hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
2353273d47efdbb342a6334e2f9f5a0908106e19
1,145
py
Python
icon_unit_test_demo/actions/add_numbers/schema.py
jmcadams-r7/insightconnect-unit-test-demo
5d77e2f99d337afb4c471ea0e92dcfe3fc05e7ec
[ "MIT" ]
null
null
null
icon_unit_test_demo/actions/add_numbers/schema.py
jmcadams-r7/insightconnect-unit-test-demo
5d77e2f99d337afb4c471ea0e92dcfe3fc05e7ec
[ "MIT" ]
null
null
null
icon_unit_test_demo/actions/add_numbers/schema.py
jmcadams-r7/insightconnect-unit-test-demo
5d77e2f99d337afb4c471ea0e92dcfe3fc05e7ec
[ "MIT" ]
null
null
null
# GENERATED BY KOMAND SDK - DO NOT EDIT import komand import json class Component: DESCRIPTION = "Add Numbers" class Input: NUMBER1 = "number1" NUMBER2 = "number2" class Output: ANSWER = "answer" class AddNumbersInput(komand.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "number1": { "type": "integer", "title": "Number1", "description": "A Number", "order": 1 }, "number2": { "type": "integer", "title": "Number2", "description": "A Number", "order": 2 } }, "required": [ "number1", "number2" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema) class AddNumbersOutput(komand.Output): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "answer": { "type": "integer", "title": "Answer", "description": "Answer", "order": 1 } }, "required": [ "answer" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
16.357143
57
0.536245
49cbfae72b701a14401720157c23dadddc3af75e
3,430
py
Python
examples/ex4/ex4/settings.py
jroslaniec/django-msg
deeced1d12b111f649eeb3789371be03d16fe7e3
[ "MIT" ]
7
2018-02-28T19:03:48.000Z
2020-12-21T01:15:34.000Z
examples/ex4/ex4/settings.py
jroslaniec/django-msg
deeced1d12b111f649eeb3789371be03d16fe7e3
[ "MIT" ]
null
null
null
examples/ex4/ex4/settings.py
jroslaniec/django-msg
deeced1d12b111f649eeb3789371be03d16fe7e3
[ "MIT" ]
null
null
null
""" Django settings for ex4 project. Generated by 'django-admin startproject' using Django 2.0.2. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'm+l!h-%l+l31jl2)@jga^@b+fav%@)itq+_f+^c#f)mj=%z^kq' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'msg', 'app', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'ex4.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'ex4.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' ADMIN_LOGIN_URL = 'http://localhost:8000/admin' MSG_SETTINGS = { 'defer': True, 'handlers': [ 'app.messages_handlers.AccountCreatedHandler', ] } EMAIL_USE_TLS = True EMAIL_HOST = 'smtp.gmail.com' EMAIL_PORT = 587 EMAIL_HOST_USER = '<EMAIL ADDRESS>' EMAIL_HOST_PASSWORD = '<PASSWORD>' EMAIL_FROM = 'MyApp'
24.5
91
0.689504
f8631ac2cbde366bb329dac7cc6ce8277fe4b313
12,680
py
Python
NiceHashTrade/nicehash.py
carle13/PythonTrader
43901b66d19b44f7b26b8713e6b789df0590b2ca
[ "MIT" ]
null
null
null
NiceHashTrade/nicehash.py
carle13/PythonTrader
43901b66d19b44f7b26b8713e6b789df0590b2ca
[ "MIT" ]
null
null
null
NiceHashTrade/nicehash.py
carle13/PythonTrader
43901b66d19b44f7b26b8713e6b789df0590b2ca
[ "MIT" ]
null
null
null
from datetime import datetime from time import mktime import uuid import hmac import requests import json from hashlib import sha256 import optparse import sys class public_api: def __init__(self, host, verbose=False): self.host = host self.verbose = verbose def request(self, method, path, query, body): url = self.host + path if query: url += '?' + query if self.verbose: print(method, url) s = requests.Session() if body: body_json = json.dumps(body) response = s.request(method, url, data=body_json) else: response = s.request(method, url) if response.status_code == 200: return response.json() elif response.content: raise Exception(str(response.status_code) + ": " + response.reason + ": " + str(response.content)) else: raise Exception(str(response.status_code) + ": " + response.reason) def get_current_global_stats(self): return self.request('GET', '/main/api/v2/public/stats/global/current/', '', None) def get_global_stats_24(self): return self.request('GET', '/main/api/v2/public/stats/global/24h/', '', None) def get_active_orders(self): return self.request('GET', '/main/api/v2/public/orders/active/', '', None) def get_active_orders2(self): return self.request('GET', '/main/api/v2/public/orders/active2/', '', None) def buy_info(self): return self.request('GET', '/main/api/v2/public/buy/info/', '', None) def get_algorithms(self): return self.request('GET', '/main/api/v2/mining/algorithms/', '', None) def get_markets(self): return self.request('GET', '/main/api/v2/mining/markets/', '', None) def get_currencies(self): return self.request('GET', '/main/api/v2/public/currencies/', '', None) def get_multialgo_info(self): return self.request('GET', '/main/api/v2/public/simplemultialgo/info/', '', None) def get_exchange_markets_info(self): return self.request('GET', '/exchange/api/v2/info/status', '', None) def get_exchange_lastPrices(self): return self.request('GET', '/exchange/api/v2/info/prices', '', None) def get_exchange_trades(self, market): return self.request('GET', '/exchange/api/v2/trades', 'market=' + market, None) def get_candlesticks(self, market, from_s, to_s, resolution): return self.request('GET', '/exchange/api/v2/candlesticks', "market={}&from={}&to={}&resolution={}".format(market, from_s, to_s, resolution), None) def get_exchange_orderbook(self, market, limit): return self.request('GET', '/exchange/api/v2/orderbook', "market={}&limit={}".format(market, limit), None) class private_api: def __init__(self, host, organisation_id, key, secret, verbose=False): self.key = key self.secret = secret self.organisation_id = organisation_id self.host = host self.verbose = verbose def request(self, method, path, query, body): xtime = self.get_epoch_ms_from_now() xnonce = str(uuid.uuid4()) message = bytearray(self.key, 'utf-8') message += bytearray('\x00', 'utf-8') message += bytearray(str(xtime), 'utf-8') message += bytearray('\x00', 'utf-8') message += bytearray(xnonce, 'utf-8') message += bytearray('\x00', 'utf-8') message += bytearray('\x00', 'utf-8') message += bytearray(self.organisation_id, 'utf-8') message += bytearray('\x00', 'utf-8') message += bytearray('\x00', 'utf-8') message += bytearray(method, 'utf-8') message += bytearray('\x00', 'utf-8') message += bytearray(path, 'utf-8') message += bytearray('\x00', 'utf-8') message += bytearray(query, 'utf-8') if body: body_json = json.dumps(body) message += bytearray('\x00', 'utf-8') message += bytearray(body_json, 'utf-8') digest = hmac.new(bytearray(self.secret, 'utf-8'), message, sha256).hexdigest() xauth = self.key + ":" + digest headers = { 'X-Time': str(xtime), 'X-Nonce': xnonce, 'X-Auth': xauth, 'Content-Type': 'application/json', 'X-Organization-Id': self.organisation_id, 'X-Request-Id': str(uuid.uuid4()) } s = requests.Session() s.headers = headers url = self.host + path if query: url += '?' + query if self.verbose: print(method, url) if body: response = s.request(method, url, data=body_json) else: response = s.request(method, url) if response.status_code == 200: return response.json() elif response.content: raise Exception(str(response.status_code) + ": " + response.reason + ": " + str(response.content)) else: raise Exception(str(response.status_code) + ": " + response.reason) def get_epoch_ms_from_now(self): now = datetime.now() now_ec_since_epoch = mktime(now.timetuple()) + now.microsecond / 1000000.0 return int(now_ec_since_epoch * 1000) def algo_settings_from_response(self, algorithm, algo_response): algo_setting = None for item in algo_response['miningAlgorithms']: if item['algorithm'] == algorithm: algo_setting = item if algo_setting is None: raise Exception('Settings for algorithm not found in algo_response parameter') return algo_setting def get_accounts(self): return self.request('GET', '/main/api/v2/accounting/accounts2/', '', None) def get_accounts_for_currency(self, currency): return self.request('GET', '/main/api/v2/accounting/account2/' + currency, '', None) def get_withdrawal_addresses(self, currency, size, page): params = "currency={}&size={}&page={}".format(currency, size, page) return self.request('GET', '/main/api/v2/accounting/withdrawalAddresses/', params, None) def get_withdrawal_types(self): return self.request('GET', '/main/api/v2/accounting/withdrawalAddresses/types/', '', None) def withdraw_request(self, address_id, amount, currency): withdraw_data = { "withdrawalAddressId": address_id, "amount": amount, "currency": currency } return self.request('POST', '/main/api/v2/accounting/withdrawal/', '', withdraw_data) def get_my_active_orders(self, algorithm, market, limit): ts = self.get_epoch_ms_from_now() params = "algorithm={}&market={}&ts={}&limit={}&op=LT".format(algorithm, market, ts, limit) return self.request('GET', '/main/api/v2/hashpower/myOrders', params, None) def create_pool(self, name, algorithm, pool_host, pool_port, username, password): pool_data = { "name": name, "algorithm": algorithm, "stratumHostname": pool_host, "stratumPort": pool_port, "username": username, "password": password } return self.request('POST', '/main/api/v2/pool/', '', pool_data) def delete_pool(self, pool_id): return self.request('DELETE', '/main/api/v2/pool/' + pool_id, '', None) def get_my_pools(self, page, size): return self.request('GET', '/main/api/v2/pools/', '', None) def get_hashpower_orderbook(self, algorithm): return self.request('GET', '/main/api/v2/hashpower/orderBook/', 'algorithm=' + algorithm, None ) def create_hashpower_order(self, market, type, algorithm, price, limit, amount, pool_id, algo_response): algo_setting = self.algo_settings_from_response(algorithm, algo_response) order_data = { "market": market, "algorithm": algorithm, "amount": amount, "price": price, "limit": limit, "poolId": pool_id, "type": type, "marketFactor": algo_setting['marketFactor'], "displayMarketFactor": algo_setting['displayMarketFactor'] } return self.request('POST', '/main/api/v2/hashpower/order/', '', order_data) def cancel_hashpower_order(self, order_id): return self.request('DELETE', '/main/api/v2/hashpower/order/' + order_id, '', None) def refill_hashpower_order(self, order_id, amount): refill_data = { "amount": amount } return self.request('POST', '/main/api/v2/hashpower/order/' + order_id + '/refill/', '', refill_data) def set_price_hashpower_order(self, order_id, price, algorithm, algo_response): algo_setting = self.algo_settings_from_response(algorithm, algo_response) price_data = { "price": price, "marketFactor": algo_setting['marketFactor'], "displayMarketFactor": algo_setting['displayMarketFactor'] } return self.request('POST', '/main/api/v2/hashpower/order/' + order_id + '/updatePriceAndLimit/', '', price_data) def set_limit_hashpower_order(self, order_id, limit, algorithm, algo_response): algo_setting = self.algo_settings_from_response(algorithm, algo_response) limit_data = { "limit": limit, "marketFactor": algo_setting['marketFactor'], "displayMarketFactor": algo_setting['displayMarketFactor'] } return self.request('POST', '/main/api/v2/hashpower/order/' + order_id + '/updatePriceAndLimit/', '', limit_data) def set_price_and_limit_hashpower_order(self, order_id, price, limit, algorithm, algo_response): algo_setting = self.algo_settings_from_response(algorithm, algo_response) price_data = { "price": price, "limit": limit, "marketFactor": algo_setting['marketFactor'], "displayMarketFactor": algo_setting['displayMarketFactor'] } return self.request('POST', '/main/api/v2/hashpower/order/' + order_id + '/updatePriceAndLimit/', '', price_data) def get_my_exchange_orders(self, market): return self.request('GET', '/exchange/api/v2/myOrders', 'market=' + market, None) def get_my_exchange_trades(self, market): return self.request('GET','/exchange/api/v2/myTrades', 'market=' + market, None) def create_exchange_limit_order(self, market, side, quantity, price): query = "market={}&side={}&type=limit&quantity={}&price={}".format(market, side, quantity, price) return self.request('POST', '/exchange/api/v2/order', query, None) def create_exchange_buy_market_order(self, market, quantity): query = "market={}&side=buy&type=market&secQuantity={:.10f}".format(market, quantity) return self.request('POST', '/exchange/api/v2/order', query, None) def create_exchange_sell_market_order(self, market, quantity): query = "market={}&side=sell&type=market&quantity={:.10f}".format(market, quantity) return self.request('POST', '/exchange/api/v2/order', query, None) def cancel_exchange_order(self, market, order_id): query = "market={}&orderId={}".format(market, order_id) return self.request('DELETE', '/exchange/api/v2/order', query, None) if __name__ == "__main__": parser = optparse.OptionParser() parser.add_option('-b', '--base_url', dest="base", help="Api base url", default="https://api2.nicehash.com") parser.add_option('-o', '--organization_id', dest="org", help="Organization id") parser.add_option('-k', '--key', dest="key", help="Api key") parser.add_option('-s', '--secret', dest="secret", help="Secret for api key") parser.add_option('-m', '--method', dest="method", help="Method for request", default="GET") parser.add_option('-p', '--path', dest="path", help="Path for request", default="/") parser.add_option('-q', '--params', dest="params", help="Parameters for request") parser.add_option('-d', '--body', dest="body", help="Body for request") options, args = parser.parse_args() private_api = private_api(options.base, options.org, options.key, options.secret) params = '' if options.params is not None: params = options.params try: response = private_api.request(options.method, options.path, params, options.body) except Exception as ex: print("Unexpected error:", ex) exit(1) print(response) exit(0)
38.776758
155
0.617035
2dd6248a90741d82f8389d6e8d0414a507b56911
12,497
py
Python
oggm/tests/test_graphics.py
lilianschuster/oggm
6a93bb19514f01a8c376ddad5cb8cb232b0f7c5e
[ "BSD-3-Clause" ]
null
null
null
oggm/tests/test_graphics.py
lilianschuster/oggm
6a93bb19514f01a8c376ddad5cb8cb232b0f7c5e
[ "BSD-3-Clause" ]
null
null
null
oggm/tests/test_graphics.py
lilianschuster/oggm
6a93bb19514f01a8c376ddad5cb8cb232b0f7c5e
[ "BSD-3-Clause" ]
null
null
null
import warnings import pytest import shutil import os import matplotlib.pyplot as plt import numpy as np salem = pytest.importorskip('salem') gpd = pytest.importorskip('geopandas') # Local imports import oggm.utils from oggm.tests import mpl_image_compare from oggm.tests.funcs import init_hef, get_test_dir from oggm import graphics from oggm.core import (gis, inversion, climate, centerlines, flowline, massbalance) import oggm.cfg as cfg from oggm.utils import get_demo_file from oggm import utils, workflow # Warnings warnings.filterwarnings("once", category=DeprecationWarning) warnings.filterwarnings("ignore", category=UserWarning, message=r'.*guessing baseline image.*') # Globals pytestmark = pytest.mark.test_env("graphics") def setup_module(): graphics.set_oggm_cmaps(use_hcl=False) def teardown_module(): graphics.set_oggm_cmaps() # ---------------------------------------------------------- # Lets go def test_surf_to_nan(): surf = np.array([1., 0, 0, 1]) thick = np.array([1, 0, 0, 1]) sh = graphics.surf_to_nan(surf, thick) np.testing.assert_allclose(sh, [1, 0, 0, 1]) surf = np.array([1., 0, 0, 0, 1]) thick = np.array([1, 0, 0, 0, 1]) sh = graphics.surf_to_nan(surf, thick) np.testing.assert_allclose(sh, [1, 0, np.NaN, 0, 1]) surf = np.array([1., 0, 0, 0, 0, 1]) thick = np.array([1, 0, 0, 0, 0, 1]) sh = graphics.surf_to_nan(surf, thick) np.testing.assert_allclose(sh, [1, 0, np.NaN, np.NaN, 0, 1]) surf = np.array([1., 0, 1, 0, 1]) thick = np.array([1, 0, 1, 0, 1]) sh = graphics.surf_to_nan(surf, thick) np.testing.assert_allclose(sh, [1, 0, 1, 0, 1]) @pytest.mark.internet @pytest.mark.graphic @mpl_image_compare(tolerance=25) def test_googlemap(): fig, ax = plt.subplots() gdir = init_hef() graphics.plot_googlemap(gdir, ax=ax) fig.tight_layout() return fig @pytest.mark.internet @pytest.mark.graphic @mpl_image_compare(multi=True) def test_domain(): fig, ax = plt.subplots() gdir = init_hef() graphics.plot_domain(gdir, ax=ax) fig.tight_layout() return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_centerlines(): fig, ax = plt.subplots() gdir = init_hef() graphics.plot_centerlines(gdir, ax=ax) fig.tight_layout() return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_raster(): fig, ax = plt.subplots() gdir = init_hef() gis.gridded_attributes(gdir) graphics.plot_raster(gdir, var_name='aspect', cmap='twilight', ax=ax) fig.tight_layout() return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_flowlines(): fig, ax = plt.subplots() gdir = init_hef() graphics.plot_centerlines(gdir, ax=ax, use_flowlines=True) fig.tight_layout() return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_downstream(): fig, ax = plt.subplots() gdir = init_hef() graphics.plot_centerlines(gdir, ax=ax, add_downstream=True, use_flowlines=True) fig.tight_layout() return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_width(): fig, ax = plt.subplots() gdir = init_hef() graphics.plot_catchment_width(gdir, ax=ax) fig.tight_layout() return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_width_corrected(): fig, ax = plt.subplots() gdir = init_hef() graphics.plot_catchment_width(gdir, ax=ax, corrected=True, add_intersects=True, add_touches=True) fig.tight_layout() return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_inversion(): fig, ax = plt.subplots() gdir = init_hef() graphics.plot_inversion(gdir, ax=ax) fig.tight_layout() return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_multiple_inversion(): # test directory testdir = os.path.join(get_test_dir(), 'tmp_mdir') if not os.path.exists(testdir): os.makedirs(testdir) # Init cfg.initialize() cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp')) cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif') cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') cfg.PARAMS['border'] = 40 cfg.PARAMS['run_mb_calibration'] = True cfg.PARAMS['baseline_climate'] = 'CUSTOM' cfg.PATHS['working_dir'] = testdir # Get the RGI ID hef_rgi = gpd.read_file(get_demo_file('divides_hef.shp')) hef_rgi.loc[0, 'RGIId'] = 'RGI50-11.00897' gdirs = workflow.init_glacier_directories(hef_rgi) workflow.gis_prepro_tasks(gdirs) workflow.climate_tasks(gdirs) workflow.inversion_tasks(gdirs) fig, ax = plt.subplots() graphics.plot_inversion(gdirs, ax=ax) fig.tight_layout() shutil.rmtree(testdir) return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_modelsection(): gdir = init_hef() flowline.init_present_time_glacier(gdir) fls = gdir.read_pickle('model_flowlines') model = flowline.FlowlineModel(fls) fig = plt.figure(figsize=(12, 6)) ax = fig.add_axes([0.07, 0.08, 0.7, 0.84]) graphics.plot_modeloutput_section(ax=ax, model=model) return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_modelsection_withtrib(): gdir = init_hef() flowline.init_present_time_glacier(gdir) fls = gdir.read_pickle('model_flowlines') model = flowline.FlowlineModel(fls) fig = plt.figure(figsize=(14, 10)) graphics.plot_modeloutput_section_withtrib(fig=fig, model=model) return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_modeloutput_map(): gdir = init_hef() flowline.init_present_time_glacier(gdir) fls = gdir.read_pickle('model_flowlines') model = flowline.FlowlineModel(fls) fig, ax = plt.subplots() graphics.plot_modeloutput_map(gdir, ax=ax, model=model) fig.tight_layout() return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_multiple_models(): # test directory testdir = os.path.join(get_test_dir(), 'tmp_mdir') utils.mkdir(testdir, reset=True) # Init cfg.initialize() cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp')) cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif') cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') cfg.PATHS['working_dir'] = testdir cfg.PARAMS['baseline_climate'] = 'CUSTOM' cfg.PARAMS['run_mb_calibration'] = True cfg.PARAMS['border'] = 40 # Get the RGI ID hef_rgi = gpd.read_file(get_demo_file('divides_hef.shp')) hef_rgi.loc[0, 'RGIId'] = 'RGI50-11.00897' gdirs = workflow.init_glacier_directories(hef_rgi) workflow.gis_prepro_tasks(gdirs) workflow.climate_tasks(gdirs) workflow.inversion_tasks(gdirs) models = [] for gdir in gdirs: flowline.init_present_time_glacier(gdir) fls = gdir.read_pickle('model_flowlines') models.append(flowline.FlowlineModel(fls)) fig, ax = plt.subplots() graphics.plot_modeloutput_map(gdirs, ax=ax, model=models) fig.tight_layout() shutil.rmtree(testdir) return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_thick_alt(): fig, ax = plt.subplots() gdir = init_hef() graphics.plot_distributed_thickness(gdir, ax=ax, varname_suffix='_alt') fig.tight_layout() return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_thick_interp(): fig, ax = plt.subplots() gdir = init_hef() graphics.plot_distributed_thickness(gdir, ax=ax, varname_suffix='_interp') fig.tight_layout() return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_catch_areas(): fig, ax = plt.subplots() gdir = init_hef() graphics.plot_catchment_areas(gdir, ax=ax) fig.tight_layout() return fig @pytest.mark.graphic @mpl_image_compare() def test_chhota_shigri(): testdir = os.path.join(get_test_dir(), 'tmp_chhota') utils.mkdir(testdir, reset=True) # Init cfg.initialize() cfg.PATHS['dem_file'] = get_demo_file('dem_chhota_shigri.tif') cfg.PARAMS['border'] = 80 cfg.PARAMS['use_intersects'] = False cfg.PATHS['working_dir'] = testdir hef_file = get_demo_file('divides_RGI50-14.15990.shp') df = gpd.read_file(hef_file) df['Area'] = df.Area * 1e-6 # cause it was in m2 df['RGIId'] = ['RGI50-14.15990' + d for d in ['_d01', '_d02']] gdirs = workflow.init_glacier_directories(df) workflow.gis_prepro_tasks(gdirs) for gdir in gdirs: climate.apparent_mb_from_linear_mb(gdir) workflow.execute_entity_task(inversion.prepare_for_inversion, gdirs) workflow.execute_entity_task(inversion.mass_conservation_inversion, gdirs) workflow.execute_entity_task(inversion.filter_inversion_output, gdirs) workflow.execute_entity_task(flowline.init_present_time_glacier, gdirs) models = [] for gdir in gdirs: flowline.init_present_time_glacier(gdir) fls = gdir.read_pickle('model_flowlines') models.append(flowline.FlowlineModel(fls)) fig, ax = plt.subplots() graphics.plot_modeloutput_map(gdirs, ax=ax, model=models) fig.tight_layout() shutil.rmtree(testdir) return fig @pytest.mark.graphic @mpl_image_compare(multi=True) def test_ice_cap(): testdir = os.path.join(get_test_dir(), 'tmp_icecap') utils.mkdir(testdir, reset=True) cfg.initialize() cfg.PARAMS['use_intersects'] = False cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-05.08389.tif') cfg.PARAMS['border'] = 60 cfg.PATHS['working_dir'] = testdir df = gpd.read_file(get_demo_file('divides_RGI50-05.08389.shp')) df['Area'] = df.Area * 1e-6 # cause it was in m2 df['RGIId'] = ['RGI50-05.08389_d{:02d}'.format(d+1) for d in df.index] df['GlacType'] = '1099' # Make an ice cap gdirs = workflow.init_glacier_directories(df) workflow.gis_prepro_tasks(gdirs) from salem import mercator_grid, Map smap = mercator_grid((gdirs[0].cenlon, gdirs[0].cenlat), extent=[20000, 23000]) smap = Map(smap) fig, ax = plt.subplots() graphics.plot_catchment_width(gdirs, ax=ax, add_intersects=True, add_touches=True, smap=smap) fig.tight_layout() shutil.rmtree(testdir) return fig @pytest.mark.xfail @pytest.mark.graphic @mpl_image_compare(multi=True) def test_coxe(): testdir = os.path.join(get_test_dir(), 'tmp_coxe') utils.mkdir(testdir, reset=True) # Init cfg.initialize() cfg.PARAMS['use_intersects'] = False cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-01.10299.tif') cfg.PARAMS['border'] = 40 cfg.PARAMS['clip_tidewater_border'] = False cfg.PARAMS['use_multiple_flowlines'] = False hef_file = get_demo_file('rgi_RGI50-01.10299.shp') entity = gpd.read_file(hef_file).iloc[0] gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True) gis.define_glacier_region(gdir) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) centerlines.initialize_flowlines(gdir) centerlines.compute_downstream_line(gdir) centerlines.compute_downstream_bedshape(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) climate.apparent_mb_from_linear_mb(gdir) inversion.prepare_for_inversion(gdir) inversion.mass_conservation_inversion(gdir) inversion.filter_inversion_output(gdir) flowline.init_present_time_glacier(gdir) fls = gdir.read_pickle('model_flowlines') p = gdir.read_pickle('linear_mb_params') mb_mod = massbalance.LinearMassBalance(ela_h=p['ela_h'], grad=p['grad']) mb_mod.temp_bias = -0.3 model = flowline.FluxBasedModel(fls, mb_model=mb_mod, y0=0, inplace=True, is_tidewater=True) # run model.run_until(200) assert model.calving_m3_since_y0 > 0 fig, ax = plt.subplots() graphics.plot_modeloutput_map(gdir, ax=ax, model=model) fig.tight_layout() shutil.rmtree(testdir) return fig
28.020179
78
0.681284
d06091d2f9789e4aa7b65d331e8bb42cab369b6e
524
py
Python
src/ava/util/codecs.py
nickchen-mitac/fork
64dab56012da47465b4923f30f26925476c87afc
[ "Apache-2.0" ]
null
null
null
src/ava/util/codecs.py
nickchen-mitac/fork
64dab56012da47465b4923f30f26925476c87afc
[ "Apache-2.0" ]
null
null
null
src/ava/util/codecs.py
nickchen-mitac/fork
64dab56012da47465b4923f30f26925476c87afc
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Various encoding/decoding helpers. """ from __future__ import print_function, division, absolute_import import base64 def base64url_encode(src): """ URL-safe base64 encoding without padding. :param src: :return: """ return base64.urlsafe_b64encode(src).replace('=','') def base64url_decode(src): """ Decode URL-safe base64-encoded string without padding. :param src: :return: """ return base64.urlsafe_b64decode(src + '=' * (len(src) % 4 ))
18.714286
64
0.648855
93bf25c16c50d5817637ad23c764397334a72f30
13,112
py
Python
sdk/lusid/models/fixed_leg_all_of.py
finbourne/lusid-sdk-python-generated-preview
9c36c953e8149443a4390ed7f0c04d01211401b6
[ "MIT" ]
null
null
null
sdk/lusid/models/fixed_leg_all_of.py
finbourne/lusid-sdk-python-generated-preview
9c36c953e8149443a4390ed7f0c04d01211401b6
[ "MIT" ]
null
null
null
sdk/lusid/models/fixed_leg_all_of.py
finbourne/lusid-sdk-python-generated-preview
9c36c953e8149443a4390ed7f0c04d01211401b6
[ "MIT" ]
null
null
null
# coding: utf-8 """ LUSID API FINBOURNE Technology # noqa: E501 The version of the OpenAPI document: 0.11.4425 Contact: info@finbourne.com Generated by: https://openapi-generator.tech """ try: from inspect import getfullargspec except ImportError: from inspect import getargspec as getfullargspec import pprint import re # noqa: F401 import six from lusid.configuration import Configuration class FixedLegAllOf(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. required_map (dict): The key is attribute name and the value is whether it is 'required' or 'optional'. """ openapi_types = { 'start_date': 'datetime', 'maturity_date': 'datetime', 'leg_definition': 'LegDefinition', 'notional': 'float', 'overrides': 'FixedLegAllOfOverrides', 'instrument_type': 'str' } attribute_map = { 'start_date': 'startDate', 'maturity_date': 'maturityDate', 'leg_definition': 'legDefinition', 'notional': 'notional', 'overrides': 'overrides', 'instrument_type': 'instrumentType' } required_map = { 'start_date': 'required', 'maturity_date': 'required', 'leg_definition': 'required', 'notional': 'required', 'overrides': 'optional', 'instrument_type': 'required' } def __init__(self, start_date=None, maturity_date=None, leg_definition=None, notional=None, overrides=None, instrument_type=None, local_vars_configuration=None): # noqa: E501 """FixedLegAllOf - a model defined in OpenAPI" :param start_date: The start date of the instrument. This is normally synonymous with the trade-date. (required) :type start_date: datetime :param maturity_date: The final maturity date of the instrument. This means the last date on which the instruments makes a payment of any amount. For the avoidance of doubt, that is not necessarily prior to its last sensitivity date for the purposes of risk; e.g. instruments such as Constant Maturity Swaps (CMS) often have sensitivities to rates that may well be observed or set prior to the maturity date, but refer to a termination date beyond it. (required) :type maturity_date: datetime :param leg_definition: (required) :type leg_definition: lusid.LegDefinition :param notional: (required) :type notional: float :param overrides: :type overrides: lusid.FixedLegAllOfOverrides :param instrument_type: The available values are: QuotedSecurity, InterestRateSwap, FxForward, Future, ExoticInstrument, FxOption, CreditDefaultSwap, InterestRateSwaption, Bond, EquityOption, FixedLeg, FloatingLeg, BespokeCashFlowsLeg, Unknown, TermDeposit, ContractForDifference, EquitySwap, CashPerpetual, CapFloor, CashSettled, CdsIndex, Basket, FundingLeg, FxSwap, ForwardRateAgreement, SimpleInstrument, Repo, Equity, ExchangeTradedOption, ReferenceInstrument, ComplexBond (required) :type instrument_type: str """ # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration.get_default_copy() self.local_vars_configuration = local_vars_configuration self._start_date = None self._maturity_date = None self._leg_definition = None self._notional = None self._overrides = None self._instrument_type = None self.discriminator = None self.start_date = start_date self.maturity_date = maturity_date self.leg_definition = leg_definition self.notional = notional self.overrides = overrides self.instrument_type = instrument_type @property def start_date(self): """Gets the start_date of this FixedLegAllOf. # noqa: E501 The start date of the instrument. This is normally synonymous with the trade-date. # noqa: E501 :return: The start_date of this FixedLegAllOf. # noqa: E501 :rtype: datetime """ return self._start_date @start_date.setter def start_date(self, start_date): """Sets the start_date of this FixedLegAllOf. The start date of the instrument. This is normally synonymous with the trade-date. # noqa: E501 :param start_date: The start_date of this FixedLegAllOf. # noqa: E501 :type start_date: datetime """ if self.local_vars_configuration.client_side_validation and start_date is None: # noqa: E501 raise ValueError("Invalid value for `start_date`, must not be `None`") # noqa: E501 self._start_date = start_date @property def maturity_date(self): """Gets the maturity_date of this FixedLegAllOf. # noqa: E501 The final maturity date of the instrument. This means the last date on which the instruments makes a payment of any amount. For the avoidance of doubt, that is not necessarily prior to its last sensitivity date for the purposes of risk; e.g. instruments such as Constant Maturity Swaps (CMS) often have sensitivities to rates that may well be observed or set prior to the maturity date, but refer to a termination date beyond it. # noqa: E501 :return: The maturity_date of this FixedLegAllOf. # noqa: E501 :rtype: datetime """ return self._maturity_date @maturity_date.setter def maturity_date(self, maturity_date): """Sets the maturity_date of this FixedLegAllOf. The final maturity date of the instrument. This means the last date on which the instruments makes a payment of any amount. For the avoidance of doubt, that is not necessarily prior to its last sensitivity date for the purposes of risk; e.g. instruments such as Constant Maturity Swaps (CMS) often have sensitivities to rates that may well be observed or set prior to the maturity date, but refer to a termination date beyond it. # noqa: E501 :param maturity_date: The maturity_date of this FixedLegAllOf. # noqa: E501 :type maturity_date: datetime """ if self.local_vars_configuration.client_side_validation and maturity_date is None: # noqa: E501 raise ValueError("Invalid value for `maturity_date`, must not be `None`") # noqa: E501 self._maturity_date = maturity_date @property def leg_definition(self): """Gets the leg_definition of this FixedLegAllOf. # noqa: E501 :return: The leg_definition of this FixedLegAllOf. # noqa: E501 :rtype: lusid.LegDefinition """ return self._leg_definition @leg_definition.setter def leg_definition(self, leg_definition): """Sets the leg_definition of this FixedLegAllOf. :param leg_definition: The leg_definition of this FixedLegAllOf. # noqa: E501 :type leg_definition: lusid.LegDefinition """ if self.local_vars_configuration.client_side_validation and leg_definition is None: # noqa: E501 raise ValueError("Invalid value for `leg_definition`, must not be `None`") # noqa: E501 self._leg_definition = leg_definition @property def notional(self): """Gets the notional of this FixedLegAllOf. # noqa: E501 :return: The notional of this FixedLegAllOf. # noqa: E501 :rtype: float """ return self._notional @notional.setter def notional(self, notional): """Sets the notional of this FixedLegAllOf. :param notional: The notional of this FixedLegAllOf. # noqa: E501 :type notional: float """ if self.local_vars_configuration.client_side_validation and notional is None: # noqa: E501 raise ValueError("Invalid value for `notional`, must not be `None`") # noqa: E501 self._notional = notional @property def overrides(self): """Gets the overrides of this FixedLegAllOf. # noqa: E501 :return: The overrides of this FixedLegAllOf. # noqa: E501 :rtype: lusid.FixedLegAllOfOverrides """ return self._overrides @overrides.setter def overrides(self, overrides): """Sets the overrides of this FixedLegAllOf. :param overrides: The overrides of this FixedLegAllOf. # noqa: E501 :type overrides: lusid.FixedLegAllOfOverrides """ self._overrides = overrides @property def instrument_type(self): """Gets the instrument_type of this FixedLegAllOf. # noqa: E501 The available values are: QuotedSecurity, InterestRateSwap, FxForward, Future, ExoticInstrument, FxOption, CreditDefaultSwap, InterestRateSwaption, Bond, EquityOption, FixedLeg, FloatingLeg, BespokeCashFlowsLeg, Unknown, TermDeposit, ContractForDifference, EquitySwap, CashPerpetual, CapFloor, CashSettled, CdsIndex, Basket, FundingLeg, FxSwap, ForwardRateAgreement, SimpleInstrument, Repo, Equity, ExchangeTradedOption, ReferenceInstrument, ComplexBond # noqa: E501 :return: The instrument_type of this FixedLegAllOf. # noqa: E501 :rtype: str """ return self._instrument_type @instrument_type.setter def instrument_type(self, instrument_type): """Sets the instrument_type of this FixedLegAllOf. The available values are: QuotedSecurity, InterestRateSwap, FxForward, Future, ExoticInstrument, FxOption, CreditDefaultSwap, InterestRateSwaption, Bond, EquityOption, FixedLeg, FloatingLeg, BespokeCashFlowsLeg, Unknown, TermDeposit, ContractForDifference, EquitySwap, CashPerpetual, CapFloor, CashSettled, CdsIndex, Basket, FundingLeg, FxSwap, ForwardRateAgreement, SimpleInstrument, Repo, Equity, ExchangeTradedOption, ReferenceInstrument, ComplexBond # noqa: E501 :param instrument_type: The instrument_type of this FixedLegAllOf. # noqa: E501 :type instrument_type: str """ if self.local_vars_configuration.client_side_validation and instrument_type is None: # noqa: E501 raise ValueError("Invalid value for `instrument_type`, must not be `None`") # noqa: E501 allowed_values = ["QuotedSecurity", "InterestRateSwap", "FxForward", "Future", "ExoticInstrument", "FxOption", "CreditDefaultSwap", "InterestRateSwaption", "Bond", "EquityOption", "FixedLeg", "FloatingLeg", "BespokeCashFlowsLeg", "Unknown", "TermDeposit", "ContractForDifference", "EquitySwap", "CashPerpetual", "CapFloor", "CashSettled", "CdsIndex", "Basket", "FundingLeg", "FxSwap", "ForwardRateAgreement", "SimpleInstrument", "Repo", "Equity", "ExchangeTradedOption", "ReferenceInstrument", "ComplexBond"] # noqa: E501 if self.local_vars_configuration.client_side_validation and instrument_type not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `instrument_type` ({0}), must be one of {1}" # noqa: E501 .format(instrument_type, allowed_values) ) self._instrument_type = instrument_type def to_dict(self, serialize=False): """Returns the model properties as a dict""" result = {} def convert(x): if hasattr(x, "to_dict"): args = getfullargspec(x.to_dict).args if len(args) == 1: return x.to_dict() else: return x.to_dict(serialize) else: return x for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) attr = self.attribute_map.get(attr, attr) if serialize else attr if isinstance(value, list): result[attr] = list(map( lambda x: convert(x), value )) elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], convert(item[1])), value.items() )) else: result[attr] = convert(value) return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, FixedLegAllOf): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, FixedLegAllOf): return True return self.to_dict() != other.to_dict()
42.990164
530
0.667251
e0fe6ab2c3c1a28fdebc1564dcaf7d0f03909962
8,350
py
Python
tests/test_install.py
joshuamosesb/gramex
e416cb609698b5941a18b06743c853dee50e0500
[ "MIT" ]
1
2020-05-17T18:03:44.000Z
2020-05-17T18:03:44.000Z
tests/test_install.py
joshuamosesb/gramex
e416cb609698b5941a18b06743c853dee50e0500
[ "MIT" ]
null
null
null
tests/test_install.py
joshuamosesb/gramex
e416cb609698b5941a18b06743c853dee50e0500
[ "MIT" ]
null
null
null
import os import sys import requests import unittest import subprocess from pathlib import Path from shutilwhich import which from orderedattrdict import AttrDict from six.moves.urllib.parse import urljoin import gramex from gramex.config import variables, PathConfig from gramex.install import install, uninstall, run from . import server folder = os.path.dirname(os.path.abspath(__file__)) class MockGramex(object): def __init__(self, target, instance=gramex, method='init'): self.instance = instance self.method = method self.target = target self.original = getattr(instance, method) def __enter__(self): self.cwd = os.getcwd() setattr(self.instance, self.method, self.target) def __exit__(self, exc_type, exc_value, traceback): setattr(self.instance, self.method, self.original) os.chdir(self.cwd) class TestInstall(unittest.TestCase): zip_url = urljoin(server.base_url, 'install-test.zip') zip_file = os.path.join(folder, 'install-test.zip') install_path = os.path.join(folder, 'dir', 'install') req_path = os.path.join(install_path, 'requirements.txt') @staticmethod def appdir(appname): return os.path.abspath(os.path.join(variables['GRAMEXDATA'], 'apps', appname)) def check_files(self, appname, expected_files): '''app/ directory should have expected files''' folder = self.appdir(appname) actual = set() for root, dirs, files in os.walk(folder): for filename in files: if '.git' not in root: actual.add(os.path.join(root, filename)) expected = {os.path.abspath(os.path.join(folder, filename)) for filename in expected_files} self.assertEqual(actual, expected) conf = +PathConfig(Path(self.appdir('apps.yaml'))) self.assertTrue(appname in conf) self.assertTrue('target' in conf[appname]) self.assertTrue('cmd' in conf[appname] or 'url' in conf[appname]) self.assertTrue('installed' in conf[appname]) self.assertTrue('time' in conf[appname].installed) def check_uninstall(self, appname, exist_check=True): '''Check that appname exists. Uninstall appname. It should be removed''' folder = self.appdir(appname) if exist_check: self.assertTrue(os.path.exists(folder)) uninstall([appname], {}) if exist_check: self.assertFalse(os.path.exists(folder)) def check_zip(self, appname, files, **params): '''Test installing and uninstalling a zipfile via URL and as a file''' args = AttrDict(params) for url, suffix in ((self.zip_url, '-url'), (self.zip_file, '-file')): args.url = url subappname = appname + suffix install([subappname], args) self.check_files(subappname, files) self.check_uninstall(subappname) def test_zip(self): self.check_zip('zip', files={ 'dir1/dir1.txt', 'dir1/file.txt', 'dir2/dir2.txt', 'dir2/file.txt'}) def test_zip_url_contentdir(self): self.check_zip('zip-contentdir', contentdir=False, files={ 'common-root/dir1/dir1.txt', 'common-root/dir1/file.txt', 'common-root/dir2/dir2.txt', 'common-root/dir2/file.txt'}) def test_zip_flat(self): # This ZIP file has members directly under the root. Test such cases install(['zip-flat'], AttrDict(url=urljoin(server.base_url, 'install-test-flat.zip'))) self.check_files('zip-flat', ['file1.txt', 'file2.txt']) self.check_uninstall('zip-flat') def test_url_in_cmd(self): install(['url-cmd', self.zip_url], AttrDict()) self.check_files('url-cmd', { 'dir1/dir1.txt', 'dir1/file.txt', 'dir2/dir2.txt', 'dir2/file.txt'}) self.check_uninstall('url-cmd') def test_run(self): # When you call gramex run run-app --dir=dir1 --browser=False, ensure # that gramex.init() is run from dir1 and is passed --browser=False. # We do that by mocking gramex.init() with check_init() result = AttrDict() def check_init(**kwargs): result.cwd = os.getcwd() result.opts = kwargs.get('cmd', {}).get('app', {}) install(['run-app', self.zip_url], AttrDict()) with MockGramex(check_init): run(['run-app'], AttrDict(dir='dir1', browser=False)) self.assertEqual(result.cwd, self.appdir('run-app/dir1/')) self.assertEqual(result.opts.get('browser'), False) self.check_uninstall('run-app') # Run with --target with MockGramex(check_init): run(['run-app-target'], AttrDict(target='.', browser=True)) self.assertEqual(result.cwd, os.getcwd()) self.assertEqual(result.opts.get('browser'), True) self.check_uninstall('run-app-target', exist_check=False) def test_dir(self): dirpath = os.path.join(folder, 'dir', 'subdir') install(['dir'], AttrDict(url=dirpath)) self.check_files('dir', os.listdir(dirpath)) self.check_uninstall('dir') def test_git_url(self): # This clones from a branch on this repo. To create it, run this on a fresh clone: # git checkout --orphan test-apps-do-not-delete # rm -rf . # mkdir -p dir1 dir2 # touch dir1/file-dir1.txt dir1/file.txt dir2/file-dir2.txt dir2/file.txt # git add dir1/file-dir1.txt dir1/file.txt dir2/file-dir2.txt dir2/file.txt # git commit -m"Add test files to this branch -- used by Gramex test cases" # git push -u origin test-apps-do-not-delete git_files = ['dir1/file.txt', 'dir1/file-dir1.txt', 'dir2/file.txt', 'dir2/file-dir2.txt'] git_url, branch = 'http://github.com/gramener/gramex', 'test-apps-do-not-delete' try: requests.get(git_url) except requests.RequestException: self.skipTest('Unable to connect to github.com') cmd = 'git clone %s --branch %s --single-branch' % (git_url, branch) install(['git-url'], AttrDict(cmd=cmd)) self.check_files('git-url', git_files) self.check_uninstall('git-url') # Check if overwriting works. Also check if usage of "TARGET" works. cmd = 'git clone %s TARGET --branch %s --single-branch' % (git_url, branch) install(['git-url'], AttrDict(cmd=cmd)) self.check_files('git-url', git_files) self.check_uninstall('git-url') def test_setup(self): subprocess.call([sys.executable, '-m', 'pip', 'uninstall', '-y', '-r', self.req_path]) install(['setup'], AttrDict(url=self.install_path)) result = set() for root, dirs, files in os.walk(self.install_path): for filename in files: path = os.path.join(root, filename) result.add(os.path.relpath(path, self.install_path)) # See http://go.microsoft.com/fwlink/?LinkID=135170 # Requires: Set-ExecutionPolicy -ExecutionPolicy RemoteSigned if which('powershell'): result.add('powershell-setup.txt') if which('make'): result.add('makefile-setup.txt') if which('bash'): result.add('bash-setup.txt') if which('python'): result.add('python-setup.txt') if which('yarn'): result.add('yarn.lock') result.add('node_modules/.yarn-integrity') result.add('node_modules/gramex-npm-package/package.json') result.add('node_modules/gramex-npm-package/npm-setup.js') elif which('npm'): # package-lock.json needs node 8.x -- which is required for CaptureHandler anyway result.add('package-lock.json') if which('bower'): result.add('bower_components/gramex-bower-package/bower.json') result.add('bower_components/gramex-bower-package/bower-setup.txt') result.add('bower_components/gramex-bower-package/.bower.json') if which('pip'): import dicttoxml # noqa self.check_files('setup', result) self.check_uninstall('setup') @classmethod def tearDown(cls): subprocess.call([sys.executable, '-m', 'pip', 'uninstall', '-y', '-r', cls.req_path])
41.75
98
0.624311
53bf945934d1224b807a7260028390b9f732355b
51,845
py
Python
simpletransformers/language_modeling/language_modeling_model.py
hjc3613/simpletransformers
bce58639f3fa8f45f445b053b5aaae428c3c5429
[ "Apache-2.0" ]
null
null
null
simpletransformers/language_modeling/language_modeling_model.py
hjc3613/simpletransformers
bce58639f3fa8f45f445b053b5aaae428c3c5429
[ "Apache-2.0" ]
null
null
null
simpletransformers/language_modeling/language_modeling_model.py
hjc3613/simpletransformers
bce58639f3fa8f45f445b053b5aaae428c3c5429
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 from __future__ import absolute_import, division, print_function import json import logging import math import os import random import warnings from multiprocessing import cpu_count from typing import Dict, List import numpy as np from sklearn.metrics import ( confusion_matrix, label_ranking_average_precision_score, matthews_corrcoef, mean_squared_error, ) from tqdm.auto import tqdm, trange import pandas as pd import torch from simpletransformers.config.global_args import global_args from simpletransformers.custom_models.models import ElectraForLanguageModelingModel from simpletransformers.language_modeling.language_modeling_utils import ( LineByLineTextDataset, SimpleDataset, TextDataset, mask_tokens, ) from tensorboardX import SummaryWriter from tokenizers import BertWordPieceTokenizer, ByteLevelBPETokenizer from tokenizers.processors import BertProcessing from torch.nn.utils.rnn import pad_sequence from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from transformers import ( WEIGHTS_NAME, AdamW, AutoConfig, AutoTokenizer, AutoModelWithLMHead, BertConfig, BertForMaskedLM, BertTokenizer, CamembertConfig, CamembertForMaskedLM, CamembertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, ElectraConfig, ElectraForMaskedLM, ElectraForPreTraining, ElectraTokenizer, GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, PreTrainedModel, PreTrainedTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, get_linear_schedule_with_warmup, ) try: import wandb wandb_available = True except ImportError: wandb_available = False logger = logging.getLogger(__name__) MODEL_CLASSES = { "auto": (AutoConfig, AutoModelWithLMHead, AutoTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "camembert": (CamembertConfig, CamembertForMaskedLM, CamembertTokenizer), "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "electra": (ElectraConfig, ElectraForLanguageModelingModel, ElectraTokenizer), "gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer), "openai-gpt": (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), } class LanguageModelingModel: def __init__( self, model_type, model_name, generator_name=None, discriminator_name=None, train_files=None, args=None, use_cuda=True, cuda_device=-1, **kwargs, ): """ Initializes a LanguageModelingModel. Args: model_type: The type of model (gpt2, openai-gpt, bert, roberta, distilbert, camembert) model_name: Default Transformer model name or path to a directory containing Transformer model file (pytorch_nodel.bin). generator_name (optional): A pretrained model name or path to a directory containing an ELECTRA generator model. discriminator_name (optional): A pretrained model name or path to a directory containing an ELECTRA discriminator model. args (optional): Default args will be used if this parameter is not provided. If provided, it should be a dict containing the args that should be changed in the default args. train_files (optional): List of files to be used when training the tokenizer. use_cuda (optional): Use GPU if available. Setting to False will force model to use CPU only. cuda_device (optional): Specific GPU that should be used. Will use the first available GPU by default. **kwargs (optional): For providing proxies, force_download, resume_download, cache_dir and other options specific to the 'from_pretrained' implementation where this will be supplied. """ # noqa: ignore flake8" if args and "manual_seed" in args: random.seed(args["manual_seed"]) np.random.seed(args["manual_seed"]) torch.manual_seed(args["manual_seed"]) if "n_gpu" in args and args["n_gpu"] > 0: torch.cuda.manual_seed_all(args["manual_seed"]) if use_cuda: if torch.cuda.is_available(): if cuda_device == -1: self.device = torch.device("cuda") else: self.device = torch.device(f"cuda:{cuda_device}") else: raise ValueError( "'use_cuda' set to True when cuda is unavailable." " Make sure CUDA is available or set use_cuda=False." ) else: self.device = "cpu" self.results = {} self.args = { "dataset_type": "None", "dataset_class": None, "block_size": -1, "mlm": True, "mlm_probability": 0.15, "max_steps": -1, "config_name": None, "tokenizer_name": None, "min_frequency": 2, "special_tokens": ["<s>", "<pad>", "</s>", "<unk>", "<mask>"], "sliding_window": False, "stride": 0.8, "generator_config": {}, "discriminator_config": {}, "vocab_size": None, } self.args.update(global_args) saved_model_args = self._load_model_args(model_name) if saved_model_args: self.args.update(saved_model_args) if args: self.args.update(args) if not use_cuda: self.args["fp16"] = False if args: self.args.update(args) self.args["model_name"] = model_name self.args["model_type"] = model_type config_class, model_class, tokenizer_class = MODEL_CLASSES[model_type] self.tokenizer_class = tokenizer_class new_tokenizer = False if self.args["tokenizer_name"]: self.tokenizer = tokenizer_class.from_pretrained( self.args["tokenizer_name"], cache_dir=self.args["cache_dir"] ) elif self.args["model_name"]: if self.args["model_name"] == "electra": self.tokenizer = tokenizer_class.from_pretrained( generator_name, cache_dir=self.args["cache_dir"], **kwargs ) self.args["tokenizer_name"] = self.args["model_name"] else: self.tokenizer = tokenizer_class.from_pretrained( model_name, cache_dir=self.args["cache_dir"], **kwargs ) self.args["tokenizer_name"] = self.args["model_name"] else: if not train_files: raise ValueError( "model_name and tokenizer_name are not specified." "You must specify train_files to train a Tokenizer." ) else: self.train_tokenizer(train_files) new_tokenizer = True if self.args["config_name"]: self.config = config_class.from_pretrained(self.args["config_name"], cache_dir=self.args["cache_dir"]) elif self.args["model_name"] and self.args["model_name"] != "electra": self.config = config_class.from_pretrained(model_name, cache_dir=self.args["cache_dir"], **kwargs) else: self.config = config_class(**self.args["config"], **kwargs) if self.args["vocab_size"]: self.config.vocab_size = self.args["vocab_size"] if new_tokenizer: self.config.vocab_size = len(self.tokenizer) if self.args["model_type"] == "electra": if generator_name: self.generator_config = ElectraConfig.from_pretrained(generator_name) elif self.args["model_name"]: self.generator_config = ElectraConfig.from_pretrained( os.path.join(self.args["model_name"], "generator_config"), **kwargs, ) else: self.generator_config = ElectraConfig(**self.args["generator_config"], **kwargs) if new_tokenizer: self.generator_config.vocab_size = len(self.tokenizer) if discriminator_name: self.discriminator_config = ElectraConfig.from_pretrained(discriminator_name) elif self.args["model_name"]: self.discriminator_config = ElectraConfig.from_pretrained( os.path.join(self.args["model_name"], "discriminator_config"), **kwargs, ) else: self.discriminator_config = ElectraConfig(**self.args["discriminator_config"], **kwargs) if new_tokenizer: self.discriminator_config.vocab_size = len(self.tokenizer) if self.args["block_size"] <= 0: self.args["block_size"] = min(self.args["max_seq_length"], self.tokenizer.max_len) else: self.args["block_size"] = min(self.args["block_size"], self.tokenizer.max_len, self.args["max_seq_length"]) if self.args["model_name"]: if self.args["model_type"] == "electra": if self.args["model_name"] == "electra": generator_model = ElectraForMaskedLM.from_pretrained(generator_name) discriminator_model = ElectraForPreTraining.from_pretrained(discriminator_name) self.model = ElectraForLanguageModelingModel( config=self.config, generator_model=generator_model, discriminator_model=discriminator_model, generator_config=self.generator_config, discriminator_config=self.discriminator_config, ) model_to_resize = ( self.model.generator_model.module if hasattr(self.model.generator_model, "module") else self.model.generator_model ) model_to_resize.resize_token_embeddings(len(self.tokenizer)) model_to_resize = ( self.model.discriminator_model.module if hasattr(self.model.discriminator_model, "module") else self.model.discriminator_model ) model_to_resize.resize_token_embeddings(len(self.tokenizer)) self.model.generator_model = generator_model self.model.discriminator_model = discriminator_model else: self.model = model_class.from_pretrained( model_name, config=self.config, cache_dir=self.args["cache_dir"], generator_config=self.generator_config, discriminator_config=self.discriminator_config, **kwargs, ) self.model.load_state_dict(torch.load(os.path.join(self.args["model_name"], "pytorch_model.bin"))) else: self.model = model_class.from_pretrained( model_name, config=self.config, cache_dir=self.args["cache_dir"], **kwargs, ) else: logger.info(" Training language model from scratch") if self.args["model_type"] == "electra": generator_model = ElectraForMaskedLM(config=self.generator_config) discriminator_model = ElectraForPreTraining(config=self.discriminator_config) self.model = ElectraForLanguageModelingModel( config=self.config, generator_model=generator_model, discriminator_model=discriminator_model, generator_config=self.generator_config, discriminator_config=self.discriminator_config, ) model_to_resize = ( self.model.generator_model.module if hasattr(self.model.generator_model, "module") else self.model.generator_model ) model_to_resize.resize_token_embeddings(len(self.tokenizer)) model_to_resize = ( self.model.discriminator_model.module if hasattr(self.model.discriminator_model, "module") else self.model.discriminator_model ) model_to_resize.resize_token_embeddings(len(self.tokenizer)) else: self.model = model_class(config=self.config) model_to_resize = self.model.module if hasattr(self.model, "module") else self.model model_to_resize.resize_token_embeddings(len(self.tokenizer)) if model_type in ["camembert", "xlmroberta"]: warnings.warn( f"use_multiprocessing automatically disabled as {model_type}" " fails when using multiprocessing for feature conversion." ) self.args["use_multiprocessing"] = False if self.args["wandb_project"] and not wandb_available: warnings.warn("wandb_project specified but wandb is not available. Wandb disabled.") self.args["wandb_project"] = None def train_model( self, train_file, output_dir=None, show_running_loss=True, args=None, eval_file=None, verbose=True, **kwargs, ): """ Trains the model using 'train_file' Args: train_file: Path to text file containing the text to train the language model on. output_dir: The directory where model files will be saved. If not given, self.args['output_dir'] will be used. show_running_loss (optional): Set to False to prevent running loss from being printed to console. Defaults to True. args (optional): Optional changes to the args dict of the model. Any changes made will persist for the model. eval_file (optional): Path to eval file containing the text to evaluate the language model on. Returns: None """ # noqa: ignore flake8" if args: self.args.update(args) if self.args["silent"]: show_running_loss = False if self.args["evaluate_during_training"] and eval_file is None: raise ValueError( "evaluate_during_training is enabled but eval_file is not specified." " Pass eval_file to model.train_model() if using evaluate_during_training." ) if not output_dir: output_dir = self.args["output_dir"] if os.path.exists(output_dir) and os.listdir(output_dir) and not self.args["overwrite_output_dir"]: raise ValueError( "Output directory ({}) already exists and is not empty." " Set args['overwrite_output_dir'] = True to overcome.".format(output_dir) ) self._move_model_to_device() train_dataset = self.load_and_cache_examples(train_file, verbose=verbose) os.makedirs(output_dir, exist_ok=True) global_step, tr_loss = self.train( train_dataset, output_dir, show_running_loss=show_running_loss, eval_file=eval_file, verbose=verbose, **kwargs, ) self._save_model(output_dir, model=self.model) if self.args["model_type"] == "electra": self.save_discriminator() self.save_generator() # model_to_save = self.model.module if hasattr(self.model, "module") else self.model # model_to_save.save_pretrained(output_dir) # self.tokenizer.save_pretrained(output_dir) # torch.save(self.args, os.path.join(output_dir, "training_args.bin")) if verbose: logger.info(" Training of {} model complete. Saved to {}.".format(self.args["model_type"], output_dir)) def train( self, train_dataset, output_dir, show_running_loss=True, eval_file=None, verbose=True, **kwargs, ): """ Trains the model on train_dataset. Utility function to be used by the train_model() method. Not intended to be used directly. """ model = self.model args = self.args tokenizer = self.tokenizer def collate(examples: List[torch.Tensor]): if tokenizer._pad_token is None: return pad_sequence(examples, batch_first=True) return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id) tb_writer = SummaryWriter(logdir=args["tensorboard_dir"]) train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=args["train_batch_size"], collate_fn=collate ) if args["max_steps"] > 0: t_total = args["max_steps"] args["num_train_epochs"] = ( args["max_steps"] // (len(train_dataloader) // args["gradient_accumulation_steps"]) + 1 ) else: t_total = len(train_dataloader) // args["gradient_accumulation_steps"] * args["num_train_epochs"] no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args["weight_decay"], }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)]}, ] warmup_steps = math.ceil(t_total * args["warmup_ratio"]) args["warmup_steps"] = warmup_steps if args["warmup_steps"] == 0 else args["warmup_steps"] optimizer = AdamW(optimizer_grouped_parameters, lr=args["learning_rate"], eps=args["adam_epsilon"]) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args["warmup_steps"], num_training_steps=t_total ) if ( args["model_name"] and os.path.isfile(os.path.join(args["model_name"], "optimizer.pt")) and os.path.isfile(os.path.join(args["model_name"], "scheduler.pt")) ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args["model_name"], "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args["model_name"], "scheduler.pt"))) if args["fp16"]: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args["fp16_opt_level"]) if args["n_gpu"] > 1: model = torch.nn.DataParallel(model) logger.info(" Training started") global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args["num_train_epochs"]), desc="Epoch", disable=args["silent"], mininterval=0) epoch_number = 0 best_eval_metric = None early_stopping_counter = 0 steps_trained_in_current_epoch = 0 epochs_trained = 0 if args["model_name"] and os.path.exists(args["model_name"]): try: # set global_step to gobal_step of last saved checkpoint from model path checkpoint_suffix = args["model_name"].split("/")[-1].split("-") if len(checkpoint_suffix) > 2: checkpoint_suffix = checkpoint_suffix[1] else: checkpoint_suffix = checkpoint_suffix[-1] global_step = int(checkpoint_suffix) epochs_trained = global_step // (len(train_dataloader) // args["gradient_accumulation_steps"]) steps_trained_in_current_epoch = global_step % ( len(train_dataloader) // args["gradient_accumulation_steps"] ) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the current epoch", steps_trained_in_current_epoch) except ValueError: logger.info(" Starting fine-tuning.") if args["evaluate_during_training"]: training_progress_scores = self._create_training_progress_scores(**kwargs) if args["wandb_project"]: wandb.init(project=args["wandb_project"], config={**args}, **args["wandb_kwargs"]) wandb.watch(self.model) model.train() for current_epoch in train_iterator: if epochs_trained > 0: epochs_trained -= 1 continue # epoch_iterator = tqdm(train_dataloader, desc="Iteration") for step, batch in enumerate(tqdm(train_dataloader, desc="Current iteration", disable=args["silent"])): if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue inputs, labels = mask_tokens(batch, tokenizer, args) if args["mlm"] else (batch, batch) inputs = inputs.to(self.device) labels = labels.to(self.device) outputs = model(inputs, masked_lm_labels=labels) if args["mlm"] else model(inputs, labels=labels) # model outputs are always tuple in pytorch-transformers (see doc) loss = outputs[0] # if loss.item() < 1: # masked = (labels[0] != -100).nonzero() # print(labels[0][masked]) # preds = outputs[1][0, masked, :].clone().detach().cpu().numpy() # print(np.argmax(preds, axis=2)) if args["n_gpu"] > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training current_loss = loss.item() if show_running_loss: print("\rRunning loss: %f" % loss, end="") if args["gradient_accumulation_steps"] > 1: loss = loss / args["gradient_accumulation_steps"] if args["fp16"]: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args["gradient_accumulation_steps"] == 0: if args["fp16"]: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args["max_grad_norm"]) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args["max_grad_norm"]) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args["logging_steps"] > 0 and global_step % args["logging_steps"] == 0: # Log metrics tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args["logging_steps"], global_step) logging_loss = tr_loss if args["wandb_project"]: wandb.log( { "Training loss": current_loss, "lr": scheduler.get_lr()[0], "global_step": global_step, } ) if args["save_steps"] > 0 and global_step % args["save_steps"] == 0: # Save model checkpoint output_dir_current = os.path.join(output_dir, "checkpoint-{}".format(global_step)) self._save_model(output_dir_current, optimizer, scheduler, model=model) if args["evaluate_during_training"] and ( args["evaluate_during_training_steps"] > 0 and global_step % args["evaluate_during_training_steps"] == 0 ): # Only evaluate when single GPU otherwise metrics may not average well results = self.eval_model( eval_file, verbose=verbose and args["evaluate_during_training_verbose"], silent=True, **kwargs, ) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) output_dir_current = os.path.join(output_dir, "checkpoint-{}".format(global_step)) if args["save_eval_checkpoints"]: self._save_model(output_dir_current, optimizer, scheduler, model=model, results=results) training_progress_scores["global_step"].append(global_step) training_progress_scores["train_loss"].append(current_loss) for key in results: training_progress_scores[key].append(results[key]) report = pd.DataFrame(training_progress_scores) report.to_csv( os.path.join(args["output_dir"], "training_progress_scores.csv"), index=False, ) if args["wandb_project"]: wandb.log(self._get_last_metrics(training_progress_scores)) if not best_eval_metric: best_eval_metric = results[args["early_stopping_metric"]] self._save_model( args["best_model_dir"], optimizer, scheduler, model=model, results=results ) if best_eval_metric and args["early_stopping_metric_minimize"]: if ( results[args["early_stopping_metric"]] - best_eval_metric < args["early_stopping_delta"] ): best_eval_metric = results[args["early_stopping_metric"]] self._save_model( args["best_model_dir"], optimizer, scheduler, model=model, results=results ) early_stopping_counter = 0 else: if args["use_early_stopping"]: if early_stopping_counter < args["early_stopping_patience"]: early_stopping_counter += 1 if verbose: logger.info(f" No improvement in {args['early_stopping_metric']}") logger.info(f" Current step: {early_stopping_counter}") logger.info(f" Early stopping patience: {args['early_stopping_patience']}") else: if verbose: logger.info( f" Patience of {args['early_stopping_patience']} steps reached." ) logger.info(" Training terminated.") train_iterator.close() return global_step, tr_loss / global_step else: if ( results[args["early_stopping_metric"]] - best_eval_metric > args["early_stopping_delta"] ): best_eval_metric = results[args["early_stopping_metric"]] self._save_model( args["best_model_dir"], optimizer, scheduler, model=model, results=results ) early_stopping_counter = 0 else: if args["use_early_stopping"]: if early_stopping_counter < args["early_stopping_patience"]: early_stopping_counter += 1 if verbose: logger.info(f" No improvement in {args['early_stopping_metric']}") logger.info(f" Current step: {early_stopping_counter}") logger.info(f" Early stopping patience: {args['early_stopping_patience']}") else: if verbose: logger.info( f" Patience of {args['early_stopping_patience']} steps reached." ) logger.info(" Training terminated.") train_iterator.close() return global_step, tr_loss / global_step if args["max_steps"] > 0 and global_step > args["max_steps"]: return global_step, tr_loss / global_step epoch_number += 1 output_dir_current = os.path.join(output_dir, "checkpoint-{}-epoch-{}".format(global_step, epoch_number)) if args["save_model_every_epoch"] or args["evaluate_during_training"]: os.makedirs(output_dir_current, exist_ok=True) if args["save_model_every_epoch"]: self._save_model(output_dir_current, optimizer, scheduler, model=model) if args["evaluate_during_training"]: results = self.eval_model( eval_file, verbose=verbose and args["evaluate_during_training_verbose"], silent=True, **kwargs ) self._save_model(output_dir_current, optimizer, scheduler, results=results) training_progress_scores["global_step"].append(global_step) training_progress_scores["train_loss"].append(current_loss) for key in results: training_progress_scores[key].append(results[key]) report = pd.DataFrame(training_progress_scores) report.to_csv(os.path.join(args["output_dir"], "training_progress_scores.csv"), index=False) if args["wandb_project"]: wandb.log(self._get_last_metrics(training_progress_scores)) if not best_eval_metric: best_eval_metric = results[args["early_stopping_metric"]] self._save_model(args["best_model_dir"], optimizer, scheduler, model=model, results=results) if best_eval_metric and args["early_stopping_metric_minimize"]: if results[args["early_stopping_metric"]] - best_eval_metric < args["early_stopping_delta"]: best_eval_metric = results[args["early_stopping_metric"]] self._save_model(args["best_model_dir"], optimizer, scheduler, model=model, results=results) early_stopping_counter = 0 else: if args["use_early_stopping"] and args["early_stopping_consider_epochs"]: if early_stopping_counter < args["early_stopping_patience"]: early_stopping_counter += 1 if verbose: logger.info(f" No improvement in {args['early_stopping_metric']}") logger.info(f" Current step: {early_stopping_counter}") logger.info(f" Early stopping patience: {args['early_stopping_patience']}") else: if verbose: logger.info(f" Patience of {args['early_stopping_patience']} steps reached") logger.info(" Training terminated.") train_iterator.close() return global_step, tr_loss / global_step else: if results[args["early_stopping_metric"]] - best_eval_metric > args["early_stopping_delta"]: best_eval_metric = results[args["early_stopping_metric"]] self._save_model(args["best_model_dir"], optimizer, scheduler, model=model, results=results) early_stopping_counter = 0 else: if args["use_early_stopping"] and args["early_stopping_consider_epochs"]: if early_stopping_counter < args["early_stopping_patience"]: early_stopping_counter += 1 if verbose: logger.info(f" No improvement in {args['early_stopping_metric']}") logger.info(f" Current step: {early_stopping_counter}") logger.info(f" Early stopping patience: {args['early_stopping_patience']}") else: if verbose: logger.info(f" Patience of {args['early_stopping_patience']} steps reached") logger.info(" Training terminated.") train_iterator.close() return global_step, tr_loss / global_step if args["max_steps"] > 0 and global_step > args["max_steps"]: return global_step, tr_loss / global_step return global_step, tr_loss / global_step def eval_model(self, eval_file, output_dir=None, verbose=True, silent=False, **kwargs): """ Evaluates the model on eval_df. Saves results to args['output_dir'] result: Dictionary containing evaluation results. """ # noqa: ignore flake8" if not output_dir: output_dir = self.args["output_dir"] self._move_model_to_device() eval_dataset = self.load_and_cache_examples(eval_file, evaluate=True, verbose=verbose, silent=silent) os.makedirs(output_dir, exist_ok=True) result = self.evaluate(eval_dataset, output_dir, verbose=verbose, silent=silent, **kwargs) self.results.update(result) if verbose: logger.info(self.results) return result def evaluate(self, eval_dataset, output_dir, multi_label=False, prefix="", verbose=True, silent=False, **kwargs): """ Evaluates the model on eval_dataset. Utility function to be used by the eval_model() method. Not intended to be used directly. """ model = self.model args = self.args eval_output_dir = output_dir tokenizer = self.tokenizer results = {} def collate(examples: List[torch.Tensor]): if tokenizer._pad_token is None: return pad_sequence(examples, batch_first=True) return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id) eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader( eval_dataset, sampler=eval_sampler, batch_size=args["eval_batch_size"], collate_fn=collate ) if args["n_gpu"] > 1: model = torch.nn.DataParallel(model) eval_loss = 0.0 nb_eval_steps = 0 model.eval() for batch in tqdm(eval_dataloader, disable=args["silent"] or silent): inputs, labels = mask_tokens(batch, tokenizer, args) if args["mlm"] else (batch, batch) inputs = inputs.to(self.device) labels = labels.to(self.device) with torch.no_grad(): outputs = model(inputs, masked_lm_labels=labels) if args["mlm"] else model(inputs, labels=labels) lm_loss = outputs[0] eval_loss += lm_loss.mean().item() nb_eval_steps += 1 eval_loss = eval_loss / nb_eval_steps perplexity = torch.exp(torch.tensor(eval_loss)) results["eval_loss"] = eval_loss results["perplexity"] = perplexity output_eval_file = os.path.join(eval_output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: for key in sorted(results.keys()): writer.write("{} = {}\n".format(key, str(results[key]))) return results def load_and_cache_examples(self, file_path, evaluate=False, no_cache=False, verbose=True, silent=False): """ Reads a text file from file_path and creates training features. Utility function for train() and eval() methods. Not intended to be used directly. """ tokenizer = self.tokenizer args = self.args if not no_cache: no_cache = args["no_cache"] os.makedirs(self.args["cache_dir"], exist_ok=True) mode = "dev" if evaluate else "train" if args["dataset_class"]: CustomDataset = args["dataset_class"] return CustomDataset(tokenizer, args, file_path, mode, args["block_size"]) else: dataset_type = args["dataset_type"] if dataset_type == "text": return TextDataset(tokenizer, args, file_path, mode, args["block_size"]) elif dataset_type == "line_by_line": return LineByLineTextDataset(tokenizer, args, file_path, args["block_size"]) else: special_tokens_count = 3 if bool(args["model_type"] in ["roberta", "camembert", "xlmroberta"]) else 2 if self.args["max_seq_length"] > 509: self.args["max_seq_length"] = ( 509 if bool(args["model_type"] in ["roberta", "camembert", "xlmroberta"]) else 510 ) self.args["block_size"] = ( 509 if bool(args["model_type"] in ["roberta", "camembert", "xlmroberta"]) else 510 ) return SimpleDataset( tokenizer, self.args, file_path, mode, args["block_size"], special_tokens_count, sliding_window=args["sliding_window"], ) # def predict(self, to_predict, multi_label=False): # """ # Performs predictions on a list of text. # Args: # to_predict: A python list of text (str) to be sent to the model for prediction. # Returns: # preds: A python list of the predictions (0 or 1) for each text. # model_outputs: A python list of the raw model outputs for each text. # """ # device = self.device # model = self.model # args = self.args # self._move_model_to_device() # if multi_label: # eval_examples = [ # InputExample(i, text, None, [0 for i in range(self.num_labels)]) for i, text in enumerate(to_predict) # ] # else: # if isinstance(to_predict[0], list): # eval_examples = [InputExample(i, text[0], text[1], 0) for i, text in enumerate(to_predict)] # else: # eval_examples = [InputExample(i, text, None, 0) for i, text in enumerate(to_predict)] # if args["sliding_window"]: # eval_dataset, window_counts = self.load_and_cache_examples(eval_examples, evaluate=True, no_cache=True) # else: # eval_dataset = self.load_and_cache_examples( # eval_examples, evaluate=True, multi_label=multi_label, no_cache=True # ) # eval_sampler = SequentialSampler(eval_dataset) # eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args["eval_batch_size"]) # eval_loss = 0.0 # nb_eval_steps = 0 # preds = None # out_label_ids = None # for batch in tqdm(eval_dataloader, disable=args["silent"]): # model.eval() # batch = tuple(t.to(device) for t in batch) # with torch.no_grad(): # inputs = self._get_inputs_dict(batch) # outputs = model(**inputs) # tmp_eval_loss, logits = outputs[:2] # if multi_label: # logits = logits.sigmoid() # eval_loss += tmp_eval_loss.mean().item() # nb_eval_steps += 1 # if preds is None: # preds = logits.detach().cpu().numpy() # out_label_ids = inputs["labels"].detach().cpu().numpy() # else: # preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) # out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) # eval_loss = eval_loss / nb_eval_steps # if args["sliding_window"]: # count = 0 # window_ranges = [] # for n_windows in window_counts: # window_ranges.append([count, count + n_windows]) # count += n_windows # preds = [preds[window_range[0] : window_range[1]] for window_range in window_ranges] # model_outputs = preds # preds = [np.argmax(pred, axis=1) for pred in preds] # final_preds = [] # for pred_row in preds: # mode_pred, counts = mode(pred_row) # if len(counts) > 1 and counts[0] == counts[1]: # final_preds.append(args["tie_value"]) # else: # final_preds.append(mode_pred[0]) # preds = np.array(final_preds) # elif not multi_label and args["regression"] is True: # preds = np.squeeze(preds) # model_outputs = preds # else: # model_outputs = preds # if multi_label: # if isinstance(args["threshold"], list): # threshold_values = args["threshold"] # preds = [ # [self._threshold(pred, threshold_values[i]) for i, pred in enumerate(example)] # for example in preds # ] # else: # preds = [[self._threshold(pred, args["threshold"]) for pred in example] for example in preds] # else: # preds = np.argmax(preds, axis=1) # return preds, model_outputs def train_tokenizer(self, train_files, tokenizer_name=None, output_dir=None, use_trained_tokenizer=True): """ Train a new tokenizer on `train_files`. Args: - train_files: List of files to be used when training the tokenizer. - tokenizer_name: Name of a pretrained tokenizer or a path to a directory containing a tokenizer. - output_dir (optional): The directory where model files will be saved. If not given, self.args['output_dir'] will be used. - use_trained_tokenizer (optional): Load the trained tokenizer once training completes. Returns: None """ if not self.args["vocab_size"]: raise AttributeError( "Cannot train a new tokenizer as vocab_size is not specified in args dict. " "Either provide a tokenizer or specify vocab_size." ) if not isinstance(train_files, list): train_files = [train_files] if not output_dir: output_dir = self.args["output_dir"] if self.args["model_type"] in ["bert", "electra"]: tokenizer = BertWordPieceTokenizer() self.args["special_tokens"] = ["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"] self.args["wordpieces_prefix"] = "##" tokenizer.train( files=train_files, vocab_size=self.args["vocab_size"], min_frequency=self.args["min_frequency"], special_tokens=self.args["special_tokens"], wordpieces_prefix="##", ) else: tokenizer = ByteLevelBPETokenizer() tokenizer.train( files=train_files, vocab_size=self.args["vocab_size"], min_frequency=self.args["min_frequency"], special_tokens=self.args["special_tokens"], ) os.makedirs(output_dir, exist_ok=True) tokenizer.save(output_dir) logger.info(" Training of {} tokenizer complete. Saved to {}.".format(tokenizer_name, output_dir)) _, _, tokenizer_class = MODEL_CLASSES[self.args["model_type"]] tokenizer = tokenizer_class.from_pretrained(output_dir) if use_trained_tokenizer: self.tokenizer = tokenizer self.args["tokenizer_name"] = output_dir try: if self.args["model_type"] == "electra": model_to_resize = ( self.model.generator_model.module if hasattr(self.model.generator_model, "module") else self.model.generator_model ) model_to_resize.resize_token_embeddings(len(self.tokenizer)) model_to_resize = ( self.model.discriminator_model.module if hasattr(self.model.discriminator_model, "module") else self.model.discriminator_model ) model_to_resize.resize_token_embeddings(len(self.tokenizer)) model_to_resize = self.model.module if hasattr(self.model, "module") else self.model model_to_resize.resize_token_embeddings(len(self.tokenizer)) except AttributeError: pass def save_discriminator(self, output_dir=None): if self.args["model_type"] == "electra": if not self.args["no_save"]: if not output_dir: output_dir = os.path.join(self.args["output_dir"], "discriminator_model") os.makedirs(output_dir, exist_ok=True) model_to_save = ( self.model.discriminator_model.module if hasattr(self.model.discriminator_model, "module") else self.model.discriminator_model ) model_to_save.save_pretrained(output_dir) self.tokenizer.save_pretrained(output_dir) else: raise ValueError("Model must be of ElectraForLanguageModelingModel type") def save_generator(self, output_dir=None): if self.args["model_type"] == "electra": if not self.args["no_save"]: if not output_dir: output_dir = os.path.join(self.args["output_dir"], "generator_model") os.makedirs(output_dir, exist_ok=True) model_to_save = ( self.model.generator_model.module if hasattr(self.model.generator_model, "module") else self.model.generator_model ) model_to_save.save_pretrained(output_dir) self.tokenizer.save_pretrained(output_dir) else: raise ValueError("Model must be of ElectraForLanguageModelingModel type") def _threshold(self, x, threshold): if x >= threshold: return 1 return 0 def _move_model_to_device(self): self.model.to(self.device) def _create_training_progress_scores(self, **kwargs): extra_metrics = {key: [] for key in kwargs} training_progress_scores = { "global_step": [], "perplexity": [], "eval_loss": [], "train_loss": [], **extra_metrics, } return training_progress_scores def _get_last_metrics(self, metric_values): return {metric: values[-1] for metric, values in metric_values.items()} def _save_model(self, output_dir=None, optimizer=None, scheduler=None, model=None, results=None): if not output_dir: output_dir = self.args["output_dir"] os.makedirs(output_dir, exist_ok=True) if model and not self.args["no_save"]: # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model if self.args["model_type"] in "electra": os.makedirs(os.path.join(output_dir, "generator_config"), exist_ok=True) os.makedirs(os.path.join(output_dir, "discriminator_config"), exist_ok=True) self.generator_config.save_pretrained(os.path.join(output_dir, "generator_config")) self.discriminator_config.save_pretrained(os.path.join(output_dir, "discriminator_config")) model_to_save.save_pretrained(output_dir) self.tokenizer.save_pretrained(output_dir) torch.save(self.args, os.path.join(output_dir, "training_args.bin")) if optimizer: torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) if scheduler: torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) self._save_model_args(output_dir) if results: output_eval_file = os.path.join(output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: for key in sorted(results.keys()): writer.write("{} = {}\n".format(key, str(results[key]))) def _save_model_args(self, output_dir): os.makedirs(output_dir, exist_ok=True) with open(os.path.join(output_dir, "model_args.json"), "w") as f: json.dump(self.args, f) def _load_model_args(self, input_dir): if input_dir: input_dir, filename = os.path.split(input_dir) model_args_file = os.path.join(input_dir, "model_args.json") if os.path.isfile(model_args_file): with open(model_args_file, "r") as f: model_args = json.load(f) return model_args
44.965308
194
0.56422
7da06b61388ec4b36b50fbf29209611ff1bd2345
1,223
py
Python
simul_run.py
oddhyeon/AI-Stock-bot
fd2102cf3862b4b0b2d6bedc20a7fef5452d3493
[ "MIT" ]
1
2020-12-31T08:16:03.000Z
2020-12-31T08:16:03.000Z
simul_run.py
oddhyeon/AI-Stock-bot
fd2102cf3862b4b0b2d6bedc20a7fef5452d3493
[ "MIT" ]
null
null
null
simul_run.py
oddhyeon/AI-Stock-bot
fd2102cf3862b4b0b2d6bedc20a7fef5452d3493
[ "MIT" ]
null
null
null
import sys import pathlib import subprocess class Simulrun(): def __init__(self): self.input_value() def input_value(self): file_path = pathlib.Path(__file__).parent.absolute() / 'simulator_v2.py' print("file_path: ", file_path) print("sys.argv : ", sys.argv) if len(sys.argv) == 4: print(sys.argv) print("sys.argv1 : " , sys.argv[1]) if sys.argv[3]=="y": self.simul_reset = 'reset' elif sys.argv[3] == 'n': self.simul_reset = 'continue' else: print("y or n (소문자) 만 입력 가능 합니다.") exit(1) for i in range(int(sys.argv[1]), int(sys.argv[2]) + 1): print("run: ", i) subprocess.Popen(["python", str(file_path), str(i),self.simul_reset]) # ex) python simul_run.py 1 4 n 로 실행 했을 때 # 위 for문을 돌리면 아래 4개 명령을 실행한 것과 같다. # python simulator_v2.py 1 continue # python simulator_v2.py 2 continue # python simulator_v2.py 3 continue # python simulator_v2.py 4 continue # else: print("인자 3개를 입력 해주세요 ") if __name__ == "__main__": Simulrun()
30.575
85
0.529027
47401ddb9546d5b32a5d36c6731981aabe0ca7cd
5,461
py
Python
tests/fpgadataflow/test_fpgadataflow_duplicatestreams.py
alinavalinav/finn
e443a5859066a410a63c08dcfec4a90527ca24be
[ "BSD-3-Clause" ]
1
2020-12-21T07:37:57.000Z
2020-12-21T07:37:57.000Z
tests/fpgadataflow/test_fpgadataflow_duplicatestreams.py
alinavalinav/finn
e443a5859066a410a63c08dcfec4a90527ca24be
[ "BSD-3-Clause" ]
null
null
null
tests/fpgadataflow/test_fpgadataflow_duplicatestreams.py
alinavalinav/finn
e443a5859066a410a63c08dcfec4a90527ca24be
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import numpy as np from onnx import TensorProto, helper import finn.core.onnx_exec as oxe from finn.core.datatype import DataType from finn.core.modelwrapper import ModelWrapper from finn.transformation.infer_shapes import InferShapes from finn.transformation.infer_datatypes import InferDataTypes from finn.transformation.fpgadataflow.prepare_ip import PrepareIP from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode from finn.transformation.general import GiveUniqueNodeNames from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim from finn.util.basic import gen_finn_dt_tensor from finn.custom_op.registry import getCustomOp from finn.analysis.fpgadataflow.exp_cycles_per_layer import exp_cycles_per_layer def make_dupstreams_modelwrapper(ch, pe, idim, idt): shape = [1, idim, idim, ch] inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, shape) outp0 = helper.make_tensor_value_info("outp0", TensorProto.FLOAT, shape) outp1 = helper.make_tensor_value_info("outp1", TensorProto.FLOAT, shape) dupstrm_node = helper.make_node( "DuplicateStreams_Batch", ["inp"], ["outp0", "outp1"], domain="finn", backend="fpgadataflow", NumChannels=ch, PE=pe, inputDataType=idt.name, numInputVectors=[1, idim, idim], ) graph = helper.make_graph( nodes=[dupstrm_node], name="graph", inputs=[inp], outputs=[outp0, outp1] ) model = helper.make_model(graph, producer_name="addstreams-model") model = ModelWrapper(model) model.set_tensor_datatype("inp", idt) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) return model def prepare_inputs(input_tensor, idt): return {"inp": input_tensor} # data type @pytest.mark.parametrize("idt", [DataType.INT4, DataType.UINT16]) # channels @pytest.mark.parametrize("ch", [64]) # folding @pytest.mark.parametrize("fold", [-1, 2, 1]) # image dimension @pytest.mark.parametrize("imdim", [7]) # execution mode @pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"]) @pytest.mark.vivado def test_fpgadataflow_duplicatestreams(idt, ch, fold, imdim, exec_mode): if fold == -1: pe = 1 else: pe = ch // fold assert ch % pe == 0 # generate input data x = gen_finn_dt_tensor(idt, (1, imdim, imdim, ch)) model = make_dupstreams_modelwrapper(ch, pe, imdim, idt) if exec_mode == "cppsim": model = model.transform(PrepareCppSim()) model = model.transform(CompileCppSim()) model = model.transform(SetExecMode("cppsim")) elif exec_mode == "rtlsim": model = model.transform(SetExecMode("rtlsim")) model = model.transform(GiveUniqueNodeNames()) model = model.transform(PrepareIP("xc7z020clg400-1", 5)) model = model.transform(HLSSynthIP()) model = model.transform(PrepareRTLSim()) else: raise Exception("Unknown exec_mode") # prepare input data and execute input_dict = prepare_inputs(x, idt) output_dict = oxe.execute_onnx(model, input_dict) y0 = output_dict["outp0"] y1 = output_dict["outp1"] expected_y = x assert (y0 == expected_y).all(), exec_mode + " failed" assert (y1 == expected_y).all(), exec_mode + " failed" if exec_mode == "rtlsim": node = model.get_nodes_by_op_type("DuplicateStreams_Batch")[0] inst = getCustomOp(node) cycles_rtlsim = inst.get_nodeattr("cycles_rtlsim") exp_cycles_dict = model.analysis(exp_cycles_per_layer) exp_cycles = exp_cycles_dict[node.name] assert np.isclose(exp_cycles, cycles_rtlsim, atol=10) assert exp_cycles != 0
38.730496
80
0.733748
d214a2af913d7a74761b8f3430efc227e7e4c8a1
14,639
py
Python
Implementations/FasterSubsetSum/RandomizedMultiThreadedVer2.py
joakiti/Benchmark-SubsetSums
a875b5adf7f800d26b73516452904031c73ec29d
[ "MIT" ]
null
null
null
Implementations/FasterSubsetSum/RandomizedMultiThreadedVer2.py
joakiti/Benchmark-SubsetSums
a875b5adf7f800d26b73516452904031c73ec29d
[ "MIT" ]
null
null
null
Implementations/FasterSubsetSum/RandomizedMultiThreadedVer2.py
joakiti/Benchmark-SubsetSums
a875b5adf7f800d26b73516452904031c73ec29d
[ "MIT" ]
null
null
null
import math import multiprocessing import os import queue import time from collections import defaultdict from copy import copy from multiprocessing import shared_memory import copy import numpy as np from scipy.signal import fftconvolve from Implementations.helpers.Helper import toNumbers, ListToPolynomial from Implementations.FasterSubsetSum.RandomizedBase import NearLinearBase def partitionSetIntoKGenerator(Z, k): k = math.ceil(k) partition = np.zeros((k, len(Z)), dtype=np.dtype('u1')) # Otherwise we use too much memory. listUsed = set() for i in np.nonzero(Z)[0][1:]: # Ignore 0 component with 1: goesTo = np.random.randint(0, k) partition[goesTo][i] = 1 partition[goesTo][0] = 1 listUsed.add(goesTo) for x in listUsed: yield partition[x][:max(np.nonzero(partition[x])[0]) + 1] def partitionSetIntoKRegularNumbers(Z, k): k = math.ceil(k) partition = defaultdict(list) listUsed = set() for i in Z: # Ignore 0 component with 1: goesTo = np.random.randint(0, k) partition[goesTo].append(i) listUsed.add(goesTo) return [partition[x] for x in listUsed] def sumSet(A, B, threshold): eps = 0.0001 # account for floating error AsumsetB = fftconvolve(A, B) return np.array(np.select([AsumsetB[:int(threshold + 1)] > eps], [1]), dtype=np.dtype('u1')) def roundToPowerOf2(m): return pow(2, math.ceil(math.log2(m))) class ColorCodingWorker(multiprocessing.Process): def __init__(self, task_queue, result_queue, threads): multiprocessing.Process.__init__(self) self.task_queue = task_queue self.result_queue = result_queue self.threads = threads def run(self): proc_name = self.name tasksRun = 0 while True: next_task = self.task_queue.get() if next_task is None: # Poison pill means shutdown # print('%s: Exiting' % proc_name) # print(combineTasksDone) self.task_queue.task_done() print(tasksRun) break # print('%s: %s' % (proc_name, next_task)) if isinstance(next_task, ColorCodingTask): next_task(self.task_queue) self.task_queue.task_done() else: start = time.time() result = next_task() end = time.time() tasksRun += 1 self.result_queue.put(result) self.task_queue.task_done() return class ColorCodingLayerWorker(multiprocessing.Process): def __init__(self, task_queue, color_queue, result_que, shr_name, dim): multiprocessing.Process.__init__(self) self.task_queue = task_queue self.color_queue = color_queue self.results_que = result_que self.shr_name = shr_name self.dim = dim def run(self): proc_name = self.name existing_shm = shared_memory.SharedMemory(name=self.shr_name) np_array = np.ndarray(self.dim, dtype=np.int64, buffer=existing_shm.buf) while True: next_task = self.task_queue.get() if next_task is None: # Poison pill means shutdown # print('%s: Exiting' % proc_name) existing_shm.close() existing_shm.unlink() self.task_queue.task_done() break # mp_array, np_array = self.shared_memory # Load the numpy array from memory, copy to avoid inconsisetency vals = np_array[next_task.start:next_task.end] # print('%s: %s' % (proc_name, next_task)) next_task(vals, self.color_queue) # print('%s: solved %s in %d' % (proc_name, next_task, end - start)) self.task_queue.task_done() return class CombineTask(object): def __init__(self, Z, t, layer, m, j): self.Z = Z self.t = t self.layer = layer self.m = m self.j = j def __call__(self): start = time.time() if len(self.Z) == 0: return Result(self.layer, self.j, self.m, [0]) ans = ListToPolynomial(self.Z[0]) for i in range(1, len(self.Z)): if len(self.Z[i]) == 0: continue ans = sumSet(ans, ListToPolynomial(self.Z[i]), self.t) end = time.time() if self.layer == 5: print('Solved %s in %f' % (self, end - start)) return Result(self.layer, self.j, self.m, toNumbers(ans)) def __str__(self): return 'CombineTask %d' % self.layer class ColorCodingTask(object): def __init__(self, repetitions, Z, t, k, delta, threads, layer, j=None, m=None): self.repetitions = repetitions self.Z = Z self.t = t self.k = k self.delta = delta self.threads = threads self.layer = layer self.j = j self.m = m def __call__(self, combine_que): repetitions = self.repetitions for j in range(0, math.ceil(repetitions)): partition = partitionSetIntoKRegularNumbers(self.Z, self.k * self.k) # max(int(k*k//2), 2)) if len(partition) < 20: # Then do the work ourselves. combine_que.put(CombineTask(partition, self.t, self.layer, self.m, self.j)) else: # Distribute the workload partitionInto = 2 threadPerWork = math.ceil(len(partition) / partitionInto) for threadPartition in range(0, partitionInto): combine_que.put(CombineTask(partition[threadPartition * threadPerWork: min( (threadPartition + 1) * threadPerWork, len(partition))], self.t, self.layer, self.m, self.j)) def __str__(self): return 'ColorCoding %d' % self.layer class Result(object): def __init__(self, layer, j, m, result): self.layer = layer self.j = j self.m = m self.result = result class ColorCodingLayerTask(object): def __init__(self, start, end, i, t, l, delta, threads): self.start = start self.end = end self.i = i self.t = t self.l = l self.delta = delta self.threads = threads def __call__(self, Z, color_coding_queue): divisor = math.log2(self.l / self.delta) if self.l < divisor: # color_coding_queue.put # TODO: Add data to identify this solution color_coding_queue.put(ColorCodingTask(1, Z, self.t, self.l, self.delta, self.threads, self.i)) return # return color_coding(1, Z, self.t, self.l, self.delta) m = roundToPowerOf2(self.l / divisor) partition = partitionSetIntoKRegularNumbers(Z, m) m = roundToPowerOf2(len(partition)) while len(partition) < m: partition.append([0]) gamma = 6 * divisor if gamma > self.l: gamma = self.l t = self.t if 2*gamma*t/self.l <= t: t = 2 * gamma * t / self.l # Put color coding jobs available on the queue for j in range(m): # TODO: Add data to identify this solution color_coding_queue.put( ColorCodingTask(1, partition[j], t, round(gamma), self.delta / self.l, self.threads, self.i, j, m) ) return def __str__(self): return 'ColorCodingLayer %d' % self.i def create_shared_block(data): a = copy.deepcopy(data) # Start with an existing NumPy array shm = shared_memory.SharedMemory(create=True, size=a.nbytes) # # Now create a NumPy array backed by shared memory np_array = np.ndarray(a.shape, dtype=np.int64, buffer=shm.buf) np_array[:] = a[:] # Copy the original data into shared memory return shm, np_array class RandomizedMultiThreadedVer2(NearLinearBase): def __init__(self, debug, repetitions, threads): super().__init__(debug, repetitions) self.threads = threads self.label = '%d threads' % threads def prioritize(self, Z, l, delta): divisor = math.log2(l / delta) if l < divisor: return 0 if len(Z) <= 10: return 0 return len(Z) * math.log2(len(Z)) * divisor def partitionIntoLayers(self, Z, n, t): Zi = [Z[(t / pow(2, i) <= Z) & (Z < t / pow(2, i - 1))] for i in range(1, math.ceil(math.log2(n)))] Zi.append(Z[(0 <= Z) & (Z < t / pow(2, math.ceil(math.log2(n)) - 1))]) if self.debug: self.layerInformation = list() for i in range(len(Zi)): self.layerInformation.append((len(Zi[i]), t / pow(2, i))) self.layerInformation.append((len(Zi[len(Zi) - 1]), 0)) for i in range(len(Zi)): if len(Zi[i]) == 0: Zi[i] = np.array([0]) return Zi def fasterSubsetSum(self, Z, t, delta): n = len(Z) self.n = n Z = np.array(Z) Zi = self.partitionIntoLayers(Z, n, t) # partition_with_index = [(index, value) for index, value in enumerate(Zi)] # partition_with_index.sort(key=lambda x: self.prioritize(x[1], math.pow(2, x[0] + 1) - 1, # delta / (math.ceil(math.log2(n)))), reverse=True) # partition_with_index = list(map(itemgetter(0), partition_with_index)) # partition_with_index.remove(0) # Zi = np.array(list(map(ListToPolynomial, Zi))) S = ListToPolynomial(Zi[0]) S[0] = 1 if len(Zi) == 1: S = self.ColorCodingLayer(S, t, len(Z), delta / (math.ceil(math.log2(n)))) return toNumbers(S) # Each process will get 'chunksize' nums and a queue to put his out # dict into color_coding_results = multiprocessing.Queue() layer_queue = multiprocessing.JoinableQueue() color_queue = multiprocessing.JoinableQueue() # Align all partitions into a single layer (to reduce overhead of copying) # Make all layers shared across memory layerToInterval = [] nextIndex = 0 allVals = [] for value in Zi: layerToInterval.append((nextIndex, nextIndex + len(value))) nextIndex = nextIndex + len(value) # Compose all partitions into one big list allVals = allVals + list(value) allVals = np.array(allVals, dtype=np.int64) shr, np_array = create_shared_block(allVals) color_workers = [ColorCodingWorker(color_queue, color_coding_results, self.threads) for process in range(self.threads)] layer_worker = ColorCodingLayerWorker(layer_queue, color_queue, color_coding_results, shr.name, allVals.shape) for w in color_workers: w.start() layer_worker.start() numJobs = 0 asd = time.time() for i in range(1, len(Zi) // 2): # We take the strongest layers, and then solve the easy layers. numJobs += 1 interval = layerToInterval[i] start = interval[0] end = interval[1] layer_queue.put( ColorCodingLayerTask(start, end, i + 1, t, pow(2, i + 1) - 1, delta / (math.ceil(math.log2(n))), self.threads)) for i in range(len(Zi) // 2, len(Zi)): z = ListToPolynomial(Zi[i]) if len(z) > 1: Si = self.ColorCodingLayer(z, t, pow(2, i + 1) - 1, delta / (math.ceil(math.log2(n))), high=pow(2, i) if i != len(Zi) - 1 else (2 ** i, "Last is zero")) S = self.sumSet(Si, S, t) # Wait for all layer codings and color codings to complete layer_queue.join() color_queue.join() layer_queue.put(None) layer_queue.join() for process in range(self.threads): color_queue.put(None) color_queue.join() asdfg = time.time() print('Time to compute all solutions:', asdfg - asd) results = list() start = time.time() while True: try: results.append(color_coding_results.get(timeout=2)) except queue.Empty: break print('result length:', len(results)) combineAndAppendToS = defaultdict() binaryTreeSumWay = defaultdict(lambda: defaultdict(list)) for result in results: # Either, it belongs to a sumset from color coding? So should be combined with existing sumsets. if result.m is None: if result.layer not in combineAndAppendToS: combineAndAppendToS[result.layer] = ListToPolynomial(result.result) else: combineAndAppendToS[result.layer] = self.sumSet(ListToPolynomial(result.result), combineAndAppendToS[result.layer], t) else: if result.j not in binaryTreeSumWay[result.layer][result.j]: binaryTreeSumWay[result.layer][result.j] = ListToPolynomial(result.result) else: binaryTreeSumWay[result.layer][result.j] = self.sumSet(binaryTreeSumWay[result.layer][result.j], ListToPolynomial(result.result), t) for binaryTreeComputation in binaryTreeSumWay.values(): m = len(binaryTreeComputation) for h in range(1, int(math.log2(m))): threshold = t for j in range(1, int(m / pow(2, h)) + 1): binaryTreeComputation[j - 1] = self.sumSet(binaryTreeComputation[2 * j - 1 - 1], binaryTreeComputation[2 * j - 1], threshold) self.sumSet(S, binaryTreeComputation[0], t) for color_coding_list in combineAndAppendToS.values(): S = self.sumSet(S, color_coding_list, t) end = time.time() print('Time to combine all solutions:', end - start) del layer_queue del color_queue for worker in color_workers: del worker del color_workers del layer_worker del color_coding_results # while numJobs: # S = sumSet(S, results.get(), t) # numJobs -= 1 # for p in procs: # S = sumSet(S, out_q.get(), t) return toNumbers(S)
37.632391
118
0.568413
3af673ba45b806283fbf36c3e2f36fea4240a622
1,079
py
Python
setup.py
BigelowLab/tetramerpcapy
2813ebcac5a10a0e58be4d922296a0b92a4e8768
[ "MIT" ]
null
null
null
setup.py
BigelowLab/tetramerpcapy
2813ebcac5a10a0e58be4d922296a0b92a4e8768
[ "MIT" ]
2
2020-11-19T14:35:33.000Z
2020-12-11T19:11:13.000Z
setup.py
BigelowLab/tetramerpcapy
2813ebcac5a10a0e58be4d922296a0b92a4e8768
[ "MIT" ]
null
null
null
import os import io from setuptools import setup def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() def get_version(relpath): '''Read version info from a file without importing it''' for line in io.open(os.path.join(os.path.dirname(__file__), relpath), encoding='cp437'): if '__version__' in line: if '"' in line: return line.split('"')[1] elif "'" in line: return line.split("'")[1] setup( name = "tetramerpca", version = get_version('tetramerpca/tetramerpca.py'), author = "Ben Tupper", author_email = "btupper@bigelow.org", url = "https://github.com/BigelowLab/tetramerpcapy", description = ("Tetramer analysis with PCA"), py_modules=[ 'tetramerpca'], packages=['tetramerpca'], license = "MIT", install_requires=[ 'click', 'pandas', 'biopython', 'matplotlib', 'adjustText'], entry_points=''' [console_scripts] tetramerpca=tetramerpca:main ''' )
26.317073
92
0.593142
a0cca9e86a7e73c575f7d2efa298848d3ae0df11
5,946
py
Python
vispy/visuals/tests/test_mesh.py
yxdragon/vispy
47ba1f5a06d8588f3a1a329c50cd0f910ecce62d
[ "BSD-3-Clause" ]
1
2021-10-31T05:43:29.000Z
2021-10-31T05:43:29.000Z
vispy/visuals/tests/test_mesh.py
yxdragon/vispy
47ba1f5a06d8588f3a1a329c50cd0f910ecce62d
[ "BSD-3-Clause" ]
null
null
null
vispy/visuals/tests/test_mesh.py
yxdragon/vispy
47ba1f5a06d8588f3a1a329c50cd0f910ecce62d
[ "BSD-3-Clause" ]
1
2018-09-17T07:00:38.000Z
2018-09-17T07:00:38.000Z
# -*- coding: utf-8 -*- import numpy as np from vispy import scene from vispy.geometry import create_cube, create_sphere from vispy.testing import (TestingCanvas, requires_application, run_tests_if_main, requires_pyopengl) from vispy.visuals.filters import WireframeFilter import pytest @requires_pyopengl() def test_mesh_color(): # Create visual vertices, filled_indices, outline_indices = create_cube() axis = scene.visuals.Mesh(vertices['position'], outline_indices, color='black', mode='lines') # Change color (regression test for a bug that caused this to reset # the vertex data to None) axis.color = (0.1, 0.3, 0.7, 0.9) new_vertices = axis.mesh_data.get_vertices() np.testing.assert_allclose(axis.color.rgba, (0.1, 0.3, 0.7, 0.9)) np.testing.assert_allclose(vertices['position'], new_vertices) @requires_pyopengl() @requires_application() @pytest.mark.parametrize('shading', [None, 'flat', 'smooth']) def test_mesh_shading_change_from_none(shading): # Regression test for #2041: exception raised when changing the shading # mode with shading=None initially. size = (45, 40) with TestingCanvas(size=size) as c: v = c.central_widget.add_view(border_width=0) vertices = np.array([(0, 0, 0), (0, 0, 1), (1, 0, 0)], dtype=float) faces = np.array([(0, 1, 2)]) mesh = scene.visuals.Mesh(vertices=vertices, faces=faces, shading=None) v.add(mesh) c.render() # This below should not fail. mesh.shading = shading c.render() @requires_pyopengl() @requires_application() @pytest.mark.parametrize('shading', [None, 'flat', 'smooth']) def test_mesh_shading_filter(shading): size = (45, 40) with TestingCanvas(size=size, bgcolor="k") as c: v = c.central_widget.add_view(border_width=0) # Create visual mdata = create_sphere(20, 40, radius=20) mesh = scene.visuals.Mesh(meshdata=mdata, shading=shading, color=(0.1, 0.3, 0.7, 0.9)) v.add(mesh) from vispy.visuals.transforms import STTransform mesh.transform = STTransform(translate=(20, 20)) mesh.transforms.scene_transform = STTransform(scale=(1, 1, 0.01)) rendered = c.render()[..., 0] # R channel only if shading in ("flat", "smooth"): # there should be a gradient, not solid colors assert np.unique(rendered).size >= 28 # sphere/circle starts "dark" on the left and gets brighter # then hits a bright spot and decreases after invest_row = rendered[23].astype(np.float64) # overall, we should be increasing brightness up to a "bright spot" assert (np.diff(invest_row[:29]) >= -1).all() else: assert np.unique(rendered).size == 2 @requires_pyopengl() def test_mesh_bounds(): # Create 3D visual vertices, filled_indices, outline_indices = create_cube() axis = scene.visuals.Mesh(vertices['position'], outline_indices, color='black', mode='lines') # Test bounds for all 3 axes for i in range(3): np.testing.assert_allclose(axis.bounds(i), (-1.0, 1.0)) # Create 2D visual using projection of cube axis = scene.visuals.Mesh(vertices['position'][:, :2], outline_indices, color='black', mode='lines') # Test bounds for first 2 axes for i in range(2): np.testing.assert_allclose(axis.bounds(i), (-1.0, 1.0)) # Test bounds for 3rd axis np.testing.assert_allclose(axis.bounds(2), (0.0, 0.0)) @requires_pyopengl() @requires_application() def test_mesh_wireframe_filter(): size = (45, 40) with TestingCanvas(size=size, bgcolor="k") as c: v = c.central_widget.add_view(border_width=0) # Create visual mdata = create_sphere(20, 40, radius=20) mesh = scene.visuals.Mesh(meshdata=mdata, shading=None, color=(0.1, 0.3, 0.7, 0.9)) wireframe_filter = WireframeFilter(color='red') mesh.attach(wireframe_filter) v.add(mesh) from vispy.visuals.transforms import STTransform mesh.transform = STTransform(translate=(20, 20)) mesh.transforms.scene_transform = STTransform(scale=(1, 1, 0.01)) rendered_with_wf = c.render() assert np.unique(rendered_with_wf[..., 0]).size >= 50 wireframe_filter.enabled = False rendered_wo_wf = c.render() # the result should be completely different # assert not allclose pytest.raises(AssertionError, np.testing.assert_allclose, rendered_with_wf, rendered_wo_wf) wireframe_filter.enabled = True wireframe_filter.wireframe_only = True rendered_with_wf_only = c.render() # the result should be different from the two cases above pytest.raises(AssertionError, np.testing.assert_allclose, rendered_with_wf_only, rendered_with_wf) pytest.raises(AssertionError, np.testing.assert_allclose, rendered_with_wf_only, rendered_wo_wf) wireframe_filter.enabled = True wireframe_filter.wireframe_only = False wireframe_filter.faces_only = True rendered_with_faces_only = c.render() # the result should be different from the cases above pytest.raises(AssertionError, np.testing.assert_allclose, rendered_with_faces_only, rendered_with_wf) pytest.raises(AssertionError, np.testing.assert_allclose, rendered_with_faces_only, rendered_wo_wf) pytest.raises(AssertionError, np.testing.assert_allclose, rendered_with_faces_only, rendered_with_wf_only) run_tests_if_main()
38.61039
79
0.636226
c1fb6efac361f959a49460ef5db786c8dea7604c
3,056
py
Python
syngenta_digital_alc/apigateway/response_client.py
syngenta-digital/package-python-alc
74c712d8a94078b922aca22e319a0cb4b035228b
[ "Apache-2.0" ]
null
null
null
syngenta_digital_alc/apigateway/response_client.py
syngenta-digital/package-python-alc
74c712d8a94078b922aca22e319a0cb4b035228b
[ "Apache-2.0" ]
10
2021-10-19T23:08:46.000Z
2022-01-12T23:17:19.000Z
syngenta_digital_alc/apigateway/response_client.py
syngenta-digital/package-python-alc
74c712d8a94078b922aca22e319a0cb4b035228b
[ "Apache-2.0" ]
null
null
null
import base64 import gzip from io import BytesIO import simplejson as json from syngenta_digital_alc.common import json_helper class ResponseClient: def __init__(self): self.__body = {} self.__code = 200 self.__base64_encoded = False self.__compress = False self.__headers = { 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Headers': '*' } @property def headers(self): return self.__headers @headers.setter def headers(self, value): key, val = value self.__headers[key] = val @property def base64_encoded(self): return self.__base64_encoded @base64_encoded.setter def base64_encoded(self, value): self.__base64_encoded = value @property def compress(self): return self.__compress @compress.setter def compress(self, value): self.__compress = value @property def code(self): if isinstance(self.__body, dict) and self.__code == 200 and not self.__body: return 204 if isinstance(self.__body, dict) and self.__code == 200 and self.has_errors: return 400 return self.__code @code.setter def code(self, code): self.__code = code @property def body(self): if self.compress: return self.__compress_body() if isinstance(self.__body, (dict, list, tuple)): return json.dumps(self.__body, use_decimal=True) return self.__body @body.setter def body(self, body): self.__body = body @property def response(self): body = self.body return { 'isBase64Encoded': self.base64_encoded, 'headers': self.headers, 'statusCode': self.code, 'body': body } @property def has_errors(self): return 'errors' in self.__body def set_error(self, key_path, message): error = {'key_path': key_path, 'message': message} if (isinstance(self.__body, dict) and 'errors' in self.__body): self.__body['errors'].append(error) else: self.__body = {'errors': [error]} def __compress_body(self): self.headers = ('Content-Encoding', 'gzip') self.base64_encoded = True compressed = BytesIO() body = json_helper.try_encode_json(self.__body) with gzip.GzipFile(fileobj=compressed, mode='w') as file: file.write(body.encode('utf-8')) return base64.b64encode(compressed.getvalue()).decode('ascii') def __str__(self): response = self.response return str({ 'has_errors': self.has_errors, 'response': { 'headers': response.get('headers', {}), 'statusCode': response.get('statusCode', 200), 'isBase64Encoded': response.get('isBase64Encoded', False), 'body': json_helper.try_decode_json(response.get('body', {})) } })
27.285714
84
0.589005
91367afd5d5670e8c6575994c0567f8e9e6965de
1,592
py
Python
cloudify_aws/elb/__init__.py
jrzeszutek/cloudify-aws-plugin
59832b4ac5ddad496110085ed2e21dd36db5e9df
[ "Apache-2.0" ]
13
2015-05-28T23:21:05.000Z
2022-03-20T05:38:20.000Z
cloudify_aws/elb/__init__.py
jrzeszutek/cloudify-aws-plugin
59832b4ac5ddad496110085ed2e21dd36db5e9df
[ "Apache-2.0" ]
49
2015-01-04T16:05:34.000Z
2022-03-27T11:35:13.000Z
cloudify_aws/elb/__init__.py
jrzeszutek/cloudify-aws-plugin
59832b4ac5ddad496110085ed2e21dd36db5e9df
[ "Apache-2.0" ]
41
2015-01-21T17:16:05.000Z
2022-03-31T06:47:48.000Z
# Copyright (c) 2018 Cloudify Platform Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ELB ~~~ AWS ELB base interface """ # Cloudify AWS from cloudify_aws.common import AWSResourceBase from cloudify_aws.common.connection import Boto3Connection # pylint: disable=R0903 class ELBBase(AWSResourceBase): """ AWS ELB base interface """ def __init__(self, ctx_node, resource_id=None, client=None, logger=None): AWSResourceBase.__init__( self, client or Boto3Connection(ctx_node).client('elb'), resource_id=resource_id, logger=logger) @property def properties(self): """Gets the properties of an external resource""" raise NotImplementedError() @property def status(self): """Gets the status of an external resource""" raise NotImplementedError() def create(self, params): """Creates a resource""" raise NotImplementedError() def delete(self, params=None): """Deletes a resource""" raise NotImplementedError()
30.615385
77
0.693467
ff407c49c4dfc6c4da374d5ad50134b7e4ac64a5
8,687
py
Python
numba/dbscan/CPU/base_dbscan.py
geexie/dpbench
7d41409ded3c816f35003bc5aea071852bceb892
[ "BSD-2-Clause" ]
8
2021-03-26T15:17:58.000Z
2022-01-21T21:56:19.000Z
numba/dbscan/CPU/base_dbscan.py
geexie/dpbench
7d41409ded3c816f35003bc5aea071852bceb892
[ "BSD-2-Clause" ]
22
2021-03-30T21:20:57.000Z
2022-02-22T13:42:17.000Z
numba/dbscan/CPU/base_dbscan.py
geexie/dpbench
7d41409ded3c816f35003bc5aea071852bceb892
[ "BSD-2-Clause" ]
7
2021-03-23T11:00:43.000Z
2022-02-02T12:28:55.000Z
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import argparse import sys import numpy as np import numpy.random as rnd import sys, json from typing import NamedTuple from sklearn.datasets import make_blobs from sklearn.preprocessing import StandardScaler import dbscan_python try: import itimer as it now = it.itime get_mops = it.itime_mops_now except: from timeit import default_timer now = default_timer get_mops = lambda t0, t1, n: (n / (t1 - t0), t1 - t0) ###################################################### # GLOBAL DECLARATIONS THAT WILL BE USED IN ALL FILES # ###################################################### # make xrange available in python 3 try: xrange except NameError: xrange = range ############################################### class DataSize(NamedTuple): n_samples: int n_features: int class Params(NamedTuple): eps: float minpts: int SEED = 7777777 OPTIMAL_PARAMS = { DataSize(n_samples=2 ** 8, n_features=2): Params(eps=0.173, minpts=4), DataSize(n_samples=2 ** 8, n_features=3): Params(eps=0.35, minpts=6), DataSize(n_samples=2 ** 8, n_features=10): Params(eps=0.8, minpts=20), DataSize(n_samples=2 ** 9, n_features=2): Params(eps=0.15, minpts=4), DataSize(n_samples=2 ** 9, n_features=3): Params(eps=0.1545, minpts=6), DataSize(n_samples=2 ** 9, n_features=10): Params(eps=0.7, minpts=20), DataSize(n_samples=2 ** 10, n_features=2): Params(eps=0.1066, minpts=4), DataSize(n_samples=2 ** 10, n_features=3): Params(eps=0.26, minpts=6), DataSize(n_samples=2 ** 10, n_features=10): Params(eps=0.6, minpts=20), DataSize(n_samples=2 ** 11, n_features=2): Params(eps=0.095, minpts=4), DataSize(n_samples=2 ** 11, n_features=3): Params(eps=0.18, minpts=6), DataSize(n_samples=2 ** 11, n_features=10): Params(eps=0.6, minpts=20), DataSize(n_samples=2 ** 12, n_features=2): Params(eps=0.0715, minpts=4), DataSize(n_samples=2 ** 12, n_features=3): Params(eps=0.17, minpts=6), DataSize(n_samples=2 ** 12, n_features=10): Params(eps=0.6, minpts=20), DataSize(n_samples=2 ** 13, n_features=2): Params(eps=0.073, minpts=4), DataSize(n_samples=2 ** 13, n_features=3): Params(eps=0.149, minpts=6), DataSize(n_samples=2 ** 13, n_features=10): Params(eps=0.6, minpts=20), DataSize(n_samples=2 ** 14, n_features=2): Params(eps=0.0695, minpts=4), DataSize(n_samples=2 ** 14, n_features=3): Params(eps=0.108, minpts=6), DataSize(n_samples=2 ** 14, n_features=10): Params(eps=0.6, minpts=20), DataSize(n_samples=2 ** 15, n_features=2): Params(eps=0.0695, minpts=4), DataSize(n_samples=2 ** 15, n_features=3): Params(eps=0.108, minpts=6), DataSize(n_samples=2 ** 15, n_features=10): Params(eps=0.6, minpts=20), DataSize(n_samples=2 ** 16, n_features=2): Params(eps=0.0695, minpts=4), DataSize(n_samples=2 ** 16, n_features=3): Params(eps=0.108, minpts=6), DataSize(n_samples=2 ** 16, n_features=10): Params(eps=0.6, minpts=20), } def gen_data(n_samples, n_features, centers=10, random_state=SEED): X, *_ = make_blobs( n_samples=n_samples, n_features=n_features, centers=centers, random_state=SEED ) X = StandardScaler().fit_transform(X) return X.flatten() ############################################## def run(name, alg, sizes=5, step=2, nopt=2 ** 10): parser = argparse.ArgumentParser() parser.add_argument("--steps", type=int, default=sizes, help="Number of steps") parser.add_argument("--step", type=int, default=step, help="Factor for each step") parser.add_argument("--size", type=int, default=nopt, help="Initial data size") parser.add_argument( "--repeat", type=int, default=1, help="Iterations inside measured region" ) parser.add_argument("--dims", type=int, default=10, help="Dimensions") parser.add_argument("--eps", type=float, default=0.6, help="Neighborhood value") parser.add_argument("--minpts", type=int, default=20, help="minPts") parser.add_argument( "--json", required=False, default=__file__.replace("py", "json"), help="output json data filename", ) parser.add_argument( "--test", required=False, action="store_true", help="Check for correctness by comparing output with naieve Python version", ) args = parser.parse_args() nopt = args.size repeat = args.repeat output = {} output["name"] = name output["sizes"] = sizes output["step"] = step output["repeat"] = repeat output["randseed"] = SEED output["metrics"] = [] rnd.seed(SEED) if args.test: data = gen_data(nopt, args.dims) assignments = np.empty(nopt, dtype=np.int64) data_size = DataSize(n_samples=nopt, n_features=args.dims) params = OPTIMAL_PARAMS.get(data_size, Params(eps=args.eps, minpts=args.minpts)) minpts = params.minpts or args.minpts eps = params.eps or args.eps p_nclusters = dbscan_python.dbscan( nopt, args.dims, data, eps, minpts, assignments ) n_nclusters = alg(nopt, args.dims, data, eps, minpts, assignments) if np.allclose(n_nclusters, p_nclusters): print("Test succeeded\n") else: print("Test failed\n") return with open("perf_output.csv", "w", 1) as mops_fd, open( "runtimes.csv", "w", 1 ) as runtimes_fd: for _ in xrange(args.steps): data = gen_data(nopt, args.dims) assignments = np.empty(nopt, dtype=np.int64) data_size = DataSize(n_samples=nopt, n_features=args.dims) params = OPTIMAL_PARAMS.get( data_size, Params(eps=args.eps, minpts=args.minpts) ) # if params.eps is None or params.minpts is None: # err_msg_tmpl = 'ERF: {}: Size: {} Dim: {} Eps: {} minPts: {}' # raise ValueError(err_msg_tmpl.format(name, nopt, args.dims, params.eps, params.minpts)) minpts = params.minpts or args.minpts eps = params.eps or args.eps nclusters = alg(nopt, args.dims, data, eps, minpts, assignments) # warmup t0 = now() for _ in xrange(repeat): nclusters = alg(nopt, args.dims, data, eps, minpts, assignments) mops, time = get_mops(t0, now(), nopt) result_mops = mops * repeat / 1e6 print( "ERF: {:15s} | Size: {:10d} | MOPS: {:15.2f} | TIME: {:10.6f}".format( name, nopt, result_mops, time ), flush=True, ) output["metrics"].append((nopt, mops, time)) mops_fd.write( "{},{},{},{},{},{}\n".format( nopt, args.dims, eps, minpts, nclusters, result_mops ) ) runtimes_fd.write( "{},{},{},{},{},{}\n".format( nopt, args.dims, eps, minpts, nclusters, time ) ) nopt *= args.step repeat = max(repeat - args.step, 1) json.dump(output, open(args.json, "w"), indent=2, sort_keys=True)
39.307692
105
0.613791
323e2cefdca6164966c1d1bf02eb5bc6de23c429
4,659
py
Python
tf_agents/bandits/policies/mixture_policy.py
ayansengupta17/agents
c5a2f1f57d4fd0070eb75204aa0b1663de3e2c0a
[ "Apache-2.0" ]
2
2021-10-30T16:57:37.000Z
2021-11-17T10:21:17.000Z
tf_agents/bandits/policies/mixture_policy.py
ayansengupta17/agents
c5a2f1f57d4fd0070eb75204aa0b1663de3e2c0a
[ "Apache-2.0" ]
null
null
null
tf_agents/bandits/policies/mixture_policy.py
ayansengupta17/agents
c5a2f1f57d4fd0070eb75204aa0b1663de3e2c0a
[ "Apache-2.0" ]
2
2020-06-05T18:38:16.000Z
2020-07-08T14:41:42.000Z
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A policy class that chooses from a set of policies to get the actions from. This mixture policy takes a list of policies and will randomly choose one of them for every observation. The distribution is defined by the `mixture_distribution`. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import gin import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import import tensorflow_probability as tfp from tf_agents.policies import tf_policy from tf_agents.specs import tensor_spec from tf_agents.trajectories import policy_step from tf_agents.utils import nest_utils tfd = tfp.distributions MIXTURE_AGENT_ID = 'mixture_agent_id' SUBPOLICY_INFO = 'subpolicy_info' @gin.configurable class MixturePolicy(tf_policy.TFPolicy): """A policy that chooses from a set of policies to decide the action.""" def __init__(self, mixture_distribution, policies, name=None): """Initializes an instance of `MixturePolicy`. Args: mixture_distribution: A `tfd.Categorical` distribution on the domain `[0, len(policies) -1]`. This distribution is used by the mixture policy to choose which policy to listen to. policies: List of TF Policies. These are the policies that the mixture policy chooses from in every time step. name: The name of this instance of `MixturePolicy`. """ self._policies = policies if not isinstance(mixture_distribution, tfd.Categorical): raise TypeError( 'mixture distribution must be an instance of `tfd.Categorical`.') self._mixture_distribution = mixture_distribution action_spec = policies[0].action_spec time_step_spec = policies[0].time_step_spec for policy in policies[1:]: assert action_spec == policy.action_spec, 'Inconsistent action specs.' assert time_step_spec == policy.time_step_spec, ('Inconsistent time step ' 'specs.') assert policies[0].info_spec == policy.info_spec, ('Inconsistent info ' 'specs.') info_spec = { MIXTURE_AGENT_ID: tensor_spec.BoundedTensorSpec( shape=(), dtype=tf.int32, minimum=0, maximum=len(policies) - 1), SUBPOLICY_INFO: policies[0].info_spec } super(MixturePolicy, self).__init__( time_step_spec=time_step_spec, action_spec=action_spec, info_spec=info_spec, name=name) def _variables(self): variables = sum([p.variables() for p in self._policies], []) variables.extend(self._mixture_distribution.variables) return variables def _distribution(self, time_step, policy_state): raise NotImplementedError( '_distribution is not implemented for this policy.') def _action(self, time_step, policy_state, seed=None): first_obs = tf.nest.flatten(time_step.observation)[0] batch_size = tf.compat.dimension_value( first_obs.shape[0]) or tf.shape(first_obs)[0] policy_choice = self._mixture_distribution.sample(batch_size) policy_steps = [ policy.action(time_step, policy_state) for policy in self._policies ] policy_actions = nest_utils.stack_nested_tensors( [step.action for step in policy_steps], axis=-1) policy_infos = nest_utils.stack_nested_tensors( [step.info for step in policy_steps], axis=-1) expanded_choice = tf.expand_dims(policy_choice, axis=-1) mixture_action = tf.nest.map_structure( lambda t: tf.gather(t, policy_choice, batch_dims=1), policy_actions) expanded_mixture_info = tf.nest.map_structure( lambda t: tf.gather(t, expanded_choice, batch_dims=1), policy_infos) mixture_info = tf.nest.map_structure(lambda t: tf.squeeze(t, axis=1), expanded_mixture_info) return policy_step.PolicyStep(mixture_action, policy_state, { MIXTURE_AGENT_ID: policy_choice, SUBPOLICY_INFO: mixture_info })
38.825
80
0.708307
9ad3f3228e2c412fa54ce3cafd6fab51aaa8149d
1,885
py
Python
activeClassifier/env/mnist.py
dHonerkamp/ActiveClassifier
052675277153594db64261cd56699a057e633de2
[ "Apache-2.0" ]
null
null
null
activeClassifier/env/mnist.py
dHonerkamp/ActiveClassifier
052675277153594db64261cd56699a057e633de2
[ "Apache-2.0" ]
null
null
null
activeClassifier/env/mnist.py
dHonerkamp/ActiveClassifier
052675277153594db64261cd56699a057e633de2
[ "Apache-2.0" ]
null
null
null
import numpy as np import tensorflow as tf def get_MNIST(FLAGS): mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype(np.float32) x_test = x_test.astype(np.float32) x_train, x_test = x_train / 255.0, x_test / 255.0 n_valid = 5000 x_valid, y_valid = x_train[:n_valid], y_train[:n_valid] x_train, y_train = x_train[n_valid:], y_train[n_valid:] # shuffle so MNIST_OMNI_notMNIST can just split them at will def shuffle(x, y): idx = np.random.permutation(x.shape[0]) return x[idx], y[idx] x_train, y_train = shuffle(x_train, y_train) x_valid, y_valid = shuffle(x_valid, y_valid) x_test, y_test = shuffle(x_test, y_test) train = (np.reshape(x_train, [x_train.shape[0]] + FLAGS.img_shape), np.array(y_train, dtype=np.int32)) valid = (np.reshape(x_valid, [x_valid.shape[0]] + FLAGS.img_shape), np.array(y_valid, dtype=np.int32)) test = (np.reshape(x_test, [x_test.shape[0]] + FLAGS.img_shape), np.array(y_test, dtype=np.int32)) if FLAGS.binarize_MNIST: def binarize_det(images, threshold=0.1): """Deterministic convertion into binary image. Threshold as in Deepmind's UCL module 2018.""" return (threshold < images).astype('float32') def binarize_stoc(images): """Following https://www.cs.toronto.edu/~rsalakhu/papers/dbn_ais.pdf, which seems to be the standard reference for binarized MNIST. Convert stochastically into binary pixels proportionate to the picels intensities.""" return np.random.binomial(1, images).astype('float32') train = (binarize_stoc(train[0]), train[1]) import matplotlib.pyplot as plt valid = (binarize_stoc(valid[0]), valid[1]) test = (binarize_stoc(test[0]), test[1]) return train, valid, test
43.837209
143
0.668435
1b19d3b557b94034d73e7b2bb641b2ff1dd3d84e
1,257
py
Python
homeassistant/components/ais_intro/__init__.py
DRubioBizcaino/AIS-home-assistant
69d49b6e6e09313acd63375ac6c08f79be8b904c
[ "Apache-2.0" ]
1
2020-05-11T19:20:07.000Z
2020-05-11T19:20:07.000Z
homeassistant/components/ais_intro/__init__.py
DRubioBizcaino/AIS-home-assistant
69d49b6e6e09313acd63375ac6c08f79be8b904c
[ "Apache-2.0" ]
null
null
null
homeassistant/components/ais_intro/__init__.py
DRubioBizcaino/AIS-home-assistant
69d49b6e6e09313acd63375ac6c08f79be8b904c
[ "Apache-2.0" ]
null
null
null
""" Component that will help guide the user taking its first steps. """ import asyncio import logging DOMAIN = "ais_intro" @asyncio.coroutine def async_setup(hass, config=None): """Set up the introduction component.""" log = logging.getLogger(__name__) log.info( """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Cześć, witamy w systemie Asystent domowy! Mamy nadzieję, że spełnimy wszystkie twoje marzenia. Oto kilka informacji, od których możesz zacząć: - Dokumentacja : https://sviete.github.io/AIS-docs - Źródła programu: https://github.com/sviete - Strona projektu: https://www.ai-speaker.com ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ ) hass.components.persistent_notification.async_create( """ Mamy nadzieję, że spełnimy wszystkie twoje marzenia. Oto kilka informacji, od których możesz zacząć: - [Dokumentacja](https://sviete.github.io/AIS-docs) - [Źródła systemu](https://github.com/sviete) - [Strona projektu](https://www.ai-speaker.com) """, "Cześć, witamy w systemie Asystent domowy!", ) # noqa return True
22.446429
79
0.563246
526ef957d9361a2c5ec5f95403798056e7878844
966
py
Python
modules/data_handling.py
ShaderLight/clipboard-ota-server
b2ced3e012de8c56743f9889ffa0ca83b8b58ae8
[ "MIT" ]
null
null
null
modules/data_handling.py
ShaderLight/clipboard-ota-server
b2ced3e012de8c56743f9889ffa0ca83b8b58ae8
[ "MIT" ]
null
null
null
modules/data_handling.py
ShaderLight/clipboard-ota-server
b2ced3e012de8c56743f9889ffa0ca83b8b58ae8
[ "MIT" ]
null
null
null
import json class DataHandler: def __init__(self): self.path = 'resources/clipboard_data.json' if not self.file_exists(): with open(self.path, mode='w', encoding='utf-8') as f: json.dump({'text':'', 'timestamp':None}, f, ensure_ascii=False) def retrieve(self): with open(self.path, mode='r', encoding='utf-8') as f: content = json.load(f) return content def save(self, data): with open(self.path, mode='w', encoding='utf-8') as f: json.dump(data, f, indent=4, ensure_ascii=False) return 0 def clear(self, data): with open(self.path, mode='w', encoding='utf-8') as f: json.dump({'text':'', 'timestamp':None}, f, ensure_ascii=False) return 0 def file_exists(self): try: with open(self.path, mode='r'): return True except FileNotFoundError: return False
26.108108
79
0.556936
1ebe6cd8eb77e35ec1e0199f3895c749d6ce8b6b
381
py
Python
is/is/asgi.py
j-sulliman/iabg
ffa0f874bca360093c4db19be6935c2112b31852
[ "BSD-3-Clause" ]
null
null
null
is/is/asgi.py
j-sulliman/iabg
ffa0f874bca360093c4db19be6935c2112b31852
[ "BSD-3-Clause" ]
null
null
null
is/is/asgi.py
j-sulliman/iabg
ffa0f874bca360093c4db19be6935c2112b31852
[ "BSD-3-Clause" ]
null
null
null
""" ASGI config for is project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'is.settings') application = get_asgi_application()
22.411765
78
0.779528
01fabbca80919413b82814f75b36d682ecb2adcf
2,024
py
Python
examples/simulations/pendulum_ode.py
kclamar/vedo
2fd8b02ba8debcabbf43f0a4decbc141854273e1
[ "CC0-1.0" ]
836
2020-06-14T02:38:12.000Z
2022-03-31T15:39:50.000Z
examples/simulations/pendulum_ode.py
kclamar/vedo
2fd8b02ba8debcabbf43f0a4decbc141854273e1
[ "CC0-1.0" ]
418
2020-06-14T10:51:32.000Z
2022-03-31T23:23:14.000Z
examples/simulations/pendulum_ode.py
kclamar/vedo
2fd8b02ba8debcabbf43f0a4decbc141854273e1
[ "CC0-1.0" ]
136
2020-06-14T02:26:41.000Z
2022-03-31T12:47:18.000Z
"""Double pendulum with ODE integration""" # Copyright (c) 2018, N. Rougier, https://github.com/rougier/pendulum # http://www.physics.usyd.edu.au/~wheat/dpend_html/solve_dpend.c # Adapted for vedo by M. Musy, 2021 import numpy as np import scipy.integrate as integrate from vedo import Axes, Line, Points, show, sin, cos, ProgressBar G = 9.81 # acceleration due to gravity, in m/s^2 L1 = 1.0 # length of pendulum 1 in m L2 = 1.0 # length of pendulum 2 in m M1 = 1.0 # mass of pendulum 1 in kg M2 = 1.0 # mass of pendulum 2 in kg th1= 120 # initial angles (degrees) th2= -20 w1 = 0 # initial angular velocities (degrees per second) w2 = 0 dt = 0.015 def derivs(state, t): dydx = np.zeros_like(state) dydx[0] = state[1] a = state[2] - state[0] sina, cosa = sin(a), cos(a) den1 = (M1 + M2)*L1 - M2*L1*cosa*cosa dydx[1] = (M2*L1*state[1]*state[1]*sina*cosa + M2*G*sin(state[2])*cosa + M2*L2*state[3]*state[3]*sina - (M1+M2)*G*sin(state[0]) )/den1 dydx[2] = state[3] den2 = (L2/L1)*den1 dydx[3] = (-M2*L2*state[3]*state[3]*sina*cosa + (M1+M2)*G*sin(state[0])*cosa - (M1+M2)*L1*state[1]*state[1]*sina - (M1+M2)*G*sin(state[2]) )/den2 return dydx t = np.arange(0.0, 10.0, dt) state = np.radians([th1, w1, th2, w2]) y = integrate.odeint(derivs, state, t) P1 = np.dstack([L1*sin(y[:,0]), -L1*cos(y[:,0])]).squeeze() P2 = P1 + np.dstack([L2*sin(y[:,2]), -L2*cos(y[:,2])]).squeeze() ax = Axes(xrange=(-2,2), yrange=(-2,1), htitle=__doc__) pb = ProgressBar(0, len(t), c="b") for i in pb.range(): j = max(i- 5,0) k = max(i-10,0) l1 = Line([[0,0], P1[i], P2[i]]).lw(7).c("blue2") l2 = Line([[0,0], P1[j], P2[j]]).lw(6).c("blue2", 0.3) l3 = Line([[0,0], P1[k], P2[k]]).lw(5).c("blue2", 0.1) pt = Points([P1[i], P2[i], P1[j], P2[j], P1[k], P2[k]], r=8).c("blue2", 0.2) show(l1, l2, l3, pt, ax, interactive=False, size=(900,700), zoom=1.4) pb.print()
36.142857
80
0.563735
5ad950fc80b78aac090fb64ded8f847d3d24f498
602
py
Python
kluctl/e2e/__init__.py
AljoschaP/kluctl
40007d2767b42c13ef9ed66de9322f374f35151e
[ "Apache-2.0" ]
26
2021-08-18T11:18:46.000Z
2022-03-16T09:28:43.000Z
kluctl/e2e/__init__.py
AljoschaP/kluctl
40007d2767b42c13ef9ed66de9322f374f35151e
[ "Apache-2.0" ]
4
2021-09-07T09:55:29.000Z
2022-03-03T09:05:01.000Z
kluctl/e2e/__init__.py
AljoschaP/kluctl
40007d2767b42c13ef9ed66de9322f374f35151e
[ "Apache-2.0" ]
4
2021-09-04T11:52:33.000Z
2022-03-16T09:18:20.000Z
import os import subprocess import pytest_kind pytest_kind.cluster.KIND_VERSION = "v0.11.1" pytest_kind.cluster.KUBECTL_VERSION = "v1.21.5" # Same as pytest_kind.cluster.KindCluster.kubectl, but with os.environment properly passed to the subprocess def my_kubectl(self, *args, **kwargs): self.ensure_kubectl() return subprocess.check_output( [str(self.kubectl_path), *args], env={ **os.environ, "KUBECONFIG": str(self.kubeconfig_path), }, encoding="utf-8", **kwargs, ) pytest_kind.cluster.KindCluster.kubectl = my_kubectl
26.173913
108
0.679402
bf1aedae5e54c86ae14ba7219101170b6c4b591c
256
py
Python
src/solutions/80.py
bshankar/euler
c866a661a94d15d3744c74d85149534efac2ca23
[ "MIT" ]
null
null
null
src/solutions/80.py
bshankar/euler
c866a661a94d15d3744c74d85149534efac2ca23
[ "MIT" ]
null
null
null
src/solutions/80.py
bshankar/euler
c866a661a94d15d3744c74d85149534efac2ca23
[ "MIT" ]
null
null
null
from mpmath import mp import math as m mp.dps = 105 def sd(n): ss = str(mp.sqrt(n)) ss = ss.replace('.', '')[:100] if len(ss) < 100: return 0 return sum(int(i) for i in ss) ans = 0 for n in range(101): ans += sd(n) print ans
15.058824
34
0.550781
a38ef85b58bf13163f68cf2a0024041cc652d981
4,340
py
Python
tests/test_classifier/test_classifier_integration.py
seandickert/plda
971fe9ac8df1a05f0e4e42eaee7b8419ed74c527
[ "Apache-2.0" ]
1
2020-07-29T08:50:58.000Z
2020-07-29T08:50:58.000Z
tests/test_classifier/test_classifier_integration.py
seandickert/plda
971fe9ac8df1a05f0e4e42eaee7b8419ed74c527
[ "Apache-2.0" ]
null
null
null
tests/test_classifier/test_classifier_integration.py
seandickert/plda
971fe9ac8df1a05f0e4e42eaee7b8419ed74c527
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Ravi Sojitra. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import pytest from numpy.testing import assert_array_equal from numpy.testing import assert_allclose from plda import plda from plda.tests.utils import generate_data @pytest.fixture(scope='module') def data_dictionary(): np.random.seed(1234) n_k = 1000 K = 5 dim = 10 return generate_data(n_k, K, dim) @pytest.fixture(scope='module') def fitted_classifier(data_dictionary): X = data_dictionary['data'] Y = data_dictionary['labels'] classifier = plda.Classifier() classifier.fit_model(X, Y) return classifier def test_fit_model(fitted_classifier): # Before fitting. classifier = plda.Classifier() assert classifier.model is None with pytest.raises(Exception): classifier.get_categories() # After fitting. assert fitted_classifier.model is not None assert isinstance(fitted_classifier.model, plda.Model) def test_get_categories(fitted_classifier): # Before fitting. classifier = plda.Classifier() with pytest.raises(Exception): classifier.get_categories() # After fitting. expected = np.arange(5) actual = np.sort(fitted_classifier.get_categories()) assert_array_equal(actual, expected) def test_calc_logp_pp_categories(data_dictionary, fitted_classifier): means = data_dictionary['means'] means = fitted_classifier.model.transform(means, from_space='D', to_space='U_model') labels = np.arange(len(means)) # Without normalization. logps, k_list = fitted_classifier.calc_logp_pp_categories(means, False) for logp_row, k in zip(logps, k_list): assert labels[np.argmax(logp_row)] == k max_logps = np.max(logps, axis=-1) assert_allclose(max_logps[:-1], max_logps[1:], rtol=1e-2) # With normalization. logps, k_list = fitted_classifier.calc_logp_pp_categories(means, True) for logp_row, k in zip(logps, k_list): assert labels[np.argmax(logp_row)] == k assert_allclose(np.exp(logps).sum(axis=0), np.ones(logps.shape[0])) max_logps = np.max(logps, axis=-1) assert_allclose(max_logps[:-1], max_logps[1:]) def test_predict(data_dictionary, fitted_classifier): means_D = data_dictionary['means'] means_X = fitted_classifier.model.transform(means_D, 'D', 'X') means_U = fitted_classifier.model.transform(means_X, 'X', 'U') labels = np.arange(len(means_D)) # Unnormalized probabilities. predictions_D, logpps_D = fitted_classifier.predict(means_D, space='D') assert_array_equal(labels, predictions_D) predictions_X, logpps_X = fitted_classifier.predict(means_X, space='X') assert_array_equal(predictions_X, predictions_D) assert_allclose(logpps_X, logpps_D) predictions_U, logpps_U = fitted_classifier.predict(means_U, space='U') assert_array_equal(predictions_U, predictions_D) assert_allclose(logpps_U, logpps_X) # Normalized probabilities. predictions_D, logpps_D = fitted_classifier.predict(means_D, space='D', normalize_logps=True) assert_array_equal(labels, predictions_D) predictions_X, logpps_X = fitted_classifier.predict(means_X, space='X', normalize_logps=True) assert_array_equal(predictions_X, predictions_D) assert_allclose(logpps_X, logpps_D) predictions_U, logpps_U = fitted_classifier.predict(means_U, space='U', normalize_logps=True) assert_array_equal(predictions_U, predictions_D) assert_allclose(logpps_U, logpps_X)
33.384615
80
0.689171
83c0a718b3af1e42fa73a9f5fac84d889aa140e1
51,557
py
Python
userbot/modules/google_drive.py
GudMeong/ProjectBish
e24c940593086121f229f5cf1cbef8678448803f
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
userbot/modules/google_drive.py
GudMeong/ProjectBish
e24c940593086121f229f5cf1cbef8678448803f
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
userbot/modules/google_drive.py
GudMeong/ProjectBish
e24c940593086121f229f5cf1cbef8678448803f
[ "Naumen", "Condor-1.1", "MS-PL" ]
29
2020-03-29T11:56:01.000Z
2020-09-24T06:57:20.000Z
# Copyright (C) 2020 Adek Maulana # # SPDX-License-Identifier: GPL-3.0-or-later # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ - ProjectBish Google Drive managers - """ import io import os import pickle import base64 import json import asyncio import math import time import re import requests import logging import userbot.modules.sql_helper.google_drive_sql as helper from bs4 import BeautifulSoup from os.path import isfile, isdir, join, getctime from mimetypes import guess_type from telethon import events from google_auth_oauthlib.flow import InstalledAppFlow from googleapiclient.discovery import build from googleapiclient.errors import HttpError from google.auth.transport.requests import Request from googleapiclient.http import MediaFileUpload, MediaIoBaseDownload from userbot import ( G_DRIVE_DATA, G_DRIVE_CLIENT_ID, G_DRIVE_CLIENT_SECRET, G_DRIVE_FOLDER_ID, BOTLOG_CHATID, TEMP_DOWNLOAD_DIRECTORY, CMD_HELP, LOGS, ) from userbot.events import register from userbot.utils import progress, humanbytes, time_formatter, human_to_bytes from userbot.utils.exceptions import CancelProcess from userbot.modules.aria import aria2, check_metadata # =========================================================== # # STATIC # # =========================================================== # GOOGLE_AUTH_URI = "https://accounts.google.com/o/oauth2/auth" GOOGLE_TOKEN_URI = "https://oauth2.googleapis.com/token" SCOPES = [ "https://www.googleapis.com/auth/drive", "https://www.googleapis.com/auth/drive.metadata" ] REDIRECT_URI = "urn:ietf:wg:oauth:2.0:oob" # =========================================================== # # STATIC CASE FOR G_DRIVE_FOLDER_ID IF VALUE IS URL # # =========================================================== # __ = G_DRIVE_FOLDER_ID if __ is not None: if "uc?id=" in G_DRIVE_FOLDER_ID: LOGS.info( "G_DRIVE_FOLDER_ID is not a valid folderURL...") G_DRIVE_FOLDER_ID = None try: G_DRIVE_FOLDER_ID = __.split("folders/")[1] except IndexError: try: G_DRIVE_FOLDER_ID = __.split("open?id=")[1] except IndexError: if "/view" in __: G_DRIVE_FOLDER_ID = __.split("/")[-2] else: try: G_DRIVE_FOLDER_ID = __.split( "folderview?id=")[1] except IndexError: if 'http://' not in __ or 'https://' not in __: if any(map(str.isdigit, __)): _1 = True else: _1 = False if "-" in __ or "_" in __: _2 = True else: _2 = False if True in [_1 or _2]: pass else: LOGS.info( "G_DRIVE_FOLDER_ID " "not a valid ID...") G_DRIVE_FOLDER_ID = None else: LOGS.info( "G_DRIVE_FOLDER_ID " "not a valid URL...") G_DRIVE_FOLDER_ID = None # =========================================================== # # LOG # # =========================================================== # logger = logging.getLogger('googleapiclient.discovery') logger.setLevel(logging.ERROR) # =========================================================== # # # # =========================================================== # @register(pattern="^.gdauth(?: |$)", outgoing=True) async def generate_credentials(gdrive): """ - Only generate once for long run - """ if helper.get_credentials(str(gdrive.from_id)) is not None: await gdrive.edit("`You already authorized token...`") await asyncio.sleep(1.5) await gdrive.delete() return False """ - Generate credentials - """ if G_DRIVE_DATA is not None: try: configs = json.loads(G_DRIVE_DATA) except json.JSONDecodeError: await gdrive.edit( "`[AUTHENTICATE - ERROR]`\n\n" "`Status` : **BAD**\n" "`Reason` : **G_DRIVE_DATA** entity is not valid!" ) return False else: """ - Only for old user - """ if G_DRIVE_CLIENT_ID is None and G_DRIVE_CLIENT_SECRET is None: await gdrive.edit( "`[AUTHENTICATE - ERROR]`\n\n" "`Status` : **BAD**\n" "`Reason` : please get your **G_DRIVE_DATA** " "[here](https://telegra.ph/How-To-Setup-Google-Drive-04-03)" ) return False configs = { "installed": { "client_id": G_DRIVE_CLIENT_ID, "client_secret": G_DRIVE_CLIENT_SECRET, "auth_uri": GOOGLE_AUTH_URI, "token_uri": GOOGLE_TOKEN_URI, } } await gdrive.edit("`Creating credentials...`") flow = InstalledAppFlow.from_client_config( configs, SCOPES, redirect_uri=REDIRECT_URI) auth_url, _ = flow.authorization_url( access_type='offline', prompt='consent') msg = await gdrive.respond( "`Go to your BOTLOG group to authenticate token...`" ) async with gdrive.client.conversation(BOTLOG_CHATID) as conv: url_msg = await conv.send_message( "Please go to this URL:\n" f"{auth_url}\nauthorize then reply the code" ) r = conv.wait_event( events.NewMessage(outgoing=True, chats=BOTLOG_CHATID)) r = await r code = r.message.message.strip() flow.fetch_token(code=code) creds = flow.credentials await asyncio.sleep(3.5) await gdrive.client.delete_messages(gdrive.chat_id, msg.id) await gdrive.client.delete_messages(BOTLOG_CHATID, [url_msg.id, r.id]) """ - Unpack credential objects into strings - """ creds = base64.b64encode(pickle.dumps(creds)).decode() await gdrive.edit("`Credentials created...`") helper.save_credentials(str(gdrive.from_id), creds) await gdrive.delete() return async def create_app(gdrive): """ - Create google drive service app - """ creds = helper.get_credentials(str(gdrive.from_id)) if creds is not None: """ - Repack credential objects from strings - """ creds = pickle.loads( base64.b64decode(creds.encode())) if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: await gdrive.edit("`Refreshing credentials...`") """ - Refresh credentials - """ creds.refresh(Request()) helper.save_credentials(str( gdrive.from_id), base64.b64encode(pickle.dumps(creds)).decode()) else: await gdrive.edit("`Credentials is empty, please generate it...`") return False service = build('drive', 'v3', credentials=creds, cache_discovery=False) return service @register(pattern="^.gdreset(?: |$)", outgoing=True) async def reset_credentials(gdrive): """ - Reset credentials or change account - """ await gdrive.edit("`Resetting information...`") helper.clear_credentials(str(gdrive.from_id)) await gdrive.edit("`Done...`") await asyncio.sleep(1) await gdrive.delete() return async def get_raw_name(file_path): """ - Get file_name from file_path - """ return file_path.split("/")[-1] async def get_mimeType(name): """ - Check mimeType given file - """ mimeType = guess_type(name)[0] if not mimeType: mimeType = 'text/plain' return mimeType async def download(gdrive, service, uri=None): global is_cancelled reply = '' """ - Download files to local then upload - """ if not isdir(TEMP_DOWNLOAD_DIRECTORY): os.makedirs(TEMP_DOWNLOAD_DIRECTORY) required_file_name = None if uri: full_path = os.getcwd() + TEMP_DOWNLOAD_DIRECTORY.strip('.') if isfile(uri) and uri.endswith(".torrent"): downloads = aria2.add_torrent( uri, uris=None, options={'dir': full_path}, position=None) else: uri = [uri] downloads = aria2.add_uris( uri, options={'dir': full_path}, position=None) gid = downloads.gid await check_progress_for_dl(gdrive, gid, previous=None) file = aria2.get_download(gid) filename = file.name if file.followed_by_ids: new_gid = await check_metadata(gid) await check_progress_for_dl(gdrive, new_gid, previous=None) try: required_file_name = TEMP_DOWNLOAD_DIRECTORY + filenames except Exception: required_file_name = TEMP_DOWNLOAD_DIRECTORY + filename else: try: current_time = time.time() is_cancelled = False downloaded_file_name = await gdrive.client.download_media( await gdrive.get_reply_message(), TEMP_DOWNLOAD_DIRECTORY, progress_callback=lambda d, t: asyncio.get_event_loop( ).create_task(progress(d, t, gdrive, current_time, "[FILE - DOWNLOAD]", is_cancelled=is_cancelled))) except CancelProcess: names = [] for name in os.listdir(TEMP_DOWNLOAD_DIRECTORY): names.append(join(TEMP_DOWNLOAD_DIRECTORY, name)) """ asumming newest files are the cancelled one """ newest = max(names, key=getctime) os.remove(newest) reply += ( "`[FILE - CANCELLED]`\n\n" "`Status` : **OK** - received signal cancelled." ) return reply else: required_file_name = downloaded_file_name try: file_name = await get_raw_name(required_file_name) except AttributeError: reply += ( "`[ENTRY - ERROR]`\n\n" "`Status` : **BAD**\n" ) return reply mimeType = await get_mimeType(required_file_name) try: status = "[FILE - UPLOAD]" if isfile(required_file_name): try: result = await upload( gdrive, service, required_file_name, file_name, mimeType) except CancelProcess: reply += ( "`[FILE - CANCELLED]`\n\n" "`Status` : **OK** - received signal cancelled." ) return reply else: reply += ( f"`{status}`\n\n" f"`Name :` `{file_name}`\n" f"`Size :` `{humanbytes(result[0])}`\n" f"`Link :` [{file_name}]({result[1]})\n" "`Status :` **OK** - Successfully uploaded.\n\n" ) return reply else: status = status.replace("[FILE", "[FOLDER") global parent_Id folder = await create_dir(service, file_name) parent_Id = folder.get('id') webViewURL = ( "https://drive.google.com/drive/folders/" + parent_Id ) try: await task_directory(gdrive, service, required_file_name) except CancelProcess: reply += ( "`[FOLDER - CANCELLED]`\n\n" "`Status` : **OK** - received signal cancelled." ) await reset_parentId() return reply except Exception: await reset_parentId() else: reply += ( f"`{status}`\n\n" f"[{file_name}]({webViewURL})\n" "`Status` : **OK** - Successfully uploaded.\n\n" ) await reset_parentId() return reply except Exception as e: status = status.replace("DOWNLOAD]", "ERROR]") reply += ( f"`{status}`\n\n" "`Status` : **failed**\n" f"`Reason` : `{str(e)}`\n\n" ) return reply return async def download_gdrive(gdrive, service, uri): reply = '' global is_cancelled """ - remove drivesdk and export=download from link - """ if not isdir(TEMP_DOWNLOAD_DIRECTORY): os.mkdir(TEMP_DOWNLOAD_DIRECTORY) if "&export=download" in uri: uri = uri.split("&export=download")[0] elif "file/d/" in uri and "/view" in uri: uri = uri.split("?usp=drivesdk")[0] try: file_Id = uri.split("uc?id=")[1] except IndexError: try: file_Id = uri.split("open?id=")[1] except IndexError: if "/view" in uri: file_Id = uri.split("/")[-2] else: try: file_Id = uri.split("uc?export=download&confirm=" )[1].split("id=")[1] except IndexError: """ - if error parse in url, assume given value is Id - """ file_Id = uri try: file = await get_information(service, file_Id) except HttpError as e: if '404' in str(e): drive = 'https://drive.google.com' url = f'{drive}/uc?export=download&id={file_Id}' session = requests.session() download = session.get(url, stream=True) try: download.headers['Content-Disposition'] except KeyError: page = BeautifulSoup(download.content, 'lxml') try: export = drive + page.find('a', {'id': 'uc-download-link'} ).get('href') except AttributeError: try: error = ( page.find('p', {'class': 'uc-error-caption'}).text + '\n' + page.find('p', {'class': 'uc-error-subcaption'} ).text ) except Exception: reply += ( "`[FILE - ERROR]`\n\n" "`Status` : **BAD** - failed to download.\n" "`Reason` : uncaught err." ) else: reply += ( "`[FILE - ERROR]`\n\n" "`Status` : **BAD** - failed to download.\n" f"`Reason` : {error}" ) return reply download = session.get(export, stream=True) file_size = human_to_bytes( page.find('span', {'class': 'uc-name-size'} ).text.split()[-1].strip('()')) else: file_size = int(download.headers['Content-Length']) file_name = re.search( 'filename="(.*)"', download.headers["Content-Disposition"] ).group(1) file_path = TEMP_DOWNLOAD_DIRECTORY + file_name with io.FileIO(file_path, 'wb') as files: CHUNK_SIZE = None current_time = time.time() display_message = None first = True is_cancelled = False for chunk in download.iter_content(CHUNK_SIZE): if is_cancelled is True: raise CancelProcess if not chunk: break diff = time.time() - current_time if first is True: downloaded = len(chunk) first = False else: downloaded += len(chunk) percentage = downloaded / file_size * 100 speed = round(downloaded / diff, 2) eta = round((file_size - downloaded) / speed) prog_str = "`Downloading` | [{0}{1}] `{2}%`".format( "".join(["●" for i in range( math.floor(percentage / 10))]), "".join(["○"for i in range( 10 - math.floor(percentage / 10))]), round(percentage, 2)) current_message = ( "`[FILE - DOWNLOAD]`\n\n" f"`{file_name}`\n" f"`Status`\n{prog_str}\n" f"`{humanbytes(downloaded)} of {humanbytes(file_size)}" f" @ {humanbytes(speed)}`\n" f"`ETA` -> {time_formatter(eta)}" ) if round( diff % 15.00) == 0 and (display_message != current_message) or ( downloaded == file_size): await gdrive.edit(current_message) display_message = current_message files.write(chunk) else: file_name = file.get('name') mimeType = file.get('mimeType') if mimeType == 'application/vnd.google-apps.folder': await gdrive.edit("`Aborting, folder download not support...`") return False file_path = TEMP_DOWNLOAD_DIRECTORY + file_name request = service.files().get_media(fileId=file_Id, supportsAllDrives=True) with io.FileIO(file_path, 'wb') as df: downloader = MediaIoBaseDownload(df, request) complete = False is_cancelled = False current_time = time.time() display_message = None while complete is False: if is_cancelled is True: raise CancelProcess status, complete = downloader.next_chunk() if status: file_size = status.total_size diff = time.time() - current_time downloaded = status.resumable_progress percentage = downloaded / file_size * 100 speed = round(downloaded / diff, 2) eta = round((file_size - downloaded) / speed) prog_str = "`Downloading` | [{0}{1}] `{2}%`".format( "".join(["●" for i in range( math.floor(percentage / 10))]), "".join(["○" for i in range( 10 - math.floor(percentage / 10))]), round(percentage, 2)) current_message = ( "`[FILE - DOWNLOAD]`\n\n" f"`{file_name}`\n" f"`Status`\n{prog_str}\n" f"`{humanbytes(downloaded)} of {humanbytes(file_size)}" f" @ {humanbytes(speed)}`\n" f"`ETA` -> {time_formatter(eta)}" ) if round( diff % 15.00) == 0 and (display_message != current_message) or ( downloaded == file_size): await gdrive.edit(current_message) display_message = current_message await gdrive.edit( "`[FILE - DOWNLOAD]`\n\n" f"`Name :` `{file_name}`\n" f"`Size :` `{humanbytes(file_size)}`\n" f"`Path :` `{file_path}`\n" "`Status :` **OK** - Successfully downloaded." ) msg = await gdrive.respond("`Answer the question in your BOTLOG group`") async with gdrive.client.conversation(BOTLOG_CHATID) as conv: ask = await conv.send_message("`Proceed with mirroring? [y/N]`") try: r = conv.wait_event( events.NewMessage(outgoing=True, chats=BOTLOG_CHATID)) r = await r except Exception: ans = 'N' else: ans = r.message.message.strip() await gdrive.client.delete_messages(BOTLOG_CHATID, r.id) await gdrive.client.delete_messages(gdrive.chat_id, msg.id) await gdrive.client.delete_messages(BOTLOG_CHATID, ask.id) if ans.capitalize() == 'N': return reply elif ans.capitalize() == "Y": try: result = await upload( gdrive, service, file_path, file_name, mimeType) except CancelProcess: reply += ( "`[FILE - CANCELLED]`\n\n" "`Status` : **OK** - received signal cancelled." ) else: reply += ( "`[FILE - UPLOAD]`\n\n" f"`Name :` `{file_name}`\n" f"`Size :` `{humanbytes(result[0])}`\n" f"`Link :` [{file_name}]({result[1]})\n" "`Status :` **OK**\n\n" ) return reply else: await gdrive.client.send_message( BOTLOG_CHATID, "`Invalid answer type [Y/N] only...`" ) return reply async def change_permission(service, Id): permission = { "role": "reader", "type": "anyone" } try: service.permissions().create(fileId=Id, body=permission).execute() except HttpError as e: """ it's not possible to change permission per file for teamdrive """ if f'"File not found: {Id}."' in str(e) or ( '"Sharing folders that are inside a shared drive is not supported."' in str(e)): return else: raise e return async def get_information(service, Id): r = service.files().get(fileId=Id, fields="name, id, size, mimeType, " "webViewLink, webContentLink," "description", supportsAllDrives=True).execute() return r async def create_dir(service, folder_name): metadata = { 'name': folder_name, 'mimeType': 'application/vnd.google-apps.folder', } try: if parent_Id is not None: pass except NameError: """ - Fallback to G_DRIVE_FOLDER_ID else root dir - """ if G_DRIVE_FOLDER_ID is not None: metadata['parents'] = [G_DRIVE_FOLDER_ID] else: """ - Override G_DRIVE_FOLDER_ID because parent_Id not empty - """ metadata['parents'] = [parent_Id] folder = service.files().create( body=metadata, fields="id, webViewLink", supportsAllDrives=True ).execute() await change_permission(service, folder.get('id')) return folder async def upload(gdrive, service, file_path, file_name, mimeType): try: await gdrive.edit("`Processing upload...`") except Exception: pass body = { "name": file_name, "description": "Uploaded from Telegram using Motor Tenaga Janda.", "mimeType": mimeType, } try: if parent_Id is not None: pass except NameError: """ - Fallback to G_DRIVE_FOLDER_ID else root dir - """ if G_DRIVE_FOLDER_ID is not None: body['parents'] = [G_DRIVE_FOLDER_ID] else: """ - Override G_DRIVE_FOLDER_ID because parent_Id not empty - """ body['parents'] = [parent_Id] media_body = MediaFileUpload( file_path, mimetype=mimeType, resumable=True ) """ - Start upload process - """ file = service.files().create(body=body, media_body=media_body, fields="id, size, webContentLink", supportsAllDrives=True) global is_cancelled current_time = time.time() response = None display_message = None is_cancelled = False while response is None: if is_cancelled is True: raise CancelProcess status, response = file.next_chunk() if status: file_size = status.total_size diff = time.time() - current_time uploaded = status.resumable_progress percentage = uploaded / file_size * 100 speed = round(uploaded / diff, 2) eta = round((file_size - uploaded) / speed) prog_str = "`Uploading` | [{0}{1}] `{2}%`".format( "".join(["●" for i in range( math.floor(percentage / 10))]), "".join(["○" for i in range( 10 - math.floor(percentage / 10))]), round(percentage, 2)) current_message = ( "`[FILE - UPLOAD]`\n\n" f"`{file_name}`\n" f"`Status`\n{prog_str}\n" f"`{humanbytes(uploaded)} of {humanbytes(file_size)} " f"@ {humanbytes(speed)}`\n" f"`ETA` -> {time_formatter(eta)}" ) if round(diff % 15.00) == 0 and ( display_message != current_message) or ( uploaded == file_size): await gdrive.edit(current_message) display_message = current_message file_id = response.get("id") file_size = response.get("size") downloadURL = response.get("webContentLink") """ - Change permission - """ await change_permission(service, file_id) return int(file_size), downloadURL async def task_directory(gdrive, service, folder_path): global parent_Id global is_cancelled is_cancelled = False lists = os.listdir(folder_path) if len(lists) == 0: return parent_Id root_parent_Id = None for f in lists: if is_cancelled is True: raise CancelProcess current_f_name = join(folder_path, f) if isdir(current_f_name): folder = await create_dir(service, f) parent_Id = folder.get('id') root_parent_Id = await task_directory(gdrive, service, current_f_name) else: file_name = await get_raw_name(current_f_name) mimeType = await get_mimeType(current_f_name) await upload(gdrive, service, current_f_name, file_name, mimeType) root_parent_Id = parent_Id return root_parent_Id async def reset_parentId(): global parent_Id try: if parent_Id is not None: pass except NameError: if G_DRIVE_FOLDER_ID is not None: parent_Id = G_DRIVE_FOLDER_ID else: del parent_Id return @register(pattern=r"^.gdlist(?: |$)(-l \d+)?(?: |$)?(.*)?(?: |$)", outgoing=True) async def lists(gdrive): await gdrive.edit("`Getting information...`") checker = gdrive.pattern_match.group(1) if checker is not None: page_size = int(gdrive.pattern_match.group(1).strip('-l ')) if page_size > 1000: await gdrive.edit( "`[GDRIVE - LIST]`\n\n" "`Status` : **BAD**\n" "`Reason` : can't get list if limit more than 1000." ) return else: page_size = 25 # default page_size is 25 checker = gdrive.pattern_match.group(2) if checker != '': if checker.startswith('-p'): parents = checker.split(None, 2)[1] try: name = checker.split(None, 2)[2] except IndexError: query = f"'{parents}' in parents and (name contains '*')" else: query = f"'{parents}' in parents and (name contains '{name}')" else: if re.search('-p (.*)', checker): parents = re.search('-p (.*)', checker).group(1) name = checker.split('-p')[0].strip() query = f"'{parents}' in parents and (name contains '{name}')" else: name = checker query = f"name contains '{name}'" else: query = '' service = await create_app(gdrive) if service is False: return False message = '' fields = ('nextPageToken, files(name, id, ' 'mimeType, webViewLink, webContentLink)') page_token = None result = [] while True: try: response = service.files().list( supportsAllDrives=True, includeTeamDriveItems=True, q=query, spaces='drive', corpora='allDrives', fields=fields, pageSize=page_size, orderBy='modifiedTime desc, folder', pageToken=page_token ).execute() except HttpError as e: await gdrive.edit( "`[GDRIVE - LIST]`\n\n" "`Status` : **BAD**\n" f"`Reason` : {str(e)}" ) return for files in response.get('files', []): if len(result) >= page_size: break file_name = files.get('name') if files.get('mimeType') == 'application/vnd.google-apps.folder': link = files.get('webViewLink') message += ( f"📁️ • [{file_name}]({link})\n" ) else: link = files.get('webContentLink') message += ( f"📄️ • [{file_name}]({link})\n" ) result.append(files) if len(result) >= page_size: break page_token = response.get('nextPageToken', None) if page_token is None: break del result if query == '': query = 'Not specified' if len(message) > 4096: await gdrive.edit("`Result is too big, sending it as file...`") with open('result.txt', 'w') as r: r.write( f"Google Drive Query:\n{query}\n\nResults\n\n{message}") await gdrive.client.send_file( gdrive.chat_id, 'result.txt', caption='Google Drive Query List.' ) else: await gdrive.edit( "**Google Drive Query**:\n" f"`{query}`\n\n**Results**\n\n{message}") return @register(pattern="^.gdf (mkdir|rm|chck) (.*)", outgoing=True) async def google_drive_managers(gdrive): """ - Google Drive folder/file management - """ await gdrive.edit("`Sending information...`") service = await create_app(gdrive) if service is False: return None """ - Split name if contains spaces by using ; - """ f_name = gdrive.pattern_match.group(2).split(';') exe = gdrive.pattern_match.group(1) reply = '' for name_or_id in f_name: """ - in case given name has a space beetween ; - """ name_or_id = name_or_id.strip() metadata = { 'name': name_or_id, 'mimeType': 'application/vnd.google-apps.folder', } try: if parent_Id is not None: pass except NameError: """ - Fallback to G_DRIVE_FOLDER_ID else to root dir - """ if G_DRIVE_FOLDER_ID is not None: metadata['parents'] = [G_DRIVE_FOLDER_ID] else: """ - Override G_DRIVE_FOLDER_ID because parent_Id not empty - """ metadata['parents'] = [parent_Id] page_token = None result = service.files().list( q=f'name="{name_or_id}"', spaces='drive', fields=( 'nextPageToken, files(parents, name, id, size, ' 'mimeType, webViewLink, webContentLink, description)' ), supportsAllDrives=True, pageToken=page_token ).execute() if exe == "mkdir": """ - Create a directory, abort if exist when parent not given - """ status = "[FOLDER - EXIST]" try: folder = result.get('files', [])[0] except IndexError: folder = await create_dir(service, name_or_id) status = status.replace("EXIST]", "CREATED]") folder_id = folder.get('id') webViewURL = folder.get('webViewLink') if "CREATED" in status: """ - Change permission - """ await change_permission(service, folder_id) reply += ( f"`{status}`\n\n" f"`{name_or_id}`\n" f"`ID :` `{folder_id}`\n" f"`URL :` [Open]({webViewURL})\n\n" ) elif exe == "rm": """ - Permanently delete, skipping the trash - """ try: """ - Try if given value is a name not a folderId/fileId - """ f = result.get('files', [])[0] f_id = f.get('id') except IndexError: """ - If failed assumming value is folderId/fileId - """ f_id = name_or_id try: f = await get_information(service, f_id) except Exception as e: reply += ( f"`[FILE/FOLDER - ERROR]`\n\n" "`Status` : **BAD**" f"`Reason` : `{str(e)}`\n\n" ) continue name = f.get('name') mimeType = f.get('mimeType') if mimeType == 'application/vnd.google-apps.folder': status = "[FOLDER - DELETE]" else: status = "[FILE - DELETE]" try: service.files().delete(fileId=f_id, supportsAllDrives=True ).execute() except HttpError as e: status.replace("DELETE]", "ERROR]") reply += ( f"`{status}`\n\n" "`Status` : **BAD**" f"`Reason` : {str(e)}\n\n" ) continue else: reply += ( f"`{status}`\n\n" f"`{name}`\n" "`Status` : **OK**\n\n" ) elif exe == "chck": """ - Check file/folder if exists - """ try: f = result.get('files', [])[0] except IndexError: """ - If failed assumming value is folderId/fileId - """ f_id = name_or_id try: f = await get_information(service, f_id) except Exception as e: reply += ( "`[FILE/FOLDER - ERROR]`\n\n" "`Status` : **BAD**\n" f"`Reason` : `{str(e)}`\n\n" ) continue """ - If exists parse file/folder information - """ name_or_id = f.get('name') # override input value f_id = f.get('id') f_size = f.get('size') mimeType = f.get('mimeType') webViewLink = f.get('webViewLink') downloadURL = f.get('webContentLink') description = f.get('description') if mimeType == "application/vnd.google-apps.folder": status = "[FOLDER - EXIST]" else: status = "[FILE - EXIST]" msg = ( f"`{status}`\n\n" f"`Name :` `{name_or_id}`\n" f"`ID :` `{f_id}`\n" ) if mimeType != "application/vnd.google-apps.folder": msg += f"`Size :` `{humanbytes(f_size)}`\n" msg += f"`Link :` [{name_or_id}]({downloadURL})\n\n" else: msg += f"`URL :` [Open]({webViewLink})\n\n" if description: msg += f"`About :`\n`{description}`\n\n" reply += msg page_token = result.get('nextPageToken', None) await gdrive.edit(reply) return @register(pattern="^.gdabort(?: |$)", outgoing=True) async def cancel_process(gdrive): """ Abort process for download and upload """ global is_cancelled downloads = aria2.get_downloads() await gdrive.edit("`Cancelling...`") if len(downloads) != 0: aria2.remove_all(force=True) aria2.autopurge() is_cancelled = True await asyncio.sleep(3.5) await gdrive.delete() @register(pattern="^.gd(?: |$)(.*)", outgoing=True) async def google_drive(gdrive): reply = '' """ - Parsing all google drive function - """ value = gdrive.pattern_match.group(1) file_path = None uri = None if not value and not gdrive.reply_to_msg_id: return None elif value and gdrive.reply_to_msg_id: await gdrive.edit( "`[UNKNOWN - ERROR]`\n\n" "`Status` : **failed**\n" "`Reason` : Confused to upload file or the replied message/media." ) return None service = await create_app(gdrive) if service is False: return None if isfile(value): file_path = value if file_path.endswith(".torrent"): uri = [file_path] file_path = None elif isdir(value): folder_path = value global parent_Id folder_name = await get_raw_name(folder_path) folder = await create_dir(service, folder_name) parent_Id = folder.get('id') webViewURL = "https://drive.google.com/drive/folders/" + parent_Id try: await task_directory(gdrive, service, folder_path) except CancelProcess: await gdrive.respond( "`[FOLDER - CANCELLED]`\n\n" "`Status` : **OK** - received signal cancelled." ) await reset_parentId() await gdrive.delete() return True except Exception as e: await gdrive.edit( "`[FOLDER - UPLOAD]`\n\n" f"`{folder_name}`\n" "`Status` : **BAD**\n" f"`Reason` : {str(e)}" ) await reset_parentId() return False else: await gdrive.edit( "`[FOLDER - UPLOAD]`\n\n" f"[{folder_name}]({webViewURL})\n" "`Status` : **OK** - Successfully uploaded.\n\n" ) await reset_parentId() return True elif not value and gdrive.reply_to_msg_id: reply += await download(gdrive, service) await gdrive.respond(reply) await gdrive.delete() return None else: if re.findall(r'\bhttps?://drive\.google\.com\S+', value): """ - Link is google drive fallback to download - """ value = re.findall(r'\bhttps?://drive\.google\.com\S+', value) for uri in value: try: reply += await download_gdrive(gdrive, service, uri) except CancelProcess: reply += ( "`[FILE - CANCELLED]`\n\n" "`Status` : **OK** - received signal cancelled." ) break except Exception as e: reply += ( "`[FILE - ERROR]`\n\n" "`Status` : **BAD**\n" f"`Reason` : {str(e)}\n\n" ) continue if reply: await gdrive.respond(reply, link_preview=False) await gdrive.delete() return True else: return None elif re.findall(r'\bhttps?://.*\.\S+', value) or "magnet:?" in value: uri = value.split() else: for fileId in value.split(): if any(map(str.isdigit, fileId)): one = True else: one = False if "-" in fileId or "_" in fileId: two = True else: two = False if True in [one or two]: try: reply += await download_gdrive(gdrive, service, fileId) except CancelProcess: reply += ( "`[FILE - CANCELLED]`\n\n" "`Status` : **OK** - received signal cancelled." ) break except Exception as e: reply += ( "`[FILE - ERROR]`\n\n" "`Status` : **BAD**\n" f"`Reason` : {str(e)}\n\n" ) continue if reply: await gdrive.respond(reply, link_preview=False) await gdrive.delete() return True else: return None if not uri and not gdrive.reply_to_msg_id: await gdrive.edit( "`[VALUE - ERROR]`\n\n" "`Status` : **BAD**\n" "`Reason` : given value is not URL nor file/folder path. " "If you think this is wrong, maybe you use .gd with multiple " "value of files/folders, e.g `.gd <filename1> <filename2>` " "for upload from files/folders path this doesn't support it." ) return False if uri and not gdrive.reply_to_msg_id: for dl in uri: try: reply += await download(gdrive, service, dl) except Exception as e: if " not found" in str(e) or "'file'" in str(e): reply += ( "`[FILE - CANCELLED]`\n\n" "`Status` : **OK** - received signal cancelled." ) await asyncio.sleep(2.5) break else: """ - if something bad happened, continue to next uri - """ reply += ( "`[UNKNOWN - ERROR]`\n\n" "`Status` : **BAD**\n" f"`Reason` : `{dl}` | `{str(e)}`\n\n" ) continue await gdrive.respond(reply, link_preview=False) await gdrive.delete() return None mimeType = await get_mimeType(file_path) file_name = await get_raw_name(file_path) try: result = await upload(gdrive, service, file_path, file_name, mimeType) except CancelProcess: gdrive.respond( "`[FILE - CANCELLED]`\n\n" "`Status` : **OK** - received signal cancelled." ) if result: await gdrive.respond( "`[FILE - UPLOAD]`\n\n" f"`Name :` `{file_name}`\n" f"`Size :` `{humanbytes(result[0])}`\n" f"`Link :` [{file_name}]({result[1]})\n" "`Status :` **OK** - Successfully uploaded.\n", link_preview=False ) await gdrive.delete() return @register(pattern="^.gdfset (put|rm)(?: |$)(.*)", outgoing=True) async def set_upload_folder(gdrive): """ - Set parents dir for upload/check/makedir/remove - """ await gdrive.edit("`Sending information...`") global parent_Id exe = gdrive.pattern_match.group(1) if exe == "rm": if G_DRIVE_FOLDER_ID is not None: parent_Id = G_DRIVE_FOLDER_ID await gdrive.edit( "`[FOLDER - SET]`\n\n" "`Status` : **OK** - using `G_DRIVE_FOLDER_ID` now." ) return None else: try: del parent_Id except NameError: await gdrive.edit( "`[FOLDER - SET]`\n\n" "`Status` : **BAD** - No parent_Id is set." ) return False else: await gdrive.edit( "`[FOLDER - SET]`\n\n" "`Status` : **OK**" " - `G_DRIVE_FOLDER_ID` empty, will use root." ) return None inp = gdrive.pattern_match.group(2) if not inp: await gdrive.edit(">`.gdfset put <folderURL/folderID>`") return None """ - Value for .gdfset (put|rm) can be folderId or folder link - """ try: ext_id = re.findall(r'\bhttps?://drive\.google\.com\S+', inp)[0] except IndexError: """ - if given value isn't folderURL assume it's an Id - """ if any(map(str.isdigit, inp)): c1 = True else: c1 = False if "-" in inp or "_" in inp: c2 = True else: c2 = False if True in [c1 or c2]: parent_Id = inp await gdrive.edit( "`[PARENT - FOLDER]`\n\n" "`Status` : **OK** - Successfully changed." ) return None else: await gdrive.edit( "`[PARENT - FOLDER]`\n\n" "`Status` : **WARNING** - forcing use..." ) parent_Id = inp else: if "uc?id=" in ext_id: await gdrive.edit( "`[URL - ERROR]`\n\n" "`Status` : **BAD** - Not a valid folderURL." ) return None try: parent_Id = ext_id.split("folders/")[1] except IndexError: """ - Try catch again if URL open?id= - """ try: parent_Id = ext_id.split("open?id=")[1] except IndexError: if "/view" in ext_id: parent_Id = ext_id.split("/")[-2] else: try: parent_Id = ext_id.split("folderview?id=")[1] except IndexError: await gdrive.edit( "`[URL - ERROR]`\n\n" "`Status` : **BAD** - Not a valid folderURL." ) return None await gdrive.edit( "`[PARENT - FOLDER]`\n\n" "`Status` : **OK** - Successfully changed." ) return async def check_progress_for_dl(gdrive, gid, previous): complete = None global is_cancelled global filenames is_cancelled = False while not complete: if is_cancelled is True: raise CancelProcess file = aria2.get_download(gid) complete = file.is_complete try: filenames = file.name except IndexError: pass try: if not complete and not file.error_message: percentage = int(file.progress) downloaded = percentage * int(file.total_length) / 100 prog_str = "`Downloading` | [{0}{1}] `{2}`".format( "".join(["●" for i in range( math.floor(percentage / 10))]), "".join(["○" for i in range( 10 - math.floor(percentage / 10))]), file.progress_string()) msg = ( "`[URI - DOWNLOAD]`\n\n" f"`{file.name}`\n" f"`Status` -> **{file.status.capitalize()}**\n" f"{prog_str}\n" f"`{humanbytes(downloaded)} of" f" {file.total_length_string()}" f" @ {file.download_speed_string()}`\n" f"`ETA` -> {file.eta_string()}\n" ) if msg != previous or downloaded == file.total_length_string(): await gdrive.edit(msg) msg = previous else: await gdrive.edit(f"`{msg}`") await asyncio.sleep(15) await check_progress_for_dl(gdrive, gid, previous) file = aria2.get_download(gid) complete = file.is_complete if complete: await gdrive.edit(f"`{file.name}`\n\n" "Successfully downloaded...") return True except Exception as e: if " depth exceeded" in str(e): file.remove(force=True) try: await gdrive.edit( "`[URI - DOWNLOAD]`\n\n" f"`{file.name}`\n" "`Status` : **failed**\n" "`Reason` : Auto cancelled download, URI/Torrent dead." ) except Exception: pass CMD_HELP.update({ "gdrive": ">`.gdauth`" "\nUsage: generate token to enable all cmd google drive service." "\nThis only need to run once in life time." "\n\n>`.gdreset`" "\nUsage: reset your token if something bad happened or change drive acc." "\n\n>`.gd`" "\nUsage: Upload file from local or uri/url/drivelink into google drive." "\nfor drivelink it's upload only if you want to." "\n\n>`.gdabort`" "\nUsage: Abort process uploading or downloading." "\n\n>`.gdlist`" "\nUsage: Get list of folders and files with default size 50." "\nUse flags `-l range[1-1000]` for limit output." "\nUse flags `-p parents-folder_id` for lists given folder in gdrive." "\n\n>`.gdf mkdir`" "\nUsage: Create gdrive folder." "\n\n>`.gdf chck`" "\nUsage: Check file/folder in gdrive." "\n\n>`.gdf rm`" "\nUsage: Delete files/folders in gdrive." "\nCan't be undone, this method skipping file trash, so be caution..." "\n\n>`.gdfset put`" "\nUsage: Change upload directory in gdrive." "\n\n>`.gdfset rm`" "\nUsage: remove set parentId from cmd\n>`.gdfset put` " "into **G_DRIVE_FOLDER_ID** and if empty upload will go to root." "\n\nNOTE:" "\nfor >`.gdlist` you can combine -l and -p flags with or without name " "at the same time, it must be `-l` flags first before use `-p` flags.\n" "And by default it lists from latest 'modifiedTime' and then folders." })
37.853891
79
0.485734
cd7fba92f6ffa494f8b2418963692aef3c7b1c90
1,081
py
Python
lab_1.py
yaala21-meet/meet2019y1lab1
cba647bbda4c2cb1424aa73f586d485f57f6c3d7
[ "MIT" ]
null
null
null
lab_1.py
yaala21-meet/meet2019y1lab1
cba647bbda4c2cb1424aa73f586d485f57f6c3d7
[ "MIT" ]
null
null
null
lab_1.py
yaala21-meet/meet2019y1lab1
cba647bbda4c2cb1424aa73f586d485f57f6c3d7
[ "MIT" ]
null
null
null
import turtle # space: 50 width: 100 # y -200 ~ -100 turtle.penup() turtle.goto(-200,200) turtle.right(90) turtle.pendown() turtle.forward(100) turtle.left(90) turtle.forward(100) turtle.left(90) turtle.forward(100) turtle.right(180) turtle.forward(300) # a -50 ~ 50 turtle.penup() turtle.goto (-50,200) turtle.pendown() turtle.forward(80) turtle.left(90) turtle.forward(100) turtle.right(90) turtle.forward(20) turtle.left(180) turtle.forward(100) turtle.left(90) turtle.forward(100) # a 100 ~ 200 turtle.penup() turtle.left(90) turtle.goto (100,200) turtle.pendown() turtle.forward(80) turtle.left(90) turtle.forward(100) turtle.right(90) turtle.forward(20) turtle.left(180) turtle.forward(100) turtle.left(90) turtle.forward(100) # l 250 turtle.penup() turtle.left(90) turtle.goto(250,250) turtle.pendown() turtle.forward(150) # a 300 ~ 400 turtle.penup() turtle.goto (300,200) turtle.pendown() turtle.forward(80) turtle.left(90) turtle.forward(100) turtle.right(90) turtle.forward(20) turtle.left(180) turtle.forward(100) turtle.left(90) turtle.forward(100) turtle.mainloop()
17.15873
22
0.748381
d1758b93afeffa1502801b00c9a6b5aeda4dd2d1
9,514
py
Python
static/data/pre_processed/precompute_guides_msgpack_GRCm38.py
joshim5/CRISPR-Library-Designer
2def1e4351c82056587620f7520ec922761ac8f3
[ "BSD-3-Clause" ]
17
2017-05-24T18:57:56.000Z
2021-04-18T05:00:10.000Z
static/data/pre_processed/precompute_guides_msgpack_GRCm38.py
joshim5/CRISPR-Library-Designer
2def1e4351c82056587620f7520ec922761ac8f3
[ "BSD-3-Clause" ]
10
2017-09-11T09:17:51.000Z
2022-03-11T23:18:50.000Z
static/data/pre_processed/precompute_guides_msgpack_GRCm38.py
joshim5/CRISPR-Library-Designer
2def1e4351c82056587620f7520ec922761ac8f3
[ "BSD-3-Clause" ]
5
2017-07-28T23:59:51.000Z
2022-01-04T19:22:22.000Z
import msgpack import json import pickle import os.path from Queue import PriorityQueue import re import doench_score import azimuth.model_comparison import numpy as np import pandas as pd import csv from intervaltree import IntervalTree class GuideRNA(): """Holder of gRNA information""" def __init__(self, selected, start, seq, PAM, score, exon_ranking, ensembl_gene, gene_name, functional_domain=None): self.start = start self.seq = seq self.PAM = PAM self.score = score self.exon_ranking = exon_ranking self.ensembl_gene = ensembl_gene self.gene_name = gene_name self.selected = selected self.functional_domain = functional_domain def serialize_for_display(self): """Serialize for the way we are returning json""" serialization = { "score": self.score, "start": self.start, "seq": self.seq, "PAM": self.PAM, "selected": self.selected, } if self.functional_domain != None: serialization["functional_domain"] = self.functional_domain return serialization def __cmp__(self, other): return cmp(self.score, other.score) params = { "PAM": "NGG", "protospacer_len": 20, "prime5": True, "scoring": "Azimuth", "quantity": 100, "functional_domains": True } # azimuth mdoel azimuth_saved_model_dir = os.path.join(os.path.dirname(azimuth.__file__), 'saved_models') model_name = 'V3_model_full.pickle' azimuth_model_file = os.path.join(azimuth_saved_model_dir, model_name) with open(azimuth_model_file, 'rb') as f: azimuth_model = pickle.load(f) # Create interval tree for functional domains print "constructing interval tuples" interval_tuples_dict = {} ucsc_pfam_f = '../functional_domains/ucsc_pfam_GRCm38.txt' with open(ucsc_pfam_f, 'r') as pfam_csv: csvreader = csv.reader(pfam_csv, delimiter='\t') next(csvreader) # skip header for row in csvreader: chrom = row[1] start = row[2] end = row[3] name = row[4] if chrom not in interval_tuples_dict: interval_tuples_dict[chrom] = [] new_tuple = (int(start), int(end), name) interval_tuples_dict[chrom].append(new_tuple) print "constructing interval trees" interval_trees_dict = {} for k, v in interval_tuples_dict.iteritems(): interval_trees_dict[k] = IntervalTree.from_tuples(v) modPAM = params["PAM"] modPAM = modPAM.replace('N', '[ATCG]') params["modPAM"] = modPAM params["PAM_len"] = len(params["PAM"]) revcompl = lambda x: ''.join([{'A':'T','C':'G','G':'C','T':'A','N':'N'}[B] for B in x][::-1]) print "constructing refGene" refGeneFilename = '../gtex/gtex_mouse/refGene_mouse.txt' refGene = pd.read_csv(refGeneFilename, sep="\t") refGene.columns=['','name','chrom','strand','txStart','txEnd','cdsStart','cdsEnd','exonCount','exonStarts','exonEnds','id','name2','cdsStartStat','cdsEndStat','exonFrames'] refGene["exonStarts"] = refGene.apply(lambda x: x['exonStarts'].split(',')[:-1], axis=1) refGene["exonEnds"] = refGene.apply(lambda x: x['exonEnds'].split(',')[:-1], axis=1) refGene["exonFrames"] = refGene.apply(lambda x: x['exonFrames'].split(',')[:-1], axis=1) def gene_exon_coords(gene_name, exon): try: location = refGene.loc[refGene['name2'] == gene_name] start = list(location['exonStarts'])[-1][exon] end = list(location['exonEnds'])[-1][exon] chrom = list(location['chrom'])[-1] return { 'start': int(start), 'end': int(end), 'chrom': str(chrom) } except IndexError: return None def gene_exon_file(gene, exon): filename = gene + "_" + str(exon) seq_path = os.path.join('../GRCm38_exons/', filename) if os.path.isfile(seq_path): with open(seq_path) as infile: return infile.read().upper() else: return None with open('genes_list_GRCm38.txt') as genes_list_file: genes_list = genes_list_file.read().split('\n') # gene format: {"ensembl_id": "ENSG00000261122.2", "name": "5S_rRNA", "description": ""} for gene_name in genes_list: exon = 0 seq = gene_exon_file(gene_name, exon) coords = gene_exon_coords(gene_name, exon) while seq and coords: # Check if we haven't done this in a preivous run of the program outfile_name = gene_name + "_" + str(exon) + ".p" folder = '../GRCm38_guides_msgpack_' + params["scoring"] + '/' if params['functional_domains']: folder = '../GRCm38_guides_msgpack_' + params['scoring'] + '_domains/' output_path = os.path.join(folder, outfile_name) if os.path.isfile(output_path): # prepare next exon exon += 1 seq = gene_exon_file(gene_name, exon) coords = gene_exon_coords(gene_name, exon) continue q = PriorityQueue() domain_q = PriorityQueue() def process_guide(m, selected, max_queue_size, seq, domain): if 'N' in seq: return PAM_start = m.start() score = 0 if params["scoring"] == "Doench": # Doench score requires the 4 before and 6 after 20-mer (gives 30-mer) mer30 = seq[PAM_start-params["protospacer_len"]-4:PAM_start+params["PAM_len"]+3] if len(mer30) == 30: score = doench_score.calc_score(mer30) elif params["scoring"] == "Azimuth": # Azimuth requires the 4 before and 6 after 20-mer (gives 30-mer) mer30 = seq[PAM_start-params["protospacer_len"]-4:PAM_start+params["PAM_len"]+3] if len(mer30) == 30: score = azimuth.model_comparison.predict(np.array([mer30]), aa_cut=None, percent_peptide=None, model=azimuth_model, model_file=azimuth_model_file)[0] protospacer = "" PAM = "" if params["prime5"]: protospacer = seq[PAM_start-params["protospacer_len"]:PAM_start] PAM = seq[PAM_start:PAM_start+params["PAM_len"]] else: protospacer = seq[PAM_start+params["PAM_len"]:PAM_start+params["PAM_len"]+params["protospacer_len"]] PAM = seq[PAM_start:PAM_start+params["PAM_len"]] potential_gRNA = GuideRNA(selected, PAM_start-params["protospacer_len"], protospacer, PAM, score, exon, gene_name, gene_name, domain) if domain: domain_q.put(potential_gRNA) # If there's enough room, add it, no question. elif q.qsize() < max_queue_size: q.put(potential_gRNA) # Otherwise, take higher score else: lowest_gRNA = q.get() if potential_gRNA.score > lowest_gRNA.score: q.put(potential_gRNA) else: q.put(lowest_gRNA) for m in re.finditer(params["modPAM"], seq): if params["prime5"] and (m.start() < params["protospacer_len"] or m.start() + params["PAM_len"] > len(seq)): continue elif not params["prime5"] and (m.start() + params["PAM_len"] + params["protospacer_len"] > len(seq)): continue # Functional domains currently only supported for Cas9. # This needs to be modified for other genome editing proteins. domain = None if params["PAM"] == "NGG" and params["functional_domains"]: # spCas9 cut_site = coords['start'] + m.start() - 3 chrom = coords['chrom'] if chrom in interval_trees_dict: domain_matches = list(interval_trees_dict[chrom][cut_site]) if len(domain_matches) > 0: domain = domain_matches[0].data process_guide(m, True, params["quantity"], seq, domain) seq_rc = revcompl(seq) for m in re.finditer(params["modPAM"], seq_rc): if params["prime5"] and (m.start() < params["protospacer_len"] or m.start() + params["PAM_len"] > len(seq)): continue elif not params["prime5"] and (m.start() + params["PAM_len"] + params["protospacer_len"] > len(seq)): continue # Functional domains currently only supported for Cas9. # This needs to be modified for other genome editing proteins. domain = None if params["PAM"] == "NGG" and params["functional_domains"]: #spCas9 cut_site = coords['end'] - m.start() + 3 chrom = coords['chrom'] if chrom in interval_trees_dict: domain_matches = list(interval_trees_dict[chrom][cut_site]) if len(domain_matches) > 0: domain = domain_matches[0].data process_guide(m, True, params["quantity"], seq_rc, domain) # Pop gRNAs into our 'permanent' storage count = 0 gRNAs = [] while not q.empty() and count < params["quantity"]: gRNA = q.get() gRNAs.append(gRNA.serialize_for_display()) count = count + 1 while not domain_q.empty() and count < params["quantity"]: gRNA = domain_q.get() gRNAs.append(gRNA.serialize_for_display()) count = count + 1 domain_count = count outfile_name = gene_name + "_" + str(exon) + ".p" if domain_count > 0: print "for {0} we had {1} domain and {2} ordinary guides.".format(outfile_name, domain_count, count - domain_count) folder = '../GRCm38_guides_msgpack_' + params['scoring'] + '/' if params['functional_domains']: folder = '../GRCm38_guides_msgpack_' + params['scoring'] + '_domains/' output_path = os.path.join(folder, outfile_name) with open(output_path, 'w') as outfile: # Reverse gRNAs list. # Want highest on-target first. msgpack.dump(gRNAs[::-1], outfile) # prepare next exon exon += 1 seq = gene_exon_file(gene_name, exon) coords = gene_exon_coords(gene_name, exon)
38.208835
172
0.643683
5f11447a9d56ee9d5291d4ba0eb0556f2d0e9270
1,283
py
Python
main2.py
msburks/E01b-Smiles
dfafd5ce809cf2f90e1b5a322dd2394ef57c0f1d
[ "MIT" ]
null
null
null
main2.py
msburks/E01b-Smiles
dfafd5ce809cf2f90e1b5a322dd2394ef57c0f1d
[ "MIT" ]
null
null
null
main2.py
msburks/E01b-Smiles
dfafd5ce809cf2f90e1b5a322dd2394ef57c0f1d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import utils, open_color, arcade utils.check_version((3,7)) # Open the window. Set the window title and dimensions (width and height) arcade.open_window(800, 600, "Smiley Face Example") arcade.set_background_color(open_color.white) # Start the render process. This must be done before any drawing commands. arcade.start_render() face_x,face_y = (400,300) # Draw the smiley face: # (x,y,radius,color) arcade.draw_circle_filled(face_x, face_y, 100, open_color.yellow_3) # (x,y,radius,color,border_thickness) arcade.draw_circle_outline(face_x + 0, face_y + 0, 100, open_color.black, 4) #(x,y,width,height,color) arcade.draw_ellipse_filled(face_x + 30, face_y + 40, 30, 50, open_color.black) arcade.draw_ellipse_filled(face_x - 30, face_y + 40, 30, 50, open_color.black) arcade.draw_circle_filled(face_x + 35, face_y + 50, 3, open_color.gray_2) arcade.draw_circle_filled(face_x - 25, face_y + 50, 3, open_color.gray_2) #(x,y,width,height,color,start_degrees,end_degrees,border_thickness) arcade.draw_arc_outline(face_x + 0, face_y - 10, 60, 50, open_color.black, 190, 350, 4) # Finish the render # Nothing will be drawn without this. # Must happen after all draw commands arcade.finish_render() # Keep the window up until someone closes it. arcade.run()
33.763158
87
0.763835
d01ef2c9aeb59f2b7a4798ff5d5652d4c7eb984b
3,876
py
Python
competitions/quora-question-pairs/feat3.py
gtesei/fast-furious
b974e6b71be92ad8892864794af57631291ebac1
[ "MIT" ]
19
2015-06-24T00:04:11.000Z
2021-02-28T16:55:44.000Z
competitions/quora-question-pairs/feat3.py
gtesei/fast-furious
b974e6b71be92ad8892864794af57631291ebac1
[ "MIT" ]
null
null
null
competitions/quora-question-pairs/feat3.py
gtesei/fast-furious
b974e6b71be92ad8892864794af57631291ebac1
[ "MIT" ]
4
2016-10-11T17:36:44.000Z
2019-08-16T10:03:04.000Z
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import gc import matplotlib.pyplot as plt import seaborn as sns ##x%matplotlib inline from nltk.corpus import stopwords from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import roc_auc_score, log_loss from numpy import linalg as LA import re import Stemmer import nltk from nltk.corpus import wordnet as wn # sym def synsym(s1,s2): ts0 = nltk.pos_tag(nltk.word_tokenize(s1)) ts1 = nltk.pos_tag(nltk.word_tokenize(s2)) # adj jj0 = [x for x,y in ts0 if y=='JJ' or y=='JJR' or y=='JJS'] jj1 = [x for x,y in ts1 if y=='JJ' or y=='JJR' or y=='JJS'] jj0w = [wn.synsets(xx,pos=wn.ADJ) for xx in jj0] jj0w = [item for sl in jj0w for item in sl] jj1w = [wn.synsets(xx,pos=wn.ADJ) for xx in jj1] jj1w = [item for sl in jj1w for item in sl] jjps = [r.path_similarity(l) for r in jj0w for l in jj1w] jjps = [x for x in jjps if x != None] if len(jjps)==0: jjps = [0] # noum jj0 = [x for x,y in ts0 if y=='NN' or y=='NNS' or y=='NNP' or y=='NNPS'] jj1 = [x for x,y in ts1 if y=='NN' or y=='NNS' or y=='NNP' or y=='NNPS'] jj0w = [wn.synsets(xx,pos=wn.NOUN) for xx in jj0] jj0w = [item for sl in jj0w for item in sl] jj1w = [wn.synsets(xx,pos=wn.NOUN) for xx in jj1] jj1w = [item for sl in jj1w for item in sl] nps = [r.path_similarity(l) for r in jj0w for l in jj1w] nps = [x for x in nps if x != None] if len(nps)==0: nps = [0] # verb jj0 = [x for x,y in ts0 if y=='VB' or y=='VBD' or y=='VBG' or y=='VBN' or y=='VBP' or y=='VBZ'] jj1 = [x for x,y in ts1 if y=='VB' or y=='VBD' or y=='VBG' or y=='VBN' or y=='VBP' or y=='VBZ'] jj0w = [wn.synsets(xx,pos=wn.VERB) for xx in jj0] jj0w = [item for sl in jj0w for item in sl] jj1w = [wn.synsets(xx,pos=wn.VERB) for xx in jj1] jj1w = [item for sl in jj1w for item in sl] vps = [r.path_similarity(l) for r in jj0w for l in jj1w] vps = [x for x in vps if x != None] if len(vps)==0: vps = [0] # adverb jj0 = [x for x,y in ts0 if y=='RB' or y=='RBR' or y=='RBS' or y=='WRB'] jj1 = [x for x,y in ts1 if y=='RB' or y=='RBR' or y=='RBS' or y=='WRB'] jj0w = [wn.synsets(xx,pos=wn.ADV) for xx in jj0] jj0w = [item for sl in jj0w for item in sl] jj1w = [wn.synsets(xx,pos=wn.ADV) for xx in jj1] jj1w = [item for sl in jj1w for item in sl] aps = [r.path_similarity(l) for r in jj0w for l in jj1w] aps = [x for x in aps if x != None] if len(aps)==0: aps = [0] return [jjps,nps,vps,aps] # data df_train = pd.read_csv('./data/train.csv') df_test = pd.read_csv('./data/test.csv') print(">> df_train:",df_train.shape) print(">> df_test:",df_test.shape) print("-- src:",df_train.ix[1,'question1']) qs1 = pd.Series(df_train['question1'].tolist() + df_test['question1'].tolist()).astype(str) qs2 = pd.Series(df_train['question2'].tolist() + df_test['question2'].tolist()).astype(str) feat = np.zeros((df_train.shape[0]+df_test.shape[0],4)) for i in range(0,feat.shape[0]): if i % 100000 ==0: print(str(i),end=' ',flush=True) l = synsym(qs1[i],qs2[i]) feat[i,0] = max(l[0]) feat[i,1] = max(l[1]) feat[i,2] = max(l[2]) feat[i,3] = max(l[3]) tr_feat = feat[0:df_train.shape[0]] te_feat = feat[df_train.shape[0]:] # write on disk tr_csv = pd.DataFrame({'adj_sym':tr_feat[:,0],'noun_sym':tr_feat[:,1],'verb_sym':tr_feat[:,2],'adv_sym':tr_feat[:,3]}) te_csv = pd.DataFrame({'adj_sym':te_feat[:,0],'noun_sym':te_feat[:,1],'verb_sym':te_feat[:,2],'adv_sym':te_feat[:,3]}) tr_csv.to_csv("xtrain_3.csv", index=False) te_csv.to_csv("xtest_3.csv", index=False)
37.631068
118
0.624355
dcc14bb45489c8edacf84db11120b714db26f024
894
py
Python
wc_cli/config/core.py
KarrLab/wc
b2e0a18606816e6ce222c5aa9596b2b844748f18
[ "MIT" ]
null
null
null
wc_cli/config/core.py
KarrLab/wc
b2e0a18606816e6ce222c5aa9596b2b844748f18
[ "MIT" ]
2
2019-06-28T03:50:23.000Z
2019-06-28T15:50:34.000Z
wc_cli/config/core.py
KarrLab/wc
b2e0a18606816e6ce222c5aa9596b2b844748f18
[ "MIT" ]
null
null
null
""" Configuration :Author: Jonathan Karr <jonrkarr@gmail.com> :Date: 2018-05-16 :Copyright: 2018, Karr Lab :License: MIT """ import configobj import os import pkg_resources import wc_utils.config def get_config(extra=None): """ Get configuration Args: extra (:obj:`dict`, optional): additional configuration to override Returns: :obj:`configobj.ConfigObj`: nested dictionary with the configuration settings loaded from the configuration source(s). """ paths = wc_utils.config.ConfigPaths( default=pkg_resources.resource_filename('wc_cli', 'config/core.default.cfg'), schema=pkg_resources.resource_filename('wc_cli', 'config/core.schema.cfg'), user=( 'wc_cli.core.cfg', os.path.expanduser('~/.wc/wc_cli.core.cfg'), ), ) return wc_utils.config.ConfigManager(paths).get_config(extra=extra)
26.294118
126
0.683445
c9868ac74e188e1545f6cd99b9e6b4f6d221bfff
12,088
py
Python
test/disabletest_adb_long_duration_recorder_old.py
louiscklaw/adb_long_duration_recorder
9bb43833de9255e6e3e5dd7302d2184b0c05897a
[ "MIT" ]
null
null
null
test/disabletest_adb_long_duration_recorder_old.py
louiscklaw/adb_long_duration_recorder
9bb43833de9255e6e3e5dd7302d2184b0c05897a
[ "MIT" ]
null
null
null
test/disabletest_adb_long_duration_recorder_old.py
louiscklaw/adb_long_duration_recorder
9bb43833de9255e6e3e5dd7302d2184b0c05897a
[ "MIT" ]
null
null
null
#!/usr/bin/env python # init_py_dont_write_bytecode """ Helloworld boilder plate Naming style guideline https://google.github.io/styleguide/pyguide.html unittest documentation https://docs.python.org/3/library/unittest.html """ import os import sys import time import re import logging import fnmatch import unittest import pytest from pprint import pprint from src.adb_long_duration_recorder import * class StatusText(object): """StatusText""" TEST_TOPIC1 = 'test topic1' SAMPLE_STATUS1 = '${sample status}1' SAMPLE_STATUS2 = '${sample status}2' SAMPLE_STATUS3 = '${sample status}3' class ErrorText(object): """ErrorText""" TEST_TOPIC1 = 'test topic1' ERROR_STATUS1 = '${error text}1' ERROR_STATUS2 = '${error text}2' ERROR_STATUS3 = '${error text}3' class TestSetting: """to store the test settings""" ANDROID_UDID = 'VZHGLMA742802935' def setUpModule(): print('setup (topic) module') def tearDownModule(): print('teardown (topic) module') class Test_topic(unittest.TestCase): @classmethod def setUpClass(cls): print('setup (topic) class') @classmethod def tearDownClass(cls): print('teardown (topic) class') def clear_the_stage(self): self.clear_tmp_dir() def clear_tmp_dir(self): os.system('rm -rf /tmp/*.mp4') def clear_adb_process(self): os.system('killall adb') def get_file_in_dir(self, dir_path='/home/logic', mask='*.mp4'): """get the path, list the file matching the path""" match_files=[] re_filemask = fnmatch.translate(mask) for root, dirs, files in os.walk(dir_path): for filename in files: if re.match(re_filemask, filename): match_files.append(os.path.join(dir_path, filename)) # list the current directory only break return match_files def adb_kill_server(self): os.system('adb kill-server') def adb_disable_screensaver(self): os.system('adb shell settings put secure sleep_timeout 2147460000') os.system('adb shell settings put secure screen_off_timeout 2147460000') def setUp(self): print('setup (topic) test') self.adb_disable_screensaver() self.clear_the_stage() self.adb_kill_server() print('kill-server done') def tearDown(self): print('teardown (topic) test') self.clear_the_stage() def test_helloworld(self): AdbLongDurationRecorder('xxxxxx').helloworld() def test_create_instance(self, UDID=TestSetting.ANDROID_UDID, maximum_length=180): record_instance = AdbLongDurationRecorder(UDID, maximum_length=maximum_length) self.assertIsInstance(record_instance, AdbLongDurationRecorder, 'cannot create instance') return record_instance def test_get_filename_in_android(self, UDID=TestSetting.ANDROID_UDID): TEST_SET={ 1: ['/sdcard/temp_record_0.mp4'], 3: ['/sdcard/temp_record_0.mp4', '/sdcard/temp_record_1.mp4', '/sdcard/temp_record_2.mp4'] } record_instance=self.test_create_instance(UDID) for repeat_num, filenames in TEST_SET.items(): result_filenames=record_instance._get_filename_in_android(repeat_num) self.assertEqual(result_filenames, filenames, 'fail') def test_get_start_command(self, UDID=TestSetting.ANDROID_UDID): TEST_SET={ 1: '/usr/bin/adb -s {UDID} shell screenrecord /sdcard/temp_record_0.mp4'.format(UDID=UDID), 3: '/usr/bin/adb -s {UDID} shell screenrecord /sdcard/temp_record_0.mp4 & /usr/bin/adb -s {UDID} shell screenrecord /sdcard/temp_record_1.mp4 & /usr/bin/adb -s {UDID} shell screenrecord /sdcard/temp_record_2.mp4'.format(UDID=UDID), } record_instance=self.test_create_instance(UDID) for number, answer in TEST_SET.items(): command = record_instance._get_start_record_command(number) self.assertEqual(command, answer, 'cannot get the start command 123{}'.format(command)) def test_get_record_pid_command(self, UDID=TestSetting.ANDROID_UDID): record_instance=self.test_create_instance(UDID) result = record_instance._get_record_pid_command() self.assertEqual(result, 'ps -xa | grep -i adb | grep -v grep | grep -i screenrecord | grep {}'.format(UDID), 'the pid is not correct "{}"'.format(result)) def test_get_kill_record_command(self, UDID=TestSetting.ANDROID_UDID): TEST_SET=['999','10'] record_instance=self.test_create_instance(UDID) for pid in TEST_SET: command = record_instance._get_kill_record_command(pid) self.assertEqual(command, 'kill {}'.format(pid), 'cannot get the kill command') def test_adb_command_head(self, UDID=TestSetting.ANDROID_UDID): record_instance = self.test_create_instance() adb_command_head = record_instance._get_adb_command_head() self.assertEqual(adb_command_head, '/usr/bin/adb -s {}'.format(UDID), 'failed {}'.format(adb_command_head)) def test_list_process(self): record_instance = self.test_create_instance() ps_list = record_instance.list_process() return ps_list def find_process_by_pid(self, pid): '''to find a pid from os ps list Return: true if found, false if not found ''' process_list = self.test_list_process() process_found = process_list.find(str(pid)) > -1 return process_found def assert_pid_is_valid(self, pid): '''try to check if the pid is the valid one''' self.assertGreater(pid, 1, 'the pid is lower than 1') self.assertTrue(self.find_process_by_pid(pid),'the process cannot found under host process table') def test_adb_helloworld(self): TEST_VECTOR='helloworld' record_instance = self.test_create_instance() result = record_instance.adb_echo_string(TEST_VECTOR) self.assertGreaterEqual(result.find(TEST_VECTOR),0, 'cannot find the TEXT_VECTOR result: {}'.format(result)) @pytest.mark.wip def test_adb_start_record(self, duration=10, UDID=TestSetting.ANDROID_UDID, maximum_length=180): record_instance = self.test_create_instance(maximum_length=maximum_length) record_instance.adb_start_record(10) print(record_instance.last_result) assert False # record_process_pid = record_instance.record_process.pid # self.assertGreater(record_process_pid, 1, 'the pid not valid') # process_found = self.find_process_by_pid(record_instance.record_process) # self.assertTrue(process_found, 'the record process not found {}'.format(record_instance.record_process)) # print(record_instance.record_files_android_path) # self.assertEqual('',dir(record_instance),'fail') # self.assertIn('/sdcard/temp_record_0.mp4', record_instance.record_files_android_path, 'fail') # TODO: remov me # list_mp4_command=r'adb shell ls -l /sdcard/\*.mp4' # splitted_command = shlex.split(list_mp4_command) # result = subprocess.check_output(splitted_command) return record_instance def test_send_popen_command(self, command='hostname'): record_instance = self.test_create_instance() # result = record_instance._send_host_command(command) result = record_instance._send_popen_command(command) # self.assertNotEqual((), result, 'the command not returning result') return result def te1st_send_host_command_killing_process(self): NO_SUCH_PROCESS = 'No such process' result = self.test_send_popen_command('ifconfig') self.assertEqual('321', result,'debug test') self.assertGreaterEqual(0,result.find(NO_SUCH_PROCESS), 'expected result not found') def te1st_adb_kill_record(self): record_instance= self.test_create_instance() record_instance.adb_start_record() record_process_pid = record_instance.record_process.pid self.assert_pid_is_valid(record_process_pid) record_instance.adb_kill_record() time.sleep(15) process_found = self.find_process_by_pid(record_process_pid) self.assertFalse(process_found, 'the record process still remains pid {}'.format(record_process_pid)) def test_list_file_in_android(self): file_test_vector='test_vector.mp4' test_path = '/sdcard' file_on_android = os.path.join(test_path, file_test_vector) os.system('adb shell touch {}'.format(file_on_android)) record_instance = self.test_create_instance() result = record_instance.list_file_in_android() self.assertIn(file_test_vector,result, 'fail listing file in android') def t1est_get_pull_command(self, UDID=TestSetting.ANDROID_UDID): mp4_file = '/sdcard/screenrecord_1.mp4' record_instance = self.test_adb_start_record() commands = record_instance._get_pull_command(mp4_file) self.assertEqual(commands, '/usr/bin/adb -s {} pull {} /tmp'.format(UDID, mp4_file), 'failed {}'.format(commands)) def test_ls_files(self): test_file = '/tmp/test.mp4' test_dir = os.path.dirname(test_file) filemask = '*.mp4' os.system('touch {}'.format(test_file)) file_in_tmp_dir = self.get_file_in_dir(test_dir,filemask) self.assertEqual(file_in_tmp_dir, [test_file], 'the target file not found') # def test_adb_pull_record(self, duration=180, mp4_epxected, maximum_duration=2): # record_instance = self.test_adb_start_record(duration, maximum_duration=maximum_duration) # time.sleep(duration) def test_get_start_record_command(self): TEST_SET={ 0: '/usr/bin/adb -s VZHGLMA742802935 shell screenrecord --time-limit 0 /sdcard/temp_record_0.mp4', 1: '/usr/bin/adb -s VZHGLMA742802935 shell screenrecord --time-limit 1 /sdcard/temp_record_0.mp4', 180: '/usr/bin/adb -s VZHGLMA742802935 shell screenrecord --time-limit 180 /sdcard/temp_record_0.mp4', 181: '/usr/bin/adb -s VZHGLMA742802935 shell screenrecord --time-limit 181 /sdcard/temp_record_0.mp4', } for duration, expected_command in TEST_SET.items(): record_instance = self.test_create_instance(maximum_length=duration) commands = record_instance._get_start_record_command(duration,1) self.assertEqual(expected_command, commands, 'the generated command not match {}'.format(commands)) def test_get_adb_command_head(self): record_instance = self.test_create_instance() result = record_instance._get_adb_command_head() self.assertEqual('/usr/bin/adb -s {}'.format(TestSetting.ANDROID_UDID), result, 'the generated command not match') def te1st_adb_pull_records(self): TEST_SET = { 1: ['/tmp/temp_record_0.mp4' ], # 3: ['/tmp/temp_record_0.mp4', '/tmp/temp_record_1.mp4'], } UDID = TestSetting.ANDROID_UDID for record_test_duration, filenames in TEST_SET.items(): # record_instance = self.test_adb_start_record(record_test_duration, maximum_length=2) record_instance = AdbLongDurationRecorder(UDID) record_instance.adb_start_record() time.sleep(record_test_duration+1) file_on_android = record_instance.list_file_in_android() pprint(file_on_android) assert False record_instance.adb_pull_records() mp4_files_found = self.get_file_in_dir('/tmp','*.mp4') self.assertEqual(filenames, mp4_files_found, 'cannot find mp4 files under directory') # self.fail(file_in_tmp_dir) # def test_adb_record_start_to_end(self): # record_instance = self.test_create_instance() # record_instance.adb_start_record(3) # record_instance.adb_kill_record() if __name__ == '__main__': unittest.main(verbosity=2)
36.191617
243
0.687955
bddfd445daea1f69b4f5df9713f01ca3c71c96a7
3,340
py
Python
addons/blender-addon-fbx-bundle/modifier_offset_transform.py
V-Sekai/game-tools-V-Sekai
74eb79e9b97bb1954e647ed2f909f4f326189cb5
[ "MIT" ]
2
2021-12-21T16:38:58.000Z
2022-01-08T00:56:35.000Z
addons/blender-addon-fbx-bundle/modifier_offset_transform.py
V-Sekai/game-tools-V-Sekai
74eb79e9b97bb1954e647ed2f909f4f326189cb5
[ "MIT" ]
1
2022-01-29T05:46:50.000Z
2022-01-29T05:46:50.000Z
addons/blender-addon-fbx-bundle/modifier_offset_transform.py
V-Sekai/game-tools-V-Sekai
74eb79e9b97bb1954e647ed2f909f4f326189cb5
[ "MIT" ]
1
2021-11-07T19:41:34.000Z
2021-11-07T19:41:34.000Z
import bpy, bmesh import imp import math from mathutils import Vector from . import modifier imp.reload(modifier) class Settings(modifier.Settings): active = bpy.props.BoolProperty ( name="Active", default=False ) source = bpy.props.StringProperty() class Modifier(modifier.Modifier): label = "Offset Transform" id = 'offset_transform' url = "http://renderhjs.net/fbxbundle/#modifier_offset" def __init__(self): super().__init__() # def register(self): # exec("bpy.utils.register_class({}.Settings)".format(n)) # exec("bpy.types.Scene."+self.settings_path() + " = bpy.props.PointerProperty(type=Settings)") def draw(self, layout): super().draw(layout) if(self.get("active")): # Alternatively: https://blender.stackexchange.com/questions/75185/limit-prop-search-to-specific-types-of-objects layout.prop_search(eval("bpy.context.scene."+self.settings_path()), "source", bpy.context.scene, "objects", text="Source") if self.get('source') in bpy.data.objects: obj = bpy.data.objects[self.get('source')] messages = [] if obj.location.magnitude > 0: messages.append("Move x:{:.1f} y:{:.1f} z:{:.1f}".format(obj.location.x, obj.location.y, obj.location.z)) if obj.rotation_euler.x != 0 or obj.rotation_euler.y != 0 or obj.rotation_euler.z != 0: rx,ry,rz = obj.rotation_euler.x * 180/math.pi, obj.rotation_euler.y * 180/math.pi, obj.rotation_euler.z * 180/math.pi messages.append("Rotate x:{:.0f}° y:{:.0f}° z:{:.0f}°".format(rx, ry, rz)) if obj.scale.x != 1 or obj.scale.y != 1 or obj.scale.z != 1: messages.append("Scale x:{:.2f} y:{:.2f} z:{:.2f}".format(obj.scale.x, obj.scale.y, obj.scale.z)) if len(messages) > 0: col = layout.column(align=True) for message in messages: row = col.row(align=True) row.enabled = False row.label(text= message) def process_objects(self, name, objects): if self.get('source') in bpy.data.objects: source = bpy.data.objects[ self.get('source') ] print("Offset... "+source.name) bpy.ops.object.mode_set(mode='OBJECT') prev_cursor_mode = bpy.context.tool_settings.transform_pivot_point prev_cursor_location = bpy.context.scene.cursor.location # Export origin bpy.context.tool_settings.transform_pivot_point = 'CURSOR' bpy.context.scene.cursor.location = Vector((0,0,0)) for obj in objects: if obj != source: bpy.ops.object.select_all(action='DESELECT') bpy.context.view_layer.objects.active = obj obj.select_set(state = True) # Move bpy.ops.transform.translate(value=source.location, orient_type='GLOBAL', mirror=False, use_proportional_edit = False) # Rotate bpy.ops.transform.rotate(value=source.rotation_euler.x, orient_axis='X', use_proportional_edit = False) bpy.ops.transform.rotate(value=source.rotation_euler.y, orient_axis='Y', use_proportional_edit = False) bpy.ops.transform.rotate(value=source.rotation_euler.z, orient_axis='Z', use_proportional_edit = False) # Scale bpy.ops.transform.resize(value=source.scale, orient_type='GLOBAL', mirror=False, use_proportional_edit = False) # Restore pivot & mode bpy.context.tool_settings.transform_pivot_point = prev_cursor_mode bpy.context.scene.cursor.location = prev_cursor_location return objects
32.745098
126
0.696108
29c78d55581c0e05fcd754f69bf85ce688f50af4
6,621
py
Python
crosshair/libimpl/encodings/_encutil.py
samuelchassot/CrossHair
4eac7a23e470567cc23e6d0916ce6dd6820eacd8
[ "MIT" ]
null
null
null
crosshair/libimpl/encodings/_encutil.py
samuelchassot/CrossHair
4eac7a23e470567cc23e6d0916ce6dd6820eacd8
[ "MIT" ]
null
null
null
crosshair/libimpl/encodings/_encutil.py
samuelchassot/CrossHair
4eac7a23e470567cc23e6d0916ce6dd6820eacd8
[ "MIT" ]
null
null
null
import codecs from collections.abc import ByteString from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Type, Union from crosshair.core import realize from crosshair.libimpl.builtinslib import AnySymbolicStr from crosshair.libimpl.builtinslib import SymbolicBytes class ChunkError: def reason(self) -> str: raise NotImplementedError class UnexpectedEndError(ChunkError): def reason(self) -> str: return "unexpected end of data" @dataclass class MidChunkError(ChunkError): _reason: str # _errlen: int = 1 def reason(self) -> str: return self._reason class _UnicodeDecodeError(UnicodeDecodeError): def __init__(self, enc, byts, start, end, reason): UnicodeDecodeError.__init__(self, enc, b"", start, end, reason) self.object = byts def __ch_deep_realize__(self) -> object: enc, obj, reason = self.encoding, self.object, self.reason start, end = self.start, self.end return UnicodeDecodeError( realize(enc), realize(obj), realize(start), realize(end), realize(reason) ) def __repr__(self): enc, obj, reason = self.encoding, self.object, self.reason start, end = self.start, self.end return f"UnicodeDecodeError({enc!r}, {obj!r}, {start!r}, {end!r}, {reason!r})" class StemEncoder: encoding_name: str @classmethod def _encode_chunk( cls, intput: str, start: int ) -> Tuple[Union[bytes, SymbolicBytes], int, Optional[ChunkError]]: raise NotImplementedError @classmethod def _decode_chunk( cls, intput: bytes, start: int ) -> Tuple[Union[str, AnySymbolicStr], int, Optional[ChunkError]]: raise NotImplementedError @classmethod def encode( cls, input: str, errors: str = "strict" ) -> Tuple[Union[bytes, SymbolicBytes], int]: if not (isinstance(input, str) and isinstance(errors, str)): raise TypeError parts: List[Union[bytes, SymbolicBytes]] = [] idx = 0 inputlen = len(input) while idx < inputlen: out, idx, err = cls._encode_chunk(input, idx) parts.append(out) if err is not None: realized_input = realize(input) # TODO: avoid realization here. # (which possibly requires implementing the error handlers in python) exc = UnicodeEncodeError( cls.encoding_name, realized_input, idx, idx + 1, err.reason() ) replacement, idx = codecs.lookup_error(errors)(exc) if isinstance(replacement, str): replacement = codecs.encode(replacement, cls.encoding_name) parts.append(replacement) return b"".join(parts), idx @classmethod def decode( cls, input: bytes, errors: str = "strict" ) -> Tuple[Union[str, AnySymbolicStr], int]: if not (isinstance(input, ByteString) and isinstance(errors, str)): raise TypeError parts: List[Union[str, AnySymbolicStr]] = [] idx = 0 inputlen = len(input) while idx < inputlen: out, idx, err = cls._decode_chunk(input, idx) parts.append(out) if err is not None: # 1. Handle some well-known error modes directly: if errors == "strict": raise _UnicodeDecodeError( cls.encoding_name, input, idx, idx + 1, err.reason() ) if errors == "ignore": continue if errors == "replace": parts.append("\uFFFD") continue # 2. Then fall back to native implementations if necessary: exc = UnicodeDecodeError( cls.encoding_name, realize(input), idx, idx + 1, err.reason() ) replacement, idx = codecs.lookup_error(errors)(exc) if isinstance(replacement, bytes): replacement = codecs.decode(replacement, cls.encoding_name) parts.append(replacement) return "".join(parts), idx # type: ignore @classmethod def getregentry(cls) -> codecs.CodecInfo: return _getregentry(cls) def _getregentry(stem_encoder: Type[StemEncoder]): class StemIncrementalEncoder(codecs.BufferedIncrementalEncoder): def _buffer_encode(self, input: str, errors: str, final: bool) -> bytes: enc_name = stem_encoder.encoding_name out, idx, err = stem_encoder._encode_chunk(input, 0) assert isinstance(out, bytes) if not err: return out if isinstance(err, UnexpectedEndError) or not final: return out exc = UnicodeEncodeError(enc_name, input, idx, idx + 1, err.reason()) replacement, idx = codecs.lookup_error(errors)(exc) if isinstance(replacement, str): replacement = codecs.encode(replacement, enc_name) return out + replacement class StemIncrementalDecoder(codecs.BufferedIncrementalDecoder): def _buffer_decode( self, input: bytes, errors: str, final: bool ) -> Tuple[str, int]: enc_name = stem_encoder.encoding_name out, idx, err = stem_encoder._decode_chunk(input, 0) assert isinstance(out, str) if not err: return out, idx if isinstance(err, UnexpectedEndError) or not final: return out, idx exc = UnicodeDecodeError(enc_name, input, idx, idx + 1, err.reason()) replacement, idx = codecs.lookup_error(errors)(exc) if isinstance(replacement, bytes): replacement = codecs.decode(replacement, enc_name) return (out + replacement, idx) class StemStreamWriter(codecs.StreamWriter): def encode(self, input: str, errors: str = "strict") -> Tuple[bytes, int]: raise Exception class StemStreamReader(codecs.StreamReader): def decode(self, input: bytes, errors: str = "strict") -> Tuple[str, int]: raise Exception return codecs.CodecInfo( name=stem_encoder.encoding_name, encode=stem_encoder.encode, # type: ignore decode=stem_encoder.decode, # type: ignore incrementalencoder=StemIncrementalEncoder, incrementaldecoder=StemIncrementalDecoder, streamreader=StemStreamReader, streamwriter=StemStreamWriter, )
37.619318
86
0.606404
a2663211ae95e76a04900cde9ffda49771824abe
1,572
py
Python
aliyun-python-sdk-cms/aliyunsdkcms/request/v20180308/DeleteCustomMetricRequest.py
DataDog/aliyun-openapi-python-sdk
5cbee29bce6416dd62f61f0c3786b1af6ea0d84f
[ "Apache-2.0" ]
1
2019-12-23T12:36:43.000Z
2019-12-23T12:36:43.000Z
aliyun-python-sdk-cms/aliyunsdkcms/request/v20180308/DeleteCustomMetricRequest.py
liusc27/aliyun-openapi-python-sdk
5e3db3535dd21de987dc5981e71151327d5a884f
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-cms/aliyunsdkcms/request/v20180308/DeleteCustomMetricRequest.py
liusc27/aliyun-openapi-python-sdk
5e3db3535dd21de987dc5981e71151327d5a884f
[ "Apache-2.0" ]
1
2021-02-23T11:27:54.000Z
2021-02-23T11:27:54.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class DeleteCustomMetricRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Cms', '2018-03-08', 'DeleteCustomMetric','cms') def get_GroupId(self): return self.get_query_params().get('GroupId') def set_GroupId(self,GroupId): self.add_query_param('GroupId',GroupId) def get_MetricName(self): return self.get_query_params().get('MetricName') def set_MetricName(self,MetricName): self.add_query_param('MetricName',MetricName) def get_UUID(self): return self.get_query_params().get('UUID') def set_UUID(self,UUID): self.add_query_param('UUID',UUID) def get_Md5(self): return self.get_query_params().get('Md5') def set_Md5(self,Md5): self.add_query_param('Md5',Md5)
32.75
77
0.750636
e53b1a59f8b53158fb0debf35b8d4f249b33967f
106
py
Python
notebooks/Metpy_Introduction/solutions/intro_units.py
DEVESHTARASIA/unidata-python-workshop
6ce194a0515effbd0cddb50c2302d5160494747e
[ "MIT" ]
1
2020-01-18T20:34:33.000Z
2020-01-18T20:34:33.000Z
notebooks/Metpy_Introduction/solutions/intro_units.py
DEVESHTARASIA/unidata-python-workshop
6ce194a0515effbd0cddb50c2302d5160494747e
[ "MIT" ]
null
null
null
notebooks/Metpy_Introduction/solutions/intro_units.py
DEVESHTARASIA/unidata-python-workshop
6ce194a0515effbd0cddb50c2302d5160494747e
[ "MIT" ]
1
2020-11-07T12:42:54.000Z
2020-11-07T12:42:54.000Z
speed = 25 * units.knots time = 1 * units.fortnight distance = speed * time print(distance.to('furlongs'))
26.5
30
0.716981
3d6b4a2b400f487f0dc24487e6bde1403e551863
880
py
Python
2020/18/solution1.py
frenzymadness/aoc
c9018e757bae61a696e675a827aef873995abdd3
[ "WTFPL" ]
2
2020-12-04T09:45:38.000Z
2020-12-07T14:06:12.000Z
2020/18/solution1.py
frenzymadness/aoc
c9018e757bae61a696e675a827aef873995abdd3
[ "WTFPL" ]
null
null
null
2020/18/solution1.py
frenzymadness/aoc
c9018e757bae61a696e675a827aef873995abdd3
[ "WTFPL" ]
null
null
null
import re from operator import add, mul operators = {"+": add, "*": mul} with open("input.txt") as input_file: expressions = input_file.readlines() def parse_par(exp): result = [] stack = [] for i, c in enumerate(exp): if c == '(': stack.append(i) elif c == ')' and stack: start = stack.pop() result.append((len(stack), exp[start + 1: i])) return result def eval_exp(exp): while m := re.match(r"(\d+) ([+*]) (\d+)", exp): a, op, b = m.groups() res = operators[op](int(a),int(b)) exp = str(res) + exp[m.end():] return exp sum = 0 for exp in expressions: while pars := sorted(parse_par(exp)): depth, subexp = pars.pop() subres = eval_exp(subexp) exp = exp.replace(f"({subexp})", str(subres)) sum += int(eval_exp(exp)) print(sum)
23.157895
58
0.529545
83a5c91a42f9717092225ea3c5fff4b580aea95d
97,545
py
Python
mitsubishi/const.py
chomupashchuk/broadlink-mitsubishi-srk20zm-home-assistant
beb7ea1578aaedf23782801a2724a01cd28a4af1
[ "MIT" ]
null
null
null
mitsubishi/const.py
chomupashchuk/broadlink-mitsubishi-srk20zm-home-assistant
beb7ea1578aaedf23782801a2724a01cd28a4af1
[ "MIT" ]
null
null
null
mitsubishi/const.py
chomupashchuk/broadlink-mitsubishi-srk20zm-home-assistant
beb7ea1578aaedf23782801a2724a01cd28a4af1
[ "MIT" ]
null
null
null
"""Constants for Ariston component.""" from homeassistant.components.climate.const import ( CURRENT_HVAC_COOL, CURRENT_HVAC_DRY, CURRENT_HVAC_FAN, CURRENT_HVAC_HEAT, CURRENT_HVAC_OFF, HVAC_MODE_COOL, HVAC_MODE_DRY, HVAC_MODE_FAN_ONLY, HVAC_MODE_HEAT, HVAC_MODE_HEAT_COOL, HVAC_MODE_OFF, FAN_AUTO, FAN_LOW, FAN_MEDIUM, FAN_HIGH, FAN_OFF, SUPPORT_FAN_MODE, SUPPORT_TARGET_TEMPERATURE, ) DOMAIN = "mitsubishi" DATA_MITSUBISHI = DOMAIN DEVICES = "devices" CLIMATES = "climates" HUMIDITY_ENTITY = "humidity_entity" TEMPERARURE_ENTITY = "temperature_entity" REMOTE_ENTITY = "remote_entity" CURRENT_HVAC_MAINTAINING = "maintaining" FAN_HIGHEST = "highest" PAR_HVAC_MODE = "hvac_mode" PAR_FAN_MODE = "fan_mode" PAR_TEMPERATURE = "temperature" TEMP_MIN = 18 TEMP_MAX = 30 SUPPORTED_HVAC_MODES = [HVAC_MODE_COOL, HVAC_MODE_DRY, HVAC_MODE_FAN_ONLY, HVAC_MODE_HEAT, HVAC_MODE_HEAT_COOL, HVAC_MODE_OFF] SUPPORTED_FAN_MODES = [FAN_AUTO, FAN_LOW, FAN_MEDIUM, FAN_HIGH, FAN_HIGHEST] SUPPORT_FLAGS = SUPPORT_FAN_MODE | SUPPORT_TARGET_TEMPERATURE AC_CODES = { HVAC_MODE_OFF: 'JgA2AWM1DgwMKA4MDA4OJg4MDicODAwODiYOJg4mDgwMKA4MDiYNKA4mDgwODA4MDgwOJg4mDgwOJg8MDScOJg4MDgwMDgwoDgwOJg4MDQ0OJw4mDiYODA4mDiYOJg4mDicOJg4mDiYODA4MDgwMDgwODA4MDg0ODCgOJgwoDiYOJgwoDCkNJwwODA4MDgwODA4MDgwODCgMKQspDCgMKAwoDCgMKAwODA4MDg0ODA4MDgwODA4MKAwODCgMKAwODCgNDgwODA4MKAwODA4MKAwODCgOJg4nDiYOJg4MDiYOJg4MDgwODA4MDgwOJw4MDgwOJg8lDiYPJQ4mDicOJg4mDiYODA4MDgwODA4MDgwODA4MDicNJw4mDiYOJg4mDiYOJw0NDgwODA4MDgwODA4MDgwOJg4ADQUAAA==', HVAC_MODE_FAN_ONLY: { FAN_AUTO: 'JgA2AWQ1Cw4NKA0NDA4MKAwNDicMDgwODCgNKQsoDgwNJwwODCgNJwwoDA4NDQ0ODA4MKAwoDA0PJgwODScMKA0MDg0ODQwoDA4NJwwODQwNKAwoDCgNDgwODCgMDgwoDScMKA0nDCgNKA0NDCgNDQwODA4MDg0NDCgMDgwODCkPJQ0nDCgNJw0NDCgMKA0ODA4MDQ0ODCgNJwwoDCgNJw0nDSgMKAwODA4MDgwODA4MDgwODA4MKAwpDCgMKAwoDCgMDgwODAwODgwODA8MDQ4NDCgMKAwoDCgNJwwODCkNJwwNDQ4MDg0NDA4NJwwODA4MKAwpDCgNJwwoDScMKAwoDCgNDgwODQ0MDgwNDg0MDgwODCgMKA0nDSgNJw0nDCgMKAwODA4MDg4IEA4NDgwODA4MKA0ADQUAAA==', FAN_LOW: 'JgA2AWM1DA4MKAwODA4MKAwODCkMDgwODCgMKAwoDA4MKAwODCgMKA0oDA4MDgwODA4MKAwoDA4MKAwPDCgMKAwODA4MDgwoDA4MKAwODA4NKAwoDCgMDgwODCgMDgwoDCgNKAwoDCgMKAwODCgMDgwODA4MDg0ODCgMKAwoDCgMKAwoDCgNKAwODA4MDgwODA4MDgwODA4MKAwoDSgMKAwoDCgMKAwoDA4MDgwODQ4MDgwODA4MKAwoDCgMKAwoDCkMDgwODA4MDgwODA4MDgwODCgMKAwoDSgMKQsODCgMKAwODA4MDgwODA4MKQwODA4MKAwoDCgMKAwoDCkMKAwoDCgMDgwODA4MDgwODA4MDgwODSgMKAwoDCgMKAwoDCgMKA0ODA4MDgwODA4MDgwODA4MKAwADQUAAA==', FAN_MEDIUM: 'JgA2AWUzDgwOJg4MDgwOJg8LDyUPDA4MDiYOJg4mDgwOJg8LDyUPJg4mDgwODA4MDgwOJg4mDwsPJQ8MDiYOJg4MDgwODA4mDgwOJg8LDwwOJg4mDiYODA4MDiYODA4mDyUPJg4mDiYOJg4MDiYPCw8LDwsPDA4MDiYOJg4mDiYOJg8lDyYOJg4MDgwODA4MDgwODA4MDiYPCw8mDiYOJg4mDiYOJg4MDiYPCw8MDgwODA4MDgwOJg4mDiYOJg8lDyUPDA4MDgwODA4MDgwODA4MDiYPJQ8lDyYOJg4MDiYOJg4MDgwPCw8LDwwOJg4MDgwOJg4mDiYOJg8lDyYOJg4mDiYODA4MDgwODA4MDwsPCw8MDiYOJg4mDiYOJg4mDyUPJg4MDgwODA4MDgwODA4MDgwOJg8ADQUAAA==', FAN_HIGH: 'JgA2AWQzDgwOJg4MDgwPJg0MDyYPCw4MDiYPJQ8lDwsOJg8LDicOJg4mDwsODA4MDgwOJg8lDgwOJw4MDiYOJg4MDgwODA4mDgwOJg4MDwwOJg4mDiYODA4MDiYODA4nDScOJg4mDiYOJg4MDiYODA4MDg0ODA4MDiYPJQ4mDiYOJg4nDiYOJg4MDgwODA4MDgwODA4MDgwODA4nDiYOJg4mDiYPJQ4mDiYODQ4MDgwODA4MDgwOJg4mDiYOJw0nDScODA4MDgwODA4MDgwODA4MDiYOJw0nDiYOJg4MDiYOJg4MDgwODA4MDg0OJg4MDgwOJg4mDiYOJg4nDScOJg4mDiYODA4MDgwODA4MDgwODQ0NDiYOJg4mDiYOJg4mDicNJw4MDgwODA4MDgwODA4MDgwOJg4ADQUAAA==', FAN_HIGHEST: 'JgA2AWM1DA4MKAwODA4MKAwODCgMDgwODCgNKAwoDA4MKAwODCgMKAwoDA8MDgwODA4MKAwoDA4MKAwODCgMKQwODA4MDgwoDA4MKAwODA4MKAwoDSgMDgwODCgMDgwoDCgMKAwpDCgMKAwODCgMDgwODA4MDgwODCgNKAwoDCgMKAwpCygMKAwPDA4MDgwODA4MDgwODCgMKAwODCgMKA0oDCgMKAwODA4MKAwODA4MDgwODA8MKAwoDCgMKAwoDCgMDgwODQ4MDgwODA4MDgwODCgMKAwoDCgMKQwODCgMKAwODA4MDgwODA4MKAwODA8LKQwoDCgMKAwoDCgMKAwpDCgMDgwODA4MDgwODA4MDgwODCgNKAwoDCgMKAwoDCgNJwwODA4MDwwODA4MDgwODA4MKAwADQUAAA==' }, HVAC_MODE_HEAT_COOL: { FAN_AUTO: { '18.0': 'JgA2AWQ0DA4MKAwODA4MKA0ODCgMDgwODCgMKAwoDA4MKA0NDCkNJw0nDA4NCg8ODA4NJwwoDQ0MKQwODScMKA0NDQ0MDgwoDQwNKAwODQ8LKAwoDCgNJw0nDCgNDQwpDCgNJwwoDQ0MDgwODCgMDg0OCw8MDgwODCgMKAwoDScMKAwoDSgMKAwODQ0MDgwODA4MDg4MDCgNJw0oDCgNJw0nDCgMKAwODBALDgsODg0MDg0NDA4NJw0OCygMKAwODCsKDgwODA4MKAwODQ0LKQwODCgMKA0oDCgMKAwODCgMKAwODQ0MDg0NDQ0NKAwODQ0NJwwoDCgMKAwoDSgMKAwoDCgNDQwODA4NDgsODQ0MDg0ODCgMKAwoDScMKAwoDSgMKA0LDg4MDgwODQ0MDgwODA4MKAwADQUAAA==', '19.0': 'JgA2AWM1DA4MKAwODA4MKAwODCkMDgwODCgMKAwoDA4MKAwODCgNKAwoDA4MDgwODA4MKAwoDA4NKAwODCgMKAwODA4MDgwoDA4MKAwODQ4MKAwoDCgMKAwoDCgMDgwpDCgMKAwoDA4MDgwODCgMDgwODA4NDgwoDA4MKAwoDCgMKAwoDSgMDgwoDA4MDgwODA4MDgwODCgMKA0oDCgMKAwoDCgMKAwODA4MDgwODQ0NDgwODA4MKAwODCgMKAwODCgMDwwODA4MKAwODA4MKAwODCgMKAwpDCgMKAwODCgMKAwODA4MDgwODQ0NKAwODA4MKAwoDCgMKAwoDSgMKAwoDCgMDgwODA4MDgwODA4MDg0NDSgMKAwoDCgMKAwoDCgMKQwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '20.0': 'JgA2AWQ0DQ0MKA4LDg4MKAwODScMDgwODCgNJwwpDA4MKQsODCgMKAwoDA4MDgwODA4MKQwoDA4MKAwODCgMKAwODA4MDg0oDA4MKAwODA4MKAwoDCgMKAwpDCgMDgwoDCgMKAwoDgwMDg0ODCgMDg0NDA4ODA4MDgwOJg4mDiYOJw0nDiYOJg4mDgwODA4MDgwODA4NDScOJg4mDiYOJg4mDiYOJw0NDA4NDQ4MDgwODA4MDgwOJg4MDiYOJw4MDiYODA4MDgwOJg4MDgwOJw4LDicOJg4mDiYOJg4MDiYMKA0ODA4MDgwODA4MKAwODA4MKAwoDCgNKAwoDCgMKAwoDCgMDgwODQ0NDgwODA4MDgwODCgMKAwoDyUMKQwoDCgMKAwODA4MDgwODA4MDgwODA4NKAwADQUAAA==', '21.0': 'JgA2AWM1DA4MKAwODA4MKQwODCgMDgwODCgMKAwoDA4MKAwODSgMKAwoDA4MDgwODA4MKAwoDA8MKAwODCgMKAwODA4MDgwoDA4MKA0ODA4MKAwoDCgMKAwoDCgNDgwoDCgMKAwoDA4MDgwODCgMDg0ODA4MDgwoDCgMDgwoDCgMKA0oDCgMDgwODCgMDgwODA4MDgwODCgNKAwoDCgMKAwoDCgMKAwODQ4MDgwODA4MDgwODA4MKAwODCgMKAwODSgMDgwODA4MKAwODA4MKAwODCgMKA0oDCgMKAwODCgMKAwODA4MDg0ODA4MKAwODA4MKAwoDCgMKAwpDCgMKAwoDCgMDgwODA4MDgwODQ0NDgwODCgMKAwoDCgMKAwoDSgMKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '22.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYPCw8LDyUPJg4mDgwOJg4MDiYOJg8lDwwODA4MDgwOJg4mDgwOJg4MDyUPJQ8MDgwODA4mDgwOJg4MDgwOJg8lDyYOJg4mDiYODA4mDyUPJg4mDgwODA4MDiYODA4MDgwODA4MDyUPDA4mDiYOJg4mDiYOJg8LDyUPDA4MDgwODA4MDiYOJg4mDyUPJQ8mDiYOJg4MDgwODA4MDgwODA8LDwsPJg4MDiYOJg4MDiYODA4MDwsPJQ8MDgwOJg4MDiYOJg4mDyUPJQ8MDiYOJg4MDgwODA4MDgwOJg8LDwsPJg4mDiYOJg4mDiYPJQ8lDyYODA4MDgwODA4MDgwODA4MDiYPJQ8mDiYOJg4mDiYOJg8LDwsPCw8MDgwODA4MDgwOJg4ADQUAAA==', '23.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgMDgwODSgMKAwoDA4MKAwODCgMKAwoDQ4MDgwODA4MKAwoDA4MKAwODCgNKAwODA4MDgwoDA4MKAwODA4MKAwpDCgMKAwoDCgMDgwoDCgMKQwoDA4MDgwODCgMDgwODA4MDgwoDA4NDgwoDCgMKAwoDCgMDgwoDSgMDgwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4MDg0NDQ0NKAwODCgMKAwODCgMDgwODA4MKQwODA4MKAwODCgMKAwoDCgMKQwODCgMKAwODA4MDgwODA4MKAwODQ0NKAwoDCgMKAwoDCgMKAwpDCgMDgwODA4MDgwODA4MDgwODCgMKQwoDCgMKAwoDCgMKAwODA4NDgwODA4MDgwODA4MKAwADQUAAA==', '24.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgMDgwODSgMKAwoDA4MKAwODCgMKAwoDwwODA4MDgwOJgwoDA4MKAwODCgOJw4MDgwODA4mDgwOJg4MDwsPJQ8mDiYOJg4mDiYODA4mDyUPJg4mDgwODA4MDiYODA4MDgwPCw8LDwsPDA4mDiYOJg4mDiYPJQ8lDyYODA4MDgwODA4MDiYOJg4mDyUPJhAkDiYOJg4MDgwODA4MDwsPCw8MDgwOJg4MDiYOJg4MDiYODA8LDwwOJg4MDgwOJg4MDiYOJg4mDyUPJg4MDiYOJg4MDgwODA4MDgwOJg8LDwwOJg4mDiYOJg4mDiYPJQ8mDiYODA4MDgwODA4MDgwODA4MDyUPJg4mDiYOJg4mDiYPJg4LDwwODA4MDgwODA4MDgwOJg4ADQUAAA==', '25.0': 'JgA2AWM1DA4MKA0NDQ4MKAwODCgMDgwODCgMKAwoDQ4MKAwODCgMKAwoDA4MDgwODA4MKQwoDA4MKAwODCgMKAwODA4MDgwpDA4MKAwODA4MKAwoDCgMKAwpDCgMDgwoDCgMKAwoDA4MDg0NDSgMDgwODA4MDgwoDCgMKAwODCkMKAwoDCgMDgwODA4MKAwODA4NDQ0ODCgMKAwoDCgMKAwoDCgNKAwODA4MDgwODA4MDgwODA4MKAwODCkMKAwODCgMDgwODA4MKAwODA4MKA0ODCgMKAwoDCgMKAwODCgMKQwODA4MDgwODA4MKAwODA4MKAwoDScNKAwoDCgMKAwoDCkLDwsODQ0NDgwODA4MDgwODCgMKAwoDCgMKQwoDCgMKAwODA4MDgwODA4MDgwODA4NKAwADQUAAA==', '26.0': 'JgA2AWQ0DA4NKAwODA4MKAwODCgMDgwODCgMKA0oDA4MKAwODCgMKAwoDA4MDg0NDQ4MKAwoDA4MKAwODCgMKAwODQ4MDgwoDA4MKAwODA4MKAwoDCgNKAwoDCgMDgwoDCgMKAwpDA4MDgwODCgMDgwLDw4MDgwODCgMKA0ODCgMKAwoDCgMKAwODA4MKAwPDA4MDgwODCgMKAwoDCgMKAwoDSgMKAwODA4MDgwODA4MDgwODA4NJw0ODCgMKAwODCgMDgwODA4MKAwODA4NKAwODCgMKAwoDCgMKAwODScNKAwODA4MDgwODA0NKAwODA4MKAwoDSgMKAwoDCgMKAwoDSoLDQwODA4MDgwODA0NDgwODCgMKAwoDCkMKAwoDCgMKAwNDQ4MDgwODA4NDgwODA4MKAwADQUAAA==', '27.0': 'JgA2AWYzDgwOJg4MDgwOJg8MDiYODA4MDiYOJg4mDgwOJg8LDyYOJg4mDgwODA4MDgwOJg8lDwsPJg4MDiYOJg4MDgwODA4mDwsPJQ8MDgwOJg4mDiYOJg4mDyUPCw8mDiYOJg4mDgwODA4MDiYPCw8MDhIIDA4mDgwOJg4MDiYOJg8lDyYODA4mDgwOJg4MDgwODA4MDyUPJg4mDiYOJg4mDiYOJg8LDwsPDA4MDgwODA4MDgwOJg4MDiYPJQ8LDyYODA4MDgwOJg4MDgwOJg4MDiYPJQ8mDiYOJg4MDiYOJg4MDQ0ODA4MDg0NJw0NDQkRJw0nDScMKAwoDSgMKAwoDCgMDgwODA4MDgwODA4MDwwODCgMKAwoDCgMKAwoDCgNKAwODA4MDgwODgwMDg4MDgwOJg4ADQUAAA==', '28.0': 'JgA2AWYzDA4MKA4MDA4OJg4MDiYODQ0NDScMKA4mDgwOJg4MDCgMKQ4mDgwMDg4MDgwMKA4mDgwOJg4NDScMKA4MDA4ODAwoDgwOJgwODA4NKA0nDiYMKA4mDiYODA4mDicMKA0nDA4ODAwODCgMDg4MDgwODA4NDA4NJwwODCgMKA4mDCgOJg0oDQ0OJg4MDgwMDg4MDiYOJg4mDSgOJg4mDCgOJg4MDA4MDgwODA4ODQwODA4OJg4MDiYOJgwODCgMDg4MDQ4NJw4MDgwMKAwODiYMKA4mDCkMKAwODCgMKAwODA4MDgwODA4MKA0ODA4MKAwoDCgMKAwoDCgMKQwoDCgMDgwODA4MDgwODA4MDgwODCkMKAwoDCgMKAwoDCgMKA0ODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '29.0': 'JgA2AWYzDgwOJg4MDgwOJg8LDyYODA4MDiYOJg4mDgwOJg8LDyUPJg4mDgwODA4MDgwOJg4mDwsPJQ8MDiYOJg4MDgwODA4mDwsPJQ8MDgwOJg4mDiYOJg4mDiYPCw8lDyYOJg4mDgwODA4MDiYPCw8LDwsPDA4mDiYODA4MDiYOJg4mDyUPDA4MDiYOJg4MDgwODA4MDiYPJQ8lDyYOJg4mDiYOJg4MDwsPCw8MDgwODA4MDgwOJg4MDiYOJg4MDiYPCw8MDgwNJw4MDgwNJw4MDiYOJg4nDScNJw0LDycNJwwODA4MDgwODA4MKQwODA4MKAwoDCgMKAwoDCkMKAwoDiYODA4MDgwODA4MDgwODA4MDicOJg4mDiYOJg4mDCgMKQwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '30.0': 'JgA2AWYzDgwOJg4MDgwOJg8LDyUPDA4MDiYOJg4mDgwOJg4MDyUPJg4mDgwODA4MDgwOJg4mDwsPJQ8MDiYOJg4MDgwODA4mDgwOJg8LDwsPJg4mDiYOJg4mDiYPCw8lDyYOJg4mDgwODA4MDiYODA8LDwsPCw8MDiYODA4MDiYOJg4mDiYPJQ8MDiYOJg4MDgwODA4MDiYOJg8lDyYOJg4mDiYOJg4MDgwPCw8LDwsPDA4MDgwOJg4MDiYOJg4MDyUPCw8MDgwOJg4MDgwOJg4MDiYOJg8lDyYOJg4MDiYOJg4MDgwODA8LDwsPJQ8MDgwOJg4mDiYOJg8lDyUPJg4mDiYODA4MDgwODA4MDgwPCw8LDyUPJg4mDiYOJg4mDiYPJQ8MDgwODA4MDgwODA4MDgwOJg4ADQUAAA==' }, FAN_LOW: { '18.0': 'JgA2AWI1DA4MKAwODA4MKAwODCgMDgwPDCgMKAwoDA4MKAwODCgMKAwpDA4MDgwODA4MKAwoDA4MKAwODCgNKAwODA4MDgwoDA4MKAwODA4MKAwpDCgMKAwoDCgMDgwoDCgNKAwoDA4MDgwODCgMDgwODA4MDgwODCkMKAwoDCgMKAwoDCgMKA0NDQ4MDgwODA4MDgwODA4MKAwoDCgMKQwoDCgMKAwoDA4MDgwODA4MDg0NDQ4MKAwODCgMKAwODCgMDgwODA4MKQwODA4MKAwODCgMKAwoDCgNKAwODCgMKAwODA4MDgwODA4MKAwODQ4MKAwoDCgMKAwoDCgMKQwoDCgMDgwQCg4MDgwODA4MDgwODCkLKQwoDCgMKAwoDCgMKAwODQ4MDgwODA4MDgwODA4MKAwADQUAAA==', '19.0': 'JgA2AWcxDgwOJg4MDwsPJQ8MDiYODA4MDiYOJg4mDwsPJQ8MDiYOJg4mDgwODA4MDgwOJg8lDwwOJg4MDiYOJg4MDgwODA4mDwsPJg4MDgwOJg4mDiYOJg8lDyUPDA4mDiYOJg4mDgwPCw4MDyUPDA4MDgwODA4mDgwOJg4mDiYPJQ8mDiYODA4mDgwODA4MDgwODA4MDwsPJQ8mDiYOJg4mDiYOJg8lDwwODA4MDgwODA4MDgwOJg4MDiYPJQ8LDyYODA4MDgwOJg4MDgwOJg4MDyUPJQ8mDiYOJg4MDiYOJg8LDwsPDA4MDgwOJg4MDgwOJg4mDiYPJQ8lDyYOJg4mDiYODA4MDwsPCw8LDwwODA4MDiYOJg4mDiYOJg8lDyYOJg4MDgwODA4MDgwODA4MDgwOJg8ADQUAAA==', '20.0': 'JgA2AWYyDgwPJQ8MDgwOJg4MDiYODA4MDiYOJg8lDwsPJg4MDiYOJg4mDgwODA4MDwsPJQ8mDgwOJg4MDiYOJg4MDgwPCw8lDwwOJg4MDgwOJg4mDiYPJQ8lDyYODA4mDiYOJg4mDwsPCw8MDiYODA4MDgwODA4MDgwOJg4mDyUPJQ8mDiYOJg4mDgwODA4MDwsPCw8MDgwOJg4mDiYOJg4mDyUPJQ8mDgwODA4MDgwODA4MDgwOJg8LDyUPJQ8MDiYODA4MDgwOJg4MDwsPJQ8MDiYOJg4mDiYOJg4MDiYPJQ8MDgwODA4MDgwOJg4MDgwOJhQgDyYOJg4mDiYOJg4mDiYPCw8LDwwODA4MDgwODA4MDiYOJg4mDyUPJQ8mDiYOJg4MDgwODA4MDgwODA8LDwsPJQ8ADQUAAA==', '21.0': 'JgA2AWU0DQ0MKA0NDQkQKA0NDCgNCw4ODicNJw0nDA4MKA0LDycNJw0nDgsODg0LDw0MKAwoDQwNKA0LDycOJw0NDQ0MDgwoDQ0MKA0LDg4MKA0oDCgNJw0nDScNDQ0nDScNKA0nDQ0NDQwODScNCw4ODA4MDgwoDScODQwoDScNJw0nDScNDQ0LDygNCw4ODQ0MDg0NDQ0MKA0nDScNJw4nDScNJw0nDQsPDQwODA4NDQwODA8MKA0NDCgNJw0LDycNDQ0LDg4MKA4NDQ0NJw0NDScNJw0nDScOJw0KECcNJw0NDQ0NDQ0NDQsOKA0NDQ0OJw0nDScNJw0nDScNJw4nDScNDQ0LDw0NCw8NDQ0NDQ0NDScNJw4nDScNJw0nDScNJw0NDQwPDA4NDQ0NDQ0NDQsPJw0ADQUAAA==', '22.0': 'JgA2AWYzDQ0NJw0NDA4MKA4MDScMDgwODCkNJwwoDQ0MKA4MDCgOJgwpDA4MDgwODA4MKA4mDA4MKAwODCgMKQwODA4MDgwoDA4MKAwODA4MKAwoDSgMKAwoDCgMDgwoDCgMKQwoDA4MDgwODCgMDgwODA4MDgwODCgNDgwoDCgMKAwoDCgMKAwODCkMDgwODA4MDgwODA4MKAwoDCgMKA0oDCgMKAwoDA4MDgwODA4MDgwODA4NKAwODCgMKAwODCgMDgwODA4MKA0ODA4MKAwODCgMKAwoDCgMKA0ODCgMKAwODA4MDgwODA4MKAwODA4NKAwoDCgMKAwoDCgMKAwpDCgMDgwODA4MDgwODA4MDgwODCgMKA0oDCgMKAwoDCgMKAwODA4NDQ0ODA4MDgwODA4MKAwADQUAAA==', '23.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgNDQ0ODCgMKAwoDA4MKAwODCgMKQwoDA4MDgwODA4MKAwoDA4MKAwODSgMKAwODA4MDgwoDA4MKAwODA4MKA0oDCgMKAwoDCgMDgwoDSgMKAwoDA4MDgwPCygMDgwODA4MDg0oDA4MDgwoDCgMKAwoDCgMDg0oDCgMDgwODA4MDgwODA4MKAwoDCkMKAwoDCgMKAwoDA4MDgwODA4MDg0ODA4MKAwODCgMKAwODCgMDgwODQ4MKAwODA4MKAwODCgMKAwoDCgNKAwODCgMKAwODA4MDgwODA4MKA0NDQ4MKAwoDCgMKAwoDCgMKQwoDiYMDgwODA4MDgwODA4MDgwODCgNKAwoDCgMKAwoDCgMKA0NDQ4MDgwODA4MDgwODA4MKAwADQUAAA==', '24.0': 'JgA2AWM1DA4MKAwODA4MKQwODCgMDgwODCgMKAwoDQ0MKA0ODCgMKAwoDA4MDgwODA4MKA0oDA4MKAwODCgMKQsODA4MDgwoDA4NKAwODA4MKQsoDCgMKAwoDCkMDgwoDCgMKAwoDA4MDgwODCkMDgwODA4MDgwODA4MDgwoDCgNJwwpDCgMKAwoDCgMDgwODA4MDgwODA8MKAwoDCgMKAwoDCgMKAwoDQ4MDgwODA4MDgwODA4MKAwODCgMKAwPDCgMDgwODA4MKAwODA4MKAwODCgMKQwoDCgMKAwODCgMKAwODA4MDwwODA4MKAwODA4MKAwoDCgMKgopDCgMKAwoDCgMDgwODA4MDgwODA8MDgwODCgMKAwoDCgMKAwoDCkMKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '25.0': 'JgA2AWUzDA4NKAwODA4MKA4MDCgMDgwODiYMKA0oDA4MKA4MDCgMKAwoDA4MDgwODQ4MKAwoDA4MKAwODCgNJwwODgwNDgwoDQ0NJwwODA4MKAwoDiYMKQwoDiYMDgwoDiYMKA4mDA4NDg0NDCgODA4MDgwMDg4mDiYOJw0MDSgNJw0nDiYODAwODA4MKA4MDA8MDgwODQ0NJwwoDCgMKAwoDCkMKAwoDA4MDgwODA4MDgwODA4MKAwODSgMKAwODCgMDgwODA4MKA4MDA4OJwwODCgNJwwoDCgOJgwODCgNKAwODA4MDgwODA4MKA4MDA4MKA0oDCgNJwwoDCgMKAwoDiYMDg0ODA4MDg0NDQ0MDg4MDiYOJg4mDiYOJwwoDCgMKAwODgwMDg4MDgwMDg4MDQ4NJwwADQUAAA==', '26.0': 'JgA2AWM1DgwOJg4MDgwOJg4MDicODA4MDiYOJg4mDgwOJg4MDiYOJw4mDgwODA4MDgwOJg4mDgwOJg8LDyYOJg4MDgwODA4mDgwOJg4MDgwPJg4mDiYPJQ4mDiYPCw4mDyYOJg4mDgwODA4MDiYODA4MDgwPCw8MDiYOJg8LDiYPJQ8lDyUPJg4MDgwOJg4MDgwODA4MDgwOJg4mDicOJg8lDyUOJg4mDwsODA4MDgwPDA4MDgwOJg8LDiYOJg4MDiYODA8LDwwOJg4MDgwOJg8LDiYPJQ4mDyYOJg4MDiYPJQ8LDgwODA4MDgwOJw4MDgwOJg4mDyUPJQ8lDiYPJg4mDiYPCw4MDgwODA4MDgwODA4MDicOJg4mDiYPJQ8lDyUPJg4LDwwODA4MDgwODA4MDgwOJg8ADQUAAA==', '27.0': 'JgA2AWQ0DA4NKAwODA4MKAwODCgMDgwODCgMKQwoDA4MKAwODCgMKAwoDA4MDg0NDQ4MKAwoDA4MKAwODCgMKAwODA4NDgwoDA4MKAwODA4MKAwoDCgMKQwoDCgMDgwoDCgMKAwoDQ4MDgwODCgMDgwODA4MDgwoDA4MKAwODSgMKAwoDCgMDgwoDA4MKA0NDQ4MDgwODA4MKAwoDCgMKAwoDSgMKAwoDA4MDgwQCg4MDgwODA4MKAwODSgMKAwODCgMDgwODA4MKAwODA4MKQwODCgMKAwoDCgMKAwODCkMKAwODA4MDgwODA4MKAwODA4MKAwpDCgMKAwoDCgMKAwoDCgNDgwODA4MDgwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4NDQ0ODA4MKAwADQUAAA==', '28.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYPCw4MDicOJg4mDwsOJg8LDiYOJg4nDgwODA4MDgwOJg8lDwsOJg8LDiYPJg8LDgwODA4mDgwOJg4MDgwOJg8mDiYPJQ4mDiYODA4mDiYOJw4mDwsODA4MDiYPCw4MDgwODA4MDgwOJw4MDiYOJg4mDiYOJg4mDgwPJg4MDgwODA4MDgwOJg4mDiYOJg8mDiYOJg4mDgwODA4MDgwODA4MDgwOJw4MDiYOJg4MDiYODA4MDgwOJw4LDwwOJg4MDiYOJg4nDSYOJg8MDiYOJg4MDgwODA4MDgwOKA0LDgwOJw4mDiYOJg4mDiYOJg4nDiYODA4MDgwODA4MDgwODA4MDiYOJg4nDiYOJg4mDiYOJg4MDgwODA8MDgwODA4MDgwOJg4ADQUAAA==', '29.0': 'JgA2AWUzDQ0NJw4NDQsPJw0NDScNCw8LDycNJw0nDg0NJw0NDScNJw0nDQ0NDQ0NDQ0OJw0nDQ0NJw0NDScNJw0NDQ0OCREnDQ0NJw0NDQ0NJw0nDScNKA0nDScNCw8nDScNJw0nDQwNDwwODCgMDgwODA4MDgwoDCgMDgwODCkMKAwoDCgMDgwODCgMKAwODA4NDQ0ODA4MKAwoDCgMKAwoDCgNKAwoDBAKDgwODA4MDgwODA4MKAwODCkMKAwODCgMDgwODA4MKAwODA4OJg0NDSgMKA0nDCgMKAwODiYOJw0NDA4MDgwODQ0OJg4MDA4MKA4mDCkMKAwoDCgMKAwoDCgMDgwODQ4MDgwODA4MDgwODCgMKAwoDCgMKQwoDCgMKAwODA4MDgwODA4MDgwODA8MKAwADQUAAA==', '30.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgMDgwODCkMKAwoDA4MKAwODCgMKA0oDA4MDgwODA4MKAwoDA4MKAwODCgNKAwODA4MDgwoDA4MKAwODA4MKAwpDCgMKAwoDCgMDgwoDCgMKQwoDA4MDgwODCgMDgwODA4MDgwODCkMDgwODCgMKAwoDCgMKAwODCkMKAwODA4MDgwODA4MKAwoDCgMKA0oDCgMKAwoDA4MDgwODA4MDgwODA8MKAwODCgMKAwODCgMDgwODA4MKA0ODA4MKAwODCgMKAwoDCgMKQwODCgMKAwODA4MDgwODA4MKAwODA4MKQwoDCgMKAwoDCgMKAwpDCgMDgwODA4MDgwODA4MDgwODCgMKA0oDCgMKAwoDCgMKAwODA4MDwwODA4MDgwODA4MKAwADQUAAA==' }, FAN_MEDIUM: { '18.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDyYODA4MDiYOJg4mDgwOJg4MDiYPJg4mDgwODA4MDgwOJg4mDgwOJw4MDiYOJg4MDgwODA4mDgwOJg8MDgwOJg4mDiYOJg4mDiYPCw8mDiYOJg4mDgwODA4MDiYODA4MDwwODA4MDiYOJg4mDiYOJg4mDyYOJg4MDgwODA4MDgwODA4MDiYODA8lDyYOJg4mDiYOJg4MDiYPCw8MDgwODA4MDgwOJg4MDiYOJg4MDiYPDA4MDgwOJg4MDgwOJg4MDiYOJg8mDiYOJg4MDiYOJg4MDgwODA8LDwwOJg4MDgwOJg4mDiYOJg4mDyUPJg4mDiYODA4MDgwODA4MDgwPCw8LDyYOJg4mDiYOJg4mDiYPJQ8MDgwODA4MDgwODA4MDgwOJg4ADQUAAA==', '19.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgMDgwODCkMKAwoDA4MKAwODCgMKA0nDA8MDgwODA4MKAwoDA4MKAwODCgMKA0ODA4MDgwoDA4MKAwODA4MKAwoDicMKAwoDScMDgwoDScMKQ0nDA4MDgwODCgMDgwODA4MDgwoDA4MKA4nDCgNJwwoDScNDgwnDQ4NDQwODA4MDgwODCgNDQwoDScNJw4nDScNJw0LDycNDQ0NDA4MDgwPDQ0LKQ0LDycNJw0NDScNCw8NDQ0NJw4LDwsPJw0LDycNJw0nDScNJw4NDScNJw0NDQsPDQwODA4MKA0NDQ0MKQ0nDScNJw0nDScNJw0nDicNCw4ODA4MDgwODA4MDgwODCgNJw4nDScNJw0nDScNJw0NDQ0MDg4MDgsPCw4ODQ0NJw0ADQUAAA==', '20.0': 'JgA2AWcyDwsPJQ8MDgwOJg4MDiYODA4MDiYOJg8lDwwOJg4MDiYOJg4mDgwODA4MDwsPJQ8mDgwOJg4MDiYOJg4MDwsPCw8mDgwOJg4MDgwOJg4mDiYPJQ8mDiYODA4mDiYOJg4mDwsPCw8MDiYODA4MDgwODA4MDgwOJg4mDyUPJg4mDiYOJg4mDgwODA4MDwsPCw8MDiYODA4mDiYOJg4mDyUPJQ8MDiYODA4MDgwODA4MDgwOJg8LDyUPJg4MDiYODA4MDgwOJg4MDgwPJQ8MDiYOJg4mDiYOJg4MDiYPJQ8MDgwODA4MDgwOJg4MDgwOJg4mDyUPJg4mDiYOJg4mDiYPCw8LDwwODA4MDgwODA4MDiYOJg4mDyUPJQ8mDiYOJg4MDgwODA4MDgwPCw8LDwsPJg4ADQUAAA==', '21.0': 'JgA2AWYyDwsPJQ8MDgwOJg4MDiYODA4MDiYPJQ8lDwwOJg4MDiYOJg4mDgwODA8LDwsPJg4mDgwOJg4MDiYOJg8LDwsPCw8mDgwOJg4MDgwOJg4mDiYPJQ8lDyYODA4nDSYOJg8lDwsPCw8MDiYODA4MDgwODA4mDiYODA8lDyUPJg4mDiYODA4MDiYPCw8LDwsPCw8MDiYODA4mDiYOJg4mDyUPJQ8MDiYODA4MDgwODA4MDgwOJg8LDyUPJg4MDiYODA4MDgwOJg4MDgwPJQ8LDyYOJg4mDiYOJg4MDiYPJQ8MDgwODA4MDgwOJg4MDgwOJg8lDyUPJg4mDiYOJg4mDiYPCw8LDwwODA4MDgwODA4MDiYOJg4mDyUPJg4mDiYOJg4MDgwODA4MDgwPCw8LDwsPJg4ADQUAAA==', '22.0': 'JgA2AWQ1DA4MKAwODA4MKA0ODCgMDgwODCgMKAwoDA4MKAwPDCgMKAwoDA4MDgwODA4MKAwoDA4NKAwODCgMKAwODA4MDgwoDA4MKA0ODA4MKAwoDCgMKAwoDCgNDgwoDCgMKAwoDA4MDgwODCgMDgwODQ4MDgwODCgMDgwoDCgMKAwoDCkMKAwODCgMDgwODA4MDgwODCgMDgwpDCgMKAwoDCgMKAwODCgMDwwODA4MDgwODA4MKAwODCgMKAwODCkMDgwODA4MKAwODA4MKAwODCgMKA0oDCgMKAwODCgMKAwODA4MDgwODA8MKAwODA4MKAwoDCgMKAwoDSgMKAwoDCgMDgwODA4MDgwODA4MDg0ODCgMKAwoDCgMKAwoDCgNKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '23.0': 'JgA2AWQ0DA4NKAwODA4MKAwODCgMDgwODCgMKA0oDA4MKAwODCgMKAwoDA4MDg0ODA4MKAwoDA4MKQsODCgMKAwODA8MDgwoDA4MKAwODgwMKAwoDCgMKQwoDCkNDAwoDCgMKAwoDA4NDgwODCgMDgwODA4MDgwoDA4MDg0nDCkMKAwoDCgMDgwoDCgMDgwODA4NDgwODCgMDgwoDCgMKAwoDCgNKAwODCgMDgwODA4MDgwODA4MKAwODCkMKAwODCgMDgwODA4MKAwODA4MKQwODCgMKAwoDCgMKA0NDCgNKAwODA4MDgwODA4MKAwODA4MKAwpDCgMLgYoDCgMKAwoDCgMDg0ODA4MDgwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4MDg0NDQ0NKAwADQUAAA==', '24.0': 'JgA2AWM1DA4MKAwODA4MKQwODCgMDgwODCgMKAwoDA4MKA0NDSgMKAwoDA4MDgwODA4MKAwoDA8MKAwODCgMKAwODA4MDgwoDA4MKQwODA4MKAwoDCgMKAwoDCkMDgwoDCgMKAwoDA4MDgwODCkMDQ0ODA4MDgwODA4MDgwoDCgMKAwoDCkMKAwoDCgMDgwODA4MDgwODCgNDQ0oDCgMKAwoDCgMKAwODCkMDgwODA4MDgwODA4MKAwODCgMKAwPDCgMDgwODA4MKAwODA4MKAwODCgMKQwoDCgMKAwODCgMKAwODA4MDgwPDA4MKAwODA4MKAwoDCgMKAwpDCgMKAwoDCgMDgwODA4MDgwODA4NDgwODCgMKAwoDCgMKAwoDCkMKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '25.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYPCw8LDyYOJg4mDgwOJg4MDiYOJg8mDgwODA4MDgwOJg4mDgwOJg4MDiYPJg4MDgwODA4mDgwOJg4MDgwOJg8lDyYOJg4mDiYODA4mDyUPJg4mDgwODA4MDiYODA4MDgwODA4mDyYOJg4MDiYOJg4mDiYPCw4MDwwOJg4MDgwODA4MDiYODA4mDiYPJg4mDiYOJg4MDiYODA4MDgwODA4MDwwOJg4MDiYOJg4MDiYODA4MDgwPJg4MDgwOJg4MDiYOJg4mDiYPJQ8MDiYOJg4MDgwODA4MDgwOJg8LDgwPJg4mDiYOJg4mDiYOJg8lDyYODA4MDgwODA4MDgwODA4MDiYOJg8mDiYOJg4mDiYOJg8LDwsPDA4MDgwODA4MDgwOJg4ADQUAAA==', '26.0': 'JgA2AWM1DA4MKAwODA4NKAwODCgMDgwODCgMKAwoDA4NKAwODCgMKAwoDA4MDgwODA4MKA0oDwsMKAwODCgMKAwODA4MDgwoDQ4MKAwODA4MKAwoDCgMKAwoDSgMDgwoDCgMKAwoDA4MDgwODCkMDgwODA4MDgwODCgMKAwODCgMKA0oDCgMKAwODA4MKAwODA4MDgwODSgMDgwoDCgMKAwoDCgMKAwPDCgMDgwODA4MDgwODA4MKAwODCgMKA0ODCgMDgwODA4MKAwODA4MKAwODCkMKAwoDCgMKAwODCgMKAwODQ0NDgwODA4MKAwODA4MKAwoDCgMKQwoDCgMKAwoDCgMDgwODA4NDQ0ODA4MDgwODCgMKAwoDCgMKAwpDCgMKAwODA4MDgwODA4MDgwODA4MKA0ADQUAAA==', '27.0': 'JgA2AWU0DQsPJw0NDQsPJw0NDScNDA4NDicNJw0nDQsPJw0NDScNJw4nDQsPDQ0NDQ0MKA0nDQsPJw0LDycOJw0NDQsPDQ0nDQ0NJw0NDQsPJw0oDScNJw0nDScNDQ0nDScOJg4nDQsPCw8NDCgNDQwODA4NDQwoDA8MKA0NDCgMKAwoDCgMDgwoDQ4MKAwODA4MDgwODCgMDgwoDCgMKA0oDCgMKAwODCgMDgwODA4MDgwODA8MKAwODCgMKAwODCgMDgwODA4MKQwODA4MKAwODCgMKA0nDCgMKQ0NDCgMKA0JEA4MDgwODA4MKA0MDg0MKQ0nDScNJw0nDScNJw0oDScNDQ0NDQ0NDQwODA4MDgwODCgNJw4nDScNJw0nDScNJw4MDgwNDA8NDQsPDQwODQsOKA0ADQUAAA==', '28.0': 'JgA2AWUzDgwOJw0NDQ0NJw4MDiYODA4MDiYOJg4nDQ0NJw4MDiYOJg4mDgwODA4MDgwOJw0nDgwOJg4MDiYOJg4MDwsODA4nDQ0OJg4MDgwOJg4mDiYOJw0nDiYODA4mDiYOJg4mDgwODQ0NDScODA4MDgwODA4MDgwOJg4MDicUIA0nDiYOJg4mDgwOJg4MDgwODQ0NDiYODA4mDiYOJg4mDicNJw0NDiYODA4MDgwODA4MDgwOJg4MDicNJw0NDiYODA4MDgwOJg4MDgwOJw0NDScOJg4mDiYOJg4MDiYOJw0NDgwODA4MDgwOJg4MDgwOJg4nDScNJw4mDiYOJg4mDiYODQ0NDQ0NDQ4MDgwODA4MDiYOJg4mDicNJw0nDiYOJg4MDgwODA4MDgwODA4MDg0NJw4ADQUAAA==', '29.0': 'JgA2AWY0DQ0NKAwODA4MKAwODCgMDgwODCgNKAwoDA4MKAwODCgMKAwoDA4MDg0ODA4MKAwoDA4MKAwRCSgMKA0NDQ4MDgwoDA4MKAwODA4MKAwoDCgNKAwoDCgMDgwoDCgMKAwoDQ4MDgwODCgMDgwODA4MDgwoDCgMDg0NDSgMKAwoDCgMDgwODCgMKA0ODA4MDgwODCgMDgwoDCgMKAwoDCkMKAwODCgMDgwODA4MDgwODA4MKAwODSgMKAwODCgMDgwODA4MKAwODA4MKQwODCgMKAwoDCgMKAwODCkMKAwODA4MDgwODA4MKAwODA4MKAwpDCgMKAwoDCgMKAwoDCkMDgwODA4MDgwODA4MDgwODCgMKAwoDCkMKAwoDCgMKAwODA4MDgwODA4NDQ0ODA4MKAwADQUAAA==', '30.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYPCw8LDyYOJg4mDgwOJg4MDiYPJQ8mDgwODA4MDgwOJg4mDgwOJg8LDyUPJg4MDgwODA4mDgwOJg4MDgwPJQ8mDiYOJg4mDiYODA4mDyUPJg4mDgwODA4MDiYODA4MDgwPCw8LDyUPDA4MDiYOJg4mDiYOJg8LDyUPJg4MDgwODA4MDiYODA4mDiYPJQ8mDiYOJg4MDiYODA4MDgwPCw8MDgwOJg4MDiYOJg4MDiYODA8LDwwOJg4MDgwOJg4MDiYOJg8lDyUPJg4MDiYOJg4MDgwODA4MDgwPJQ8LDwwOJg4mDiYOJg4mDyUPJQ8mDiYODA4MDgwODA4MDgwODA4MDyUPJQ8mDiYOJg4mDiYOJg8LDwwODA4MDgwODA4MDgwOJg4ADQUAAA==' }, FAN_HIGH: { '18.0': 'JgA2AWYyDwwOJg4MDgwOJg4MDiYODA4MDyUPJg4mDgwOJg4MDiYOJg8lDwsPDA4MDgwOJg4mDgwOJg4MDiYPJQ8MDgwODA4mDgwOJg4MDgwOJg8lDyYOJg4mDiYODA4mDiYPJQ8mDgwODA4MDiYODA4MDgwODA4MDiYPJQ8mDiYOJg4mDiYOJg8LDwsPDA4MDgwODA4MDgwODA4mDiYOJg8lDyYOJg4mDiYODA4MDgwODA4MDwsPJQ8MDiYOJg4MDiYODA4MDgwOJg8LDwwOJg4MDiYOJg4mDiYPJQ8LDyYOJg4MDgwODA4MDgwOJg4MDwsPJQ8mDiYOJg4mDiYOJg8lDyUPDA4MDgwODA4MDgwODA4MDiYOJg8lDyYOJg4mDiYOJg4MDgwPCw8LDwwODA4MDgwOJg4ADQUAAA==', '19.0': 'JgA2AWYyDwsPJQ8MDgwOJg4MDiYODA4MDiYOJg8lDwwOJg4MDiYOJg4mDwsODA8LDwsPJg4mDgwOJg4MDiYOJg4MDwsPCw8lDwwOJg4MDgwOJg4mDiYPJQ8lDyYODA4mDiYOJg4mDwsPCw8LDyYODA4MDgwODA4mDgwOJg4mDyUPJg4mDiYODA4mDgwODA8LDwsPCw8MDgwODA4mDiYOJg4mDiYPJQ8mDiYODA4MDgwODA4MDgwOJg8LDyUPJg4MDiYODA4MDgwOJg4MDgwPJQ8LDyYOJg4mDiYOJg4MDiYPJQ8MDgwODA4MDgwOJg4MDgwOJg8lDyUPJg4mDiYOJg4mDiYPCw8LDwsPDA4MDgwODA4MDiYOJg4mDiYPJQ8mDiYOJg4MDgwODA4MDgwPCw8LDwsPJg4ADQUAAA==', '20.0': 'JgA2AWQ1DA4MKAwODA4MKAwPDCgMDgwODCgMKAwoDA4MKAwODCgNKAwoDA4MDgwODA4MKAwoDA4MKQwODCgMKA0NDA4MDgwoDA4MKAwPDA4MKAwoDScMKA0nDScNDA0pDScNJw0oCw4MDgwODCgMDgwODQ4MDgwODA4MKAwoDCgMKAwoDCsKKAwpCw4MDgwODA4MDgwODA4MDgwpDCgMKAwoDCgMKAwoDCgMDwwODA4MDgwODA4MKAwODCgMKAwODCgNDgwODA4MKAwODA4MKAwODCgMKA0oDCgMKAwODCgMKAwODA4MDgwODA8MKAwODA4MKAwoDCgMKAwoDCkMKAwoDCgMDgwODA4MDgwODA4MDg0ODCgMKAwoDCgMKAwoDCgNKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '21.0': 'JgA2AWQ1DA4MKAwODA4NKAwODCgMDgwODCgMKAwoDA4NKAwODCgMKAwoDA4MDgwODA4MKA0oDA4MKAwODCgMKAwODA4MDgwoDA8MKAwODA4MKAwoDCgMKAwoDCkMDgwoDCgMKAwoDA4MDgwODCkMDgwODA4MDgwoDCgMDgwoDCgMKQwoDCgMDgwODCgMDgwODA4MDgwODA4NDgwoDCgMKAwoDCgMKAwpDCgMDgwODA4MDgwODA4MKAwODCgMKA0ODCgMDg0NDA4MKAwODgwMKA4MDCkMKAwoDScMKAwODCgOJgwODgwODQ0NDQ0NJw4MDgwMKA4mDiYOJw0nDScMKA4mDCgMDgwODA4MDgwODg0NDQ0NDScMKA4mDiYOJg0nDSgNJwwODA4ODA4MDgwODAwODA4OJg4ADQUAAA==', '22.0': 'JgA2AWYyDwwOJg4MDgwOJg4MDiYODA4MDiYPJg4mDgwOJg4MDiYOJg8lDwsPCw8MDgwOJg4mDgwOJg4MDiYPJQ8MDgwODA4mDgwOJg4MDgwOJg4mDyUPJg4mDiYODA4mDiYPJQ8nDQwODA4MDiYODA4MDgwODA4MDiYPCw8lDyYOJg4mDiYOJg4MDiYPDA4MDgwODA4MDgwODA4mDiYOJg8lDyUPJg4mDiYODA4MDgwODA4MDgwPJQ8MDiYOJg4MDiYODA4MDgwOJg8LDwwOJg4MDiYOJg4mDiYOJg8LDyYOJg4MDgwODA4MDgwOJg4MDgwOJg8mDiYOJg4mDiYOJg8lDyUPDA4MDgwODA4MDgwODA4MDiYOJg8lDyYOJg4mDiYOJg4MDgwODA4MDwsPDA4MDgwOJg4ADQUAAA==', '23.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgNDgwODCgMKAwoDA4MKAwODCgMKQwoDA4MDgwODA4MKAwoDA4MKA0ODCgMKAwODA4MDgwoDA4MKAwODA4MKQwoDCgMKAwoDCgMDgwoDSgMKAwoDA4MDgwODCgMDgwODA4MDg0oDA4MDgwoDiYMKQ0mDCgMDg0oDCgMDgwODA4MDgwODA4MDgwoDCgMKQwoDCkLKAwoDCgMDgwODA4NDQ0ODA4MKAwODCgMKAwODCgMDgwODQ4MKAwODA4MKA4MDCgMKAwoDCkMKAwODCgMKAwODA4MDgwODA4MKQwODA4MKAwoDCgMKAwoDCgMKQwoDCgMDgwODA4MDgwODA4MDgwODCgNKAwoDCgMKAwoDCgMKAwODQ4MDgwODA4MDgwODA4MKAwADQUAAA==', '24.0': 'JgA2AWUzDA4MKQwODA4MKAwODCgMDgwODCgMKQwoDA4MKAwODCgMKAwoDA4MDgwODQ4MKAwoDA4MKAwODCgMKAwODA4MDg0oDA4MKAwODA4MKAwoDCgMKA0oDCgMDgwoDCgMKAwoDA4NDgwODCgMDgwODA4NDQwODA4MDg4mDCgMKQwoDCgMKAwoDCgMDgwODA8MDQ0ODA4MDgwoDCgMKA4mDCgMKQwoDScMDgwODA4MDgwODgwMKAwODCkMKA0NDCgMDg4MDA4MKAwODA4MKA0ODCgMKAwoDCgMKAwODCgMKQwODA4MDgwODA4MKAwODA4MKAwoDCkMKAwoDCgMKAwoDCgMDgwODQ4MDgwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4MDgwODQ4MKAwADQUAAA==', '25.0': 'JgA2AWQ1DA4MKAwODA4NKAwODCgMDgwODCgMKAwoDA4NKAwODCgMKAwoDA4MDg4MDA4MKA0oDA4MKAwODCgMKAwODA4MDgwoDA4NKAwODA4MKAwoDCgMKAwoDSgMDgwoDCgMKAwoDA4MDgwODCkMDgwODA4MDgwoDCgMKAwODCgMKA0oDCgMDgwODA4MKAwODA4MDgwODA4MDwwoDCgMKAwoDCgMKAwoDSgMDgwODA4MDgwODA4MKAwODCgMKA0NDSgMDgwODA4MKAwODA4MKA4MDCgOJwwoDScOJg4MDiYOJg4MDg0NDA4NDQ0NJw4MDgwOJg4mDiYOJg4nDScNJw4mDiYODA4MDgwODA4MDg0NDQ0NDiYOJg4mDiYOJg4mDicNJw4MDgwODA4MDgwODA4MDgwOJg4ADQUAAA==', '26.0': 'JgA2AWYyDwsPJg4MDgwOJg4MDiYODA4MDyUPJQ8mDgwOJg4MDiYOJg8lDwsPCw8MDgwOJg4mDgwOJg4MDiYPJQ8LDwwODA4mDgwOJg4MDgwOJg4mDyUPJg4mDiYODA4mDiYPJQ8lDwwODA4MDiYODA4MDgwODA4MDiYPJQ8LDyYOJg4mDiYOJg4MDgwPJQ8LDwwODA4MDgwODA4mDiYOJhAkDyUPJg4mDiYODA4MDgwODA4MDgwPJQ8MDiYOJg4MDiYODA4MDgwOJg8LDwsPJg4MDiYOJg4mDiYOJg8LDyUPJg4MDgwODA4MDgwOJg4MDgwOJg8mDiYOJg4mDiYOJg4mDyUPCw8MDgwODA4MDgwODA4MDiYOJg8lDyUPJg4mDiYOJg4MDgwODA4MDwsPCw8MDgwOJg4ADQUAAA==', '27.0': 'JgA2AWY0DA4NKAwODA4MKAwODCgMDgwODCgMKAwpDA4MKAwODCgMKAwoDA4MDgwODA8MKAwoDA4MKAwODCgMKAwODA8MDgwoDA4MKAwODA4MKAwoDCgMKQwoDCgMDgwoDCgMKAwoDA8MDgwODCgMDgwODA4MDgwoDA4MKAwODSgMKAwoDCgMDgwoDA4MKAwODA8MDgwODA4MDgwoDCgMKAwoDCgMKQwoDCgMDgwODA4MDgwODA4MKQsODCkMKAwODCgMDgwODA4MKAwODA4MKQwODCgMKAwoDCgMKAwODCgNKAwODA4MDgwODA4MKAwODA4MKAwoDSgMKAwoDCgMKAwoDCgMDwsPDA4MDgwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4MDgwPDA4MKAwADQUAAA==', '28.0': 'JgA2AWkzDgsPJg8LDgwOJg8LDiYPCw4MDiYPJg4mDgwOJg4MDiYOJg8lDwsODA8MDgwOJg8lDgwOJg8LDiYPJg4LDwwODA4mDwsOJg8LDgwOJg8lDyYOJg8lDyUPCw4mDyUPJQ8mDgwODA4MDiYODA4MDgwODA4MDgwOJg8LDyYPJQ8lDiYPJQ4mDgwOJg8MDgwODA4MDgwODA4mDiYOJg4nDiYOJg4mDyUODA4MDgwODA4MDgwOJw4MDiYPJQ8LDiYODA4MDgwOJg4MDwwOJg4MDiYOJg4mDyUPJQ4MDicOJg4MDgwODA4MDgwOJg4MDgwOJw4mDiYOJg4mDyUOJg8lDicODA4MDgwODA4MDgwODA4MDiYOJg8lDyYOJg4mDiYOJg8LDgwODA4MDwsPDA4MDgwOJg8ADQUAAA==', '29.0': 'JgA2AWM1DA4MKAwODA4MKQwODCgMDgwODCgMKAwoDA4MKAwPDCgMKAwoDA4MDgwODA4MKAwoDA8MKAwODCgMKAwODA4MDgwoDA4MKQwODA4MKAwoDCgMKAwoDCgNDgwoDCgMKAwoDA4MDgwODCgMDg0ODA4MDgwoDCgMDgwODCgMKAwoDSgMDgwODCgMKAwODA4MDgwODA4MDgwpDCgMKAwoDCgMKAwoDCgNDgwODA4MDgwODA4MKAwODCgMKAwODCkMDgwODA4MKAwODA4MKAwODCgMKA0oDCgMKAwODCgMKAwODA4MDwsODQ4MKAwODA4MKAwoDCgMKAwpDCgMKAwoDCgMDgwODA4MDgwODA8MDgwODCgMKAwoDCgMKAwrCigMKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '30.0': 'JgA2AWQ0DQ4MKAwODA4MKAwODCgMDgwODCgNKAwoDA4MKAwODCgMKAwoDQ4MDgwODA4MKAwoDA4MKAwODCgMKA0ODA4MDgwoDA4MKAwODA4MKAwoDCkMKwkoDCgMDgwoDCgMKAwpDA4MDgwODCgMDgwODA4MDgwODCgMDgwODSgMKAwoDCgMKAwODCgMKA0ODA4MDgwODA4MDgwoDCgMKAwoDCkMKAwoDCgMDgwODA4MDgwODA4MKQwODCgMKAwODCgMDgwODA4MKAwODQ4MKAwODCgMKAwoDCgMKAwODCkMKAwODA4MDgwODA4MKAwODA4MKA0oDCgMKAwoDCgMKAwoDCkMDgwODA4MDgwODA4MDgwODCgMKAwoDCkMKAwoDCgMKAwODA4MDgwODA8MDQ0ODA4MKAwADQUAAA==' }, FAN_HIGHEST: { '18.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYODA8LDyYOJg4mDgwOJg4MDiYOJg8mDgwODA4MDgwOJg4mDgwOJg4MDiYPJg4MDgwODA4mDgwOJg4MDgwOJg8mDiYOJg4mDiYODA4mDiYPJg4mDgwODA4MDiYODA4MDgwODA4MDicOJg4mDiYOJg4mDiYOJg8MDgwODA4MDgwODA4MDiYOJg4MDiYOJg8mDiYOJg4MDgwOJg4MDgwODA8LDwwOJg4MDiYOJg4MDiYODA4MDgwPJg4MDgwOJg4MDiYOJg4mDiYPJg4MDiYOJg4MDgwODA4MDgwOJg4MDwsPJg4mDiYOJg4mDiYOJg8mDiYODA4MDgwODA4MDgwODA4MDiYOJg8mDiYOJg4mDiYOJg4MDgwPDA4MDgwODA4MDgwOJg4ADQUAAA==', '19.0': 'JgA2AWYzDgwOJg4MDgwPJQ8MDiYODA4MDiYOJg4mDgwPJQ8LDyYOJg4mDgwODA4MDgwOJg8lDwwOJg4MDiYOJg4MDgwODA4mDwsPJQ8MDgwOJg4mDiYOJg4mDyUPDA4mDiYOJg4mDgwODA4MDiYPCw8MDgwODA4mDgwOJg4mDiYOJg8lDyYODA4mDgwODA4MDgwODA4MDicOJg4MDiYOJg4mDiYOJg8LDwsPJQ8MDgwODA4MDgwOJg8LDicOJQ8LDyYODA4MDgwOJg4MDgwOJg4MDiYPJQ8mDiYOJg4MDiYOJg8LDwsPCw8MDgwOJg4MDgwOJg4mDiYPJQ8lDyYOJg4mDiYODA4MDgwODA8LDwsPDA4MDiYOJg4mDiYOJg8lDyUPJg4MDgwODA4MDgwODA4MDgwOJg8ADQUAAA==', '20.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYPCw8MDiYOJg4mDgwOJg4MDiYPJQ8mDgwODA4MDgwOJg4mDgwOJg8LDyUPJg4MDgwODA4mDgwOJg4MDgwPJQ8mDiYOJg4mDiYODA4mDyUPJg4mDgwODA4MDiYODA4MDgwPCw8LDwsPJg4mDiYOJg4mDiYPJQ8lDwwODA4MDgwODA4MDiYOJg8LDyUPJg4mDiYOJg4MDgwOJg8LDwsPCw8MDgwOJg4MDiYOJg4MDiYPCw8LDwsPJg4MDgwOJg4MDiYOJg4mDyUPJg4MDiYOJg4MDgwODA4MDgwPJQ8LDwwOJg4mDiYOJg4mDyUPJg4mDiYODA4MDgwODA4MDgwODA4MDyUPJQ8mDicNJg4mDiYOJg8LDwwODA4MDgwODA4MDgwOJg4ADQUAAA==', '21.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgNDgwODCgMKAwoDA4MKAwODCgNKAwoDA4MDgwODA4MKAwoDA4MKA0ODCgMKAwODA4MDgwoDA4MKAwODA4NKAwoDCgMKAwoDCgMDgwoDSgMKAwoDA4MDgwODCgMDgwODA4MDwwoDCgMDgwoDCgMKAwoDCgNDgwODCgMDgwODA4MDgwODCgMKAwODCkMKAwoDCgMKAwODA4MKAwPDA4MDgwODA4MKAwODCgMKAwODCgMDg0ODA4MKAwODA4MKAwODCgMKAwoDSgMKAwODCgMKAwODA4MDgwODA4MKQwODA4MKAwoDCgMKAwoDCkMKAwoDCgMDgwODA4MDgwODA4MDgwODSgMKAwoDCgMKAwoDCgMKQwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '22.0': 'JgA2AWYzDQ0NJw4MDgwOJg4MDiYODA4MDiYOJw0nDgwOJg4MDiYOJg4mDgwODQ0NDgwNJw4mDgwOJg4MDiYOJw0MDg0NDQ4mDgwOJg4MDgwOJg4mDicNJw4mDiYODA4mDiYOJg4nDQ0NDQ4MDiYODA4MDgwODA4MDiYODA4nDScNJw4mDiYOJg4MDiYODA4NDgwODA4MDiYOJg4MDiYOJg4nDScOJg4MDgwOJg4MDgwODA4MDgwOJw0NDiYOJg4MDiYODA4MDgwOJg4MDgwOJw4MDiYOJg4mDiYOJg4MDicOJg4MDgwODA4MDgwOJg4MDgwOJg4nDiYOJg4mDiYOJg4mDicNDQ4MDgwODA4MDgwODA4MDiYOJg4mDicOJg4mDiYOJg4MDgwODA4MDgwODQ0NDgwOJg4ADQUAAA==', '23.0': 'JgA2AWQ1DA4MKAwODA8MKAwODCgMDgwODCgMKAwoDA4MKQwODCgMKAwoDA4MDgwODA4MKAwpDA4MKAwODCgMKAwODA4MDgwoDQ4MKAwODA4MKAwoDCgMKAwoDCkMDgwoDCgMKAwoDA4MDgwPDScMDgwODA4MDgwoDA4MDgwoDCgMKA0oDCgMDgwoDCgMDgwODA4MDgwODCkMKAwODCgMKAwoDCgMKAwPDA4MKAwODA4MDgwODA4MKAwODCgMKQwODCgMDgwODA4MKAwODA4MKAwODCkMKAwoDCgMKAwODCgMKAwPDA4MDgwODA4MKAwODA4MKAwoDCgNKAwoDCgMKAwpCygNDQwODA8LDg0ODA4MDgwODCgMKAwoDCgMKAwpDCgMKAwODA4MDgwODA4MDgwODA4MKA0ADQUAAA==', '24.0': 'JgA2AWQ0DQ4MKAwODA4MKAwODCgMDgwODCgMKQwoDA4MKAwODCgMKAwoDA4MDwwODA4MKAwoDA4MKAwODCgMKA0NDQ4MDgwoDA4MKAwODA4MKAwoDCkMKAwoDCgMDgwoDCgMKAwpDA4MDgwODCgMDgwODA4MDgwODA4MDgwpDCgMKAwoDCgMKAwoDCgNDgwODA4MDgwODCgMKAwODCgMKAwoDSgMKAwODA4MKAwODA4MDgwODA4MKQwODCgMKAwODCgMDgwODA4MKAwODA4NKAwODCgMKAwoDCgMKAwODSgMKAwODA4MDgwODA8LKAwODA4MKAwpDCgMKAwoDCgMKAwoDCgNDgwODA4MDgwODA4MDgwODCgMKAwoDCkMKAwoDCgMKAwODA4MDgwODA4NDgwODA4MKAwADQUAAA==', '25.0': 'JgA2AWUzDQ4MKAwODA4MKAwODCgMDgwODCgNKAwoDA4MKAwODCgMKAwoDQ0NDgwODA4MKAwoDA4MKAwODCgMKA0ODA4MDgwoDA4MKAwODA4MKAwoDSgMKAwoDCgMDgwoDCgMKAwpDA4MDgwODCgMDgwODA4MDgwoDCgNKAwODCgMKAwoDCgMDgwODA4MKQwODA4MDgwODCgMKAwODCgMKAwpDCgMKAwODA4MKAwODA4MDgwODA4MKQwODCgMKAwODCgMDgwODA4MKAwODQ0NKAwODCgMKAwoDCgMKAwODSgMKAwODA4MDgwODA4MKAwODA4MKA0oDCgMKAwoDCgMKAwoDCkMDgwODA4MDgwODA4MDgwODCgMKAwpDCgMKAwoDCgMKAwODA4MDgwODQ4MDgwODA4MKAwADQUAAA==', '26.0': 'JgA2AWQ0DQ4MKAwODA4MKAwODCgMDgwODCgNKAwoDA4MKAwODCkLKAwoDA4NDQ0ODA4MKAwoDA4MKAwUBigMKAwODQ4MDgwoDA4MKAwODA4MKAwoDCkMKAwoDCgNDQwoDCgMKA8mDA4MDgwODCgMDgwODA4MDgwODCgMKA0ODCgMKAwoDCgMKAwODA4MKA0ODA4MDgwODCgMKAwODCgMKAwoDSgMKAwODA4MKAwODA4MDgwODA4MKA0ODCgMKAwODCgMDgwODA4MKAwODA4NKAwODCgMKAwoDCgMKAwODSgMKAwODA4MDgwODA4MKAwODA4MKAwpDCgMKAwoDCgMKAwoDCgNDQ0ODA4MDgwODA4MDgwODCgMKAwoDSgMKAwoDCgMKAwODA4MDgwODA4NDgwODA4MKAwADQUAAA==', '27.0': 'JgA2AWYyDg0NJw0NDgwOJg4MDicNDA4MDiYOJg4nDQ0OJg4MDiYOJg4mDgwODA4NDQ0NJw4mDgwOJg4MDiYOJg4MDg0NDQ0nDgwOJg4MDgwOJg4mDiYOJwwoDiYODA4mDiYOJg4mDg0NDQ0NDScODA4MDgwODA4mDgwOJg4NDScNJw4mDiYODA4mDgwOJg4NDQ0NDQ0NDiYOJg4MDiYOJg4mDicNJw4MDgwOJg4MDgwODA4MDgwOJw0NDScNJwwODigMDA4MDgwOJg4MDg0NJw0NDCgOJg4mDiYOJg4MDSgNJw0NDQ0MDgwODA4OJg4MDgwOJg0oDCgMKAwoDiYOJg4mDCgNDgwODA4NDQwODA4ODAwODiYOJg4mDSgMKAwoDCgMKAwODA4MDgwODgwNDQ0ODQ0MKAwADQUAAA==', '28.0': 'JgA2AWYyDgwOJw4MDgwOJg4MDiYODA4MDiYOJg8mDgwOJg4MDiYOJg4mDgwODA4MDg0OJg4mDgwOJg4MDiYPJQ4MDgwODQ4mDgwOJg4MDgwOJg4mDiYPJg4mDiYODA4mDiYOJg4mDgwODQ4MDiYODA4MDgwODA4MDgwOJg4MDicNJw4mDiYOJg4mDgwOJg4MDg0NDQ4MDiYOJg4MDiYOJg4mDicNJw4MDgwOJg4MDgwODA4MDgwOJg4MDicNJw4MDiYODA4MDgwOJg4MDgwOJw0NDiYOJg4mDiYOJg4MDicNJw4MDgwODA4MDgwOJg4MDgwOJg4nDScOJw0mDiYOJg4mDiYODA4NDgwODA4MDgwODA4MDiYOJw0rCSgNJg4mDiYOJg4MDgwODA4MDgwODA4MEAsOJg8ADQUAAA==', '29.0': 'JgA2AWQ0DA8MKAwODA4MKAwODCgMDgwODCgMKA0oDA4MKAwODCgMKAwoDA4MDgwPDA4MKAwoDA4MKAwODCgMKAwODA8MDgwoDA4MKAwODA4MKAwoDCgNKAwoDCgMDgwoDCgMKAwoDQ4MDgwODCgMDgwODA4MDgwoDCgMDgwODSgMKAwoDCgMDgwODCgMKAwODQ4MDgwODCgMKAwODCgMKAwoDCkMKAwODA4MKAwODA4MDgwODA4MKAwPDCgMKAwODCgMDgwODA4MKAwODA4MKQwODCgMKAwoDCgMKAwODCkMKAwODA4MDgwODA4MKAwODA4MKAwpDCgMKAwoDCgMKAwoDCkMDgwODA4MDgwODA4MDgwODCgMKAwrCigMKAwoDCgMKAwODA4MDgwODA4MDwwODA4MKAwADQUAAA==', '30.0': 'JgA2AWM1DA4MKAwPDA4MKAwODCgMDgwODCgMKAwoDA8MKAwODCgMKAwoDA4MDgwODA4MKQwoDA4MKAwODCgMKAwODA4MDgwoDQ4MKAwODA4MKAwoDCgMKAwoDSgMDgwoDCgMKAwoDA4MDgwODSgMDgwODA4MDgwODCgMDgwODCgMKA0oDCgMKAwODCgPJQwODA4MDgwPDCgMKAwODCgMKAwoDCgMKQwODA4MKAwODA4MDgwODA4MKAwODCgNKAwODCgMDgwODA4MKAwODA4MKAwPDCgMKAwoDCgMKAwODyYLKA0ODA4MDgwODA4MKAwODA4MKAwoDCkMKAwoDCkLKAwoDCgMDgwPDA4MDgwODA4MDgwODCgMKAwoDCgMKQwoDCgMKAwODA4MDgwODA4MDgwODA4NKAwADQUAAA==' } }, HVAC_MODE_COOL: { FAN_AUTO: { '18.0': 'JgA2AWM1DA4MKAwODA4MKAwODCgMDwwODCgMKAwoDA4MKAwODCgMKA0oDA4MDgwODA4MKAwoDA4MKAwODSgMKAwODA4MDgwoDA4MKAwODA4NKAwoDCgMDgwoDCgMDgwoDCkMKAwoDCgMDgwODCgMDgwODA4MDg0ODCgMKAwoDCgMKAwoDCgNKAwODA4MDgwODA4MDgwODCgMKAwoDSgMKAwoDCgMKAwODA4MDgwODQ0NDgwODA4MKAwODCgMKAwODCgMDgwODQ4MKAwODA4MKAwODCgMKAwoDSgMKAwODCgMKAwODA4MDgwODA4MKQwODA4MKAwoDCgMKAwoDCgNKAwoDCgMDgwODA4MDgwODA4MDgwODSgMKAwoDCgMKAwoDCgMKA0ODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '19.0': 'JgA2AWUzDgwMKAwODA4MKQwODCgMDgwODCgMKA4mDA4MKQwODCgMKAwoDA4MDgwODA4MKAwoDA8MKAwODCgMKAwODA4MDgwoDA8MKAwODA4MKAwoDCgODAwoDCgMDg0oDCgMKAwoDCgMDgwODCgMDw0NDQ0MDgwoDA4MKAwoDCgMKAwpDiYMDgwoDA4MDg4MDA4MDg4MDCgNKAwoDCgMKAwoDCgMKAwODQ4NDQ4MDgwMDgwODA4MKAwODCgOJgwPDCgMDgwODA4MKAwODA4MKAwODCgMKQwoDCgMKAwODCgMKAwODA4MDwwODA4MKAwODA4MKAwoDCgMKA0oDCgMKAwoDCgODAwODA4ODA0NDQ4MDgwODCgMKAwoDCgMKAwoDSgMKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '20.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgMDgwODCkMKAwoDA4MKAwNDSgMKAwoDQ4MDgwODA4MKAwoDA4MKAwODCgNKAwNDQ4MDgwoDA4MKAwODA4MKAwoDSgMDgwoDCgMDQ0oDCgMKAwpDCgMDgwODCgNDQwODA4MDgwODA4MKQwoDCgMKAwoDCgMKAwoDQ0NDgwODA4MDgwODCgMKAwoDCgMKA0oDCgMKAwODA4MDgwODA4MDgwODA4NKAwODCgMKA0NDCgMDgwODA4MKA0ODA4MKAwODCgMKAwoDScMKQwODCgMKAwODA4MDQ0ODA4MKAwODQ0NKAwoDCgMKAwoDCgMKAwoDSgMDgwODA4MDgwODA4MDgwODCgMKAwpDCgMKAwoDCgMKA0NDA4NDQ0ODA4MDgwODA4MKA0ADQUAAA==', '21.0': 'JgA2AWQ0DA4MKQwODA4MKAwODCgMDgwODCgMKA0oDA4MKAwODCgMKAwoDA4MDgwODQ0NKAwoDA4MKAwODCgMKAwODA4NDgwoDA4MKAwODA4MKAwoDCgMDg0oDCgMDgwoDCgMKAwoDCgNDgwODCgMDgwODA4MDgwoDCgMDgwoDSgMKAwoDCgMDgwODCgMDgwODA4NDgwODCgMKAwoDCgMKAwoDCkMKAwODA4MDgwODA4MDgwODA4MKAwODSgMKAwODCgMDgwODA4MKAwODA4MKQwODCgMKAwoDCgMKAwODCgNKAwODA4MDgwODA4MKAwODA4MKAwoDSgMKAwoDCgMKAwoDCgMDg0ODA4MDgwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4MDgwODQ4MKAwADQUAAA==', '22.0': 'JgA2AWM1DA4MKAwODA4OJwwODScMDgwODCgMKAwoDA4MKQ0NDCgMKAwoDA4MDgwODA4MKAwpDA4MKAwODCgMKAwODA4MDgwoDA4NKAwODA4MKAwoDCgMDg4mDCgNDQ0oDCgMKAwoDCgMDgwODCkMDgwODA4MDgwODCgMDgwoDCgMKAwpDCgMKAwODCgMDgwODA4MDgwODCgNKAwoDCgMKAwoDCgMKAwODQ4MDgwODA4MDgwODA4MKAwODCgMKAwODSgMDgwODA4MKAwODA4MKAwODCgMKQwoDCgMKAwODCgMKAwODQ0NDQ0ODA4MKAwODA4MKAwoDCgMKA0oDCgMKAwoDCgMDgwODA4MDgwODQ0NDgwODCgMKAwoDCgMKA0oDCgMKAwODA4MDgwODA4MDgwODA4MKA0ADQUAAA==', '23.0': 'JgA2AWM1DA4MKA0NDQ4MKAwODCgMDgwODCgMKAwoDA4NKAwODCgMKAwoDA4MDgwODA4MKQwoDA4MKAwODCgMKAwODA4MDg0oDA4MKAwODA4MKAwoDCgMDgwoDSgMDgwoDCgMKAwoDCgMDgwPDCgMDgwODA4MDgwoDA4MDgwoDCgMKQwoDCgMDgwoDCgMDgwODA4MDgwODSgMKAwoDCgMKAwoDCgMKQwODA4MDgwODA4MDgwODA4MKAwODCgNKAwODCgMDgwODA4MKAwODA4MKAwPDCgMKAwoDCgMKAwODCgMKA0NDQ4MDgwODA4MKAwODA4MKAwoDCgNKAwoDCgMKAwoDCgMDgwODA4NDQ0ODA4MDgwODCgMKAwoDCgMKQwoDCgMKAwODA4MDgwODA4MDgwODA4NKAwADQUAAA==', '24.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgMDg0ODCgMKAwoDA4MKAwODCgMKA0oDA4MDgwODA4MKAwoDA4MKAwODCkMKAwODA4MDgwoDA4MKAwODA4MKA0oDCgMDgwoDCgMDgwoDCgMKQwoDCgMDgwODCgMDgwODA4MDgwODQ0NDgwoDCgMKA0nDCgMKAwoDSgMDgwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4NDQ0ODA4MKAwODCgMKAwODCgMDgwODQ0NKAwODA4MKAwODCgMKAwoDCgNKAwODCgMKAwODA4MDgwODA4MKAwODQ4MKAwoDCgMKAwoDCgNJw0oDCgMDgwODA4MDgwODA4MDgwODCgMKQwoDCgMKAwoDCgMKAwODQ0NDgwODA4MDgwODA4MKAwADQUAAA==', '25.0': 'JgA2AWM1DA4MKAwODA4MKQwODCgMDgwODCgMKAwoDA4MKQwODCgMKA0nDA4MDgwODA4MKAwoDQ4MKAwODCgMKAwODA4MDgwoDA4NKAwODA4MKAwoDCgMDgwoDCgNDQ0oDCgMKAwoDCgMDgwODCgNDgwODA4MDgwoDCgMKAwODCgMKA0oDCgMDgwODA4MKAwODA4MDgwODCgNKAwoDCgMKAwoDCgMKAwODQ4MDgwODA4MDgwODA4MKAwODCgMKAwODSgMDgwODA4MKAwODA4MKAwODCgNKAwoDCgMKAwODCgMKAwODA4NDQ0ODA4MKAwODA4MKAwoDCgMKA0oDCgMKAwoDCgMDgwODA4MDgwODQ0NDgwODCgMKAwoDCgMKAwoDScNKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '26.0': 'JgA2AWU0DA4MKAwODA4MKAwODCkMDgwODCgMKAwoDA4MKAwODCgNKAwoDA4MDgwODA4MKAwoDA4MKQwODCgMKAwODA4MDwsoDA4MKAwODQ4MKAwoDCgMDgwoDCgMDgwoDSgMKAwoDCgMDgwODCgMDgwODA4NDgwODCgMKAwODCgMKAwoDCgNKAwODA0NKAwODA4MDgwODCgMKA0oDCgMKAwoDCgMKAwODA4MDg0ODA4MDgwODA4MKAwODCgMKAwODCgNDgwODA4MKAwODA4MKAwODCgMKA0oDCgMKAwODCgMKAwODA4MDgwODQ0NKAwODA4MKAwoDCgMKAwoDSgMKAwoDCgMDgwODA4MDgwODA4MDg0ODCgMKAwoDCgMKAwoDCgMKQwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '27.0': 'JgA2AWQ1DA4MKAwODA4MKAwODSgMDgwODCgMKAwoDA4MKAwODCgNKAwoDA4MDgwODA4MKAwoDA4MKQwODCgMKAwODA4MDgwoDA4MKAwODQ4MKAwoDCgMDgwoDCgMDgwoDSgMKAwoDCgMDgwODCgMDgwODQ0NDQ0oDA4MKAwODCgMKAwoDScNDgwoDA4MKAwODA4MDgwODCgMKAwpDCgMKAwoDCgMKAwODA4MDg0NDQ4MDgwODA4MKAwODCgMKAwODCgNDQ0ODA4MKAwODA4MKA0NDCgMKAwpDCgMKAwODCgMKAwODA4MDgwODA4NKAwODA4MKAwoDCgMKAwoDScNKAwoDCgMDgwODA4MDgwODA4MDgwPDCgNJwwoDCgMKAwoDCgNJw0ODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '28.0': 'JgA2AWYzDgwMKAwODgwMKA4MDCgODA4MDSgOJg4mDgwMKAwODCgMKA0oDA4MDgwODA4MKAwoDA4MKAwODCkMKAwODA4MDgwoDA4MKAwODA4MKAwpDCgMDgwoDCgMDgwoDCgMKA0oDCgMDgwODCgMDgwODA4MDgwODA4MKQwODCgMKAwoDCgMKAwoDA4NKAwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4MDg0NDQ0NKAwODCgMKAwODCgMDgwODA4MKQwODgwOJg4MDiYOJg8lDiYOJw0NDiYOJg4MDgwODA4MDgwOJg4MDg0NJw0nDiYOJg4mDiYOJg4nDScNDQwODgwMDg4MDgwODA4MDiYOJw0nDScOJg4mDiYOJg4MDgwODA4NDQ0NDQ0NDgwOJg4ADQUAAA==', '29.0': 'JgA2AWUzDgwOJg8LDwwOJg4MDiYODA4MDiYOJg8lDwwOJg4MDiYOJg4mDgwODA4MDgwOJg8mDgwOJg4MDiYOJg4MDQ0ODA0nDg0NJw0LDw0NJwwoDScNDQwoDScNDgwoDCgMKAwoDCgMDgwODCkMDgwODA4MDgwoDCgMDgwODCgMKA0oDCgMDgwODCgMKAwODA4MDgwODCkMKAwoDCgMKAwoDCgMKA0ODA4MDgwODA4MDgwODA4MKA0NDCgNJw4NDCgNDQ0NDQsPJw0LDw0NJw0LDycPJg0nDiYOJg4MDiYOJg8LDg0NDQ0NDgwNJw4MDgwNJw4mDiYPJg4mDiYOJg4mDiYODA4MDwsPDA4MDgwODA4MDiYOJg4mDiYPJQ8mDiYOJg4MDgwODA4MDgwODA4MDwsPJQ8ADQUAAA==', '30.0': 'JgA2AWQ0DA4NKAwODA4MKAwODCgMDgwODCgMKA0oDA4MKAwODCgMKAwoDA4MDg0NDQ4MKAwoDA4MKAwODCgMKAwODQ4MDgwoDA4MKAwODA4MKAwoDCgNDgwoDCgMDgwoDCgMKAwoDCkMDgwODCgMDgwODA4MDgwODCgMDgwODCkMKAwoDCgMKAwODCgMKAwODQ4MDgwODCgMKAwoDCgMKAwpDCgMKAwODA4MDgwODA4MDgwODA4MKA0NDSgMKAwODCgMDgwODA4MKAwODA4NKAwODCgMKAwoDCgMKAwODSgMKAwODA4MDgwODA4MKAwODA4MKAwpDCgMKAwoDCgMKBQgDScNDgwODA4MDgwODA4MDgwODCgMKAwoDCkMKAwoDCgMKAwODA4MDgwODA4NDQ0ODA4MKAwADQUAAA==' }, FAN_LOW: { '18.0': 'JgA2AWM1DA4MKAwODA4MKAwODCgNDgwODCgMKAwoDA4MKAwODCgMKA0oDA4MDgwODA4MKAwoDA4MKAwODSgMKAwODA4MDgwoDA4MKAwODA4MKQwoDCgMDgwoDCgMDgwoDCkMKAwoDCgMDgwODCgMDgwODA4MDg0NDSgMKAwoDCgMKAwoDCgMKQwODA4MDgwODA4MDgwODA4MKAwoDCgNKAwoDCgMKAwoDA4MDgwODA4MDg0ODA4MKAwODCgMKAwODCgMDgwODQ0NKAwODA4MKAwODCkLKAwoDCkMKAwODCgMKAwODA4MDgwODA4MKA0ODA4MKAwoDCgMKAwoDCgMKA0oDCgMDgwODA4MDgwODA4MDgwODCkMKAwoDCgMKAwoDCgMKQwNDQ4MDgwODA4MDgwODA4MKAwADQUAAA==', '19.0': 'JgA2AWQ2Cw0NKAwODA4MKAwODCgMDgwODCgMKQwoDA4OJg4MDCgMKAwoDgwODA4MDwwOJg4mDgwOJg4MDiYOJg4MDgwPDA4mDgwOJg4MDgwOJg4mDyYODA4mDiYODA4mDiYOJg4mDyYODA4MDiYODA4MDgwODBQgDgwOJg4nDiYOJg4mDiYODA4mDgwODA4NDgwODA4MDgwOJg4mDiYOJg4mDyYOJg4mDgwODA4MDgwODA4MDgwPJQ8LDyYOJg4MDiYODA4MDgwOJg4MDgwOJw4MDiYOJg4mDiYOJg4MDicOJg8LDgwODA4MDgwOJg4MDgwOJg4nDiYOJg4mDiYOJg4mDiYODA8MDgwODA4MDgwODA4MDiYPJQ4mDicOJg8lDiYOJg4MDgwODA4MDgwODA8MDgwOJg4ADQUAAA==', '20.0': 'JgA2AWUzDgwOJg4MDgwOJw0NDScNDQ0NDiYOJg4mDgwOJg4MDicNJw0nDgwMDg4MDgwOJg4mDgwOJw0NDScOJg4MDgwODA4mDgwOJg4NDQ0NJw4mDiYODA4mDiYODA4nDScOJg4mDiYODA4MDiYODA4MDg0ODA4MDgwOJg4mDiYOJg4nDScOJg4mDgwODA4MDgwODA4MDgwOJg4nDScOJg4mDiYOJg4mDgwODQ0NDQ0ODA4MDgwOJg4MDiYOJg4MDicNDQ0NDQ0OJg4MDgwOJg4MDiYOJg4nDScOJg4MDiYOJg4MDgwODA4MDg0NJw4MDgwOJg4mDiYOJg4nDScNJw4mDiYODA4MDgwODA4MDgwODA4NDSgNJg4mDiYOJg4mDicNJw4MDgwODA4MDgwODA4MDgwOJg4ADQUAAA==', '21.0': 'JgA2AWM1DA4MKAwODA4MKQ0NDCgMDQ0ODCgNJw0nDQkQKA4NDScNJw0nDQsPCw4ODA4MKA0nDgsOKA0NDScNJw0LDwsODgwoDQwNKQ0NDA4MKA0nDScNCw8nDCgNDQ0oDScNJw0nDScMDg0LDigOCw4ODA4MDgwoDCgMDgwoDCgMKA4nDScMDgwODCgMDgwODA4MDgwODA4MKQwoDCgMKAwoDCgMKAwoDQ4MDgwODA4MDgwODA4MKAwODCgMKA4JECgNCw4ODQ0MKA0LDw0NJw0NDSgNJg4nDScNJw0NDScNJw4MDgwOCw8NDQ0NJw4MDQ0NJw4mDiYPJQ8mDiYOJg4mDiYODA4MDgwPCw8LDwwODA4MDiYOJg4mDiYOJg8lDyYOJg4MDgwODA4MDgwODA4MDgwPJQ8ADQUAAA==', '22.0': 'JgA2AWUzDgwOJg4MDgwOJw4MDiYODA4MDiYPJQ4mDgwOJw0MDyYPJQ4mDg4MDA4MDgwOJg8lDgwPJg8LDiYPJQ4MDgwODA4mDwsOJg8MDgwOJg8lDiYPCw4mDyUPCw4nDiYPJQ8lDyUPCw4MDiYPCw8MDgwODA4MDiYPCw4mDiYPJQ8mDiYOJg4MDiYODA4MDgwODA4MDgwOJw4mDyUOJg4mDiYOJg4mDg0ODA4MDgwODA4MDgwOJg4MDiYOJg4MDicODA4MDgwOJg4MDgwOJg4MDiYOJw0nDiYOJg4MDiYOJg4MDgwODA4NDgwOJg4MDgwOJg4mDiYOJg4nDiYPJQ4mDiYODA4MDgwODA4MDg0ODA4MDiYOJg4mDyUOJg4mDicOJg4MDgwODA4MDgwODA4MDgwOJg4ADQUAAA==', '23.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYODA4NDScOJg4mDgwOJg4MDiYOJg4nDgwODA4MDgwOJg4mDgwOJg4MDicNJw4MDgwODA4mDgwOJg4MDgwOJw0nDiYODA4mDiYODA4mDiYOJw4mDiYODA4MDiYPCw4MDgwODA4nDQ0ODA4mDiYPJQ8lDiYODA4nDScODA4MDgwODA4MDgwOJg4mDicNJw0nDiYOJg4mDgwODA4MDgwODA4NDQ0NJw4MDiYOJg4MDiYODAwODg0NJw0NDA4MKA4MDiYOJg4mDicMKAwODCgOJg4MDgwMDg4MDg0NJg4MDQ4NJw4mDiYOJg4mDiYOJw0nDScODA4MDgwODA4MDgwODA4MDicNJw0nDScOJg4mDiYOJg4MDgwODQ0NDgwODA4MDgwOJg4ADQUAAA==', '24.0': 'JgA2AWM1DA4MKAwODQ0NKAwODiYMDg4MDCgMKAwoDgwOJw4MDiYOJg4mDgwODA4MDgwOJg4nDgwOJg4MDiYOJg4MDgwODA4mDgwOJwwODgwMKA4mDiYODA4mDiYNDgwoDCgMKAwoDCgMDgwODCgNDgwODA4MDgwODA4MDgwoDCgMKAwpDCgMKAwoDCgMDgwODA4MDgwODQ0NKAwoDCgMKAwoDCgMKA0oDA4MDgwODA4MDgwODA4MKAwODCgMKQwODCgMDgwODA4MKAwODA4MKAwODCkMKAwoDCgMKAwODCgMKAwODA8MDgwODA4MKAwODA4MKAwoDCgMKQwoDCgMKAwoDCkLDgwODA4MDg0NDQ4MDgwODCgMKAwoDCgMKAwpDCgMKAwODA4MDgwODA4MDgwODA4MKA0ADQUAAA==', '25.0': 'JgA2AWQ1DA4MKAwODA4MKAwODSgMDgwODCgMKAwoDA4MKAwODCkMKAwoDA4MDgwODA4MKAwoDA4MKQwODCgMKAwODA4MDgwoDA4MKAwPDA4MKAwoDCgMDgwoDCgMDgwoDSgMKAwoDCgMDgwODCgMDgwODQ4MDgwoDCgMKAwODCgMKAwoDSgMDgwODA4MKAwODA4MDgwODA4MKAwpDCgMKAwoDCgMKAwoDA4MDgwPDA4MDgwODA4MKAwODCgMKAwODCgMDwwODA4MKAwODA4MKAwODCgNJw4nDCgNJwwODCgMKAwODA4MDgwODA4NKAwODA4MKAwoDCgMKAwoDCkMKAwoDCgMDgwODA4MDgwODA4MDgwPDCgMKAwoDCgMKAwoDCgMKQwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '26.0': 'JgA2AWU0DQsPJw0NDQ0NJw0NDScNDQ0NDCkNJw0nDQ0NJw0NDScNJw0oDQ0NCw8NDQ0NJw0nDQkRJw0NDSgNJw0NDQ0NCw8nDQ0NJw0NDQ0NJw4mDicNDQ0nDScNCw8nDCgMKAwpDCgMDgwODCgMDgwODA4MDgwODCgNKAwODCgMKAwoDCgMKAwODA4MKQwODA4MEAoODA4MKAwoDCgMKQwoDCgMKAwoDA4MDgwODA4MDgwODA4MKQ0NDCgNJwwODiYODA4MDgwOJg4NDQ0NJw4MDiYOJg4mDiYOJg4NDScNJw4MDgwODA4MDgwOJg4MDgwOJg4nDScOJg4mDiYOJg4mDicNDQ4MDgwODA4MDgwODA4MDiYOJg4nDiYPJQ4mDiYOJg4MDgwODA4NDQ0ODA4MDgwOJg4ADQUAAA==', '27.0': 'JgA2AWcyDQ0OJg4MDgwOJg4MDiYPCw4MDicNJw4mDgwOJg4MDiYPJQ4mDgwPDA0NDgwOJg4mDwsOJg8LDiYOJg8MDgwODA4mDwsOJg4MDgwOJg4mDyYNDQ4mDiYODA4mDyUOJg4nDiYODA4MDiYODA4MDgwODA4mDgwOJw0NDiYOJg4mDiYODA4mDgwOJw0NDQ0NDQ4MDgwOJg4mDiYOJg4nDScMKA4mDgwMDgwODA4ODAwODA4NKAwODCgMKAwODCgMDgwODA4MKAwODQ4MKAwODCgMKAwoDCgMKAwODSgMKAwODA4MDgwODA4MKAwODA4MKQwoDCgMKA0nDCgNJw0nDicNDQ0NDQ0NDQwODQ0NDQwODScNJw4nDScOJg0nDScNJw4MDQ0NDQ4MDg0NDQ0NDQ0NJw4ADQUAAA==', '28.0': 'JgA2AWQ1DA4MKAwODA4MKAwPDCgMDgwODCgMKAwoDA4MKAwODCkMKAwoDA4MDgwODA4MKAwoDA4MKQwODCgMKAwODA4MDgwoDA4MKAwPDA4MKAwoDCgMDgwoDCgMDgwoDSgMKAwoDCgMDgwODCgMDgwODA8MDgwODA4MKAwODCgMKAwoDCgMKQwoDA4MKAwODA4MDgwODA4MKAwoDSgMKAwoDCgMKAwoDA4MDgwODQ4MDgwODA4MKAwODCgMKAwODCgMDwwODA4MKAwODA4MKAwODCgMKAwpDCgMKAwODCgMKAwODA4MDgwODA4MKQwODA4MKAwoDCgMKAwoDCgNKAwoDCgMDgwODA4MDgwODA4MDgwODCkMKAwoDCgMKAwoDCgMKQwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '29.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgNDgwODCgMKAwoDA4MKAwODCgMKA0oDA4MDgwODA4MKAwoDA4MKAwODSgMKAwODA4MDgwoDA4MKAwODA4MKQwoDCgMDgwoDCgMDgwoDCgNKAwoDCgMDgwODCgMDgwODA4MDgwpDCgMDgwODCgMKAwoDCgMDgwODSgMKAwODA4MDgwODA4MKAwoDCkMKAwoDCgMKAwoDA4MDgwODA8MDgwODA4MKAwODCgMKAwODCgMDgwODQ4MKAwODA4MKAwODCgMKAwoDCkMKAwODCgMKAwODA4MDgwODA4MKA0ODA4MKAwoDCgMKAwoDCgMKQwoDCgMDgwODA4MDgwODA4MDgwODCgNKAwoDCgMKAwoDCgMKA0ODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '30.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDicODA4MDiYOJg4mDwsOJg4MDicOJg4mDgwODA4MDgwOJg4mDgwOJw4MDiYOJg4MDgwODA4mDgwOJw0MDg0OJg4mDiYODA4mDyUODA4nDScOJg4mDiYODA4MDiYODA4MDgwODQ4MDiYODA4MDiYOJg4mDyYNJw4MDiYOJg4MDgwODA4MDgwOJg4nDScOJg4mDiYOJg4mDgwODA4NDA4NDQ0NDQ0NJwwODCgMKAwODCgNDgwODA4MKAwODA4MKAwODCgMKAwpDCgMKAwODCgMKAwODA4MDgwODA4NKAwODA4MKAwoDCgMKAwoDSgMKAwoDCgMDgwODA4MDgwODA4MDgwPDCgMKAwoDCgMKAwoDCgNJw0ODA4MDgwODA4MDgwODA4MKAwADQUAAA==' }, FAN_MEDIUM: { '18.0': 'JgA2AWYzDgwOJg4MDgwOJg8LDyUPDA4MDiYOJg4mDgwOJg4MDiYPJg4mDgwODA4MDgwOJg4mDgwOJw4MDiYOJg4MDgwODA4mDgwOJg8LDwwOJg4mDiYODA4mDiYODA4mDyYOJg4mDiYODA0NDiYODQ0MDgwODQ0NDScOJg0nDiYOJg4mDyYOJg4MDQ0NDQ0NDQ0NDQ0NDScODA4mDyYOJg4mDiYOJg4MDiYPCw8LDwwODA4MDgwOJg4MDiYOJg4MDyUPDA4MDgwOJg4MDgwOJg4MDiYPJQ8lDyYOJg4MDiYOJg4MDgwODA8LDwsPJg4MDgwOJg4mDiYOJg8lDyUPJg4mDiYODA4MDgwODA4MDgwPCw8MDiYOJg4mDyUOJg4mDyUPJQ8MDgwODA4MDgwODA4MDgwOJg4ADQUAAA==', '19.0': 'JgA2AWQ1DQ0MKAwODA4MKAwODCgNDQwODCkNJwwoDA4MKA0LDigNJwwpDA4MDgwODA4MKAwoDA4MKAwODCgNKAwODA4MDgwoDA4MKAwODA4MKAwpDCgMDgwoDCgMDgwoDCgMKA0oDCgMDgwODCgMDgwODA4MDgwoDA4NKAwoDCgMKAwoDCgMDgwoDQ4MDgwODA4MDgwODCgMDgwoDCgMKA0oDCgMKAwODCgMDgwODA4MDgwPCw8NJw0LDigMKA0LDycNDQ0LDw0OJw0LDw0NJw0LDycNJw0nDScOJw0NDScNJw0LDw0NCw8LDw0NJw0NDgwOJw0nDScNJw0nDScNJw4nDScNDQ0NDQ0NDQ0LDwsPDQ0MDicOJg4nDScNJw0nDScNJw0LEAwODQ0NDA4NDQ0LDg4NJwwADQUAAA==', '20.0': 'JgA2AWUzDgwOJg4MDgwOJw4MDiYODA4MDiYOJg4mDwsOJw4MDiYOJg8lDgwODA4MDgwOJg8mDgwOJg8LDiYPJQ4MDgwODA4mDwwOJg4MDgwOJg8lDiYPDQ0lDicODA4mDiYOJg8lDyUODA4MDicODA4MDgwODA4MDgwOJg4mDyUPJQ8mDyUOJg4mDwsODA4MDgwODA4MDicODA4mDiYOJg4mDiYOJg4MDyYODA4MDgwODA4MDgwOJg4MDiYOJw4MDiYODA4MDgwOJg4MDgwOJg4MDicOJg4mDyUOJg4MDiYOJg8LDgwPDA4MDgwOJg4MDgwOJg4mDiYOJw4mDiYPJQ4mDiYODA4MDgwPCw4MDwwODA4MDiYOJg4mDiYOJg8mDiYTIQ4MDgwODA4MDgwODQ0MDA4PJQ4ADQUAAA==', '21.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYPCw8LDyYOJg4mDgwOJg4MDiYOJg8lDwwODA4MDgwOJg4mDgwOJg8LDyUPJQ8MDgwODA4mDgwOJg4MDgwOJg8lDyYODA4mDiYODA4mDyUPJQ8mDiYODA4MDiYODA4MDgwODA4mDyUPDA4mDiYOJg4mDiYPCw8LDyUPDA4MDgwODA4MDiYODA4mDiYPJQ8lDyYOJg4MDiYODA4MDgwODA8LDwsPJg4MDiYOJg4MDiYODA4MDwsPJQ8MDgwOJg4MDiYOJg4mDyUPJQ8MDiYOJg4MDgwODA4MDgwOJg8LDwsPJQ8mDiYOJg4mDiYPJQ8lDyYODA4MDgwODA4MDgwODA4MDiYPJQ8mDiYOJg4mDiYOJg8LDwsPCw8MDgwODA4MDgwOJg4ADQUAAA==', '22.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYPCw8MDiYOJg4mDgwOJg4MDiYPJQ8mDgwODA4MDgwOJg4mDgwOJg8LDyUPJg4MDgwODA4mDgwOJg4MDwsPJQ8mDiYODA4mDiYODA4mDyUPJg4mDiYODA4MDiYODA4MDwsPCw8LDyYODA4mDiYOJg4mDiYPJQ8MDiYODA4MDgwODA4MDiYODA4mDyUPJQ8mDiYOJg4MDiYODA4MDwsPCw8LDwwOJg4MDiYOJg4MDiYPCw8LDwsPJg4MDgwOJg4MDiYOJg4mDyUPJg4MDiYOJg4MDgwODA4MDgwOJg8LDwwOJg4mDiYOJg4mDiYPJQ8mDiYODA4MDgwODA4MDgwODA4MDyUPJQ8mDiYOJg4mDiYPJQ8LDwwODA4MDgwODA4MDgwOJg4ADQUAAA==', '23.0': 'JgA2AWc0DQ0MKA0NDA4MKAwODCgMDgwODCkMKAwoDA4MKAwODCgMKAwoDQ4MDgwODA4MKAwoDA4MKAwODCgMKQwODA4MDgwoDA4MKAwODA4MKAwoDSgMDgwoDCgMDgwoDCgMKAwpDCgMDgwODCgMDgwODA4MDgwoDA4NDQ0oDCgMKAwoDCgMDgwoDCgNDgwODA4MDgwODCgMDgwoDCgMKAwpDCgMKAwODCgMDgwODA4MDwsPCw8MKAwODCgMKAwODCgMDgwODA4MKA0ODA4MKAwODCgMKAwoDCgMKA0ODCgMKAwODA4MDgwODA4MKAwODA4MKQwoDCgMKAwoDCgMKAwpDCgMDgwODA4MDgwODA4MDgwODCgMKAwpDCgMKAwoDCgMKAwODA4MDgwPDA4MDgwODA4MKAwADQUAAA==', '24.0': 'JgA2AWQ0DA4NKAwODA4MKAwODCgMDgwODCgMKQwoDA4MKAwODCgMKAwoDA4MDgwODQ4MKgooDA4MKAwODCgMKAwPDA4MDgwoDA4MKAwODA4MKAwoDCgNDgwoDCgMDgwoDCgMKAwoDCgNDgwODCgMDgwODA4MDgwODA4MDgwoDCgNKAwoDCgMKAwoDCgMDgwODA8MDgwODCgMDgwoDCgMKAwoDCkMKAwODCgMDgwODA4MDgwODA4MKAwODSgMKAwODCgMDgwODA4MKAwODA4MKQwODCgMKAwoDCgMKAwODCgNKAwODA4MDgwODA4MKAwODA4MKAwoDSgMKAwoDCgMKAwoDCgMDg0ODA4MDgwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4MDgwODQ4MKAwADQUAAA==', '25.0': 'JgA2AWYzDQ0MKA0NDA4MKA4MDCgMDgwODSgMKAwoDA4MKA4MDCgOJgwpDA4MDgwODA4MKA4mDgwMKAwODiYOJwwODA4MDgwoDA4MKAwODA4MKA4nDCgMDgwoDCgMDgwoDiYMKA4nDScMDgwODCgODAwODA4MDgwoDicNJwwODCgMKAwoDiYMDgwODgwOJw0NDA4NDQ4MDiYODA4mDiYOJg4nDScNJw4MDiYODA4MDgwODA4MDgwOJw0NDiYOJg4MDiYODA4MDgwOJw0NDQ0OJg4MDiYOJg4mDiYOJg4NDScOJg4MDgwODA4MDgwOJg8LDgwOJw4mDiYOJg4mDiYOJg8mDScPCw4MDgwODA4MDgwODA4MDiYPJQ8mDiYOJg4mDiYPJQ8LDgwODA8LDwwODA4MDgwOJg4ADQUAAA==', '26.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgMDgwODSgMKAwoDA4MKAwODCgMKAwpDA4MDgwODA4MKAwoDA4MKAwODCkMKAwODA4MDgwoDA4MKAwODA4MKA0oDCgMDgwoDCgMDgwoDCgMKQwoDCgMDgwODCgMDgwODA4MDgwODCkMKAwODCgMKAwoDCgMKAwODQ0NKAwODA4MDgwODCgMDgwoDCgMKQwoDCgMKAwODCgMDgwODA4NDQwODQ0NKAwODCgMKAwODCgMDgwODA4MKA0ODA4MKAwODCgMKAwoDCgMKA0ODCgMKA4MDA4MDgwODA4MKAwODgwOJw4mDCgMKA4mDiYOJg4nDScODAwODA4MDgwODA4ODAwODCgMKA4nDiYOJgwoDCgMKAwODA4MDg0ODA4MDgwODA4MKAwADQUAAA==', '27.0': 'JgA2AWQvEQ4NKAwODA4MKAwODCgMDgwODCkLKA0oDA4MKAwODCgMKAwoDA4MDg0ODA4MKAwoDA4MKAwODCgMKAwODQ4MDgwoDA4MKAwODA4MKAwoDCgNDgwoDCgMDgwoDCgMKAwoDCkMDgwODCgMDgwODA4MDgwoDA4MKAwPDCgMKAwoDCgMDgwoDA4MKA0NDQ4MDgwODCgMDgwoDCgMKQsoDScNKAwODCgMDgwODA4MDgwODA4MKAwODSgMKAwODCgMDgwODA4MKAwODA4MKQwODCgMKAwoDCgMKAwODCgNKAwODA4MDgwODA4MKAwODA4MKAwoDSgMKAwoDCgMKAwoDCgNDgwODA4MDgwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4MDgwODQ4MKAwADQUAAA==', '28.0': 'JgA2AWYyDwsOJw4MDgwOJg4MDiYODA4MDiYPJg4mDgwOJg8LDiYPJQ4mDwsODA4MDgwPJg4mDwsOJg4MDiYPJQ4MDgwPCw8mDgwOJg8LDgwOJg8lDyUPCw8mDiYPCw4mDiYPJQ4mDyUPCw8MDiYODA4MDgwODA4MDgwOJg8LDiYOJw4mDiYOJg4mDgwOJg4MDgwPDA4MDiYPCw4mDiYOJg4mDyUPJg4MDiYODA4MDgwODA4MDgwOJg4MDicOJg8LDiYODA4MDgwOJg8LDgwOJg8MDiYOJg8lDyUPJQ8LDiYOJw4MDgwODA4MDgwOJg8LDgwOJg8lDyYOJg8lDyUOJg4mDyUPCw4MDwwODA4MDgwODA4MDiYOJg8lDyUPJg4mDyUPJQ4MDgwODA4MDgwODA4MDgwPJg4ADQUAAA==', '29.0': 'JgA2AWM1DA4MKAwODA4MKQwODCgMDgwODCgMKAwoDA4MKA0ODCgMKAwoDA4MDgwODA4MKAwoDQ4MKAwODCgMKAwODA4MDgwoDA4MKQwODA4MKAwoDCgMDgwoDCgMDg0oDCgMKAwoDCgMDgwODCgMDg0ODA4MDgwoDCgMDgwODCgMKAwoDSgMDgwODCgMKAwODA4MDgwODCgMDwwoDCgMKAwoDCgMKAwODCgNDgwODA4MDgwODA4MKAwODCgMKAwODCkNDQwODA4MKAwODA4MKAwODCgMKQwoDCgNJw0LDigMKA0LDw0MDwwODA4MKAwODA4MKA0nDCgNJw4nDScNJw0nDScNCw4ODA4MDgwODA4MDwwODCgNJw0nDScNJw0nDicNJw0NDQsPCw8JEQsPDQ0NDQ0MKA0ADQUAAA==', '30.0': 'JgA2AWQ0DQ4MKAwODA4MKAwODCgMDgwODCgNKAwoDA4MKAwODCgMKAwoDA8MDgwODA4MKAwoDA4MKAwODCgNJw0ODA4MDgwoDA4MKAwODA4MKAwoDCgNDgwoDCgNDQwoDCgMKAwpDCgMDgwODCgMDgwODA4MDgwODCgMDgwODSgMKAwoDCgMKAwODCgMKA0ODA4MDgwODCgMDgwoDCgMKAwpDCgMKAwODCgMDgwODA4MDgwODA4MKQwODCgMKAwODCgMDgwODA4MKAwPDA4MKAwODCgMKAwoDCgMKAwODCkMKAwODA4MDgwODA4MKAwODA4MKAwpDCgMKAwoDCgMKAwoDCkMDgwODA4MDgwODA4MDgwODCgMKAwoDSgMKAwoDCgMKAwODA4MDgwODA4MDwwODA4MKAwADQUAAA==' }, FAN_HIGH: { '18.0': 'JgA2AWU0DgwNJw4MDQ0NJw0NDScODA4MDicNJw4mDgwNJw4MDScOJg4mDwwNDQ0NDQ0NJw4mDgwNJw0NDScOJw8LDQ0NDQ0nDQ0NJw4MDQ0NJw4mDyYODA0nDiYODA0nDiYOJw4mDScODA0NDScNDQ0NDQsPDQ0NDScOJw0nDScNJw4mDiYOJg4MDg0NDQ0NDQ0NCw8NDQsPDQ0nDScNJw4nDScNJw0nDScNDQ0NDQ0NDQ4LDw0NJw0NDScOJg4MDScODA0NDgwOJg8MDQ0NJw4MDScOJg4mDiYOJg8MDiYOJg4MDQ0NDQ0NDQ0OJg4MDgwOJw4mDiYOJg4mDiYOJg8mDiYODA4MDgwNDQ0NDgwNDQ0NDScPJQ8mDiYOJg4mDiYOJg4MDgwODA4NDQ0NDQ0NDQ0NJw4ADQUAAA==', '19.0': 'JgA2AWYyDgwOJw0NDgwOJg4MDiYODA4MDiYOJw0nDQ0NJw4MDiYOJg4mDgwODQ0NDQ0NJw4mDgwOJg4MDiYOJg4MDg0NDQ0nDgwOJg4MDgwOJg4mDicNDQ0nDiYODA4mDiYOJg4mDicNDQ0NDiYODA4MDgwODA4mDgwOJg4nDScOJg4mDiYODA4mDgwODA4NDQ0ODA4MDgwODA4mDiYOJg4mDicNJw0nDiYODA4MDgwODA4MDgwOJw0NDScOJg4MDiYODA4MDgwOJg4MDgwOJw0NDiYOJg4mDiYOJg4MDicNJw0NDgwODA4MDgwOJg4MDgwOJg4nDScNJw4mDiYOJg4mDicNDQ0NDQ0NDQ0NDgwODA4MDiYOJg4mDicNJw4mDiYOJg4MDA4ODA4MDA4ODQwODA4NJw4ADQUAAA==', '20.0': 'JgA2AWQ0DA4MKQwODA4MKAwODCgMDgwODCgMKAwpDA4MKAwODCgMKAwoDA4MDgwODA4NKAwoDA4MKAwODCgMKAwODA4NDgwoDA4MKAwODA4MKAwoDCgMDgwpDCgMDgwoDCgMKAwoDCgNDgwODCgMDgwODA4MDgwODA4MKAwoDCkMKAwoDCgMKAwoDA4MDgwODA4NDgwODA4MDgwoDCgMKAwoDCgMKQwoDCgMDgwODA4MDgwODA4MKAwODCkMKAwODCgMDgwODA4MKAwODA4MKA0ODCgMKAwoDCgMKAwODCgNKAwODA4MDgwODA4MKAwODA4MKAwoDCkMKAwoDCgMKAwoDCgNDgwODA4MDgwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4MDg0ODA4MKAwADQUAAA==', '21.0': 'JgA2AWYzDA4MKAwODA4MKAwODCgNDQ0ODCgMKAwoDA4MKAwODCgMKA0oDA4MDgwODA4MKAwoDA4MKAwODCkMKAwODA4MDgwoDA4MKAwODA4MKQwoDCgMDgwoDCgMDgwoDCgNKAwoDCgMDgwODCgMDgwODA4MDgwpDCgMDgwoDCgMKAwoDCgMDwwODCgMDgwODA4MDgwODA4MDgwoDCgNKAwoDCgMKAwoDCgMDgwODA4MDwwODA4MKAwODCgMKAwODCgMDgwPDA4MKAwODA4MKAwODCgMKAwoDSgMKAwODCgMKAwODA4MDgwODA4MKA0ODA4MKAwoDCgMKAwoDCgMKQwoDCgMDgwODA4MDgwODA4MDgwODCkMKAwoDCgMKAwoDCgMKA0ODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '22.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgNDQ0ODCgMKAwoDA4MKAwODCgMKQwoDA4MDgwODA4MKAwoDA4MKAwODSgMKAwODA4MDgwoDA4MKAwODA4MKQwoDCgMDgwoDCgMDgwoDCkMKAwoDCgMDgwODCgMDgwODA4MDgwPDCgMDgwoDCgMKAwoDCgMKQwODCgMDgwODA4MDgwODA4MDgwoDCgNKAwoDCgMKAwoDCgMDgwODQ0NDQ0ODA4MKAwODCgMKAwODCgMDgwODQ4MKAwODA4MKAwODCgMKAwoDSgMKAwODCgMKAwODA4MDgwODA4MKQwODA4MKAwoDCgMKAwoDCkMKAwoDCgMDgwODA4MDgwODA4MDgwODCkMKAwoDCgMKAwoDCgMKQwODA4MDgwODA4MDgwODwsMKAwADQUAAA==', '23.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgMDgwODCkMKAwoDA4MKAwODCgMKAwpDA4MDgwODA4MKAwoDA4MKAwODCgMKQwODA4MDgwoDA4MKAwODA4MKAwoDSgMDgwoDCgMDgwoDCgMKA0oDCgMDgwODCgMDgwODA4MDgwoDA4NDgwoDCgMKAwoDCgMDgwoDCkMDgwODA4MDgwODA4MDgwoDCgMKAwpDCgMKAwoDCgMDgwODA4MDgwODA4NKAwODCgMKAwODCgMDgwODA4MKAwPDA4MKAwODCgMKAwoDCgMKA0ODCgMKAwODA4MDgwODA4MKAwODA4MKQwoDCgMKAwoDCgMKAwoDSgMDgwODA4MDgwODA4MDgwODCgMKAwpDCgMKAwoDCgMKAwODA4MDgwODQ4MDgwODA4MKAwADQUAAA==', '24.0': 'JgA2AWUzDA4MKAwODQ4MKAwODCgMDgwODCgMKAwoDA4NKAwODCgMKA4mDA4ODA4MDA4MKQ0nDQ0MKA4MDCgMKA4MDgwODA4mDg0NJw4MDgwOJg4mDiYODA4mDicNDQ0nDiYOJg4mDiYODA4MDicNDQ4MDgwODA4MDgwODA4mDiYOJg4nDiYOJg4mDiYODA4MDgwODA4MDgwPDA4mDiYOJg8lDiYPJQ4nDiYODA4MDgwODA4MDgwOJg4MDiYOJw4MDiYPCw4MDgwOJg4MDgwOJg4MDiYPJg4mDiYPJQ4MDiYOJg4MDwsPDA4MDgwOJg4MDgwOJg8lDiYOJw0nDiYOJg4mDiYODA4MDgwODA4NDgwODA4MDiYPJQ8lDiYOJg4nDiYPJQ4MDgwODA4MDgwODA4MDgwOJw0ADQUAAA==', '25.0': 'JgA2AWYzDgwMKAwODgwOJg4NDCgNDQ0NDCgOJg4mDgwOJg4MDicMKAwoDA4MDgwODA4OJg4mDgwOJw0NDScMKA4MDgwODA4mDgwOJw0NDA4MKA0nDCgMDgwoDCgMDgwpDScMKAwoDCgMDgwODCgMDg0NDQ0NDgwoDCgMKAwODCgMKAwoDSgMDgwODA4MKAwODA4MDgwODA4MDgwpDCgMKAwoDCgMKAwoDCgMDwwODA4MDgwODA4MKAwODCgMKAwODCkMDgwODA4MKAwODA4MKAwODCgMKA0oDCgMKAwODCgMKAwODA4MDgwODQ0NKAwODA4MKAwoDCgMKAwoDicMKAwoDCgMDgwODA4MDg4MDgwODA4NDScNJw4mDiYOJg4mDiYOJw0NDgwODA4MDgwODA4MDgwOJg4ADQUAAA==', '26.0': 'JgA2AWUzDgwOJg4MDgwOJg4MDSgMDgwODCgMKAwoDA4MKAwODSgMKAwoDA4MDgwODA4MKAwoDA4MKQwODCgMKAwODA4MDgwoDA4MKQwODA4MKAwoDCgMDgwoDCgMDgwpDCgMKAwoDCgMDgwODCgMDgwODA8MDgwODCgMKA4MDCgOJg4mDicNJw0NDgwOJg4MDgwODA4MDgwODA4nDScOJg4mDiYOJg4mDiYODA4MDg0ODA4MDgwOJg4MDiYOJg4MDiYODA4NDQ0OJg4MDgwOJg4MDiYOJg4nDScOJg4MDiYOJg4MDgwODA4MDgwOJw0NDQ0NJw4mDiYOJg4mDicNJw0nDiYODAwODgwODA4MDgwODA4MDicNJw4mDiYOJg4mDiYOJw0NDQ0NDQ4MDgwODA4MDgwOJg4ADQUAAA==', '27.0': 'JgA2AWYzDgwOJg4MDgwOJw0NDiYODA4MDiYOJg4mDgwOJg4NDScOJg4mDgwODA4MDgwOJg4mDg0NJw4MDiYOJg4MDgwODA4mDgwOJw0NDQ0OJg4mDiYODA4mDiYODQ0nDiYOJg4mDiYODA4MDiYODA4NDgwODA4mDgwOJg4MDiYOJg4nDScNDQ4mDgwOJg4MDgwODA4MDgwODA4nDScNJw4mDiYMKA4mDCkNDQwODA4MDgwODA4MKAwODCgMKAwPDCgMDgwODA4MKAwODA4MKAwODCkMKAwoDCgMKAwODCgMKAwODA4NDgwODA4MKAwODA4MKAwoDCgMKA0oDCgMKAwoDCgMDgwODA4MDwsPDA4MDgwODCgMKAwoDCgMKAwoDSgMKAwODA4MDgwODA4MDgwODA4MKA0ADQUAAA==', '28.0': 'JgA2AWM1DA4MKAwODA4MKQwODCgMDgwODCgMKAwoDA4MKA0ODCgMKAwoDA4MDgwODA4MKAwpDA4MKAwODiYMKAwODA4MDgwoDA4NKAwODA4MKAwoDCgMDgwoDCgNDQ0oDCgMKAwoDCgMDgwODCgNDgwODA4MDgwODA4MKAwODCgMKAwoDSgMKAwoDA4MKAwODA4MDgwODA4MDg0oDCgMKAwoDCgMKAwoDSgMDgwODA4MDgwODA4MKAwODCgMKAwODSgMDgwODA4MKAwODA4MKAwODCgMKA0oDCgMKAwODCgMKAwODA4NDgwODA4MKAwODA4MKAwoDCgMKAwpDCgMKAwoDCgMDgwODA4MDgwODA4NDgwODCgMKAwoDCgMKAwoDSgMKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '29.0': 'JgA2AWYyDgwOJw0NDQ0OJg4MDiYODA4MDiYOJw0nDQ0OJg4MDiYOJg4mDgwODA4MDgwOJw0nDgwOJg4MDiYOJg4MDgwODA4nDQ0OJg4MDgwOJg4mDiYODA4nDScODA4mDiYOJg4mDiYODA4NDiYODA4MDgwODA4mDiYODA4MDicOJg4mDiYODA4MDiYOJg4MDgwODA8MDgwODA4mDiYOJg4mDiYOJw0nDiYODA4MDgwODA4MDgwOJg4MDicOJg4MDiYPCw4MDgwOJg4MDgwOJg4MDyYOJg4mDyUOJg8LDiYPJg0NDgwODA4MDgwOJg8LDgwOJg8lDicOJg4mDyUPJQ8lDyUODA4MDg0ODA4MDgwODA4MDiYOJg4mDyUPJg4mDiYPJQ4MDgwODA4MDgwODA4MDgwPJg8ADQUAAA==', '30.0': 'JgA2AWcyDgwOJg8LDgwOJg4MDiYODA4NDiYOJg4mDgwOJg4MDiYOJw0nDgwODA4MDgwOJg4mDwsOJg4MDicOJg4MDgwODA4mDgwOJg4MDgwOJw4mDiYODA4mDiYODA4mDicNJw4mDiYODA4MDiYODA4MDgwODA4MDyYODA4MDiYOJg8lDiYOJg4MDyYOJg4MDgwODA4MDgwODA4mDiYOJw4mDiYOJg4mDiYODA4MDgwODA4NDgwOJg8LDiYOJg4MDiYODA4MDgwPJg4MDgwOJg4MDiYOJg4mDyYOJg4MDiYOJg8LDgwODA4MDgwOJw0NDgwOJg8lDiYOJg4mDiYOJw4mDiYODA4MDgwODA4MDgwODA4MDicNJw4mDiYOJg4mDiYOJg4MDwwODA4MDgwODA4MDgwOJg4ADQUAAA==' }, FAN_HIGHEST: { '18.0': 'JgA2AWM1DA4MKAwODA4MKA0ODCgMDgwODCgMKAwoDA4MKAwODSgMKAwoDA4MDgwODA4MKAwoDA8MKAwODCgMKAwODA4MDgwoDA4MKQ0NDA4MKA4mDCgODAwoDCgODA4nDiYOJg4mDiYODAwODCgODA8MDA4MDgwODiYMKAwoDCgMKAwpDCgMKAwODA4MDgwODA4MDgwODCgNJw0ODCgMKAwoDCgMKAwODA4MKQwODA4MDgwODA4MKAwODCgMKAwODCkMDgwODA4MKAwODA4MKAwODCgMKA0oDCgMKAwODCgMKAwODA4MDg0NDQ4MKAwODA4MKAwoDCgMKAwoDSgMKAwoDCgMDgwODA4MDgwODA4MDg0ODCgMKAwoDCgMKAwoDCgNKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '19.0': 'JgA2AWQzDQ4NJwwODA4MKAwODCgMDgwODCgMKQwoDA4MKAwODCgMKAwoDA4NDgwODA4MKAwoDA4MKAwODCgMKAwPDA4MDgwoDA4MKAwODA4MKAwoDCgNDgwoDCgMDgwoDCgMKAwoDSgMDgwODCgMDgwODA4MDgwoDA4MKAwpDCgMKAwoDCgMDgwoDA4MDwwODA4MDgwODCgMKAwODCgMKAwoDSgMKAwODA4MKAwODA4MDgwODA4MKA0ODCgMKAwODCgMDgwODA4MKAwODQ4MKAwODyUMKAwoDCgMKAwODCkMKAwODA4MDgwODA4MKAwODA4MKA0oDCgMKAwoDCgMKAwoDSgMDgwODA4MDgwODA4MDgwODCgMKAwoDSgMKAwoDCgMKAwODA4MDgwODA4NDgwODA4MKAwADQUAAA==', '20.0': 'JgA2AWQ0DgwNJw4MDQ0OJg8MDScODA0NDScOJg4mDgwNJw4MDicOJg4mDgwODA0NDQ0NJw4mDwsPJg4MDScOJg4MDgwNDQ0nDgwOJg8MDQ0OJg4mDiYODA4mDiYPCw4nDiYOJg4mDiYODA4MDiYPCw8LDg0NDQ4MDwsNJw4mDiYOJg4mDyYOJg4mDgwODA0NDQ0NDQ0NDScPJQ8MDScOJg4mDiYOJg4MDgwOJg8MDQ0NDQ4MDQ0NJw4MDiYOJg4MDyUPDA4MDgwOJg4MDgwOJg4MDiYPJQ8mDiYOJg4MDiYOJg4MDgwODQ4MDgwOJg4MDgwOJg4mDiYOJg8lDyYOJg4mDiYODA4MDgwODA4MDgwODQ4MDScOJg4mDiYOJg4mDyUPJg4MDQ0NDQ0NDQ0NDQ0NDQ0NJw4ADQUAAA==', '21.0': 'JgA2AWQ0DgkRJw0LDw0MKA0LDycNDQ0LDycOJw0nDQ0NJw0LDycNJw0nDgwODQ0NDQ0NJw0nDQkRJw4MDScOJg4NDQ0NDQ0nDgwNJw0NDQ0NJw4mDiYPDA4mDiYODA0nDiYOJg4mDyYODA0NDScODA4MDgwNDQ0nDiYPDA0nDiYOJg4mDiYNDQ0NDScODA4NDQ0NCw8NDScNJw0NDScNJw4mDicNJw0NDQ0NJw0NDQ0NDQ0NDQsQJg4NDScNJw0NDScNDQ0LDw0NJw4MDg0NJw0NDScNJw4mDScOJg4LDycOJg0NDQ0NCw8NDQ0NJw0LDw0NJw4nDScNJw0nDScOJg0nDicNDQ0NDQ0NDQ0NDQ0NDQ0NDScNJw0nDicNJw0nDScNJw0LDw0NDQwODA8MDgwODA4MKA0ADQUAAA==', '22.0': 'JgA2AWM1DgwOJg4MDgwOJg4MDicODA4MDiYOJg4mDgwOJg4MDicNJw4mDgwODA4MDgwOJg4mDgwOJg8MDiYOJg4MDgwODA4mDgwOJg4MDgwPJg4mDiYODA4mDiYODA4mDicOJg4mDiYODA4MDiYODA4MDgwODA4NDiYODA4mDiYOJg4mDiYOJw4MDiYODA4MDgwODA0NDiYOJg8MDScOJg4mDiYOJg4MDgwOJg4MDQ4NDQ4MDgwMKA4MDiYOJg4MDiYODA8MDgwOJg4MDgwOJg4MDiYOJg4nDiYOJg4MDiYOJg4MDgwODA4MDgwOJw4MDgwOJg4mDiYOJg4mDicNJw4mDiYODA4MDgwODA4MDgwODAwODSgOJg4mDiYOJg4mDiYOJw4MDgwODA4MDgwODA4MDgwMKA4ADQUAAA==', '23.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgNDQ0ODCgMKAwoDA4MKAwODCgMKQwoDA4MDgwODA4MKAwoDA4MKAwODSgMKAwODA4MDgwoDA4MKAwODA4MKQwoDCgMDgwoDCgMDgwoDCgNKAwoDCgMDgwODCgMDgwODA4MDgwpDA4MDgwoDCgMKAwoDCgMDg0oDCgMDgwODA4MDgwODCgMKAwODCgNKAwoDiYMKA4MDA4OJgwODgwNDgwODA4MKAwODiYOJg4MDCgODAwODg0MKAwODA4MKAwODCgNJw4mDicOJg4MDiYMKAwODgwMDgwODA4MKA4MDQ4MKA4mDiYOJgwoDCgNKAwoDiYMDgwODA4ODAwODA4MDgwODCgOJw4mDiYOJgwoDiYOJg4MDgwNDgwODA4MDg4MDA4MKA4ADQUAAA==', '24.0': 'JgA2AWYzDgwOJg4MDgwOJw0NDScNDQ4MDiYOJg4mDgwOJg4NDCgNJw4mDgwODA4MDgwOJg4mDg0NJw0NDCgOJg4MDgwODA4mDgwOJwwODQ0MKA4mDiYMDg4mDicNDA0oDScMKA4mDiYMDgwODicNDA4NDQ0NDQ0NDQ0ODA4mDiYOJg4mDicNJwwoDiYODAwODgwODA4MDiYOJw0NDCgOJg4mDCgMKAwODA4NKAwODA4MDgwODA4MKAwODCgMKAwODCkMDgwODA4MKAwODA4MKAwODCgMKQwoDCgMKAwODCgMKAwODA4NDQ0ODA4MKAwODA4MKAwoDCgMKAwpDCgMKAwoDCgODAwODA4MDgwODQ0ODQ0NDCgOJg4mDiYNJw4mDicNJw4MDgwODA4MDgwODA4MDgwOJg4ADQUAAA==', '25.0': 'JgA2AWUzDgwOJg4MDgwOJw0NDiYODA4MDiYOJg4mDgwOJw0NDScNJw4mDgwODA4MDgwOJg4nDQ0NJw4MDiYOJgwODgwMDg4mDg0NJw0NDQ0OJg4mDiYODAwoDicNDQwoDScOJgwoDCgODAwODCgNDgwODQ0NDQwoDCgMKAwODCgMKQwoDCgMDgwODA4MKAwODA4MDgwODSgMKAwODCgMKAwoDCgMKAwODA8MKAwODA4MDgwODA4MKAwODCgMKA0ODCgMDgwODA4MKAwODA4MKAwODCgNKAwoDCgMKAwODCgMKAwODQ0NDgwODA4MKAwODA4MKAwoDCgMKQwoDCgMKAwoDCgMDg0NDA4MDg0ODA4MDgwODCgMKAwoDCgMKAwoDSgMKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '26.0': 'JgA2AWQ0DQ4MKAwODA4MKAwODCgMDgwODCgMKA0oDA4MKAwODCgMKAwoDA4MDg0ODA4MKAwoDA4MKAwODCgMKAwPDA4MDgwoDA4MKAwODA4MKAwoDCgNDgwoDCgMDgwoDCgMKAwoDSgMDgwODCgMDgwODA4MDgwODCgMKA0NDSgMKAwoDCgMKAwODA4MKAwPDA4MDgwODCgMKAwODCgMKAwoDSgMKAwODA4MKAwODA4MDgwODA4MKA0ODCgMKAwODCgMDgwODA4MKAwODA4NKAwODCgMKAwoDCgMKAwODCkMKAwODA4MDgwODA4MKAwODA4MKAwpDCgMKAwoDCgMKAwoDCgNDgwODA4MDgwODA4MDgwODCgMKAwoDCkMKAwoDCgMKAwODA4MDgwODA4MDwwODA4MKAwADQUAAA==', '27.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDicNDQ0NDScOJg4mDgwMKA4MDCgOJwwoDQ0NDQ4MDgwOJg4mDgwOJg4NDScNJw0NDgwODAwoDgwOJg4MDgwOJw0nDScNDQwoDiYODAwoDCgOJw0nDScODA4MDiYODAwODgwODA4nDQ0NJw0NDiYOJg4mDiYODA4nDQ0OJg4MDgwODA4MDiYOJg4MDiYOJw0nDiYMKA4MDA4OJgwODQ0NDQ0ODA4MKAwODCgMKAwODCgMDgwODQ0NKAwODA4MKAwODCgMKAwoDSgMKAwODCgMKAwODA4MDgwODA4MKA0ODA4MKAwoDCgMKAwoDCgNKAwoDCgMDgwODA4MDgwODA4MDgwODCkMKAwoDCgMKAwqCigMKA0NDQ4MDgwODA4MDgwODA4MKAwADQUAAA==', '28.0': 'JgA2AWYzDA4MKAwODA4MKAwODCgMDgwPDCgMKAwoDA4MKAwODCgMKA0oDA4MDgwODA4MKAwoDA4MKAwODCgNKAwODA4MDgwoDA4MKAwODA4MKQwoDCgMDgwoDCgMDgwoDCgMKA0oDCgMDgwODCgMDgwODA4MDgwODQ0NKAwODCgMKAwoDCgMKAwpDA0NKAwODA4MDgwODCgMKAwODCgNKAwoDCgMKAwODA4MKAwODA4MDg0NDQ4MKAwODCgMKAwODCgMDgwODA4NKAwODA4MKAwODCgMKAwoDCgMKQwODCgMKAwODA4MDgwODgwOJg4MDQ4MKAwoDScOJg4mDCgMKA4nDSYODQwODA4MDg4MDA4ODA4MDCgOJg4nDScNJw4mDCgMKAwODA4NDQ4NDA4MDgwODA4OJgwADQUAAA==', '29.0': 'JgA2AWUzDgwOJg4NDQ0NJw4MDScODA4MDiYOJg4nDQ0NJw0NDiYMKA4mDgwMDg4MDA4MKQ0nDA4MKAwODCgMKAwODA4MDg0oDA4MKAwODA4MKAwoDCgMDgwpDCgMDgwoDCgMKAwoDCgMDg0ODCgMDgwODA4MDgwoDCgMDgwODCkMKAwoDCgMDgwODCgMKAwODA4MDg0NDSgMKAwODCgMKAwoDCgNKAwODA4MKAwODA4MDgwODA4MKAwODCgNKAwODCgMDgwODA4MKAwODA4MKAwODSgMKAwoDCgMKAwODCgMKA0ODA4MDgwODA4MKAwODA4MKAwoDCkMKAwoDCgMKAwoDCgMDg0NDA8MDgwODA4MDgwODCgMKAwoDCgMKQwoDCgMKAwODA4MDgwODA4MDgwODA4NKAwADQUAAA==', '30.0': 'JgA2AWUzDgwOJg4NDQ0NJw4MDiYODA4MDiYOJg4mDg0NJw4MDiYOJg4mDgwODA4MDgwOJw4mDgwOJg4MDiYOJg4MDgwODA4nDgwOJg4MDgwOJg4mDiYODA4mDicNDQ4mDiYOJg4mDiYODA4MDicODA4MDgwODA4MDiYODA4MDiYOJg4nDiYOJg4MDiYOJg4MDgwODA4MDicOJg4MDiYOJg4mDiYOJw0NDQ0NJw4MDgwODA4MDgwOJg4MDiYOJw0NDiYODA4MDgwOJg4MDgwOJg4MDicOJg4mDiYOJg4MDiYOJg4MDg0NDQ4MDgwOJg4MDgwOJg4mDiYOJw0nDiYOJg4mDiYODA4MDgwODQ0NDgwODA4MDiYOJg4mDiYOJg4nDiYOJg4MDgwPCw4MDgwODA4MDgwOJw4ADQUAAA==' } }, HVAC_MODE_HEAT: { FAN_AUTO: { '18.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgNDgwODCgMKAwoDA4MKAwODCgNKAwoDA4MDgwODA4MKAwoDA4MKA0ODCgMKAwODA4MDgwoDA4MKQsODA4MKQwoDCgMKAwoDA4MDgwoDCgNKAwoDA4MDgwoDCgMDgwODA4MDg0NDSgMKAwoDCgMKAwoDCgNKAwODA4MDgwODA4MDgwODCgMKAwoDSgMKAwoDCgMKAwODA4MDgwODA4NDgwODA4MKAwODCgMKAwODCgMDg0ODA4MKAwODA4MKAwODCgMKAwoDSgMKAwODCgMKAwODA4MDgwODA4PJgwODA4MKAwoDCgMKAwoDCgNKAwoDCgMDgwODA4MDgwODA4MDgwODCkMKAwoDCgMKAwoDCgMKQwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '19.0': 'JgA2AWQ1DA4MKA0ODA4MKAwODCgMDgwODCgNJw0nDQ4MKAwODCgNJw0nDA4MDgwODA4MKA0oDQ0MKAwODCgNJwwODA4MDgwpDQsOKAwODA4MKAwoDCgNJwwpDQ0MDgwoDScMKA0nDA4MDgwoDSgNDQ0NDQ0NDQwoDA4MKA0nDScNKA0nDCgMDgwoDQ0MDgwODA4NDgsPDCgNJwwoDScNJw0nDScNKA0NDA4MDgwODA4MDgwODA4MKA0NDCgNKA0NDCgMDgwODA4NJwwODA4MKAwPDCgMKAwoDCgMKAwODCgNKAwODA4MDg0NDA4MKAwODA4MKAwoDScNKA0nDCgNJwwoDScMDA4ODQ4MDgwODQ0MDgwODCgNJwwoDScMKQwoDScMKAwODA4MDgwODA4MDgwODA4NKA0ADQUAAA==', '20.0': 'JgA2AWQ1DA4MKA0NDA8LKQ0NDCgMDgwODCgMKA0nDQ0NJw0ODScMKgsnDA8LDgwODA4MKAwpDA0NKA0LDigNJwwODA4NDQwoDA4NKAwODA4MKA0nDiYMKA0nDA4NDgwoDScNJwwoDA4MDgwoDCkMDgwODA4MDgwODA4MKA0nDScMKAwpDCgNJwwoDA4MDg0NDA4MDgwODCkMKA0nDCgMKAwoDCgNJw0ODA4MDgwODA4MDg0NDA4MKAwODCgNJw0ODCgNDQwODA0NKA0MDQ4MKAwMDygMKAwoDCgNJw0NDCgMKAwODQ0NDgwODA4MKAwODA4MKA0nDScNJw0oDCgMKA0nDScNDQwODA4MDg0NDQ0NDg0NDCgNJw0nDScMKAwoDSgNJw0NDA4MDgwODA4MDgwODA4MKA0ADQUAAA==', '21.0': 'JgA2AWQ1DA4NJw0NDA4MKA0NDCgMDgwODCkNJwwoDQ0MKAwODCgMKAwoDQ4MDgwODA4MKAwoDQ0MKA0NDCgNKAwODA4MDgwoDQ0MKA0NDA4MKA0oDScMKAwoDA4NDQwoDScNJw0oDA4MDQ4nDCgMDgwMDg4MDgwoDCkMDA4oDCgMKAwoDScMDg0NDCkNDQwODA4MDgwODCgMKAwoDScNKAwoDScNJwwODA4MDgwODA4MDgwODA8MKAwODCgMKAwODCgNDQ0NDA4MKQwODA4MKA0NDScNJwwoDCgMKA0ODCgMKAwNDQ4MDg0NDA4NJwwODQ4MKAwoDScNJwwoDCgMKAwoDSgNDQ0NDQ0MDgwODQ0MDgwODCgMKA0oDScMKA0nDScMKA0NDA4NDgwODA4MDgwODA4MKAwADQUAAA==', '22.0': 'JgA2AWM1DA4MKA0ODA4MKA0NDCgNDQwODCgMKAwoDQ4MKA0NDCgMKAwoDA4NDA0ODA4MKQwoDA4MKAwODCgMKA0NDA4MDg0oDA4MKAwODQ0MKA0nDCgNJw0oDQ0MDgwoDCgNJwwoDQoPDgwoDSgNDQwODA4MDgwODCgNDQ0nDCgNKA0nDScMKAwODCgMDgwODA4MDwwODCgNJw0nDCgMKAwoDCgNKAwODA4MDgwODA4MDgwODA4MKAwODCgNKAwODCgNDQwODA0NKAwODA4NJw0ODCgMKAwoDScNJwwODCgMKA0ODA4MDgwODA4MKAwODA4MKAwoDCgNKA0nDCgMKA0nDCgNDgwNDA8MDgwODA4MDgwODCgMKA0nDScNJw0oDCgNJwwODA4NDQwODA4MDgwMDw4MKA0ADQUAAA==', '23.0': 'JgA2AWM1DQ0MKAwODA8MKAwODCgNDQwPCygNJw0nDA4NKAwODCgMKAwoDA4MDgwODA4MKA0sCBIIKAwODCgMKAwODA4MDgwoDQ4MKA0NDA4MKAwoDCgNJw0nDQ0NDgwoDScMKA0nDQ0MDgwoDCkMDgwODQ0MDgwoDA4MDQ0oDScNJw0oDScNDQwoDCgMDg0NDA4MDgwODCkMKAwoDCgMKA0nDCgMKA0ODA0ODQwODA4MDgwODA4MKA0NDCgNJw0ODCgNDQwODA4MKA0NDA4MKAwODCkNJwwoDCgMKAwODCgMKA0NDQ0ODQwODA4MKAwODAwPJwwoDScNKAwoDCgMKA0nDCgMDgwODA4MDgwPDA4NDQwODCgNJw0nDScNJw0oDScNJw0NDA0ODgsODA4MDgwODA4MKA0ADQUAAA==', '24.0': 'JgA2AWQ1DQ0MKA0NDA4MKAwODCgNDgwODCgNJwwoDA4MKAwODCgMKA0oDA0NDg0NDA0NKAwoDA4MKA0NDCkMKAwODA4MDg0nDQ0MKAwODQ0MKA0oDCgMKAwoDQ0NDQwoDCgNKA0nDA4MDgwoDCgMDg0NDA4MDgwODA4NDgwoDCgMKAwoDCgMKAwpDCgMDgwODA4MDgwODCgMKAwoDCkMKAwoDScMKAwODA4MDgwODA4NDQ4NDA4MKAwNDSsJKA0NDCgMDgwPCw4NKAwODA4MKA0NDCgNJwwoDSgMKA0NDCgNJw0NDA4MDg0MDQ4NJw0ODA4MKAwoDScMKAwoDScMKA0oDScMDgwODA0ODQwODA4NDgsODCgNKAwoDCgNJw0nDSgLKAwODQ4MDgwODA4MDgwODA4MKAwADQUAAA==', '25.0': 'JgA2AWQ1DAkRKA0NDA4MKAwODCgMDgwODCgNKA0nDA4MKAwODCgNJw0nDQ4MDgwODQ0MKAwoDA4MKA0NDCgNJw0ODA4MDgwoDA4MKA0NDA4MKA0nDSgMKAwoDQ0MDgwoDScMKA0nDA8MDQ4nDScMDgwODA4MDg0nDCgNKAwODScMKAwoDScNDQwODA4NKAwODA4MDgwODCgNJw0nDCgNJw0oDCgNJwwODA4MDgwODA4NDQ0NDA4MKQwODCgNJw0NDCgNDQwODA4NJw0OCw8MKA0NDScMKA0nDCgNJw0MDigNJwwODA4MDgwODA4MKA0NDA4MKA0oDScNJwwoDScNJw0nDSgMDg0NDA4NDQwNDQ4MDgwODCgMKA0oDCgNJw0nDScMKAwODA4MDgwODQ4MDgwODA4MKA0ADQUAAA==', '26.0': 'JgA2AWQ0DA4NKA0NDA4MKA0NDCgNDQwODCgMKA0oDQsOKA0NDCgMKAwoDA4MDg0ODA4MKAwoDA4NJwwODScNJw0NDA8MDgwoDA4MKAwODA4MKA0nDScMKQwoDA4MDgwoDScMKAwoDA8MDgwoDCgNDQ0NDA4MDg0NDCgMKAwPDCgMKAwoDScMKAwODQ0NJw0NDQ4MDgwODCgMKA0nDCgNJwwoDSgMKAwODA0NDgwODQ0MDg0NDA4MKA0ODCgMKA0NDCgNDQwODA4MKAwODA8MKAwODCgNJwwoDCgMKA0NDCkMKA0NDA4MDg0NDA4MKAwODQ0MKAwpDScNJwwoDCgMKAwoDCgNDgwODA0ODQwODA4NDQwODCgMKA0nDCkMKA0nDScMKAwODA4MDgwODA4NDgwODA0OJw0ADQUAAA==', '27.0': 'JgA2AWQ1DA4MKAwNDg0MKAwODScMDg0ODCgMKAwoDQ0MKAwODCgMKA0oDA4MDg0NDA4MKA0nDQ0MKA0NDSgMKA0LDg4MDgwoDA4MKA0KEA4MKAwoDCgNJw0nDQ0MDgwoDCgNKAwoDQ0MDg0nDScNDgsODA4MDgwpDA4MKAwODCgMKAwoDCgNDQwpDA4MKAwNDQ4MDgwODCgNJwwoDCkNJwwoDCgMKAwODA4MDgwODA8MDQ0ODA0PJgwODScNJwwODCgMDgwODA8MKAwODQ0MKA0MDSgNJw0nDCkMKAwODCgMKAwODA4MDgwODA4MKA0ODA4MKA0nDCgMKAwoDCgNKAwoDCgMDg0NDA4MDg0NDA4MDgwODCgNKAwoDCgMKAwoDCgNJwwODA8MDgwODA4MDgwODA4MKA0ADQUAAA==', '28.0': 'JgA2AWY0DQ4MKAwODA4MKA0NDCgMDgwODCgMKA0oDA0OJwwODCgMKA0nDA4MDwwNDA8MKAwoDA4MKA0KDygMKAwODA8MDgwoDA0NKAwODA4MKAwoDCgNKAwoDQ0MDgwoDCgMKAwoDA4MDwwoDCgNDQwODA4MDgwODA4MKAwODCkMKAwoDScMKA0nDA4MKAwODQ0NDgwODCgNJwwoDScMKA0oDCgNJw0LDg4MDgwODA4MDgwPCw4NJw0ODCgMKA0NDCgOCQ8ODA4MKA0NDQ0MKQwODCgMKA0nDCgMKAwODScNKA0LDg4MDgwODA4MKAwODA4MKA0oDCgNJw0nDCgNJw0nDSgMDgwODA4MDgwODA4MDgwODCgNJw0nDCkMKAwoDScMKA0NDA4MDA4ODA4NDgwODA4MKAwADQUAAA==', '29.0': 'JgA2AWQ1DQ0NJwwODQ0MKAwODScNDgsODSgNJwwoDA4MKAwODCgMKAwoDQ4MDgwODA4MKAwoDA4MKAwODCkMKAwODA0NDgwoDA4MKAwODA4MKA0oDCgMKAwoDQ0MDgwoDCgMKA0oDQ0NDQ0nDScMDgwODA4MDg0oDCgMDQ0ODCgMKAwoDCgNDA0ODCkMKAwODA4NDQwODCgNJwwoDCgMKQwoDCgMKA0NDA4NDA0ODA4MDwsODQ4MKAwODCgNJwwODScMDg0NDQ0MKA0ODA4MKAwNDSgMKA0nDCgNKAwODCgMKA0NDQ0MDgwODA4NJwwODQ4MKAwoDScMKAwoDCgQJA0oDCgNCw4ODA4MDgwODQ0MDgwODCgMKQ0nDCgMKAwoDCgNJw0NDQ4MDgwODA4MDgwODA4MKAwADQUAAA==', '30.0': 'JgA2AWU0DA4MKAwODA4NKAwODSkLDQ0NDCgNJwwoDA4MKA0ODCgNJw0lDw0MDgwODA4MKAwoDQ4MKA0NDCgMKAwNDg0MDgwoDA4MKA4NDA4MKAwoDCgMKA0nDA4MDwwoDCgNJwwoDA4NDQwoDCgNDQ0NDQ0NDgwODCgMDgwODCgMKA0nDSgNJw0NDCgNJwwODA4MDgwODScNKAwoDScMKAwoDScMKA0NDQ0NDgwODQ0MDgwODQ0MKAwODCgMKAwPDCgNDQwODA4MKA0NDQ0MKAwODCgNKAwoDCgNJwwODCgMKAwODA8MDgwODA4MKAwLDw4MKAwoDCgMKAwpDCgMKA0nDCgMDgwODA4MDgwPCw8MDgwODCgMKA0nDCgNJw0nDSgMKA0NDA4MDgwODQ0MDgwODA4MKAwADQUAAA==' }, FAN_LOW: { '18.0': 'JgA2AWU0DQ0NJw0LDw0NJw0LDycODA4NDScNJw0nDQ0NJw0LDycNJw4nDQ0NCw8NDQ0NJw0nDgwNJw4MDiYOJw4MDQ0NDQ0nDgwNJw0NDQ0NJw4nDiYOJg4mDgwNDQ0nDiYOJw4mDQ0NDQ0nDiYODA0NDQ0NDQ4MDicOJg4mDiYOJg4mDiYOJg8MDQ0NDQ0NDQ0NDQ0NDQ0NJw0nDScPJQ4nDScOJg0nDQ0NDQ0LDwsQDA4MDgsPJw0NDScOJg4MDScNDQ0NDg8LJw4MDgwNJw4MDiYOJg4mDiYPJg4MDiYOJg4MDgwODA4MDgwOJg8LDwwOJg4mDiYOJg4mDiYPJQ8mDiYODA4MDgwODA4MDgwODA0NDiYPJg4mDiYOJg4mDiYOJg8LDwwODA4MDgwODA4MDgwOJg4ADQUAAA==', '19.0': 'JgA2AWYyDwwOJg4MDgwOJg4MDiYODBIIDyUPJg4mDgwOJg4MDiYOJg8lDwsPDA4MDgwOJg4mDgwOJg4MDiYPJQ8MDgwODA4mDgwOJg4MDgwOJg8lDyYOJg4mDgwODA4mDiYPJQ8lDwwODA4mDiYODA4MDgwODA4mDwwOJQ8mDiYOJg4mDiYODA4mDwsPDA4MDgwODA4MDgwOJg4mDiYPJQ8lDyYOJg4mDgwODA4MDgwODA8LDwsPJQ8MDiYOJg4MDiYPCw4MDwsPJQ8LDwwOJg4MDiYOJg4mDiYPJQ8LDyYOJg4MDgwODA4MDgwOJg8LDwsPJQ8mDiYOJg4mDiYOJg8lDyYODA4MDgwODA4MDgwODA4MDiYPJQ8mDiYOJg4mDiYOJg4MDwsPCw8MDgwODA4MDgwOJg4ADQUAAA==', '20.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYPCw8LDyYOJg4mDgwOJg4MDiYOJg8lDwwODA4MDgwOJg4mDgwOJg4MDyUPJg4MDgwODA4mDgwOJg4MDgwOJg8lDyYOJg4mDgwODA4mDiYPJQ8mDgwODA4mDiYODA4MDgwODA8LDwsPJg4mDiYOJg4mDiYOJg8lDwwODA4MDgwODA4MDgwOJg4mDiYPJQ8mDiYOJg4mDgwODA4MDgwODA8LDwsPJg4MDiYOJg4MDiYODA4MDgwPJQ8MDgwOJg4MDiYOJg4mDyUPJQ8MDiYOJg4MDgwODA4MDgwOJg8LDwsPJg4mDiYOJg4mDiYPJQ8lDyYODA4MDgwODA4MDgwODA4MDiYPJQ8mDiYOJg4mDiYOJg8LDwsPCw8MDgwODA4MDgwOJhEADQUAAA==', '21.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYPCw8MDiYOJg4mDgwOJg4MDiYPJQ8mDgwODA4MDgwOJg4mDgwOJg8LDyUPJg4MDgwODA4mDgwOJg8LDwsPJQ8mDiYOJg4mDgwODA4mDyUPJg4mDgwODA4mDiYODA4MDgwPCw8lDyYODA4mDiYOJg4mDiYPCw8MDiYODA4MDgwODA4MDgwOJg4mDyUPJQ8mDiYOJg4mDgwODA8LDwsPDA4MDgwOJg4MDiYOJg4MDiYPCw8LDwsPJg4MDgwOJg4MDiYOJg8lDyUPJg4MDiYOJg4MDgwODA4MDgwPJQ8LDwwOJg4mDiYOJg4mDyUPJg4mDiYODA4MDgwODA4MDgwODA4MDyUPJQ8mDiYOJg4mDiYPJQ8LDwsPDA4MDgwODA4MDgwOJg4ADQUAAA==', '22.0': 'JgA2AWYzDgwOJg8MDgwOJg4MDiYODA4MDiYOJg8lDwsPJg4MDiYOJg4mDgwODA4MDwsPJQ8mDgwOJg4MDiYOJg4MDgwODA4mDwwOJg4MDgwOJg4mDiYOJg8lDwwNDQ0nDiYOJg4mDgwNDQ0nDicODA0LDw0NDQ0NDScNCw8nDScOJw0nDScNJw0NDScNDQ0NDQ0NCw8MDQ8MKA0nDScNJw0nDScNJw4nDQ0NDQ0NDQ0NDQ0NDA4NJw0LDycOJg4LDycNDQ0LDw0NJw0LDwkRJw0NDiYOJw0nDScNJw0NDScNJw4MDgwODQ0LDw0NJw0LDw0NJw0nDScOJw0nDScNJw0nDScNDQ0NDQ0NDQ4LDw0NDQ0NDScNJw0nDScNJw4nDScNJw0NDQ0NDQ0NDQ0MDgwODA4MKA4ADQUAAA==', '23.0': 'JgA2AWUzDgwOJg4MDgwOJg8LDyUPDA4MDiYOJg4mDgwOJg8LDyUPJQ8mDgwODA4MDgwOJg4mDwsPJQ8MDiYOJg4MDgwODA4mDgwOJg8LDwsPJQ8mDiYOJg4mDgwPCw8lDyUPJg4mDgwODA4mDiYODA8LDwsPDA4mDgwODA4mDiYOJg4mDyUPCw8mDiYODA4MDgwODA4MDgwOJg8lDyUPJg4mDiYOJg4mDgwPCw8LDwsPDA4MDgwOJg4MDiYOJg4MDyUPCw8LDwwOJg4MDgwOJg4MDiYOJg8lDyYOJg4MDiYOJg4MDgwODA4MDwsPJQ8MDgwOJg4mDiYOJg4mDyUPJg4mDiYODA4MDgwODA4MDgwODA8LDyUPJg4mDiYOJg4mDiYPJQ8MDgwODA4MDgwODA4MDgwOJg4ADQUAAA==', '24.0': 'JgA2AWQ1DQkQKA0LDg8MKAwODCgNDQwODCgMKA0nDQ0MKQ0LDigMKAwoDQ0MDgwODA4MKAwpDQsOKA0NDCgMKAwODA4MDgwoDA8MKAwODA4MKAwoDScMKAwoDQwODgwoDCgMKAwoDA0NDgwoDCgNDgwODA4MDgwODA4MDgwoDCgMKAwpDCgMKAwoDCgMDgwODA4MDgwODA4MKQwoDCgMKAwoDCgMKA0oDQ0MDgwODA4MDgwODA4MKAwODCgNJw4NDCgNCw4NDQ4MKA0LDwkRJw0NDiYOJw0nDScNJw4MDScOJg4MDgwODQ0NDQ0NJw4MDgwNJw4mDiYOJg8mDiYOJg4mDiYODA4MDgwODA8MDQ0NDQ0NDScOJg4mDScOJg4nDiYNJw0NDQsPDQ0NDQsPDQ0NDQ0NJw4ADQUAAA==', '25.0': 'JgA2AWgyDwwOJg4MDgwVHw4MDiYODA4MDyUPJg4mDgwOJg4MDiYOJg8mDgwODA4MEQkOJg4mDgwOJg4MDiYPJQ8MDgwODA4mDgwOJg4MDgwOJg8lDyYOJg4mDgwODA4mDiYOJg8lDwwODA4mDiYODA4MDgwODA4mDyUPJg4MDiYOJg4mDiYODA4MDwsPJg4MDgwODA4MDgwOJg4mDiYOJg8lDyYOJg4mDgwODA4MDwwNDA4MDwsPJQ8MDiYOJg4MDiYODA4MDgwOJg8LDwwOJg4MDiYOJg4mDiYPJQ8LDyYOJg4MDgwODA4MDgwOJg4MDwsPJQ8mDiYOJg4mDiYOJg8lDyUPDA4MDgwODA4MDgwODA4MDiYOJg8lDyYOJg4mDiYOJg4MDgwODA4MDwsPDA4MDgwOJg4ADQUAAA==', '26.0': 'JgA2AWYwEQsPJQ8MDgwOJg4MDiYODA4MDiYOJg8lDwwOJg4MDiYOJg4mDgwODA8LDwsPJg4mDgwOJg4MDiYOJg4MDwsPCw8mDgwOJg4MDgwOJg4mDiYPJQ8mDgwODA4mDiYOJg4mDwsPCw8lDyYODA4MDgwODA4MDiYOJg8LDyUPJg4mDiYOJg4MDgwOJg4MDwsPCw8LDwwOJg4mDiYOJg4mDyUPJg4mDgwODA4MDgwODA4MDgwOJg8LDyUPJg4MDiYODA4MDgwOJg4MDgwPJQ8LDyYOJg4mDiYOJg4MDiYPJg4MDgwODA4MDgwOJg4MDgwOJg8lDyUPJg4mDiYOJg4mDiYPCw8LDwwODA4MDgwODA4MDiYOJg4mDyUPJQ8mDiYOJg4MDgwODA4MDgwODA8LDwsPJg4ADQUAAA==', '27.0': 'JgA2AWUzDQ0NJw4NDQ0NJw0NDScNCw8NDScNJw4mDggSJw0LDycNJw4mDQ0NDQ0NDgwOJw0nDQ0NJw0NDScNJw0NDQ0NDA8nDQ0NJw0LDw0NJw0nDScNJw4nDQ0NDQ0nDScNJw0nDQsPDQ0nDicNCw8NDQ0NCRAoDQsOKA0NDCgOJwwoDScMDg0nDQsOKA0MDQ4MDgwPDA4MKAwoDCgMKAwoDCgMKQwoDQ0MDgwODA4MDgwODA4MKAwODCgOJw0LDycNDQ0LDg4MKA0NDQ0MKA4MDicNJw0nDScNJw0NDScNJw4NDQ0NCw8NDQ0NJw0NDQ0NJw0nDiYOJw4mDiYOJg0nDScNDQ4MDg0NDQ0LDw0NDQ0NDScNJw0nDiYOJg8mDScOJg4MDQ0NDQ0NDQ0NDQ0NDgsPJw0ADQUAAA==', '28.0': 'JgA2AWYzDA4MKAwODA4OJg0ODCgNDQwODCgOJg4mDA4MKA0NDSgNJwwoDA4MDgwODA4OJgwoDA4NKAwODCgMKAwODA4MDgwoDA4MKQwODA4MKAwoDiYMKAwoDA4NDQ0oDCgMKAwoDA4MDgwoDCgMDg0ODA4MDgwODA4MKAwODCgMKAwoDCkMKAwoDA4MKAwODA4MDgwODA4MKQwoDCgMKAwoDCgMKAwoDQ0NDgwODA4MDgwODA4MKAwODCgMKAwODCkMDgwODA4MKAwODA4MKAwODCgMKQwoDCgMKAwODCgMKAwODA4MDgwPDA4MKAwODA4MKAwoDCgMKA0oDCgMKAwoDCgMDgwODA4MDgwODA4NDgwODCgMKAwoDCgMKAwoDCkMKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '29.0': 'JgA2AWQ0DA4NKAwODA4MKAwODCgMDgwODCgMKA0oDA4MKAwODCgMKAwoDA4MDgwPDA4MKAwoDA4MKAwODCgMKAwODQ4MDgwoDA4MKAwODA4MKAwoDCgNKAwoDA4MDgwoDCgMKAwoDA4NDgwoDCgMDgwODA4MDgwoDCgMDgwPDCgMKAwoDCgMDgwODCgMKAwODA8MDgwODA4MKAwoDCgMKAwoDCkMKAwoDA4MDgwODA4MDgwODA4MKAwODSgMKAwODCgMDgwODA4MKAwODA4MKQwODCgMKAwoDCgMKAwODCgNKAwODA4MDgwODA4MKAwODA4MKAwpDCgMKAwoDCgMKAwoDCkMDQ0ODA4MDgwODA4MDgwODCgMKAwoDCkMKAwoDCgMKAwODA4MDgwODA4MDg0ODA4MKAwADQUAAA==', '30.0': 'JgA2AWYyDwsPJg4MDgwOJg4MDiYODA4MDiYPJQ8mDgwOJg4MDiYOJg4mDgwODA8LDwwOJg4pCwwOJg4MDiYOJg4MDwwODA4mDgwOJg4MDgwOJg4mDiYPJQ8mDgwNDQ0nDiYOJg4mDgwODA4nDScNDQ0LDw0NDQ0NDScNCw8NDSgNJw0nDScNJw0NDScNJw0LEAwOCw8NDQ0MKA0nDScNJw0nDScOJw0nDQkRDQwODA4MDgwODQ0MKA0LDikNJw0NDScNCw8NDQ0NJw0NDQwOJw4NDScNJw0nDScOJg4MDiYOJw4MDQ0NDQ0NDQ0NJw4MDgwOJg4mDyYOJg4mDiYOJg4mDiYPDA0NDQ0NDQ0NDQ0NDQ0NDScOJg4mDiYPJg4mDiYOJg0NDQ0NDQ0NDQwPChANDQ0NJw0ADQUAAA==' }, FAN_MEDIUM: { '18.0': 'JgA2AWUzDgwOJg4MDwsPJQ8MDiYODA4MDiYOJg4mDgwPJQ8LDyYOJg4mDgwODA4MDgwOJg8lDwsPJg4MDiYOJg4MDgwODA4mDwsPJQ8MDgwOJg4mDiYOJg4mDwsPCw8mDiYOJg4mDgwODA4mDiYPCw8LDwwODA4MDiYOJg4mDiYPJQ8lDyYOJg4MDgwODA4MDgwODA4MDyUPCw8mDiYOJg4mDiYOJg8LDyUPDA4MDgwODA4MDgwOJg4MDiYPJQ8LDyYODA4MDgwOJg4MDgwOJg4MDiYPJQ8mDiYOJg4MDiYOJg4MDwsPCw8LDwwOJg4MDgwOJg4mDiYPJQ8lDyYOJg4mDiYODA4MDgwODA8LDwsPCw8MDiYOJg4mDiYOJg4mDyUPJg4MDgwODA4MDgwODA4MDgwOJg8ADQUAAA==', '19.0': 'JgA2AWYzDgwOJg4MDgwOJg4PCyYODA4MDicNJw4mDgwOJg4MDiYOJg4mDgwODQ0NDQ0OJg4mDgwOJg4MDiYOJw0NDQ0ODA4mDgwOJg4MDgwOJg4mDicOJg4mDgwODA4mDiYOJg4nDQ0ODA4mDiYODA4MDgwODA4mDgwOJw4mDiYPJQ4mDiYODA4mDwsPDA4MDgwODA4MDiYODA4mDiYOJg8mDiYPJQ8LDiYODA4MDgwODA4MDgwOJw4MDiYPJQ8LDiYPCw4MDgwOJg4MDwwOJg4MDiYPJQ4mDyUOJw4LDyYOJg4MDgwODA4MDgwOJg4MDgwOJw4mDiYPJQ8lDiYOJg8lDicODA4MDgwODA4MDgwODA4MDiYOJg4nDiYPJQ4mDiYOJg8LDgwODA4MDwwODA4MDgwOJg4ADQUAAA==', '20.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDicODA4MDiYOJg4mDgwOJg4MDiYPJg4mDgwODA4MDgwOJg4mDgwOJg8LDSgOJg4MDgwMDg4mDgwMKA0NDg0MKAwoDCgMKAwoDgwMDgwoDSgMKAwoDA4MDgwoDCgMDgwODA4NDgwODA4MKAwoDCgMKA4mDCgOJw4mDgwODAwODA4ODA4MDCgODA4nDScOJg4mDiYOJg4MECQODA8LDg0ODA4MDgwOJg4MDiYOJg4MDicNDA8MDgwMKA4MDgwOJg4MDiYOJg4nDScOJg4MDiYOJg4MDgwODAwODgwOJw4MDA4MKA4mDiYOJg4mDicOJg4mDiYODA4MDgwODAwODA4ODA0ODCgOJg4mDiYOJgwoDiYOJw4MDgwODA4MDA4MDg4MDA4NJw4ADQUAAA==', '21.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgMDg0ODCgMKAwoDA4MKAwODCgMKQwoDA4MDgwODA4MKAwoDA4MKAwODSgMKAwODA4MDgwoDA4MKAwODA4MKA0oDCgMKAwoDA4MDgwoDCgNKAwoDA4MDgwoDCgMDgwODA4MDgwpDCgMDgwoDCgMKAwoDCgMDg0ODCgMDgwODA4MDgwODCgMDgwoDCgNKAwoDCgMKAwODCgMDgwODA4NDQ0ODA4MKAwODCgMKAwODCgMDgwODQ4MKAwODA4MKAwODCgMKAwoDCkMKAwODCgMKAwODA4MDgwODA4MKA0ODA4MKAwoDCgMKAwoDCgMKQwoDCgMDgwODA4MDgwODA4MDgwODCgNKAwoDCgMKAwoDCgMKAwODQ4MDgwODA4MDgwODA4MKAwADQUAAA==', '22.0': 'JgA2AWUzDgwOJg4MDg0OJg4MDiYODA4MDiYOJg4mDgwPJg4MDiYOJg4mDgwODA4MDgwOJw4mDgwOJg4MDiYOJg4MDgwODA4nDgwOJg4MDgwOJg4mDiYOJg4nDgwODA4mDiYOJg4mDgwODA4mDicODA4MDgwODA4MDiYODA4mDiYOJw4mDiYOJg4MDiYODA4MDgwODA4MDicODA4mDiYOJg4mDiYOJg8LDyYODA4MDgwODA4MDgwOJg4MDiYOJw4MDiYODA4MDgwOJg8LDgwOJg4MDicOJg8lDiYOJg8LDiYOJg8LDwsPDA4MDgwOJg4MDgwOJg4mDyUPJg4mDiYOJg4mDyUODA4MDgwODA4NDgwODA4MDiYOJg4mDiYOJg4nDiYOJg4MDgwODA4MDgwODA4MDgwOJw4ADQUAAA==', '23.0': 'JgA2AWQ0DQ4MKAwODA4MKAwODCgMDgwODCkMKAwoDA4MKAwODCgMKAwoDQ0NDgwODA4MKAwoDA4MKAwODCgMKA0NDQ4MDgwoDA4MKAwODA4MKAwoDSgMKAwoDA4MDgwoDCgMKAwpDA4MDgwoDCgMDgwODA4MDgwoDA4MDg0oDCgMKAwoDCgMDgwoDCgNDgwODA4MDgwODCgMDgwoDCgMKAwpDCgMKAwODCgMDgwODA4MDgwODA4MKQwODCgMKAwODCgMDgwODA4MKAwODQ4MKAwODCgMKAwoDCgMKAwODSgMKAwODA4MDgwODA4MKAwODA4MKQwoDCgMKAwoDCgMKAwoDSgMDgwODA4MDgwODA4MDgwODCgMKAwoDSgMKAwoDCgMKAwODA4MDgwODQ0NDgwODA4MKAwADQUAAA==', '24.0': 'JgA2AWQ1DA4MKAwODQ0NKAwODCgMDgwODCgMKAwoDQ4MKAwODCgMKAwoDA4MDgwODA4MKA0oDA4MKAwODCgMKAwODA4MDgwoDQ0NKAwODA4MKAwoDCgMKAwpDA4MDgwoDCgMKAwoDA4MDgwoDCkMDgwODA4MDgwODA4MDgwoDCgMKAwpDCgMKAwoDCgMDgwODA4MDgwODCkMDgwoDCgMKAwoDCgMKA0NDSgMDgwODA4MDgwODA4MKAwODCgMKQwODCgMDgwODA4MKAwODA4MKAwODCkMKAwoDCgMKAwODCgMKAwODA4NDgwODA4MKAwODA4MKAwoDCgMKA0oDCgMKAwoDCgMDgwODA4MDg0ODA4MDgwODCgMKAwoDCgMKAwpDCgMKAwODA4MDgwODA4MDgwODA4MKQwADQUAAA==', '25.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCkMDgwODCgMKAwoDA4MKAwODCkMKAwoDA4MDgwODA4MKAwoDA4MKA0ODCgMKAwODA4MDgwoDA4MKAwODA4NKAwoDCgMKAwoDA4MDgwoDSgMKAwoDA4MDgwoDCgMDgwODA4NDgwoDCgMKAwODCgMKAwoDSgMDgwODA4MKAwODA4MDgwODCgMDgwoDSgMKAwoDCgMKAwODCgMDg0NDQ4MDgwODA4MKAwODCgMKAwODCgNDgwODA4MKAwODA4MKAwODCgMKAwoDSgMKAwODCgMKAwODA4MDgwODA4NKAwODA4MKAwoDCgMKAwoDCkMKAwoDCgMDgwODA4MDgwODA4MDgwPDCgMKAwoDCgMKAwoDCgMKQwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '26.0': 'JgA2AWQ0DQ4MKAwODA4MKAwODCgMDgwODCgNKAwoDA4MKAwODCgMKAwoDA4MDg0ODA4MKAwoDA4MKAwODCgMKAwPDA4MDgwoDA4MKAwODA4MKAwoDCkMKAwoDA4MDgwoDCgMKAwoDQ4MDgwoDCgMDgwODA4MDgwODCgMKQwODCgMKAwoDCgMKAwODA4MKQwODA4MDgwODCgMDgwoDCgMKAwpDCgMKAwODCgMDgwODA4MDgwODA4MKQwODCgMKAwODCgMDgwODA4MKA0NDQ4MKAwODCgMKAwoDCgMKAwODSgMKAwODA4MDgwODA4MKAwODA4MKQwoDCgMKAwoDCgMKAwoDSgMDgwODA4MDgwODA4MDgwODCgMKAwpDCgMKAwoDCgMKAwODA4MDgwODQ4MDgwODA4MKAwADQUAAA==', '27.0': 'JgA2AWgxDgwOJg4MDg0OJg4MDiYODA4MDiYOJg4mDgwOJw4MDiYOJg4mDgwODA4MDgwOJw0nDQ0OJg4MDiYOJg4MDgwODA4nDQ0NJw4MDgwOJg4mDiYOJg4mDg0NDQ0nDiYOJg4mDgwODA4mDicNDQ4MDQ0ODA4mDgwOJg4MDiYOJw0nDScODA4mDgwOJg4MDgwODA4NDScODA4mDiYOJg4mDiYOJg4NDScODA4MDgwODA4MDgwOJg4MDiYOJw0NDiYODA4MDgwOJg4MDgwOJg4NDScNJw0nDiYOJg4MDiYOJw0NDQ0MDgwODQ0OJgwODgwOJg4mDiYOJw0nDScOJgwoDiYMDgwODA8NDQwODQ0NDQ0NDiYOJgwoDScNJw4nDScOJg4MDgwMDg4MDgwODA4MDgwOJw0ADQUAAA==', '28.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCgMDg0ODCgMKAwoDA4MKAwODCgMKA0oDA4MDgwODA4MKAwoDA4MKAwPDCgMKAwODA4MDgwoDA4MKAwODA4MKQwoDCgMKAwoDA4MDgwoDCgNKAwoDA4MDgwoDCgMDgwODA4MDgwODQ0NKAwODCgMKAwoDCgMKAwpDA4MKAwODA4MDgwODCgMDgwoDCgNKAwoDCgMKAwODCgMDgwODA4MDg0NDQ4MKAwODCgMKAwODCgMDgwODA8MKAwODA4MKAwODCgMKAwoDCgNKAwODCgMKAwODA4MDgwODA4MKA0NDQ0NKAwoDCgMKAwoDCgMKQwoDCgMDgwODA4MDgwODA4MDgwODCgNKAwoDCgMKAwoDCgMKAwODQ0NDgwODA4MDgwODA4MKAwADQUAAA==', '29.0': 'JgA2AWkyDwsOJg4MDgwOJg4MDiYPCw4MDicOJg8lDwsOJg4MDiYOJg4nDgwODA4MDgwOJg4mDgwOJg4MDicOJg4MDgwODA4mDgwOJg4MDgwMKQ4mDiYMKAwoDA4MDgwoDCgMKQwoDA4MDgwoDCgMDgwODA4MDgwoDSgMDgwODCgMKAwoDCgMDgwODCkMKAwODA4MDgwODCgMDgwpCygNKAwoDCgMKAwODCgMDgwODA4MDgwODQ4MKAwODCgNJwwODCgMDgwODA8MKAwODA4MKAwODCgMKAwoDCgNKAwODCgMKAwODA4MDgwODA4MKAwODQ4MKAwoDCgMKAwoDCgMKQwoDCgMDgwODA4MDgwODA4MDgwODCgNKAwoDCgMKAwoDCgMKAwPDA0NDgwODA4MDgwODA4MKAwADQUAAA==', '30.0': 'JgA2AWU1DA4MKAwODA4MKA0ODCgMDgwODCgMKAwoDA4MKA0ODCgMKAwoDA4MDgwODA4MKAwpDA4MKAwODCgMKAwODA4MDgwoDA8MKAwODA4MKAwoDCgMKAwoDA8MDQ0oDCgMKAwoDA4MDgwoDCgMDwwODA4MDgwODCgMDgwODCgMKA0oDCgMKAwODCgMKAwODA4MDgwODScNDgwoDCgMKAwoDCgMKAwODCgNDgwODA4MDgwODA4MKAwODCgMKA0NDSgMDgwODA4MKA4MDA4MKAwODCgMKQwoDCgMKAwODCgMKAwODA4NDQ0ODA4MKAwODA4MKA4mDCgOJg0oDScNJwwoDCgMDgwODA4MDg4MDA8NDQwODScOJg4mDiYOJg4nDScNJw0NDgwODA4MDgwODA4MDgwOJg4ADQUAAA==' }, FAN_HIGH: { '18.0': 'JgA2AWQ1DQkQKA0NDA4MKA0NDScNDQ0MDigNJw0nDQ0NJw0NDCgNJw4mDgsPCg8ODQ0MKA0nDQ0NJw0LDycOJw0NDQ0NDQ0nDQ0NJw0NDQ0NJw4mDicNJw0nDQsPDQ0nDScNJw4nDQ0NCw8nDScNDQ0NDQ0NCw8NDCgOJw0nDScNJw0nDScNJw4KEA0NDQwODQ0MDg0NDA4MDgwoDScNJw4mDicNJw0nDScNDQ0NDQ0NDQ0NDg0NJw0NDScNJw0NDScNDQ0NDQ0OJw0NDQsPJw0NDScNJw0nDiYOJg8MDScNJw4MDQ0NDQ0NDQ0NJw0NDgwOJw0nDScNJw4mDiYNJw4mDyYNCw8NDQ0NDQ0NDQ0NDQ0NDScNJw4nDScNJw0nDScNJw0NDgwODA4NDQ0NDQ0NDQsPJw0ADQUAAA==', '19.0': 'JgA2AWQ0DA4NKAwODA4MKAwODCgMDgwODCgMKA0oDA4MKAwODCgMKAwoDA4NDQ0NDQ4MKAwoDA4MKAwODCgMKAwODQ0NDgwoDA4MKAwODA4MKAwoDCgMKQwoDA4MDgwoDCgMKAwoDQ0MDwwoDCgMDgwODA4MDgwoDA4MKAwoDSgMKAwoDCgMDgwoDA4MDgwODQ0NDgwODA4MDgwoDCgMKAwoDCgNKAwoDCgMDgwODA4MDgwODA4MKAwODSgMKAwODCgMDgwODA4MKAwODQ0NKAwODCgMKAwoDCgMKAwODCkMKAwODA4MDgwODA4MKAwODA4MKAwoDSgMKAwoDCgMKAwoEiMMDgwODA4MDgwODA4MDgwODCgMKAwoDCkMKAwoDCgMKAwODA4MDgwODA4MDwwNDQ4MKAwADQUAAA==', '20.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYODA4MDicOJg4mDgwOJg4MDiYOJg4nDgwODA4MDgwOJg4mDgwOJg4MDiYOJw4MDgwODA4mDgwOJg4MDgwOJg4nDiYOJg4mDgwODA4mDiYOJw0nDgwODA4mDiYODA4MDgwODA4MDgwOJw4mDiYOJg4mDiYOJg4mDwwODA4MDgwODA4MDgwODA4mDiYOJw4mDiYOJg4mDiYODA4MDgwODA4MDgwPJg4MDiYOJg4MDiYODA4MDgwOJw4MDgwOJg4MDiYOJg4mDiYPJg4MDiYOJg4MDgwODA4MDgwOJg4MDgwPJg4mDiYOJg4mDiYOJg4nDiYODA4MDgwMDg4MDgwODA4MDiYOJw4mDiYOJg4mDiYOJg4MDgwODA4NDgwODA4MDgwMKA4ADQUAAA==', '21.0': 'JgA2AWYzDA4MKAwODA4MKAwODCgMDgwODSgMKAwoDA4MKAwODCgMKA0oDA4MDgwODA4MKAwoDA4MKAwODCkMKAwODA4MDgwoDA4MKAwODA4MKA0oDCgMKAwoDA4MDgwoDCgMKQwoDA4MDgwoDCgMDgwODA4MDg0nDSgMDgwoDCgMKAwoDCgMDg0ODCgMDgwODA4MDgwODA4MDgwoDCgMKQwoDCgMKAwoDCgMDgwODA4MDwwODA4MKAwODCgMKAwODCgMDgwODA8MKAwODA4MKAwODCgMKAwoDCgNKAwODCgMKAwODA4MDgwODA4MKA0NDQ4MKAwoDCgMKAwoDCgMKQwoDCgMDgwODA4MDgwODA4MDgwODCgNKAwoDCgMKAwoDCgMKAwODQ0NDg0NDQ0NDQwODgwOJg4ADQUAAA==', '22.0': 'JgA2AWcyDgwOJw4MDgwOJg4MDiYODA4MDiYOJw0nDgwOJhAKDiYOJg4mDwsODA4NDgwOJg4mDwsOJg4MDiYOJg4MDgwPDA4mDwsOJg8LDgwOJg4mDyYNJw4mDwsODA4mDyUPJQ4nDgsPDA4mDyUPCw4MDgwODA4MDiYODA4mDyYPJQ4mDicNJw0MDiYODA4NDgwODA4MDgwODA4mDyUPJQ8lDyYOJg4mDiYODA4MDgwODA4MDgwOJg4NDiYOJg4MDiYODA4MDgwOJg4MDgwOJw4MDiYOJg4mDiYOJg4MDicNJw4MDgwODA4MDgwOJg4MDgwOJg4nDScNJw4mDiYOJg4mDiYODQ0NDQ0ODA4MDgwODA4MDiYOJg4mDicNJw4mDiYOJg4MDgwODA4MDgwODA4NDgwOJg4ADQUAAA==', '23.0': 'JgA2AWQ1DA4MKAwODQ4MKAwODCgMDgwODCkLKAwoDQ4MKAwODCgMKAwoDA4MDgwODA4NKAwoDA4MKAwODCgMKAwODA4MDg0oDA4MKAwODA4MKAwoDCgMKA0oDA4MDgwoDCgMKAwoDA4MDgwoDSgMDgwODA4MDgwoDA4MDgwoDCgNKAwoDCgMDgwoDCgMDgwODA4NDQ0ODQ0MDg0nDiYMKAwoDiYMKA0oDCgNDQwODA4MDgwODA4MKAwODCgNKAwODCgODAwODA4MKAwODA4MKA0ODCgMKAwoDCgMKAwODCgMKQwODA4MDgwODA4MKAwODA4MKAwoDSgMKAwoDCgMKAwoDCgMDwwODA4MDgwODA4MDgwODCgMKAwoDCgMKQwoDCgMKAwODA4MDgwODA4MDgwODA8MKAwADQUAAA==', '24.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCkMDQ0ODCgMKAwoDA4MKAwODCgNKAwoDA4MDgwODA4MKAwoDA4MKAwODSgNJwwODA4MDgwoDA4MKAwODA4MKQwoDCgMKAwoDA4MDgwoDCgNKAwoDA4MDgwoDCgMDgwODA4MDg0NDQ4MDgwoDCgMKAwoDCgMKA0oDCgMDgwODA4MDgwODA4MDgwoDCgMKQwoDCgMKAwoDCgMDgwODA4MDg0ODA4MKAwODCgMKAwODCgMDg0NDQ4MKAwODA4MKAwODCgMKAwoDCkMKAwODCgMKAwODA4MDgwODA4MKQwODA4MKAwoDCgMKAwoDCgNKAwoDCgMDgwODA4MDgwODA4MDgwODCkMKAwoDCgMKAwoDCgMKA0NDQ4MDgwODA4MDgwODA4MKAwADQUAAA==', '25.0': 'JgA2AWQ1DA4MKAwODA4MKQwODCgMDgwODCgMKAwoDA4NKAwODCgMKAwoDA4MDgwODA4MKA0oDA4MKA8LDCgMKAwODA4MDgwoDA8MKAwODA4MKAwoDCgMKAwoDQ4MDgwoDCgMKAwoDA4MDgwoDCkMDgwODA4MDgwoDCgMKAwODCgMKQwoDCgMDgwODA4MKAwODA4MDgwODA4NDgwoDCgMKAwoDCgMKA0oDScMDgwODA4MDgwODA4MKAwODCgMKQwODCgMDgwODA4MKAwODA4MKAwODSgMKAwoDCgMKAwODCgMKA0NDQ4MDgwODA4MKAwODA4MKAwoDCgMKQwoDCgMKAwoDCgMDgwODA4NDgwODA4MDgwODCgMKAwoDCgMKA0oDCgMKA4MDgwODA4MDgwODA4MDgwOJg4ADQUAAA==', '26.0': 'JgA2AWYzDgwOJg4MDgwOJg8MDiYODA4MDScOJg4mDgwOJg8MDiYOJg4mDgwODA4MDQ0NJw8lDwwNJw4MDiYOJg4MDQ0NDQ0nDgwOJw0NDQ0NJw0nDScOJg0nDgwODA4nDScNJw0nDQ0NCw8nDScODQ0NDQ0MDgwODCgMKA0LDigMKAwoDSgMKAwODA4MKAwODA4MDgwODA4MDgwpDCgMKAwoDCgMKAwoDCkMDwsODA4MDgwODA4MKAwODCgMKAwODSgMDgwODA4MKAwODA4MKAwODCgNKAwoDCgMKAwODCgMKAwODA4MDg0ODA4MKAwODA4MKAwoDCgMKAwpDCgMKAwoDCgMDgwODA4MDgwODA4NDgwODCgMKAwoDCgMKAwoDSgMKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '27.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCkMDQ0ODCgMKAwoDA4MKAwODCgMKQwoDA4MDgwODA4MKAwoDA4MKAwODSgMKAwODA4MDgwoDA4MKA4MDA4MKQwoDScMKAwoDA4MDgwoDCgNKAwoDA4MDgwoDiYODAwODgwODA0oDA4MKA0NDSkMJgwoDiYODAwpDQ0NJw0NDgwODA4MDgwODA4mDiYOJw0nDCgOJg4mDiYODA4MDA4MDg4NDA4OJgwODiYNJw4MDCgMDgwODA8MKAwODQ0MKA4MDiYOJg4mDCkNJw0NDiYOJg4MDgwODA4MDgwOJg4NDQ0NJw4mDiYOJg4mDiYOJg4nDiYODA4MDgwODA4MDgwODA4MDiYOJw4mDiYOJg4mDiYOJg4MDgwODQ4MDgwODA4MDgwOJg4ADQUAAA==', '28.0': 'JgA2AWQ1DA4MKAwODQ4MKAwODCgMDgwODCgMKAwoDA4NKAwODCgMKAwoDA4MDgwODA4MKA0oDA4MKAwODCgMKAwODA4MDgwpDA4MKAwODA4MKAwoDCgMKAwpDA4MDgwoDCgMKAwoDA4MDgwpDCgMDgwODA4MDgwODA4MKAwODCgMKQwoDCgMKAwoDA4MKAwODA4MDgwODQ4MDgwoDCgMKAwoDCgMKAwpDCgMDgwODA4MDgwODA4MKAwODCgMKQwODCgMDgwODA4MKAwODA4MKAwODSgMKAwoDCgMKAwODCgMKA0ODA4MDgwODA4MKAwODA4MKAwoDCgNKAwoDCgMKAwoDCgMDgwODA4NDgwODA4MDgwODCgMKAwoDCgMKA0oDCgMKAwODA4MDgwODA4MDgwODA4NKAwADQUAAA==', '29.0': 'JgA2AWU0DA4MKA0ODA4MKAwODCgMDgwODCgMKAwpDA4MKAwODCgMKAwoDA4MDgwODA4NKAwoDA4MKAwODCgMKAwODA4MDg0oDA4MKAwODA4MKA4mDiYOJw0nDwsODA4mDiYOJg4mDgwODA4nDScODA4MDgwODA4mDiYODAwODSgMKAwoDCgMDgwODCgMKAwODA4NDgwODA4MDgwoDCgMKAwoDCgMKQwoDCgMDgwODA4MDgwODA4MKAwODCkMKAwODCgMDgwODA4MKAwODA4MKA0ODCgMKAwoDCgMKAwODCgMKQwODA4MDgwODA4MKAwODA4MKAwoDCkMKAwoDCgMKAwoDCgMDgwODQ4MDgwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4MDgwPDA4MKAwADQUAAA==', '30.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCkMDgwODCgMKAwoDA4MKAwODCgNKAwoDA4MDgwODA4MKAwoDA4MKA0ODCgMKAwODA4MDgwoDA4MKAwODA4MKQwoDCgMKAwoDA4MDgwoDCkMKAwoDA4MDgwoDCgMDgwODA4MDwwODCgMDgwODCgMKAwoDCgMKQwODCgMKAwODA4MDgwODA4MDgwoDCkMKAwoDCgMKAwoDCgMDgwPDA4MDgwODA4MKAwODCgMKAwODCgMDwwODA4MKAwODA4MKAwODCgMKAwoDSgMKAwODCgMKAwODA4MDgwODA4MKQwODA4MKAwoDCgMKAwoDCkMKAwoDCgMDgwODA4MDgwODA4MDgwPDCgMKAwoDCgMKAwoDCgMKQwODA4MDgwODA4MDgwODA4MKAwADQUAAA==' }, FAN_HIGHEST: { '18.0': 'JgA2AWU0DgwNJw4MDQ0NJw4MDScOChAMDicOJg0nDgwNJw4MDScOJg4nDgwNDQ0NDQ0NJw4mDgwNJw4MDScOJw4MDQ0NDQ0nDgwNJw4MDQ0NJw4mDicOJg4mDgwNDQ0nDiYOJg4nDgwNDQ0nDiYNDQ0NDQ0NDQ4MDSgNJw4mDiYNJw4mDiYOJg4NDQ0NDQ0NDQ0NDQ0NDScNJxEJDScNJw4nDiYNJw4MDQ0NJw4MDQ0ODA4NDQ0NJw0NDScOJg0NDScODA0NDQ0NJw8MDQ0NJw4MDScOJg0nDiYOJg8MDScOJg4MDQ0NDQ0NDQ0NJw4MDgwOJw4mDiYOJg4mDiYOJg4mDyYODA4MDQ0NDQ0NDQ0NDQ0NDScOJg8mDiYOJg4mDiYOJg4MDgwODA8MDgwNDQ0NDQ0NJw4ADQUAAA==', '19.0': 'JgA2AWQ1DA4MKAwODA4MKAwODSgMDgwODCgMKAwoDA4MKAwODCgNKAwoDA4MDgwODA4MKAwoDA4MKQwODCgMKAwODA4MDgwoDA4MKAwODQ0NKAwoDCgMKAwoDA4MDgwpDCgMKAwoDA4MDgwoDCgMDgwODA4NDgwoDA4MKAwoDCgMKAwoDSgMDgwoDA4MDgwODA4MDgwODCgMKAwODSgMKAwoDCgMKAwODA4MKA0NDQ4MDgwODA4MKAwODCgMKAwODCkMDgwODA4MKAwODA4MKAwODCgMKAwpDCgMKAwODCgMKAwODA4MDgwODA4NKAwODA4MKAwoDCgOJg4mDicOJg4mDiYODA4MDA4MDg4MDA4MDg4NDCgOJgwoDiYOJg4mDiYOJw4MDA4MDg4MDA4MDg4MDA4MKA4ADQUAAA==', '20.0': 'JgA2AWYzDgwOJg4MDgwOJg4MDiYPCw8MDiYOJg4mDgwOJg4MDiYPJg4mDgwODA4MDQ0OJg4mDgwOJg8MDiYOJg4MDgwODA4mDgwOJg4MDgwOJg8mDiYOJg4mDgwODA0nDiYPJg4mDgwODA0nDiYODA0NDQ0NDA8NDQ8LJw0nDiYOJg4mDiYOJg8mDgwNDQ0NDQ0NDQ0NDScOJg4MDiYPJg4mDiYOJg4MDgwOJg4MDgwODA8MDgwNJw4MDiYOJg4MDiYODA8LDwwOJg4MDgwOJg4MDiYOJg4mDyYOJg4MDiYOJg4MDgwODA0NDgwOJg8MDgwNJw4mDiYOJg4mDiYOJw4mDiYODA0NDQ0NDQ0NDQ0NCw8NDicNJw0nDiYOJg4mDScOJg4NDQ0NDQ0NDQ0NDQ0NDQ0NJw0ADQUAAA==', '21.0': 'JgA2AWU0DQ4MKAwODA4MKAwODCgMDgwODCgNKAwoDA4MKAwODCgMKAwoDA8MDgwODA4MKAwoDA4MKAwODCgMKA0ODA4MDgwoDA4MKAwODA4MKAwoDSgMKAwoDA4MDgwoDCgMKAwpDA4MDgwoDCgMDgwODA4MDgwoDCkMDgwoDCgMKAwoDCgMDgwODCgNDgwODA4MDgwODCgMKAwODCgMKA0oDCgMKAwODA4MKAwODA4MDgwODQ0MKQwODCgMKAwODCgMDgwODA4MKAwODQ4MKAwODCgOJgwoDCgMKAwODicNJw0NDA4ODAwODgwMKA4MDA4MKQ0nDScNJw4mDiYOJgwpDScNDQ0NDQ0ODAwODA4ODA4MDiYOJg4nDScNJw4mDiYOJg8LDgwODA4MDg0NDQ0NDgwOJg4ADQUAAA==', '22.0': 'JgA2AWcyDgwOJg8MDgwNJw4MDScODA4MDiYOJg4nDgwNJw4MDScOJg4mDgwODA4MDg0NJw0nDgwNJw0NDScNJw4MDgoQDQ0nDQ0NJw0LDw0NJw0nDScOJg4nDQ0NDQwoDScNJw0nDQ0NDQ4nDScNDQ0NDA4MDgwODCgNDQwoDScOJw0nDScNJw0NDCgNDQwODA8MDgwODCgNJw0LDigNJw0nDScOJw0LDw0NJw0NDA4NDQ0NDQ0NJw0NDicNJw0NDScNCw8NDQ0NJw0NDQ0OJg4NDScNJw4mDScNJw4MDScOJw4MDQ0NDQ0NDQ0NJw0NDQ0NJw0nDyYNJw4mDiYOJg4mDScODA4NDQ0NDQ0NDQ0NDQ0NDScNJw4mDiYOJw0nDScOJg0NDQsPDQ0NDQ0ODA0ODQ0NJw0ADQUAAA==', '23.0': 'JgA2AWQ1DA4MKAwODA4MKAwODCkMDgwODCgMKAwoDA4MKAwODCgNKAwoDA4MDgwODA4MKAwoDA4MKQwODCgMKAwODA4MDgwoDA4MKAwODA4NKAwoDCgMKAwoDA4MDgwoDCkMKAwoDA4MDgwoDCgMDgwODA4NDgwoDA4MDgwoDCgMKAwoDCgMDwwoDCgMDgwODA4MDgwODCgMKAwODSgMKAwoDCgMKAwODA4MKAwODQ4MDgwODA4MKAwODCgMKAwODCgNDgwODA4MKAwODA4MKAwODCgMKAwoDSgMKAwODCgMKAwODA4MDgwODA4NKAwODA4MKAwoDCgMKAwoDCgNKAwoDCgMDgwODA4MDgwODA4MDgwODCkMKAwoDCgMKAwoDCgMKQwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '24.0': 'JgA2AWQ0DQ4NJw0NDA4MKA0NDScNDQ0NDScMKA4nDQ0NJw0NDCgNJw0nDQ0MDg0KEA4MKAwoDQ0MKA0NDCgNJwwODA8MDgwoDA4MKAwODA4MKAwoDCgNKAwoDA4MDgwoDCgMKAwoDA4NDgwoDCgMDgwODA4MDgwODA4MDgwoDCkMKAwoDCgMKAwoDCgMDgwODQ4MDgwODCgMKAwODCgMKAwoDSgMKAwODA4MKAwODA4MDgwODA4MKAwODSgMKAwODCgMDgwODA4MKAwODA4MKQwODCgMKAwoDCgMKAwODCgNKAwODA4MDgwODA4MKAwODA4MKAwpDCgMKAwoDCgMKAwoDCgNDgwODA4MDgwODA4MDgwODCgMKAwoDCgNKAwoDCgMKAwODA4MDgwODA4MDg0ODA4MKAwADQUAAA==', '25.0': 'JgA2AWcyDgwOJg4MDgwOJw4MDiYODA4MDiYOJg4mDgwOJw0NDScOJg4mDgwODA4MDgwOJg4nDQ0OJg4MDiYOJg4MDgwODA4mDgwOJw0NDgwOJg4mDiYOJg4mDgwODA4nDiYOJg4mDwsODA4mDyUODA4NDgwODA4mDiYOJg4MDiYOJw4mDiYODA4MDgwOJg8LDgwODA4MDicOJg8LDiYOJg8lDiYPJQ4MDwwOJg4MDgwODA4MDgwOJg4MDiYOJg4MDSgODA4MDA4MKAwODA4MKAwODCgNKAwoDCgMKAwODCgOJgwODQ0NDgwODA4MKAwODA4MKAwoDCgMKA0oDCgMKAwoDCgMDgwODA4MDg0ODA4MDgwODCgMKAwoDCgMKAwpDCgMKAwODA4MDgwODA4MDgwODA4MKA0ADQUAAA==', '26.0': 'JgA2AWcyDwsOJg8LDgwOJg4MDicODA4MDiYOJg4mDwsOJg4MDicOJg4mDgwODA4MDgwOJg4mDgwOJw4MDiYOJg4MDgwODA4mDgwOJg4MDwwOJg4mDiYOJg4mDgwODA4mDyYOJg4mDgwODA4mDiYPCw4MDgwPDA4MDiYPJQ8LDiYOJg8lDyYOJg8LDgwOJg4MDgwODA4MDiYOJg8MDiYPJQ8lDyUPJQ8LDgwOJw4LDwwODA4MDgwOJg4MDiYPJQ8LDicODA4MDgwOJg4MDgwOJg8LDiYOJg4nDiYOJg4MDiYPJQ4MDgwODA4MDgwPJg4MDgwOJg4mDyYNJg4mDicOJg4mDiYPCw4MDgwODA4MDgwODA4NDiYOJg8lDyUPJQ8lDiYPJg4MDgwODA4MDgwODA4MDgwOJg8ADQUAAA==', '27.0': 'JgA2AWU0DgwNJw4MDQ0NJw4MDiYPDA0NDScOJg4mDgwOJg4MDScOJw4mDgwODA0NDQ0NJw4mDgwOJg8MDScOJg4MDQ0NDQ0nDgwNJw4MDgwOJw0nDScNJw0nDQ0NDQ0nDicNJw0nDQ0NDQ0nDScNDQ0MDg0OCw8nDQ0NJw0NDScNJw0nDScODQ0nDQsPJw0LDw0MDg0NDScNJw0NDicNJw0nDScNJw0JEgsOJw4MDg0NDQ0NDQ0NJw0NDScOJg4MDiYODQ0NDQ0NJw4MDQ0NJw4MDScOJg8lDyYOJg4MDScOJg4MDQ0NDQ0NDgwOJw0NDQ0NJw0nDScNJw0nDiYOJw0nDCgNCw4ODA4MDgwODA4MDgwPDCgMKAwoDCgMKAwoDCgMKA0ODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '28.0': 'JgA2AWcyDwsOJg4MDgwOJg4NDiYODA4MDiYOJg4mDwsOJg8MDScOJg8lDwsODA4MDgwOJg4mDwsPJg4MDiYOJg4MDgwODA4mDgwOJg4NDgwOJg4mDyUOJg8lDgwODA4nDiYPJQ8lDgwODA4mDiYPCw8LDwwODA4MDgwOJg4MDiYPJQ8mDiYOJg8lDwsOJg4MDgwODA4MDiYOJw4MDiYOJg8lDyUPJQ8LDgwOJw4MDgwODA4MDgwOJg4MDiYPJQ4MDicODA4MDgwOJg4MDgwOJg4MDiYPJQ8mDyUPJQ4MDiYOJg4MDgwODA4NDgwOJg4MDgwOJg4mDiYOJg4nDiYOJg4mDiYODA4MDgwODA4MDgwPDA4MDiYOJg4mDiYOJg4nDScOJg4MDgwODA4MDgwODA4MDgwOJg4ADQUAAA==', '29.0': 'JgA2AWU0DQ0NJw0NDQ0NJw0NDScNDQ0NDicNJw0nDQ0NJw0NDScNJw4mDg0NDQ0NDQ0NJw0nDQ0NJw4MDScOJw4MDQ0NDQ0nDgwNJw4MDQ0NJw4mDyYOJg4mDQ0NDQ0nDiYOJg4nDQ0NDQ0nDiYNDQ0NDQ0NDQ0nDicNDQ0NDScNJw0nDiYODA0NDSgNJw0NDQ0NDQ0NDScOJg4MDScOJg4nDScNJw4MDQ0NJw0NDQ0NDQ0NDg0NJw0NDScNJw0NDScNDQ0NDQ0OJg4NDQ0NJw0LDycNJw4mDScOJg4NDScNJw0NDQsPDQ0NDQ0NJw0NDg0NJw0nDScNJw0nDScNJw4mDicNCw4ODA4MDgwODA4MDgwODCgMKAwpDCgMKAwoDCgMKAwODA4MDgwPDA4MDgwODA4MKAwADQUAAA==', '30.0': 'JgA2AWQ1DA4MKAwODA4NKAwODCgMDgwODCgMKAwoDA4MKQwODCgMKAwoDA4MDgwODA4MKA0oDA4MKAwODCgMKAwODA4MDgwoDA4NKAwODA4MKAwoDCgMKAwoDA4NDgwoDCgMKAwoDA4MDgwoDCgNDgwODA4MDgwODCgMDgwODCgMKAwpDCgMKAwODCgMKAwODA4MDgwODCkMKAwODCgMKAwoDCgMKAwODQ4MKAwODA4MDgwODA4MKAwODCgMKQwODCgMDgwODA4MKAwODA4MKAwODCkMKAwoDCgMKAwODCgMKAwODA8MDgwODA4MKAwODA4MKAwoDCgMKQwoDCgMKAwoDCgMDgwODA4MDg0ODA4MDgwODCgMKAwoDCgMKAwpDCgMKAwODA4MDgwODA4ODAwODA4OJg4ADQUAAA==' } }, HVAC_MODE_DRY: { '18.0': 'JgA2AWYzDA4MKAwODA4OJgwODSgMDgwODCgMKA4mDA4OJg4MDCgOJwwoDgwODA4MDgwMKAwoDgwMKA4NDCgOJgwODA4MDg4mDA4MKAwODQ4NJw4mDiYMKAwODCgMDg4mDicOJgwoDgwMKA4MDiYRCQ4MDQ0ODQwODCgOJgwoDiYMKA4mDicNJwwODA4MDg4MDA4MDgwODiYOJg4nDiYMKAwoDiYMKA4MDA4MDgwPDA4MDgwODA4OJg4mDiYOJgwpDScMDg4MDA4ODAwODA4ODAwODCgOJg4nDiYMKAwODiYOJg4MDA4MDg4MDA4OJwwODA4MKAwoDCgOJgwoDicMKAwoDCgODAwODgwMDgwODA4MDg4NDScMKA4mDCgMKAwoDCgOJwwODA4MDgwODgwMDgwODA4OJgwADQUAAA==', '19.0': 'JgA2AWM1DA4MKAwPCw8MKAwODCgNDQ0NDCgMKA0nDQ0NKA0NDCgMKAwoDA4MDgwODA4MKQwoDAkSJwwODCgNJw0NDQ0MDgwoDQ4MKAwODQ0MKAwoDCgNJw0NDSgMDgwoDCgNJwwoDQ0MKAwODSgMDgwODA4MDgwoDA4MKAwoDCgOJw0nDCgMDg0nDQ0MDA4ODA4ODA0ODCgNJwwoDCgMKA0nDCgOJw0NDA4MDgwODA4MDgwODA4MKA0nDCgNKAwoDScMDgwODA4MDgwODA4MDg0ODCgNJwwoDCgMKA0NDCgMKA0KEA4MDgwODA4MKA0NDA4MKAwoDCgNKAwoDCgNJwwoDCgNDQwODA4NDgwODA4MDgwMDycNJw0nDCgMKQwoDCgNJw0NDA0ODQwODA4MDgwODA4NKA0ADQUAAA==', '20.0': 'JgA2AWU0DA4MKAwODA4MKA0NDSgMDgwNDicMKAwoDA4MKAwODCkMKAwoDQ0MDgwODA4MKA0nDA4NKAwODCgNJwwODQ0MDgwoDA4MKAwODA8MKA0nDScNJw0NDScMDgwoDSgMKAwoDA4NJwwODCgMDg4MDA8MDgwNDg0MKAwoDScMKAwoDCgNKA0nDQsODgwODA4MDg0NDCgMKQwoDScMKA0nDCgNJwwODQ0MDgwODQ4MDgwODQ0NJwwoDScNJw0nDSgMDgwODA4MDgwODQ0MDgwODCgMKAwpDCgNJw0NDScNJwwODA4MDgwODA8MKAwODA4MKA0nDScNJwwoDCkMKA0nDScNDQwODQ0MDgwODA4MDgwPDCgMKA0nDCgMKAwoDCgNKA0LDg4MDg0NDA4MDgwNDQ4MKA0ADQUAAA==', '21.0': 'JgA2AWQ1DA4MKAwODQ0MKAwODCgMDg4MDSgMKAwoDQ0NJwwODCgMKA0oDQ0NDQwODQ0MKAwoDA4MKA0NDCkMKAwODA4MDgwoDA4MKAwODA4MKA0oDCgNJwwODCgMDgwoDCgMKQwoDQsOKA0NDCgNDQwODA4MDgwpDCgNDgsoDCgNJwwoDCgMDgwPDCgMDgwODA4MDQ0ODCgMKA0nDScNKAwoDScNJw0NDA4MDgwODA4MDwwOCw8MKA0nDCgNJw0nDScNDQ0ODA4MDgwODA4NDQwODCgMKA0nDCgNKAwODCgMKAwNDg0MDgwODA4NJwwODQsPKAwoDScNJw0nDCgNJw0oDCgNDQwODA4MDgwODQ0MDgwODCgMKQwoDCgMKAwoDCgNJw0NDQ4MDgwMDg4MDgwODA4NJwwADQUAAA==', '22.0': 'JgA2AWU0DQ0MKAwODA4MKA0ODCgMDgwODCgNJw0nDQ0MKA0ODCgMKAwoDQ0MDgwODA4NJwwoDQ4MKA0NDCgNJwwODQwNDgwoDQ0NJw0NDg4LKA0nDScMKA0NDCgNDQwpDCgMKAwoDA4MKA0LDigNDQ0ODA4MDgwODCgNDQwoDCgMKAwoDSgNJwwODCgMDg0NDA4MDgwODCgMKQwoDScMKA0nDScNJw0NDQ4MDgwODA4MDgwODA4MKA0nDCgMKA0oDCgMDgwNDwwMDQ0ODA4MDgwODCgNKAwoDScMKAwODCgNJw0NDA4NDQ0PCw4MKA0NDA4MKA0nDCgMKA0oDScMKAwoDCgMDg0NDA4MDgwODA8MDgwODCgNJwwoDScNJwwoDCkMKAwODA4MDgwODA4MDgwODA4MKAwADQUAAA==', '23.0': 'JgA2AWM1DA4MKAwODQ4MKAwODCgNDQ0NDCgNJwwoDA8MKAwODCgMKAwoDA4MDgwODA4MKA0oDA4MKAwODCgMKAwODQ0MDgwoDQ0OJwwODA4MKAwoDScMKAwODSgNCw4oDCgMKAwoDA4MKA0NDCkMDgwODA4MDQ4nDA4NDQwoDScMKQwoDCgMDgwoDCgMDgwODA4MDgwODCkMKAwoDCgMKAwoDScNKAwODA4MDgwNDQ4NDQwODA4NJwwoDCgNKAwoDScNDQwNDgsODgwODA4NDQwPDCgMKAwoDCgMKAwODCgNJwwODg0MDgwODA4MKAwODA4NJwwoDScNKA0nDCgMKA0nDScMDA4ODA4MDwwNDwwMDgwODScNJwwoDCgMKA0oDCgNJwwODQ0NDQwODA4NDQwODA4MKQwADQUAAA==', '24.0': 'JgA2AWQ1DA4MKAwODQ0MKAwODCgMDg0NDCkMKA0nDQkRJwwMDigMKAwoDQ4MDA4ODA4MKAwoDA4MKA0NDCgNKAwODQ0MDgwoDQwNKA0NDQ0MKAwoDSgNJwwODCgMDgwoDCgNJw0oDA4MKA0NDCgNDQwODA4NDA0ODAwODgwpDCgMKAwoDCgMKA0nDScNDgwODA4MDgwODScNJw0nDCgMKQwoDCgNJw0NDA4MDgwODQ0MDgwODQ4MKAwoDScMKA0nDScNDQwODA4MDg4NDA4NDQwODCgNJw0nDCgNJw0ODCgMKA0NDA4MDg0NDA4MKAwODA4NKAwoDCgMKA0nDCgMKA0oDCgMDQ0ODA4MDgwODA4NDQwODCgNJw0oDCgMKAwoDScMKA0MDQ4MDwwODA4MDgwODA4NJwwADQUAAA==', '25.0': 'JgA2AWM1DA4NJw0ODA4MKAwODCgMDg0NDCgNJwwoDA4NKAwODCgNJwwoDA4MDgwODA4NKAwoDQ0MKA0NDScNJw0MDQ4MDg0oDA4MKA0NDA4MKA0nDCgNJwwPDCgNDQwoDCgMKAwoDAwOKA0NDSgNDQwODA4MDgwoDCgMKA0NDCkNJwwoDCgMDgwODA4MKA0MDQ4MDg0ODCgMKA0nDScNJwwoDCkMKA0NDA4MDgwODA4MDgwODA4MKAwoDCgNKA0nDCgMDg0LDg4MDgwODA4MDA4ODSgNJw0nDCgNJwwODCgMKA0ODA4MDg0NDA4MKAwODA0NKAwoDScNKAwoDScMKAwoDCgNDQwODQ0NDgwODA4MDgwODCgMKAwoDScNJw0oDCgMKAwODA4MDgwODQ0MDgwODA4NKAwADQUAAA==', '26.0': 'JgA2AWQ0DA4MKA0NDA8MKA0NDCgMDgwODCgNJwwoDQwOKA0NDCgNJwwoDQ0MDgwODQ0MKA0oDQsOKAwODCgMKA0NDA4MDgwpDA4MKAwODQ0MKAwoDCgNJwwPDCgMDgwoDCgMKAwoDA4NJw0NDCkMDQ4LDg4MDgwODCgNJw0NDCgMKQwoDCgNJw0NDA4NJwwODQ0MDgwPDCgMKAwoDCgNJw0nDCgMKQwODA4MDgwODA4MDgwODA4MKAwoDCgOJwwoDCgMDg0NDA4MDgwODA4MDgwPCykMKAwoDScMKA0NDCgMKA0ODA4MDg0NDA4MKAwNDQ4MKAwoDCgNKA0nDScMKAwoDCgNDQwODA4NDQ4NDA4MDgwODScNJw0nDScNKAwoDCgMKAwODA4NDQwODA4MDgwODA4MKQwADQUAAA==', '27.0': 'JgA2AWQ1DA4MKA0NDA4MKAwODScNDQwODCkMKAwoDQ0NJw0NDCgMKA0nDQ4MDgwODA4MKA0nDQ0MKA0MDSgMKQwODA4NDQwoDA4MKA0NDQ0MKAwoDSgMKA0NDCgMDgwoDCgMKA0oDA4NJw0NDCgMDgwODQwNDgwoDQwNKQ0LDigMKAwoDCgMDgwoDQ0MKQ0NDA4MDg0NDCgMKA0nDCgNKAwoDCgMKAwODA8LDgwODA4MDgwODQ0NKAwoDScMKA0nDCgNDQ0NDQwODgwODA4MDgwODCgMKAwoDScNJw0ODCgMKAwODQ0MDgwODA4MKAwODA4MKQwoDScNJwwoDyUMKAwoDSgMDgwODA4MDgwODA4NDQwODCgNJw0nDSgMKAwoDScMKAwMDg4MDwsPDA4MDgwODA4MKA0ADQUAAA==', '28.0': 'JgA2AWM1DQ0NJwwODA8MKAwODCgMDgwODScMKAwoDQ4MKAwODCgMKAwoDQ0MDgwODA4MKA0oDA4MKA0NDCgMKA0NDA4MDhAkDQ4MKA0NDA4MKAwoDCgMKAwODCkMDgwoDScNJw0nDA4MKAwODCkMDgwODQ0MDgwODA4NJwwNDSgMKA0oDCgNJwwoDQ0MKAwODQ0MDg0ODCgMKAwoDCgMKAwoDCgMKA0ODQ0MDgwODA4MDgwODA4MKAwoDCgNKAwoDCgMDgwMDg4MDgwODQ0MDgwODSgMKAwoDCgMKA0NDCgMKAwMDw4MDgwNDg0NJw0NDA4MKA0nDCgNKAwoDScMKA0nDCgNDQ0NDQ4MDgwODA4MDg0NDScMKAwoDCgNJw0oDCgMKAwODA4MDgwODQ0MDgwKEA4MKQwADQUAAA==', '29.0': 'JgA2AWU0DA4MKAwODA4MKQwODCgMDgwODCgMKA0nDA4MKA0ODCgMKAwoDQwNDQ0ODA4MKA0nDQ0NKAwODCgMKAwODA4MDgwoDQ0MKQwNDQ4MKAwoDScMKAwODCgMDg0oDCgMKAwoDA4MKAwODCgNDQ0NDQ4MDgwoDCgNDQwODCgMKA0oDCgMDgwODCgMKA0LDw0NDQwODCgNKAwoDScMKA0nDCgNJwwPDA4MDgwODA4MDgwODQ0MKA0nDCgMKA0oDCgNDQwODQ0MDgwODA4MDg0NDCgNKAwoDCgMKAwODCgMKA0NDA4MDwwODA0OJwwODA0OJwwoDScMKA0oDCgMKAwoDCgNDQwODA4NDQwODA8MDgwODScMKAwoDCgMKAwoDSgMKA0LDg4MDgwODQ0MDg0NDA4MKAwADQUAAA==', '30.0': 'JgA2AWQ1DA4MKAwODQ0MKAwODSgMDgwODCgMKAwoDA4MKA0NDCgNKA0nDQ0MDgwODA4MKAwoDA4MKA0NDSgNJw0NDA4MDgwoDA4NJw0NDA4MKQwoDCgMKAwODScMDg0nDSgNJwwoDA0OJwwNDicMDgwODA4MDg0ODCgMDgwODCgNJw0nDScMKA0ODCgNJwwODA4MDgwODCgMKA0nDSgMKAwoDCgMKAwODA4NDQwODQ4MDgwODA4MKA0nDCgMKA0nDCgNCw8ODA4MDgwODA4MDgwODCgNJwwoDSgNJwwNDSgMKAwODA4NDQwODQ4MKAwODA4MKA0nDScMKAwoDCgNKA0nDScNDQ0NDA4MDg0NDA4MDg0NDCkMKAwoDScMKA0nDCgMKQwODA0ODQwODA4MDgwODA4MKA0ADQUAAA==' } }
322.996689
447
0.943811
f4439e1ebe32270ec7df01173ac16fe4691fd55f
5,691
py
Python
examples/adwords/v201406/advanced_operations/update_site_links.py
dietrichc/streamline-ppc-reports
256f79246aba3c2cf8f792d87a066391a2f471e0
[ "Apache-2.0" ]
null
null
null
examples/adwords/v201406/advanced_operations/update_site_links.py
dietrichc/streamline-ppc-reports
256f79246aba3c2cf8f792d87a066391a2f471e0
[ "Apache-2.0" ]
null
null
null
examples/adwords/v201406/advanced_operations/update_site_links.py
dietrichc/streamline-ppc-reports
256f79246aba3c2cf8f792d87a066391a2f471e0
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # # Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example updates an existing sitelinks feed. Specifically, it does the following: * Adds FeedItemAttributes for line 1 and line 2 descriptions to the Feed * Populates the new FeedItemAttributes on FeedItems in the Feed * Replaces the Feed's existing FeedMapping with one that contains the new set of FeedItemAttributes The end result of this is that any campaign or ad group whose CampaignFeed or AdGroupFeed points to the Feed's ID will now serve line 1 and line 2 descriptions in its sitelinks. The LoadFromStorage method is pulling credentials and properties from a "googleads.yaml" file. By default, it looks for this file in your home directory. For more information, see the "Caching authentication information" section of our README. Tags: FeedItemService.mutate Tags: FeedMappingService.mutate, FeedService.mutate """ __author__ = 'Joseph DiLallo' from googleads import adwords FEED_ID = 'FEED_ID' FEED_ITEM_DESCRIPTIONS = { 'INSERT_FEED_ITEM_A_ID_HERE': [ 'INSERT_FEED_ITEM_A_LINE1_DESC_HERE', 'INSERT_FEED_ITEM_A_LINE2_DESC_HERE' ], 'INSERT_FEED_ITEM_B_ID_HERE': [ 'INSERT_FEED_ITEM_B_LINE1_DESC_HERE', 'INSERT_FEED_ITEM_B_LINE2_DESC_HERE' ] } # See the Placeholder reference page for a list of all the placeholder types # and fields: # https://developers.google.com/adwords/api/docs/appendix/placeholders PLACEHOLDER_FIELD_LINE_1_TEXT = 3 PLACEHOLDER_FIELD_LINE_2_TEXT = 4 def main(client, feed_id, feed_item_descriptions): feed_service = client.GetService('FeedService', 'v201406') feed_item_service = client.GetService('FeedItemService', 'v201406') feed_mapping_service = client.GetService('FeedMappingService', 'v201406') feed_selector = { 'fields': ['Id', 'Attributes'], 'predicates': [ {'field': 'Id', 'operator': 'EQUALS', 'values': [feed_id]} ] } feed = feed_service.get(feed_selector)['entries'][0] # Add new line1 and line2 feed attributes. next_attribute_index = len(feed['attributes']) feed['attributes'] = [ {'type': 'STRING', 'name': 'Line 1 Description'}, {'type': 'STRING', 'name': 'Line 2 Description'} ] mutated_feed_result = feed_service.mutate([ {'operator': 'SET', 'operand': feed} ]) mutated_feed = mutated_feed_result['value'][0] line_1_attribute = mutated_feed['attributes'][next_attribute_index] line_2_attribute = mutated_feed['attributes'][next_attribute_index + 1] # Update feed items. feed_item_ids = feed_item_descriptions.keys() item_selector = { 'fields': ['FeedId', 'FeedItemId', 'AttributeValues'], 'predicates': [ {'field': 'FeedId', 'operator': 'EQUALS', 'values': [feed_id]}, {'field': 'FeedItemId', 'operator': 'IN', 'values': feed_item_ids} ] } feed_items = feed_item_service.get(item_selector)['entries'] item_operations = [] for feed_item in feed_items: feed_item['attributeValues'] = [ { 'feedAttributeId': line_1_attribute['id'], 'stringValue': feed_item_descriptions[feed_item['feedItemId']][0] }, { 'feedAttributeId': line_2_attribute['id'], 'stringValue': feed_item_descriptions[feed_item['feedItemId']][1] } ] item_operations.append({'operator': 'SET', 'operand': feed_item}) items_update_result = feed_item_service.mutate(item_operations) print 'Updated %d items' % len(items_update_result['value']) # Update feed mapping. mapping_selector = { 'fields': [ 'FeedId', 'FeedMappingId', 'PlaceholderType', 'AttributeFieldMappings' ], 'predicates': [ {'field': 'FeedId', 'operator': 'EQUALS', 'values': [feed_id]} ] } feed_mapping_results = feed_mapping_service.get(mapping_selector) feed_mapping = feed_mapping_results['entries'][0] # Feed mappings are immutable, so we have to delete it and re-add # it with modifications. feed_mapping = feed_mapping_service.mutate([ {'operator': 'REMOVE', 'operand': feed_mapping} ])['value'][0] feed_mapping['attributeFieldMappings'].push( { 'feedAttributeId': line_1_attribute['id'], 'fieldId': PLACEHOLDER_FIELD_LINE_1_TEXT }, { 'feedAttributeId': line_2_attribute['id'], 'fieldId': PLACEHOLDER_FIELD_LINE_2_TEXT } ) mapping_update_result = feed_mapping_service.mutate([ {'operator': 'ADD', 'operand': feed_mapping} ]) mutated_mapping = mapping_update_result['value'][0] print ('Updated field mappings for feedId %d and feedMappingId %d to:' % (mutated_mapping['feedId'], mutated_mapping['feedMappingId'])) for field_mapping in mutated_mapping['attributeFieldMappings']: print ('\tfeedAttributeId %d --> fieldId %d' % (field_mapping['feedAttributeId'], field_mapping['fieldId'])) if __name__ == '__main__': # Initialize client object. adwords_client = adwords.AdWordsClient.LoadFromStorage() main(adwords_client, FEED_ID, FEED_ITEM_DESCRIPTIONS)
33.674556
77
0.697417
99afafa3f3aa274453a9bb85b86db947e4c8908c
581
py
Python
lang-python/basics/03-procedures/procedures.py
xd23fe39/technical-notes
bb6348705a95db24d07b1081b1aa0265dda131ce
[ "MIT" ]
null
null
null
lang-python/basics/03-procedures/procedures.py
xd23fe39/technical-notes
bb6348705a95db24d07b1081b1aa0265dda131ce
[ "MIT" ]
null
null
null
lang-python/basics/03-procedures/procedures.py
xd23fe39/technical-notes
bb6348705a95db24d07b1081b1aa0265dda131ce
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: iso-8859-1 -*- # Prozeduren definieren und aufrufen # Zeichenkette oder String (string) text = "Umfang bei Durchmesser[cm]" # Fließkommazahl oder Float pi (float, real) pi = 3.1415 # Definition der Funktion/Prozedur 'umfang' mit Parameter 'd' # für Durchmesser in Zentimeter. def umfang(d): print("%s: %i, %f" % (text, d, d * pi)) # Aufruf der Funktion 'umfang' mit verschiedenen Parametern umfang(7) umfang(14) # Prozeduren/Funktionen führen Konzepte ein für: # - Modularisierung (Bausteine) # - Wiederverwendbarkeit (Mehrfachaufruf)
24.208333
61
0.717728
505cef6da83c1ce3fea30a75bd8be951b367b092
926
py
Python
Chapter13/ch13_diabetesB.py
PacktPublishing/Applied-Computational-Thinking-with-Python
fd9982383c5b473ffa1640998540d602876816e5
[ "MIT" ]
18
2020-11-27T22:41:12.000Z
2021-12-27T08:20:46.000Z
Chapter13/ch13_diabetesB.py
PacktPublishing/Applied-Computational-Thinking-with-Python
fd9982383c5b473ffa1640998540d602876816e5
[ "MIT" ]
null
null
null
Chapter13/ch13_diabetesB.py
PacktPublishing/Applied-Computational-Thinking-with-Python
fd9982383c5b473ffa1640998540d602876816e5
[ "MIT" ]
8
2020-11-30T17:51:11.000Z
2021-12-25T05:23:02.000Z
import pandas as pd import matplotlib.pyplot as plt import numpy as np dataset = pd.read_csv('diabetes.csv') # Split dataset into input(x) and output(y) variables x_variables = dataset.iloc[:,0:8] y_variable = dataset.iloc[:,8] print(x_variables) print(y_variable) from sklearn.model_selection import train_test_split from keras import Sequential from keras.layers import Dense #Defining the Model model = Sequential() model.add(Dense(12, input_dim=8, activation='relu')) model.add(Dense(15, activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(1, activation='sigmoid')) #Compile the model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) #Fit the model on the dataset model.fit(x_variables, y_variable, epochs=95, batch_size=25) #Evaluate the model _, accuracy = model.evaluate(x_variables, y_variable) print('Accuracy: %.2f' % (accuracy*100)) model.summary()
27.235294
81
0.764579
ce3aae8f3e5cd37a819f538b874a16b4db05762d
494
py
Python
backend/core/settings.py
blcoyote/WeatehrApi-SqlModel
0dff548bccd317e55bf3b1e9d565e2fcaee4d107
[ "MIT" ]
1
2021-08-28T16:51:38.000Z
2021-08-28T16:51:38.000Z
backend/core/settings.py
blcoyote/WeatehrApi-SqlModel
0dff548bccd317e55bf3b1e9d565e2fcaee4d107
[ "MIT" ]
5
2021-08-28T18:39:17.000Z
2021-10-18T08:01:23.000Z
backend/core/settings.py
blcoyote/WeatherApi-SqlModel
0dff548bccd317e55bf3b1e9d565e2fcaee4d107
[ "MIT" ]
null
null
null
from pydantic import BaseSettings from functools import lru_cache import datetime ERROR_LOG_FILENAME = "./log/access.log" VERSION = "0.1.5" class Settings(BaseSettings): DEBUG_MODE: bool ACCESSCTL: str SECRET_KEY: str ALGORITHM: str ACCESS_TOKEN_EXPIRE_MINUTES: int WINDY_ENABLED: bool WINDYKEY: str PG_URL: str class Config: env_file = ".env" @lru_cache() def get_settings(): return Settings() def decrypt_env(): print("decripting")
16.466667
39
0.696356
5f4a42e7ef6ba9ea2fed24a58ea5cfa5fd08faea
3,748
py
Python
cemubot/cemubot.py
Crementif/Cemubot
7628f41c3996c48c9df9b191086547c67aeb2dc2
[ "MIT" ]
null
null
null
cemubot/cemubot.py
Crementif/Cemubot
7628f41c3996c48c9df9b191086547c67aeb2dc2
[ "MIT" ]
null
null
null
cemubot/cemubot.py
Crementif/Cemubot
7628f41c3996c48c9df9b191086547c67aeb2dc2
[ "MIT" ]
null
null
null
import discord from discord.ext import commands from discord_slash import SlashCommand, SlashContext import json import requests import traceback from cogs import config try: config.init() except FileNotFoundError: print("Error: config.cfg not found; run setup.py and try again!") exit() # parser isn't a cog but it's in the cogs folder if you want to add commands to it from cogs.parser import Parser parse_log = Parser().parse_log # if you want to add any cogs, put them here # example: ["cogs.foo", "cogs.bar", ...] startup_extensions = ["cogs.utility", "cogs.compat", "cogs.site", "cogs.quotes"] class Cemubot(commands.Bot): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) with open("misc/title_ids.json", "r", encoding="utf-8") as f: self.title_ids = json.load(f) async def on_ready(self): import _version as v print( f""" +==============+========+======================+ | _____ | v{v.__version__} | _ _ | | / ____| +========+ | | | | | | | | ___ _ __ ___ _ _| |__ ___ | |_ | | | | / _ \ '_ ` _ \| | | | '_ \ / _ \| __| | | | |___| __/ | | | | | |_| | |_) | (_) | |_ | | \_____\___|_| |_| |_|\__,_|_.__/ \___/ \__| | +==============================================+ """) def load_cogs(self): # load the specified cogs for extension in startup_extensions: try: self.load_extension(extension) except Exception as e: exc = f"{type(e).__name__}: {e}" print(f"Failed to load extension {extension}\n{exc}") traceback.print_exc() async def on_message(self, message): if message.author.id == self.user.id: return for embed in message.embeds: if not embed.url or not embed.title: continue if '://pastebin.com/' in embed.url and ('Init Cemu' in embed.title or 'Outdated graphic pack' in embed.title): if message.channel.id == config.cfg["parsing_channel"]["preferred"] \ or message.channel.id in config.cfg["parsing_channel"]["alternates"] \ or not config.cfg["parsing_channel"]["preferred"]: embed.url = embed.url.replace(".com/", ".com/raw/") log_data = requests.get(embed.url).content reply_msg = await message.channel.send("Log detected, parsing...") try: await parse_log(embed.url, log_data, message.channel, reply_msg, self.title_ids) except Exception as e: await reply_msg.edit(content=f"Error: Couldn't parse log; parser threw {type(e).__name__} exception") traceback.print_exc() for attachment in message.attachments: log_data = await attachment.read() if attachment.filename.endswith(".txt") and b"Init Cemu" in log_data: if message.channel.id == config.cfg["parsing_channel"]["preferred"] \ or message.channel.id in config.cfg["parsing_channel"]["alternates"] \ or not config.cfg["parsing_channel"]["preferred"]: reply_msg = await message.channel.send("Log detected, parsing...") try: await parse_log(attachment.url, log_data, message.channel, reply_msg, self.title_ids) except Exception as e: await reply_msg.edit(content=f"Error: Couldn't parse log; parser threw {type(e).__name__} exception") traceback.print_exc() else: await message.channel.send(f"Log detected, please post logs in <#{config.cfg['parsing_channel']['preferred']}>.") await self.process_commands(message) intents = discord.Intents.none() intents.guilds = True intents.messages = True intents.dm_messages = True if __name__ == '__main__': bot = Cemubot(command_prefix=config.cfg["command_prefix"], intents=intents) config.set_bot_instance(bot) bot.slash = SlashCommand(client=bot, sync_commands=True, sync_on_cog_reload=True, override_type=True) bot.load_cogs() bot.run(config.cfg["bot_token"])
38.639175
118
0.659018
87276aa63816533b4c483c266a048d42f022860d
112
gyp
Python
Windows/WindowManager/source/binding.gyp
trile0000/MV
cd53597fa9cebc8ce4ad7b6674a445a21f8bb627
[ "MIT" ]
null
null
null
Windows/WindowManager/source/binding.gyp
trile0000/MV
cd53597fa9cebc8ce4ad7b6674a445a21f8bb627
[ "MIT" ]
null
null
null
Windows/WindowManager/source/binding.gyp
trile0000/MV
cd53597fa9cebc8ce4ad7b6674a445a21f8bb627
[ "MIT" ]
null
null
null
{ "targets": [ { "target_name": "WindowManager", "sources": [ "WindowManager.cc" ] } ] }
14
39
0.473214
48eae0999362efc620b1a6920cee9eb0f6a8dbd3
623
py
Python
joke.py
Elixeus/Snippets
a3c8811ca42f8461d905e6e64ce747c13f0e46d4
[ "CC0-1.0" ]
null
null
null
joke.py
Elixeus/Snippets
a3c8811ca42f8461d905e6e64ce747c13f0e46d4
[ "CC0-1.0" ]
null
null
null
joke.py
Elixeus/Snippets
a3c8811ca42f8461d905e6e64ce747c13f0e46d4
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 class Skills: def __init__(self, **kwargs): self.skills = set(kwargs.values()) def __repr__(self): return 'Skills: {}'.format(','.join(i for i in self.skills)) def __len__(self): return len(self.skills) def learn(self, new_skill): print '新技能 {} get'.format(new_skill) return self.skills.add(new_skill) def forget(self, old_skill): return self.skills.discard(old_skill) if __name__ == '__main__': I = Skills(a='swim', b='basketball') print I I.learn(new_skill='python') print I print len(I)
21.482759
68
0.611557
b419bc5bbc143fa9162940690f68a2817c950ad8
547
py
Python
manage.py
klebercode/django-heroku-aws-start
484f7f6821c7db8c3938d8c3abb198035a104054
[ "MIT" ]
null
null
null
manage.py
klebercode/django-heroku-aws-start
484f7f6821c7db8c3938d8c3abb198035a104054
[ "MIT" ]
null
null
null
manage.py
klebercode/django-heroku-aws-start
484f7f6821c7db8c3938d8c3abb198035a104054
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'djangoherokuaws.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
34.1875
79
0.691042
55a10b74352656378efa7be3d0469f44c4e55a04
1,146
py
Python
src/apps/core/utilities/validations.py
veeqtor/Airtech-API
dd11a96be4328bda550421b303e4b340354d6174
[ "MIT" ]
2
2019-07-18T16:48:28.000Z
2020-07-21T08:30:48.000Z
src/apps/core/utilities/validations.py
veeqtor/Airtech-API
dd11a96be4328bda550421b303e4b340354d6174
[ "MIT" ]
null
null
null
src/apps/core/utilities/validations.py
veeqtor/Airtech-API
dd11a96be4328bda550421b303e4b340354d6174
[ "MIT" ]
null
null
null
"""Validations""" # system imports import re from datetime import datetime # third party imports from rest_framework import serializers from src.apps.core.utilities.messages import ERRORS from src.apps.core.utilities.response_utils import ResponseHandler # email regex EMAIL_REGEX = re.compile(r'(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)') # password regex PASSWORD_REGEX = re.compile( r'(^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)(?=.*[@$!%*#?&])[A-Za-z\d@$!%*#?&]{8,15}$)' ) def email_validation(data): """Validates the email""" if not EMAIL_REGEX.match(data): raise serializers.ValidationError(ERRORS['USR_01']) def password_validation(data): """Validates the password""" if not PASSWORD_REGEX.match(data): raise serializers.ValidationError(ERRORS['USR_02']) def date_validator(date=None): """validates the date format""" try: if date is None: ResponseHandler.raise_error({'date': ERRORS['RES_02']}) date_obj = datetime.strptime(date, '%Y-%m-%d') return date_obj except ValueError: ResponseHandler.raise_error({'date': ERRORS['RES_01']})
24.382979
81
0.650087
73c9c45fb7d217e1d418314f40088ec1465e6e30
1,551
py
Python
my_recognizer.py
jpventura/AIND-Recognizer
60e54e9649d85442deb781f941ffaa834508b98b
[ "MIT" ]
null
null
null
my_recognizer.py
jpventura/AIND-Recognizer
60e54e9649d85442deb781f941ffaa834508b98b
[ "MIT" ]
null
null
null
my_recognizer.py
jpventura/AIND-Recognizer
60e54e9649d85442deb781f941ffaa834508b98b
[ "MIT" ]
null
null
null
import warnings from asl_data import SinglesData def recognize(models: dict, test_set: SinglesData): """ Recognize test word sequences from word models set :param models: dict of trained models {'SOMEWORD': GaussianHMM model object, 'SOMEOTHERWORD': GaussianHMM model object, ...} :param test_set: SinglesData object :return: (list, list) as probabilities, guesses both lists are ordered by the test set word_id probabilities is a list of dictionaries where each key a word and value is Log Liklihood [{SOMEWORD': LogLvalue, 'SOMEOTHERWORD' LogLvalue, ... }, {SOMEWORD': LogLvalue, 'SOMEOTHERWORD' LogLvalue, ... }, ] guesses is a list of the best guess words ordered by the test set word_id ['WORDGUESS0', 'WORDGUESS1', 'WORDGUESS2',...] """ warnings.filterwarnings("ignore", category=DeprecationWarning) probabilities = [] words = [] for w, (x, test_length) in test_set.get_all_Xlengths().items(): best_score = float("-Inf") best_word = "" probability = dict() for word, model in models.items(): try: score = model.score(x, test_length) except (AttributeError, ValueError): score = float("-Inf") if score > best_score: best_score = score best_word = word probability[word] = score probabilities.append(probability) words.append(best_word) return probabilities, words
33
95
0.621534
134a308b438b485c6d23fba67a54d49edf032970
559
py
Python
freqerica/util/qulacsnize.py
ymtz03/freqerica
d79e76181a037da5c11b47f8a4e1bf4387a0468f
[ "BSD-2-Clause" ]
1
2020-05-08T15:28:04.000Z
2020-05-08T15:28:04.000Z
freqerica/util/qulacsnize.py
ymtz03/freqerica
d79e76181a037da5c11b47f8a4e1bf4387a0468f
[ "BSD-2-Clause" ]
null
null
null
freqerica/util/qulacsnize.py
ymtz03/freqerica
d79e76181a037da5c11b47f8a4e1bf4387a0468f
[ "BSD-2-Clause" ]
null
null
null
from qulacs import Observable import numpy as np from itertools import product def convert_qoperator_to_observable(n_qubits, qop): observable = Observable(n_qubits) for term in qop.terms: operators = ["{} {}".format(axis, index_qubit) for index_qubit, axis in term] #print(operators) observable.add_operator(qop.terms[term].real, ' '.join(operators)) return observable def convert_state_vector(n_qubits, state_vector): return state_vector.reshape([2]*n_qubits).transpose(tuple(range(n_qubits-1,-1,-1))).reshape(-1)
32.882353
99
0.728086
5a237be584d92465d0f328840c03200186aa6088
635
py
Python
config/api_router.py
saduqz/csv-analyzer-test
732d4902aeba9278e7547ed5a83e4a482790076c
[ "MIT" ]
null
null
null
config/api_router.py
saduqz/csv-analyzer-test
732d4902aeba9278e7547ed5a83e4a482790076c
[ "MIT" ]
null
null
null
config/api_router.py
saduqz/csv-analyzer-test
732d4902aeba9278e7547ed5a83e4a482790076c
[ "MIT" ]
null
null
null
# Django from django.conf import settings from django.urls import include, path, re_path from rest_framework.routers import DefaultRouter, SimpleRouter from rest_framework_simplejwt import views as jwt_views from djoser import views if settings.DEBUG: router = DefaultRouter() else: router = SimpleRouter() router.register("users", views.UserViewSet) app_name = "api" urlpatterns = [ # Authentication (Djoser) path('auth/', include(router.urls)), re_path(r"^auth/jwt/create/?", jwt_views.TokenObtainPairView.as_view(), name="jwt-create"), path('dataset/', include('csv_analyzer.apps.dataset.urls_api')), ]
26.458333
95
0.748031
36b1e2bc96090f4397dba11ee3459f92268cbb59
6,960
py
Python
pandas/computation/eval.py
ssalonen/pandas
1929563fdb5358a41420d103a388aa2bd494d543
[ "PSF-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
1
2015-11-25T19:12:03.000Z
2015-11-25T19:12:03.000Z
pandas/computation/eval.py
pierre-haessig/pandas
f9e0b7df8ca8a92133d3cea0a26181140f991e2d
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
pandas/computation/eval.py
pierre-haessig/pandas
f9e0b7df8ca8a92133d3cea0a26181140f991e2d
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python """Top level ``eval`` module. """ import numbers import numpy as np from pandas.core import common as com from pandas.compat import string_types from pandas.computation.expr import Expr, _parsers, _ensure_scope from pandas.computation.engines import _engines def _check_engine(engine): """Make sure a valid engine is passed. Parameters ---------- engine : str Raises ------ KeyError * If an invalid engine is passed ImportError * If numexpr was requested but doesn't exist """ if engine not in _engines: raise KeyError('Invalid engine {0!r} passed, valid engines are' ' {1}'.format(engine, list(_engines.keys()))) # TODO: validate this in a more general way (thinking of future engines # that won't necessarily be import-able) # Could potentially be done on engine instantiation if engine == 'numexpr': try: import numexpr except ImportError: raise ImportError("'numexpr' not found. Cannot use " "engine='numexpr' if 'numexpr' is not installed") def _check_parser(parser): """Make sure a valid parser is passed. Parameters ---------- parser : str Raises ------ KeyError * If an invalid parser is passed """ if parser not in _parsers: raise KeyError('Invalid parser {0!r} passed, valid parsers are' ' {1}'.format(parser, _parsers.keys())) def _check_resolvers(resolvers): if resolvers is not None: for resolver in resolvers: if not hasattr(resolver, '__getitem__'): name = type(resolver).__name__ raise AttributeError('Resolver of type {0!r} must implement ' 'the __getitem__ method'.format(name)) def _check_expression(expr): """Make sure an expression is not an empty string Parameters ---------- expr : object An object that can be converted to a string Raises ------ ValueError * If expr is an empty string """ if not expr: raise ValueError("expr cannot be an empty string") def _convert_expression(expr): """Convert an object to an expression. Thus function converts an object to an expression (a unicode string) and checks to make sure it isn't empty after conversion. This is used to convert operators to their string representation for recursive calls to :func:`~pandas.eval`. Parameters ---------- expr : object The object to be converted to a string. Returns ------- s : unicode The string representation of an object. Raises ------ ValueError * If the expression is empty. """ s = com.pprint_thing(expr) _check_expression(s) return s def eval(expr, parser='pandas', engine='numexpr', truediv=True, local_dict=None, global_dict=None, resolvers=None, level=2): """Evaluate a Python expression as a string using various backends. The following arithmetic operations are supported: ``+``, ``-``, ``*``, ``/``, ``**``, ``%``, ``//`` (python engine only) along with the following boolean operations: ``|`` (or), ``&`` (and), and ``~`` (not). Additionally, the ``'pandas'`` parser allows the use of :keyword:`and`, :keyword:`or`, and :keyword:`not` with the same semantics as the corresponding bitwise operators. :class:`~pandas.Series` and :class:`~pandas.DataFrame` objects are supported and behave as they would with plain ol' Python evaluation. Parameters ---------- expr : str or unicode The expression to evaluate. This string cannot contain any Python `statements <http://docs.python.org/2/reference/simple_stmts.html#simple-statements>`__, only Python `expressions <http://docs.python.org/2/reference/simple_stmts.html#expression-statements>`__. parser : string, default 'pandas', {'pandas', 'python'} The parser to use to construct the syntax tree from the expression. The default of ``'pandas'`` parses code slightly different than standard Python. Alternatively, you can parse an expression using the ``'python'`` parser to retain strict Python semantics. See the :ref:`enhancing performance <enhancingperf.eval>` documentation for more details. engine : string, default 'numexpr', {'python', 'numexpr'} The engine used to evaluate the expression. Supported engines are - ``'numexpr'``: This default engine evaluates pandas objects using numexpr for large speed ups in complex expressions with large frames. - ``'python'``: Performs operations as if you had ``eval``'d in top level python. This engine is generally not that useful. More backends may be available in the future. truediv : bool, optional Whether to use true division, like in Python >= 3 local_dict : dict or None, optional A dictionary of local variables, taken from locals() by default. global_dict : dict or None, optional A dictionary of global variables, taken from globals() by default. resolvers : list of dict-like or None, optional A list of objects implementing the ``__getitem__`` special method that you can use to inject an additional collection of namespaces to use for variable lookup. For example, this is used in the :meth:`~pandas.DataFrame.query` method to inject the :attr:`~pandas.DataFrame.index` and :attr:`~pandas.DataFrame.columns` variables that refer to their respective :class:`~pandas.DataFrame` instance attributes. level : int, optional The number of prior stack frames to traverse and add to the current scope. Most users will **not** need to change this parameter. Returns ------- ndarray, numeric scalar, DataFrame, Series Notes ----- The ``dtype`` of any objects involved in an arithmetic ``%`` operation are recursively cast to ``float64``. See the :ref:`enhancing performance <enhancingperf.eval>` documentation for more details. See Also -------- pandas.DataFrame.query pandas.DataFrame.eval """ expr = _convert_expression(expr) _check_engine(engine) _check_parser(parser) _check_resolvers(resolvers) # get our (possibly passed-in) scope env = _ensure_scope(global_dict=global_dict, local_dict=local_dict, resolvers=resolvers, level=level) parsed_expr = Expr(expr, engine=engine, parser=parser, env=env, truediv=truediv) # construct the engine and evaluate the parsed expression eng = _engines[engine] eng_inst = eng(parsed_expr) ret = eng_inst.evaluate() return ret
33.623188
88
0.640086
99f22a8599a9a2fc87930537c70d3aba2d790f24
8,471
py
Python
ceilometer/publisher/rpc.py
citrix-openstack-build/ceilometer
29f2ffc7e511a152d6e8742cd233c3dc399b8fff
[ "Apache-2.0" ]
null
null
null
ceilometer/publisher/rpc.py
citrix-openstack-build/ceilometer
29f2ffc7e511a152d6e8742cd233c3dc399b8fff
[ "Apache-2.0" ]
null
null
null
ceilometer/publisher/rpc.py
citrix-openstack-build/ceilometer
29f2ffc7e511a152d6e8742cd233c3dc399b8fff
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- # # Copyright © 2012 New Dream Network, LLC (DreamHost) # # Author: Doug Hellmann <doug.hellmann@dreamhost.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Publish a sample using the preferred RPC mechanism. """ import hashlib import hmac import itertools import operator import urlparse from oslo.config import cfg from ceilometer.openstack.common import log from ceilometer.openstack.common import rpc from ceilometer import publisher from ceilometer import utils LOG = log.getLogger(__name__) METER_PUBLISH_OPTS = [ cfg.StrOpt('metering_topic', default='metering', help='the topic ceilometer uses for metering messages', deprecated_group="DEFAULT", ), cfg.StrOpt('metering_secret', secret=True, default='change this or be hacked', help='Secret value for signing metering messages', deprecated_group="DEFAULT", ), ] def register_opts(config): """Register the options for publishing metering messages. """ config.register_opts(METER_PUBLISH_OPTS, group="publisher_rpc") register_opts(cfg.CONF) cfg.CONF.import_opt('rabbit_max_retries', 'ceilometer.openstack.common.rpc.impl_kombu') def compute_signature(message, secret): """Return the signature for a message dictionary. """ digest_maker = hmac.new(secret, '', hashlib.sha256) for name, value in utils.recursive_keypairs(message): if name == 'message_signature': # Skip any existing signature value, which would not have # been part of the original message. continue digest_maker.update(name) digest_maker.update(unicode(value).encode('utf-8')) return digest_maker.hexdigest() def verify_signature(message, secret): """Check the signature in the message against the value computed from the rest of the contents. """ old_sig = message.get('message_signature') new_sig = compute_signature(message, secret) return new_sig == old_sig def meter_message_from_counter(sample, secret): """Make a metering message ready to be published or stored. Returns a dictionary containing a metering message for a notification message and a Sample instance. """ msg = {'source': sample.source, 'counter_name': sample.name, 'counter_type': sample.type, 'counter_unit': sample.unit, 'counter_volume': sample.volume, 'user_id': sample.user_id, 'project_id': sample.project_id, 'resource_id': sample.resource_id, 'timestamp': sample.timestamp, 'resource_metadata': sample.resource_metadata, 'message_id': sample.id, } msg['message_signature'] = compute_signature(msg, secret) return msg class RPCPublisher(publisher.PublisherBase): def __init__(self, parsed_url): options = urlparse.parse_qs(parsed_url.query) # the values of the option is a list of url params values # only take care of the latest one if the option # is provided more than once self.per_meter_topic = bool(int( options.get('per_meter_topic', [0])[-1])) self.target = options.get('target', ['record_metering_data'])[0] self.policy = options.get('policy', ['wait'])[-1] self.max_queue_length = int(options.get( 'max_queue_length', [1024])[-1]) self.local_queue = [] if self.policy in ['queue', 'drop']: LOG.info('Publishing policy set to %s, \ override rabbit_max_retries to 1' % self.policy) cfg.CONF.set_override("rabbit_max_retries", 1) elif self.policy == 'default': LOG.info('Publishing policy set to %s' % self.policy) else: LOG.warn('Publishing policy is unknown (%s) force to default' % self.policy) self.policy = 'default' def publish_samples(self, context, samples): """Publish samples on RPC. :param context: Execution context from the service or RPC call. :param samples: Samples from pipeline after transformation. """ meters = [ meter_message_from_counter( sample, cfg.CONF.publisher_rpc.metering_secret) for sample in samples ] topic = cfg.CONF.publisher_rpc.metering_topic msg = { 'method': self.target, 'version': '1.0', 'args': {'data': meters}, } LOG.audit('Publishing %d samples on %s', len(msg['args']['data']), topic) self.local_queue.append((context, topic, msg)) if self.per_meter_topic: for meter_name, meter_list in itertools.groupby( sorted(meters, key=operator.itemgetter('counter_name')), operator.itemgetter('counter_name')): msg = { 'method': self.target, 'version': '1.0', 'args': {'data': list(meter_list)}, } topic_name = topic + '.' + meter_name LOG.audit('Publishing %d samples on %s', len(msg['args']['data']), topic_name) self.local_queue.append((context, topic_name, msg)) self.flush() def flush(self): #note(sileht): # IO of the rpc stuff in handled by eventlet, # this is why the self.local_queue, is emptied before processing the # queue and the remaining messages in the queue are added to # self.local_queue after in case of a other call have already added # something in the self.local_queue queue = self.local_queue self.local_queue = [] self.local_queue = self._process_queue(queue, self.policy) + \ self.local_queue if self.policy == 'queue': self._check_queue_length() def _check_queue_length(self): queue_length = len(self.local_queue) if queue_length > self.max_queue_length > 0: count = queue_length - self.max_queue_length self.local_queue = self.local_queue[count:] LOG.warn("Publisher max local_queue length is exceeded, " "dropping %d oldest samples", count) @staticmethod def _process_queue(queue, policy): #note(sileht): # the behavior of rpc.cast call depends of rabbit_max_retries # if rabbit_max_retries <= 0: # it returns only if the msg has been sent on the amqp queue # if rabbit_max_retries > 0: # it raises a exception if rabbitmq is unreachable # # Ugly, but actually the oslo.rpc do a sys.exit(1) instead of a # RPCException, so we catch both until a correct behavior is # implemented in oslo # # the default policy just respect the rabbitmq configuration # nothing special is done if rabbit_max_retries <= 0 # and exception is reraised if rabbit_max_retries > 0 while queue: context, topic, msg = queue[0] try: rpc.cast(context, topic, msg) except (SystemExit, rpc.common.RPCException): samples = sum([len(m['args']['data']) for _, _, m in queue]) if policy == 'queue': LOG.warn("Failed to publish %s samples, queue them", samples) return queue elif policy == 'drop': LOG.warn("Failed to publish %d samples, dropping them", samples) return [] # default, occur only if rabbit_max_retries > 0 raise else: queue.pop(0) return []
35.742616
76
0.604769
6bf5a4fc2db2ed5b49d4b9883a0f29c144dc8053
11,061
py
Python
clustering_normalized_cuts/networks.py
kinoute/google-research
4a59cab927579ea9722e43252c695de5da4eb5e2
[ "Apache-2.0" ]
11
2020-01-29T07:25:04.000Z
2022-03-05T16:01:21.000Z
clustering_normalized_cuts/networks.py
RubensZimbres/google-research
562c7c6ef959cb3cb382b1b660ccc45e8f5289c4
[ "Apache-2.0" ]
13
2020-01-28T22:19:53.000Z
2022-02-10T00:39:26.000Z
clustering_normalized_cuts/networks.py
RubensZimbres/google-research
562c7c6ef959cb3cb382b1b660ccc45e8f5289c4
[ "Apache-2.0" ]
2
2020-02-27T11:09:49.000Z
2021-08-25T07:32:15.000Z
# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains network definitions (for siamese net, and cnc_net).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile import time import numpy as np import tensorflow as tf from tensorflow import gfile from tensorflow.keras import backend as K from tensorflow.keras.layers import Input from tensorflow.keras.layers import Lambda from tensorflow.keras.models import Model from clustering_normalized_cuts import affinities from clustering_normalized_cuts import train from clustering_normalized_cuts import util from clustering_normalized_cuts.layer import stack_layers class SiameseNet(object): """Class for Siamese Network.""" def __init__(self, inputs, arch, siam_reg, main_path, y_true): self.orig_inputs = inputs # set up inputs self.inputs = { 'A': inputs['Unlabeled'], 'B': Input(shape=inputs['Unlabeled'].get_shape().as_list()[1:]), 'Labeled': inputs['Labeled'], } self.main_path = os.path.join(main_path, 'siemese/') self.y_true = y_true # generate layers self.layers = [] self.layers += util.make_layer_list(arch, 'siamese', siam_reg) # create the siamese net self.outputs = stack_layers(self.inputs, self.layers) # add the distance layer self.distance = Lambda( affinities.euclidean_distance, output_shape=affinities.eucl_dist_output_shape)( [self.outputs['A'], self.outputs['B']]) # create the distance model for training self.net = Model([self.inputs['A'], self.inputs['B']], self.distance) # compile the siamese network self.net.compile( loss=affinities.get_contrastive_loss(m_neg=1, m_pos=0.05), optimizer='rmsprop') def train(self, pairs_train, dist_train, pairs_val, dist_val, lr, drop, patience, num_epochs, batch_size, dset, load=True): """Train the Siamese Network.""" if load: # load weights into model output_path = os.path.join(self.main_path, dset) load_model(self.net, output_path, '_siamese') return # create handler for early stopping and learning rate scheduling self.lh = util.LearningHandler( lr=lr, drop=drop, lr_tensor=self.net.optimizer.lr, patience=patience) # initialize the training generator train_gen_ = util.train_gen(pairs_train, dist_train, batch_size) # format the validation data for keras validation_data = ([pairs_val[:, 0], pairs_val[:, 1]], dist_val) # compute the steps per epoch steps_per_epoch = int(len(pairs_train) / batch_size) # train the network self.net.fit_generator( train_gen_, epochs=num_epochs, validation_data=validation_data, steps_per_epoch=steps_per_epoch, callbacks=[self.lh]) model_json = self.net.to_json() output_path = os.path.join(self.main_path, dset) save_model(self.net, model_json, output_path, '_siamese') def predict(self, x, batch_sizes): # compute the siamese embeddings of the input data return train.predict( self.outputs['A'], x_unlabeled=x, inputs=self.orig_inputs, y_true=self.y_true, batch_sizes=batch_sizes) class CncNet(object): """Class for CNC Network.""" def __init__(self, inputs, arch, cnc_reg, y_true, y_train_labeled_onehot, n_clusters, affinity, scale_nbr, n_nbrs, batch_sizes, result_path, dset, siamese_net=None, x_train=None, lr=0.01, temperature=1.0, bal_reg=0.0): self.y_true = y_true self.y_train_labeled_onehot = y_train_labeled_onehot self.inputs = inputs self.batch_sizes = batch_sizes self.result_path = result_path self.lr = lr self.temperature = temperature # generate layers self.layers = util.make_layer_list(arch[:-1], 'cnc', cnc_reg) print('Runing with CNC loss') self.layers += [{ 'type': 'None', 'size': n_clusters, 'l2_reg': cnc_reg, 'name': 'cnc_{}'.format(len(arch)) }] # create CncNet self.outputs = stack_layers(self.inputs, self.layers) self.net = Model( inputs=self.inputs['Unlabeled'], outputs=self.outputs['Unlabeled']) # DEFINE LOSS # generate affinity matrix W according to params if affinity == 'siamese': input_affinity = tf.concat( [siamese_net.outputs['A'], siamese_net.outputs['Labeled']], axis=0) x_affinity = siamese_net.predict(x_train, batch_sizes) elif affinity in ['knn', 'full']: input_affinity = tf.concat( [self.inputs['Unlabeled'], self.inputs['Labeled']], axis=0) x_affinity = x_train # calculate scale for affinity matrix scale = util.get_scale(x_affinity, self.batch_sizes['Unlabeled'], scale_nbr) # create affinity matrix if affinity == 'full': weight_mat = affinities.full_affinity(input_affinity, scale=scale) elif affinity in ['knn', 'siamese']: weight_mat = affinities.knn_affinity( input_affinity, n_nbrs, scale=scale, scale_nbr=scale_nbr) # define loss self.tau = tf.Variable(self.temperature, name='temperature') self.outputs['Unlabeled'] = util.gumbel_softmax(self.outputs['Unlabeled'], self.tau) num_nodes = self.batch_sizes['Unlabeled'] cluster_size = tf.reduce_sum(self.outputs['Unlabeled'], axis=0) ground_truth = [num_nodes / float(n_clusters)] * n_clusters bal = tf.losses.mean_squared_error(ground_truth, cluster_size) degree = tf.expand_dims(tf.reduce_sum(weight_mat, axis=1), 0) vol = tf.matmul(degree, self.outputs['Unlabeled'], name='vol') normalized_prob = tf.divide( self.outputs['Unlabeled'], vol[tf.newaxis, :], name='normalized_prob')[0] gain = tf.matmul( normalized_prob, tf.transpose(1 - self.outputs['Unlabeled']), name='res2') self.loss = tf.reduce_sum(gain * weight_mat) + bal_reg * bal # create the train step update self.learning_rate = tf.Variable(self.lr, name='cnc_learning_rate') self.train_step = tf.train.RMSPropOptimizer( learning_rate=self.learning_rate).minimize( self.loss, var_list=self.net.trainable_weights) # initialize cnc_net variables K.get_session().run(tf.global_variables_initializer()) K.get_session().run(tf.variables_initializer(self.net.trainable_weights)) if affinity == 'siamese': output_path = os.path.join(self.main_path, dset) load_model(siamese_net, output_path, '_siamese') def train(self, x_train_unlabeled, x_train_labeled, x_val_unlabeled, drop, patience, min_tem, num_epochs, load=False): """Train the CNC network.""" file_name = 'cnc_net' if load: # load weights into model print('load pretrain weights of the CNC network.') load_model(self.net, self.result_path, file_name) return # create handler for early stopping and learning rate scheduling self.lh = util.LearningHandler( lr=self.lr, drop=drop, lr_tensor=self.learning_rate, patience=patience, tau=self.temperature, tau_tensor=self.tau, min_tem=min_tem, gumble=True) losses = np.empty((num_epochs,)) val_losses = np.empty((num_epochs,)) # begin cnc_net training loop self.lh.on_train_begin() for i in range(num_epochs): # train cnc_net losses[i] = train.train_step( return_var=[self.loss], updates=self.net.updates + [self.train_step], x_unlabeled=x_train_unlabeled, inputs=self.inputs, y_true=self.y_true, batch_sizes=self.batch_sizes, x_labeled=x_train_labeled, y_labeled=self.y_train_labeled_onehot, batches_per_epoch=100)[0] # get validation loss val_losses[i] = train.predict_sum( self.loss, x_unlabeled=x_val_unlabeled, inputs=self.inputs, y_true=self.y_true, x_labeled=x_train_unlabeled[0:0], y_labeled=self.y_train_labeled_onehot, batch_sizes=self.batch_sizes) # do early stopping if necessary if self.lh.on_epoch_end(i, val_losses[i]): print('STOPPING EARLY') break # print training status print('Epoch: {}, loss={:2f}, val_loss={:2f}'.format( i, losses[i], val_losses[i])) with gfile.Open(self.result_path + 'losses', 'a') as f: f.write(str(i) + ' ' + str(losses[i]) + ' ' + str(val_losses[i]) + '\n') model_json = self.net.to_json() save_model(self.net, model_json, self.result_path, file_name) def predict(self, x): # test inputs do not require the 'Labeled' input inputs_test = {'Unlabeled': self.inputs['Unlabeled']} return train.predict( self.outputs['Unlabeled'], x_unlabeled=x, inputs=inputs_test, y_true=self.y_true, x_labeled=x[0:0], y_labeled=self.y_train_labeled_onehot[0:0], batch_sizes=self.batch_sizes) def save_model(net, model_json, output_path, file_name): """serialize weights to HDF5.""" with gfile.Open(output_path + file_name + '.json', 'w') as json_file: json_file.write(model_json) # serialize weights to HDF5 weight_path = os.path.join(output_path, file_name, '.h5') local_filename = weight_path.split('/')[-1] tmp_filename = os.path.join(tempfile.gettempdir(), str(int(time.time())) + '_' + local_filename) net.save_weights(tmp_filename) gfile.Copy(tmp_filename, weight_path, overwrite=True) gfile.Remove(tmp_filename) def load_model(net, output_path, file_name): weights_path = os.path.join(output_path, file_name, '.h5') local_filename = weights_path.split('/')[-1] tmp_filename = os.path.join(tempfile.gettempdir(), str(int(time.time())) + '_' + local_filename) gfile.Copy(weights_path, tmp_filename) net.load_weights(tmp_filename) gfile.Remove(tmp_filename)
33.416918
80
0.647591
0ba9d1fafe4f2144a17fbd1b39ed8c1d0b285168
1,622
py
Python
Z - Tool Box/LaZagne/Windows/lazagne/softwares/memory/libkeepass/crypto.py
dfirpaul/Active-Directory-Exploitation-Cheat-Sheet-1
1dcf54522e9d20711ff1114550dc2893ed3e9ed0
[ "MIT" ]
1,290
2020-05-28T21:24:43.000Z
2022-03-31T16:38:43.000Z
Z - Tool Box/LaZagne/Windows/lazagne/softwares/memory/libkeepass/crypto.py
dfirpaul/Active-Directory-Exploitation-Cheat-Sheet-1
1dcf54522e9d20711ff1114550dc2893ed3e9ed0
[ "MIT" ]
1
2020-07-03T21:14:52.000Z
2020-07-03T21:14:52.000Z
Z - Tool Box/LaZagne/Windows/lazagne/softwares/memory/libkeepass/crypto.py
dfirpaul/Active-Directory-Exploitation-Cheat-Sheet-1
1dcf54522e9d20711ff1114550dc2893ed3e9ed0
[ "MIT" ]
280
2020-05-29T17:28:38.000Z
2022-03-31T13:54:15.000Z
# -*- coding: utf-8 -*- import hashlib import struct from lazagne.config.crypto.pyaes.aes import AESModeOfOperationECB, AESModeOfOperationCBC from lazagne.config.winstructure import char_to_int AES_BLOCK_SIZE = 16 def sha256(s): """Return SHA256 digest of the string `s`.""" return hashlib.sha256(s).digest() def transform_key(key, seed, rounds): """Transform `key` with `seed` `rounds` times using AES ECB.""" # create transform cipher with transform seed cipher = AESModeOfOperationECB(seed) # transform composite key rounds times for n in range(0, rounds): key = b"".join([cipher.encrypt(key[i:i + AES_BLOCK_SIZE]) for i in range(0, len(key), AES_BLOCK_SIZE)]) # return hash of transformed key return sha256(key) def aes_cbc_decrypt(data, key, enc_iv): """Decrypt and return `data` with AES CBC.""" cipher = AESModeOfOperationCBC(key, iv=enc_iv) return b"".join([cipher.decrypt(data[i:i + AES_BLOCK_SIZE]) for i in range(0, len(data), AES_BLOCK_SIZE)]) def aes_cbc_encrypt(data, key, enc_iv): cipher = AESModeOfOperationCBC(key, iv=enc_iv) return b"".join([cipher.encrypt(data[i:i + AES_BLOCK_SIZE]) for i in range(0, len(data), AES_BLOCK_SIZE)]) def unpad(data): extra = char_to_int(data[-1]) return data[:len(data) - extra] def pad(s): n = AES_BLOCK_SIZE - len(s) % AES_BLOCK_SIZE return s + n * struct.pack('b', n) def xor(aa, bb): """Return a bytearray of a bytewise XOR of `aa` and `bb`.""" result = bytearray() for a, b in zip(bytearray(aa), bytearray(bb)): result.append(a ^ b) return result
30.037037
111
0.680641
f8fb3862c11b5e14d2244bb278739261c4844524
2,149
py
Python
baoming/webapp/migrations/0040_systemmessage.py
hanxiaoshun/RegistrationSystem
2f7310508fc1725e96fe941b1062ce7f26f265a4
[ "Apache-2.0" ]
null
null
null
baoming/webapp/migrations/0040_systemmessage.py
hanxiaoshun/RegistrationSystem
2f7310508fc1725e96fe941b1062ce7f26f265a4
[ "Apache-2.0" ]
14
2020-06-06T01:24:24.000Z
2022-03-12T00:17:22.000Z
baoming/webapp/migrations/0040_systemmessage.py
hanxiaoshun/RegistrationSystem
2f7310508fc1725e96fe941b1062ce7f26f265a4
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.2.2 on 2019-07-21 06:41 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('webapp', '0039_interviewaudit_operation_level'), ] operations = [ migrations.CreateModel( name='SystemMessage', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='系统信息ID')), ('message', models.TextField(default='', max_length=500, verbose_name='发送的消息')), ('send_status', models.CharField(choices=[('1', '成功'), ('2', '失败')], default=1, help_text='1 成功 2 失败,发送成功,将以系统消息的方式提示接收方', max_length=50, verbose_name='发送状态')), ('receive_status', models.CharField(choices=[('1', '已查看'), ('2', '未查看')], default=2, help_text='1 已查看 2 未查看,查看之后将不再会被推送为系统消息', max_length=50, verbose_name='查看状态')), ('feedback_status', models.CharField(choices=[('1', '已确认'), ('2', '未确认')], default=2, help_text='1 已确认表明本次通话的结束 2 未确认表明本次信息已查看但但未确认信息给回馈者', max_length=50, verbose_name='确认状态')), ('create_time', models.DateTimeField(default=django.utils.timezone.now, verbose_name='生成时间')), ('modify_time', models.DateTimeField(auto_now=True, verbose_name='修改时间')), ('feedback_message', models.ForeignKey(blank=True, help_text='确认并回复消息', null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='RegisterUserInfo_Sender', to='webapp.SystemMessage', verbose_name='确认并回复消息')), ('register_receiver', models.ForeignKey(blank=True, help_text='接收方', null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='RegisterUserInfo_Receiver', to='webapp.RegisterUserInfo', verbose_name='接收方')), ('register_sender', models.ForeignKey(blank=True, help_text='发送方', null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='RegisterUserInfo_Sender', to='webapp.RegisterUserInfo', verbose_name='发送方')), ], options={ 'ordering': ['id'], }, ), ]
63.205882
237
0.656584
fe4b300f4f73df56391d8e93fab024577ba525c1
384
py
Python
bookCar_project/bookCar_app/urls.py
cs-fullstack-2019-spring/django-models3-cw-tdude0175
29fbd8862467864152e0760640a578c7dcb3c2cf
[ "Apache-2.0" ]
null
null
null
bookCar_project/bookCar_app/urls.py
cs-fullstack-2019-spring/django-models3-cw-tdude0175
29fbd8862467864152e0760640a578c7dcb3c2cf
[ "Apache-2.0" ]
null
null
null
bookCar_project/bookCar_app/urls.py
cs-fullstack-2019-spring/django-models3-cw-tdude0175
29fbd8862467864152e0760640a578c7dcb3c2cf
[ "Apache-2.0" ]
null
null
null
from django.urls import path from . import views urlpatterns =\ [ # to many paths so little time path('',views.index,name='index'), path('newbook',views.newBook,name = 'newBook'), path('bookview',views.bookView, name = 'bookView'), path('newcar',views.newCar, name = 'newCar'), path('allcar', views.allCar, name = 'carView'), ]
32
59
0.598958
a2a1f0e8d632b84243302dd8a4e3becdbf3d3baf
167
py
Python
clear.py
DaveBuckingham/robosoft
b1e2d171b301fc4accaa195ad2a972f020b71fce
[ "MIT" ]
2
2016-02-18T05:41:16.000Z
2016-07-07T05:28:56.000Z
clear.py
DaveBuckingham/robosoft
b1e2d171b301fc4accaa195ad2a972f020b71fce
[ "MIT" ]
null
null
null
clear.py
DaveBuckingham/robosoft
b1e2d171b301fc4accaa195ad2a972f020b71fce
[ "MIT" ]
null
null
null
import mctransmitter mctransmitter.initialize() mctransmitter.tx_analog(0,0) mctransmitter.tx_analog(1,0) mctransmitter.tx_digital(0,0) mctransmitter.tx_digital(1,0)
20.875
29
0.838323
9ae5b66750af84de69e95347aa20c0d95481eb4e
16,968
py
Python
rasa_nlu/components.py
julien-c/rasa_nlu
e7901773a7ce0af18707019c849909fd3bbde8ef
[ "Apache-2.0" ]
8
2019-09-02T08:17:20.000Z
2021-11-15T05:56:33.000Z
rasa_nlu/components.py
julien-c/rasa_nlu
e7901773a7ce0af18707019c849909fd3bbde8ef
[ "Apache-2.0" ]
6
2020-09-26T00:52:34.000Z
2022-02-10T01:37:38.000Z
rasa_nlu/components.py
jacklee20151/rasa_nlu_bert
823ac63ad7a17ead631d353f193cc48b9ba0aee0
[ "Apache-2.0" ]
10
2019-04-26T06:09:00.000Z
2021-03-22T03:25:04.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import typing from builtins import object from typing import Any from typing import Dict from typing import List from typing import Optional from typing import Set from typing import Text from typing import Tuple from typing import Hashable from rasa_nlu import config from rasa_nlu.config import RasaNLUModelConfig from rasa_nlu.training_data import Message if typing.TYPE_CHECKING: from rasa_nlu.training_data import TrainingData from rasa_nlu.model import Metadata logger = logging.getLogger(__name__) def find_unavailable_packages(package_names): # type: (List[Text]) -> Set[Text] """Tries to import all the package names and returns the packages where it failed.""" import importlib failed_imports = set() for package in package_names: try: importlib.import_module(package) except ImportError: failed_imports.add(package) return failed_imports def validate_requirements(component_names): # type: (List[Text], Text) -> None """Ensures that all required python packages are installed to instantiate and used the passed components.""" from rasa_nlu import registry # Validate that all required packages are installed failed_imports = set() for component_name in component_names: component_class = registry.get_component_class(component_name) failed_imports.update(find_unavailable_packages( component_class.required_packages())) if failed_imports: # pragma: no cover # if available, use the development file to figure out the correct # version numbers for each requirement raise Exception("Not all required packages are installed. " + "To use this pipeline, you need to install the " "missing dependencies. " + "Please install {}".format(", ".join(failed_imports))) def validate_arguments(pipeline, context, allow_empty_pipeline=False): # type: (List[Component], Dict[Text, Any], bool) -> None """Validates a pipeline before it is run. Ensures, that all arguments are present to train the pipeline.""" # Ensure the pipeline is not empty if not allow_empty_pipeline and len(pipeline) == 0: raise ValueError("Can not train an empty pipeline. " "Make sure to specify a proper pipeline in " "the configuration using the `pipeline` key." + "The `backend` configuration key is " "NOT supported anymore.") provided_properties = set(context.keys()) for component in pipeline: for r in component.requires: if r not in provided_properties: raise Exception("Failed to validate at component " "'{}'. Missing property: '{}'" "".format(component.name, r)) provided_properties.update(component.provides) class MissingArgumentError(ValueError): """Raised when a function is called and not all parameters can be filled from the context / config. Attributes: message -- explanation of which parameter is missing """ def __init__(self, message): # type: (Text) -> None super(MissingArgumentError, self).__init__(message) self.message = message def __str__(self): return self.message class UnsupportedLanguageError(Exception): """Raised when a component is created but the language is not supported. Attributes: component -- component name language -- language that component doesn't support """ def __init__(self, component, language): # type: (Text, Text) -> None self.component = component self.language = language super(UnsupportedLanguageError, self).__init__(component, language) def __str__(self): return "component {} does not support language {}".format( self.component, self.language ) class Component(object): """A component is a message processing unit in a pipeline. Components are collected sequentially in a pipeline. Each component is called one after another. This holds for initialization, training, persisting and loading the components. If a component comes first in a pipeline, its methods will be called first. E.g. to process an incoming message, the ``process`` method of each component will be called. During the processing (as well as the training, persisting and initialization) components can pass information to other components. The information is passed to other components by providing attributes to the so called pipeline context. The pipeline context contains all the information of the previous components a component can use to do its own processing. For example, a featurizer component can provide features that are used by another component down the pipeline to do intent classification.""" # Name of the component to be used when integrating it in a # pipeline. E.g. ``[ComponentA, ComponentB]`` # will be a proper pipeline definition where ``ComponentA`` # is the name of the first component of the pipeline. name = "" # Defines what attributes the pipeline component will # provide when called. The listed attributes # should be set by the component on the message object # during test and train, e.g. # ```message.set("entities", [...])``` provides = [] # Which attributes on a message are required by this # component. e.g. if requires contains "tokens", than a # previous component in the pipeline needs to have "tokens" # within the above described `provides` property. requires = [] # Defines the default configuration parameters of a component # these values can be overwritten in the pipeline configuration # of the model. The component should choose sensible defaults # and should be able to create reasonable results with the defaults. defaults = {} # Defines what language(s) this component can handle. # This attribute is designed for instance method: `can_handle_language`. # Default value is None which means it can handle all languages. # This is an important feature for backwards compatibility of components. language_list = None def __init__(self, component_config=None): if not component_config: component_config = {} # makes sure the name of the configuration is part of the config # this is important for e.g. persistence component_config["name"] = self.name self.component_config = config.override_defaults( self.defaults, component_config) self.partial_processing_pipeline = None self.partial_processing_context = None @classmethod def required_packages(cls): # type: () -> List[Text] """Specify which python packages need to be installed to use this component, e.g. ``["spacy"]``. This list of requirements allows us to fail early during training if a required package is not installed.""" return [] @classmethod def load(cls, model_dir=None, # type: Optional[Text] model_metadata=None, # type: Optional[Metadata] cached_component=None, # type: Optional[Component] **kwargs # type: **Any ): # type: (...) -> Component """Load this component from file. After a component has been trained, it will be persisted by calling `persist`. When the pipeline gets loaded again, this component needs to be able to restore itself. Components can rely on any context attributes that are created by :meth:`components.Component.pipeline_init` calls to components previous to this one.""" if cached_component: return cached_component else: component_config = model_metadata.for_component(cls.name) return cls(component_config) @classmethod def create(cls, cfg): # type: (RasaNLUModelConfig) -> Component """Creates this component (e.g. before a training is started). Method can access all configuration parameters.""" # Check language supporting language = cfg.language if not cls.can_handle_language(language): # check failed raise UnsupportedLanguageError(cls.name, language) return cls(cfg.for_component(cls.name, cls.defaults)) def provide_context(self): # type: () -> Optional[Dict[Text, Any]] """Initialize this component for a new pipeline This function will be called before the training is started and before the first message is processed using the interpreter. The component gets the opportunity to add information to the context that is passed through the pipeline during training and message parsing. Most components do not need to implement this method. It's mostly used to initialize framework environments like MITIE and spacy (e.g. loading word vectors for the pipeline).""" pass def train(self, training_data, cfg, **kwargs): # type: (TrainingData, RasaNLUModelConfig, **Any) -> None """Train this component. This is the components chance to train itself provided with the training data. The component can rely on any context attribute to be present, that gets created by a call to :meth:`components.Component.pipeline_init` of ANY component and on any context attributes created by a call to :meth:`components.Component.train` of components previous to this one.""" pass def process(self, message, **kwargs): # type: (Message, **Any) -> None """Process an incoming message. This is the components chance to process an incoming message. The component can rely on any context attribute to be present, that gets created by a call to :meth:`components.Component.pipeline_init` of ANY component and on any context attributes created by a call to :meth:`components.Component.process` of components previous to this one.""" pass def persist(self, model_dir): # type: (Text) -> Optional[Dict[Text, Any]] """Persist this component to disk for future loading.""" pass @classmethod def cache_key(cls, model_metadata): # type: (Metadata) -> Optional[Text] """This key is used to cache components. If a component is unique to a model it should return None. Otherwise, an instantiation of the component will be reused for all models where the metadata creates the same key.""" return None def __getstate__(self): d = self.__dict__.copy() # these properties should not be pickled if "partial_processing_context" in d: del d["partial_processing_context"] if "partial_processing_pipeline" in d: del d["partial_processing_pipeline"] return d def __eq__(self, other): return self.__dict__ == other.__dict__ def prepare_partial_processing(self, pipeline, context): """Sets the pipeline and context used for partial processing. The pipeline should be a list of components that are previous to this one in the pipeline and have already finished their training (and can therefore be safely used to process messages).""" self.partial_processing_pipeline = pipeline self.partial_processing_context = context def partially_process(self, message): """Allows the component to process messages during training (e.g. external training data). The passed message will be processed by all components previous to this one in the pipeline.""" if self.partial_processing_context is not None: for component in self.partial_processing_pipeline: component.process(message, **self.partial_processing_context) else: logger.info("Failed to run partial processing due " "to missing pipeline.") return message @classmethod def can_handle_language(cls, language): # type: (Hashable) -> bool """Check if component supports a specific language. This method can be overwritten when needed. (e.g. dynamically determine which language is supported.)""" # if language_list is set to `None` it means: support all languages if language is None or cls.language_list is None: return True return language in cls.language_list class ComponentBuilder(object): """Creates trainers and interpreters based on configurations. Caches components for reuse.""" def __init__(self, use_cache=True): self.use_cache = use_cache # Reuse nlp and featurizers where possible to save memory, # every component that implements a cache-key will be cached self.component_cache = {} def __get_cached_component(self, component_name, model_metadata): # type: (Text, Metadata) -> Tuple[Optional[Component], Optional[Text]] """Load a component from the cache, if it exists. Returns the component, if found, and the cache key.""" from rasa_nlu import registry from rasa_nlu.model import Metadata component_class = registry.get_component_class(component_name) cache_key = component_class.cache_key(model_metadata) if (cache_key is not None and self.use_cache and cache_key in self.component_cache): return self.component_cache[cache_key], cache_key else: return None, cache_key def __add_to_cache(self, component, cache_key): # type: (Component, Text) -> None """Add a component to the cache.""" if cache_key is not None and self.use_cache: self.component_cache[cache_key] = component logger.info("Added '{}' to component cache. Key '{}'." "".format(component.name, cache_key)) def load_component(self, component_name, model_dir, model_metadata, **context): # type: (Text, Text, Metadata, **Any) -> Component """Tries to retrieve a component from the cache, else calls ``load`` to create a new component. Args: component_name (str): the name of the component to load model_dir (str): the directory to read the model from model_metadata (Metadata): the model's :class:`rasa_nlu.models.Metadata` Returns: Component: the loaded component. """ from rasa_nlu import registry from rasa_nlu.model import Metadata try: cached_component, cache_key = self.__get_cached_component( component_name, model_metadata) component = registry.load_component_by_name( component_name, model_dir, model_metadata, cached_component, **context) if not cached_component: # If the component wasn't in the cache, # let us add it if possible self.__add_to_cache(component, cache_key) return component except MissingArgumentError as e: # pragma: no cover raise Exception("Failed to load component '{}'. " "{}".format(component_name, e)) def create_component(self, component_name, cfg): # type: (Text, RasaNLUModelConfig) -> Component """Tries to retrieve a component from the cache, calls `create` to create a new component.""" from rasa_nlu import registry from rasa_nlu.model import Metadata try: component, cache_key = self.__get_cached_component( component_name, Metadata(cfg.as_dict(), None)) if component is None: component = registry.create_component_by_name(component_name, cfg) self.__add_to_cache(component, cache_key) return component except MissingArgumentError as e: # pragma: no cover raise Exception("Failed to create component '{}'. " "{}".format(component_name, e))
37.959732
78
0.650519
671d9c4761ffef48782d177ba46eb8bbd51a7381
388
py
Python
app/wsgi.py
MuratovER/practice_app
84f3c0c85460418a4f195c774142abe95b199083
[ "MIT" ]
null
null
null
app/wsgi.py
MuratovER/practice_app
84f3c0c85460418a4f195c774142abe95b199083
[ "MIT" ]
1
2022-02-14T17:51:08.000Z
2022-02-14T17:58:27.000Z
app/wsgi.py
MuratovER/practice_app
84f3c0c85460418a4f195c774142abe95b199083
[ "MIT" ]
null
null
null
""" WSGI config for app project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'app.settings') application = get_wsgi_application()
17.636364
78
0.770619
9c0d1db0efa32ba25988f60ae86c81d3ef1cc7e5
1,994
py
Python
test/functional/p2p_invalid_locator.py
gbcrio/gbcr
295d954adc1c7490886f8dfe4a63fa880cb6e0d6
[ "MIT" ]
null
null
null
test/functional/p2p_invalid_locator.py
gbcrio/gbcr
295d954adc1c7490886f8dfe4a63fa880cb6e0d6
[ "MIT" ]
null
null
null
test/functional/p2p_invalid_locator.py
gbcrio/gbcr
295d954adc1c7490886f8dfe4a63fa880cb6e0d6
[ "MIT" ]
1
2020-10-18T05:44:31.000Z
2020-10-18T05:44:31.000Z
#!/usr/bin/env python3 # Copyright (c) 2020 GBCR Developers # Copyright (c) 2015-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test node responses to invalid locators. """ from test_framework.messages import msg_getheaders, msg_getblocks, MAX_LOCATOR_SZ from test_framework.mininode import P2PInterface from test_framework.test_framework import GoldBCRTestFramework class InvalidLocatorTest(GoldBCRTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = False def run_test(self): node = self.nodes[0] # convenience reference to the node node.generatetoaddress(1, node.get_deterministic_priv_key().address) # Get node out of IBD self.log.info('Test max locator size') block_count = node.getblockcount() for msg in [msg_getheaders(), msg_getblocks()]: self.log.info('Wait for disconnect when sending {} hashes in locator'.format(MAX_LOCATOR_SZ + 1)) node.add_p2p_connection(P2PInterface()) msg.locator.vHave = [int(node.getblockhash(i - 1), 16) for i in range(block_count, block_count - (MAX_LOCATOR_SZ + 1), -1)] node.p2p.send_message(msg) node.p2p.wait_for_disconnect() node.disconnect_p2ps() self.log.info('Wait for response when sending {} hashes in locator'.format(MAX_LOCATOR_SZ)) node.add_p2p_connection(P2PInterface()) msg.locator.vHave = [int(node.getblockhash(i - 1), 16) for i in range(block_count, block_count - (MAX_LOCATOR_SZ), -1)] node.p2p.send_message(msg) if type(msg) == msg_getheaders: node.p2p.wait_for_header(int(node.getbestblockhash(), 16)) else: node.p2p.wait_for_block(int(node.getbestblockhash(), 16)) if __name__ == '__main__': InvalidLocatorTest().main()
44.311111
135
0.687061
c8486c49a9d15ab42565cc5329a47bf479898db7
11,787
py
Python
strava/swagger_client/models/explorer_segment.py
neozenith/strava-gsheet-python
cce24721d6dcae69638c99261308f3d76512a087
[ "MIT" ]
null
null
null
strava/swagger_client/models/explorer_segment.py
neozenith/strava-gsheet-python
cce24721d6dcae69638c99261308f3d76512a087
[ "MIT" ]
null
null
null
strava/swagger_client/models/explorer_segment.py
neozenith/strava-gsheet-python
cce24721d6dcae69638c99261308f3d76512a087
[ "MIT" ]
null
null
null
# coding: utf-8 """ Strava API v3 The [Swagger Playground](https://developers.strava.com/playground) is the easiest way to familiarize yourself with the Strava API by submitting HTTP requests and observing the responses before you write any client code. It will show what a response will look like with different endpoints depending on the authorization scope you receive from your athletes. To use the Playground, go to https://www.strava.com/settings/api and change your “Authorization Callback Domain” to developers.strava.com. Please note, we only support Swagger 2.0. There is a known issue where you can only select one scope at a time. For more information, please check the section “client code” at https://developers.strava.com/docs. # noqa: E501 OpenAPI spec version: 3.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ExplorerSegment(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'int', 'name': 'str', 'climb_category': 'int', 'climb_category_desc': 'str', 'avg_grade': 'float', 'start_latlng': 'LatLng', 'end_latlng': 'LatLng', 'elev_difference': 'float', 'distance': 'float', 'points': 'str' } attribute_map = { 'id': 'id', 'name': 'name', 'climb_category': 'climb_category', 'climb_category_desc': 'climb_category_desc', 'avg_grade': 'avg_grade', 'start_latlng': 'start_latlng', 'end_latlng': 'end_latlng', 'elev_difference': 'elev_difference', 'distance': 'distance', 'points': 'points' } def __init__(self, id=None, name=None, climb_category=None, climb_category_desc=None, avg_grade=None, start_latlng=None, end_latlng=None, elev_difference=None, distance=None, points=None): # noqa: E501 """ExplorerSegment - a model defined in Swagger""" # noqa: E501 self._id = None self._name = None self._climb_category = None self._climb_category_desc = None self._avg_grade = None self._start_latlng = None self._end_latlng = None self._elev_difference = None self._distance = None self._points = None self.discriminator = None if id is not None: self.id = id if name is not None: self.name = name if climb_category is not None: self.climb_category = climb_category if climb_category_desc is not None: self.climb_category_desc = climb_category_desc if avg_grade is not None: self.avg_grade = avg_grade if start_latlng is not None: self.start_latlng = start_latlng if end_latlng is not None: self.end_latlng = end_latlng if elev_difference is not None: self.elev_difference = elev_difference if distance is not None: self.distance = distance if points is not None: self.points = points @property def id(self): """Gets the id of this ExplorerSegment. # noqa: E501 The unique identifier of this segment # noqa: E501 :return: The id of this ExplorerSegment. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this ExplorerSegment. The unique identifier of this segment # noqa: E501 :param id: The id of this ExplorerSegment. # noqa: E501 :type: int """ self._id = id @property def name(self): """Gets the name of this ExplorerSegment. # noqa: E501 The name of this segment # noqa: E501 :return: The name of this ExplorerSegment. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this ExplorerSegment. The name of this segment # noqa: E501 :param name: The name of this ExplorerSegment. # noqa: E501 :type: str """ self._name = name @property def climb_category(self): """Gets the climb_category of this ExplorerSegment. # noqa: E501 The category of the climb [0, 5]. Higher is harder ie. 5 is Hors catégorie, 0 is uncategorized in climb_category. If climb_category = 5, climb_category_desc = HC. If climb_category = 2, climb_category_desc = 3. # noqa: E501 :return: The climb_category of this ExplorerSegment. # noqa: E501 :rtype: int """ return self._climb_category @climb_category.setter def climb_category(self, climb_category): """Sets the climb_category of this ExplorerSegment. The category of the climb [0, 5]. Higher is harder ie. 5 is Hors catégorie, 0 is uncategorized in climb_category. If climb_category = 5, climb_category_desc = HC. If climb_category = 2, climb_category_desc = 3. # noqa: E501 :param climb_category: The climb_category of this ExplorerSegment. # noqa: E501 :type: int """ self._climb_category = climb_category @property def climb_category_desc(self): """Gets the climb_category_desc of this ExplorerSegment. # noqa: E501 The description for the category of the climb # noqa: E501 :return: The climb_category_desc of this ExplorerSegment. # noqa: E501 :rtype: str """ return self._climb_category_desc @climb_category_desc.setter def climb_category_desc(self, climb_category_desc): """Sets the climb_category_desc of this ExplorerSegment. The description for the category of the climb # noqa: E501 :param climb_category_desc: The climb_category_desc of this ExplorerSegment. # noqa: E501 :type: str """ allowed_values = ["NC", "4", "3", "2", "1", "HC"] # noqa: E501 if climb_category_desc not in allowed_values: raise ValueError( "Invalid value for `climb_category_desc` ({0}), must be one of {1}" # noqa: E501 .format(climb_category_desc, allowed_values) ) self._climb_category_desc = climb_category_desc @property def avg_grade(self): """Gets the avg_grade of this ExplorerSegment. # noqa: E501 The segment's average grade, in percents # noqa: E501 :return: The avg_grade of this ExplorerSegment. # noqa: E501 :rtype: float """ return self._avg_grade @avg_grade.setter def avg_grade(self, avg_grade): """Sets the avg_grade of this ExplorerSegment. The segment's average grade, in percents # noqa: E501 :param avg_grade: The avg_grade of this ExplorerSegment. # noqa: E501 :type: float """ self._avg_grade = avg_grade @property def start_latlng(self): """Gets the start_latlng of this ExplorerSegment. # noqa: E501 :return: The start_latlng of this ExplorerSegment. # noqa: E501 :rtype: LatLng """ return self._start_latlng @start_latlng.setter def start_latlng(self, start_latlng): """Sets the start_latlng of this ExplorerSegment. :param start_latlng: The start_latlng of this ExplorerSegment. # noqa: E501 :type: LatLng """ self._start_latlng = start_latlng @property def end_latlng(self): """Gets the end_latlng of this ExplorerSegment. # noqa: E501 :return: The end_latlng of this ExplorerSegment. # noqa: E501 :rtype: LatLng """ return self._end_latlng @end_latlng.setter def end_latlng(self, end_latlng): """Sets the end_latlng of this ExplorerSegment. :param end_latlng: The end_latlng of this ExplorerSegment. # noqa: E501 :type: LatLng """ self._end_latlng = end_latlng @property def elev_difference(self): """Gets the elev_difference of this ExplorerSegment. # noqa: E501 The segments's evelation difference, in meters # noqa: E501 :return: The elev_difference of this ExplorerSegment. # noqa: E501 :rtype: float """ return self._elev_difference @elev_difference.setter def elev_difference(self, elev_difference): """Sets the elev_difference of this ExplorerSegment. The segments's evelation difference, in meters # noqa: E501 :param elev_difference: The elev_difference of this ExplorerSegment. # noqa: E501 :type: float """ self._elev_difference = elev_difference @property def distance(self): """Gets the distance of this ExplorerSegment. # noqa: E501 The segment's distance, in meters # noqa: E501 :return: The distance of this ExplorerSegment. # noqa: E501 :rtype: float """ return self._distance @distance.setter def distance(self, distance): """Sets the distance of this ExplorerSegment. The segment's distance, in meters # noqa: E501 :param distance: The distance of this ExplorerSegment. # noqa: E501 :type: float """ self._distance = distance @property def points(self): """Gets the points of this ExplorerSegment. # noqa: E501 The polyline of the segment # noqa: E501 :return: The points of this ExplorerSegment. # noqa: E501 :rtype: str """ return self._points @points.setter def points(self, points): """Sets the points of this ExplorerSegment. The polyline of the segment # noqa: E501 :param points: The points of this ExplorerSegment. # noqa: E501 :type: str """ self._points = points def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ExplorerSegment, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ExplorerSegment): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
32.117166
726
0.611776
1615d3998e0a1bd1c28eed1f054d0f4a80542852
3,235
py
Python
tests/integ/test_horovod.py
HappyAmazonian/sagemaker-python-sdk
bb7563f450113a3ba18a8e24cf6092f4325bb321
[ "Apache-2.0" ]
1
2021-12-10T16:18:29.000Z
2021-12-10T16:18:29.000Z
tests/integ/test_horovod.py
HappyAmazonian/sagemaker-python-sdk
bb7563f450113a3ba18a8e24cf6092f4325bb321
[ "Apache-2.0" ]
null
null
null
tests/integ/test_horovod.py
HappyAmazonian/sagemaker-python-sdk
bb7563f450113a3ba18a8e24cf6092f4325bb321
[ "Apache-2.0" ]
null
null
null
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import json import os import tarfile import boto3 import pytest from six.moves.urllib.parse import urlparse import sagemaker.utils import tests.integ as integ from sagemaker.tensorflow import TensorFlow from tests.integ import timeout horovod_dir = os.path.join(os.path.dirname(__file__), "..", "data", "horovod") @pytest.mark.release def test_hvd_cpu( sagemaker_session, tensorflow_training_latest_version, tensorflow_training_latest_py_version, cpu_instance_type, tmpdir, ): _create_and_fit_estimator( sagemaker_session, tensorflow_training_latest_version, tensorflow_training_latest_py_version, cpu_instance_type, tmpdir, ) @pytest.mark.release @pytest.mark.skipif( integ.test_region() in integ.TRAINING_NO_P2_REGIONS and integ.test_region() in integ.TRAINING_NO_P3_REGIONS, reason="no ml.p2 or ml.p3 instances in this region", ) def test_hvd_gpu( sagemaker_session, tensorflow_training_latest_version, tensorflow_training_latest_py_version, gpu_instance_type, tmpdir, ): _create_and_fit_estimator( sagemaker_session, tensorflow_training_latest_version, tensorflow_training_latest_py_version, gpu_instance_type, tmpdir, ) def read_json(file, tmp): with open(os.path.join(tmp, file)) as f: return json.load(f) def extract_files_from_s3(s3_url, tmpdir, sagemaker_session): parsed_url = urlparse(s3_url) s3 = boto3.resource("s3", region_name=sagemaker_session.boto_region_name) model = os.path.join(tmpdir, "model") s3.Bucket(parsed_url.netloc).download_file(parsed_url.path.lstrip("/"), model) with tarfile.open(model, "r") as tar_file: tar_file.extractall(tmpdir) def _create_and_fit_estimator(sagemaker_session, tf_version, py_version, instance_type, tmpdir): job_name = sagemaker.utils.unique_name_from_base("tf-horovod") estimator = TensorFlow( entry_point=os.path.join(horovod_dir, "hvd_basic.py"), role="SageMakerRole", instance_count=2, instance_type=instance_type, sagemaker_session=sagemaker_session, py_version=py_version, framework_version=tf_version, distribution={"mpi": {"enabled": True}}, disable_profiler=True, ) with timeout.timeout(minutes=integ.TRAINING_DEFAULT_TIMEOUT_MINUTES): estimator.fit(job_name=job_name) tmp = str(tmpdir) extract_files_from_s3(estimator.model_data, tmp, sagemaker_session) for rank in range(2): assert read_json("rank-%s" % rank, tmp)["rank"] == rank
29.953704
96
0.727357
4a7403d2fe9b80415ed839588846afef7e66d1fa
29,213
py
Python
dace/codegen/control_flow.py
Shigangli/dace
966365a572921a6916737e4292e581e767873cf0
[ "BSD-3-Clause" ]
null
null
null
dace/codegen/control_flow.py
Shigangli/dace
966365a572921a6916737e4292e581e767873cf0
[ "BSD-3-Clause" ]
null
null
null
dace/codegen/control_flow.py
Shigangli/dace
966365a572921a6916737e4292e581e767873cf0
[ "BSD-3-Clause" ]
1
2021-03-04T13:01:48.000Z
2021-03-04T13:01:48.000Z
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. """ Various classes to facilitate the code generation of structured control flow elements (e.g., ``for``, ``if``, ``while``) from state machines in SDFGs. SDFGs are state machines of dataflow graphs, where each node is a state and each edge may contain a state transition condition and assignments. As such, when generating code from an SDFG, the straightforward way would be to generate code for each state and conditional ``goto``s for the state transitions. However, this inhibits compiler optimizations on the generated code, which rely on loops and branches. This file contains analyses that extract structured control flow constructs from the state machine and emit code with the correct C keywords. It does so by iteratively converting the SDFG into a control flow tree when certain control flow patterns are detected (using the ``structured_control_flow_tree`` function). The resulting tree classes (which all extend ``ControlFlow``) contain the original states, and upon code generation are traversed recursively into the tree rather than in arbitrary order. Each individual state is first wrapped with the ``SingleState`` control flow "block", and then upon analysis can be grouped into larger control flow blocks, such as ``ForScope`` or ``IfElseChain``. If no structured control flow pattern is detected (or this analysis is disabled in configuration), the group of states is wrapped in a ``GeneralBlock``, which generates the aforementioned conditional ``goto`` code. For example, the following SDFG:: x < 5 /------>[s2]--------\ [s1] \ ->[s5] ------>[s3]->[s4]--/ x >= 5 would create the control flow tree below:: GeneralBlock({ IfScope(condition=x<5, body={ GeneralBlock({ SingleState(s2) }) }, orelse={ GeneralBlock({ SingleState(s3), SingleState(s4), }) }), SingleState(s5) }) """ from dataclasses import dataclass from typing import (Callable, Dict, Iterator, List, Optional, Sequence, Set, Tuple, Union) import sympy as sp from dace import dtypes from dace.sdfg.state import SDFGState from dace.sdfg.sdfg import SDFG, InterstateEdge from dace.sdfg.graph import Edge from dace.properties import CodeBlock from dace.codegen import cppunparse from dace.codegen.targets import cpp ############################################################################### @dataclass class ControlFlow: """ Abstract class representing a control flow block. """ # A callback to the code generator that receives an SDFGState and returns # a string with its generated code. dispatch_state: Callable[[SDFGState], str] @property def first_state(self) -> SDFGState: """ Returns the first or initializing state in this control flow block. Used to determine which will be the next state in a control flow block to avoid generating extraneous ``goto``s. """ return None @property def children(self) -> List['ControlFlow']: """ Returns a list of control flow blocks that exist within this block. """ return [] def as_cpp(self, defined_vars: 'DefinedVars', symbols: Dict[str, dtypes.typeclass]) -> str: """ Returns C++ code for this control flow block. :param defined_vars: A ``DefinedVars`` object with the variables defined in the scope. :param symbols: A dictionary of symbol names and their types. :return: C++ string with the generated code of the control flow block. """ raise NotImplementedError @dataclass class SingleState(ControlFlow): """ A control flow element containing a single state. """ # The state in this element. state: SDFGState # Set to true if this is the last state in the parent control flow block, # in order to avoid generating an extraneous "goto exit" statement. last_state: bool = False def as_cpp(self, defined_vars, symbols) -> str: sdfg = self.state.parent expr = '__state_{}_{}:;\n'.format(sdfg.sdfg_id, self.state.label) if self.state.number_of_nodes() > 0: expr += '{\n' expr += self.dispatch_state(self.state) expr += '\n}\n' else: # Dispatch empty state in any case in order to register that the # state was dispatched self.dispatch_state(self.state) # If any state has no children, it should jump to the end of the SDFG if not self.last_state and sdfg.out_degree(self.state) == 0: expr += 'goto __state_exit_{};\n'.format(sdfg.sdfg_id) return expr def generate_transition(self, sdfg: SDFG, edge: Edge[InterstateEdge], successor: SDFGState = None) -> str: """ Helper function that generates a state transition (conditional goto) from a state and an SDFG edge. :param sdfg: The parent SDFG. :param edge: The state transition edge to generate. :param successor: If not None, the state that will be generated right after the current state (used to avoid extraneous gotos). :return: A c++ string representing the state transition code. """ expr = '' condition_string = cpp.unparse_interstate_edge( edge.data.condition.code[0], sdfg) if not edge.data.is_unconditional(): expr += f'if ({condition_string}) {{\n' if len(edge.data.assignments) > 0: expr += ';\n'.join([ "{} = {}".format(variable, cpp.unparse_interstate_edge(value, sdfg)) for variable, value in edge.data.assignments.items() ] + ['']) if successor is None or edge.dst is not successor: expr += 'goto __state_{}_{};\n'.format(sdfg.sdfg_id, edge.dst.label) if not edge.data.is_unconditional(): expr += '}\n' return expr @property def first_state(self) -> SDFGState: return self.state @dataclass class GeneralBlock(ControlFlow): """ General (or unrecognized) control flow block with gotos between states. """ # List of children control flow blocks elements: List[ControlFlow] # List or set of edges to not generate conditional gotos for. This is used # to avoid generating extra assignments or gotos before entering a for loop, # for example. edges_to_ignore: Sequence[Edge[InterstateEdge]] def as_cpp(self, defined_vars, symbols) -> str: expr = '' for i, elem in enumerate(self.elements): expr += elem.as_cpp(defined_vars, symbols) # In a general block, emit transitions and assignments after each # individual state if isinstance(elem, SingleState): sdfg = elem.state.parent out_edges = sdfg.out_edges(elem.state) for j, e in enumerate(out_edges): if e not in self.edges_to_ignore: # If this is the last generated edge and it leads # to the next state, skip emitting goto successor = None if (j == (len(out_edges) - 1) and (i + 1) < len(self.elements)): successor = self.elements[i + 1].first_state expr += elem.generate_transition(sdfg, e, successor) # Add exit goto as necessary if elem.last_state: continue # Two negating conditions if (len(out_edges) == 2 and out_edges[0].data.condition_sympy() == sp.Not( out_edges[1].data.condition_sympy())): continue # One unconditional edge if (len(out_edges) == 1 and out_edges[0].data.is_unconditional()): continue expr += f'goto __state_exit_{sdfg.sdfg_id};\n' return expr @property def first_state(self) -> SDFGState: if not self.elements: return None return self.elements[0].first_state @property def children(self) -> List[ControlFlow]: return self.elements @dataclass class IfScope(ControlFlow): """ A control flow scope of an if (else) block. """ sdfg: SDFG #: Parent SDFG branch_state: SDFGState #: State that branches out to if/else scopes condition: CodeBlock #: If-condition body: GeneralBlock #: Body of if condition orelse: Optional[GeneralBlock] = None #: Optional body of else condition def as_cpp(self, defined_vars, symbols) -> str: condition_string = cpp.unparse_interstate_edge(self.condition.code[0], self.sdfg) expr = f'if ({condition_string}) {{\n' expr += self.body.as_cpp(defined_vars, symbols) expr += '\n}' if self.orelse: expr += ' else {\n' expr += self.orelse.as_cpp(defined_vars, symbols) expr += '\n}' expr += '\n' return expr @property def first_state(self) -> SDFGState: return self.branch_state @property def children(self) -> List[ControlFlow]: return [self.body] + ([self.orelse] if self.orelse else []) @dataclass class IfElseChain(ControlFlow): """ A control flow scope of "if, else if, ..., else" chain of blocks. """ sdfg: SDFG #: Parent SDFG branch_state: SDFGState #: State that branches out to all blocks body: List[Tuple[CodeBlock, GeneralBlock]] #: List of (condition, block) def as_cpp(self, defined_vars, symbols) -> str: expr = '' for i, (condition, body) in enumerate(self.body): # First block in the chain is just "if", rest are "else if" prefix = '' if i == 0 else ' else ' condition_string = cpp.unparse_interstate_edge( condition.code[0], self.sdfg) expr += f'{prefix}if ({condition_string}) {{\n' expr += body.as_cpp(defined_vars, symbols) expr += '\n}' # If we generate an if/else if blocks, we cannot guarantee that all # cases have been covered. In SDFG semantics, this means that the SDFG # execution should end, so we emit an "else goto exit" here. if len(self.body) > 0: expr += ' else {\n' expr += 'goto __state_exit_{};\n'.format(self.sdfg.sdfg_id) if len(self.body) > 0: expr += '\n}' return expr @property def first_state(self) -> SDFGState: return self.branch_state @property def children(self) -> List[ControlFlow]: return [block for _, block in self.body] @dataclass class ForScope(ControlFlow): """ For loop block (without break or continue statements). """ itervar: str #: Name of iteration variable guard: SDFGState #: Loop guard state init: str #: C++ code for initializing iteration variable condition: CodeBlock #: For-loop condition update: str #: C++ code for updating iteration variable body: GeneralBlock #: Loop body as a control flow block init_edges: List[InterstateEdge] #: All initialization edges def as_cpp(self, defined_vars, symbols) -> str: # Initialize to either "int i = 0" or "i = 0" depending on whether # the type has been defined init = '' if self.init is not None: if defined_vars.has(self.itervar): init = self.itervar else: init = f'{symbols[self.itervar]} {self.itervar}' init += ' = ' + self.init sdfg = self.guard.parent preinit = '' if self.init_edges: for edge in self.init_edges: for k, v in edge.data.assignments.items(): if k != self.itervar: cppinit = cpp.unparse_interstate_edge(v, sdfg) preinit += f'{k} = {cppinit};\n' if self.condition is not None: cond = cpp.unparse_interstate_edge(self.condition.code[0], sdfg) else: cond = '' update = '' if self.update is not None: update = f'{self.itervar} = {self.update}' expr = f'{preinit}\nfor ({init}; {cond}; {update}) {{\n' expr += self.body.as_cpp(defined_vars, symbols) expr += '\n}\n' return expr @property def first_state(self) -> SDFGState: return self.guard @property def children(self) -> List[ControlFlow]: return [self.body] @dataclass class WhileScope(ControlFlow): """ While loop block (without break or continue statements). """ guard: SDFGState #: Loop guard state test: CodeBlock #: While-loop condition body: GeneralBlock #: Loop body as control flow block def as_cpp(self, defined_vars, symbols) -> str: if self.test is not None: sdfg = self.guard.parent test = cpp.unparse_interstate_edge(self.test.code[0], sdfg) else: test = 'true' expr = f'while ({test}) {{\n' expr += self.body.as_cpp(defined_vars, symbols) expr += '\n}\n' return expr @property def first_state(self) -> SDFGState: return self.guard @property def children(self) -> List[ControlFlow]: return [self.body] @dataclass class DoWhileScope(ControlFlow): """ Do-while loop block (without break or continue statements). """ sdfg: SDFG #: Parent SDFG test: CodeBlock #: Do-while loop condition body: GeneralBlock #: Loop body as control flow block def as_cpp(self, defined_vars, symbols) -> str: if self.test is not None: test = cpp.unparse_interstate_edge(self.test.code[0], self.sdfg) else: test = 'true' expr = 'do {\n' expr += self.body.as_cpp(defined_vars, symbols) expr += f'\n}} while ({test});\n' return expr @property def first_state(self) -> SDFGState: return self.body[0].first_state @property def children(self) -> List[ControlFlow]: return [self.body] @dataclass class SwitchCaseScope(ControlFlow): """ Simple switch-case scope without fall-through cases. """ sdfg: SDFG #: Parent SDFG branch_state: SDFGState #: Branching state switchvar: str #: C++ code for switch expression cases: Dict[str, GeneralBlock] #: Mapping of cases to control flow blocks def as_cpp(self, defined_vars, symbols) -> str: expr = f'switch ({self.switchvar}) {{\n' for case, body in self.cases.items(): expr += f'case {case}: {{\n' expr += body.as_cpp(defined_vars, symbols) expr += 'break;\n}\n' expr += f'default: goto __state_exit_{self.sdfg.sdfg_id};' expr += '\n}\n' return expr @property def first_state(self) -> SDFGState: return self.branch_state @property def children(self) -> List[ControlFlow]: return list(self.cases.values()) def _loop_from_structure( sdfg: SDFG, guard: SDFGState, enter_edge: Edge[InterstateEdge], leave_edge: Edge[InterstateEdge], back_edges: List[Edge[InterstateEdge]], dispatch_state: Callable[[SDFGState], str] ) -> Union[ForScope, WhileScope]: """ Helper method that constructs the correct structured loop construct from a set of states. Can construct for or while loops. """ body = GeneralBlock(dispatch_state, [], []) guard_inedges = sdfg.in_edges(guard) increment_edges = [e for e in guard_inedges if e in back_edges] init_edges = [e for e in guard_inedges if e not in back_edges] # If no back edge found (or more than one, indicating a "continue" # statement), disregard if len(increment_edges) > 1 or len(increment_edges) == 0: return None increment_edge = increment_edges[0] # Mark increment edge to be ignored in body body.edges_to_ignore.append(increment_edge) # Outgoing edges must be a negation of each other if enter_edge.data.condition_sympy() != (sp.Not( leave_edge.data.condition_sympy())): return None # Body of guard state must be empty if not guard.is_empty(): return None if not increment_edge.data.is_unconditional(): return None if len(enter_edge.data.assignments) > 0: return None condition = enter_edge.data.condition # Detect whether this loop is a for loop: # All incoming edges to the guard must set the same variable itvars = None for iedge in guard_inedges: if itvars is None: itvars = set(iedge.data.assignments.keys()) else: itvars &= iedge.data.assignments.keys() if itvars and len(itvars) == 1: itvar = next(iter(itvars)) init = init_edges[0].data.assignments[itvar] # Check that all init edges are the same and that increment edge only # increments if (all(e.data.assignments[itvar] == init for e in init_edges) and len(increment_edge.data.assignments) == 1): update = increment_edge.data.assignments[itvar] return ForScope(dispatch_state, itvar, guard, init, condition, update, body, init_edges) # Otherwise, it is a while loop return WhileScope(dispatch_state, guard, condition, body) def _cases_from_branches( edges: List[Edge[InterstateEdge]], cblocks: Dict[Edge[InterstateEdge], GeneralBlock], ) -> Tuple[str, Dict[str, GeneralBlock]]: """ If the input list of edges correspond to a switch/case scope (with all conditions being "x == y" for a unique symbolic x and integers y), returns the switch/case scope parameters. :param edges: List of inter-state edges. :return: Tuple of (case variable C++ expression, mapping from case to control flow block). If not a valid switch/case scope, returns None. """ cond = edges[0].data.condition_sympy() a = sp.Wild('a') b = sp.Wild('b', properties=[lambda k: k.is_Integer]) m = cond.match(sp.Eq(a, b)) if m: # Obtain original code for variable astvar = edges[0].data.condition.code[0].value.left else: # Try integer == symbol m = cond.match(sp.Eq(b, a)) if m: astvar = edges[0].data.condition.code[0].value.right else: return None # Get C++ expression from AST switchvar = cppunparse.pyexpr2cpp(astvar) # Check that all edges match criteria result = {} for e in edges: ematch = e.data.condition_sympy().match(sp.Eq(m[a], b)) if not ematch: ematch = e.data.condition_sympy().match(sp.Eq(b, m[a])) if not ematch: return None # Create mapping to codeblocks result[cpp.sym2cpp(ematch[b])] = cblocks[e] return switchvar, result def _ignore_recursive(edges: List[Edge[InterstateEdge]], block: ControlFlow): """ Ignore a list of edges recursively in a control flow block and its children. """ if isinstance(block, GeneralBlock): block.edges_to_ignore.extend(edges) for subblock in block.children: _ignore_recursive(edges, subblock) def _child_of(node: SDFGState, parent: SDFGState, ptree: Dict[SDFGState, SDFGState]) -> bool: curnode = node while curnode is not None: if curnode is parent: return True curnode = ptree[curnode] return False def _structured_control_flow_traversal( sdfg: SDFG, start: SDFGState, ptree: Dict[SDFGState, SDFGState], branch_merges: Dict[SDFGState, SDFGState], back_edges: List[Edge[InterstateEdge]], dispatch_state: Callable[[SDFGState], str], parent_block: GeneralBlock, stop: SDFGState = None, generate_children_of: SDFGState = None) -> Set[SDFGState]: """ Helper function for ``structured_control_flow_tree``. :param sdfg: SDFG. :param start: Starting state for traversal. :param ptree: State parent tree (computed from ``state_parent_tree``). :param branch_merges: Dictionary mapping from branch state to its merge state. :param dispatch_state: A function that dispatches code generation for a single state. :param parent_block: The block to append children to. :param stop: Stopping state to not traverse through (merge state of a branch or guard state of a loop). :return: Generator that yields states in state-order from ``start`` to ``stop``. """ # Traverse states in custom order visited = set() if stop is not None: visited.add(stop) stack = [start] while stack: node = stack.pop() if (generate_children_of is not None and not _child_of(node, generate_children_of, ptree)): continue if node in visited: continue visited.add(node) stateblock = SingleState(dispatch_state, node) oe = sdfg.out_edges(node) if len(oe) == 0: # End state # If there are no remaining nodes, this is the last state and it can # be marked as such if len(stack) == 0: stateblock.last_state = True parent_block.elements.append(stateblock) continue elif len(oe) == 1: # No traversal change stack.append(oe[0].dst) parent_block.elements.append(stateblock) continue # Potential branch or loop if node in branch_merges: mergestate = branch_merges[node] # Add branching node and ignore outgoing edges parent_block.elements.append(stateblock) parent_block.edges_to_ignore.extend(oe) stateblock.last_state = True # Parse all outgoing edges recursively first cblocks: Dict[Edge[InterstateEdge], GeneralBlock] = {} for branch in oe: cblocks[branch] = GeneralBlock(dispatch_state, [], []) visited |= _structured_control_flow_traversal( sdfg, branch.dst, ptree, branch_merges, back_edges, dispatch_state, cblocks[branch], stop=mergestate, generate_children_of=node) # Classify branch type: branch_block = None # If there are 2 out edges, one negation of the other: # * if/else in case both branches are not merge state # * if without else in case one branch is merge state if (len(oe) == 2 and oe[0].data.condition_sympy() == sp.Not( oe[1].data.condition_sympy())): # If without else if oe[0].dst is mergestate: branch_block = IfScope(dispatch_state, sdfg, node, oe[1].data.condition, cblocks[oe[1]]) elif oe[1].dst is mergestate: branch_block = IfScope(dispatch_state, sdfg, node, oe[0].data.condition, cblocks[oe[0]]) else: branch_block = IfScope(dispatch_state, sdfg, node, oe[0].data.condition, cblocks[oe[0]], cblocks[oe[1]]) else: # If there are 2 or more edges (one is not the negation of the # other): switch = _cases_from_branches(oe, cblocks) if switch: # If all edges are of form "x == y" for a single x and # integer y, it is a switch/case branch_block = SwitchCaseScope(dispatch_state, sdfg, node, switch[0], switch[1]) else: # Otherwise, create if/else if/.../else goto exit chain branch_block = IfElseChain(dispatch_state, sdfg, node, [(e.data.condition, cblocks[e]) for e in oe]) # End of branch classification parent_block.elements.append(branch_block) if mergestate != stop: stack.append(mergestate) elif len(oe) == 2: # Potential loop # TODO(later): Recognize do/while loops # If loop, traverse body, then exit body_start = None loop_exit = None scope = None if ptree[oe[0].dst] == node and ptree[oe[1].dst] != node: scope = _loop_from_structure(sdfg, node, oe[0], oe[1], back_edges, dispatch_state) body_start = oe[0].dst loop_exit = oe[1].dst elif ptree[oe[1].dst] == node and ptree[oe[0].dst] != node: scope = _loop_from_structure(sdfg, node, oe[1], oe[0], back_edges, dispatch_state) body_start = oe[1].dst loop_exit = oe[0].dst if scope: visited |= _structured_control_flow_traversal( sdfg, body_start, ptree, branch_merges, back_edges, dispatch_state, scope.body, stop=node, generate_children_of=node) # Add branching node and ignore outgoing edges parent_block.elements.append(stateblock) parent_block.edges_to_ignore.extend(oe) parent_block.elements.append(scope) # If for loop, ignore certain edges if isinstance(scope, ForScope): # Mark init edge(s) to ignore in parent_block and all children _ignore_recursive( [e for e in sdfg.in_edges(node) if e not in back_edges], parent_block) # Mark back edge for ignoring in all children of loop body _ignore_recursive( [e for e in sdfg.in_edges(node) if e in back_edges], scope.body) stack.append(loop_exit) continue # No proper loop detected: Unstructured control flow parent_block.elements.append(stateblock) stack.extend([e.dst for e in oe]) else: # No merge state: Unstructured control flow parent_block.elements.append(stateblock) stack.extend([e.dst for e in oe]) return visited - {stop} def structured_control_flow_tree( sdfg: SDFG, dispatch_state: Callable[[SDFGState], str]) -> ControlFlow: """ Returns a structured control-flow tree (i.e., with constructs such as branches and loops) from an SDFG, which can be used to generate its code in a compiler- and human-friendly way. :param sdfg: The SDFG to iterate over. :return: Control-flow block representing the entire SDFG. """ # Avoid import loops from dace.sdfg.analysis import cfg # Get parent states and back-edges ptree = cfg.state_parent_tree(sdfg) back_edges = cfg.back_edges(sdfg) # Annotate branches branch_merges: Dict[SDFGState, SDFGState] = {} adf = cfg.acyclic_dominance_frontier(sdfg) for state in sdfg.nodes(): oedges = sdfg.out_edges(state) # Skip if not branch if len(oedges) <= 1: continue # Skip if natural loop if len(oedges) == 2 and ( (ptree[oedges[0].dst] == state and ptree[oedges[1].dst] != state) or (ptree[oedges[1].dst] == state and ptree[oedges[0].dst] != state)): continue common_frontier = set() for oedge in oedges: frontier = adf[oedge.dst] if not frontier: frontier = {oedge.dst} common_frontier |= frontier if len(common_frontier) == 1: branch_merges[state] = next(iter(common_frontier)) root_block = GeneralBlock(dispatch_state, [], []) _structured_control_flow_traversal(sdfg, sdfg.start_state, ptree, branch_merges, back_edges, dispatch_state, root_block) return root_block
36.885101
82
0.584603
224218e22ce7615c7f680f76af026c88d0acc1f6
1,640
py
Python
setup.py
naidoo88/plot_utils
5874a5f504efb6e8ae8dd3153fb9be2d55389437
[ "BSD-2-Clause" ]
1
2021-01-28T14:51:33.000Z
2021-01-28T14:51:33.000Z
setup.py
naidoo88/plot_utils
5874a5f504efb6e8ae8dd3153fb9be2d55389437
[ "BSD-2-Clause" ]
2
2021-03-22T11:07:40.000Z
2021-04-26T16:05:55.000Z
setup.py
tylern4/nicks_plot_utils
5874a5f504efb6e8ae8dd3153fb9be2d55389437
[ "BSD-2-Clause" ]
null
null
null
from setuptools import setup import subprocess with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() git_version = subprocess.check_output( ['git', 'rev-list', '--count', 'HEAD']).decode("utf-8")[:-1] with open("nicks_plot_utils/__version__", "r+", encoding="utf-8") as fh: template = fh.read() fh.seek(0) version_parts = list(map(int, template.split('.'))) version_parts[-1] += 1 version_parts = list(map(str, version_parts)) version = ".".join(version_parts) fh.write(version) setup( name='nicks_plot_utils', version=version, description='A example Python package', url='https://github.com/tylern4/nicks_plot_utils', author='Nick Tyler', author_email='nicholas.s.tyler.4@gmail.com', license='BSD 2-clause', long_description=long_description, long_description_content_type="text/markdown", packages=['nicks_plot_utils'], # use_scm_version=True, # setup_requires=['setuptools_scm'], install_requires=['matplotlib', 'numpy', 'boost-histogram', 'scipy', 'lmfit' ], classifiers=[ 'Development Status :: 1 - Planning', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], python_requires='>=3.5', )
30.37037
72
0.597561
aa2b2258e335df764a9dcae444bfe08d2f34e439
9,702
py
Python
qa/common/check_copyright.py
jobegrabber/tensorrt-inference-server
216b0e59c1d8ad8a862dcc266e6abf35dcb11612
[ "BSD-3-Clause" ]
null
null
null
qa/common/check_copyright.py
jobegrabber/tensorrt-inference-server
216b0e59c1d8ad8a862dcc266e6abf35dcb11612
[ "BSD-3-Clause" ]
null
null
null
qa/common/check_copyright.py
jobegrabber/tensorrt-inference-server
216b0e59c1d8ad8a862dcc266e6abf35dcb11612
[ "BSD-3-Clause" ]
1
2020-08-15T09:56:00.000Z
2020-08-15T09:56:00.000Z
#!/usr/bin/python # Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse import os import re FLAGS = None SKIP_EXTS = ('jpeg', 'jpg', 'pgm', 'png', 'log', 'serverlog', 'preprocessed', 'jmx', 'gz', 'caffemodel') SKIP_PATHS = ('builddir', 'deploy/single_server/.helmignore', 'docs/examples/model_repository', 'docs/examples/ensemble_model_repository', 'qa/custom_models/custom_float32_float32_float32/output0_labels.txt', 'qa/custom_models/custom_nobatch_float32_float32_float32/output0_labels.txt', 'qa/custom_models/custom_int32_int32_int32/output0_labels.txt', 'qa/custom_models/custom_nobatch_int32_int32_int32/output0_labels.txt', 'qa/ensemble_models/mix_platform_float32_float32_float32/output0_labels.txt', 'qa/ensemble_models/mix_type_int32_float32_float32/output0_labels.txt', 'qa/ensemble_models/mix_ensemble_int32_float32_float32/output0_labels.txt', 'qa/ensemble_models/wrong_label_int32_float32_float32/output0_labels.txt', 'qa/ensemble_models/label_override_int32_float32_float32/output0_labels.txt', 'qa/L0_custom_image_preprocess/preprocessed_mug_image', 'qa/L0_model_config/noautofill_platform', 'qa/L0_model_config/autofill_noplatform', 'qa/L0_model_config/autofill_noplatform_success', 'tools/patch', 'VERSION') COPYRIGHT_YEAR_RE0 = 'Copyright \\(c\\) (20[0-9][0-9]), NVIDIA CORPORATION. All rights reserved.' COPYRIGHT_YEAR_RE1 = 'Copyright \\(c\\) (20[0-9][0-9])-(20[0-9][0-9]), NVIDIA CORPORATION. All rights reserved.' COPYRIGHT =''' Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of NVIDIA CORPORATION nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' single_re = re.compile(COPYRIGHT_YEAR_RE0) range_re = re.compile(COPYRIGHT_YEAR_RE1) def visit(path): if FLAGS.verbose: print("visiting " + path) for skip in SKIP_EXTS: if path.endswith('.' + skip): if FLAGS.verbose: print("skipping due to extension: " + path) return True for skip in SKIP_PATHS: if path.startswith(skip): if FLAGS.verbose: print("skipping due to path prefix: " + path) return True with open(path, 'r') as f: first_line = True line = None try: for fline in f: line = fline # Skip any '#!', '..', '<!--', or '{{/*' lines at the # start of the file if first_line: first_line = False if (fline.startswith("#!") or fline.startswith("..") or fline.startswith("<!--") or fline.startswith("{{/*")): continue # Skip empty lines... if len(fline.strip()) != 0: break except UnicodeDecodeError as ex: # If we get this exception on the first line then assume a # non-text file. if not first_line: raise ex if FLAGS.verbose: print("skipping binary file: " + path) return True if line is None: if FLAGS.verbose: print("skipping empty file: " + path) return True line = line.strip() # The next line must be the copyright line with a single year # or a year range. It must start with either '#' or '//' prefix = None if line.startswith('#'): prefix = '#' elif line.startswith('//'): prefix = '//' else: print("incorrect prefix for copyright line, expecting '#' or '//', for " + path + ": " + line) return False start_year = 0 end_year = 0 m = single_re.match(line[(len(prefix) + 1):]) if m and len(m.groups()) == 1: start_year = end_year = int(m.group(1)) else: m = range_re.match(line[(len(prefix) + 1):]) if m and len(m.groups()) == 2: start_year = int(m.group(1)) end_year = int(m.group(2)) else: print("copyright year is not recognized for " + path + ": " + line) return False if start_year > FLAGS.year: print("copyright start year greater than current year for " + path + ": " + line) return False if end_year > FLAGS.year: print("copyright end year greater than current year for " + path + ": " + line) return False if end_year < start_year: print("copyright start year greater than end year for " + path + ": " + line) return False # Subsequent lines must match the copyright body. copyright_body = [l.rstrip() for i, l in enumerate(COPYRIGHT.splitlines()) if i > 0] copyright_idx = 0 for line in f: if copyright_idx >= len(copyright_body): break line = line.strip() if len(copyright_body[copyright_idx]) == 0: expected = prefix else: expected = (prefix + " " + copyright_body[copyright_idx]) if line != expected: print("incorrect copyright body for " + path) print(" expected: '" + expected + "'") print(" got: '" + line + "'") return False copyright_idx += 1 if copyright_idx != len(copyright_body): print("missing " + str(len(copyright_body) - copyright_idx) + " lines of the copyright body") return False if FLAGS.verbose: print("copyright correct for " + path) return True if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-v', '--verbose', action="store_true", required=False, default=False, help='Enable verbose output') parser.add_argument('-y', '--year', type=int, required=True, help='Copyright year') parser.add_argument('paths', type=str, nargs='*', default=None, help='Directories or files to check') FLAGS = parser.parse_args() if FLAGS.paths is None or len(FLAGS.paths) == 0: parser.print_help() exit(1) ret = True for path in FLAGS.paths: if not os.path.isdir(path): if not visit(path): ret = False else: for root, dirs, files in os.walk(path): for name in files: if not visit(os.path.join(root, name)): ret = False exit(0 if ret else 1)
42
112
0.620284
49328cd4da5fd3b0c69d9699b45e853d2628cbd7
9,297
py
Python
reference_parsing/scripts/reference_script.py
ScholarIndex/LinkedBooks
0cae008427ed1eb34a882e9d85f24b42b3ee3a28
[ "MIT" ]
null
null
null
reference_parsing/scripts/reference_script.py
ScholarIndex/LinkedBooks
0cae008427ed1eb34a882e9d85f24b42b3ee3a28
[ "MIT" ]
6
2020-03-20T18:10:01.000Z
2021-09-29T17:31:17.000Z
reference_parsing/scripts/reference_script.py
ScholarIndex/LinkedBooks
0cae008427ed1eb34a882e9d85f24b42b3ee3a28
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ USED una tantum to refactor the journal_references collection. Note that the old collection references (monograph reference lists) is discarded: monographs are going to ba parsed again. this script: 1- copies the journal_references collection to another collection: sand, test and production databases 2- uniforms the data model in so doing 3- updated Processing 4- validates everything using the mongoengine """ __author__ = """Giovanni Colavizza""" from collections import OrderedDict import logging logging.basicConfig(filename="logs/xml_parser.log", level=logging.INFO) logger = logging.getLogger(__name__) from configparser import ConfigParser from datetime import datetime # Mongo from pymongo import MongoClient, TEXT, ASCENDING from mongoengine import connect as engineconnect # Test models from commons.dbmodels import * # Establish Mongo connections config = ConfigParser(allow_no_value=False) config.read("config.conf") logger.info('Read configuration file.') # SANDBOX the playground db = "mongo_sand" mongo_user = config.get(db, 'username') mongo_pwd = config.get(db, 'password') mongo_auth = config.get(db, 'auth-db') mongo_host = config.get(db, 'db-host') mongo_port = config.get(db, 'db-port') con = MongoClient(mongo_host,port=int(mongo_port), **{"socketKeepAlive":True}) con.linkedbooks_sandbox.authenticate(mongo_user, mongo_pwd, source=mongo_auth) db_sand = con.linkedbooks_sandbox # SOURCE the collection where journal_references is db = "mongo_source" mongo_user = config.get(db, 'username') mongo_pwd = config.get(db, 'password') mongo_auth = config.get(db, 'auth-db') mongo_host = config.get(db, 'db-host') mongo_port = config.get(db, 'db-port') con = MongoClient(mongo_host,port=int(mongo_port), **{"socketKeepAlive":True}) con.linkedbooks_dev.authenticate(mongo_user, mongo_pwd, source=mongo_auth) db_source = con.linkedbooks_dev # DEV the development DB db = "mongo_dev" mongo_user = config.get(db, 'username') mongo_pwd = config.get(db, 'password') mongo_auth = config.get(db, 'auth-db') mongo_host = config.get(db, 'db-host') mongo_port = config.get(db, 'db-port') con = MongoClient(mongo_host,port=int(mongo_port), **{"socketKeepAlive":True}) con.linkedbooks_refactored.authenticate(mongo_user, mongo_pwd, source=mongo_auth) db_dev = con.linkedbooks_refactored # PROD the production DB, only connect if explicitly called db = "mongo_prod" mongo_user = config.get(db, 'username') mongo_pwd = config.get(db, 'password') mongo_auth = config.get(db, 'auth-db') mongo_host = config.get(db, 'db-host') mongo_port = config.get(db, 'db-port') con = MongoClient(mongo_host,port=int(mongo_port), connect=False, **{"socketKeepAlive":True}) con.linkedbooks_refactored.authenticate(mongo_user, mongo_pwd, source=mongo_auth) db_prod = con.linkedbooks_refactored logger.info('Loaded Mongo dbs configs.') def transfer_collection(destination_db,db): """ Transfer the journal_references collection to other databases, after refactoring :param destination_db: Mongo connector to the right destination database :param db: config.conf name of the destination database :return: Nothing. """ # IMPORT journal_references collection from SOURCE to new database references = list() pages_dict = dict() # index of items from metadata which are valid valid_documents = list() for m in destination_db.metadata.find(): if m["marked_as_removed"]: continue if m["type_document"] == "monograph": continue # we only have journals here else: for d in m["issues"]: if d["marked_as_removed"]: continue else: valid_documents.append((m["bid"], d["foldername"])) for reference in db_source.journal_references.find(no_cursor_timeout=True): contents = OrderedDict(sorted(reference["contents"].items(),key=lambda x:int(x[0]))) pages = set([x["page_id"] for x in contents.values()]) for p in pages: if p not in pages_dict.keys(): try: items = p.split("-") bid = items[0] image = items[-1] issue = "-".join(items[1:-2]) image = int(image) except: print(p) continue if (bid,issue) in valid_documents: document = destination_db.documents.find_one({"bid":bid,"number":issue}) else: split_issue = issue.split("_") issue = "_".join(split_issue[:-1]) issue = issue + "." + split_issue[-1] if (bid, issue) in valid_documents: document = destination_db.documents.find_one({"bid": bid, "number": issue}) else: logger.info("MISSING DOCUMENT: %s, %s, %s" % (bid, issue, p)) continue logger.info("Found a mark as removed: %s, %s" % (bid, issue)) #logger.warning("MISSING DOCUMENT: %s, %s, %s"%(bid,issue,p)) #continue try: page = destination_db.pages.find_one({"single_page_file_number":image,"_id":{"$in":document["pages"]}}) except: logger.warning("MISSING PAGE: %s, %s, %s" % (bid, issue, p)) continue pages_dict[p] = {"id":page["_id"],"issue":issue} issue = reference["issue"] for c in contents.values(): try: c["page_mongo_id"] = pages_dict[c["page_id"]]["id"] issue = pages_dict[c["page_id"]]["issue"] except: logger.warning("MISSING PAGE IN DICT: %s" % c["page_id"]) c["page_mongo_id"] = "" r = {"ref_type":reference["ref_type"], "reference_string":" ".join([x["surface"] for x in contents.values()]), "in_golden":reference["in_golden"], "order_in_page":reference["order_in_page"], "continuation_candidate_in":reference["continuation_candidate_in"], "continuation_candidate_out":reference["continuation_candidate_out"], "continuation":reference["continuation"], "bid":reference["bid"], "issue":issue, "contents":contents, "updated_at":datetime.now() } references.append(r) destination_db.drop_collection("references") destination_db.references.insert_many(references) destination_db.references.create_index([('reference_string', TEXT),('bid', TEXT),('issue', TEXT)], default_language='none') destination_db.references.create_index([('contents.1.single_page_file_number',ASCENDING)],unique=False) logger.info('Created journal_references collection into database %s'%db) def updates_checks(destination_db,db): """ Checkes the new references collection is properly done, updates the Processing collection. Note that this assumes the references collection contains objects that have been fully parsed (reason why we do not consider monograph reference lists for now: they have not!) :param destination_db: Mongo connector to the right destination database :param db: config.conf name of the destination database :return: Nothing. """ issues_dict = list() # update processing collection # get all bids and issues just dumped for r in destination_db.references.find(): issues_dict.append((r["bid"],r["issue"])) mongo_db = config.get(db, 'db-name') mongo_user = config.get(db, 'username') mongo_pwd = config.get(db, 'password') mongo_auth = config.get(db, 'auth-db') mongo_host = config.get(db, 'db-host') mongo_port = config.get(db, 'db-port') logger.debug(engineconnect(mongo_db , username=mongo_user , password=mongo_pwd , authentication_source=mongo_auth , host=mongo_host , port=int(mongo_port))) for bid,issue in list(set(issues_dict)): try: if not issue or len(issue) == 0: processing_info = Processing.objects(type_document="monograph", bid=bid).get() else: processing_info = Processing.objects(type_document="issue", number=issue, bid=bid).get() if not processing_info.is_parsed: processing_info.is_parsed = True processing_info.updated_at = datetime.now() processing_info.save() except: logger.warning("Missing item in Processing: %s, %s"%(bid,issue)) continue logger.info('Updated Processing collection into database %s'%db) # AT THE END, TEST COLLECTION objects = Reference.objects logger.info("The database contains %d Reference objects"%len(objects)) transfer_collection(db_sand,"mongo_sand") updates_checks(db_sand,"mongo_sand") #transfer_collection(db_dev,"mongo_dev") #updates_checks(db_dev,"mongo_dev") #transfer_collection(db_prod,"mongo_prod") #updates_checks(db_prod,"mongo_prod")
43.443925
179
0.64182
63a49c2df908a5d8f42f3cb50a5aabec883a9169
4,221
py
Python
diag_model.py
tos-kamiya/skih-tool
5bcabfb76650e40813a53722a9ef4b3397ec6e99
[ "BSD-3-Clause" ]
null
null
null
diag_model.py
tos-kamiya/skih-tool
5bcabfb76650e40813a53722a9ef4b3397ec6e99
[ "BSD-3-Clause" ]
null
null
null
diag_model.py
tos-kamiya/skih-tool
5bcabfb76650e40813a53722a9ef4b3397ec6e99
[ "BSD-3-Clause" ]
null
null
null
import sys import pickle import docopt from train_model import scan_dirs, to_xy def eprint(s): print(s, file=sys.stderr, flush=True) def calc_weighted_pre_rec_f1(cm, weight=None): assert weight in ('true', 'pred') n_p0 = cm[0, 0] + cm[1, 0] n_p1 = cm[0, 1] + cm[1, 1] n_t0 = cm[0, 0] + cm[0, 1] n_t1 = cm[1, 0] + cm[1, 1] pre_0 = cm[0, 0] / n_p0 pre_1 = cm[1, 1] / n_p1 pre_wp = (pre_0 * n_p0 + pre_1 * n_p1) / (n_p0 + n_p1) pre_wt = (pre_0 * n_t0 + pre_1 * n_t1) / (n_t0 + n_t1) rec_0 = cm[0, 0] / n_t0 rec_1 = cm[1, 1] / n_t1 rec_wp = (rec_0 * n_p0 + rec_1 * n_p1) / (n_p0 + n_p1) rec_wt = (rec_0 * n_t0 + rec_1 * n_t1) / (n_t0 + n_t1) f1_wp = 2 * pre_wp * rec_wp / (pre_wp + rec_wp) f1_wt = 2 * pre_wt * rec_wt / (pre_wt + rec_wt) if weight == 'pred': return pre_wp, rec_wp, f1_wp elif weight == 'true': return pre_wt, rec_wt, f1_wt else: assert False __doc__ = """Diagnose/evaluate model. Usage: {argv0} [options] summary -l LANG -m MODEL {argv0} [options] plot -l LANG -m MODEL -o OUTPUTPNGFILE {argv0} [options] eval -l LANG -m MODEL -e EXT <dir>... {argv0} [options] eval -l LANG -m MODEL -e EXT -d DIRLIST Option: -l --language=<lang> Programming language. -m MODEL File name body of model file. e.g. `model` -> model.h5, model.pickle -e EXT Extension of input token-sequence files. e.g. `.csin_tseq` -d DIRLIST List of directories (one dir per line) -o FILE Output. """ def main(): args = docopt.docopt(__doc__) input_model = args['-m'] tseq_ext = args['-e'] test_dirs = args['<dir>'] if args['-d']: assert not test_dirs with open(args['-d']) as inp: test_dirs = [l.rstrip() for l in inp.readlines()] language = args['--language'] from train_model import build_nn with open(input_model + ".pickle", 'rb') as inp: model_params = pickle.load(inp) model = build_nn(model_params) model.load_weights(input_model + '.hdf5') upside_seq_length = downside_seq_length = seq_length = model_params['seq_length'] if args['summary']: print("upside seq length\t%d" % upside_seq_length) print("downside seq length\t%d" % downside_seq_length) print(model.summary()) return elif args['plot']: from keras.utils import plot_model output_png_file = args['-o'] plot_model(model, show_shapes=True, to_file=output_png_file) return assert args['eval'] if not test_dirs: sys.exit("Error: no test data dir") tokenizer = model_params['tokenizer'] from tensorflow.keras.preprocessing.sequence import pad_sequences test_tseqs = scan_dirs(language, test_dirs, tseq_ext, seq_length, resample_and_shuffle=False) test_xup, test_xdn, test_y, pc, nc = to_xy(*test_tseqs, seq_length, tokenizer, pad_sequences) test_tseqs = None if pc == 0 or nc == 0: exit("Error: not enough fragments found as test data") score = model.evaluate([test_xup, test_xdn], test_y, verbose=0) print("test loss: %g" % score[0]) print("test accuracy: %g" % score[1]) from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score pred = (model([test_xup, test_xdn]).numpy() >= 0.5).astype("int32") cm = confusion_matrix(test_y, pred) print("confusion matrix:") print(cm) print("precision score: %g" % precision_score(test_y, pred)) print("recall score: %g" % recall_score(test_y, pred)) print("f1 score: %g" % f1_score(test_y, pred)) pre_w, rec_w, f1_w = calc_weighted_pre_rec_f1(cm, weight='pred') print("weighted precision score: %g" % pre_w) print("weighted recall score: %g" % rec_w) print("weighted f1 score: %g" % f1_w) # !! sklern's weighted scores are by 'true' class, not 'precition' class !! # print("weighted precision score: %g" % precision_score(test_y, pred, average='weighted')) # print("weighted recall score: %g" % recall_score(test_y, pred, average='weighted')) # print("weighted f1 score: %g" % f1_score(test_y, pred, average='weighted')) if __name__ == '__main__': main()
30.810219
98
0.631604
0174560a74d7eace8dee89e1f0634f33652029b8
8,994
py
Python
adanet/core/testing_utils.py
sararob/adanet
26388aeb67ec30c9e98635497e6b5b3476378db7
[ "Apache-2.0" ]
2
2019-01-04T19:23:23.000Z
2021-02-14T21:48:03.000Z
adanet/core/testing_utils.py
liuluyeah/adanet
fd530ec5d12ae0e01d417610ef1560dac8bdb80f
[ "Apache-2.0" ]
null
null
null
adanet/core/testing_utils.py
liuluyeah/adanet
fd530ec5d12ae0e01d417610ef1560dac8bdb80f
[ "Apache-2.0" ]
null
null
null
"""Test utilities for AdaNet single graph implementation. Copyright 2018 The AdaNet Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil from absl.testing import parameterized from adanet.core.ensemble import _EnsembleSpec from adanet.core.ensemble import Ensemble from adanet.core.ensemble import WeightedSubnetwork from adanet.core.subnetwork import Subnetwork import tensorflow as tf def dummy_tensor(shape=(), random_seed=42): """Returns a randomly initialized tensor.""" return tf.Variable( tf.random_normal(shape=shape, seed=random_seed), trainable=False).read_value() class ExportOutputKeys(object): """Different export output keys for the dummy ensemble builder.""" CLASSIFICATION_CLASSES = "classification_classes" CLASSIFICATION_SCORES = "classification_scores" REGRESSION = "regression" PREDICTION = "prediction" INVALID = "invalid" def dummy_ensemble_spec(name, random_seed=42, num_subnetworks=1, bias=0., loss=None, adanet_loss=None, eval_metric_ops=None, dict_predictions=False, export_output_key=None, train_op=None): """Creates a dummy `_EnsembleSpec` instance. Args: name: _EnsembleSpec's name. random_seed: A scalar random seed. num_subnetworks: The number of fake subnetworks in this ensemble. bias: Bias value. loss: Float loss to return. When None, it's picked from a random distribution. adanet_loss: Float AdaNet loss to return. When None, it's picked from a random distribution. eval_metric_ops: Optional dictionary of metric ops. dict_predictions: Boolean whether to return predictions as a dictionary of `Tensor` or just a single float `Tensor`. export_output_key: An `ExportOutputKeys` for faking export outputs. train_op: A train op. Returns: A dummy `_EnsembleSpec` instance. """ if loss is None: loss = dummy_tensor([], random_seed) elif not isinstance(loss, tf.Tensor): loss = tf.constant(loss) if adanet_loss is None: adanet_loss = dummy_tensor([], random_seed * 2) else: adanet_loss = tf.convert_to_tensor(adanet_loss) logits = dummy_tensor([], random_seed * 3) if dict_predictions: predictions = { "logits": logits, "classes": tf.cast(tf.abs(logits), dtype=tf.int64) } else: predictions = logits weighted_subnetworks = [ WeightedSubnetwork( name=name, iteration_number=1, logits=dummy_tensor([2, 1], random_seed * 4), weight=dummy_tensor([2, 1], random_seed * 4), subnetwork=Subnetwork( last_layer=dummy_tensor([1, 2], random_seed * 4), logits=dummy_tensor([2, 1], random_seed * 4), complexity=1., persisted_tensors={})) ] export_outputs = _dummy_export_outputs(export_output_key, logits, predictions) bias = tf.constant(bias) return _EnsembleSpec( name=name, ensemble=Ensemble( weighted_subnetworks=weighted_subnetworks * num_subnetworks, bias=bias, logits=logits, ), predictions=predictions, loss=loss, adanet_loss=adanet_loss, eval_metric_ops=eval_metric_ops, train_op=train_op, export_outputs=export_outputs) def _dummy_export_outputs(export_output_key, logits, predictions): """Returns a dummy export output dictionary for the given key.""" export_outputs = None if export_output_key == ExportOutputKeys.CLASSIFICATION_CLASSES: export_outputs = { export_output_key: tf.estimator.export.ClassificationOutput( classes=tf.as_string(logits)) } elif export_output_key == ExportOutputKeys.CLASSIFICATION_SCORES: export_outputs = { export_output_key: tf.estimator.export.ClassificationOutput(scores=logits) } elif export_output_key == ExportOutputKeys.REGRESSION: export_outputs = { export_output_key: tf.estimator.export.RegressionOutput(value=logits) } elif export_output_key == ExportOutputKeys.PREDICTION: export_outputs = { export_output_key: tf.estimator.export.PredictOutput(outputs=predictions) } elif export_output_key == ExportOutputKeys.INVALID: export_outputs = {export_output_key: predictions} return export_outputs def dummy_estimator_spec(loss=None, random_seed=42, dict_predictions=False, eval_metric_ops=None): """Creates a dummy `EstimatorSpec` instance. Args: loss: Float loss to return. When None, it's picked from a random distribution. random_seed: Scalar seed for random number generators. dict_predictions: Boolean whether to return predictions as a dictionary of `Tensor` or just a single float `Tensor`. eval_metric_ops: Optional dictionary of metric ops. Returns: A `EstimatorSpec` instance. """ if loss is None: loss = dummy_tensor([], random_seed) elif not isinstance(loss, tf.Tensor): loss = tf.constant(loss) predictions = dummy_tensor([], random_seed * 2) if dict_predictions: predictions = { "logits": predictions, "classes": tf.cast(tf.abs(predictions), dtype=tf.int64) } return tf.estimator.EstimatorSpec( mode=tf.estimator.ModeKeys.TRAIN, predictions=predictions, loss=loss, train_op=tf.no_op(), eval_metric_ops=eval_metric_ops) def dummy_input_fn(features, labels): """Returns an input_fn that returns feature and labels `Tensors`.""" def _input_fn(params=None): del params # Unused. input_features = {"x": tf.constant(features, name="x")} input_labels = tf.constant(labels, name="y") return input_features, input_labels return _input_fn def dataset_input_fn(features=8., labels=9.): """Returns feature and label `Tensors` via a `Dataset`.""" def _input_fn(params=None): """The `Dataset` input_fn which will be returned.""" del params # Unused. input_features = tf.data.Dataset.from_tensors( [features]).make_one_shot_iterator().get_next() if labels is not None: input_labels = tf.data.Dataset.from_tensors( [labels]).make_one_shot_iterator().get_next() else: input_labels = None return {"x": input_features}, input_labels return _input_fn class FakeSparseTensor(object): """A fake SparseTensor.""" def __init__(self, indices, values, dense_shape): self.indices = indices self.values = values self.dense_shape = dense_shape class FakePlaceholder(object): """A fake Placeholder.""" def __init__(self, dtype, shape=None): self.dtype = dtype self.shape = shape class FakeSparsePlaceholder(object): """A fake SparsePlaceholder.""" def __init__(self, dtype, shape=None): self.dtype = dtype self.shape = shape def tensor_features(features): """Returns features as tensors, replacing Fakes.""" result = {} for key, feature in features.items(): if isinstance(feature, FakeSparseTensor): feature = tf.SparseTensor( indices=feature.indices, values=feature.values, dense_shape=feature.dense_shape) elif isinstance(feature, FakeSparsePlaceholder): feature = tf.sparse_placeholder(dtype=feature.dtype) elif isinstance(feature, FakePlaceholder): feature = tf.placeholder(dtype=feature.dtype) else: feature = tf.convert_to_tensor(feature) result[key] = feature return result def head(): return tf.contrib.estimator.regression_head( loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE) class AdanetTestCase(parameterized.TestCase, tf.test.TestCase): """A parameterized `TestCase` that manages a test subdirectory.""" def setUp(self): super(AdanetTestCase, self).setUp() # Setup and cleanup test directory. self.test_subdirectory = os.path.join(tf.flags.FLAGS.test_tmpdir, self.id()) shutil.rmtree(self.test_subdirectory, ignore_errors=True) os.makedirs(self.test_subdirectory) def tearDown(self): super(AdanetTestCase, self).tearDown() shutil.rmtree(self.test_subdirectory, ignore_errors=True)
30.907216
80
0.691127
4ec88112d690c7c783d54b0d6bc7ea802917d026
2,055
py
Python
models/gap/probert.py
airxiechao/gap
1262bb7063da95011479839b4ccb4d9ed2e97020
[ "MIT" ]
29
2019-06-08T11:45:57.000Z
2022-03-24T15:02:34.000Z
models/gap/probert.py
airxiechao/gap
1262bb7063da95011479839b4ccb4d9ed2e97020
[ "MIT" ]
14
2019-12-07T02:03:46.000Z
2022-02-09T23:30:20.000Z
models/gap/probert.py
airxiechao/gap
1262bb7063da95011479839b4ccb4d9ed2e97020
[ "MIT" ]
8
2019-06-11T03:44:43.000Z
2022-01-19T20:43:10.000Z
import torch from torch import nn from torch.nn import CrossEntropyLoss import torch.nn.functional as F from pytorch_pretrained_bert.modeling import BertConfig, BertModel, BertPooler, BertPreTrainedModel class ProBERT(BertPreTrainedModel): def __init__(self, config, num_labels): super().__init__(config) self.num_labels = num_labels self.bert = BertModel(config) self.pooler = BertPooler(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(1*config.hidden_size, num_labels) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, gpr_tags_mask=None, mention_p_ids=None, labels=None, eval_mode=False, **kwargs): sequence_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) batch_size = sequence_output.size()[0] sequence_output = sequence_output[~gpr_tags_mask].view(batch_size, -1, self.config.hidden_size) mention_p_ids = mention_p_ids.unsqueeze(-1) mention_p_ids = mention_p_ids.repeat(1, 1, self.config.hidden_size) p_output = torch.gather(sequence_output, 1, mention_p_ids) pooled_p = self.pooler(p_output) pooled_output = self.dropout(pooled_p) logits = self.classifier(pooled_output) probabilities = F.softmax(logits, dim=1) if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return loss, probabilities elif eval_mode: return logits, probabilities, [], [], [] else: return logits, probabilities
37.363636
103
0.59854
6764341e6a0fc50f03cf6998fbe00f17d50fb65f
326
py
Python
fdk_client/platform/models/TagSourceSchema.py
kavish-d/fdk-client-python
a1023eb530473322cb52e095fc4ceb226c1e6037
[ "MIT" ]
null
null
null
fdk_client/platform/models/TagSourceSchema.py
kavish-d/fdk-client-python
a1023eb530473322cb52e095fc4ceb226c1e6037
[ "MIT" ]
null
null
null
fdk_client/platform/models/TagSourceSchema.py
kavish-d/fdk-client-python
a1023eb530473322cb52e095fc4ceb226c1e6037
[ "MIT" ]
null
null
null
"""Platform Models.""" from marshmallow import fields, Schema from marshmallow.validate import OneOf from ..enums import * from ..models.BaseSchema import BaseSchema class TagSourceSchema(BaseSchema): # Content swagger.json type = fields.Str(required=False) id = fields.Str(required=False)
14.818182
42
0.705521
32962c39e68837b53b5f45365f002f62b87267d8
352
py
Python
SGE/src/configs/standard.py
dabingrosewood/MasterThesisProj
7e40fa2395468a1bccef429362a61ed8515ecc11
[ "MIT" ]
null
null
null
SGE/src/configs/standard.py
dabingrosewood/MasterThesisProj
7e40fa2395468a1bccef429362a61ed8515ecc11
[ "MIT" ]
null
null
null
SGE/src/configs/standard.py
dabingrosewood/MasterThesisProj
7e40fa2395468a1bccef429362a61ed8515ecc11
[ "MIT" ]
null
null
null
import sys from rng_seeds import * POPULATION_SIZE = 871 NUMBER_OF_ITERATIONS = 50 ELITISM = 345 TOURNAMENT = 20 PROB_CROSSOVER = 0.38591314298903034 PROB_MUTATION = 0.5581471170547168 RUN = len(sys.argv) > 1 and int(sys.argv[1]) or 0 # SEED is set to the RUN-th number in rng_seeeds.py SEED = seeds[RUN] sampling_snap = [0,25, 50] MAX_REC_LEVEL= 5
20.705882
51
0.755682
a212afcd021692414e8791d0bef4e84e7c5543af
1,426
py
Python
kafka/tools/assigner/batcher.py
bringhurst/kafka-tools
5472a89d5a6702ae7a692211053a55dfba63072b
[ "Apache-2.0" ]
null
null
null
kafka/tools/assigner/batcher.py
bringhurst/kafka-tools
5472a89d5a6702ae7a692211053a55dfba63072b
[ "Apache-2.0" ]
null
null
null
kafka/tools/assigner/batcher.py
bringhurst/kafka-tools
5472a89d5a6702ae7a692211053a55dfba63072b
[ "Apache-2.0" ]
5
2019-10-24T06:54:44.000Z
2021-07-25T03:20:49.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from kafka.tools.assigner.exceptions import ProgrammingException def split_partitions_into_batches(partitions, batch_size=10, use_class=None): # Currently, this is a very simplistic implementation that just breaks the list of partitions down # into even sized chunks. While it could be implemented as a generator, it's not so that it can # split the list into more efficient batches. if use_class is None: raise ProgrammingException("split_partitions_into_batches called with no use_class") batches = [use_class(partitions[i:i + batch_size]) for i in range(0, len(partitions), batch_size)] return batches
47.533333
102
0.771388
b2859e0b6c42984901b0f73709010c98c73f86ed
1,874
py
Python
manimlib/stream_starter.py
Tarang74/manim
df34d6fc0470916cfba63534b023addb69cdec9a
[ "MIT" ]
1
2021-03-26T08:23:35.000Z
2021-03-26T08:23:35.000Z
manimlib/stream_starter.py
Tarang74/manim
df34d6fc0470916cfba63534b023addb69cdec9a
[ "MIT" ]
null
null
null
manimlib/stream_starter.py
Tarang74/manim
df34d6fc0470916cfba63534b023addb69cdec9a
[ "MIT" ]
null
null
null
from time import sleep import code import os import readline import subprocess from manimlib.scene.scene import Scene import manimlib.constants def start_livestream(to_twitch=False, twitch_key=None): class Manim(): def __new__(cls): kwargs = { "scene_name": manimlib.constants.LIVE_STREAM_NAME, "open_video_upon_completion": False, "show_file_in_finder": False, # By default, write to file "write_to_movie": True, "show_last_frame": False, "save_pngs": False, # If -t is passed in (for transparent), this will be RGBA "saved_image_mode": "RGB", "movie_file_extension": ".mp4", "quiet": True, "ignore_waits": False, "write_all": False, "name": manimlib.constants.LIVE_STREAM_NAME, "start_at_animation_number": 0, "end_at_animation_number": None, "skip_animations": False, "camera_config": manimlib.constants.HIGH_QUALITY_CAMERA_CONFIG, "livestreaming": True, "to_twitch": to_twitch, "twitch_key": twitch_key, } return Scene(**kwargs) if not to_twitch: FNULL = open(os.devnull, 'w') subprocess.Popen([ manimlib.constants.STREAMING_CLIENT, manimlib.constants.STREAMING_URL ], stdout=FNULL, stderr=FNULL) sleep(3) variables = globals().copy() variables.update(locals()) shell = code.InteractiveConsole(variables) shell.push("manim = Manim()") shell.push("from manimlib.imports import *") shell.interact(banner=manimlib.constants.STREAMING_CONSOLE_BANNER)
34.072727
79
0.565101
13889c0b02177ef9e01c4add683d603ab2cc6594
73,512
py
Python
packages/python/plotly/plotly/graph_objs/histogram/marker/_colorbar.py
eisenlohr/plotly.py
3b0e3df45036cf48f772b13bcc10ce347964aefc
[ "MIT" ]
1
2021-12-11T07:01:40.000Z
2021-12-11T07:01:40.000Z
packages/python/plotly/plotly/graph_objs/histogram/marker/_colorbar.py
jiangrongbo/plotly.py
df19fc702b309586cc24e25373b87e8bdbb3ff60
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/graph_objs/histogram/marker/_colorbar.py
jiangrongbo/plotly.py
df19fc702b309586cc24e25373b87e8bdbb3ff60
[ "MIT" ]
1
2021-11-29T22:55:05.000Z
2021-11-29T22:55:05.000Z
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class ColorBar(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "histogram.marker" _path_str = "histogram.marker.colorbar" _valid_props = { "bgcolor", "bordercolor", "borderwidth", "dtick", "exponentformat", "len", "lenmode", "minexponent", "nticks", "outlinecolor", "outlinewidth", "separatethousands", "showexponent", "showticklabels", "showtickprefix", "showticksuffix", "thickness", "thicknessmode", "tick0", "tickangle", "tickcolor", "tickfont", "tickformat", "tickformatstopdefaults", "tickformatstops", "ticklabeloverflow", "ticklabelposition", "ticklen", "tickmode", "tickprefix", "ticks", "ticksuffix", "ticktext", "ticktextsrc", "tickvals", "tickvalssrc", "tickwidth", "title", "titlefont", "titleside", "x", "xanchor", "xpad", "y", "yanchor", "ypad", } # bgcolor # ------- @property def bgcolor(self): """ Sets the color of padded area. The 'bgcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["bgcolor"] @bgcolor.setter def bgcolor(self, val): self["bgcolor"] = val # bordercolor # ----------- @property def bordercolor(self): """ Sets the axis line color. The 'bordercolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["bordercolor"] @bordercolor.setter def bordercolor(self, val): self["bordercolor"] = val # borderwidth # ----------- @property def borderwidth(self): """ Sets the width (in px) or the border enclosing this color bar. The 'borderwidth' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["borderwidth"] @borderwidth.setter def borderwidth(self, val): self["borderwidth"] = val # dtick # ----- @property def dtick(self): """ Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" The 'dtick' property accepts values of any type Returns ------- Any """ return self["dtick"] @dtick.setter def dtick(self, val): self["dtick"] = val # exponentformat # -------------- @property def exponentformat(self): """ Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. The 'exponentformat' property is an enumeration that may be specified as: - One of the following enumeration values: ['none', 'e', 'E', 'power', 'SI', 'B'] Returns ------- Any """ return self["exponentformat"] @exponentformat.setter def exponentformat(self, val): self["exponentformat"] = val # len # --- @property def len(self): """ Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. The 'len' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["len"] @len.setter def len(self, val): self["len"] = val # lenmode # ------- @property def lenmode(self): """ Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. The 'lenmode' property is an enumeration that may be specified as: - One of the following enumeration values: ['fraction', 'pixels'] Returns ------- Any """ return self["lenmode"] @lenmode.setter def lenmode(self, val): self["lenmode"] = val # minexponent # ----------- @property def minexponent(self): """ Hide SI prefix for 10^n if |n| is below this number. This only has an effect when `tickformat` is "SI" or "B". The 'minexponent' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["minexponent"] @minexponent.setter def minexponent(self, val): self["minexponent"] = val # nticks # ------ @property def nticks(self): """ Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". The 'nticks' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int """ return self["nticks"] @nticks.setter def nticks(self, val): self["nticks"] = val # outlinecolor # ------------ @property def outlinecolor(self): """ Sets the axis line color. The 'outlinecolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["outlinecolor"] @outlinecolor.setter def outlinecolor(self, val): self["outlinecolor"] = val # outlinewidth # ------------ @property def outlinewidth(self): """ Sets the width (in px) of the axis line. The 'outlinewidth' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["outlinewidth"] @outlinewidth.setter def outlinewidth(self, val): self["outlinewidth"] = val # separatethousands # ----------------- @property def separatethousands(self): """ If "true", even 4-digit integers are separated The 'separatethousands' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["separatethousands"] @separatethousands.setter def separatethousands(self, val): self["separatethousands"] = val # showexponent # ------------ @property def showexponent(self): """ If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. The 'showexponent' property is an enumeration that may be specified as: - One of the following enumeration values: ['all', 'first', 'last', 'none'] Returns ------- Any """ return self["showexponent"] @showexponent.setter def showexponent(self, val): self["showexponent"] = val # showticklabels # -------------- @property def showticklabels(self): """ Determines whether or not the tick labels are drawn. The 'showticklabels' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["showticklabels"] @showticklabels.setter def showticklabels(self, val): self["showticklabels"] = val # showtickprefix # -------------- @property def showtickprefix(self): """ If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. The 'showtickprefix' property is an enumeration that may be specified as: - One of the following enumeration values: ['all', 'first', 'last', 'none'] Returns ------- Any """ return self["showtickprefix"] @showtickprefix.setter def showtickprefix(self, val): self["showtickprefix"] = val # showticksuffix # -------------- @property def showticksuffix(self): """ Same as `showtickprefix` but for tick suffixes. The 'showticksuffix' property is an enumeration that may be specified as: - One of the following enumeration values: ['all', 'first', 'last', 'none'] Returns ------- Any """ return self["showticksuffix"] @showticksuffix.setter def showticksuffix(self, val): self["showticksuffix"] = val # thickness # --------- @property def thickness(self): """ Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. The 'thickness' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["thickness"] @thickness.setter def thickness(self, val): self["thickness"] = val # thicknessmode # ------------- @property def thicknessmode(self): """ Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. The 'thicknessmode' property is an enumeration that may be specified as: - One of the following enumeration values: ['fraction', 'pixels'] Returns ------- Any """ return self["thicknessmode"] @thicknessmode.setter def thicknessmode(self, val): self["thicknessmode"] = val # tick0 # ----- @property def tick0(self): """ Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. The 'tick0' property accepts values of any type Returns ------- Any """ return self["tick0"] @tick0.setter def tick0(self, val): self["tick0"] = val # tickangle # --------- @property def tickangle(self): """ Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. The 'tickangle' property is a angle (in degrees) that may be specified as a number between -180 and 180. Numeric values outside this range are converted to the equivalent value (e.g. 270 is converted to -90). Returns ------- int|float """ return self["tickangle"] @tickangle.setter def tickangle(self, val): self["tickangle"] = val # tickcolor # --------- @property def tickcolor(self): """ Sets the tick color. The 'tickcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["tickcolor"] @tickcolor.setter def tickcolor(self, val): self["tickcolor"] = val # tickfont # -------- @property def tickfont(self): """ Sets the color bar's tick label font The 'tickfont' property is an instance of Tickfont that may be specified as: - An instance of :class:`plotly.graph_objs.histogram.marker.colorbar.Tickfont` - A dict of string/value properties that will be passed to the Tickfont constructor Supported dict properties: color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- plotly.graph_objs.histogram.marker.colorbar.Tickfont """ return self["tickfont"] @tickfont.setter def tickfont(self, val): self["tickfont"] = val # tickformat # ---------- @property def tickformat(self): """ Sets the tick label formatting rule using d3 formatting mini- languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" The 'tickformat' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["tickformat"] @tickformat.setter def tickformat(self, val): self["tickformat"] = val # tickformatstops # --------------- @property def tickformatstops(self): """ The 'tickformatstops' property is a tuple of instances of Tickformatstop that may be specified as: - A list or tuple of instances of plotly.graph_objs.histogram.marker.colorbar.Tickformatstop - A list or tuple of dicts of string/value properties that will be passed to the Tickformatstop constructor Supported dict properties: dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" Returns ------- tuple[plotly.graph_objs.histogram.marker.colorbar.Tickformatstop] """ return self["tickformatstops"] @tickformatstops.setter def tickformatstops(self, val): self["tickformatstops"] = val # tickformatstopdefaults # ---------------------- @property def tickformatstopdefaults(self): """ When used in a template (as layout.template.data.histogram.mark er.colorbar.tickformatstopdefaults), sets the default property values to use for elements of histogram.marker.colorbar.tickformatstops The 'tickformatstopdefaults' property is an instance of Tickformatstop that may be specified as: - An instance of :class:`plotly.graph_objs.histogram.marker.colorbar.Tickformatstop` - A dict of string/value properties that will be passed to the Tickformatstop constructor Supported dict properties: Returns ------- plotly.graph_objs.histogram.marker.colorbar.Tickformatstop """ return self["tickformatstopdefaults"] @tickformatstopdefaults.setter def tickformatstopdefaults(self, val): self["tickformatstopdefaults"] = val # ticklabeloverflow # ----------------- @property def ticklabeloverflow(self): """ Determines how we handle tick labels that would overflow either the graph div or the domain of the axis. The default value for inside tick labels is *hide past domain*. In other cases the default is *hide past div*. The 'ticklabeloverflow' property is an enumeration that may be specified as: - One of the following enumeration values: ['allow', 'hide past div', 'hide past domain'] Returns ------- Any """ return self["ticklabeloverflow"] @ticklabeloverflow.setter def ticklabeloverflow(self, val): self["ticklabeloverflow"] = val # ticklabelposition # ----------------- @property def ticklabelposition(self): """ Determines where tick labels are drawn. The 'ticklabelposition' property is an enumeration that may be specified as: - One of the following enumeration values: ['outside', 'inside', 'outside top', 'inside top', 'outside bottom', 'inside bottom'] Returns ------- Any """ return self["ticklabelposition"] @ticklabelposition.setter def ticklabelposition(self, val): self["ticklabelposition"] = val # ticklen # ------- @property def ticklen(self): """ Sets the tick length (in px). The 'ticklen' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["ticklen"] @ticklen.setter def ticklen(self, val): self["ticklen"] = val # tickmode # -------- @property def tickmode(self): """ Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). The 'tickmode' property is an enumeration that may be specified as: - One of the following enumeration values: ['auto', 'linear', 'array'] Returns ------- Any """ return self["tickmode"] @tickmode.setter def tickmode(self, val): self["tickmode"] = val # tickprefix # ---------- @property def tickprefix(self): """ Sets a tick label prefix. The 'tickprefix' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["tickprefix"] @tickprefix.setter def tickprefix(self, val): self["tickprefix"] = val # ticks # ----- @property def ticks(self): """ Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. The 'ticks' property is an enumeration that may be specified as: - One of the following enumeration values: ['outside', 'inside', ''] Returns ------- Any """ return self["ticks"] @ticks.setter def ticks(self, val): self["ticks"] = val # ticksuffix # ---------- @property def ticksuffix(self): """ Sets a tick label suffix. The 'ticksuffix' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["ticksuffix"] @ticksuffix.setter def ticksuffix(self, val): self["ticksuffix"] = val # ticktext # -------- @property def ticktext(self): """ Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. The 'ticktext' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["ticktext"] @ticktext.setter def ticktext(self, val): self["ticktext"] = val # ticktextsrc # ----------- @property def ticktextsrc(self): """ Sets the source reference on Chart Studio Cloud for `ticktext`. The 'ticktextsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["ticktextsrc"] @ticktextsrc.setter def ticktextsrc(self, val): self["ticktextsrc"] = val # tickvals # -------- @property def tickvals(self): """ Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. The 'tickvals' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["tickvals"] @tickvals.setter def tickvals(self, val): self["tickvals"] = val # tickvalssrc # ----------- @property def tickvalssrc(self): """ Sets the source reference on Chart Studio Cloud for `tickvals`. The 'tickvalssrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["tickvalssrc"] @tickvalssrc.setter def tickvalssrc(self, val): self["tickvalssrc"] = val # tickwidth # --------- @property def tickwidth(self): """ Sets the tick width (in px). The 'tickwidth' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["tickwidth"] @tickwidth.setter def tickwidth(self, val): self["tickwidth"] = val # title # ----- @property def title(self): """ The 'title' property is an instance of Title that may be specified as: - An instance of :class:`plotly.graph_objs.histogram.marker.colorbar.Title` - A dict of string/value properties that will be passed to the Title constructor Supported dict properties: font Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. side Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. text Sets the title of the color bar. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. Returns ------- plotly.graph_objs.histogram.marker.colorbar.Title """ return self["title"] @title.setter def title(self, val): self["title"] = val # titlefont # --------- @property def titlefont(self): """ Deprecated: Please use histogram.marker.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. The 'font' property is an instance of Font that may be specified as: - An instance of :class:`plotly.graph_objs.histogram.marker.colorbar.title.Font` - A dict of string/value properties that will be passed to the Font constructor Supported dict properties: color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- """ return self["titlefont"] @titlefont.setter def titlefont(self, val): self["titlefont"] = val # titleside # --------- @property def titleside(self): """ Deprecated: Please use histogram.marker.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. The 'side' property is an enumeration that may be specified as: - One of the following enumeration values: ['right', 'top', 'bottom'] Returns ------- """ return self["titleside"] @titleside.setter def titleside(self, val): self["titleside"] = val # x # - @property def x(self): """ Sets the x position of the color bar (in plot fraction). The 'x' property is a number and may be specified as: - An int or float in the interval [-2, 3] Returns ------- int|float """ return self["x"] @x.setter def x(self, val): self["x"] = val # xanchor # ------- @property def xanchor(self): """ Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. The 'xanchor' property is an enumeration that may be specified as: - One of the following enumeration values: ['left', 'center', 'right'] Returns ------- Any """ return self["xanchor"] @xanchor.setter def xanchor(self, val): self["xanchor"] = val # xpad # ---- @property def xpad(self): """ Sets the amount of padding (in px) along the x direction. The 'xpad' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["xpad"] @xpad.setter def xpad(self, val): self["xpad"] = val # y # - @property def y(self): """ Sets the y position of the color bar (in plot fraction). The 'y' property is a number and may be specified as: - An int or float in the interval [-2, 3] Returns ------- int|float """ return self["y"] @y.setter def y(self, val): self["y"] = val # yanchor # ------- @property def yanchor(self): """ Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. The 'yanchor' property is an enumeration that may be specified as: - One of the following enumeration values: ['top', 'middle', 'bottom'] Returns ------- Any """ return self["yanchor"] @yanchor.setter def yanchor(self, val): self["yanchor"] = val # ypad # ---- @property def ypad(self): """ Sets the amount of padding (in px) along the y direction. The 'ypad' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["ypad"] @ypad.setter def ypad(self, val): self["ypad"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. minexponent Hide SI prefix for 10^n if |n| is below this number. This only has an effect when `tickformat` is "SI" or "B". nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops A tuple of :class:`plotly.graph_objects.histogram.marke r.colorbar.Tickformatstop` instances or dicts with compatible properties tickformatstopdefaults When used in a template (as layout.template.data.histog ram.marker.colorbar.tickformatstopdefaults), sets the default property values to use for elements of histogram.marker.colorbar.tickformatstops ticklabeloverflow Determines how we handle tick labels that would overflow either the graph div or the domain of the axis. The default value for inside tick labels is *hide past domain*. In other cases the default is *hide past div*. ticklabelposition Determines where tick labels are drawn. ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on Chart Studio Cloud for `ticktext`. tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on Chart Studio Cloud for `tickvals`. tickwidth Sets the tick width (in px). title :class:`plotly.graph_objects.histogram.marker.colorbar. Title` instance or dict with compatible properties titlefont Deprecated: Please use histogram.marker.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use histogram.marker.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. ypad Sets the amount of padding (in px) along the y direction. """ _mapped_properties = { "titlefont": ("title", "font"), "titleside": ("title", "side"), } def __init__( self, arg=None, bgcolor=None, bordercolor=None, borderwidth=None, dtick=None, exponentformat=None, len=None, lenmode=None, minexponent=None, nticks=None, outlinecolor=None, outlinewidth=None, separatethousands=None, showexponent=None, showticklabels=None, showtickprefix=None, showticksuffix=None, thickness=None, thicknessmode=None, tick0=None, tickangle=None, tickcolor=None, tickfont=None, tickformat=None, tickformatstops=None, tickformatstopdefaults=None, ticklabeloverflow=None, ticklabelposition=None, ticklen=None, tickmode=None, tickprefix=None, ticks=None, ticksuffix=None, ticktext=None, ticktextsrc=None, tickvals=None, tickvalssrc=None, tickwidth=None, title=None, titlefont=None, titleside=None, x=None, xanchor=None, xpad=None, y=None, yanchor=None, ypad=None, **kwargs ): """ Construct a new ColorBar object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.histogram.marker.ColorBar` bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. minexponent Hide SI prefix for 10^n if |n| is below this number. This only has an effect when `tickformat` is "SI" or "B". nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops A tuple of :class:`plotly.graph_objects.histogram.marke r.colorbar.Tickformatstop` instances or dicts with compatible properties tickformatstopdefaults When used in a template (as layout.template.data.histog ram.marker.colorbar.tickformatstopdefaults), sets the default property values to use for elements of histogram.marker.colorbar.tickformatstops ticklabeloverflow Determines how we handle tick labels that would overflow either the graph div or the domain of the axis. The default value for inside tick labels is *hide past domain*. In other cases the default is *hide past div*. ticklabelposition Determines where tick labels are drawn. ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on Chart Studio Cloud for `ticktext`. tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on Chart Studio Cloud for `tickvals`. tickwidth Sets the tick width (in px). title :class:`plotly.graph_objects.histogram.marker.colorbar. Title` instance or dict with compatible properties titlefont Deprecated: Please use histogram.marker.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use histogram.marker.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. ypad Sets the amount of padding (in px) along the y direction. Returns ------- ColorBar """ super(ColorBar, self).__init__("colorbar") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.histogram.marker.ColorBar constructor must be a dict or an instance of :class:`plotly.graph_objs.histogram.marker.ColorBar`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("bgcolor", None) _v = bgcolor if bgcolor is not None else _v if _v is not None: self["bgcolor"] = _v _v = arg.pop("bordercolor", None) _v = bordercolor if bordercolor is not None else _v if _v is not None: self["bordercolor"] = _v _v = arg.pop("borderwidth", None) _v = borderwidth if borderwidth is not None else _v if _v is not None: self["borderwidth"] = _v _v = arg.pop("dtick", None) _v = dtick if dtick is not None else _v if _v is not None: self["dtick"] = _v _v = arg.pop("exponentformat", None) _v = exponentformat if exponentformat is not None else _v if _v is not None: self["exponentformat"] = _v _v = arg.pop("len", None) _v = len if len is not None else _v if _v is not None: self["len"] = _v _v = arg.pop("lenmode", None) _v = lenmode if lenmode is not None else _v if _v is not None: self["lenmode"] = _v _v = arg.pop("minexponent", None) _v = minexponent if minexponent is not None else _v if _v is not None: self["minexponent"] = _v _v = arg.pop("nticks", None) _v = nticks if nticks is not None else _v if _v is not None: self["nticks"] = _v _v = arg.pop("outlinecolor", None) _v = outlinecolor if outlinecolor is not None else _v if _v is not None: self["outlinecolor"] = _v _v = arg.pop("outlinewidth", None) _v = outlinewidth if outlinewidth is not None else _v if _v is not None: self["outlinewidth"] = _v _v = arg.pop("separatethousands", None) _v = separatethousands if separatethousands is not None else _v if _v is not None: self["separatethousands"] = _v _v = arg.pop("showexponent", None) _v = showexponent if showexponent is not None else _v if _v is not None: self["showexponent"] = _v _v = arg.pop("showticklabels", None) _v = showticklabels if showticklabels is not None else _v if _v is not None: self["showticklabels"] = _v _v = arg.pop("showtickprefix", None) _v = showtickprefix if showtickprefix is not None else _v if _v is not None: self["showtickprefix"] = _v _v = arg.pop("showticksuffix", None) _v = showticksuffix if showticksuffix is not None else _v if _v is not None: self["showticksuffix"] = _v _v = arg.pop("thickness", None) _v = thickness if thickness is not None else _v if _v is not None: self["thickness"] = _v _v = arg.pop("thicknessmode", None) _v = thicknessmode if thicknessmode is not None else _v if _v is not None: self["thicknessmode"] = _v _v = arg.pop("tick0", None) _v = tick0 if tick0 is not None else _v if _v is not None: self["tick0"] = _v _v = arg.pop("tickangle", None) _v = tickangle if tickangle is not None else _v if _v is not None: self["tickangle"] = _v _v = arg.pop("tickcolor", None) _v = tickcolor if tickcolor is not None else _v if _v is not None: self["tickcolor"] = _v _v = arg.pop("tickfont", None) _v = tickfont if tickfont is not None else _v if _v is not None: self["tickfont"] = _v _v = arg.pop("tickformat", None) _v = tickformat if tickformat is not None else _v if _v is not None: self["tickformat"] = _v _v = arg.pop("tickformatstops", None) _v = tickformatstops if tickformatstops is not None else _v if _v is not None: self["tickformatstops"] = _v _v = arg.pop("tickformatstopdefaults", None) _v = tickformatstopdefaults if tickformatstopdefaults is not None else _v if _v is not None: self["tickformatstopdefaults"] = _v _v = arg.pop("ticklabeloverflow", None) _v = ticklabeloverflow if ticklabeloverflow is not None else _v if _v is not None: self["ticklabeloverflow"] = _v _v = arg.pop("ticklabelposition", None) _v = ticklabelposition if ticklabelposition is not None else _v if _v is not None: self["ticklabelposition"] = _v _v = arg.pop("ticklen", None) _v = ticklen if ticklen is not None else _v if _v is not None: self["ticklen"] = _v _v = arg.pop("tickmode", None) _v = tickmode if tickmode is not None else _v if _v is not None: self["tickmode"] = _v _v = arg.pop("tickprefix", None) _v = tickprefix if tickprefix is not None else _v if _v is not None: self["tickprefix"] = _v _v = arg.pop("ticks", None) _v = ticks if ticks is not None else _v if _v is not None: self["ticks"] = _v _v = arg.pop("ticksuffix", None) _v = ticksuffix if ticksuffix is not None else _v if _v is not None: self["ticksuffix"] = _v _v = arg.pop("ticktext", None) _v = ticktext if ticktext is not None else _v if _v is not None: self["ticktext"] = _v _v = arg.pop("ticktextsrc", None) _v = ticktextsrc if ticktextsrc is not None else _v if _v is not None: self["ticktextsrc"] = _v _v = arg.pop("tickvals", None) _v = tickvals if tickvals is not None else _v if _v is not None: self["tickvals"] = _v _v = arg.pop("tickvalssrc", None) _v = tickvalssrc if tickvalssrc is not None else _v if _v is not None: self["tickvalssrc"] = _v _v = arg.pop("tickwidth", None) _v = tickwidth if tickwidth is not None else _v if _v is not None: self["tickwidth"] = _v _v = arg.pop("title", None) _v = title if title is not None else _v if _v is not None: self["title"] = _v _v = arg.pop("titlefont", None) _v = titlefont if titlefont is not None else _v if _v is not None: self["titlefont"] = _v _v = arg.pop("titleside", None) _v = titleside if titleside is not None else _v if _v is not None: self["titleside"] = _v _v = arg.pop("x", None) _v = x if x is not None else _v if _v is not None: self["x"] = _v _v = arg.pop("xanchor", None) _v = xanchor if xanchor is not None else _v if _v is not None: self["xanchor"] = _v _v = arg.pop("xpad", None) _v = xpad if xpad is not None else _v if _v is not None: self["xpad"] = _v _v = arg.pop("y", None) _v = y if y is not None else _v if _v is not None: self["y"] = _v _v = arg.pop("yanchor", None) _v = yanchor if yanchor is not None else _v if _v is not None: self["yanchor"] = _v _v = arg.pop("ypad", None) _v = ypad if ypad is not None else _v if _v is not None: self["ypad"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
35.772263
102
0.558984
85d8201bd67bbd2217d08850e44871f6c81a5b51
8,784
py
Python
nmap/nmap_to_nucleus_asset.py
EquateTechnologies/nucleusPlugins
809072015736ad9685deae1bb8102ef149c2437e
[ "MIT" ]
null
null
null
nmap/nmap_to_nucleus_asset.py
EquateTechnologies/nucleusPlugins
809072015736ad9685deae1bb8102ef149c2437e
[ "MIT" ]
null
null
null
nmap/nmap_to_nucleus_asset.py
EquateTechnologies/nucleusPlugins
809072015736ad9685deae1bb8102ef149c2437e
[ "MIT" ]
null
null
null
import sys import argparse import json # Used to parse nmap XML file import xml.etree.ElementTree as ET # Used to interact with Nucleus API import requests # Get the nmap XML file to parse def parse_xml(inputPath): try: tree = ET.parse(inputPath) root = tree.getroot() except ET.ParseError as e: print("Parse error(%s): %s" % e.errno, e.strerror) sys.exit(2) except IOError as e: print("IO error(%s): %s" % e.errno, e.strerror) sys.exit(2) except: print("Unexpected error: %s" % sys.exc_info()[0]) sys.exit(2) return root # Used to parse the vuln data from the json file def build_asset_list(root, args): assets = [] for host in root.findall('host'): # ET.dump(host) asset = {} for os in host.findall('os'): os_score = 0 for osmatch in os.findall('osmatch'): for osclass in osmatch.findall('osclass'): try: if int(osclass.get('accuracy')) > os_score: os_score = int(osclass.get('accuracy')) asset['operating_system_name'] = osmatch.get('name') # asset['operating_system_version'] = ET.tostring(osclass, encoding="utf8", method="text").decode('utf8') except: pass asset['ip_address'] = '' for address in host.findall('address'): if address.get('addrtype') == 'ipv4' or address.get('addrtype') == 'ipv6': asset['ip_address'] = address.get('addr') elif address.get('addrtype') == 'mac': asset['mac_address'] = address.get('addr') for hostname in host.findall('hostnames'): for hname in hostname.findall('hostname'): try: asset['asset_name'] = hname.get('name') except: pass asset['asset_groups'] = args.groups.split(',') asset['asset_users'] = args.users.split(',') asset['asset_location'] = args.location asset['asset_type'] = args.type asset['asset_notes'] = args.notes asset['domain_name'] = args.domain asset['asset_complianced_score'] = args.complianceScore asset['asset_public'] = args.public asset['asset_criticality'] = args.criticality asset['asset_data_sensitivity_score'] = args.dataSensitivityScore asset['asset_criticality_score'] = args.criticalityScore # print("%s" % json.dumps(asset, indent=2)) assets.append(asset) return (assets) def get_existing_project_assets(args): nucleus_url = str('https://' + args.nucleusHost + '/nucleus/api/projects/' + str(args.projectId) + '/assets') assets = [] try: more_assets_to_come = True starting_at = 0 while more_assets_to_come == True: print("Requesting assets %d to %d" % (starting_at, starting_at + 100)) payload = {'start': starting_at, 'limit': 100} response = requests.get(nucleus_url, headers = {'accept': 'application/json', 'x-apikey': args.nucleusApiKey}, params=payload) if response.status_code == 200: print("Status Code = %d, Asset Count = %d" % (response.status_code, len(response.json()))) else: print("Status Code = %d" % (response.status_code)) if response.status_code == 200: assets = assets + response.json() starting_at += 100 if len(response.json()) < 100: more_assets_to_come = False break except Exception as e: print("Unable to get assets via Nucleus API. Try checking your Nucleus URL and project ID.") print("Error as follows:", e) return [False] return assets def handle_assets(assets, existing_assets, args): for asset in assets: # print("%s" % json.dumps(asset, indent=2)) if asset.get('asset_name'): asset_name = asset['asset_name'] else: asset_name = asset['ip_address'] already_exists = False existing_asset_id = 0 for existing_asset in existing_assets: existing_asset_name = existing_asset['asset_name'] # compare asset name if asset.get('asset_name') and existing_asset.get('asset_name') and asset['asset_name'] != '' and existing_asset['asset_name'] != '' and asset['asset_name'] == existing_asset['asset_name']: already_exists = True existing_asset_id = int(existing_asset['asset_id']) break # compare asset IP address if asset.get('ip_address') and existing_asset.get('ip_address') and asset['ip_address'] != '' and existing_asset['ip_address'] != '' and asset['ip_address'] == existing_asset['ip_address']: already_exists = True existing_asset_id = int(existing_asset['asset_id']) break try: if already_exists == False: nucleus_url = str('https://' + args.nucleusHost + '/nucleus/api/projects/' + str(args.projectId) + '/assets') print("Creating asset %s via POST to %s" % (asset_name, nucleus_url)) response = requests.post(nucleus_url, data = json.dumps(asset), headers = {'content-type': 'application/json', 'accept': 'application/json', 'x-apikey': args.nucleusApiKey}) print("Status Code = %d, Body = %s" % (response.status_code, response.json())) else: if existing_asset_name != '': print("Asset %s appears to already exist as '%s' with ID %d, ignoring." % (asset_name, existing_asset_name, existing_asset_id)) else: print("Asset %s appears to already exist without a name but with ID %d, ignoring." % (asset_name, existing_asset_id)) except Exception as e: print("Exception when trying to communicate with Nucleus API. Try checking your Nucleus URL and project ID.") print("Asset name: %s" % asset['asset_name']) print("Error as follows:", e) def get_args(): parser = argparse.ArgumentParser(description="For parsing nmap XML files to create assets in Nucleus.") # List arguments. Should only include input file and output file parser.add_argument('-o', '--hostname', dest='nucleusHost', metavar='FQDN', help="Nucleus instance hostname", required=True) parser.add_argument('-a', '--api-key', dest='nucleusApiKey', metavar='API_KEY', help="Nucleus instance API key", required=True) parser.add_argument('-i', '--input-file', dest='inputFile', metavar='PATH/TO/FILE.xml', help="Path to nmap xml file to parse", required=True) parser.add_argument('-p', '--project-id', dest="projectId", metavar='PROJECT_ID', help="Project ID to associate assets with", type=int, required=True) parser.add_argument('-u', '--users', dest='users', metavar='USER1@DOMAIN.TLD,USER2', help="Common delimited list of asset users to associate with new assets", default='', required=False) parser.add_argument('-l', '--location', dest='location', metavar='LOCATION', help="Location string to set for new assets", default='', required=False) parser.add_argument('-t', '--type', dest='type', metavar='TYPE', help="Asset type to use for new assets", choices=['Database','Host','Container Image','Application'], default='Host', required=False) parser.add_argument('-n', '--notes', dest='notes', metavar='NOTES', help="Notes to set for new assets", default='', required=False) parser.add_argument('-d', '--domain', dest='domain', metavar='DOMAIN', help="Domain to set for new assets", default='', required=False) parser.add_argument('-c', '--compliance-score', dest='complianceScore', metavar='SCORE', help="Compliance score to set for new assets (1=no/non-compliant, 10=yes/compliant)", type=int, default=1, required=False) parser.add_argument('-b', '--public', dest='public', help="Mark new assets as public", action='store_true', required=False) parser.add_argument('-r', '--criticality', dest='criticality', metavar='CRITICALITY', help="Criticality for new assets", choices=['Critical','High','Moderate','Low'], default='Low', required=False) parser.add_argument('-s', '--data-sensitivity-score', dest='dataSensitivityScore', metavar='SCORE', help="Data sensitivity score for new assets", type=int, default=5, required=False) parser.add_argument('-e', '--criticality-score', dest='criticalityScore', metavar='SCORE', help="Criticality score for new assets", type=int, default=5, required=False) parser.add_argument('-g', '--groups', dest='groups', metavar='GROUP1,GROUP2', help="Common delimited list of asset groups to associate with new assets", default='', required=False) args = parser.parse_args() return args if __name__ == "__main__": arguments = get_args() inputPath = arguments.inputFile xml_root = parse_xml(inputPath) asset_list = build_asset_list(xml_root, arguments) existing_asset_list = get_existing_project_assets(arguments) if len(existing_asset_list) == 1 and existing_asset_list[0] == False: print("Error trying to get existing asset list, will not continue.") exit(1) else: handle_assets(asset_list, existing_asset_list, arguments) # EOF
43.701493
213
0.673725
14204787efbe8937d183236b7d79079a7ea0319e
7,751
py
Python
Ars_Magica_5th/fileval.py
FkinGuy/roll20-character-sheets
e8b08f99f5a9dad73aa750855667d320afd24487
[ "MIT" ]
null
null
null
Ars_Magica_5th/fileval.py
FkinGuy/roll20-character-sheets
e8b08f99f5a9dad73aa750855667d320afd24487
[ "MIT" ]
1
2021-03-12T02:44:27.000Z
2021-03-12T02:44:27.000Z
Ars_Magica_5th/fileval.py
FkinGuy/roll20-character-sheets
e8b08f99f5a9dad73aa750855667d320afd24487
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ Python script to evaluate and insert python expression in files """ import argparse import importlib import re import sys import traceback as tb from pathlib import Path from types import ModuleType from typing import Any, Dict, Generator, List, NoReturn, TextIO, Tuple, Union if sys.version_info < (3, 8): raise RuntimeError("This script requires python 3.8 or higher") is_whitespace = re.compile(r"^\s*$").match class HandledException(Exception): """ Exception that was already printed """ def process_template( in_file: TextIO, start_delimiter: str, end_delimiter: str, globalns: Dict[str, Any], localns: Dict[str, Any], ) -> Generator[str, None, None]: """ Read lines from a file and evaluates occurences of occurence_re """ lineno = 0 for line in in_file: lineno += 1 start, end = 0, 0 indent = "" while (start := line.find(start_delimiter, end)) >= 0: if end == 0 and is_whitespace(line[:start]): indent = line[:start] yield line[end:start] start += len(start_delimiter) expr = "" offset = 0 while (end := line.find(end_delimiter, start)) < 0: expr += line[start:] line = next(in_file) offset += 1 start = 0 expr += line[start:end] try: value = eval(expr, globalns, localns) except Exception as err: print( f"Expression at line {lineno}{'-' + str(lineno + offset) if offset else ''} raised an exception" ) print("Offending expression:", start_delimiter + expr + end_delimiter) print( "Exception raised:\n\n", "".join(tb.format_exception(type(err), err, err.__traceback__)), ) raise HandledException from err if not isinstance(value, str): print( f"Expression at line {lineno}{'-' + str(lineno + offset) if offset else ''} does not evaluate to a string" ) print(f"Offending expression:", start_delimiter + expr + end_delimiter) raise HandledException from ValueError( f"{start_delimiter + expr + end_delimiter} does not evaluate to a string" ) if indent: value = value.replace("\n", "\n" + indent) yield value end += len(end_delimiter) lineno += offset offset = 0 yield line[end:] def main( input: Path, output: Path, delimiters: Union[Tuple[str], Tuple[str, str]], global_namespaces: List[str] = (), local_namespaces: List[str] = (), ) -> NoReturn: """ Main script entry point """ # build delimiter regex start_delimiter = delimiters[0] end_delimiter = delimiters[0] if len(delimiters) == 1 else delimiters[1] # load namespaces globalns, localns = {}, {} for ns, source_list in zip( (globalns, localns), (global_namespaces, local_namespaces), ): for name in source_list: try: try: # assume we are loading a module module = importlib.import_module(name) ns.update(vars(module)) except ImportError: # assume last element in name is an attribute module_name, attr_name = name.rsplit(".", maxsplit=1) module = importlib.import_module(module_name) ns.update(getattr(module, attr_name)) except Exception as err: print( f"error: Could not load {name} due to:", "".join(tb.format_exception(type(err), err, err.__traceback__)), sep="\n\n", ) exit(-1) # process and write lines with input.open() as in_file: try: with output.open("wt") as out_file: out_file.writelines( process_template( in_file, start_delimiter, end_delimiter, globalns, localns, ) ) except HandledException: print("An error occured, see above") print("Deleting output file ...") output.unlink(missing_ok=True) except Exception as err: print("An unhandled error occured, see below") print("Deleting output file ...") output.unlink(missing_ok=True) raise err if __name__ == "__main__": parser = argparse.ArgumentParser( description=""" Evaluate python expressions in files and replace them by their value. This script will find expression in-between delimiters in a file, evaluate them and replace the expressions by their value in the output file. The namespace in which the expression are evaluated can be populated. If the resulting value contains newlines, and there was indentation before the start delimiter, the indentation is preserved before each newline. This allows for prettier formatting of the output.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "input", type=Path, help="File to read from and evaluate expressions in", ) parser.add_argument( "output", type=Path, help="File to write the content of the input with evaluated expressions", ) delimiter_group = parser.add_argument_group(title="delimiter arguments") delimiter_group.add_argument( "-d", "--delimiters", default=["$$"], nargs="+", help=( "Delimiters that marks the start and end of an expression." " If only one is provided, it is used as both the start and end delimiter." " If two are used, the first is the start delimiter, the second is the end delimiter." ), ) namespace_group = parser.add_argument_group(title="namespace arguments") namespace_group.add_argument( "-g", "--global-namespaces", type=str, nargs="*", default=[], help=( "Namespaces to load into the global namespace." " The packages and modules are loaded from left to right and can overwrite previous values." " The syntax is the same than the python 'import' statement, but you can end the dotted chain by an attribute of a module." ), ) namespace_group.add_argument( "-l", "--local-namespaces", type=str, nargs="*", default=[], help=( "Namespaces to load into the local namespace." " The packages and modules are loaded from left to right and can overwrite previous values." " The syntax is the same than the python 'import' statement, but you can end the dotted chain by an attribute of a module." " The local namespace can be edited by expressions with side-effects, such as the walrus operator ':='." ), ) args = parser.parse_args() # check arguments if not args.input.is_file(): parser.error(f"{args.input!s} doesn't exists or is not a file") if not isinstance(args.delimiters, list): args.delimiters = [args.delimiters] if not 0 < len(args.delimiters) < 3: parser.error("there must be one or two delimiters") main(**vars(args))
34.29646
135
0.569733
682bd915e26209b34a6bcb86478f24ff1f5f3146
553
py
Python
navrep/envs/markonedreamenv.py
ReykCS/navrep
22ee4727268188414a8121f069e45c2ab798ca19
[ "MIT" ]
48
2020-11-26T10:16:08.000Z
2022-03-24T15:22:08.000Z
navrep/envs/markonedreamenv.py
ReykCS/navrep
22ee4727268188414a8121f069e45c2ab798ca19
[ "MIT" ]
1
2021-12-14T02:08:18.000Z
2022-03-14T09:17:25.000Z
navrep/envs/markonedreamenv.py
ReykCS/navrep
22ee4727268188414a8121f069e45c2ab798ca19
[ "MIT" ]
18
2020-12-09T08:37:43.000Z
2022-03-30T06:56:38.000Z
import os from navrep.envs.dreamenv import DreamEnv class MarkOneDreamEnv(DreamEnv): def __init__(self, temperature=0.25): super(MarkOneDreamEnv, self).__init__( temperature=temperature, initial_z_path=os.path.expanduser( "~/navrep/datasets/M/markone/000_mus_logvars_robotstates_actions_rewards_dones.npz" ), rnn_model_path=os.path.expanduser("~/navrep/models/M/markonernn.json"), vae_model_path=os.path.expanduser("~/navrep/models/V/markonevae.json"), )
36.866667
99
0.674503
3e93662b2698e0a030dedd9cb099a3e856c09e67
3,455
py
Python
data/p2DJ/New/program/qiskit/class/startQiskit_Class395.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p2DJ/New/program/qiskit/class/startQiskit_Class395.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p2DJ/New/program/qiskit/class/startQiskit_Class395.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=2 # total number=19 import cirq import qiskit from qiskit import IBMQ from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename='circuit/deutsch-oracle.png') return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n, "qc") target = QuantumRegister(1, "qt") prog = QuantumCircuit(input_qubit, target) # inverse last one (can be omitted if using O_f^\pm) prog.x(target) # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[1]) # number=1 prog.h(input_qubit[1]) # number=6 prog.cz(input_qubit[0],input_qubit[1]) # number=7 prog.h(input_qubit[1]) # number=9 prog.h(input_qubit[1]) # number=8 prog.h(target) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [target]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure prog.y(input_qubit[1]) # number=2 prog.cx(input_qubit[0],input_qubit[1]) # number=4 prog.y(input_qubit[1]) # number=3 prog.cx(input_qubit[1],input_qubit[0]) # number=12 prog.x(input_qubit[0]) # number=13 prog.cx(input_qubit[1],input_qubit[0]) # number=14 prog.x(input_qubit[0]) # number=11 prog.y(input_qubit[0]) # number=15 prog.y(input_qubit[0]) # number=16 prog.cx(input_qubit[1],input_qubit[0]) # number=17 prog.cx(input_qubit[1],input_qubit[0]) # number=18 # circuit end return prog if __name__ == '__main__': n = 2 f = lambda rep: rep[-1] # f = lambda rep: "1" if rep[0:2] == "01" or rep[0:2] == "10" else "0" # f = lambda rep: "0" prog = make_circuit(n, f) sample_shot =2800 backend = BasicAer.get_backend('statevector_simulator') circuit1 = transpile(prog,FakeVigo()) circuit1.x(qubit=3) circuit1.x(qubit=3) prog = circuit1 info = execute(prog, backend=backend).result().get_statevector() qubits = round(log2(len(info))) info = { np.binary_repr(i, qubits): round((info[i]*(info[i].conjugate())).real,3) for i in range(2 ** qubits) } writefile = open("../data/startQiskit_Class395.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
29.279661
80
0.623734
0f7bc3ec022def1d7f4aceb3015d5df4da0f5458
2,428
py
Python
Configuration/StandardSequences/python/DigiToRawPreMixing_cff.py
pasmuss/cmssw
566f40c323beef46134485a45ea53349f59ae534
[ "Apache-2.0" ]
null
null
null
Configuration/StandardSequences/python/DigiToRawPreMixing_cff.py
pasmuss/cmssw
566f40c323beef46134485a45ea53349f59ae534
[ "Apache-2.0" ]
null
null
null
Configuration/StandardSequences/python/DigiToRawPreMixing_cff.py
pasmuss/cmssw
566f40c323beef46134485a45ea53349f59ae534
[ "Apache-2.0" ]
null
null
null
import FWCore.ParameterSet.Config as cms # This object is used to make changes for different running scenarios. In # this case for Run 2 from EventFilter.SiPixelRawToDigi.SiPixelDigiToRaw_cfi import * from EventFilter.SiStripRawToDigi.SiStripDigiToRaw_cfi import * from SimCalorimetry.EcalTrigPrimProducers.ecalTriggerPrimitiveDigis_cff import * import EventFilter.EcalDigiToRaw.ecalDigiToRaw_cfi ecalPacker = EventFilter.EcalDigiToRaw.ecalDigiToRaw_cfi.ecaldigitorawzerosup.clone() from EventFilter.ESDigiToRaw.esDigiToRaw_cfi import * from EventFilter.HcalRawToDigi.HcalDigiToRaw_cfi import * from EventFilter.CSCRawToDigi.cscPacker_cfi import * from EventFilter.DTRawToDigi.dtPacker_cfi import * from EventFilter.RPCRawToDigi.rpcPacker_cfi import * from EventFilter.CastorRawToDigi.CastorDigiToRaw_cfi import * from EventFilter.RawDataCollector.rawDataCollector_cfi import * #from L1Trigger.Configuration.L1TDigiToRaw_cff import * # no L1 DigiToRaw in first PreMixing step #DigiToRaw = cms.Sequence(L1TDigiToRaw*siPixelRawData*SiStripDigiToRaw*ecalPacker*esDigiToRaw*hcalRawData*cscpacker*dtpacker*rpcpacker*rawDataCollector) DigiToRaw = cms.Sequence(siPixelRawData*SiStripDigiToRaw*ecalPacker*esDigiToRaw*hcalRawData*cscpacker*dtpacker*rpcpacker*castorRawData*rawDataCollector) ecalPacker.Label = 'simEcalDigis' ecalPacker.InstanceEB = 'ebDigis' ecalPacker.InstanceEE = 'eeDigis' ecalPacker.labelEBSRFlags = "simEcalDigis:ebSrFlags" ecalPacker.labelEESRFlags = "simEcalDigis:eeSrFlags" hcalRawDatauHTR.premix = cms.bool(True) from Configuration.Eras.Modifier_run3_common_cff import run3_common run3_common.toReplaceWith(DigiToRaw, DigiToRaw.copyAndExclude([castorRawData])) #until we have hcal raw data for phase 2.... from Configuration.Eras.Modifier_phase2_hcal_cff import phase2_hcal phase2_hcal.toReplaceWith(DigiToRaw, DigiToRaw.copyAndExclude([hcalRawData])) # Remove siPixelRawData until we have phase1 pixel digis from Configuration.Eras.Modifier_phase2_tracker_cff import phase2_tracker phase2_tracker.toReplaceWith(DigiToRaw, DigiToRaw.copyAndExclude([siPixelRawData])) # FIXME from Configuration.Eras.Modifier_phase2_muon_cff import phase2_muon phase2_muon.toReplaceWith(DigiToRaw, DigiToRaw.copyAndExclude([rpcpacker])) from Configuration.Eras.Modifier_fastSim_cff import fastSim if fastSim.isChosen() : for _entry in [siPixelRawData,SiStripDigiToRaw,castorRawData]: DigiToRaw.remove(_entry)
52.782609
152
0.856672
102f024e8a7a84df685aa6c6a0e4d9ec69d40083
900
py
Python
st_mlbstatsapi/.history/st_inter_dataframe_20220509162959.py
rypaik/APIs
de44598d562d2a7d81060513b45300eb2d5679eb
[ "MIT" ]
null
null
null
st_mlbstatsapi/.history/st_inter_dataframe_20220509162959.py
rypaik/APIs
de44598d562d2a7d81060513b45300eb2d5679eb
[ "MIT" ]
null
null
null
st_mlbstatsapi/.history/st_inter_dataframe_20220509162959.py
rypaik/APIs
de44598d562d2a7d81060513b45300eb2d5679eb
[ "MIT" ]
null
null
null
import streamlit as st import pandas as pd import numpy as np from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode import statsapi # data= pd.read_csv('df_sample_data.csv', index_col=0) def rookie_hr_leader_dict(): rookie_hr_leaders_d = statsapi.league_leader_data('homeRuns', season=2021, playerPool='rookies', limit= 15) # print(rookie_hr_leaders_d) return rookie_hr_leaders_d def hr_leader_pandas(hr_list): df = pd.DataFrame(hr_list) # df = df.transpose() df.columns = ['Rank', 'Player','Teams', 'HR' ] # print(df) return df list_r_hr_leaders = rookie_hr_leader_dict() hr_rook_df = hr_leader_pandas(list_r_hr_leaders) AgGrid(hr_rook_df) # resiszing st.dataframe default sizing # df = pd.DataFrame([[33,]*1000]) # st.dataframe(df) gb = GridOptionsBuilder.from_dataframe(hr_rook_df) #TODO: combine add additional data to DF
23.076923
111
0.748889
01781e42c75c402b34ebcb65f51a0586f433808c
8,255
py
Python
tensorflow_datasets/text/wordnet.py
shubhamkumaR630/datasets
fe9ee91849cefed0953141ea3588f73b7def78fd
[ "Apache-2.0" ]
2
2022-02-14T09:51:39.000Z
2022-02-14T13:27:49.000Z
tensorflow_datasets/text/wordnet.py
shubhamkumaR630/datasets
fe9ee91849cefed0953141ea3588f73b7def78fd
[ "Apache-2.0" ]
null
null
null
tensorflow_datasets/text/wordnet.py
shubhamkumaR630/datasets
fe9ee91849cefed0953141ea3588f73b7def78fd
[ "Apache-2.0" ]
1
2020-12-13T22:11:33.000Z
2020-12-13T22:11:33.000Z
# coding=utf-8 # Copyright 2022 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """wordnet dataset.""" import os import tensorflow as tf import tensorflow_datasets.public_api as tfds _LICENSE = """WordNet Release 3.0 This software and database is being provided to you, the LICENSEE, by Princeton University under the following license. By obtaining, using and/or copying this software and database, you agree that you have read, understood, and will comply with these terms and conditions.: Permission to use, copy, modify and distribute this software and database and its documentation for any purpose and without fee or royalty is hereby granted, provided that you agree to comply with the following copyright notice and statements, including the disclaimer, and that the same appear on ALL copies of the software, database and documentation, including modifications that you make for internal use or for distribution. WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. THIS SOFTWARE AND DATABASE IS PROVIDED "AS IS" AND PRINCETON UNIVERSITY MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PRINCETON UNIVERSITY MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE, DATABASE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. The name of Princeton University or Princeton may not be used in advertising or publicity pertaining to distribution of the software and/or database. Title to copyright in this software, database and any associated documentation shall at all times remain with Princeton University and LICENSEE agrees to preserve same. """ _CITATION = """@article{10.1145/219717.219748, author = {Miller, George A.}, title = {WordNet: A Lexical Database for English}, year = {1995}, issue_date = {Nov. 1995}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, volume = {38}, number = {11}, issn = {0001-0782}, url = {https://doi.org/10.1145/219717.219748}, doi = {10.1145/219717.219748}, journal = {Commun. ACM}, month = nov, pages = {39--41}, numpages = {3} } """ _DESCRIPTION = """WordNet is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by means of conceptual-semantic and lexical relations. """ _WN18_DESCRIPTION = """This WORDNET TENSOR DATA consists of a collection of triplets (synset, relation_type, triplet) extracted from WordNet 3.0 (http://wordnet.princeton.edu). This data set can be seen as a 3-mode tensor depicting ternary relationships between synsets. See https://everest.hds.utc.fr/doku.php?id=en:transe. """ _WN18_CITATION = """@incollection{NIPS2013_5071, title = {Translating Embeddings for Modeling Multi-relational Data}, author = {Bordes, Antoine and Usunier, Nicolas and Garcia-Duran, Alberto and Weston, Jason and Yakhnenko, Oksana}, booktitle = {Advances in Neural Information Processing Systems 26}, editor = {C. J. C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K. Q. Weinberger}, pages = {2787--2795}, year = {2013}, publisher = {Curran Associates, Inc.}, url = {http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf} } """ _WN18RR_DESCRIPTION = """Same as WN18 but fixes test leakage through inverse relations. See https://github.com/TimDettmers/ConvE. """ _WN18RR_CITATION = """@inproceedings{dettmers2018conve, Author = {Dettmers, Tim and Pasquale, Minervini and Pontus, Stenetorp and Riedel, Sebastian}, Booktitle = {Proceedings of the 32th AAAI Conference on Artificial Intelligence}, Title = {Convolutional 2D Knowledge Graph Embeddings}, Url = {https://arxiv.org/abs/1707.01476}, Year = {2018}, pages = {1811--1818}, Month = {February} } """ _RELATIONS = [ '_also_see', '_derivationally_related_form', '_has_part', '_hypernym', '_instance_hypernym', '_member_meronym', '_member_of_domain_region', '_member_of_domain_usage', '_similar_to', '_synset_domain_topic_of', '_verb_group', ] def _make_wn18_metadata(synset_definitions_path): synsets = {} with tf.io.gfile.GFile(synset_definitions_path) as f: for line in f: synset_id, name, definition = line.strip().split('\t') synsets[synset_id] = dict(name=name, definition=definition) return dict(relations=_RELATIONS, synsets=synsets) class WordnetConfig(tfds.core.BuilderConfig): """Configuration for `Wordnet`.""" def __init__(self, name, path_prefix, description, citation, version): self._citation = citation self._path_prefix = path_prefix super(WordnetConfig, self).__init__( name=name, description=description, version=version) @property def citation(self): return '\n'.join([_CITATION, self._citation]) def get_paths(self, dl_paths): root_dir = dl_paths[self.name] return (os.path.join(root_dir, self._path_prefix + 'train.txt'), os.path.join(root_dir, self._path_prefix + 'valid.txt'), os.path.join(root_dir, self._path_prefix + 'test.txt')) class Wordnet(tfds.core.GeneratorBasedBuilder): """Builder for WordNet dataset.""" BUILDER_CONFIGS = [ WordnetConfig( name='WN18', path_prefix=os.path.join('wordnet-mlj12', 'wordnet-mlj12-'), description=_WN18_DESCRIPTION, citation=_WN18_CITATION, version=tfds.core.Version('0.1.0')), WordnetConfig( name='WN18RR', path_prefix='', description=_WN18RR_DESCRIPTION, citation=_WN18RR_CITATION, version=tfds.core.Version('0.1.0')), ] def _info(self): return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ 'lhs': tfds.features.Text(), 'relation': tfds.features.Text(), 'rhs': tfds.features.Text(), }), homepage='https://wordnet.princeton.edu/', citation=self.builder_config.citation, metadata=tfds.core.MetadataDict(), license=_LICENSE, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_paths = dl_manager.download_and_extract({ 'WN18': 'https://everest.hds.utc.fr/lib/exe/fetch.php?media=en:wordnet-mlj12.tar.gz', 'WN18RR': 'https://github.com/TimDettmers/ConvE/raw/master/WN18RR.tar.gz', }) # Metadata is at the configuration level and is the same for all splits. synset_definitions_path = os.path.join(dl_paths['WN18'], 'wordnet-mlj12', 'wordnet-mlj12-definitions.txt') self.info.metadata.update(_make_wn18_metadata(synset_definitions_path)) # Locate and output splits. train_path, val_path, test_path = self.builder_config.get_paths(dl_paths) return [ tfds.core.SplitGenerator( name=tfds.Split.TRAIN, gen_kwargs=dict(triplets_path=train_path), ), tfds.core.SplitGenerator( name=tfds.Split.VALIDATION, gen_kwargs=dict(triplets_path=val_path), ), tfds.core.SplitGenerator( name=tfds.Split.TEST, gen_kwargs=dict(triplets_path=test_path), ), ] def _generate_examples(self, triplets_path): """Yields examples.""" with tf.io.gfile.GFile(triplets_path) as f: for i, line in enumerate(f): lhs, relation, rhs = line.strip().split('\t') yield i, {'lhs': lhs, 'relation': relation, 'rhs': rhs}
38.217593
114
0.710842
389d149277289372865a5bf3924c6834bf94306a
146
py
Python
tests/test_cache.py
admariner/pmaw
f617106da920a74ba4f53ef9a2f0b8e7b89d6c5a
[ "MIT" ]
82
2021-01-27T04:22:59.000Z
2022-03-29T11:12:20.000Z
tests/test_cache.py
mattpodolak/pmaw
32806477b5f9b11393f9130394397e0f7eb01abe
[ "MIT" ]
36
2021-02-01T16:11:40.000Z
2022-03-23T01:33:10.000Z
tests/test_cache.py
admariner/pmaw
f617106da920a74ba4f53ef9a2f0b8e7b89d6c5a
[ "MIT" ]
13
2021-02-07T21:02:56.000Z
2022-03-31T22:30:41.000Z
from pmaw import Cache def test_no_info(): cache = Cache({}, False, cache_dir='./rand_cache') info = cache.load_info() assert(info == None)
24.333333
52
0.684932
f453fe7b5d8738e7c607b12aaa7c9f0e5e23f9b1
1,202
py
Python
model/HotDogModel.py
sajith-rahim/not-hotdog
c2b8d43ad39bd4d6dc08479923398fd24a15e27b
[ "MIT" ]
null
null
null
model/HotDogModel.py
sajith-rahim/not-hotdog
c2b8d43ad39bd4d6dc08479923398fd24a15e27b
[ "MIT" ]
null
null
null
model/HotDogModel.py
sajith-rahim/not-hotdog
c2b8d43ad39bd4d6dc08479923398fd24a15e27b
[ "MIT" ]
null
null
null
import numpy as np import torch.nn as nn import torch.nn.functional as F class HotDogModel(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.conv2 = nn.Conv2d(6, 12, 5, 2) self.conv3 = nn.Conv2d(12, 24, 5, 2) self.conv4 = nn.Conv2d(24, 12, 3) self.fc1 = nn.Linear(108, 256) self.fc2 = nn.Linear(256, 128) self.fc3 = nn.Linear(128, 32) self.out = nn.Linear(32, 2) def forward(self, x): x = F.max_pool2d(F.relu6(self.conv1(x)), 2) x = F.max_pool2d(F.relu6(self.conv2(x)), 2) x = F.max_pool2d(F.relu6(self.conv3(x)), 2) x = F.max_pool2d(F.relu6(self.conv4(x)), 2) x = x.reshape(1, -1) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) x = self.out(x) return x def __str__(self): """ Model prints with number of trainable parameters """ model_parameters = filter(lambda p: p.requires_grad, self.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) return super().__str__() + '\nTrainable parameters: {}'.format(params)
27.953488
79
0.558236
8b45e29e04a0160c20cbe34cec48cbae9d836408
1,980
py
Python
1020-rede_em_uma_fibra_otica.py
marcioaug/problems
d8187e611b746d100bfcb17fc957a13756e479e2
[ "MIT" ]
null
null
null
1020-rede_em_uma_fibra_otica.py
marcioaug/problems
d8187e611b746d100bfcb17fc957a13756e479e2
[ "MIT" ]
null
null
null
1020-rede_em_uma_fibra_otica.py
marcioaug/problems
d8187e611b746d100bfcb17fc957a13756e479e2
[ "MIT" ]
null
null
null
#! /usr/bin/python3 from queue import PriorityQueue def prim(G): MST = {} MST_edges = set() cost = 0 queue = PriorityQueue() visited = [] r = list(G.keys())[0] V = G[r] visited.append(r) for v in V: queue.put((v[1], v[0], r)) while not queue.empty(): e = queue.get() if e[1] not in visited: visited.append(e[1]) for v in G[e[1]]: if v[0] not in visited: queue.put((v[1], v[0], e[1])) if e[2] not in MST: MST[e[2]] = [] MST[e[2]].append((e[1], e[0])) if e[1] not in MST: MST[e[1]] = [] MST[e[1]].append((e[2], e[0])) if e[2] <= e[1]: MST_edges.add((e[2], e[1], e[0])) else: MST_edges.add((e[1], e[2], e[0])) cost += e[0] return MST, MST_edges, cost def dfs(G, V, cost, costs, visited): visited.append(V) for v in G[V]: if v[0] not in visited: c = cost + v[1] costs.append((v[0], c)) dfs(G, v[0], c, costs, visited) return costs def main(): (v, e, r) = map(int, input().split()) G = {} for _ in range(e): (f, t, w) = map(int, input().split()) if f not in G: G[f] = [] G[f].append((t, w)) if t not in G: G[t] = [] G[t].append((f, w)) MST, MST_edges, cost = prim(G) print('########################') print('Minimum Cost:') print(cost) print('########################') print('Connections:') for edge in sorted(MST_edges): print(str(edge[0]) + " " + str(edge[1])) print('########################') print('Pings:') for cost in sorted(dfs(MST, 0, 0, [], [])): print('%d: %.3f' % (cost[0], (2 * cost[1]) / r)) print('########################') if __name__ == '__main__': main()
22.5
56
0.4
ba95d6e980d68b19fcef12fbe58c45effe3fd11c
52,771
py
Python
locust/runners.py
daniel135790/locust
444640ff998d1f37fa2d0f6f5a946fbb2cc5bb20
[ "MIT" ]
null
null
null
locust/runners.py
daniel135790/locust
444640ff998d1f37fa2d0f6f5a946fbb2cc5bb20
[ "MIT" ]
null
null
null
locust/runners.py
daniel135790/locust
444640ff998d1f37fa2d0f6f5a946fbb2cc5bb20
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import functools import json import logging import os import re import socket import sys import time import traceback from collections import defaultdict from collections.abc import MutableMapping from operator import ( itemgetter, methodcaller, ) from typing import ( Dict, Iterator, List, Union, ValuesView, ) from uuid import uuid4 import gevent import greenlet import psutil from gevent.pool import Group from . import User from locust import __version__ from .dispatch import UsersDispatcher from .exception import RPCError from .log import greenlet_exception_logger from .rpc import ( Message, rpc, ) from .stats import ( RequestStats, setup_distributed_stats_event_listeners, ) from . import argument_parser logger = logging.getLogger(__name__) STATE_INIT, STATE_SPAWNING, STATE_RUNNING, STATE_CLEANUP, STATE_STOPPING, STATE_STOPPED, STATE_MISSING = [ "ready", "spawning", "running", "cleanup", "stopping", "stopped", "missing", ] WORKER_REPORT_INTERVAL = 3.0 CPU_MONITOR_INTERVAL = 5.0 HEARTBEAT_INTERVAL = 1 HEARTBEAT_LIVENESS = 3 FALLBACK_INTERVAL = 5 greenlet_exception_handler = greenlet_exception_logger(logger) class Runner: """ Orchestrates the load test by starting and stopping the users. Use one of the :meth:`create_local_runner <locust.env.Environment.create_local_runner>`, :meth:`create_master_runner <locust.env.Environment.create_master_runner>` or :meth:`create_worker_runner <locust.env.Environment.create_worker_runner>` methods on the :class:`Environment <locust.env.Environment>` instance to create a runner of the desired type. """ def __init__(self, environment): self.environment = environment self.user_greenlets = Group() self.greenlet = Group() self.state = STATE_INIT self.spawning_greenlet = None self.shape_greenlet = None self.shape_last_state = None self.current_cpu_usage = 0 self.cpu_warning_emitted = False self.worker_cpu_warning_emitted = False self.greenlet.spawn(self.monitor_cpu).link_exception(greenlet_exception_handler) self.exceptions = {} self.target_user_classes_count: Dict[str, int] = {} self.custom_messages = {} # Only when running in standalone mode (non-distributed) self._local_worker_node = WorkerNode(id="local") self._local_worker_node.user_classes_count = self.user_classes_count self._users_dispatcher = None # set up event listeners for recording requests def on_request_success(request_type, name, response_time, response_length, **_kwargs): self.stats.log_request(request_type, name, response_time, response_length) def on_request_failure(request_type, name, response_time, response_length, exception, **_kwargs): self.stats.log_request(request_type, name, response_time, response_length) self.stats.log_error(request_type, name, exception) # temporarily set log level to ignore warnings to suppress deprication message loglevel = logging.getLogger().level logging.getLogger().setLevel(logging.ERROR) self.environment.events.request_success.add_listener(on_request_success) self.environment.events.request_failure.add_listener(on_request_failure) logging.getLogger().setLevel(loglevel) self.connection_broken = False # register listener that resets stats when spawning is complete def on_spawning_complete(user_count): self.update_state(STATE_RUNNING) if environment.reset_stats: logger.info("Resetting stats\n") self.stats.reset_all() self.environment.events.spawning_complete.add_listener(on_spawning_complete) def __del__(self): # don't leave any stray greenlets if runner is removed if self.greenlet and len(self.greenlet) > 0: self.greenlet.kill(block=False) @property def user_classes(self): return self.environment.user_classes @property def user_classes_by_name(self): return self.environment.user_classes_by_name @property def stats(self) -> RequestStats: return self.environment.stats @property def errors(self): return self.stats.errors @property def user_count(self): """ :returns: Number of currently running users """ return len(self.user_greenlets) @property def user_classes_count(self) -> Dict[str, int]: """ :returns: Number of currently running users for each user class """ user_classes_count = {user_class.__name__: 0 for user_class in self.user_classes} for user_greenlet in self.user_greenlets: try: user = user_greenlet.args[0] except IndexError: # TODO: Find out why args is sometimes empty. In gevent code, # the supplied args are cleared in the gevent.greenlet.Greenlet.__free, # so it seems a good place to start investigating. My suspicion is that # the supplied args are emptied whenever the greenlet is dead, so we can # simply ignore the greenlets with empty args. logger.debug( "ERROR: While calculating number of running users, we encountered a user that didnt have proper args %s (user_greenlet.dead=%s)", user_greenlet, user_greenlet.dead, ) continue user_classes_count[user.__class__.__name__] += 1 return user_classes_count def update_state(self, new_state): """ Updates the current state """ # I (cyberwiz) commented out this logging, because it is too noisy even for debug level # Uncomment it if you are specifically debugging state transitions # logger.debug("Updating state to '%s', old state was '%s'" % (new_state, self.state)) self.state = new_state def cpu_log_warning(self): """Called at the end of the test to repeat the warning & return the status""" if self.cpu_warning_emitted: logger.warning( "CPU usage was too high at some point during the test! See https://docs.locust.io/en/stable/running-locust-distributed.html for how to distribute the load over multiple CPU cores or machines" ) return True return False def spawn_users(self, user_classes_spawn_count: Dict[str, int], wait: bool = False): if self.state == STATE_INIT or self.state == STATE_STOPPED: self.update_state(STATE_SPAWNING) logger.debug( "Spawning additional %s (%s already running)..." % (json.dumps(user_classes_spawn_count), json.dumps(self.user_classes_count)) ) def spawn(user_class: str, spawn_count: int): n = 0 new_users = [] while n < spawn_count: new_user = self.user_classes_by_name[user_class](self.environment) new_user.start(self.user_greenlets) new_users.append(new_user) n += 1 if n % 10 == 0 or n == spawn_count: logger.debug("%i users spawned" % self.user_count) logger.debug("All users of class %s spawned" % user_class) return new_users new_users = [] for user_class, spawn_count in user_classes_spawn_count.items(): new_users += spawn(user_class, spawn_count) if wait: self.user_greenlets.join() logger.info("All users stopped\n") return new_users def stop_users(self, user_classes_stop_count: Dict[str, int]): async_calls_to_stop = Group() stop_group = Group() for user_class, stop_count in user_classes_stop_count.items(): if self.user_classes_count[user_class] == 0: continue to_stop = [] for user_greenlet in self.user_greenlets: if len(to_stop) == stop_count: break try: user = user_greenlet.args[0] except IndexError: logger.error( "While stopping users, we encountered a user that didnt have proper args %s", user_greenlet ) continue if isinstance(user, self.user_classes_by_name[user_class]): to_stop.append(user) if not to_stop: continue while True: user_to_stop: User = to_stop.pop() logger.debug("Stopping %s" % user_to_stop.greenlet.name) if user_to_stop.greenlet is greenlet.getcurrent(): # User called runner.quit(), so don't block waiting for killing to finish user_to_stop.group.killone(user_to_stop.greenlet, block=False) elif self.environment.stop_timeout: async_calls_to_stop.add(gevent.spawn_later(0, user_to_stop.stop, force=False)) stop_group.add(user_to_stop.greenlet) else: async_calls_to_stop.add(gevent.spawn_later(0, user_to_stop.stop, force=True)) if not to_stop: break async_calls_to_stop.join() if not stop_group.join(timeout=self.environment.stop_timeout): logger.info( "Not all users finished their tasks & terminated in %s seconds. Stopping them..." % self.environment.stop_timeout ) stop_group.kill(block=True) logger.debug( "%g users have been stopped, %g still running", sum(user_classes_stop_count.values()), self.user_count ) def monitor_cpu(self): process = psutil.Process() while True: self.current_cpu_usage = process.cpu_percent() if self.current_cpu_usage > 90 and not self.cpu_warning_emitted: logging.warning( "CPU usage above 90%! This may constrain your throughput and may even give inconsistent response time measurements! See https://docs.locust.io/en/stable/running-locust-distributed.html for how to distribute the load over multiple CPU cores or machines" ) self.cpu_warning_emitted = True gevent.sleep(CPU_MONITOR_INTERVAL) def start(self, user_count: int, spawn_rate: float, wait: bool = False): """ Start running a load test :param user_count: Total number of users to start :param spawn_rate: Number of users to spawn per second :param wait: If True calls to this method will block until all users are spawned. If False (the default), a greenlet that spawns the users will be started and the call to this method will return immediately. """ if self.state != STATE_RUNNING and self.state != STATE_SPAWNING: self.stats.clear_all() self.exceptions = {} self.cpu_warning_emitted = False self.worker_cpu_warning_emitted = False self.environment.events.test_start.fire(environment=self.environment) if wait and user_count - self.user_count > spawn_rate: raise ValueError("wait is True but the amount of users to add is greater than the spawn rate") for user_class in self.user_classes: if self.environment.host is not None: user_class.host = self.environment.host if self.state != STATE_INIT and self.state != STATE_STOPPED: self.update_state(STATE_SPAWNING) if self._users_dispatcher is None: self._users_dispatcher = UsersDispatcher( worker_nodes=[self._local_worker_node], user_classes=self.user_classes ) logger.info("Ramping to %d users at a rate of %.2f per second" % (user_count, spawn_rate)) self._users_dispatcher.new_dispatch(user_count, spawn_rate) try: for dispatched_users in self._users_dispatcher: user_classes_spawn_count = {} user_classes_stop_count = {} user_classes_count = dispatched_users[self._local_worker_node.id] logger.debug("Ramping to %s" % _format_user_classes_count_for_log(user_classes_count)) for user_class, user_class_count in user_classes_count.items(): if self.user_classes_count[user_class] > user_class_count: user_classes_stop_count[user_class] = self.user_classes_count[user_class] - user_class_count elif self.user_classes_count[user_class] < user_class_count: user_classes_spawn_count[user_class] = user_class_count - self.user_classes_count[user_class] if wait: # spawn_users will block, so we need to call stop_users first self.stop_users(user_classes_stop_count) self.spawn_users(user_classes_spawn_count, wait) else: # call spawn_users before stopping the users since stop_users # can be blocking because of the stop_timeout self.spawn_users(user_classes_spawn_count, wait) self.stop_users(user_classes_stop_count) self._local_worker_node.user_classes_count = next(iter(dispatched_users.values())) except KeyboardInterrupt: # TODO: Find a cleaner way to handle that # We need to catch keyboard interrupt. Otherwise, if KeyboardInterrupt is received while in # a gevent.sleep inside the dispatch_users function, locust won't gracefully shutdown. self.quit() logger.info("All users spawned: %s" % _format_user_classes_count_for_log(self.user_classes_count)) self.environment.events.spawning_complete.fire(user_count=sum(self.target_user_classes_count.values())) def start_shape(self): if self.shape_greenlet: logger.info("There is an ongoing shape test running. Editing is disabled") return logger.info("Shape test starting. User count and spawn rate are ignored for this type of load test") self.update_state(STATE_INIT) self.shape_greenlet = self.greenlet.spawn(self.shape_worker) self.shape_greenlet.link_exception(greenlet_exception_handler) self.environment.shape_class.reset_time() def shape_worker(self): logger.info("Shape worker starting") while self.state == STATE_INIT or self.state == STATE_SPAWNING or self.state == STATE_RUNNING: new_state = self.environment.shape_class.tick() if new_state is None: logger.info("Shape test stopping") if self.environment.parsed_options and self.environment.parsed_options.headless: self.quit() else: self.stop() self.shape_greenlet = None self.shape_last_state = None return elif self.shape_last_state == new_state: gevent.sleep(1) else: user_count, spawn_rate = new_state logger.info("Shape test updating to %d users at %.2f spawn rate" % (user_count, spawn_rate)) # TODO: This `self.start()` call is blocking until the ramp-up is completed. This can leads # to unexpected behaviours such as the one in the following example: # A load test shape has the following stages: # stage 1: (user_count=100, spawn_rate=1) for t < 50s # stage 2: (user_count=120, spawn_rate=1) for t < 100s # stage 3: (user_count=130, spawn_rate=1) for t < 120s # Because the first stage will take 100s to complete, the second stage # will be skipped completely because the shape worker will be blocked # at the `self.start()` of the first stage. # Of couse, this isn't a problem if the load test shape is well-defined. # We should probably use a `gevent.timeout` with a duration a little over # `(user_count - prev_user_count) / spawn_rate` in order to limit the runtime # of each load test shape stage. self.start(user_count=user_count, spawn_rate=spawn_rate) self.shape_last_state = new_state def stop(self): """ Stop a running load test by stopping all running users """ if self.state == STATE_STOPPED: return logger.debug("Stopping all users") self.update_state(STATE_CLEANUP) # if we are currently spawning users we need to kill the spawning greenlet first if self.spawning_greenlet and not self.spawning_greenlet.ready(): self.spawning_greenlet.kill(block=True) if self.environment.shape_class is not None and self.shape_greenlet is not greenlet.getcurrent(): # If the test was not started yet and locust is # stopped/quit, shape_greenlet will be None. if self.shape_greenlet is not None: self.shape_greenlet.kill(block=True) self.shape_greenlet = None self.shape_last_state = None self.stop_users(self.user_classes_count) self.update_state(STATE_STOPPED) self.cpu_log_warning() self.environment.events.test_stop.fire(environment=self.environment) def quit(self): """ Stop any running load test and kill all greenlets for the runner """ self.stop() self.greenlet.kill(block=True) def log_exception(self, node_id, msg, formatted_tb): key = hash(formatted_tb) row = self.exceptions.setdefault(key, {"count": 0, "msg": msg, "traceback": formatted_tb, "nodes": set()}) row["count"] += 1 row["nodes"].add(node_id) self.exceptions[key] = row @property def target_user_count(self) -> int: return sum(self.target_user_classes_count.values()) def register_message(self, msg_type, listener): """ Register a listener for a custom message from another node :param msg_type: The type of the message to listen for :param listener: The function to execute when the message is received """ self.custom_messages[msg_type] = listener class LocalRunner(Runner): """ Runner for running single process load test """ def __init__(self, environment): """ :param environment: Environment instance """ super().__init__(environment) # register listener thats logs the exception for the local runner def on_user_error(user_instance, exception, tb): formatted_tb = "".join(traceback.format_tb(tb)) self.log_exception("local", str(exception), formatted_tb) self.environment.events.user_error.add_listener(on_user_error) def start(self, user_count: int, spawn_rate: float, wait: bool = False): if spawn_rate > 100: logger.warning( "Your selected spawn rate is very high (>100), and this is known to sometimes cause issues. Do you really need to ramp up that fast?" ) if self.spawning_greenlet: # kill existing spawning_greenlet before we start a new one self.spawning_greenlet.kill(block=True) self.spawning_greenlet = self.greenlet.spawn( lambda: super(LocalRunner, self).start(user_count, spawn_rate, wait=wait) ) self.spawning_greenlet.link_exception(greenlet_exception_handler) def stop(self): if self.state == STATE_STOPPED: return super().stop() def send_message(self, msg_type, data=None): """ Emulates internodal messaging by calling registered listeners :param msg_type: The type of the message to emulate sending :param data: Optional data to include """ logger.debug(f"Running locally: sending {msg_type} message to self") if msg_type in self.custom_messages: listener = self.custom_messages[msg_type] msg = Message(msg_type, data, "local") listener(environment=self.environment, msg=msg) else: logger.warning(f"Unknown message type recieved: {msg_type}") class DistributedRunner(Runner): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._local_worker_node = None setup_distributed_stats_event_listeners(self.environment.events, self.stats) class WorkerNode: def __init__(self, id: str, state=STATE_INIT, heartbeat_liveness=HEARTBEAT_LIVENESS): self.id: str = id self.state = state self.heartbeat = heartbeat_liveness self.cpu_usage = 0 self.cpu_warning_emitted = False # The reported users running on the worker self.user_classes_count: Dict[str, int] = {} @property def user_count(self) -> int: return sum(self.user_classes_count.values()) class WorkerNodes(MutableMapping): def __init__(self): self._worker_nodes = {} def get_by_state(self, state) -> List[WorkerNode]: return [c for c in self.values() if c.state == state] @property def all(self) -> ValuesView[WorkerNode]: return self.values() @property def ready(self) -> List[WorkerNode]: return self.get_by_state(STATE_INIT) @property def spawning(self) -> List[WorkerNode]: return self.get_by_state(STATE_SPAWNING) @property def running(self) -> List[WorkerNode]: return self.get_by_state(STATE_RUNNING) @property def missing(self) -> List[WorkerNode]: return self.get_by_state(STATE_MISSING) def __setitem__(self, k: str, v: WorkerNode) -> None: self._worker_nodes[k] = v def __delitem__(self, k: str) -> None: del self._worker_nodes[k] def __getitem__(self, k: str) -> WorkerNode: return self._worker_nodes[k] def __len__(self) -> int: return len(self._worker_nodes) def __iter__(self) -> Iterator[WorkerNode]: return iter(self._worker_nodes) class MasterRunner(DistributedRunner): """ Runner used to run distributed load tests across multiple processes and/or machines. MasterRunner doesn't spawn any user greenlets itself. Instead it expects :class:`WorkerRunners <WorkerRunner>` to connect to it, which it will then direct to start and stop user greenlets. Stats sent back from the :class:`WorkerRunners <WorkerRunner>` will aggregated. """ def __init__(self, environment, master_bind_host, master_bind_port): """ :param environment: Environment instance :param master_bind_host: Host/interface to use for incoming worker connections :param master_bind_port: Port to use for incoming worker connections """ super().__init__(environment) self.worker_cpu_warning_emitted = False self.master_bind_host = master_bind_host self.master_bind_port = master_bind_port self.spawn_rate: float = 0 self.clients = WorkerNodes() try: self.server = rpc.Server(master_bind_host, master_bind_port) except RPCError as e: if e.args[0] == "Socket bind failure: Address already in use": port_string = ( master_bind_host + ":" + str(master_bind_port) if master_bind_host != "*" else str(master_bind_port) ) logger.error( f"The Locust master port ({port_string}) was busy. Close any applications using that port - perhaps an old instance of Locust master is still running? ({e.args[0]})" ) sys.exit(1) else: raise self._users_dispatcher: Union[UsersDispatcher, None] = None self.greenlet.spawn(self.heartbeat_worker).link_exception(greenlet_exception_handler) self.greenlet.spawn(self.client_listener).link_exception(greenlet_exception_handler) # listener that gathers info on how many users the worker has spawned def on_worker_report(client_id, data): if client_id not in self.clients: logger.info("Discarded report from unrecognized worker %s", client_id) return self.clients[client_id].user_classes_count = data["user_classes_count"] self.environment.events.worker_report.add_listener(on_worker_report) # register listener that sends quit message to worker nodes def on_quitting(environment, **kw): self.quit() self.environment.events.quitting.add_listener(on_quitting) @property def user_count(self) -> int: return sum(c.user_count for c in self.clients.values()) def cpu_log_warning(self): warning_emitted = Runner.cpu_log_warning(self) if self.worker_cpu_warning_emitted: logger.warning("CPU usage threshold was exceeded on workers during the test!") warning_emitted = True return warning_emitted def start(self, user_count: int, spawn_rate: float, **kwargs) -> None: num_workers = len(self.clients.ready) + len(self.clients.running) + len(self.clients.spawning) if not num_workers: logger.warning( "You are running in distributed mode but have no worker servers connected. " "Please connect workers prior to swarming." ) return for user_class in self.user_classes: if self.environment.host is not None: user_class.host = self.environment.host self.spawn_rate = spawn_rate if self._users_dispatcher is None: self._users_dispatcher = UsersDispatcher( worker_nodes=list(self.clients.values()), user_classes=self.user_classes ) logger.info( "Sending spawn jobs of %d users at %.2f spawn rate to %d ready clients" % (user_count, spawn_rate, num_workers) ) worker_spawn_rate = float(spawn_rate) / (num_workers or 1) if worker_spawn_rate > 100: logger.warning( "Your selected spawn rate is very high (>100/worker), and this is known to sometimes cause issues. Do you really need to ramp up that fast?" ) if self.state != STATE_RUNNING and self.state != STATE_SPAWNING: self.stats.clear_all() self.exceptions = {} self.environment.events.test_start.fire(environment=self.environment) if self.environment.shape_class: self.environment.shape_class.reset_time() self.update_state(STATE_SPAWNING) self._users_dispatcher.new_dispatch(target_user_count=user_count, spawn_rate=spawn_rate) try: for dispatched_users in self._users_dispatcher: dispatch_greenlets = Group() for worker_node_id, worker_user_classes_count in dispatched_users.items(): data = { "timestamp": time.time(), "user_classes_count": worker_user_classes_count, "host": self.environment.host, "stop_timeout": self.environment.stop_timeout, "parsed_options": vars(self.environment.parsed_options) if self.environment.parsed_options else {}, } dispatch_greenlets.add( gevent.spawn_later( 0, self.server.send_to_client, Message("spawn", data, worker_node_id), ) ) dispatched_user_count = sum(map(sum, map(methodcaller("values"), dispatched_users.values()))) logger.debug( "Sending spawn messages for %g total users to %i client(s)", dispatched_user_count, len(dispatch_greenlets), ) dispatch_greenlets.join() logger.debug( "Currently spawned users: %s" % _format_user_classes_count_for_log(self.reported_user_classes_count) ) self.target_user_classes_count = _aggregate_dispatched_users(dispatched_users) except KeyboardInterrupt: # TODO: Find a cleaner way to handle that # We need to catch keyboard interrupt. Otherwise, if KeyboardInterrupt is received while in # a gevent.sleep inside the dispatch_users function, locust won't gracefully shutdown. self.quit() # Wait a little for workers to report their users to the master # so that we can give an accurate log message below and fire the `spawning_complete` event # when the user count is really at the desired value. timeout = gevent.Timeout(self._wait_for_workers_report_after_ramp_up()) timeout.start() try: while self.user_count != self.target_user_count: gevent.sleep() except gevent.Timeout: pass finally: timeout.cancel() self.environment.events.spawning_complete.fire(user_count=sum(self.target_user_classes_count.values())) logger.info("All users spawned: %s" % _format_user_classes_count_for_log(self.reported_user_classes_count)) @functools.lru_cache() def _wait_for_workers_report_after_ramp_up(self) -> float: """ The amount of time to wait after a ramp-up in order for all the workers to report their state to the master. If not supplied by the user, it is 100ms by default. If the supplied value is a number, it is taken as-is. If the supplied value is a pattern like "some_number * WORKER_REPORT_INTERVAL", the value will be "some_number * WORKER_REPORT_INTERVAL". The most sensible value would be something like "1.25 * WORKER_REPORT_INTERVAL". However, some users might find it too high, so it is left to a really small value of 100ms by default. """ locust_wait_for_workers_report_after_ramp_up = os.getenv("LOCUST_WAIT_FOR_WORKERS_REPORT_AFTER_RAMP_UP") if locust_wait_for_workers_report_after_ramp_up is None: return 0.1 match = re.search( r"^(?P<coeff>(\d+)|(\d+\.\d+))[ ]*\*[ ]*WORKER_REPORT_INTERVAL$", locust_wait_for_workers_report_after_ramp_up, ) if match is None: assert float(locust_wait_for_workers_report_after_ramp_up) >= 0 return float(locust_wait_for_workers_report_after_ramp_up) else: return float(match.group("coeff")) * WORKER_REPORT_INTERVAL def stop(self, send_stop_to_client: bool = True): if self.state not in [STATE_INIT, STATE_STOPPED, STATE_STOPPING]: logger.debug("Stopping...") self.update_state(STATE_STOPPING) if self.environment.shape_class is not None and self.shape_greenlet is not greenlet.getcurrent(): self.shape_greenlet.kill(block=True) self.shape_greenlet = None self.shape_last_state = None self._users_dispatcher = None if send_stop_to_client: for client in self.clients.all: logger.debug("Sending stop message to client %s" % client.id) self.server.send_to_client(Message("stop", None, client.id)) # Give an additional 60s for all workers to stop timeout = gevent.Timeout(self.environment.stop_timeout or 0 + 60) timeout.start() try: while self.user_count != 0: gevent.sleep(1) except gevent.Timeout: logger.error("Timeout waiting for all workers to stop") finally: timeout.cancel() self.environment.events.test_stop.fire(environment=self.environment) def quit(self): self.stop(send_stop_to_client=False) logger.debug("Quitting...") for client in self.clients.all: logger.debug("Sending quit message to client %s" % (client.id)) self.server.send_to_client(Message("quit", None, client.id)) gevent.sleep(0.5) # wait for final stats report from all workers self.greenlet.kill(block=True) def check_stopped(self): if ( not self.state == STATE_INIT and not self.state == STATE_STOPPED and all(map(lambda x: x.state not in (STATE_RUNNING, STATE_SPAWNING, STATE_INIT), self.clients.all)) ): self.update_state(STATE_STOPPED) def heartbeat_worker(self): while True: gevent.sleep(HEARTBEAT_INTERVAL) if self.connection_broken: self.reset_connection() continue for client in self.clients.all: if client.heartbeat < 0 and client.state != STATE_MISSING: logger.info("Worker %s failed to send heartbeat, setting state to missing." % str(client.id)) client.state = STATE_MISSING client.user_classes_count = {} if self._users_dispatcher is not None: self._users_dispatcher.remove_worker(client) # TODO: If status is `STATE_RUNNING`, call self.start() if self.worker_count <= 0: logger.info("The last worker went missing, stopping test.") self.stop() self.check_stopped() else: client.heartbeat -= 1 def reset_connection(self): logger.info("Reset connection to worker") try: self.server.close() self.server = rpc.Server(self.master_bind_host, self.master_bind_port) except RPCError as e: logger.error("Temporary failure when resetting connection: %s, will retry later." % (e)) def client_listener(self): while True: try: client_id, msg = self.server.recv_from_client() except RPCError as e: logger.error("RPCError found when receiving from client: %s" % (e)) self.connection_broken = True gevent.sleep(FALLBACK_INTERVAL) continue self.connection_broken = False msg.node_id = client_id if msg.type == "client_ready": if not msg.data: logger.error(f"An old (pre 2.0) worker tried to connect ({client_id}). That's not going to work.") continue elif msg.data != __version__ and msg.data != -1: logger.warning( f"A worker ({client_id}) running a different version ({msg.data}) connected, master version is {__version__}" ) worker_node_id = msg.node_id self.clients[worker_node_id] = WorkerNode(worker_node_id, heartbeat_liveness=HEARTBEAT_LIVENESS) if self._users_dispatcher is not None: self._users_dispatcher.add_worker(worker_node=self.clients[worker_node_id]) if not self._users_dispatcher.dispatch_in_progress and self.state == STATE_RUNNING: # TODO: Test this situation self.start(self.target_user_count, self.spawn_rate) logger.info( "Client %r reported as ready. Currently %i clients ready to swarm." % (worker_node_id, len(self.clients.ready + self.clients.running + self.clients.spawning)) ) # if self.state == STATE_RUNNING or self.state == STATE_SPAWNING: # # TODO: Necessary now that UsersDispatcher handles that? # # balance the load distribution when new client joins # self.start(self.target_user_count, self.spawn_rate) # emit a warning if the worker's clock seem to be out of sync with our clock # if abs(time() - msg.data["time"]) > 5.0: # warnings.warn("The worker node's clock seem to be out of sync. For the statistics to be correct the different locust servers need to have synchronized clocks.") elif msg.type == "client_stopped": client = self.clients[msg.node_id] del self.clients[msg.node_id] if self._users_dispatcher is not None: self._users_dispatcher.remove_worker(client) if not self._users_dispatcher.dispatch_in_progress and self.state == STATE_RUNNING: # TODO: Test this situation self.start(self.target_user_count, self.spawn_rate) logger.info("Removing %s client from running clients" % (msg.node_id)) elif msg.type == "heartbeat": if msg.node_id in self.clients: c = self.clients[msg.node_id] c.heartbeat = HEARTBEAT_LIVENESS client_state = msg.data["state"] if c.state == STATE_MISSING: logger.info( "Worker %s self-healed with heartbeat, setting state to %s." % (str(c.id), client_state) ) if self._users_dispatcher is not None: self._users_dispatcher.add_worker(worker_node=c) if not self._users_dispatcher.dispatch_in_progress and self.state == STATE_RUNNING: # TODO: Test this situation self.start(self.target_user_count, self.spawn_rate) c.state = client_state c.cpu_usage = msg.data["current_cpu_usage"] if not c.cpu_warning_emitted and c.cpu_usage > 90: self.worker_cpu_warning_emitted = True # used to fail the test in the end c.cpu_warning_emitted = True # used to suppress logging for this node logger.warning( "Worker %s exceeded cpu threshold (will only log this once per worker)" % (msg.node_id) ) elif msg.type == "stats": self.environment.events.worker_report.fire(client_id=msg.node_id, data=msg.data) elif msg.type == "spawning": self.clients[msg.node_id].state = STATE_SPAWNING elif msg.type == "spawning_complete": self.clients[msg.node_id].state = STATE_RUNNING self.clients[msg.node_id].user_classes_count = msg.data["user_classes_count"] elif msg.type == "quit": if msg.node_id in self.clients: client = self.clients[msg.node_id] del self.clients[msg.node_id] if self._users_dispatcher is not None: self._users_dispatcher.remove_worker(client) if not self._users_dispatcher.dispatch_in_progress and self.state == STATE_RUNNING: # TODO: Test this situation self.start(self.target_user_count, self.spawn_rate) logger.info( "Client %r quit. Currently %i clients connected." % (msg.node_id, len(self.clients.ready)) ) if self.worker_count - len(self.clients.missing) <= 0: logger.info("The last worker quit, stopping test.") self.stop() if self.environment.parsed_options and self.environment.parsed_options.headless: self.quit() elif msg.type == "exception": self.log_exception(msg.node_id, msg.data["msg"], msg.data["traceback"]) elif msg.type in self.custom_messages: logger.debug(f"Recieved {msg.type} message from worker {msg.node_id}") self.custom_messages[msg.type](environment=self.environment, msg=msg) else: logger.warning(f"Unknown message type recieved from worker {msg.node_id}: {msg.type}") self.check_stopped() @property def worker_count(self): return len(self.clients.ready) + len(self.clients.spawning) + len(self.clients.running) @property def reported_user_classes_count(self) -> Dict[str, int]: reported_user_classes_count = defaultdict(lambda: 0) for client in self.clients.ready + self.clients.spawning + self.clients.running: for name, count in client.user_classes_count.items(): reported_user_classes_count[name] += count return reported_user_classes_count def send_message(self, msg_type, data=None, client_id=None): """ Sends a message to attached worker node(s) :param msg_type: The type of the message to send :param data: Optional data to send :param client_id: Optional id of the target worker node. If None, will send to all attached workers """ if client_id: logger.debug(f"Sending {msg_type} message to client {client_id}") self.server.send_to_client(Message(msg_type, data, client_id)) else: for client in self.clients.all: logger.debug(f"Sending {msg_type} message to client {client.id}") self.server.send_to_client(Message(msg_type, data, client.id)) class WorkerRunner(DistributedRunner): """ Runner used to run distributed load tests across multiple processes and/or machines. WorkerRunner connects to a :class:`MasterRunner` from which it'll receive instructions to start and stop user greenlets. The WorkerRunner will periodically take the stats generated by the running users and send back to the :class:`MasterRunner`. """ def __init__(self, environment, master_host, master_port): """ :param environment: Environment instance :param master_host: Host/IP to use for connection to the master :param master_port: Port to use for connecting to the master """ super().__init__(environment) self.worker_state = STATE_INIT self.client_id = socket.gethostname() + "_" + uuid4().hex self.master_host = master_host self.master_port = master_port self.worker_cpu_warning_emitted = False self._users_dispatcher = None self.client = rpc.Client(master_host, master_port, self.client_id) self.greenlet.spawn(self.heartbeat).link_exception(greenlet_exception_handler) self.greenlet.spawn(self.worker).link_exception(greenlet_exception_handler) self.client.send(Message("client_ready", __version__, self.client_id)) self.greenlet.spawn(self.stats_reporter).link_exception(greenlet_exception_handler) # register listener for when all users have spawned, and report it to the master node def on_spawning_complete(user_count): assert user_count == sum(self.user_classes_count.values()) self.client.send( Message( "spawning_complete", {"user_classes_count": self.user_classes_count, "user_count": self.user_count}, self.client_id, ) ) self.worker_state = STATE_RUNNING self.environment.events.spawning_complete.add_listener(on_spawning_complete) # register listener that adds the current number of spawned users to the report that is sent to the master node def on_report_to_master(client_id, data): data["user_classes_count"] = self.user_classes_count data["user_count"] = self.user_count self.environment.events.report_to_master.add_listener(on_report_to_master) # register listener that sends quit message to master def on_quitting(environment, **kw): self.client.send(Message("quit", None, self.client_id)) self.environment.events.quitting.add_listener(on_quitting) # register listener thats sends user exceptions to master def on_user_error(user_instance, exception, tb): formatted_tb = "".join(traceback.format_tb(tb)) self.client.send(Message("exception", {"msg": str(exception), "traceback": formatted_tb}, self.client_id)) self.environment.events.user_error.add_listener(on_user_error) def start(self, user_count, spawn_rate, wait=False): raise NotImplementedError("use start_worker") def start_worker(self, user_classes_count: Dict[str, int], **kwargs): """ Start running a load test as a worker :param user_classes_count: Users to run """ self.target_user_classes_count = user_classes_count if self.worker_state != STATE_RUNNING and self.worker_state != STATE_SPAWNING: self.stats.clear_all() self.exceptions = {} self.cpu_warning_emitted = False self.worker_cpu_warning_emitted = False self.environment.events.test_start.fire(environment=self.environment) self.worker_state = STATE_SPAWNING for user_class in self.user_classes: if self.environment.host is not None: user_class.host = self.environment.host user_classes_spawn_count = {} user_classes_stop_count = {} for user_class, user_class_count in user_classes_count.items(): if self.user_classes_count[user_class] > user_class_count: user_classes_stop_count[user_class] = self.user_classes_count[user_class] - user_class_count elif self.user_classes_count[user_class] < user_class_count: user_classes_spawn_count[user_class] = user_class_count - self.user_classes_count[user_class] # call spawn_users before stopping the users since stop_users # can be blocking because of the stop_timeout self.spawn_users(user_classes_spawn_count) self.stop_users(user_classes_stop_count) self.environment.events.spawning_complete.fire(user_count=sum(self.user_classes_count.values())) def heartbeat(self): while True: try: self.client.send( Message( "heartbeat", { "state": self.worker_state, "current_cpu_usage": self.current_cpu_usage, }, self.client_id, ) ) except RPCError as e: logger.error("RPCError found when sending heartbeat: %s" % (e)) self.reset_connection() gevent.sleep(HEARTBEAT_INTERVAL) def reset_connection(self): logger.info("Reset connection to master") try: self.client.close() self.client = rpc.Client(self.master_host, self.master_port, self.client_id) except RPCError as e: logger.error("Temporary failure when resetting connection: %s, will retry later." % (e)) def worker(self): last_received_spawn_timestamp = 0 while True: try: msg = self.client.recv() except RPCError as e: logger.error("RPCError found when receiving from master: %s" % (e)) continue if msg.type == "spawn": self.client.send(Message("spawning", None, self.client_id)) job = msg.data if job["timestamp"] <= last_received_spawn_timestamp: logger.info( "Discard spawn message with older or equal timestamp than timestamp of previous spawn message" ) continue self.environment.host = job["host"] self.environment.stop_timeout = job["stop_timeout"] # receive custom arguments if self.environment.parsed_options is None: default_parser = argument_parser.get_empty_argument_parser() argument_parser.setup_parser_arguments(default_parser) self.environment.parsed_options = default_parser.parse(args=[]) custom_args_from_master = { k: v for k, v in job["parsed_options"].items() if k not in argument_parser.default_args_dict() } vars(self.environment.parsed_options).update(custom_args_from_master) if self.spawning_greenlet: # kill existing spawning greenlet before we launch new one self.spawning_greenlet.kill(block=True) self.spawning_greenlet = self.greenlet.spawn(lambda: self.start_worker(job["user_classes_count"])) self.spawning_greenlet.link_exception(greenlet_exception_handler) last_received_spawn_timestamp = job["timestamp"] elif msg.type == "stop": self.stop() self.client.send(Message("client_stopped", None, self.client_id)) # +additional_wait is just a small buffer to account for the random network latencies and/or other # random delays inherent to distributed systems. additional_wait = int(os.getenv("LOCUST_WORKER_ADDITIONAL_WAIT_BEFORE_READY_AFTER_STOP", 0)) gevent.sleep((self.environment.stop_timeout or 0) + additional_wait) self.client.send(Message("client_ready", __version__, self.client_id)) self.worker_state = STATE_INIT elif msg.type == "quit": logger.info("Got quit message from master, shutting down...") self.stop() self._send_stats() # send a final report, in case there were any samples not yet reported self.greenlet.kill(block=True) elif msg.type in self.custom_messages: logger.debug(f"Recieved {msg.type} message from master") self.custom_messages[msg.type](environment=self.environment, msg=msg) else: logger.warning(f"Unknown message type recieved: {msg.type}") def stats_reporter(self): while True: try: self._send_stats() except RPCError as e: logger.error("Temporary connection lost to master server: %s, will retry later." % (e)) gevent.sleep(WORKER_REPORT_INTERVAL) def send_message(self, msg_type, data=None): """ Sends a message to master node :param msg_type: The type of the message to send :param data: Optional data to send """ logger.debug(f"Sending {msg_type} message to master") self.client.send(Message(msg_type, data, self.client_id)) def _send_stats(self): data = {} self.environment.events.report_to_master.fire(client_id=self.client_id, data=data) self.client.send(Message("stats", data, self.client_id)) def _format_user_classes_count_for_log(user_classes_count: Dict[str, int]) -> str: return "{} ({} total users)".format( json.dumps(dict(sorted(user_classes_count.items(), key=itemgetter(0)))), sum(user_classes_count.values()), ) def _aggregate_dispatched_users(d: Dict[str, Dict[str, int]]) -> Dict[str, int]: # TODO: Test it user_classes = list(next(iter(d.values())).keys()) return {u: sum(d[u] for d in d.values()) for u in user_classes}
44.12291
272
0.618901
8e70ddb043fb1bc64e394d86b05da18dbedf3326
172
py
Python
blueprints/defaultBlueprint/DefaultBlueprint.py
ethanphunter/Flask_Template
f1ded37cd5cfa475e80e0c383a10917a8741cd0d
[ "MIT" ]
null
null
null
blueprints/defaultBlueprint/DefaultBlueprint.py
ethanphunter/Flask_Template
f1ded37cd5cfa475e80e0c383a10917a8741cd0d
[ "MIT" ]
8
2018-05-16T18:43:23.000Z
2019-10-01T17:48:25.000Z
blueprints/defaultBlueprint/DefaultBlueprint.py
ethanphunter/Flask_Template
f1ded37cd5cfa475e80e0c383a10917a8741cd0d
[ "MIT" ]
null
null
null
from flask import Blueprint defaultBlueprint = Blueprint("Default_Blueprint", __name__) @defaultBlueprint.route("/ping", methods = ["GET"]) def ping(): return "pong"
21.5
59
0.732558
9d18cc70f4d24eba45a5e2563b87d48641fb7030
44
py
Python
day2_L.py
kangsup/maybler0
0128054800c4afbe842e711a881378382ffa5c6f
[ "MIT" ]
null
null
null
day2_L.py
kangsup/maybler0
0128054800c4afbe842e711a881378382ffa5c6f
[ "MIT" ]
null
null
null
day2_L.py
kangsup/maybler0
0128054800c4afbe842e711a881378382ffa5c6f
[ "MIT" ]
null
null
null
import random print(random.randint(1, 100))
22
29
0.772727
f1f27bcb5e68b72438c713602d18c10a556a6646
89
py
Python
figlet.py
sahintuter/Basic-Python-Examples
97e8e1d5e918c154ebac88b850200c1d461c128f
[ "Apache-2.0" ]
null
null
null
figlet.py
sahintuter/Basic-Python-Examples
97e8e1d5e918c154ebac88b850200c1d461c128f
[ "Apache-2.0" ]
null
null
null
figlet.py
sahintuter/Basic-Python-Examples
97e8e1d5e918c154ebac88b850200c1d461c128f
[ "Apache-2.0" ]
null
null
null
from pyfiglet import Figlet f = Figlet(font='roman') print(f.renderText('1coderr'))
17.8
31
0.707865
d55d03c1a8157b7c5ec933eca73bedbd0e2eb94d
518
py
Python
wmt/flask/default_settings.py
mcflugen/wmt-rest
7ac99b3e1100df4c797fa6156d96a4ca0d318a45
[ "MIT" ]
null
null
null
wmt/flask/default_settings.py
mcflugen/wmt-rest
7ac99b3e1100df4c797fa6156d96a4ca0d318a45
[ "MIT" ]
null
null
null
wmt/flask/default_settings.py
mcflugen/wmt-rest
7ac99b3e1100df4c797fa6156d96a4ca0d318a45
[ "MIT" ]
null
null
null
import os _BASE_DIR = os.path.abspath(os.path.dirname(__file__)) DEBUG = True SECRET_KEY = 'super-secret-key' SERVER_NAME = 'csdms.colorado.edu' UPLOADS_DEFAULT_DEST = os.path.join(_BASE_DIR, 'files/uploads') UPLOAD_DIR = os.path.join(_BASE_DIR, 'files/uploads') STAGE_DIR = os.path.join(_BASE_DIR, 'files/downloads') DATABASE_DIR = os.path.join(_BASE_DIR, 'db') CRYPT_INI = """ [passlib] schemes = sha512_crypt, sha256_crypt sha256_crypt__default_rounds = 100000 sha512_crypt__default_rounds = 100000 """.strip()
25.9
63
0.76834
21e85bebfd9444840d054172809cc6b678feb2f6
659
bzl
Python
python_pytest/tests/versions_test.bzl
caseyduquettesc/rules_python_pytest
5c654d01a99e809a5ef76f82fbf9e0d3432815e6
[ "Apache-2.0" ]
2
2022-01-18T11:59:41.000Z
2022-01-18T17:27:07.000Z
python_pytest/tests/versions_test.bzl
caseyduquettesc/rules_python_pytest
5c654d01a99e809a5ef76f82fbf9e0d3432815e6
[ "Apache-2.0" ]
null
null
null
python_pytest/tests/versions_test.bzl
caseyduquettesc/rules_python_pytest
5c654d01a99e809a5ef76f82fbf9e0d3432815e6
[ "Apache-2.0" ]
null
null
null
"""Unit tests for starlark helpers See https://docs.bazel.build/versions/main/skylark/testing.html#for-testing-starlark-utilities """ load("@bazel_skylib//lib:unittest.bzl", "asserts", "unittest") load("//python_pytest/private:versions.bzl", "TOOL_VERSIONS") def _smoke_test_impl(ctx): env = unittest.begin(ctx) asserts.equals(env, "1.14.2", TOOL_VERSIONS.keys()[0]) return unittest.end(env) # The unittest library requires that we export the test cases as named test rules, # but their names are arbitrary and don't appear anywhere. _t0_test = unittest.make(_smoke_test_impl) def versions_test_suite(name): unittest.suite(name, _t0_test)
34.684211
94
0.754173
064e1d2e482b52b83bb79687ca1b89b968031adb
9,721
py
Python
hdnnpy/util.py
KeisukeYamashita/HDNNP
505fd4fb1b64952abbabf98ee77e0a0d0502ce03
[ "MIT" ]
null
null
null
hdnnpy/util.py
KeisukeYamashita/HDNNP
505fd4fb1b64952abbabf98ee77e0a0d0502ce03
[ "MIT" ]
null
null
null
hdnnpy/util.py
KeisukeYamashita/HDNNP
505fd4fb1b64952abbabf98ee77e0a0d0502ce03
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from pprint import pprint as pretty_print import sys import signal import pickle import csv import yaml from pathlib import Path import numpy as np import chainer from chainer import Variable from chainermn.communicators.mpi_communicator_base import MpiCommunicatorBase from . import settings as stg def pprint(data, flush=True, **options): if isinstance(data, list) or isinstance(data, dict): pretty_print(data, **options) else: print(data, **options) if flush: sys.stdout.flush() def mkdir(path): if stg.mpi.rank == 0: path.mkdir(parents=True, exist_ok=True) def flatten_dict(dic): return {k: v.data.item() if isinstance(v, Variable) else v.item() if isinstance(v, np.float64) else v for k, v in dic.items()} # signal handler of SIGINT and SIGTERM class ChainerSafelyTerminate(object): def __init__(self, config, trainer, result): self.config = config self.trainer = trainer self.result = result self.signum = None def __enter__(self): self.old_sigint_handler = signal.signal(signal.SIGINT, self._snapshot) self.old_sigterm_handler = signal.signal(signal.SIGTERM, self._snapshot) stg.mpi.comm.Barrier() def __exit__(self, type, value, traceback): signal.signal(signal.SIGINT, self.old_sigint_handler) signal.signal(signal.SIGTERM, self.old_sigterm_handler) if not self.signum: self.result['training_time'] += self.trainer.elapsed_time self.result['observation'].append({'config': self.config, **flatten_dict(self.trainer.observation)}) if stg.args.mode == 'train' and stg.mpi.rank == 0: chainer.serializers.save_npz(self.trainer.out/'masters.npz', self.trainer.updater.get_optimizer('master').target) ### comment out: output lammps.nnp at end of training for each config # preproc = PREPROC[stg.dataset.preproc](stg.dataset.nfeature) # preproc.load(stg.file.out_dir/'preproc.npz') # dump_lammps(self.trainer.out/'lammps.nnp', preproc, # self.trainer.updater.get_optimizer('master').target) if stg.args.mode == 'param_search' and stg.mpi.rank == 0: self.trainer.out.rmdir() def _snapshot(self, signum, frame): self.signum = signal.Signals(signum) if stg.args.mode == 'train' and stg.mpi.rank == 0: pprint('Stop {} training by signal: {}!\n' 'Take trainer snapshot at epoch: {}' .format(self.config, self.signum.name, self.trainer.updater.epoch)) chainer.serializers.save_npz(self.trainer.out/'trainer_snapshot.npz', self.trainer) (self.trainer.out/'interim_result.pickle').write_bytes(pickle.dumps(self.result)) # must raise any Exception to stop trainer.run() raise InterruptedError('Chainer training loop is interrupted by {}'.format(self.signum.name)) def dump_lammps(file_path, preproc, masters): nelements = len(masters) depth = len(masters[0]) with file_path.open('w') as f: f.write('# title\nneural network potential trained by HDNNP\n\n') f.write('# symmetry function parameters\n{}\n{}\n{}\n{}\n{}\n\n' .format(' '.join(map(str, stg.dataset.Rc)), ' '.join(map(str, stg.dataset.eta)), ' '.join(map(str, stg.dataset.Rs)), ' '.join(map(str, stg.dataset.lambda_)), ' '.join(map(str, stg.dataset.zeta)))) if stg.dataset.preproc is None: f.write('# preprocess parameters\n0\n\n') elif stg.dataset.preproc == 'pca': f.write('# preprocess parameters\n1\npca\n\n') for i in range(nelements): element = masters[i].element components = preproc.components[element] mean = preproc.mean[element] f.write('{} {} {}\n'.format(element, components.shape[1], components.shape[0])) f.write('# components\n') for row in components.T: f.write('{}\n'.format(' '.join(map(str, row)))) f.write('# mean\n') f.write('{}\n\n'.format(' '.join(map(str, mean)))) f.write('# neural network parameters\n{}\n\n'.format(depth)) for i in range(nelements): for j in range(depth): W = getattr(masters[i], 'l{}'.format(j)).W.data b = getattr(masters[i], 'l{}'.format(j)).b.data f.write('{} {} {} {} {}\n' .format(masters[i].element, j + 1, W.shape[1], W.shape[0], stg.model.layer[j]['activation'])) f.write('# weight\n') for row in W.T: f.write('{}\n'.format(' '.join(map(str, row)))) f.write('# bias\n') f.write('{}\n\n'.format(' '.join(map(str, b)))) def dump_training_result(file_path, result): args = {k:v if not isinstance(v, Path) else str(v) for k,v in vars(stg.args).items() if not k.startswith('_')} file = {k:v if not isinstance(v, Path) else str(v) for k,v in vars(stg.file).items() if not k.startswith('_')} dataset = {k:v if not isinstance(v, Path) else str(v) for k,v in vars(stg.dataset).items() if not k.startswith('_')} model = {k:v if not isinstance(v, Path) else str(v) for k,v in vars(stg.model).items() if not k.startswith('_')} with file_path.open('w') as f: yaml.dump({ 'args': args, 'file': file, 'dataset': dataset, 'model': model, 'result': result, }, f, default_flow_style=False) def dump_skopt_result(file_path, result): with file_path.open('w') as f: writer = csv.writer(f, lineterminator='\n') writer.writerow([space.name for space in stg.skopt.space] + ['score']) writer.writerows([x + [fun] for x, fun in zip(result.x_iters, result.func_vals)]) def dump_settings(file_path): with file_path.open('w') as f: f.write('# -*- coding: utf-8 -*-\n' 'from hdnnpy.settings import defaults as stg\n\n') for k, v in vars(stg.dataset).items(): if k.startswith('_'): continue f.write('stg.dataset.{} = {}\n'.format(k, v)) for k, v in vars(stg.model).items(): if k.startswith('_'): continue f.write('stg.model.{} = {}\n'.format(k, v)) def assert_settings(stg): # file assert all(key in dir(stg.file) for key in ['out_dir']) assert stg.file.out_dir is not None # mpi assert all(key in dir(stg.mpi) for key in ['comm', 'rank', 'size', 'chainer_comm']) assert stg.mpi.comm is not None assert 0 <= stg.mpi.rank < stg.mpi.size assert stg.mpi.size > 0 assert isinstance(stg.mpi.chainer_comm, MpiCommunicatorBase) # dataset assert all(key in dir(stg.dataset) for key in ['Rc', 'eta', 'Rs', 'lambda_', 'zeta']) assert all(key in dir(stg.dataset) for key in ['xyz_file', 'config', 'preproc', 'ratio']) assert all(key in dir(stg.dataset) for key in ['nfeature', 'batch_size']) assert len(stg.dataset.Rc) > 0 assert len(stg.dataset.eta) > 0 assert len(stg.dataset.Rs) > 0 assert len(stg.dataset.lambda_) > 0 assert len(stg.dataset.zeta) > 0 assert stg.dataset.xyz_file is not None assert len(stg.dataset.config) > 0 assert stg.dataset.preproc in [None, 'pca'] assert 0.0 <= stg.dataset.ratio <= 1.0 assert stg.dataset.nfeature > 0 assert stg.dataset.batch_size >= stg.mpi.size # model assert all(key in dir(stg.model) for key in ['epoch', 'interval', 'patients']) assert all(key in dir(stg.model) for key in ['init_lr', 'final_lr', 'lr_decay', 'mixing_beta']) assert all(key in dir(stg.model) for key in ['l1_norm', 'l2_norm', 'layer', 'metrics']) assert stg.model.epoch > 0 assert stg.model.interval > 0 assert stg.model.patients > 0 assert 0.0 <= stg.model.init_lr <= 1.0 assert 0.0 <= stg.model.final_lr <= stg.model.init_lr assert 0.0 <= stg.model.lr_decay <= 1.0 assert 0.0 <= stg.model.mixing_beta <= 1.0 assert 0.0 <= stg.model.l1_norm <= 1.0 assert 0.0 <= stg.model.l2_norm <= 1.0 assert len(stg.model.layer) > 0 assert stg.model.metrics is not None # skopt if stg.args.mode == 'param_search': assert all(key in dir(stg.skopt) for key in ['kfold', 'init_num', 'max_num']) assert all(key in dir(stg.skopt) for key in ['space', 'acq_func', 'callback']) assert stg.skopt.kfold > 0 assert stg.skopt.init_num > 0 assert stg.skopt.max_num > stg.skopt.init_num assert len(stg.skopt.space) > 0 assert all(space.name in ['Rc', 'eta', 'Rs', 'lambda_', 'zeta', 'preproc', 'nfeature', 'epoch', 'batch_size', 'init_lr', 'final_lr', 'lr_decay', 'l1_norm', 'l2_norm', 'mixing_beta', 'node', 'activation'] for space in stg.skopt.space) assert stg.skopt.acq_func in ['LCB', 'EI', 'PI', 'gp_hedge', 'Elps', 'Plps'] # phonopy if stg.args.mode == 'phonon': assert all(key in dir(stg.phonopy) for key in ['dimensions', 'options', 'distance', 'callback']) assert len(stg.phonopy.dimensions) == 3 and all(len(d) == 3 for d in stg.phonopy.dimensions) assert isinstance(stg.phonopy.options, dict) assert stg.phonopy.distance > 0.0
43.013274
117
0.588005
1158416b3096188912514234e3eef64577e068c7
395
py
Python
src/sms77api/classes/Lookup.py
sms77io/python-client
f729e017da89575bc48a80bd9b6d8d6fe0e124d3
[ "MIT" ]
null
null
null
src/sms77api/classes/Lookup.py
sms77io/python-client
f729e017da89575bc48a80bd9b6d8d6fe0e124d3
[ "MIT" ]
1
2021-02-03T19:47:42.000Z
2021-02-04T17:58:46.000Z
src/sms77api/classes/Lookup.py
sms77io/python-client
f729e017da89575bc48a80bd9b6d8d6fe0e124d3
[ "MIT" ]
null
null
null
from sms77api.classes.ExtendedEnum import ExtendedEnum class LookupType(ExtendedEnum): CNAM = 'cnam' FORMAT = 'format' HLR = 'hlr' MNP = 'mnp' LookupJsonTypes = [ LookupType.FORMAT.value, LookupType.HLR.value, LookupType.CNAM.value, ] class MnpResponse(ExtendedEnum): D1 = 'd1' D2 = 'd2' EPLUS = 'eplus' INT = 'int' NA = 'N/A' O2 = 'o2'
15.8
54
0.610127
d34635b6e6dd5b6c670c4d9a7c8449d2e593720b
1,181
py
Python
Library/urls.py
ksusonic/Django-editor
9c31281c801859841858f3fcf6b309e0f8135117
[ "MIT" ]
null
null
null
Library/urls.py
ksusonic/Django-editor
9c31281c801859841858f3fcf6b309e0f8135117
[ "MIT" ]
null
null
null
Library/urls.py
ksusonic/Django-editor
9c31281c801859841858f3fcf6b309e0f8135117
[ "MIT" ]
null
null
null
""" The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf import settings from django.conf.urls import url, include from Library.views import load from django.urls import path from django.conf.urls.static import static from Library.views import index from django.contrib.staticfiles.urls import staticfiles_urlpatterns urlpatterns = [ url(r'^$', index, name='index'), url(r'^summernote/', include('Scripts.django_summernote.urls')), path('loadaction', load), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns += staticfiles_urlpatterns()
35.787879
80
0.735817
21d0d0b471614a4ab9c566f831221340627b3e8e
2,233
py
Python
test/Subst/SyntaxError.py
Valkatraz/scons
5e70c65f633dcecc035751c9f0c6f894088df8a0
[ "MIT" ]
3
2018-09-13T04:41:31.000Z
2020-07-03T09:25:08.000Z
test/Subst/SyntaxError.py
Valkatraz/scons
5e70c65f633dcecc035751c9f0c6f894088df8a0
[ "MIT" ]
6
2018-02-16T05:53:54.000Z
2019-04-27T19:21:50.000Z
test/Subst/SyntaxError.py
Valkatraz/scons
5e70c65f633dcecc035751c9f0c6f894088df8a0
[ "MIT" ]
3
2018-06-19T14:30:15.000Z
2019-04-26T19:04:14.000Z
#!/usr/bin/env python # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" """ Verify the exit status and error output if variable expansion throws a SyntaxError. """ import TestSCons test = TestSCons.TestSCons(match = TestSCons.match_re_dotall) expect_build = r"""scons: \*\*\*%s SyntaxError `(invalid syntax|Unknown character)( \((<string>, )?line 1\))?' trying to evaluate `%s' """ expect_read = "\n" + expect_build + TestSCons.file_expr # Syntax errors at SConscript read time: test.write('SConstruct', """\ env = Environment() env.subst('$foo.bar.3.0') """) test.run(status=2, stderr=expect_read % ('', r'\$foo\.bar\.3\.0')) test.write('SConstruct', """\ env = Environment() env.subst('${x ! y}') """) test.run(status=2, stderr=expect_read % ('', r'\$\{x \! y\}')) # Syntax errors at build time: test.write('SConstruct', """\ env = Environment() env.Command('foo.bar', [], '$foo.bar.3.0') """) expect = expect_build % (r' \[foo\.bar\]', r'\$foo\.bar\.3\.0') test.run(status=2, stderr=expect) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
27.567901
134
0.716525
0aff879b87a04b66b0c16d61ef92c83c64a3a39c
671
py
Python
MITx/6.00.1x/Week 2/Lecture_4/fibonacii.py
dvpramodkumar/edX_moocs
6e006cea8db9ac0784716a6f6143aeb3519e64c1
[ "MIT" ]
null
null
null
MITx/6.00.1x/Week 2/Lecture_4/fibonacii.py
dvpramodkumar/edX_moocs
6e006cea8db9ac0784716a6f6143aeb3519e64c1
[ "MIT" ]
null
null
null
MITx/6.00.1x/Week 2/Lecture_4/fibonacii.py
dvpramodkumar/edX_moocs
6e006cea8db9ac0784716a6f6143aeb3519e64c1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri Jun 10 13:06:06 2016 @author: ericgrimson """ # Fibonacii using Recursion def recursive_fibonacii(x): """assumes x an int >= 0 returns Fibonacci of x""" if x == 0 or x == 1: return 1 else: return recursive_fibonacii(x-1) + recursive_fibonacii(x-2) print(recursive_fibonacii(20)) print(recursive_fibonacii(30)) # Fibonacii using Iteration def iterative_fibonacii(n): a = 0 b = 1 i = 0 while i < n: c = a + b a = b b = c i += 1 return c print(iterative_fibonacii(20)) print(iterative_fibonacii(30)) print(iterative_fibonacii(40))
15.604651
66
0.603577
1dd4cb5706ba5b308cd80fdb31d2fd8eaa37bcde
6,126
py
Python
MoinMoin/macro/FullSearch.py
RealTimeWeb/wikisite
66a22c68c172f0ebb3c88a9885ccd33e2d59c3c5
[ "Apache-2.0" ]
null
null
null
MoinMoin/macro/FullSearch.py
RealTimeWeb/wikisite
66a22c68c172f0ebb3c88a9885ccd33e2d59c3c5
[ "Apache-2.0" ]
3
2020-06-26T21:21:32.000Z
2020-06-26T21:21:36.000Z
wiki/MoinMoin/macro/FullSearch.py
simtk/src
52086415ef60527e6556698c6e216e4217961d53
[ "BSD-2-Clause", "MIT" ]
2
2017-01-25T20:06:44.000Z
2021-03-25T18:39:55.000Z
# -*- coding: iso-8859-1 -*- """ MoinMoin - FullSearch Macro <<FullSearch>> displays a search dialog, as it always did. <<FullSearch()>> does the same as clicking on the page title, only that the result is embedded into the page. note the '()' after the macro name, which is an empty argument list. <<FullSearch(Help)>> embeds a search result into a page, as if you entered 'Help' into the search box. The macro creates a page list without context or match info, just like PageList macro. It does not make sense to have context in non interactive search, and this kind of search is used usually for Category pages, where we don't care about the context. TODO: If we need to have context for some cases, either we add a context argument, or make another macro that uses context, which may be easier to use. @copyright: 2000-2004 Juergen Hermann <jh@web.de>, 2006 MoinMoin:FranzPletz @license: GNU GPL, see COPYING for details. """ from MoinMoin import wikiutil, search Dependencies = ["pages"] def search_box(type, macro): """ Make a search box Make both Title Search and Full Search boxes, according to type. @param type: search box type: 'titlesearch' or 'fullsearch' @rtype: unicode @return: search box html fragment """ _ = macro._ if 'value' in macro.request.values: default = wikiutil.escape(macro.request.values["value"], quote=1) else: default = '' # Title search settings boxes = '' button = _("Search Titles") # Special code for fullsearch if type == "fullsearch": boxes = [ u'<br>', u'<input type="checkbox" name="context" value="160" checked="checked">', _('Display context of search results'), u'<br>', u'<input type="checkbox" name="case" value="1">', _('Case-sensitive searching'), ] boxes = u'\n'.join(boxes) button = _("Search Text") # Format type = (type == "titlesearch") html = [ u'<form method="get" action="%s">' % macro.request.href(macro.request.formatter.page.page_name), u'<div>', u'<input type="hidden" name="action" value="fullsearch">', u'<input type="hidden" name="titlesearch" value="%i">' % type, u'<input type="text" name="value" size="30" value="%s">' % default, u'<input type="submit" value="%s">' % button, boxes, u'</div>', u'</form>', ] html = u'\n'.join(html) return macro.formatter.rawHTML(html) def execute(macro, needle, titlesearch=False, case=False): request = macro.request _ = request.getText # if no args given, invoke "classic" behavior if needle is None: return search_box("fullsearch", macro) highlight_titles = getattr(request.cfg, "search_macro_highlight_titles", 1) highlight_pages = getattr(request.cfg, "search_macro_highlight_pages", 1) err = None # It is needed because otherwise macro instances like # <<FullSearch(..., highlight=1)>> (which found occurrences of "...," and # "highlight=1" before the change) begin behaving differently. if getattr(request.cfg, "search_macro_parse_args", False): needle_found = False # parse_quoted_separated() is used instead of rsplit() and such for # proper parsing cases like FullSearch(",") and so. args = wikiutil.parse_quoted_separated_ext(needle, separator=",", name_value_separator="=") # First non-tuple item in resulting list to be needle for arg in args: if isinstance(arg, tuple): val = arg[1].lower() in [u'1', u'true', u'y'] if arg[0] == u"highlight_pages": highlight_pages = val elif arg[0] == u"highlight_titles": highlight_titles = val else: err = _(u"Unknown macro parameter: %s.") % arg[0] elif isinstance(arg, basestring): if not needle_found: needle_found = True needle = arg else: err = _(u"More than one needle with " "search_macro_parse_args config option enabled " "('%(needle)s' found already, '%(arg)s' occurred)" ) % {'needle': wikiutil.escape(needle), 'arg': wikiutil.escape(arg)} if not needle_found: needle = '' # With empty arguments, simulate title click (backlinks to page) if needle == '' and not titlesearch: needle = u'"%s"' % macro.formatter.page.page_name # With whitespace argument, show error message like the one used in the search box # TODO: search should implement those errors message for clients elif not needle.strip(): err = _(u'Please use a more selective search term instead of ' '{{{"%s"}}}', wiki=True) % needle if err: return u'<span class="error">%s</span>' % err needle = needle.strip() # Search the pages and return the results try: results = search.searchPages(request, needle, titlesearch=titlesearch, case=case, sort='page_name') ret = results.pageList(request, macro.formatter, paging=False, highlight_titles=highlight_titles, highlight_pages=highlight_pages) except ValueError: # same error as in MoinMoin/action/fullsearch.py, keep it that way! ret = ''.join([macro.formatter.text(u'<<%s(' % macro.name), _(u'Your search query {{{"%s"}}} is invalid. Please refer ' 'to HelpOnSearching for more information.', wiki=True, percent=True) % wikiutil.escape(needle), macro.formatter.text(u')>>')]) return ret
37.353659
104
0.578191
009a3464fb3af79ed30d9f41bb0a1ddb1028287e
4,879
py
Python
testscripts/RDKB/component/PAM/TS_PAM_Init.py
cablelabs/tools-tdkb
1fd5af0f6b23ce6614a4cfcbbaec4dde430fad69
[ "Apache-2.0" ]
null
null
null
testscripts/RDKB/component/PAM/TS_PAM_Init.py
cablelabs/tools-tdkb
1fd5af0f6b23ce6614a4cfcbbaec4dde430fad69
[ "Apache-2.0" ]
null
null
null
testscripts/RDKB/component/PAM/TS_PAM_Init.py
cablelabs/tools-tdkb
1fd5af0f6b23ce6614a4cfcbbaec4dde430fad69
[ "Apache-2.0" ]
null
null
null
########################################################################## # If not stated otherwise in this file or this component's Licenses.txt # file the following copyright and licenses apply: # # Copyright 2016 RDK Management # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ########################################################################## ''' <?xml version="1.0" encoding="UTF-8"?><xml> <id/> <version>1</version> <name>TS_PAM_Init</name> <primitive_test_id/> <primitive_test_name>pam_Init</primitive_test_name> <primitive_test_version>1</primitive_test_version> <status>FREE</status> <synopsis>To initialise pam module</synopsis> <groups_id/> <execution_time>1</execution_time> <long_duration>false</long_duration> <remarks/> <skip>false</skip> <box_types> <box_type>RPI</box_type> <box_type>Emulator</box_type> <box_type>Broadband</box_type> </box_types> <rdk_versions> <rdk_version>RDKB</rdk_version> </rdk_versions> <test_cases> <test_case_id>TC_PAM_43</test_case_id> <test_objective>To check if the module is succesfully initiated or not</test_objective> <test_type>Positive</test_type> <test_setup>Emulator,XB3</test_setup> <pre_requisite>1.Ccsp Components should be in a running state else invoke cosa_start.sh manually that includes all the ccsp components. 2.TDK Agent should be in running state or invoke it through StartTdk.sh script</pre_requisite> <api_or_interface_used>None</api_or_interface_used> <input_parameters>Json Interface: API Name pam_Init</input_parameters> <automation_approch>1.Function which needs to be tested will be configured in Test Manager GUI. 2.Python Script will be generated by Test Manager with provided arguments in configure page. 3.TM will load the PAM library via Test agent 4.From python script, invoke pam_Init() stub function to check if the module initialises or not. 5.pam stub function will call the ssp_pam_Init() function of tdk component. 6.Responses from the pam stub function will be logged in Agent Console log. 7.pam stub will validate the actual result with the expected result and send the result status to Test Manager. 8.Test Manager will publish the result in GUI as PASS/FAILURE based on the response from pam stub.</automation_approch> <except_output>CheckPoint 1: PAM module should be initiated successfully, the status of it should be logged in the Agent console/Component log CheckPoint 2: Stub function result should be success and should see corresponding log in the agent console log CheckPoint 3: TestManager GUI will publish the result as PASS in Execution/Console page of Test Manager</except_output> <priority>High</priority> <test_stub_interface>None</test_stub_interface> <test_script>TS_PAM_Init</test_script> <skipped>No</skipped> <release_version/> <remarks/> </test_cases> </xml> ''' # use tdklib library,which provides a wrapper for tdk testcase script import tdklib; #Test component to be tested obj = tdklib.TDKScriptingLibrary("pam","RDKB"); #IP and Port of box, No need to change, #This will be replaced with correspoing Box Ip and port while executing script ip = <ipaddress> port = <port> obj.configureTestCase(ip,port,'TS_PAM_Init'); #Get the result of connection with test component and STB loadModuleresult =obj.getLoadModuleResult(); print "[LIB LOAD STATUS] : %s" %loadModuleresult; loadStatusExpected = "SUCCESS" if loadStatusExpected not in loadModuleresult.upper(): print "[Failed To Load PAM Stub from env TDK_PATH]" print "[Exiting the Script]" exit(); #Prmitive test case which associated to this Script tdkTestObj = obj.createTestStep('pam_Init'); expectedresult = "SUCCESS" #Execute the test case in STB tdkTestObj.executeTestCase(expectedresult); #Get the result of execution actualresult = tdkTestObj.getResult(); print "[TEST EXECUTION RESULT] : %s" %actualresult; resultDetails = tdkTestObj.getResultDetails(); if expectedresult in actualresult: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "\nPAM Initialization is SUCCESS" else: #Set the result status of execution as failure tdkTestObj.setResultStatus("FAILURE"); print "\nPAM Initialization is FAILURE" print "\n[TEST EXECUTION RESULT] : %s\n" %resultDetails ; #Unloading the module obj.unloadModule("pam");
39.032
140
0.74175
8cb2e5ac4e0a911bc6cda6f3eadd4c21fe4b53e3
479
py
Python
obywatele/migrations/0028_auto_20210103_1959.py
soma115/wikikracja
7715ca1daa4ca09888e1c7389ed5f8a2df29898b
[ "MIT" ]
7
2016-02-21T17:25:54.000Z
2021-10-09T19:36:10.000Z
obywatele/migrations/0028_auto_20210103_1959.py
soma115/wikikracja
7715ca1daa4ca09888e1c7389ed5f8a2df29898b
[ "MIT" ]
19
2020-02-11T23:55:01.000Z
2022-03-31T18:11:56.000Z
obywatele/migrations/0028_auto_20210103_1959.py
soma115/wikikracja
7715ca1daa4ca09888e1c7389ed5f8a2df29898b
[ "MIT" ]
3
2016-01-20T22:34:58.000Z
2020-09-16T07:45:42.000Z
# Generated by Django 3.1 on 2021-01-03 18:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('obywatele', '0027_uzytkownik_gift'), ] operations = [ migrations.AlterField( model_name='uzytkownik', name='gift', field=models.CharField(blank=True, help_text='What gift would you like to receive', max_length=500, null=True, verbose_name='Gift'), ), ]
25.210526
144
0.632568
d2e132432927e7d23c4999aa666417921da6c9bc
2,330
py
Python
chatapp/app.py
ShemManyu/chatapp
3e02d66949919e111ba65bd582394ff8f33e9d92
[ "BSD-3-Clause" ]
1
2018-12-05T12:40:37.000Z
2018-12-05T12:40:37.000Z
chatapp/app.py
ShemManyu/chatapp
3e02d66949919e111ba65bd582394ff8f33e9d92
[ "BSD-3-Clause" ]
null
null
null
chatapp/app.py
ShemManyu/chatapp
3e02d66949919e111ba65bd582394ff8f33e9d92
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """The app module, containing the app factory function.""" from flask import Flask, render_template from chatapp import commands, public, user from chatapp.extensions import bcrypt, cache, csrf_protect, db, debug_toolbar, login_manager, migrate, webpack, oauth def create_app(config_object='chatapp.settings'): """An application factory, as explained here: http://flask.pocoo.org/docs/patterns/appfactories/. :param config_object: The configuration object to use. """ app = Flask(__name__.split('.')[0]) app.config.from_object(config_object) register_extensions(app) register_blueprints(app) register_errorhandlers(app) register_shellcontext(app) register_commands(app) return app def register_extensions(app): """Register Flask extensions.""" bcrypt.init_app(app) cache.init_app(app) db.init_app(app) oauth.init_app(app) csrf_protect.init_app(app) login_manager.init_app(app) debug_toolbar.init_app(app) migrate.init_app(app, db) webpack.init_app(app) return None def register_blueprints(app): """Register Flask blueprints.""" app.register_blueprint(public.views.blueprint) app.register_blueprint(public.views.github_bp, url_prefix='/github') app.register_blueprint(public.views.google_bp, url_prefix='/google') app.register_blueprint(user.views.blueprint) return None def register_errorhandlers(app): """Register error handlers.""" def render_error(error): """Render error template.""" # If a HTTPException, pull the `code` attribute; default to 500 error_code = getattr(error, 'code', 500) return render_template('{0}.html'.format(error_code)), error_code for errcode in [401, 404, 500]: app.errorhandler(errcode)(render_error) return None def register_shellcontext(app): """Register shell context objects.""" def shell_context(): """Shell context objects.""" return { 'db': db, 'User': user.models.User} app.shell_context_processor(shell_context) def register_commands(app): """Register Click commands.""" app.cli.add_command(commands.test) app.cli.add_command(commands.lint) app.cli.add_command(commands.clean) app.cli.add_command(commands.urls)
30.657895
117
0.703433
ad103bd1410e0a9e7d6d4cf31138bbf6d4c764e1
1,591
py
Python
backend/tests/conftest.py
vasekch/pyladies-courseware
2f1d8f7845ec966a634b92ada57d910dbfc8e8de
[ "MIT" ]
null
null
null
backend/tests/conftest.py
vasekch/pyladies-courseware
2f1d8f7845ec966a634b92ada57d910dbfc8e8de
[ "MIT" ]
null
null
null
backend/tests/conftest.py
vasekch/pyladies-courseware
2f1d8f7845ec966a634b92ada57d910dbfc8e8de
[ "MIT" ]
null
null
null
from itertools import count import os from pathlib import Path from pytest import fixture, skip from cw_backend.model import Model here = Path(__file__).resolve().parent on_CI = bool(os.environ.get('CI')) @fixture def top_dir(): return here.parent.parent @fixture def data_dir(): return here / 'data' @fixture def temp_dir(tmpdir): # Return Path instead of py.path return Path(tmpdir) mongodb_is_running = None @fixture async def db(): global mongodb_is_running from motor.motor_asyncio import AsyncIOMotorClient from pymongo.errors import ServerSelectionTimeoutError if mongodb_is_running is False: assert not on_CI skip('MongoDB is not running') try: client = AsyncIOMotorClient(connectTimeoutMS=250, serverSelectionTimeoutMS=250) pid = os.getpid() db = client[f'courseware_test_{pid}'] await client.drop_database(db.name) mongodb_is_running = True except ServerSelectionTimeoutError as e: if on_CI: raise e assert mongodb_is_running is None mongodb_is_running = False skip(f'MongoDB is not running (ServerSelectionTimeoutError: {e})') yield db await client.drop_database(db.name) @fixture def conf(): class Configuration: allow_dev_login = True return Configuration() @fixture def generate_id(): counter = count() def _generate_id(): return f'id_{next(counter)}' return _generate_id @fixture def model(db, conf, generate_id): return Model(db, conf=conf, generate_id=generate_id)
20.934211
87
0.696417