hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
9639b6291e613c38380c6ef12ff591e7e7f06f5d
2,419
py
Python
challengerTest/api_init/api_user.py
andrequeiroz2/challengerAPI
df906cdd900874bb243e5d33cf745332f1fe556e
[ "MIT" ]
null
null
null
challengerTest/api_init/api_user.py
andrequeiroz2/challengerAPI
df906cdd900874bb243e5d33cf745332f1fe556e
[ "MIT" ]
null
null
null
challengerTest/api_init/api_user.py
andrequeiroz2/challengerAPI
df906cdd900874bb243e5d33cf745332f1fe556e
[ "MIT" ]
1
2021-03-04T18:25:51.000Z
2021-03-04T18:25:51.000Z
from flask import request, Response from flask_restful import Resource from model.model_user import User from controller.controller_user import ( one_user, all_user, create_user, update_user, delete_user, ) from message.msg import ADD_USER_SUCCESS, UPDATE_USER_SUCCESS, DELETE_USER_SUCCESS from mongoengine.errors import ( FieldDoesNotExist, NotUniqueError, DoesNotExist, ValidationError, InvalidQueryError, ) from error.errors import ( SchemaValidationError, UserAlreadyExistsError, InternalServerError, UpdatingUserError, UserNotExistsError, UserNotRegistered, ) class UserApi(Resource): def get(self): users = all_user() if (len(users) == 2) or (users is None): raise UserNotRegistered else: return Response(users, mimetype="application/json", status=200) def post(self): try: body = request.get_json() create_user(**body) return {"msg": ADD_USER_SUCCESS, "user_name": body["user_name"]}, 200 except FieldDoesNotExist: raise SchemaValidationError except ValidationError: raise SchemaValidationError except NotUniqueError: raise UserAlreadyExistsError except Exception: raise InternalServerError class UsersApi(Resource): def get(self, name): try: user = one_user(name) return Response(user, mimetype="application/json", status=200) except DoesNotExist: raise UserNotExistsError except Exception: raise InternalServerError def put(self, name): try: body = request.get_json() update_user(name, body) return {"msg": UPDATE_USER_SUCCESS}, 200 except InvalidQueryError: raise SchemaValidationError except DoesNotExist: raise UpdatingUserError except NotUniqueError: raise UserAlreadyExistsError except Exception: raise InternalServerError def delete(self, name): try: delete_user(name) return {"msg": DELETE_USER_SUCCESS}, 200 except InvalidQueryError: raise SchemaValidationError except DoesNotExist: raise UpdatingUserError except Exception: raise InternalServerError
28.127907
82
0.639934
5cb1620854f6ca05f56a9f509d9df205a2b1f674
16,597
py
Python
google/cloud/aiplatform_v1/services/model_service/pagers.py
dizcology/python-aiplatform
1a135775966c8a2303ded529eba514dcf9db7205
[ "Apache-2.0" ]
2
2021-10-02T02:25:44.000Z
2021-11-17T10:35:01.000Z
google/cloud/aiplatform_v1/services/model_service/pagers.py
pompipo/python-aiplatform
3612b05c62dfb46822cd2c1798fd47349dba33bc
[ "Apache-2.0" ]
1
2021-03-02T18:25:00.000Z
2021-03-02T18:25:00.000Z
google/cloud/aiplatform_v1/services/model_service/pagers.py
pompipo/python-aiplatform
3612b05c62dfb46822cd2c1798fd47349dba33bc
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import ( Any, AsyncIterable, Awaitable, Callable, Iterable, Sequence, Tuple, Optional, ) from google.cloud.aiplatform_v1.types import model from google.cloud.aiplatform_v1.types import model_evaluation from google.cloud.aiplatform_v1.types import model_evaluation_slice from google.cloud.aiplatform_v1.types import model_service class ListModelsPager: """A pager for iterating through ``list_models`` requests. This class thinly wraps an initial :class:`google.cloud.aiplatform_v1.types.ListModelsResponse` object, and provides an ``__iter__`` method to iterate through its ``models`` field. If there are more pages, the ``__iter__`` method will make additional ``ListModels`` requests and continue to iterate through the ``models`` field on the corresponding responses. All the usual :class:`google.cloud.aiplatform_v1.types.ListModelsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., model_service.ListModelsResponse], request: model_service.ListModelsRequest, response: model_service.ListModelsResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.aiplatform_v1.types.ListModelsRequest): The initial request object. response (google.cloud.aiplatform_v1.types.ListModelsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = model_service.ListModelsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[model_service.ListModelsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[model.Model]: for page in self.pages: yield from page.models def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListModelsAsyncPager: """A pager for iterating through ``list_models`` requests. This class thinly wraps an initial :class:`google.cloud.aiplatform_v1.types.ListModelsResponse` object, and provides an ``__aiter__`` method to iterate through its ``models`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListModels`` requests and continue to iterate through the ``models`` field on the corresponding responses. All the usual :class:`google.cloud.aiplatform_v1.types.ListModelsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., Awaitable[model_service.ListModelsResponse]], request: model_service.ListModelsRequest, response: model_service.ListModelsResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiates the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.aiplatform_v1.types.ListModelsRequest): The initial request object. response (google.cloud.aiplatform_v1.types.ListModelsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = model_service.ListModelsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages(self) -> AsyncIterable[model_service.ListModelsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterable[model.Model]: async def async_generator(): async for page in self.pages: for response in page.models: yield response return async_generator() def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListModelEvaluationsPager: """A pager for iterating through ``list_model_evaluations`` requests. This class thinly wraps an initial :class:`google.cloud.aiplatform_v1.types.ListModelEvaluationsResponse` object, and provides an ``__iter__`` method to iterate through its ``model_evaluations`` field. If there are more pages, the ``__iter__`` method will make additional ``ListModelEvaluations`` requests and continue to iterate through the ``model_evaluations`` field on the corresponding responses. All the usual :class:`google.cloud.aiplatform_v1.types.ListModelEvaluationsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., model_service.ListModelEvaluationsResponse], request: model_service.ListModelEvaluationsRequest, response: model_service.ListModelEvaluationsResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.aiplatform_v1.types.ListModelEvaluationsRequest): The initial request object. response (google.cloud.aiplatform_v1.types.ListModelEvaluationsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = model_service.ListModelEvaluationsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[model_service.ListModelEvaluationsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[model_evaluation.ModelEvaluation]: for page in self.pages: yield from page.model_evaluations def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListModelEvaluationsAsyncPager: """A pager for iterating through ``list_model_evaluations`` requests. This class thinly wraps an initial :class:`google.cloud.aiplatform_v1.types.ListModelEvaluationsResponse` object, and provides an ``__aiter__`` method to iterate through its ``model_evaluations`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListModelEvaluations`` requests and continue to iterate through the ``model_evaluations`` field on the corresponding responses. All the usual :class:`google.cloud.aiplatform_v1.types.ListModelEvaluationsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., Awaitable[model_service.ListModelEvaluationsResponse]], request: model_service.ListModelEvaluationsRequest, response: model_service.ListModelEvaluationsResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiates the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.aiplatform_v1.types.ListModelEvaluationsRequest): The initial request object. response (google.cloud.aiplatform_v1.types.ListModelEvaluationsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = model_service.ListModelEvaluationsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages(self) -> AsyncIterable[model_service.ListModelEvaluationsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterable[model_evaluation.ModelEvaluation]: async def async_generator(): async for page in self.pages: for response in page.model_evaluations: yield response return async_generator() def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListModelEvaluationSlicesPager: """A pager for iterating through ``list_model_evaluation_slices`` requests. This class thinly wraps an initial :class:`google.cloud.aiplatform_v1.types.ListModelEvaluationSlicesResponse` object, and provides an ``__iter__`` method to iterate through its ``model_evaluation_slices`` field. If there are more pages, the ``__iter__`` method will make additional ``ListModelEvaluationSlices`` requests and continue to iterate through the ``model_evaluation_slices`` field on the corresponding responses. All the usual :class:`google.cloud.aiplatform_v1.types.ListModelEvaluationSlicesResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., model_service.ListModelEvaluationSlicesResponse], request: model_service.ListModelEvaluationSlicesRequest, response: model_service.ListModelEvaluationSlicesResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.aiplatform_v1.types.ListModelEvaluationSlicesRequest): The initial request object. response (google.cloud.aiplatform_v1.types.ListModelEvaluationSlicesResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = model_service.ListModelEvaluationSlicesRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[model_service.ListModelEvaluationSlicesResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[model_evaluation_slice.ModelEvaluationSlice]: for page in self.pages: yield from page.model_evaluation_slices def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListModelEvaluationSlicesAsyncPager: """A pager for iterating through ``list_model_evaluation_slices`` requests. This class thinly wraps an initial :class:`google.cloud.aiplatform_v1.types.ListModelEvaluationSlicesResponse` object, and provides an ``__aiter__`` method to iterate through its ``model_evaluation_slices`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListModelEvaluationSlices`` requests and continue to iterate through the ``model_evaluation_slices`` field on the corresponding responses. All the usual :class:`google.cloud.aiplatform_v1.types.ListModelEvaluationSlicesResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[ ..., Awaitable[model_service.ListModelEvaluationSlicesResponse] ], request: model_service.ListModelEvaluationSlicesRequest, response: model_service.ListModelEvaluationSlicesResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiates the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.aiplatform_v1.types.ListModelEvaluationSlicesRequest): The initial request object. response (google.cloud.aiplatform_v1.types.ListModelEvaluationSlicesResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = model_service.ListModelEvaluationSlicesRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages( self, ) -> AsyncIterable[model_service.ListModelEvaluationSlicesResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterable[model_evaluation_slice.ModelEvaluationSlice]: async def async_generator(): async for page in self.pages: for response in page.model_evaluation_slices: yield response return async_generator() def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response)
39.610979
93
0.682412
3a6f8e589ff6cc6d7f402421acc3296fa52f91bc
14,842
py
Python
fibonacci21decomp.py
gavin4d/Fibonacci-Magic
3e5c57e6ac6a190e5e9e6d62e34d2d8621ef47cc
[ "CC0-1.0" ]
1
2021-12-28T19:10:58.000Z
2021-12-28T19:10:58.000Z
fibonacci21decomp.py
gavin4d/Fibonacci-Magic
3e5c57e6ac6a190e5e9e6d62e34d2d8621ef47cc
[ "CC0-1.0" ]
null
null
null
fibonacci21decomp.py
gavin4d/Fibonacci-Magic
3e5c57e6ac6a190e5e9e6d62e34d2d8621ef47cc
[ "CC0-1.0" ]
null
null
null
from PIL.Image import FASTOCTREE from manim import * from functions import * import color def moveEquation(equations,loop,baseText,t1,t2,t3,t4,self): equations[loop].add(baseText.copy(), t1[loop].copy(), t2[7-loop].copy(), t3[loop].copy(), t4[7-loop].copy()) self.play(equations[loop].animate.shift(LEFT * 6 + UP * (4.75 - loop * 0.5))) return loop + 1 class DecompDot(Scene): def construct(self): loop = 0 fibo = [0,1,1,2,3,5,8,13,21] self.camera.background_color = color.BACKGROUND dots = [Dot().set_color(color.RED).move_to(UP * 0.25 * (10-i) + RIGHT * 3) for i in range(0,21)] baseText = Text('× + ×').scale(0.5).set_color(BLACK).move_to(DOWN * 3 + RIGHT * 3) name = Text('Fibonacci Decomposition').set_color(BLACK).move_to(UP * 3) t1 = VGroup() t2 = VGroup() t3 = VGroup() t4 = VGroup() for n in range(0,8): t1.add(Text(str(fibo[8-n])).set_color(color.RED)) t2.add(Text(str(fibo[8-n])).set_color(color.RED)) t3.add(Text(str(fibo[8-n-1])).set_color(color.BLUE)) t4.add(Text(str(fibo[8-n-1])).set_color(color.BLUE)) t1.scale(0.5).arrange(DOWN).move_to(LEFT * (1.15 - 3) + DOWN * (1.75 + 3)) t2.scale(0.5).arrange(DOWN).move_to(LEFT * (0.4 - 3) + UP * (1.75 - 3)) t3.scale(0.5).arrange(DOWN).move_to(RIGHT * (0.4 + 3) + DOWN * (1.75 + 3)) t4.scale(0.5).arrange(DOWN).move_to(RIGHT * (1.15 + 3) + UP * (1.75 - 3)) self.add(t1, t2, t3, t4) numberhidebox1 = Square().scale(2).move_to(UP * (2.25 - 3) + RIGHT * 3.5) numberhidebox1.set_fill(color.BACKGROUND, opacity=1).set_color(color.BACKGROUND) numberhidebox2 = Square().scale(2).move_to(DOWN * 5.25 + RIGHT * 3.5) numberhidebox2.set_fill(color.BACKGROUND, opacity=1).set_color(color.BACKGROUND) self.add(numberhidebox1, numberhidebox2) decompView = Rectangle(color=color.YELLOW, width=3.5, height=4.5).move_to(LEFT * 3) equations = [VGroup() for i in range(0,8)] self.play(FadeIn(decompView), FadeIn(baseText), FadeIn(t1), FadeIn(t2), FadeIn(t3), FadeIn(t4), *[GrowFromCenter(dots[i]) for i in range(0,21)]) self.wait(1) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1 = VGroup() group1.add(*[dots[i] for i in range(0,8)]) group2 = VGroup() group2.add(*[dots[i] for i in range(8,21)]) self.play(group1.animate.set_color(color.BLUE).shift(RIGHT * 0.125), group2.animate.shift(LEFT * 0.125), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) self.play(group1.animate.shift(DOWN * 0.25 * 13)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1.remove(*[dots[i] for i in range(0,8)]) group2.add(*[dots[i] for i in range(0,8)]) group2.remove(*[dots[i] for i in range(8,13)]) group1.add(*[dots[i] for i in range(8,13)]) self.play(group1.animate.set_color(color.BLUE).shift(RIGHT * 0.125 * 3), group2.animate.set_color(color.RED).shift(LEFT * 0.125), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) self.play(group1.animate.shift(DOWN * 0.25 * 8)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1.remove(*[dots[i] for i in range(8,13)]) group2.add(*[dots[i] for i in range(8,13)]) group2.remove(*[dots[i] for i in [0,1,2,13,14,15]]) group1.add(*[dots[i] for i in [0,1,2,13,14,15]]) self.play(group1.animate.set_color(color.BLUE).shift(RIGHT * 0.125 * 4), group2.animate.set_color(color.RED).shift(LEFT * 0.25), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) self.play(group1.animate.shift(DOWN * 0.25 * 5)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1.remove(*[dots[i] for i in [0,1,2,13,14,15]]) group2.add(*[dots[i] for i in [0,1,2,13,14,15]]) group2.remove(*[dots[i] for i in [16,17,3,4,8,9]]) group1.add(*[dots[i] for i in [16,17,3,4,8,9]]) self.play(group1.animate.set_color(color.BLUE).shift(RIGHT * 0.125 * 7), group2.animate.set_color(color.RED).shift(LEFT * 0.125 * 3), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) self.play(group1.animate.shift(DOWN * 0.25 * 3)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1.remove(*[dots[i] for i in [16,17,3,4,8,9]]) group2.add(*[dots[i] for i in [16,17,3,4,8,9]]) group2.remove(*[dots[i] for i in [18,5,10,0,13]]) group1.add(*[dots[i] for i in [18,5,10,0,13]]) self.play(group1.animate.set_color(color.BLUE).shift(RIGHT * 0.125 * 11), group2.animate.set_color(color.RED).shift(LEFT * 0.125 * 5), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) self.play(group1.animate.shift(DOWN * 0.25 * 2)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1.remove(*[dots[i] for i in [18,5,10,0,13]]) group2.add(*[dots[i] for i in [18,5,10,0,13]]) group2.remove(*[dots[i] for i in [19,6,11,1,14,16,3,8]]) group1.add(*[dots[i] for i in [19,6,11,1,14,16,3,8]]) self.play(group1.animate.set_color(color.BLUE).shift(RIGHT * 0.125 * 18), group2.animate.set_color(color.RED).shift(LEFT * 0.125 * 8), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) self.play(group1.animate.shift(DOWN * 0.25)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1.remove(*[dots[i] for i in [19,6,11,1,14,16,3,8]]) group2.add(*[dots[i] for i in [19,6,11,1,14,16,3,8]]) self.play(group2.animate.set_color(color.RED), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) self.play(FadeIn(name)) self.wait(3) self.play(FadeOut(baseText, t1[7], t2[0], t3[7], t4[0], *dots, name)) self.play(*[equations[i].animate.shift(RIGHT * 3) for i in range(0,8)], decompView.animate.shift(RIGHT * 3)) self.play(FadeOut(*[equations[i][0] for i in range(0,8)])) class DecompDotLongEnd (Scene): def construct(self): loop = 0 fibo = [0,1,1,2,3,5,8,13,21] self.camera.background_color = color.BACKGROUND dots = [Dot().set_color(color.RED).move_to(UP * 0.25 * (10-i) + RIGHT * 3) for i in range(0,21)] baseText = Text('× + ×').scale(0.5).set_color(BLACK).move_to(DOWN * 3 + RIGHT * 3) name = Text('Fibonacci Decomposition').set_color(BLACK).move_to(UP * 3) t1 = VGroup() t2 = VGroup() t3 = VGroup() t4 = VGroup() for n in range(0,8): t1.add(Text(str(fibo[8-n])).set_color(color.RED)) t2.add(Text(str(fibo[8-n])).set_color(color.RED)) t3.add(Text(str(fibo[8-n-1])).set_color(color.BLUE)) t4.add(Text(str(fibo[8-n-1])).set_color(color.BLUE)) t1.scale(0.5).arrange(DOWN).move_to(LEFT * (1.15 - 3) + DOWN * (1.75 + 3)) t2.scale(0.5).arrange(DOWN).move_to(LEFT * (0.4 - 3) + UP * (1.75 - 3)) t3.scale(0.5).arrange(DOWN).move_to(RIGHT * (0.4 + 3) + DOWN * (1.75 + 3)) t4.scale(0.5).arrange(DOWN).move_to(RIGHT * (1.15 + 3) + UP * (1.75 - 3)) self.add(t1, t2, t3, t4) numberhidebox1 = Square().scale(2).move_to(UP * (2.25 - 3) + RIGHT * 3.5) numberhidebox1.set_fill(color.BACKGROUND, opacity=1).set_color(color.BACKGROUND) numberhidebox2 = Square().scale(2).move_to(DOWN * 5.25 + RIGHT * 3.5) numberhidebox2.set_fill(color.BACKGROUND, opacity=1).set_color(color.BACKGROUND) self.add(numberhidebox1, numberhidebox2) decompView = Rectangle(color=color.YELLOW, width=3.5, height=4.5).move_to(LEFT * 3) equations = [VGroup() for i in range(0,8)] self.play(FadeIn(decompView), FadeIn(baseText), FadeIn(t1), FadeIn(t2), FadeIn(t3), FadeIn(t4), *[GrowFromCenter(dots[i]) for i in range(0,21)]) self.wait(1) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1 = VGroup() group1.add(*[dots[i] for i in range(0,8)]) group2 = VGroup() group2.add(*[dots[i] for i in range(8,21)]) self.play(group1.animate.set_color(color.BLUE).shift(RIGHT * 0.125), group2.animate.shift(LEFT * 0.125), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) self.play(group1.animate.shift(DOWN * 0.25 * 13)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1.remove(*[dots[i] for i in range(0,8)]) group2.add(*[dots[i] for i in range(0,8)]) group2.remove(*[dots[i] for i in range(8,13)]) group1.add(*[dots[i] for i in range(8,13)]) self.play(group1.animate.set_color(color.BLUE).shift(RIGHT * 0.125 * 3), group2.animate.set_color(color.RED).shift(LEFT * 0.125), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) self.play(group1.animate.shift(DOWN * 0.25 * 8)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1.remove(*[dots[i] for i in range(8,13)]) group2.add(*[dots[i] for i in range(8,13)]) group2.remove(*[dots[i] for i in [0,1,2,13,14,15]]) group1.add(*[dots[i] for i in [0,1,2,13,14,15]]) self.play(group1.animate.set_color(color.BLUE).shift(RIGHT * 0.125 * 4), group2.animate.set_color(color.RED).shift(LEFT * 0.25), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) self.play(group1.animate.shift(DOWN * 0.25 * 5)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1.remove(*[dots[i] for i in [0,1,2,13,14,15]]) group2.add(*[dots[i] for i in [0,1,2,13,14,15]]) group2.remove(*[dots[i] for i in [16,17,3,4,8,9]]) group1.add(*[dots[i] for i in [16,17,3,4,8,9]]) self.play(group1.animate.set_color(color.BLUE).shift(RIGHT * 0.125 * 7), group2.animate.set_color(color.RED).shift(LEFT * 0.125 * 3), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) self.play(group1.animate.shift(DOWN * 0.25 * 3)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1.remove(*[dots[i] for i in [16,17,3,4,8,9]]) group2.add(*[dots[i] for i in [16,17,3,4,8,9]]) group2.remove(*[dots[i] for i in [18,5,10,0,13]]) group1.add(*[dots[i] for i in [18,5,10,0,13]]) self.play(group1.animate.set_color(color.BLUE).shift(RIGHT * 0.125 * 11), group2.animate.set_color(color.RED).shift(LEFT * 0.125 * 5), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) self.play(group1.animate.shift(DOWN * 0.25 * 2)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1.remove(*[dots[i] for i in [18,5,10,0,13]]) group2.add(*[dots[i] for i in [18,5,10,0,13]]) group2.remove(*[dots[i] for i in [19,6,11,1,14,16,3,8]]) group1.add(*[dots[i] for i in [19,6,11,1,14,16,3,8]]) self.play(group1.animate.set_color(color.BLUE).shift(RIGHT * 0.125 * 18), group2.animate.set_color(color.RED).shift(LEFT * 0.125 * 8), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) self.play(group1.animate.shift(DOWN * 0.25)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) group1.remove(*[dots[i] for i in [19,6,11,1,14,16,3,8]]) group2.add(*[dots[i] for i in [19,6,11,1,14,16,3,8]]) self.play(group2.animate.set_color(color.RED), t1.animate.shift(UP * 0.5), t2.animate.shift(DOWN * 0.5), t3.animate.shift(UP * 0.5), t4.animate.shift(DOWN * 0.5)) loop = moveEquation(equations,loop,baseText,t1,t2,t3,t4,self) self.play(FadeIn(name)) self.wait(11) self.play(FadeIn(Square().scale(10).set_fill(color.BACKGROUND).set_opacity(1))) class Decomp(Scene): def construct(self): fibo = fiboarray_extended(-18, 18) self.camera.background_color = color.BACKGROUND fibonacci = VGroup(*[Text(str(fibo[i])).set_color(BLACK) for i in range(0, 35)]).arrange(RIGHT * 4).move_to(UP * 2.5 + LEFT * 10) baseText = Text('× + × = 21').scale(0.5).set_color(BLACK).move_to(RIGHT * 1.075) decompView = Rectangle(color=color.YELLOW, width=3.5, height=4.5).move_to(ORIGIN) t1 = VGroup() t2 = VGroup() t3 = VGroup() t4 = VGroup() for n in range(0,35): t1.add(Text(str(fibo[-n + 7 + 1])).set_color(color.RED)) t2.add(Text(str(fibo[n+1])).set_color(color.RED)) t3.add(Text(str(fibo[-n + 7])).set_color(color.BLUE)) t4.add(Text(str(fibo[n])).set_color(color.BLUE)) t1.scale(0.5).arrange(DOWN).move_to(LEFT * (1.15)) t2.scale(0.5).arrange(DOWN).move_to(LEFT * (0.4)) t3.scale(0.5).arrange(DOWN).move_to(RIGHT * (0.4)) t4.scale(0.5).arrange(DOWN).move_to(RIGHT * (1.15)) numbers = VGroup(t1, t2, t3, t4) numbers.shift(UP * 2.25) numberhideboxes = VGroup(Square().scale(2).move_to(UP * (4)).set_fill(color.BACKGROUND, opacity=1).set_color(color.BACKGROUND), Square().scale(2).move_to(DOWN * 4).set_fill(color.BACKGROUND, opacity=1).set_color(color.BACKGROUND)) self.add(numbers, numberhideboxes, decompView) self.wait(1.8) self.play(numbers.animate.shift(DOWN), decompView.animate.shift(DOWN), numberhideboxes.animate.shift(DOWN), FadeIn(fibonacci)) self.wait(1) self.play(fibonacci.animate.shift(RIGHT * 14), run_time=5) self.wait(3) self.play(FadeOut(fibonacci), numbers.animate.shift(UP * 0.75), decompView.animate.shift(UP).stretch_to_fit_height(6), numberhideboxes[0].animate.shift(UP * 2), Write(baseText)) self.wait(1) for i in range(0,7): self.play(numbers.animate.shift(UP * 0.5), run_time=0.75) self.wait(2) self.play(FadeIn(Square().scale(10).set_fill(color.BACKGROUND).set_opacity(1)))
50.482993
258
0.607667
00c9b8d879ebeab599baadb47a20cadf2a76340b
2,174
py
Python
tests/test_checker.py
migzpogi/PokerCalculator
3005e24552e465729f2aab7efea8bbbe831e736b
[ "MIT" ]
4
2020-07-27T02:37:56.000Z
2021-05-27T08:33:01.000Z
tests/test_checker.py
migzpogi/PokerCalculator
3005e24552e465729f2aab7efea8bbbe831e736b
[ "MIT" ]
1
2018-09-26T03:04:25.000Z
2018-09-26T03:30:43.000Z
tests/test_checker.py
migzpogi/PokerCalculator
3005e24552e465729f2aab7efea8bbbe831e736b
[ "MIT" ]
2
2020-10-03T07:28:52.000Z
2021-11-16T14:36:16.000Z
import unittest from lib.checkers import input_type_checker, card_checker, convert_case, is_list_unique class TestCheckers(unittest.TestCase): """ Unit tests for checker methods """ def test_valid_input_true(self): """ Checks if the input is a list of len > 2 for board and len == 2 for hand :return: """ board = ['As', 'Ac', 'Ad'] hand = ['Ah', 'Kd'] self.assertTrue(input_type_checker(board, hand)) def test_valid_input_false_board_wrong(self): """ Checks if the method can detect wrong input :return: """ board = ['As', 'Ac'] hand = ['Ah', 'Kd'] self.assertFalse(input_type_checker(board, hand)) def test_valid_input_false_hand_wrong(self): """ Checks if the method can detect wrong input :return: """ board = ['As', 'Ac', 'Ad'] hand = ['Ah'] self.assertFalse(input_type_checker(board, hand)) def test_convert_case(self): """ Checks is casing is properly converted :return: """ board = ['aS', 'ad', 'Ac'] self.assertEqual(['As', 'Ad', 'Ac'], convert_case(board)) def test_valid_card_true(self): """ Checks if valid cards are passed :return: """ list_of_cards = ['aS', 'Ac'] self.assertTrue(card_checker(list_of_cards)) def test_valid_card_false(self): """ Checks if invalid cards are caught :return: """ list_of_cards = ['Z3', 'Ax'] self.assertFalse(card_checker(list_of_cards)) def test_is_list_unique(self): """ Checks if the list is unique :return: """ list_1 = [1,2,3,4,5] list_2 = [1,2,2,3,3,4,5] list_3 = ['Ac', 'Ah', 'Ad', 'As'] list_4 = ['Ac', 'Ac', 'Ah'] self.assertTrue(is_list_unique(list_1)) self.assertTrue(is_list_unique(list_3)) self.assertFalse(is_list_unique(list_2)) self.assertFalse(is_list_unique(list_4)) if __name__ == '__main__': unittest.main()
23.376344
87
0.551518
319af097a45bd7932ffa38c9ab9991ba6a757dda
4,025
py
Python
tests/test_generic.py
vsaase/dicom2nifti
6722420a7673d36437e4358ce3cb2a7c77c91820
[ "MIT" ]
null
null
null
tests/test_generic.py
vsaase/dicom2nifti
6722420a7673d36437e4358ce3cb2a7c77c91820
[ "MIT" ]
null
null
null
tests/test_generic.py
vsaase/dicom2nifti
6722420a7673d36437e4358ce3cb2a7c77c91820
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ dicom2nifti @author: abrys """ import os import random import shutil import string import tempfile import unittest import nibabel import tests.test_data as test_data import dicom2nifti.convert_generic as convert_generic from dicom2nifti.common import read_dicom_directory from dicom2nifti.compressed_dicom import is_dicom_file import dicom2nifti.settings as settings from dicom2nifti.exceptions import ConversionError from tests.test_tools import assert_compare_nifti, ground_thruth_filenames class TestConversionGeneric(unittest.TestCase): def test_anatomical(self): tmp_output_dir = tempfile.mkdtemp() try: results = convert_generic.dicom_to_nifti(read_dicom_directory(test_data.GE_ANATOMICAL), None) self.assertTrue(results.get('NII_FILE') is None) self.assertTrue(isinstance(results['NII'], nibabel.nifti1.Nifti1Image)) results = convert_generic.dicom_to_nifti(read_dicom_directory(test_data.GE_ANATOMICAL), os.path.join(tmp_output_dir, 'test.nii.gz')) assert_compare_nifti(results['NII_FILE'], ground_thruth_filenames(test_data.GE_ANATOMICAL)[0]) self.assertTrue(isinstance(results['NII'], nibabel.nifti1.Nifti1Image)) finally: shutil.rmtree(tmp_output_dir) @unittest.skip("Skip untill we figure out why it fails on circleci") def test_inconsistent_slice_increment_resampling(self): tmp_output_dir = tempfile.mkdtemp() try: settings.disable_validate_orthogonal() settings.disable_validate_slice_increment() settings.enable_resampling() settings.set_resample_padding(0) settings.set_resample_spline_interpolation_order(1) results = convert_generic.dicom_to_nifti(read_dicom_directory(test_data.FAILING_SLICEINCREMENT_2), os.path.join(tmp_output_dir, 'test.nii.gz')) assert_compare_nifti(results['NII_FILE'], ground_thruth_filenames(test_data.FAILING_SLICEINCREMENT_2)[0]) self.assertTrue(isinstance(results['NII'], nibabel.nifti1.Nifti1Image)) finally: settings.disable_resampling() settings.enable_validate_slice_increment() settings.enable_validate_orientation() shutil.rmtree(tmp_output_dir) def test_not_a_volume(self): tmp_output_dir = tempfile.mkdtemp() try: settings.disable_validate_orthogonal() with self.assertRaises(ConversionError) as exception: convert_generic.dicom_to_nifti(read_dicom_directory(test_data.FAILING_NOTAVOLUME), os.path.join(tmp_output_dir, 'test.nii.gz')) self.assertEqual(str(exception.exception), 'NOT_A_VOLUME') finally: settings.enable_validate_orthogonal() shutil.rmtree(tmp_output_dir) def test_is_dicom_file(self): input_file = os.path.join(test_data.GENERIC_COMPRESSED, 'IM-0001-0001-0001.dcm') assert is_dicom_file(input_file) temporary_directory = tempfile.mkdtemp() try: # test for empty file non_dicom1 = os.path.join(temporary_directory, 'non_dicom.dcm') open(non_dicom1, 'a').close() assert not is_dicom_file(non_dicom1) # test for non empty file non_dicom2 = os.path.join(temporary_directory, 'non_dicom2.dcm') with open(non_dicom2, 'w') as file_2: file_2.write(''.join(random.SystemRandom().choice(string.digits) for _ in range(300))) assert not is_dicom_file(non_dicom2) finally: shutil.rmtree(temporary_directory) if __name__ == '__main__': unittest.main()
40.25
110
0.649938
1a68eccb312a1ae8df487ecfc214c379035f4a91
5,618
py
Python
homeassistant/components/iperf3/__init__.py
alemuro/home-assistant
9b1315d8e55f0ca906c4c8a1b2ae8c2ea511dc90
[ "Apache-2.0" ]
2
2019-10-19T15:07:32.000Z
2022-01-29T10:33:20.000Z
homeassistant/components/iperf3/__init__.py
alemuro/home-assistant
9b1315d8e55f0ca906c4c8a1b2ae8c2ea511dc90
[ "Apache-2.0" ]
4
2021-02-08T21:05:14.000Z
2021-09-08T02:57:03.000Z
homeassistant/components/iperf3/__init__.py
alemuro/home-assistant
9b1315d8e55f0ca906c4c8a1b2ae8c2ea511dc90
[ "Apache-2.0" ]
2
2019-01-21T05:49:23.000Z
2019-02-19T16:30:48.000Z
"""Support for Iperf3 network measurement tool.""" import logging from datetime import timedelta import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.components.sensor import DOMAIN as SENSOR_DOMAIN from homeassistant.const import ( CONF_MONITORED_CONDITIONS, CONF_PORT, CONF_HOST, CONF_PROTOCOL, CONF_HOSTS, CONF_SCAN_INTERVAL, ) from homeassistant.helpers.discovery import async_load_platform from homeassistant.helpers.dispatcher import dispatcher_send from homeassistant.helpers.event import async_track_time_interval DOMAIN = "iperf3" DATA_UPDATED = "{}_data_updated".format(DOMAIN) _LOGGER = logging.getLogger(__name__) CONF_DURATION = "duration" CONF_PARALLEL = "parallel" CONF_MANUAL = "manual" DEFAULT_DURATION = 10 DEFAULT_PORT = 5201 DEFAULT_PARALLEL = 1 DEFAULT_PROTOCOL = "tcp" DEFAULT_INTERVAL = timedelta(minutes=60) ATTR_DOWNLOAD = "download" ATTR_UPLOAD = "upload" ATTR_VERSION = "Version" ATTR_HOST = "host" UNIT_OF_MEASUREMENT = "Mbit/s" SENSOR_TYPES = { ATTR_DOWNLOAD: [ATTR_DOWNLOAD.capitalize(), UNIT_OF_MEASUREMENT], ATTR_UPLOAD: [ATTR_UPLOAD.capitalize(), UNIT_OF_MEASUREMENT], } PROTOCOLS = ["tcp", "udp"] HOST_CONFIG_SCHEMA = vol.Schema( { vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_DURATION, default=DEFAULT_DURATION): vol.Range(5, 10), vol.Optional(CONF_PARALLEL, default=DEFAULT_PARALLEL): vol.Range(1, 20), vol.Optional(CONF_PROTOCOL, default=DEFAULT_PROTOCOL): vol.In(PROTOCOLS), } ) CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_HOSTS): vol.All(cv.ensure_list, [HOST_CONFIG_SCHEMA]), vol.Optional( CONF_MONITORED_CONDITIONS, default=list(SENSOR_TYPES) ): vol.All(cv.ensure_list, [vol.In(list(SENSOR_TYPES))]), vol.Optional(CONF_SCAN_INTERVAL, default=DEFAULT_INTERVAL): vol.All( cv.time_period, cv.positive_timedelta ), vol.Optional(CONF_MANUAL, default=False): cv.boolean, } ) }, extra=vol.ALLOW_EXTRA, ) SERVICE_SCHEMA = vol.Schema({vol.Optional(ATTR_HOST, default=None): cv.string}) async def async_setup(hass, config): """Set up the iperf3 component.""" import iperf3 hass.data[DOMAIN] = {} conf = config[DOMAIN] for host in conf[CONF_HOSTS]: host_name = host[CONF_HOST] client = iperf3.Client() client.duration = host[CONF_DURATION] client.server_hostname = host_name client.port = host[CONF_PORT] client.num_streams = host[CONF_PARALLEL] client.protocol = host[CONF_PROTOCOL] client.verbose = False data = hass.data[DOMAIN][host_name] = Iperf3Data(hass, client) if not conf[CONF_MANUAL]: async_track_time_interval(hass, data.update, conf[CONF_SCAN_INTERVAL]) def update(call): """Service call to manually update the data.""" called_host = call.data[ATTR_HOST] if called_host in hass.data[DOMAIN]: hass.data[DOMAIN][called_host].update() else: for iperf3_host in hass.data[DOMAIN].values(): iperf3_host.update() hass.services.async_register(DOMAIN, "speedtest", update, schema=SERVICE_SCHEMA) hass.async_create_task( async_load_platform( hass, SENSOR_DOMAIN, DOMAIN, conf[CONF_MONITORED_CONDITIONS], config ) ) return True class Iperf3Data: """Get the latest data from iperf3.""" def __init__(self, hass, client): """Initialize the data object.""" self._hass = hass self._client = client self.data = {ATTR_DOWNLOAD: None, ATTR_UPLOAD: None, ATTR_VERSION: None} @property def protocol(self): """Return the protocol used for this connection.""" return self._client.protocol @property def host(self): """Return the host connected to.""" return self._client.server_hostname @property def port(self): """Return the port on the host connected to.""" return self._client.port def update(self, now=None): """Get the latest data from iperf3.""" if self.protocol == "udp": # UDP only have 1 way attribute result = self._run_test(ATTR_DOWNLOAD) self.data[ATTR_DOWNLOAD] = self.data[ATTR_UPLOAD] = getattr( result, "Mbps", None ) self.data[ATTR_VERSION] = getattr(result, "version", None) else: result = self._run_test(ATTR_DOWNLOAD) self.data[ATTR_DOWNLOAD] = getattr(result, "received_Mbps", None) self.data[ATTR_VERSION] = getattr(result, "version", None) self.data[ATTR_UPLOAD] = getattr( self._run_test(ATTR_UPLOAD), "sent_Mbps", None ) dispatcher_send(self._hass, DATA_UPDATED, self.host) def _run_test(self, test_type): """Run and return the iperf3 data.""" self._client.reverse = test_type == ATTR_DOWNLOAD try: result = self._client.run() except (AttributeError, OSError, ValueError) as error: _LOGGER.error("Iperf3 error: %s", error) return None if result is not None and hasattr(result, "error") and result.error is not None: _LOGGER.error("Iperf3 error: %s", result.error) return None return result
31.038674
88
0.649875
914e91e19ed4c4f7e5a9ccdf8b02b4d46aca28c7
1,089
py
Python
certificates/certificates/urls.py
iamsajjad/certificates
4c639e8da3a6f193ab6705b522d4d89b48b7c7d5
[ "MIT" ]
null
null
null
certificates/certificates/urls.py
iamsajjad/certificates
4c639e8da3a6f193ab6705b522d4d89b48b7c7d5
[ "MIT" ]
null
null
null
certificates/certificates/urls.py
iamsajjad/certificates
4c639e8da3a6f193ab6705b522d4d89b48b7c7d5
[ "MIT" ]
null
null
null
"""certificates URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf import settings from django.contrib import admin from django.conf.urls.static import static from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), #Author URLs path('account/', include('author.urls')), #Dashboard URLs "Home Page" path('', include('dashboard.urls')), #Students URLs "Home Page" path('', include('graduates.urls')), path('logs', include('logger.urls')), ]
35.129032
77
0.69697
22b405f3191ad6552fe07d5953c01d6408342dd7
8,361
py
Python
tests/integration/callbacks/test_layout_paths_with_callbacks.py
jackwiy/dash
5e406868be2ac17f129e61eb951a52b0bf290aca
[ "MIT" ]
1
2020-03-20T21:44:44.000Z
2020-03-20T21:44:44.000Z
tests/integration/callbacks/test_layout_paths_with_callbacks.py
gwu1/dash
6d27808698b4be4d8c778291431f085ad4a19482
[ "MIT" ]
1
2022-02-28T03:20:59.000Z
2022-02-28T03:20:59.000Z
tests/integration/callbacks/test_layout_paths_with_callbacks.py
gwu1/dash
6d27808698b4be4d8c778291431f085ad4a19482
[ "MIT" ]
null
null
null
import os import json from multiprocessing import Value import dash_core_components as dcc import dash_html_components as html from dash import Dash from dash.dependencies import Input, Output import dash.testing.wait as wait def test_cblp001_radio_buttons_callbacks_generating_children(dash_duo): TIMEOUT = 2 with open(os.path.join(os.path.dirname(__file__), "state_path.json")) as fp: EXPECTED_PATHS = json.load(fp) app = Dash(__name__) app.layout = html.Div( [ dcc.RadioItems( options=[ {"label": "Chapter 1", "value": "chapter1"}, {"label": "Chapter 2", "value": "chapter2"}, {"label": "Chapter 3", "value": "chapter3"}, {"label": "Chapter 4", "value": "chapter4"}, {"label": "Chapter 5", "value": "chapter5"}, ], value="chapter1", id="toc", ), html.Div(id="body"), ] ) for script in dcc._js_dist: app.scripts.append_script(script) chapters = { "chapter1": html.Div( [ html.H1("Chapter 1", id="chapter1-header"), dcc.Dropdown( options=[{"label": i, "value": i} for i in ["NYC", "MTL", "SF"]], value="NYC", id="chapter1-controls", ), html.Label(id="chapter1-label"), dcc.Graph(id="chapter1-graph"), ] ), # Chapter 2 has the some of the same components in the same order # as Chapter 1. This means that they won't get remounted # unless they set their own keys are differently. # Switching back and forth between 1 and 2 implicitly # tests how components update when they aren't remounted. "chapter2": html.Div( [ html.H1("Chapter 2", id="chapter2-header"), dcc.RadioItems( options=[{"label": i, "value": i} for i in ["USA", "Canada"]], value="USA", id="chapter2-controls", ), html.Label(id="chapter2-label"), dcc.Graph(id="chapter2-graph"), ] ), # Chapter 3 has a different layout and so the components # should get rewritten "chapter3": [ html.Div( html.Div( [ html.H3("Chapter 3", id="chapter3-header"), html.Label(id="chapter3-label"), dcc.Graph(id="chapter3-graph"), dcc.RadioItems( options=[ {"label": i, "value": i} for i in ["Summer", "Winter"] ], value="Winter", id="chapter3-controls", ), ] ) ) ], # Chapter 4 doesn't have an object to recursively traverse "chapter4": "Just a string", } call_counts = { "body": Value("i", 0), "chapter1-graph": Value("i", 0), "chapter1-label": Value("i", 0), "chapter2-graph": Value("i", 0), "chapter2-label": Value("i", 0), "chapter3-graph": Value("i", 0), "chapter3-label": Value("i", 0), } @app.callback(Output("body", "children"), [Input("toc", "value")]) def display_chapter(toc_value): call_counts["body"].value += 1 return chapters[toc_value] app.config.suppress_callback_exceptions = True def generate_graph_callback(counterId): def callback(value): call_counts[counterId].value += 1 return { "data": [ { "x": ["Call Counter"], "y": [call_counts[counterId].value], "type": "bar", } ], "layout": {"title": value}, } return callback def generate_label_callback(id_): def update_label(value): call_counts[id_].value += 1 return value return update_label for chapter in ["chapter1", "chapter2", "chapter3"]: app.callback( Output("{}-graph".format(chapter), "figure"), [Input("{}-controls".format(chapter), "value")], )(generate_graph_callback("{}-graph".format(chapter))) app.callback( Output("{}-label".format(chapter), "children"), [Input("{}-controls".format(chapter), "value")], )(generate_label_callback("{}-label".format(chapter))) dash_duo.start_server(app) def check_chapter(chapter): dash_duo.wait_for_element("#{}-graph:not(.dash-graph--pending)".format(chapter)) for key in dash_duo.redux_state_paths: assert dash_duo.find_elements( "#{}".format(key) ), "each element should exist in the dom" value = ( chapters[chapter][0]["{}-controls".format(chapter)].value if chapter == "chapter3" else chapters[chapter]["{}-controls".format(chapter)].value ) # check the actual values dash_duo.wait_for_text_to_equal("#{}-label".format(chapter), value) wait.until( lambda: ( dash_duo.driver.execute_script( "return document." 'querySelector("#{}-graph:not(.dash-graph--pending) .js-plotly-plot").'.format( chapter ) + "layout.title.text" ) == value ), TIMEOUT, ) rqs = dash_duo.redux_state_rqs assert rqs, "request queue is not empty" assert all((rq["status"] == 200 and not rq["rejected"] for rq in rqs)) def check_call_counts(chapters, count): for chapter in chapters: assert call_counts[chapter + "-graph"].value == count assert call_counts[chapter + "-label"].value == count wait.until(lambda: call_counts["body"].value == 1, TIMEOUT) wait.until(lambda: call_counts["chapter1-graph"].value == 1, TIMEOUT) wait.until(lambda: call_counts["chapter1-label"].value == 1, TIMEOUT) check_call_counts(("chapter2", "chapter3"), 0) assert dash_duo.redux_state_paths == EXPECTED_PATHS["chapter1"] check_chapter("chapter1") dash_duo.percy_snapshot(name="chapter-1") dash_duo.find_elements('input[type="radio"]')[1].click() # switch chapters wait.until(lambda: call_counts["body"].value == 2, TIMEOUT) wait.until(lambda: call_counts["chapter2-graph"].value == 1, TIMEOUT) wait.until(lambda: call_counts["chapter2-label"].value == 1, TIMEOUT) check_call_counts(("chapter1",), 1) assert dash_duo.redux_state_paths == EXPECTED_PATHS["chapter2"] check_chapter("chapter2") dash_duo.percy_snapshot(name="chapter-2") # switch to 3 dash_duo.find_elements('input[type="radio"]')[2].click() wait.until(lambda: call_counts["body"].value == 3, TIMEOUT) wait.until(lambda: call_counts["chapter3-graph"].value == 1, TIMEOUT) wait.until(lambda: call_counts["chapter3-label"].value == 1, TIMEOUT) check_call_counts(("chapter2", "chapter1"), 1) assert dash_duo.redux_state_paths == EXPECTED_PATHS["chapter3"] check_chapter("chapter3") dash_duo.percy_snapshot(name="chapter-3") dash_duo.find_elements('input[type="radio"]')[3].click() # switch to 4 dash_duo.wait_for_text_to_equal("#body", "Just a string") dash_duo.percy_snapshot(name="chapter-4") for key in dash_duo.redux_state_paths: assert dash_duo.find_elements( "#{}".format(key) ), "each element should exist in the dom" assert dash_duo.redux_state_paths == { "toc": ["props", "children", 0], "body": ["props", "children", 1], } dash_duo.find_elements('input[type="radio"]')[0].click() wait.until( lambda: dash_duo.redux_state_paths == EXPECTED_PATHS["chapter1"], TIMEOUT, ) check_chapter("chapter1") dash_duo.percy_snapshot(name="chapter-1-again")
35.578723
99
0.537256
b23007b7d9dcd57d447fd479ffb2e409e227d168
5,926
py
Python
yara/yarascan/yarascan.py
malvidin/stoq-plugins-public
8aaf3b97dc3972ca852d2a73a7899afa7394f9bb
[ "Apache-2.0" ]
null
null
null
yara/yarascan/yarascan.py
malvidin/stoq-plugins-public
8aaf3b97dc3972ca852d2a73a7899afa7394f9bb
[ "Apache-2.0" ]
null
null
null
yara/yarascan/yarascan.py
malvidin/stoq-plugins-public
8aaf3b97dc3972ca852d2a73a7899afa7394f9bb
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2014-present PUNCH Cyber Analytics Group # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Overview ======== Process a payload using yara """ import os import yara from pathlib import Path from inspect import currentframe, getframeinfo from typing import Dict, Generator, List, Optional from stoq.helpers import StoqConfigParser from stoq.exceptions import StoqPluginException from stoq.plugins import WorkerPlugin, DispatcherPlugin from stoq import Payload, Request, WorkerResponse, DispatcherResponse class YaraPlugin(WorkerPlugin, DispatcherPlugin): def __init__(self, config: StoqConfigParser) -> None: super().__init__(config) self.dispatch_rules = None self.worker_rules = None filename = getframeinfo(currentframe()).filename # type: ignore parent = Path(filename).resolve().parent self.timeout = config.getint('options', 'timeout', fallback=60) self.strings_limit = config.getint('options', 'strings_limit', fallback=None) self.xor_first_match = config.getboolean('options', 'xor_first_match', fallback=True) dispatch_ruleset = config.get( 'options', 'dispatch_rules', fallback='rules/dispatcher.yar' ) if dispatch_ruleset: if not os.path.isabs(dispatch_ruleset): dispatch_ruleset = os.path.join(parent, dispatch_ruleset) self.dispatch_rules = self._compile_rules(dispatch_ruleset) worker_ruleset = config.get( 'options', 'worker_rules', fallback='rules/stoq.yar' ) if worker_ruleset: if not os.path.isabs(worker_ruleset): worker_ruleset = os.path.join(parent, worker_ruleset) self.worker_rules = self._compile_rules(worker_ruleset) async def scan(self, payload: Payload, request: Request) -> WorkerResponse: results = { 'matches': [ m for m in self._yara_matches(payload.content, self.worker_rules) ] } return WorkerResponse(results=results) async def get_dispatches( self, payload: Payload, request: Request ) -> DispatcherResponse: dr = DispatcherResponse() for match in self._yara_matches(payload.content, self.dispatch_rules): if match['meta'].get('save', '').lower().strip() == 'false': payload.results.payload_meta.should_archive = False plugin_names = self._extract_plugin_names(match) if 'xor' in plugin_names: self._plugin_xor_extract_key(match) for name in plugin_names: dr.plugin_names.append(name) dr.meta[name] = match return dr def _compile_rules(self, filepath: str) -> yara: filepath = os.path.realpath(filepath) if not os.path.isfile(filepath): raise StoqPluginException( f'Nonexistent yara rules file provided: {filepath}' ) else: return yara.compile(filepath=filepath) def _yara_matches(self, content: bytes, rules: yara) -> Generator[Dict, None, None]: matches = rules.match(data=content, timeout=self.timeout) for match in matches: yield { 'tags': match.tags, 'namespace': match.namespace, 'rule': match.rule, 'meta': match.meta, 'strings': match.strings[: self.strings_limit], } def _extract_plugin_names(self, match: dict) -> set: plugin_names = set() if 'meta' in match: plugin_str = match['meta'].get('plugin', '').lower().strip() plugin_names.update({p.strip() for p in plugin_str.split(',') if p.strip()}) return plugin_names def _plugin_xor_extract_key(self, match: dict) -> None: # Extract XOR key using plaintext in metadata against strings, see YARA issue #1242 for known issues if 'strings' not in match or 'meta' not in match: return xor_pt_prefix = 'xor_plaintext_for_string_' xor_info = [] xor_pt = {'$' + k[len(xor_pt_prefix):]: v for k, v in match['meta'].items() if k.startswith(xor_pt_prefix) and v} if xor_pt: for offset, label, match_bytes in match['strings']: if label not in xor_pt: continue xor_pt_bytes = bytes(xor_pt[label], 'utf8') if len(xor_pt_bytes) != len(match_bytes): continue key = self._xor_extract_key(match_bytes, xor_pt_bytes) if key and self.xor_first_match: xorkey = key[0] if len(key) == 1 else bytes(key) match['meta']['xorkey'] = repr(xorkey) return elif key: xor_info.append((offset, label, key)) if xor_info: match['meta']['xor_info'] = repr(xor_info) def _xor_extract_key(self, ct_bytes, pt_bytes) -> bytes: key_list = bytearray(a ^ b for (a, b) in zip(pt_bytes, ct_bytes)) keys_len = len(key_list) for i in range(1, keys_len): sub_key = key_list[:i] overlap_key = sub_key * (1 + keys_len // i) if overlap_key[:keys_len] == key_list: key = bytes(sub_key) return key
40.312925
121
0.616774
9f0a19d4a94e151885b91026b57fc94e6f53b499
893
py
Python
jelly_display_2/display_collected_values_search.py
chalbersma/manowar
023a696f7ea0458e1c2ae9a18e40a9d09e824cc4
[ "BSD-2-Clause" ]
3
2019-02-16T03:14:11.000Z
2020-05-28T23:14:23.000Z
jelly_display_2/display_collected_values_search.py
chalbersma/manowar
023a696f7ea0458e1c2ae9a18e40a9d09e824cc4
[ "BSD-2-Clause" ]
4
2018-08-09T22:39:59.000Z
2020-02-12T00:36:47.000Z
jelly_display_2/display_collected_values_search.py
chalbersma/manowar
023a696f7ea0458e1c2ae9a18e40a9d09e824cc4
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 ''' Copyright 2018, VDMS Licensed under the terms of the BSD 2-clause license. See LICENSE file for terms. ''' import json import ast import requests from flask import current_app, Blueprint, g, request, jsonify, render_template display_collected_values_search = Blueprint( 'display2_collected_values_search', __name__) @display_collected_values_search.route("/collected/values_search") @display_collected_values_search.route("/collected/values_search/") def display2_collected_values_search(ctype="Insert type", csubtype="Insert Subtype"): ''' Return the Collected Values Search Form ''' if "ctype" in request.args: ctype = request.args["ctype"] if "csubtype" in request.args: csubtype = request.args["csubtype"] return render_template('display_V2/collected_values_search.html', ctype=ctype, csubtype=csubtype)
27.060606
101
0.75252
b81c1ea16d8da7c1f1f1d99a5520a9b382d1708c
5,664
py
Python
evidently/widgets/prob_class_prod_quality_metrics_widget.py
jayeshmalu/evidently
789f9a04827d166369d965eacbd11306eac6b961
[ "Apache-2.0" ]
1
2021-05-08T01:58:08.000Z
2021-05-08T01:58:08.000Z
evidently/widgets/prob_class_prod_quality_metrics_widget.py
felipeescallon/evidently
f6243973998a74e3bdbfe891b02bccc35888e349
[ "Apache-2.0" ]
null
null
null
evidently/widgets/prob_class_prod_quality_metrics_widget.py
felipeescallon/evidently
f6243973998a74e3bdbfe891b02bccc35888e349
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 import json import pandas as pd from pandas.api.types import is_numeric_dtype import numpy as np import math from scipy.stats import ks_2samp from sklearn import metrics, preprocessing from evidently.model.widget import BaseWidgetInfo, AlertStats, AdditionalGraphInfo from evidently.widgets.widget import Widget red = "#ed0400" grey = "#4d4d4d" class ProbClassProdQualityMetricsWidget(Widget): def __init__(self, title: str): super().__init__() self.title = title def get_info(self) -> BaseWidgetInfo: #if self.wi: return self.wi #raise ValueError("No reference data with target and prediction provided") def calculate(self, reference_data: pd.DataFrame, production_data: pd.DataFrame, column_mapping): if column_mapping: date_column = column_mapping.get('datetime') id_column = column_mapping.get('id') target_column = column_mapping.get('target') prediction_column = column_mapping.get('prediction') num_feature_names = column_mapping.get('numerical_features') if num_feature_names is None: num_feature_names = [] else: num_feature_names = [name for name in num_feature_names if is_numeric_dtype(reference_data[name])] cat_feature_names = column_mapping.get('categorical_features') if cat_feature_names is None: cat_feature_names = [] else: cat_feature_names = [name for name in cat_feature_names if is_numeric_dtype(reference_data[name])] else: date_column = 'datetime' if 'datetime' in reference_data.columns else None id_column = None target_column = 'target' if 'target' in reference_data.columns else None prediction_column = 'prediction' if 'prediction' in reference_data.columns else None utility_columns = [date_column, id_column, target_column, prediction_column] num_feature_names = list(set(reference_data.select_dtypes([np.number]).columns) - set(utility_columns)) cat_feature_names = list(set(reference_data.select_dtypes([np.object]).columns) - set(utility_columns)) if production_data is not None: if target_column is not None and prediction_column is not None: production_data.replace([np.inf, -np.inf], np.nan, inplace=True) production_data.dropna(axis=0, how='any', inplace=True) binaraizer = preprocessing.LabelBinarizer() binaraizer.fit(reference_data[target_column]) binaraized_target = binaraizer.transform(production_data[target_column]) array_prediction = production_data[prediction_column].to_numpy() prediction_ids = np.argmax(array_prediction, axis=-1) prediction_labels = [prediction_column[x] for x in prediction_ids] #calculate quality metrics if len(prediction_column) > 2: roc_auc = metrics.roc_auc_score(binaraized_target, array_prediction, average='macro') log_loss = metrics.log_loss(binaraized_target, array_prediction) else: roc_auc = metrics.roc_auc_score(binaraized_target, production_data[prediction_column[0]]) #problem!!! log_loss = metrics.log_loss(binaraized_target, production_data[prediction_column[0]]) #problem!!! accuracy_score = metrics.accuracy_score(production_data[target_column], prediction_labels) avg_precision = metrics.precision_score(production_data[target_column], prediction_labels, average='macro') avg_recall = metrics.recall_score(production_data[target_column], prediction_labels, average='macro') avg_f1 = metrics.f1_score(production_data[target_column], prediction_labels, average='macro') self.wi = BaseWidgetInfo( title=self.title, type="counter", details="", alertStats=AlertStats(), alerts=[], alertsPosition="row", insights=[], size=2, params={ "counters": [ { "value": str(round(accuracy_score, 3)), "label": "Accuracy" }, { "value": str(round(avg_precision, 3)), "label": "Precision" }, { "value": str(round(avg_recall, 3)), "label": "Recall" }, { "value": str(round(avg_f1, 3)), "label": "F1" }, { "value": str(round(roc_auc, 3)), "label": "ROC AUC" }, { "value": str(round(log_loss, 3)), "label": "LogLoss" } ] }, additionalGraphs=[], ) else: self.wi = None else: self.wi = None
42.586466
121
0.543256
9a4a8be3da312ad182fc81ca0a9002ca69a75d31
189
py
Python
03/03_P7.py
endowp/Python101
9c29387f4ed53d10579613ecf5153b71abf7ccd7
[ "MIT" ]
null
null
null
03/03_P7.py
endowp/Python101
9c29387f4ed53d10579613ecf5153b71abf7ccd7
[ "MIT" ]
null
null
null
03/03_P7.py
endowp/Python101
9c29387f4ed53d10579613ecf5153b71abf7ccd7
[ "MIT" ]
null
null
null
import math x=float(input()) cosxn,cosx=1,0.0 k=0 while (cosxn>=10**-8)or(-1*cosxn>=10**-8): cosxn=(((-1)**k)*(x**(2*k)))/(math.factorial(2*k)) cosx+=cosxn k+=1 print(cosx,k-2)
18.9
54
0.560847
cf4c0e900802a3576843f29c51ce61c009a8e4c9
589
py
Python
examples/python.py
charles-l/pyinfra
1992d98ff31d41404427dbb3cc6095a7bebd4052
[ "MIT" ]
1
2020-12-24T08:24:13.000Z
2020-12-24T08:24:13.000Z
examples/python.py
charles-l/pyinfra
1992d98ff31d41404427dbb3cc6095a7bebd4052
[ "MIT" ]
null
null
null
examples/python.py
charles-l/pyinfra
1992d98ff31d41404427dbb3cc6095a7bebd4052
[ "MIT" ]
1
2021-11-12T18:36:01.000Z
2021-11-12T18:36:01.000Z
from pyinfra.operations import python # Tip: Can run try it out using: 'pyinfra @docker/python python.py' SUDO = True def my_callback(state, host, hello=None): command = 'echo hello' if hello: command = command + ' ' + hello status, stdout, stderr = host.run_shell_command(state, command=command, sudo=SUDO) assert status is True # ensure the command executed OK if 'hello ' not in str(stdout): raise Exception('`{}` problem with callback stdout:{} stderr:{}'.format( command, stdout, stderr)) python.call(my_callback, hello='world')
29.45
86
0.672326
6ad70a7abb52c32e5347837aa91d1cbc208f4692
310
py
Python
Problem5_10/summation_of_primes.py
Vaibhavi1707/Project-Euler
3f625c69e4289fb9f09a4d4ef3b2618ebf4c2777
[ "MIT" ]
2
2021-05-29T16:59:30.000Z
2021-11-26T17:30:33.000Z
Problem5_10/summation_of_primes.py
Vaibhavi1707/Project-Euler
3f625c69e4289fb9f09a4d4ef3b2618ebf4c2777
[ "MIT" ]
null
null
null
Problem5_10/summation_of_primes.py
Vaibhavi1707/Project-Euler
3f625c69e4289fb9f09a4d4ef3b2618ebf4c2777
[ "MIT" ]
5
2021-05-19T13:16:21.000Z
2021-05-21T11:48:20.000Z
#Project euler problem 10 #Problem link https://projecteuler.net/problem=10 def sumPrimes(n): sum, sieve = 0, [True] * n for p in range(2, n): if sieve[p]: sum += p for i in range(p * p, n, p): sieve[i] = False return sum print(sumPrimes(2000000))
22.142857
49
0.545161
f0bfe91d4d5cb8eecf5059e0a7620678d8f21d9c
1,767
py
Python
tests/unit/test_client.py
zakiharis/sam-simple-chat
729f1d3935d480efcad52b60e3b4ff4bed3f8c12
[ "Unlicense" ]
1
2021-07-28T06:53:12.000Z
2021-07-28T06:53:12.000Z
tests/unit/test_client.py
zakiharis/sam-simple-chat
729f1d3935d480efcad52b60e3b4ff4bed3f8c12
[ "Unlicense" ]
null
null
null
tests/unit/test_client.py
zakiharis/sam-simple-chat
729f1d3935d480efcad52b60e3b4ff4bed3f8c12
[ "Unlicense" ]
null
null
null
import client import termcolor import websocket from click.testing import CliRunner def test_on_message(mocker, monkeypatch): def mock_colored(msg, color): assert msg == 'hello world...' assert color == 'green' return None monkeypatch.setattr(termcolor, 'colored', mock_colored) message = 'hello world...' client.on_message(mocker, message) def test_on_error(mocker, monkeypatch): def mock_colored(msg, color): assert msg == 'error found' assert color == 'red' return None monkeypatch.setattr(termcolor, 'colored', mock_colored) message = 'error found' client.on_error(mocker, message) def test_on_close(monkeypatch): def mock_colored(msg, color): assert msg == 'Bye! See you again.' assert color == 'blue' return None def mock_close(): return None class Struct(object): pass mocker = Struct() mocker.close = Struct() monkeypatch.setattr(termcolor, 'colored', mock_colored) monkeypatch.setattr(mocker, 'close', mock_close) client.on_close(mocker) def test_main(monkeypatch): runner = CliRunner() def mock_web_socket_app(ws_url, on_message, on_error, on_close): assert ws_url == 'wss://testdomain/test?username=Test User' class Struct(object): def run_forever(self): pass mocker = Struct() mocker.on_open = None return mocker monkeypatch.setattr(websocket, 'WebSocketApp', mock_web_socket_app) mock_ws_server_url = 'wss://testdomain/test' mock_username = 'Test User' result = runner.invoke(client.main, ['--server-url', mock_ws_server_url, '--username', mock_username]) assert result.exit_code == 0
24.887324
106
0.657612
9cf2371d09d9f07a15abd2f8c2b022752242bf7f
21,660
py
Python
vnpy/gateway/binance/binance_gateway.py
whypro/vnpy
2403975311a0f0665e82c5f0ecb9fb1c455877a9
[ "MIT" ]
4
2020-04-01T18:46:56.000Z
2021-08-29T09:45:47.000Z
vnpy/gateway/binance/binance_gateway.py
whypro/vnpy
2403975311a0f0665e82c5f0ecb9fb1c455877a9
[ "MIT" ]
2
2019-08-04T01:45:37.000Z
2019-08-04T01:48:18.000Z
vnpy/gateway/binance/binance_gateway.py
whypro/vnpy
2403975311a0f0665e82c5f0ecb9fb1c455877a9
[ "MIT" ]
1
2020-04-12T08:56:56.000Z
2020-04-12T08:56:56.000Z
""" Gateway for Binance Crypto Exchange. """ import urllib import hashlib import hmac import time from copy import copy from datetime import datetime, timedelta from enum import Enum from threading import Lock from vnpy.api.rest import RestClient, Request from vnpy.api.websocket import WebsocketClient from vnpy.trader.constant import ( Direction, Exchange, Product, Status, OrderType, Interval ) from vnpy.trader.gateway import BaseGateway from vnpy.trader.object import ( TickData, OrderData, TradeData, AccountData, ContractData, BarData, OrderRequest, CancelRequest, SubscribeRequest, HistoryRequest ) from vnpy.trader.event import EVENT_TIMER from vnpy.event import Event REST_HOST = "https://www.binance.com" WEBSOCKET_TRADE_HOST = "wss://stream.binance.com:9443/ws/" WEBSOCKET_DATA_HOST = "wss://stream.binance.com:9443/stream?streams=" STATUS_BINANCE2VT = { "NEW": Status.NOTTRADED, "PARTIALLY_FILLED": Status.PARTTRADED, "FILLED": Status.ALLTRADED, "CANCELED": Status.CANCELLED, "REJECTED": Status.REJECTED } ORDERTYPE_VT2BINANCE = { OrderType.LIMIT: "LIMIT", OrderType.MARKET: "MARKET" } ORDERTYPE_BINANCE2VT = {v: k for k, v in ORDERTYPE_VT2BINANCE.items()} DIRECTION_VT2BINANCE = { Direction.LONG: "BUY", Direction.SHORT: "SELL" } DIRECTION_BINANCE2VT = {v: k for k, v in DIRECTION_VT2BINANCE.items()} INTERVAL_VT2BINANCE = { Interval.MINUTE: "1m", Interval.HOUR: "1h", Interval.DAILY: "1d", } TIMEDELTA_MAP = { Interval.MINUTE: timedelta(minutes=1), Interval.HOUR: timedelta(hours=1), Interval.DAILY: timedelta(days=1), } class Security(Enum): NONE = 0 SIGNED = 1 API_KEY = 2 symbol_name_map = {} class BinanceGateway(BaseGateway): """ VN Trader Gateway for Binance connection. """ default_setting = { "key": "", "secret": "", "session_number": 3, "proxy_host": "", "proxy_port": 0, } exchanges = [Exchange.BINANCE] def __init__(self, event_engine): """Constructor""" super().__init__(event_engine, "BINANCE") self.trade_ws_api = BinanceTradeWebsocketApi(self) self.market_ws_api = BinanceDataWebsocketApi(self) self.rest_api = BinanceRestApi(self) def connect(self, setting: dict): """""" key = setting["key"] secret = setting["secret"] session_number = setting["session_number"] proxy_host = setting["proxy_host"] proxy_port = setting["proxy_port"] self.rest_api.connect(key, secret, session_number, proxy_host, proxy_port) self.market_ws_api.connect(proxy_host, proxy_port) self.event_engine.register(EVENT_TIMER, self.process_timer_event) def subscribe(self, req: SubscribeRequest): """""" self.market_ws_api.subscribe(req) def send_order(self, req: OrderRequest): """""" return self.rest_api.send_order(req) def cancel_order(self, req: CancelRequest): """""" self.rest_api.cancel_order(req) def query_account(self): """""" pass def query_position(self): """""" pass def query_history(self, req: HistoryRequest): """""" return self.rest_api.query_history(req) def close(self): """""" self.rest_api.stop() self.trade_ws_api.stop() self.market_ws_api.stop() def process_timer_event(self, event: Event): """""" self.rest_api.keep_user_stream() class BinanceRestApi(RestClient): """ BINANCE REST API """ def __init__(self, gateway: BinanceGateway): """""" super().__init__() self.gateway = gateway self.gateway_name = gateway.gateway_name self.trade_ws_api = self.gateway.trade_ws_api self.key = "" self.secret = "" self.user_stream_key = "" self.keep_alive_count = 0 self.recv_window = 5000 self.time_offset = 0 self.order_count = 1_000_000 self.order_count_lock = Lock() self.connect_time = 0 def sign(self, request): """ Generate BINANCE signature. """ security = request.data["security"] if security == Security.NONE: request.data = None return request if request.params: path = request.path + "?" + urllib.parse.urlencode(request.params) else: request.params = dict() path = request.path if security == Security.SIGNED: timestamp = int(time.time() * 1000) if self.time_offset > 0: timestamp -= abs(self.time_offset) elif self.time_offset < 0: timestamp += abs(self.time_offset) request.params["timestamp"] = timestamp query = urllib.parse.urlencode(sorted(request.params.items())) signature = hmac.new(self.secret, query.encode( "utf-8"), hashlib.sha256).hexdigest() query += "&signature={}".format(signature) path = request.path + "?" + query request.path = path request.params = {} request.data = {} # Add headers headers = { "Content-Type": "application/x-www-form-urlencoded", "Accept": "application/json", "X-MBX-APIKEY": self.key } if security in [Security.SIGNED, Security.API_KEY]: request.headers = headers return request def connect( self, key: str, secret: str, session_number: int, proxy_host: str, proxy_port: int ): """ Initialize connection to REST server. """ self.key = key self.secret = secret.encode() self.proxy_port = proxy_port self.proxy_host = proxy_host self.connect_time = ( int(datetime.now().strftime("%y%m%d%H%M%S")) * self.order_count ) self.init(REST_HOST, proxy_host, proxy_port) self.start(session_number) self.gateway.write_log("REST API启动成功") self.query_time() self.query_account() self.query_order() self.query_contract() self.start_user_stream() def query_time(self): """""" data = { "security": Security.NONE } path = "/api/v1/time" return self.add_request( "GET", path, callback=self.on_query_time, data=data ) def query_account(self): """""" data = {"security": Security.SIGNED} self.add_request( method="GET", path="/api/v3/account", callback=self.on_query_account, data=data ) def query_order(self): """""" data = {"security": Security.SIGNED} self.add_request( method="GET", path="/api/v3/openOrders", callback=self.on_query_order, data=data ) def query_contract(self): """""" data = { "security": Security.NONE } self.add_request( method="GET", path="/api/v1/exchangeInfo", callback=self.on_query_contract, data=data ) def _new_order_id(self): """""" with self.order_count_lock: self.order_count += 1 return self.order_count def send_order(self, req: OrderRequest): """""" orderid = str(self.connect_time + self._new_order_id()) order = req.create_order_data( orderid, self.gateway_name ) self.gateway.on_order(order) data = { "security": Security.SIGNED } params = { "symbol": req.symbol, "timeInForce": "GTC", "side": DIRECTION_VT2BINANCE[req.direction], "type": ORDERTYPE_VT2BINANCE[req.type], "price": str(req.price), "quantity": str(req.volume), "newClientOrderId": orderid, "newOrderRespType": "ACK" } self.add_request( method="POST", path="/api/v3/order", callback=self.on_send_order, data=data, params=params, extra=order, on_error=self.on_send_order_error, on_failed=self.on_send_order_failed ) return order.vt_orderid def cancel_order(self, req: CancelRequest): """""" data = { "security": Security.SIGNED } params = { "symbol": req.symbol, "origClientOrderId": req.orderid } self.add_request( method="DELETE", path="/api/v3/order", callback=self.on_cancel_order, params=params, data=data, extra=req ) def start_user_stream(self): """""" data = { "security": Security.API_KEY } self.add_request( method="POST", path="/api/v1/userDataStream", callback=self.on_start_user_stream, data=data ) def keep_user_stream(self): """""" self.keep_alive_count += 1 if self.keep_alive_count < 600: return self.keep_alive_count = 0 data = { "security": Security.API_KEY } params = { "listenKey": self.user_stream_key } self.add_request( method="PUT", path="/api/v1/userDataStream", callback=self.on_keep_user_stream, params=params, data=data ) def on_query_time(self, data, request): """""" local_time = int(time.time() * 1000) server_time = int(data["serverTime"]) self.time_offset = local_time - server_time def on_query_account(self, data, request): """""" for account_data in data["balances"]: account = AccountData( accountid=account_data["asset"], balance=float(account_data["free"]) + float(account_data["locked"]), frozen=float(account_data["locked"]), gateway_name=self.gateway_name ) if account.balance: self.gateway.on_account(account) self.gateway.write_log("账户资金查询成功") def on_query_order(self, data, request): """""" for d in data: dt = datetime.fromtimestamp(d["time"] / 1000) time = dt.strftime("%Y-%m-%d %H:%M:%S") order = OrderData( orderid=d["clientOrderId"], symbol=d["symbol"], exchange=Exchange.BINANCE, price=float(d["price"]), volume=float(d["origQty"]), type=ORDERTYPE_BINANCE2VT[d["type"]], direction=DIRECTION_BINANCE2VT[d["side"]], traded=float(d["executedQty"]), status=STATUS_BINANCE2VT.get(d["status"], None), time=time, gateway_name=self.gateway_name, ) self.gateway.on_order(order) self.gateway.write_log("委托信息查询成功") def on_query_contract(self, data, request): """""" for d in data["symbols"]: base_currency = d["baseAsset"] quote_currency = d["quoteAsset"] name = f"{base_currency.upper()}/{quote_currency.upper()}" pricetick = 1 min_volume = 1 for f in d["filters"]: if f["filterType"] == "PRICE_FILTER": pricetick = float(f["tickSize"]) elif f["filterType"] == "LOT_SIZE": min_volume = float(f["stepSize"]) contract = ContractData( symbol=d["symbol"], exchange=Exchange.BINANCE, name=name, pricetick=pricetick, size=1, min_volume=min_volume, product=Product.SPOT, history_data=True, gateway_name=self.gateway_name, ) self.gateway.on_contract(contract) symbol_name_map[contract.symbol] = contract.name self.gateway.write_log("合约信息查询成功") def on_send_order(self, data, request): """""" pass def on_send_order_failed(self, status_code: str, request: Request): """ Callback when sending order failed on server. """ order = request.extra order.status = Status.REJECTED self.gateway.on_order(order) msg = f"委托失败,状态码:{status_code},信息:{request.response.text}" self.gateway.write_log(msg) def on_send_order_error( self, exception_type: type, exception_value: Exception, tb, request: Request ): """ Callback when sending order caused exception. """ order = request.extra order.status = Status.REJECTED self.gateway.on_order(order) # Record exception if not ConnectionError if not issubclass(exception_type, ConnectionError): self.on_error(exception_type, exception_value, tb, request) def on_cancel_order(self, data, request): """""" pass def on_start_user_stream(self, data, request): """""" self.user_stream_key = data["listenKey"] self.keep_alive_count = 0 url = WEBSOCKET_TRADE_HOST + self.user_stream_key self.trade_ws_api.connect(url, self.proxy_host, self.proxy_port) def on_keep_user_stream(self, data, request): """""" pass def query_history(self, req: HistoryRequest): """""" history = [] limit = 1000 start_time = int(datetime.timestamp(req.start)) while True: # Create query params params = { "symbol": req.symbol, "interval": INTERVAL_VT2BINANCE[req.interval], "limit": limit, "startTime": start_time * 1000, # convert to millisecond } # Add end time if specified if req.end: end_time = int(datetime.timestamp(req.end)) params["endTime"] = end_time * 1000 # convert to millisecond # Get response from server resp = self.request( "GET", "/api/v1/klines", data={"security": Security.NONE}, params=params ) # Break if request failed with other status code if resp.status_code // 100 != 2: msg = f"获取历史数据失败,状态码:{resp.status_code},信息:{resp.text}" self.gateway.write_log(msg) break else: data = resp.json() if not data: msg = f"获取历史数据为空,开始时间:{start_time}" self.gateway.write_log(msg) break buf = [] for l in data: dt = datetime.fromtimestamp(l[0] / 1000) # convert to second bar = BarData( symbol=req.symbol, exchange=req.exchange, datetime=dt, interval=req.interval, volume=float(l[5]), open_price=float(l[1]), high_price=float(l[2]), low_price=float(l[3]), close_price=float(l[4]), gateway_name=self.gateway_name ) buf.append(bar) history.extend(buf) begin = buf[0].datetime end = buf[-1].datetime msg = f"获取历史数据成功,{req.symbol} - {req.interval.value},{begin} - {end}" self.gateway.write_log(msg) # Break if total data count less than limit (latest date collected) if len(data) < limit: break # Update start time start_dt = bar.datetime + TIMEDELTA_MAP[req.interval] start_time = int(datetime.timestamp(start_dt)) return history class BinanceTradeWebsocketApi(WebsocketClient): """""" def __init__(self, gateway): """""" super().__init__() self.gateway = gateway self.gateway_name = gateway.gateway_name def connect(self, url, proxy_host, proxy_port): """""" self.init(url, proxy_host, proxy_port) self.start() def on_connected(self): """""" self.gateway.write_log("交易Websocket API连接成功") def on_packet(self, packet: dict): # type: (dict)->None """""" if packet["e"] == "outboundAccountInfo": self.on_account(packet) elif packet["e"] == "executionReport": self.on_order(packet) def on_account(self, packet): """""" for d in packet["B"]: account = AccountData( accountid=d["a"], balance=float(d["f"]) + float(d["l"]), frozen=float(d["l"]), gateway_name=self.gateway_name ) if account.balance: self.gateway.on_account(account) def on_order(self, packet: dict): """""" dt = datetime.fromtimestamp(packet["O"] / 1000) time = dt.strftime("%Y-%m-%d %H:%M:%S") if packet["C"] == "null": orderid = packet["c"] else: orderid = packet["C"] order = OrderData( symbol=packet["s"], exchange=Exchange.BINANCE, orderid=orderid, type=ORDERTYPE_BINANCE2VT[packet["o"]], direction=DIRECTION_BINANCE2VT[packet["S"]], price=float(packet["p"]), volume=float(packet["q"]), traded=float(packet["z"]), status=STATUS_BINANCE2VT[packet["X"]], time=time, gateway_name=self.gateway_name ) self.gateway.on_order(order) # Push trade event trade_volume = float(packet["l"]) if not trade_volume: return trade_dt = datetime.fromtimestamp(packet["T"] / 1000) trade_time = trade_dt.strftime("%Y-%m-%d %H:%M:%S") trade = TradeData( symbol=order.symbol, exchange=order.exchange, orderid=order.orderid, tradeid=packet["t"], direction=order.direction, price=float(packet["L"]), volume=trade_volume, time=trade_time, gateway_name=self.gateway_name, ) self.gateway.on_trade(trade) class BinanceDataWebsocketApi(WebsocketClient): """""" def __init__(self, gateway): """""" super().__init__() self.gateway = gateway self.gateway_name = gateway.gateway_name self.ticks = {} def connect(self, proxy_host: str, proxy_port: int): """""" self.proxy_host = proxy_host self.proxy_port = proxy_port def on_connected(self): """""" self.gateway.write_log("行情Websocket API连接刷新") def subscribe(self, req: SubscribeRequest): """""" if req.symbol not in symbol_name_map: self.gateway.write_log(f"找不到该合约代码{req.symbol}") return # Create tick buf data tick = TickData( symbol=req.symbol, name=symbol_name_map.get(req.symbol, ""), exchange=Exchange.BINANCE, datetime=datetime.now(), gateway_name=self.gateway_name, ) self.ticks[req.symbol.lower()] = tick # Close previous connection if self._active: self.stop() self.join() # Create new connection channels = [] for ws_symbol in self.ticks.keys(): channels.append(ws_symbol + "@ticker") channels.append(ws_symbol + "@depth5") url = WEBSOCKET_DATA_HOST + "/".join(channels) self.init(url, self.proxy_host, self.proxy_port) self.start() def on_packet(self, packet): """""" stream = packet["stream"] data = packet["data"] symbol, channel = stream.split("@") tick = self.ticks[symbol] if channel == "ticker": tick.volume = float(data['v']) tick.open_price = float(data['o']) tick.high_price = float(data['h']) tick.low_price = float(data['l']) tick.last_price = float(data['c']) tick.datetime = datetime.fromtimestamp(float(data['E']) / 1000) else: bids = data["bids"] for n in range(5): price, volume = bids[n] tick.__setattr__("bid_price_" + str(n + 1), float(price)) tick.__setattr__("bid_volume_" + str(n + 1), float(volume)) asks = data["asks"] for n in range(5): price, volume = asks[n] tick.__setattr__("ask_price_" + str(n + 1), float(price)) tick.__setattr__("ask_volume_" + str(n + 1), float(volume)) if tick.last_price: self.gateway.on_tick(copy(tick))
27.804878
85
0.536611
eee5f7549e7f3a5a6f39df7b815aca93bc536f48
1,328
py
Python
hackerrank/artificial-intelligence/stack-exchange-question-classifier/stack-exchange-question-classifier.py
yasserglez/programming-problems
08cef1186b182430b231ed9772d8f92ec1d2365b
[ "MIT" ]
2
2017-02-17T01:40:27.000Z
2018-04-22T12:47:28.000Z
hackerrank/artificial-intelligence/stack-exchange-question-classifier/stack-exchange-question-classifier.py
yasserglez/programming-problems
08cef1186b182430b231ed9772d8f92ec1d2365b
[ "MIT" ]
null
null
null
hackerrank/artificial-intelligence/stack-exchange-question-classifier/stack-exchange-question-classifier.py
yasserglez/programming-problems
08cef1186b182430b231ed9772d8f92ec1d2365b
[ "MIT" ]
1
2016-10-14T06:00:42.000Z
2016-10-14T06:00:42.000Z
# https://www.hackerrank.com/challenges/stack-exchange-question-classifier import sys import json import numpy as np from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import SGDClassifier from sklearn.model_selection import cross_val_score def load_corpus(f): n = int(f.readline()) corpus = ([], []) for i in range(n): doc = json.loads(f.readline()) corpus[0].append('{} {}'.format(doc['question'], doc['excerpt'])) if 'topic' in doc: corpus[1].append(doc['topic']) return corpus def build_model(corpus): model = Pipeline([ ('tfidf', TfidfVectorizer(stop_words='english')), ('classifier', SGDClassifier(loss='log', penalty='none', max_iter=100)), ]) # scores = cross_val_score(model, corpus[0], corpus[1], cv=10, n_jobs=-1) # print('CV score:', np.mean(scores)) model.fit(corpus[0], corpus[1]) return model if __name__ == '__main__': np.random.seed(sum(map(ord, 'stack-exchange-question-classifier'))) with open('training.json') as f: training_data = load_corpus(f) model = build_model(training_data) test_data = load_corpus(sys.stdin) topics = model.predict(test_data[0]) print('\n'.join(str(topic) for topic in topics))
30.883721
80
0.670934
5882ad569166c2bba4227e91833ff722bc1115c9
307
py
Python
dandy/config/docs.py
erpcloudsystems/dandy
6721c297644627b85e58419a36570095681df72c
[ "MIT" ]
null
null
null
dandy/config/docs.py
erpcloudsystems/dandy
6721c297644627b85e58419a36570095681df72c
[ "MIT" ]
null
null
null
dandy/config/docs.py
erpcloudsystems/dandy
6721c297644627b85e58419a36570095681df72c
[ "MIT" ]
null
null
null
""" Configuration for docs """ # source_link = "https://github.com/[org_name]/dandy" # docs_base_url = "https://[org_name].github.io/dandy" # headline = "App that does everything" # sub_heading = "Yes, you got that right the first time, everything" def get_context(context): context.brand_html = "Dandy"
25.583333
68
0.716612
c818f53ae191012f825cf475328e092ed7c78dfc
7,665
py
Python
preprocessing/ned.py
flathers/soilCarbonFramework
5d1d4fcd45eb1699b13d683cbaced75d3a341f60
[ "MIT" ]
1
2019-08-18T06:04:09.000Z
2019-08-18T06:04:09.000Z
preprocessing/ned.py
flathers/soilCarbonFramework
5d1d4fcd45eb1699b13d683cbaced75d3a341f60
[ "MIT" ]
null
null
null
preprocessing/ned.py
flathers/soilCarbonFramework
5d1d4fcd45eb1699b13d683cbaced75d3a341f60
[ "MIT" ]
1
2021-02-23T00:18:36.000Z
2021-02-23T00:18:36.000Z
""" Get an extracted mosaic of the elevation data """ import arcpy from arcpy import env from arcpy.sa import * import glob class LicenseError(Exception): pass def mosaic(workspace, out_location, out_raster): # after http://desktop.arcgis.com/en/arcmap/10.4/tools/data-management-toolbox/mosaic-to-new-raster.htm # Description: Mosaics rasters together # Set environment settings env.workspace = workspace # Set local variables in_rasters = ';'.join(glob.glob(workspace + '*.tif')) coordinate_system = arcpy.SpatialReference("NAD 1983 Contiguous USA Albers") data_type = '32_BIT_SIGNED' cell_size = '30' bands = '1' # Execute MosaicToNewRaster arcpy.MosaicToNewRaster_management(in_rasters, out_location, out_raster, coordinate_system, data_type, cell_size, bands) def extract(workspace, in_raster, mask, out_raster): # after http://desktop.arcgis.com/en/arcmap/10.4/tools/spatial-analyst-toolbox/extract-by-mask.htm # Set environment settings env.workspace = workspace # Execute ExtractByMask outExtractByMask = ExtractByMask(in_raster, mask) # Save the output outExtractByMask.save(out_raster) arcpy.BuildPyramids_management(out_raster) def fill_sinks(workspace, in_raster, out_raster): # after http://desktop.arcgis.com/en/arcmap/10.4/tools/spatial-analyst-toolbox/fill.htm # Set environment settings env.workspace = workspace # Execute ExtractByMask outFill = Fill(in_raster) # Save the output outFill.save(out_raster) arcpy.BuildPyramids_management(out_raster) def flow_direction(workspace, in_raster, out_raster): # after http://desktop.arcgis.com/en/arcmap/10.4/tools/spatial-analyst-toolbox/flow-direction.htm # Description: Creates a raster of flow direction from each cell to its # steepest downslope neighbor. # Requirements: Spatial Analyst Extension # Set environment settings env.workspace = workspace # Set local variables inSurfaceRaster = in_raster # Execute FlowDirection outFlowDirection = FlowDirection(inSurfaceRaster, "NORMAL") # Save the output outFlowDirection.save(out_raster) arcpy.BuildPyramids_management(out_raster) def flow_accumulation(workspace, in_raster, out_raster): # after http://desktop.arcgis.com/en/arcmap/10.4/tools/spatial-analyst-toolbox/flow-accumulation.htm # Description: Creates a raster of accumulated flow to each cell. # Requirements: Spatial Analyst Extension # Set environment settings env.workspace = workspace # Set local variables inFlowDirRaster = in_raster inWeightRaster = '' dataType = 'INTEGER' # Execute FlowDirection outFlowAccumulation = FlowAccumulation(inFlowDirRaster, inWeightRaster, dataType) # Save the output outFlowAccumulation.save(out_raster) arcpy.BuildPyramids_management(out_raster) def slope(workspace, in_raster, out_raster): # after http://desktop.arcgis.com/en/arcmap/10.4/tools/spatial-analyst-toolbox/slope.htm # Description: Identifies the rate of maximum change # in z-value from each cell. # Requirements: Spatial Analyst Extension # Set environment settings env.workspace = workspace # Set local variables inRaster = in_raster outMeasurement = 'DEGREE' # Execute Slope slopeDeg = Slope(inRaster, outMeasurement) slopeRad = Times(slopeDeg, math.pi / 180) # Save the output slopeRad.save(out_raster) arcpy.BuildPyramids_management(out_raster) def topographic_wetness_index(workspace, flow_accumulation_raster, slope_raster, out_raster): # Description: Computes topographic wetness index using flow accumulation # and slope after Quin et al. 1991 (note that we assume 30m # cell size, so cell_size_squared = 30^2 = 900) # # Quinn, P. F. B. J., et al. # "The prediction of hillslope flow paths for distributed hydrological # modelling using digital terrain models." # Hydrological processes 5.1 (1991): 59-79. # DOI: 10.1002/hyp.3360050106 # # Requirements: Spatial Analyst Extension # Set environment settings env.workspace = workspace # Execute math processors # Note that each one of these creates a raster file in the workspace, # but we only save the last one. cell_size_squared = 900 tan_slope_raster = Tan(slope_raster) squared_flow_accumulation_raster = Times(flow_accumulation_raster, cell_size_squared) quotient = Divide(squared_flow_accumulation_raster, tan_slope_raster) twi = Ln(quotient) # We need to normalize the twi values: (twi - twi_min) / (twi_max - twi_min) twi_min_result = arcpy.GetRasterProperties_management(twi, "MINIMUM") twi_max_result = arcpy.GetRasterProperties_management(twi, "MAXIMUM") twi_min = float(twi_min_result.getOutput(0)) twi_max = float(twi_max_result.getOutput(0)) twi_top = Minus(twi, twi_min) twi_bottom = twi_max - twi_min twi_norm = Divide(twi_top, twi_bottom) # Save the output twi_norm.save(out_raster) arcpy.BuildPyramids_management(out_raster) if __name__ == "__main__": try: # Grab a license for spatial analyst--we'll need it for just about # everything we do here print 'Checking out ArcGIS Spatial Analyst extension license' if arcpy.CheckExtension("Spatial") == "Available": arcpy.CheckOutExtension("Spatial") print 'CheckOutExtension complete' else: raise LicenseError # Initialize path and file names base_input_path = 'F:/soilCarbon/extractedData/elevation/' base_output_path = 'F:/soilCarbon/inputData/elevation/' mask = 'F:/soilCarbon/extractedData/boundaries/envelope/envelope.shp' mosaic_raster = 'nedMosaic.tif' ned_raster = 'ned.tif' filled_raster = 'nedf' slope_raster = 'slope' flow_direction_raster = 'flowdir' flow_accumulation_raster = 'flowacc' topographic_wetness_index_raster = 'twi' # Build mosaic print 'Building NED mosaic' mosaic(base_input_path, base_output_path, mosaic_raster) # Extract print 'Extracting by mask' extract(base_output_path, mosaic_raster, mask, ned_raster) # Extract print 'Filling sinks' fill_sinks(base_output_path, ned_raster, filled_raster) # Compute derived rasters: slope, flow direction and accumulation, twi print 'Computing slope raster' slope(base_output_path, filled_raster, base_output_path + slope_raster) print 'Computing flow direction raster' flow_direction(base_output_path, filled_raster, base_output_path + flow_direction_raster) print 'Computing flow accumulation raster' flow_accumulation(base_output_path, flow_direction_raster, base_output_path + flow_accumulation_raster) print 'Computing topographic wetness index raster' topographic_wetness_index(base_output_path, flow_accumulation_raster, slope_raster, base_output_path + topographic_wetness_index_raster) except LicenseError: print 'ArcGIS extension license unavailable' except Exception as e: print e finally: # Check the Spatial Analyst Extension license in print 'Checking in ArcGIS Spatial Analyst extension license' status = arcpy.CheckInExtension("Spatial") print 'CheckInExtension complete: ' + status
32.896996
107
0.705545
a2461b6b37d5145bcee8c41758569bde75cc554c
719
py
Python
01_Introductions/06_Multiple_Linear_Regression.py
ivanbgd/Udacity-Deep-Learning-ND101
05f8fe15654f51e4d770af39ee0195f22a84e65c
[ "MIT" ]
1
2017-12-06T23:23:26.000Z
2017-12-06T23:23:26.000Z
01_Introductions/06_Multiple_Linear_Regression.py
ivanbgd/Udacity-Deep-Learning-ND101
05f8fe15654f51e4d770af39ee0195f22a84e65c
[ "MIT" ]
null
null
null
01_Introductions/06_Multiple_Linear_Regression.py
ivanbgd/Udacity-Deep-Learning-ND101
05f8fe15654f51e4d770af39ee0195f22a84e65c
[ "MIT" ]
2
2019-09-02T05:27:35.000Z
2020-03-28T18:27:07.000Z
from sklearn.linear_model import LinearRegression from sklearn.datasets import load_boston # Load the data from the the boston house-prices dataset boston_data = load_boston() X = boston_data['data'] y = boston_data['target'] # Make and fit the linear regression model model = LinearRegression() model.fit(X, y) # Make a prediction using the model sample_house = [[2.29690000e-01, 0.00000000e+00, 1.05900000e+01, 0.00000000e+00, 4.89000000e-01, 6.32600000e+00, 5.25000000e+01, 4.35490000e+00, 4.00000000e+00, 2.77000000e+02, 1.86000000e+01, 3.94870000e+02, 1.09700000e+01]] prediction = model.predict(sample_house) # 23.68420569227329 is the correct prediction! print(prediction)
37.842105
96
0.737135
7a593c3e7e9cb9af148a2a6a39698511ab078d20
646
py
Python
print_all_links.py
jjtoledo/Treinamento-Data-Science
5117975109695b1de06ae43b416972e66a4b7773
[ "MIT" ]
null
null
null
print_all_links.py
jjtoledo/Treinamento-Data-Science
5117975109695b1de06ae43b416972e66a4b7773
[ "MIT" ]
null
null
null
print_all_links.py
jjtoledo/Treinamento-Data-Science
5117975109695b1de06ae43b416972e66a4b7773
[ "MIT" ]
null
null
null
def get_next_target(page): start_link = page.find('<a href=') # Insert your code below here if (start_link == -1): return None, 0 else: start_quote = page.find('"', start_link) end_quote = page.find('"', start_quote + 1) url = page[start_quote + 1:end_quote] return url, end_quote def print_all_links(page): while True: url, endpos = get_next_target(page) if url: print url page = page[endpos:] else: break page = '<a href="www.testes.com" fiopajidoa jiopafdopafho <a href="www.jfioafp.com" fdsaf' print_all_links(page)
23.925926
90
0.589783
9e8d68ab952bafe73e60bce00e854daa9d594505
136,135
py
Python
src/sage/categories/pushout.py
bopopescu/Sage-8
71be00ad5f25ca95381fae7cce96421ffdd43425
[ "BSL-1.0" ]
null
null
null
src/sage/categories/pushout.py
bopopescu/Sage-8
71be00ad5f25ca95381fae7cce96421ffdd43425
[ "BSL-1.0" ]
null
null
null
src/sage/categories/pushout.py
bopopescu/Sage-8
71be00ad5f25ca95381fae7cce96421ffdd43425
[ "BSL-1.0" ]
null
null
null
""" Coercion via Construction Functors """ import six from functor import Functor from basic import * from sage.structure.parent import CoercionException # TODO, think through the rankings, and override pushout where necessary. class ConstructionFunctor(Functor): """ Base class for construction functors. A construction functor is a functorial algebraic construction, such as the construction of a matrix ring over a given ring or the fraction field of a given ring. In addition to the class :class:`~sage.categories.functor.Functor`, construction functors provide rules for combining and merging constructions. This is an important part of Sage's coercion model, namely the pushout of two constructions: When a polynomial ``p`` in a variable ``x`` with integer coefficients is added to a rational number ``q``, then Sage finds that the parents ``ZZ['x']`` and ``QQ`` are obtained from ``ZZ`` by applying a polynomial ring construction respectively the fraction field construction. Each construction functor has an attribute ``rank``, and the rank of the polynomial ring construction is higher than the rank of the fraction field construction. This means that the pushout of ``QQ`` and ``ZZ['x']``, and thus a common parent in which ``p`` and ``q`` can be added, is ``QQ['x']``, since the construction functor with a lower rank is applied first. :: sage: F1, R = QQ.construction() sage: F1 FractionField sage: R Integer Ring sage: F2, R = (ZZ['x']).construction() sage: F2 Poly[x] sage: R Integer Ring sage: F3 = F2.pushout(F1) sage: F3 Poly[x](FractionField(...)) sage: F3(R) Univariate Polynomial Ring in x over Rational Field sage: from sage.categories.pushout import pushout sage: P.<x> = ZZ[] sage: pushout(QQ,P) Univariate Polynomial Ring in x over Rational Field sage: ((x+1) + 1/2).parent() Univariate Polynomial Ring in x over Rational Field When composing two construction functors, they are sometimes merged into one, as is the case in the Quotient construction:: sage: Q15, R = (ZZ.quo(15*ZZ)).construction() sage: Q15 QuotientFunctor sage: Q35, R = (ZZ.quo(35*ZZ)).construction() sage: Q35 QuotientFunctor sage: Q15.merge(Q35) QuotientFunctor sage: Q15.merge(Q35)(ZZ) Ring of integers modulo 5 Functors can not only be applied to objects, but also to morphisms in the respective categories. For example:: sage: P.<x,y> = ZZ[] sage: F = P.construction()[0]; F MPoly[x,y] sage: A.<a,b> = GF(5)[] sage: f = A.hom([a+b,a-b],A) sage: F(A) Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over Finite Field of size 5 sage: F(f) Ring endomorphism of Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over Finite Field of size 5 Defn: Induced from base ring by Ring endomorphism of Multivariate Polynomial Ring in a, b over Finite Field of size 5 Defn: a |--> a + b b |--> a - b sage: F(f)(F(A)(x)*a) (a + b)*x """ def __mul__(self, other): """ Compose ``self`` and ``other`` to a composite construction functor, unless one of them is the identity. NOTE: The product is in functorial notation, i.e., when applying the product to an object, the second factor is applied first. TESTS:: sage: from sage.categories.pushout import IdentityConstructionFunctor sage: I = IdentityConstructionFunctor() sage: F = QQ.construction()[0] sage: P = ZZ['t'].construction()[0] sage: F*P FractionField(Poly[t](...)) sage: P*F Poly[t](FractionField(...)) sage: (F*P)(ZZ) Fraction Field of Univariate Polynomial Ring in t over Integer Ring sage: I*P is P True sage: F*I is F True """ if not isinstance(self, ConstructionFunctor) and not isinstance(other, ConstructionFunctor): raise CoercionException("Non-constructive product") if isinstance(other,IdentityConstructionFunctor): return self if isinstance(self,IdentityConstructionFunctor): return other return CompositeConstructionFunctor(other, self) def pushout(self, other): """ Composition of two construction functors, ordered by their ranks. NOTE: - This method seems not to be used in the coercion model. - By default, the functor with smaller rank is applied first. TESTS:: sage: F = QQ.construction()[0] sage: P = ZZ['t'].construction()[0] sage: F.pushout(P) Poly[t](FractionField(...)) sage: P.pushout(F) Poly[t](FractionField(...)) """ if self.rank > other.rank: return self * other else: return other * self def __cmp__(self, other): """ Equality here means that they are mathematically equivalent, though they may have specific implementation data. This method will usually be overloaded in subclasses. by default, only the types of the functors are compared. Also see the \code{merge} function. TESTS:: sage: from sage.categories.pushout import IdentityConstructionFunctor sage: I = IdentityConstructionFunctor() sage: F = QQ.construction()[0] sage: P = ZZ['t'].construction()[0] sage: I == F # indirect doctest False sage: I == I # indirect doctest True """ return cmp(type(self), type(other)) def __str__(self): """ NOTE: By default, it returns the name of the construction functor's class. Usually, this method will be overloaded. TEST:: sage: F = QQ.construction()[0] sage: F # indirect doctest FractionField sage: Q = ZZ.quo(2).construction()[0] sage: Q # indirect doctest QuotientFunctor """ s = str(type(self)) import re return re.sub("<.*'.*\.([^.]*)'>", "\\1", s) def _repr_(self): """ NOTE: By default, it returns the name of the construction functor's class. Usually, this method will be overloaded. TEST:: sage: F = QQ.construction()[0] sage: F # indirect doctest FractionField sage: Q = ZZ.quo(2).construction()[0] sage: Q # indirect doctest QuotientFunctor """ return str(self) def merge(self, other): """ Merge ``self`` with another construction functor, or return None. NOTE: The default is to merge only if the two functors coincide. But this may be overloaded for subclasses, such as the quotient functor. EXAMPLES:: sage: F = QQ.construction()[0] sage: P = ZZ['t'].construction()[0] sage: F.merge(F) FractionField sage: F.merge(P) sage: P.merge(F) sage: P.merge(P) Poly[t] """ if self == other: return self else: return None def commutes(self, other): """ Determine whether ``self`` commutes with another construction functor. NOTE: By default, ``False`` is returned in all cases (even if the two functors are the same, since in this case :meth:`merge` will apply anyway). So far there is no construction functor that overloads this method. Anyway, this method only becomes relevant if two construction functors have the same rank. EXAMPLES:: sage: F = QQ.construction()[0] sage: P = ZZ['t'].construction()[0] sage: F.commutes(P) False sage: P.commutes(F) False sage: F.commutes(F) False """ return False def expand(self): """ Decompose ``self`` into a list of construction functors. NOTE: The default is to return the list only containing ``self``. EXAMPLE:: sage: F = QQ.construction()[0] sage: F.expand() [FractionField] sage: Q = ZZ.quo(2).construction()[0] sage: Q.expand() [QuotientFunctor] sage: P = ZZ['t'].construction()[0] sage: FP = F*P sage: FP.expand() [FractionField, Poly[t]] """ return [self] # See the pushout() function below for explanation. coercion_reversed = False class CompositeConstructionFunctor(ConstructionFunctor): """ A Construction Functor composed by other Construction Functors. INPUT: ``F1, F2,...``: A list of Construction Functors. The result is the composition ``F1`` followed by ``F2`` followed by ... EXAMPLES:: sage: from sage.categories.pushout import CompositeConstructionFunctor sage: F = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].construction()[0],QQ.construction()[0],ZZ['y'].construction()[0]) sage: F Poly[y](FractionField(Poly[x](FractionField(...)))) sage: F == loads(dumps(F)) True sage: F == CompositeConstructionFunctor(*F.all) True sage: F(GF(2)['t']) Univariate Polynomial Ring in y over Fraction Field of Univariate Polynomial Ring in x over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 2 (using NTL) """ def __init__(self, *args): """ TESTS:: sage: from sage.categories.pushout import CompositeConstructionFunctor sage: F = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].construction()[0],QQ.construction()[0],ZZ['y'].construction()[0]) sage: F Poly[y](FractionField(Poly[x](FractionField(...)))) sage: F == CompositeConstructionFunctor(*F.all) True """ self.all = [] for c in args: if isinstance(c, list): self.all += c elif isinstance(c, CompositeConstructionFunctor): self.all += c.all else: self.all.append(c) Functor.__init__(self, self.all[0].domain(), self.all[-1].codomain()) def _apply_functor_to_morphism(self, f): """ Apply the functor to an object of ``self``'s domain. TESTS:: sage: from sage.categories.pushout import CompositeConstructionFunctor sage: F = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].construction()[0],QQ.construction()[0],ZZ['y'].construction()[0]) sage: R.<a,b> = QQ[] sage: f = R.hom([a+b, a-b]) sage: F(f) # indirect doctest Ring endomorphism of Univariate Polynomial Ring in y over Fraction Field of Univariate Polynomial Ring in x over Fraction Field of Multivariate Polynomial Ring in a, b over Rational Field Defn: Induced from base ring by Ring endomorphism of Fraction Field of Univariate Polynomial Ring in x over Fraction Field of Multivariate Polynomial Ring in a, b over Rational Field Defn: Induced from base ring by Ring endomorphism of Univariate Polynomial Ring in x over Fraction Field of Multivariate Polynomial Ring in a, b over Rational Field Defn: Induced from base ring by Ring endomorphism of Fraction Field of Multivariate Polynomial Ring in a, b over Rational Field Defn: a |--> a + b b |--> a - b """ for c in self.all: f = c(f) return f def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. TESTS:: sage: from sage.categories.pushout import CompositeConstructionFunctor sage: F = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].construction()[0],QQ.construction()[0],ZZ['y'].construction()[0]) sage: R.<a,b> = QQ[] sage: F(R) # indirect doctest Univariate Polynomial Ring in y over Fraction Field of Univariate Polynomial Ring in x over Fraction Field of Multivariate Polynomial Ring in a, b over Rational Field """ for c in self.all: R = c(R) return R def __cmp__(self, other): """ TESTS:: sage: from sage.categories.pushout import CompositeConstructionFunctor sage: F = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].construction()[0],QQ.construction()[0],ZZ['y'].construction()[0]) sage: F == loads(dumps(F)) # indirect doctest True """ if isinstance(other, CompositeConstructionFunctor): return cmp(self.all, other.all) else: return cmp(type(self), type(other)) def __mul__(self, other): """ Compose construction functors to a composit construction functor, unless one of them is the identity. NOTE: The product is in functorial notation, i.e., when applying the product to an object then the second factor is applied first. EXAMPLES:: sage: from sage.categories.pushout import CompositeConstructionFunctor sage: F1 = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].construction()[0]) sage: F2 = CompositeConstructionFunctor(QQ.construction()[0],ZZ['y'].construction()[0]) sage: F1*F2 Poly[x](FractionField(Poly[y](FractionField(...)))) """ if isinstance(self, CompositeConstructionFunctor): all = [other] + self.all elif isinstance(other,IdentityConstructionFunctor): return self else: all = other.all + [self] return CompositeConstructionFunctor(*all) def __str__(self): """ TESTS:: sage: from sage.categories.pushout import CompositeConstructionFunctor sage: F = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].construction()[0],QQ.construction()[0],ZZ['y'].construction()[0]) sage: F # indirect doctest Poly[y](FractionField(Poly[x](FractionField(...)))) """ s = "..." for c in self.all: s = "%s(%s)" % (c,s) return s def expand(self): """ Return expansion of a CompositeConstructionFunctor. NOTE: The product over the list of components, as returned by the ``expand()`` method, is equal to ``self``. EXAMPLES:: sage: from sage.categories.pushout import CompositeConstructionFunctor sage: F = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].construction()[0],QQ.construction()[0],ZZ['y'].construction()[0]) sage: F Poly[y](FractionField(Poly[x](FractionField(...)))) sage: prod(F.expand()) == F True """ return list(reversed(self.all)) class IdentityConstructionFunctor(ConstructionFunctor): """ A construction functor that is the identity functor. TESTS:: sage: from sage.categories.pushout import IdentityConstructionFunctor sage: I = IdentityConstructionFunctor() sage: I(RR) is RR True sage: I == loads(dumps(I)) True """ rank = -100 def __init__(self): """ TESTS:: sage: from sage.categories.pushout import IdentityConstructionFunctor sage: I = IdentityConstructionFunctor() sage: IdentityFunctor(Sets()) == I True sage: I(RR) is RR True """ ConstructionFunctor.__init__(self, Sets(), Sets()) def _apply_functor(self, x): """ Return the argument unaltered. TESTS:: sage: from sage.categories.pushout import IdentityConstructionFunctor sage: I = IdentityConstructionFunctor() sage: I(RR) is RR # indirect doctest True """ return x def _apply_functor_to_morphism(self, f): """ Return the argument unaltered. TESTS:: sage: from sage.categories.pushout import IdentityConstructionFunctor sage: I = IdentityConstructionFunctor() sage: f = ZZ['t'].hom(['x'],QQ['x']) sage: I(f) is f # indirect doctest True """ return f def __cmp__(self, other): """ TESTS:: sage: from sage.categories.pushout import IdentityConstructionFunctor sage: I = IdentityConstructionFunctor() sage: I == IdentityFunctor(Sets()) # indirect doctest True sage: I == QQ.construction()[0] False """ c = cmp(type(self),type(other)) if c: from sage.categories.functor import IdentityFunctor_generic if isinstance(other,IdentityFunctor_generic): return 0 return c def __mul__(self, other): """ Compose construction functors to a composit construction functor, unless one of them is the identity. NOTE: The product is in functorial notation, i.e., when applying the product to an object then the second factor is applied first. TESTS:: sage: from sage.categories.pushout import IdentityConstructionFunctor sage: I = IdentityConstructionFunctor() sage: F = QQ.construction()[0] sage: P = ZZ['t'].construction()[0] sage: I*F is F # indirect doctest True sage: F*I is F True sage: I*P is P True sage: P*I is P True """ if isinstance(self, IdentityConstructionFunctor): return other else: return self class PolynomialFunctor(ConstructionFunctor): """ Construction functor for univariate polynomial rings. EXAMPLE:: sage: P = ZZ['t'].construction()[0] sage: P(GF(3)) Univariate Polynomial Ring in t over Finite Field of size 3 sage: P == loads(dumps(P)) True sage: R.<x,y> = GF(5)[] sage: f = R.hom([x+2*y,3*x-y],R) sage: P(f)((x+y)*P(R).0) (-x + y)*t By trac ticket #9944, the construction functor distinguishes sparse and dense polynomial rings. Before, the following example failed:: sage: R.<x> = PolynomialRing(GF(5), sparse=True) sage: F,B = R.construction() sage: F(B) is R True sage: S.<x> = PolynomialRing(ZZ) sage: R.has_coerce_map_from(S) False sage: S.has_coerce_map_from(R) False sage: S.0 + R.0 2*x sage: (S.0 + R.0).parent() Univariate Polynomial Ring in x over Finite Field of size 5 sage: (S.0 + R.0).parent().is_sparse() False """ rank = 9 def __init__(self, var, multi_variate=False, sparse=False): """ TESTS:: sage: from sage.categories.pushout import PolynomialFunctor sage: P = PolynomialFunctor('x') sage: P(GF(3)) Univariate Polynomial Ring in x over Finite Field of size 3 There is an optional parameter ``multi_variate``, but apparently it is not used:: sage: Q = PolynomialFunctor('x',multi_variate=True) sage: Q(ZZ) Univariate Polynomial Ring in x over Integer Ring sage: Q == P True """ from rings import Rings Functor.__init__(self, Rings(), Rings()) self.var = var self.multi_variate = multi_variate self.sparse = sparse def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. TEST:: sage: P = ZZ['x'].construction()[0] sage: P(GF(3)) # indirect doctest Univariate Polynomial Ring in x over Finite Field of size 3 """ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing return PolynomialRing(R, self.var, sparse=self.sparse) def _apply_functor_to_morphism(self, f): """ Apply the functor ``self`` to the morphism `f`. TEST:: sage: P = ZZ['x'].construction()[0] sage: P(ZZ.hom(GF(3))) Ring morphism: From: Univariate Polynomial Ring in x over Integer Ring To: Univariate Polynomial Ring in x over Finite Field of size 3 Defn: Induced from base ring by Ring Coercion morphism: From: Integer Ring To: Finite Field of size 3 """ from sage.rings.polynomial.polynomial_ring_homomorphism import PolynomialRingHomomorphism_from_base R = self._apply_functor(f.domain()) S = self._apply_functor(f.codomain()) return PolynomialRingHomomorphism_from_base(R.Hom(S), f) def __cmp__(self, other): """ TESTS:: sage: from sage.categories.pushout import MultiPolynomialFunctor sage: Q = MultiPolynomialFunctor(('x',),'lex') sage: P = ZZ['x'].construction()[0] sage: P Poly[x] sage: Q MPoly[x] sage: P == Q True sage: P == loads(dumps(P)) True sage: P == QQ.construction()[0] False """ c = cmp(type(self), type(other)) if c == 0: c = cmp(self.var, other.var) elif isinstance(other, MultiPolynomialFunctor): return -cmp(other, self) return c def merge(self, other): """ Merge ``self`` with another construction functor, or return None. NOTE: Internally, the merging is delegated to the merging of multipolynomial construction functors. But in effect, this does the same as the default implementation, that returns ``None`` unless the to-be-merged functors coincide. EXAMPLE:: sage: P = ZZ['x'].construction()[0] sage: Q = ZZ['y','x'].construction()[0] sage: P.merge(Q) sage: P.merge(P) is P True """ if isinstance(other, MultiPolynomialFunctor): return other.merge(self) elif self == other: # i.e., they only differ in sparsity if not self.sparse: return self return other else: return None def __str__(self): """ TEST:: sage: P = ZZ['x'].construction()[0] sage: P # indirect doctest Poly[x] """ return "Poly[%s]" % self.var class MultiPolynomialFunctor(ConstructionFunctor): """ A constructor for multivariate polynomial rings. EXAMPLES:: sage: P.<x,y> = ZZ[] sage: F = P.construction()[0]; F MPoly[x,y] sage: A.<a,b> = GF(5)[] sage: F(A) Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over Finite Field of size 5 sage: f = A.hom([a+b,a-b],A) sage: F(f) Ring endomorphism of Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over Finite Field of size 5 Defn: Induced from base ring by Ring endomorphism of Multivariate Polynomial Ring in a, b over Finite Field of size 5 Defn: a |--> a + b b |--> a - b sage: F(f)(F(A)(x)*a) (a + b)*x """ rank = 9 def __init__(self, vars, term_order): """ EXAMPLES:: sage: F = sage.categories.pushout.MultiPolynomialFunctor(['x','y'], None) sage: F MPoly[x,y] sage: F(ZZ) Multivariate Polynomial Ring in x, y over Integer Ring sage: F(CC) Multivariate Polynomial Ring in x, y over Complex Field with 53 bits of precision """ Functor.__init__(self, Rings(), Rings()) self.vars = vars self.term_order = term_order def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. EXAMPLES:: sage: R.<x,y,z> = QQ[] sage: F = R.construction()[0]; F MPoly[x,y,z] sage: type(F) <class 'sage.categories.pushout.MultiPolynomialFunctor'> sage: F(ZZ) # indirect doctest Multivariate Polynomial Ring in x, y, z over Integer Ring sage: F(RR) # indirect doctest Multivariate Polynomial Ring in x, y, z over Real Field with 53 bits of precision """ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing return PolynomialRing(R, self.vars) def __cmp__(self, other): """ EXAMPLES:: sage: F = ZZ['x,y,z'].construction()[0] sage: G = QQ['x,y,z'].construction()[0] sage: F == G True sage: G == loads(dumps(G)) True sage: G = ZZ['x,y'].construction()[0] sage: F == G False """ c = cmp(type(self), type(other)) if c == 0: c = cmp(self.vars, other.vars) or cmp(self.term_order, other.term_order) elif isinstance(other, PolynomialFunctor): c = cmp(self.vars, (other.var,)) return c def __mul__(self, other): """ If two MPoly functors are given in a row, form a single MPoly functor with all of the variables. EXAMPLES:: sage: F = sage.categories.pushout.MultiPolynomialFunctor(['x','y'], None) sage: G = sage.categories.pushout.MultiPolynomialFunctor(['t'], None) sage: G*F MPoly[x,y,t] """ if isinstance(other,IdentityConstructionFunctor): return self if isinstance(other, MultiPolynomialFunctor): if self.term_order != other.term_order: raise CoercionException("Incompatible term orders (%s,%s)." % (self.term_order, other.term_order)) if set(self.vars).intersection(other.vars): raise CoercionException("Overlapping variables (%s,%s)" % (self.vars, other.vars)) return MultiPolynomialFunctor(other.vars + self.vars, self.term_order) elif isinstance(other, CompositeConstructionFunctor) \ and isinstance(other.all[-1], MultiPolynomialFunctor): return CompositeConstructionFunctor(other.all[:-1], self * other.all[-1]) else: return CompositeConstructionFunctor(other, self) def merge(self, other): """ Merge ``self`` with another construction functor, or return None. EXAMPLES:: sage: F = sage.categories.pushout.MultiPolynomialFunctor(['x','y'], None) sage: G = sage.categories.pushout.MultiPolynomialFunctor(['t'], None) sage: F.merge(G) is None True sage: F.merge(F) MPoly[x,y] """ if self == other: return self else: return None def expand(self): """ Decompose ``self`` into a list of construction functors. EXAMPLES:: sage: F = QQ['x,y,z,t'].construction()[0]; F MPoly[x,y,z,t] sage: F.expand() [MPoly[t], MPoly[z], MPoly[y], MPoly[x]] Now an actual use case:: sage: R.<x,y,z> = ZZ[] sage: S.<z,t> = QQ[] sage: x+t x + t sage: parent(x+t) Multivariate Polynomial Ring in x, y, z, t over Rational Field sage: T.<y,s> = QQ[] sage: x + s Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for '+': 'Multivariate Polynomial Ring in x, y, z over Integer Ring' and 'Multivariate Polynomial Ring in y, s over Rational Field' sage: R = PolynomialRing(ZZ, 'x', 500) sage: S = PolynomialRing(GF(5), 'x', 200) sage: R.gen(0) + S.gen(0) 2*x0 """ if len(self.vars) <= 1: return [self] else: return [MultiPolynomialFunctor((x,), self.term_order) for x in reversed(self.vars)] def __str__(self): """ TEST:: sage: QQ['x,y,z,t'].construction()[0] MPoly[x,y,z,t] """ return "MPoly[%s]" % ','.join(self.vars) class InfinitePolynomialFunctor(ConstructionFunctor): """ A Construction Functor for Infinite Polynomial Rings (see :mod:`~sage.rings.polynomial.infinite_polynomial_ring`). AUTHOR: -- Simon King This construction functor is used to provide uniqueness of infinite polynomial rings as parent structures. As usual, the construction functor allows for constructing pushouts. Another purpose is to avoid name conflicts of variables of the to-be-constructed infinite polynomial ring with variables of the base ring, and moreover to keep the internal structure of an Infinite Polynomial Ring as simple as possible: If variables `v_1,...,v_n` of the given base ring generate an *ordered* sub-monoid of the monomials of the ambient Infinite Polynomial Ring, then they are removed from the base ring and merged with the generators of the ambient ring. However, if the orders don't match, an error is raised, since there was a name conflict without merging. EXAMPLES:: sage: A.<a,b> = InfinitePolynomialRing(ZZ['t']) sage: A.construction() [InfPoly{[a,b], "lex", "dense"}, Univariate Polynomial Ring in t over Integer Ring] sage: type(_[0]) <class 'sage.categories.pushout.InfinitePolynomialFunctor'> sage: B.<x,y,a_3,a_1> = PolynomialRing(QQ, order='lex') sage: B.construction() (MPoly[x,y,a_3,a_1], Rational Field) sage: A.construction()[0]*B.construction()[0] InfPoly{[a,b], "lex", "dense"}(MPoly[x,y](...)) Apparently the variables `a_1,a_3` of the polynomial ring are merged with the variables `a_0, a_1, a_2, ...` of the infinite polynomial ring; indeed, they form an ordered sub-structure. However, if the polynomial ring was given a different ordering, merging would not be allowed, resulting in a name conflict:: sage: A.construction()[0]*PolynomialRing(QQ,names=['x','y','a_3','a_1']).construction()[0] Traceback (most recent call last): ... CoercionException: Incompatible term orders lex, degrevlex In an infinite polynomial ring with generator `a_\\ast`, the variable `a_3` will always be greater than the variable `a_1`. Hence, the orders are incompatible in the next example as well:: sage: A.construction()[0]*PolynomialRing(QQ,names=['x','y','a_1','a_3'], order='lex').construction()[0] Traceback (most recent call last): ... CoercionException: Overlapping variables (('a', 'b'),['a_1', 'a_3']) are incompatible Another requirement is that after merging the order of the remaining variables must be unique. This is not the case in the following example, since it is not clear whether the variables `x,y` should be greater or smaller than the variables `b_\\ast`:: sage: A.construction()[0]*PolynomialRing(QQ,names=['a_3','a_1','x','y'], order='lex').construction()[0] Traceback (most recent call last): ... CoercionException: Overlapping variables (('a', 'b'),['a_3', 'a_1']) are incompatible Since the construction functors are actually used to construct infinite polynomial rings, the following result is no surprise:: sage: C.<a,b> = InfinitePolynomialRing(B); C Infinite polynomial ring in a, b over Multivariate Polynomial Ring in x, y over Rational Field There is also an overlap in the next example:: sage: X.<w,x,y> = InfinitePolynomialRing(ZZ) sage: Y.<x,y,z> = InfinitePolynomialRing(QQ) `X` and `Y` have an overlapping generators `x_\\ast, y_\\ast`. Since the default lexicographic order is used in both rings, it gives rise to isomorphic sub-monoids in both `X` and `Y`. They are merged in the pushout, which also yields a common parent for doing arithmetic:: sage: P = sage.categories.pushout.pushout(Y,X); P Infinite polynomial ring in w, x, y, z over Rational Field sage: w[2]+z[3] w_2 + z_3 sage: _.parent() is P True """ # We do provide merging with polynomial rings. However, it seems that it is better # to have a greater rank, since we want to apply InfinitePolynomialFunctor *after* # [Multi]PolynomialFunctor, which have rank 9. But there is the MatrixFunctor, which # has rank 10. So, do fine tuning... rank = 9.5 def __init__(self, gens, order, implementation): """ TEST:: sage: F = sage.categories.pushout.InfinitePolynomialFunctor(['a','b','x'],'degrevlex','sparse'); F # indirect doctest InfPoly{[a,b,x], "degrevlex", "sparse"} sage: F == loads(dumps(F)) True """ if len(gens)<1: raise ValueError("Infinite Polynomial Rings have at least one generator") ConstructionFunctor.__init__(self, Rings(), Rings()) self._gens = tuple(gens) self._order = order self._imple = implementation def _apply_functor_to_morphism(self, f): """ Morphisms for inifinite polynomial rings are not implemented yet. TEST:: sage: P.<x,y> = QQ[] sage: R.<alpha> = InfinitePolynomialRing(P) sage: f = P.hom([x+y,x-y],P) sage: R.construction()[0](f) # indirect doctest Traceback (most recent call last): ... NotImplementedError: Morphisms for inifinite polynomial rings are not implemented yet. """ raise NotImplementedError("Morphisms for inifinite polynomial rings are not implemented yet.") def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. TEST:: sage: F = sage.categories.pushout.InfinitePolynomialFunctor(['a','b','x'],'degrevlex','sparse'); F InfPoly{[a,b,x], "degrevlex", "sparse"} sage: F(QQ['t']) # indirect doctest Infinite polynomial ring in a, b, x over Univariate Polynomial Ring in t over Rational Field """ from sage.rings.polynomial.infinite_polynomial_ring import InfinitePolynomialRing return InfinitePolynomialRing(R, self._gens, order=self._order, implementation=self._imple) def __str__(self): """ TEST:: sage: F = sage.categories.pushout.InfinitePolynomialFunctor(['a','b','x'],'degrevlex','sparse'); F # indirect doctest InfPoly{[a,b,x], "degrevlex", "sparse"} """ return 'InfPoly{[%s], "%s", "%s"}'%(','.join(self._gens), self._order, self._imple) def __cmp__(self, other): """ TEST:: sage: F = sage.categories.pushout.InfinitePolynomialFunctor(['a','b','x'],'degrevlex','sparse'); F # indirect doctest InfPoly{[a,b,x], "degrevlex", "sparse"} sage: F == loads(dumps(F)) # indirect doctest True sage: F == sage.categories.pushout.InfinitePolynomialFunctor(['a','b','x'],'deglex','sparse') False """ c = cmp(type(self), type(other)) if c == 0: c = cmp(self._gens, other._gens) or cmp(self._order, other._order) or cmp(self._imple, other._imple) return c def __mul__(self, other): """ Compose construction functors to a composit construction functor, unless one of them is the identity. NOTE: The product is in functorial notation, i.e., when applying the product to an object then the second factor is applied first. TESTS:: sage: F1 = QQ['a','x_2','x_1','y_3','y_2'].construction()[0]; F1 MPoly[a,x_2,x_1,y_3,y_2] sage: F2 = InfinitePolynomialRing(QQ, ['x','y'],order='degrevlex').construction()[0]; F2 InfPoly{[x,y], "degrevlex", "dense"} sage: F3 = InfinitePolynomialRing(QQ, ['x','y'],order='degrevlex',implementation='sparse').construction()[0]; F3 InfPoly{[x,y], "degrevlex", "sparse"} sage: F2*F1 InfPoly{[x,y], "degrevlex", "dense"}(Poly[a](...)) sage: F3*F1 InfPoly{[x,y], "degrevlex", "sparse"}(Poly[a](...)) sage: F4 = sage.categories.pushout.FractionField() sage: F2*F4 InfPoly{[x,y], "degrevlex", "dense"}(FractionField(...)) """ if isinstance(other,IdentityConstructionFunctor): return self if isinstance(other, self.__class__): # INT = set(self._gens).intersection(other._gens) if INT: # if there is overlap of generators, it must only be at the ends, so that # the resulting order after the merging is unique if other._gens[-len(INT):] != self._gens[:len(INT)]: raise CoercionException("Overlapping variables (%s,%s) are incompatible" % (self._gens, other._gens)) OUTGENS = list(other._gens) + list(self._gens[len(INT):]) else: OUTGENS = list(other._gens) + list(self._gens) # the orders must coincide if self._order != other._order: return CompositeConstructionFunctor(other, self) # the implementations must coincide if self._imple != other._imple: return CompositeConstructionFunctor(other, self) return InfinitePolynomialFunctor(OUTGENS, self._order, self._imple) # Polynomial Constructor # Idea: We merge into self, if the polynomial functor really provides a substructure, # even respecting the order. Note that, if the pushout is computed, only *one* variable # will occur in the polynomial constructor. Hence, any order is fine, which is exactly # what we need in order to have coercion maps for different orderings. if isinstance(other, MultiPolynomialFunctor) or isinstance(other, PolynomialFunctor): if isinstance(other, MultiPolynomialFunctor): othervars = other.vars else: othervars = [other.var] OverlappingGens = [] ## Generator names of variable names of the MultiPolynomialFunctor ## that can be interpreted as variables in self OverlappingVars = [] ## The variable names of the MultiPolynomialFunctor ## that can be interpreted as variables in self RemainingVars = [x for x in othervars] IsOverlap = False BadOverlap = False for x in othervars: if x.count('_') == 1: g,n = x.split('_') if n.isdigit(): if g.isalnum(): # we can interprete x in any InfinitePolynomialRing if g in self._gens: # we can interprete x in self, hence, we will not use it as a variable anymore. RemainingVars.pop(RemainingVars.index(x)) IsOverlap = True # some variables of other can be interpreted in self. if OverlappingVars: # Is OverlappingVars in the right order? g0,n0 = OverlappingVars[-1].split('_') i = self._gens.index(g) i0 = self._gens.index(g0) if i<i0: # wrong order BadOverlap = True if i==i0 and int(n)>int(n0): # wrong order BadOverlap = True OverlappingVars.append(x) else: if IsOverlap: # The overlap must be on the right end of the variable list BadOverlap = True else: if IsOverlap: # The overlap must be on the right end of the variable list BadOverlap = True else: if IsOverlap: # The overlap must be on the right end of the variable list BadOverlap = True else: if IsOverlap: # The overlap must be on the right end of the variable list BadOverlap = True if BadOverlap: # the overlapping variables appear in the wrong order raise CoercionException("Overlapping variables (%s,%s) are incompatible" % (self._gens, OverlappingVars)) if len(OverlappingVars)>1: # multivariate, hence, the term order matters if other.term_order.name()!=self._order: raise CoercionException("Incompatible term orders %s, %s" % (self._order, other.term_order.name())) # ok, the overlap is fine, we will return something. if RemainingVars: # we can only partially merge other into self if len(RemainingVars)>1: return CompositeConstructionFunctor(MultiPolynomialFunctor(RemainingVars,term_order=other.term_order), self) return CompositeConstructionFunctor(PolynomialFunctor(RemainingVars[0]), self) return self return CompositeConstructionFunctor(other, self) def merge(self,other): """ Merge two construction functors of infinite polynomial rings, regardless of monomial order and implementation. The purpose is to have a pushout (and thus, arithmetic) even in cases when the parents are isomorphic as rings, but not as ordered rings. EXAMPLES:: sage: X.<x,y> = InfinitePolynomialRing(QQ,implementation='sparse') sage: Y.<x,y> = InfinitePolynomialRing(QQ,order='degrevlex') sage: X.construction() [InfPoly{[x,y], "lex", "sparse"}, Rational Field] sage: Y.construction() [InfPoly{[x,y], "degrevlex", "dense"}, Rational Field] sage: Y.construction()[0].merge(Y.construction()[0]) InfPoly{[x,y], "degrevlex", "dense"} sage: y[3] + X(x[2]) x_2 + y_3 sage: _.parent().construction() [InfPoly{[x,y], "degrevlex", "dense"}, Rational Field] """ # Merging is only done if the ranks of self and other are the same. # It may happen that other is a substructure of self up to the monomial order # and the implementation. And this is when we want to merge, in order to # provide multiplication for rings with different term orderings. if not isinstance(other, InfinitePolynomialFunctor): return None if set(other._gens).issubset(self._gens): return self return None try: OUT = self*other # The following happens if "other" has the same order type etc. if not isinstance(OUT, CompositeConstructionFunctor): return OUT except CoercionException: pass if isinstance(other,InfinitePolynomialFunctor): # We don't require that the orders coincide. This is a difference to self*other # We only merge if other's generators are an ordered subset of self's generators for g in other._gens: if g not in self._gens: return None # The sequence of variables is part of the ordering. It must coincide in both rings Ind = [self._gens.index(g) for g in other._gens] if sorted(Ind)!=Ind: return None # OK, other merges into self. Now, chose the default dense implementation, # unless both functors refer to the sparse implementation if self._imple != other._imple: return InfinitePolynomialFunctor(self._gens, self._order, 'dense') return self return None def expand(self): """ Decompose the functor `F` into sub-functors, whose product returns `F`. EXAMPLES:: sage: F = InfinitePolynomialRing(QQ, ['x','y'],order='degrevlex').construction()[0]; F InfPoly{[x,y], "degrevlex", "dense"} sage: F.expand() [InfPoly{[y], "degrevlex", "dense"}, InfPoly{[x], "degrevlex", "dense"}] sage: F = InfinitePolynomialRing(QQ, ['x','y','z'],order='degrevlex').construction()[0]; F InfPoly{[x,y,z], "degrevlex", "dense"} sage: F.expand() [InfPoly{[z], "degrevlex", "dense"}, InfPoly{[y], "degrevlex", "dense"}, InfPoly{[x], "degrevlex", "dense"}] sage: prod(F.expand())==F True """ if len(self._gens)==1: return [self] return [InfinitePolynomialFunctor((x,), self._order, self._imple) for x in reversed(self._gens)] class MatrixFunctor(ConstructionFunctor): """ A construction functor for matrices over rings. EXAMPLES:: sage: MS = MatrixSpace(ZZ,2, 3) sage: F = MS.construction()[0]; F MatrixFunctor sage: MS = MatrixSpace(ZZ,2) sage: F = MS.construction()[0]; F MatrixFunctor sage: P.<x,y> = QQ[] sage: R = F(P); R Full MatrixSpace of 2 by 2 dense matrices over Multivariate Polynomial Ring in x, y over Rational Field sage: f = P.hom([x+y,x-y],P); F(f) Ring endomorphism of Full MatrixSpace of 2 by 2 dense matrices over Multivariate Polynomial Ring in x, y over Rational Field Defn: Induced from base ring by Ring endomorphism of Multivariate Polynomial Ring in x, y over Rational Field Defn: x |--> x + y y |--> x - y sage: M = R([x,y,x*y,x+y]) sage: F(f)(M) [ x + y x - y] [x^2 - y^2 2*x] """ rank = 10 def __init__(self, nrows, ncols, is_sparse=False): """ TEST:: sage: from sage.categories.pushout import MatrixFunctor sage: F = MatrixFunctor(2,3) sage: F == MatrixSpace(ZZ,2,3).construction()[0] True sage: F.codomain() Category of commutative additive groups sage: R = MatrixSpace(ZZ,2,2).construction()[0] sage: R.codomain() Category of rings sage: F(ZZ) Full MatrixSpace of 2 by 3 dense matrices over Integer Ring sage: F(ZZ) in F.codomain() True sage: R(GF(2)) Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 2 sage: R(GF(2)) in R.codomain() True """ if nrows == ncols: Functor.__init__(self, Rings(), Rings()) # Algebras() takes a base ring else: # Functor.__init__(self, Rings(), MatrixAlgebras()) # takes a base ring Functor.__init__(self, Rings(), CommutativeAdditiveGroups()) # not a nice solution, but the best we can do. self.nrows = nrows self.ncols = ncols self.is_sparse = is_sparse def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. TEST: The following is a test against a bug discussed at ticket #8800 sage: F = MatrixSpace(ZZ,2,3).construction()[0] sage: F(RR) # indirect doctest Full MatrixSpace of 2 by 3 dense matrices over Real Field with 53 bits of precision sage: F(RR) in F.codomain() True """ from sage.matrix.matrix_space import MatrixSpace return MatrixSpace(R, self.nrows, self.ncols, sparse=self.is_sparse) def __cmp__(self, other): """ TEST:: sage: F = MatrixSpace(ZZ,2,3).construction()[0] sage: F == loads(dumps(F)) True sage: F == MatrixSpace(ZZ,2,2).construction()[0] False """ c = cmp(type(self), type(other)) if c == 0: c = cmp((self.nrows, self.ncols), (other.nrows, other.ncols)) return c def merge(self, other): """ Merging is only happening if both functors are matrix functors of the same dimension. The result is sparse if and only if both given functors are sparse. EXAMPLE:: sage: F1 = MatrixSpace(ZZ,2,2).construction()[0] sage: F2 = MatrixSpace(ZZ,2,3).construction()[0] sage: F3 = MatrixSpace(ZZ,2,2,sparse=True).construction()[0] sage: F1.merge(F2) sage: F1.merge(F3) MatrixFunctor sage: F13 = F1.merge(F3) sage: F13.is_sparse False sage: F1.is_sparse False sage: F3.is_sparse True sage: F3.merge(F3).is_sparse True """ if self != other: return None else: return MatrixFunctor(self.nrows, self.ncols, self.is_sparse and other.is_sparse) class LaurentPolynomialFunctor(ConstructionFunctor): """ Construction functor for Laurent polynomial rings. EXAMPLES:: sage: L.<t> = LaurentPolynomialRing(ZZ) sage: F = L.construction()[0] sage: F LaurentPolynomialFunctor sage: F(QQ) Univariate Laurent Polynomial Ring in t over Rational Field sage: K.<x> = LaurentPolynomialRing(ZZ) sage: F(K) Univariate Laurent Polynomial Ring in t over Univariate Laurent Polynomial Ring in x over Integer Ring sage: P.<x,y> = ZZ[] sage: f = P.hom([x+2*y,3*x-y],P) sage: F(f) Ring endomorphism of Univariate Laurent Polynomial Ring in t over Multivariate Polynomial Ring in x, y over Integer Ring Defn: Induced from base ring by Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring Defn: x |--> x + 2*y y |--> 3*x - y sage: F(f)(x*F(P).gen()^-2+y*F(P).gen()^3) (x + 2*y)*t^-2 + (3*x - y)*t^3 """ rank = 9 def __init__(self, var, multi_variate=False): """ INPUT: - ``var``, a string or a list of strings - ``multi_variate``, optional bool, default ``False`` if ``var`` is a string and ``True`` otherwise: If ``True``, application to a Laurent polynomial ring yields a multivariate Laurent polynomial ring. TESTS:: sage: from sage.categories.pushout import LaurentPolynomialFunctor sage: F1 = LaurentPolynomialFunctor('t') sage: F2 = LaurentPolynomialFunctor('s', multi_variate=True) sage: F3 = LaurentPolynomialFunctor(['s','t']) sage: F1(F2(QQ)) Univariate Laurent Polynomial Ring in t over Univariate Laurent Polynomial Ring in s over Rational Field sage: F2(F1(QQ)) Multivariate Laurent Polynomial Ring in t, s over Rational Field sage: F3(QQ) Multivariate Laurent Polynomial Ring in s, t over Rational Field """ Functor.__init__(self, Rings(), Rings()) if not isinstance(var, (six.string_types,tuple,list)): raise TypeError("variable name or list of variable names expected") self.var = var self.multi_variate = multi_variate or not isinstance(var, six.string_types) def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. TESTS:: sage: from sage.categories.pushout import LaurentPolynomialFunctor sage: F1 = LaurentPolynomialFunctor('t') sage: F2 = LaurentPolynomialFunctor('s', multi_variate=True) sage: F3 = LaurentPolynomialFunctor(['s','t']) sage: F1(F2(QQ)) # indirect doctest Univariate Laurent Polynomial Ring in t over Univariate Laurent Polynomial Ring in s over Rational Field sage: F2(F1(QQ)) Multivariate Laurent Polynomial Ring in t, s over Rational Field sage: F3(QQ) Multivariate Laurent Polynomial Ring in s, t over Rational Field """ from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing, is_LaurentPolynomialRing if self.multi_variate and is_LaurentPolynomialRing(R): return LaurentPolynomialRing(R.base_ring(), (list(R.variable_names()) + [self.var])) else: from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing return LaurentPolynomialRing(R, self.var) def __cmp__(self, other): """ TESTS:: sage: from sage.categories.pushout import LaurentPolynomialFunctor sage: F1 = LaurentPolynomialFunctor('t') sage: F2 = LaurentPolynomialFunctor('t', multi_variate=True) sage: F3 = LaurentPolynomialFunctor(['s','t']) sage: F1 == F2 True sage: F1 == loads(dumps(F1)) True sage: F1 == F3 False sage: F1 == QQ.construction()[0] False """ c = cmp(type(self), type(other)) if c == 0: c = cmp(self.var, other.var) return c def merge(self, other): """ Two Laurent polynomial construction functors merge if the variable names coincide. The result is multivariate if one of the arguments is multivariate. EXAMPLE:: sage: from sage.categories.pushout import LaurentPolynomialFunctor sage: F1 = LaurentPolynomialFunctor('t') sage: F2 = LaurentPolynomialFunctor('t', multi_variate=True) sage: F1.merge(F2) LaurentPolynomialFunctor sage: F1.merge(F2)(LaurentPolynomialRing(GF(2),'a')) Multivariate Laurent Polynomial Ring in a, t over Finite Field of size 2 sage: F1.merge(F1)(LaurentPolynomialRing(GF(2),'a')) Univariate Laurent Polynomial Ring in t over Univariate Laurent Polynomial Ring in a over Finite Field of size 2 """ if self == other or isinstance(other, PolynomialFunctor) and self.var == other.var: return LaurentPolynomialFunctor(self.var, (self.multi_variate or other.multi_variate)) else: return None class VectorFunctor(ConstructionFunctor): """ A construction functor for free modules over commutative rings. EXAMPLE:: sage: F = (ZZ^3).construction()[0] sage: F VectorFunctor sage: F(GF(2)['t']) Ambient free module of rank 3 over the principal ideal domain Univariate Polynomial Ring in t over Finite Field of size 2 (using NTL) """ rank = 10 # ranking of functor, not rank of module. # This coincides with the rank of the matrix construction functor, but this is OK since they can not both be applied in any order def __init__(self, n, is_sparse=False, inner_product_matrix=None): """ INPUT: - ``n``, the rank of the to-be-created modules (non-negative integer) - ``is_sparse`` (optional bool, default ``False``), create sparse implementation of modules - ``inner_product_matrix``: ``n`` by ``n`` matrix, used to compute inner products in the to-be-created modules TEST:: sage: from sage.categories.pushout import VectorFunctor sage: F1 = VectorFunctor(3, inner_product_matrix = Matrix(3,3,range(9))) sage: F1.domain() Category of commutative rings sage: F1.codomain() Category of commutative additive groups sage: M1 = F1(ZZ) sage: M1.is_sparse() False sage: v = M1([3, 2, 1]) sage: v*Matrix(3,3,range(9))*v.column() (96) sage: v.inner_product(v) 96 sage: F2 = VectorFunctor(3, is_sparse=True) sage: M2 = F2(QQ); M2; M2.is_sparse() Sparse vector space of dimension 3 over Rational Field True """ # Functor.__init__(self, Rings(), FreeModules()) # FreeModules() takes a base ring # Functor.__init__(self, Objects(), Objects()) # Object() makes no sence, since FreeModule raises an error, e.g., on Set(['a',1]). ## FreeModule requires a commutative ring. Thus, we have Functor.__init__(self, CommutativeRings(), CommutativeAdditiveGroups()) self.n = n self.is_sparse = is_sparse self.inner_product_matrix = inner_product_matrix def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. TESTS:: sage: from sage.categories.pushout import VectorFunctor sage: F1 = VectorFunctor(3, inner_product_matrix = Matrix(3,3,range(9))) sage: M1 = F1(ZZ) # indirect doctest sage: M1.is_sparse() False sage: v = M1([3, 2, 1]) sage: v*Matrix(3,3,range(9))*v.column() (96) sage: v.inner_product(v) 96 sage: F2 = VectorFunctor(3, is_sparse=True) sage: M2 = F2(QQ); M2; M2.is_sparse() Sparse vector space of dimension 3 over Rational Field True sage: v = M2([3, 2, 1]) sage: v.inner_product(v) 14 """ from sage.modules.free_module import FreeModule return FreeModule(R, self.n, sparse=self.is_sparse, inner_product_matrix=self.inner_product_matrix) def _apply_functor_to_morphism(self, f): """ This is not implemented yet. TEST:: sage: F = (ZZ^3).construction()[0] sage: P.<x,y> = ZZ[] sage: f = P.hom([x+2*y,3*x-y],P) sage: F(f) # indirect doctest Traceback (most recent call last): ... NotImplementedError: Can not create induced morphisms of free modules yet """ ## TODO: Implement this! raise NotImplementedError("Can not create induced morphisms of free modules yet") def __cmp__(self, other): """ Only the rank of the to-be-created modules is compared, *not* the inner product matrix. TESTS:: sage: from sage.categories.pushout import VectorFunctor sage: F1 = VectorFunctor(3, inner_product_matrix = Matrix(3,3,range(9))) sage: F2 = (ZZ^3).construction()[0] sage: F1 == F2 True sage: F1(QQ) == F2(QQ) True sage: F1(QQ).inner_product_matrix() == F2(QQ).inner_product_matrix() False sage: F1 == loads(dumps(F1)) True """ c = cmp(type(self), type(other)) if c == 0: c = cmp(self.n, other.n) return c def merge(self, other): """ Two constructors of free modules merge, if the module ranks coincide. If both have explicitly given inner product matrices, they must coincide as well. EXAMPLE: Two modules without explicitly given inner product allow coercion:: sage: M1 = QQ^3 sage: P.<t> = ZZ[] sage: M2 = FreeModule(P,3) sage: M1([1,1/2,1/3]) + M2([t,t^2+t,3]) # indirect doctest (t + 1, t^2 + t + 1/2, 10/3) If only one summand has an explicit inner product, the result will be provided with it:: sage: M3 = FreeModule(P,3, inner_product_matrix = Matrix(3,3,range(9))) sage: M1([1,1/2,1/3]) + M3([t,t^2+t,3]) (t + 1, t^2 + t + 1/2, 10/3) sage: (M1([1,1/2,1/3]) + M3([t,t^2+t,3])).parent().inner_product_matrix() [0 1 2] [3 4 5] [6 7 8] If both summands have an explicit inner product (even if it is the standard inner product), then the products must coincide. The only difference between ``M1`` and ``M4`` in the following example is the fact that the default inner product was *explicitly* requested for ``M4``. It is therefore not possible to coerce with a different inner product:: sage: M4 = FreeModule(QQ,3, inner_product_matrix = Matrix(3,3,1)) sage: M4 == M1 True sage: M4.inner_product_matrix() == M1.inner_product_matrix() True sage: M4([1,1/2,1/3]) + M3([t,t^2+t,3]) # indirect doctest Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for '+': 'Ambient quadratic space of dimension 3 over Rational Field Inner product matrix: [1 0 0] [0 1 0] [0 0 1]' and 'Ambient free quadratic module of rank 3 over the integral domain Univariate Polynomial Ring in t over Integer Ring Inner product matrix: [0 1 2] [3 4 5] [6 7 8]' """ if self != other: return None if self.inner_product_matrix is None: return VectorFunctor(self.n, self.is_sparse and other.is_sparse, other.inner_product_matrix) if other.inner_product_matrix is None: return VectorFunctor(self.n, self.is_sparse and other.is_sparse, self.inner_product_matrix) # At this point, we know that the user wants to take care of the inner product. # So, we only merge if both coincide: if self.inner_product_matrix != other.inner_product_matrix: return None else: return VectorFunctor(self.n, self.is_sparse and other.is_sparse, self.inner_product_matrix) class SubspaceFunctor(ConstructionFunctor): """ Constructing a subspace of an ambient free module, given by a basis. NOTE: This construction functor keeps track of the basis. It can only be applied to free modules into which this basis coerces. EXAMPLES:: sage: M = ZZ^3 sage: S = M.submodule([(1,2,3),(4,5,6)]); S Free module of degree 3 and rank 2 over Integer Ring Echelon basis matrix: [1 2 3] [0 3 6] sage: F = S.construction()[0] sage: F(GF(2)^3) Vector space of degree 3 and dimension 2 over Finite Field of size 2 User basis matrix: [1 0 1] [0 1 0] """ rank = 11 # ranking of functor, not rank of module # The subspace construction returns an object admitting a coercion # map into the original, not vice versa. coercion_reversed = True def __init__(self, basis): """ INPUT: ``basis``: a list of elements of a free module. TEST:: sage: from sage.categories.pushout import SubspaceFunctor sage: M = ZZ^3 sage: F = SubspaceFunctor([M([1,2,3]),M([4,5,6])]) sage: F(GF(5)^3) Vector space of degree 3 and dimension 2 over Finite Field of size 5 User basis matrix: [1 2 3] [4 0 1] """ ## Functor.__init__(self, FreeModules(), FreeModules()) # takes a base ring ## Functor.__init__(self, Objects(), Objects()) # is too general ## It seems that the category of commutative additive groups ## currently is the smallest base ring free category that ## contains in- and output Functor.__init__(self, CommutativeAdditiveGroups(), CommutativeAdditiveGroups()) self.basis = basis def _apply_functor(self, ambient): """ Apply the functor to an object of ``self``'s domain. TESTS:: sage: M = ZZ^3 sage: S = M.submodule([(1,2,3),(4,5,6)]); S Free module of degree 3 and rank 2 over Integer Ring Echelon basis matrix: [1 2 3] [0 3 6] sage: F = S.construction()[0] sage: F(GF(2)^3) # indirect doctest Vector space of degree 3 and dimension 2 over Finite Field of size 2 User basis matrix: [1 0 1] [0 1 0] """ return ambient.span_of_basis(self.basis) def _apply_functor_to_morphism(self, f): """ This is not implemented yet. TEST:: sage: F = (ZZ^3).span([(1,2,3),(4,5,6)]).construction()[0] sage: P.<x,y> = ZZ[] sage: f = P.hom([x+2*y,3*x-y],P) sage: F(f) # indirect doctest Traceback (most recent call last): ... NotImplementedError: Can not create morphisms of free sub-modules yet """ raise NotImplementedError("Can not create morphisms of free sub-modules yet") def __cmp__(self, other): """ TEST:: sage: F1 = (GF(5)^3).span([(1,2,3),(4,5,6)]).construction()[0] sage: F2 = (ZZ^3).span([(1,2,3),(4,5,6)]).construction()[0] sage: F3 = (QQ^3).span([(1,2,3),(4,5,6)]).construction()[0] sage: F4 = (ZZ^3).span([(1,0,-1),(0,1,2)]).construction()[0] sage: F1 == loads(dumps(F1)) True The ``span`` method automatically transforms the given basis into echelon form. The bases look like that:: sage: F1.basis [ (1, 0, 4), (0, 1, 2) ] sage: F2.basis [ (1, 2, 3), (0, 3, 6) ] sage: F3.basis [ (1, 0, -1), (0, 1, 2) ] sage: F4.basis [ (1, 0, -1), (0, 1, 2) ] The basis of ``F2`` is modulo 5 different from the other bases. So, we have:: sage: F1 != F2 != F3 True The bases of ``F1``, ``F3`` and ``F4`` are the same modulo 5; however, there is no coercion from ``QQ^3`` to ``GF(5)^3``. Therefore, we have:: sage: F1 == F3 False But there are coercions from ``ZZ^3`` to ``QQ^3`` and ``GF(5)^3``, thus:: sage: F1 == F4 == F3 True """ c = cmp(type(self), type(other)) if c == 0: # since comparing the basis involves constructing the pushout # of the ambient module, we can not do: #c = cmp(self.basis, other.basis) # Instead, we only test whether there are coercions. L = self.basis.universe() R = other.basis.universe() c = cmp(L,R) if L.has_coerce_map_from(R): c = cmp(tuple(self.basis),tuple(L(x) for x in other.basis)) elif R.has_coerce_map_from(L): c = cmp(tuple(other.basis),tuple(R(x) for x in self.basis)) return c def merge(self, other): """ Two Subspace Functors are merged into a construction functor of the sum of two subspaces. EXAMPLE:: sage: M = GF(5)^3 sage: S1 = M.submodule([(1,2,3),(4,5,6)]) sage: S2 = M.submodule([(2,2,3)]) sage: F1 = S1.construction()[0] sage: F2 = S2.construction()[0] sage: F1.merge(F2) SubspaceFunctor sage: F1.merge(F2)(GF(5)^3) == S1+S2 True sage: F1.merge(F2)(GF(5)['t']^3) Free module of degree 3 and rank 3 over Univariate Polynomial Ring in t over Finite Field of size 5 User basis matrix: [1 0 0] [0 1 0] [0 0 1] TEST:: sage: P.<t> = ZZ[] sage: S1 = (ZZ^3).submodule([(1,2,3),(4,5,6)]) sage: S2 = (Frac(P)^3).submodule([(t,t^2,t^3+1),(4*t,0,1)]) sage: v = S1([0,3,6]) + S2([2,0,1/(2*t)]); v # indirect doctest (2, 3, (-12*t - 1)/(-2*t)) sage: v.parent() Vector space of degree 3 and dimension 3 over Fraction Field of Univariate Polynomial Ring in t over Integer Ring User basis matrix: [1 0 0] [0 1 0] [0 0 1] """ if isinstance(other, SubspaceFunctor): # in order to remove linear dependencies, and in # order to test compatibility of the base rings, # we try to construct a sample submodule if not other.basis: return self if not self.basis: return other try: P = pushout(self.basis[0].parent().ambient_module(),other.basis[0].parent().ambient_module()) except CoercionException: return None try: # Use span instead of submodule because we want to # allow denominators. submodule = P.span except AttributeError: return None S = submodule(self.basis+other.basis).echelonized_basis() return SubspaceFunctor(S) else: return None class FractionField(ConstructionFunctor): """ Construction functor for fraction fields. EXAMPLE:: sage: F = QQ.construction()[0] sage: F FractionField sage: F.domain() Category of integral domains sage: F.codomain() Category of fields sage: F(GF(5)) is GF(5) True sage: F(ZZ['t']) Fraction Field of Univariate Polynomial Ring in t over Integer Ring sage: P.<x,y> = QQ[] sage: f = P.hom([x+2*y,3*x-y],P) sage: F(f) Ring endomorphism of Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field Defn: x |--> x + 2*y y |--> 3*x - y sage: F(f)(1/x) 1/(x + 2*y) sage: F == loads(dumps(F)) True """ rank = 5 def __init__(self): """ TEST:: sage: from sage.categories.pushout import FractionField sage: F = FractionField() sage: F FractionField sage: F(ZZ['t']) Fraction Field of Univariate Polynomial Ring in t over Integer Ring """ Functor.__init__(self, IntegralDomains(), Fields()) def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. TEST:: sage: F = QQ.construction()[0] sage: F(GF(5)['t']) # indirect doctest Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 """ return R.fraction_field() # This isn't used anywhere in Sage, and so I remove it (Simon King, 2010-05) # #class LocalizationFunctor(ConstructionFunctor): # # rank = 6 # # def __init__(self, t): # Functor.__init__(self, Rings(), Rings()) # self.t = t # def _apply_functor(self, R): # return R.localize(t) # def __cmp__(self, other): # c = cmp(type(self), type(other)) # if c == 0: # c = cmp(self.t, other.t) # return c class CompletionFunctor(ConstructionFunctor): """ Completion of a ring with respect to a given prime (including infinity). EXAMPLES:: sage: R = Zp(5) sage: R 5-adic Ring with capped relative precision 20 sage: F1 = R.construction()[0] sage: F1 Completion[5] sage: F1(ZZ) is R True sage: F1(QQ) 5-adic Field with capped relative precision 20 sage: F2 = RR.construction()[0] sage: F2 Completion[+Infinity] sage: F2(QQ) is RR True sage: P.<x> = ZZ[] sage: Px = P.completion(x) # currently the only implemented completion of P sage: Px Power Series Ring in x over Integer Ring sage: F3 = Px.construction()[0] sage: F3(GF(3)['x']) Power Series Ring in x over Finite Field of size 3 TEST:: sage: R1.<a> = Zp(5,prec=20)[] sage: R2 = Qp(5,prec=40) sage: R2(1) + a (1 + O(5^20))*a + (1 + O(5^40)) sage: 1/2 + a (1 + O(5^20))*a + (3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 2*5^8 + 2*5^9 + 2*5^10 + 2*5^11 + 2*5^12 + 2*5^13 + 2*5^14 + 2*5^15 + 2*5^16 + 2*5^17 + 2*5^18 + 2*5^19 + O(5^20)) """ rank = 4 def __init__(self, p, prec, extras=None): """ INPUT: - ``p``: A prime number, the generator of a univariate polynomial ring, or ``+Infinity`` - ``prec``: an integer, yielding the precision in bits. Note that if ``p`` is prime then the ``prec`` is the *capped* precision, while it is the *set* precision if ``p`` is ``+Infinity``. - ``extras`` (optional dictionary): Information on how to print elements, etc. If 'type' is given as a key, the corresponding value should be a string among the following: - 'RDF', 'Interval', 'RLF', or 'RR' for completions at infinity - 'capped-rel', 'capped-abs', 'fixed-mod' or 'lazy' for completions at a finite place or ideal of a DVR. TESTS:: sage: from sage.categories.pushout import CompletionFunctor sage: F1 = CompletionFunctor(5,100) sage: F1(QQ) 5-adic Field with capped relative precision 100 sage: F1(ZZ) 5-adic Ring with capped relative precision 100 sage: F2 = RR.construction()[0] sage: F2 Completion[+Infinity] sage: F2.extras {'rnd': 'RNDN', 'sci_not': False, 'type': 'MPFR'} """ Functor.__init__(self, Rings(), Rings()) self.p = p self.prec = prec if extras is None: self.extras = {} self.type = None else: self.extras = dict(extras) self.type = extras.get('type', None) from sage.rings.infinity import Infinity if self.p == Infinity: if self.type not in self._real_types: raise ValueError("completion type must be one of %s"%(", ".join(self._real_types))) else: if self.type not in self._dvr_types: raise ValueError("completion type must be one of %s"%(", ".join(self._dvr_types))) def __str__(self): """ TEST:: sage: Zp(7).construction() # indirect doctest (Completion[7], Integer Ring) """ return 'Completion[%s]'%repr(self.p) def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. TEST:: sage: R = Zp(5) sage: F1 = R.construction()[0] sage: F1(ZZ) is R # indirect doctest True sage: F1(QQ) 5-adic Field with capped relative precision 20 """ try: if len(self.extras) == 0: if self.type is None: try: return R.completion(self.p, self.prec) except TypeError: return R.completion(self.p, self.prec, {}) else: return R.completion(self.p, self.prec, {'type':self.type}) else: extras = self.extras.copy() extras['type'] = self.type return R.completion(self.p, self.prec, extras) except (NotImplementedError,AttributeError): if R.construction() is None: raise NotImplementedError("Completion is not implemented for %s"%R.__class__) F, BR = R.construction() M = self.merge(F) or F.merge(self) if M is not None: return M(BR) if self.commutes(F) or F.commutes(self): return F(self(BR)) raise NotImplementedError("Don't know how to apply %s to %s"%(repr(self),repr(R))) def __cmp__(self, other): """ NOTE: Only the prime used in the completion is relevant to comparison of Completion functors, although the resulting rings also take the precision into account. TEST:: sage: R1 = Zp(5,prec=30) sage: R2 = Zp(5,prec=40) sage: F1 = R1.construction()[0] sage: F2 = R2.construction()[0] sage: F1 == loads(dumps(F1)) # indirect doctest True sage: F1==F2 True sage: F1(QQ)==F2(QQ) False sage: R3 = Zp(7) sage: F3 = R3.construction()[0] sage: F1==F3 False """ c = cmp(type(self), type(other)) if c == 0: c = cmp(self.p, other.p) return c _real_types = ['Interval','Ball','MPFR','RDF','RLF'] _dvr_types = [None, 'fixed-mod','capped-abs','capped-rel','lazy'] def merge(self, other): """ Two Completion functors are merged, if they are equal. If the precisions of both functors coincide, then a Completion functor is returned that results from updating the ``extras`` dictionary of ``self`` by ``other.extras``. Otherwise, if the completion is at infinity then merging does not increase the set precision, and if the completion is at a finite prime, merging does not decrease the capped precision. EXAMPLE:: sage: R1.<a> = Zp(5,prec=20)[] sage: R2 = Qp(5,prec=40) sage: R2(1)+a # indirect doctest (1 + O(5^20))*a + (1 + O(5^40)) sage: R3 = RealField(30) sage: R4 = RealField(50) sage: R3(1) + R4(1) # indirect doctest 2.0000000 sage: (R3(1) + R4(1)).parent() Real Field with 30 bits of precision TESTS: We check that #12353 has been resolved:: sage: RealIntervalField(53)(-1) > RR(1) False sage: RealIntervalField(54)(-1) > RR(1) False sage: RealIntervalField(54)(1) > RR(-1) True sage: RealIntervalField(53)(1) > RR(-1) True We check that various pushouts work:: sage: R0 = RealIntervalField(30) sage: R1 = RealIntervalField(30, sci_not=True) sage: R2 = RealIntervalField(53) sage: R3 = RealIntervalField(53, sci_not = True) sage: R4 = RealIntervalField(90) sage: R5 = RealIntervalField(90, sci_not = True) sage: R6 = RealField(30) sage: R7 = RealField(30, sci_not=True) sage: R8 = RealField(53, rnd = 'RNDD') sage: R9 = RealField(53, sci_not = True, rnd = 'RNDZ') sage: R10 = RealField(53, sci_not = True) sage: R11 = RealField(90, sci_not = True, rnd = 'RNDZ') sage: Rlist = [R0,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11] sage: from sage.categories.pushout import pushout sage: pushouts = [R0,R0,R0,R1,R0,R1,R0,R1,R0,R1,R1,R1,R1,R1,R1,R1,R1,R1,R1,R1,R1,R1,R1,R1,R0,R1,R2,R2,R2,R3,R0,R1,R2,R3,R3,R3,R1,R1,R3,R3,R3,R3,R1,R1,R3,R3,R3,R3,R0,R1,R2,R3,R4,R4,R0,R1,R2,R3,R3,R5,R1,R1,R3,R3,R5,R5,R1,R1,R3,R3,R3,R5,R0,R1,R0,R1,R0,R1,R6,R6,R6,R7,R7,R7,R1,R1,R1,R1,R1,R1,R7,R7,R7,R7,R7,R7,R0,R1,R2,R3,R2,R3,R6,R7,R8,R9,R10,R9,R1,R1,R3,R3,R3,R3,R7,R7,R9,R9,R10,R9,R1,R1,R3,R3,R3,R3,R7,R7,R10,R10,R10,R10,R1,R1,R3,R3,R5,R5,R7,R7,R9,R9,R10,R11] sage: all([R is S for R, S in zip(pushouts, [pushout(a, b) for a in Rlist for b in Rlist])]) True :: sage: P0 = ZpFM(5, 10) sage: P1 = ZpFM(5, 20) sage: P2 = ZpCR(5, 10) sage: P3 = ZpCR(5, 20) sage: P4 = ZpCA(5, 10) sage: P5 = ZpCA(5, 20) sage: P6 = Qp(5, 10) sage: P7 = Qp(5, 20) sage: Plist = [P2,P3,P4,P5,P6,P7] sage: from sage.categories.pushout import pushout sage: pushouts = [P2,P3,P4,P5,P6,P7,P3,P3,P5,P5,P7,P7,P4,P5,P4,P5,P6,P7,P5,P5,P5,P5,P7,P7,P6,P7,P6,P7,P6,P7,P7,P7,P7,P7,P7,P7] sage: all([P is Q for P, Q in zip(pushouts, [pushout(a, b) for a in Plist for b in Plist])]) True """ if self == other: # both are Completion functors with the same p from sage.all import Infinity if self.p == Infinity: new_prec = min(self.prec, other.prec) new_type = self._real_types[min(self._real_types.index(self.type), \ self._real_types.index(other.type))] new_scinot = max(self.extras.get('sci_not',0), other.extras.get('sci_not',0)) from sage.rings.real_mpfr import _rounding_modes new_rnd = _rounding_modes[min(_rounding_modes.index(self.extras.get('rnd', 'RNDN')), \ _rounding_modes.index(other.extras.get('rnd', 'RNDN')))] return CompletionFunctor(self.p, new_prec, {'type': new_type, 'sci_not':new_scinot, 'rnd':new_rnd}) else: new_type = self._dvr_types[min(self._dvr_types.index(self.type), self._dvr_types.index(other.type))] if new_type == 'fixed-mod': if self.type != 'fixed-mod' or other.type != 'fixed-mod': return None # no coercion into fixed-mod new_prec = min(self.prec, other.prec) else: new_prec = max(self.prec, other.prec) # since elements track their own precision, we don't want to truncate them extras = self.extras.copy() extras.update(other.extras) extras['type'] = new_type return CompletionFunctor(self.p, new_prec, extras) ## Completion has a lower rank than FractionField ## and is thus applied first. However, fact is that ## both commute. This is used in the call method, ## since some fraction fields have no completion method ## implemented. def commutes(self,other): """ Completion commutes with fraction fields. EXAMPLE:: sage: F1 = Qp(5).construction()[0] sage: F2 = QQ.construction()[0] sage: F1.commutes(F2) True TEST: The fraction field ``R`` in the example below has no completion method. But completion commutes with the fraction field functor, and so it is tried internally whether applying the construction functors in opposite order works. It does:: sage: P.<x> = ZZ[] sage: C = P.completion(x).construction()[0] sage: R = FractionField(P) sage: hasattr(R,'completion') False sage: C(R) is Frac(C(P)) True sage: F = R.construction()[0] sage: (C*F)(ZZ['x']) is (F*C)(ZZ['x']) True The following was fixed in :trac:`15329` (it used to result in an infinite recursion):: sage: from sage.categories.pushout import pushout sage: pushout(Qp(7),RLF) Traceback (most recent call last): ... CoercionException: ('Ambiguous Base Extension', 7-adic Field with capped relative precision 20, Real Lazy Field) """ return isinstance(other,FractionField) class QuotientFunctor(ConstructionFunctor): """ Construction functor for quotient rings. NOTE: The functor keeps track of variable names. EXAMPLE:: sage: P.<x,y> = ZZ[] sage: Q = P.quo([x^2+y^2]*P) sage: F = Q.construction()[0] sage: F(QQ['x','y']) Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2) sage: F(QQ['x','y']) == QQ['x','y'].quo([x^2+y^2]*QQ['x','y']) True sage: F(QQ['x','y','z']) Traceback (most recent call last): ... CoercionException: Can not apply this quotient functor to Multivariate Polynomial Ring in x, y, z over Rational Field sage: F(QQ['y','z']) Traceback (most recent call last): ... TypeError: Could not find a mapping of the passed element to this ring. """ rank = 4.5 def __init__(self, I, names=None, as_field=False): """ INPUT: - ``I``, an ideal (the modulus) - ``names`` (optional string or list of strings), the names for the quotient ring generators - ``as_field`` (optional bool, default false), return the quotient ring as field (if available). TESTS:: sage: from sage.categories.pushout import QuotientFunctor sage: P.<t> = ZZ[] sage: F = QuotientFunctor([5+t^2]*P) sage: F(P) Univariate Quotient Polynomial Ring in tbar over Integer Ring with modulus t^2 + 5 sage: F(QQ['t']) Univariate Quotient Polynomial Ring in tbar over Rational Field with modulus t^2 + 5 sage: F = QuotientFunctor([5+t^2]*P,names='s') sage: F(P) Univariate Quotient Polynomial Ring in s over Integer Ring with modulus t^2 + 5 sage: F(QQ['t']) Univariate Quotient Polynomial Ring in s over Rational Field with modulus t^2 + 5 sage: F = QuotientFunctor([5]*ZZ,as_field=True) sage: F(ZZ) Finite Field of size 5 sage: F = QuotientFunctor([5]*ZZ) sage: F(ZZ) Ring of integers modulo 5 """ Functor.__init__(self, Rings(), Rings()) # much more general... self.I = I if names is None: self.names = None elif isinstance(names, six.string_types): self.names = (names,) else: self.names = tuple(names) self.as_field = as_field def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. TESTS:: sage: P.<x,y> = ZZ[] sage: Q = P.quo([2+x^2,3*x+y^2]) sage: F = Q.construction()[0]; F QuotientFunctor sage: F(QQ['x','y']) # indirect doctest Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + 2, y^2 + 3*x) Note that the ``quo()`` method of a field used to return the integer zero. That strange behaviour was removed in trac ticket :trac:`9138`. It now returns a trivial quotient ring when applied to a field:: sage: F = ZZ.quo([5]*ZZ).construction()[0] sage: F(QQ) Ring of integers modulo 1 sage: QQ.quo(5) Quotient of Rational Field by the ideal (1) """ I = self.I from sage.all import QQ if not I.is_zero(): from sage.categories.fields import Fields if R in Fields(): from sage.all import Integers return Integers(1) if I.ring() != R: if I.ring().has_coerce_map_from(R): R = I.ring() else: R = pushout(R,I.ring().base_ring()) I = [R(1)*t for t in I.gens()]*R try: Q = R.quo(I,names=self.names) except IndexError: # That may happen! raise CoercionException("Can not apply this quotient functor to %s"%R) if self.as_field:# and hasattr(Q, 'field'): try: Q = Q.field() except AttributeError: pass return Q def __cmp__(self, other): """ The types, the names and the moduli are compared. TESTS:: sage: P.<x> = QQ[] sage: F = P.quo([(x^2+1)^2*(x^2-3),(x^2+1)^2*(x^5+3)]).construction()[0] sage: F == loads(dumps(F)) True sage: P2.<x,y> = QQ[] sage: F == P2.quo([(x^2+1)^2*(x^2-3),(x^2+1)^2*(x^5+3)]).construction()[0] False sage: P3.<x> = ZZ[] sage: F == P3.quo([(x^2+1)^2*(x^2-3),(x^2+1)^2*(x^5+3)]).construction()[0] True """ c = cmp(type(self), type(other)) if c == 0: c = cmp(self.names, other.names) if c == 0: c = cmp(self.I, other.I) return c def merge(self, other): """ Two quotient functors with coinciding names are merged by taking the gcd of their moduli. EXAMPLE:: sage: P.<x> = QQ[] sage: Q1 = P.quo([(x^2+1)^2*(x^2-3)]) sage: Q2 = P.quo([(x^2+1)^2*(x^5+3)]) sage: from sage.categories.pushout import pushout sage: pushout(Q1,Q2) # indirect doctest Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^4 + 2*x^2 + 1 The following was fixed in trac ticket #8800:: sage: pushout(GF(5), Integers(5)) Finite Field of size 5 """ if not isinstance(self, type(other)): return None if self.names != other.names: return None if self == other: if self.as_field == other.as_field: return self return QuotientFunctor(self.I, names=self.names, as_field=True) # one of them yields a field! try: gcd = self.I + other.I except (TypeError, NotImplementedError): try: gcd = self.I.gcd(other.I) except (TypeError, NotImplementedError): return None if gcd.is_trivial() and not gcd.is_zero(): # quotient by gcd would result in the trivial ring/group/... # Rather than create the zero ring, we claim they can't be merged # TODO: Perhaps this should be detected at a higher level... raise TypeError("Trivial quotient intersection.") # GF(p) has a coercion from Integers(p). Hence, merging should # yield a field if either self or other yields a field. return QuotientFunctor(gcd, names=self.names, as_field=self.as_field or other.as_field) class AlgebraicExtensionFunctor(ConstructionFunctor): """ Algebraic extension (univariate polynomial ring modulo principal ideal). EXAMPLE:: sage: K.<a> = NumberField(x^3+x^2+1) sage: F = K.construction()[0] sage: F(ZZ['t']) Univariate Quotient Polynomial Ring in a over Univariate Polynomial Ring in t over Integer Ring with modulus a^3 + a^2 + 1 Note that, even if a field is algebraically closed, the algebraic extension will be constructed as the quotient of a univariate polynomial ring:: sage: F(CC) Univariate Quotient Polynomial Ring in a over Complex Field with 53 bits of precision with modulus a^3 + a^2 + 1.00000000000000 sage: F(RR) Univariate Quotient Polynomial Ring in a over Real Field with 53 bits of precision with modulus a^3 + a^2 + 1.00000000000000 Note that the construction functor of a number field applied to the integers returns an order (not necessarily maximal) of that field, similar to the behaviour of ``ZZ.extension(...)``:: sage: F(ZZ) Order in Number Field in a with defining polynomial x^3 + x^2 + 1 This also holds for non-absolute number fields:: sage: K.<a,b> = NumberField([x^3+x^2+1,x^2+x+1]) sage: F = K.construction()[0] sage: O = F(ZZ); O Relative Order in Number Field in a with defining polynomial x^3 + x^2 + 1 over its base field Unfortunately, the relative number field is not a unique parent:: sage: O.ambient() is K False sage: O.ambient() == K True """ rank = 3 def __init__(self, polys, names, embeddings, cyclotomic=None, **kwds): """ INPUT: - ``polys``: a list of polynomials (or of integers, for finite fields and unramified local extensions) - ``names``: a list of strings of the same length as the list ``polys`` - ``embeddings``: a list of approximate complex values, determining an embedding of the generators into the complex field, or ``None`` for each generator whose embedding is not prescribed. - ``cyclotomic``: optional integer. If it is provided, application of the functor to the rational field yields a cyclotomic field, rather than just a number field. - ``**kwds``: further keywords; when the functor is applied to a ring `R`, these are passed to the ``extension()`` method of `R`. REMARK: Currently, an embedding can only be provided for the last generator, and only when the construction functor is applied to the rational field. There will be no error when constructing the functor, but when applying it. TESTS:: sage: from sage.categories.pushout import AlgebraicExtensionFunctor sage: P.<x> = ZZ[] sage: F1 = AlgebraicExtensionFunctor([x^3 - x^2 + 1], ['a'], [None]) sage: F2 = AlgebraicExtensionFunctor([x^3 - x^2 + 1], ['a'], [0]) sage: F1==F2 False sage: F1(QQ) Number Field in a with defining polynomial x^3 - x^2 + 1 sage: F1(QQ).coerce_embedding() sage: phi = F2(QQ).coerce_embedding().__copy__(); phi Generic morphism: From: Number Field in a with defining polynomial x^3 - x^2 + 1 To: Real Lazy Field Defn: a -> -0.7548776662466928? sage: F1(QQ)==F2(QQ) False sage: F1(GF(5)) Univariate Quotient Polynomial Ring in a over Finite Field of size 5 with modulus a^3 + 4*a^2 + 1 sage: F2(GF(5)) Traceback (most recent call last): ... NotImplementedError: ring extension with prescripted embedding is not implemented When applying a number field constructor to the ring of integers, an order (not necessarily maximal) of that field is returned, similar to the behaviour of ``ZZ.extension``:: sage: F1(ZZ) Order in Number Field in a with defining polynomial x^3 - x^2 + 1 The cyclotomic fields form a special case of number fields with prescribed embeddings:: sage: C = CyclotomicField(8) sage: F,R = C.construction() sage: F AlgebraicExtensionFunctor sage: R Rational Field sage: F(R) Cyclotomic Field of order 8 and degree 4 sage: F(ZZ) Maximal Order in Cyclotomic Field of order 8 and degree 4 """ Functor.__init__(self, Rings(), Rings()) if not (isinstance(polys,(list,tuple)) and isinstance(names,(list,tuple)) and isinstance(embeddings,(list,tuple))): raise ValueError("Arguments must be lists or tuples") if not (len(names)==len(polys)==len(embeddings)): raise ValueError("The three arguments must be of the same length") self.polys = list(polys) self.names = list(names) self.embeddings = list(embeddings) self.cyclotomic = int(cyclotomic) if cyclotomic is not None else None self.kwds = kwds def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. TESTS:: sage: K.<a>=NumberField(x^3+x^2+1) sage: F = K.construction()[0] sage: F(ZZ) # indirect doctest Order in Number Field in a with defining polynomial x^3 + x^2 + 1 sage: F(ZZ['t']) # indirect doctest Univariate Quotient Polynomial Ring in a over Univariate Polynomial Ring in t over Integer Ring with modulus a^3 + a^2 + 1 sage: F(RR) # indirect doctest Univariate Quotient Polynomial Ring in a over Real Field with 53 bits of precision with modulus a^3 + a^2 + 1.00000000000000 Check that :trac:`13538` is fixed:: sage: K = Qp(3,3) sage: R.<a> = K[] sage: AEF = sage.categories.pushout.AlgebraicExtensionFunctor([a^2-3], ['a'], [None]) sage: AEF(K) Eisenstein Extension of 3-adic Field with capped relative precision 3 in a defined by (1 + O(3^3))*a^2 + (O(3^4))*a + (2*3 + 2*3^2 + 2*3^3 + O(3^4)) """ from sage.all import QQ, ZZ, CyclotomicField if self.cyclotomic: if R==QQ: return CyclotomicField(self.cyclotomic) if R==ZZ: return CyclotomicField(self.cyclotomic).maximal_order() if len(self.polys) == 1: return R.extension(self.polys[0], names=self.names[0], embedding=self.embeddings[0], **self.kwds) return R.extension(self.polys, names=self.names, embedding=self.embeddings) def __cmp__(self, other): """ TEST:: sage: K.<a>=NumberField(x^3+x^2+1) sage: F = K.construction()[0] sage: F == loads(dumps(F)) True """ c = cmp(type(self), type(other)) if c == 0: c = cmp(self.polys, other.polys) if c == 0: c = cmp(self.embeddings, other.embeddings) return c def merge(self,other): """ Merging with another :class:`AlgebraicExtensionFunctor`. INPUT: ``other`` -- Construction Functor. OUTPUT: - If ``self==other``, ``self`` is returned. - If ``self`` and ``other`` are simple extensions and both provide an embedding, then it is tested whether one of the number fields provided by the functors coerces into the other; the functor associated with the target of the coercion is returned. Otherwise, the construction functor associated with the pushout of the codomains of the two embeddings is returned, provided that it is a number field. - If these two extensions are defined by Conway polynomials over finite fields, merges them into a single extension of degree the lcm of the two degrees. - Otherwise, None is returned. REMARK: Algebraic extension with embeddings currently only works when applied to the rational field. This is why we use the admittedly strange rule above for merging. EXAMPLES: The following demonstrate coercions for finite fields using Conway or pseudo-Conway polynomials:: sage: k = GF(3^2, conway=True, prefix='z'); a = k.gen() sage: l = GF(3^3, conway=True, prefix='z'); b = l.gen() sage: a + b # indirect doctest z6^5 + 2*z6^4 + 2*z6^3 + z6^2 + 2*z6 + 1 Note that embeddings are compatible in lattices of such finite fields:: sage: m = GF(3^5, conway=True, prefix='z'); c = m.gen() sage: (a+b)+c == a+(b+c) # indirect doctest True sage: from sage.categories.pushout import pushout sage: n = pushout(k, l) sage: o = pushout(l, m) sage: q = pushout(n, o) sage: q(o(b)) == q(n(b)) # indirect doctest True Coercion is also available for number fields:: sage: P.<x> = QQ[] sage: L.<b> = NumberField(x^8-x^4+1, embedding=CDF.0) sage: M1.<c1> = NumberField(x^2+x+1, embedding=b^4-1) sage: M2.<c2> = NumberField(x^2+1, embedding=-b^6) sage: M1.coerce_map_from(M2) sage: M2.coerce_map_from(M1) sage: c1+c2; parent(c1+c2) #indirect doctest -b^6 + b^4 - 1 Number Field in b with defining polynomial x^8 - x^4 + 1 sage: pushout(M1['x'],M2['x']) Univariate Polynomial Ring in x over Number Field in b with defining polynomial x^8 - x^4 + 1 In the previous example, the number field ``L`` becomes the pushout of ``M1`` and ``M2`` since both are provided with an embedding into ``L``, *and* since ``L`` is a number field. If two number fields are embedded into a field that is not a numberfield, no merging occurs:: sage: K.<a> = NumberField(x^3-2, embedding=CDF(1/2*I*2^(1/3)*sqrt(3) - 1/2*2^(1/3))) sage: L.<b> = NumberField(x^6-2, embedding=1.1) sage: L.coerce_map_from(K) sage: K.coerce_map_from(L) sage: pushout(K,L) Traceback (most recent call last): ... CoercionException: ('Ambiguous Base Extension', Number Field in a with defining polynomial x^3 - 2, Number Field in b with defining polynomial x^6 - 2) """ if isinstance(other, AlgebraicClosureFunctor): return other elif not isinstance(other, AlgebraicExtensionFunctor): return None if self == other: return self # This method is supposed to be used in pushout(), # *after* expanding the functors. Hence, we can # assume that both functors have a single variable. # But for being on the safe side...: if len(self.names)!=1 or len(other.names)!=1: return None ## We don't accept a forgetful coercion, since, together ## with bidirectional coercions between two embedded ## number fields, it would yield to contradictions in ## the coercion system. # if self.polys==other.polys and self.names==other.names: # # We have a forgetful functor: # if self.embeddings==[None]: # return self # if other.embeddings==[None]: # return other # ... or we may use the given embeddings: if self.embeddings!=[None] and other.embeddings!=[None]: from sage.all import QQ KS = self(QQ) KO = other(QQ) if KS.has_coerce_map_from(KO): return self if KO.has_coerce_map_from(KS): return other # nothing else helps, hence, we move to the pushout of the codomains of the embeddings try: P = pushout(self.embeddings[0].parent(), other.embeddings[0].parent()) from sage.rings.number_field.number_field import is_NumberField if is_NumberField(P): return P.construction()[0] except CoercionException: return None # Finite fields and unramified local extensions may use # integers to encode degrees of extensions. from sage.rings.integer import Integer if (isinstance(self.polys[0], Integer) and isinstance(other.polys[0], Integer) and self.embeddings == [None] and other.embeddings == [None] and self.kwds == other.kwds): return AlgebraicExtensionFunctor([self.polys[0].lcm(other.polys[0])], [None], [None], **self.kwds) def __mul__(self, other): """ Compose construction functors to a composit construction functor, unless one of them is the identity. NOTE: The product is in functorial notation, i.e., when applying the product to an object then the second factor is applied first. TESTS:: sage: P.<x> = QQ[] sage: K.<a> = NumberField(x^3-5,embedding=0) sage: L.<b> = K.extension(x^2+a) sage: F,R = L.construction() sage: prod(F.expand())(R) == L #indirect doctest True """ if isinstance(other,IdentityConstructionFunctor): return self if isinstance(other, AlgebraicExtensionFunctor): if set(self.names).intersection(other.names): raise CoercionException("Overlapping names (%s,%s)" % (self.names, other.names)) return AlgebraicExtensionFunctor(self.polys + other.polys, self.names + other.names, self.embeddings + other.embeddings, **self.kwds) elif isinstance(other, CompositeConstructionFunctor) \ and isinstance(other.all[-1], AlgebraicExtensionFunctor): return CompositeConstructionFunctor(other.all[:-1], self * other.all[-1]) else: return CompositeConstructionFunctor(other, self) def expand(self): """ Decompose the functor `F` into sub-functors, whose product returns `F`. EXAMPLES:: sage: P.<x> = QQ[] sage: K.<a> = NumberField(x^3-5,embedding=0) sage: L.<b> = K.extension(x^2+a) sage: F,R = L.construction() sage: prod(F.expand())(R) == L True sage: K = NumberField([x^2-2, x^2-3],'a') sage: F, R = K.construction() sage: F AlgebraicExtensionFunctor sage: L = F.expand(); L [AlgebraicExtensionFunctor, AlgebraicExtensionFunctor] sage: L[-1](QQ) Number Field in a1 with defining polynomial x^2 - 3 """ if len(self.polys)==1: return [self] return [AlgebraicExtensionFunctor([self.polys[i]], [self.names[i]], [self.embeddings[i]], **self.kwds) for i in xrange(len(self.polys))] class AlgebraicClosureFunctor(ConstructionFunctor): """ Algebraic Closure. EXAMPLE:: sage: F = CDF.construction()[0] sage: F(QQ) Algebraic Field sage: F(RR) Complex Field with 53 bits of precision sage: F(F(QQ)) is F(QQ) True """ rank = 3 def __init__(self): """ TEST:: sage: from sage.categories.pushout import AlgebraicClosureFunctor sage: F = AlgebraicClosureFunctor() sage: F(QQ) Algebraic Field sage: F(RR) Complex Field with 53 bits of precision sage: F == loads(dumps(F)) True """ Functor.__init__(self, Rings(), Rings()) def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. TEST:: sage: F = CDF.construction()[0] sage: F(QQ) # indirect doctest Algebraic Field """ try: c = R.construction() if c is not None and c[0]==self: return R except AttributeError: pass return R.algebraic_closure() def merge(self, other): """ Mathematically, Algebraic Closure subsumes Algebraic Extension. However, it seems that people do want to work with algebraic extensions of ``RR``. Therefore, we do not merge with algebraic extension. TEST:: sage: K.<a>=NumberField(x^3+x^2+1) sage: CDF.construction()[0].merge(K.construction()[0]) is None True sage: CDF.construction()[0].merge(CDF.construction()[0]) AlgebraicClosureFunctor """ if self==other: return self return None # Mathematically, Algebraic Closure subsumes Algebraic Extension. # However, it seems that people do want to work with # algebraic extensions of RR (namely RR/poly*RR). So, we don't do: # if isinstance(other,AlgebraicExtensionFunctor): # return self class PermutationGroupFunctor(ConstructionFunctor): rank = 10 def __init__(self, gens, domain): """ EXAMPLES:: sage: from sage.categories.pushout import PermutationGroupFunctor sage: PF = PermutationGroupFunctor([PermutationGroupElement([(1,2)])], [1,2]); PF PermutationGroupFunctor[(1,2)] """ Functor.__init__(self, Groups(), Groups()) self._gens = gens self._domain = domain def _repr_(self): """ EXAMPLES:: sage: P1 = PermutationGroup([[(1,2)]]) sage: PF, P = P1.construction() sage: PF PermutationGroupFunctor[(1,2)] """ return "PermutationGroupFunctor%s"%self.gens() def __call__(self, R): """ EXAMPLES:: sage: P1 = PermutationGroup([[(1,2)]]) sage: PF, P = P1.construction() sage: PF(P) Permutation Group with generators [(1,2)] """ from sage.groups.perm_gps.permgroup import PermutationGroup return PermutationGroup([g for g in (R.gens() + self.gens()) if not g.is_one()], domain=self._domain) def gens(self): """ EXAMPLES:: sage: P1 = PermutationGroup([[(1,2)]]) sage: PF, P = P1.construction() sage: PF.gens() [(1,2)] """ return self._gens def merge(self, other): """ Merge ``self`` with another construction functor, or return None. EXAMPLES:: sage: P1 = PermutationGroup([[(1,2)]]) sage: PF1, P = P1.construction() sage: P2 = PermutationGroup([[(1,3)]]) sage: PF2, P = P2.construction() sage: PF1.merge(PF2) PermutationGroupFunctor[(1,2), (1,3)] """ if self.__class__ != other.__class__: return None from sage.sets.all import FiniteEnumeratedSet new_domain = set(self._domain).union(set(other._domain)) new_domain = FiniteEnumeratedSet(sorted(new_domain)) return PermutationGroupFunctor(self.gens() + other.gens(), new_domain) class BlackBoxConstructionFunctor(ConstructionFunctor): """ Construction functor obtained from any callable object. EXAMPLES:: sage: from sage.categories.pushout import BlackBoxConstructionFunctor sage: FG = BlackBoxConstructionFunctor(gap) sage: FS = BlackBoxConstructionFunctor(singular) sage: FG BlackBoxConstructionFunctor sage: FG(ZZ) Integers sage: FG(ZZ).parent() Gap sage: FS(QQ['t']) // characteristic : 0 // number of vars : 1 // block 1 : ordering lp // : names t // block 2 : ordering C sage: FG == FS False sage: FG == loads(dumps(FG)) True """ rank = 100 def __init__(self, box): """ TESTS:: sage: from sage.categories.pushout import BlackBoxConstructionFunctor sage: FG = BlackBoxConstructionFunctor(gap) sage: FM = BlackBoxConstructionFunctor(maxima) sage: FM == FG False sage: FM == loads(dumps(FM)) True """ ConstructionFunctor.__init__(self,Objects(),Objects()) if not callable(box): raise TypeError("input must be callable") self.box = box def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. TESTS:: sage: from sage.categories.pushout import BlackBoxConstructionFunctor sage: f = lambda x: x^2 sage: F = BlackBoxConstructionFunctor(f) sage: F(ZZ) # indirect doctest Ambient free module of rank 2 over the principal ideal domain Integer Ring """ return self.box(R) def __cmp__(self, other): """ TESTS:: sage: from sage.categories.pushout import BlackBoxConstructionFunctor sage: FG = BlackBoxConstructionFunctor(gap) sage: FM = BlackBoxConstructionFunctor(maxima) sage: FM == FG # indirect doctest False sage: FM == loads(dumps(FM)) True """ c = cmp(type(self), type(other)) if c == 0: c = cmp(self.box, other.box) #return self.box == other.box return c def pushout(R, S): r""" Given a pair of objects `R` and `S`, try to construct a reasonable object `Y` and return maps such that canonically `R \leftarrow Y \rightarrow S`. ALGORITHM: This incorporates the idea of functors discussed at Sage Days 4. Every object `R` can be viewed as an initial object and a series of functors (e.g. polynomial, quotient, extension, completion, vector/matrix, etc.). Call the series of increasingly simple objects (with the associated functors) the "tower" of `R`. The construction method is used to create the tower. Given two objects `R` and `S`, try to find a common initial object `Z`. If the towers of `R` and `S` meet, let `Z` be their join. Otherwise, see if the top of one coerces naturally into the other. Now we have an initial object and two ordered lists of functors to apply. We wish to merge these in an unambiguous order, popping elements off the top of one or the other tower as we apply them to `Z`. - If the functors are of distinct types, there is an absolute ordering given by the rank attribute. Use this. - Otherwise: - If the tops are equal, we (try to) merge them. - If exactly one occurs lower in the other tower, we may unambiguously apply the other (hoping for a later merge). - If the tops commute, we can apply either first. - Otherwise fail due to ambiguity. The algorithm assumes by default that when a construction `F` is applied to an object `X`, the object `F(X)` admits a coercion map from `X`. However, the algorithm can also handle the case where `F(X)` has a coercion map *to* `X` instead. In this case, the attribute ``coercion_reversed`` of the class implementing `F` should be set to ``True``. EXAMPLES: Here our "towers" are `R = Complete_7(Frac(\ZZ))` and `Frac(Poly_x(\ZZ))`, which give us `Frac(Poly_x(Complete_7(Frac(\ZZ))))`:: sage: from sage.categories.pushout import pushout sage: pushout(Qp(7), Frac(ZZ['x'])) Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped relative precision 20 Note we get the same thing with :: sage: pushout(Zp(7), Frac(QQ['x'])) Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped relative precision 20 sage: pushout(Zp(7)['x'], Frac(QQ['x'])) Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped relative precision 20 Note that polynomial variable ordering must be unambiguously determined. :: sage: pushout(ZZ['x,y,z'], QQ['w,z,t']) Traceback (most recent call last): ... CoercionException: ('Ambiguous Base Extension', Multivariate Polynomial Ring in x, y, z over Integer Ring, Multivariate Polynomial Ring in w, z, t over Rational Field) sage: pushout(ZZ['x,y,z'], QQ['w,x,z,t']) Multivariate Polynomial Ring in w, x, y, z, t over Rational Field Some other examples:: sage: pushout(Zp(7)['y'], Frac(QQ['t'])['x,y,z']) Multivariate Polynomial Ring in x, y, z over Fraction Field of Univariate Polynomial Ring in t over 7-adic Field with capped relative precision 20 sage: pushout(ZZ['x,y,z'], Frac(ZZ['x'])['y']) Multivariate Polynomial Ring in y, z over Fraction Field of Univariate Polynomial Ring in x over Integer Ring sage: pushout(MatrixSpace(RDF, 2, 2), Frac(ZZ['x'])) Full MatrixSpace of 2 by 2 dense matrices over Fraction Field of Univariate Polynomial Ring in x over Real Double Field sage: pushout(ZZ, MatrixSpace(ZZ[['x']], 3, 3)) Full MatrixSpace of 3 by 3 dense matrices over Power Series Ring in x over Integer Ring sage: pushout(QQ['x,y'], ZZ[['x']]) Univariate Polynomial Ring in y over Power Series Ring in x over Rational Field sage: pushout(Frac(ZZ['x']), QQ[['x']]) Laurent Series Ring in x over Rational Field A construction with ``coercion_reversed = True`` (currently only the :class:`SubspaceFunctor` construction) is only applied if it leads to a valid coercion:: sage: A = ZZ^2 sage: V = span([[1, 2]], QQ) sage: P = sage.categories.pushout.pushout(A, V) sage: P Vector space of dimension 2 over Rational Field sage: P.has_coerce_map_from(A) True sage: V = (QQ^3).span([[1, 2, 3/4]]) sage: A = ZZ^3 sage: pushout(A, V) Vector space of dimension 3 over Rational Field sage: B = A.span([[0, 0, 2/3]]) sage: pushout(B, V) Vector space of degree 3 and dimension 2 over Rational Field User basis matrix: [1 2 0] [0 0 1] Some more tests with ``coercion_reversed = True``:: sage: from sage.categories.pushout import ConstructionFunctor sage: class EvenPolynomialRing(type(QQ['x'])): ....: def __init__(self, base, var): ....: super(EvenPolynomialRing, self).__init__(base, var) ....: self.register_embedding(base[var]) ....: def __repr__(self): ....: return "Even Power " + super(EvenPolynomialRing, self).__repr__() ....: def construction(self): ....: return EvenPolynomialFunctor(), self.base()[self.variable_name()] ....: def _coerce_map_from_(self, R): ....: return self.base().has_coerce_map_from(R) ....: sage: class EvenPolynomialFunctor(ConstructionFunctor): ....: rank = 10 ....: coercion_reversed = True ....: def __init__(self): ....: ConstructionFunctor.__init__(self, Rings(), Rings()) ....: def __call__(self, R): ....: return EvenPolynomialRing(R.base(), R.variable_name()) ....: sage: pushout(EvenPolynomialRing(QQ, 'x'), ZZ) Even Power Univariate Polynomial Ring in x over Rational Field sage: pushout(EvenPolynomialRing(QQ, 'x'), QQ) Even Power Univariate Polynomial Ring in x over Rational Field sage: pushout(EvenPolynomialRing(QQ, 'x'), RR) Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of precision sage: pushout(EvenPolynomialRing(QQ, 'x'), ZZ['x']) Univariate Polynomial Ring in x over Rational Field sage: pushout(EvenPolynomialRing(QQ, 'x'), QQ['x']) Univariate Polynomial Ring in x over Rational Field sage: pushout(EvenPolynomialRing(QQ, 'x'), RR['x']) Univariate Polynomial Ring in x over Real Field with 53 bits of precision sage: pushout(EvenPolynomialRing(QQ, 'x'), EvenPolynomialRing(QQ, 'x')) Even Power Univariate Polynomial Ring in x over Rational Field sage: pushout(EvenPolynomialRing(QQ, 'x'), EvenPolynomialRing(RR, 'x')) Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of precision sage: pushout(EvenPolynomialRing(QQ, 'x')^2, RR^2) Ambient free module of rank 2 over the principal ideal domain Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of precision sage: pushout(EvenPolynomialRing(QQ, 'x')^2, RR['x']^2) Ambient free module of rank 2 over the principal ideal domain Univariate Polynomial Ring in x over Real Field with 53 bits of precision AUTHORS: -- Robert Bradshaw """ if R is S or R == S: return R if isinstance(R, type): R = type_to_parent(R) if isinstance(S, type): S = type_to_parent(S) R_tower = construction_tower(R) S_tower = construction_tower(S) Rs = [c[1] for c in R_tower] Ss = [c[1] for c in S_tower] if R in Ss: if not any(c[0].coercion_reversed for c in S_tower[1:]): return S elif S in Rs: if not any(c[0].coercion_reversed for c in R_tower[1:]): return R if Rs[-1] in Ss: Rs, Ss = Ss, Rs R_tower, S_tower = S_tower, R_tower # look for join if Ss[-1] in Rs: if Rs[-1] == Ss[-1]: while Rs and Ss and Rs[-1] == Ss[-1]: Rs.pop() Z = Ss.pop() else: Rs = Rs[:Rs.index(Ss[-1])] Z = Ss.pop() # look for topmost coercion elif S.has_coerce_map_from(Rs[-1]): while not Ss[-1].has_coerce_map_from(Rs[-1]): Ss.pop() while len(Rs) > 0 and Ss[-1].has_coerce_map_from(Rs[-1]): Rs.pop() Z = Ss.pop() elif R.has_coerce_map_from(Ss[-1]): while not Rs[-1].has_coerce_map_from(Ss[-1]): Rs.pop() while len(Ss) > 0 and Rs[-1].has_coerce_map_from(Ss[-1]): Ss.pop() Z = Rs.pop() else: raise CoercionException("No common base") # Rc is a list of functors from Z to R and Sc is a list of functors from Z to S R_tower = expand_tower(R_tower[:len(Rs)+1]) S_tower = expand_tower(S_tower[:len(Ss)+1]) Rc = [c[0] for c in R_tower[1:]] Sc = [c[0] for c in S_tower[1:]] all = IdentityConstructionFunctor() def apply_from(Xc): c = Xc.pop() if c.coercion_reversed: Yc = Sc if Xc is Rc else Rc Y_tower = S_tower if Xc is Rc else R_tower Y_partial = Y_tower[len(Yc)][1] if not (c * all)(Z).has_coerce_map_from(Y_partial): return all return c * all try: while len(Rc) > 0 or len(Sc) > 0: # print Z # if we are out of functors in either tower, there is no ambiguity if len(Sc) == 0: all = apply_from(Rc) elif len(Rc) == 0: all = apply_from(Sc) # if one of the functors has lower rank, do it first elif Rc[-1].rank < Sc[-1].rank: all = apply_from(Rc) elif Sc[-1].rank < Rc[-1].rank: all = apply_from(Sc) else: # the ranks are the same, so things are a bit subtler if Rc[-1] == Sc[-1]: # If they are indeed the same operation, we only do it once. # The \code{merge} function here takes into account non-mathematical # distinctions (e.g. single vs. multivariate polynomials). cR = Rc.pop() cS = Sc.pop() c = cR.merge(cS) or cS.merge(cR) if c: all = c * all else: raise CoercionException("Incompatible Base Extension %r, %r (on %r, %r)" % (R, S, cR, cS)) else: # Now we look ahead to see if either top functor is # applied later on in the other tower. # If this is the case for exactly one of them, we unambiguously # postpone that operation, but if both then we abort. if Rc[-1] in Sc: if Sc[-1] in Rc: raise CoercionException("Ambiguous Base Extension", R, S) else: all = apply_from(Sc) elif Sc[-1] in Rc: all = apply_from(Rc) # If, perchance, the two functors commute, then we may do them in any order. elif Rc[-1].commutes(Sc[-1]) or Sc[-1].commutes(Rc[-1]): all = Sc.pop() * Rc.pop() * all else: # try and merge (default merge is failure for unequal functors) cR = Rc.pop() cS = Sc.pop() c = cR.merge(cS) or cS.merge(cR) if c is not None: all = c * all else: # Otherwise, we cannot proceed. raise CoercionException("Ambiguous Base Extension", R, S) return all(Z) except CoercionException: raise except (TypeError, ValueError, AttributeError, NotImplementedError) as ex: # We do this because we may be trying all kinds of things that don't # make sense, and in this case simply want to return that a pushout # couldn't be found. raise CoercionException(ex) def pushout_lattice(R, S): r""" Given a pair of objects `R` and `S`, try to construct a reasonable object `Y` and return maps such that canonically `R \leftarrow Y \rightarrow S`. ALGORITHM: This is based on the model that arose from much discussion at Sage Days 4. Going up the tower of constructions of `R` and `S` (e.g. the reals come from the rationals come from the integers), try to find a common parent, and then try to fill in a lattice with these two towers as sides with the top as the common ancestor and the bottom will be the desired ring. See the code for a specific worked-out example. EXAMPLES:: sage: from sage.categories.pushout import pushout_lattice sage: A, B = pushout_lattice(Qp(7), Frac(ZZ['x'])) sage: A.codomain() Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped relative precision 20 sage: A.codomain() is B.codomain() True sage: A, B = pushout_lattice(ZZ, MatrixSpace(ZZ[['x']], 3, 3)) sage: B Identity endomorphism of Full MatrixSpace of 3 by 3 dense matrices over Power Series Ring in x over Integer Ring AUTHOR: - Robert Bradshaw """ R_tower = construction_tower(R) S_tower = construction_tower(S) Rs = [c[1] for c in R_tower] Ss = [c[1] for c in S_tower] # look for common ancestor start = None for Z in Rs: if Z in Ss: start = Z if start is None: # Should I test for a map between the tops of the towers? # Or, if they're both not ZZ, is it hopeless? return None # truncate at common ancestor R_tower = list(reversed(R_tower[:Rs.index(start)+1])) S_tower = list(reversed(S_tower[:Ss.index(start)+1])) Rs = [c[1] for c in R_tower] # the list of objects Ss = [c[1] for c in S_tower] Rc = [c[0] for c in R_tower] # the list of functors Sc = [c[0] for c in S_tower] # Here we try and construct a 2-dimensional lattice as follows. # Suppose our towers are Z -> Q -> Qp = R and Z -> Z[t] -> Frac(Z[t]) = S lattice = {} # First we fill in the sides # # Z # / \ # Q Z[t] # / \ # Qp Frac(Z[t]) # for i in range(len(Rs)): lattice[i,0] = Rs[i] for j in range(len(Ss)): lattice[0,j] = Ss[j] # Now we attempt to fill in the center, one (diagonal) row at a time, # one commuting square at a time. # # Z # / \ # Q Z[t] # / \ / \ # Qp Q[t] Frac(Z[t]) # \ / # Qp[t] # # There is always exactly one "correct" path/order in which to apply operations # from the top to the bottom. In our example, this is down the far left side. # We keep track of which that is by clearing out Rc and Sc as we go along. # # Note that when applying the functors in the correct order, base extension # is not needed (though it may occur in the resulting morphisms). # for i in range(len(Rc)-1): for j in range(len(Sc)-1): try: if lattice[i,j+1] == lattice[i+1,j]: # In this case we have R <- S -> R # We don't want to perform the operation twice # and all subsequent squares will come from objects # where the operation was already performed (either # to the left or right) Rc[i] = Sc[j] = None # IdentityConstructionFunctor() lattice[i+1,j+1] = lattice[i,j+1] elif Rc[i] is None and Sc[j] is None: lattice[i+1,j+1] = lattice[i,j+1] elif Rc[i] is None: lattice[i+1,j+1] = Sc[j](lattice[i+1,j]) elif Sc[j] is None: lattice[i+1,j+1] = Rc[i](lattice[i,j+1]) else: # For now, we just look at the rank. # TODO: be more sophisticated and query the functors themselves if Rc[i].rank < Sc[j].rank: lattice[i+1,j+1] = Sc[j](lattice[i+1,j]) Rc[i] = None # force us to use pre-applied Rc[i] else: lattice[i+1,j+1] = Rc[i](lattice[i,j+1]) Sc[j] = None # force us to use pre-applied Sc[i] except (AttributeError, NameError): # print i, j # pp(lattice) for i in range(100): for j in range(100): try: R = lattice[i,j] print i, j, R except KeyError: break raise CoercionException("%s does not support %s" % (lattice[i,j], 'F')) # If we are successful, we should have something that looks like this. # # Z # / \ # Q Z[t] # / \ / \ # Qp Q[t] Frac(Z[t]) # \ / \ / # Qp[t] Frac(Q[t]) # \ / # Frac(Qp[t]) # R_loc = len(Rs)-1 S_loc = len(Ss)-1 # Find the composition coercion morphisms along the bottom left... if S_loc > 0: R_map = lattice[R_loc,1].coerce_map_from(R) for i in range(1, S_loc): map = lattice[R_loc, i+1].coerce_map_from(lattice[R_loc, i]) # The functor used is implicit here, should it be? R_map = map * R_map else: R_map = R.coerce_map_from(R) # id # ... and bottom right if R_loc > 0: S_map = lattice[1, S_loc].coerce_map_from(S) for i in range(1, R_loc): map = lattice[i+1, S_loc].coerce_map_from(lattice[i, S_loc]) S_map = map * S_map else: S_map = S.coerce_map_from(S) # id return R_map, S_map ## def pp(lattice): ## """ ## Used in debugging to print the current lattice. ## """ ## for i in range(100): ## for j in range(100): ## try: ## R = lattice[i,j] ## print i, j, R ## except KeyError: ## break def construction_tower(R): """ An auxiliary function that is used in :func:`pushout` and :func:`pushout_lattice`. INPUT: An object OUTPUT: A constructive description of the object from scratch, by a list of pairs of a construction functor and an object to which the construction functor is to be applied. The first pair is formed by ``None`` and the given object. EXAMPLE:: sage: from sage.categories.pushout import construction_tower sage: construction_tower(MatrixSpace(FractionField(QQ['t']),2)) [(None, Full MatrixSpace of 2 by 2 dense matrices over Fraction Field of Univariate Polynomial Ring in t over Rational Field), (MatrixFunctor, Fraction Field of Univariate Polynomial Ring in t over Rational Field), (FractionField, Univariate Polynomial Ring in t over Rational Field), (Poly[t], Rational Field), (FractionField, Integer Ring)] """ tower = [(None, R)] c = R.construction() while c is not None: f, R = c if not isinstance(f, ConstructionFunctor): f = BlackBoxConstructionFunctor(f) tower.append((f,R)) c = R.construction() return tower def expand_tower(tower): """ An auxiliary function that is used in :func:`pushout`. INPUT: A construction tower as returned by :func:`construction_tower`. OUTPUT: A new construction tower with all the construction functors expanded. EXAMPLE:: sage: from sage.categories.pushout import construction_tower, expand_tower sage: construction_tower(QQ['x,y,z']) [(None, Multivariate Polynomial Ring in x, y, z over Rational Field), (MPoly[x,y,z], Rational Field), (FractionField, Integer Ring)] sage: expand_tower(construction_tower(QQ['x,y,z'])) [(None, Multivariate Polynomial Ring in x, y, z over Rational Field), (MPoly[z], Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over Rational Field), (MPoly[y], Univariate Polynomial Ring in x over Rational Field), (MPoly[x], Rational Field), (FractionField, Integer Ring)] """ new_tower = [] for f, R in reversed(tower): if f is None: new_tower.append((f, R)) else: fs = f.expand() for ff in reversed(fs[1:]): new_tower.append((ff, R)) R = ff(R) new_tower.append((fs[0], R)) return list(reversed(new_tower)) def type_to_parent(P): """ An auxiliary function that is used in :func:`pushout`. INPUT: A type OUTPUT: A Sage parent structure corresponding to the given type TEST:: sage: from sage.categories.pushout import type_to_parent sage: type_to_parent(int) Integer Ring sage: type_to_parent(float) Real Double Field sage: type_to_parent(complex) Complex Double Field sage: type_to_parent(list) Traceback (most recent call last): ... TypeError: Not a scalar type. """ import sage.rings.all if P in [int, long]: return sage.rings.all.ZZ elif P is float: return sage.rings.all.RDF elif P is complex: return sage.rings.all.CDF else: raise TypeError("Not a scalar type.")
37.205521
470
0.561259
078e262b66c9254b895a611d85a57b9ee60b4632
1,614
py
Python
waf-api/python/LetsEncrypt/manual_dns_create_challenges.py
scott-treacy/waf-automation
5445c3cd62411e367463de95d5456f241f2042b8
[ "MIT" ]
16
2017-11-16T22:07:57.000Z
2021-12-23T09:47:01.000Z
waf-api/python/LetsEncrypt/manual_dns_create_challenges.py
scott-treacy/waf-automation
5445c3cd62411e367463de95d5456f241f2042b8
[ "MIT" ]
5
2018-02-02T17:58:39.000Z
2021-05-24T23:45:11.000Z
waf-api/python/LetsEncrypt/manual_dns_create_challenges.py
scott-treacy/waf-automation
5445c3cd62411e367463de95d5456f241f2042b8
[ "MIT" ]
16
2018-01-22T22:02:48.000Z
2021-08-12T11:57:55.000Z
#!/usr/bin/env python import csv import sys import argparse from utils.acme_client import * def main(argv): parser = argparse.ArgumentParser() parser.add_argument("-k", "--account-key", required=True, help="Path to your Let's Encrypt account private key") parser.add_argument("-D", "--domain-file", required=True, help="File to read domain(s) to create challenges for from") parser.add_argument("--quiet", action="store_const", const=logging.ERROR, help="Suppress output except for errors") parser.add_argument("--staging", action="store_true", help="Use staging instance of Let's Encrypt") args = parser.parse_args(argv) logging.getLogger().setLevel(args.quiet or logging.getLogger().level) client = ACMEClient(args.account_key, None, logging, STAGING_CA if args.staging else DEFAULT_CA) domains = [] with open(args.domain_file, 'r') as f: for domain in f: domain = domain.strip() if domain: domains.append(domain) print("{} domains to process.".format(len(domains))) with open('dns-challenges.csv', 'w', newline='') as f: fields = ('domain', 'txt_record', 'txt_value', 'challenge_token', 'challenge_uri') writer = csv.DictWriter(f, fields) writer.writeheader() for domain in domains: print("{}...".format(domain)) challenge_dict = client.verify_domain_dns_get_challenge(domain) if challenge_dict: writer.writerow(challenge_dict) f.flush() if __name__ == "__main__": # pragma: no cover main(sys.argv[1:])
38.428571
122
0.654275
fcc9652e947e9b75e55cd14de364300fa397418c
15,113
py
Python
src/procedure/image.py
figai/figocr
c358cceff80502647379bcfc94247ab19e626946
[ "Apache-2.0" ]
2
2020-04-19T09:34:19.000Z
2020-04-19T14:40:02.000Z
src/procedure/image.py
figai/figocr
c358cceff80502647379bcfc94247ab19e626946
[ "Apache-2.0" ]
null
null
null
src/procedure/image.py
figai/figocr
c358cceff80502647379bcfc94247ab19e626946
[ "Apache-2.0" ]
3
2020-04-19T06:45:08.000Z
2020-04-22T13:16:51.000Z
# -*- coding: utf8 -*- import cv2 import numpy as np from skimage.morphology import opening, closing, square from skimage.filters import threshold_otsu import logging def image_resize(image, width=None, height=None, inter=cv2.INTER_AREA): dim = None (h, w) = image.shape[:2] if width is None and height is None: return image if width is None: r = height / float(h) dim = (int(w * r), height) else: r = width / float(w) dim = (width, int(h * r)) resized = cv2.resize(image, dim, interpolation=inter) return resized def cv2_imshow(image): import matplotlib.pyplot as plt plt.imshow(image, interpolation='bicubic') plt.show() # cv2.imshow('debug', image) # cv2.waitKey(0) # cv2.destroyAllWindows() # cv2.waitKey(1) def roi_detect(image, region, thresh_mean=None, trace=False): # (x, y, w, h) x, y, width, height = region up_y_offset = int(height / 2) up_y = y - up_y_offset down_y_offset = height + int(height / 2) down_y = y + down_y_offset roi = image[up_y: down_y, x: x + width] gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) try: thresh_value = int(1*threshold_otsu(gray)) except: thresh_value = 255 if thresh_mean is not None: thresh_value = min(thresh_value, thresh_mean) thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY_INV)[1] thresh = closing(thresh) # 垂直计算留白 yitensity = np.sum(thresh, axis=1) middle = height step = 1 while yitensity[middle] == 0: middle = height + step if step < 0: step = abs(step)+1 else: step = - step if abs(step) > 20: # 行中间水平线上下20个单位内没有内容 return None # 上边距4个空白单位 up_blank_line = 0 for i in reversed(range(middle)): if yitensity[i] == 0: up_y_offset = i up_blank_line += 1 if up_blank_line > 3: break # 下边距4个空白单位 down_blank_line = 0 for i in range(middle, (down_y - up_y)): if yitensity[i] == 0: down_y_offset = i down_blank_line += 1 if down_blank_line > 3: break y = up_y + up_y_offset height = down_y_offset - up_y_offset # 垂直裁剪 thresh = thresh[up_y_offset: down_y_offset, 0: width] thresh = cv2.Canny(thresh, 100, 200, 3, L2gradient=True) thresh = cv2.dilate(thresh, None) # 水平计算留白 xitensity = np.sum(thresh, axis=0) x_offset = 0 x_suffix = len(xitensity) - 1 while True: if (x_offset >= x_suffix) or (xitensity[x_offset] and xitensity[x_suffix]): break if xitensity[x_offset] == 0: x_offset += 1 if xitensity[x_suffix] == 0: x_suffix -= 1 x_offset = x_offset - 5 if x_offset - 5 > 0 else 0 x_suffix = x_suffix + 5 if x_suffix + \ 5 < len(xitensity) else (len(xitensity) - 1) x = x + x_offset width = x_suffix - x_offset if height < 16 or width <= 10: # 行内容高度只有8个单位(小数点的大小) return None # # 水平裁剪 # thresh = thresh[0 : height, x_offset : x_suffix] # cv2.rectangle(image, (x+cnt_x, y+cnt_y), (x+cnt_x + cnt_w-2, y+cnt_y + cnt_h-2), (0, 0, 0), 1) # cv2.rectangle(image, (x, y), (x + width-2, y + height-2), (0, 255, 0), 1) return x, y, width, height def max_width_poly(image, region, thresh_mean=None): x, y, width, height = region roi = image[y: y + height, x: x + width] gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) try: thresh_value = int(1*threshold_otsu(gray)) except: thresh_value = np.percentile(gray, 50) if thresh_mean is not None: thresh_value = min(thresh_value, thresh_mean) thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY_INV)[1] thresh = cv2.Canny(thresh, 100, 200, 3, L2gradient=True) thresh = cv2.dilate(thresh, None) cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] boxes = map(lambda cnt: cv2.boundingRect(cnt), cnts) boxes = sorted(boxes, key=lambda x: x[2]) if boxes: box = boxes.pop() return x+box[0], y+box[1], box[2], box[3] else: return None def threshold(image): return int(1*threshold_otsu(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))) def consine(pt1, pt2, pt0): v1 = np.array(pt1) - np.array(pt0) v2 = np.array(pt2) - np.array(pt0) return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)) def angle_degree(pt1, pt2, pt0): radian = np.arccos(consine(pt1, pt2, pt0)) return np.degrees(radian) def square_contours_kps(image, min_area=1800, min_density=None): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 0, 0) # linesP = cv2.HoughLinesP(edges, 1, (np.pi / 180)*10, 50, None, 100, 10) # if linesP is not None: # for i in range(0, len(linesP)): # l = linesP[i][0] # cv2.line(gray, (l[0], l[1]), (l[2], l[3]), (0,0,255), 1, cv2.LINE_AA) # cv2_imshow(gray) edges = closing(edges, square(3)) # cv2_imshow(edges) cnts, _ = cv2.findContours( edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) squares = [] for cnt in cnts: approx = cv2.approxPolyDP(cnt, cv2.arcLength(cnt, True)*0.02, True) area = cv2.contourArea(approx) # cv2.drawContours(image, [approx], -1, (0,0,255), 1) if area < min_area: continue # cv2.drawContours(image, [approx], -1, (0,0,255), 1) # print(f'area: {area}, approx: {approx}') # for v in approx: # cv2.circle(image, tuple(v[0]), 3, (0, 255, 255), -1) vertex_num = len(approx) if vertex_num >= 4: # 4个或多于4个顶点 and cv2.isContourConvex(approx): for offset in range(0, vertex_num): # 取连续的4个顶点 square_approx = [] for idx in range(0, 4): sq_index = (offset+idx) % vertex_num square_approx.append(approx[sq_index]) square_approx = np.array(square_approx) maxCosine = 0 for j in range(2, 5): square_pts = np.squeeze(square_approx) cosine = abs( consine(square_pts[j % 4], square_pts[j-2], square_pts[j-1])) # print(cosine) maxCosine = max(maxCosine, cosine) if maxCosine < 0.20: # up and down 12 degree if vertex_num > 4: area = cv2.contourArea(square_approx) if area < min_area: continue mask = np.zeros(edges.shape, dtype="uint8") cv2.drawContours(mask, [square_approx], -1, 255, -1) mask = cv2.bitwise_and(edges, edges, mask=mask) # cv2_imshow(mask) mass = cv2.countNonZero(mask) density = mass / area logging.info(f'area:{area}, mass:{mass}') if min_density is not None: if density < min_density: continue squares.append((area, density, square_approx)) break # cv2.drawContours(image, np.array([sq[1] for sq in squares]), -1, (0,0,255), 1) # cv2_imshow(image) if len(squares) < 4: return None # sort by area squares.sort(key=lambda sq: -sq[0]) squares = squares[:4] result = [] # (area, density, contour) for _, _, sq in squares: M = cv2.moments(sq) cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) result.append([cx, cy]) return result def block_contours_kps(image, min_area=1800): # convert it to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # cv2_imshow(gray) result = None delta = 2 while result is None and delta < 5: # O(3) # blur it slightly ksize = 2 * delta + 1 blur = cv2.GaussianBlur(gray, (ksize, ksize), delta) # cv2_imshow(blur) # threshold the image thresh_value = threshold_otsu(blur) thresh_factor = 3 while result is None and thresh_factor > 0: # O(3*3) thresh = cv2.threshold( blur, thresh_value/thresh_factor, 255, cv2.THRESH_BINARY_INV)[1] # perform a series of erosions + dilations to remove any small regions of noise thresh = cv2.erode(thresh, None, iterations=2) thresh = cv2.dilate(thresh, None, iterations=2) # cv2_imshow(thresh) # find contours in thresholded image cnts, _ = cv2.findContours( thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # image_copy = image.copy() # cv2.drawContours(image_copy, cnts, -1, (0,0,255), 2) # cv2_imshow(image_copy) # 没有连通域形状 if len(cnts) < 4: thresh_factor -= 1 continue cnts = [(cnt, cv2.moments(cnt)) for cnt in cnts] cnts = [cnt for cnt in cnts if cnt[1]['m00'] > min_area/delta] # image_copy = image.copy() # cv2.drawContours(image_copy, [cnt[0] for cnt in cnts], -1, (0,255,0), 1) # cv2_imshow(image_copy) # 找到形状面积超过设定值的形状 if len(cnts) < 4: thresh_factor -= 1 continue cnts = sorted(cnts, key=lambda cnt: -cnt[1]['m00']) # 黑色面积最大的四个形状 cnts_target = cnts[:4] result = [] for cnt, M in cnts_target: cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) # M['m00'] is the mass, [cx, cy] is the centroid result.append([cx, cy]) # image_copy = image.copy() # for index, (cnt, M) in enumerate(cnts_target): # print(M['m00']) # cv2.drawContours(image_copy, [cnt], -1, (0,255,0), 1) # cv2.circle(image_copy, tuple(result[index]), 5, (255, 255, 255), -1) # cv2_imshow(image_copy) delta += 1 logging.info(f'delta: {delta}, thresh factor: {thresh_factor}') return result def get_square_vertex(kps): """ pt: [x, y] kps: [ pt1, pt2, pt3, pt4 ] return: [ top, right, bot, left ] """ if not kps or len(kps) != 4: return None kps.sort(key=lambda p: p[0]) left_p = kps[:2] right_p = kps[2:] left_p.sort(key=lambda p: p[1]) extTop, extLeft = left_p right_p.sort(key=lambda p: p[1]) extRight, extBot = right_p # rows,cols,_ = image.shape # angle_horizon = np.arctan2(extRight[1] - extTop[1], extRight[0] - extTop[0]) # deg = np.rad2deg(angle_horizon) # M = cv2.getRotationMatrix2D((cols/2,rows/2),deg,1) # dst = cv2.warpAffine(image,M,(cols,rows)) # cv2_imshow(dst) degrees = [ angle_degree(extRight, extLeft, extTop), angle_degree(extTop, extBot, extRight), angle_degree(extRight, extLeft, extBot), angle_degree(extBot, extTop, extLeft) ] degree_max = max(degrees) degree_min = min(degrees) # print(degree) if 89 <= degree_min and degree_max <= 91: return np.array([extTop, extRight, extBot, extLeft]) else: return None def draw_match_2_side(img1, kp1, img2, kp2, N): """Draw matches on 2 sides Args: img1 (HxW(xC) array): image 1 kp1 (Nx2 array): keypoint for image 1 img2 (HxW(xC) array): image 2 kp2 (Nx2 array): keypoint for image 2 N (int): number of matches to draw Returns: out_img (Hx2W(xC) array): output image with drawn matches """ kp_list = np.linspace( 0, min(kp1.shape[0], kp2.shape[0])-1, N, dtype=np.int) # Convert keypoints to cv2.Keypoint object cv_kp1 = [cv2.KeyPoint(x=pt[0], y=pt[1], _size=1) for pt in kp1[kp_list]] cv_kp2 = [cv2.KeyPoint(x=pt[0], y=pt[1], _size=1) for pt in kp2[kp_list]] out_img = np.array([]) good_matches = [cv2.DMatch( _imgIdx=0, _queryIdx=idx, _trainIdx=idx, _distance=0) for idx in range(N)] out_img = cv2.drawMatches( img1, cv_kp1, img2, cv_kp2, matches1to2=good_matches, outImg=out_img) return out_img class Image(object): frames = {} @classmethod def get_frame(cls, frame_file): frame_file = str(frame_file) frame = cls.frames.get(frame_file) if frame is None: img = cv2.imread(frame_file) vertexs = get_square_vertex(block_contours_kps(img)) if vertexs is None: return None frame = (img, vertexs) cls.frames[frame_file] = frame return frame @classmethod def get_image(cls, image_file): image_file = str(image_file) img = cv2.imread(image_file) vertexs = get_square_vertex(block_contours_kps(img)) if vertexs is None: vertexs = get_square_vertex(square_contours_kps(img)) if vertexs is not None: return (img, vertexs) else: return None @classmethod def align_images(cls, image_file, frame_file): # scanned image image_info = cls.get_image(image_file) if not image_info: return None img, kps = image_info # template image mask_info = cls.get_frame(frame_file) if not mask_info: return None mask_img, mask_kps = mask_info # Draw top matches image = draw_match_2_side(img, kps, mask_img, mask_kps, 4) ####### DEBUG ######### # # resize image # image = cv2.resize(image, None, fx=0.5, fy=0.5, interpolation = cv2.INTER_CUBIC) # cv2_imshow(image) ####### DEBUG ######### # Find homography m, mask = cv2.findHomography(kps, mask_kps, cv2.RANSAC, 5.0) # Use homography to warp image h, w, _ = mask_img.shape result = cv2.warpPerspective(img, m, (w, h)) return result if __name__ == '__main__': logging.root.setLevel(logging.INFO) bads = [ '/Users/jon/Documents/cv/data/CM-MBL-E-01/OCR20170828_0020.tif', '/Users/jon/Documents/cv/data/CM-MBL-E-01/OCR2017091_0010.tif' ] goods = [ '/Users/jon/Documents/cv/data/CM-MBL-E-01/CCE2017068_0008.tif', '/Users/jon/Documents/cv/data/CM-MBL-E-01/CCE2017068_0009.tif' ] for i in bads: image, vertexs = Image.get_image(i) extTop, extRight, extBot, extLeft = vertexs ####### DEBUG ######### cv2.circle(image, tuple(extLeft), 2, (0, 0, 255), -1) cv2.circle(image, tuple(extRight), 2, (0, 255, 0), -1) cv2.circle(image, tuple(extTop), 2, (255, 0, 0), -1) cv2.circle(image, tuple(extBot), 2, (255, 255, 0), -1) cv2_imshow(image) ####### DEBUG #########
30.531313
100
0.562562
7b78dce74e365cf91845bac8a5e8e20720f78e13
1,105
py
Python
photo/views.py
firdausa7/MY-GALLERY
5d2fe2727d760929800c14c11b0ff4c6d081584b
[ "MIT" ]
null
null
null
photo/views.py
firdausa7/MY-GALLERY
5d2fe2727d760929800c14c11b0ff4c6d081584b
[ "MIT" ]
3
2020-06-05T23:24:25.000Z
2021-06-10T22:02:41.000Z
photo/views.py
firdausa7/MY-GALLERY
5d2fe2727d760929800c14c11b0ff4c6d081584b
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.http import HttpResponse from django.conf.urls import url,include from .models import Location, tags, Category, Image # Create your views here. #HOME PAGE VIEW FUNCTION ######################### def index(request): photos = Image.objects.all() context = {'photos': photos} return render( request, 'home.html', {'photos': photos}) #LOCATION Page View Function! def location(request): return render(request,'location.html',) #CATEGORY Page View Function! def category(request): return render(request,'category.html',) #SEARCH CAPABILITY Page View Function! def search_results(request): if 'category' in request.GET and request.GET["category"]: search_term = request.GET.get("category") searched_category = Image.search_by_category(search_term) message = f"{search_term}" return render(request, 'search.html',{"message":message,"categorys": searched_category}) else: message = "You haven't searched for any term" return render(request,'search.html',{"message":message})
26.309524
96
0.695023
c671edd2dc03a715d5202e39317ff42d86e4aa98
1,126
py
Python
server/src/test/unit/weblab/data/test_experiments.py
romainrossi/weblabdeusto
494f1cd291d03dcf1d2e8f3e36d3dbe2348b167f
[ "BSD-2-Clause" ]
15
2015-03-12T12:15:41.000Z
2021-12-20T17:53:24.000Z
server/src/test/unit/weblab/data/test_experiments.py
romainrossi/weblabdeusto
494f1cd291d03dcf1d2e8f3e36d3dbe2348b167f
[ "BSD-2-Clause" ]
44
2015-01-07T09:22:05.000Z
2017-01-31T22:44:21.000Z
server/src/test/unit/weblab/data/test_experiments.py
romainrossi/weblabdeusto
494f1cd291d03dcf1d2e8f3e36d3dbe2348b167f
[ "BSD-2-Clause" ]
22
2015-01-13T13:55:48.000Z
2021-12-16T17:07:00.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2005 onwards University of Deusto # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. # # This software consists of contributions made by many individuals, # listed below: # # Author: Pablo Orduña <pablo@ordunya.com> # from __future__ import print_function, unicode_literals import unittest from weblab.data.experiments import ExperimentId, ExperimentInstanceId class ExperimentIdsTestCase(unittest.TestCase): def setUp(self): self.experiment_id = ExperimentId('exp', 'cat') self.experiment_instance_id = ExperimentInstanceId('inst', 'exp', 'cat') def _check_repr(self, obj): self.assertEquals(repr(obj), repr(eval(repr(obj)))) def test_experiment_id(self): self._check_repr(self.experiment_id) def test_experiment_instance_id(self): self._check_repr(self.experiment_instance_id) def suite(): return unittest.makeSuite(ExperimentIdsTestCase) if __name__ == '__main__': unittest.main()
26.809524
80
0.72913
1dfe3ab6a4375dc484bf5f3b5449c63b9a1d4c35
7,169
py
Python
gwlfe/Output/Loading/StreamBankEros_1.py
mudkipmaster/gwlf-e
9e058445537dd32d1916f76c4b73ca64261771cd
[ "Apache-2.0" ]
null
null
null
gwlfe/Output/Loading/StreamBankEros_1.py
mudkipmaster/gwlf-e
9e058445537dd32d1916f76c4b73ca64261771cd
[ "Apache-2.0" ]
6
2018-07-24T22:46:28.000Z
2018-07-29T19:13:09.000Z
gwlfe/Output/Loading/StreamBankEros_1.py
mudkipmaster/gwlf-e
9e058445537dd32d1916f76c4b73ca64261771cd
[ "Apache-2.0" ]
1
2018-07-24T18:22:01.000Z
2018-07-24T18:22:01.000Z
from numpy import maximum from numpy import zeros from gwlfe.BMPs.Stream.SEDFEN import SEDFEN from gwlfe.BMPs.Stream.SEDFEN import SEDFEN_f from gwlfe.BMPs.Stream.SEDSTAB import SEDSTAB from gwlfe.BMPs.Stream.SEDSTAB import SEDSTAB_f from gwlfe.BMPs.Stream.SURBBANK import SURBBANK from gwlfe.BMPs.Stream.SURBBANK import SURBBANK_f from gwlfe.Memoization import memoize from gwlfe.Output.Loading.StreamBankEros import StreamBankEros from gwlfe.Output.Loading.StreamBankEros import StreamBankEros_f as StreamBankEros_f_actual @memoize def StreamBankEros_1(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, n42b, n46c, n85d, AgLength, n42, n45, n85, UrbBankStab): result = zeros((NYrs, 12)) streambankeros = StreamBankEros(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef , Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal , NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength) sedstab = SEDSTAB(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef , Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal , NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, n42b, n46c, n85d) sedfen = SEDFEN(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef , Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal , NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, AgLength, n42, n45, n85) surbbank = SURBBANK(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef , Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal , NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength , UrbBankStab, n42b, n85d) for Y in range(NYrs): for i in range(12): result[Y][i] = streambankeros[Y][i] - (sedstab[Y][i] + sedfen[Y][i] + surbbank[Y][i]) if result[Y][i] < 0: result[Y][i] = 0 return result @memoize def StreamBankEros_1_f(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, n42b, n46c, n85d, AgLength, n42, n45, n85, UrbBankStab): streambankeros = StreamBankEros_f_actual(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef , Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal , NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength) sedstab = SEDSTAB_f(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef , Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal , NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, n42b, n46c, n85d) sedfen = SEDFEN_f(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef , Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal , NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, AgLength, n42, n45, n85) surbbank = SURBBANK_f(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, UrbBankStab, n42b, n85d) return maximum(streambankeros - (sedstab + sedfen + surbbank), 0)
70.284314
120
0.590877
28de8082213a5504e69994ceeef982856bb732cd
4,104
py
Python
ALREC_Method/trajectory_viewer.py
proy3/Abnormal_Trajectory_Classifier
a6b27c6847262e9703a0f3404c85c135415c1d4c
[ "MIT" ]
6
2019-10-29T03:05:14.000Z
2022-03-18T05:14:25.000Z
ALREC_Method/trajectory_viewer.py
proy3/Abnormal_Trajectory_Classifier
a6b27c6847262e9703a0f3404c85c135415c1d4c
[ "MIT" ]
1
2022-03-11T03:49:34.000Z
2022-03-11T03:49:34.000Z
ALREC_Method/trajectory_viewer.py
proy3/Abnormal_Trajectory_Classifier
a6b27c6847262e9703a0f3404c85c135415c1d4c
[ "MIT" ]
1
2021-12-15T09:21:26.000Z
2021-12-15T09:21:26.000Z
""" This script is used to view all the trajectories, including augmented and abnormal ones. """ import matplotlib.pyplot as plt from scipy import ndimage from PIL import Image import os.path number_of_images = 100 start_frame_number = 400 background_image_path = 'background_image_2.png' overwrite_background_image = True # Ref.: https://stackoverflow.com/questions/24731035/python-pil-0-5-opacity-transparency-alpha opacity_level = 250 # Opaque is 255, input between 0-255 def mouse_move(self,event): if event.inaxes and event.inaxes.get_navigate(): s = event.inaxes.format_coord(event.xdata, event.ydata) self.set_message(s) def make_image_transparent(image): """ Makes the image transparent. Re.: https://stackoverflow.com/questions/24731035/python-pil-0-5-opacity-transparency-alpha :param image: opened image :return: transformed image """ image2 = image.convert('RGBA') data_array = image2.getdata() newData = [] for item in data_array: if item[0] == 0 and item[1] == 0 and item[2] == 0: newData.append((0, 0, 0, opacity_level)) else: newData.append(item) image2.putdata(newData) return image2 def generate_background_image(input_raw_image_frame_path, frame_name='', frame_starting_number=0, is_caviar_data=False): if is_caviar_data: image_name_1 = input_raw_image_frame_path + frame_name + str(frame_starting_number) + '.jpg' else: image_name_1 = input_raw_image_frame_path + str(1).zfill(8) + '.jpg' im1 = Image.open(image_name_1) im1 = make_image_transparent(im1) alpha_value = 1.0 / number_of_images for i in range(number_of_images): if is_caviar_data: image_name_2 = input_raw_image_frame_path + frame_name \ + str(i+1+frame_starting_number+start_frame_number) + '.jpg' else: image_name_2 = input_raw_image_frame_path + str(i+1+start_frame_number).zfill(8) + '.jpg' im2 = Image.open(image_name_2) im2 = make_image_transparent(im2) im1 = Image.blend(im1,im2,alpha_value) im1 = make_image_transparent(im1) im1.save(background_image_path) class ImageViewer: def __init__(self, input_raw_image_frame_path, frame_name='', frame_starting_number=0, is_caviar_data=False): self.fig = plt.figure() self.ax = plt.axes() plt.rcParams.update({'font.size': 22}) if overwrite_background_image or not os.path.isfile(background_image_path): generate_background_image(input_raw_image_frame_path, frame_name, frame_starting_number, is_caviar_data) img_test = plt.imread(background_image_path, format='png') self.ax.imshow(ndimage.rotate(img_test, 0)) def format_coord(x,y): return "(x={:.2f}, y={:.2f})".format(x,y) self.ax.format_coord=format_coord mouse_move_patch = lambda arg: mouse_move(self.fig.canvas.toolbar, arg) self.fig.canvas.toolbar._idDrag = self.fig.canvas.mpl_connect('motion_notify_event', mouse_move_patch) def add_trajectory(self, x_positions, y_positions, line_width=1, line_color='firebrick'): self.ax.plot(x_positions, y_positions, '-', linewidth=line_width, color=line_color) self.ax.arrow(x_positions[-2], y_positions[-2], x_positions[-1] - x_positions[-2], y_positions[-1] - y_positions[-2], head_width=5*line_width, head_length=2.5*line_width, fc=line_color, ec=line_color) def show_image(self): plt.show() def save_image(self, image_path_name): plt.xlabel('x') plt.ylabel('y') plt.savefig(image_path_name) # Test #x = range(100,300) #trajectory_image.add_trajectory(x,x) #x = range(300,400) #trajectory_image.add_trajectory(x,x) #x = range(50,100) #trajectory_image.add_trajectory(x,x) #x = range(20,40) #trajectory_image.add_trajectory(x,x) #plt.show()
34.2
116
0.665205
28b3b666936fc41c4051c7821a66cb8922aa6144
45
py
Python
droput_authentication/droput_auth/config/__init__.py
hosein-yousefii/DROPUT
99a714f03a92b14228a3691ca6568ece0f0ea48c
[ "Apache-2.0" ]
2
2022-03-17T08:08:07.000Z
2022-03-17T21:38:54.000Z
droput_authentication/droput_auth/config/__init__.py
hosein-yousefii/DROPUT
99a714f03a92b14228a3691ca6568ece0f0ea48c
[ "Apache-2.0" ]
null
null
null
droput_authentication/droput_auth/config/__init__.py
hosein-yousefii/DROPUT
99a714f03a92b14228a3691ca6568ece0f0ea48c
[ "Apache-2.0" ]
null
null
null
from droput_auth.config.config import Config
22.5
44
0.866667
bc0a1ebc7c0ca2c3120bc175c609fc6cb113540a
757
py
Python
examples/peripherals/pcnt/rotary_encoder/pytest_rotary_encoder.py
BU-EC444/esp-idf
5963de1caf284b14ddfed11e52730a55e3783a3d
[ "Apache-2.0" ]
4
2022-03-15T22:43:28.000Z
2022-03-28T01:25:08.000Z
examples/peripherals/pcnt/rotary_encoder/pytest_rotary_encoder.py
BU-EC444/esp-idf
5963de1caf284b14ddfed11e52730a55e3783a3d
[ "Apache-2.0" ]
null
null
null
examples/peripherals/pcnt/rotary_encoder/pytest_rotary_encoder.py
BU-EC444/esp-idf
5963de1caf284b14ddfed11e52730a55e3783a3d
[ "Apache-2.0" ]
2
2022-02-04T21:36:58.000Z
2022-02-09T12:22:48.000Z
# SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD # SPDX-License-Identifier: CC0-1.0 import pytest from pytest_embedded.dut import Dut @pytest.mark.esp32 @pytest.mark.esp32s2 @pytest.mark.esp32s3 @pytest.mark.generic def test_rotary_encoder(dut: Dut) -> None: dut.expect_exact('install pcnt unit') dut.expect_exact('set glitch filter') dut.expect_exact('install pcnt channels') dut.expect_exact('set edge and level actions for pcnt channels') dut.expect_exact('add watch points and register callbacks') dut.expect_exact('clear pcnt unit') dut.expect_exact('start pcnt unit') res = dut.expect(r'Pulse count: (\d+)') count_val = res.group(1).decode('utf8') assert -100 <= int(count_val) <= 100
32.913043
71
0.729194
8551ebdbf92ecd69657fb5e361e9eb22d83bfb51
2,406
py
Python
tools/cxx_wrapper.py
URUSCG-LLC/fletch
35967b56cecce8fd5ae96a0d85ca318272ee69a0
[ "BSD-3-Clause" ]
null
null
null
tools/cxx_wrapper.py
URUSCG-LLC/fletch
35967b56cecce8fd5ae96a0d85ca318272ee69a0
[ "BSD-3-Clause" ]
null
null
null
tools/cxx_wrapper.py
URUSCG-LLC/fletch
35967b56cecce8fd5ae96a0d85ca318272ee69a0
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2015, the Fletch project authors. Please see the AUTHORS file # for details. All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. import os import sys import utils import subprocess def invoke_clang(args): fletch_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) os_name = utils.GuessOS() if os_name == "macos": os_name = "mac" args.extend([ '-isysroot', subprocess.check_output(['xcrun', '--show-sdk-path']).strip()]) clang_bin = os.path.join( fletch_path, "third_party", "clang", os_name, "bin", "clang++") print clang_bin args.insert(0, clang_bin) print "'%s'" % "' '".join(args) os.execv(clang_bin, args) def invoke_gcc(args): args.insert(0, "g++") os.execv("/usr/bin/g++", args) def invoke_gcc_arm(args): args.insert(0, "arm-linux-gnueabihf-g++-4.8") os.execv("/usr/bin/arm-linux-gnueabihf-g++-4.8", args) def invoke_gcc_arm64(args): args.insert(0, "aarch64-linux-gnu-g++-4.8") os.execv("/usr/bin/aarch64-linux-gnu-g++-4.8", args) def invoke_gcc_mbed(args): path = "/usr/local/gcc-arm-none-eabi-4_9-2015q2/bin/arm-none-eabi-g++" subprocess.check_call([path] + args) def invoke_gcc_lk(args): args.insert(0, "arm-none-eabi-g++") os.execv("/usr/bin/arm-none-eabi-g++", args) def main(): args = sys.argv[1:] if "-L/FLETCH_ASAN" in args: args.remove("-L/FLETCH_ASAN") args.insert(0, '-fsanitize=address') if "-L/FLETCH_CLANG" in args: args.insert(0, '-fsanitize-undefined-trap-on-error') if "-DFLETCH_CLANG" in args: invoke_clang(args) elif "-L/FLETCH_CLANG" in args: args.remove("-L/FLETCH_CLANG") invoke_clang(args) elif "-DFLETCH_ARM" in args: invoke_gcc_arm(args) elif "-L/FLETCH_ARM" in args: args.remove("-L/FLETCH_ARM") invoke_gcc_arm(args) elif "-DFLETCH_ARM64" in args: invoke_gcc_arm64(args) elif "-L/FLETCH_ARM64" in args: args.remove("-L/FLETCH_ARM64") invoke_gcc_arm64(args) elif "-DFLETCH_MBED" in args: invoke_gcc_mbed(args) elif "-L/FLETCH_MBED" in args: args.remove("-L/FLETCH_MBED") invoke_gcc_mbed(args) elif "-DFLETCH_LK" in args: invoke_gcc_lk(args) elif "-L/FLETCH_LK" in args: args.remove("-L/FLETCH_LK") invoke_gcc_lk(args) else: invoke_gcc(args) if __name__ == '__main__': main()
28.305882
78
0.672901
24970b286220a3536e312b5ea4869acc1d512ffa
4,909
py
Python
qcodes/tests/test_interactive_widget.py
RosenblumLabUser/Qcodes
01fe56a0751a744d978a893f78ee9d6c8230478f
[ "MIT" ]
223
2016-10-29T15:00:24.000Z
2022-03-20T06:53:34.000Z
qcodes/tests/test_interactive_widget.py
M1racleShih/Qcodes
c03029a6968e16379155aadc8b083a02e01876a6
[ "MIT" ]
3,406
2016-10-25T10:44:50.000Z
2022-03-31T09:47:35.000Z
qcodes/tests/test_interactive_widget.py
nikhartman/Qcodes
042c5e25ab9e40b20c316b4055c4842844834d1e
[ "MIT" ]
263
2016-10-25T11:35:36.000Z
2022-03-31T08:53:20.000Z
import time from unittest.mock import patch import matplotlib import pytest from ipywidgets import HTML, Button, GridspecLayout, Tab, Textarea # set matplotlib backend before importing pyplot matplotlib.use("Agg") from qcodes import interactive_widget # we only need `experiment` here, but pytest does not discover the dependencies # by itself so we also need to import all the fixtures this one is dependent # on # pylint: disable=unused-import from qcodes.tests.dataset.conftest import ( dataset, empty_temp_db, experiment, standalone_parameters_dataset, ) @pytest.fixture(name="tab", scope="function") def _create_tab(): yield interactive_widget.create_tab() def test_snapshot_browser(): dct = {"a": {"b": "c", "d": {"e": "f"}}} interactive_widget.nested_dict_browser(dct) interactive_widget.nested_dict_browser(dct, ["a"]) @pytest.mark.usefixtures("empty_temp_db") def test_full_widget_on_empty_db(): interactive_widget.experiments_widget() @pytest.mark.usefixtures("experiment") def test_full_widget_on_empty_experiment(): interactive_widget.experiments_widget() @pytest.mark.usefixtures("dataset") def test_full_widget_on_empty_dataset(): interactive_widget.experiments_widget() @pytest.mark.usefixtures("standalone_parameters_dataset") def test_full_widget_on_one_dataset(): interactive_widget.experiments_widget() def test_button_to_text( standalone_parameters_dataset, ): # pylint: disable=redefined-outer-name box = interactive_widget.button_to_text("title", "body") (button,) = box.children button.click() time.sleep(0.5) # after click text_area, back_button = box.children assert "body" in text_area.value back_button.click() time.sleep(0.5) # after click assert len(box.children) == 1 def test_snapshot_button( tab, standalone_parameters_dataset ): # pylint: disable=redefined-outer-name ds = standalone_parameters_dataset snapshot_button = interactive_widget._get_snapshot_button(ds, tab) snapshot_button.click() time.sleep(0.5) # after click # maybe use https://github.com/jupyter-widgets/ipywidgets/issues/2417 assert "snapshot" in tab.get_title(1) @patch("matplotlib.pyplot.show") def test_plot_button( tab, standalone_parameters_dataset ): # pylint: disable=redefined-outer-name ds = standalone_parameters_dataset plot_button = interactive_widget._get_plot_button(ds, tab) plot_button.click() time.sleep(0.5) # after click @pytest.mark.parametrize( "get_button_function", [ interactive_widget._get_experiment_button, interactive_widget._get_timestamp_button, interactive_widget._get_run_id_button, interactive_widget._get_parameters_button, ], ) def test_get_experiment_button( get_button_function, standalone_parameters_dataset, ): # pylint: disable=redefined-outer-name ds = standalone_parameters_dataset box = get_button_function(ds) snapshot_button = box.children[0] snapshot_button.click() time.sleep(0.5) # after click assert len(box.children) == 2 def test_get_parameters(standalone_parameters_dataset): parameters = interactive_widget._get_parameters( standalone_parameters_dataset ) assert bool(parameters["dependent"]) # not empty assert bool(parameters["independent"]) # not empty def test_editable_metadata( standalone_parameters_dataset, ): # pylint: disable=redefined-outer-name ds = standalone_parameters_dataset box = interactive_widget.editable_metadata(ds) button = box.children[0] button.click() assert len(box.children) == 2 text_area, save_box = box.children save_button = save_box.children[0] assert isinstance(text_area, Textarea) assert isinstance(button, Button) test_test = "test value" text_area.value = test_test save_button.click() time.sleep(0.5) # after click # Test if metadata is saved. assert ds.metadata[interactive_widget._META_DATA_KEY] == test_test assert box.children[0].description == test_test def test_experiments_widget(standalone_parameters_dataset): dss = [standalone_parameters_dataset] widget = interactive_widget.experiments_widget(data_sets=dss) assert len(widget.children) == 3 html, tab, grid = widget.children assert isinstance(html, HTML) assert isinstance(tab, Tab) assert isinstance(grid, GridspecLayout) assert grid.n_rows == 1 + 1 @pytest.mark.parametrize('sort_by', [None, "run_id", "timestamp"]) def test_experiments_widget_sorting(standalone_parameters_dataset, sort_by): dss = [standalone_parameters_dataset] widget = interactive_widget.experiments_widget( data_sets=dss, sort_by=sort_by ) assert len(widget.children) == 3 grid = widget.children[2] assert isinstance(grid, GridspecLayout) assert grid.n_rows == 1 + 1
30.490683
79
0.744755
171a12e661d8b0a26e6093543e96edeac9ab7a50
18,951
py
Python
pyzoo/zoo/orca/learn/tf2/tf_runner.py
shane-huang/analytics-zoo
9c29bc7d678b526cd8ff256d731ed9ac2c18cc81
[ "Apache-2.0" ]
null
null
null
pyzoo/zoo/orca/learn/tf2/tf_runner.py
shane-huang/analytics-zoo
9c29bc7d678b526cd8ff256d731ed9ac2c18cc81
[ "Apache-2.0" ]
1
2020-04-17T02:41:28.000Z
2020-04-20T02:37:41.000Z
pyzoo/zoo/orca/learn/tf2/tf_runner.py
shane-huang/analytics-zoo
9c29bc7d678b526cd8ff256d731ed9ac2c18cc81
[ "Apache-2.0" ]
null
null
null
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Copyright 2017 The Ray Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import json import os import numpy as np import ray import ray.services from contextlib import closing import logging import socket from zoo.orca.data.utils import ray_partition_get_data_label logger = logging.getLogger(__name__) def find_free_port(): with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: s.bind(("", 0)) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) return s.getsockname()[1] def _try_import_strategy(): """Late import for Tesnorflow""" import tensorflow as tf return tf.distribute.experimental.MultiWorkerMirroredStrategy class DatasetHandler: def __init__(self, rank, size): self.rank = rank self.size = size def handle_datasets_train(self, data_creator, validation_data_creator, config, epochs, steps_per_epoch, validation_steps): config, local_batch_size = self._handle_batch_size(config) train_dataset = data_creator(config) if isinstance(train_dataset, ray.ObjectID): assert steps_per_epoch is not None, "steps_per_epoch must be provided for xshard" train_dataset = self._handle_xshards(train_dataset, steps=steps_per_epoch * epochs, local_batch_size=local_batch_size, shuffle=True) else: train_dataset = self._handle_sharding(train_dataset) if validation_data_creator is not None: test_dataset = validation_data_creator(config) if isinstance(test_dataset, ray.ObjectID): assert validation_steps is not None, "validation_steps must be provided" \ "when use xshards for evaluate" test_dataset = self._handle_xshards(test_dataset, steps=validation_steps, local_batch_size=local_batch_size, shuffle=False) else: test_dataset = self._handle_sharding(test_dataset) else: test_dataset = None return train_dataset, test_dataset def handle_dataset_validation(self, data_creator, config, steps): config, local_batch_size = self._handle_batch_size(config) dataset = data_creator(config) if isinstance(dataset, ray.ObjectID): assert steps is not None, "steps must be provided for xshard" dataset = self._handle_xshards(dataset, steps=steps, local_batch_size=local_batch_size, shuffle=False) else: dataset = self._handle_sharding(dataset) return dataset def _handle_xshards(self, dataset, steps, local_batch_size, shuffle): raise NotImplementedError def _handle_sharding(self, dataset): raise NotImplementedError def _handle_batch_size(self, config): raise NotImplementedError @staticmethod def get_handler(backend, rank, size): if backend == "horovod": return HorovodDatasetHanlder(rank, size) if backend == "tf-distributed": return TFDistributedDatasetHandler(rank, size) if backend == "tf-local": return LocalDatasetHandler(rank, size) raise Exception(f"invalid backend: {backend}") class HorovodDatasetHanlder(DatasetHandler): def _handle_xshards(self, dataset, steps, local_batch_size, shuffle): import tensorflow as tf data, label = ray_partition_get_data_label(ray.get(dataset), allow_tuple=True, allow_list=False) dataset = tf.data.Dataset.from_tensor_slices((data, label)) options = tf.data.Options() options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF dataset = dataset.with_options(options) dataset = dataset.repeat() dataset = dataset.take(steps * local_batch_size) if shuffle: dataset = dataset.shuffle(local_batch_size * min(steps, 10)) dataset = dataset.batch(local_batch_size) return dataset def _handle_sharding(self, dataset): from tensorflow.python.distribute.input_ops import auto_shard_dataset dataset = auto_shard_dataset(dataset, self.size, self.rank) return dataset def _handle_batch_size(self, config): assert "batch_size" in config, "batch_size must be set in config" config["batch_size"] = config["batch_size"] // self.size return config, config["batch_size"] class TFDistributedDatasetHandler(DatasetHandler): def _handle_xshards(self, dataset, steps, local_batch_size, shuffle): import tensorflow as tf data, label = ray_partition_get_data_label(ray.get(dataset), allow_tuple=True, allow_list=False) def dataset_fn(input_context): dataset = tf.data.Dataset.from_tensor_slices((data, label)) options = tf.data.Options() options.experimental_distribute.auto_shard_policy = \ tf.data.experimental.AutoShardPolicy.OFF dataset = dataset.with_options(options) dataset = dataset.repeat() dataset = dataset.take(steps * local_batch_size) if shuffle: dataset = dataset.shuffle(local_batch_size * min(steps, 10)) dataset = dataset.batch(local_batch_size) return dataset from tensorflow.python.distribute import distribution_strategy_context as ds_context strategy = ds_context.get_strategy() dataset = strategy.experimental_distribute_datasets_from_function(dataset_fn) return dataset def _handle_sharding(self, dataset): return dataset def _handle_batch_size(self, config): assert "batch_size" in config, "batch_size must be set in config" local_batch_size = config["batch_size"] // self.size return config, local_batch_size class LocalDatasetHandler(DatasetHandler): def _handle_xshards(self, dataset, steps, local_batch_size, shuffle): import tensorflow as tf data, label = ray_partition_get_data_label(ray.get(dataset), allow_tuple=True, allow_list=False) dataset = tf.data.Dataset.from_tensor_slices((data, label)) dataset = dataset.repeat() dataset = dataset.take(steps * local_batch_size) if shuffle: dataset = dataset.shuffle(local_batch_size * min(steps, 10)) dataset = dataset.batch(local_batch_size) return dataset def _handle_sharding(self, dataset): return dataset def _handle_batch_size(self, config): assert "batch_size" in config, "batch_size must be set in config" return config, config["batch_size"] class TFRunner: """Manages a TensorFlow model for training.""" def __init__(self, model_creator, compile_args_creator, config=None, verbose=False): """Initializes the runner. Args: model_creator (dict -> Model): see tf_trainer.py. data_creator (dict -> tf.Dataset, tf.Dataset): see tf_trainer.py. config (dict): see tf_trainer.py. verbose (bool): Outputs training data if true. """ self.model_creator = model_creator self.compile_args_creator = compile_args_creator self.config = {} if config is None else config self.inter_op_parallelism = self.config.get("inter_op_parallelism", 1) self.intra_op_parallelism = self.config.get("intra_op_parallelism", 1) import tensorflow as tf tf.config.threading.set_inter_op_parallelism_threads(self.inter_op_parallelism) tf.config.threading.set_intra_op_parallelism_threads(self.intra_op_parallelism) os.environ["OMP_NUM_THREADS"] = self.config.get("OMP_NUM_THREADS", str(self.intra_op_parallelism)) os.environ["KMP_BLOCKING_TIME"] = self.config.get("KMP_BLOCKING_TIME", os.environ.get("KMP_BLOCKING_TIME", "0")) self.epoch = 0 self.verbose = verbose def setup(self): """Initializes the model.""" logger.debug("Creating model") self.model = self.model_creator(self.config) self.model.compile(**self.compile_args_creator(self.config)) self.backend = "tf-local" self.size = 1 self.rank = 0 from tensorflow.python.distribute import distribution_strategy_context as ds_context self.strategy = ds_context.get_strategy() def setup_horovod(self): import horovod.tensorflow.keras as hvd hvd.init() self.model = self.model_creator(self.config) compile_args = self.compile_args_creator(self.config) compile_args["optimizer"] = hvd.DistributedOptimizer(compile_args["optimizer"]) self.model.compile(**compile_args) self.backend = "horovod" self.size = hvd.size() self.rank = hvd.rank() from tensorflow.python.distribute import distribution_strategy_context as ds_context self.strategy = ds_context.get_strategy() def setup_distributed(self, urls, world_rank, world_size): """Sets up TensorFLow distributed environment and initializes the model. Args: urls (str): the URLs that each node uses to connect. world_rank (int): the index of the runner. world_size (int): the total number of runners. """ assert len(urls) == world_size tf_config = { "cluster": { "worker": urls }, "task": { "index": world_rank, "type": "worker" } } os.environ["TF_CONFIG"] = json.dumps(tf_config) no_proxy = os.environ.get("no_proxy", "") ips = [url.split(":")[0] for url in urls] os.environ["no_proxy"] = ",".join(ips) + "," + no_proxy MultiWorkerMirroredStrategy = _try_import_strategy() # MultiWorkerMirroredStrategy handles everything for us, from # sharding the dataset (or even sharding the data itself if the loader # reads files from disk) to merging the metrics and weight updates # # worker 0 is the "chief" worker and will handle the map-reduce # every worker ends up with the exact same metrics and model # after model.fit # # because of this, we only really ever need to query its state self.strategy = MultiWorkerMirroredStrategy() logger.debug("Creating model with MultiWorkerMirroredStrategy") with self.strategy.scope(): self.model = self.model_creator(self.config) # For use in model.evaluate() self.local_model = None self.backend = "tf-distributed" self.size = world_size self.rank = world_rank def step(self, data_creator, epochs=1, batch_size=32, verbose=1, callbacks=None, validation_data_creator=None, class_weight=None, steps_per_epoch=None, validation_steps=None, validation_freq=1, data_config=None): """Runs a training epoch and updates the model parameters.""" config = self.config.copy() if data_config is not None: config.update(data_config) config['batch_size'] = batch_size with self.strategy.scope(): dataset_handler = DatasetHandler.get_handler(self.backend, self.rank, self.size) train_dataset, test_dataset = dataset_handler\ .handle_datasets_train(data_creator, validation_data_creator, config=config, epochs=epochs, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps) # process other arguments if self.backend == "horovod": import horovod.tensorflow.keras as hvd hvd_callbacks = [hvd.callbacks.BroadcastGlobalVariablesCallback(0), hvd.callbacks.MetricAverageCallback()] if hvd.rank() != 0: verbose = 0 if callbacks is not None: callbacks = hvd_callbacks + callbacks else: callbacks = hvd_callbacks elif self.backend == "tf-distributed": if self.strategy.cluster_resolver.task_id != 0: verbose = 0 history = self.model.fit(train_dataset, epochs=self.epoch + epochs, verbose=verbose, callbacks=callbacks, validation_data=test_dataset, class_weight=class_weight, initial_epoch=self.epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, validation_freq=validation_freq) if history is None: stats = {} else: stats = {"train_" + k: v[-1] for k, v in history.history.items()} self.epoch += epochs return [stats] def validate(self, data_creator, batch_size=32, verbose=1, sample_weight=None, steps=None, callbacks=None, data_config=None): """Evaluates the model on the validation data set.""" config = self.config.copy() if data_config is not None: config.update(data_config) config["batch_size"] = batch_size with self.strategy.scope(): dataset_handler = DatasetHandler.get_handler(self.backend, self.rank, self.size) dataset = dataset_handler.handle_dataset_validation(data_creator, config=config, steps=steps) if self.backend == "horovod": import horovod.tensorflow.keras as hvd if hvd.rank() != 0: verbose = 0 elif self.backend == "tf-distributed": if self.strategy.cluster_resolver.task_id != 0: verbose = 0 params = dict( verbose=verbose, sample_weight=sample_weight, steps=steps, callbacks=callbacks, ) results = self.model.evaluate(dataset, **params) if results is None: # Using local Model since model.evaluate() returns None # for MultiWorkerMirroredStrategy logger.warning("Running a local model to get validation score.") self.local_model = self.model_creator(self.config) self.local_model.set_weights(self.model.get_weights()) results = self.local_model.evaluate(dataset, **params) if isinstance(results, list): stats = { "validation_" + k: v for k, v in zip(self.model.metrics_names, results) } else: stats = {"results": results} return [stats] def predict(self, data_creator, batch_size, verbose, steps, callbacks, data_config): config = self.config.copy() if data_config is not None: config.update(data_config) dataset = data_creator(config) if not isinstance(dataset, ray.ObjectID): raise ValueError("Only xshards is supported for predict") partition = ray.get(dataset) params = dict( batch_size=batch_size, verbose=verbose, steps=steps, callbacks=callbacks, ) if self.backend == "tf-distributed": local_model = self.model_creator(self.config) local_model.set_weights(self.model.get_weights()) else: local_model = self.model def predict_fn(shard): y = local_model.predict(shard["x"], **params) return {"prediction": y} new_part = [predict_fn(shard) for shard in partition] return new_part def get_state(self): """Returns the state of the runner.""" return { "epoch": self.epoch, "weights": self.model.get_weights(), "optimizer_weights": self.model.optimizer.get_weights() } def set_state(self, state): """Sets the state of the model.""" self.epoch = state["epoch"] self.model.set_weights(state["weights"]) def shutdown(self): """Attempts to shut down the worker.""" del self.model def get_node_ip(self): """Returns the IP address of the current node.""" return ray.services.get_node_ip_address() def find_free_port(self): """Finds a free port on the current node.""" return find_free_port()
39.563674
100
0.598649
f7a6522272ca25f0b11966dffdd9996ab5aae982
29,283
py
Python
ml-agents-envs/mlagents/envs/environment.py
trainmachines/unity-ml-agents-cl
71ab07a0caf49ea73082f4f80b71951f2b10ff15
[ "Apache-2.0" ]
58
2019-06-13T16:35:40.000Z
2021-12-30T03:16:45.000Z
ml-agents-envs/mlagents/envs/environment.py
trainmachines/unity-ml-agents-cl
71ab07a0caf49ea73082f4f80b71951f2b10ff15
[ "Apache-2.0" ]
7
2020-09-26T00:43:02.000Z
2022-02-10T01:26:53.000Z
ml-agents-envs/mlagents/envs/environment.py
trainmachines/unity-ml-agents-cl
71ab07a0caf49ea73082f4f80b71951f2b10ff15
[ "Apache-2.0" ]
23
2019-06-25T17:09:32.000Z
2021-03-18T06:44:17.000Z
import atexit import glob import logging import numpy as np import os import subprocess from typing import Dict, List, Optional, Any from mlagents.envs.base_unity_environment import BaseUnityEnvironment from mlagents.envs.timers import timed, hierarchical_timer from .brain import AllBrainInfo, BrainInfo, BrainParameters from .exception import ( UnityEnvironmentException, UnityCommunicationException, UnityActionException, UnityTimeOutException, ) from mlagents.envs.communicator_objects.unity_rl_input_pb2 import UnityRLInput from mlagents.envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutput from mlagents.envs.communicator_objects.agent_action_proto_pb2 import AgentActionProto from mlagents.envs.communicator_objects.environment_parameters_proto_pb2 import ( EnvironmentParametersProto, ) from mlagents.envs.communicator_objects.unity_rl_initialization_input_pb2 import ( UnityRLInitializationInput, ) from mlagents.envs.communicator_objects.unity_rl_initialization_output_pb2 import ( UnityRLInitializationOutput, ) from mlagents.envs.communicator_objects.unity_input_pb2 import UnityInput from mlagents.envs.communicator_objects.custom_action_pb2 import CustomAction from .rpc_communicator import RpcCommunicator from sys import platform logging.basicConfig(level=logging.INFO) logger = logging.getLogger("mlagents.envs") class UnityEnvironment(BaseUnityEnvironment): SCALAR_ACTION_TYPES = (int, np.int32, np.int64, float, np.float32, np.float64) SINGLE_BRAIN_ACTION_TYPES = SCALAR_ACTION_TYPES + (list, np.ndarray) SINGLE_BRAIN_TEXT_TYPES = list def __init__( self, file_name: Optional[str] = None, worker_id: int = 0, base_port: int = 5005, seed: int = 0, docker_training: bool = False, no_graphics: bool = False, timeout_wait: int = 30, args: Optional[List[str]] = None, ): """ Starts a new unity environment and establishes a connection with the environment. Notice: Currently communication between Unity and Python takes place over an open socket without authentication. Ensure that the network where training takes place is secure. :string file_name: Name of Unity environment binary. :int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this. :int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios. :bool docker_training: Informs this class whether the process is being run within a container. :bool no_graphics: Whether to run the Unity simulator in no-graphics mode :int timeout_wait: Time (in seconds) to wait for connection from environment. :bool train_mode: Whether to run in training mode, speeding up the simulation, by default. :list args: Addition Unity command line arguments """ args = args or [] atexit.register(self._close) self.port = base_port + worker_id self._buffer_size = 12000 self._version_ = "API-10" self._loaded = ( False ) # If true, this means the environment was successfully loaded self.proc1 = ( None ) # The process that is started. If None, no process was started self.communicator = self.get_communicator(worker_id, base_port, timeout_wait) self.worker_id = worker_id # If the environment name is None, a new environment will not be launched # and the communicator will directly try to connect to an existing unity environment. # If the worker-id is not 0 and the environment name is None, an error is thrown if file_name is None and worker_id != 0: raise UnityEnvironmentException( "If the environment name is None, " "the worker-id must be 0 in order to connect with the Editor." ) if file_name is not None: self.executable_launcher(file_name, docker_training, no_graphics, args) else: logger.info( "Start training by pressing the Play button in the Unity Editor." ) self._loaded = True rl_init_parameters_in = UnityRLInitializationInput(seed=seed) try: aca_params = self.send_academy_parameters(rl_init_parameters_in) except UnityTimeOutException: self._close() raise # TODO : think of a better way to expose the academyParameters self._unity_version = aca_params.version if self._unity_version != self._version_: self._close() raise UnityEnvironmentException( "The API number is not compatible between Unity and python. Python API : {0}, Unity API : " "{1}.\nPlease go to https://github.com/Unity-Technologies/ml-agents to download the latest version " "of ML-Agents.".format(self._version_, self._unity_version) ) self._n_agents: Dict[str, int] = {} self._is_first_message = True self._academy_name = aca_params.name self._log_path = aca_params.log_path self._brains: Dict[str, BrainParameters] = {} self._brain_names: List[str] = [] self._external_brain_names: List[str] = [] for brain_param in aca_params.brain_parameters: self._brain_names += [brain_param.brain_name] self._brains[brain_param.brain_name] = BrainParameters.from_proto( brain_param ) if brain_param.is_training: self._external_brain_names += [brain_param.brain_name] self._num_brains = len(self._brain_names) self._num_external_brains = len(self._external_brain_names) self._resetParameters = dict(aca_params.environment_parameters.float_parameters) logger.info( "\n'{0}' started successfully!\n{1}".format(self._academy_name, str(self)) ) if self._num_external_brains == 0: logger.warning( " No Learning Brains set to train found in the Unity Environment. " "You will not be able to pass actions to your agent(s)." ) @property def logfile_path(self): return self._log_path @property def brains(self): return self._brains @property def academy_name(self): return self._academy_name @property def number_brains(self): return self._num_brains @property def number_external_brains(self): return self._num_external_brains @property def brain_names(self): return self._brain_names @property def external_brain_names(self): return self._external_brain_names @staticmethod def get_communicator(worker_id, base_port, timeout_wait): return RpcCommunicator(worker_id, base_port, timeout_wait) @property def external_brains(self): external_brains = {} for brain_name in self.external_brain_names: external_brains[brain_name] = self.brains[brain_name] return external_brains @property def reset_parameters(self): return self._resetParameters def executable_launcher(self, file_name, docker_training, no_graphics, args): cwd = os.getcwd() file_name = ( file_name.strip() .replace(".app", "") .replace(".exe", "") .replace(".x86_64", "") .replace(".x86", "") ) true_filename = os.path.basename(os.path.normpath(file_name)) logger.debug("The true file name is {}".format(true_filename)) launch_string = None if platform == "linux" or platform == "linux2": candidates = glob.glob(os.path.join(cwd, file_name) + ".x86_64") if len(candidates) == 0: candidates = glob.glob(os.path.join(cwd, file_name) + ".x86") if len(candidates) == 0: candidates = glob.glob(file_name + ".x86_64") if len(candidates) == 0: candidates = glob.glob(file_name + ".x86") if len(candidates) > 0: launch_string = candidates[0] elif platform == "darwin": candidates = glob.glob( os.path.join( cwd, file_name + ".app", "Contents", "MacOS", true_filename ) ) if len(candidates) == 0: candidates = glob.glob( os.path.join(file_name + ".app", "Contents", "MacOS", true_filename) ) if len(candidates) == 0: candidates = glob.glob( os.path.join(cwd, file_name + ".app", "Contents", "MacOS", "*") ) if len(candidates) == 0: candidates = glob.glob( os.path.join(file_name + ".app", "Contents", "MacOS", "*") ) if len(candidates) > 0: launch_string = candidates[0] elif platform == "win32": candidates = glob.glob(os.path.join(cwd, file_name + ".exe")) if len(candidates) == 0: candidates = glob.glob(file_name + ".exe") if len(candidates) > 0: launch_string = candidates[0] if launch_string is None: self._close() raise UnityEnvironmentException( "Couldn't launch the {0} environment. " "Provided filename does not match any environments.".format( true_filename ) ) else: logger.debug("This is the launch string {}".format(launch_string)) # Launch Unity environment if not docker_training: subprocess_args = [launch_string] if no_graphics: subprocess_args += ["-nographics", "-batchmode"] subprocess_args += ["--port", str(self.port)] subprocess_args += args try: self.proc1 = subprocess.Popen(subprocess_args) except PermissionError as perm: # This is likely due to missing read or execute permissions on file. raise UnityEnvironmentException( f"Error when trying to launch environment - make sure " f"permissions are set correctly. For example " f'"chmod -R 755 {launch_string}"' ) from perm else: """ Comments for future maintenance: xvfb-run is a wrapper around Xvfb, a virtual xserver where all rendering is done to virtual memory. It automatically creates a new virtual server automatically picking a server number `auto-servernum`. The server is passed the arguments using `server-args`, we are telling Xvfb to create Screen number 0 with width 640, height 480 and depth 24 bits. Note that 640 X 480 are the default width and height. The main reason for us to add this is because we'd like to change the depth from the default of 8 bits to 24. Unfortunately, this means that we will need to pass the arguments through a shell which is why we set `shell=True`. Now, this adds its own complications. E.g SIGINT can bounce off the shell and not get propagated to the child processes. This is why we add `exec`, so that the shell gets launched, the arguments are passed to `xvfb-run`. `exec` replaces the shell we created with `xvfb`. """ docker_ls = ( "exec xvfb-run --auto-servernum" " --server-args='-screen 0 640x480x24'" " {0} --port {1}" ).format(launch_string, str(self.port)) self.proc1 = subprocess.Popen( docker_ls, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, ) def __str__(self): return ( """Unity Academy name: {0} Number of Brains: {1} Number of Training Brains : {2} Reset Parameters :\n\t\t{3}""".format( self._academy_name, str(self._num_brains), str(self._num_external_brains), "\n\t\t".join( [ str(k) + " -> " + str(self._resetParameters[k]) for k in self._resetParameters ] ), ) + "\n" + "\n".join([str(self._brains[b]) for b in self._brains]) ) def reset( self, config: Dict = None, train_mode: bool = True, custom_reset_parameters: Any = None, ) -> AllBrainInfo: """ Sends a signal to reset the unity environment. :return: AllBrainInfo : A data structure corresponding to the initial reset state of the environment. """ if config is None: config = self._resetParameters elif config: logger.info( "Academy reset with parameters: {0}".format( ", ".join([str(x) + " -> " + str(config[x]) for x in config]) ) ) for k in config: if (k in self._resetParameters) and (isinstance(config[k], (int, float))): self._resetParameters[k] = config[k] elif not isinstance(config[k], (int, float)): raise UnityEnvironmentException( "The value for parameter '{0}'' must be an Integer or a Float.".format( k ) ) else: raise UnityEnvironmentException( "The parameter '{0}' is not a valid parameter.".format(k) ) if self._loaded: outputs = self.communicator.exchange( self._generate_reset_input(train_mode, config, custom_reset_parameters) ) if outputs is None: raise UnityCommunicationException("Communicator has stopped.") rl_output = outputs.rl_output s = self._get_state(rl_output) for _b in self._external_brain_names: self._n_agents[_b] = len(s[_b].agents) self._is_first_message = False return s else: raise UnityEnvironmentException("No Unity environment is loaded.") @timed def step( self, vector_action: Dict[str, np.ndarray] = None, memory: Optional[Dict[str, np.ndarray]] = None, text_action: Optional[Dict[str, List[str]]] = None, value: Optional[Dict[str, np.ndarray]] = None, custom_action: Dict[str, Any] = None, ) -> AllBrainInfo: """ Provides the environment with an action, moves the environment dynamics forward accordingly, and returns observation, state, and reward information to the agent. :param value: Value estimates provided by agents. :param vector_action: Agent's vector action. Can be a scalar or vector of int/floats. :param memory: Vector corresponding to memory used for recurrent policies. :param text_action: Text action to send to environment for. :param custom_action: Optional instance of a CustomAction protobuf message. :return: AllBrainInfo : A Data structure corresponding to the new state of the environment. """ if self._is_first_message: return self.reset() vector_action = {} if vector_action is None else vector_action memory = {} if memory is None else memory text_action = {} if text_action is None else text_action value = {} if value is None else value custom_action = {} if custom_action is None else custom_action # Check that environment is loaded, and episode is currently running. if not self._loaded: raise UnityEnvironmentException("No Unity environment is loaded.") else: if isinstance(vector_action, self.SINGLE_BRAIN_ACTION_TYPES): if self._num_external_brains == 1: vector_action = {self._external_brain_names[0]: vector_action} elif self._num_external_brains > 1: raise UnityActionException( "You have {0} brains, you need to feed a dictionary of brain names a keys, " "and vector_actions as values".format(self._num_brains) ) else: raise UnityActionException( "There are no external brains in the environment, " "step cannot take a vector_action input" ) if isinstance(memory, self.SINGLE_BRAIN_ACTION_TYPES): if self._num_external_brains == 1: memory = {self._external_brain_names[0]: memory} elif self._num_external_brains > 1: raise UnityActionException( "You have {0} brains, you need to feed a dictionary of brain names as keys " "and memories as values".format(self._num_brains) ) else: raise UnityActionException( "There are no external brains in the environment, " "step cannot take a memory input" ) if isinstance(text_action, self.SINGLE_BRAIN_TEXT_TYPES): if self._num_external_brains == 1: text_action = {self._external_brain_names[0]: text_action} elif self._num_external_brains > 1: raise UnityActionException( "You have {0} brains, you need to feed a dictionary of brain names as keys " "and text_actions as values".format(self._num_brains) ) else: raise UnityActionException( "There are no external brains in the environment, " "step cannot take a value input" ) if isinstance(value, self.SINGLE_BRAIN_ACTION_TYPES): if self._num_external_brains == 1: value = {self._external_brain_names[0]: value} elif self._num_external_brains > 1: raise UnityActionException( "You have {0} brains, you need to feed a dictionary of brain names as keys " "and state/action value estimates as values".format( self._num_brains ) ) else: raise UnityActionException( "There are no external brains in the environment, " "step cannot take a value input" ) if isinstance(custom_action, CustomAction): if self._num_external_brains == 1: custom_action = {self._external_brain_names[0]: custom_action} elif self._num_external_brains > 1: raise UnityActionException( "You have {0} brains, you need to feed a dictionary of brain names as keys " "and CustomAction instances as values".format(self._num_brains) ) else: raise UnityActionException( "There are no external brains in the environment, " "step cannot take a custom_action input" ) for brain_name in ( list(vector_action.keys()) + list(memory.keys()) + list(text_action.keys()) ): if brain_name not in self._external_brain_names: raise UnityActionException( "The name {0} does not correspond to an external brain " "in the environment".format(brain_name) ) for brain_name in self._external_brain_names: n_agent = self._n_agents[brain_name] if brain_name not in vector_action: if self._brains[brain_name].vector_action_space_type == "discrete": vector_action[brain_name] = ( [0.0] * n_agent * len(self._brains[brain_name].vector_action_space_size) ) else: vector_action[brain_name] = ( [0.0] * n_agent * self._brains[brain_name].vector_action_space_size[0] ) else: vector_action[brain_name] = self._flatten(vector_action[brain_name]) if brain_name not in memory: memory[brain_name] = [] else: if memory[brain_name] is None: memory[brain_name] = [] else: memory[brain_name] = self._flatten(memory[brain_name]) if brain_name not in text_action: text_action[brain_name] = [""] * n_agent else: if text_action[brain_name] is None: text_action[brain_name] = [""] * n_agent if brain_name not in custom_action: custom_action[brain_name] = [None] * n_agent else: if custom_action[brain_name] is None: custom_action[brain_name] = [None] * n_agent if isinstance(custom_action[brain_name], CustomAction): custom_action[brain_name] = [ custom_action[brain_name] ] * n_agent number_text_actions = len(text_action[brain_name]) if not ((number_text_actions == n_agent) or number_text_actions == 0): raise UnityActionException( "There was a mismatch between the provided text_action and " "the environment's expectation: " "The brain {0} expected {1} text_action but was given {2}".format( brain_name, n_agent, number_text_actions ) ) discrete_check = ( self._brains[brain_name].vector_action_space_type == "discrete" ) expected_discrete_size = n_agent * len( self._brains[brain_name].vector_action_space_size ) continuous_check = ( self._brains[brain_name].vector_action_space_type == "continuous" ) expected_continuous_size = ( self._brains[brain_name].vector_action_space_size[0] * n_agent ) if not ( ( discrete_check and len(vector_action[brain_name]) == expected_discrete_size ) or ( continuous_check and len(vector_action[brain_name]) == expected_continuous_size ) ): raise UnityActionException( "There was a mismatch between the provided action and " "the environment's expectation: " "The brain {0} expected {1} {2} action(s), but was provided: {3}".format( brain_name, str(expected_discrete_size) if discrete_check else str(expected_continuous_size), self._brains[brain_name].vector_action_space_type, str(vector_action[brain_name]), ) ) step_input = self._generate_step_input( vector_action, memory, text_action, value, custom_action ) with hierarchical_timer("communicator.exchange"): outputs = self.communicator.exchange(step_input) if outputs is None: raise UnityCommunicationException("Communicator has stopped.") rl_output = outputs.rl_output state = self._get_state(rl_output) for _b in self._external_brain_names: self._n_agents[_b] = len(state[_b].agents) return state def close(self): """ Sends a shutdown signal to the unity environment, and closes the socket connection. """ if self._loaded: self._close() else: raise UnityEnvironmentException("No Unity environment is loaded.") def _close(self): self._loaded = False self.communicator.close() if self.proc1 is not None: self.proc1.kill() @classmethod def _flatten(cls, arr: Any) -> List[float]: """ Converts arrays to list. :param arr: numpy vector. :return: flattened list. """ if isinstance(arr, cls.SCALAR_ACTION_TYPES): arr = [float(arr)] if isinstance(arr, np.ndarray): arr = arr.tolist() if len(arr) == 0: return arr if isinstance(arr[0], np.ndarray): arr = [item for sublist in arr for item in sublist.tolist()] if isinstance(arr[0], list): arr = [item for sublist in arr for item in sublist] arr = [float(x) for x in arr] return arr def _get_state(self, output: UnityRLOutput) -> AllBrainInfo: """ Collects experience information from all external brains in environment at current step. :return: a dictionary of BrainInfo objects. """ _data = {} for brain_name in output.agentInfos: agent_info_list = output.agentInfos[brain_name].value _data[brain_name] = BrainInfo.from_agent_proto( self.worker_id, agent_info_list, self.brains[brain_name] ) return _data @timed def _generate_step_input( self, vector_action: Dict[str, np.ndarray], memory: Dict[str, np.ndarray], text_action: Dict[str, list], value: Dict[str, np.ndarray], custom_action: Dict[str, list], ) -> UnityInput: rl_in = UnityRLInput() for b in vector_action: n_agents = self._n_agents[b] if n_agents == 0: continue _a_s = len(vector_action[b]) // n_agents _m_s = len(memory[b]) // n_agents for i in range(n_agents): action = AgentActionProto( vector_actions=vector_action[b][i * _a_s : (i + 1) * _a_s], memories=memory[b][i * _m_s : (i + 1) * _m_s], text_actions=text_action[b][i], custom_action=custom_action[b][i], ) if b in value: if value[b] is not None: action.value = float(value[b][i]) rl_in.agent_actions[b].value.extend([action]) rl_in.command = 0 return self.wrap_unity_input(rl_in) def _generate_reset_input( self, training: bool, config: Dict, custom_reset_parameters: Any ) -> UnityInput: rl_in = UnityRLInput() rl_in.is_training = training rl_in.environment_parameters.CopyFrom(EnvironmentParametersProto()) for key in config: rl_in.environment_parameters.float_parameters[key] = config[key] if custom_reset_parameters is not None: rl_in.environment_parameters.custom_reset_parameters.CopyFrom( custom_reset_parameters ) rl_in.command = 1 return self.wrap_unity_input(rl_in) def send_academy_parameters( self, init_parameters: UnityRLInitializationInput ) -> UnityRLInitializationOutput: inputs = UnityInput() inputs.rl_initialization_input.CopyFrom(init_parameters) return self.communicator.initialize(inputs).rl_initialization_output @staticmethod def wrap_unity_input(rl_input: UnityRLInput) -> UnityInput: result = UnityInput() result.rl_input.CopyFrom(rl_input) return result
43.190265
120
0.563262
68a6faee5354dc73505617fbb80d35ae1721bcaa
916
py
Python
backblast/model.py
kickstandproject/backblast
a3b251afeba5798cccfcd3766f1ea3e55f78034c
[ "Apache-2.0" ]
1
2016-03-26T21:30:19.000Z
2016-03-26T21:30:19.000Z
backblast/model.py
kickstandproject/backblast
a3b251afeba5798cccfcd3766f1ea3e55f78034c
[ "Apache-2.0" ]
null
null
null
backblast/model.py
kickstandproject/backblast
a3b251afeba5798cccfcd3766f1ea3e55f78034c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. class TriggerEvent(object): def __init__(self): self.type = None self.channel = None self.exten = None def __repr__(self): ret = 'TriggerEvent %s %s to %s' % (self.type, self.channel, self.exten) return ret
33.925926
75
0.628821
e2092fb01863f91227a7a77f4cf5d7e031c0822a
1,365
py
Python
files/utils.py
SIBSIND/PHPMYADMINWEBSITE
e2112f0fb43f042be551ecaadb05b1cc79ba5360
[ "MIT" ]
31
2015-05-26T23:13:06.000Z
2022-03-10T12:03:33.000Z
files/utils.py
SIBSIND/PHPMYADMINWEBSITE
e2112f0fb43f042be551ecaadb05b1cc79ba5360
[ "MIT" ]
136
2015-01-15T23:30:23.000Z
2022-03-31T00:59:01.000Z
files/utils.py
SIBSIND/PHPMYADMINWEBSITE
e2112f0fb43f042be551ecaadb05b1cc79ba5360
[ "MIT" ]
158
2015-01-15T23:25:26.000Z
2022-02-09T01:47:20.000Z
# -*- coding: UTF-8 -*- # vim: set expandtab sw=4 ts=4 sts=4: # # phpMyAdmin web site # # Copyright (C) 2008 - 2016 Michal Cihar <michal@cihar.com> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. from hashlib import sha1, sha256 def read_sum(filename, origfile=None): try: with open(filename, 'r') as handle: return handle.read().split()[0] except IOError: if origfile is not None: with open(origfile, 'r') as handle: data = handle.read() if filename.endswith('.sha1'): return sha1(data).hexdigest() if filename.endswith('.sha256'): return sha256(data).hexdigest() return ''
35
73
0.671795
be64e074af6729b6171d5eed328bc46d2d983abb
19,608
py
Python
tensorflow_probability/python/distributions/masked.py
mederrata/probability
bc6c411b0fbd83141f303f91a27343fe3c43a797
[ "Apache-2.0" ]
1
2022-03-22T11:56:31.000Z
2022-03-22T11:56:31.000Z
tensorflow_probability/python/distributions/masked.py
robot0102/probability
89d248c420b8ecabfd9d6de4a1aa8d3886920049
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/masked.py
robot0102/probability
89d248c420b8ecabfd9d6de4a1aa8d3886920049
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The MaskedIndependent distribution class.""" import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import bijector as bijector_lib from tensorflow_probability.python.distributions import batch_broadcast from tensorflow_probability.python.distributions import distribution as distribution_lib from tensorflow_probability.python.distributions import kullback_leibler from tensorflow_probability.python.distributions import log_prob_ratio from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import parameter_properties from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.internal import samplers from tensorflow_probability.python.internal import tensor_util def _add_event_dims_to_mask(validity_mask, *, dist=None, event_ndims=None): validity_mask = tf.convert_to_tensor(validity_mask) if event_ndims is None: event_ndims = ps.rank_from_shape(dist.event_shape_tensor()) return tf.reshape( validity_mask, ps.concat([ ps.shape(validity_mask), ps.ones(event_ndims, dtype=tf.int32) ], axis=0)) def _make_masked_fn(fn_name, n_event_shapes, safe_value, make_arg0_safe=False): """Implements functions like mean, variance, etc. Args: fn_name: Name of the method called on the underlying distribution. n_event_shapes: Number of event shape repeats in the shape of the underlying function's output. safe_value: The value to be placed in invalid locations. May be `'safe_sample'` to specify we should use the "safe sample" value. make_arg0_safe: If `True`, we will apply `self.safe_sample_fn` to ensure the argument passed into the underlying routine is a "safe" sample. Returns: fn: Callable implementing the given function. """ def fn(self, *args, **kwargs): if safe_value == 'safe_sample' or make_arg0_safe: # Only if needed. safe_val = tf.stop_gradient(self.safe_sample_fn(self.distribution)) validity_mask = tf.convert_to_tensor(self.validity_mask) if make_arg0_safe: x = args[0] safe_x = tf.where( _add_event_dims_to_mask(validity_mask, dist=self), x, safe_val) args = (safe_x,) + args[1:] val = getattr(self.distribution, fn_name)(*args, **kwargs) if n_event_shapes: validity_mask = tf.reshape( validity_mask, ps.concat( [ps.shape(validity_mask)] + [ps.ones_like(self.event_shape_tensor())] * n_event_shapes, axis=0)) if safe_value == 'safe_sample': sentinel = tf.cast(safe_val, val.dtype) else: sentinel = tf.cast(safe_value, val.dtype) return tf.where(validity_mask, val, sentinel) fn.__name__ = f'_{fn_name}' return fn def _fixed_sample(d): return d.sample(seed=samplers.zeros_seed()) class _Masked(distribution_lib.Distribution): """A distribution that masks invalid underlying distributions. Sometimes we may want a way of masking out a subset of distributions. Perhaps we have labels for only a subset of batch members and want to evaluate a log_prob. Or we may want to encode a sparse random variable as a dense random variable with a mask applied. In single-program/multiple-data regimes, it can be necessary to pad Distributions and the samples thereof to a given size in order to achieve the "single-program" desideratum. When computing a probability density in this regime, we would like to mask out the contributions of invalid batch members. We may also want to ensure that the values being sampled are valid parameters for descendant distributions in a hierarchical model, even if they are ultimately masked out. This distribution answers those requirements. Specifically, for invalid batch elements: - `log_prob(x) == 0.` for all `x`, with no gradients back to `x`, nor any gradients to the parameters of `distribution`. - `sample() == tf.stop_gradient(safe_value_fn(distribution))`, with no gradients back to the parameters of `distribution`. The distribution accepts a mask specified by `validity_mask`, a boolean tensor broadcastable with the underlying distribution's batch shape which specifies for each batch element whether or not it is valid. Entries in `validity_mask` which are `False` denote missing distributions, which means that the corresponding entries in the measures (e.g. `prob`) and statistics (e.g. `mean`) must not be treated as coming from some real distribution. Whenever doing a reduction across those quantites, make sure to either mask out the invalid entries or make sure the returned value corresponds to the identity element of the reduction. For a couple examples: - OK: `reduce_sum(masked_dist.log_prob(x))` - OK: `tfd.Independent(masked_dist, ...)` - Not OK: `reduce_var(masked_dist.mean())` will underestimate the variance because it uses too large an `N`. - Not OK: `tf.linalg.cholesky(masked_dist.covariance())` will fail for invalid batch elements. The default `safe_value_fn` is to draw a fixed-seeded sample from the underlying `distribution`. Since this may be expensive, it is suggested to specify a computationally cheaper method. Some options might include: - `tfd.Distribution.mode` - `tfd.Distribution.mean` - `lambda d: d.quantile(.5)` (median) - `lambda _: 0.` (if zero is always in the support of d) - `lambda d: d.experimental_default_event_space_bijector()(0.)` Besides the output of `sample`, results from `safe_value_fn` may also appear in (invalid batch members of) `masked.default_event_space_bijector().forward`. #### Examples ``` # Use tf.sequence_mask for `range(n) < num_valid`. num_valid = 3 num_entries = 4 d = tfd.Masked( tfd.MultivariateNormalDiag(tf.zeros([2, num_entries, 5]), tf.ones([5])), tf.sequence_mask(num_valid, num_entries)) d.batch_shape # [2, 4] d.event_shape # [5] d.log_prob(tf.zeros([5])) # shape [2, 4] # => [[nonzero, nonzero, nonzero, 0.], # [nonzero, nonzero, nonzero, 0.]] # Explicitly denote which elements are valid, adding a new batch dim of 2. d = tfd.Masked(tfd.MultivariateNormalDiag(tf.zeros([4, 5]), tf.ones([5])), [[False], [True]]) d.batch_shape # [2, 4] d.event_shape # [5] d.log_prob(tf.zeros([5])) # shape [2, 4] # => [[0., 0., 0., 0.], # [nonzero, nonzero, nonzero, nonzero]] # Use `BatchBroadcast` and `Independent` to achieve the equivalent of adding # positional mask functionality to `tfd.Sample`. # Suppose we wanted to achieve this: # `tfd.Sample(tfd.Normal(tf.zeros(2), 1), [3, 4], validity_mask=mask)` # We can write: d = tfd.Independent( tfd.Masked(tfd.BatchBroadcast(tfd.Normal(0, 1), [2, 3, 4]), mask), reinterpreted_batch_ndims=2) d.batch_shape # [2] d.event_shape # [3, 4] d.log_prob(tf.ones([3, 4])) # shape [2] ``` """ def __init__(self, distribution, validity_mask, safe_sample_fn=_fixed_sample, validate_args=False, allow_nan_stats=True, name=None): """Constructs a Masked distribution. Args: distribution: The underlying distribution, which will be masked. validity_mask: Boolean mask where `True` indicates an element is valid. `validity_mask` must broadcast with the batch shape of the underlying distribution. Invalid batch elements are masked so that sampling returns `safe_sample_fn(dist)` in invalid positions and `log_prob(x)` returns `0.` for invalid positions. safe_sample_fn: A callable which takes a distribution (namely, the `distribution` argument) and returns a determinstic, safe sample value. This helps to avoid `nan` gradients and allows downstream usage of samples from a `Masked` distribution to assume a "safe" even if invalid value. (Be careful to ensure that such downstream usages are themselves masked!) Note that the result of this function will be wrapped in a `tf.stop_gradient` call. validate_args: Boolean indicating whether argument assertions should be run. May impose performance penalties. allow_nan_stats: Boolean indicating whether statistical functions may return `nan`, or should instead use asserts where possible. name: Optional name for operation scoping. """ parameters = dict(locals()) with tf.name_scope(name or f'Masked{distribution.name}') as name: self._distribution = distribution self._validity_mask = tensor_util.convert_nonref_to_tensor( validity_mask, dtype_hint=tf.bool) self._safe_sample_fn = safe_sample_fn super(_Masked, self).__init__( dtype=distribution.dtype, reparameterization_type=distribution.reparameterization_type, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, name=name) @classmethod def _parameter_properties(cls, dtype, num_classes=None): return dict( distribution=parameter_properties.BatchedComponentProperties(), validity_mask=parameter_properties.ParameterProperties( shape_fn=parameter_properties.SHAPE_FN_NOT_IMPLEMENTED)) @property def distribution(self): return self._distribution @property def validity_mask(self): return self._validity_mask @property def safe_sample_fn(self): return self._safe_sample_fn @property def experimental_is_sharded(self): return self.distribution.experimental_is_sharded def _event_shape(self): return self.distribution.event_shape def _event_shape_tensor(self): return self.distribution.event_shape_tensor() def _sample_n(self, n, seed=None, **kwargs): validity_mask = tf.convert_to_tensor(self.validity_mask) # To avoid the shape gymnastics of drawing extra samples, we delegate # sampling to the BatchBroadcast distribution. bb = batch_broadcast.BatchBroadcast(self.distribution, ps.shape(validity_mask)) samples = bb.sample(n, seed=seed, **kwargs) safe_val = tf.stop_gradient(self.safe_sample_fn(self.distribution)) return tf.where(_add_event_dims_to_mask(validity_mask, dist=self), samples, safe_val) _log_prob = _make_masked_fn( 'log_prob', n_event_shapes=0, safe_value=0., make_arg0_safe=True) _prob = _make_masked_fn( 'prob', n_event_shapes=0, safe_value=1., make_arg0_safe=True) _log_cdf = _make_masked_fn( 'log_cdf', n_event_shapes=0, safe_value=0., make_arg0_safe=True) _cdf = _make_masked_fn( 'cdf', n_event_shapes=0, safe_value=1., make_arg0_safe=True) _log_survival_function = _make_masked_fn( 'log_survival_function', n_event_shapes=0, safe_value=-float('inf'), make_arg0_safe=True) _survival_function = _make_masked_fn( 'survival_function', n_event_shapes=0, safe_value=0., make_arg0_safe=True) _entropy = _make_masked_fn( 'entropy', n_event_shapes=0, safe_value=0.) _mode = _make_masked_fn( 'mode', n_event_shapes=1, safe_value='safe_sample') _mean = _make_masked_fn( 'mean', n_event_shapes=1, safe_value='safe_sample') _variance = _make_masked_fn( 'variance', n_event_shapes=1, safe_value=0.) _stddev = _make_masked_fn( 'stddev', n_event_shapes=1, safe_value=0.) _covariance = _make_masked_fn( 'covariance', n_event_shapes=2, safe_value=0.) _quantile = _make_masked_fn( 'quantile', n_event_shapes=1, safe_value='safe_sample') def _default_event_space_bijector(self, *args, **kwargs): underlying_bijector = ( self.distribution.experimental_default_event_space_bijector()) if underlying_bijector is None: return None return _MaskedBijector(self, underlying_bijector) class Masked(_Masked, distribution_lib.AutoCompositeTensorDistribution): def __new__(cls, *args, **kwargs): """Maybe return a non-`CompositeTensor` `_Masked`.""" if cls is Masked: if args: distribution = args[0] else: distribution = kwargs.get('distribution') if not isinstance(distribution, tf.__internal__.CompositeTensor): return _Masked(*args, **kwargs) return super(Masked, cls).__new__(cls) Masked.__doc__ = _Masked.__doc__ + '\n' + ( 'If `distribution` is a `CompositeTensor`, then the resulting `Masked` ' 'instance is a `CompositeTensor` as well. Otherwise, a ' 'non-`CompositeTensor` `_Masked` instance is created instead. Distribution ' 'subclasses that inherit from `Masked` will also inherit from ' '`CompositeTensor`.') @kullback_leibler.RegisterKL(_Masked, _Masked) def _kl_masked_masked(a, b, name=None): """KL divergence between Masked distributions.""" with tf.name_scope(name or 'kl_masked_masked'): a_valid = tf.convert_to_tensor(a.validity_mask) b_valid = tf.convert_to_tensor(b.validity_mask) underlying_kl = kullback_leibler.kl_divergence( a.distribution, b.distribution) # The treatment for KL is as follows: # When both random variables are valid, the underlying KL applies. # When neither random variable is valid, the KL is 0., i.e. # `a log a - a log b = 0` because log a and log b are everywhere 0. # When exactly one is valid, we (a) raise an assertion error, if either # distribution's allow_nan_stats is set to False, or (b) return nan in # such positions. asserts = [] if not (a.allow_nan_stats and b.allow_nan_stats): asserts.append(assert_util.assert_equal( a_valid, b_valid, message='KL is only valid for matching mask values')) with tf.control_dependencies(asserts): both_valid = (a_valid & b_valid) neither_valid = (~a_valid) & (~b_valid) dtype = underlying_kl.dtype return tf.where(both_valid, underlying_kl, tf.where(neither_valid, tf.zeros([], dtype), float('nan'))) @log_prob_ratio.RegisterLogProbRatio(_Masked) def _masked_log_prob_ratio(p, x, q, y, name=None): """Computes log p(x) - log q(y) for Masked p, q.""" with tf.name_scope(name or 'masked_log_prob_ratio'): p_valid = tf.convert_to_tensor(p.validity_mask) safe_x = tf.where(_add_event_dims_to_mask(p_valid, dist=p), x, tf.stop_gradient(p.safe_sample_fn(p.distribution))) q_valid = tf.convert_to_tensor(q.validity_mask) safe_y = tf.where(_add_event_dims_to_mask(q_valid, dist=q), y, tf.stop_gradient(q.safe_sample_fn(q.distribution))) underlying = log_prob_ratio.log_prob_ratio( p.distribution, safe_x, q.distribution, safe_y) asserts = [] # As with KL, we return the underlying log_prob_ratio where both are valid, # `0.` where neither is valid, and `nan` otherwise (or an assertion if # either distribution does not `allow_nan_stats`). if not (p.allow_nan_stats and p.allow_nan_stats): asserts.append(assert_util.assert_equal( p_valid, q_valid, message='Masked log_prob_ratio only valid for matching mask values')) with tf.control_dependencies(asserts): both_valid = (p_valid & q_valid) neither_valid = (~p_valid) & (~q_valid) return tf.where(both_valid, underlying, tf.where(neither_valid, tf.zeros([], dtype=underlying.dtype), float('nan'))) class _NonCompositeTensorMaskedBijector(bijector_lib.Bijector): """Event space bijector for Masked distributions.""" def __init__(self, masked, underlying_bijector): self._masked = masked self._bijector = underlying_bijector super(_NonCompositeTensorMaskedBijector, self).__init__( validate_args=underlying_bijector.validate_args, dtype=underlying_bijector.dtype, forward_min_event_ndims=underlying_bijector.forward_min_event_ndims, inverse_min_event_ndims=underlying_bijector.inverse_min_event_ndims) def _forward_event_shape(self, x): return self._bijector.forward_event_shape(x) def _forward_event_shape_tensor(self, x): return self._bijector.forward_event_shape_tensor(x) def _inverse_event_shape(self, y): return self._bijector.inverse_event_shape(y) def _inverse_event_shape_tensor(self, y): return self._bijector.inverse_event_shape_tensor(y) def _make_safe_x(self, x, validity_mask): bij = self._bijector masked = self._masked pullback_event_ndims = ps.rank_from_shape( lambda: bij.inverse_event_shape_tensor(masked.event_shape_tensor()), self._bijector.inverse_event_shape(masked.event_shape)) pullback_event_mask = _add_event_dims_to_mask( validity_mask, event_ndims=pullback_event_ndims) # We presume that 0 in unconstrained space is safe. return tf.where(pullback_event_mask, x, 0.) def _forward(self, x): mask = self._masked.validity_mask safe_x = self._make_safe_x(x, mask) return self._make_safe_y(self._bijector.forward(safe_x), mask) def _forward_log_det_jacobian(self, x): validity_mask = tf.convert_to_tensor(self._masked.validity_mask) safe_x = self._make_safe_x(x, validity_mask) return tf.where(validity_mask, self._bijector.forward_log_det_jacobian(safe_x), 0.) def _make_safe_y(self, y, validity_mask): safe_val = tf.stop_gradient( self._masked.safe_sample_fn(self._masked.distribution)) event_mask = _add_event_dims_to_mask(validity_mask, dist=self._masked) return tf.where(event_mask, y, safe_val) def _inverse(self, y): safe_y = self._make_safe_y(y, self._masked.validity_mask) return self._bijector.inverse(safe_y) def _inverse_log_det_jacobian(self, y): validity_mask = tf.convert_to_tensor(self._masked.validity_mask) safe_y = self._make_safe_y(y, validity_mask) return tf.where(validity_mask, self._bijector.inverse_log_det_jacobian(safe_y), 0.) class _MaskedBijector(_NonCompositeTensorMaskedBijector, bijector_lib.AutoCompositeTensorBijector): """Event space bijector for Masked distributions.""" def __new__(cls, *args, **kwargs): """Maybe return a `_NonCompositeTensorMaskedBijector`.""" if cls is _MaskedBijector: if args: masked = args[0] else: masked = kwargs.get('masked') if len(args) > 1: bijector = args[1] else: bijector = kwargs.get('underlying_bijector') if not (isinstance(masked, tf.__internal__.CompositeTensor) and isinstance(bijector, tf.__internal__.CompositeTensor)): return _NonCompositeTensorMaskedBijector(*args, **kwargs) return super(_MaskedBijector, cls).__new__(cls)
41.719149
88
0.708588
0ba40d41d92725b5dfdbb5f9f2d17cf5f19f4b7f
2,797
py
Python
tests/bel.py
dahlia/hangulize
903e07cb587670f80020818f5c384ceca29ed67b
[ "BSD-3-Clause" ]
1
2020-10-18T20:28:54.000Z
2020-10-18T20:28:54.000Z
tests/bel.py
dahlia/hangulize
903e07cb587670f80020818f5c384ceca29ed67b
[ "BSD-3-Clause" ]
null
null
null
tests/bel.py
dahlia/hangulize
903e07cb587670f80020818f5c384ceca29ed67b
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from tests import HangulizeTestCase from hangulize.langs.bel import Belarusian class BelarusianTestCase(HangulizeTestCase): lang = Belarusian() def test_people(self): self.assert_examples({ u'Аляксей Абалмасаў': u'알략세이 아발마사우', u'Вікторыя Азарэнка': u'빅토리야 아자렌카', u'Святлана Алексіевіч': u'스뱌틀라나 알렉시예비치', u'Францішак Аляхновіч': u'프란치샤크 알랴흐노비치', u'Андрэй Арамнаў': u'안드레이 아람나우', u'Алег Ахрэм': u'알레크 아흐렘', u'Максім Багдановіч': u'막심 바흐다노비치', u'Святлана Багінская': u'스뱌틀라나 바힌스카야', u'Францішак Багушэвіч': u'프란치샤크 바후셰비치', u'Сымон Будны': u'시몬 부드니', u'Аляксандр Глеб': u'알략산드르 흘레프', u'Яўген Глебаў': u'야우헨 흘레바우', u'Аляксей Грышын': u'알략세이 흐리신', u'Вінцэнт Дунін-Марцінкевіч': u'빈첸트 두닌마르친케비치', u'Ефрасіння Полацкая': u'예프라신냐 폴라츠카야', u'Кастусь Каліноўскі': u'카스투스 칼리노우스키', u'Кацярына Карстэн': u'카차리나 카르스텐', u'Якуб Колас': u'야쿠프 콜라스', u'Янка Купала': u'얀카 쿠팔라', u'Вацлаў Ластоўскі': u'바츨라우 라스토우스키', u'Аляксандр Лукашэнка': u'알략산드르 루카셴카', u'Ігар Лучанок': u'이하르 루차노크', u'Вадзім Махнеў': u'바짐 마흐네우', u'Юлія Несцярэнка': u'율리야 네스차렌카', u'Аляксандр Патупа': u'알략산드르 파투파', u'Іпаці Пацей': u'이파치 파체이', u'Алаіза Пашкевіч': u'알라이자 파슈케비치', u'Наталля Пяткевіч': u'나탈랴 퍄트케비치', u'Радзівіл': u'라지빌', u'Максім Рамашчанка': u'막심 라마샨카', u'Міхаіл Савіцкі': u'미하일 사비츠키', u'Леў Сапега': u'레우 사페하', u'Ян Серада': u'얀 세라다', u'Францыск Скарына': u'프란치스크 스카리나', u'Раман Скірмунт': u'라만 스키르문트', u'Мялецій Сматрыцкі': u'먈레치 스마트리츠키', u'Ян Станкевіч': u'얀 스탄케비치', u'Фёдар Сумкін': u'표다르 숨킨', u'Браніслаў Тарашкевіч': u'브라니슬라우 타라슈케비치', u'Віктар Тураў': u'빅타르 투라우', u'Мікалай Улашчык': u'미칼라이 울라시크', u'Фёдар Фёдараў': u'표다르 표다라우', u'Ян Чачот': u'얀 차초트', }) def test_places(self): self.assert_examples({ u'Бабруйск': u'바브루이스크', u'Баранавічы': u'바라나비치', u'Белавежская пушча': u'벨라베슈스카야 푸샤', u'Беларусь': u'벨라루스', u'Брэст': u'브레스트', u'Віцебск': u'비쳅스크', u'Гомель': u'호멜', u'Гродна': u'흐로드나', u'Камянец': u'카먀네츠', u'Магілёў': u'마힐료우', u'Мінск': u'민스크', u'Мір': u'미르', u'Мураванка': u'무라반카', u'Нясвіж': u'냐스비시', u'Полацк': u'폴라츠크', u'Сынкавічы': u'신카비치', })
37.293333
58
0.508759
d41e0912749c613a036317fd354ba93582c1bd0a
738
py
Python
value_investing/filter_results.py
bfan1256/fundamental-analysis-algorithms
96b41d46eb40124d0b2d74bd3f51b3b431e50be3
[ "Apache-2.0" ]
null
null
null
value_investing/filter_results.py
bfan1256/fundamental-analysis-algorithms
96b41d46eb40124d0b2d74bd3f51b3b431e50be3
[ "Apache-2.0" ]
null
null
null
value_investing/filter_results.py
bfan1256/fundamental-analysis-algorithms
96b41d46eb40124d0b2d74bd3f51b3b431e50be3
[ "Apache-2.0" ]
null
null
null
import csv with open('undervalued_good_buys.csv') as f: reader = csv.reader(f) data = [] for row in reader: data.append(row) data = data[1:] filtered_data = [] for row in data: if float(row[1]) <= 6 and float(row[-3]) < 1: filtered_data.append(row) final_data = [] for row in filtered_data: new_row = [row[0]] for value in row[1:]: value = float(value) new_row.append(round(value, 3)) final_data.append(new_row) with open('./final_data/undervalued_good_buys_filtered.csv', 'w') as f: writer = csv.writer(f) writer.writerow(['Symbol', 'Final Weighted Rating', 'DCF/P', 'PEG', 'Dividend Payout Ratio', 'P/FV', 'Unweighted Rating']) writer.writerows(final_data)
28.384615
126
0.636856
52c92dd011d770faa0b895db9b1fe44cd7a83c30
58
py
Python
api.py
ioggstream/rest-samples
03c9e524ea2dca7d56fcfdc134f285c118151d32
[ "MIT" ]
null
null
null
api.py
ioggstream/rest-samples
03c9e524ea2dca7d56fcfdc134f285c118151d32
[ "MIT" ]
null
null
null
api.py
ioggstream/rest-samples
03c9e524ea2dca7d56fcfdc134f285c118151d32
[ "MIT" ]
null
null
null
def ping(*args, **kwargs): return {"ciao": "belli"}
11.6
28
0.551724
fec50492c14d8a387b445f6ae03e433ec3d3116d
11,002
py
Python
hmtl/dataset_readers/coref_conll.py
rahular/joint-coref-srl
cd85fb4e11af1a1ea400ed657d0a4511c1d6c6be
[ "MIT" ]
null
null
null
hmtl/dataset_readers/coref_conll.py
rahular/joint-coref-srl
cd85fb4e11af1a1ea400ed657d0a4511c1d6c6be
[ "MIT" ]
null
null
null
hmtl/dataset_readers/coref_conll.py
rahular/joint-coref-srl
cd85fb4e11af1a1ea400ed657d0a4511c1d6c6be
[ "MIT" ]
null
null
null
import sys import logging import collections from typing import Any, Dict, List, Optional, Tuple, DefaultDict, Set from overrides import overrides from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import ( Field, ListField, TextField, SpanField, MetadataField, SequenceLabelField, ) from allennlp.data.instance import Instance from allennlp.data.tokenizers import Token, PretrainedTransformerTokenizer from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.dataset_readers.dataset_utils import Ontonotes, enumerate_spans logger = logging.getLogger(__name__) def canonicalize_clusters( clusters: DefaultDict[int, List[Tuple[int, int]]] ) -> List[List[Tuple[int, int]]]: """ The CONLL 2012 data includes 2 annotated spans which are identical, but have different ids. This checks all clusters for spans which are identical, and if it finds any, merges the clusters containing the identical spans. """ merged_clusters: List[Set[Tuple[int, int]]] = [] for cluster in clusters.values(): cluster_with_overlapping_mention = None for mention in cluster: # Look at clusters we have already processed to # see if they contain a mention in the current # cluster for comparison. for cluster2 in merged_clusters: if mention in cluster2: # first cluster in merged clusters # which contains this mention. cluster_with_overlapping_mention = cluster2 break # Already encountered overlap - no need to keep looking. if cluster_with_overlapping_mention is not None: break if cluster_with_overlapping_mention is not None: # Merge cluster we are currently processing into # the cluster in the processed list. cluster_with_overlapping_mention.update(cluster) else: merged_clusters.append(set(cluster)) return [list(c) for c in merged_clusters] @DatasetReader.register("coref_conll") class CorefConllReader(DatasetReader): """ Reads a single CoNLL-formatted file. This is the same file format as used in the :class:`~allennlp.data.dataset_readers.semantic_role_labelling.SrlReader`, but is preprocessed to dump all documents into a single file per train, dev and test split. See scripts/compile_coref_data.sh for more details of how to pre-process the Ontonotes 5.0 data into the correct format. Returns a `Dataset` where the `Instances` have four fields : `text`, a `TextField` containing the full document text, `spans`, a `ListField[SpanField]` of inclusive start and end indices for span candidates, and `metadata`, a `MetadataField` that stores the instance's original text. For data with gold cluster labels, we also include the original `clusters` (a list of list of index pairs) and a `SequenceLabelField` of cluster ids for every span candidate. # Parameters max_span_width : `int`, required. The maximum width of candidate spans to consider. token_indexers : `Dict[str, TokenIndexer]`, optional This is used to index the words in the document. See :class:`TokenIndexer`. Default is `{"tokens": SingleIdTokenIndexer()}`. wordpiece_modeling_tokenizer: `PretrainedTransformerTokenizer`, optional (default = None) If not None, this dataset reader does subword tokenization using the supplied tokenizer and distribute the labels to the resulting wordpieces. All the modeling will be based on wordpieces. If this is set to `False` (default), the user is expected to use `PretrainedTransformerMismatchedIndexer` and `PretrainedTransformerMismatchedEmbedder`, and the modeling will be on the word-level. """ def __init__( self, max_span_width: int, token_indexers: Dict[str, TokenIndexer] = None, wordpiece_modeling_tokenizer: Optional[PretrainedTransformerTokenizer] = None, subset_size: int = sys.maxsize, **kwargs, ) -> None: super().__init__(**kwargs) self._max_span_width = max_span_width self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self._wordpiece_modeling_tokenizer = wordpiece_modeling_tokenizer self._to_yield = subset_size @overrides def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) ontonotes_reader = Ontonotes() for sentences in ontonotes_reader.dataset_document_iterator(file_path): clusters: DefaultDict[int, List[Tuple[int, int]]] = collections.defaultdict( list ) if self._to_yield == 0: break total_tokens = 0 for sentence in sentences: for typed_span in sentence.coref_spans: # Coref annotations are on a _per sentence_ # basis, so we need to adjust them to be relative # to the length of the document. span_id, (start, end) = typed_span clusters[span_id].append((start + total_tokens, end + total_tokens)) total_tokens += len(sentence.words) canonical_clusters = canonicalize_clusters(clusters) yield self.text_to_instance( [s.words for s in sentences], canonical_clusters ) self._to_yield -= 1 @overrides def text_to_instance( self, # type: ignore sentences: List[List[str]], gold_clusters: Optional[List[List[Tuple[int, int]]]] = None, ) -> Instance: """ # Parameters sentences : `List[List[str]]`, required. A list of lists representing the tokenised words and sentences in the document. gold_clusters : `Optional[List[List[Tuple[int, int]]]]`, optional (default = None) A list of all clusters in the document, represented as word spans. Each cluster contains some number of spans, which can be nested and overlap, but will never exactly match between clusters. # Returns An `Instance` containing the following `Fields`: text : `TextField` The text of the full document. spans : `ListField[SpanField]` A ListField containing the spans represented as `SpanFields` with respect to the document text. span_labels : `SequenceLabelField`, optional The id of the cluster which each possible span belongs to, or -1 if it does not belong to a cluster. As these labels have variable length (it depends on how many spans we are considering), we represent this a as a `SequenceLabelField` with respect to the `spans `ListField`. """ flattened_sentences = [ self._normalize_word(word) for sentence in sentences for word in sentence ] if self._wordpiece_modeling_tokenizer is not None: ( flat_sentences_tokens, offsets, ) = self._wordpiece_modeling_tokenizer.intra_word_tokenize( flattened_sentences ) flattened_sentences = [t.text for t in flat_sentences_tokens] else: flat_sentences_tokens = [Token(word) for word in flattened_sentences] text_field = TextField(flat_sentences_tokens, self._token_indexers) cluster_dict = {} if gold_clusters is not None: if self._wordpiece_modeling_tokenizer is not None: for cluster in gold_clusters: for mention_id, mention in enumerate(cluster): start = offsets[mention[0]][0] end = offsets[mention[1]][1] cluster[mention_id] = (start, end) for cluster_id, cluster in enumerate(gold_clusters): for mention in cluster: cluster_dict[tuple(mention)] = cluster_id spans: List[Field] = [] span_labels: Optional[List[int]] = [] if gold_clusters is not None else None sentence_offset = 0 for sentence in sentences: for start, end in enumerate_spans( sentence, offset=sentence_offset, max_span_width=self._max_span_width ): if self._wordpiece_modeling_tokenizer is not None: start = offsets[start][0] end = offsets[end][1] # `enumerate_spans` uses word-level width limit; here we apply it to wordpieces # We have to do this check here because we use a span width embedding that has # only `self._max_span_width` entries, and since we are doing wordpiece # modeling, the span width embedding operates on wordpiece lengths. So a check # here is necessary or else we wouldn't know how many entries there would be. if end - start + 1 > self._max_span_width: continue # We also don't generate spans that contain special tokens if ( start < self._wordpiece_modeling_tokenizer.num_added_start_tokens ): continue if ( end >= len(flat_sentences_tokens) - self._wordpiece_modeling_tokenizer.num_added_end_tokens ): continue if span_labels is not None: if (start, end) in cluster_dict: span_labels.append(cluster_dict[(start, end)]) else: span_labels.append(-1) spans.append(SpanField(start, end, text_field)) sentence_offset += len(sentence) span_field = ListField(spans) metadata: Dict[str, Any] = {"original_text": flattened_sentences} if gold_clusters is not None: metadata["clusters"] = gold_clusters metadata_field = MetadataField(metadata) fields: Dict[str, Field] = { "text": text_field, "spans": span_field, "metadata": metadata_field, } if span_labels is not None: fields["span_labels"] = SequenceLabelField(span_labels, span_field) return Instance(fields) @staticmethod def _normalize_word(word): if word in ("/.", "/?"): return word[1:] else: return word
43.65873
99
0.62225
3a313c3f567495cb262c97605f26e3a1118f04a8
7,275
py
Python
server.py
alexvbogdan/Assistant-for-People-with-Low-Vision
2c8d60a857a63ce516f33263e61313a3bad0695f
[ "MIT" ]
1
2020-08-21T07:35:54.000Z
2020-08-21T07:35:54.000Z
server.py
alexvbogdan/Assistant-for-People-with-Low-Vision
2c8d60a857a63ce516f33263e61313a3bad0695f
[ "MIT" ]
null
null
null
server.py
alexvbogdan/Assistant-for-People-with-Low-Vision
2c8d60a857a63ce516f33263e61313a3bad0695f
[ "MIT" ]
null
null
null
from __future__ import print_function from flask import Flask, request, redirect, url_for, jsonify, send_from_directory from time import time import time import numpy as np import hashlib import os import sys sys.path.append("./questionAnswering") # path to question answering module from QuestionAnswering import QuestionAnswering from im2txt.imgCaptioning import imgCap from recognition.recognition import FaceRecognition from emotion.tf_emotion_class import EmotionPredictor from detection.Detectface import DetectFaceClass from LSTM.lstm import SentencePredictor from menu_recognition.menu_recog import ReadText import cv2 VIZ_FOLDER = './viz/' UPLOAD_FOLDER = './uploads/' ALLOWED_EXTENSIONS = set(['jpg', 'jpeg', 'JPG', 'JPEG', 'png', 'PNG']) # global variables app = Flask(__name__, static_url_path='') app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER im2txt = None questionAnswering = None recognizer = None faceDetector = None emotionDetector = None sentencePredictor = None textReader = None feature_cache = {} def format_image(image, face): image = image[face[1]:face[3], face[0]:face[2]] return image # helpers def setup(): global im2txt global questionAnswering global recognizer global faceDetector global emotionDetector global sentencePredictor global textReader # uploads if not os.path.exists(UPLOAD_FOLDER): os.makedirs(UPLOAD_FOLDER) if not os.path.exists(VIZ_FOLDER): os.makedirs(VIZ_FOLDER) emotionDetector = EmotionPredictor() faceDetector = DetectFaceClass(1, '/home/richard/Desktop/emotion-recognition-neural-networks-master/detection/mxnet-face-fr50', 0, 0.3, 0.001, 600, 1000) im2txt = imgCap() sentencePredictor = SentencePredictor() questionAnswering = QuestionAnswering() textReader = ReadText() recognizer = FaceRecognition(1.0, faceDetector) def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS # routes @app.route('/', methods=['GET']) def index(): return app.send_static_file('demo2.html') @app.route('/api/upload_all', methods=['POST']) def upload_all(): tick = time.clock() file = request.files['image'] if not file: return jsonify({'error': 'No file was uploaded.'}) if not allowed_file(file.filename): return jsonify({'error': 'Please upload a JPG or PNG.'}) if request.form['request'] == "": return jsonify({'answer': "Please, ask a question!"}) file_hash = hashlib.md5(file.read()).hexdigest() save_path = os.path.join(app.config['UPLOAD_FOLDER'], file_hash + '.jpg') file.seek(0) file.save(save_path) print("file:") print(save_path) question = request.form['request'] lst = question.split() lst[0] = lst[0][0].upper() + lst[0][1:] question = " ".join(lst) result = np.squeeze(sentencePredictor.predict(question)) maxval = 0 idx = 0 for i in range(len(result)): print(result[i]) if result[i] > maxval: maxval = result[i] idx = i # handle image first print("question:") print(question) print( str(idx) + "th NETWORK") name = question[:question.find(" ")] print(name) if (name == 'name' or name == 'Name'): print("adding person") name = question[question.find(" ") + 1:] Image = cv2.imread(save_path) answer = recognizer.add(Image, name, file_hash + '.jpg') if answer != "success": print("could not save person " + name + ", because: " + answer) return jsonify({'answer': answer}) # img captioning if idx == 0: answer = im2txt.feed_image(save_path) tock = time.clock() print(str(tock - tick) + "time used for iamge captioning") return jsonify({'answer': answer}) # face if (idx == 3): try: print("path = " + save_path) answer = "" Image = cv2.imread(save_path) people = recognizer.recognize(Image) if len(people) == 0: answer = "I don't see anyone here!" elif (len(people) == 1): if people[0] == "I don't know :(": answer = "I don't know :(" else: answer = "It is " + people[0] else: known_people = "" unknow_people = 0 for person in people: if person == "I don't know :(": unknow_people += 1 else: if known_people == "": known_people = person else: known_people = known_people + ", " + person if known_people == "": answer = "There are " + str(unknow_people) + " people. I don't know anyone here." else: answer = "There are " + known_people if unknow_people > 0: answer = answer + ". There are " + str(unknow_people) + " people, which I don't know." except: tock = time.clock() print(str(tock - tick) + "time used for face") return jsonify({'answer': "I don't see anyone here!"}) tock = time.clock() print(str(tock - tick) + "time used for face") return jsonify({'answer': answer}) # emotion if (idx == 2): img = cv2.imread(save_path) faces = faceDetector.detect_Face(img) if len(faces) == 0: answer = "There are no people here!" return jsonify({'answer': answer}) else: answer = [] for face in faces: answer.append(emotionDetector.predict(img, face)) tock = time.clock() print(str(tock - tick) + "time used for emotion") print(answer) return jsonify({'answer': ",".join(answer)}) # question answering if idx == 1: feature = questionAnswering.img_handler(save_path) if feature is None: tock = time.clock() print(str(tock - tick) + "time used for qa") return jsonify({'error': 'Error reading image.'}) # image + question img_ques_hash = hashlib.md5(file_hash + question).hexdigest() json = questionAnswering.get_answers(question, feature, save_path, img_ques_hash, VIZ_FOLDER) tock = time.clock() print(str(tock - tick) + "time used for qa") return jsonify(json) # text if idx == 4: json = textReader.read(save_path) print(type(json)) if json == '': tock = time.clock() print(str(tock - tick) + "time used for text") return jsonify({'answer': "I don't see the text here!"}) tock = time.clock() print(str(tock - tick) + "time used for text") return jsonify({'answer':json}) else: tock = time.clock() print(str(tock - tick) + "time used for text") return jsonify({'answer':"Error text"}) if __name__ == '__main__': setup() app.run(host='0.0.0.0', port=5000, debug=False)
29.815574
157
0.581306
7f4b387e48575d16d887b7d9f601f06f4ea2b7b9
2,600
py
Python
clip_retrieval/clip_filter.py
techthiyanes/clip-retrieval
aa00e05704cc65e5fd91504216c6b6f3e991a0cc
[ "MIT" ]
201
2021-06-08T10:58:25.000Z
2022-03-29T21:23:44.000Z
clip_retrieval/clip_filter.py
techthiyanes/clip-retrieval
aa00e05704cc65e5fd91504216c6b6f3e991a0cc
[ "MIT" ]
88
2021-06-21T14:58:10.000Z
2022-03-24T10:20:32.000Z
clip_retrieval/clip_filter.py
techthiyanes/clip-retrieval
aa00e05704cc65e5fd91504216c6b6f3e991a0cc
[ "MIT" ]
25
2021-07-31T21:49:56.000Z
2022-03-23T17:54:02.000Z
"""clip filter is a tool to use a knn index and a image/text collection to extract interesting subsets""" import fire def clip_filter(query, output_folder, indice_folder, num_results=100, threshold=None): """Entry point of clip filter""" import faiss # pylint: disable=import-outside-toplevel import torch # pylint: disable=import-outside-toplevel import os # pylint: disable=import-outside-toplevel import shutil # pylint: disable=import-outside-toplevel from pathlib import Path # pylint: disable=import-outside-toplevel import pandas as pd # pylint: disable=import-outside-toplevel import clip # pylint: disable=import-outside-toplevel device = "cuda" if torch.cuda.is_available() else "cpu" model, _ = clip.load("ViT-B/32", device=device, jit=False) data_dir = Path(indice_folder + "/metadata") df = pd.concat(pd.read_parquet(parquet_file) for parquet_file in sorted(data_dir.glob("*.parquet"))) url_list = None if "url" in df: url_list = df["url"].tolist() image_list = df["image_path"].tolist() image_index = faiss.read_index(indice_folder + "/image.index") indices_loaded = { "image_list": image_list, "image_index": image_index, } text_input = query image_index = indices_loaded["image_index"] image_list = indices_loaded["image_list"] if not os.path.exists(output_folder): os.mkdir(output_folder) text = clip.tokenize([text_input]).to(device) text_features = model.encode_text(text) text_features /= text_features.norm(dim=-1, keepdim=True) query = text_features.cpu().detach().numpy().astype("float32") index = image_index if threshold is not None: _, d, i = index.range_search(query, threshold) print(f"Found {i.shape} items with query '{text_input}' and threshold {threshold}") else: d, i = index.search(query, num_results) print(f"Found {num_results} items with query '{text_input}'") i = i[0] d = d[0] min_d = min(d) max_d = max(d) print(f"The minimum distance is {min_d:.2f} and the maximum is {max_d:.2f}") print( "You may want to use these numbers to increase your --num_results parameter. Or use the --threshold parameter." ) print(f"Copying the images in {output_folder}") for _, ei in zip(d, i): path = image_list[ei] if os.path.exists(path): shutil.copy(path, output_folder) if url_list is not None: print(url_list[ei]) if __name__ == "__main__": fire.Fire(clip_filter)
34.210526
119
0.666154
8aac816e61445226ff66ccdfbe8f17dd2e061801
8,404
py
Python
tests/syntax/test_specifiers.py
HaoranBai17/Scenic
65372e488ec9323e550ccc1f157369aad88ad94d
[ "BSD-3-Clause" ]
1
2019-06-14T21:04:37.000Z
2019-06-14T21:04:37.000Z
tests/syntax/test_specifiers.py
yuul/Scenic
66fbf7aa67e649cf2379ee6e4d4273ff4980c04c
[ "BSD-3-Clause" ]
null
null
null
tests/syntax/test_specifiers.py
yuul/Scenic
66fbf7aa67e649cf2379ee6e4d4273ff4980c04c
[ "BSD-3-Clause" ]
2
2020-01-02T12:37:46.000Z
2020-07-30T02:02:01.000Z
import math import pytest from scenic.syntax.translator import InterpreterParseError, InvalidScenarioError from scenic.core.vectors import Vector from tests.utils import compileScenic, sampleEgoFrom ## Dependencies and lazy evaluation def test_double_specification(): with pytest.raises(InterpreterParseError): compileScenic('ego = Object at 0 @ 0, at 1 @ 1') def test_cyclic_dependency(): with pytest.raises(InterpreterParseError): compileScenic('ego = Object left of 0 @ 0, facing toward 1 @ 1') def test_lazy_cyclic_dependency(): with pytest.raises(InterpreterParseError): compileScenic( 'vf = VectorField("Foo", lambda pos: 3 * pos.x)\n' 'ego = Object at 0 @ (0 relative to vf)' ) def test_default_dependency(): ego = sampleEgoFrom('ego = Object facing toward -1 @ 1') assert tuple(ego.position) == (0, 0) assert ego.heading == pytest.approx(math.radians(45)) def test_missing_dependency(): with pytest.raises(InterpreterParseError): compileScenic('Point left of 0 @ 0 by 5\n' 'ego = Object') def test_lazy_value_in_param(): with pytest.raises(InvalidScenarioError): compileScenic( 'vf = VectorField("Foo", lambda pos: 3 * pos.x)\n' 'param X = 0 relative to vf\n' 'ego = Object\n' ) def test_lazy_value_in_requirement(): # Case where we can statically detect the use of a lazy value with pytest.raises(InvalidScenarioError): compileScenic( 'vf = VectorField("Foo", lambda pos: 3 * pos.x)\n' 'x = 0 relative to vf\n' 'require x >= 0\n' 'ego = Object\n' ) def test_lazy_value_in_requirement_2(): # Case where the lazy value is detected during requirement evaluation scenario = compileScenic( 'vf = VectorField("Foo", lambda pos: 3 * pos.x)\n' 'require 0 relative to vf\n' 'ego = Object\n' ) with pytest.raises(InterpreterParseError): scenario.generate(maxIterations=1) ## Generic specifiers def test_with(): ego = sampleEgoFrom('ego = Object with flubber 37') assert ego.flubber == 37 ## Position specifiers def test_at(): ego = sampleEgoFrom('ego = Object at 149 @ 42') assert tuple(ego.position) == pytest.approx((149, 42)) def test_offset_by(): ego = sampleEgoFrom( 'ego = Object at 10 @ 40, facing 90 deg\n' 'ego = Object offset by 5 @ 15' ) assert tuple(ego.position) == pytest.approx((-5, 45)) def test_offset_by_no_ego(): with pytest.raises(InterpreterParseError): compileScenic('ego = Object offset by 10 @ 40') def test_offset_along(): ego = sampleEgoFrom( 'ego = Object at 10 @ 40\n' 'ego = Object offset along -90 deg by -10 @ 5' ) assert tuple(ego.position) == pytest.approx((15, 50)) def test_offset_along_no_ego(): with pytest.raises(InterpreterParseError): compileScenic('ego = Object offset along 0 by 10 @ 0') def test_left_of_vector(): ego = sampleEgoFrom('ego = Object left of 10 @ 20, facing 90 deg') assert tuple(ego.position) == pytest.approx((10, 19.5)) ego = sampleEgoFrom('ego = Object left of 10 @ 20, with width 10') assert tuple(ego.position) == pytest.approx((5, 20)) def test_left_of_vector_by(): ego = sampleEgoFrom('ego = Object left of 10 @ 20 by 20') assert tuple(ego.position) == pytest.approx((-10.5, 20)) ego = sampleEgoFrom('ego = Object left of 10 @ 20 by 20 @ 5') assert tuple(ego.position) == pytest.approx((-10.5, 25)) def test_right_of_vector(): ego = sampleEgoFrom('ego = Object right of 10 @ 20, facing 90 deg') assert tuple(ego.position) == pytest.approx((10, 20.5)) ego = sampleEgoFrom('ego = Object right of 10 @ 20, with width 10') assert tuple(ego.position) == pytest.approx((15, 20)) def test_right_of_vector_by(): ego = sampleEgoFrom('ego = Object right of 10 @ 20 by 20') assert tuple(ego.position) == pytest.approx((30.5, 20)) ego = sampleEgoFrom('ego = Object right of 10 @ 20 by 20 @ 5') assert tuple(ego.position) == pytest.approx((30.5, 25)) def test_ahead_of_vector(): ego = sampleEgoFrom('ego = Object ahead of 10 @ 20, facing 90 deg') assert tuple(ego.position) == pytest.approx((9.5, 20)) ego = sampleEgoFrom('ego = Object ahead of 10 @ 20, with height 10') assert tuple(ego.position) == pytest.approx((10, 25)) def test_ahead_of_vector_by(): ego = sampleEgoFrom('ego = Object ahead of 10 @ 20 by 20') assert tuple(ego.position) == pytest.approx((10, 40.5)) ego = sampleEgoFrom('ego = Object ahead of 10 @ 20 by 20 @ 5') assert tuple(ego.position) == pytest.approx((30, 25.5)) def test_behind_vector(): ego = sampleEgoFrom('ego = Object behind 10 @ 20, facing 90 deg') assert tuple(ego.position) == pytest.approx((10.5, 20)) ego = sampleEgoFrom('ego = Object behind 10 @ 20, with height 10') assert tuple(ego.position) == pytest.approx((10, 15)) def test_behind_vector_by(): ego = sampleEgoFrom('ego = Object behind 10 @ 20 by 20') assert tuple(ego.position) == pytest.approx((10, -0.5)) ego = sampleEgoFrom('ego = Object behind 10 @ 20 by 20 @ 5') assert tuple(ego.position) == pytest.approx((30, 14.5)) def test_beyond(): ego = sampleEgoFrom( 'ego = Object at 10 @ 5\n' 'ego = Object beyond 4 @ 13 by 5' ) assert tuple(ego.position) == pytest.approx((1, 17)) ego = sampleEgoFrom( 'ego = Object at 10 @ 5\n' 'ego = Object beyond 4 @ 13 by 10 @ 5' ) assert tuple(ego.position) == pytest.approx((9, 23)) def test_beyond_no_ego(): with pytest.raises(InterpreterParseError): compileScenic('ego = Object beyond 10 @ 10 by 5') def test_beyond_from(): ego = sampleEgoFrom('ego = Object beyond 5 @ 0 by 20 from 5 @ 10') assert tuple(ego.position) == pytest.approx((5, -20)) ego = sampleEgoFrom('ego = Object beyond 5 @ 0 by 15 @ 20 from 5 @ 10') assert tuple(ego.position) == pytest.approx((-10, -20)) def test_visible(): scenario = compileScenic( 'ego = Object at 100 @ 200, facing -45 deg,\n' ' with visibleDistance 10, with viewAngle 90 deg\n' 'ego = Object visible' ) for i in range(30): scene, iterations = scenario.generate(maxIterations=50) ego, base = scene.objects assert ego.position.distanceTo(base.position) <= 10 assert ego.position.x >= base.position.x assert ego.position.y >= base.position.y def test_visible_no_ego(): with pytest.raises(InterpreterParseError): compileScenic('ego = Object visible') def test_visible_from_point(): scenario = compileScenic( 'x = Point at 300@200, with visibleDistance 2\n' 'ego = Object visible from x' ) for i in range(30): scene, iterations = scenario.generate(maxIterations=1) assert scene.egoObject.position.distanceTo(Vector(300, 200)) <= 2 def test_visible_from_oriented_point(): scenario = compileScenic( 'op = OrientedPoint at 100 @ 200, facing 45 deg,\n' ' with visibleDistance 5, with viewAngle 90 deg\n' 'ego = Object visible from op' ) base = Vector(100, 200) for i in range(30): scene, iterations = scenario.generate(maxIterations=1) pos = scene.egoObject.position assert pos.distanceTo(base) <= 5 assert pos.x <= base.x assert pos.y >= base.y ## Position specifiers optionally specifying heading def test_in(): scenario = compileScenic( 'r = RectangularRegion(100 @ 200, 90 deg, 50, 10)\n' 'ego = Object in r' ) for i in range(30): scene, iterations = scenario.generate(maxIterations=1) pos = scene.egoObject.position assert 95 <= pos.x <= 105 assert 150 <= pos.y <= 250 assert scene.egoObject.heading == 0 def test_in_heading(): scenario = compileScenic( 'r = PolylineRegion([50 @ -50, -20 @ 20])\n' 'ego = Object on r' ) for i in range(30): scene, iterations = scenario.generate(maxIterations=1) pos = scene.egoObject.position assert -20 <= pos.x <= 50 assert -50 <= pos.y <= 50 assert pos.x == pytest.approx(-pos.y) assert scene.egoObject.heading == pytest.approx(math.radians(45))
36.06867
80
0.639457
9706a8a0cfe6e79d68086c481e13af8756c61d91
47,453
py
Python
Lib/distutils/ccompiler.py
gerph/cpython
98813cb03c2371789669c3d8debf8fca2a344de9
[ "CNRI-Python-GPL-Compatible" ]
5
2020-01-25T19:30:31.000Z
2021-03-05T20:34:57.000Z
Lib/distutils/ccompiler.py
gerph/cpython
98813cb03c2371789669c3d8debf8fca2a344de9
[ "CNRI-Python-GPL-Compatible" ]
18
2019-12-09T17:05:24.000Z
2021-06-09T15:19:49.000Z
Lib/distutils/ccompiler.py
gerph/cpython
98813cb03c2371789669c3d8debf8fca2a344de9
[ "CNRI-Python-GPL-Compatible" ]
3
2020-05-15T22:25:58.000Z
2021-03-05T20:35:00.000Z
"""distutils.ccompiler Contains CCompiler, an abstract base class that defines the interface for the Distutils compiler abstraction model.""" import sys, os, re from distutils.errors import * from distutils.spawn import spawn from distutils.file_util import move_file from distutils.dir_util import mkpath from distutils.dep_util import newer_pairwise, newer_group from distutils.util import split_quoted, execute from distutils import log class CCompiler: """Abstract base class to define the interface that must be implemented by real compiler classes. Also has some utility methods used by several compiler classes. The basic idea behind a compiler abstraction class is that each instance can be used for all the compile/link steps in building a single project. Thus, attributes common to all of those compile and link steps -- include directories, macros to define, libraries to link against, etc. -- are attributes of the compiler instance. To allow for variability in how individual files are treated, most of those attributes may be varied on a per-compilation or per-link basis. """ # 'compiler_type' is a class attribute that identifies this class. It # keeps code that wants to know what kind of compiler it's dealing with # from having to import all possible compiler classes just to do an # 'isinstance'. In concrete CCompiler subclasses, 'compiler_type' # should really, really be one of the keys of the 'compiler_class' # dictionary (see below -- used by the 'new_compiler()' factory # function) -- authors of new compiler interface classes are # responsible for updating 'compiler_class'! compiler_type = None # XXX things not handled by this compiler abstraction model: # * client can't provide additional options for a compiler, # e.g. warning, optimization, debugging flags. Perhaps this # should be the domain of concrete compiler abstraction classes # (UnixCCompiler, MSVCCompiler, etc.) -- or perhaps the base # class should have methods for the common ones. # * can't completely override the include or library searchg # path, ie. no "cc -I -Idir1 -Idir2" or "cc -L -Ldir1 -Ldir2". # I'm not sure how widely supported this is even by Unix # compilers, much less on other platforms. And I'm even less # sure how useful it is; maybe for cross-compiling, but # support for that is a ways off. (And anyways, cross # compilers probably have a dedicated binary with the # right paths compiled in. I hope.) # * can't do really freaky things with the library list/library # dirs, e.g. "-Ldir1 -lfoo -Ldir2 -lfoo" to link against # different versions of libfoo.a in different locations. I # think this is useless without the ability to null out the # library search path anyways. # Subclasses that rely on the standard filename generation methods # implemented below should override these; see the comment near # those methods ('object_filenames()' et. al.) for details: src_extensions = None # list of strings obj_extension = None # string static_lib_extension = None shared_lib_extension = None # string static_lib_format = None # format string shared_lib_format = None # prob. same as static_lib_format exe_extension = None # string # Default language settings. language_map is used to detect a source # file or Extension target language, checking source filenames. # language_order is used to detect the language precedence, when deciding # what language to use when mixing source types. For example, if some # extension has two files with ".c" extension, and one with ".cpp", it # is still linked as c++. language_map = {".c" : "c", ".cc" : "c++", ".cpp" : "c++", ".cxx" : "c++", ".m" : "objc", } language_order = ["c++", "objc", "c"] def __init__(self, verbose=0, dry_run=0, force=0): self.dry_run = dry_run self.force = force self.verbose = verbose # 'output_dir': a common output directory for object, library, # shared object, and shared library files self.output_dir = None # 'macros': a list of macro definitions (or undefinitions). A # macro definition is a 2-tuple (name, value), where the value is # either a string or None (no explicit value). A macro # undefinition is a 1-tuple (name,). self.macros = [] # 'include_dirs': a list of directories to search for include files self.include_dirs = [] # 'libraries': a list of libraries to include in any link # (library names, not filenames: eg. "foo" not "libfoo.a") self.libraries = [] # 'library_dirs': a list of directories to search for libraries self.library_dirs = [] # 'runtime_library_dirs': a list of directories to search for # shared libraries/objects at runtime self.runtime_library_dirs = [] # 'objects': a list of object files (or similar, such as explicitly # named library files) to include on any link self.objects = [] for key in self.executables.keys(): self.set_executable(key, self.executables[key]) def set_executables(self, **kwargs): """Define the executables (and options for them) that will be run to perform the various stages of compilation. The exact set of executables that may be specified here depends on the compiler class (via the 'executables' class attribute), but most will have: compiler the C/C++ compiler linker_so linker used to create shared objects and libraries linker_exe linker used to create binary executables archiver static library creator On platforms with a command-line (Unix, DOS/Windows), each of these is a string that will be split into executable name and (optional) list of arguments. (Splitting the string is done similarly to how Unix shells operate: words are delimited by spaces, but quotes and backslashes can override this. See 'distutils.util.split_quoted()'.) """ # Note that some CCompiler implementation classes will define class # attributes 'cpp', 'cc', etc. with hard-coded executable names; # this is appropriate when a compiler class is for exactly one # compiler/OS combination (eg. MSVCCompiler). Other compiler # classes (UnixCCompiler, in particular) are driven by information # discovered at run-time, since there are many different ways to do # basically the same things with Unix C compilers. for key in kwargs: if key not in self.executables: raise ValueError("unknown executable '%s' for class %s" % (key, self.__class__.__name__)) self.set_executable(key, kwargs[key]) def set_executable(self, key, value): if isinstance(value, str): setattr(self, key, split_quoted(value)) else: setattr(self, key, value) def _find_macro(self, name): i = 0 for defn in self.macros: if defn[0] == name: return i i += 1 return None def _check_macro_definitions(self, definitions): """Ensures that every element of 'definitions' is a valid macro definition, ie. either (name,value) 2-tuple or a (name,) tuple. Do nothing if all definitions are OK, raise TypeError otherwise. """ for defn in definitions: if not (isinstance(defn, tuple) and (len(defn) in (1, 2) and (isinstance (defn[1], str) or defn[1] is None)) and isinstance (defn[0], str)): raise TypeError(("invalid macro definition '%s': " % defn) + \ "must be tuple (string,), (string, string), or " + \ "(string, None)") # -- Bookkeeping methods ------------------------------------------- def define_macro(self, name, value=None): """Define a preprocessor macro for all compilations driven by this compiler object. The optional parameter 'value' should be a string; if it is not supplied, then the macro will be defined without an explicit value and the exact outcome depends on the compiler used (XXX true? does ANSI say anything about this?) """ # Delete from the list of macro definitions/undefinitions if # already there (so that this one will take precedence). i = self._find_macro (name) if i is not None: del self.macros[i] self.macros.append((name, value)) def undefine_macro(self, name): """Undefine a preprocessor macro for all compilations driven by this compiler object. If the same macro is defined by 'define_macro()' and undefined by 'undefine_macro()' the last call takes precedence (including multiple redefinitions or undefinitions). If the macro is redefined/undefined on a per-compilation basis (ie. in the call to 'compile()'), then that takes precedence. """ # Delete from the list of macro definitions/undefinitions if # already there (so that this one will take precedence). i = self._find_macro (name) if i is not None: del self.macros[i] undefn = (name,) self.macros.append(undefn) def add_include_dir(self, dir): """Add 'dir' to the list of directories that will be searched for header files. The compiler is instructed to search directories in the order in which they are supplied by successive calls to 'add_include_dir()'. """ self.include_dirs.append(dir) def set_include_dirs(self, dirs): """Set the list of directories that will be searched to 'dirs' (a list of strings). Overrides any preceding calls to 'add_include_dir()'; subsequence calls to 'add_include_dir()' add to the list passed to 'set_include_dirs()'. This does not affect any list of standard include directories that the compiler may search by default. """ self.include_dirs = dirs[:] def add_library(self, libname): """Add 'libname' to the list of libraries that will be included in all links driven by this compiler object. Note that 'libname' should *not* be the name of a file containing a library, but the name of the library itself: the actual filename will be inferred by the linker, the compiler, or the compiler class (depending on the platform). The linker will be instructed to link against libraries in the order they were supplied to 'add_library()' and/or 'set_libraries()'. It is perfectly valid to duplicate library names; the linker will be instructed to link against libraries as many times as they are mentioned. """ self.libraries.append(libname) def set_libraries(self, libnames): """Set the list of libraries to be included in all links driven by this compiler object to 'libnames' (a list of strings). This does not affect any standard system libraries that the linker may include by default. """ self.libraries = libnames[:] def add_library_dir(self, dir): """Add 'dir' to the list of directories that will be searched for libraries specified to 'add_library()' and 'set_libraries()'. The linker will be instructed to search for libraries in the order they are supplied to 'add_library_dir()' and/or 'set_library_dirs()'. """ self.library_dirs.append(dir) def set_library_dirs(self, dirs): """Set the list of library search directories to 'dirs' (a list of strings). This does not affect any standard library search path that the linker may search by default. """ self.library_dirs = dirs[:] def add_runtime_library_dir(self, dir): """Add 'dir' to the list of directories that will be searched for shared libraries at runtime. """ self.runtime_library_dirs.append(dir) def set_runtime_library_dirs(self, dirs): """Set the list of directories to search for shared libraries at runtime to 'dirs' (a list of strings). This does not affect any standard search path that the runtime linker may search by default. """ self.runtime_library_dirs = dirs[:] def add_link_object(self, object): """Add 'object' to the list of object files (or analogues, such as explicitly named library files or the output of "resource compilers") to be included in every link driven by this compiler object. """ self.objects.append(object) def set_link_objects(self, objects): """Set the list of object files (or analogues) to be included in every link to 'objects'. This does not affect any standard object files that the linker may include by default (such as system libraries). """ self.objects = objects[:] # -- Private utility methods -------------------------------------- # (here for the convenience of subclasses) # Helper method to prep compiler in subclass compile() methods def _setup_compile(self, outdir, macros, incdirs, sources, depends, extra): """Process arguments and decide which source files to compile.""" if outdir is None: outdir = self.output_dir elif not isinstance(outdir, str): raise TypeError("'output_dir' must be a string or None") if macros is None: macros = self.macros elif isinstance(macros, list): macros = macros + (self.macros or []) else: raise TypeError("'macros' (if supplied) must be a list of tuples") if incdirs is None: incdirs = self.include_dirs elif isinstance(incdirs, (list, tuple)): incdirs = list(incdirs) + (self.include_dirs or []) else: raise TypeError( "'include_dirs' (if supplied) must be a list of strings") if extra is None: extra = [] # Get the list of expected output (object) files objects = self.object_filenames(sources, strip_dir=0, output_dir=outdir) assert len(objects) == len(sources) pp_opts = gen_preprocess_options(macros, incdirs) build = {} for i in range(len(sources)): src = sources[i] obj = objects[i] ext = os.path.splitext(src)[1] self.mkpath(os.path.dirname(obj)) build[obj] = (src, ext) return macros, objects, extra, pp_opts, build def _get_cc_args(self, pp_opts, debug, before): # works for unixccompiler, cygwinccompiler cc_args = pp_opts + ['-c'] if debug: cc_args[:0] = ['-g'] if before: cc_args[:0] = before return cc_args def _fix_compile_args(self, output_dir, macros, include_dirs): """Typecheck and fix-up some of the arguments to the 'compile()' method, and return fixed-up values. Specifically: if 'output_dir' is None, replaces it with 'self.output_dir'; ensures that 'macros' is a list, and augments it with 'self.macros'; ensures that 'include_dirs' is a list, and augments it with 'self.include_dirs'. Guarantees that the returned values are of the correct type, i.e. for 'output_dir' either string or None, and for 'macros' and 'include_dirs' either list or None. """ if output_dir is None: output_dir = self.output_dir elif not isinstance(output_dir, str): raise TypeError("'output_dir' must be a string or None") if macros is None: macros = self.macros elif isinstance(macros, list): macros = macros + (self.macros or []) else: raise TypeError("'macros' (if supplied) must be a list of tuples") if include_dirs is None: include_dirs = self.include_dirs elif isinstance(include_dirs, (list, tuple)): include_dirs = list(include_dirs) + (self.include_dirs or []) else: raise TypeError( "'include_dirs' (if supplied) must be a list of strings") return output_dir, macros, include_dirs def _prep_compile(self, sources, output_dir, depends=None): """Decide which souce files must be recompiled. Determine the list of object files corresponding to 'sources', and figure out which ones really need to be recompiled. Return a list of all object files and a dictionary telling which source files can be skipped. """ # Get the list of expected output (object) files objects = self.object_filenames(sources, output_dir=output_dir) assert len(objects) == len(sources) # Return an empty dict for the "which source files can be skipped" # return value to preserve API compatibility. return objects, {} def _fix_object_args(self, objects, output_dir): """Typecheck and fix up some arguments supplied to various methods. Specifically: ensure that 'objects' is a list; if output_dir is None, replace with self.output_dir. Return fixed versions of 'objects' and 'output_dir'. """ if not isinstance(objects, (list, tuple)): raise TypeError("'objects' must be a list or tuple of strings") objects = list(objects) if output_dir is None: output_dir = self.output_dir elif not isinstance(output_dir, str): raise TypeError("'output_dir' must be a string or None") return (objects, output_dir) def _fix_lib_args(self, libraries, library_dirs, runtime_library_dirs): """Typecheck and fix up some of the arguments supplied to the 'link_*' methods. Specifically: ensure that all arguments are lists, and augment them with their permanent versions (eg. 'self.libraries' augments 'libraries'). Return a tuple with fixed versions of all arguments. """ if libraries is None: libraries = self.libraries elif isinstance(libraries, (list, tuple)): libraries = list (libraries) + (self.libraries or []) else: raise TypeError( "'libraries' (if supplied) must be a list of strings") if library_dirs is None: library_dirs = self.library_dirs elif isinstance(library_dirs, (list, tuple)): library_dirs = list (library_dirs) + (self.library_dirs or []) else: raise TypeError( "'library_dirs' (if supplied) must be a list of strings") if runtime_library_dirs is None: runtime_library_dirs = self.runtime_library_dirs elif isinstance(runtime_library_dirs, (list, tuple)): runtime_library_dirs = (list(runtime_library_dirs) + (self.runtime_library_dirs or [])) else: raise TypeError("'runtime_library_dirs' (if supplied) " "must be a list of strings") return (libraries, library_dirs, runtime_library_dirs) def _need_link(self, objects, output_file): """Return true if we need to relink the files listed in 'objects' to recreate 'output_file'. """ if self.force: return True else: if self.dry_run: newer = newer_group (objects, output_file, missing='newer') else: newer = newer_group (objects, output_file) return newer def detect_language(self, sources): """Detect the language of a given file, or list of files. Uses language_map, and language_order to do the job. """ if not isinstance(sources, list): sources = [sources] lang = None index = len(self.language_order) for source in sources: base, ext = os.path.splitext(source) extlang = self.language_map.get(ext) try: extindex = self.language_order.index(extlang) if extindex < index: lang = extlang index = extindex except ValueError: pass return lang # -- Worker methods ------------------------------------------------ # (must be implemented by subclasses) def preprocess(self, source, output_file=None, macros=None, include_dirs=None, extra_preargs=None, extra_postargs=None): """Preprocess a single C/C++ source file, named in 'source'. Output will be written to file named 'output_file', or stdout if 'output_file' not supplied. 'macros' is a list of macro definitions as for 'compile()', which will augment the macros set with 'define_macro()' and 'undefine_macro()'. 'include_dirs' is a list of directory names that will be added to the default list. Raises PreprocessError on failure. """ pass def compile(self, sources, output_dir=None, macros=None, include_dirs=None, debug=0, extra_preargs=None, extra_postargs=None, depends=None): """Compile one or more source files. 'sources' must be a list of filenames, most likely C/C++ files, but in reality anything that can be handled by a particular compiler and compiler class (eg. MSVCCompiler can handle resource files in 'sources'). Return a list of object filenames, one per source filename in 'sources'. Depending on the implementation, not all source files will necessarily be compiled, but all corresponding object filenames will be returned. If 'output_dir' is given, object files will be put under it, while retaining their original path component. That is, "foo/bar.c" normally compiles to "foo/bar.o" (for a Unix implementation); if 'output_dir' is "build", then it would compile to "build/foo/bar.o". 'macros', if given, must be a list of macro definitions. A macro definition is either a (name, value) 2-tuple or a (name,) 1-tuple. The former defines a macro; if the value is None, the macro is defined without an explicit value. The 1-tuple case undefines a macro. Later definitions/redefinitions/ undefinitions take precedence. 'include_dirs', if given, must be a list of strings, the directories to add to the default include file search path for this compilation only. 'debug' is a boolean; if true, the compiler will be instructed to output debug symbols in (or alongside) the object file(s). 'extra_preargs' and 'extra_postargs' are implementation- dependent. On platforms that have the notion of a command-line (e.g. Unix, DOS/Windows), they are most likely lists of strings: extra command-line arguments to prepend/append to the compiler command line. On other platforms, consult the implementation class documentation. In any event, they are intended as an escape hatch for those occasions when the abstract compiler framework doesn't cut the mustard. 'depends', if given, is a list of filenames that all targets depend on. If a source file is older than any file in depends, then the source file will be recompiled. This supports dependency tracking, but only at a coarse granularity. Raises CompileError on failure. """ # A concrete compiler class can either override this method # entirely or implement _compile(). macros, objects, extra_postargs, pp_opts, build = \ self._setup_compile(output_dir, macros, include_dirs, sources, depends, extra_postargs) cc_args = self._get_cc_args(pp_opts, debug, extra_preargs) for obj in objects: try: src, ext = build[obj] except KeyError: continue self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts) # Return *all* object filenames, not just the ones we just built. return objects def _compile(self, obj, src, ext, cc_args, extra_postargs, pp_opts): """Compile 'src' to product 'obj'.""" # A concrete compiler class that does not override compile() # should implement _compile(). pass def create_static_lib(self, objects, output_libname, output_dir=None, debug=0, target_lang=None): """Link a bunch of stuff together to create a static library file. The "bunch of stuff" consists of the list of object files supplied as 'objects', the extra object files supplied to 'add_link_object()' and/or 'set_link_objects()', the libraries supplied to 'add_library()' and/or 'set_libraries()', and the libraries supplied as 'libraries' (if any). 'output_libname' should be a library name, not a filename; the filename will be inferred from the library name. 'output_dir' is the directory where the library file will be put. 'debug' is a boolean; if true, debugging information will be included in the library (note that on most platforms, it is the compile step where this matters: the 'debug' flag is included here just for consistency). 'target_lang' is the target language for which the given objects are being compiled. This allows specific linkage time treatment of certain languages. Raises LibError on failure. """ pass # values for target_desc parameter in link() SHARED_OBJECT = "shared_object" SHARED_LIBRARY = "shared_library" EXECUTABLE = "executable" def link(self, target_desc, objects, output_filename, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None, build_temp=None, target_lang=None): """Link a bunch of stuff together to create an executable or shared library file. The "bunch of stuff" consists of the list of object files supplied as 'objects'. 'output_filename' should be a filename. If 'output_dir' is supplied, 'output_filename' is relative to it (i.e. 'output_filename' can provide directory components if needed). 'libraries' is a list of libraries to link against. These are library names, not filenames, since they're translated into filenames in a platform-specific way (eg. "foo" becomes "libfoo.a" on Unix and "foo.lib" on DOS/Windows). However, they can include a directory component, which means the linker will look in that specific directory rather than searching all the normal locations. 'library_dirs', if supplied, should be a list of directories to search for libraries that were specified as bare library names (ie. no directory component). These are on top of the system default and those supplied to 'add_library_dir()' and/or 'set_library_dirs()'. 'runtime_library_dirs' is a list of directories that will be embedded into the shared library and used to search for other shared libraries that *it* depends on at run-time. (This may only be relevant on Unix.) 'export_symbols' is a list of symbols that the shared library will export. (This appears to be relevant only on Windows.) 'debug' is as for 'compile()' and 'create_static_lib()', with the slight distinction that it actually matters on most platforms (as opposed to 'create_static_lib()', which includes a 'debug' flag mostly for form's sake). 'extra_preargs' and 'extra_postargs' are as for 'compile()' (except of course that they supply command-line arguments for the particular linker being used). 'target_lang' is the target language for which the given objects are being compiled. This allows specific linkage time treatment of certain languages. Raises LinkError on failure. """ raise NotImplementedError # Old 'link_*()' methods, rewritten to use the new 'link()' method. def link_shared_lib(self, objects, output_libname, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None, build_temp=None, target_lang=None): self.link(CCompiler.SHARED_LIBRARY, objects, self.library_filename(output_libname, lib_type='shared'), output_dir, libraries, library_dirs, runtime_library_dirs, export_symbols, debug, extra_preargs, extra_postargs, build_temp, target_lang) def link_shared_object(self, objects, output_filename, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None, build_temp=None, target_lang=None): self.link(CCompiler.SHARED_OBJECT, objects, output_filename, output_dir, libraries, library_dirs, runtime_library_dirs, export_symbols, debug, extra_preargs, extra_postargs, build_temp, target_lang) def link_executable(self, objects, output_progname, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, debug=0, extra_preargs=None, extra_postargs=None, target_lang=None): self.link(CCompiler.EXECUTABLE, objects, self.executable_filename(output_progname), output_dir, libraries, library_dirs, runtime_library_dirs, None, debug, extra_preargs, extra_postargs, None, target_lang) # -- Miscellaneous methods ----------------------------------------- # These are all used by the 'gen_lib_options() function; there is # no appropriate default implementation so subclasses should # implement all of these. def library_dir_option(self, dir): """Return the compiler option to add 'dir' to the list of directories searched for libraries. """ raise NotImplementedError def runtime_library_dir_option(self, dir): """Return the compiler option to add 'dir' to the list of directories searched for runtime libraries. """ raise NotImplementedError def library_option(self, lib): """Return the compiler option to add 'lib' to the list of libraries linked into the shared library or executable. """ raise NotImplementedError def has_function(self, funcname, includes=None, include_dirs=None, libraries=None, library_dirs=None): """Return a boolean indicating whether funcname is supported on the current platform. The optional arguments can be used to augment the compilation environment. """ # this can't be included at module scope because it tries to # import math which might not be available at that point - maybe # the necessary logic should just be inlined? import tempfile if includes is None: includes = [] if include_dirs is None: include_dirs = [] if libraries is None: libraries = [] if library_dirs is None: library_dirs = [] fd, fname = tempfile.mkstemp(".c", funcname, text=True) f = os.fdopen(fd, "w") try: for incl in includes: f.write("""#include "%s"\n""" % incl) f.write("""\ int main (int argc, char **argv) { %s(); return 0; } """ % funcname) finally: f.close() try: objects = self.compile([fname], include_dirs=include_dirs) except CompileError: return False try: self.link_executable(objects, "a.out", libraries=libraries, library_dirs=library_dirs) except (LinkError, TypeError): return False return True def find_library_file (self, dirs, lib, debug=0): """Search the specified list of directories for a static or shared library file 'lib' and return the full path to that file. If 'debug' true, look for a debugging version (if that makes sense on the current platform). Return None if 'lib' wasn't found in any of the specified directories. """ raise NotImplementedError # -- Filename generation methods ----------------------------------- # The default implementation of the filename generating methods are # prejudiced towards the Unix/DOS/Windows view of the world: # * object files are named by replacing the source file extension # (eg. .c/.cpp -> .o/.obj) # * library files (shared or static) are named by plugging the # library name and extension into a format string, eg. # "lib%s.%s" % (lib_name, ".a") for Unix static libraries # * executables are named by appending an extension (possibly # empty) to the program name: eg. progname + ".exe" for # Windows # # To reduce redundant code, these methods expect to find # several attributes in the current object (presumably defined # as class attributes): # * src_extensions - # list of C/C++ source file extensions, eg. ['.c', '.cpp'] # * obj_extension - # object file extension, eg. '.o' or '.obj' # * static_lib_extension - # extension for static library files, eg. '.a' or '.lib' # * shared_lib_extension - # extension for shared library/object files, eg. '.so', '.dll' # * static_lib_format - # format string for generating static library filenames, # eg. 'lib%s.%s' or '%s.%s' # * shared_lib_format # format string for generating shared library filenames # (probably same as static_lib_format, since the extension # is one of the intended parameters to the format string) # * exe_extension - # extension for executable files, eg. '' or '.exe' def object_filenames(self, source_filenames, strip_dir=0, output_dir=''): if output_dir is None: output_dir = '' obj_names = [] for src_name in source_filenames: base, ext = os.path.splitext(src_name) if os.name == 'riscos': base = os.path.join('o', os.path.split(base)[-1]) if ext not in self.src_extensions: raise UnknownFileError( "unknown file type '%s' (from '%s')" % (ext, src_name)) if strip_dir: base = os.path.basename(base) obj_names.append(os.path.join(output_dir, base + self.obj_extension)) return obj_names def shared_object_filename(self, basename, strip_dir=0, output_dir=''): assert output_dir is not None if strip_dir: basename = os.path.basename(basename) return os.path.join(output_dir, basename + self.shared_lib_extension) def executable_filename(self, basename, strip_dir=0, output_dir=''): assert output_dir is not None if strip_dir: basename = os.path.basename(basename) return os.path.join(output_dir, basename + (self.exe_extension or '')) def library_filename(self, libname, lib_type='static', # or 'shared' strip_dir=0, output_dir=''): assert output_dir is not None if lib_type not in ("static", "shared", "dylib", "xcode_stub"): raise ValueError( "'lib_type' must be \"static\", \"shared\", \"dylib\", or \"xcode_stub\"") fmt = getattr(self, lib_type + "_lib_format") ext = getattr(self, lib_type + "_lib_extension") dir, base = os.path.split(libname) filename = fmt % (base, ext) if strip_dir: dir = '' return os.path.join(output_dir, dir, filename) # -- Utility methods ----------------------------------------------- def announce(self, msg, level=1): log.debug(msg) def debug_print(self, msg): from distutils.debug import DEBUG if DEBUG: print(msg) def warn(self, msg): sys.stderr.write("warning: %s\n" % msg) def execute(self, func, args, msg=None, level=1): execute(func, args, msg, self.dry_run) def spawn(self, cmd): spawn(cmd, dry_run=self.dry_run) def move_file(self, src, dst): return move_file(src, dst, dry_run=self.dry_run) def mkpath (self, name, mode=0o777): mkpath(name, mode, dry_run=self.dry_run) # Map a sys.platform/os.name ('posix', 'nt') to the default compiler # type for that platform. Keys are interpreted as re match # patterns. Order is important; platform mappings are preferred over # OS names. _default_compilers = ( # Platform string mappings # on a cygwin built python we can use gcc like an ordinary UNIXish # compiler ('cygwin.*', 'unix'), # OS name mappings ('posix', 'unix'), ('nt', 'msvc'), # RISC OS can use a UNIXish thing ('riscos', 'unix'), ) def get_default_compiler(osname=None, platform=None): """Determine the default compiler to use for the given platform. osname should be one of the standard Python OS names (i.e. the ones returned by os.name) and platform the common value returned by sys.platform for the platform in question. The default values are os.name and sys.platform in case the parameters are not given. """ if osname is None: osname = os.name if platform is None: platform = sys.platform for pattern, compiler in _default_compilers: if re.match(pattern, platform) is not None or \ re.match(pattern, osname) is not None: return compiler # Default to Unix compiler return 'unix' # Map compiler types to (module_name, class_name) pairs -- ie. where to # find the code that implements an interface to this compiler. (The module # is assumed to be in the 'distutils' package.) compiler_class = { 'unix': ('unixccompiler', 'UnixCCompiler', "standard UNIX-style compiler"), 'msvc': ('_msvccompiler', 'MSVCCompiler', "Microsoft Visual C++"), 'cygwin': ('cygwinccompiler', 'CygwinCCompiler', "Cygwin port of GNU C Compiler for Win32"), 'mingw32': ('cygwinccompiler', 'Mingw32CCompiler', "Mingw32 port of GNU C Compiler for Win32"), 'bcpp': ('bcppcompiler', 'BCPPCompiler', "Borland C++ Compiler"), } def show_compilers(): """Print list of available compilers (used by the "--help-compiler" options to "build", "build_ext", "build_clib"). """ # XXX this "knows" that the compiler option it's describing is # "--compiler", which just happens to be the case for the three # commands that use it. from distutils.fancy_getopt import FancyGetopt compilers = [] for compiler in compiler_class.keys(): compilers.append(("compiler="+compiler, None, compiler_class[compiler][2])) compilers.sort() pretty_printer = FancyGetopt(compilers) pretty_printer.print_help("List of available compilers:") def new_compiler(plat=None, compiler=None, verbose=0, dry_run=0, force=0): """Generate an instance of some CCompiler subclass for the supplied platform/compiler combination. 'plat' defaults to 'os.name' (eg. 'posix', 'nt'), and 'compiler' defaults to the default compiler for that platform. Currently only 'posix' and 'nt' are supported, and the default compilers are "traditional Unix interface" (UnixCCompiler class) and Visual C++ (MSVCCompiler class). Note that it's perfectly possible to ask for a Unix compiler object under Windows, and a Microsoft compiler object under Unix -- if you supply a value for 'compiler', 'plat' is ignored. """ if plat is None: plat = os.name try: if compiler is None: compiler = get_default_compiler(plat) (module_name, class_name, long_description) = compiler_class[compiler] except KeyError: msg = "don't know how to compile C/C++ code on platform '%s'" % plat if compiler is not None: msg = msg + " with '%s' compiler" % compiler raise DistutilsPlatformError(msg) try: module_name = "distutils." + module_name __import__ (module_name) module = sys.modules[module_name] klass = vars(module)[class_name] except ImportError: raise DistutilsModuleError( "can't compile C/C++ code: unable to load module '%s'" % \ module_name) except KeyError: raise DistutilsModuleError( "can't compile C/C++ code: unable to find class '%s' " "in module '%s'" % (class_name, module_name)) # XXX The None is necessary to preserve backwards compatibility # with classes that expect verbose to be the first positional # argument. return klass(None, dry_run, force) def gen_preprocess_options(macros, include_dirs): """Generate C pre-processor options (-D, -U, -I) as used by at least two types of compilers: the typical Unix compiler and Visual C++. 'macros' is the usual thing, a list of 1- or 2-tuples, where (name,) means undefine (-U) macro 'name', and (name,value) means define (-D) macro 'name' to 'value'. 'include_dirs' is just a list of directory names to be added to the header file search path (-I). Returns a list of command-line options suitable for either Unix compilers or Visual C++. """ # XXX it would be nice (mainly aesthetic, and so we don't generate # stupid-looking command lines) to go over 'macros' and eliminate # redundant definitions/undefinitions (ie. ensure that only the # latest mention of a particular macro winds up on the command # line). I don't think it's essential, though, since most (all?) # Unix C compilers only pay attention to the latest -D or -U # mention of a macro on their command line. Similar situation for # 'include_dirs'. I'm punting on both for now. Anyways, weeding out # redundancies like this should probably be the province of # CCompiler, since the data structures used are inherited from it # and therefore common to all CCompiler classes. pp_opts = [] for macro in macros: if not (isinstance(macro, tuple) and 1 <= len(macro) <= 2): raise TypeError( "bad macro definition '%s': " "each element of 'macros' list must be a 1- or 2-tuple" % macro) if len(macro) == 1: # undefine this macro pp_opts.append("-U%s" % macro[0]) elif len(macro) == 2: if macro[1] is None: # define with no explicit value pp_opts.append("-D%s" % macro[0]) else: # XXX *don't* need to be clever about quoting the # macro value here, because we're going to avoid the # shell at all costs when we spawn the command! pp_opts.append("-D%s=%s" % macro) for dir in include_dirs: pp_opts.append("-I%s" % dir) return pp_opts def gen_lib_options (compiler, library_dirs, runtime_library_dirs, libraries): """Generate linker options for searching library directories and linking with specific libraries. 'libraries' and 'library_dirs' are, respectively, lists of library names (not filenames!) and search directories. Returns a list of command-line options suitable for use with some compiler (depending on the two format strings passed in). """ lib_opts = [] for dir in library_dirs: lib_opts.append(compiler.library_dir_option(dir)) for dir in runtime_library_dirs: opt = compiler.runtime_library_dir_option(dir) if isinstance(opt, list): lib_opts = lib_opts + opt else: lib_opts.append(opt) # XXX it's important that we *not* remove redundant library mentions! # sometimes you really do have to say "-lfoo -lbar -lfoo" in order to # resolve all symbols. I just hope we never have to say "-lfoo obj.o # -lbar" to get things to work -- that's certainly a possibility, but a # pretty nasty way to arrange your C code. for lib in libraries: (lib_dir, lib_name) = os.path.split(lib) if lib_dir: lib_file = compiler.find_library_file([lib_dir], lib_name) if lib_file: lib_opts.append(lib_file) else: compiler.warn("no library file corresponding to " "'%s' found (skipping)" % lib) else: lib_opts.append(compiler.library_option (lib)) return lib_opts
42.406613
92
0.615578
50975694cfa84bd032eaef252e7a3a1686329d87
124
py
Python
shop/apps.py
marcopuccio/mpbb
18e303308865493886af7667c79720eee766641c
[ "MIT" ]
null
null
null
shop/apps.py
marcopuccio/mpbb
18e303308865493886af7667c79720eee766641c
[ "MIT" ]
12
2019-10-02T17:18:09.000Z
2022-03-11T23:54:53.000Z
shop/apps.py
marcopuccio/mpbb
18e303308865493886af7667c79720eee766641c
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from django.apps import AppConfig class ShopConfig(AppConfig): name = 'shop'
15.5
39
0.782258
c096097a57fecd741f4c67dc473f40962f4d8f74
7,785
py
Python
python_modules/libraries/dagster-databricks/dagster_databricks_tests/test_pyspark.py
makotonium/dagster
f5d56514b7e7c5bca28ea14060316d242f51b71b
[ "Apache-2.0" ]
4,606
2018-06-21T17:45:20.000Z
2022-03-31T23:39:42.000Z
python_modules/libraries/dagster-databricks/dagster_databricks_tests/test_pyspark.py
makotonium/dagster
f5d56514b7e7c5bca28ea14060316d242f51b71b
[ "Apache-2.0" ]
6,221
2018-06-12T04:36:01.000Z
2022-03-31T21:43:05.000Z
python_modules/libraries/dagster-databricks/dagster_databricks_tests/test_pyspark.py
makotonium/dagster
f5d56514b7e7c5bca28ea14060316d242f51b71b
[ "Apache-2.0" ]
619
2018-08-22T22:43:09.000Z
2022-03-31T22:48:06.000Z
import os from unittest import mock import pytest from dagster import ( InputDefinition, ModeDefinition, OutputDefinition, execute_pipeline, fs_io_manager, pipeline, reconstructable, solid, ) from dagster.core.definitions.no_step_launcher import no_step_launcher from dagster.utils.merger import deep_merge_dicts from dagster_aws.s3 import s3_pickle_io_manager, s3_resource from dagster_azure.adls2 import adls2_pickle_io_manager, adls2_resource from dagster_databricks import databricks_pyspark_step_launcher from dagster_pyspark import DataFrame, pyspark_resource from pyspark.sql import Row from pyspark.sql.types import IntegerType, StringType, StructField, StructType S3_BUCKET = "dagster-databricks-tests" ADLS2_STORAGE_ACCOUNT = "dagsterdatabrickstests" ADLS2_CONTAINER = "dagster-databricks-tests" BASE_DATABRICKS_PYSPARK_STEP_LAUNCHER_CONFIG = { "databricks_host": os.environ.get("DATABRICKS_HOST"), "databricks_token": os.environ.get("DATABRICKS_TOKEN"), "local_pipeline_package_path": os.path.abspath(os.path.dirname(__file__)), "staging_prefix": "/dagster-databricks-tests", "run_config": { "cluster": { "new": { "size": {"num_workers": 1}, "spark_version": "6.5.x-scala2.11", "nodes": { "node_types": {"node_type_id": "Standard_DS3_v2"}, }, }, }, "libraries": [ {"pypi": {"package": "azure-storage-file-datalake~=12.0.1"}}, {"pypi": {"package": "dagster-aws"}}, {"pypi": {"package": "dagster-azure"}}, {"pypi": {"package": "databricks-api"}}, {"pypi": {"package": "pytest"}}, ], }, "secrets_to_env_variables": [], "storage": { "s3": { "secret_scope": "dagster-databricks-tests", "access_key_key": "aws-access-key", "secret_key_key": "aws-secret-key", } }, } @solid( output_defs=[OutputDefinition(DataFrame)], required_resource_keys={"pyspark_step_launcher", "pyspark"}, ) def make_df_solid(context): schema = StructType([StructField("name", StringType()), StructField("age", IntegerType())]) rows = [Row(name="John", age=19), Row(name="Jennifer", age=29), Row(name="Henry", age=50)] return context.resources.pyspark.spark_session.createDataFrame(rows, schema) @solid( name="blah", description="this is a test", config_schema={"foo": str, "bar": int}, input_defs=[InputDefinition("people", DataFrame)], output_defs=[OutputDefinition(DataFrame)], required_resource_keys={"pyspark_step_launcher"}, ) def filter_df_solid(_, people): return people.filter(people["age"] < 30) MODE_DEFS = [ ModeDefinition( "prod_adls2", resource_defs={ "pyspark_step_launcher": databricks_pyspark_step_launcher, "pyspark": pyspark_resource, "adls2": adls2_resource, "io_manager": adls2_pickle_io_manager, }, ), ModeDefinition( "prod_s3", resource_defs={ "pyspark_step_launcher": databricks_pyspark_step_launcher, "pyspark": pyspark_resource, "s3": s3_resource, "io_manager": s3_pickle_io_manager, }, ), ModeDefinition( "test", resource_defs={ "pyspark_step_launcher": databricks_pyspark_step_launcher, "pyspark": pyspark_resource, "io_manager": fs_io_manager, }, ), ModeDefinition( "local", resource_defs={"pyspark_step_launcher": no_step_launcher, "pyspark": pyspark_resource}, ), ] @pipeline(mode_defs=MODE_DEFS) def pyspark_pipe(): filter_df_solid(make_df_solid()) def define_pyspark_pipe(): return pyspark_pipe @solid( required_resource_keys={"pyspark_step_launcher", "pyspark"}, ) def do_nothing_solid(_): pass @pipeline(mode_defs=MODE_DEFS) def do_nothing_pipe(): do_nothing_solid() def define_do_nothing_pipe(): return do_nothing_pipe def test_local(): result = execute_pipeline( pipeline=reconstructable(define_pyspark_pipe), mode="local", run_config={"solids": {"blah": {"config": {"foo": "a string", "bar": 123}}}}, ) assert result.success @mock.patch("dagster_databricks.databricks.DatabricksClient.submit_run") @mock.patch("dagster_databricks.databricks.DatabricksClient.put_file") @mock.patch("dagster_databricks.DatabricksPySparkStepLauncher.get_step_events") @mock.patch("dagster_databricks.databricks.DatabricksJobRunner.wait_for_run_to_complete") def test_pyspark_databricks(mock_wait, mock_get_step_events, mock_put_file, mock_submit_run): mock_get_step_events.return_value = execute_pipeline( pipeline=reconstructable(define_do_nothing_pipe), mode="local" ).events_by_step_key["do_nothing_solid"] result = execute_pipeline( pipeline=reconstructable(define_do_nothing_pipe), mode="test", run_config={ "resources": { "pyspark_step_launcher": { "config": deep_merge_dicts( BASE_DATABRICKS_PYSPARK_STEP_LAUNCHER_CONFIG, {"databricks_host": "", "databricks_token": ""}, ), }, }, }, ) assert result.success assert mock_wait.call_count == 1 assert mock_get_step_events.call_count == 1 assert mock_put_file.call_count == 4 assert mock_submit_run.call_count == 1 @pytest.mark.skipif( "DATABRICKS_TEST_DO_IT_LIVE_S3" not in os.environ, reason="This test is slow and requires a Databricks cluster; run only upon explicit request", ) def test_do_it_live_databricks_s3(): result = execute_pipeline( reconstructable(define_pyspark_pipe), mode="prod_s3", run_config={ "solids": {"blah": {"config": {"foo": "a string", "bar": 123}}}, "resources": { "pyspark_step_launcher": {"config": BASE_DATABRICKS_PYSPARK_STEP_LAUNCHER_CONFIG}, "io_manager": { "config": { "s3_bucket": "dagster-databricks-tests", "s3_prefix": "dagster-databricks-tests", } }, }, }, ) assert result.success @pytest.mark.skipif( "DATABRICKS_TEST_DO_IT_LIVE_ADLS2" not in os.environ, reason="This test is slow and requires a Databricks cluster; run only upon explicit request", ) def test_do_it_live_databricks_adls2(): config = BASE_DATABRICKS_PYSPARK_STEP_LAUNCHER_CONFIG.copy() config["storage"] = { "adls2": { "secret_scope": "dagster-databricks-tests", "storage_account_name": ADLS2_STORAGE_ACCOUNT, "storage_account_key_key": "adls2-storage-key", } } result = execute_pipeline( reconstructable(define_pyspark_pipe), mode="prod_adls2", run_config={ "solids": {"blah": {"config": {"foo": "a string", "bar": 123}}}, "resources": { "pyspark_step_launcher": {"config": config}, "adls2": { "config": { "storage_account": ADLS2_STORAGE_ACCOUNT, "credential": {"key": os.environ.get("AZURE_STORAGE_ACCOUNT_KEY")}, } }, "io_manager": { "config": { "adls2_file_system": ADLS2_CONTAINER, "adls2_prefix": "dagster-databricks-tests", } }, }, }, ) assert result.success
31.905738
98
0.618882
6e2269ca705745e9caeb3c22251ca2bf252d3fc9
6,728
py
Python
grl/rl_apps/psro/general_psro_eval.py
indylab/xdo
1ddd92aa56ba10fa468396de8f8824c83ba9d0ba
[ "MIT" ]
12
2021-03-12T07:18:52.000Z
2022-03-15T22:30:44.000Z
grl/rl_apps/psro/general_psro_eval.py
indylab/xdo
1ddd92aa56ba10fa468396de8f8824c83ba9d0ba
[ "MIT" ]
1
2021-11-22T16:39:46.000Z
2022-02-02T22:13:03.000Z
grl/rl_apps/psro/general_psro_eval.py
indylab/xdo
1ddd92aa56ba10fa468396de8f8824c83ba9d0ba
[ "MIT" ]
4
2021-06-21T03:54:45.000Z
2022-01-13T10:28:26.000Z
import argparse import logging import time import numpy as np import ray from ray.rllib.agents.trainer import with_common_config from grl.algos.p2sro.eval_dispatcher.remote import RemoteEvalDispatcherClient from grl.rl_apps import GRL_SEED from grl.rl_apps.scenarios.catalog import scenario_catalog from grl.rl_apps.scenarios.psro_scenario import PSROScenario from grl.rl_apps.scenarios.ray_setup import init_ray_for_scenario from grl.rllib_tools.policy_checkpoints import load_pure_strat from grl.utils.port_listings import get_client_port_for_service def run_episode(env, policies_for_each_player) -> np.ndarray: num_players = len(policies_for_each_player) obs = env.reset() dones = {} game_length = 0 policy_states = [policy.get_initial_state() for policy in policies_for_each_player] payoffs_per_player_this_episode = np.zeros(shape=num_players, dtype=np.float64) while True: if "__all__" in dones: if dones["__all__"]: break game_length += 1 action_dict = {} for player in range(num_players): if player in obs: action_index, new_policy_state, action_info = policies_for_each_player[player].compute_single_action( obs=obs[player], state=policy_states[player]) policy_states[player] = new_policy_state action_dict[player] = action_index obs, rewards, dones, infos = env.step(action_dict=action_dict) for player in range(num_players): payoff_so_far = payoffs_per_player_this_episode[player] payoffs_per_player_this_episode[player] = payoff_so_far + rewards.get(player, 0.0) return payoffs_per_player_this_episode @ray.remote(num_cpus=0, num_gpus=0) def run_poker_evaluation_loop(scenario_name: str, eval_dispatcher_port: int, eval_dispatcher_host: str): scenario: PSROScenario = scenario_catalog.get(scenario_name=scenario_name) if not isinstance(scenario, PSROScenario): raise TypeError(f"Only instances of {PSROScenario} can be used here. {scenario.name} is a {type(scenario)}.") eval_dispatcher = RemoteEvalDispatcherClient(port=eval_dispatcher_port, remote_server_host=eval_dispatcher_host) env = scenario.env_class(env_config=scenario.env_config) num_players = 2 trainer_config = scenario.get_trainer_config(env) trainer_config["explore"] = scenario.allow_stochastic_best_responses policies = [scenario.policy_classes["eval"](env.observation_space, env.action_space, with_common_config(trainer_config)) for _ in range(num_players)] while True: policy_specs_for_each_player, required_games_to_play = eval_dispatcher.take_eval_job() if policy_specs_for_each_player is None: time.sleep(2) else: if len(policy_specs_for_each_player) != 2: raise NotImplementedError(f"This evaluation code only supports two player games. " f"{len(policy_specs_for_each_player)} players were requested.") # print(f"Got eval matchup:") # for spec in policy_specs_for_each_player: # print(f"spec: {spec.to_json()}") for policy, spec in zip(policies, policy_specs_for_each_player): load_pure_strat(policy=policy, pure_strat_spec=spec) total_payoffs_per_player = np.zeros(shape=num_players, dtype=np.float64) # max_reward = None # min_reward = None # time_since_last_output = time.time() for game in range(required_games_to_play): # if game % 1000 == 0: # now = time.time() # print(f"{policy_specs_for_each_player[0].id} vs " # f"{policy_specs_for_each_player[1].id}: " # f"{game}/{required_games_to_play} games played, {now - time_since_last_output} seconds") # time_since_last_output = now payoffs_per_player_this_episode = run_episode(env=env, policies_for_each_player=policies) total_payoffs_per_player += payoffs_per_player_this_episode # if max_reward is None or max(payoffs_per_player_this_episode) > max_reward: # max_reward = max(payoffs_per_player_this_episode) # if min_reward is None or min(payoffs_per_player_this_episode) < min_reward: # min_reward = min(payoffs_per_player_this_episode) payoffs_per_player = total_payoffs_per_player / required_games_to_play print(f"payoffs per player:" f"{policy_specs_for_each_player[0].id} vs " f"{policy_specs_for_each_player[1].id}: " f"{payoffs_per_player}") eval_dispatcher.submit_eval_job_result( policy_specs_for_each_player_tuple=policy_specs_for_each_player, payoffs_for_each_player=payoffs_per_player, games_played=required_games_to_play ) def launch_evals(scenario_name: str, eval_dispatcher_port: int, eval_dispatcher_host: str, block=True, ray_head_address=None): scenario: PSROScenario = scenario_catalog.get(scenario_name=scenario_name) init_ray_for_scenario(scenario=scenario, head_address=ray_head_address, logging_level=logging.INFO) num_workers = scenario.num_eval_workers evaluator_refs = [run_poker_evaluation_loop.remote(scenario_name, eval_dispatcher_port, eval_dispatcher_host) for _ in range(num_workers)] if block: ray.wait(evaluator_refs, num_returns=num_workers) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--scenario', type=str) parser.add_argument('--ray_head', type=str, required=False, default=None) parser.add_argument('--eval_port', type=int, required=False, default=None) parser.add_argument('--eval_host', type=str, required=False, default='localhost') commandline_args = parser.parse_args() scenario_name = commandline_args.scenario eval_port = commandline_args.eval_port if eval_port is None: eval_port = get_client_port_for_service(service_name=f"seed_{GRL_SEED}_{scenario_name}_evals") launch_evals(scenario_name=scenario_name, eval_dispatcher_port=eval_port, eval_dispatcher_host=commandline_args.eval_host, block=True, ray_head_address=commandline_args.ray_head)
43.128205
117
0.676724
95b57e53cb69e7a0365a16294e049be2082f6de2
3,574
py
Python
samples/kubeflow-tf/kubeflow-training-classification.py
pamarquez/pipelineHW
5a5e39dc51add22c02e91222daa88fae0d82da9d
[ "Apache-2.0" ]
1
2019-07-02T01:58:17.000Z
2019-07-02T01:58:17.000Z
samples/kubeflow-tf/kubeflow-training-classification.py
kweinmeister/pipelines
a819506dbfdd188077b160f2cc77b17807e5cc8a
[ "Apache-2.0" ]
21
2020-01-28T22:48:55.000Z
2022-03-08T22:48:12.000Z
samples/kubeflow-tf/kubeflow-training-classification.py
pamarquez/pipelineHW
5a5e39dc51add22c02e91222daa88fae0d82da9d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import kfp from kfp import components from kfp import dsl from kfp import gcp dataflow_tf_transform_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/d0aa15dfb3ff618e8cd1b03f86804ec4307fd9c2/components/dataflow/tft/component.yaml') kubeflow_tf_training_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/d0aa15dfb3ff618e8cd1b03f86804ec4307fd9c2/components/kubeflow/dnntrainer/component.yaml') dataflow_tf_predict_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/d0aa15dfb3ff618e8cd1b03f86804ec4307fd9c2/components/dataflow/predict/component.yaml') confusion_matrix_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/d0aa15dfb3ff618e8cd1b03f86804ec4307fd9c2/components/local/confusion_matrix/component.yaml') @dsl.pipeline( name='TF training and prediction pipeline', description='' ) def kubeflow_training(output, project, evaluation='gs://ml-pipeline-playground/flower/eval100.csv', train='gs://ml-pipeline-playground/flower/train200.csv', schema='gs://ml-pipeline-playground/flower/schema.json', learning_rate=0.1, hidden_layer_size='100,50', steps=2000, target='label', workers=0, pss=0, preprocess_mode='local', predict_mode='local', ): output_template = str(output) + '/{{workflow.uid}}/{{pod.name}}/data' # set the flag to use GPU trainer use_gpu = False preprocess = dataflow_tf_transform_op( training_data_file_pattern=train, evaluation_data_file_pattern=evaluation, schema=schema, gcp_project=project, run_mode=preprocess_mode, preprocessing_module='', transformed_data_dir=output_template ).apply(gcp.use_gcp_secret('user-gcp-sa')) training = kubeflow_tf_training_op( transformed_data_dir=preprocess.output, schema=schema, learning_rate=learning_rate, hidden_layer_size=hidden_layer_size, steps=steps, target=target, preprocessing_module='', training_output_dir=output_template ).apply(gcp.use_gcp_secret('user-gcp-sa')) if use_gpu: training.image = 'gcr.io/ml-pipeline/ml-pipeline-kubeflow-tf-trainer-gpu:d4960d3379af4735fd04dc7167fab5fff82d0f22', training.set_gpu_limit(1) prediction = dataflow_tf_predict_op( data_file_pattern=evaluation, schema=schema, target_column=target, model=training.output, run_mode=predict_mode, gcp_project=project, predictions_dir=output_template ).apply(gcp.use_gcp_secret('user-gcp-sa')) confusion_matrix = confusion_matrix_op( predictions=prediction.output, output_dir=output_template ).apply(gcp.use_gcp_secret('user-gcp-sa')) if __name__ == '__main__': kfp.compiler.Compiler().compile(kubeflow_training, __file__ + '.zip')
38.847826
207
0.745663
c75d0756d81bcd50299c361bf16765d1de87c2bb
1,706
py
Python
vagrant/vagrant-brozzler-new-job.py
wolfgang42/brozzler
0f27c9995ad0251a22f238bd7a01653e0ef3b7b9
[ "Apache-2.0" ]
519
2016-04-25T20:11:23.000Z
2022-03-30T10:25:38.000Z
vagrant/vagrant-brozzler-new-job.py
wolfgang42/brozzler
0f27c9995ad0251a22f238bd7a01653e0ef3b7b9
[ "Apache-2.0" ]
102
2016-05-17T17:17:30.000Z
2022-02-25T23:26:17.000Z
vagrant/vagrant-brozzler-new-job.py
wolfgang42/brozzler
0f27c9995ad0251a22f238bd7a01653e0ef3b7b9
[ "Apache-2.0" ]
94
2016-05-06T01:03:06.000Z
2021-12-30T20:57:30.000Z
#!/usr/bin/env python ''' vagrant-brozzler-new-job.py - runs brozzler-new-job inside the vagrant vm to queue a job for your vagrant brozzler deployment. This is a standalone script with no dependencies other than python, and should work with python 2.7 or python 3.2+. The only reason it's not a bash script is so we can use the argparse library. Copyright (C) 2016-2019 Internet Archive Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import sys import os import argparse import subprocess def main(argv=[]): arg_parser = argparse.ArgumentParser(prog=os.path.basename(argv[0])) arg_parser.add_argument( 'job_conf_file', metavar='JOB_CONF_FILE', help='brozzler job configuration file in yaml') args = arg_parser.parse_args(args=argv[1:]) # cd to path with Vagrantfile so "vagrant ssh" knows what to do os.chdir(os.path.dirname(__file__)) with open(args.job_conf_file, 'rb') as f: subprocess.call([ 'vagrant', 'ssh', '--', 'f=`mktemp` && cat > $f && ' '/home/vagrant/brozzler-ve3/bin/python ' '/home/vagrant/brozzler-ve3/bin/brozzler-new-job $f'], stdin=f) if __name__ == '__main__': main(sys.argv)
34.12
78
0.705158
db8c782e0ee725eda53f3f770587326c4e826e54
532
py
Python
Algo and DSA/LeetCode-Solutions-master/Python/reverse-words-in-a-string-ii.py
Sourav692/FAANG-Interview-Preparation
f523e5c94d582328b3edc449ea16ac6ab28cdc81
[ "Unlicense" ]
3,269
2018-10-12T01:29:40.000Z
2022-03-31T17:58:41.000Z
Algo and DSA/LeetCode-Solutions-master/Python/reverse-words-in-a-string-ii.py
Sourav692/FAANG-Interview-Preparation
f523e5c94d582328b3edc449ea16ac6ab28cdc81
[ "Unlicense" ]
53
2018-12-16T22:54:20.000Z
2022-02-25T08:31:20.000Z
Algo and DSA/LeetCode-Solutions-master/Python/reverse-words-in-a-string-ii.py
Sourav692/FAANG-Interview-Preparation
f523e5c94d582328b3edc449ea16ac6ab28cdc81
[ "Unlicense" ]
1,236
2018-10-12T02:51:40.000Z
2022-03-30T13:30:37.000Z
# Time: O(n) # Space:O(1) class Solution(object): def reverseWords(self, s): """ :type s: a list of 1 length strings (List[str]) :rtype: nothing """ def reverse(s, begin, end): for i in xrange((end - begin) / 2): s[begin + i], s[end - 1 - i] = s[end - 1 - i], s[begin + i] reverse(s, 0, len(s)) i = 0 for j in xrange(len(s) + 1): if j == len(s) or s[j] == ' ': reverse(s, i, j) i = j + 1
24.181818
75
0.411654
b3c5fe35b37fa38a081633042560f1a1d9c857aa
309
py
Python
sabueso/protein/is_protein.py
dprada/sabueso
14843cf3522b5b89db5b61c1541a7015f114dd53
[ "MIT" ]
null
null
null
sabueso/protein/is_protein.py
dprada/sabueso
14843cf3522b5b89db5b61c1541a7015f114dd53
[ "MIT" ]
2
2022-01-31T21:22:17.000Z
2022-02-04T20:20:12.000Z
sabueso/protein/is_protein.py
dprada/sabueso
14843cf3522b5b89db5b61c1541a7015f114dd53
[ "MIT" ]
1
2021-07-20T15:01:14.000Z
2021-07-20T15:01:14.000Z
def is_protein(molecular_system, indices='all'): from sabueso import get_form from sabueso.forms import dict_is_protein form = get_form(molecular_system) output = dict_is_protein[form](molecular_system, indices='all') if len(output)==1: output = output[0] return output
19.3125
67
0.702265
206896c8381e63fbd15895ce9e336363cd8b7627
32,367
py
Python
sdk/python/pulumi_azure_nextgen/importexport/v20161101/outputs.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_nextgen/importexport/v20161101/outputs.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_nextgen/importexport/v20161101/outputs.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'DriveBitLockerKeyResponseResult', 'DriveStatusResponse', 'ExportResponse', 'JobDetailsResponse', 'PackageInfomationResponse', 'ReturnAddressResponse', 'ReturnShippingResponse', 'ShippingInformationResponse', ] @pulumi.output_type class DriveBitLockerKeyResponseResult(dict): """ BitLocker recovery key or password to the specified drive """ def __init__(__self__, *, bit_locker_key: Optional[str] = None, drive_id: Optional[str] = None): """ BitLocker recovery key or password to the specified drive :param str bit_locker_key: BitLocker recovery key or password :param str drive_id: Drive ID """ if bit_locker_key is not None: pulumi.set(__self__, "bit_locker_key", bit_locker_key) if drive_id is not None: pulumi.set(__self__, "drive_id", drive_id) @property @pulumi.getter(name="bitLockerKey") def bit_locker_key(self) -> Optional[str]: """ BitLocker recovery key or password """ return pulumi.get(self, "bit_locker_key") @property @pulumi.getter(name="driveId") def drive_id(self) -> Optional[str]: """ Drive ID """ return pulumi.get(self, "drive_id") @pulumi.output_type class DriveStatusResponse(dict): """ Provides information about the drive's status """ def __init__(__self__, *, bit_locker_key: Optional[str] = None, bytes_succeeded: Optional[int] = None, copy_status: Optional[str] = None, drive_header_hash: Optional[str] = None, drive_id: Optional[str] = None, error_log_uri: Optional[str] = None, manifest_file: Optional[str] = None, manifest_hash: Optional[str] = None, manifest_uri: Optional[str] = None, percent_complete: Optional[int] = None, state: Optional[str] = None, verbose_log_uri: Optional[str] = None): """ Provides information about the drive's status :param str bit_locker_key: The BitLocker key used to encrypt the drive. :param int bytes_succeeded: Bytes successfully transferred for the drive. :param str copy_status: Detailed status about the data transfer process. This field is not returned in the response until the drive is in the Transferring state. :param str drive_header_hash: The drive header hash value. :param str drive_id: The drive's hardware serial number, without spaces. :param str error_log_uri: A URI that points to the blob containing the error log for the data transfer operation. :param str manifest_file: The relative path of the manifest file on the drive. :param str manifest_hash: The Base16-encoded MD5 hash of the manifest file on the drive. :param str manifest_uri: A URI that points to the blob containing the drive manifest file. :param int percent_complete: Percentage completed for the drive. :param str state: The drive's current state. :param str verbose_log_uri: A URI that points to the blob containing the verbose log for the data transfer operation. """ if bit_locker_key is not None: pulumi.set(__self__, "bit_locker_key", bit_locker_key) if bytes_succeeded is not None: pulumi.set(__self__, "bytes_succeeded", bytes_succeeded) if copy_status is not None: pulumi.set(__self__, "copy_status", copy_status) if drive_header_hash is not None: pulumi.set(__self__, "drive_header_hash", drive_header_hash) if drive_id is not None: pulumi.set(__self__, "drive_id", drive_id) if error_log_uri is not None: pulumi.set(__self__, "error_log_uri", error_log_uri) if manifest_file is not None: pulumi.set(__self__, "manifest_file", manifest_file) if manifest_hash is not None: pulumi.set(__self__, "manifest_hash", manifest_hash) if manifest_uri is not None: pulumi.set(__self__, "manifest_uri", manifest_uri) if percent_complete is not None: pulumi.set(__self__, "percent_complete", percent_complete) if state is not None: pulumi.set(__self__, "state", state) if verbose_log_uri is not None: pulumi.set(__self__, "verbose_log_uri", verbose_log_uri) @property @pulumi.getter(name="bitLockerKey") def bit_locker_key(self) -> Optional[str]: """ The BitLocker key used to encrypt the drive. """ return pulumi.get(self, "bit_locker_key") @property @pulumi.getter(name="bytesSucceeded") def bytes_succeeded(self) -> Optional[int]: """ Bytes successfully transferred for the drive. """ return pulumi.get(self, "bytes_succeeded") @property @pulumi.getter(name="copyStatus") def copy_status(self) -> Optional[str]: """ Detailed status about the data transfer process. This field is not returned in the response until the drive is in the Transferring state. """ return pulumi.get(self, "copy_status") @property @pulumi.getter(name="driveHeaderHash") def drive_header_hash(self) -> Optional[str]: """ The drive header hash value. """ return pulumi.get(self, "drive_header_hash") @property @pulumi.getter(name="driveId") def drive_id(self) -> Optional[str]: """ The drive's hardware serial number, without spaces. """ return pulumi.get(self, "drive_id") @property @pulumi.getter(name="errorLogUri") def error_log_uri(self) -> Optional[str]: """ A URI that points to the blob containing the error log for the data transfer operation. """ return pulumi.get(self, "error_log_uri") @property @pulumi.getter(name="manifestFile") def manifest_file(self) -> Optional[str]: """ The relative path of the manifest file on the drive. """ return pulumi.get(self, "manifest_file") @property @pulumi.getter(name="manifestHash") def manifest_hash(self) -> Optional[str]: """ The Base16-encoded MD5 hash of the manifest file on the drive. """ return pulumi.get(self, "manifest_hash") @property @pulumi.getter(name="manifestUri") def manifest_uri(self) -> Optional[str]: """ A URI that points to the blob containing the drive manifest file. """ return pulumi.get(self, "manifest_uri") @property @pulumi.getter(name="percentComplete") def percent_complete(self) -> Optional[int]: """ Percentage completed for the drive. """ return pulumi.get(self, "percent_complete") @property @pulumi.getter def state(self) -> Optional[str]: """ The drive's current state. """ return pulumi.get(self, "state") @property @pulumi.getter(name="verboseLogUri") def verbose_log_uri(self) -> Optional[str]: """ A URI that points to the blob containing the verbose log for the data transfer operation. """ return pulumi.get(self, "verbose_log_uri") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ExportResponse(dict): """ A property containing information about the blobs to be exported for an export job. This property is required for export jobs, but must not be specified for import jobs. """ def __init__(__self__, *, blob_listblob_path: Optional[str] = None, blob_path: Optional[Sequence[str]] = None, blob_path_prefix: Optional[Sequence[str]] = None): """ A property containing information about the blobs to be exported for an export job. This property is required for export jobs, but must not be specified for import jobs. :param str blob_listblob_path: The relative URI to the block blob that contains the list of blob paths or blob path prefixes as defined above, beginning with the container name. If the blob is in root container, the URI must begin with $root. :param Sequence[str] blob_path: A collection of blob-path strings. :param Sequence[str] blob_path_prefix: A collection of blob-prefix strings. """ if blob_listblob_path is not None: pulumi.set(__self__, "blob_listblob_path", blob_listblob_path) if blob_path is not None: pulumi.set(__self__, "blob_path", blob_path) if blob_path_prefix is not None: pulumi.set(__self__, "blob_path_prefix", blob_path_prefix) @property @pulumi.getter(name="blobListblobPath") def blob_listblob_path(self) -> Optional[str]: """ The relative URI to the block blob that contains the list of blob paths or blob path prefixes as defined above, beginning with the container name. If the blob is in root container, the URI must begin with $root. """ return pulumi.get(self, "blob_listblob_path") @property @pulumi.getter(name="blobPath") def blob_path(self) -> Optional[Sequence[str]]: """ A collection of blob-path strings. """ return pulumi.get(self, "blob_path") @property @pulumi.getter(name="blobPathPrefix") def blob_path_prefix(self) -> Optional[Sequence[str]]: """ A collection of blob-prefix strings. """ return pulumi.get(self, "blob_path_prefix") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class JobDetailsResponse(dict): """ Specifies the job properties """ def __init__(__self__, *, backup_drive_manifest: Optional[bool] = None, cancel_requested: Optional[bool] = None, delivery_package: Optional['outputs.PackageInfomationResponse'] = None, diagnostics_path: Optional[str] = None, drive_list: Optional[Sequence['outputs.DriveStatusResponse']] = None, export: Optional['outputs.ExportResponse'] = None, incomplete_blob_list_uri: Optional[str] = None, job_type: Optional[str] = None, log_level: Optional[str] = None, percent_complete: Optional[int] = None, provisioning_state: Optional[str] = None, return_address: Optional['outputs.ReturnAddressResponse'] = None, return_package: Optional['outputs.PackageInfomationResponse'] = None, return_shipping: Optional['outputs.ReturnShippingResponse'] = None, shipping_information: Optional['outputs.ShippingInformationResponse'] = None, state: Optional[str] = None, storage_account_id: Optional[str] = None): """ Specifies the job properties :param bool backup_drive_manifest: Default value is false. Indicates whether the manifest files on the drives should be copied to block blobs. :param bool cancel_requested: Indicates whether a request has been submitted to cancel the job. :param 'PackageInfomationResponseArgs' delivery_package: Contains information about the package being shipped by the customer to the Microsoft data center. :param str diagnostics_path: The virtual blob directory to which the copy logs and backups of drive manifest files (if enabled) will be stored. :param Sequence['DriveStatusResponseArgs'] drive_list: List of up to ten drives that comprise the job. The drive list is a required element for an import job; it is not specified for export jobs. :param 'ExportResponseArgs' export: A property containing information about the blobs to be exported for an export job. This property is included for export jobs only. :param str incomplete_blob_list_uri: A blob path that points to a block blob containing a list of blob names that were not exported due to insufficient drive space. If all blobs were exported successfully, then this element is not included in the response. :param str job_type: The type of job :param str log_level: Default value is Error. Indicates whether error logging or verbose logging will be enabled. :param int percent_complete: Overall percentage completed for the job. :param str provisioning_state: Specifies the provisioning state of the job. :param 'ReturnAddressResponseArgs' return_address: Specifies the return address information for the job. :param 'PackageInfomationResponseArgs' return_package: Contains information about the package being shipped from the Microsoft data center to the customer to return the drives. The format is the same as the deliveryPackage property above. This property is not included if the drives have not yet been returned. :param 'ReturnShippingResponseArgs' return_shipping: Specifies the return carrier and customer's account with the carrier. :param 'ShippingInformationResponseArgs' shipping_information: Contains information about the Microsoft datacenter to which the drives should be shipped. :param str state: Current state of the job. :param str storage_account_id: The resource identifier of the storage account where data will be imported to or exported from. """ if backup_drive_manifest is not None: pulumi.set(__self__, "backup_drive_manifest", backup_drive_manifest) if cancel_requested is not None: pulumi.set(__self__, "cancel_requested", cancel_requested) if delivery_package is not None: pulumi.set(__self__, "delivery_package", delivery_package) if diagnostics_path is not None: pulumi.set(__self__, "diagnostics_path", diagnostics_path) if drive_list is not None: pulumi.set(__self__, "drive_list", drive_list) if export is not None: pulumi.set(__self__, "export", export) if incomplete_blob_list_uri is not None: pulumi.set(__self__, "incomplete_blob_list_uri", incomplete_blob_list_uri) if job_type is not None: pulumi.set(__self__, "job_type", job_type) if log_level is not None: pulumi.set(__self__, "log_level", log_level) if percent_complete is not None: pulumi.set(__self__, "percent_complete", percent_complete) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if return_address is not None: pulumi.set(__self__, "return_address", return_address) if return_package is not None: pulumi.set(__self__, "return_package", return_package) if return_shipping is not None: pulumi.set(__self__, "return_shipping", return_shipping) if shipping_information is not None: pulumi.set(__self__, "shipping_information", shipping_information) if state is not None: pulumi.set(__self__, "state", state) if storage_account_id is not None: pulumi.set(__self__, "storage_account_id", storage_account_id) @property @pulumi.getter(name="backupDriveManifest") def backup_drive_manifest(self) -> Optional[bool]: """ Default value is false. Indicates whether the manifest files on the drives should be copied to block blobs. """ return pulumi.get(self, "backup_drive_manifest") @property @pulumi.getter(name="cancelRequested") def cancel_requested(self) -> Optional[bool]: """ Indicates whether a request has been submitted to cancel the job. """ return pulumi.get(self, "cancel_requested") @property @pulumi.getter(name="deliveryPackage") def delivery_package(self) -> Optional['outputs.PackageInfomationResponse']: """ Contains information about the package being shipped by the customer to the Microsoft data center. """ return pulumi.get(self, "delivery_package") @property @pulumi.getter(name="diagnosticsPath") def diagnostics_path(self) -> Optional[str]: """ The virtual blob directory to which the copy logs and backups of drive manifest files (if enabled) will be stored. """ return pulumi.get(self, "diagnostics_path") @property @pulumi.getter(name="driveList") def drive_list(self) -> Optional[Sequence['outputs.DriveStatusResponse']]: """ List of up to ten drives that comprise the job. The drive list is a required element for an import job; it is not specified for export jobs. """ return pulumi.get(self, "drive_list") @property @pulumi.getter def export(self) -> Optional['outputs.ExportResponse']: """ A property containing information about the blobs to be exported for an export job. This property is included for export jobs only. """ return pulumi.get(self, "export") @property @pulumi.getter(name="incompleteBlobListUri") def incomplete_blob_list_uri(self) -> Optional[str]: """ A blob path that points to a block blob containing a list of blob names that were not exported due to insufficient drive space. If all blobs were exported successfully, then this element is not included in the response. """ return pulumi.get(self, "incomplete_blob_list_uri") @property @pulumi.getter(name="jobType") def job_type(self) -> Optional[str]: """ The type of job """ return pulumi.get(self, "job_type") @property @pulumi.getter(name="logLevel") def log_level(self) -> Optional[str]: """ Default value is Error. Indicates whether error logging or verbose logging will be enabled. """ return pulumi.get(self, "log_level") @property @pulumi.getter(name="percentComplete") def percent_complete(self) -> Optional[int]: """ Overall percentage completed for the job. """ return pulumi.get(self, "percent_complete") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Specifies the provisioning state of the job. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="returnAddress") def return_address(self) -> Optional['outputs.ReturnAddressResponse']: """ Specifies the return address information for the job. """ return pulumi.get(self, "return_address") @property @pulumi.getter(name="returnPackage") def return_package(self) -> Optional['outputs.PackageInfomationResponse']: """ Contains information about the package being shipped from the Microsoft data center to the customer to return the drives. The format is the same as the deliveryPackage property above. This property is not included if the drives have not yet been returned. """ return pulumi.get(self, "return_package") @property @pulumi.getter(name="returnShipping") def return_shipping(self) -> Optional['outputs.ReturnShippingResponse']: """ Specifies the return carrier and customer's account with the carrier. """ return pulumi.get(self, "return_shipping") @property @pulumi.getter(name="shippingInformation") def shipping_information(self) -> Optional['outputs.ShippingInformationResponse']: """ Contains information about the Microsoft datacenter to which the drives should be shipped. """ return pulumi.get(self, "shipping_information") @property @pulumi.getter def state(self) -> Optional[str]: """ Current state of the job. """ return pulumi.get(self, "state") @property @pulumi.getter(name="storageAccountId") def storage_account_id(self) -> Optional[str]: """ The resource identifier of the storage account where data will be imported to or exported from. """ return pulumi.get(self, "storage_account_id") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class PackageInfomationResponse(dict): """ Contains information about the package being shipped by the customer to the Microsoft data center. """ def __init__(__self__, *, carrier_name: str, drive_count: int, ship_date: str, tracking_number: str): """ Contains information about the package being shipped by the customer to the Microsoft data center. :param str carrier_name: The name of the carrier that is used to ship the import or export drives. :param int drive_count: The number of drives included in the package. :param str ship_date: The date when the package is shipped. :param str tracking_number: The tracking number of the package. """ pulumi.set(__self__, "carrier_name", carrier_name) pulumi.set(__self__, "drive_count", drive_count) pulumi.set(__self__, "ship_date", ship_date) pulumi.set(__self__, "tracking_number", tracking_number) @property @pulumi.getter(name="carrierName") def carrier_name(self) -> str: """ The name of the carrier that is used to ship the import or export drives. """ return pulumi.get(self, "carrier_name") @property @pulumi.getter(name="driveCount") def drive_count(self) -> int: """ The number of drives included in the package. """ return pulumi.get(self, "drive_count") @property @pulumi.getter(name="shipDate") def ship_date(self) -> str: """ The date when the package is shipped. """ return pulumi.get(self, "ship_date") @property @pulumi.getter(name="trackingNumber") def tracking_number(self) -> str: """ The tracking number of the package. """ return pulumi.get(self, "tracking_number") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ReturnAddressResponse(dict): """ Specifies the return address information for the job. """ def __init__(__self__, *, city: str, country_or_region: str, email: str, phone: str, postal_code: str, recipient_name: str, street_address1: str, state_or_province: Optional[str] = None, street_address2: Optional[str] = None): """ Specifies the return address information for the job. :param str city: The city name to use when returning the drives. :param str country_or_region: The country or region to use when returning the drives. :param str email: Email address of the recipient of the returned drives. :param str phone: Phone number of the recipient of the returned drives. :param str postal_code: The postal code to use when returning the drives. :param str recipient_name: The name of the recipient who will receive the hard drives when they are returned. :param str street_address1: The first line of the street address to use when returning the drives. :param str state_or_province: The state or province to use when returning the drives. :param str street_address2: The second line of the street address to use when returning the drives. """ pulumi.set(__self__, "city", city) pulumi.set(__self__, "country_or_region", country_or_region) pulumi.set(__self__, "email", email) pulumi.set(__self__, "phone", phone) pulumi.set(__self__, "postal_code", postal_code) pulumi.set(__self__, "recipient_name", recipient_name) pulumi.set(__self__, "street_address1", street_address1) if state_or_province is not None: pulumi.set(__self__, "state_or_province", state_or_province) if street_address2 is not None: pulumi.set(__self__, "street_address2", street_address2) @property @pulumi.getter def city(self) -> str: """ The city name to use when returning the drives. """ return pulumi.get(self, "city") @property @pulumi.getter(name="countryOrRegion") def country_or_region(self) -> str: """ The country or region to use when returning the drives. """ return pulumi.get(self, "country_or_region") @property @pulumi.getter def email(self) -> str: """ Email address of the recipient of the returned drives. """ return pulumi.get(self, "email") @property @pulumi.getter def phone(self) -> str: """ Phone number of the recipient of the returned drives. """ return pulumi.get(self, "phone") @property @pulumi.getter(name="postalCode") def postal_code(self) -> str: """ The postal code to use when returning the drives. """ return pulumi.get(self, "postal_code") @property @pulumi.getter(name="recipientName") def recipient_name(self) -> str: """ The name of the recipient who will receive the hard drives when they are returned. """ return pulumi.get(self, "recipient_name") @property @pulumi.getter(name="streetAddress1") def street_address1(self) -> str: """ The first line of the street address to use when returning the drives. """ return pulumi.get(self, "street_address1") @property @pulumi.getter(name="stateOrProvince") def state_or_province(self) -> Optional[str]: """ The state or province to use when returning the drives. """ return pulumi.get(self, "state_or_province") @property @pulumi.getter(name="streetAddress2") def street_address2(self) -> Optional[str]: """ The second line of the street address to use when returning the drives. """ return pulumi.get(self, "street_address2") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ReturnShippingResponse(dict): """ Specifies the return carrier and customer's account with the carrier. """ def __init__(__self__, *, carrier_account_number: str, carrier_name: str): """ Specifies the return carrier and customer's account with the carrier. :param str carrier_account_number: The customer's account number with the carrier. :param str carrier_name: The carrier's name. """ pulumi.set(__self__, "carrier_account_number", carrier_account_number) pulumi.set(__self__, "carrier_name", carrier_name) @property @pulumi.getter(name="carrierAccountNumber") def carrier_account_number(self) -> str: """ The customer's account number with the carrier. """ return pulumi.get(self, "carrier_account_number") @property @pulumi.getter(name="carrierName") def carrier_name(self) -> str: """ The carrier's name. """ return pulumi.get(self, "carrier_name") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ShippingInformationResponse(dict): """ Contains information about the Microsoft datacenter to which the drives should be shipped. """ def __init__(__self__, *, city: str, country_or_region: str, postal_code: str, recipient_name: str, state_or_province: str, street_address1: str, phone: Optional[str] = None, street_address2: Optional[str] = None): """ Contains information about the Microsoft datacenter to which the drives should be shipped. :param str city: The city name to use when returning the drives. :param str country_or_region: The country or region to use when returning the drives. :param str postal_code: The postal code to use when returning the drives. :param str recipient_name: The name of the recipient who will receive the hard drives when they are returned. :param str state_or_province: The state or province to use when returning the drives. :param str street_address1: The first line of the street address to use when returning the drives. :param str phone: Phone number of the recipient of the returned drives. :param str street_address2: The second line of the street address to use when returning the drives. """ pulumi.set(__self__, "city", city) pulumi.set(__self__, "country_or_region", country_or_region) pulumi.set(__self__, "postal_code", postal_code) pulumi.set(__self__, "recipient_name", recipient_name) pulumi.set(__self__, "state_or_province", state_or_province) pulumi.set(__self__, "street_address1", street_address1) if phone is not None: pulumi.set(__self__, "phone", phone) if street_address2 is not None: pulumi.set(__self__, "street_address2", street_address2) @property @pulumi.getter def city(self) -> str: """ The city name to use when returning the drives. """ return pulumi.get(self, "city") @property @pulumi.getter(name="countryOrRegion") def country_or_region(self) -> str: """ The country or region to use when returning the drives. """ return pulumi.get(self, "country_or_region") @property @pulumi.getter(name="postalCode") def postal_code(self) -> str: """ The postal code to use when returning the drives. """ return pulumi.get(self, "postal_code") @property @pulumi.getter(name="recipientName") def recipient_name(self) -> str: """ The name of the recipient who will receive the hard drives when they are returned. """ return pulumi.get(self, "recipient_name") @property @pulumi.getter(name="stateOrProvince") def state_or_province(self) -> str: """ The state or province to use when returning the drives. """ return pulumi.get(self, "state_or_province") @property @pulumi.getter(name="streetAddress1") def street_address1(self) -> str: """ The first line of the street address to use when returning the drives. """ return pulumi.get(self, "street_address1") @property @pulumi.getter def phone(self) -> Optional[str]: """ Phone number of the recipient of the returned drives. """ return pulumi.get(self, "phone") @property @pulumi.getter(name="streetAddress2") def street_address2(self) -> Optional[str]: """ The second line of the street address to use when returning the drives. """ return pulumi.get(self, "street_address2") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop
40.611041
319
0.651157
78ec3c249f67bc2058141e704634f42967c3cc0d
653
py
Python
python/sorting/quicksort_test.py
giubueno/algorithms
950730befc4db7e85838e93d2bd4068abaa176a7
[ "MIT" ]
2
2021-02-26T11:51:29.000Z
2021-02-26T11:51:43.000Z
python/sorting/quicksort_test.py
giubueno/algorithms
950730befc4db7e85838e93d2bd4068abaa176a7
[ "MIT" ]
null
null
null
python/sorting/quicksort_test.py
giubueno/algorithms
950730befc4db7e85838e93d2bd4068abaa176a7
[ "MIT" ]
null
null
null
import unittest from Quicksort import sortArray class TestStringMethods(unittest.TestCase): def test_quicksort_simple(self): self.assertListEqual(sortArray([1,3,5,0]), [0,1,3,5]) def test_quicksort_repeation(self): self.assertListEqual(sortArray([0,3,5,0]), [0,0,3,5]) def test_quicksort_sorted(self): self.assertListEqual(sortArray([0,1,2,3,4]), [0,1,2,3,4]) def test_quicksort_reverse(self): self.assertListEqual(sortArray([4,3,2,1,0]), [0,1,2,3,4]) def test_quicksort_bin(self): self.assertListEqual(sortArray([1,0,0,1,1]), [0,0,1,1,1]) if __name__ == '__main__': unittest.main()
29.681818
65
0.669219
ceee26367273e233da6b1a8de4405aa732359f5a
1,409
py
Python
datastore/shared/util/__init__.py
jsangmeister/openslides-datastore-service
7170f008ccac0b31c37ffeee083b972bc314660d
[ "MIT" ]
2
2020-01-20T13:56:28.000Z
2020-02-17T10:56:26.000Z
datastore/shared/util/__init__.py
jsangmeister/openslides-datastore-service
7170f008ccac0b31c37ffeee083b972bc314660d
[ "MIT" ]
122
2020-01-16T15:13:37.000Z
2022-03-17T10:32:47.000Z
datastore/shared/util/__init__.py
jsangmeister/openslides-datastore-service
7170f008ccac0b31c37ffeee083b972bc314660d
[ "MIT" ]
7
2020-02-20T12:04:17.000Z
2021-11-23T17:54:33.000Z
from ..typing import JSON, Collection, Field, Fqid, Id, Model, Position # noqa from .deleted_models_behaviour import ( # noqa DeletedModelsBehaviour, get_exception_for_deleted_models_behaviour, ) from .exceptions import ( # noqa BadCodingError, DatastoreException, DatastoreNotEmpty, InvalidDatastoreState, InvalidFormat, ModelDoesNotExist, ModelExists, ModelLocked, ModelNotDeleted, ) from .filter import ( # noqa And, Filter, FilterOperator, Not, Or, filter_definitions_schema, ) from .key_strings import ( # noqa KEYSEPARATOR, META_DELETED, META_FIELD_PREFIX, META_POSITION, is_reserved_field, strip_reserved_fields, ) from .key_transforms import ( # noqa collection_and_id_from_fqid, collection_from_collectionfield, collection_from_fqid, collectionfield_and_fqid_from_fqfield, collectionfield_from_fqid_and_field, field_from_collectionfield, fqfield_from_fqid_and_field, fqid_from_collection_and_id, id_from_fqid, ) from .key_types import ( # noqa KEY_TYPE, InvalidKeyFormat, assert_is_collection, assert_is_collectionfield, assert_is_field, assert_is_fqfield, assert_is_fqid, assert_is_id, assert_string, get_key_type, ) from .logging import logger # noqa from .self_validating_dataclass import SelfValidatingDataclass # noqa
24.293103
79
0.741661
7e9a70a8f79e27679402473b54012b84c6e87357
1,725
py
Python
backend-tests/tests/api/deviceauth.py
spockfish/mender-integration
09441e4ec88c837605aa12d70db4faa8f1a16b59
[ "Apache-2.0" ]
null
null
null
backend-tests/tests/api/deviceauth.py
spockfish/mender-integration
09441e4ec88c837605aa12d70db4faa8f1a16b59
[ "Apache-2.0" ]
null
null
null
backend-tests/tests/api/deviceauth.py
spockfish/mender-integration
09441e4ec88c837605aa12d70db4faa8f1a16b59
[ "Apache-2.0" ]
1
2019-05-10T14:25:13.000Z
2019-05-10T14:25:13.000Z
# Copyright 2018 Northern.tech AS # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from Crypto.PublicKey import RSA from Crypto.Signature import PKCS1_v1_5 from Crypto.Hash import SHA256 from base64 import b64encode, urlsafe_b64decode, urlsafe_b64encode import json import api.client URL_MGMT = api.client.GATEWAY_URL + '/api/management/v1/devauth' URL_DEVICES = api.client.GATEWAY_URL + '/api/devices/v1/authentication' URL_LIST_DEVICES = '/devices' URL_AUTH_REQS = '/auth_requests' def auth_req(id_data, pubkey, privkey, tenant_token=''): payload = { "id_data": json.dumps(id_data), "tenant_token": tenant_token, "pubkey": pubkey, } signature = sign_data(json.dumps(payload), privkey) return payload, {'X-MEN-Signature': signature} def get_keypair(): private = RSA.generate(1024) public = private.publickey() return private.exportKey().decode(), public.exportKey().decode() def sign_data(data, privkey): rsakey = RSA.importKey(privkey) signer = PKCS1_v1_5.new(rsakey) digest = SHA256.new() if type(data) is str: data = data.encode() digest.update(data) sign = signer.sign(digest) return b64encode(sign)
33.173077
77
0.717101
e94ef6a926e4f152f4b62d0b6c4e3cb379ebd6bc
3,065
py
Python
graphviz/lang.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
1
2022-01-25T22:52:58.000Z
2022-01-25T22:52:58.000Z
graphviz/lang.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
graphviz/lang.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
# lang.py - dot language creation helpers """Quote strings to be valid DOT identifiers, assemble attribute lists.""" import re from . import tools __all__ = ['quote', 'quote_edge', 'a_list', 'attr_list'] # http://www.graphviz.org/doc/info/lang.html ID = re.compile(r'([a-zA-Z_][a-zA-Z0-9_]*|-?(\.\d+|\d+(\.\d*)?))$') KEYWORD = re.compile(r'((node)|(edge)|(graph)|(digraph)|(subgraph)|(strict))$', re.IGNORECASE) HTML_STRING = re.compile(r'<.*>$', re.DOTALL) COMPASS = re.compile(r'((n)|(ne)|(e)|(se)|(s)|(sw)|(w)|(nw)|(c)|(_))$') def quote(identifier, valid_id=ID.match, dot_keyword=KEYWORD.match, html=HTML_STRING.match): """Return DOT identifier from string, quote if needed. >>> quote('') '""' >>> quote('spam') 'spam' >>> quote('spam spam') '"spam spam"' >>> quote('-4.2') '-4.2' >>> quote('.42') '.42' >>> quote('<<b>spam</b>>') '<<b>spam</b>>' """ if html(identifier): pass elif not valid_id(identifier) or dot_keyword(identifier): return '"%s"' % identifier.replace('"', '\\"') return identifier def quote_edge(identifier): """Return DOT edge statement node_id from string, quote if needed. >>> quote_edge('spam') 'spam' >>> quote_edge('spam spam:eggs eggs') '"spam spam":"eggs eggs"' >>> quote_edge('spam:eggs:s') 'spam:eggs:s' """ node, _, rest = identifier.partition(':') parts = [quote(node)] if rest: port, _, compass = rest.partition(':') parts.append(quote(port)) if compass: parts.append(compass) return ':'.join(parts) def a_list(label=None, kwargs=None, attributes=None): """Return assembled DOT a_list string. >>> a_list('spam', {'spam': None, 'ham': 'ham ham', 'eggs': ''}) 'label=spam eggs="" ham="ham ham"' """ result = ['label=%s' % quote(label)] if label is not None else [] if kwargs: items = ['%s=%s' % (quote(k), quote(v)) for k, v in tools.mapping_items(kwargs) if v is not None] result.extend(items) if attributes: if hasattr(attributes, 'items'): attributes = tools.mapping_items(attributes) items = ['%s=%s' % (quote(k), quote(v)) for k, v in attributes if v is not None] result.extend(items) return ' '.join(result) def attr_list(label=None, kwargs=None, attributes=None): """Return assembled DOT attribute list string. Sorts kwargs and attributes if they are plain dicts (to avoid unpredictable order from hash randomization in Python 3 versions). >>> attr_list() '' >>> attr_list('spam spam', kwargs={'eggs': 'eggs', 'ham': 'ham ham'}) ' [label="spam spam" eggs=eggs ham="ham ham"]' >>> attr_list(kwargs={'spam': None, 'eggs': ''}) ' [eggs=""]' """ content = a_list(label, kwargs, attributes) if not content: return '' return ' [%s]' % content
27.366071
95
0.555628
901c98564713e19b7ad2c3415461ff46eae08ecc
8,664
py
Python
python/cusignal/convolution/correlate.py
sean-frye/cusignal
5e12771ca47e7ee653ebe79b236f86ce428ace84
[ "Apache-2.0" ]
null
null
null
python/cusignal/convolution/correlate.py
sean-frye/cusignal
5e12771ca47e7ee653ebe79b236f86ce428ace84
[ "Apache-2.0" ]
null
null
null
python/cusignal/convolution/correlate.py
sean-frye/cusignal
5e12771ca47e7ee653ebe79b236f86ce428ace84
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019-2020, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cupy as cp from . import _convolution_cuda from .convolve import convolve from .convolution_utils import _reverse_and_conj, _inputs_swap_needed _modedict = {"valid": 0, "same": 1, "full": 2} def correlate( in1, in2, mode="full", method="auto", ): r""" Cross-correlate two N-dimensional arrays. Cross-correlate `in1` and `in2`, with the output size determined by the `mode` argument. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear cross-correlation of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. In 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. method : str {'auto', 'direct', 'fft'}, optional A string indicating which method to use to calculate the correlation. ``direct`` The correlation is determined directly from sums, the definition of correlation. ``fft`` The Fast Fourier Transform is used to perform the correlation more quickly (only available for numerical arrays.) ``auto`` Automatically chooses direct or Fourier method based on an estimate of which is faster (default). See `convolve` Notes for more detail. Returns ------- correlate : array An N-dimensional array containing a subset of the discrete linear cross-correlation of `in1` with `in2`. See Also -------- choose_conv_method : contains more documentation on `method`. Notes ----- The correlation z of two d-dimensional arrays x and y is defined as:: z[...,k,...] = sum[..., i_l, ...] x[..., i_l,...] * conj(y[..., i_l - k,...]) This way, if x and y are 1-D arrays and ``z = correlate(x, y, 'full')`` then .. math:: z[k] = (x * y)(k - N + 1) = \sum_{l=0}^{||x||-1}x_l y_{l-k+N-1}^{*} for :math:`k = 0, 1, ..., ||x|| + ||y|| - 2` where :math:`||x||` is the length of ``x``, :math:`N = \max(||x||,||y||)`, and :math:`y_m` is 0 when m is outside the range of y. ``method='fft'`` only works for numerical arrays as it relies on `fftconvolve`. In certain cases (i.e., arrays of objects or when rounding integers can lose precision), ``method='direct'`` is always used. Examples -------- Implement a matched filter using cross-correlation, to recover a signal that has passed through a noisy channel. >>> import cusignal >>> import cupy as cp >>> sig = cp.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128) >>> sig_noise = sig + cp.random.randn(len(sig)) >>> corr = cusignal.correlate(sig_noise, cp.ones(128), mode='same') / 128 >>> import matplotlib.pyplot as plt >>> clock = cp.arange(64, len(sig), 128) >>> fig, (cp.asnumpy(ax_orig), cp.asnumpy(ax_noise), \ cp.asnumpy(ax_corr)) = plt.subplots(3, 1, sharex=True) >>> ax_orig.plot(sig) >>> ax_orig.plot(clock, sig[clock], 'ro') >>> ax_orig.set_title('Original signal') >>> ax_noise.plot(cp.asnumpy(sig_noise)) >>> ax_noise.set_title('Signal with noise') >>> ax_corr.plot(cp.asnumpy(corr)) >>> ax_corr.plot(cp.asnumpy(clock), cp.asnumpy(corr[clock]), 'ro') >>> ax_corr.axhline(0.5, ls=':') >>> ax_corr.set_title('Cross-correlated with rectangular pulse') >>> ax_orig.margins(0, 0.1) >>> fig.tight_layout() >>> fig.show() """ in1 = cp.asarray(in1) in2 = cp.asarray(in2) if in1.ndim == in2.ndim == 0: return in1 * in2.conj() elif in1.ndim != in2.ndim: raise ValueError("in1 and in2 should have the same dimensionality") # this either calls fftconvolve or this function with method=='direct' if method in ("fft", "auto"): return convolve(in1, _reverse_and_conj(in2), mode, method) elif method == "direct": if in1.ndim > 1: raise ValueError("Direct method is only implemented for 1D") swapped_inputs = in2.size > in1.size if swapped_inputs: in1, in2 = in2, in1 return _convolution_cuda._convolve( in1, in2, False, swapped_inputs, mode ) else: raise ValueError( "Acceptable method flags are 'auto'," " 'direct', or 'fft'." ) def correlate2d( in1, in2, mode="full", boundary="fill", fillvalue=0, ): """ Cross-correlate two 2-dimensional arrays. Cross correlate `in1` and `in2` with output size determined by `mode`, and boundary conditions determined by `boundary` and `fillvalue`. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear cross-correlation of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. In 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. boundary : str {'fill', 'wrap', 'symm'}, optional A flag indicating how to handle boundaries: ``fill`` pad input arrays with fillvalue. (default) ``wrap`` circular boundary conditions. ``symm`` symmetrical boundary conditions. fillvalue : scalar, optional Value to fill pad input arrays with. Default is 0. Returns ------- correlate2d : ndarray A 2-dimensional array containing a subset of the discrete linear cross-correlation of `in1` with `in2`. Examples -------- Use 2D cross-correlation to find the location of a template in a noisy image: >>> import cusignal >>> import cupy as cp >>> from scipy import misc >>> face = cp.asarray(misc.face(gray=True) - misc.face(gray=True).mean()) >>> template = cp.copy(face[300:365, 670:750]) # right eye >>> template -= template.mean() >>> face = face + cp.random.randn(*face.shape) * 50 # add noise >>> corr = cusignal.correlate2d(face, template, boundary='symm', \ mode='same') >>> y, x = cp.unravel_index(cp.argmax(corr), corr.shape) # find the match >>> import matplotlib.pyplot as plt >>> fig, (cp.asnumpy(ax_orig), cp.asnumpy(ax_template), \ cp.asnumpy(ax_corr)) = plt.subplots(3, 1, figsize=(6, 15)) >>> ax_orig.imshow(cp.asnumpy(face), cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_template.imshow(cp.asnumpy(template), cmap='gray') >>> ax_template.set_title('Template') >>> ax_template.set_axis_off() >>> ax_corr.imshow(cp.asnumpy(corr), cmap='gray') >>> ax_corr.set_title('Cross-correlation') >>> ax_corr.set_axis_off() >>> ax_orig.plot(cp.asnumpy(x), cp.asnumpy(y), 'ro') >>> fig.show() """ in1 = cp.asarray(in1) in2 = cp.asarray(in2) if not in1.ndim == in2.ndim == 2: raise ValueError("correlate2d inputs must both be 2D arrays") swapped_inputs = _inputs_swap_needed(mode, in1.shape, in2.shape) if swapped_inputs: in1, in2 = in2, in1 out = _convolution_cuda._convolve2d( in1, in2.conj(), 0, mode, boundary, fillvalue, ) if swapped_inputs: out = out[::-1, ::-1] return out
34.245059
79
0.610688
e756467804095e36c04994392f239e08007f49cf
331
py
Python
own_practice/one_eleven.py
Ellis0817/Introduction-to-Programming-Using-Python
1882a2a846162d5ff56d4d56c3940b638ef408bd
[ "MIT" ]
null
null
null
own_practice/one_eleven.py
Ellis0817/Introduction-to-Programming-Using-Python
1882a2a846162d5ff56d4d56c3940b638ef408bd
[ "MIT" ]
4
2019-11-07T12:32:19.000Z
2020-07-19T14:04:44.000Z
own_practice/one_eleven.py
Ellis0817/Introduction-to-Programming-Using-Python
1882a2a846162d5ff56d4d56c3940b638ef408bd
[ "MIT" ]
5
2019-12-04T15:56:55.000Z
2022-01-14T06:19:18.000Z
u""" 程式設計練習題 1-6 1-11 人口推算. 美國人口普查局根據以下假設來推算人口: - 每7秒中有一個小孩出生 - 每13秒鐘有一個人死亡 - 每45秒鐘有一個新移民入境 請撰寫一程式,顯示接下來五年的人口數。假設目前人口為312,032,486,每年有365天。 提示:在Python中,如果兩個整數做除法運算,結果還是整數。小數點會被去掉。比方說,5//4結果會是1 (而不是1.25),而10//4結果會是2(而不是2.5)。 """ print((312032486 + (365 * 24 * 3600) // 7 - (365 * 24 * 3600) // 13 + ( 365 * 24 * 3600) // 45))
20.6875
71
0.664653
4363d545194d4331bed7de71c0b6e6f8c4d9718e
1,805
py
Python
FeiZhai/OK/ZiXun/dongmanzixun/dongmanzixun/spiders/dongzi.py
FSen0/FeiZhai
5fa635551066a1ba2866b345b39ecf13ef070103
[ "Apache-2.0" ]
null
null
null
FeiZhai/OK/ZiXun/dongmanzixun/dongmanzixun/spiders/dongzi.py
FSen0/FeiZhai
5fa635551066a1ba2866b345b39ecf13ef070103
[ "Apache-2.0" ]
null
null
null
FeiZhai/OK/ZiXun/dongmanzixun/dongmanzixun/spiders/dongzi.py
FSen0/FeiZhai
5fa635551066a1ba2866b345b39ecf13ef070103
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import scrapy from dongmanzixun.items import DongmanzixunItem class DongziSpider(scrapy.Spider): name = 'dongzi' allowed_domains = ['news.comicst.com'] start_urls = ['http://news.comicst.com/'] page = 1 url = 'http://news.comicst.com/index.php?page={}' def parse(self, response): #创建一个item对象 item = DongmanzixunItem() #首先找到所有的资讯li /div[3]/div[1]/text():所有标题 li_list = response.xpath('//dl[@class="bbdayy cl"]') #遍历 for li in li_list: #找到简介 dong_jian = response.xpath('//dd[@class="xs2 cl"]/a/text()').extract_first() #资讯主页到详情页的链接 u = li.xpath('./dt/a/@href').extract_first() yield scrapy.Request(url=u,callback=self.parse_detail,meta={'item':item}) if self.page < 5: self.page += 1 hou_url = self.url.format(self.page) yield scrapy.Request(url=hou_url,callback=self.parse) def parse_detail(self,response): #传递过来的item item = response.meta['item'] #资讯类别 item['dong_type'] = '1' # 资讯主页图片 # item['dong_first_url'] = response.xpath('./div[2]/a/img/@src').extract_first() #资讯标题 item['title'] = response.xpath('//div[@class="h hm"]/h1[1]/text()').extract_first() #资讯时间 item['dong_tiem'] = response.xpath('//div[@class="h hm"]/p/text()').extract_first() #资讯作者 item['dong_author'] = response.xpath('//div[@class="h hm"]/p/a/text()').extract_first() #资讯内容 item['dong_content'] = response.xpath('//td[@id="article_content"]//text()').extract() #资讯页图片url item['dong_url'] = response.xpath('//td[@id="article_content"]/p[2]/font/img/@src').extract_first() yield item
35.392157
107
0.573407
cd5af835269313f16b34f389955041a7ae7e45d5
41,423
py
Python
tensorflow/python/framework/tensor_util.py
TOT0RoKR/tensorflow
12c2babf7dccc00c13d6e297c0f792f89f7408aa
[ "Apache-2.0" ]
10
2021-05-25T17:43:04.000Z
2022-03-08T10:46:09.000Z
tensorflow/python/framework/tensor_util.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
1,056
2019-12-15T01:20:31.000Z
2022-02-10T02:06:28.000Z
tensorflow/python/framework/tensor_util.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
6
2016-09-07T04:00:15.000Z
2022-01-12T01:47:38.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities to create TensorProtos.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import six from tensorflow.core.framework import tensor_pb2 from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.types import core from tensorflow.python.types import internal from tensorflow.python.util import compat from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export # Fallback in case fast_tensor_util is not properly compiled. # pylint: disable=g-import-not-at-top try: from tensorflow.python.framework import fast_tensor_util _FAST_TENSOR_UTIL_AVAILABLE = True except ImportError: _FAST_TENSOR_UTIL_AVAILABLE = False # pylint: enable=g-import-not-at-top def ExtractBitsFromFloat16(x): return np.asarray(x, dtype=np.float16).view(np.uint16).item() def SlowAppendFloat16ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.half_val.extend( [ExtractBitsFromFloat16(x) for x in proto_values]) def _MediumAppendFloat16ArrayToTensorProto(tensor_proto, proto_values): # TODO: Remove the conversion if cython supports np.float16_t fast_tensor_util.AppendFloat16ArrayToTensorProto( tensor_proto, np.asarray(proto_values, dtype=np.float16).view(np.uint16)) def ExtractBitsFromBFloat16(x): return np.asarray( x, dtype=dtypes.bfloat16.as_numpy_dtype).view(np.uint16).item() def SlowAppendBFloat16ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.half_val.extend( [ExtractBitsFromBFloat16(x) for x in proto_values]) def FastAppendBFloat16ArrayToTensorProto(tensor_proto, proto_values): fast_tensor_util.AppendBFloat16ArrayToTensorProto( tensor_proto, np.asarray( proto_values, dtype=dtypes.bfloat16.as_numpy_dtype).view(np.uint16)) if _FAST_TENSOR_UTIL_AVAILABLE: _NP_TO_APPEND_FN = { dtypes.bfloat16.as_numpy_dtype: FastAppendBFloat16ArrayToTensorProto, np.float16: _MediumAppendFloat16ArrayToTensorProto, np.float32: fast_tensor_util.AppendFloat32ArrayToTensorProto, np.float64: fast_tensor_util.AppendFloat64ArrayToTensorProto, np.int32: fast_tensor_util.AppendInt32ArrayToTensorProto, np.int64: fast_tensor_util.AppendInt64ArrayToTensorProto, np.uint8: fast_tensor_util.AppendUInt8ArrayToTensorProto, np.uint16: fast_tensor_util.AppendUInt16ArrayToTensorProto, np.uint32: fast_tensor_util.AppendUInt32ArrayToTensorProto, np.uint64: fast_tensor_util.AppendUInt64ArrayToTensorProto, np.int8: fast_tensor_util.AppendInt8ArrayToTensorProto, np.int16: fast_tensor_util.AppendInt16ArrayToTensorProto, np.complex64: fast_tensor_util.AppendComplex64ArrayToTensorProto, np.complex128: fast_tensor_util.AppendComplex128ArrayToTensorProto, np.object: fast_tensor_util.AppendObjectArrayToTensorProto, np.bool: fast_tensor_util.AppendBoolArrayToTensorProto, dtypes.qint8.as_numpy_dtype: fast_tensor_util.AppendInt8ArrayToTensorProto, dtypes.quint8.as_numpy_dtype: fast_tensor_util.AppendUInt8ArrayToTensorProto, dtypes.qint16.as_numpy_dtype: fast_tensor_util.AppendInt16ArrayToTensorProto, dtypes.quint16.as_numpy_dtype: fast_tensor_util.AppendUInt16ArrayToTensorProto, dtypes.qint32.as_numpy_dtype: fast_tensor_util.AppendInt32ArrayToTensorProto, # NOTE(touts): Intentionally no way to feed a DT_BFLOAT16. } else: def SlowAppendFloat32ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.float_val.extend([x.item() for x in proto_values]) def SlowAppendFloat64ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.double_val.extend([x.item() for x in proto_values]) def SlowAppendIntArrayToTensorProto(tensor_proto, proto_values): tensor_proto.int_val.extend([x.item() for x in proto_values]) def SlowAppendInt64ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.int64_val.extend([x.item() for x in proto_values]) def SlowAppendQIntArrayToTensorProto(tensor_proto, proto_values): tensor_proto.int_val.extend([x.item()[0] for x in proto_values]) def SlowAppendUInt32ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.uint32_val.extend([x.item() for x in proto_values]) def SlowAppendUInt64ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.uint64_val.extend([x.item() for x in proto_values]) def SlowAppendComplex64ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.scomplex_val.extend( [v.item() for x in proto_values for v in [x.real, x.imag]]) def SlowAppendComplex128ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.dcomplex_val.extend( [v.item() for x in proto_values for v in [x.real, x.imag]]) def SlowAppendObjectArrayToTensorProto(tensor_proto, proto_values): tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values]) def SlowAppendBoolArrayToTensorProto(tensor_proto, proto_values): tensor_proto.bool_val.extend([x.item() for x in proto_values]) _NP_TO_APPEND_FN = { dtypes.bfloat16.as_numpy_dtype: SlowAppendBFloat16ArrayToTensorProto, np.float16: SlowAppendFloat16ArrayToTensorProto, np.float32: SlowAppendFloat32ArrayToTensorProto, np.float64: SlowAppendFloat64ArrayToTensorProto, np.int32: SlowAppendIntArrayToTensorProto, np.int64: SlowAppendInt64ArrayToTensorProto, np.uint8: SlowAppendIntArrayToTensorProto, np.uint16: SlowAppendIntArrayToTensorProto, np.uint32: SlowAppendUInt32ArrayToTensorProto, np.uint64: SlowAppendUInt64ArrayToTensorProto, np.int8: SlowAppendIntArrayToTensorProto, np.int16: SlowAppendIntArrayToTensorProto, np.complex64: SlowAppendComplex64ArrayToTensorProto, np.complex128: SlowAppendComplex128ArrayToTensorProto, np.object: SlowAppendObjectArrayToTensorProto, np.bool: SlowAppendBoolArrayToTensorProto, dtypes.qint8.as_numpy_dtype: SlowAppendQIntArrayToTensorProto, dtypes.quint8.as_numpy_dtype: SlowAppendQIntArrayToTensorProto, dtypes.qint16.as_numpy_dtype: SlowAppendQIntArrayToTensorProto, dtypes.quint16.as_numpy_dtype: SlowAppendQIntArrayToTensorProto, dtypes.qint32.as_numpy_dtype: SlowAppendQIntArrayToTensorProto, # NOTE(touts): Intentionally no way to feed a DT_BFLOAT16. } def GetFromNumpyDTypeDict(dtype_dict, dtype): # NOTE: dtype_dict.get(dtype) always returns None. for key, val in six.iteritems(dtype_dict): if key == dtype: return val return None def GetNumpyAppendFn(dtype): # numpy dtype for strings are variable length. We can not compare # dtype with a single constant (np.string does not exist) to decide # dtype is a "string" type. We need to compare the dtype.type to be # sure it's a string type. if dtype.type == np.string_ or dtype.type == np.unicode_: if _FAST_TENSOR_UTIL_AVAILABLE: return fast_tensor_util.AppendObjectArrayToTensorProto else: return SlowAppendObjectArrayToTensorProto return GetFromNumpyDTypeDict(_NP_TO_APPEND_FN, dtype) def TensorShapeProtoToList(shape): """Convert a TensorShape to a list. Args: shape: A TensorShapeProto. Returns: List of integers representing the dimensions of the tensor. """ return [dim.size for dim in shape.dim] def _GetDenseDimensions(list_of_lists): """Returns the inferred dense dimensions of a list of lists.""" if not isinstance(list_of_lists, (list, tuple)): return [] elif not list_of_lists: return [0] else: return [len(list_of_lists)] + _GetDenseDimensions(list_of_lists[0]) def _FlattenToStrings(nested_strings): if isinstance(nested_strings, (list, tuple)): for inner in nested_strings: for flattened_string in _FlattenToStrings(inner): yield flattened_string else: yield nested_strings _TENSOR_CONTENT_TYPES = frozenset([ dtypes.float16, dtypes.float32, dtypes.float64, dtypes.int32, dtypes.uint8, dtypes.int16, dtypes.int8, dtypes.int64, dtypes.qint8, dtypes.quint8, dtypes.qint16, dtypes.quint16, dtypes.qint32, dtypes.uint32, dtypes.uint64 ]) # pylint: disable=invalid-name def _check_failed(v): # NB. none of the _check_* functions could raise a ValueError, so # it is safe to use here. raise ValueError(v) def _check_quantized(values): # Cannot rely on `nest` because the leaves are tuples. if not isinstance(values, (list, tuple)): _check_failed(values) if isinstance(values, tuple): _ = [_check_int(v) for v in values] else: _ = [_check_quantized(v) for v in values] def _generate_isinstance_check(expected_types): def inner(values): for v in nest.flatten(values): if not (isinstance(v, expected_types) or (isinstance(v, np.ndarray) and issubclass(v.dtype.type, expected_types))): _check_failed(v) return inner _check_int = _generate_isinstance_check( (compat.integral_types, tensor_shape.Dimension)) _check_float = _generate_isinstance_check(compat.real_types) _check_complex = _generate_isinstance_check(compat.complex_types) _check_str = _generate_isinstance_check(compat.bytes_or_text_types) _check_bool = _generate_isinstance_check(bool) def _check_not_tensor(values): _ = [_check_failed(v) for v in nest.flatten(values) if isinstance(v, ops.Tensor)] # pylint: enable=invalid-name _TF_TO_IS_OK = { dtypes.bool: _check_bool, dtypes.complex128: _check_complex, dtypes.complex64: _check_complex, dtypes.float16: _check_float, dtypes.float32: _check_float, dtypes.float64: _check_float, dtypes.int16: _check_int, dtypes.int32: _check_int, dtypes.int64: _check_int, dtypes.int8: _check_int, dtypes.qint16: _check_quantized, dtypes.qint32: _check_quantized, dtypes.qint8: _check_quantized, dtypes.quint16: _check_quantized, dtypes.quint8: _check_quantized, dtypes.string: _check_str, dtypes.uint16: _check_int, dtypes.uint8: _check_int, dtypes.uint32: _check_int, dtypes.uint64: _check_int, } def _AssertCompatible(values, dtype): if dtype is None: fn = _check_not_tensor else: try: fn = _TF_TO_IS_OK[dtype] except KeyError: # There isn't a specific fn, so we try to do the best possible. if dtype.is_integer: fn = _check_int elif dtype.is_floating: fn = _check_float elif dtype.is_complex: fn = _check_complex elif dtype.is_quantized: fn = _check_quantized else: fn = _check_not_tensor try: fn(values) except ValueError as e: [mismatch] = e.args if dtype is None: raise TypeError("Expected any non-tensor type, got a tensor instead.") else: raise TypeError("Expected %s, got %s of type '%s' instead." % (dtype.name, repr(mismatch), type(mismatch).__name__)) def _is_array_like(obj): # pylint: disable=invalid-name """Check if a given object is array-like.""" if isinstance(obj, ops.Tensor) and not isinstance(obj, ops._EagerTensorBase): # pylint: disable=protected-access # Tensor implements __array__ only so it can inform the user that it is not # a valid array. return False # TODO(slebedev): an object could also implement C-level array interface. if (callable(getattr(obj, "__array__", None)) or isinstance(getattr(obj, "__array_interface__", None), dict)): return True try: memoryview(obj) except TypeError: return False else: return not isinstance(obj, bytes) # pylint: disable=invalid-name @tf_export("make_tensor_proto") def make_tensor_proto(values, dtype=None, shape=None, verify_shape=False, allow_broadcast=False): """Create a TensorProto. In TensorFlow 2.0, representing tensors as protos should no longer be a common workflow. That said, this utility function is still useful for generating TF Serving request protos: ```python request = tensorflow_serving.apis.predict_pb2.PredictRequest() request.model_spec.name = "my_model" request.model_spec.signature_name = "serving_default" request.inputs["images"].CopyFrom(tf.make_tensor_proto(X_new)) ``` `make_tensor_proto` accepts "values" of a python scalar, a python list, a numpy ndarray, or a numpy scalar. If "values" is a python scalar or a python list, make_tensor_proto first convert it to numpy ndarray. If dtype is None, the conversion tries its best to infer the right numpy data type. Otherwise, the resulting numpy array has a compatible data type with the given dtype. In either case above, the numpy ndarray (either the caller provided or the auto-converted) must have the compatible type with dtype. `make_tensor_proto` then converts the numpy array to a tensor proto. If "shape" is None, the resulting tensor proto represents the numpy array precisely. Otherwise, "shape" specifies the tensor's shape and the numpy array can not have more elements than what "shape" specifies. Args: values: Values to put in the TensorProto. dtype: Optional tensor_pb2 DataType value. shape: List of integers representing the dimensions of tensor. verify_shape: Boolean that enables verification of a shape of values. allow_broadcast: Boolean that enables allowing scalars and 1 length vector broadcasting. Cannot be true when verify_shape is true. Returns: A `TensorProto`. Depending on the type, it may contain data in the "tensor_content" attribute, which is not directly useful to Python programs. To access the values you should convert the proto back to a numpy ndarray with `tf.make_ndarray(proto)`. If `values` is a `TensorProto`, it is immediately returned; `dtype` and `shape` are ignored. Raises: TypeError: if unsupported types are provided. ValueError: if arguments have inappropriate values or if verify_shape is True and shape of values is not equals to a shape from the argument. """ if allow_broadcast and verify_shape: raise ValueError("allow_broadcast and verify_shape are not both allowed.") if isinstance(values, tensor_pb2.TensorProto): return values if dtype: dtype = dtypes.as_dtype(dtype) is_quantized = ( dtype in [ dtypes.qint8, dtypes.quint8, dtypes.qint16, dtypes.quint16, dtypes.qint32 ]) if _is_array_like(values): values = np.asarray(values) # We first convert value to a numpy array or scalar. if isinstance(values, (np.ndarray, np.generic)): if dtype and dtype.is_numpy_compatible: nparray = values.astype(dtype.as_numpy_dtype) else: nparray = values else: if values is None: raise ValueError("None values not supported.") # if dtype is provided, forces numpy array to be the type # provided if possible. if dtype and dtype.is_numpy_compatible: np_dt = dtype.as_numpy_dtype else: np_dt = None # If shape is None, numpy.prod returns None when dtype is not set, but # raises exception when dtype is set to np.int64 if shape is not None and np.prod(shape, dtype=np.int64) == 0: nparray = np.empty(shape, dtype=np_dt) else: _AssertCompatible(values, dtype) nparray = np.array(values, dtype=np_dt) # check to them. # We need to pass in quantized values as tuples, so don't apply the shape if (list(nparray.shape) != _GetDenseDimensions(values) and not is_quantized): raise ValueError("""Argument must be a dense tensor: %s""" """ - got shape %s, but wanted %s.""" % (values, list(nparray.shape), _GetDenseDimensions(values))) # python/numpy default float type is float64. We prefer float32 instead. if (nparray.dtype == np.float64) and dtype is None: nparray = nparray.astype(np.float32) # python/numpy default int type is int64. We prefer int32 instead. elif (nparray.dtype == np.int64) and dtype is None: downcasted_array = nparray.astype(np.int32) # Do not down cast if it leads to precision loss. if np.array_equal(downcasted_array, nparray): nparray = downcasted_array # if dtype is provided, it must be compatible with what numpy # conversion says. numpy_dtype = dtypes.as_dtype(nparray.dtype) if numpy_dtype is None: raise TypeError("Unrecognized data type: %s" % nparray.dtype) # If dtype was specified and is a quantized type, we convert # numpy_dtype back into the quantized version. if is_quantized: numpy_dtype = dtype if dtype is not None and (not hasattr(dtype, "base_dtype") or dtype.base_dtype != numpy_dtype.base_dtype): raise TypeError("Incompatible types: %s vs. %s. Value is %s" % (dtype, nparray.dtype, values)) # If shape is not given, get the shape from the numpy array. if shape is None: shape = nparray.shape is_same_size = True shape_size = nparray.size else: shape = [int(dim) for dim in shape] shape_size = np.prod(shape, dtype=np.int64) is_same_size = shape_size == nparray.size if allow_broadcast: if nparray.shape == (1,) or nparray.shape == tuple(): pass elif nparray.size != shape_size: raise TypeError("Expected Tensor's shape: %s, got %s." % (tuple(shape), nparray.shape)) else: if verify_shape and nparray.shape != tuple(shape): raise TypeError("Expected Tensor's shape: %s, got %s." % (tuple(shape), nparray.shape)) if nparray.size > shape_size: raise ValueError( "Too many elements provided. Needed at most %d, but received %d" % (shape_size, nparray.size)) tensor_proto = tensor_pb2.TensorProto( dtype=numpy_dtype.as_datatype_enum, tensor_shape=tensor_shape.as_shape(shape).as_proto()) if is_same_size and numpy_dtype in _TENSOR_CONTENT_TYPES and shape_size > 1: if nparray.size * nparray.itemsize >= (1 << 31): raise ValueError( "Cannot create a tensor proto whose content is larger than 2GB.") tensor_proto.tensor_content = nparray.tobytes() return tensor_proto # If we were not given values as a numpy array, compute the proto_values # from the given values directly, to avoid numpy trimming nulls from the # strings. Since values could be a list of strings, or a multi-dimensional # list of lists that might or might not correspond to the given shape, # we flatten it conservatively. if numpy_dtype == dtypes.string and not isinstance(values, np.ndarray): proto_values = _FlattenToStrings(values) # At this point, values may be a list of objects that we could not # identify a common type for (hence it was inferred as # np.object/dtypes.string). If we are unable to convert it to a # string, we raise a more helpful error message. # # Ideally, we'd be able to convert the elements of the list to a # common type, but this type inference requires some thinking and # so we defer it for now. try: str_values = [compat.as_bytes(x) for x in proto_values] except TypeError: raise TypeError("Failed to convert object of type %s to Tensor. " "Contents: %s. Consider casting elements to a " "supported type." % (type(values), values)) tensor_proto.string_val.extend(str_values) return tensor_proto # TensorFlow expects C order (a.k.a., eigen row major). proto_values = nparray.ravel() append_fn = GetNumpyAppendFn(proto_values.dtype) if append_fn is None: raise TypeError( "Element type not supported in TensorProto: %s" % numpy_dtype.name) append_fn(tensor_proto, proto_values) return tensor_proto # pylint: enable=invalid-name @tf_export("make_ndarray") def MakeNdarray(tensor): """Create a numpy ndarray from a tensor. Create a numpy ndarray with the same shape and data as the tensor. For example: ```python # Tensor a has shape (2,3) a = tf.constant([[1,2,3],[4,5,6]]) proto_tensor = tf.make_tensor_proto(a) # convert `tensor a` to a proto tensor tf.make_ndarray(proto_tensor) # output: array([[1, 2, 3], # [4, 5, 6]], dtype=int32) # output has shape (2,3) ``` Args: tensor: A TensorProto. Returns: A numpy array with the tensor contents. Raises: TypeError: if tensor has unsupported type. """ shape = [d.size for d in tensor.tensor_shape.dim] num_elements = np.prod(shape, dtype=np.int64) tensor_dtype = dtypes.as_dtype(tensor.dtype) dtype = tensor_dtype.as_numpy_dtype if tensor.tensor_content: return (np.frombuffer(tensor.tensor_content, dtype=dtype).copy().reshape(shape)) if tensor_dtype == dtypes.string: # np.pad throws on these arrays of type np.object. values = list(tensor.string_val) padding = num_elements - len(values) if padding > 0: last = values[-1] if values else "" values.extend([last] * padding) return np.array(values, dtype=dtype).reshape(shape) if tensor_dtype == dtypes.float16 or tensor_dtype == dtypes.bfloat16: # the half_val field of the TensorProto stores the binary representation # of the fp16: we need to reinterpret this as a proper float16 values = np.fromiter(tensor.half_val, dtype=np.uint16) values.dtype = tensor_dtype.as_numpy_dtype elif tensor_dtype == dtypes.float32: values = np.fromiter(tensor.float_val, dtype=dtype) elif tensor_dtype == dtypes.float64: values = np.fromiter(tensor.double_val, dtype=dtype) elif tensor_dtype in [ dtypes.int32, dtypes.uint8, dtypes.uint16, dtypes.int16, dtypes.int8, dtypes.qint32, dtypes.quint8, dtypes.qint8, dtypes.qint16, dtypes.quint16 ]: values = np.fromiter(tensor.int_val, dtype=dtype) elif tensor_dtype == dtypes.int64: values = np.fromiter(tensor.int64_val, dtype=dtype) elif tensor_dtype == dtypes.uint32: values = np.fromiter(tensor.uint32_val, dtype=dtype) elif tensor_dtype == dtypes.uint64: values = np.fromiter(tensor.uint64_val, dtype=dtype) elif tensor_dtype == dtypes.complex64: it = iter(tensor.scomplex_val) values = np.array([complex(x[0], x[1]) for x in zip(it, it)], dtype=dtype) elif tensor_dtype == dtypes.complex128: it = iter(tensor.dcomplex_val) values = np.array([complex(x[0], x[1]) for x in zip(it, it)], dtype=dtype) elif tensor_dtype == dtypes.bool: values = np.fromiter(tensor.bool_val, dtype=dtype) else: raise TypeError("Unsupported tensor type: %s" % tensor.dtype) if values.size == 0: return np.zeros(shape, dtype) if values.size != num_elements: values = np.pad(values, (0, num_elements - values.size), "edge") return values.reshape(shape) def ShapeEquals(tensor_proto, shape): """Returns True if "tensor_proto" has the given "shape". Args: tensor_proto: A TensorProto. shape: A tensor shape, expressed as a TensorShape, list, or tuple. Returns: True if "tensor_proto" has the given "shape", otherwise False. Raises: TypeError: If "tensor_proto" is not a TensorProto, or shape is not a TensorShape, list, or tuple. """ if not isinstance(tensor_proto, tensor_pb2.TensorProto): raise TypeError("tensor_proto is not a tensor_pb2.TensorProto object") if isinstance(shape, tensor_shape_pb2.TensorShapeProto): shape = [d.size for d in shape.dim] elif not isinstance(shape, (list, tuple)): raise TypeError("shape is not a list or tuple") tensor_shape_list = [d.size for d in tensor_proto.tensor_shape.dim] return all(x == y for x, y in zip(tensor_shape_list, shape)) def _ConstantValue(tensor, partial): # TODO(touts): Support Variables? if not isinstance(tensor, ops.Tensor): raise TypeError("%r is not a Tensor, has type %s" % (tensor, type(tensor))) if tensor.op.type == "Const": return MakeNdarray(tensor.op.get_attr("value")) elif tensor.op.type == "Shape": input_shape = tensor.op.inputs[0].get_shape() if input_shape.is_fully_defined(): return np.array( [dim.value for dim in input_shape.dims], dtype=tensor.dtype.as_numpy_dtype) else: return None elif tensor.op.type == "Size": input_shape = tensor.op.inputs[0].get_shape() if input_shape.is_fully_defined(): return np.prod([dim.value for dim in input_shape.dims], dtype=np.int32) else: return None elif tensor.op.type == "Rank": input_shape = tensor.op.inputs[0].get_shape() if input_shape.ndims is not None: return np.ndarray( shape=(), buffer=np.array([input_shape.ndims], dtype=np.int32), dtype=np.int32) else: return None elif tensor.op.type == "Range": start = constant_value(tensor.op.inputs[0]) if start is None: return None limit = constant_value(tensor.op.inputs[1]) if limit is None: return None delta = constant_value(tensor.op.inputs[2]) if delta is None: return None return np.arange(start, limit, delta, dtype=tensor.dtype.as_numpy_dtype) elif tensor.op.type == "Cast": pre_cast = constant_value(tensor.op.inputs[0]) if pre_cast is None: return None cast_dtype = dtypes.as_dtype(tensor.op.get_attr("DstT")) return pre_cast.astype(cast_dtype.as_numpy_dtype) elif tensor.op.type == "Concat": dim = constant_value(tensor.op.inputs[0]) if dim is None: return None values = [] for x in tensor.op.inputs[1:]: value = constant_value(x) if value is None: return None values.append(value) return np.concatenate(values, axis=dim) elif tensor.op.type == "ConcatV2": dim = constant_value(tensor.op.inputs[-1]) if dim is None: return None values = [] for x in tensor.op.inputs[:-1]: value = constant_value(x) if value is None: return None values.append(value) return np.concatenate(values, axis=dim) elif tensor.op.type == "Pack": values = [] # Some imported GraphDefs have Pack ops with zero inputs. Those are invalid # and shouldn't be produced, but to deal sensibly with them here we check # and return None. if not tensor.op.inputs: return None # We can't handle axis != 0 Packs at the moment. if tensor.op.get_attr("axis") != 0: return None for x in tensor.op.inputs: value = constant_value(x, partial) if value is None and not partial: return None values.append(value) return np.array(values) elif tensor.op.type == "Unpack": # We can't handle axis != 0 Unpacks at the moment. if tensor.op.get_attr("axis") != 0: return None value = constant_value(tensor.op.inputs[0], partial) if value is None: return None return value[tensor.value_index] elif tensor.op.type == "Split": dim = constant_value(tensor.op.inputs[0]) value = constant_value(tensor.op.inputs[1], partial) if value is None or dim is None: return None split = np.split(value, tensor.op.get_attr("num_split"), dim) return split[tensor.value_index] elif tensor.op.type == "Fill": fill_shape = tensor.shape fill_value = constant_value(tensor.op.inputs[1]) if fill_shape.is_fully_defined() and fill_value is not None: return np.full(fill_shape.as_list(), fill_value, dtype=fill_value.dtype) else: return None elif tensor.op.type == "Equal": value1 = constant_value(tensor.op.inputs[0]) if value1 is None: return None value2 = constant_value(tensor.op.inputs[1]) if value2 is None: return None return np.equal(value1, value2) elif tensor.op.type == "NotEqual": value1 = constant_value(tensor.op.inputs[0]) if value1 is None: return None value2 = constant_value(tensor.op.inputs[1]) if value2 is None: return None return np.not_equal(value1, value2) elif tensor.op.type == "StopGradient": return constant_value(tensor.op.inputs[0], partial) elif tensor.op.type in ("CheckNumericsV2", "DebugIdentityV2", "Identity"): return constant_value(tensor.op.inputs[0], partial) else: return None @tf_export("get_static_value") def constant_value(tensor, partial=False): # pylint: disable=invalid-name """Returns the constant value of the given tensor, if efficiently calculable. This function attempts to partially evaluate the given tensor, and returns its value as a numpy ndarray if this succeeds. Example usage: >>> a = tf.constant(10) >>> tf.get_static_value(a) 10 >>> b = tf.constant(20) >>> tf.get_static_value(tf.add(a, b)) 30 >>> # `tf.Variable` is not supported. >>> c = tf.Variable(30) >>> print(tf.get_static_value(c)) None Using `partial` option is most relevant when calling `get_static_value` inside a `tf.function`. Setting it to `True` will return the results but for the values that cannot be evaluated will be `None`. For example: ```python class Foo(object): def __init__(self): self.a = tf.Variable(1) self.b = tf.constant(2) @tf.function def bar(self, partial): packed = tf.raw_ops.Pack(values=[self.a, self.b]) static_val = tf.get_static_value(packed, partial=partial) tf.print(static_val) f = Foo() f.bar(partial=True) # `array([None, array(2, dtype=int32)], dtype=object)` f.bar(partial=False) # `None` ``` Compatibility(V1): If `constant_value(tensor)` returns a non-`None` result, it will no longer be possible to feed a different value for `tensor`. This allows the result of this function to influence the graph that is constructed, and permits static shape optimizations. Args: tensor: The Tensor to be evaluated. partial: If True, the returned numpy array is allowed to have partially evaluated values. Values that can't be evaluated will be None. Returns: A numpy ndarray containing the constant value of the given `tensor`, or None if it cannot be calculated. Raises: TypeError: if tensor is not an ops.Tensor. """ if isinstance(tensor, ops.EagerTensor): try: return tensor.numpy() except errors_impl.UnimplementedError: # Some EagerTensors may not implement .numpy/resolve, e.g. parallel # tensors with multiple components on different devices. return None if not is_tensor(tensor): return tensor if not isinstance(tensor, ops.Tensor): return None ret = _ConstantValue(tensor, partial) if ret is not None: # The caller may now depend on the constant value of `tensor`, so we # conservatively prevent it from being fed. tensor.graph.prevent_feeding(tensor) return ret def constant_value_as_shape(tensor): # pylint: disable=invalid-name """A version of `constant_value()` that returns a `TensorShape`. This version should be used when a constant tensor value is interpreted as a (possibly partial) shape, e.g. in the shape function for `tf.reshape()`. By explicitly requesting a `TensorShape` as the return value, it is possible to represent unknown dimensions; by contrast, `constant_value()` is all-or-nothing. Args: tensor: The rank-0 or rank-1 Tensor to be evaluated. Returns: A `TensorShape` based on the constant value of the given `tensor`. Raises: ValueError: If the shape is rank-0 and is not statically known to be -1. """ if isinstance(tensor, ops.EagerTensor): return tensor_shape.TensorShape( [dim if dim != -1 else None for dim in tensor.numpy()]) if tensor.get_shape().ndims == 0: value = constant_value(tensor) if value is None: raise ValueError( "Received a scalar with unknown value as shape; require a statically " "known scalar with value '-1' to describe an unknown shape.") if value != -1: raise ValueError( "Received a scalar value '%s' as shape; require a statically known " "scalar with value '-1' to describe an unknown shape." % value) return tensor_shape.unknown_shape() shape = tensor.get_shape().with_rank(1) if shape == [0]: return tensor_shape.TensorShape([]) elif tensor.op.type == "Cast": pre_cast = constant_value_as_shape(tensor.op.inputs[0]) if pre_cast.dims is None: # the input to cast has a totally undefined shape; just return that. return pre_cast cast_dtype = dtypes.as_dtype(tensor.op.get_attr("DstT")) if cast_dtype not in (dtypes.int32, dtypes.int64): return tensor_shape.unknown_shape(shape.dims[0].value) dest_dtype_shape_array = np.array( [x if x is not None else -1 for x in pre_cast.as_list()]).astype( cast_dtype.as_numpy_dtype) return tensor_shape.TensorShape([ x if x >= 0 else None for x in dest_dtype_shape_array]) elif tensor.op.type == "Shape": return tensor.op.inputs[0].get_shape() elif tensor.op.type == "Pack": ret = tensor_shape.TensorShape([]) # Empty list. # Since we expect rank 1 inputs, Pack's axis must be zero, otherwise it # would not be rank 1. assert tensor.op.get_attr("axis") == 0 for pack_input in tensor.op.inputs: # `pack_input` must be a scalar. Attempt to evaluate it, and append it # to `ret`. pack_input_val = constant_value(pack_input) if pack_input_val is None or pack_input_val < 0: new_dim = tensor_shape.Dimension(None) else: new_dim = tensor_shape.Dimension(pack_input_val) ret = ret.concatenate([new_dim]) return ret elif tensor.op.type == "Concat": # We assume that `tensor.op.inputs[0]` evaluates to 0, as this is # the only legal value when concatenating vectors, and it will # have been checked by a previous shape function. ret = tensor_shape.TensorShape([]) # Empty list. for concat_input in tensor.op.inputs[1:]: # `concat_input` must be a vector. Attempt to evaluate it as a shape, # and concatenate it with `ret`. ret = ret.concatenate(constant_value_as_shape(concat_input)) return ret elif tensor.op.type == "ConcatV2": # We assume that `tensor.op.inputs[-1]` evaluates to 0, as this is # the only legal value when concatenating vectors, and it will # have been checked by a previous shape function. ret = tensor_shape.TensorShape([]) # Empty list. for concat_input in tensor.op.inputs[:-1]: # `concat_input` must be a vector. Attempt to evaluate it as a shape, # and concatenate it with `ret`. ret = ret.concatenate(constant_value_as_shape(concat_input)) return ret elif tensor.op.type == "StridedSlice": try: begin = constant_value(tensor.op.inputs[1]) end = constant_value(tensor.op.inputs[2]) strides = constant_value(tensor.op.inputs[3]) if begin is not None and end is not None and strides is not None: begin = begin[0] end = end[0] strides = strides[0] begin_mask = tensor.op.get_attr("begin_mask") if begin_mask == 1: begin = None end_mask = tensor.op.get_attr("end_mask") if end_mask == 1: end = None ellipsis_mask = tensor.op.get_attr("ellipsis_mask") new_axis_mask = tensor.op.get_attr("new_axis_mask") shrink_axis_mask = tensor.op.get_attr("shrink_axis_mask") valid_attributes = (not ellipsis_mask and not new_axis_mask and not shrink_axis_mask and (not begin_mask or (begin_mask == 1)) and (not end_mask or (end_mask == 1))) if valid_attributes: # additional inputs not supported prev = constant_value_as_shape(tensor.op.inputs[0]) prev = prev[begin:end:strides] ret = tensor_shape.TensorShape(prev) return ret except ValueError: # Could come from get_attr or slicing prev. pass except TypeError: # Could come from slicing prev. pass elif (tensor.op.type == "Placeholder" and tensor.op.graph.building_function and hasattr(tensor.op.graph, "internal_captures")): # If we are inside a FuncGraph try to lookup the constant value of the # corresponding external capture. Note that we only look at captures and # not the fed inputs because those can be fed different values in different # instantiations of the function call or different iterations of a # tf.while_loop. for i, capture in enumerate(tensor.op.graph.internal_captures): if capture is tensor: external_capture = tensor.op.graph.external_captures[i] return constant_value_as_shape(external_capture) ret = tensor_shape.unknown_shape(shape.dims[0].value) value = constant_value(tensor) if value is not None: ret = ret.merge_with( tensor_shape.TensorShape([d if d >= 0 else None for d in value])) return ret # TODO(mdan): Deprecate in favor of more static-friendly types. @tf_export("is_tensor") def is_tf_type(x): # pylint: disable=invalid-name """Checks whether `x` is a TF-native type that can be passed to many TF ops. Use `is_tensor` to differentiate types that can ingested by TensorFlow ops without any conversion (e.g., `tf.Tensor`, `tf.SparseTensor`, and `tf.RaggedTensor`) from types that need to be converted into tensors before they are ingested (e.g., numpy `ndarray` and Python scalars). For example, in the following code block: ```python if not tf.is_tensor(t): t = tf.convert_to_tensor(t) return t.shape, t.dtype ``` we check to make sure that `t` is a tensor (and convert it if not) before accessing its `shape` and `dtype`. (But note that not all TensorFlow native types have shapes or dtypes; `tf.data.Dataset` is an example of a TensorFlow native type that has neither shape nor dtype.) Args: x: A python object to check. Returns: `True` if `x` is a TensorFlow-native type. """ return (isinstance(x, internal.NativeObject) or isinstance(x, core.Tensor) or getattr(x, "is_tensor_like", False)) # Deprecated alias for tensor_util.is_tf_type. is_tensor = is_tf_type def shape_tensor(shape): # pylint: disable=invalid-name """Convert to an int32 or int64 tensor, defaulting to int32 if empty.""" dtype = None if isinstance(shape, (tuple, list)): if not shape: dtype = dtypes.int32 else: # If there are Dimension objects in the shape, unwrap them. This can be a # problem if v1 and v2 TensorShape objects get mixed up in partial # conversions, leading to shapes such as (1, 2, Dimension(5)), which are # not convertible to Tensors because of mixed content. shape = tuple(map(tensor_shape.dimension_value, shape)) return ops.convert_to_tensor(shape, dtype=dtype, name="shape") # DO NOT USE: For testing only. _ENABLE_MAYBE_SET_STATIC_SHAPE = True def maybe_set_static_shape(tensor, shape): # pylint: disable=invalid-name """Sets the shape of `tensor` to the `shape`'s constant value, if inferrable. This is a temporary workaround to fix shape inference across functional op boundaries. E.g. ```python shape = tf.constant([3]) @tf.function def f(): u = tf.random_uniform(shape) return u ``` If we were to rely solely on C++ shape inference, the shape of `u` inside `f` would be unknown because C++ shape inference is not aware of the outer graph and all it sees is a Placeholder node when backtracing the captured tensor for `shape`. `maybe_set_static_shape` computes the static shape value of `shape` by traversing the `FuncGraph` boundaries and sets the correct shape. A longer term solution would be to fix C++ shape inference. Args: tensor: A tensor. shape: A shape tensor. """ if (_ENABLE_MAYBE_SET_STATIC_SHAPE and not context.executing_eagerly() and ops.get_default_graph().building_function and not tensor.shape.is_fully_defined() and is_tensor(shape)): shape = shape_tensor(shape) const_shape = constant_value_as_shape(shape) tensor.set_shape(const_shape)
36.984821
115
0.702508
10ec64423763f715851c20ce5c6252de470dc841
4,361
py
Python
Chapter04/Chapter_4_ARIMA.py
stciaischoolrnn/Practical-Time-Series-Analysis
72eeabbcf2a3af742b2a114026cfd841b0ea9184
[ "MIT" ]
267
2017-10-04T10:10:39.000Z
2022-03-26T03:54:44.000Z
Chapter04/Chapter_4_ARIMA.py
stciaischoolrnn/Practical-Time-Series-Analysis
72eeabbcf2a3af742b2a114026cfd841b0ea9184
[ "MIT" ]
5
2018-03-08T10:11:26.000Z
2022-01-22T07:48:48.000Z
Chapter04/Chapter_4_ARIMA.py
stciaischoolrnn/Practical-Time-Series-Analysis
72eeabbcf2a3af742b2a114026cfd841b0ea9184
[ "MIT" ]
215
2017-09-28T13:52:06.000Z
2022-03-27T14:14:37.000Z
# Load Modules from __future__ import print_function import os import pandas as pd import numpy as np from matplotlib import pyplot as plt from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from statsmodels.tsa.arima_model import ARIMA import statsmodels.api as sm import statsmodels.tsa.api as smtsa # Function to plot signal, ACF and PACF def plotds(xt, nlag=30, fig_size=(12, 10)): if not isinstance(xt, pd.Series): xt = pd.Series(xt) plt.figure(figsize=fig_size) layout = (2, 2) # Assign axes ax_xt = plt.subplot2grid(layout, (0, 0), colspan=2) ax_acf= plt.subplot2grid(layout, (1, 0)) ax_pacf = plt.subplot2grid(layout, (1, 1)) # Plot graphs xt.plot(ax=ax_xt) ax_xt.set_title('Time Series') plot_acf(xt, lags=50, ax=ax_acf) plot_pacf(xt, lags=50, ax=ax_pacf) plt.tight_layout() return None ############# IBM EXAMPLE for ARIMA # Change working Directory os.chdir('/data') #Read data from Excel file djia_df = pd.read_excel('datasets/DJIA_Jan2016_Dec2016.xlsx') #Rename the second column djia_df.head(10) #Let us parse the Date column and use as row index for the DataFrame and drop it as a column djia_df['Date'] = pd.to_datetime(djia_df['Date'], '%Y-%m-%d') djia_df.index = djia_df['Date'] djia_df.drop('Date', axis=1, inplace=True) #Let us see first few rows of the modified DataFrame djia_df.head(10) # Plot ACF and PACF djia_df=djia_df.dropna() plotds(djia_df['Close'], nlag=50) # Evaluate mean and variance at mid values mean1, mean2 =djia_df.iloc[:125].Close.mean(), djia_df.iloc[125:].Close.mean() var1, var2 = djia_df.iloc[:125].Close.var(), djia_df.iloc[125:].Close.var() print('mean1=%f, mean2=%f' % (mean1, mean2)) print('variance1=%f, variance2=%f' % (var1, var2)) # ADF Test from statsmodels.tsa.stattools import adfuller adf_result= adfuller(djia_df.Close.tolist()) print('ADF Statistic: %f' % adf_result[0]) print('p-value: %f' % adf_result[1]) # QQ plot and probability plot sm.qqplot(djia_df['Close'], line='s') # Optimize ARMA parameters (Will return a non-stationary error) arma_obj = smtsa.ARMA(djia_df['Close'].tolist(), order=(1, 1)).fit(maxlag=30, method='mle', trend='nc') #Let us plot the original time series and first-differences first_order_diff = djia_df['Close'].diff(1).dropna() fig, ax = plt.subplots(2, sharex=True) fig.set_size_inches(5.5, 5.5) djia_df['Close'].plot(ax=ax[0], color='b') ax[0].set_title('Close values of DJIA during Jan 2016-Dec 2016') first_order_diff.plot(ax=ax[1], color='r') ax[1].set_title('First-order differences of DJIA during Jan 2016-Dec 2016') # plot signal plotds(first_order_diff, nlag=50) adf_result= adfuller(first_order_diff) print('ADF Statistic: %f' % adf_result[0]) print('p-value: %f' % adf_result[1]) # Optimize ARMA parameters aicVal=[] for d in range(1,3): for ari in range(0, 3): for maj in range(0,3): try: arima_obj = ARIMA(djia_df['Close'].tolist(), order=(ari,d,maj)) arima_obj_fit=arima_obj.fit() aicVal.append([ari, d, maj, arima_obj_fit.aic]) except ValueError: pass # Optimal ARIMA model arima_obj = ARIMA(djia_df['Close'].tolist(), order=(0,2,1)) arima_obj_fit = arima_obj.fit(disp=0) arima_obj_fit.summary() # Evaluate prediction pred=np.append([0,0],arima_obj_fit.fittedvalues.tolist()) djia_df['ARIMA']=pred diffval=np.append([0,0], arima_obj_fit.resid+arima_obj_fit.fittedvalues) djia_df['diffval']=diffval # QQ plot and probability plot sm.qqplot(arima_obj_fit.resid, line='s') # Plot output f, axarr = plt.subplots(1, sharex=True) f.set_size_inches(5.5, 5.5) djia_df['diffval'].iloc[2:].plot(color='b', linestyle = '-', ax=axarr) djia_df['ARIMA'].iloc[2:].plot(color='r', linestyle = '--', ax=axarr) axarr.set_title('ARIMA(0,2,1)') plt.xlabel('Index') plt.ylabel('Closing') # Forecasting f, err, ci=arima_obj_fit.forecast(40) djia_df['forecast'] = arima_obj_fit.forecast(10) djia_df[['Close', 'forecast']].plot(figsize=(12, 8)) ############## # SARIMAX ############## # Seasonality (based on first difference ACF shows significance at 42 lag) x=djia_df['Close']-djia_df['Close'].shift(42) mod = sm.tsa.statespace.SARIMAX(djia_df['Close'], trend='n', order=(0,2,1), seasonal_order=(1,1,1,42)) sarimax= mod.fit() sarimax.summary()
30.929078
103
0.690667
1d67756efa059874c1c33a0e2b4a7a42273ee83e
180
py
Python
fudgeit/recommendation/admin.py
fahimtran/hackgt-8
2746cd334b73268ea1f5872c796873125056e61d
[ "MIT" ]
null
null
null
fudgeit/recommendation/admin.py
fahimtran/hackgt-8
2746cd334b73268ea1f5872c796873125056e61d
[ "MIT" ]
null
null
null
fudgeit/recommendation/admin.py
fahimtran/hackgt-8
2746cd334b73268ea1f5872c796873125056e61d
[ "MIT" ]
null
null
null
from django.contrib import admin from recommendation.models import Restaurant, FoodItem # Register your models here. admin.site.register(Restaurant) admin.site.register(FoodItem)
25.714286
54
0.833333
bf578b99fd912ddc1437dbe9a6b1bcbdc031b3e5
833
py
Python
V8_SensorDistancia_Recepcion.py
Cellista33/Trabajo_9
c00abfaf909df3aeb168fc7468dc54edb50bad8b
[ "MIT" ]
null
null
null
V8_SensorDistancia_Recepcion.py
Cellista33/Trabajo_9
c00abfaf909df3aeb168fc7468dc54edb50bad8b
[ "MIT" ]
null
null
null
V8_SensorDistancia_Recepcion.py
Cellista33/Trabajo_9
c00abfaf909df3aeb168fc7468dc54edb50bad8b
[ "MIT" ]
null
null
null
import serial import time from turtle import * def grafico(dis): x1 = 217-233-dis x4 = 217-dis x3 = x4 x2 = x1 y1 = -69 y2 = 69 y4 = y1 y3 = y2 setup (434, 200, 0, 0) screensize(433, 200 ) title("EL TWIZY QUE APARCA") hideturtle() pencolor("red") pensize(5) begin_fill() goto (x4, y1) goto (x3, y3) goto (x2, y2) goto (x1, y1) end_fill return arduino=serial.Serial('/dev/ttyUSB0', baudrate=9600, timeout = 3.0) """arduino.open()""" txt='' while True: time.sleep(0.01) while arduino.inWaiting()>0: txt += arduino.read(1) distancia = arduino.read(1) if distancia > 2: distancia = 2 grafico(distancia) print txt txt = '' arduino.close()
12.815385
67
0.519808
347472d387f62c0f0e1c4919f0e49d214eac0d4d
1,025
py
Python
cli_app/engine/notifier.py
namuan/news-rider
2f8f5204eda717e39ab7d4c048692d5ec2eb5449
[ "MIT" ]
5
2021-04-26T20:46:30.000Z
2021-05-03T07:29:31.000Z
cli_app/engine/notifier.py
namuan/news-rider
2f8f5204eda717e39ab7d4c048692d5ec2eb5449
[ "MIT" ]
null
null
null
cli_app/engine/notifier.py
namuan/news-rider
2f8f5204eda717e39ab7d4c048692d5ec2eb5449
[ "MIT" ]
null
null
null
import json import os import sys import requests from dotenv import load_dotenv from .log_helper import logger sys.path.append(os.getcwd()) load_dotenv(verbose=True) PUSHOVER_TOKEN = os.getenv("PUSHOVER_TOKEN") PUSHOVER_USER_KEY = os.getenv("PUSHOVER_USER_KEY") def notify_user(title, msg): try: response = requests.post( url="https://api.pushover.net/1/messages.json", headers={ "Content-Type": "application/json; charset=utf-8", }, data=json.dumps({ "message": msg, "title": title, "token": PUSHOVER_TOKEN, "user": PUSHOVER_USER_KEY }) ) logger.info('Response HTTP Status Code: {status_code}'.format( status_code=response.status_code)) logger.info('Response HTTP Response Body: {content}'.format( content=response.content)) except requests.exceptions.RequestException: logger.error('HTTP Request failed')
27.702703
70
0.612683
5b0febff823bed0ec74bed39945cfbfa6f4e237f
3,442
py
Python
tests/gallery/test_summarystatsagg.py
krisHans3n/geoalchemy2-mysql
38a44d51c242d867f40d4c5503c91f52a8269ff4
[ "MIT" ]
null
null
null
tests/gallery/test_summarystatsagg.py
krisHans3n/geoalchemy2-mysql
38a44d51c242d867f40d4c5503c91f52a8269ff4
[ "MIT" ]
null
null
null
tests/gallery/test_summarystatsagg.py
krisHans3n/geoalchemy2-mysql
38a44d51c242d867f40d4c5503c91f52a8269ff4
[ "MIT" ]
null
null
null
""" Use CompositeType ================= Some functions return composite types. This example shows how to deal with this kind of functions. """ import pytest from pkg_resources import parse_version from sqlalchemy import Column from sqlalchemy import Float from sqlalchemy import Integer from sqlalchemy import MetaData from sqlalchemy import __version__ as SA_VERSION from sqlalchemy.ext.declarative import declarative_base from geoalchemy2 import Raster from geoalchemy2 import WKTElement from geoalchemy2.functions import GenericFunction from geoalchemy2.types import CompositeType # Tests imports from tests import select from tests import test_only_with_dialects class SummaryStatsCustomType(CompositeType): """Define the composite type returned by the function ST_SummaryStatsAgg.""" typemap = { 'count': Integer, 'sum': Float, 'mean': Float, 'stddev': Float, 'min': Float, 'max': Float, } cache_ok = True class ST_SummaryStatsAgg(GenericFunction): type = SummaryStatsCustomType # Set a specific identifier to not override the actual ST_SummaryStatsAgg function identifier = "ST_SummaryStatsAgg_custom" inherit_cache = True metadata = MetaData() Base = declarative_base(metadata=metadata) class Ocean(Base): __tablename__ = 'ocean' id = Column(Integer, primary_key=True) rast = Column(Raster) def __init__(self, rast): self.rast = rast @test_only_with_dialects("postgresql") class TestSTSummaryStatsAgg(): @pytest.mark.skipif( parse_version(SA_VERSION) < parse_version("1.4"), reason="requires SQLAlchely>1.4", ) def test_st_summary_stats_agg(self, session, conn): metadata.drop_all(conn, checkfirst=True) metadata.create_all(conn) # Create a new raster polygon = WKTElement('POLYGON((0 0,1 1,0 1,0 0))', srid=4326) o = Ocean(polygon.ST_AsRaster(5, 6)) session.add(o) session.flush() # Define the query to compute stats stats_agg = select([ Ocean.rast.ST_SummaryStatsAgg_custom(1, True, 1).label("stats") ]) stats_agg_alias = stats_agg.alias("stats_agg") # Use these stats query = select([ stats_agg_alias.c.stats.count.label("count"), stats_agg_alias.c.stats.sum.label("sum"), stats_agg_alias.c.stats.mean.label("mean"), stats_agg_alias.c.stats.stddev.label("stddev"), stats_agg_alias.c.stats.min.label("min"), stats_agg_alias.c.stats.max.label("max") ]) # Check the query assert str(query.compile(dialect=session.bind.dialect)) == ( "SELECT " "(stats_agg.stats).count AS count, " "(stats_agg.stats).sum AS sum, " "(stats_agg.stats).mean AS mean, " "(stats_agg.stats).stddev AS stddev, " "(stats_agg.stats).min AS min, " "(stats_agg.stats).max AS max \n" "FROM (" "SELECT " "ST_SummaryStatsAgg(" "ocean.rast, " "%(ST_SummaryStatsAgg_1)s, %(ST_SummaryStatsAgg_2)s, %(ST_SummaryStatsAgg_3)s" ") AS stats \n" "FROM ocean) AS stats_agg" ) # Execute the query res = session.execute(query).fetchall() # Check the result assert res == [(15, 15.0, 1.0, 0.0, 1.0, 1.0)]
29.169492
90
0.639454
5c944b92c4fa28a2cc2f05731987a9d9239eb590
6,583
py
Python
lib/gui/gridview.py
frontinc-ayau/dsce
39051752f8f2e75f912903b0b07f7ad0aba680d8
[ "Apache-2.0" ]
null
null
null
lib/gui/gridview.py
frontinc-ayau/dsce
39051752f8f2e75f912903b0b07f7ad0aba680d8
[ "Apache-2.0" ]
null
null
null
lib/gui/gridview.py
frontinc-ayau/dsce
39051752f8f2e75f912903b0b07f7ad0aba680d8
[ "Apache-2.0" ]
null
null
null
# This file is part of the DomainSharedContactsEditor (DSCE) application. # # DSCE is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # DSCE is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with DSCE. If not, see <http://www.gnu.org/licenses/>. # # Copyright (c) 2010 Klaus Melcher (melcher.kla@gmail.com) """Grid table interface to the contacts. """ import wx import wx.grid import domaindata from domaindata import metadata import observer from observer import * from emaileditor import EmailEditDialog from emailcellrenderer import EmailCellRenderer from addresseditor import AddressEditDialog from addressrenderer import AddressCellRenderer from phonerenderer import PhoneCellRenderer from phoneeditor import PhoneEditDialog from orgeditor import OrgEditDialog from orgrenderer import OrgCellRenderer from grouprenderer import GroupCellRenderer from groupcelleditor import GroupCellEditDialog import logging class GridView(wx.grid.Grid): def __init__(self, parent, id=-1): wx.grid.Grid.__init__(self,parent,id, wx.Point(0, 0), wx.DefaultSize, wx.NO_BORDER | wx.WANTS_CHARS) self.SetRowMinimalAcceptableHeight(0) self.table = domaindata.get_grid_table(self) self.hiddenRows = [] self.SetTable(self.table, True) self.setRenderer() self.setEditors() self.bind() self.subscribe() def bind(self): self.Bind(wx.grid.EVT_GRID_EDITOR_SHOWN, self.gridEditorRequest, self) self.Bind(wx.grid.EVT_GRID_CELL_CHANGE, self.gridCellChanged, self) def subscribe(self): observer.subscribe(self.appendRow, pmsg.CONTACT_ADDED) # interested if contact added observer.subscribe(self.forceRefresh, pmsg.DATA_UPLOADED) # because of label changes observer.subscribe(self.forceRefresh, pmsg.CONTACT_DELETED) # because of label changes observer.subscribe(self.hideRows, pmsg.HIDE_ROWS) # used by search observer.subscribe(self.unhideAll, pmsg.UNHIDE_ROWS) # used by search def appendRow(self, event): logging.debug("In Grid.appendRow())") self.ProcessTableMessage(wx.grid.GridTableMessage(self.table, wx.grid.GRIDTABLE_NOTIFY_ROWS_APPENDED, 1) ) logging.debug(self.table.GetNumberRows()) # position the cursor and scroll to the end of the grid self.SetFocus() self.SetGridCursor((self.table.GetNumberRows()-1),0) self.scrollToBottom() def hideRows(self, event): self.BeginBatch() self.unhideRows() self.SetRowLabelSize(0) self.SetColLabelSize(0) for r in event.data: self.HideRow(r) self.hiddenRows += event.data self.EndBatch() def HideRow(self, row): self.SetRowSize(row, 0) def unhideRows(self): for i in self.hiddenRows: self.SetRowSize(i, self.GetDefaultRowSize()) self.hiddenRows = [] def unhideLabels(self): self.SetRowLabelSize(self.GetDefaultRowLabelSize()) self.SetColLabelSize(self.GetDefaultColLabelSize()) def unhideAll(self, event): self.BeginBatch() self.unhideLabels() self.unhideRows() self.EndBatch() def getActiveRows(self): """Returns the first row where any kind of selection or cursor is found """ rows = [] if self.IsSelection(): rows = self.GetSelectedRows() logging.debug("Rows Sel %s" % str(rows)) else: rows.append(self.GetGridCursorRow()) logging.debug("Rows Cur %s" % str(rows)) return rows def gridCellChanged(self, evt): logging.debug("Cell changed") self.forceRefresh(None) def gridEditorRequest(self, evt): """Used when others than PyGridCellEditors have to be used. """ c = evt.GetCol() if c == metadata.get_col_idx("email"): EmailEditDialog(self, -1, self.table, evt.GetRow(), c) evt.Veto() elif c == metadata.get_col_idx("postal_address"): AddressEditDialog(self, -1, self.table, evt.GetRow(), c) evt.Veto() elif c == metadata.get_col_idx("phone"): PhoneEditDialog(self, -1, self.table, evt.GetRow(), c) evt.Veto() elif c == metadata.get_col_idx("organization"): OrgEditDialog(self, -1, self.table, evt.GetRow(), c) evt.Veto() elif c == metadata.get_col_idx("groups"): GroupCellEditDialog(self, -1, self.table, evt.GetRow(), c) evt.Veto() else: evt.Skip() def scrollToBottom(self): r = self.GetScrollRange(wx.VERTICAL) self.Scroll(0, r) def forceRefresh(self, evt): logging.debug("Force Refresh() number of rows %d", self.GetNumberRows()) self.ForceRefresh() def setRenderer(self): attr = wx.grid.GridCellAttr() attr.SetRenderer(EmailCellRenderer()) self.SetColAttr(metadata.get_col_idx("email"), attr) attr = wx.grid.GridCellAttr() attr.SetRenderer(AddressCellRenderer()) self.SetColAttr(metadata.get_col_idx("postal_address"), attr) attr = wx.grid.GridCellAttr() attr.SetRenderer(PhoneCellRenderer()) self.SetColAttr(metadata.get_col_idx("phone"), attr) attr = wx.grid.GridCellAttr() attr.SetRenderer(OrgCellRenderer()) self.SetColAttr(metadata.get_col_idx("organization"), attr) attr = wx.grid.GridCellAttr() attr.SetRenderer(GroupCellRenderer()) self.SetColAttr(metadata.get_col_idx("groups"), attr) def setEditors(self): attr = wx.grid.GridCellAttr() # attr.SetEditor(wx.grid.GridCellAutoWrapStringEditor()) # self.SetColAttr(metadata.get_col_idx("postal_address"), attr)
35.972678
100
0.634969
1072433d27472659e823d353b8c2d85c0d1ecbd9
17,273
py
Python
nova/virt/libvirt/utils.py
vasart/nova
bca5004d367e0418e35f8a72fe0f2e106e977ab0
[ "Apache-2.0" ]
1
2021-09-10T15:29:02.000Z
2021-09-10T15:29:02.000Z
nova/virt/libvirt/utils.py
PFZheng/nova
84be8abbccb5ddc2d7c5a7db59019ed1edb19e7f
[ "Apache-2.0" ]
null
null
null
nova/virt/libvirt/utils.py
PFZheng/nova
84be8abbccb5ddc2d7c5a7db59019ed1edb19e7f
[ "Apache-2.0" ]
null
null
null
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # Copyright (c) 2010 Citrix Systems, Inc. # Copyright (c) 2011 Piston Cloud Computing, Inc # Copyright (c) 2011 OpenStack Foundation # (c) Copyright 2013 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import errno import os import platform from lxml import etree from oslo.config import cfg from nova.openstack.common.gettextutils import _ from nova.openstack.common.gettextutils import _LI from nova.openstack.common.gettextutils import _LW from nova.openstack.common import log as logging from nova.openstack.common import processutils from nova import utils from nova.virt import images from nova.virt import volumeutils libvirt_opts = [ cfg.BoolOpt('snapshot_compression', default=False, help='Compress snapshot images when possible. This ' 'currently applies exclusively to qcow2 images'), ] CONF = cfg.CONF CONF.register_opts(libvirt_opts, 'libvirt') CONF.import_opt('instances_path', 'nova.compute.manager') LOG = logging.getLogger(__name__) def execute(*args, **kwargs): return utils.execute(*args, **kwargs) def get_iscsi_initiator(): return volumeutils.get_iscsi_initiator() def get_fc_hbas(): """Get the Fibre Channel HBA information.""" out = None try: out, err = execute('systool', '-c', 'fc_host', '-v', run_as_root=True) except processutils.ProcessExecutionError as exc: # This handles the case where rootwrap is used # and systool is not installed # 96 = nova.cmd.rootwrap.RC_NOEXECFOUND: if exc.exit_code == 96: LOG.warn(_LW("systool is not installed")) return [] except OSError as exc: # This handles the case where rootwrap is NOT used # and systool is not installed if exc.errno == errno.ENOENT: LOG.warn(_LW("systool is not installed")) return [] if out is None: raise RuntimeError(_("Cannot find any Fibre Channel HBAs")) lines = out.split('\n') # ignore the first 2 lines lines = lines[2:] hbas = [] hba = {} lastline = None for line in lines: line = line.strip() # 2 newlines denotes a new hba port if line == '' and lastline == '': if len(hba) > 0: hbas.append(hba) hba = {} else: val = line.split('=') if len(val) == 2: key = val[0].strip().replace(" ", "") value = val[1].strip() hba[key] = value.replace('"', '') lastline = line return hbas def get_fc_hbas_info(): """Get Fibre Channel WWNs and device paths from the system, if any.""" # Note modern linux kernels contain the FC HBA's in /sys # and are obtainable via the systool app hbas = get_fc_hbas() hbas_info = [] for hba in hbas: wwpn = hba['port_name'].replace('0x', '') wwnn = hba['node_name'].replace('0x', '') device_path = hba['ClassDevicepath'] device = hba['ClassDevice'] hbas_info.append({'port_name': wwpn, 'node_name': wwnn, 'host_device': device, 'device_path': device_path}) return hbas_info def get_fc_wwpns(): """Get Fibre Channel WWPNs from the system, if any.""" # Note modern linux kernels contain the FC HBA's in /sys # and are obtainable via the systool app hbas = get_fc_hbas() wwpns = [] if hbas: for hba in hbas: if hba['port_state'] == 'Online': wwpn = hba['port_name'].replace('0x', '') wwpns.append(wwpn) return wwpns def get_fc_wwnns(): """Get Fibre Channel WWNNs from the system, if any.""" # Note modern linux kernels contain the FC HBA's in /sys # and are obtainable via the systool app hbas = get_fc_hbas() wwnns = [] if hbas: for hba in hbas: if hba['port_state'] == 'Online': wwnn = hba['node_name'].replace('0x', '') wwnns.append(wwnn) return wwnns def create_image(disk_format, path, size): """Create a disk image :param disk_format: Disk image format (as known by qemu-img) :param path: Desired location of the disk image :param size: Desired size of disk image. May be given as an int or a string. If given as an int, it will be interpreted as bytes. If it's a string, it should consist of a number with an optional suffix ('K' for Kibibytes, M for Mebibytes, 'G' for Gibibytes, 'T' for Tebibytes). If no suffix is given, it will be interpreted as bytes. """ execute('qemu-img', 'create', '-f', disk_format, path, size) def create_cow_image(backing_file, path, size=None): """Create COW image Creates a COW image with the given backing file :param backing_file: Existing image on which to base the COW image :param path: Desired location of the COW image """ base_cmd = ['qemu-img', 'create', '-f', 'qcow2'] cow_opts = [] if backing_file: cow_opts += ['backing_file=%s' % backing_file] base_details = images.qemu_img_info(backing_file) else: base_details = None # This doesn't seem to get inherited so force it to... # http://paste.ubuntu.com/1213295/ # TODO(harlowja) probably file a bug against qemu-img/qemu if base_details and base_details.cluster_size is not None: cow_opts += ['cluster_size=%s' % base_details.cluster_size] # For now don't inherit this due the following discussion... # See: http://www.gossamer-threads.com/lists/openstack/dev/10592 # if 'preallocation' in base_details: # cow_opts += ['preallocation=%s' % base_details['preallocation']] if base_details and base_details.encrypted: cow_opts += ['encryption=%s' % base_details.encrypted] if size is not None: cow_opts += ['size=%s' % size] if cow_opts: # Format as a comma separated list csv_opts = ",".join(cow_opts) cow_opts = ['-o', csv_opts] cmd = base_cmd + cow_opts + [path] execute(*cmd) def import_rbd_image(*args): execute('rbd', 'import', *args) def _run_rbd(*args, **kwargs): total = list(args) if CONF.libvirt.rbd_user: total.extend(['--id', str(CONF.libvirt.rbd_user)]) if CONF.libvirt.images_rbd_ceph_conf: total.extend(['--conf', str(CONF.libvirt.images_rbd_ceph_conf)]) return utils.execute(*total, **kwargs) def list_rbd_volumes(pool): """List volumes names for given ceph pool. :param pool: ceph pool name """ try: out, err = _run_rbd('rbd', '-p', pool, 'ls') except processutils.ProcessExecutionError: # No problem when no volume in rbd pool return [] return [line.strip() for line in out.splitlines()] def remove_rbd_volumes(pool, *names): """Remove one or more rbd volume.""" for name in names: rbd_remove = ['rbd', '-p', pool, 'rm', name] try: _run_rbd(*rbd_remove, attempts=3, run_as_root=True) except processutils.ProcessExecutionError: LOG.warn(_LW("rbd remove %(name)s in pool %(pool)s failed"), {'name': name, 'pool': pool}) def pick_disk_driver_name(hypervisor_version, is_block_dev=False): """Pick the libvirt primary backend driver name If the hypervisor supports multiple backend drivers, then the name attribute selects the primary backend driver name, while the optional type attribute provides the sub-type. For example, xen supports a name of "tap", "tap2", "phy", or "file", with a type of "aio" or "qcow2", while qemu only supports a name of "qemu", but multiple types including "raw", "bochs", "qcow2", and "qed". :param is_block_dev: :returns: driver_name or None """ if CONF.libvirt.virt_type == "xen": if is_block_dev: return "phy" else: # 4000000 == 4.0.0 if hypervisor_version == 4000000: return "tap" else: return "tap2" elif CONF.libvirt.virt_type in ('kvm', 'qemu'): return "qemu" else: # UML doesn't want a driver_name set return None def get_disk_size(path): """Get the (virtual) size of a disk image :param path: Path to the disk image :returns: Size (in bytes) of the given disk image as it would be seen by a virtual machine. """ size = images.qemu_img_info(path).virtual_size return int(size) def get_disk_backing_file(path, basename=True): """Get the backing file of a disk image :param path: Path to the disk image :returns: a path to the image's backing store """ backing_file = images.qemu_img_info(path).backing_file if backing_file and basename: backing_file = os.path.basename(backing_file) return backing_file def copy_image(src, dest, host=None): """Copy a disk image to an existing directory :param src: Source image :param dest: Destination path :param host: Remote host """ if not host: # We shell out to cp because that will intelligently copy # sparse files. I.E. holes will not be written to DEST, # rather recreated efficiently. In addition, since # coreutils 8.11, holes can be read efficiently too. execute('cp', src, dest) else: dest = "%s:%s" % (host, dest) # Try rsync first as that can compress and create sparse dest files. # Note however that rsync currently doesn't read sparse files # efficiently: https://bugzilla.samba.org/show_bug.cgi?id=8918 # At least network traffic is mitigated with compression. try: # Do a relatively light weight test first, so that we # can fall back to scp, without having run out of space # on the destination for example. execute('rsync', '--sparse', '--compress', '--dry-run', src, dest) except processutils.ProcessExecutionError: execute('scp', src, dest) else: execute('rsync', '--sparse', '--compress', src, dest) def write_to_file(path, contents, umask=None): """Write the given contents to a file :param path: Destination file :param contents: Desired contents of the file :param umask: Umask to set when creating this file (will be reset) """ if umask: saved_umask = os.umask(umask) try: with open(path, 'w') as f: f.write(contents) finally: if umask: os.umask(saved_umask) def chown(path, owner): """Change ownership of file or directory :param path: File or directory whose ownership to change :param owner: Desired new owner (given as uid or username) """ execute('chown', owner, path, run_as_root=True) def extract_snapshot(disk_path, source_fmt, out_path, dest_fmt): """Extract a snapshot from a disk image. Note that nobody should write to the disk image during this operation. :param disk_path: Path to disk image :param out_path: Desired path of extracted snapshot """ # NOTE(markmc): ISO is just raw to qemu-img if dest_fmt == 'iso': dest_fmt = 'raw' qemu_img_cmd = ('qemu-img', 'convert', '-f', source_fmt, '-O', dest_fmt) # Conditionally enable compression of snapshots. if CONF.libvirt.snapshot_compression and dest_fmt == "qcow2": qemu_img_cmd += ('-c',) qemu_img_cmd += (disk_path, out_path) execute(*qemu_img_cmd) def load_file(path): """Read contents of file :param path: File to read """ with open(path, 'r') as fp: return fp.read() def file_open(*args, **kwargs): """Open file see built-in file() documentation for more details Note: The reason this is kept in a separate module is to easily be able to provide a stub module that doesn't alter system state at all (for unit tests) """ return file(*args, **kwargs) def file_delete(path): """Delete (unlink) file Note: The reason this is kept in a separate module is to easily be able to provide a stub module that doesn't alter system state at all (for unit tests) """ return os.unlink(path) def find_disk(virt_dom): """Find root device path for instance May be file or device """ xml_desc = virt_dom.XMLDesc(0) domain = etree.fromstring(xml_desc) if CONF.libvirt.virt_type == 'lxc': source = domain.find('devices/filesystem/source') disk_path = source.get('dir') disk_path = disk_path[0:disk_path.rfind('rootfs')] disk_path = os.path.join(disk_path, 'disk') else: source = domain.find('devices/disk/source') disk_path = source.get('file') or source.get('dev') if not disk_path and CONF.libvirt.images_type == 'rbd': disk_path = source.get('name') if disk_path: disk_path = 'rbd:' + disk_path if not disk_path: raise RuntimeError(_("Can't retrieve root device path " "from instance libvirt configuration")) return disk_path def get_disk_type(path): """Retrieve disk type (raw, qcow2, lvm) for given file.""" if path.startswith('/dev'): return 'lvm' elif path.startswith('rbd:'): return 'rbd' return images.qemu_img_info(path).file_format def get_fs_info(path): """Get free/used/total space info for a filesystem :param path: Any dirent on the filesystem :returns: A dict containing: :free: How much space is free (in bytes) :used: How much space is used (in bytes) :total: How big the filesystem is (in bytes) """ hddinfo = os.statvfs(path) total = hddinfo.f_frsize * hddinfo.f_blocks free = hddinfo.f_frsize * hddinfo.f_bavail used = hddinfo.f_frsize * (hddinfo.f_blocks - hddinfo.f_bfree) return {'total': total, 'free': free, 'used': used} def fetch_image(context, target, image_id, user_id, project_id, max_size=0): """Grab image.""" images.fetch_to_raw(context, image_id, target, user_id, project_id, max_size=max_size) def get_instance_path(instance, forceold=False, relative=False): """Determine the correct path for instance storage. This method determines the directory name for instance storage, while handling the fact that we changed the naming style to something more unique in the grizzly release. :param instance: the instance we want a path for :param forceold: force the use of the pre-grizzly format :param relative: if True, just the relative path is returned :returns: a path to store information about that instance """ pre_grizzly_name = os.path.join(CONF.instances_path, instance['name']) if forceold or os.path.exists(pre_grizzly_name): if relative: return instance['name'] return pre_grizzly_name if relative: return instance['uuid'] return os.path.join(CONF.instances_path, instance['uuid']) def get_arch(image_meta): """Determine the architecture of the guest (or host). This method determines the CPU architecture that must be supported by the hypervisor. It gets the (guest) arch info from image_meta properties, and it will fallback to the nova-compute (host) arch if no architecture info is provided in image_meta. :param image_meta: the metadata associated with the instance image :returns: guest (or host) architecture """ if image_meta: arch = image_meta.get('properties', {}).get('architecture') if arch is not None: return arch return platform.processor() def is_mounted(mount_path, source=None): """Check if the given source is mounted at given destination point.""" try: check_cmd = ['findmnt', '--target', mount_path] if source: check_cmd.extend(['--source', source]) utils.execute(*check_cmd) return True except processutils.ProcessExecutionError as exc: return False except OSError as exc: #info since it's not required to have this tool. if exc.errno == errno.ENOENT: LOG.info(_LI("findmnt tool is not installed")) return False
32.468045
78
0.634111
2b47a6dee3d34acd702ffeff9b13940608c41b21
3,699
py
Python
Desktop/cs61a/lab/lab10/reader.py
cpvb13/cal-hack-5-proj
13e31fff3f56b57030c34147b04cef1d6309c62b
[ "MIT" ]
6
2018-09-01T15:11:11.000Z
2022-03-23T00:34:31.000Z
Desktop/cs61a/lab/lab10/reader.py
cpvb13/cal-hack-5-proj
13e31fff3f56b57030c34147b04cef1d6309c62b
[ "MIT" ]
null
null
null
Desktop/cs61a/lab/lab10/reader.py
cpvb13/cal-hack-5-proj
13e31fff3f56b57030c34147b04cef1d6309c62b
[ "MIT" ]
3
2020-07-25T22:03:58.000Z
2022-01-05T18:54:52.000Z
import string from buffer import Buffer from expr import * SYMBOL_STARTS = set(string.ascii_lowercase + string.ascii_uppercase + '_') SYMBOL_INNERS = SYMBOL_STARTS | set(string.digits) NUMERAL = set(string.digits + '-.') WHITESPACE = set(' \t\n\r') DELIMITERS = set('(),:') def read(s): """Parse an expression from a string. If the string does not contain an expression, None is returned. If the string cannot be parsed, a SyntaxError is raised. >>> read('lambda f: f(0)') LambdaExpr(['f'], CallExpr(Name('f'), [Literal(0)])) >>> read('(lambda x: x)(5)') CallExpr(LambdaExpr(['x'], Name('x')), [Literal(5)]) >>> read('(lambda: 5)()') CallExpr(LambdaExpr([], Literal(5)), []) >>> read('lambda x y: 10') Traceback (most recent call last): ... SyntaxError: expected ':' but got 'y' >>> read(' ') # returns None """ src = Buffer(tokenize(s)) if src.current() is not None: return read_expr(src) ########### ## Lexer ## ########### def tokenize(s): """Splits the string s into tokens and returns a list of them. >>> tokenize('lambda f: f(0, 4.2)') ['lambda', 'f', ':', 'f', '(', 0, ',', 4.2, ')'] """ src = Buffer(s) tokens = [] while True: token = next_token(src) if token is None: return tokens tokens.append(token) def take(src, allowed_characters): result = '' while src.current() in allowed_characters: result += src.remove_front() return result def next_token(src): take(src, WHITESPACE) # skip whitespace c = src.current() if c is None: return None elif c in NUMERAL: literal = take(src, NUMERAL) try: return int(literal) except ValueError: try: return float(literal) except ValueError: raise SyntaxError("'{}' is not a numeral".format(literal)) elif c in SYMBOL_STARTS: return take(src, SYMBOL_INNERS) elif c in DELIMITERS: src.remove_front() return c else: raise SyntaxError("'{}' is not a token".format(c)) def is_literal(s): return isinstance(s, int) or isinstance(s, float) def is_name(s): return isinstance(s, str) and s not in DELIMITERS and s != 'lambda' ############ ## Parser ## ############ def read_expr(src): token = src.remove_front() if token is None: raise SyntaxError('Incomplete expression') elif is_literal(token): return read_call_expr(src, Literal(token)) elif is_name(token): return read_call_expr(src, Name(token)) elif token == 'lambda': params = read_comma_separated(src, read_param) src.expect(':') body = read_expr(src) return LambdaExpr(params, body) elif token == '(': inner_expr = read_expr(src) src.expect(')') return read_call_expr(src, inner_expr) else: raise SyntaxError("'{}' is not the start of an expression".format(token)) def read_comma_separated(src, reader): if src.current() in (':', ')'): return [] else: s = [reader(src)] while src.current() == ',': src.remove_front() s.append(reader(src)) return s def read_call_expr(src, operator): while src.current() == '(': src.remove_front() operands = read_comma_separated(src, read_expr) src.expect(')') operator = CallExpr(operator, operands) return operator def read_param(src): token = src.remove_front() if is_name(token): return token else: raise SyntaxError("Expected parameter name but got '{}'".format(token))
28.453846
81
0.583401
d0877eb244ce75015a69bff9c7ebf32d79f3262d
1,008
py
Python
2018/codemotion/cnd/demo/vote/app.py
pchico83/talks
8335e8740e764a4e45c443597b70bca684ba0238
[ "Apache-2.0" ]
null
null
null
2018/codemotion/cnd/demo/vote/app.py
pchico83/talks
8335e8740e764a4e45c443597b70bca684ba0238
[ "Apache-2.0" ]
null
null
null
2018/codemotion/cnd/demo/vote/app.py
pchico83/talks
8335e8740e764a4e45c443597b70bca684ba0238
[ "Apache-2.0" ]
null
null
null
from flask import Flask, render_template, request, make_response, g from redis import Redis import os import socket import random import json option_a = os.getenv('OPTION_A', "AAA") option_b = os.getenv('OPTION_B', "Dogs") hostname = socket.gethostname() app = Flask(__name__) def get_redis(): if not hasattr(g, 'redis'): g.redis = Redis(host="redis", db=0, socket_timeout=5) return g.redis @app.route("/", methods=['POST','GET']) def hello(): voter_id = hex(random.getrandbits(64))[2:-1] vote = None if request.method == 'POST': redis = get_redis() vote = request.form['vote'] data = json.dumps({'voter_id': voter_id, 'vote': vote}) redis.rpush('votes', data) resp = make_response(render_template( 'index.html', option_a=option_a, option_b=option_b, hostname=hostname, vote=vote, )) return resp if __name__ == "__main__": app.run(host='0.0.0.0', port=80, debug=True, threaded=True)
24
67
0.632937
5c4dfd3d25d55e3ed71a388ba4c9a33ce854e381
684
py
Python
8ball.py
cccepc/dpr228
175613d086d2c544d6bee1e3482294326979f9ae
[ "Apache-2.0" ]
null
null
null
8ball.py
cccepc/dpr228
175613d086d2c544d6bee1e3482294326979f9ae
[ "Apache-2.0" ]
null
null
null
8ball.py
cccepc/dpr228
175613d086d2c544d6bee1e3482294326979f9ae
[ "Apache-2.0" ]
null
null
null
import random def getAnswer(answerNumber): if answerNumber == 1: return 'It is certain' elif answerNumber == 2: return 'It is decidedly so' elif answerNumber == 3: return 'Yes' elif answerNumber == 4: return 'Reply hazy try again' elif answerNumber == 5: return 'Ask again later' elif answerNumber == 6: return 'Concentrate and ask again' elif answerNumber == 7: return 'My reply is no' elif answerNumber ==8: return 'Outlook not so good' elif answerNumber == 9: return 'Very doubtful' r = random.randint(1, 9) fortune = getAnswer(r) print(fortune)
26.307692
43
0.593567
8ca93981a5ebe08e6349e061d96013b8fae414f8
961
py
Python
isi_sdk_9_0_0/test/test_dedupe_settings_settings.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_9_0_0/test/test_dedupe_settings_settings.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_9_0_0/test/test_dedupe_settings_settings.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 10 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_9_0_0 from isi_sdk_9_0_0.models.dedupe_settings_settings import DedupeSettingsSettings # noqa: E501 from isi_sdk_9_0_0.rest import ApiException class TestDedupeSettingsSettings(unittest.TestCase): """DedupeSettingsSettings unit test stubs""" def setUp(self): pass def tearDown(self): pass def testDedupeSettingsSettings(self): """Test DedupeSettingsSettings""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_9_0_0.models.dedupe_settings_settings.DedupeSettingsSettings() # noqa: E501 pass if __name__ == '__main__': unittest.main()
23.439024
102
0.723205
2aec9d11c3117c74123550aab275ffd0a5c9dac5
1,879
py
Python
examples/gallery/embellishments/colorbars_multiple.py
arleaman/pygmt
7f53b9dae66fae3f0cd91c7feb92ef53bf7d9f42
[ "BSD-3-Clause" ]
1
2021-11-16T01:29:59.000Z
2021-11-16T01:29:59.000Z
examples/gallery/embellishments/colorbars_multiple.py
PeiyanXi/pygmt
1b74259a0346f45ff4e42244185450d0e70cc2ff
[ "BSD-3-Clause" ]
18
2021-11-02T21:16:06.000Z
2022-03-22T21:15:40.000Z
examples/gallery/embellishments/colorbars_multiple.py
geodeepak/Pygmt
77949bba289102d3077cfa9b7fda26f74ef6aed0
[ "BSD-3-Clause" ]
null
null
null
""" Multiple colormaps ------------------ This gallery example shows how to create multiple colormaps for different subplots. To better understand how GMT modern mode maintains several levels of colormaps, please refer to :gmt-docs:`cookbook/features.html#gmt-modern-mode-hierarchical-levels` for details. """ import pygmt fig = pygmt.Figure() # Load Earth relief data for the entire globe and a subset region grid_globe = pygmt.datasets.load_earth_relief(resolution="01d") subset_region = [-14, 30, 35, 60] grid_subset = pygmt.datasets.load_earth_relief(resolution="10m", region=subset_region) # Define a 1-row, 2-column subplot layout. The overall figure dimensions is set # to be 15 cm wide and 8 cm high. Each subplot is automatically labelled. # The space between the subplots is set to be 0.5 cm. with fig.subplot( nrows=1, ncols=2, figsize=("15c", "8c"), autolabel=True, margins="0.5c" ): # Activate the first panel so that the colormap created by the makecpt # method is a panel-level CPT with fig.set_panel(panel=0): pygmt.makecpt(cmap="geo", series=[-8000, 8000]) # "R?" means Winkel Tripel projection with map width automatically # determined from the subplot width. fig.grdimage(grid=grid_globe, projection="R?", region="g", frame=True) fig.colorbar(frame=["a4000f2000", "x+lElevation", "y+lm"]) # Activate the second panel so that the colormap created by the makecpt # method is a panel-level CPT with fig.set_panel(panel=1): pygmt.makecpt(cmap="globe", series=[-6000, 3000]) # "M?" means Mercator projection with map width also automatically # determined from the subplot width. fig.grdimage( grid=grid_subset, projection="M?", region=subset_region, frame=True ) fig.colorbar(frame=["a2000f1000", "x+lElevation", "y+lm"]) fig.show()
41.755556
86
0.700905
e98774dc3bf7d3d1a4dbd13092bd5cc1d058e576
296
py
Python
Players/AIPlayer.py
Lunalulululu/Cardgame
97756464d8ea5ed252ae6817e6c121590c6b4130
[ "Apache-2.0" ]
null
null
null
Players/AIPlayer.py
Lunalulululu/Cardgame
97756464d8ea5ed252ae6817e6c121590c6b4130
[ "Apache-2.0" ]
null
null
null
Players/AIPlayer.py
Lunalulululu/Cardgame
97756464d8ea5ed252ae6817e6c121590c6b4130
[ "Apache-2.0" ]
null
null
null
from OptimalDiscard import OptimalDiscard from OptimalGrouping import OptimalGrouping from Players.Player import Player class AIPlayer(Player): def do_discard(self): OptimalDiscard(self) def do_grouping(self): if len(self.hand) == 10: OptimalGrouping(self)
22.769231
43
0.719595
7daa81a0ac0e13b744a6b44d3531c130a2a4092f
2,598
py
Python
src/poetry/console/commands/publish.py
robin92/poetry
7cc684981983963dc202e1a249a4b66667b468bd
[ "MIT" ]
null
null
null
src/poetry/console/commands/publish.py
robin92/poetry
7cc684981983963dc202e1a249a4b66667b468bd
[ "MIT" ]
null
null
null
src/poetry/console/commands/publish.py
robin92/poetry
7cc684981983963dc202e1a249a4b66667b468bd
[ "MIT" ]
null
null
null
from pathlib import Path from typing import Optional from cleo.helpers import option from poetry.console.commands.command import Command class PublishCommand(Command): name = "publish" description = "Publishes a package to a remote repository." options = [ option( "repository", "r", "The repository to publish the package to.", flag=False ), option("username", "u", "The username to access the repository.", flag=False), option("password", "p", "The password to access the repository.", flag=False), option( "cert", None, "Certificate authority to access the repository.", flag=False ), option( "client-cert", None, "Client certificate to access the repository.", flag=False, ), option("build", None, "Build the package before publishing."), option("dry-run", None, "Perform all actions except upload the package."), ] help = """The publish command builds and uploads the package to a remote repository. By default, it will upload to PyPI but if you pass the --repository option it will upload to it instead. The --repository option should match the name of a configured repository using the config command. """ loggers = ["poetry.masonry.publishing.publisher"] def handle(self) -> Optional[int]: from poetry.publishing.publisher import Publisher publisher = Publisher(self.poetry, self.io) # Building package first, if told if self.option("build"): if publisher.files and not self.confirm( f"There are <info>{len(publisher.files)}</info> files ready for" " publishing. Build anyway?" ): self.line_error("<error>Aborted!</error>") return 1 self.call("build") files = publisher.files if not files: self.line_error( "<error>No files to publish. " "Run poetry build first or use the --build option.</error>" ) return 1 self.line("") cert = Path(self.option("cert")) if self.option("cert") else None client_cert = ( Path(self.option("client-cert")) if self.option("client-cert") else None ) publisher.publish( self.option("repository"), self.option("username"), self.option("password"), cert, client_cert, self.option("dry-run"), ) return None
29.862069
88
0.585835
9cdab62b48749bea48ad417b986b14e915053aae
12,168
py
Python
google/cloud/firestore_v1/async_client.py
tswast/python-firestore
1f44a45419a85d8646ded5f22d6cbab697761651
[ "Apache-2.0" ]
null
null
null
google/cloud/firestore_v1/async_client.py
tswast/python-firestore
1f44a45419a85d8646ded5f22d6cbab697761651
[ "Apache-2.0" ]
null
null
null
google/cloud/firestore_v1/async_client.py
tswast/python-firestore
1f44a45419a85d8646ded5f22d6cbab697761651
[ "Apache-2.0" ]
1
2020-10-04T12:11:36.000Z
2020-10-04T12:11:36.000Z
# Copyright 2020 Google LLC All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Client for interacting with the Google Cloud Firestore API. This is the base from which all interactions with the API occur. In the hierarchy of API concepts * a :class:`~google.cloud.firestore_v1.client.Client` owns a :class:`~google.cloud.firestore_v1.async_collection.AsyncCollectionReference` * a :class:`~google.cloud.firestore_v1.client.Client` owns a :class:`~google.cloud.firestore_v1.async_document.AsyncDocumentReference` """ from google.cloud.firestore_v1.base_client import ( BaseClient, DEFAULT_DATABASE, _CLIENT_INFO, _reference_info, # type: ignore _parse_batch_get, # type: ignore _get_doc_mask, _path_helper, ) from google.cloud.firestore_v1 import _helpers from google.cloud.firestore_v1.async_query import AsyncQuery from google.cloud.firestore_v1.async_batch import AsyncWriteBatch from google.cloud.firestore_v1.async_collection import AsyncCollectionReference from google.cloud.firestore_v1.async_document import ( AsyncDocumentReference, DocumentSnapshot, ) from google.cloud.firestore_v1.async_transaction import AsyncTransaction from google.cloud.firestore_v1.services.firestore import ( async_client as firestore_client, ) from google.cloud.firestore_v1.services.firestore.transports import ( grpc_asyncio as firestore_grpc_transport, ) from typing import Any, AsyncGenerator class AsyncClient(BaseClient): """Client for interacting with Google Cloud Firestore API. .. note:: Since the Cloud Firestore API requires the gRPC transport, no ``_http`` argument is accepted by this class. Args: project (Optional[str]): The project which the client acts on behalf of. If not passed, falls back to the default inferred from the environment. credentials (Optional[~google.auth.credentials.Credentials]): The OAuth2 Credentials to use for this client. If not passed, falls back to the default inferred from the environment. database (Optional[str]): The database name that the client targets. For now, :attr:`DEFAULT_DATABASE` (the default value) is the only valid database. client_info (Optional[google.api_core.gapic_v1.client_info.ClientInfo]): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own library or partner tool. client_options (Union[dict, google.api_core.client_options.ClientOptions]): Client options used to set user options on the client. API Endpoint should be set through client_options. """ def __init__( self, project=None, credentials=None, database=DEFAULT_DATABASE, client_info=_CLIENT_INFO, client_options=None, ) -> None: super(AsyncClient, self).__init__( project=project, credentials=credentials, database=database, client_info=client_info, client_options=client_options, ) @property def _firestore_api(self): """Lazy-loading getter GAPIC Firestore API. Returns: :class:`~google.cloud.gapic.firestore.v1`.async_firestore_client.FirestoreAsyncClient: The GAPIC client with the credentials of the current client. """ return self._firestore_api_helper( firestore_grpc_transport.FirestoreGrpcAsyncIOTransport, firestore_client.FirestoreAsyncClient, firestore_client, ) @property def _target(self): """Return the target (where the API is). Eg. "firestore.googleapis.com" Returns: str: The location of the API. """ return self._target_helper(firestore_client.FirestoreAsyncClient) def collection(self, *collection_path) -> AsyncCollectionReference: """Get a reference to a collection. For a top-level collection: .. code-block:: python >>> client.collection('top') For a sub-collection: .. code-block:: python >>> client.collection('mydocs/doc/subcol') >>> # is the same as >>> client.collection('mydocs', 'doc', 'subcol') Sub-collections can be nested deeper in a similar fashion. Args: collection_path (Tuple[str, ...]): Can either be * A single ``/``-delimited path to a collection * A tuple of collection path segments Returns: :class:`~google.cloud.firestore_v1.async_collection.AsyncCollectionReference`: A reference to a collection in the Firestore database. """ return AsyncCollectionReference(*_path_helper(collection_path), client=self) def collection_group(self, collection_id) -> AsyncQuery: """ Creates and returns a new AsyncQuery that includes all documents in the database that are contained in a collection or subcollection with the given collection_id. .. code-block:: python >>> query = client.collection_group('mygroup') Args: collection_id (str) Identifies the collections to query over. Every collection or subcollection with this ID as the last segment of its path will be included. Cannot contain a slash. Returns: :class:`~google.cloud.firestore_v1.async_query.AsyncQuery`: The created AsyncQuery. """ return AsyncQuery( self._get_collection_reference(collection_id), all_descendants=True ) def document(self, *document_path) -> AsyncDocumentReference: """Get a reference to a document in a collection. For a top-level document: .. code-block:: python >>> client.document('collek/shun') >>> # is the same as >>> client.document('collek', 'shun') For a document in a sub-collection: .. code-block:: python >>> client.document('mydocs/doc/subcol/child') >>> # is the same as >>> client.document('mydocs', 'doc', 'subcol', 'child') Documents in sub-collections can be nested deeper in a similar fashion. Args: document_path (Tuple[str, ...]): Can either be * A single ``/``-delimited path to a document * A tuple of document path segments Returns: :class:`~google.cloud.firestore_v1.document.AsyncDocumentReference`: A reference to a document in a collection. """ return AsyncDocumentReference( *self._document_path_helper(*document_path), client=self ) async def get_all( self, references, field_paths=None, transaction=None ) -> AsyncGenerator[DocumentSnapshot, Any]: """Retrieve a batch of documents. .. note:: Documents returned by this method are not guaranteed to be returned in the same order that they are given in ``references``. .. note:: If multiple ``references`` refer to the same document, the server will only return one result. See :meth:`~google.cloud.firestore_v1.client.Client.field_path` for more information on **field paths**. If a ``transaction`` is used and it already has write operations added, this method cannot be used (i.e. read-after-write is not allowed). Args: references (List[.AsyncDocumentReference, ...]): Iterable of document references to be retrieved. field_paths (Optional[Iterable[str, ...]]): An iterable of field paths (``.``-delimited list of field names) to use as a projection of document fields in the returned results. If no value is provided, all fields will be returned. transaction (Optional[:class:`~google.cloud.firestore_v1.async_transaction.AsyncTransaction`]): An existing transaction that these ``references`` will be retrieved in. Yields: .DocumentSnapshot: The next document snapshot that fulfills the query, or :data:`None` if the document does not exist. """ document_paths, reference_map = _reference_info(references) mask = _get_doc_mask(field_paths) response_iterator = await self._firestore_api.batch_get_documents( request={ "database": self._database_string, "documents": document_paths, "mask": mask, "transaction": _helpers.get_transaction_id(transaction), }, metadata=self._rpc_metadata, ) async for get_doc_response in response_iterator: yield _parse_batch_get(get_doc_response, reference_map, self) async def collections(self) -> AsyncGenerator[AsyncCollectionReference, Any]: """List top-level collections of the client's database. Returns: Sequence[:class:`~google.cloud.firestore_v1.async_collection.AsyncCollectionReference`]: iterator of subcollections of the current document. """ iterator = await self._firestore_api.list_collection_ids( request={"parent": "{}/documents".format(self._database_string)}, metadata=self._rpc_metadata, ) while True: for i in iterator.collection_ids: yield self.collection(i) if iterator.next_page_token: iterator = await self._firestore_api.list_collection_ids( request={ "parent": "{}/documents".format(self._database_string), "page_token": iterator.next_page_token, }, metadata=self._rpc_metadata, ) else: return # TODO(microgen): currently this method is rewritten to iterate/page itself. # https://github.com/googleapis/gapic-generator-python/issues/516 # it seems the generator ought to be able to do this itself. # iterator.client = self # iterator.item_to_value = _item_to_collection_ref # return iterator def batch(self) -> AsyncWriteBatch: """Get a batch instance from this client. Returns: :class:`~google.cloud.firestore_v1.async_batch.AsyncWriteBatch`: A "write" batch to be used for accumulating document changes and sending the changes all at once. """ return AsyncWriteBatch(self) def transaction(self, **kwargs) -> AsyncTransaction: """Get a transaction that uses this client. See :class:`~google.cloud.firestore_v1.async_transaction.AsyncTransaction` for more information on transactions and the constructor arguments. Args: kwargs (Dict[str, Any]): The keyword arguments (other than ``client``) to pass along to the :class:`~google.cloud.firestore_v1.async_transaction.AsyncTransaction` constructor. Returns: :class:`~google.cloud.firestore_v1.async_transaction.AsyncTransaction`: A transaction attached to this client. """ return AsyncTransaction(self, **kwargs)
37.555556
107
0.644313
7e65a59da65ea9219aba1b59c7958de1b4b9109c
2,818
py
Python
quorum/quorum_algorithm.py
Blackjack92/distributed-decision-trees-corrution-analysis
fb12a29eb8b767996e1cdcbb0a73bb7f0ad8de75
[ "MIT" ]
null
null
null
quorum/quorum_algorithm.py
Blackjack92/distributed-decision-trees-corrution-analysis
fb12a29eb8b767996e1cdcbb0a73bb7f0ad8de75
[ "MIT" ]
null
null
null
quorum/quorum_algorithm.py
Blackjack92/distributed-decision-trees-corrution-analysis
fb12a29eb8b767996e1cdcbb0a73bb7f0ad8de75
[ "MIT" ]
null
null
null
import os import sys import functools import itertools import random scriptpath = "../" # Add the directory containing your module to the Python path (wants absolute paths) sys.path.append(os.path.abspath(scriptpath)) import dt_algorithm def calculate_quorum_tree_len(quorum_tree): return functools.reduce(lambda count, node: count + len(node), quorum_tree, 0) def calculate_node_number_of_all_depths_for_quorum_tree(max_depth, quorums): return dt_algorithm.calculate_node_number_of_all_depths(max_depth) + (2 * quorums) def quorum_corruption_validator(node): return (sum(node) / len(node)) > 0.5 def build_all_quorum_tree_combinations(max_depth, number_of_quorums): size = dt_algorithm.calculate_node_number_of_all_depths(max_depth) for positions in itertools.combinations(range(size), number_of_quorums): p = [[0] for _ in range(size)] for i in positions: p[i] = [0, 0, 0] yield p def corrupt_node_for_quorum_tree(quorum_tree, positions): size = calculate_quorum_tree_len(quorum_tree) currentPosition = 0 for i, node in enumerate(quorum_tree): for j, subnode in enumerate(node): if currentPosition in positions: quorum_tree[i][j] = 1 currentPosition += 1 def build_all_corrupted_tree_combinations_for_quorum_tree(quorum_tree, number_of_corrupted_nodes): size = calculate_quorum_tree_len(quorum_tree) for positions in itertools.combinations(range(size), number_of_corrupted_nodes): cp = [x[:] for x in quorum_tree] corrupt_node_for_quorum_tree(cp, positions) yield cp def build_all_corrupted_quorum_tree_combinations(max_depth, number_of_quorums, number_of_corrupted_nodes): quorum_tree_combinations = build_all_quorum_tree_combinations(max_depth, number_of_quorums) for combination in quorum_tree_combinations: corrupted_combinations = build_all_corrupted_tree_combinations_for_quorum_tree(combination, number_of_corrupted_nodes) for corrupted_combination in corrupted_combinations: yield corrupted_combination def build_random_corrupted_quorum_tree_combinations(max_depth, number_of_quorums, number_of_corrupted_nodes, iterations): size = dt_algorithm.calculate_node_number_of_all_depths(max_depth) for i in range(iterations): p = [[0] for _ in range(size)] # Set quorum at random position for quorum_position in random.sample(range(size), number_of_quorums): p[quorum_position] = [0, 0, 0] # Set corrupted nodes at random positions overall_size = calculate_node_number_of_all_depths_for_quorum_tree(max_depth, number_of_quorums) corrupt_node_for_quorum_tree(p, list(random.sample(range(overall_size), number_of_corrupted_nodes))) yield p
40.257143
126
0.75763
a5f8a33d1408ca06ddf63d241f325859f87bc8e4
291
py
Python
1066.py
heltonricardo/URI
160cca22d94aa667177c9ebf2a1c9864c5e55b41
[ "MIT" ]
6
2021-04-13T00:33:43.000Z
2022-02-10T10:23:59.000Z
1066.py
heltonricardo/URI
160cca22d94aa667177c9ebf2a1c9864c5e55b41
[ "MIT" ]
null
null
null
1066.py
heltonricardo/URI
160cca22d94aa667177c9ebf2a1c9864c5e55b41
[ "MIT" ]
3
2021-03-23T18:42:24.000Z
2022-02-10T10:24:07.000Z
pa = im = po = ne = 0 for i in range(5): n = int(input()) if n % 2 == 0: pa += 1 else: im += 1 if n > 0: po += 1 elif n < 0: ne += 1 print(pa , 'valor(es) par(es)') print(im , 'valor(es) impar(es)') print(po , 'valor(es) positivo(s)') print(ne , 'valor(es) negativo(s)')
24.25
35
0.505155
45e46b8e066aa7f46a3d3a93ad1781a92a5ad9d6
5,615
py
Python
zvt/recorders/eastmoney/meta/china_stock_category_recorder.py
doncat99/zvt
831183bdf7a6d0fc3acd3ea51984df590078eec6
[ "MIT" ]
10
2020-08-08T04:43:00.000Z
2021-07-23T05:38:11.000Z
zvt/recorders/eastmoney/meta/china_stock_category_recorder.py
doncat99/zvt
831183bdf7a6d0fc3acd3ea51984df590078eec6
[ "MIT" ]
1
2021-08-14T12:19:18.000Z
2021-09-30T06:44:04.000Z
zvt/recorders/eastmoney/meta/china_stock_category_recorder.py
doncat99/zvt
831183bdf7a6d0fc3acd3ea51984df590078eec6
[ "MIT" ]
1
2021-12-16T01:57:37.000Z
2021-12-16T01:57:37.000Z
# -*- coding: utf-8 -*- import pandas as pd from numba import njit from zvt import zvt_config from zvt.api.data_type import Region, Provider, EntityType from zvt.api.quote import china_stock_code_to_id from zvt.domain import BlockStock, BlockCategory, Block from zvt.contract.api import df_to_db from zvt.contract.recorder import RecorderForEntities, TimeSeriesDataRecorder from zvt.networking.request import sync_get from zvt.utils.time_utils import now_pd_timestamp, PD_TIME_FORMAT_DAY from zvt.utils.utils import json_callback_param class EastmoneyChinaBlockRecorder(RecorderForEntities): provider = Provider.EastMoney data_schema = Block region = Region.CHN # 用于抓取行业/概念/地域列表 category_map_url = { BlockCategory.industry: 'https://nufm.dfcfw.com/EM_Finance2014NumericApplication/JS.aspx?type=CT&cmd=C._BKHY&sty=DCRRBKCPAL&st=(ChangePercent)&sr=-1&p=1&ps=200&lvl=&cb=jsonp_F1A61014DE5E45B7A50068EA290BC918&token=4f1862fc3b5e77c150a2b985b12db0fd&_=08766', BlockCategory.concept: 'https://nufm.dfcfw.com/EM_Finance2014NumericApplication/JS.aspx?type=CT&cmd=C._BKGN&sty=DCRRBKCPAL&st=(ChangePercent)&sr=-1&p=1&ps=300&lvl=&cb=jsonp_3071689CC1E6486A80027D69E8B33F26&token=4f1862fc3b5e77c150a2b985b12db0fd&_=08251', # BlockCategory.area: 'https://nufm.dfcfw.com/EM_Finance2014NumericApplication/JS.aspx?type=CT&cmd=C._BKDY&sty=DCRRBKCPAL&st=(ChangePercent)&sr=-1&p=1&ps=200&lvl=&cb=jsonp_A597D4867B3D4659A203AADE5B3B3AD5&token=4f1862fc3b5e77c150a2b985b12db0fd&_=02443' } def init_entities(self): self.entities = [(category, url) for category, url in self.category_map_url.items()] def process_loop(self, entity, http_session): category, url = entity text = sync_get(http_session, url, return_type='text') if text is None: return results = json_callback_param(text) @njit(nopython=True) def numba_boost_up(results): the_list = [] for result in results: items = result.split(',') code = items[1] name = items[2] entity_id = f'block_cn_{code}' the_list.append({ 'id': entity_id, 'entity_id': entity_id, 'entity_type': EntityType.Block.value, 'exchange': 'cn', 'code': code, 'name': name, 'category': category.value }) return the_list the_list = numba_boost_up(results) if the_list: df = pd.DataFrame.from_records(the_list) df_to_db(df=df, ref_df=None, region=Region.CHN, data_schema=self.data_schema, provider=self.provider) self.logger.info(f"finish record sina blocks:{category.value}") class EastmoneyChinaBlockStockRecorder(TimeSeriesDataRecorder): region = Region.CHN provider = Provider.EastMoney entity_schema = Block data_schema = BlockStock # 用于抓取行业包含的股票 category_stocks_url = 'https://nufm.dfcfw.com/EM_Finance2014NumericApplication/JS.aspx?type=CT&cmd=C.{}{}&sty=SFCOO&st=(Close)&sr=-1&p=1&ps=300&cb=jsonp_B66B5BAA1C1B47B5BB9778045845B947&token=7bc05d0d4c3c22ef9fca8c2a912d779c' def __init__(self, exchanges=None, entity_ids=None, codes=None, batch_size=10, force_update=False, sleeping_time=5, default_size=zvt_config['batch_size'], real_time=False, fix_duplicate_way='add', start_timestamp=None, end_timestamp=None, close_hour=0, close_minute=0) -> None: super().__init__(EntityType.Block, exchanges, entity_ids, codes, batch_size, force_update, sleeping_time, default_size, real_time, fix_duplicate_way, start_timestamp, end_timestamp, close_hour, close_minute) def generate_domain_id(self, entity, df, time_fmt=PD_TIME_FORMAT_DAY): return entity.id + '_' + df['stock_id'] def record(self, entity, start, end, size, timestamps, http_session): url = self.category_stocks_url.format(entity.code, '1') text = sync_get(http_session, url, return_type='text') if text is None: return None results = json_callback_param(text) # @njit(nopython=True) def numba_boost_up(results): the_list = [] for result in results: items = result.split(',') stock_code = items[1] stock_id = china_stock_code_to_id(stock_code) the_list.append({ 'stock_id': stock_id, 'stock_code': stock_code, 'stock_name': items[2], }) return the_list the_list = numba_boost_up(results) if the_list: df = pd.DataFrame.from_records(the_list) return df self.sleep() return None def format(self, entity, df): df['timestamp'] = now_pd_timestamp(Region.CHN) df['entity_id'] = entity.id df['provider'] = self.provider.value df['code'] = entity.code df['name'] = entity.name df['level'] = self.level.value df['exchange'] = entity.exchange df['entity_type'] = EntityType.Block.value df['id'] = self.generate_domain_id(entity, df) return df __all__ = ['EastmoneyChinaBlockRecorder', 'EastmoneyChinaBlockStockRecorder'] if __name__ == '__main__': # init_log('china_stock_category.log') recorder = EastmoneyChinaBlockStockRecorder(codes=['BK0727']) recorder.run()
40.395683
263
0.654675
58feb55017462e7efa4d72ed4df75abfd5f318ad
16,784
py
Python
backend/modules/watson_developer_cloud/watson_service.py
RaitzeR/FinnBros
a2d7e3e755af7bb22bb2ce779ea1f36c6bed961b
[ "MIT" ]
null
null
null
backend/modules/watson_developer_cloud/watson_service.py
RaitzeR/FinnBros
a2d7e3e755af7bb22bb2ce779ea1f36c6bed961b
[ "MIT" ]
10
2020-06-05T18:08:03.000Z
2022-03-11T23:19:52.000Z
backend/modules/watson_developer_cloud/watson_service.py
RaitzeR/FinnBros
a2d7e3e755af7bb22bb2ce779ea1f36c6bed961b
[ "MIT" ]
null
null
null
# coding: utf-8 # Copyright 2017 IBM All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json as json_import import platform import os import requests import sys from requests.structures import CaseInsensitiveDict import dateutil.parser as date_parser from .iam_token_manager import IAMTokenManager try: from http.cookiejar import CookieJar # Python 3 except ImportError: from cookielib import CookieJar # Python 2 from .version import __version__ BEARER = 'Bearer' # Uncomment this to enable http debugging # try: # import http.client as http_client # except ImportError: # # Python 2 # import httplib as http_client # http_client.HTTPConnection.debuglevel = 1 def load_from_vcap_services(service_name): vcap_services = os.getenv("VCAP_SERVICES") if vcap_services is not None: services = json_import.loads(vcap_services) if service_name in services: return services[service_name][0]["credentials"] else: return None class WatsonException(Exception): """ Custom exception class for Watson Services. """ pass class WatsonApiException(WatsonException): """ Custom exception class for errors returned from Watson APIs. :param int code: The HTTP status code returned. :param str message: A message describing the error. :param dict info: A dictionary of additional information about the error. :param response httpResponse: response """ def __init__(self, code, message, info=None, httpResponse=None): # Call the base class constructor with the parameters it needs super(WatsonApiException, self).__init__(message) self.message = message self.code = code self.info = info self.httpResponse = httpResponse self.transactionId = None self.globalTransactionId = None if httpResponse is not None: self.transactionId = httpResponse.headers.get('X-DP-Watson-Tran-ID') self.globalTransactionId = httpResponse.headers.get('X-Global-Transaction-ID') def __str__(self): msg = 'Error: ' + str(self.message) + ', Code: ' + str(self.code) if self.transactionId is not None: msg += ' , X-dp-watson-tran-id: ' + str(self.transactionId) if self.globalTransactionId is not None: msg += ' , X-global-transaction-id: ' + str(self.globalTransactionId) return msg class WatsonInvalidArgument(WatsonException): pass def datetime_to_string(datetime): """ Serializes a datetime to a string. :param datetime: datetime value :return: string. containing iso8601 format date string """ return datetime.isoformat().replace('+00:00', 'Z') def string_to_datetime(string): """ Deserializes string to datetime. :param string: string containing datetime in iso8601 format :return: datetime. """ return date_parser.parse(string) def _cleanup_param_value(value): if isinstance(value, bool): return 'true' if value else 'false' return value def _cleanup_param_values(dictionary): if isinstance(dictionary, dict): return dict( [(k, _cleanup_param_value(v)) for k, v in dictionary.items()]) return dictionary def _remove_null_values(dictionary): if isinstance(dictionary, dict): return dict([(k, v) for k, v in dictionary.items() if v is not None]) return dictionary def _convert_boolean_value(value): if isinstance(value, bool): return 1 if value else 0 return value def _convert_boolean_values(dictionary): if isinstance(dictionary, dict): return dict( [(k, _convert_boolean_value(v)) for k, v in dictionary.items()]) return dictionary def get_error_message(response): """ Gets the error message from a JSON response. :return: the error message :rtype: string """ error_message = 'Unknown error' try: error_json = response.json() if 'error' in error_json: if isinstance(error_json['error'], dict) and 'description' in \ error_json['error']: error_message = error_json['error']['description'] else: error_message = error_json['error'] elif 'error_message' in error_json: error_message = error_json['error_message'] elif 'errorMessage' in error_json: error_message = error_json['errorMessage'] elif 'msg' in error_json: error_message = error_json['msg'] elif 'statusInfo' in error_json: error_message = error_json['statusInfo'] return error_message except: return response.text or error_message class DetailedResponse(object): """ Custom class for detailed response returned from Watson APIs. :param Response response: Either json response or http Response as requested. :param dict headers: A dict of response headers """ def __init__(self, response=None, headers=None): self.result = response self.headers = headers def get_result(self): return self.result def get_headers(self): return self.headers def _to_dict(self): _dict = {} if hasattr(self, 'result') and self.result is not None: _dict['result'] = self.result if isinstance(self.result, dict) else 'HTTP response' if hasattr(self, 'headers') and self.headers is not None: _dict['headers'] = self.headers return _dict def __str__(self): return json_import.dumps(self._to_dict(), indent=2, default=lambda o: o.__dict__) class WatsonService(object): def __init__(self, vcap_services_name, url, username=None, password=None, use_vcap_services=True, api_key=None, x_watson_learning_opt_out=False, iam_api_key=None, iam_access_token=None, iam_url=None): """ Loads credentials from the VCAP_SERVICES environment variable if available, preferring credentials explicitly set in the request. If VCAP_SERVICES is not found (or use_vcap_services is set to False), username and password credentials must be specified. """ self.url = url self.jar = None self.api_key = None self.username = None self.password = None self.default_headers = None self.http_config = {} self.detailed_response = False self.iam_api_key = None self.iam_access_token = None self.iam_url = None self.token_manager = None user_agent_string = 'watson-apis-python-sdk-' + __version__ # SDK version user_agent_string += ' ' + platform.system() # OS user_agent_string += ' ' + platform.release() # OS version user_agent_string += ' ' + platform.python_version() # Python version self.user_agent_header = {'user-agent': user_agent_string} if x_watson_learning_opt_out: self.default_headers = {'x-watson-learning-opt-out': 'true'} if api_key is not None: self.set_api_key(api_key) elif username is not None and password is not None: self.set_username_and_password(username, password) elif iam_access_token is not None or iam_api_key is not None: self.set_token_manager(iam_api_key, iam_access_token, iam_url) if use_vcap_services and not self.username and not self.api_key: self.vcap_service_credentials = load_from_vcap_services( vcap_services_name) if self.vcap_service_credentials is not None and isinstance( self.vcap_service_credentials, dict): self.url = self.vcap_service_credentials['url'] if 'username' in self.vcap_service_credentials: self.username = self.vcap_service_credentials['username'] if 'password' in self.vcap_service_credentials: self.password = self.vcap_service_credentials['password'] if 'apikey' in self.vcap_service_credentials: self.api_key = self.vcap_service_credentials['apikey'] if 'api_key' in self.vcap_service_credentials: self.api_key = self.vcap_service_credentials['api_key'] if ('iam_api_key' or 'apikey') in self.vcap_service_credentials: self.iam_api_key = self.vcap_service_credentials.get('iam_api_key') or self.vcap_service_credentials.get('apikey') if 'iam_access_token' in self.vcap_service_credentials: self.iam_access_token = self.vcap_service_credentials['iam_access_token'] if 'iam_url' in self.vcap_service_credentials: self.iam_url = self.vcap_service_credentials['iam_url'] if (self.username is None or self.password is None)\ and self.api_key is None and self.token_manager is None: raise ValueError( 'You must specify your IAM api key or username and password service ' 'credentials (Note: these are different from your Bluemix id)') def set_username_and_password(self, username=None, password=None): if username == 'YOUR SERVICE USERNAME': username = None if password == 'YOUR SERVICE PASSWORD': password = None self.username = username self.password = password self.jar = CookieJar() def set_api_key(self, api_key): if api_key == 'YOUR API KEY': api_key = None self.api_key = api_key self.jar = CookieJar() def set_token_manager(self, iam_api_key, iam_access_token, iam_url): if iam_api_key == 'YOUR IAM API KEY': iam_api_key = None self.iam_api_key = iam_api_key self.iam_access_token = iam_access_token self.iam_url = iam_url self.token_manager = IAMTokenManager(iam_api_key, iam_access_token, iam_url) self.jar = CookieJar() def set_iam_access_token(self, iam_access_token): if self.token_manager: self.token_manager.set_access_token(iam_access_token) else: self.token_manager = IAMTokenManager(iam_access_token=iam_access_token) self.iam_access_token = iam_access_token def set_url(self, url): self.url = url def set_default_headers(self, headers): """ Set http headers to be sent in every request. :param headers: A dictionary of header names and values """ if isinstance(headers, dict): self.default_headers = headers else: raise TypeError("headers parameter must be a dictionary") def set_http_config(self, http_config): """ Sets the http client config like timeout, proxies, etc. """ if isinstance(http_config, dict): self.http_config = http_config else: raise TypeError("http_config parameter must be a dictionary") def set_detailed_response(self, detailed_response): self.detailed_response = detailed_response # Could make this compute the label_id based on the variable name of the # dictionary passed in (using **kwargs), but # this might be confusing to understand. @staticmethod def unpack_id(dictionary, label_id): if isinstance(dictionary, dict) and label_id in dictionary: return dictionary[label_id] return dictionary @staticmethod def _convert_model(val, classname=None): if classname is not None and not hasattr(val, "_from_dict"): if isinstance(val, str): val = json_import.loads(val) val = classname._from_dict(dict(val)) if hasattr(val, "_to_dict"): return val._to_dict() return val @staticmethod def _convert_list(val): if isinstance(val, list): return ",".join(val) return val @staticmethod def _encode_path_vars(*args): return (requests.utils.quote(x, safe='') for x in args) @staticmethod def _get_error_info(response): """ Gets the error info (if any) from a JSON response. :return: A `dict` containing additional information about the error. :rtype: dict """ info_keys = ['code_description', 'description', 'errors', 'help', 'sub_code', 'warnings'] error_info = {} try: error_json = response.json() error_info = {k:v for k, v in error_json.items() if k in info_keys} except: pass return error_info if any(error_info) else None def request(self, method, url, accept_json=False, headers=None, params=None, json=None, data=None, files=None, **kwargs): full_url = self.url + url input_headers = _remove_null_values(headers) if headers else {} headers = CaseInsensitiveDict(self.user_agent_header) if self.default_headers is not None: headers.update(self.default_headers) if accept_json: headers['accept'] = 'application/json' headers.update(input_headers) # Remove keys with None values params = _remove_null_values(params) params = _cleanup_param_values(params) json = _remove_null_values(json) data = _remove_null_values(data) files = _remove_null_values(files) if sys.version_info >= (3, 0) and isinstance(data, str): data = data.encode('utf-8') # Support versions of requests older than 2.4.2 without the json input if not data and json is not None: data = json_import.dumps(json) headers.update({'content-type': 'application/json'}) auth = None if self.token_manager: access_token = self.token_manager.get_token() headers['Authorization'] = '{0} {1}'.format(BEARER, access_token) if self.username and self.password: auth = (self.username, self.password) if self.api_key is not None: if params is None: params = {} if full_url.startswith( 'https://gateway-a.watsonplatform.net/calls'): params['apikey'] = self.api_key else: params['api_key'] = self.api_key kwargs = dict(kwargs, **self.http_config) response = requests.request(method=method, url=full_url, cookies=self.jar, auth=auth, headers=headers, params=params, data=data, files=files, **kwargs) if 200 <= response.status_code <= 299: if response.status_code == 204: return None if accept_json: response_json = response.json() if 'status' in response_json and response_json['status'] \ == 'ERROR': status_code = 400 error_message = 'Unknown error' if 'statusInfo' in response_json: error_message = response_json['statusInfo'] if error_message == 'invalid-api-key': status_code = 401 raise WatsonApiException(status_code, error_message, httpResponse=response) return DetailedResponse(response_json, response.headers) if self.detailed_response else response_json return DetailedResponse(response, response.headers) if self.detailed_response else response else: if response.status_code == 401: error_message = 'Unauthorized: Access is denied due to ' \ 'invalid credentials ' else: error_message = get_error_message(response) error_info = self._get_error_info(response) raise WatsonApiException(response.status_code, error_message, info=error_info, httpResponse=response)
37.380846
134
0.633878
e12825b9a5af5d59a3a50a92c8c06b6e0e080535
575
py
Python
deepbgc/output/pfam_tsv.py
gkapatai/deepbgc
977fa56972a38b9405725315f566a939d5d21759
[ "MIT" ]
60
2019-02-01T14:40:32.000Z
2022-03-10T14:15:01.000Z
deepbgc/output/pfam_tsv.py
gkapatai/deepbgc
977fa56972a38b9405725315f566a939d5d21759
[ "MIT" ]
43
2019-01-31T17:17:47.000Z
2022-03-22T21:14:43.000Z
deepbgc/output/pfam_tsv.py
gkapatai/deepbgc
977fa56972a38b9405725315f566a939d5d21759
[ "MIT" ]
24
2019-01-14T19:12:16.000Z
2021-11-02T08:32:02.000Z
import logging from deepbgc import util from deepbgc.output.writer import TSVWriter class PfamTSVWriter(TSVWriter): @classmethod def get_description(cls): return 'Table of Pfam domains (pfam_id) from given sequence (sequence_id) in genomic order, with BGC detection scores' @classmethod def get_name(cls): return 'pfam-tsv' def record_to_df(self, record): df = util.create_pfam_dataframe(record, add_scores=True, add_in_cluster=True) logging.debug('Writing %s Pfams to: %s', len(df), self.out_path) return df
27.380952
126
0.707826
5dd1ccf8332fc9a9227f9a245c243895e11fd837
39
py
Python
QUANTAXIS_Trade/QA_status_center/__init__.py
xiongyixiaoyang/QUANTAXIS
08441ce711e55385e2b01f80df17d34e7e89f564
[ "MIT" ]
92
2017-03-22T07:27:21.000Z
2021-04-04T06:59:26.000Z
QUANTAXIS_Trade/QA_status_center/__init__.py
xiongyixiaoyang/QUANTAXIS
08441ce711e55385e2b01f80df17d34e7e89f564
[ "MIT" ]
2
2017-12-27T02:34:32.000Z
2018-04-18T02:50:13.000Z
QUANTAXIS_Trade/QA_status_center/__init__.py
xiongyixiaoyang/QUANTAXIS
08441ce711e55385e2b01f80df17d34e7e89f564
[ "MIT" ]
7
2017-03-22T07:27:25.000Z
2020-04-28T08:44:03.000Z
#coding:utf-8 """ 状态维护中心,确定订单状态等等 """
6.5
15
0.615385
0990e38f2a1cf6f0d6f25d16cd680e2208a55f3e
11,696
py
Python
external/vcm/vcm/cubedsphere/regridz.py
jacnugent/fv3net
84958651bdd17784fdab98f87ad0d65414c03368
[ "MIT" ]
null
null
null
external/vcm/vcm/cubedsphere/regridz.py
jacnugent/fv3net
84958651bdd17784fdab98f87ad0d65414c03368
[ "MIT" ]
null
null
null
external/vcm/vcm/cubedsphere/regridz.py
jacnugent/fv3net
84958651bdd17784fdab98f87ad0d65414c03368
[ "MIT" ]
null
null
null
import dask import numpy as np import xarray as xr from typing import Tuple, Union import vcm.mappm from ..calc.thermo import pressure_at_interface from ..cubedsphere import edge_weighted_block_average, weighted_block_average from ..cubedsphere.coarsen import block_upsample_like from ..cubedsphere.constants import ( RESTART_Z_CENTER, RESTART_Z_OUTER, FV_CORE_X_CENTER, FV_CORE_X_OUTER, FV_CORE_Y_CENTER, FV_CORE_Y_OUTER, ) from .xgcm import create_fv3_grid def regrid_to_area_weighted_pressure( ds: xr.Dataset, delp: xr.DataArray, area: xr.DataArray, coarsening_factor: int, x_dim: str = FV_CORE_X_CENTER, y_dim: str = FV_CORE_Y_CENTER, z_dim: str = RESTART_Z_CENTER, ) -> Union[xr.Dataset, xr.DataArray]: """ Vertically regrid a dataset of cell-centered quantities to coarsened pressure levels. Args: ds: input Dataset delp: pressure thicknesses area: area weights coarsening_factor: coarsening-factor for pressure levels x_dim (optional): x-dimension name. Defaults to "xaxis_1" y_dim (optional): y-dimension name. Defaults to "yaxis_2" z_dim (optional): z-dimension name. Defaults to "zaxis_1" Returns: tuple of regridded input Dataset and area masked wherever coarse pressure bottom interfaces are below fine surface pressure """ delp_coarse = weighted_block_average( delp, area, coarsening_factor, x_dim=x_dim, y_dim=y_dim ) return _regrid_given_delp( ds, delp, delp_coarse, area, x_dim=x_dim, y_dim=y_dim, z_dim=z_dim ) def regrid_to_edge_weighted_pressure( ds: xr.Dataset, delp: xr.DataArray, length: xr.DataArray, coarsening_factor: int, x_dim: str = FV_CORE_X_CENTER, y_dim: str = FV_CORE_Y_OUTER, z_dim: str = RESTART_Z_CENTER, edge: str = "x", ) -> Union[xr.Dataset, xr.DataArray]: """ Vertically regrid a dataset of edge-valued quantities to coarsened pressure levels. Args: ds: input Dataset delp: pressure thicknesses length: edge length weights coarsening_factor: coarsening-factor for pressure levels x_dim (optional): x-dimension name. Defaults to "xaxis_1" y_dim (optional): y-dimension name. Defaults to "yaxis_1" z_dim (optional): z-dimension name. Defaults to "zaxis_1" edge (optional): grid cell side to coarse-grain along {"x", "y"} Returns: tuple of regridded input Dataset and length masked wherever coarse pressure bottom interfaces are below fine surface pressure """ hor_dims = {"x": x_dim, "y": y_dim} grid = create_fv3_grid( xr.Dataset({"delp": delp}), x_center=FV_CORE_X_CENTER, x_outer=FV_CORE_X_OUTER, y_center=FV_CORE_Y_CENTER, y_outer=FV_CORE_Y_OUTER, ) interp_dim = "x" if edge == "y" else "y" delp_staggered = grid.interp(delp, interp_dim).assign_coords( {hor_dims[interp_dim]: np.arange(1, delp.sizes[hor_dims[edge]] + 2)} ) delp_staggered_coarse = edge_weighted_block_average( delp_staggered, length, coarsening_factor, x_dim=x_dim, y_dim=y_dim, edge=edge ) return _regrid_given_delp( ds, delp_staggered, delp_staggered_coarse, length, x_dim=x_dim, y_dim=y_dim, z_dim=z_dim, ) def _regrid_given_delp( ds, delp_fine, delp_coarse, weights, x_dim: str = FV_CORE_X_CENTER, y_dim: str = FV_CORE_Y_CENTER, z_dim: str = RESTART_Z_CENTER, ): """Given a fine and coarse delp, do vertical regridding to coarse pressure levels and mask weights below fine surface pressure. """ delp_coarse_on_fine = block_upsample_like( delp_coarse, delp_fine, x_dim=x_dim, y_dim=y_dim ) phalf_coarse_on_fine = pressure_at_interface( delp_coarse_on_fine, dim_center=z_dim, dim_outer=RESTART_Z_OUTER ) phalf_fine = pressure_at_interface( delp_fine, dim_center=z_dim, dim_outer=RESTART_Z_OUTER ) ds_regrid = xr.zeros_like(ds) for var in ds: ds_regrid[var] = regrid_vertical( phalf_fine, ds[var], phalf_coarse_on_fine, z_dim_center=z_dim ) masked_weights = _mask_weights( weights, phalf_coarse_on_fine, phalf_fine, dim_center=z_dim ) return ds_regrid, masked_weights def _mask_weights( weights, phalf_coarse_on_fine, phalf_fine, dim_center=RESTART_Z_CENTER, dim_outer=RESTART_Z_OUTER, ): return weights.where( phalf_coarse_on_fine.isel({dim_outer: slice(1, None)}).variable < phalf_fine.isel({dim_outer: -1}).variable, other=0.0, ).rename({dim_outer: dim_center}) def regrid_vertical( p_in: xr.DataArray, f_in: xr.DataArray, p_out: xr.DataArray, iv: int = 1, kord: int = 1, z_dim_center: str = RESTART_Z_CENTER, z_dim_outer: str = RESTART_Z_OUTER, ) -> xr.DataArray: """Do vertical regridding using Fortran mappm subroutine. Args: p_in: pressure at layer edges in original vertical coordinate f_in: variable to be regridded, defined for layer averages p_out: pressure at layer edges in new vertical coordinate iv (optional): flag for monotinicity conservation method. Defaults to 1. comments from mappm indicate that iv should be chosen depending on variable: iv = -2: vertical velocity iv = -1: winds iv = 0: positive definite scalars iv = 1: others iv = 2: temperature kord (optional): method number for vertical regridding. Defaults to 1. z_dim_center (optional): name of centered z-dimension. Defaults to "zaxis_1". z_dim_outer (optional): name of staggered z-dimension. Defaults to "zaxis_2". Returns: f_in regridded to p_out pressure levels Raises: ValueError: if the vertical dimensions for cell centers and cell edges have the same name. ValueError: if the number of columns in each input array does not match. ValueError: if the length of the vertical dimension in input field is not one less than the length of the dimension of the input pressure field. """ if z_dim_center == z_dim_outer: raise ValueError("'z_dim_center' and 'z_dim_outer' must not be equal.") original_dim_order = f_in.dims dims_except_z = f_in.isel({z_dim_center: 0}).dims # Ensure dims are in same order for all inputs, with the vertical dimension # at the end. p_in = p_in.transpose(*dims_except_z, z_dim_outer) f_in = f_in.transpose(*dims_except_z, z_dim_center) p_out = p_out.transpose(*dims_except_z, z_dim_outer) # Rename vertical dimension in p_out temporarily to allow for it to have a # different size than in p_in. z_dim_outer_p_out = f"{z_dim_outer}_p_out" p_out = p_out.rename({z_dim_outer: z_dim_outer_p_out}) # type: ignore # Provide a temporary name for the output vertical dimension, again # allowing for it to have a different size than the input vertical # dimension. z_dim_center_f_out = f"{z_dim_center}_f_out" _assert_equal_number_of_columns(p_in, f_in, p_out) _assert_valid_vertical_dimension_sizes(p_in, f_in, z_dim_outer, z_dim_center) return ( xr.apply_ufunc( _columnwise_mappm, p_in, f_in, p_out, input_core_dims=[[z_dim_outer], [z_dim_center], [z_dim_outer_p_out]], output_core_dims=[[z_dim_center_f_out]], dask="allowed", kwargs={"iv": iv, "kord": kord}, ) .rename({z_dim_center_f_out: z_dim_center}) .transpose(*original_dim_order) .assign_attrs(f_in.attrs) ) def _columnwise_mappm( p_in: Union[np.ndarray, dask.array.Array], f_in: Union[np.ndarray, dask.array.Array], p_out: Union[np.ndarray, dask.array.Array], iv: int = 1, kord: int = 1, ) -> Union[np.ndarray, dask.array.Array]: """An internal function to apply mappm along all columns. Assumes the vertical dimension is the last dimension of each array.""" if any(isinstance(arg, dask.array.Array) for arg in [p_in, f_in, p_out]): p_in, f_in, p_out = _adjust_chunks_for_mappm(p_in, f_in, p_out) output_chunks = _output_chunks_for_mappm(f_in, p_out) return dask.array.map_blocks( _columnwise_mappm, p_in, f_in, p_out, dtype=f_in.dtype, chunks=output_chunks, iv=iv, kord=kord, ) else: output_shape = _output_shape_for_mappm(p_out) p_in, f_in, p_out = _reshape_for_mappm(p_in, f_in, p_out) dummy_ptop = 0.0 # Not used by mappm, but required as an argument n_columns = p_in.shape[0] return vcm.mappm.mappm( p_in, f_in, p_out, 1, n_columns, iv, kord, dummy_ptop ).reshape(output_shape) def _adjust_chunks_for_mappm( p_in: dask.array.Array, f_in: dask.array.Array, p_out: dask.array.Array ) -> Tuple[dask.array.Array, dask.array.Array, dask.array.Array]: """Adjusts the chunks of the input arguments to _columnwise_mappm. Ensures that chunks are vertically-contiguous and that chunks across columns are aligned for p_in, f_in, and p_out.""" # Align non-vertical chunks. p_in_dims_tuple = tuple(range(p_in.ndim)) f_in_dims_tuple = p_in_dims_tuple[:-1] + (p_in.ndim + 1,) p_out_dims_tuple = p_in_dims_tuple[:-1] + (p_in.ndim + 2,) _, (p_in, f_in, p_out) = dask.array.core.unify_chunks( p_in, p_in_dims_tuple, f_in, f_in_dims_tuple, p_out, p_out_dims_tuple ) # Ensure vertical chunks are contiguous. p_in = p_in.rechunk({-1: -1}) f_in = f_in.rechunk({-1: -1}) p_out = p_out.rechunk({-1: -1}) return p_in, f_in, p_out def _output_chunks_for_mappm( f_in: dask.array.Array, p_out: dask.array.Array ) -> Tuple[Tuple[int]]: """Determine the chunks of the output field of mappm applied to dask arrays.""" return f_in.chunks[:-1] + (p_out.shape[-1] - 1,) def _output_shape_for_mappm(p_out: np.ndarray) -> Tuple[int]: """Calculate the shape of the expected output field of mappm.""" return p_out.shape[:-1] + (p_out.shape[-1] - 1,) def _reshape_for_mappm( p_in: np.ndarray, f_in: np.ndarray, p_out: np.ndarray ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Reshape input arrays to have a single 'column' dimension and a 'vertical' dimension.""" p_in = p_in.reshape((-1, p_in.shape[-1])) f_in = f_in.reshape((-1, f_in.shape[-1])) p_out = p_out.reshape((-1, p_out.shape[-1])) return p_in, f_in, p_out def _n_columns(da: xr.DataArray) -> int: """Determine the number of columns in a DataArray, assuming the last dimension is the vertical dimension.""" return np.product(da.shape[:-1]) def _assert_equal_number_of_columns( p_in: xr.DataArray, f_in: xr.DataArray, p_out: xr.DataArray ): """Ensure the number of columns in each of the inputs is the same.""" n_columns = _n_columns(p_in) other_arguments = [f_in, p_out] if any(_n_columns(da) != n_columns for da in other_arguments): raise ValueError( "All dimensions except vertical must be same size for p_in, f_in and p_out" ) def _assert_valid_vertical_dimension_sizes( p_in: xr.DataArray, f_in: xr.DataArray, z_dim_outer: str, z_dim_center: str ): if f_in.sizes[z_dim_center] != p_in.sizes[z_dim_outer] - 1: raise ValueError("f_in must have a vertical dimension one shorter than p_in")
34.501475
88
0.671939
3409dfa4972d6dae58406ce1cd4526ddc8d2a72b
29,771
py
Python
tensorflow/python/keras/testing_utils.py
ouakif/tensorflow
63c45aacf30e819b00e74b85bd1c9f11b0760cd3
[ "Apache-2.0" ]
27
2020-02-29T04:13:22.000Z
2022-02-07T21:54:50.000Z
tensorflow/python/keras/testing_utils.py
top-on/tensorflow
6efce9a74d4ba2ba2182d92ac1e4f144b5d755d2
[ "Apache-2.0" ]
5
2020-06-01T18:50:38.000Z
2021-07-16T07:13:52.000Z
tensorflow/python/keras/testing_utils.py
top-on/tensorflow
6efce9a74d4ba2ba2182d92ac1e4f144b5d755d2
[ "Apache-2.0" ]
10
2020-12-15T03:55:24.000Z
2021-12-17T23:14:11.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for unit-testing Keras.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import threading import numpy as np from tensorflow.python import keras from tensorflow.python import tf2 from tensorflow.python.eager import context from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import test_util from tensorflow.python.keras.engine import base_layer_utils from tensorflow.python.keras.optimizer_v2 import adadelta as adadelta_v2 from tensorflow.python.keras.optimizer_v2 import adagrad as adagrad_v2 from tensorflow.python.keras.optimizer_v2 import adam as adam_v2 from tensorflow.python.keras.optimizer_v2 import adamax as adamax_v2 from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2 from tensorflow.python.keras.optimizer_v2 import nadam as nadam_v2 from tensorflow.python.keras.optimizer_v2 import rmsprop as rmsprop_v2 from tensorflow.python.util import tf_contextlib from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect def get_test_data(train_samples, test_samples, input_shape, num_classes, random_seed=None): """Generates test data to train a model on. Arguments: train_samples: Integer, how many training samples to generate. test_samples: Integer, how many test samples to generate. input_shape: Tuple of integers, shape of the inputs. num_classes: Integer, number of classes for the data and targets. random_seed: Integer, random seed used by numpy to generate data. Returns: A tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ if random_seed is not None: np.random.seed(random_seed) num_sample = train_samples + test_samples templates = 2 * num_classes * np.random.random((num_classes,) + input_shape) y = np.random.randint(0, num_classes, size=(num_sample,)) x = np.zeros((num_sample,) + input_shape, dtype=np.float32) for i in range(num_sample): x[i] = templates[y[i]] + np.random.normal(loc=0, scale=1., size=input_shape) return ((x[:train_samples], y[:train_samples]), (x[train_samples:], y[train_samples:])) @test_util.use_deterministic_cudnn def layer_test(layer_cls, kwargs=None, input_shape=None, input_dtype=None, input_data=None, expected_output=None, expected_output_dtype=None, expected_output_shape=None, validate_training=True, adapt_data=None): """Test routine for a layer with a single input and single output. Arguments: layer_cls: Layer class object. kwargs: Optional dictionary of keyword arguments for instantiating the layer. input_shape: Input shape tuple. input_dtype: Data type of the input data. input_data: Numpy array of input data. expected_output: Numpy array of the expected output. expected_output_dtype: Data type expected for the output. expected_output_shape: Shape tuple for the expected shape of the output. validate_training: Whether to attempt to validate training on this layer. This might be set to False for non-differentiable layers that output string or integer values. adapt_data: Optional data for an 'adapt' call. If None, adapt() will not be tested for this layer. This is only relevant for PreprocessingLayers. Returns: The output data (Numpy array) returned by the layer, for additional checks to be done by the calling code. Raises: ValueError: if `input_shape is None`. """ if input_data is None: if input_shape is None: raise ValueError('input_shape is None') if not input_dtype: input_dtype = 'float32' input_data_shape = list(input_shape) for i, e in enumerate(input_data_shape): if e is None: input_data_shape[i] = np.random.randint(1, 4) input_data = 10 * np.random.random(input_data_shape) if input_dtype[:5] == 'float': input_data -= 0.5 input_data = input_data.astype(input_dtype) elif input_shape is None: input_shape = input_data.shape if input_dtype is None: input_dtype = input_data.dtype if expected_output_dtype is None: expected_output_dtype = input_dtype # instantiation kwargs = kwargs or {} layer = layer_cls(**kwargs) # Test adapt, if data was passed. if adapt_data is not None: layer.adapt(adapt_data) # test get_weights , set_weights at layer level weights = layer.get_weights() layer.set_weights(weights) # test and instantiation from weights if 'weights' in tf_inspect.getargspec(layer_cls.__init__): kwargs['weights'] = weights layer = layer_cls(**kwargs) # test in functional API x = keras.layers.Input(shape=input_shape[1:], dtype=input_dtype) y = layer(x) if keras.backend.dtype(y) != expected_output_dtype: raise AssertionError('When testing layer %s, for input %s, found output ' 'dtype=%s but expected to find %s.\nFull kwargs: %s' % (layer_cls.__name__, x, keras.backend.dtype(y), expected_output_dtype, kwargs)) def assert_shapes_equal(expected, actual): """Asserts that the output shape from the layer matches the actual shape.""" if len(expected) != len(actual): raise AssertionError( 'When testing layer %s, for input %s, found output_shape=' '%s but expected to find %s.\nFull kwargs: %s' % (layer_cls.__name__, x, actual, expected, kwargs)) for expected_dim, actual_dim in zip(expected, actual): if isinstance(expected_dim, tensor_shape.Dimension): expected_dim = expected_dim.value if isinstance(actual_dim, tensor_shape.Dimension): actual_dim = actual_dim.value if expected_dim is not None and expected_dim != actual_dim: raise AssertionError( 'When testing layer %s, for input %s, found output_shape=' '%s but expected to find %s.\nFull kwargs: %s' % (layer_cls.__name__, x, actual, expected, kwargs)) if expected_output_shape is not None: assert_shapes_equal(tensor_shape.TensorShape(expected_output_shape), y.shape) # check shape inference model = keras.models.Model(x, y) computed_output_shape = tuple( layer.compute_output_shape( tensor_shape.TensorShape(input_shape)).as_list()) computed_output_signature = layer.compute_output_signature( tensor_spec.TensorSpec(shape=input_shape, dtype=input_dtype)) actual_output = model.predict(input_data) actual_output_shape = actual_output.shape assert_shapes_equal(computed_output_shape, actual_output_shape) assert_shapes_equal(computed_output_signature.shape, actual_output_shape) if computed_output_signature.dtype != actual_output.dtype: raise AssertionError( 'When testing layer %s, for input %s, found output_dtype=' '%s but expected to find %s.\nFull kwargs: %s' % (layer_cls.__name__, x, actual_output.dtype, computed_output_signature.dtype, kwargs)) if expected_output is not None: np.testing.assert_allclose(actual_output, expected_output, rtol=1e-3, atol=1e-6) # test serialization, weight setting at model level model_config = model.get_config() recovered_model = keras.models.Model.from_config(model_config) if model.weights: weights = model.get_weights() recovered_model.set_weights(weights) output = recovered_model.predict(input_data) np.testing.assert_allclose(output, actual_output, rtol=1e-3, atol=1e-6) # test training mode (e.g. useful for dropout tests) # Rebuild the model to avoid the graph being reused between predict() and # See b/120160788 for more details. This should be mitigated after 2.0. if validate_training: model = keras.models.Model(x, layer(x)) if _thread_local_data.run_eagerly is not None: model.compile( 'rmsprop', 'mse', weighted_metrics=['acc'], run_eagerly=should_run_eagerly()) else: model.compile('rmsprop', 'mse', weighted_metrics=['acc']) model.train_on_batch(input_data, actual_output) # test as first layer in Sequential API layer_config = layer.get_config() layer_config['batch_input_shape'] = input_shape layer = layer.__class__.from_config(layer_config) # Test adapt, if data was passed. if adapt_data is not None: layer.adapt(adapt_data) model = keras.models.Sequential() model.add(layer) actual_output = model.predict(input_data) actual_output_shape = actual_output.shape for expected_dim, actual_dim in zip(computed_output_shape, actual_output_shape): if expected_dim is not None: if expected_dim != actual_dim: raise AssertionError( 'When testing layer %s **after deserialization**, ' 'for input %s, found output_shape=' '%s but expected to find inferred shape %s.\nFull kwargs: %s' % (layer_cls.__name__, x, actual_output_shape, computed_output_shape, kwargs)) if expected_output is not None: np.testing.assert_allclose(actual_output, expected_output, rtol=1e-3, atol=1e-6) # test serialization, weight setting at model level model_config = model.get_config() recovered_model = keras.models.Sequential.from_config(model_config) if model.weights: weights = model.get_weights() recovered_model.set_weights(weights) output = recovered_model.predict(input_data) np.testing.assert_allclose(output, actual_output, rtol=1e-3, atol=1e-6) # for further checks in the caller function return actual_output _thread_local_data = threading.local() _thread_local_data.model_type = None _thread_local_data.run_eagerly = None _thread_local_data.experimental_run_tf_function = None @tf_contextlib.contextmanager def model_type_scope(value): """Provides a scope within which the model type to test is equal to `value`. The model type gets restored to its original value upon exiting the scope. Arguments: value: model type value Yields: The provided value. """ previous_value = _thread_local_data.model_type try: _thread_local_data.model_type = value yield value finally: # Restore model type to initial value. _thread_local_data.model_type = previous_value @tf_contextlib.contextmanager def run_eagerly_scope(value): """Provides a scope within which we compile models to run eagerly or not. The boolean gets restored to its original value upon exiting the scope. Arguments: value: Bool specifying if we should run models eagerly in the active test. Should be True or False. Yields: The provided value. """ previous_value = _thread_local_data.run_eagerly try: _thread_local_data.run_eagerly = value yield value finally: # Restore model type to initial value. _thread_local_data.run_eagerly = previous_value def should_run_eagerly(): """Returns whether the models we are testing should be run eagerly.""" if _thread_local_data.run_eagerly is None: raise ValueError('Cannot call `should_run_eagerly()` outside of a ' '`run_eagerly_scope()` or `run_all_keras_modes` ' 'decorator.') return _thread_local_data.run_eagerly and context.executing_eagerly() @tf_contextlib.contextmanager def experimental_run_tf_function_scope(value): """Provides a scope within which we compile models to run with distribution. The boolean gets restored to its original value upon exiting the scope. Arguments: value: Bool specifying if we should run models with default distribution in the active test. Should be True or False. Yields: The provided value. """ previous_value = _thread_local_data.experimental_run_tf_function try: _thread_local_data.experimental_run_tf_function = value yield value finally: # Restore model type to initial value. _thread_local_data.experimental_run_tf_function = previous_value def should_run_tf_function(): """Returns whether the models we are testing should be run distributed.""" if _thread_local_data.experimental_run_tf_function is None: raise ValueError( 'Cannot call `should_run_tf_function()` outside of a ' '`experimental_run_tf_function_scope()` or `run_all_keras_modes` ' 'decorator.') return (_thread_local_data.experimental_run_tf_function and context.executing_eagerly()) def get_model_type(): """Gets the model type that should be tested.""" if _thread_local_data.model_type is None: raise ValueError('Cannot call `get_model_type()` outside of a ' '`model_type_scope()` or `run_with_all_model_types` ' 'decorator.') return _thread_local_data.model_type def get_small_sequential_mlp(num_hidden, num_classes, input_dim=None): model = keras.models.Sequential() if input_dim: model.add(keras.layers.Dense(num_hidden, activation='relu', input_dim=input_dim)) else: model.add(keras.layers.Dense(num_hidden, activation='relu')) activation = 'sigmoid' if num_classes == 1 else 'softmax' model.add(keras.layers.Dense(num_classes, activation=activation)) return model def get_small_functional_mlp(num_hidden, num_classes, input_dim): inputs = keras.Input(shape=(input_dim,)) outputs = keras.layers.Dense(num_hidden, activation='relu')(inputs) activation = 'sigmoid' if num_classes == 1 else 'softmax' outputs = keras.layers.Dense(num_classes, activation=activation)(outputs) return keras.Model(inputs, outputs) class _SmallSubclassMLP(keras.Model): """A subclass model based small MLP.""" def __init__(self, num_hidden, num_classes): super(_SmallSubclassMLP, self).__init__() self.layer_a = keras.layers.Dense(num_hidden, activation='relu') activation = 'sigmoid' if num_classes == 1 else 'softmax' self.layer_b = keras.layers.Dense(num_classes, activation=activation) def call(self, inputs, **kwargs): x = self.layer_a(inputs) return self.layer_b(x) class _SmallSubclassMLPCustomBuild(keras.Model): """A subclass model small MLP that uses a custom build method.""" def __init__(self, num_hidden, num_classes): super(_SmallSubclassMLPCustomBuild, self).__init__() self.layer_a = None self.layer_b = None self.num_hidden = num_hidden self.num_classes = num_classes def build(self, input_shape): self.layer_a = keras.layers.Dense(self.num_hidden, activation='relu') activation = 'sigmoid' if self.num_classes == 1 else 'softmax' self.layer_b = keras.layers.Dense(self.num_classes, activation=activation) def call(self, inputs, **kwargs): x = self.layer_a(inputs) return self.layer_b(x) def get_small_subclass_mlp(num_hidden, num_classes): return _SmallSubclassMLP(num_hidden, num_classes) def get_small_subclass_mlp_with_custom_build(num_hidden, num_classes): return _SmallSubclassMLPCustomBuild(num_hidden, num_classes) def get_small_mlp(num_hidden, num_classes, input_dim): """Get a small mlp of the model type specified by `get_model_type`.""" model_type = get_model_type() if model_type == 'subclass': return get_small_subclass_mlp(num_hidden, num_classes) if model_type == 'subclass_custom_build': return get_small_subclass_mlp_with_custom_build(num_hidden, num_classes) if model_type == 'sequential': return get_small_sequential_mlp(num_hidden, num_classes, input_dim) if model_type == 'functional': return get_small_functional_mlp(num_hidden, num_classes, input_dim) raise ValueError('Unknown model type {}'.format(model_type)) class _SubclassModel(keras.Model): """A Keras subclass model.""" def __init__(self, layers, *args, **kwargs): """Instantiate a model. Args: layers: a list of layers to be added to the model. *args: Model's args **kwargs: Model's keyword args, at most one of input_tensor -> the input tensor required for ragged/sparse input. """ inputs = kwargs.pop('input_tensor', None) super(_SubclassModel, self).__init__(*args, **kwargs) # Note that clone and build doesn't support lists of layers in subclassed # models. Adding each layer directly here. for i, layer in enumerate(layers): setattr(self, self._layer_name_for_i(i), layer) self.num_layers = len(layers) if inputs is not None: self._set_inputs(inputs) def _layer_name_for_i(self, i): return 'layer{}'.format(i) def call(self, inputs, **kwargs): x = inputs for i in range(self.num_layers): layer = getattr(self, self._layer_name_for_i(i)) x = layer(x) return x class _SubclassModelCustomBuild(keras.Model): """A Keras subclass model that uses a custom build method.""" def __init__(self, layer_generating_func, *args, **kwargs): super(_SubclassModelCustomBuild, self).__init__(*args, **kwargs) self.all_layers = None self._layer_generating_func = layer_generating_func def build(self, input_shape): layers = [] for layer in self._layer_generating_func(): layers.append(layer) self.all_layers = layers def call(self, inputs, **kwargs): x = inputs for layer in self.all_layers: x = layer(x) return x def get_model_from_layers(layers, input_shape=None, input_dtype=None, name=None, input_ragged=None, input_sparse=None): """Builds a model from a sequence of layers. Args: layers: The layers used to build the network. input_shape: Shape tuple of the input or 'TensorShape' instance. input_dtype: Datatype of the input. name: Name for the model. input_ragged: Boolean, whether the input data is a ragged tensor. input_sparse: Boolean, whether the input data is a sparse tensor. Returns: A Keras model. """ model_type = get_model_type() if model_type == 'subclass': inputs = None if input_ragged or input_sparse: inputs = keras.Input( shape=input_shape, dtype=input_dtype, ragged=input_ragged, sparse=input_sparse) return _SubclassModel(layers, name=name, input_tensor=inputs) if model_type == 'subclass_custom_build': layer_generating_func = lambda: layers return _SubclassModelCustomBuild(layer_generating_func, name=name) if model_type == 'sequential': model = keras.models.Sequential(name=name) if input_shape: model.add( keras.layers.InputLayer( input_shape=input_shape, dtype=input_dtype, ragged=input_ragged, sparse=input_sparse)) for layer in layers: model.add(layer) return model if model_type == 'functional': if not input_shape: raise ValueError('Cannot create a functional model from layers with no ' 'input shape.') inputs = keras.Input( shape=input_shape, dtype=input_dtype, ragged=input_ragged, sparse=input_sparse) outputs = inputs for layer in layers: outputs = layer(outputs) return keras.Model(inputs, outputs, name=name) raise ValueError('Unknown model type {}'.format(model_type)) class _MultiIOSubclassModel(keras.Model): """Multi IO Keras subclass model.""" def __init__(self, branch_a, branch_b, shared_input_branch=None, shared_output_branch=None): super(_MultiIOSubclassModel, self).__init__() self._shared_input_branch = shared_input_branch self._branch_a = branch_a self._branch_b = branch_b self._shared_output_branch = shared_output_branch def call(self, inputs, **kwargs): if self._shared_input_branch: for layer in self._shared_input_branch: inputs = layer(inputs) a = inputs b = inputs else: a, b = inputs for layer in self._branch_a: a = layer(a) for layer in self._branch_b: b = layer(b) outs = [a, b] if self._shared_output_branch: for layer in self._shared_output_branch: outs = layer(outs) return outs class _MultiIOSubclassModelCustomBuild(keras.Model): """Multi IO Keras subclass model that uses a custom build method.""" def __init__(self, branch_a_func, branch_b_func, shared_input_branch_func=None, shared_output_branch_func=None): super(_MultiIOSubclassModelCustomBuild, self).__init__() self._shared_input_branch_func = shared_input_branch_func self._branch_a_func = branch_a_func self._branch_b_func = branch_b_func self._shared_output_branch_func = shared_output_branch_func self._shared_input_branch = None self._branch_a = None self._branch_b = None self._shared_output_branch = None def build(self, input_shape): if self._shared_input_branch_func(): self._shared_input_branch = self._shared_input_branch_func() self._branch_a = self._branch_a_func() self._branch_b = self._branch_b_func() if self._shared_output_branch_func(): self._shared_output_branch = self._shared_output_branch_func() def call(self, inputs, **kwargs): if self._shared_input_branch: for layer in self._shared_input_branch: inputs = layer(inputs) a = inputs b = inputs else: a, b = inputs for layer in self._branch_a: a = layer(a) for layer in self._branch_b: b = layer(b) outs = a, b if self._shared_output_branch: for layer in self._shared_output_branch: outs = layer(outs) return outs def get_multi_io_model( branch_a, branch_b, shared_input_branch=None, shared_output_branch=None): """Builds a multi-io model that contains two branches. The produced model will be of the type specified by `get_model_type`. To build a two-input, two-output model: Specify a list of layers for branch a and branch b, but do not specify any shared input branch or shared output branch. The resulting model will apply each branch to a different input, to produce two outputs. The first value in branch_a must be the Keras 'Input' layer for branch a, and the first value in branch_b must be the Keras 'Input' layer for branch b. example usage: ``` branch_a = [Input(shape=(2,), name='a'), Dense(), Dense()] branch_b = [Input(shape=(3,), name='b'), Dense(), Dense()] model = get_multi_io_model(branch_a, branch_b) ``` To build a two-input, one-output model: Specify a list of layers for branch a and branch b, and specify a shared output branch. The resulting model will apply each branch to a different input. It will then apply the shared output branch to a tuple containing the intermediate outputs of each branch, to produce a single output. The first layer in the shared_output_branch must be able to merge a tuple of two tensors. The first value in branch_a must be the Keras 'Input' layer for branch a, and the first value in branch_b must be the Keras 'Input' layer for branch b. example usage: ``` input_branch_a = [Input(shape=(2,), name='a'), Dense(), Dense()] input_branch_b = [Input(shape=(3,), name='b'), Dense(), Dense()] shared_output_branch = [Concatenate(), Dense(), Dense()] model = get_multi_io_model(input_branch_a, input_branch_b, shared_output_branch=shared_output_branch) ``` To build a one-input, two-output model: Specify a list of layers for branch a and branch b, and specify a shared input branch. The resulting model will take one input, and apply the shared input branch to it. It will then respectively apply each branch to that intermediate result in parallel, to produce two outputs. The first value in the shared_input_branch must be the Keras 'Input' layer for the whole model. Branch a and branch b should not contain any Input layers. example usage: ``` shared_input_branch = [Input(shape=(2,), name='in'), Dense(), Dense()] output_branch_a = [Dense(), Dense()] output_branch_b = [Dense(), Dense()] model = get_multi_io_model(output__branch_a, output_branch_b, shared_input_branch=shared_input_branch) ``` Args: branch_a: A sequence of layers for branch a of the model. branch_b: A sequence of layers for branch b of the model. shared_input_branch: An optional sequence of layers to apply to a single input, before applying both branches to that intermediate result. If set, the model will take only one input instead of two. Defaults to None. shared_output_branch: An optional sequence of layers to merge the intermediate results produced by branch a and branch b. If set, the model will produce only one output instead of two. Defaults to None. Returns: A multi-io model of the type specified by `get_model_type`, specified by the different branches. """ # Extract the functional inputs from the layer lists if shared_input_branch: inputs = shared_input_branch[0] shared_input_branch = shared_input_branch[1:] else: inputs = branch_a[0], branch_b[0] branch_a = branch_a[1:] branch_b = branch_b[1:] model_type = get_model_type() if model_type == 'subclass': return _MultiIOSubclassModel(branch_a, branch_b, shared_input_branch, shared_output_branch) if model_type == 'subclass_custom_build': return _MultiIOSubclassModelCustomBuild((lambda: branch_a), (lambda: branch_b), (lambda: shared_input_branch), (lambda: shared_output_branch)) if model_type == 'sequential': raise ValueError('Cannot use `get_multi_io_model` to construct ' 'sequential models') if model_type == 'functional': if shared_input_branch: a_and_b = inputs for layer in shared_input_branch: a_and_b = layer(a_and_b) a = a_and_b b = a_and_b else: a, b = inputs for layer in branch_a: a = layer(a) for layer in branch_b: b = layer(b) outputs = a, b if shared_output_branch: for layer in shared_output_branch: outputs = layer(outputs) return keras.Model(inputs, outputs) raise ValueError('Unknown model type {}'.format(model_type)) _V2_OPTIMIZER_MAP = { 'adadelta': adadelta_v2.Adadelta, 'adagrad': adagrad_v2.Adagrad, 'adam': adam_v2.Adam, 'adamax': adamax_v2.Adamax, 'nadam': nadam_v2.Nadam, 'rmsprop': rmsprop_v2.RMSprop, 'sgd': gradient_descent_v2.SGD } def get_v2_optimizer(name, **kwargs): """Get the v2 optimizer requested. This is only necessary until v2 are the default, as we are testing in Eager, and Eager + v1 optimizers fail tests. When we are in v2, the strings alone should be sufficient, and this mapping can theoretically be removed. Args: name: string name of Keras v2 optimizer. **kwargs: any kwargs to pass to the optimizer constructor. Returns: Initialized Keras v2 optimizer. Raises: ValueError: if an unknown name was passed. """ try: return _V2_OPTIMIZER_MAP[name](**kwargs) except KeyError: raise ValueError( 'Could not find requested v2 optimizer: {}\nValid choices: {}'.format( name, list(_V2_OPTIMIZER_MAP.keys()))) def get_expected_metric_variable_names(var_names, name_suffix=''): """Returns expected metric variable names given names and prefix/suffix.""" if tf2.enabled() or context.executing_eagerly(): # In V1 eager mode and V2 variable names are not made unique. return [n + ':0' for n in var_names] # In V1 graph mode variable names are made unique using a suffix. return [n + name_suffix + ':0' for n in var_names] def enable_v2_dtype_behavior(fn): """Decorator for enabling the layer V2 dtype behavior on a test.""" return _set_v2_dtype_behavior(fn, True) def disable_v2_dtype_behavior(fn): """Decorator for disabling the layer V2 dtype behavior on a test.""" return _set_v2_dtype_behavior(fn, False) def _set_v2_dtype_behavior(fn, enabled): """Returns version of 'fn' that runs with v2 dtype behavior on or off.""" @functools.wraps(fn) def wrapper(*args, **kwargs): v2_dtype_behavior = base_layer_utils.V2_DTYPE_BEHAVIOR base_layer_utils.V2_DTYPE_BEHAVIOR = enabled try: return fn(*args, **kwargs) finally: base_layer_utils.V2_DTYPE_BEHAVIOR = v2_dtype_behavior return tf_decorator.make_decorator(fn, wrapper)
35.273697
88
0.700548
6e32491e85557dfaca3d49711288198d50f511ab
312
py
Python
blog/urls.py
admtomas/cybersecurity_blog
bad19ad189b1fdb770a935ecaac85187e6f62271
[ "MIT" ]
null
null
null
blog/urls.py
admtomas/cybersecurity_blog
bad19ad189b1fdb770a935ecaac85187e6f62271
[ "MIT" ]
null
null
null
blog/urls.py
admtomas/cybersecurity_blog
bad19ad189b1fdb770a935ecaac85187e6f62271
[ "MIT" ]
null
null
null
from django.urls import path from . import views app_name = 'blog' urlpatterns = [ path('', views.post_list, name='post_list'), path('<slug:post>/', views.post_detail, name='post_detail'), path('comment/reply/', views.reply_page, name='reply'), path('about', views.about_page, name='about'), ]
26
64
0.669872
45a430ee9e5e39a41348e7fbc6f0e24240168953
17,478
py
Python
uhd_restpy/testplatform/sessions/ixnetwork/topology/rsvpp2mpingresssublsps_c610bddfdb08c054e463708b863af4f0.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
20
2019-05-07T01:59:14.000Z
2022-02-11T05:24:47.000Z
uhd_restpy/testplatform/sessions/ixnetwork/topology/rsvpp2mpingresssublsps_c610bddfdb08c054e463708b863af4f0.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
60
2019-04-03T18:59:35.000Z
2022-02-22T12:05:05.000Z
uhd_restpy/testplatform/sessions/ixnetwork/topology/rsvpp2mpingresssublsps_c610bddfdb08c054e463708b863af4f0.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
13
2019-05-20T10:48:31.000Z
2021-10-06T07:45:44.000Z
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from uhd_restpy.base import Base from uhd_restpy.files import Files from typing import List, Any, Union class RsvpP2mpIngressSubLsps(Base): """RSVP-TE P2MP Head (Ingress) Sub LSPs The RsvpP2mpIngressSubLsps class encapsulates a required rsvpP2mpIngressSubLsps resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'rsvpP2mpIngressSubLsps' _SDM_ATT_MAP = { 'Active': 'active', 'AppendLeaf': 'appendLeaf', 'Count': 'count', 'DescriptiveName': 'descriptiveName', 'EnableEro': 'enableEro', 'LeafIp': 'leafIp', 'LocalIp': 'localIp', 'Name': 'name', 'NumberOfEroSubObjects': 'numberOfEroSubObjects', 'P2mpIdAsIp': 'p2mpIdAsIp', 'P2mpIdAsNum': 'p2mpIdAsNum', 'PrefixLengthOfDut': 'prefixLengthOfDut', 'PrefixLengthOfLeaf': 'prefixLengthOfLeaf', 'PrependDut': 'prependDut', 'SendAsEro': 'sendAsEro', 'SendAsSero': 'sendAsSero', 'SessionInformation': 'sessionInformation', 'State': 'state', } _SDM_ENUM_MAP = { } def __init__(self, parent, list_op=False): super(RsvpP2mpIngressSubLsps, self).__init__(parent, list_op) @property def RsvpEroSubObjectsList(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.rsvperosubobjectslist_c0ebecb067ebf96898ae4f90af81d688.RsvpEroSubObjectsList): An instance of the RsvpEroSubObjectsList class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.topology.rsvperosubobjectslist_c0ebecb067ebf96898ae4f90af81d688 import RsvpEroSubObjectsList if self._properties.get('RsvpEroSubObjectsList', None) is not None: return self._properties.get('RsvpEroSubObjectsList') else: return RsvpEroSubObjectsList(self) @property def Active(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Activate/Deactivate Configuration """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Active'])) @property def AppendLeaf(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Append Leaf """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AppendLeaf'])) @property def Count(self): # type: () -> int """ Returns ------- - number: Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group. """ return self._get_attribute(self._SDM_ATT_MAP['Count']) @property def DescriptiveName(self): # type: () -> str """ Returns ------- - str: Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context. """ return self._get_attribute(self._SDM_ATT_MAP['DescriptiveName']) @property def EnableEro(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable ERO """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['EnableEro'])) @property def LeafIp(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Leaf IP """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['LeafIp'])) @property def LocalIp(self): # type: () -> List[str] """ Returns ------- - list(str): Local IP """ return self._get_attribute(self._SDM_ATT_MAP['LocalIp']) @property def Name(self): # type: () -> str """ Returns ------- - str: Name of NGPF element, guaranteed to be unique in Scenario """ return self._get_attribute(self._SDM_ATT_MAP['Name']) @Name.setter def Name(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['Name'], value) @property def NumberOfEroSubObjects(self): # type: () -> int """ Returns ------- - number: Number Of ERO Sub-Objects """ return self._get_attribute(self._SDM_ATT_MAP['NumberOfEroSubObjects']) @NumberOfEroSubObjects.setter def NumberOfEroSubObjects(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['NumberOfEroSubObjects'], value) @property def P2mpIdAsIp(self): # type: () -> List[str] """ Returns ------- - list(str): P2MP ID As IP """ return self._get_attribute(self._SDM_ATT_MAP['P2mpIdAsIp']) @property def P2mpIdAsNum(self): # type: () -> List[str] """ Returns ------- - list(str): P2MP ID displayed in Integer format """ return self._get_attribute(self._SDM_ATT_MAP['P2mpIdAsNum']) @property def PrefixLengthOfDut(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Prefix Length of DUT """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['PrefixLengthOfDut'])) @property def PrefixLengthOfLeaf(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Prefix Length of Leaf """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['PrefixLengthOfLeaf'])) @property def PrependDut(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Prepend DUT """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['PrependDut'])) @property def SendAsEro(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Send As ERO """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['SendAsEro'])) @property def SendAsSero(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Send As SERO """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['SendAsSero'])) @property def SessionInformation(self): # type: () -> List[str] """ Returns ------- - list(str[lastErrLSPAdmissionControlFailure | lastErrLSPBadAdSpecValue | lastErrLSPBadExplicitRoute | lastErrLSPBadFlowspecValue | lastErrLSPBadInitialSubobject | lastErrLSPBadLooseNode | lastErrLSPBadStrictNode | lastErrLSPBadTSpecValue | lastErrLSPDelayBoundNotMet | lastErrLSPMPLSAllocationFailure | lastErrLSPMTUTooBig | lastErrLSPNonRSVPRouter | lastErrLSPNoRouteAvailable | lastErrLSPPathErr | lastErrLSPPathTearSent | lastErrLSPRequestedBandwidthUnavailable | lastErrLSPReservationTearReceived | lastErrLSPReservationTearSent | lastErrLSPReservationTimeout | lastErrLSPRoutingLoops | lastErrLSPRoutingProblem | lastErrLSPRSVPSystemError | lastErrLSPServiceConflict | lastErrLSPServiceUnsupported | lastErrLSPTrafficControlError | lastErrLSPTrafficControlSystemError | lastErrLSPTrafficOrganizationError | lastErrLSPTrafficServiceError | lastErrLSPUnknownObjectClass | lastErrLSPUnknownObjectCType | lastErrLSPUnsupportedL3PID | lSPAdmissionControlFailure | lSPBadAdSpecValue | lSPBadExplicitRoute | lSPBadFlowspecValue | lSPBadInitialSubobject | lSPBadLooseNode | lSPBadStrictNode | lSPBadTSpecValue | lSPDelayBoundNotMet | lSPMPLSAllocationFailure | lSPMTUTooBig | lSPNonRSVPRouter | lSPNoRouteAvailable | lSPPathErr | lSPPathTearSent | lSPRequestedBandwidthUnavailable | lSPReservationNotReceived | lSPReservationTearReceived | lSPReservationTearSent | lSPReservationTimeout | lSPRoutingLoops | lSPRoutingProblem | lSPRSVPSystemError | lSPServiceConflict | lSPServiceUnsupported | lSPTrafficControlError | lSPTrafficControlSystemError | lSPTrafficOrganizationError | lSPTrafficServiceError | lSPUnknownObjectClass | lSPUnknownObjectCType | lSPUnsupportedL3PID | mbbCompleted | mbbTriggered | none]): Logs additional information about the RSVP session state """ return self._get_attribute(self._SDM_ATT_MAP['SessionInformation']) @property def State(self): # type: () -> List[str] """ Returns ------- - list(str[down | none | notStarted | up]): State """ return self._get_attribute(self._SDM_ATT_MAP['State']) def update(self, Name=None, NumberOfEroSubObjects=None): # type: (str, int) -> RsvpP2mpIngressSubLsps """Updates rsvpP2mpIngressSubLsps resource on the server. This method has some named parameters with a type: obj (Multivalue). The Multivalue class has documentation that details the possible values for those named parameters. Args ---- - Name (str): Name of NGPF element, guaranteed to be unique in Scenario - NumberOfEroSubObjects (number): Number Of ERO Sub-Objects Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def ExcludeEroOrSero(self, *args, **kwargs): # type: (*Any, **Any) -> Union[List[str], None] """Executes the excludeEroOrSero operation on the server. Prune Ingress P2MP SubLSP excludeEroOrSero(Arg2=list, async_operation=bool)list ----------------------------------------------------- - Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns list(str): ID to associate each async action invocation Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('excludeEroOrSero', payload=payload, response_object=None) def GraftSubLsp(self, *args, **kwargs): # type: (*Any, **Any) -> Union[List[str], None] """Executes the graftSubLsp operation on the server. Activate/Enable Tunnel selected SubLsp Ranges graftSubLsp(Arg2=list, async_operation=bool)list ------------------------------------------------ - Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns list(str): ID to associate each async action invocation Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('graftSubLsp', payload=payload, response_object=None) def IncludeEroOrSero(self, *args, **kwargs): # type: (*Any, **Any) -> Union[List[str], None] """Executes the includeEroOrSero operation on the server. Graft Ingress P2MP SubLSP includeEroOrSero(Arg2=list, async_operation=bool)list ----------------------------------------------------- - Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns list(str): ID to associate each async action invocation Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('includeEroOrSero', payload=payload, response_object=None) def PruneSubLsp(self, *args, **kwargs): # type: (*Any, **Any) -> Union[List[str], None] """Executes the pruneSubLsp operation on the server. Deactivate/Disable selected Tunnel SubLsp Ranges pruneSubLsp(Arg2=list, async_operation=bool)list ------------------------------------------------ - Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns list(str): ID to associate each async action invocation Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('pruneSubLsp', payload=payload, response_object=None) def get_device_ids(self, PortNames=None, Active=None, AppendLeaf=None, EnableEro=None, LeafIp=None, PrefixLengthOfDut=None, PrefixLengthOfLeaf=None, PrependDut=None, SendAsEro=None, SendAsSero=None): """Base class infrastructure that gets a list of rsvpP2mpIngressSubLsps device ids encapsulated by this object. Use the optional regex parameters in the method to refine the list of device ids encapsulated by this object. Args ---- - PortNames (str): optional regex of port names - Active (str): optional regex of active - AppendLeaf (str): optional regex of appendLeaf - EnableEro (str): optional regex of enableEro - LeafIp (str): optional regex of leafIp - PrefixLengthOfDut (str): optional regex of prefixLengthOfDut - PrefixLengthOfLeaf (str): optional regex of prefixLengthOfLeaf - PrependDut (str): optional regex of prependDut - SendAsEro (str): optional regex of sendAsEro - SendAsSero (str): optional regex of sendAsSero Returns ------- - list(int): A list of device ids that meets the regex criteria provided in the method parameters Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._get_ngpf_device_ids(locals())
42.943489
1,774
0.653736
f23a91cc540fb271100666f8db10a5352608fcdb
13,547
py
Python
bindings/java/java_generator.py
nirbheek/openwebrtc
838d6eedf2b4e53224a60f3da8529e6cc621359f
[ "BSD-2-Clause" ]
null
null
null
bindings/java/java_generator.py
nirbheek/openwebrtc
838d6eedf2b4e53224a60f3da8529e6cc621359f
[ "BSD-2-Clause" ]
null
null
null
bindings/java/java_generator.py
nirbheek/openwebrtc
838d6eedf2b4e53224a60f3da8529e6cc621359f
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) 2014, Ericsson AB. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this # list of conditions and the following disclaimer in the documentation and/or other # materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY # OF SUCH DAMAGE. import collections import config from functools import partial from base_generator import * J = BaseGenerator( default_line_prefix=config.JAVA_INDENTATION, ) def java_param(param): if hasattr(param, 'java_full_class'): return param.java_full_class + ' ' + param.name if param.java_type: return param.java_type + ' ' + param.name return () def java_arg(param): if param.java_type: return param.name return () @add_to(J) class JavaDoc(J.Block): _line_prefix = ' * ' def __init__(self, text, params, ret): self.text = text self.params = params self.ret = ret @property def start(self): return ('/**' if self.text or self.params or self.ret else []) @property def end(self): return (' */' if self.text or self.params or self.ret else []) @property def body(self): return [self.text if self.text else []] + [ '@param %s %s' % kv for kv in self.params.items() ] + ['@return ' + self.ret if self.ret else []] @add_to(J) class Class(J.Block): def __init__(self, name, variation='class', visibility='public', static=False, abstract=False, extends=None, implements=None, imports=None, package=None, **kwargs): super(Class, self).__init__(**kwargs) self.name = name self.variation = variation self.visibility = visibility self.static = static self.abstract = abstract self.extends = extends or [] self.implements = implements or [] self.imports = imports or [] self.package = package @property def start(self): lst = [] if self.visibility != 'default': lst.append(self.visibility) if self.static: lst.append('static') if self.abstract: lst.append('abstract') lst.append(self.variation) lst.append(self.name) if self.extends: lst.append('extends ' + flatjoin(self.extends, ', ')) if self.implements: lst.append('implements ' + flatjoin(self.implements, ', ')) lst.append('{') package_decl = 'package ' + self.package + ';' if self.package else None imports = ['import ' + i + ';' for i in self.imports] return intersperse(prune_empty([package_decl, imports, ' '.join(lst)]), '') @staticmethod def create_callback(callback, **kwargs): args = { 'name': callback.value.java_type, 'static': True, 'body': [J.Method.default(callback, native=False)], 'variation': 'interface', } args.update(kwargs) return Class(**args) @add_to(J) class Method(J.FunctionBlock): def __init__(self, visibility='public', return_type='void', name='', params=None, static=False, abstract=False, native=False, synchronized=False, doc=None, **kwargs): super(Method, self).__init__(**kwargs) self.name = name self.return_type = return_type self.params = params or [] self.visibility = visibility self.static = static self.synchronized = synchronized self.abstract = abstract self.native = native self.doc = doc @property def modifiers(self): lst = [] if self.visibility != 'default': lst.append(self.visibility) if self.static: lst.append('static') if self.synchronized: lst.append('synchronized') if self.abstract: lst.append('abstract') if self.native: lst.append('native') return lst @property def start(self): row = self.definition + (' {' if len(self.body) else ';') if self.doc: return [self.doc, row] else: return row @property def end(self): return ('}' if len(self.body) else []) @staticmethod def default(method, **kwargs): return_type = method.params.return_value.java_type if hasattr(method.params.return_value, 'java_full_class'): return_type = method.params.return_value.java_full_class args = { 'visibility': 'public', 'return_type': return_type, 'name': method.name, 'params': map(java_param, method.params.java_params), 'native': True, 'doc': JavaDoc(method.doc, {p.name: getattr(p, 'doc', None) for p in method.params.java_params if getattr(p, 'doc', None) is not None}, getattr(method.params.return_value, 'doc', None), ), } args.update(kwargs) return Method(**args) @add_to(J) def gen_signal(signal): mapName = 'handleMap' + signal.value.java_type mapType = 'java.util.HashMap<{signal_type}, {handle_type}>'.format( signal_type=signal.value.java_type, handle_type=signal.add_listener.params.return_value.object_type, ) ensure_map_and_remove = [ J.If(mapName + ' == null', mapName + ' = new ' + mapType + '();'), '', 'Integer current = ' + mapName + '.remove(listener);', J.If('current != null', J.Call(signal.remove_listener.name, 'current')), ] callback = J.Class.create_callback(signal) return [ 'private %s %s;' % (mapType, mapName), callback, Method.default(signal.add_listener, visibility='private'), Method.default(signal.remove_listener, visibility='private'), Method.default(signal.public_add_listener, native=False, synchronized=True, body=ensure_map_and_remove + [ '', 'int handle = ' + signal.add_listener.name + '(listener);', mapName + '.put(listener, handle);', ], ), Method.default(signal.public_remove_listener, native=False, synchronized=True, body=ensure_map_and_remove, ), ] @add_to(J) def gen_class(clazz): # public constructors body = [( Method( visibility='public', return_type=[], name=clazz.name, params=map(java_param, constructor.params), body=[ J.Call('super', J.Call('_newNativePointer', '0')), J.Assign('long pointer', J.Call(constructor.name, *map(java_arg, constructor.params))), J.Call('_setInternalPointer', 'pointer'), ] ), Method( visibility='default', return_type='long', native=True, name=constructor.name, params=map(java_param, constructor.params) ), ) for constructor in clazz.constructors] # private constructor body += [Method( visibility='default', return_type=[], name=clazz.name, params=['NativePointer nativePointer'], body=[J.Call('super', 'nativePointer')], )] # methods body += map(Method.default, clazz.methods) body += map(partial(Method.default, static=True), clazz.functions) # properties body += sum(sum([[ [Method.default(prop.setter)] if prop.writable else [], [Method.default(prop.getter)] if prop.readable else [], gen_signal(prop.signal) if prop.readable else [], ] for prop in clazz.properties], []), []) #signals body += sum(map(gen_signal, clazz.signals), []) return J.Class(clazz.name, extends=clazz.parent or 'NativeInstance', imports=[ config.PACKAGE_ROOT + '.NativeInstance', config.PACKAGE_ROOT + '.NativePointer', ], body=intersperse(prune_empty(body), ''), ) @add_to(J) def gen_enum(enum): format_func = ('{0.name}({0.value}, "{0.nick}")' if enum.has_nick else '{0.name}({0.value})').format members = [format_func(member) for member in enum.members] members = intersperse(members, ',') + [';'] members = [''.join(chunk) for chunk in chunks(members, 2)] body = [members, [ 'private final int mValue;', 'private final String mNick;' if enum.has_nick else () ], Method( visibility='private', name=enum.name, return_type=[], params=['int value', enum.has_nick and 'String nick'], body=['mValue = value;', enum.has_nick and 'mNick = nick;'], ), Method('public', 'int', 'getValue', body=['return mValue;'], ), enum.has_nick and Method('public', 'String', 'getNick', body=['return mNick;'], ), enum.has_nick and Method( static=True, name='valueOfNick', params=['String nick'], return_type=enum.name, body=[J.IfElse( ifs=['"%s".equals(nick)' % member.nick for member in enum.members], bodies=['return %s;' % member.name for member in enum.members] + ['throw new IllegalArgumentException("Invalid enum nick: " + nick);'], )] ) ] return J.Class(enum.name, variation='enum', imports=[config.PACKAGE_ROOT + '.ValueEnum'], implements=['ValueEnum'], body=intersperse(prune_empty(body), ''), ) @add_to(J) def gen_namespace(namespace): classes = map(gen_class, namespace.classes) enums = map(gen_enum, namespace.enums) callbacks = map(partial(J.Class.create_callback, static=False), namespace.callbacks) main_class = J.Class( name=namespace.name, body=[ J.Block( _start='static {', body=['System.loadLibrary("%s");' % namespace.shared_library[3:-3]], ), '', Method('private', [], namespace.name, body=['']), '', ] + intersperse(map(partial(Method.default, static=True), namespace.functions), '') ) all_classes = classes + enums + callbacks + [main_class] for clazz in all_classes: clazz.package = config.PACKAGE_ROOT + '.' + namespace.symbol_prefix return {c.name: str(c) for c in all_classes} standard_classes = { 'NativeInstance': str(J.Class( name='NativeInstance', visibility='public', package=config.PACKAGE_ROOT, abstract=True, body=[ J.Decl('long', 'nativeInstance'), '', J.Method('protected', [], 'NativeInstance', params=['NativePointer nativePointer'], body=[J.Assign('this.nativeInstance', 'nativePointer.pointer')], ), '', J.Method('protected', 'void', '_setInternalPointer', params=['long pointer'], body=[J.Assign('nativeInstance', 'pointer')] ), '', J.Method('protected', 'NativePointer', '_newNativePointer', params=['long pointer'], body=[J.Return(J.Call('new NativePointer', 'pointer'))], static=True, ), '', '@Override', J.Method('protected', 'void', 'finalize', body=[J.Call('nativeDestructor', 'this.nativeInstance')], ), '', J.Method('private', 'void', 'nativeDestructor', params=['long instancePointer'], native=True), ], )), 'NativePointer': str(J.Class( name='NativePointer', visibility='public', package=config.PACKAGE_ROOT, body=[ 'final long pointer;', '', J.Method('default', [], 'NativePointer', params=['long pointer'], body=[J.Assign('this.pointer', 'pointer')], ), ], )), 'ValueEnum': str(J.Class( name='ValueEnum', visibility='public', package=config.PACKAGE_ROOT, variation='interface', body=[J.Method('public', 'int', 'getValue')], )), }
32.486811
124
0.571639
839b8c118726c68da2e8a06e4975472c985234ad
142
py
Python
sandbox/lib/jumpscale/JumpscaleLibsExtra/clients/racktivity/energyswitch/modelfactory/models/RTF0032/Master_0_0_4_4.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
2
2019-05-09T07:21:25.000Z
2019-08-05T06:37:53.000Z
sandbox/lib/jumpscale/JumpscaleLibsExtra/clients/racktivity/energyswitch/modelfactory/models/RTF0032/Master_0_0_4_4.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
664
2018-12-19T12:43:44.000Z
2019-08-23T04:24:42.000Z
Jumpscale/clients/racktivity/energyswitch/modelfactory/models/RTF0032/Master_0_0_4_4.py
threefoldtech/jumpscale10
5fb073a82aeb0e66fc7d9660c45a1e31bc094bfa
[ "Apache-2.0" ]
7
2019-05-03T07:14:37.000Z
2019-08-05T12:36:52.000Z
from clients.racktivity.energyswitch.modelfactory.models.common.Master_0_0_4_4 import Model as ModelClass class Model(ModelClass): pass
23.666667
105
0.830986
e9ced04bd0d3656821864a27ed83bbb6558dc5a8
1,072
py
Python
day20/day20.py
Strandtasche/go-experiments
650b3e49439792a3e4e491436676197b720726b4
[ "MIT" ]
null
null
null
day20/day20.py
Strandtasche/go-experiments
650b3e49439792a3e4e491436676197b720726b4
[ "MIT" ]
null
null
null
day20/day20.py
Strandtasche/go-experiments
650b3e49439792a3e4e491436676197b720726b4
[ "MIT" ]
null
null
null
import numpy as np from collections import Counter with open('./data/input20.txt') as f: tiles = [l.rstrip('\n') for l in f.read().split('\n\n')] matched = {} sides = {} allsides = [] for tile in tiles: tmp = tile.split('\n') number = int(tmp[0].split()[1][:-1]) rep = np.array([list(line) for line in tmp[1:]]) side_r = ''.join(rep[:, 0]) side_t = ''.join(rep[0, :]) side_l = ''.join(rep[:, -1]) side_b = ''.join(rep[-1, :]) sides[number] = [side_r, side_t, side_l, side_b] allsides.append(side_r) allsides.append(side_t) allsides.append(side_l) allsides.append(side_b) # print("test") sides_count = Counter(allsides) print(max(sides_count.values())) corners = [] for k, v in sides.items(): free_sides = [] for counter, side in enumerate(v): occurances = sides_count[side] occurances_flipped = sides_count[side[::-1]] if occurances + occurances_flipped == 1: free_sides.append(side) if len(free_sides) >= 2: corners.append(k) print(np.prod(corners))
22.333333
60
0.602612
d8e07aaf4064f9ab9e182485ac68ce8df9d92cd3
3,061
py
Python
model.py
kylemin/A2CL-PT
53a56d1b11f800741a41e784e8bcb2114199a1c6
[ "MIT" ]
48
2020-07-16T03:34:22.000Z
2022-03-24T07:23:43.000Z
model.py
kylemin/A2CL-PT
53a56d1b11f800741a41e784e8bcb2114199a1c6
[ "MIT" ]
9
2020-08-17T03:05:10.000Z
2022-02-23T10:16:30.000Z
model.py
kylemin/A2CL-PT
53a56d1b11f800741a41e784e8bcb2114199a1c6
[ "MIT" ]
9
2020-09-02T01:57:08.000Z
2022-02-27T14:06:46.000Z
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as torch_init from math import ceil, floor def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1 or classname.find('Linear') != -1: torch_init.xavier_uniform_(m.weight) if m.bias is not None: m.bias.data.zero_() class Model(nn.Module): def __init__(self, num_class, s, omega): super(Model, self).__init__() self.num_class = num_class self.s = s self.omega = omega D = 1024 d = 0.7 self.fc_r = nn.Linear(D, D) self.fc1_r = nn.Linear(D, D) self.fc_f = nn.Linear(D, D) self.fc1_f = nn.Linear(D, D) self.classifier_r = nn.Conv1d(D, num_class, kernel_size=1) self.classifier_f = nn.Conv1d(D, num_class, kernel_size=1) self.classifier_ra = nn.ModuleList([nn.Conv1d(D, 1, kernel_size=1) for i in range(num_class)]) # it can be implemented by conv2d with groups=num_class self.classifier_fa = nn.ModuleList([nn.Conv1d(D, 1, kernel_size=1) for i in range(num_class)]) self.dropout_r = nn.Dropout(d) self.dropout_f = nn.Dropout(d) self.apply(weights_init) self.mul_r = nn.Parameter(data=torch.ones(num_class)) self.mul_f = nn.Parameter(data=torch.ones(num_class)) def forward(self, inputs): N, T, D = inputs.shape D //= 2 x_r = F.relu(self.fc_r(inputs[:,:,:D])) x_f = F.relu(self.fc_f(inputs[:,:,D:])) x_r = F.relu(self.fc1_r(x_r)).permute(0,2,1) x_f = F.relu(self.fc1_f(x_f)).permute(0,2,1) x_r = self.dropout_r(x_r) x_f = self.dropout_f(x_f) k = max(T-floor(T/self.s), 1) cls_x_r = self.classifier_r(x_r).permute(0,2,1) cls_x_f = self.classifier_f(x_f).permute(0,2,1) cls_x_ra = cls_x_r.new_zeros(cls_x_r.shape) cls_x_fa = cls_x_f.new_zeros(cls_x_f.shape) cls_x_rat = cls_x_r.new_zeros(cls_x_r.shape) cls_x_fat = cls_x_f.new_zeros(cls_x_f.shape) mask_value = -100 for i in range(self.num_class): mask_r = cls_x_r[:,:,i]>torch.kthvalue(cls_x_r[:,:,i], k, dim=1, keepdim=True)[0] x_r_erased = torch.masked_fill(x_r, mask_r.unsqueeze(1), 0) cls_x_ra[:,:,i] = torch.masked_fill(self.classifier_ra[i](x_r_erased).squeeze(1), mask_r, mask_value) cls_x_rat[:,:,i] = self.classifier_ra[i](x_r).squeeze(1) mask_f = cls_x_f[:,:,i]>torch.kthvalue(cls_x_f[:,:,i], k, dim=1, keepdim=True)[0] x_f_erased = torch.masked_fill(x_f, mask_f.unsqueeze(1), 0) cls_x_fa[:,:,i] = torch.masked_fill(self.classifier_fa[i](x_f_erased).squeeze(1), mask_f, mask_value) cls_x_fat[:,:,i] = self.classifier_fa[i](x_f).squeeze(1) tcam = (cls_x_r+cls_x_rat*self.omega) * self.mul_r + (cls_x_f+cls_x_fat*self.omega) * self.mul_f return x_r.permute(0,2,1), [cls_x_r, cls_x_ra], x_f.permute(0,2,1), [cls_x_f, cls_x_fa], tcam
39.753247
158
0.619079
7ddde92a995a9b74dc88eac38a7ef31ff2e15f55
4,072
py
Python
project/GUI/GUICore.py
RemuTeam/Remu
a7d100ff9002b1b1d27249f8adf510b5a89c09e3
[ "MIT" ]
2
2017-09-18T11:04:38.000Z
2017-09-25T17:23:21.000Z
project/GUI/GUICore.py
RemuTeam/Remu
a7d100ff9002b1b1d27249f8adf510b5a89c09e3
[ "MIT" ]
26
2017-09-20T09:11:10.000Z
2017-12-11T12:21:56.000Z
project/GUI/GUICore.py
RemuTeam/Remu
a7d100ff9002b1b1d27249f8adf510b5a89c09e3
[ "MIT" ]
null
null
null
from kivy.app import App from kivy.properties import StringProperty from kivy.uix.screenmanager import ScreenManager, Screen from GUI.MasterGUI.MasterGUILayout import MasterGUILayout from GUI.MasterGUI.ProjectOverview import ProjectOverview # Do not remove, needed by RemuSM! from GUI.SlaveGUI.PresentationLayout import PresentationLayout from GUI.SlaveGUI.SlaveGUILayout import SlaveGUILayout from GUI.PopUps.PopUps import ExceptionAlertPopUp """ CLASS LIBRARY TO HANDLE THE FUNCTIONALITY OF GUI LAYOUTS The layouts' components, administrative information (such as ids and names) and functions to perform on triggered events are defined in the layout file: project/GUI/remu.kv """ class SwitchLayout(Screen): """ Produces the GUI-layout that allows the user to choose between Master- and Slave-mode. Inherits kivy.uix.screenmanager.Screen """ text = StringProperty('') def goto_master_mode(self): """ Setups the app to be used in the master mode :return: ExceptionAlertPopup if adding master not possible """ app = App.get_running_app() try: app.root.add_master_layout() except Exception as ex: app.reset_servicemode() app.root.rm_master_layout() ExceptionAlertPopUp("Error going to master mode:", ex).open() def add_address(self, address): self.text = address class InfoLayout(Screen): with open('infotext.txt') as f: t = f.read() text = t class RemuSM(ScreenManager): """ Handles changing the GUI-layouts as different screens for the application, and also acts as the root widget Inherits kivy.uix.screenmanager.ScreenManager """ def __init__(self, **kwargs): """ Initializes references to differents screens as 'None' """ super(RemuSM, self).__init__(**kwargs) self.master_screen = None self.slave_screen = None self.presentation_screen = None self.info_screen = None def add_master_layout(self): """ Creates a new master layout, and sets it to be the current screen """ if self.master_screen is None: self.master_screen = MasterGUILayout(name='master_gui_layout') self.add_widget(self.master_screen) self.current = 'master_gui_layout' def add_slave_layout(self): """ Creates a new slave layout and a presentation layout, and sets the slave layout to be the current screen """ if self.slave_screen is None: self.slave_screen = SlaveGUILayout(name='slave_gui_layout') self.presentation_screen = PresentationLayout(name='presentation_layout') self.add_widget(self.slave_screen) self.add_widget(self.presentation_screen) self.current = 'slave_gui_layout' def add_info_layout(self): """ Creates a new info_gui_layout if it doesn't exist, and then shows it. """ if self.info_screen is None: self.info_screen = InfoLayout(name='info_gui_layout') self.add_widget(self.info_screen) self.current = 'info_gui_layout' def change_screen_to(self, name): """ Changes the screen according to the screen name parameter """ self.current = name def rm_master_layout(self): """ Removes the master layout from screenmanager's screens """ self.master_screen.project_overview.remove_presentations() self.master_screen=None self.change_screen_to("switch_layout") def rm_slave_layout(self): """ Removes the slave layout and the presentation layout from screenmanager's screens """ self.remove_widget(self.slave_screen) self.remove_widget(self.presentation_screen) self.slave_screen=None self.presentation_screen=None self.change_screen_to("switch_layout") def get_current_layout(self): return self.current_screen
31.8125
93
0.670432
6d0110085c9b6c82a74d002debd653a2a9419c65
405
py
Python
astrazenecadev/wsgi.py
Nicolasvegam/astrazeneca
9f549c170553d6ad13bc2949e147f4a2a53cb67d
[ "MIT" ]
null
null
null
astrazenecadev/wsgi.py
Nicolasvegam/astrazeneca
9f549c170553d6ad13bc2949e147f4a2a53cb67d
[ "MIT" ]
null
null
null
astrazenecadev/wsgi.py
Nicolasvegam/astrazeneca
9f549c170553d6ad13bc2949e147f4a2a53cb67d
[ "MIT" ]
null
null
null
""" WSGI config for astrazenecadev project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'astrazenecadev.settings') application = get_wsgi_application()
23.823529
78
0.792593
3702fa725c47e6f4f77283709392367e2864cd48
4,701
py
Python
homeassistant/components/konnected/switch.py
andersop91/core
0e0ef0aa17073609eae7c974cf4c73306b7c414b
[ "Apache-2.0" ]
4
2021-07-11T09:11:00.000Z
2022-02-27T14:43:50.000Z
homeassistant/components/konnected/switch.py
andersop91/core
0e0ef0aa17073609eae7c974cf4c73306b7c414b
[ "Apache-2.0" ]
277
2021-10-04T06:39:33.000Z
2021-12-28T22:04:17.000Z
homeassistant/components/konnected/switch.py
andersop91/core
0e0ef0aa17073609eae7c974cf4c73306b7c414b
[ "Apache-2.0" ]
1
2022-02-09T00:30:51.000Z
2022-02-09T00:30:51.000Z
"""Support for wired switches attached to a Konnected device.""" import logging from homeassistant.config_entries import ConfigEntry from homeassistant.const import ( ATTR_STATE, CONF_DEVICES, CONF_NAME, CONF_REPEAT, CONF_SWITCHES, CONF_ZONE, ) from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity import DeviceInfo, ToggleEntity from homeassistant.helpers.entity_platform import AddEntitiesCallback from .const import ( CONF_ACTIVATION, CONF_MOMENTARY, CONF_PAUSE, DOMAIN as KONNECTED_DOMAIN, STATE_HIGH, STATE_LOW, ) _LOGGER = logging.getLogger(__name__) async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up switches attached to a Konnected device from a config entry.""" data = hass.data[KONNECTED_DOMAIN] device_id = config_entry.data["id"] switches = [ KonnectedSwitch(device_id, zone_data.get(CONF_ZONE), zone_data) for zone_data in data[CONF_DEVICES][device_id][CONF_SWITCHES] ] async_add_entities(switches) class KonnectedSwitch(ToggleEntity): """Representation of a Konnected switch.""" def __init__(self, device_id, zone_num, data): """Initialize the Konnected switch.""" self._data = data self._device_id = device_id self._zone_num = zone_num self._activation = self._data.get(CONF_ACTIVATION, STATE_HIGH) self._momentary = self._data.get(CONF_MOMENTARY) self._pause = self._data.get(CONF_PAUSE) self._repeat = self._data.get(CONF_REPEAT) self._state = self._boolean_state(self._data.get(ATTR_STATE)) self._name = self._data.get(CONF_NAME) self._unique_id = ( f"{device_id}-{self._zone_num}-{self._momentary}-" f"{self._pause}-{self._repeat}" ) @property def unique_id(self) -> str: """Return the unique id.""" return self._unique_id @property def name(self): """Return the name of the switch.""" return self._name @property def is_on(self): """Return the status of the sensor.""" return self._state @property def panel(self): """Return the Konnected HTTP client.""" device_data = self.hass.data[KONNECTED_DOMAIN][CONF_DEVICES][self._device_id] return device_data.get("panel") @property def device_info(self) -> DeviceInfo: """Return the device info.""" return DeviceInfo(identifiers={(KONNECTED_DOMAIN, self._device_id)}) @property def available(self): """Return whether the panel is available.""" return self.panel.available async def async_turn_on(self, **kwargs): """Send a command to turn on the switch.""" resp = await self.panel.update_switch( self._zone_num, int(self._activation == STATE_HIGH), self._momentary, self._repeat, self._pause, ) if resp.get(ATTR_STATE) is not None: self._set_state(True) if self._momentary and resp.get(ATTR_STATE) != -1: # Immediately set the state back off for momentary switches self._set_state(False) async def async_turn_off(self, **kwargs): """Send a command to turn off the switch.""" resp = await self.panel.update_switch( self._zone_num, int(self._activation == STATE_LOW) ) if resp.get(ATTR_STATE) is not None: self._set_state(self._boolean_state(resp.get(ATTR_STATE))) def _boolean_state(self, int_state): if int_state is None: return False if int_state == 0: return self._activation == STATE_LOW if int_state == 1: return self._activation == STATE_HIGH def _set_state(self, state): self._state = state self.async_write_ha_state() _LOGGER.debug( "Setting status of %s actuator zone %s to %s", self._device_id, self.name, state, ) @callback def async_set_state(self, state): """Update the switch state.""" self._set_state(state) async def async_added_to_hass(self): """Store entity_id and register state change callback.""" self._data["entity_id"] = self.entity_id self.async_on_remove( async_dispatcher_connect( self.hass, f"konnected.{self.entity_id}.update", self.async_set_state ) )
30.927632
85
0.640715
b147cfde7baafc7dc3e6b01fd4c9fb6d4de994cc
9,174
py
Python
tests/logic/meta_attribute_mappers_test.py
Yelp/schematizer
035845d27945a05db475f00eb76f59e8825dbaa4
[ "Apache-2.0" ]
86
2016-11-17T17:39:13.000Z
2021-06-01T15:19:05.000Z
tests/logic/meta_attribute_mappers_test.py
tomzhang/schematizer
035845d27945a05db475f00eb76f59e8825dbaa4
[ "Apache-2.0" ]
2
2016-12-01T20:57:43.000Z
2021-09-28T09:26:25.000Z
tests/logic/meta_attribute_mappers_test.py
tomzhang/schematizer
035845d27945a05db475f00eb76f59e8825dbaa4
[ "Apache-2.0" ]
26
2016-11-29T22:38:11.000Z
2021-03-02T19:44:17.000Z
# -*- coding: utf-8 -*- # Copyright 2016 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import absolute_import from __future__ import unicode_literals import pytest from sqlalchemy.orm import exc as orm_exc from schematizer.logic import meta_attribute_mappers as meta_attr_logic from schematizer.models import Namespace from schematizer.models import Source from schematizer.models.database import session from schematizer.models.exceptions import EntityNotFoundError from schematizer.models.meta_attribute_mapping_store import ( MetaAttributeMappingStore as meta_attr_model) from schematizer_testing import factories from schematizer_testing.asserts import assert_equal_meta_attribute_mapping from tests.models.testing_db import DBTestCase class RegisterAndDeleteMetaAttributeBase(DBTestCase): def assert_equal_meta_attr_partial(self, expected, actual): assert expected.entity_type == actual.entity_type assert expected.entity_id == actual.entity_id assert expected.meta_attr_schema_id == actual.meta_attr_schema_id def _setup_meta_attribute_mapping(self, meta_attr_schema, entity_id): factories.create_meta_attribute_mapping( meta_attr_schema.id, self.entity_model.__name__, entity_id ) def test_invalid_entity_id_fails(self, meta_attr_schema): fake_entity_id = 0 with pytest.raises(EntityNotFoundError): meta_attr_logic.register_meta_attribute_for_entity( self.entity_model, fake_entity_id, meta_attr_schema.id ) with pytest.raises(EntityNotFoundError): meta_attr_logic.delete_meta_attribute_mapping_for_entity( self.entity_model, fake_entity_id, meta_attr_schema.id ) def test_register_first_time(self, meta_attr_schema): actual = meta_attr_logic.register_meta_attribute_for_entity( self.entity_model, self.entity.id, meta_attr_schema.id ) expected = meta_attr_model( entity_type=self.entity_model.__name__, entity_id=self.entity.id, meta_attr_schema_id=meta_attr_schema.id ) self.assert_equal_meta_attr_partial(expected, actual) def test_idempotent_registration(self, meta_attr_schema): self._setup_meta_attribute_mapping(meta_attr_schema, self.entity.id) first_result = meta_attr_logic.register_meta_attribute_for_entity( self.entity_model, self.entity.id, meta_attr_schema.id ) second_result = meta_attr_logic.register_meta_attribute_for_entity( self.entity_model, self.entity.id, meta_attr_schema.id ) expected = meta_attr_model( entity_type=self.entity_model.__name__, entity_id=self.entity.id, meta_attr_schema_id=meta_attr_schema.id ) self.assert_equal_meta_attr_partial(expected, first_result) assert_equal_meta_attribute_mapping(first_result, second_result) def test_delete_mapping(self, meta_attr_schema): self._setup_meta_attribute_mapping(meta_attr_schema, self.entity.id) actual = meta_attr_logic.delete_meta_attribute_mapping_for_entity( self.entity_model, self.entity.id, meta_attr_schema.id ) expected = meta_attr_model( entity_type=self.entity_model.__name__, entity_id=self.entity.id, meta_attr_schema_id=meta_attr_schema.id ) self.assert_equal_meta_attr_partial(expected, actual) with pytest.raises(orm_exc.NoResultFound): session.query( meta_attr_model ).filter( meta_attr_model.entity_type == self.entity_model.__name__, meta_attr_model.entity_id == self.entity.id, meta_attr_model.meta_attr_schema_id == meta_attr_schema.id ).one() def test_delete_non_existent_mapping(self, meta_attr_schema): with pytest.raises(EntityNotFoundError): meta_attr_logic.delete_meta_attribute_mapping_for_entity( self.entity_model, self.entity.id, meta_attr_schema.id ) @pytest.mark.usefixtures('setup_test') class TestRegisterAndDeleteMetaAttributeForNamespace( RegisterAndDeleteMetaAttributeBase ): @pytest.fixture def setup_test(self, yelp_namespace): self.entity_model = Namespace self.entity = yelp_namespace @pytest.mark.usefixtures('setup_test') class TestRegisterAndDeleteMetaAttributeForSource( RegisterAndDeleteMetaAttributeBase ): @pytest.fixture def setup_test(self, biz_source): self.entity_model = Source self.entity = biz_source class GetMetaAttributeBaseTest(DBTestCase): """MetaAttribute Mappings are supposed to be additive. In other words, a Source should have all the meta attributes for itself and the namespace it belongs to. Below are the entity structures and the meta attribute mappings I will be testing with: NamespaceA: - SourceA1 +----+-------------+-----------+--------------------------+ | id | entity_type | entity_id | meta_attr_schema | +----+-------------+-----------+--------------------------+ | 1 | namespace | A | namespace_meta_attr | | 2 | source | A1 | source_meta_attr | +----+-------------+-----------+--------------------------+ """ @pytest.fixture def dummy_namespace(self): return factories.create_namespace('yelp_meta_A') @pytest.fixture def dummy_src(self, dummy_namespace): return factories.create_source( namespace_name=dummy_namespace.name, source_name='meta_source_A_1', owner_email='test-meta-src@yelp.com' ) def _create_meta_attribute_schema( self, source_name, meta_attr_schema_json, meta_attr_schema_elements ): return factories.create_avro_schema( meta_attr_schema_json, meta_attr_schema_elements, topic_name='.'.join(['yelp_meta', source_name, '1']), namespace='yelp_meta', source=source_name ) @pytest.fixture def namespace_meta_attr( self, meta_attr_schema_json, meta_attr_schema_elements ): return self._create_meta_attribute_schema( 'namespace_meta_attr', meta_attr_schema_json, meta_attr_schema_elements ) @pytest.fixture def source_meta_attr( self, meta_attr_schema_json, meta_attr_schema_elements ): return self._create_meta_attribute_schema( 'source_meta_attr', meta_attr_schema_json, meta_attr_schema_elements ) @pytest.fixture def namespace_meta_attr_mapping( self, namespace_meta_attr, dummy_namespace ): factories.create_meta_attribute_mapping( namespace_meta_attr.id, Namespace.__name__, dummy_namespace.id ) @pytest.fixture def source_meta_attr_mapping(self, source_meta_attr, dummy_src): factories.create_meta_attribute_mapping( source_meta_attr.id, Source.__name__, dummy_src.id ) @pytest.mark.usefixtures( 'namespace_meta_attr_mapping', 'source_meta_attr_mapping', ) class TestGetMetaAttributeMappings(GetMetaAttributeBaseTest): def test_get_mapping_by_namespace( self, dummy_namespace, namespace_meta_attr ): actual = meta_attr_logic.get_meta_attributes_by_namespace( dummy_namespace.id ) expected = [namespace_meta_attr.id] assert actual == expected def test_get_mapping_by_source( self, dummy_src, namespace_meta_attr, source_meta_attr ): actual = meta_attr_logic.get_meta_attributes_by_source(dummy_src.id) expected = [namespace_meta_attr.id, source_meta_attr.id] assert actual == expected @pytest.mark.parametrize('getter_method', [ meta_attr_logic.get_meta_attributes_by_namespace, meta_attr_logic.get_meta_attributes_by_source, ]) def test_get_non_existing_mapping(self, getter_method): fake_id = 0 with pytest.raises(EntityNotFoundError): getter_method(fake_id)
33.604396
78
0.664923
8cdd49a00a0482d3b7552334f7886066ea555d9a
2,300
py
Python
.leetcode/784.letter-case-permutation.py
KuiyuanFu/PythonLeetCode
8962df2fa838eb7ae48fa59de272ba55a89756d8
[ "MIT" ]
null
null
null
.leetcode/784.letter-case-permutation.py
KuiyuanFu/PythonLeetCode
8962df2fa838eb7ae48fa59de272ba55a89756d8
[ "MIT" ]
null
null
null
.leetcode/784.letter-case-permutation.py
KuiyuanFu/PythonLeetCode
8962df2fa838eb7ae48fa59de272ba55a89756d8
[ "MIT" ]
null
null
null
# @lc app=leetcode id=784 lang=python3 # # [784] Letter Case Permutation # # https://leetcode.com/problems/letter-case-permutation/description/ # # algorithms # Medium (69.67%) # Likes: 2697 # Dislikes: 130 # Total Accepted: 174K # Total Submissions: 246K # Testcase Example: '"a1b2"' # # Given a string s, we can transform every letter individually to be lowercase # or uppercase to create another string. # # Return a list of all possible strings we could create. You can return the # output in any order. # # # Example 1: # # # Input: s = "a1b2" # Output: ["a1b2","a1B2","A1b2","A1B2"] # # # Example 2: # # # Input: s = "3z4" # Output: ["3z4","3Z4"] # # # Example 3: # # # Input: s = "12345" # Output: ["12345"] # # # Example 4: # # # Input: s = "0" # Output: ["0"] # # # # Constraints: # # # s will be a string with length between 1 and 12. # s will consist only of letters or digits. # # # # @lc tags=tree # @lc imports=start from imports import * # @lc imports=end # @lc idea=start # # 转换成大小写不同格式。 # # @lc idea=end # @lc group= # @lc rank= # @lc code=start class Solution: def letterCasePermutation(self, s: str) -> List[str]: return [ ''.join(l) for l in \ product(\ *[[c.upper(), c.lower()] if c.isalpha() else [c] for c in s]\ ) ] pass # @lc code=end # @lc main=start if __name__ == '__main__': print('Example 1:') print('Input : ') print('s = "a1b2"') print('Exception :') print('["a1b2","a1B2","A1b2","A1B2"]') print('Output :') print(str(Solution().letterCasePermutation("a1b2"))) print() print('Example 2:') print('Input : ') print('s = "3z4"') print('Exception :') print('["3z4","3Z4"]') print('Output :') print(str(Solution().letterCasePermutation("3z4"))) print() print('Example 3:') print('Input : ') print('s = "12345"') print('Exception :') print('["12345"]') print('Output :') print(str(Solution().letterCasePermutation("12345"))) print() print('Example 4:') print('Input : ') print('s = "0"') print('Exception :') print('["0"]') print('Output :') print(str(Solution().letterCasePermutation("0"))) print() pass # @lc main=end
17.424242
81
0.568261
82e180da8ee6788c1c1757c5f16616889e681dd6
2,714
py
Python
research/object_detection/utils/dataset_util.py
leejang/tensorflow_models
20ed9860902c59cc81f161e6027daafc9a936bed
[ "Apache-2.0" ]
null
null
null
research/object_detection/utils/dataset_util.py
leejang/tensorflow_models
20ed9860902c59cc81f161e6027daafc9a936bed
[ "Apache-2.0" ]
null
null
null
research/object_detection/utils/dataset_util.py
leejang/tensorflow_models
20ed9860902c59cc81f161e6027daafc9a936bed
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions for creating TFRecord data sets.""" import tensorflow as tf def int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def int64_list_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def float_feature(value): return tf.train.Feature(bytes_list=tf.train.FloatList(value=[value])) def bytes_list_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) def float_list_feature(value): return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def read_examples_list(path): """Read list of training or validation examples. The file is assumed to contain a single example per line where the first token in the line is an identifier that allows us to find the image and annotation xml for that example. For example, the line: xyz 3 would allow us to find files xyz.jpg and xyz.xml (the 3 would be ignored). Args: path: absolute path to examples list file. Returns: list of example identifiers (strings). """ with tf.gfile.GFile(path) as fid: lines = fid.readlines() return [line.strip().split(' ')[0] for line in lines] def recursive_parse_xml_to_dict(xml): """Recursively parses XML contents to python dict. We assume that `object` tags are the only ones that can appear multiple times at the same level of a tree. Args: xml: xml tree obtained by parsing XML file contents using lxml.etree Returns: Python dictionary holding XML contents. """ if not xml: return {xml.tag: xml.text} result = {} for child in xml: child_result = recursive_parse_xml_to_dict(child) if child.tag != 'object': result[child.tag] = child_result[child.tag] else: if child.tag not in result: result[child.tag] = [] result[child.tag].append(child_result[child.tag]) return {xml.tag: result}
30.840909
80
0.713338
827a372ecd72f3ec58eecd63e1480ad5ed3be47c
3,200
py
Python
app/utils/notification_utils.py
ORANZINO/bouquet_server
2ce1bb59df15297878c555dd97e0f27b5202ed02
[ "MIT" ]
7
2022-01-20T11:50:39.000Z
2022-01-27T09:39:27.000Z
app/utils/notification_utils.py
ORANZINO/bouquet_server
2ce1bb59df15297878c555dd97e0f27b5202ed02
[ "MIT" ]
null
null
null
app/utils/notification_utils.py
ORANZINO/bouquet_server
2ce1bb59df15297878c555dd97e0f27b5202ed02
[ "MIT" ]
1
2022-01-20T11:51:50.000Z
2022-01-20T11:51:50.000Z
from exponent_server_sdk import ( DeviceNotRegisteredError, PushClient, PushMessage, PushServerError, PushTicketError, ) from requests.exceptions import ConnectionError, HTTPError from fastapi import APIRouter, Body, Depends from sqlalchemy.orm import Session from typing import Optional from app.database.conn import db from app.database.schema import Notifications, Characters, PushTokens from datetime import timedelta def generate_message(token, sender, receiver, category, created_at, post_id=None): result = { 'to': token, 'sound': 'default', 'category': category[0].lower() + category[1:] } if category == "LikePost": result['body'] = f'{sender.name}님이 {receiver.name}님의 게시글을 좋아해요.' result['data'] = {'screen': 'NotiTabPostStack', 'params': sender.name, 'created_at': created_at, 'from': {'name': sender.name, 'profile_img': sender.profile_img}} elif category == "LikeComment": result['body'] = f'{sender.name}님이 {receiver.name}님의 댓글을 좋아해요.' result['data'] = {'screen': 'NotiTabPostStack', 'params': post_id, 'created_at': created_at, 'from': {'name': sender.name, 'profile_img': sender.profile_img}} elif category == "Comment": result['body'] = f'{sender.name}님이 {receiver.name}님의 게시글에 댓글을 달았어요.' result['data'] = {'screen': 'NotiTabPostStack', 'params': post_id, 'created_at': created_at, 'from': {'name': sender.name, 'profile_img': sender.profile_img}} elif category == "Follow": result['body'] = f'{sender.name}님이 {receiver.name}님을 팔로우해요.' result['data'] = {'screen': 'NotiTabProfileDetailStack', 'params': post_id, 'created_at': created_at, 'from': {'name': sender.name, 'profile_img': sender.profile_img}} return result def send_notification(sender_id: int, receiver_id: int, category: str, post_id: Optional[int] = None, session: Session = Depends(db.session)): if sender_id != receiver_id: sender, receiver = Characters.get(session, id=sender_id), Characters.get(session, id=receiver_id) token = PushTokens.get(session, user_id=receiver.user_id) new_notification = Notifications.create(session, True, sender_id=sender_id, receiver_id=receiver_id, category=category, post_id=post_id) if token: token = token.token try: response = PushClient().publish( PushMessage(**generate_message( token, sender, receiver, category, (new_notification.created_at + timedelta(hours=9)).isoformat(), post_id))) response.validate_response() except DeviceNotRegisteredError: print("DeviceNotRegisteredError") except PushServerError: print("PushServerError") except PushTicketError: print("PushTicketError")
44.444444
144
0.59625
d4243183a351a28d0a110a618ac6a5ae7fcf9b08
2,341
py
Python
drafts/twitterology/examples/examine_tweets.py
tekhnus/misc
cf4c6e29434c546e3c29f24f7bb16a0ac65005f5
[ "Unlicense" ]
null
null
null
drafts/twitterology/examples/examine_tweets.py
tekhnus/misc
cf4c6e29434c546e3c29f24f7bb16a0ac65005f5
[ "Unlicense" ]
null
null
null
drafts/twitterology/examples/examine_tweets.py
tekhnus/misc
cf4c6e29434c546e3c29f24f7bb16a0ac65005f5
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python # Usage: examples/logistic_regression examples.db:track_hello from sys import argv from itertools import groupby, islice from operator import itemgetter from random import Random import matplotlib matplotlib.use("pdf") import matplotlib.pyplot as plt import tabulate import twitterology as tw import twitterology.features as tf from model import MODEL import numpy as np np.set_printoptions(precision=2, suppress=True) from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_curve, auc from sklearn.model_selection import cross_val_score, StratifiedKFold from tqdm import tqdm def link_to(user_id): return "https://twitter.com/intent/user?user_id=" + user_id def format_sample(sample): return " ".join( "{:.2f}".format(x) if isinstance(x, float) else repr(x).decode("unicode-escape").encode("utf-8") for x in sample ) def main(): database, table = argv[1].split(":") samples_a = dict(np.load("db/{}/samples_a.npy".format(table))) samples_b = dict(np.load("db/{}/samples_b.npy".format(table))) estimates = np.load("db/{}/estimates.npy".format(table)) coef = np.load("db/{}/coef.npy".format(table)) seen = set() total = 0 count = 0 for user_a, user_b, proba in estimates: proba = float(proba) total += 1 if proba > 0.95 and user_a != user_b and (user_a not in seen or user_b not in seen): count += 1 print("\n===", count, proba, "===\n") print(link_to(user_a)) """ print format_sample(samples_a[user_a]) print """ print(link_to(user_b)) """ print format_sample(samples_b[user_b]) print print MODEL.difference(samples_a[user_a], samples_b[user_b]) * coef """ seen.add(user_a) seen.add(user_b) seen = set() print("flagged:", count, "/", total) print("seen:", len(seen)) tab = tabulate.tabulate([(f.decode("utf-8"), "{:.2f}".format(c)) for f, c in zip(MODEL.features.labels, coef)], tablefmt="latex") with open("plots/{}/tab.tex".format(table), "w") as tabfile: tabfile.write(tab.encode("utf-8")) if __name__ == "__main__": main()
27.541176
115
0.620248
0515849adb8dc07aea1994b95a672d50b9b55285
8,926
py
Python
src/config/device-manager/test/test_dm_bgp.py
jnpr-pranav/contrail-controller
428eee37c28c31830fd764315794e1a6e52720c1
[ "Apache-2.0" ]
37
2020-09-21T10:42:26.000Z
2022-01-09T10:16:40.000Z
src/config/device-manager/test/test_dm_bgp.py
jnpr-pranav/contrail-controller
428eee37c28c31830fd764315794e1a6e52720c1
[ "Apache-2.0" ]
null
null
null
src/config/device-manager/test/test_dm_bgp.py
jnpr-pranav/contrail-controller
428eee37c28c31830fd764315794e1a6e52720c1
[ "Apache-2.0" ]
21
2020-08-25T12:48:42.000Z
2022-03-22T04:32:18.000Z
# # Copyright (c) 2013 Juniper Networks, Inc. All rights reserved. # from __future__ import absolute_import import sys import gevent import itertools from cfgm_common.tests.test_common import retries from cfgm_common.tests.test_common import retry_exc_handler from vnc_api.vnc_api import * from device_api.juniper_common_xsd import * from device_manager.dm_utils import DMUtils from cfgm_common.tests.test_common import retries from cfgm_common.tests.test_common import retry_exc_handler from .test_dm_common import * from .test_dm_utils import FakeDeviceConnect # # All BGP related DM test cases should go here # class TestBgpDM(TestCommonDM): def __init__(self, *args, **kwargs): super(TestBgpDM, self).__init__(*args, **kwargs) @retries(5, hook=retry_exc_handler) def check_dm_bgp_hold_time_config(self, bgp_type, hold_time): config = FakeDeviceConnect.get_xml_config() bgp_groups = self.get_bgp_groups(config, bgp_type) self.assertIn(hold_time, [gp.get_hold_time() for gp in bgp_groups or []]) return # test hold time configuration def verify_dm_bgp_hold_time_config(self): bgp_router, pr = self.create_router('router' + self.id() , '1.1.1.1', product=self.product) self.set_hold_time(bgp_router, 100) self._vnc_lib.bgp_router_update(bgp_router) self.check_dm_bgp_hold_time_config('internal', 100) bgp_router_fq = bgp_router.get_fq_name() pr_fq = pr.get_fq_name() self.delete_routers(bgp_router, pr) self.wait_for_routers_delete(bgp_router_fq, pr_fq) @retries(5, hook=retry_exc_handler) def check_dm_bgp_export_policy(self, product): config = FakeDeviceConnect.get_xml_config() bgp_groups = self.get_bgp_groups(config) for gp in bgp_groups or []: if gp.get_type() == 'internal': if 'qfx5' not in product: self.assertEqual(gp.get_export(), DMUtils.make_ibgp_export_policy_name()) else: self.assertIsNone(gp.get_export()) return if gp.get_type() == 'external': self.assertThat(gp.get_export() != DMUtils.make_ibgp_export_policy_name()) return self.assertTrue(False) return # test iBgp export policy configuration def verify_dm_bgp_export_policy(self): bgp_router, pr = self.create_router('router' + self.id() , '1.1.1.1', product=self.product) self.check_dm_bgp_export_policy(self.product) bgp_router_fq = bgp_router.get_fq_name() pr_fq = pr.get_fq_name() self.delete_routers(bgp_router, pr) self.wait_for_routers_delete(bgp_router_fq, pr_fq) # Test Auth Confiuration @retries(5, hook=retry_exc_handler) def check_bgp_auth_config(self, bgp_type, key): config = FakeDeviceConnect.get_xml_config() bgp_groups = self.get_bgp_groups(config, bgp_type) self.assertIn(key, [gp.get_authentication_key() for gp in bgp_groups or []]) return @retries(5, hook=retry_exc_handler) def check_bgp_auth_neighbour_config(self, bgp_type, key): config = FakeDeviceConnect.get_xml_config() bgp_groups = self.get_bgp_groups(config, bgp_type) self.assertIn(key, [neigh.get_authentication_key() for neigh in itertools.chain.from_iterable([gp.get_neighbor() for gp in bgp_groups or []])]) return # test bgp auth configuration def verify_dm_md5_auth_config(self): bgp_router, pr = self.create_router('router1' + self.id(), '1.1.1.1', product=self.product) self.set_auth_data(bgp_router, 0, 'bgppswd', 'md5') self._vnc_lib.bgp_router_update(bgp_router) gevent.sleep(1) self.check_bgp_auth_config('internal', 'bgppswd') #bgp peering, auth validate bgp_router_peer, _ = self.create_router('router2' + self.id() , '20.2.2.2', product=self.product, ignore_pr=True) families = AddressFamilies(['route-target', 'inet-vpn', 'e-vpn']) auth = AuthenticationData('md5', [AuthenticationKeyItem(0, 'bgppswd-neigh')]) bgp_sess_attrs = [BgpSessionAttributes(address_families=families, auth_data=auth)] bgp_sessions = [BgpSession(attributes=bgp_sess_attrs)] bgp_router.add_bgp_router(bgp_router_peer, BgpPeeringAttributes(session=bgp_sessions)) self._vnc_lib.bgp_router_update(bgp_router) self.check_bgp_auth_config('internal', 'bgppswd') self.check_bgp_auth_config('external', 'bgppswd') self.check_bgp_auth_neighbour_config('external', 'bgppswd-neigh') bgp_peer_fq = bgp_router_peer.get_fq_name() self.delete_routers(bgp_router_peer) self.wait_for_routers_delete(bgp_peer_fq) bgp_fq = bgp_router.get_fq_name() pr_fq = pr.get_fq_name() self.delete_routers(bgp_router, pr) self.wait_for_routers_delete(bgp_fq, pr_fq) #end test_dm_md5_auth_config @retries(5, hook=retry_exc_handler) def check_lo0_ip_config(self, ip_check=''): config = FakeDeviceConnect.get_xml_config() intfs = self.get_interfaces(config, "lo0") if ip_check: ips = self.get_ip_list(intfs[0], "v4", "0") self.assertEqual(ip_check, ips[0]) else: if not intfs or not self.get_ip_list(intfs[0], "v4", "0"): return self.assertTrue(False) return # end check_lo0_ip_config @retries(5, hook=retry_exc_handler) def check_tunnel_source_ip(self, ip_check='', look_for=True): config = FakeDeviceConnect.get_xml_config() tunnels = self.get_dynamic_tunnels(config) or DynamicTunnels() if look_for: self.assertIn(ip_check, [tunnel.source_address for tunnel in tunnels.get_dynamic_tunnel()]) else: self.assertNotIn(ip_check, [tunnel.source_address for tunnel in tunnels.get_dynamic_tunnel()]) return # end check_tunnel_source_ip # test loopback ip configuration def verify_dm_lo0_ip_config(self): bgp_router, pr = self.create_router('router1' + self.id(), '1.1.1.1', product=self.product) self.check_lo0_ip_config() tunnels_needed = True if 'qfx5' in self.product: tunnels_needed = False pr.set_physical_router_loopback_ip("10.10.0.1") self._vnc_lib.physical_router_update(pr) self.check_lo0_ip_config("10.10.0.1/32") self.check_tunnel_source_ip("10.10.0.1", tunnels_needed) pr.set_physical_router_dataplane_ip("20.20.0.1") self._vnc_lib.physical_router_update(pr) self.check_tunnel_source_ip("20.20.0.1", tunnels_needed) self.check_lo0_ip_config("10.10.0.1/32") pr.set_physical_router_loopback_ip('') self._vnc_lib.physical_router_update(pr) self.check_lo0_ip_config() self.check_tunnel_source_ip("20.20.0.1", tunnels_needed) pr.set_physical_router_dataplane_ip('') self._vnc_lib.physical_router_update(pr) self.check_tunnel_source_ip("10.10.0.1", False) self.check_tunnel_source_ip("20.20.0.1", False) bgp_router_fq = bgp_router.get_fq_name() pr_fq = pr.get_fq_name() self.delete_routers(bgp_router, pr) self.wait_for_routers_delete(bgp_router_fq, pr_fq) @retries(5, hook=retry_exc_handler) def check_router_id_config(self, ip_check=''): config = FakeDeviceConnect.get_xml_config() ri_opts = config.get_routing_options() self.assertIsNotNone(ri_opts) self.assertEqual(ip_check, ri_opts.get_router_id()) # end check_router_id_config # test router id configuration def verify_dm_router_id_config(self): bgp_router, pr = self.create_router('router1' + self.id(), '1.1.1.1', product=self.product) # defaults to bgp address self.check_router_id_config('1.1.1.1') params = self.get_obj_param(bgp_router, 'bgp_router_parameters') or BgpRouterParams() self.set_obj_param(params, 'identifier', '5.5.5.5') self.set_obj_param(bgp_router, 'bgp_router_parameters', params) self._vnc_lib.bgp_router_update(bgp_router) # if identifier is set, use it to conifgure router-id self.check_router_id_config('5.5.5.5') # cleanup bgp_router_fq = bgp_router.get_fq_name() pr_fq = pr.get_fq_name() self.delete_routers(bgp_router, pr) self.wait_for_routers_delete(bgp_router_fq, pr_fq) # end test_dm_router_id_config # end TestBgpDM
42.504762
121
0.660542
91a3c9af34722ba8fcf54b20735260f296b0d2aa
96
py
Python
venv/lib/python3.8/site-packages/requests_toolbelt/sessions.py
Retraces/UkraineBot
3d5d7f8aaa58fa0cb8b98733b8808e5dfbdb8b71
[ "MIT" ]
2
2022-03-13T01:58:52.000Z
2022-03-31T06:07:54.000Z
venv/lib/python3.8/site-packages/requests_toolbelt/sessions.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
19
2021-11-20T04:09:18.000Z
2022-03-23T15:05:55.000Z
venv/lib/python3.8/site-packages/requests_toolbelt/sessions.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
null
null
null
/home/runner/.cache/pip/pool/75/18/ba/b72d03a68b06bd91c53e9e13a1d9e1813afdf08053e51f62e701317533
96
96
0.895833