail::IAsyncSaveDataMigrationPolicyInfoContext'], '16ff6a82ff0ff103': ['nn::hid::IHidSystemServer'], 'f5519e62e121008f': ['nn::am::service::IDisplayController'], '0743a7edc095b7e0': ['nn::lm::ILogger'], '79a058bc9c6317dc': ['nn::socket::resolver::IResolver'], 'f217ca661a52836a': ['nn::account::baas::IGuestLoginRequest'], '49027abdb751d433': ['nn::spl::detail::ICryptoInterface'], 'e8774ee6ae68f5b0': ['nn::ssl::sf::ISslService'], 'b8df11e25c5458ae': ['nn::ovln::ISenderService'], 'abeacc4a646ad7ca': ['nn::account::IAccountServiceForAdministrator'], '07e8757f9fc2697c': ['nn::fssrv::sf::ISaveDataDivisionImporter'], '8ae9f33a76d9d281': ['nn::fssrv::sf::IFileSystemProxyForLoader'], 'aa880cb1496e9ded': ['nn::account::nas::IAuthorizationRequest'], 'e11bbfff93a9ecbe': ['nn::am::service::IApplicationCreator'], '485b4d67666e8e4a': ['nn::audio::detail::IAudioOut'], 'faa980e4d4917414': ['nn::gpio::IManager'], '2d35498adea83db4': ['nn::sasbus::ISession'], '9bc89aed8f15cc88': ['nn::news::detail::ipc::INewsDataService'], 'd2b84173c21b2361': ['nn::fssrv::sf::IStorage'], 'a5441bae3cdffc00': ['nn::btm::IBtm'], 'f405e7cc8d9d8020': ['nn::mii::detail::IImageDatabaseService'], 'f0a18bbdf50f8eb8': ['nn::am::service::ISelfController'], '0212a598d1e8125d': ['nn::dauth::detail::IService'], '4c9bf3e216c217f4': ['nn::ncm::IContentStorage'], 'be53d4498f2ab253': ['nns::hosbinder::IHOSBinderDriver'], '899bac0f033326fa': ['nn::audio::detail::IAudioRendererManager'], '5f9a68bcde03c8ea': ['nn::fssrv::sf::IProgramRegistry'], 'ca01926746ce7096': ['nn::olsc::srv::IDaemonController'], 'cefef7d38d0df976': ['nn::migration::user::IService'], '42297b8bafbeadd2': ['nn::grcsrv::IMovieMaker'], '96a5e651c106c4cd': ['nn::apm::ISession'], '70240b01a9865c3e': ['nn::visrv::sf::IManagerDisplayService'], '13b0c7617249b16f': ['nn::audio::detail::IAudioOutManagerForApplet'], 'c238fb7bfeb26bba': ['nn::psm::IPsmServer'], '2a1ed120563f1553': ['nn::socket::sf::IClient'], '2bdab1c969211ee3': ['nn::ro::detail::IRoInterface'], '898b516ade69b3f0': ['nn::hid::IHidSystemServer'], '7e1c9c0fe4f2a35d': ['nn::settings::ISystemSettingsServer'], '3626e2bd982b86f7': ['nn::capsrv::sf::IAlbumControlService'], '5df308fef6e890fb': ['nn::fssrv::sf::IDirectory'], '1e0c42da4a8e5c5f': ['nn::fssrv::sf::IFile'], 'fda693c0c9a8af50': ['nn::visrv::sf::IManagerDisplayService'], '1b449f8c623d7144': ['nn::am::service::IDebugFunctions'], 'a5dcc30cc04403e6': ['nn::pwm::IChannelSession'], 'b38c9250276e3f12': ['nn::fssrv::sf::IFileSystemProxy'], '655f9549829d5a6a': ['nn::friends::detail::ipc::INotificationService'], '8ff813fe4df151bf': ['nn::nifm::detail::IGeneralService'], '7e29f4a30d982df9': ['nn::fssrv::sf::ISaveDataTransferManager'], '34236f7ff3e2e0e5': ['nv::gemcontrol::INvGemControl'], '5f370d9245ddcccb': ['nn::am::service::ICommonStateGetter'], 'eec92b1678d09c46': ['nn::news::detail::ipc::IServiceCreator'], '92f51b2ce1fc1fe9': ['nn::capsrv::sf::IAlbumAccessorSession'], '20114ce0f01eba55': ['nn::fssrv::sf::IDeviceOperator'], '4875e024ec9e0522': ['nn::nfc::detail::ISystem'], '0498e1c15d5f1b60': ['nn::nifm::detail::INetworkProfile'], '80df875455597a17': ['nn::am::service::IOverlayFunctions'], '362fb4c55ec8b00a': ['nn::fssrv::sf::IFileSystemProxy'], '6a3e3f99e719d99e': ['nn::am::service::IApplicationAccessor'], 'aabc6a86dcefad36': ['nn::settings::ISystemSettingsServer'], 'e8228d2b01a6f6df': ['nn::am::service::IAppletAccessor'], 'f183cedfd4bc9151': ['nn::visrv::sf::IApplicationDisplayService'], 'bf797334c54581d2': ['nn::erpt::sf::IManager'], '6082c9fcf9ae88ce': ['nn::am::service::IAppletCommonFunctions'], '26ad622dd70169b7': ['nn::account::baas::IFloatingRegistrationRequest'], 'd5a760ae52f58e6c': ['nn::fssrv::sf::ISaveDataChunkImporter'], '07f921ea3bb51294': ['nn::fssrv::sf::IDeviceOperator'], '4404b42704f07bfe': ['nn::am::service::IApplicationAccessor'], '84bfddaa69efd59f': ['nn::account::IBaasAccessTokenAccessor'], '998451bfbac45b6f': ['nn::ns::detail::IDownloadTaskInterface'], 'b175ab3039854b8d': ['nn::am::service::ISystemAppletProxy'], 'b3837c70870c5181': ['nn::fssrv::sf::IEventNotifier', 'nn::account::detail::INotifier', 'nn::fatalsrv::IPrivateService', 'nn::olsc::srv::INativeHandleHolder', 'nn::hid::IAppletResource', 'nn::bcat::detail::ipc::INotifierService', 'nn::bcat::detail::ipc::IDeliveryTaskSuspensionService', 'nn::news::detail::ipc::INewlyArrivedEventHolder', 'nn::news::detail::ipc::IOverwriteEventHolder'], '7368439e01b81da1': ['nn::friends::detail::ipc::IServiceCreator'], 'b9bd0d1b4fbe9950': ['nn::sm::detail::IManagerInterface'], '41a5b015fd7b2974': ['nn::news::detail::ipc::INewsDatabaseService'], '18ca865f9fadfb40': ['nn::ns::detail::IProgressMonitorForDeleteUserSaveDataAll'], '28032a2a86978fee': ['nn::regulator::IRegulatorManager'], '8b3d2a6cd1c5a1ca': ['nn::am::service::ILibraryAppletSelfAccessor'], 'e6bb8599ea001b76': ['nn::olsc::srv::IRemoteStorageController'], '4418757e9e8d2871': ['nn::gpio::IManager'], 'b7dbe08acbd75365': ['nn::friends::detail::ipc::IFriendService'], '62f3d257ca284243': ['nn::uart::IPortSession'], '80364747ff4a018f': ['nn::lbl::detail::ILblController'], 'b4925f1abba2be6f': ['nn::ns::detail::ISystemUpdateControl'], '1b7066fc2a402917': ['nn::migration::user::IClient'], '1e1b4340508e40b2': ['nn::ns::detail::IAsyncResult', 'nn::nim::detail::IAsyncResult'], '03f0ea6f9335575c': ['nn::fssrv::sf::ISaveDataInfoReader', 'nn::spl::detail::IRandomInterface'], '5652230574111fa7': ['nn::am::service::ILibraryAppletProxy', 'nn::am::service::IOverlayAppletProxy'], '75f43c56308cd7b6': ['nn::nifm::detail::IScanRequest'], '9392f1ee90235c69': ['nn::uart::IManager'], 'ef36fa28640afe99': ['nn::eupld::sf::IRequest'], '438792474de8dba6': ['nn::fssrv::sf::ISaveDataChunkIterator'], 'a0be9886cc1eaa59': ['nv::gemcoredump::INvGemCoreDump'], 'b9edb1600b89ceac': ['nn::ssl::sf::ISslConnection'], '26e44709faf92ed0': ['nn::am::service::ILibraryAppletCreator'], 'c77bcca6437b27a6': ['nn::timesrv::detail::service::ISteadyClock'], '7aea8734a0f840ff': ['nn::bcat::detail::ipc::IDeliveryCacheDirectoryService'], '5b6e9df3d3b58471': ['nn::fssrv::sf::IFileSystem'], 'd74fdf70159290ac': ['nn::srepo::detail::ipc::ISrepoService'], '812f005802818484': ['nn::ns::detail::IProgressAsyncResult'], 'b3913dcf1653eb90': ['nn::audio::detail::IAudioRenderer'], '678e5715bbf73012': ['nn::account::nas::IOAuthProcedureForNintendoAccountLinkage'], '391522848c1f6043': ['nn::fssrv::sf::IFileSystemProxy'], '17749092dc6fb853': ['nn::clkrst::IClkrstSession'], '1500deb9a7b0c914': ['nn::am::service::IApplicationProxy'], '388802cf41c41bce': ['nn::account::baas::IAdministrator'], 'e78fd383329c1e63': ['nn::ns::detail::IDocumentInterface'], '5216949a0ceebb5f': ['nn::fssrv::sf::IMultiCommitManager'], 'fbbbc6514394774e': ['nn::socket::sf::IClient'], '72cd1a5e3a3c7f4d': ['nn::account::IAccountServiceForSystemService'], 'a70b98ccc3299f80': ['nn::visrv::sf::IApplicationRootService', 'nn::sasbus::IManager', 'nn::fan::detail::IManager', 'nn::mii::detail::IStaticService'], 'feafd8f56bfb6c79': ['nn::am::service::IStorageChannel'], '9b1f77d36f593b6a': ['nn::regulator::IRegulatorSession'], 'c6fa95d83771352c': ['nn::mii::detail::IDatabaseService'], 'ff182bb207d2b5a5': ['nn::erpt::sf::IContext'], 'b47f55ada5e6b225': ['nn::eupld::sf::IControl'], '3b5390a64705a065': ['nns::nvdrv::INvDrvServices'], '38596578645fafba': ['nn::dauth::detail::IAsyncResult', 'nn::account::detail::IAsyncContext', 'nn::olsc::srv::IAsyncResult', 'nn::migration::detail::IAsyncContext', 'nn::news::detail::ipc::IDownloadContext'], 'bb4a6a9db65360e5': ['nn::am::service::ILockAccessor'], '6826a1702a669c81': ['nn::bcat::detail::ipc::IBcatService'], '122ed7b9d8b764a4': ['nn::ovln::ISender'], '78ecb0e1ac578c6c': ['nn::visrv::sf::ISystemDisplayService'], 'cf1de82e5d258edb': ['nn::audio::detail::IAudioDevice'], 'be0c9d3c0945d8e8': ['nn::erpt::sf::ISession'], 'f474a636d785a723': ['nn::grcsrv::IContinuousRecorder'], 'cd5711d486a56f56': ['nn::ns::detail::ISystemUpdateInterface'], '011d3a57dac18e69': ['nn::npns::INotificationReceiver'], '60b2072cf75e98e9': ['nn::fssrv::sf::ISaveDataImporter'], '45ac41ac041971b7': ['nn::ns::detail::IVulnerabilityManagerInterface'], 'd7a91bbf777d68e6': ['nn::news::detail::ipc::INewsService'], 'd5276e9a369a02d4': ['nn::bgtc::ITaskService'], '5cc15656aa779039': ['nn::am::service::IStorageAccessor'], 'b8f2b4fed4f9dd19': ['nn::am::service::IAppletCommonFunctions'], 'f9cae162fd25a500': ['nn::account::detail::ISessionObject'], 'e95f80443466e96f': ['nn::ns::detail::IECommerceInterface'], '78cfe7a902912164': ['nn::mmnv::IRequest'], '4958f97e2c248677': ['nn::timesrv::detail::service::ITimeZoneService'], '5fe31c4ba5458e86': ['nn::nifm::detail::IStaticService'], '9ff0846fa9d9bfbe': ['nn::am::service::IApplicationFunctions'], '51c707b04050f17d': ['nn::hid::IActiveVibrationDeviceList', 'nn::pcv::IArbitrationManager'], '1c3ea2497ad14abd': ['nn::am::service::ITransferStorageAccessor'], '11611b1034a052c8': ['nn::fan::detail::IController'], 'a1eb9b617884b06e': ['nn::account::profile::IProfileEditor'], '79f9bddeea176bff': ['nn::ncm::IContentStorage'], '1e6aaa6e9c1d263c': ['nn::hid::IHidDebugServer'], 'ed990669d25d5086': ['nn::olsc::srv::IForbiddenSaveDataIndication'], 'c88c3118b02ec25b': ['nn::pl::detail::IPlatformServiceManager'], 'a0e6c9339df87581': ['nn::nfc::am::detail::IAm'], 'de74463cee165833': ['nn::migration::user::IServer'], '34c74f65e1610cf7': ['nn::pcv::detail::IPcvService'], '4fac7e300a84232b': ['nn::capsrv::sf::IScreenShotControlService'], '8e9938e174daf0bd': ['nn::ncm::IContentMetaDatabase'], '61a91fdb411efe4a': ['nn::nim::detail::IAsyncProgressResult'], 'e89b11adefffbfd4': ['nn::avm::srv::IVersionListImporter'], 'c3ebc917c3fbe907': ['nn::tc::IManager'], '771fa4a8fb46317f': ['nn::account::baas::IManagerForApplication'], 'e870d6c9931ac281': ['nn::btm::IBtmSystemCore'], '545040c28142bc5b': ['nn::psm::IPsmSession'], '75bd73bde1f6c923': ['nv::MemoryProfiler::IMemoryProfiler'], 'f07ce1118432e8ee': ['nn::pcv::detail::IPcvService'], '0370161c5a92ca25': ['nn::ldn::detail::IMonitorService'], '26f4c471b9b5b453': ['nn::account::http::IOAuthProcedure'], '97cac48103b20231': ['nn::account::IAccountServiceForApplication'], '927a357138944f57': ['nn::ntc::detail::service::IEnsureNetworkClockAvailabilityService'], '78e1342e6626dfa1': ['nn::migration::savedata::IClient'], 'a2eeab79ddf3035a': ['nn::grcsrv::IOffscreenRecorder'], 'be3851481ba76f64': ['nn::ns::detail::IAccountProxyInterface'], '02c66976480a90b3': ['nn::visrv::sf::ISystemRootService'], '8ca323a7f3a293c5': ['nn::audio::detail::IAudioInManagerForApplet'], 'cfef8b4ffcd68bd4': ['nn::arp::detail::IReader'], '5f3424303dd51d50': ['nn::ns::detail::IReadOnlyApplicationControlDataInterface'], '99a880037575580a': ['nn::hid::IHidDebugServer'], '4eeb8c6cb84b38c4': ['nn::apm::IManager'], '3de251fa2ea20236': ['nn::ns::detail::IContentManagementInterface'], 'f9b56db27c746e3d': ['nn::arp::detail::IRegistrar']}
8,575.5
17,150
0.735292
f12f409f0d032166f0e0e1d05e4c99bf29bbd17e
2,022
py
Python
prsa/__init__.py
ridwanmsharif/rsa
0feb3ede639246314b5b8d5c4c2092a96c1918d5
[ "MIT" ]
24
2017-01-01T16:32:46.000Z
2019-03-14T17:42:57.000Z
prsa/__init__.py
ridwanmsharif/rsa
0feb3ede639246314b5b8d5c4c2092a96c1918d5
[ "MIT" ]
null
null
null
prsa/__init__.py
ridwanmsharif/rsa
0feb3ede639246314b5b8d5c4c2092a96c1918d5
[ "MIT" ]
3
2017-01-02T08:30:31.000Z
2021-04-22T17:41:34.000Z
#!/usr/bin/env python from rsa import * from primesieve import * import argparse parser = argparse.ArgumentParser(prog='PRSA', description='''Implementation of the algorithms defined by the RSA scheme in Python3. Computes ciphertext from message and Computes message from ciphertext granted access to secret decryption key by using Extended Euclidean Algorithm, Unicode Points, Modular Arithmetic and Modular Exponentiation''', add_help=True) subparsers = parser.add_subparsers() decrypt_parser = subparsers.add_parser('decrypt', help='Decrypt ciphertext using RSA') decrypt_parser.add_argument('ctext', metavar='C', type=int, help='Encoded ciphertext to be decrypted') decrypt_parser.add_argument('privatekey', metavar='d', type=int, help='A natural number that serves as the first element of the private key') decrypt_parser.add_argument('mod', metavar='n', type=int, help='A natural number that serves as the second element of the private key') encrypt_parser = subparsers.add_parser('encrypt', help='Encrypt message using RSA') encrypt_parser.add_argument('text', metavar='M', type=str, help='Message to be encrypted') encrypt_parser.add_argument('publickey', metavar='e', type=int, help='A natural number that serves as the first element of the public key') encrypt_parser.add_argument('mod', metavar='n', type=int, help='A natural number that serves as the second element of the private key') generate_parser = subparsers.add_parser('generate', help='Find a key pair given the two natural numbers') generate_parser.add_argument('np', metavar='p', type=int, help='An integer for setting a prime (p)') generate_parser.add_argument('nq', metavar='q', type=int, help='An integer for setting a prime (q)') args = parser.parse_args() if hasattr(args, 'ctext'): print(rsa_decrypt(args.ctext, args.privatekey, args.mod)) elif hasattr(args, 'publickey'): print(rsa_encrypt(args.text, args.publickey, args.mod)) else: print(generate_key_pair(args.np, args.nq))
42.125
86
0.756677
2326cf671541dde7b154434dc10621cdb070f847
1,998
py
Python
pages/goods_page.py
pavel-wh/autotesting_course
7d6a395fe000aa796f3ed1eeaa4387caa7dd2ecb
[ "MIT" ]
1
2019-11-17T02:29:25.000Z
2019-11-17T02:29:25.000Z
pages/goods_page.py
pavel-wh/autotesting_course
7d6a395fe000aa796f3ed1eeaa4387caa7dd2ecb
[ "MIT" ]
1
2021-06-01T23:53:26.000Z
2021-06-01T23:53:26.000Z
pages/goods_page.py
pavel-wh/autotesting_course
7d6a395fe000aa796f3ed1eeaa4387caa7dd2ecb
[ "MIT" ]
null
null
null
import time from .base_page import BasePage from selenium.webdriver.common.by import By from .locators import GoodsPageLocators from selenium.common.exceptions import NoAlertPresentException import math class GoodsPage(BasePage): def solve_quiz_and_get_code(self): """метод для подсчёта результата математического выражения и вывода ответа. """ alert = self.browser.switch_to.alert x = alert.text.split(" ")[2] answer = str(math.log(abs((12 * math.sin(float(x)))))) alert.send_keys(answer) alert.accept() try: alert = self.browser.switch_to.alert print(f"Your code: {alert.text}") alert.accept() except NoAlertPresentException: print("No second alert presented") def click_to_add_basket_button(self): basket_button = self.browser.find_element( *GoodsPageLocators.ADD_BASKET_BUTTON) basket_button.click() def should_be_message_about_goods_name(self): name_goods = self.browser.find_element( *GoodsPageLocators.NAME_GOODS) message_name_goods = self.browser.find_element( *GoodsPageLocators.MESSAGE_NAME_GOODS) assert name_goods.text == message_name_goods.text, "Goods name not match" def should_be_message_about_goods_price(self): price_goods = self.browser.find_element( *GoodsPageLocators.PRICE_GOODS) message_price_goods = self.browser.find_element( *GoodsPageLocators.MESSAGE_PRICE_GOODS) assert price_goods.text == message_price_goods.text, "Goods price not match" def should_not_be_success_message(self): assert self.is_not_element_present(*GoodsPageLocators.SUCCESS_MESSAGE), \ "Success message is presented, but should not be" def should_be_success_message_disappear(self): assert self.is_disappeared(*GoodsPageLocators.SUCCESS_MESSAGE), \ "Success message is not disappeared"
39.176471
84
0.697197
079bdfd0a05d20676b2a4db7d5d3d7906726edf2
69,612
py
Python
salt/loader.py
TheLocehiliosan/salt
57674c3a734df42393b1bb552701f3aebb9d14ea
[ "Apache-2.0" ]
null
null
null
salt/loader.py
TheLocehiliosan/salt
57674c3a734df42393b1bb552701f3aebb9d14ea
[ "Apache-2.0" ]
null
null
null
salt/loader.py
TheLocehiliosan/salt
57674c3a734df42393b1bb552701f3aebb9d14ea
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' The Salt loader is the core to Salt's plugin system, the loader scans directories for python loadable code and organizes the code into the plugin interfaces used by Salt. ''' # Import python libs from __future__ import absolute_import, print_function, unicode_literals import os import re import sys import time import logging import inspect import tempfile import functools import threading import traceback import types from zipimport import zipimporter # Import salt libs import salt.config import salt.defaults.exitcodes import salt.syspaths import salt.utils.args import salt.utils.context import salt.utils.data import salt.utils.dictupdate import salt.utils.event import salt.utils.files import salt.utils.lazy import salt.utils.odict import salt.utils.platform import salt.utils.versions import salt.utils.stringutils from salt.exceptions import LoaderError from salt.template import check_render_pipe_str from salt.utils.decorators import Depends # Import 3rd-party libs from salt.ext import six from salt.ext.six.moves import reload_module if sys.version_info[:2] >= (3, 5): import importlib.machinery # pylint: disable=no-name-in-module,import-error import importlib.util # pylint: disable=no-name-in-module,import-error USE_IMPORTLIB = True else: import imp USE_IMPORTLIB = False try: from collections.abc import MutableMapping except ImportError: from collections import MutableMapping try: import pkg_resources HAS_PKG_RESOURCES = True except ImportError: HAS_PKG_RESOURCES = False log = logging.getLogger(__name__) SALT_BASE_PATH = os.path.abspath(salt.syspaths.INSTALL_DIR) LOADED_BASE_NAME = 'salt.loaded' if USE_IMPORTLIB: # pylint: disable=no-member MODULE_KIND_SOURCE = 1 MODULE_KIND_COMPILED = 2 MODULE_KIND_EXTENSION = 3 MODULE_KIND_PKG_DIRECTORY = 5 SUFFIXES = [] for suffix in importlib.machinery.EXTENSION_SUFFIXES: SUFFIXES.append((suffix, 'rb', MODULE_KIND_EXTENSION)) for suffix in importlib.machinery.SOURCE_SUFFIXES: SUFFIXES.append((suffix, 'rb', MODULE_KIND_SOURCE)) for suffix in importlib.machinery.BYTECODE_SUFFIXES: SUFFIXES.append((suffix, 'rb', MODULE_KIND_COMPILED)) MODULE_KIND_MAP = { MODULE_KIND_SOURCE: importlib.machinery.SourceFileLoader, MODULE_KIND_COMPILED: importlib.machinery.SourcelessFileLoader, MODULE_KIND_EXTENSION: importlib.machinery.ExtensionFileLoader } # pylint: enable=no-member else: SUFFIXES = imp.get_suffixes() PY3_PRE_EXT = \ re.compile(r'\.cpython-{0}{1}(\.opt-[1-9])?'.format(*sys.version_info[:2])) # Because on the cloud drivers we do `from salt.cloud.libcloudfuncs import *` # which simplifies code readability, it adds some unsupported functions into # the driver's module scope. # We list un-supported functions here. These will be removed from the loaded. # TODO: remove the need for this cross-module code. Maybe use NotImplemented LIBCLOUD_FUNCS_NOT_SUPPORTED = ( 'parallels.avail_sizes', 'parallels.avail_locations', 'proxmox.avail_sizes', ) # Will be set to pyximport module at runtime if cython is enabled in config. pyximport = None def static_loader( opts, ext_type, tag, pack=None, int_type=None, ext_dirs=True, ext_type_dirs=None, base_path=None, filter_name=None, ): funcs = LazyLoader( _module_dirs( opts, ext_type, tag, int_type, ext_dirs, ext_type_dirs, base_path, ), opts, tag=tag, pack=pack, ) ret = {} funcs._load_all() if filter_name: funcs = FilterDictWrapper(funcs, filter_name) for key in funcs: ret[key] = funcs[key] return ret def _module_dirs( opts, ext_type, tag=None, int_type=None, ext_dirs=True, ext_type_dirs=None, base_path=None, ): if tag is None: tag = ext_type sys_types = os.path.join(base_path or SALT_BASE_PATH, int_type or ext_type) ext_types = os.path.join(opts['extension_modules'], ext_type) ext_type_types = [] if ext_dirs: if ext_type_dirs is None: ext_type_dirs = '{0}_dirs'.format(tag) if ext_type_dirs in opts: ext_type_types.extend(opts[ext_type_dirs]) if HAS_PKG_RESOURCES and ext_type_dirs: for entry_point in pkg_resources.iter_entry_points('salt.loader', ext_type_dirs): loaded_entry_point = entry_point.load() for path in loaded_entry_point(): ext_type_types.append(path) cli_module_dirs = [] # The dirs can be any module dir, or a in-tree _{ext_type} dir for _dir in opts.get('module_dirs', []): # Prepend to the list to match cli argument ordering maybe_dir = os.path.join(_dir, ext_type) if os.path.isdir(maybe_dir): cli_module_dirs.insert(0, maybe_dir) continue maybe_dir = os.path.join(_dir, '_{0}'.format(ext_type)) if os.path.isdir(maybe_dir): cli_module_dirs.insert(0, maybe_dir) return cli_module_dirs + ext_type_types + [ext_types, sys_types] def minion_mods( opts, context=None, utils=None, whitelist=None, initial_load=False, loaded_base_name=None, notify=False, static_modules=None, proxy=None): ''' Load execution modules Returns a dictionary of execution modules appropriate for the current system by evaluating the __virtual__() function in each module. :param dict opts: The Salt options dictionary :param dict context: A Salt context that should be made present inside generated modules in __context__ :param dict utils: Utility functions which should be made available to Salt modules in __utils__. See `utils_dirs` in salt.config for additional information about configuration. :param list whitelist: A list of modules which should be whitelisted. :param bool initial_load: Deprecated flag! Unused. :param str loaded_base_name: A string marker for the loaded base name. :param bool notify: Flag indicating that an event should be fired upon completion of module loading. .. code-block:: python import salt.config import salt.loader __opts__ = salt.config.minion_config('/etc/salt/minion') __grains__ = salt.loader.grains(__opts__) __opts__['grains'] = __grains__ __utils__ = salt.loader.utils(__opts__) __salt__ = salt.loader.minion_mods(__opts__, utils=__utils__) __salt__['test.ping']() ''' # TODO Publish documentation for module whitelisting if not whitelist: whitelist = opts.get('whitelist_modules', None) ret = LazyLoader( _module_dirs(opts, 'modules', 'module'), opts, tag='module', pack={'__context__': context, '__utils__': utils, '__proxy__': proxy}, whitelist=whitelist, loaded_base_name=loaded_base_name, static_modules=static_modules, ) ret.pack['__salt__'] = ret # Load any provider overrides from the configuration file providers option # Note: Providers can be pkg, service, user or group - not to be confused # with cloud providers. providers = opts.get('providers', False) if providers and isinstance(providers, dict): for mod in providers: # sometimes providers opts is not to diverge modules but # for other configuration try: funcs = raw_mod(opts, providers[mod], ret) except TypeError: break else: if funcs: for func in funcs: f_key = '{0}{1}'.format(mod, func[func.rindex('.'):]) ret[f_key] = funcs[func] if notify: evt = salt.utils.event.get_event('minion', opts=opts, listen=False) evt.fire_event({'complete': True}, tag='/salt/minion/minion_mod_complete') return ret def raw_mod(opts, name, functions, mod='modules'): ''' Returns a single module loaded raw and bypassing the __virtual__ function .. code-block:: python import salt.config import salt.loader __opts__ = salt.config.minion_config('/etc/salt/minion') testmod = salt.loader.raw_mod(__opts__, 'test', None) testmod['test.ping']() ''' loader = LazyLoader( _module_dirs(opts, mod, 'module'), opts, tag='rawmodule', virtual_enable=False, pack={'__salt__': functions}, ) # if we don't have the module, return an empty dict if name not in loader.file_mapping: return {} loader._load_module(name) # load a single module (the one passed in) return dict(loader._dict) # return a copy of *just* the funcs for `name` def metaproxy(opts): ''' Return functions used in the meta proxy ''' return LazyLoader( _module_dirs(opts, 'metaproxy'), opts, tag='metaproxy' ) def matchers(opts): ''' Return the matcher services plugins ''' return LazyLoader( _module_dirs(opts, 'matchers'), opts, tag='matchers' ) def engines(opts, functions, runners, utils, proxy=None): ''' Return the master services plugins ''' pack = {'__salt__': functions, '__runners__': runners, '__proxy__': proxy, '__utils__': utils} return LazyLoader( _module_dirs(opts, 'engines'), opts, tag='engines', pack=pack, ) def proxy(opts, functions=None, returners=None, whitelist=None, utils=None): ''' Returns the proxy module for this salt-proxy-minion ''' ret = LazyLoader( _module_dirs(opts, 'proxy'), opts, tag='proxy', pack={'__salt__': functions, '__ret__': returners, '__utils__': utils}, ) ret.pack['__proxy__'] = ret return ret def returners(opts, functions, whitelist=None, context=None, proxy=None): ''' Returns the returner modules ''' return LazyLoader( _module_dirs(opts, 'returners', 'returner'), opts, tag='returner', whitelist=whitelist, pack={'__salt__': functions, '__context__': context, '__proxy__': proxy or {}}, ) def utils(opts, whitelist=None, context=None, proxy=proxy): ''' Returns the utility modules ''' return LazyLoader( _module_dirs(opts, 'utils', ext_type_dirs='utils_dirs'), opts, tag='utils', whitelist=whitelist, pack={'__context__': context, '__proxy__': proxy or {}}, ) def pillars(opts, functions, context=None): ''' Returns the pillars modules ''' ret = LazyLoader(_module_dirs(opts, 'pillar'), opts, tag='pillar', pack={'__salt__': functions, '__context__': context, '__utils__': utils(opts)}) ret.pack['__ext_pillar__'] = ret return FilterDictWrapper(ret, '.ext_pillar') def tops(opts): ''' Returns the tops modules ''' if 'master_tops' not in opts: return {} whitelist = list(opts['master_tops'].keys()) ret = LazyLoader( _module_dirs(opts, 'tops', 'top'), opts, tag='top', whitelist=whitelist, ) return FilterDictWrapper(ret, '.top') def wheels(opts, whitelist=None, context=None): ''' Returns the wheels modules ''' if context is None: context = {} return LazyLoader( _module_dirs(opts, 'wheel'), opts, tag='wheel', whitelist=whitelist, pack={'__context__': context}, ) def outputters(opts): ''' Returns the outputters modules :param dict opts: The Salt options dictionary :returns: LazyLoader instance, with only outputters present in the keyspace ''' ret = LazyLoader( _module_dirs(opts, 'output', ext_type_dirs='outputter_dirs'), opts, tag='output', ) wrapped_ret = FilterDictWrapper(ret, '.output') # TODO: this name seems terrible... __salt__ should always be execution mods ret.pack['__salt__'] = wrapped_ret return wrapped_ret def serializers(opts): ''' Returns the serializers modules :param dict opts: The Salt options dictionary :returns: LazyLoader instance, with only serializers present in the keyspace ''' return LazyLoader( _module_dirs(opts, 'serializers'), opts, tag='serializers', ) def eauth_tokens(opts): ''' Returns the tokens modules :param dict opts: The Salt options dictionary :returns: LazyLoader instance, with only token backends present in the keyspace ''' return LazyLoader( _module_dirs(opts, 'tokens'), opts, tag='tokens', ) def auth(opts, whitelist=None): ''' Returns the auth modules :param dict opts: The Salt options dictionary :returns: LazyLoader ''' return LazyLoader( _module_dirs(opts, 'auth'), opts, tag='auth', whitelist=whitelist, pack={'__salt__': minion_mods(opts)}, ) def fileserver(opts, backends): ''' Returns the file server modules ''' return LazyLoader(_module_dirs(opts, 'fileserver'), opts, tag='fileserver', whitelist=backends, pack={'__utils__': utils(opts)}) def roster(opts, runner=None, utils=None, whitelist=None): ''' Returns the roster modules ''' return LazyLoader( _module_dirs(opts, 'roster'), opts, tag='roster', whitelist=whitelist, pack={ '__runner__': runner, '__utils__': utils, }, ) def thorium(opts, functions, runners): ''' Load the thorium runtime modules ''' pack = {'__salt__': functions, '__runner__': runners, '__context__': {}} ret = LazyLoader(_module_dirs(opts, 'thorium'), opts, tag='thorium', pack=pack) ret.pack['__thorium__'] = ret return ret def states(opts, functions, utils, serializers, whitelist=None, proxy=None): ''' Returns the state modules :param dict opts: The Salt options dictionary :param dict functions: A dictionary of minion modules, with module names as keys and funcs as values. .. code-block:: python import salt.config import salt.loader __opts__ = salt.config.minion_config('/etc/salt/minion') statemods = salt.loader.states(__opts__, None, None) ''' ret = LazyLoader( _module_dirs(opts, 'states'), opts, tag='states', pack={'__salt__': functions, '__proxy__': proxy or {}}, whitelist=whitelist, ) ret.pack['__states__'] = ret ret.pack['__utils__'] = utils ret.pack['__serializers__'] = serializers return ret def beacons(opts, functions, context=None, proxy=None): ''' Load the beacon modules :param dict opts: The Salt options dictionary :param dict functions: A dictionary of minion modules, with module names as keys and funcs as values. ''' return LazyLoader( _module_dirs(opts, 'beacons'), opts, tag='beacons', pack={'__context__': context, '__salt__': functions, '__proxy__': proxy or {}}, virtual_funcs=[], ) def log_handlers(opts): ''' Returns the custom logging handler modules :param dict opts: The Salt options dictionary ''' ret = LazyLoader( _module_dirs( opts, 'log_handlers', int_type='handlers', base_path=os.path.join(SALT_BASE_PATH, 'log'), ), opts, tag='log_handlers', ) return FilterDictWrapper(ret, '.setup_handlers') def ssh_wrapper(opts, functions=None, context=None): ''' Returns the custom logging handler modules ''' return LazyLoader( _module_dirs( opts, 'wrapper', base_path=os.path.join(SALT_BASE_PATH, os.path.join('client', 'ssh')), ), opts, tag='wrapper', pack={ '__salt__': functions, '__grains__': opts.get('grains', {}), '__pillar__': opts.get('pillar', {}), '__context__': context, }, ) def render(opts, functions, states=None, proxy=None): ''' Returns the render modules ''' pack = {'__salt__': functions, '__grains__': opts.get('grains', {})} if states: pack['__states__'] = states pack['__proxy__'] = proxy or {} ret = LazyLoader( _module_dirs( opts, 'renderers', 'render', ext_type_dirs='render_dirs', ), opts, tag='render', pack=pack, ) rend = FilterDictWrapper(ret, '.render') if not check_render_pipe_str(opts['renderer'], rend, opts['renderer_blacklist'], opts['renderer_whitelist']): err = ('The renderer {0} is unavailable, this error is often because ' 'the needed software is unavailable'.format(opts['renderer'])) log.critical(err) raise LoaderError(err) return rend def grain_funcs(opts, proxy=None): ''' Returns the grain functions .. code-block:: python import salt.config import salt.loader __opts__ = salt.config.minion_config('/etc/salt/minion') grainfuncs = salt.loader.grain_funcs(__opts__) ''' ret = LazyLoader( _module_dirs( opts, 'grains', 'grain', ext_type_dirs='grains_dirs', ), opts, tag='grains', ) ret.pack['__utils__'] = utils(opts, proxy=proxy) return ret def _load_cached_grains(opts, cfn): ''' Returns the grains cached in cfn, or None if the cache is too old or is corrupted. ''' if not os.path.isfile(cfn): log.debug('Grains cache file does not exist.') return None grains_cache_age = int(time.time() - os.path.getmtime(cfn)) if grains_cache_age > opts.get('grains_cache_expiration', 300): log.debug( 'Grains cache last modified %s seconds ago and cache ' 'expiration is set to %s. Grains cache expired. ' 'Refreshing.', grains_cache_age, opts.get('grains_cache_expiration', 300) ) return None if opts.get('refresh_grains_cache', False): log.debug('refresh_grains_cache requested, Refreshing.') return None log.debug('Retrieving grains from cache') try: serial = salt.payload.Serial(opts) with salt.utils.files.fopen(cfn, 'rb') as fp_: cached_grains = salt.utils.data.decode(serial.load(fp_), preserve_tuples=True) if not cached_grains: log.debug('Cached grains are empty, cache might be corrupted. Refreshing.') return None return cached_grains except (IOError, OSError): return None def grains(opts, force_refresh=False, proxy=None): ''' Return the functions for the dynamic grains and the values for the static grains. Since grains are computed early in the startup process, grains functions do not have __salt__ or __proxy__ available. At proxy-minion startup, this function is called with the proxymodule LazyLoader object so grains functions can communicate with their controlled device. .. code-block:: python import salt.config import salt.loader __opts__ = salt.config.minion_config('/etc/salt/minion') __grains__ = salt.loader.grains(__opts__) print __grains__['id'] ''' # Need to re-import salt.config, somehow it got lost when a minion is starting import salt.config # if we have no grains, lets try loading from disk (TODO: move to decorator?) cfn = os.path.join( opts['cachedir'], 'grains.cache.p' ) if not force_refresh and opts.get('grains_cache', False): cached_grains = _load_cached_grains(opts, cfn) if cached_grains: return cached_grains else: log.debug('Grains refresh requested. Refreshing grains.') if opts.get('skip_grains', False): return {} grains_deep_merge = opts.get('grains_deep_merge', False) is True if 'conf_file' in opts: pre_opts = {} pre_opts.update(salt.config.load_config( opts['conf_file'], 'SALT_MINION_CONFIG', salt.config.DEFAULT_MINION_OPTS['conf_file'] )) default_include = pre_opts.get( 'default_include', opts['default_include'] ) include = pre_opts.get('include', []) pre_opts.update(salt.config.include_config( default_include, opts['conf_file'], verbose=False )) pre_opts.update(salt.config.include_config( include, opts['conf_file'], verbose=True )) if 'grains' in pre_opts: opts['grains'] = pre_opts['grains'] else: opts['grains'] = {} else: opts['grains'] = {} grains_data = {} blist = opts.get('grains_blacklist', []) funcs = grain_funcs(opts, proxy=proxy) if force_refresh: # if we refresh, lets reload grain modules funcs.clear() # Run core grains for key in funcs: if not key.startswith('core.'): continue log.trace('Loading %s grain', key) ret = funcs[key]() if not isinstance(ret, dict): continue if blist: for key in list(ret): for block in blist: if salt.utils.stringutils.expr_match(key, block): del ret[key] log.trace('Filtering %s grain', key) if not ret: continue if grains_deep_merge: salt.utils.dictupdate.update(grains_data, ret) else: grains_data.update(ret) # Run the rest of the grains for key in funcs: if key.startswith('core.') or key == '_errors': continue try: # Grains are loaded too early to take advantage of the injected # __proxy__ variable. Pass an instance of that LazyLoader # here instead to grains functions if the grains functions take # one parameter. Then the grains can have access to the # proxymodule for retrieving information from the connected # device. log.trace('Loading %s grain', key) parameters = salt.utils.args.get_function_argspec(funcs[key]).args kwargs = {} if 'proxy' in parameters: kwargs['proxy'] = proxy if 'grains' in parameters: kwargs['grains'] = grains_data ret = funcs[key](**kwargs) except Exception: if salt.utils.platform.is_proxy(): log.info('The following CRITICAL message may not be an error; the proxy may not be completely established yet.') log.critical( 'Failed to load grains defined in grain file %s in ' 'function %s, error:\n', key, funcs[key], exc_info=True ) continue if not isinstance(ret, dict): continue if blist: for key in list(ret): for block in blist: if salt.utils.stringutils.expr_match(key, block): del ret[key] log.trace('Filtering %s grain', key) if not ret: continue if grains_deep_merge: salt.utils.dictupdate.update(grains_data, ret) else: grains_data.update(ret) if opts.get('proxy_merge_grains_in_module', True) and proxy: try: proxytype = proxy.opts['proxy']['proxytype'] if proxytype + '.grains' in proxy: if proxytype + '.initialized' in proxy and proxy[proxytype + '.initialized'](): try: proxytype = proxy.opts['proxy']['proxytype'] ret = proxy[proxytype + '.grains']() if grains_deep_merge: salt.utils.dictupdate.update(grains_data, ret) else: grains_data.update(ret) except Exception: log.critical('Failed to run proxy\'s grains function!', exc_info=True ) except KeyError: pass grains_data.update(opts['grains']) # Write cache if enabled if opts.get('grains_cache', False): with salt.utils.files.set_umask(0o077): try: if salt.utils.platform.is_windows(): # Late import import salt.modules.cmdmod # Make sure cache file isn't read-only salt.modules.cmdmod._run_quiet('attrib -R "{0}"'.format(cfn)) with salt.utils.files.fopen(cfn, 'w+b') as fp_: try: serial = salt.payload.Serial(opts) serial.dump(grains_data, fp_) except TypeError as e: log.error('Failed to serialize grains cache: %s', e) raise # re-throw for cleanup except Exception as e: log.error('Unable to write to grains cache file %s: %s', cfn, e) # Based on the original exception, the file may or may not have been # created. If it was, we will remove it now, as the exception means # the serialized data is not to be trusted, no matter what the # exception is. if os.path.isfile(cfn): os.unlink(cfn) if grains_deep_merge: salt.utils.dictupdate.update(grains_data, opts['grains']) else: grains_data.update(opts['grains']) return salt.utils.data.decode(grains_data, preserve_tuples=True) # TODO: get rid of? Does anyone use this? You should use raw() instead def call(fun, **kwargs): ''' Directly call a function inside a loader directory ''' args = kwargs.get('args', []) dirs = kwargs.get('dirs', []) funcs = LazyLoader( [os.path.join(SALT_BASE_PATH, 'modules')] + dirs, None, tag='modules', virtual_enable=False, ) return funcs[fun](*args) def runner(opts, utils=None, context=None, whitelist=None): ''' Directly call a function inside a loader directory ''' if utils is None: utils = {} if context is None: context = {} ret = LazyLoader( _module_dirs(opts, 'runners', 'runner', ext_type_dirs='runner_dirs'), opts, tag='runners', pack={'__utils__': utils, '__context__': context}, whitelist=whitelist, ) # TODO: change from __salt__ to something else, we overload __salt__ too much ret.pack['__salt__'] = ret return ret def queues(opts): ''' Directly call a function inside a loader directory ''' return LazyLoader( _module_dirs(opts, 'queues', 'queue', ext_type_dirs='queue_dirs'), opts, tag='queues', ) def sdb(opts, functions=None, whitelist=None, utils=None): ''' Make a very small database call ''' if utils is None: utils = {} return LazyLoader( _module_dirs(opts, 'sdb'), opts, tag='sdb', pack={ '__sdb__': functions, '__opts__': opts, '__utils__': utils, '__salt__': minion_mods(opts, utils), }, whitelist=whitelist, ) def pkgdb(opts): ''' Return modules for SPM's package database .. versionadded:: 2015.8.0 ''' return LazyLoader( _module_dirs( opts, 'pkgdb', base_path=os.path.join(SALT_BASE_PATH, 'spm') ), opts, tag='pkgdb' ) def pkgfiles(opts): ''' Return modules for SPM's file handling .. versionadded:: 2015.8.0 ''' return LazyLoader( _module_dirs( opts, 'pkgfiles', base_path=os.path.join(SALT_BASE_PATH, 'spm') ), opts, tag='pkgfiles' ) def clouds(opts): ''' Return the cloud functions ''' # Let's bring __active_provider_name__, defaulting to None, to all cloud # drivers. This will get temporarily updated/overridden with a context # manager when needed. functions = LazyLoader( _module_dirs(opts, 'clouds', 'cloud', base_path=os.path.join(SALT_BASE_PATH, 'cloud'), int_type='clouds'), opts, tag='clouds', pack={'__utils__': salt.loader.utils(opts), '__active_provider_name__': None}, ) for funcname in LIBCLOUD_FUNCS_NOT_SUPPORTED: log.trace( '\'%s\' has been marked as not supported. Removing from the ' 'list of supported cloud functions', funcname ) functions.pop(funcname, None) return functions def netapi(opts): ''' Return the network api functions ''' return LazyLoader( _module_dirs(opts, 'netapi'), opts, tag='netapi', ) def executors(opts, functions=None, context=None, proxy=None): ''' Returns the executor modules ''' executors = LazyLoader( _module_dirs(opts, 'executors', 'executor'), opts, tag='executor', pack={'__salt__': functions, '__context__': context or {}, '__proxy__': proxy or {}}, ) executors.pack['__executors__'] = executors return executors def cache(opts, serial): ''' Returns the returner modules ''' return LazyLoader( _module_dirs(opts, 'cache', 'cache'), opts, tag='cache', pack={'__opts__': opts, '__context__': {'serial': serial}}, ) def _generate_module(name): if name in sys.modules: return code = "'''Salt loaded {0} parent module'''".format(name.split('.')[-1]) # ModuleType can't accept a unicode type on PY2 module = types.ModuleType(str(name)) # future lint: disable=blacklisted-function exec(code, module.__dict__) sys.modules[name] = module def _mod_type(module_path): if module_path.startswith(SALT_BASE_PATH): return 'int' return 'ext' # TODO: move somewhere else? class FilterDictWrapper(MutableMapping): ''' Create a dict which wraps another dict with a specific key suffix on get This is to replace "filter_load" ''' def __init__(self, d, suffix): self._dict = d self.suffix = suffix def __setitem__(self, key, val): self._dict[key] = val def __delitem__(self, key): del self._dict[key] def __getitem__(self, key): return self._dict[key + self.suffix] def __len__(self): return len(self._dict) def __iter__(self): for key in self._dict: if key.endswith(self.suffix): yield key.replace(self.suffix, '') class LazyLoader(salt.utils.lazy.LazyDict): ''' A pseduo-dictionary which has a set of keys which are the name of the module and function, delimited by a dot. When the value of the key is accessed, the function is then loaded from disk and into memory. .. note:: Iterating over keys will cause all modules to be loaded. :param list module_dirs: A list of directories on disk to search for modules :param dict opts: The salt options dictionary. :param str tag: The tag for the type of module to load :param func mod_type_check: A function which can be used to verify files :param dict pack: A dictionary of function to be packed into modules as they are loaded :param list whitelist: A list of modules to whitelist :param bool virtual_enable: Whether or not to respect the __virtual__ function when loading modules. :param str virtual_funcs: The name of additional functions in the module to call to verify its functionality. If not true, the module will not load. :returns: A LazyLoader object which functions as a dictionary. Keys are 'module.function' and values are function references themselves which are loaded on-demand. # TODO: - move modules_max_memory into here - singletons (per tag) ''' mod_dict_class = salt.utils.odict.OrderedDict def __init__(self, module_dirs, opts=None, tag='module', loaded_base_name=None, mod_type_check=None, pack=None, whitelist=None, virtual_enable=True, static_modules=None, proxy=None, virtual_funcs=None, ): # pylint: disable=W0231 ''' In pack, if any of the values are None they will be replaced with an empty context-specific dict ''' self.inject_globals = {} self.pack = {} if pack is None else pack if opts is None: opts = {} threadsafety = not opts.get('multiprocessing') self.context_dict = salt.utils.context.ContextDict(threadsafe=threadsafety) self.opts = self.__prep_mod_opts(opts) self.module_dirs = module_dirs self.tag = tag self.loaded_base_name = loaded_base_name or LOADED_BASE_NAME self.mod_type_check = mod_type_check or _mod_type if '__context__' not in self.pack: self.pack['__context__'] = None for k, v in six.iteritems(self.pack): if v is None: # if the value of a pack is None, lets make an empty dict self.context_dict.setdefault(k, {}) self.pack[k] = salt.utils.context.NamespacedDictWrapper(self.context_dict, k) self.whitelist = whitelist self.virtual_enable = virtual_enable self.initial_load = True # names of modules that we don't have (errors, __virtual__, etc.) self.missing_modules = {} # mapping of name -> error self.loaded_modules = {} # mapping of module_name -> dict_of_functions self.loaded_files = set() # TODO: just remove them from file_mapping? self.static_modules = static_modules if static_modules else [] if virtual_funcs is None: virtual_funcs = [] self.virtual_funcs = virtual_funcs self.disabled = set( self.opts.get( 'disable_{0}{1}'.format( self.tag, '' if self.tag[-1] == 's' else 's' ), [] ) ) # A map of suffix to description for imp self.suffix_map = {} # A list to determine precedence of extensions # Prefer packages (directories) over modules (single files)! self.suffix_order = [''] for (suffix, mode, kind) in SUFFIXES: self.suffix_map[suffix] = (suffix, mode, kind) self.suffix_order.append(suffix) self._lock = threading.RLock() self._refresh_file_mapping() super(LazyLoader, self).__init__() # late init the lazy loader # create all of the import namespaces _generate_module('{0}.int'.format(self.loaded_base_name)) _generate_module('{0}.int.{1}'.format(self.loaded_base_name, tag)) _generate_module('{0}.ext'.format(self.loaded_base_name)) _generate_module('{0}.ext.{1}'.format(self.loaded_base_name, tag)) def __getitem__(self, item): ''' Override the __getitem__ in order to decorate the returned function if we need to last-minute inject globals ''' func = super(LazyLoader, self).__getitem__(item) if self.inject_globals: return global_injector_decorator(self.inject_globals)(func) else: return func def __getattr__(self, mod_name): ''' Allow for "direct" attribute access-- this allows jinja templates to access things like `salt.test.ping()` ''' if mod_name in ('__getstate__', '__setstate__'): return object.__getattribute__(self, mod_name) # if we have an attribute named that, lets return it. try: return object.__getattr__(self, mod_name) # pylint: disable=no-member except AttributeError: pass # otherwise we assume its jinja template access if mod_name not in self.loaded_modules and not self.loaded: for name in self._iter_files(mod_name): if name in self.loaded_files: continue # if we got what we wanted, we are done if self._load_module(name) and mod_name in self.loaded_modules: break if mod_name in self.loaded_modules: return self.loaded_modules[mod_name] else: raise AttributeError(mod_name) def missing_fun_string(self, function_name): ''' Return the error string for a missing function. This can range from "not available' to "__virtual__" returned False ''' mod_name = function_name.split('.')[0] if mod_name in self.loaded_modules: return '\'{0}\' is not available.'.format(function_name) else: try: reason = self.missing_modules[mod_name] except KeyError: return '\'{0}\' is not available.'.format(function_name) else: if reason is not None: return '\'{0}\' __virtual__ returned False: {1}'.format(mod_name, reason) else: return '\'{0}\' __virtual__ returned False'.format(mod_name) def _refresh_file_mapping(self): ''' refresh the mapping of the FS on disk ''' # map of suffix to description for imp if self.opts.get('cython_enable', True) is True: try: global pyximport pyximport = __import__('pyximport') # pylint: disable=import-error pyximport.install() # add to suffix_map so file_mapping will pick it up self.suffix_map['.pyx'] = tuple() except ImportError: log.info('Cython is enabled in the options but not present ' 'in the system path. Skipping Cython modules.') # Allow for zipimport of modules if self.opts.get('enable_zip_modules', True) is True: self.suffix_map['.zip'] = tuple() # allow for module dirs if USE_IMPORTLIB: self.suffix_map[''] = ('', '', MODULE_KIND_PKG_DIRECTORY) else: self.suffix_map[''] = ('', '', imp.PKG_DIRECTORY) # create mapping of filename (without suffix) to (path, suffix) # The files are added in order of priority, so order *must* be retained. self.file_mapping = salt.utils.odict.OrderedDict() opt_match = [] def _replace_pre_ext(obj): ''' Hack so we can get the optimization level that we replaced (if any) out of the re.sub call below. We use a list here because it is a persistent data structure that we will be able to access after re.sub is called. ''' opt_match.append(obj) return '' for mod_dir in self.module_dirs: try: # Make sure we have a sorted listdir in order to have # expectable override results files = sorted( x for x in os.listdir(mod_dir) if x != '__pycache__' ) except OSError: continue # Next mod_dir if six.PY3: try: pycache_files = [ os.path.join('__pycache__', x) for x in sorted(os.listdir(os.path.join(mod_dir, '__pycache__'))) ] except OSError: pass else: files.extend(pycache_files) for filename in files: try: dirname, basename = os.path.split(filename) if basename.startswith('_'): # skip private modules # log messages omitted for obviousness continue # Next filename f_noext, ext = os.path.splitext(basename) if six.PY3: f_noext = PY3_PRE_EXT.sub(_replace_pre_ext, f_noext) try: opt_level = int( opt_match.pop().group(1).rsplit('-', 1)[-1] ) except (AttributeError, IndexError, ValueError): # No regex match or no optimization level matched opt_level = 0 try: opt_index = self.opts['optimization_order'].index(opt_level) except KeyError: log.trace( 'Disallowed optimization level %d for module ' 'name \'%s\', skipping. Add %d to the ' '\'optimization_order\' config option if you ' 'do not want to ignore this optimization ' 'level.', opt_level, f_noext, opt_level ) continue else: # Optimization level not reflected in filename on PY2 opt_index = 0 # make sure it is a suffix we support if ext not in self.suffix_map: continue # Next filename if f_noext in self.disabled: log.trace( 'Skipping %s, it is disabled by configuration', filename ) continue # Next filename fpath = os.path.join(mod_dir, filename) # if its a directory, lets allow us to load that if ext == '': # is there something __init__? subfiles = os.listdir(fpath) for suffix in self.suffix_order: if '' == suffix: continue # Next suffix (__init__ must have a suffix) init_file = '__init__{0}'.format(suffix) if init_file in subfiles: break else: continue # Next filename try: curr_ext = self.file_mapping[f_noext][1] curr_opt_index = self.file_mapping[f_noext][2] except KeyError: pass else: if '' in (curr_ext, ext) and curr_ext != ext: log.error( 'Module/package collision: \'%s\' and \'%s\'', fpath, self.file_mapping[f_noext][0] ) if six.PY3 and ext == '.pyc' and curr_ext == '.pyc': # Check the optimization level if opt_index >= curr_opt_index: # Module name match, but a higher-priority # optimization level was already matched, skipping. continue elif not curr_ext or self.suffix_order.index(ext) >= self.suffix_order.index(curr_ext): # Match found but a higher-priorty match already # exists, so skip this. continue if six.PY3 and not dirname and ext == '.pyc': # On Python 3, we should only load .pyc files from the # __pycache__ subdirectory (i.e. when dirname is not an # empty string). continue # Made it this far - add it self.file_mapping[f_noext] = (fpath, ext, opt_index) except OSError: continue for smod in self.static_modules: f_noext = smod.split('.')[-1] self.file_mapping[f_noext] = (smod, '.o', 0) def clear(self): ''' Clear the dict ''' with self._lock: super(LazyLoader, self).clear() # clear the lazy loader self.loaded_files = set() self.missing_modules = {} self.loaded_modules = {} # if we have been loaded before, lets clear the file mapping since # we obviously want a re-do if hasattr(self, 'opts'): self._refresh_file_mapping() self.initial_load = False def __prep_mod_opts(self, opts): ''' Strip out of the opts any logger instance ''' if '__grains__' not in self.pack: self.context_dict['grains'] = opts.get('grains', {}) self.pack['__grains__'] = salt.utils.context.NamespacedDictWrapper(self.context_dict, 'grains') if '__pillar__' not in self.pack: self.context_dict['pillar'] = opts.get('pillar', {}) self.pack['__pillar__'] = salt.utils.context.NamespacedDictWrapper(self.context_dict, 'pillar') mod_opts = {} for key, val in list(opts.items()): if key == 'logger': continue mod_opts[key] = val return mod_opts def _iter_files(self, mod_name): ''' Iterate over all file_mapping files in order of closeness to mod_name ''' # do we have an exact match? if mod_name in self.file_mapping: yield mod_name # do we have a partial match? for k in self.file_mapping: if mod_name in k: yield k # anyone else? Bueller? for k in self.file_mapping: if mod_name not in k: yield k def _reload_submodules(self, mod): submodules = ( getattr(mod, sname) for sname in dir(mod) if isinstance(getattr(mod, sname), mod.__class__) ) # reload only custom "sub"modules for submodule in submodules: # it is a submodule if the name is in a namespace under mod if submodule.__name__.startswith(mod.__name__ + '.'): reload_module(submodule) self._reload_submodules(submodule) def _load_module(self, name): mod = None fpath, suffix = self.file_mapping[name][:2] self.loaded_files.add(name) fpath_dirname = os.path.dirname(fpath) try: sys.path.append(fpath_dirname) if suffix == '.pyx': mod = pyximport.load_module(name, fpath, tempfile.gettempdir()) elif suffix == '.o': top_mod = __import__(fpath, globals(), locals(), []) comps = fpath.split('.') if len(comps) < 2: mod = top_mod else: mod = top_mod for subname in comps[1:]: mod = getattr(mod, subname) elif suffix == '.zip': mod = zipimporter(fpath).load_module(name) else: desc = self.suffix_map[suffix] # if it is a directory, we don't open a file try: mod_namespace = '.'.join(( self.loaded_base_name, self.mod_type_check(fpath), self.tag, name)) except TypeError: mod_namespace = '{0}.{1}.{2}.{3}'.format( self.loaded_base_name, self.mod_type_check(fpath), self.tag, name) if suffix == '': if USE_IMPORTLIB: # pylint: disable=no-member # Package directory, look for __init__ loader_details = [ (importlib.machinery.SourceFileLoader, importlib.machinery.SOURCE_SUFFIXES), (importlib.machinery.SourcelessFileLoader, importlib.machinery.BYTECODE_SUFFIXES), (importlib.machinery.ExtensionFileLoader, importlib.machinery.EXTENSION_SUFFIXES), ] file_finder = importlib.machinery.FileFinder( fpath_dirname, *loader_details ) spec = file_finder.find_spec(mod_namespace) if spec is None: raise ImportError() # TODO: Get rid of load_module in favor of # exec_module below. load_module is deprecated, but # loading using exec_module has been causing odd things # with the magic dunders we pack into the loaded # modules, most notably with salt-ssh's __opts__. mod = spec.loader.load_module() # mod = importlib.util.module_from_spec(spec) # spec.loader.exec_module(mod) # pylint: enable=no-member sys.modules[mod_namespace] = mod else: mod = imp.load_module(mod_namespace, None, fpath, desc) # reload all submodules if necessary if not self.initial_load: self._reload_submodules(mod) else: if USE_IMPORTLIB: # pylint: disable=no-member loader = MODULE_KIND_MAP[desc[2]](mod_namespace, fpath) spec = importlib.util.spec_from_file_location( mod_namespace, fpath, loader=loader ) if spec is None: raise ImportError() # TODO: Get rid of load_module in favor of # exec_module below. load_module is deprecated, but # loading using exec_module has been causing odd things # with the magic dunders we pack into the loaded # modules, most notably with salt-ssh's __opts__. mod = spec.loader.load_module() #mod = importlib.util.module_from_spec(spec) #spec.loader.exec_module(mod) # pylint: enable=no-member sys.modules[mod_namespace] = mod else: with salt.utils.files.fopen(fpath, desc[1]) as fn_: mod = imp.load_module(mod_namespace, fn_, fpath, desc) except IOError: raise except ImportError as exc: if 'magic number' in six.text_type(exc): error_msg = 'Failed to import {0} {1}. Bad magic number. If migrating from Python2 to Python3, remove all .pyc files and try again.'.format(self.tag, name) log.warning(error_msg) self.missing_modules[name] = error_msg log.debug( 'Failed to import %s %s:\n', self.tag, name, exc_info=True ) self.missing_modules[name] = exc return False except Exception as error: log.error( 'Failed to import %s %s, this is due most likely to a ' 'syntax error:\n', self.tag, name, exc_info=True ) self.missing_modules[name] = error return False except SystemExit as error: try: fn_, _, caller, _ = traceback.extract_tb(sys.exc_info()[2])[-1] except Exception: pass else: tgt_fn = os.path.join('salt', 'utils', 'process.py') if fn_.endswith(tgt_fn) and '_handle_signals' in caller: # Race conditon, SIGTERM or SIGINT received while loader # was in process of loading a module. Call sys.exit to # ensure that the process is killed. sys.exit(salt.defaults.exitcodes.EX_OK) log.error( 'Failed to import %s %s as the module called exit()\n', self.tag, name, exc_info=True ) self.missing_modules[name] = error return False finally: sys.path.remove(fpath_dirname) if hasattr(mod, '__opts__'): mod.__opts__.update(self.opts) else: mod.__opts__ = self.opts # pack whatever other globals we were asked to for p_name, p_value in six.iteritems(self.pack): setattr(mod, p_name, p_value) module_name = mod.__name__.rsplit('.', 1)[-1] # Call a module's initialization method if it exists module_init = getattr(mod, '__init__', None) if inspect.isfunction(module_init): try: module_init(self.opts) except TypeError as e: log.error(e) except Exception: err_string = '__init__ failed' log.debug( 'Error loading %s.%s: %s', self.tag, module_name, err_string, exc_info=True ) self.missing_modules[module_name] = err_string self.missing_modules[name] = err_string return False # if virtual modules are enabled, we need to look for the # __virtual__() function inside that module and run it. if self.virtual_enable: virtual_funcs_to_process = ['__virtual__'] + self.virtual_funcs for virtual_func in virtual_funcs_to_process: virtual_ret, module_name, virtual_err, virtual_aliases = \ self._process_virtual(mod, module_name, virtual_func) if virtual_err is not None: log.trace( 'Error loading %s.%s: %s', self.tag, module_name, virtual_err ) # if _process_virtual returned a non-True value then we are # supposed to not process this module if virtual_ret is not True and module_name not in self.missing_modules: # If a module has information about why it could not be loaded, record it self.missing_modules[module_name] = virtual_err self.missing_modules[name] = virtual_err return False else: virtual_aliases = () # If this is a proxy minion then MOST modules cannot work. Therefore, require that # any module that does work with salt-proxy-minion define __proxyenabled__ as a list # containing the names of the proxy types that the module supports. # # Render modules and state modules are OK though if 'proxy' in self.opts: if self.tag in ['grains', 'proxy']: if not hasattr(mod, '__proxyenabled__') or \ (self.opts['proxy']['proxytype'] not in mod.__proxyenabled__ and '*' not in mod.__proxyenabled__): err_string = 'not a proxy_minion enabled module' self.missing_modules[module_name] = err_string self.missing_modules[name] = err_string return False if getattr(mod, '__load__', False) is not False: log.info( 'The functions from module \'%s\' are being loaded from the ' 'provided __load__ attribute', module_name ) # If we had another module by the same virtual name, we should put any # new functions under the existing dictionary. mod_names = [module_name] + list(virtual_aliases) mod_dict = dict(( (x, self.loaded_modules.get(x, self.mod_dict_class())) for x in mod_names )) for attr in getattr(mod, '__load__', dir(mod)): if attr.startswith('_'): # private functions are skipped continue func = getattr(mod, attr) if not inspect.isfunction(func) and not isinstance(func, functools.partial): # Not a function!? Skip it!!! continue # Let's get the function name. # If the module has the __func_alias__ attribute, it must be a # dictionary mapping in the form of(key -> value): # <real-func-name> -> <desired-func-name> # # It default's of course to the found callable attribute name # if no alias is defined. funcname = getattr(mod, '__func_alias__', {}).get(attr, attr) for tgt_mod in mod_names: try: full_funcname = '.'.join((tgt_mod, funcname)) except TypeError: full_funcname = '{0}.{1}'.format(tgt_mod, funcname) # Save many references for lookups # Careful not to overwrite existing (higher priority) functions if full_funcname not in self._dict: self._dict[full_funcname] = func if funcname not in mod_dict[tgt_mod]: setattr(mod_dict[tgt_mod], funcname, func) mod_dict[tgt_mod][funcname] = func self._apply_outputter(func, mod) # enforce depends try: Depends.enforce_dependencies(self._dict, self.tag) except RuntimeError as exc: log.info( 'Depends.enforce_dependencies() failed for the following ' 'reason: %s', exc ) for tgt_mod in mod_names: self.loaded_modules[tgt_mod] = mod_dict[tgt_mod] return True def _load(self, key): ''' Load a single item if you have it ''' # if the key doesn't have a '.' then it isn't valid for this mod dict if not isinstance(key, six.string_types): raise KeyError('The key must be a string.') if '.' not in key: raise KeyError('The key \'%s\' should contain a \'.\'', key) mod_name, _ = key.split('.', 1) with self._lock: # It is possible that the key is in the dictionary after # acquiring the lock due to another thread loading it. if mod_name in self.missing_modules or key in self._dict: return True # if the modulename isn't in the whitelist, don't bother if self.whitelist and mod_name not in self.whitelist: log.error( 'Failed to load function %s because its module (%s) is ' 'not in the whitelist: %s', key, mod_name, self.whitelist ) raise KeyError(key) def _inner_load(mod_name): for name in self._iter_files(mod_name): if name in self.loaded_files: continue # if we got what we wanted, we are done if self._load_module(name) and key in self._dict: return True return False # try to load the module ret = None reloaded = False # re-scan up to once, IOErrors or a failed load cause re-scans of the # filesystem while True: try: ret = _inner_load(mod_name) if not reloaded and ret is not True: self._refresh_file_mapping() reloaded = True continue break except IOError: if not reloaded: self._refresh_file_mapping() reloaded = True continue return ret def _load_all(self): ''' Load all of them ''' with self._lock: for name in self.file_mapping: if name in self.loaded_files or name in self.missing_modules: continue self._load_module(name) self.loaded = True def reload_modules(self): with self._lock: self.loaded_files = set() self._load_all() def _apply_outputter(self, func, mod): ''' Apply the __outputter__ variable to the functions ''' if hasattr(mod, '__outputter__'): outp = mod.__outputter__ if func.__name__ in outp: func.__outputter__ = outp[func.__name__] def _process_virtual(self, mod, module_name, virtual_func='__virtual__'): ''' Given a loaded module and its default name determine its virtual name This function returns a tuple. The first value will be either True or False and will indicate if the module should be loaded or not (i.e. if it threw and exception while processing its __virtual__ function). The second value is the determined virtual name, which may be the same as the value provided. The default name can be calculated as follows:: module_name = mod.__name__.rsplit('.', 1)[-1] ''' # The __virtual__ function will return either a True or False value. # If it returns a True value it can also set a module level attribute # named __virtualname__ with the name that the module should be # referred to as. # # This allows us to have things like the pkg module working on all # platforms under the name 'pkg'. It also allows for modules like # augeas_cfg to be referred to as 'augeas', which would otherwise have # namespace collisions. And finally it allows modules to return False # if they are not intended to run on the given platform or are missing # dependencies. virtual_aliases = getattr(mod, '__virtual_aliases__', tuple()) try: error_reason = None if hasattr(mod, '__virtual__') and inspect.isfunction(mod.__virtual__): try: start = time.time() virtual = getattr(mod, virtual_func)() if isinstance(virtual, tuple): error_reason = virtual[1] virtual = virtual[0] if self.opts.get('virtual_timer', False): end = time.time() - start msg = 'Virtual function took {0} seconds for {1}'.format( end, module_name) log.warning(msg) except Exception as exc: error_reason = ( 'Exception raised when processing __virtual__ function' ' for {0}. Module will not be loaded: {1}'.format( mod.__name__, exc)) log.error(error_reason, exc_info_on_loglevel=logging.DEBUG) virtual = None # Get the module's virtual name virtualname = getattr(mod, '__virtualname__', virtual) if not virtual: # if __virtual__() evaluates to False then the module # wasn't meant for this platform or it's not supposed to # load for some other reason. # Some modules might accidentally return None and are # improperly loaded if virtual is None: log.warning( '%s.__virtual__() is wrongly returning `None`. ' 'It should either return `True`, `False` or a new ' 'name. If you\'re the developer of the module ' '\'%s\', please fix this.', mod.__name__, module_name ) return (False, module_name, error_reason, virtual_aliases) # At this point, __virtual__ did not return a # boolean value, let's check for deprecated usage # or module renames if virtual is not True and module_name != virtual: # The module is renaming itself. Updating the module name # with the new name log.trace('Loaded %s as virtual %s', module_name, virtual) if not hasattr(mod, '__virtualname__'): salt.utils.versions.warn_until( 'Hydrogen', 'The \'{0}\' module is renaming itself in its ' '__virtual__() function ({1} => {2}). Please ' 'set it\'s virtual name as the ' '\'__virtualname__\' module attribute. ' 'Example: "__virtualname__ = \'{2}\'"'.format( mod.__name__, module_name, virtual ) ) if virtualname != virtual: # The __virtualname__ attribute does not match what's # being returned by the __virtual__() function. This # should be considered an error. log.error( 'The module \'%s\' is showing some bad usage. Its ' '__virtualname__ attribute is set to \'%s\' yet the ' '__virtual__() function is returning \'%s\'. These ' 'values should match!', mod.__name__, virtualname, virtual ) module_name = virtualname # If the __virtual__ function returns True and __virtualname__ # is set then use it elif virtual is True and virtualname != module_name: if virtualname is not True: module_name = virtualname except KeyError: # Key errors come out of the virtual function when passing # in incomplete grains sets, these can be safely ignored # and logged to debug, still, it includes the traceback to # help debugging. log.debug('KeyError when loading %s', module_name, exc_info=True) except Exception: # If the module throws an exception during __virtual__() # then log the information and continue to the next. log.error( 'Failed to read the virtual function for %s: %s', self.tag, module_name, exc_info=True ) return (False, module_name, error_reason, virtual_aliases) return (True, module_name, None, virtual_aliases) def global_injector_decorator(inject_globals): ''' Decorator used by the LazyLoader to inject globals into a function at execute time. globals Dictionary with global variables to inject ''' def inner_decorator(f): @functools.wraps(f) def wrapper(*args, **kwargs): with salt.utils.context.func_globals_inject(f, **inject_globals): return f(*args, **kwargs) return wrapper return inner_decorator
35.552605
171
0.554229
2e4bd8a59468490cef451d9f3d07008815e8df9b
1,711
py
Python
test/gen_interop_data.py
JohnEmhoff/spavro
6a6c32d53e3b882964fbcbd9b4e3bfd071567be0
[ "Apache-2.0" ]
32
2018-01-09T05:07:18.000Z
2022-03-13T15:50:40.000Z
test/gen_interop_data.py
JohnEmhoff/spavro
6a6c32d53e3b882964fbcbd9b4e3bfd071567be0
[ "Apache-2.0" ]
14
2017-10-27T21:52:22.000Z
2021-08-06T15:01:46.000Z
test/gen_interop_data.py
JohnEmhoff/spavro
6a6c32d53e3b882964fbcbd9b4e3bfd071567be0
[ "Apache-2.0" ]
12
2017-10-24T17:14:58.000Z
2021-08-03T10:22:58.000Z
#!/usr/bin/env python # Modifications copyright (C) 2017 Pluralsight LLC # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from spavro import schema from spavro import io from spavro import datafile DATUM = { 'intField': 12, 'longField': 15234324L, 'stringField': unicode('hey'), 'boolField': True, 'floatField': 1234.0, 'doubleField': -1234.0, 'bytesField': '12312adf', 'nullField': None, 'arrayField': [5.0, 0.0, 12.0], 'mapField': {'a': {'label': 'a'}, 'bee': {'label': 'cee'}}, 'unionField': 12.0, 'enumField': 'C', 'fixedField': '1019181716151413', 'recordField': {'label': 'blah', 'children': [{'label': 'inner', 'children': []}]}, } if __name__ == "__main__": interop_schema = schema.parse(open(sys.argv[1], 'r').read()) writer = open(sys.argv[2], 'wb') datum_writer = io.DatumWriter() # NB: not using compression dfw = datafile.DataFileWriter(writer, datum_writer, interop_schema) dfw.append(DATUM) dfw.close()
34.22
85
0.70602
5bdcd7d41c45539c677d23099e432bd3a0ea9274
1,394
py
Python
setup.py
Degelzhao/delorean
bb4611a2c3bd502ea4ec1f1e2b697e21fbab6dc9
[ "MIT" ]
1
2019-02-18T13:28:07.000Z
2019-02-18T13:28:07.000Z
setup.py
Degelzhao/delorean
bb4611a2c3bd502ea4ec1f1e2b697e21fbab6dc9
[ "MIT" ]
null
null
null
setup.py
Degelzhao/delorean
bb4611a2c3bd502ea4ec1f1e2b697e21fbab6dc9
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- try: from setuptools import setup except ImportError: from distutils.core import setup from version import __version__ dependencies = [ 'babel>=2.1.1', 'humanize>=0.5.1', 'python-dateutil>=2.4.2', 'pytz>=2015.7', 'tzlocal>=1.2'] setup( name='Delorean', version='.'.join(str(x) for x in __version__), description='library for manipulating datetimes with ease and clarity', url='https://github.com/myusuf3/delorean', author='Mahdi Yusuf', author_email="yusuf.mahdi@gmail.com", packages=[ 'delorean', ], license='MIT license', install_requires=dependencies, test_suite = 'tests.test_data', long_description=open('README.rst').read(), classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.1', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
29.041667
75
0.606887
552c3ebc8ca038b75c5fa10c22f1722865558121
2,364
py
Python
preprocesador/unit_tests/test_solucionador_de_correferencias.py
XrossFox/maquina-de-aspectos
e124167154cac2355278f309e2b3153e723a8c47
[ "MIT" ]
null
null
null
preprocesador/unit_tests/test_solucionador_de_correferencias.py
XrossFox/maquina-de-aspectos
e124167154cac2355278f309e2b3153e723a8c47
[ "MIT" ]
null
null
null
preprocesador/unit_tests/test_solucionador_de_correferencias.py
XrossFox/maquina-de-aspectos
e124167154cac2355278f309e2b3153e723a8c47
[ "MIT" ]
1
2019-01-22T21:21:46.000Z
2019-01-22T21:21:46.000Z
import os import sys sys.path.append('../') import unittest import solucionador_de_correferencias as corref class TestCorreferencias(unittest.TestCase): def setUp(self): print(os.getcwd()) self.C = corref.SolucionadorDeCorreferencias(os.getcwd()+"\\..\\corenlp\\CoreNLP") def test_resolucion_de_correferencias(self): """Prueba si las correferencias son reemplazadas correctamente. Reemplaza pronombres de tema u objeto por su tem u objeto respectivamente""" #Entradas li = [ "My blue shirt is awesome, i really like it. It's also very expensive", "That cat is so small, it fits in my hand", "Radioactivity is very dangerous, it can kill you or it can make you grow a third arm. Stay away from it", "My hands are cold, they are trembling", "That thing is weird, is so ugly it makes my eyes sore. I´m going to burn it in the furnace", "I'm tall. I also exercise daily.", "My favorite food is hamburgers. My favorite color is green.", "I like roses, I like them", "That is very obvious, no way to miss it", "My car is red. It's color is very lively", ] #Salidas esperadas lo = [ "my blue shirt is awesome, i really like my blue shirt. my blue shirt's also very expensive", "that cat is so small, cat fits in my hand", "radioactivity is very dangerous, radioactivity can kill you or radioactivity can make you grow a third arm. stay away from radioactivity", "my hands are cold, my hands are trembling", "that thing is weird, is so ugly thing makes my eyes sore. i´m going to burn thing in the furnace", "i'm tall. i also exercise daily.", "my favorite food is hamburgers. my favorite color is green.", "i like roses, i like roses", "that is very obvious, no way to miss it", "my car is red. my car's color is very lively", ] for i, o in zip(li,lo): res = self.C.resolver_y_reemplazar(i) self.assertEqual(res, o) def tearDown(self): self.C.cerrar() if __name__ == "__main__": unittest.main()
38.754098
151
0.594755
1d4a0d86426973c4d028fe44dfba3432ca25a194
5,088
py
Python
var/spack/repos/builtin/packages/picard/package.py
ilagunap/spack
510f869c3ae8ac2721debd29e98076212ee75852
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
1
2020-03-09T14:32:26.000Z
2020-03-09T14:32:26.000Z
var/spack/repos/builtin/packages/picard/package.py
ilagunap/spack
510f869c3ae8ac2721debd29e98076212ee75852
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
5
2021-07-26T12:12:00.000Z
2022-03-01T12:16:03.000Z
var/spack/repos/builtin/packages/picard/package.py
ilagunap/spack
510f869c3ae8ac2721debd29e98076212ee75852
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import glob import os.path import re from spack import * class Picard(Package): """Picard is a set of command line tools for manipulating high-throughput sequencing (HTS) data and formats such as SAM/BAM/CRAM and VCF. """ homepage = "https://broadinstitute.github.io/picard/" url = "https://github.com/broadinstitute/picard/releases/download/2.9.2/picard.jar" _urlfmt = "https://github.com/broadinstitute/picard/releases/download/{0}/picard.jar" _oldurlfmt = 'https://github.com/broadinstitute/picard/releases/download/{0}/picard-tools-{0}.zip' # They started distributing a single jar file at v2.6.0, prior to # that it was a .zip file with multiple .jar and .so files version('2.25.7', sha256='dc0e830d3e838dee2b4f4aa1c9631fb3a4c3ec982de8dfe5145fc748104c7146', expand=False) version('2.25.6', sha256='768709826514625381e6fa3920945360167f4e830bf72f79eb070da059676f02', expand=False) version('2.25.5', sha256='f7fa9784b84d384abfcbd77076f5ceab7b2797dc863ac35fd41470daa3efe3a5', expand=False) version('2.25.4', sha256='c3ac14471e48e28e24201ae5515f828ffa45db7ac3e37173251a672845b4a9b3', expand=False) version('2.25.3', sha256='1d4dbfcb36d23fde11f173ab0de8a99835e04161efb04f246bbcbfc0bee3b493', expand=False) version('2.25.2', sha256='aead4baf12028a5d2b9ef70e00c93e4bba8f6bece0b9a7104b89b842a8e0326f', expand=False) version('2.25.1', sha256='6d6e622d6b465f9fc704c37bcba55b0dac5ad14d07088bbdbdfade5cd027ee1c', expand=False) version('2.25.0', sha256='faf2434da84fe21b516d57817767920fdedfc19ebdc01d9cae8d6d3314f7e897', expand=False) version('2.24.0', sha256='70e91039bccc6f6db60f18c41713218a8cdf45f591f02c1012c062152b27cd7b', expand=False) version('2.20.8', sha256='aff92d618ee9e6bafc1ab4fbfa89fc557a0dbe596ae4b92fe3bf93ebf95c7105', expand=False) version('2.19.0', sha256='f97fc3f7a73b55cceea8b6a6488efcf1b2fbf8cad61d88645704ddd45a8c5950', expand=False) version('2.18.3', sha256='0e0fc45d9a822ee9fa562b3bb8f1525a439e4cd541429a1a4ca4646f37189b70', expand=False) version('2.18.0', sha256='c4c64b39ab47968e4afcaf1a30223445ee5082eab31a03eee240e54c2e9e1dce', expand=False) version('2.17.0', sha256='ffea8bf90e850919c0833e9dcc16847d40090a1ef733c583a710a3282b925998', expand=False) version('2.16.0', sha256='01cf3c930d2b4841960497491512d327bf669c1ed2e753152e1e651a27288c2d', expand=False) version('2.15.0', sha256='dc3ff74c704954a10796b390738078617bb0b0fef15731e9d268ed3b26c6a285', expand=False) version('2.13.2', sha256='db7749f649e8423053fb971e6af5fb8a9a1a797cb1f20fef1100edf9f82f6f94', expand=False) version('2.10.0', sha256='e256d5e43656b7d8be454201a7056dce543fe9cbeb30329a0d8c22d28e655775', expand=False) version('2.9.4', sha256='0ecee9272bd289d902cc18053010f0364d1696e7518ac92419a99b2f0a1cf689', expand=False) version('2.9.3', sha256='6cca26ce5094b25a82e1a8d646920d584c6db5f009476196dc285be6522e00ce', expand=False) version('2.9.2', sha256='05714b9743a7685a43c94a93f5d03aa4070d3ab6e20151801301916d3e546eb7', expand=False) version('2.9.0', sha256='9a57f6bd9086ea0f5f1a6d9d819459854cb883bb8093795c916538ed9dd5de64', expand=False) version('2.8.3', sha256='97a4b6c8927c8cb5f3450630c9b39bf210ced8c271f198119118ce1c24b8b0f6', expand=False) version('2.6.0', sha256='671d9e86e6bf0c28ee007aea55d07e2456ae3a57016491b50aab0fd2fd0e493b', expand=False) version('1.140', sha256='0d27287217413db6b846284c617d502eaa578662dcb054a7017083eab9c54438') depends_on('java@8:', type='run') def install(self, spec, prefix): mkdirp(prefix.bin) # The list of files to install varies with release... # ... but skip the spack-build-{env}out.txt files. files = [x for x in glob.glob("*") if not re.match("^spack-", x)] for f in files: install(f, prefix.bin) # Set up a helper script to call java on the jar file, # explicitly codes the path for java and the jar file. script_sh = join_path(os.path.dirname(__file__), "picard.sh") script = prefix.bin.picard install(script_sh, script) set_executable(script) # Munge the helper script to explicitly point to java and the # jar file. java = self.spec['java'].prefix.bin.java kwargs = {'ignore_absent': False, 'backup': False, 'string': False} filter_file('^java', java, script, **kwargs) filter_file('picard.jar', join_path(prefix.bin, 'picard.jar'), script, **kwargs) def setup_run_environment(self, env): """The Picard docs suggest setting this as a convenience.""" env.prepend_path('PICARD', join_path(self.prefix.bin, 'picard.jar')) def url_for_version(self, version): if version < Version('2.6.0'): return self._oldurlfmt.format(version) else: return self._urlfmt.format(version)
59.858824
110
0.748035
268df28c032c889c887d5f552ff17ff7c7e7f0e4
3,253
py
Python
src/document.py
Superar/SemOpinionS
9b0b0f9050bb1f7d66b91d5804f89b2eea9fbc20
[ "MIT" ]
2
2021-09-04T02:51:34.000Z
2022-03-16T17:53:52.000Z
src/document.py
Superar/SemOpinionS
9b0b0f9050bb1f7d66b91d5804f89b2eea9fbc20
[ "MIT" ]
null
null
null
src/document.py
Superar/SemOpinionS
9b0b0f9050bb1f7d66b91d5804f89b2eea9fbc20
[ "MIT" ]
null
null
null
from collections import namedtuple from pathlib import Path import penman import networkx as nx from .amr import AMR class Document(object): """ Class that reads a file with AMR graphs in penman notation. Attributes: corpus: list of tuples (id, sentence, AMR) """ doc_item = namedtuple('DocumentSent', ['id', 'snt', 'amr']) def __init__(self, corpus: list, corpus_path: Path = None): self.corpus = corpus self.path = corpus_path def __iter__(self): return iter(self.corpus) def __getitem__(self, item: str): for doc in self: if doc.id == item: return doc def __contains__(self, item): return bool(self.__getitem__(item)) @classmethod def read(cls, corpus_path: Path): """ Creates an object from a file containing ids, sentences and AMR graphs in penman notation. Parameters: corpus_path (str): Path of the file to be read Returns: Document: An object with all read AMR graphs """ corpus = list() with open(corpus_path, encoding='utf-8') as corpusfile: corpusstr = corpusfile.read() for penman_g in penman.loads(corpusstr): amr = AMR.load_penman(penman_g) corpus.append(cls.doc_item(penman_g.metadata['id'], penman_g.metadata['snt'], amr)) return cls(corpus, Path(corpus_path)) def merge_graphs(self, collapse_ner: bool = False, collapse_date: bool = False) -> AMR: """ Merges all AMR graphs in the current document into a single representation. Parameters: collapse_ner (bool, default False): Wheter to keep all NE nodes collapsed collapse_date (bool, default False): Wheter to keep all date nodes collapsed Return: AMR: A single representation of all AMR graphs in the document merged """ merge_graph = AMR() for amr in self.corpus: merge_graph = merge_graph.merge(amr.amr, collapse_ner=collapse_ner, collapse_date=collapse_date) # Place multi-sentence root new_root = merge_graph.add_concept('multi-sentence') top = merge_graph.get_top() root_number = 1 while top: merge_graph.remove_edge(top, top, ':TOP') merge_graph.add_edge(new_root, top, ':snt{}'.format(root_number), label=':snt{}'.format(root_number)) top = merge_graph.get_top() root_number += 1 merge_graph.add_edge(new_root, new_root, ':TOP', label=':TOP') # Remove disconnected nodes # This should not affect well-formed AMR graphs largest_component = max(nx.connected_components(merge_graph.to_undirected()), key=len) nodes_to_remove = [n for n in merge_graph.nodes() if n not in largest_component] merge_graph.remove_nodes_from(nodes_to_remove) return merge_graph
34.606383
91
0.576698
7470c44181f0f7723520bbd004ea91a27f6ec370
3,741
py
Python
evaluate.py
RiccardoBiondi/FemurSegmentation
9f1253666cce22541354bb448acc6972eb76c142
[ "MIT" ]
null
null
null
evaluate.py
RiccardoBiondi/FemurSegmentation
9f1253666cce22541354bb448acc6972eb76c142
[ "MIT" ]
null
null
null
evaluate.py
RiccardoBiondi/FemurSegmentation
9f1253666cce22541354bb448acc6972eb76c142
[ "MIT" ]
null
null
null
#!/bin/env python import os import itk import argparse import numpy as np import pandas as pd import matplotlib.pyplot as plt from glob import glob from FemurSegmentation.IOManager import ImageReader from FemurSegmentation.IOManager import VolumeWriter from FemurSegmentation.filters import execute_pipeline from FemurSegmentation.filters import adjust_physical_space from FemurSegmentation.metrics import itk_label_overlapping_measures from FemurSegmentation.metrics import itk_hausdorff_distance from FemurSegmentation.metrics import itk_hausdorff_distance_map # %% def parse_args(): description = 'Automated CT Femur Segmentation' parser = argparse.ArgumentParser(description=description) parser.add_argument('--source', dest='source', required=True, type=str, action='store', help='Source Image Filename') parser.add_argument('--target', dest='target', required=True, type=str, action='store', help='Target Image Filename') parser.add_argument('--output', dest='output', required=True, type=str, action='store', help='output csv in which save the results') parser.add_argument('--distance_map', dest='distance_map', required=False, type=str, action='store', help='output filename for the distance map between source and target', default=None) args = parser.parse_args() return args def main(source_path, target_path, compute_distance_map=False): ImageType = itk.Image[itk.SS, 3] reader = ImageReader() name = os.path.basename(source_path) source = reader(source_path, ImageType) target = reader(target_path, ImageType) source = adjust_physical_space(source, target, ImageType) measures = itk_label_overlapping_measures(source, target) _ = measures.Update() hd = itk_hausdorff_distance(source, target) _ = hd.Update() distance_map = None if compute_distance_map: distance_map = itk_hausdorff_distance_map(source, target) dict = {'Patient Name' : [name], 'Dice Coefficient' : [measures.GetDiceCoefficient()], 'Jaccard Coefficient' : [measures.GetJaccardCoefficient()], 'Volume Similarity' : [measures.GetVolumeSimilarity()], 'Hausdorff Distance' : [hd.GetHausdorffDistance()], 'Average Hausdorff Distance' : [hd.GetAverageHausdorffDistance()]} df = pd.DataFrame.from_dict(dict) print('Processed Image: {}'.format(name), flush=True) print('Computed Metrics:', flush=True) print(df) return [df, distance_map] if __name__ == '__main__': args = parse_args() print('Source Image: {}'.format(args.source), flush=True) print('Target Image: {}'.format(args.target), flush=True) compute_distance_map=False if args.distance_map is not None: compute_distance_map=True df, distance_map = main(args.source, args.target, compute_distance_map=compute_distance_map) print('Writing the results to {}'.format(args.output), flush=True) df.to_csv(args.output, sep=',', index=False) if compute_distance_map: print('Writing the distance map to {}'.format(args.distance_map)) writer = VolumeWriter() _ = writer(args.distance_map, distance_map) print('[DONE]', flush=True)
30.169355
96
0.623897
2f372fcac9a0efe7d78ff3babda1beb86f5a2811
1,146
py
Python
ppo_train.py
deval-maker/gym-multiagent-warehouse-sort
0154da11e0f1ee4da6c5d21a950a6231d7a7ea68
[ "Apache-2.0" ]
null
null
null
ppo_train.py
deval-maker/gym-multiagent-warehouse-sort
0154da11e0f1ee4da6c5d21a950a6231d7a7ea68
[ "Apache-2.0" ]
null
null
null
ppo_train.py
deval-maker/gym-multiagent-warehouse-sort
0154da11e0f1ee4da6c5d21a950a6231d7a7ea68
[ "Apache-2.0" ]
null
null
null
import gym from gym.envs.registration import register from stable_baselines3 import PPO from stable_baselines3.common.env_util import make_vec_env from stable_baselines3.ppo.policies import MlpPolicy from datetime import datetime now = datetime.now() current_time = now.strftime("%d_%m_%Y_%H_%M_%S") filename = "ppo_warehouse_sort_"+ str(current_time) print("Model will be saved at ", filename) class CustomPolicy(MlpPolicy): def __init__(self, *args, **kwargs): super(CustomPolicy, self).__init__(*args, **kwargs, net_arch=[64, 64, dict(pi=[64, 64], vf=[64, 64])]) def _get_torch_save_params(self): state_dicts = ["policy", "policy.optimizer", "policy.lr_scheduler"] return state_dicts, [] register( id='warehouse-sort-v0', entry_point='gym_multigrid.envs:WarehouseSortEnvN1' ) env = gym.make('warehouse-sort-v0') model = PPO(CustomPolicy, env, verbose=1) model.learn(total_timesteps=10000) model.save(filename) obs = env.reset() while True: action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) env.render() if dones: env.reset()
27.285714
75
0.711169
2579e2e153d7ca351524c650d14601707ee99cbb
815
py
Python
util/alembic/versions/a051167419fa_add_admin_to_user_name_to_repogroup.py
Nayan-Das/augur
857f4a4e7d688fd54356aa0f546834071fbabbf2
[ "MIT" ]
3
2019-10-31T19:07:48.000Z
2019-11-20T23:14:15.000Z
util/alembic/versions/a051167419fa_add_admin_to_user_name_to_repogroup.py
Nayan-Das/augur
857f4a4e7d688fd54356aa0f546834071fbabbf2
[ "MIT" ]
3
2019-12-03T21:21:17.000Z
2019-12-05T15:26:22.000Z
util/alembic/versions/a051167419fa_add_admin_to_user_name_to_repogroup.py
Nayan-Das/augur
857f4a4e7d688fd54356aa0f546834071fbabbf2
[ "MIT" ]
4
2019-11-05T20:22:12.000Z
2019-12-12T18:08:30.000Z
"""Add admin to User, name to RepoGroup Revision ID: a051167419fa Revises: 2eaa930b1f5a Create Date: 2019-02-17 13:09:42.138936 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'a051167419fa' down_revision = '2eaa930b1f5a' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('repo_group', sa.Column('name', sa.String(length=128), nullable=True)) op.add_column('user', sa.Column('administrator', sa.Boolean(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('user', 'administrator') op.drop_column('repo_group', 'name') # ### end Alembic commands ###
26.290323
88
0.695706
32375e5c25a3cc8432f12ea88795242af9bf1298
12,383
py
Python
gamelib/tests/test_walkthrough.py
CTPUG/suspended_sentence
85956c7250509bf93e51f91cda906e93db4e72a4
[ "MIT" ]
2
2020-01-02T10:11:49.000Z
2021-07-11T03:38:41.000Z
gamelib/tests/test_walkthrough.py
CTPUG/suspended_sentence
85956c7250509bf93e51f91cda906e93db4e72a4
[ "MIT" ]
null
null
null
gamelib/tests/test_walkthrough.py
CTPUG/suspended_sentence
85956c7250509bf93e51f91cda906e93db4e72a4
[ "MIT" ]
1
2020-08-29T17:48:12.000Z
2020-08-29T17:48:12.000Z
from pyntnclick.tests.game_logic_utils import GameLogicTestCase import gamelib.main class TestWalkthrough(GameLogicTestCase): GAME_DESCRIPTION_CLASS = gamelib.main.SuspendedSentence CURRENT_SCENE = 'cryo' def move_to(self, target): self.interact_thing(self.state.get_current_scene().name + '.door') self.assert_current_scene('map') self.interact_thing('map.to' + target) self.assert_current_scene(target) def test_walkthrough(self): """A complete game walkthrough. This should only contain interacts and assertions.""" # TODO: Add flavour interactions, maybe? # Partially open the door. self.assert_game_data('door', 'shut', 'cryo.door') self.interact_thing('cryo.door') self.assert_game_data('door', 'ajar', 'cryo.door') # Get the titanium leg. self.interact_thing('cryo.unit.1') self.assert_detail_thing('cryo.titanium_leg') self.interact_thing('cryo.titanium_leg', detail='cryo_detail') self.assert_detail_thing('cryo.titanium_leg', False) self.assert_inventory_item('titanium_leg:') self.close_detail() # Open the door the rest of the way. self.interact_thing('cryo.door', 'titanium_leg:') self.assert_game_data('door', 'open', 'cryo.door') self.assert_inventory_item('titanium_leg:') # Go to the mess. self.move_to('mess') # Check that life support is broken self.assert_game_data('life support status', 'broken') # Get the cans. self.assert_game_data('cans_available', 3, 'mess.cans') self.interact_thing('mess.cans') self.assert_inventory_item('full_can:0') self.assert_game_data('cans_available', 2, 'mess.cans') self.interact_thing('mess.cans') self.assert_inventory_item('full_can:1') self.assert_game_data('cans_available', 1, 'mess.cans') self.interact_thing('mess.cans') self.assert_inventory_item('full_can:2') self.assert_scene_thing('mess.cans', False) # Bash one of the cans. self.assert_item_exists('dented_can:0', False) self.interact_item('full_can:1', 'titanium_leg:') self.assert_inventory_item('dented_can:0') self.assert_inventory_item('full_can:1', False) # Go to the machine room. self.move_to('machine') # Sharpen leg into machete. self.interact_thing('machine.grinder', 'titanium_leg:') self.assert_inventory_item('titanium_leg', False) self.assert_inventory_item('machete:') # Go to the cryo room. self.move_to('cryo') # Chop up some pipes. self.assert_game_data('fixed', True, 'cryo.pipe.left') self.interact_thing('cryo.pipe.left', 'machete:') self.assert_game_data('fixed', False, 'cryo.pipe.left') self.assert_inventory_item('tube_fragment:0') self.assert_game_data('fixed', True, 'cryo.pipe.right.top') self.interact_thing('cryo.pipe.right.top', 'machete:') self.assert_game_data('fixed', False, 'cryo.pipe.right.top') self.assert_inventory_item('tube_fragment:1') self.assert_game_data('fixed', True, 'cryo.pipe.right.bottom') self.interact_thing('cryo.pipe.right.bottom', 'machete:') self.assert_game_data('fixed', False, 'cryo.pipe.right.bottom') self.assert_inventory_item('tube_fragment:2') # Go to the mess. self.move_to('mess') # Clear the broccoli. self.assert_game_data('status', 'blocked', 'mess.tubes') self.interact_thing('mess.tubes', 'machete:') self.assert_game_data('status', 'broken', 'mess.tubes') # Go to the bridge. self.move_to('bridge') # Check that the AI is online. self.assert_game_data('ai status', 'online') # Get the stethoscope. self.interact_thing('bridge.stethoscope') self.assert_inventory_item('stethoscope:') self.assert_scene_thing('bridge.stethoscope', False) # Get the superconductor. self.interact_thing('bridge.massagechair_base') self.interact_thing('bridge.superconductor', detail='chair_detail') self.assert_inventory_item('superconductor:') self.assert_detail_thing('bridge.superconductor', False) self.close_detail() # Go to the crew quarters. self.move_to('crew_quarters') # Get the poster. self.interact_thing('crew.poster') self.assert_inventory_item('escher_poster:') self.assert_scene_thing('crew.poster', False) # Get the fishbowl. self.assert_game_data('has_bowl', True, 'crew.fishbowl') self.interact_thing('crew.fishbowl') self.assert_game_data('has_bowl', False, 'crew.fishbowl') self.assert_inventory_item('fishbowl:') # Crack the safe. self.assert_game_data('is_cracked', False, 'crew.safe') self.interact_thing('crew.safe', 'stethoscope:') self.assert_game_data('is_cracked', True, 'crew.safe') # Get the duct tape. self.assert_game_data('has_tape', True, 'crew.safe') self.interact_thing('crew.safe') self.assert_game_data('has_tape', False, 'crew.safe') self.assert_inventory_item('duct_tape:') # Make the helmet. self.interact_item('fishbowl:', 'duct_tape:') self.assert_inventory_item('helmet:') self.assert_inventory_item('fishbowl', False) # Go to the engine room. self.move_to('engine') # Check that the engines are broken. self.assert_game_data('engine online', False) # Get the can opener. self.interact_thing('engine.canopener') self.assert_inventory_item('canopener:') self.assert_scene_thing('engine.canopener', False) # Open the cans. self.interact_item('full_can:2', 'canopener:') self.assert_inventory_item('full_can:2', False) self.assert_inventory_item('empty_can:0') self.interact_item('full_can:0', 'canopener:') self.assert_inventory_item('full_can:0', False) self.assert_inventory_item('empty_can:1') self.interact_item('dented_can:0', 'canopener:') self.assert_inventory_item('dented_can:0', False) self.assert_inventory_item('empty_can:2') # Go to the machine room. self.move_to('machine') # Weld pipes and cans. self.assert_game_data('contents', [], 'machine.welder.slot') self.interact_thing('machine.welder.slot', 'tube_fragment:0') self.assert_inventory_item('tube_fragment:0', False) self.assert_game_data('contents', ['tube'], 'machine.welder.slot') self.interact_thing('machine.welder.slot', 'empty_can:1') self.assert_inventory_item('empty_can:1', False) self.assert_game_data( 'contents', ['tube', 'can'], 'machine.welder.slot') self.interact_thing('machine.welder.button') self.assert_game_data('contents', [], 'machine.welder.slot') self.assert_inventory_item('cryo_pipes_one:') self.assert_game_data('contents', [], 'machine.welder.slot') self.interact_thing('machine.welder.slot', 'tube_fragment:2') self.assert_inventory_item('tube_fragment:2', False) self.assert_game_data('contents', ['tube'], 'machine.welder.slot') self.interact_thing('machine.welder.slot', 'empty_can:2') self.assert_inventory_item('empty_can:2', False) self.assert_game_data( 'contents', ['tube', 'can'], 'machine.welder.slot') self.interact_thing('machine.welder.button') self.assert_game_data('contents', [], 'machine.welder.slot') self.assert_inventory_item('cryo_pipes_one', False) self.assert_inventory_item('cryo_pipes_two:') self.assert_game_data('contents', [], 'machine.welder.slot') self.interact_thing('machine.welder.slot', 'tube_fragment:1') self.assert_inventory_item('tube_fragment:1', False) self.assert_game_data('contents', ['tube'], 'machine.welder.slot') self.interact_thing('machine.welder.slot', 'empty_can:0') self.assert_inventory_item('empty_can:0', False) self.assert_game_data( 'contents', ['tube', 'can'], 'machine.welder.slot') self.interact_thing('machine.welder.button') self.assert_game_data('contents', [], 'machine.welder.slot') self.assert_inventory_item('cryo_pipes_two', False) self.assert_inventory_item('cryo_pipes_three:') # Go to the mess. self.move_to('mess') # Replace the tubes. self.interact_thing('mess.tubes', 'cryo_pipes_three:') self.assert_inventory_item('cryo_pipes_three', False) self.assert_game_data('status', 'replaced', 'mess.tubes') # Check that life support is replaced self.assert_game_data('life support status', 'replaced') # Tape up the tubes. self.interact_thing('mess.tubes', 'duct_tape:') self.assert_game_data('status', 'fixed', 'mess.tubes') # Check that life support is fixed self.assert_game_data('life support status', 'fixed') # Get the detergent bottle. self.interact_thing('mess.detergent') self.assert_inventory_item('detergent_bottle:') # Go to the cryo room. self.move_to('cryo') # Fill the detergent bottle. self.interact_thing('cryo.pool', 'detergent_bottle:') self.assert_inventory_item('detergent_bottle', False) self.assert_inventory_item('full_detergent_bottle:') # Go to the engine room. self.move_to('engine') # Patch the cracked pipe. self.assert_game_data('fixed', False, 'engine.cracked_pipe') self.interact_thing('engine.cracked_pipe', 'duct_tape:') self.assert_game_data('fixed', True, 'engine.cracked_pipe') # Fill the cryofluid receptacles. self.assert_game_data('filled', False, 'engine.cryo_containers') self.interact_thing( 'engine.cryo_container_receptacle', 'full_detergent_bottle:') self.assert_game_data('filled', True, 'engine.cryo_containers') self.assert_inventory_item('full_detergent_bottle', False) # Remove the burned-out superconductor. self.assert_game_data('present', True, 'engine.superconductor') self.assert_game_data('working', False, 'engine.superconductor') self.interact_thing('engine.superconductor', 'machete:') self.assert_game_data('present', False, 'engine.superconductor') self.assert_game_data('working', False, 'engine.superconductor') # Tape up new superconductor. self.interact_item('superconductor:', 'duct_tape:') self.assert_inventory_item('superconductor', False) self.assert_inventory_item('taped_superconductor:') # Install superconductor. self.interact_thing('engine.superconductor', 'taped_superconductor:') self.assert_inventory_item('taped_superconductor', False) self.assert_game_data('present', True, 'engine.superconductor') self.assert_game_data('working', True, 'engine.superconductor') # Check that we've fixed the engines. self.assert_game_data('engine online', True) # Go to the bridge. self.move_to('bridge') # Show JIM the poster. self.interact_thing('bridge.camera', 'escher_poster:') self.assert_game_data('ai status', 'looping') # Get at JIM. self.assert_game_data('ai panel', 'closed') self.interact_thing('jim_panel', 'machete:') self.assert_game_data('ai panel', 'open') # Break JIM. self.interact_thing('jim_panel', 'machete:') self.assert_game_data('ai panel', 'broken') # Check that we've turned off JIM. self.assert_game_data('ai status', 'dead') # Bring up nav console. self.interact_thing('bridge.comp') self.interact_thing('bridge_comp.nav_tab', detail='bridge_comp_detail') self.assert_game_data('tab', 'nav', detail='bridge_comp_detail') # Go somewhere interesting. self.interact_thing( 'bridge_comp.nav_line2', detail='bridge_comp_detail')
40.204545
79
0.655899
a5bbcd542f844bba840c526e6e292dd108ab5727
132
py
Python
minjector/injection/inject_lazy.py
MichaelSchneeberger/minjector
64655483e53f49696e6ef6a3b45ca7bca8ab2dfb
[ "MIT" ]
null
null
null
minjector/injection/inject_lazy.py
MichaelSchneeberger/minjector
64655483e53f49696e6ef6a3b45ca7bca8ab2dfb
[ "MIT" ]
null
null
null
minjector/injection/inject_lazy.py
MichaelSchneeberger/minjector
64655483e53f49696e6ef6a3b45ca7bca8ab2dfb
[ "MIT" ]
null
null
null
from minjector.injection.injectionbase import inject_base def inject_lazy(**bindings): return inject_base(bindings, lazy=True)
26.4
57
0.810606
8eedd5c0b995aa32cf406183bbaf8a55daa92966
1,897
py
Python
src/app/cart.py
fovecsernyes/pizza-ordering-system
581d89a0b6d2f41e082539446d7a83976ed4cfa1
[ "MIT" ]
1
2022-02-28T22:18:19.000Z
2022-02-28T22:18:19.000Z
src/app/cart.py
vattila96/pizza-ordering-system
a8bd5529636fd1515bdf0c38680fd509e58c0af5
[ "MIT" ]
70
2019-09-30T19:14:41.000Z
2019-12-12T21:24:41.000Z
src/app/cart.py
vattila96/pizza-ordering-system
a8bd5529636fd1515bdf0c38680fd509e58c0af5
[ "MIT" ]
2
2019-10-07T14:04:06.000Z
2020-11-16T09:23:08.000Z
from decimal import Decimal from django.conf import settings from .models import Pizza class Cart(object): def __init__(self, request): self.session = request.session cart = self.session.get(settings.CART_SESSION_ID) if not cart: cart = self.session[settings.CART_SESSION_ID] = {} self.cart = cart def add(self, product, quantity=1.0, update_quantity=False): product_id = str(product.id) if product_id not in self.cart: self.cart[product_id] = {'quantity': 0.0, 'price': str(product.price)} if update_quantity: self.cart[product_id]['quantity'] = quantity else: self.cart[product_id]['quantity'] += quantity self.save() def save(self): self.session[settings.CART_SESSION_ID] = self.cart self.session.modified = True def remove(self, product): product_id = str(product.id) if product_id in self.cart: del self.cart[product_id] self.save() def __iter__(self): product_ids = self.cart.keys() products = Pizza.objects.filter(id__in=product_ids) for product in products: self.cart[str(product.id)]['product'] = product for item in self.cart.values(): item['price'] = Decimal(item['price']) item['total_price'] = item['price'] * Decimal(item['quantity']) yield item def __len__(self): return 1 + int(sum(item['quantity'] for item in self.cart.values())) def get_total_price(self): return sum(Decimal(item['price']) * Decimal(item['quantity']) for item in self.cart.values()) def valid_cart(self): return (2 * sum(item['quantity'] for item in self.cart.values()) % 2) == 0 def clear(self): del self.session[settings.CART_SESSION_ID] self.session.modified = True
33.875
101
0.614128
20ed6559023ccb3e077294f1be86d1b37b28af79
10,289
py
Python
fontlink/font_lib/font_lib.py
danpla/fontlink
03184053bf4cb4a0aad4fa8a0c01a50145d4d39c
[ "Zlib" ]
6
2015-12-06T01:41:45.000Z
2020-08-20T04:20:16.000Z
fontlink/font_lib/font_lib.py
danpla/fontlink
03184053bf4cb4a0aad4fa8a0c01a50145d4d39c
[ "Zlib" ]
null
null
null
fontlink/font_lib/font_lib.py
danpla/fontlink
03184053bf4cb4a0aad4fa8a0c01a50145d4d39c
[ "Zlib" ]
2
2020-08-20T04:20:20.000Z
2021-04-14T21:01:38.000Z
from gettext import gettext as _, ngettext import json import os from gi.repository import Gtk, Gdk, Pango from .. import config from ..settings import settings from .. import dialogs from .. import utils from .models import SetStore from .font_list import FontList class FontLib(Gtk.Paned): _FILE = os.path.join(config.CONFIG_DIR, 'sets.json') _DEFAULT_SET_NAME = _('New set') class _ViewColumn: TOGGLE = 0 NAME = 1 STATS = 2 def __init__(self): super().__init__() self._set_store = SetStore() self._font_list = FontList() self._create_ui() def _create_ui(self): grid = Gtk.Grid(orientation=Gtk.Orientation.VERTICAL) self._set_list = Gtk.TreeView( model=self._set_store, headers_visible=False, reorderable=True, search_column=SetStore.COL_NAME, has_tooltip=True) self._set_list.connect('button-press-event', self._on_button_press) self._set_list.connect('query-tooltip', self._on_query_tooltip) selection = self._set_list.get_selection() selection.set_mode(Gtk.SelectionMode.BROWSE) selection.connect('changed', self._on_selection_changed) scrolled = Gtk.ScrolledWindow( shadow_type=Gtk.ShadowType.IN, width_request=150, expand=True ) scrolled.add(self._set_list) grid.add(scrolled) # Columns toggle = Gtk.CellRendererToggle() toggle.connect('toggled', self._on_toggled) col_toggle = Gtk.TreeViewColumn('', toggle) col_toggle.set_cell_data_func(toggle, self._toggle_cell_data_func) self._set_list.append_column(col_toggle) name = Gtk.CellRendererText( editable=True, ellipsize=Pango.EllipsizeMode.END ) name.connect('edited', self._on_name_edited) col_name = Gtk.TreeViewColumn( _('Font sets'), name, text=SetStore.COL_NAME) col_name.set_sizing(Gtk.TreeViewColumnSizing.AUTOSIZE) col_name.set_expand(True) self._set_list.append_column(col_name) stats = Gtk.CellRendererText(xalign=1.0) col_stats = Gtk.TreeViewColumn('', stats) col_stats.set_sizing(Gtk.TreeViewColumnSizing.AUTOSIZE) col_stats.set_cell_data_func(stats, self._stats_cell_data_func) self._set_list.append_column(col_stats) # Toolbar toolbar = Gtk.Toolbar() toolbar.get_style_context().add_class('bottom-toolbar') grid.add(toolbar) btn_new = Gtk.ToolButton( label=_('New'), icon_name='document-new', tooltip_text=_('Create a new set')) btn_new.connect('clicked', self._on_new) toolbar.add(btn_new) btn_delete = Gtk.ToolButton( label=_('Delete'), icon_name='edit-delete', tooltip_text=_('Delete the set')) btn_delete.connect('clicked', self._on_delete) toolbar.add(btn_delete) self.pack1(grid, False, False) self.pack2(self._font_list, True, False) def _on_button_press(self, widget, event): if not (event.type == Gdk.EventType.BUTTON_PRESS and event.button == Gdk.BUTTON_SECONDARY): return Gdk.EVENT_PROPAGATE self._set_list.grab_focus() click_info = self._set_list.get_path_at_pos(int(event.x), int(event.y)) if click_info is not None: tree_path, column, cell_x, cell_y = click_info self._set_list.set_cursor(tree_path, column, False) menu = Gtk.Menu(attach_widget=widget) mi_new = Gtk.MenuItem( label=_('_New'), use_underline=True, tooltip_text=_('Create a new set') ) mi_new.connect('activate', self._on_new) menu.append(mi_new) menu.append(Gtk.SeparatorMenuItem()) mi_duplicate = Gtk.MenuItem( label=_('D_uplicate'), use_underline=True, tooltip_text=_('Duplicate the set') ) mi_duplicate.connect('activate', self._on_duplicate) menu.append(mi_duplicate) mi_rename = Gtk.MenuItem( label=_('_Rename…'), use_underline=True, tooltip_text=_('Rename the set') ) mi_rename.connect('activate', self._on_rename) menu.append(mi_rename) menu.append(Gtk.SeparatorMenuItem()) mi_delete = Gtk.MenuItem( label=_('_Delete'), use_underline=True, tooltip_text=_('Delete the set') ) mi_delete.connect('activate', self._on_delete) menu.append(mi_delete) menu.show_all() menu.popup(None, None, None, None, event.button, event.time) return Gdk.EVENT_STOP def _on_query_tooltip(self, tree_view, x, y, keyboard_tip, tooltip): points_to_row, *context = tree_view.get_tooltip_context( x, y, keyboard_tip) if not points_to_row: return False set_store, tree_path, tree_iter = context[2:] font_set = set_store[tree_iter][SetStore.COL_FONTSET] num_fonts = len(font_set) text = ngettext('{num} font', '{num} fonts', num_fonts).format( num=num_fonts) if num_fonts > 0: text = '{}\n{}'.format( text, # Translators: Number of active fonts ngettext('{num} active', '{num} active', font_set.num_active).format(num=font_set.num_active)) tooltip.set_text(text) tree_view.set_tooltip_row(tooltip, tree_path) return True def _toggle_cell_data_func(self, column, cell, set_store, tree_iter, data): font_set = set_store[tree_iter][SetStore.COL_FONTSET] if font_set.num_active == 0: cell.props.inconsistent = False cell.props.active = False elif font_set.num_active == len(font_set): cell.props.inconsistent = False cell.props.active = True else: cell.props.inconsistent = True def _stats_cell_data_func(self, column, cell, set_store, tree_iter, data): font_set = set_store[tree_iter][SetStore.COL_FONTSET] cell.props.text = '{}/{}'.format(font_set.num_active, len(font_set)) def _on_selection_changed(self, selection): set_store, tree_iter = selection.get_selected() if tree_iter is None: return self._font_list.font_set = set_store[tree_iter][SetStore.COL_FONTSET] def _on_toggled(self, cell_toggle, tree_path): font_set = self._set_store[tree_path][SetStore.COL_FONTSET] font_set.set_state_all(font_set.num_active < len(font_set)) def _on_name_edited(self, cell_text, tree_path, new_name): new_name = new_name.strip() if not new_name: return old_name = self._set_store[tree_path][SetStore.COL_NAME] if new_name == old_name: return all_names = set(row[SetStore.COL_NAME] for row in self._set_store) all_names.discard(old_name) new_name = utils.unique_name(new_name, all_names) self._set_store[tree_path][SetStore.COL_NAME] = new_name def _on_new(self, widget): selection = self._set_list.get_selection() set_store, tree_iter = selection.get_selected() tree_iter = set_store.add_set(self._DEFAULT_SET_NAME, tree_iter) tree_path = set_store.get_path(tree_iter) column = self._set_list.get_column(self._ViewColumn.NAME) self._set_list.set_cursor(tree_path, column, True) def _on_duplicate(self, widget): selection = self._set_list.get_selection() set_store, tree_iter = selection.get_selected() if tree_iter is None: return tree_iter = set_store.duplicate_set(tree_iter) tree_path = set_store.get_path(tree_iter) self._set_list.set_cursor(tree_path, None, False) def _on_rename(self, widget): selection = self._set_list.get_selection() set_store, tree_iter = selection.get_selected() if tree_iter is None: return tree_path = set_store.get_path(tree_iter) column = self._set_list.get_column(self._ViewColumn.NAME) self._set_list.set_cursor(tree_path, column, True) def _on_delete(self, widget): selection = self._set_list.get_selection() set_store, tree_iter = selection.get_selected() if tree_iter is None: return row = set_store[tree_iter] if not dialogs.confirmation( self.get_toplevel(), _('Delete “{set_name}”?').format( set_name=row[SetStore.COL_NAME]), _('_Delete')): return row[SetStore.COL_FONTSET].remove_all_fonts() set_store.remove(tree_iter) if len(set_store) == 0: set_store.add_set(self._DEFAULT_SET_NAME) self._set_list.set_cursor(0) def add_fonts(self, paths): """Add fonts to the currently selected set.""" font_set = self._font_list.font_set if font_set is not None: font_set.add_fonts(paths) def save_state(self): settings['splitter_position'] = self.get_position() settings['selected_set'] = self._set_list.get_cursor()[0][0] + 1 try: with open(self._FILE, 'w', encoding='utf-8') as f: json.dump( self._set_store.as_json, f, ensure_ascii=False, indent=2) except OSError: pass def load_state(self): self.set_position( settings.get('splitter_position', self.get_position())) try: with open(self._FILE, 'r', encoding='utf-8') as f: self._set_store.as_json = json.load(f) except (KeyError, ValueError, OSError): pass if len(self._set_store) == 0: self._set_store.add_set(self._DEFAULT_SET_NAME) tree_path = max(0, settings.get('selected_set', 1) - 1) self._set_list.set_cursor(tree_path) self._set_list.scroll_to_cell(tree_path, None, False, 0, 0)
33.624183
79
0.621926
591113e221b16249c49958ca6214d3ee0e4d7fde
13,303
py
Python
beakerx/beakerx/plot/chart_models.py
altavir/beakerx
06fb4200d8042fc2a52e3a1ce8be8aa4b72d3743
[ "Apache-2.0" ]
null
null
null
beakerx/beakerx/plot/chart_models.py
altavir/beakerx
06fb4200d8042fc2a52e3a1ce8be8aa4b72d3743
[ "Apache-2.0" ]
null
null
null
beakerx/beakerx/plot/chart_models.py
altavir/beakerx
06fb4200d8042fc2a52e3a1ce8be8aa4b72d3743
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 TWO SIGMA OPEN SOURCE, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from beakerx.plot.legend import LegendPosition, LegendLayout from beakerx.plot.plotitem import * from beakerx.plot.plotitem_treemap import * from beakerx.utils import * from .tree_map_reducer import TreeMapReducer class Chart(BaseObject): def __init__(self, **kwargs): super(Chart, self).__init__(**kwargs) self.init_width = getValue(kwargs, 'initWidth', 640) self.init_height = getValue(kwargs, 'initHeight', 480) self.chart_title = getValue(kwargs, 'title') self.show_legend = getValue(kwargs, 'showLegend') self.use_tool_tip = getValue(kwargs, 'useToolTip', True) self.legend_position = getValue(kwargs, 'legendPosition', LegendPosition()) self.legend_layout = getValue(kwargs, 'legendLayout', LegendLayout.VERTICAL) self.type = "Plot" class AbstractChart(Chart): def __init__(self, **kwargs): super(AbstractChart, self).__init__(**kwargs) self.rangeAxes = getValue(kwargs, 'yAxes', []) if len(self.rangeAxes) == 0: self.rangeAxes.append(YAxis(**kwargs)) self.domain_axis_label = getValue(kwargs, 'xLabel') self.y_label = getValue(kwargs, 'yLabel') self.x_lower_margin = getValue(kwargs, 'xLowerMargin', 0.05) self.x_upper_margin = getValue(kwargs, 'xUpperMargin', 0.05) self.y_auto_range = getValue(kwargs, 'yAutoRange') self.y_auto_range_includes_zero = getValue(kwargs, 'yAutoRangeIncludesZero') self.y_lower_margin = getValue(kwargs, 'yLowerMargin') self.y_upper_margin = getValue(kwargs, 'yUpperMargin') self.y_lower_bound = getValue(kwargs, 'yLowerBound') self.y_upper_bound = getValue(kwargs, 'yUpperBound') self.log_y = getValue(kwargs, 'logY', False) self.omit_checkboxes = getValue(kwargs, 'omitCheckboxes', False) self.crosshair = getValue(kwargs, 'crosshair') self.timezone = getValue(kwargs, 'timeZone') self.auto_zoom = getValue(kwargs, 'autoZoom') class XYChart(AbstractChart): TOO_MANY_ROWS = "tooManyRows" TOTAL_NUMBER_OF_POINTS = "totalNumberOfPoints" NUMBER_OF_POINTS_TO_DISPLAY = "numberOfPointsToDisplay" ROWS_LIMIT_ITEMS = "rowsLimitItems" def __init__(self, **kwargs): super(XYChart, self).__init__(**kwargs) self.graphics_list = getValue(kwargs, 'graphics', []) self.constant_lines = getValue(kwargs, 'constantLines', []) self.constant_bands = getValue(kwargs, 'constantBands', []) self.texts = getValue(kwargs, 'texts', []) self.x_auto_range = getValue(kwargs, 'xAutoRange', True) self.x_lower_bound = getValue(kwargs, 'xLowerBound', 0) self.x_upper_bound = getValue(kwargs, 'xUpperBound', 0) self.log_x = getValue(kwargs, 'logX', False) self.x_log_base = getValue(kwargs, 'xLogBase', 10) self.lodThreshold = getValue(kwargs, 'lodThreshold') def add(self, item): if isinstance(item, YAxis): self.rangeAxes.append(item) elif isinstance(item, Text): self.texts.append(item) elif isinstance(item, ConstantLine): self.constant_lines.append(item) elif isinstance(item, ConstantBand): self.constant_bands.append(item) elif isinstance(item, Graphics): self.graphics_list.append(item) elif isinstance(item, list): for elem in item: self.add(elem) return self def setYBound(self, lower, upper): self.y_lower_bound = lower self.y_upper_bound = upper self.rangeAxes[0].setBound(lower, upper) return self def setXBound(self, lower, upper): self.x_auto_range = False self.x_lower_bound = lower self.x_upper_bound = upper return self class HeatMapChart(XYChart): ROWS_LIMIT = 10000 COLUMN_LIMIT = 100 def __init__(self, rows_limit, column_limit, **kwargs): super(HeatMapChart, self).__init__(**kwargs) self.rows_limit = rows_limit self.column_limit = column_limit @staticmethod def total_points(listOfData): return sum(map(lambda x: len(x), listOfData)) @staticmethod def find_step_for_column(row): step = 2 while (int(len(row) / step)) > HeatMapChart.COLUMN_LIMIT: step += 1 return step @staticmethod def limit_column_in_row(row): if len(row) > HeatMapChart.COLUMN_LIMIT: step = HeatMapChart.find_step_for_column(row) limited_row = list(map(lambda index: row[index], filter(lambda s: s % step == 0, [index for index in range(len(row))]))) return limited_row else: return row @staticmethod def limit_elements_in_row(listOfData): return list(map(HeatMapChart.limit_column_in_row, listOfData)) @staticmethod def limit_rows(listOfData): step = HeatMapChart.find_step_for_column(listOfData) limited_row = list(map(lambda index: listOfData[index], filter(lambda s: s % step == 0, [index for index in range(len(listOfData))]))) return limited_row @staticmethod def limit_Heatmap(listOfData): limited_elements_in_row = HeatMapChart.limit_elements_in_row(listOfData) total_points = HeatMapChart.total_points(limited_elements_in_row) too_many_rows = total_points > HeatMapChart.ROWS_LIMIT if too_many_rows: return HeatMapChart.limit_rows(limited_elements_in_row) return limited_elements_in_row def transform(self): self_copy = copy.copy(self) self_copy.totalNumberOfPoints = self.total_points(self_copy.graphics_list) self_copy.rowsLimitItems = self.rows_limit too_many_points = self_copy.totalNumberOfPoints > self.rows_limit if too_many_points: limited_heat_map_data = self.limit_Heatmap(self_copy.graphics_list) self_copy.graphics_list = limited_heat_map_data self_copy.numberOfPointsToDisplay = self.total_points(self_copy.graphics_list) self_copy.numberOfPointsToDisplay = self.total_points(self_copy.graphics_list) self_copy.tooManyRows = too_many_points return super(HeatMapChart, self_copy).transform() class HistogramChart(XYChart): ROWS_LIMIT = 1000000 ROWS_LIMIT_T0_INDEX = 10000 def __init__(self, **kwargs): self.log = getValue(kwargs, 'log', False) if self.log: kwargs['logY'] = True super(HistogramChart, self).__init__(**kwargs) self.type = 'Histogram' self.bin_count = getValue(kwargs, 'binCount') self.cumulative = getValue(kwargs, 'cumulative', False) self.normed = getValue(kwargs, 'normed', False) self.range_min = getValue(kwargs, 'rangeMin') self.range_max = getValue(kwargs, 'rangeMax') self.names = getValue(kwargs, 'names') self.displayMode = getValue(kwargs, 'displayMode') color = getValue(kwargs, 'color') if color is not None: if isinstance(color, Color): self.colors = [] self.colors.append(color) else: self.colors = color @staticmethod def limit_points(x): if len(x) >= HistogramChart.ROWS_LIMIT: return x[0:HistogramChart.ROWS_LIMIT_T0_INDEX] return x @staticmethod def total_number(listOfData): return max(list(map(lambda x: len(x), listOfData))) def transform(self): self_copy = copy.copy(self) self_copy.totalNumberOfPoints = HistogramChart.total_number(self_copy.graphics_list) self_copy.tooManyRows = self_copy.totalNumberOfPoints >= HistogramChart.ROWS_LIMIT self_copy.rowsLimitItems = HistogramChart.ROWS_LIMIT self_copy.numberOfPointsToDisplay = str(HistogramChart.ROWS_LIMIT_T0_INDEX) + " items" self_copy.graphics_list = list(map(HistogramChart.limit_points, self_copy.graphics_list)) return super(HistogramChart, self_copy).transform() class CategoryChart(XYChart): def __init__(self, **kwargs): super(CategoryChart, self).__init__(**kwargs) self.type = 'CategoryPlot' self.categoryNamesLabelAngle = getValue(kwargs, 'categoryNamesLabelAngle', 0.0) self.categoryNames = getValue(kwargs, 'categoryNames', []) self.y_upper_margin = getValue(kwargs, 'upperMargin', 0.0) self.y_lower_bound = getValue(kwargs, 'lowerMargin', 0.0) self.x_upper_margin = getValue(kwargs, 'upperMargin', 0.05) self.x_lower_margin = getValue(kwargs, 'lowerMargin', 0.05) self.category_margin = getValue(kwargs, 'categoryMargin', 0.2) self.y_auto_range_includes_zero = getValue(kwargs, 'y_auto_range_includes_zero', False) self.y_auto_range = getValue(kwargs, 'y_auto_range', True) self.orientation = getValue(kwargs, 'orientation') class TreeMapChart(XYChart): ROWS_LIMIT = 1000 def __init__(self, **kwargs): super(TreeMapChart, self).__init__(**kwargs) self.type = 'TreeMap' self.showLegend = getValue(kwargs, 'showLegend', True) self.title = getValue(kwargs, 'title', "") self.colorProvider = getValue(kwargs, 'colorProvider', RandomColorProvider()) self.toolTipBuilder = getValue(kwargs, 'toolTipBuilder') self.mode = getValue(kwargs, 'mode', Mode.SQUARIFY).value self.ratio = getValue(kwargs, 'ratio') self.valueAccessor = getValue(kwargs, 'valueAccessor', ValueAccessor.VALUE) self.custom_styles = [] self.element_styles = {} self.graphics_list = getValue(kwargs, 'root') def transform(self): tree_map = self tree_map.process(tree_map.graphics_list) count_nodes = tree_map.count_nodes(self.graphics_list, self.increase_by_one, 0) to_many_rows = count_nodes > TreeMapChart.ROWS_LIMIT if to_many_rows: tree_map = copy.copy(self) tree_map.totalNumberOfPoints = count_nodes tree_map.rowsLimitItems = TreeMapChart.ROWS_LIMIT tree_map.graphics_list = TreeMapReducer.limit_tree_map(TreeMapChart.ROWS_LIMIT, self.graphics_list) tree_map.numberOfPointsToDisplay = str( tree_map.count_nodes(tree_map.graphics_list, self.increase_by_one_when_leaf, 0) ) + " leaves" tree_map.tooManyRows = to_many_rows return super(TreeMapChart, tree_map).transform() def process(self, node): children = node.children if children is not None: for child in children: self.process(child) node.user_object["isLeaf"] = node.isLeaf() if node.isLeaf(): node.color = self.colorProvider.getColor(node) toolTipBuilder = self.toolTipBuilder if toolTipBuilder is not None: node.tooltip = toolTipBuilder.getToolTip(node) @staticmethod def increase_by_one(node, count): return count + 1 @staticmethod def increase_by_one_when_leaf(node, count): if node.user_object["isLeaf"]: count = count + 1 return count def count_nodes(self, node, increase_fun, count): count = increase_fun(node, count) children = node.children if children is not None: for child in children: count = self.count_nodes(child, increase_fun, count) return count class CombinedChart(BaseObject): def __init__(self, **kwargs): super(CombinedChart, self).__init__(**kwargs) self.init_width = getValue(kwargs, 'initWidth', 640) self.init_height = getValue(kwargs, 'initHeight', 480) self.title = getValue(kwargs, 'title') self.x_label = getValue(kwargs, 'xLabel', 'Linear') self.plots = getValue(kwargs, 'plots', []) self.weights = getValue(kwargs, 'weights', []) self.auto_zoom = getValue(kwargs, 'autoZoom') self.version = 'groovy' self.type = 'CombinedPlot' self.y_tickLabels_visible = True self.x_tickLabels_visible = True self.plot_type = 'Plot'
40.43465
111
0.642261
a47f0a8e6de64f9cf02d2f23dfeb307733eaedc4
535
py
Python
functions/Osfile.py
DhruvBajaj01/Virtual-Assistant
bba3c4122e1cc93f31b1e0894b6192739d51a6b4
[ "MIT" ]
3
2022-02-21T06:59:46.000Z
2022-03-01T06:38:58.000Z
functions/Osfile.py
DhruvBajaj01/Virtual-Assistant
bba3c4122e1cc93f31b1e0894b6192739d51a6b4
[ "MIT" ]
null
null
null
functions/Osfile.py
DhruvBajaj01/Virtual-Assistant
bba3c4122e1cc93f31b1e0894b6192739d51a6b4
[ "MIT" ]
null
null
null
import os import subprocess as sp paths = { 'notepad': "C:/Program Files (x86)/Notepad++/notepad++.exe", 'discord': "C:\\Users\\Dhruv Bajaj\\AppData\\Local\\Discord\\app-1.0.9003\\Discord.exe" } def open_notepad(): os.startfile(paths['notepad']) def open_discord(): os.startfile(paths['discord']) def open_cmd(): os.system('start cmd') def open_camera(): sp.run('start microsoft.windows.camera:', shell=True) def open_calculator(): sp.run('start microsoft.windows.Calculator:', shell=True)
17.258065
91
0.663551
26385ec1cadd9ffff7f1cbc157d61a1978008530
2,687
py
Python
app/common/fileutil.py
rahulsh1/flamescope
15a6914d0848503e0153d438597178970ea56a9c
[ "Apache-2.0" ]
null
null
null
app/common/fileutil.py
rahulsh1/flamescope
15a6914d0848503e0153d438597178970ea56a9c
[ "Apache-2.0" ]
null
null
null
app/common/fileutil.py
rahulsh1/flamescope
15a6914d0848503e0153d438597178970ea56a9c
[ "Apache-2.0" ]
null
null
null
# This file is part of FlameScope, a performance analysis tool created by the # Netflix cloud performance team. See: # # https://github.com/Netflix/flamescope # # Copyright 2018 Netflix, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import magic import gzip import json from json import JSONDecodeError from os.path import abspath from app.common.error import InvalidFileError from app.perf.regexp import event_regexp from app import config invalidchars = re.compile('[^a-zA-Z0-9.,/_%+: -\\\\]') def validpath(file_path): if invalidchars.search(file_path): return False if not os.path.exists(file_path): return False return True def get_file_mime(file_path): return magic.from_file(file_path, mime=True) def is_perf_file(f): for line in f: if (line[0] == '#'): continue r = event_regexp.search(line) if r: return True return False def get_file(file_path): # ensure the file is below PROFILE_DIR: if not abspath(file_path).startswith(abspath(config.PROFILE_DIR)): raise InvalidFileError("File %s is not in PROFILE_DIR" % file_path) if not validpath(file_path): raise InvalidFileError("Invalid characters or file %s does not exist." % file_path) mime = get_file_mime(file_path) if mime in ['application/x-gzip', 'application/gzip']: return gzip.open(file_path, 'rt') elif mime == 'text/plain': return open(file_path, 'r') else: raise InvalidFileError('Unknown mime type.') def get_profile_type(file_path): f = get_file(file_path) if is_perf_file(f): f.close() return ('perf_script', None) else: try: f.seek(0) r = json.load(f) f.close() if isinstance(r, list): if 'ph' in r[0]: return ('trace_event', r) elif 'nodes' in r: return ('cpuprofile', r) raise InvalidFileError('Unknown JSON file.') except JSONDecodeError: f.close() raise InvalidFileError('Unknown file type.')
29.206522
91
0.649051
113589f123679efad0fbe54ccdbfe3cac9860ccb
2,560
py
Python
vispy/gloo/gl/desktop.py
robmcmullen/vispy
8d5092fdae4a24fc364ae51c7e34e12d3fd6d0a2
[ "BSD-3-Clause" ]
null
null
null
vispy/gloo/gl/desktop.py
robmcmullen/vispy
8d5092fdae4a24fc364ae51c7e34e12d3fd6d0a2
[ "BSD-3-Clause" ]
null
null
null
vispy/gloo/gl/desktop.py
robmcmullen/vispy
8d5092fdae4a24fc364ae51c7e34e12d3fd6d0a2
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2014, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. """ GL ES 2.0 API implemented via desktop GL (i.e subset of normal OpenGL). """ import os import sys import ctypes.util from . import _copy_gl_functions from ._constants import * # noqa # Ctypes stuff # Load the OpenGL library. We more or less follow the same approach # as PyOpenGL does internally _have_get_proc_address = False _lib = os.getenv('VISPY_GL_LIB', '') if _lib != '': if sys.platform.startswith('win'): _lib = ctypes.windll.LoadLibrary(_lib) else: _lib = ctypes.cdll.LoadLibrary(_lib) elif sys.platform.startswith('win'): # Windows _lib = ctypes.windll.opengl32 try: wglGetProcAddress = _lib.wglGetProcAddress wglGetProcAddress.restype = ctypes.CFUNCTYPE( ctypes.POINTER(ctypes.c_int)) wglGetProcAddress.argtypes = [ctypes.c_char_p] _have_get_proc_address = True except AttributeError: pass else: # Unix-ish if sys.platform.startswith('darwin'): _fname = ctypes.util.find_library('OpenGL') else: _fname = ctypes.util.find_library('GL') if not _fname: raise RuntimeError('Could not load OpenGL library.') # Load lib _lib = ctypes.cdll.LoadLibrary(_fname) def _have_context(): return _lib.glGetError() != 1282 # GL_INVALID_OPERATION def _get_gl_func(name, restype, argtypes): # Based on a function in Pyglet try: # Try using normal ctypes stuff func = getattr(_lib, name) func.restype = restype func.argtypes = argtypes return func except AttributeError: if sys.platform.startswith('win'): # Ask for a pointer to the function, this is the approach # for OpenGL extensions on Windows fargs = (restype,) + argtypes ftype = ctypes.WINFUNCTYPE(*fargs) if not _have_get_proc_address: raise RuntimeError('Function %s not available.' % name) if not _have_context(): raise RuntimeError('Using %s with no OpenGL context.' % name) address = wglGetProcAddress(name.encode('utf-8')) if address: return ctypes.cast(address, ftype) # If not Windows or if we did not return function object on Windows: raise RuntimeError('Function %s not present in context.' % name) # Inject from . import _desktop _copy_gl_functions(_desktop, globals())
30.47619
77
0.652344
5c8833e4cf914a7600f27982f9a03d6cd6b7cfac
283
py
Python
install.py
ia2c/aptamers
b4152c0383248bbbaa7c80581cee322bf4c6bb3a
[ "MIT" ]
1
2017-03-21T12:30:29.000Z
2017-03-21T12:30:29.000Z
install.py
ia2c/aptamers
b4152c0383248bbbaa7c80581cee322bf4c6bb3a
[ "MIT" ]
null
null
null
install.py
ia2c/aptamers
b4152c0383248bbbaa7c80581cee322bf4c6bb3a
[ "MIT" ]
null
null
null
fichier = open("Rosetta/main/source/src/apps.src.settings","r") commands = fichier.readlines() fichier.close() commands = commands[:-1] + [" 'cifparse',\n"] + [commands[-1]] fichier = open("Rosetta/main/source/src/apps.src.settings","w") fichier.writelines(commands) fichier.close()
35.375
63
0.713781
7fe9c4a7cb496a10f99e7632b34bc27194810bc6
38,771
py
Python
src/storage-preview/azext_storage_preview/vendored_sdks/azure_storagev2/fileshare/v2020_02_10/_generated/models/_models_py3.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
207
2017-11-29T06:59:41.000Z
2022-03-31T10:00:53.000Z
src/storage-preview/azext_storage_preview/vendored_sdks/azure_storagev2/fileshare/v2020_02_10/_generated/models/_models_py3.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
4,061
2017-10-27T23:19:56.000Z
2022-03-31T23:18:30.000Z
src/storage-preview/azext_storage_preview/vendored_sdks/azure_storagev2/fileshare/v2020_02_10/_generated/models/_models_py3.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
802
2017-10-11T17:36:26.000Z
2022-03-31T22:24:32.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model from azure.core.exceptions import HttpResponseError class AccessPolicy(Model): """An Access policy. :param start: The date-time the policy is active. :type start: str :param expiry: The date-time the policy expires. :type expiry: str :param permission: The permissions for the ACL policy. :type permission: str """ _attribute_map = { 'start': {'key': 'Start', 'type': 'str', 'xml': {'name': 'Start'}}, 'expiry': {'key': 'Expiry', 'type': 'str', 'xml': {'name': 'Expiry'}}, 'permission': {'key': 'Permission', 'type': 'str', 'xml': {'name': 'Permission'}}, } _xml_map = { } def __init__(self, *, start: str=None, expiry: str=None, permission: str=None, **kwargs) -> None: super(AccessPolicy, self).__init__(**kwargs) self.start = start self.expiry = expiry self.permission = permission class ClearRange(Model): """ClearRange. All required parameters must be populated in order to send to Azure. :param start: Required. :type start: long :param end: Required. :type end: long """ _validation = { 'start': {'required': True}, 'end': {'required': True}, } _attribute_map = { 'start': {'key': 'Start', 'type': 'long', 'xml': {'name': 'Start'}}, 'end': {'key': 'End', 'type': 'long', 'xml': {'name': 'End'}}, } _xml_map = { 'name': 'ClearRange' } def __init__(self, *, start: int, end: int, **kwargs) -> None: super(ClearRange, self).__init__(**kwargs) self.start = start self.end = end class CopyFileSmbInfo(Model): """Additional parameters for start_copy operation. :param file_permission_copy_mode: Specifies the option to copy file security descriptor from source file or to set it using the value which is defined by the header value of x-ms-file-permission or x-ms-file-permission-key. Possible values include: 'source', 'override' :type file_permission_copy_mode: str or ~azure.storage.fileshare.models.PermissionCopyModeType :param ignore_read_only: Specifies the option to overwrite the target file if it already exists and has read-only attribute set. :type ignore_read_only: bool :param file_attributes: Specifies either the option to copy file attributes from a source file(source) to a target file or a list of attributes to set on a target file. :type file_attributes: str :param file_creation_time: Specifies either the option to copy file creation time from a source file(source) to a target file or a time value in ISO 8601 format to set as creation time on a target file. :type file_creation_time: str :param file_last_write_time: Specifies either the option to copy file last write time from a source file(source) to a target file or a time value in ISO 8601 format to set as last write time on a target file. :type file_last_write_time: str :param set_archive_attribute: Specifies the option to set archive attribute on a target file. True means archive attribute will be set on a target file despite attribute overrides or a source file state. :type set_archive_attribute: bool """ _attribute_map = { 'file_permission_copy_mode': {'key': '', 'type': 'PermissionCopyModeType', 'xml': {'name': 'file_permission_copy_mode'}}, 'ignore_read_only': {'key': '', 'type': 'bool', 'xml': {'name': 'ignore_read_only'}}, 'file_attributes': {'key': '', 'type': 'str', 'xml': {'name': 'file_attributes'}}, 'file_creation_time': {'key': '', 'type': 'str', 'xml': {'name': 'file_creation_time'}}, 'file_last_write_time': {'key': '', 'type': 'str', 'xml': {'name': 'file_last_write_time'}}, 'set_archive_attribute': {'key': '', 'type': 'bool', 'xml': {'name': 'set_archive_attribute'}}, } _xml_map = { } def __init__(self, *, file_permission_copy_mode=None, ignore_read_only: bool=None, file_attributes: str=None, file_creation_time: str=None, file_last_write_time: str=None, set_archive_attribute: bool=None, **kwargs) -> None: super(CopyFileSmbInfo, self).__init__(**kwargs) self.file_permission_copy_mode = file_permission_copy_mode self.ignore_read_only = ignore_read_only self.file_attributes = file_attributes self.file_creation_time = file_creation_time self.file_last_write_time = file_last_write_time self.set_archive_attribute = set_archive_attribute class CorsRule(Model): """CORS is an HTTP feature that enables a web application running under one domain to access resources in another domain. Web browsers implement a security restriction known as same-origin policy that prevents a web page from calling APIs in a different domain; CORS provides a secure way to allow one domain (the origin domain) to call APIs in another domain. All required parameters must be populated in order to send to Azure. :param allowed_origins: Required. The origin domains that are permitted to make a request against the storage service via CORS. The origin domain is the domain from which the request originates. Note that the origin must be an exact case-sensitive match with the origin that the user age sends to the service. You can also use the wildcard character '*' to allow all origin domains to make requests via CORS. :type allowed_origins: str :param allowed_methods: Required. The methods (HTTP request verbs) that the origin domain may use for a CORS request. (comma separated) :type allowed_methods: str :param allowed_headers: Required. The request headers that the origin domain may specify on the CORS request. :type allowed_headers: str :param exposed_headers: Required. The response headers that may be sent in the response to the CORS request and exposed by the browser to the request issuer. :type exposed_headers: str :param max_age_in_seconds: Required. The maximum amount time that a browser should cache the preflight OPTIONS request. :type max_age_in_seconds: int """ _validation = { 'allowed_origins': {'required': True}, 'allowed_methods': {'required': True}, 'allowed_headers': {'required': True}, 'exposed_headers': {'required': True}, 'max_age_in_seconds': {'required': True, 'minimum': 0}, } _attribute_map = { 'allowed_origins': {'key': 'AllowedOrigins', 'type': 'str', 'xml': {'name': 'AllowedOrigins'}}, 'allowed_methods': {'key': 'AllowedMethods', 'type': 'str', 'xml': {'name': 'AllowedMethods'}}, 'allowed_headers': {'key': 'AllowedHeaders', 'type': 'str', 'xml': {'name': 'AllowedHeaders'}}, 'exposed_headers': {'key': 'ExposedHeaders', 'type': 'str', 'xml': {'name': 'ExposedHeaders'}}, 'max_age_in_seconds': {'key': 'MaxAgeInSeconds', 'type': 'int', 'xml': {'name': 'MaxAgeInSeconds'}}, } _xml_map = { } def __init__(self, *, allowed_origins: str, allowed_methods: str, allowed_headers: str, exposed_headers: str, max_age_in_seconds: int, **kwargs) -> None: super(CorsRule, self).__init__(**kwargs) self.allowed_origins = allowed_origins self.allowed_methods = allowed_methods self.allowed_headers = allowed_headers self.exposed_headers = exposed_headers self.max_age_in_seconds = max_age_in_seconds class DirectoryItem(Model): """A listed directory item. All required parameters must be populated in order to send to Azure. :param name: Required. :type name: str """ _validation = { 'name': {'required': True}, } _attribute_map = { 'name': {'key': 'Name', 'type': 'str', 'xml': {'name': 'Name'}}, } _xml_map = { 'name': 'Directory' } def __init__(self, *, name: str, **kwargs) -> None: super(DirectoryItem, self).__init__(**kwargs) self.name = name class FileHTTPHeaders(Model): """Additional parameters for a set of operations, such as: File_create, File_set_http_headers. :param file_content_type: Sets the MIME content type of the file. The default type is 'application/octet-stream'. :type file_content_type: str :param file_content_encoding: Specifies which content encodings have been applied to the file. :type file_content_encoding: str :param file_content_language: Specifies the natural languages used by this resource. :type file_content_language: str :param file_cache_control: Sets the file's cache control. The File service stores this value but does not use or modify it. :type file_cache_control: str :param file_content_md5: Sets the file's MD5 hash. :type file_content_md5: bytearray :param file_content_disposition: Sets the file's Content-Disposition header. :type file_content_disposition: str """ _attribute_map = { 'file_content_type': {'key': '', 'type': 'str', 'xml': {'name': 'file_content_type'}}, 'file_content_encoding': {'key': '', 'type': 'str', 'xml': {'name': 'file_content_encoding'}}, 'file_content_language': {'key': '', 'type': 'str', 'xml': {'name': 'file_content_language'}}, 'file_cache_control': {'key': '', 'type': 'str', 'xml': {'name': 'file_cache_control'}}, 'file_content_md5': {'key': '', 'type': 'bytearray', 'xml': {'name': 'file_content_md5'}}, 'file_content_disposition': {'key': '', 'type': 'str', 'xml': {'name': 'file_content_disposition'}}, } _xml_map = { } def __init__(self, *, file_content_type: str=None, file_content_encoding: str=None, file_content_language: str=None, file_cache_control: str=None, file_content_md5: bytearray=None, file_content_disposition: str=None, **kwargs) -> None: super(FileHTTPHeaders, self).__init__(**kwargs) self.file_content_type = file_content_type self.file_content_encoding = file_content_encoding self.file_content_language = file_content_language self.file_cache_control = file_cache_control self.file_content_md5 = file_content_md5 self.file_content_disposition = file_content_disposition class FileItem(Model): """A listed file item. All required parameters must be populated in order to send to Azure. :param name: Required. :type name: str :param properties: Required. :type properties: ~azure.storage.fileshare.models.FileProperty """ _validation = { 'name': {'required': True}, 'properties': {'required': True}, } _attribute_map = { 'name': {'key': 'Name', 'type': 'str', 'xml': {'name': 'Name'}}, 'properties': {'key': 'Properties', 'type': 'FileProperty', 'xml': {'name': 'Properties'}}, } _xml_map = { 'name': 'File' } def __init__(self, *, name: str, properties, **kwargs) -> None: super(FileItem, self).__init__(**kwargs) self.name = name self.properties = properties class FileProperty(Model): """File properties. All required parameters must be populated in order to send to Azure. :param content_length: Required. Content length of the file. This value may not be up-to-date since an SMB client may have modified the file locally. The value of Content-Length may not reflect that fact until the handle is closed or the op-lock is broken. To retrieve current property values, call Get File Properties. :type content_length: long """ _validation = { 'content_length': {'required': True}, } _attribute_map = { 'content_length': {'key': 'Content-Length', 'type': 'long', 'xml': {'name': 'Content-Length'}}, } _xml_map = { } def __init__(self, *, content_length: int, **kwargs) -> None: super(FileProperty, self).__init__(**kwargs) self.content_length = content_length class FileRange(Model): """An Azure Storage file range. All required parameters must be populated in order to send to Azure. :param start: Required. Start of the range. :type start: long :param end: Required. End of the range. :type end: long """ _validation = { 'start': {'required': True}, 'end': {'required': True}, } _attribute_map = { 'start': {'key': 'Start', 'type': 'long', 'xml': {'name': 'Start'}}, 'end': {'key': 'End', 'type': 'long', 'xml': {'name': 'End'}}, } _xml_map = { 'name': 'Range' } def __init__(self, *, start: int, end: int, **kwargs) -> None: super(FileRange, self).__init__(**kwargs) self.start = start self.end = end class FilesAndDirectoriesListSegment(Model): """Abstract for entries that can be listed from Directory. All required parameters must be populated in order to send to Azure. :param directory_items: Required. :type directory_items: list[~azure.storage.fileshare.models.DirectoryItem] :param file_items: Required. :type file_items: list[~azure.storage.fileshare.models.FileItem] """ _validation = { 'directory_items': {'required': True}, 'file_items': {'required': True}, } _attribute_map = { 'directory_items': {'key': 'DirectoryItems', 'type': '[DirectoryItem]', 'xml': {'name': 'DirectoryItems', 'itemsName': 'Directory'}}, 'file_items': {'key': 'FileItems', 'type': '[FileItem]', 'xml': {'name': 'FileItems', 'itemsName': 'File'}}, } _xml_map = { 'name': 'Entries' } def __init__(self, *, directory_items, file_items, **kwargs) -> None: super(FilesAndDirectoriesListSegment, self).__init__(**kwargs) self.directory_items = directory_items self.file_items = file_items class HandleItem(Model): """A listed Azure Storage handle item. All required parameters must be populated in order to send to Azure. :param handle_id: Required. XSMB service handle ID :type handle_id: str :param path: Required. File or directory name including full path starting from share root :type path: str :param file_id: Required. FileId uniquely identifies the file or directory. :type file_id: str :param parent_id: ParentId uniquely identifies the parent directory of the object. :type parent_id: str :param session_id: Required. SMB session ID in context of which the file handle was opened :type session_id: str :param client_ip: Required. Client IP that opened the handle :type client_ip: str :param open_time: Required. Time when the session that previously opened the handle has last been reconnected. (UTC) :type open_time: datetime :param last_reconnect_time: Time handle was last connected to (UTC) :type last_reconnect_time: datetime """ _validation = { 'handle_id': {'required': True}, 'path': {'required': True}, 'file_id': {'required': True}, 'session_id': {'required': True}, 'client_ip': {'required': True}, 'open_time': {'required': True}, } _attribute_map = { 'handle_id': {'key': 'HandleId', 'type': 'str', 'xml': {'name': 'HandleId'}}, 'path': {'key': 'Path', 'type': 'str', 'xml': {'name': 'Path'}}, 'file_id': {'key': 'FileId', 'type': 'str', 'xml': {'name': 'FileId'}}, 'parent_id': {'key': 'ParentId', 'type': 'str', 'xml': {'name': 'ParentId'}}, 'session_id': {'key': 'SessionId', 'type': 'str', 'xml': {'name': 'SessionId'}}, 'client_ip': {'key': 'ClientIp', 'type': 'str', 'xml': {'name': 'ClientIp'}}, 'open_time': {'key': 'OpenTime', 'type': 'rfc-1123', 'xml': {'name': 'OpenTime'}}, 'last_reconnect_time': {'key': 'LastReconnectTime', 'type': 'rfc-1123', 'xml': {'name': 'LastReconnectTime'}}, } _xml_map = { 'name': 'Handle' } def __init__(self, *, handle_id: str, path: str, file_id: str, session_id: str, client_ip: str, open_time, parent_id: str=None, last_reconnect_time=None, **kwargs) -> None: super(HandleItem, self).__init__(**kwargs) self.handle_id = handle_id self.path = path self.file_id = file_id self.parent_id = parent_id self.session_id = session_id self.client_ip = client_ip self.open_time = open_time self.last_reconnect_time = last_reconnect_time class LeaseAccessConditions(Model): """Additional parameters for a set of operations. :param lease_id: If specified, the operation only succeeds if the resource's lease is active and matches this ID. :type lease_id: str """ _attribute_map = { 'lease_id': {'key': '', 'type': 'str', 'xml': {'name': 'lease_id'}}, } _xml_map = { } def __init__(self, *, lease_id: str=None, **kwargs) -> None: super(LeaseAccessConditions, self).__init__(**kwargs) self.lease_id = lease_id class ListFilesAndDirectoriesSegmentResponse(Model): """An enumeration of directories and files. All required parameters must be populated in order to send to Azure. :param service_endpoint: Required. :type service_endpoint: str :param share_name: Required. :type share_name: str :param share_snapshot: :type share_snapshot: str :param directory_path: Required. :type directory_path: str :param prefix: Required. :type prefix: str :param marker: :type marker: str :param max_results: :type max_results: int :param segment: Required. :type segment: ~azure.storage.fileshare.models.FilesAndDirectoriesListSegment :param next_marker: Required. :type next_marker: str """ _validation = { 'service_endpoint': {'required': True}, 'share_name': {'required': True}, 'directory_path': {'required': True}, 'prefix': {'required': True}, 'segment': {'required': True}, 'next_marker': {'required': True}, } _attribute_map = { 'service_endpoint': {'key': 'ServiceEndpoint', 'type': 'str', 'xml': {'name': 'ServiceEndpoint', 'attr': True}}, 'share_name': {'key': 'ShareName', 'type': 'str', 'xml': {'name': 'ShareName', 'attr': True}}, 'share_snapshot': {'key': 'ShareSnapshot', 'type': 'str', 'xml': {'name': 'ShareSnapshot', 'attr': True}}, 'directory_path': {'key': 'DirectoryPath', 'type': 'str', 'xml': {'name': 'DirectoryPath', 'attr': True}}, 'prefix': {'key': 'Prefix', 'type': 'str', 'xml': {'name': 'Prefix'}}, 'marker': {'key': 'Marker', 'type': 'str', 'xml': {'name': 'Marker'}}, 'max_results': {'key': 'MaxResults', 'type': 'int', 'xml': {'name': 'MaxResults'}}, 'segment': {'key': 'Segment', 'type': 'FilesAndDirectoriesListSegment', 'xml': {'name': 'Segment'}}, 'next_marker': {'key': 'NextMarker', 'type': 'str', 'xml': {'name': 'NextMarker'}}, } _xml_map = { 'name': 'EnumerationResults' } def __init__(self, *, service_endpoint: str, share_name: str, directory_path: str, prefix: str, segment, next_marker: str, share_snapshot: str=None, marker: str=None, max_results: int=None, **kwargs) -> None: super(ListFilesAndDirectoriesSegmentResponse, self).__init__(**kwargs) self.service_endpoint = service_endpoint self.share_name = share_name self.share_snapshot = share_snapshot self.directory_path = directory_path self.prefix = prefix self.marker = marker self.max_results = max_results self.segment = segment self.next_marker = next_marker class ListHandlesResponse(Model): """An enumeration of handles. All required parameters must be populated in order to send to Azure. :param handle_list: :type handle_list: list[~azure.storage.fileshare.models.HandleItem] :param next_marker: Required. :type next_marker: str """ _validation = { 'next_marker': {'required': True}, } _attribute_map = { 'handle_list': {'key': 'HandleList', 'type': '[HandleItem]', 'xml': {'name': 'Entries', 'itemsName': 'Entries', 'wrapped': True}}, 'next_marker': {'key': 'NextMarker', 'type': 'str', 'xml': {'name': 'NextMarker'}}, } _xml_map = { 'name': 'EnumerationResults' } def __init__(self, *, next_marker: str, handle_list=None, **kwargs) -> None: super(ListHandlesResponse, self).__init__(**kwargs) self.handle_list = handle_list self.next_marker = next_marker class ListSharesResponse(Model): """An enumeration of shares. All required parameters must be populated in order to send to Azure. :param service_endpoint: Required. :type service_endpoint: str :param prefix: :type prefix: str :param marker: :type marker: str :param max_results: :type max_results: int :param share_items: :type share_items: list[~azure.storage.fileshare.models.ShareItem] :param next_marker: Required. :type next_marker: str """ _validation = { 'service_endpoint': {'required': True}, 'next_marker': {'required': True}, } _attribute_map = { 'service_endpoint': {'key': 'ServiceEndpoint', 'type': 'str', 'xml': {'name': 'ServiceEndpoint', 'attr': True}}, 'prefix': {'key': 'Prefix', 'type': 'str', 'xml': {'name': 'Prefix'}}, 'marker': {'key': 'Marker', 'type': 'str', 'xml': {'name': 'Marker'}}, 'max_results': {'key': 'MaxResults', 'type': 'int', 'xml': {'name': 'MaxResults'}}, 'share_items': {'key': 'ShareItems', 'type': '[ShareItem]', 'xml': {'name': 'Shares', 'itemsName': 'Shares', 'wrapped': True}}, 'next_marker': {'key': 'NextMarker', 'type': 'str', 'xml': {'name': 'NextMarker'}}, } _xml_map = { 'name': 'EnumerationResults' } def __init__(self, *, service_endpoint: str, next_marker: str, prefix: str=None, marker: str=None, max_results: int=None, share_items=None, **kwargs) -> None: super(ListSharesResponse, self).__init__(**kwargs) self.service_endpoint = service_endpoint self.prefix = prefix self.marker = marker self.max_results = max_results self.share_items = share_items self.next_marker = next_marker class Metrics(Model): """Storage Analytics metrics for file service. All required parameters must be populated in order to send to Azure. :param version: Required. The version of Storage Analytics to configure. :type version: str :param enabled: Required. Indicates whether metrics are enabled for the File service. :type enabled: bool :param include_apis: Indicates whether metrics should generate summary statistics for called API operations. :type include_apis: bool :param retention_policy: :type retention_policy: ~azure.storage.fileshare.models.RetentionPolicy """ _validation = { 'version': {'required': True}, 'enabled': {'required': True}, } _attribute_map = { 'version': {'key': 'Version', 'type': 'str', 'xml': {'name': 'Version'}}, 'enabled': {'key': 'Enabled', 'type': 'bool', 'xml': {'name': 'Enabled'}}, 'include_apis': {'key': 'IncludeAPIs', 'type': 'bool', 'xml': {'name': 'IncludeAPIs'}}, 'retention_policy': {'key': 'RetentionPolicy', 'type': 'RetentionPolicy', 'xml': {'name': 'RetentionPolicy'}}, } _xml_map = { } def __init__(self, *, version: str, enabled: bool, include_apis: bool=None, retention_policy=None, **kwargs) -> None: super(Metrics, self).__init__(**kwargs) self.version = version self.enabled = enabled self.include_apis = include_apis self.retention_policy = retention_policy class RetentionPolicy(Model): """The retention policy. All required parameters must be populated in order to send to Azure. :param enabled: Required. Indicates whether a retention policy is enabled for the File service. If false, metrics data is retained, and the user is responsible for deleting it. :type enabled: bool :param days: Indicates the number of days that metrics data should be retained. All data older than this value will be deleted. Metrics data is deleted on a best-effort basis after the retention period expires. :type days: int """ _validation = { 'enabled': {'required': True}, 'days': {'maximum': 365, 'minimum': 1}, } _attribute_map = { 'enabled': {'key': 'Enabled', 'type': 'bool', 'xml': {'name': 'Enabled'}}, 'days': {'key': 'Days', 'type': 'int', 'xml': {'name': 'Days'}}, } _xml_map = { } def __init__(self, *, enabled: bool, days: int=None, **kwargs) -> None: super(RetentionPolicy, self).__init__(**kwargs) self.enabled = enabled self.days = days class ShareFileRangeList(Model): """The list of file ranges. :param ranges: :type ranges: list[~azure.storage.fileshare.models.FileRange] :param clear_ranges: :type clear_ranges: list[~azure.storage.fileshare.models.ClearRange] """ _attribute_map = { 'ranges': {'key': 'Ranges', 'type': '[FileRange]', 'xml': {'name': 'Ranges', 'itemsName': 'Range'}}, 'clear_ranges': {'key': 'ClearRanges', 'type': '[ClearRange]', 'xml': {'name': 'ClearRanges', 'itemsName': 'ClearRange'}}, } _xml_map = { } def __init__(self, *, ranges=None, clear_ranges=None, **kwargs) -> None: super(ShareFileRangeList, self).__init__(**kwargs) self.ranges = ranges self.clear_ranges = clear_ranges class ShareItem(Model): """A listed Azure Storage share item. All required parameters must be populated in order to send to Azure. :param name: Required. :type name: str :param snapshot: :type snapshot: str :param deleted: :type deleted: bool :param version: :type version: str :param properties: Required. :type properties: ~azure.storage.fileshare.models.ShareProperties :param metadata: :type metadata: dict[str, str] """ _validation = { 'name': {'required': True}, 'properties': {'required': True}, } _attribute_map = { 'name': {'key': 'Name', 'type': 'str', 'xml': {'name': 'Name'}}, 'snapshot': {'key': 'Snapshot', 'type': 'str', 'xml': {'name': 'Snapshot'}}, 'deleted': {'key': 'Deleted', 'type': 'bool', 'xml': {'name': 'Deleted'}}, 'version': {'key': 'Version', 'type': 'str', 'xml': {'name': 'Version'}}, 'properties': {'key': 'Properties', 'type': 'ShareProperties', 'xml': {'name': 'Properties'}}, 'metadata': {'key': 'Metadata', 'type': '{str}', 'xml': {'name': 'Metadata'}}, } _xml_map = { 'name': 'Share' } def __init__(self, *, name: str, properties, snapshot: str=None, deleted: bool=None, version: str=None, metadata=None, **kwargs) -> None: super(ShareItem, self).__init__(**kwargs) self.name = name self.snapshot = snapshot self.deleted = deleted self.version = version self.properties = properties self.metadata = metadata class SharePermission(Model): """A permission (a security descriptor) at the share level. All required parameters must be populated in order to send to Azure. :param permission: Required. The permission in the Security Descriptor Definition Language (SDDL). :type permission: str """ _validation = { 'permission': {'required': True}, } _attribute_map = { 'permission': {'key': 'permission', 'type': 'str', 'xml': {'name': 'permission'}}, } _xml_map = { } def __init__(self, *, permission: str, **kwargs) -> None: super(SharePermission, self).__init__(**kwargs) self.permission = permission class ShareProperties(Model): """Properties of a share. All required parameters must be populated in order to send to Azure. :param last_modified: Required. :type last_modified: datetime :param etag: Required. :type etag: str :param quota: Required. :type quota: int :param provisioned_iops: :type provisioned_iops: int :param provisioned_ingress_mbps: :type provisioned_ingress_mbps: int :param provisioned_egress_mbps: :type provisioned_egress_mbps: int :param next_allowed_quota_downgrade_time: :type next_allowed_quota_downgrade_time: datetime :param deleted_time: :type deleted_time: datetime :param remaining_retention_days: :type remaining_retention_days: int :param lease_status: Possible values include: 'locked', 'unlocked' :type lease_status: str or ~azure.storage.fileshare.models.LeaseStatusType :param lease_state: Possible values include: 'available', 'leased', 'expired', 'breaking', 'broken' :type lease_state: str or ~azure.storage.fileshare.models.LeaseStateType :param lease_duration: Possible values include: 'infinite', 'fixed' :type lease_duration: str or ~azure.storage.fileshare.models.LeaseDurationType """ _validation = { 'last_modified': {'required': True}, 'etag': {'required': True}, 'quota': {'required': True}, } _attribute_map = { 'last_modified': {'key': 'Last-Modified', 'type': 'rfc-1123', 'xml': {'name': 'Last-Modified'}}, 'etag': {'key': 'Etag', 'type': 'str', 'xml': {'name': 'Etag'}}, 'quota': {'key': 'Quota', 'type': 'int', 'xml': {'name': 'Quota'}}, 'provisioned_iops': {'key': 'ProvisionedIops', 'type': 'int', 'xml': {'name': 'ProvisionedIops'}}, 'provisioned_ingress_mbps': {'key': 'ProvisionedIngressMBps', 'type': 'int', 'xml': {'name': 'ProvisionedIngressMBps'}}, 'provisioned_egress_mbps': {'key': 'ProvisionedEgressMBps', 'type': 'int', 'xml': {'name': 'ProvisionedEgressMBps'}}, 'next_allowed_quota_downgrade_time': {'key': 'NextAllowedQuotaDowngradeTime', 'type': 'rfc-1123', 'xml': {'name': 'NextAllowedQuotaDowngradeTime'}}, 'deleted_time': {'key': 'DeletedTime', 'type': 'rfc-1123', 'xml': {'name': 'DeletedTime'}}, 'remaining_retention_days': {'key': 'RemainingRetentionDays', 'type': 'int', 'xml': {'name': 'RemainingRetentionDays'}}, 'lease_status': {'key': 'LeaseStatus', 'type': 'LeaseStatusType', 'xml': {'name': 'LeaseStatus'}}, 'lease_state': {'key': 'LeaseState', 'type': 'LeaseStateType', 'xml': {'name': 'LeaseState'}}, 'lease_duration': {'key': 'LeaseDuration', 'type': 'LeaseDurationType', 'xml': {'name': 'LeaseDuration'}}, } _xml_map = { } def __init__(self, *, last_modified, etag: str, quota: int, provisioned_iops: int=None, provisioned_ingress_mbps: int=None, provisioned_egress_mbps: int=None, next_allowed_quota_downgrade_time=None, deleted_time=None, remaining_retention_days: int=None, lease_status=None, lease_state=None, lease_duration=None, **kwargs) -> None: super(ShareProperties, self).__init__(**kwargs) self.last_modified = last_modified self.etag = etag self.quota = quota self.provisioned_iops = provisioned_iops self.provisioned_ingress_mbps = provisioned_ingress_mbps self.provisioned_egress_mbps = provisioned_egress_mbps self.next_allowed_quota_downgrade_time = next_allowed_quota_downgrade_time self.deleted_time = deleted_time self.remaining_retention_days = remaining_retention_days self.lease_status = lease_status self.lease_state = lease_state self.lease_duration = lease_duration class ShareProtocolSettings(Model): """Protocol settings. :param smb: Settings for SMB protocol. :type smb: ~azure.storage.fileshare.models.ShareSmbSettings """ _attribute_map = { 'smb': {'key': 'Smb', 'type': 'ShareSmbSettings', 'xml': {'name': 'SMB'}}, } _xml_map = { } def __init__(self, *, smb=None, **kwargs) -> None: super(ShareProtocolSettings, self).__init__(**kwargs) self.smb = smb class ShareSmbSettings(Model): """Settings for SMB protocol. :param multichannel: Settings for SMB Multichannel. :type multichannel: ~azure.storage.fileshare.models.SmbMultichannel """ _attribute_map = { 'multichannel': {'key': 'Multichannel', 'type': 'SmbMultichannel', 'xml': {'name': 'Multichannel'}}, } _xml_map = { } def __init__(self, *, multichannel=None, **kwargs) -> None: super(ShareSmbSettings, self).__init__(**kwargs) self.multichannel = multichannel class ShareStats(Model): """Stats for the share. All required parameters must be populated in order to send to Azure. :param share_usage_bytes: Required. The approximate size of the data stored in bytes. Note that this value may not include all recently created or recently resized files. :type share_usage_bytes: int """ _validation = { 'share_usage_bytes': {'required': True}, } _attribute_map = { 'share_usage_bytes': {'key': 'ShareUsageBytes', 'type': 'int', 'xml': {'name': 'ShareUsageBytes'}}, } _xml_map = { } def __init__(self, *, share_usage_bytes: int, **kwargs) -> None: super(ShareStats, self).__init__(**kwargs) self.share_usage_bytes = share_usage_bytes class SignedIdentifier(Model): """Signed identifier. All required parameters must be populated in order to send to Azure. :param id: Required. A unique id. :type id: str :param access_policy: The access policy. :type access_policy: ~azure.storage.fileshare.models.AccessPolicy """ _validation = { 'id': {'required': True}, } _attribute_map = { 'id': {'key': 'Id', 'type': 'str', 'xml': {'name': 'Id'}}, 'access_policy': {'key': 'AccessPolicy', 'type': 'AccessPolicy', 'xml': {'name': 'AccessPolicy'}}, } _xml_map = { } def __init__(self, *, id: str, access_policy=None, **kwargs) -> None: super(SignedIdentifier, self).__init__(**kwargs) self.id = id self.access_policy = access_policy class SmbMultichannel(Model): """Settings for SMB multichannel. :param enabled: If SMB multichannel is enabled. :type enabled: bool """ _attribute_map = { 'enabled': {'key': 'Enabled', 'type': 'bool', 'xml': {'name': 'Enabled'}}, } _xml_map = { 'name': 'Multichannel' } def __init__(self, *, enabled: bool=None, **kwargs) -> None: super(SmbMultichannel, self).__init__(**kwargs) self.enabled = enabled class SourceModifiedAccessConditions(Model): """Additional parameters for upload_range_from_url operation. :param source_if_match_crc64: Specify the crc64 value to operate only on range with a matching crc64 checksum. :type source_if_match_crc64: bytearray :param source_if_none_match_crc64: Specify the crc64 value to operate only on range without a matching crc64 checksum. :type source_if_none_match_crc64: bytearray """ _attribute_map = { 'source_if_match_crc64': {'key': '', 'type': 'bytearray', 'xml': {'name': 'source_if_match_crc64'}}, 'source_if_none_match_crc64': {'key': '', 'type': 'bytearray', 'xml': {'name': 'source_if_none_match_crc64'}}, } _xml_map = { } def __init__(self, *, source_if_match_crc64: bytearray=None, source_if_none_match_crc64: bytearray=None, **kwargs) -> None: super(SourceModifiedAccessConditions, self).__init__(**kwargs) self.source_if_match_crc64 = source_if_match_crc64 self.source_if_none_match_crc64 = source_if_none_match_crc64 class StorageError(Model): """StorageError. :param message: :type message: str """ _attribute_map = { 'message': {'key': 'Message', 'type': 'str', 'xml': {'name': 'Message'}}, } _xml_map = { } def __init__(self, *, message: str=None, **kwargs) -> None: super(StorageError, self).__init__(**kwargs) self.message = message class StorageErrorException(HttpResponseError): """Server responsed with exception of type: 'StorageError'. :param deserialize: A deserializer :param response: Server response to be deserialized. """ def __init__(self, response, deserialize, *args): model_name = 'StorageError' self.error = deserialize(model_name, response) if self.error is None: self.error = deserialize.dependencies[model_name]() super(StorageErrorException, self).__init__(response=response) class StorageServiceProperties(Model): """Storage service properties. :param hour_metrics: A summary of request statistics grouped by API in hourly aggregates for files. :type hour_metrics: ~azure.storage.fileshare.models.Metrics :param minute_metrics: A summary of request statistics grouped by API in minute aggregates for files. :type minute_metrics: ~azure.storage.fileshare.models.Metrics :param cors: The set of CORS rules. :type cors: list[~azure.storage.fileshare.models.CorsRule] :param protocol: Protocol settings :type protocol: ~azure.storage.fileshare.models.ShareProtocolSettings """ _attribute_map = { 'hour_metrics': {'key': 'HourMetrics', 'type': 'Metrics', 'xml': {'name': 'HourMetrics'}}, 'minute_metrics': {'key': 'MinuteMetrics', 'type': 'Metrics', 'xml': {'name': 'MinuteMetrics'}}, 'cors': {'key': 'Cors', 'type': '[CorsRule]', 'xml': {'name': 'Cors', 'itemsName': 'CorsRule', 'wrapped': True}}, 'protocol': {'key': 'Protocol', 'type': 'ShareProtocolSettings', 'xml': {'name': 'ProtocolSettings'}}, } _xml_map = { } def __init__(self, *, hour_metrics=None, minute_metrics=None, cors=None, protocol=None, **kwargs) -> None: super(StorageServiceProperties, self).__init__(**kwargs) self.hour_metrics = hour_metrics self.minute_metrics = minute_metrics self.cors = cors self.protocol = protocol
37.936399
334
0.640298
dc2da35ff5c1ee96b1d44cff7a222af587f60f06
1,171
py
Python
fixtures/generate.py
bbengfort/iterfile
a212c9fbffe265aabc93feb0c7b8957368ceba86
[ "MIT" ]
1
2021-07-06T01:16:08.000Z
2021-07-06T01:16:08.000Z
fixtures/generate.py
bbengfort/iterfile
a212c9fbffe265aabc93feb0c7b8957368ceba86
[ "MIT" ]
null
null
null
fixtures/generate.py
bbengfort/iterfile
a212c9fbffe265aabc93feb0c7b8957368ceba86
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # This quick script generates fixtures for benchmarking. import os import random # Number of words per line MIN_LINE = 20 MAX_LINE = 100 # Words to randomly select to add to the line WORDS = ("fizz", "buzz", "foo", "bar", "baz") # Paths of fixtures to create BASEDIR = os.path.dirname(__file__) FIXTURES = { os.path.join(BASEDIR, "small.txt"): 100, os.path.join(BASEDIR, "medium.txt"): 1000, os.path.join(BASEDIR, "large.txt"): 10000, } def make_fixture(path, lines, words=WORDS, minlen=MIN_LINE, maxlen=MAX_LINE): """ Writes a file to the specified path with the number of lines specified by randomly choosing between minlen and maxlen words and writing them. """ with open(path, 'w') as f: for _ in range(lines): text = [ random.choice(words) for _ in range(random.randint(minlen, maxlen)) ] f.write(" ".join(text) + "\n") if __name__ == '__main__': for path, lines in FIXTURES.items(): make_fixture(path, lines) # Make the profiling fixture # make_fixture('jumbo.txt', 750000, minlen=100, maxlen=2000)
26.022222
77
0.636208
9dac9b9435ead8da0275326d93cf15d37b41237b
2,170
py
Python
ccdproc/tests/test_keyword.py
cdeil/ccdproc
1bcfb0142669243325bfce05b4f2fc45ea013f02
[ "BSD-3-Clause" ]
null
null
null
ccdproc/tests/test_keyword.py
cdeil/ccdproc
1bcfb0142669243325bfce05b4f2fc45ea013f02
[ "BSD-3-Clause" ]
null
null
null
ccdproc/tests/test_keyword.py
cdeil/ccdproc
1bcfb0142669243325bfce05b4f2fc45ea013f02
[ "BSD-3-Clause" ]
null
null
null
from astropy.tests.helper import pytest from astropy import units as u from astropy.units import Quantity from astropy.io import fits from ..ccdproc import Keyword def test_keyword_init(): key_name = 'some_key' key = Keyword(key_name, unit=u.second) assert key.name == key_name assert key.unit == u.second def test_keyword_properties_read_only(): key = Keyword('observer') with pytest.raises(AttributeError): key.name = 'error' with pytest.raises(AttributeError): key.unit = u.hour unit = u.second numerical_value = 30 # The variable "expected" below is # True if the expected result is key.value == numerical_value * key.unit # Name of an error if an error is expected # A string if the expected value is a string @pytest.mark.parametrize('value,unit,expected', [ (numerical_value, unit, True), (numerical_value, None, ValueError), (numerical_value * unit, None, True), (numerical_value * unit, unit, True), (numerical_value * unit, u.km, True), ('some string', None, 'some string'), ('no strings with unit', unit, ValueError) ]) def test_value_setting(value, unit, expected): name = 'exposure' # Setting at initialization time with try: expected_is_error = issubclass(expected, Exception) except TypeError: expected_is_error = False if expected_is_error: with pytest.raises(expected): key = Keyword(name, unit=unit, value=value) else: key = Keyword(name, unit=unit, value=value) if isinstance(expected, basestring): assert key.value == expected else: assert key.value == numerical_value * key.unit def test_keyword_value_from_header(): name = 'exposure' numerical_value = 30 unit = u.second h = fits.Header() h[name] = numerical_value key = Keyword(name, unit=unit) assert key.value_from(h) == numerical_value * unit assert key.value == numerical_value * unit
31.449275
76
0.620276
a956a1261c77834af5bf1ea2a9a3b0853172f8ca
42,013
py
Python
content/post/Psychopy_Trajectories/Ppy/Example_Traj_lastrun.py
santiagoalonso/starter-academic
b88ddf3c3fc18935ef42ced413bd733255298371
[ "MIT" ]
null
null
null
content/post/Psychopy_Trajectories/Ppy/Example_Traj_lastrun.py
santiagoalonso/starter-academic
b88ddf3c3fc18935ef42ced413bd733255298371
[ "MIT" ]
null
null
null
content/post/Psychopy_Trajectories/Ppy/Example_Traj_lastrun.py
santiagoalonso/starter-academic
b88ddf3c3fc18935ef42ced413bd733255298371
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This experiment was created using PsychoPy3 Experiment Builder (v2021.1.4), on July 07, 2021, at 16:25 If you publish work using this script the most relevant publication is: Peirce J, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, Kastman E, Lindeløv JK. (2019) PsychoPy2: Experiments in behavior made easy Behav Res 51: 195. https://doi.org/10.3758/s13428-018-01193-y """ from __future__ import absolute_import, division from psychopy import locale_setup from psychopy import prefs from psychopy import sound, gui, visual, core, data, event, logging, clock, colors from psychopy.constants import (NOT_STARTED, STARTED, PLAYING, PAUSED, STOPPED, FINISHED, PRESSED, RELEASED, FOREVER) import numpy as np # whole numpy lib is available, prepend 'np.' from numpy import (sin, cos, tan, log, log10, pi, average, sqrt, std, deg2rad, rad2deg, linspace, asarray) from numpy.random import random, randint, normal, shuffle, choice as randchoice import os # handy system and path functions import sys # to get file system encoding from psychopy.hardware import keyboard # Ensure that relative paths start from the same directory as this script _thisDir = os.path.dirname(os.path.abspath(__file__)) os.chdir(_thisDir) # Store info about the experiment session psychopyVersion = '2021.1.4' expName = 'YOUNSTE' # from the Builder filename that created this script expInfo = {'Cedula': ''} dlg = gui.DlgFromDict(dictionary=expInfo, sortKeys=False, title=expName) if dlg.OK == False: core.quit() # user pressed cancel expInfo['date'] = data.getDateStr() # add a simple timestamp expInfo['expName'] = expName expInfo['psychopyVersion'] = psychopyVersion # Data file name stem = absolute path + name; later add .psyexp, .csv, .log, etc filename = _thisDir + os.sep + u'data/%s_%s_%s' % (expInfo['Cedula'], expName, expInfo['date']) # An ExperimentHandler isn't essential but helps with data saving thisExp = data.ExperimentHandler(name=expName, version='', extraInfo=expInfo, runtimeInfo=None, originPath='E:\\Github Repos\\starter-academic\\content\\post\\Psychopy_Trajectories\\Ppy\\Example_Traj_lastrun.py', savePickle=True, saveWideText=True, dataFileName=filename) # save a log file for detail verbose info logFile = logging.LogFile(filename+'.log', level=logging.EXP) logging.console.setLevel(logging.WARNING) # this outputs to the screen, not a file endExpNow = False # flag for 'escape' or other condition => quit the exp frameTolerance = 0.001 # how close to onset before 'same' frame # Start Code - component code to be run after the window creation # Setup the Window win = visual.Window( size=[1900, 1060], fullscr=False, screen=0, winType='pyglet', allowGUI=True, allowStencil=False, monitor='testMonitor', color=[0,0,0], colorSpace='rgb', blendMode='avg', useFBO=True, units='norm') # store frame rate of monitor if we can measure it expInfo['frameRate'] = win.getActualFrameRate() if expInfo['frameRate'] != None: frameDur = 1.0 / round(expInfo['frameRate']) else: frameDur = 1.0 / 60.0 # could not measure, so guess # create a default keyboard (e.g. to check for escape) defaultKeyboard = keyboard.Keyboard() # Initialize components for Routine "Instructions" InstructionsClock = core.Clock() Instr_CategCaras_text = visual.TextStim(win=win, name='Instr_CategCaras_text', text='', font='Open Sans', pos=(0, 0), height=0.06, wrapWidth=None, ori=0.0, color='white', colorSpace='rgb', opacity=None, languageStyle='LTR', depth=0.0); wind = Instr_CategCaras_text.win stf = wind.size[1]/wind.size[0] Next_button_CategCaras_image = visual.ImageStim( win=win, name='Next_button_CategCaras_image', image='Images/next_button.png', mask=None, ori=0.0, pos=(0.8, -0.8), size=(0.25*stf, 0.25), color=[1,1,1], colorSpace='rgb', opacity=None, flipHoriz=False, flipVert=False, texRes=128.0, interpolate=True, depth=-2.0) Instr_CategCaras_mouse = event.Mouse(win=win) x, y = [None, None] Instr_CategCaras_mouse.mouseClock = core.Clock() # Initialize components for Routine "Train_Img_CategCaras" Train_Img_CategCarasClock = core.Clock() FruitVeg_image = visual.ImageStim( win=win, name='FruitVeg_image', image='sin', mask=None, ori=0.0, pos=(0, 0), size=(0.5*stf, 0.5), color=[1,1,1], colorSpace='rgb', opacity=None, flipHoriz=False, flipVert=False, texRes=128.0, interpolate=True, depth=0.0) # Initialize components for Routine "Train_CategCaras" Train_CategCarasClock = core.Clock() FingerLift_penalty = 5 #(seconds) Mouse_tol = 0.5 #to detect finger jumps (norm. units) Train_CategCaras_mouse = event.Mouse(win=win) x, y = [None, None] Train_CategCaras_mouse.mouseClock = core.Clock() Train_CategCaras_Beh_mouse = event.Mouse(win=win) x, y = [None, None] Train_CategCaras_Beh_mouse.mouseClock = core.Clock() Train_CategCaras_Izq_polygon = visual.Rect( win=win, name='Train_CategCaras_Izq_polygon', width=(0.25*stf, 0.25)[0], height=(0.25*stf, 0.25)[1], ori=0.0, pos=(-0.75, 0.75), lineWidth=1.0, colorSpace='rgb', lineColor=(-1.0000, -1.0000, -1.0000), fillColor='white', opacity=None, depth=-3.0, interpolate=True) Train_CategCaras_Der_polygon = visual.Rect( win=win, name='Train_CategCaras_Der_polygon', width=(0.25*stf, 0.25)[0], height=(0.25*stf, 0.25)[1], ori=0.0, pos=(0.75, 0.75), lineWidth=1.0, colorSpace='rgb', lineColor=(-1.0000, -1.0000, -1.0000), fillColor='white', opacity=None, depth=-4.0, interpolate=True) Train_CategCaras_Inferior_polygon = visual.Rect( win=win, name='Train_CategCaras_Inferior_polygon', width=(0.25*stf, 0.25)[0], height=(0.25*stf, 0.25)[1], ori=0.0, pos=(0, -0.8), lineWidth=1.0, colorSpace='rgb', lineColor=(-1.0000, -1.0000, -1.0000), fillColor='white', opacity=None, depth=-5.0, interpolate=True) Train_CategCaras_Male_text = visual.TextStim(win=win, name='Train_CategCaras_Male_text', text='Fruta', font='Open Sans', pos=(-0.75, 0.5), height=0.08, wrapWidth=None, ori=0.0, color='white', colorSpace='rgb', opacity=None, languageStyle='LTR', depth=-6.0); Train_CategCaras_Female_text = visual.TextStim(win=win, name='Train_CategCaras_Female_text', text='Verdura', font='Open Sans', pos=(0.75, 0.5), height=0.08, wrapWidth=None, ori=0.0, color='white', colorSpace='rgb', opacity=None, languageStyle='LTR', depth=-7.0); # Initialize components for Routine "NoLiftFinger_Warning" NoLiftFinger_WarningClock = core.Clock() NoLiftFinger_Warning_text = visual.TextStim(win=win, name='NoLiftFinger_Warning_text', text='Cuando escoja no levante el dedo. ', font='Open Sans', pos=(0, 0), height=0.1, wrapWidth=None, ori=0.0, color='white', colorSpace='rgb', opacity=None, languageStyle='LTR', depth=0.0); # Initialize components for Routine "Thanks" ThanksClock = core.Clock() Thanks_text = visual.TextStim(win=win, name='Thanks_text', text='Gracias por su participación. ', font='Open Sans', pos=(0, 0), height=0.1, wrapWidth=None, ori=0.0, color='white', colorSpace='rgb', opacity=None, languageStyle='LTR', depth=0.0); # Create some handy timers globalClock = core.Clock() # to track the time since experiment started routineTimer = core.CountdownTimer() # to track time remaining of each (non-slip) routine # set up handler to look after randomisation of conditions etc Trials_Instr_CategCaras = data.TrialHandler(nReps=1.0, method='sequential', extraInfo=expInfo, originPath=-1, trialList=data.importConditions('CategCaras_instr.xlsx'), seed=None, name='Trials_Instr_CategCaras') thisExp.addLoop(Trials_Instr_CategCaras) # add the loop to the experiment thisTrials_Instr_CategCara = Trials_Instr_CategCaras.trialList[0] # so we can initialise stimuli with some values # abbreviate parameter names if possible (e.g. rgb = thisTrials_Instr_CategCara.rgb) if thisTrials_Instr_CategCara != None: for paramName in thisTrials_Instr_CategCara: exec('{} = thisTrials_Instr_CategCara[paramName]'.format(paramName)) for thisTrials_Instr_CategCara in Trials_Instr_CategCaras: currentLoop = Trials_Instr_CategCaras # abbreviate parameter names if possible (e.g. rgb = thisTrials_Instr_CategCara.rgb) if thisTrials_Instr_CategCara != None: for paramName in thisTrials_Instr_CategCara: exec('{} = thisTrials_Instr_CategCara[paramName]'.format(paramName)) # ------Prepare to start Routine "Instructions"------- continueRoutine = True # update component parameters for each repeat Instr_CategCaras_text.setText(I_CategCaras) wind = Instr_CategCaras_text.win stf = wind.size[1]/wind.size[0] # setup some python lists for storing info about the Instr_CategCaras_mouse Instr_CategCaras_mouse.clicked_name = [] gotValidClick = False # until a click is received # keep track of which components have finished InstructionsComponents = [Instr_CategCaras_text, Next_button_CategCaras_image, Instr_CategCaras_mouse] for thisComponent in InstructionsComponents: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") InstructionsClock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "Instructions"------- while continueRoutine: # get current time t = InstructionsClock.getTime() tThisFlip = win.getFutureFlipTime(clock=InstructionsClock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *Instr_CategCaras_text* updates if Instr_CategCaras_text.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later Instr_CategCaras_text.frameNStart = frameN # exact frame index Instr_CategCaras_text.tStart = t # local t and not account for scr refresh Instr_CategCaras_text.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(Instr_CategCaras_text, 'tStartRefresh') # time at next scr refresh Instr_CategCaras_text.setAutoDraw(True) wind = Instr_CategCaras_text.win stf = wind.size[1]/wind.size[0] # *Next_button_CategCaras_image* updates if Next_button_CategCaras_image.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later Next_button_CategCaras_image.frameNStart = frameN # exact frame index Next_button_CategCaras_image.tStart = t # local t and not account for scr refresh Next_button_CategCaras_image.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(Next_button_CategCaras_image, 'tStartRefresh') # time at next scr refresh Next_button_CategCaras_image.setAutoDraw(True) # *Instr_CategCaras_mouse* updates if Instr_CategCaras_mouse.status == NOT_STARTED and t >= 0.0-frameTolerance: # keep track of start time/frame for later Instr_CategCaras_mouse.frameNStart = frameN # exact frame index Instr_CategCaras_mouse.tStart = t # local t and not account for scr refresh Instr_CategCaras_mouse.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(Instr_CategCaras_mouse, 'tStartRefresh') # time at next scr refresh Instr_CategCaras_mouse.status = STARTED Instr_CategCaras_mouse.mouseClock.reset() prevButtonState = Instr_CategCaras_mouse.getPressed() # if button is down already this ISN'T a new click if Instr_CategCaras_mouse.status == STARTED: # only update if started and not finished! buttons = Instr_CategCaras_mouse.getPressed() if buttons != prevButtonState: # button state changed? prevButtonState = buttons if sum(buttons) > 0: # state changed to a new click # check if the mouse was inside our 'clickable' objects gotValidClick = False for obj in [Next_button_CategCaras_image,]: if obj.contains(Instr_CategCaras_mouse): gotValidClick = True Instr_CategCaras_mouse.clicked_name.append(obj.name) if gotValidClick: # abort routine on response continueRoutine = False # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in InstructionsComponents: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "Instructions"------- for thisComponent in InstructionsComponents: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) Trials_Instr_CategCaras.addData('Instr_CategCaras_text.started', Instr_CategCaras_text.tStartRefresh) Trials_Instr_CategCaras.addData('Instr_CategCaras_text.stopped', Instr_CategCaras_text.tStopRefresh) wind = Instr_CategCaras_text.win stf = wind.size[1]/wind.size[0] Trials_Instr_CategCaras.addData('Next_button_CategCaras_image.started', Next_button_CategCaras_image.tStartRefresh) Trials_Instr_CategCaras.addData('Next_button_CategCaras_image.stopped', Next_button_CategCaras_image.tStopRefresh) # store data for Trials_Instr_CategCaras (TrialHandler) x, y = Instr_CategCaras_mouse.getPos() buttons = Instr_CategCaras_mouse.getPressed() if sum(buttons): # check if the mouse was inside our 'clickable' objects gotValidClick = False for obj in [Next_button_CategCaras_image,]: if obj.contains(Instr_CategCaras_mouse): gotValidClick = True Instr_CategCaras_mouse.clicked_name.append(obj.name) Trials_Instr_CategCaras.addData('Instr_CategCaras_mouse.x', x) Trials_Instr_CategCaras.addData('Instr_CategCaras_mouse.y', y) Trials_Instr_CategCaras.addData('Instr_CategCaras_mouse.leftButton', buttons[0]) Trials_Instr_CategCaras.addData('Instr_CategCaras_mouse.midButton', buttons[1]) Trials_Instr_CategCaras.addData('Instr_CategCaras_mouse.rightButton', buttons[2]) if len(Instr_CategCaras_mouse.clicked_name): Trials_Instr_CategCaras.addData('Instr_CategCaras_mouse.clicked_name', Instr_CategCaras_mouse.clicked_name[0]) Trials_Instr_CategCaras.addData('Instr_CategCaras_mouse.started', Instr_CategCaras_mouse.tStart) Trials_Instr_CategCaras.addData('Instr_CategCaras_mouse.stopped', Instr_CategCaras_mouse.tStop) # the Routine "Instructions" was not non-slip safe, so reset the non-slip timer routineTimer.reset() thisExp.nextEntry() # completed 1.0 repeats of 'Trials_Instr_CategCaras' # set up handler to look after randomisation of conditions etc Trials_Train_CategCaras = data.TrialHandler(nReps=1.0, method='random', extraInfo=expInfo, originPath=-1, trialList=data.importConditions('CategCaras_Train_imgs.xlsx'), seed=None, name='Trials_Train_CategCaras') thisExp.addLoop(Trials_Train_CategCaras) # add the loop to the experiment thisTrials_Train_CategCara = Trials_Train_CategCaras.trialList[0] # so we can initialise stimuli with some values # abbreviate parameter names if possible (e.g. rgb = thisTrials_Train_CategCara.rgb) if thisTrials_Train_CategCara != None: for paramName in thisTrials_Train_CategCara: exec('{} = thisTrials_Train_CategCara[paramName]'.format(paramName)) for thisTrials_Train_CategCara in Trials_Train_CategCaras: currentLoop = Trials_Train_CategCaras # abbreviate parameter names if possible (e.g. rgb = thisTrials_Train_CategCara.rgb) if thisTrials_Train_CategCara != None: for paramName in thisTrials_Train_CategCara: exec('{} = thisTrials_Train_CategCara[paramName]'.format(paramName)) # ------Prepare to start Routine "Train_Img_CategCaras"------- continueRoutine = True routineTimer.add(1.000000) # update component parameters for each repeat FruitVeg_image.setImage(Train_CategCaras_img_file) # keep track of which components have finished Train_Img_CategCarasComponents = [FruitVeg_image] for thisComponent in Train_Img_CategCarasComponents: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") Train_Img_CategCarasClock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "Train_Img_CategCaras"------- while continueRoutine and routineTimer.getTime() > 0: # get current time t = Train_Img_CategCarasClock.getTime() tThisFlip = win.getFutureFlipTime(clock=Train_Img_CategCarasClock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *FruitVeg_image* updates if FruitVeg_image.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later FruitVeg_image.frameNStart = frameN # exact frame index FruitVeg_image.tStart = t # local t and not account for scr refresh FruitVeg_image.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(FruitVeg_image, 'tStartRefresh') # time at next scr refresh FruitVeg_image.setAutoDraw(True) if FruitVeg_image.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > FruitVeg_image.tStartRefresh + 1.0-frameTolerance: # keep track of stop time/frame for later FruitVeg_image.tStop = t # not accounting for scr refresh FruitVeg_image.frameNStop = frameN # exact frame index win.timeOnFlip(FruitVeg_image, 'tStopRefresh') # time at next scr refresh FruitVeg_image.setAutoDraw(False) # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in Train_Img_CategCarasComponents: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "Train_Img_CategCaras"------- for thisComponent in Train_Img_CategCarasComponents: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) Trials_Train_CategCaras.addData('FruitVeg_image.started', FruitVeg_image.tStartRefresh) Trials_Train_CategCaras.addData('FruitVeg_image.stopped', FruitVeg_image.tStopRefresh) # ------Prepare to start Routine "Train_CategCaras"------- continueRoutine = True # update component parameters for each repeat Options_Appear = False RT = -999999 #response time (no longer in bottom square - time finger arrived to bottom square) Finger_Jump = -1 penalty = 0 x0 = 999 #Initialize y0 = 9999 x1 = 999 y1 = 999 # setup some python lists for storing info about the Train_CategCaras_mouse Train_CategCaras_mouse.x = [] Train_CategCaras_mouse.y = [] Train_CategCaras_mouse.leftButton = [] Train_CategCaras_mouse.midButton = [] Train_CategCaras_mouse.rightButton = [] Train_CategCaras_mouse.time = [] gotValidClick = False # until a click is received # setup some python lists for storing info about the Train_CategCaras_Beh_mouse Train_CategCaras_Beh_mouse.x = [] Train_CategCaras_Beh_mouse.y = [] Train_CategCaras_Beh_mouse.leftButton = [] Train_CategCaras_Beh_mouse.midButton = [] Train_CategCaras_Beh_mouse.rightButton = [] Train_CategCaras_Beh_mouse.time = [] gotValidClick = False # until a click is received # keep track of which components have finished Train_CategCarasComponents = [Train_CategCaras_mouse, Train_CategCaras_Beh_mouse, Train_CategCaras_Izq_polygon, Train_CategCaras_Der_polygon, Train_CategCaras_Inferior_polygon, Train_CategCaras_Male_text, Train_CategCaras_Female_text] for thisComponent in Train_CategCarasComponents: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") Train_CategCarasClock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "Train_CategCaras"------- while continueRoutine: # get current time t = Train_CategCarasClock.getTime() tThisFlip = win.getFutureFlipTime(clock=Train_CategCarasClock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame if Train_CategCaras_Inferior_polygon.contains(Train_CategCaras_mouse): Options_Appear = True if (RT < 0 ) & (Options_Appear==True) & (not Train_CategCaras_Inferior_polygon.contains(Train_CategCaras_mouse)): RT = Train_CategCaras_Beh_mouse.mouseClock.getTime() Trials_Train_CategCaras.addData('Train_CategCaras.RT', RT) if Options_Appear & Train_CategCaras_Izq_polygon.contains(Train_CategCaras_mouse): Trials_Train_CategCaras.addData('Train_CategCaras.Response', "Fruta") continueRoutine = False if Options_Appear & Train_CategCaras_Der_polygon.contains(Train_CategCaras_mouse): Trials_Train_CategCaras.addData('Train_CategCaras.Response', "Verdura") continueRoutine = False if Options_Appear == True: if Finger_Jump < 0: x0, y0 = Train_CategCaras_mouse.getPos() Finger_Jump = 0 elif Finger_Jump == 0: x1, y1 = Train_CategCaras_mouse.getPos() if abs(y1-y0) > Mouse_tol or abs(x1-x0) > Mouse_tol: Finger_Jump = 1 penalty = FingerLift_penalty Trials_Train_CategCaras.addData('Train_CategCaras.FingerJump', Finger_Jump) continueRoutine = False else: x0, y0 = Train_CategCaras_mouse.getPos() # *Train_CategCaras_mouse* updates if Train_CategCaras_mouse.status == NOT_STARTED and t >= 0.0-frameTolerance: # keep track of start time/frame for later Train_CategCaras_mouse.frameNStart = frameN # exact frame index Train_CategCaras_mouse.tStart = t # local t and not account for scr refresh Train_CategCaras_mouse.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(Train_CategCaras_mouse, 'tStartRefresh') # time at next scr refresh Train_CategCaras_mouse.status = STARTED Train_CategCaras_mouse.mouseClock.reset() prevButtonState = Train_CategCaras_mouse.getPressed() # if button is down already this ISN'T a new click if Train_CategCaras_mouse.status == STARTED: # only update if started and not finished! x, y = Train_CategCaras_mouse.getPos() Train_CategCaras_mouse.x.append(x) Train_CategCaras_mouse.y.append(y) buttons = Train_CategCaras_mouse.getPressed() Train_CategCaras_mouse.leftButton.append(buttons[0]) Train_CategCaras_mouse.midButton.append(buttons[1]) Train_CategCaras_mouse.rightButton.append(buttons[2]) Train_CategCaras_mouse.time.append(Train_CategCaras_mouse.mouseClock.getTime()) # *Train_CategCaras_Beh_mouse* updates if Train_CategCaras_Beh_mouse.status == NOT_STARTED and Options_Appear: # keep track of start time/frame for later Train_CategCaras_Beh_mouse.frameNStart = frameN # exact frame index Train_CategCaras_Beh_mouse.tStart = t # local t and not account for scr refresh Train_CategCaras_Beh_mouse.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(Train_CategCaras_Beh_mouse, 'tStartRefresh') # time at next scr refresh Train_CategCaras_Beh_mouse.status = STARTED Train_CategCaras_Beh_mouse.mouseClock.reset() prevButtonState = Train_CategCaras_Beh_mouse.getPressed() # if button is down already this ISN'T a new click if Train_CategCaras_Beh_mouse.status == STARTED: # only update if started and not finished! x, y = Train_CategCaras_Beh_mouse.getPos() Train_CategCaras_Beh_mouse.x.append(x) Train_CategCaras_Beh_mouse.y.append(y) buttons = Train_CategCaras_Beh_mouse.getPressed() Train_CategCaras_Beh_mouse.leftButton.append(buttons[0]) Train_CategCaras_Beh_mouse.midButton.append(buttons[1]) Train_CategCaras_Beh_mouse.rightButton.append(buttons[2]) Train_CategCaras_Beh_mouse.time.append(Train_CategCaras_Beh_mouse.mouseClock.getTime()) # *Train_CategCaras_Izq_polygon* updates if Train_CategCaras_Izq_polygon.status == NOT_STARTED and Options_Appear: # keep track of start time/frame for later Train_CategCaras_Izq_polygon.frameNStart = frameN # exact frame index Train_CategCaras_Izq_polygon.tStart = t # local t and not account for scr refresh Train_CategCaras_Izq_polygon.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(Train_CategCaras_Izq_polygon, 'tStartRefresh') # time at next scr refresh Train_CategCaras_Izq_polygon.setAutoDraw(True) # *Train_CategCaras_Der_polygon* updates if Train_CategCaras_Der_polygon.status == NOT_STARTED and Options_Appear: # keep track of start time/frame for later Train_CategCaras_Der_polygon.frameNStart = frameN # exact frame index Train_CategCaras_Der_polygon.tStart = t # local t and not account for scr refresh Train_CategCaras_Der_polygon.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(Train_CategCaras_Der_polygon, 'tStartRefresh') # time at next scr refresh Train_CategCaras_Der_polygon.setAutoDraw(True) # *Train_CategCaras_Inferior_polygon* updates if Train_CategCaras_Inferior_polygon.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later Train_CategCaras_Inferior_polygon.frameNStart = frameN # exact frame index Train_CategCaras_Inferior_polygon.tStart = t # local t and not account for scr refresh Train_CategCaras_Inferior_polygon.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(Train_CategCaras_Inferior_polygon, 'tStartRefresh') # time at next scr refresh Train_CategCaras_Inferior_polygon.setAutoDraw(True) # *Train_CategCaras_Male_text* updates if Train_CategCaras_Male_text.status == NOT_STARTED and Options_Appear: # keep track of start time/frame for later Train_CategCaras_Male_text.frameNStart = frameN # exact frame index Train_CategCaras_Male_text.tStart = t # local t and not account for scr refresh Train_CategCaras_Male_text.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(Train_CategCaras_Male_text, 'tStartRefresh') # time at next scr refresh Train_CategCaras_Male_text.setAutoDraw(True) # *Train_CategCaras_Female_text* updates if Train_CategCaras_Female_text.status == NOT_STARTED and Options_Appear: # keep track of start time/frame for later Train_CategCaras_Female_text.frameNStart = frameN # exact frame index Train_CategCaras_Female_text.tStart = t # local t and not account for scr refresh Train_CategCaras_Female_text.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(Train_CategCaras_Female_text, 'tStartRefresh') # time at next scr refresh Train_CategCaras_Female_text.setAutoDraw(True) # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in Train_CategCarasComponents: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "Train_CategCaras"------- for thisComponent in Train_CategCarasComponents: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) MT = Train_CategCaras_Beh_mouse.mouseClock.getTime() - RT Trials_Train_CategCaras.addData('Train_CategCaras.MT', MT) # store data for Trials_Train_CategCaras (TrialHandler) Trials_Train_CategCaras.addData('Train_CategCaras_mouse.x', Train_CategCaras_mouse.x) Trials_Train_CategCaras.addData('Train_CategCaras_mouse.y', Train_CategCaras_mouse.y) Trials_Train_CategCaras.addData('Train_CategCaras_mouse.leftButton', Train_CategCaras_mouse.leftButton) Trials_Train_CategCaras.addData('Train_CategCaras_mouse.midButton', Train_CategCaras_mouse.midButton) Trials_Train_CategCaras.addData('Train_CategCaras_mouse.rightButton', Train_CategCaras_mouse.rightButton) Trials_Train_CategCaras.addData('Train_CategCaras_mouse.time', Train_CategCaras_mouse.time) Trials_Train_CategCaras.addData('Train_CategCaras_mouse.started', Train_CategCaras_mouse.tStart) Trials_Train_CategCaras.addData('Train_CategCaras_mouse.stopped', Train_CategCaras_mouse.tStop) # store data for Trials_Train_CategCaras (TrialHandler) Trials_Train_CategCaras.addData('Train_CategCaras_Beh_mouse.x', Train_CategCaras_Beh_mouse.x) Trials_Train_CategCaras.addData('Train_CategCaras_Beh_mouse.y', Train_CategCaras_Beh_mouse.y) Trials_Train_CategCaras.addData('Train_CategCaras_Beh_mouse.leftButton', Train_CategCaras_Beh_mouse.leftButton) Trials_Train_CategCaras.addData('Train_CategCaras_Beh_mouse.midButton', Train_CategCaras_Beh_mouse.midButton) Trials_Train_CategCaras.addData('Train_CategCaras_Beh_mouse.rightButton', Train_CategCaras_Beh_mouse.rightButton) Trials_Train_CategCaras.addData('Train_CategCaras_Beh_mouse.time', Train_CategCaras_Beh_mouse.time) Trials_Train_CategCaras.addData('Train_CategCaras_Beh_mouse.started', Train_CategCaras_Beh_mouse.tStart) Trials_Train_CategCaras.addData('Train_CategCaras_Beh_mouse.stopped', Train_CategCaras_Beh_mouse.tStop) Trials_Train_CategCaras.addData('Train_CategCaras_Izq_polygon.started', Train_CategCaras_Izq_polygon.tStartRefresh) Trials_Train_CategCaras.addData('Train_CategCaras_Izq_polygon.stopped', Train_CategCaras_Izq_polygon.tStopRefresh) Trials_Train_CategCaras.addData('Train_CategCaras_Der_polygon.started', Train_CategCaras_Der_polygon.tStartRefresh) Trials_Train_CategCaras.addData('Train_CategCaras_Der_polygon.stopped', Train_CategCaras_Der_polygon.tStopRefresh) Trials_Train_CategCaras.addData('Train_CategCaras_Inferior_polygon.started', Train_CategCaras_Inferior_polygon.tStartRefresh) Trials_Train_CategCaras.addData('Train_CategCaras_Inferior_polygon.stopped', Train_CategCaras_Inferior_polygon.tStopRefresh) Trials_Train_CategCaras.addData('Train_CategCaras_Male_text.started', Train_CategCaras_Male_text.tStartRefresh) Trials_Train_CategCaras.addData('Train_CategCaras_Male_text.stopped', Train_CategCaras_Male_text.tStopRefresh) Trials_Train_CategCaras.addData('Train_CategCaras_Female_text.started', Train_CategCaras_Female_text.tStartRefresh) Trials_Train_CategCaras.addData('Train_CategCaras_Female_text.stopped', Train_CategCaras_Female_text.tStopRefresh) # the Routine "Train_CategCaras" was not non-slip safe, so reset the non-slip timer routineTimer.reset() # ------Prepare to start Routine "NoLiftFinger_Warning"------- continueRoutine = True # update component parameters for each repeat # keep track of which components have finished NoLiftFinger_WarningComponents = [NoLiftFinger_Warning_text] for thisComponent in NoLiftFinger_WarningComponents: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") NoLiftFinger_WarningClock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "NoLiftFinger_Warning"------- while continueRoutine: # get current time t = NoLiftFinger_WarningClock.getTime() tThisFlip = win.getFutureFlipTime(clock=NoLiftFinger_WarningClock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *NoLiftFinger_Warning_text* updates if NoLiftFinger_Warning_text.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later NoLiftFinger_Warning_text.frameNStart = frameN # exact frame index NoLiftFinger_Warning_text.tStart = t # local t and not account for scr refresh NoLiftFinger_Warning_text.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(NoLiftFinger_Warning_text, 'tStartRefresh') # time at next scr refresh NoLiftFinger_Warning_text.setAutoDraw(True) if NoLiftFinger_Warning_text.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > NoLiftFinger_Warning_text.tStartRefresh + penalty-frameTolerance: # keep track of stop time/frame for later NoLiftFinger_Warning_text.tStop = t # not accounting for scr refresh NoLiftFinger_Warning_text.frameNStop = frameN # exact frame index win.timeOnFlip(NoLiftFinger_Warning_text, 'tStopRefresh') # time at next scr refresh NoLiftFinger_Warning_text.setAutoDraw(False) # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in NoLiftFinger_WarningComponents: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "NoLiftFinger_Warning"------- for thisComponent in NoLiftFinger_WarningComponents: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) Trials_Train_CategCaras.addData('NoLiftFinger_Warning_text.started', NoLiftFinger_Warning_text.tStartRefresh) Trials_Train_CategCaras.addData('NoLiftFinger_Warning_text.stopped', NoLiftFinger_Warning_text.tStopRefresh) # the Routine "NoLiftFinger_Warning" was not non-slip safe, so reset the non-slip timer routineTimer.reset() thisExp.nextEntry() # completed 1.0 repeats of 'Trials_Train_CategCaras' # ------Prepare to start Routine "Thanks"------- continueRoutine = True routineTimer.add(4.000000) # update component parameters for each repeat # keep track of which components have finished ThanksComponents = [Thanks_text] for thisComponent in ThanksComponents: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") ThanksClock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "Thanks"------- while continueRoutine and routineTimer.getTime() > 0: # get current time t = ThanksClock.getTime() tThisFlip = win.getFutureFlipTime(clock=ThanksClock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *Thanks_text* updates if Thanks_text.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later Thanks_text.frameNStart = frameN # exact frame index Thanks_text.tStart = t # local t and not account for scr refresh Thanks_text.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(Thanks_text, 'tStartRefresh') # time at next scr refresh Thanks_text.setAutoDraw(True) if Thanks_text.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > Thanks_text.tStartRefresh + 4.0-frameTolerance: # keep track of stop time/frame for later Thanks_text.tStop = t # not accounting for scr refresh Thanks_text.frameNStop = frameN # exact frame index win.timeOnFlip(Thanks_text, 'tStopRefresh') # time at next scr refresh Thanks_text.setAutoDraw(False) # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in ThanksComponents: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "Thanks"------- for thisComponent in ThanksComponents: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) thisExp.addData('Thanks_text.started', Thanks_text.tStartRefresh) thisExp.addData('Thanks_text.stopped', Thanks_text.tStopRefresh) # Flip one final time so any remaining win.callOnFlip() # and win.timeOnFlip() tasks get executed before quitting win.flip() # these shouldn't be strictly necessary (should auto-save) thisExp.saveAsWideText(filename+'.csv', delim='auto') thisExp.saveAsPickle(filename) logging.flush() # make sure everything is closed down thisExp.abort() # or data files will save again on exit win.close() core.quit()
52.780151
238
0.710542
700a8dc54d31f07b8aa04e8f1184d785209e2599
492
py
Python
authentication/urls.py
RAGNAROSaa/-
833688d556ecc70570a9b464160271ace07380d9
[ "Apache-2.0" ]
5
2016-09-25T02:59:13.000Z
2018-07-18T05:20:58.000Z
authentication/urls.py
RAGNAROSaa/-
833688d556ecc70570a9b464160271ace07380d9
[ "Apache-2.0" ]
1
2016-12-01T01:11:53.000Z
2016-12-01T01:11:53.000Z
authentication/urls.py
RAGNAROSaa/-
833688d556ecc70570a9b464160271ace07380d9
[ "Apache-2.0" ]
6
2016-09-24T02:42:57.000Z
2016-11-10T13:35:13.000Z
from django.conf.urls import url from authentication import views urlpatterns = [ url(r'user/signup/$', views.SignupView.as_view(), name='user-signup'), url(r'user/logout/$', views.LogoutView.as_view(), name='user-logout'), url(r'user/login/$', views.LoginView.as_view(), name='user-login'), url(r'user/list/$', views.UserListView.as_view(), name='myuser-list'), url(r'user/photo/(?P<pk>[0-9]+)/update/$', views.UserPhotoChangeView.as_view(), name='user-change-photo') ]
44.727273
109
0.686992
5058f447ab91d5c3e136802a35454ba6dff83718
399
py
Python
.history/py/UserInput_20201230125908.py
minefarmer/Comprehensive-Python
f97b9b83ec328fc4e4815607e6a65de90bb8de66
[ "Unlicense" ]
null
null
null
.history/py/UserInput_20201230125908.py
minefarmer/Comprehensive-Python
f97b9b83ec328fc4e4815607e6a65de90bb8de66
[ "Unlicense" ]
null
null
null
.history/py/UserInput_20201230125908.py
minefarmer/Comprehensive-Python
f97b9b83ec328fc4e4815607e6a65de90bb8de66
[ "Unlicense" ]
null
null
null
# person = input("Enter your name: ") # print("Hello ", person) # x = input("Enter a number: ") # 8 # y = input("Enter another number: ") # 7 # z = x + y # print(z) # 87 ## this was the result of concatenation person = input("Enter your name: ") print("Hello ", person) x = input("Enter a number: ") # 8 y = input("Enter another number: ") # 7 z = print(int(x) +int(y)) print(z) # 87
21
58
0.581454
d9e507ab08cfb04a79232b6ce6fdb36d2da31014
764
py
Python
django_proyecto/bin/django-admin.py
Nemo3003/Proyecto_Final_G_8
65bc0b74e5746801b373b8714fc6574f2de21f91
[ "Apache-2.0" ]
null
null
null
django_proyecto/bin/django-admin.py
Nemo3003/Proyecto_Final_G_8
65bc0b74e5746801b373b8714fc6574f2de21f91
[ "Apache-2.0" ]
null
null
null
django_proyecto/bin/django-admin.py
Nemo3003/Proyecto_Final_G_8
65bc0b74e5746801b373b8714fc6574f2de21f91
[ "Apache-2.0" ]
1
2021-09-05T23:42:46.000Z
2021-09-05T23:42:46.000Z
#!/home/nemo/Documents/Programación/Informatorio-main/Etapa2/django_proyecto_carlos/Proyecto_Final_G_8/django_proyecto/bin/python # When the django-admin.py deprecation ends, remove this script. import warnings from django.core import management try: from django.utils.deprecation import RemovedInDjango40Warning except ImportError: raise ImportError( 'django-admin.py was deprecated in Django 3.1 and removed in Django ' '4.0. Please manually remove this script from your virtual environment ' 'and use django-admin instead.' ) if __name__ == "__main__": warnings.warn( 'django-admin.py is deprecated in favor of django-admin.', RemovedInDjango40Warning, ) management.execute_from_command_line()
34.727273
129
0.748691
969c7e3bb5369b5ef8499c6c3875abac9ade1502
13,250
py
Python
cluster_optimizer/scorer.py
ndgigliotti/cluster-optimizer
40505493ba2e9a2352c5c759d1b2d61c1bc72fe7
[ "BSD-3-Clause" ]
null
null
null
cluster_optimizer/scorer.py
ndgigliotti/cluster-optimizer
40505493ba2e9a2352c5c759d1b2d61c1bc72fe7
[ "BSD-3-Clause" ]
null
null
null
cluster_optimizer/scorer.py
ndgigliotti/cluster-optimizer
40505493ba2e9a2352c5c759d1b2d61c1bc72fe7
[ "BSD-3-Clause" ]
null
null
null
from types import MappingProxyType from typing import Iterable import numpy as np from sklearn import metrics from sklearn.metrics._scorer import _BaseScorer, _passthrough_scorer from sklearn.pipeline import Pipeline from sklearn.utils.validation import check_consistent_length, check_is_fitted def _get_labels(estimator): """Gets the cluster labels from an estimator or pipeline.""" if isinstance(estimator, Pipeline): check_is_fitted(estimator._final_estimator, ["labels_"]) labels = estimator._final_estimator.labels_ else: check_is_fitted(estimator, ["labels_"]) labels = estimator.labels_ return labels def _noise_ratio(labels, noise_label=-1): labels = np.asarray(labels) return (labels == noise_label).mean() def _remove_noise_cluster(*arrays, labels, noise_label=-1): """Removes the noise cluster found in `labels` (if any) from all `arrays`.""" is_noise = labels == noise_label arrays = list(arrays) for i, arr in enumerate(arrays): arrays[i] = arr[~is_noise].copy() check_consistent_length(*arrays) return tuple(arrays) class _LabelScorerSupervised(_BaseScorer): def _score(self, estimator, X, labels_true): """Evaluate estimator labels relative to y_true. Parameters ---------- estimator : object Trained estimator to use for scoring. Must have `labels_` attribute. X : {array-like, sparse matrix} Does nothing, since estimator should already have `labels_`. Here for API compatability. labels_true : array-like Ground truth target values for cluster labels. Returns ------- score : float Score function applied to cluster labels. """ labels = _get_labels(estimator) labels_true, labels = _remove_noise_cluster(labels_true, labels, labels=labels) return self._sign * self._score_func(labels_true, labels, **self._kwargs) def __call__(self, estimator, X, labels_true): """Evaluate estimator labels relative to y_true. Parameters ---------- estimator : object Trained estimator to use for scoring. Must have `labels_` attribute. X : {array-like, sparse matrix} Does nothing, since estimator should already have `labels_`. Here for API compatability. labels_true : array-like Ground truth target values for cluster labels. Returns ------- score : float Score function applied to cluster labels. """ return self._score( estimator, X, labels_true, ) class _LabelScorerUnsupervised(_BaseScorer): def _score(self, estimator, X, labels_true=None): """Evaluate cluster labels on X. Parameters ---------- estimator : object Trained estimator to use for scoring. Must have `labels_` attribute. X : {array-like, sparse matrix} Data that will be used to evaluate cluster labels. labels_true: array-like Does nothing. Here for API compatability. Returns ------- score : float Score function applied to cluster labels. """ labels = _get_labels(estimator) if isinstance(estimator, Pipeline): X = estimator[:-1].transform(X) X, labels = _remove_noise_cluster(X, labels, labels=labels) return self._sign * self._score_func(X, labels, **self._kwargs) def __call__(self, estimator, X, labels_true=None): """Evaluate predicted target values for X relative to y_true. Parameters ---------- estimator : object Trained estimator to use for scoring. Must have `labels_` attribute. X : {array-like, sparse matrix} Data that will be used to evaluate cluster labels. labels_true: array-like Does nothing. Here for API compatability. Returns ------- score : float Score function applied cluster labels. """ return self._score( estimator, X, ) def make_scorer( score_func, *, ground_truth=True, greater_is_better=True, **kwargs, ): """Make a clustering scorer from a performance metric or loss function. This factory function wraps scoring functions for use in :class:`~cluster_opt.ClusterOptimizer` It takes a score function, such as :func:`~sklearn.metrics.silhouette_score`, :func:`~sklearn.metrics.mutual_info_score`, or :func:`~sklearn.metrics.adjusted_rand_index` and returns a callable that scores an estimator's output. The signature of the call is `(estimator, X, y)` where `estimator` is the model to be evaluated, `X` is the data and `y` is the ground truth labeling (or `None` in the case of unsupervised models). Read more in the :ref:`User Guide <scoring>`. Parameters ---------- score_func : callable Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. ground_truth : bool, default=True Whether score_func uses ground truth labels. greater_is_better : bool, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. """ sign = 1 if greater_is_better else -1 if ground_truth: cls = _LabelScorerSupervised else: cls = _LabelScorerUnsupervised return cls(score_func, sign, kwargs) SCORERS = { "silhouette_score": make_scorer(metrics.silhouette_score, ground_truth=False), "silhouette_score_euclidean": make_scorer( metrics.silhouette_score, ground_truth=False ), "silhouette_score_cosine": make_scorer( metrics.silhouette_score, ground_truth=False, metric="cosine" ), "davies_bouldin_score": make_scorer( metrics.davies_bouldin_score, greater_is_better=False, ground_truth=False ), "calinski_harabasz_score": make_scorer( metrics.calinski_harabasz_score, ground_truth=False ), "mutual_info_score": make_scorer(metrics.mutual_info_score), "normalized_mutual_info_score": make_scorer(metrics.normalized_mutual_info_score), "adjusted_mutual_info_score": make_scorer(metrics.adjusted_mutual_info_score), "rand_score": make_scorer(metrics.rand_score), "adjusted_rand_score": make_scorer(metrics.adjusted_rand_score), "completeness_score": make_scorer(metrics.completeness_score), "fowlkes_mallows_score": make_scorer(metrics.fowlkes_mallows_score), "homogeneity_score": make_scorer(metrics.homogeneity_score), "v_measure_score": make_scorer(metrics.v_measure_score), } SCORERS.update({k.replace("_score", ""): v for k, v in SCORERS.items()}) SCORERS = MappingProxyType(SCORERS) def get_scorer(scoring): """Get a clustering scorer from string. Parameters ---------- scoring : str or callable Scoring method as string. If callable it is returned as is. Returns ------- scorer : callable The scorer. """ if isinstance(scoring, str): try: scorer = SCORERS[scoring] except KeyError: raise ValueError( f"'{scoring}' is not a valid scoring value. " "Use sorted(cluster_optimizer.scorer.SCORERS.keys()) " "to get valid options." ) else: scorer = scoring return scorer def check_scoring(estimator, scoring=None): """Determine scorer from user options. A TypeError will be thrown if the estimator cannot be scored. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. scoring : str or callable, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. Returns ------- scoring : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. """ if not hasattr(estimator, "fit"): raise TypeError( "estimator should be an estimator implementing " "'fit' method, %r was passed" % estimator ) if isinstance(scoring, str): return get_scorer(scoring) elif callable(scoring): # Heuristic to ensure user has not passed a metric module = getattr(scoring, "__module__", None) if ( hasattr(module, "startswith") and module.startswith("sklearn.metrics.") and not module.startswith("sklearn.metrics._scorer") and not module.startswith("sklearn.metrics.tests.") ): raise ValueError( "scoring value %r looks like it is a metric " "function rather than a scorer. A scorer should " "require an estimator as its first parameter. " "Please use `make_scorer` to convert a metric " "to a scorer." % scoring ) return get_scorer(scoring) elif scoring is None: if hasattr(estimator, "score"): return _passthrough_scorer else: raise TypeError( "If no scoring is specified, the estimator passed should " "have a 'score' method. The estimator %r does not." % estimator ) elif isinstance(scoring, Iterable): raise ValueError( "For evaluating multiple scores, use " "sklearn.model_selection.cross_validate instead. " "{0} was passed.".format(scoring) ) else: raise ValueError( "scoring value should either be a callable, string or" " None. %r was passed" % scoring ) def check_multimetric_scoring(estimator, scoring): """Check the scoring parameter in cases when multiple metrics are allowed. Parameters ---------- estimator : sklearn estimator instance The estimator for which the scoring will be applied. scoring : list, tuple or dict A single string (see :ref:`scoring_parameter`) or a callable (see :ref:`scoring`) to evaluate the predictions on the test set. For evaluating multiple metrics, either give a list of (unique) strings or a dict with names as keys and callables as values. See :ref:`multimetric_grid_search` for an example. Returns ------- scorers_dict : dict A dict mapping each scorer name to its validated scorer. """ err_msg_generic = ( f"scoring is invalid (got {scoring!r}). Refer to the " "scoring glossary for details: " "https://scikit-learn.org/stable/glossary.html#term-scoring" ) if isinstance(scoring, (list, tuple, set)): err_msg = ( "The list/tuple elements must be unique " "strings of predefined scorers. " ) invalid = False try: keys = set(scoring) except TypeError: invalid = True if invalid: raise ValueError(err_msg) if len(keys) != len(scoring): raise ValueError( f"{err_msg} Duplicate elements were found in" f" the given list. {scoring!r}" ) elif len(keys) > 0: if not all(isinstance(k, str) for k in keys): if any(callable(k) for k in keys): raise ValueError( f"{err_msg} One or more of the elements " "were callables. Use a dict of score " "name mapped to the scorer callable. " f"Got {scoring!r}" ) else: raise ValueError( f"{err_msg} Non-string types were found " f"in the given list. Got {scoring!r}" ) scorers = { scorer: check_scoring(estimator, scoring=scorer) for scorer in scoring } else: raise ValueError(f"{err_msg} Empty list was given. {scoring!r}") elif isinstance(scoring, dict): keys = set(scoring) if not all(isinstance(k, str) for k in keys): raise ValueError( "Non-string types were found in the keys of " f"the given dict. scoring={scoring!r}" ) if len(keys) == 0: raise ValueError(f"An empty dict was passed. {scoring!r}") scorers = { key: check_scoring(estimator, scoring=scorer) for key, scorer in scoring.items() } else: raise ValueError(err_msg_generic) return scorers
33.715013
87
0.616453
8bc9cf88be4621018d56fc7c9e5672a569120c80
628
py
Python
autotest/manage.py
zuoleilei3253/zuoleilei
e188b15a0aa4a9fde00dba15e8300e4b87973e2d
[ "Apache-2.0" ]
null
null
null
autotest/manage.py
zuoleilei3253/zuoleilei
e188b15a0aa4a9fde00dba15e8300e4b87973e2d
[ "Apache-2.0" ]
null
null
null
autotest/manage.py
zuoleilei3253/zuoleilei
e188b15a0aa4a9fde00dba15e8300e4b87973e2d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'autotest.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
28.545455
73
0.683121
7b53743d330e148051b4f33042dc93088260671c
1,753
py
Python
tests/conftest.py
yammesicka/arrow
b8a601139c6eef2c452666b84dcfd9130c300352
[ "Apache-2.0" ]
null
null
null
tests/conftest.py
yammesicka/arrow
b8a601139c6eef2c452666b84dcfd9130c300352
[ "Apache-2.0" ]
null
null
null
tests/conftest.py
yammesicka/arrow
b8a601139c6eef2c452666b84dcfd9130c300352
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from datetime import datetime import pytest from arrow import arrow, factory, formatter, locales, parser @pytest.fixture(scope="class") def time_utcnow(request): request.cls.arrow = arrow.Arrow.utcnow() @pytest.fixture(scope="class") def time_2013_01_01(request): request.cls.now = arrow.Arrow.utcnow() request.cls.arrow = arrow.Arrow(2013, 1, 1) request.cls.datetime = datetime(2013, 1, 1) @pytest.fixture(scope="class") def time_2013_02_03(request): request.cls.arrow = arrow.Arrow(2013, 2, 3, 12, 30, 45, 1) @pytest.fixture(scope="class") def time_2013_02_15(request): request.cls.datetime = datetime(2013, 2, 15, 3, 41, 22, 8923) request.cls.arrow = arrow.Arrow.fromdatetime(request.cls.datetime) @pytest.fixture(scope="class") def arrow_formatter(request): request.cls.formatter = formatter.DateTimeFormatter() @pytest.fixture(scope="class") def arrow_factory(request): request.cls.factory = factory.ArrowFactory() @pytest.fixture(scope="class") def lang_locales(request): request.cls.locales = locales._locales @pytest.fixture(scope="class") def lang_locale(request): # As locale test classes are prefixed with Test, we are dynamically getting the locale by the test class name. # TestEnglishLocale -> EnglishLocale name = request.cls.__name__[4:] request.cls.locale = locales.get_locale_by_class_name(name) @pytest.fixture(scope="class") def dt_parser(request): request.cls.parser = parser.DateTimeParser() @pytest.fixture(scope="class") def dt_parser_regex(request): request.cls.format_regex = parser.DateTimeParser._FORMAT_RE @pytest.fixture(scope="class") def tzinfo_parser(request): request.cls.parser = parser.TzinfoParser()
25.779412
114
0.735311
af3fb719a951156f418ebb37b0df8f3f9ad8ce83
15,968
py
Python
official/nlp/modeling/layers/kernel_attention.py
mcasanova1445/models
37be0fdb4abccca633bb3199a4e6f3f71cd174d9
[ "Apache-2.0" ]
1
2022-02-02T06:29:41.000Z
2022-02-02T06:29:41.000Z
official/nlp/modeling/layers/kernel_attention.py
mdsaifhaider/models
7214e17eb425963ec3d0295be215d5d26deaeb32
[ "Apache-2.0" ]
8
2020-05-19T00:52:30.000Z
2020-06-04T23:57:20.000Z
official/nlp/modeling/layers/kernel_attention.py
mdsaifhaider/models
7214e17eb425963ec3d0295be215d5d26deaeb32
[ "Apache-2.0" ]
2
2021-10-07T04:47:04.000Z
2021-12-18T04:18:19.000Z
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Keras-based kernel attention layer.""" import functools import math import tensorflow as tf _NUMERIC_STABLER = 1e-6 class KernelMask(tf.keras.layers.Layer): """Creates kernel attention mask. inputs: from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...]. mask: a Tensor of shape [batch_size, from_seq_length] which indicates which part of the inputs we should not attend. Returns: float Tensor of shape [batch_size, from_seq_length] that KernelAttention takes as mask. """ def call(self, inputs, mask): mask = tf.cast(mask, inputs.dtype) return mask def create_projection_matrix(m, d, seed=None): r"""Constructs the matrix of random projections. Constructs a matrix of random orthogonal projections. Each projection vector has direction chosen uniformly at random length taken from the \chi(d) distribution.). Args: m: number of random projections. d: dimensionality of each random projection. seed: random seed used to construct projections. If not, we use the stateful api. Returns: The matrix of random projections of the shape [m, d]. """ nb_full_blocks = math.ceil(m / d) block_list = tf.TensorArray(tf.float32, size=tf.cast(nb_full_blocks, dtype=tf.int32)) stateful = False if seed is None: stateful = True # dummy seed to make sure the graph compiles though the path is not taken. seed = tf.constant([0, 1]) current_seed = seed for i in range(nb_full_blocks): if stateful: unstructured_block = tf.random.normal((d, d)) else: unstructured_block = tf.random.stateless_normal((d, d), seed=current_seed) current_seed = tf.random.stateless_uniform([2], seed=current_seed, minval=None, dtype=tf.int32) q, _ = tf.linalg.qr(unstructured_block) q = tf.transpose(q) block_list = block_list.write(i, q) final_matrix = block_list.concat()[:m] if stateful is None: multiplier = tf.norm(tf.random.normal((m, d)), axis=1) else: multiplier = tf.norm( tf.random.stateless_normal((m, d), seed=current_seed), axis=1) return tf.linalg.matmul(tf.linalg.diag(multiplier), final_matrix) def _generalized_kernel(x, projection_matrix, f, h): """Generalized kernel in RETHINKING ATTENTION WITH PERFORMERS. Args: x: The feature being transformed with shape [B, T, N ,H]. projection_matrix: The matrix with shape [M, H] that we projecct x to, where M is the number of projections. f: A non-linear function applied on x or projected x. h: A muliplier which is a function of x applied after projected and transformed. Only applied if projection_matrix is not None. Returns: Transformed feature. """ if projection_matrix is None: return h(x) * f(x) else: x_projected = tf.einsum("BTNH,MH->BTNM", x, projection_matrix) return h(x) * f(x_projected) / tf.math.sqrt( tf.cast(tf.shape(projection_matrix)[0], tf.float32)) # pylint: disable=g-long-lambda _TRANSFORM_MAP = { "elu": functools.partial( _generalized_kernel, f=lambda x: tf.keras.activations.elu(x) + 1, h=lambda x: 1), "relu": functools.partial( _generalized_kernel, f=tf.keras.activations.relu, h=lambda x: 1), "square": functools.partial( _generalized_kernel, f=tf.math.square, h=lambda x: 1), "exp": functools.partial( _generalized_kernel, # Avoid exp explosion by shifting. f=lambda x: tf.math.exp( x - tf.math.reduce_max(x, axis=[1, 2, 3], keepdims=True)), h=lambda x: tf.math.exp( -0.5 * tf.math.reduce_sum( tf.math.square(x), axis=-1, keepdims=True)),), "expmod": functools.partial( _generalized_kernel, # Avoid exp explosion by shifting. f=lambda x: tf.math.exp(x - tf.math.reduce_max( x, axis=[1, 2, 3], keepdims=True)), h=lambda x: tf.math.exp(-0.5 * tf.math.sqrt( tf.cast(tf.shape(x)[-1], tf.float32))), ), "identity": functools.partial(_generalized_kernel, f=lambda x: x, h=lambda x: 1) } # pylint: enable=g-long-lambda class KernelAttention(tf.keras.layers.MultiHeadAttention): """A variant of efficient transformers which replaces softmax with kernels. This module combines ideas from the two following papers: Rethinking Attention with Performers (https://arxiv.org/abs/2009.14794) - exp (Lemma 1, positive), relu - random/deterministic projection Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention (https://arxiv.org/abs/2006.16236) - elu with the theory of approximating angular Performer kernels from go/performer. The module enables computing efficient attention in both: long sequence and shorter sequence regimes. In the former setting, the attention matrix is never explicitly computed and instead its low-rank decomposition obtained with given kernel feature maps is leveraged to conduct attention module calculations (see: https://arxiv.org/abs/2006.16236). In the latter setting, attention matrix is constructed, but kernel features providing dimensionality reduction are applied, resulting in more efficient computation of the attention matrix. """ def __init__(self, feature_transform="exp", num_random_features=256, seed=0, redraw=False, is_short_seq=False, begin_kernel=0, scale=None, **kwargs): r"""Constructor of KernelAttention. Args: feature_transform: A non-linear transform of the keys and quries. Possible transforms are "elu", "relu", "square", "exp", "expmod", "identity". num_random_features: Number of random features to be used for projection. if num_random_features <= 0, no production is used before transform. seed: The seed to begin drawing random features. Once the seed is set, the psedo number generation is determinisitc. Users should pass different seed for different layers. For multi-worker, each layer will use the same projection at each step. redraw: Whether to redraw projection every forward pass during training. The argument is only effective when num_random_features > 0. is_short_seq: boolean predicate indicating whether input data consists of very short sequences or not; in most cases this should be False (default option). begin_kernel: Apply kernel_attention after this sequence id and apply softmax attention before this. scale: The value to scale the dot product as described in `Attention Is All You Need`. If None, we use 1/sqrt(dk) as described in the paper. **kwargs: The same arguments `MultiHeadAttention` layer. """ if feature_transform not in _TRANSFORM_MAP: raise ValueError("Unsupported feature_transform. The supported " "feature_transform are %s. " "Got '%s'." % (_TRANSFORM_MAP.keys(), feature_transform)) if num_random_features <= 0 and redraw: raise ValueError( "There is nothing to redraw when num_random_features <= 0.") self._feature_transform = feature_transform self._num_random_features = num_random_features self._redraw = redraw self._is_short_seq = is_short_seq self._begin_kernel = begin_kernel # We use the seed for two scenarios: # 1. inference # 2. no redraw self._seed = seed super().__init__(**kwargs) if scale is None: self._scale = 1.0 / math.sqrt(float(self._key_dim)) else: self._scale = scale self._projection_matrix = None if num_random_features > 0: self._projection_matrix = create_projection_matrix( self._num_random_features, self._key_dim, tf.constant([self._seed, self._seed + 1])) def _compute_attention(self, query, key, value, feature_transform, is_short_seq, attention_mask=None, training=False, numeric_stabler=_NUMERIC_STABLER): """Applies kernel attention with query, key, value tensors. This function defines the computation inside `call` with projected multi-head Q, K, V inputs. Users can override this function for customized attention implementation. Args: query: Projected query `Tensor` of shape `[B, T, N, key_dim]`. key: Projected key `Tensor` of shape `[B, S, N, key_dim]`. value: Projected value `Tensor` of shape `[B, S, N, value_dim]`. feature_transform: A non-linear transform of the keys and quries. is_short_seq: boolean predicate indicating whether input data consists of short or long sequences; usually short sequence is defined as having length L <= 1024. attention_mask: a boolean mask of shape `[B, S]`, that prevents attenting to masked positions. Note that the mask is only appied to the keys. User may want to mask the output if query contains pads. training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). numeric_stabler: A scalar value added to avoid divide by 0. Returns: attention_output: Multi-headed outputs of attention computation. """ projection_matrix = None if self._num_random_features > 0: if self._redraw and training: projection_matrix = create_projection_matrix(self._num_random_features, self._key_dim) else: projection_matrix = self._projection_matrix if is_short_seq: # Note: Applying scalar multiply at the smaller end of einsum improves # XLA performance, but may introduce slight numeric differences in # the Transformer attention head. query = query * self._scale else: # Note: we suspect spliting the scale to key, query yields smaller # approximation variance when random projection is used. # For simplicity, we also split when there's no random projection. key *= math.sqrt(self._scale) query *= math.sqrt(self._scale) key = _TRANSFORM_MAP[feature_transform](key, projection_matrix) query = _TRANSFORM_MAP[feature_transform](query, projection_matrix) if attention_mask is not None: key = tf.einsum("BSNH,BS->BSNH", key, attention_mask) if is_short_seq: attention_scores = tf.einsum("BTNH,BSNH->BTSN", query, key) attention_scores = tf.nn.softmax(attention_scores, axis=2) attention_output = tf.einsum("BTSN,BSNH->BTNH", attention_scores, value) else: kv = tf.einsum("BSNH,BSND->BNDH", key, value) denominator = 1.0 / ( tf.einsum("BTNH,BNH->BTN", query, tf.reduce_sum(key, axis=1)) + _NUMERIC_STABLER) attention_output = tf.einsum( "BTNH,BNDH,BTN->BTND", query, kv, denominator) return attention_output def _build_from_signature(self, query, value, key=None): super()._build_from_signature(query=query, value=value, key=key) # pytype: disable=attribute-error # typed-keras if self._begin_kernel > 0: common_kwargs = dict( kernel_initializer=self._kernel_initializer, bias_initializer=self._bias_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer, activity_regularizer=self._activity_regularizer, kernel_constraint=self._kernel_constraint, bias_constraint=self._bias_constraint) self._output_dense_softmax = self._make_output_dense( self._query_shape.rank - 1, common_kwargs, name="attention_output_softmax") self._dropout_softmax = tf.keras.layers.Dropout(rate=self._dropout) def call(self, query, value, key=None, attention_mask=None, training=False): """Compute attention with kernel mechanism. Args: query: Query `Tensor` of shape `[B, T, dim]`. value: Value `Tensor` of shape `[B, S, dim]`. key: Optional key `Tensor` of shape `[B, S, dim]`. If not given, will use `value` for both `key` and `value`, which is the most common case. attention_mask: a boolean mask of shape `[B, S]`, that prevents attenting to masked positions. Note that the mask is only appied to the keys. User may want to mask the output if query contains pads. training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). Returns: Multi-headed outputs of attention computation. """ if not self._built_from_signature: self._build_from_signature(query=query, value=value, key=key) if key is None: key = value # N = `num_attention_heads` # H = `size_per_head` # `query` = [B, T, N ,H] query = self._query_dense(query) # `key` = [B, S, N, H] key = self._key_dense(key) # `value` = [B, S, N, D] value = self._value_dense(value) if self._begin_kernel > 0: attention_output_softmax = self._compute_attention( query[:, :self._begin_kernel], key, value, "identity", True, attention_mask, training) attention_output_softmax = self._dropout_softmax(attention_output_softmax) attention_output_softmax = self._output_dense_softmax( attention_output_softmax) attention_output_kernel = self._compute_attention( query[:, self._begin_kernel:], key, value, self._feature_transform, self._is_short_seq, attention_mask, training) attention_output_kernel = self._dropout_layer(attention_output_kernel) attention_output_kernel = self._output_dense( attention_output_kernel) attention_output = tf.concat( [attention_output_softmax, attention_output_kernel], axis=1) else: attention_output = self._compute_attention( query, key, value, self._feature_transform, self._is_short_seq, attention_mask, training) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_output = self._dropout_layer(attention_output) attention_output = self._output_dense(attention_output) return attention_output def get_config(self): config = { "feature_transform": self._feature_transform, "num_random_features": self._num_random_features, "seed": self._seed, "redraw": self._redraw, "is_short_seq": self._is_short_seq, "begin_kernel": self._begin_kernel, "scale": self._scale, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
40.221662
118
0.664704
1244fdfe1f5b183d2e6247fbd1fced33da02c2b4
2,720
py
Python
setup.py
jtpio/p5-kernel
35ebc2e3f0720cfd2af945b04dddc69744f1eb29
[ "BSD-3-Clause" ]
5
2021-10-01T07:29:50.000Z
2022-02-27T01:03:16.000Z
setup.py
jtpio/p5-kernel
35ebc2e3f0720cfd2af945b04dddc69744f1eb29
[ "BSD-3-Clause" ]
4
2021-09-29T14:57:08.000Z
2022-03-23T12:52:24.000Z
setup.py
jtpio/p5-kernel
35ebc2e3f0720cfd2af945b04dddc69744f1eb29
[ "BSD-3-Clause" ]
4
2021-10-01T07:19:08.000Z
2022-03-21T09:32:43.000Z
""" jupyterlite-p5-kernel setup """ import json import sys from pathlib import Path import setuptools HERE = Path(__file__).parent.resolve() # The name of the project NAME = "jupyterlite-p5-kernel" PACKAGE = NAME.replace("-", "_") src_path = HERE / "packages/p5-kernel-extension" lab_path = HERE / NAME.replace("-", "_") / "labextension" # Representative files that should exist after a successful build ensured_targets = [str(lab_path / "package.json"), str(lab_path / "static/style.js")] labext_name = "@jupyterlite/p5-kernel-extension" data_files_spec = [ ( "share/jupyter/labextensions/%s" % labext_name, str(lab_path.relative_to(HERE)), "**", ), ("share/jupyter/labextensions/%s" % labext_name, str("."), "install.json"), ] long_description = (HERE / "README.md").read_text() # Get the package info from package.json pkg_json = json.loads((src_path / "package.json").read_bytes()) version = ( pkg_json["version"] .replace("-alpha.", "a") .replace("-beta.", "b") .replace("-rc.", "rc") ) setup_args = dict( name=NAME, version=version, url=pkg_json["homepage"], author=pkg_json["author"]["name"], author_email=pkg_json["author"]["email"], description=pkg_json["description"], license=pkg_json["license"], long_description=long_description, long_description_content_type="text/markdown", packages=setuptools.find_packages(), install_requires=[], zip_safe=False, include_package_data=True, python_requires=">=3.6", platforms="Linux, Mac OS X, Windows", keywords=["Jupyter", "JupyterLab", "JupyterLab3"], classifiers=[ "License :: OSI Approved :: BSD License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Framework :: Jupyter", ], ) try: from jupyter_packaging import wrap_installers, npm_builder, get_data_files post_develop = npm_builder(build_cmd="build", build_dir=lab_path) setup_args["cmdclass"] = wrap_installers( post_develop=post_develop, ensured_targets=ensured_targets ) setup_args["data_files"] = get_data_files(data_files_spec) except ImportError as e: import logging logging.basicConfig(format="%(levelname)s: %(message)s") logging.warning( "Build tool `jupyter-packaging` is missing. Install it with pip or conda." ) if not ("--name" in sys.argv or "--version" in sys.argv): raise e if __name__ == "__main__": setuptools.setup(**setup_args)
29.247312
85
0.663235
494136e63baee6a326f46c20739603b84b59eb25
1,826
py
Python
selfdrive/locationd/models/constants.py
woori2875/test
79a0a597fed5a399cb5700ed39a847aca7f971c2
[ "MIT" ]
null
null
null
selfdrive/locationd/models/constants.py
woori2875/test
79a0a597fed5a399cb5700ed39a847aca7f971c2
[ "MIT" ]
null
null
null
selfdrive/locationd/models/constants.py
woori2875/test
79a0a597fed5a399cb5700ed39a847aca7f971c2
[ "MIT" ]
null
null
null
import os GENERATED_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), 'generated')) class ObservationKind: UNKNOWN = 0 NO_OBSERVATION = 1 GPS_NED = 2 ODOMETRIC_SPEED = 3 PHONE_GYRO = 4 GPS_VEL = 5 PSEUDORANGE_GPS = 6 PSEUDORANGE_RATE_GPS = 7 SPEED = 8 NO_ROT = 9 PHONE_ACCEL = 10 ORB_POINT = 11 ECEF_POS = 12 CAMERA_ODO_TRANSLATION = 13 CAMERA_ODO_ROTATION = 14 ORB_FEATURES = 15 MSCKF_TEST = 16 FEATURE_TRACK_TEST = 17 LANE_PT = 18 IMU_FRAME = 19 PSEUDORANGE_GLONASS = 20 PSEUDORANGE_RATE_GLONASS = 21 PSEUDORANGE = 22 PSEUDORANGE_RATE = 23 ECEF_VEL = 31 ECEF_ORIENTATION_FROM_GPS = 32 ROAD_FRAME_XY_SPEED = 24 # (x, y) [m/s] ROAD_FRAME_YAW_RATE = 25 # [rad/s] STEER_ANGLE = 26 # [rad] ANGLE_OFFSET_FAST = 27 # [rad] STIFFNESS = 28 # [-] STEER_RATIO = 29 # [-] ROAD_FRAME_X_SPEED = 30 # (x) [m/s] ROAD_ROLL = 31 # [rad] names = [ 'Unknown', 'No observation', 'GPS NED', 'Odometric speed', 'Phone gyro', 'GPS velocity', 'GPS pseudorange', 'GPS pseudorange rate', 'Speed', 'No rotation', 'Phone acceleration', 'ORB point', 'ECEF pos', 'camera odometric translation', 'camera odometric rotation', 'ORB features', 'MSCKF test', 'Feature track test', 'Lane ecef point', 'imu frame eulers', 'GLONASS pseudorange', 'GLONASS pseudorange rate', 'Road Frame x,y speed', 'Road Frame yaw rate', 'Steer Angle', 'Fast Angle Offset', 'Stiffness', 'Steer Ratio', ] @classmethod def to_string(cls, kind): return cls.names[kind] SAT_OBS = [ObservationKind.PSEUDORANGE_GPS, ObservationKind.PSEUDORANGE_RATE_GPS, ObservationKind.PSEUDORANGE_GLONASS, ObservationKind.PSEUDORANGE_RATE_GLONASS]
22
85
0.648412
98cb07dc94f0c16aa927397cfb54eb34b666bcef
212
py
Python
dependencies/amitools-0.1.0/amitools/vamos/lib/util/UtilStruct.py
limi/AGSImager
d3771800308e61a7a07df4a9b361e5bd5ba9e409
[ "MIT" ]
null
null
null
dependencies/amitools-0.1.0/amitools/vamos/lib/util/UtilStruct.py
limi/AGSImager
d3771800308e61a7a07df4a9b361e5bd5ba9e409
[ "MIT" ]
null
null
null
dependencies/amitools-0.1.0/amitools/vamos/lib/util/UtilStruct.py
limi/AGSImager
d3771800308e61a7a07df4a9b361e5bd5ba9e409
[ "MIT" ]
null
null
null
from amitools.vamos.AmigaStruct import AmigaStruct # TagItem class TagItemStruct(AmigaStruct): _name = "TagItem" _format = [ ('ULONG','ti_Tag'), ('ULONG','ti_Data') ] TagItemDef = TagItemStruct()
17.666667
50
0.688679
26865bce9ebad1b77a7c6d58a03a501b6a8d98f9
3,147
py
Python
tests/support/dirutils.py
dalito/linkml-runtime
192a33962aed06f727ffad1a697003ac6ec85c2c
[ "CC0-1.0" ]
null
null
null
tests/support/dirutils.py
dalito/linkml-runtime
192a33962aed06f727ffad1a697003ac6ec85c2c
[ "CC0-1.0" ]
null
null
null
tests/support/dirutils.py
dalito/linkml-runtime
192a33962aed06f727ffad1a697003ac6ec85c2c
[ "CC0-1.0" ]
null
null
null
import filecmp import os from contextlib import redirect_stdout from io import StringIO from typing import Optional from tests.support.filters import ldcontext_metadata_filter def make_and_clear_directory(dirbase: str) -> None: """ Make dirbase if necessary and then clear generated files """ import shutil safety_file = os.path.join(dirbase, "generated") if os.path.exists(dirbase): if not os.path.exists(safety_file): raise FileNotFoundError("'generated' guard file not found in {}".format(safety_file)) shutil.rmtree(dirbase) os.makedirs(dirbase) with open(os.path.join(dirbase, "generated"), "w") as f: f.write("Generated for safety. Directory will not be cleared if this file is not present") def file_text(txt_or_fname: str) -> str: """ Determine whether text_or_fname is a file name or a string and, if a file name, read it :param txt_or_fname: :return: """ if len(txt_or_fname) > 4 and '\n' not in txt_or_fname: with open(txt_or_fname) as ef: return ef.read() return txt_or_fname class dircmp(filecmp.dircmp): """ Compare the content of dir1 and dir2. In contrast with filecmp.dircmp, this subclass compares the content of files with the same path. """ def phase3(self): """ Find out differences between common files. Ensure we are using content comparison with shallow=False. """ fcomp = filecmp.cmpfiles(self.left, self.right, self.common_files, shallow=False) self.same_files, self.diff_files, self.funny_files = fcomp filecmp.dircmp.methodmap['same_files'] = phase3 filecmp.dircmp.methodmap['diff_files'] = phase3 filecmp.dircmp.methodmap['funny_files'] = phase3 def _do_cmp(f1, f2): bufsize = filecmp.BUFSIZE with open(f1, 'rb') as fp1, open(f2, 'rb') as fp2: while True: b1 = fp1.read(bufsize) b2 = fp2.read(bufsize) if f1.endswith('.context.jsonld'): b1 = ldcontext_metadata_filter(b1) b2 = ldcontext_metadata_filter(b2) if b1 != b2: return False if not b1: return True filecmp._do_cmp = _do_cmp def are_dir_trees_equal(dir1: str, dir2: str) -> Optional[str]: """ Compare two directories recursively. Files in each directory are assumed to be equal if their names and contents are equal. @param dir1: First directory path @param dir2: Second directory path @return: None if directories match, else summary of differences """ def has_local_diffs(dc: dircmp) -> bool: return bool(dc.diff_files or dc.funny_files or dc.left_only or dc.right_only) def has_diffs(dc: dircmp) -> bool: return has_local_diffs(dc) or any(has_diffs(sd) for sd in dc.subdirs.values()) dirs_cmp = dircmp(dir1, dir2, ignore=['generated']) if has_diffs(dirs_cmp): output = StringIO() with redirect_stdout(output): dirs_cmp.report_full_closure() return output.getvalue() return None
32.78125
99
0.653956
701c70739bef1002514a0630e3ab4ff74611eae1
418
py
Python
onadata/apps/fsforms/migrations/0047_fieldsightxf_from_project.py
awemulya/fieldsight-kobocat
f302d084e30fb637d43ec638c701e01a3dddc721
[ "BSD-2-Clause" ]
38
2017-02-28T05:39:40.000Z
2019-01-16T04:39:04.000Z
onadata/apps/fsforms/migrations/0047_fieldsightxf_from_project.py
awemulya/fieldsightt
f302d084e30fb637d43ec638c701e01a3dddc721
[ "BSD-2-Clause" ]
20
2017-04-27T09:14:27.000Z
2019-01-17T06:35:52.000Z
onadata/apps/fsforms/migrations/0047_fieldsightxf_from_project.py
awemulya/fieldsightt
f302d084e30fb637d43ec638c701e01a3dddc721
[ "BSD-2-Clause" ]
5
2017-02-22T12:25:19.000Z
2019-01-15T11:16:40.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('fsforms', '0046_fieldsightxf_is_survey'), ] operations = [ migrations.AddField( model_name='fieldsightxf', name='from_project', field=models.BooleanField(default=True), ), ]
20.9
52
0.619617
2a7a855408557230b50334db33f4e966ba447fa5
24
py
Python
mayan/apps/ocr/literals.py
wan1869/dushuhu
934dd178e67140cffc6b9203e793fdf8bbc73a54
[ "Apache-2.0" ]
null
null
null
mayan/apps/ocr/literals.py
wan1869/dushuhu
934dd178e67140cffc6b9203e793fdf8bbc73a54
[ "Apache-2.0" ]
null
null
null
mayan/apps/ocr/literals.py
wan1869/dushuhu
934dd178e67140cffc6b9203e793fdf8bbc73a54
[ "Apache-2.0" ]
1
2021-04-30T09:44:14.000Z
2021-04-30T09:44:14.000Z
DO_OCR_RETRY_DELAY = 10
12
23
0.833333