hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
a4590b8ade146a3172823cb334cb4ab14d8475d4
2,156
py
Python
vspk/v6/fetchers/nuredundancygroups_fetcher.py
axxyhtrx/vspk-python
4495882c6bcbb1ef51b14b9f4dc7efe46476ff50
[ "BSD-3-Clause" ]
19
2016-03-07T12:34:22.000Z
2020-06-11T11:09:02.000Z
vspk/v6/fetchers/nuredundancygroups_fetcher.py
axxyhtrx/vspk-python
4495882c6bcbb1ef51b14b9f4dc7efe46476ff50
[ "BSD-3-Clause" ]
40
2016-06-13T15:36:54.000Z
2020-11-10T18:14:43.000Z
vspk/v6/fetchers/nuredundancygroups_fetcher.py
axxyhtrx/vspk-python
4495882c6bcbb1ef51b14b9f4dc7efe46476ff50
[ "BSD-3-Clause" ]
15
2016-06-10T22:06:01.000Z
2020-12-15T18:37:42.000Z
# -*- coding: utf-8 -*- # # Copyright (c) 2015, Alcatel-Lucent Inc, 2017 Nokia # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from bambou import NURESTFetcher class NURedundancyGroupsFetcher(NURESTFetcher): """ Represents a NURedundancyGroups fetcher Notes: This fetcher enables to fetch NURedundancyGroup objects. See: bambou.NURESTFetcher """ @classmethod def managed_class(cls): """ Return NURedundancyGroup class that is managed. Returns: .NURedundancyGroup: the managed class """ from .. import NURedundancyGroup return NURedundancyGroup
40.679245
86
0.731447
0855d5ac1e109e95464507e215c8de1992bce1b0
3,763
py
Python
fHDHR/device/tuners/tuner.py
deathbybandaid/fHDHR_NewsOn
06d205a3ca677b88fa93b9b7503465aed1838c6b
[ "WTFPL" ]
2
2021-11-21T18:45:35.000Z
2022-01-11T16:11:48.000Z
fHDHR/device/tuners/tuner.py
deathbybandaid/fHDHR_NewsOn
06d205a3ca677b88fa93b9b7503465aed1838c6b
[ "WTFPL" ]
null
null
null
fHDHR/device/tuners/tuner.py
deathbybandaid/fHDHR_NewsOn
06d205a3ca677b88fa93b9b7503465aed1838c6b
[ "WTFPL" ]
null
null
null
import threading import datetime from fHDHR.exceptions import TunerError from fHDHR.tools import humanized_time from .stream import Stream class Tuner(): def __init__(self, fhdhr, inum, epg): self.fhdhr = fhdhr self.number = inum self.epg = epg self.tuner_lock = threading.Lock() self.set_off_status() self.chanscan_url = "%s/api/channels?method=scan" self.close_url = "/api/tuners?method=close&tuner=%s" % str(self.number) def channel_scan(self, grabbed=False): if self.tuner_lock.locked() and not grabbed: self.fhdhr.logger.error("Tuner #%s is not available." % str(self.number)) raise TunerError("804 - Tuner In Use") if self.status["status"] == "Scanning": self.fhdhr.logger.info("Channel Scan Already In Progress!") else: if not grabbed: self.tuner_lock.acquire() self.status["status"] = "Scanning" self.fhdhr.logger.info("Tuner #%s Performing Channel Scan." % str(self.number)) chanscan = threading.Thread(target=self.runscan) chanscan.start() def runscan(self): self.fhdhr.api.get(self.chanscan_url) self.fhdhr.logger.info("Requested Channel Scan Complete.") self.close() self.fhdhr.api.get(self.close_url) def add_downloaded_size(self, bytes_count): if "downloaded" in list(self.status.keys()): self.status["downloaded"] += bytes_count def grab(self, channel_number): if self.tuner_lock.locked(): self.fhdhr.logger.error("Tuner #" + str(self.number) + " is not available.") raise TunerError("804 - Tuner In Use") self.tuner_lock.acquire() self.status["status"] = "Acquired" self.status["channel"] = channel_number self.fhdhr.logger.info("Tuner #%s Acquired." % str(self.number)) def close(self): self.set_off_status() if self.tuner_lock.locked(): self.tuner_lock.release() self.fhdhr.logger.info("Tuner #" + str(self.number) + " Released.") def get_status(self): current_status = self.status.copy() if current_status["status"] == "Active": current_status["Play Time"] = str( humanized_time( int((datetime.datetime.utcnow() - current_status["time_start"]).total_seconds()))) current_status["time_start"] = str(current_status["time_start"]) current_status["epg"] = self.epg.whats_on_now(current_status["channel"]) return current_status def set_off_status(self): self.status = {"status": "Inactive"} def get_stream(self, stream_args, tuner): stream = Stream(self.fhdhr, stream_args, tuner) return stream.get() def set_status(self, stream_args): if self.status["status"] != "Active": self.status = { "status": "Active", "clients": [], "clients_id": [], "method": stream_args["method"], "accessed": [stream_args["accessed"]], "channel": stream_args["channel"], "proxied_url": stream_args["channelUri"], "time_start": datetime.datetime.utcnow(), "downloaded": 0 } if stream_args["client"] not in self.status["clients"]: self.status["clients"].append(stream_args["client"]) if stream_args["client_id"] not in self.status["clients_id"]: self.status["clients_id"].append(stream_args["client_id"])
38.010101
102
0.575605
375bf492e8e99ca5c8ace7c2685d72abbd9f5518
1,444
py
Python
autogram/pictures/management/commands/scrapmedia.py
ohduran/autogram
e24c7ff40c44cd0eabf8018e61ad5fe0b422a6a1
[ "MIT" ]
null
null
null
autogram/pictures/management/commands/scrapmedia.py
ohduran/autogram
e24c7ff40c44cd0eabf8018e61ad5fe0b422a6a1
[ "MIT" ]
null
null
null
autogram/pictures/management/commands/scrapmedia.py
ohduran/autogram
e24c7ff40c44cd0eabf8018e61ad5fe0b422a6a1
[ "MIT" ]
null
null
null
import subprocess from django.contrib.auth import get_user_model from django.core.management import call_command from django.core.management.base import BaseCommand User = get_user_model() class Command(BaseCommand): help = 'Pulls media from instagram into the scraped_media folder' requires_migrations_checks = True def add_arguments(self, parser): """python manage.py scrapmedia demo_ig_scraper""" parser.add_argument('owners', nargs='+', type=str) def handle(self, *args, **options): """ instagram-scraper -u settings.BOT_USERNAME -p settings.BOT_PASSWORD sightsofbcn -d scraped_media --media-metadata And then, call_command loadscrapedmedia on the resulting file. """ command_template = 'instagram-scraper -u {} -p {} {} -d scraped_media --media-metadata' for owner in options['owners']: bot = User.objects.first() bash_command = command_template.format(bot.username, bot.para, owner) self.stdout.write(self.style.WARNING(f'Now running {bash_command}')) process = subprocess.Popen(bash_command.split(), stdout=subprocess.PIPE) output, error = process.communicate() if not error: self.stdout.write(self.style.WARNING('Loading scraped media from scraped_media/{}.json'.format(owner))) call_command('loadmedia', 'scraped_media/{}.json'.format(owner))
41.257143
121
0.682133
498f6c43452c82854226b265a24fc1c03e2bb2aa
1,049
py
Python
test/errortest.py
AntonYamkovoy/convolutional_NN
2d5aab86880c11f74abd7671083f44eee8a36458
[ "MIT" ]
1
2020-02-25T15:21:15.000Z
2020-02-25T15:21:15.000Z
test/errortest.py
AntonYamkovoy/convolutional_NN
2d5aab86880c11f74abd7671083f44eee8a36458
[ "MIT" ]
null
null
null
test/errortest.py
AntonYamkovoy/convolutional_NN
2d5aab86880c11f74abd7671083f44eee8a36458
[ "MIT" ]
null
null
null
import numpy as np import numpy.linalg as la import scipy.signal as scisig from func import * B23 = np.asarray([ [1, 0,-1, 0], [0, 1, 1, 0], [0,-1, 1, 0], [0, 1, 0,-1] ]).T G23 = np.asarray([ [ 1, 0, 0], [.5, .5,.5], [.5,-.5,.5], [ 0, 0, 1] ]) A23 = np.asarray([ [1,1,1,0], [0,1,-1,-1] ]).T g = np.random.random((4,4)) f = np.random.random((3,3)) direct = np.zeros((2,2)) for i in range(2): for j in range(2): direct[i,j] = np.sum(f * g[i:i+3,j:j+3]) inner = np.dot(G23, np.dot(f, G23.T)) * np.dot(B23.T, np.dot(g, B23)) Y = np.dot(A23.T, np.dot(inner, A23)) print("Error of one Winograd",la.norm(Y - direct)/la.norm(direct)) convLib = scisig.convolve2d(f,g) conv2d = convolve2DToeplitz(f,g) g2 = revMatrix(g) g2 = padImage(g2,len(f)) cWino = simpleWinogradAlg(f,g2,2,B23,G23,A23)[0] cWino = revMatrix(cWino) print(convLib) print(cWino) print("Error:",la.norm(convLib - conv2d, ord=2)/la.norm(convLib, ord=2)) print("Error:",la.norm(convLib - cWino, ord=2)/la.norm(convLib, ord=2))
19.792453
72
0.581506
2e2855c8ccdec04b5000aeff9a7a56c901c44440
6,381
py
Python
userbot/plugins/afk.py
midhunkm1294-bit/TeleBot
b4309fb662e834d9d3826172b69fd07d42ef83a2
[ "MIT" ]
null
null
null
userbot/plugins/afk.py
midhunkm1294-bit/TeleBot
b4309fb662e834d9d3826172b69fd07d42ef83a2
[ "MIT" ]
null
null
null
userbot/plugins/afk.py
midhunkm1294-bit/TeleBot
b4309fb662e834d9d3826172b69fd07d42ef83a2
[ "MIT" ]
null
null
null
"""AFK Plugin for @UniBorg Syntax: .afk REASON""" import asyncio import datetime from datetime import datetime from telethon import events from telethon.tl import functions, types global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global last_afk_message # pylint:disable=E0602 global afk_start global afk_end USER_AFK = {} afk_time = None last_afk_message = {} afk_start = {} @borg.on(events.NewMessage(pattern=r"\.afk ?(.*)", outgoing=True)) # pylint:disable=E0602 async def _(event): if event.fwd_from: return global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global last_afk_message # pylint:disable=E0602 global afk_start global afk_end global reason USER_AFK = {} afk_time = None last_afk_message = {} afk_end = {} start_1 = datetime.now() afk_start = start_1.replace(microsecond=0) reason = event.pattern_match.group(1) if not USER_AFK: # pylint:disable=E0602 last_seen_status = await borg( # pylint:disable=E0602 functions.account.GetPrivacyRequest( types.InputPrivacyKeyStatusTimestamp() ) ) if isinstance(last_seen_status.rules, types.PrivacyValueAllowAll): afk_time = datetime.datetime.now() # pylint:disable=E0602 USER_AFK = f"yes: {reason}" # pylint:disable=E0602 if reason: await borg.send_message(event.chat_id, f"**I shall be Going afk!** __because ~ {reason}__") else: await borg.send_message(event.chat_id, f"**I am Going afk!**") await asyncio.sleep(5) await event.delete() try: await borg.send_message( # pylint:disable=E0602 Config.PRIVATE_GROUP_BOT_API_ID, # pylint:disable=E0602 f"Set AFK mode to True, and Reason is {reason}" ) except Exception as e: # pylint:disable=C0103,W0703 logger.warn(str(e)) # pylint:disable=E0602 @borg.on(events.NewMessage(outgoing=True)) # pylint:disable=E0602 async def set_not_afk(event): global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global last_afk_message # pylint:disable=E0602 global afk_start global afk_end back_alive = datetime.now() afk_end = back_alive.replace(microsecond=0) if afk_start != {}: total_afk_time = str((afk_end - afk_start)) current_message = event.message.message if ".afk" not in current_message and "yes" in USER_AFK: # pylint:disable=E0602 shite = await borg.send_message(event.chat_id, "__Back alive!__\n**No Longer afk.**\n `Was afk for:``" + total_afk_time + "`") try: await borg.send_message( # pylint:disable=E0602 Config.PRIVATE_GROUP_BOT_API_ID, # pylint:disable=E0602 "Set AFK mode to False" ) except Exception as e: # pylint:disable=C0103,W0703 await borg.send_message( # pylint:disable=E0602 event.chat_id, "Please set `PRIVATE_GROUP_BOT_API_ID` " + \ "for the proper functioning of afk functionality " + \ "in @FRIDAYSUPPORTOFFICIAL\nCheck pinned message for more info.\n\n `{}`".format(str(e)), reply_to=event.message.id, silent=True ) await asyncio.sleep(5) await shite.delete() USER_AFK = {} # pylint:disable=E0602 afk_time = None # pylint:disable=E0602 @borg.on(events.NewMessage( # pylint:disable=E0602 incoming=True, func=lambda e: bool(e.mentioned or e.is_private) )) async def on_afk(event): if event.fwd_from: return global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global last_afk_message # pylint:disable=E0602 global afk_start global afk_end back_alivee = datetime.now() afk_end = back_alivee.replace(microsecond=0) if afk_start != {}: total_afk_time = str((afk_end - afk_start)) afk_since = "**a while ago**" current_message_text = event.message.message.lower() if "afk" in current_message_text: # userbot's should not reply to other userbot's # https://core.telegram.org/bots/faq#why-doesn-39t-my-bot-see-messages-from-other-bots return False if USER_AFK and not (await event.get_sender()).bot: # pylint:disable=E0602 if afk_time: # pylint:disable=E0602 now = datetime.datetime.now() datime_since_afk = now - afk_time # pylint:disable=E0602 time = float(datime_since_afk.seconds) days = time // (24 * 3600) time = time % (24 * 3600) hours = time // 3600 time %= 3600 minutes = time // 60 time %= 60 seconds = time if days == 1: afk_since = "**Yesterday**" elif days > 1: if days > 6: date = now + \ datetime.timedelta( days=-days, hours=-hours, minutes=-minutes) afk_since = date.strftime("%A, %Y %B %m, %H:%I") else: wday = now + datetime.timedelta(days=-days) afk_since = wday.strftime('%A') elif hours > 1: afk_since = f"`{int(hours)}h{int(minutes)}m` **ago**" elif minutes > 0: afk_since = f"`{int(minutes)}m{int(seconds)}s` **ago**" else: afk_since = f"`{int(seconds)}s` **ago**" msg = None message_to_reply = f"__My Master Has Been Gone For__ `{total_afk_time}`\nWhere He Is: ~~ONLY ME KNOWS~~ " + \ f"\n\n__I promise I'll back in a few light years__\n**REASON**: {reason}" \ if reason \ else f"**Heya!**\n__I am currently unavailable. Since when, you ask? For {total_afk_time} I guess.__\n\nWhen will I be back? ~~Soon~~ __Whenever I feel like it__**( ಠ ʖ̯ ಠ)** " msg = await event.reply(message_to_reply) await asyncio.sleep(5) if event.chat_id in last_afk_message: # pylint:disable=E0602 await last_afk_message[event.chat_id].delete() # pylint:disable=E0602 last_afk_message[event.chat_id] = msg # pylint:disable=E0602
40.643312
189
0.608212
5da0043977c725a2f1f0fb4fdc05242250aa1168
3,543
py
Python
dit/algorithms/prune_expand.py
Ejjaffe/dit
c9d206f03d1de5a0a298b1d0ea9d79ea5e789ee1
[ "BSD-3-Clause" ]
1
2020-03-13T10:30:11.000Z
2020-03-13T10:30:11.000Z
dit/algorithms/prune_expand.py
Ejjaffe/dit
c9d206f03d1de5a0a298b1d0ea9d79ea5e789ee1
[ "BSD-3-Clause" ]
null
null
null
dit/algorithms/prune_expand.py
Ejjaffe/dit
c9d206f03d1de5a0a298b1d0ea9d79ea5e789ee1
[ "BSD-3-Clause" ]
null
null
null
""" Functions for pruning or expanding the sample space of a distribution. This can be important when calculating meet and join random variables. It is also important for the calculations of various PID quantities. """ from dit.samplespace import ScalarSampleSpace, SampleSpace, CartesianProduct __all__ = ( 'expanded_samplespace', 'pruned_samplespace', ) def pruned_samplespace(d, sample_space=None): """ Returns a new distribution with pruned sample space. The pruning is such that zero probability outcomes are removed. Parameters ---------- d : distribution The distribution used to create the pruned distribution. sample_space : set A list of outcomes with zero probability that should be kept in the sample space. If `None`, then all outcomes with zero probability will be removed. Returns ------- pd : distribution The distribution with a pruned sample space. """ if sample_space is None: sample_space = [] keep = set(sample_space) outcomes = [] pmf = [] for o, p in d.zipped(mode='atoms'): if not d.ops.is_null_exact(p) or o in keep: outcomes.append(o) pmf.append(p) if d.is_joint(): sample_space = SampleSpace(outcomes) else: sample_space = ScalarSampleSpace(outcomes) pd = d.__class__(outcomes, pmf, sample_space=sample_space, base=d.get_base()) return pd def expanded_samplespace(d, alphabets=None, union=True): """ Returns a new distribution with an expanded sample space. Expand the sample space so that it is the Cartesian product of the alphabets for each random variable. Note, only the effective alphabet of each random variable is used. So if one index in an outcome only has the value 1, then its alphabet is `[1]`, and not `[0, 1]` for example. Parameters ---------- d : distribution The distribution used to create the pruned distribution. alphabets : list A list of alphabets, with length equal to the outcome length in `d`. Each alphabet specifies the alphabet to be used for a single index random variable. The sample space of the new distribution will be the Cartesian product of these alphabets. union : bool If True, then the alphabet for each random variable is unioned. The unioned alphabet is then used for each random variable. Returns ------- ed : distribution The distribution with an expanded sample space. Notes ----- The default constructor for Distribution will create a Cartesian product sample space if not sample space is provided. """ joint = d.is_joint() if alphabets is None: # Note, we sort the alphabets now, so we are possibly changing the # order of the original sample space. alphabets = list(map(sorted, d.alphabet)) elif joint and len(alphabets) != d.outcome_length(): L = len(alphabets) raise Exception("You need to provide {0} alphabets".format(L)) if joint and union: alphabet = set.union(*map(set, alphabets)) alphabet = sorted(alphabet) alphabets = [alphabet] * len(alphabets) if joint: sample_space = CartesianProduct(alphabets, d._product) else: sample_space = ScalarSampleSpace(alphabets) ed = d.__class__(d.outcomes, d.pmf, sample_space=sample_space, base=d.get_base()) return ed
30.282051
77
0.661586
ee55d72ccce61398f79bfd69b9fbc88e9af21d45
2,324
py
Python
account/types.py
TravelChain/golos-ql
a2acad0b56d349f3811b2bd0fc8ec1ce3257156c
[ "MIT" ]
5
2018-08-28T20:54:54.000Z
2022-02-09T21:21:53.000Z
account/types.py
TravelChain/golos-ql
a2acad0b56d349f3811b2bd0fc8ec1ce3257156c
[ "MIT" ]
null
null
null
account/types.py
TravelChain/golos-ql
a2acad0b56d349f3811b2bd0fc8ec1ce3257156c
[ "MIT" ]
2
2018-09-26T06:28:34.000Z
2018-11-20T20:14:00.000Z
from contextlib import suppress from mongoengine.base.datastructures import BaseDict import graphene from graphene.relay import Node from graphene_mongo import MongoengineObjectType from graphene.types.generic import GenericScalar from account.models import ( AccountModel, AccountAuthorityModel ) from common.utils import prepare_json from common.types import GeometryObjectType class AccountLocation(graphene.ObjectType): properties = GenericScalar() geometry = graphene.Field(GeometryObjectType) def resolve_properties(self, info): return self.get('properties', {}) def resolve_geometry(self, info): return self.get('geometry', {}) class MapalaProfile(graphene.ObjectType): avatar = graphene.String() location = graphene.Field(AccountLocation) def resolve_avatar(self, info): return self.get('avatar') def resolve_location(self, info): return self.get('location', {}) class AccountProfile(graphene.ObjectType): profile_image = graphene.String() website = graphene.String() cover_image = graphene.String() def resolve_cover_image(self, info): with suppress(KeyError): return self['cover_image'] def resolve_website(self, info): with suppress(KeyError): return self['website'] def resolve_profile_image(self, info): with suppress(KeyError): return self['profile_image'] class AccountMeta(graphene.ObjectType): profile = graphene.Field(AccountProfile) mapala_profile = graphene.Field(MapalaProfile) def resolve_mapala_profile(self, info): return self.get('mapalaProfile', {}) def resolve_profile(self, info): return self.get('profile', {}) class Account(MongoengineObjectType): meta = graphene.Field(AccountMeta) json_metadata = GenericScalar() def resolve_json_metadata(self, info): return prepare_json(self.json_metadata) class Meta: model = AccountModel interfaces = (Node,) def resolve_meta(self, info): if isinstance(self.json_metadata, BaseDict): return self.json_metadata else: return {} class AccountAuthority(MongoengineObjectType): class Meta: model = AccountAuthorityModel interfaces = (Node,)
25.538462
52
0.699656
0fcf8f922461d77dfda43ee8ee05275c8a55f75c
3,245
py
Python
tests/test_elbv2_actions.py
awslabs/aws-az-failure-chaostoolkit
95f682ce3e96efbf8c6aee58123b5dbbdfd441ee
[ "Apache-2.0" ]
6
2021-10-20T13:01:00.000Z
2022-02-23T12:32:31.000Z
tests/test_elbv2_actions.py
awslabs/aws-az-failure-chaostoolkit
95f682ce3e96efbf8c6aee58123b5dbbdfd441ee
[ "Apache-2.0" ]
1
2022-02-09T09:33:02.000Z
2022-03-03T14:03:09.000Z
tests/test_elbv2_actions.py
awslabs/aws-az-failure-chaostoolkit
95f682ce3e96efbf8c6aee58123b5dbbdfd441ee
[ "Apache-2.0" ]
null
null
null
import os from unittest.mock import MagicMock, patch from azchaosaws.elbv2.actions import fail_az @patch("azchaosaws.elbv2.actions.client", autospec=True) def test_fail_az_alb(client): mock_client = MagicMock() client.return_value = mock_client az = "ap-southeast-1a" dry_run = False state_path = "test_fail_az_alb.json" load_balancer_name = "my-load-balancer" resource_arn = "arn:aws:elasticloadbalancing:ap-southeast-1:123456789012:loadbalancer/app/my-load-balancer/50dc6c495c0c9188" subnet_ids = ["subnet-0ecac448", "subnet-15aaab61", "subnet-b61f49f0"] remaining_subnets = subnet_ids[1:3] mock_client.get_paginator = get_mock_paginate mock_client.describe_tags.return_value = { "TagDescriptions": [ { "ResourceArn": resource_arn, "Tags": [ {"Key": "AZ_FAILURE", "Value": "True"}, ], }, ] } mock_client.describe_load_balancers.return_value = { "LoadBalancers": [ { "LoadBalancerArn": resource_arn, "LoadBalancerName": load_balancer_name, "Type": "application", "State": {"Code": "active"}, "AvailabilityZones": [ {"ZoneName": "ap-southeast-1a", "SubnetId": "subnet-0ecac448"}, {"ZoneName": "ap-southeast-1b", "SubnetId": "subnet-15aaab61"}, {"ZoneName": "ap-southeast-1c", "SubnetId": "subnet-b61f49f0"}, ], }, ] } fail_az(az=az, dry_run=dry_run, state_path=state_path) mock_client.set_subnets.assert_called_with( LoadBalancerArn=resource_arn, Subnets=remaining_subnets ) os.remove(state_path) def get_mock_paginate(operation_name): return { "describe_load_balancers": MagicMock( paginate=MagicMock( return_value=[ { "LoadBalancers": [ { "LoadBalancerArn": "arn:aws:elasticloadbalancing:ap-southeast-1:123456789012:loadbalancer/app/my-load-balancer/50dc6c495c0c9188", "LoadBalancerName": "my-load-balancer", "Type": "application", "AvailabilityZones": [ { "ZoneName": "ap-southeast-1a", "SubnetId": "subnet-0ecac448", }, { "ZoneName": "ap-southeast-1b", "SubnetId": "subnet-15aaab61", }, { "ZoneName": "ap-southeast-1c", "SubnetId": "subnet-b61f49f0", }, ], }, ] } ] ) ), }.get(operation_name, MagicMock())
36.460674
161
0.465639
bca830b79db5f37ebf95e675900cffc6ef211b57
88
py
Python
static/apps.py
tututou/reportonlie_os
527a0325ef8b5a555566a1ca55414f88e9831884
[ "Apache-2.0" ]
null
null
null
static/apps.py
tututou/reportonlie_os
527a0325ef8b5a555566a1ca55414f88e9831884
[ "Apache-2.0" ]
null
null
null
static/apps.py
tututou/reportonlie_os
527a0325ef8b5a555566a1ca55414f88e9831884
[ "Apache-2.0" ]
null
null
null
from django.apps import AppConfig class StaticsConfig(AppConfig): name = 'static'
14.666667
33
0.75
1da118faf46370f16834d57b394dfdae5a572ff2
1,051
py
Python
01-december/depth_rate.py
acatovic/AoC2021
aae151c73ab9c21c69e39d95126b9ffdd98e462e
[ "MIT" ]
null
null
null
01-december/depth_rate.py
acatovic/AoC2021
aae151c73ab9c21c69e39d95126b9ffdd98e462e
[ "MIT" ]
null
null
null
01-december/depth_rate.py
acatovic/AoC2021
aae151c73ab9c21c69e39d95126b9ffdd98e462e
[ "MIT" ]
null
null
null
from pathlib import Path import sys from typing import List def count_num_depth_increases(data: List[int]) -> int: curr_depth = data[0] num_increases = 0 for i in range(1, len(data)): if data[i] > curr_depth: num_increases += 1 curr_depth = data[i] return num_increases def count_num_depth_window_increases(data: List[int], window_size: int = 3) -> int: curr_window_sum = sum(data[:window_size]) num_increases = 0 for i in range(1, len(data) - window_size + 1): next_window_sum = sum(data[i:i + window_size]) if next_window_sum > curr_window_sum: num_increases += 1 curr_window_sum = next_window_sum return num_increases def load_sonar_data(path: str) -> List[int]: data = [] with Path(path).open() as f: for line in f: data.append(int(line.strip())) return data def main(): path = sys.argv[1] data = load_sonar_data(path) print(count_num_depth_window_increases(data)) if __name__ == "__main__": main()
28.405405
83
0.646051
ce002eed526bfbbd57021cdab0466d3dff9d8512
279
py
Python
src/flow.py
rodnover55/ha-flow-automation
66ada606720030020ab51c73ed70cb8d94659644
[ "MIT" ]
null
null
null
src/flow.py
rodnover55/ha-flow-automation
66ada606720030020ab51c73ed70cb8d94659644
[ "MIT" ]
null
null
null
src/flow.py
rodnover55/ha-flow-automation
66ada606720030020ab51c73ed70cb8d94659644
[ "MIT" ]
null
null
null
class Flow: def __init__(self, data, key): self.__data = data self.__key = key def id(self) -> str: return self.__data["flow_id"] def validate_step(self, step) -> bool: return True def key(self) -> str: return self.__key
21.461538
42
0.566308
ef04d6a54b381d0ad91f5f6f1fec9c494e0577df
16,695
py
Python
bin/parse_annotation.py
brianlee99/UVP
5b7ff26c09d84760d4220268f34fb4814848eb4a
[ "MIT" ]
null
null
null
bin/parse_annotation.py
brianlee99/UVP
5b7ff26c09d84760d4220268f34fb4814848eb4a
[ "MIT" ]
null
null
null
bin/parse_annotation.py
brianlee99/UVP
5b7ff26c09d84760d4220268f34fb4814848eb4a
[ "MIT" ]
null
null
null
#! /usr/bin/python import sys import re from string import join """ The script accepts a SnpEff annotated VCF file and the sample ID name (string) as input options """ """ it parses files and creates a final annotation file that is in a ReseqTB mappable format """ """ Author: Matthew Ezewudo CPTR ReSeqTB Project - Critical Path Institute """ input1 = sys.argv[1] input2 = sys.argv[2] input3 = sys.argv[3] position = "" reference = "" alternate = "" annotation = "" variant = "" read_depth = "" quality = "" perc_alt = "" nucleotide_change = "" nuc_change = "" transcript_pos = "" amino_acid_change = "" orig_aacid = "" new_aacid = "" codon_pos = "" gene_name = "" gene_id = "" transcript = "" annotation_details = "" position1 = "" reference1 = "" alternate1 = "" annotation1 = "" variant1 = "" read_depth1 = "" quality1 = "" perc_alt11 = "" nucleotide_change1 = "" transcript_pos1 = "" amino_acid_change1 = "" orig_aacid1 = "" new_aacid1 = "" codon_pos1 = "" gene_name1 = "" gene_id1 = "" transcript1 = "" annotation_details1 = "" Block = False (genez,genezid,start,stop,gene_anot,strand) = ([],[],[],[],[],[]) nuc_change = "" dic = {'A':'T','T':'A','C':'G','G':'C'} ref_comp = "" alt_comp = "" fh3 = open(input3,'r') for lines in fh3: lined = lines.rstrip("\r\n").split("\t") if lines.startswith("H37Rv"): continue genez.append(lined[0]) genezid.append(lined[1]) start.append(lined[2]) stop.append(lined[3]) gene_anot.append(lined[4]) strand.append(lined[5]) fh1 = open(input1,'r') print "Sample ID" + "\t" + "CHROM" + "\t" + "POS" + "\t" + "REF" + "\t" + "ALT" + "\t" + "Read Depth" + "\t" + "Quality" + "\t" + "Percent Alt allele" + "\t" + "Annotation" + "\t" + "Variant Type" + "\t" + "Nucleotide Change" + "\t" + "Position within CDS " + "\t" + "Amino acid change" + "\t" + "REF Amino acid" + "\t" + "ALT Amino Acid" + "\t" + "Codon Position" + "\t" "Gene name" + "\t" + "Gene ID" + "\t" + "Transcript ID" + "\t" + "Annotation details" for lines in fh1: if lines.startswith("#"): continue fields = lines.rstrip("\r\n").split("\t") position = fields[1] reference = fields[3] alternate = fields[4] quality = fields[5] rarr = fields[9].split(":") num_all_array = rarr[1].split(",") num_all_2 = num_all_array[1] read_depth = rarr[2] num_all = rarr[3] perc_alt1 = float(num_all_2)/float(read_depth)*100.0 if perc_alt1 > 100.0: perc_alt1 = 100.0 perc_alt = "{0:.2f}".format(perc_alt1) if float(read_depth) < 10.0: continue subfields = fields[7].split(";") if subfields[-1].startswith("ANN"): annot = subfields[-1] else: annot = subfields[-2] subannot = annot.split(",") smallannot = subannot[0].split("|") if smallannot[2] == "MODIFIER": for x in range(0,82): if (int(start[x]) -1) < int(position) < (int(stop[x]) + 1): annotation = gene_anot[x] if genez[x] == 'rrs': nuc_change = str((int(position)) - (int(start[x]) - 1)) gene_id = 'MTB000019' nucleotide_change = "c." + nuc_change + reference + ">" + alternate elif genez[x] == 'rrl': nuc_change = str((int(position)) - (int(start[x]) - 1)) gene_id = 'MTB000020' nucleotide_change = "c." + nuc_change + reference + ">" + alternate elif genez[x] == 'crfA': nuc_change = str((int(position)) - (int(start[x]) - 1)) gene_id = 'crfA' nucleotide_change = "c." + nuc_change + reference + ">" + alternate elif strand[x] == 'forward': gene_id = genezid[x] nuc_change = str((int(position)) - (int(stop[x]) + 1)) nucleotide_change = "c." + nuc_change + reference + ">" + alternate elif strand[x] == 'reverse': ref_comp = "" alt_comp = "" for char in reference: ref_comp += dic[char] for char in alternate: alt_comp += dic[char] gene_id = genezid[x] nuc_change = str((int(start[x]) -1) - int(position)) nucleotide_change = "c." + nuc_change + ref_comp + ">" + alt_comp gene_name = genez[x] amino_acid_change = 'NA' if len(fields[4]) > len(fields[3]): if strand[x] == 'forward': nucleotide_change = "c." + nuc_change + "_" + str(int(nuc_change) + 1) + "ins" + alternate[len(reference):] if genez[x] == 'crfA': transcript_pos = nuc_change + "-" + str(int(nuc_change) + 1) elif strand[x] == 'reverse': nucleotide_change = "c." + str(int(nuc_change) - 1) + "_" + nuc_change + "ins" + alt_comp[len(reference):][::-1] variant = "Insertion" elif len(fields[3]) > len(fields[4]): if strand[x] == 'forward': if len(reference) - len(alternate) == 1: nucleotide_change = "c." + str(int(nuc_change) + len(alternate)) + "del" + reference[len(alternate):] if genez[x] == 'crfA': transcript_pos = str(int(nuc_change) + len(alternate)) else: nucleotide_change = "c." + str(int(nuc_change) + len(alternate)) + "_" + str(int(nuc_change) + len(reference) - 1) + "del" + reference[len(alternate):] if genez[x] == 'crfA': transcript_pos = str(int(nuc_change) + len(alternate)) + "-" + str(int(nuc_change) + len(reference) - 1) elif strand[x] == 'reverse': if len(reference) - len(alternate) == 1: nucleotide_change = "c." + str(int(nuc_change) - len(reference) - 1) + "del" + ref_comp[len(alternate):][::-1] else: nucleotide_change = "c." + str(int(nuc_change) - len(reference) - 1) + "_" + str(int(nuc_change) - len(alternate)) + "del" + ref_comp[len(alternate):][::-1] variant = "Deletion" else: variant = "SNP" transcript = 'NA' if genez[x] == 'crfA': transcript_pos = nuc_change else: transcript_pos = 'NA' orig_aacid = 'NA' new_aacid = 'NA' codon_pos = 'NA' annotation_details = ','.join(subannot[0:]) break else: annotation = 'Non-Coding' variant = 'NA' nucleotide_change = smallannot[9] amino_acid_change = 'NA' gene_name = 'NA' gene_id = 'NA' transcript = 'NA' transcript_pos = 'NA' orig_aacid = 'NA' new_aacid = 'NA' codon_pos = 'NA' annotation_details = ','.join(subannot[1:]) if len(position1) != 0: if Block == True: print input2 + "\t" + fields[0] + "\t" + position1 + "\t" + reference1 + "\t" + alternate1 + "\t" + read_depth1 + "\t" + quality1 + "\t" + perc_alt11 + "\t" + annotation1 + "\t" + 'MNV' + "\t" + nucleotide_change1 + "\t" + transcript_pos1 + "\t" + amino_acid_change1 + "\t" + orig_aacid1 + "\t" + 'Block_Substitution' + "\t" + codon_pos1 + "\t" + gene_name1 + "\t" + gene_id1 + "\t" + transcript1 + "\t" + annotation_details1 Block = False else: print input2 + "\t" + fields[0] + "\t" + position1 + "\t" + reference1 + "\t" + alternate1 + "\t" + read_depth1 + "\t" + quality1 + "\t" + perc_alt11 + "\t" + annotation1 + "\t" + variant1 + "\t" + nucleotide_change1 + "\t" + transcript_pos1 + "\t" + amino_acid_change1 + "\t" + orig_aacid1 + "\t" + new_aacid1 + "\t" + codon_pos1 + "\t" + gene_name1 + "\t" + gene_id1 + "\t" + transcript1 + "\t" + annotation_details1 else: if smallannot[10][2:5] == smallannot[10][-3:]: annotation = 'Synonymous' else: annotation = 'Non-synonymous' nucleotide_change = smallannot[9] if len(smallannot[10]) < 1: amino_acid_change = "NA" else: amino_acid_change = smallannot[10] gene_name = smallannot[3] gene_id = smallannot[4] transcript = smallannot[6] if gene_name == 'erm_37_': gene_name = 'erm(37)' annotation_details = ','.join(subannot[1:]) if 'del' in nucleotide_change or 'del' in amino_acid_change: variant = 'Deletion' elif 'ins' in nucleotide_change or 'ins' in amino_acid_change: variant = 'Insertion' elif 'dup' in nucleotide_change or 'dup' in amino_acid_change: variant = 'Insertion' else: variant = 'SNP' if variant == 'Insertion' or variant == 'Deletion': new_aacid = 'NA' if '_' in smallannot[9]: array1 = smallannot[9].split("_") po1 = array1[0].split(".") pos1 = po1[1] pos2 = re.findall(r'\d+', array1[1])[0] transcript_pos = pos1 + "-" + pos2 else: transcript_pos = re.findall(r'\d+', smallannot[9])[0] if '_' in smallannot[10]: array2 = smallannot[10].split("_") po11 = array2[0].split(".") orig_aacid = po11[1][0:3] pos11 = po11[1][3:] pos12 = re.findall(r'\d+', array2[1])[0] codon_pos = pos11 + "-" + pos12 else: if len(smallannot[10]) > 0: codon_pos = re.findall(r'\d+', smallannot[10])[0] orig_aacid = smallannot[10][2:5] else: codon_pos = "NA" orig_aacid = "NA" else : orig_aacid = smallannot[10][2:5] if '*' in smallannot[10] or '?' in smallannot[10] : new_aacid = 'NA' else: new_aacid = smallannot[10][-3:] transcript_pos = re.findall(r'\d+', smallannot[9])[0] codon_pos = re.findall(r'\d+', smallannot[10])[0] for x in range(0,82): if (int(start[x]) -1) < int(position) < (int(stop[x]) + 1): annotation = gene_anot[x] if strand[x] == 'forward': gene_id = genezid[x] nuc_change = str((int(position)) - (int(stop[x]) + 1)) nucleotide_change = "c." + nuc_change + reference + ">" + alternate elif strand[x] == 'reverse': ref_comp = "" alt_comp = "" for char in reference: ref_comp += dic[char] for char in alternate: alt_comp += dic[char] gene_id = genezid[x] nuc_change = str((int(start[x]) -1) - int(position)) nucleotide_change = "c." + nuc_change + ref_comp + ">" + alt_comp gene_name = genez[x] amino_acid_change = 'NA' if len(fields[4]) > len(fields[3]): if strand[x] == 'forward': nucleotide_change = "c." + nuc_change + "_" + str(int(nuc_change) + 1) + "ins" + alternate[len(reference):] elif strand[x] == 'reverse': nucleotide_change = "c." + str(int(nuc_change) - 1) + "_" + nuc_change + "ins" + alt_comp[len(reference):][::-1] variant = "Insertion" elif len(fields[3]) > len(fields[4]): if strand[x] == 'forward': if len(reference) - len(alternate) == 1: nucleotide_change = "c." + str(int(nuc_change) + len(alternate)) + "del" + reference[len(alternate):] else: nucleotide_change = "c." + str(int(nuc_change) + len(alternate)) + "_" + str(int(nuc_change) + len(reference) - 1) + "del" + reference[len(alternate):] elif strand[x] == 'reverse': if len(reference) - len(alternate) == 1: nucleotide_change = "c." + str(int(nuc_change) - len(reference) - 1) + "del" + ref_comp[len(alternate):][::-1] else: nucleotide_change = "c." + str(int(nuc_change) - len(reference) - 1) + "_" + str(int(nuc_change) - len(alternate)) + "del" + ref_comp[len(alternate):][::-1] variant = "Deletion" else: variant = "SNP" transcript = 'NA' transcript_pos = 'NA' orig_aacid = 'NA' new_aacid = 'NA' codon_pos = 'NA' annotation_details = ','.join(subannot[0:]) break if len(position1) != 0: if codon_pos == codon_pos1 and (int(position) - int(position1)) < 4 and float(perc_alt11) > 98.0 : Block = True print input2 + "\t" + fields[0] + "\t" + position1 + "\t" + reference1 + "\t" + alternate1 + "\t" + read_depth1 + "\t" + quality1 + "\t" + perc_alt11 + "\t" + annotation1 + "\t" + 'MNV' + "\t" + nucleotide_change1 + "\t" + transcript_pos1 + "\t" + amino_acid_change1 + "\t" + orig_aacid1 + "\t" + 'Block_Substitution' + "\t" + codon_pos1 + "\t" + gene_name1 + "\t" + gene_id1 + "\t" + transcript1 + "\t" + annotation_details1 elif Block == True: print input2 + "\t" + fields[0] + "\t" + position1 + "\t" + reference1 + "\t" + alternate1 + "\t" + read_depth1 + "\t" + quality1 + "\t" + perc_alt11 + "\t" + annotation1 + "\t" + 'MNV' + "\t" + nucleotide_change1 + "\t" + transcript_pos1 + "\t" + amino_acid_change1 + "\t" + orig_aacid1 + "\t" + 'Block_Substitution' + "\t" + codon_pos1 + "\t" + gene_name1 + "\t" + gene_id1 + "\t" + transcript1 + "\t" + annotation_details1 Block = False else: print input2 + "\t" + fields[0] + "\t" + position1 + "\t" + reference1 + "\t" + alternate1 + "\t" + read_depth1 + "\t" + quality1 + "\t" + perc_alt11 + "\t" + annotation1 + "\t" + variant1 + "\t" + nucleotide_change1 + "\t" + transcript_pos1 + "\t" + amino_acid_change1 + "\t" + orig_aacid1 + "\t" + new_aacid1 + "\t" + codon_pos1 + "\t" + gene_name1 + "\t" + gene_id1 + "\t" + transcript1 + "\t" + annotation_details1 position1 = position reference1 = reference alternate1 = alternate annotation1 = annotation variant1 = variant read_depth1 = read_depth quality1 = quality perc_alt11 = perc_alt nucleotide_change1 = nucleotide_change transcript_pos1 = transcript_pos amino_acid_change1 = amino_acid_change orig_aacid1 = orig_aacid new_aacid1 = new_aacid codon_pos1 = codon_pos gene_name1 = gene_name gene_id1 = gene_id transcript1 = transcript annotation_details1 = annotation_details if Block == True: print input2 + "\t" + fields[0] + "\t" + position1 + "\t" + reference1 + "\t" + alternate1 + "\t" + read_depth1 + "\t" + quality1 + "\t" + perc_alt11 + "\t" + annotation1 + "\t" + 'MNV' + "\t" + nucleotide_change1 + "\t" + transcript_pos1 + "\t" + amino_acid_change1 + "\t" + orig_aacid1 + "\t" + 'Block_Substitution' + "\t" + codon_pos1 + "\t" + gene_name1 + "\t" + gene_id1 + "\t" + transcript1 + "\t" + annotation_details1 else: print input2 + "\t" + fields[0] + "\t" + position1 + "\t" + reference1 + "\t" + alternate1 + "\t" + read_depth1 + "\t" + quality1 + "\t" + perc_alt11 + "\t" + annotation1 + "\t" + variant1 + "\t" + nucleotide_change1 + "\t" + transcript_pos1 + "\t" + amino_acid_change1 + "\t" + orig_aacid1 + "\t" + new_aacid1 + "\t" + codon_pos1 + "\t" + gene_name1 + "\t" + gene_id1 + "\t" + transcript1 + "\t" + annotation_details1
49.835821
460
0.493741
b78806120f3d3a17a6938e0fdb5c05e41ac0f7d6
693
py
Python
src/captureImage.py
CquKeith/FFMPEG
e2d8a2415f6b08ad400bf3e7cd3386b8dce51b06
[ "MIT" ]
2
2020-12-10T10:27:19.000Z
2021-04-19T07:13:07.000Z
src/captureImage.py
CquKeith/FFMPEG
e2d8a2415f6b08ad400bf3e7cd3386b8dce51b06
[ "MIT" ]
null
null
null
src/captureImage.py
CquKeith/FFMPEG
e2d8a2415f6b08ad400bf3e7cd3386b8dce51b06
[ "MIT" ]
null
null
null
# -- coding: utf-8 -- # 捕获视频帧 from FFmpegUtil import * chunk_file_name = '118-120.avi' def capture_image(input_file, out_file_dir): ''' 截取input_file的[start,end]的每一帧,存储到out_file_dir中 :param input_file: 要capture的视频文件 :param start: 从第几帧开始截取 :param end :到这一帧结束 :param out_file_dir: 输出的文件夹 :return: ''' cmd = "ffmpeg -y -i {} -vf fps=24 {}/%2d.jpeg".format(input_file,out_file_dir) print(cmd) run_command(cmd) def main(): for level in range(1,6): out_dir = "../img/level%s"%level make_dirs_if_not_exists(out_dir) capture_image("../video/level%s/%s"%(level,chunk_file_name),out_dir) if __name__ == '__main__': main()
23.1
82
0.649351
eba2a97e4f097939b6a864f5dab119da48af3131
4,087
py
Python
Assignment 3/perceptron.py
vamsi3/IITB-Machine-Learning-AI
f09f12a89658a746bbe8753e9ed3ed10b1a0e3cd
[ "MIT" ]
3
2020-11-04T15:12:32.000Z
2022-01-28T12:21:38.000Z
Assignment 3/perceptron.py
vamsi3/CS335-IIT-Bombay
f09f12a89658a746bbe8753e9ed3ed10b1a0e3cd
[ "MIT" ]
null
null
null
Assignment 3/perceptron.py
vamsi3/CS335-IIT-Bombay
f09f12a89658a746bbe8753e9ed3ed10b1a0e3cd
[ "MIT" ]
2
2020-09-02T03:23:21.000Z
2022-02-07T05:52:52.000Z
# perceptron.py # ------------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). # Perceptron implementation import util import numpy as np import sys import random PRINT = True ###### DON'T CHANGE THE SEEDS ########## random.seed(42) np.random.seed(42) class PerceptronClassifier: """ Perceptron classifier. Note that the variable 'datum' in this code refers to a counter of features (not to a raw samples.Datum). Note that this time around the weights are referred to just a single lable instead of a list. """ def __init__( self, legalLabels, max_iterations): self.legalLabels = legalLabels self.type = "perceptron" self.max_iterations = max_iterations ##################IMPORTANT###################### # The self.weights is just one instance of Counter unlike last time ################################################# self.weights = util.Counter() def setWeights(self, weights): assert type(weights) == type(self.weights) self.weights = weights def train( self, trainingData, trainingLabels, sample_weights=None): """ The training loop for the perceptron passes through the training data several times and updates the weight vector for each label based on classification errors. See the assignment description for details. Use the provided self.weights data structure so that the classify method works correctly. Also, recall that a datum is a counter from features to values for those features (and thus represents a vector of values). """ self.features = trainingData[0].keys() # could be useful later # DO NOT ZERO OUT YOUR WEIGHTS BEFORE STARTING TRAINING, OR # THE AUTOGRADER WILL LIKELY DEDUCT POINTS. if sample_weights is not None: trainingData, trainingLabels = self.sample_data(trainingData, trainingLabels, sample_weights) for iteration in range(self.max_iterations): for i in range(len(trainingData)): # "*** YOUR CODE HERE ***" y, y_hat = trainingLabels[i], self.weights * trainingData[i] if y * y_hat <= 0: y_times_x = trainingData[i].copy() y_times_x.mulAll(y) self.weights += y_times_x # util.raiseNotDefined() def sample_data(self, trainingData, trainingLabels, sample_weights): # "*** YOUR CODE HERE ***" n = len(trainingData) sample_indices = np.random.choice(n, size=int(n * 1.1), replace=True, p=sample_weights) sample_training_data = map(trainingData.__getitem__, sample_indices) sample_training_labels = map(trainingLabels.__getitem__, sample_indices) return sample_training_data, sample_training_labels # util.raiseNotDefined() def classify(self, data ): """ Classifies each datum as the label that most closely matches the prototype vector for that label. See the assignment description for details. Note that this time around the labels are just -1 and 1. Recall that a datum is a util.counter. """ guesses = [] vectors = util.Counter() for datum in data: guess = int(np.sign(self.weights * datum)) if guess == 0: guess = np.random.choice(self.legalLabels) guesses.append(guess) return guesses
38.196262
105
0.643993
f573ab151673acdfd6c7c5e63bc88f63e0974aca
762
py
Python
desktop/core/ext-py/Babel-0.9.6/babel/messages/tests/plurals.py
vinaymundada27/Hue
7bffb33bbe7cfa34d340241c4ba3b19476211b2a
[ "Apache-2.0" ]
19
2015-05-01T19:59:03.000Z
2021-12-09T08:03:16.000Z
desktop/core/ext-py/Babel-0.9.6/babel/messages/tests/plurals.py
vinaymundada27/Hue
7bffb33bbe7cfa34d340241c4ba3b19476211b2a
[ "Apache-2.0" ]
1
2018-01-03T15:26:49.000Z
2018-01-03T15:26:49.000Z
desktop/core/ext-py/Babel-0.9.6/babel/messages/tests/plurals.py
vinaymundada27/Hue
7bffb33bbe7cfa34d340241c4ba3b19476211b2a
[ "Apache-2.0" ]
30
2015-03-25T19:40:07.000Z
2021-05-28T22:59:26.000Z
# -*- coding: utf-8 -*- # # Copyright (C) 2008 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://babel.edgewall.org/wiki/License. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://babel.edgewall.org/log/. import doctest import unittest from babel.messages import plurals def suite(): suite = unittest.TestSuite() suite.addTest(doctest.DocTestSuite(plurals)) return suite if __name__ == '__main__': unittest.main(defaultTest='suite')
29.307692
68
0.724409
9b03b182cf05795cdf9c33a51ba752c1baaead91
943
py
Python
modin/core/dataframe/base/exchange/dataframe_protocol/__init__.py
yizx-1017/modin
2eee697135b30a9694c202456db0635c52c9e6c9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
modin/core/dataframe/base/exchange/dataframe_protocol/__init__.py
yizx-1017/modin
2eee697135b30a9694c202456db0635c52c9e6c9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
modin/core/dataframe/base/exchange/dataframe_protocol/__init__.py
yizx-1017/modin
2eee697135b30a9694c202456db0635c52c9e6c9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """ Base Modin Dataframe functionality related to the dataframe exchange protocol. See more in https://data-apis.org/dataframe-protocol/latest/index.html. """
49.631579
87
0.783669
cbb95119c268180b522de3c2afda1d836e78e7dc
4,275
py
Python
src/vws/exceptions/vws_exceptions.py
admdev8/vws-python
1ef2492e3e9f860fe42768898cc69390bd295d06
[ "MIT" ]
7
2017-01-05T09:05:44.000Z
2020-05-14T06:41:47.000Z
src/vws/exceptions/vws_exceptions.py
adamtheturtle/vws-python
1afcba0ed46c0e82b2d80d5fe06781d909b468a4
[ "MIT" ]
665
2016-12-14T23:03:53.000Z
2020-05-14T21:22:39.000Z
src/vws/exceptions/vws_exceptions.py
Smirenost/vws-python
1ef2492e3e9f860fe42768898cc69390bd295d06
[ "MIT" ]
5
2020-08-17T15:18:35.000Z
2021-05-21T08:50:41.000Z
""" Exception raised when Vuforia returns a response with a result code matching one of those documented at https://library.vuforia.com/articles/Solution/How-To-Use-the-Vuforia-Web-Services-API#How-To-Interperete-VWS-API-Result-Codes. """ import json from urllib.parse import urlparse from vws.exceptions.base_exceptions import VWSException class UnknownTarget(VWSException): """ Exception raised when Vuforia returns a response with a result code 'UnknownTarget'. """ @property def target_id(self) -> str: """ The unknown target ID. """ path = urlparse(self.response.url).path # Every HTTP path which can raise this error is in the format # `/something/{target_id}`. return path.split(sep='/', maxsplit=2)[-1] class Fail(VWSException): """ Exception raised when Vuforia returns a response with a result code 'Fail'. """ class BadImage(VWSException): """ Exception raised when Vuforia returns a response with a result code 'BadImage'. """ class AuthenticationFailure(VWSException): """ Exception raised when Vuforia returns a response with a result code 'AuthenticationFailure'. """ # See https://github.com/VWS-Python/vws-python/issues/822. class RequestQuotaReached(VWSException): # pragma: no cover """ Exception raised when Vuforia returns a response with a result code 'RequestQuotaReached'. """ class TargetStatusProcessing(VWSException): """ Exception raised when Vuforia returns a response with a result code 'TargetStatusProcessing'. """ @property def target_id(self) -> str: """ The processing target ID. """ path = urlparse(self.response.url).path # Every HTTP path which can raise this error is in the format # `/something/{target_id}`. return path.split(sep='/', maxsplit=2)[-1] # This is not simulated by the mock. class DateRangeError(VWSException): # pragma: no cover """ Exception raised when Vuforia returns a response with a result code 'DateRangeError'. """ # This is not simulated by the mock. class TargetQuotaReached(VWSException): # pragma: no cover """ Exception raised when Vuforia returns a response with a result code 'TargetQuotaReached'. """ # This is not simulated by the mock. class ProjectSuspended(VWSException): # pragma: no cover """ Exception raised when Vuforia returns a response with a result code 'ProjectSuspended'. """ # This is not simulated by the mock. class ProjectHasNoAPIAccess(VWSException): # pragma: no cover """ Exception raised when Vuforia returns a response with a result code 'ProjectHasNoAPIAccess'. """ class ProjectInactive(VWSException): """ Exception raised when Vuforia returns a response with a result code 'ProjectInactive'. """ class MetadataTooLarge(VWSException): """ Exception raised when Vuforia returns a response with a result code 'MetadataTooLarge'. """ class RequestTimeTooSkewed(VWSException): """ Exception raised when Vuforia returns a response with a result code 'RequestTimeTooSkewed'. """ class TargetNameExist(VWSException): """ Exception raised when Vuforia returns a response with a result code 'TargetNameExist'. """ @property def target_name(self) -> str: """ The target name which already exists. """ response_body = self.response.request.body or b'' request_json = json.loads(response_body) return str(request_json['name']) class ImageTooLarge(VWSException): """ Exception raised when Vuforia returns a response with a result code 'ImageTooLarge'. """ class TargetStatusNotSuccess(VWSException): """ Exception raised when Vuforia returns a response with a result code 'TargetStatusNotSuccess'. """ @property def target_id(self) -> str: """ The unknown target ID. """ path = urlparse(self.response.url).path # Every HTTP path which can raise this error is in the format # `/something/{target_id}`. return path.split(sep='/', maxsplit=2)[-1]
25.598802
126
0.670175
f2f00b1aa5be124e00cf8b63decffae15a057450
5,257
py
Python
tests/persistence/person_dao_spark_test.py
pydev-bootcamp/python-etl
5db16bdf653861e14e6b30359622d83e45ca4f88
[ "Unlicense" ]
null
null
null
tests/persistence/person_dao_spark_test.py
pydev-bootcamp/python-etl
5db16bdf653861e14e6b30359622d83e45ca4f88
[ "Unlicense" ]
null
null
null
tests/persistence/person_dao_spark_test.py
pydev-bootcamp/python-etl
5db16bdf653861e14e6b30359622d83e45ca4f88
[ "Unlicense" ]
null
null
null
""" Unit tests for PersonDao """ from datetime import datetime import os from os.path import dirname, abspath, join from pytest import raises from tempfile import mkstemp from typing import List, Optional, TextIO from textwrap import dedent from manage_accounts.model.person import Person from manage_accounts.persistence.person_dao_spark import PersonDaoSpark # from pprint import pprint # pretty-print Python data structures dao: PersonDaoSpark temp_file: Optional[TextIO] temp_file_handle: int temp_file_path: str data_file_path: str = join(dirname(abspath(__file__)), "person_dao_spark_test.jsonl") def setup_function() -> None: # create temp file global temp_file_handle, temp_file_path, temp_file temp_file_handle, temp_file_path = mkstemp(text=True) temp_file = open(temp_file_path, "w") def teardown_function() -> None: global dao, temp_file_handle, temp_file if dao: dao.close() if temp_file: # else file was closed in init_test_data() temp_file.close() if temp_file_handle: # remove temp file os.close(temp_file_handle) os.remove(temp_file_path) def init_test_data(test_data: str) -> None: global temp_file temp_file.write(dedent(test_data)) temp_file.close() temp_file = None def test_find_all_args_supplied() -> None: global dao dao = PersonDaoSpark(data_file_path) # dao.df.printSchema() results = [person for person in dao.find( "Vivien", "Theodore", "Thomas")] assert 1 == len(results) p = results[0] assert isinstance(p, Person) assert (1, "Vivien", "Theodore", "Thomas") == \ (p.id, p.given, p.middle, p.family) assert p.created_time < datetime.utcnow() def test_find_given_arg_only() -> None: global dao dao = PersonDaoSpark(data_file_path) results = [person for person in dao.find("Elizabeth")] assert 1 == len(results) p = results[0] assert isinstance(p, Person) assert (2, "Elizabeth", "", "Blackwell") == \ (p.id, p.given, p.middle, p.family) assert p.created_time < datetime.utcnow() def test_find_given_arg_only_two_results() -> None: global dao dao = PersonDaoSpark(data_file_path) results = [person for person in dao.find("Thomas")] assert 2 == len(results) sorted(results, key=lambda person: person.id) assert [(p.id, p.given, p.middle, p.family) for p in results] == \ [(4, "Thomas", "", "Addison"), (5, "Thomas", "", "Sydenham")] def test_find_several_queries() -> None: global dao dao = PersonDaoSpark(data_file_path) # next(iter(...)) performs one iteration of the Iterable argument p: Person = next(iter(dao.find("Vivien", "Theodore", "Thomas"))) assert ("Vivien", "Theodore", "Thomas") == (p.given, p.middle, p.family) p = next(iter(dao.find("Elizabeth", family="Blackwell"))) assert ("Elizabeth", "", "Blackwell") == (p.given, p.middle, p.family) p = next(iter(dao.find("Hippocrates"))) assert ("Hippocrates", "", "") == (p.given, p.middle, p.family) def test_find_person_not_present() -> None: global dao dao = PersonDaoSpark(data_file_path) results: List[Person] = [person for person in dao.find("NotThere")] assert 0 == len(results) def test_find_no_args_raises_exception() -> None: global dao dao = PersonDaoSpark(data_file_path) with raises(ValueError, match=r"arguments.*empty"): next(iter(dao.find())) # find() is s generator function, so it won't be executed unless # it's used for iteration def test_find_by_id_success() -> None: global dao dao = PersonDaoSpark(data_file_path) person: Person = dao.find_by_id(3) assert "Hippocrates" == person.given def test_find_by_id_not_present() -> None: global dao dao = PersonDaoSpark(data_file_path) assert dao.find_by_id(0) is None def test_find_by_id_json() -> None: global dao init_test_data(""" {"id": 1, "given": "Vivien", "middle": "Theodore", "family": "Thomas", "created_time": 1576109811} {"id": 2, "given": "Hippocrates", "created_time": 1576109813} {"id": 3, "given": "Thomas", "family": "Addison", "created_time": 1576109814} """) dao = PersonDaoSpark(temp_file_path) person: Person = dao.find_by_id(2) assert "Hippocrates" == person.given def test_find_by_id_csv() -> None: global dao init_test_data("""\ 1,Vivien,Theodore,Thomas,1576109811 2,Hippocrates,,1576109812 3,Thomas,,Addison,1576109813 """) dao = PersonDaoSpark(temp_file_path, "csv") person: Person = dao.find_by_id(2) assert "Hippocrates" == person.given def test_find_by_id_duplicate_id_raises_exception() -> None: global dao init_test_data("""\ {"id": 1, "given": "Vivien", "middle": "Theodore", "family": "Thomas", "created_time": 1576109811} {"id": 2, "given": "Hippocrates", "created_time": 1576109813} {"id": 2, "given": "Thomas", "family": "Addison", "created_time": 1576109814} """) dao = PersonDaoSpark(temp_file_path) with raises(ValueError, match=r"duplicate.*([Ii][Dd]|[Kk]ey)"): dao.find_by_id(2)
29.700565
106
0.658551
8975c9a3ae3517b87a267340eadcfc7964ebcb7b
10,805
py
Python
examples/models.py
smit14/SentEval
bbf74ee8b918bc359d9494021a737229116cb8f0
[ "BSD-3-Clause" ]
null
null
null
examples/models.py
smit14/SentEval
bbf74ee8b918bc359d9494021a737229116cb8f0
[ "BSD-3-Clause" ]
null
null
null
examples/models.py
smit14/SentEval
bbf74ee8b918bc359d9494021a737229116cb8f0
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ This file contains the definition of encoders used in https://arxiv.org/pdf/1705.02364.pdf """ import numpy as np import time import torch import torch.nn as nn import json class InferSent(nn.Module): def __init__(self, config): super(InferSent, self).__init__() self.bsize = config['bsize'] self.word_emb_dim = config['word_emb_dim'] self.enc_lstm_dim = config['enc_lstm_dim'] self.pool_type = config['pool_type'] self.dpout_model = config['dpout_model'] self.version = 1 if 'version' not in config else config['version'] self.enc_lstm = nn.LSTM(self.word_emb_dim, self.enc_lstm_dim, 1, bidirectional=True, dropout=self.dpout_model) assert self.version in [1, 2] if self.version == 1: self.bos = '<s>' self.eos = '</s>' self.max_pad = True self.moses_tok = False elif self.version == 2: self.bos = '<p>' self.eos = '</p>' self.max_pad = False self.moses_tok = True def is_cuda(self): # either all weights are on cpu or they are on gpu return self.enc_lstm.bias_hh_l0.data.is_cuda def forward(self, sent_tuple): # sent_len: [max_len, ..., min_len] (bsize) # sent: (seqlen x bsize x worddim) sent, sent_len = sent_tuple # Sort by length (keep idx) sent_len_sorted, idx_sort = np.sort(sent_len)[::-1], np.argsort(-sent_len) sent_len_sorted = sent_len_sorted.copy() idx_unsort = np.argsort(idx_sort) idx_sort = torch.from_numpy(idx_sort).cuda() if self.is_cuda() \ else torch.from_numpy(idx_sort) sent = sent.index_select(1, idx_sort) # Handling padding in Recurrent Networks sent_packed = nn.utils.rnn.pack_padded_sequence(sent, sent_len_sorted) sent_output = self.enc_lstm(sent_packed)[0] # seqlen x batch x 2*nhid sent_output = nn.utils.rnn.pad_packed_sequence(sent_output)[0] # Un-sort by length idx_unsort = torch.from_numpy(idx_unsort).cuda() if self.is_cuda() \ else torch.from_numpy(idx_unsort) sent_output = sent_output.index_select(1, idx_unsort) # Pooling if self.pool_type == "mean": sent_len = torch.FloatTensor(sent_len.copy()).unsqueeze(1).cuda() emb = torch.sum(sent_output, 0).squeeze(0) emb = emb / sent_len.expand_as(emb) elif self.pool_type == "max": if not self.max_pad: sent_output[sent_output == 0] = -1e9 emb = torch.max(sent_output, 0)[0] if emb.ndimension() == 3: emb = emb.squeeze(0) assert emb.ndimension() == 2 return emb def set_w2v_path(self, w2v_path): self.w2v_path = w2v_path def get_word_dict(self, sentences, tokenize=True): # create vocab of words word_dict = {} sentences = [s.split() if not tokenize else self.tokenize(s) for s in sentences] for sent in sentences: for word in sent: if word not in word_dict: word_dict[word] = '' word_dict[self.bos] = '' word_dict[self.eos] = '' return word_dict def get_w2v(self, word_dict): assert hasattr(self, 'w2v_path'), 'w2v path not set' # create word_vec with w2v vectors word_vec = {} with open(self.w2v_path, encoding='utf-8') as f: for line in f: word, vec = line.split(' ', 1) if word in word_dict: word_vec[word] = np.fromstring(vec, sep=' ') print('Found %s(/%s) words with w2v vectors' % (len(word_vec), len(word_dict))) return word_vec ############################################################################################## def get_w2v_small(self, word_dict): assert hasattr(self, 'w2v_path'), 'w2v path not set' # create word_vec with w2v vectors word_vec = {} glove_small = json.load(open(self.w2v_path)) for word in glove_small.keys(): if word in word_dict: word_vec[word] = np.array(glove_small[word]) print('Found %s(/%s) words with w2v vectors' % (len(word_vec), len(word_dict))) return word_vec ############################################################################################## def get_w2v_k(self, K): assert hasattr(self, 'w2v_path'), 'w2v path not set' # create word_vec with k first w2v vectors k = 0 word_vec = {} with open(self.w2v_path, encoding='utf-8') as f: for line in f: word, vec = line.split(' ', 1) if k <= K: word_vec[word] = np.fromstring(vec, sep=' ') k += 1 if k > K: if word in [self.bos, self.eos]: word_vec[word] = np.fromstring(vec, sep=' ') if k > K and all([w in word_vec for w in [self.bos, self.eos]]): break return word_vec def build_vocab(self, sentences, tokenize=True, is_small = False): assert hasattr(self, 'w2v_path'), 'w2v path not set' word_dict = self.get_word_dict(sentences, tokenize) #################################################################### self.word_vec = self.get_w2v(word_dict) if is_small: self.word_vec = self.get_w2v_small(word_dict) #################################################################### print('Vocab size : %s' % (len(self.word_vec))) # build w2v vocab with k most frequent words def build_vocab_k_words(self, K): assert hasattr(self, 'w2v_path'), 'w2v path not set' self.word_vec = self.get_w2v_k(K) print('Vocab size : %s' % (K)) def update_vocab(self, sentences, tokenize=True): assert hasattr(self, 'w2v_path'), 'warning : w2v path not set' assert hasattr(self, 'word_vec'), 'build_vocab before updating it' word_dict = self.get_word_dict(sentences, tokenize) # keep only new words for word in self.word_vec: if word in word_dict: del word_dict[word] # udpate vocabulary if word_dict: new_word_vec = self.get_w2v(word_dict) self.word_vec.update(new_word_vec) else: new_word_vec = [] print('New vocab size : %s (added %s words)'% (len(self.word_vec), len(new_word_vec))) def get_batch(self, batch): # sent in batch in decreasing order of lengths # batch: (bsize, max_len, word_dim) embed = np.zeros((len(batch[0]), len(batch), self.word_emb_dim)) for i in range(len(batch)): for j in range(len(batch[i])): embed[j, i, :] = self.word_vec[batch[i][j]] return torch.FloatTensor(embed) def tokenize(self, s): from nltk.tokenize import word_tokenize if self.moses_tok: s = ' '.join(word_tokenize(s)) s = s.replace(" n't ", "n 't ") # HACK to get ~MOSES tokenization return s.split() else: return word_tokenize(s) def prepare_samples(self, sentences, bsize, tokenize, verbose): sentences = [[self.bos] + s.split() + [self.eos] if not tokenize else [self.bos] + self.tokenize(s) + [self.eos] for s in sentences] n_w = np.sum([len(x) for x in sentences]) # filters words without w2v vectors for i in range(len(sentences)): s_f = [word for word in sentences[i] if word in self.word_vec] if not s_f: import warnings warnings.warn('No words in "%s" (idx=%s) have w2v vectors. \ Replacing by "</s>"..' % (sentences[i], i)) s_f = [self.eos] sentences[i] = s_f lengths = np.array([len(s) for s in sentences]) n_wk = np.sum(lengths) if verbose: print('Nb words kept : %s/%s (%.1f%s)' % ( n_wk, n_w, 100.0 * n_wk / n_w, '%')) # sort by decreasing length lengths, idx_sort = np.sort(lengths)[::-1], np.argsort(-lengths) sentences = np.array(sentences)[idx_sort] return sentences, lengths, idx_sort def encode(self, sentences, bsize=64, tokenize=True, verbose=False): tic = time.time() sentences, lengths, idx_sort = self.prepare_samples( sentences, bsize, tokenize, verbose) embeddings = [] for stidx in range(0, len(sentences), bsize): batch = self.get_batch(sentences[stidx:stidx + bsize]) if self.is_cuda(): batch = batch.cuda() with torch.no_grad(): batch = self.forward((batch, lengths[stidx:stidx + bsize])).data.cpu().numpy() embeddings.append(batch) embeddings = np.vstack(embeddings) # unsort idx_unsort = np.argsort(idx_sort) embeddings = embeddings[idx_unsort] if verbose: print('Speed : %.1f sentences/s (%s mode, bsize=%s)' % ( len(embeddings)/(time.time()-tic), 'gpu' if self.is_cuda() else 'cpu', bsize)) return embeddings def visualize(self, sent, tokenize=True): sent = sent.split() if not tokenize else self.tokenize(sent) sent = [[self.bos] + [word for word in sent if word in self.word_vec] + [self.eos]] if ' '.join(sent[0]) == '%s %s' % (self.bos, self.eos): import warnings warnings.warn('No words in "%s" have w2v vectors. Replacing \ by "%s %s"..' % (sent, self.bos, self.eos)) batch = self.get_batch(sent) if self.is_cuda(): batch = batch.cuda() output = self.enc_lstm(batch)[0] output, idxs = torch.max(output, 0) # output, idxs = output.squeeze(), idxs.squeeze() idxs = idxs.data.cpu().numpy() argmaxs = [np.sum((idxs == k)) for k in range(len(sent[0]))] # visualize model import matplotlib.pyplot as plt x = range(len(sent[0])) y = [100.0 * n / np.sum(argmaxs) for n in argmaxs] plt.xticks(x, sent[0], rotation=45) plt.bar(x, y) plt.ylabel('%') plt.title('Visualisation of words importance') plt.show() return output, idxs
37.77972
98
0.547802
c8265dc035ba352b92fe2f6338520b5f85cff6b3
6,788
py
Python
oneflow/compatible_single_client_python/test/ops/test_argwhere.py
xcnick/oneflow
7b786b27069dec35d2493256011e773988c91f56
[ "Apache-2.0" ]
null
null
null
oneflow/compatible_single_client_python/test/ops/test_argwhere.py
xcnick/oneflow
7b786b27069dec35d2493256011e773988c91f56
[ "Apache-2.0" ]
null
null
null
oneflow/compatible_single_client_python/test/ops/test_argwhere.py
xcnick/oneflow
7b786b27069dec35d2493256011e773988c91f56
[ "Apache-2.0" ]
null
null
null
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import unittest from collections import OrderedDict import os from oneflow.compatible import single_client as flow from test_util import GenArgDict def _np_dtype_to_of_dtype(np_dtype): if np_dtype == np.float32: return flow.float32 elif np_dtype == np.int32: return flow.int32 elif np_dtype == np.int64: return flow.int64 elif np_dtype == np.int8: return flow.int8 else: raise NotImplementedError def _random_input(shape, dtype): if dtype == np.float32: rand_ = np.random.random_sample(shape).astype(np.float32) rand_[np.nonzero(rand_ < 0.5)] = 0.0 return rand_ elif dtype == np.int32: return np.random.randint(low=0, high=2, size=shape).astype(np.int32) elif dtype == np.int8: return np.random.randint(low=0, high=2, size=shape).astype(np.int8) else: raise NotImplementedError def _of_argwhere(x, index_dtype, device_type="gpu", device_num=1, dynamic=False): data_type = _np_dtype_to_of_dtype(x.dtype) out_data_type = _np_dtype_to_of_dtype(index_dtype) flow.clear_default_session() if device_type == "gpu": flow.config.gpu_device_num(device_num) elif device_type == "cpu": flow.config.cpu_device_num(device_num) else: raise ValueError assert device_num > 0 func_config = flow.FunctionConfig() func_config.default_data_type(data_type) func_config.default_placement_scope( flow.scope.placement(device_type, "0:0-{}".format(device_num - 1)) ) if dynamic is True: func_config.default_logical_view(flow.scope.mirrored_view()) @flow.global_function("predict", function_config=func_config) def argwhere_fn( x: flow.typing.ListNumpy.Placeholder(x.shape, dtype=data_type) ) -> flow.typing.ListNumpy: return flow.argwhere(x, dtype=out_data_type) return argwhere_fn([x] * device_num)[0] else: func_config.default_logical_view(flow.scope.consistent_view()) @flow.global_function("predict", function_config=func_config) def argwhere_fn( x: flow.typing.Numpy.Placeholder(x.shape, dtype=data_type) ) -> flow.typing.ListNumpy: return flow.argwhere(x, dtype=out_data_type) return argwhere_fn(x)[0] def _compare_with_np( test_case, shape, value_dtype, index_dtype, device_type="gpu", device_num=1, dynamic=False, verbose=False, ): if verbose: print("shape:", shape) print("value_dtype:", value_dtype) print("index_dtype:", index_dtype) print("device_type:", device_type) print("device_num:", device_num) print("dynamic:", dynamic) x = _random_input(shape, value_dtype) y = np.argwhere(x) of_y = _of_argwhere( x, index_dtype, device_type=device_type, device_num=device_num, dynamic=dynamic ) if verbose is True: print("input:", x) print("np result:", y) print("of result:", of_y) test_case.assertTrue(np.array_equal(y, of_y)) def _dynamic_multi_iter_compare( test_case, iter_num, shape, value_dtype, index_dtype, device_type="gpu", verbose=False, ): x = [_random_input(shape, value_dtype) for _ in range(iter_num)] y = [np.argwhere(x_) for x_ in x] data_type = _np_dtype_to_of_dtype(value_dtype) out_data_type = _np_dtype_to_of_dtype(index_dtype) flow.clear_default_session() func_config = flow.FunctionConfig() func_config.default_data_type(data_type) func_config.default_placement_scope(flow.scope.placement(device_type, "0:0")) func_config.default_logical_view(flow.scope.mirrored_view()) @flow.global_function("predict", function_config=func_config) def argwhere_fn( x: flow.typing.Numpy.Placeholder(tuple(shape), dtype=data_type) ) -> flow.typing.ListNumpy: return flow.argwhere(x, dtype=out_data_type) results = [] for x_ in x: y_ = argwhere_fn(x_)[0] results.append(y_) for i, result in enumerate(results): test_case.assertTrue(np.array_equal(result, y[i])) @flow.unittest.skip_unless_1n1d() class TestArgwhere(flow.unittest.TestCase): @unittest.skipIf(os.getenv("ONEFLOW_TEST_CPU_ONLY"), "only test cpu cases") def test_argwhere(test_case): arg_dict = OrderedDict() arg_dict["shape"] = [(10), (30, 4), (8, 256, 20)] arg_dict["value_dtype"] = [np.float32, np.int32, np.int8] arg_dict["index_dtype"] = [np.int32, np.int64] arg_dict["device_type"] = ["cpu", "gpu"] arg_dict["dynamic"] = [True, False] arg_dict["verbose"] = [False] for arg in GenArgDict(arg_dict): _compare_with_np(test_case, **arg) @unittest.skipIf(os.getenv("ONEFLOW_TEST_CPU_ONLY"), "only test cpu cases") def test_argwhere_multi_iter(test_case): arg_dict = OrderedDict() arg_dict["iter_num"] = [2] arg_dict["shape"] = [(20, 4)] arg_dict["value_dtype"] = [np.float32, np.int32, np.int8] arg_dict["index_dtype"] = [np.int32, np.int64] arg_dict["device_type"] = ["cpu", "gpu"] arg_dict["verbose"] = [False] for arg in GenArgDict(arg_dict): _dynamic_multi_iter_compare(test_case, **arg) @flow.unittest.skip_unless_1n4d() class TestArgwhere4D(flow.unittest.TestCase): # @unittest.skipIf(os.getenv("ONEFLOW_TEST_CPU_ONLY"), "only test cpu cases") # TODO(zhangwenxiao, jiangxuefei): refine in multi-client @unittest.skipIf(True, "skip for now because of single-client tensor_list removed") def test_argwhere(test_case): arg_dict = OrderedDict() arg_dict["shape"] = [(10, 5)] arg_dict["value_dtype"] = [np.float32, np.int32, np.int8] arg_dict["index_dtype"] = [np.int32, np.int64] arg_dict["device_type"] = ["cpu", "gpu"] arg_dict["device_num"] = [4] arg_dict["dynamic"] = [True] arg_dict["verbose"] = [False] for arg in GenArgDict(arg_dict): _compare_with_np(test_case, **arg) if __name__ == "__main__": unittest.main()
32.792271
87
0.669564
ae53f0b78e8ec3aec388c4db65c0cbc1238d5b12
9,235
py
Python
client_sdk_python/providers/eth_tester/middleware.py
awake006/client-sdk-python
34393e417f74a65f04b643b26d8f9d2ccb0c886e
[ "MIT" ]
null
null
null
client_sdk_python/providers/eth_tester/middleware.py
awake006/client-sdk-python
34393e417f74a65f04b643b26d8f9d2ccb0c886e
[ "MIT" ]
null
null
null
client_sdk_python/providers/eth_tester/middleware.py
awake006/client-sdk-python
34393e417f74a65f04b643b26d8f9d2ccb0c886e
[ "MIT" ]
null
null
null
import operator from eth_utils import ( is_dict, is_hex, is_string, ) from client_sdk_python.middleware import ( construct_fixture_middleware, construct_formatting_middleware, ) from client_sdk_python.utils.formatters import ( apply_formatter_if, apply_formatter_to_array, apply_formatters_to_args, apply_formatters_to_dict, apply_key_map, hex_to_integer, integer_to_hex, is_array_of_dicts, remove_key_if, static_return, ) from client_sdk_python.utils.toolz import ( assoc, complement, compose, curry, identity, partial, pipe, ) def is_named_block(value): return value in {"latest", "earliest", "pending"} def is_hexstr(value): return is_string(value) and is_hex(value) to_integer_if_hex = apply_formatter_if(is_hexstr, hex_to_integer) is_not_named_block = complement(is_named_block) TRANSACTION_KEY_MAPPINGS = { 'block_hash': 'blockHash', 'block_number': 'blockNumber', 'gas_price': 'gasPrice', 'transaction_hash': 'transactionHash', 'transaction_index': 'transactionIndex', } transaction_key_remapper = apply_key_map(TRANSACTION_KEY_MAPPINGS) LOG_KEY_MAPPINGS = { 'log_index': 'logIndex', 'transaction_index': 'transactionIndex', 'transaction_hash': 'transactionHash', 'block_hash': 'blockHash', 'block_number': 'blockNumber', } log_key_remapper = apply_key_map(LOG_KEY_MAPPINGS) RECEIPT_KEY_MAPPINGS = { 'block_hash': 'blockHash', 'block_number': 'blockNumber', 'contract_address': 'contractAddress', 'gas_used': 'gasUsed', 'cumulative_gas_used': 'cumulativeGasUsed', 'transaction_hash': 'transactionHash', 'transaction_index': 'transactionIndex', } receipt_key_remapper = apply_key_map(RECEIPT_KEY_MAPPINGS) BLOCK_KEY_MAPPINGS = { 'gas_limit': 'gasLimit', 'sha3_uncles': 'sha3Uncles', 'transactions_root': 'transactionsRoot', 'parent_hash': 'parentHash', 'bloom': 'logsBloom', 'state_root': 'stateRoot', 'receipt_root': 'receiptsRoot', 'total_difficulty': 'totalDifficulty', 'extra_data': 'extraData', 'gas_used': 'gasUsed', } block_key_remapper = apply_key_map(BLOCK_KEY_MAPPINGS) TRANSACTION_PARAMS_MAPPING = { 'gasPrice': 'gas_price', } transaction_params_remapper = apply_key_map(TRANSACTION_PARAMS_MAPPING) TRANSACTION_PARAMS_FORMATTERS = { 'gas': to_integer_if_hex, 'gasPrice': to_integer_if_hex, 'value': to_integer_if_hex, # 'nonce': to_integer_if_hex, } transaction_params_formatter = compose( # remove nonce for now due to issue https://github.com/ethereum/eth-tester/issues/80 remove_key_if('nonce', lambda _: True), apply_formatters_to_dict(TRANSACTION_PARAMS_FORMATTERS), ) FILTER_PARAMS_MAPPINGS = { 'fromBlock': 'from_block', 'toBlock': 'to_block', } filter_params_remapper = apply_key_map(FILTER_PARAMS_MAPPINGS) FILTER_PARAMS_FORMATTERS = { 'fromBlock': to_integer_if_hex, 'toBlock': to_integer_if_hex, } filter_params_formatter = apply_formatters_to_dict(FILTER_PARAMS_FORMATTERS) filter_params_transformer = compose(filter_params_remapper, filter_params_formatter) TRANSACTION_FORMATTERS = { 'to': apply_formatter_if(partial(operator.eq, ''), static_return(None)), } transaction_formatter = apply_formatters_to_dict(TRANSACTION_FORMATTERS) RECEIPT_FORMATTERS = { 'logs': apply_formatter_to_array(log_key_remapper), } receipt_formatter = apply_formatters_to_dict(RECEIPT_FORMATTERS) transaction_params_transformer = compose(transaction_params_remapper, transaction_params_formatter) ethereum_tester_middleware = construct_formatting_middleware( request_formatters={ # Eth 'eth_getBlockByNumber': apply_formatters_to_args( apply_formatter_if(is_not_named_block, to_integer_if_hex), ), 'eth_getFilterChanges': apply_formatters_to_args(hex_to_integer), 'eth_getFilterLogs': apply_formatters_to_args(hex_to_integer), 'eth_getBlockTransactionCountByNumber': apply_formatters_to_args( apply_formatter_if(is_not_named_block, to_integer_if_hex), ), 'eth_getUncleCountByBlockNumber': apply_formatters_to_args( apply_formatter_if(is_not_named_block, to_integer_if_hex), ), 'eth_getTransactionByBlockHashAndIndex': apply_formatters_to_args( identity, to_integer_if_hex, ), 'eth_getTransactionByBlockNumberAndIndex': apply_formatters_to_args( apply_formatter_if(is_not_named_block, to_integer_if_hex), to_integer_if_hex, ), 'eth_getUncleByBlockNumberAndIndex': apply_formatters_to_args( apply_formatter_if(is_not_named_block, to_integer_if_hex), to_integer_if_hex, ), 'eth_newFilter': apply_formatters_to_args( filter_params_transformer, ), 'eth_getLogs': apply_formatters_to_args( filter_params_transformer, ), 'eth_sendTransaction': apply_formatters_to_args( transaction_params_transformer, ), 'eth_estimateGas': apply_formatters_to_args( transaction_params_transformer, ), 'eth_call': apply_formatters_to_args( transaction_params_transformer, apply_formatter_if(is_not_named_block, to_integer_if_hex), ), 'eth_uninstallFilter': apply_formatters_to_args(hex_to_integer), 'eth_getCode': apply_formatters_to_args( identity, apply_formatter_if(is_not_named_block, to_integer_if_hex), ), # EVM 'evm_revert': apply_formatters_to_args(hex_to_integer), # Personal 'personal_sendTransaction': apply_formatters_to_args( transaction_params_transformer, identity, ), }, result_formatters={ 'eth_getBlockByHash': apply_formatter_if( is_dict, block_key_remapper, ), 'eth_getBlockByNumber': apply_formatter_if( is_dict, block_key_remapper, ), 'eth_getBlockTransactionCountByHash': apply_formatter_if( is_dict, transaction_key_remapper, ), 'eth_getBlockTransactionCountByNumber': apply_formatter_if( is_dict, transaction_key_remapper, ), 'eth_getTransactionByHash': apply_formatter_if( is_dict, compose(transaction_key_remapper, transaction_formatter), ), 'eth_getTransactionReceipt': apply_formatter_if( is_dict, compose(receipt_key_remapper, receipt_formatter), ), 'eth_newFilter': integer_to_hex, 'eth_newBlockFilter': integer_to_hex, 'eth_newPendingTransactionFilter': integer_to_hex, 'eth_getLogs': apply_formatter_if( is_array_of_dicts, apply_formatter_to_array(log_key_remapper), ), 'eth_getFilterChanges': apply_formatter_if( is_array_of_dicts, apply_formatter_to_array(log_key_remapper), ), 'eth_getFilterLogs': apply_formatter_if( is_array_of_dicts, apply_formatter_to_array(log_key_remapper), ), # EVM 'evm_snapshot': integer_to_hex, }, ) ethereum_tester_fixture_middleware = construct_fixture_middleware({ # Eth 'eth_protocolVersion': '63', 'eth_hashrate': 0, 'eth_gasPrice': 1, 'eth_syncing': False, 'eth_mining': False, # Net 'net_version': '1', 'net_listening': False, 'net_peerCount': 0, }) def guess_from(web3, transaction): coinbase = web3.eth.coinbase if coinbase is not None: return coinbase try: return web3.eth.accounts[0] except KeyError as e: # no accounts available to pre-fill, carry on pass return None def guess_gas(web3, transaction): return web3.eth.estimateGas(transaction) * 2 @curry def fill_default(field, guess_func, web3, transaction): if field in transaction and transaction[field] is not None: return transaction else: guess_val = guess_func(web3, transaction) return assoc(transaction, field, guess_val) def default_transaction_fields_middleware(make_request, web3): fill_default_from = fill_default('from', guess_from, web3) fill_default_gas = fill_default('gas', guess_gas, web3) def middleware(method, params): # TODO send call to eth-tester without gas, and remove guess_gas entirely if method == 'eth_call': filled_transaction = pipe( params[0], fill_default_from, fill_default_gas, ) return make_request(method, [filled_transaction] + params[1:]) elif method in ( 'eth_estimateGas', 'eth_sendTransaction', ): filled_transaction = pipe( params[0], fill_default_from, ) return make_request(method, [filled_transaction] + params[1:]) else: return make_request(method, params) return middleware
28.155488
99
0.682079
b543ed1bb9d58647000b7519ed6039bb76415ad2
48,824
py
Python
tests/syft/lib/python/dict/dict_test.py
godormad/PySyft
fcb3374b6318dcccf377175fb8db6f70e9e1d1e3
[ "Apache-2.0" ]
null
null
null
tests/syft/lib/python/dict/dict_test.py
godormad/PySyft
fcb3374b6318dcccf377175fb8db6f70e9e1d1e3
[ "Apache-2.0" ]
null
null
null
tests/syft/lib/python/dict/dict_test.py
godormad/PySyft
fcb3374b6318dcccf377175fb8db6f70e9e1d1e3
[ "Apache-2.0" ]
null
null
null
""" Tests copied from cpython test suite: https://github.com/python/cpython/blob/3.8/Lib/test/test_dict.py """ # stdlib import collections import collections.abc import gc import pickle import random import string import sys from test import support import unittest # third party import pytest # syft absolute from syft.lib.python.dict import Dict from syft.lib.python.none import SyNone from syft.lib.python.string import String # import weakref class DictTest(unittest.TestCase): def test_invalid_keyword_arguments(self): class Custom(dict): pass for invalid in {1: 2}, Custom({1: 2}): with self.assertRaises(TypeError): dict(**invalid) with self.assertRaises(TypeError): {}.update(**invalid) def test_constructor(self): # calling built-in types without argument must return empty self.assertEqual(Dict(), {}) self.assertIsNot(Dict(), {}) @pytest.mark.slow def test_literal_constructor(self): # check literal constructor for different sized dicts # (to exercise the BUILD_MAP oparg). for n in (0, 1, 6, 256, 400): items = [ ("".join(random.sample(string.ascii_letters, 8)), i) for i in range(n) ] random.shuffle(items) formatted_items = (f"{k!r}: {v:d}" for k, v in items) dictliteral = "{" + ", ".join(formatted_items) + "}" self.assertEqual(eval(dictliteral), Dict(items)) def test_bool(self): self.assertIs(not {}, True) self.assertTrue(Dict({1: 2})) self.assertIs(bool(Dict({})), False) self.assertIs(bool(Dict({1: 2})), True) def test_keys(self): d = Dict() self.assertEqual(set(d.keys()), set()) d = {"a": 1, "b": 2} k = d.keys() self.assertEqual(set(k), {"a", "b"}) self.assertIn("a", k) self.assertIn("b", k) self.assertIn("a", d) self.assertIn("b", d) self.assertRaises(TypeError, d.keys, None) self.assertEqual(repr(dict(a=1).keys()), "dict_keys(['a'])") def test_values(self): d = Dict() self.assertEqual(set(d.values()), set()) d = Dict({1: 2}) self.assertEqual(set(d.values()), {2}) self.assertRaises(TypeError, d.values, None) self.assertEqual(repr(dict(a=1).values()), "dict_values([1])") def test_items(self): # TODO: support this when we have sets: pass # d = Dict() # self.assertEqual(set(d.items()), set()) # # d = Dict({1: 2}) # self.assertEqual(set(d.items()), {(1, 2)}) # self.assertRaises(TypeError, d.items, None) # self.assertEqual(repr(dict(a=1).items()), "dict_items([('a', 1)])") def test_contains(self): d = Dict() self.assertNotIn("a", d) self.assertFalse("a" in d) self.assertTrue("a" not in d) d = Dict({"a": 1, "b": 2}) self.assertIn("a", d) self.assertIn("b", d) self.assertNotIn("c", d) self.assertRaises(TypeError, d.__contains__) def test_len(self): d = Dict() self.assertEqual(len(d), 0) d = Dict({"a": 1, "b": 2}) self.assertEqual(len(d), 2) def test_getitem(self): d = Dict({"a": 1, "b": 2}) self.assertEqual(d["a"], 1) self.assertEqual(d["b"], 2) d["c"] = 3 d["a"] = 4 self.assertEqual(d["c"], 3) self.assertEqual(d["a"], 4) del d["b"] self.assertEqual(d, {"a": 4, "c": 3}) self.assertRaises(TypeError, d.__getitem__) class BadEq(object): def __eq__(self, other): raise Exc() def __hash__(self): return 24 d = Dict() d[BadEq()] = 42 self.assertRaises(KeyError, d.__getitem__, 23) class Exc(Exception): pass class BadHash(object): fail = False def __hash__(self): if self.fail: raise Exc() else: return 42 x = BadHash() d[x] = 42 x.fail = True self.assertRaises(Exc, d.__getitem__, x) def test_clear(self): d = Dict({1: 1, 2: 2, 3: 3}) d.clear() self.assertEqual(d, {}) self.assertRaises(TypeError, d.clear, None) def test_update(self): d = Dict() d.update({1: 100}) d.update({2: 20}) d.update({1: 1, 2: 2, 3: 3}) self.assertEqual(d, {1: 1, 2: 2, 3: 3}) d.update() self.assertEqual(d, {1: 1, 2: 2, 3: 3}) self.assertRaises((TypeError, AttributeError), d.update, None) class SimpleUserDict: def __init__(self): self.d = {1: 1, 2: 2, 3: 3} def keys(self): return self.d.keys() def __getitem__(self, i): return self.d[i] d.clear() d.update(SimpleUserDict()) self.assertEqual(d, {1: 1, 2: 2, 3: 3}) class Exc(Exception): pass d.clear() class FailingUserDict: def keys(self): raise Exc self.assertRaises(Exc, d.update, FailingUserDict()) class FailingUserDict: def keys(self): class BogonIter: def __init__(self): self.i = 1 def __iter__(self): return self def __next__(self): if self.i: self.i = 0 return "a" raise Exc return BogonIter() def __getitem__(self, key): return key self.assertRaises(Exc, d.update, FailingUserDict()) class FailingUserDict: def keys(self): class BogonIter: def __init__(self): self.i = ord("a") def __iter__(self): return self def __next__(self): if self.i <= ord("z"): rtn = chr(self.i) self.i += 1 return rtn raise StopIteration return BogonIter() def __getitem__(self, key): raise Exc self.assertRaises(Exc, d.update, FailingUserDict()) class badseq(object): def __iter__(self): return self def __next__(self): raise Exc() self.assertRaises(Exc, {}.update, badseq()) self.assertRaises(ValueError, {}.update, [(1, 2, 3)]) def test_fromkeys(self): self.assertEqual(dict.fromkeys("abc"), {"a": None, "b": None, "c": None}) d = Dict() self.assertIsNot(d.fromkeys("abc"), d) self.assertEqual(d.fromkeys("abc"), {"a": None, "b": None, "c": None}) self.assertEqual(d.fromkeys((4, 5), 0), {4: 0, 5: 0}) self.assertEqual(d.fromkeys([]), {}) def g(): yield 1 self.assertEqual(d.fromkeys(g()), {1: None}) self.assertRaises(TypeError, {}.fromkeys, 3) class dictlike(dict): pass self.assertEqual(dictlike.fromkeys("a"), {"a": None}) self.assertEqual(dictlike().fromkeys("a"), {"a": None}) self.assertIsInstance(dictlike.fromkeys("a"), dictlike) self.assertIsInstance(dictlike().fromkeys("a"), dictlike) class mydict(dict): def __new__(cls): return Dict() ud = mydict.fromkeys("ab") self.assertEqual(ud, {"a": None, "b": None}) self.assertIsInstance(ud, Dict) self.assertRaises(TypeError, dict.fromkeys) class Exc(Exception): pass class baddict1(dict): def __init__(self): raise Exc() self.assertRaises(Exc, baddict1.fromkeys, [1]) class BadSeq(object): def __iter__(self): return self def __next__(self): raise Exc() self.assertRaises(Exc, dict.fromkeys, BadSeq()) class baddict2(dict): def __setitem__(self, key, value): raise Exc() self.assertRaises(Exc, baddict2.fromkeys, [1]) # test fast path for dictionary inputs d = dict(zip(range(6), range(6))) self.assertEqual(dict.fromkeys(d, 0), dict(zip(range(6), [0] * 6))) class baddict3(dict): def __new__(cls): return d d = {i: i for i in range(10)} res = d.copy() res.update(a=None, b=None, c=None) self.assertEqual(baddict3.fromkeys({"a", "b", "c"}), res) def test_copy(self): d = Dict({1: 1, 2: 2, 3: 3}) self.assertIsNot(d.copy(), d) self.assertEqual(d.copy(), d) self.assertEqual(d.copy(), {1: 1, 2: 2, 3: 3}) copy = d.copy() d[4] = 4 self.assertNotEqual(copy, d) self.assertEqual({}.copy(), {}) self.assertRaises(TypeError, d.copy, None) @pytest.mark.slow def test_copy_fuzz(self): for dict_size in [10, 100, 1000]: # TODO: 10000, 100000 dict_size = random.randrange(dict_size // 2, dict_size + dict_size // 2) with self.subTest(dict_size=dict_size): d = Dict() for i in range(dict_size): d[i] = i d2 = d.copy() self.assertIsNot(d2, d) self.assertEqual(d, d2) d2["key"] = "value" self.assertNotEqual(d, d2) self.assertEqual(len(d2), len(d) + 1) def test_copy_maintains_tracking(self): class A: pass key = A() for d in (Dict(), Dict({"a": 1}), Dict({key: "val"})): d2 = d.copy() self.assertEqual(gc.is_tracked(d), gc.is_tracked(d2)) def test_copy_noncompact(self): # Dicts don't compact themselves on del/pop operations. # Copy will use a slow merging strategy that produces # a compacted copy when roughly 33% of dict is a non-used # keys-space (to optimize memory footprint). # In this test we want to hit the slow/compacting # branch of dict.copy() and make sure it works OK. d = Dict({k: k for k in range(1000)}) for k in range(950): del d[k] d2 = d.copy() self.assertEqual(d2, d) def test_get(self): d = Dict() self.assertIs(d.get("c"), SyNone) self.assertEqual(d.get("c", 3), 3) d = Dict({"a": 1, "b": 2}) self.assertEqual(d.get("c"), SyNone) self.assertEqual(d.get("c", 3), 3) self.assertEqual(d.get("a"), 1) self.assertEqual(d.get("a", 3), 1) self.assertRaises(TypeError, d.get) self.assertRaises(TypeError, d.get, None, None, None) def test_setdefault(self): # dict.setdefault() d = Dict() self.assertIs(d.setdefault("key0"), SyNone) d.setdefault("key0", []) self.assertIs(d.setdefault("key0"), SyNone) d.setdefault("key", []).append(3) self.assertEqual(d["key"][0], 3) d.setdefault("key", []).append(4) self.assertEqual(len(d["key"]), 2) self.assertRaises(TypeError, d.setdefault) class Exc(Exception): pass class BadHash(object): fail = False def __hash__(self): if self.fail: raise Exc() else: return 42 x = BadHash() d[x] = 42 x.fail = True self.assertRaises(Exc, d.setdefault, x, []) def test_setdefault_atomic(self): # Issue #13521: setdefault() calls __hash__ and __eq__ only once. class Hashed(object): def __init__(self): self.hash_count = 0 self.eq_count = 0 def __hash__(self): self.hash_count += 1 return 42 def __eq__(self, other): self.eq_count += 1 return id(self) == id(other) hashed1 = Hashed() y = {hashed1: 5} hashed2 = Hashed() y.setdefault(hashed2, []) self.assertEqual(hashed1.hash_count, 1) self.assertEqual(hashed2.hash_count, 1) self.assertEqual(hashed1.eq_count + hashed2.eq_count, 1) def test_setitem_atomic_at_resize(self): class Hashed(object): def __init__(self): self.hash_count = 0 self.eq_count = 0 def __hash__(self): self.hash_count += 1 return 42 def __eq__(self, other): self.eq_count += 1 return id(self) == id(other) hashed1 = Hashed() # 5 items y = Dict({hashed1: 5, 0: 0, 1: 1, 2: 2, 3: 3}) hashed2 = Hashed() # 6th item forces a resize y[hashed2] = [] # this is different for UserDict which is 3 # we are subclassing UserDict so if we match UserDict that should be correct # self.assertEqual(hashed1.hash_count, 1) self.assertEqual(hashed1.hash_count, 3) self.assertEqual(hashed2.hash_count, 1) self.assertEqual(hashed1.eq_count + hashed2.eq_count, 1) @pytest.mark.slow def test_popitem(self): # dict.popitem() for copymode in -1, +1: # -1: b has same structure as a # +1: b is a.copy() for log2size in range(10): size = 2 ** log2size a = Dict() b = Dict() for i in range(size): a[repr(i)] = i if copymode < 0: b[repr(i)] = i if copymode > 0: b = a.copy() for i in range(size): ka, va = ta = a.popitem() self.assertEqual(va, ka.__int__()) kb, vb = tb = b.popitem() self.assertEqual(vb, kb.__int__()) self.assertFalse(copymode < 0 and ta != tb) self.assertFalse(a) self.assertFalse(b) d = {} self.assertRaises(KeyError, d.popitem) def test_pop(self): # Tests for pop with specified key d = Dict() k, v = "abc", "def" d[k] = v self.assertRaises(KeyError, d.pop, "ghi") self.assertEqual(d.pop(k), v) self.assertEqual(len(d), 0) self.assertRaises(KeyError, d.pop, k) self.assertEqual(d.pop(k, v), v) d[k] = v self.assertEqual(d.pop(k, 1), v) self.assertRaises(TypeError, d.pop) class Exc(Exception): pass class BadHash(object): fail = False def __hash__(self): if self.fail: raise Exc() else: return 42 x = BadHash() d[x] = 42 x.fail = True self.assertRaises(Exc, d.pop, x) def test_mutating_iteration(self): # changing dict size during iteration d = Dict() d[1] = 1 with self.assertRaises(RuntimeError): for i in d: d[i + 1] = 1 def test_mutating_iteration_delete(self): # change dict content during iteration d = Dict() d[0] = 0 # python 3.8+ raise RuntimeError but older versions do not if sys.version_info >= (3, 8): with self.assertRaises(RuntimeError): for i in d: del d[0] d[0] = 0 def test_mutating_iteration_delete_over_values(self): # change dict content during iteration d = Dict() d[0] = 0 # python 3.8+ raise RuntimeError but older versions do not if sys.version_info >= (3, 8): with self.assertRaises(RuntimeError): for i in d.values(): del d[0] d[0] = 0 def test_mutating_iteration_delete_over_items(self): # TODO: proper iterators needed over the views, currently, we convert them to lists pass # # change dict content during iteration # d = Dict() # d[0] = 0 # # python 3.8+ raise RuntimeError but older versions do not # if sys.version_info >= (3, 8): # with self.assertRaises(RuntimeError): # for i in d.items(): # del d[0] # d[0] = 0 def test_mutating_lookup(self): # changing dict during a lookup (issue #14417) # TODO: investigate this at some point pass # class NastyKey: # mutate_dict = None # # def __init__(self, value): # self.value = value # # def __hash__(self): # # hash collision! # return 1 # # def __eq__(self, other): # if NastyKey.mutate_dict: # mydict, key = NastyKey.mutate_dict # NastyKey.mutate_dict = None # del mydict[key] # return self.value == other.value # # key1 = NastyKey(1) # key2 = NastyKey(2) # d = Dict({key1: 1}) # NastyKey.mutate_dict = (d, key1) # d[key2] = 2 # self.assertEqual(d, {key2: 2}) def test_repr(self): d = Dict() self.assertEqual(repr(d), "{}") d[1] = 2 self.assertEqual(repr(d), "{1: 2}") d = Dict() d[1] = d self.assertEqual(repr(d), "{1: {...}}") class Exc(Exception): pass class BadRepr(object): def __repr__(self): raise Exc() d = Dict({1: BadRepr()}) self.assertRaises(Exc, repr, d) def test_repr_deep(self): d = Dict() for i in range(sys.getrecursionlimit() + 100): d = Dict({1: d}) self.assertRaises(RecursionError, repr, d) def test_eq(self): self.assertEqual(Dict(), {}) self.assertEqual(Dict({1: 2}), {1: 2}) # TODO, when we have full set and iter support, make this pass as well pass # class Exc(Exception): # pass # # class BadCmp(object): # def __eq__(self, other): # raise Exc() # # def __hash__(self): # return 1 # # d1 = Dict({BadCmp(): 1}) # d2 = Dict({1: 1}) # # with self.assertRaises(Exc): # d1 == d2 def test_keys_contained(self): self.helper_keys_contained(lambda x: x.keys()) self.helper_keys_contained(lambda x: x.items()) def helper_keys_contained(self, fn): # TODO add this when we have set support pass # Test rich comparisons against dict key views, which should behave the # same as sets. # empty = fn(Dict()) # empty2 = fn(Dict()) # smaller = fn(Dict({1: 1, 2: 2})) # larger = fn(Dict({1: 1, 2: 2, 3: 3})) # larger2 = fn(Dict({1: 1, 2: 2, 3: 3})) # larger3 = fn(Dict({4: 1, 2: 2, 3: 3})) # # self.assertTrue(smaller < larger) # self.assertTrue(smaller <= larger) # self.assertTrue(larger > smaller) # self.assertTrue(larger >= smaller) # # self.assertFalse(smaller >= larger) # self.assertFalse(smaller > larger) # self.assertFalse(larger <= smaller) # self.assertFalse(larger < smaller) # # self.assertFalse(smaller < larger3) # self.assertFalse(smaller <= larger3) # self.assertFalse(larger3 > smaller) # self.assertFalse(larger3 >= smaller) # # # Inequality strictness # self.assertTrue(larger2 >= larger) # self.assertTrue(larger2 <= larger) # self.assertFalse(larger2 > larger) # self.assertFalse(larger2 < larger) # # self.assertTrue(larger == larger2) # self.assertTrue(smaller != larger) # # # There is an optimization on the zero-element case. # self.assertTrue(empty == empty2) # self.assertFalse(empty != empty2) # self.assertFalse(empty == smaller) # self.assertTrue(empty != smaller) # # # With the same size, an elementwise compare happens # self.assertTrue(larger != larger3) # self.assertFalse(larger == larger3) def test_errors_in_view_containment_check(self): # TODO: add support for custom objects # class C: # def __eq__(self, other): # raise RuntimeError # # d1 = Dict({1: C()}) # d2 = Dict({1: C()}) # with self.assertRaises(RuntimeError): # d1.items() == d2.items() # with self.assertRaises(RuntimeError): # d1.items() != d2.items() # with self.assertRaises(RuntimeError): # d1.items() <= d2.items() # with self.assertRaises(RuntimeError): # d1.items() >= d2.items() # # d3 = Dict({1: C(), 2: C()}) # with self.assertRaises(RuntimeError): # d2.items() < d3.items() # with self.assertRaises(RuntimeError): # d3.items() > d2.items() pass def test_dictview_set_operations_on_keys(self): # TODO add support for sets pass # k1 = Dict({1: 1, 2: 2}).keys() # k2 = Dict({1: 1, 2: 2, 3: 3}).keys() # k3 = Dict({4: 4}).keys() # # self.assertEqual(k1 - k2, set()) # self.assertEqual(k1 - k3, {1, 2}) # self.assertEqual(k2 - k1, {3}) # self.assertEqual(k3 - k1, {4}) # self.assertEqual(k1 & k2, {1, 2}) # self.assertEqual(k1 & k3, set()) # self.assertEqual(k1 | k2, {1, 2, 3}) # self.assertEqual(k1 ^ k2, {3}) # self.assertEqual(k1 ^ k3, {1, 2, 4}) def test_dictview_set_operations_on_items(self): # TODO add support for sets pass # k1 = Dict({1: 1, 2: 2}).items() # k2 = Dict({1: 1, 2: 2, 3: 3}).items() # k3 = Dict({4: 4}).items() # # self.assertEqual(k1 - k2, set()) # self.assertEqual(k1 - k3, {(1, 1), (2, 2)}) # self.assertEqual(k2 - k1, {(3, 3)}) # self.assertEqual(k3 - k1, {(4, 4)}) # self.assertEqual(k1 & k2, {(1, 1), (2, 2)}) # self.assertEqual(k1 & k3, set()) # self.assertEqual(k1 | k2, {(1, 1), (2, 2), (3, 3)}) # self.assertEqual(k1 ^ k2, {(3, 3)}) # self.assertEqual(k1 ^ k3, {(1, 1), (2, 2), (4, 4)}) def test_dictview_mixed_set_operations(self): # TODO add support for sets pass # Just a few for .keys() # self.assertTrue(Dict({1: 1}).keys() == {1}) # self.assertEqual(Dict({1: 1}).keys() | {2}, {1, 2}) # # And a few for .items() # self.assertTrue(Dict({1: 1}).items() == {(1, 1)}) # # # This test has been changed to reflect the behavior of UserDict # self.assertTrue(Dict({(1, 1)}) == {1: 1}) # # # UserDict does not support init with set items like: # # UserDict({2}) so neither do we with Dict # with pytest.raises(TypeError): # self.assertEqual(Dict({2}) | Dict({1: 1}).keys(), {1, 2}) # self.assertTrue(Dict({1}) == {1: 1}.keys()) # self.assertEqual(Dict({2}) | Dict({1: 1}).items(), {(1, 1), 2}) # self.assertEqual(Dict({1: 1}).items() | Dict({2}), {(1, 1), 2}) def test_missing(self): # Make sure dict doesn't have a __missing__ method self.assertFalse(hasattr(Dict, "__missing__")) self.assertFalse(hasattr(Dict(), "__missing__")) # Test several cases: # (D) subclass defines __missing__ method returning a value # (E) subclass defines __missing__ method raising RuntimeError # (F) subclass sets __missing__ instance variable (no effect) # (G) subclass doesn't define __missing__ at all class D(Dict): def __missing__(self, key): return 42 d = D({1: 2, 3: 4}) self.assertEqual(d[1], 2) self.assertEqual(d[3], 4) self.assertNotIn(2, d) self.assertNotIn(2, d.keys()) self.assertEqual(d[2], 42) class E(dict): def __missing__(self, key): raise RuntimeError(key) e = E() with self.assertRaises(RuntimeError) as c: e[42] self.assertEqual(c.exception.args, (42,)) class F(dict): def __init__(self): # An instance variable __missing__ should have no effect self.__missing__ = lambda key: None f = F() with self.assertRaises(KeyError) as c: f[42] self.assertEqual(c.exception.args, (42,)) class G(dict): pass g = G() with self.assertRaises(KeyError) as c: g[42] self.assertEqual(c.exception.args, (42,)) def test_tuple_keyerror(self): # SF #1576657 d = Dict() with self.assertRaises(KeyError) as c: d[(1,)] self.assertEqual(c.exception.args, ((1,),)) def test_bad_key(self): # Dictionary lookups should fail if __eq__() raises an exception. class CustomException(Exception): pass class BadDictKey: def __hash__(self): return hash(self.__class__) def __eq__(self, other): if isinstance(other, self.__class__): raise CustomException return other d = Dict() x1 = BadDictKey() x2 = BadDictKey() d[x1] = 1 for stmt in [ "d[x2] = 2", "z = d[x2]", "x2 in d", "d.get(x2)", "d.setdefault(x2, 42)", "d.pop(x2)", "d.update({x2: 2})", ]: with self.assertRaises(CustomException): exec(stmt, locals()) def test_resize1(self): # Dict resizing bug, found by Jack Jansen in 2.2 CVS development. # This version got an assert failure in debug build, infinite loop in # release build. Unfortunately, provoking this kind of stuff requires # a mix of inserts and deletes hitting exactly the right hash codes in # exactly the right order, and I can't think of a randomized approach # that would be *likely* to hit a failing case in reasonable time. d = Dict() for i in range(5): d[i] = i for i in range(5): del d[i] for i in range(5, 9): # i==8 was the problem d[i] = i def test_resize2(self): # Another dict resizing bug (SF bug #1456209). # This caused Segmentation faults or Illegal instructions. class X(object): def __hash__(self): return 5 def __eq__(self, other): if resizing: d.clear() return False d = Dict() resizing = False d[X()] = 1 d[X()] = 2 d[X()] = 3 d[X()] = 4 d[X()] = 5 # now trigger a resize resizing = True d[9] = 6 def test_empty_presized_dict_in_freelist(self): # Bug #3537: if an empty but presized dict with a size larger # than 7 was in the freelist, it triggered an assertion failure with self.assertRaises(ZeroDivisionError): d = Dict( { "a": 1 // 0, "b": None, "c": None, "d": None, "e": None, "f": None, "g": None, "h": None, } ) d.clear() @pytest.mark.slow def test_container_iterator(self): # TODO: make this pass pass # # Bug #3680: tp_traverse was not implemented for dictiter and # # dictview objects. # class C(object): # pass # # views = (Dict.items, Dict.values, Dict.keys) # for v in views: # obj = C() # ref = weakref.ref(obj) # container = {obj: 1} # obj.v = v(container) # obj.x = iter(obj.v) # del obj, container # gc.collect() # self.assertIs(ref(), None, "Cycle was not collected") def _not_tracked(self, t): # Nested containers can take several collections to untrack gc.collect() gc.collect() # UserDict is tracked unlike normal dict so we have to change # this test for our Dict # self.assertFalse(gc.is_tracked(t), t) self.assertTrue(gc.is_tracked(t), t) def _tracked(self, t): self.assertTrue(gc.is_tracked(t), t) gc.collect() gc.collect() self.assertTrue(gc.is_tracked(t), t) @pytest.mark.slow @support.cpython_only def test_track_literals(self): # Test GC-optimization of dict literals x, y, z = 1.5, "a", (1, None) self._not_tracked(Dict()) self._not_tracked(Dict({x: (), y: x, z: 1})) self._not_tracked(Dict({1: "a", "b": 2})) self._not_tracked(Dict({1: 2, (None, True, False, ()): int})) self._not_tracked(Dict({1: object()})) # Dicts with mutable elements are always tracked, even if those # elements are not tracked right now. self._tracked(Dict({1: []})) self._tracked(Dict({1: ([],)})) self._tracked(Dict({1: {}})) self._tracked(Dict({1: set()})) @pytest.mark.slow @support.cpython_only def test_track_dynamic(self): # Test GC-optimization of dynamically-created dicts class MyObject(object): pass x, y, z, w, o = 1.5, "a", (1, object()), [], MyObject() d = Dict() self._not_tracked(d) d[1] = "a" self._not_tracked(d) d[y] = 2 self._not_tracked(d) d[z] = 3 self._not_tracked(d) self._not_tracked(d.copy()) d[4] = w self._tracked(d) self._tracked(d.copy()) d[4] = None self._not_tracked(d) self._not_tracked(d.copy()) # dd isn't tracked right now, but it may mutate and therefore d # which contains it must be tracked. d = Dict() dd = Dict() d[1] = dd self._not_tracked(dd) self._tracked(d) dd[1] = d self._tracked(dd) d = Dict.fromkeys([x, y, z]) self._not_tracked(d) dd = Dict() dd.update(d) self._not_tracked(dd) d = Dict.fromkeys([x, y, z, o]) self._tracked(d) dd = Dict() dd.update(d) self._tracked(dd) d = Dict(x=x, y=y, z=z) self._not_tracked(d) d = Dict(x=x, y=y, z=z, w=w) self._tracked(d) d = Dict() d.update(x=x, y=y, z=z) self._not_tracked(d) d.update(w=w) self._tracked(d) d = Dict([(x, y), (z, 1)]) self._not_tracked(d) d = Dict([(x, y), (z, w)]) self._tracked(d) d = Dict() d.update([(x, y), (z, 1)]) self._not_tracked(d) d.update([(x, y), (z, w)]) self._tracked(d) @support.cpython_only def test_track_subtypes(self): # Dict subtypes are always tracked class MyDict(Dict): pass self._tracked(MyDict()) def make_shared_key_dict(self, n): class C: pass dicts = [] for i in range(n): a = C() a.x, a.y, a.z = 1, 2, 3 dicts.append(a.__dict__) return dicts @support.cpython_only def test_splittable_setdefault(self): """split table must be combined when setdefault() breaks insertion order""" a, b = self.make_shared_key_dict(2) a["a"] = 1 size_a = sys.getsizeof(a) a["b"] = 2 b.setdefault("b", 2) size_b = sys.getsizeof(b) b["a"] = 1 self.assertGreater(size_b, size_a) self.assertEqual(list(a), ["x", "y", "z", "a", "b"]) self.assertEqual(list(b), ["x", "y", "z", "b", "a"]) @support.cpython_only def test_splittable_del(self): """split table must be combined when del d[k]""" a, b = self.make_shared_key_dict(2) orig_size = sys.getsizeof(a) del a["y"] # split table is combined with self.assertRaises(KeyError): del a["y"] self.assertGreater(sys.getsizeof(a), orig_size) self.assertEqual(list(a), ["x", "z"]) self.assertEqual(list(b), ["x", "y", "z"]) # Two dicts have different insertion order. a["y"] = 42 self.assertEqual(list(a), ["x", "z", "y"]) self.assertEqual(list(b), ["x", "y", "z"]) @support.cpython_only def test_splittable_pop(self): """split table must be combined when d.pop(k)""" a, b = self.make_shared_key_dict(2) orig_size = sys.getsizeof(a) a.pop("y") # split table is combined with self.assertRaises(KeyError): a.pop("y") self.assertGreater(sys.getsizeof(a), orig_size) self.assertEqual(list(a), ["x", "z"]) self.assertEqual(list(b), ["x", "y", "z"]) # Two dicts have different insertion order. a["y"] = 42 self.assertEqual(list(a), ["x", "z", "y"]) self.assertEqual(list(b), ["x", "y", "z"]) @support.cpython_only def test_splittable_pop_pending(self): """pop a pending key in a splitted table should not crash""" a, b = self.make_shared_key_dict(2) a["a"] = 4 with self.assertRaises(KeyError): b.pop("a") @support.cpython_only def test_splittable_popitem(self): """split table must be combined when d.popitem()""" a, b = self.make_shared_key_dict(2) orig_size = sys.getsizeof(a) item = a.popitem() # split table is combined self.assertEqual(item, ("z", 3)) with self.assertRaises(KeyError): del a["z"] self.assertGreater(sys.getsizeof(a), orig_size) self.assertEqual(list(a), ["x", "y"]) self.assertEqual(list(b), ["x", "y", "z"]) @support.cpython_only def test_splittable_setattr_after_pop(self): """setattr() must not convert combined table into split table.""" # Issue 28147 # third party import _testcapi class C: pass a = C() a.a = 1 self.assertTrue(_testcapi.dict_hassplittable(a.__dict__)) # dict.pop() convert it to combined table a.__dict__.pop("a") self.assertFalse(_testcapi.dict_hassplittable(a.__dict__)) # But C should not convert a.__dict__ to split table again. a.a = 1 self.assertFalse(_testcapi.dict_hassplittable(a.__dict__)) # Same for popitem() a = C() a.a = 2 self.assertTrue(_testcapi.dict_hassplittable(a.__dict__)) a.__dict__.popitem() self.assertFalse(_testcapi.dict_hassplittable(a.__dict__)) a.a = 3 self.assertFalse(_testcapi.dict_hassplittable(a.__dict__)) @pytest.mark.xfail def test_iterator_pickling(self): # set to xfail because we dont really care about pickling # see test_valuesiterator_pickling for proto in range(pickle.HIGHEST_PROTOCOL + 1): data = Dict({1: "a", 2: "b", 3: "c"}) it = iter(data) d = pickle.dumps(it, proto) it = pickle.loads(d) self.assertEqual(list(it), list(data)) it = pickle.loads(d) try: drop = next(it) except StopIteration: continue d = pickle.dumps(it, proto) it = pickle.loads(d) del data[drop] self.assertEqual(list(it), list(data)) def test_itemiterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): # UserDict fails these tests so our Dict should fail as well with pytest.raises(TypeError): data = Dict({1: "a", 2: "b", 3: "c"}) # dictviews aren't picklable, only their iterators itorg = iter(data.items()) d = pickle.dumps(itorg, proto) it = pickle.loads(d) # note that the type of the unpickled iterator # is not necessarily the same as the original. It is # merely an object supporting the iterator protocol, yielding # the same objects as the original one. # self.assertEqual(type(itorg), type(it)) self.assertIsInstance(it, collections.abc.Iterator) self.assertEqual(Dict(it), data) it = pickle.loads(d) drop = next(it) d = pickle.dumps(it, proto) it = pickle.loads(d) del data[drop[0]] self.assertEqual(Dict(it), data) def test_valuesiterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): # UserDict fails these tests so our Dict should fail as well with pytest.raises(TypeError): data = Dict({1: "a", 2: "b", 3: "c"}) # data.values() isn't picklable, only its iterator it = iter(data.values()) d = pickle.dumps(it, proto) it = pickle.loads(d) self.assertEqual(list(it), list(data.values())) it = pickle.loads(d) drop = next(it) d = pickle.dumps(it, proto) it = pickle.loads(d) values = list(it) + [drop] self.assertEqual(sorted(values), sorted(list(data.values()))) def test_reverseiterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): # UserDict fails these tests so our Dict should fail as well with pytest.raises(TypeError): data = Dict({1: "a", 2: "b", 3: "c"}) it = reversed(data) d = pickle.dumps(it, proto) it = pickle.loads(d) self.assertEqual(list(it), list(reversed(data))) it = pickle.loads(d) try: drop = next(it) except StopIteration: continue d = pickle.dumps(it, proto) it = pickle.loads(d) del data[drop] self.assertEqual(list(it), list(reversed(data))) def test_reverseitemiterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): # UserDict fails these tests so our Dict should fail as well with pytest.raises(TypeError): data = Dict({1: "a", 2: "b", 3: "c"}) # dictviews aren't picklable, only their iterators itorg = reversed(data.items()) d = pickle.dumps(itorg, proto) it = pickle.loads(d) # note that the type of the unpickled iterator # is not necessarily the same as the original. It is # merely an object supporting the iterator protocol, yielding # the same objects as the original one. # self.assertEqual(type(itorg), type(it)) self.assertIsInstance(it, collections.abc.Iterator) self.assertEqual(Dict(it), data) it = pickle.loads(d) drop = next(it) d = pickle.dumps(it, proto) it = pickle.loads(d) del data[drop[0]] self.assertEqual(Dict(it), data) def test_reversevaluesiterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): # UserDict fails these tests so our Dict should fail as well with pytest.raises(TypeError): data = Dict({1: "a", 2: "b", 3: "c"}) # data.values() isn't picklable, only its iterator it = reversed(data.values()) d = pickle.dumps(it, proto) it = pickle.loads(d) self.assertEqual(list(it), list(reversed(data.values()))) it = pickle.loads(d) drop = next(it) d = pickle.dumps(it, proto) it = pickle.loads(d) values = list(it) + [drop] self.assertEqual(sorted(values), sorted(data.values())) def test_instance_dict_getattr_str_subclass(self): class Foo: def __init__(self, msg): self.msg = msg f = Foo("123") class _str(str): pass self.assertEqual(f.msg, getattr(f, _str("msg"))) self.assertEqual(f.msg, f.__dict__[_str("msg")]) def test_object_set_item_single_instance_non_str_key(self): class Foo: pass f = Foo() f.__dict__[1] = 1 f.a = "a" self.assertEqual(f.__dict__, {1: 1, "a": "a"}) def check_reentrant_insertion(self, mutate): # This object will trigger mutation of the dict when replaced # by another value. Note this relies on refcounting: the test # won't achieve its purpose on fully-GCed Python implementations. class Mutating: def __del__(self): mutate(d) d = Dict({k: Mutating() for k in "abcdefghijklmnopqr"}) for k in list(d): d[k] = k def test_reentrant_insertion(self): # Reentrant insertion shouldn't crash (see issue #22653) def mutate(d): d["b"] = 5 self.check_reentrant_insertion(mutate) def mutate(d): d.update(self.__dict__) d.clear() self.check_reentrant_insertion(mutate) def mutate(d): while d: d.popitem() self.check_reentrant_insertion(mutate) @pytest.mark.slow def test_merge_and_mutate(self): # this fails because it expects a RuntimeError when the keys change, however # the test_dictitems_contains_use_after_free expects StopIteration when the # keys change? class X: def __hash__(self): return 0 def __eq__(self, o): other.clear() return False test_list = [(i, 0) for i in range(1, 1337)] other = Dict(test_list) other[X()] = 0 d = Dict({X(): 0, 1: 1}) self.assertRaises(RuntimeError, d.update, other) @pytest.mark.xfail @pytest.mark.slow def test_free_after_iterating(self): # this seems like a bit of a puzzle support.check_free_after_iterating(self, iter, Dict) support.check_free_after_iterating(self, lambda d: iter(d.keys()), Dict) support.check_free_after_iterating(self, lambda d: iter(d.values()), Dict) support.check_free_after_iterating(self, lambda d: iter(d.items()), Dict) def test_fromkeys_operator_modifying_dict_operand(self): # test fix for seg fault reported in issue 27945 part 4a. class X(int): def __hash__(self): return 13 def __eq__(self, other): if len(d) > 1: d.clear() return False d = Dict() # this is required to exist so that d can be constructed! d = Dict({X(1): 1, X(2): 2}) try: dict.fromkeys(d) # shouldn't crash except RuntimeError: # implementation defined pass def test_fromkeys_operator_modifying_set_operand(self): # test fix for seg fault reported in issue 27945 part 4b. class X(int): def __hash__(self): return 13 def __eq__(self, other): if len(d) > 1: d.clear() return False d = {} # this is required to exist so that d can be constructed! d = {X(1), X(2)} try: Dict.fromkeys(d) # shouldn't crash except RuntimeError: # implementation defined pass @pytest.mark.xfail def test_dictitems_contains_use_after_free(self): # this seems like a bit of a puzzle # see iterator.py for more details class X: def __eq__(self, other): d.clear() return NotImplemented d = Dict({0: String("test")}) # TODO: we should be able to support set (0, X()) in d.items() def test_init_use_after_free(self): class X: def __hash__(self): pair[:] = [] return 13 pair = [X(), 123] Dict([pair]) def test_oob_indexing_dictiter_iternextitem(self): # TODO: investigate this pass # class X(int): # def __del__(self): # d.clear() # # d = Dict({i: X(i) for i in range(8)}) # # def iter_and_mutate(): # for result in d.items(): # if result[0] == 2: # d[2] = None # free d[2] --> X(2).__del__ was called # # self.assertRaises(RuntimeError, iter_and_mutate) def test_reversed(self): d = Dict({"a": 1, "b": 2, "foo": 0, "c": 3, "d": 4}) del d["foo"] # UserDict does not support reversed so we do not either with pytest.raises(TypeError): r = reversed(d) self.assertEqual(list(r), list("dcba")) self.assertRaises(StopIteration, next, r) def test_reverse_iterator_for_empty_dict(self): # bpo-38525: revered iterator should work properly # empty dict is directly used for reference count test # UserDict does not support reversed so we do not either with pytest.raises(TypeError): self.assertEqual(list(reversed(Dict())), []) self.assertEqual(list(reversed(Dict().items())), []) self.assertEqual(list(reversed(Dict().values())), []) self.assertEqual(list(reversed(Dict().keys())), []) # dict() and {} don't trigger the same code path self.assertEqual(list(reversed(dict())), []) self.assertEqual(list(reversed(dict().items())), []) self.assertEqual(list(reversed(dict().values())), []) self.assertEqual(list(reversed(dict().keys())), []) # def test_reverse_iterator_for_shared_shared_dicts(self): # # UserDict doesnt support reversed and this causes infinite recursion # # we will just disable this test # class A: # def __init__(self, x, y): # if x: # self.x = x # if y: # self.y = y # self.assertEqual(list(reversed(A(1, 2).__dict__)), ["y", "x"]) # self.assertEqual(list(reversed(A(1, 0).__dict__)), ["x"]) # self.assertEqual(list(reversed(A(0, 1).__dict__)), ["y"]) def test_dict_copy_order(self): # bpo-34320 od = collections.OrderedDict([("a", 1), ("b", 2)]) od.move_to_end("a") expected = list(od.items()) copy = Dict(od) self.assertEqual(list(copy.items()), expected) # dict subclass doesn't override __iter__ class CustomDict(Dict): pass pairs = [("a", 1), ("b", 2), ("c", 3)] d = CustomDict(pairs) self.assertEqual(pairs, list(Dict(d).items())) # UserDict doesnt support reversed and this causes infinite recursion # we will just disable this test # class CustomReversedDict(dict): # def keys(self): # return reversed(list(dict.keys(self))) # __iter__ = keys # def items(self): # return reversed(dict.items(self)) # d = CustomReversedDict(pairs) # self.assertEqual(pairs[::-1], list(dict(d).items()))
32.078844
91
0.516017
ad9ad171195c61fce9d311a4ba2ac3865b799746
15,756
py
Python
segmentation/builders/preprocessor_builder.py
deltaautonomy/delta_perception
7b40f005b9753464016207d142969890ff6ec031
[ "BSD-3-Clause" ]
1
2021-05-15T13:05:09.000Z
2021-05-15T13:05:09.000Z
segmentation/builders/preprocessor_builder.py
deltaautonomy/delta_perception
7b40f005b9753464016207d142969890ff6ec031
[ "BSD-3-Clause" ]
null
null
null
segmentation/builders/preprocessor_builder.py
deltaautonomy/delta_perception
7b40f005b9753464016207d142969890ff6ec031
[ "BSD-3-Clause" ]
3
2020-02-20T21:59:02.000Z
2021-05-15T13:05:10.000Z
r"""Preprocessing step for inptut images""" import functools import tensorflow as tf from protos import preprocessor_pb2 from builders import dataset_builder RESIZE_METHOD_MAP = { preprocessor_pb2.BICUBIC: tf.image.ResizeMethod.BICUBIC, preprocessor_pb2.BILINEAR: tf.image.ResizeMethod.BILINEAR, preprocessor_pb2.NEAREST_NEIGHBOR: ( tf.image.ResizeMethod.NEAREST_NEIGHBOR), } _RANDOM_SCALE_STEP_KEY = 'RANDOM_SCALE_STEP' _IMAGE_CROP_KEY = 'IMAGE_CROP_STEP' _IMAGE_SCALE_KEY = 'IMAGE_SCALE_KEY' _IMAGE_HORIZONTAL_FLIP_KEY = 'IMAGE_HORIZONTAL_FLIP_STEP' _RANDOM_PREPROCESSOR_SEED = 7 def _get_or_create_preprocess_rand_vars(generator_func, function_id, preprocess_vars_cache): if preprocess_vars_cache is not None: var = preprocess_vars_cache.get(function_id) if var is None: var = generator_func() preprocess_vars_cache.update({ function_id: var }) else: var = generator_func() return var def set_fixed_image_size(images, labels, height_to_set, width_to_set, images_channel_dim=3, labels_channel_dim=1, preprocess_vars_cache=None): with tf.name_scope('DimensionInput', values=[images, labels]): fixed_input_tensor_shape = ( height_to_set, width_to_set, images_channel_dim) images.set_shape(fixed_input_tensor_shape) fixed_label_tensor_shape = ( height_to_set, width_to_set, labels_channel_dim) labels.set_shape(fixed_label_tensor_shape) return images, labels def pad_to_specific_size(images, labels, height_to_set, width_to_set, images_channel_dim=3, labels_channel_dim=1, preprocess_vars_cache=None): with tf.name_scope('PadInput', values=[images, labels]): fixed_input_tensor_shape = ( height_to_set, width_to_set, images_channel_dim) padded_images = tf.image.pad_to_bounding_box( images, 0, 0, height_to_set, width_to_set) padded_images.set_shape(fixed_input_tensor_shape) fixed_label_tensor_shape = ( height_to_set, width_to_set, labels_channel_dim) padded_labels = None if labels is not None: padded_labels = tf.image.pad_to_bounding_box( labels, 0, 0, height_to_set, width_to_set) padded_labels.set_shape(fixed_label_tensor_shape) return padded_images, padded_labels def _compute_new_static_size(image, min_dimension, max_dimension): """Compute new static shape for resize_to_range method.""" image_shape = image.get_shape().as_list() orig_height = image_shape[0] orig_width = image_shape[1] num_channels = image_shape[2] orig_min_dim = min(orig_height, orig_width) # Calculates the larger of the possible sizes large_scale_factor = min_dimension / float(orig_min_dim) # Scaling orig_(height|width) by large_scale_factor will make the smaller # dimension equal to min_dimension, save for floating point rounding errors. # For reasonably-sized images, taking the nearest integer will reliably # eliminate this error. large_height = int(round(orig_height * large_scale_factor)) large_width = int(round(orig_width * large_scale_factor)) large_size = [large_height, large_width] if max_dimension: # Calculates the smaller of the possible sizes, use that if the larger # is too big. orig_max_dim = max(orig_height, orig_width) small_scale_factor = max_dimension / float(orig_max_dim) # Scaling orig_(height|width) by small_scale_factor will make the larger # dimension equal to max_dimension, save for floating point rounding # errors. For reasonably-sized images, taking the nearest integer will # reliably eliminate this error. small_height = int(round(orig_height * small_scale_factor)) small_width = int(round(orig_width * small_scale_factor)) small_size = [small_height, small_width] new_size = large_size if max(large_size) > max_dimension: new_size = small_size else: new_size = large_size return tf.constant(new_size + [num_channels]) def resize_to_range(image, label=None, min_dimension=None, max_dimension=None, method=tf.image.ResizeMethod.BILINEAR, align_corners=True, pad_to_max_dimension=False): with tf.name_scope('ResizeToRange', values=[image, min_dimension]): if image.get_shape().is_fully_defined(): new_size = _compute_new_static_size(image, min_dimension, max_dimension) else: new_size = _compute_new_dynamic_size(image, min_dimension, max_dimension) new_size = _compute_new_dynamic_size(item, min_dimension, max_dimension) new_image = tf.image.resize_bilinear(image, new_size[:-1], align_corners=True) new_label = tf.image.resize_nearest_neighbor(labels, new_size[:-1], align_corners=True) return (new_image, new_label) def random_scale(images, labels, min_scale_ratio=0.5, max_scale_ratio=2.0, pad_to_dims=None, seed=_RANDOM_PREPROCESSOR_SEED, preprocess_vars_cache=None): with tf.name_scope('RandomScale', values=[images, labels]): image_height, image_width, _ = images.get_shape().as_list() generator_func = functools.partial( tf.random_uniform, [], minval=min_scale_ratio, maxval=max_scale_ratio, dtype=tf.float32, seed=seed) size_coef = _get_or_create_preprocess_rand_vars( generator_func, _IMAGE_SCALE_KEY, preprocess_vars_cache) image_newysize = tf.to_int32( tf.multiply(tf.to_float(image_height), size_coef)) image_newxsize = tf.to_int32( tf.multiply(tf.to_float(image_width), size_coef)) new_shape = (image_newysize, image_newxsize) # Must be 4D tensor for resize ops images = tf.expand_dims(images, 0) labels = tf.expand_dims(labels, 0) scaled_images = tf.image.resize_bilinear( images, new_shape, align_corners=True) scaled_labels = tf.image.resize_nearest_neighbor( labels, new_shape, align_corners=True) if pad_to_dims is not None: crop_height, crop_width = pad_to_dims target_height = (image_newysize + tf.maximum(crop_height - image_newysize, 0)) target_width = (image_newxsize + tf.maximum(crop_width - image_newxsize, 0)) scaled_images = tf.image.pad_to_bounding_box( scaled_images, 0, 0, target_height, target_width) scaled_labels = tf.image.pad_to_bounding_box( scaled_labels, 0, 0, target_height, target_width) output_images = tf.squeeze(scaled_images, [0]) output_labels = tf.squeeze(scaled_labels, [0]) return output_images, output_labels def random_crop(images, labels, crop_height, crop_width, images_channel_dim=3, labels_channel_dim=1, preprocess_vars_cache=None): def _apply_random_crop(inputs, offsets, crop_shape): sliced_inputs = tf.slice(inputs, offsets, crop_shape) out_inputs = tf.reshape(sliced_inputs, crop_shape) return out_inputs with tf.name_scope('RandomCropImage', values=[images, labels]): images_shape = tf.shape(images) images_height = images_shape[0] images_width = images_shape[1] max_offset_height = tf.reshape(images_height-crop_height+1, []) max_offset_width = tf.reshape(images_width-crop_width+1, []) generator_func_height = functools.partial( tf.random_uniform, shape=[], maxval=max_offset_height, dtype=tf.int32) generator_func_width = functools.partial( tf.random_uniform, shape=[], maxval=max_offset_width, dtype=tf.int32) offset_height = _get_or_create_preprocess_rand_vars( generator_func_height, _IMAGE_CROP_KEY+'_0', preprocess_vars_cache) offset_width = _get_or_create_preprocess_rand_vars( generator_func_width, _IMAGE_CROP_KEY+'_1', preprocess_vars_cache) offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0])) crop_shape_images = tf.stack( [crop_height, crop_width, images_channel_dim]) crop_shape_labels = tf.stack( [crop_height, crop_width, labels_channel_dim]) cropped_images = _apply_random_crop(images, offsets, crop_shape_images) cropped_labels = _apply_random_crop(labels, offsets, crop_shape_labels) # Must set shape here or in the set shape preprocessor step # when dealing with ICNet if images_channel_dim and labels_channel_dim: cropped_images.set_shape((crop_height, crop_width, images_channel_dim)) cropped_labels.set_shape((crop_height, crop_width, labels_channel_dim)) return cropped_images, cropped_labels def random_horizontal_flip(images, labels, seed=_RANDOM_PREPROCESSOR_SEED, preprocess_vars_cache=None): def _flip_image(item): flipped_item = tf.image.flip_left_right(item) return flipped_item with tf.name_scope('RandomHorizontalFlip', values=[images, labels]): generator_func = functools.partial( tf.random_uniform, [], seed=seed) do_a_flip_random = _get_or_create_preprocess_rand_vars( generator_func, _IMAGE_HORIZONTAL_FLIP_KEY, preprocess_vars_cache) do_a_flip_random = tf.greater(do_a_flip_random, 0.5) flipped_images = tf.cond(do_a_flip_random, lambda: _flip_image(images), lambda: images) flipped_labels = tf.cond(do_a_flip_random, lambda: _flip_image(labels), lambda: labels) return flipped_images, flipped_labels def preprocess_runner(tensor_dict, func_list, skip_labels=False, preprocess_vars_cache=None): if dataset_builder._IMAGE_FIELD not in tensor_dict \ or dataset_builder._LABEL_FIELD not in tensor_dict: raise ValueError('"tensor_dict" must have both image' 'and label fields') for item_key in [dataset_builder._IMAGE_FIELD, dataset_builder._LABEL_FIELD]: items = tensor_dict[item_key] if len(items.get_shape()) != 3: raise ValueError('Images or Labels in tensor_dict should be rank 4') tensor_dict[item_key] = items if preprocess_vars_cache is None: preprocess_vars_cache = {} images = tf.to_float(tensor_dict[dataset_builder._IMAGE_FIELD]) images_shape = tf.shape(images) # For now, we skip labels preprocessing for eval only, since we # do whole image evaluation # TODO: Fix this so it doesn't break for training labels = None if not skip_labels: labels = tf.to_float(tensor_dict[dataset_builder._LABEL_FIELD]) # Apple proprocessor functions for preprocessor_step_func in func_list: images, labels = preprocessor_step_func(images=images, labels=labels, preprocess_vars_cache=preprocess_vars_cache) output_dict = {} output_dict[dataset_builder._IMAGE_FIELD] = images output_dict[dataset_builder._LABEL_FIELD] = labels return output_dict def build(preprocessor_config_list): proprocessor_func_list = [] for preprocessor_step_config in preprocessor_config_list: step_type = preprocessor_step_config.WhichOneof('preprocessing_step') # Fixed image width and height for PSP module if step_type == 'set_fixed_image_size': config = preprocessor_step_config.set_fixed_image_size dimension_image_fn = functools.partial( set_fixed_image_size, height_to_set=config.fixed_height, width_to_set=confi.fixed_width, images_channel_dim=config.images_channel_dim, labels_channel_dim=config.labels_channel_dim) proprocessor_func_list.append(dimension_image_fn) # Resize the image and keep the aspect_ratio if step_type == 'aspect_ratio_image_resize': config = preprocessor_step_config.aspect_ratio_image_resize if not (config.min_dimension <= config.max_dimension): raise ValueError('min_dimension > max_dimension') method = RESIZE_METHOD_MAP[config.resize_method] image_resizer_fn = functools.partial( resize_to_range, min_dimension=config.min_dimension, max_dimension=config.max_dimension, pad_to_max_dimension=config.pad_to_max_dimension) proprocessor_func_list.append(image_resizer_fn) # Randomly Scale the image if step_type == 'random_image_scale': config = preprocessor_step_config.random_image_scale if not (config.max_scale_ratio >= config.min_scale_ratio): raise ValueError('min_scale_ratio > max_scale_ratio') pad_to_dims = None for cfg in preprocessor_config_list: step_t = cfg.WhichOneof('preprocessing_step') if step_t == 'random_image_crop': dim = cfg.random_image_crop pad_to_dims = (dim.crop_height, dim.crop_width) image_scale_fn = functools.partial( random_scale, pad_to_dims=pad_to_dims, min_scale_ratio=config.min_scale_ratio, max_scale_ratio=config.max_scale_ratio) proprocessor_func_list.append(image_scale_fn) # Randomly crop the image if step_type == 'random_image_crop': config = preprocessor_step_config.random_image_crop image_crop_fn = functools.partial( random_crop, crop_height=config.crop_height, crop_width=config.crop_width, images_channel_dim=config.images_channel_dim, labels_channel_dim=config.labels_channel_dim) proprocessor_func_list.append(image_crop_fn) # Random Flips and Rotations if step_type == 'random_horizontal_flip': config = preprocessor_step_config.random_horizontal_flip image_horizontal_flip_fn = functools.partial( random_horizontal_flip) proprocessor_func_list.append(image_horizontal_flip_fn) if len(proprocessor_func_list) <= 0 and \ len(preprocessor_config_list) > 0: raise ValueError('Unknown preprocessing step.') preprocessor = functools.partial( preprocess_runner, func_list=proprocessor_func_list) return preprocessor
42.128342
93
0.644326
412321471beba6aebbfbaa4089d47449594401ee
10,421
py
Python
preprocessor/vctk.py
mbarnig/Comprehensive-Tacotron2
f7604058af5f0112106fa2cf489caef94dd1b6f5
[ "MIT" ]
25
2021-07-24T06:31:15.000Z
2022-03-29T03:20:47.000Z
preprocessor/vctk.py
mbarnig/Comprehensive-Tacotron2
f7604058af5f0112106fa2cf489caef94dd1b6f5
[ "MIT" ]
5
2021-07-25T08:07:02.000Z
2022-03-19T16:47:45.000Z
preprocessor/vctk.py
mbarnig/Comprehensive-Tacotron2
f7604058af5f0112106fa2cf489caef94dd1b6f5
[ "MIT" ]
8
2021-07-24T07:18:11.000Z
2021-12-14T12:56:13.000Z
import os import random import json import re import tgt import librosa import numpy as np from tqdm import tqdm from pathlib import Path import audio as Audio from text import text_to_sequence from model import PreDefinedEmbedder from utils.tools import save_mel_and_audio, plot_embedding random.seed(1234) class Preprocessor: def __init__(self, config): self.dataset = config["dataset"] self.in_dir = config["path"]["corpus_path"] self.wav_tag = config["path"]["wav_tag"] self.wav_dir = config["path"]["wav_dir"] self.txt_dir = config["path"]["txt_dir"] self.out_dir = config["path"]["preprocessed_path"] self.val_size = config["preprocessing"]["val_size"] self.sampling_rate = config["preprocessing"]["audio"]["sampling_rate"] self.skip_len = config["preprocessing"]["audio"]["skip_len"] self.trim_top_db = config["preprocessing"]["audio"]["trim_top_db"] self.filter_length = config["preprocessing"]["stft"]["filter_length"] self.hop_length = config["preprocessing"]["stft"]["hop_length"] self.silence_audio_size = config["preprocessing"]["audio"]["silence_audio_size"] self.pre_emphasis = config["preprocessing"]["audio"]["pre_emphasis"] self.max_wav_value = config["preprocessing"]["audio"]["max_wav_value"] self.sanity_check = config["preprocessing"]["sanity_check"] self.cleaners = config["preprocessing"]["text"]["text_cleaners"] self.STFT = Audio.stft.TacotronSTFT( config["preprocessing"]["stft"]["filter_length"], config["preprocessing"]["stft"]["hop_length"], config["preprocessing"]["stft"]["win_length"], config["preprocessing"]["mel"]["n_mel_channels"], config["preprocessing"]["audio"]["sampling_rate"], config["preprocessing"]["mel"]["mel_fmin"], config["preprocessing"]["mel"]["mel_fmax"], ) self.speaker_emb = None if config["preprocessing"]["speaker_embedder"] != "none": self.speaker_emb = PreDefinedEmbedder(config) def _init_spker_embeds(self, spkers): spker_embeds = dict() for spker in spkers: spker_embeds[spker] = list() return spker_embeds def build_from_path(self): txt_dir = os.path.join(self.in_dir, self.txt_dir) wav_dir = os.path.join(self.in_dir, self.wav_dir) embedding_dir = os.path.join(self.out_dir, "spker_embed") os.makedirs((os.path.join(self.out_dir, "text")), exist_ok=True) os.makedirs((os.path.join(self.out_dir, "mel")), exist_ok=True) os.makedirs(embedding_dir, exist_ok=True) print("Processing Data ...") # out = list() train = list() val = list() n_frames = 0 mel_min = float('inf') mel_max = -float('inf') max_seq_len = -float('inf') sub_dirs = os.listdir(txt_dir) if self.speaker_emb is not None: spker_embeds = self._init_spker_embeds(sub_dirs) skip_speakers = set() preprocessed_dirs = os.listdir(embedding_dir) for preprocessed_dir in preprocessed_dirs: skip_speakers.add(preprocessed_dir.split("-")[0]) speakers = {} for spker_id, speaker in enumerate(tqdm(sub_dirs)): speakers[speaker] = spker_id for i, txt_name in enumerate(tqdm(os.listdir(os.path.join(txt_dir, speaker)))): basename = txt_name.split(".")[0] with open(os.path.join(txt_dir, speaker, txt_name), "r") as f: text = f.readline().strip("\n") wav_path = os.path.join(os.path.join(wav_dir, speaker), "{}_{}.flac".format(basename, self.wav_tag)) if not os.path.isfile(wav_path): print("[Error] No flac file:{}".format(wav_path)) continue ret = self.process_utterance(text, wav_path, speaker, basename, skip_speakers) if ret is None: continue else: info, n, m_min, m_max, spker_embed = ret # out.append(info) if i == 0 or i == 1: val.append(info) else: train.append(info) if self.speaker_emb is not None: spker_embeds[speaker].append(spker_embed) if mel_min > m_min: mel_min = m_min if mel_max < m_max: mel_max = m_max if n > max_seq_len: max_seq_len = n n_frames += n # Calculate and save mean speaker embedding of this speaker if self.speaker_emb is not None and speaker not in skip_speakers: spker_embed_filename = '{}-spker_embed.npy'.format(speaker) np.save(os.path.join(self.out_dir, 'spker_embed', spker_embed_filename), \ np.mean(spker_embeds[speaker], axis=0), allow_pickle=False) # Save files with open(os.path.join(self.out_dir, "speakers.json"), "w") as f: f.write(json.dumps(speakers)) with open(os.path.join(self.out_dir, "stats.json"), "w") as f: stats = { "mel": [ float(mel_min), float(mel_max), ], "max_seq_len": max_seq_len } f.write(json.dumps(stats)) print( "Total time: {} hours".format( n_frames * self.hop_length / self.sampling_rate / 3600 ) ) print("plot speaker embedding...") plot_embedding( self.out_dir, *self.load_embedding(embedding_dir), self.divide_speaker_by_gender(self.in_dir), filename="spker_embed_tsne.png" ) # random.shuffle(out) # out = [r for r in out if r is not None] train = [r for r in train if r is not None] val = [r for r in val if r is not None] # Write metadata with open(os.path.join(self.out_dir, "train.txt"), "w", encoding="utf-8") as f: # for m in out[self.val_size :]: for m in train: f.write(m + "\n") with open(os.path.join(self.out_dir, "val.txt"), "w", encoding="utf-8") as f: # for m in out[: self.val_size]: for m in val: f.write(m + "\n") return train, val #out def load_audio(self, wav_path): wav_raw, _ = librosa.load(wav_path, self.sampling_rate) if len(wav_raw) < self.skip_len: return None wav = wav_raw / np.abs(wav_raw).max() * 0.999 wav = librosa.effects.trim(wav, top_db=self.trim_top_db, frame_length=self.filter_length, hop_length=self.hop_length)[0] if self.pre_emphasis: wav = np.append(wav[0], wav[1:] - 0.97 * wav[:-1]) wav = wav / np.abs(wav).max() * 0.999 wav = np.append(wav, [0.] * self.hop_length * self.silence_audio_size) wav = wav.astype(np.float32) return wav_raw, wav def process_utterance(self, raw_text, wav_path, speaker, basename, skip_speakers): text_filename = "{}-text-{}.npy".format(speaker, basename) mel_filename = "{}-mel-{}.npy".format(speaker, basename) # Preprocess text if not os.path.isfile(os.path.join(self.out_dir, "text", text_filename)): text = np.array(text_to_sequence(raw_text, self.cleaners)) np.save( os.path.join(self.out_dir, "text", text_filename), text, ) else: text = np.load(os.path.join(self.out_dir, "text", text_filename)) # Load and process wav files wav_raw = wav = None if not os.path.isfile(os.path.join(self.out_dir, "mel", mel_filename)): wav_raw, wav = self.load_audio(wav_path) # Compute mel-scale spectrogram mel_spectrogram = Audio.tools.get_mel_from_wav(wav, self.STFT) # Sanity check if self.sanity_check: save_mel_and_audio(mel_spectrogram, wav*self.max_wav_value, self.sampling_rate, self.out_dir, basename, tag="processed" ) save_mel_and_audio(Audio.tools.get_mel_from_wav(wav_raw, self.STFT), wav_raw*self.max_wav_value, self.sampling_rate, self.out_dir, basename, tag="raw" ) exit(0) # quit for testing np.save( os.path.join(self.out_dir, "mel", mel_filename), mel_spectrogram.T, ) else: mel_spectrogram = np.load(os.path.join(self.out_dir, "mel", mel_filename)).T # Speaker embedding spker_embed=None if self.speaker_emb is not None and speaker not in skip_speakers: if wav is not None: spker_embed = self.speaker_emb(wav) else: wav_raw, wav = self.load_audio(wav_path) spker_embed = self.speaker_emb(wav) return ( "|".join([basename, speaker, raw_text]), mel_spectrogram.shape[1], np.min(mel_spectrogram), np.max(mel_spectrogram), spker_embed, ) def divide_speaker_by_gender(self, in_dir, speaker_path="speaker-info.txt"): speakers = dict() with open(os.path.join(in_dir, speaker_path), encoding='utf-8') as f: for line in tqdm(f): if "ID" in line: continue parts = [p.strip() for p in re.sub(' +', ' ',(line.strip())).split(' ')] spk_id, gender = parts[0], parts[2] speakers[str(spk_id)] = gender return speakers def load_embedding(self, embedding_dir): embedding_path_list = [_ for _ in Path(embedding_dir).rglob('*.npy')] embedding = None embedding_speaker_id = list() # Gather data for path in tqdm(embedding_path_list): embedding = np.concatenate((embedding, np.load(path)), axis=0) \ if embedding is not None else np.load(path) embedding_speaker_id.append(str(str(path).split('/')[-1].split('-')[0])) return embedding, embedding_speaker_id
40.080769
128
0.571058
2604a019cd2415bfa579202eb1e4e992e8b6a276
7,718
py
Python
sdk/python/pulumi_aws/elasticache/outputs.py
chivandikwa/pulumi-aws
19c08bf9dcb90544450ffa4eec7bf6751058fde2
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/elasticache/outputs.py
chivandikwa/pulumi-aws
19c08bf9dcb90544450ffa4eec7bf6751058fde2
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/elasticache/outputs.py
chivandikwa/pulumi-aws
19c08bf9dcb90544450ffa4eec7bf6751058fde2
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'ClusterCacheNode', 'ParameterGroupParameter', 'ReplicationGroupClusterMode', 'GetClusterCacheNodeResult', ] @pulumi.output_type class ClusterCacheNode(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "availabilityZone": suggest = "availability_zone" if suggest: pulumi.log.warn(f"Key '{key}' not found in ClusterCacheNode. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ClusterCacheNode.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ClusterCacheNode.__key_warning(key) return super().get(key, default) def __init__(__self__, *, address: Optional[str] = None, availability_zone: Optional[str] = None, id: Optional[str] = None, port: Optional[int] = None): """ :param str availability_zone: Availability Zone for the cache cluster. If you want to create cache nodes in multi-az, use `preferred_availability_zones` instead. Default: System chosen Availability Zone. Changing this value will re-create the resource. :param int port: The port number on which each of the cache nodes will accept connections. For Memcached the default is 11211, and for Redis the default port is 6379. Cannot be provided with `replication_group_id`. Changing this value will re-create the resource. """ if address is not None: pulumi.set(__self__, "address", address) if availability_zone is not None: pulumi.set(__self__, "availability_zone", availability_zone) if id is not None: pulumi.set(__self__, "id", id) if port is not None: pulumi.set(__self__, "port", port) @property @pulumi.getter def address(self) -> Optional[str]: return pulumi.get(self, "address") @property @pulumi.getter(name="availabilityZone") def availability_zone(self) -> Optional[str]: """ Availability Zone for the cache cluster. If you want to create cache nodes in multi-az, use `preferred_availability_zones` instead. Default: System chosen Availability Zone. Changing this value will re-create the resource. """ return pulumi.get(self, "availability_zone") @property @pulumi.getter def id(self) -> Optional[str]: return pulumi.get(self, "id") @property @pulumi.getter def port(self) -> Optional[int]: """ The port number on which each of the cache nodes will accept connections. For Memcached the default is 11211, and for Redis the default port is 6379. Cannot be provided with `replication_group_id`. Changing this value will re-create the resource. """ return pulumi.get(self, "port") @pulumi.output_type class ParameterGroupParameter(dict): def __init__(__self__, *, name: str, value: str): """ :param str name: The name of the ElastiCache parameter. :param str value: The value of the ElastiCache parameter. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "value", value) @property @pulumi.getter def name(self) -> str: """ The name of the ElastiCache parameter. """ return pulumi.get(self, "name") @property @pulumi.getter def value(self) -> str: """ The value of the ElastiCache parameter. """ return pulumi.get(self, "value") @pulumi.output_type class ReplicationGroupClusterMode(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "numNodeGroups": suggest = "num_node_groups" elif key == "replicasPerNodeGroup": suggest = "replicas_per_node_group" if suggest: pulumi.log.warn(f"Key '{key}' not found in ReplicationGroupClusterMode. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ReplicationGroupClusterMode.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ReplicationGroupClusterMode.__key_warning(key) return super().get(key, default) def __init__(__self__, *, num_node_groups: Optional[int] = None, replicas_per_node_group: Optional[int] = None): """ :param int num_node_groups: Number of node groups (shards) for this Redis replication group. Changing this number will trigger an online resizing operation before other settings modifications. Required unless `global_replication_group_id` is set. :param int replicas_per_node_group: Number of replica nodes in each node group. Valid values are 0 to 5. Changing this number will trigger an online resizing operation before other settings modifications. """ if num_node_groups is not None: pulumi.set(__self__, "num_node_groups", num_node_groups) if replicas_per_node_group is not None: pulumi.set(__self__, "replicas_per_node_group", replicas_per_node_group) @property @pulumi.getter(name="numNodeGroups") def num_node_groups(self) -> Optional[int]: """ Number of node groups (shards) for this Redis replication group. Changing this number will trigger an online resizing operation before other settings modifications. Required unless `global_replication_group_id` is set. """ return pulumi.get(self, "num_node_groups") @property @pulumi.getter(name="replicasPerNodeGroup") def replicas_per_node_group(self) -> Optional[int]: """ Number of replica nodes in each node group. Valid values are 0 to 5. Changing this number will trigger an online resizing operation before other settings modifications. """ return pulumi.get(self, "replicas_per_node_group") @pulumi.output_type class GetClusterCacheNodeResult(dict): def __init__(__self__, *, address: str, availability_zone: str, id: str, port: int): """ :param str availability_zone: The Availability Zone for the cache cluster. :param int port: The port number on which each of the cache nodes will accept connections. """ pulumi.set(__self__, "address", address) pulumi.set(__self__, "availability_zone", availability_zone) pulumi.set(__self__, "id", id) pulumi.set(__self__, "port", port) @property @pulumi.getter def address(self) -> str: return pulumi.get(self, "address") @property @pulumi.getter(name="availabilityZone") def availability_zone(self) -> str: """ The Availability Zone for the cache cluster. """ return pulumi.get(self, "availability_zone") @property @pulumi.getter def id(self) -> str: return pulumi.get(self, "id") @property @pulumi.getter def port(self) -> int: """ The port number on which each of the cache nodes will accept connections. """ return pulumi.get(self, "port")
37.466019
271
0.64965
7500a33b1f097b45715714c5050361c34ab4a675
8,262
py
Python
pandas/io/excel/_xlsxwriter.py
KneeShard/pandas
ce3bac9af43838c7d690ee86e9bec4976a3303e3
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
2
2021-08-06T14:27:43.000Z
2021-08-06T14:27:56.000Z
pandas/io/excel/_xlsxwriter.py
ra1nty/pandas
0b68d87a4438a13f14a2ed5af2e432df02eb0b2c
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/io/excel/_xlsxwriter.py
ra1nty/pandas
0b68d87a4438a13f14a2ed5af2e432df02eb0b2c
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2021-06-22T14:36:40.000Z
2021-06-22T14:36:40.000Z
from __future__ import annotations from typing import Any import pandas._libs.json as json from pandas._typing import StorageOptions from pandas.io.excel._base import ExcelWriter from pandas.io.excel._util import validate_freeze_panes class _XlsxStyler: # Map from openpyxl-oriented styles to flatter xlsxwriter representation # Ordering necessary for both determinism and because some are keyed by # prefixes of others. STYLE_MAPPING: dict[str, list[tuple[tuple[str, ...], str]]] = { "font": [ (("name",), "font_name"), (("sz",), "font_size"), (("size",), "font_size"), (("color", "rgb"), "font_color"), (("color",), "font_color"), (("b",), "bold"), (("bold",), "bold"), (("i",), "italic"), (("italic",), "italic"), (("u",), "underline"), (("underline",), "underline"), (("strike",), "font_strikeout"), (("vertAlign",), "font_script"), (("vertalign",), "font_script"), ], "number_format": [(("format_code",), "num_format"), ((), "num_format")], "protection": [(("locked",), "locked"), (("hidden",), "hidden")], "alignment": [ (("horizontal",), "align"), (("vertical",), "valign"), (("text_rotation",), "rotation"), (("wrap_text",), "text_wrap"), (("indent",), "indent"), (("shrink_to_fit",), "shrink"), ], "fill": [ (("patternType",), "pattern"), (("patterntype",), "pattern"), (("fill_type",), "pattern"), (("start_color", "rgb"), "fg_color"), (("fgColor", "rgb"), "fg_color"), (("fgcolor", "rgb"), "fg_color"), (("start_color",), "fg_color"), (("fgColor",), "fg_color"), (("fgcolor",), "fg_color"), (("end_color", "rgb"), "bg_color"), (("bgColor", "rgb"), "bg_color"), (("bgcolor", "rgb"), "bg_color"), (("end_color",), "bg_color"), (("bgColor",), "bg_color"), (("bgcolor",), "bg_color"), ], "border": [ (("color", "rgb"), "border_color"), (("color",), "border_color"), (("style",), "border"), (("top", "color", "rgb"), "top_color"), (("top", "color"), "top_color"), (("top", "style"), "top"), (("top",), "top"), (("right", "color", "rgb"), "right_color"), (("right", "color"), "right_color"), (("right", "style"), "right"), (("right",), "right"), (("bottom", "color", "rgb"), "bottom_color"), (("bottom", "color"), "bottom_color"), (("bottom", "style"), "bottom"), (("bottom",), "bottom"), (("left", "color", "rgb"), "left_color"), (("left", "color"), "left_color"), (("left", "style"), "left"), (("left",), "left"), ], } @classmethod def convert(cls, style_dict, num_format_str=None): """ converts a style_dict to an xlsxwriter format dict Parameters ---------- style_dict : style dictionary to convert num_format_str : optional number format string """ # Create a XlsxWriter format object. props = {} if num_format_str is not None: props["num_format"] = num_format_str if style_dict is None: return props if "borders" in style_dict: style_dict = style_dict.copy() style_dict["border"] = style_dict.pop("borders") for style_group_key, style_group in style_dict.items(): for src, dst in cls.STYLE_MAPPING.get(style_group_key, []): # src is a sequence of keys into a nested dict # dst is a flat key if dst in props: continue v = style_group for k in src: try: v = v[k] except (KeyError, TypeError): break else: props[dst] = v if isinstance(props.get("pattern"), str): # TODO: support other fill patterns props["pattern"] = 0 if props["pattern"] == "none" else 1 for k in ["border", "top", "right", "bottom", "left"]: if isinstance(props.get(k), str): try: props[k] = [ "none", "thin", "medium", "dashed", "dotted", "thick", "double", "hair", "mediumDashed", "dashDot", "mediumDashDot", "dashDotDot", "mediumDashDotDot", "slantDashDot", ].index(props[k]) except ValueError: props[k] = 2 if isinstance(props.get("font_script"), str): props["font_script"] = ["baseline", "superscript", "subscript"].index( props["font_script"] ) if isinstance(props.get("underline"), str): props["underline"] = { "none": 0, "single": 1, "double": 2, "singleAccounting": 33, "doubleAccounting": 34, }[props["underline"]] return props class XlsxWriter(ExcelWriter): engine = "xlsxwriter" supported_extensions = (".xlsx",) def __init__( self, path, engine=None, date_format=None, datetime_format=None, mode: str = "w", storage_options: StorageOptions = None, if_sheet_exists: str | None = None, engine_kwargs: dict[str, Any] | None = None, ): # Use the xlsxwriter module as the Excel writer. from xlsxwriter import Workbook engine_kwargs = engine_kwargs or {} if mode == "a": raise ValueError("Append mode is not supported with xlsxwriter!") super().__init__( path, engine=engine, date_format=date_format, datetime_format=datetime_format, mode=mode, storage_options=storage_options, if_sheet_exists=if_sheet_exists, engine_kwargs=engine_kwargs, ) self.book = Workbook(self.handles.handle, **engine_kwargs) def save(self): """ Save workbook to disk. """ return self.book.close() def write_cells( self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None ): # Write the frame cells using xlsxwriter. sheet_name = self._get_sheet_name(sheet_name) if sheet_name in self.sheets: wks = self.sheets[sheet_name] else: wks = self.book.add_worksheet(sheet_name) self.sheets[sheet_name] = wks style_dict = {"null": None} if validate_freeze_panes(freeze_panes): wks.freeze_panes(*(freeze_panes)) for cell in cells: val, fmt = self._value_with_fmt(cell.val) stylekey = json.dumps(cell.style) if fmt: stylekey += fmt if stylekey in style_dict: style = style_dict[stylekey] else: style = self.book.add_format(_XlsxStyler.convert(cell.style, fmt)) style_dict[stylekey] = style if cell.mergestart is not None and cell.mergeend is not None: wks.merge_range( startrow + cell.row, startcol + cell.col, startrow + cell.mergestart, startcol + cell.mergeend, val, style, ) else: wks.write(startrow + cell.row, startcol + cell.col, val, style)
33.449393
82
0.469257
68ecec98fa4cfb37d6997d4f3527ccc57b100d80
6,076
py
Python
eggs/mercurial-2.2.3-py2.7-linux-x86_64-ucs4.egg/hgext/relink.py
bopopescu/phyG
023f505b705ab953f502cbc55e90612047867583
[ "CC-BY-3.0" ]
null
null
null
eggs/mercurial-2.2.3-py2.7-linux-x86_64-ucs4.egg/hgext/relink.py
bopopescu/phyG
023f505b705ab953f502cbc55e90612047867583
[ "CC-BY-3.0" ]
null
null
null
eggs/mercurial-2.2.3-py2.7-linux-x86_64-ucs4.egg/hgext/relink.py
bopopescu/phyG
023f505b705ab953f502cbc55e90612047867583
[ "CC-BY-3.0" ]
1
2021-12-16T23:31:37.000Z
2021-12-16T23:31:37.000Z
# Mercurial extension to provide 'hg relink' command # # Copyright (C) 2007 Brendan Cully <brendan@kublai.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. """recreates hardlinks between repository clones""" from mercurial import hg, util from mercurial.i18n import _ import os, stat def relink(ui, repo, origin=None, **opts): """recreate hardlinks between two repositories When repositories are cloned locally, their data files will be hardlinked so that they only use the space of a single repository. Unfortunately, subsequent pulls into either repository will break hardlinks for any files touched by the new changesets, even if both repositories end up pulling the same changes. Similarly, passing --rev to "hg clone" will fail to use any hardlinks, falling back to a complete copy of the source repository. This command lets you recreate those hardlinks and reclaim that wasted space. This repository will be relinked to share space with ORIGIN, which must be on the same local disk. If ORIGIN is omitted, looks for "default-relink", then "default", in [paths]. Do not attempt any read operations on this repository while the command is running. (Both repositories will be locked against writes.) """ if (not util.safehasattr(util, 'samefile') or not util.safehasattr(util, 'samedevice')): raise util.Abort(_('hardlinks are not supported on this system')) src = hg.repository(ui, ui.expandpath(origin or 'default-relink', origin or 'default')) if not src.local(): raise util.Abort(_('must specify local origin repository')) ui.status(_('relinking %s to %s\n') % (src.store.path, repo.store.path)) if repo.root == src.root: ui.status(_('there is nothing to relink\n')) return locallock = repo.lock() try: remotelock = src.lock() try: candidates = sorted(collect(src, ui)) targets = prune(candidates, src.store.path, repo.store.path, ui) do_relink(src.store.path, repo.store.path, targets, ui) finally: remotelock.release() finally: locallock.release() def collect(src, ui): seplen = len(os.path.sep) candidates = [] live = len(src['tip'].manifest()) # Your average repository has some files which were deleted before # the tip revision. We account for that by assuming that there are # 3 tracked files for every 2 live files as of the tip version of # the repository. # # mozilla-central as of 2010-06-10 had a ratio of just over 7:5. total = live * 3 // 2 src = src.store.path pos = 0 ui.status(_("tip has %d files, estimated total number of files: %s\n") % (live, total)) for dirpath, dirnames, filenames in os.walk(src): dirnames.sort() relpath = dirpath[len(src) + seplen:] for filename in sorted(filenames): if not filename[-2:] in ('.d', '.i'): continue st = os.stat(os.path.join(dirpath, filename)) if not stat.S_ISREG(st.st_mode): continue pos += 1 candidates.append((os.path.join(relpath, filename), st)) ui.progress(_('collecting'), pos, filename, _('files'), total) ui.progress(_('collecting'), None) ui.status(_('collected %d candidate storage files\n') % len(candidates)) return candidates def prune(candidates, src, dst, ui): def linkfilter(src, dst, st): try: ts = os.stat(dst) except OSError: # Destination doesn't have this file? return False if util.samefile(src, dst): return False if not util.samedevice(src, dst): # No point in continuing raise util.Abort( _('source and destination are on different devices')) if st.st_size != ts.st_size: return False return st targets = [] total = len(candidates) pos = 0 for fn, st in candidates: pos += 1 srcpath = os.path.join(src, fn) tgt = os.path.join(dst, fn) ts = linkfilter(srcpath, tgt, st) if not ts: ui.debug('not linkable: %s\n' % fn) continue targets.append((fn, ts.st_size)) ui.progress(_('pruning'), pos, fn, _('files'), total) ui.progress(_('pruning'), None) ui.status(_('pruned down to %d probably relinkable files\n') % len(targets)) return targets def do_relink(src, dst, files, ui): def relinkfile(src, dst): bak = dst + '.bak' os.rename(dst, bak) try: util.oslink(src, dst) except OSError: os.rename(bak, dst) raise os.remove(bak) CHUNKLEN = 65536 relinked = 0 savedbytes = 0 pos = 0 total = len(files) for f, sz in files: pos += 1 source = os.path.join(src, f) tgt = os.path.join(dst, f) # Binary mode, so that read() works correctly, especially on Windows sfp = file(source, 'rb') dfp = file(tgt, 'rb') sin = sfp.read(CHUNKLEN) while sin: din = dfp.read(CHUNKLEN) if sin != din: break sin = sfp.read(CHUNKLEN) sfp.close() dfp.close() if sin: ui.debug('not linkable: %s\n' % f) continue try: relinkfile(source, tgt) ui.progress(_('relinking'), pos, f, _('files'), total) relinked += 1 savedbytes += sz except OSError, inst: ui.warn('%s: %s\n' % (tgt, str(inst))) ui.progress(_('relinking'), None) ui.status(_('relinked %d files (%s reclaimed)\n') % (relinked, util.bytecount(savedbytes))) cmdtable = { 'relink': ( relink, [], _('[ORIGIN]') ) }
32.843243
80
0.589862
60b6ed4146c56c34e2877f45f081aa182cac66d0
301
py
Python
data/multilingual/Latn.ENG/Sans_8/pdf_to_json_test_Latn.ENG_Sans_8.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
1
2021-09-19T19:47:35.000Z
2021-09-19T19:47:35.000Z
data/multilingual/Latn.ENG/Sans_8/pdf_to_json_test_Latn.ENG_Sans_8.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
data/multilingual/Latn.ENG/Sans_8/pdf_to_json_test_Latn.ENG_Sans_8.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.ENG/Sans_8/udhr_Latn.ENG_Sans_8.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
30.1
71
0.810631
f7d3765f3e2ed7efc7d6d9a598112c01dd0c633e
7,630
py
Python
openai/baselines/baselines/deepq/experiments_real/experiments_real_300_normal/train_real_cloud.py
habichta/ETHZDeepReinforcementLearning
e1ae22159753724290f20068214bb3d94fcb7be4
[ "BSD-3-Clause" ]
7
2018-01-23T05:17:50.000Z
2020-10-30T02:29:59.000Z
openai/baselines/baselines/deepq/experiments_17_balanced_alpha09beta_reward_large_shorter/experiments_real_300_normal/train_real_cloud.py
habichta/ETHZDeepReinforcementLearning
e1ae22159753724290f20068214bb3d94fcb7be4
[ "BSD-3-Clause" ]
null
null
null
openai/baselines/baselines/deepq/experiments_17_balanced_alpha09beta_reward_large_shorter/experiments_real_300_normal/train_real_cloud.py
habichta/ETHZDeepReinforcementLearning
e1ae22159753724290f20068214bb3d94fcb7be4
[ "BSD-3-Clause" ]
2
2018-01-23T05:17:58.000Z
2018-07-02T00:13:34.000Z
import gym from baselines import deepq from baselines.common.atari_wrappers_deprecated import wrap_dqn, ScaledFloatFrame from cloud_environment_real import RealCloudEnvironment import numpy as np import collections import os import csv import random #NUR EINE EPISODE #Bilder normalisieren? Brightness change jan => HSV #komplzierteres toy environment transparenz #hard data set wenn auf eines funktionert #Logging def logger_callback(locals,globals): training_started = locals['log_training_started'] done = locals['done'] num_episodes = locals['num_episodes'] if training_started: log_action_l = locals['log_action_l'] # actions chosen in current episode step log_action_l.append(locals['action']) log_q_t_selected_l = locals['log_q_t_selected_l'] #selected actions in batch log_q_t_selected_l.append(np.mean(locals['log_q_t_selected'])) log_q_t_targets_l = locals['log_q_t_targets_l_l'] #q values of actions selected by target network and double Q log_q_t_targets_l.append(np.mean(locals['log_q_t_targets'])) """ log_q_t_l = locals['log_q_t_l'] # q values of all actions in a batch log_q_t_l.append(np.mean(locals['log_q_t'],axis=0)) """ log_td_errors_l = locals['log_td_errors_l'] # difference between state 1 and next state predictions log_td_errors_l.append(np.mean(locals['log_td_errors'])) log_errors_l = locals['log_errors_l'] # Huber loss of td errors log_errors_l.append(np.mean(locals['log_errors'])) log_gradients_l = locals['log_gradients'] log_grad_ratio_l = locals['log_grad_ratio_l'] for grad, var in log_gradients_l: grad_step = np.linalg.norm(grad*-locals['l_rate']) var_norm = np.linalg.norm(var) if var_norm > 0: wg_ratio = grad_step / var_norm log_grad_ratio_l.append(wg_ratio) if done: rew100 = locals['mean_100ep_reward'] rew50 = locals['mean_50ep_reward'] rew10 = locals['mean_10ep_reward'] logger = globals['logger'] action_counter = sorted(collections.Counter(log_action_l).items()) episode_q_t_selected = np.mean(log_q_t_selected_l) #1x1 episode_q_t_targets = np.mean(log_q_t_targets_l) #1x1 #episode_q_t = np.mean(log_q_t_l,axis=0) #1x2 episode_td_errors = np.mean(log_td_errors_l) #1x1 episode_errors = np.mean(log_errors_l) # 1x1 mean_wg_ratio = np.mean(log_grad_ratio_l) if len(log_grad_ratio_l)>0 else 0 median_wg_ratio = np.median(log_grad_ratio_l) if len(log_grad_ratio_l)>0 else 0 max_wg_ratio = np.max(log_grad_ratio_l) if len(log_grad_ratio_l)>0 else 0 min_wg_ratio = np.min(log_grad_ratio_l) if len(log_grad_ratio_l)>0 else 0 logger.record_tabular("Tmp File", locals['td']) logger.record_tabular("Actions Count", action_counter) logger.record_tabular("Mean selected Q",episode_q_t_selected) logger.record_tabular("Mean selected target Q",episode_q_t_targets) #logger.record_tabular("Mean Action Q", episode_q_t) logger.record_tabular("Mean TD Error", episode_td_errors) logger.record_tabular("Mean Huber Error", episode_errors) logger.record_tabular("Var/Grad *-lr Mean ratio", mean_wg_ratio) logger.record_tabular("Var/Grad *-lr Median ratio", median_wg_ratio) logger.record_tabular("Var/Grad *-lr Max ratio", max_wg_ratio) logger.record_tabular("Var/Grad *-lr Min ratio", min_wg_ratio) logger.dump_tabular() if num_episodes % 100 == 0: #Write log path = locals['train_file_path'] print("Writing episode {} log to ".format(num_episodes), path) with open(path, 'a') as f: action_count_header = ['action_count{}'.format(i) for i in range(len(action_counter))] #action_q_header = ['mean_action_q{}'.format(i) for i in range(len(episode_q_t.tolist()))] headers = ['episode','steps','reward100','reward50','reward10','mean_s_q','mean_t_q','mean_td_error','mean_h_error'] #headers = headers + action_q_header+action_count_header headers = headers + action_count_header +['mean_wg'] +['median_wg'] +['max_wg'] +['min_wg'] steps = locals['t'] action_counts = [c for i,c in action_counter] #actions_qs = [q for q in episode_q_t.tolist()] #output_list = [num_episodes]+[steps]+[rew100]+[rew50]+[rew10]+[episode_q_t_selected]+[episode_q_t_targets]+[episode_td_errors]+[episode_errors]+ actions_qs+action_counts output_list = [num_episodes] + [steps] + [rew100] + [rew50] + [rew10] + [episode_q_t_selected] + [ episode_q_t_targets] + [episode_td_errors] + [episode_errors] + action_counts +[mean_wg_ratio]+[median_wg_ratio]+[max_wg_ratio]+[min_wg_ratio] print(headers) print(output_list) w = csv.writer(f) if os.stat(path).st_size == 0: w.writerow(headers) w.writerow(output_list) return False def main(): #TODO :Test the prediction code on both environments np.random.seed(1) random.seed(1) data_path="/local/habichta/data_C_int/" mask_path="/local/habichta//img_C/cavriglia_skymask256.png" img_path="/local/habichta/img_C/" train_set_path ="train_list.out" channels=3 seq_length=3 img_size=84 seq_stride=9 #TODO: Try larger lr, try mpc guidance, try hard dataset (create ne for large trainset ... ) Note that naive has small error, means most of its rewards are 0 ... (unlike toy environment) #TODO: tehst mpc guidance #TODO: ask jan : step size, hard data set #TODO: prediction code (saliency, t-sne, value func on simple environment) env = RealCloudEnvironment(data_path,img_path,train_set_path, image_size=img_size, sequence_length=seq_length, sequence_stride=seq_stride, action_nr=7, action_type=1, ramp_step=0.1, episode_length_train=200, file="rl_data_sp.csv",load_train_episodes="ep400_200.pkl",mask_path=mask_path,sample_training_episodes=None,exploration_follow="IRR",start_exploration_deviation=0.2,clip_irradiance=False) #Note: cloud speed can be changes but may also require different ramps.. default, speed of cloud per frame at least 1 pixel in y direction model = deepq.models.cnn_to_mlp( convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], hiddens=[256], dueling=True, channels=channels, seq_length=seq_length, img_size=img_size ) act = deepq.learn( train_file_path='train_log.csv', env=env, q_func=model, lr=2.5e-4, max_timesteps=2000000, buffer_size=40000, initial_exploration=1.0, exploration_fraction=0.1, exploration_final_eps=0.01, train_freq=4, learning_starts=40000, target_network_update_freq=1000, gamma=0.99, prioritized_replay=True, callback=logger_callback, load_cpk=None, mpc_guidance=None #"/media/nox/OS/Linux/Documents/Masterarbeit/simple_rl/model1/model" ) act.save("cloud_model.pkl") if __name__ == '__main__': main()
37.401961
203
0.648493
61b5468ed2c70fded55fcd518503b8fe50c9f240
55,173
py
Python
digesters/confluence/test_confluence_notifications.py
paul-hammant/imapdigester
7d2d9525d39b1f3f839a219061180971404e4bb8
[ "MIT" ]
25
2016-04-04T17:32:47.000Z
2022-03-08T02:18:07.000Z
digesters/confluence/test_confluence_notifications.py
paul-hammant/imapslurper
7d2d9525d39b1f3f839a219061180971404e4bb8
[ "MIT" ]
null
null
null
digesters/confluence/test_confluence_notifications.py
paul-hammant/imapslurper
7d2d9525d39b1f3f839a219061180971404e4bb8
[ "MIT" ]
4
2017-01-02T21:03:28.000Z
2022-02-22T18:38:44.000Z
import sys from unittest import TestCase import unittest import os from importlib import reload from mock import Mock, call from mockextras import stub sys.path = [os.path.abspath(os.path.join('..', os.pardir))] + sys.path from digesters.confluence.confluence_notification_digester import ConfluenceNotificationDigester from digesters.digestion_processor import DigestionProcessor MAIL_HDR = """From: \"Apache Confluence\" <ph@example.com> Content-Transfer-Encoding: 8bit Content-Type: multipart/alternative; boundary="---NOTIFICATION_BOUNDARY-5678" MIME-Version: 1.0 This is a multi-part message in MIME format. -----NOTIFICATION_BOUNDARY-5678 Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: 8bit """ class NotificationsStore(object): def __init__(self, cls=object): self._cls = cls self.notifications = None def __eq__(self, other): self.notifications = other return True def __ne__(self, other): return False def __repr__(self): return "NotificationsStore(..)" class TestConfluenceNotifications(TestCase): def __init__(self, methodName='runTest'): super(TestConfluenceNotifications, self).__init__(methodName) reload(sys) # sys.setdefaultencoding('utf8') def test_two_related_notifications_can_be_rolled_up(self): expected_payload = """<html><body><span>You have previously read notifications up to: Apr 09 2016 02:37 AM</span> <table> <tr style="background-color: #acf;"> <th>Notifications</th> </tr> <tr style=""> <td> What: Noble Paul edited a page<br/> Space: solr:<br/> Page: <a href="https://cwiki.apache.org/confluence/display/solr/Config+API">Config API</a><br/> Excerpt: Page nodes added: 4, removed: 0, changed: 0 </td> </tr> <tr style="background-color: #def;"> <td> What: Hoss Man deleted a comment<br/> Space: solr:<br/> Page: <a href="https://cwiki.apache.org/confluence/display/solr/Getting+Started?focusedCommentId=62691549">Re: Getting Started</a><br/> Excerpt: definitely a great post jadibd.com </td> </tr> <tr><td colspan="2" style="border-bottom: 1pt solid red; border-top: 1pt solid red;"><center>^ New Notifications Since You Last Checked ^</center></td></tr> <tr style=""> <td> What: surya ferdy commented on a page<br/> Space: solr:<br/> Page: <a href="https://cwiki.apache.org/confluence/display/solr/Getting+Started?focusedCommentId=62691549">Re: Getting Started</a><br/> Excerpt: definitely a great post jadibd.com </td> </tr> </table></body></html>""" notification_store = {} final_notifications_store = NotificationsStore() store_writer = Mock() store_writer.get_from_binary.side_effect = stub( (call('confluence-notifications'), notification_store), (call('most-recently-seen'), 1460183824) ) store_writer.store_as_binary.side_effect = stub( (call('confluence-notifications', final_notifications_store), True), (call('most-recently-seen', 1460183824), True) ) expected_message = ("Subject: Notification Digest: 1 new notification(s)\n" + MAIL_HDR + expected_payload + "\n\n-----NOTIFICATION_BOUNDARY-5678") digest_inbox_proxy = Mock() digest_inbox_proxy.delete_previous_message.side_effect = stub((call(), True)) digest_inbox_proxy.append.side_effect = stub((call(expected_message), True)) digesters = [] digester = ConfluenceNotificationDigester(store_writer, "confluence@apache.org", "Apache") ## What we are testing digester.notification_boundary_rand = "-5678" # no random number for the email's notification boundary digesters.append(digester) digestion_processor = DigestionProcessor(None, None, digesters, False, "ph@example.com", False, "INBOX") unmatched_to_move = [] to_delete_from_notification_folder = [] digestion_processor.process_incoming_notification(1234, digesters, COMMENT_ADDED, to_delete_from_notification_folder, unmatched_to_move, False) digestion_processor.process_incoming_notification(1235, digesters, COMMENT_DELETED, to_delete_from_notification_folder, unmatched_to_move, False) digestion_processor.process_incoming_notification(1236, digesters, PAGE_EDITED, to_delete_from_notification_folder, unmatched_to_move, False) digester.rewrite_digest_emails(digest_inbox_proxy, has_previous_message=True, previously_seen=False, sender_to_implicate="ph@example.com") self.assertEqual(digest_inbox_proxy.mock_calls, [call.delete_previous_message(), call.append(expected_message)]) calls = store_writer.mock_calls self.assertEqual(calls, [ call.get_from_binary('confluence-notifications'), call.get_from_binary('most-recently-seen'), call.store_as_binary('confluence-notifications', { 1460183824: {'space': 'solr', 'line_here': True, 'who': 'surya ferdy', 'excerpt': 'definitely a great post jadibd.com', 'doc_text': 'Re: Getting Started', 'doc_url': 'https://cwiki.apache.org/confluence/display/solr/Getting+Started?focusedCommentId=62691549', 'event': 'surya ferdy commented on a page'}, 1460400060: {'space': 'solr', 'who': 'Hoss Man', 'excerpt': 'definitely a great post jadibd.com', 'doc_text': 'Re: Getting Started', 'doc_url': 'https://cwiki.apache.org/confluence/display/solr/Getting+Started?focusedCommentId=62691549', 'event': 'Hoss Man deleted a comment'}, 1460535327: {'space': 'solr', 'who': 'Noble Paul', 'excerpt': 'Page nodes added: 4, removed: 0, changed: 0', 'doc_text': 'Config API', 'doc_url': 'https://cwiki.apache.org/confluence/display/solr/Config+API', 'event': 'Noble Paul edited a page'} }), call.store_as_binary('most-recently-seen', 1460183824)]) self.assertEqual(len(unmatched_to_move), 0) self.assertEqual(str(to_delete_from_notification_folder), "[1234, 1235, 1236]") self.assertEqual(len(final_notifications_store.notifications), 3) COMMENT_ADDED = """Date: Sat, 9 Apr 2016 06:37:04 +0000 From: "surya ferdy (Confluence)" <confluence@apache.org> To: <paul_hamm@example.com> Message-ID: <731544647.1144503.1460183824932.JavaMail.confluence@cwiki-vm4> Subject: [CONF] Apache Solr Reference Guide > Getting Started Content-Type: multipart/related; boundary="----=_Part_1144502_1498730838.1460183824926" X-ATLASSIAN-NOTIFICATIONS-VERSION: 6.4.0 Auto-Submitted: auto-generated Precedence: bulk Content-Type: text/html; charset="UTF-8" Return-Path: confluence@apache.org MIME-Version: 1.0 ------=_Part_1144502_1498730838.1460183824926 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Content-Disposition: inline <html><head> <meta http-equiv=3D"Content-Type" content=3D"text/html; charset=3Dutf-8">=20 <meta name=3D"viewport" content=3D"width=3Ddevice-width, initial-scale=3D1.= 0, maximum-scale=3D1.0">=20 <base href=3D"https://cwiki.apache.org/confluence">=20 <title>Message Title</title> =20 </head> <body> <table id=3D"background-table" cellpadding=3D"0" cellspacing=3D"0" width=3D= "100%" style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table= -rspace: 0pt; color: #333; background-color: #f5f5f5">=20 <tbody>=20 <tr>=20 <td id=3D"header-pattern-container" style=3D"padding: 0px; border-collapse:= collapse; padding: 10px 20px">=20 <table id=3D"header-pattern" cellspacing=3D"0" cellpadding=3D"0" border=3D"= 0" style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table-rsp= ace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td id=3D"header-avatar-image-container" valign=3D"top" style=3D"padding: 0= px; border-collapse: collapse; vertical-align: top; width: 32px; padding-ri= ght: 9px"><a href=3D"https://cwiki.apache.org/confluence/display/~banyuitua= ir19?src=3Dmail&amp;src.mail.timestamp=3D1460183824702&amp;src.mail.notific= ation=3Dcom.atlassian.confluence.plugins.confluence-content-notifications-p= lugin%3Acomment-created-notification&amp;src.mail.recipient=3D8aa980874ebf4= c1f0153f8e84cef212a" style=3D"color: #3b73af; text-decoration: none"><img i= d=3D"header-avatar-image" class=3D"image_fix" src=3D"cid:avatar_c9ee7c28225= bd8d9b71f70f64bf2c5a4" height=3D"32" width=3D"32" border=3D"0" style=3D"bor= der-radius: 3px; vertical-align: top"></a></td> <td id=3D"header-text-container" valign=3D"middle" style=3D"padding: 0px; b= order-collapse: collapse; vertical-align: middle; font-family: Arial, sans-= serif; font-size: 14px; line-height: 20px; mso-line-height-rule: exactly; m= so-text-raise: 1px">surya ferdy <strong>commented</strong> on a page</td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <!-- End Header pattern -->=20 <tr>=20 <td id=3D"email-content-container" style=3D"padding: 0px; border-collapse: = collapse; padding: 0 20px">=20 <table id=3D"email-content-table" cellspacing=3D"0" cellpadding=3D"0" borde= r=3D"0" width=3D"100%" style=3D"border-collapse: collapse; mso-table-lspace= : 0pt; mso-table-rspace: 0pt; color: #333; border-spacing: 0; border-collap= se: separate">=20 <tbody>=20 <tr>=20 <td class=3D"email-content-rounded-top mobile-expand" style=3D"padding: 0px= ; border-collapse: collapse; color: #fff; padding: 0 15px 0 16px; height: 1= 5px; background-color: #fff; border-left: 1px solid #ccc; border-top: 1px s= olid #ccc; border-right: 1px solid #ccc; border-bottom: 0; border-top-right= -radius: 5px; border-top-left-radius: 5px">&nbsp;</td>=20 </tr>=20 <tr>=20 <td class=3D"email-content-main mobile-expand" style=3D"padding: 0px; borde= r-collapse: collapse; border-left: 1px solid #ccc; border-right: 1px solid = #ccc; border-top: 0; border-bottom: 0; padding: 0 15px 15px 16px; backgroun= d-color: #fff">=20 <table id=3D"page-title-pattern" cellspacing=3D"0" cellpadding=3D"0" border= =3D"0" width=3D"100%" style=3D"border-collapse: collapse; mso-table-lspace:= 0pt; mso-table-rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td id=3D"page-title-pattern-icon-image-container" valign=3D"top" style=3D"= padding: 0px; border-collapse: collapse; width: 16px; vertical-align: top">= =20 <table cellspacing=3D"0" cellpadding=3D"0" border=3D"0" style=3D"border-col= lapse: collapse; mso-table-lspace: 0pt; mso-table-rspace: 0pt; color: #333"= >=20 <tbody>=20 <tr>=20 <td id=3D"page-title-pattern-icon-image-container-cell" style=3D"padding: 0= px; border-collapse: collapse; width: 16px; padding: 9px 8px 0px 0px; mso-t= ext-raise: 5px; mso-line-height-rule: exactly"><a href=3D"https://cwiki.apa= che.org/confluence/display/solr/Getting&#43;Started?focusedCommentId=3D6269= 1549&amp;src=3Dmail&amp;src.mail.timestamp=3D1460183824702&amp;src.mail.not= ification=3Dcom.atlassian.confluence.plugins.confluence-content-notificatio= ns-plugin%3Acomment-created-notification&amp;src.mail.recipient=3D8aa980874= ebf4c1f0153f8e84cef212a&amp;src.mail.action=3Dview#comment-62691549" title= =3D"comment icon" style=3D"vertical-align: top;; color: #3b73af; text-decor= ation: none"><img style=3D"vertical-align: top; display: block;" src=3D"cid= :comment-icon" alt=3D"comment icon" title=3D"comment icon" height=3D"16" wi= dth=3D"16" border=3D"0"></a></td>=20 </tr>=20 </tbody>=20 </table> </td> <td style=3D"vertical-align: top;; padding: 0px; border-collapse: collapse;= padding-right: 5px; font-size: 20px; line-height: 30px; mso-line-height-ru= le: exactly" id=3D"page-title-pattern-header-container"><span id=3D"page-ti= tle-pattern-header" style=3D"font-family: Arial, sans-serif; padding: 0; fo= nt-size: 20px; line-height: 30px; mso-text-raise: 2px; mso-line-height-rule= : exactly; vertical-align: middle"><a href=3D"https://cwiki.apache.org/conf= luence/display/solr/Getting&#43;Started?focusedCommentId=3D62691549&amp;src= =3Dmail&amp;src.mail.timestamp=3D1460183824702&amp;src.mail.notification=3D= com.atlassian.confluence.plugins.confluence-content-notifications-plugin%3A= comment-created-notification&amp;src.mail.recipient=3D8aa980874ebf4c1f0153f= 8e84cef212a&amp;src.mail.action=3Dview#comment-62691549" title=3D"Re: Getti= ng Started" style=3D"color: #3b73af; text-decoration: none">Re: Getting Sta= rted</a></span></td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td class=3D"email-content-main mobile-expand" style=3D"padding: 0px; borde= r-collapse: collapse; border-left: 1px solid #ccc; border-right: 1px solid = #ccc; border-top: 0; border-bottom: 0; padding: 0 15px 15px 16px; backgroun= d-color: #fff">=20 <table class=3D"content-excerpt-pattern" cellspacing=3D"0" cellpadding=3D"0= " border=3D"0" width=3D"100%" style=3D"border-collapse: collapse; mso-table= -lspace: 0pt; mso-table-rspace: 0pt; color: #333; font-family: Arial, sans-= serif; font-size: 14px; line-height: 20px; mso-line-height-rule: exactly; m= so-text-raise: 1px">=20 <tbody>=20 <tr>=20 <td class=3D"content-excerpt-pattern-container mobile-resize-text " style= =3D"padding: 0px; border-collapse: collapse; padding: 0 0 0 24px"> <p style= =3D"margin: 10px 0 0 0; margin-top: 0">definitely a great post</p> <p style= =3D"margin: 10px 0 0 0"> <a href=3D"http://www.jadibd.com" class=3D"externa= l-link" rel=3D"nofollow" style=3D"color: #3b73af; text-decoration: none">ja= dibd.com</a><a rel=3D"nofollow" style=3D"color: #3b73af; text-decoration: n= one"></a> </p> </td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td class=3D"email-content-main mobile-expand action-padding last-row-paddi= ng" style=3D"padding: 0px; border-collapse: collapse; border-left: 1px soli= d #ccc; border-right: 1px solid #ccc; border-top: 0; border-bottom: 0; padd= ing: 0 15px 15px 16px; background-color: #fff; padding-bottom: 10px; paddin= g-bottom: 10px">=20 <table id=3D"actions-pattern" cellspacing=3D"0" cellpadding=3D"0" border=3D= "0" width=3D"100%" style=3D"border-collapse: collapse; mso-table-lspace: 0p= t; mso-table-rspace: 0pt; color: #333; font-family: Arial, sans-serif; font= -size: 14px; line-height: 20px; mso-line-height-rule: exactly; mso-text-rai= se: 1px">=20 <tbody>=20 <tr>=20 <td id=3D"actions-pattern-container" valign=3D"middle" style=3D"padding: 0p= x; border-collapse: collapse; padding: 15px 0 0 24px; vertical-align: middl= e">=20 <table align=3D"left" style=3D"border-collapse: collapse; mso-table-lspace:= 0pt; mso-table-rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td class=3D"actions-pattern-action-icon-container" style=3D"padding: 0px; = border-collapse: collapse; font-family: Arial, sans-serif; font-size: 14px;= line-height: 20px; mso-line-height-rule: exactly; mso-text-raise: 0px; ver= tical-align: middle"><a href=3D"https://cwiki.apache.org/confluence/display= /solr/Getting&#43;Started?replyToComment=3D62691549&amp;src=3Dmail&amp;src.= mail.timestamp=3D1460183824702&amp;src.mail.notification=3Dcom.atlassian.co= nfluence.plugins.confluence-content-notifications-plugin%3Acomment-created-= notification&amp;src.mail.recipient=3D8aa980874ebf4c1f0153f8e84cef212a&amp;= src.mail.action=3Dreply#comment-62691549" title=3D"Reply Icon" style=3D"col= or: #3b73af; text-decoration: none"><img class=3D"actions-pattern-action-ic= on-image" height=3D"16" width=3D"16" border=3D"0" title=3D"Reply Icon" src= =3D"cid:com.atlassian.confluence.plugins.confluence-email-resources%3Areply= -to-comment-email-adg-footer-item%3Aicon" alt=3D"Reply Icon" style=3D"verti= cal-align: middle"></a></td> <td class=3D"actions-pattern-action-text-container" style=3D"padding: 0px; = border-collapse: collapse; font-family: Arial, sans-serif; font-size: 14px;= line-height: 20px; mso-line-height-rule: exactly; mso-text-raise: 4px; pad= ding-left: 5px; white-space: nowrap"><a href=3D"https://cwiki.apache.org/co= nfluence/display/solr/Getting&#43;Started?replyToComment=3D62691549&amp;src= =3Dmail&amp;src.mail.timestamp=3D1460183824702&amp;src.mail.notification=3D= com.atlassian.confluence.plugins.confluence-content-notifications-plugin%3A= comment-created-notification&amp;src.mail.recipient=3D8aa980874ebf4c1f0153f= 8e84cef212a&amp;src.mail.action=3Dreply#comment-62691549" title=3D"Reply" s= tyle=3D"color: #3b73af; text-decoration: none">Reply</a></td> <td class=3D"actions-pattern-action-bull" style=3D"padding: 0px; border-col= lapse: collapse; font-family: Arial, sans-serif; font-size: 14px; line-heig= ht: 20px; mso-line-height-rule: exactly; mso-text-raise: 4px; color: #999; = padding: 0 5px">=E2=80=A2</td>=20 </tr>=20 </tbody>=20 </table>=20 <table style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table= -rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td class=3D"actions-pattern-action-icon-container" style=3D"padding: 0px; = border-collapse: collapse; font-family: Arial, sans-serif; font-size: 14px;= line-height: 20px; mso-line-height-rule: exactly; mso-text-raise: 0px; ver= tical-align: middle"><a href=3D"https://cwiki.apache.org/confluence/plugins= /likes/like.action?contentId=3D62691549&amp;src=3Dmail&amp;src.mail.timesta= mp=3D1460183824702&amp;src.mail.notification=3Dcom.atlassian.confluence.plu= gins.confluence-content-notifications-plugin%3Acomment-created-notification= &amp;src.mail.recipient=3D8aa980874ebf4c1f0153f8e84cef212a&amp;src.mail.act= ion=3Dlike" title=3D"Like Icon" style=3D"color: #3b73af; text-decoration: n= one"><img class=3D"actions-pattern-action-icon-image" height=3D"16" width= =3D"16" border=3D"0" title=3D"Like Icon" src=3D"cid:com.atlassian.confluenc= e.plugins.confluence-like%3Aview-email-adg-content-item%3Aicon" alt=3D"Like= Icon" style=3D"vertical-align: middle"></a></td> <td class=3D"actions-pattern-action-text-container" style=3D"padding: 0px; = border-collapse: collapse; font-family: Arial, sans-serif; font-size: 14px;= line-height: 20px; mso-line-height-rule: exactly; mso-text-raise: 4px; pad= ding-left: 5px; white-space: nowrap"><a href=3D"https://cwiki.apache.org/co= nfluence/plugins/likes/like.action?contentId=3D62691549&amp;src=3Dmail&amp;= src.mail.timestamp=3D1460183824702&amp;src.mail.notification=3Dcom.atlassia= n.confluence.plugins.confluence-content-notifications-plugin%3Acomment-crea= ted-notification&amp;src.mail.recipient=3D8aa980874ebf4c1f0153f8e84cef212a&= amp;src.mail.action=3Dlike" title=3D"Like" style=3D"color: #3b73af; text-de= coration: none">Like</a></td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td class=3D"email-content-rounded-bottom mobile-expand" style=3D"padding: = 0px; border-collapse: collapse; color: #fff; height: 5px; line-height: 5px;= padding: 0 15px 0 16px; background-color: #fff; border-bottom-right-radius= : 5px; border-bottom-left-radius: 5px; border-top: 0; border-left: 1px soli= d #ccc; border-bottom: 1px solid #ccc; border-right: 1px solid #ccc; mso-li= ne-height-rule: exactly">&nbsp;</td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td id=3D"footer-pattern" style=3D"padding: 0px; border-collapse: collapse;= padding: 12px 20px">=20 <table id=3D"footer-pattern-container" cellspacing=3D"0" cellpadding=3D"0" = border=3D"0" width=3D"100%" style=3D"border-collapse: collapse; mso-table-l= space: 0pt; mso-table-rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td id=3D"footer-pattern-links-container" width=3D"100%" style=3D"padding: = 0px; border-collapse: collapse; color: #999; font-size: 12px; line-height: = 18px; font-family: Arial, sans-serif; mso-line-height-rule: exactly; mso-te= xt-raise: 2px">=20 <table align=3D"left" style=3D"border-collapse: collapse; mso-table-lspace:= 0pt; mso-table-rspace: 0pt; color: #333; font-size: 12px; line-height: 18p= x; font-family: Arial, sans-serif; mso-line-height-rule: exactly; mso-text-= raise: 2px">=20 <tbody>=20 <tr>=20 <td class=3D"footer-pattern-links mobile-resize-text" style=3D"padding: 0px= ; border-collapse: collapse"><a href=3D"https://cwiki.apache.org/confluence= /users/removespacenotification.action?spaceKey=3Dsolr&amp;src=3Dmail&amp;sr= c.mail.timestamp=3D1460183824702&amp;src.mail.notification=3Dcom.atlassian.= confluence.plugins.confluence-content-notifications-plugin%3Acomment-create= d-notification&amp;src.mail.recipient=3D8aa980874ebf4c1f0153f8e84cef212a&am= p;src.mail.action=3Dstop-watching" title=3D"" style=3D"color: #3b73af; text= -decoration: none">Stop watching space</a></td> <td class=3D"footer-pattern-links-bull" style=3D"padding: 0px; border-colla= pse: collapse; padding: 0 5px; color: #999">=E2=80=A2</td>=20 </tr>=20 </tbody>=20 </table>=20 <table style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table= -rspace: 0pt; color: #333; font-size: 12px; line-height: 18px; font-family:= Arial, sans-serif; mso-line-height-rule: exactly; mso-text-raise: 2px">=20 <tbody>=20 <tr>=20 <td class=3D"footer-pattern-links mobile-resize-text" style=3D"padding: 0px= ; border-collapse: collapse"><a href=3D"https://cwiki.apache.org/confluence= /users/editmyemailsettings.action?src=3Dmail&amp;src.mail.timestamp=3D14601= 83824702&amp;src.mail.notification=3Dcom.atlassian.confluence.plugins.confl= uence-content-notifications-plugin%3Acomment-created-notification&amp;src.m= ail.recipient=3D8aa980874ebf4c1f0153f8e84cef212a&amp;src.mail.action=3Dmana= ge" title=3D"" style=3D"color: #3b73af; text-decoration: none">Manage notif= ications</a></td>=20 </tr>=20 </tbody>=20 </table> </td> <td id=3D"footer-pattern-logo-desktop-container" rowspan=3D"2" valign=3D"to= p" style=3D"padding: 0px; border-collapse: collapse; padding-left: 20px; ve= rtical-align: top">=20 <table style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table= -rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td id=3D"footer-pattern-logo-desktop-padding" style=3D"padding: 0px; borde= r-collapse: collapse; padding-top: 3px"><img id=3D"footer-pattern-logo-desk= top" src=3D"cid:footer-desktop-logo" alt=3D"Confluence logo big" title=3D"C= onfluence logo big" width=3D"132" height=3D"20" class=3D"image_fix"></td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td id=3D"footer-pattern-text" class=3D"mobile-resize-text" width=3D"100%" = style=3D"padding: 0px; border-collapse: collapse; color: #999; font-size: 1= 2px; line-height: 18px; font-family: Arial, sans-serif; mso-line-height-rul= e: exactly; mso-text-raise: 2px; display: none">This message was sent by At= lassian Confluence 5.8.4<br> <img id=3D"footer-pattern-logo-mobile" src=3D"= cid:footer-mobile-logo" alt=3D"" title=3D"" width=3D"0" height=3D"0" style= =3D"display: none; mso-hide: all"></td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 </tbody>=20 </table>=20 <table id=3D"sealed-section" border=3D"0" cellpadding=3D"0" cellspacing=3D"= 0" width=3D"0" style=3D"border-collapse: collapse; mso-table-lspace: 0pt; m= so-table-rspace: 0pt; color: #333; display: none">=20 <tbody>=20 <tr>=20 <td style=3D"padding: 0px; border-collapse: collapse; border: 0; font-size:= 0px; line-height: 0; mso-line-height-rule: exactly"></td>=20 </tr>=20 </tbody>=20 </table> </body> </html>= ------=_Part_1144502_1498730838.1460183824926 """ COMMENT_DELETED = """Date: Mon, 11 Apr 2016 18:41:00 +0000 From: "Hoss Man (Confluence)" <confluence@apache.org> To: <paul_hamm@example.com> Message-ID: <contentId-62691549-1586493860@confluence.localhost> Subject: [CONF] Apache Solr Reference Guide > Getting Started Content-Type: multipart/related; boundary="----=_Part_1152161_850119877.1460400060674" Auto-Submitted: auto-generated Precedence: bulk Return-Path: confluence@apache.org MIME-Version: 1.0 ------=_Part_1152161_850119877.1460400060674 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Content-Disposition: inline <html><head> <meta http-equiv=3D"Content-Type" content=3D"text/html; charset=3Dutf-8">=20 <meta name=3D"viewport" content=3D"width=3Ddevice-width, initial-scale=3D1.= 0, maximum-scale=3D1.0">=20 <base href=3D"https://cwiki.apache.org/confluence">=20 <title>Message Title</title> =20 </head> <body> <table id=3D"background-table" cellpadding=3D"0" cellspacing=3D"0" width=3D= "100%" style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table= -rspace: 0pt; color: #333; background-color: #f5f5f5">=20 <tbody>=20 <tr>=20 <td id=3D"header-pattern-container" style=3D"padding: 0px; border-collapse:= collapse; padding: 10px 20px">=20 <table id=3D"header-pattern" cellspacing=3D"0" cellpadding=3D"0" border=3D"= 0" style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table-rsp= ace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td id=3D"header-avatar-image-container" valign=3D"top" style=3D"padding: 0= px; border-collapse: collapse; vertical-align: top; width: 32px; padding-ri= ght: 9px"><a href=3D"https://cwiki.apache.org/confluence/display/~hossman?s= rc=3Demail" style=3D"color: #3b73af; text-decoration: none"><img id=3D"head= er-avatar-image" class=3D"image_fix" src=3D"cid:avatar_571812907fb6dbb71722= da66de4232ab" height=3D"32" width=3D"32" border=3D"0" style=3D"border-radiu= s: 3px; vertical-align: top"></a></td> <td id=3D"header-text-container" valign=3D"middle" style=3D"padding: 0px; b= order-collapse: collapse; vertical-align: middle; font-family: Arial, sans-= serif; font-size: 14px; line-height: 20px; mso-line-height-rule: exactly; m= so-text-raise: 1px">Hoss Man <strong>deleted</strong> a comment</td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <!-- End Header pattern -->=20 <tr>=20 <td id=3D"email-content-container" style=3D"padding: 0px; border-collapse: = collapse; padding: 0 20px">=20 <table id=3D"email-content-table" cellspacing=3D"0" cellpadding=3D"0" borde= r=3D"0" width=3D"100%" style=3D"border-collapse: collapse; mso-table-lspace= : 0pt; mso-table-rspace: 0pt; color: #333; border-spacing: 0; border-collap= se: separate">=20 <tbody>=20 <tr>=20 <td class=3D"email-content-rounded-top mobile-expand" style=3D"padding: 0px= ; border-collapse: collapse; color: #fff; padding: 0 15px 0 16px; height: 1= 5px; background-color: #fff; border-left: 1px solid #ccc; border-top: 1px s= olid #ccc; border-right: 1px solid #ccc; border-bottom: 0; border-top-right= -radius: 5px; border-top-left-radius: 5px">&nbsp;</td>=20 </tr>=20 <tr>=20 <td class=3D"email-content-main mobile-expand" style=3D"padding: 0px; borde= r-collapse: collapse; border-left: 1px solid #ccc; border-right: 1px solid = #ccc; border-top: 0; border-bottom: 0; padding: 0 15px 15px 16px; backgroun= d-color: #fff">=20 <table id=3D"page-title-pattern" cellspacing=3D"0" cellpadding=3D"0" border= =3D"0" width=3D"100%" style=3D"border-collapse: collapse; mso-table-lspace:= 0pt; mso-table-rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td id=3D"page-title-pattern-icon-image-container" valign=3D"top" style=3D"= padding: 0px; border-collapse: collapse; width: 16px; vertical-align: top">= =20 <table cellspacing=3D"0" cellpadding=3D"0" border=3D"0" style=3D"border-col= lapse: collapse; mso-table-lspace: 0pt; mso-table-rspace: 0pt; color: #333"= >=20 <tbody>=20 <tr>=20 <td id=3D"page-title-pattern-icon-image-container-cell" style=3D"padding: 0= px; border-collapse: collapse; width: 16px; padding: 9px 8px 0px 0px; mso-t= ext-raise: 5px; mso-line-height-rule: exactly"><a href=3D"https://cwiki.apa= che.org/confluence/display/solr/Getting&#43;Started?focusedCommentId=3D6269= 1549#comment-62691549" title=3D"comment icon" style=3D"vertical-align: top;= ; color: #3b73af; text-decoration: none"><img style=3D"vertical-align: top;= display: block;" src=3D"cid:comment-icon" alt=3D"comment icon" title=3D"co= mment icon" height=3D"16" width=3D"16" border=3D"0"></a></td>=20 </tr>=20 </tbody>=20 </table> </td> <td style=3D"vertical-align: top;; padding: 0px; border-collapse: collapse;= padding-right: 5px; font-size: 20px; line-height: 30px; mso-line-height-ru= le: exactly" id=3D"page-title-pattern-header-container"><span id=3D"page-ti= tle-pattern-header" class=3D"content-deleted-color" style=3D"font-family: A= rial, sans-serif; padding: 0; font-size: 20px; line-height: 30px; mso-text-= raise: 2px; mso-line-height-rule: exactly; vertical-align: middle; color: #= 707070"><a href=3D"https://cwiki.apache.org/confluence/display/solr/Getting= &#43;Started?focusedCommentId=3D62691549#comment-62691549" title=3D"Re: Get= ting Started" style=3D"color: #3b73af; text-decoration: none; color: #70707= 0">Re: Getting Started</a></span>&nbsp;<span class=3D"content-deleted-lozen= ge" style=3D"font-family: Arial, sans-serif; background-color: #d04437; col= or: #fff; border-radius: 3px; font-size: 11px; font-weight: bold; mso-line-= height-rule: exactly; line-height: 11px; text-align: center; vertical-align= : middle; border: 2px solid #d04437; border-right-width: 4px; border-left-w= idth: 4px; mso-text-raise: 2px; mso-border-alt: solid #d04437 2px; mso-bord= er-alt: solid #d04437 4px">DELETED</span></td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td class=3D"email-content-main mobile-expand last-row-padding" style=3D"pa= dding: 0px; border-collapse: collapse; border-left: 1px solid #ccc; border-= right: 1px solid #ccc; border-top: 0; border-bottom: 0; padding: 0 15px 15p= x 16px; background-color: #fff; padding-bottom: 10px">=20 <table class=3D"content-excerpt-pattern" cellspacing=3D"0" cellpadding=3D"0= " border=3D"0" width=3D"100%" style=3D"border-collapse: collapse; mso-table= -lspace: 0pt; mso-table-rspace: 0pt; color: #333; font-family: Arial, sans-= serif; font-size: 14px; line-height: 20px; mso-line-height-rule: exactly; m= so-text-raise: 1px">=20 <tbody>=20 <tr>=20 <td class=3D"content-excerpt-pattern-container mobile-resize-text content-d= eleted-color" style=3D"padding: 0px; border-collapse: collapse; padding: 0 = 0 0 24px; color: #707070"> <p style=3D"margin: 10px 0 0 0; margin-top: 0">d= efinitely a great post</p> <p style=3D"margin: 10px 0 0 0"> <a href=3D"http= ://www.jadibd.com" class=3D"external-link" rel=3D"nofollow" style=3D"color:= #3b73af; text-decoration: none; color: #707070">jadibd.com</a><a rel=3D"no= follow" style=3D"color: #3b73af; text-decoration: none; color: #707070"></a= > </p> </td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td class=3D"email-content-rounded-bottom mobile-expand" style=3D"padding: = 0px; border-collapse: collapse; color: #fff; height: 5px; line-height: 5px;= padding: 0 15px 0 16px; background-color: #fff; border-bottom-right-radius= : 5px; border-bottom-left-radius: 5px; border-top: 0; border-left: 1px soli= d #ccc; border-bottom: 1px solid #ccc; border-right: 1px solid #ccc; mso-li= ne-height-rule: exactly">&nbsp;</td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td id=3D"footer-pattern" style=3D"padding: 0px; border-collapse: collapse;= padding: 12px 20px">=20 <table id=3D"footer-pattern-container" cellspacing=3D"0" cellpadding=3D"0" = border=3D"0" width=3D"100%" style=3D"border-collapse: collapse; mso-table-l= space: 0pt; mso-table-rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td id=3D"footer-pattern-links-container" width=3D"100%" style=3D"padding: = 0px; border-collapse: collapse; color: #999; font-size: 12px; line-height: = 18px; font-family: Arial, sans-serif; mso-line-height-rule: exactly; mso-te= xt-raise: 2px">=20 <table align=3D"left" style=3D"border-collapse: collapse; mso-table-lspace:= 0pt; mso-table-rspace: 0pt; color: #333; font-size: 12px; line-height: 18p= x; font-family: Arial, sans-serif; mso-line-height-rule: exactly; mso-text-= raise: 2px">=20 <tbody>=20 <tr>=20 <td class=3D"footer-pattern-links mobile-resize-text" style=3D"padding: 0px= ; border-collapse: collapse"><a href=3D"https://cwiki.apache.org/confluence= /users/removespacenotification.action?spaceKey=3Dsolr" title=3D"" style=3D"= color: #3b73af; text-decoration: none">Stop watching space</a></td> <td class=3D"footer-pattern-links-bull" style=3D"padding: 0px; border-colla= pse: collapse; padding: 0 5px; color: #999">=E2=80=A2</td>=20 </tr>=20 </tbody>=20 </table>=20 <table style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table= -rspace: 0pt; color: #333; font-size: 12px; line-height: 18px; font-family:= Arial, sans-serif; mso-line-height-rule: exactly; mso-text-raise: 2px">=20 <tbody>=20 <tr>=20 <td class=3D"footer-pattern-links mobile-resize-text" style=3D"padding: 0px= ; border-collapse: collapse"><a href=3D"https://cwiki.apache.org/confluence= /users/editmyemailsettings.action" title=3D"" style=3D"color: #3b73af; text= -decoration: none">Manage notifications</a></td>=20 </tr>=20 </tbody>=20 </table> </td> <td id=3D"footer-pattern-logo-desktop-container" rowspan=3D"2" valign=3D"to= p" style=3D"padding: 0px; border-collapse: collapse; padding-left: 20px; ve= rtical-align: top">=20 <table style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table= -rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td id=3D"footer-pattern-logo-desktop-padding" style=3D"padding: 0px; borde= r-collapse: collapse; padding-top: 3px"><img id=3D"footer-pattern-logo-desk= top" src=3D"cid:footer-desktop-logo" alt=3D"Confluence logo big" title=3D"C= onfluence logo big" width=3D"132" height=3D"20" class=3D"image_fix"></td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td id=3D"footer-pattern-text" class=3D"mobile-resize-text" width=3D"100%" = style=3D"padding: 0px; border-collapse: collapse; color: #999; font-size: 1= 2px; line-height: 18px; font-family: Arial, sans-serif; mso-line-height-rul= e: exactly; mso-text-raise: 2px; display: none"> This message was sent by A= tlassian Confluence 5.8.4 <br> <img id=3D"footer-pattern-logo-mobile" src= =3D"cid:footer-mobile-logo" alt=3D"" title=3D"" width=3D"0" height=3D"0" st= yle=3D"display: none; mso-hide: all"></td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 </tbody>=20 </table>=20 <table id=3D"sealed-section" border=3D"0" cellpadding=3D"0" cellspacing=3D"= 0" width=3D"0" style=3D"border-collapse: collapse; mso-table-lspace: 0pt; m= so-table-rspace: 0pt; color: #333; display: none">=20 <tbody>=20 <tr>=20 <td style=3D"padding: 0px; border-collapse: collapse; border: 0; font-size:= 0px; line-height: 0; mso-line-height-rule: exactly"></td>=20 </tr>=20 </tbody>=20 </table> </body> </html>= ------=_Part_1152161_850119877.1460400060674-- """ PAGE_EDITED = """Date: Wed, 13 Apr 2016 08:15:27 +0000 From: "Noble Paul (Confluence)" <confluence@apache.org> To: <paul_hamm@example.com> Message-ID: <1334689970.1157938.1460535327926.JavaMail.confluence@cwiki-vm4> Subject: [CONF] Apache Solr Reference Guide > Config API Content-Type: multipart/related; boundary="----=_Part_1157937_100703508.1460535327916" X-ATLASSIAN-NOTIFICATIONS-VERSION: 6.4.0 Auto-Submitted: auto-generated Precedence: bulk Return-Path: confluence@apache.org MIME-Version: 1.0 ------=_Part_1157937_100703508.1460535327916 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Content-Disposition: inline <html><head> <meta http-equiv=3D"Content-Type" content=3D"text/html; charset=3Dutf-8">=20 <meta name=3D"viewport" content=3D"width=3Ddevice-width, initial-scale=3D1.= 0, maximum-scale=3D1.0">=20 <base href=3D"https://cwiki.apache.org/confluence">=20 <title>Message Title</title> =20 </head> <body> <table id=3D"background-table" cellpadding=3D"0" cellspacing=3D"0" width=3D= "100%" style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table= -rspace: 0pt; color: #333; background-color: #f5f5f5">=20 <tbody>=20 <tr>=20 <td id=3D"header-pattern-container" style=3D"padding: 0px; border-collapse:= collapse; padding: 10px 20px">=20 <table id=3D"header-pattern" cellspacing=3D"0" cellpadding=3D"0" border=3D"= 0" style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table-rsp= ace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td id=3D"header-avatar-image-container" valign=3D"top" style=3D"padding: 0= px; border-collapse: collapse; vertical-align: top; width: 32px; padding-ri= ght: 9px"><a href=3D"https://cwiki.apache.org/confluence/display/~noble.pau= l@gmail.com?src=3Dmail&amp;src.mail.timestamp=3D1460535327722&amp;src.mail.= notification=3Dcom.atlassian.confluence.plugins.confluence-content-notifica= tions-plugin%3Apage-edited-notification&amp;src.mail.recipient=3D8aa980874e= bf4c1f0153f8e84cef212a" style=3D"color: #3b73af; text-decoration: none"><im= g id=3D"header-avatar-image" class=3D"image_fix" src=3D"cid:avatar_f28ca7b9= cf4d9bc13b72a24b1bd9230f" height=3D"32" width=3D"32" border=3D"0" style=3D"= border-radius: 3px; vertical-align: top"></a></td> <td id=3D"header-text-container" valign=3D"middle" style=3D"padding: 0px; b= order-collapse: collapse; vertical-align: middle; font-family: Arial, sans-= serif; font-size: 14px; line-height: 20px; mso-line-height-rule: exactly; m= so-text-raise: 1px">Noble Paul <strong>edited</strong> a page</td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <!-- End Header pattern -->=20 <tr>=20 <td id=3D"email-content-container" style=3D"padding: 0px; border-collapse: = collapse; padding: 0 20px">=20 <table id=3D"email-content-table" cellspacing=3D"0" cellpadding=3D"0" borde= r=3D"0" width=3D"100%" style=3D"border-collapse: collapse; mso-table-lspace= : 0pt; mso-table-rspace: 0pt; color: #333; border-spacing: 0; border-collap= se: separate">=20 <tbody>=20 <tr>=20 <td class=3D"email-content-rounded-top mobile-expand" style=3D"padding: 0px= ; border-collapse: collapse; color: #fff; padding: 0 15px 0 16px; height: 1= 5px; background-color: #fff; border-left: 1px solid #ccc; border-top: 1px s= olid #ccc; border-right: 1px solid #ccc; border-bottom: 0; border-top-right= -radius: 5px; border-top-left-radius: 5px">&nbsp;</td>=20 </tr>=20 <tr>=20 <td class=3D"email-content-main mobile-expand" style=3D"padding: 0px; borde= r-collapse: collapse; border-left: 1px solid #ccc; border-right: 1px solid = #ccc; border-top: 0; border-bottom: 0; padding: 0 15px 15px 16px; backgroun= d-color: #fff">=20 <table id=3D"page-title-pattern" cellspacing=3D"0" cellpadding=3D"0" border= =3D"0" width=3D"100%" style=3D"border-collapse: collapse; mso-table-lspace:= 0pt; mso-table-rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td id=3D"page-title-pattern-icon-image-container" valign=3D"top" style=3D"= padding: 0px; border-collapse: collapse; width: 16px; vertical-align: top">= =20 <table cellspacing=3D"0" cellpadding=3D"0" border=3D"0" style=3D"border-col= lapse: collapse; mso-table-lspace: 0pt; mso-table-rspace: 0pt; color: #333"= >=20 <tbody>=20 <tr>=20 <td id=3D"page-title-pattern-icon-image-container-cell" style=3D"padding: 0= px; border-collapse: collapse; width: 16px; padding: 9px 8px 0px 0px; mso-t= ext-raise: 5px; mso-line-height-rule: exactly"><a href=3D"https://cwiki.apa= che.org/confluence/display/solr/Config&#43;API?src=3Dmail&amp;src.mail.time= stamp=3D1460535327722&amp;src.mail.notification=3Dcom.atlassian.confluence.= plugins.confluence-content-notifications-plugin%3Apage-edited-notification&= amp;src.mail.recipient=3D8aa980874ebf4c1f0153f8e84cef212a&amp;src.mail.acti= on=3Dview" title=3D"page icon" style=3D"vertical-align: top;; color: #3b73a= f; text-decoration: none"><img style=3D"vertical-align: top; display: block= ;" src=3D"cid:page-icon" alt=3D"page icon" title=3D"page icon" height=3D"16= " width=3D"16" border=3D"0"></a></td>=20 </tr>=20 </tbody>=20 </table> </td> <td style=3D"vertical-align: top;; padding: 0px; border-collapse: collapse;= padding-right: 5px; font-size: 20px; line-height: 30px; mso-line-height-ru= le: exactly" id=3D"page-title-pattern-header-container"><span id=3D"page-ti= tle-pattern-header" style=3D"font-family: Arial, sans-serif; padding: 0; fo= nt-size: 20px; line-height: 30px; mso-text-raise: 2px; mso-line-height-rule= : exactly; vertical-align: middle"><a href=3D"https://cwiki.apache.org/conf= luence/display/solr/Config&#43;API?src=3Dmail&amp;src.mail.timestamp=3D1460= 535327722&amp;src.mail.notification=3Dcom.atlassian.confluence.plugins.conf= luence-content-notifications-plugin%3Apage-edited-notification&amp;src.mail= .recipient=3D8aa980874ebf4c1f0153f8e84cef212a&amp;src.mail.action=3Dview" t= itle=3D"Config API" style=3D"color: #3b73af; text-decoration: none">Config = API</a></span></td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td class=3D"email-content-main mobile-expand" style=3D"padding: 0px; borde= r-collapse: collapse; border-left: 1px solid #ccc; border-right: 1px solid = #ccc; border-top: 0; border-bottom: 0; padding: 0 15px 15px 16px; backgroun= d-color: #fff">=20 <table class=3D"content-excerpt-pattern" cellspacing=3D"0" cellpadding=3D"0= " border=3D"0" width=3D"100%" style=3D"border-collapse: collapse; mso-table= -lspace: 0pt; mso-table-rspace: 0pt; color: #333; font-family: Arial, sans-= serif; font-size: 14px; line-height: 20px; mso-line-height-rule: exactly; m= so-text-raise: 1px">=20 <tbody>=20 <tr>=20 <td class=3D"content-excerpt-pattern-container mobile-resize-text " style= =3D"padding: 0px; border-collapse: collapse; padding: 0 0 0 24px"> <p class= =3D"diff-context-placeholder" style=3D"margin: 10px 0 0 0; margin-top: 0">.= ..</p>=20 <ul class=3D"diff-block-target" style=3D"margin: 10px 0 0 0">=20 <li> <code style=3D"font-family: monospace">/config</code>:&nbsp;retrieve&n= bsp;or modify the config. GET to retrieve and POST for executing commands</= li>=20 <li> <code style=3D"font-family: monospace">/config/overlay</code>:&nbsp;re= trieve the details in the <code style=3D"font-family: monospace">configover= lay.json</code>&nbsp;alone</li>=20 <li> <code style=3D"font-family: monospace"><span class=3D"diff-html-added"= id=3D"added-diff-0" style=3D"font-size: 100%; background-color: #ddfade;">= /config/params</span></code><span class=3D"diff-html-added" style=3D"font-s= ize: 100%; background-color: #ddfade;"> : See </span><a href=3D"https://cwi= ki.apache.org/confluence/display/solr/Request&#43;Parameters&#43;API" rel= =3D"nofollow" style=3D"color: #3b73af; text-decoration: none"><span class= =3D"diff-html-added" style=3D"font-size: 100%; background-color: #ddfade;">= this page</span></a><span class=3D"diff-html-added" style=3D"font-size: 100= %; background-color: #ddfade;"> for more details</span> </li>=20 </ul> <h2 id=3D"ConfigAPI-Commands" class=3D"diff-block-context" style=3D"m= argin: 10px 0 0 0; font-size: 20px; font-weight: normal; line-height: 30px;= margin: 40px 0 0 0">Commands</h2> <p class=3D"diff-block-context" style=3D= "margin: 10px 0 0 0">This API uses specific commands to tell Solr what prop= erty or type of property to add to&nbsp;<code style=3D"font-family: monospa= ce">configoverlay.json</code>. The commands are passed as part of the data = sent with the request.</p> <p class=3D"diff-context-placeholder" style=3D"m= argin: 10px 0 0 0; margin-top: 0">...</p> </td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td class=3D"email-content-main mobile-expand action-padding last-row-paddi= ng" style=3D"padding: 0px; border-collapse: collapse; border-left: 1px soli= d #ccc; border-right: 1px solid #ccc; border-top: 0; border-bottom: 0; padd= ing: 0 15px 15px 16px; background-color: #fff; padding-bottom: 10px; paddin= g-bottom: 10px">=20 <table id=3D"actions-pattern" cellspacing=3D"0" cellpadding=3D"0" border=3D= "0" width=3D"100%" style=3D"border-collapse: collapse; mso-table-lspace: 0p= t; mso-table-rspace: 0pt; color: #333; font-family: Arial, sans-serif; font= -size: 14px; line-height: 20px; mso-line-height-rule: exactly; mso-text-rai= se: 1px">=20 <tbody>=20 <tr>=20 <td id=3D"actions-pattern-container" valign=3D"middle" style=3D"padding: 0p= x; border-collapse: collapse; padding: 15px 0 0 24px; vertical-align: middl= e">=20 <table align=3D"left" style=3D"border-collapse: collapse; mso-table-lspace:= 0pt; mso-table-rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td class=3D"actions-pattern-action-icon-container" style=3D"padding: 0px; = border-collapse: collapse; font-family: Arial, sans-serif; font-size: 14px;= line-height: 20px; mso-line-height-rule: exactly; mso-text-raise: 0px; ver= tical-align: middle"><a href=3D"https://cwiki.apache.org/confluence/display= /solr/Config&#43;API?src=3Dmail&amp;src.mail.timestamp=3D1460535327722&amp;= src.mail.notification=3Dcom.atlassian.confluence.plugins.confluence-content= -notifications-plugin%3Apage-edited-notification&amp;src.mail.recipient=3D8= aa980874ebf4c1f0153f8e84cef212a&amp;src.mail.action=3Dview" title=3D"View p= age Icon" style=3D"color: #3b73af; text-decoration: none"><img class=3D"act= ions-pattern-action-icon-image" height=3D"16" width=3D"16" border=3D"0" tit= le=3D"View page Icon" src=3D"cid:com.atlassian.confluence.plugins.confluenc= e-email-resources%3Aview-page-email-adg-footer-item%3Aicon" alt=3D"View pag= e Icon" style=3D"vertical-align: middle"></a></td> <td class=3D"actions-pattern-action-text-container" style=3D"padding: 0px; = border-collapse: collapse; font-family: Arial, sans-serif; font-size: 14px;= line-height: 20px; mso-line-height-rule: exactly; mso-text-raise: 4px; pad= ding-left: 5px; white-space: nowrap"><a href=3D"https://cwiki.apache.org/co= nfluence/display/solr/Config&#43;API?src=3Dmail&amp;src.mail.timestamp=3D14= 60535327722&amp;src.mail.notification=3Dcom.atlassian.confluence.plugins.co= nfluence-content-notifications-plugin%3Apage-edited-notification&amp;src.ma= il.recipient=3D8aa980874ebf4c1f0153f8e84cef212a&amp;src.mail.action=3Dview"= title=3D"View page" style=3D"color: #3b73af; text-decoration: none">View p= age</a></td> <td class=3D"actions-pattern-action-bull" style=3D"padding: 0px; border-col= lapse: collapse; font-family: Arial, sans-serif; font-size: 14px; line-heig= ht: 20px; mso-line-height-rule: exactly; mso-text-raise: 4px; color: #999; = padding: 0 5px">=E2=80=A2</td>=20 </tr>=20 </tbody>=20 </table>=20 <table align=3D"left" style=3D"border-collapse: collapse; mso-table-lspace:= 0pt; mso-table-rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td class=3D"actions-pattern-action-icon-container" style=3D"padding: 0px; = border-collapse: collapse; font-family: Arial, sans-serif; font-size: 14px;= line-height: 20px; mso-line-height-rule: exactly; mso-text-raise: 0px; ver= tical-align: middle"><a href=3D"https://cwiki.apache.org/confluence/display= /solr/Config&#43;API?showComments=3Dtrue&amp;showCommentArea=3Dtrue&amp;src= =3Dmail&amp;src.mail.timestamp=3D1460535327722&amp;src.mail.notification=3D= com.atlassian.confluence.plugins.confluence-content-notifications-plugin%3A= page-edited-notification&amp;src.mail.recipient=3D8aa980874ebf4c1f0153f8e84= cef212a&amp;src.mail.action=3Dcomment#addcomment" title=3D"Add comment Icon= " style=3D"color: #3b73af; text-decoration: none"><img class=3D"actions-pat= tern-action-icon-image" height=3D"16" width=3D"16" border=3D"0" title=3D"Ad= d comment Icon" src=3D"cid:com.atlassian.confluence.plugins.confluence-emai= l-resources%3Aadd-comment-to-content-email-adg-footer-item%3Aicon" alt=3D"A= dd comment Icon" style=3D"vertical-align: middle"></a></td> <td class=3D"actions-pattern-action-text-container" style=3D"padding: 0px; = border-collapse: collapse; font-family: Arial, sans-serif; font-size: 14px;= line-height: 20px; mso-line-height-rule: exactly; mso-text-raise: 4px; pad= ding-left: 5px; white-space: nowrap"><a href=3D"https://cwiki.apache.org/co= nfluence/display/solr/Config&#43;API?showComments=3Dtrue&amp;showCommentAre= a=3Dtrue&amp;src=3Dmail&amp;src.mail.timestamp=3D1460535327722&amp;src.mail= .notification=3Dcom.atlassian.confluence.plugins.confluence-content-notific= ations-plugin%3Apage-edited-notification&amp;src.mail.recipient=3D8aa980874= ebf4c1f0153f8e84cef212a&amp;src.mail.action=3Dcomment#addcomment" title=3D"= Add comment" style=3D"color: #3b73af; text-decoration: none">Add comment</a= ></td> <td class=3D"actions-pattern-action-bull" style=3D"padding: 0px; border-col= lapse: collapse; font-family: Arial, sans-serif; font-size: 14px; line-heig= ht: 20px; mso-line-height-rule: exactly; mso-text-raise: 4px; color: #999; = padding: 0 5px">=E2=80=A2</td>=20 </tr>=20 </tbody>=20 </table>=20 <table style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table= -rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td class=3D"actions-pattern-action-icon-container" style=3D"padding: 0px; = border-collapse: collapse; font-family: Arial, sans-serif; font-size: 14px;= line-height: 20px; mso-line-height-rule: exactly; mso-text-raise: 0px; ver= tical-align: middle"><a href=3D"https://cwiki.apache.org/confluence/plugins= /likes/like.action?contentId=3D50857507&amp;src=3Dmail&amp;src.mail.timesta= mp=3D1460535327722&amp;src.mail.notification=3Dcom.atlassian.confluence.plu= gins.confluence-content-notifications-plugin%3Apage-edited-notification&amp= ;src.mail.recipient=3D8aa980874ebf4c1f0153f8e84cef212a&amp;src.mail.action= =3Dlike" title=3D"Like Icon" style=3D"color: #3b73af; text-decoration: none= "><img class=3D"actions-pattern-action-icon-image" height=3D"16" width=3D"1= 6" border=3D"0" title=3D"Like Icon" src=3D"cid:com.atlassian.confluence.plu= gins.confluence-like%3Aview-email-adg-content-item%3Aicon" alt=3D"Like Icon= " style=3D"vertical-align: middle"></a></td> <td class=3D"actions-pattern-action-text-container" style=3D"padding: 0px; = border-collapse: collapse; font-family: Arial, sans-serif; font-size: 14px;= line-height: 20px; mso-line-height-rule: exactly; mso-text-raise: 4px; pad= ding-left: 5px; white-space: nowrap"><a href=3D"https://cwiki.apache.org/co= nfluence/plugins/likes/like.action?contentId=3D50857507&amp;src=3Dmail&amp;= src.mail.timestamp=3D1460535327722&amp;src.mail.notification=3Dcom.atlassia= n.confluence.plugins.confluence-content-notifications-plugin%3Apage-edited-= notification&amp;src.mail.recipient=3D8aa980874ebf4c1f0153f8e84cef212a&amp;= src.mail.action=3Dlike" title=3D"Like" style=3D"color: #3b73af; text-decora= tion: none">Like</a></td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td class=3D"email-content-rounded-bottom mobile-expand" style=3D"padding: = 0px; border-collapse: collapse; color: #fff; height: 5px; line-height: 5px;= padding: 0 15px 0 16px; background-color: #fff; border-bottom-right-radius= : 5px; border-bottom-left-radius: 5px; border-top: 0; border-left: 1px soli= d #ccc; border-bottom: 1px solid #ccc; border-right: 1px solid #ccc; mso-li= ne-height-rule: exactly">&nbsp;</td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td id=3D"footer-pattern" style=3D"padding: 0px; border-collapse: collapse;= padding: 12px 20px">=20 <table id=3D"footer-pattern-container" cellspacing=3D"0" cellpadding=3D"0" = border=3D"0" width=3D"100%" style=3D"border-collapse: collapse; mso-table-l= space: 0pt; mso-table-rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td id=3D"footer-pattern-links-container" width=3D"100%" style=3D"padding: = 0px; border-collapse: collapse; color: #999; font-size: 12px; line-height: = 18px; font-family: Arial, sans-serif; mso-line-height-rule: exactly; mso-te= xt-raise: 2px">=20 <table align=3D"left" style=3D"border-collapse: collapse; mso-table-lspace:= 0pt; mso-table-rspace: 0pt; color: #333; font-size: 12px; line-height: 18p= x; font-family: Arial, sans-serif; mso-line-height-rule: exactly; mso-text-= raise: 2px">=20 <tbody>=20 <tr>=20 <td class=3D"footer-pattern-links mobile-resize-text" style=3D"padding: 0px= ; border-collapse: collapse"><a href=3D"https://cwiki.apache.org/confluence= /users/removespacenotification.action?spaceKey=3Dsolr&amp;src=3Dmail&amp;sr= c.mail.timestamp=3D1460535327722&amp;src.mail.notification=3Dcom.atlassian.= confluence.plugins.confluence-content-notifications-plugin%3Apage-edited-no= tification&amp;src.mail.recipient=3D8aa980874ebf4c1f0153f8e84cef212a&amp;sr= c.mail.action=3Dstop-watching" title=3D"" style=3D"color: #3b73af; text-dec= oration: none">Stop watching space</a></td> <td class=3D"footer-pattern-links-bull" style=3D"padding: 0px; border-colla= pse: collapse; padding: 0 5px; color: #999">=E2=80=A2</td>=20 </tr>=20 </tbody>=20 </table>=20 <table style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table= -rspace: 0pt; color: #333; font-size: 12px; line-height: 18px; font-family:= Arial, sans-serif; mso-line-height-rule: exactly; mso-text-raise: 2px">=20 <tbody>=20 <tr>=20 <td class=3D"footer-pattern-links mobile-resize-text" style=3D"padding: 0px= ; border-collapse: collapse"><a href=3D"https://cwiki.apache.org/confluence= /users/editmyemailsettings.action?src=3Dmail&amp;src.mail.timestamp=3D14605= 35327722&amp;src.mail.notification=3Dcom.atlassian.confluence.plugins.confl= uence-content-notifications-plugin%3Apage-edited-notification&amp;src.mail.= recipient=3D8aa980874ebf4c1f0153f8e84cef212a&amp;src.mail.action=3Dmanage" = title=3D"" style=3D"color: #3b73af; text-decoration: none">Manage notificat= ions</a></td>=20 </tr>=20 </tbody>=20 </table> </td> <td id=3D"footer-pattern-logo-desktop-container" rowspan=3D"2" valign=3D"to= p" style=3D"padding: 0px; border-collapse: collapse; padding-left: 20px; ve= rtical-align: top">=20 <table style=3D"border-collapse: collapse; mso-table-lspace: 0pt; mso-table= -rspace: 0pt; color: #333">=20 <tbody>=20 <tr>=20 <td id=3D"footer-pattern-logo-desktop-padding" style=3D"padding: 0px; borde= r-collapse: collapse; padding-top: 3px"><img id=3D"footer-pattern-logo-desk= top" src=3D"cid:footer-desktop-logo" alt=3D"Confluence logo big" title=3D"C= onfluence logo big" width=3D"132" height=3D"20" class=3D"image_fix"></td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 <tr>=20 <td id=3D"footer-pattern-text" class=3D"mobile-resize-text" width=3D"100%" = style=3D"padding: 0px; border-collapse: collapse; color: #999; font-size: 1= 2px; line-height: 18px; font-family: Arial, sans-serif; mso-line-height-rul= e: exactly; mso-text-raise: 2px; display: none">This message was sent by At= lassian Confluence 5.8.4<br> <img id=3D"footer-pattern-logo-mobile" src=3D"= cid:footer-mobile-logo" alt=3D"" title=3D"" width=3D"0" height=3D"0" style= =3D"display: none; mso-hide: all"></td>=20 </tr>=20 </tbody>=20 </table> </td>=20 </tr>=20 </tbody>=20 </table>=20 <table id=3D"sealed-section" border=3D"0" cellpadding=3D"0" cellspacing=3D"= 0" width=3D"0" style=3D"border-collapse: collapse; mso-table-lspace: 0pt; m= so-table-rspace: 0pt; color: #333; display: none">=20 <tbody>=20 <tr>=20 <td style=3D"padding: 0px; border-collapse: collapse; border: 0; font-size:= 0px; line-height: 0; mso-line-height-rule: exactly"></td>=20 </tr>=20 </tbody>=20 </table> </body> </html>= ------=_Part_1157937_100703508.1460535327916--""" if __name__ == '__main__': unittest.main()
49.52693
196
0.726587
ec8898c4aac40337edcfc977a0a6bfbf011ed9bb
1,858
py
Python
reconstruct.py
robclouth/RAVE
a09dec0370b776038a001d8b03944181a20047d3
[ "MIT" ]
2
2022-01-29T20:09:19.000Z
2022-01-31T22:50:42.000Z
reconstruct.py
gnhdnb/RAVE
4cf6cbd8706a7acbb0882be09d2a2d5539cf713b
[ "MIT" ]
null
null
null
reconstruct.py
gnhdnb/RAVE
4cf6cbd8706a7acbb0882be09d2a2d5539cf713b
[ "MIT" ]
null
null
null
import torch torch.set_grad_enabled(False) from tqdm import tqdm from rave import RAVE from rave.core import search_for_run from effortless_config import Config from os import path, makedirs, environ from pathlib import Path import librosa as li import GPUtil as gpu import soundfile as sf class args(Config): CKPT = None # PATH TO YOUR PRETRAINED CHECKPOINT WAV_FOLDER = None # PATH TO YOUR WAV FOLDER OUT = "./reconstruction/" args.parse_args() # GPU DISCOVERY CUDA = gpu.getAvailable(maxMemory=.05) if len(CUDA): environ["CUDA_VISIBLE_DEVICES"] = str(CUDA[0]) use_gpu = 1 elif torch.cuda.is_available(): print("Cuda is available but no fully free GPU found.") print("Reconstruction may be slower due to concurrent processes.") use_gpu = 1 else: print("No GPU found.") use_gpu = 0 device = torch.device("cuda:0" if use_gpu else "cpu") # LOAD RAVE rave = RAVE.load_from_checkpoint( search_for_run(args.CKPT), strict=False, ).eval().to(device) # COMPUTE LATENT COMPRESSION RATIO x = torch.randn(1, 1, 2**14).to(device) z = rave.encode(x) ratio = x.shape[-1] // z.shape[-1] # SEARCH FOR WAV FILES audios = tqdm(list(Path(args.WAV_FOLDER).rglob("*.wav"))) # RECONSTRUCTION makedirs(args.OUT, exist_ok=True) for audio in audios: audio_name = path.splitext(path.basename(audio))[0] audios.set_description(audio_name) # LOAD AUDIO TO TENSOR x, sr = li.load(audio, sr=rave.sr) x = torch.from_numpy(x).reshape(1, 1, -1).float().to(device) # PAD AUDIO n_sample = x.shape[-1] pad = (ratio - (n_sample % ratio)) % ratio x = torch.nn.functional.pad(x, (0, pad)) # ENCODE / DECODE y = rave.decode(rave.encode(x)) y = y.reshape(-1).cpu().numpy()[:n_sample] # WRITE AUDIO sf.write(path.join(args.OUT, f"{audio_name}_reconstruction.wav"), y, sr)
23.518987
76
0.68676
a0d234386d182fd417ef1d4ddb5f2b61358e5f3e
216
py
Python
packageName/module.py
GaetanDesrues/EmptyPythonPackage
35caa1430666f1368c0f3d8f7945370c093b9b50
[ "MIT" ]
null
null
null
packageName/module.py
GaetanDesrues/EmptyPythonPackage
35caa1430666f1368c0f3d8f7945370c093b9b50
[ "MIT" ]
null
null
null
packageName/module.py
GaetanDesrues/EmptyPythonPackage
35caa1430666f1368c0f3d8f7945370c093b9b50
[ "MIT" ]
null
null
null
class Class: """ Documentation """ def __init__(self): pass def function(self, arg: int): """ Simple function :param int arg: Function argument """ pass
15.428571
45
0.5
64022e6fe5fd9c5a7bf48e48e5b0fc7d6562eb96
2,856
py
Python
connect_four/evaluation/incremental_victor/incremental_victor_evaluator.py
rpachauri/connect4
6caf6965afaaff6883193ac295c6ac5b1f4e9c4a
[ "MIT" ]
null
null
null
connect_four/evaluation/incremental_victor/incremental_victor_evaluator.py
rpachauri/connect4
6caf6965afaaff6883193ac295c6ac5b1f4e9c4a
[ "MIT" ]
null
null
null
connect_four/evaluation/incremental_victor/incremental_victor_evaluator.py
rpachauri/connect4
6caf6965afaaff6883193ac295c6ac5b1f4e9c4a
[ "MIT" ]
null
null
null
from connect_four.envs import ConnectFourEnv from connect_four.evaluation import ProofStatus, NodeType from connect_four.evaluation.simple_evaluator import SimpleEvaluator from connect_four.evaluation.board import Board from connect_four.evaluation.incremental_victor.graph.graph_manager import GraphManager from connect_four.evaluation.incremental_victor.solution.victor_solution_manager import VictorSolutionManager from connect_four.problem import ConnectFourGroupManager class IncrementalVictor(SimpleEvaluator): def __init__(self, model: ConnectFourEnv): super().__init__(model=model) problem_manager = ConnectFourGroupManager(env_variables=self.model.env_variables) solution_manager = VictorSolutionManager(env_variables=self.model.env_variables) self.graph_manager = GraphManager( player=self.model.env_variables.player_turn, problem_manager=problem_manager, solution_manager=solution_manager, ) self.reached_terminal_state = False def move(self, action: int): """ Modifies: - This Evaluator's model will be at the resulting state. Args: action (int): an action that can be applied in the current state of this evaluator's model environment. """ super().move(action=action) if self.done: self.reached_terminal_state = True else: board = Board(env_variables=self.model.env_variables) row = 0 playable_square = board.playable_square(col=action) if playable_square is not None: row = playable_square.row + 1 self.model.render() self.graph_manager.move(row=row, col=action) def undo_move(self): super().undo_move() if self.reached_terminal_state: self.reached_terminal_state = False else: self.graph_manager.undo_move() def evaluate(self) -> ProofStatus: proof_status = super().evaluate() if proof_status != ProofStatus.Unknown: return proof_status evaluation = self.graph_manager.evaluate() # board = Board(env_variables=self.model.env_variables) # evaluation = evaluator.evaluate(board=board) if evaluation is not None: if self.node_type == NodeType.OR: # If it is White's turn and the evaluation is not None, # then Black has found a way to disprove this node. return ProofStatus.Disproven else: # If it is Black's turn and the evaluation is not None, # then White has found a way to prove this node. return ProofStatus.Proven # If the evaluation is None, then this state is unknown. return ProofStatus.Unknown
38.594595
115
0.667017
1f92fd5433c046e175cf44e37cbe1bb6608ecb0e
10,497
py
Python
saleor/dashboard/drawercash/views.py
glosoftgroup/KahawaHardware
893e94246583addf41c3bb0d58d2ce6bcd233c4f
[ "BSD-3-Clause" ]
null
null
null
saleor/dashboard/drawercash/views.py
glosoftgroup/KahawaHardware
893e94246583addf41c3bb0d58d2ce6bcd233c4f
[ "BSD-3-Clause" ]
null
null
null
saleor/dashboard/drawercash/views.py
glosoftgroup/KahawaHardware
893e94246583addf41c3bb0d58d2ce6bcd233c4f
[ "BSD-3-Clause" ]
null
null
null
from django.shortcuts import get_object_or_404, redirect, render_to_response from django.template.response import TemplateResponse from django.http import HttpResponse from django.core.paginator import Paginator, PageNotAnInteger, InvalidPage, EmptyPage from django.db.models import Q from ..views import staff_member_required from ...userprofile.models import User, UserTrail from ...sale.models import Terminal, DrawerCash, TerminalHistoryEntry from ...decorators import permission_decorator, user_trail import logging debug_logger = logging.getLogger('debug_logger') info_logger = logging.getLogger('info_logger') error_logger = logging.getLogger('error_logger') @staff_member_required def transactions(request): try: transactions = DrawerCash.objects.all().order_by('-id') page = request.GET.get('page', 1) paginator = Paginator(transactions, 10) try: transactions = paginator.page(page) except PageNotAnInteger: transactions = paginator.page(1) except InvalidPage: transactions = paginator.page(1) except EmptyPage: transactions = paginator.page(paginator.num_pages) user_trail(request.user.name, 'accessed transaction', 'view') info_logger.info('User: ' + str(request.user.name) + 'accessed transaction:') return TemplateResponse(request, 'dashboard/cashmovement/transactions.html',{'transactions':transactions, 'pn': paginator.num_pages}) except TypeError as e: error_logger.error(e) return TemplateResponse(request, 'dashboard/cashmovement/transactions.html', {'transactions':transactions, 'pn': paginator.num_pages}) def transaction_pagination(request): page = int(request.GET.get('page', 1)) list_sz = request.GET.get('size') p2_sz = request.GET.get('psize') select_sz = request.GET.get('select_size') transactions = DrawerCash.objects.all().order_by('-id') if list_sz: paginator = Paginator(transactions, int(list_sz)) transactions = paginator.page(page) return TemplateResponse(request, 'dashboard/cashmovement/pagination/p2.html', {'transactions':transactions, 'pn': paginator.num_pages, 'sz': list_sz, 'gid': 0}) else: paginator = Paginator(transactions, 10) if p2_sz: paginator = Paginator(transactions, int(p2_sz)) transactions = paginator.page(page) return TemplateResponse(request, 'dashboard/cashmovement/pagination/paginate.html', {"transactions":transactions}) try: transactions = paginator.page(page) except PageNotAnInteger: transactions = paginator.page(1) except InvalidPage: transactions = paginator.page(1) except EmptyPage: transactions = paginator.page(paginator.num_pages) return TemplateResponse(request, 'dashboard/cashmovement/pagination/paginate.html', {"transactions":transactions}) @staff_member_required def transaction_search(request): if request.is_ajax(): page = request.GET.get('page', 1) list_sz = request.GET.get('size', 10) p2_sz = request.GET.get('psize') q = request.GET.get('q') if list_sz is None: sz = 10 else: sz = list_sz if q is not None: queryset_list = DrawerCash.objects.filter( Q(user__name__icontains=q) | Q(user__email__icontains=q) | Q(terminal__terminal_name__icontains=q) | Q(trans_type__icontains=q) | Q(manager__name__icontains=q) | Q(manager__email__icontains=q) ).order_by('-id') paginator = Paginator(queryset_list, 10) try: queryset_list = paginator.page(page) except PageNotAnInteger: queryset_list = paginator.page(1) except InvalidPage: queryset_list = paginator.page(1) except EmptyPage: queryset_list = paginator.page(paginator.num_pages) transactions = queryset_list if p2_sz: transactions = paginator.page(page) return TemplateResponse(request, 'dashboard/cashmovement/pagination/paginate.html', {"transactions":transactions}) return TemplateResponse(request, 'dashboard/cashmovement/pagination/search.html', {"transactions":transactions, 'pn': paginator.num_pages, 'sz': sz, 'q': q}) @staff_member_required @permission_decorator('sale.view_terminal') def terminals(request): try: users = Terminal.objects.all().order_by('-id') page = request.GET.get('page', 1) paginator = Paginator(users, 10) try: users = paginator.page(page) except PageNotAnInteger: users = paginator.page(1) except InvalidPage: users = paginator.page(1) except EmptyPage: users = paginator.page(paginator.num_pages) user_trail(request.user.name, 'accessed Terminals', 'view') info_logger.info('User: ' + str(request.user.name) + ' accessed terminals') return TemplateResponse(request, 'dashboard/terminal/terminals.html',{'users': users, 'pn': paginator.num_pages}) except TypeError as e: error_logger.error(e) return TemplateResponse(request, 'dashboard/terminal/terminals.html', {'users': users, 'pn': paginator.num_pages}) def terminal_pagination(request): page = int(request.GET.get('page', 1)) list_sz = request.GET.get('size') p2_sz = request.GET.get('psize') select_sz = request.GET.get('select_size') users = Terminal.objects.all().order_by('-id') if list_sz: paginator = Paginator(users, int(list_sz)) users = paginator.page(page) return TemplateResponse(request, 'dashboard/terminal/pagination/p2.html', {'users':users, 'pn': paginator.num_pages, 'sz': list_sz, 'gid': 0}) else: paginator = Paginator(users, 10) if p2_sz: paginator = Paginator(users, int(p2_sz)) users = paginator.page(page) return TemplateResponse(request, 'dashboard/terminal/pagination/paginate.html', {"users":users}) try: users = paginator.page(page) except PageNotAnInteger: users = paginator.page(1) except InvalidPage: users = paginator.page(1) except EmptyPage: users = paginator.page(paginator.num_pages) return TemplateResponse(request, 'dashboard/terminal/pagination/paginate.html', {"users":users}) @staff_member_required def terminal_search(request): if request.is_ajax(): page = request.GET.get('page', 1) list_sz = request.GET.get('size', 10) p2_sz = request.GET.get('psize') q = request.GET.get('q') if list_sz is None: sz = 10 else: sz = list_sz if q is not None: queryset_list = Terminal.objects.filter( Q(terminal_name__icontains=q)| Q(terminal_number__icontains=q) ).order_by('-id') paginator = Paginator(queryset_list, 10) try: queryset_list = paginator.page(page) except PageNotAnInteger: queryset_list = paginator.page(1) except InvalidPage: queryset_list = paginator.page(1) except EmptyPage: queryset_list = paginator.page(paginator.num_pages) users = queryset_list if p2_sz: users = paginator.page(page) return TemplateResponse(request, 'dashboard/terminal/pagination/paginate.html', {"users":users}) return TemplateResponse(request, 'dashboard/terminal/pagination/search.html', {"users":users, 'pn': paginator.num_pages, 'sz': sz, 'q': q}) @staff_member_required @permission_decorator('sale.add_terminal') def terminal_add(request): try: user_trail(request.user.name, 'accessed add terminal page', 'view') info_logger.info('User: ' + str(request.user.name) + 'accessed terminal add page') return TemplateResponse(request, 'dashboard/terminal/add_terminal.html',{}) except TypeError as e: error_logger.error(e) return HttpResponse('error accessing add terminal page') @staff_member_required def terminal_process(request): user = Terminal.objects.all() if request.method == 'POST': terminal_name = request.POST.get('name') terminal_number = request.POST.get('nid') new_user = Terminal.objects.create( terminal_name = terminal_name, terminal_number = terminal_number, ) try: new_user.save() user_trail(request.user.name, 'created Terminal: ' + str(terminal_name), 'add') info_logger.info('User: ' + str(request.user.name) + ' created terminal:' + str(terminal_name)) except Exception as e: error_logger.info(e) last_id = Terminal.objects.latest('id') return HttpResponse(last_id.id) def terminal_detail(request, pk): user = get_object_or_404(Terminal, pk=pk) user_trail(request.user.name, 'accessed terminal: ' + str(user.terminal_name), 'view') info_logger.info('User: ' + str(request.user.name) + ' accessed terminal:' + str(user.terminal_name)) return TemplateResponse(request, 'dashboard/terminal/detail.html', {'user':user}) def terminal_delete(request, pk): terminal = get_object_or_404(Terminal, pk=pk) if request.method == 'POST': terminal.delete() user_trail(request.user.name, 'deleted terminal: '+ str(terminal.terminal_name), 'delete') info_logger.info('User: ' + str(request.user.name) + ' deleted terminal:' + str(terminal.terminal_name)) return HttpResponse('success') def terminal_edit(request, pk): terminal = get_object_or_404(Terminal, pk=pk) ctx = {'user': terminal} user_trail(request.user.name, 'accessed edit page for user '+ str(terminal.terminal_name),'update') info_logger.info('User: '+str(request.user.name)+' accessed edit page for user: '+str(terminal.terminal_name)) return TemplateResponse(request, 'dashboard/terminal/terminal_edit.html', ctx) def terminal_update(request, pk): terminal = get_object_or_404(Terminal, pk=pk) if request.method == 'POST': name = request.POST.get('name') nid = request.POST.get('nid') terminal.terminal_name = name terminal.terminal_number = nid terminal.save() user_trail(request.user.name, 'updated terminal: '+ str(terminal.terminal_name)) info_logger.info('User: '+str(request.user.name)+' updated terminal: '+str(terminal.terminal_name)) return HttpResponse("success") @staff_member_required def terminal_history(request,pk=None): if request.method == 'GET': if pk: instance = get_object_or_404(Terminal, pk=pk) terminal_history = TerminalHistoryEntry.objects.filter(terminal=instance).order_by('-id') ctx = {'terminal_history':terminal_history} #user_trail(request.user.name, 'accessed terminal history for terminal: ' + str(instance.terminal_name), 'view') #info_logger.info('User: ' + str(request.user.name) + 'accessed terminal history for terminal for:' + str(user.terminal_name)) return TemplateResponse(request, 'dashboard/includes/_terminal_history.html', ctx) def user_trails(request): users = UserTrail.objects.all().order_by('id') user_trail(request.user.name, 'accessed user trail page') info_logger.info('User: '+str(request.user.name)+' accessed the user trail page') return TemplateResponse(request, 'dashboard/users/trail.html', {'users':users})
38.032609
136
0.742403
327549749a37a7a84bbd437ac70096d14037e18d
299
py
Python
ESP32S/workSpace/WS2812.py
hu-tianyi/AuTrix
4058cfba6d2d96b6a3f6b6564c0a85c855e57fa9
[ "MIT" ]
null
null
null
ESP32S/workSpace/WS2812.py
hu-tianyi/AuTrix
4058cfba6d2d96b6a3f6b6564c0a85c855e57fa9
[ "MIT" ]
null
null
null
ESP32S/workSpace/WS2812.py
hu-tianyi/AuTrix
4058cfba6d2d96b6a3f6b6564c0a85c855e57fa9
[ "MIT" ]
null
null
null
import machine, time, neopixel print("aaaaaaaaaaaaa") n = 256 p = 5 np = neopixel.NeoPixel(machine.Pin(p), n) for index in range (256): np[index] = (20,0,0) np.write() time.sleep_ms(500) for index in range (256): np[index] = (0,0,0) np.write() print("Executed WS2812 Command")
10.678571
41
0.638796
880055672d39f68bb8acb9f92ed8e5e1a7a151f5
1,572
py
Python
123/chessman/Pao.py
chenhongyan950312/xiangqidaima
159a814f86c10d8fceaead68dca8286ea41727fa
[ "MIT" ]
null
null
null
123/chessman/Pao.py
chenhongyan950312/xiangqidaima
159a814f86c10d8fceaead68dca8286ea41727fa
[ "MIT" ]
null
null
null
123/chessman/Pao.py
chenhongyan950312/xiangqidaima
159a814f86c10d8fceaead68dca8286ea41727fa
[ "MIT" ]
null
null
null
from ChessPiece import ChessPiece class Pao(ChessPiece): def get_image_file_name(self): if self.selected: if self.is_red: return "/home/chy/cchess-zero-master/images/RCS.GIF" else: return "/home/chy/cchess-zero-master/images/BCS.GIF" else: if self.is_red: return "/home/chy/cchess-zero-master/images/RC.GIF" else: return "/home/chy/cchess-zero-master/images/BC.GIF" def get_selected_image(self): if self.is_red: return "/home/chy/cchess-zero-master/images/RCS.GIF" else: return "/home/chy/cchess-zero-master/images/BCS.GIF" def can_move(self, board, dx, dy): if dx != 0 and dy != 0: #print 'no diag' return False nx, ny = self.x + dx, self.y + dy if nx < 0 or nx > 8 or ny < 0 or ny > 9: return False if (nx, ny) in board.pieces: if board.pieces[nx, ny].is_red == self.is_red: #print 'blocked by yourself' return False cnt = self.count_pieces(board, self.x, self.y, dx, dy) # print 'Pao cnt',cnt if (nx, ny) not in board.pieces: if cnt!= 0: #print 'blocked' return False else: if cnt != 1: #print 'cannot kill' return False return True def __init__(self, x, y, is_red, direction): ChessPiece.__init__(self, x, y, is_red, direction)
30.823529
68
0.521628
2337239a22ce53b8393e898c9d5c10391830e810
10,842
py
Python
CAIL2020/znwd/dumpes.py
ShenDezhou/CAIL
c4cfa98ab4ecedbce34a7a5a186830486047540c
[ "Apache-2.0" ]
71
2020-07-16T01:49:27.000Z
2022-03-27T16:55:00.000Z
CAIL2020/znwd/dumpes.py
ShenDezhou/CAIL
c4cfa98ab4ecedbce34a7a5a186830486047540c
[ "Apache-2.0" ]
11
2020-09-18T14:26:25.000Z
2022-02-09T23:49:33.000Z
CAIL2020/znwd/dumpes.py
ShenDezhou/CAIL
c4cfa98ab4ecedbce34a7a5a186830486047540c
[ "Apache-2.0" ]
16
2020-07-15T07:24:30.000Z
2022-03-19T05:41:11.000Z
import os import os.path import time import json import codecs import elasticsearch import progressbar from backports import csv from functools import wraps from zipfile import ZipFile, ZIP_DEFLATED FLUSH_BUFFER = 1000 # Chunk of docs to flush in temp file CONNECTION_TIMEOUT = 120 TIMES_TO_TRY = 3 RETRY_DELAY = 60 META_FIELDS = ['_id'] # Retry decorator for functions with exceptions def retry(ExceptionToCheck, tries=TIMES_TO_TRY, delay=RETRY_DELAY): def deco_retry(f): @wraps(f) def f_retry(*args, **kwargs): mtries = tries while mtries > 0: try: return f(*args, **kwargs) except ExceptionToCheck as e: print(e) print(('Retrying in {} seconds ...'.format(delay))) time.sleep(delay) mtries -= 1 else: print('Done.') try: return f(*args, **kwargs) except ExceptionToCheck as e: print(('Fatal Error: {}'.format(e))) exit(1) return f_retry return deco_retry class Es2disk: def __init__(self, opts): self.opts = opts self.num_results = 0 self.scroll_ids = [] self.scroll_time = '30m' self.csv_headers = list(META_FIELDS) if self.opts.meta_fields else [] self.tmp_file = '{}.tmp'.format(opts.output_file) @retry(elasticsearch.exceptions.ConnectionError, tries=TIMES_TO_TRY) def create_connection(self): es = elasticsearch.Elasticsearch(self.opts.url, timeout=CONNECTION_TIMEOUT, http_auth=self.opts.auth) es.cluster.health() self.es_conn = es @retry(elasticsearch.exceptions.ConnectionError, tries=TIMES_TO_TRY) def check_indexes(self): indexes = self.opts.index_prefixes if '_all' in indexes: indexes = ['_all'] else: indexes = [index for index in indexes if self.es_conn.indices.exists(index)] if not indexes: print(('Any of index(es) {} does not exist in {}.'.format(', '.join(self.opts.index_prefixes), self.opts.url))) exit(1) self.opts.index_prefixes = indexes @retry(elasticsearch.exceptions.ConnectionError, tries=TIMES_TO_TRY) def search_query(self): @retry(elasticsearch.exceptions.ConnectionError, tries=TIMES_TO_TRY) def next_scroll(scroll_id): return self.es_conn.scroll(scroll=self.scroll_time, scroll_id=scroll_id) search_args = dict( index=','.join(self.opts.index_prefixes), sort=','.join(self.opts.sort), scroll=self.scroll_time, size=self.opts.scroll_size, terminate_after=self.opts.max_results ) if self.opts.doc_types: search_args['doc_type'] = self.opts.doc_types if self.opts.query.startswith('@'): query_file = self.opts.query[1:] if os.path.exists(query_file): with codecs.open(query_file, mode='r', encoding='utf-8') as f: self.opts.query = f.read() else: print(('No such file: {}.'.format(query_file))) exit(1) if self.opts.raw_query: try: query = json.loads(self.opts.query) except ValueError as e: print(('Invalid JSON syntax in query. {}'.format(e))) exit(1) search_args['body'] = query else: query = self.opts.query if not self.opts.tags else '{} AND tags: ({})'.format( self.opts.query, ' AND '.join(self.opts.tags)) search_args['q'] = query if '_all' not in self.opts.fields: search_args['_source_include'] = ','.join(self.opts.fields) self.csv_headers.extend([field for field in self.opts.fields if '*' not in field]) if self.opts.debug_mode: print(('Using these indices: {}.'.format(', '.join(self.opts.index_prefixes)))) print(('Query[{0[0]}]: {0[1]}.'.format( ('Query DSL', json.dumps(query, ensure_ascii=False).encode('utf8')) if self.opts.raw_query else ( 'Lucene', query)) )) print(('Output field(s): {}.'.format(', '.join(self.opts.fields)))) print(('Sorting by: {}.'.format(', '.join(self.opts.sort)))) res = self.es_conn.search(**search_args) self.num_results = res['hits']['total'] print(('Found {} results.'.format(self.num_results))) if self.opts.debug_mode: print((json.dumps(res, ensure_ascii=False).encode('utf8'))) if self.num_results > 0: codecs.open(self.opts.output_file, mode='w', encoding='utf-8').close() codecs.open(self.tmp_file, mode='w', encoding='utf-8').close() hit_list = [] total_lines = 0 widgets = ['Run query ', progressbar.Bar(left='[', marker='#', right=']'), progressbar.FormatLabel(' [%(value)i/%(max)i] ['), progressbar.Percentage(), progressbar.FormatLabel('] [%(elapsed)s] ['), progressbar.ETA(), '] [', progressbar.FileTransferSpeed(unit='docs'), ']' ] bar = progressbar.ProgressBar(widgets=widgets, maxval=self.num_results).start() while total_lines != self.num_results: if res['_scroll_id'] not in self.scroll_ids: self.scroll_ids.append(res['_scroll_id']) if not res['hits']['hits']: print(('Scroll[{}] expired(multiple reads?). Saving loaded data.'.format(res['_scroll_id']))) break for hit in res['hits']['hits']: total_lines += 1 bar.update(total_lines) hit_list.append(hit) if len(hit_list) == FLUSH_BUFFER: self.flush_to_file(hit_list) hit_list = [] if self.opts.max_results: if total_lines == self.opts.max_results: self.flush_to_file(hit_list) print(('Hit max result limit: {} records'.format(self.opts.max_results))) return res = next_scroll(res['_scroll_id']) self.flush_to_file(hit_list) bar.finish() def flush_to_file(self, hit_list): def to_keyvalue_pairs(source, ancestors=[], header_delimeter='.'): def is_list(arg): return type(arg) is list def is_dict(arg): return type(arg) is dict if is_dict(source): for key in list(source.keys()): to_keyvalue_pairs(source[key], ancestors + [key]) elif is_list(source): if self.opts.kibana_nested: [to_keyvalue_pairs(item, ancestors) for item in source] else: [to_keyvalue_pairs(item, ancestors + [str(index)]) for index, item in enumerate(source)] else: header = header_delimeter.join(ancestors) if header not in self.csv_headers: self.csv_headers.append(header) try: out[header] = '{}{}{}'.format(out[header], self.opts.delimiter, source) except: out[header] = source with codecs.open(self.tmp_file, mode='a', encoding='utf-8') as tmp_file: for hit in hit_list: out = {field: hit[field] for field in META_FIELDS} if self.opts.meta_fields else {} if '_source' in hit and len(hit['_source']) > 0: to_keyvalue_pairs(hit['_source']) tmp_file.write('{}\n'.format(json.dumps(out))) tmp_file.close() def write_to_csv(self): if self.num_results > 0: self.num_results = sum(1 for line in codecs.open(self.tmp_file, mode='r', encoding='utf-8')) if self.num_results > 0: output_file = codecs.open(self.opts.output_file, mode='a', encoding='utf-8') csv_writer = csv.DictWriter(output_file, fieldnames=self.csv_headers) csv_writer.writeheader() timer = 0 widgets = ['Write to csv ', progressbar.Bar(left='[', marker='#', right=']'), progressbar.FormatLabel(' [%(value)i/%(max)i] ['), progressbar.Percentage(), progressbar.FormatLabel('] [%(elapsed)s] ['), progressbar.ETA(), '] [', progressbar.FileTransferSpeed(unit='lines'), ']' ] bar = progressbar.ProgressBar(widgets=widgets, maxval=self.num_results).start() for line in codecs.open(self.tmp_file, mode='r', encoding='utf-8'): timer += 1 bar.update(timer) csv_writer.writerow(json.loads(line)) output_file.close() bar.finish() if self.opts.zip: with ZipFile(self.opts.output_file + ".zip", mode='a', compression=ZIP_DEFLATED) as zip_file: zip_file.write(self.opts.output_file) os.remove(self.opts.output_file) else: print(('There is no docs with selected field(s): {}.'.format(','.join(self.opts.fields)))) os.remove(self.tmp_file) def clean_scroll_ids(self): try: self.es_conn.clear_scroll(body=','.join(self.scroll_ids)) except: pass class Opts(object): def __init__(self, d): self.__dict__ = d if __name__ == "__main__": opts = {} opts["url"] = "http://192.168.10.23:9400" opts["index_prefixes"] = ["znwd_faxiaobao_3"] opts["doc_types"] = "znwd_test3_2" opts["fields"] = ["title", "content", "error_content"] opts["query"] = "*" opts["output_file"] = "data_train.csv" opts["scroll_size"] = 10000 opts["meta_fields"] = False opts["auth"] = False opts["sort"] = [] opts["max_results"] = 7137760 opts["raw_query"] = False opts["tags"] = [] opts["debug_mode"] = False opts["zip"] = True es = Es2disk(Opts(opts)) es.create_connection() es.check_indexes() es.search_query() es.write_to_csv() es.clean_scroll_ids()
38.176056
113
0.533758
49b671f59e9c39669b90a36f09980c98c15bcd3b
442
py
Python
docker-deploy/web-app/Ride_Share/migrations/0025_auto_20200203_1931.py
universebh/ride_share
f5426b13ed256c6d6a0e966e2306da0f5fce8235
[ "MIT" ]
null
null
null
docker-deploy/web-app/Ride_Share/migrations/0025_auto_20200203_1931.py
universebh/ride_share
f5426b13ed256c6d6a0e966e2306da0f5fce8235
[ "MIT" ]
null
null
null
docker-deploy/web-app/Ride_Share/migrations/0025_auto_20200203_1931.py
universebh/ride_share
f5426b13ed256c6d6a0e966e2306da0f5fce8235
[ "MIT" ]
null
null
null
# Generated by Django 2.2.9 on 2020-02-04 00:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Ride_Share', '0024_auto_20200203_1929'), ] operations = [ migrations.AlterField( model_name='myuser', name='email', field=models.EmailField(help_text='Required', max_length=254, verbose_name='Email address'), ), ]
23.263158
104
0.624434
e7a5b22d59e2cfa4f723314eefc955e28c4a849a
630
py
Python
api/schemas/schemas.py
JackyCJ/flask-restful-login
1bd31ee3da8ca667dc7592123ad5ee700dcb2595
[ "MIT" ]
76
2017-07-15T15:52:51.000Z
2022-03-30T04:45:05.000Z
api/schemas/schemas.py
JackyCJ/flask-restful-login
1bd31ee3da8ca667dc7592123ad5ee700dcb2595
[ "MIT" ]
83
2019-08-10T06:58:11.000Z
2022-03-31T16:29:37.000Z
api/schemas/schemas.py
JackyCJ/flask-restful-login
1bd31ee3da8ca667dc7592123ad5ee700dcb2595
[ "MIT" ]
23
2016-07-14T09:06:51.000Z
2022-03-28T07:54:39.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- from marshmallow import Schema, fields class BaseUserSchema(Schema): """ Base user schema returns all fields but this was not used in user handlers. """ # Schema parameters. id = fields.Int(dump_only=True) username = fields.Str() email = fields.Str() password = fields.Str() created = fields.Str() class UserSchema(Schema): """ User schema returns only username, email and creation time. This was used in user handlers. """ # Schema parameters. username = fields.Str() email = fields.Str() created = fields.Str()
19.090909
95
0.639683
e2fdedd0e2c60b0ecc6c71da7e65a08d5de439b2
10,821
py
Python
dqn/dueling_network_old.py
20chase/cartpole_rl
687fc30f7e69f4850c545dce74f4e844d75fd732
[ "MIT" ]
3
2019-07-18T09:09:47.000Z
2021-11-17T11:05:12.000Z
dqn/dueling_network_old.py
20chase/cartpole_rl
687fc30f7e69f4850c545dce74f4e844d75fd732
[ "MIT" ]
null
null
null
dqn/dueling_network_old.py
20chase/cartpole_rl
687fc30f7e69f4850c545dce74f4e844d75fd732
[ "MIT" ]
null
null
null
import tensorflow as tf import tensorlayer as tl import gym import numpy as np import random import os from gym import wrappers from collections import deque # Hyper Parameters for DQN GAMMA = 0.99 # discount factor for target Q INITIAL_EPSILON = 1 # starting value of epsilon FINAL_EPSILON = 0.01 # final value of epsilon EXPLOER_NUM = 10000 REPLAY_SIZE = 20000 # experience replay buffer size BATCH_SIZE = 64 # size of minibatch LEARNING_RATE = 1e-4 DECLAY_FLAG = True DECLAY_NUM = 1e-5 DISPLAY = False SAVE = False LOAD = False MODE_NAME = 'LunarLander-v2' # MODE_NAME = 'Atlantis-ram-v0' EPISODE = 10000 # Episode limitation STEP = 10000 # Step limitation in an episode TEST = 100 UPDATE_TIME = 500 OBSERVE_NUM = 32 TARGET_NUM = 195 EVAL_FLAG = False class DQN(): # DQN Agent def __init__(self, env): # init experience replay self.replay_buffer = deque() # init some parameters self.time_step = 0 self.reward = 0 self.epsilon = INITIAL_EPSILON self.state_dim = env.observation_space.shape[0] self.action_dim = env.action_space.n print 'state_dim:', self.state_dim, ' action_dim:', self.action_dim self.create_Q_network() self.create_Q_network_target() self.create_training_method() # Init session self.session = tf.InteractiveSession() self.merged = tf.summary.merge_all() self.train_writer = tf.summary.FileWriter('/tmp/train', self.session.graph) self.session.run(tf.global_variables_initializer()) def create_Q_network(self): # input layer self.state_input = tf.placeholder("float",[None,self.state_dim]) self.network = tl.layers.InputLayer(self.state_input, name='Input') self.network = tl.layers.DenseLayer(self.network, n_units=200, act=tf.nn.relu, name='relu1') self.network = tl.layers.DenseLayer(self.network, n_units=200, act=tf.nn.relu, name='relu2') self.network = tl.layers.DenseLayer(self.network, n_units=200, act=tf.nn.relu, name='relu3') self.network = tl.layers.DenseLayer(self.network, n_units=200, act=tf.nn.relu, name='relu4') self.network_V = tl.layers.DenseLayer(self.network, n_units=200, act=tf.nn.relu, name='V_1') self.network_V = tl.layers.DenseLayer(self.network_V, n_units=200, act=tf.nn.relu, name='V_2') self.network_V = tl.layers.DenseLayer(self.network_V, n_units=1, name='output_V') self.network_A = tl.layers.DenseLayer(self.network, n_units=200, act=tf.nn.relu, name='A_1') self.network_A = tl.layers.DenseLayer(self.network_A, n_units=200, act=tf.nn.relu, name='A_2') self.network_A = tl.layers.DenseLayer(self.network_A, n_units=self.action_dim, name='output_A') self.value_function = self.network_V.outputs self.advantage_function = self.network_A.outputs def create_Q_network_target(self): # input layer self.state_input_target = tf.placeholder("float",[None,self.state_dim]) self.network_target = tl.layers.InputLayer(self.state_input_target, name='Input_target') self.network_target = tl.layers.DenseLayer(self.network_target, n_units=200, act=tf.nn.relu, name='relu_target_1') self.network_target = tl.layers.DenseLayer(self.network_target, n_units=200, act=tf.nn.relu, name='relu_target_2') self.network_target = tl.layers.DenseLayer(self.network_target, n_units=200, act=tf.nn.relu, name='relu_target_3') self.network_target = tl.layers.DenseLayer(self.network_target, n_units=200, act=tf.nn.relu, name='relu_target_4') self.network_V_target = tl.layers.DenseLayer(self.network_target, n_units=200, act=tf.nn.relu, name='V_1_target') self.network_V_target = tl.layers.DenseLayer(self.network_V_target, n_units=200, act=tf.nn.relu, name='V_2_target') self.network_V_target = tl.layers.DenseLayer(self.network_V_target, n_units=1, name='output_V_target') self.network_A_target = tl.layers.DenseLayer(self.network_target, n_units=200, act=tf.nn.relu, name='A_1_target') self.network_A_target = tl.layers.DenseLayer(self.network_A_target, n_units=200, act=tf.nn.relu, name='A_2_target') self.network_A_target = tl.layers.DenseLayer(self.network_A_target, n_units=self.action_dim, name='output_A_target') self.value_function_target = self.network_V_target.outputs self.advantage_function_target = self.network_A_target.outputs def create_training_method(self): self.action_input = tf.placeholder("float",[None,self.action_dim]) # one hot presentation self.y_input = tf.placeholder("float",[None]) self.reward_sum = tf.placeholder("float") self.epsilon_sum = tf.placeholder("float") self.replay_size = tf.placeholder("float") A_origin = tf.reduce_sum(tf.multiply(self.advantage_function, self.action_input),reduction_indices = 1) A_baseline = tf.reduce_mean(self.advantage_function, reduction_indices = 1) Q_action = self.value_function + (A_origin - A_baseline) self.cost = tf.reduce_mean(tf.square(self.y_input - Q_action)) A_value = tf.reduce_mean(self.advantage_function, axis=0) A_baseline_value = tf.reduce_mean(A_baseline) V_value = tf.reduce_mean(self.value_function) with tf.name_scope('loss'): tf.summary.scalar('cost', self.cost) with tf.name_scope('reward'): tf.summary.scalar('reward_mean', self.reward_sum) with tf.name_scope('Q_value_nomalize'): tf.summary.scalar('Q_value', V_value + (A_value[0] - A_baseline_value)) tf.summary.scalar('Q_value', V_value + (A_value[1] - A_baseline_value)) # tf.summary.scalar('Q_value', V_value + (A_value[2] - A_baseline_value)) with tf.name_scope('param'): tf.summary.scalar('epsilon', self.epsilon_sum) tf.summary.scalar('replay_size', self.replay_size) self.optimizer_1 = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.cost) # self.optimizer_2 = tf.train.RMSPropOptimizer(0.00025,0.99,0.0,1e-7).minimize(self.cost) # self.optimizer_3 = tf.train.RMSPropOptimizer(0.00025,0.99,0.0,1e-8).minimize(self.cost) def perceive(self,state,action,reward,next_state,done): one_hot_action = np.zeros(self.action_dim) one_hot_action[action] = 1 self.replay_buffer.append((state,one_hot_action,reward,next_state,done)) if len(self.replay_buffer) > REPLAY_SIZE: self.replay_buffer.popleft() if len(self.replay_buffer) > BATCH_SIZE: self.train_Q_network() def write_reward(self, reward_sum): self.reward = reward_sum def train_Q_network(self): self.time_step += 1 # Step 1: obtain random minibatch from replay memory minibatch = random.sample(self.replay_buffer,BATCH_SIZE) state_batch = [data[0] for data in minibatch] action_batch = [data[1] for data in minibatch] reward_batch = [data[2] for data in minibatch] next_state_batch = [data[3] for data in minibatch] # Step 2: calculate y y_batch = [] value_target_batch = self.value_function_target.eval(feed_dict = {self.state_input_target:next_state_batch}) advantage_target_batch = self.advantage_function_target.eval(feed_dict = {self.state_input_target:next_state_batch}) advantage_baseline_batch = np.mean(advantage_target_batch, axis = 1) advantage_baseline_batch = advantage_baseline_batch.reshape(BATCH_SIZE, 1) advantage_batch = self.advantage_function.eval(feed_dict = {self.state_input:state_batch}) # print '1:', np.shape(value_target_batch) # print '2:', np.shape(advantage_target_batch) # print '3:', np.shape(advantage_baseline_batch) # print '4:', np.shape(advantage_batch) # print '1-1:', value_target_batch[0][0] # print '3-1:', advantage_baseline_batch[0] # print '4-1:', np.argmax(advantage_batch[0]) for i in range(0, BATCH_SIZE): done = minibatch[i][4] if done: y_batch.append(reward_batch[i]) else : y_batch.append(reward_batch[i] + GAMMA * (value_target_batch[i][0] + (advantage_target_batch[i][np.argmax(advantage_batch[i])] - advantage_baseline_batch[i][0]))) replay_size = len(self.replay_buffer) summary, _ = self.session.run([self.merged, self.optimizer_1], feed_dict={ self.y_input:y_batch, self.action_input:action_batch, self.state_input:state_batch, self.reward_sum:self.reward, self.epsilon_sum:self.epsilon, self.replay_size:replay_size}) self.train_writer.add_summary(summary, self.time_step) if self.time_step % UPDATE_TIME == 0: # print 'updating...' tl.files.assign_params(self.session, self.network.all_params, self.network_target) tl.files.assign_params(self.session, self.network_A.all_params, self.network_A_target) tl.files.assign_params(self.session, self.network_V.all_params, self.network_V_target) def egreedy_action(self,state): if self.time_step < OBSERVE_NUM: return random.randint(0,self.action_dim - 1) if DECLAY_FLAG: self.epsilon *= (1 - DECLAY_NUM) else: self.epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLOER_NUM if self.epsilon < FINAL_EPSILON: self.epsilon = FINAL_EPSILON Q_value = self.advantage_function.eval(feed_dict = {self.state_input:[state]})[0] if random.random() <= self.epsilon: return random.randint(0,self.action_dim - 1) else: return np.argmax(Q_value) def action(self,state): return np.argmax(self.Q_value.eval(feed_dict = { self.state_input:[state] })[0]) def train_game(): env = gym.make(MODE_NAME) if EVAL_FLAG: env = wrappers.Monitor(env, '/tmp/' + MODE_NAME) agent = DQN(env) if LOAD is True: params = tl.files.load_npz(name=MODE_NAME + '.npz') tl.files.assign_params(agent.session, params, agent.network) reward_mean = 0 reward_sum = 0 end_flag = False for episode in xrange(EPISODE): # initialize task state = env.reset() if end_flag: break; # Train for step in xrange(STEP): if DISPLAY is True: env.render() action = agent.egreedy_action(state) # e-greedy action for train next_state,reward,done,_ = env.step(action) reward_sum += reward agent.perceive(state,action,reward,next_state,done) state = next_state if done: agent.write_reward(reward_sum) reward_mean += reward_sum print 'epsido: ', episode, '... reward_sum: ', reward_sum reward_sum = 0 if episode % TEST == 0: if SAVE is True: tl.files.save_npz(agent.network.all_params, name=MODE_NAME + '.npz') reward_mean /= (TEST + 1) if (reward_mean > TARGET_NUM): end_flag = True print 'episode:', episode, ' reward_mean:', reward_mean, ' epsilon: ', agent.epsilon break if __name__ == '__main__': train_game() if EVAL_FLAG: gym.upload('/tmp/' + MODE_NAME, api_key='sk_nXYWtyR0CfjmTgSiJVJA')
37.442907
170
0.712503
69ad7163f8d258608d0f58bb9ccc2e396ca4ee6f
2,325
py
Python
setup.py
Wi11iamDing/toad
3b22cc9a5d83255d394da483ec47b0de5f862c07
[ "MIT" ]
1
2021-04-29T08:59:26.000Z
2021-04-29T08:59:26.000Z
setup.py
lijihong111/toad
3b22cc9a5d83255d394da483ec47b0de5f862c07
[ "MIT" ]
null
null
null
setup.py
lijihong111/toad
3b22cc9a5d83255d394da483ec47b0de5f862c07
[ "MIT" ]
null
null
null
import os import numpy as np from setuptools import setup, find_packages, Extension NAME = 'toad' CURRENT_PATH = os.path.abspath(os.path.dirname(__file__)) VERSION_FILE = os.path.join(CURRENT_PATH, NAME, 'version.py') def get_version(): ns = {} with open(VERSION_FILE) as f: exec(f.read(), ns) return ns['__version__'] def get_ext_modules(): from Cython.Build import cythonize extensions = [ Extension('toad.c_utils', sources = ['toad/c_utils.pyx'], include_dirs = [np.get_include()]), Extension('toad.merge', sources = ['toad/merge.pyx'], include_dirs = [np.get_include()]), ] return cythonize(extensions) def get_requirements(stage = None): file_name = 'requirements' if stage is not None: file_name = f"{file_name}-{stage}" requirements = [] with open(f"{file_name}.txt", 'r') as f: for line in f: line = line.strip() if not line or line.startswith('-'): continue requirements.append(line) return requirements setup( name = NAME, version = get_version(), description = 'Toad is dedicated to facilitating model development process, especially for a scorecard.', long_description = open('README.md', encoding = 'utf-8').read(), long_description_content_type = 'text/markdown', url = 'https://github.com/amphibian-dev/toad', author = 'ESC Team', author_email = 'secbone@gmail.com', packages = find_packages(exclude = ['tests']), include_dirs = [np.get_include()], ext_modules = get_ext_modules(), include_package_data = True, python_requires = '>=3.6', install_requires = get_requirements(), extras_require = { 'nn': get_requirements('nn') }, tests_require = get_requirements('test'), license = 'MIT', classifiers = [ 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], entry_points = { 'console_scripts': [ 'toad = toad.cli:main', ], }, )
28.012048
109
0.610753
f161be15510630801958c75c71e0feeccffe4eeb
2,551
py
Python
train.py
x052/proxy-detector
bcd1fca7c11d784364197ff240dbfbe4bca9f895
[ "MIT" ]
null
null
null
train.py
x052/proxy-detector
bcd1fca7c11d784364197ff240dbfbe4bca9f895
[ "MIT" ]
1
2018-04-16T20:07:35.000Z
2018-04-17T17:27:55.000Z
train.py
x052/proxy-detector
bcd1fca7c11d784364197ff240dbfbe4bca9f895
[ "MIT" ]
1
2019-11-18T15:30:35.000Z
2019-11-18T15:30:35.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import tempfile import itertools import pandas as pd from six.moves import urllib import tensorflow as tf CSV_COLUMNS = [ "isProxy", "org", "continentCode", "countryCode" ] org = tf.feature_column.categorical_column_with_hash_bucket( "org", hash_bucket_size=10000, dtype=tf.string) continentCode = tf.feature_column.categorical_column_with_hash_bucket( "continentCode", hash_bucket_size=200, dtype=tf.string) countryCode = tf.feature_column.categorical_column_with_hash_bucket( "countryCode", hash_bucket_size=400, dtype=tf.string) # Wide columns and deep columns. base_columns = [ org, continentCode, countryCode ] def build_estimator(model_dir): """Build an estimator.""" m = tf.estimator.LinearClassifier( model_dir=model_dir, feature_columns=base_columns, optimizer=tf.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=1.0, l2_regularization_strength=1.0) ) return m def input_fn(data_file, num_epochs, num_threads, shuffle): """Input builder function.""" df_data = pd.read_csv( tf.gfile.Open(data_file), names=CSV_COLUMNS, skipinitialspace=True, engine="python", skiprows=1) # remove NaN elements df_data = df_data.dropna(how="any", axis=0) labels = df_data["isProxy"].apply(lambda x: x).astype(int) return tf.estimator.inputs.pandas_input_fn( x=df_data, y=labels, batch_size=100, num_epochs=num_epochs, shuffle=shuffle, num_threads=num_threads) def train_and_eval(): """Train and evaluate the model.""" m = build_estimator(model_dir) # set num_epochs to None to get infinite stream of data. m.train( input_fn=input_fn(train_file_name, num_epochs=1, num_threads=1, shuffle=True), steps=2000) # set steps to None to run evaluation until all data consumed. results = m.evaluate( input_fn=input_fn(test_file_name, num_epochs=1, num_threads=1, shuffle=True), steps=None) print("model directory = %s" % model_dir) for key in sorted(results): print("%s: %s" % (key, results[key])) predictions = m.predict(input_fn=input_fn(test_file_name, num_epochs=1, num_threads=1, shuffle=False)) for p in predictions: pass train_file_name = "./data/testingIpData.csv" test_file_name = "./data/trainingIpData.csv" model_dir = "./model" train_and_eval()
28.032967
106
0.713838
70d1f37da66e7f76b41422793c0a4900d1874961
94
py
Python
p.py
usha324/python
7aa967b8dac8cd0c466652db448cb7e405821389
[ "bzip2-1.0.6" ]
null
null
null
p.py
usha324/python
7aa967b8dac8cd0c466652db448cb7e405821389
[ "bzip2-1.0.6" ]
null
null
null
p.py
usha324/python
7aa967b8dac8cd0c466652db448cb7e405821389
[ "bzip2-1.0.6" ]
null
null
null
str = "this is string example....programmer!!!"; print "Length of the string: ", len(str)
23.5
49
0.638298
b3480a956cd92e53b52bc9c62f69424a36d09e42
7,012
py
Python
uhd_restpy/testplatform/sessions/ixnetwork/topology/spbsimedgeisidlist_cfeb124762b8e4653da4ea2e084e78c8.py
rfrye-github/ixnetwork_restpy
23eeb24b21568a23d3f31bbd72814ff55eb1af44
[ "MIT" ]
null
null
null
uhd_restpy/testplatform/sessions/ixnetwork/topology/spbsimedgeisidlist_cfeb124762b8e4653da4ea2e084e78c8.py
rfrye-github/ixnetwork_restpy
23eeb24b21568a23d3f31bbd72814ff55eb1af44
[ "MIT" ]
null
null
null
uhd_restpy/testplatform/sessions/ixnetwork/topology/spbsimedgeisidlist_cfeb124762b8e4653da4ea2e084e78c8.py
rfrye-github/ixnetwork_restpy
23eeb24b21568a23d3f31bbd72814ff55eb1af44
[ "MIT" ]
null
null
null
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from uhd_restpy.base import Base from uhd_restpy.files import Files class SpbSimEdgeIsidList(Base): """ISIS SPB Simulated Edge ISID Configuration The SpbSimEdgeIsidList class encapsulates a required spbSimEdgeIsidList resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'spbSimEdgeIsidList' _SDM_ATT_MAP = { 'Active': 'active', 'Count': 'count', 'DescriptiveName': 'descriptiveName', 'Isid': 'isid', 'ItagEthernetType': 'itagEthernetType', 'Name': 'name', 'Rbit': 'rbit', 'Tbit': 'tbit', 'TransmissionType': 'transmissionType', } def __init__(self, parent): super(SpbSimEdgeIsidList, self).__init__(parent) @property def Connector(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.connector_d0d942810e4010add7642d3914a1f29b.Connector): An instance of the Connector class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.topology.connector_d0d942810e4010add7642d3914a1f29b import Connector return Connector(self) @property def Active(self): """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Activate/Deactivate Configuration """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Active'])) @property def Count(self): """ Returns ------- - number: Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group. """ return self._get_attribute(self._SDM_ATT_MAP['Count']) @property def DescriptiveName(self): """ Returns ------- - str: Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context. """ return self._get_attribute(self._SDM_ATT_MAP['DescriptiveName']) @property def Isid(self): """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): I-SID """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Isid'])) @property def ItagEthernetType(self): """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): I-Tag Ethernet Type """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ItagEthernetType'])) @property def Name(self): """ Returns ------- - str: Name of NGPF element, guaranteed to be unique in Scenario """ return self._get_attribute(self._SDM_ATT_MAP['Name']) @Name.setter def Name(self, value): self._set_attribute(self._SDM_ATT_MAP['Name'], value) @property def Rbit(self): """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): R Bit """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Rbit'])) @property def Tbit(self): """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): T Bit """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Tbit'])) @property def TransmissionType(self): """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Transmission Type """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['TransmissionType'])) def update(self, Name=None): """Updates spbSimEdgeIsidList resource on the server. This method has some named parameters with a type: obj (Multivalue). The Multivalue class has documentation that details the possible values for those named parameters. Args ---- - Name (str): Name of NGPF element, guaranteed to be unique in Scenario Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def get_device_ids(self, PortNames=None, Active=None, Isid=None, ItagEthernetType=None, Rbit=None, Tbit=None, TransmissionType=None): """Base class infrastructure that gets a list of spbSimEdgeIsidList device ids encapsulated by this object. Use the optional regex parameters in the method to refine the list of device ids encapsulated by this object. Args ---- - PortNames (str): optional regex of port names - Active (str): optional regex of active - Isid (str): optional regex of isid - ItagEthernetType (str): optional regex of itagEthernetType - Rbit (str): optional regex of rbit - Tbit (str): optional regex of tbit - TransmissionType (str): optional regex of transmissionType Returns ------- - list(int): A list of device ids that meets the regex criteria provided in the method parameters Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._get_ngpf_device_ids(locals())
36.520833
162
0.637336
0028cfd79b75082400e237f04c54f4139d91ab07
1,789
py
Python
integrations-and-supported-tools/kedro/scripts/kedro_neptune_quickstart/src/kedro_neptune_quickstart/__main__.py
neptune-ai/examples
e64cfaadb028e2187063fc43768dfee44074729b
[ "MIT" ]
15
2021-06-11T16:35:15.000Z
2022-03-29T15:53:59.000Z
integrations-and-supported-tools/kedro/scripts/kedro_neptune_quickstart/src/kedro_neptune_quickstart/__main__.py
neptune-ai/examples
e64cfaadb028e2187063fc43768dfee44074729b
[ "MIT" ]
12
2021-04-26T13:07:50.000Z
2021-11-15T10:50:03.000Z
integrations-and-supported-tools/kedro/scripts/kedro_neptune_quickstart/src/kedro_neptune_quickstart/__main__.py
neptune-ai/examples
e64cfaadb028e2187063fc43768dfee44074729b
[ "MIT" ]
10
2021-05-07T16:28:18.000Z
2022-02-28T21:47:11.000Z
# Copyright 2021 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. """kedro_neptune_quickstart file for ensuring the package is executable as `kedro_neptune_quickstart` and `python -m kedro_neptune_quickstart` """ from pathlib import Path from kedro.framework.project import configure_project from .cli import run def main(): configure_project(Path(__file__).parent.name) run() if __name__ == "__main__": main()
39.755556
77
0.775852
708305e655c9814e0319c7708eaf79d265c68a16
474
py
Python
Task/Handle-a-signal/Python/handle-a-signal-4.py
LaudateCorpus1/RosettaCodeData
9ad63ea473a958506c041077f1d810c0c7c8c18d
[ "Info-ZIP" ]
1
2018-11-09T22:08:38.000Z
2018-11-09T22:08:38.000Z
Task/Handle-a-signal/Python/handle-a-signal-4.py
seanwallawalla-forks/RosettaCodeData
9ad63ea473a958506c041077f1d810c0c7c8c18d
[ "Info-ZIP" ]
null
null
null
Task/Handle-a-signal/Python/handle-a-signal-4.py
seanwallawalla-forks/RosettaCodeData
9ad63ea473a958506c041077f1d810c0c7c8c18d
[ "Info-ZIP" ]
1
2018-11-09T22:08:40.000Z
2018-11-09T22:08:40.000Z
import time, signal class WeAreDoneException(Exception): pass def sigIntHandler(signum, frame): signal.signal(signal.SIGINT, signal.SIG_DFL) # resets to default handler raise WeAreDoneException t1 = time.time() try: signal.signal(signal.SIGINT, sigIntHandler) n = 0 while True: time.sleep(0.5) n += 1 print n except WeAreDoneException: pass tdelt = time.time() - t1 print 'Program has run for %5.3f seconds.' % tdelt
19.75
76
0.675105
4655d4443673503005f8afcf41532854bee0b229
2,533
py
Python
tests/test_response.py
XiaoMutt/palpable
4c7f6352b1731c86e93232e2cc5fca63f440be19
[ "MIT" ]
null
null
null
tests/test_response.py
XiaoMutt/palpable
4c7f6352b1731c86e93232e2cc5fca63f440be19
[ "MIT" ]
null
null
null
tests/test_response.py
XiaoMutt/palpable
4c7f6352b1731c86e93232e2cc5fca63f440be19
[ "MIT" ]
null
null
null
from math import sqrt from time import sleep from src.palpable.procedures.map_function import MapFunction from src.palpable.procedures.procedure import Procedure from src.palpable.procedures.run_function import RunFunction from src.palpable.units.task import Task from src.palpable.units.task_response import TaskResponse from tests.basis import BaseTest TEST_DATA = tuple([x * x for x in range(10)]) class SqrtNegative(Procedure): def __init__(self, nums): self.nums = nums def run(self, messenger): messenger.submit_tasks([Task(RunFunction(sqrt, -num)) for num in self.nums], need_followup=True) return True class TestResponse(BaseTest.Case): num_of_workers = 1 # use only one worker def test_tbd(self): response = self.client.ajax_run_procedure(MapFunction(sqrt, TEST_DATA), 0) self.assertEqual(TaskResponse.TBD.__name__, response["status"]) def test_success(self): response = self.client.ajax_run_procedure(MapFunction(sqrt, TEST_DATA), -1) self.assertEqual(TaskResponse.SUCCESS.__name__, response["status"]) self.assertEqual(tuple(map(sqrt, TEST_DATA)), tuple(response["data"])) def test_error(self): response = self.client.ajax_run_procedure(MapFunction(sqrt, [-1]), -1) self.assertEqual(TaskResponse.ERROR.__name__, response["status"]) def test_none(self): response = self.client.ajax_query_result("abc") self.assertEqual(TaskResponse.NONE.__name__, response["status"]) def test_followup_ids(self): response = self.client.ajax_run_procedure(SqrtNegative([-x for x in TEST_DATA]), -1) self.assertEqual(TaskResponse.SUCCESS.__name__, response["status"]) self.assertTrue(response["status"]) self.assertEqual(len(TEST_DATA), len(response["followup_task_ids"])) followup_task_ids = set(response["followup_task_ids"]) results = [] while len(followup_task_ids) > 0: sleep(0.1) done = set() for task_id in followup_task_ids: r = self.client.ajax_query_result(task_id) self.assertTrue(r["status"] != TaskResponse.NONE.__name__) self.assertTrue(r["status"] != TaskResponse.ERROR.__name__) if r["status"] == TaskResponse.SUCCESS.__name__: results.append(r["data"]) done.add(task_id) followup_task_ids -= done self.assertEqual(tuple(map(sqrt, TEST_DATA)), tuple(sorted(results)))
40.206349
104
0.680616
bb042d37ef8b7a2a287a7b72062d2223db1a6c13
648
py
Python
tests/test_matrix_props/test_is_square.py
paniash/toqito
ab67c2a3fca77b3827be11d1e79531042ea62b82
[ "MIT" ]
76
2020-01-28T17:02:01.000Z
2022-02-14T18:02:15.000Z
tests/test_matrix_props/test_is_square.py
paniash/toqito
ab67c2a3fca77b3827be11d1e79531042ea62b82
[ "MIT" ]
82
2020-05-31T20:09:38.000Z
2022-03-28T17:13:59.000Z
tests/test_matrix_props/test_is_square.py
paniash/toqito
ab67c2a3fca77b3827be11d1e79531042ea62b82
[ "MIT" ]
30
2020-04-02T16:07:11.000Z
2022-02-05T13:39:22.000Z
"""Test is_square.""" import numpy as np from toqito.matrix_props import is_square def test_is_square(): """Test that square matrix returns True.""" mat = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) np.testing.assert_equal(is_square(mat), True) def test_is_not_square(): """Test that non-square matrix returns False.""" mat = np.array([[1, 2, 3], [4, 5, 6]]) np.testing.assert_equal(is_square(mat), False) def test_is_square_invalid(): """Input must be a matrix.""" with np.testing.assert_raises(ValueError): is_square(np.array([-1, 1])) if __name__ == "__main__": np.testing.run_module_suite()
24
53
0.646605
a8f1282c0a6fcfcdfa7a8e6bff3047858fa43481
739
py
Python
pytezos/__init__.py
juztin/pytezos-1
7e608ff599d934bdcf129e47db43dbdb8fef9027
[ "MIT" ]
1
2021-05-20T16:52:08.000Z
2021-05-20T16:52:08.000Z
pytezos/__init__.py
juztin/pytezos-1
7e608ff599d934bdcf129e47db43dbdb8fef9027
[ "MIT" ]
1
2020-12-30T16:44:56.000Z
2020-12-30T16:44:56.000Z
pytezos/__init__.py
juztin/pytezos-1
7e608ff599d934bdcf129e47db43dbdb8fef9027
[ "MIT" ]
null
null
null
""" Welcome to PyTezos! To start playing with the Tezos blockchain you need to get a PyTezosClient instance. Just type: >>> from pytezos import pytezos >>> pytezos And follow the interactive documentation. """ from pytezos.rpc import RpcProvider, localhost, mainnet, babylonnet, zeronet from pytezos.rpc.errors import * from pytezos.crypto import Key from pytezos.proto import Proto from pytezos.michelson.contract import Contract from pytezos.michelson.formatter import format_timestamp from pytezos.client import PyTezosClient from pytezos.operation.group import OperationGroup from pytezos.michelson.interface import ContractInterface from pytezos.standards.non_fungible_token import NonFungibleTokenImpl pytezos = PyTezosClient()
29.56
84
0.830853
e7b2cffc2ff4cdac6e2211ed91b629da048220ec
4,501
py
Python
scripts/utils/HashPath.py
irblsensitivity/irblsensitivity
6ee1038d3daefdabc29c60a37dac627bc98498f9
[ "Apache-2.0" ]
2
2019-06-08T14:19:55.000Z
2021-07-06T04:02:05.000Z
scripts/utils/HashPath.py
irblsensitivity/irblsensitivity
6ee1038d3daefdabc29c60a37dac627bc98498f9
[ "Apache-2.0" ]
null
null
null
scripts/utils/HashPath.py
irblsensitivity/irblsensitivity
6ee1038d3daefdabc29c60a37dac627bc98498f9
[ "Apache-2.0" ]
1
2017-05-29T14:03:20.000Z
2017-05-29T14:03:20.000Z
#-*- coding: utf-8 -*- from __future__ import print_function import urllib2 import hashlib import os ############################################################################################################### class HashPath(object): @staticmethod def sequence(_name, _name_size, _level): ''' :param _path: :param _name_size: :param _level: :return: ''' # check _name_size if _name_size <= 0: return _name bucket = u'' for i in range(0, _level): sub = _name[(i*_name_size):((i+1)*_name_size)] if sub == u'': sub = u'0'*_name_size bucket += sub +u'\\' return bucket @staticmethod def encode(_path, _name_size, _level): ''' create HASH path using last filename in give path ex) /home/user/2d9e014f.txt ==> /home/user/2d/9e/01/2d92014f.txt (when level==3, namesize==2) ==> /home/user/2d9/e01/2d92014f.txt (when level==2, namesize==3) :param _path: :param _name_size: :param _level: :return: ''' # check _name_size if _name_size <= 0: return _path idx = _path.rfind(u'\\') idx2 = _path.rfind(u'/') if idx < idx2: idx = idx2 if idx == -1: parent = '' filename = _path[:] else: parent = _path[0:(idx+1)] filename = _path[(idx+1):] bucket = u'' for i in range(0, _level): sub = filename[(i*_name_size):((i+1)*_name_size)] if sub == u'': sub = u'0' * _name_size bucket += sub + os.path.sep return parent + bucket + filename @staticmethod def split(_txt, _split, _count): ''' text split spicified count, if _txt has no delimiter, it will be None. :param _txt: :param _split: :param _count: :return: ''' result = () while _count > 0: idx = _txt.index(_split) if idx > 0: part = _txt[(idx+1):] _txt = _txt[0:idx] else: part = None result += (part,) _count -= 1 return result @staticmethod def url_to_path(_url, _only_host=False): ''' make a relative path using url (domain\\path\\hashinfo_from_url) :param _url: :return: ''' if _url is None: return None #make Hash Filename m = hashlib.md5() m.update(_url.encode('utf-8')) filename = m.hexdigest() #seperate url and make a path (\\domain\\path\\) req = urllib2.Request(_url) host = req.get_host() # domain:port host = host.replace(u':', u'#') # change port delimiter if _only_host is False: path = req.get_selector() # choose selector after domain. path = path.split(u'?')[0] # remove parameter path = path.replace(os.path.altsep, os.path.sep) # altsep --> sep if path.startswith(os.path.sep) is True: path = path[1:] host = os.path.join(host, path) filepath = os.path.join(host ,filename) return filepath @staticmethod def expend_hashpath(_path, _level, _name_size): ''' make a relative path (parent\\hash_path\\filename) :param _url: :return: ''' if _path is None: return None #seperate parent and filename idx = _path.rfind(u'\\') idx2 = _path.rfind(u'/') if idx<idx2 : idx = idx2 if idx < 0: return None #parent = os.path.abs(os.path.join(_path, os.pardir)) parent = _path[:(idx+1)] filename = _path[(idx+1):] #make Hash Filename m = hashlib.md5() m.update(filename) hexfilename = m.hexdigest() bucket = u'' for i in range(0, _level): sub = hexfilename[(i*_name_size):((i+1)*_name_size)] if sub == u'': sub = u'0'*_name_size bucket += sub + os.path.sep return os.path.join(parent, bucket, filename) @staticmethod def reduce_hashpath(_path, _level, _name_size): ''' remove a hash path (parent\\[hash_path\\]filename) :param _url: :return: ''' if _path is None: return None #seperate parent and filename idx = _path.rfind(u'\\') idx2 = _path.rfind(u'/') if idx<idx2 : idx = idx2 filename = _path[(idx+1):] parent = _path[:idx] #reduce while _level>0: idx = parent.rfind(u'\\') idx2 = parent.rfind(u'/') if idx<idx2 : idx = idx2 parent = parent [:idx] _level -= 1 return os.path.join(parent, filename) ############################################################################################################### ############################################################################################################### ############################################################################################################### if __name__ == '__main__': path = HashPath.expend_hashpath(u'/home/user/bug/temp/file.txt', 2, 2) print(HashPath.reduce_hashpath(path, 2,2,))
24.069519
111
0.567207
dceaf7acc91f910adc48b28e57882b6570097f42
1,253
py
Python
domain/sportPlan.py
zhuxiyulu/sugar
c780618aa6493779cc869e984f8e38be9314e1b8
[ "Apache-2.0" ]
2
2018-06-14T15:28:10.000Z
2019-01-11T07:11:32.000Z
domain/sportPlan.py
zhuxiyulu/sugar
c780618aa6493779cc869e984f8e38be9314e1b8
[ "Apache-2.0" ]
null
null
null
domain/sportPlan.py
zhuxiyulu/sugar
c780618aa6493779cc869e984f8e38be9314e1b8
[ "Apache-2.0" ]
null
null
null
from sqlalchemy import Column, Integer, String, DATETIME from domain.database import Base # SportPlan 运动方案 class SportPlan(Base): # 表的名字 __tablename__ = 'sportplan' # 表的结构 userId = Column(Integer(), primary_key=True) sport1 = Column(String()) sport2 = Column(String()) sport3 = Column(String()) sport4 = Column(String()) time1 = Column(String()) time2 = Column(String()) time3 = Column(String()) time4 = Column(String()) week1 = Column(String()) week2 = Column(String()) week3 = Column(String()) week4 = Column(String()) sportTime = Column(DATETIME()) def __repr__(self): return "<SportPlan(userId='%s', sport1='%s', sport2='%s', sport3='%s', sport4='%s', time1='%s', time2='%s', time3='%s', time4='%s', week1='%s', week2='%s', week3='%s',week4='%s', sportTime='%s')>" % ( self.userIdm, self.sport1, self.sport2, self.sport3, self.sport4, self.time1, self.time2, self.time3, self.time4, self.week1, self.week2, self.week3, self.week4, self.sportTime )
29.833333
209
0.526736
8093b50db93868f19e02455b11df94d64fdd5155
1,225
py
Python
var/spack/repos/builtin/packages/r-conquer/package.py
renjithravindrankannath/spack
043b2cbb7c99d69a373f3ecbf35bc3b4638bcf85
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/r-conquer/package.py
renjithravindrankannath/spack
043b2cbb7c99d69a373f3ecbf35bc3b4638bcf85
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/r-conquer/package.py
renjithravindrankannath/spack
043b2cbb7c99d69a373f3ecbf35bc3b4638bcf85
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2019-02-08T20:37:20.000Z
2019-03-31T15:19:26.000Z
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class RConquer(RPackage): """Convolution-Type Smoothed Quantile Regression. Fast and accurate convolution-type smoothed quantile regression. Implemented using Barzilai-Borwein gradient descent with a Huber regression warm start. Construct confidence intervals for regression coefficients using multiplier bootstrap.""" cran = "conquer" version('1.3.0', sha256='ac354e18c9ad6f41ed5200fad1c99fa5b124fc6fa5bba8f3434be2478f53d5fa') version('1.2.1', sha256='1354f90f962a2124e155227cdc0ed2c6e54682f1e08934c49a827e51dc112f45') version('1.0.2', sha256='542f6154ce1ffec0c1b4dd4e1f5b86545015f4b378c4c66a0840c65c57d674ff') depends_on('r@3.5.0:', type=('build', 'run')) depends_on('r-rcpp@1.0.3:', type=('build', 'run')) depends_on('r-matrix', type=('build', 'run')) depends_on('r-matrixstats', type=('build', 'run')) depends_on('r-rcpparmadillo@0.9.850.1.0:', type=('build', 'run')) depends_on('r-caret', type=('build', 'run'), when='@1.2.1')
40.833333
95
0.729796
03785f02832c9d201cd5e3ca4f50b84d58353a90
835
py
Python
src/oci/object_storage/transfer/internal/file_read_callback_stream.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/object_storage/transfer/internal/file_read_callback_stream.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/object_storage/transfer/internal/file_read_callback_stream.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. class FileReadCallbackStream: def __init__(self, file, progress_callback): self.progress_callback = progress_callback self.file = file self.mode = file.mode # this is used by 'requests' to determine the Content-Length header using fstat def fileno(self): return self.file.fileno() def read(self, n): self.progress_callback(n) return self.file.read(n) def __getattr__(self, attr): return getattr(self.file, attr)
37.954545
245
0.700599
a28bde0354ec2d1170984ce309d743dcd8ecb851
10,101
py
Python
packages/python-packages/doc-warden/warden/enforce_readme_content.py
scbedd/azure-sdk-tools
dcbe480642d53ea524438da39a3af758646b5bd3
[ "MIT" ]
84
2015-01-01T23:40:15.000Z
2022-03-10T20:20:40.000Z
packages/python-packages/doc-warden/warden/enforce_readme_content.py
scbedd/azure-sdk-tools
dcbe480642d53ea524438da39a3af758646b5bd3
[ "MIT" ]
2,219
2015-01-06T20:35:05.000Z
2022-03-31T23:36:52.000Z
packages/python-packages/doc-warden/warden/enforce_readme_content.py
scbedd/azure-sdk-tools
dcbe480642d53ea524438da39a3af758646b5bd3
[ "MIT" ]
127
2015-01-02T01:43:51.000Z
2022-03-24T20:02:13.000Z
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from __future__ import print_function import os import markdown2 import bs4 import re from .warden_common import check_match, walk_directory_for_pattern, get_omitted_files from .HeaderConstruct import HeaderConstruct from docutils import core from docutils.writers.html4css1 import Writer,HTMLTranslator import logging README_PATTERNS = ['*/readme.md', '*/readme.rst', '*/README.md', '*/README.rst'] CODE_FENCE_REGEX = r"\`\`\`([\s\S\n]*?)\`\`\`" # entry point def verify_readme_content(config): all_readmes = walk_directory_for_pattern(config.target_directory, README_PATTERNS, config) omitted_readmes = get_omitted_files(config) targeted_readmes = [readme for readme in all_readmes if readme not in omitted_readmes] known_issue_paths = config.get_known_content_issues() section_sorting_dict = config.required_readme_sections ignored_missing_readme_paths = [] readme_results = [] readmes_with_issues = [] for readme in targeted_readmes: ext = os.path.splitext(readme)[1] if ext == '.rst': readme_results.append(verify_rst_readme(readme, config, section_sorting_dict)) else: readme_results.append(verify_md_readme(readme, config, section_sorting_dict)) for readme_tuple in readme_results: if readme_tuple[1]: if readme_tuple[0] in known_issue_paths: ignored_missing_readme_paths.append(readme_tuple) else: readmes_with_issues.append(readme_tuple) return readmes_with_issues, ignored_missing_readme_paths # parse rst to html, check for presence of appropriate sections def verify_rst_readme(readme, config, section_sorting_dict): with open(readme, 'r', encoding="utf-8") as f: readme_content = f.read() html_readme_content = rst_to_html(readme_content) html_soup = bs4.BeautifulSoup(html_readme_content, "html.parser") missed_patterns = find_missed_sections(html_soup, config.required_readme_sections) return (readme, missed_patterns) # parse md to html, check for presence of appropriate sections def verify_md_readme(readme, config, section_sorting_dict): if config.verbose_output: print('Examining content in {}'.format(readme)) with open(readme, 'r', encoding="utf-8-sig") as f: readme_content = f.read() # we need to sanitize to remove the fenced code blocks. The reasoning here is that markdown2 is having issues # parsing the pygments style that we use with github. sanitized_html_content = re.sub(CODE_FENCE_REGEX, "", readme_content, flags=re.MULTILINE) html_readme_content = markdown2.markdown(sanitized_html_content) html_soup = bs4.BeautifulSoup(html_readme_content, "html.parser") missed_patterns = find_missed_sections(html_soup, config.required_readme_sections) return (readme, missed_patterns) # within the entire readme, are there any missing sections that are expected? def find_missed_sections(html_soup, patterns): header_list = html_soup.find_all(re.compile('^h[1-4]$')) flattened_patterns = flatten_pattern_config(patterns) header_index = generate_header_index(header_list, flattened_patterns) observed_failing_patterns = recursive_header_search(header_index, patterns, []) return observed_failing_patterns # gets a distinct set of ALL patterns present in a config. This is # important because this allows us to precalculate which patterns a given header tag will match def flatten_pattern_config(patterns): observed_patterns = [] for pattern in patterns: if isinstance(pattern, dict): parent_pattern, child_patterns = next(iter(pattern.items())) if child_patterns: observed_patterns.extend(flatten_pattern_config(child_patterns)) observed_patterns.extend([parent_pattern]) else: observed_patterns.extend([pattern]) return list(set(observed_patterns)) # recursive solution that walks all the rules and generates rule chains from them to test # that the tree actually contains sets of headers that meet the required sections def recursive_header_search(header_index, patterns, parent_pattern_chain=[]): unobserved_patterns = [] if patterns: for pattern in patterns: if isinstance(pattern, dict): parent_pattern, child_patterns = next(iter(pattern.items())) if not match_regex_to_headers(header_index, parent_pattern_chain + [parent_pattern]): unobserved_patterns.append(parent_pattern_chain + [parent_pattern]) parent_chain_for_children = parent_pattern_chain + [parent_pattern] unobserved_patterns.extend(recursive_header_search(header_index, child_patterns, parent_chain_for_children)) else: if not match_regex_to_headers(header_index, parent_pattern_chain + [pattern]): unobserved_patterns.append((parent_pattern_chain + [pattern])) return unobserved_patterns # a set of headers looks like this # h1 # h2 # h1 # h2 # h3 # h1 # any "indented" headers are children of the one above it IF the # one above it is at a higher header level (this is actually < in comparison) # result of above should be a web that looks like # root # h1 # h2 # h1 # h2 # h3 # h1 # this function examines a serial set of <h> tags and generates # an index that allows us to interrogate a specific header for it's containing # headers. def generate_header_index(header_constructs, patterns): previous_header_level = 0 current_header = None root = HeaderConstruct(None, None) current_parent = root header_index = [] previous_node_level = 0 for index, header in enumerate(header_constructs): # evaluate the level current_level = int(header.name.replace('h', '')) # h1 < h2 == we need to traverse up if current_level < current_parent.level: current_parent = current_parent.get_parent_by_level(current_level) current_header = HeaderConstruct(header, current_parent, patterns) # h2 > h1 == we need to indent, add the current as a child, and set parent to current # for the forthcoming headers elif current_level > current_parent.level: current_header = HeaderConstruct(header, current_parent, patterns) # only set current_parent if there are children below, which NECESSITATES that # the very next header must A) exist and B) be > current_level if index + 1 < len(header_constructs): if int(header_constructs[index+1].name.replace('h', '')) > current_level: current_parent = current_header # current_header.level == current_parent.level # we just need to add it as a child to our current header else: if previous_node_level > current_parent.level: current_parent = current_parent.get_parent_by_level(current_level) current_header = HeaderConstruct(header, current_parent, patterns) previous_node_level = current_level # always add the header to the node index, we will use it later header_index.append(current_header) return header_index # checks the node index for a specific pattern or chain # [^Getting started$, Install Package] is an example of a required set def match_regex_to_headers(header_index, target_patterns): # we should only be firing this for a "leaf" aka the END of the chain we're looking for, so the last element # will always get popped first before we recurse across the rest current_target = target_patterns.pop() matching_headers = [header for header in header_index if current_target in header.matching_patterns] # check all the leaf node parents for the matches. we don't want to artificially constrain though # so we have to assume that a rule can match multiple children for matching_leaf_header in matching_headers: if target_patterns: result = check_header_parents(matching_leaf_header, target_patterns[:]) else: return re.search(current_target, matching_leaf_header.get_tag_text()) if result: return matching_leaf_header else: continue return None # recursively ensure that a header_construct has parents that match the required headers # the search ALLOWS GAPS, so a match will still be found if # # h1 # h2 (matching header) # h3 (unmatched parent header, but this is ok) # h4 (matching header) def check_header_parents(header_construct, required_parent_headers): if required_parent_headers: target_parent = required_parent_headers.pop() new_parent = header_construct.check_parents_for_pattern(target_parent) if new_parent: if required_parent_headers: check_header_parents(header_construct, required_parent_headers) else: return True else: return False else: return False # checks a header string against a set of configured patterns def match_regex_set(header, patterns): matching_patterns = [] for pattern in patterns: result = re.search(pattern, header) if result: matching_patterns.append(pattern) break return matching_patterns # boilerplate for translating RST class HTMLFragmentTranslator(HTMLTranslator): def __init__(self, document): HTMLTranslator.__init__(self, document) self.head_prefix = ['','','','',''] self.body_prefix = [] self.body_suffix = [] self.stylesheet = [] def astext(self): return ''.join(self.body) html_fragment_writer = Writer() html_fragment_writer.translator_class = HTMLFragmentTranslator # utilize boilerplate def rst_to_html(input_rst): return core.publish_string(input_rst, writer = html_fragment_writer)
39
124
0.711019
2a526c6d5f2afce2e736b2be4c2b36c36e364d12
238
py
Python
Desafio 96.py
MoomenEltelbany/PythonDesafios
aa2f44d3104cf3607f58dc42c2f8fc8023f128de
[ "MIT" ]
null
null
null
Desafio 96.py
MoomenEltelbany/PythonDesafios
aa2f44d3104cf3607f58dc42c2f8fc8023f128de
[ "MIT" ]
null
null
null
Desafio 96.py
MoomenEltelbany/PythonDesafios
aa2f44d3104cf3607f58dc42c2f8fc8023f128de
[ "MIT" ]
null
null
null
def area(l, c): print(f"A área de um terreno é {l} x {c} é de {l * c}m².") print(f'Controle de Terreno.') print(f'-' * 25) larg = float(input('Largura (m): ')) comprimento = float(input('Comprimento (m): ')) area(larg, comprimento)
23.8
62
0.617647
72122ee5b599f9314849065e33f841c9cb092330
1,546
py
Python
ht/ht/urls.py
caoxuCarlos/htyw_ecust
90277333510de14d936153fa2b164efbc5d068b8
[ "MIT" ]
null
null
null
ht/ht/urls.py
caoxuCarlos/htyw_ecust
90277333510de14d936153fa2b164efbc5d068b8
[ "MIT" ]
null
null
null
ht/ht/urls.py
caoxuCarlos/htyw_ecust
90277333510de14d936153fa2b164efbc5d068b8
[ "MIT" ]
null
null
null
"""ht URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from answers import views as answers_view from main_page import views as main_page_view from money_job import views as money_job_view urlpatterns = [ path('admin/', admin.site.urls), path('homepage/', include('main_page.urls')), # hijack homepage url to answers page (prevent unauthorized bad information) # path('homepage/', answers_view.ResourceListView.as_view(), name='home'), path('tip/', include('tip.urls')), path('airyslide/', include('airyslide.urls')), path('answers/', answers_view.ResourceListView.as_view(), name='answers'), path('contribute/', main_page_view.contribute, name='contribute'), path('search/', main_page_view.search_function, name='search'), path('jobs/', money_job_view.JobListView.as_view(), name='jobs'), path('job_submit/', money_job_view.submit_job, name='job_submit'), ]
42.944444
80
0.718629
258f401238607a4b40a55c85c25ac5aa91257ebb
430
py
Python
tests/data/workflow-tests/actors/notscheduledfourthactor/actor.py
dhodovsk/leapp
bcd6580a19dabd132b3da8bcf2ed61fa8864ef18
[ "Apache-2.0" ]
29
2019-05-29T05:34:52.000Z
2022-03-14T19:09:34.000Z
tests/data/workflow-tests/actors/notscheduledfourthactor/actor.py
dhodovsk/leapp
bcd6580a19dabd132b3da8bcf2ed61fa8864ef18
[ "Apache-2.0" ]
373
2018-11-21T11:41:49.000Z
2022-03-31T11:40:56.000Z
tests/data/workflow-tests/actors/notscheduledfourthactor/actor.py
dhodovsk/leapp
bcd6580a19dabd132b3da8bcf2ed61fa8864ef18
[ "Apache-2.0" ]
27
2018-11-26T17:14:15.000Z
2022-03-10T13:30:50.000Z
from leapp.actors import Actor from leapp.tags import FourthPhaseTag class NotScheduledFourthActor(Actor): name = 'not_scheduled_fourth_actor' description = 'No description has been provided for the not_scheduled_fourth_actor actor.' consumes = () produces = () tags = (FourthPhaseTag,) def process(self): from leapp.libraries.common.test_helper import log_execution log_execution(self)
28.666667
94
0.737209
65d20f2e9e1cbd4698cbacb2989d58fb47e5cc0f
8,169
py
Python
salt/modules/solaris_shadow.py
ifraixedes/saltstack-salt
b54becb8b43cc9b7c00b2c0bc637ac534dc62896
[ "Apache-2.0" ]
9,425
2015-01-01T05:59:24.000Z
2022-03-31T20:44:05.000Z
salt/modules/solaris_shadow.py
ifraixedes/saltstack-salt
b54becb8b43cc9b7c00b2c0bc637ac534dc62896
[ "Apache-2.0" ]
33,507
2015-01-01T00:19:56.000Z
2022-03-31T23:48:20.000Z
salt/modules/solaris_shadow.py
ifraixedes/saltstack-salt
b54becb8b43cc9b7c00b2c0bc637ac534dc62896
[ "Apache-2.0" ]
5,810
2015-01-01T19:11:45.000Z
2022-03-31T02:37:20.000Z
""" Manage the password database on Solaris systems .. important:: If you feel that Salt should be using this module to manage passwords on a minion, and it is using a different module (or gives an error similar to *'shadow.info' is not available*), see :ref:`here <module-provider-override>`. """ import os import salt.utils.files from salt.exceptions import CommandExecutionError try: import spwd HAS_SPWD = True except ImportError: # SmartOS joyent_20130322T181205Z does not have spwd HAS_SPWD = False try: import pwd except ImportError: pass # We're most likely on a Windows machine. try: import salt.utils.pycrypto HAS_CRYPT = True except ImportError: HAS_CRYPT = False # Define the module's virtual name __virtualname__ = "shadow" def __virtual__(): """ Only work on POSIX-like systems """ if __grains__.get("kernel", "") == "SunOS": return __virtualname__ return ( False, "The solaris_shadow execution module failed to load: only available on Solaris" " systems.", ) def default_hash(): """ Returns the default hash used for unset passwords CLI Example: .. code-block:: bash salt '*' shadow.default_hash """ return "!" def info(name): """ Return information for the specified user CLI Example: .. code-block:: bash salt '*' shadow.info root """ if HAS_SPWD: try: data = spwd.getspnam(name) ret = { "name": data.sp_nam, "passwd": data.sp_pwd, "lstchg": data.sp_lstchg, "min": data.sp_min, "max": data.sp_max, "warn": data.sp_warn, "inact": data.sp_inact, "expire": data.sp_expire, } except KeyError: ret = { "name": "", "passwd": "", "lstchg": "", "min": "", "max": "", "warn": "", "inact": "", "expire": "", } return ret # SmartOS joyent_20130322T181205Z does not have spwd, but not all is lost # Return what we can know ret = { "name": "", "passwd": "", "lstchg": "", "min": "", "max": "", "warn": "", "inact": "", "expire": "", } try: data = pwd.getpwnam(name) ret.update({"name": name}) except KeyError: return ret # To compensate for lack of spwd module, read in password hash from /etc/shadow s_file = "/etc/shadow" if not os.path.isfile(s_file): return ret with salt.utils.files.fopen(s_file, "r") as ifile: for line in ifile: comps = line.strip().split(":") if comps[0] == name: ret.update({"passwd": comps[1]}) # For SmartOS `passwd -s <username>` and the output format is: # name status mm/dd/yy min max warn # # Fields: # 1. Name: username # 2. Status: # - LK: locked # - NL: no login # - NP: No password # - PS: Password # 3. Last password change # 4. Minimum age # 5. Maximum age # 6. Warning period output = __salt__["cmd.run_all"]("passwd -s {}".format(name), python_shell=False) if output["retcode"] != 0: return ret fields = output["stdout"].split() if len(fields) == 2: # For example: # root NL return ret # We have all fields: # buildbot L 05/09/2013 0 99999 7 ret.update( { "name": data.pw_name, "lstchg": fields[2], "min": int(fields[3]), "max": int(fields[4]), "warn": int(fields[5]), "inact": "", "expire": "", } ) return ret def set_maxdays(name, maxdays): """ Set the maximum number of days during which a password is valid. See man passwd. CLI Example: .. code-block:: bash salt '*' shadow.set_maxdays username 90 """ pre_info = info(name) if maxdays == pre_info["max"]: return True cmd = "passwd -x {} {}".format(maxdays, name) __salt__["cmd.run"](cmd, python_shell=False) post_info = info(name) if post_info["max"] != pre_info["max"]: return post_info["max"] == maxdays def set_mindays(name, mindays): """ Set the minimum number of days between password changes. See man passwd. CLI Example: .. code-block:: bash salt '*' shadow.set_mindays username 7 """ pre_info = info(name) if mindays == pre_info["min"]: return True cmd = "passwd -n {} {}".format(mindays, name) __salt__["cmd.run"](cmd, python_shell=False) post_info = info(name) if post_info["min"] != pre_info["min"]: return post_info["min"] == mindays return False def gen_password(password, crypt_salt=None, algorithm="sha512"): """ .. versionadded:: 2015.8.8 Generate hashed password .. note:: When called this function is called directly via remote-execution, the password argument may be displayed in the system's process list. This may be a security risk on certain systems. password Plaintext password to be hashed. crypt_salt Crpytographic salt. If not given, a random 8-character salt will be generated. algorithm The following hash algorithms are supported: * md5 * blowfish (not in mainline glibc, only available in distros that add it) * sha256 * sha512 (default) CLI Example: .. code-block:: bash salt '*' shadow.gen_password 'I_am_password' salt '*' shadow.gen_password 'I_am_password' crypt_salt='I_am_salt' algorithm=sha256 """ if not HAS_CRYPT: raise CommandExecutionError( "gen_password is not available on this operating system " 'because the "crypt" python module is not available.' ) return salt.utils.pycrypto.gen_hash(crypt_salt, password, algorithm) def del_password(name): """ .. versionadded:: 2015.8.8 Delete the password from name user CLI Example: .. code-block:: bash salt '*' shadow.del_password username """ cmd = "passwd -d {}".format(name) __salt__["cmd.run"](cmd, python_shell=False, output_loglevel="quiet") uinfo = info(name) return not uinfo["passwd"] def set_password(name, password): """ Set the password for a named user. The password must be a properly defined hash, the password hash can be generated with this command: ``openssl passwd -1 <plaintext password>`` CLI Example: .. code-block:: bash salt '*' shadow.set_password root $1$UYCIxa628.9qXjpQCjM4a.. """ s_file = "/etc/shadow" ret = {} if not os.path.isfile(s_file): return ret lines = [] with salt.utils.files.fopen(s_file, "r") as ifile: for line in ifile: comps = line.strip().split(":") if comps[0] != name: lines.append(line) continue comps[1] = password line = ":".join(comps) lines.append("{}\n".format(line)) with salt.utils.files.fopen(s_file, "w+") as ofile: lines = [salt.utils.stringutils.to_str(_l) for _l in lines] ofile.writelines(lines) uinfo = info(name) return uinfo["passwd"] == password def set_warndays(name, warndays): """ Set the number of days of warning before a password change is required. See man passwd. CLI Example: .. code-block:: bash salt '*' shadow.set_warndays username 7 """ pre_info = info(name) if warndays == pre_info["warn"]: return True cmd = "passwd -w {} {}".format(warndays, name) __salt__["cmd.run"](cmd, python_shell=False) post_info = info(name) if post_info["warn"] != pre_info["warn"]: return post_info["warn"] == warndays return False
24.981651
92
0.56543
126f0d2031e1c77d504842b2d3bead682c8382cf
1,885
py
Python
emannotationschemas/schemas/functional_coregistration.py
seung-lab/EMAnnotationSchemas
ef1061ca78860d53f1cd180496e87ad685a32ffe
[ "MIT" ]
null
null
null
emannotationschemas/schemas/functional_coregistration.py
seung-lab/EMAnnotationSchemas
ef1061ca78860d53f1cd180496e87ad685a32ffe
[ "MIT" ]
18
2018-08-15T17:38:04.000Z
2022-02-18T02:08:28.000Z
emannotationschemas/schemas/functional_coregistration.py
fcollman/EMAnnotationSchemas
bcc9f308868b2ea3e1504089d9cbab878b626acc
[ "MIT" ]
5
2018-08-14T22:39:49.000Z
2021-10-05T16:36:07.000Z
import marshmallow as mm from emannotationschemas.schemas.base import AnnotationSchema, BoundSpatialPoint class FunctionalCoregistration(AnnotationSchema): pt = mm.fields.Nested( BoundSpatialPoint, required=True, description="location of cell body of functional cell", ) func_id = mm.fields.Int(required=True, description="functional cell ID") class FunctionalUnitCoregistration(AnnotationSchema): pt = mm.fields.Nested( BoundSpatialPoint, required=True, description="location of cell body of functional cell", ) session = mm.fields.Int(required=True, description="session ID of imaging") scan_idx = mm.fields.Int( required=True, description="index of the scan within the session" ) unit_id = mm.fields.Int( required=True, description="unique functional cell ID within the scan" ) class FunctionalUnitCoregistrationExtended(AnnotationSchema): pt = mm.fields.Nested( BoundSpatialPoint, required=True, description="location of cell body of functional cell", ) session = mm.fields.Int(required=True, description="session ID of imaging") scan_idx = mm.fields.Int( required=True, description="index of the scan within the session" ) unit_id = mm.fields.Int( required=True, description="unique functional cell ID within the scan" ) nucleus_id = mm.fields.Int(required=True, description="matched id of nucleus") field = mm.fields.Int( required=False, description="index of imaging field of cell within the scan" ) residual = mm.fields.Float( required=False, description="distance between nucleus centroid and functional centroid after transformation", ) score = mm.fields.Float( required=False, description="confidence score associated with match" )
35.566038
101
0.698674
3b9a0a328abdc6a69c0a4982c8e0b17d67fab54e
162
py
Python
data/groups.py
melipharo/stru-python19
6df494f6812e96d87bdfffdcbd3602e764a893c9
[ "BSD-2-Clause" ]
null
null
null
data/groups.py
melipharo/stru-python19
6df494f6812e96d87bdfffdcbd3602e764a893c9
[ "BSD-2-Clause" ]
null
null
null
data/groups.py
melipharo/stru-python19
6df494f6812e96d87bdfffdcbd3602e764a893c9
[ "BSD-2-Clause" ]
null
null
null
from model import Group test_data = [ Group(name="name1", header="header1", footer="footer1"), Group(name="name2", header="header2", footer="footer2") ]
23.142857
60
0.67284
13da69071d7265dafb926eeee478ce2441ffa08f
3,179
py
Python
Multidimentional Lists Exerscise/08. Miner.py
nrgxtra/advanced
89f713419102c64a04b495f717cdb51bbf94213c
[ "MIT" ]
null
null
null
Multidimentional Lists Exerscise/08. Miner.py
nrgxtra/advanced
89f713419102c64a04b495f717cdb51bbf94213c
[ "MIT" ]
null
null
null
Multidimentional Lists Exerscise/08. Miner.py
nrgxtra/advanced
89f713419102c64a04b495f717cdb51bbf94213c
[ "MIT" ]
null
null
null
rows_count = int(input()) field = [] commands = [] [commands.append(x) for x in input().split(' ')] for _ in range(rows_count): field.append([]) [field[-1].append(x) for x in input().split()] coals = 0 current_coal = 0 for row in field: sub_sum = row.count('c') coals += sub_sum initial_start = [] for i in range(len(field)): for j in range(len(field)): if field[i][j] == 's': initial_start.append(i) initial_start.append(j) initial_row = initial_start[0] initial_column = initial_start[1] current_position = field[initial_row][initial_column] row = initial_row column = initial_column end_or_mineall = False for command in commands: if command == 'left': if column - 1 >= 0: row = row column = column-1 if field[row][column] == 'e': print(f'Game over! ({row}, {column})') end_or_mineall = True break elif field[row][column] == 'c': current_coal += 1 field[row][column] = '*' if current_coal == coals: print(f"You collected all coals! ({row}, {column})") end_or_mineall = True break elif command == 'right': if column + 1 < len(field): row = row column = column + 1 if field[row][column] == 'e': print(f'Game over! ({row}, {column})') end_or_mineall = True break elif field[row][column] == 'c': current_coal += 1 field[row][column] = '*' if current_coal == coals: print(f"You collected all coals! ({row}, {column})") end_or_mineall = True break elif command == 'up': if row - 1 >= 0: row = row - 1 column = column if field[row][column] == 'e': print(f'Game over! ({row}, {column})') end_or_mineall = True break elif field[row][column] == 'c': current_coal += 1 field[row][column] = '*' if current_coal == coals: print(f"You collected all coals! ({row}, {column})") end_or_mineall = True break elif command == 'down': if row + 1 < len(field): row = row + 1 column = column if field[row][column] == 'e': print(f'Game over! ({row}, {column})') end_or_mineall = True break elif field[row][column] == 'c': current_coal += 1 field[row][column] = '*' if current_coal == coals: print(f"You collected all coals! ({row}, {column})") end_or_mineall = True break if not end_or_mineall: coals_left = coals - current_coal print(f"{coals_left} coals left. ({row}, {column})")
34.554348
73
0.459578
dfaf92562fae8edd342d6c523f9f3fc00f6fcea5
921
py
Python
src/app/api/crud.py
khemx3/esdapi
e5bfbef0c5884761887c27c94934495e33be6283
[ "MIT" ]
null
null
null
src/app/api/crud.py
khemx3/esdapi
e5bfbef0c5884761887c27c94934495e33be6283
[ "MIT" ]
null
null
null
src/app/api/crud.py
khemx3/esdapi
e5bfbef0c5884761887c27c94934495e33be6283
[ "MIT" ]
null
null
null
from app.api.models import BookSchema from app.db import books, database async def post(payload: BookSchema): query = books.insert().values(title=payload.title, description=payload.description, price=payload.price) return await database.execute(query=query) async def get(id: int): query = books.select().where(id == books.c.id) return await database.fetch_one(query=query) async def get_all(): query = books.select() return await database.fetch_all(query=query) async def put(id: int, payload: BookSchema): query = ( books .update() .where(id == books.c.id) .values(title=payload.title, description=payload.description, price=payload.price) .returning(books.c.id) ) return await database.execute(query=query) async def delete(id: int): query = books.delete().where(id == books.c.id) return await database.execute(query=query)
27.088235
108
0.690554
f80464b6cf8c4b85731c80081eea878f076601ba
1,603
py
Python
website/utils/ml_utils.py
TOXiNdeep2503/makeabilitylabwebsite
6e57ee4f928742b30f1e933166dc8fa2b6b11d05
[ "MIT" ]
3
2020-10-01T20:44:24.000Z
2022-01-20T05:51:24.000Z
website/utils/ml_utils.py
TOXiNdeep2503/makeabilitylabwebsite
6e57ee4f928742b30f1e933166dc8fa2b6b11d05
[ "MIT" ]
76
2020-07-17T18:23:29.000Z
2022-03-18T12:16:56.000Z
website/utils/ml_utils.py
TOXiNdeep2503/makeabilitylabwebsite
6e57ee4f928742b30f1e933166dc8fa2b6b11d05
[ "MIT" ]
99
2020-09-30T13:32:25.000Z
2022-03-07T07:51:54.000Z
""" Hosts general utility functions for Makeability Lab Django website """ import re # helper function to correctly capitalize a string, specify words to not capitalize in the articles list # from: https://stackoverflow.com/a/3729957 # Note: this code written by J. Gilkeson and needs to be cleaned up (and/or removed if no longer needed) def capitalize_title(s, exceptions): word_list = re.split(' ', s) # re.split behaves as expected final = [word_list[0].capitalize()] for word in word_list[1:]: final.append(word if word in exceptions else word.capitalize()) return " ".join(final) #Standard list of words to not capitalize in a sentence articles = ['a', 'an', 'and', 'as', 'at', 'but', 'by', 'for', 'from', 'is', 'of', 'on', 'or', 'nor', 'the', 'to', 'up', 'yet'] def get_video_embed(video_url): """Returns proper embed code for a video url""" if 'youtu.be' in video_url or 'youtube.com' in video_url: # https://youtu.be/i0IDbHGir-8 or https://www.youtube.com/watch?v=i0IDbHGir-8 base_url = "https://youtube.com/embed" unique_url = video_url[video_url.find("/", 9):] # See https://developers.google.com/youtube/youtube_player_demo for details on parameterizing YouTube video return base_url + unique_url + "?showinfo=0&iv_load_policy=3" elif 'vimeo' in video_url: # https://player.vimeo.com/video/164630179 vimeo_video_id = video_url.rsplit('/', 1)[-1] return "https://player.vimeo.com/video/" + vimeo_video_id else: return "unknown video service for '{}'".format(video_url)
45.8
126
0.672489
06568f074a993b42a33371e64e2104c70b9987c2
6,947
py
Python
keystone/controllers.py
yanheven/keystone
417b8941095f40674575ed951b4a03ebcdc91fef
[ "Apache-2.0" ]
null
null
null
keystone/controllers.py
yanheven/keystone
417b8941095f40674575ed951b4a03ebcdc91fef
[ "Apache-2.0" ]
null
null
null
keystone/controllers.py
yanheven/keystone
417b8941095f40674575ed951b4a03ebcdc91fef
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log from oslo_serialization import jsonutils import webob from keystone.common import extension from keystone.common import json_home from keystone.common import wsgi from keystone import exception LOG = log.getLogger(__name__) MEDIA_TYPE_JSON = 'application/vnd.openstack.identity-%s+json' _VERSIONS = [] # NOTE(blk-u): latest_app will be set by keystone.service.loadapp(). It gets # set to the application that was just loaded. In the case of keystone-all, # loadapp() gets called twice, once for the public app and once for the admin # app. In the case of httpd/keystone, loadapp() gets called once for the public # app if this is the public instance or loadapp() gets called for the admin app # if it's the admin instance. # This is used to fetch the /v3 JSON Home response. The /v3 JSON Home response # is the same whether it's the admin or public service so either admin or # public works. latest_app = None def request_v3_json_home(new_prefix): if 'v3' not in _VERSIONS: # No V3 support, so return an empty JSON Home document. return {'resources': {}} req = webob.Request.blank( '/v3', headers={'Accept': 'application/json-home'}) v3_json_home_str = req.get_response(latest_app).body v3_json_home = jsonutils.loads(v3_json_home_str) json_home.translate_urls(v3_json_home, new_prefix) return v3_json_home class Extensions(wsgi.Application): """Base extensions controller to be extended by public and admin API's.""" # extend in subclass to specify the set of extensions @property def extensions(self): return None def get_extensions_info(self, context): return {'extensions': {'values': self.extensions.values()}} def get_extension_info(self, context, extension_alias): try: return {'extension': self.extensions[extension_alias]} except KeyError: raise exception.NotFound(target=extension_alias) class AdminExtensions(Extensions): @property def extensions(self): return extension.ADMIN_EXTENSIONS class PublicExtensions(Extensions): @property def extensions(self): return extension.PUBLIC_EXTENSIONS def register_version(version): _VERSIONS.append(version) class MimeTypes(object): JSON = 'application/json' JSON_HOME = 'application/json-home' def v3_mime_type_best_match(context): # accept_header is a WebOb MIMEAccept object so supports best_match. accept_header = context['accept_header'] if not accept_header: return MimeTypes.JSON SUPPORTED_TYPES = [MimeTypes.JSON, MimeTypes.JSON_HOME] return accept_header.best_match(SUPPORTED_TYPES) class Version(wsgi.Application): def __init__(self, version_type, routers=None): self.endpoint_url_type = version_type self._routers = routers super(Version, self).__init__() def _get_identity_url(self, context, version): """Returns a URL to keystone's own endpoint.""" url = self.base_url(context, self.endpoint_url_type) return '%s/%s/' % (url, version) def _get_versions_list(self, context): """The list of versions is dependent on the context.""" versions = {} if 'v2.0' in _VERSIONS: versions['v2.0'] = { 'id': 'v2.0', 'status': 'stable', 'updated': '2014-04-17T00:00:00Z', 'links': [ { 'rel': 'self', 'href': self._get_identity_url(context, 'v2.0'), }, { 'rel': 'describedby', 'type': 'text/html', 'href': 'http://docs.openstack.org/' } ], 'media-types': [ { 'base': 'application/json', 'type': MEDIA_TYPE_JSON % 'v2.0' } ] } if 'v3' in _VERSIONS: versions['v3'] = { 'id': 'v3.4', 'status': 'stable', 'updated': '2015-03-30T00:00:00Z', 'links': [ { 'rel': 'self', 'href': self._get_identity_url(context, 'v3'), } ], 'media-types': [ { 'base': 'application/json', 'type': MEDIA_TYPE_JSON % 'v3' } ] } return versions def get_versions(self, context): req_mime_type = v3_mime_type_best_match(context) if req_mime_type == MimeTypes.JSON_HOME: v3_json_home = request_v3_json_home('/v3') return wsgi.render_response( body=v3_json_home, headers=(('Content-Type', MimeTypes.JSON_HOME),)) versions = self._get_versions_list(context) return wsgi.render_response(status=(300, 'Multiple Choices'), body={ 'versions': { 'values': versions.values() } }) def get_version_v2(self, context): versions = self._get_versions_list(context) if 'v2.0' in _VERSIONS: return wsgi.render_response(body={ 'version': versions['v2.0'] }) else: raise exception.VersionNotFound(version='v2.0') def _get_json_home_v3(self): def all_resources(): for router in self._routers: for resource in router.v3_resources: yield resource return { 'resources': dict(all_resources()) } def get_version_v3(self, context): versions = self._get_versions_list(context) if 'v3' in _VERSIONS: req_mime_type = v3_mime_type_best_match(context) if req_mime_type == MimeTypes.JSON_HOME: return wsgi.render_response( body=self._get_json_home_v3(), headers=(('Content-Type', MimeTypes.JSON_HOME),)) return wsgi.render_response(body={ 'version': versions['v3'] }) else: raise exception.VersionNotFound(version='v3')
31.721461
79
0.594933
edc439c62c137d285f73e4a09a0e203c8fad3aeb
839
py
Python
tests/test_robotFinder.py
JDownloader/GEL-3014_Design3
dea01245592c97f73e6a78426270d91ade5e25c7
[ "MIT" ]
null
null
null
tests/test_robotFinder.py
JDownloader/GEL-3014_Design3
dea01245592c97f73e6a78426270d91ade5e25c7
[ "MIT" ]
null
null
null
tests/test_robotFinder.py
JDownloader/GEL-3014_Design3
dea01245592c97f73e6a78426270d91ade5e25c7
[ "MIT" ]
null
null
null
from unittest import TestCase from baseStation.robotIPFinder import RobotFinder class TestRobotFinder(TestCase): ROBOT_MAC = RobotFinder.ROBOT_MAC FAKE_ROBOT_IP = "192.168.0.10" lines_of_arp_exit = "? (10.248.0.1) at 0:0:c:7:ac:a on en1 ifscope [ethernet]\n"+ \ "? (" + FAKE_ROBOT_IP + ") at " + ROBOT_MAC + " on en1 ifscope [ethernet]\n" + \ "? (169.254.255.255) at 0:0:c:7:ac:a on en1 [ethernet]" def pass_function(self): pass def setUp(self): self.robot_finder = RobotFinder(self.pass_function) def test_attempt_find(self): self.robot_finder._attempt_find() self.assertTrue(True) def test_attempt_parse_real(self): ip = self.robot_finder._parse_answer(self.lines_of_arp_exit) assert(ip, self.FAKE_ROBOT_IP)
34.958333
104
0.644815
bbe02cd48b72926242ced350bafa69474c2fbd21
1,631
py
Python
igrfcoord/plots.py
scivision/igrfcoord
f50946eccbd4ab587ea7182d521d1ebd1f2cb229
[ "BSD-2-Clause" ]
2
2016-04-01T18:03:13.000Z
2016-04-02T19:35:32.000Z
igrfcoord/plots.py
scivision/igrfcoord
f50946eccbd4ab587ea7182d521d1ebd1f2cb229
[ "BSD-2-Clause" ]
null
null
null
igrfcoord/plots.py
scivision/igrfcoord
f50946eccbd4ab587ea7182d521d1ebd1f2cb229
[ "BSD-2-Clause" ]
3
2020-08-04T12:51:11.000Z
2021-11-01T09:19:45.000Z
import logging import pandas try: from matplotlib.pyplot import figure import cartopy.crs as ccrs except (ImportError, RuntimeError) as e: logging.error(f"plotting disabled {e}") figure = None def _sitecol(line: pandas.Series) -> str: if line.name == "HST": c = "red" elif line.name == "PFISR": c = "blue" else: c = "black" return c def plotgeomag(latlon: pandas.DataFrame): if figure is None: return ax = figure().gca() for _, c in latlon.iterrows(): ax.scatter( c.at["mlon"], c.at["mlat"], s=180, facecolors="none", ) # edgecolors=_sitecol(l)) ax.set_xlabel("magnetic longitude [deg.]") ax.set_ylabel("magnetic latitude [deg.]") ax.grid(True) ax.set_title("Geomagnetic") # for _,c in latlon.iterrows(): # ax.text(c.at['mlon'], c.at['mlat'], c.site.item(), # ha='center', va='center', fontsize=8) ax.get_xaxis().get_major_formatter().set_useOffset(False) ax.get_yaxis().get_major_formatter().set_useOffset(False) # %% geographic if latlon.shape[0] < 2: return ax = figure().gca(projection=ccrs.PlateCarree()) ax.stock_img() for _, c in latlon.iterrows(): ax.scatter( c.at["glon"], c.at["glat"], s=180, facecolors="none", # edgecolors=_sitecol(l), transform=ccrs.Geodetic(), ) ax.set_extent( (latlon.loc[:, "glon"].min(), latlon.loc[:, "glon"].max(), latlon.loc[:, "glat"].min(), latlon.loc[:, "glat"].max()) )
25.484375
124
0.556714
5ea0c76e88ae91603a3e4c900c085fbf5fa94716
8,857
py
Python
act/plotting/WindRoseDisplay.py
ajsockol/ACT
976002b50bade6cf1ad3d86ffabe3aed9d6e0bbb
[ "BSD-3-Clause" ]
null
null
null
act/plotting/WindRoseDisplay.py
ajsockol/ACT
976002b50bade6cf1ad3d86ffabe3aed9d6e0bbb
[ "BSD-3-Clause" ]
null
null
null
act/plotting/WindRoseDisplay.py
ajsockol/ACT
976002b50bade6cf1ad3d86ffabe3aed9d6e0bbb
[ "BSD-3-Clause" ]
null
null
null
""" act.plotting.WindRoseDisplay ---------------------------- Stores the class for WindRoseDisplay. """ import matplotlib.pyplot as plt import numpy as np import warnings from .plot import Display # Import Local Libs from ..utils import datetime_utils as dt_utils class WindRoseDisplay(Display): """ A class for handing wind rose plots. This is inherited from the :func:`act.plotting.Display` class and has therefore has the same attributes as that class. See :func:`act.plotting.Display` for more information. There are no additional attributes or parameters to this class. Examples -------- To create a WindRoseDisplay object, simply do: .. code-block :: python sonde_ds = act.io.armfiles.read_netcdf('sonde_data.nc') WindDisplay = act.plotting.WindRoseDisplay(sonde_ds, figsize=(8,10)) """ def __init__(self, obj, subplot_shape=(1,), ds_name=None, **kwargs): super().__init__(obj, subplot_shape, ds_name, subplot_kw=dict(projection='polar'), **kwargs) def set_thetarng(self, trng=(0., 360.), subplot_index=(0,)): """ Sets the theta range of the wind rose plot. Parameters ---------- trng : 2-tuple The range (in degrees). subplot_index : 2-tuple The index of the subplot to set the degree range of. """ if self.axes is not None: self.axes[subplot_index].set_thetamin(trng[0]) self.axes[subplot_index].set_thetamax(trng[1]) self.trng = trng else: raise RuntimeError(("Axes must be initialized before" + " changing limits!")) print(self.trng) def set_rrng(self, rrng, subplot_index=(0,)): """ Sets the range of the radius of the wind rose plot. Parameters ---------- rrng : 2-tuple The range for the plot radius (in %). subplot_index : 2-tuple The index of the subplot to set the radius range of. """ if self.axes is not None: self.axes[subplot_index].set_rmin(rrng[0]) self.axes[subplot_index].set_rmax(rrng[1]) self.rrng = rrng else: raise RuntimeError(("Axes must be initialized before" + " changing limits!")) def plot(self, dir_field, spd_field, dsname=None, subplot_index=(0,), cmap=None, set_title=None, num_dirs=20, spd_bins=None, tick_interval=3, legend_loc=0, legend_bbox=None, legend_title=None, calm_threshold=1., **kwargs): """ Makes the wind rose plot from the given dataset. Parameters ---------- dir_field : str The name of the field representing the wind direction (in degrees). spd_field : str The name of the field representing the wind speed. dsname : str The name of the datastream to plot from. Set to None to let ACT automatically try to determine this. subplot_index : 2-tuple The index of the subplot to place the plot on. cmap : str or matplotlib colormap The name of the matplotlib colormap to use. set_title : str The title of the plot. num_dirs : int The number of directions to split the wind rose into. spd_bins : 1D array-like The bin boundaries to sort the wind speeds into. tick_interval : int The interval (in %) for the ticks on the radial axis. legend_loc : int Legend location using matplotlib legend code legend_bbox : tuple Legend bounding box coordinates legend_title : string Legend title calm_threshold : float Winds below this threshold are considered to be calm. **kwargs : keyword arguments Additional keyword arguments will be passed into :func:plt.bar Returns ------- ax : matplotlib axis handle The matplotlib axis handle corresponding to the plot. """ if dsname is None and len(self._arm.keys()) > 1: raise ValueError(("You must choose a datastream when there are 2 " "or more datasets in the TimeSeriesDisplay " "object.")) elif dsname is None: dsname = list(self._arm.keys())[0] # Get data and dimensions dir_data = self._arm[dsname][dir_field].values spd_data = self._arm[dsname][spd_field].values # Get the current plotting axis, add day/night background and plot data if self.fig is None: self.fig = plt.figure() if self.axes is None: self.axes = np.array([plt.axes(projection='polar')]) self.fig.add_axes(self.axes[0]) if spd_bins is None: spd_bins = np.linspace(0, np.nanmax(spd_data), 10) # Make the bins so that 0 degrees N is in the center of the first bin # We need to wrap around deg_width = 360. / num_dirs dir_bins_mid = np.linspace(0., 360. - 3 * deg_width / 2., num_dirs) wind_hist = np.zeros((num_dirs, len(spd_bins) - 1)) for i in range(num_dirs): if i == 0: with warnings.catch_warnings(): warnings.filterwarnings("ignore", "invalid value encountered in.*") the_range = np.logical_or(dir_data < deg_width / 2., dir_data > 360. - deg_width / 2.) else: with warnings.catch_warnings(): warnings.filterwarnings("ignore", "invalid value encountered in.*") the_range = np.logical_and( dir_data >= dir_bins_mid[i] - deg_width / 2, dir_data <= dir_bins_mid[i] + deg_width / 2) hist, bins = np.histogram(spd_data[the_range], spd_bins) wind_hist[i] = hist wind_hist = wind_hist / np.sum(wind_hist) * 100 mins = np.deg2rad(dir_bins_mid) # Do the first level if 'units' in self._arm[dsname][spd_field].attrs.keys(): units = self._arm[dsname][spd_field].attrs['units'] else: units = '' the_label = ("%3.1f" % spd_bins[0] + '-' + "%3.1f" % spd_bins[1] + " " + units) our_cmap = plt.cm.get_cmap(cmap) our_colors = our_cmap(np.linspace(0, 1, len(spd_bins))) bars = [self.axes[subplot_index].bar(mins, wind_hist[:, 0], bottom=0, label=the_label, width=0.8 * np.deg2rad(deg_width), color=our_colors[0], **kwargs)] for i in range(1, len(spd_bins) - 1): the_label = ("%3.1f" % spd_bins[i] + '-' + "%3.1f" % spd_bins[i + 1] + " " + units) # Changing the bottom to be a sum of the previous speeds so that # it positions it correctly - Adam Theisen bars.append(self.axes[subplot_index].bar( mins, wind_hist[:, i], label=the_label, bottom=np.sum(wind_hist[:, :i], axis=1), width=0.8 * np.deg2rad(deg_width), color=our_colors[i], **kwargs)) self.axes[subplot_index].legend(loc=legend_loc, bbox_to_anchor=legend_bbox, title=legend_title) self.axes[subplot_index].set_theta_zero_location("N") self.axes[subplot_index].set_theta_direction(-1) # Add an annulus with text stating % of time calm pct_calm = np.sum(spd_data <= calm_threshold) / len(spd_data) * 100 self.axes[subplot_index].set_rorigin(-2.5) self.axes[subplot_index].annotate("%3.2f%%\n calm" % pct_calm, xy=(0, -2.5), ha='center', va='center') # Set the ticks to be nice numbers tick_max = tick_interval * round( np.nanmax(np.cumsum(wind_hist, axis=1)) / tick_interval) rticks = np.arange(0, tick_max, tick_interval) rticklabels = [("%d" % x + '%') for x in rticks] self.axes[subplot_index].set_rticks(rticks) self.axes[subplot_index].set_yticklabels(rticklabels) # Set Title if set_title is None: set_title = ' '.join([dsname, 'on', dt_utils.numpy_to_arm_date( self._arm[dsname].time.values[0])]) self.axes[subplot_index].set_title(set_title) return self.axes[subplot_index]
39.190265
110
0.557638
b5b58b1d72358047f66d72c261487ded7e143d68
283
py
Python
template/{{cookiecutter.pkg_name}}/setup.py
azazdeaz/ros-grpc-wrapper
8438ed371630294f3845cd238958103041f233de
[ "MIT" ]
18
2020-09-10T06:03:32.000Z
2022-03-14T14:05:17.000Z
template/{{cookiecutter.pkg_name}}/setup.py
azazdeaz/ros-grpc-wrapper
8438ed371630294f3845cd238958103041f233de
[ "MIT" ]
1
2021-08-24T09:41:42.000Z
2021-08-24T09:41:42.000Z
template/{{cookiecutter.pkg_name}}/setup.py
azazdeaz/ros-grpc-wrapper
8438ed371630294f3845cd238958103041f233de
[ "MIT" ]
3
2021-02-21T04:19:21.000Z
2021-11-12T06:24:37.000Z
from setuptools import setup from catkin_pkg.python_setup import generate_distutils_setup # fetch values from package.xml setup_args = generate_distutils_setup( packages=['ros_pb2', 'ros_pb2_grpc', '{{cookiecutter.pkg_name}}'], package_dir={'': 'src'}) setup(**setup_args)
28.3
70
0.763251
92baa11d0b9d0dc768f74909952c316cc3314100
308
py
Python
leetcode/medium/top-k-frequent-elements.py
vtemian/interviews-prep
ddef96b5ecc699a590376a892a804c143fe18034
[ "Apache-2.0" ]
8
2019-05-14T12:50:29.000Z
2022-03-01T09:08:27.000Z
leetcode/medium/top-k-frequent-elements.py
vtemian/interviews-prep
ddef96b5ecc699a590376a892a804c143fe18034
[ "Apache-2.0" ]
46
2019-03-24T20:59:29.000Z
2019-04-09T16:28:43.000Z
leetcode/medium/top-k-frequent-elements.py
vtemian/interviews-prep
ddef96b5ecc699a590376a892a804c143fe18034
[ "Apache-2.0" ]
1
2022-01-28T12:46:29.000Z
2022-01-28T12:46:29.000Z
import heapq from collections import Counter class Solution: def topKFrequent(self, nums: List[int], k: int) -> List[int]: nums = Counter(nums) return [ x[0] for x in heapq.nlargest(k, [(nr, value) for nr, value in nums.items()], key=lambda nr: nr[1]) ]
25.666667
105
0.577922
52582496addf1038f8f747b268df5c1077cc6d66
252
py
Python
manage.py
openwater/h2o-really
bb6ae678cc4f505450684a2579e3f0196236e8dc
[ "Unlicense" ]
3
2015-05-25T07:41:42.000Z
2020-05-18T05:50:40.000Z
manage.py
openwater/h2o-really
bb6ae678cc4f505450684a2579e3f0196236e8dc
[ "Unlicense" ]
null
null
null
manage.py
openwater/h2o-really
bb6ae678cc4f505450684a2579e3f0196236e8dc
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "openwater.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
22.909091
73
0.77381
a1f08465cddd3aa48517bd3532a1ab111ba0d0be
50
py
Python
kolga/plugins/exception.py
Hi-Fi/kolga
821169fc24eb7e3883e6b4993ac75117a0c59766
[ "MIT" ]
null
null
null
kolga/plugins/exception.py
Hi-Fi/kolga
821169fc24eb7e3883e6b4993ac75117a0c59766
[ "MIT" ]
null
null
null
kolga/plugins/exception.py
Hi-Fi/kolga
821169fc24eb7e3883e6b4993ac75117a0c59766
[ "MIT" ]
null
null
null
class TestCouldNotLoadPlugin(Exception): pass
16.666667
40
0.8
8f088e8f72f684f3807e6c50987f9c23cb262889
957
py
Python
azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_09_01/models/replication_paged.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_09_01/models/replication_paged.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_09_01/models/replication_paged.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-08-28T14:36:47.000Z
2018-08-28T14:36:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.paging import Paged class ReplicationPaged(Paged): """ A paging container for iterating over a list of :class:`Replication <azure.mgmt.containerregistry.v2018_09_01.models.Replication>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Replication]'} } def __init__(self, *args, **kwargs): super(ReplicationPaged, self).__init__(*args, **kwargs)
34.178571
141
0.583072
57bcbfb0954db2c91ec2ed22506d36d008fe3876
29,958
py
Python
cdpcli/clidriver.py
anuragpatro/cdpcli
fe2b78308e4f8c09aa9609a43a646f314fa20327
[ "Apache-2.0" ]
7
2020-10-01T14:03:57.000Z
2022-02-23T17:47:08.000Z
cdpcli/clidriver.py
anuragpatro/cdpcli
fe2b78308e4f8c09aa9609a43a646f314fa20327
[ "Apache-2.0" ]
1
2020-11-30T08:00:50.000Z
2020-12-01T08:00:20.000Z
cdpcli/clidriver.py
anuragpatro/cdpcli
fe2b78308e4f8c09aa9609a43a646f314fa20327
[ "Apache-2.0" ]
7
2020-11-07T20:55:47.000Z
2021-11-09T18:45:33.000Z
# Copyright 2012-2013 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Modifications made by Cloudera are: # Copyright (c) 2016 Cloudera, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import logging import platform import socket import sys from cdpcli import LIST_TYPE from cdpcli import RELEASE from cdpcli import VERSION from cdpcli import xform_name from cdpcli.argparser import ArgTableArgParser from cdpcli.argparser import MainArgParser from cdpcli.argparser import ServiceArgParser from cdpcli.argprocess import unpack_argument from cdpcli.arguments import BooleanArgument from cdpcli.arguments import CLIArgument from cdpcli.arguments import CustomArgument from cdpcli.arguments import ListArgument from cdpcli.arguments import UnknownArgumentError from cdpcli.clicommand import CLICommand from cdpcli.client import ClientCreator from cdpcli.client import Context from cdpcli.compat import copy_kwargs from cdpcli.compat import OrderedDict from cdpcli.compat import six from cdpcli.config import Config from cdpcli.endpoint import EndpointCreator from cdpcli.endpoint import EndpointResolver from cdpcli.exceptions import ExtensionImportError from cdpcli.exceptions import InvalidConfiguredFormFactor from cdpcli.exceptions import ProfileNotFound from cdpcli.exceptions import WrongOpFormFactorError from cdpcli.exceptions import WrongSvcFormFactorError from cdpcli.extensions.arguments import OverrideRequiredArgsArgument from cdpcli.extensions.cliinputjson import add_cli_input_json from cdpcli.extensions.configure.classify import ClassifyDeployment from cdpcli.extensions.configure.classify import DeploymentType from cdpcli.extensions.configure.configure import ConfigureCommand from cdpcli.extensions.generatecliskeleton import add_generate_skeleton from cdpcli.extensions.interactivelogin import LoginCommand from cdpcli.extensions.logout import LogoutCommand from cdpcli.extensions.paginate import add_pagination_params from cdpcli.extensions.paginate import check_should_enable_pagination from cdpcli.extensions.refdoc import RefdocCommand from cdpcli.formatter import get_formatter from cdpcli.help import OperationHelpCommand from cdpcli.help import ProviderHelpCommand from cdpcli.help import ServiceHelpCommand from cdpcli.loader import Loader from cdpcli.model import ServiceModel from cdpcli.paramfile import ParamFileVisitor from cdpcli.parser import ResponseParserFactory from cdpcli.retryhandler import create_retry_handler from cdpcli.translate import build_retry_config from cdpcli.utils import get_extension_registers import urllib3.util.connection as urllib3_connection LOG = logging.getLogger('cdpcli.clidriver') ROOT_LOGGER = logging.getLogger('') LOG_FORMAT = ('%(asctime)s - %(threadName)s - %(name)s - %(levelname)s - %(message)s') def main(): driver = CLIDriver() return driver.main() class CLIDriver(object): def __init__(self): self._loader = Loader() self._endpoint_creator = EndpointCreator(EndpointResolver()) self._user_agent_header = self._build_user_agent_header() self._response_parser_factory = ResponseParserFactory() self._cli_data = self._loader.load_json('cli.json') self._retryhandler = self._create_default_retryhandler() self._available_services = self._loader.list_available_services() self._command_table = self._build_command_table() self._argument_table = self._build_argument_table() self._context = Context() self._client_creator = ClientCreator(self._loader, self._context, self._endpoint_creator, self._user_agent_header, self._response_parser_factory, self._retryhandler) def main(self, args=None): if args is None: args = sys.argv[1:] parser = self._create_parser() command_table = self._get_command_table() if len(args) == 0 or (len(args) == 1 and args[0] == '--help'): args = ['help'] parsed_args, remaining = parser.parse_known_args(args) try: self._handle_top_level_args(parsed_args) self._filter_command_table_for_form_factor(parsed_args) self._warn_for_old_python() self._warn_for_non_public_release() return command_table[parsed_args.command]( self._client_creator, remaining, parsed_args) except Exception as e: LOG.debug("Exception caught in main()", exc_info=True) sys.stderr.write("\n") sys.stderr.write("%s\n" % six.text_type(e)) return 255 def _get_loader(self): return self._loader def _get_cli_data(self): return self._cli_data def _get_command_table(self): return self._command_table def _build_user_agent_header(self): return 'CDPCLI/%s Python/%s %s/%s' % (VERSION, platform.python_version(), platform.system(), platform.release()) def _build_command_table(self): commands = OrderedDict() services = self._get_available_services() for service_name in services: commands[service_name] = ServiceCommand(self, service_name) ConfigureCommand.add_command(commands) LoginCommand.add_command(commands) LogoutCommand.add_command(commands) RefdocCommand.add_command(commands) commands = OrderedDict(sorted(commands.items())) return commands def _filter_command_table_for_form_factor(self, parsed_args): """ Replaces services and operations in the command table that do not apply to the current form factor with stubs that error out when called. """ if parsed_args.command == 'refdoc': # Do not filter out any command if it is to generate help documents. return # Find the form factor based on: # 1. the form factor explicitly specified by --form-factor, or else # 2. the configured form factor, or else # 3. the explicit endpoint URL, or else # 4. the configured CDP endpoint URL. if parsed_args.form_factor: form_factor = parsed_args.form_factor else: try: form_factor = self._context.get_scoped_config().get('form_factor', None) except ProfileNotFound: form_factor = None valid_form_factors = [dt.value for dt in list(DeploymentType)] if form_factor and form_factor not in valid_form_factors: raise InvalidConfiguredFormFactor( form_factor=form_factor, valid_form_factors=valid_form_factors) if not form_factor: endpoint_url = parsed_args.endpoint_url if not endpoint_url: try: endpoint_url = self._context.get_scoped_config(). \ get(EndpointResolver.CDP_ENDPOINT_URL_KEY_NAME, None) except ProfileNotFound: endpoint_url = None form_factor = \ ClassifyDeployment(endpoint_url).get_deployment_type().value LOG.debug("Current form factor is {}".format(form_factor)) for command in list(self._command_table.keys()): try: # If the service does not apply to the current form factor, # filter it out. service_model = self._command_table[command].service_model service_form_factors = service_model.form_factors if form_factor not in service_form_factors: self._command_table[command] = \ FilteredServiceCommand(self, command, form_factor, service_form_factors) else: for operation_name in service_model.operation_names: # If the operation does not apply to the current form # factor, filter it out. operation_model = service_model.operation_model(operation_name) operation_form_factors = operation_model.form_factors if not operation_form_factors: operation_form_factors = service_form_factors if form_factor not in operation_form_factors: self._command_table[command]. \ filter_operation(operation_name, form_factor, operation_form_factors) except AttributeError: # not a service model, so available in all form factors pass def _get_argument_table(self): return self._argument_table def _build_argument_table(self): argument_table = OrderedDict() cli_data = self._get_cli_data() cli_arguments = cli_data.get('options', None) for option in cli_arguments: option_params = copy_kwargs(cli_arguments[option]) cli_argument = self._create_cli_argument(option, option_params) cli_argument.add_to_arg_table(argument_table) return argument_table def _get_available_services(self): return self._available_services def get_service_model(self, service_name): service_data = self._loader.load_service_data(service_name) service_data['paths'] = OrderedDict(sorted(service_data.get('paths', {}).items())) return ServiceModel(service_data, service_name=service_name) def _create_help_command(self): cli_data = self._get_cli_data() # We filter service aliases out of the service list at the bottom of the # top level help. commands = OrderedDict() for service_name, command in self._get_command_table().items(): if not self._loader.is_service_alias(service_name): commands[service_name] = command return ProviderHelpCommand(commands, self._get_argument_table(), cli_data.get('description', None), cli_data.get('synopsis', None), cli_data.get('help_usage', None)) def _create_parser(self): command_table = self._get_command_table() command_table['help'] = self._create_help_command() cli_data = self._get_cli_data() parser = MainArgParser( command_table, VERSION, cli_data.get('description', None), self._get_argument_table()) return parser def _create_cli_argument(self, option_name, option_params): return CustomArgument( option_name, help_text=option_params.get('help', ''), dest=option_params.get('dest'), default=option_params.get('default'), action=option_params.get('action'), required=option_params.get('required'), choices=option_params.get('choices'), cli_type_name=option_params.get('type'), hidden=option_params.get('hidden', False)) def _handle_top_level_args(self, args): if args.profile: self._client_creator.context.set_config_variable('profile', args.profile) if args.auth_config: self._client_creator.context.set_config_variable('auth_config', args.auth_config) if args.debug: self._setup_logger(logging.DEBUG) LOG.debug("CLI version: %s", self._user_agent_header) LOG.debug("Arguments entered to CLI: %s", sys.argv[1:]) else: self._setup_logger(logging.WARNING) if args.force_ipv4: # Based on SO /a/46972341 LOG.debug("Forcing IPv4 connections only") def _allowed_gai_family(): return socket.AF_INET urllib3_connection.allowed_gai_family = _allowed_gai_family def _setup_logger(self, log_level): ROOT_LOGGER.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(log_level) formatter = logging.Formatter(LOG_FORMAT) ch.setFormatter(formatter) ROOT_LOGGER.addHandler(ch) def _create_default_retryhandler(self): # We create one retryhandler based on the __default__ configuration in # the _retry.json (in the 'data' directory). This retryhandler is used # by all services. config = self._load_retry_config() if not config: return LOG.info("Using retry config: %s" % config) return create_retry_handler(config) def _load_retry_config(self): original_config = self._loader.load_json('_retry.json') retry_config = build_retry_config( original_config['retry'], original_config.get('definitions', {})) return retry_config def _warn_for_old_python(self): if sys.version_info[0] < 3 or \ (sys.version_info[0] == 3 and sys.version_info[1] < 6): LOG.warn('You are running the CDP CLI under Python %s. The CDP CLI ' 'now requires Python 3.6 or higher. Please upgrade now to ' 'avoid CLI errors.', sys.version) def _warn_for_non_public_release(self): if RELEASE != 'PUBLIC': if RELEASE == 'INTERNAL': article = 'an' else: article = 'a' LOG.warn('You are running {0} {1} release of the CDP CLI, which ' 'has different capabilities from the standard public ' 'release. Find the public release at: ' 'https://pypi.org/project/cdpcli/'.format(article, RELEASE)) class ServiceCommand(CLICommand): """ A top-level CLI command, corresponding to an API service. """ def __init__(self, clidriver, name): self._clidriver = clidriver self._name = name self._command_table = None self._lineage = [self] self._service_model = None @property def name(self): return self._name @name.setter def name(self, value): self._name = value @property def service_model(self): return self._get_service_model() @property def lineage(self): return self._lineage @lineage.setter def lineage(self, value): self._lineage = value def _get_command_table(self): if self._command_table is None: self._command_table = self._create_command_table() return self._command_table def _get_service_model(self): if self._service_model is None: self._service_model = self._clidriver.get_service_model(self._name) return self._service_model def __call__(self, client_creator, args, parsed_globals): # Once we know we're trying to call a service for this operation # we can go ahead and create the parser for it. We # can also grab the Service object from botocore. service_parser = self._create_parser() parsed_args, remaining = service_parser.parse_known_args(args) command_table = self._get_command_table() return command_table[parsed_args.operation]( client_creator, remaining, parsed_globals) def _create_command_table(self): command_table = OrderedDict() service_model = self._get_service_model() for operation_name in service_model.operation_names: cli_name = xform_name(operation_name, '-') operation_model = service_model.operation_model(operation_name) command_table[cli_name] = ServiceOperation( name=cli_name, parent_name=self._name, operation_model=operation_model, operation_caller=CLIOperationCaller()) register_ext, register_cmd = get_extension_registers(self._name) if register_cmd is not None: register_cmd(service_model, command_table) self._add_lineage(command_table) return command_table def filter_operation(self, operation_name, form_factor, operation_form_factors): """ Replace the named operation in this command's command table with a filtered one. """ command_table = self._get_command_table() cli_name = xform_name(operation_name, '-') command_table[cli_name] = FilteredServiceOperation( name=cli_name, parent_name=self._name, form_factor=form_factor, operation_form_factors=operation_form_factors) def _add_lineage(self, command_table): for command in command_table: command_obj = command_table[command] command_obj.lineage = self.lineage + [command_obj] def create_help_command(self): command_table = OrderedDict() for command_name, command in self._get_command_table().items(): command_table[command_name] = command return ServiceHelpCommand(obj=self._get_service_model(), command_table=command_table, arg_table=None, command_lineage='.'.join(self.lineage_names), name=self._name) def _create_parser(self): command_table = self._get_command_table() # Also add a 'help' command. command_table['help'] = self.create_help_command() return ServiceArgParser( operations_table=command_table, service_name=self._name) class FilteredServiceCommand(ServiceCommand): """ A stub service command that fails when run due to being under the wrong CLI form factor. """ def __init__(self, clidriver, name, form_factor, service_form_factors): super().__init__(clidriver, name) self._clidriver = clidriver self._name = name self._form_factor = form_factor self._service_form_factors = service_form_factors def __call__(self, client_creator, args, parsed_globals): raise WrongSvcFormFactorError( service_name=self._name, form_factor=self._form_factor, service_form_factors=', '.join(self._service_form_factors)) class ServiceOperation(object): ARG_TYPES = { LIST_TYPE: ListArgument, 'boolean': BooleanArgument, } DEFAULT_ARG_CLASS = CLIArgument def __init__(self, name, parent_name, operation_caller, operation_model): self._arg_table = None self._name = name # These is used so we can figure out what the proper event # name should be <parent name>.<name>. self._parent_name = parent_name # We can have more than one operation callers. They are called in # order and if any returns 'False' no other callers will be called. self._operation_callers = [operation_caller] self._lineage = [self] self._operation_model = operation_model @property def name(self): return self._name @name.setter def name(self, value): self._name = value @property def lineage(self): return self._lineage @lineage.setter def lineage(self, value): self._lineage = value @property def lineage_names(self): # Represents the lineage of a command in terms of command ``name`` return [cmd.name for cmd in self.lineage] @property def arg_table(self): if self._arg_table is None: self._arg_table = self._create_argument_table() return self._arg_table def __call__(self, client_creator, args, parsed_globals): # Handle extensions first, so OverrideRequiredArgs (CliInputJson, # GenerateCliSkeleton, etc) could have a chance to run. self._handle_extensions() # We need to handle overriding required arguments before we create # the parser as the parser will parse the arguments and decide which # argument is required before we have a chance to modify the argument # table. self._handle_override_required_args(args) # Once we know we're trying to call a particular operation # of a service we can go ahead and load the parameters. operation_parser = self._create_operation_parser(self.arg_table) self._add_help(operation_parser) parsed_args, remaining = operation_parser.parse_known_args(args) if parsed_args.help == 'help': return self.create_help_command()( client_creator, remaining, parsed_globals) elif parsed_args.help: remaining.append(parsed_args.help) if remaining: raise UnknownArgumentError( "Unknown options: %s" % ', '.join(remaining)) check_should_enable_pagination(self._arg_table, self._operation_model, parsed_args, parsed_globals) call_parameters = self._build_call_parameters(parsed_args, self.arg_table) return self._invoke_operation_callers(client_creator, call_parameters, parsed_args, parsed_globals) def create_help_command(self): return OperationHelpCommand( operation_model=self._operation_model, arg_table=self.arg_table, name=self._name, command_lineage='.'.join(self.lineage_names)) def _add_help(self, parser): # The 'help' output is processed a little differently from # the operation help because the arg_table has # CLIArguments for values. parser.add_argument('help', nargs='?') def _build_call_parameters(self, args, arg_table): # We need to convert the args specified on the command # line as valid **kwargs we can hand to botocore. service_params = {} # args is an argparse.Namespace object so we're using vars() # so we can iterate over the parsed key/values. parsed_args = vars(args) for arg_object in arg_table.values(): py_name = arg_object.py_name if py_name in parsed_args: value = parsed_args[py_name] value = unpack_argument(arg_object, value) arg_object.add_to_params(service_params, value) # We run the ParamFileVisitor over the input data to resolve any # paramfile references in it. service_params = ParamFileVisitor().visit( service_params, self._operation_model.input_shape) return service_params def _create_argument_table(self): argument_table = OrderedDict() input_shape = self._operation_model.input_shape required_arguments = [] arg_dict = {} if input_shape is not None: required_arguments = input_shape.required_members arg_dict = input_shape.members for arg_name, arg_shape in arg_dict.items(): cli_arg_name = xform_name(arg_name, '-') arg_class = self.ARG_TYPES.get(arg_shape.type_name, self.DEFAULT_ARG_CLASS) is_required = arg_name in required_arguments arg_object = arg_class( name=cli_arg_name, argument_model=arg_shape, is_required=is_required, operation_model=self._operation_model, serialized_name=arg_name, no_paramfile=arg_shape.is_no_paramfile) arg_object.add_to_arg_table(argument_table) add_pagination_params(self._operation_model, argument_table) add_cli_input_json(self._operation_model, argument_table) add_generate_skeleton(self._operation_model, argument_table) return argument_table def _create_operation_parser(self, arg_table): return ArgTableArgParser(arg_table, service_name=self._parent_name, operation_name=self._name) def _handle_override_required_args(self, args): argument_table = self.arg_table for cli_name, cli_argument in argument_table.items(): if isinstance(cli_argument, OverrideRequiredArgsArgument): cli_argument.override_required_args(argument_table, args) self._operation_callers.insert(0, cli_argument) def _handle_extensions(self): if self._operation_model.extensions: # Iterate in reversed order to keep the execution order: # First extension should run first. for ext_name in reversed(self._operation_model.extensions): register_ext, register_cmd = get_extension_registers(ext_name) if register_ext is None: raise ExtensionImportError(ext_name=ext_name, err='Not Found') register_ext(self._operation_callers, self._operation_model) def _invoke_operation_callers(self, client_creator, call_parameters, parsed_args, parsed_globals): def _create_client(service_name): # The TLS verification value can be a boolean or a CA_BUNDLE path. This # is a little odd, but ultimately comes from the python HTTP requests # library we're using. tls_verification = parsed_globals.verify_tls ca_bundle = getattr(parsed_globals, 'ca_bundle', None) if parsed_globals.verify_tls and ca_bundle is not None: tls_verification = ca_bundle # Retrieve values passed for extra client configuration. config_kwargs = {} if parsed_globals.read_timeout is not None: config_kwargs['read_timeout'] = int(parsed_globals.read_timeout) if parsed_globals.connect_timeout is not None: config_kwargs['connect_timeout'] = int(parsed_globals.connect_timeout) config = Config(**config_kwargs) client = client_creator.create_client( service_name, parsed_globals.endpoint_url, parsed_globals.cdp_region, tls_verification, client_creator.context.get_credentials(parsed_globals), client_config=config) return client for operation_caller in self._operation_callers: # Create a new client for each operation_caller because parsed_args and # parsed_globals could be changed in each iteration. if operation_caller.invoke( _create_client, self._operation_model, call_parameters, parsed_args, parsed_globals) is False: break return 0 class FilteredServiceOperation(ServiceOperation): """ A stub service operation that fails when run due to being under the wrong CLI form factor. """ def __init__(self, name, parent_name, form_factor, operation_form_factors): super().__init__(name, parent_name, operation_caller=None, operation_model=None) self._form_factor = form_factor self._operation_form_factors = operation_form_factors def __call__(self, client_creator, args, parsed_globals): raise WrongOpFormFactorError( operation_name=self._name, service_name=self._parent_name, form_factor=self._form_factor, operation_form_factors=', '.join(self._operation_form_factors)) class CLIOperationCaller(object): def invoke(self, client_creator, operation_model, parameters, parsed_args, parsed_globals): service_name = operation_model.service_model.service_name operation_name = operation_model.name client = client_creator(service_name) py_operation_name = xform_name(operation_name) if client.can_paginate(py_operation_name) and parsed_globals.paginate: response = client.get_paginator( py_operation_name).paginate(**parameters) else: response = getattr(client, xform_name(operation_name))(**parameters) self._display_response(operation_name, response, parsed_globals) return True def _display_response(self, command_name, response, parsed_globals): output = parsed_globals.output if output is None: output = "json" formatter = get_formatter(output, parsed_globals) formatter(command_name, response)
41.899301
90
0.639095
cba2c2d7ab58347d99533c90c4f4701c1db568b3
8,834
py
Python
docs/source/conf.py
bhumikapahariapuresoftware/django-otp
462908b0e5a930a9b1a7227b1410cfa0e70b2194
[ "BSD-2-Clause" ]
null
null
null
docs/source/conf.py
bhumikapahariapuresoftware/django-otp
462908b0e5a930a9b1a7227b1410cfa0e70b2194
[ "BSD-2-Clause" ]
null
null
null
docs/source/conf.py
bhumikapahariapuresoftware/django-otp
462908b0e5a930a9b1a7227b1410cfa0e70b2194
[ "BSD-2-Clause" ]
null
null
null
# django-otp documentation build configuration file, created by # sphinx-quickstart on Fri Jul 13 09:48:33 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os.path import sys import django import django.conf # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../ext')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.intersphinx', 'otpdocs', ] # autodoc and viewcode need valid settings in order to process Django modules. django.conf.settings.configure( DATABASES={ 'default': { 'ENGINE': 'django.db.backends.sqlite3', } }, INSTALLED_APPS=[ 'django.contrib.auth', 'django.contrib.admin', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django_otp', 'django_otp.plugins.otp_hotp', 'django_otp.plugins.otp_totp', 'django_otp.plugins.otp_static', 'django_otp.plugins.otp_email', ], SECRET_KEY='properly-configured', ) django.setup() intersphinx_mapping = { 'python': ('https://docs.python.org/3/', None), 'django': ('https://docs.djangoproject.com/en/2.2/', 'https://docs.djangoproject.com/en/2.2/_objects/'), } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'django-otp' copyright = '2012, Peter Sagerson' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. release = '1.1.3' # The short X.Y version. version = '.'.join(release.split('.')[:2]) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'django-otpdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'django-otp.tex', 'django-otp Documentation', 'Peter Sagerson', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'django-otp', 'django-otp Documentation', ['Peter Sagerson'], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'django-otp', 'django-otp Documentation', 'Peter Sagerson', 'django-otp', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
31.105634
80
0.696966
fb20f279cc5b89c2e208647f19bcd16143c30ac0
1,051
py
Python
jesse/models/Ticker.py
clarkandrew/jesse
169f3c85c465ef6604d42bd27c28612365309b4a
[ "MIT" ]
3,999
2018-11-09T10:38:51.000Z
2022-03-31T12:29:12.000Z
jesse/models/Ticker.py
clarkandrew/jesse
169f3c85c465ef6604d42bd27c28612365309b4a
[ "MIT" ]
172
2020-04-16T16:19:08.000Z
2022-03-28T13:28:55.000Z
jesse/models/Ticker.py
pmondal08/jesse
527952a74bc76f76cf3a2d25755386f8db285885
[ "MIT" ]
495
2019-03-01T21:48:53.000Z
2022-03-30T15:35:19.000Z
import peewee import jesse.helpers as jh from jesse.services.db import db class Ticker(peewee.Model): id = peewee.UUIDField(primary_key=True) # timestamp in milliseconds timestamp = peewee.BigIntegerField() # the latest trades price last_price = peewee.FloatField() # the trading volume in the last 24 hours volume = peewee.FloatField() # the highest price in the last 24 hours high_price = peewee.FloatField() # the lowest price in the last 24 hours low_price = peewee.FloatField() symbol = peewee.CharField() exchange = peewee.CharField() class Meta: database = db indexes = ((('timestamp', 'exchange', 'symbol'), True),) def __init__(self, attributes: dict = None, **kwargs) -> None: peewee.Model.__init__(self, attributes=attributes, **kwargs) if attributes is None: attributes = {} for a in attributes: setattr(self, a, attributes[a]) if not jh.is_unit_testing(): # create the table Ticker.create_table()
26.948718
68
0.656518
b9a1baf1762d57ebf63d69df413c59d1f4e182e2
16,983
py
Python
scripts/artifacts/powerlogGZ.py
xperylabhub/iLEAPP
fd1b301bf2094387f51ccdbd10ed233ce9abd687
[ "MIT" ]
null
null
null
scripts/artifacts/powerlogGZ.py
xperylabhub/iLEAPP
fd1b301bf2094387f51ccdbd10ed233ce9abd687
[ "MIT" ]
1
2021-01-16T05:32:40.000Z
2021-01-16T05:32:40.000Z
scripts/artifacts/powerlogGZ.py
xperylabhub/iLEAPP
fd1b301bf2094387f51ccdbd10ed233ce9abd687
[ "MIT" ]
null
null
null
import gzip import re import os import shutil import sqlite3 from pathlib import Path import scripts.artifacts.artGlobals from packaging import version from scripts.artifact_report import ArtifactHtmlReport from scripts.ilapfuncs import logfunc, logdevinfo, timeline, tsv, is_platform_windows, open_sqlite_db_readonly def get_powerlogGZ(files_found, report_folder, seeker): iOSversion = scripts.artifacts.artGlobals.versionf data_list1 = [] data_list2 = [] data_list3 = [] data_list4 = [] data_list5 = [] data_list6 = [] data_list7 = [] data_list8 = [] data_list9 = [] data_list10 = [] data_list11 = [] data_list12 = [] data_list13 = [] data_list14 = [] data_list15 = [] data_list16 = [] data_list17 = [] data_list18 = [] logfunc('Unzipped Powerlog databases:') for file_found in files_found: file_found = str(file_found) filename = Path(file_found) ungzipedfile= Path(filename.parent,filename.stem) with gzip.open(file_found, 'rb') as f_in: with open(ungzipedfile, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) f_out.close() logfunc(str(filename.stem)) file_found = str(Path(filename.parent)) db = open_sqlite_db_readonly(str(ungzipedfile)) cursor = db.cursor() if version.parse(iOSversion) >= version.parse("9"): cursor.execute(''' select datetime(timestamp, 'unixepoch'), datetime(timestamplogged, 'unixepoch'), applicationname, assertionid, assertionname, audioroute, mirroringstate, operation, pid from plaudioagent_eventpoint_audioapp ''') all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: for row in all_rows: data_list1.append((row[0],row[1],row[2],row[3],row[4],row[5],row[6],row[7],row[8])) else: logfunc('No data available in Powerlog Audio Routing via app') if version.parse(iOSversion) >= version.parse("10"): cursor.execute(''' select datetime(timestamp, 'unixepoch'), bulletinbundleid, timeinterval / 60, count, posttype from plspringboardagent_aggregate_sbbulletins_aggregate ''') all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: for row in all_rows: data_list2.append((row[0],row[1],row[2],row[3],row[4])) else: logfunc('No data available in Aggregate Bulletins') if version.parse(iOSversion) >= version.parse("10"): cursor.execute(''' select datetime(timestamp, 'unixepoch'), notificationbundleid, count as "count", notificationtype from plspringboardagent_aggregate_sbnotifications_aggregate ''') all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: for row in all_rows: data_list3.append((row[0],row[1],row[2],row[3])) else: logfunc('No data available in Aggregate Notifications') if version.parse(iOSversion) >= version.parse("9"): cursor.execute(''' select datetime(timestamp, 'unixepoch'), appname, appexecutable, appbundleid, appbuildversion, appbundleversion, apptype, case appdeleteddate when 0 then "not deleted" else datetime(appdeleteddate, 'unixepoch') end from plapplicationagent_eventnone_allapps ''') all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: for row in all_rows: data_list5.append((row[0],row[1],row[2],row[3],row[4],row[5],row[6],row[7])) else: logfunc('No data available in Powerlog App Info') if version.parse(iOSversion) >= version.parse("11"): cursor.execute(''' select datetime(timestamp, 'unixepoch'), datetime(start, 'unixepoch'), datetime(end, 'unixepoch'), state, finished, haserror from plxpcagent_eventpoint_mobilebackupevents ''') all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: for row in all_rows: data_list6.append((row[0],row[1],row[2],row[3],row[4],row[5])) else: logfunc('No data available in Powerlog Backup Info') if version.parse(iOSversion) >= version.parse("11"): cursor.execute(""" select datetime(appdeleteddate, 'unixepoch'), datetime(timestamp, 'unixepoch'), appname, appexecutable, appbundleid, appbuildversion, appbundleversion, apptype from plapplicationagent_eventnone_allapps where appdeleteddate > 0 """) all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: for row in all_rows: data_list7.append((row[0],row[1],row[2],row[3],row[4],row[5],row[6],row[7])) if version.parse(iOSversion) == version.parse("10"): cursor.execute(""" select datetime(appdeleteddate, 'unixepoch'), datetime(timestamp, 'unixepoch'), appname, appexecutable, appbundleid, appbuildversion, appbundleversion from plapplicationagent_eventnone_allapps where appdeleteddate > 0 """) iall_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: for row in all_rows: data_list7.append((row[0],row[1],row[2],row[3],row[4],row[5],row[6])) if version.parse(iOSversion) == version.parse("9"): cursor.execute(""" select datetime(appdeleteddate, 'unixepoch'), datetime(timestamp, 'unixepoch'), appname, appbundleid from plapplicationagent_eventnone_allapps where appdeleteddate > 0 """) all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: for row in all_rows: data_list7.append((row[0],row[1],row[2],row[3])) if version.parse(iOSversion) >= version.parse("10"): cursor.execute(''' select datetime(timestamp, 'unixepoch'), build, device, hwmodel, pairingid from plconfigagent_eventnone_paireddeviceconfig ''') else: cursor.execute(''' select datetime(timestamp, 'unixepoch'), build, device from plconfigagent_eventnone_paireddeviceconfig ''') all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: if version.parse(iOSversion) >= version.parse("10"): for row in all_rows: data_list11.append((row[0],row[1],row[2],row[3],row[4])) else: for row in all_rows: data_list11.append((row[0],row[1],row[2])) if version.parse(iOSversion) >= version.parse("9"): cursor.execute(''' select datetime(tts + system, 'unixepoch'), bundleid, case level when "0" then "off" when "1" then "on" end as status, datetime(tts, 'unixepoch'), datetime(tot, 'unixepoch'), system from ( select bundleid, torchid, tts, tot, max(toid), system, level from ( select plcameraagent_eventforward_torch.timestamp as tts, plcameraagent_eventforward_torch.bundleid, plcameraagent_eventforward_torch.level, plcameraagent_eventforward_torch.id as "torchid", plstorageoperator_eventforward_timeoffset.timestamp as tot, plstorageoperator_eventforward_timeoffset.id as toid, plstorageoperator_eventforward_timeoffset.system, bundleid from plcameraagent_eventforward_torch left join plstorageoperator_eventforward_timeoffset ) as torchest group by torchid ) ''') all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: for row in all_rows: data_list15.append((row[0],row[1],row[2],row[3],row[4],row[5])) if version.parse(iOSversion) >= version.parse("9"): cursor.execute(''' select datetime(wifipropts + system, 'unixepoch') , currentssid, currentchannel, datetime(tot, 'unixepoch') , system as time_offset from ( select wifiorotsid, wifipropts, tot, max(toi), currentssid, currentchannel, system from ( select plwifiagent_eventbackward_cumulativeproperties.timestamp as wifipropts, currentssid, currentchannel, plwifiagent_eventbackward_cumulativeproperties.id as "wifiorotsid" , plstorageoperator_eventforward_timeoffset.timestamp as tot, plstorageoperator_eventforward_timeoffset.id as toi, plstorageoperator_eventforward_timeoffset.system from plwifiagent_eventbackward_cumulativeproperties left join plstorageoperator_eventforward_timeoffset ) as wifipropst group by wifiorotsid ) ''') all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: for row in all_rows: data_list18.append((row[0],row[1],row[2],row[3],row[4])) if version.parse(iOSversion) >= version.parse("9"): if len(data_list1) > 0: report = ArtifactHtmlReport('Powerlog Audio Routing via App') report.start_artifact_report(report_folder, 'Audio Routing') report.add_script() data_headers1 = ('Timestamp','Timestamped Logged','Bundle ID','Assertion Name','Audio Route','Mirroring State','Operation','PID', 'Audio App Table ID' ) report.write_artifact_data_table(data_headers1, data_list1, file_found) report.end_artifact_report() tsvname = 'Powerlog Audio Routing via App from GZ backup' tsv(report_folder, data_headers1, data_list1, tsvname) tlactivity = 'Powerlog Audio Routing via App from GZ backup' timeline(report_folder, tlactivity, data_list1, data_headers1) if version.parse(iOSversion) >= version.parse("10"): if len(data_list2) > 0: report = ArtifactHtmlReport('Powerlog Aggregate Bulletins') report.start_artifact_report(report_folder, 'Aggregate Bulletins') report.add_script() data_headers2 = ('Timestamp','Bulletin Bundle ID','Time Interval in Seconds','Count','Post Type') report.write_artifact_data_table(data_headers2, data_list2, file_found) report.end_artifact_report() tsvname = 'Powerlog Agg Bulletins from GZ backup' tsv(report_folder, data_headers2, data_list2, tsvname) tlactivity = 'Powerlog Agg Bulletins from GZ backup' timeline(report_folder, tlactivity, data_list2, data_headers2) if version.parse(iOSversion) >= version.parse("10"): if len(data_list3) > 0: report = ArtifactHtmlReport('Powerlog Aggregate Notifications') report.start_artifact_report(report_folder, 'Aggregate Notifications') report.add_script() data_headers3 = ('Timestamp','Notification Bundle ID','Count','Notification Type') report.write_artifact_data_table(data_headers3, data_list3, file_found) report.end_artifact_report() tsvname = 'Powerlog Agg Notifications from GZ backup' tsv(report_folder, data_headers3, data_list3, tsvname) tlactivity = 'Powerlog Agg Notifications from GZ backup' timeline(report_folder, tlactivity, data_list3, data_headers3) if version.parse(iOSversion) >= version.parse("9"): if len(data_list5) > 0: report = ArtifactHtmlReport('Powerlog App Info') report.start_artifact_report(report_folder, 'App Info') report.add_script() data_headers5 = ('Timestamp','App Name','App Executable Name','Bundle ID','App Build Version','App Bundle Version','App TYpe','App Deleted Date') report.write_artifact_data_table(data_headers5, data_list5, file_found) report.end_artifact_report() tsvname = 'Powerlog App Info from GZ backup' tsv(report_folder, data_headers5, data_list5, tsvname) tlactivity = 'Powerlog App Info from GZ backup' timeline(report_folder, tlactivity, data_list5, data_headers5) if version.parse(iOSversion) >= version.parse("11"): if len(data_list6) > 0: report = ArtifactHtmlReport('Powerlog Backup Info') report.start_artifact_report(report_folder, 'Backup Info') report.add_script() data_headers6 = ('Timestamp','Start','End','State','Finished','Has error' ) report.write_artifact_data_table(data_headers6, data_list6, file_found) report.end_artifact_report() tsvname = 'Powerlog Backup Info from GZ backup' tsv(report_folder, data_headers6, data_list6, tsvname) tlactivity = 'Powerlog Backup Info from GZ backup' timeline(report_folder, tlactivity, data_list6, data_headers6) if version.parse(iOSversion) >= version.parse("11"): if len(data_list7) > 0: report = ArtifactHtmlReport('Powerlog Deleted Apps') report.start_artifact_report(report_folder, 'Deleted Apps') report.add_script() data_headers7 = ('App Deleted Date','Timestamp','App Name','App Executable Name','Bundle ID','App Build Version','App Bundle Version','App Type') report.write_artifact_data_table(data_headers7, data_list7, file_found) report.end_artifact_report() tsvname = 'Powerlog Deleted Apps from GZ backup' tsv(report_folder, data_headers7, data_list7, tsvname) tlactivity = 'Powerlog Deleted Apps from GZ backup' timeline(report_folder, tlactivity, data_list7, data_headers7) if version.parse(iOSversion) == version.parse("10"): if len(data_list7) > 0: report = ArtifactHtmlReport('Powerlog Deleted Apps') report.start_artifact_report(report_folder, 'Deleted Apps') report.add_script() data_headers7 = ('App Deleted Date','Timestamp','App Name','App Executable Name','Bundle ID','App Build Version','App Bundle Version') report.write_artifact_data_table(data_headers7, data_list7, file_found) report.end_artifact_report() tsvname = 'Powerlog Deleted Apps from GZ backup' tsv(report_folder, data_headers7, data_list7, tsvname) tlactivity = 'Powerlog Deleted Apps from GZ backup' timeline(report_folder, tlactivity, data_list7, data_headers7) if version.parse(iOSversion) == version.parse("9"): if len(data_list7) > 0: report = ArtifactHtmlReport('Powerlog Deleted Apps') report.start_artifact_report(report_folder, 'Deleted Apps') report.add_script() data_headers7 = ('App Deleted Date','Timestamp','App Name','Bundle ID') report.write_artifact_data_table(data_headers7, data_list7, file_found) report.end_artifact_report() tsvname = 'Powerlog Deleted Apps from GZ backup' tsv(report_folder, data_headers7, data_list7, tsvname) tlactivity = 'Powerlog Deleted Apps from GZ backup' timeline(report_folder, tlactivity, data_list7, data_headers7) if version.parse(iOSversion) >= version.parse("10"): if len(data_list11) > 0: report = ArtifactHtmlReport('Powerlog Paired Device Configuration') report.start_artifact_report(report_folder, 'Paired Device Configuration') report.add_script() data_headers11 = ('Timestamp','Build','Device','HW Model','Pairing ID') report.write_artifact_data_table(data_headers11, data_list11, file_found) report.end_artifact_report() tsvname = 'Powerlog Paired Device Conf from GZ backup' tsv(report_folder, data_headers11, data_list11, tsvname) tlactivity = 'Powerlog Paired Device Configuration from GZ backup' timeline(report_folder, tlactivity, data_list11, data_headers11) else: if len(data_list11) > 0: report = ArtifactHtmlReport('Powerlog Paired Device Configuration') report.start_artifact_report(report_folder, 'Paired Device Configuration') report.add_script() data_headers11 = ('Timestamp','Build','Device' ) report.write_artifact_data_table(data_headers11, data_list11, file_found) report.end_artifact_report() tsvname = 'Powerlog Paired Device Conf from GZ backup' tsv(report_folder, data_headers11, data_list11, tsvname) tlactivity = 'Powerlog Paired Device Configuration from GZ backup' timeline(report_folder, tlactivity, data_list11, data_headers11) if version.parse(iOSversion) >= version.parse("9"): if len(data_list15) > 0: report = ArtifactHtmlReport('Powerlog Torch') report.start_artifact_report(report_folder, 'Torch') report.add_script() data_headers15 = ('Adjusted Timestamp','Bundle ID','Status','Original Torch Timestamp','Offset Timestamp','Time Offset') report.write_artifact_data_table(data_headers15, data_list15, file_found) report.end_artifact_report() tsvname = 'Powerlog Torch from GZ backup' tsv(report_folder, data_headers15, data_list15, tsvname) tlactivity = 'Powerlog Torch from GZ backup' timeline(report_folder, tlactivity, data_list15, data_headers15) if version.parse(iOSversion) >= version.parse("9"): if len(data_list18) > 0: report = ArtifactHtmlReport('Powerlog WiFi Network Connections') report.start_artifact_report(report_folder, 'WiFi Network Connections') report.add_script() data_headers18 = ('Adjusted Timestamp','Current SSID','Current Channel','Offset Timestamp','Time Offset') report.write_artifact_data_table(data_headers18, data_list18, file_found) report.end_artifact_report() tsvname = 'Powerlog Wifi Network Connections from GZ backup' tsv(report_folder, data_headers18, data_list18, tsvname) tlactivity = 'Powerlog Wifi Network Connections from GZ backup' timeline(report_folder, tlactivity, data_list18, data_headers18)
32.534483
158
0.711653
0bc277fbc08e131a42fccbc4b12394fd98250999
177
py
Python
conftest.py
jbittel/django-multimedia
4ddd5e6d9f4f680e2f4f68cc3616ced8f0fc2a43
[ "BSD-3-Clause" ]
19
2015-01-28T08:40:20.000Z
2021-12-18T11:55:58.000Z
conftest.py
jbittel/django-multimedia
4ddd5e6d9f4f680e2f4f68cc3616ced8f0fc2a43
[ "BSD-3-Clause" ]
2
2015-02-09T17:03:24.000Z
2015-04-22T17:57:45.000Z
conftest.py
jbittel/django-multimedia
4ddd5e6d9f4f680e2f4f68cc3616ced8f0fc2a43
[ "BSD-3-Clause" ]
4
2015-02-02T14:05:08.000Z
2016-09-14T00:44:55.000Z
import os from django.conf import settings def pytest_configure(): if not settings.configured: os.environ['DJANGO_SETTINGS_MODULE'] = 'multimedia.tests.settings'
19.666667
74
0.745763
8d3ec2c684e9d42d64acae2e20c08ca54aa8fccf
5,600
py
Python
unpythonic/tests/test_lispylet.py
Technologicat/unpythonic
7d99d50c5d1c3151fb822491167a7008024d97a5
[ "BSD-2-Clause" ]
55
2018-07-26T15:52:22.000Z
2022-01-28T00:53:59.000Z
unpythonic/tests/test_lispylet.py
Technologicat/unpythonic
7d99d50c5d1c3151fb822491167a7008024d97a5
[ "BSD-2-Clause" ]
85
2019-07-24T11:02:45.000Z
2022-01-31T22:00:23.000Z
unpythonic/tests/test_lispylet.py
Technologicat/unpythonic
7d99d50c5d1c3151fb822491167a7008024d97a5
[ "BSD-2-Clause" ]
2
2020-09-04T21:39:19.000Z
2022-01-12T03:41:50.000Z
# -*- coding: utf-8 -*- from ..syntax import macros, test, test_raises # noqa: F401 from ..test.fixtures import session, testset from functools import partial from ..lispylet import let, letrec, dlet, dletrec, blet, bletrec from ..seq import begin def runtests(): with testset("basic usage"): x = let((('a', 1), ('b', 2)), lambda e: e.a + e.b) test[x == 3] x = letrec((('a', 1), ('b', lambda e: e.a + 2)), # hence, b = 3 lambda e: e.a + e.b) test[x == 4] # mutually recursive functions t = letrec((('evenp', lambda e: lambda x: (x == 0) or e.oddp(x - 1)), ('oddp', lambda e: lambda x: (x != 0) and e.evenp(x - 1))), lambda e: e.evenp(42)) test[t is True] f = lambda lst: letrec((("seen", set()), ("see", lambda e: lambda x: begin(e.seen.add(x), x))), lambda e: [e.see(x) for x in lst if x not in e.seen]) L = [1, 1, 3, 1, 3, 2, 3, 2, 2, 2, 4, 4, 1, 2, 3] test[f(L) == [1, 3, 2, 4]] # Callable values always need a surrounding "lambda e: ...". with testset("additional examples with callable values"): test[letrec((('a', 2), ('f', lambda e: lambda x: # callable, needs the surrounding "lambda e: ...", even though it doesn't use e. 42 * x)), lambda e: e.a * e.f(1)) == 84] square = lambda x: x**2 test[letrec((('a', 2), ('f', lambda e: square)), # callable, needs "lambda e: ..." lambda e: e.a * e.f(10)) == 200] def mul(x, y): return x * y test[letrec((('a', 2), ('f', lambda e: mul)), # "mul" is a callable lambda e: e.a * e.f(3, 4)) == 24] double = partial(mul, 2) test[letrec((('a', 2), ('f', lambda e: double)), # "double" is a callable lambda e: e.a * e.f(3)) == 12] class TimesA: def __init__(self, a): self.a = a def __call__(self, x): return self.a * x times5 = TimesA(5) test[letrec((('a', 2), ('f', lambda e: times5)), # "times5" is a callable lambda e: e.a * e.f(3)) == 30] with testset("let over lambda"): lc = let((('count', 0),), lambda e: lambda: begin(e.set('count', e.count + 1), e.count)) lc() lc() test[lc() == 3] with testset("let over def"): @dlet((('x', 17),)) def foo(*, env): return env.x test[foo() == 17] @dletrec((('x', 2), ('y', lambda e: e.x + 3))) def bar(a, *, env): return a + env.y test[bar(10) == 15] @dlet((('count', 0),)) def counter(*, env): env.count += 1 return env.count counter() counter() test[counter() == 3] with testset("let block"): @blet((('x', 9001),)) def over9000(*, env): return env.x test[over9000 == 9001] @bletrec((('evenp', lambda e: lambda x: (x == 0) or e.oddp(x - 1)), ('oddp', lambda e: lambda x: (x != 0) and e.evenp(x - 1)),)) def result(*, env): return env.evenp(42) test[result is True] with testset("error cases"): test_raises[AttributeError, letrec((('a', lambda e: e.b + 1), # error, e.b does not exist yet (simple value refers to binding below it) ('b', 42)), lambda e: e.a)] test_raises[AttributeError, let((('x', 0),), lambda e: e.set('y', 3)), "e.y should not be defined"] with test_raises[AttributeError, "let environment should be final (should not be able to create new bindings in it inside the let body)"]: @blet((('x', 1),)) def error1(*, env): env.y = 2 # error, cannot introduce new bindings into a let environment test_raises[TypeError, let((), "not a callable")] test_raises[TypeError, let((), lambda: None)] # body callable must be able to take in environment test_raises[AttributeError, let((('x', 1), ('x', 2)), lambda e: e.x)] # trying to reassign same name test_raises[TypeError, letrec((('x', lambda: 1),), lambda e: e.x)] # callable value must be able to take in environment if __name__ == '__main__': # pragma: no cover with session(__file__): runtests()
35.220126
146
0.392679
718ccb944448b1b47b2251896d6c608af7787bc7
1,190
py
Python
files/nginx.facts.py
Turgon37/ansible-nginx
bb3e5d6a18546b09f61e45b5066161e4683c7733
[ "MIT" ]
null
null
null
files/nginx.facts.py
Turgon37/ansible-nginx
bb3e5d6a18546b09f61e45b5066161e4683c7733
[ "MIT" ]
null
null
null
files/nginx.facts.py
Turgon37/ansible-nginx
bb3e5d6a18546b09f61e45b5066161e4683c7733
[ "MIT" ]
null
null
null
#!/usr/bin/env python import json import re import subprocess import sys content = dict() version_re = re.compile('nginx/(?P<version>(?P<major>[0-9]+)\.(?P<branch>[0-9]+)\.[0-9]+)') stdout = None try: result = subprocess.Popen(['/usr/bin/env', 'nginx', '-v'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) (stdout, stderr) = result.communicate() except subprocess.CalledProcessError as e: content['error'] = str(e) if stdout is not None: match = version_re.search(stderr + stdout) if match: content['version_full'] = match.group('version') content['version_major'] = match.group('major') content['version_branch'] = match.group('branch') if 'version_branch' in content: try: version_branch = int(content['version_branch']) if version_branch % 2 == 0: content['branch'] = 'stable' else: content['branch'] = 'mainline' except ValueError: pass if len(content) == 0: content = None print(json.dumps(content)) sys.exit(0)
27.045455
91
0.570588
409e61fe8b01e55f20af6c15b7fa510ecf89bb20
641
py
Python
day25.py
p88h/aoc2017
a929a8c0894559b0d7dd3d0b58c076295087f4c8
[ "Unlicense" ]
1
2021-12-26T21:28:47.000Z
2021-12-26T21:28:47.000Z
day25.py
p88h/aoc2017
a929a8c0894559b0d7dd3d0b58c076295087f4c8
[ "Unlicense" ]
null
null
null
day25.py
p88h/aoc2017
a929a8c0894559b0d7dd3d0b58c076295087f4c8
[ "Unlicense" ]
null
null
null
import io lines = io.open("day25.in").read().splitlines() state = lines[0][15] steps = int(lines[1].split()[5]) program = {} curs = 0 tape = {} def parse_op(stmt): val = int(stmt[0][22]) dir = 1 if 'right' in stmt[1] else -1 nxt = stmt[2][26] return (val, dir, nxt) for blk in range(len(lines) // 10): label = lines[blk*10+3][9] program[label] = [ parse_op(lines[blk*10+5:blk*10+8]), parse_op(lines[blk*10+9:blk*10+12]) ] for s in range(steps): value = tape[curs] if curs in tape else 0 (value, dir, state) = program[state][value] tape[curs] = value curs += dir print(list(tape.values()).count(1))
25.64
96
0.606864
00e5fe1a58ef056c96202320d14c085552f15c71
4,284
py
Python
openshift/test/test_v1_cluster_resource_quota_selector.py
flaper87/openshift-restclient-python
13d5d86ca89035b9f596032e7a34f3cc33bf8f18
[ "Apache-2.0" ]
null
null
null
openshift/test/test_v1_cluster_resource_quota_selector.py
flaper87/openshift-restclient-python
13d5d86ca89035b9f596032e7a34f3cc33bf8f18
[ "Apache-2.0" ]
null
null
null
openshift/test/test_v1_cluster_resource_quota_selector.py
flaper87/openshift-restclient-python
13d5d86ca89035b9f596032e7a34f3cc33bf8f18
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ OpenShift API (with Kubernetes) OpenShift provides builds, application lifecycle, image content management, and administrative policy on top of Kubernetes. The API allows consistent management of those objects. All API operations are authenticated via an Authorization bearer token that is provided for service accounts as a generated secret (in JWT form) or via the native OAuth endpoint located at /oauth/authorize. Core infrastructure components may use openshift.client certificates that require no authentication. All API operations return a 'resourceVersion' string that represents the version of the object in the underlying storage. The standard LIST operation performs a snapshot read of the underlying objects, returning a resourceVersion representing a consistent version of the listed objects. The WATCH operation allows all updates to a set of objects after the provided resourceVersion to be observed by a openshift.client. By listing and beginning a watch from the returned resourceVersion, openshift.clients may observe a consistent view of the state of one or more objects. Note that WATCH always returns the update after the provided resourceVersion. Watch may be extended a limited time in the past - using etcd 2 the watch window is 1000 events (which on a large cluster may only be a few tens of seconds) so openshift.clients must explicitly handle the \"watch to old error\" by re-listing. Objects are divided into two rough categories - those that have a lifecycle and must reflect the state of the cluster, and those that have no state. Objects with lifecycle typically have three main sections: * 'metadata' common to all objects * a 'spec' that represents the desired state * a 'status' that represents how much of the desired state is reflected on the cluster at the current time Objects that have no state have 'metadata' but may lack a 'spec' or 'status' section. Objects are divided into those that are namespace scoped (only exist inside of a namespace) and those that are cluster scoped (exist outside of a namespace). A namespace scoped resource will be deleted when the namespace is deleted and cannot be created if the namespace has not yet been created or is in the process of deletion. Cluster scoped resources are typically only accessible to admins - resources like nodes, persistent volumes, and cluster policy. All objects have a schema that is a combination of the 'kind' and 'apiVersion' fields. This schema is additive only for any given version - no backwards incompatible changes are allowed without incrementing the apiVersion. The server will return and accept a number of standard responses that share a common schema - for instance, the common error type is 'unversioned.Status' (described below) and will be returned on any error from the API server. The API is available in multiple serialization formats - the default is JSON (Accept: application/json and Content-Type: application/json) but openshift.clients may also use YAML (application/yaml) or the native Protobuf schema (application/vnd.kubernetes.protobuf). Note that the format of the WATCH API call is slightly different - for JSON it returns newline delimited objects while for Protobuf it returns length-delimited frames (4 bytes in network-order) that contain a 'versioned.Watch' Protobuf object. See the OpenShift documentation at https://docs.openshift.org for more information. OpenAPI spec version: v3.6.0-alpha.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import openshift.client from kubernetes.client.rest import ApiException from openshift.client.models.v1_cluster_resource_quota_selector import V1ClusterResourceQuotaSelector class TestV1ClusterResourceQuotaSelector(unittest.TestCase): """ V1ClusterResourceQuotaSelector unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1ClusterResourceQuotaSelector(self): """ Test V1ClusterResourceQuotaSelector """ model = openshift.client.models.v1_cluster_resource_quota_selector.V1ClusterResourceQuotaSelector() if __name__ == '__main__': unittest.main()
99.627907
3,380
0.794818
c8076782efa55c054dacb71f7dac4093480cbdc5
1,019
py
Python
src/xgboost_distribution/distributions/base.py
thomasaarholt/xgboost-distribution
8ee00f7f0dcaadcb345ebcb15534287081aa987b
[ "MIT" ]
null
null
null
src/xgboost_distribution/distributions/base.py
thomasaarholt/xgboost-distribution
8ee00f7f0dcaadcb345ebcb15534287081aa987b
[ "MIT" ]
null
null
null
src/xgboost_distribution/distributions/base.py
thomasaarholt/xgboost-distribution
8ee00f7f0dcaadcb345ebcb15534287081aa987b
[ "MIT" ]
null
null
null
"""Distribution base class """ from abc import ABC, abstractmethod from collections import namedtuple class BaseDistribution(ABC): """Base class distribution for XGBDistribution. Note that distributions are stateless, hence a distribution is just a collection of functions that operate on the data (`y`) and the outputs of the xgboost (`params`). """ def __init__(self): self.Predictions = namedtuple("Predictions", (p for p in self.params)) # attach to globals to make pickling of namedtuple work globals()[self.Predictions.__name__] = self.Predictions def check_target(self, y): pass @property @abstractmethod def params(self): pass @abstractmethod def starting_params(self, y): pass @abstractmethod def gradient_and_hessian(self, y, params, natural_gradient=True): pass @abstractmethod def loss(self, y, params): pass @abstractmethod def predict(self, params): pass
24.261905
87
0.671246
520fb62e620e06929db16f63c783a0ef42413d8e
4,739
py
Python
test/python/createForestDatafile.py
hpcc-systems/LearningTrees
386e8f84ca102d9f87a002c05032830ebd4b8c90
[ "Apache-2.0" ]
2
2017-12-11T09:55:35.000Z
2017-12-20T18:37:21.000Z
test/python/createForestDatafile.py
hpcc-systems/LearningTrees
386e8f84ca102d9f87a002c05032830ebd4b8c90
[ "Apache-2.0" ]
5
2017-11-16T09:41:52.000Z
2018-10-04T18:18:56.000Z
test/python/createForestDatafile.py
hpcc-systems/LearningTrees
386e8f84ca102d9f87a002c05032830ebd4b8c90
[ "Apache-2.0" ]
2
2017-06-23T13:35:05.000Z
2022-01-01T12:11:37.000Z
# Build an ecl version of the Cover Type Database: # http://archive.ics.uci.edu/ml/datasets/Covertype # for testing purposes. # To run: python createForestDatafile.py > ..\datasets\CovTypeDS.ecl import sklearn.datasets trainSamples = 1000 testSamples = 500 covtype = sklearn.datasets.fetch_covtype() data = covtype.data target = covtype.target columnsIn = ['Elevation', 'Aspect', 'Slope', 'Hyd_DistH', 'Hyd_DistV','Road_Dist', 'Hillshade_9', 'Hillshade_12', 'Hillshade_15', 'Fire_Dist', 'areaIsRawah', 'areaIsNeota', 'areaIsComanche', 'areaIsPoudre', 'soil1', 'soil2', 'soil3', 'soil4', 'soil5', 'soil6', 'soil7', 'soil8', 'soil9', 'soil10', 'soil11', 'soil12', 'soil13', 'soil14', 'soil15', 'soil16', 'soil17', 'soil18', 'soil19', 'soil20', 'soil21', 'soil22', 'soil23', 'soil24', 'soil25', 'soil26', 'soil27', 'soil28', 'soil29', 'soil30', 'soil31', 'soil32', 'soil33', 'soil34', 'soil35', 'soil36', 'soil37', 'soil38', 'soil39', 'soil40', 'covType'] # Convert area one-hot (binary) columns to Nominal to exercise nominal features columnsOut = ['id', 'Elevation', 'Aspect', 'Slope', 'Hyd_DistH', 'Hyd_DistV', 'Road_Dist', 'Hillshade_9', 'Hillshade_12', 'Hillshade_15', 'Fire_Dist', 'areaId', 'soil1', 'soil2', 'soil3', 'soil4', 'soil5', 'soil6', 'soil7', 'soil8', 'soil9', 'soil10', 'soil11', 'soil12', 'soil13', 'soil14', 'soil15', 'soil16', 'soil17', 'soil18', 'soil19', 'soil20', 'soil21', 'soil22', 'soil23', 'soil24', 'soil25', 'soil26', 'soil27', 'soil28', 'soil29', 'soil30', 'soil31', 'soil32', 'soil33', 'soil34', 'soil35', 'soil36', 'soil37', 'soil38', 'soil39', 'soil40', 'covType'] areaIds = {1:'Rawah', 2:'Neota', 3:'Comanche', 4:'Poudre'} covTypes = {1:'Spruce/Fir', 2:'Lodgepole', 3:'Ponderosa', 4:'CottonWillow', 5:'Aspen', 6:'DougFir', 7:'Bristlecone'} excludeTypes = [] nominalColumns = [11, 52] # Indexes in columnsOut listdata = [] datarows = data.shape[0] for i in range(datarows): if target[i] in excludeTypes: continue row = list(data[i]) + [target[i]] listdata.append(row) # Sample testing and training data at once (without replacement) # to avoid any overlap rows = trainSamples + testSamples cols = len(columnsIn) allRecs = sklearn.utils.resample(listdata, replace = False, n_samples = rows, random_state = 314159) # Convert area binaries to nominal allRecsC = [] for i in range(rows): areaId = 0 row = allRecs[i] for j in range(10,14): if row[j] > 0: areaId = j-10+1 outRec = [(i+1)] + list(row[:10]) + [areaId] + list(row[14:]) allRecsC.append(outRec) trainRecs = allRecsC[:trainSamples] testRecs = allRecsC[trainSamples:] outLines = [] outLines.append('EXPORT covTypeDS := MODULE') outLine = ' EXPORT covTypeRec := RECORD' outLines.append(outLine) for i in range(len(columnsOut)): field = columnsOut[i] if i == 0: outLine = ' UNSIGNED ' + field + ';' else: outLine = ' REAL ' + field + ';' outLines.append(outLine) outLine = ' END;' outLines.append(outLine) outLines.append('') outLine = ' EXPORT numCols := ' + str(len(columnsOut)-1) + ';' outLines.append(outLine) outLine = ' EXPORT SET OF UNSIGNED nominalCols := [' colList = [] for col in nominalColumns: colList.append(str(col)) colString = ', '.join(colList) outLine += colString + '];' outLines.append(outLine) outLines.append('') outLine = ' EXPORT trainRecs := DATASET([' outLines.append(outLine) outRecs = [] for rec in trainRecs: strRec = [] for field in rec: strRec.append(str(field)) outRec = ' {' + ','.join(strRec) + '}' outRecs.append(outRec) outLines.append(',\n'.join(outRecs) + ']\n , covTypeRec);') outLines.append('') outLine = ' EXPORT testRecs := DATASET([' outLines.append(outLine) outRecs = [] for rec in testRecs: strRec = [] for field in rec: strRec.append(str(field)) outRec = ' {' + ','.join(strRec) + '}' outRecs.append(outRec) outLines.append(',\n'.join(outRecs) + ']\n , covTypeRec);') outLines.append('') outLines.append('END;') header = """// This file is automatically generated by test/python/createForestDatafile.py // It is an ecl extract of the CoverType database from scikit-learn. // Each record represents the cartographic data for one plot of Rocky Mountain forest, including // the primary tree cover for each plot. // See: http://archive.ics.uci.edu/ml/datasets/Covertype for details. """ outStr = header + '\n'.join(outLines) print(outStr)
34.34058
96
0.618485
c43d26d22339caef8366ae2bd3c4b4bef2f3c398
453
py
Python
data/scripts/templates/object/tangible/wearables/skirt/shared_skirt_s11.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/tangible/wearables/skirt/shared_skirt_s11.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/tangible/wearables/skirt/shared_skirt_s11.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/wearables/skirt/shared_skirt_s11.iff" result.attribute_template_id = 11 result.stfName("wearables_name","skirt_s11") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
26.647059
73
0.730684
ba3f4177034512de79905dbcb167395b0ff8e593
1,015
py
Python
app/app/urls.py
godomainz/recipe-app-api
ac3315ee44974c75de0c0dde95ae701549c3a8ae
[ "MIT" ]
null
null
null
app/app/urls.py
godomainz/recipe-app-api
ac3315ee44974c75de0c0dde95ae701549c3a8ae
[ "MIT" ]
7
2021-03-30T13:53:36.000Z
2022-01-13T03:15:17.000Z
app/app/urls.py
godomainz/recipe-app-api
ac3315ee44974c75de0c0dde95ae701549c3a8ae
[ "MIT" ]
null
null
null
"""app URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('api/user/', include('user.urls')), path('api/recipe/', include('recipe.urls')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
37.592593
78
0.697537
306eb717fcb12e5a68cc2966f5b6a82fc062c208
3,105
py
Python
tabnine-vim/third_party/ycmd/third_party/bottle/plugins/werkzeug/bottle_werkzeug.py
MrMonk3y/vimrc
950230fb3fd7991d1234c2ab516ec03245945677
[ "MIT" ]
239
2018-04-20T06:58:32.000Z
2022-03-22T18:06:08.000Z
plugins/werkzeug/bottle_werkzeug.py
alisaifee/bottle
2d38ec9b52cc0e8445b6e38e07c8b5a2711335fb
[ "MIT" ]
10
2018-12-09T13:49:06.000Z
2021-07-03T00:38:53.000Z
plugins/werkzeug/bottle_werkzeug.py
alisaifee/bottle
2d38ec9b52cc0e8445b6e38e07c8b5a2711335fb
[ "MIT" ]
99
2018-07-20T09:16:13.000Z
2022-03-20T11:58:56.000Z
""" This plugin adds support for :class:`werkzeug.Response`, all kinds of :exc:`werkzeug.exceptions` and provides a thread-local instance of :class:`werkzeug.Request`. It basically turns Bottle into Flask. The plugin instance doubles as a werkzeug module object, so you don't need to import werkzeug in your application. For werkzeug library documentation, see: http://werkzeug.pocoo.org/ Example:: import bottle app = bottle.Bottle() werkzeug = bottle.ext.werkzeug.Plugin() app.install(werkzeug) req = werkzueg.request # For the lazy. @app.route('/hello/:name') def say_hello(name): greet = {'en':'Hello', 'de':'Hallo', 'fr':'Bonjour'} language = req.accept_languages.best_match(greet.keys()) if language: return werkzeug.Response('%s %s!' % (greet[language], name)) else: raise werkzeug.exceptions.NotAcceptable() """ __autor__ = "Marcel Hellkamp" __version__ = '0.1' __license__ = 'MIT' ### CUT HERE (see setup.py) import werkzeug from werkzeug import * import bottle class WerkzeugDebugger(DebuggedApplication): """ A subclass of :class:`werkzeug.debug.DebuggedApplication` that obeys the :data:`bottle.DEBUG` setting. """ def __call__(self, environ, start_response): if bottle.DEBUG: return DebuggedApplication.__call__(self, environ, start_response) return self.app(environ, start_response) class WerkzeugPlugin(object): """ This plugin adds support for :class:`werkzeug.Response`, all kinds of :module:`werkzeug.exceptions` and provides a thread-local instance of :class:`werkzeug.Request`. It basically turns Bottle into Flask. """ name = 'werkzeug' api = 2 def __init__(self, evalex=False, request_class=werkzeug.Request, debugger_class=WerkzeugDebugger): self.request_class = request_class self.debugger_class = debugger_class self.evalex=evalex self.app = None def setup(self, app): self.app = app if self.debugger_class: app.wsgi = self.debugger_class(app.wsgi, evalex=self.evalex) app.catchall = False def apply(self, callback, route): def wrapper(*a, **ka): environ = bottle.request.environ bottle.local.werkzueg_request = self.request_class(environ) try: rv = callback(*a, **ka) except werkzeug.exceptions.HTTPException, e: rv = e.get_response(environ) if isinstance(rv, werkzeug.BaseResponse): rv = bottle.HTTPResponse(rv.iter_encoded(), rv.status_code, rv.header_list) return rv return wrapper @property def request(self): ''' Return a local proxy to the current :class:`werkzeug.Request` instance.''' return werkzeug.LocalProxy(lambda: bottle.local.werkzueg_request) def __getattr__(self, name): ''' Convenient access to werkzeug module contents. ''' return getattr(werkzeug, name) Plugin = WerkzeugPlugin
31.05
91
0.652496
895e5aa9f5f569c946e5743174fa5c0336a90f3b
61,360
py
Python
metalibm_core/core/ml_formats.py
metalibm/metalibm-clone
d04839e58950a156b79b763b9f45cb874e21ebfe
[ "MIT" ]
null
null
null
metalibm_core/core/ml_formats.py
metalibm/metalibm-clone
d04839e58950a156b79b763b9f45cb874e21ebfe
[ "MIT" ]
null
null
null
metalibm_core/core/ml_formats.py
metalibm/metalibm-clone
d04839e58950a156b79b763b9f45cb874e21ebfe
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ## @package ml_formats # Metalibm Formats node precision ############################################################################### # This file is part of metalibm (https://github.com/kalray/metalibm) ############################################################################### # MIT License # # Copyright (c) 2018 Kalray # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ############################################################################### ############################################################################### # created: Dec 23rd, 2013 # last-modified: Mar 8th, 2018 # # author(s): Nicolas Brunie (nicolas.brunie@kalray.eu) ############################################################################### import operator import re import sollya from metalibm_core.utility.log_report import Log from metalibm_core.code_generation.code_constant import * from metalibm_core.core.special_values import ( FP_SpecialValue, FP_PlusInfty, FP_MinusInfty, FP_QNaN, FP_SNaN, FP_PlusZero, FP_MinusZero, NumericValue ) from metalibm_core.core.display_utils import ( DisplayFormat, fixed_point_beautify, multi_word_fixed_point_beautify, DISPLAY_DD, DISPLAY_TD, DISPLAY_DS, DISPLAY_TS ) S2 = sollya.SollyaObject(2) ## \defgroup ml_formats ml_formats # @{ # numerical floating-point constants ml_nan = sollya.parse("nan") ml_infty = sollya.parse("infty") def get_sollya_from_long(v): result = sollya.SollyaObject(0) power = sollya.SollyaObject(1) base = S2**16 while v: v, r = divmod(v, int(base)) result += int(r) * power power *= base return result ## Ancestor class for Metalibm's format classes class ML_Format(object): """ parent to every Metalibm's format class """ def __init__(self, name = None, display_format = None): self.name = {} if name is None else name self.display_format = {} if display_format is None else display_format ## return format name def get_name(self, language = C_Code): if language in self.name: return self.name[language] elif C_Code in self.name: return self.name[C_Code] else: return "undefined format" def __repr__(self): return self.get_code_name() ## return source code name for the format def get_code_name(self, language=None): return self.get_name(language) def get_match_format(self): return self def get_base_format(self): return self def get_support_format(self): return self def get_display_format(self, language): if language in self.display_format: return self.display_format[language] elif C_Code in self.display_format: return self.display_format[C_Code] else: return "ERROR_FORMAT" ## return the format's bit-size def get_bit_size(self): """ <abstract> return the bit size of the format (if it exists) """ print(self) # Exception ML_NotImplemented print raise NotImplementedError def is_cst_decl_required(self): return False ## return the C code for args initialization def generate_initialization(self, *args, **kwords): return None def get_value_from_integer_coding(self, value, base=10): """ convert integer value to self's format value assuming value is the canonical encoding if base is None, value is assumed to be a number else value is assumed to be a str """ raise NotImplementedError def get_integer_coding(self, value): raise NotImplementedError def saturate(self, value): """ Return value if it fits in self format range, else the closest format bound """ raise NotImplementedError ## return the C code for value assignation to var # @param var variable assigned # @param value value being assigned # @param final boolean flag indicating if this assignation is the last in an assignation list def generate_assignation(self, var, value, final = True, language = C_Code): final_symbol = ";\n" if final else "" return "%s = %s" % (var, value) # return the format maximal value def get_max_value(self): raise NotImplementedError def is_vector_format(self): return False ## class for floating-point exception class ML_FloatingPointException: pass ## class for type of floating-point exceptions class ML_FloatingPointException_Type(ML_Format): ## dummy placeholder to generate C constant for FP exception (should raise error) def get_cst(self, value, language = C_Code): return "NONE" def is_cst_decl_required(self): return False def get_match_format(self): return self ## ML object for floating-point exception type ML_FPE_Type = ML_FloatingPointException_Type() ## ML object for floating-point underflow exception ML_FPE_Underflow = ML_FloatingPointException() ## ML object for floating-point overflow exception ML_FPE_Overflow = ML_FloatingPointException() ## ML object for floatingè-point inexact exception ML_FPE_Inexact = ML_FloatingPointException() ## ML object for floating-point invalid exception ML_FPE_Invalid = ML_FloatingPointException() ## ML object for floating-point divide by zero exception ML_FPE_DivideByZero = ML_FloatingPointException() class FormatAttributeWrapper(ML_Format): """ Format attribute wrapper: decorators for format object extend a base format with custom attributes WARNING: the decorated format will not compared equal to the original (undecorated) format """ def __init__(self, base_format, attribute_list): self.base_format = base_format self.attribute_list = attribute_list def get_base_format(self): return self.base_format.get_base_format() def get_support_format(self): return self.base_format.get_support_format() def get_match_format(self): return self.base_format.get_match_format() def is_vector_format(self): return self.base_format.is_vector_format() def get_bit_size(self): return self.base_format.get_bit_size() def get_display_format(self, language = C_Code): return self.base_format.get_display_format(language) def get_name(self, language = C_Code): str_list = self.attribute_list + [self.base_format.get_name(language = language)] return " ".join(str_list) def __str__(self): return self.get_name() ## Class of rounding mode type class ML_FloatingPoint_RoundingMode_Type(ML_Format): name_map = {None: "ml_rnd_mode_t", C_Code: "ml_rnd_mode_t", OpenCL_Code: "ml_rnd_mode_t"} def get_c_name(self): return "ml_rnd_mode_t" def get_name(self, language = C_Code): return ML_FloatingPoint_RoundingMode_Type.name_map[language] ## Class of floating-point rounding mode class ML_FloatingPoint_RoundingMode(object): pass ## ML type object for rounding modes ML_FPRM_Type = ML_FloatingPoint_RoundingMode_Type() ## ML object for rounding to nearest mode ML_RoundToNearest = ML_FloatingPoint_RoundingMode() ## ML object for rounding toward zero mode ML_RoundTowardZero = ML_FloatingPoint_RoundingMode() ## ML object for rouding towards plus infinity mode ML_RoundTowardPlusInfty = ML_FloatingPoint_RoundingMode() ## ML object for rounding forwards minus infinity ML_RoundTowardMinusInfty = ML_FloatingPoint_RoundingMode() ## ML object for current global rounding mode ML_GlobalRoundMode = ML_FloatingPoint_RoundingMode() ## Ancestor class for abstract format class ML_AbstractFormat(ML_Format): def __init__(self, c_name): ML_Format.__init__(self) self.name[C_Code] = c_name def __str__(self): return self.name[C_Code] ## return the gappa constant corresponding to parameter # @param cst_value constant value being translated def get_gappa_cst(self, cst_value): """ C code for constante cst_value """ old_display = sollya.settings.display sollya.settings.display = sollya.hexadecimal if isinstance(cst_value, int): result = str(float(cst_value)) else: result = str(cst_value) sollya.settings.display = old_display return result def is_cst_decl_required(self): return False def is_abstract_format(ml_format): return isinstance(ml_format, ML_AbstractFormat) ## ML object for exact format (no rounding involved) ML_Exact = ML_AbstractFormat("ML_Exact") ## Ancestor class for instanciated formats class ML_InstanciatedFormat(ML_Format): pass ## Ancestor class for all Floating-point formats class ML_FP_Format(ML_Format): """ parent to every Metalibm's floating-point class """ pass @staticmethod def is_fp_format(precision): """ generic predicate to test whether or not precision is a floating-point format """ return isinstance(precision, ML_FP_Format) ## Ancestor class for standard (as defined in IEEE-754) floating-point formats class ML_Std_FP_Format(ML_FP_Format): """ standard floating-point format base class """ def __init__(self, bit_size, exponent_size, field_size, c_suffix, c_name, ml_support_prefix, c_display_format, sollya_object, union_field_suffix = None): ML_Format.__init__(self) self.name[C_Code] = c_name self.display_format[C_Code] = c_display_format self.bit_size = bit_size self.exponent_size = exponent_size self.field_size = field_size self.c_suffix = c_suffix self.ml_support_prefix = ml_support_prefix self.sollya_object = sollya_object ## suffix used when selecting format in a support library union self.union_field_suffix = union_field_suffix def get_ml_support_prefix(self): return self.ml_support_prefix def get_union_field_suffix(self): return self.union_field_suffix ## return the sollya object encoding the format precision def get_sollya_object(self): return self.sollya_object ## round the sollya object @p value to the sollya precision # equivalent to @p self def round_sollya_object(self, value, round_mode = sollya.RN): return sollya.round(value, self.get_sollya_object(), round_mode) def __str__(self): return self.name[C_Code] def get_name(self, language = C_Code): return self.name[C_Code] def get_bias(self): return - 2**(self.get_exponent_size() - 1) + 1 def get_emax(self): return 2**self.get_exponent_size() - 2 + self.get_bias() def get_special_value_coding(self, sv, language = C_Code): """ Generate integer coding for a special value number in self format """ assert FP_SpecialValue.is_special_value(sv) return sv.get_integer_coding() def saturate(self, value): if abs(value) > self.get_max_value(): return FP_PlusInfty(self) if value > 0 else FP_MinusInfty(sel) return value ## return the integer coding of @p value # @param value numeric value to be converted # @return value encoding (as an integer number) def get_integer_coding(self, value, language = C_Code): if FP_SpecialValue.is_special_value(value): return self.get_special_value_coding(value, language) elif value == ml_infty: return self.get_special_value_coding(FP_PlusInfty(self), language) elif value == -ml_infty: return self.get_special_value_coding(FP_MinusInfty(self), language) elif value != value: # sollya NaN return self.get_special_value_coding(FP_QNaN(self), language) else: pre_value = value value = sollya.round(value, self.get_sollya_object(), sollya.RN) # FIXME: managing negative zero sign = int(1 if value < 0 else 0) value = abs(value) if value == 0.0: Log.report(Log.Warning, "+0.0 forced during get_integer_coding conversion") exp_biased = 0 mant = 0 else: try: exp = int(sollya.floor(sollya.log2(value))) except ValueError as e: Log.report(Log.Error, "unable to compute int(sollya.floor(sollya.log2({}))), pre_value={}", value, pre_value, error=e) exp_biased = int(exp - self.get_bias()) if exp < self.get_emin_normal(): exp_biased = 0 mant = int((value / S2**self.get_emin_subnormal())) else: mant = int((value / S2**exp - 1.0) * (S2**self.get_field_size())) return mant | (exp_biased << self.get_field_size()) | (sign << (self.get_field_size() + self.get_exponent_size())) def get_value_from_integer_coding(self, value, base=10): """ Convert a value binary encoded following IEEE-754 standard to its floating-point numerical (or special) counterpart """ value = int(value, base) exponent_field = ((value >> self.get_field_size()) & (2**self.get_exponent_size() - 1)) is_subnormal = (exponent_field == 0) mantissa = value & (2**self.get_field_size() - 1) sign_bit = value >> (self.get_field_size() + self.get_exponent_size()) if exponent_field == self.get_nanorinf_exp_field(): if mantissa == 0 and sign_bit: return FP_MinusInfty(self) elif mantissa == 0 and not(sign_bit): return FP_PlusInfty(self) else: # NaN value quiet_bit = mantissa >> (self.get_field_size() - 1) if quiet_bit: return FP_QNaN(self) else: return FP_SNaN(self) elif exponent_field == 0 and mantissa == 0: if sign_bit: return FP_MinusZero(self) else: return FP_PlusZero(self) else: assert exponent_field != self.get_nanorinf_exp_field() exponent = exponent_field + self.get_bias() + (1 if is_subnormal else 0) sign = -1.0 if sign_bit != 0 else 1.0 mantissa_value = mantissa implicit_digit = 0.0 if is_subnormal else 1.0 return NumericValue(sign * S2**int(exponent) * (implicit_digit + mantissa_value * S2**-self.get_field_size())) # @return<SollyaObject> the format omega value, the maximal normal value def get_omega(self): return S2**self.get_emax() * (2 - S2**-self.get_field_size()) # @return<SollyaObject> the format maximal value def get_max_value(self): return self.get_omega() def get_min_normal_value(self): """ return the minimal normal number in @p self format """ return S2**self.get_emin_normal() ## return the exponent field corresponding to # a special value (inf or NaN) def get_nanorinf_exp_field(self): return S2**self.get_exponent_size() - 1 ## Return the minimal exponent for a normal number def get_emin_normal(self): return 1 + self.get_bias() ## Return the minimal exponent for a subnormal number def get_emin_subnormal(self): return 1 - (self.get_field_size()) + self.get_bias() ## Return the display (for debug message) associated # to format @p self def get_display_format(self, language = C_Code): return self.display_format[language] def get_bit_size(self): """ return the format bit size """ return self.bit_size def get_zero_exponent_value(self): return 0 def get_special_exponent_value(self): return 2**self.get_exponent_size() - 1 def get_exponent_size(self): return self.exponent_size def get_exponent_interval(self): low_bound = self.get_emin_normal() high_bound = self.get_emax() return sollya.Interval(low_bound, high_bound) ## return the size of the mantissa bitfield (excluding implicit bit(s)) def get_field_size(self): return self.field_size ## Return the complete mantissa size (including implicit bit(s)) def get_mantissa_size(self): return self.field_size + 1 def get_cst(self, cst_value, language = C_Code): """Return how a constant of value cst_value should be written in the language language for this meta-format. """ if language is C_Code: return self.get_c_cst(cst_value) elif language is Gappa_Code: return self.get_gappa_cst(cst_value) else: # default case return self.get_c_cst(cst_value) def get_c_cst(self, cst_value): """ C code for constant cst_value """ if isinstance(cst_value, FP_SpecialValue): return cst_value.get_c_cst() else: old_display = sollya.settings.display sollya.settings.display = sollya.hexadecimal if cst_value == sollya.SollyaObject(0): conv_result = "0.0" + self.c_suffix if cst_value == ml_infty: conv_result = "INFINITY" elif cst_value == ml_nan: conv_result = "NAN" elif isinstance(cst_value, int): conv_result = str(float(cst_value)) + self.c_suffix else: if isinstance(cst_value, sollya.SollyaObject): conv_result = str(self.round_sollya_object(cst_value)) + self.c_suffix else: conv_result = str(cst_value) + self.c_suffix if conv_result == "0f": conv_result = "0.0f" sollya.settings.display = old_display return conv_result def get_precision(self): """ return the bit-size of the mantissa """ return self.get_field_size() def get_gappa_cst(self, cst_value): """ C code for constante cst_value """ if isinstance(cst_value, FP_SpecialValue): return cst_value.get_gappa_cst() else: old_display = sollya.settings.display sollya.settings.display = sollya.hexadecimal if isinstance(cst_value, int): result = str(float(cst_value)) else: result = str(cst_value) sollya.settings.display = old_display return result def get_integer_format(self): """ Return a signed integer format whose size matches @p self format (useful for casts) """ int_precision = { ML_Binary16: ML_Int16, ML_Binary32: ML_Int32, ML_Binary64: ML_Int64, ML_Binary80: None, BFloat16: ML_Int16, } return int_precision[self] def get_unsigned_integer_format(self): """ Return an unsigned integer format whose size matches @p self format (useful for casts) """ uint_precision = { ML_Binary16: ML_UInt16, ML_Binary32: ML_UInt32, ML_Binary64: ML_UInt64, BFloat16: ML_UInt16, ML_Binary80: None, } return uint_precision[self] def is_std_float(precision): return isinstance(precision, ML_Std_FP_Format) ## Generic constructor for Metalibm formats class ML_FormatConstructor(ML_Format): """ Generic constructor for Metalibm formats """ ## Object constructor # @param bit_size size of the format (in bits) # @param c_name name of the format in the C language # @param c_display_format string format to display @p self format value # @param get_c_cst function self, value -> Node to generate # constant value associated with @p self format def __init__(self, bit_size, c_name, c_display_format, get_c_cst): ML_Format.__init__(self) self.bit_size = bit_size self.name[C_Code] = c_name self.display_format[C_Code] = c_display_format self.get_cst_map = {C_Code: get_c_cst} ## generate a constant value with numerical value @p value # in language @p language def get_cst(self, value, language = C_Code): return self.get_cst_map[language](self, value) def __str__(self): return self.name[C_Code] ## Return the format size (in bits) def get_bit_size(self): return self.bit_size ## a virtual format is a format which is internal to Metalibm # representation and relies on an other non-virtual format # for support in generated code class VirtualFormat(ML_Format): def __init__(self, base_format = None, support_format = None, get_cst = lambda self, value, language: self.base_format.get_cst(value, language), cst_decl_required = False ): ML_Format.__init__(self) self.support_format = support_format self.base_format = base_format self.internal_get_cst = get_cst # is constant declaration required self.cst_decl_required = cst_decl_required def get_cst(self, cst_value, language = C_Code): return self.internal_get_cst(self, cst_value, language) def __str__(self): return "{}/{}".format(str(self.base_format), self.support_format) ## return name for the format def get_name(self, language = C_Code): #raise NotImplementedError return self.support_format.get_name(language = language) ## return source code name for the format def get_code_name(self, language=None): code_name = self.support_format.get_name(language = language) return code_name def set_support_format(self, _format): self.support_format = _format def get_match_format(self): return self.base_format def get_base_format(self): return self.base_format def get_support_format(self): return self.support_format def get_signed(self): return self.get_base_format().get_signed() def get_bit_size(self): return self.get_base_format().get_bit_size() def is_cst_decl_required(self): return self.cst_decl_required def is_vector_format(self): return False def round_sollya_object(self, value, round_mode=sollya.RN): return self.get_base_format().round_sollya_object(value, round_mode) def get_display_format(self, language): if self is self.get_base_format(): print(self) raise Exception() return self.get_base_format().get_display_format(language) def get_virtual_cst(prec, value, language): """ constant get for virtual format """ return prec.get_support_format().get_cst( prec.get_base_format().get_integer_coding(value, language) ) ## Virtual format with no match forwarding class VirtualFormatNoForward(VirtualFormat): def get_match_format(self): return self class VirtualFormatNoBase(VirtualFormat): """ Virtual format class which does not point towards a distinct base format """ def get_match_format(self): return self def get_base_format(self): return self def get_vector_format(self): return False ## Ancestor to fixed-point format class ML_Fixed_Format(ML_Format): """ parent to every Metalibm's fixed-point class """ def __init__(self, align = 0): ML_Format.__init__(self) # self.support_format must be an integer format # used to contain the fixed-point value # offset between the support LSB and the actual value LSB self.support_right_align = align def get_match_format(self): return self def get_base_format(self): return self def get_name(self, language = C_Code): return ML_Format.get_name(self, language = language) def get_code_name(self, language = C_Code): return ML_Format.get_code_name(self, language = language) def set_support_right_align(self, align): self.support_right_align = align def get_support_right_align(self): return self.support_right_align class ML_Base_FixedPoint_Format(ML_Fixed_Format, VirtualFormatNoBase): """ base class for standard integer format """ def __init__(self, integer_size, frac_size, signed = True, support_format = None, align = 0): """ standard fixed-point format object initialization function """ ML_Fixed_Format.__init__(self, align) VirtualFormatNoBase.__init__(self, support_format = support_format) self.integer_size = integer_size self.frac_size = frac_size self.signed = signed ## @return size (in bits) of the integer part of @p self formats # may be negative to indicate a right shift of the fractionnal # part def get_integer_size(self): return self.integer_size def get_c_bit_size(self): return self.c_bit_size def get_integer_coding(self, value): # FIXME: managed c_bit_size & sign properly return value * 2**self.frac_size def get_value_from_integer_coding(self, value, base=10): # FIXME: managed c_bit_size & sign properly if not base is None: value = int(value, base) return value * 2**-self.frac_size @staticmethod def match(format_str): """ returns None if format_str does not match the class pattern or a re.match if it does """ return re.match("(?P<name>F[US])(?P<integer>-?[\d]+)\.(?P<frac>-?[\d]+)",format_str) ## @return size (in bits) of the fractional part of # @p self formats # may be negative to indicate a left shift of the integer part def get_frac_size(self): return self.frac_size def get_precision(self): """ return the number of digits after the point """ return self.frac_size ## @return boolean signed/unsigned property def get_signed(self): return self.signed ## return the maximal possible value for the format def get_max_value(self): offset = -1 if self.get_signed() else 0 max_code_exp = self.get_integer_size() + self.get_frac_size() code_value = S2**(max_code_exp + offset) - 1 return code_value * S2**-self.get_frac_size() ## @p round the numerical value @p value to # @p self fixed-point format while applying # @p round_mode to determine rounding direction # @return rounded value (SollyaObject) def round_sollya_object(self, value, round_mode=sollya.RN): rnd_function = { sollya.RN: sollya.nearestint, sollya.RD: sollya.floor, sollya.RU: sollya.ceil, sollya.RZ: lambda x: sollya.floor(x) if x > 0 \ else sollya.ceil(x) }[round_mode] scale_factor = S2**self.get_frac_size() return rnd_function(scale_factor * value) / scale_factor ## return the minimal possible value for the format def get_min_value(self): if not self.get_signed(): return 0 else: max_code_exp = self.get_integer_size() + self.get_frac_size() code_value = S2**(max_code_exp - 1) return - (code_value * S2**-self.get_frac_size()) ## if value exceeds formats then def truncate(self, value): descaled_value = value * S2**self.get_frac_size() masked_value = int(descaled_value) & int(S2**self.get_bit_size() - 1) scaled_value = masked_value * S2**-self.get_frac_size() if scaled_value > self.get_max_value(): scaled_value -= S2**self.get_integer_size() return scaled_value def __str__(self): if self.signed: return "FS%d.%d" % (self.integer_size, self.frac_size) else: return "FU%d.%d" % (self.integer_size, self.frac_size) def get_bit_size(self): return self.integer_size + self.frac_size def get_cst(self, cst_value, language = C_Code): if language is C_Code: return self.get_c_cst(cst_value) elif language is Gappa_Code: return self.get_gappa_cst(cst_value) else: return self.get_c_cst(cst_value) def saturate(self, value): """ Saturate value to stay within: [self.get_min_value(), self.get_max_value()] """ return min(max(value, self.get_min_value()), self.get_max_value()) def get_integer_coding(self, value, language=C_Code): if value > self.get_max_value() or value < self.get_min_value(): Log.report(Log.Error, "value {} is out of format {} range [{}; {}]", value, self, self.get_min_value(), self.get_max_value()) if value < 0: if not self.signed: Log.report(Log.Error, "negative value encountered {} while converting for an unsigned precision: {}".format(value, self)) encoded_value = (~int(abs(value) * S2**self.frac_size) + 1) % 2**self.get_bit_size() return encoded_value else: encoded_value = int(value * S2**self.frac_size) return encoded_value def get_c_cst(self, cst_value): """ C-language constant generation """ try: encoded_value = int(cst_value * S2**self.frac_size) except (ValueError, TypeError) as e: print(e, cst_value, self.frac_size) Log.report(Log.Error, "Error during constant conversion to sollya object from format {}", str(self)) if self.c_bit_size in [8, 16, 32, 64]: return ("" if self.signed else "U") + "INT" + str(self.c_bit_size) + "_C(" + str(encoded_value) + ")" elif self.c_bit_size == 128: return self.get_128b_c_cst(cst_value) else: Log.report(Log.Error, "Error unsupported format {} with c_bit_size={} in get_c_cst", str(self), self.c_bit_size) def get_128b_c_cst(self, cst_value): """ specific get_cst function for 128-bit ML_Standard_FixedPoint_Format :param self: fixed-point format object :type self: ML_Standard_FixedPoint_Format :param cst_value: numerical constant value :type cst_value: SollyaObject :return: string encoding of 128-bit constant :rtype: str """ try: encoded_value = int(cst_value * S2**self.frac_size) lo_value = encoded_value % 2**64 assert lo_value >= 0 hi_value = encoded_value >> 64 except (ValueError, TypeError) as e: print(e, cst_value, self.frac_size) Log.report(Log.Error, "Error during constant conversion to sollya object from format {}", str(self)) return "(((({u}__int128) {hi_value}{postfix}) << 64) + ((unsigned __int128) {lo_value}ull))".format( u="unsigned " if not self.signed else "", postfix="ull" if not self.signed else "ll", hi_value=str(hi_value), lo_value=str(lo_value) ) def get_gappa_cst(self, cst_value): """ Gappa-language constant generation """ return str(cst_value) class ML_Base_SW_FixedPoint_Format(ML_Base_FixedPoint_Format): """ Base Fixed-Point format for software implementation, try to infer the required size of C-format to support this format """ MAX_BIT_SIZE = 128 MIN_BIT_SIZE = 1 POSSIBLE_SIZES = [8, 16, 32, 64, 128] # class initialized to allow proper format comparison DISPLAY_FORMAT_MAP = {} C_NAME_MAP = { True: { 8: "int8_t", 16: "int16_t", 32: "int32_t", 64: "int64_t", 128: "__int128" }, False: { 8: "uint8_t", 16: "uint16_t", 32: "uint32_t", 64: "uint64_t", 128: "unsigned __int128" }, } def __init__(self, integer_size, frac_size, signed=True, support_format=None, align=0): # FIXME: align parameter is not used ML_Base_FixedPoint_Format.__init__( self, integer_size, frac_size, signed, support_format ) # guess the minimal bit_size required in the c repesentation bit_size = integer_size + frac_size if bit_size < self.MIN_BIT_SIZE or bit_size > self.MAX_BIT_SIZE: Log.report(Log.Warning, "unsupported bit_size {} in ML_Base_SW_FixedPoint_Format".format(bit_size)) self.dbg_name = ("" if self.signed else "u") + "int" + str(bit_size) else: # for python2 compatibility min without default argument is used possible_list = [n for n in self.POSSIBLE_SIZES if n >= bit_size] if len(possible_list) == 0: self.c_bit_size = None else: self.c_bit_size = min(possible_list) if self.c_bit_size is None: Log.report(Log.Error, "not able to find a compatible c_bit_size for {} = {} + {}", bit_size, integer_size, frac_size) c_name = ML_Base_SW_FixedPoint_Format.C_NAME_MAP[self.signed][self.c_bit_size] c_display_format = self.build_display_format_object() self.name[C_Code] = c_name self.display_format[C_Code] = c_display_format self.dbg_name = c_name def build_display_format_object(self): key = (self.integer_size, self.frac_size, self.support_format) if not key in ML_Base_SW_FixedPoint_Format.DISPLAY_FORMAT_MAP: if self.c_bit_size <= 64: display_format = DisplayFormat( format_string="%e/%\"PRI" + ("i" if self.signed else "u") + str(self.c_bit_size) + "\"", pre_process_fct=fixed_point_beautify(self.frac_size) ) else: assert (self.c_bit_size % 64 == 0) num_64b_chunk = int(self.c_bit_size / 64) format_string = "%e / " + ("%\"PRIx64\"" * num_64b_chunk) display_format = DisplayFormat( format_string=format_string, pre_process_fct=multi_word_fixed_point_beautify(num_64b_chunk, self.frac_size) ) # using class map memoization to simplify type comparison # by keeping a single display object for isomorphic type objects ML_Base_SW_FixedPoint_Format.DISPLAY_FORMAT_MAP[key] = display_format else: display_format = ML_Base_SW_FixedPoint_Format.DISPLAY_FORMAT_MAP[key] return display_format def get_display_format(self, language=C_Code): return self.display_format[language] ## Ancestor to standard (meaning integers) fixed-point format class ML_Standard_FixedPoint_Format(ML_Base_SW_FixedPoint_Format): def __init__(self, integer_size, frac_size, signed = True): ML_Base_SW_FixedPoint_Format.__init__(self, integer_size, frac_size, signed = signed, support_format = self, align = 0) ## use 0 as the LSB weight to round in sollya def get_sollya_object(self): return sollya.SollyaObject(0) ## round the sollya object @p value to the sollya precision # equivalent to @p self def round_sollya_object(self, value, round_mode = sollya.RN): # TBD: support other rounding mode return sollya.nearestint(value) def __repr__(self): return self.dbg_name def __str__(self): return self.dbg_name class ML_Custom_FixedPoint_Format(ML_Base_SW_FixedPoint_Format): """ Custom fixed-point format class """ def __eq__(self, other): """ equality predicate for custom fixed-point format object """ return (type(self) == type(other)) and (self.__dict__ == other.__dict__) def __ne__(self, other): """ unequality predicate for custom fixed-point format object """ return not (self == other) def __hash__(self): return self.integer_size * self.frac_size * 2 + 1 if self.signed else 0 @staticmethod def parse_from_match(format_match): """ Parse the description of a class format and generates the format object """ assert not format_match is None name = format_match.group("name") integer_size = int(format_match.group("integer")) frac_size = int(format_match.group("frac")) is_signed = (name == "FS") return ML_Custom_FixedPoint_Format(integer_size, frac_size, signed=is_signed) ## parse a string describing a ML_Custom_FixedPoint_Format object # @param format_str string describing the format object # @return the format instance converted from the string @staticmethod def parse_from_string(format_str): format_match = ML_Custom_FixedPoint_Format.match(format_str) return ML_Custom_FixedPoint_Format.parse_from_match(format_match) # Standard binary floating-point format declarations ## IEEE binary32 (fp32) single precision floating-point format ML_Binary32 = ML_Std_FP_Format(32, 8, 23, "f", "float", "fp32", DisplayFormat("%a"), sollya.binary32, union_field_suffix = "f") ## IEEE binary64 (fp64) double precision floating-point format ML_Binary64 = ML_Std_FP_Format(64, 11, 52, "", "double", "fp64", DisplayFormat("%la"), sollya.binary64, union_field_suffix = "d") ML_Binary80 = ML_Std_FP_Format(80, 15, 64, "L", "long double", "fp80", DisplayFormat("%la"), sollya.binary80) ## IEEE binary16 (fp16) half precision floating-point format ML_Binary16 = ML_Std_FP_Format(16, 5, 10, "__ERROR__", "half", "fp16", DisplayFormat("%a"), sollya.binary16) def round_to_bfloat16(value, round_mode=sollya.RN, flush_sub_to_zero=True): """ round value to Brain Float16 format """ # when given a number of digit, sollya assumes infinite exponent range rounded_value = sollya.round(value, 11, round_mode) # we flush subnormal to 0.0 if abs(rounded_value) < ML_Binary32.get_min_normal_value(): if flush_sub_to_zero: return FP_PlusZero(BFloat16_Base) if rounded_value >= 0 else FP_MinusZero(BFloat16_Base) else: raise NotImplementedError("bfloat16 rounding only support flushing subnormal to 0") # second rounding to binary32 ensure that overflow are detected properly return sollya.round(rounded_value, sollya.binary32, round_mode) def bfloat16_get_cst(cst_value, language): return ML_UInt16.get_cst(ML_Binary32.get_integer_coding(cst_value) >> 16, language) class BFloat16_Class(ML_Std_FP_Format): def __init__(self, flush_sub_to_zero=True): ML_Std_FP_Format.__init__(self, 16, 8, 7, "__ERROR__", "bfloat16", "bfloat16", DisplayFormat("%a"), sollya.SollyaObject(10)) self.flush_sub_to_zero = flush_sub_to_zero def round_sollya_object(self, value, round_mode=sollya.RN): return round_to_bfloat16(value, round_mode=round_mode, flush_sub_to_zero=self.flush_sub_to_zero) BFloat16_Base = BFloat16_Class(flush_sub_to_zero=True) # Standard integer format declarations ML_Int8 = ML_Standard_FixedPoint_Format(8, 0, True) ML_UInt8 = ML_Standard_FixedPoint_Format(8, 0, False) ML_Int16 = ML_Standard_FixedPoint_Format(16, 0, True) ML_UInt16 = ML_Standard_FixedPoint_Format(16, 0, False) ML_Int32 = ML_Standard_FixedPoint_Format(32, 0, True) ML_UInt32 = ML_Standard_FixedPoint_Format(32, 0, False) ML_Int64 = ML_Standard_FixedPoint_Format(64, 0, True) ML_UInt64 = ML_Standard_FixedPoint_Format(64, 0, False) ML_Int128 = ML_Standard_FixedPoint_Format(128, 0, True) ML_UInt128 = ML_Standard_FixedPoint_Format(128, 0, False) ML_Int256 = ML_Standard_FixedPoint_Format(256, 0, True) # Brain Float16 format BFloat16 = VirtualFormatNoForward( base_format=BFloat16_Base, support_format=ML_UInt16, get_cst=(lambda self, cst_value, language: bfloat16_get_cst(cst_value, language)) ) def bool_get_c_cst(self, cst_value): if cst_value: return "ML_TRUE" else: return "ML_FALSE" class ML_Bool_Format(object): """ abstract Boolean format """ pass class ML_BoolClass(ML_FormatConstructor, ML_Bool_Format): def __str__(self): return "ML_Bool" ML_Bool = ML_BoolClass(32, "int", DisplayFormat("%d"), bool_get_c_cst) ## virtual parent to string formats class ML_String_Format(ML_Format): """ abstract String format """ pass class ML_StringClass(ML_String_Format): """ Metalibm character string class """ def __init__(self, c_name, c_display_format, get_c_cst): ML_Format.__init__(self) self.name[C_Code] = c_name self.display_format[C_Code] = c_display_format self.get_cst_map = {C_Code: get_c_cst} def get_cst(self, value, language = C_Code): return self.get_cst_map[language](self, value) def __str__(self): return self.name[C_Code] ## Metalibm string format ML_String = ML_StringClass("char*", DisplayFormat("%s"), lambda self, s: "\"{}\"".format(s)) ## Predicate checking if @p precision is a standard integer format def is_std_integer_format(precision): return isinstance(precision, ML_Standard_FixedPoint_Format) or \ (isinstance(precision, ML_Format) and \ isinstance(precision.get_base_format(), ML_Standard_FixedPoint_Format) and \ not precision.is_vector_format()) #return precision in [ ML_Int8, ML_UInt8, ML_Int16, ML_UInt16, # ML_Int32, ML_UInt32, ML_Int64, ML_UInt64, # ML_Int128, ML_UInt128 ] def is_std_signed_integer_format(precision): return is_std_integer_format(precision) and \ (precision.get_base_format().get_signed() or \ precision.get_signed()) #return precision in [ ML_Int8, ML_Int16, ML_Int32, ML_Int64, ML_Int128 ] def is_std_unsigned_integer_format(precision): return is_std_integer_format(precision) and \ ((not precision.get_base_format().get_signed()) or \ (not precision.get_signed())) #return precision in [ ML_UInt8, ML_UInt16, ML_UInt32, ML_UInt64, ML_UInt128 ] def is_table_index_format(precision): """ Predicate to test if <precision> can be used as table index format """ return isinstance(precision, ML_Standard_FixedPoint_Format) or \ isinstance(precision.get_match_format(), ML_Standard_FixedPoint_Format) and \ not precision.is_vector_format() def get_std_integer_support_format(precision): """ return the ML's integer format to contains the fixed-point format precision """ assert(isinstance(precision, ML_Fixed_Format)) format_map = { # signed True: { 8: ML_Int8, 16: ML_Int16, 32: ML_Int32, 64: ML_Int64, 128: ML_Int128, }, # unsigned False: { 8: ML_UInt8, 16: ML_UInt16, 32: ML_UInt32, 64: ML_UInt64, 128: ML_UInt128, }, } return format_map[precision.get_signed()][precision.get_c_bit_size()] ## functor for abstract format construction def AbstractFormat_Builder(name, inheritance): field_map = { "name": name, "__str__": lambda self: self.name[C_Code], } return type(name, (ML_AbstractFormat,) + inheritance, field_map) class ML_IntegerClass(ML_AbstractFormat, ML_Fixed_Format): pass class ML_FloatClass(ML_AbstractFormat, ML_FP_Format): pass class ML_AbstractBoolClass(ML_AbstractFormat, ML_Bool_Format): pass # abstract formats singleton ML_Integer = ML_IntegerClass("ML_Integer") #AbstractFormat_Builder("ML_Integer", (ML_Fixed_Format,))("ML_Integer") ML_Float = ML_FloatClass("ML_Float") #AbstractFormat_Builder("ML_Float", (ML_FP_Format,))("ML_Float") ML_AbstractBool = ML_AbstractBoolClass("ML_AbstractBool")#AbstractFormat_Builder("MLAbstractBool", (ML_Bool_Format,))("ML_AbstractBool") ############################################################################### # COMPOUND FORMAT ############################################################################### class ML_Compound_Format(ML_Format): def __init__(self, c_name, c_field_list, field_format_list, ml_support_prefix, c_display_format, sollya_object): ML_Format.__init__(self) self.name[C_Code] = c_name self.display_format[C_Code] = c_display_format self.ml_support_prefix = ml_support_prefix self.sollya_object = sollya_object self.c_field_list = c_field_list self.field_format_list = field_format_list def __str__(self): return self.name[C_Code] ## return the sollya object encoding the format precision def get_sollya_object(self): return self.sollya_object def round_sollya_object(self, value, round_mode=sollya.RN): """ Round a numerical value encapsulated in a SollyaObject to @p self format with rounding mode @p round_mode @return SollyaObject """ return sollya.round(value, self.get_sollya_object(), round_mode) ## forces constant declaration during code generation def is_cst_decl_required(self): return True def get_bit_size(self): """ Return bit-size of the full compound format """ return sum([scalar.get_bit_size() for scalar in self.field_format_list]) def get_cst(self, cst_value, language = C_Code): tmp_cst = cst_value field_str_list = [] for field_name, field_format in zip(self.c_field_list, self.field_format_list): # FIXME, round is only valid for double_double or triple_double stype format field_value = sollya.round(tmp_cst, field_format.sollya_object, sollya.RN) tmp_cst = tmp_cst - field_value field_str_list.append(".%s = %s" % (field_name, field_format.get_c_cst(field_value))) return "{%s}" % (", ".join(field_str_list)) def get_gappa_cst(self, cst_value): """ Constant generation in Gappa-language """ return str(cst_value) class ML_Compound_FP_Format(ML_Compound_Format, ML_FP_Format): pass class ML_Compound_Integer_Format(ML_Compound_Format, ML_Fixed_Format): pass class ML_FP_MultiElementFormat(ML_Compound_FP_Format): """ parent format for multi-precision format (single single, double double, triple double ...) """ @staticmethod def is_fp_multi_elt_format(format_object): return isinstance(format_object, ML_FP_MultiElementFormat) def get_bit_size(self): return sum([scalar.get_bit_size() for scalar in self.field_format_list]) def get_limb_precision(self, limb_index): return self.field_format_list[limb_index] @property def limb_num(self): """ return the number of limbs of the multi-precision format """ return len(self.field_format_list) # compound binary floating-point format declaration ML_DoubleDouble = ML_FP_MultiElementFormat("ml_dd_t", ["hi", "lo"], [ML_Binary64, ML_Binary64], "", DISPLAY_DD, sollya.doubledouble) ML_TripleDouble = ML_FP_MultiElementFormat("ml_td_t", ["hi", "me", "lo"], [ML_Binary64, ML_Binary64, ML_Binary64], "", DISPLAY_TD, sollya.tripledouble) ML_SingleSingle = ML_FP_MultiElementFormat("ml_ds_t", ["hi", "lo"], [ML_Binary32, ML_Binary32], "", DISPLAY_DS, 2*ML_Binary32.get_mantissa_size() + 1) ML_TripleSingle = ML_FP_MultiElementFormat("ml_ts_t", ["hi", "me", "lo"], [ML_Binary32, ML_Binary32, ML_Binary32], "", DISPLAY_TS, 3*ML_Binary32.get_mantissa_size() + 1) ############################################################################### # VECTOR FORMAT ############################################################################### ## common ancestor to every vector format class ML_VectorFormat(ML_Format): def __init__(self, scalar_format, vector_size, c_name): ML_Format.__init__(self, name = {C_Code: c_name}) self.scalar_format = scalar_format self.vector_size = vector_size def is_vector_format(self): return True def get_bit_size(self): return self.vector_size * self.scalar_format.get_bit_size() def __str__(self): return self.get_code_name(language = C_Code) def get_scalar_format(self): return self.scalar_format def set_scalar_format(self, new_scalar_format): self.scalar_format = new_scalar_format def get_vector_size(self): return self.vector_size def set_vector_size(self, new_vector_size): self.vector_size = new_vector_size def get_name(self, language = C_Code): try: return ML_Format.get_name(self, language) except KeyError: return self.get_scalar_format().get_name(language) ## Generic class for Metalibm support library vector format class ML_CompoundVectorFormat(ML_VectorFormat, ML_Compound_Format): def __init__(self, c_format_name, opencl_format_name, vector_size, scalar_format, sollya_precision = None, cst_callback = None): ML_VectorFormat.__init__(self, scalar_format, vector_size, c_format_name) ML_Compound_Format.__init__(self, c_format_name, ["_[%d]" % i for i in range(vector_size)], [scalar_format for i in range(vector_size)], "", "", sollya_precision) # registering OpenCL-C format name self.name[OpenCL_Code] = opencl_format_name self.cst_callback = cst_callback def get_cst_default(self, cst_value, language = C_Code): elt_value_list = [self.scalar_format.get_cst(cst_value[i], language = language) for i in range(self.vector_size)] if language is C_Code: return "{._ = {%s}}" % (", ".join(elt_value_list)) elif language is OpenCL_Code: return "(%s)(%s)" % (self.get_name(language = OpenCL_Code), (", ".join(elt_value_list))) else: Log.report(Log.Error, "unsupported language in ML_CompoundVectorFormat.get_cst: %s" % (language)) def get_cst(self, cst_value, language = C_Code): if self.cst_callback is None: return self.get_cst_default(cst_value, language) else: return self.cst_callback(self, cst_value, language) class ML_IntegerVectorFormat(ML_CompoundVectorFormat, ML_Fixed_Format): pass class ML_FloatingPointVectorFormat(ML_CompoundVectorFormat, ML_FP_Format): pass class ML_MultiPrecision_VectorFormat(ML_CompoundVectorFormat): @property def limb_num(self): return self.scalar_format.limb_num def get_limb_precision(self, limb_index): limb_format = self.scalar_format.get_limb_precision(limb_index) return VECTOR_TYPE_MAP[limb_format][self.vector_size] ## helper function to generate a vector format # @param format_name string name of the result format # @param vector_size integer number of element in the vector # @param scalar_format ML_Format object, format of a vector's element # @param sollya_precision pythonsollya object, sollya precision to be used for computation # @param compound_constructor ML_Compound_Format child class used to build the result format # @param cst_callback function (self, value, language) -> str, used to generate constant value code def vector_format_builder(c_format_name, opencl_format_name, vector_size, scalar_format, sollya_precision=None, compound_constructor=ML_FloatingPointVectorFormat, cst_callback=None): return compound_constructor(c_format_name, opencl_format_name, vector_size, scalar_format, sollya_precision, cst_callback) v2float32 = vector_format_builder("ml_float2_t", "float2", 2, ML_Binary32) v3float32 = vector_format_builder("ml_float3_t", "float3", 3, ML_Binary32) v4float32 = vector_format_builder("ml_float4_t", "float4", 4, ML_Binary32) v8float32 = vector_format_builder("ml_float8_t", "float8", 8, ML_Binary32) v2float64 = vector_format_builder("ml_double2_t", "double2", 2, ML_Binary64) v3float64 = vector_format_builder("ml_double3_t", "double3", 3, ML_Binary64) v4float64 = vector_format_builder("ml_double4_t", "double4", 4, ML_Binary64) v8float64 = vector_format_builder("ml_double8_t", "double8", 8, ML_Binary64) v2bool = vector_format_builder("ml_bool2_t", "int2", 2, ML_Bool, compound_constructor = ML_IntegerVectorFormat) v3bool = vector_format_builder("ml_bool3_t", "int3", 3, ML_Bool, compound_constructor = ML_IntegerVectorFormat) v4bool = vector_format_builder("ml_bool4_t", "int4", 4, ML_Bool, compound_constructor = ML_IntegerVectorFormat) v8bool = vector_format_builder("ml_bool8_t", "int8", 8, ML_Bool, compound_constructor = ML_IntegerVectorFormat) v2int32 = vector_format_builder("ml_int2_t", "int2", 2, ML_Int32, compound_constructor = ML_IntegerVectorFormat) v3int32 = vector_format_builder("ml_int3_t", "int3", 3, ML_Int32, compound_constructor = ML_IntegerVectorFormat) v4int32 = vector_format_builder("ml_int4_t", "int4", 4, ML_Int32, compound_constructor = ML_IntegerVectorFormat) v8int32 = vector_format_builder("ml_int8_t", "int8", 8, ML_Int32, compound_constructor = ML_IntegerVectorFormat) v2uint32 = vector_format_builder("ml_uint2_t", "uint2", 2, ML_UInt32, compound_constructor = ML_IntegerVectorFormat) v3uint32 = vector_format_builder("ml_uint3_t", "uint3", 3, ML_UInt32, compound_constructor = ML_IntegerVectorFormat) v4uint32 = vector_format_builder("ml_uint4_t", "uint4", 4, ML_UInt32, compound_constructor = ML_IntegerVectorFormat) v8uint32 = vector_format_builder("ml_uint8_t", "uint8", 8, ML_UInt32, compound_constructor = ML_IntegerVectorFormat) v2int64 = vector_format_builder("ml_long2_t", "long2", 2, ML_Int64, compound_constructor = ML_IntegerVectorFormat) v3int64 = vector_format_builder("ml_long3_t", "long3", 3, ML_Int64, compound_constructor = ML_IntegerVectorFormat) v4int64 = vector_format_builder("ml_long4_t", "long4", 4, ML_Int64, compound_constructor = ML_IntegerVectorFormat) v8int64 = vector_format_builder("ml_long8_t", "long8", 8, ML_Int64, compound_constructor = ML_IntegerVectorFormat) v2uint64 = vector_format_builder("ml_ulong2_t", "ulong2", 2, ML_UInt64, compound_constructor = ML_IntegerVectorFormat) v3uint64 = vector_format_builder("ml_ulong3_t", "ulong3", 3, ML_UInt64, compound_constructor = ML_IntegerVectorFormat) v4uint64 = vector_format_builder("ml_ulong4_t", "ulong4", 4, ML_UInt64, compound_constructor = ML_IntegerVectorFormat) v8uint64 = vector_format_builder("ml_ulong8_t", "ulong8", 8, ML_UInt64, compound_constructor = ML_IntegerVectorFormat) ############################################################################### # VECTOR MULTI-PRECISION FORMAT ############################################################################### v2dualfloat32 = vector_format_builder("ml_dualfloat2_t", "unsupported", 2, ML_SingleSingle, compound_constructor=ML_MultiPrecision_VectorFormat) v3dualfloat32 = vector_format_builder("ml_dualfloat3_t", "unsupported", 3, ML_SingleSingle, compound_constructor=ML_MultiPrecision_VectorFormat) v4dualfloat32 = vector_format_builder("ml_dualfloat4_t", "unsupported", 4, ML_SingleSingle, compound_constructor=ML_MultiPrecision_VectorFormat) v8dualfloat32 = vector_format_builder("ml_dualfloat8_t", "unsupported", 8, ML_SingleSingle, compound_constructor=ML_MultiPrecision_VectorFormat) v2dualfloat64 = vector_format_builder("ml_dualdouble2_t", "unsupported", 2, ML_DoubleDouble, compound_constructor=ML_MultiPrecision_VectorFormat) v3dualfloat64 = vector_format_builder("ml_dualdouble3_t", "unsupported", 3, ML_DoubleDouble, compound_constructor=ML_MultiPrecision_VectorFormat) v4dualfloat64 = vector_format_builder("ml_dualdouble4_t", "unsupported", 4, ML_DoubleDouble, compound_constructor=ML_MultiPrecision_VectorFormat) v8dualfloat64 = vector_format_builder("ml_dualdouble8_t", "unsupported", 8, ML_DoubleDouble, compound_constructor=ML_MultiPrecision_VectorFormat) v2trifloat32 = vector_format_builder("ml_trifloat2_t", "unsupported", 2, ML_TripleSingle, compound_constructor=ML_MultiPrecision_VectorFormat) v3trifloat32 = vector_format_builder("ml_trifloat3_t", "unsupported", 3, ML_TripleSingle, compound_constructor=ML_MultiPrecision_VectorFormat) v4trifloat32 = vector_format_builder("ml_trifloat4_t", "unsupported", 4, ML_TripleSingle, compound_constructor=ML_MultiPrecision_VectorFormat) v8trifloat32 = vector_format_builder("ml_trifloat8_t", "unsupported", 8, ML_TripleSingle, compound_constructor=ML_MultiPrecision_VectorFormat) v2trifloat64 = vector_format_builder("ml_tridouble2_t", "unsupported", 2, ML_TripleDouble, compound_constructor=ML_MultiPrecision_VectorFormat) v3trifloat64 = vector_format_builder("ml_tridouble3_t", "unsupported", 3, ML_TripleDouble, compound_constructor=ML_MultiPrecision_VectorFormat) v4trifloat64 = vector_format_builder("ml_tridouble4_t", "unsupported", 4, ML_TripleDouble, compound_constructor=ML_MultiPrecision_VectorFormat) v8trifloat64 = vector_format_builder("ml_tridouble8_t", "unsupported", 8, ML_TripleDouble, compound_constructor=ML_MultiPrecision_VectorFormat) LIST_SINGLE_MULTI_PRECISION_VECTOR_FORMATS = [v2dualfloat32, v3dualfloat32, v4dualfloat32, v8dualfloat32, v2trifloat32, v3trifloat32, v4trifloat32, v8trifloat32] LIST_DOUBLE_MULTI_PRECISION_VECTOR_FORMATS = [v2dualfloat64, v3dualfloat64, v4dualfloat64, v8dualfloat64, v2trifloat64, v3trifloat64, v4trifloat64, v8trifloat64] VECTOR_TYPE_MAP = { ML_Binary32: { 2: v2float32, 3: v3float32, 4: v4float32, 8: v8float32 }, ML_Binary64: { 2: v2float64, 3: v3float64, 4: v4float64, 8: v8float64 }, ML_Int32: { 2: v2int32, 3: v3int32, 4: v4int32, 8: v8int32 }, ML_UInt32: { 2: v2uint32, 3: v3uint32, 4: v4uint32, 8: v8uint32 }, ML_Int64: { 2: v2int64, 3: v3int64, 4: v4int64, 8: v8int64 }, ML_UInt64: { 2: v2uint64, 3: v3uint64, 4: v4uint64, 8: v8uint64 }, ML_Bool: { 2: v2bool, 3: v3bool, 4: v4bool, 8: v8bool }, ML_SingleSingle: { 2: v2dualfloat32, 3: v3dualfloat32, 4: v4dualfloat32, 8: v8dualfloat32, }, ML_TripleSingle: { 2: v2trifloat64, 3: v3trifloat64, 4: v4trifloat64, 8: v8trifloat64, }, ML_DoubleDouble: { 2: v2dualfloat64, 3: v3dualfloat64, 4: v4dualfloat64, 8: v8dualfloat64, }, ML_TripleDouble: { 2: v2trifloat64, 3: v3trifloat64, 4: v4trifloat64, 8: v8trifloat64, }, } ############################################################################### # GENERIC, NON NUMERICAL FORMATS ############################################################################### ML_Void = ML_FormatConstructor(0, "void", "ERROR", lambda _: None) class FP_Context(object): """ Floating-Point context """ def __init__(self, rounding_mode = ML_GlobalRoundMode, silent = None): self.rounding_mode = rounding_mode self.init_ev_value = None self.init_rnd_mode_value = None self.silent = silent def get_rounding_mode(self): return self.rounding_mode def get_silent(self): return self.silent class FunctionFormat(object): """ format for function object """ pass def merge_abstract_format(*args): """ return the most generic abstract format to unify args formats """ has_float = False has_integer = False has_bool = False for arg_type in args: arg_base = arg_type.get_base_format() if isinstance(arg_base, ML_FP_Format): has_float = True if isinstance(arg_base, ML_Fixed_Format): has_integer = True if isinstance(arg_base, ML_Bool_Format): has_bool = True if has_float: return ML_Float if has_integer: return ML_Integer if has_bool: return ML_AbstractBool else: print([str(arg) for arg in args]) Log.report(Log.Error, "unknown formats while merging abstract format tuple") ## @} # end of metalibm's Doxygen ml_formats group
39.740933
166
0.669003
e2e6b3a7df083bc5d048f422539e2cd1ee15dddd
5,893
py
Python
src/reducer/testing.py
fritzo/pomagma
224bb6adab3fc68e2d853e6365b4b86a8f7f468f
[ "Apache-2.0" ]
10
2015-06-09T00:25:01.000Z
2019-06-11T16:07:31.000Z
src/reducer/testing.py
fritzo/pomagma
224bb6adab3fc68e2d853e6365b4b86a8f7f468f
[ "Apache-2.0" ]
25
2015-03-23T23:16:01.000Z
2017-08-29T03:35:59.000Z
src/reducer/testing.py
fritzo/pomagma
224bb6adab3fc68e2d853e6365b4b86a8f7f468f
[ "Apache-2.0" ]
null
null
null
"""Tools for testing implementations of reduce() and simplify().""" import os from importlib import import_module import hypothesis.strategies as s import pytest from parsable import parsable from pomagma.reducer import bohm from pomagma.reducer.linker import link from pomagma.reducer.syntax import (APP, BOOL, BOT, CODE, EQUAL, EVAL, JOIN, MAYBE, NVAR, QAPP, QEQUAL, QLESS, QQUOTE, QUOTE, TOP, UNIT, B, C, I, K, S, Y, is_app, is_equal, is_quote, sexpr_parse, sexpr_print) DIR = os.path.dirname(os.path.abspath(__file__)) TESTDATA = os.path.join(DIR, 'testdata') # ---------------------------------------------------------------------------- # parameterized testing def iter_test_cases(test_id, suites=None): assert isinstance(test_id, str), test_id print('test_id = {}'.format(test_id)) if suites is None: module = import_module('pomagma.reducer.{}'.format(test_id)) suites = module.SUPPORTED_TESTDATA for suite in suites: basename = '{}.sexpr'.format(suite) filename = os.path.join(TESTDATA, basename) print('reading {}'.format(filename)) with open(filename) as f: for i, line in enumerate(f): parts = line.split(';', 1) sexpr = parts[0].strip() if sexpr: message = 'In {}:{}\n{}'.format(basename, 1 + i, line) try: term = sexpr_parse(sexpr) except ValueError as e: raise ValueError('{} {}'.format(message, e)) comment = None if len(parts) < 2 else parts[1].strip() yield term, comment, message def parse_xfail(comment, test_id): if comment.startswith('xfail'): if test_id is None: return True if test_id in comment[len('xfail'):].strip().split(' '): return True return False def iter_equations(test_id, suites=None): assert isinstance(test_id, str), test_id for term, comment, message in iter_test_cases(test_id, suites): if is_equal(term): lhs = link(bohm.convert(term[1])) rhs = link(bohm.convert(term[2])) example = lhs, rhs, message if comment and parse_xfail(comment, test_id): example = pytest.mark.xfail(example) yield example else: raise NotImplementedError(message) def migrate(fun): """Applies a term->term transform on all files in testdata/.""" for basename in os.listdir(TESTDATA): assert basename.endswith('.sexpr'), basename print('processing {}'.format(basename)) filename = os.path.join(TESTDATA, basename) lines = [] with open(filename) as f: for lineno, line in enumerate(f): line = line.strip() parts = line.split(';', 1) sexpr = parts[0].strip() comment = '' if len(parts) == 1 else parts[1] if sexpr: term = sexpr_parse(sexpr) try: term = fun(term) except Exception: print('Error at {}:{}'.format(basename, lineno + 1)) print(line) raise sexpr = sexpr_print(term) if not comment: line = sexpr elif not sexpr: line = ';{}'.format(comment) else: line = '{} ;{}'.format(sexpr, comment) lines.append(line) with open(filename, 'w') as f: for line in lines: f.write(line) f.write('\n') print('done') @parsable def reformat(): """Reformat all files in testdata/.""" migrate(lambda x: x) def _unquote_equal(term): if not is_app(term) or not is_app(term[1]) or term[1][1] is not EQUAL: return term lhs = term[1][2] rhs = term[2] assert is_quote(lhs), lhs assert is_quote(rhs), rhs lhs = lhs[1] rhs = rhs[1] return APP(APP(EQUAL, lhs), rhs) @parsable def unquote_equal(): """Convert (EQUAL (QUOTE x) (QUOTE y)) to (EQUAL x y).""" migrate(_unquote_equal) # ---------------------------------------------------------------------------- # property-based testing alphabet = '_abcdefghijklmnopqrstuvwxyz' s_vars = s.builds( NVAR, s.builds(str, s.text(alphabet=alphabet, min_size=1, average_size=5)), ) s_atoms = s.one_of( s.one_of(s_vars), s.just(TOP), s.just(BOT), s.just(I), s.just(K), s.just(B), s.just(C), s.just(S), s.just(Y), s.one_of( s.just(CODE), s.just(EVAL), s.just(QAPP), s.just(QQUOTE), s.just(QEQUAL), s.just(QLESS), ), s.one_of( s.just(UNIT), s.just(BOOL), s.just(MAYBE), ), ) s_sk_atoms = s.one_of( s.one_of(s_vars), s.just(TOP), s.just(BOT), s.just(I), s.just(K), s.just(B), s.just(C), s.just(S), s.just(Y), ) def s_sk_extend(terms): return s.builds(APP, terms, terms) def s_skj_extend(terms): return s.one_of( s.builds(APP, terms, terms), s.builds(JOIN, terms, terms), ) def s_terms_extend(terms): return s.one_of( s.builds(APP, terms, terms), s.builds(JOIN, terms, terms), s.builds(QUOTE, terms), ) s_sk_terms = s.recursive(s_sk_atoms, s_sk_extend, max_leaves=100) s_skj_terms = s.recursive(s_sk_atoms, s_skj_extend, max_leaves=100) s_terms = s.recursive(s_atoms, s_terms_extend, max_leaves=100) s_quoted = s.builds(QUOTE, s_terms) if __name__ == '__main__': parsable()
28.746341
79
0.53029
fd8f924a012561f87eb0cdddbe741ff8d7b0151d
8,525
py
Python
examples/tests/test_example_aircraft.py
GodotMisogi/openconcept
8206cb2d4303cb83e89d4075649bf69118384486
[ "MIT" ]
22
2018-09-11T16:40:23.000Z
2022-03-22T09:45:53.000Z
examples/tests/test_example_aircraft.py
GodotMisogi/openconcept
8206cb2d4303cb83e89d4075649bf69118384486
[ "MIT" ]
25
2018-12-16T20:32:17.000Z
2022-03-16T14:53:07.000Z
examples/tests/test_example_aircraft.py
GodotMisogi/openconcept
8206cb2d4303cb83e89d4075649bf69118384486
[ "MIT" ]
24
2018-07-27T06:31:01.000Z
2022-03-13T15:27:07.000Z
from __future__ import division import unittest import numpy as np from openmdao.utils.assert_utils import assert_near_equal, assert_check_partials from openmdao.api import IndepVarComp, Group, Problem from examples.B738 import run_738_analysis from examples.TBM850 import run_tbm_analysis from examples.HybridTwin_thermal import run_hybrid_twin_thermal_analysis from examples.HybridTwin_active_thermal import run_hybrid_twin_active_thermal_analysis from examples.HybridTwin import run_hybrid_twin_analysis from examples.Caravan import run_caravan_analysis from examples.KingAirC90GT import run_kingair_analysis from examples.ElectricSinglewithThermal import run_electricsingle_analysis from examples.N3_HybridSingleAisle_Refrig import run_hybrid_sa_analysis class TBMAnalysisTestCase(unittest.TestCase): def setUp(self): self.prob = run_tbm_analysis() def test_values_TBM(self): prob = self.prob assert_near_equal(prob.get_val('climb.OEW', units='lb'), 4756.772140709275, tolerance=1e-5) assert_near_equal(prob.get_val('rotate.range_final', units='ft'), 2489.49501148, tolerance=1e-5) assert_near_equal(prob.get_val('engineoutclimb.gamma',units='deg'), 8.78263, tolerance=1e-5) assert_near_equal(prob.get_val('descent.fuel_used_final', units='lb'), 1607.84846911, tolerance=1e-5) class CaravanAnalysisTestCase(unittest.TestCase): def setUp(self): self.prob = run_caravan_analysis() def test_values_Caravan(self): prob = self.prob assert_near_equal(prob.get_val('v1vr.range_final', units='ft'), 1375.59921952, tolerance=1e-5) assert_near_equal(prob.get_val('descent.fuel_used_final', units='lb'), 379.90334044, tolerance=1e-5) class HybridTwinThermalTestCase(unittest.TestCase): def setUp(self): self.prob = run_hybrid_twin_thermal_analysis() def test_values_thermalhybridtwin(self): prob = self.prob assert_near_equal(prob.get_val('climb.OEW', units='lb'), 6673.001027260613, tolerance=1e-5) assert_near_equal(prob.get_val('rotate.range_final', units='ft'), 4434.68545427, tolerance=1e-5) assert_near_equal(prob.get_val('engineoutclimb.gamma',units='deg'), 1.75074018, tolerance=1e-5) assert_near_equal(prob.get_val('descent.fuel_used_final', units='lb'), 862.69811822, tolerance=1e-5) assert_near_equal(prob.get_val('descent.propmodel.batt1.SOC_final', units=None), -3.80158704e-05, tolerance=1e-5) assert_near_equal(prob.get_val('climb.propmodel.motorheatsink.T', units='degC')[-1], 76.19938727507775, tolerance=1e-5) assert_near_equal(prob.get_val('climb.propmodel.batteryheatsink.T', units='degC')[-1], -0.27586540922391123, tolerance=1e-5) assert_near_equal(prob.get_val('cruise.propmodel.duct.drag', units='lbf')[0], 7.968332825694923, tolerance=1e-5) # changelog 10/2020 - updated most of the values due to minor update to hydraulic diam calculation in the heat exchanger # 10/2021 commenting out because does not converge with the new chiller in chiller.py # class HybridTwinActiveThermalTestCase(unittest.TestCase): # def setUp(self): # self.prob = run_hybrid_twin_active_thermal_analysis() # def test_values_hybridtwin(self): # prob = self.prob # climb_duct_area = np.array([ 0.80614565, 3.25480096, 7.11240858, 12.075577 , 17.55488029, # 23.40694116, 29.15510781, 34.44182758, 39.05343787, 43.00420553, 46.43866073]) # cruise_duct_area = np.array([17.17611522, 15.22748148, 14.66271227, 14.38669164, 14.2745505 , # 14.20434496, 14.15713767, 14.11684779, 14.08034799, 14.04524349, 14.01099713]) # prob.set_val('climb.propmodel.duct.area_nozzle', climb_duct_area, units='inch**2') # prob.set_val('cruise.propmodel.duct.area_nozzle', cruise_duct_area, units='inch**2') # prob.run_model() # assert_near_equal(prob.get_val('climb.OEW', units='lb'), 6673.001027260613, tolerance=1e-5) # # assert_near_equal(prob.get_val('descent.fuel_used_final', units='lb'), 871.66394047, tolerance=1e-5) # # assert_near_equal(prob.get_val('descent.propmodel.batt1.SOC_final', units=None), 0.00484123, tolerance=1e-5) # assert_near_equal(prob.get_val('climb.propmodel.duct.area_nozzle', units='inch**2'), climb_duct_area, tolerance=1e-5) # assert_near_equal(prob.get_val('cruise.propmodel.duct.area_nozzle', units='inch**2'), cruise_duct_area, tolerance=1e-5) # Wdot = np.array([ 6618.15094465, 17863.48477045, 25558.10458551, 30652.72996714, 33805.46342847, 35538.5460011, # 36221.44062722, 36149.9707508, 35539.35428109, 34562.89222503, 33346.05141285]) # assert_near_equal(prob.get_val('climb.propmodel.refrig.elec_load', units='W'), Wdot, tolerance=1e-5) # assert_near_equal(prob.get_val('cruise.propmodel.refrig.elec_load', units='W'), np.zeros(11), tolerance=1e-5) # assert_near_equal(prob.get_val('climb.propmodel.motorheatsink.T', units='degC')[-1], 76.48202028574951, tolerance=1e-5) # assert_near_equal(prob.get_val('climb.propmodel.batteryheatsink.T', units='degC')[-1], 6.9112870295027165, tolerance=1e-5) # assert_near_equal(prob.get_val('cruise.propmodel.duct.drag', units='lbf')[-1], 1.5888992670493287, tolerance=1e-5) # # changelog 10/2020 - updated most of the values due to minor update to hydraulic diam calculation in the heat exchanger class HybridTwinTestCase(unittest.TestCase): def setUp(self): self.prob = run_hybrid_twin_analysis() def test_values_hybridtwin(self): prob = self.prob assert_near_equal(prob.get_val('climb.OEW', units='lb'), 6648.424765080086, tolerance=1e-5) assert_near_equal(prob.get_val('rotate.range_final', units='ft'), 4383.871458066499, tolerance=1e-5) assert_near_equal(prob.get_val('engineoutclimb.gamma',units='deg'), 1.7659046316724112, tolerance=1e-5) assert_near_equal(prob.get_val('descent.fuel_used_final', units='lb'), 854.8937776195904, tolerance=1e-5) assert_near_equal(prob.get_val('descent.propmodel.batt1.SOC_final', units=None), -0.00030626412, tolerance=1e-5) class KingAirTestCase(unittest.TestCase): def setUp(self): self.prob = run_kingair_analysis() def test_values_kingair(self): prob = self.prob assert_near_equal(prob.get_val('climb.OEW', units='lb'), 6471.539115423346, tolerance=1e-5) assert_near_equal(prob.get_val('rotate.range_final', units='ft'), 3054.61279799, tolerance=1e-5) assert_near_equal(prob.get_val('descent.fuel_used_final', units='lb'), 1666.73459582, tolerance=1e-5) class ElectricSingleTestCase(unittest.TestCase): def setUp(self): self.prob = run_electricsingle_analysis() def test_values_electricsingle(self): prob = self.prob assert_near_equal(prob.get_val('rotate.range_final', units='ft'), 2419.111568458725, tolerance=1e-5) assert_near_equal(prob.get_val('descent.propmodel.batt1.SOC')[-1], 0.1663373102614198, tolerance=1e-5) assert_near_equal(prob.get_val('descent.propmodel.motorheatsink.T', units='degC')[-1], 14.906950172494192, tolerance=1e-5) # changelog 10/2020 - heat sink T now 14.90695 after minor change to hydraulic diameter computation in heat exchanger class B738TestCase(unittest.TestCase): def setUp(self): self.prob = run_738_analysis() def test_values_B738(self): prob = self.prob # block fuel assert_near_equal(prob.get_val('descent.fuel_used_final', units='lbm'), 28549.432517, tolerance=3e-4) # changelog: 9/2020 - previously 28688.329, updated CFM surrogate model to reject spurious high Mach, low altitude points # total fuel assert_near_equal(prob.get_val('loiter.fuel_used_final', units='lbm'), 34424.68533072, tolerance=3e-4) # changelog: 9/2020 - previously 34555.313, updated CFM surrogate model to reject spurious high Mach, low altitude points class N3HSATestCase(unittest.TestCase): def setUp(self): self.prob = run_hybrid_sa_analysis(plots=False) def test_values_N3HSA(self): prob = self.prob # block fuel (no reserve, since the N+3 HSA uses the basic 3-phase mission) assert_near_equal(prob.get_val('descent.fuel_used_final', units='lbm'), 9006.52397811, tolerance=1e-5) if __name__=="__main__": unittest.main()
58.793103
132
0.723988
400e45d208b03f3a8b991a2a7396c8f55cb3163d
833
py
Python
pyspedas/particles/spd_part_products/spd_pgs_make_e_spec.py
pulupa/pyspedas
7228199cf16eca2a27d130f1e4985ef1e69462ea
[ "MIT" ]
75
2019-02-22T12:59:33.000Z
2022-02-26T15:33:20.000Z
pyspedas/particles/spd_part_products/spd_pgs_make_e_spec.py
pulupa/pyspedas
7228199cf16eca2a27d130f1e4985ef1e69462ea
[ "MIT" ]
40
2019-07-02T07:46:34.000Z
2022-02-23T21:48:50.000Z
pyspedas/particles/spd_part_products/spd_pgs_make_e_spec.py
pulupa/pyspedas
7228199cf16eca2a27d130f1e4985ef1e69462ea
[ "MIT" ]
43
2019-02-22T13:03:41.000Z
2022-01-24T19:26:59.000Z
import numpy as np # use nanmean from bottleneck if it's installed, otherwise use the numpy one try: import bottleneck as bn nanmean = bn.nanmean except ImportError: nanmean = np.nanmean def spd_pgs_make_e_spec(data_in): """ Builds energy spectrogram from the particle data structure Input: data_in: dict Particle data structure Returns: Tuple containing: (energy values for the y-axis, spectrogram values) """ data = data_in.copy() # zero inactive bins to ensure areas with no data are represented as NaN zero_bins = np.argwhere(data['bins'] == 0) if zero_bins.size != 0: for item in zero_bins: data['data'][item[0], item[1]] = 0.0 ave = nanmean(data['data'], axis=1) y = data['energy'][:, 0] return (y, ave)
22.513514
76
0.632653
75846b7ecb6fcac2b940d28dd52eff4993076e88
15,593
py
Python
tests/models/test_cpu.py
ameliatqy/pytorch-lightning
ca18e11f6efe822098c79e7d9124b08a55bcd908
[ "Apache-2.0" ]
null
null
null
tests/models/test_cpu.py
ameliatqy/pytorch-lightning
ca18e11f6efe822098c79e7d9124b08a55bcd908
[ "Apache-2.0" ]
null
null
null
tests/models/test_cpu.py
ameliatqy/pytorch-lightning
ca18e11f6efe822098c79e7d9124b08a55bcd908
[ "Apache-2.0" ]
null
null
null
import os import platform import pytest import torch from packaging.version import parse as version_parse import tests.base.develop_pipelines as tpipes import tests.base.develop_utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.callbacks import EarlyStopping from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.core.step_result import TrainResult from tests.base import EvalModelTemplate def test_cpu_slurm_save_load(tmpdir): """Verify model save/load/checkpoint on CPU.""" hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) # logger file to get meta logger = tutils.get_default_logger(tmpdir) version = logger.version # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, logger=logger, limit_train_batches=0.2, limit_val_batches=0.2, checkpoint_callback=ModelCheckpoint(tmpdir), ) result = trainer.fit(model) real_global_step = trainer.global_step # traning complete assert result == 1, 'cpu model failed to complete' # predict with trained model before saving # make a prediction dataloaders = model.test_dataloader() if not isinstance(dataloaders, list): dataloaders = [dataloaders] for dataloader in dataloaders: for batch in dataloader: break x, y = batch x = x.view(x.size(0), -1) model.eval() pred_before_saving = model(x) # test HPC saving # simulate snapshot on slurm saved_filepath = trainer.hpc_save(trainer.weights_save_path, logger) assert os.path.exists(saved_filepath) # new logger file to get meta logger = tutils.get_default_logger(tmpdir, version=version) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, logger=logger, checkpoint_callback=ModelCheckpoint(tmpdir), ) model = EvalModelTemplate(**hparams) # set the epoch start hook so we can predict before the model does the full training def assert_pred_same(): assert trainer.global_step == real_global_step and trainer.global_step > 0 # predict with loaded model to make sure answers are the same trainer.model.eval() new_pred = trainer.model(x) assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1 model.on_epoch_start = assert_pred_same # by calling fit again, we trigger training, loading weights from the cluster # and our hook to predict using current model before any more weight updates trainer.fit(model) def test_early_stopping_cpu_model(tmpdir): """Test each of the trainer options.""" stopping = EarlyStopping(monitor='val_loss', min_delta=0.1) trainer_options = dict( default_root_dir=tmpdir, early_stop_callback=stopping, max_epochs=2, gradient_clip_val=1.0, overfit_batches=0.20, track_grad_norm=2, limit_train_batches=0.1, limit_val_batches=0.1, ) model = EvalModelTemplate() tpipes.run_model_test(trainer_options, model, on_gpu=False) # test freeze on cpu model.freeze() model.unfreeze() @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif((platform.system() == "Darwin" and version_parse(torch.__version__) < version_parse("1.3.0")), reason="Distributed training is not supported on MacOS before Torch 1.3.0") def test_multi_cpu_model_ddp(tmpdir): """Make sure DDP works.""" tutils.set_random_master_port() trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=1, limit_train_batches=0.4, limit_val_batches=0.2, gpus=None, num_processes=2, distributed_backend='ddp_cpu', ) model = EvalModelTemplate() tpipes.run_model_test(trainer_options, model, on_gpu=False) def test_lbfgs_cpu_model(tmpdir): """Test each of the trainer options.""" trainer_options = dict( default_root_dir=tmpdir, max_epochs=1, progress_bar_refresh_rate=0, weights_summary='top', limit_train_batches=0.2, limit_val_batches=0.2, ) hparams = EvalModelTemplate.get_default_hparams() hparams.update(optimizer_name='lbfgs', learning_rate=0.004) model = EvalModelTemplate(**hparams) model.configure_optimizers = model.configure_optimizers__lbfgs tpipes.run_model_test_without_loggers(trainer_options, model, min_acc=0.25) def test_default_logger_callbacks_cpu_model(tmpdir): """Test each of the trainer options.""" trainer_options = dict( default_root_dir=tmpdir, max_epochs=1, gradient_clip_val=1.0, overfit_batches=0.20, progress_bar_refresh_rate=0, limit_train_batches=0.01, limit_val_batches=0.01, ) model = EvalModelTemplate() tpipes.run_model_test_without_loggers(trainer_options, model) # test freeze on cpu model.freeze() model.unfreeze() def test_running_test_after_fitting(tmpdir): """Verify test() on fitted model.""" model = EvalModelTemplate() # logger file to get meta logger = tutils.get_default_logger(tmpdir) # logger file to get weights checkpoint = tutils.init_checkpoint_callback(logger) # fit model trainer = Trainer( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=2, limit_train_batches=0.4, limit_val_batches=0.2, limit_test_batches=0.2, checkpoint_callback=checkpoint, logger=logger, ) result = trainer.fit(model) assert result == 1, 'training failed to complete' trainer.test() # test we have good test accuracy tutils.assert_ok_model_acc(trainer, thr=0.5) def test_running_test_no_val(tmpdir): """Verify `test()` works on a model with no `val_loader`.""" model = EvalModelTemplate() # logger file to get meta logger = tutils.get_default_logger(tmpdir) # logger file to get weights checkpoint = tutils.init_checkpoint_callback(logger) # fit model trainer = Trainer( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=1, limit_train_batches=0.4, limit_val_batches=0.2, limit_test_batches=0.2, checkpoint_callback=checkpoint, logger=logger, early_stop_callback=False, ) result = trainer.fit(model) assert result == 1, 'training failed to complete' trainer.test() # test we have good test accuracy tutils.assert_ok_model_acc(trainer) def test_simple_cpu(tmpdir): """Verify continue training session on CPU.""" model = EvalModelTemplate() # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_val_batches=0.1, limit_train_batches=20, ) result = trainer.fit(model) # traning complete assert result == 1, 'amp + ddp model failed to complete' def test_cpu_model(tmpdir): """Make sure model trains on CPU.""" trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=1, limit_train_batches=0.4, limit_val_batches=0.4 ) model = EvalModelTemplate() tpipes.run_model_test(trainer_options, model, on_gpu=False) def test_all_features_cpu_model(tmpdir): """Test each of the trainer options.""" trainer_options = dict( default_root_dir=tmpdir, gradient_clip_val=1.0, overfit_batches=0.20, track_grad_norm=2, progress_bar_refresh_rate=0, accumulate_grad_batches=2, max_epochs=1, limit_train_batches=0.4, limit_val_batches=0.4 ) model = EvalModelTemplate() tpipes.run_model_test(trainer_options, model, on_gpu=False) def test_tbptt_cpu_model(tmpdir): """Test truncated back propagation through time works.""" truncated_bptt_steps = 2 sequence_size = 30 batch_size = 30 x_seq = torch.rand(batch_size, sequence_size, 1) y_seq_list = torch.rand(batch_size, sequence_size, 1).tolist() class MockSeq2SeqDataset(torch.utils.data.Dataset): def __getitem__(self, i): return x_seq, y_seq_list def __len__(self): return 1 class BpttTestModel(EvalModelTemplate): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.test_hidden = None def training_step(self, batch, batch_idx, hiddens): assert hiddens == self.test_hidden, "Hidden state not persistent between tbptt steps" self.test_hidden = torch.rand(1) x_tensor, y_list = batch assert x_tensor.shape[1] == truncated_bptt_steps, "tbptt split Tensor failed" y_tensor = torch.tensor(y_list, dtype=x_tensor.dtype) assert y_tensor.shape[1] == truncated_bptt_steps, "tbptt split list failed" pred = self(x_tensor.view(batch_size, truncated_bptt_steps)) loss_val = torch.nn.functional.mse_loss( pred, y_tensor.view(batch_size, truncated_bptt_steps)) return { 'loss': loss_val, 'hiddens': self.test_hidden, } def training_epoch_end(self, training_step_outputs): training_step_outputs = training_step_outputs[0] assert len(training_step_outputs) == (sequence_size / truncated_bptt_steps) loss = torch.stack([x['loss'] for x in training_step_outputs]).mean() return {'log': {'train_loss': loss}} def train_dataloader(self): return torch.utils.data.DataLoader( dataset=MockSeq2SeqDataset(), batch_size=batch_size, shuffle=False, sampler=None, ) hparams = EvalModelTemplate.get_default_hparams() hparams.update( batch_size=batch_size, in_features=truncated_bptt_steps, hidden_dim=truncated_bptt_steps, out_features=truncated_bptt_steps ) model = BpttTestModel(**hparams) # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, truncated_bptt_steps=truncated_bptt_steps, limit_val_batches=0, weights_summary=None, early_stop_callback=False, ) result = trainer.fit(model) assert result == 1, 'training failed to complete' def test_tbptt_cpu_model_result(tmpdir): """Test truncated back propagation through time works.""" truncated_bptt_steps = 2 sequence_size = 30 batch_size = 30 x_seq = torch.rand(batch_size, sequence_size, 1) y_seq_list = torch.rand(batch_size, sequence_size, 1).tolist() class MockSeq2SeqDataset(torch.utils.data.Dataset): def __getitem__(self, i): return x_seq, y_seq_list def __len__(self): return 1 class BpttTestModel(EvalModelTemplate): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.test_hidden = None def training_step(self, batch, batch_idx, hiddens): assert hiddens == self.test_hidden, "Hidden state not persistent between tbptt steps" self.test_hidden = torch.rand(1) x_tensor, y_list = batch assert x_tensor.shape[1] == truncated_bptt_steps, "tbptt split Tensor failed" y_tensor = torch.tensor(y_list, dtype=x_tensor.dtype) assert y_tensor.shape[1] == truncated_bptt_steps, "tbptt split list failed" pred = self(x_tensor.view(batch_size, truncated_bptt_steps)) loss_val = torch.nn.functional.mse_loss( pred, y_tensor.view(batch_size, truncated_bptt_steps)) result = TrainResult(loss_val, hiddens=self.test_hidden) return result def training_epoch_end(self, training_step_outputs): result = training_step_outputs assert isinstance(result, TrainResult) assert result.minimize.size(1) == (sequence_size / truncated_bptt_steps) result.minimize = result.minimize.mean() return result def train_dataloader(self): return torch.utils.data.DataLoader( dataset=MockSeq2SeqDataset(), batch_size=batch_size, shuffle=False, sampler=None, ) hparams = EvalModelTemplate.get_default_hparams() hparams.update( batch_size=batch_size, in_features=truncated_bptt_steps, hidden_dim=truncated_bptt_steps, out_features=truncated_bptt_steps ) model = BpttTestModel(**hparams) # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, truncated_bptt_steps=truncated_bptt_steps, limit_val_batches=0, weights_summary=None, early_stop_callback=False, ) result = trainer.fit(model) assert result == 1, 'training failed to complete' def test_tbptt_cpu_model_result_auto_reduce(tmpdir): """Test truncated back propagation through time works.""" truncated_bptt_steps = 2 sequence_size = 30 batch_size = 30 x_seq = torch.rand(batch_size, sequence_size, 1) y_seq_list = torch.rand(batch_size, sequence_size, 1).tolist() class MockSeq2SeqDataset(torch.utils.data.Dataset): def __getitem__(self, i): return x_seq, y_seq_list def __len__(self): return 1 class BpttTestModel(EvalModelTemplate): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.test_hidden = None def training_step(self, batch, batch_idx, hiddens): assert hiddens == self.test_hidden, "Hidden state not persistent between tbptt steps" self.test_hidden = torch.rand(1) x_tensor, y_list = batch assert x_tensor.shape[1] == truncated_bptt_steps, "tbptt split Tensor failed" y_tensor = torch.tensor(y_list, dtype=x_tensor.dtype) assert y_tensor.shape[1] == truncated_bptt_steps, "tbptt split list failed" pred = self(x_tensor.view(batch_size, truncated_bptt_steps)) loss_val = torch.nn.functional.mse_loss( pred, y_tensor.view(batch_size, truncated_bptt_steps)) result = TrainResult(loss_val, hiddens=self.test_hidden) return result def train_dataloader(self): return torch.utils.data.DataLoader( dataset=MockSeq2SeqDataset(), batch_size=batch_size, shuffle=False, sampler=None, ) hparams = EvalModelTemplate.get_default_hparams() hparams.update( batch_size=batch_size, in_features=truncated_bptt_steps, hidden_dim=truncated_bptt_steps, out_features=truncated_bptt_steps ) model = BpttTestModel(**hparams) # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, truncated_bptt_steps=truncated_bptt_steps, limit_val_batches=0, weights_summary=None, early_stop_callback=False, ) result = trainer.fit(model) assert result == 1, 'training failed to complete'
30.57451
97
0.660104
c15715e95a2874c6fd7c0b9e56e193c99a46dcdb
1,744
py
Python
src/lib/network.py
Darksider3/monitorNet
1c0419ee6cb3191c5aaa347ffe0fcffc4992f391
[ "BSD-2-Clause" ]
null
null
null
src/lib/network.py
Darksider3/monitorNet
1c0419ee6cb3191c5aaa347ffe0fcffc4992f391
[ "BSD-2-Clause" ]
6
2017-02-18T22:25:56.000Z
2017-03-08T10:30:34.000Z
src/lib/network.py
Darksider3/monitorNet
1c0419ee6cb3191c5aaa347ffe0fcffc4992f391
[ "BSD-2-Clause" ]
null
null
null
import requests import time import os import colors class network: def __init__(self, host, httpTimeout=3, pingTimeout=1000, sleepTimer=10, httpExceptionTimer=2, defaultProt="https://"): self.httpTimeout = httpTimeout self.pingTimeout = pingTimeout self.sleepTimer = sleepTimer self.httpExceptionTimer = httpExceptionTimer self.host=host self.defaultProt=defaultProt self.__checkHost__() self.score = 0 def __checkHost__(self): if "https://" not in self.host: if "http://" not in self.host: self.prot=self.defaultProt self.host = self.defaultProt + self.host else: self.prot="http://" else: self.prot="https://" def ping(self): # strip the protocol from the string self.host=self.host.replace(self.prot, '') # ping timeoutparam = "-w %s" % self.pingTimeout if colors.OS == "NT" else "" param = "-n 1" if colors.OS == "NT" else "-c 1" out = ">NUL" if colors.OS == "NT" else "2>&1 /dev/null" status=os.system("ping %s %s %s %s" % (timeoutparam, param, self.host, out)) == 0 # revert changes self.host=self.prot+self.host return status def httpsUp(self): try: requests.get(self.host, verify=True, timeout=self.httpTimeout) return True except requests.exceptions.RequestException as e: time.sleep(self.httpExceptionTimer) return False def __scoreAdd__(self, num): self.score += num def __scoreSub__(self, num): self.score -= num
29.559322
124
0.563647
cd6d3d2e70f1916d306543fe3214c8476a9f1558
15,185
py
Python
python/mxnet/image.py
bill-teng/mxnet-test
39a2c0cff1be8b8277b2e0a8c55214acc186a49c
[ "Apache-2.0" ]
2
2017-05-31T02:18:53.000Z
2021-04-08T04:50:32.000Z
python/mxnet/image.py
bill-teng/mxnet-test
39a2c0cff1be8b8277b2e0a8c55214acc186a49c
[ "Apache-2.0" ]
null
null
null
python/mxnet/image.py
bill-teng/mxnet-test
39a2c0cff1be8b8277b2e0a8c55214acc186a49c
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # pylint: disable=no-member, too-many-lines, redefined-builtin, protected-access, unused-import, invalid-name # pylint: disable=too-many-arguments, too-many-locals, no-name-in-module, too-many-branches, too-many-statements """Image IO API of mxnet.""" from __future__ import absolute_import, print_function from .base import numeric_types import os import random import logging import numpy as np try: import cv2 except ImportError: cv2 = None from . import ndarray as nd from . import _ndarray_internal as _internal from ._ndarray_internal import _cvimresize as imresize from ._ndarray_internal import _cvcopyMakeBorder as copyMakeBorder from . import io from . import recordio def imdecode(buf, **kwargs): """Decode an image from string. Requires OpenCV to work. Parameters ---------- buf : str/bytes, or numpy.ndarray Binary image data. flag : int 0 for grayscale. 1 for colored. to_rgb : int 0 for BGR format (OpenCV default). 1 for RGB format (MXNet default). out : NDArray Output buffer. Use None for automatic allocation. """ if not isinstance(buf, nd.NDArray): buf = nd.array(np.frombuffer(buf, dtype=np.uint8), dtype=np.uint8) return _internal._cvimdecode(buf, **kwargs) def scale_down(src_size, size): """Scale down crop size if it's bigger than image size""" w, h = size sw, sh = src_size if sh < h: w, h = float(w*sh)/h, sh if sw < w: w, h = sw, float(h*sw)/w return int(w), int(h) def resize_short(src, size, interp=2): """Resize shorter edge to size""" h, w, _ = src.shape if h > w: new_h, new_w = size*h/w, size else: new_h, new_w = size, size*w/h return imresize(src, new_w, new_h, interp=interp) def fixed_crop(src, x0, y0, w, h, size=None, interp=2): """Crop src at fixed location, and (optionally) resize it to size""" out = nd.crop(src, begin=(y0, x0, 0), end=(y0+h, x0+w, int(src.shape[2]))) if size is not None and (w, h) != size: out = imresize(out, *size, interp=interp) return out def random_crop(src, size, interp=2): """Randomly crop src with size. Upsample result if src is smaller than size""" h, w, _ = src.shape new_w, new_h = scale_down((w, h), size) x0 = random.randint(0, w - new_w) y0 = random.randint(0, h - new_h) out = fixed_crop(src, x0, y0, new_w, new_h, size, interp) return out, (x0, y0, new_w, new_h) def center_crop(src, size, interp=2): """Randomly crop src with size. Upsample result if src is smaller than size""" h, w, _ = src.shape new_w, new_h = scale_down((w, h), size) x0 = (w - new_w)/2 y0 = (h - new_h)/2 out = fixed_crop(src, x0, y0, new_w, new_h, size, interp) return out, (x0, y0, new_w, new_h) def color_normalize(src, mean, std=None): """Normalize src with mean and std""" src -= mean if std is not None: src /= std return src def random_size_crop(src, size, min_area, ratio, interp=2): """Randomly crop src with size. Randomize area and aspect ratio""" h, w, _ = src.shape new_ratio = random.uniform(*ratio) if new_ratio * h > w: max_area = w*int(w/new_ratio) else: max_area = h*int(h*new_ratio) min_area *= h*w if max_area < min_area: return random_crop(src, size, interp) new_area = random.uniform(min_area, max_area) new_w = int(np.sqrt(new_area*new_ratio)) new_h = int(np.sqrt(new_area/new_ratio)) assert new_w <= w and new_h <= h x0 = random.randint(0, w - new_w) y0 = random.randint(0, h - new_h) out = fixed_crop(src, x0, y0, new_w, new_h, size, interp) return out, (x0, y0, new_w, new_h) def ResizeAug(size, interp=2): """Make resize shorter edge to size augumenter""" def aug(src): """Augumenter body""" return [resize_short(src, size, interp)] return aug def RandomCropAug(size, interp=2): """Make random crop augumenter""" def aug(src): """Augumenter body""" return [random_crop(src, size, interp)[0]] return aug def RandomSizedCropAug(size, min_area, ratio, interp=2): """Make random crop with random resizing and random aspect ratio jitter augumenter""" def aug(src): """Augumenter body""" return [random_size_crop(src, size, min_area, ratio, interp)[0]] return aug def CenterCropAug(size, interp=2): """Make center crop augmenter""" def aug(src): """Augumenter body""" return [center_crop(src, size, interp)[0]] return aug def RandomOrderAug(ts): """Apply list of augmenters in random order""" def aug(src): """Augumenter body""" src = [src] random.shuffle(ts) for t in ts: src = [j for i in src for j in t(i)] return src return aug def ColorJitterAug(brightness, contrast, saturation): """Apply random brightness, contrast and saturation jitter in random order""" ts = [] coef = nd.array([[[0.299, 0.587, 0.114]]]) if brightness > 0: def baug(src): """Augumenter body""" alpha = 1.0 + random.uniform(-brightness, brightness) src *= alpha return [src] ts.append(baug) if contrast > 0: def caug(src): """Augumenter body""" alpha = 1.0 + random.uniform(-contrast, contrast) gray = src*coef gray = (3.0*(1.0-alpha)/gray.size)*nd.sum(gray) src *= alpha src += gray return [src] ts.append(caug) if saturation > 0: def saug(src): """Augumenter body""" alpha = 1.0 + random.uniform(-saturation, saturation) gray = src*coef gray = nd.sum(gray, axis=2, keepdims=True) gray *= (1.0-alpha) src *= alpha src += gray return [src] ts.append(saug) return RandomOrderAug(ts) def LightingAug(alphastd, eigval, eigvec): """Add PCA based noise""" def aug(src): """Augumenter body""" alpha = np.random.normal(0, alphastd, size=(3,)) rgb = np.dot(eigvec*alpha, eigval) src += nd.array(rgb) return [src] return aug def ColorNormalizeAug(mean, std): """Mean and std normalization""" mean = nd.array(mean) std = nd.array(std) def aug(src): """Augumenter body""" return [color_normalize(src, mean, std)] return aug def HorizontalFlipAug(p): """Random horizontal flipping""" def aug(src): """Augumenter body""" if random.random() < p: src = nd.flip(src, axis=1) return [src] return aug def CastAug(): """Cast to float32""" def aug(src): """Augumenter body""" src = src.astype(np.float32) return [src] return aug def CreateAugmenter(data_shape, resize=0, rand_crop=False, rand_resize=False, rand_mirror=False, mean=None, std=None, brightness=0, contrast=0, saturation=0, pca_noise=0, inter_method=2): """Create augumenter list""" auglist = [] if resize > 0: auglist.append(ResizeAug(resize, inter_method)) crop_size = (data_shape[2], data_shape[1]) if rand_resize: assert rand_crop auglist.append(RandomSizedCropAug(crop_size, 0.3, (3.0/4.0, 4.0/3.0), inter_method)) elif rand_crop: auglist.append(RandomCropAug(crop_size, inter_method)) else: auglist.append(CenterCropAug(crop_size, inter_method)) if rand_mirror: auglist.append(HorizontalFlipAug(0.5)) auglist.append(CastAug()) if brightness or contrast or saturation: auglist.append(ColorJitterAug(brightness, contrast, saturation)) if pca_noise > 0: eigval = np.array([55.46, 4.794, 1.148]) eigvec = np.array([[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]]) auglist.append(LightingAug(pca_noise, eigval, eigvec)) if mean is True: mean = np.array([123.68, 116.28, 103.53]) if std is True: std = np.array([58.395, 57.12, 57.375]) if mean is not None: assert std is not None auglist.append(ColorNormalizeAug(mean, std)) return auglist class ImageIter(io.DataIter): """Image data iterator with a large number of augumentation choices. Supports reading from both .rec files and raw image files with image list. To load from .rec files, please specify path_imgrec. Also specify path_imgidx to use data partition (for distributed training) or shuffling. To load from raw image files, specify path_imglist and path_root. Parameters ---------- batch_size : int Number of examples per batch data_shape : tuple Data shape in (channels, height, width). For now, only RGB image with 3 channels is supported. label_width : int dimension of label path_imgrec : str path to image record file (.rec). Created with tools/im2rec.py or bin/im2rec path_imglist : str path to image list (.lst) Created with tools/im2rec.py or with custom script. Format: index\t[one or more label separated by \t]\trelative_path_from_root imglist: list a list of image with the label(s) each item is a list [imagelabel: float or list of float, imgpath] path_root : str Root folder of image files path_imgidx : str Path to image index file. Needed for partition and shuffling when using .rec source. shuffle : bool Whether to shuffle all images at the start of each iteration. Can be slow for HDD. part_index : int Partition index num_parts : int Total number of partitions. kwargs : ... More arguments for creating augumenter. See mx.image.CreateAugmenter """ def __init__(self, batch_size, data_shape, label_width=1, path_imgrec=None, path_imglist=None, path_root=None, path_imgidx=None, shuffle=False, part_index=0, num_parts=1, aug_list=None, imglist=None, **kwargs): super(ImageIter, self).__init__() assert(path_imgrec or path_imglist or (isinstance(imglist, list))) if path_imgrec: print('loading recordio...') if path_imgidx: self.imgrec = recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') self.imgidx = list(self.imgrec.keys) else: self.imgrec = recordio.MXRecordIO(path_imgrec, 'r') self.imgidx = None else: self.imgrec = None if path_imglist: print('loading image list...') with open(path_imglist) as fin: imglist = {} imgkeys = [] for line in iter(fin.readline, ''): line = line.strip().split('\t') label = nd.array([float(i) for i in line[1:-1]]) key = int(line[0]) imglist[key] = (label, line[-1]) imgkeys.append(key) self.imglist = imglist elif isinstance(imglist, list): print('loading image list...') result = {} imgkeys = [] index = 1 for img in imglist: key = str(index) index += 1 if isinstance(img[0], numeric_types): label = nd.array([img[0]]) else: label = nd.array(img[0]) result[key] = (label, img[1]) imgkeys.append(str(key)) self.imglist = result else: self.imglist = None self.path_root = path_root assert len(data_shape) == 3 and data_shape[0] == 3 self.provide_data = [('data', (batch_size,) + data_shape)] if label_width > 1: self.provide_label = [('softmax_label', (batch_size, label_width))] else: self.provide_label = [('softmax_label', (batch_size,))] self.batch_size = batch_size self.data_shape = data_shape self.label_width = label_width self.shuffle = shuffle if self.imgrec is None: self.seq = imgkeys elif shuffle or num_parts > 1: assert self.imgidx is not None self.seq = self.imgidx else: self.seq = None if num_parts > 1: assert part_index < num_parts N = len(self.seq) C = N/num_parts self.seq = self.seq[part_index*C:(part_index+1)*C] if aug_list is None: self.auglist = CreateAugmenter(data_shape, **kwargs) else: self.auglist = aug_list self.cur = 0 self.reset() def reset(self): if self.shuffle: random.shuffle(self.seq) if self.imgrec is not None: self.imgrec.reset() self.cur = 0 def next_sample(self): """helper function for reading in next sample""" if self.seq is not None: if self.cur >= len(self.seq): raise StopIteration idx = self.seq[self.cur] self.cur += 1 if self.imgrec is not None: s = self.imgrec.read_idx(idx) header, img = recordio.unpack(s) if self.imglist is None: return header.label, img else: return self.imglist[idx][0], img else: label, fname = self.imglist[idx] if self.imgrec is None: with open(os.path.join(self.path_root, fname), 'rb') as fin: img = fin.read() return label, img else: s = self.imgrec.read() if s is None: raise StopIteration header, img = recordio.unpack(s) return header.label, img def next(self): batch_size = self.batch_size c, h, w = self.data_shape batch_data = nd.empty((batch_size, c, h, w)) batch_label = nd.empty(self.provide_label[0][1]) i = 0 try: while i < batch_size: label, s = self.next_sample() data = [imdecode(s)] if len(data[0].shape) == 0: logging.debug('Invalid image, skipping.') continue for aug in self.auglist: data = [ret for src in data for ret in aug(src)] for d in data: assert i < batch_size, 'Batch size must be multiples of augmenter output length' batch_data[i][:] = nd.transpose(d, axes=(2, 0, 1)) batch_label[i][:] = label i += 1 except StopIteration: if not i: raise StopIteration return io.DataBatch([batch_data], [batch_label], batch_size-1-i)
33.300439
112
0.57537
166ae17b118a69d45a11a46724665edcf584fc34
4,219
py
Python
tests/python/small/test_glm_ipums.py
pnijhara/h2o4gpu
6257112c134136471420b68241f57190a445b67d
[ "Apache-2.0" ]
458
2017-09-20T08:32:10.000Z
2022-02-28T18:40:57.000Z
tests/python/small/test_glm_ipums.py
Jun-NIBS/h2o4gpu
9885416deb3285f5d0f33023d6c07373ac4fc0b7
[ "Apache-2.0" ]
461
2017-09-20T11:39:04.000Z
2021-11-21T15:51:42.000Z
tests/python/small/test_glm_ipums.py
Jun-NIBS/h2o4gpu
9885416deb3285f5d0f33023d6c07373ac4fc0b7
[ "Apache-2.0" ]
114
2017-09-20T12:08:07.000Z
2021-11-29T14:15:40.000Z
# -*- encoding: utf-8 -*- """ GLM solver tests using Kaggle datasets. :copyright: 2017-2018 H2O.ai, Inc. :license: Apache License Version 2.0 (see LICENSE for details) """ import time import sys import os import numpy as np import pandas as pd import logging print(sys.path) from h2o4gpu.util.testing_utils import find_file, run_glm logging.basicConfig(level=logging.DEBUG) def fun(nGPUs=1, nFolds=1, nLambdas=100, nAlphas=8, validFraction=0.2): name = str(sys._getframe().f_code.co_name) name = sys._getframe(1).f_code.co_name t = time.time() print("cwd: %s" % (os.getcwd())) sys.stdout.flush() print("Reading Data") # from numpy.random import randn # m=1000 # n=100 # A=randn(m,n) # x_true=(randn(n)/n)*float64(randn(n)<0.8) # b=A.dot(x_true)+0.5*randn(m) # Rscript ipums.R runs glmnet on ipums # df = pd.read_csv("./data/ipums_1k.csv") print(df.shape) X = np.array(df.iloc[:, :df.shape[1] - 1], dtype='float32', order='C') y = np.array(df.iloc[:, df.shape[1] - 1], dtype='float32', order='C') #X = df.iloc[:, :df.shape[1] - 1] #y = df.iloc[:, df.shape[1] - 1] t1 = time.time() # by default, tol=1E-2 for h2o4gpu and don't try to be strictly as accurate as h2o-3, so use tolernace that represents how well we expect to do with default tol for glm algo. rmse_train, rmse_test = run_glm(X, y, nGPUs=nGPUs, nlambda=nLambdas, nfolds=nFolds, nalpha=nAlphas, validFraction=validFraction, verbose=0, name=name, tolerance = 0.34) # check rmse print(rmse_train[0, 0]) print(rmse_train[0, 1]) print(rmse_train[0, 2]) print(rmse_test[0, 2]) sys.stdout.flush() if validFraction==0.0: assert rmse_train[0, 0] < 54000 assert rmse_train[0, 1] < 54000 assert rmse_train[0, 2] < 54000 assert rmse_test[0, 2] < 54000 else: if nLambdas>20: assert rmse_train[0, 0] < 50000 assert rmse_train[0, 1] < 50000 assert rmse_train[0, 2] < 50000 assert rmse_test[0, 2] < 50000 else: assert rmse_train[0, 0] < 59000 assert rmse_train[0, 1] < 59000 assert rmse_train[0, 2] < 59000 assert rmse_test[0, 2] < 59000 print('/n Total execution time:%d' % (time.time() - t1)) print("TEST PASSED") sys.stdout.flush() print("Time taken: {}".format(time.time() - t)) # endfunnel(pipes) print("DONE.") sys.stdout.flush() def test_glm_ipums_gpu_fold1_quick_0(): fun(nGPUs=1, nFolds=1, nLambdas=3, nAlphas=3, validFraction=0) def test_glm_ipums_gpu_fold1_0(): fun(nGPUs=1, nFolds=1, nLambdas=20, nAlphas=3, validFraction=0) def test_glm_ipums_gpu_fold5_0(): fun(nGPUs=1, nFolds=5, nLambdas=20, nAlphas=3, validFraction=0) def test_glm_ipums_gpu_fold1_quick(): fun(nGPUs=1, nFolds=1, nLambdas=5, nAlphas=3, validFraction=0.2) def test_glm_ipums_gpu_fold1(): fun(nGPUs=1, nFolds=1, nLambdas=20, nAlphas=3, validFraction=0.2) def test_glm_ipums_gpu_fold5(): fun(nGPUs=1, nFolds=5, nLambdas=20, nAlphas=3, validFraction=0.2) def test_glm_ipums_gpu2_fold1_quick(): fun(nGPUs=2, nFolds=1, nLambdas=3, nAlphas=3, validFraction=0.2) def test_glm_ipums_gpu2_fold1(): fun(nGPUs=2, nFolds=1, nLambdas=20, nAlphas=3, validFraction=0.2) def test_glm_ipums_gpu2_fold5(): fun(nGPUs=3, nFolds=5, nLambdas=20, nAlphas=3, validFraction=0.2) # def test_glm_ipums_cpu_fold1_quick(): fun(nGPUs=0, nFolds=1, nLambdas=3, nAlphas=3, validFraction=0.2) # # # def test_glm_ipums_cpu_fold1(): fun(nGPUs=0, nFolds=1, nLambdas=20, nAlphas=3, validFraction=0.2) # # # def test_glm_ipums_cpu_fold5(): fun(nGPUs=0, nFolds=5, nLambdas=20, nAlphas=3, validFraction=0.2) if __name__ == '__main__': test_glm_ipums_gpu_fold1_quick_0() test_glm_ipums_gpu_fold1_0() test_glm_ipums_gpu_fold5_0() test_glm_ipums_gpu_fold1_quick() test_glm_ipums_gpu_fold1() test_glm_ipums_gpu_fold5() test_glm_ipums_gpu2_fold1_quick() test_glm_ipums_gpu2_fold1() test_glm_ipums_gpu2_fold5() # test_glm_ipums_cpu_fold1_quick() # test_glm_ipums_cpu_fold1() # test_glm_ipums_cpu_fold5()
30.352518
178
0.666983
319c2468ccc4037debd01f5ab609db0f96c15c14
1,331
py
Python
tests/ens/test_get_registry.py
DanielVF/web3.py
c25be34450c5003d16a937e27c1d5a26187985f1
[ "MIT" ]
null
null
null
tests/ens/test_get_registry.py
DanielVF/web3.py
c25be34450c5003d16a937e27c1d5a26187985f1
[ "MIT" ]
null
null
null
tests/ens/test_get_registry.py
DanielVF/web3.py
c25be34450c5003d16a937e27c1d5a26187985f1
[ "MIT" ]
null
null
null
import pytest from unittest.mock import ( patch, ) from ens import ENS from web3 import Web3 def test_resolver_empty(ens): with patch.object(ens.ens, 'resolver', return_value=None): assert ens.resolver('') is None @pytest.mark.parametrize( 'address, expected_reverse', [ ( '0x1111111111111111111111111111111111111111', '1111111111111111111111111111111111111111.addr.reverse', ), ( '0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413', 'bb9bc244d798123fde783fcc1c72d3bb8c189413.addr.reverse', ), ], ) def test_reverse_domain(address, expected_reverse): assert ENS.reverse_domain(address) == expected_reverse @pytest.mark.parametrize( 'label, expected_hash', [ ('eth', '0x4f5b812789fc606be1b3b16908db13fc7a9adf7ca72641f84d75b47069d3d7f0'), ('ETH', '0x4f5b812789fc606be1b3b16908db13fc7a9adf7ca72641f84d75b47069d3d7f0'), ('a.b', ValueError), ], ) def test_labelhash(ens, label, expected_hash): if isinstance(expected_hash, type): with pytest.raises(expected_hash): ens.labelhash(label) else: labelhash = ens.labelhash(label) assert isinstance(labelhash, bytes) hash_hex = Web3.toHex(labelhash) assert hash_hex == expected_hash
26.62
86
0.677686
45d8db48d9a1a3869d35a01ee1289d4411ddc079
2,174
py
Python
py/g1/bases/g1/bases/datetimes.py
clchiou/garage
446ff34f86cdbd114b09b643da44988cf5d027a3
[ "MIT" ]
3
2016-01-04T06:28:52.000Z
2020-09-20T13:18:40.000Z
py/g1/bases/g1/bases/datetimes.py
clchiou/garage
446ff34f86cdbd114b09b643da44988cf5d027a3
[ "MIT" ]
null
null
null
py/g1/bases/g1/bases/datetimes.py
clchiou/garage
446ff34f86cdbd114b09b643da44988cf5d027a3
[ "MIT" ]
null
null
null
"""Extension of standard library's datetime. A common pitfall of using datetime to store a timestamps is not setting timezone to UTC, which is then default to the local timezone. This produces wrong results when converting datetime-represented timestamp to/from a number-represented timestamp. Specifically, when the local timezone is not UTC, ``datetime.fromtimestamp(0)`` does not return 1970-01-01, and ``datetime(1970, 1, 1).timestamp()`` does not return 0. All timestamp helpers of this module will set timezone to UTC. """ __all__ = [ 'UNIX_EPOCH', 'fromisoformat', 'make_timestamp', 'timestamp_date', 'utcfromtimestamp', 'utcnow', ] import datetime def fromisoformat(string): """Parse a timestamp with datetime.fromisoformat.""" timestamp = datetime.datetime.fromisoformat(string) if timestamp.tzinfo is None: return timestamp.replace(tzinfo=datetime.timezone.utc) else: return timestamp.astimezone(datetime.timezone.utc) def make_timestamp( year, month, day, hour=0, minute=0, second=0, microsecond=0 ): """Make a datetime-represented timestamp.""" return datetime.datetime( year, month, day, hour, minute, second, microsecond, datetime.timezone.utc, ) def timestamp_date(timestamp): """Keep only the date part of a datetime-represented timestamp.""" return datetime.datetime( year=timestamp.year, month=timestamp.month, day=timestamp.day, tzinfo=datetime.timezone.utc, ) def utcfromtimestamp(timestamp): """Create a ``datetime`` object from timestamp. Unlike stdlib's ``utcfromtimestamp``, this also sets ``tzinfo`` to UTC; without this, ``timestamp()`` will return incorrect number. """ return datetime.datetime.fromtimestamp(timestamp, datetime.timezone.utc) def utcnow(): """Return a ``datetime`` object of now. Unlike stdlib's ``utcnow``, this also sets ``tzinfo`` to UTC; without this, ``timestamp()`` will return incorrect number. """ return datetime.datetime.now(datetime.timezone.utc) UNIX_EPOCH = utcfromtimestamp(0)
27.871795
76
0.688132
286dc54d6aac3a474ccde85c06db526d22ae222b
1,061
py
Python
koans/about_triangle_project.py
shibamirai/python_koans
c1eba327dbe9534042e510dfce4e0c49c853255e
[ "MIT" ]
null
null
null
koans/about_triangle_project.py
shibamirai/python_koans
c1eba327dbe9534042e510dfce4e0c49c853255e
[ "MIT" ]
null
null
null
koans/about_triangle_project.py
shibamirai/python_koans
c1eba327dbe9534042e510dfce4e0c49c853255e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from runner.koan import * # この問題は、triangle.py の triangle 関数を修正してください # You need to write the triangle method in the file 'triangle.py' from .triangle import * class AboutTriangleProject(Koan): "三角形プロジェクト" def test_equilateral_triangles_have_equal_sides(self): "正三角形は、長さの等しい辺を持ちます" self.assertEqual('equilateral', triangle(2, 2, 2)) self.assertEqual('equilateral', triangle(10, 10, 10)) def test_isosceles_triangles_have_exactly_two_sides_equal(self): "二等辺三角形は、長さが等しい辺を2つ持ちます" self.assertEqual('isosceles', triangle(3, 4, 4)) self.assertEqual('isosceles', triangle(4, 3, 4)) self.assertEqual('isosceles', triangle(4, 4, 3)) self.assertEqual('isosceles', triangle(10, 10, 2)) def test_scalene_triangles_have_no_equal_sides(self): "不等辺三角形は、すべての辺の長さが異なります" self.assertEqual('scalene', triangle(3, 4, 5)) self.assertEqual('scalene', triangle(10, 11, 12)) self.assertEqual('scalene', triangle(5, 4, 2))
35.366667
68
0.683318
667ee1028ad4f21a2d52a2c78280cd9fba1ce378
5,561
py
Python
tests/cephfs/cephfs_basic_tests.py
anrao19/cephci
0ec20acc108750f44a66dcf1c512922a91570f3e
[ "MIT" ]
null
null
null
tests/cephfs/cephfs_basic_tests.py
anrao19/cephci
0ec20acc108750f44a66dcf1c512922a91570f3e
[ "MIT" ]
null
null
null
tests/cephfs/cephfs_basic_tests.py
anrao19/cephci
0ec20acc108750f44a66dcf1c512922a91570f3e
[ "MIT" ]
null
null
null
import logging import random import string import traceback from ceph.ceph import CommandFailed from tests.cephfs.cephfs_utilsV1 import FsUtils logger = logging.getLogger(__name__) log = logger def run(ceph_cluster, **kw): try: fs_util = FsUtils(ceph_cluster) config = kw.get("config") build = config.get("build", config.get("rhbuild")) clients = ceph_cluster.get_ceph_objects("client") fs_util.prepare_clients(clients, build) fs_util.auth_list(clients) mounting_dir = "".join( random.choice(string.ascii_lowercase + string.digits) for _ in list(range(10)) ) fuse_mounting_dir = f"/mnt/cephfs_fuse{mounting_dir}/" fs_util.fuse_mount(clients, fuse_mounting_dir) mount_test_case(clients, fuse_mounting_dir) kernel_mounting_dir = f"/mnt/cephfs_kernel{mounting_dir}/" mon_node_ips = fs_util.get_mon_node_ips() fs_util.kernel_mount(clients, kernel_mounting_dir, ",".join(mon_node_ips)) mount_test_case(clients, kernel_mounting_dir) log.info("Cleaning up!-----") rc = fs_util.client_clean_up( [], clients, kernel_mounting_dir, "umount", ) if rc != 0: raise CommandFailed("fuse clients cleanup failed") log.info("Fuse clients cleaned up successfully") rc = fs_util.client_clean_up( clients, [], fuse_mounting_dir, "umount", ) if rc != 0: raise CommandFailed("kernel clients cleanup failed") log.info("kernel clients cleaned up successfully") return 0 except Exception as e: log.info(e) log.info(traceback.format_exc()) return 1 def mount_test_case(clients, mounting_dir): try: tc1 = "11293" tc2 = "11296" tc3 = "11297" tc4 = "11295" dir1 = "".join( random.choice(string.ascii_lowercase + string.digits) for _ in range(10) ) dir2 = "".join( random.choice(string.ascii_lowercase + string.digits) for _ in range(10) ) dir3 = "".join( random.choice(string.ascii_lowercase + string.digits) for _ in range(10) ) results = [] return_counts = [] log.info("Create files and directories of 1000 depth and 1000 breadth") for client in clients: client.exec_command( cmd=f"sudo mkdir -p {mounting_dir}{dir1} {mounting_dir}{dir2} {mounting_dir}{dir3}" ) log.info(f"Execution of testcase {tc1} started") out, rc = client.exec_command( sudo=True, cmd=f"python3 /home/cephuser/smallfile/smallfile_cli.py --operation create --threads 10 --file-size 4 " f"--files 1000 --files-per-dir 10 --dirs-per-dir 2 --top " f"{mounting_dir}{dir1}", long_running=True, ) log.info(f"Execution of testcase {tc1} ended") results.append(f"TC {tc1} passed") log.info(f"Execution of testcase {tc2} started") client.exec_command( cmd=f"sudo cp -r {mounting_dir}{dir1}/* {mounting_dir}{dir2}/" ) client.exec_command( cmd=f"diff -qr {mounting_dir}{dir1} {mounting_dir}{dir2}/" ) log.info(f"Execution of testcase {tc2} ended") results.append(f"TC {tc2} passed") log.info(f"Execution of testcase {tc3} started") client.exec_command( cmd=f"sudo mv -t {mounting_dir}{dir1}/* {mounting_dir}{dir2}/" ) log.info(f"Execution of testcase {tc3} ended") results.append(f"TC {tc3} passed") log.info(f"Execution of testcase {tc4} started") for client in clients: if client.pkg_type != "deb": client.exec_command( cmd=f"sudo dd if=/dev/zero of={mounting_dir}{client.node.hostname}.txt bs=100M " "count=5" ) out1, rc1 = client.exec_command( cmd=f"sudo ls -c -ltd -- {mounting_dir}{client.node.hostname}.*" ) client.exec_command( cmd=f"sudo dd if=/dev/zero of={mounting_dir}{client.node.hostname}.txt bs=200M " "count=5" ) out2, rc2 = client.exec_command( cmd=f"sudo ls -c -ltd -- {mounting_dir}{client.node.hostname}.*" ) a = out1.read().decode() b = out2.read().decode() if a != b: return_counts.append(out1.channel.recv_exit_status()) return_counts.append(out2.channel.recv_exit_status()) else: raise CommandFailed("Metadata info command failed") break log.info(f"Execution of testcase {tc4} ended") log.info(return_counts) rc_set = set(return_counts) if len(rc_set) == 1: results.append(f"TC {tc4} passed") log.info("Testcase Results:") for res in results: log.info(res) break except CommandFailed as e: log.info(e) log.info(traceback.format_exc())
37.073333
119
0.539112
7730d329469516456bde3b089f06bd36ccc0d19f
66,320
py
Python
src/oic/oic/__init__.py
Swapnilr1/pyoidc
2feb099f4f4e26047888437aea1226237d05ebba
[ "Apache-2.0" ]
null
null
null
src/oic/oic/__init__.py
Swapnilr1/pyoidc
2feb099f4f4e26047888437aea1226237d05ebba
[ "Apache-2.0" ]
null
null
null
src/oic/oic/__init__.py
Swapnilr1/pyoidc
2feb099f4f4e26047888437aea1226237d05ebba
[ "Apache-2.0" ]
null
null
null
import hashlib import logging import os from oic.utils.http_util import Response try: from json import JSONDecodeError except ImportError: # Only works for >= 3.5 _decode_err = ValueError else: _decode_err = JSONDecodeError import six from future.backports.urllib.parse import urlparse from future.moves.urllib.parse import parse_qs from jwkest.jwe import JWE from jwkest import jws, as_bytes from jwkest import jwe from requests import ConnectionError from oic import oauth2, OIDCONF_PATTERN from oic import rndstr from oic.exception import AuthzError from oic.exception import AuthnToOld from oic.exception import ParameterError from oic.exception import SubMismatch from oic.oauth2 import HTTP_ARGS from oic.oauth2 import authz_error from oic.oauth2.consumer import ConfigurationError from oic.oauth2.exception import OtherError from oic.oauth2.exception import ParseError from oic.oauth2.exception import MissingRequiredAttribute from oic.oauth2.message import ErrorResponse from oic.oauth2.message import Message from oic.oauth2.util import get_or_post from oic.oic.message import ClaimsRequest from oic.oic.message import IdToken from oic.oic.message import JasonWebToken from oic.oic.message import SCOPE2CLAIMS from oic.oic.message import RegistrationResponse from oic.oic.message import AuthorizationResponse from oic.oic.message import AccessTokenResponse from oic.oic.message import Claims from oic.oic.message import AccessTokenRequest from oic.oic.message import RefreshAccessTokenRequest from oic.oic.message import UserInfoRequest from oic.oic.message import AuthorizationRequest from oic.oic.message import OpenIDRequest from oic.oic.message import RegistrationRequest from oic.oic.message import RefreshSessionRequest from oic.oic.message import CheckSessionRequest from oic.oic.message import CheckIDRequest from oic.oic.message import EndSessionRequest from oic.oic.message import OpenIDSchema from oic.oic.message import ProviderConfigurationResponse from oic.oic.message import TokenErrorResponse from oic.oic.message import ClientRegistrationErrorResponse from oic.oic.message import UserInfoErrorResponse from oic.oic.message import AuthorizationErrorResponse from oic.exception import AccessDenied from oic.exception import CommunicationError from oic.exception import IssuerMismatch from oic.exception import MissingParameter from oic.exception import PyoidcError from oic.exception import RegistrationError from oic.exception import RequestError from oic.utils import time_util from oic.utils.keyio import KeyJar from oic.utils.sanitize import sanitize from oic.utils.webfinger import OIC_ISSUER from oic.utils.webfinger import WebFinger __author__ = 'rohe0002' logger = logging.getLogger(__name__) ENDPOINTS = ["authorization_endpoint", "token_endpoint", "userinfo_endpoint", "refresh_session_endpoint", "end_session_endpoint", "registration_endpoint", "check_id_endpoint"] RESPONSE2ERROR = { "AuthorizationResponse": [AuthorizationErrorResponse, TokenErrorResponse], "AccessTokenResponse": [TokenErrorResponse], "IdToken": [ErrorResponse], "RegistrationResponse": [ClientRegistrationErrorResponse], "OpenIDSchema": [UserInfoErrorResponse] } REQUEST2ENDPOINT = { "AuthorizationRequest": "authorization_endpoint", "OpenIDRequest": "authorization_endpoint", "AccessTokenRequest": "token_endpoint", "RefreshAccessTokenRequest": "token_endpoint", "UserInfoRequest": "userinfo_endpoint", "CheckSessionRequest": "check_session_endpoint", "CheckIDRequest": "check_id_endpoint", "EndSessionRequest": "end_session_endpoint", "RefreshSessionRequest": "refresh_session_endpoint", "RegistrationRequest": "registration_endpoint", "RotateSecret": "registration_endpoint", # --- "ResourceRequest": "resource_endpoint", 'TokenIntrospectionRequest': 'introspection_endpoint', 'TokenRevocationRequest': 'revocation_endpoint', "ROPCAccessTokenRequest": "token_endpoint", } # ----------------------------------------------------------------------------- JWT_BEARER = "urn:ietf:params:oauth:client-assertion-type:jwt-bearer" SAML2_BEARER_GRANT_TYPE = "urn:ietf:params:oauth:grant-type:saml2-bearer" # This should probably be part of the configuration MAX_AUTHENTICATION_AGE = 86400 DEF_SIGN_ALG = {"id_token": "RS256", "openid_request_object": "RS256", "client_secret_jwt": "HS256", "private_key_jwt": "RS256"} # ----------------------------------------------------------------------------- ACR_LISTS = [ ["0", "1", "2", "3", "4"], ] def verify_acr_level(req, level): if req is None: return level elif "values" in req: for _r in req["values"]: for alist in ACR_LISTS: try: if alist.index(_r) <= alist.index(level): return level except ValueError: pass else: # Required or Optional return level raise AccessDenied("", req) def deser_id_token(inst, txt=""): if not txt: return None else: return IdToken().from_jwt(txt, keyjar=inst.keyjar) # ----------------------------------------------------------------------------- def make_openid_request(arq, keys=None, userinfo_claims=None, idtoken_claims=None, request_object_signing_alg=None, **kwargs): """ Construct the specification of what I want returned. The request will be signed :param arq: The Authorization request :param keys: Keys to use for signing/encrypting :param userinfo_claims: UserInfo claims :param idtoken_claims: IdToken claims :param request_object_signing_alg: Which signing algorithm to use :return: JWT encoded OpenID request """ oir_args = {} for prop in OpenIDRequest.c_param.keys(): try: oir_args[prop] = arq[prop] except KeyError: pass for attr in ["scope", "response_type"]: if attr in oir_args: oir_args[attr] = " ".join(oir_args[attr]) c_args = {} if userinfo_claims is not None: # UserInfoClaims c_args["userinfo"] = Claims(**userinfo_claims) if idtoken_claims is not None: # IdTokenClaims c_args["id_token"] = Claims(**idtoken_claims) if c_args: oir_args["claims"] = ClaimsRequest(**c_args) oir = OpenIDRequest(**oir_args) return oir.to_jwt(key=keys, algorithm=request_object_signing_alg) class Token(oauth2.Token): pass class Grant(oauth2.Grant): _authz_resp = AuthorizationResponse _acc_resp = AccessTokenResponse _token_class = Token def add_token(self, resp): tok = self._token_class(resp) if tok.access_token: self.tokens.append(tok) else: _tmp = getattr(tok, "id_token", None) if _tmp: self.tokens.append(tok) PREFERENCE2PROVIDER = { # "require_signed_request_object": "request_object_algs_supported", "request_object_signing_alg": "request_object_signing_alg_values_supported", "request_object_encryption_alg": "request_object_encryption_alg_values_supported", "request_object_encryption_enc": "request_object_encryption_enc_values_supported", "userinfo_signed_response_alg": "userinfo_signing_alg_values_supported", "userinfo_encrypted_response_alg": "userinfo_encryption_alg_values_supported", "userinfo_encrypted_response_enc": "userinfo_encryption_enc_values_supported", "id_token_signed_response_alg": "id_token_signing_alg_values_supported", "id_token_encrypted_response_alg": "id_token_encryption_alg_values_supported", "id_token_encrypted_response_enc": "id_token_encryption_enc_values_supported", "default_acr_values": "acr_values_supported", "subject_type": "subject_types_supported", "token_endpoint_auth_method": "token_endpoint_auth_methods_supported", "token_endpoint_auth_signing_alg": "token_endpoint_auth_signing_alg_values_supported", "response_types": "response_types_supported", 'grant_types': 'grant_types_supported' } PROVIDER2PREFERENCE = dict([(v, k) for k, v in PREFERENCE2PROVIDER.items()]) PROVIDER_DEFAULT = { "token_endpoint_auth_method": "client_secret_basic", "id_token_signed_response_alg": "RS256", } PARAMMAP = { "sign": "%s_signed_response_alg", "alg": "%s_encrypted_response_alg", "enc": "%s_encrypted_response_enc", } def claims_match(value, claimspec): """ Implements matching according to section 5.5.1 of http://openid.net/specs/openid-connect-core-1_0.html The lack of value is not checked here. Also the text doesn't prohibit having both 'value' and 'values'. :param value: single value or list of values :param claimspec: None or dictionary with 'essential', 'value' or 'values' as key :return: Boolean """ if claimspec is None: # match anything return True matched = False for key, val in claimspec.items(): if key == "value": if value == val: matched = True elif key == "values": if value in val: matched = True elif key == 'essential': # Whether it's essential or not doesn't change anything here continue if matched: break if matched is False: if list(claimspec.keys()) == ['essential']: return True return matched class Client(oauth2.Client): _endpoints = ENDPOINTS def __init__(self, client_id=None, client_prefs=None, client_authn_method=None, keyjar=None, verify_ssl=True, config=None, client_cert=None, requests_dir='requests'): oauth2.Client.__init__(self, client_id, client_authn_method=client_authn_method, keyjar=keyjar, verify_ssl=verify_ssl, config=config, client_cert=client_cert) self.file_store = "./file/" self.file_uri = "http://localhost/" self.base_url = '' # OpenID connect specific endpoints for endpoint in ENDPOINTS: setattr(self, endpoint, "") self.id_token = None self.log = None self.request2endpoint = REQUEST2ENDPOINT self.response2error = RESPONSE2ERROR self.grant_class = Grant self.token_class = Token self.provider_info = Message() self.registration_response = {} self.client_prefs = client_prefs or {} self.behaviour = {} self.wf = WebFinger(OIC_ISSUER) self.wf.httpd = self self.allow = {} self.post_logout_redirect_uris = [] self.registration_expires = 0 self.registration_access_token = None self.id_token_max_age = 0 # Default key by kid for different key types # For instance {'sig': {"RSA":"abc"}} self.kid = {"sig": {}, "enc": {}} self.requests_dir = requests_dir def _get_id_token(self, **kwargs): try: return kwargs["id_token"] except KeyError: grant = self.get_grant(**kwargs) if grant: try: _scope = kwargs["scope"] except KeyError: _scope = None for token in grant.tokens: if token.scope and _scope: flag = True for item in _scope: if item not in token.scope: flag = False break if not flag: break if token.id_token: return token.id_token return None def request_object_encryption(self, msg, **kwargs): try: encalg = kwargs["request_object_encryption_alg"] except KeyError: try: encalg = self.behaviour["request_object_encryption_alg"] except KeyError: return msg try: encenc = kwargs["request_object_encryption_enc"] except KeyError: try: encenc = self.behaviour["request_object_encryption_enc"] except KeyError: raise MissingRequiredAttribute( "No request_object_encryption_enc specified") _jwe = JWE(msg, alg=encalg, enc=encenc) _kty = jwe.alg2keytype(encalg) try: _kid = kwargs["enc_kid"] except KeyError: _kid = "" if "target" not in kwargs: raise MissingRequiredAttribute("No target specified") if _kid: _keys = self.keyjar.get_encrypt_key(_kty, owner=kwargs["target"], kid=_kid) _jwe["kid"] = _kid else: _keys = self.keyjar.get_encrypt_key(_kty, owner=kwargs["target"]) return _jwe.encrypt(_keys) @staticmethod def construct_redirect_uri(**kwargs): _filedir = kwargs["local_dir"] if not os.path.isdir(_filedir): os.makedirs(_filedir) _webpath = kwargs["base_path"] _name = rndstr(10) + ".jwt" filename = os.path.join(_filedir, _name) while os.path.exists(filename): _name = rndstr(10) filename = os.path.join(_filedir, _name) _webname = "%s%s" % (_webpath, _name) return filename, _webname def filename_from_webname(self, webname): _filedir = self.requests_dir if not os.path.isdir(_filedir): os.makedirs(_filedir) assert webname.startswith(self.base_url) return webname[len(self.base_url):] def construct_AuthorizationRequest(self, request=AuthorizationRequest, request_args=None, extra_args=None, request_param=None, **kwargs): if request_args is not None: # if "claims" in request_args: # kwargs["claims"] = request_args["claims"] # del request_args["claims"] if "nonce" not in request_args: _rt = request_args["response_type"] if "token" in _rt or "id_token" in _rt: request_args["nonce"] = rndstr(32) elif "response_type" in kwargs: if "token" in kwargs["response_type"]: request_args = {"nonce": rndstr(32)} else: # Never wrong to specify a nonce request_args = {"nonce": rndstr(32)} if "request_method" in kwargs: if kwargs["request_method"] == "file": request_param = "request_uri" else: request_param = "request" del kwargs["request_method"] areq = oauth2.Client.construct_AuthorizationRequest(self, request, request_args, extra_args, **kwargs) if request_param: alg = None for arg in ["request_object_signing_alg", "algorithm"]: try: # Trumps everything alg = kwargs[arg] except KeyError: pass else: break if not alg: try: alg = self.behaviour["request_object_signing_alg"] except KeyError: alg = "none" kwargs["request_object_signing_alg"] = alg if "keys" not in kwargs and alg and alg != "none": _kty = jws.alg2keytype(alg) try: _kid = kwargs["sig_kid"] except KeyError: _kid = self.kid["sig"].get(_kty, None) kwargs["keys"] = self.keyjar.get_signing_key(_kty, kid=_kid) _req = make_openid_request(areq, **kwargs) # Should the request be encrypted _req = self.request_object_encryption(_req, **kwargs) if request_param == "request": areq["request"] = _req else: try: _webname = self.registration_response['request_uris'][0] filename = self.filename_from_webname(_webname) except KeyError: filename, _webname = self.construct_redirect_uri(**kwargs) fid = open(filename, mode="w") fid.write(_req) fid.close() areq["request_uri"] = _webname return areq def construct_AccessTokenRequest(self, request=AccessTokenRequest, request_args=None, extra_args=None, **kwargs): return oauth2.Client.construct_AccessTokenRequest(self, request, request_args, extra_args, **kwargs) def construct_RefreshAccessTokenRequest(self, request=RefreshAccessTokenRequest, request_args=None, extra_args=None, **kwargs): return oauth2.Client.construct_RefreshAccessTokenRequest(self, request, request_args, extra_args, **kwargs) def construct_UserInfoRequest(self, request=UserInfoRequest, request_args=None, extra_args=None, **kwargs): if request_args is None: request_args = {} if "access_token" in request_args: pass else: if "scope" not in kwargs: kwargs["scope"] = "openid" token = self.get_token(**kwargs) if token is None: raise MissingParameter("No valid token available") request_args["access_token"] = token.access_token return self.construct_request(request, request_args, extra_args) def construct_RegistrationRequest(self, request=RegistrationRequest, request_args=None, extra_args=None, **kwargs): return self.construct_request(request, request_args, extra_args) def construct_RefreshSessionRequest(self, request=RefreshSessionRequest, request_args=None, extra_args=None, **kwargs): return self.construct_request(request, request_args, extra_args) def _id_token_based(self, request, request_args=None, extra_args=None, **kwargs): if request_args is None: request_args = {} try: _prop = kwargs["prop"] except KeyError: _prop = "id_token" if _prop in request_args: pass else: id_token = self._get_id_token(**kwargs) if id_token is None: raise MissingParameter("No valid id token available") request_args[_prop] = id_token return self.construct_request(request, request_args, extra_args) def construct_CheckSessionRequest(self, request=CheckSessionRequest, request_args=None, extra_args=None, **kwargs): return self._id_token_based(request, request_args, extra_args, **kwargs) def construct_CheckIDRequest(self, request=CheckIDRequest, request_args=None, extra_args=None, **kwargs): # access_token is where the id_token will be placed return self._id_token_based(request, request_args, extra_args, prop="access_token", **kwargs) def construct_EndSessionRequest(self, request=EndSessionRequest, request_args=None, extra_args=None, **kwargs): if request_args is None: request_args = {} if "state" in kwargs: request_args["state"] = kwargs["state"] elif "state" in request_args: kwargs["state"] = request_args["state"] # if "redirect_url" not in request_args: # request_args["redirect_url"] = self.redirect_url return self._id_token_based(request, request_args, extra_args, **kwargs) # ------------------------------------------------------------------------ def authorization_request_info(self, request_args=None, extra_args=None, **kwargs): return self.request_info(AuthorizationRequest, "GET", request_args, extra_args, **kwargs) # ------------------------------------------------------------------------ def do_authorization_request(self, request=AuthorizationRequest, state="", body_type="", method="GET", request_args=None, extra_args=None, http_args=None, response_cls=AuthorizationResponse): algs = self.sign_enc_algs("id_token") if 'code_challenge' in self.config: _args, code_verifier = self.add_code_challenge() request_args.update(_args) return oauth2.Client.do_authorization_request(self, request, state, body_type, method, request_args, extra_args, http_args, response_cls, algs=algs) def do_access_token_request(self, request=AccessTokenRequest, scope="", state="", body_type="json", method="POST", request_args=None, extra_args=None, http_args=None, response_cls=AccessTokenResponse, authn_method="client_secret_basic", **kwargs): atr = oauth2.Client.do_access_token_request(self, request, scope, state, body_type, method, request_args, extra_args, http_args, response_cls, authn_method, **kwargs) try: _idt = atr['id_token'] except KeyError: pass else: try: if self.state2nonce[state] != _idt['nonce']: raise ParameterError('Someone has messed with "nonce"') except KeyError: pass return atr def do_access_token_refresh(self, request=RefreshAccessTokenRequest, state="", body_type="json", method="POST", request_args=None, extra_args=None, http_args=None, response_cls=AccessTokenResponse, **kwargs): return oauth2.Client.do_access_token_refresh(self, request, state, body_type, method, request_args, extra_args, http_args, response_cls, **kwargs) def do_registration_request(self, request=RegistrationRequest, scope="", state="", body_type="json", method="POST", request_args=None, extra_args=None, http_args=None, response_cls=None): url, body, ht_args, csi = self.request_info(request, method=method, request_args=request_args, extra_args=extra_args, scope=scope, state=state) if http_args is None: http_args = ht_args else: http_args.update(http_args) if response_cls is None: response_cls = RegistrationResponse response = self.request_and_return(url, response_cls, method, body, body_type, state=state, http_args=http_args) return response def do_check_session_request(self, request=CheckSessionRequest, scope="", state="", body_type="json", method="GET", request_args=None, extra_args=None, http_args=None, response_cls=IdToken): url, body, ht_args, csi = self.request_info(request, method=method, request_args=request_args, extra_args=extra_args, scope=scope, state=state) if http_args is None: http_args = ht_args else: http_args.update(http_args) return self.request_and_return(url, response_cls, method, body, body_type, state=state, http_args=http_args) def do_check_id_request(self, request=CheckIDRequest, scope="", state="", body_type="json", method="GET", request_args=None, extra_args=None, http_args=None, response_cls=IdToken): url, body, ht_args, csi = self.request_info(request, method=method, request_args=request_args, extra_args=extra_args, scope=scope, state=state) if http_args is None: http_args = ht_args else: http_args.update(http_args) return self.request_and_return(url, response_cls, method, body, body_type, state=state, http_args=http_args) def do_end_session_request(self, request=EndSessionRequest, scope="", state="", body_type="", method="GET", request_args=None, extra_args=None, http_args=None, response_cls=None): url, body, ht_args, csi = self.request_info(request, method=method, request_args=request_args, extra_args=extra_args, scope=scope, state=state) if http_args is None: http_args = ht_args else: http_args.update(http_args) return self.request_and_return(url, response_cls, method, body, body_type, state=state, http_args=http_args) def user_info_request(self, method="GET", state="", scope="", **kwargs): uir = UserInfoRequest() logger.debug("[user_info_request]: kwargs:%s" % (sanitize(kwargs),)) token = None if "token" in kwargs: if kwargs["token"]: uir["access_token"] = kwargs["token"] token = Token() token.token_type = "Bearer" token.access_token = kwargs["token"] kwargs["behavior"] = "use_authorization_header" else: # What to do ? Need a callback pass elif "access_token" in kwargs and kwargs["access_token"]: uir["access_token"] = kwargs["access_token"] del kwargs["access_token"] elif state: token = self.grant[state].get_token(scope) if token.is_valid(): uir["access_token"] = token.access_token if token.token_type and token.token_type.lower() == "bearer" \ and method == "GET": kwargs["behavior"] = "use_authorization_header" else: # raise oauth2.OldAccessToken if self.log: self.log.info("do access token refresh") try: self.do_access_token_refresh(token=token) token = self.grant[state].get_token(scope) uir["access_token"] = token.access_token except Exception: raise uri = self._endpoint("userinfo_endpoint", **kwargs) # If access token is a bearer token it might be sent in the # authorization header # 4 ways of sending the access_token: # - POST with token in authorization header # - POST with token in message body # - GET with token in authorization header # - GET with token as query parameter if "behavior" in kwargs: _behav = kwargs["behavior"] _token = uir["access_token"] _ttype = '' try: _ttype = kwargs["token_type"] except KeyError: if token: try: _ttype = token.token_type except AttributeError: raise MissingParameter("Unspecified token type") if 'as_query_parameter' == _behav: method = 'GET' elif token: # use_authorization_header, token_in_message_body if "use_authorization_header" in _behav: token_header = "{type} {token}".format( type=_ttype.capitalize(), token=_token) if "headers" in kwargs: kwargs["headers"].update( {"Authorization": token_header}) else: kwargs["headers"] = {"Authorization": token_header} if "token_in_message_body" not in _behav: # remove the token from the request del uir["access_token"] path, body, kwargs = get_or_post(uri, method, uir, **kwargs) h_args = dict([(k, v) for k, v in kwargs.items() if k in HTTP_ARGS]) return path, body, method, h_args def do_user_info_request(self, method="POST", state="", scope="openid", request="openid", **kwargs): kwargs["request"] = request path, body, method, h_args = self.user_info_request(method, state, scope, **kwargs) logger.debug("[do_user_info_request] PATH:%s BODY:%s H_ARGS: %s" % ( sanitize(path), sanitize(body), sanitize(h_args))) if self.events: self.events.store('Request', {'body': body}) self.events.store('request_url', path) self.events.store('request_http_args', h_args) try: resp = self.http_request(path, method, data=body, **h_args) except oauth2.exception.MissingRequiredAttribute: raise if resp.status_code == 200: if "application/json" in resp.headers["content-type"]: sformat = "json" else: assert "application/jwt" in resp.headers["content-type"] sformat = "jwt" elif resp.status_code == 500: raise PyoidcError("ERROR: Something went wrong: %s" % resp.text) elif 400 <= resp.status_code < 500: # the response text might be a OIDC message try: res = ErrorResponse().from_json(resp.text) except Exception: raise RequestError(resp.text) else: self.store_response(res, resp.text) return res else: raise PyoidcError("ERROR: Something went wrong [%s]: %s" % ( resp.status_code, resp.text)) try: _schema = kwargs["user_info_schema"] except KeyError: _schema = OpenIDSchema logger.debug("Reponse text: '%s'" % sanitize(resp.text)) _txt = resp.text if sformat == "json": res = _schema().from_json(txt=_txt) else: res = _schema().from_jwt(_txt, keyjar=self.keyjar, sender=self.provider_info["issuer"]) if 'error' in res: # Error response res = UserInfoErrorResponse(**res.to_dict()) if state: # Verify userinfo sub claim against what's returned in the ID Token idt = self.grant[state].get_id_token() if idt: if idt['sub'] != res['sub']: raise SubMismatch( 'Sub identifier not the same in userinfo and Id Token') self.store_response(res, _txt) return res def get_userinfo_claims(self, access_token, endpoint, method="POST", schema_class=OpenIDSchema, **kwargs): uir = UserInfoRequest(access_token=access_token) h_args = dict([(k, v) for k, v in kwargs.items() if k in HTTP_ARGS]) if "authn_method" in kwargs: http_args = self.init_authentication_method(**kwargs) else: # If nothing defined this is the default http_args = self.init_authentication_method(uir, "bearer_header", **kwargs) h_args.update(http_args) path, body, kwargs = get_or_post(endpoint, method, uir, **kwargs) try: resp = self.http_request(path, method, data=body, **h_args) except MissingRequiredAttribute: raise if resp.status_code == 200: assert "application/json" in resp.headers["content-type"] elif resp.status_code == 500: raise PyoidcError("ERROR: Something went wrong: %s" % resp.text) else: raise PyoidcError( "ERROR: Something went wrong [%s]: %s" % (resp.status_code, resp.text)) res = schema_class().from_json(txt=resp.text) self.store_response(res, resp.txt) return res def handle_provider_config(self, pcr, issuer, keys=True, endpoints=True): """ Deal with Provider Config Response :param pcr: The ProviderConfigResponse instance :param issuer: The one I thought should be the issuer of the config :param keys: Should I deal with keys :param endpoints: Should I deal with endpoints, that is store them as attributes in self. """ if "issuer" in pcr: _pcr_issuer = pcr["issuer"] if pcr["issuer"].endswith("/"): if issuer.endswith("/"): _issuer = issuer else: _issuer = issuer + "/" else: if issuer.endswith("/"): _issuer = issuer[:-1] else: _issuer = issuer try: self.allow["issuer_mismatch"] except KeyError: if _issuer != _pcr_issuer: raise IssuerMismatch("'%s' != '%s'" % (_issuer, _pcr_issuer), pcr) self.provider_info = pcr else: _pcr_issuer = issuer if endpoints: for key, val in pcr.items(): if key.endswith("_endpoint"): setattr(self, key, val) if keys: if self.keyjar is None: self.keyjar = KeyJar(verify_ssl=self.verify_ssl) self.keyjar.load_keys(pcr, _pcr_issuer) def provider_config(self, issuer, keys=True, endpoints=True, response_cls=ProviderConfigurationResponse, serv_pattern=OIDCONF_PATTERN): if issuer.endswith("/"): _issuer = issuer[:-1] else: _issuer = issuer url = serv_pattern % _issuer pcr = None r = self.http_request(url, allow_redirects=True) if r.status_code == 200: try: pcr = response_cls().from_json(r.text) except Exception: # FIXME: This should catch specific exception from `from_json()` _err_txt = "Faulty provider config response: {}".format(r.text) logger.error(sanitize(_err_txt)) raise ParseError(_err_txt) # elif r.status_code == 302 or r.status_code == 301: # while r.status_code == 302 or r.status_code == 301: # redirect_header = r.headers["location"] # if not urlparse(redirect_header).scheme: # # Relative URL was provided - construct new redirect # # using an issuer # _split = urlparse(issuer) # new_url = urlunparse((_split.scheme, _split.netloc, # as_unicode(redirect_header), # _split.params, # _split.query, _split.fragment)) # r = self.http_request(new_url) # if r.status_code == 200: # pcr = response_cls().from_json(r.text) # break # logger.debug("Provider info: %s" % sanitize(pcr)) if pcr is None: raise CommunicationError( "Trying '%s', status %s" % (url, r.status_code)) self.store_response(pcr, r.text) self.handle_provider_config(pcr, issuer, keys, endpoints) return pcr def unpack_aggregated_claims(self, userinfo): if userinfo["_claim_sources"]: for csrc, spec in userinfo["_claim_sources"].items(): if "JWT" in spec: aggregated_claims = Message().from_jwt( spec["JWT"].encode("utf-8"), keyjar=self.keyjar, sender=csrc) claims = [value for value, src in userinfo["_claim_names"].items() if src == csrc] if set(claims) != set(list(aggregated_claims.keys())): logger.warning( "Claims from claim source doesn't match what's in " "the userinfo") for key, vals in aggregated_claims.items(): userinfo[key] = vals return userinfo def fetch_distributed_claims(self, userinfo, callback=None): for csrc, spec in userinfo["_claim_sources"].items(): if "endpoint" in spec: if "access_token" in spec: _uinfo = self.do_user_info_request( method='GET', token=spec["access_token"], userinfo_endpoint=spec["endpoint"]) else: if callback: _uinfo = self.do_user_info_request( method='GET', token=callback(spec['endpoint']), userinfo_endpoint=spec["endpoint"]) else: _uinfo = self.do_user_info_request( method='GET', userinfo_endpoint=spec["endpoint"]) claims = [value for value, src in userinfo["_claim_names"].items() if src == csrc] if set(claims) != set(list(_uinfo.keys())): logger.warning( "Claims from claim source doesn't match what's in " "the userinfo") for key, vals in _uinfo.items(): userinfo[key] = vals return userinfo def verify_alg_support(self, alg, usage, other): """ Verifies that the algorithm to be used are supported by the other side. :param alg: The algorithm specification :param usage: In which context the 'alg' will be used. The following values are supported: - userinfo - id_token - request_object - token_endpoint_auth :param other: The identifier for the other side :return: True or False """ try: _pcr = self.provider_info supported = _pcr["%s_algs_supported" % usage] except KeyError: try: supported = getattr(self, "%s_algs_supported" % usage) except AttributeError: supported = None if supported is None: return True else: if alg in supported: return True else: return False def match_preferences(self, pcr=None, issuer=None): """ Match the clients preferences against what the provider can do. :param pcr: Provider configuration response if available :param issuer: The issuer identifier """ if not pcr: pcr = self.provider_info regreq = RegistrationRequest for _pref, _prov in PREFERENCE2PROVIDER.items(): try: vals = self.client_prefs[_pref] except KeyError: continue try: _pvals = pcr[_prov] except KeyError: try: self.behaviour[_pref] = PROVIDER_DEFAULT[_pref] except KeyError: # self.behaviour[_pref]= vals[0] if isinstance(pcr.c_param[_prov][0], list): self.behaviour[_pref] = [] else: self.behaviour[_pref] = None continue if isinstance(vals, six.string_types): if vals in _pvals: self.behaviour[_pref] = vals else: vtyp = regreq.c_param[_pref] if isinstance(vtyp[0], list): self.behaviour[_pref] = [] for val in vals: if val in _pvals: self.behaviour[_pref].append(val) else: for val in vals: if val in _pvals: self.behaviour[_pref] = val break if _pref not in self.behaviour: raise ConfigurationError( "OP couldn't match preference:%s" % _pref, pcr) for key, val in self.client_prefs.items(): if key in self.behaviour: continue try: vtyp = regreq.c_param[key] if isinstance(vtyp[0], list): pass elif isinstance(val, list) and not isinstance(val, six.string_types): val = val[0] except KeyError: pass if key not in PREFERENCE2PROVIDER: self.behaviour[key] = val def store_registration_info(self, reginfo): self.registration_response = reginfo if "token_endpoint_auth_method" not in self.registration_response: self.registration_response[ "token_endpoint_auth_method"] = "client_secret_basic" self.client_id = reginfo["client_id"] try: self.client_secret = reginfo["client_secret"] except KeyError: # Not required pass else: try: self.registration_expires = reginfo["client_secret_expires_at"] except KeyError: pass try: self.registration_access_token = reginfo[ "registration_access_token"] except KeyError: pass def handle_registration_info(self, response): err_msg = 'Got error response: {}' unk_msg = 'Unknown response: {}' if response.status_code in [200, 201]: resp = RegistrationResponse().deserialize(response.text, "json") # Some implementations sends back a 200 with an error message inside try: resp.verify() except oauth2.message.MissingRequiredAttribute as err: logger.error(err) raise RegistrationError(err) except Exception: resp = ErrorResponse().deserialize(response.text, "json") if resp.verify(): logger.error(err_msg.format(sanitize(resp.to_json()))) if self.events: self.events.store('protocol response', resp) raise RegistrationError(resp.to_dict()) else: # Something else logger.error(unk_msg.format(sanitize(response.text))) raise RegistrationError(response.text) else: # got a proper registration response self.store_response(resp, response.text) self.store_registration_info(resp) elif 400 <= response.status_code <= 499: try: resp = ErrorResponse().deserialize(response.text, "json") except _decode_err: logger.error(unk_msg.format(sanitize(response.text))) raise RegistrationError(response.text) if resp.verify(): logger.error(err_msg.format(sanitize(resp.to_json()))) if self.events: self.events.store('protocol response', resp) raise RegistrationError(resp.to_dict()) else: # Something else logger.error(unk_msg.format(sanitize(response.text))) raise RegistrationError(response.text) else: raise RegistrationError(response.text) return resp def registration_read(self, url="", registration_access_token=None): """ Read the client registration info from the given url :raises RegistrationError: If an error happend :return: RegistrationResponse """ if not url: url = self.registration_response["registration_client_uri"] if not registration_access_token: registration_access_token = self.registration_access_token headers = {"Authorization": "Bearer %s" % registration_access_token} rsp = self.http_request(url, "GET", headers=headers) return self.handle_registration_info(rsp) def generate_request_uris(self, request_dir): """ Need to generate a path that is unique for the OP combo :return: A list of uris """ m = hashlib.sha256() m.update(as_bytes(self.provider_info['issuer'])) m.update(as_bytes(self.base_url)) return '{}{}/{}'.format(self.base_url, request_dir, m.hexdigest()) def create_registration_request(self, **kwargs): """ Create a registration request :param kwargs: parameters to the registration request :return: """ req = RegistrationRequest() for prop in req.parameters(): try: req[prop] = kwargs[prop] except KeyError: try: req[prop] = self.behaviour[prop] except KeyError: pass if "post_logout_redirect_uris" not in req: try: req[ "post_logout_redirect_uris"] = \ self.post_logout_redirect_uris except AttributeError: pass if "redirect_uris" not in req: try: req["redirect_uris"] = self.redirect_uris except AttributeError: raise MissingRequiredAttribute("redirect_uris", req) try: if self.provider_info['require_request_uri_registration'] is True: req['request_uris'] = self.generate_request_uris( self.requests_dir) except KeyError: pass return req def register(self, url, **kwargs): """ Register the client at an OP :param url: The OPs registration endpoint :param kwargs: parameters to the registration request :return: """ req = self.create_registration_request(**kwargs) logger.debug("[registration_request]: kwargs:%s" % (sanitize(kwargs),)) if self.events: self.events.store('Protocol request', req) headers = {"content-type": "application/json"} rsp = self.http_request(url, "POST", data=req.to_json(), headers=headers) return self.handle_registration_info(rsp) def normalization(self, principal, idtype="mail"): if idtype == "mail": (local, domain) = principal.split("@") subject = "acct:%s" % principal elif idtype == "url": p = urlparse(principal) domain = p.netloc subject = principal else: domain = "" subject = principal return subject, domain def discover(self, principal): # subject, host = self.normalization(principal) return self.wf.discovery_query(principal) def sign_enc_algs(self, typ): resp = {} for key, val in PARAMMAP.items(): try: resp[key] = self.registration_response[val % typ] except (TypeError, KeyError): if key == "sign": resp[key] = DEF_SIGN_ALG["id_token"] return resp def _verify_id_token(self, id_token, nonce="", acr_values=None, auth_time=0, max_age=0): """ If the JWT alg Header Parameter uses a MAC based algorithm s uch as HS256, HS384, or HS512, the octets of the UTF-8 representation of the client_secret corresponding to the client_id contained in the aud (audience) Claim are used as the key to validate the signature. For MAC based algorithms, the behavior is unspecified if the aud is multi-valued or if an azp value is present that is different than the aud value. :param id_token: The ID Token tp check :param nonce: The nonce specified in the authorization request :param acr_values: Asked for acr values :param auth_time: An auth_time claim :param max_age: Max age of authentication """ if self.provider_info["issuer"] != id_token["iss"]: raise OtherError("issuer != iss") if self.client_id not in id_token["aud"]: raise OtherError("not intended for me") if len(id_token["aud"]) > 1: if "azp" not in id_token or id_token["azp"] != self.client_id: raise OtherError("not intended for me") _now = time_util.utc_time_sans_frac() if _now > id_token["exp"]: raise OtherError("Passed best before date") if self.id_token_max_age and _now > int(id_token["iat"]) + self.id_token_max_age: raise OtherError("I think this ID token is to old") if nonce and nonce != id_token['nonce']: raise OtherError("nonce mismatch") if acr_values and id_token['acr'] not in acr_values: raise OtherError("acr mismatch") if max_age and _now > int(id_token['auth_time'] + max_age): raise AuthnToOld("To old authentication") if auth_time: if not claims_match(id_token["auth_time"], {"auth_time": auth_time}): raise AuthnToOld("To old authentication") def verify_id_token(self, id_token, authn_req): kwa = {} try: kwa["nonce"] = authn_req["nonce"] except KeyError: pass for param in ["acr_values", "max_age"]: try: kwa[param] = authn_req[param] except KeyError: pass self._verify_id_token(id_token, **kwa) class Server(oauth2.Server): def __init__(self, keyjar=None, verify_ssl=True, client_cert=None): oauth2.Server.__init__(self, keyjar, verify_ssl, client_cert=client_cert) @staticmethod def _parse_urlencoded(url=None, query=None): if url: parts = urlparse(url) scheme, netloc, path, params, query, fragment = parts[:6] return parse_qs(query) def parse_token_request(self, request=AccessTokenRequest, body=None): return oauth2.Server.parse_token_request(self, request, body) def handle_request_uri(self, request_uri, verify=True, sender=''): """ :param request_uri: URL pointing to where the signed request should be fetched from. :param verify: Whether the signature on the request should be verified. Don't use anything but the default unless you REALLY know what you're doing :param sender: The issuer of the request JWT. :return: """ # Do a HTTP get logger.debug('Get request from request_uri: {}'.format(request_uri)) try: http_req = self.http_request(request_uri) except ConnectionError: logger.error('Connection Error') return authz_error("invalid_request_uri") if not http_req: logger.error('Nothing returned') return authz_error("invalid_request_uri") elif http_req.status_code >= 400: logger.error('HTTP error {}:{}'.format(http_req.status_code, http_req.text)) raise AuthzError('invalid_request') # http_req.text is a signed JWT try: logger.debug('request txt: {}'.format(http_req.text)) req = self.parse_jwt_request(txt=http_req.text, verify=verify, sender=sender) except Exception as err: logger.error( '{}:{} encountered while parsing fetched request'.format( err.__class__, err)) raise AuthzError("invalid_openid_request_object") logger.debug('Fetched request: {}'.format(req)) return req def parse_authorization_request(self, request=AuthorizationRequest, url=None, query=None, keys=None): if url: parts = urlparse(url) scheme, netloc, path, params, query, fragment = parts[:6] if isinstance(query, dict): sformat = "dict" else: sformat = 'urlencoded' _req = self._parse_request(request, query, sformat, verify=False) if self.events: self.events.store('Request', _req) _req_req = {} try: _request = _req['request'] except KeyError: try: _url = _req['request_uri'] except KeyError: pass else: _req_req = self.handle_request_uri(_url, verify=False, sender=_req['client_id']) else: if isinstance(_request, Message): _req_req = _request else: try: _req_req = self.parse_jwt_request(request, txt=_request, verify=False) except Exception as err: _req_req = self._parse_request(request, _request, 'urlencoded', verify=False) else: # remove JWT attributes for attr in JasonWebToken.c_param: try: del _req_req[attr] except KeyError: pass if isinstance(_req_req, Response): return _req_req if _req_req: if self.events: self.events.store('Signed Request', _req_req) for key, val in _req.items(): if key in ['request', 'request_uri']: continue if key not in _req_req: _req_req[key] = val _req = _req_req if self.events: self.events.store('Combined Request', _req) try: _req.verify(keyjar=self.keyjar) except Exception as err: if self.events: self.events.store('Exception', err) logger.error(err) raise return _req def parse_jwt_request(self, request=AuthorizationRequest, txt="", keys=None, verify=True, sender=''): return oauth2.Server.parse_jwt_request(self, request, txt, keys, verify, sender=sender) def parse_refresh_token_request(self, request=RefreshAccessTokenRequest, body=None): return oauth2.Server.parse_refresh_token_request(self, request, body) def parse_check_session_request(self, url=None, query=None): """ """ param = self._parse_urlencoded(url, query) assert "id_token" in param # ignore the rest return deser_id_token(self, param["id_token"][0]) def parse_check_id_request(self, url=None, query=None): """ """ param = self._parse_urlencoded(url, query) assert "access_token" in param # ignore the rest return deser_id_token(self, param["access_token"][0]) def _parse_request(self, request_cls, data, sformat, client_id=None, verify=True): if sformat == "json": request = request_cls().from_json(data) elif sformat == "jwt": request = request_cls().from_jwt(data, keyjar=self.keyjar, sender=client_id) elif sformat == "urlencoded": if '?' in data: parts = urlparse(data) scheme, netloc, path, params, query, fragment = parts[:6] else: query = data request = request_cls().from_urlencoded(query) elif sformat == 'dict': request = request_cls(**data) else: raise ParseError("Unknown package format: '{}'".format(sformat), request_cls) # get the verification keys if client_id: keys = self.keyjar.verify_keys(client_id) sender = client_id else: try: keys = self.keyjar.verify_keys(request["client_id"]) sender = request['client_id'] except KeyError: keys = None sender = '' logger.debug("Found {} verify keys".format(len(keys or ''))) if verify: request.verify(key=keys, keyjar=self.keyjar, sender=sender) return request def parse_open_id_request(self, data, sformat="urlencoded", client_id=None): return self._parse_request(OpenIDRequest, data, sformat, client_id) def parse_user_info_request(self, data, sformat="urlencoded"): return self._parse_request(UserInfoRequest, data, sformat) def parse_userinfo_request(self, data, sformat="urlencoded"): return self._parse_request(UserInfoRequest, data, sformat) def parse_refresh_session_request(self, url=None, query=None): if url: parts = urlparse(url) scheme, netloc, path, params, query, fragment = parts[:6] return RefreshSessionRequest().from_urlencoded(query) def parse_registration_request(self, data, sformat="urlencoded"): return self._parse_request(RegistrationRequest, data, sformat) def parse_end_session_request(self, query, sformat="urlencoded"): esr = self._parse_request(EndSessionRequest, query, sformat) # if there is a id_token in there it is as a string esr["id_token"] = deser_id_token(self, esr["id_token"]) return esr @staticmethod def update_claims(session, where, about, old_claims=None): """ :param session: :param where: Which request :param about: userinfo or id_token :param old_claims: :return: claims or None """ if old_claims is None: old_claims = {} req = None if where == "oidreq": try: req = OpenIDRequest().deserialize(session[where], "json") except KeyError: pass else: # where == "authzreq" try: req = AuthorizationRequest().deserialize(session[where], "json") except KeyError: pass if req: logger.debug("%s: %s" % (where, sanitize(req.to_dict()))) try: _claims = req["claims"][about] if _claims: # update with old claims, do not overwrite for key, val in old_claims.items(): if key not in _claims: _claims[key] = val return _claims except KeyError: pass return old_claims def id_token_claims(self, session): """ Pick the IdToken claims from the request :param session: Session information :return: The IdToken claims """ itc = {} itc = self.update_claims(session, "authzreq", "id_token", itc) itc = self.update_claims(session, "oidreq", "id_token", itc) return itc def make_id_token(self, session, loa="2", issuer="", alg="RS256", code=None, access_token=None, user_info=None, auth_time=0, exp=None, extra_claims=None): """ :param session: Session information :param loa: Level of Assurance/Authentication context :param issuer: My identifier :param alg: Which signing algorithm to use for the IdToken :param code: Access grant :param access_token: Access Token :param user_info: If user info are to be part of the IdToken :return: IDToken instance """ # defaults if exp is None: inawhile = {"days": 1} else: inawhile = exp # Handle the idtoken_claims extra = {} itc = self.id_token_claims(session) if itc.keys(): try: inawhile = {"seconds": itc["max_age"]} except KeyError: pass for key, val in itc.items(): if key == "auth_time": extra["auth_time"] = auth_time elif key == "acr": # ["2","http://id.incommon.org/assurance/bronze"] extra["acr"] = verify_acr_level(val, loa) else: if auth_time: extra["auth_time"] = auth_time if loa: extra["acr"] = loa if not user_info: _args = {} else: try: _args = user_info.to_dict() except AttributeError: _args = user_info # Make sure that there are no name clashes for key in ["iss", "sub", "aud", "exp", "acr", "nonce", "auth_time"]: try: del _args[key] except KeyError: pass halg = "HS%s" % alg[-3:] if extra_claims is not None: _args.update(extra_claims) if code: _args["c_hash"] = jws.left_hash(code.encode("utf-8"), halg) if access_token: _args["at_hash"] = jws.left_hash(access_token.encode("utf-8"), halg) idt = IdToken(iss=issuer, sub=session["sub"], aud=session["client_id"], exp=time_util.epoch_in_a_while(**inawhile), acr=loa, iat=time_util.utc_time_sans_frac(), **_args) for key, val in extra.items(): idt[key] = val if "nonce" in session: idt["nonce"] = session["nonce"] return idt def scope2claims(scopes): res = {} for scope in scopes: try: claims = dict([(name, None) for name in SCOPE2CLAIMS[scope]]) res.update(claims) except KeyError: continue return res
36.844444
89
0.540048
49c2d3c26e92401f8d5782ff1dcb394c5547403f
26,140
py
Python
src/sage/monoids/string_monoid.py
UCD4IDS/sage
43474c96d533fd396fe29fe0782d44dc7f5164f7
[ "BSL-1.0" ]
1,742
2015-01-04T07:06:13.000Z
2022-03-30T11:32:52.000Z
src/sage/monoids/string_monoid.py
UCD4IDS/sage
43474c96d533fd396fe29fe0782d44dc7f5164f7
[ "BSL-1.0" ]
66
2015-03-19T19:17:24.000Z
2022-03-16T11:59:30.000Z
src/sage/monoids/string_monoid.py
UCD4IDS/sage
43474c96d533fd396fe29fe0782d44dc7f5164f7
[ "BSL-1.0" ]
495
2015-01-10T10:23:18.000Z
2022-03-24T22:06:11.000Z
r""" Free String Monoids AUTHORS: - David Kohel <kohel@maths.usyd.edu.au>, 2007-01 Sage supports a wide range of specific free string monoids. """ #***************************************************************************** # Copyright (C) 2007 David Kohel <kohel@maths.usyd.edu.au> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from .free_monoid import FreeMonoid from .string_monoid_element import StringMonoidElement from .string_ops import strip_encoding class StringMonoid_class(FreeMonoid): r""" A free string monoid on `n` generators. """ def __init__(self, n, alphabet=()): r""" Create free binary string monoid on `n` generators. INPUT: - ``n`` -- Integer - ``alphabet`` -- String or tuple whose characters or elements denote the generators. EXAMPLES:: sage: S = BinaryStrings(); S Free binary string monoid sage: x = S.gens() sage: x[0]*x[1]**5 * (x[0]*x[1]) 01111101 """ # Names must be alphabetical -- omitted since printing is # defined locally. # FreeMonoid.__init__(self, n, names = alphabet) FreeMonoid.__init__(self, n) self._alphabet = alphabet def __contains__(self, x): return isinstance(x, StringMonoidElement) and x.parent() == self def alphabet(self): return tuple(self._alphabet) def one(self): r""" Return the identity element of ``self``. EXAMPLES:: sage: b = BinaryStrings(); b Free binary string monoid sage: b.one() * b('1011') 1011 sage: b.one() * b('110') == b('110') True sage: b('10101') * b.one() == b('101011') False """ return StringMonoidElement(self, '') def gen(self, i=0): r""" The `i`-th generator of the monoid. INPUT: - ``i`` -- integer (default: 0) EXAMPLES:: sage: S = BinaryStrings() sage: S.gen(0) 0 sage: S.gen(1) 1 sage: S.gen(2) Traceback (most recent call last): ... IndexError: Argument i (= 2) must be between 0 and 1. sage: S = HexadecimalStrings() sage: S.gen(0) 0 sage: S.gen(12) c sage: S.gen(16) Traceback (most recent call last): ... IndexError: Argument i (= 16) must be between 0 and 15. """ n = self.ngens() if i < 0 or not i < n: raise IndexError( "Argument i (= %s) must be between 0 and %s." % (i, n-1)) return StringMonoidElement(self, [int(i)]) #***************************************************************************** # Specific global string monoids #***************************************************************************** class BinaryStringMonoid(StringMonoid_class): r""" The free binary string monoid on generators `\{ 0, 1 \}`. """ def __init__(self): r""" Create free binary string monoid on generators `\{ 0, 1 \}`. EXAMPLES:: sage: S = BinaryStrings(); S Free binary string monoid sage: x = S.gens() sage: x[0]*x[1]**5 * (x[0]*x[1]) 01111101 sage: u = S('') sage: u sage: x = S('0') sage: x 0 sage: y = S('1') sage: y 1 sage: z = S('01110') sage: z 01110 sage: x*y^3*x == z True sage: u*x == x*u True TESTS:: sage: BinaryStrings() == BinaryStrings() True sage: BinaryStrings() is BinaryStrings() True """ StringMonoid_class.__init__(self, 2, ['0', '1']) def __repr__(self): return "Free binary string monoid" def __call__(self, x, check=True): r""" Return ``x`` coerced into this free monoid. One can create a free binary string monoid element from a Python string of 0's and 1's or list of integers. NOTE: Due to the ambiguity of the second generator '1' with the identity element '' of the monoid, the syntax S(1) is not permissible. EXAMPLES:: sage: S = BinaryStrings() sage: S('101') 101 sage: S.gen(0) 0 sage: S.gen(1) 1 """ ## There should really some careful type checking here... if isinstance(x, StringMonoidElement) and x.parent() == self: return x elif isinstance(x, list): return StringMonoidElement(self, x, check) elif isinstance(x, str): return StringMonoidElement(self, x, check) else: raise TypeError("Argument x (= %s) is of the wrong type." % x) def encoding(self, S, padic=False): r""" The binary encoding of the string ``S``, as a binary string element. The default is to keep the standard ASCII byte encoding, e.g. :: A = 65 -> 01000001 B = 66 -> 01000010 . . . Z = 90 -> 01001110 rather than a 2-adic representation 65 -> 10000010. Set ``padic=True`` to reverse the bit string. EXAMPLES:: sage: S = BinaryStrings() sage: S.encoding('A') 01000001 sage: S.encoding('A',padic=True) 10000010 sage: S.encoding(' ',padic=True) 00000100 """ bit_string = [] for i in range(len(S)): n = ord(S[i]) bits = [] for i in range(8): bits.append(n%2) n = n >> 1 if not padic: bits.reverse() bit_string.extend(bits) return self(bit_string) # def ngens(self): # r""" # Return the number of generators of this free binary string monoid. # There are only 2 elements in the binary number system. Hence, this # is the number of generators. # EXAMPLES:: # sage: S = BinaryStrings() # sage: S.ngens() # 2 # """ # return 2 BinaryStrings = BinaryStringMonoid class OctalStringMonoid(StringMonoid_class): r""" The free octal string monoid on generators `\{ 0, 1, \dots, 7 \}`. """ def __init__(self): r""" Create free octal string monoid on generators `\{ 0, 1, \dots, 7 \}`. EXAMPLES:: sage: S = OctalStrings(); S Free octal string monoid sage: x = S.gens() sage: (x[0]*x[7])**3 * (x[0]*x[1]*x[6]*x[5])**2 07070701650165 sage: S([ i for i in range(8) ]) 01234567 sage: x[0] 0 sage: x[7] 7 sage: x[0] * x[3]^3 * x[5]^4 * x[6] 033355556 """ StringMonoid_class.__init__(self, 8, [ str(i) for i in range(8) ]) def __repr__(self): return "Free octal string monoid" def __call__(self, x, check=True): r""" Return ``x`` coerced into this free monoid. One can create a free octal string monoid element from a Python string of 0's to 7's or list of integers. EXAMPLES:: sage: S = OctalStrings() sage: S('07070701650165') 07070701650165 sage: S.gen(0) 0 sage: S.gen(1) 1 sage: S([ i for i in range(8) ]) 01234567 """ ## There should really some careful type checking here... if isinstance(x, StringMonoidElement) and x.parent() == self: return x elif isinstance(x, list): return StringMonoidElement(self, x, check) elif isinstance(x, str): return StringMonoidElement(self, x, check) else: raise TypeError("Argument x (= %s) is of the wrong type." % x) OctalStrings = OctalStringMonoid class HexadecimalStringMonoid(StringMonoid_class): r""" The free hexadecimal string monoid on generators `\{ 0, 1, \dots, 9, a, b, c, d, e, f \}`. """ def __init__(self): r""" Create free hexadecimal string monoid on generators `\{ 0, 1, \dots, 9, a, b, c, d, e, f \}`. EXAMPLES:: sage: S = HexadecimalStrings(); S Free hexadecimal string monoid sage: x = S.gens() sage: (x[0]*x[10])**3 * (x[0]*x[1]*x[9]*x[15])**2 0a0a0a019f019f sage: S([ i for i in range(16) ]) 0123456789abcdef sage: x = S.gen(0) sage: y = S.gen(10) sage: z = S.gen(15) sage: z f sage: x*y^3*z 0aaaf """ alph = '0123456789abcdef' StringMonoid_class.__init__(self, 16, [ alph[i] for i in range(16) ]) def __repr__(self): return "Free hexadecimal string monoid" def __call__(self, x, check=True): r""" Return ``x`` coerced into this free monoid. One can create a free hexadecimal string monoid element from a Python string of a list of integers in `\{ 0, \dots, 15 \}`. EXAMPLES:: sage: S = HexadecimalStrings() sage: S('0a0a0a019f019f') 0a0a0a019f019f sage: S.gen(0) 0 sage: S.gen(1) 1 sage: S([ i for i in range(16) ]) 0123456789abcdef """ ## There should really some careful type checking here... if isinstance(x, StringMonoidElement) and x.parent() == self: return x elif isinstance(x, list): return StringMonoidElement(self, x, check) elif isinstance(x, str): return StringMonoidElement(self, x, check) else: raise TypeError("Argument x (= %s) is of the wrong type." % x) def encoding(self, S, padic=False): r""" The encoding of the string ``S`` as a hexadecimal string element. The default is to keep the standard right-to-left byte encoding, e.g. :: A = '\x41' -> 41 B = '\x42' -> 42 . . . Z = '\x5a' -> 5a rather than a left-to-right representation A = 65 -> 14. Although standard (e.g., in the Python constructor '\xhh'), this can be confusing when the string reads left-to-right. Set ``padic=True`` to reverse the character encoding. EXAMPLES:: sage: S = HexadecimalStrings() sage: S.encoding('A') 41 sage: S.encoding('A',padic=True) 14 sage: S.encoding(' ',padic=False) 20 sage: S.encoding(' ',padic=True) 02 """ hex_string = [] for i in range(len(S)): n = ord(S[i]) n0 = n % 16 n1 = n // 16 if not padic: hex_chars = [n1, n0] else: hex_chars = [n0, n1] hex_string.extend(hex_chars) return self(hex_string) HexadecimalStrings = HexadecimalStringMonoid class Radix64StringMonoid(StringMonoid_class): r""" The free radix 64 string monoid on 64 generators. """ def __init__(self): r""" Create free radix 64 string monoid on 64 generators. EXAMPLES:: sage: S = Radix64Strings(); S Free radix 64 string monoid sage: x = S.gens() sage: (x[50]*x[10])**3 * (x[60]*x[1]*x[19]*x[35])**2 yKyKyK8BTj8BTj sage: S([ i for i in range(64) ]) ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/ sage: x[0] A sage: x[62] + sage: x[63] / """ alph = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' StringMonoid_class.__init__(self, 64, [ alph[i] for i in range(64) ]) def __repr__(self): return "Free radix 64 string monoid" def __call__(self, x, check=True): r""" Return ``x`` coerced into this free monoid. One can create a free radix 64 string monoid element from a Python string or a list of integers in `0, \dots, 63`, as for generic ``FreeMonoids``. EXAMPLES:: sage: S = Radix64Strings() sage: S.gen(0) A sage: S.gen(1) B sage: S.gen(62) + sage: S.gen(63) / sage: S([ i for i in range(64) ]) ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/ """ ## There should really some careful type checking here... if isinstance(x, StringMonoidElement) and x.parent() == self: return x elif isinstance(x, list): return StringMonoidElement(self, x, check) elif isinstance(x, str): return StringMonoidElement(self, x, check) else: raise TypeError("Argument x (= %s) is of the wrong type." % x) Radix64Strings = Radix64StringMonoid class AlphabeticStringMonoid(StringMonoid_class): """ The free alphabetic string monoid on generators A-Z. EXAMPLES:: sage: S = AlphabeticStrings(); S Free alphabetic string monoid on A-Z sage: S.gen(0) A sage: S.gen(25) Z sage: S([ i for i in range(26) ]) ABCDEFGHIJKLMNOPQRSTUVWXYZ """ def __init__(self): r""" Create free alphabetic string monoid on generators A-Z. EXAMPLES:: sage: S = AlphabeticStrings(); S Free alphabetic string monoid on A-Z sage: S.gen(0) A sage: S.gen(25) Z sage: S([ i for i in range(26) ]) ABCDEFGHIJKLMNOPQRSTUVWXYZ """ from sage.rings.all import RealField RR = RealField() # The characteristic frequency probability distribution of # Robert Edward Lewand. self._characteristic_frequency_lewand = { "A": RR(0.08167), "B": RR(0.01492), "C": RR(0.02782), "D": RR(0.04253), "E": RR(0.12702), "F": RR(0.02228), "G": RR(0.02015), "H": RR(0.06094), "I": RR(0.06966), "J": RR(0.00153), "K": RR(0.00772), "L": RR(0.04025), "M": RR(0.02406), "N": RR(0.06749), "O": RR(0.07507), "P": RR(0.01929), "Q": RR(0.00095), "R": RR(0.05987), "S": RR(0.06327), "T": RR(0.09056), "U": RR(0.02758), "V": RR(0.00978), "W": RR(0.02360), "X": RR(0.00150), "Y": RR(0.01974), "Z": RR(0.00074)} # The characteristic frequency probability distribution of # H. Beker and F. Piper. self._characteristic_frequency_beker_piper = { "A": RR(0.082), "B": RR(0.015), "C": RR(0.028), "D": RR(0.043), "E": RR(0.127), "F": RR(0.022), "G": RR(0.020), "H": RR(0.061), "I": RR(0.070), "J": RR(0.002), "K": RR(0.008), "L": RR(0.040), "M": RR(0.024), "N": RR(0.067), "O": RR(0.075), "P": RR(0.019), "Q": RR(0.001), "R": RR(0.060), "S": RR(0.063), "T": RR(0.091), "U": RR(0.028), "V": RR(0.010), "W": RR(0.023), "X": RR(0.001), "Y": RR(0.020), "Z": RR(0.001)} alph = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' StringMonoid_class.__init__(self, 26, [ alph[i] for i in range(26) ]) def __repr__(self): return "Free alphabetic string monoid on A-Z" def __call__(self, x, check=True): r""" Return ``x`` coerced into this free monoid. One can create a free alphabetic string monoid element from a Python string, or a list of integers in `0, \dots,25`. EXAMPLES:: sage: S = AlphabeticStrings() sage: S.gen(0) A sage: S.gen(1) B sage: S.gen(25) Z sage: S([ i for i in range(26) ]) ABCDEFGHIJKLMNOPQRSTUVWXYZ """ ## There should really some careful type checking here... if isinstance(x, StringMonoidElement) and x.parent() == self: return x elif isinstance(x, list): return StringMonoidElement(self, x, check) elif isinstance(x, str): return StringMonoidElement(self, x, check) else: raise TypeError("Argument x (= %s) is of the wrong type." % x) def characteristic_frequency(self, table_name="beker_piper"): r""" Return a table of the characteristic frequency probability distribution of the English alphabet. In written English, various letters of the English alphabet occur more frequently than others. For example, the letter "E" appears more often than other vowels such as "A", "I", "O", and "U". In long works of written English such as books, the probability of a letter occurring tends to stabilize around a value. We call this value the characteristic frequency probability of the letter under consideration. When this probability is considered for each letter of the English alphabet, the resulting probabilities for all letters of this alphabet is referred to as the characteristic frequency probability distribution. Various studies report slightly different values for the characteristic frequency probability of an English letter. For instance, [Lew2000]_ reports that "E" has a characteristic frequency probability of 0.12702, while [BP1982]_ reports this value as 0.127. The concepts of characteristic frequency probability and characteristic frequency probability distribution can also be applied to non-empty alphabets other than the English alphabet. The output of this method is different from that of the method :func:`frequency_distribution() <sage.monoids.string_monoid_element.StringMonoidElement.frequency_distribution>`. One can think of the characteristic frequency probability of an element in an alphabet `A` as the expected probability of that element occurring. Let `S` be a string encoded using elements of `A`. The frequency probability distribution corresponding to `S` provides us with the frequency probability of each element of `A` as observed occurring in `S`. Thus one distribution provides expected probabilities, while the other provides observed probabilities. INPUT: - ``table_name`` -- (default ``"beker_piper"``) the table of characteristic frequency probability distribution to use. The following tables are supported: - ``"beker_piper"`` -- the table of characteristic frequency probability distribution by Beker and Piper [BP1982]_. This is the default table to use. - ``"lewand"`` -- the table of characteristic frequency probability distribution by Lewand as described on page 36 of [Lew2000]_. OUTPUT: - A table of the characteristic frequency probability distribution of the English alphabet. This is a dictionary of letter/probability pairs. EXAMPLES: The characteristic frequency probability distribution table of Beker and Piper [BP1982]_:: sage: A = AlphabeticStrings() sage: table = A.characteristic_frequency(table_name="beker_piper") sage: sorted(table.items()) <BLANKLINE> [('A', 0.0820000000000000), ('B', 0.0150000000000000), ('C', 0.0280000000000000), ('D', 0.0430000000000000), ('E', 0.127000000000000), ('F', 0.0220000000000000), ('G', 0.0200000000000000), ('H', 0.0610000000000000), ('I', 0.0700000000000000), ('J', 0.00200000000000000), ('K', 0.00800000000000000), ('L', 0.0400000000000000), ('M', 0.0240000000000000), ('N', 0.0670000000000000), ('O', 0.0750000000000000), ('P', 0.0190000000000000), ('Q', 0.00100000000000000), ('R', 0.0600000000000000), ('S', 0.0630000000000000), ('T', 0.0910000000000000), ('U', 0.0280000000000000), ('V', 0.0100000000000000), ('W', 0.0230000000000000), ('X', 0.00100000000000000), ('Y', 0.0200000000000000), ('Z', 0.00100000000000000)] The characteristic frequency probability distribution table of Lewand [Lew2000]_:: sage: table = A.characteristic_frequency(table_name="lewand") sage: sorted(table.items()) <BLANKLINE> [('A', 0.0816700000000000), ('B', 0.0149200000000000), ('C', 0.0278200000000000), ('D', 0.0425300000000000), ('E', 0.127020000000000), ('F', 0.0222800000000000), ('G', 0.0201500000000000), ('H', 0.0609400000000000), ('I', 0.0696600000000000), ('J', 0.00153000000000000), ('K', 0.00772000000000000), ('L', 0.0402500000000000), ('M', 0.0240600000000000), ('N', 0.0674900000000000), ('O', 0.0750700000000000), ('P', 0.0192900000000000), ('Q', 0.000950000000000000), ('R', 0.0598700000000000), ('S', 0.0632700000000000), ('T', 0.0905600000000000), ('U', 0.0275800000000000), ('V', 0.00978000000000000), ('W', 0.0236000000000000), ('X', 0.00150000000000000), ('Y', 0.0197400000000000), ('Z', 0.000740000000000000)] Illustrating the difference between :func:`characteristic_frequency` and :func:`frequency_distribution() <sage.monoids.string_monoid_element.StringMonoidElement.frequency_distribution>`:: sage: A = AlphabeticStrings() sage: M = A.encoding("abcd") sage: FD = M.frequency_distribution().function() sage: sorted(FD.items()) <BLANKLINE> [(A, 0.250000000000000), (B, 0.250000000000000), (C, 0.250000000000000), (D, 0.250000000000000)] sage: CF = A.characteristic_frequency() sage: sorted(CF.items()) <BLANKLINE> [('A', 0.0820000000000000), ('B', 0.0150000000000000), ('C', 0.0280000000000000), ('D', 0.0430000000000000), ('E', 0.127000000000000), ('F', 0.0220000000000000), ('G', 0.0200000000000000), ('H', 0.0610000000000000), ('I', 0.0700000000000000), ('J', 0.00200000000000000), ('K', 0.00800000000000000), ('L', 0.0400000000000000), ('M', 0.0240000000000000), ('N', 0.0670000000000000), ('O', 0.0750000000000000), ('P', 0.0190000000000000), ('Q', 0.00100000000000000), ('R', 0.0600000000000000), ('S', 0.0630000000000000), ('T', 0.0910000000000000), ('U', 0.0280000000000000), ('V', 0.0100000000000000), ('W', 0.0230000000000000), ('X', 0.00100000000000000), ('Y', 0.0200000000000000), ('Z', 0.00100000000000000)] TESTS: The table name must be either "beker_piper" or "lewand":: sage: table = A.characteristic_frequency(table_name="") Traceback (most recent call last): ... ValueError: Table name must be either 'beker_piper' or 'lewand'. sage: table = A.characteristic_frequency(table_name="none") Traceback (most recent call last): ... ValueError: Table name must be either 'beker_piper' or 'lewand'. """ supported_tables = ["beker_piper", "lewand"] if table_name not in supported_tables: raise ValueError( "Table name must be either 'beker_piper' or 'lewand'.") from copy import copy if table_name == "beker_piper": return copy(self._characteristic_frequency_beker_piper) if table_name == "lewand": return copy(self._characteristic_frequency_lewand) def encoding(self, S): r""" The encoding of the string ``S`` in the alphabetic string monoid, obtained by the monoid homomorphism :: A -> A, ..., Z -> Z, a -> A, ..., z -> Z and stripping away all other characters. It should be noted that this is a non-injective monoid homomorphism. EXAMPLES:: sage: S = AlphabeticStrings() sage: s = S.encoding("The cat in the hat."); s THECATINTHEHAT sage: s.decoding() 'THECATINTHEHAT' """ return self(strip_encoding(S)) AlphabeticStrings = AlphabeticStringMonoid
32.593516
126
0.524254