hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
201f5552a3378781916787a5f8761802bd6a2fc2
622
py
Python
tago/account/paymentHistory.py
tago-io/tago-sdk-python
c55c86a002bb5f48dd08a9c2b270d0dee4b1b6d1
[ "Apache-2.0" ]
4
2017-05-01T01:55:29.000Z
2022-02-14T12:55:42.000Z
tago/account/paymentHistory.py
tago-io/tago-python
203b489aa5bcdbb116423049c62d90a7cce9b9a0
[ "Apache-2.0" ]
10
2017-03-20T14:54:46.000Z
2021-12-14T21:52:08.000Z
tago/account/paymentHistory.py
tago-io/tago-python
203b489aa5bcdbb116423049c62d90a7cce9b9a0
[ "Apache-2.0" ]
5
2017-04-04T21:59:06.000Z
2022-02-11T08:35:35.000Z
import requests # Used to make HTTP requests import json # Used to parse JSON import os # Used to infer environment variables API_TAGO = os.environ.get('TAGOIO_API') or 'https://api.tago.io' REALTIME = os.environ.get('TAGOIO_REALTIME') or 'https://realtime.tago.io' class PaymentHistory: def __init__(self, acc_token): self.token = acc_token self.default_headers = { 'content-type': 'application/json', 'Account-Token': acc_token} return def getHistory(self): return requests.get('{api_endpoint}/account/payment_history'.format(api_endpoint=API_TAGO), headers=self.default_headers).json()
34.555556
132
0.737942
43b134adbb0cdfac87c7b5ca68f8a63a3f8c2097
2,100
py
Python
presenter/uptake.py
fic2/python-dokuwiki-export
3584c4cd146e1d8510504064c8c8094e41a5fc9e
[ "MIT" ]
null
null
null
presenter/uptake.py
fic2/python-dokuwiki-export
3584c4cd146e1d8510504064c8c8094e41a5fc9e
[ "MIT" ]
null
null
null
presenter/uptake.py
fic2/python-dokuwiki-export
3584c4cd146e1d8510504064c8c8094e41a5fc9e
[ "MIT" ]
null
null
null
from . import PresenterBase from visitor import UsedByVisitor from entities import SpecificEnabler, DeprecatedSpecificEnabler, Application class UptakePresenter(PresenterBase): def __init__(self, nice = lambda item: item, hideunused = False): PresenterBase.__init__(self) # self.v = GEVisitor() self.nice = nice self.hideunused = hideunused self.collect_entities = [SpecificEnabler, DeprecatedSpecificEnabler, Application] def present_ge(self, ge, meta): uv1 = UsedByVisitor(ge, ['USES'], self.collect_entities) uv1.visit(meta) uv2 = UsedByVisitor(ge, ['USES', 'WILL USE'], self.collect_entities) uv2.visit(meta) uv3 = UsedByVisitor(ge, ['USES', 'WILL USE', 'MAY USE'], self.collect_entities) uv3.visit(meta) uv1e = set(uv1.get_result()) uv2e = set(uv2.get_result()) - (uv1e ) uv3e = set(uv3.get_result()) - (uv1e | uv2e) return (ge, list(uv1e), list(uv2e), list(uv3e)) def present(self, meta): self.uptake = [] for ge in meta.get_generic_enablers(): row = self.present_ge(ge, meta) if self.hideunused and len(row[1])+len(row[2])+len(row[3]) == 0: continue self.uptake.append(row) def dump(self, out): out.write('^ GE ^ Uptake ^ SEs / Applications ^') for ge, uses, will, may in self.uptake: ses = [self.nice(e) for e in uses if isinstance(e, SpecificEnabler)] apps = [self.nice(e) for e in uses if isinstance(e, Application)] wses = [self.nice(e) for e in will + may if isinstance(e, SpecificEnabler)] wapps = [self.nice(e) for e in will + may if isinstance(e, Application)] se_uptake = ' \\\\ '.join(ses + wses) app_uptake = ' \\\\ '.join(apps + wapps) if len(se_uptake) == 0: se_uptake = ':::' if len(uses): status = 'D' elif len(will): status = 'U' elif len(may): status = 'E' else: status = ' ' # print('GE %s - %s - %s' % (ge.identifier, status, uptake)) out.write('| %s | %s | %s |' % (ge.get_name(), status, app_uptake)) out.write('| ::: | ::: | %s |' % se_uptake) # out.write('| ... | ... | ... |')
30.882353
83
0.622857
d1d9fe812ebea7afd3bb9041dcff8661153fad46
323
py
Python
pyrival/strings/min_rotation.py
MattJDavidson/aoc2021
1c26697da55e58408f36525639d201303f808b1b
[ "Apache-2.0" ]
748
2018-09-27T01:08:12.000Z
2022-03-25T17:31:56.000Z
pyrival/strings/min_rotation.py
MattJDavidson/aoc2021
1c26697da55e58408f36525639d201303f808b1b
[ "Apache-2.0" ]
38
2019-02-24T14:50:02.000Z
2022-03-25T01:27:50.000Z
pyrival/strings/min_rotation.py
MattJDavidson/aoc2021
1c26697da55e58408f36525639d201303f808b1b
[ "Apache-2.0" ]
288
2018-10-29T11:55:57.000Z
2022-03-20T04:37:27.000Z
def least_rotation(s): a, n = 0, len(s) s = s + s for b in range(n): for i in range(n): if (a + i == b) or (s[a + i] < s[b + i]): b += max(0, i - 1) break if s[a + i] > s[b + i]: a = b break return s[a:a + n]
21.533333
53
0.315789
f340a1c7454f28fb957024ae9b379627a4b400ef
9,390
py
Python
openmdao/examples/beam_tutorial.py
naylor-b/OpenMDAO1
49d82f6601b33db9bdcf7d146d030d55e3b62ef4
[ "Apache-2.0" ]
17
2018-01-11T20:13:59.000Z
2022-03-22T03:46:05.000Z
openmdao/examples/beam_tutorial.py
naylor-b/OpenMDAO1
49d82f6601b33db9bdcf7d146d030d55e3b62ef4
[ "Apache-2.0" ]
6
2017-10-19T23:14:14.000Z
2020-11-22T17:30:57.000Z
openmdao/examples/beam_tutorial.py
naylor-b/OpenMDAO1
49d82f6601b33db9bdcf7d146d030d55e3b62ef4
[ "Apache-2.0" ]
10
2018-04-12T22:13:33.000Z
2020-05-07T10:02:59.000Z
""" Beam sizing problem""" from openmdao.api import Problem, ScipyOptimizer, Component, IndepVarComp, Group #room_area = room_length * room_width (1) #room_length >= room_width (2) #(29000000 * 228 * 384) / {5 * [(0.24305 * room_width) + 4.83] * (room_length)3}>= 720 (3) #(0.5*8.75) * [(0.24305 * room_width) + 4.83] * (room_length)2 / (8 * 50,000 * 228) < 0.5 (4) #0.5 * [(0.24305 * room_width) + 4.83] * (room_length) / (17.1*50,000) < 1/3 (5) #constants E = 29000000 #modulus of elasticity (constant 29000000psi for ASTM A992 Grade 50 steel) I = 228 #Ix = moment of Inertia (constant 228in4 for the W8x58 beam) BEAM_WEIGHT_LBS_PER_IN = 58.0 / 12.0 #self weight of beam per unit length (58 lbs/ft or 4.83 lbs/in.) DEAD_LOAD_PSI = 20.0 / 144 #The dead load is 20psf or 0.1389psi. LIVE_LOAD_PSI = 50.0 / 144 #The live load is 50psf or 0.3472psi. TOTAL_LOAD_PSI = DEAD_LOAD_PSI + LIVE_LOAD_PSI #total load BEAM_HEIGHT_IN = 8.75 #inches YIELD_STRENGTH_PSI = 50000 #The maximum yield strength Fy for ASTM A992 Grade 50 steel is 50,000 psi CROSS_SECTIONAL_AREA_SQIN = 17.1 #sq in #negate the area to turn from a maximization problem to a minimization problem class NegativeArea(Component): def __init__(self): super(NegativeArea, self).__init__() self.add_param('room_width', val=0.0) self.add_param('room_length', val=0.0) self.add_output('neg_room_area', val=0.0) def solve_nonlinear(self, params, unknowns, resids): room_width = params['room_width'] room_length = params['room_length'] unknowns['neg_room_area'] = -(room_length * room_width) def linearize(self, params, unknowns, resids): J = {} room_width = params['room_width'] room_length = params['room_length'] J['neg_room_area','room_width'] = -room_length J['neg_room_area','room_length'] = -room_width return J class LengthMinusWidth(Component): def __init__(self): super(LengthMinusWidth, self).__init__() self.add_param('room_width', val=0.0) self.add_param('room_length', val=0.0) self.add_output('length_minus_width', val=0.0) def solve_nonlinear(self, params, unknowns, resids): room_width = params['room_width'] room_length = params['room_length'] unknowns['length_minus_width'] = room_length - room_width def linearize(self, params, unknowns, resids): J = {} room_width = params['room_width'] room_length = params['room_length'] J['length_minus_width','room_width'] = -1.0 J['length_minus_width','room_length'] = 1.0 return J class Deflection(Component): def __init__(self): super(Deflection, self).__init__() self.add_param('room_width', val=0.0) self.add_param('room_length', val=0.0) self.add_output('deflection', val=0.0) def solve_nonlinear(self, params, unknowns, resids): room_width = params['room_width'] room_length = params['room_length'] unknowns['deflection'] = (E * I * 384.0) / (5.0 * ((0.5 * TOTAL_LOAD_PSI * room_width) + BEAM_WEIGHT_LBS_PER_IN) * room_length**3) def linearize(self, params, unknowns, resids): J = {} room_width = params['room_width'] room_length = params['room_length'] J['deflection','room_width'] = (-192.0 * E * I * TOTAL_LOAD_PSI) / ((5.0 * room_length**3) * (TOTAL_LOAD_PSI * room_width/2.0 + BEAM_WEIGHT_LBS_PER_IN)**2) J['deflection','room_length'] = (-1152.0 * E * I) / (5.0 * ((TOTAL_LOAD_PSI * room_width)/2.0 + BEAM_WEIGHT_LBS_PER_IN) * room_length**4) return J class BendingStress(Component): def __init__(self): super(BendingStress, self).__init__() self.add_param('room_width', val=0.0) self.add_param('room_length', val=0.0) self.add_output('bending_stress_ratio', val=0.0) def solve_nonlinear(self, params, unknowns, resids): room_width = params['room_width'] room_length = params['room_length'] unknowns['bending_stress_ratio'] = (0.5*BEAM_HEIGHT_IN * ((0.5 * TOTAL_LOAD_PSI * room_width) + BEAM_WEIGHT_LBS_PER_IN) * (room_length)**2) / (8.0 * YIELD_STRENGTH_PSI * I) def linearize(self, params, unknowns, resids): J = {} room_width = params['room_width'] room_length = params['room_length'] J['bending_stress_ratio','room_width'] = (room_length**2) * BEAM_HEIGHT_IN * (TOTAL_LOAD_PSI*room_width/2.0 + BEAM_WEIGHT_LBS_PER_IN) / (16.0 * I * YIELD_STRENGTH_PSI) J['bending_stress_ratio','room_length'] = (BEAM_WEIGHT_LBS_PER_IN + (TOTAL_LOAD_PSI*room_width/2.0)) * BEAM_HEIGHT_IN * room_length / (8.0 * I * YIELD_STRENGTH_PSI) return J class ShearStress(Component): def __init__(self): super(ShearStress, self).__init__() self.add_param('room_width', val=0.0) self.add_param('room_length', val=0.0) self.add_output('shear_stress_ratio', val=0.0) def solve_nonlinear(self, params, unknowns, resids): room_width = params['room_width'] room_length = params['room_length'] unknowns['shear_stress_ratio'] = 0.5 * ((0.5 * TOTAL_LOAD_PSI * room_width) + BEAM_WEIGHT_LBS_PER_IN) * (room_length) / (CROSS_SECTIONAL_AREA_SQIN * YIELD_STRENGTH_PSI) def linearize(self, params, unknowns, resids): J = {} room_width = params['room_width'] room_length = params['room_length'] J['shear_stress_ratio','room_width'] = TOTAL_LOAD_PSI * room_length / (4.0 * YIELD_STRENGTH_PSI * CROSS_SECTIONAL_AREA_SQIN) J['shear_stress_ratio','room_length'] = (BEAM_WEIGHT_LBS_PER_IN + (TOTAL_LOAD_PSI * room_width / 2.0))/(2.0 * YIELD_STRENGTH_PSI * CROSS_SECTIONAL_AREA_SQIN) return J class BeamTutorial(Group): def __init__(self): super(BeamTutorial, self).__init__() #add design variables or IndepVarComp's self.add('ivc_rlength', IndepVarComp('room_length', 100.0)) self.add('ivc_rwidth', IndepVarComp('room_width', 100.0)) #add our custom components self.add('d_len_minus_wid', LengthMinusWidth()) self.add('d_deflection', Deflection()) self.add('d_bending', BendingStress()) self.add('d_shear', ShearStress()) self.add('d_neg_area', NegativeArea()) #make connections from design variables to the Components self.connect('ivc_rlength.room_length','d_len_minus_wid.room_length') self.connect('ivc_rwidth.room_width','d_len_minus_wid.room_width') self.connect('ivc_rlength.room_length','d_deflection.room_length') self.connect('ivc_rwidth.room_width','d_deflection.room_width') self.connect('ivc_rlength.room_length','d_bending.room_length') self.connect('ivc_rwidth.room_width','d_bending.room_width') self.connect('ivc_rlength.room_length','d_shear.room_length') self.connect('ivc_rwidth.room_width','d_shear.room_width') self.connect('ivc_rlength.room_length','d_neg_area.room_length') self.connect('ivc_rwidth.room_width','d_neg_area.room_width') if __name__ == "__main__": top = Problem() top.root = BeamTutorial() top.driver = ScipyOptimizer() top.driver.options['optimizer'] = 'SLSQP' top.driver.options['tol'] = 1.0e-8 top.driver.options['maxiter'] = 10000 #maximum number of solver iterations #room length and width bounds top.driver.add_desvar('ivc_rlength.room_length', lower=5.0*12.0, upper=50.0*12.0) #domain: 1in <= length <= 50ft top.driver.add_desvar('ivc_rwidth.room_width', lower=5.0*12.0, upper=30.0*12.0) #domain: 1in <= width <= 30ft top.driver.add_objective('d_neg_area.neg_room_area') #minimize negative area (or maximize area) top.driver.add_constraint('d_len_minus_wid.length_minus_width', lower=0.0) #room_length >= room_width top.driver.add_constraint('d_deflection.deflection', lower=720.0) #deflection >= 720 top.driver.add_constraint('d_bending.bending_stress_ratio', upper=0.5) #bending < 0.5 top.driver.add_constraint('d_shear.shear_stress_ratio', upper=1.0/3.0) #shear < 1/3 top.setup() top.run() print("\n") print( "Solution found") print("room area: %f in^2 (%f ft^2)" % (-top['d_neg_area.neg_room_area'], -top['d_neg_area.neg_room_area']/144.0)) print("room width: %f in (%f ft)" % (top['ivc_rwidth.room_width'], top['ivc_rwidth.room_width']/12.0)) print("room/beam length: %f in (%f ft)" % (top['ivc_rlength.room_length'], top['ivc_rlength.room_length']/12.0)) print( "deflection: L/%f" % (top['d_deflection.deflection'])) print( "bending stress ratio: %f" % (top['d_bending.bending_stress_ratio'])) print( "shear stress ratio: %f" % (top['d_shear.shear_stress_ratio'])) loadingPlusBeam = ((0.5 * TOTAL_LOAD_PSI * top['ivc_rwidth.room_width']) + BEAM_WEIGHT_LBS_PER_IN) #PLI (pounds per linear inch) loadingNoBeam = ((0.5 * TOTAL_LOAD_PSI * top['ivc_rwidth.room_width'])) #PLI (pounds per linear inch) print( "loading (including self weight of beam): %fpli %fplf" % (loadingPlusBeam, loadingPlusBeam*12.0)) print( "loading (not including self weight of beam): %fpli %fplf" % (loadingNoBeam, loadingNoBeam*12.0)) print( "Finished!")
39.957447
181
0.666454
919a271ddf18c069780a06bcb81fc677f0606a61
1,170
py
Python
tests/test_physics_cosm.py
astrojhgu/ares
42008c8e4bf79f0b000cc833e02a86510bce7611
[ "MIT" ]
1
2019-01-04T15:13:18.000Z
2019-01-04T15:13:18.000Z
tests/test_physics_cosm.py
astrojhgu/ares
42008c8e4bf79f0b000cc833e02a86510bce7611
[ "MIT" ]
null
null
null
tests/test_physics_cosm.py
astrojhgu/ares
42008c8e4bf79f0b000cc833e02a86510bce7611
[ "MIT" ]
null
null
null
""" test_physics_cosm.py Author: Jordan Mirocha Affiliation: University of Colorado at Boulder Created on: Wed Sep 24 15:39:44 MDT 2014 Description: """ import numpy as np from ares.physics import Cosmology from ares.physics.Constants import s_per_gyr, m_H, m_He def test(rtol=1e-3): cosm = Cosmology() # Check critical density assert cosm.CriticalDensity(0.) == cosm.CriticalDensityNow # Make sure energy densities sum to unity assert np.allclose(cosm.omega_m_0, 1. - cosm.omega_l_0) # Make sure the age of the Universe is OK assert 13.5 <= cosm.t_of_z(0.) / s_per_gyr <= 14. # Check some high-z limits cosm_hi_z = Cosmology(omega_m_0=0.99999, omega_l_0=1e-5) # Age of the Universe assert np.allclose(cosm_hi_z.t_of_z(0.), 2. / 3. / cosm_hi_z.hubble_0) # Check high-z limit for Hubble parameter. Better than 1%? H_n = cosm.HubbleParameter(30.) H_a = cosm.hubble_0 * np.sqrt(cosm.omega_m_0) * (1. + 30.)**1.5 assert abs(H_n - H_a) / H_a < rtol, \ "Hubble parameter @ high-z not accurate to < %.3g %." % rtol if __name__ == '__main__': test()
26
74
0.653846
7ad929a4be2216bd9769e96de78378246e385d88
957
py
Python
Chapter 6/03 - Using one thread per item/one_thread_per_item.py
moseskim/Expert-Python-Programming-Fourth-Edition
5160f974deb2365597b7be9cc032f24bfa13471a
[ "MIT" ]
null
null
null
Chapter 6/03 - Using one thread per item/one_thread_per_item.py
moseskim/Expert-Python-Programming-Fourth-Edition
5160f974deb2365597b7be9cc032f24bfa13471a
[ "MIT" ]
null
null
null
Chapter 6/03 - Using one thread per item/one_thread_per_item.py
moseskim/Expert-Python-Programming-Fourth-Edition
5160f974deb2365597b7be9cc032f24bfa13471a
[ "MIT" ]
null
null
null
""" "멀티스레드 애플리케이션 예시"절 예시. 가장 간단한 아이템 당 단일 스레드 형태로 `threading` 모듈 사용 예시를 소개한다. """ import time from threading import Thread import requests SYMBOLS = ("USD", "EUR", "PLN", "NOK", "CZK") BASES = ("USD", "EUR", "PLN", "NOK", "CZK") def fetch_rates(base): response = requests.get(f"https://api.vatcomply.com/rates?base={base}") response.raise_for_status() rates = response.json()["rates"] # 노트: 동일 화폐는 1:1로 환전한다 rates[base] = 1.0 rates_line = ", ".join([f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]) print(f"1 {base} = {rates_line}") def main(): threads = [] for base in BASES: thread = Thread(target=fetch_rates, args=[base]) thread.start() threads.append(thread) while threads: threads.pop().join() if __name__ == "__main__": started = time.time() main() elapsed = time.time() - started print() print("time elapsed: {:.2f}s".format(elapsed))
21.266667
84
0.602926
446d4ca5bd87991086ab7617c092ef32585e820a
5,614
py
Python
patientMatcher/match/genotype_matcher.py
john1711/patientMatcher
516a2a73a2cea1e87ed2f9ae6a4f0b1b715281d9
[ "MIT" ]
11
2019-07-02T11:14:21.000Z
2022-03-08T21:43:10.000Z
patientMatcher/match/genotype_matcher.py
john1711/patientMatcher
516a2a73a2cea1e87ed2f9ae6a4f0b1b715281d9
[ "MIT" ]
182
2019-01-23T10:13:30.000Z
2022-03-25T13:17:08.000Z
patientMatcher/match/genotype_matcher.py
john1711/patientMatcher
516a2a73a2cea1e87ed2f9ae6a4f0b1b715281d9
[ "MIT" ]
6
2019-01-09T21:21:43.000Z
2022-03-09T20:26:23.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging from patientMatcher.parse.patient import ( gtfeatures_to_genes_symbols, gtfeatures_to_variants, lift_variant, ) LOG = logging.getLogger(__name__) def match(database, gt_features, max_score): """Handles genotype matching algorithm Args: database(pymongo.database.Database) gt_features(list): a list of genomic features (objects) max_score(float): a number between 0 and 1 Returns: matches(dict): a dictionary of patient matches with GT score """ matches = {} n_gtfeatures = len(gt_features) LOG.info("\n\n###### Running genome matcher module ######") if n_gtfeatures > 0: max_feature_similarity = max_score / n_gtfeatures LOG.info("Query patient has {0} genotype features.".format(n_gtfeatures)) LOG.info( "Each GT feature will contribute with a weight of {0} to a total GT score (max GT score is {1})".format( max_feature_similarity, max_score ) ) query = {} query_fields = [] genes, symbols = gtfeatures_to_genes_symbols(gt_features) if genes: query_fields.append({"genomicFeatures.gene.id": {"$in": genes}}) if symbols: query_fields.append({"genomicFeatures.gene._geneName": {"$in": symbols}}) # Obtain variants and the corresponding variants in the other genome build from the genotype features variants = gtfeatures_to_variants(gt_features) if variants: query_fields.append({"genomicFeatures.variant": {"$in": variants}}) if len(query_fields) > 0: # prepare a query that takes into account genes and variants in general (also outside genes!) query = {"$or": query_fields} LOG.info("Querying database for genomic features:{}".format(query)) # query patients collection matching_patients = list( database["patients"].find(query) ) # a list of patients with genomic feature/s in one or more of the query genes LOG.info("Found {0} matching patients".format(len(matching_patients))) # assign a genetic similarity score to each of these patients for patient in matching_patients: gt_similarity = evaluate_GT_similarity( gt_features, patient["genomicFeatures"], max_feature_similarity ) LOG.info("GT similarity score is {}".format(gt_similarity)) match = { "patient_obj": patient, "geno_score": gt_similarity, } matches[patient["_id"]] = match LOG.info( "\n\nFOUND {} patients matching patients's genomic tracts\n\n".format( len(matching_patients) ) ) return matches def evaluate_GT_similarity(query_features, db_patient_features, max_feature_similarity): """Evaluates the genomic similarity of two patients based on genomic similarities Args: query_patient(list of dictionaries): genomic features of the query patient db_patient_features(list of dictionaries): genomic features of a patient in patientMatcher database max_feature_similarity(float): a floating point number representing the highest value allowed for a single feature ## Explanation: for a query patient with one feature max_similarity will be equal to MAX_GT_SCORE For a patient with 2 features max_similarity will be MAX_GT_SCORE/2 and so on. Returns: patient_similarity(float): the computed genetic similarity among the patients """ matched_features = [] n_feature = 0 # loop over the query patient's features for feature in query_features: matched_features.append(0) # score for matching of every feature is initially 0 q_gene_id = feature["gene"]["id"] # query feature's gene id q_gene_symbol = feature["gene"].get("_geneName") # query feature's gene symbol # Do liftover for query variant in order to maximize perfect matching chances q_variant = feature.get("variant") # query feature's variant. Not mandatory. lifted_q_variant = lift_variant(q_variant) if q_variant else [] # loop over the database patient's features: for matching_feature in db_patient_features: m_gene_id = matching_feature["gene"]["id"] # matching feature's gene id m_gene_symbol = matching_feature["gene"].get( "_geneName" ) # matching feature's gene symbol m_variant = matching_feature.get( "variant" ) # matching feature's variant. Not mandatory. # if variants are matching or lifted query variant matches with matched patients variant # ->assign max matching score if q_variant == m_variant or m_variant in lifted_q_variant: matched_features[n_feature] = max_feature_similarity elif q_gene_id == m_gene_id: # matching genes matched_features[n_feature] = ( max_feature_similarity / 4 ) # (0.25 of the max_feature_similarity) elif q_gene_symbol and q_gene_symbol == m_gene_symbol: matched_features[n_feature] = ( max_feature_similarity / 4 ) # (0.25 of the max_feature_similarity) n_feature += 1 features_sum = sum(matched_features) return features_sum
40.388489
122
0.638226
ff48ad419296fb16a8e4a0fd9a637b23eac218cc
9,334
py
Python
duke-cs671-fall21-coupon-recommendation/outputs/rules/RF/19_features/numtrees_8/rule_3.py
apcarrik/kaggle
6e2d4db58017323e7ba5510bcc2598e01a4ee7bf
[ "MIT" ]
null
null
null
duke-cs671-fall21-coupon-recommendation/outputs/rules/RF/19_features/numtrees_8/rule_3.py
apcarrik/kaggle
6e2d4db58017323e7ba5510bcc2598e01a4ee7bf
[ "MIT" ]
null
null
null
duke-cs671-fall21-coupon-recommendation/outputs/rules/RF/19_features/numtrees_8/rule_3.py
apcarrik/kaggle
6e2d4db58017323e7ba5510bcc2598e01a4ee7bf
[ "MIT" ]
null
null
null
def findDecision(obj): #obj[0]: Passanger, obj[1]: Weather, obj[2]: Temperature, obj[3]: Time, obj[4]: Coupon, obj[5]: Coupon_validity, obj[6]: Gender, obj[7]: Age, obj[8]: Maritalstatus, obj[9]: Children, obj[10]: Education, obj[11]: Occupation, obj[12]: Income, obj[13]: Bar, obj[14]: Coffeehouse, obj[15]: Restaurantlessthan20, obj[16]: Restaurant20to50, obj[17]: Direction_same, obj[18]: Distance # {"feature": "Coupon", "instances": 127, "metric_value": 0.9719, "depth": 1} if obj[4]>1: # {"feature": "Coupon_validity", "instances": 92, "metric_value": 0.8991, "depth": 2} if obj[5]>0: # {"feature": "Weather", "instances": 47, "metric_value": 0.9971, "depth": 3} if obj[1]<=1: # {"feature": "Restaurantlessthan20", "instances": 42, "metric_value": 0.9737, "depth": 4} if obj[15]<=3.0: # {"feature": "Occupation", "instances": 38, "metric_value": 0.9268, "depth": 5} if obj[11]<=9: # {"feature": "Time", "instances": 24, "metric_value": 0.7383, "depth": 6} if obj[3]<=2: # {"feature": "Restaurant20to50", "instances": 15, "metric_value": 0.9183, "depth": 7} if obj[16]<=1.0: # {"feature": "Income", "instances": 10, "metric_value": 1.0, "depth": 8} if obj[12]>4: # {"feature": "Age", "instances": 5, "metric_value": 0.7219, "depth": 9} if obj[7]>1: return 'False' elif obj[7]<=1: # {"feature": "Passanger", "instances": 2, "metric_value": 1.0, "depth": 10} if obj[0]<=1: return 'True' elif obj[0]>1: return 'False' else: return 'False' else: return 'True' elif obj[12]<=4: # {"feature": "Gender", "instances": 5, "metric_value": 0.7219, "depth": 9} if obj[6]<=0: return 'True' elif obj[6]>0: # {"feature": "Passanger", "instances": 2, "metric_value": 1.0, "depth": 10} if obj[0]<=1: return 'False' elif obj[0]>1: return 'True' else: return 'True' else: return 'False' else: return 'True' elif obj[16]>1.0: return 'True' else: return 'True' elif obj[3]>2: return 'True' else: return 'True' elif obj[11]>9: # {"feature": "Bar", "instances": 14, "metric_value": 0.9852, "depth": 6} if obj[13]>1.0: # {"feature": "Coffeehouse", "instances": 9, "metric_value": 0.7642, "depth": 7} if obj[14]<=1.0: return 'False' elif obj[14]>1.0: # {"feature": "Income", "instances": 3, "metric_value": 0.9183, "depth": 8} if obj[12]<=2: return 'True' elif obj[12]>2: return 'False' else: return 'False' else: return 'True' elif obj[13]<=1.0: # {"feature": "Temperature", "instances": 5, "metric_value": 0.7219, "depth": 7} if obj[2]>55: return 'True' elif obj[2]<=55: # {"feature": "Passanger", "instances": 2, "metric_value": 1.0, "depth": 8} if obj[0]>0: return 'False' elif obj[0]<=0: return 'True' else: return 'True' else: return 'False' else: return 'True' else: return 'False' elif obj[15]>3.0: return 'False' else: return 'False' elif obj[1]>1: return 'False' else: return 'False' elif obj[5]<=0: # {"feature": "Restaurant20to50", "instances": 45, "metric_value": 0.6236, "depth": 3} if obj[16]>-1.0: # {"feature": "Occupation", "instances": 44, "metric_value": 0.5746, "depth": 4} if obj[11]<=14: # {"feature": "Coffeehouse", "instances": 40, "metric_value": 0.469, "depth": 5} if obj[14]<=1.0: # {"feature": "Time", "instances": 23, "metric_value": 0.6666, "depth": 6} if obj[3]<=2: # {"feature": "Direction_same", "instances": 16, "metric_value": 0.8113, "depth": 7} if obj[17]<=0: # {"feature": "Age", "instances": 9, "metric_value": 0.9911, "depth": 8} if obj[7]>1: # {"feature": "Education", "instances": 5, "metric_value": 0.7219, "depth": 9} if obj[10]<=2: return 'True' elif obj[10]>2: return 'False' else: return 'False' elif obj[7]<=1: # {"feature": "Bar", "instances": 4, "metric_value": 0.8113, "depth": 9} if obj[13]<=2.0: return 'False' elif obj[13]>2.0: return 'True' else: return 'True' else: return 'False' elif obj[17]>0: return 'True' else: return 'True' elif obj[3]>2: return 'True' else: return 'True' elif obj[14]>1.0: return 'True' else: return 'True' elif obj[11]>14: # {"feature": "Passanger", "instances": 4, "metric_value": 1.0, "depth": 5} if obj[0]>0: # {"feature": "Weather", "instances": 3, "metric_value": 0.9183, "depth": 6} if obj[1]<=1: return 'True' elif obj[1]>1: return 'False' else: return 'False' elif obj[0]<=0: return 'False' else: return 'False' else: return 'True' elif obj[16]<=-1.0: return 'False' else: return 'False' else: return 'True' elif obj[4]<=1: # {"feature": "Bar", "instances": 35, "metric_value": 0.9518, "depth": 2} if obj[13]<=2.0: # {"feature": "Coffeehouse", "instances": 33, "metric_value": 0.9183, "depth": 3} if obj[14]<=3.0: # {"feature": "Income", "instances": 29, "metric_value": 0.9576, "depth": 4} if obj[12]<=7: # {"feature": "Age", "instances": 26, "metric_value": 0.9829, "depth": 5} if obj[7]<=6: # {"feature": "Occupation", "instances": 24, "metric_value": 0.995, "depth": 6} if obj[11]>1: # {"feature": "Education", "instances": 22, "metric_value": 0.976, "depth": 7} if obj[10]>1: # {"feature": "Restaurantlessthan20", "instances": 16, "metric_value": 0.896, "depth": 8} if obj[15]<=2.0: # {"feature": "Passanger", "instances": 12, "metric_value": 0.9799, "depth": 9} if obj[0]>0: # {"feature": "Weather", "instances": 10, "metric_value": 1.0, "depth": 10} if obj[1]<=1: # {"feature": "Temperature", "instances": 9, "metric_value": 0.9911, "depth": 11} if obj[2]<=55: # {"feature": "Restaurant20to50", "instances": 8, "metric_value": 0.9544, "depth": 12} if obj[16]>0.0: # {"feature": "Time", "instances": 7, "metric_value": 0.9852, "depth": 13} if obj[3]>0: # {"feature": "Coupon_validity", "instances": 4, "metric_value": 0.8113, "depth": 14} if obj[5]>0: # {"feature": "Gender", "instances": 2, "metric_value": 1.0, "depth": 15} if obj[6]<=0: # {"feature": "Maritalstatus", "instances": 2, "metric_value": 1.0, "depth": 16} if obj[8]<=0: # {"feature": "Children", "instances": 2, "metric_value": 1.0, "depth": 17} if obj[9]<=1: # {"feature": "Direction_same", "instances": 2, "metric_value": 1.0, "depth": 18} if obj[17]<=0: # {"feature": "Distance", "instances": 2, "metric_value": 1.0, "depth": 19} if obj[18]<=2: return 'False' else: return 'False' else: return 'False' else: return 'False' else: return 'False' else: return 'False' elif obj[5]<=0: return 'False' else: return 'False' elif obj[3]<=0: # {"feature": "Gender", "instances": 3, "metric_value": 0.9183, "depth": 14} if obj[6]<=0: # {"feature": "Maritalstatus", "instances": 2, "metric_value": 1.0, "depth": 15} if obj[8]>0: return 'False' elif obj[8]<=0: return 'True' else: return 'True' elif obj[6]>0: return 'True' else: return 'True' else: return 'True' elif obj[16]<=0.0: return 'False' else: return 'False' elif obj[2]>55: return 'True' else: return 'True' elif obj[1]>1: return 'True' else: return 'True' elif obj[0]<=0: return 'False' else: return 'False' elif obj[15]>2.0: return 'False' else: return 'False' elif obj[10]<=1: # {"feature": "Gender", "instances": 6, "metric_value": 0.9183, "depth": 8} if obj[6]<=0: # {"feature": "Maritalstatus", "instances": 3, "metric_value": 0.9183, "depth": 9} if obj[8]<=1: return 'False' elif obj[8]>1: return 'True' else: return 'True' elif obj[6]>0: return 'True' else: return 'True' else: return 'True' elif obj[11]<=1: return 'True' else: return 'True' elif obj[7]>6: return 'False' else: return 'False' elif obj[12]>7: return 'False' else: return 'False' elif obj[14]>3.0: return 'False' else: return 'False' elif obj[13]>2.0: return 'True' else: return 'True' else: return 'False'
39.218487
400
0.5015
1aa065c504cb7ca97dfb85353cbd95af4251d55a
312
py
Python
zipline/pipeline/dtypes.py
leonarduschen/zipline
5e6c9fce7e0f812bd181024ad192ca2976d49667
[ "Apache-2.0" ]
14,525
2015-01-01T02:57:52.000Z
2022-03-31T18:16:35.000Z
zipline/pipeline/dtypes.py
leonarduschen/zipline
5e6c9fce7e0f812bd181024ad192ca2976d49667
[ "Apache-2.0" ]
2,146
2015-01-01T13:03:44.000Z
2022-02-22T03:25:28.000Z
zipline/pipeline/dtypes.py
leonarduschen/zipline
5e6c9fce7e0f812bd181024ad192ca2976d49667
[ "Apache-2.0" ]
4,517
2015-01-01T14:26:47.000Z
2022-03-31T14:38:05.000Z
from zipline.utils.numpy_utils import ( bool_dtype, datetime64ns_dtype, float64_dtype, int64_dtype, object_dtype, ) CLASSIFIER_DTYPES = frozenset({object_dtype, int64_dtype}) FACTOR_DTYPES = frozenset({datetime64ns_dtype, float64_dtype, int64_dtype}) FILTER_DTYPES = frozenset({bool_dtype})
26
75
0.775641
84efe323a2cff3f6a92d0e2d6bc57195fa556daf
548
py
Python
backend/home/migrations/0001_load_initial_data.py
crowdbotics-dev/testappauto20-dev-23504
39f2855f3e3331c8b0b24440a97d46beb45e4ebf
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/home/migrations/0001_load_initial_data.py
crowdbotics-dev/testappauto20-dev-23504
39f2855f3e3331c8b0b24440a97d46beb45e4ebf
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/home/migrations/0001_load_initial_data.py
crowdbotics-dev/testappauto20-dev-23504
39f2855f3e3331c8b0b24440a97d46beb45e4ebf
[ "FTL", "AML", "RSA-MD" ]
null
null
null
from django.db import migrations def create_site(apps, schema_editor): Site = apps.get_model("sites", "Site") custom_domain = "testappauto20-dev-23504.botics.co" site_params = { "name": "TestAppAuto20", } if custom_domain: site_params["domain"] = custom_domain Site.objects.update_or_create(defaults=site_params, id=1) class Migration(migrations.Migration): dependencies = [ ("sites", "0002_alter_domain_unique"), ] operations = [ migrations.RunPython(create_site), ]
21.076923
61
0.662409
b0d7d521dd33944efee176b162e7303406fa47bf
76
py
Python
tapis_cli/commands/taccapis/v2/apps/models/__init__.py
bpachev/tapis-cli
c3128fb5b63ef74e06b737bbd95ef28fb24f0d32
[ "BSD-3-Clause" ]
8
2020-10-18T22:48:23.000Z
2022-01-10T09:16:14.000Z
tapis_cli/commands/taccapis/v2/apps/models/__init__.py
bpachev/tapis-cli
c3128fb5b63ef74e06b737bbd95ef28fb24f0d32
[ "BSD-3-Clause" ]
238
2019-09-04T14:37:54.000Z
2020-04-15T16:24:24.000Z
tapis_cli/commands/taccapis/v2/apps/models/__init__.py
bpachev/tapis-cli
c3128fb5b63ef74e06b737bbd95ef28fb24f0d32
[ "BSD-3-Clause" ]
5
2019-09-20T04:23:49.000Z
2020-01-16T17:45:14.000Z
from .app import App from .app_history import AppHistory API_NAME = 'apps'
15.2
35
0.776316
55bd4adec0cd0de728a5f35098e544f36cf508ba
789
py
Python
matplotlib_examples/examples_src/pylab_examples/usetex_fonteffects.py
xzlmark/webspider
133c620c65aa45abea1718b0dada09618c2115bf
[ "Apache-2.0" ]
3
2020-04-09T02:35:26.000Z
2021-02-27T17:00:21.000Z
matplotlib_examples/examples_src/pylab_examples/usetex_fonteffects.py
colorworlds/webspider
133c620c65aa45abea1718b0dada09618c2115bf
[ "Apache-2.0" ]
null
null
null
matplotlib_examples/examples_src/pylab_examples/usetex_fonteffects.py
colorworlds/webspider
133c620c65aa45abea1718b0dada09618c2115bf
[ "Apache-2.0" ]
1
2020-04-09T02:35:08.000Z
2020-04-09T02:35:08.000Z
# This script demonstrates that font effects specified in your pdftex.map # are now supported in pdf usetex. import matplotlib import matplotlib.pyplot as plt matplotlib.rc('text', usetex=True) def setfont(font): return r'\font\a %s at 14pt\a ' % font for y, font, text in zip(range(5), ['ptmr8r', 'ptmri8r', 'ptmro8r', 'ptmr8rn', 'ptmrr8re'], ['Nimbus Roman No9 L ' + x for x in ['', 'Italics (real italics for comparison)', '(slanted)', '(condensed)', '(extended)']]): plt.text(0, y, setfont(font) + text) plt.ylim(-1, 5) plt.xlim(-0.2, 0.6) plt.setp(plt.gca(), frame_on=False, xticks=(), yticks=()) plt.title('Usetex font effects') plt.savefig('usetex_fonteffects.pdf')
32.875
81
0.591888
56bdeda36cc1f9f18b0035b6737d4e9b27fb8b60
38
py
Python
ciphey/basemods/Crackers/__init__.py
gvvynplaine/Ciphey
982bb777162b823685a3c477c393f1240609c118
[ "MIT" ]
2
2020-09-18T00:15:49.000Z
2020-10-06T19:32:16.000Z
ciphey/basemods/Crackers/__init__.py
meitounao1/Ciphey
982bb777162b823685a3c477c393f1240609c118
[ "MIT" ]
null
null
null
ciphey/basemods/Crackers/__init__.py
meitounao1/Ciphey
982bb777162b823685a3c477c393f1240609c118
[ "MIT" ]
null
null
null
from . import caesar, vigenere, XandY
19
37
0.763158
f0136a6feef00c18a60d863976ad1ef3c8a73152
2,725
py
Python
tests/actor/test_reminder_data.py
amulyavarote/python-sdk
ff570466eeef73b5a71cb378af5c4a06384dca1c
[ "MIT" ]
null
null
null
tests/actor/test_reminder_data.py
amulyavarote/python-sdk
ff570466eeef73b5a71cb378af5c4a06384dca1c
[ "MIT" ]
null
null
null
tests/actor/test_reminder_data.py
amulyavarote/python-sdk
ff570466eeef73b5a71cb378af5c4a06384dca1c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Copyright 2021 The Dapr Authors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from datetime import timedelta from dapr.actor.runtime._reminder_data import ActorReminderData class ActorReminderTests(unittest.TestCase): def test_invalid_state(self): with self.assertRaises(ValueError): ActorReminderData( 'test_reminder', 123, # int type timedelta(seconds=1), timedelta(seconds=2), timedelta(seconds=3)) ActorReminderData( 'test_reminder', 'reminder_state', # string type timedelta(seconds=2), timedelta(seconds=1), timedelta(seconds=3)) def test_valid_state(self): # bytes type state data reminder = ActorReminderData( 'test_reminder', b'reminder_state', timedelta(seconds=1), timedelta(seconds=2), timedelta(seconds=3)) self.assertEqual(b'reminder_state', reminder.state) def test_as_dict(self): reminder = ActorReminderData( 'test_reminder', b'reminder_state', timedelta(seconds=1), timedelta(seconds=2), timedelta(seconds=3)) expected = { 'reminderName': 'test_reminder', 'dueTime': timedelta(seconds=1), 'period': timedelta(seconds=2), 'ttl': timedelta(seconds=3), 'data': 'cmVtaW5kZXJfc3RhdGU=', } self.assertDictEqual(expected, reminder.as_dict()) def test_from_dict(self): reminder = ActorReminderData.from_dict('test_reminder', { 'dueTime': timedelta(seconds=1), 'period': timedelta(seconds=2), 'ttl': timedelta(seconds=3), 'data': 'cmVtaW5kZXJfc3RhdGU=', }) self.assertEqual('test_reminder', reminder.reminder_name) self.assertEqual(timedelta(seconds=1), reminder.due_time) self.assertEqual(timedelta(seconds=2), reminder.period) self.assertEqual(timedelta(seconds=3), reminder.ttl) self.assertEqual(b'reminder_state', reminder.state)
35.855263
72
0.625321
8262786d7988147508e839c0c1afb5b0b8f204f1
9,459
py
Python
tf_agents/policies/q_policy_test.py
gregorgebhardt/agents
b6aeae5e0ed68dd4e4ec2ca73ef971254d3208f3
[ "Apache-2.0" ]
1
2020-01-11T23:11:13.000Z
2020-01-11T23:11:13.000Z
tf_agents/policies/q_policy_test.py
gregorgebhardt/agents
b6aeae5e0ed68dd4e4ec2ca73ef971254d3208f3
[ "Apache-2.0" ]
null
null
null
tf_agents/policies/q_policy_test.py
gregorgebhardt/agents
b6aeae5e0ed68dd4e4ec2ca73ef971254d3208f3
[ "Apache-2.0" ]
3
2019-09-08T22:05:56.000Z
2020-05-27T08:27:15.000Z
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for tf_agents.policies.q_policy.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tf_agents.networks import network from tf_agents.networks import q_network from tf_agents.policies import q_policy from tf_agents.specs import tensor_spec from tf_agents.trajectories import time_step as ts from tf_agents.utils import test_utils class DummyNet(network.Network): def __init__(self, name=None, num_actions=2): super(DummyNet, self).__init__(name, (), 'DummyNet') self._layers.append( tf.keras.layers.Dense( num_actions, kernel_initializer=tf.compat.v1.initializers.constant([[1, 1.5], [1, 1.5]]), bias_initializer=tf.compat.v1.initializers.constant([[1], [1]]))) def call(self, inputs, unused_step_type=None, network_state=()): inputs = tf.cast(inputs, tf.float32) for layer in self.layers: inputs = layer(inputs) return inputs, network_state class DummyNetWithActionSpec(DummyNet): def __init__(self, action_spec, name=None, num_actions=2): super(DummyNetWithActionSpec, self).__init__(name, num_actions) self._action_spec = action_spec @property def action_spec(self): return self._action_spec class QPolicyTest(test_utils.TestCase): def setUp(self): super(QPolicyTest, self).setUp() self._obs_spec = tensor_spec.TensorSpec([2], tf.float32) self._time_step_spec = ts.time_step_spec(self._obs_spec) self._action_spec = tensor_spec.BoundedTensorSpec([1], tf.int32, 0, 1) def testBuild(self): policy = q_policy.QPolicy( self._time_step_spec, self._action_spec, q_network=DummyNet()) self.assertEqual(policy.time_step_spec, self._time_step_spec) self.assertEqual(policy.action_spec, self._action_spec) self.assertEqual(policy.variables(), []) def testMultipleActionsRaiseError(self): action_spec = [tensor_spec.BoundedTensorSpec([1], tf.int32, 0, 1)] * 2 with self.assertRaisesRegexp( NotImplementedError, 'action_spec can only contain a single BoundedTensorSpec'): q_policy.QPolicy( self._time_step_spec, action_spec, q_network=DummyNet()) def testAction(self): policy = q_policy.QPolicy( self._time_step_spec, self._action_spec, q_network=DummyNet()) observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) time_step = ts.restart(observations, batch_size=2) action_step = policy.action(time_step, seed=1) self.assertEqual(action_step.action.shape.as_list(), [2, 1]) self.assertEqual(action_step.action.dtype, tf.int32) # Initialize all variables self.evaluate(tf.compat.v1.global_variables_initializer()) action = self.evaluate(action_step.action) self.assertTrue(np.all(action >= 0) and np.all(action <= 1)) def testActionWithinBounds(self): bounded_action_spec = tensor_spec.BoundedTensorSpec([1], tf.int32, minimum=-6, maximum=-5) policy = q_policy.QPolicy( self._time_step_spec, bounded_action_spec, q_network=DummyNet()) observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) time_step = ts.restart(observations, batch_size=2) action_step = policy.action(time_step) self.assertEqual(action_step.action.shape.as_list(), [2, 1]) self.assertEqual(action_step.action.dtype, tf.int32) # Initialize all variables self.evaluate(tf.compat.v1.global_variables_initializer()) action = self.evaluate(action_step.action) self.assertTrue(np.all(action <= -5) and np.all(action >= -6)) def testActionScalarSpec(self): action_spec = tensor_spec.BoundedTensorSpec((), tf.int32, 0, 1) policy = q_policy.QPolicy( self._time_step_spec, action_spec, q_network=DummyNet()) observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) time_step = ts.restart(observations, batch_size=2) action_step = policy.action(time_step, seed=1) self.assertEqual(action_step.action.shape.as_list(), [2]) self.assertEqual(action_step.action.dtype, tf.int32) # Initialize all variables self.evaluate(tf.compat.v1.global_variables_initializer()) action = self.evaluate(action_step.action) self.assertTrue(np.all(action >= 0) and np.all(action <= 1)) def testActionList(self): action_spec = [tensor_spec.BoundedTensorSpec([1], tf.int32, 0, 1)] policy = q_policy.QPolicy( self._time_step_spec, action_spec, q_network=DummyNet()) observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) time_step = ts.restart(observations, batch_size=2) action_step = policy.action(time_step, seed=1) self.assertIsInstance(action_step.action, list) self.evaluate(tf.compat.v1.global_variables_initializer()) action = self.evaluate(action_step.action) self.assertLen(action, 1) # Extract contents from the outer list. action = action[0] self.assertTrue(np.all(action >= 0) and np.all(action <= 1)) def testDistribution(self): policy = q_policy.QPolicy( self._time_step_spec, self._action_spec, q_network=DummyNet()) observations = tf.constant([[1, 2]], dtype=tf.float32) time_step = ts.restart(observations, batch_size=1) distribution_step = policy.distribution(time_step) mode = distribution_step.action.mode() self.evaluate(tf.compat.v1.global_variables_initializer()) # The weights of index 0 are all 1 and the weights of index 1 are all 1.5, # so the Q values of index 1 will be higher. self.assertAllEqual([[1]], self.evaluate(mode)) def testUpdate(self): policy = q_policy.QPolicy( self._time_step_spec, self._action_spec, q_network=DummyNet()) new_policy = q_policy.QPolicy( self._time_step_spec, self._action_spec, q_network=DummyNet()) observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) time_step = ts.restart(observations, batch_size=2) self.assertEqual(policy.variables(), []) self.assertEqual(new_policy.variables(), []) action_step = policy.action(time_step, seed=1) new_action_step = new_policy.action(time_step, seed=1) self.assertEqual(len(policy.variables()), 2) self.assertEqual(len(new_policy.variables()), 2) self.assertEqual(action_step.action.shape, new_action_step.action.shape) self.assertEqual(action_step.action.dtype, new_action_step.action.dtype) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertEqual(self.evaluate(new_policy.update(policy)), None) action = self.evaluate(action_step.action) new_action = self.evaluate(new_action_step.action) self.assertTrue(np.all(action >= 0) and np.all(action <= 1)) self.assertTrue(np.all(new_action >= 0) and np.all(new_action <= 1)) self.assertAllEqual(action, new_action) def testActionSpecsCompatible(self): q_net = DummyNetWithActionSpec(self._action_spec) q_policy.QPolicy(self._time_step_spec, self._action_spec, q_net) def testActionSpecsIncompatible(self): network_action_spec = tensor_spec.BoundedTensorSpec([2], tf.int32, 0, 1) q_net = DummyNetWithActionSpec(network_action_spec) with self.assertRaisesRegexp( ValueError, 'action_spec must be compatible with q_network.action_spec'): q_policy.QPolicy(self._time_step_spec, self._action_spec, q_net) def testMasking(self): batch_size = 1000 num_state_dims = 5 num_actions = 8 observations = tf.random.uniform([batch_size, num_state_dims]) time_step = ts.restart(observations, batch_size=batch_size) input_tensor_spec = tensor_spec.TensorSpec([num_state_dims], tf.float32) action_spec = tensor_spec.BoundedTensorSpec( [1], tf.int32, 0, num_actions - 1) mask = [0, 1, 0, 1, 0, 0, 1, 0] np_mask = np.array(mask) tf_mask = tf.constant([mask for _ in range(batch_size)]) q_net = q_network.QNetwork( input_tensor_spec, action_spec, mask_split_fn=lambda observation: (observation, tf_mask)) policy = q_policy.QPolicy( ts.time_step_spec(input_tensor_spec), action_spec, q_net) # Force creation of variables before global_variables_initializer. policy.variables() self.evaluate(tf.compat.v1.global_variables_initializer()) # Sample from the policy 1000 times and ensure that invalid actions are # never chosen. action_step = policy.action(time_step) action = self.evaluate(action_step.action) self.assertEqual(action.shape, (batch_size, 1)) self.assertAllEqual(np_mask[action], np.ones([batch_size, 1])) if __name__ == '__main__': tf.test.main()
40.423077
78
0.70758
45432cccffee201e5db0d472e9aef334673ae676
11,751
py
Python
audit_trail/watcher.py
askabelin/django_audit_trail
83c8739068782566a2a45adda7eb21e3b18420f7
[ "Apache-2.0" ]
null
null
null
audit_trail/watcher.py
askabelin/django_audit_trail
83c8739068782566a2a45adda7eb21e3b18420f7
[ "Apache-2.0" ]
null
null
null
audit_trail/watcher.py
askabelin/django_audit_trail
83c8739068782566a2a45adda7eb21e3b18420f7
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 from django.conf import settings from django.db.models import signals, NOT_PROVIDED from django.dispatch import receiver from .models import AuditTrail from .signals import audit_trail_app_ready from stringifier import ModelFieldStringifier class AuditTrailWatcher(object): """ Watcher class that tracks post_save and post_delete signals and generates AuditTrail records. Attributs: tracked_models (set): set of already tracked models. Used to avoid duplicate signals handlers. """ tracked_models = set() def __init__(self, fields=None, track_related=None, notify_related=None, track_only_with_related=False, excluded_fields=None): """ Constructor :param fields: list fields that should be tracked. If None — all fields will be tracked. :param track_related: list of tracked relations. F.e. ['comment_set'] :param notify_related: list of fields to be notified as parent. Internal use only :param track_only_with_related: boolean state should be AuditTrail object created or not if there is no parent object. F.e. if we track Post's comment_set and we don't need to track comments separately. :return: """ self.model_class = None self.fields = fields self.notify_related = notify_related self.track_related = track_related self.track_only_with_related = track_only_with_related self.excluded_fields = ['id'] if excluded_fields: self.excluded_fields += excluded_fields def contribute_to_class(self, cls, name=None): if cls in self.__class__.tracked_models: return False self.model_class = cls self.__class__.tracked_models.add(cls) setattr(cls, 'audit', self) return True def init_signals(self): signals.post_save.connect(self.on_post_save_create, sender=self.model_class, weak=False) signals.post_init.connect(self.on_post_init, sender=self.model_class, weak=False) signals.post_save.connect(self.on_post_save_update, sender=self.model_class, weak=False) signals.pre_delete.connect(self.on_pre_delete, sender=self.model_class, weak=False) signals.post_delete.connect(self.on_post_delete, sender=self.model_class, weak=False) self.init_related_signals() def init_related_signals(self): if not self.track_related: return for attr_name in self.track_related: attribute = getattr(self.model_class, attr_name) if hasattr(attribute, 'related'): # related object is queryset related = attribute.related related_model = related.related_model related_field_name = related.field.name else: # related object is FK related_model = attribute.field.related_field.model related_field_name = attribute.field.related_query_name() # related_query_name() returns related_name if it was set # but if it's not returns autogenerated related name without '_set' postfix! # F.e. instead of 'post_set' it'll return 'post' so we have to handle it manually if not hasattr(related_model, related_field_name): related_field_name += '_set' if not hasattr(related_model, 'audit'): related_watcher = AuditTrailWatcher(track_only_with_related=True) related_watcher.contribute_to_class(related_model) related_watcher.init_signals() related_model.audit.notify_related = related_model.audit.notify_related or [] related_model.audit.notify_related += [related_field_name] def serialize_object(self, instance): """ Returns stringified values for tracked fields. """ data = {} for field in instance._meta.fields: # Skip untracked fields not_tracked_field = (self.fields is not None and field.name not in self.fields) if not_tracked_field or field.name in self.excluded_fields: continue data[field.name] = field.value_from_object(instance) return data def get_changes(self, old_values, new_values): """ Returns list of changed fields. """ diff = {} old_values = old_values or {} new_values = new_values or {} fields = self.fields or [field_name.name for field_name in self.model_class._meta.fields] for field_name in fields: field = self.model_class._meta.get_field(field_name) default = None if field.default != NOT_PROVIDED and old_values: default = field.default old_value = old_values.get(field_name, default) new_value = new_values.get(field_name, None) old_value_string = ModelFieldStringifier.stringify(field, old_value) new_value_string = ModelFieldStringifier.stringify(field, new_value) if old_value is not None: old_value = unicode(old_value) if new_value is not None: new_value = unicode(new_value) if old_value != new_value: diff[field_name] = { 'old_value': old_value, 'old_value_string': old_value_string, 'new_value': new_value, 'new_value_string': new_value_string } return diff def on_post_init(self, instance, sender, **kwargs): """Stores original field values.""" instance._original_values = self.serialize_object(instance) def on_post_save_create(self, instance, sender, created, **kwargs): """Saves object's data.""" if getattr(settings, 'DISABLE_AUDIT_TRAIL', False): return if not created: return if self.track_only_with_related and not self.is_parent_object_exists(instance): return audit_trail = AuditTrail.objects.generate_trail_for_instance_created(instance) audit_trail.changes = self.get_changes({}, self.serialize_object(instance)) audit_trail.save() instance._original_values = self.serialize_object(instance) self.create_related_audit_trail(audit_trail) def on_post_save_update(self, instance, sender, created, **kwargs): """ Checks for difference and saves, if it's present. """ if getattr(settings, 'DISABLE_AUDIT_TRAIL', False): return if created: return if self.track_only_with_related and not self.is_parent_object_exists(instance): return changes = self.get_changes(instance._original_values, self.serialize_object(instance)) if not changes: return audit_trail = AuditTrail.objects.generate_trail_for_instance_updated(instance) audit_trail.changes = changes audit_trail.save() instance._original_values = self.serialize_object(instance) self.create_related_audit_trail(audit_trail) def on_pre_delete(self, instance, sender, **kwargs): """ Check if there related query_set that track current objects saves ids. """ if getattr(settings, 'DISABLE_AUDIT_TRAIL', False): return if not self.notify_related: return instance._audit_ids_to_notify_related_deletion = {} for field_name in self.notify_related: parent_object = getattr(instance, field_name, None) if parent_object is None or hasattr(parent_object, '_meta'): continue if parent_object.all().exists(): ids = list(parent_object.all().values_list('id', flat=True)) instance._audit_ids_to_notify_related_deletion[field_name] = ids def on_post_delete(self, instance, sender, **kwargs): """ Saves deleted object data. """ if getattr(settings, 'DISABLE_AUDIT_TRAIL', False): return if self.track_only_with_related and not self.is_parent_object_exists(instance): return audit_trail = AuditTrail.objects.generate_trail_for_instance_deleted(instance) audit_trail.changes = self.get_changes(self.serialize_object(instance), {}) audit_trail.save() self.create_deleted_related_audit_trail(audit_trail, instance) def is_parent_object_exists(self, instance): for field_name in self.notify_related: parent_object = getattr(instance, field_name, None) if parent_object is None: continue if hasattr(parent_object, '_meta'): return True else: if parent_object.all().exists(): return True if field_name in getattr(instance, '_audit_ids_to_notify_related_deletion', {}): return True return False def create_related_audit_trail(self, audit_trail): if not self.notify_related: return for field_name in self.notify_related: changed_related_object = audit_trail.content_object attribute = getattr(changed_related_object, field_name) if attribute is None: continue if hasattr(attribute, '_meta'): # Related object notified_objects = [attribute] else: # RelatedManager doesn't have _meta attribute notified_objects = attribute.all() for notified_object in notified_objects: parent_audit_trail = AuditTrail.objects.generate_trail_for_related_change(notified_object) parent_audit_trail.related_trail = audit_trail parent_audit_trail.save() def create_deleted_related_audit_trail(self, audit_trail, instance): if not self.notify_related: return for field_name in self.notify_related: attribute = getattr(instance, field_name) if attribute is None: continue if hasattr(attribute, '_meta'): # Related object notified_objects = [attribute] else: # RelatedManager doesn't have _meta attribute ids = instance._audit_ids_to_notify_related_deletion.get(field_name) if not ids: continue # now parent object is being filtered by instance id # f.e. # class Post(models.Model): # class Post(models.Model): # author = models.ForeignKey(User, on_delete=models.SET_NULL, null=True) # audit = AuditTrailWatcher(track_related=['comment_set', 'author']) # will be filtered as {'author__exact': instance} # but since posts's author was set to null after author deletion we need to get posts by ids # so we stored ids before author deletion on pre_delete attribute.core_filters = {'id__in': ids} notified_objects = list(attribute.all()) for notified_object in notified_objects: parent_audit_trail = AuditTrail.objects.generate_trail_for_related_change(notified_object) parent_audit_trail.related_trail = audit_trail parent_audit_trail.save() @receiver(audit_trail_app_ready) def init_audit_instances(*args, **kwargs): tracked_models = AuditTrailWatcher.tracked_models.copy() for model_class in tracked_models: model_class.audit.init_signals()
40.944251
118
0.643009
a87e58f67d7b9dee797940da35e1c6e1f80fdf58
316
py
Python
lib/python2.7/site-packages/tdl/queue/actions/publish_action.py
DPNT-Sourcecode/CHK-uimw01
87144ae10115d7a8df565f5109666f00bc001ce4
[ "Apache-2.0" ]
null
null
null
lib/python2.7/site-packages/tdl/queue/actions/publish_action.py
DPNT-Sourcecode/CHK-uimw01
87144ae10115d7a8df565f5109666f00bc001ce4
[ "Apache-2.0" ]
null
null
null
lib/python2.7/site-packages/tdl/queue/actions/publish_action.py
DPNT-Sourcecode/CHK-uimw01
87144ae10115d7a8df565f5109666f00bc001ce4
[ "Apache-2.0" ]
null
null
null
class PublishAction: @staticmethod def get_audit_text(): return '' @staticmethod def after_response(remote_broker, headers, response): remote_broker.respond_to(headers, response) @staticmethod def prepare_for_next_request(remote_broker): # Do nothing. pass
21.066667
57
0.674051
f87da613ce51bebeb3d67efc525d924892bd3112
2,224
py
Python
src/pretalx/orga/signals.py
hnzlmnn/pretalx
fcdf1a03c9428c1207ee4f4228694b2ed8e7495b
[ "Apache-2.0" ]
null
null
null
src/pretalx/orga/signals.py
hnzlmnn/pretalx
fcdf1a03c9428c1207ee4f4228694b2ed8e7495b
[ "Apache-2.0" ]
null
null
null
src/pretalx/orga/signals.py
hnzlmnn/pretalx
fcdf1a03c9428c1207ee4f4228694b2ed8e7495b
[ "Apache-2.0" ]
null
null
null
from django.dispatch import Signal from pretalx.common.signals import EventPluginSignal nav_event = EventPluginSignal(providing_args=["request"]) """ This signal allows you to add additional views to the admin panel navigation. You will get the request as a keyword argument ``request``. Receivers are expected to return a list of dictionaries. The dictionaries should contain at least the keys ``label`` and ``url``. You can also return a ForkAwesome icon name with the key ``icon``, it will be respected depending on the type of navigation. You should also return an ``active`` key with a boolean set to ``True``, when this item should be marked as active. The ``request`` object will have an attribute ``event``. If you use this, you should read the documentation on :ref:`how to deal with URLs <urlconf>` in pretalx. As with all plugin signals, the ``sender`` keyword argument will contain the event. """ nav_global = Signal(providing_args=["request"]) """ This signal allows you to add additional views to the navigation bar when no event is selected. You will get the request as a keyword argument ``request``. Receivers are expected to return a list of dictionaries. The dictionaries should contain at least the keys ``label`` and ``url``. You can also return a ForkAwesome icon name with the key ``icon``, it will be respected depending on the type of navigation. You should also return an ``active`` key with a boolean set to ``True``, when this item should be marked as active. If you use this, you should read the documentation on :ref:`how to deal with URLs <urlconf>` in pretalx. This is no ``EventPluginSignal``, so you do not get the event in the ``sender`` argument and you may get the signal regardless of whether your plugin is active. """ activate_event = EventPluginSignal(providing_args=['request']) """ This signal is sent out before an event goes live. It allows any installed plugin to raise an Exception to prevent the event from going live. The exception message will be exposed to the user. You will get the request as a keyword argument ``request``. Receivers are not expected to return a response. As with all plugin signals, the ``sender`` keyword argument will contain the event. """
47.319149
92
0.764388
fb2bc67c6f8a82b95f709a0b02ac855ea50c2e51
748
py
Python
tests/tjctf_2020/test_stop.py
mariuszskon/autorop
5735073008f722fab00f3866ef4a05f04620593b
[ "MIT" ]
15
2020-10-03T05:20:31.000Z
2022-03-20T06:19:29.000Z
tests/tjctf_2020/test_stop.py
mariuszskon/autorop
5735073008f722fab00f3866ef4a05f04620593b
[ "MIT" ]
8
2020-10-02T09:51:39.000Z
2021-04-24T03:14:18.000Z
tests/tjctf_2020/test_stop.py
mariuszskon/autorop
5735073008f722fab00f3866ef4a05f04620593b
[ "MIT" ]
2
2021-04-16T06:33:49.000Z
2021-09-03T09:21:10.000Z
from .. import * BIN = "./tests/tjctf_2020/stop" def test_stop(exploit): # this is the example from the README def send_letter_first(tube, data): # the binary expects us to choose a letter first, before it takes input unsafely tube.sendline("A") # send actual payload tube.sendline(data) # create a starting state - modified to use fixture s = exploit(BIN, lambda: process(BIN)) # set an overwriter function, if the buffer overflow input # is not available immediately s.overwriter = send_letter_first # use base classic pipeline, with printf for leaking pipeline = turnkey.Classic(leak=leak.Printf()) result = pipeline(s) assert assertion.have_shell(result.target)
29.92
88
0.688503
e2cd84ae5292574ae30d4c172cfb9795cf9df278
6,127
py
Python
Common/extractor.py
RENCI-AUTOMAT/Data_services
eb60f822021b138298eabb3852b20b30739afaa5
[ "MIT" ]
2
2022-02-01T04:10:30.000Z
2022-03-23T22:01:35.000Z
Common/extractor.py
RENCI-AUTOMAT/Data_services
eb60f822021b138298eabb3852b20b30739afaa5
[ "MIT" ]
83
2020-08-18T16:09:43.000Z
2022-03-25T19:17:25.000Z
Common/extractor.py
RENCI-AUTOMAT/Data_services
eb60f822021b138298eabb3852b20b30739afaa5
[ "MIT" ]
null
null
null
from Common.kgxmodel import kgxnode, kgxedge from Common.node_types import ORIGINAL_KNOWLEDGE_SOURCE, PRIMARY_KNOWLEDGE_SOURCE, AGGREGATOR_KNOWLEDGE_SOURCES class Extractor: """ This is a class so that it can be used to accumulate nodes and edges across multiple files or input streams Also so that it can provide a few different interfaces (csv, sql) and keep the guts of the callback code in one place. """ def __init__(self): #You might thing it would be good to include all the extractors at this level, but they are really file or query # level things. You might want to use the same extractor with two differently formatted files or two different # sql queries. self.node_ids = set() self.nodes = [] self.edges = [] self.load_metadata = { 'record_counter': 0, 'skipped_record_counter': 0, 'errors': []} self.errors = [] def csv_extract(self, infile, subject_extractor, object_extractor, predicate_extractor, subject_property_extractor, object_property_extractor, edge_property_extractor, comment_character="#", delim='\t', has_header_row=False): """Read a csv, perform callbacks to retrieve node and edge info per row. Assumes that all of the properties extractable for a node occur on the line with the node identifier""" for i, line in enumerate(infile, start=1): if comment_character is not None and line.startswith(comment_character): continue if has_header_row and i == 1: continue self.load_metadata['record_counter'] += 1 try: x = line[:-1].split(delim) self.parse_row(x, subject_extractor, object_extractor, predicate_extractor, subject_property_extractor, object_property_extractor, edge_property_extractor) except Exception as e: self.load_metadata['errors'].append(e.__str__()) self.load_metadata['skipped_record_counter'] += 1 def sql_extract(self, cursor, sql_query, subject_extractor, object_extractor, predicate_extractor, subject_property_extractor, object_property_extractor, edge_property_extractor): """Read a csv, perform callbacks to retrieve node and edge info per row. Assumes that all of the properties extractable for a node occur on the line with the node identifier""" cursor.execute(sql_query) rows = cursor.fetchall() for row in rows: self.load_metadata['record_counter'] += 1 try: self.parse_row(row, subject_extractor, object_extractor, predicate_extractor, subject_property_extractor, object_property_extractor, edge_property_extractor) except Exception as e: self.load_metadata['errors'].append(e.__str__()) self.load_metadata['skipped_record_counter'] += 1 def json_extract(self, json_array, subject_extractor, object_extractor, predicate_extractor, subject_property_extractor, object_property_extractor, edge_property_extractor): for item in json_array: self.load_metadata['record_counter'] += 1 try: self.parse_row(item, subject_extractor, object_extractor, predicate_extractor, subject_property_extractor, object_property_extractor, edge_property_extractor) except Exception as e: self.load_metadata['errors'].append(e.__str__()) self.load_metadata['skipped_record_counter'] += 1 return def parse_row(self, row, subject_extractor, object_extractor, predicate_extractor, subject_property_extractor, object_property_extractor, edge_property_extractor): # pull the information out of the edge subject_id = subject_extractor(row) object_id = object_extractor(row) predicate = predicate_extractor(row) subjectprops = subject_property_extractor(row) objectprops = object_property_extractor(row) edgeprops = edge_property_extractor(row) # if we haven't seen the subject before, add it to nodes if subject_id and subject_id not in self.node_ids: subject_name = subjectprops.pop('name', None) subject_categories = subjectprops.pop('categories', None) subject_node = kgxnode(subject_id, name=subject_name, categories=subject_categories, nodeprops=subjectprops) self.nodes.append(subject_node) self.node_ids.add(subject_id) # if we haven't seen the object before, add it to nodes if object_id and object_id not in self.node_ids: object_name = objectprops.pop('name', None) object_categories = objectprops.pop('categories', None) object_node = kgxnode(object_id, name=object_name, categories=object_categories, nodeprops=objectprops) self.nodes.append(object_node) self.node_ids.add(object_id) if subject_id and object_id and predicate: original_knowledge_source = edgeprops.pop(ORIGINAL_KNOWLEDGE_SOURCE, None) primary_knowledge_source = edgeprops.pop(PRIMARY_KNOWLEDGE_SOURCE, None) aggregator_knowledge_sources = edgeprops.pop(AGGREGATOR_KNOWLEDGE_SOURCES, None) relation = edgeprops.pop('relation', predicate) edge = kgxedge(subject_id, object_id, relation=relation, predicate=predicate, original_knowledge_source=original_knowledge_source, primary_knowledge_source=primary_knowledge_source, aggregator_knowledge_sources=aggregator_knowledge_sources, edgeprops=edgeprops) self.edges.append(edge)
52.367521
183
0.649747
163d36102c08c3d90054cb5e664b034159021e3c
9,330
py
Python
tensorflow/python/keras/utils/losses_utils.py
MKesenheimer/tensorflow
6222d762b86d93ead601cc64e7b3ae16d3311730
[ "Apache-2.0" ]
null
null
null
tensorflow/python/keras/utils/losses_utils.py
MKesenheimer/tensorflow
6222d762b86d93ead601cc64e7b3ae16d3311730
[ "Apache-2.0" ]
null
null
null
tensorflow/python/keras/utils/losses_utils.py
MKesenheimer/tensorflow
6222d762b86d93ead601cc64e7b3ae16d3311730
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access """Utilities related to loss functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.distribute import distribution_strategy_context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.keras import backend as K from tensorflow.python.ops import array_ops from tensorflow.python.ops import confusion_matrix from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import weights_broadcast_ops from tensorflow.python.util.tf_export import keras_export @keras_export('keras.losses.Reduction', v1=[]) class ReductionV2(object): """Types of loss reduction. Contains the following values: * `NONE`: Un-reduced weighted losses with the same shape as input. * `SUM`: Scalar sum of weighted losses. * `SUM_OVER_BATCH_SIZE`: Scalar `SUM` divided by number of elements in losses. Note that when using `tf.distribute.Strategy`, this is the global batch size across all the replicas that are contributing to a single step. """ NONE = 'none' SUM = 'sum' SUM_OVER_BATCH_SIZE = 'sum_over_batch_size' @classmethod def all(cls): return (cls.NONE, cls.SUM, cls.SUM_OVER_BATCH_SIZE) @classmethod def validate(cls, key): if key not in cls.all(): raise ValueError('Invalid Reduction Key %s.' % key) def squeeze_or_expand_dimensions(y_pred, y_true, sample_weight): """Squeeze or expand last dimension if needed. 1. Squeezes last dim of `y_pred` or `y_true` if their rank differs by 1 (using `confusion_matrix.remove_squeezable_dimensions`). 2. Squeezes or expands last dim of `sample_weight` if its rank differs by 1 from the new rank of `y_pred`. If `sample_weight` is scalar, it is kept scalar. This will use static shape if available. Otherwise, it will add graph operations, which could result in a performance hit. Args: y_pred: Predicted values, a `Tensor` of arbitrary dimensions. y_true: Optional label `Tensor` whose dimensions match `y_pred`. sample_weight: Optional weight scalar or `Tensor` whose dimensions match `y_pred`. Returns: Tuple of `y_pred`, `y_true` and `sample_weight`. Each of them possibly has the last dimension squeezed, `sample_weight` could be extended by one dimension. """ y_pred_shape = y_pred.get_shape() y_pred_rank = y_pred_shape.ndims if y_true is not None: # If sparse matrix is provided as `y_true`, the last dimension in `y_pred` # may be > 1. Eg: y_true = [0, 1, 2] (shape=(3,)), # y_pred = [[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]] (shape=(3, 3)) # In this case, we should not try to remove squeezable dimension. y_true_shape = y_true.get_shape() y_true_rank = y_true_shape.ndims if (y_true_rank is not None) and (y_pred_rank is not None): # Use static rank for `y_true` and `y_pred`. if (y_pred_rank - y_true_rank != 1) or y_pred_shape[-1] == 1: y_true, y_pred = confusion_matrix.remove_squeezable_dimensions( y_true, y_pred) else: # Use dynamic rank. rank_diff = array_ops.rank(y_pred) - array_ops.rank(y_true) squeeze_dims = lambda: confusion_matrix.remove_squeezable_dimensions( # pylint: disable=g-long-lambda y_true, y_pred) is_last_dim_1 = math_ops.equal(1, array_ops.shape(y_pred)[-1]) maybe_squeeze_dims = lambda: control_flow_ops.cond( # pylint: disable=g-long-lambda is_last_dim_1, squeeze_dims, lambda: (y_true, y_pred)) y_true, y_pred = control_flow_ops.cond( math_ops.equal(1, rank_diff), maybe_squeeze_dims, squeeze_dims) if sample_weight is None: return y_pred, y_true, None sample_weight = ops.convert_to_tensor(sample_weight) weights_shape = sample_weight.get_shape() weights_rank = weights_shape.ndims if weights_rank == 0: # If weights is scalar, do nothing. return y_pred, y_true, sample_weight if (y_pred_rank is not None) and (weights_rank is not None): # Use static rank. if weights_rank - y_pred_rank == 1: sample_weight = array_ops.squeeze(sample_weight, [-1]) elif y_pred_rank - weights_rank == 1: sample_weight = array_ops.expand_dims(sample_weight, [-1]) return y_pred, y_true, sample_weight # Use dynamic rank. weights_rank_tensor = array_ops.rank(sample_weight) rank_diff = weights_rank_tensor - array_ops.rank(y_pred) maybe_squeeze_weights = lambda: array_ops.squeeze(sample_weight, [-1]) def _maybe_expand_weights(): return control_flow_ops.cond( math_ops.equal(rank_diff, -1), lambda: array_ops.expand_dims(sample_weight, [-1]), lambda: sample_weight) def _maybe_adjust_weights(): return control_flow_ops.cond( math_ops.equal(rank_diff, 1), maybe_squeeze_weights, _maybe_expand_weights) # squeeze or expand last dim of `sample_weight` if its rank differs by 1 # from the new rank of `y_pred`. sample_weight = control_flow_ops.cond( math_ops.equal(weights_rank_tensor, 0), lambda: sample_weight, _maybe_adjust_weights) return y_pred, y_true, sample_weight def _safe_mean(losses, num_present): """Computes a safe mean of the losses. Args: losses: `Tensor` whose elements contain individual loss measurements. num_present: The number of measurable elements in `losses`. Returns: A scalar representing the mean of `losses`. If `num_present` is zero, then zero is returned. """ total_loss = math_ops.reduce_sum(losses) return math_ops.div_no_nan(total_loss, num_present, name='value') def _num_elements(losses): """Computes the number of elements in `losses` tensor.""" with ops.name_scope(None, 'num_elements', values=[losses]) as scope: return math_ops.cast(array_ops.size(losses, name=scope), dtype=losses.dtype) def _reduce_weighted_loss(weighted_losses, reduction=ReductionV2.SUM_OVER_BATCH_SIZE): """Reduces the individual weighted loss measurements.""" if reduction == ReductionV2.NONE: loss = weighted_losses else: loss = math_ops.reduce_sum(weighted_losses) if reduction == ReductionV2.SUM_OVER_BATCH_SIZE: num_replicas = ( # Used to convert from local to global batch size. distribution_strategy_context.get_strategy().num_replicas_in_sync) loss = _safe_mean(loss, num_replicas * _num_elements(weighted_losses)) return loss def compute_weighted_loss(losses, sample_weight=None, reduction=ReductionV2.SUM_OVER_BATCH_SIZE, name=None): """Computes the weighted loss. Args: losses: `Tensor` of shape `[batch_size, d1, ... dN]`. sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as `losses`, or be broadcastable to `losses`. reduction: Type of `tf.losses.Reduction` to apply to loss. Default value is `SUM_OVER_BATCH_SIZE`. name: Optional name for the op. Raises: ValueError: If the shape of `sample_weight` is not compatible with `losses`. Returns: Weighted loss `Tensor` of the same type as `losses`. If `reduction` is `NONE`, this has the same shape as `losses`; otherwise, it is scalar. """ ReductionV2.validate(reduction) if sample_weight is None: sample_weight = 1.0 with ops.name_scope(name, 'weighted_loss', (losses, sample_weight)): # Update dimensions of `sample_weight` to match with `losses` if possible. losses, _, sample_weight = squeeze_or_expand_dimensions( losses, None, sample_weight) losses = ops.convert_to_tensor(losses) input_dtype = losses.dtype losses = math_ops.cast(losses, dtypes.float32) sample_weight = math_ops.cast(sample_weight, dtypes.float32) try: # Broadcast weights if possible. sample_weight = weights_broadcast_ops.broadcast_weights( sample_weight, losses) except ValueError: # Reduce values to same ndim as weight array. ndim = K.ndim(losses) weight_ndim = K.ndim(sample_weight) losses = K.mean(losses, axis=list(range(weight_ndim, ndim))) sample_weight.get_shape().assert_is_compatible_with(losses.get_shape()) weighted_losses = math_ops.multiply(losses, sample_weight) # Apply reduction function to the individual weighted losses. loss = _reduce_weighted_loss(weighted_losses, reduction) # Convert the result back to the input type. loss = math_ops.cast(loss, input_dtype) return loss
39.702128
108
0.715005
313cfe763de219e24c79e95f02b9c274217a145d
1,283
py
Python
references/process/textutil.py
arXiv/arxiv-references
a755aeaa864ff807ff16ae2c3960f9fee54d8dd8
[ "MIT" ]
7
2019-04-21T07:22:23.000Z
2022-02-23T18:52:26.000Z
references/process/textutil.py
cul-it/arxiv-references
a755aeaa864ff807ff16ae2c3960f9fee54d8dd8
[ "MIT" ]
4
2017-11-07T16:38:46.000Z
2018-05-04T19:53:55.000Z
references/process/textutil.py
cul-it/arxiv-references
a755aeaa864ff807ff16ae2c3960f9fee54d8dd8
[ "MIT" ]
6
2019-01-10T22:02:15.000Z
2022-02-22T02:00:16.000Z
"""Text cleanup utilities.""" import re import ftfy import unidecode punctuation_pat = re.compile(r"""([!"#$%&\'()*+,-./:;<=>?@[\\\]^_`{|}~])""") hyphenline_pat = re.compile(r"-\s*\n\s*") multiwhite_pat = re.compile(r"\s+") cid_pat = re.compile(r"\(cid:\d+\)") nonlet = re.compile(r"([^A-Za-z0-9 ])") purenum = re.compile(r"\b[0-9]+\b") def clean_text(txt: str, numok: bool = False) -> str: """ Normalize a set of text so that it can be compared with different sources. Potentially with different encodings and varying whitespace etc. """ txt = txt.lower() txt = cid_pat.sub(" UNK ", txt) txt = hyphenline_pat.sub("", txt) txt = punctuation_pat.sub(r" ", txt) txt = nonlet.sub(r" ", txt) if not numok: txt = purenum.sub(r" ", txt) txt = multiwhite_pat.sub(" ", txt) txt = txt.encode('utf-8').decode('utf-8') return txt.strip() def clean_blob(blob: str, numok: bool = False) -> str: """Apply :func:`.clean_text` to each line in a blob of text.""" output = [] lines = blob.split('\n') for line in lines: txt = ftfy.fix_text(line, normalization='NFKC') txt = unidecode.unidecode(txt) txt = clean_text(txt, numok=numok) output.append(txt) return '\n'.join(output)
27.297872
78
0.5947
902e5572ed53ffcbd2b912121161ee8073a6c375
879
py
Python
stress tester/testgen.py
AI-Factor-y/stress-tester
b4f56ab07032ada565a5deed562a905dcf6e885f
[ "Apache-2.0" ]
null
null
null
stress tester/testgen.py
AI-Factor-y/stress-tester
b4f56ab07032ada565a5deed562a905dcf6e885f
[ "Apache-2.0" ]
null
null
null
stress tester/testgen.py
AI-Factor-y/stress-tester
b4f56ab07032ada565a5deed562a905dcf6e885f
[ "Apache-2.0" ]
null
null
null
# code written by abhinav p import random import sys random.seed() sys.stdout=open("testcase.txt","w") #output file def r(lower_limit,upper_limit): return random.randint(lower_limit,upper_limit) def ra(lower_limit,upper_limit): return chr(ord('a')+r((ord(lower_limit)-ord('a')),(ord(upper_limit)-ord('a')))) def raa(): return chr(ord('a')+r(0,25)) def rf(lower_limit,upper_limit,decimal_places): return round(random.uniform(lower_limit,upper_limit),decimal_places) def nl(): print("") # global testcase count testcase_count=100 def testcase(): n=r(2,50) print(n) for _ in range(n): x=r(0,500) print(x,end=" ") nl() for _ in range(n-1): y=r(0,1) print(y,end="") nl() if __name__=="__main__": if(testcase_count!=1): print(testcase_count) for _ in range(testcase_count): testcase()
15.981818
81
0.645051
44c12fd44f99bf136712726273386f59bc090211
1,205
py
Python
display_temp_onewire.py
jasonbartz/pi-demos
1b551a7ff33dbf8dae0782dd79e1cdce73b2f243
[ "MIT" ]
null
null
null
display_temp_onewire.py
jasonbartz/pi-demos
1b551a7ff33dbf8dae0782dd79e1cdce73b2f243
[ "MIT" ]
null
null
null
display_temp_onewire.py
jasonbartz/pi-demos
1b551a7ff33dbf8dae0782dd79e1cdce73b2f243
[ "MIT" ]
null
null
null
#!/usr/bin/python -u import time import os import glob from Adafruit_LED_Backpack import AlphaNum4 os.system('modprobe w1-gpio') os.system('modprobe w1-therm') base_dir = '/sys/bus/w1/devices/' # Grabs the first probe out of the directory device_folder = glob.glob(base_dir + '28*')[0] device_file = device_folder + '/w1_slave' display = AlphaNum4.AlphaNum4() display.begin() display.clear() display.write_display() def c_to_f(c): return c * 9.0 / 5.0 + 32.0 def read_temp_raw(): f = open(device_file, 'r') lines = f.readlines() f.close() return lines def read_temp(): lines = read_temp_raw() while lines[0].strip()[-3:] != 'YES': time.sleep(0.2) lines = read_temp_raw() equals_pos = lines[1].find('t=') if equals_pos != -1: temp_string = lines[1][equals_pos+2:] return float(temp_string) / 1000.0 def write_display(text): display.print_str(text) display.write_display() print 'Press Ctrl-C to quit.' while True: temp = read_temp() display.clear() temp_in_f = int(c_to_f(temp)) write_display("{} F".format(temp_in_f)) time.sleep(5) write_display("{} C".format(int(temp))) time.sleep(5)
20.423729
46
0.653112
9a9b990714825531a581b27ed99a9062e96ad3f9
2,616
py
Python
app/core/models.py
jingr1986/recipie-app-api
74e9b7efb52ddda97bd3f3af715f024ebbe403ad
[ "MIT" ]
null
null
null
app/core/models.py
jingr1986/recipie-app-api
74e9b7efb52ddda97bd3f3af715f024ebbe403ad
[ "MIT" ]
null
null
null
app/core/models.py
jingr1986/recipie-app-api
74e9b7efb52ddda97bd3f3af715f024ebbe403ad
[ "MIT" ]
null
null
null
import uuid import os from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, \ PermissionsMixin from django.conf import settings def recipe_image_file_path(instace, filename): """generate file path for new recipe image""" ext = filename.split('.')[-1] filename = f'{uuid.uuid4()}.{ext}' return os.path.join('uploads/recipe/', filename) class UseManager(BaseUserManager): def create_user(self, email, password=None, **extral_fields): """creates and saves a new users""" if not email: raise ValueError("users must have email address") user = self.model(email=self.normalize_email(email), **extral_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): """creates and saves a new super user""" user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): """custom user model that supports using email instead of username""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UseManager() USERNAME_FIELD = 'email' class Tag(models.Model): """Tag to be used for a recipe""" name = models.CharField(max_length=255) user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ) def __str__(self): return self.name class Ingredient(models.Model): """ingredient to be used in a recipe""" name = models.CharField(max_length=255) user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE ) def __str__(self): return self.name class Recipe(models.Model): """recipe objects""" user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE ) title = models.CharField(max_length=255) time_minutes = models.IntegerField() price = models.DecimalField(max_digits=5, decimal_places=2) link = models.CharField(max_length=255, blank=True) ingredients = models.ManyToManyField('Ingredient') tags = models.ManyToManyField('Tag') image = models.ImageField(null=True, upload_to=recipe_image_file_path) def __str__(self): return self.title
28.434783
77
0.672401
bf4e40a887f421514a81b4433dcf1200690e0697
882
py
Python
setup.py
nghiemvdv/urbamt
e136f7c8ffbc9491edc2f960f0ecb2e7efa36b32
[ "Apache-2.0" ]
null
null
null
setup.py
nghiemvdv/urbamt
e136f7c8ffbc9491edc2f960f0ecb2e7efa36b32
[ "Apache-2.0" ]
null
null
null
setup.py
nghiemvdv/urbamt
e136f7c8ffbc9491edc2f960f0ecb2e7efa36b32
[ "Apache-2.0" ]
null
null
null
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name='urbamt', version='0.0.1-b1', author="Patrick Phat Nguyen", author_email="me@patrickphat.com", description="Universal Rule-based Machine Translation Toolkit (URBaMT)", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/urbamt/urbamt", packages=setuptools.find_packages(exclude=['docs', 'tests']), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>3.6', install_requires =[ 'nltk<4', ], extras_require={ 'dev': [ 'pytest', 'coverage', ], } )
27.5625
77
0.587302
d0db3699d4cd2bc881c998d0640b4b6ff764c219
14,610
py
Python
py3status/docstrings.py
apiraino/py3status
b6ebed775e635ffddcbde0f78efceacb21ac47d0
[ "BSD-3-Clause" ]
null
null
null
py3status/docstrings.py
apiraino/py3status
b6ebed775e635ffddcbde0f78efceacb21ac47d0
[ "BSD-3-Clause" ]
null
null
null
py3status/docstrings.py
apiraino/py3status
b6ebed775e635ffddcbde0f78efceacb21ac47d0
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import ast import re import os.path import difflib from py3status.helpers import print_stderr def modules_directory(): """ Get the core modules directory. """ return os.path.join(os.path.dirname(os.path.abspath(__file__)), "modules") def parse_readme(): """ Crude parsing of modules/README.md returns a dict of {<module_name>: <documentation>} """ name = None re_mod = re.compile(r'^\#\#\# <a name="(?P<name>[a-z_0-9]+)"></a>') readme_file = os.path.join(modules_directory(), "README.md") modules_dict = {} with open(readme_file) as f: for row in f.readlines(): match = re_mod.match(row) if match: name = match.group("name") modules_dict[name] = [] continue if row.startswith("---"): name = None continue if name: modules_dict[name].append(row) return modules_dict def core_module_docstrings( include_core=True, include_user=False, config=None, format="md" ): """ Get docstrings for all core modules and user ones if requested returns a dict of {<module_name>: <docstring>} """ paths = {} docstrings = {} if include_core: for file in os.listdir(modules_directory()): if file.endswith(".py"): name = file[:-3] if name != "__init__": paths[name] = (os.path.join(modules_directory(), file), "core") if include_user: # include user modules for include_path in sorted(config["include_paths"]): include_path = os.path.abspath(include_path) + "/" if not os.path.isdir(include_path): continue for file in sorted(os.listdir(include_path)): if not file.endswith(".py"): continue name = file[:-3] paths[name] = (os.path.join(include_path, file), "user") for name in paths: path, module_type = paths[name] with open(path) as f: try: module = ast.parse(f.read()) except SyntaxError: # there is a syntax error so ignore module continue raw_docstring = ast.get_docstring(module) # prevent issue when no docstring exists if raw_docstring is None: continue # remove any sample outputs parts = re.split("^SAMPLE OUTPUT$", raw_docstring, flags=re.M) docstring = parts[0] if format == "md": docstring = [ d for d in _from_docstring_md(str(docstring).strip().split("\n")) ] elif format == "rst": docstring = [ d for d in _from_docstring_rst(str(docstring).strip().split("\n")) ] else: raise Exception("`md` and `rst` format supported only") docstrings[name] = docstring + ["\n"] return docstrings def create_readme(data): """ Create README.md text for the given module data. """ out = ['<a name="top"></a>Modules\n========\n\n'] # Links for module in sorted(data.keys()): desc = "".join(data[module]).strip().split("\n")[0] format_str = "\n**[{name}](#{name})** — {desc}\n" out.append(format_str.format(name=module, desc=desc)) # details for module in sorted(data.keys()): out.append( '\n---\n\n### <a name="{name}"></a>{name}\n\n{details}\n'.format( name=module, details="".join(data[module]).strip() ) ) return "".join(out) re_listing = re.compile(r"^\w.*:$") # match in README.md re_to_param = re.compile(r"^ - `([a-z]\S+)`($|[ \t])") re_to_status = re.compile(r"^ - `({\S+})`($|[ \t])") re_to_item = re.compile(r"^\s+-") re_to_data = re.compile(r"^\*\*(author|license|source)\*\*($|[ \t])") re_to_tag = re.compile("&lt;([^.]*)&gt;") re_to_defaults = re.compile(r"\*(\(default.*\))\*") # match in module docstring re_from_param = re.compile(r"^ ([a-z<]\S+):($|[ \t])(.*)$") re_from_status = re.compile(r"^\s+({\S+})($|[ \t])(.*)$") re_from_item = re.compile(r"^\s+-(?=\s)") re_from_data = re.compile("^@(author|license|source)($|[ \t])") re_from_tag = re.compile("((`[^`]*`)|[<>&])") re_from_defaults = re.compile(r"(\(default.*\))\s*$") # for rst re_lone_backtick = re.compile("(?<!`)`(?!`)") def _reformat_docstring(doc, format_fn, code_newline=""): """ Go through lines of file and reformat using format_fn """ out = [] status = {"listing": False, "add_line": False, "eat_line": False} code = False for line in doc: if status["add_line"]: out.append("\n") status["add_line"] = False if status["eat_line"]: status["eat_line"] = False if line.strip() == "": continue # check for start/end of code block if line.strip() == "```": code = not code out.append(line + code_newline) continue if not code: # if we are in a block listing a blank line ends it if line.rstrip() == "": status["listing"] = False # format the line line = format_fn(line, status) # see if block start if re_listing.match(line): status["listing"] = True out.append(line.rstrip() + "\n") return out def _to_docstring(doc): """ format from Markdown to docstring """ def format_fn(line, status): """ format function """ # swap &lt; &gt; to < > line = re_to_tag.sub(r"<\1>", line) if re_to_data.match(line): line = re_to_data.sub(r"@\1 ", line) status["eat_line"] = True line = re_to_defaults.sub(r"\1", line) if status["listing"]: # parameters if re_to_param.match(line): line = re_to_param.sub(r" \1: ", line) # status items elif re_to_status.match(line): line = re_to_status.sub(r" \1 ", line) # bullets elif re_to_item.match(line): line = re_to_item.sub(r" -", line) # is continuation line else: line = " " * 8 + line.lstrip() return line return _reformat_docstring(doc, format_fn) def _from_docstring_md(doc): """ format from docstring to Markdown """ def format_fn(line, status): """ format function """ def fix_tags(line): # In markdown we need to escape < > and & for display # but we don't want to do this is the value is quoted # by backticks `` def fn(match): # swap matched chars found = match.group(1) if found == "<": return "&lt;" if found == ">": return "&gt;" if found == "&": return "&amp;" return match.group(0) return re_from_tag.sub(fn, line) if re_from_data.match(line): line = re_from_data.sub(r"**\1** ", line) status["add_line"] = True line = re_from_defaults.sub(r"*\1*", line) if status["listing"]: # parameters if re_from_param.match(line): m = re_from_param.match(line) line = " - `{}` {}".format(m.group(1), fix_tags(m.group(3))) # status items elif re_from_status.match(line): m = re_from_status.match(line) line = " - `{}` {}".format(m.group(1), fix_tags(m.group(3))) # bullets elif re_from_item.match(line): line = re_from_item.sub(r" -", fix_tags(line)) # is continuation line else: line = fix_tags(line) line = " " * 4 + line.lstrip() else: line = fix_tags(line) return line return _reformat_docstring(doc, format_fn, code_newline="\n") def _from_docstring_rst(doc): """ format from docstring to ReStructured Text """ def format_fn(line, status): """ format function """ if re_from_data.match(line): line = re_from_data.sub(r"**\1** ", line) status["add_line"] = True line = re_from_defaults.sub(r"*\1*", line) if status["listing"]: # parameters if re_from_param.match(line): m = re_from_param.match(line) line = " - ``{}`` {}".format(m.group(1), m.group(3)) # status items elif re_from_status.match(line): m = re_from_status.match(line) line = " - ``{}`` {}".format(m.group(1), m.group(3)) # bullets elif re_from_item.match(line): line = re_from_item.sub(r" -", line) # is continuation line else: line = " " * 4 + line.lstrip() # in .rst format code samples use double backticks vs single ones for # .md This converts them. line = re_lone_backtick.sub("``", line) return line return _reformat_docstring(doc, format_fn, code_newline="\n") def update_docstrings(): """ update the docstring of each module using info in the modules/README.md file """ modules_dict = parse_readme() files = {} # update modules for mod in modules_dict: mod_file = os.path.join(modules_directory(), mod + ".py") with open(mod_file) as f: files[mod] = f.readlines() for mod in files: replaced = False done = False lines = False out = [] quotes = None for row in files[mod]: # deal with single or double quoted docstring if not quotes: if row.strip().startswith('"""'): quotes = '"""' if row.strip().startswith("'''"): quotes = "'''" if quotes and row.strip().startswith(quotes) and not done: out.append(row) if not replaced: out = out + [ "".join(_to_docstring(modules_dict[mod])).strip() + "\n" ] replaced = True if lines: done = True if not done and not lines: lines = True continue if not lines or done: out.append(row) mod_file = os.path.join(modules_directory(), mod + ".py") with open(mod_file, "w") as f: f.writelines(out) print_stderr("Modules updated from README.md") def check_docstrings(show_diff=False, config=None, mods=None): """ Check docstrings in module match the README.md """ readme = parse_readme() modules_readme = core_module_docstrings(config=config) warned = False if create_readme(readme) != create_readme(modules_readme): for module in sorted(readme): if mods and module not in mods: continue err = None if module not in modules_readme: err = "\tModule {} in README but not in /modules".format(module) elif ( "".join(readme[module]).strip() != "".join(modules_readme[module]).strip() ): err = "\tModule {} docstring does not match README".format(module) if err: if not warned: print_stderr("Documentation does not match!\n") warned = True print_stderr(err) for module in modules_readme: if mods and module not in mods: continue if module not in readme: print_stderr("\tModule {} in /modules but not in README".format(module)) if show_diff: print_stderr( "\n".join( difflib.unified_diff( create_readme(readme).split("\n"), create_readme(modules_readme).split("\n"), ) ) ) else: if warned: print_stderr("\nUse `py3status docstring check diff` to view diff.") def update_readme_for_modules(modules): """ Update README.md updating the sections for the module names listed. """ readme = parse_readme() module_docstrings = core_module_docstrings() if modules == ["__all__"]: modules = core_module_docstrings().keys() for module in modules: if module in module_docstrings: print_stderr("Updating README.md for module {}".format(module)) readme[module] = module_docstrings[module] else: print_stderr("Module {} not in core modules".format(module)) # write the file readme_file = os.path.join(modules_directory(), "README.md") with open(readme_file, "w") as f: f.write(create_readme(readme)) def show_modules(config, params): """ List modules available optionally with details. """ details = params[0] == "details" if details: modules_list = params[1:] core_mods = True user_mods = True else: user_mods = True core_mods = True modules_list = [] if len(params) == 2: if params[1] == "user": user_mods = True core_mods = False elif params[1] == "core": user_mods = False core_mods = True if details: print("Module details:") else: print("Available modules:") modules = core_module_docstrings( include_core=core_mods, include_user=user_mods, config=config ) for name in sorted(modules.keys()): if modules_list and name not in modules_list: continue module = _to_docstring(modules[name]) desc = module[0][:-1] if details: dash_len = len(name) print("=" * dash_len) print(name) print("=" * dash_len) for description in module: print(description[:-1]) else: print(" %-22s %s" % (name, desc))
32.611607
88
0.516153
1e545c86d65c440028c25b86f64410e4cbc853e1
29,738
py
Python
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/operations/_backend_operations.py
JianpingChen/azure-sdk-for-python
3072fc8c0366287fbaea1b02493a50259c3248a2
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/operations/_backend_operations.py
JianpingChen/azure-sdk-for-python
3072fc8c0366287fbaea1b02493a50259c3248a2
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/operations/_backend_operations.py
JianpingChen/azure-sdk-for-python
3072fc8c0366287fbaea1b02493a50259c3248a2
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class BackendOperations(object): """BackendOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.apimanagement.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_by_service( self, resource_group_name, # type: str service_name, # type: str filter=None, # type: Optional[str] top=None, # type: Optional[int] skip=None, # type: Optional[int] **kwargs # type: Any ): # type: (...) -> Iterable["_models.BackendCollection"] """Lists a collection of backends in the specified service instance. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param filter: | Field | Usage | Supported operators | Supported functions |</br>|-------------|-------------|-------------|-------------|</br>| name | filter | ge, le, eq, ne, gt, lt | substringof, contains, startswith, endswith |</br>| title | filter | ge, le, eq, ne, gt, lt | substringof, contains, startswith, endswith |</br>| url | filter | ge, le, eq, ne, gt, lt | substringof, contains, startswith, endswith |</br>. :type filter: str :param top: Number of records to return. :type top: int :param skip: Number of records to skip. :type skip: int :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either BackendCollection or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.apimanagement.models.BackendCollection] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BackendCollection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_service.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if filter is not None: query_parameters['$filter'] = self._serialize.query("filter", filter, 'str') if top is not None: query_parameters['$top'] = self._serialize.query("top", top, 'int', minimum=1) if skip is not None: query_parameters['$skip'] = self._serialize.query("skip", skip, 'int', minimum=0) query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('BackendCollection', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_service.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/backends'} # type: ignore def get_entity_tag( self, resource_group_name, # type: str service_name, # type: str backend_id, # type: str **kwargs # type: Any ): # type: (...) -> bool """Gets the entity state (Etag) version of the backend specified by its identifier. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param backend_id: Identifier of the Backend entity. Must be unique in the current API Management service instance. :type backend_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: bool, or the result of cls(response) :rtype: bool :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json" # Construct URL url = self.get_entity_tag.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'backendId': self._serialize.url("backend_id", backend_id, 'str', max_length=80, min_length=1), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.head(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) if cls: return cls(pipeline_response, None, response_headers) return 200 <= response.status_code <= 299 get_entity_tag.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/backends/{backendId}'} # type: ignore def get( self, resource_group_name, # type: str service_name, # type: str backend_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.BackendContract" """Gets the details of the backend specified by its identifier. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param backend_id: Identifier of the Backend entity. Must be unique in the current API Management service instance. :type backend_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: BackendContract, or the result of cls(response) :rtype: ~azure.mgmt.apimanagement.models.BackendContract :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BackendContract"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'backendId': self._serialize.url("backend_id", backend_id, 'str', max_length=80, min_length=1), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('BackendContract', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/backends/{backendId}'} # type: ignore def create_or_update( self, resource_group_name, # type: str service_name, # type: str backend_id, # type: str parameters, # type: "_models.BackendContract" if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "_models.BackendContract" """Creates or Updates a backend. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param backend_id: Identifier of the Backend entity. Must be unique in the current API Management service instance. :type backend_id: str :param parameters: Create parameters. :type parameters: ~azure.mgmt.apimanagement.models.BackendContract :param if_match: ETag of the Entity. Not required when creating an entity, but required when updating an entity. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: BackendContract, or the result of cls(response) :rtype: ~azure.mgmt.apimanagement.models.BackendContract :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BackendContract"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_or_update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'backendId': self._serialize.url("backend_id", backend_id, 'str', max_length=80, min_length=1), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'BackendContract') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} if response.status_code == 200: response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('BackendContract', pipeline_response) if response.status_code == 201: response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('BackendContract', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/backends/{backendId}'} # type: ignore def update( self, resource_group_name, # type: str service_name, # type: str backend_id, # type: str if_match, # type: str parameters, # type: "_models.BackendUpdateParameters" **kwargs # type: Any ): # type: (...) -> "_models.BackendContract" """Updates an existing backend. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param backend_id: Identifier of the Backend entity. Must be unique in the current API Management service instance. :type backend_id: str :param if_match: ETag of the Entity. ETag should match the current entity state from the header response of the GET request or it should be * for unconditional update. :type if_match: str :param parameters: Update parameters. :type parameters: ~azure.mgmt.apimanagement.models.BackendUpdateParameters :keyword callable cls: A custom type or function that will be passed the direct response :return: BackendContract, or the result of cls(response) :rtype: ~azure.mgmt.apimanagement.models.BackendContract :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BackendContract"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'backendId': self._serialize.url("backend_id", backend_id, 'str', max_length=80, min_length=1), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'BackendUpdateParameters') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('BackendContract', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/backends/{backendId}'} # type: ignore def delete( self, resource_group_name, # type: str service_name, # type: str backend_id, # type: str if_match, # type: str **kwargs # type: Any ): # type: (...) -> None """Deletes the specified backend. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param backend_id: Identifier of the Backend entity. Must be unique in the current API Management service instance. :type backend_id: str :param if_match: ETag of the Entity. ETag should match the current entity state from the header response of the GET request or it should be * for unconditional update. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json" # Construct URL url = self.delete.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'backendId': self._serialize.url("backend_id", backend_id, 'str', max_length=80, min_length=1), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/backends/{backendId}'} # type: ignore def reconnect( self, resource_group_name, # type: str service_name, # type: str backend_id, # type: str parameters=None, # type: Optional["_models.BackendReconnectContract"] **kwargs # type: Any ): # type: (...) -> None """Notifies the APIM proxy to create a new connection to the backend after the specified timeout. If no timeout was specified, timeout of 2 minutes is used. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param backend_id: Identifier of the Backend entity. Must be unique in the current API Management service instance. :type backend_id: str :param parameters: Reconnect request parameters. :type parameters: ~azure.mgmt.apimanagement.models.BackendReconnectContract :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.reconnect.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'backendId': self._serialize.url("backend_id", backend_id, 'str', max_length=80, min_length=1), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if parameters is not None: body_content = self._serialize.body(parameters, 'BackendReconnectContract') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) reconnect.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/backends/{backendId}/reconnect'} # type: ignore
51.09622
205
0.6565
9a423cfc3e893adf99451e4867b6567ebd4ebb1c
3,233
py
Python
virtual/Lib/site-packages/pylint/test/unittest_checker_classes.py
JamesKimari/pitch-one
aac9007716bf2e3b6446588a06508fac068f3d20
[ "MIT" ]
4
2018-08-14T14:08:55.000Z
2021-02-19T02:58:07.000Z
virtual/lib/python3.6/site-packages/pylint/test/unittest_checker_classes.py
evantoh/patient-management-system
6637eb1344775633759165260ed99843581c0e72
[ "Unlicense" ]
32
2018-05-01T05:24:43.000Z
2022-03-11T23:20:39.000Z
virtual/lib/python3.6/site-packages/pylint/test/unittest_checker_classes.py
evantoh/patient-management-system
6637eb1344775633759165260ed99843581c0e72
[ "Unlicense" ]
2
2018-05-16T10:39:48.000Z
2019-02-22T09:13:34.000Z
# Copyright (c) 2014-2016 Claudiu Popa <pcmanticore@gmail.com> # Copyright (c) 2014 Google, Inc. # Copyright (c) 2014 LOGILAB S.A. (Paris, FRANCE) <contact@logilab.fr> # Copyright (c) 2015 Ionel Cristian Maries <contact@ionelmc.ro> # Copyright (c) 2016 Derek Gustafson <degustaf@gmail.com> # Licensed under the GPL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html # For details: https://github.com/PyCQA/pylint/blob/master/COPYING """Unit tests for the variables checker.""" import sys import pytest import astroid from pylint.checkers import classes from pylint.testutils import CheckerTestCase, Message, set_config class TestVariablesChecker(CheckerTestCase): CHECKER_CLASS = classes.ClassChecker def test_bitbucket_issue_164(self): """Issue 164 report a false negative for access-member-before-definition""" n1, n2 = astroid.extract_node(""" class MyClass1(object): def __init__(self): self.first += 5 #@ self.first = 0 #@ """) message = Message('access-member-before-definition', node=n1.target, args=('first', n2.lineno)) with self.assertAddsMessages(message): self.walk(n1.root()) @set_config(exclude_protected=('_meta', '_manager')) def test_exclude_protected(self): """Test that exclude-protected can be used to exclude names from protected-access warning. """ node = astroid.parse(""" class Protected(object): '''empty''' def __init__(self): self._meta = 42 self._manager = 24 self._teta = 29 OBJ = Protected() OBJ._meta OBJ._manager OBJ._teta """) with self.assertAddsMessages( Message('protected-access', node=node.body[-1].value, args='_teta')): self.walk(node.root()) @pytest.mark.skipif(sys.version_info[0] != 3, reason="The test works on Python 3.") def test_regression_non_parent_init_called_tracemalloc(self): # This used to raise a non-parent-init-called on Pylint 1.3 # See issue https://bitbucket.org/logilab/pylint/issue/308/ # for reference. node = astroid.extract_node(""" from tracemalloc import Sequence class _Traces(Sequence): def __init__(self, traces): #@ Sequence.__init__(self) """) with self.assertNoMessages(): self.checker.visit_functiondef(node) def test_super_init_not_called_regression(self): # This should not emit a super-init-not-called # warning. It previously did this, because # ``next(node.infer())`` was used in that checker's # logic and the first inferred node was an YES object, # leading to this false positive. node = astroid.extract_node(""" import ctypes class Foo(ctypes.BigEndianStructure): def __init__(self): #@ ctypes.BigEndianStructure.__init__(self) """) with self.assertNoMessages(): self.checker.visit_functiondef(node)
35.922222
83
0.612125
d87b1a5ff5a4ef1bc77885908e509c8c51a59731
2,125
py
Python
AI1/Lab02-DictionaryCreator/Lab02.py
rashidlasker/artificial-intelligence
da18010145b7dba80e5bc10c2498d5a4b0d60667
[ "MIT" ]
null
null
null
AI1/Lab02-DictionaryCreator/Lab02.py
rashidlasker/artificial-intelligence
da18010145b7dba80e5bc10c2498d5a4b0d60667
[ "MIT" ]
null
null
null
AI1/Lab02-DictionaryCreator/Lab02.py
rashidlasker/artificial-intelligence
da18010145b7dba80e5bc10c2498d5a4b0d60667
[ "MIT" ]
null
null
null
""" +=========================================================================================+ || Lab02: Dictionary Creator || || Name: Rashid Lasker Date: 9/9/14 || +=========================================================================================+ This program generates a dictionary of neighbors for all the words in the given text file and stores it in a binary file. """ #######################################<BEGINNING OF PROGRAM>####################################### def generateListOfWords(): fileName = 'words.txt' file = open(fileName, 'r') words1 = file.read() file.close return words1.split() def generateDictionaryOfNeighbors(inputList): neighborDict = dict() for b in range(0, len(inputList)): yourWord = inputList[b] neighbors = [] for n in range(0, len(inputList)): thisWord = inputList[n] diffLetters = 0 for x in range(len(thisWord)): if yourWord[x] != thisWord[x]: diffLetters += 1 if diffLetters > 1: break if diffLetters == 1: neighbors.append(thisWord) neighborDict[yourWord] = neighbors return neighborDict def saveIntoFile(inputDict): newFileName = 'oneChangeDict.txt' import pickle with open(newFileName, 'wb') as handle: pickle.dump(inputDict, handle, protocol=pickle.HIGHEST_PROTOCOL) handle.close() def main(): listOfWords = generateListOfWords() print('Number of Values: ' + str(len(listOfWords))) saveIntoFile(generateDictionaryOfNeighbors(listOfWords)) #===============================<GLOBAL CONSTANTS and GLOBAL IMPORTS>================================ from random import random, randint; from math import sqrt; from copy import deepcopy; from time import clock; START_TIME = clock(); main(); print('\n +===<RUN TIME>===+'); print(' | %5.2f'%(clock()-START_TIME), 'seconds |'); print(' +================+') ##########################################<END OF PROGRAM>##########################################
40.865385
101
0.497412
ef36b30f5e8f9d916d849b2830315abf17f693f0
5,578
py
Python
2019/02/computer.py
GeoffRiley/AdventOfCode
27fe8670a1923cb3b0675784f5e855ad18c29c93
[ "Unlicense" ]
2
2020-12-12T03:18:45.000Z
2021-12-17T00:35:33.000Z
2019/02/computer.py
GeoffRiley/AdventOfCode
27fe8670a1923cb3b0675784f5e855ad18c29c93
[ "Unlicense" ]
null
null
null
2019/02/computer.py
GeoffRiley/AdventOfCode
27fe8670a1923cb3b0675784f5e855ad18c29c93
[ "Unlicense" ]
null
null
null
from itertools import product def computer(cells): c = [int(v) for v in cells.split(',')] c = simulate(c) return ','.join(str(v) for v in c) def simulate(c): pc = 0 while c[pc] != 99: if c[pc] == 1: c[c[pc + 3]] = c[c[pc + 1]] + c[c[pc + 2]] pc += 4 elif c[pc] == 2: c[c[pc + 3]] = c[c[pc + 1]] * c[c[pc + 2]] pc += 4 else: raise TypeError return c def run_computer_recover(cells): c = [int(v) for v in cells.split(',')] c[1] = 12 c[2] = 2 c = simulate(c) print(c[0]) def find_key_inputs(cells): target = 19690720 result = 0 for noun, verb in product(range(100), range(100)): c = [int(v) for v in cells.split(',')] c[1] = noun c[2] = verb c = simulate(c) result = c[0] if result == target: print(f'Noun: {noun}, Verb: {verb} results in {c[0]}') OPCODES = {1:'+', 2:'*', 99:'halt'} def opcode(memory, pc): op, a, b, c = memory[pc:pc+4] dump = " ".join(f'{v:02x}' for v in memory[pc:pc+4]) if op < 99: return f'{dump} : [{c:02x}] ← [{a:02x}] {OPCODES[op]} [{b:02x}]' else: return f'{dump} : HALT' def disassemble(cells): memory = [int(v) for v in cells.split(',')] targets = set() pc = 0 while pc < len(memory)-3: targets.add(memory[pc+1]) targets.add(memory[pc+2]) pc += 4 pc = 0 targets = sorted(targets) while pc < len(memory)-3: print(f'{pc:04x} : {opcode(memory,pc)}') pc += 4 if __name__ == '__main__': initial_cells = '1,0,0,3,1,1,2,3,1,3,4,3,1,5,0,3,2,9,1,19,1,19,5,23,1,9,23,27,2,27,6,31,1,5,31,35,2,9,35,39,2,6,39,43,2,43,13,47,2,13,47,51,1,10,51,55,1,9,55,59,1,6,59,63,2,63,9,67,1,67,6,71,1,71,13,75,1,6,75,79,1,9,79,83,2,9,83,87,1,87,6,91,1,91,13,95,2,6,95,99,1,10,99,103,2,103,9,107,1,6,107,111,1,10,111,115,2,6,115,119,1,5,119,123,1,123,13,127,1,127,5,131,1,6,131,135,2,135,13,139,1,139,2,143,1,143,10,0,99,2,0,14,0' run_computer_recover(initial_cells) find_key_inputs(initial_cells) disassemble(initial_cells) """ 01: noun 02: verb 0000 : 01 00 00 03 : [03] ← [00] + [00] # [03] = 1 + 1 = 2 0004 : 01 01 02 03 : [03] ← [01] + [02] # [03] = noun + verb 0008 : 01 03 04 03 : [03] ← [03] + [04] # [03] = noun + verb + 1 000c : 01 05 00 03 : [03] ← [05] + [00] # [03] = 1 + 1 = 2 0010 : 02 09 01 13 : [13] ← [09] * [01] # [13] = 3 * noun 0014 : 01 13 05 17 : [17] ← [13] + [05] # [17] = (3 * noun) + 1 0018 : 01 09 17 1b : [1b] ← [09] + [17] # [1b] = 3 + (3 * noun) + 1 = (3 * noun) + 4 001c : 02 1b 06 1f : [1f] ← [1b] * [06] # [1f] = ((3 * noun) + 4) * 2 = (6 * noun) + 8 0020 : 01 05 1f 23 : [23] ← [05] + [1f] # [23] = 1 + (6 * noun) + 8 = (6 * noun) + 9 0024 : 02 09 23 27 : [27] ← [09] * [23] # [27] = 3 * ((6 * noun) + 9) = 18 * noun + 27 0028 : 02 06 27 2b : [2b] ← [06] * [27] # [2b] = 2 * (18 * noun + 27) = 36 * noun + 54 002c : 02 2b 0d 2f : [2f] ← [2b] * [0d] # [2f] = (36 * noun + 54) * 5 = 180 * noun + 270 0030 : 02 0d 2f 33 : [33] ← [0d] * [2f] # [33] = 5 * (180 * noun + 270) = 900 * noun + 1350 0034 : 01 0a 33 37 : [37] ← [0a] + [33] # [37] = 4 + (900 * noun + 1350) = 900 * noun + 1354 0038 : 01 09 37 3b : [3b] ← [09] + [37] # [3b] = 3 + (900 * noun + 1354) = 900 * noun + 1357 003c : 01 06 3b 3f : [3f] ← [06] + [3b] # [3f] = 2 + (900 * noun + 1357) = 900 * noun + 1359 0040 : 02 3f 09 43 : [43] ← [3f] * [09] # [43] = (900 * noun + 1359) * 3 = 2700 * noun + 4077 0044 : 01 43 06 47 : [47] ← [43] + [06] # [47] = (2700 * noun + 4077) + 2 = 2700 * noun + 4079 0048 : 01 47 0d 4b : [4b] ← [47] + [0d] # [4b] = (2700 * noun + 4079) + 5 = 2700 * noun + 4084 004c : 01 06 4b 4f : [4f] ← [06] + [4b] # [4f] = 2 + (2700 * noun + 4085) = 2700 * noun + 4086 0050 : 01 09 4f 53 : [53] ← [09] + [4f] # [53] = 3 + (2700 * noun + 4086) = 2700 * noun + 4089 0054 : 02 09 53 57 : [57] ← [09] * [53] # [57] = 3 * (2700 * noun + 4089) = 8100 * noun + 12267 0058 : 01 57 06 5b : [5b] ← [57] + [06] # [5b] = (8100 * noun + 12267) + 2 = 8100 * noun + 12269 005c : 01 5b 0d 5f : [5f] ← [5b] + [0d] # [5f] = (8100 * noun + 12269) + 5 = 8100 * noun + 12274 0060 : 02 06 5f 63 : [63] ← [06] * [5f] # [63] = 2 * (8100 * noun + 12274) = 16200 * noun + 24548 0064 : 01 0a 63 67 : [67] ← [0a] + [63] # [67] = 4 + (16200 * noun + 24548) = 16200 * noun + 24552 0068 : 02 67 09 6b : [6b] ← [67] * [09] # [6b] = (16200 * noun + 24552) * 3 = 48600 * noun + 73656 006c : 01 06 6b 6f : [6f] ← [06] + [6b] # [6f] = 2 + (48600 * noun + 73656) = 48600 * noun + 73658 0070 : 01 0a 6f 73 : [73] ← [0a] + [6f] # [73] = 4 + (48600 * noun + 73658) = 48600 * noun + 73662 0074 : 02 06 73 77 : [77] ← [06] * [73] # [77] = 2 * (48600 * noun + 73662) = 97200 * noun + 147324 0078 : 01 05 77 7b : [7b] ← [05] + [77] # [7b] = 1 + (97200 * noun + 147324) = 97200 * noun + 147325 007c : 01 7b 0d 7f : [7f] ← [7b] + [0d] # [7f] = (97200 * noun + 147325) + 5 = 97200 * noun + 147330 0080 : 01 7f 05 83 : [83] ← [7f] + [05] # [83] = (97200 * noun + 147330) + 1 = 97200 * noun + 147331 0084 : 01 06 83 87 : [87] ← [06] + [83] # [87] = 2 + (97200 * noun + 147331) = 97200 * noun + 147333 0088 : 02 87 0d 8b : [8b] ← [87] * [0d] # [8b] = 5 * (97200 * noun + 147333) = 486000 * noun + 736665 008c : 01 8b 02 8f : [8f] ← [8b] + [02] # [8f] = (486000 * noun + 736665) + verb 0090 : 01 8f 0a 00 : [00] ← [8f] + [0a] # [00] = (486000 * noun + 736665 + verb) + 4 = 486000 * noun + 736669 + verb 0094 : 63 02 00 0e : HALT Code actually computes: 486000 * noun + 736669 + verb """
47.271186
425
0.492829
5d99108d1ab4d830bc4c959927f26ac740cc69b3
6,265
py
Python
wb/main/console_tool_wrapper/sh_tools/tools.py
apaniukov/workbench
2f2653ecfd0143d2d53e33ad84379f13443fdfaa
[ "Apache-2.0" ]
23
2022-03-17T12:24:09.000Z
2022-03-31T09:13:30.000Z
wb/main/console_tool_wrapper/sh_tools/tools.py
apaniukov/workbench
2f2653ecfd0143d2d53e33ad84379f13443fdfaa
[ "Apache-2.0" ]
18
2022-03-21T08:17:44.000Z
2022-03-30T12:42:30.000Z
wb/main/console_tool_wrapper/sh_tools/tools.py
apaniukov/workbench
2f2653ecfd0143d2d53e33ad84379f13443fdfaa
[ "Apache-2.0" ]
16
2022-03-17T12:24:14.000Z
2022-03-31T12:15:12.000Z
""" OpenVINO DL Workbench Class for parameters of standard bash tools: rm, mkdir e.t.c. Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import re from typing import Match from wb.main.console_tool_wrapper.console_parameter_validator import ConsoleParametersTypes from wb.main.console_tool_wrapper.console_tool import ConsoleTool class ShTool(ConsoleTool): def __init__(self, command: str, parameters: list = None, environment: dict = None): super().__init__(parameters, environment) self.exe = command self.parameter_prefix = '-' def set_openvino_package_root_parameter(self, value: str): self.set_parameter(name='openvino-package-root', value=value, parameter_type=ConsoleParametersTypes.path) # pylint: disable=invalid-name class SetupTargetToolResult: os: str has_root_privileges: bool has_internet_connection: bool python_version: str pip_version: str home_directory: str cpu_full_name: str cpu_cores_number: int cpu_frequency: str class SetupTargetTool(ShTool): has_internet_connection = re.compile(r'(The target has internet connection\.)') has_root_privileges = re.compile(r'(The current user has root privileges\.)') python_found_message = re.compile(r'(?:Python (?P<python_version>\d\.\d) is supported\.)') pip_found_message = re.compile(r'(?:Pip (?P<pip_version>(\d.?)+) is supported\.)') os_message = re.compile(r'(?:(?P<os>.*) is supported\.)') home_directory_message = re.compile(r'(?:The home directory is (?P<home_directory>\/([\w]+\/?)+)\.)') full_cpu_name_message = re.compile(r'(?:Full CPU name is (?P<cpu_name>.*))') cpu_cores_message = re.compile(r'(?:CPU cores number: (?P<cpu_cores>\d))') cpu_frequency_range_message = re.compile(r'(?:CPU frequency range: (?P<cpu_frequency>\d\.\d(-\d\.\d)?\sGHz))') @staticmethod def parse_tool_output(output: str) -> SetupTargetToolResult: result = SetupTargetToolResult() result.has_internet_connection = bool(SetupTargetTool.has_internet_connection.findall(output)) result.has_root_privileges = bool(SetupTargetTool.has_root_privileges.findall(output)) python_found_message: Match = SetupTargetTool.python_found_message.search(output) result.python_version = python_found_message.group('python_version') if python_found_message else None pip_found_message: Match = SetupTargetTool.pip_found_message.search(output) result.pip_version = pip_found_message.group('pip_version') if pip_found_message else None os_message: Match = SetupTargetTool.os_message.search(output) result.os = os_message.group('os') if os_message else None home_directory_message: Match = SetupTargetTool.home_directory_message.search(output) result.home_directory = home_directory_message.group('home_directory') if home_directory_message else None full_cpu_name_message: Match = SetupTargetTool.full_cpu_name_message.search(output) result.cpu_full_name = full_cpu_name_message.group('cpu_name') cpu_cores_message: Match = SetupTargetTool.cpu_cores_message.search(output) result.cpu_cores_number = int(cpu_cores_message.group('cpu_cores')) cpu_frequency_range_message: Match = SetupTargetTool.cpu_frequency_range_message.search(output) result.cpu_frequency = cpu_frequency_range_message.group('cpu_frequency') return result class PingTargetTool(ShTool): def set_output_path_parameter(self, value: str): self.set_parameter(name='output', value=value, parameter_type=ConsoleParametersTypes.path) @property def get_output_parameter_value(self) -> str: return self.get_parameter_value('output') class TarGzTool(ConsoleTool): def __init__(self, archive_path: str, destination_path: str = None): super().__init__([ dict(name='xfp', value=archive_path, parameter_type=ConsoleParametersTypes.path) ]) self.exe = 'tar' self.parameter_prefix = '' if destination_path: self.set_parameter(name='-C', value=destination_path, parameter_type=ConsoleParametersTypes.path) class ZIPTool(ConsoleTool): def __init__(self, archive_path: str, destination_path: str): super().__init__([ dict(name='o', value=archive_path, parameter_type=ConsoleParametersTypes.path), dict(name='d', value=destination_path, parameter_type=ConsoleParametersTypes.path) ]) self.exe = 'unzip' class RMTool(ConsoleTool): def __init__(self, path: str): super().__init__([ dict(name='rf', value=path, parameter_type=ConsoleParametersTypes.path) ]) self.exe = 'rm' class MKDirTool(ConsoleTool): def __init__(self, path: str): super().__init__([ dict(name='p', value=path, parameter_type=ConsoleParametersTypes.path) ]) self.exe = 'mkdir' class EchoTool(ConsoleTool): def __init__(self, string: str): super().__init__([ dict(name='', value=string, parameter_type=ConsoleParametersTypes.echo) ]) self.exe = 'echo' @property def console_command(self) -> str: self.validate() params = ' '.join([param.value for param in self.params]) return '{exe} "{params}"'.format(exe=self.exe, params=params) class KillTool(ConsoleTool): def __init__(self, tool: ConsoleTool): super().__init__() process_to_kill = tool.console_command self.exe = ' | '.join(('ps axf', f'grep "{process_to_kill}"', 'grep -v grep', 'awk \'{print "kill -9 " $1}\' | sh'))
40.419355
114
0.698962
17aa5f0d1e2f6d19dc4000a2824d43dfdb9ec848
1,263
py
Python
line_detection_module/yolov5/TabDetectDewarp/tab_det.py
nhatnxn/ID_Passport-OCR
78322ec2b9648d0b027326dced7c4aec967bcab3
[ "MIT" ]
1
2021-06-30T11:01:25.000Z
2021-06-30T11:01:25.000Z
line_detection_module/yolov5/TabDetectDewarp/tab_det.py
nhatnxn/ID_Passport-OCR
78322ec2b9648d0b027326dced7c4aec967bcab3
[ "MIT" ]
null
null
null
line_detection_module/yolov5/TabDetectDewarp/tab_det.py
nhatnxn/ID_Passport-OCR
78322ec2b9648d0b027326dced7c4aec967bcab3
[ "MIT" ]
null
null
null
import cv2 import numpy as np from .utils import increase_border from .yolov5 import inference, polygon_from_corners def detect_bbox(im): """detect 9 information box Args: im (np.array): input image Returns: dict: { 'address_line_1': [x,y,w,h] 'address_line_2': [x,y,w,h] 'birthday': [x,y,w,h] 'hometown_line_1': [x,y,w,h] 'hometown_line_2': [x,y,w,h] 'id': [x,y,w,h] 'name': [x,y,w,h] 'nation': [x,y,w,h] 'sex': [x,y,w,h] } """ PADDING_SIZE = 0 info = {} list_dict = ['address_line_1','address_line_2', 'birthday', 'hometown_line_1', 'hometown_line_2', 'id', 'name', 'nation', 'sex', 'passport'] # check input if im is None: return [] target = inference(im) pts = polygon_from_corners(target) # pts = pts.astype(int) # infs = increase_border(pts, PADDING_SIZE) for i, inf in enumerate(pts): info[list_dict[i]] = inf # in = [(int(p[0]), int(p[1])) for p in corners] return info
25.77551
150
0.471892
ced1a8d5d6d7d1b8843b901cb076f2549b904e4e
1,638
py
Python
VB_Classes/pointPolygonTest_demo.py
bobdavies2000/OpenCVB
1d339a94643a97e2d34f82dc7776677a8566d71d
[ "MIT" ]
69
2019-07-17T21:20:37.000Z
2022-03-23T08:38:03.000Z
VB_Classes/pointPolygonTest_demo.py
bobdavies2000/OpenCVB
1d339a94643a97e2d34f82dc7776677a8566d71d
[ "MIT" ]
5
2021-02-05T05:48:50.000Z
2022-03-12T01:43:15.000Z
VB_Classes/pointPolygonTest_demo.py
bobdavies2000/OpenCVB
1d339a94643a97e2d34f82dc7776677a8566d71d
[ "MIT" ]
6
2019-12-24T05:36:52.000Z
2021-02-19T15:55:13.000Z
import cv2 as cv import numpy as np titleWindow = 'PointPolygonTest_demo.py' # Create an image r = 100 src = np.zeros((4*r, 4*r), dtype=np.uint8) # Create a sequence of points to make a contour vert = [None]*6 vert[0] = (3*r//2, int(1.34*r)) vert[1] = (1*r, 2*r) vert[2] = (3*r//2, int(2.866*r)) vert[3] = (5*r//2, int(2.866*r)) vert[4] = (3*r, 2*r) vert[5] = (5*r//2, int(1.34*r)) # Draw it in src for i in range(6): cv.line(src, vert[i], vert[(i+1)%6], ( 255 ), 3) # Get the contours contours, _ = cv.findContours(src, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) # Calculate the distances to the contour raw_dist = np.empty(src.shape, dtype=np.float32) for i in range(src.shape[0]): for j in range(src.shape[1]): raw_dist[i,j] = cv.pointPolygonTest(contours[0], (j,i), True) minVal, maxVal, _, maxDistPt = cv.minMaxLoc(raw_dist) minVal = abs(minVal) maxVal = abs(maxVal) # Depicting the distances graphically drawing = np.zeros((src.shape[0], src.shape[1], 3), dtype=np.uint8) for i in range(src.shape[0]): for j in range(src.shape[1]): if raw_dist[i,j] < 0: drawing[i,j,0] = 255 - abs(raw_dist[i,j]) * 255 / minVal elif raw_dist[i,j] > 0: drawing[i,j,2] = 255 - raw_dist[i,j] * 255 / maxVal else: drawing[i,j,0] = 255 drawing[i,j,1] = 255 drawing[i,j,2] = 255 cv.circle(drawing,maxDistPt, int(maxVal),255, 1, cv.LINE_8, 0) dst2 = np.zeros((src.shape[0], src.shape[1], 3), dtype=np.uint8) cv.cvtColor(src, cv.COLOR_GRAY2BGR, dst2) CombinedImages = cv.hconcat([dst2, drawing]) cv.imshow(titleWindow, CombinedImages) cv.waitKey()
30.333333
72
0.626984
4196a1bcd558b70f0e0c2c625bdf122ac0a4e41a
164
py
Python
blueprints/blue.py
Night-Developer/Flask-Simple-Structure
84f408c2e56427e45482e4edfab72d1d07214522
[ "MIT" ]
1
2021-01-24T03:07:19.000Z
2021-01-24T03:07:19.000Z
blueprints/blue.py
Night-Developer/Flask-Simple-Structure
84f408c2e56427e45482e4edfab72d1d07214522
[ "MIT" ]
null
null
null
blueprints/blue.py
Night-Developer/Flask-Simple-Structure
84f408c2e56427e45482e4edfab72d1d07214522
[ "MIT" ]
1
2020-12-04T13:41:01.000Z
2020-12-04T13:41:01.000Z
from flask import Blueprint blueprint = Blueprint('blueprint',__name__,template_folder='templates') @blueprint.route('/') def show(): return 'Hola blue print'
23.428571
71
0.75
a65a525f8c913ccbb2cf7ade73697a2418e79714
4,053
py
Python
code_search/function_parser/parsers/java_parser.py
novoselrok/codesnippetsearch
11310a8bfc9553df86dd98b120306159fd030b28
[ "MIT" ]
70
2020-05-13T23:43:25.000Z
2022-03-07T07:41:54.000Z
code_search/function_parser/parsers/java_parser.py
novoselrok/codesnippetsearch
11310a8bfc9553df86dd98b120306159fd030b28
[ "MIT" ]
18
2020-05-14T13:59:42.000Z
2022-02-27T09:37:01.000Z
code_search/function_parser/parsers/java_parser.py
novoselrok/codesnippetsearch
11310a8bfc9553df86dd98b120306159fd030b28
[ "MIT" ]
5
2020-05-14T18:13:45.000Z
2022-01-03T07:32:33.000Z
from typing import List, Dict, Any from code_search.function_parser.parsers.language_parser import LanguageParser, match_from_span, tokenize_code from code_search.function_parser.parsers.comment_utils import strip_c_style_comment_delimiters, get_docstring_summary class JavaParser(LanguageParser): BLACKLISTED_FUNCTION_NAMES = {'toString', 'hashCode', 'equals', 'finalize', 'notify', 'notifyAll', 'clone'} @staticmethod def get_definitions(tree, blob: str) -> List[Dict[str, Any]]: classes = (node for node in tree.root_node.children if node.type == 'class_declaration') definitions = [] for class_ in classes: class_identifier = match_from_span( [child for child in class_.children if child.type == 'identifier'][0], blob).strip() for child in (child for child in class_.children if child.type == 'class_body'): for idx, node in enumerate(child.children): if node.type == 'method_declaration': if JavaParser.is_method_body_empty(node): continue docstring = '' if idx - 1 >= 0 and child.children[idx - 1].type == 'comment': docstring = match_from_span(child.children[idx - 1], blob) docstring = strip_c_style_comment_delimiters(docstring) docstring_summary = get_docstring_summary(docstring) metadata = JavaParser.get_function_metadata(node, blob) if metadata['identifier'] in JavaParser.BLACKLISTED_FUNCTION_NAMES: continue definitions.append({ 'type': node.type, 'identifier': '{}.{}'.format(class_identifier, metadata['identifier']), 'parameters': metadata['parameters'], 'function': match_from_span(node, blob), 'function_tokens': tokenize_code(node, blob), 'docstring': docstring, 'docstring_summary': docstring_summary, 'start_point': node.start_point, 'end_point': node.end_point }) return definitions @staticmethod def get_class_metadata(class_node, blob: str) -> Dict[str, str]: metadata = { 'identifier': '', 'argument_list': '', } is_header = False for n in class_node.children: if is_header: if n.type == 'identifier': metadata['identifier'] = match_from_span(n, blob).strip('(:') elif n.type == 'argument_list': metadata['argument_list'] = match_from_span(n, blob) if n.type == 'class': is_header = True elif n.type == ':': break return metadata @staticmethod def is_method_body_empty(node): for c in node.children: if c.type in {'method_body', 'constructor_body'}: if c.start_point[0] == c.end_point[0]: return True @staticmethod def get_function_metadata(function_node, blob: str) -> Dict[str, str]: metadata = { 'identifier': '', 'parameters': '', } parameters = [] for n in function_node.children: if n.type == 'identifier': metadata['identifier'] = match_from_span(n, blob).strip('(') elif n.type == 'formal_parameters': for fp_child in n.children: if fp_child.type == 'formal_parameter': parameters.append(match_from_span(fp_child, blob)) metadata['parameters'] = ' '.join(parameters) return metadata
45.033333
118
0.529484
978bdea54598603b38b4c5f214b75968d19f8bbe
3,160
py
Python
foxylib/tools/function/function_tool.py
lbox-kr/foxylib
0c3cf236392a6ee639fe919e06dc68cc47812fcd
[ "BSD-3-Clause" ]
null
null
null
foxylib/tools/function/function_tool.py
lbox-kr/foxylib
0c3cf236392a6ee639fe919e06dc68cc47812fcd
[ "BSD-3-Clause" ]
1
2021-05-18T07:08:09.000Z
2021-05-18T07:08:09.000Z
foxylib/tools/function/function_tool.py
lbox-kr/foxylib
0c3cf236392a6ee639fe919e06dc68cc47812fcd
[ "BSD-3-Clause" ]
null
null
null
import inspect import logging import time from functools import wraps, reduce from future.utils import lfilter from nose.tools import assert_equal from foxylib.tools.native.class_tool import ClassTool class FunctionTool: @classmethod def returnvalue2func_simple(cls, rv): return lambda: rv @classmethod def returnvalue2func(cls, rv): def f(*_,**__): return rv return f @classmethod def func2cls(cls, meth): if inspect.ismethod(meth): for clazz in inspect.getmro(meth.__self__.__class__): if clazz.__dict__.get(meth.__name__) is meth: return clazz meth = meth.__func__ # fallback to __qualname__ parsing if inspect.isfunction(meth): str_path = meth.__qualname__.split('.<locals>', 1)[0].rsplit('.', 1)[0] clazz = reduce(getattr, str_path.split('.'), inspect.getmodule(meth),) if isinstance(clazz, type): return clazz return None @classmethod def func2name(cls, f): return f.__name__ @classmethod def func2class_func_name_list(cls, f): l = [] clazz = FunctionTool.func2cls(f) if clazz: l.append(ClassTool.cls2name(clazz)) l.append(FunctionTool.func2name(f)) return l @classmethod def func2class_func_name(cls, f): return ".".join(cls.func2class_func_name_list(f)) @classmethod def wrap2negate(cls, f): def wrapped(*a, **k): return not f(*a, **k) return wrapped @classmethod def func2wrapped(cls, f): def wrapped(*_, **__): return f(*_, **__) return wrapped @classmethod def wrapper2wraps_applied(cls, wrapper_in): def wrapper(f): return wraps(f)(cls.func2wrapped(wrapper_in(f))) return wrapper @classmethod def f_args2f_tuple(cls, f_args): def f_tuple(args, **kwargs): return f_args(*args, **kwargs) return f_tuple @classmethod def funcs2piped(cls, funcs): if not funcs: raise Exception() def f(*args, **kwargs): v_init = funcs[0](*args, **kwargs) v = reduce(lambda x, f: f(x), funcs[1:], v_init) return v return f @classmethod def funcs2f_all(cls, f_list): def f_all(*_, **__): return all(f(*_,**__) for f in f_list) return f_all @classmethod def funcs2any(cls, f_list): def f_any(*_, **__): return all(f(*_, **__) for f in f_list) return f_any @classmethod def idfun(cls, x): return x @classmethod def func2module_qualname(cls, f): return tuple([getattr(f, k) for k in ["__module__", "__qualname__"]]) @classmethod def func2fullpath(cls, f): return ".".join(cls.func2module_qualname(f)) wrap2negate = FunctionTool.wrap2negate f_a2t = FunctionTool.f_args2f_tuple funcs2piped = FunctionTool.funcs2piped idfun = FunctionTool.idfun funcs2f_all = FunctionTool.funcs2f_all rv2f0 = FunctionTool.returnvalue2func_simple rv2f = FunctionTool.returnvalue2func
24.6875
83
0.616456
c08fa755ceae3b80d171e18b562167143c1e735a
5,106
py
Python
classifiers/DL_classifier.py
LANZhengyang/TSC_gait_analysis
1b7b0ac8e2ee202acb06cd999e156941420c294c
[ "MIT" ]
null
null
null
classifiers/DL_classifier.py
LANZhengyang/TSC_gait_analysis
1b7b0ac8e2ee202acb06cd999e156941420c294c
[ "MIT" ]
null
null
null
classifiers/DL_classifier.py
LANZhengyang/TSC_gait_analysis
1b7b0ac8e2ee202acb06cd999e156941420c294c
[ "MIT" ]
null
null
null
import pytorch_lightning as pl from pytorch_lightning.callbacks.early_stopping import EarlyStopping from pytorch_lightning.callbacks import ModelCheckpoint import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.data import Dataset from torch.utils.data import DataLoader import imp LRP = imp.load_source('LRP', './LRP/__init__.py') from LRP.lrp import LRP import copy class Dataset_torch(Dataset): def __init__(self, data,with_label=True): self.with_label = with_label if self.with_label: self.data_x, self.data_y = data else: self.data_x = data def __len__(self): return len(self.data_x) def __getitem__(self, idx): if self.with_label: return self.data_x[idx], self.data_y[idx] else: return self.data_x[idx] class DL_classifier: def __init__(self,model): self.model = model def load(self,model_dir): self.model = self.model.load_from_checkpoint(model_dir) return self def fit(self, x_train, y_train, x_val, y_val, batch_size, earlystopping=False, et_patience=10, max_epochs=50, gpu = [0], default_root_dir=None): train_set = Dataset_torch([x_train, y_train]) test_set = Dataset_torch([x_val, y_val]) data_loader_train = torch.utils.data.DataLoader(dataset=train_set, batch_size=batch_size,shuffle=True,num_workers=4) data_loader_test = torch.utils.data.DataLoader(dataset=test_set, batch_size=batch_size,shuffle=True,num_workers=4) if not earlystopping: self.trainer = pl.Trainer( gpus=gpu,max_epochs= max_epochs, default_root_dir= default_root_dir) elif earlystopping: early_stop_callback = EarlyStopping( monitor='test_loss', min_delta=0.00, patience=et_patience, verbose=True) self.trainer = pl.Trainer(gpus=gpu,max_epochs= max_epochs, callbacks=[early_stop_callback], default_root_dir=default_root_dir) self.trainer.fit(self.model, data_loader_train, data_loader_test) def predict(self, x_pred, batch_size,gpu=[0]): pred_set = Dataset_torch(x_pred,with_label=False) data_loader_pred = torch.utils.data.DataLoader(dataset=pred_set, batch_size=batch_size,num_workers=4) trainer = pl.Trainer(gpus=gpu) pred = trainer.predict(model=self.model,dataloaders = data_loader_pred) y_pre = torch.tensor([torch.argmax(i) for i in torch.cat(pred)]) return y_pre def compute_LRP(self,x_test,y_test, rule='z_rule_no_bias'): model = self.model model = model.eval() lrp = LRP(model.double(), rule=rule) index_one = np.where(y_test==1)[0] index_zero = np.where(y_test==0)[0] pred_set_label_zero = Dataset_torch([x_test[index_zero],y_test[index_zero]]) data_loader_pred_label_zero = torch.utils.data.DataLoader(dataset=pred_set_label_zero, batch_size=1,num_workers=4) relevance_list_label_zero = [] for num, (image, label) in enumerate(data_loader_pred_label_zero): relevance_list_label_zero.append(lrp(image).cpu().detach().numpy()[0]) relevance_list_label_zero = np.array(relevance_list_label_zero) r_mean_label_zero = np.mean(relevance_list_label_zero,axis=0) d_mean_label_zero = np.mean(x_test[index_zero],axis=0) max_mean_index_zero = np.max(r_mean_label_zero) min_mean_index_zero = np.min(r_mean_label_zero) pred_set_label_one = Dataset_torch((x_test[index_one],y_test[index_one])) data_loader_pred_label_one = torch.utils.data.DataLoader(dataset=pred_set_label_one, batch_size=1,num_workers=4) relevance_list_label_one = [] for num, (image, label) in enumerate(data_loader_pred_label_one): relevance_list_label_one.append(lrp(image).cpu().detach().numpy()[0]) relevance_list_label_one = np.array(relevance_list_label_one) r_mean_label_one = np.mean(relevance_list_label_one,axis=0) d_mean_label_one = np.mean(x_test[index_one],axis=0) max_mean_index_one = np.max(r_mean_label_one) min_mean_index_one = np.min(r_mean_label_one) lim_max = np.max([max_mean_index_one,max_mean_index_zero]) lim_min = np.min([min_mean_index_one,min_mean_index_zero]) return relevance_list_label_zero, relevance_list_label_one, r_mean_label_zero, r_mean_label_one, d_mean_label_zero, d_mean_label_one, lim_min, lim_max
40.848
162
0.639444
65024524ef5bb3e97b6cfecb4a291cec33e891d3
16,924
py
Python
alfworld/agents/agent/vision_dagger_agent.py
zhaozj89/alfworld_meta_dqn
4ad3ee6e57a6b808d4d90d48f00f14e4e8ec593d
[ "MIT" ]
42
2020-10-19T12:18:58.000Z
2022-03-11T05:48:03.000Z
alfworld/agents/agent/vision_dagger_agent.py
zhaozj89/alfworld_meta_dqn
4ad3ee6e57a6b808d4d90d48f00f14e4e8ec593d
[ "MIT" ]
23
2020-10-26T01:25:36.000Z
2022-03-20T21:29:03.000Z
alfworld/agents/agent/vision_dagger_agent.py
zhaozj89/alfworld_meta_dqn
4ad3ee6e57a6b808d4d90d48f00f14e4e8ec593d
[ "MIT" ]
14
2020-10-19T12:20:27.000Z
2022-02-09T22:58:40.000Z
import os import sys import copy import numpy as np import torch import torch.nn.functional as F import alfworld.agents import alfworld.agents.modules.memory as memory from alfworld.agents.agent import TextDAggerAgent from alfworld.agents.modules.generic import to_np, to_pt, _words_to_ids, pad_sequences, preproc, max_len, ez_gather_dim_1, LinearSchedule from alfworld.agents.modules.layers import NegativeLogLoss, masked_mean, compute_mask from alfworld.agents.detector.mrcnn import load_pretrained_model import torchvision.transforms as T from torchvision import models from torchvision.ops import boxes as box_ops class VisionDAggerAgent(TextDAggerAgent): ''' Vision Agent trained with DAgger ''' def __init__(self, config): super().__init__(config) assert self.action_space == "generation" self.use_gpu = config['general']['use_cuda'] self.transform = T.Compose([T.ToTensor()]) # choose vision model self.vision_model_type = config['vision_dagger']['model_type'] self.use_exploration_frame_feats = config['vision_dagger']['use_exploration_frame_feats'] self.sequence_aggregation_method = config['vision_dagger']['sequence_aggregation_method'] # initialize model if self.vision_model_type in {'resnet'}: self.detector = models.resnet18(pretrained=True) self.detector.eval() if self.use_gpu: self.detector.cuda() elif self.vision_model_type in {'maskrcnn', 'maskrcnn_whole'}: pretrained_model_path = config['mask_rcnn']['pretrained_model_path'] self.mask_rcnn_top_k_boxes = self.config['vision_dagger']['maskrcnn_top_k_boxes'] self.avg2dpool = torch.nn.AvgPool2d((13, 13)) self.detector = load_pretrained_model(pretrained_model_path) self.detector.roi_heads.register_forward_hook(self.box_features_hook) self.detection_box_features = [] self.fpn_pooled_features = [] self.detector.eval() if self.use_gpu: self.detector.cuda() elif self.vision_model_type in {"no_vision"}: print("No Vision Agent") else: raise NotImplementedError() def box_features_hook(self, module, input, output): ''' hook for extracting features from MaskRCNN ''' features, proposals, image_shapes, targets = input box_features = module.box_roi_pool(features, proposals, image_shapes) box_features = module.box_head(box_features) class_logits, box_regression = module.box_predictor(box_features) device = class_logits.device num_classes = class_logits.shape[-1] boxes_per_image = [len(boxes_in_image) for boxes_in_image in proposals] pred_boxes = module.box_coder.decode(box_regression, proposals) pred_scores = F.softmax(class_logits, -1) # split boxes and scores per image pred_boxes = pred_boxes.split(boxes_per_image, 0) pred_scores = pred_scores.split(boxes_per_image, 0) all_boxes = [] all_scores = [] all_labels = [] all_keeps = [] for boxes, scores, image_shape in zip(pred_boxes, pred_scores, image_shapes): boxes = box_ops.clip_boxes_to_image(boxes, image_shape) # create labels for each prediction labels = torch.arange(num_classes, device=device) labels = labels.view(1, -1).expand_as(scores) # remove predictions with the background label boxes = boxes[:, 1:] scores = scores[:, 1:] labels = labels[:, 1:] # batch everything, by making every class prediction be a separate instance boxes = boxes.reshape(-1, 4) scores = scores.flatten() labels = labels.flatten() # remove low scoring boxes inds = torch.nonzero(scores > module.score_thresh).squeeze(1) boxes, scores, labels = boxes[inds], scores[inds], labels[inds] # remove empty boxes keep = box_ops.remove_small_boxes(boxes, min_size=1e-2) boxes, scores, labels = boxes[keep], scores[keep], labels[keep] # non-maximum suppression, independently done per class keep = box_ops.batched_nms(boxes, scores, labels, module.nms_thresh) # keep only topk scoring predictions keep = keep[:self.mask_rcnn_top_k_boxes] boxes, scores, labels = boxes[keep], scores[keep], labels[keep] all_boxes.append(boxes) all_scores.append(scores) all_labels.append(labels) all_keeps.append(keep) box_features_per_image = [] for keep in all_keeps: box_features_per_image.append(box_features[keep]) self.detection_box_features = box_features_per_image self.fpn_pooled_features = self.avg2dpool(features['pool']).squeeze(-1).squeeze(-1) # visual features for state representation def extract_visual_features(self, images): with torch.no_grad(): if "resnet" in self.vision_model_type: image_tensors = [self.transform(i).cuda() if self.use_gpu else self.transform() for i in images] image_tensors = torch.stack(image_tensors, dim=0) res_out = self.detector(image_tensors) res_out_list = [res_out[i].unsqueeze(0) for i in range(res_out.shape[0])] return res_out_list elif "maskrcnn" in self.vision_model_type: image_tensors = [self.transform(i).cuda() if self.use_gpu else self.transform(i) for i in images] self.detector(image_tensors) # hook writes to self.detection_box_features if "maskrcnn_whole" in self.vision_model_type: return [i.unsqueeze(0) for i in self.fpn_pooled_features] else: return self.detection_box_features elif "no_vision" in self.vision_model_type: batch_size = len(images) zeros = [torch.zeros((1, 1000)) for _ in range(batch_size)] if self.use_gpu: zeros = [z.cuda() for z in zeros] return zeros else: raise NotImplementedError() # without recurrency def train_dagger(self): if len(self.dagger_memory) < self.dagger_replay_batch_size: return None transitions = self.dagger_memory.sample(self.dagger_replay_batch_size) if transitions is None: return None batch = memory.dagger_transition(*zip(*transitions)) if self.action_space == "generation": return self.command_generation_teacher_force(batch.observation_list, batch.task_list, batch.target_list) else: raise NotImplementedError() # with recurrency def train_dagger_recurrent(self): if len(self.dagger_memory) < self.dagger_replay_batch_size: return None sequence_of_transitions, contains_first_step = self.dagger_memory.sample_sequence(self.dagger_replay_batch_size, self.dagger_replay_sample_history_length) if sequence_of_transitions is None: return None batches = [] for transitions in sequence_of_transitions: batch = memory.dagger_transition(*zip(*transitions)) batches.append(batch) if self.action_space == "generation": return self.command_generation_recurrent_teacher_force([batch.observation_list for batch in batches], [batch.task_list for batch in batches], [batch.target_list for batch in batches], contains_first_step) else: raise NotImplementedError() def command_generation_teacher_force(self, observation_feats, task_desc_strings, target_strings): input_target_strings = [" ".join(["[CLS]"] + item.split()) for item in target_strings] output_target_strings = [" ".join(item.split() + ["[SEP]"]) for item in target_strings] batch_size = len(observation_feats) aggregated_obs_feat = self.aggregate_feats_seq(observation_feats) h_obs = self.online_net.vision_fc(aggregated_obs_feat) h_td, td_mask = self.encode(task_desc_strings, use_model="online") h_td_mean = self.online_net.masked_mean(h_td, td_mask).unsqueeze(1) h_obs = h_obs.to(h_td_mean.device) vision_td = torch.cat((h_obs, h_td_mean), dim=1) # batch x k boxes x hi vision_td_mask = torch.ones((batch_size, h_obs.shape[1]+h_td_mean.shape[1])).to(h_td_mean.device) input_target = self.get_word_input(input_target_strings) ground_truth = self.get_word_input(output_target_strings) # batch x target_length target_mask = compute_mask(input_target) # mask of ground truth should be the same pred = self.online_net.vision_decode(input_target, target_mask, vision_td, vision_td_mask, None) # batch x target_length x vocab batch_loss = NegativeLogLoss(pred * target_mask.unsqueeze(-1), ground_truth, target_mask, smoothing_eps=self.smoothing_eps) loss = torch.mean(batch_loss) if loss is None: return None, None # Backpropagate self.online_net.zero_grad() self.optimizer.zero_grad() loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. torch.nn.utils.clip_grad_norm_(self.online_net.parameters(), self.clip_grad_norm) self.optimizer.step() # apply gradients return to_np(pred), to_np(loss) def command_generation_recurrent_teacher_force(self, seq_observation_feats, seq_task_desc_strings, seq_target_strings, contains_first_step=False): loss_list = [] previous_dynamics = None batch_size = len(seq_observation_feats[0]) h_td, td_mask = self.encode(seq_task_desc_strings[0], use_model="online") h_td_mean = self.online_net.masked_mean(h_td, td_mask).unsqueeze(1) for step_no in range(self.dagger_replay_sample_history_length): input_target_strings = [" ".join(["[CLS]"] + item.split()) for item in seq_target_strings[step_no]] output_target_strings = [" ".join(item.split() + ["[SEP]"]) for item in seq_target_strings[step_no]] obs = [o.to(h_td.device) for o in seq_observation_feats[step_no]] aggregated_obs_feat = self.aggregate_feats_seq(obs) h_obs = self.online_net.vision_fc(aggregated_obs_feat) vision_td = torch.cat((h_obs, h_td_mean), dim=1) # batch x k boxes x hid vision_td_mask = torch.ones((batch_size, h_obs.shape[1]+h_td_mean.shape[1])).to(h_td_mean.device) averaged_vision_td_representation = self.online_net.masked_mean(vision_td, vision_td_mask) current_dynamics = self.online_net.rnncell(averaged_vision_td_representation, previous_dynamics) if previous_dynamics is not None else self.online_net.rnncell(averaged_vision_td_representation) input_target = self.get_word_input(input_target_strings) ground_truth = self.get_word_input(output_target_strings) # batch x target_length target_mask = compute_mask(input_target) # mask of ground truth should be the same pred = self.online_net.vision_decode(input_target, target_mask, vision_td, vision_td_mask, current_dynamics) # batch x target_length x vocab previous_dynamics = current_dynamics if (not contains_first_step) and step_no < self.dagger_replay_sample_update_from: previous_dynamics = previous_dynamics.detach() continue batch_loss = NegativeLogLoss(pred * target_mask.unsqueeze(-1), ground_truth, target_mask, smoothing_eps=self.smoothing_eps) loss = torch.mean(batch_loss) loss_list.append(loss) loss = torch.stack(loss_list).mean() if loss is None: return None # Backpropagate self.online_net.zero_grad() self.optimizer.zero_grad() loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. torch.nn.utils.clip_grad_norm_(self.online_net.parameters(), self.clip_grad_norm) self.optimizer.step() # apply gradients return to_np(loss) def command_generation_greedy_generation(self, observation_feats, task_desc_strings, previous_dynamics): with torch.no_grad(): batch_size = len(observation_feats) aggregated_obs_feat = self.aggregate_feats_seq(observation_feats) h_obs = self.online_net.vision_fc(aggregated_obs_feat) h_td, td_mask = self.encode(task_desc_strings, use_model="online") h_td_mean = self.online_net.masked_mean(h_td, td_mask).unsqueeze(1) h_obs = h_obs.to(h_td_mean.device) vision_td = torch.cat((h_obs, h_td_mean), dim=1) # batch x k boxes x hid vision_td_mask = torch.ones((batch_size, h_obs.shape[1]+h_td_mean.shape[1])).to(h_td_mean.device) if self.recurrent: averaged_vision_td_representation = self.online_net.masked_mean(vision_td, vision_td_mask) current_dynamics = self.online_net.rnncell(averaged_vision_td_representation, previous_dynamics) if previous_dynamics is not None else self.online_net.rnncell(averaged_vision_td_representation) else: current_dynamics = None # greedy generation input_target_list = [[self.word2id["[CLS]"]] for i in range(batch_size)] eos = np.zeros(batch_size) for _ in range(self.max_target_length): input_target = copy.deepcopy(input_target_list) input_target = pad_sequences(input_target, maxlen=max_len(input_target)).astype('int32') input_target = to_pt(input_target, self.use_cuda) target_mask = compute_mask(input_target) # mask of ground truth should be the same pred = self.online_net.vision_decode(input_target, target_mask, vision_td, vision_td_mask, current_dynamics) # batch x target_length x vocab # pointer softmax pred = to_np(pred[:, -1]) # batch x vocab pred = np.argmax(pred, -1) # batch for b in range(batch_size): new_stuff = [pred[b]] if eos[b] == 0 else [] input_target_list[b] = input_target_list[b] + new_stuff if pred[b] == self.word2id["[SEP]"]: eos[b] = 1 if np.sum(eos) == batch_size: break res = [self.tokenizer.decode(item) for item in input_target_list] res = [item.replace("[CLS]", "").replace("[SEP]", "").strip() for item in res] res = [item.replace(" in / on ", " in/on " ) for item in res] return res, current_dynamics def get_vision_feat_mask(self, observation_feats): batch_size = len(observation_feats) num_vision_feats = [of.shape[0] for of in observation_feats] max_feat_len = max(num_vision_feats) mask = torch.zeros((batch_size, max_feat_len)) for b, num_vision_feat in enumerate(num_vision_feats): mask[b,:num_vision_feat] = 1 return mask def extract_exploration_frame_feats(self, exploration_frames): exploration_frame_feats = [] for batch in exploration_frames: ef_feats = [] for image in batch: ef_feats.append(self.extract_visual_features([image])[0]) # cat_feats = torch.cat(ef_feats, dim=0) max_feat_len = max([f.shape[0] for f in ef_feats]) stacked_feats = self.online_net.vision_fc.pad_and_stack(ef_feats, max_feat_len=max_feat_len) stacked_feats = stacked_feats.view(-1, self.online_net.vision_fc.in_features) exploration_frame_feats.append(stacked_feats) return exploration_frame_feats def aggregate_feats_seq(self, feats): if self.sequence_aggregation_method == "sum": return [f.sum(0).unsqueeze(0) for f in feats] elif self.sequence_aggregation_method == "average": return [f.mean(0).unsqueeze(0) for f in feats] elif self.sequence_aggregation_method == "rnn": max_feat_len = max([f.shape[0] for f in feats]) feats_stack = self.online_net.vision_fc.pad_and_stack(feats, max_feat_len=max_feat_len) feats_h, feats_c = self.online_net.vision_feat_seq_rnn(feats_stack) aggregated_feats = feats_h[:,0,:].unsqueeze(1) return [b for b in aggregated_feats] else: raise ValueError("sequence_aggregation_method must be sum, average or rnn")
49.197674
216
0.662018
ed2f270089d6bdbe40581e4887d6aa66c7dec163
2,461
py
Python
nobel_physics_prizes/src/data/country_utils.py
covuworie/nobel-physics-prizes
f89a32cd6eb9bbc9119a231bffee89b177ae847a
[ "MIT" ]
3
2019-08-21T05:35:42.000Z
2020-10-08T21:28:51.000Z
nobel_physics_prizes/src/data/country_utils.py
covuworie/nobel-physics-prizes
f89a32cd6eb9bbc9119a231bffee89b177ae847a
[ "MIT" ]
139
2018-09-01T23:15:59.000Z
2021-02-02T22:01:39.000Z
nobel_physics_prizes/src/data/country_utils.py
covuworie/nobel-physics-prizes
f89a32cd6eb9bbc9119a231bffee89b177ae847a
[ "MIT" ]
null
null
null
import numpy as np def nationality_to_alpha2_code(text, nationalities): """Create ISO 3166-1 alpha-2 country codes from nationalities. Use the nationality to find ISO 3166-1 alpha-2 country codes. This function should only be called for a subset of the places dataframe where country is not defined and latitude or longitude is not (or equivalently ISO 3166-1 alpha-2 country code is not defined). Args: text (str): Text containing nationalities. nationalities (pandas.Dataframe): Dataframe of nationalities data. Returns: `str` or `numpy.nan`: Pipe separated list of ISO 3166-1 alpha-2 country codes if found, otherwise numpy.nan. """ if isinstance(text, float): return np.nan # try as is texts_to_check = {text} # flatten all demonyms in nationalities dataframe and # try any of those that are found in text try: nationality_to_alpha2_code.demonyms except AttributeError: nationality_to_alpha2_code.demonyms = np.ravel( nationalities.drop('ISO 3166 Code', axis=1)) nationality_to_alpha2_code.demonyms = [ str(demonym) for demonym in nationality_to_alpha2_code.demonyms if str(demonym) != 'nan'] for demonym in nationality_to_alpha2_code.demonyms: if demonym in text: texts_to_check.add(demonym) # remove Ireland or Irish for special case of Northern Ireland or # Northern Irish if 'Northern Ireland' in texts_to_check and 'Ireland' in texts_to_check: texts_to_check.remove('Ireland') if 'Northern Irish' in texts_to_check and 'Irish' in texts_to_check: texts_to_check.remove('Irish') # also try with an 's' on the end if text.endswith('s'): texts_to_check.add(text[:-1]) alpha2_codes = set() for text_to_check in texts_to_check: # check all columns except ISO 3166 Code for column in nationalities.columns[1:]: nationality_present = nationalities[ text_to_check == nationalities[column]] if not nationality_present.empty: alpha2_codes.add( nationality_present[ 'ISO 3166 Code'].values[0]) if not alpha2_codes: return np.nan alpha2_codes = list(alpha2_codes) alpha2_codes.sort() alpha2_codes = '|'.join(alpha2_codes) return alpha2_codes
33.256757
76
0.659488
3069ae4bc391c5f26697df57ae593e34ff755dc2
3,356
py
Python
find_and_edit.py
shanenoi/Finder
017fa83a5d4d468fd513c207b8f21153daba516a
[ "Unlicense" ]
1
2020-12-05T06:45:18.000Z
2020-12-05T06:45:18.000Z
find_and_edit.py
shanenoi/Finder
017fa83a5d4d468fd513c207b8f21153daba516a
[ "Unlicense" ]
1
2020-12-05T05:26:21.000Z
2020-12-05T05:26:21.000Z
find_and_edit.py
shanenoi/Finder
017fa83a5d4d468fd513c207b8f21153daba516a
[ "Unlicense" ]
null
null
null
from os import popen, system, path, listdir from sys import argv, exit from re import search, findall, sub DEFAULT_EDITOR = "/usr/bin/vi" GREEN = u"\u001b[32;1m" BLUE = u"\u001b[34m" RESET_ALL = u"\u001b[0m" def disable_color(): global GREEN global BLUE global RESET_ALL GREEN = "" BLUE = "" RESET_ALL = "" def default_editor(path): system(f"{DEFAULT_EDITOR} '{path}'") def default_index_input(): return input("index: ") class Finder(object): COMMAND = "" RESULT = [] index = 0 BREAK = "" def __init__(self, excludes:list=[]): self.COMMAND = " ".join([f"| grep -v \"{i}\"" for i in excludes]) def find(self, index_input=default_index_input, editor=default_editor): command_reader = popen(self.COMMAND) try: while (_file:=command_reader.readline()[:-1]): self.process_result(_file) except KeyboardInterrupt: print(self.BREAK) finally: return self.result_behaviour(index_input=index_input, editor=editor) def result_behaviour(self, index_input, editor): try: index = index_input() if index.isdigit(): index = int(index) if index in range(len(self.RESULT)): editor(self.RESULT[index]) except (KeyboardInterrupt, EOFError): print(self.BREAK) finally: return 0 def process_result(self, value): print(value) class FindByContent(Finder): def __init__(self, regex:str, excludes:list=[]): super().__init__(excludes=excludes) self.COMMAND = "find . -type f " + self.COMMAND self.__regex = regex def process_result(self, value): lines = open(value, encoding="latin1").read().split("\n") for num_line, line in enumerate(lines): result = search(f".{{0,9}}{self.__regex}.{{0,9}}", line) if result: print(f"[{self.index:>3}] linenum: {num_line+1} " + f"of {GREEN+value+RESET_ALL}: " + f"{BLUE}... {result.group()} ...{RESET_ALL}") self.RESULT.append(value) self.index += 1 class FindByName(Finder): def __init__(self, regex, excludes:list=[]): self.COMMAND = f"find . -type f | grep -P \"{regex}\"" + self.COMMAND self.__regex = regex def process_result(self, value): result = sub(f"({self.__regex})",BLUE+r"\1"+GREEN,value) print(f'[{self.index:>3}] {GREEN+result+RESET_ALL}') self.RESULT.append(value) self.index += 1 def main(args): # define it for using this code for vim ext somethings = None if args[0] == "n": somethings = FindByName(args[1], args[2]).find() elif args[0] == "c": somethings = FindByContent(args[1], args[2]).find() return somethings if __name__ == "__main__": args = [] if argv.__len__() == 1: print("Finder was written by Shanenoi!") exit(0) args.append(argv[1]) args.append([]) for ele in argv[2:]: if ele == "-v": args.append([]) continue if ele: args[-1].append(ele) args[1] = " ".join(args[1]) args.append([]) main(args)
26.425197
77
0.554231
5e854bba3f4a3418ad628da8361ce824a62185d9
836
py
Python
ask-sdk-model-runtime/ask_sdk_model_runtime/lwa/__init__.py
Signal-Kinetics/alexa-apis-for-python
abb8d3dce18a5510c48b215406ed36c024f01495
[ "Apache-2.0" ]
90
2018-09-19T21:56:42.000Z
2022-03-30T11:25:21.000Z
ask-sdk-model-runtime/ask_sdk_model_runtime/lwa/__init__.py
Signal-Kinetics/alexa-apis-for-python
abb8d3dce18a5510c48b215406ed36c024f01495
[ "Apache-2.0" ]
11
2018-09-23T12:16:48.000Z
2021-06-10T19:49:45.000Z
ask-sdk-model-runtime/ask_sdk_model_runtime/lwa/__init__.py
Signal-Kinetics/alexa-apis-for-python
abb8d3dce18a5510c48b215406ed36c024f01495
[ "Apache-2.0" ]
28
2018-09-19T22:30:38.000Z
2022-02-22T22:57:07.000Z
# -*- coding: utf-8 -*- # # Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights # Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the # License. # from __future__ import absolute_import from .access_token_request import AccessTokenRequest from .access_token_response import AccessTokenResponse from .access_token import AccessToken from .error import Error from .lwa_client import LwaClient
36.347826
67
0.777512
d395273cd58442bc1168532d98b1f7b617b45eea
2,604
py
Python
t2/test3.py
thagd/matias.exe
87b5d425bc9a7334179b5fbce9cd5aa41caab302
[ "MIT" ]
2
2019-10-31T03:51:49.000Z
2019-12-03T00:53:50.000Z
t2/test3.py
thagd/matias.exe
87b5d425bc9a7334179b5fbce9cd5aa41caab302
[ "MIT" ]
null
null
null
t2/test3.py
thagd/matias.exe
87b5d425bc9a7334179b5fbce9cd5aa41caab302
[ "MIT" ]
3
2019-09-03T00:48:16.000Z
2019-10-22T17:47:06.000Z
#!/usr/bin/env python3 import os import random from mytcputils import * from mytcp import Servidor class CamadaRede: def __init__(self): self.callback = None self.fila = [] def registrar_recebedor(self, callback): self.callback = callback def enviar(self, segmento, dest_addr): self.fila.append((segmento, dest_addr)) recebido = b'' def dados_recebidos(c, dados): global recebido recebido += dados conexao = None def conexao_aceita(c): global conexao conexao = c c.registrar_recebedor(dados_recebidos) rede = CamadaRede() dst_port = random.randint(10, 1023) servidor = Servidor(rede, dst_port) servidor.registrar_monitor_de_conexoes_aceitas(conexao_aceita) src_port = random.randint(1024, 0xffff) seq_no = random.randint(0, 0xffff) src_addr, dst_addr = '10.%d.1.%d'%(random.randint(1, 10), random.randint(0,255)), '10.%d.1.%d'%(random.randint(11, 20), random.randint(0, 255)) rede.callback(src_addr, dst_addr, fix_checksum(make_header(src_port, dst_port, seq_no, 0, FLAGS_SYN), src_addr, dst_addr)) segmento, _ = rede.fila[0] _, _, ack_no, ack, flags, _, _, _ = read_header(segmento) assert 4*(flags>>12) == len(segmento), 'O SYN+ACK não deveria ter payload' assert (flags & FLAGS_ACK) == FLAGS_ACK rede.fila.clear() seq_no += 1 ack_no += 1 assert ack == seq_no rede.callback(src_addr, dst_addr, fix_checksum(make_header(src_port, dst_port, seq_no, ack_no, FLAGS_ACK), src_addr, dst_addr)) rede.fila.clear() payload = os.urandom(MSS) conexao.enviar(payload) assert len(rede.fila) == 1 segmento, _ = rede.fila[0] _, _, seq, ack, flags, _, _, _ = read_header(segmento) assert seq == ack_no assert (flags & FLAGS_ACK) == FLAGS_ACK and ack == seq_no assert segmento[4*(flags>>12):] == payload ack_no += MSS rede.fila.clear() payload = b'hello world' rede.callback(src_addr, dst_addr, fix_checksum(make_header(src_port, dst_port, seq_no, ack_no, FLAGS_ACK) + payload, src_addr, dst_addr)) seq_no += len(payload) assert recebido == payload recebido = b'' rede.fila.clear() for i in range(5): nseg = random.randint(2,10) payload = os.urandom(nseg*MSS) conexao.enviar(payload) for j in range(nseg): segmento, _ = rede.fila.pop(0) _, _, seq, ack, flags, _, _, _ = read_header(segmento) assert seq == ack_no assert (flags & FLAGS_ACK) == FLAGS_ACK and ack == seq_no assert segmento[4*(flags>>12):] == payload[j*MSS:(j+1)*MSS] ack_no += MSS rede.callback(src_addr, dst_addr, fix_checksum(make_header(src_port, dst_port, seq_no, ack_no, FLAGS_ACK), src_addr, dst_addr))
32.962025
143
0.700461
8837f13b086e995bacb06f0469d46794af55ee66
7,797
py
Python
readthedocs/projects/constants.py
durwasa-chakraborty/readthedocs.org
8a2a95ef3f238e6320061a211f9d59c6c7e5b8bd
[ "MIT" ]
1
2021-08-30T08:18:44.000Z
2021-08-30T08:18:44.000Z
readthedocs/projects/constants.py
durwasa-chakraborty/readthedocs.org
8a2a95ef3f238e6320061a211f9d59c6c7e5b8bd
[ "MIT" ]
null
null
null
readthedocs/projects/constants.py
durwasa-chakraborty/readthedocs.org
8a2a95ef3f238e6320061a211f9d59c6c7e5b8bd
[ "MIT" ]
1
2021-01-28T19:18:28.000Z
2021-01-28T19:18:28.000Z
# -*- coding: utf-8 -*- """ Project constants. Default values and other various configuration for projects, including available theme names and repository types. """ from __future__ import ( absolute_import, division, print_function, unicode_literals) import re from django.utils.translation import ugettext_lazy as _ THEME_DEFAULT = 'default' THEME_SPHINX = 'sphinxdoc' THEME_SCROLLS = 'scrolls' THEME_AGOGO = 'agogo' THEME_TRADITIONAL = 'traditional' THEME_NATURE = 'nature' THEME_HAIKU = 'haiku' DOCUMENTATION_CHOICES = ( ('auto', _('Automatically Choose')), ('sphinx', _('Sphinx Html')), ('mkdocs', _('Mkdocs (Markdown)')), ('sphinx_htmldir', _('Sphinx HtmlDir')), ('sphinx_singlehtml', _('Sphinx Single Page HTML')), ) DEFAULT_THEME_CHOICES = ( # Translators: This is a name of a Sphinx theme. (THEME_DEFAULT, _('Default')), # Translators: This is a name of a Sphinx theme. (THEME_SPHINX, _('Sphinx Docs')), # (THEME_SCROLLS, 'Scrolls'), # (THEME_AGOGO, 'Agogo'), # Translators: This is a name of a Sphinx theme. (THEME_TRADITIONAL, _('Traditional')), # Translators: This is a name of a Sphinx theme. (THEME_NATURE, _('Nature')), # Translators: This is a name of a Sphinx theme. (THEME_HAIKU, _('Haiku')), ) SAMPLE_FILES = ( ('Installation', 'projects/samples/installation.rst.html'), ('Getting started', 'projects/samples/getting_started.rst.html'), ) SCRAPE_CONF_SETTINGS = [ 'copyright', 'project', 'version', 'release', 'source_suffix', 'html_theme', 'extensions', ] HEADING_MARKUP = ( (1, '='), (2, '-'), (3, '^'), (4, '"'), ) LIVE_STATUS = 1 DELETED_STATUS = 99 STATUS_CHOICES = ( (LIVE_STATUS, _('Live')), (DELETED_STATUS, _('Deleted')), ) REPO_TYPE_GIT = 'git' REPO_TYPE_SVN = 'svn' REPO_TYPE_HG = 'hg' REPO_TYPE_BZR = 'bzr' REPO_CHOICES = ( (REPO_TYPE_GIT, _('Git')), (REPO_TYPE_SVN, _('Subversion')), (REPO_TYPE_HG, _('Mercurial')), (REPO_TYPE_BZR, _('Bazaar')), ) PUBLIC = 'public' PROTECTED = 'protected' PRIVATE = 'private' PRIVACY_CHOICES = ( (PUBLIC, _('Public')), (PROTECTED, _('Protected')), (PRIVATE, _('Private')), ) IMPORTANT_VERSION_FILTERS = { 'slug': 'important', } # in the future this constant can be replaced with a implementation that # detect all available Python interpreters in the fly (Maybe using # update-alternatives linux tool family?). PYTHON_CHOICES = ( ('python', _('CPython 2.x')), ('python3', _('CPython 3.x')), ) # Via http://sphinx-doc.org/latest/config.html#confval-language # Languages supported for the lang_slug in the URL # Translations for builtin Sphinx messages only available for a subset of these LANGUAGES = ( ('aa', 'Afar'), ('ab', 'Abkhaz'), ('af', 'Afrikaans'), ('am', 'Amharic'), ('ar', 'Arabic'), ('as', 'Assamese'), ('ay', 'Aymara'), ('az', 'Azerbaijani'), ('ba', 'Bashkir'), ('be', 'Belarusian'), ('bg', 'Bulgarian'), ('bh', 'Bihari'), ('bi', 'Bislama'), ('bn', 'Bengali'), ('bo', 'Tibetan'), ('br', 'Breton'), ('ca', 'Catalan'), ('co', 'Corsican'), ('cs', 'Czech'), ('cy', 'Welsh'), ('da', 'Danish'), ('de', 'German'), ('dz', 'Dzongkha'), ('el', 'Greek'), ('en', 'English'), ('eo', 'Esperanto'), ('es', 'Spanish'), ('et', 'Estonian'), ('eu', 'Basque'), ('fa', 'Iranian'), ('fi', 'Finnish'), ('fj', 'Fijian'), ('fo', 'Faroese'), ('fr', 'French'), ('fy', 'Western Frisian'), ('ga', 'Irish'), ('gd', 'Scottish Gaelic'), ('gl', 'Galician'), ('gn', 'Guarani'), ('gu', 'Gujarati'), ('ha', 'Hausa'), ('hi', 'Hindi'), ('he', 'Hebrew'), ('hr', 'Croatian'), ('hu', 'Hungarian'), ('hy', 'Armenian'), ('ia', 'Interlingua'), ('id', 'Indonesian'), ('ie', 'Interlingue'), ('ik', 'Inupiaq'), ('is', 'Icelandic'), ('it', 'Italian'), ('iu', 'Inuktitut'), ('ja', 'Japanese'), ('jv', 'Javanese'), ('ka', 'Georgian'), ('kk', 'Kazakh'), ('kl', 'Kalaallisut'), ('km', 'Khmer'), ('kn', 'Kannada'), ('ko', 'Korean'), ('ks', 'Kashmiri'), ('ku', 'Kurdish'), ('ky', 'Kyrgyz'), ('la', 'Latin'), ('ln', 'Lingala'), ('lo', 'Lao'), ('lt', 'Lithuanian'), ('lv', 'Latvian'), ('mg', 'Malagasy'), ('mi', 'Maori'), ('mk', 'Macedonian'), ('ml', 'Malayalam'), ('mn', 'Mongolian'), ('mr', 'Marathi'), ('ms', 'Malay'), ('mt', 'Maltese'), ('my', 'Burmese'), ('na', 'Nauru'), ('ne', 'Nepali'), ('nl', 'Dutch'), ('no', 'Norwegian'), ('oc', 'Occitan'), ('om', 'Oromo'), ('or', 'Oriya'), ('pa', 'Panjabi'), ('pl', 'Polish'), ('ps', 'Pashto'), ('pt', 'Portuguese'), ('qu', 'Quechua'), ('rm', 'Romansh'), ('rn', 'Kirundi'), ('ro', 'Romanian'), ('ru', 'Russian'), ('rw', 'Kinyarwanda'), ('sa', 'Sanskrit'), ('sd', 'Sindhi'), ('sg', 'Sango'), ('si', 'Sinhala'), ('sk', 'Slovak'), ('sl', 'Slovenian'), ('sm', 'Samoan'), ('sn', 'Shona'), ('so', 'Somali'), ('sq', 'Albanian'), ('sr', 'Serbian'), ('ss', 'Swati'), ('st', 'Southern Sotho'), ('su', 'Sudanese'), ('sv', 'Swedish'), ('sw', 'Swahili'), ('ta', 'Tamil'), ('te', 'Telugu'), ('tg', 'Tajik'), ('th', 'Thai'), ('ti', 'Tigrinya'), ('tk', 'Turkmen'), ('tl', 'Tagalog'), ('tn', 'Tswana'), ('to', 'Tonga'), ('tr', 'Turkish'), ('ts', 'Tsonga'), ('tt', 'Tatar'), ('tw', 'Twi'), ('ug', 'Uyghur'), ('uk', 'Ukrainian'), ('ur', 'Urdu'), ('uz', 'Uzbek'), ('vi', 'Vietnamese'), ('vo', 'Volapuk'), ('wo', 'Wolof'), ('xh', 'Xhosa'), ('yi', 'Yiddish'), ('yo', 'Yoruba'), ('za', 'Zhuang'), ('zh', 'Chinese'), ('zu', 'Zulu'), # Try these to test our non-2 letter language support ('nb_NO', 'Norwegian Bokmal'), ('pt_BR', 'Brazilian Portuguese'), ('uk_UA', 'Ukrainian'), ('zh_CN', 'Simplified Chinese'), ('zh_TW', 'Traditional Chinese'), ) LANGUAGES_REGEX = '|'.join([re.escape(code[0]) for code in LANGUAGES]) PROGRAMMING_LANGUAGES = ( ('words', 'Only Words'), ('py', 'Python'), ('js', 'JavaScript'), ('php', 'PHP'), ('ruby', 'Ruby'), ('perl', 'Perl'), ('java', 'Java'), ('go', 'Go'), ('julia', 'Julia'), ('c', 'C'), ('csharp', 'C#'), ('cpp', 'C++'), ('objc', 'Objective-C'), ('css', 'CSS'), ('ts', 'TypeScript'), ('swift', 'Swift'), ('vb', 'Visual Basic'), ('r', 'R'), ('scala', 'Scala'), ('groovy', 'Groovy'), ('coffee', 'CoffeeScript'), ('lua', 'Lua'), ('haskell', 'Haskell'), ('other', 'Other'), ) LOG_TEMPLATE = '(Build) [{project}:{version}] {msg}' PROJECT_PK_REGEX = '(?:[-\w]+)' PROJECT_SLUG_REGEX = '(?:[-\w]+)' GITHUB_REGEXS = [ re.compile('github.com/(.+)/(.+)(?:\.git){1}$'), re.compile('github.com/(.+)/(.+)'), re.compile('github.com:(.+)/(.+)\.git$'), ] BITBUCKET_REGEXS = [ re.compile('@bitbucket.org/(.+)/(.+)\.git$'), re.compile('bitbucket.org/(.+)/(.+)/'), re.compile('bitbucket.org/(.+)/(.+)'), re.compile('bitbucket.org:(.+)/(.+)\.git$'), ] GITLAB_REGEXS = [ re.compile('gitlab.com/(.+)/(.+)(?:\.git){1}$'), re.compile('gitlab.com/(.+)/(.+)'), re.compile('gitlab.com:(.+)/(.+)\.git$'), ] GITHUB_URL = ( 'https://github.com/{user}/{repo}/' '{action}/{version}{docroot}{path}{source_suffix}') BITBUCKET_URL = ( 'https://bitbucket.org/{user}/{repo}/' 'src/{version}{docroot}{path}{source_suffix}') GITLAB_URL = ( 'https://gitlab.com/{user}/{repo}/' '{action}/{version}{docroot}{path}{source_suffix}')
24.442006
80
0.518276
5604b08806f3ac5333bd16ffa3dd09298725c336
236
py
Python
Leetcode/0344. Reverse String.py
luckyrabbit85/Python
ed134fd70b4a7b84b183b87b85ad5190f54c9526
[ "MIT" ]
1
2021-07-15T18:40:26.000Z
2021-07-15T18:40:26.000Z
Leetcode/0344. Reverse String.py
luckyrabbit85/Python
ed134fd70b4a7b84b183b87b85ad5190f54c9526
[ "MIT" ]
null
null
null
Leetcode/0344. Reverse String.py
luckyrabbit85/Python
ed134fd70b4a7b84b183b87b85ad5190f54c9526
[ "MIT" ]
null
null
null
class Solution: def reverseString(self, s: list[str]) -> None: left = 0 right = len(s) - 1 while left < right: s[left], s[right] = s[right], s[left] left, right = left + 1, right + 1
26.222222
50
0.491525
abfbb3de1dc0b20f835c187f60dc0768a353041f
16,772
py
Python
gym/monitoring/monitor.py
leopauly/Observation-Learning-Simulations
462c04a87c45aae51537b8ea5b44646afa31d3a5
[ "MIT" ]
49
2017-12-11T11:00:02.000Z
2022-03-30T05:19:31.000Z
gym/monitoring/monitor.py
leopauly/Observation-Learning-Simulations
462c04a87c45aae51537b8ea5b44646afa31d3a5
[ "MIT" ]
2
2018-01-01T17:39:56.000Z
2019-07-24T04:49:08.000Z
gym/monitoring/monitor.py
leopauly/Observation-Learning-Simulations
462c04a87c45aae51537b8ea5b44646afa31d3a5
[ "MIT" ]
12
2017-12-13T11:52:17.000Z
2020-12-03T00:53:29.000Z
import atexit import logging import json import numpy as np import os import six import sys import threading import weakref from gym import error, version from gym.monitoring import stats_recorder, video_recorder from gym.utils import atomic_write, closer, seeding logger = logging.getLogger(__name__) FILE_PREFIX = 'openaigym' MANIFEST_PREFIX = FILE_PREFIX + '.manifest' def detect_training_manifests(training_dir, files=None): if files is None: files = os.listdir(training_dir) return [os.path.join(training_dir, f) for f in files if f.startswith(MANIFEST_PREFIX + '.')] def detect_monitor_files(training_dir): return [os.path.join(training_dir, f) for f in os.listdir(training_dir) if f.startswith(FILE_PREFIX + '.')] def clear_monitor_files(training_dir): files = detect_monitor_files(training_dir) if len(files) == 0: return logger.info('Clearing %d monitor files from previous run (because force=True was provided)', len(files)) for file in files: os.unlink(file) def capped_cubic_video_schedule(episode_id): if episode_id < 1000: return int(round(episode_id ** (1. / 3))) ** 3 == episode_id else: return episode_id % 1000 == 0 def disable_videos(episode_id): return False monitor_closer = closer.Closer() # This method gets used for a sanity check in scoreboard/api.py. It's # not intended for use outside of the gym codebase. def _open_monitors(): return list(monitor_closer.closeables.values()) class Monitor(object): """A configurable monitor for your training runs. Every env has an attached monitor, which you can access as 'env.monitor'. Simple usage is just to call 'monitor.start(dir)' to begin monitoring and 'monitor.close()' when training is complete. This will record stats and will periodically record a video. For finer-grained control over how often videos are collected, use the video_callable argument, e.g. 'monitor.start(video_callable=lambda count: count % 100 == 0)' to record every 100 episodes. ('count' is how many episodes have completed) Depending on the environment, video can slow down execution. You can also use 'monitor.configure(video_callable=lambda count: False)' to disable video. Monitor supports multiple threads and multiple processes writing to the same directory of training data. The data will later be joined by scoreboard.upload_training_data and on the server. Args: env (gym.Env): The environment instance to monitor. Attributes: id (Optional[str]): The ID of the monitored environment """ def __init__(self, env): # Python's GC allows refcycles *or* for objects to have a # __del__ method. So we need to maintain a weakref to env. # # https://docs.python.org/2/library/gc.html#gc.garbage self._env_ref = weakref.ref(env) self.videos = [] self.stats_recorder = None self.video_recorder = None self.enabled = False self.episode_id = 0 self._monitor_id = None @property def env(self): env = self._env_ref() if env is None: raise error.Error("env has been garbage collected. To keep using a monitor, you must keep around a reference to the env object. (HINT: try assigning the env to a variable in your code.)") return env def start(self, directory, video_callable=None, force=False, resume=True, write_upon_reset=False, uid=None, mode=None): """Start monitoring. Args: directory (str): A per-training run directory where to record stats. video_callable (Optional[function, False]): function that takes in the index of the episode and outputs a boolean, indicating whether we should record a video on this episode. The default (for video_callable is None) is to take perfect cubes, capped at 1000. False disables video recording. force (bool): Clear out existing training data from this directory (by deleting every file prefixed with "openaigym."). resume (bool): Retain the training data already in this directory, which will be merged with our new data write_upon_reset (bool): Write the manifest file on each reset. (This is currently a JSON file, so writing it is somewhat expensive.) uid (Optional[str]): A unique id used as part of the suffix for the file. By default, uses os.getpid(). mode (['evaluation', 'training']): Whether this is an evaluation or training episode. """ if self.env.spec is None: logger.warn("Trying to monitor an environment which has no 'spec' set. This usually means you did not create it via 'gym.make', and is recommended only for advanced users.") env_id = '(unknown)' else: env_id = self.env.spec.id if not os.path.exists(directory): logger.info('Creating monitor directory %s', directory) if six.PY3: os.makedirs(directory, exist_ok=True) else: os.makedirs(directory) if video_callable is None: video_callable = capped_cubic_video_schedule elif video_callable == False: video_callable = disable_videos elif not callable(video_callable): raise error.Error('You must provide a function, None, or False for video_callable, not {}: {}'.format(type(video_callable), video_callable)) # Check on whether we need to clear anything if force: clear_monitor_files(directory) elif not resume: training_manifests = detect_training_manifests(directory) if len(training_manifests) > 0: raise error.Error('''Trying to write to monitor directory {} with existing monitor files: {}. You should use a unique directory for each training run, or use 'force=True' to automatically clear previous monitor files.'''.format(directory, ', '.join(training_manifests[:5]))) self._monitor_id = monitor_closer.register(self) self.enabled = True self.directory = os.path.abspath(directory) # We use the 'openai-gym' prefix to determine if a file is # ours self.file_prefix = FILE_PREFIX self.file_infix = '{}.{}'.format(self._monitor_id, uid if uid else os.getpid()) self.stats_recorder = stats_recorder.StatsRecorder(directory, '{}.episode_batch.{}'.format(self.file_prefix, self.file_infix), autoreset=self.env.metadata.get('semantics.autoreset'), env_id=env_id) self.configure(video_callable=video_callable) if not os.path.exists(directory): os.mkdir(directory) self.write_upon_reset = write_upon_reset if mode is not None: self._set_mode(mode) def flush(self, force=False): """Flush all relevant monitor information to disk.""" if not self.write_upon_reset and not force: return self.stats_recorder.flush() # Give it a very distiguished name, since we need to pick it # up from the filesystem later. path = os.path.join(self.directory, '{}.manifest.{}.manifest.json'.format(self.file_prefix, self.file_infix)) logger.debug('Writing training manifest file to %s', path) with atomic_write.atomic_write(path) as f: # We need to write relative paths here since people may # move the training_dir around. It would be cleaner to # already have the basenames rather than basename'ing # manually, but this works for now. json.dump({ 'stats': os.path.basename(self.stats_recorder.path), 'videos': [(os.path.basename(v), os.path.basename(m)) for v, m in self.videos], 'env_info': self._env_info(), }, f) def close(self): """Flush all monitor data to disk and close any open rending windows.""" if not self.enabled: return self.stats_recorder.close() if self.video_recorder is not None: self._close_video_recorder() self.flush(force=True) env = self._env_ref() # Only take action if the env hasn't been GC'd if env is not None: # Note we'll close the env's rendering window even if we did # not open it. There isn't a particular great way to know if # we did, since some environments will have a window pop up # during video recording. try: env.render(close=True) except Exception as e: if env.spec: key = env.spec.id else: key = env # We don't want to avoid writing the manifest simply # because we couldn't close the renderer. logger.error('Could not close renderer for %s: %s', key, e) # Remove the env's pointer to this monitor if hasattr(env, '_monitor'): del env._monitor # Stop tracking this for autoclose monitor_closer.unregister(self._monitor_id) self.enabled = False logger.info('''Finished writing results. You can upload them to the scoreboard via gym.upload(%r)''', self.directory) def configure(self, video_callable=None, mode=None): """Reconfigure the monitor. video_callable (function): Whether to record video to upload to the scoreboard. mode (['evaluation', 'training']): Whether this is an evaluation or training episode. """ if not self.enabled: raise error.Error('Can only configure an enabled monitor. (HINT: did you already close this monitor?)') if video_callable is not None: self.video_callable = video_callable if mode is not None: self._set_mode(mode) def _set_mode(self, mode): if mode == 'evaluation': type = 'e' elif mode == 'training': type = 't' else: raise error.Error('Invalid mode {}: must be "training" or "evaluation"', mode) self.stats_recorder.type = type def _before_step(self, action): if not self.enabled: return self.stats_recorder.before_step(action) def _after_step(self, observation, reward, done, info): if not self.enabled: return done # Add 1 since about to take another step if self.env.spec and self.stats_recorder.steps+1 >= self.env.spec.timestep_limit: logger.debug('Ending episode %i because it reached the timestep limit of %i.', self.episode_id, self.env.spec.timestep_limit) done = True # Record stats self.stats_recorder.after_step(observation, reward, done, info) # Record video self.video_recorder.capture_frame() return done def _before_reset(self): if not self.enabled: return self.stats_recorder.before_reset() def _after_reset(self, observation): if not self.enabled: return # Reset the stat count self.stats_recorder.after_reset(observation) # Close any existing video recorder if self.video_recorder: self._close_video_recorder() # Start recording the next video. # # TODO: calculate a more correct 'episode_id' upon merge self.video_recorder = video_recorder.VideoRecorder( env=self.env, base_path=os.path.join(self.directory, '{}.video.{}.video{:06}'.format(self.file_prefix, self.file_infix, self.episode_id)), metadata={'episode_id': self.episode_id}, enabled=self._video_enabled(), ) self.video_recorder.capture_frame() # Bump *after* all reset activity has finished self.episode_id += 1 self.flush() def _close_video_recorder(self): self.video_recorder.close() if self.video_recorder.functional: self.videos.append((self.video_recorder.path, self.video_recorder.metadata_path)) def _video_enabled(self): return self.video_callable(self.episode_id) def _env_info(self): env_info = { 'gym_version': version.VERSION, } if self.env.spec: env_info['env_id'] = self.env.spec.id return env_info def __del__(self): # Make sure we've closed up shop when garbage collecting self.close() def load_env_info_from_manifests(manifests, training_dir): env_infos = [] for manifest in manifests: with open(manifest) as f: contents = json.load(f) env_infos.append(contents['env_info']) env_info = collapse_env_infos(env_infos, training_dir) return env_info def load_results(training_dir): if not os.path.exists(training_dir): logger.error('Training directory %s not found', training_dir) return manifests = detect_training_manifests(training_dir) if not manifests: logger.error('No manifests found in training directory %s', training_dir) return logger.debug('Uploading data from manifest %s', ', '.join(manifests)) # Load up stats + video files stats_files = [] videos = [] env_infos = [] for manifest in manifests: with open(manifest) as f: contents = json.load(f) # Make these paths absolute again stats_files.append(os.path.join(training_dir, contents['stats'])) videos += [(os.path.join(training_dir, v), os.path.join(training_dir, m)) for v, m in contents['videos']] env_infos.append(contents['env_info']) env_info = collapse_env_infos(env_infos, training_dir) data_sources, initial_reset_timestamps, timestamps, episode_lengths, episode_rewards, episode_types, initial_reset_timestamp = merge_stats_files(stats_files) return { 'manifests': manifests, 'env_info': env_info, 'data_sources': data_sources, 'timestamps': timestamps, 'episode_lengths': episode_lengths, 'episode_rewards': episode_rewards, 'episode_types': episode_types, 'initial_reset_timestamps': initial_reset_timestamps, 'initial_reset_timestamp': initial_reset_timestamp, 'videos': videos, } def merge_stats_files(stats_files): timestamps = [] episode_lengths = [] episode_rewards = [] episode_types = [] initial_reset_timestamps = [] data_sources = [] for i, path in enumerate(stats_files): with open(path) as f: content = json.load(f) if len(content['timestamps'])==0: continue # so empty file doesn't mess up results, due to null initial_reset_timestamp data_sources += [i] * len(content['timestamps']) timestamps += content['timestamps'] episode_lengths += content['episode_lengths'] episode_rewards += content['episode_rewards'] # Recent addition episode_types += content.get('episode_types', []) # Keep track of where each episode came from. initial_reset_timestamps.append(content['initial_reset_timestamp']) idxs = np.argsort(timestamps) timestamps = np.array(timestamps)[idxs].tolist() episode_lengths = np.array(episode_lengths)[idxs].tolist() episode_rewards = np.array(episode_rewards)[idxs].tolist() data_sources = np.array(data_sources)[idxs].tolist() if episode_types: episode_types = np.array(episode_types)[idxs].tolist() else: episode_types = None if len(initial_reset_timestamps) > 0: initial_reset_timestamp = min(initial_reset_timestamps) else: initial_reset_timestamp = 0 return data_sources, initial_reset_timestamps, timestamps, episode_lengths, episode_rewards, episode_types, initial_reset_timestamp # TODO training_dir isn't used except for error messages, clean up the layering def collapse_env_infos(env_infos, training_dir): assert len(env_infos) > 0 first = env_infos[0] for other in env_infos[1:]: if first != other: raise error.Error('Found two unequal env_infos: {} and {}. This usually indicates that your training directory {} has commingled results from multiple runs.'.format(first, other, training_dir)) for key in ['env_id', 'gym_version']: if key not in first: raise error.Error("env_info {} from training directory {} is missing expected key {}. This is unexpected and likely indicates a bug in gym.".format(first, training_dir, key)) return first
39.650118
302
0.65347
98a6f97dc7e5d51b44400e6e081f60e61b196b84
257
py
Python
python/main.py
katelyn98/MachineLearning
bb03dd8a9370c509446ceda17b2b623c6efe7106
[ "MIT" ]
null
null
null
python/main.py
katelyn98/MachineLearning
bb03dd8a9370c509446ceda17b2b623c6efe7106
[ "MIT" ]
5
2020-08-14T02:58:46.000Z
2020-08-14T19:31:39.000Z
python/main.py
katelyn98/MachineLearning
bb03dd8a9370c509446ceda17b2b623c6efe7106
[ "MIT" ]
1
2021-06-29T19:17:43.000Z
2021-06-29T19:17:43.000Z
''' Name: main.py Description: author: @katelyn98 ''' import cv2 as cv import func.processVideo as ppv font = cv.FONT_HERSHEY_SIMPLEX if __name__ == '__main__': cap = cv.VideoCapture(0) font = cv.FONT_HERSHEY_SIMPLEX ppv.process(cap, font)
15.117647
34
0.70428
e3b58dff4bf5a42e21a8525fe35fa7903cb71f0a
1,344
py
Python
Undergraduate/COMP312/Assignment6/Programs/to-pattern.py
danielbraithwt/University
50c6a904e1c53c03bce9928975607c35fd741e33
[ "MIT" ]
null
null
null
Undergraduate/COMP312/Assignment6/Programs/to-pattern.py
danielbraithwt/University
50c6a904e1c53c03bce9928975607c35fd741e33
[ "MIT" ]
1
2016-12-09T00:17:19.000Z
2016-12-09T00:28:42.000Z
Undergraduate/COMP312/Assignment6/Programs/to-pattern.py
danielbraithwt/University
50c6a904e1c53c03bce9928975607c35fd741e33
[ "MIT" ]
1
2020-04-23T23:02:31.000Z
2020-04-23T23:02:31.000Z
data = {'Iris-setosa': [], 'Iris-versicolor': [], 'Iris-virginica': []} f = file("part1/iris-training.txt") lines = f.read().split('\n') f.close() maxvals = [Float.MIN_VALUE, Float.MIN_VALUE, Float.MIN_VALUE] minvals = [Float.MAX_VALUE, Float.MAX_VALUE, Float.MAX_VALUE] for line in lines: point = line.split(' ') v = (float(point[0]), float(point[1]), float(point[2])) for i in range(3): if point[i] > maxvals[i]: maxvals[i] = point[i] if point[i] < minvals[i]: minvals[i] = point[i] c = point[3] data[c].append([c, v]) # Compute the ranges of the values r = [0, 0, 0] for i in range(3): r[i] = maxvals[i] - minvals[i] # Normalise the data i = 0 for d in data: for pattern in d: ov = pattern[1] nv = (ov[0]/r[0], ov[1]/r[1], ov[2]/r[2]) pattern[1] = nv total_patterns = 0 for d in data: total_patterns += len(d) #output = file('part1/iris-training.pat') #output.write('SNNS pattern definition file V3.2\n') #output.write('generated at Mon Apr 25 17:47:12 1994\n') #output.write('\n\n') #output.write('No. of patterns : ' + total_patterns) #output.write('No. of input units : ' + 3) #output.write('No. of output units : ' + 3) #output.write('\n') #i = 0 #for d in data: # for pattern in d: # i += 1 # output.write('# Input pattern ' + i + ':\n') #output.write('# Input pattern ') #output.close()
19.764706
71
0.620536
2d75e99dbc31eafa2535f4145b4c6d1ee877ebae
18,200
py
Python
tests/test_models.py
odinuge/django-push-notifications
03ef4318aafc5135490c12b38979307859ba97ef
[ "MIT" ]
null
null
null
tests/test_models.py
odinuge/django-push-notifications
03ef4318aafc5135490c12b38979307859ba97ef
[ "MIT" ]
1
2021-06-25T15:16:55.000Z
2021-06-25T15:16:55.000Z
tests/test_models.py
gagantrivedi/django-push-notifications
e51692b79be370d66a8e7b67c5c95ec27c5662ab
[ "MIT" ]
null
null
null
from __future__ import absolute_import import json from django.test import TestCase from django.utils import timezone from push_notifications.gcm import GCMError, send_bulk_message from push_notifications.models import APNSDevice, GCMDevice from . import responses from ._mock import mock class GCMModelTestCase(TestCase): def _create_devices(self, devices): for device in devices: GCMDevice.objects.create(registration_id=device, cloud_message_type="GCM") def _create_fcm_devices(self, devices): for device in devices: GCMDevice.objects.create(registration_id=device, cloud_message_type="FCM") def test_can_save_gcm_device(self): device = GCMDevice.objects.create( registration_id="a valid registration id", cloud_message_type="GCM" ) assert device.id is not None assert device.date_created is not None assert device.date_created.date() == timezone.now().date() def test_can_create_save_device(self): device = APNSDevice.objects.create(registration_id="a valid registration id") assert device.id is not None assert device.date_created is not None assert device.date_created.date() == timezone.now().date() def test_gcm_send_message(self): device = GCMDevice.objects.create(registration_id="abc", cloud_message_type="GCM") with mock.patch( "push_notifications.gcm._gcm_send", return_value=responses.GCM_JSON ) as p: device.send_message("Hello world") p.assert_called_once_with( json.dumps({ "data": {"message": "Hello world"}, "registration_ids": ["abc"] }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_gcm_send_message_extra(self): device = GCMDevice.objects.create(registration_id="abc", cloud_message_type="GCM") with mock.patch( "push_notifications.gcm._gcm_send", return_value=responses.GCM_JSON ) as p: device.send_message("Hello world", extra={"foo": "bar"}, collapse_key="test_key") p.assert_called_once_with( json.dumps({ "collapse_key": "test_key", "data": {"message": "Hello world", "foo": "bar"}, "registration_ids": ["abc"] }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_gcm_send_message_collapse_key(self): device = GCMDevice.objects.create(registration_id="abc", cloud_message_type="GCM") with mock.patch( "push_notifications.gcm._gcm_send", return_value=responses.GCM_JSON ) as p: device.send_message("Hello world", collapse_key="test_key") p.assert_called_once_with( json.dumps({ "data": {"message": "Hello world"}, "registration_ids": ["abc"], "collapse_key": "test_key" }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_gcm_send_message_to_multiple_devices(self): self._create_devices(["abc", "abc1"]) with mock.patch( "push_notifications.gcm._gcm_send", return_value=responses.GCM_JSON_MULTIPLE ) as p: GCMDevice.objects.all().send_message("Hello world") p.assert_called_once_with( json.dumps({ "data": {"message": "Hello world"}, "registration_ids": ["abc", "abc1"] }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_gcm_send_message_active_devices(self): GCMDevice.objects.create(registration_id="abc", active=True, cloud_message_type="GCM") GCMDevice.objects.create(registration_id="xyz", active=False, cloud_message_type="GCM") with mock.patch( "push_notifications.gcm._gcm_send", return_value=responses.GCM_JSON_MULTIPLE ) as p: GCMDevice.objects.all().send_message("Hello world") p.assert_called_once_with( json.dumps({ "data": {"message": "Hello world"}, "registration_ids": ["abc"] }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_gcm_send_message_collapse_to_multiple_devices(self): self._create_devices(["abc", "abc1"]) with mock.patch( "push_notifications.gcm._gcm_send", return_value=responses.GCM_JSON_MULTIPLE ) as p: GCMDevice.objects.all().send_message("Hello world", collapse_key="test_key") p.assert_called_once_with( json.dumps({ "collapse_key": "test_key", "data": {"message": "Hello world"}, "registration_ids": ["abc", "abc1"] }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_gcm_send_message_to_single_device_with_error(self): # these errors are device specific, device.active will be set false devices = ["abc", "abc1"] self._create_devices(devices) errors = [ responses.GCM_JSON_ERROR_NOTREGISTERED, responses.GCM_JSON_ERROR_INVALIDREGISTRATION ] for index, error in enumerate(errors): with mock.patch( "push_notifications.gcm._gcm_send", return_value=error): device = GCMDevice.objects.get(registration_id=devices[index]) device.send_message("Hello World!") assert GCMDevice.objects.get(registration_id=devices[index]).active is False def test_gcm_send_message_to_single_device_with_error_mismatch(self): device = GCMDevice.objects.create(registration_id="abc", cloud_message_type="GCM") with mock.patch( "push_notifications.gcm._gcm_send", return_value=responses.GCM_JSON_ERROR_MISMATCHSENDERID ): # these errors are not device specific, GCMError should be thrown with self.assertRaises(GCMError): device.send_message("Hello World!") assert GCMDevice.objects.get(registration_id="abc").active is True def test_gcm_send_message_to_multiple_devices_with_error(self): self._create_devices(["abc", "abc1", "abc2"]) with mock.patch( "push_notifications.gcm._gcm_send", return_value=responses.GCM_JSON_MULTIPLE_ERROR ): devices = GCMDevice.objects.all() devices.send_message("Hello World") assert not GCMDevice.objects.get(registration_id="abc").active assert GCMDevice.objects.get(registration_id="abc1").active assert not GCMDevice.objects.get(registration_id="abc2").active def test_gcm_send_message_to_multiple_devices_with_error_b(self): self._create_devices(["abc", "abc1", "abc2"]) with mock.patch( "push_notifications.gcm._gcm_send", return_value=responses.GCM_JSON_MULTIPLE_ERROR_B ): devices = GCMDevice.objects.all() with self.assertRaises(GCMError): devices.send_message("Hello World") assert GCMDevice.objects.get(registration_id="abc").active is True assert GCMDevice.objects.get(registration_id="abc1").active is True assert GCMDevice.objects.get(registration_id="abc2").active is False def test_gcm_send_message_to_multiple_devices_with_canonical_id(self): self._create_devices(["foo", "bar"]) with mock.patch( "push_notifications.gcm._gcm_send", return_value=responses.GCM_JSON_MULTIPLE_CANONICAL_ID ): GCMDevice.objects.all().send_message("Hello World") assert not GCMDevice.objects.filter(registration_id="foo").exists() assert GCMDevice.objects.filter(registration_id="bar").exists() assert GCMDevice.objects.filter(registration_id="NEW_REGISTRATION_ID").exists() is True def test_gcm_send_message_to_single_user_with_canonical_id(self): old_registration_id = "foo" self._create_devices([old_registration_id]) with mock.patch( "push_notifications.gcm._gcm_send", return_value=responses.GCM_JSON_CANONICAL_ID ): GCMDevice.objects.get(registration_id=old_registration_id).send_message("Hello World") assert not GCMDevice.objects.filter(registration_id=old_registration_id).exists() assert GCMDevice.objects.filter(registration_id="NEW_REGISTRATION_ID").exists() def test_gcm_send_message_to_same_devices_with_canonical_id(self): first_device = GCMDevice.objects.create( registration_id="foo", active=True, cloud_message_type="GCM" ) second_device = GCMDevice.objects.create( registration_id="bar", active=False, cloud_message_type="GCM" ) with mock.patch( "push_notifications.gcm._gcm_send", return_value=responses.GCM_JSON_CANONICAL_ID_SAME_DEVICE ): GCMDevice.objects.all().send_message("Hello World") assert first_device.active is True assert second_device.active is False def test_gcm_send_message_with_no_reg_ids(self): self._create_devices(["abc", "abc1"]) with mock.patch("push_notifications.gcm._cm_send_request", return_value="") as p: GCMDevice.objects.filter(registration_id="xyz").send_message("Hello World") p.assert_not_called() with mock.patch("push_notifications.gcm._cm_send_request", return_value="") as p: reg_ids = [obj.registration_id for obj in GCMDevice.objects.all()] send_bulk_message(reg_ids, {"message": "Hello World"}, "GCM") p.assert_called_once_with( [u"abc", u"abc1"], {"message": "Hello World"}, cloud_type="GCM", application_id=None ) def test_fcm_send_message(self): device = GCMDevice.objects.create(registration_id="abc", cloud_message_type="FCM") with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON ) as p: device.send_message("Hello world") p.assert_called_once_with( json.dumps({ "notification": {"body": "Hello world"}, "registration_ids": ["abc"] }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_fcm_send_message_extra_data(self): device = GCMDevice.objects.create(registration_id="abc", cloud_message_type="FCM") with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON ) as p: device.send_message("Hello world", extra={"foo": "bar"}) p.assert_called_once_with( json.dumps({ "data": {"foo": "bar"}, "notification": {"body": "Hello world"}, "registration_ids": ["abc"], }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_fcm_send_message_extra_options(self): device = GCMDevice.objects.create(registration_id="abc", cloud_message_type="FCM") with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON ) as p: device.send_message("Hello world", collapse_key="test_key", foo="bar") p.assert_called_once_with( json.dumps({ "collapse_key": "test_key", "notification": {"body": "Hello world"}, "registration_ids": ["abc"], }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_fcm_send_message_extra_notification(self): device = GCMDevice.objects.create(registration_id="abc", cloud_message_type="FCM") with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON ) as p: device.send_message("Hello world", extra={"icon": "test_icon"}, title="test") p.assert_called_once_with( json.dumps({ "notification": {"body": "Hello world", "title": "test", "icon": "test_icon"}, "registration_ids": ["abc"] }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_fcm_send_message_extra_options_and_notification_and_data(self): device = GCMDevice.objects.create(registration_id="abc", cloud_message_type="FCM") with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON ) as p: device.send_message( "Hello world", extra={"foo": "bar", "icon": "test_icon"}, title="test", collapse_key="test_key" ) p.assert_called_once_with( json.dumps({ "notification": {"body": "Hello world", "title": "test", "icon": "test_icon"}, "data": {"foo": "bar"}, "registration_ids": ["abc"], "collapse_key": "test_key" }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_fcm_send_message_to_multiple_devices(self): self._create_fcm_devices(["abc", "abc1"]) with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON_MULTIPLE ) as p: GCMDevice.objects.all().send_message("Hello world") p.assert_called_once_with( json.dumps({ "notification": {"body": "Hello world"}, "registration_ids": ["abc", "abc1"] }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_fcm_send_message_active_devices(self): GCMDevice.objects.create(registration_id="abc", active=True, cloud_message_type="FCM") GCMDevice.objects.create(registration_id="xyz", active=False, cloud_message_type="FCM") with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON_MULTIPLE ) as p: GCMDevice.objects.all().send_message("Hello world") p.assert_called_once_with( json.dumps({ "notification": {"body": "Hello world"}, "registration_ids": ["abc"] }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_fcm_send_message_collapse_to_multiple_devices(self): self._create_fcm_devices(["abc", "abc1"]) with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON_MULTIPLE ) as p: GCMDevice.objects.all().send_message("Hello world", collapse_key="test_key") p.assert_called_once_with( json.dumps({ "collapse_key": "test_key", "notification": {"body": "Hello world"}, "registration_ids": ["abc", "abc1"] }, separators=(",", ":"), sort_keys=True).encode("utf-8"), "application/json", application_id=None ) def test_fcm_send_message_to_single_device_with_error(self): # these errors are device specific, device.active will be set false devices = ["abc", "abc1"] self._create_fcm_devices(devices) errors = [ responses.GCM_JSON_ERROR_NOTREGISTERED, responses.GCM_JSON_ERROR_INVALIDREGISTRATION ] for index, error in enumerate(errors): with mock.patch( "push_notifications.gcm._fcm_send", return_value=error): device = GCMDevice.objects.get(registration_id=devices[index]) device.send_message("Hello World!") assert GCMDevice.objects.get(registration_id=devices[index]).active is False def test_fcm_send_message_to_single_device_with_error_mismatch(self): device = GCMDevice.objects.create(registration_id="abc", cloud_message_type="FCM") with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON_ERROR_MISMATCHSENDERID ): # these errors are not device specific, GCMError should be thrown with self.assertRaises(GCMError): device.send_message("Hello World!") assert GCMDevice.objects.get(registration_id="abc").active is True def test_fcm_send_message_to_multiple_devices_with_error(self): self._create_fcm_devices(["abc", "abc1", "abc2"]) with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON_MULTIPLE_ERROR ): devices = GCMDevice.objects.all() devices.send_message("Hello World") assert not GCMDevice.objects.get(registration_id="abc").active assert GCMDevice.objects.get(registration_id="abc1").active assert not GCMDevice.objects.get(registration_id="abc2").active def test_fcm_send_message_to_multiple_devices_with_error_b(self): self._create_fcm_devices(["abc", "abc1", "abc2"]) with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON_MULTIPLE_ERROR_B ): devices = GCMDevice.objects.all() with self.assertRaises(GCMError): devices.send_message("Hello World") assert GCMDevice.objects.get(registration_id="abc").active is True assert GCMDevice.objects.get(registration_id="abc1").active is True assert GCMDevice.objects.get(registration_id="abc2").active is False def test_fcm_send_message_to_multiple_devices_with_canonical_id(self): self._create_fcm_devices(["foo", "bar"]) with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON_MULTIPLE_CANONICAL_ID ): GCMDevice.objects.all().send_message("Hello World") assert not GCMDevice.objects.filter(registration_id="foo").exists() assert GCMDevice.objects.filter(registration_id="bar").exists() assert GCMDevice.objects.filter(registration_id="NEW_REGISTRATION_ID").exists() is True def test_fcm_send_message_to_single_user_with_canonical_id(self): old_registration_id = "foo" self._create_fcm_devices([old_registration_id]) with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON_CANONICAL_ID ): GCMDevice.objects.get(registration_id=old_registration_id).send_message("Hello World") assert not GCMDevice.objects.filter(registration_id=old_registration_id).exists() assert GCMDevice.objects.filter(registration_id="NEW_REGISTRATION_ID").exists() def test_fcm_send_message_to_same_devices_with_canonical_id(self): first_device = GCMDevice.objects.create( registration_id="foo", active=True, cloud_message_type="FCM" ) second_device = GCMDevice.objects.create( registration_id="bar", active=False, cloud_message_type="FCM" ) with mock.patch( "push_notifications.gcm._fcm_send", return_value=responses.GCM_JSON_CANONICAL_ID_SAME_DEVICE ): GCMDevice.objects.all().send_message("Hello World") assert first_device.active is True assert second_device.active is False def test_fcm_send_message_with_no_reg_ids(self): self._create_fcm_devices(["abc", "abc1"]) with mock.patch("push_notifications.gcm._cm_send_request", return_value="") as p: GCMDevice.objects.filter(registration_id="xyz").send_message("Hello World") p.assert_not_called() with mock.patch("push_notifications.gcm._cm_send_request", return_value="") as p: reg_ids = [obj.registration_id for obj in GCMDevice.objects.all()] send_bulk_message(reg_ids, {"message": "Hello World"}, "FCM") p.assert_called_once_with( [u"abc", u"abc1"], {"message": "Hello World"}, cloud_type="FCM", application_id=None ) def test_can_save_wsn_device(self): device = GCMDevice.objects.create(registration_id="a valid registration id") self.assertIsNotNone(device.pk) self.assertIsNotNone(device.date_created) self.assertEqual(device.date_created.date(), timezone.now().date())
39.055794
92
0.73989
74baf400afd4e79e8d9f3b7cc866fe41d3a105a0
8,770
py
Python
imix/utils/distributed_info.py
linxi1158/iMIX
af87a17275f02c94932bb2e29f132a84db812002
[ "Apache-2.0" ]
23
2021-06-26T08:45:19.000Z
2022-03-02T02:13:33.000Z
imix/utils/distributed_info.py
XChuanLee/iMIX
99898de97ef8b45462ca1d6bf2542e423a73d769
[ "Apache-2.0" ]
null
null
null
imix/utils/distributed_info.py
XChuanLee/iMIX
99898de97ef8b45462ca1d6bf2542e423a73d769
[ "Apache-2.0" ]
9
2021-06-10T02:36:20.000Z
2021-11-09T02:18:16.000Z
import enum import functools import pickle import numpy as np import torch import torch.distributed as dist _LOCAL_PROCESS_GROUP = None """ A torch process group which only includes processes that on the same machine as the current process. This variable is set when processes are spawned by `launch()` in "engine/launch.py". """ G_NCCL = 'nccl' G_GLOO = 'gloo' G_CUDA = 'cuda' class DistributedStatus(enum.Enum): AVAILABLE = 1 INITIALIZED = 2 AVAILABLE_AND_INITIALIZED = 3 NO_AVAILABLE_INITIALIZED = 4 def get_dist_status(): dist_package_status = dist.is_available() pg_init_status = dist.is_initialized() if dist_package_status and pg_init_status: return DistributedStatus.AVAILABLE_AND_INITIALIZED else: if dist_package_status: return DistributedStatus.AVAILABLE elif pg_init_status: return DistributedStatus.INITIALIZED else: return DistributedStatus.NO_AVAILABLE_INITIALIZED def get_world_size() -> int: status = get_dist_status() if status is DistributedStatus.AVAILABLE_AND_INITIALIZED: return dist.get_world_size() if status in (DistributedStatus.AVAILABLE, DistributedStatus.INITIALIZED): return 1 def get_rank() -> int: status = get_dist_status() if status is DistributedStatus.AVAILABLE_AND_INITIALIZED: return dist.get_rank() if status in (DistributedStatus.AVAILABLE, DistributedStatus.INITIALIZED): return 0 def get_local_rank() -> int: """ Returns: The rank of the current process within the local (per-machine) process group. """ status = get_dist_status() if status in (DistributedStatus.AVAILABLE, DistributedStatus.INITIALIZED): return 0 assert _LOCAL_PROCESS_GROUP is not None if status is DistributedStatus.AVAILABLE_AND_INITIALIZED: return dist.get_rank(group=_LOCAL_PROCESS_GROUP) def get_local_size() -> int: """ Returns: The size of the per-machine process group, i.e. the number of processes per machine. """ status = get_dist_status() if status in (DistributedStatus.AVAILABLE, DistributedStatus.INITIALIZED): return 0 assert _LOCAL_PROCESS_GROUP is not None if status is DistributedStatus.AVAILABLE_AND_INITIALIZED: return dist.get_world_size(group=_LOCAL_PROCESS_GROUP) def is_main_process() -> bool: return get_rank() == 0 def master_only_run(func): @functools.wraps(func) def wrapper(*args, **kwargs): if is_main_process(): return func(*args, **kwargs) return wrapper def synchronize() -> None: """Helper function to synchronize (barrier) among all processes when using distributed training.""" status = get_dist_status() if status in (DistributedStatus.AVAILABLE, DistributedStatus.INITIALIZED): return num_processes = dist.get_world_size() if num_processes == 1: return else: dist.barrier() @functools.lru_cache() def _get_global_gloo_group(): """Return a process group based on gloo backend, containing all the ranks The result is cached.""" if dist.get_backend() == G_NCCL: return dist.new_group(backend=G_GLOO) else: return dist.group.WORLD def _serialize_to_tensor(data, group): # serialize2tensor -> is_serialize backend = dist.get_backend(group=group) assert backend in [G_GLOO, G_NCCL] device = torch.device('cpu' if backend is G_GLOO else 'cuda') bytes_data = pickle.dumps(data) b2s = torch.ByteStorage.from_buffer(bytes_data) s2t = torch.ByteTensor(b2s).to(device=device) return s2t def _pad_to_largest_tensor(tensor: torch.Tensor, group) -> tuple: """ Returns: list[int]: size of the tensor, on each rank Tensor: padded tensor that has the max size """ world_size = dist.get_world_size(group=group) if world_size < 1: raise Exception('dist.gather/all_gather must be called from ranks with in the given group', world_size) dtype = torch.int64 device = tensor.device local_tensor_size = torch.tensor([tensor.numel()], dtype=dtype, device=device) tensor_sizes = [torch.zeros([1], dtype=dtype, device=device) for _ in range(world_size)] dist.all_gather(tensor_sizes, local_tensor_size, group=group) tensor_sizes = [int(size.item()) for size in tensor_sizes] max_tensor_size = max(tensor_sizes) if local_tensor_size != max_tensor_size: pad_size = max_tensor_size - local_tensor_size pad = torch.zeros((pad_size, ), dtype=torch.uint8, device=device) tensor = torch.cat((tensor, pad), dim=0) return tensor, tensor_sizes @functools.lru_cache() def is_single_processes(group=None) -> bool: if get_world_size() == 1: return True else: if group is None: group = _get_global_gloo_group() if dist.get_world_size(group=group) == 1: return True else: return False def all_gather(data, group=None) -> list: """Run all_gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object group: a torch process group. By default, will use a group which contains all ranks on gloo backend. Returns: list[data]: list of data gathered from each rank """ if is_single_processes(group): return [data] if group is None: group = _get_global_gloo_group() tensor = _serialize_to_tensor(data, group) tensor, tensor_sizes = _pad_to_largest_tensor(tensor, group) max_tensor_size = max(tensor_sizes) tensor_list = [torch.empty((max_tensor_size, ), dtype=torch.uint8, device=tensor.device) for _ in tensor_sizes] dist.all_gather(tensor_list, tensor, group=group) datum = [] for length, tensor in zip(tensor_sizes, tensor_list): single_data = tensor.cpu().numpy().tobytes() single_data = single_data[:length] datum.append(pickle.loads(single_data)) return datum def gather(data, *, dst_rank=0, group=None) -> list: """Run gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object dst (int): destination rank group: a torch process group. By default, will use a group which contains all ranks on gloo backend. Returns: list[data]: on dst, a list of data gathered from each rank. Otherwise, an empty list. """ if is_single_processes(group=group): return [data] if group is None: group = _get_global_gloo_group() tensor = _serialize_to_tensor(data, group) tensor, tensor_sizes = _pad_to_largest_tensor(tensor, group) if dist.get_rank(group=group) == dst_rank: max_tensor_size = max(tensor_sizes) tensor_list = [torch.empty((max_tensor_size, ), dtype=torch.uint8, device=tensor.device) for _ in tensor_sizes] dist.gather(tensor, tensor_list, dst=dst_rank, group=group) datum = [] for length, tensor in zip(tensor_sizes, tensor_list): single_data = tensor.cpu().numpy().tobytes() single_data = single_data[:length] datum.append(pickle.loads(single_data)) return datum else: dist.gather(tensor, [], dst=dst_rank, group=group) return [] def shared_random_seed(low=2**31, select_idx=0) -> int: """ Returns: int: a random number that is the same across all workers. If workers need a shared RNG, they can use this shared seed to create one. All workers must call this function, otherwise it will deadlock. """ random_ints = np.random.randint(low) all_random_ints = all_gather(random_ints) if len(all_random_ints) < select_idx: return all_random_ints[0] else: return all_random_ints[select_idx] def reduce_dict(input_dict: dict, is_average: bool = True) -> dict: """Reduce the values in the dictionary from all processes so that process with rank 0 has the reduced results. Args: input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor. is_average (bool): whether to do average or sum Returns: a dict with the same keys as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): values = torch.stack(list(input_dict.values()), dim=0) dist.reduce(values, dst=0) if is_main_process() and is_average: values /= world_size output_dict = {k: v for k, v in zip(input_dict.keys(), values)} return output_dict
31.209964
119
0.677651
3948f97cb3dda43a6ebb9a53685ab3955b4254e8
19,067
py
Python
edb/pgsql/ast.py
ambv/edgedb
83a2a4fac2d9dce9b609ddb786331ff431339062
[ "Apache-2.0" ]
4
2020-04-25T13:52:13.000Z
2020-09-23T19:14:07.000Z
edb/pgsql/ast.py
ambv/edgedb
83a2a4fac2d9dce9b609ddb786331ff431339062
[ "Apache-2.0" ]
null
null
null
edb/pgsql/ast.py
ambv/edgedb
83a2a4fac2d9dce9b609ddb786331ff431339062
[ "Apache-2.0" ]
null
null
null
# # This source file is part of the EdgeDB open source project. # # Copyright 2008-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations import enum import dataclasses import typing import uuid from edb.common import ast from edb.common import typeutils from edb.edgeql import ast as qlast from edb.ir import ast as irast # The structure of the nodes mostly follows that of Postgres' # parsenodes.h and primnodes.h, but only with fields that are # relevant to parsing and code generation. # # Certain nodes have EdgeDB-specific fields used by the # compiler. class Base(ast.AST): def __repr__(self): return f'<pg.{self.__class__.__name__} at 0x{id(self):x}>' class ImmutableBase(ast.ImmutableASTMixin, Base): pass class Alias(ImmutableBase): """Alias for a range variable.""" aliasname: str # aliased relation name colnames: typing.List[str] # optional list of column aliases class Keyword(ImmutableBase): """An SQL keyword that must be output without quoting.""" name: str # Keyword name class Star(Base): """'*' representing all columns of a table or compound field.""" class BaseExpr(Base): """Any non-statement expression node that returns a value.""" __ast_meta__ = {'nullable'} nullable: bool # Whether the result can be NULL. ser_safe: bool = False # Whether the expr is serialization-safe. def __init__(self, *, nullable: typing.Optional[bool]=None, **kwargs) -> None: nullable = self._is_nullable(kwargs, nullable) super().__init__(nullable=nullable, **kwargs) def _is_nullable(self, kwargs: typing.Dict[str, object], nullable: typing.Optional[bool]) -> bool: if nullable is None: default = type(self).get_field('nullable').default if default is not None: nullable = default else: nullable = self._infer_nullability(kwargs) return nullable def _infer_nullability(self, kwargs: typing.Dict[str, object]) -> bool: nullable = False for v in kwargs.values(): if typeutils.is_container(v): items = typing.cast(typing.Iterable, v) nullable = all(getattr(vv, 'nullable', False) for vv in items) elif getattr(v, 'nullable', None): nullable = True if nullable: break return nullable class ImmutableBaseExpr(BaseExpr, ImmutableBase): pass class OutputVar(ImmutableBaseExpr): """A base class representing expression output address.""" pass class EdgeQLPathInfo(Base): """A general mixin providing EdgeQL-specific metadata on certain nodes.""" # Ignore the below fields in AST visitor/transformer. __ast_meta__ = { 'path_scope', 'path_outputs', 'path_id', 'is_distinct', 'path_id_mask', 'path_namespace' } # The path id represented by the node. path_id: irast.PathId # Whether the node represents a distinct set. is_distinct: bool = True # A subset of paths necessary to perform joining. path_scope: typing.Set[irast.PathId] # Map of res target names corresponding to paths. path_outputs: typing.Dict[typing.Tuple[irast.PathId, str], OutputVar] path_id_mask: typing.Set[irast.PathId] # Map of col refs corresponding to paths. path_namespace: typing.Dict[typing.Tuple[irast.PathId, str], BaseExpr] class BaseRangeVar(ImmutableBaseExpr): """Range variable, used in FROM clauses.""" __ast_meta__ = {'schema_object_id'} alias: Alias #: The id of the schema object this rvar represents schema_object_id: typing.Optional[uuid.UUID] = None class BaseRelation(EdgeQLPathInfo, BaseExpr): name: str nullable: bool # Whether the result can be NULL. class Relation(BaseRelation): """Regular relation.""" catalogname: str schemaname: str class CommonTableExpr(Base): # Query name (unqualified) name: str # Whether the result can be NULL. nullable: bool # Optional list of column names aliascolnames: list # The CTE query query: Query # True if this CTE is recursive recursive: bool def __repr__(self): return ( f'<pg.{self.__class__.__name__} ' f'name={self.name!r} at 0x{id(self):x}>' ) class PathRangeVar(BaseRangeVar): #: The IR TypeRef this rvar represents (if any). typeref: typing.Optional[irast.TypeRef] @property def query(self) -> BaseRelation: raise NotImplementedError class RelRangeVar(PathRangeVar): """Relation range variable, used in FROM clauses.""" relation: typing.Union[BaseRelation, CommonTableExpr] include_inherited: bool = True @property def query(self) -> BaseRelation: if isinstance(self.relation, CommonTableExpr): return self.relation.query else: return self.relation class IntersectionRangeVar(PathRangeVar): component_rvars: typing.List[PathRangeVar] class TypeName(ImmutableBase): """Type in definitions and casts.""" name: typing.Tuple[str, ...] # Type name setof: bool # SET OF? typmods: list # Type modifiers array_bounds: list # Array bounds class ColumnRef(OutputVar): """Specifies a reference to a column.""" # Column name list. name: typing.List[typing.Union[str, Star]] # Whether the col is an optional path bond (i.e accepted when NULL) optional: bool def __repr__(self): if hasattr(self, 'name'): return ( f'<pg.{self.__class__.__name__} ' f'name={".".join(self.name)!r} at 0x{id(self):x}>' ) else: return super().__repr__() class TupleElementBase(ImmutableBase): path_id: irast.PathId name: typing.Optional[typing.Union[OutputVar, str]] def __init__(self, path_id: irast.PathId, name: typing.Optional[typing.Union[OutputVar, str]]=None): self.path_id = path_id self.name = name def __repr__(self): return f'<{self.__class__.__name__} ' \ f'name={self.name} path_id={self.path_id}>' class TupleElement(TupleElementBase): val: BaseExpr def __init__(self, path_id: irast.PathId, val: BaseExpr, *, name: typing.Optional[typing.Union[OutputVar, str]]=None): super().__init__(path_id, name) self.val = val def __repr__(self): return f'<{self.__class__.__name__} ' \ f'name={self.name} val={self.val} path_id={self.path_id}>' class TupleVarBase(OutputVar): elements: typing.Sequence[TupleElementBase] named: bool nullable: bool typeref: typing.Optional[irast.TypeRef] def __init__(self, elements: typing.List[TupleElementBase], *, named: bool=False, nullable: bool=False, typeref: typing.Optional[irast.TypeRef]=None): self.elements = elements self.named = named self.nullable = nullable self.typeref = typeref def __repr__(self): return f'<{self.__class__.__name__} [{self.elements!r}]' class TupleVar(TupleVarBase): elements: typing.Sequence[TupleElement] def __init__(self, elements: typing.List[TupleElement], *, named: bool=False, nullable: bool=False, typeref: typing.Optional[irast.TypeRef]=None): self.elements = elements self.named = named self.nullable = nullable self.typeref = typeref class BaseParamRef(ImmutableBaseExpr): pass class ParamRef(BaseParamRef): """Query parameter ($0..$n).""" # Number of the parameter. number: int class NamedParamRef(BaseParamRef): """Named query parameter.""" name: str class ResTarget(ImmutableBaseExpr): """Query result target.""" # Column name (optional) name: str # subscripts, field names and '*' indirection: list # value expression to compute val: BaseExpr class UpdateTarget(ImmutableBaseExpr): """Query update target.""" # column name (optional) name: str # value expression to assign val: BaseExpr class InferClause(ImmutableBaseExpr): # IndexElems to infer unique index index_elems: list # Partial-index predicate where_clause: BaseExpr # Constraint name conname: str class OnConflictClause(ImmutableBaseExpr): action: str infer: InferClause target_list: list where: BaseExpr class ReturningQuery(BaseRelation): target_list: typing.List[ResTarget] class NullRelation(ReturningQuery): """Special relation that produces nulls for all its attributes.""" where_clause: BaseExpr @dataclasses.dataclass(frozen=True) class Param: #: postgres' variable index index: int #: whether parameter is required required: bool class Query(ReturningQuery): """Generic superclass representing a query.""" # Ignore the below fields in AST visitor/transformer. __ast_meta__ = {'ptr_join_map', 'path_rvar_map', 'view_path_id_map', 'argnames', 'nullable'} view_path_id_map: typing.Dict[irast.PathId, irast.PathId] # Map of RangeVars corresponding to pointer relations. ptr_join_map: dict # Map of RangeVars corresponding to paths. path_rvar_map: typing.Dict[typing.Tuple[irast.PathId, str], PathRangeVar] argnames: typing.Dict[str, Param] ctes: typing.List[CommonTableExpr] @property def ser_safe(self): return all(t.ser_safe for t in self.target_list) class DMLQuery(Query): """Generic superclass for INSERT/UPDATE/DELETE statements.""" # Target relation to perform the operation on. relation: PathRangeVar # List of expressions returned returning_list: typing.List[ResTarget] @property def target_list(self): return self.returning_list class InsertStmt(DMLQuery): # (optional) list of target column names cols: typing.List[ColumnRef] # source SELECT/VALUES or None select_stmt: Query # ON CONFLICT clause on_conflict: OnConflictClause class UpdateStmt(DMLQuery): # The UPDATE target list targets: typing.List[UpdateTarget] # WHERE clause where_clause: BaseExpr # optional FROM clause from_clause: typing.List[BaseRangeVar] class DeleteStmt(DMLQuery): # WHERE clause where_clause: BaseExpr # optional USING clause using_clause: typing.List[BaseRangeVar] class SelectStmt(Query): # List of DISTINCT ON expressions, empty list for DISTINCT ALL distinct_clause: list # The target list target_list: typing.List[ResTarget] # The FROM clause from_clause: typing.List[BaseRangeVar] # The WHERE clause where_clause: BaseExpr # GROUP BY clauses group_clause: typing.List[Base] # HAVING expression having: BaseExpr # WINDOW window_name AS(...), window_clause: typing.List[Base] # List of ImplicitRow's in a VALUES query values: typing.List[Base] # ORDER BY clause sort_clause: typing.List[SortBy] # OFFSET expression limit_offset: typing.Optional[BaseExpr] # LIMIT expression limit_count: typing.Optional[BaseExpr] # FOR UPDATE clause locking_clause: list # Set operation type op: str # ALL modifier all: bool # Left operand of set op larg: Query # Right operand of set op, rarg: Query class ExprKind(enum.IntEnum): OP = enum.auto() class Expr(ImmutableBaseExpr): """Infix, prefix, and postfix expressions.""" # Operator kind kind: ExprKind # Possibly-qualified name of operator name: str # Left argument, if any lexpr: BaseExpr # Right argument, if any rexpr: BaseExpr class BaseConstant(ImmutableBaseExpr): def __init__(self, **kwargs): super().__init__(**kwargs) if not isinstance(self, NullConstant) and self.val is None: raise ValueError('cannot create a pgast.Constant without a value') class StringConstant(BaseConstant): """A literal string constant.""" # Constant value val: str class NullConstant(BaseConstant): """A NULL constant.""" nullable: bool = True class ByteaConstant(BaseConstant): """An bytea string.""" val: bytes class NumericConstant(BaseConstant): val: str class BooleanConstant(BaseConstant): val: str class LiteralExpr(ImmutableBaseExpr): """A literal expression.""" # Expression text expr: str class TypeCast(ImmutableBaseExpr): """A CAST expression.""" # Expression being casted. arg: BaseExpr # Target type. type_name: TypeName class CollateClause(ImmutableBaseExpr): """A COLLATE expression.""" # Input expression arg: BaseExpr # Possibly-qualified collation name collname: str class VariadicArgument(ImmutableBaseExpr): expr: BaseExpr nullable: bool = False class ColumnDef(ImmutableBase): # name of column name: str # type of column typename: TypeName # default value, if any default_expr: BaseExpr # COLLATE clause, if any coll_clause: BaseExpr class FuncCall(ImmutableBaseExpr): # Function name name: typing.Tuple[str, ...] # List of arguments args: typing.List[BaseExpr] # ORDER BY agg_order: typing.List[BaseExpr] # FILTER clause agg_filter: BaseExpr # Argument list is '*' agg_star: bool # Arguments were labeled DISTINCT agg_distinct: bool # OVER clause, if any over: typing.Optional[WindowDef] # WITH ORDINALITY with_ordinality: bool = False # list of ColumnDef nodes to describe result of # the function returning RECORD. coldeflist: typing.List[ColumnDef] def __init__(self, *, nullable: typing.Optional[bool]=None, null_safe: bool=False, **kwargs) -> None: """Function call node. @param null_safe: Specifies whether this function is guaranteed to never return NULL on non-NULL input. """ if nullable is None and not null_safe: nullable = True super().__init__(nullable=nullable, **kwargs) class NamedFuncArg(ImmutableBaseExpr): name: str val: BaseExpr class Indices(ImmutableBase): """Array subscript or slice bounds.""" # True, if slice is_slice: bool # Lower bound, if any lidx: BaseExpr # Upper bound if any ridx: BaseExpr class Indirection(ImmutableBaseExpr): """Field and/or array element indirection.""" # Indirection subject arg: BaseExpr # Subscripts and/or field names and/or '*' indirection: list class ArrayExpr(ImmutableBaseExpr): """ARRAY[] construct.""" # array element expressions elements: typing.List[BaseExpr] class MultiAssignRef(ImmutableBase): """UPDATE (a, b, c) = row-valued-expr.""" # row-valued expression source: BaseExpr # list of columns to assign to columns: typing.List[ColumnRef] class SortBy(ImmutableBase): """ORDER BY clause element.""" # expression to sort on node: BaseExpr # ASC/DESC/USING/default dir: qlast.SortOrder # NULLS FIRST/LAST nulls: qlast.NonesOrder class WindowDef(ImmutableBase): """WINDOW and OVER clauses.""" # window name name: str # referenced window name, if any refname: str # PARTITION BY expr list partition_clause: typing.List[BaseExpr] # ORDER BY order_clause: typing.List[SortBy] # Window frame options frame_options: list # expression for starting bound, if any start_offset: BaseExpr # expression for ending ound, if any end_offset: BaseExpr class RangeSubselect(PathRangeVar): """Subquery appearing in FROM clauses.""" lateral: bool subquery: Query @property def query(self): return self.subquery class RangeFunction(BaseRangeVar): lateral: bool # WITH ORDINALITY with_ordinality: bool = False # ROWS FROM form is_rowsfrom: bool functions: typing.List[FuncCall] class JoinExpr(BaseRangeVar): # Type of join type: str # Left subtree larg: BaseExpr # Right subtree rarg: BaseExpr # USING clause, if any using_clause: typing.List[BaseExpr] # Qualifiers on join, if any quals: BaseExpr def copy(self): result = self.__class__() result.copyfrom(self) return result def copyfrom(self, other): self.larg = other.larg self.rarg = other.rarg self.quals = other.quals self.type = other.type class SubLinkType(enum.IntEnum): EXISTS = enum.auto() ALL = enum.auto() ANY = enum.auto() class SubLink(ImmutableBaseExpr): """Subselect appearing in an expression.""" # Type of sublink type: SubLinkType # Sublink expression expr: BaseExpr # Sublink is never NULL nullable: bool = False class RowExpr(ImmutableBaseExpr): """A ROW() expression.""" # The fields. args: typing.List[BaseExpr] # Row expressions, while may contain NULLs, are not NULL themselves. nullable: bool = False class ImplicitRowExpr(ImmutableBaseExpr): """A (a, b, c) expression.""" # The fields. args: typing.List[BaseExpr] # Row expressions, while may contain NULLs, are not NULL themselves. nullable: bool = False class CoalesceExpr(ImmutableBaseExpr): """A COALESCE() expression.""" # The arguments. args: typing.List[Base] class NullTest(ImmutableBaseExpr): """IS [NOT] NULL.""" # Input expression, arg: BaseExpr # NOT NULL? negated: bool # NullTest is never NULL nullable: bool = False class CaseWhen(ImmutableBase): # Condition expression expr: BaseExpr # subsitution result result: BaseExpr class CaseExpr(ImmutableBaseExpr): # Equality comparison argument arg: BaseExpr # List of WHEN clauses args: typing.List[CaseWhen] # ELSE clause defresult: BaseExpr SortAsc = qlast.SortAsc SortDesc = qlast.SortDesc SortDefault = qlast.SortDefault NullsFirst = qlast.NonesFirst NullsLast = qlast.NonesLast class AlterSystem(ImmutableBaseExpr): name: str value: BaseExpr class Set(ImmutableBaseExpr): name: str value: BaseExpr
23.395092
78
0.662401
ef1999a6b83954b35066a0e78f3a05a961ac62df
2,123
py
Python
config.py
tryonelove/tvv-vk-bot
2fda3f32f88303ced64388cd43f08bdccfe82ee4
[ "Apache-2.0" ]
null
null
null
config.py
tryonelove/tvv-vk-bot
2fda3f32f88303ced64388cd43f08bdccfe82ee4
[ "Apache-2.0" ]
null
null
null
config.py
tryonelove/tvv-vk-bot
2fda3f32f88303ced64388cd43f08bdccfe82ee4
[ "Apache-2.0" ]
null
null
null
import os CREATOR_ID = 236965366 GROUP_ID_TEST = os.getenv("GROUP_ID_TEST") GROUP_ID = os.getenv("GROUP_ID") API_KEY_TEST = os.getenv("API_KEY_TEST") API_KEY = os.getenv("API_KEY") OSU_API_KEY = os.getenv("OSU_API_KEY") OSU_MATCHMAKING_KEY = os.getenv("OSU_MATCHMAKING_KEY") RESTRICTED_HIGHLIGHTS = ["@all", "@online", "@тут", "@все"] DATABASE_INIT = """ CREATE TABLE IF NOT EXISTS "users" ( "id" INTEGER, "name" TEXT, "server" TEXT, "username" TEXT, "role" INTEGER DEFAULT 1, PRIMARY KEY("id") ); CREATE TABLE IF NOT EXISTS "users_experience" ( "chat_id" INTEGER, "user_id" INTEGER, "experience" FLOAT DEFAULT 0, "level" INTEGER DEFAULT 1, FOREIGN KEY(user_id) REFERENCES "users"("id") ); CREATE TABLE IF NOT EXISTS "osu" ( "id" INTEGER NOT NULL UNIQUE, "main_server" TEXT, "bancho_username" TEXT, "gatari_username" TEXT, FOREIGN KEY("id") REFERENCES "users"("id") ON UPDATE CASCADE ON DELETE CASCADE ); CREATE TABLE IF NOT EXISTS "weather" ( "id" INTEGER NOT NULL UNIQUE, "city" TEXT, FOREIGN KEY("id") REFERENCES "users"("id") ON UPDATE CASCADE ); CREATE TABLE IF NOT EXISTS "donators" ( "id" int, "expires" INTEGER, "role" text, FOREIGN KEY("id") REFERENCES "users"("id") ON UPDATE CASCADE ON DELETE CASCADE ); CREATE TABLE IF NOT EXISTS "commands" ( "key" INTEGER NOT NULL UNIQUE, "message" TEXT, "attachment" TEXT, "author" INTEGER NOT NULL ); CREATE TABLE IF NOT EXISTS "beatmapsets" ( "beatmapset_id" INTEGER NOT NULL UNIQUE, "artist" TEXT, "title" TEXT, "background_url" TEXT, PRIMARY KEY("beatmapset_id") ); CREATE TABLE IF NOT EXISTS "beatmaps" ( "beatmapset_id" INTEGER, "beatmap_id" INTEGER, "version" TEXT, "max_combo" INTEGER, PRIMARY KEY("beatmap_id"), FOREIGN KEY("beatmapset_id") REFERENCES "beatmapsets"("beatmapset_id") ); """
29.082192
86
0.601507
605239e2228af3029e32e4164141a85ebc90bbbc
3,444
py
Python
waterfall/api/v2/views/workflows.py
xiaoquqi/waterfall
c023df8fc4376d93136458dfc4ca956a7249e509
[ "Apache-2.0" ]
null
null
null
waterfall/api/v2/views/workflows.py
xiaoquqi/waterfall
c023df8fc4376d93136458dfc4ca956a7249e509
[ "Apache-2.0" ]
null
null
null
waterfall/api/v2/views/workflows.py
xiaoquqi/waterfall
c023df8fc4376d93136458dfc4ca956a7249e509
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log as logging import six from waterfall.api import common LOG = logging.getLogger(__name__) class ViewBuilder(common.ViewBuilder): """Model a server API response as a python dictionary.""" _collection_name = "workflows" def __init__(self): """Initialize view builder.""" super(ViewBuilder, self).__init__() def summary_list(self, request, workflows, workflow_count=None): """Show a list of workflows without many details.""" return self._list_view(self.summary, request, workflows, workflow_count) def detail_list(self, request, workflows, workflow_count=None): """Detailed view of a list of workflows.""" return self._list_view(self.detail, request, workflows, workflow_count, self._collection_name + '/detail') def summary(self, request, workflow): """Generic, non-detailed view of a workflow.""" return { 'workflow': { 'id': workflow['id'], 'resource_type': workflow['resource_type'], }, } def detail(self, request, workflow): """Detailed view of a single workflow.""" workflow_ref = { 'workflow': { 'id': workflow.get('id'), 'resource_type': workflow.get('resource_type'), 'payload': workflow.get('payload'), 'created_at': workflow.get('created_at'), 'updated_at': workflow.get('updated_at'), 'user_id': workflow.get('user_id'), } } return workflow_ref def _list_view(self, func, request, workflows, workflow_count, coll_name=_collection_name): """Provide a view for a list of workflows. :param func: Function used to format the workflow data :param request: API request :param workflows: List of workflows in dictionary format :param workflow_count: Length of the original list of workflows :param coll_name: Name of collection, used to generate the next link for a pagination query :returns: Workflow data in dictionary format """ workflows_list = [func(request, workflow)['workflow'] for workflow in workflows] workflows_links = self._get_collection_links(request, workflows, coll_name, workflow_count) workflows_dict = dict(workflows=workflows_list) if workflows_links: workflows_dict['workflows_links'] = workflows_links return workflows_dict
37.846154
88
0.601626
f251f894edfec3b7a73c89ae4666e2c0b3a1949f
64
py
Python
py/start/helloworld.py
zhongwei/ztodo
fef4f24e65fb8d571c6c13e6f82d842023e7a8e1
[ "CC0-1.0" ]
1
2015-09-22T08:28:27.000Z
2015-09-22T08:28:27.000Z
py/start/helloworld.py
zhongwei/ztodo
fef4f24e65fb8d571c6c13e6f82d842023e7a8e1
[ "CC0-1.0" ]
null
null
null
py/start/helloworld.py
zhongwei/ztodo
fef4f24e65fb8d571c6c13e6f82d842023e7a8e1
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 print "Hello, World!";
12.8
22
0.65625
e023b51f25a491e63141cad8c4e4b15c945de5bf
743
py
Python
tasbot/__init__.py
TurBoss/tasbot3
c29a22f98aa8044a415f79d83f620ed6ef7ce000
[ "WTFPL" ]
null
null
null
tasbot/__init__.py
TurBoss/tasbot3
c29a22f98aa8044a415f79d83f620ed6ef7ce000
[ "WTFPL" ]
null
null
null
tasbot/__init__.py
TurBoss/tasbot3
c29a22f98aa8044a415f79d83f620ed6ef7ce000
[ "WTFPL" ]
null
null
null
"""tasbot module docstring""" __version__ = (1, 0, 0) from main import MainApp as DefaultApp import sys #pretty sure there's buitins for this but I couldn't find them def _greater(a, b): return cmp(a, b) > 0 def _less(a, b): return cmp(a, b) < 0 def _compare(vtuple, op): for i in range(len(vtuple)): if op(__version__[i], vtuple[i]): return False return True def check_min_version(vtuple): if not _compare(vtuple, _less): print('tasbot version %s does not match minimum requirement %s' % (str(__version__), str(vtuple))) sys.exit(1) def check_max_version(vtuple): if not _compare(vtuple, _greater): print('tasbot version %s exceeds maximum requirement %s' % (str(__version__), str(vtuple))) sys.exit(1)
20.081081
67
0.694482
ba9538726e16f8c986fc5ef048aafcc4ed7129d8
14,900
py
Python
src/ezdxf/path/path.py
jpsantos-mf/ezdxf
2b542a551b2cfc3c0920a5dbf302ff58cea90fbd
[ "MIT" ]
null
null
null
src/ezdxf/path/path.py
jpsantos-mf/ezdxf
2b542a551b2cfc3c0920a5dbf302ff58cea90fbd
[ "MIT" ]
null
null
null
src/ezdxf/path/path.py
jpsantos-mf/ezdxf
2b542a551b2cfc3c0920a5dbf302ff58cea90fbd
[ "MIT" ]
null
null
null
# Copyright (c) 2020-2021, Manfred Moitzi # License: MIT License from typing import TYPE_CHECKING, List, Iterable from collections import abc import warnings from ezdxf.math import ( Vec3, NULLVEC, OCS, Bezier3P, Bezier4P, Matrix44, ConstructionEllipse, BSpline, has_clockwise_orientation, ) from ezdxf.entities import LWPolyline, Polyline, Spline from .commands import Command, LineTo, Curve3To, Curve4To, AnyCurve, PathElement if TYPE_CHECKING: from ezdxf.eztypes import Vertex, Ellipse, Arc, Circle __all__ = ['Path'] MAX_DISTANCE = 0.01 MIN_SEGMENTS = 4 G1_TOL = 1e-4 class Path(abc.Sequence): __slots__ = ('_start', '_commands') def __init__(self, start: 'Vertex' = NULLVEC): self._start = Vec3(start) self._commands: List[PathElement] = [] def __len__(self) -> int: return len(self._commands) def __getitem__(self, item) -> PathElement: return self._commands[item] def __iter__(self) -> Iterable[PathElement]: return iter(self._commands) def __copy__(self) -> 'Path': """ Returns a new copy of :class:`Path` with shared immutable data. """ copy = Path(self._start) # immutable data copy._commands = list(self._commands) return copy clone = __copy__ @property def start(self) -> Vec3: """ :class:`Path` start point, resetting the start point of an empty path is possible. """ return self._start @start.setter def start(self, location: 'Vertex') -> None: if len(self._commands): raise ValueError('Requires an empty path.') else: self._start = Vec3(location) @property def end(self) -> Vec3: """ :class:`Path` end point. """ if self._commands: return self._commands[-1].end else: return self._start @property def is_closed(self) -> bool: """ Returns ``True`` if the start point is close to the end point. """ return self._start.isclose(self.end) @property def has_lines(self) -> bool: """ Returns ``True`` if the path has any line segments. """ return any(cmd.type == Command.LINE_TO for cmd in self._commands) @property def has_curves(self) -> bool: """ Returns ``True`` if the path has any curve segments. """ return any(cmd.type in AnyCurve for cmd in self._commands) def has_clockwise_orientation(self) -> bool: """ Returns ``True`` if 2D path has clockwise orientation, ignores z-axis of all control vertices. """ return has_clockwise_orientation(self.control_vertices()) def line_to(self, location: 'Vertex') -> None: """ Add a line from actual path end point to `location`. """ self._commands.append(LineTo(end=Vec3(location))) def curve3_to(self, location: 'Vertex', ctrl: 'Vertex') -> None: """ Add a quadratic Bèzier-curve from actual path end point to `location`, `ctrl` is the control point for the quadratic Bèzier-curve. """ self._commands.append(Curve3To(end=Vec3(location), ctrl=Vec3(ctrl))) def curve4_to(self, location: 'Vertex', ctrl1: 'Vertex', ctrl2: 'Vertex') -> None: """ Add a cubic Bèzier-curve from actual path end point to `location`, `ctrl1` and `ctrl2` are the control points for the cubic Bèzier-curve. """ self._commands.append(Curve4To( end=Vec3(location), ctrl1=Vec3(ctrl1), ctrl2=Vec3(ctrl2)) ) curve_to = curve4_to # TODO: 2021-01-30, remove compatibility alias def close(self) -> None: """ Close path by adding a line segment from the end point to the start point. """ if not self.is_closed: self.line_to(self.start) def reversed(self) -> 'Path': """ Returns a new :class:`Path` with reversed segments and control vertices. """ if len(self) == 0: return Path(self.start) path = Path(start=self.end) for index in range(len(self) - 1, -1, -1): cmd = self[index] if index > 0: prev_end = self[index - 1].end else: prev_end = self.start if cmd.type == Command.LINE_TO: path.line_to(prev_end) elif cmd.type == Command.CURVE3_TO: path.curve3_to(prev_end, cmd.ctrl) elif cmd.type == Command.CURVE4_TO: path.curve4_to(prev_end, cmd.ctrl2, cmd.ctrl1) return path def clockwise(self) -> 'Path': """ Returns new :class:`Path` in clockwise orientation. """ if self.has_clockwise_orientation(): return self.clone() else: return self.reversed() def counter_clockwise(self) -> 'Path': """ Returns new :class:`Path` in counter-clockwise orientation. """ if self.has_clockwise_orientation(): return self.reversed() else: return self.clone() def approximate(self, segments: int = 20) -> Iterable[Vec3]: """ Approximate path by vertices, `segments` is the count of approximation segments for each Bézier curve. Does not yield any vertices for empty paths, where only a start point is present! """ def approx_curve3(s, c, e) -> Iterable[Vec3]: return Bezier3P((s, c, e)).approximate(segments) def approx_curve4(s, c1, c2, e) -> Iterable[Vec3]: return Bezier4P((s, c1, c2, e)).approximate(segments) yield from self._approximate(approx_curve3, approx_curve4) def flattening(self, distance: float, segments: int = 16) -> Iterable[Vec3]: """ Approximate path by vertices and use adaptive recursive flattening to approximate Bèzier curves. The argument `segments` is the minimum count of approximation segments for each curve, if the distance from the center of the approximation segment to the curve is bigger than `distance` the segment will be subdivided. Does not yield any vertices for empty paths, where only a start point is present! Args: distance: maximum distance from the center of the curve to the center of the line segment between two approximation points to determine if a segment should be subdivided. segments: minimum segment count per Bézier curve """ def approx_curve3(s, c, e) -> Iterable[Vec3]: return Bezier3P((s, c, e)).flattening(distance, segments) def approx_curve4(s, c1, c2, e) -> Iterable[Vec3]: return Bezier4P((s, c1, c2, e)).flattening(distance, segments) yield from self._approximate(approx_curve3, approx_curve4) def _approximate(self, approx_curve3, approx_curve4) -> Iterable[Vec3]: if not self._commands: return start = self._start yield start for cmd in self._commands: end_location = cmd.end if cmd.type == Command.LINE_TO: yield end_location elif cmd.type == Command.CURVE3_TO: pts = iter( approx_curve3(start, cmd.ctrl, end_location) ) next(pts) # skip first vertex yield from pts elif cmd.type == Command.CURVE4_TO: pts = iter( approx_curve4(start, cmd.ctrl1, cmd.ctrl2, end_location) ) next(pts) # skip first vertex yield from pts else: raise ValueError(f'Invalid command: {cmd.type}') start = end_location def transform(self, m: 'Matrix44') -> 'Path': """ Returns a new transformed path. Args: m: transformation matrix of type :class:`~ezdxf.math.Matrix44` """ new_path = self.__class__(m.transform(self.start)) for cmd in self._commands: if cmd.type == Command.LINE_TO: new_path.line_to(m.transform(cmd.end)) elif cmd.type == Command.CURVE3_TO: loc, ctrl = m.transform_vertices( (cmd.end, cmd.ctrl) ) new_path.curve3_to(loc, ctrl) elif cmd.type == Command.CURVE4_TO: loc, ctrl1, ctrl2 = m.transform_vertices( (cmd.end, cmd.ctrl1, cmd.ctrl2) ) new_path.curve4_to(loc, ctrl1, ctrl2) else: raise ValueError(f'Invalid command: {cmd.type}') return new_path def to_wcs(self, ocs: OCS, elevation: float): """ Transform path from given `ocs` to WCS coordinates inplace. """ self._start = ocs.to_wcs(self._start.replace(z=elevation)) for i, cmd in enumerate(self._commands): self._commands[i] = cmd.to_wcs(ocs, elevation) def add_curves(self, curves: Iterable[Bezier4P]) -> None: """ Add multiple cubic Bèzier-curves to the path. .. deprecated:: 0.15.3 replaced by factory function :func:`add_bezier4p` """ warnings.warn( 'use tool function add_bezier4p(),' 'will be removed in v0.17.', DeprecationWarning) from .tools import add_bezier4p add_bezier4p(self, curves) def add_bezier3p(self, curves: Iterable[Bezier3P]) -> None: """ Add multiple quadratic Bèzier-curves to the path. """ warnings.warn( 'use tool function add_bezier3p(),' 'will be removed in v0.17.', DeprecationWarning) from .tools import add_bezier3p add_bezier3p(self, curves) def add_ellipse(self, ellipse: ConstructionEllipse, segments=1, reset=True) -> None: """ Add an elliptical arc as multiple cubic Bèzier-curves .. deprecated:: 0.15.3 replaced by factory function :func:`add_ellipse` """ warnings.warn( 'use tool function add_ellipse(),' 'will be removed in v0.17.', DeprecationWarning) from .tools import add_ellipse add_ellipse(self, ellipse, segments, reset) def add_spline(self, spline: BSpline, level=4, reset=True) -> None: """ Add a B-spline as multiple cubic Bèzier-curves. .. deprecated:: 0.15.3 replaced by factory function :func:`add_spline` """ warnings.warn( 'use tool function add_spline(),' 'will be removed in v0.17.', DeprecationWarning) from .tools import add_spline add_spline(self, spline, level, reset) @classmethod def from_vertices(cls, vertices: Iterable['Vertex'], close=False) -> 'Path': """ Returns a :class:`Path` from given `vertices`. .. deprecated:: 0.15.3 replaced by factory function :func:`from_vertices()` """ warnings.warn( 'use factory function from_vertices(),' 'will be removed in v0.17.', DeprecationWarning) from .converter import from_vertices return from_vertices(vertices, close) @classmethod def from_lwpolyline(cls, lwpolyline: 'LWPolyline') -> 'Path': """ Returns a :class:`Path` from a :class:`~ezdxf.entities.LWPolyline` entity, all vertices transformed to WCS. .. deprecated:: 0.15.2 replaced by factory function :func:`make_path()` """ warnings.warn( 'use factory function make_path(lwpolyline),' 'will be removed in v0.17.', DeprecationWarning) from .converter import make_path return make_path(lwpolyline) @classmethod def from_polyline(cls, polyline: 'Polyline') -> 'Path': """ Returns a :class:`Path` from a :class:`~ezdxf.entities.Polyline` entity, all vertices transformed to WCS. .. deprecated:: 0.15.2 replaced by factory function :func:`make_path()` """ warnings.warn( 'use factory function make_path(polyline),' 'will be removed in v0.17.', DeprecationWarning) from .converter import make_path return make_path(polyline) @classmethod def from_spline(cls, spline: 'Spline', level: int = 4) -> 'Path': """ Returns a :class:`Path` from a :class:`~ezdxf.entities.Spline`. .. deprecated:: 0.15.2 replaced by factory function :func:`make_path()` """ warnings.warn( 'use factory function make_path(polyline),' 'will be removed in v0.17.', DeprecationWarning) from .converter import make_path return make_path(spline, level=level) @classmethod def from_ellipse(cls, ellipse: 'Ellipse', segments: int = 1) -> 'Path': """ Returns a :class:`Path` from a :class:`~ezdxf.entities.Ellipse`. .. deprecated:: 0.15.2 replaced by factory function :func:`make_path()` """ warnings.warn( 'use factory function make_path(ellipse),' 'will be removed in v0.17.', DeprecationWarning) from .converter import make_path return make_path(ellipse, segments=segments) @classmethod def from_arc(cls, arc: 'Arc', segments: int = 1) -> 'Path': """ Returns a :class:`Path` from an :class:`~ezdxf.entities.Arc`. .. deprecated:: 0.15.2 replaced by factory function :func:`make_path()` """ warnings.warn( 'use factory function make_path(arc),' 'will be removed in v0.17.', DeprecationWarning) from .converter import make_path return make_path(arc, segments=segments) @classmethod def from_circle(cls, circle: 'Circle', segments: int = 1) -> 'Path': """ Returns a :class:`Path` from a :class:`~ezdxf.entities.Circle`. .. deprecated:: 0.15.2 replaced by factory function :func:`make_path()` """ warnings.warn( 'use factory function make_path(circle),' 'will be removed in v0.17.', DeprecationWarning) from .converter import make_path return make_path(circle, segments=segments) def control_vertices(self): """ Yields all path control vertices in consecutive order. """ if len(self): yield self.start for cmd in self._commands: if cmd.type == Command.LINE_TO: yield cmd.end elif cmd.type == Command.CURVE3_TO: yield cmd.ctrl yield cmd.end elif cmd.type == Command.CURVE4_TO: yield cmd.ctrl1 yield cmd.ctrl2 yield cmd.end
34.976526
80
0.590134
fab8d9005b1a45b36964fd1193c7a65bc84dd41e
2,600
py
Python
app/modules/common/FEAT/F14_individual_heat_supply_costs_per_building/F_14.py
HotMaps/building_h-c
db5a103cb9d41b88e6cdc3c9194fc1ec9fc5c31f
[ "Apache-2.0" ]
1
2017-05-12T11:31:09.000Z
2017-05-12T11:31:09.000Z
app/modules/common/FEAT/F14_individual_heat_supply_costs_per_building/F_14.py
HotMaps/HotMaps-building_h-c
db5a103cb9d41b88e6cdc3c9194fc1ec9fc5c31f
[ "Apache-2.0" ]
2
2017-08-22T13:53:22.000Z
2017-09-25T07:27:28.000Z
app/modules/common/FEAT/F14_individual_heat_supply_costs_per_building/F_14.py
HotMaps/Hotmaps-building_h-c
db5a103cb9d41b88e6cdc3c9194fc1ec9fc5c31f
[ "Apache-2.0" ]
null
null
null
''' This script has been created in the context of the Hotmaps EU project. @author: Sara Fritz @Institute: TUW, Austria @Contact: fritz@eeg.tuwien.ac.at ''' import os import sys path = os.path.dirname(os.path.dirname(os.path.dirname(os.path. abspath(__file__)))) if path not in sys.path: sys.path.append(path) import AD.F14_input.main as data import CM.CM_TUW2.run_cm as CM2 import CM.CM_TUW3.run_cm as CM3 import pandas import numpy import json def execute(interest_rate, lifetime, user_input_nuts0, user_input_nuts3, population, energy_demand, heat_load): (co2_costs, energy_price, taxes, investment_costs, operation_and_maintenance_costs, efficiency_heatingsystem, spec_co2_emissions, heating_system_names)\ =data.ad_f14(user_input_nuts3, user_input_nuts0) (var_costs, fix_costs,energy_costs, total_costs, share_of_taxes, co2_costs, lcoh, lcohcapita, fed) = \ CM2.main(energy_demand, heat_load,energy_price,co2_costs, taxes, investment_costs, operation_and_maintenance_costs, efficiency_heatingsystem,interest_rate,lifetime,population) (specific_emissions, total_emissions) = CM3.main(energy_demand, efficiency_heatingsystem, spec_co2_emissions) name_heating_systems = (pandas.Series(heating_system_names)).rename('Heating System') export_dataframe=pandas.concat([name_heating_systems,var_costs,fix_costs, energy_costs, total_costs, share_of_taxes, co2_costs, lcoh, lcohcapita, fed, specific_emissions, total_emissions],axis=1) #return [var_costs, fix_costs,energy_costs, total_costs, share_of_taxes, co2_costs, lcoh, lcohcapita, fed,specific_emissions, total_emissions] #return export_dataframe test = export_dataframe export_dataframe = export_dataframe.set_index('Heating System') dictionary= json.loads( export_dataframe.to_json() ) return dictionary if __name__ == "__main__": print('calculation started') output_dir = path + os.sep + 'Outputs' if not os.path.exists(output_dir): os.mkdir(output_dir) interest_rate = 1.06 lifetime = 20 ##Information from selected area user_input_nuts0 = 'AT' user_input_nuts3 = 'AT130' population = 1800000 #not final - just value #user input sel_building_energy_demand= 120 # kWh/a sel_building_heat_load = 20 #kW/a result = execute(interest_rate, lifetime,user_input_nuts0, user_input_nuts3, population, sel_building_energy_demand, sel_building_heat_load) print(result) print('calculation done')
35.135135
199
0.739231
56aa124a5b3848b66114d9a6079b9319a00bb870
2,838
py
Python
ImageBot/to_yolo/YoloConverter.py
FraunhoferIAO/Image-Bot
951258a78a297f3fb27478f5671f6bc804cd5715
[ "MIT" ]
2
2021-12-28T08:33:14.000Z
2022-01-06T15:28:19.000Z
ImageBot/to_yolo/YoloConverter.py
FraunhoferIAO/Image-Bot
951258a78a297f3fb27478f5671f6bc804cd5715
[ "MIT" ]
1
2022-02-17T17:43:11.000Z
2022-02-17T17:43:11.000Z
ImageBot/to_yolo/YoloConverter.py
IAORaisierer/Image-Bot
951258a78a297f3fb27478f5671f6bc804cd5715
[ "MIT" ]
1
2022-02-09T18:24:09.000Z
2022-02-09T18:24:09.000Z
import numpy as np import cv2 import uuid import os import random import imgaug.augmenters as iaa import imgaug.parameters as iap from pathlib import Path from queue import Queue import os from ..Config import CLASS_ID from ..infrastructure.ImageMessage import ImageMessage from ..infrastructure.filter import load_image from ..image_processing.masks import mask_bounding_box def to_yolo_dataset(source_folder, target_folder, test_training_split=0.3): # Get all filenames filenames = [f.replace('_mask.png', "") for f in os.listdir(source_folder) if f.endswith('_mask.png')] # First shuffle the list random.shuffle(filenames) # Now select the test_aquisition split max_index = int(test_training_split*len(filenames)) test_messages = filenames[:max_index] training_messages = filenames[max_index:] # Now save them and their labels in different folders train_folder = os.path.join(target_folder, 'train') test_folder = os.path.join(target_folder, 'test') # Make the folders if the do not already exist # TODO: Remove hard coded paths Path(target_folder).mkdir(parents=True, exist_ok=True) Path(train_folder).mkdir(parents=True, exist_ok=True) Path(test_folder).mkdir(parents=True, exist_ok=True) Path(os.path.join(train_folder, "images")).mkdir(parents=True, exist_ok=True) Path(os.path.join(test_folder, "images")).mkdir(parents=True, exist_ok=True) Path(os.path.join(train_folder, "labels")).mkdir(parents=True, exist_ok=True) Path(os.path.join(test_folder, "labels")).mkdir(parents=True, exist_ok=True) # Helper function to save the file def save_message(filename, parent_path): image = cv2.imread(os.path.join(source_folder, filename + ".png"), cv2.IMREAD_GRAYSCALE) mask = cv2.imread(os.path.join(source_folder, filename + "_mask.png"), cv2.IMREAD_GRAYSCALE) # Save the image cv2.imwrite(os.path.join(parent_path, "images", filename + ".png"), image) # Save the label bb = bounding_box_darknet_format(mask) bb_str = "" if bb is not None: bb_str = str(CLASS_ID) + " " + str(bb[0][0]) + " " + str(bb[0][1]) + " " + str(bb[1][0]) + " " + str(bb[1][1]) with open(os.path.join(os.path.join(parent_path, "labels"), filename + ".txt"), "w") as label_file: label_file.write(bb_str) # Now save them for m in test_messages: save_message(m, test_folder) for m in training_messages: save_message(m, train_folder) def bounding_box_darknet_format(mask): bb = mask_bounding_box(mask) if bb is None: return None s = mask.shape center = ((bb[0][0]+bb[1][0])/2.0/s[1], (bb[0][1]+bb[1][1])/2.0/s[0]) size = ((bb[1][0]-bb[0][0])/s[1], (bb[1][1]-bb[0][1])/s[0]) return (center, size)
38.351351
122
0.677942
7c0901f83acb1a941985bf451068cfc65e13f65c
3,337
py
Python
infrastructure-provisioning/src/general/scripts/aws/common_create_role_policy.py
GennadiyShpak/incubator-datalab
00f23c6bea160136c4ab106484c7053554915873
[ "Apache-2.0" ]
53
2019-01-24T10:18:26.000Z
2020-09-27T10:44:33.000Z
infrastructure-provisioning/src/general/scripts/aws/common_create_role_policy.py
GennadiyShpak/incubator-datalab
00f23c6bea160136c4ab106484c7053554915873
[ "Apache-2.0" ]
48
2019-02-28T12:11:33.000Z
2020-09-15T08:27:08.000Z
infrastructure-provisioning/src/general/scripts/aws/common_create_role_policy.py
GennadiyShpak/incubator-datalab
00f23c6bea160136c4ab106484c7053554915873
[ "Apache-2.0" ]
44
2019-01-14T10:31:55.000Z
2020-09-22T17:53:33.000Z
#!/usr/bin/python3 # ***************************************************************************** # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ****************************************************************************** import argparse import sys from datalab.actions_lib import * from datalab.meta_lib import * from datalab.logger import logging parser = argparse.ArgumentParser() parser.add_argument('--role_name', type=str, default='') parser.add_argument('--role_profile_name', type=str, default='') parser.add_argument('--permissions_boundary_arn', type=str, default='') parser.add_argument('--policy_name', type=str, default='') parser.add_argument('--policy_arn', type=str, default='') parser.add_argument('--policy_file_name', type=str, default='') parser.add_argument('--region', type=str, default='') parser.add_argument('--infra_tag_name', type=str, default='') parser.add_argument('--infra_tag_value', type=str, default='') parser.add_argument('--user_tag_value', type=str, default='') args = parser.parse_args() if __name__ == "__main__": if args.role_name != '': try: role_name = get_role_by_name(args.role_name) if role_name == '': tag = {"Key": args.infra_tag_name, "Value": args.infra_tag_value} user_tag = {"Key": "user:tag", "Value": args.user_tag_value} logging.info("Creating role {0}, profile name {1}".format(args.role_name, args.role_profile_name)) create_iam_role(args.role_name, args.role_profile_name, args.region, args.permissions_boundary_arn, tag=tag, user_tag=user_tag) else: logging.info("ROLE AND ROLE PROFILE ARE ALREADY CREATED") logging.info("ROLE {} created. IAM group {} created".format(args.role_name, args.role_profile_name)) logging.info("ATTACHING POLICIES TO ROLE") if args.policy_file_name != '': create_attach_policy(args.policy_name, args.role_name, args.policy_file_name) else: if args.policy_arn == '': logging.info("POLICY ARN is empty, there is nothing to attach.") success = True else: policy_arn_bits = eval(args.policy_arn) for bit in policy_arn_bits: attach_policy(args.role_name, bit) logging.info("POLICY {} created".format(args.policy_name)) except Exception as err: logging.error('Error: {0}'.format(err)) else: parser.print_help() sys.exit(2)
45.094595
143
0.637998
16ee9425d4107ab860c52b53f97c802b576ce2ea
14,043
py
Python
lbrynet/lbryfile/client/LBRYFileDownloader.py
sonatagreen/lbry
f6473e3383956b7823a76516622bba6c172619e1
[ "BSD-2-Clause" ]
null
null
null
lbrynet/lbryfile/client/LBRYFileDownloader.py
sonatagreen/lbry
f6473e3383956b7823a76516622bba6c172619e1
[ "BSD-2-Clause" ]
null
null
null
lbrynet/lbryfile/client/LBRYFileDownloader.py
sonatagreen/lbry
f6473e3383956b7823a76516622bba6c172619e1
[ "BSD-2-Clause" ]
null
null
null
import subprocess import binascii from zope.interface import implements from lbrynet.lbryfile.StreamDescriptor import save_sd_info from lbrynet.cryptstream.client.CryptStreamDownloader import CryptStreamDownloader from lbrynet.core.client.StreamProgressManager import FullStreamProgressManager from lbrynet.core.StreamDescriptor import StreamMetadata from lbrynet.interfaces import IStreamDownloaderFactory from lbrynet.lbryfile.client.LBRYFileMetadataHandler import LBRYFileMetadataHandler import os from twisted.internet import defer, threads, reactor from twisted.python.procutils import which import logging import traceback log = logging.getLogger(__name__) class LBRYFileDownloader(CryptStreamDownloader): """Classes which inherit from this class download LBRY files""" def __init__(self, stream_hash, peer_finder, rate_limiter, blob_manager, stream_info_manager, payment_rate_manager, wallet, upload_allowed): CryptStreamDownloader.__init__(self, peer_finder, rate_limiter, blob_manager, payment_rate_manager, wallet, upload_allowed) self.stream_hash = stream_hash self.stream_info_manager = stream_info_manager self.suggested_file_name = None self._calculated_total_bytes = None def set_stream_info(self): if self.key is None: d = self.stream_info_manager.get_stream_info(self.stream_hash) def set_stream_info(stream_info): key, stream_name, suggested_file_name = stream_info self.key = binascii.unhexlify(key) self.stream_name = binascii.unhexlify(stream_name) self.suggested_file_name = binascii.unhexlify(suggested_file_name) d.addCallback(set_stream_info) return d else: return defer.succeed(True) def delete_data(self): d1 = self.stream_info_manager.get_blobs_for_stream(self.stream_hash) def get_blob_hashes(blob_infos): return [b[0] for b in blob_infos if b[0] is not None] d1.addCallback(get_blob_hashes) d2 = self.stream_info_manager.get_sd_blob_hashes_for_stream(self.stream_hash) def combine_blob_hashes(results): blob_hashes = [] for success, result in results: if success is True: blob_hashes.extend(result) return blob_hashes def delete_blobs(blob_hashes): self.blob_manager.delete_blobs(blob_hashes) return True dl = defer.DeferredList([d1, d2], fireOnOneErrback=True) dl.addCallback(combine_blob_hashes) dl.addCallback(delete_blobs) return dl def stop(self, err=None): d = self._close_output() d.addCallback(lambda _: CryptStreamDownloader.stop(self, err=err)) return d def _get_progress_manager(self, download_manager): return FullStreamProgressManager(self._finished_downloading, self.blob_manager, download_manager) def _start(self): d = self._setup_output() d.addCallback(lambda _: CryptStreamDownloader._start(self)) return d def _setup_output(self): pass def _close_output(self): pass def get_total_bytes(self): d = self.stream_info_manager.get_blobs_for_stream(self.stream_hash) def calculate_size(blobs): return sum([b[3] for b in blobs]) d.addCallback(calculate_size) return d def get_total_bytes_cached(self): if self._calculated_total_bytes is None or self._calculated_total_bytes == 0: if self.download_manager is None: return 0 else: self._calculated_total_bytes = self.download_manager.calculate_total_bytes() return self._calculated_total_bytes def get_bytes_left_to_output(self): if self.download_manager is not None: return self.download_manager.calculate_bytes_left_to_output() else: return 0 def get_bytes_left_to_download(self): if self.download_manager is not None: return self.download_manager.calculate_bytes_left_to_download() else: return 0 def _get_metadata_handler(self, download_manager): return LBRYFileMetadataHandler(self.stream_hash, self.stream_info_manager, download_manager) class LBRYFileDownloaderFactory(object): implements(IStreamDownloaderFactory) def __init__(self, peer_finder, rate_limiter, blob_manager, stream_info_manager, wallet): self.peer_finder = peer_finder self.rate_limiter = rate_limiter self.blob_manager = blob_manager self.stream_info_manager = stream_info_manager self.wallet = wallet def can_download(self, sd_validator): return True def make_downloader(self, metadata, options, payment_rate_manager, **kwargs): payment_rate_manager.min_blob_data_payment_rate = options[0] upload_allowed = options[1] def save_source_if_blob(stream_hash): if metadata.metadata_source == StreamMetadata.FROM_BLOB: d = self.stream_info_manager.save_sd_blob_hash_to_stream(stream_hash, metadata.source_blob_hash) else: d = defer.succeed(True) d.addCallback(lambda _: stream_hash) return d def create_downloader(stream_hash): downloader = self._make_downloader(stream_hash, payment_rate_manager, metadata.validator.raw_info, upload_allowed) d = downloader.set_stream_info() d.addCallback(lambda _: downloader) return d d = save_sd_info(self.stream_info_manager, metadata.validator.raw_info) d.addCallback(save_source_if_blob) d.addCallback(create_downloader) return d def _make_downloader(self, stream_hash, payment_rate_manager, stream_info, upload_allowed): pass class LBRYFileSaver(LBRYFileDownloader): def __init__(self, stream_hash, peer_finder, rate_limiter, blob_manager, stream_info_manager, payment_rate_manager, wallet, download_directory, upload_allowed, file_name=None): LBRYFileDownloader.__init__(self, stream_hash, peer_finder, rate_limiter, blob_manager, stream_info_manager, payment_rate_manager, wallet, upload_allowed) self.download_directory = download_directory self.file_name = file_name self.file_written_to = None self.file_handle = None def __str__(self): if self.file_written_to is not None: return str(self.file_written_to) else: return str(self.file_name) def set_stream_info(self): d = LBRYFileDownloader.set_stream_info(self) def set_file_name(): if self.file_name is None: if self.suggested_file_name: self.file_name = os.path.basename(self.suggested_file_name) else: self.file_name = os.path.basename(self.stream_name) d.addCallback(lambda _: set_file_name()) return d def stop(self, err=None): d = LBRYFileDownloader.stop(self, err=err) d.addCallback(lambda _: self._delete_from_info_manager()) return d def _get_progress_manager(self, download_manager): return FullStreamProgressManager(self._finished_downloading, self.blob_manager, download_manager, delete_blob_after_finished=not self.upload_allowed) def _setup_output(self): def open_file(): if self.file_handle is None: file_name = self.file_name if not file_name: file_name = "_" if os.path.exists(os.path.join(self.download_directory, file_name)): ext_num = 1 def _get_file_name(ext): if len(file_name.split(".")): fn = ''.join(file_name.split(".")[:-1]) file_ext = ''.join(file_name.split(".")[-1]) return fn + "-" + str(ext) + "." + file_ext else: return file_name + "_" + str(ext) while os.path.exists(os.path.join(self.download_directory, _get_file_name(ext_num))): ext_num += 1 file_name = _get_file_name(ext_num) try: self.file_handle = open(os.path.join(self.download_directory, file_name), 'wb') self.file_written_to = os.path.join(self.download_directory, file_name) except IOError: log.error(traceback.format_exc()) raise ValueError("Failed to open %s. Make sure you have permission to save files to that" " location." % str(os.path.join(self.download_directory, file_name))) return threads.deferToThread(open_file) def _close_output(self): self.file_handle, file_handle = None, self.file_handle def close_file(): if file_handle is not None: name = file_handle.name file_handle.close() if self.completed is False: os.remove(name) return threads.deferToThread(close_file) def _get_write_func(self): def write_func(data): if self.stopped is False and self.file_handle is not None: self.file_handle.write(data) return write_func def _delete_from_info_manager(self): return self.stream_info_manager.delete_stream(self.stream_hash) class LBRYFileSaverFactory(LBRYFileDownloaderFactory): def __init__(self, peer_finder, rate_limiter, blob_manager, stream_info_manager, wallet, download_directory): LBRYFileDownloaderFactory.__init__(self, peer_finder, rate_limiter, blob_manager, stream_info_manager, wallet) self.download_directory = download_directory def _make_downloader(self, stream_hash, payment_rate_manager, stream_info, upload_allowed): return LBRYFileSaver(stream_hash, self.peer_finder, self.rate_limiter, self.blob_manager, self.stream_info_manager, payment_rate_manager, self.wallet, self.download_directory, upload_allowed) @staticmethod def get_description(): return "Save" class LBRYFileOpener(LBRYFileDownloader): def __init__(self, stream_hash, peer_finder, rate_limiter, blob_manager, stream_info_manager, payment_rate_manager, wallet, upload_allowed): LBRYFileDownloader.__init__(self, stream_hash, peer_finder, rate_limiter, blob_manager, stream_info_manager, payment_rate_manager, wallet, upload_allowed) self.process = None self.process_log = None def stop(self, err=None): d = LBRYFileDownloader.stop(self, err=err) d.addCallback(lambda _: self._delete_from_info_manager()) return d def _get_progress_manager(self, download_manager): return FullStreamProgressManager(self._finished_downloading, self.blob_manager, download_manager, delete_blob_after_finished=not self.upload_allowed) def _setup_output(self): def start_process(): if os.name == "nt": paths = [r'C:\Program Files\VideoLAN\VLC\vlc.exe', r'C:\Program Files (x86)\VideoLAN\VLC\vlc.exe'] for p in paths: if os.path.exists(p): vlc_path = p break else: raise ValueError("You must install VLC media player to stream files") else: vlc_path = 'vlc' self.process_log = open("vlc.out", 'a') try: self.process = subprocess.Popen([vlc_path, '-'], stdin=subprocess.PIPE, stdout=self.process_log, stderr=self.process_log) except OSError: raise ValueError("VLC media player could not be opened") d = threads.deferToThread(start_process) return d def _close_output(self): if self.process is not None: self.process.stdin.close() self.process = None return defer.succeed(True) def _get_write_func(self): def write_func(data): if self.stopped is False and self.process is not None: try: self.process.stdin.write(data) except IOError: reactor.callLater(0, self.stop) return write_func def _delete_from_info_manager(self): return self.stream_info_manager.delete_stream(self.stream_hash) class LBRYFileOpenerFactory(LBRYFileDownloaderFactory): def can_download(self, sd_validator): if which('vlc'): return True elif os.name == "nt": paths = [r'C:\Program Files\VideoLAN\VLC\vlc.exe', r'C:\Program Files (x86)\VideoLAN\VLC\vlc.exe'] for p in paths: if os.path.exists(p): return True return False def _make_downloader(self, stream_hash, payment_rate_manager, stream_info, upload_allowed): return LBRYFileOpener(stream_hash, self.peer_finder, self.rate_limiter, self.blob_manager, self.stream_info_manager, payment_rate_manager, self.wallet, upload_allowed) @staticmethod def get_description(): return "Stream"
39.669492
112
0.631347
499b25c7002886a68ccc0a96a57ee24a95d757b7
1,210
py
Python
camel_tools/disambig/__init__.py
balhafni/camel_tools
84a8149fe6e80b4ecbd4bf8cfb9f0440b4815389
[ "MIT" ]
null
null
null
camel_tools/disambig/__init__.py
balhafni/camel_tools
84a8149fe6e80b4ecbd4bf8cfb9f0440b4815389
[ "MIT" ]
null
null
null
camel_tools/disambig/__init__.py
balhafni/camel_tools
84a8149fe6e80b4ecbd4bf8cfb9f0440b4815389
[ "MIT" ]
2
2020-12-08T18:10:12.000Z
2021-08-30T15:33:50.000Z
# MIT License # # Copyright 2018-2019 New York University Abu Dhabi # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """This module contains classes and functions for morphological disambiguation. """
48.4
79
0.780992
aad8692cfd5f7302722068f7c5debb2d9d3fa008
5,397
py
Python
wl.py
camgnostic/Wunderlist-3-Alfred
65fc2fad2c2f7786140ade78140ff0c80aca6e68
[ "AAL" ]
9
2015-03-04T12:44:22.000Z
2018-08-12T05:56:13.000Z
wl.py
camgnostic/Wunderlist-3-Alfred
65fc2fad2c2f7786140ade78140ff0c80aca6e68
[ "AAL" ]
1
2015-02-22T20:19:48.000Z
2016-08-21T07:05:36.000Z
wl.py
camgnostic/Wunderlist-3-Alfred
65fc2fad2c2f7786140ade78140ff0c80aca6e68
[ "AAL" ]
null
null
null
from wl_utils import getLists, getListId, refreshTasks, refreshLists, getTasks, getTask from wl_utils import ICON_ADDTASK, ICON_DELETE, ICON_DONE, ICON_EMPTY, ICON_ITEM, ICON_LIST, ICON_NEWLIST, ICON_STAR, ICON_UNSTAR, ICON_UPDATE from workflow import Workflow, PasswordNotFound from workflow.background import is_running import sys import threading def main(wf): #if no args, no query: if len(wf.args): query = u' '.join(wf.args[0:]) wf.logger.debug(query) else: query = "" try: #do we have a login? If not drop to catch at bottom no api password: token = wf.get_password('token') add = False new = False #if add task, strip add and collect listname: listId = False if query[0:4].lower() == "add:": query = query[3:].lstrip(' ').lstrip(":").lstrip(' ') if len(query.split(":")) > 1: listname = query.split(":")[0] listId = getListId(wf, listname) query = ":".join(query.split(":")[1:]).lstrip(' ').lstrip(":") if listId == False: if not is_running("updateLists"): refreshLists(wf) wf.add_item("List not found, updating lists...", valid=False, icon=ICON_UPDATE) else: valid = True if query != "" else False wf.add_item(title = u'' + (query if query != "" else 'New Task'), subtitle = u'add to list: ' + str(listname), valid=valid, arg='add:' + str(listId) + ':' + str(query), icon = ICON_ADDTASK) wf.send_feedback() add = True wf.add_item(title = u'Add an item to the highlighted list:', valid=False, icon=ICON_ADDTASK) getLists(wf, query, True) #if new list, strip new and collect new listname: elif query[0:4].lower() == "new:": query = query[3:].lstrip(' ').lstrip(":").lstrip(' ') new = True valid = True if query != "" else False wf.add_item(title = u'' + query, subtitle='add new list', valid=valid, arg='new:' + query, icon=ICON_NEWLIST) wf.send_feedback() if len(query.split(":")) > 1: listname = query.split(":")[0] listId = getListId(wf, listname) query = ":".join(query.split(":")[1:]).lstrip(' ').lstrip(':') #listname not found: if listId == False: if not is_running("updateLists"): refreshLists(wf) wf.add_item("List not found, updating lists...", valid=False, icon=ICON_UPDATE) wf.send_feedback() #listname found, is taskname found? elif getTask(wf, listId, query): task = getTask(wf, listId, query) taskId = task['id'] query = ":".join(query.split(":")[1:]).lstrip(' ').lstrip(":") #taskname not found: if taskId == False: if not is_running("updateTasks:" + str(listId)): refreshTasks(wf, listId) wf.add_item("Task not found, updating tasks....", valid=False, icon=ICON_UPDATE) wf.send_feedback() #taskname found. tasks menu else: wf.add_item(title = u'' + listname + ':' + task['title'] + ':', valid=False, icon=(ICON_STAR if task['starred'] else ICON_ITEM)) wf.add_item(title = u'Mark as Complete', subtitle = u'Task will not show in list when marked complete', valid=True, arg="done:" + str(listId) + ":" + str(taskId), icon=ICON_DONE) wf.add_item(title = u'' + ("Uns" if task['starred'] == True else "S") + "tar task", valid=True, arg="star:" + str(listId) + ":" + str(taskId), icon=(ICON_UNSTAR if task['starred'] else ICON_STAR)) wf.add_item(title = u'Delete task', subtitle='This will permanently delete this task', valid=True, arg="rem:" + str(listId) + ":" + str(taskId), icon = ICON_DELETE) wf.send_feedback() elif add == False: getTasks(wf, listId, listname, query) #not new or add, still searching lists: if new == False and add == False and not listId: if query == "": wf.add_item(title = u'Add', subtitle = u'Add a new task to a list', valid=False, autocomplete="Add:", icon=ICON_ADDTASK) wf.add_item(title = u'New', subtitle = u'New list', valid=False, autocomplete="New:", icon=ICON_NEWLIST) getLists(wf, query) except PasswordNotFound: wf.add_item(title = u'Login', subtitle = u'Authorize with Wunderlist', arg = "login", valid=True, icon=ICON_EMPTY) if __name__ == '__main__': wf = Workflow() sys.exit(wf.run(main))
49.513761
142
0.495831
762646b44b3f3be70513c9299f47da6de6d76ad6
25,596
py
Python
pywps/app/WPSRequest.py
janpisl/pywps
73a1835359f0503e08fb007d75de699bf3cf29ed
[ "MIT" ]
null
null
null
pywps/app/WPSRequest.py
janpisl/pywps
73a1835359f0503e08fb007d75de699bf3cf29ed
[ "MIT" ]
null
null
null
pywps/app/WPSRequest.py
janpisl/pywps
73a1835359f0503e08fb007d75de699bf3cf29ed
[ "MIT" ]
null
null
null
################################################################## # Copyright 2018 Open Source Geospatial Foundation and others # # licensed under MIT, Please consult LICENSE.txt for details # ################################################################## import logging import lxml import lxml.etree from werkzeug.exceptions import MethodNotAllowed import base64 import datetime from pywps import WPS from pywps._compat import text_type, PY2 from pywps.app.basic import xpath_ns from pywps.inout.basic import LiteralInput, ComplexInput, BBoxInput from pywps.exceptions import NoApplicableCode, OperationNotSupported, MissingParameterValue, VersionNegotiationFailed, \ InvalidParameterValue, FileSizeExceeded from pywps import configuration from pywps.validator.mode import MODE from pywps.inout.literaltypes import AnyValue, NoValue, ValuesReference, AllowedValue from pywps.inout.formats import Format import json LOGGER = logging.getLogger("PYWPS") class WPSRequest(object): def __init__(self, http_request=None): self.http_request = http_request self.operation = None self.version = None self.language = None self.identifier = None self.identifiers = None self.store_execute = None self.status = None self.lineage = None self.inputs = {} self.outputs = {} self.raw = None if self.http_request: request_parser = self._get_request_parser_method(http_request.method) request_parser() def _get_request_parser_method(self, method): if method == 'GET': return self._get_request elif method == 'POST': return self._post_request else: raise MethodNotAllowed() def _get_request(self): """HTTP GET request parser """ # service shall be WPS service = _get_get_param(self.http_request, 'service') if service: if str(service).lower() != 'wps': raise InvalidParameterValue( 'parameter SERVICE [%s] not supported' % service, 'service') else: raise MissingParameterValue('service', 'service') operation = _get_get_param(self.http_request, 'request') request_parser = self._get_request_parser(operation) request_parser(self.http_request) def _post_request(self): """HTTP GET request parser """ # check if input file size was not exceeded maxsize = configuration.get_config_value('server', 'maxrequestsize') maxsize = configuration.get_size_mb(maxsize) * 1024 * 1024 if self.http_request.content_length > maxsize: raise FileSizeExceeded('File size for input exceeded.' ' Maximum request size allowed: %i megabytes' % maxsize / 1024 / 1024) try: doc = lxml.etree.fromstring(self.http_request.get_data()) except Exception as e: if PY2: raise NoApplicableCode(e.message) else: raise NoApplicableCode(e.msg) operation = doc.tag request_parser = self._post_request_parser(operation) request_parser(doc) def _get_request_parser(self, operation): """Factory function returing propper parsing function """ wpsrequest = self def parse_get_getcapabilities(http_request): """Parse GET GetCapabilities request """ acceptedversions = _get_get_param(http_request, 'acceptversions') wpsrequest.check_accepted_versions(acceptedversions) def parse_get_describeprocess(http_request): """Parse GET DescribeProcess request """ version = _get_get_param(http_request, 'version') wpsrequest.check_and_set_version(version) language = _get_get_param(http_request, 'language') wpsrequest.check_and_set_language(language) wpsrequest.identifiers = _get_get_param( http_request, 'identifier', aslist=True) def parse_get_execute(http_request): """Parse GET Execute request """ version = _get_get_param(http_request, 'version') wpsrequest.check_and_set_version(version) language = _get_get_param(http_request, 'language') wpsrequest.check_and_set_language(language) wpsrequest.identifier = _get_get_param(http_request, 'identifier') wpsrequest.store_execute = _get_get_param( http_request, 'storeExecuteResponse', 'false') wpsrequest.status = _get_get_param(http_request, 'status', 'false') wpsrequest.lineage = _get_get_param( http_request, 'lineage', 'false') wpsrequest.inputs = get_data_from_kvp( _get_get_param(http_request, 'DataInputs'), 'DataInputs') wpsrequest.outputs = {} # take responseDocument preferably resp_outputs = get_data_from_kvp( _get_get_param(http_request, 'ResponseDocument')) raw_outputs = get_data_from_kvp( _get_get_param(http_request, 'RawDataOutput')) wpsrequest.raw = False if resp_outputs: wpsrequest.outputs = resp_outputs elif raw_outputs: wpsrequest.outputs = raw_outputs wpsrequest.raw = True # executeResponse XML will not be stored and no updating of # status wpsrequest.store_execute = 'false' wpsrequest.status = 'false' if not operation: raise MissingParameterValue('Missing request value', 'request') else: self.operation = operation.lower() if self.operation == 'getcapabilities': return parse_get_getcapabilities elif self.operation == 'describeprocess': return parse_get_describeprocess elif self.operation == 'execute': return parse_get_execute else: raise OperationNotSupported( 'Unknown request %r' % self.operation, operation) def _post_request_parser(self, tagname): """Factory function returing propper parsing function """ wpsrequest = self def parse_post_getcapabilities(doc): """Parse POST GetCapabilities request """ acceptedversions = xpath_ns( doc, '/wps:GetCapabilities/ows:AcceptVersions/ows:Version') acceptedversions = ','.join( map(lambda v: v.text, acceptedversions)) wpsrequest.check_accepted_versions(acceptedversions) def parse_post_describeprocess(doc): """Parse POST DescribeProcess request """ version = doc.attrib.get('version') wpsrequest.check_and_set_version(version) language = doc.attrib.get('language') wpsrequest.check_and_set_language(language) wpsrequest.operation = 'describeprocess' wpsrequest.identifiers = [identifier_el.text for identifier_el in xpath_ns(doc, './ows:Identifier')] def parse_post_execute(doc): """Parse POST Execute request """ version = doc.attrib.get('version') wpsrequest.check_and_set_version(version) language = doc.attrib.get('language') wpsrequest.check_and_set_language(language) wpsrequest.operation = 'execute' identifier = xpath_ns(doc, './ows:Identifier') if not identifier: raise MissingParameterValue( 'Process identifier not set', 'Identifier') wpsrequest.identifier = identifier[0].text wpsrequest.lineage = 'false' wpsrequest.store_execute = 'false' wpsrequest.status = 'false' wpsrequest.inputs = get_inputs_from_xml(doc) wpsrequest.outputs = get_output_from_xml(doc) wpsrequest.raw = False if xpath_ns(doc, '/wps:Execute/wps:ResponseForm/wps:RawDataOutput'): wpsrequest.raw = True # executeResponse XML will not be stored wpsrequest.store_execute = 'false' # check if response document tag has been set then retrieve response_document = xpath_ns( doc, './wps:ResponseForm/wps:ResponseDocument') if len(response_document) > 0: wpsrequest.lineage = response_document[ 0].attrib.get('lineage', 'false') wpsrequest.store_execute = response_document[ 0].attrib.get('storeExecuteResponse', 'false') wpsrequest.status = response_document[ 0].attrib.get('status', 'false') if tagname == WPS.GetCapabilities().tag: self.operation = 'getcapabilities' return parse_post_getcapabilities elif tagname == WPS.DescribeProcess().tag: self.operation = 'describeprocess' return parse_post_describeprocess elif tagname == WPS.Execute().tag: self.operation = 'execute' return parse_post_execute else: raise InvalidParameterValue( 'Unknown request %r' % tagname, 'request') def check_accepted_versions(self, acceptedversions): """ :param acceptedversions: string """ version = None if acceptedversions: acceptedversions_array = acceptedversions.split(',') for aversion in acceptedversions_array: if _check_version(aversion): version = aversion else: version = '1.0.0' if version: self.check_and_set_version(version) else: raise VersionNegotiationFailed( 'The requested version "%s" is not supported by this server' % acceptedversions, 'version') def check_and_set_version(self, version): """set this.version """ if not version: raise MissingParameterValue('Missing version', 'version') elif not _check_version(version): raise VersionNegotiationFailed( 'The requested version "%s" is not supported by this server' % version, 'version') else: self.version = version def check_and_set_language(self, language): """set this.language """ if not language: language = 'None' elif language != 'en-US': raise InvalidParameterValue( 'The requested language "%s" is not supported by this server' % language, 'language') else: self.language = language @property def json(self): """Return JSON encoded representation of the request """ class ExtendedJSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime.date) or isinstance(obj, datetime.time): encoded_object = obj.isoformat() else: encoded_object = json.JSONEncoder.default(self, obj) return encoded_object obj = { 'operation': self.operation, 'version': self.version, 'language': self.language, 'identifier': self.identifier, 'identifiers': self.identifiers, 'store_execute': self.store_execute, 'status': self.status, 'lineage': self.lineage, 'inputs': dict((i, [inpt.json for inpt in self.inputs[i]]) for i in self.inputs), 'outputs': self.outputs, 'raw': self.raw } return json.dumps(obj, allow_nan=False, cls=ExtendedJSONEncoder) @json.setter def json(self, value): """init this request from json back again :param value: the json (not string) representation """ self.operation = value['operation'] self.version = value['version'] self.language = value['language'] self.identifier = value['identifier'] self.identifiers = value['identifiers'] self.store_execute = value['store_execute'] self.status = value['status'] self.lineage = value['lineage'] self.outputs = value['outputs'] self.raw = value['raw'] self.inputs = {} for identifier in value['inputs']: inpt = None inpt_defs = value['inputs'][identifier] for inpt_def in inpt_defs: if inpt_def['type'] == 'complex': inpt = ComplexInput( identifier=inpt_def['identifier'], title=inpt_def.get('title'), abstract=inpt_def.get('abstract'), workdir=inpt_def.get('workdir'), data_format=Format( schema=inpt_def['data_format'].get('schema'), extension=inpt_def['data_format'].get('extension'), mime_type=inpt_def['data_format']['mime_type'], encoding=inpt_def['data_format'].get('encoding') ), supported_formats=[ Format( schema=infrmt.get('schema'), extension=infrmt.get('extension'), mime_type=infrmt['mime_type'], encoding=infrmt.get('encoding') ) for infrmt in inpt_def['supported_formats'] ], mode=MODE.NONE ) inpt.file = inpt_def['file'] elif inpt_def['type'] == 'literal': allowed_values = [] for allowed_value in inpt_def['allowed_values']: if allowed_value['type'] == 'anyvalue': allowed_values.append(AnyValue()) elif allowed_value['type'] == 'novalue': allowed_values.append(NoValue()) elif allowed_value['type'] == 'valuesreference': allowed_values.append(ValuesReference()) elif allowed_value['type'] == 'allowedvalue': allowed_values.append(AllowedValue( allowed_type=allowed_value['allowed_type'], value=allowed_value['value'], minval=allowed_value['minval'], maxval=allowed_value['maxval'], spacing=allowed_value['spacing'], range_closure=allowed_value['range_closure'] )) inpt = LiteralInput( identifier=inpt_def['identifier'], title=inpt_def.get('title'), abstract=inpt_def.get('abstract'), data_type=inpt_def.get('data_type'), workdir=inpt_def.get('workdir'), allowed_values=AnyValue, uoms=inpt_def.get('uoms'), mode=inpt_def.get('mode') ) inpt.uom = inpt_def.get('uom') inpt.data = inpt_def.get('data') elif inpt_def['type'] == 'bbox': inpt = BBoxInput( identifier=inpt_def['identifier'], title=inpt_def['title'], abstract=inpt_def['abstract'], crss=inpt_def['crs'], dimensions=inpt_def['dimensions'], workdir=inpt_def['workdir'], mode=inpt_def['mode'] ) inpt.ll = inpt_def['bbox'][0] inpt.ur = inpt_def['bbox'][1] if identifier in self.inputs: self.inputs[identifier].append(inpt) else: self.inputs[identifier] = [inpt] def get_inputs_from_xml(doc): the_inputs = {} for input_el in xpath_ns(doc, '/wps:Execute/wps:DataInputs/wps:Input'): [identifier_el] = xpath_ns(input_el, './ows:Identifier') identifier = identifier_el.text if identifier not in the_inputs: the_inputs[identifier] = [] literal_data = xpath_ns(input_el, './wps:Data/wps:LiteralData') if literal_data: value_el = literal_data[0] inpt = {} inpt['identifier'] = identifier_el.text inpt['data'] = text_type(value_el.text) inpt['uom'] = value_el.attrib.get('uom', '') inpt['datatype'] = value_el.attrib.get('datatype', '') the_inputs[identifier].append(inpt) continue complex_data = xpath_ns(input_el, './wps:Data/wps:ComplexData') if complex_data: complex_data_el = complex_data[0] inpt = {} inpt['identifier'] = identifier_el.text inpt['mimeType'] = complex_data_el.attrib.get('mimeType', '') inpt['encoding'] = complex_data_el.attrib.get( 'encoding', '').lower() inpt['schema'] = complex_data_el.attrib.get('schema', '') inpt['method'] = complex_data_el.attrib.get('method', 'GET') if len(complex_data_el.getchildren()) > 0: value_el = complex_data_el[0] inpt['data'] = _get_dataelement_value(value_el) else: inpt['data'] = _get_rawvalue_value( complex_data_el.text, inpt['encoding']) the_inputs[identifier].append(inpt) continue reference_data = xpath_ns(input_el, './wps:Reference') if reference_data: reference_data_el = reference_data[0] inpt = {} inpt['identifier'] = identifier_el.text inpt[identifier_el.text] = reference_data_el.text inpt['href'] = reference_data_el.attrib.get( '{http://www.w3.org/1999/xlink}href', '') inpt['mimeType'] = reference_data_el.attrib.get('mimeType', '') inpt['method'] = reference_data_el.attrib.get('method', 'GET') header_element = xpath_ns(reference_data_el, './wps:Header') if header_element: inpt['header'] = _get_reference_header(header_element) body_element = xpath_ns(reference_data_el, './wps:Body') if body_element: inpt['body'] = _get_reference_body(body_element[0]) bodyreference_element = xpath_ns(reference_data_el, './wps:BodyReference') if bodyreference_element: inpt['bodyreference'] = _get_reference_bodyreference( bodyreference_element[0]) the_inputs[identifier].append(inpt) continue # OWSlib is not python 3 compatible yet if PY2: from owslib.ows import BoundingBox bbox_datas = xpath_ns(input_el, './wps:Data/wps:BoundingBoxData') if bbox_datas: for bbox_data in bbox_datas: bbox_data_el = bbox_data bbox = BoundingBox(bbox_data_el) the_inputs[identifier].append(bbox) return the_inputs def get_output_from_xml(doc): the_output = {} if xpath_ns(doc, '/wps:Execute/wps:ResponseForm/wps:ResponseDocument'): for output_el in xpath_ns(doc, '/wps:Execute/wps:ResponseForm/wps:ResponseDocument/wps:Output'): [identifier_el] = xpath_ns(output_el, './ows:Identifier') outpt = {} outpt[identifier_el.text] = '' outpt['mimetype'] = output_el.attrib.get('mimeType', '') outpt['encoding'] = output_el.attrib.get('encoding', '') outpt['schema'] = output_el.attrib.get('schema', '') outpt['uom'] = output_el.attrib.get('uom', '') outpt['asReference'] = output_el.attrib.get('asReference', 'false') the_output[identifier_el.text] = outpt elif xpath_ns(doc, '/wps:Execute/wps:ResponseForm/wps:RawDataOutput'): for output_el in xpath_ns(doc, '/wps:Execute/wps:ResponseForm/wps:RawDataOutput'): [identifier_el] = xpath_ns(output_el, './ows:Identifier') outpt = {} outpt[identifier_el.text] = '' outpt['mimetype'] = output_el.attrib.get('mimeType', '') outpt['encoding'] = output_el.attrib.get('encoding', '') outpt['schema'] = output_el.attrib.get('schema', '') outpt['uom'] = output_el.attrib.get('uom', '') the_output[identifier_el.text] = outpt return the_output def get_data_from_kvp(data, part=None): """Get execute DataInputs and ResponseDocument from URL (key-value-pairs) encoding :param data: key:value pair list of the datainputs and responseDocument parameter :param part: DataInputs or similar part of input url """ the_data = {} if data is None: return None for d in data.split(";"): try: io = {} fields = d.split('@') # First field is identifier and its value (identifier, val) = fields[0].split("=") io['identifier'] = identifier io['data'] = val # Get the attributes of the data for attr in fields[1:]: (attribute, attr_val) = attr.split('=', 1) if attribute == 'xlink:href': io['href'] = attr_val else: io[attribute] = attr_val # Add the input/output with all its attributes and values to the # dictionary if part == 'DataInputs': if identifier not in the_data: the_data[identifier] = [] the_data[identifier].append(io) else: the_data[identifier] = io except Exception as e: LOGGER.warning(e) the_data[d] = {'identifier': d, 'data': ''} return the_data def _check_version(version): """ check given version """ if version != '1.0.0': return False else: return True def _get_get_param(http_request, key, default=None, aslist=False): """Returns value from the key:value pair, of the HTTP GET request, for example 'service' or 'request' :param http_request: http_request object :param key: key value you need to dig out of the HTTP GET request """ key = key.lower() value = default # http_request.args.keys will make + sign disappear in GET url if not # urlencoded for k in http_request.args.keys(): if k.lower() == key: value = http_request.args.get(k) if aslist: value = value.split(",") return value def _get_dataelement_value(value_el): """Return real value of XML Element (e.g. convert Element.FeatureCollection to String """ if isinstance(value_el, lxml.etree._Element): if PY2: return lxml.etree.tostring(value_el, encoding=unicode) # noqa else: return lxml.etree.tostring(value_el, encoding=str) else: return value_el def _get_rawvalue_value(data, encoding=None): """Return real value of CDATA section""" try: if encoding is None or encoding == "": return data elif encoding == 'base64': return base64.b64decode(data) return base64.b64decode(data) except Exception: return data def _get_reference_header(header_element): """Parses ReferenceInput Header element """ header = {} header['key'] = header_element.attrib('key') header['value'] = header_element.attrib('value') return header def _get_reference_body(body_element): """Parses ReferenceInput Body element """ body = None if len(body_element.getchildren()) > 0: value_el = body_element[0] body = _get_dataelement_value(value_el) else: body = _get_rawvalue_value(body_element.text) return body def _get_reference_bodyreference(referencebody_element): """Parse ReferenceInput BodyReference element """ return referencebody_element.attrib.get( '{http://www.w3.org/1999/xlink}href', '')
38.548193
121
0.552469
d7a58dd8095d0bd336daf65ad359a73a7c1cccd0
1,405
py
Python
pico8/pico8.py
fmaida/pico8-mkdocs-plugin
8fac0e651ef41a10d338566f659ad26ba09e425b
[ "MIT" ]
null
null
null
pico8/pico8.py
fmaida/pico8-mkdocs-plugin
8fac0e651ef41a10d338566f659ad26ba09e425b
[ "MIT" ]
null
null
null
pico8/pico8.py
fmaida/pico8-mkdocs-plugin
8fac0e651ef41a10d338566f659ad26ba09e425b
[ "MIT" ]
null
null
null
import re from mkdocs.plugins import BasePlugin class Pico8(BasePlugin): # This snippet of code allows to show a pico-8 # web player in a HTML page snippet = "<div style='width:100%'>" snippet += "<iframe src='https://www.lexaloffle.com/bbs/widget.php?pid={}'" snippet += " allowfullscreen width='621' height='513'" snippet += " style='border:none; overflow:hidden; display:block; margin-left:auto; margin-right:auto'>" snippet += "</iframe></div>" def on_page_markdown(self, markdown, **kwargs): """ Takes an article written in markdown and looks for the presence of a tag written with this style: {{ pico-8: 12345 }} When the tag is found, it will be replaced with a snippet code that will show a pico-8 web player onscreen. :param markdown: Original article in markdown format :param kwargs: Other parameters (won't be used here) :return: Modified markdown """ plugin_pattern = r"\{\{[\s]*pico[-]{0,1}8:[\s]*([0-9]*)[\s]*\}\}" plugin_code = re.findall(plugin_pattern, markdown) if plugin_code: game_code = plugin_code[0] markdown = re.sub(plugin_pattern, self.snippet.format(game_code), markdown, flags=re.IGNORECASE) return markdown
34.268293
107
0.593594
8229664c8b5b0ef7a728a86aca6818e111454f69
8,851
py
Python
misc/acrn-config/launch_config/launch_cfg_gen.py
yfliuu/acrn-hypervisor
6289124e7c894323e2a5342bf201856d76512a60
[ "BSD-3-Clause" ]
null
null
null
misc/acrn-config/launch_config/launch_cfg_gen.py
yfliuu/acrn-hypervisor
6289124e7c894323e2a5342bf201856d76512a60
[ "BSD-3-Clause" ]
null
null
null
misc/acrn-config/launch_config/launch_cfg_gen.py
yfliuu/acrn-hypervisor
6289124e7c894323e2a5342bf201856d76512a60
[ "BSD-3-Clause" ]
null
null
null
# Copyright (C) 2019 Intel Corporation. All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # import os import sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'library')) from launch_item import AvailablePthru, PthruSelected, VirtioDeviceSelect, AcrnDmArgs import launch_cfg_lib import com ACRN_PATH = launch_cfg_lib.SOURCE_ROOT_DIR XML_PATH = ACRN_PATH + '/misc/acrn-config/xmls/config-xmls/' def get_launch_item_values(board_info): """ Get items which capable multi select for user :param board_info: it is a file what contains board information for script to read from """ launch_item_values = {} # passthrough devices pthru = AvailablePthru(board_info) pthru.get_pci_dev() pthru.insert_nun() # pre passthrough device for ui launch_item_values["uos,passthrough_devices,usb_xdci"] = pthru.avl["usb_xdci"] launch_item_values["uos,passthrough_devices,ipu"] = pthru.avl["ipu"] launch_item_values["uos,passthrough_devices,ipu_i2c"] = pthru.avl["ipu_i2c"] launch_item_values["uos,passthrough_devices,cse"] = pthru.avl["cse"] launch_item_values["uos,passthrough_devices,audio"] = pthru.avl["audio"] launch_item_values["uos,passthrough_devices,audio_codec"] = pthru.avl["audio_codec"] launch_item_values["uos,passthrough_devices,sd_card"] = pthru.avl["sd_card"] launch_item_values["uos,passthrough_devices,wifi"] = pthru.avl["wifi"] launch_item_values["uos,passthrough_devices,ethernet"] = pthru.avl["ethernet"] launch_item_values["uos,passthrough_devices,sata"] = pthru.avl["sata"] launch_item_values["uos,passthrough_devices,nvme"] = pthru.avl["nvme"] launch_item_values["uos,passthrough_devices,bluetooth"] = pthru.avl["bluetooth"] # acrn dm available optargs launch_item_values['uos,uos_type'] = launch_cfg_lib.UOS_TYPES launch_item_values["uos,rtos_type"] = launch_cfg_lib.RTOS_TYPE launch_item_values["uos,vbootloader"] = launch_cfg_lib.BOOT_TYPE launch_item_values['uos,vuart0'] = launch_cfg_lib.DM_VUART0 launch_item_values['uos,poweroff_channel'] = launch_cfg_lib.PM_CHANNEL return launch_item_values def validate_launch_setting(board_info, scenario_info, launch_info): """ This is validate the data setting from scenario xml :param board_info: it is a file what contains board information for script to read from :param scenario_info: it is a file what user have already setting to :return: return a dictionary contain errors """ launch_cfg_lib.ERR_LIST = {} launch_cfg_lib.BOARD_INFO_FILE = board_info launch_cfg_lib.SCENARIO_INFO_FILE = scenario_info launch_cfg_lib.LAUNCH_INFO_FILE = launch_info # init available pt devices and get selected pt devices pt_avl = AvailablePthru(board_info) pt_sel = PthruSelected(launch_info, pt_avl.bdf_desc_map, pt_avl.bdf_vpid_map) pt_sel.get_bdf() pt_sel.get_vpid() pt_sel.get_slot() pt_sel.check_item() # virt-io devices virtio = VirtioDeviceSelect(launch_info) virtio.get_virtio() # acrn dm arguments dm = AcrnDmArgs(board_info, scenario_info, launch_info) dm.get_args() dm.check_item() return (launch_cfg_lib.ERR_LIST, pt_sel, virtio, dm) def ui_entry_api(board_info, scenario_info, launch_info, enable_commit=False): err_dic = {} git_env_check = False arg_list = ['board_cfg_gen.py', '--board', board_info, '--scenario', scenario_info, '--launch', launch_info, '--uosid', '0'] if enable_commit: arg_list.append('--enable_commit') git_env_check = True err_dic = launch_cfg_lib.prepare(git_env_check) if err_dic: return err_dic err_dic = main(arg_list) return err_dic def get_names(): names = {} # get uos name uos_types = launch_cfg_lib.get_uos_type() names['uos_types'] = uos_types # get board name (err_dic, board_name) = launch_cfg_lib.get_board_name() if err_dic: return (err_dic, names) names['board_name'] = board_name # get scenario name (err_dic, scenario_name) = launch_cfg_lib.get_scenario_name() if err_dic: return (err_dic, names) names['scenario_name'] = scenario_name return (err_dic, names) def generate_script_file(names, pt_sel, virt_io, dm, vmid, config): uos_type = names['uos_types'][vmid] board_name = names['board_name'] scenario_name = names['scenario_name'] header_info = "#!/bin/bash\n" +\ "# board: {}, scenario: {}, uos: {}".format( board_name.upper(), scenario_name.upper(), uos_type.upper()) print("{}".format(header_info), file=config) com.gen(names, pt_sel, virt_io, dm, vmid, config) if launch_cfg_lib.ERR_LIST: return launch_cfg_lib.ERR_LIST def main(args): """ This is main function to start generate launch script :param args: it is a command line args for the script """ config_srcs = [] # get parameters (err_dic, board_info_file, scenario_info_file, launch_info_file, vm_th, enable_commit) = launch_cfg_lib.get_param(args) if err_dic: return err_dic # check env err_dic = launch_cfg_lib.prepare(enable_commit) if err_dic: return err_dic # vm_th =[0..post_vm_max] # 0: generate all launch script for all post vm launch script # 1: generate launch script for 1st post vm launch script # 2: generate launch script for 2nd post vm launch script launch_cfg_lib.BOARD_INFO_FILE = board_info_file launch_cfg_lib.SCENARIO_INFO_FILE = scenario_info_file launch_cfg_lib.LAUNCH_INFO_FILE = launch_info_file # get post vm dic post_num_list = launch_cfg_lib.get_post_num_list() # get toatl post vm number and total vm in launch config file (launch_vm_count, post_vm_count) = launch_cfg_lib.get_post_vm_cnt() if vm_th < 0 or vm_th > post_vm_count: err_dic['uosid err:'] = "--uosid shoudl be positive and less than total post vm count in scenario" if vm_th and vm_th not in post_num_list: err_dic['uosid err:'] = "--uosid generate the {} post vm, but this vm's config not in launch xml".format(vm_th) if launch_vm_count > post_vm_count: err_dic['xm config err:'] = "too many vms config than scenario" for post_num in post_num_list: if post_num > post_vm_count: err_dic['xm config err:'] = "launch xml uos id config is bigger than scenario post vm count" if err_dic: return err_dic # validate launch config file (err_dic, pt_sel, virt_io, dm) = validate_launch_setting(board_info_file, scenario_info_file, launch_info_file) if err_dic: return err_dic # check if this is the scenario config which matched board info (err_dic, status) = launch_cfg_lib.is_config_file_match() if not status: return err_dic (err_dic, names) = get_names() if err_dic: return err_dic # create output directory board_name = names['board_name'] output = XML_PATH + '/' + board_name + '/output/' if not os.path.exists(output): os.makedirs(output) # generate launch script if vm_th: script_name = "launch_uos_id{}.sh".format(vm_th) commit_msg = script_name launch_script_file = output + script_name config_srcs.append(launch_script_file) with open(launch_script_file, mode = 'w', newline=None, encoding='utf-8') as config: err_dic = generate_script_file(names, pt_sel, virt_io.dev, dm.args, vm_th, config) if err_dic: return err_dic else: for post_vm_i in post_num_list: script_name = "launch_uos_id{}.sh".format(post_vm_i) launch_script_file = output + script_name config_srcs.append(launch_script_file) with open(launch_script_file, mode = 'w', newline='\n', encoding='utf-8') as config: err_dic = generate_script_file(names, pt_sel, virt_io.dev, dm.args, post_vm_i, config) if err_dic: return err_dic commit_msg = "launch_uos_id{}.sh".format(launch_vm_count) config_str = 'Config files' gen_str = 'generated' # move changes to patch, and apply to the source code if enable_commit: err_dic = launch_cfg_lib.gen_patch(config_srcs, commit_msg) config_str = 'Config patch' gen_str = 'committed' if not err_dic: print("{} for {} is {} successfully!".format(config_str, commit_msg, gen_str)) else: print("{} for {} is failed".format(config_str, commit_msg)) return err_dic if __name__ == '__main__': ARGS = sys.argv err_dic = main(ARGS) if err_dic: for err_k, err_v in err_dic.items(): launch_cfg_lib.print_red("{}: {}".format(err_k, err_v), err=True)
34.98419
128
0.694837
d3f5133cd5d51e549b2a1fefc2bb55ca00c84b2e
7,597
py
Python
sdk/avalon_sdk/ethereum/ethereum_work_order.py
manojsalunke85/avalon
99fc49ac215ac3dfcfb0547f8abebc0b131dfad1
[ "Apache-2.0" ]
null
null
null
sdk/avalon_sdk/ethereum/ethereum_work_order.py
manojsalunke85/avalon
99fc49ac215ac3dfcfb0547f8abebc0b131dfad1
[ "Apache-2.0" ]
null
null
null
sdk/avalon_sdk/ethereum/ethereum_work_order.py
manojsalunke85/avalon
99fc49ac215ac3dfcfb0547f8abebc0b131dfad1
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import binascii import logging import json from os import environ from utility.hex_utils import is_valid_hex_str from avalon_sdk.worker.worker_details import WorkerStatus, WorkerType from avalon_sdk.ethereum.ethereum_wrapper import EthereumWrapper from avalon_sdk.interfaces.work_order_proxy \ import WorkOrderProxy logging.basicConfig( format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO) # Return codes SUCCESS = 0 ERROR = 1 class EthereumWorkOrderProxyImpl(WorkOrderProxy): """ This class is meant to write work-order related data to Ethereum blockchain. Detailed method description is available in the interface """ def __init__(self, config): if self.__validate(config) is True: self.__initialize(config) else: raise Exception("Invalid configuration parameter") def __validate(self, config): """ Validates config parameters for existence. Returns false if validation fails and true if it succeeds """ if config["ethereum"]["proxy_work_order_contract_file"] is None: logging.error("Missing work order contract file path!!") return False if config["ethereum"]["proxy_work_order_contract_address"] is None: logging.error("Missing work order contract address!!") return False return True def __initialize(self, config): """ Initialize the parameters from config to instance variables. """ self.__eth_client = EthereumWrapper(config) tcf_home = environ.get("TCF_HOME", "../../../") contract_file_name = tcf_home + "/" + \ config["ethereum"]["proxy_work_order_contract_file"] contract_address = \ config["ethereum"]["proxy_work_order_contract_address"] self.__contract_instance = self.__eth_client.get_contract_instance( contract_file_name, contract_address ) def _is_valid_work_order_json(self, work_order_id, worker_id, requester_id, work_order_request): """ Validate following fields in JSON request against the ones provided outside the JSON - workOrderId, workerId, requesterId """ json_request = json.load(work_order_request) if (work_order_id == json_request.get("workOrderId") and worker_id == json_request.get("workerId") and requester_id == json_request.get("requesterId")): return True else: return False def work_order_submit(self, work_order_id, worker_id, requester_id, work_order_request, id=None): """ Submit work order request work_order_id is a unique id to identify the work order request worker_id is the identifier for the worker requester_id is a unique id to identify the requester work_order_request is a json string(Complete definition at work_order.py interface file) Returns An error code, 0 - success, otherwise an error. """ if (self.__contract_instance is not None): if not is_valid_hex_str( binascii.hexlify(work_order_id).decode("utf8")): logging.error("Invalid work order id {}".format(work_order_id)) return ERROR if not is_valid_hex_str( binascii.hexlify(worker_id).decode("utf8")): logging.error("Invalid worker id {}".format(worker_id)) return ERROR if not is_valid_hex_str( binascii.hexlify(requester_id).decode("utf8")): logging.error("Invalid requester id {}".format(requester_id)) return ERROR if not _is_valid_work_order_json(work_order_id, worker_id, requester_id, work_order_request): logging.error("Invalid request string {}" .format(work_order_request)) return ERROR txn_dict = self.__contract_instance.functions.workOrderSubmit( work_order_id, worker_id, requester_id, work_order_request ).buildTransaction( self.__eth_client.get_transaction_params() ) try: txn_receipt = self.__eth_client.execute_transaction(txn_dict) return SUCCESS except Execption as e: logging.error( "execption occured when trying to execute workOrderSubmit \ transaction on chain"+str(e)) return ERROR else: logging.error( "work order contract instance is not initialized") return ERROR def work_order_complete(self, work_order_id, work_order_response): """ This function is called by the Worker Service to complete a Work Order successfully or in error. This API is for proxy model. params work_order_id is unique id to identify the work order request work_order_response is the Work Order response data in string Returns An error code, 0 - success, otherwise an error. """ if (self.__contract_instance is not None): if not is_valid_hex_str( binascii.hexlify(work_order_id).decode("utf8")): logging.error("Invalid work order id {}".format(work_order_id)) return ERROR txn_dict = self.__contract_instance.functions.workOrderComplete( work_order_id, work_order_response).buildTransaction( self.__eth_client.get_transaction_params() ) try: txn_receipt = self.__eth_client.execute_transaction(txn_dict) return SUCCESS except Execption as e: logging.error( "execption occured when trying to execute \ workOrderComplete transaction on chain"+str(e)) return ERROR else: logging.error( "work order contract instance is not initialized") return ERROR def encryption_key_retrieve(self, worker_id, last_used_key_nonce, tag, requester_id, signature_nonce=None, signature=None, id=None): """ Get Encryption Key Request Payload """ pass def encryption_key_start(self, tag, id=None): """ Function to inform the Worker that it should start encryption key generation for this requester. """ pass def encryption_key_set(self, worker_id, encryption_key, encryption_nonce, tag, signature, id=None): """ Set Encryption Key Request Payload """ pass
38.958974
79
0.618139
faf6ae3f13cb5e77b5e7460191445a9023fdc5a7
8,613
py
Python
chaser/chaser.py
ccr-tools/chaser
75657f765c62ce98f80882d56a65417e427fd73c
[ "BSD-3-Clause" ]
2
2016-02-19T21:58:24.000Z
2016-07-10T12:06:44.000Z
chaser/chaser.py
ccr-tools/chaser
75657f765c62ce98f80882d56a65417e427fd73c
[ "BSD-3-Clause" ]
10
2016-02-19T21:57:44.000Z
2019-03-05T23:37:29.000Z
chaser/chaser.py
ccr-tools/chaser
75657f765c62ce98f80882d56a65417e427fd73c
[ "BSD-3-Clause" ]
1
2019-05-11T12:02:21.000Z
2019-05-11T12:02:21.000Z
import io import tarfile import subprocess import json import re import os import termcolor import progressbar from pkg_resources import parse_version import requests from toposort import toposort_flatten import ccr from chaser import pacman, prompt BUILD_DIR = "/tmp/chaser" def get_source_files(args, workingdir=None): """Download the source tarball and extract it, workingdir defaults to BUILD_DIR""" try: pkgnames = args.package workingdir = args.build_dir or BUILD_DIR except AttributeError: pkgnames = args workingdir = workingdir or BUILD_DIR if os.getuid() == 0: print('Downloading sources as root is not allowed. Exiting.') return if not os.path.exists(workingdir): os.mkdir(workingdir) for pkgname in pkgnames: print('Downloading %s' % pkgname) r = requests.get(ccr.pkg_url(pkgname)) r.raise_for_status() try: tar = tarfile.open(mode='r', fileobj=io.BytesIO(r.content)) tar.extractall(workingdir) except tarfile.ReadError as re: print('Unable to open the tar file. Either the package does not ' 'exist in CCR or it is malformed: %s' % str(re)) def recurse_depends(pkgname, workingdir=None, graph=None): """Build a dependency graph""" if workingdir is None: workingdir = BUILD_DIR if graph is None: graph = {} if graph.get(pkgname) is not None: # End case: already traversed return graph elif pacman.exists(pkgname): # End case: exists in pacman graph[pkgname] = set() return graph # Otherwise get dependencies graph[pkgname] = set() try: get_source_files([pkgname], workingdir) except requests.exceptions.HTTPError: # Package not found, or other error return graph output = subprocess.check_output(["pkgvars.sh", "{d}/{pkgname}/PKGBUILD".format(d=workingdir, pkgname=pkgname)]) data = json.loads(output.decode())['variables'] # NOTE: We don't differentiate make/depends here, this is an area for # improvement in the future if someone cares. depends = data.get('makedepends', []) + data.get('depends', []) # Only depends that are not already installed for dep in depends: depname = re.split('[>=<]', dep)[0] if not pacman.exists(depname) and not pacman.is_installed(depname): graph[pkgname].add(depname) for dep in graph[pkgname]: recurse_depends(dep, workingdir, graph) return graph def dependency_chain(pkgname, workingdir=None): """Return an ordered list of dependencies for a package""" depends = recurse_depends(pkgname, workingdir) return toposort_flatten(depends) def print_targets(packages): """Formatted print""" print() print(termcolor.colored(_("Targets"), attrs=['bold']) + \ termcolor.colored(" ({num}) ".format(num=len(packages)), attrs=['bold']) + \ "{packages}".format(num=len(packages), packages=' '.join(['-'.join(p) for p in packages if type(p) == tuple] or packages))) print() def install(args): """Install a given package""" try: pkgnames = args.package workingdir = args.build_dir or BUILD_DIR except AttributeError: pkgnames = args workingdir = BUILD_DIR if os.getuid() == 0: print('Installations as root are not allowed. Exiting.') return print(_("resolving dependencies...")) editor = os.getenv('EDITOR') or 'vim' # Check packages, to fail early packages = [] for pkgname in pkgnames: try: # Make sure the package exists ccr.info(pkgname) except ccr.PackageNotFound: print(_("Package not found: {pkg}").format(pkg=pkgname)) return 1 packages += dependency_chain(pkgname, workingdir) # Check dependencies for pkgname in packages: try: # Make sure the package exists ccr.info(pkgname) except ccr.PackageNotFound: print(_("Package not found: {pkg}").format(pkg=pkgname)) return 1 print_targets(packages) response = prompt.prompt(_("Proceed with installation?"), major=True) if response == prompt.NO: return 0 for package in packages: try: get_source_files([package], workingdir) except (requests.exceptions.HTTPError, tarfile.ReadError): print(_("Package not found: {pkg}").format(pkg=package)) return 1 # Ask to edit the PKGBUILD response = prompt.prompt(_("Edit {pkg} PKGBUILD with $EDITOR?").format(pkg=package), color='yellow') if response == prompt.YES: subprocess.call([editor, "{d}/{pkg}/PKGBUILD".format(d=workingdir, pkg=package)]) # Ask to edit the .install, if it exists if os.path.isfile("{d}/{pkg}/{pkg}.install".format(d=workingdir, pkg=package)): response = prompt.prompt(_("Edit {pkg}.install with $EDITOR?").format(pkg=package), color='yellow') if response == prompt.YES: subprocess.call([editor, "{d}/{pkg}/{pkg}.install".format(d=workingdir, pkg=package)]) # makepkg curdir = os.getcwd() os.chdir(os.path.join(workingdir, package)) try: subprocess.check_call(["makepkg", "-rsi"]) except subprocess.CalledProcessError: return 1 os.chdir(curdir) def check_updates(args=None): """Return list of (name, ver) tuples for packages with updates available""" installed = pacman.list_unofficial() updates = [] with progressbar.ProgressBar(max_value=len(installed)) as bar: for i, pkg in enumerate(installed): pkgname, curver = pkg try: data = ccr.info(pkgname) except ccr.PackageNotFound: continue newver = data.get('Version', '0-0') if parse_version(newver) > parse_version(curver): updates.append((pkgname, newver)) bar.update(i) return updates def list_updates(args=None): """List currently installed unofficial packages in `name ver` format""" for name, ver in check_updates(): print(name, ver) def update(args): """Install updates""" if os.getuid() == 0: print('Updates as root are not allowed. Exiting.') return print(termcolor.colored(":: ", 'blue', attrs=['bold']) + \ termcolor.colored(_("Checking for updates..."), attrs=['bold'])) updates = check_updates() if updates: return install(p for p, v in updates) else: print(_("there is nothing to do")) return 0 def search(args): """Print search results""" try: query = args.query except AttributeError: query = args repo_results = pacman.search(query) if repo_results: for line in repo_results: print(line) results = ccr.search(query) if results == "No results found": return results.sort(key=lambda x: x.Name) for pkg in results: print(''.join([ termcolor.colored("ccr/", color='magenta', attrs=['bold']), termcolor.colored(pkg.Name, attrs=['bold']), ' ', termcolor.colored(pkg.Version, color='green', attrs=['bold'])])) print(" {desc}".format(desc=pkg.Description)) def info(args): """Print package info""" try: package = args.package except AttributeError: package = args try: results = ccr.info(package) except ccr.PackageNotFound: print("Package not found") return 1 print(''.join([ termcolor.colored(_("Name : "), attrs=['bold']), results.Name, '\n', termcolor.colored(_("Version : "), attrs=['bold']), results.Version, '\n', termcolor.colored(_("URL : "), attrs=['bold']), results.URL, '\n', termcolor.colored(_("Licenses : "), attrs=['bold']), results.License, '\n', termcolor.colored(_("Category : "), attrs=['bold']), results.Category, '\n', termcolor.colored(_("Votes : "), attrs=['bold']), str(results.NumVotes), '\n', termcolor.colored(_("Maintainer : "), attrs=['bold']), results.Maintainer, '\n', termcolor.colored(_("OutOfDate : "), attrs=['bold']), "{val}".format(val=True if results.OutOfDate == '1' else False), '\n', termcolor.colored(_("Description : "), attrs=['bold']), results.Description, ]))
34.178571
137
0.607918
507fff9e330aee73d66dd446bb7170d7aacd5066
1,031
py
Python
bandstour_geojson_export/testcreate_geojson_polygon_from_viz_json.py
ungentilgarcon/cesiumviz
dd4c2bccde05e4f1272248cc0cedc075cdbeed96
[ "Apache-2.0" ]
null
null
null
bandstour_geojson_export/testcreate_geojson_polygon_from_viz_json.py
ungentilgarcon/cesiumviz
dd4c2bccde05e4f1272248cc0cedc075cdbeed96
[ "Apache-2.0" ]
null
null
null
bandstour_geojson_export/testcreate_geojson_polygon_from_viz_json.py
ungentilgarcon/cesiumviz
dd4c2bccde05e4f1272248cc0cedc075cdbeed96
[ "Apache-2.0" ]
null
null
null
# -- coding: utf-8 -- import json import os from geojson import Feature, Point, FeatureCollection, Polygon '''//ouvrir fichier points de viz, utiliser geojson pour en faire un geojson import json''' with open('exportbands_all_venues-1000.geojson','a+') as dataout_file: f = open('exportbands_all_venues-1000.json'); data = json.loads(f.read()) f.close() for row in data: my_poly = Polygon([[(row['longitude']-float(row['count'])/1000, row['latitude']+float(row['count'])/1000),(row['longitude']-float(row['count'])/1000, row['latitude']-float(row['count'])/1000),(row['longitude']+float(row['count'])/1000, row['latitude']-float(row['count'])/1000),(row['longitude']+float(row['count'])/1000, row['latitude']+float(row['count'])/1000),(row['longitude']-float(row['count'])/1000, row['latitude']+float(row['count'])/1000)]]) geojs = Feature(geometry=my_poly,properties={"type": "Salle"}) print my_poly print geojs geocoll = FeatureCollection([geojs]) json.dump (geocoll,dataout_file)
36.821429
91
0.678952
71be640577dcd40d1ab64c4a3428a084dedb2c32
1,511
py
Python
model/yolo4.py
inacmor/mobiledets-yolov4-pytorch
db285fa061e997032a77fa1ee8c954f2eba2a84d
[ "MIT" ]
1
2021-11-04T07:33:56.000Z
2021-11-04T07:33:56.000Z
model/yolo4.py
inacmor/mobiledets-yolov4-pytorch
db285fa061e997032a77fa1ee8c954f2eba2a84d
[ "MIT" ]
null
null
null
model/yolo4.py
inacmor/mobiledets-yolov4-pytorch
db285fa061e997032a77fa1ee8c954f2eba2a84d
[ "MIT" ]
null
null
null
#encoding=utf-8 ''' @Time : 2020/11/30 08:30 @Author : Inacmor @File : yolo4.py @Noice : @Modificattion : @Author : @Time : @Detail : ''' import torch.nn as nn import torch from model.net.head import YOLO_head from model.net.body import YOLOBODY import time class YOLO4(nn.Module): def __init__(self, batch_size, num_classes, num_bbparas, anchors, stride, freeze=False, inference=False): super(YOLO4, self).__init__() self.inference = inference self.yolobody = YOLOBODY(in_channels=256, anchors=len(anchors) * 3, num_bbparas=num_bbparas, num_classes=num_classes, freeze=freeze) self.yolo_1 = YOLO_head(batch_size, num_classes, anchors[2], stride[2], num_bbparas, inference) self.yolo_2 = YOLO_head(batch_size, num_classes, anchors[1], stride[1], num_bbparas, inference) self.yolo_3 = YOLO_head(batch_size, num_classes, anchors[0], stride[0], num_bbparas, inference) def forward(self, input): output = self.yolobody(input) feat1, yolo_1 = self.yolo_1(output[0]) feat2, yolo_2 = self.yolo_2(output[1]) feat3, yolo_3 = self.yolo_3(output[2]) if self.inference: return [feat1, feat2, feat3], torch.cat([yolo_1, yolo_2, yolo_3], dim=0) else: return [feat1, feat2, feat3], [yolo_1, yolo_2, yolo_3]
26.508772
140
0.595632
23f3c59ded1ced6435bd7b444b3e44a9d2205e9b
17,847
py
Python
tests/postgres_tests/test_aggregates.py
robgolding/django
1d0bab0bfd77edcf1228d45bf654457a8ff1890d
[ "PSF-2.0", "BSD-3-Clause" ]
13
2015-04-17T02:12:15.000Z
2021-12-08T19:45:36.000Z
tests/postgres_tests/test_aggregates.py
robgolding/django
1d0bab0bfd77edcf1228d45bf654457a8ff1890d
[ "PSF-2.0", "BSD-3-Clause" ]
6
2019-08-06T06:45:19.000Z
2022-01-27T14:18:08.000Z
tests/postgres_tests/test_aggregates.py
robgolding/django
1d0bab0bfd77edcf1228d45bf654457a8ff1890d
[ "PSF-2.0", "BSD-3-Clause" ]
3
2019-09-26T17:58:34.000Z
2022-01-26T15:32:14.000Z
import json from django.db.models.expressions import F, Value from django.db.models.functions import Concat, Substr from django.test.utils import Approximate from . import PostgreSQLTestCase from .models import AggregateTestModel, StatTestModel try: from django.contrib.postgres.aggregates import ( ArrayAgg, BitAnd, BitOr, BoolAnd, BoolOr, Corr, CovarPop, JSONBAgg, RegrAvgX, RegrAvgY, RegrCount, RegrIntercept, RegrR2, RegrSlope, RegrSXX, RegrSXY, RegrSYY, StatAggregate, StringAgg, ) except ImportError: pass # psycopg2 is not installed class TestGeneralAggregate(PostgreSQLTestCase): @classmethod def setUpTestData(cls): AggregateTestModel.objects.create(boolean_field=True, char_field='Foo1', integer_field=0) AggregateTestModel.objects.create(boolean_field=False, char_field='Foo2', integer_field=1) AggregateTestModel.objects.create(boolean_field=False, char_field='Foo4', integer_field=2) AggregateTestModel.objects.create(boolean_field=True, char_field='Foo3', integer_field=0) def test_array_agg_charfield(self): values = AggregateTestModel.objects.aggregate(arrayagg=ArrayAgg('char_field')) self.assertEqual(values, {'arrayagg': ['Foo1', 'Foo2', 'Foo4', 'Foo3']}) def test_array_agg_charfield_ordering(self): ordering_test_cases = ( (F('char_field').desc(), ['Foo4', 'Foo3', 'Foo2', 'Foo1']), (F('char_field').asc(), ['Foo1', 'Foo2', 'Foo3', 'Foo4']), (F('char_field'), ['Foo1', 'Foo2', 'Foo3', 'Foo4']), ([F('boolean_field'), F('char_field').desc()], ['Foo4', 'Foo2', 'Foo3', 'Foo1']), ((F('boolean_field'), F('char_field').desc()), ['Foo4', 'Foo2', 'Foo3', 'Foo1']), ('char_field', ['Foo1', 'Foo2', 'Foo3', 'Foo4']), ('-char_field', ['Foo4', 'Foo3', 'Foo2', 'Foo1']), (Concat('char_field', Value('@')), ['Foo1', 'Foo2', 'Foo3', 'Foo4']), (Concat('char_field', Value('@')).desc(), ['Foo4', 'Foo3', 'Foo2', 'Foo1']), ( (Substr('char_field', 1, 1), F('integer_field'), Substr('char_field', 4, 1).desc()), ['Foo3', 'Foo1', 'Foo2', 'Foo4'], ), ) for ordering, expected_output in ordering_test_cases: with self.subTest(ordering=ordering, expected_output=expected_output): values = AggregateTestModel.objects.aggregate( arrayagg=ArrayAgg('char_field', ordering=ordering) ) self.assertEqual(values, {'arrayagg': expected_output}) def test_array_agg_integerfield(self): values = AggregateTestModel.objects.aggregate(arrayagg=ArrayAgg('integer_field')) self.assertEqual(values, {'arrayagg': [0, 1, 2, 0]}) def test_array_agg_integerfield_ordering(self): values = AggregateTestModel.objects.aggregate( arrayagg=ArrayAgg('integer_field', ordering=F('integer_field').desc()) ) self.assertEqual(values, {'arrayagg': [2, 1, 0, 0]}) def test_array_agg_booleanfield(self): values = AggregateTestModel.objects.aggregate(arrayagg=ArrayAgg('boolean_field')) self.assertEqual(values, {'arrayagg': [True, False, False, True]}) def test_array_agg_booleanfield_ordering(self): ordering_test_cases = ( (F('boolean_field').asc(), [False, False, True, True]), (F('boolean_field').desc(), [True, True, False, False]), (F('boolean_field'), [False, False, True, True]), ) for ordering, expected_output in ordering_test_cases: with self.subTest(ordering=ordering, expected_output=expected_output): values = AggregateTestModel.objects.aggregate( arrayagg=ArrayAgg('boolean_field', ordering=ordering) ) self.assertEqual(values, {'arrayagg': expected_output}) def test_array_agg_empty_result(self): AggregateTestModel.objects.all().delete() values = AggregateTestModel.objects.aggregate(arrayagg=ArrayAgg('char_field')) self.assertEqual(values, {'arrayagg': []}) values = AggregateTestModel.objects.aggregate(arrayagg=ArrayAgg('integer_field')) self.assertEqual(values, {'arrayagg': []}) values = AggregateTestModel.objects.aggregate(arrayagg=ArrayAgg('boolean_field')) self.assertEqual(values, {'arrayagg': []}) def test_array_agg_lookups(self): aggr1 = AggregateTestModel.objects.create() aggr2 = AggregateTestModel.objects.create() StatTestModel.objects.create(related_field=aggr1, int1=1, int2=0) StatTestModel.objects.create(related_field=aggr1, int1=2, int2=0) StatTestModel.objects.create(related_field=aggr2, int1=3, int2=0) StatTestModel.objects.create(related_field=aggr2, int1=4, int2=0) qs = StatTestModel.objects.values('related_field').annotate( array=ArrayAgg('int1') ).filter(array__overlap=[2]).values_list('array', flat=True) self.assertCountEqual(qs.get(), [1, 2]) def test_bit_and_general(self): values = AggregateTestModel.objects.filter( integer_field__in=[0, 1]).aggregate(bitand=BitAnd('integer_field')) self.assertEqual(values, {'bitand': 0}) def test_bit_and_on_only_true_values(self): values = AggregateTestModel.objects.filter( integer_field=1).aggregate(bitand=BitAnd('integer_field')) self.assertEqual(values, {'bitand': 1}) def test_bit_and_on_only_false_values(self): values = AggregateTestModel.objects.filter( integer_field=0).aggregate(bitand=BitAnd('integer_field')) self.assertEqual(values, {'bitand': 0}) def test_bit_and_empty_result(self): AggregateTestModel.objects.all().delete() values = AggregateTestModel.objects.aggregate(bitand=BitAnd('integer_field')) self.assertEqual(values, {'bitand': None}) def test_bit_or_general(self): values = AggregateTestModel.objects.filter( integer_field__in=[0, 1]).aggregate(bitor=BitOr('integer_field')) self.assertEqual(values, {'bitor': 1}) def test_bit_or_on_only_true_values(self): values = AggregateTestModel.objects.filter( integer_field=1).aggregate(bitor=BitOr('integer_field')) self.assertEqual(values, {'bitor': 1}) def test_bit_or_on_only_false_values(self): values = AggregateTestModel.objects.filter( integer_field=0).aggregate(bitor=BitOr('integer_field')) self.assertEqual(values, {'bitor': 0}) def test_bit_or_empty_result(self): AggregateTestModel.objects.all().delete() values = AggregateTestModel.objects.aggregate(bitor=BitOr('integer_field')) self.assertEqual(values, {'bitor': None}) def test_bool_and_general(self): values = AggregateTestModel.objects.aggregate(booland=BoolAnd('boolean_field')) self.assertEqual(values, {'booland': False}) def test_bool_and_empty_result(self): AggregateTestModel.objects.all().delete() values = AggregateTestModel.objects.aggregate(booland=BoolAnd('boolean_field')) self.assertEqual(values, {'booland': None}) def test_bool_or_general(self): values = AggregateTestModel.objects.aggregate(boolor=BoolOr('boolean_field')) self.assertEqual(values, {'boolor': True}) def test_bool_or_empty_result(self): AggregateTestModel.objects.all().delete() values = AggregateTestModel.objects.aggregate(boolor=BoolOr('boolean_field')) self.assertEqual(values, {'boolor': None}) def test_string_agg_requires_delimiter(self): with self.assertRaises(TypeError): AggregateTestModel.objects.aggregate(stringagg=StringAgg('char_field')) def test_string_agg_charfield(self): values = AggregateTestModel.objects.aggregate(stringagg=StringAgg('char_field', delimiter=';')) self.assertEqual(values, {'stringagg': 'Foo1;Foo2;Foo4;Foo3'}) def test_string_agg_charfield_ordering(self): ordering_test_cases = ( (F('char_field').desc(), 'Foo4;Foo3;Foo2;Foo1'), (F('char_field').asc(), 'Foo1;Foo2;Foo3;Foo4'), (F('char_field'), 'Foo1;Foo2;Foo3;Foo4'), ('char_field', 'Foo1;Foo2;Foo3;Foo4'), ('-char_field', 'Foo4;Foo3;Foo2;Foo1'), (Concat('char_field', Value('@')), 'Foo1;Foo2;Foo3;Foo4'), (Concat('char_field', Value('@')).desc(), 'Foo4;Foo3;Foo2;Foo1'), ) for ordering, expected_output in ordering_test_cases: with self.subTest(ordering=ordering, expected_output=expected_output): values = AggregateTestModel.objects.aggregate( stringagg=StringAgg('char_field', delimiter=';', ordering=ordering) ) self.assertEqual(values, {'stringagg': expected_output}) def test_string_agg_empty_result(self): AggregateTestModel.objects.all().delete() values = AggregateTestModel.objects.aggregate(stringagg=StringAgg('char_field', delimiter=';')) self.assertEqual(values, {'stringagg': ''}) def test_orderable_agg_alternative_fields(self): values = AggregateTestModel.objects.aggregate( arrayagg=ArrayAgg('integer_field', ordering=F('char_field').asc()) ) self.assertEqual(values, {'arrayagg': [0, 1, 0, 2]}) def test_json_agg(self): values = AggregateTestModel.objects.aggregate(jsonagg=JSONBAgg('char_field')) self.assertEqual(values, {'jsonagg': ['Foo1', 'Foo2', 'Foo4', 'Foo3']}) def test_json_agg_empty(self): values = AggregateTestModel.objects.none().aggregate(jsonagg=JSONBAgg('integer_field')) self.assertEqual(values, json.loads('{"jsonagg": []}')) class TestAggregateDistinct(PostgreSQLTestCase): @classmethod def setUpTestData(cls): AggregateTestModel.objects.create(char_field='Foo') AggregateTestModel.objects.create(char_field='Foo') AggregateTestModel.objects.create(char_field='Bar') def test_string_agg_distinct_false(self): values = AggregateTestModel.objects.aggregate(stringagg=StringAgg('char_field', delimiter=' ', distinct=False)) self.assertEqual(values['stringagg'].count('Foo'), 2) self.assertEqual(values['stringagg'].count('Bar'), 1) def test_string_agg_distinct_true(self): values = AggregateTestModel.objects.aggregate(stringagg=StringAgg('char_field', delimiter=' ', distinct=True)) self.assertEqual(values['stringagg'].count('Foo'), 1) self.assertEqual(values['stringagg'].count('Bar'), 1) def test_array_agg_distinct_false(self): values = AggregateTestModel.objects.aggregate(arrayagg=ArrayAgg('char_field', distinct=False)) self.assertEqual(sorted(values['arrayagg']), ['Bar', 'Foo', 'Foo']) def test_array_agg_distinct_true(self): values = AggregateTestModel.objects.aggregate(arrayagg=ArrayAgg('char_field', distinct=True)) self.assertEqual(sorted(values['arrayagg']), ['Bar', 'Foo']) class TestStatisticsAggregate(PostgreSQLTestCase): @classmethod def setUpTestData(cls): StatTestModel.objects.create( int1=1, int2=3, related_field=AggregateTestModel.objects.create(integer_field=0), ) StatTestModel.objects.create( int1=2, int2=2, related_field=AggregateTestModel.objects.create(integer_field=1), ) StatTestModel.objects.create( int1=3, int2=1, related_field=AggregateTestModel.objects.create(integer_field=2), ) # Tests for base class (StatAggregate) def test_missing_arguments_raises_exception(self): with self.assertRaisesMessage(ValueError, 'Both y and x must be provided.'): StatAggregate(x=None, y=None) def test_correct_source_expressions(self): func = StatAggregate(x='test', y=13) self.assertIsInstance(func.source_expressions[0], Value) self.assertIsInstance(func.source_expressions[1], F) def test_alias_is_required(self): class SomeFunc(StatAggregate): function = 'TEST' with self.assertRaisesMessage(TypeError, 'Complex aggregates require an alias'): StatTestModel.objects.aggregate(SomeFunc(y='int2', x='int1')) # Test aggregates def test_corr_general(self): values = StatTestModel.objects.aggregate(corr=Corr(y='int2', x='int1')) self.assertEqual(values, {'corr': -1.0}) def test_corr_empty_result(self): StatTestModel.objects.all().delete() values = StatTestModel.objects.aggregate(corr=Corr(y='int2', x='int1')) self.assertEqual(values, {'corr': None}) def test_covar_pop_general(self): values = StatTestModel.objects.aggregate(covarpop=CovarPop(y='int2', x='int1')) self.assertEqual(values, {'covarpop': Approximate(-0.66, places=1)}) def test_covar_pop_empty_result(self): StatTestModel.objects.all().delete() values = StatTestModel.objects.aggregate(covarpop=CovarPop(y='int2', x='int1')) self.assertEqual(values, {'covarpop': None}) def test_covar_pop_sample(self): values = StatTestModel.objects.aggregate(covarpop=CovarPop(y='int2', x='int1', sample=True)) self.assertEqual(values, {'covarpop': -1.0}) def test_covar_pop_sample_empty_result(self): StatTestModel.objects.all().delete() values = StatTestModel.objects.aggregate(covarpop=CovarPop(y='int2', x='int1', sample=True)) self.assertEqual(values, {'covarpop': None}) def test_regr_avgx_general(self): values = StatTestModel.objects.aggregate(regravgx=RegrAvgX(y='int2', x='int1')) self.assertEqual(values, {'regravgx': 2.0}) def test_regr_avgx_empty_result(self): StatTestModel.objects.all().delete() values = StatTestModel.objects.aggregate(regravgx=RegrAvgX(y='int2', x='int1')) self.assertEqual(values, {'regravgx': None}) def test_regr_avgy_general(self): values = StatTestModel.objects.aggregate(regravgy=RegrAvgY(y='int2', x='int1')) self.assertEqual(values, {'regravgy': 2.0}) def test_regr_avgy_empty_result(self): StatTestModel.objects.all().delete() values = StatTestModel.objects.aggregate(regravgy=RegrAvgY(y='int2', x='int1')) self.assertEqual(values, {'regravgy': None}) def test_regr_count_general(self): values = StatTestModel.objects.aggregate(regrcount=RegrCount(y='int2', x='int1')) self.assertEqual(values, {'regrcount': 3}) def test_regr_count_empty_result(self): StatTestModel.objects.all().delete() values = StatTestModel.objects.aggregate(regrcount=RegrCount(y='int2', x='int1')) self.assertEqual(values, {'regrcount': 0}) def test_regr_intercept_general(self): values = StatTestModel.objects.aggregate(regrintercept=RegrIntercept(y='int2', x='int1')) self.assertEqual(values, {'regrintercept': 4}) def test_regr_intercept_empty_result(self): StatTestModel.objects.all().delete() values = StatTestModel.objects.aggregate(regrintercept=RegrIntercept(y='int2', x='int1')) self.assertEqual(values, {'regrintercept': None}) def test_regr_r2_general(self): values = StatTestModel.objects.aggregate(regrr2=RegrR2(y='int2', x='int1')) self.assertEqual(values, {'regrr2': 1}) def test_regr_r2_empty_result(self): StatTestModel.objects.all().delete() values = StatTestModel.objects.aggregate(regrr2=RegrR2(y='int2', x='int1')) self.assertEqual(values, {'regrr2': None}) def test_regr_slope_general(self): values = StatTestModel.objects.aggregate(regrslope=RegrSlope(y='int2', x='int1')) self.assertEqual(values, {'regrslope': -1}) def test_regr_slope_empty_result(self): StatTestModel.objects.all().delete() values = StatTestModel.objects.aggregate(regrslope=RegrSlope(y='int2', x='int1')) self.assertEqual(values, {'regrslope': None}) def test_regr_sxx_general(self): values = StatTestModel.objects.aggregate(regrsxx=RegrSXX(y='int2', x='int1')) self.assertEqual(values, {'regrsxx': 2.0}) def test_regr_sxx_empty_result(self): StatTestModel.objects.all().delete() values = StatTestModel.objects.aggregate(regrsxx=RegrSXX(y='int2', x='int1')) self.assertEqual(values, {'regrsxx': None}) def test_regr_sxy_general(self): values = StatTestModel.objects.aggregate(regrsxy=RegrSXY(y='int2', x='int1')) self.assertEqual(values, {'regrsxy': -2.0}) def test_regr_sxy_empty_result(self): StatTestModel.objects.all().delete() values = StatTestModel.objects.aggregate(regrsxy=RegrSXY(y='int2', x='int1')) self.assertEqual(values, {'regrsxy': None}) def test_regr_syy_general(self): values = StatTestModel.objects.aggregate(regrsyy=RegrSYY(y='int2', x='int1')) self.assertEqual(values, {'regrsyy': 2.0}) def test_regr_syy_empty_result(self): StatTestModel.objects.all().delete() values = StatTestModel.objects.aggregate(regrsyy=RegrSYY(y='int2', x='int1')) self.assertEqual(values, {'regrsyy': None}) def test_regr_avgx_with_related_obj_and_number_as_argument(self): """ This is more complex test to check if JOIN on field and number as argument works as expected. """ values = StatTestModel.objects.aggregate(complex_regravgx=RegrAvgX(y=5, x='related_field__integer_field')) self.assertEqual(values, {'complex_regravgx': 1.0})
46.355844
119
0.668348
a13c5824c0efd94e84eb285124015363fc02f7af
9,083
py
Python
aix360/algorithms/rbm/boolean_rule_cg.py
gdequeiroz/AIX360
e0da163f1e8ced971b92b071856e581d666d2e75
[ "Apache-2.0" ]
null
null
null
aix360/algorithms/rbm/boolean_rule_cg.py
gdequeiroz/AIX360
e0da163f1e8ced971b92b071856e581d666d2e75
[ "Apache-2.0" ]
null
null
null
aix360/algorithms/rbm/boolean_rule_cg.py
gdequeiroz/AIX360
e0da163f1e8ced971b92b071856e581d666d2e75
[ "Apache-2.0" ]
null
null
null
import os import numpy as np import pandas as pd import cvxpy as cvx from sklearn.metrics import confusion_matrix, accuracy_score from .beam_search import beam_search, beam_search_K1 class BooleanRuleCG(object): """BooleanRuleCG is a directly interpretable supervised learning method for binary classification that learns a Boolean rule in disjunctive normal form (DNF) or conjunctive normal form (CNF) using column generation (CG). """ def __init__(self, lambda0=0.001, lambda1=0.001, CNF=False, iterMax=100, K=10, D=10, B=5, eps=1e-6, solver='ECOS', verbose=False, silent=False): """ Args: lambda0 (float, optional): Complexity - fixed cost of each clause lambda1 (float, optional): Complexity - additional cost for each literal CNF (bool, optional): CNF instead of DNF iterMax (int, optional): Column generation - maximum number of iterations K (int, optional): Column generation - maximum number of columns generated per iteration D (int, optional): Column generation - maximum degree B (int, optional): Column generation - beam search width eps (float, optional): Numerical tolerance on comparisons solver (str, optional): Linear programming - solver verbose (bool, optional): Linear programming - verboseness silent (bool, optional): Silence overall algorithm messages """ # Complexity parameters self.lambda0 = lambda0 # fixed cost of each clause self.lambda1 = lambda1 # additional cost per literal # CNF instead of DNF self.CNF = CNF # Column generation parameters self.iterMax = iterMax # maximum number of iterations self.K = K # maximum number of columns generated per iteration self.D = D # maximum degree self.B = B # beam search width # Numerical tolerance on comparisons self.eps = eps # Linear programming parameters self.solver = solver # solver self.verbose = verbose # verboseness # Silence output self.silent = silent def fit(self, X, y): """Fit model to training data. Args: X (DataFrame): Binarized features with MultiIndex column labels y (array): Binary-valued target variable Returns: BooleanRuleCG: Self """ if not self.silent: print('Learning {} rule with complexity parameters lambda0={}, lambda1={}'\ .format('CNF' if self.CNF else 'DNF', self.lambda0, self.lambda1)) if self.CNF: # Flip labels for CNF y = 1 - y # Positive (y = 1) and negative (y = 0) samples P = np.where(y > 0.5)[0] Z = np.where(y < 0.5)[0] nP = len(P) n = len(y) # Initialize with empty and singleton conjunctions, i.e. X plus all-ones feature # Feature indicator and conjunction matrices z = pd.DataFrame(np.eye(X.shape[1], X.shape[1]+1, 1, dtype=int), index=X.columns) A = np.hstack((np.ones((X.shape[0],1), dtype=int), X)) # Iteration counter self.it = 0 # Formulate master LP # Variables w = cvx.Variable(A.shape[1], nonneg=True) xi = cvx.Variable(nP, nonneg=True) # Objective function (no penalty on empty conjunction) cs = self.lambda0 + self.lambda1 * z.sum().values cs[0] = 0 obj = cvx.Minimize(cvx.sum(xi) / n + cvx.sum(A[Z,:] * w) / n + cs * w) # Constraints constraints = [xi + A[P,:] * w >= 1] # Solve problem prob = cvx.Problem(obj, constraints) prob.solve(solver=self.solver, verbose=self.verbose) if not self.silent: print('Initial LP solved') # Extract dual variables r = np.ones_like(y, dtype=float) / n r[P] = -constraints[0].dual_value # Beam search for conjunctions with negative reduced cost # Most negative reduced cost among current variables UB = np.dot(r, A) + cs UB = min(UB.min(), 0) v, zNew, Anew = beam_search(r, X, self.lambda0, self.lambda1, K=self.K, UB=UB, D=self.D, B=self.B, eps=self.eps) while (v < -self.eps).any() and (self.it < self.iterMax): # Negative reduced costs found self.it += 1 if not self.silent: print('Iteration: {}, Objective: {:.4f}'.format(self.it, prob.value)) # Add to existing conjunctions z = pd.concat([z, zNew], axis=1, ignore_index=True) A = np.concatenate((A, Anew), axis=1) # Reformulate master LP # Variables w = cvx.Variable(A.shape[1], nonneg=True) # Objective function cs = np.concatenate((cs, self.lambda0 + self.lambda1 * zNew.sum().values)) obj = cvx.Minimize(cvx.sum(xi) / n + cvx.sum(A[Z,:] * w) / n + cs * w) # Constraints constraints = [xi + A[P,:] * w >= 1] # Solve problem prob = cvx.Problem(obj, constraints) prob.solve(solver=self.solver, verbose=self.verbose) # Extract dual variables r[P] = -constraints[0].dual_value # Beam search for conjunctions with negative reduced cost # Most negative reduced cost among current variables UB = np.dot(r, A) + cs UB = min(UB.min(), 0) v, zNew, Anew = beam_search(r, X, self.lambda0, self.lambda1, K=self.K, UB=UB, D=self.D, B=self.B, eps=self.eps) # Save generated conjunctions and LP solution self.z = z self.wLP = w.value r = np.full(nP, 1./n) self.w = beam_search_K1(r, pd.DataFrame(1-A[P,:]), 0, A[Z,:].sum(axis=0) / n + cs, UB=r.sum(), D=100, B=2*self.B, eps=self.eps, stopEarly=False)[1].values.ravel() if len(self.w) == 0: self.w = np.zeros_like(self.wLP, dtype=int) def compute_conjunctions(self, X): """Compute conjunctions of features as specified in self.z. Args: X (DataFrame): Binarized features with MultiIndex column labels Returns: array: A -- Conjunction values """ try: A = 1 - (np.dot(1 - X, self.z) > 0) # Changed matmul to dot, because failed on some machines except AttributeError: print("Attribute 'z' does not exist, please fit model first.") return A def predict(self, X): """Predict class labels. Args: X (DataFrame): Binarized features with MultiIndex column labels Returns: array: y -- Predicted labels """ # Compute conjunctions of features A = self.compute_conjunctions(X) # Predict labels if self.CNF: # Flip labels since model is actually a DNF for Y=0 return 1 - (np.dot(A, self.w) > 0) else: return (np.dot(A, self.w) > 0).astype(int) def explain(self, maxConj=None, prec=2): """Return rules comprising the model. Args: maxConj (int, optional): Maximum number of conjunctions to show prec (int, optional): Number of decimal places to show for floating-value thresholds Returns: Dictionary containing * isCNF (bool): flag signaling whether model is CNF or DNF * rules (list): selected conjunctions formatted as strings """ # Selected conjunctions z = self.z.loc[:, self.w > 0.5] truncate = (maxConj is not None) and (z.shape[1] > maxConj) nConj = maxConj if truncate else z.shape[1] """ if self.CNF: print('Predict Y=0 if ANY of the following rules are satisfied, otherwise Y=1:') else: print('Predict Y=1 if ANY of the following rules are satisfied, otherwise Y=0:') """ # Sort conjunctions by increasing order idxSort = z.sum().sort_values().index[:nConj] # Iterate over sorted conjunctions conj = [] for i in idxSort: # MultiIndex of features participating in rule i idxFeat = z.index[z[i] > 0] # String representations of features strFeat = idxFeat.get_level_values(0) + ' ' + idxFeat.get_level_values(1)\ + ' ' + idxFeat.get_level_values(2).to_series()\ .apply(lambda x: ('{:.' + str(prec) + 'f}').format(x) if type(x) is float else str(x)) # String representation of rule strFeat = strFeat.str.cat(sep=' AND ') conj.append(strFeat) return { 'isCNF': self.CNF, 'rules': conj }
39.150862
111
0.560828
2985e862a3191ddcf6431185046c11c79eb7fd1d
261
py
Python
Modulo 3/090.py
thiago19maciel/Exercicios-em-Python
0d46816caf655c6e870510bb1136964854fc875f
[ "MIT" ]
1
2022-03-22T22:36:48.000Z
2022-03-22T22:36:48.000Z
Modulo 3/090.py
thiago19maciel/Exercicios-em-Python
0d46816caf655c6e870510bb1136964854fc875f
[ "MIT" ]
null
null
null
Modulo 3/090.py
thiago19maciel/Exercicios-em-Python
0d46816caf655c6e870510bb1136964854fc875f
[ "MIT" ]
null
null
null
dados_aluno = {'Nome': str(input('Nome do aluno: ')), 'Media': float(input('Média: '))} if dados_aluno['Media'] > 7: dados_aluno['situação'] = 'Aprovado' else: dados_aluno['situação'] = 'Reprovado' print(f'Situação é igual a {dados_aluno["situação"]} ')
43.5
87
0.659004
ae2ee8603fc913332fb504c64f4cddda69f12f65
1,101
py
Python
Chapter08/Exercise8.01/bookr/bookr/urls.py
lmoshood/The-Django-Workshop
52e86a8f93cb38bf70d50e9b8d2c6d7dac416f62
[ "MIT" ]
null
null
null
Chapter08/Exercise8.01/bookr/bookr/urls.py
lmoshood/The-Django-Workshop
52e86a8f93cb38bf70d50e9b8d2c6d7dac416f62
[ "MIT" ]
null
null
null
Chapter08/Exercise8.01/bookr/bookr/urls.py
lmoshood/The-Django-Workshop
52e86a8f93cb38bf70d50e9b8d2c6d7dac416f62
[ "MIT" ]
1
2020-05-27T13:41:58.000Z
2020-05-27T13:41:58.000Z
"""bookr URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/dev/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf import settings from django.conf.urls.static import static from django.contrib import admin from django.urls import include, path import reviews.views urlpatterns = [ path('admin/', admin.site.urls), path('', reviews.views.index), path('book-search/', reviews.views.book_search, name='book_search'), path('', include('reviews.urls')) ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
34.40625
80
0.721163
03d29a173eab7d1b43e3c4e3fad45ef04a133cbd
2,105
py
Python
labler/db/rdmbs/dbman.py
thenetcircle/coop-labler
43798facfc5488e3c081b3401406a3fb30cb82e3
[ "MIT" ]
1
2019-04-15T08:20:19.000Z
2019-04-15T08:20:19.000Z
labler/db/rdmbs/dbman.py
thenetcircle/coop-labler
43798facfc5488e3c081b3401406a3fb30cb82e3
[ "MIT" ]
3
2021-09-08T00:57:18.000Z
2022-03-11T23:45:24.000Z
labler/db/rdmbs/dbman.py
thenetcircle/coop-labler
43798facfc5488e3c081b3401406a3fb30cb82e3
[ "MIT" ]
null
null
null
from gnenv.environ import GNEnvironment from sqlalchemy import create_engine from sqlalchemy.engine.url import URL from sqlalchemy.orm import scoped_session from sqlalchemy.orm import sessionmaker from labler.config import ConfigKeys # need to keep these here even if "unused", otherwise create_all(engine) won't find the models from labler.db.rdmbs.models import * class Database(object): def __init__(self, env: GNEnvironment): self.env = env self.driver = self.env.config.get(ConfigKeys.DRIVER, domain=ConfigKeys.DATABASE, default='postgres+psycopg2') self.engine = self.db_connect() self.create_tables(self.engine) session_factory = sessionmaker(bind=self.engine) self.Session = scoped_session(session_factory) def db_connect(self): domain = ConfigKeys.DATABASE params = { 'drivername': self.driver, } host = self.env.config.get(ConfigKeys.HOST, default=None, domain=domain) port = self.env.config.get(ConfigKeys.PORT, default=None, domain=domain) username = self.env.config.get(ConfigKeys.USER, default=None, domain=domain) password = self.env.config.get(ConfigKeys.PASSWORD, default=None, domain=domain) database = self.env.config.get(ConfigKeys.DB, default=None, domain=domain) pool_size = self.env.config.get(ConfigKeys.POOL_SIZE, default=10, domain=domain) if host is not None and host != '': params['host'] = host if port is not None and port != '': params['port'] = port if username is not None and username != '': params['username'] = username if password is not None and password != '': params['password'] = password if database is not None and database != '': params['database'] = database return create_engine(URL(**params), pool_recycle=280, pool_size=pool_size) def truncate(self): DeclarativeBase.metadata.drop_all(self.engine) def create_tables(self, engine): DeclarativeBase.metadata.create_all(engine)
39.716981
117
0.678385
22b84df8530466e1873e7446e1034d2e0f020d10
21,553
py
Python
code_python/1.3/corner-extract.py
pinxau1000/Computer-Vision
c1d8da241dfe39467aaa65777c725fdebffe35cf
[ "MIT" ]
null
null
null
code_python/1.3/corner-extract.py
pinxau1000/Computer-Vision
c1d8da241dfe39467aaa65777c725fdebffe35cf
[ "MIT" ]
null
null
null
code_python/1.3/corner-extract.py
pinxau1000/Computer-Vision
c1d8da241dfe39467aaa65777c725fdebffe35cf
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------------ # IMPORTS # ------------------------------------------------------------------------------ from sys import version_info from sys import path as syspath from os import path import json _CURRENT_DIRECTORY = syspath[0] try: import util # if you have problems visit: # https://gist.github.com/pinxau1000/8817d4ef0ed766c78bac8e6feafc8b47 # https://github.com/pinxau1000/ except ModuleNotFoundError: from urllib import request print("'util.py' not found on the same folder as this script!") _url_utilpy = "https://gist.githubusercontent.com/pinxau1000/8817d4ef0ed766c78bac8e6feafc8b47/raw/util.py" print("Downloading util.py from:\n" + _url_utilpy) # https://stackoverflow.com/questions/7243750/download-file-from-web-in-python-3 request.urlretrieve(_url_utilpy, "util.py") print("Downloading finished!") import util try: import cv2 as cv except ModuleNotFoundError: util.install("opencv-python") import cv2 as cv try: from matplotlib import pyplot as plt except ModuleNotFoundError: util.install("matplotlib") from matplotlib import pyplot as plt try: import numpy as np except ModuleNotFoundError: util.install("numpy>=1.19,<1.19.4") import numpy as np try: from packaging import version except ModuleNotFoundError: util.install("packaging") from packaging import version try: import click except ModuleNotFoundError: util.install("click") import click # ------------------------------------------------------------------------------ # REQUIREMENTS CHECK # ------------------------------------------------------------------------------ assert version_info.major >= 3 and \ version_info.minor >= 5, \ "This script requires Python 3.5.0 or above!" assert version.parse(cv.__version__).major >= 4 and \ version.parse(cv.__version__).minor >= 4, \ "This script requires OpenCV 4.4.0 or above!" assert version.parse(plt.matplotlib.__version__).major >= 3 and \ version.parse(plt.matplotlib.__version__).minor >= 3, \ "This script requires MatPlotLib 3.3.0 or above!" assert version.parse(np.__version__).major >= 1 and \ version.parse(np.__version__).minor >= 19 and \ version.parse(np.__version__).micro < 4, \ "This script requires Numpy version >= 1.19.0 and < 1.19.4 !" assert version.parse(click.__version__).major >= 7 and \ version.parse(click.__version__).minor >= 1, \ "This script requires Click 7.1.0 or above!" # ------------------------------------------------------------------------------ # Load Default Pictures # ------------------------------------------------------------------------------ _PATH_2_DATA = path.join(_CURRENT_DIRECTORY, "../../data/") _IMG_ORIG_NAME = "img05.jpg" _IMG_NOISE_NAME = "img05_noise.jpg" _IMG_HARRIS_NAME = "Harris.jpg" _FULL_PATH_ORIG = path.join(_PATH_2_DATA, _IMG_ORIG_NAME) _FULL_PATH_NOISE = path.join(_PATH_2_DATA, _IMG_NOISE_NAME) _FULL_PATH_HARRIS = path.join(_PATH_2_DATA, _IMG_HARRIS_NAME) # ------------------------------------------------------------------------------ # Functions # ------------------------------------------------------------------------------ # ------------------------------------------------------------------------------ # Harris Corner Detector # ------------------------------------------------------------------------------ # PASSED @click.command() @click.option("--image", prompt="Path", default=_FULL_PATH_ORIG, type=str, help="The path to the image") @click.option("--bsize", default=3, type=int, help="Neighborhood size") @click.option("--ksize", default=3, type=int, help="Aperture parameter for the Sobel operator") @click.option("--k", default=0.06, type=float, help="Harris detector free parameter") @click.option("--threshold", default=0.02, type=float, help="values above threshold*max(R) are considered corners.") @click.option("--filter_params", default=str([0]), help="Tuple with initial filtering parameters. If None no " "filter will be applied. If a 2 element tuple the a " "Gaussian Blur will be applied with ksize=(filter_params[" "0], filter_params[1]).") @click.option("--save", default="output_HarrisCornerDetector", type=str, help="The save name(s) of the output figure(s)") @click.option("--dpi", default=None, type=int, help="Quality of the figure window generated. If None its the " "default 100 dpi.") @click.option("--num", default=None, type=int, help="Number of the figure window generated. If None its " "cumulative.") def harris_detector(image, bsize, ksize, k, threshold, filter_params, save, dpi, num): image = util.load_image_RGB(image) filter_params = json.loads(filter_params) if len(filter_params) == 2: print("Applying Gaussian Filter") image = cv.GaussianBlur(src=image, ksize=(filter_params[0], filter_params[1]), sigmaX=0, sigmaY=0) gray_image = cv.cvtColor(src=image, code=cv.COLOR_RGB2GRAY) harris_image = np.copy(image) mask = cv.cornerHarris(src=gray_image, blockSize=bsize, ksize=ksize, k=k) harris_image[mask > threshold * np.max(mask)] = [255, 0, 0] # Convert from Float 64 to Unsigned Int 8 # Also needs to be converted from np.array to list harris_image = list(np.uint8(np.abs(harris_image))) # Plots the images. fig = util.plotImages([image, harris_image], ["Orig Image", "Harris Output"], show=True, main_title="Harris Corner Detector - cv.cornerHarris" f"\nblock size = {bsize}" f"\nsobel aperture = {ksize}" f"\nharris param = {k}", cols=2, num=num, dpi=dpi) # Saves the figure. if save != "None": fig.savefig(save) # Wait for a key press to close figures input("Press Enter to continue...") # ------------------------------------------------------------------------------ # Harris Corner Detector Animation # ------------------------------------------------------------------------------ # PASSED @click.command() @click.option("--image", prompt="Path", default=_FULL_PATH_ORIG, type=str, help="The path to the image") @click.option("--bsizes", default=str(list(range(1, 16, 2))), help="Neighborhood size") @click.option("--ksizes", default=str(list(range(3, 16, 2))), help="Aperture parameter for the Sobel operator") @click.option("--ks", default=str(list(np.array([-0.08, -0.04, -0.02, 0, 0.02, 0.04, 0.08]))), help="Harris detector free parameter") @click.option("--threshold", default=0.01, type=float, help="Values below threshold*max(SobelMagnitude) are set to 0.") @click.option("--save", default="output_HarrisCornerDetector_Animation", type=str, help="The save name(s) of the output figure(s)") def harris_detector_animate(image, bsizes, ksizes, ks, threshold, save): image = util.load_image_RGB(image) gray_image = cv.cvtColor(src=image, code=cv.COLOR_RGB2GRAY) bsizes = json.loads(bsizes) ksizes = json.loads(ksizes) ks = json.loads(ks) bsizes = np.rint(bsizes).astype(int) ksizes = np.rint(ksizes).astype(int) ks = np.round(ks, 2) harris_images = [] harris_titles = [] for bsize in bsizes: for ksize in ksizes: for k in ks: # When the number its even add one to ensure ksize is odd ksize = ksize + 1 if ksize % 2 == 0 else ksize harris_image = np.copy(image) mask = cv.cornerHarris(src=gray_image, blockSize=bsize, ksize=ksize, k=k) harris_image[mask > threshold * mask.max()] = [255, 0, 0] harris_images.append(harris_image) harris_titles.append(f"bsize={bsize}, ksize={ksize}, k={k}") # Convert from Float 64 to Unsigned Int 8 # Also needs to be converted from np.array to list harris_images = list(np.uint8(np.abs(harris_images))) util.animateImages(images=harris_images, titles=harris_titles, save_name=save, cmap="gray", frame_interval=120, verbose=True) # ------------------------------------------------------------------------------ # Harris Corner Detector Block Size # ------------------------------------------------------------------------------ # PASSED @click.command() @click.option("--image", prompt="Path", default=_FULL_PATH_ORIG, type=str, help="The path to the image") @click.option("--bsizes", default=str(list(range(3, 16, 6))), help="Neighborhood size") @click.option("--ksize", default=5, type=int, help="Aperture parameter for the Sobel operator") @click.option("--k", default=0.04, type=float, help="Harris detector free parameter") @click.option("--threshold", default=0.01, type=float, help="values above threshold*max(R) are considered corners.") @click.option("--filter_params", default=str([0]), help="Tuple with initial filtering parameters. If None no " "filter will be applied. If a 2 element tuple the a " "Gaussian Blur will be applied with ksize=(filter_params[" "0], filter_params[1]).") @click.option("--save", default="output_HarrisCornerDetector_BlockSize", type=str, help="The save name(s) of the output figure(s)") @click.option("--dpi", default=None, type=int, help="Quality of the figure window generated. If None its the " "default 100 dpi.") @click.option("--num", default=None, type=int, help="Number of the figure window generated. If None its " "cumulative.") def harris_detector_bsize(image, bsizes, ksize, k, threshold, filter_params, save, dpi, num): image = util.load_image_RGB(image) bsizes = json.loads(bsizes) bsizes = np.rint(bsizes).astype(int) filter_params = json.loads(filter_params) if len(filter_params) == 2: print("Applying Gaussian Filter") image = cv.GaussianBlur(src=image, ksize=(filter_params[0], filter_params[1]), sigmaX=0, sigmaY=0) gray_image = cv.cvtColor(src=image, code=cv.COLOR_RGB2GRAY) harris_images_bsize = [] harris_images_titles = [] for bsize in bsizes: harris_image = np.copy(image) mask = cv.cornerHarris(src=gray_image, blockSize=bsize, ksize=ksize, k=k) harris_image[mask > threshold * mask.max()] = [255, 0, 0] harris_images_bsize.append(harris_image) harris_images_titles.append(f"block size = {bsize}") harris_images = harris_images_bsize harris_images.insert(0, image) titles_images = harris_images_titles titles_images.insert(0, "Orig Image") # Convert from Float 64 to Unsigned Int 8 # Also needs to be converted from np.array to list harris_images = list(np.uint8(np.abs(harris_images))) # Plots the images. fig = util.plotImages(harris_images, titles_images, show=True, main_title="Harris Corner Detectorn - cv.cornerHarris" f"\nsobel aperture = {ksize}" f"\nharris parameter = {k}", cmap="gray", cols=2, num=num, dpi=dpi) # Saves the figure. if save != "None": fig.savefig(save) # Wait for a key press to close figures input("Press Enter to continue...") # ------------------------------------------------------------------------------ # Harris Corner Detector Sobel Aperture # ------------------------------------------------------------------------------ # PASSED @click.command() @click.option("--image", prompt="Path", default=_FULL_PATH_ORIG, type=str, help="The path to the image") @click.option("--bsize", default=3, type=int, help="Neighborhood size") @click.option("--ksizes", default=str(list(range(3, 16, 6))), help="Aperture parameter for the Sobel operator") @click.option("--k", default=0.04, type=float, help="Harris detector free parameter") @click.option("--threshold", default=0.01, type=float, help="values above threshold*max(R) are considered corners.") @click.option("--filter_params", default=str([0]), help="Tuple with initial filtering parameters. If None no " "filter will be applied. If a 2 element tuple the a " "Gaussian Blur will be applied with ksize=(filter_params[" "0], filter_params[1]).") @click.option("--save", default="output_HarrisCornerDetector_SobelAperture", type=str, help="The save name(s) of the output figure(s)") @click.option("--dpi", default=None, type=int, help="Quality of the figure window generated. If None its the " "default 100 dpi.") @click.option("--num", default=None, type=int, help="Number of the figure window generated. If None its " "cumulative.") def harris_detector_ksize(image, bsize, ksizes, k, threshold, filter_params, save, dpi, num): image = util.load_image_RGB(image) ksizes = json.loads(ksizes) ksizes = np.rint(ksizes).astype(int) filter_params = json.loads(filter_params) if len(filter_params) == 2: print("Applying Gaussian Filter") image = cv.GaussianBlur(src=image, ksize=(filter_params[0], filter_params[1]), sigmaX=0, sigmaY=0) gray_image = cv.cvtColor(src=image, code=cv.COLOR_RGB2GRAY) harris_images_ksize = [] harris_images_titles = [] for ksize in ksizes: harris_image = np.copy(image) mask = cv.cornerHarris(src=gray_image, blockSize=bsize, ksize=ksize, k=k) harris_image[mask > threshold * mask.max()] = [255, 0, 0] harris_images_ksize.append(harris_image) harris_images_titles.append(f"sobel aperture = {ksize}") harris_images = harris_images_ksize harris_images.insert(0, image) titles_images = harris_images_titles titles_images.insert(0, "Orig Image") # Convert from Float 64 to Unsigned Int 8 # Also needs to be converted from np.array to list harris_images = list(np.uint8(np.abs(harris_images))) # Plots the images. fig = util.plotImages(harris_images, titles_images, show=True, main_title="Harris Corner Detector - cv.cornerHarris" f"\nblock size = {bsize}" f"\nharris parameter = {k}", cmap="gray", cols=2, num=num, dpi=dpi) # Saves the figure. if save != "None": fig.savefig(save) # Wait for a key press to close figures input("Press Enter to continue...") # ------------------------------------------------------------------------------ # Harris Corner Detector Harris Parameter # ------------------------------------------------------------------------------ # PASSED @click.command() @click.option("--image", prompt="Path", default=_FULL_PATH_ORIG, type=str, help="The path to the image") @click.option("--bsize", default=3, type=int, help="Neighborhood size") @click.option("--ksize", default=5, type=int, help="Aperture parameter for the Sobel operator") @click.option("--ks", default=str(list(np.array([-0.08, -0.02, 0, 0.02, 0.08]))), help="Harris detector free parameter") @click.option("--threshold", default=0.01, type=float, help="values above threshold*max(R) are considered corners.") @click.option("--filter_params", default=str([0]), help="Tuple with initial filtering parameters. If None no " "filter will be applied. If a 2 element tuple the a " "Gaussian Blur will be applied with ksize=(filter_params[" "0], filter_params[1]).") @click.option("--save", default="output_HarrisCornerDetector_HarrisParameter", type=str, help="The save name(s) of the output figure(s)") @click.option("--dpi", default=None, type=int, help="Quality of the figure window generated. If None its the " "default 100 dpi.") @click.option("--num", default=None, type=int, help="Number of the figure window generated. If None its " "cumulative.") def harris_detector_k(image, bsize, ksize, ks, threshold, filter_params, save, dpi, num): image = util.load_image_RGB(image) ks = json.loads(ks) ks = np.round(ks, 2) filter_params = json.loads(filter_params) if len(filter_params) == 2: print("Applying Gaussian Filter") image = cv.GaussianBlur(src=image, ksize=(filter_params[0], filter_params[1]), sigmaX=0, sigmaY=0) gray_image = cv.cvtColor(src=image, code=cv.COLOR_RGB2GRAY) harris_images_ks = [] harris_images_titles = [] for k in ks: harris_image = np.copy(image) mask = cv.cornerHarris(src=gray_image, blockSize=bsize, ksize=ksize, k=k) harris_image[mask > threshold * np.max(mask)] = [255, 0, 0] harris_images_ks.append(harris_image) harris_images_titles.append(f"harris parameter={k}") harris_images = harris_images_ks harris_images.insert(0, image) titles_images = harris_images_titles titles_images.insert(0, "Orig Image") # Convert from Float 64 to Unsigned Int 8 # Also needs to be converted from np.array to list harris_images = list(np.uint8(np.abs(harris_images))) # Plots the images. fig = util.plotImages(harris_images, titles_images, show=True, main_title="Harris Corner Detector - cv.cornerHarris" f"\n block size = {bsize}" f"\nsobel aperture = {ksize}", cmap="gray", cols=3, num=num, dpi=dpi) # Saves the figure. if save != "None": fig.savefig(save) # Wait for a key press to close figures input("Press Enter to continue...") # region @click.group() def entry_point(): pass entry_point.add_command(harris_detector) entry_point.add_command(harris_detector_bsize) entry_point.add_command(harris_detector_ksize) entry_point.add_command(harris_detector_k) entry_point.add_command(harris_detector_animate) if __name__ == "__main__": entry_point() # endregion
37.096386
110
0.512968
bdf0286f8a544c7748f52237cb794903ea1de15b
714
py
Python
Scripts/python/scripts mundo 1/JOGO CURSO EM VIDEO/fase10.py
BrenoNAlmeida/Scripts-Escola
20d886d0401ef7f40a4a46e307eadbf5b1c0a5eb
[ "Apache-2.0" ]
null
null
null
Scripts/python/scripts mundo 1/JOGO CURSO EM VIDEO/fase10.py
BrenoNAlmeida/Scripts-Escola
20d886d0401ef7f40a4a46e307eadbf5b1c0a5eb
[ "Apache-2.0" ]
null
null
null
Scripts/python/scripts mundo 1/JOGO CURSO EM VIDEO/fase10.py
BrenoNAlmeida/Scripts-Escola
20d886d0401ef7f40a4a46e307eadbf5b1c0a5eb
[ "Apache-2.0" ]
null
null
null
print('''\033[1;34mOS EXERCICIOS DESSA FASE SÃO : ! [28] - jogo do adivinha [29] - Radar eletronico [30] - Par ou impar [31] - custo da viagem [32] - Ano bissexto [33] - Maior e menor valor [34] - Almento de salario [35] - Analizando triangulo\033[32m''') opção3 = int(input('QUAL EXERCICIO VOCÊ QUER EXECUTAR ? ')) if opção3 == 28: import exercicio028 elif opção3 == 29: import exercicio029 elif opção3 == 30: import exercicio030 elif opção3 == 31: import exercicio031 elif opção3 == 32: import exercicio032 elif opção3 == 33: import exercicio033 elif opção3 == 34: import exercicio034 elif opção3 == 35: import exercicio035
26.444444
59
0.634454
182881b8e6afac3ed91530d110eaed27a944a4f5
278
py
Python
100doc/005-password_generator.py
ralexrivero/python_fundation
34a855db7380d3d91db6a8f02d97f287d038ef5f
[ "Apache-2.0" ]
1
2021-09-19T04:09:48.000Z
2021-09-19T04:09:48.000Z
100doc/005-password_generator.py
ralexrivero/python_fundation
34a855db7380d3d91db6a8f02d97f287d038ef5f
[ "Apache-2.0" ]
null
null
null
100doc/005-password_generator.py
ralexrivero/python_fundation
34a855db7380d3d91db6a8f02d97f287d038ef5f
[ "Apache-2.0" ]
null
null
null
import string import random printable_chars = list(string.printable) j = 0 valid_chars = [] for i in printable_chars: if i == " ": break valid_chars.append(i) for i in range(0, 12): print(valid_chars[random.randint(0, len(valid_chars))], end='') print()
16.352941
67
0.661871
a9e9673fb4dc7e5bb2960d3a4f73b0233b22b9a1
12,754
py
Python
payslip/south_migrations/0001_initial.py
andrejsab/django-payslip
14b7fdc12696bb1894a49467c88c361ac2a12c00
[ "MIT" ]
22
2017-01-09T22:27:08.000Z
2021-05-07T10:26:00.000Z
payslip/south_migrations/0001_initial.py
andrejsab/django-payslip
14b7fdc12696bb1894a49467c88c361ac2a12c00
[ "MIT" ]
1
2018-10-04T15:53:19.000Z
2018-11-10T09:06:22.000Z
payslip/south_migrations/0001_initial.py
andrejsab/django-payslip
14b7fdc12696bb1894a49467c88c361ac2a12c00
[ "MIT" ]
21
2017-02-15T05:15:31.000Z
2021-04-17T09:55:25.000Z
# flake8: noqa # -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Company' db.create_table('payslip_company', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('address', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), )) db.send_create_signal('payslip', ['Company']) # Adding M2M table for field extra_fields on 'Company' db.create_table('payslip_company_extra_fields', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('company', models.ForeignKey(orm['payslip.company'], null=False)), ('extrafield', models.ForeignKey(orm['payslip.extrafield'], null=False)) )) db.create_unique('payslip_company_extra_fields', ['company_id', 'extrafield_id']) # Adding model 'Employee' db.create_table('payslip_employee', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('django.db.models.fields.related.ForeignKey')(related_name='employees', to=orm['auth.User'])), ('company', self.gf('django.db.models.fields.related.ForeignKey')(related_name='employees', to=orm['payslip.Company'])), ('hr_number', self.gf('django.db.models.fields.PositiveIntegerField')(null=True, blank=True)), ('address', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=1)), )) db.send_create_signal('payslip', ['Employee']) # Adding M2M table for field extra_fields on 'Employee' db.create_table('payslip_employee_extra_fields', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('employee', models.ForeignKey(orm['payslip.employee'], null=False)), ('extrafield', models.ForeignKey(orm['payslip.extrafield'], null=False)) )) db.create_unique('payslip_employee_extra_fields', ['employee_id', 'extrafield_id']) # Adding model 'ExtraFieldType' db.create_table('payslip_extrafieldtype', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('description', self.gf('django.db.models.fields.CharField')(max_length=100, null=True, blank=True)), )) db.send_create_signal('payslip', ['ExtraFieldType']) # Adding model 'ExtraField' db.create_table('payslip_extrafield', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('field_type', self.gf('django.db.models.fields.related.ForeignKey')(related_name='extra_fields', to=orm['payslip.ExtraFieldType'])), ('value', self.gf('django.db.models.fields.CharField')(max_length=200)), )) db.send_create_signal('payslip', ['ExtraField']) # Adding model 'PaymentType' db.create_table('payslip_paymenttype', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('description', self.gf('django.db.models.fields.CharField')(max_length=100, null=True, blank=True)), )) db.send_create_signal('payslip', ['PaymentType']) # Adding model 'Payment' db.create_table('payslip_payment', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('payment_type', self.gf('django.db.models.fields.related.ForeignKey')(related_name='payments', to=orm['payslip.PaymentType'])), ('employee', self.gf('django.db.models.fields.related.ForeignKey')(related_name='payments', to=orm['payslip.Employee'])), ('amount', self.gf('django.db.models.fields.DecimalField')(max_digits=10, decimal_places=2)), ('date', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime(2013, 1, 5, 0, 0))), ('description', self.gf('django.db.models.fields.CharField')(max_length=100, null=True, blank=True)), )) db.send_create_signal('payslip', ['Payment']) # Adding M2M table for field extra_fields on 'Payment' db.create_table('payslip_payment_extra_fields', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('payment', models.ForeignKey(orm['payslip.payment'], null=False)), ('extrafield', models.ForeignKey(orm['payslip.extrafield'], null=False)) )) db.create_unique('payslip_payment_extra_fields', ['payment_id', 'extrafield_id']) def backwards(self, orm): # Deleting model 'Company' db.delete_table('payslip_company') # Removing M2M table for field extra_fields on 'Company' db.delete_table('payslip_company_extra_fields') # Deleting model 'Employee' db.delete_table('payslip_employee') # Removing M2M table for field extra_fields on 'Employee' db.delete_table('payslip_employee_extra_fields') # Deleting model 'ExtraFieldType' db.delete_table('payslip_extrafieldtype') # Deleting model 'ExtraField' db.delete_table('payslip_extrafield') # Deleting model 'PaymentType' db.delete_table('payslip_paymenttype') # Deleting model 'Payment' db.delete_table('payslip_payment') # Removing M2M table for field extra_fields on 'Payment' db.delete_table('payslip_payment_extra_fields') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'payslip.company': { 'Meta': {'object_name': 'Company'}, 'address': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'extra_fields': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['payslip.ExtraField']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'payslip.employee': { 'Meta': {'object_name': 'Employee'}, 'address': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'company': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'employees'", 'to': "orm['payslip.Company']"}), 'extra_fields': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['payslip.ExtraField']", 'null': 'True', 'blank': 'True'}), 'hr_number': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'employees'", 'to': "orm['auth.User']"}) }, 'payslip.extrafield': { 'Meta': {'object_name': 'ExtraField'}, 'field_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'extra_fields'", 'to': "orm['payslip.ExtraFieldType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'payslip.extrafieldtype': { 'Meta': {'object_name': 'ExtraFieldType'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'payslip.payment': { 'Meta': {'object_name': 'Payment'}, 'amount': ('django.db.models.fields.DecimalField', [], {'max_digits': '10', 'decimal_places': '2'}), 'date': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 1, 5, 0, 0)'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'employee': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'payments'", 'to': "orm['payslip.Employee']"}), 'extra_fields': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['payslip.ExtraField']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'payment_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'payments'", 'to': "orm['payslip.PaymentType']"}) }, 'payslip.paymenttype': { 'Meta': {'object_name': 'PaymentType'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['payslip']
62.519608
182
0.598244
392c2ba16a6d8074314aa4267c6f4071047b1366
3,233
py
Python
tests/middleware/test_errors.py
phillipuniverse/starlette
b032e07f6a883c0de2445fd5953a323ec43a94ed
[ "BSD-3-Clause" ]
null
null
null
tests/middleware/test_errors.py
phillipuniverse/starlette
b032e07f6a883c0de2445fd5953a323ec43a94ed
[ "BSD-3-Clause" ]
17
2022-01-01T21:22:33.000Z
2022-03-07T10:33:37.000Z
tests/middleware/test_errors.py
sthagen/encode-starlette
ba31df75daac7cc3b5fcfea89939372768a166cb
[ "BSD-3-Clause" ]
1
2022-03-25T10:05:17.000Z
2022-03-25T10:05:17.000Z
import pytest from starlette.applications import Starlette from starlette.background import BackgroundTask from starlette.middleware.errors import ServerErrorMiddleware from starlette.responses import JSONResponse, Response from starlette.routing import Route def test_handler(test_client_factory): async def app(scope, receive, send): raise RuntimeError("Something went wrong") def error_500(request, exc): return JSONResponse({"detail": "Server Error"}, status_code=500) app = ServerErrorMiddleware(app, handler=error_500) client = test_client_factory(app, raise_server_exceptions=False) response = client.get("/") assert response.status_code == 500 assert response.json() == {"detail": "Server Error"} def test_debug_text(test_client_factory): async def app(scope, receive, send): raise RuntimeError("Something went wrong") app = ServerErrorMiddleware(app, debug=True) client = test_client_factory(app, raise_server_exceptions=False) response = client.get("/") assert response.status_code == 500 assert response.headers["content-type"].startswith("text/plain") assert "RuntimeError: Something went wrong" in response.text def test_debug_html(test_client_factory): async def app(scope, receive, send): raise RuntimeError("Something went wrong") app = ServerErrorMiddleware(app, debug=True) client = test_client_factory(app, raise_server_exceptions=False) response = client.get("/", headers={"Accept": "text/html, */*"}) assert response.status_code == 500 assert response.headers["content-type"].startswith("text/html") assert "RuntimeError" in response.text def test_debug_after_response_sent(test_client_factory): async def app(scope, receive, send): response = Response(b"", status_code=204) await response(scope, receive, send) raise RuntimeError("Something went wrong") app = ServerErrorMiddleware(app, debug=True) client = test_client_factory(app) with pytest.raises(RuntimeError): client.get("/") def test_debug_not_http(test_client_factory): """ DebugMiddleware should just pass through any non-http messages as-is. """ async def app(scope, receive, send): raise RuntimeError("Something went wrong") app = ServerErrorMiddleware(app) with pytest.raises(RuntimeError): client = test_client_factory(app) with client.websocket_connect("/"): pass # pragma: nocover def test_background_task(test_client_factory): accessed_error_handler = False def error_handler(request, exc): nonlocal accessed_error_handler accessed_error_handler = True def raise_exception(): raise Exception("Something went wrong") async def endpoint(request): task = BackgroundTask(raise_exception) return Response(status_code=204, background=task) app = Starlette( routes=[Route("/", endpoint=endpoint)], exception_handlers={Exception: error_handler}, ) client = test_client_factory(app, raise_server_exceptions=False) response = client.get("/") assert response.status_code == 204 assert accessed_error_handler
32.656566
73
0.718218
f13670e398952759140b671c0cf7e3ac1c81866d
4,577
py
Python
python/tvm/contrib/tf_op/module.py
heweiwill/incubator-tvm
5317afb79616454a27dedd4cf3b28dd0986aacdb
[ "Apache-2.0" ]
5
2020-06-19T03:22:24.000Z
2021-03-17T22:16:48.000Z
python/tvm/contrib/tf_op/module.py
heweiwill/incubator-tvm
5317afb79616454a27dedd4cf3b28dd0986aacdb
[ "Apache-2.0" ]
2
2020-07-08T12:34:59.000Z
2020-07-11T15:54:47.000Z
python/tvm/contrib/tf_op/module.py
heweiwill/incubator-tvm
5317afb79616454a27dedd4cf3b28dd0986aacdb
[ "Apache-2.0" ]
2
2019-08-24T00:06:36.000Z
2022-03-03T02:07:27.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Module container of TensorFlow TVMDSO op""" import tensorflow as tf from tensorflow.python.framework import load_library class OpModule: """Module container of TensorFlow TVMDSO op which wraps exported TVM op implementation library to be called on TensorFlow side""" def __init__(self, lib_path): self.lib_path = lib_path def func(self, name, output_dtype=None, output_shape=None): """Get tvm op function wrapped as TensorFlow tensor to tensor function Parameters ---------- name: str function name output_dtype: str or TensorFlow datatype Output datatype, default is float32 output_shape: List of integer/tf scalar tensor or tf shape tensor Output shape, default the same with first input's shape Returns ---------- Func object that acts as TensorFlow tensor to tensor function. """ return TensorFunc(self.lib_path, name, output_dtype, output_shape) def __getitem__(self, func_name): return self.func(func_name) class TensorFunc: """Function object that acts as TensorFlow tensor to tensor function.""" def __init__(self, lib_path, func_name, output_dtype, output_shape): self.lib_path = lib_path self.func_name = func_name self.output_dtype = output_dtype # const(0) indicate invalid dynamic shape self.dynamic_output_shape = tf.constant(0, tf.int64) self.static_output_shape = None self.has_static_output_shape = False # extra flag is required if self._is_static_shape(output_shape): self.static_output_shape = output_shape self.has_static_output_shape = True elif output_shape is not None: self.dynamic_output_shape = self._pack_shape_tensor(output_shape) self.module = load_library.load_op_library('tvm_dso_op.so') self.tvm_dso_op = self.module.tvm_dso_op def apply(self, *params): return self.tvm_dso_op(params, dynamic_output_shape=self.dynamic_output_shape, static_output_shape=self.static_output_shape, has_static_output_shape=self.has_static_output_shape, lib_path=self.lib_path, func_name=self.func_name, output_dtype=self.output_dtype) def __call__(self, *params): return self.apply(*params) def _is_static_shape(self, shape): if shape is None or not isinstance(shape, list): return False for dim_value in shape: if not isinstance(dim_value, int): return False if dim_value < 0: raise Exception("Negative dimension is illegal: %d" % dim_value) return True def _pack_shape_tensor(self, shape): if isinstance(shape, tf.Tensor): if shape.dtype == tf.int32: shape = tf.cast(shape, tf.int64) elif isinstance(shape, list): shape_dims = [] for dim_value in shape: if isinstance(dim_value, int): shape_dims.append(tf.constant(dim_value, tf.int64)) elif isinstance(dim_value, tf.Tensor) and dim_value.shape.rank == 0: if dim_value.dtype == tf.int32: dim_value = tf.cast(dim_value, tf.int64) shape_dims.append(dim_value) else: raise TypeError("Input shape dimension is neither scalar tensor nor int") shape = tf.stack(shape_dims) else: raise TypeError("Input shape is neither tensor nor list") return shape
40.149123
93
0.642124
1bdcf99bc7867589005ac772457741b6ae9eb59a
937
py
Python
src/tests/interactive/cleanup.py
Trundle/js_of_fstar
1c8a2a1b951cc119dd49d3f5d9817571e17aab51
[ "Apache-2.0" ]
1
2017-05-14T21:45:17.000Z
2017-05-14T21:45:17.000Z
src/tests/interactive/cleanup.py
Trundle/js_of_fstar
1c8a2a1b951cc119dd49d3f5d9817571e17aab51
[ "Apache-2.0" ]
null
null
null
src/tests/interactive/cleanup.py
Trundle/js_of_fstar
1c8a2a1b951cc119dd49d3f5d9817571e17aab51
[ "Apache-2.0" ]
null
null
null
"""Cleanup interactive transcript received on standard input. This mostly consists in pretty-pretting JSON messages and sorting their fields, to permit text-based comparisons against reference transcripts. Usage: python2 cleanup.py [fname.clean] < [fname.dirty] """ import io import json import sys def cleanup_one(line): try: return json.dumps(json.loads(line), ensure_ascii=False, sort_keys=True) + "\n" except: return line def main(): # Writing to stdout converts newlines, which confuses diff on Windows, so # write to a file instead. There's no reasonable way to do this in a Python # 2/3 compatible way, so the following is Python-2 only. lines = [line.decode("utf-8") for line in sys.stdin] with open(sys.argv[1], mode="wb") as out: for line in lines: out.write(cleanup_one(line).encode("utf-8")) out.flush() if __name__ == '__main__': main()
30.225806
86
0.685165
c221e25030cd0c8a2b7898da8b8d18a047e80730
64,146
py
Python
Tests/test_strformat.py
aisk/ironpython3
d492fd811a0cee4d0a07cd46f02a29a3c90d964b
[ "Apache-2.0" ]
1,872
2015-01-02T18:56:47.000Z
2022-03-31T07:34:39.000Z
Tests/test_strformat.py
aisk/ironpython3
d492fd811a0cee4d0a07cd46f02a29a3c90d964b
[ "Apache-2.0" ]
675
2015-02-27T09:01:01.000Z
2022-03-31T14:03:25.000Z
Tests/test_strformat.py
aisk/ironpython3
d492fd811a0cee4d0a07cd46f02a29a3c90d964b
[ "Apache-2.0" ]
278
2015-01-02T03:48:20.000Z
2022-03-29T20:40:44.000Z
# Licensed to the .NET Foundation under one or more agreements. # The .NET Foundation licenses this file to you under the Apache 2.0 License. # See the LICENSE file in the project root for more information. import _string import sys import unittest from iptest import IronPythonTestCase, is_cli, is_cpython, is_netcoreapp21, long, run_test, skipUnlessIronPython allChars = '' for y in [chr(x) for x in range(256) if chr(x) != '[' and chr(x) != '.']: allChars += y class TestException(Exception): pass class bad_str(object): def __str__(self): raise TestException('booh') class StrFormatTest(IronPythonTestCase): def test_formatter_parser_errors(self): errors = [ ("{0!", "unmatched '{' in format spec" if is_cli else "end of string while looking for conversion specifier"), ("}a{", "Single '}' encountered in format string"), ("{0:0.1a", "unmatched '{' in format spec"), ("{0:{}", "unmatched '{' in format spec"), ("{0:aa{ab}", "unmatched '{' in format spec"), ("{0!}", "end of format while looking for conversion specifier" if is_cli else "unmatched '{' in format spec"), ("{0!", "unmatched '{' in format spec" if is_cli else "end of string while looking for conversion specifier"), ("{0!aa}", "expected ':' after format specifier" if is_cli else "expected ':' after conversion specifier"), ("{0.{!:{.}.}}", "expected ':' after format specifier" if is_cli else "unexpected '{' in field name"), ("{", "Single '{' encountered in format string"), ] if is_cli: # https://github.com/IronLanguages/ironpython3/issues/867 errors += [ ("{0!}}", "end of format while looking for conversion specifier"), ] else: _string.formatter_parser("{0!}}") for format, errorMsg in errors: self.assertRaisesMessage(ValueError, errorMsg, list, _string.formatter_parser(format)) def test_formatter_parser(self): tests = [ ('{0.}', [('', '0.', '', None)]), ('{0:.{abc}}', [('', '0', '.{abc}', None)]), ('{0[]}', [('', '0[]', '', None)]), ('{0!!}', [('', '0', '', '!')]), ('{0:::!!::!::}', [('', '0', '::!!::!::', None)]), ('{0.]}', [('', '0.]', '', None)]), ('{0..}', [('', '0..', '', None)]), ('{{', [('{', None, None, None)]), ('}}', [('}', None, None, None)]), ('{{}}', [('{', None, None, None), ('}', None, None, None)]), ] for format, expected in tests: self.assertEqual(list(_string.formatter_parser(format)), expected) tests = [ ('{0.{:{.}.}}', [('', '0.{', '{.}.}', None)]), ('{0.{:.}.}', [('', '0.{', '.}.', None)]), ('{0.{!.:{.}.}}', [('', '0.{', '{.}.}', '.')]), ('{0.{!!:{.}.}}', [('', '0.{', '{.}.}', '!')]), ('{0[}', [('', '0[', '', None)]), ('{0.[}', [('', '0.[', '', None)]), ] for format, expected in tests: if is_cli: # https://github.com/IronLanguages/ironpython3/issues/867 self.assertEqual(list(_string.formatter_parser(format)), expected) else: with self.assertRaises(ValueError): list(_string.formatter_parser(format)) def test_format_field_name_split_errors(self): if is_cpython: #http://ironpython.codeplex.com/workitem/28224 temp = _string.formatter_field_name_split('') #Just ensure it doesn't throw else: self.assertRaisesMessage(ValueError, "empty field name", _string.formatter_field_name_split, '') self.assertRaisesMessage(ValueError, "empty field name", _string.formatter_field_name_split, '[') self.assertRaisesMessage(ValueError, "empty field name", _string.formatter_field_name_split, '.') self.assertRaisesMessage(ValueError, "empty field name", _string.formatter_field_name_split, '[.abc') self.assertRaisesMessage(ValueError, "empty field name", _string.formatter_field_name_split, '.abc') errors = [ ("0[", "Missing ']' in format string"), ("abc.", "Empty attribute in format string"), ("abc[]", "Empty attribute in format string"), ] for format, errorMsg in errors: self.assertRaisesMessage(ValueError, errorMsg, list, _string.formatter_field_name_split(format)[1]) def test_format_field_name_split(self): tests = [ ('0', [long(0), []]), ('abc.foo', ['abc', [(True, 'foo')]]), ('abc[2]', ['abc', [(False, long(2))]]), ('1[2]', [long(1), [(False, long(2))]]), ('1.abc', [long(1), [(True, 'abc')]]), ('abc 2.abc', ['abc 2', [(True, 'abc')]]), ('abc!2.abc', ['abc!2', [(True, 'abc')]]), ('].abc', [']', [(True, 'abc')]]), ("abc[[]", ['abc', [(False, '[')]] ), ("abc[[[]", ['abc', [(False, '[[')]] ), ] if not is_cpython: #http://ironpython.codeplex.com/workitem/28331 tests.append(("abc[2]#x", ['abc', [(False, long(2))]] )) tests.append([allChars, [allChars, []]]) tests.append([allChars + '.foo', [allChars, [(True, 'foo')]]]) tests.append([allChars + '[2]', [allChars, [(False, long(2))]]]) for format, expected in tests: res = list(_string.formatter_field_name_split(format)) res[1] = list(res[1]) self.assertEqual(res, expected) def test_format_arg_errors(self): self.assertRaises(IndexError, '{0}'.format) self.assertRaisesMessage(ValueError, "Empty attribute in format string", '{0.}'.format, 42) self.assertRaisesMessage(ValueError, "Empty attribute in format string", '{0[]}'.format, 42) self.assertRaisesMessage(ValueError, "Missing ']' in format string" if is_cli else "expected '}' before end of string", '{0[}'.format, 42) self.assertRaises(IndexError if is_cli else ValueError, '{0[}'.format) @skipUnlessIronPython() def test_format_cli_interop(self): # test classes implementing IFormattable where we pass # the format spec through import System dt = System.DateTime(2008, 10, 26) class x(object): abc = dt self.assertEqual(format(dt, 'MM-dd'), '10-26') self.assertEqual('{0:MM-dd}'.format(dt), '10-26') self.assertEqual('{abc:MM-dd}'.format(abc=dt), '10-26') self.assertEqual('{0.abc:MM-dd}'.format(x), '10-26') # test accessing a .NET attribute self.assertEqual('{0.Year}'.format(dt), '2008') # indexing into .NET dictionaries strDict = System.Collections.Generic.Dictionary[str, object]() strDict['abc'] = dt self.assertEqual('{0[abc]:MM-dd}'.format(strDict), '10-26') intDict = System.Collections.Generic.Dictionary[int, object]() intDict[42] = dt self.assertEqual('{0[42]:MM-dd}'.format(intDict), '10-26') objDict = System.Collections.Generic.Dictionary[object, object]() objDict[42], objDict['42'] = 'abc', 'def' self.assertEqual('{0[42]}'.format(objDict), 'abc') # import clr doesn't flow through self.assertRaises(AttributeError, '{0.MaxValue}'.format, int) def test_format_object_access(self): class y(object): bar = 23 class x(object): def __getitem__(self, index): return type(index).__name__ + ' ' + str(index) abc = 42 baz = y def __str__(self): return 'foo' def __repr__(self): return 'bar' self.assertEqual('{0.abc}'.format(x), '42') self.assertEqual('{0.abc}xyz'.format(x), '42xyz') self.assertEqual('{0[42]}'.format(x()), 'int 42') self.assertEqual('{0[abc]}'.format(x()), 'str abc') self.assertEqual('{0.baz.bar}'.format(x()), '23') self.assertEqual('{0[abc]!r}'.format(x()), "'str abc'") self.assertEqual('{0[abc]!s}'.format(x()), 'str abc') self.assertEqual('{0!r}'.format(x()), 'bar') self.assertEqual('{0!s}'.format(x()), 'foo') self.assertEqual('{abc!s}'.format(abc = x()), 'foo') self.assertEqual('{abc!r}'.format(abc = x()), 'bar') def test_format(self): class x(object): def __format__(self, formatSpec): return formatSpec # computed format specs self.assertEqual('{0:{1}}'.format(x(), 'abc'), 'abc') self.assertRaisesMessage(ValueError, "Max string recursion exceeded", '{0:{1:{2}}}'.format, x(), x(), 'abc') # built-in format method self.assertEqual(format(x()), '') self.assertEqual(format(x(), 'abc'), 'abc') class x: def __format__(self, *args): return 'abc' self.assertEqual(format(x(), ''), 'abc') self.assertEqual('{0}'.format(x()), 'abc') self.assertTrue('__format__' in type(x()).__dict__) def test_format_errors(self): class bad(object): def __format__(self, *args): return None class bad2(object): def __format__(self, *args): return 42 self.assertRaisesMessage(TypeError, "bad.__format__ must return string, not NoneType" if is_cli else "__format__ method did not return string", '{0}'.format, bad()) self.assertRaisesMessage(TypeError, "bad2.__format__ must return string, not int" if is_cli else "__format__ method did not return string", '{0}'.format, bad2()) self.assertRaisesMessage(ValueError, "Unknown conversion specifier x", '{0!x}'.format, 'abc') self.assertRaisesMessage(TypeError, "bad.__format__ must return string, not NoneType" if is_cli else "__format__ method did not return string", format, bad()) self.assertRaisesMessage(TypeError, "bad2.__format__ must return string, not int" if is_cli else "__format__ method did not return string", format, bad2()) def test_object__format__(self): self.assertEqual(object.__format__("aaa", ""), "aaa") with self.assertRaises(TypeError): object.__format__("aaa", "6") # TypeError: non-empty format string passed to object.__format__ def test_str___format__(self): x = "abc" tests = [ ('', 'abc'), ('6', 'abc '), ('6s', 'abc '), ('<6', 'abc '), ('>6', ' abc'), ('^6', ' abc '), ('x^6', 'xabcxx'), ('x<6', 'abcxxx'), ('<<6', 'abc<<<'), ('x>6', 'xxxabc'), ('}^6', '}abc}}'), ('\0<6', 'abc\0\0\0'), ('.0', ''), ('.1', 'a'), ('5.2', 'ab '), ('5.2s', 'ab '), ] for spec, result in tests: self.assertEqual(str.__format__(x, spec), result) def test_str___format___errors(self): errors = [ ("+", "Sign not allowed in string format specifier"), ("=+", "Sign not allowed in string format specifier"), ('=10', "'=' alignment not allowed in string format specifier"), ("10r", "Unknown format code 'r' for object of type 'str'"), ("=+r", "Unknown format code 'r' for object of type 'str'"), (".", "Format specifier missing precision"), (".a", "Format specifier missing precision"), ] # ensure only the s format type is recognized for char in allChars: if char != 's' and (char < '0' or char > '9'): x = ord(char) if char==',': errors.append(('10' + char, "Cannot specify ',' with 's'.")) elif 0x20 < x < 0x80: errors.append(('10' + char, "Unknown format code '%s' for object of type 'str'" % char)) else: errors.append(('10' + char, "Unknown format code '\\x%x' for object of type 'str'" % x)) for errorFmt, errorMsg in errors: self.assertRaisesMessage(ValueError, errorMsg, str().__format__, errorFmt) if is_cli or sys.version_info >= (3, 5): self.assertRaisesMessage(TypeError, 'unsupported format string passed to bad_str.__format__', bad_str().__format__, '+') else: # __str__ is called before processing spec self.assertRaisesMessage(TestException, 'booh', bad_str().__format__, '+') self.assertRaisesMessage(TestException, 'booh', bad_str().__format__, '=10') self.assertRaisesMessage(TestException, 'booh', bad_str().__format__, '.') def test_float___format__(self): tests = [] if is_cpython: #In large part due to http://ironpython.codeplex.com/workitem/28206 tests+= [ (2.0, '6.1', ' 2e+00'), (2.5, '6.1', ' 2e+00'), (2.25, '6.1', ' 2e+00'), (2.25, '6.2', ' 2.2'), (23.0, '.1', '2e+01'), (23.0, '.2', '2.3e+01'), (230.5, '.3', '2.3e+02'), (11230.54, '.5', '1.1231e+04'), (111230.54, '.1', '1e+05'), (100000.0, '.5', '1e+05'), (230.5, '.3g', '230'), (230.5, '.3n', '230'), (0.0, '1.1', '0e+00'), (0.0, '1.0', '0e+00'), (1.0, '.0', '1e+00'), (1.1, '.0', '1e+00'), (1.1, '.1', '1e+00'), (10.0, '.1', '1e+01'), (10.0, '.0', '1e+01'), (100000000000.0, '', '100000000000.0'), (1000000000.12, '1.10', '1e+09'), (1000000000.12, '1.3', '1e+09'), (999999999999.9, '1.0', '1e+12'), (999999999999.9, '1.2', '1e+12'), (999999999999.0, '', '999999999999.0'), (-999999999999.0, '', '-999999999999.0'), (10e667, '+', '+inf'), (-10e667, '+', '-inf'), (10e667/10e667, '+', '+nan'), (10e667, '-', 'inf'), (-10e667, '-', '-inf'), (10e667/10e667, '-', 'nan'), (10e667, ' ', ' inf'), (-10e667, ' ', '-inf'), (10e667/10e667, ' ', ' nan'), ] else: tests+= [ (2.0, '6.1', ' 2.0'), (2.5, '6.1', ' 2.0'), (2.25, '6.1', ' 2.0'), (2.25, '6.2', ' 2.2'), (23.0, '.1', '2.0e+01'), (23.0, '.2', '23.0'), (230.5, '.3', '230.0'), (11230.54, '.5', '11231.0'), (111230.54, '.1', '1.0e+05'), (100000.0, '.5', '1.0e+05'), (230.5, '.3g', '230'), (230.5, '.3n', '230'), (0.0, '1.1', '0.0'), (0.0, '1.0', '0.0'), (1.0, '.0', '1.0'), (1.1, '.0', '1.0'), (1.1, '.1', '1.0'), (10.0, '.1', '1.0e+01'), (10.0, '.0', '1.0e+01'), (100000000000.0, '', '100000000000.0'), (1000000000.12, '1.10', '1000000000.0'), (1000000000.12, '1.3', '1.0e+09'), (999999999999.9, '1.0', '1.0e+12'), (999999999999.9, '1.2', '1.0e+12'), (999999999999.0, '', '999999999999.0'), (-999999999999.0, '', '-999999999999.0'), (10e667, '+', '+inf'), (-10e667, '+', '-inf'), (10e667/10e667, '+', '+nan'), (10e667, '-', 'inf'), (-10e667, '-', '-inf'), (10e667/10e667, '-', 'nan'), (10e667, ' ', ' inf'), (-10e667, ' ', '-inf'), (10e667/10e667, ' ', ' nan'), ] tests+= [ (2.0, '', '2.0'), (2.0, 'g', '2'), (2.0, 'f', '2.000000'), (2.5, '', '2.5'), (2.5, 'g', '2.5'), (2.0, '+', '+2.0'), (2.0, '-', '2.0'), (2.0, ' ', ' 2.0'), (2.0, '<5', '2.0 '), (2.0, '>5', ' 2.0'), (2.0, '=5', ' 2.0'), (2.0, '^6', ' 2.0 '), (2.0, '6', ' 2.0'), (2.0, 'x< 10.10', ' 2.0xxxxxx'), (2.01, 'x< 10.10', ' 2.01xxxxx'), (2.0, 'x> 10.10', 'xxxxxx 2.0'), (2.0, 'x= 10.10', ' xxxxxx2.0'), (2.0, 'x^ 10.10', 'xxx 2.0xxx'), (2.0, 'x^ 9.10', 'xx 2.0xxx'), (2.0, '\0^ 9.10', '\0\0 2.0\0\0\0'), (2.23, '6.2', ' 2.2'), (2.25, '6.3', ' 2.25'), (2.123456789, '2.10', '2.123456789'), (230.0, '.2', '2.3e+02'), (230.1, '.2', '2.3e+02'), (230.5, '.4', '230.5'), (230.54, '.4', '230.5'), (230.54, '.5', '230.54'), (1230.54, '.5', '1230.5'), (111230.54, '.5', '1.1123e+05'), (111230.54, '.4', '1.112e+05'), (111230.54, '.3', '1.11e+05'), (111230.54, '.2', '1.1e+05'), (23.0, 'e', '2.300000e+01'), (23.0, '.6e', '2.300000e+01'), (23.0, '.0e', '2e+01'), (23.0, '.1e', '2.3e+01'), (23.0, '.2e', '2.30e+01'), (23.0, '.3e', '2.300e+01'), (23.0, '.4e', '2.3000e+01'), (230.0, '.2e', '2.30e+02'), (230.1, '.2e', '2.30e+02'), (230.5, '.3e', '2.305e+02'), (230.5, '.4e', '2.3050e+02'), (230.54, '.4e', '2.3054e+02'), (230.54, '.5e', '2.30540e+02'), (1230.54, '.5e', '1.23054e+03'), (11230.54, '.5e', '1.12305e+04'), (111230.54, '.5e', '1.11231e+05'), (111230.54, '.4e', '1.1123e+05'), (111230.54, '.3e', '1.112e+05'), (111230.54, '.2e', '1.11e+05'), (111230.54, '.1e', '1.1e+05'), (23.0, 'E', '2.300000E+01'), (23.0, '.6E', '2.300000E+01'), (23.0, '.0E', '2E+01'), (23.0, '.1E', '2.3E+01'), (23.0, '.2E', '2.30E+01'), (23.0, '.3E', '2.300E+01'), (23.0, '.4E', '2.3000E+01'), (230.0, '.2E', '2.30E+02'), (230.1, '.2E', '2.30E+02'), (230.5, '.3E', '2.305E+02'), (230.5, '.4E', '2.3050E+02'), (230.54, '.4E', '2.3054E+02'), (230.54, '.5E', '2.30540E+02'), (1230.54, '.5E', '1.23054E+03'), (11230.54, '.5E', '1.12305E+04'), (111230.54, '.5E', '1.11231E+05'), (111230.54, '.4E', '1.1123E+05'), (111230.54, '.3E', '1.112E+05'), (111230.54, '.2E', '1.11E+05'), (111230.54, '.1E', '1.1E+05'), (23.0, 'F', '23.000000'), (23.0, '.6F', '23.000000'), (23.0, '.0F', '23'), (23.0, '.1F', '23.0'), (23.0, '.2F', '23.00'), (23.0, '.3F', '23.000'), (23.0, '.4F', '23.0000'), (230.0, '.2F', '230.00'), (230.1, '.2F', '230.10'), (230.5, '.3F', '230.500'), (230.5, '.4F', '230.5000'), (230.54, '.4F', '230.5400'), (230.54, '.5F', '230.54000'), (1230.54, '.5F', '1230.54000'), (11230.54, '.5F', '11230.54000'), (111230.54, '.5F', '111230.54000'), (111230.54, '.4F', '111230.5400'), (111230.54, '.3F', '111230.540'), (111230.54, '.2F', '111230.54'), (111230.54, '.1F', '111230.5'), (111230.55, '.1F', '111230.6'), (-111230.55, '.1F', '-111230.6'), (111230.55, '.1f', '111230.6'), (-111230.55, '.1f', '-111230.6'), (23.0, '%', '2300.000000%'), (23.0, '.6%', '2300.000000%'), (23.0, '.0%', '2300%'), (23.0, '.1%', '2300.0%'), (23.0, '.2%', '2300.00%'), (23.0, '.3%', '2300.000%'), (23.0, '.4%', '2300.0000%'), (230.0, '.2%', '23000.00%'), (230.1, '.2%', '23010.00%'), (230.5, '.3%', '23050.000%'), (230.5, '.4%', '23050.0000%'), (230.54, '.4%', '23054.0000%'), (230.54, '.5%', '23054.00000%'), (1230.54, '.5%', '123054.00000%'), (11230.54, '.5%', '1123054.00000%'), (111230.54, '.5%', '11123054.00000%'), (111230.54, '.4%', '11123054.0000%'), (111230.54, '.3%', '11123054.000%'), (111230.54, '.2%', '11123054.00%'), (111230.54, '.1%', '11123054.0%'), (111230.55, '.1%', '11123055.0%'), (-111230.55, '.1%', '-11123055.0%'), (23.0, '.1g', '2e+01'), (23.0, '.0g', '2e+01'), (230.0, '.1g', '2e+02'), (23.0, '.2g', '23'), (23.5, '.2g', '24'), (23.4, '.2g', '23'), (23.45, '.2g', '23'), (230.0, '.2g', '2.3e+02'), (230.1, '.2g', '2.3e+02'), (230.5, '.4g', '230.5'), (230.54, '.4g', '230.5'), (230.54, '.5g', '230.54'), (1230.54, '.5g', '1230.5'), (11230.54, '.5g', '11231'), (111230.54, '.5g', '1.1123e+05'), (111230.54, '.4g', '1.112e+05'), (111230.54, '.3g', '1.11e+05'), (111230.54, '.2g', '1.1e+05'), (111230.54, '.1g', '1e+05'), (23.0, '.1n', '2e+01'), (23.0, '.2n', '23'), (230.0, '.2n', '2.3e+02'), (230.1, '.2n', '2.3e+02'), (230.5, '.4n', '230.5'), (230.54, '.4n', '230.5'), (230.54, '.5n', '230.54'), (1230.54, '.5n', '1230.5'), (11230.54, '.5n', '11231'), (111230.54, '.5n', '1.1123e+05'), (111230.54, '.4n', '1.112e+05'), (111230.54, '.3n', '1.11e+05'), (111230.54, '.2n', '1.1e+05'), (111230.54, '.1n', '1e+05'), (11231.54, 'n', '11231.5'), (111230.54, 'n', '111231'), (111230.54, 'g', '111231'), (0.0, '', '0.0'), (0.0, '1', '0.0'), (1.1, '.2', '1.1'), (1000000.0, '', '1000000.0'), (10000000.0, '', '10000000.0'), (100000000.0, '', '100000000.0'), (1000000000.0, '', '1000000000.0'), (10000000000.0, '', '10000000000.0'), (1000000000000.0, '', '1000000000000.0'), (1000000000000.0, 'g', '1e+12'), (-1000000000000.0, '', '-1000000000000.0'), (-1000000000000.0, 'g', '-1e+12'), (-1000000000000.0, 'G', '-1E+12'), (-1000000000000.0, '.1g', '-1e+12'), (-1000000000000.0, '.1G', '-1E+12'), (10e667, '', 'inf'), (-10e667, '', '-inf'), (10e667/10e667, '', 'nan'), ] for value, spec, result in tests: actual = value.__format__(spec) self.assertEqual(actual, result, "value:{0}, spec:{1}, (expected) result:{2}, actual:{3}, expr:({0}).__format__('{1}')".format(value, spec, result, actual)) if is_netcoreapp21: return # https://github.com/IronLanguages/ironpython3/issues/751 # check locale specific formatting import _locale try: if is_cli: _locale.setlocale(_locale.LC_ALL, 'en_US') else: _locale.setlocale(_locale.LC_ALL, 'English_United States.1252') tests = [ (1000.0, 'n', '1,000'), (1000.12345, 'n', '1,000.12'), (1000.5, 'n', '1,000.5'), (100000.0, 'n', '100,000'), (100000.0, '.5n', '1e+05'), (100000.5, '.5n', '1e+05'), (100000.5, '.7n', '100,000.5'), ] if is_cpython: #http://ironpython.codeplex.com/workitem/28206 tests+= [ (100000.5, 'n', '100,000'), (100000.5, '.6n', '100,000'), ] else: tests+= [ (100000.5, 'n', '100,000'), (100000.5, '.6n', '100,000'), ] for value, spec, result in tests: actual = value.__format__(spec) self.assertEqual(actual, result, "value:{0}, spec:{1}, (expected) result:{2}, actual:{3}, expr:({0}).__format__('{1}')".format(value, spec, result, actual)) finally: # and restore it back... _locale.setlocale(_locale.LC_ALL, 'C') self.assertEqual(100000.0.__format__('n'), '100000') def test_float___format___errors(self): errors = [] okChars = set(['\0', '%', 'E', 'F', 'G', 'e', 'f', 'g', 'n', ','] + [chr(x) for x in range(ord('0'), ord('9') + 1)]) # verify the okChars are actually ok for char in okChars: 2.0.__format__('10' + char) for char in allChars: if char not in okChars: x = ord(char) if 0x20 < x < 0x80: errors.append((2.0, '10' + char, "Unknown format code '%s' for object of type 'float'" % char)) else: errors.append((2.0, '10' + char, "Unknown format code '\\x%x' for object of type 'float'" % x)) for value, errorFmt, errorMsg in errors: self.assertRaisesMessage(ValueError, errorMsg, value.__format__, errorFmt) def test_int___format__(self): tests = [ (0, '+', '+0'), (0, ' ', ' 0'), (0, '-', '0'), (2, '', '2'), (2, '+', '+2'), (2, '-', '2'), (2, ' ', ' 2'), (2, '<5', '2 '), (2, '05', '00002'), (20000,'+4', '+20000'), (2, '>5', ' 2'), (2, '=5', ' 2'), (2, '^6', ' 2 '), (2, '6', ' 2'), (2, 'x< 10', ' 2xxxxxxxx'), (2, 'x> 10', 'xxxxxxxx 2'), (2, 'x= 10', ' xxxxxxxx2'), (2, 'x^ 10', 'xxxx 2xxxx'), (2, 'x^ 9', 'xxx 2xxxx'), (2, 'x<+10', '+2xxxxxxxx'), (2, 'x>+10', 'xxxxxxxx+2'), (2, 'x=+10', '+xxxxxxxx2'), (2, 'x^+10', 'xxxx+2xxxx'), (2, 'x^+9', 'xxx+2xxxx'), (2, 'x<-10', '2xxxxxxxxx'), (2, 'x>-10', 'xxxxxxxxx2'), (2, 'x=-10', 'xxxxxxxxx2'), (2, 'x^-10', 'xxxx2xxxxx'), (2, 'x^-9', 'xxxx2xxxx'), (-2, 'x<-10', '-2xxxxxxxx'), (-2, 'x>-10', 'xxxxxxxx-2'), (-2, 'x=-10', '-xxxxxxxx2'), (-2, 'x^-10', 'xxxx-2xxxx'), (-2, 'x^-9', 'xxx-2xxxx'), (-2, 'x<+10', '-2xxxxxxxx'), (-2, 'x>+10', 'xxxxxxxx-2'), (-2, 'x=+10', '-xxxxxxxx2'), (-2, 'x^+10', 'xxxx-2xxxx'), (-2, 'x^+9', 'xxx-2xxxx'), (-2, 'x< 10', '-2xxxxxxxx'), (-2, 'x> 10', 'xxxxxxxx-2'), (-2, 'x= 10', '-xxxxxxxx2'), (-2, 'x^ 10', 'xxxx-2xxxx'), (-2, 'x^ 9', 'xxx-2xxxx'), (2, '\0^ 9', '\0\0\0 2\0\0\0\0'), (2, 'c', '\x02'), (2, '<5c', '\x02 '), (2, '>5c', ' \x02'), (2, '=5c', ' \x02'), (2, '^6c', ' \x02 '), (2, '6c', ' \x02'), (3, 'b', '11'), (3, '+b', '+11'), (3, '-b', '11'), (3, ' b', ' 11'), (3, '<5b', '11 '), (3, '>5b', ' 11'), (3, '=5b', ' 11'), (3, '^6b', ' 11 '), (3, '6b', ' 11'), (3, 'x< 010b', ' 11xxxxxxx'), (3, '< 010b', ' 110000000'), (3, 'x< 010b', ' 11xxxxxxx'), (3, 'x< 10b', ' 11xxxxxxx'), (3, 'x< 10b', ' 11xxxxxxx'), (3, 'x> 10b', 'xxxxxxx 11'), (3, 'x= 10b', ' xxxxxxx11'), (3, 'x^ 10b', 'xxx 11xxxx'), (3, 'x^ 9b', 'xxx 11xxx'), (3, 'x<+10b', '+11xxxxxxx'), (3, 'x>+10b', 'xxxxxxx+11'), (3, 'x=+10b', '+xxxxxxx11'), (3, 'x^+10b', 'xxx+11xxxx'), (3, 'x^+9b', 'xxx+11xxx'), (3, 'x<-10b', '11xxxxxxxx'), (3, 'x>-10b', 'xxxxxxxx11'), (3, 'x=-10b', 'xxxxxxxx11'), (3, 'x^-10b', 'xxxx11xxxx'), (3, 'x^-9b', 'xxx11xxxx'), (-3, 'x<-10b', '-11xxxxxxx'), (-3, 'x>-10b', 'xxxxxxx-11'), (-3, 'x=-10b', '-xxxxxxx11'), (-3, 'x^-10b', 'xxx-11xxxx'), (-3, 'x^-9b', 'xxx-11xxx'), (-3, 'x<+10b', '-11xxxxxxx'), (-3, 'x>+10b', 'xxxxxxx-11'), (-3, 'x=+10b', '-xxxxxxx11'), (-3, 'x^+10b', 'xxx-11xxxx'), (-3, 'x^+9b', 'xxx-11xxx'), (-3, 'x< 10b', '-11xxxxxxx'), (-3, 'x> 10b', 'xxxxxxx-11'), (-3, 'x= 10b', '-xxxxxxx11'), (-3, 'x^ 10b', 'xxx-11xxxx'), (-3, 'x^ #10b', 'xx-0b11xxx'), (-3, 'x^ 9b', 'xxx-11xxx'), (3, '\0^ 9b', '\0\0\0 11\0\0\0'), (-2147483648, 'b', '-10000000000000000000000000000000'), (0, 'b', '0'), (9, 'o', '11'), (9, '+o', '+11'), (9, '-o', '11'), (9, ' o', ' 11'), (9, '<5o', '11 '), (9, '>5o', ' 11'), (9, '=5o', ' 11'), (9, '^6o', ' 11 '), (9, '6o', ' 11'), (9, 'x< 10o', ' 11xxxxxxx'), (9, 'x> 10o', 'xxxxxxx 11'), (9, 'x= 10o', ' xxxxxxx11'), (9, 'x^ 10o', 'xxx 11xxxx'), (9, 'x^ 9o', 'xxx 11xxx'), (9, 'x<+10o', '+11xxxxxxx'), (9, 'x>+10o', 'xxxxxxx+11'), (9, 'x=+10o', '+xxxxxxx11'), (9, 'x^+10o', 'xxx+11xxxx'), (9, 'x^+9o', 'xxx+11xxx'), (9, 'x<-10o', '11xxxxxxxx'), (9, 'x>-10o', 'xxxxxxxx11'), (9, 'x=-10o', 'xxxxxxxx11'), (9, 'x^-10o', 'xxxx11xxxx'), (9, 'x^-9o', 'xxx11xxxx'), (-9, 'x<-10o', '-11xxxxxxx'), (-9, 'x>-10o', 'xxxxxxx-11'), (-9, 'x=-10o', '-xxxxxxx11'), (-9, 'x^-10o', 'xxx-11xxxx'), (-9, 'x^-9o', 'xxx-11xxx'), (-9, 'x<+10o', '-11xxxxxxx'), (-9, 'x>+10o', 'xxxxxxx-11'), (-9, 'x=+10o', '-xxxxxxx11'), (-9, 'x^+10o', 'xxx-11xxxx'), (-9, 'x^+9o', 'xxx-11xxx'), (-9, 'x< 10o', '-11xxxxxxx'), (-9, 'x< #10o', '-0o11xxxxx'), (-9, 'x> 10o', 'xxxxxxx-11'), (-9, 'x= 10o', '-xxxxxxx11'), (-9, 'x^ 10o', 'xxx-11xxxx'), (-9, 'x^ 9o', 'xxx-11xxx'), (9, '\0^ 9o', '\0\0\0 11\0\0\0'), (-9, 'x^ 9o', 'xxx-11xxx'), (-2147483648, 'o', '-20000000000'), (-42, 'o', '-52'), (42, 'o', '52'), (0, 'o', '0'), (-2147483648, 'X', '-80000000'), (-2147483648, 'x', '-80000000'), (-42, 'X', '-2A'), (-42, 'x', '-2a'), (42, 'X', '2A'), (42, 'x', '2a'), (2147483647, 'X', '7FFFFFFF'), (0, 'x', '0'), (2147483647, 'x', '7fffffff'), (2147483647, '#x', '0x7fffffff'), (2147483647, '#X', '0X7FFFFFFF'), (2147483647, 'f', '2147483647.000000'), (2147483647, '%', '214748364700.000000%'), (999999, '-g', '999999'), (999999, '+g', '+999999'), (999999, ' g', ' 999999'), (999999, 'g', '999999'), (999999 , 'G', '999999'), (-999999, 'g', '-999999'), (-999999 , 'G', '-999999'), (100000, 'g', '100000'), (100000, 'G', '100000'), (-1000000, 'g', '-1e+06'), (-1000000, 'G', '-1E+06'), (1000000, 'g', '1e+06'), (1000000, 'G', '1E+06'), (10000000, 'g', '1e+07'), (10000000, 'G', '1E+07'), (100000000, 'g', '1e+08'), (100000000, 'G', '1E+08'), (1000000, '10g', ' 1e+06'), (1000000, '10G', ' 1E+06'), (10000000, '10g', ' 1e+07'), (10000000, '10G', ' 1E+07'), (100000000, '10g', ' 1e+08'), (100000000, '10G', ' 1E+08'), (110000000, 'g', '1.1e+08'), (110000000, 'G', '1.1E+08'), (112000000, 'g', '1.12e+08'), (112000000, 'G', '1.12E+08'), (112300000, 'g', '1.123e+08'), (112300000, 'G', '1.123E+08'), (112340000, 'g', '1.1234e+08'), (112340000, 'G', '1.1234E+08'), (112345000, 'g', '1.12345e+08'), (112345000, 'G', '1.12345E+08'), (112345600, 'g', '1.12346e+08'), (112345600, 'G', '1.12346E+08'), (112345500, 'g', '1.12346e+08'), (112345500, 'G', '1.12346E+08'), (112345510, 'g', '1.12346e+08'), (112345510, 'G', '1.12346E+08'), (112345400, 'g', '1.12345e+08'), (112345400, 'G', '1.12345E+08'), (112345401, 'g', '1.12345e+08'), (112345401, 'G', '1.12345E+08'), (-112345000, 'g', '-1.12345e+08'), (-112345000, 'G', '-1.12345E+08'), (-112345600, 'g', '-1.12346e+08'), (-112345600, 'G', '-1.12346E+08'), (-112345500, 'g', '-1.12346e+08'), (-112345500, 'G', '-1.12346E+08'), (-112345510, 'g', '-1.12346e+08'), (-112345510, 'G', '-1.12346E+08'), (-112345400, 'g', '-1.12345e+08'), (-112345400, 'G', '-1.12345E+08'), (-112345401, 'g', '-1.12345e+08'), (-112345401, 'G', '-1.12345E+08'), (2147483647, 'g', '2.14748e+09'), (2147483647, 'G', '2.14748E+09'), (-2147483647, 'g', '-2.14748e+09'), (-2147483647, 'G', '-2.14748E+09'), (2147483647, 'e', '2.147484e+09'), (100000, 'e', '1.000000e+05'), (100000, 'E', '1.000000E+05'), (10000000, 'E', '1.000000E+07'), (100000000, 'e', '1.000000e+08'), (100000000, 'E', '1.000000E+08'), (110000000, 'e', '1.100000e+08'), (110000000, 'E', '1.100000E+08'), (112000000, 'e', '1.120000e+08'), (112000000, 'E', '1.120000E+08'), (112300000, 'e', '1.123000e+08'), (112300000, 'E', '1.123000E+08'), (112340000, 'e', '1.123400e+08'), (112340000, 'E', '1.123400E+08'), (112345000, 'e', '1.123450e+08'), (112345000, 'E', '1.123450E+08'), (1112345600, 'e', '1.112346e+09'), (1112345600, 'E', '1.112346E+09'), (1112345500, 'e', '1.112346e+09'), (1112345500, 'E', '1.112346E+09'), (1112345510, 'e', '1.112346e+09'), (1112345510, 'E', '1.112346E+09'), (1112345400, 'e', '1.112345e+09'), (1112345400, 'E', '1.112345E+09'), (1112345401, 'e', '1.112345e+09'), (1112345401, 'E', '1.112345E+09'), (100000, 'n', '100000'), ] for value, spec, result in tests: self.assertEqual(value.__format__(spec), result) # check locale specific formatting import _locale try: if is_cli: _locale.setlocale(_locale.LC_ALL, 'en_US') else: _locale.setlocale(_locale.LC_ALL, 'English_United States.1252') x = 100000 self.assertEqual(x.__format__('n'), '100,000') finally: # and restore it back... _locale.setlocale(_locale.LC_ALL, 'C') self.assertEqual(x.__format__('n'), '100000') def test_int___format___errors(self): errors = [ (ValueError, 2, '6.1', "Precision not allowed in integer format specifier"), (ValueError, 2, '+c', "Sign not allowed with integer format specifier 'c'"), (ValueError, 2, '-c', "Sign not allowed with integer format specifier 'c'"), (ValueError, 2, ' c', "Sign not allowed with integer format specifier 'c'"), (OverflowError, -2, 'c', "%c arg not in range(0x110000)"), #(-2, 'c', ), #(-2, '%', "Sign not allowed with integer format specifier 'c'"), ] okChars = set(['%', 'E', 'F', 'G', 'X', 'x', 'b', 'c', 'd', 'o', 'e', 'f', 'g', 'n', ','] + [chr(x) for x in range(ord('0'), ord('9') + 1)]) # verify the okChars are actually ok for char in okChars: (2).__format__('10' + char) for char in allChars: if char not in okChars and (char < '0' or char > '9'): x = ord(char) if 0x20 < x < 0x80: errors.append((ValueError, 2, '10' + char, "Unknown format code '%s' for object of type 'int'" % char)) else: errors.append((ValueError, 2, '10' + char, "Unknown format code '\\x%x' for object of type 'int'" % x)) for error, value, errorFmt, errorMsg in errors: self.assertRaisesMessage(error, errorMsg, value.__format__, errorFmt) def test_long___format__(self): tests = [ (long(0), '+', '+0'), (long(0), ' ', ' 0'), (long(0), '-', '0'), (long(2), '', '2'), (long(2), '+', '+2'), (long(2), '-', '2'), (long(2), ' ', ' 2'), (long(2), '<5', '2 '), (long(2), '>5', ' 2'), (long(2), '=5', ' 2'), (long(2), '^6', ' 2 '), (long(2), '6', ' 2'), (long(2), 'x< 10', ' 2xxxxxxxx'), (long(2), 'x> 10', 'xxxxxxxx 2'), (long(2), 'x= 10', ' xxxxxxxx2'), (long(2), 'x^ 10', 'xxxx 2xxxx'), (long(2), 'x^ 9', 'xxx 2xxxx'), (long(2), 'x<+10', '+2xxxxxxxx'), (long(2), 'x>+10', 'xxxxxxxx+2'), (long(2), 'x=+10', '+xxxxxxxx2'), (long(2), 'x^+10', 'xxxx+2xxxx'), (long(2), 'x^+9', 'xxx+2xxxx'), (long(2), 'x<-10', '2xxxxxxxxx'), (long(2), 'x>-10', 'xxxxxxxxx2'), (long(2), 'x=-10', 'xxxxxxxxx2'), (long(2), 'x^-10', 'xxxx2xxxxx'), (long(2), 'x^-9', 'xxxx2xxxx'), (-long(2), 'x<-10', '-2xxxxxxxx'), (-long(2), 'x>-10', 'xxxxxxxx-2'), (-long(2), 'x=-10', '-xxxxxxxx2'), (-long(2), 'x^-10', 'xxxx-2xxxx'), (-long(2), 'x^-9', 'xxx-2xxxx'), (-long(2), 'x<+10', '-2xxxxxxxx'), (-long(2), 'x>+10', 'xxxxxxxx-2'), (-long(2), 'x=+10', '-xxxxxxxx2'), (-long(2), 'x^+10', 'xxxx-2xxxx'), (-long(2), 'x^+9', 'xxx-2xxxx'), (-long(2), 'x< 10', '-2xxxxxxxx'), (-long(2), 'x> 10', 'xxxxxxxx-2'), (-long(2), 'x= 10', '-xxxxxxxx2'), (-long(2), 'x^ 10', 'xxxx-2xxxx'), (-long(2), 'x^ 9', 'xxx-2xxxx'), (long(2), '\0^ 9', '\0\0\0 2\0\0\0\0'), (long(2), 'c', '\x02'), (long(2), '<5c', '\x02 '), (long(2), '>5c', ' \x02'), (long(2), '=5c', ' \x02'), (long(2), '^6c', ' \x02 '), (long(2), '6c', ' \x02'), (long(3), 'b', '11'), (long(3), '+b', '+11'), (long(3), '-b', '11'), (long(3), ' b', ' 11'), (long(3), '<5b', '11 '), (long(3), '>5b', ' 11'), (long(3), '=5b', ' 11'), (long(3), '^6b', ' 11 '), (long(3), '6b', ' 11'), (long(3), 'x< 010b', ' 11xxxxxxx'), (long(3), '< 010b', ' 110000000'), (long(3), 'x< 010b', ' 11xxxxxxx'), (long(3), 'x< 10b', ' 11xxxxxxx'), (long(3), 'x< 10b', ' 11xxxxxxx'), (long(3), 'x> 10b', 'xxxxxxx 11'), (long(3), 'x= 10b', ' xxxxxxx11'), (long(3), 'x^ 10b', 'xxx 11xxxx'), (long(3), 'x^ 9b', 'xxx 11xxx'), (long(3), 'x<+10b', '+11xxxxxxx'), (long(3), 'x>+10b', 'xxxxxxx+11'), (long(3), 'x=+10b', '+xxxxxxx11'), (long(3), 'x^+10b', 'xxx+11xxxx'), (long(3), 'x^+9b', 'xxx+11xxx'), (long(3), 'x<-10b', '11xxxxxxxx'), (long(3), 'x>-10b', 'xxxxxxxx11'), (long(3), 'x=-10b', 'xxxxxxxx11'), (long(3), 'x^-10b', 'xxxx11xxxx'), (long(3), 'x^-9b', 'xxx11xxxx'), (-long(3), 'x<-10b', '-11xxxxxxx'), (-long(3), 'x>-10b', 'xxxxxxx-11'), (-long(3), 'x=-10b', '-xxxxxxx11'), (-long(3), 'x^-10b', 'xxx-11xxxx'), (-long(3), 'x^-9b', 'xxx-11xxx'), (-long(3), 'x<+10b', '-11xxxxxxx'), (-long(3), 'x>+10b', 'xxxxxxx-11'), (-long(3), 'x=+10b', '-xxxxxxx11'), (-long(3), 'x^+10b', 'xxx-11xxxx'), (-long(3), 'x^+9b', 'xxx-11xxx'), (-long(3), 'x< 10b', '-11xxxxxxx'), (-long(3), 'x> 10b', 'xxxxxxx-11'), (-long(3), 'x= 10b', '-xxxxxxx11'), (-long(3), 'x^ 10b', 'xxx-11xxxx'), (-long(3), 'x^ #10b', 'xx-0b11xxx'), (-long(3), 'x^ 9b', 'xxx-11xxx'), (long(3), '\0^ 9b', '\0\0\0 11\0\0\0'), (-long(2147483648), 'b', '-10000000000000000000000000000000'), (long(0), 'b', '0'), (long(9), 'o', '11'), (long(9), '+o', '+11'), (long(9), '-o', '11'), (long(9), ' o', ' 11'), (long(9), '<5o', '11 '), (long(9), '>5o', ' 11'), (long(9), '=5o', ' 11'), (long(9), '^6o', ' 11 '), (long(9), '6o', ' 11'), (long(9), 'x< 10o', ' 11xxxxxxx'), (long(9), 'x> 10o', 'xxxxxxx 11'), (long(9), 'x= 10o', ' xxxxxxx11'), (long(9), 'x^ 10o', 'xxx 11xxxx'), (long(9), 'x^ 9o', 'xxx 11xxx'), (long(9), 'x<+10o', '+11xxxxxxx'), (long(9), 'x>+10o', 'xxxxxxx+11'), (long(9), 'x=+10o', '+xxxxxxx11'), (long(9), 'x^+10o', 'xxx+11xxxx'), (long(9), 'x^+9o', 'xxx+11xxx'), (long(9), 'x<-10o', '11xxxxxxxx'), (long(9), 'x>-10o', 'xxxxxxxx11'), (long(9), 'x=-10o', 'xxxxxxxx11'), (long(9), 'x^-10o', 'xxxx11xxxx'), (long(9), 'x^-9o', 'xxx11xxxx'), (-long(9), 'x<-10o', '-11xxxxxxx'), (-long(9), 'x>-10o', 'xxxxxxx-11'), (-long(9), 'x=-10o', '-xxxxxxx11'), (-long(9), 'x^-10o', 'xxx-11xxxx'), (-long(9), 'x^-9o', 'xxx-11xxx'), (-long(9), 'x<+10o', '-11xxxxxxx'), (-long(9), 'x>+10o', 'xxxxxxx-11'), (-long(9), 'x=+10o', '-xxxxxxx11'), (-long(9), 'x^+10o', 'xxx-11xxxx'), (-long(9), 'x^+9o', 'xxx-11xxx'), (-long(9), 'x< 10o', '-11xxxxxxx'), (-long(9), 'x< #10o', '-0o11xxxxx'), (-long(9), 'x> 10o', 'xxxxxxx-11'), (-long(9), 'x= 10o', '-xxxxxxx11'), (-long(9), 'x^ 10o', 'xxx-11xxxx'), (-long(9), 'x^ 9o', 'xxx-11xxx'), (long(9), '\0^ 9o', '\0\0\0 11\0\0\0'), (-long(9), 'x^ 9o', 'xxx-11xxx'), (-long(2147483648), 'o', '-20000000000'), (-long(42), 'o', '-52'), (0, 'o', '0'), (long(42), 'o', '52'), (0, 'x', '0'), (-long(2147483648), 'X', '-80000000'), (-long(2147483648), 'x', '-80000000'), (-long(42), 'X', '-2A'), (-long(42), 'x', '-2a'), (long(42), 'X', '2A'), (long(42), 'x', '2a'), (long(2147483647), 'X', '7FFFFFFF'), (long(2147483647), 'x', '7fffffff'), (long(2147483647), '#x', '0x7fffffff'), (long(2147483647), '#X', '0X7FFFFFFF'), (long(2147483647), 'f', '2147483647.000000'), (long(2147483647), '%', '214748364700.000000%'), (long(999999), '-g', '999999'), (long(999999), '+g', '+999999'), (long(999999), ' g', ' 999999'), (long(999999), 'g', '999999'), (long(999999), 'G', '999999'), (-long(999999), 'g', '-999999'), (-long(999999), 'G', '-999999'), (long(100000), 'g', '100000'), (long(100000), 'G', '100000'), (-long(1000000), 'g', '-1e+06'), (-long(1000000), 'G', '-1E+06'), (long(1000000), 'g', '1e+06'), (long(1000000), 'G', '1E+06'), (long(10000000), 'g', '1e+07'), (long(10000000), 'G', '1E+07'), (long(100000000), 'g', '1e+08'), (long(100000000), 'G', '1E+08'), (long(1000000), '10g', ' 1e+06'), (long(1000000), '10G', ' 1E+06'), (long(10000000), '10g', ' 1e+07'), (long(10000000), '10G', ' 1E+07'), (long(10200000), '10G', ' 1.02E+07'), (long(100000000), '10g', ' 1e+08'), (long(100000000), '10G', ' 1E+08'), (long(110000000), 'g', '1.1e+08'), (long(110000000), 'G', '1.1E+08'), (long(112000000), 'g', '1.12e+08'), (long(112000000), 'G', '1.12E+08'), (long(112300000), 'g', '1.123e+08'), (long(112300000), 'G', '1.123E+08'), (long(112340000), 'g', '1.1234e+08'), (long(112340000), 'G', '1.1234E+08'), (long(112345000), 'g', '1.12345e+08'), (long(112345000), 'G', '1.12345E+08'), (long(112345600), 'g', '1.12346e+08'), (long(112345600), 'G', '1.12346E+08'), (long(112345500), 'g', '1.12346e+08'), (long(112345500), 'G', '1.12346E+08'), (long(112345510), 'g', '1.12346e+08'), (long(112345510), 'G', '1.12346E+08'), (long(112345400), 'g', '1.12345e+08'), (long(112345400), 'G', '1.12345E+08'), (long(112345401), 'g', '1.12345e+08'), (long(112345401), 'G', '1.12345E+08'), (-long(112345000), 'g', '-1.12345e+08'), (-long(112345000), 'G', '-1.12345E+08'), (-long(112345600), 'g', '-1.12346e+08'), (-long(112345600), 'G', '-1.12346E+08'), (-long(112345500), 'g', '-1.12346e+08'), (-long(112345500), 'G', '-1.12346E+08'), (-long(112345510), 'g', '-1.12346e+08'), (-long(112345510), 'G', '-1.12346E+08'), (-long(112345400), 'g', '-1.12345e+08'), (-long(112345400), 'G', '-1.12345E+08'), (-long(112345401), 'g', '-1.12345e+08'), (-long(112345401), 'G', '-1.12345E+08'), (long(2147483647), 'g', '2.14748e+09'), (long(2147483647), 'G', '2.14748E+09'), (-long(2147483647), 'g', '-2.14748e+09'), (-long(2147483647), 'G', '-2.14748E+09'), (long(2147483647), 'e', '2.147484e+09'), (long(100000), 'e', '1.000000e+05'), (long(100000), 'E', '1.000000E+05'), (long(10000000), 'E', '1.000000E+07'), (long(100000000), 'e', '1.000000e+08'), (long(100000000), 'E', '1.000000E+08'), (long(110000000), 'e', '1.100000e+08'), (long(110000000), 'E', '1.100000E+08'), (long(112000000), 'e', '1.120000e+08'), (long(112000000), 'E', '1.120000E+08'), (long(112300000), 'e', '1.123000e+08'), (long(112300000), 'E', '1.123000E+08'), (long(112340000), 'e', '1.123400e+08'), (long(112340000), 'E', '1.123400E+08'), (long(112345000), 'e', '1.123450e+08'), (long(112345000), 'E', '1.123450E+08'), (long(1112345600), 'e', '1.112346e+09'), (long(1112345600), 'E', '1.112346E+09'), (long(1112345500), 'e', '1.112346e+09'), (long(1112345500), 'E', '1.112346E+09'), (long(1112345510), 'e', '1.112346e+09'), (long(1112345510), 'E', '1.112346E+09'), (long(1112345400), 'e', '1.112345e+09'), (long(1112345400), 'E', '1.112345E+09'), (long(1112345401), 'e', '1.112345e+09'), (long(1112345401), 'E', '1.112345E+09'), (long(111234540100), 'E', '1.112345E+11'), (long(100000), 'n', '100000'), ] for value, spec, result in tests: self.assertEqual(value.__format__(spec), result) # check locale specific formatting import _locale try: if is_cli: _locale.setlocale(_locale.LC_ALL, 'en_US') else: _locale.setlocale(_locale.LC_ALL, 'English_United States.1252') self.assertEqual(long(100000).__format__('n'), '100,000') self.assertEqual(long(100000000).__format__('n'), '100,000,000') finally: # and restore it back... _locale.setlocale(_locale.LC_ALL, 'C') self.assertEqual(long(100000).__format__('n'), '100000') self.assertEqual(long(100000000).__format__('n'), '100000000') def test_long___format___errors(self): errors = [ (ValueError, long(2), '6.1', "Precision not allowed in integer format specifier"), (ValueError, long(2), '+c', "Sign not allowed with integer format specifier 'c'"), (ValueError, long(2), '-c', "Sign not allowed with integer format specifier 'c'"), (ValueError, long(2), ' c', "Sign not allowed with integer format specifier 'c'"), (OverflowError, -long(2), 'c', "%c arg not in range(0x110000)"), (OverflowError, long(0x110000), 'c', "%c arg not in range(0x110000)"), ] if is_cli: #http://ironpython.codeplex.com/workitem/28373 errors.append((OverflowError, sys.maxsize + 1, 'c', "long int too large to convert to int")) else: errors.append((OverflowError, sys.maxsize + 1, 'c', "Python int too large to convert to C long")) okChars = set(['%', 'E', 'F', 'G', 'X', 'x', 'b', 'c', 'd', 'o', 'e', 'f', 'g', 'n', ','] + [chr(x) for x in range(ord('0'), ord('9') + 1)]) # verify the okChars are actually ok for char in okChars: (long(2)).__format__('10' + char) for char in allChars: if char not in okChars and (char < '0' or char > '9'): x = ord(char) if 0x20 < x < 0x80: errors.append((ValueError, long(2), '10' + char, "Unknown format code '%s' for object of type 'int'" % char)) else: errors.append((ValueError, long(2), '10' + char, "Unknown format code '\\x%x' for object of type 'int'" % x)) for exceptionType, value, errorFmt, errorMsg in errors: self.assertRaisesMessage(exceptionType, errorMsg, value.__format__, errorFmt) def test_builtin_types_that_implement_format(self): import builtins types = [getattr(builtins, typeName) for typeName in dir(builtins) if type(getattr(builtins, typeName)) is type] formatTypes = list(set([builtinType.__name__ for builtinType in types if '__format__' in builtinType.__dict__])) formatTypes.sort() if is_cli: # why does bool have __format__ in ipy? self.assertEqual(formatTypes, ['bool', 'complex', 'float', 'int', 'object', 'str']) else: self.assertEqual(formatTypes, ['complex', 'float', 'int', 'object', 'str']) def test_computed_format(self): self.assertEqual("|{0:10}|".format("a"), "|a |") self.assertEqual("|{0:*^10}|".format("a"), "|****a*****|") self.assertEqual("|{0:*^{1}}|".format("a", 10), "|****a*****|") self.assertEqual("{0:*{2}10}".format("a", "*", "^", "10"), "****a*****") self.assertEqual("{0:{1}^{3}}".format("a", "*", "^", "10"), "****a*****") self.assertEqual("{0:{1}{2}{3}}".format("a", "*", "^", "10"), "****a*****") self.assertEqual("{0:{1}*^{2}}".format("a", "", "10"), "****a*****") def test_none_format(self): self.assertEqual("{0} {1}".format(None, 10), "None 10") self.assertEqual("{0}".format(None), 'None') run_test(__name__)
51.357886
172
0.348829
93e2e57cc3a09ab6661595d81fc2aa32ef0e6a01
29,293
py
Python
util/design/secded_gen.py
asb/opentitan
af68ff5041b10c81e97adc075a4d042f8ac7ab20
[ "Apache-2.0" ]
1,375
2019-11-05T15:11:00.000Z
2022-03-28T17:50:43.000Z
util/design/secded_gen.py
asb/opentitan
af68ff5041b10c81e97adc075a4d042f8ac7ab20
[ "Apache-2.0" ]
7,045
2019-11-05T16:05:45.000Z
2022-03-31T23:08:08.000Z
util/design/secded_gen.py
asb/opentitan
af68ff5041b10c81e97adc075a4d042f8ac7ab20
[ "Apache-2.0" ]
428
2019-11-05T15:00:20.000Z
2022-03-28T15:34:57.000Z
#!/usr/bin/env python3 # Copyright lowRISC contributors. # Licensed under the Apache License, Version 2.0, see LICENSE for details. # SPDX-License-Identifier: Apache-2.0 r"""SECDED encoder/decoder generator Current version doesn't optimize Fan-In. It uses Hsiao code (modified version of Hamming code + parity). Please refer https://arxiv.org/pdf/0803.1217.pdf For some further background and info on the differences between Hamming and Hsiao SECDED codes, refer to https://ieeexplore.ieee.org/document/8110065.g """ import argparse import itertools import logging as log import math import random import hjson import subprocess from typing import List, Tuple from pathlib import Path COPYRIGHT = """// Copyright lowRISC contributors. // Licensed under the Apache License, Version 2.0, see LICENSE for details. // SPDX-License-Identifier: Apache-2.0 // """ C_SRC_TOP = """ #include "secded_enc.h" #include <stdbool.h> #include <stdint.h> // Calculates even parity for a 64-bit word static uint8_t calc_parity(uint64_t word, bool invert) { bool parity = false; while (word) { if (word & 1) { parity = !parity; } word >>= 1; } return parity ^ invert; } """ C_H_TOP = """ #ifndef OPENTITAN_HW_IP_PRIM_DV_PRIM_SECDED_SECDED_ENC_H_ #define OPENTITAN_HW_IP_PRIM_DV_PRIM_SECDED_SECDED_ENC_H_ #include <stdint.h> #ifdef __cplusplus extern "C" { #endif // __cplusplus // Integrity encode functions for varying bit widths matching the functionality // of the RTL modules of the same name. Each takes an array of bytes in // little-endian order and returns the calculated integrity bits. """ C_H_FOOT = """ #ifdef __cplusplus } // extern "C" #endif // __cplusplus #endif // OPENTITAN_HW_IP_PRIM_DV_PRIM_SECDED_SECDED_ENC_H_ """ CODE_OPTIONS = {'hsiao': '', 'inv_hsiao': '_inv', 'hamming': '_hamming', 'inv_hamming': '_inv_hamming'} # secded configurations SECDED_CFG_FILE = "util/design/data/secded_cfg.hjson" PROJ_ROOT = Path(__file__).parent.parent.parent SECDED_CFG_PATH = Path(PROJ_ROOT) / SECDED_CFG_FILE # The seed we use to initialise the PRNG when running the randomised algorithm # to choose constants for Hsiao codes. _RND_SEED = 123 def min_paritysize(k): # SECDED --> Hamming distance 'd': 4 # 2^(m-1) should cover (m+k) for m in range(2, 10): if 2**m >= (k + m + 1): return m + 1 return -1 def ideal_fanin(k, m): """Compute Ideal Max Fanin of any bit in the ecc codes.""" fanin = 0 needed = k for select in range(3, m + 1, 2): combinations = list(itertools.combinations(range(m), select)) if len(combinations) <= needed: fanin += int(math.ceil(float(len(combinations) * select) / m)) needed -= len(combinations) else: fanin += int(math.ceil(float(needed * select) / m)) needed = 0 if not needed: break return fanin def calc_fanin(width, codes): """Sum the ones in a column""" fanins = [0] * width log.info("Calc Code: {}".format(codes)) for i in codes: for e in i: fanins[e] += 1 return fanins def calc_bitmasks(k, m, codes, dec): # Transform fanin indices into bitmask. fanin_masks = [0] * m for i, c in enumerate(codes): for j in c: fanin_masks[j] += 1 << i # For decode ops, include ECC bit position. if dec: for j in range(m): fanin_masks[j] += 1 << (k + j) return fanin_masks def print_secded_enum_and_util_fns(cfgs): enum_vals = [" SecdedNone"] parity_width_vals = [] data_width_vals = [] for cfg in cfgs: k = cfg['k'] m = cfg['m'] n = k + m suffix = CODE_OPTIONS[cfg['code_type']] suffix = suffix.split('_') suffix = [x.capitalize() for x in suffix] formatted_suffix = ''.join(suffix) enum_name = " Secded%s_%s_%s" % (formatted_suffix, n, k) enum_vals.append(enum_name) parity_width = " %s: return %s;" % (enum_name, m) parity_width_vals.append(parity_width) data_width = " %s: return %s;" % (enum_name, k) data_width_vals.append(data_width) enum_str = ",\n".join(enum_vals) parity_width_fn_str = "\n".join(parity_width_vals) data_width_fn_str = "\n".join(data_width_vals) enum_str = ''' typedef enum int {{ {} }} prim_secded_e; function automatic int get_ecc_data_width(prim_secded_e ecc_type); case (ecc_type) {} // Return a non-zero width to avoid VCS compile issues default: return 32; endcase endfunction function automatic int get_ecc_parity_width(prim_secded_e ecc_type); case (ecc_type) {} default: return 0; endcase endfunction '''.format(enum_str, data_width_fn_str, parity_width_fn_str) return enum_str def print_pkg_allzero(n, k, m, codes, suffix, codetype): suffix = suffix.split('_') suffix = [x.capitalize() for x in suffix] suffix = ''.join(suffix) invecc = 0 invcode = 0 if codetype in ["inv_hsiao", "inv_hamming"]: for x in range(m): invecc += (x % 2) << x invcode = invecc << k zerostr = f''' parameter logic [{m-1}:0] Secded{suffix}{n}{k}ZeroEcc = {m}'h{invecc:0X}; parameter logic [{n-1}:0] Secded{suffix}{n}{k}ZeroWord = {n}'h{invcode:0X}; ''' return zerostr def print_pkg_types(n, k, m, codes, suffix, codetype): typename = "secded%s_%d_%d_t" % (suffix, n, k) typestr = ''' typedef struct packed {{ logic [{}:0] data; logic [{}:0] syndrome; logic [1:0] err; }} {}; '''.format((k - 1), (m - 1), typename) return typestr def print_fn(n, k, m, codes, suffix, codetype, inv=False): enc_out = print_enc(n, k, m, codes, codetype) dec_out = print_dec(n, k, m, codes, codetype, "function") typename = "secded%s_%d_%d_t" % (suffix, n, k) module_name = "prim_secded%s_%d_%d" % (suffix, n, k) outstr = ''' function automatic logic [{}:0] {}_enc (logic [{}:0] data_i); logic [{}:0] data_o; {} return data_o; endfunction function automatic {} {}_dec (logic [{}:0] data_i); logic [{}:0] data_o; logic [{}:0] syndrome_o; logic [1:0] err_o; {} dec; {} dec.data = data_o; dec.syndrome = syndrome_o; dec.err = err_o; return dec; endfunction '''.format((n - 1), module_name, (k - 1), (n - 1), enc_out, typename, module_name, (n - 1), (k - 1), (m - 1), typename, dec_out) return outstr def print_enc(n, k, m, codes, codetype): invert = 1 if codetype in ["inv_hsiao", "inv_hamming"] else 0 outstr = " data_o = {}'(data_i);\n".format(n) format_str = " data_o[{}] = 1'b{} ^ ^(data_o & " + str(n) + "'h{:0" +\ str((n + 3) // 4) + "X});\n" # Print parity computation If inverted encoding is turned on, we only # invert every odd bit so that both all-one and all-zero encodings are not # possible. This works for most encodings generated if the fanin is # balanced (such as inverted Hsiao codes). However, since there is no # guarantee, an FPV assertion is added to prove that all-zero and all-one # encodings do not exist if an inverted code is used. for j, mask in enumerate(calc_bitmasks(k, m, codes, False)): outstr += format_str.format(j + k, invert & (j % 2), mask) return outstr def calc_syndrome(code): log.info("in syndrome {}".format(code)) return sum(map((lambda x: 2**x), code)) def print_dec(n, k, m, codes, codetype, print_type="logic"): outstr = "" outstr += " // Syndrome calculation\n" hexfmt = str(n) + "'h{:0" + str((n + 3) // 4) + "X}" format_str = " syndrome_o[{}] = ^(" # Add ECC bit inversion if needed (see print_enc function). if codetype in ["inv_hsiao", "inv_hamming"]: invval = 0 for x in range(m): invval += (x % 2) << x format_str += "(data_i ^ " + hexfmt.format(invval << k) + ")" else: format_str += "data_i" format_str += " & " + hexfmt + ");\n" # Print syndrome computation for j, mask in enumerate(calc_bitmasks(k, m, codes, True)): outstr += format_str.format(j, mask) outstr += "\n" outstr += " // Corrected output calculation\n" for i in range(k): outstr += " data_o[%d] = (syndrome_o == %d'h%x) ^ data_i[%d];\n" % ( i, m, calc_syndrome(codes[i]), i) outstr += "\n" outstr += " // err_o calc. bit0: single error, bit1: double error\n" # The Hsiao and Hamming syndromes are interpreted slightly differently. if codetype in ["hamming", "inv_hamming"]: outstr += " err_o[0] = syndrome_o[%d];\n" % (m - 1) outstr += " err_o[1] = |syndrome_o[%d:0] & ~syndrome_o[%d];\n" % ( m - 2, m - 1) else: outstr += " err_o[0] = ^syndrome_o;\n" outstr += " err_o[1] = ~err_o[0] & (|syndrome_o);\n" return outstr # return whether an integer is a power of 2 def is_pow2(n): return (n & (n - 1) == 0) and n != 0 def is_odd(n): return (n % 2) > 0 def verify(cfgs): error = 0 for cfg in cfgs['cfgs']: if (cfg['k'] <= 1 or cfg['k'] > 120): error += 1 log.error("Current tool doesn't support the value k (%d)", cfg['k']) if (cfg['m'] <= 1 or cfg['m'] > 20): error += 1 log.error("Current tool doesn't support the value m (%d)", cfg['m']) # Calculate 'm' (parity size) min_m = min_paritysize(cfg['k']) if (cfg['m'] < min_m): error += 1 log.error("given \'m\' argument is smaller than minimum requirement " + "using calculated minimum (%d)", min_m) # Error check code selection if (cfg['code_type'] not in CODE_OPTIONS): error += 1 log.error("Invalid code {} selected, use one of {}".format( cfg['code_type'], CODE_OPTIONS)) return error def _ecc_pick_code(codetype: str, k: int) -> Tuple[int, List[int], int]: # first check to see if bit width is supported among configuration config = hjson.load(SECDED_CFG_PATH.open()) codes = None bitmasks = None m = None for cfg in config['cfgs']: if cfg['k'] == k and cfg['code_type'] == codetype: m = cfg['m'] codes = gen_code(codetype, k, m) bitmasks = calc_bitmasks(k, m, codes, False) invert = 1 if codetype in ['inv_hsiao', 'inv_hamming'] else 0 return (m, bitmasks, invert) # error if k not supported raise Exception(f'ECC for length {k} of type {codetype} unsupported') def _ecc_encode(k: int, m: int, bitmasks: List[int], invert: int, dataword: int) -> int: assert 0 <= dataword < (1 << k) # represent supplied dataword as a binary string word_bin = format(dataword, '0' + str(k) + 'b') codeword = word_bin for k, mask in enumerate(bitmasks): bit = 0 log.debug(f'codeword: {codeword}') log.debug(f'mask: {hex(mask)}') mask = (format(mask, '0' + str(k + m) + 'b')) # reverse codeword for index selection # This is because the LSB is the farthest entry in the string codeword_rev = codeword[::-1] for idx, f in enumerate(mask[::-1]): if int(f): bit ^= int(codeword_rev[idx]) # Add ECC bit inversion if needed (see print_enc function). bit ^= (invert & k % 2) codeword = str(bit) + codeword return codeword def ecc_encode(codetype: str, k: int, dataword: int) -> Tuple[int, int]: log.info(f"Encoding ECC for {hex(dataword)}") m, bitmasks, invert = _ecc_pick_code(codetype, k) codeword = _ecc_encode(k, m, bitmasks, invert, dataword) # Debug printouts log.debug(f'original hex: {hex(dataword)}') log.debug(f'codeword hex: {hex(int(codeword,2))}') return int(codeword, 2), m def ecc_encode_some(codetype: str, k: int, datawords: int) -> Tuple[List[int], int]: m, bitmasks, invert = _ecc_pick_code(codetype, k) codewords = [int(_ecc_encode(k, m, bitmasks, invert, w), 2) for w in datawords] return codewords, m def gen_code(codetype, k, m): # The hsiao_code generator uses (pseudo)random values to pick good ECC # constants. Rather than exposing the seed, we pick a fixed one here to # ensure everything stays stable in future. old_rnd_state = random.getstate() random.seed(_RND_SEED) try: return globals()["_{}_code".format(codetype)](k, m) finally: random.setstate(old_rnd_state) def generate(cfgs, args): pkg_out_str = "" pkg_type_str = "" c_src_filename = args.c_outdir + "/" + "secded_enc.c" c_h_filename = args.c_outdir + "/" + "secded_enc.h" with open(c_src_filename, "w") as f: f.write(COPYRIGHT) f.write("// SECDED encode code generated by\n") f.write(f"// util/design/secded_gen.py from {SECDED_CFG_FILE}\n\n") f.write(C_SRC_TOP) with open(c_h_filename, "w") as f: f.write(COPYRIGHT) f.write("// SECDED encode code generated by\n") f.write(f"// util/design/secded_gen.py from {SECDED_CFG_FILE}\n") f.write(C_H_TOP) for cfg in cfgs['cfgs']: log.debug("Working on {}".format(cfg)) k = cfg['k'] m = cfg['m'] n = k + m codetype = cfg['code_type'] suffix = CODE_OPTIONS[codetype] codes = gen_code(codetype, k, m) # write out rtl files write_enc_dec_files(n, k, m, codes, suffix, args.outdir, codetype) # write out C files, only hsiao codes are supported if codetype in ["hsiao", "inv_hsiao"]: write_c_files(n, k, m, codes, suffix, c_src_filename, c_h_filename, codetype) # write out all-zero word values for all codes pkg_type_str += print_pkg_allzero(n, k, m, codes, suffix, codetype) # write out package typedefs pkg_type_str += print_pkg_types(n, k, m, codes, suffix, codetype) # print out functions pkg_out_str += print_fn(n, k, m, codes, suffix, codetype) if not args.no_fpv: write_fpv_files(n, k, m, codes, suffix, args.fpv_outdir, codetype) with open(c_h_filename, "a") as f: f.write(C_H_FOOT) format_c_files(c_src_filename, c_h_filename) # create enum of various ECC types - useful for DV purposes in mem_bkdr_if enum_str = print_secded_enum_and_util_fns(cfgs['cfgs']) # write out package file full_pkg_str = enum_str + pkg_type_str + pkg_out_str write_pkg_file(args.outdir, full_pkg_str) def _inv_hsiao_code(k, m): return _hsiao_code(k, m) # k = data bits # m = parity bits # generate hsiao code def _hsiao_code(k, m): # using itertools combinations, generate odd number of 1 in a row required_row = k # k rows are needed, decreasing everytime when it acquite fanin_ideal = ideal_fanin(k, m) log.info("Ideal Fan-In value: %d" % fanin_ideal) # Each entry represents a row in below parity matrix # Entry is tuple and the value inside is the position of ones # e.g. (0,1,2) in m:=7 # row -> [1 1 1 0 0 0 0] codes = [] # Find code matrix ======================================================= # This is main part to find the parity matrix. # For example, find SECDED for 4bit message is to find 4x4 matrix as below # | 1 0 0 0 x x x x | # | 0 1 0 0 x x x x | # | 0 0 1 0 x x x x | # | 0 0 0 1 x x x x | # Then message _k_ X matrix_code ==> original message with parity # # Make a row to have even number of 1 including the I matrix. # This helps to calculate the syndrom at the decoding stage. # To reduce the max fan-in, Starting with smallest number 3. # the number means the number of one in a row. # Small number of ones means smaller fan-in overall. for step in range(3, m + 1, 2): # starting from 3 as I matrix represents data # Increased by 2 as number of 1 should be even in a row (odd excluding I) # get the list of combinations [0, .., m-1] with `step` # e.g. step := 3 ==> [(0,1,2), (0,1,3), ... ] candidate = list(itertools.combinations(range(m), step)) if len(candidate) <= required_row: # we need more round use all of them codes.extend(candidate) required_row -= len(candidate) else: # Find optimized fan-in ========================================== # Calculate each row fan-in with current fanins = calc_fanin(m, codes) while required_row != 0: # Let's shuffle # Shuffling makes the sequence randomized --> it reduces the # fanin as the code takes randomly at the end of the round # TODO: There should be a clever way to find the subset without # random retrying. # Suggested this algorithm # https://en.wikipedia.org/wiki/Assignment_problem random.shuffle(candidate) # Take a subset subset = candidate[0:required_row] subset_fanins = calc_fanin(m, subset) # Check if it exceeds Ideal Fan-In ideal = True for i in range(m): if fanins[i] + subset_fanins[i] > fanin_ideal: # Exceeded. Retry ideal = False break if ideal: required_row = 0 # Append to the code matrix codes.extend(subset) if required_row == 0: # Found everything! break log.info("Hsiao codes {}".format(codes)) return codes def _inv_hamming_code(k, m): return _hamming_code(k, m) # n = total bits # k = data bits # m = parity bits # generate hamming code def _hamming_code(k, m): n = k + m # construct a list of code tuples. # Tuple corresponds to each bit position and shows which parity bit it participates in # Only the data bits are shown, the parity bits are not. codes = [] for pos in range(1, n + 1): # this is a valid parity bit position or the final parity bit if (is_pow2(pos) or pos == n): continue else: code = () for p in range(m): # this is the starting parity position parity_pos = 2**p # back-track to the closest parity bit multiple and see if it is even or odd # If even, we are in the skip phase, do not include # If odd, we are in the include phase parity_chk = int((pos - (pos % parity_pos)) / parity_pos) # valid for inclusion or final parity bit that includes everything if is_odd(parity_chk) or p == m - 1: code = code + (p, ) codes.append(code) # final parity bit includes all ECC bits for p in range(m - 1): codes.append((m - 1, )) log.info("Hamming codes {}".format(codes)) return codes def write_pkg_file(outdir, pkg_str): with open(outdir + "/" + "prim_secded_pkg.sv", "w") as f: outstr = '''{}// SECDED package generated by // util/design/secded_gen.py from {} package prim_secded_pkg; {} endpackage '''.format(COPYRIGHT, SECDED_CFG_FILE, pkg_str) f.write(outstr) def bytes_to_c_type(num_bytes): if num_bytes == 1: return 'uint8_t' elif num_bytes <= 2: return 'uint16_t' elif num_bytes <= 4: return 'uint32_t' elif num_bytes <= 8: return 'uint64_t' return None def write_c_files(n, k, m, codes, suffix, c_src_filename, c_h_filename, codetype): in_bytes = math.ceil(k / 8) out_bytes = math.ceil(m / 8) if (k > 64): log.warning(f"Cannot generate C encoder for k = {k}." " The tool has no support for k > 64 for C encoder " "generation") return in_type = bytes_to_c_type(in_bytes) out_type = bytes_to_c_type(out_bytes) assert in_type assert out_type assert codetype in ["hsiao", "inv_hsiao"] invert = (codetype == "inv_hsiao") with open(c_src_filename, "a") as f: # Write out function prototype in src f.write(f"\n{out_type} enc_secded{suffix}_{n}_{k}" f"(const uint8_t bytes[{in_bytes}]) {{\n") # Form a single word from the incoming byte data f.write(f"{in_type} word = ") f.write(" | ".join( [f"(({in_type})bytes[{i}] << {i*8})" for i in range(in_bytes)])) f.write(";\n\n") # AND the word with the codes, calculating parity of each and combine # into a single word of integrity bits f.write("return ") parity_bit_masks = enumerate(calc_bitmasks(k, m, codes, False)) # Add ECC bit inversion if needed (see print_enc function). f.write(" | ".join( [f"(calc_parity(word & 0x{mask:x}, " f"{'true' if invert and (par_bit % 2) else 'false'}) << {par_bit})" for par_bit, mask in parity_bit_masks])) f.write(";\n}\n") with open(c_h_filename, "a") as f: # Write out function declaration in header f.write(f"{out_type} enc_secded{suffix}_{n}_{k}" f"(const uint8_t bytes[{in_bytes}]);\n") def format_c_files(c_src_filename, c_h_filename): try: # Call clang-format to in-place format generated C code. If there are # any issues log a warning. result = subprocess.run(['clang-format', '-i', c_src_filename, c_h_filename], stderr=subprocess.PIPE, universal_newlines=True) result.check_returncode() except Exception as e: stderr = '' if result: stderr = '\n' + result.stderr log.warning(f"Could not format generated C source: {e}{stderr}") def write_enc_dec_files(n, k, m, codes, suffix, outdir, codetype): enc_out = print_enc(n, k, m, codes, codetype) module_name = "prim_secded%s_%d_%d" % (suffix, n, k) with open(outdir + "/" + module_name + "_enc.sv", "w") as f: outstr = '''{}// SECDED encoder generated by util/design/secded_gen.py module {}_enc ( input [{}:0] data_i, output logic [{}:0] data_o ); always_comb begin : p_encode {} end endmodule : {}_enc '''.format(COPYRIGHT, module_name, (k - 1), (n - 1), enc_out, module_name) f.write(outstr) dec_out = print_dec(n, k, m, codes, codetype) with open(outdir + "/" + module_name + "_dec.sv", "w") as f: outstr = '''{}// SECDED decoder generated by util/design/secded_gen.py module {}_dec ( input [{}:0] data_i, output logic [{}:0] data_o, output logic [{}:0] syndrome_o, output logic [1:0] err_o ); always_comb begin : p_encode {} end endmodule : {}_dec '''.format(COPYRIGHT, module_name, (n - 1), (k - 1), (m - 1), dec_out, module_name) f.write(outstr) def write_fpv_files(n, k, m, codes, suffix, outdir, codetype): module_name = "prim_secded%s_%d_%d" % (suffix, n, k) with open(outdir + "/tb/" + module_name + "_tb.sv", "w") as f: outstr = '''{}// SECDED FPV testbench generated by util/design/secded_gen.py module {}_tb ( input clk_i, input rst_ni, input [{}:0] data_i, output logic [{}:0] data_o, output logic [{}:0] encoded_o, output logic [{}:0] syndrome_o, output logic [1:0] err_o, input [{}:0] error_inject_i ); {}_enc {}_enc ( .data_i, .data_o(encoded_o) ); {}_dec {}_dec ( .data_i(encoded_o ^ error_inject_i), .data_o, .syndrome_o, .err_o ); endmodule : {}_tb '''.format(COPYRIGHT, module_name, (k - 1), (k - 1), (n - 1), (m - 1), (n - 1), module_name, module_name, module_name, module_name, module_name) f.write(outstr) # Additional assertions for inverted codes. if codetype in ["inv_hsiao", "inv_hamming"]: inv_asserts = ''' // Check that all-one and all-zero data does not result in all-one or all-zero codewords `ASSERT(AllZerosCheck_A, data_i == '0 |-> encoded_o != '0) `ASSERT(AllOnesCheck_A, data_i == '1 |-> encoded_o != '1) ''' else: inv_asserts = "" with open(outdir + "/vip/" + module_name + "_assert_fpv.sv", "w") as f: outstr = '''{}// SECDED FPV assertion file generated by util/design/secded_gen.py module {}_assert_fpv ( input clk_i, input rst_ni, input [{}:0] data_i, input [{}:0] data_o, input [{}:0] encoded_o, input [{}:0] syndrome_o, input [1:0] err_o, input [{}:0] error_inject_i ); // Inject a maximum of two errors simultaneously. `ASSUME_FPV(MaxTwoErrors_M, $countones(error_inject_i) <= 2) // This bounds the input data state space to make sure the solver converges. `ASSUME_FPV(DataLimit_M, $onehot0(data_i) || $onehot0(~data_i)) // Single bit error detection `ASSERT(SingleErrorDetect_A, $countones(error_inject_i) == 1 |-> err_o[0]) `ASSERT(SingleErrorDetectReverse_A, err_o[0] |-> $countones(error_inject_i) == 1) // Double bit error detection `ASSERT(DoubleErrorDetect_A, $countones(error_inject_i) == 2 |-> err_o[1]) `ASSERT(DoubleErrorDetectReverse_A, err_o[1] |-> $countones(error_inject_i) == 2) // Single bit error correction (implicitly tests the syndrome output) `ASSERT(SingleErrorCorrect_A, $countones(error_inject_i) < 2 |-> data_i == data_o) // Basic syndrome check `ASSERT(SyndromeCheck_A, |syndrome_o |-> $countones(error_inject_i) > 0) `ASSERT(SyndromeCheckReverse_A, $countones(error_inject_i) > 0 |-> |syndrome_o) {} endmodule : {}_assert_fpv '''.format(COPYRIGHT, module_name, (k - 1), (k - 1), (n - 1), (m - 1), (n - 1), inv_asserts, module_name) f.write(outstr) with open(outdir + "/tb/" + module_name + "_bind_fpv.sv", "w") as f: outstr = '''{}// SECDED FPV bind file generated by util/design/secded_gen.py module {}_bind_fpv; bind {}_tb {}_assert_fpv {}_assert_fpv ( .clk_i, .rst_ni, .data_i, .data_o, .encoded_o, .syndrome_o, .err_o, .error_inject_i ); endmodule : {}_bind_fpv '''.format(COPYRIGHT, module_name, module_name, module_name, module_name, module_name) f.write(outstr) with open(outdir + "/" + module_name + "_fpv.core", "w") as f: outstr = '''CAPI=2: # Copyright lowRISC contributors. # Licensed under the Apache License, Version 2.0, see LICENSE for details. # SPDX-License-Identifier: Apache-2.0 name: "lowrisc:fpv:{}_fpv:0.1" description: "SECDED FPV target" filesets: files_formal: depend: - lowrisc:prim:all - lowrisc:prim:secded files: - vip/{}_assert_fpv.sv - tb/{}_tb.sv - tb/{}_bind_fpv.sv file_type: systemVerilogSource targets: default: &default_target # note, this setting is just used # to generate a file list for jg default_tool: icarus filesets: - files_formal toplevel: - {}_tb formal: <<: *default_target lint: <<: *default_target '''.format(module_name, module_name, module_name, module_name, module_name) f.write(outstr) def main(): parser = argparse.ArgumentParser( prog="secded_gen", description='''This tool generates Single Error Correction Double Error Detection(SECDED) encoder and decoder modules in SystemVerilog. ''') parser.add_argument('--no_fpv', action='store_true', help='Do not generate FPV testbench.') parser.add_argument('--outdir', default='hw/ip/prim/rtl/', help=''' Output directory. The output file will be named `prim_secded_<n>_<k>_enc/dec.sv` (default: %(default)s) ''') parser.add_argument('--fpv_outdir', default='hw/ip/prim/fpv/', help=''' FPV output directory. The output files will have the base name `prim_secded_<n>_<k>_*_fpv` (default: %(default)s) ''') parser.add_argument('--c_outdir', default='hw/ip/prim/dv/prim_secded', help=''' C output directory. The output files are named secded_enc.c and secded_enc.h ''') parser.add_argument('--verbose', '-v', action='store_true', help='Verbose') args = parser.parse_args() if (args.verbose): log.basicConfig(format="%(levelname)s: %(message)s", level=log.DEBUG) else: log.basicConfig(format="%(levelname)s: %(message)s") with open(SECDED_CFG_FILE, 'r') as infile: config = hjson.load(infile) # Error checking error = verify(config) if (error): exit(1) # Generate outputs generate(config, args) if __name__ == "__main__": main()
30.932418
92
0.594238
44e680def8a8c08539037ebb35fbd0376f4196b5
3,805
py
Python
first_project/first_app/views.py
andihaki/django
e6e2f2afbef4fb2442bf891490dc3013c25b4748
[ "BSD-3-Clause" ]
null
null
null
first_project/first_app/views.py
andihaki/django
e6e2f2afbef4fb2442bf891490dc3013c25b4748
[ "BSD-3-Clause" ]
null
null
null
first_project/first_app/views.py
andihaki/django
e6e2f2afbef4fb2442bf891490dc3013c25b4748
[ "BSD-3-Clause" ]
null
null
null
from django.shortcuts import render #login from django.contrib.auth import authenticate, login, logout from django.http import HttpResponseRedirect, HttpResponse from django.urls import reverse from django.contrib.auth.decorators import login_required # class base view from django.shortcuts import render from django.views.generic import View, TemplateView, ListView, DetailView from django.views.generic import CreateView, UpdateView, DeleteView from first_app.models import AccessRecord, Topic, Webpage from first_app.models import UserProfileInfo from first_app.forms import UserForm, UserProfileInfoForm # untuk delete halaman from django.urls import reverse_lazy # Create your views here. def index(request): webpages_list = AccessRecord.objects.order_by('date') # data dictionary yang akan di-inject ke index.html my_dict = { 'access_record': webpages_list, } return render(request, 'first_app/index.html', context=my_dict) @login_required def user_logout(request): logout(request) return HttpResponseRedirect(reverse('index')) def idx(request): return render(request, 'default/index.html') def register(request): registered = False if request.method == 'POST': user_form = UserForm(data=request.POST) profile_form = UserProfileInfoForm(data=request.POST) if user_form.is_valid() and profile_form.is_valid(): user = user_form.save() user.set_password(user.password) user.save() profile = profile_form.save(commit=False) profile.user = user if 'profile_pic' in request.FILES: profile.profile_pic = request.FILES['profile_pic'] profile.save() registered = True else: print(user_form.errors, profile_form.errors) else: user_form = UserForm() profile_form = UserProfileInfoForm() data = { 'registered': registered, 'user_form': user_form, 'profile_form': profile_form, } return render(request, 'first_app/registration.html', context=data) def user_login(request): if request.method == 'POST': username = request.POST.get('username') password = request.POST.get('password') user = authenticate(username=username, password=password) if user: if user.is_active: login(request, user) return HttpResponseRedirect(reverse('index')) else: return HttpResponse("Akun disable") else: print('wrong username / password') print(f"Username: {username}, Password: {password}") else: return render(request, 'first_app/login.html', {}) def other(request): return render(request, 'default/other.html') def relative(request): return render(request, 'default/relative_url_templates.html') # class base view from . import models class IndexView(TemplateView): template_name = 'first_app/index.html' class SchoolListView(ListView): # jika tidak di define context_object_name # maka, context yang diinject ke html = school_list context_object_name = 'schools' model = models.School class SchoolDetailView(DetailView): # jika tidak di define context_object_name # maka, context yang diinject ke html = school context_object_name = 'school_detail' model = models.School template_name = 'first_app/school_detail.html' class SchoolCreateView(CreateView): fields = ('name', 'principal', 'location') model = models.School class SchoolUpdateView(UpdateView): fields = ('name', 'principal') model = models.School class SchoolDeleteView(DeleteView): model = models.School success_url = reverse_lazy("first_app:index")
29.96063
73
0.689093
977ef2bb28678bb0a64482d6baf80992c5687159
3,452
py
Python
python/external/stacktracer.py
cschutijser/scion
054cef53b31a577ed224a090d6a4fd3883fd520b
[ "Apache-2.0" ]
1
2018-03-18T14:46:34.000Z
2018-03-18T14:46:34.000Z
python/external/stacktracer.py
cschutijser/scion
054cef53b31a577ed224a090d6a4fd3883fd520b
[ "Apache-2.0" ]
1
2020-03-20T01:28:56.000Z
2020-03-20T01:28:56.000Z
python/external/stacktracer.py
cschutijser/scion
054cef53b31a577ed224a090d6a4fd3883fd520b
[ "Apache-2.0" ]
2
2020-03-14T16:03:27.000Z
2020-03-18T08:13:19.000Z
"""Stack tracer for multi-threaded applications. Usage: import stacktracer stacktracer.start_trace("trace.html",interval=5,auto=True) # Set auto flag to always update file! .... stacktracer.stop_trace() """ # Source: http://code.activestate.com/recipes/577334-how-to-debug-deadlocked-multi-threaded-programs/ from datetime import datetime, timezone import sys import threading import traceback from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatters import HtmlFormatter from lib.thread import thread_safety_net # Taken from http://bzimmer.ziclix.com/2008/12/17/python-thread-dumps/ def stacktraces(): # First map thread IDs to thread names id_name = {} for thread in threading.enumerate(): id_name[thread.ident] = thread.name code = [] for threadId, stack in sys._current_frames().items(): code.append("\n# ThreadID: %s, Name: %s" % (threadId, id_name.get(threadId, "UNKNOWN"))) for filename, lineno, name, line in traceback.extract_stack(stack): code.append('File: "%s", line %d, in %s' % (filename, lineno, name)) if line: code.append(" %s" % (line.strip())) return highlight("\n".join(code), PythonLexer(), HtmlFormatter( full=False, # style="native", noclasses=True, )) # This part was made by nagylzs import os import time import threading class TraceDumper(threading.Thread): """Dump stack traces into a given file periodically.""" def __init__(self,fpath,interval,auto): """ @param fpath: File path to output HTML (stack trace file) @param auto: Set flag (True) to update trace continuously. Clear flag (False) to update only if file not exists. (Then delete the file to force update.) @param interval: In seconds: how often to update the trace file. """ assert(interval>0.1) self.auto = auto self.interval = interval self.fpath = os.path.abspath(fpath) self.stop_requested = threading.Event() threading.Thread.__init__(self, name="TraceDumper") def run(self): thread_safety_net(self._run) def _run(self): while not self.stop_requested.isSet(): time.sleep(self.interval) if self.auto or not os.path.isfile(self.fpath): self.stacktraces() def stop(self): self.stop_requested.set() self.join() try: if os.path.isfile(self.fpath): os.unlink(self.fpath) except: pass def stacktraces(self): fout = open(self.fpath,"wb+") dt = datetime.now(tz=timezone.utc) try: fout.write(bytes("Generated at %s" % dt.isoformat(' '), "UTF-8")) fout.write(bytes(stacktraces(), "UTF-8")) finally: fout.close() _tracer = None def trace_start(fpath,interval=5,auto=True): """Start tracing into the given file.""" global _tracer if _tracer is None: _tracer = TraceDumper(fpath,interval,auto) _tracer.setDaemon(True) _tracer.start() else: raise Exception("Already tracing to %s"%_tracer.fpath) def trace_stop(): """Stop tracing.""" global _tracer if _tracer is None: raise Exception("Not tracing, cannot stop.") else: _trace.stop() _trace = None
29.758621
101
0.626014
3be037a0b945f4a8b26f718aefbe0bb5eb3f27ef
1,532
py
Python
aulabase10.py
jeffhawk/pythontraining
1ba2efbdf0473114036bbd30ec64b54c7d706265
[ "MIT" ]
null
null
null
aulabase10.py
jeffhawk/pythontraining
1ba2efbdf0473114036bbd30ec64b54c7d706265
[ "MIT" ]
null
null
null
aulabase10.py
jeffhawk/pythontraining
1ba2efbdf0473114036bbd30ec64b54c7d706265
[ "MIT" ]
null
null
null
#Declaração de variáveis globais Arq = "biblios.txt" Py = 'PySimpleGUI' Oracx = 'cx_Oracle' biblio = False biblios = ['PySimpleGUI','cx_Oracle','os','ctypes','sys','string','pip','subprocess','system'] #python -m pip install cx_Oracle atua = '' i=0 #Importando as bibliotecas # #Verifica se existe as bibliotecas, caso contrário pergunta se quer instala-las try: import os, ctypes, sys import PySimpleGUI as psg import string import termcolor import cx_Oracle import pip import subprocess from os import system biblio = True except ImportError: #print (len(biblios)) #system('cls') print('Erro ao tentar importar bibliotecas necessárias!!') for i in biblios: print(i) print('Erro ao tentar importar bibliotecas') atua = input('Deseja instalar as bibliotecas necessárias? - S/N: ') if atua == 's' or atua == 'S': subprocess.check_call([sys.executable, '-m', 'pip', 'install', Py]) subprocess.check_call([sys.executable, '-m', 'pip', 'install', Oracx]) '''if not Py in sys.modules.keys(): pip.main(['install', Py]) if not Oracx in sys.modules.keys(): pip.main(['install', Oracx])''' print('Instalação efetuada!') biblio = True else: print('Bibliotecas não instaladas!') biblio = False #Subs, Módulos e Classes def Main(): if biblio == True: print('Entrou no sistema, OK!') else: print('Decidiu não instalar e saiu!') Main()
26.413793
94
0.625326
cfa3c5380c65c3879fb34faf48d1ea7904d85e49
2,921
py
Python
opendeep/utils/tests/test_batch.py
vitruvianscience/OpenDeep
e96efc449101094354b615cf15afe6d03644fc36
[ "Apache-2.0" ]
252
2015-03-13T21:55:22.000Z
2021-09-06T21:37:38.000Z
opendeep/utils/tests/test_batch.py
afcarl/OpenDeep
e96efc449101094354b615cf15afe6d03644fc36
[ "Apache-2.0" ]
16
2015-03-14T06:47:04.000Z
2016-09-23T19:13:35.000Z
opendeep/utils/tests/test_batch.py
afcarl/OpenDeep
e96efc449101094354b615cf15afe6d03644fc36
[ "Apache-2.0" ]
68
2015-03-14T00:05:53.000Z
2020-06-04T13:36:13.000Z
from __future__ import division import unittest from opendeep.utils.batch import * from opendeep.utils.misc import numpy_one_hot import numpy class TestBatch(unittest.TestCase): def setUp(self): # numpy array to test self.np = numpy.eye(10) # generator over word vectors to test words = "Hello\nWorld\nThis\nIs\nA\nTest!".split("\n") vocab = {char: n for char, n in zip(list(set(words)), range(len(set(words))))} words = [vocab[x] for x in words] self.words = numpy_one_hot(words, n_classes=len(vocab)) def testNumpyBatchSize(self): for size in range(12): test = True try: batch = numpy_minibatch(self.np, batch_size=size) i = 0 for x in batch: assert x.shape[0] <= size i += 1 except AssertionError: assert size == 0 test = False if test: iters = int(numpy.ceil(self.np.shape[0] / size)) assert i == iters, "iterations was %d, expected %d for batch_size %d" % (i, iters, size) def testNumpyMinBatchSize(self): batch = numpy_minibatch(self.np, batch_size=3, min_batch_size=2) i = 0 for x in batch: assert 2 <= x.shape[0] <= 3 i += 1 assert i == 3 try: batch = numpy_minibatch(self.np, batch_size=2, min_batch_size=3) raise AssertionError("Was able to create batch with invalid sizes.") except Exception as e: assert isinstance(e, AssertionError) def testIterBatchSize(self): for size in range(12): gen = (row for row in self.words) test = True try: batch = iterable_minibatch(gen, batch_size=size) i = 0 for x in batch: assert x.shape[0] <= size i += 1 except AssertionError: assert size == 0 test = False if test: iters = int(numpy.ceil(6. / size)) assert i == iters, "iterations was %d, expected %d for batch_size %d" % (i, iters, size) def testIterMinBatchSize(self): gen = (row for row in self.words) batch = iterable_minibatch(gen, batch_size=4, min_batch_size=3) i = 0 for x in batch: assert 3 <= x.shape[0] <= 4 i += 1 assert i == 1 gen = (row for row in self.words) try: batch = iterable_minibatch(gen, batch_size=2, min_batch_size=3) raise AssertionError("Was able to create batch with invalid sizes.") except Exception as e: assert isinstance(e, AssertionError) def tearDown(self): del self.np, self.words if __name__ == '__main__': unittest.main()
33.965116
104
0.539541
bb33fa600fac361d036585f650ffa7a922c3ed76
3,941
py
Python
commode_utils/metrics/sequential_f1.py
SpirinEgor/commode-utils
11b9a26b70544c26de5a4f4aa588723d906db707
[ "Apache-2.0" ]
null
null
null
commode_utils/metrics/sequential_f1.py
SpirinEgor/commode-utils
11b9a26b70544c26de5a4f4aa588723d906db707
[ "Apache-2.0" ]
null
null
null
commode_utils/metrics/sequential_f1.py
SpirinEgor/commode-utils
11b9a26b70544c26de5a4f4aa588723d906db707
[ "Apache-2.0" ]
1
2021-09-24T22:59:27.000Z
2021-09-24T22:59:27.000Z
from typing import Optional, List import torch from torchmetrics import Metric from commode_utils.metrics import ClassificationMetrics class SequentialF1Score(Metric): def __init__(self, pad_idx: int, eos_idx: int, ignore_idx: Optional[List[int]] = None, **kwargs): """Metric for computing f1 score on sequence of tokens. This metric used in many works about code summarization. :param pad_idx: index of PAD token, required for masking the end of sequence. :param eos_idx: index of EOS token, required for masking the end of sequence. :param ignore_idx: additional list of tokens to ignore. """ super().__init__(**kwargs) self._pad_idx = pad_idx self._eos_idx = eos_idx self._ignore_idx = ignore_idx if ignore_idx is not None else [] self._ignore_idx += [self._pad_idx, self._eos_idx] # Metric states self.add_state("true_positive", default=torch.tensor(0), dist_reduce_fx="sum") self.add_state("false_positive", default=torch.tensor(0), dist_reduce_fx="sum") self.add_state("false_negative", default=torch.tensor(0), dist_reduce_fx="sum") def _get_end_sequence_mask(self, tokens: torch.Tensor) -> torch.Tensor: """For each sequence, create a mask with all tokens after first PAD or EOS. :param tokens: [seq len; batch size] tensor with tokens indexes. :return: mask with the same shape as tokens. """ occurrence_mask = torch.bitwise_or((tokens == self._pad_idx), (tokens == self._eos_idx)) mask_max_value, mask_max_indices = torch.max(occurrence_mask, dim=0) # if no pad token use len+1 position mask_max_indices[~mask_max_value] = tokens.shape[0] mask = torch.arange(tokens.shape[0], device=tokens.device).view(-1, 1) >= mask_max_indices return mask def update(self, predicted: torch.Tensor, target: torch.Tensor): """Calculated token occurrence statistic in the predicted tensor w.r.t. target tensor. :param predicted: [pred seq len; batch size] -- tensor with predicted tokens :param target: [target seq len; batch size] -- tensor with ground truth tokens :return: """ batch_size = target.shape[1] if predicted.shape[1] != batch_size: raise ValueError(f"Wrong batch size for prediction (expected: {batch_size}, actual: {predicted.shape[1]})") end_sequence_mask = self._get_end_sequence_mask(predicted) predicted[end_sequence_mask] = self._pad_idx for batch_idx in range(batch_size): target_seq = [token for token in target[:, batch_idx] if token not in self._ignore_idx] predicted_seq = [token for token in predicted[:, batch_idx] if token not in self._ignore_idx] for predicted_token in predicted_seq: if predicted_token in target_seq: self.true_positive += 1 else: self.false_positive += 1 for target_token in target_seq: if target_token not in predicted_seq: self.false_negative += 1 def compute(self) -> ClassificationMetrics: """Calculate precision, recall, and F1-score based on stored statistic. :return: calculated metrics aggregated in data class """ precision = self.true_positive if self.true_positive + self.false_positive > 0: precision = self.true_positive / (self.true_positive + self.false_positive) recall = self.true_positive if self.true_positive + self.false_negative > 0: recall = self.true_positive / (self.true_positive + self.false_negative) f1_score = 2 * precision * recall if precision + recall > 0: f1_score /= precision + recall return ClassificationMetrics(f1_score=f1_score, precision=precision, recall=recall)
46.916667
119
0.663537
80779a40c07ff7128683c0870c70ddac11cac1e4
13,149
py
Python
cto/jump.py
losenineai/CTO
6c328b2be7b10ed2b219c8f3e9f99842c9e3d1d0
[ "MIT" ]
138
2021-10-07T21:35:13.000Z
2022-03-26T07:31:20.000Z
cto/jump.py
losenineai/CTO
6c328b2be7b10ed2b219c8f3e9f99842c9e3d1d0
[ "MIT" ]
2
2021-10-10T07:27:28.000Z
2021-10-20T02:34:41.000Z
cto/jump.py
losenineai/CTO
6c328b2be7b10ed2b219c8f3e9f99842c9e3d1d0
[ "MIT" ]
12
2021-10-08T19:38:02.000Z
2022-03-16T08:16:35.000Z
import ida_kernwin import ida_lines import ida_funcs import ida_moves import ida_name import ida_ua import ida_idaapi import ida_xref import idc #import cto_utils #ida_idaapi.require("cto_utils") def jump_to_func_ptr_line_pos(text, func_name, w, tweak=0, add_x=False): flag = False idx = text.find(func_name) #w = find_widget(wname) if w is None: return flag # we are already at a certain point. but ida sometimes does not point to a function in the middle of the instruction. # that's why I use position 0 of x first, and then move to the right position again. if idx == 0: pos, x, y = ida_kernwin.get_custom_viewer_place(w, 0) orig_x = x if not add_x: orig_x = 0 ida_kernwin.jumpto(w, pos, 0, y) pos, x, y = ida_kernwin.get_custom_viewer_place(w, 0) ida_kernwin.jumpto(w, pos, orig_x+tweak, y) flag = True elif idx > 0: pos, x, y = ida_kernwin.get_custom_viewer_place(w, 0) if not add_x: x = 0 ida_kernwin.jumpto(w, pos, x+idx+tweak, y) flag = True return flag """ def get_apiname_line(ea, wname=g_wname): fn = idc.get_name(ea) if not fn: return None, None fn, line, idx = get_funcname_line(ea) if not fn: return None, None w = find_widget(wname) if w is None: return None, None pos, x, y = ida_kernwin.get_custom_viewer_place(w, 0) ida_kernwin.jumpto(w, pos, 0, y) l = ida_kernwin.get_curline() if l and l.find(fn) >= 0: l_removed = ida_lines.tag_remove(l) return fn, l_removed return None, None """ def jump_to_line(ea, i, w): #w = find_widget(wname) if w is None: return False pos, x, y = ida_kernwin.get_custom_viewer_place(w, 0) pos.lnnum = i ida_kernwin.jumpto(w, pos, x, y) return True """ def check_line(ea, i, fn, wname=g_wname): w = find_widget(wname) if w is None: return None, -1 pos, x, y = ida_kernwin.get_custom_viewer_place(w, 0) pos.lnnum = i ida_kernwin.jumpto(w, pos, x, y) l = ida_kernwin.get_curline() l_removed = ida_lines.tag_remove(l) l_removed_content = l_removed.split(";")[0] idx = l_removed_content.find(fn) if idx >= 0: return l_removed_content, idx return None, -1 """ def get_line_no_decomp(text, vu, max_trial=200): line = "" lineno = -1 x = -1 lnnum = 0 y = 0 for i, l in enumerate(vu.cfunc.get_pseudocode()): if ida_lines.tag_remove(l.line).startswith("//"): y += 1 continue #print(i, ida_lines.tag_remove(l.line)) ln = ida_lines.tag_remove(l.line) ln = ln.split("//", 1)[0] x = ln.find(text) if x >= 0: line = ln lineno = i break if max_trial > 0 and i > max_trial: break lnnum += 1 y = 0 return line, lineno, lnnum, x, y def get_funcname_line_decomp(ea, vu, max_trial=200): func_decl_str = ida_lines.tag_remove(vu.cfunc.print_dcl()) f = ida_funcs.get_func(ea) func_name = ida_funcs.get_func_name(f.start_ea) func_name = ida_name.validate_name(func_name, ida_name.VNT_VISIBLE) # for API thunk call (e.g. __WSADisSet -> _WSADisSet) if func_decl_str.find(func_name) < 0 and func_name.startswith("_"): func_name = func_name[1:] line, lineno, lnnum, x, y = get_line_no_decomp(func_name, vu) return line, lineno, lnnum, x, y def get_line_no(ea, text, max_trial=200, chk_cmt=False): _, disass = ida_lines.generate_disassembly( ea, max_trial, # maximum number of lines False, # as_stack=False True) # notags for i, l in enumerate(disass): if chk_cmt: l_content = '' if l.find(";") >= 0: l_content = l.split(";")[1] else: l_content = l.split(";")[0] #print(l_content) idx = l_content.find(text) if idx >= 0: return l, i, idx return "", -1, -1 def get_funcname_line(ea, w, max_trial=200): f = ida_funcs.get_func(ea) if f: func_ea = f.start_ea fn = idc.get_func_name(func_ea) else: fn = ida_name.get_name(ea) if fn: fn = ida_name.validate_name(fn, ida_name.VNT_VISIBLE) #print(fn) line, i, idx = get_line_no(ea, fn, max_trial) if i < 0: return None, None, -1 jump_to_line(ea, i, w) if jump_to_func_ptr_line_pos(line, fn, w): return fn, line, idx return None, None, -1 def push_lochist_jump(w): r = False if w is None: return False loc = ida_moves.lochist_entry_t() r = ida_kernwin.get_custom_viewer_location(loc, w) if r: loc.renderer_info().pos.cx = 0 r = ida_kernwin.custom_viewer_jump(w, loc, ida_kernwin.CVNF_JUMP) return False def jumpto_name_decomp(ea, w): try: import ida_hexrays ida_hexrays.init_hexrays_plugin() except ImportError: return vu = ida_hexrays.get_widget_vdui(w) #print(vu.cfunc) vu.get_current_item(ida_hexrays.USE_KEYBOARD) ea = vu.cfunc.entry_ea line, lineno, lnnum, x, y = get_funcname_line_decomp(ea, vu) if line: #print(line, lineno, lnnum, x, y) pos, _x, _y = ida_kernwin.get_custom_viewer_place(w, 0) #print(pos.lnnum, _x, _y) idaplace = ida_kernwin.place_t_as_idaplace_t(pos) idaplace.lnnum = lnnum idaplace.ea = ea ida_kernwin.jumpto(w, idaplace, x, y) vu.refresh_cpos(ida_hexrays.USE_KEYBOARD) ##vu.refresh_ctext(ida_hexrays.USE_KEYBOARD) #pos, _x, _y = ida_kernwin.get_custom_viewer_place(w, 0) #print(pos.lnnum, _x, _y) def jumpto_name(ea, w): wt = ida_kernwin.get_widget_type(w) if wt == ida_kernwin.BWN_DISASM: jumpto_name_ida(ea, w) elif wt == ida_kernwin.BWN_PSEUDOCODE: jumpto_name_decomp(ea, w) def jumpto_name_ida(ea, w): flag = False ida_kernwin.jumpto(ea) func = ida_funcs.get_func(ea) # for callee if func: #print("%x" % func.start_ea) fn, line, idx = get_funcname_line(func.start_ea, w) if idx >= 0: if w is None: return False pos, x, y = ida_kernwin.get_custom_viewer_place(w, 0) ida_kernwin.jumpto(w, pos, idx, 0) flag = True # for APIs and strings else: fn, line, idx = get_funcname_line(ea, w) if fn: flag = jump_to_func_ptr_line_pos(line, fn, w) return flag def jumpto_offset(ea, w): flag = False wt = ida_kernwin.get_widget_type(w) if wt == ida_kernwin.BWN_DISASM: flag = jumpto_offset_ida(ea, w) elif wt == ida_kernwin.BWN_PSEUDOCODE: pass return flag def jumpto_offset_ida(ea, w): curr_line = ida_lines.tag_remove(ida_kernwin.get_curline()) search_key = " offset " x = curr_line.find(search_key) if x > 0: x += len(search_key) func_name = ida_name.extract_name(curr_line.split(search_key)[1], 0) # sometimes mismatch actual function name and and validate name. # to fix it, get name and compare its name with it. off_v = ida_xref.get_first_dref_from(ea) fn = ida_name.get_name(off_v) vfn = ida_name.validate_name(fn, ida_name.VNT_VISIBLE) if vfn == func_name and fn != vfn: func_name = fn if func_name: func_ea = ida_name.get_name_ea(ida_idaapi.BADADDR, func_name) if func_ea != ida_idaapi.BADADDR: pos, _x, y = ida_kernwin.get_custom_viewer_place(w, 0) ida_kernwin.jumpto(w, pos, x, y) return True return False def jumpto_opn(ea, opn, w): flag = False if opn >= 0: tweak = 0 #ida_kernwin.jumpto(ea, opn, ida_kernwin.UIJMP_DONTPUSH) ida_kernwin.jumpto(ea, opn) wt = ida_kernwin.get_widget_type(w) if wt == ida_kernwin.BWN_DISASM: jumpto_opn_ida(ea, opn, w) elif wt == ida_kernwin.BWN_PSEUDOCODE: jumpto_opn_decomp(ea, opn, w) return flag def get_highlight_decomp(w): vu = None highlight = None try: import ida_hexrays ida_hexrays.init_hexrays_plugin() except ImportError: return None, None vu = ida_hexrays.get_widget_vdui(w) #print(vu.cfunc) vu.get_current_item(ida_hexrays.USE_KEYBOARD) if vu.item.is_citem(): highlight = vu.item.e return highlight, vu def get_current_line_decomp(highlight, vu): x, y = vu.cfunc.find_item_coords(highlight) return ida_lines.tag_remove(list(vu.cfunc.get_pseudocode())[y].line) def get_highlight_name_decomp(w): highlight, vu = get_highlight_decomp(w) if highlight and highlight.is_expr(): hl_str = highlight.print1(None) return hl_str return None def jumpto_opn_decomp(ea, opn, w): flag = False try: import ida_hexrays ida_hexrays.init_hexrays_plugin() except ImportError: return False highlight, vu = get_highlight_decomp(w) if highlight and highlight.is_expr(): hl_str = highlight.print1(None) #print(ida_lines.tag_remove(hl_str)) #print(type(highlight)) #print(highlight.op) if highlight.op in [ida_hexrays.cot_call, ida_hexrays.cot_ptr, ida_hexrays.cot_ref, ida_hexrays.cot_cast, ida_hexrays.cot_idx]: #print(type(highlight.x)) #print(highlight.x.op) if highlight.x.op in [ida_hexrays.cot_cast, ida_hexrays.cot_idx]: #print(highlight.x.x.op) if highlight.x.x.op in [ida_hexrays.cot_idx]: x, y = vu.cfunc.find_item_coords(highlight.x.x.x) else: x, y = vu.cfunc.find_item_coords(highlight.x.x) else: x, y = vu.cfunc.find_item_coords(highlight.x) pos, _x, _y = ida_kernwin.get_custom_viewer_place(w, 0) #print(pos.lnnum, _x, _y) idaplace = ida_kernwin.place_t_as_idaplace_t(pos) ida_kernwin.jumpto(w, idaplace, x, y) flag = True return flag def jumpto_opn_ida(ea, opn, w): flag = False if True: tweak = 0 op = idc.print_operand(ea, opn) optype = idc.get_operand_type(ea, opn) v = idc.get_operand_value(ea, opn) f = ida_funcs.get_func(ea) func_flags = idc.get_func_attr(ea, idc.FUNCATTR_FLAGS) func_name = ida_funcs.get_func_name(ea) if func_flags & ida_funcs.FUNC_THUNK: func_name = ida_name.get_name(v) elif not f: func_name = ida_name.get_name(ea) fn = "" if func_name: fn = ida_lines.tag_remove(func_name) if optype in [ida_ua.o_displ, ida_ua.o_phrase, ida_ua.o_mem]: # IDA's jumpto API does not point to the first character # if an operand starts with "[" like "lea rax, [rdi+0B0h]". # This is a tweak value for it. if op and op[0] == '[': tweak = -1 # for an applied structure member if op.find(".") >= 0: fn = op.rsplit(".", 1)[1] # for a stack variable name or a non-applied structure member elif op.find("+") >= 0: fn = op.rsplit("+", 1)[1] if fn.find("]") >= 0: fn = fn.split("]")[0] if fn.find(")") >= 0: fn = fn.split(")")[0] elif op.find("[") >= 0: fn = op.rsplit("[", 1)[1] if fn.find("]") >= 0: fn = fn.split("]")[0] elif op.find(":") >= 0: fn = op.rsplit(":", 1)[1] else: fn = op # mov [ebp+lpMultiByteStr], (offset MultiByteStr+40h) elif optype in [ida_ua.o_imm]: if op.find(".") >= 0: fn = op.rsplit(".", 1)[1] elif op.find("offset ") >= 0: fn = op.rsplit("offset ", 1)[1] if fn.find("+") >= 0: fn = fn.split("+")[0] else: fn = op # for offset else: fn = ida_name.get_name(v) if fn: fn = ida_lines.tag_remove(fn) if fn: fn = ida_name.validate_name(fn, ida_name.VNT_VISIBLE) flag = jump_to_func_ptr_line_pos(op, fn, w, tweak, add_x=True) return flag
32.708955
136
0.560423
26b85edb07f2e25639420a10fb1cd8534119810a
3,916
py
Python
xDeepFM/modules.py
jingxiufenghua/rec-model
23204f70fc1bf384d3cdd0cc85e43117d3394074
[ "MIT" ]
1,323
2020-08-24T02:34:25.000Z
2022-03-31T06:03:28.000Z
xDeepFM/modules.py
yiLinMaster/Recommender-System-with-TF2.0
cfc7b3fbd4ba2d9157a78938e6bdaeba7df82822
[ "MIT" ]
65
2020-08-25T06:07:41.000Z
2022-03-18T20:10:53.000Z
xDeepFM/modules.py
yiLinMaster/Recommender-System-with-TF2.0
cfc7b3fbd4ba2d9157a78938e6bdaeba7df82822
[ "MIT" ]
395
2020-08-24T00:57:08.000Z
2022-03-31T12:41:13.000Z
""" Created on May 19, 2021 modules of xDeepFM: Linear, DNN, CIN @author: Ziyao Geng(zggzy1996@163.com) """ import tensorflow as tf from tensorflow.keras.regularizers import l2 from tensorflow.keras.layers import Dropout, Dense, Layer class DNN(Layer): def __init__(self, hidden_units, dnn_dropout=0., dnn_activation='relu'): """DNN :param hidden_units: A list. list of hidden layer units's numbers. :param dnn_dropout: A scalar. dropout number. :param dnn_activation: A string. activation function. """ super(DNN, self).__init__() self.dnn_network = [Dense(units=unit, activation=dnn_activation) for unit in hidden_units] self.dropout = Dropout(dnn_dropout) def call(self, inputs, **kwargs): x = inputs for dnn in self.dnn_network: x = dnn(x) x = self.dropout(x) return x class Linear(Layer): def __init__(self, feature_length, w_reg=1e-6): """ Linear Part :param feature_length: A scalar. The length of features. :param w_reg: A scalar. The regularization coefficient of parameter w. """ super(Linear, self).__init__() self.feature_length = feature_length self.w_reg = w_reg def build(self, input_shape): self.w = self.add_weight(name="w", shape=(self.feature_length, 1), regularizer=l2(self.w_reg), trainable=True) def call(self, inputs, **kwargs): result = tf.reduce_sum(tf.nn.embedding_lookup(self.w, inputs), axis=1) # (batch_size, 1) return result class CIN(Layer): def __init__(self, cin_size, l2_reg=1e-4): """CIN :param cin_size: A list. [H_1, H_2 ,..., H_k], a list of the number of layers :param l2_reg: A scalar. L2 regularization. """ super(CIN, self).__init__() self.cin_size = cin_size self.l2_reg = l2_reg def build(self, input_shape): # get the number of embedding fields self.embedding_nums = input_shape[1] # a list of the number of CIN self.field_nums = [self.embedding_nums] + self.cin_size # filters self.cin_W = { 'CIN_W_' + str(i): self.add_weight( name='CIN_W_' + str(i), shape=(1, self.field_nums[0] * self.field_nums[i], self.field_nums[i + 1]), initializer='random_normal', regularizer=l2(self.l2_reg), trainable=True) for i in range(len(self.field_nums) - 1) } def call(self, inputs, **kwargs): dim = inputs.shape[-1] hidden_layers_results = [inputs] # split dimension 2 for convenient calculation split_X_0 = tf.split(hidden_layers_results[0], dim, 2) # dim * (None, field_nums[0], 1) for idx, size in enumerate(self.cin_size): split_X_K = tf.split(hidden_layers_results[-1], dim, 2) # dim * (None, filed_nums[i], 1) result_1 = tf.matmul(split_X_0, split_X_K, transpose_b=True) # (dim, None, field_nums[0], field_nums[i]) result_2 = tf.reshape(result_1, shape=[dim, -1, self.embedding_nums * self.field_nums[idx]]) result_3 = tf.transpose(result_2, perm=[1, 0, 2]) # (None, dim, field_nums[0] * field_nums[i]) result_4 = tf.nn.conv1d(input=result_3, filters=self.cin_W['CIN_W_' + str(idx)], stride=1, padding='VALID') result_5 = tf.transpose(result_4, perm=[0, 2, 1]) # (None, field_num[i+1], dim) hidden_layers_results.append(result_5) final_results = hidden_layers_results[1:] result = tf.concat(final_results, axis=1) # (None, H_1 + ... + H_K, dim) result = tf.reduce_sum(result, axis=-1) # (None, dim) return result
36.943396
117
0.592952
44ff5bc6eec5c08e2b851a22c0cbece0ad51f035
3,359
py
Python
examples/ldc2.py
BIMAU/fvm
fef6e8c577848b105e04273e1357a5e279d26aba
[ "Apache-2.0" ]
1
2021-11-19T17:16:38.000Z
2021-11-19T17:16:38.000Z
examples/ldc2.py
BIMAU/fvm
fef6e8c577848b105e04273e1357a5e279d26aba
[ "Apache-2.0" ]
4
2021-05-20T16:33:19.000Z
2021-06-03T13:52:47.000Z
examples/ldc2.py
BIMAU/fvm
fef6e8c577848b105e04273e1357a5e279d26aba
[ "Apache-2.0" ]
5
2021-05-02T13:24:11.000Z
2021-09-29T12:10:27.000Z
import numpy import matplotlib.pyplot as plt from fvm import Continuation from fvm import Interface from fvm import plot_utils from fvm import utils class Data: def __init__(self): self.mu = [] self.value = [] def append(self, mu, value): self.mu.append(mu) self.value.append(value) def main(): ''' An example of performing a continuation for a 2D lid-driven cavity and detecting a bifurcation point''' dim = 2 dof = 3 nx = 32 ny = nx nz = 1 n = dof * nx * ny * nz # Define the problem parameters = {'Problem Type': 'Lid-driven Cavity', # Problem parameters 'Reynolds Number': 1, 'Lid Velocity': 0, # Use a stretched grid 'Grid Stretching Factor': 1.5, # Set a maximum step size ds 'Maximum Step Size': 500, # Give back extra output (this is also more expensive) 'Verbose': False} interface = Interface(parameters, nx, ny, nz, dim, dof) # Define a point of interest poi = (nx // 2 - 1, ny // 4 - 1) print('Looking at point ({}, {})'.format(interface.discretization.x[poi[0]], interface.discretization.y[poi[1]])) continuation = Continuation(interface, parameters) # Compute an initial guess x0 = numpy.zeros(n) x0 = continuation.continuation(x0, 'Lid Velocity', 0, 1, 1)[0] # Store data for computing the bifurcation diagram using postprocessing data = Data() parameters['Postprocess'] = lambda x, mu: data.append(mu, utils.get_u_value(x, poi[0], poi[1], 0, interface)) # Perform an initial continuation to Reynolds number 7000 without detecting bifurcation points ds = 100 target = 7000 x, mu = continuation.continuation(x0, 'Reynolds Number', 0, target, ds) parameters['Newton Tolerance'] = 1e-12 parameters['Destination Tolerance'] = 1e-4 parameters['Detect Bifurcation Points'] = True parameters['Maximum Step Size'] = 100 parameters['Eigenvalue Solver'] = {} parameters['Eigenvalue Solver']['Target'] = 3j parameters['Eigenvalue Solver']['Tolerance'] = 1e-9 parameters['Eigenvalue Solver']['Number of Eigenvalues'] = 5 # Now detect the bifurcation point target = 10000 x2, mu2 = continuation.continuation(x, 'Reynolds Number', mu, target, ds) # Compute the unstable branch after the bifurcation parameters['Detect Bifurcation Points'] = False parameters['Maximum Step Size'] = 2000 target = 10000 parameters['Newton Tolerance'] = 1e-4 x3, mu3 = continuation.continuation(x2, 'Reynolds Number', mu2, target, ds) # Plot a bifurcation diagram. Note that this is a bit of a mess, because we # have to go back an forth when converging onto a target plt.plot(data.mu, data.value) plt.show() # Add a perturbation based on the eigenvector interface.set_parameter('Reynolds Number', mu2) _, v = interface.eigs(x2, True) v = v[:, 0].real # Plot the velocity magnitude plot_utils.plot_velocity_magnitude(v, interface) # Plot the pressure v = plot_utils.create_state_mtx(v, nx, ny, nz, dof) plot_utils.plot_value(v[:, :, 0, 2], interface) if __name__ == '__main__': main()
31.392523
113
0.628461
d4825674739daee4ae751896282e2301a98e6113
2,020
py
Python
setup.py
yoloseem/sqlalchemy-imageattach
385ea31463530fbbb5dafc51313a4982c84dd581
[ "MIT" ]
null
null
null
setup.py
yoloseem/sqlalchemy-imageattach
385ea31463530fbbb5dafc51313a4982c84dd581
[ "MIT" ]
null
null
null
setup.py
yoloseem/sqlalchemy-imageattach
385ea31463530fbbb5dafc51313a4982c84dd581
[ "MIT" ]
null
null
null
import os.path try: from setuptools import setup, find_packages except ImportError: from ez_setup import use_setuptools use_setuptools() from setuptools import setup, find_packages from setuptools.command.test import test from sqlalchemy_imageattach.version import VERSION def readme(): try: with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as f: return f.read() except (IOError, OSError): return '' class pytest(test): def finalize_options(self): test.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): from pytest import main errno = main(self.test_args) raise SystemExit(errno) install_requires = [ 'SQLAlchemy >= 0.8.0', 'Wand >= 0.3.0' ] setup( name='SQLAlchemy-ImageAttach', version=VERSION, description='SQLAlchemy extension for attaching images to entity objects', long_description=readme(), url='https://github.com/crosspop/sqlalchemy-imageattach', author='Hong Minhee', author_email='minhee' '@' 'dahlia.kr', license='MIT License', packages=find_packages(exclude=['tests']), install_requires=install_requires, tests_require=['pytest >= 2.3.0', 'WebOb'], classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Programming Language :: Python :: Implementation :: Stackless', 'Topic :: Database :: Front-Ends', 'Topic :: Multimedia :: Graphics' ], cmdclass={'test': pytest} )
28.857143
78
0.639604
6f629ede0ad3a6ad9bf614ae4b3bb078e06d8285
16,017
py
Python
serialmonitor.py
francescozoccheddu/SerialMonitor
66dd983d35be28774c8f4721c46fdca7ed737edb
[ "MIT" ]
null
null
null
serialmonitor.py
francescozoccheddu/SerialMonitor
66dd983d35be28774c8f4721c46fdca7ed737edb
[ "MIT" ]
null
null
null
serialmonitor.py
francescozoccheddu/SerialMonitor
66dd983d35be28774c8f4721c46fdca7ed737edb
[ "MIT" ]
null
null
null
#!/usr/bin/env python ''' Copyright (c) 2017 Francesco Zoccheddu Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' #Welcome print("Serial monitor") print("Copyright (c) 2017 Francesco Zoccheddu") def qt(msg): return "'" + str(msg) + "'" #Imports try: import sys import argparse import serial import signal import collections import serial.tools.list_ports except ImportError as err: print() print("Module import error") print("You may need to install " + qt(err.name) + " module") raise SystemExit() class SerialStream: def __init__(self): self.ptr = 0 def read(self, sw): byte = sw.peek(self.ptr) self.ptr += 1 return byte def trim(self, index): self.ptr -= index def getIndex(self): return self.ptr class SerialWrapper: def __init__(self, port, baudrate, bytesize, parity, stopbits, timeout, swflowctl, rtscts, dsrdtr): self.ser = serial.Serial(port, baudrate, bytesize, parity, stopbits, timeout, swflowctl, rtscts, dsrdtr) self.buf = [] def push(self): byte = self.ser.read() self.buf += [byte] def peek(self, index): while index >= len(self.buf): self.push() return self.buf[index] def pop(self, count): self.buf = self.buf[count:] def close(self): if self.ser is not None: self.ser.close() self.ser = None return True return False class Session: @staticmethod def genEscapeHandlers(): class EscapeHandler: def __init__(self, char, description): self.char = char self.description = description def process(self, stream, session): raise NotImplementedError("Abstract EscapeHandler") def getDescription(self): return self.description def getChar(self): return self.char handlers = [] #Binary byte class BinByteEscapeHandler(EscapeHandler): def process(self, stream, session): return str(session.intToBin(session.byteToInt(stream.read(session.sw)))) handlers += [BinByteEscapeHandler("b", "print next byte as binary string")] #Hex byte class HexByteEscapeHandler(EscapeHandler): def process(self, stream, session): return str(session.intToHex(session.byteToInt(stream.read(session.sw)))) handlers += [HexByteEscapeHandler("h", "print next byte as hexadecimal string")] #Decimal byte class DecimalByteEscapeHandler(EscapeHandler): def process(self, stream, session): return str(session.byteToInt(stream.read(session.sw))) handlers += [DecimalByteEscapeHandler("d", "print next byte as decimal integer")] #Decimal word class DecimalWordEscapeHandler(EscapeHandler): def process(self, stream, session): return str((session.byteToInt(stream.read(session.sw)) << 8) | session.byteToInt(stream.read(session.sw))) handlers += [DecimalWordEscapeHandler("w", "print next word as decimal integer")] #Ascii byte class AsciiByteEscapeHandler(EscapeHandler): def process(self, stream, session): return str(chr(session.byteToInt(stream.read(session.sw)))) handlers += [AsciiByteEscapeHandler("a", "print next byte as ascii char")] #Discard byte class DiscardByteEscapeHandler(EscapeHandler): def process(self, stream, session): stream.read(session.sw) return "" handlers += [DiscardByteEscapeHandler("x", "discard next byte")] #Recursive escape class RecursiveByteEscapeHandler(EscapeHandler): def process(self, stream, session): resc = str(chr(session.byteToInt(stream.read(session.sw)))) if resc == self.getChar(): return "<RECESC>" return session.processEscape(resc, stream) handlers += [RecursiveByteEscapeHandler("e", "use next byte as ascii escape char")] #New line class NewlineEscapeHandler(EscapeHandler): def process(self, stream, session): return "\n" handlers += [NewlineEscapeHandler("n", "print new line")] #Tab class TabEscapeHandler(EscapeHandler): def process(self, stream, session): return "\t" handlers += [TabEscapeHandler("t", "print tab")] return handlers escapeHandlers = genEscapeHandlers.__func__() @staticmethod def printEscapeHandlers(): print("Available format chars:") for h in Session.escapeHandlers: print(" " + h.getChar() + " " + h.getDescription()) def __init__(self, sw, escape, byteorder, formats, buffer): self.sw = sw self.escape = escape self.byteorder = byteorder self.formats = formats if formats is not None else [escape + "a"] self.buffer = buffer self.streams = [] for f in self.formats: stream = SerialStream() self.streams += [stream] def byteToInt(self, byte): return int.from_bytes(byte, byteorder=self.byteorder) def intToBin(self, integer): return bin(integer).lstrip("0b").zfill(8) def intToHex(self, integer): return hex(integer).lstrip("0x").zfill(2) def processEscape(self, escape, stream): for h in Session.escapeHandlers: if escape == h.getChar(): return h.process(stream, self) return "<BADESC>" def read(self): buf = "" for f, s in zip(self.formats, self.streams): toks = f.split(self.escape) buf += toks[0] toks = toks[1:] for t in toks: if len(t) > 0: buf += self.processEscape(t[0], s) buf += t[1:] else: buf += self.processEscape(self.escape, s) if self.buffer: minInd = None for s in self.streams: if minInd is None or minInd > s.getIndex(): minInd = s.getIndex() for s in self.streams: s.trim(minInd) self.sw.pop(minInd) else: maxInd = None for s in self.streams: if maxInd is None or maxInd < s.getIndex(): maxInd = s.getIndex() s.trim(s.getIndex()) self.sw.pop(maxInd) return buf def parseArgs(): def checkPositive(value): ivalue = int(value) if ivalue <= 0: raise argparse.ArgumentTypeError("%s is an invalid positive int value" % value) return ivalue def checkChar(value): svalue = str(value) if len(svalue) != 1: raise argparse.ArgumentTypeError("%s is an invalid char value" % value) return svalue parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) #Output group oGroup = parser.add_argument_group("output settings") #File oGroup.add_argument("-of", "--ofile", type=argparse.FileType('w'), action="append", help="output to file") #Char limit default = 65535 oGroup.add_argument("-om", "--omax", type=checkPositive, default=default, help="output to file formatted line limit") #Cursor oGroup.add_argument("-ll", "--llimit", type=checkPositive, help="print a fixed number of lines (requires ANSI escape support)") #Format group fGroup = parser.add_argument_group("format settings") #Format string fGroup.add_argument("-f", "--format", type=str, action='append', help="custom format strings") #Escape char default = "%" fGroup.add_argument("-e", "--escape", type=checkChar, default=default, help="format escape char") #Escape char default = "big" choices = "big", "little" fGroup.add_argument("-bo", "--byteorder", type=str, default=default, choices=choices, help="format byte order") #Bufferize fGroup.add_argument("-fb", "--fbuffer", action="store_true", help="allow asynchronous format strings with buffer") #Help fGroup.add_argument("-fl", "--flist", action="store_true", help="list format chars") #Connection group cGroup = parser.add_argument_group("connection settings") #List clGroup = cGroup.add_mutually_exclusive_group() clGroup.add_argument("-l", "--list", action="store_true", help="list available ports") clGroup.add_argument("-le", "--listex", action="store_true", help="list available ports and print descriptions") #Port cGroup.add_argument("-p", "--port", type=str, help="port to connect to") #Baud rate default = 9600 cGroup.add_argument("-b", "--baudrate", type=checkPositive, default=default, help="set baud rate") #Byte size default = 8 choices = [5, 6, 7, 8] cGroup.add_argument("-bs", "--bytesize", type=int, choices=choices, default=default, help="set byte size") #Parity bits default = "NONE" choices = ["NONE", "EVEN", "ODD", "SPACE", "MARK"] cGroup.add_argument("-pb", "--parity", choices=choices, default=default, help="set parity bits") #Stop bits default = "ONE" choices = ["ONE", "ONE_POINT_FIVE", "TWO"] cGroup.add_argument("-sb", "--stopbits", choices=choices, default=default, help="set stop bits") #Timeout default = 1 cGroup.add_argument("-t", "--timeout", type=checkPositive, default=default, help="set timeout") #Software flow control cGroup.add_argument("-sfc", "--swflowctl", action="store_true", help="enable software flow control") #RTS/CTS cGroup.add_argument("-rc", "--rtscts", action="store_true", help="enable RTS/CTS") #DSR/DTR cGroup.add_argument("-dd", "--dsrdtr", action="store_true", help="enable DSR/DTR") return parser.parse_args() def main(): args = parseArgs() if args.flist: print() Session.printEscapeHandlers() if args.list or args.listex: print() ports = serial.tools.list_ports.comports() if len(ports) > 0: print("Avaliable ports:") for p in ports: if args.listex: print(p.device + "\t" + p.description) else: print(p.device) else: print("No port available") if (args.fbuffer): print() print("Warning: Format buffer enabled") print("This may cause high memory consumption") if args.port is not None: print() ports = serial.tools.list_ports.comports() available = False for p in ports: if args.port == p.device: available = True break if available: print("Port " + qt(args.port) + " available") sw = None try: sw = SerialWrapper(args.port, args.baudrate, args.bytesize, getattr(serial, "PARITY_" + args.parity), getattr(serial, "STOPBITS_" + args.stopbits), args.timeout, args.swflowctl, args.rtscts, args.dsrdtr) print("Connection to port " + qt(args.port) + " opened") except (ValueError, serial.SerialException) as err: print("Error happened while connecting to port " + qt(args.port) + ":") print(err) if sw is not None: session = Session(sw, args.escape, args.byteorder, args.format, args.fbuffer) if args.ofile is not None: history = collections.deque([], maxlen=args.omax) if args.llimit is not None: sys.stdout.write('\033[s') sys.stdout.flush() lastl = [] try: running = True def quitSignal(signal, frame): nonlocal running if running: running = False else: print() raise SystemExit("Aborted by keyboard") signal.signal(signal.SIGINT, quitSignal) signal.signal(signal.SIGTERM, quitSignal) while running: line = session.read() if args.ofile is not None: history.extend(line) if args.llimit is not None: lastl += [line] if len(lastl) >= args.llimit: sys.stdout.write('\033[u') sys.stdout.flush() for l in lastl: sys.stdout.write(l) sys.stdout.flush() lastl = [] else: sys.stdout.write(line) sys.stdout.flush() except serial.SerialException as err: print() print("Error happened while reading from port " + qt(args.port) + ":") print(err) if sw.close(): print() print("Connection to port " + qt(args.port) + " closed") if args.ofile is not None: print() print("Writing " + str(len(history)) + " formatted lines to output file" + ("s" if len(args.ofile) > 1 else "")) for f in args.ofile: try: for l in history: f.write(l) f.close() print("File " + qt(f.name) + " succesfully closed") except IOError as err: print("Error while writing file " + qt(f.name)) print(err) else: print("Port " + qt(args.port) + " not available") if __name__ == "__main__": main()
37.335664
220
0.54336
3cba129486a570219fe36a5e8bcd62f6bd5de872
1,606
py
Python
2_faceCrop.py
k-m-irfan/MER_dataset_cleaning
02e6168f0f08f81ead93b0628f30ad0449862cca
[ "MIT" ]
1
2022-03-26T18:18:56.000Z
2022-03-26T18:18:56.000Z
2_faceCrop.py
k-m-irfan/MER_dataset_cleaning
02e6168f0f08f81ead93b0628f30ad0449862cca
[ "MIT" ]
null
null
null
2_faceCrop.py
k-m-irfan/MER_dataset_cleaning
02e6168f0f08f81ead93b0628f30ad0449862cca
[ "MIT" ]
null
null
null
# face detection # to remove multiple face images, non face images and corrupt/non convertible images import os import cv2 import mediapipe as mp sourceDir = 'D:\MER\Dataset\Expressions\duplicate_deleted\Surprise' # Source folder targetDir = 'D:\MER\Dataset\Expressions\Face_crop\Surprise' # Target Folder imageCount = 0 # for file naming errorCount = 0 findFace = mp.solutions.face_detection.FaceDetection() def faceBox(frame):#face bounding box try: frameRGB = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB) except: return [] results = findFace.process(frameRGB) myFaces = [] if results.detections != None: for face in results.detections: bBox = face.location_data.relative_bounding_box myFaces.append(bBox) return myFaces for sRoot,sDirs,sFiles in os.walk(sourceDir): break for sourceName in sFiles: sourceFile = sourceDir+'\\'+sourceName image = cv2.imread(sourceFile) faceBoxes = faceBox(image) if len(faceBoxes) == 1: imageCount+=1 fileName = 'surprise'+str(imageCount)+'.jpg' #change file name here height,width,channel = image.shape x,y,w,h = int(faceBoxes[0].xmin*width),int(faceBoxes[0].ymin*height),int(faceBoxes[0].width*width),int(faceBoxes[0].height*height) # cv2.rectangle(image,(x,y),(x+w,y+h),(255,0,0),1) croppedImage = image[y:y+h,x:x+w] try: cv2.imwrite(targetDir+'\\'+fileName,croppedImage) except: errorCount+=1 print(errorCount) continue
34.913043
139
0.648194
4fd53fede7bb7dae8ea0ba6a674bdae8895eb1c8
46
py
Python
face_align_example/src/face/__init__.py
O0laf/packaging
c3f5c0ba62909eb0b72251710c3d853c2b1bf8f3
[ "MIT" ]
null
null
null
face_align_example/src/face/__init__.py
O0laf/packaging
c3f5c0ba62909eb0b72251710c3d853c2b1bf8f3
[ "MIT" ]
null
null
null
face_align_example/src/face/__init__.py
O0laf/packaging
c3f5c0ba62909eb0b72251710c3d853c2b1bf8f3
[ "MIT" ]
null
null
null
from .face import * from .align_trans import *
23
26
0.76087
c31595893601f839fd732c00d1e6e1b212e3613f
862
py
Python
th/spacy2/tokenizer_exceptions.py
t-pimpisa/spaCy
a26173d13a3d341822188fec8c410a6d9668f31d
[ "MIT" ]
10
2017-10-19T17:34:10.000Z
2021-04-16T03:06:56.000Z
th/spacy2/tokenizer_exceptions.py
t-pimpisa/spaCy
a26173d13a3d341822188fec8c410a6d9668f31d
[ "MIT" ]
1
2017-09-19T05:44:50.000Z
2017-09-27T09:16:15.000Z
th/spacy2/tokenizer_exceptions.py
t-pimpisa/spaCy
a26173d13a3d341822188fec8c410a6d9668f31d
[ "MIT" ]
5
2018-03-01T11:46:19.000Z
2021-01-03T16:23:26.000Z
# encoding: utf8 from __future__ import unicode_literals from ...symbols import * TOKENIZER_EXCEPTIONS = { "ม.ค.": [ {ORTH: "ม.ค.", LEMMA: "มกราคม"} ], "ก.พ.": [ {ORTH: "ก.พ.", LEMMA: "กุมภาพันธ์"} ], "มี.ค.": [ {ORTH: "มี.ค.", LEMMA: "มีนาคม"} ], "เม.ย.": [ {ORTH: "เม.ย.", LEMMA: "เมษายน"} ], "พ.ค.": [ {ORTH: "พ.ค.", LEMMA: "พฤษภาคม"} ], "มิ.ย.": [ {ORTH: "มิ.ย.", LEMMA: "มิถุนายน"} ], "ก.ค.": [ {ORTH: "ก.ค.", LEMMA: "กรกฎาคม"} ], "ส.ค.": [ {ORTH: "ส.ค.", LEMMA: "สิงหาคม"} ], "ก.ย.": [ {ORTH: "ก.ย.", LEMMA: "กันยายน"} ], "ต.ค.": [ {ORTH: "ต.ค.", LEMMA: "ตุลาคม"} ], "พ.ย.": [ {ORTH: "พ.ย.", LEMMA: "พฤศจิกายน"} ], "ธ.ค.": [ {ORTH: "ธ.ค.", LEMMA: "ธันวาคม"} ] }
19.590909
43
0.36891
a3f85263dd4cb1997337bb1e2d2305b83d572f86
840
py
Python
keras_declarative/hyperparams/__init__.py
mrphys/keras-declarative
551b3cd01af38cf293027e92829c61b773e33d0f
[ "Apache-2.0" ]
null
null
null
keras_declarative/hyperparams/__init__.py
mrphys/keras-declarative
551b3cd01af38cf293027e92829c61b773e33d0f
[ "Apache-2.0" ]
null
null
null
keras_declarative/hyperparams/__init__.py
mrphys/keras-declarative
551b3cd01af38cf293027e92829c61b773e33d0f
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Params package definition.""" # pylint: disable=g-multiple-import from keras_declarative.hyperparams.base_config import * from keras_declarative.hyperparams.oneof import * from keras_declarative.hyperparams.params_dict import *
42
74
0.783333
5a8323f288b66df8fcf0f247c1769210e12cc017
16,709
py
Python
dask_ml/wrappers.py
souravsingh/dask-ml
37eca7d335509c2a4aa9332aa454f57092318487
[ "BSD-3-Clause" ]
null
null
null
dask_ml/wrappers.py
souravsingh/dask-ml
37eca7d335509c2a4aa9332aa454f57092318487
[ "BSD-3-Clause" ]
null
null
null
dask_ml/wrappers.py
souravsingh/dask-ml
37eca7d335509c2a4aa9332aa454f57092318487
[ "BSD-3-Clause" ]
null
null
null
"""Meta-estimators for parallelizing estimators using the scikit-learn API.""" import logging import dask.array as da import dask.dataframe as dd import dask.delayed import numpy as np import sklearn.base import sklearn.metrics from sklearn.utils.validation import check_is_fitted from dask_ml.utils import _timer from ._partial import fit from ._utils import copy_learned_attributes from .metrics import check_scoring, get_scorer logger = logging.getLogger(__name__) class ParallelPostFit(sklearn.base.BaseEstimator): """Meta-estimator for parallel predict and transform. Parameters ---------- estimator : Estimator The underlying estimator that is fit. scoring : string or callable, optional A single string (see :ref:`scoring_parameter`) or a callable (see :ref:`scoring`) to evaluate the predictions on the test set. For evaluating multiple metrics, either give a list of (unique) strings or a dict with names as keys and callables as values. NOTE that when using custom scorers, each scorer should return a single value. Metric functions returning a list/array of values can be wrapped into multiple scorers that return one value each. See :ref:`multimetric_grid_search` for an example. .. warning:: If None, the estimator's default scorer (if available) is used. Most scikit-learn estimators will convert large Dask arrays to a single NumPy array, which may exhaust the memory of your worker. You probably want to always specify `scoring`. Notes ----- .. warning:: This class is not appropriate for parallel or distributed *training* on large datasets. For that, see :class:`Incremental`, which provides distributed (but sequential) training. If you're doing distributed hyperparameter optimization on larger-than-memory datasets, see :class:`dask_ml.model_selection.IncrementalSearch`. This estimator does not parallelize the training step. This simply calls the underlying estimators's ``fit`` method called and copies over the learned attributes to ``self`` afterwards. It is helpful for situations where your training dataset is relatively small (fits on a single machine) but you need to predict or transform a much larger dataset. ``predict``, ``predict_proba`` and ``transform`` will be done in parallel (potentially distributed if you've connected to a ``dask.distributed.Client``). Note that many scikit-learn estimators already predict and transform in parallel. This meta-estimator may still be useful in those cases when your dataset is larger than memory, as the distributed scheduler will ensure the data isn't all read into memory at once. See Also -------- Incremental dask_ml.model_selection.IncrementalSearch Examples -------- >>> from sklearn.ensemble import GradientBoostingClassifier >>> import sklearn.datasets >>> import dask_ml.datasets Make a small 1,000 sample 2 training dataset and fit normally. >>> X, y = sklearn.datasets.make_classification(n_samples=1000, ... random_state=0) >>> clf = ParallelPostFit(estimator=GradientBoostingClassifier(), ... scoring='accuracy') >>> clf.fit(X, y) ParallelPostFit(estimator=GradientBoostingClassifier(...)) >>> clf.classes_ array([0, 1]) Transform and predict return dask outputs for dask inputs. >>> X_big, y_big = dask_ml.datasets.make_classification(n_samples=100000, random_state=0) >>> clf.predict(X) dask.array<predict, shape=(10000,), dtype=int64, chunksize=(1000,)> Which can be computed in parallel. >>> clf.predict_proba(X).compute() array([[0.99141094, 0.00858906], [0.93178389, 0.06821611], [0.99129105, 0.00870895], ..., [0.97996652, 0.02003348], [0.98087444, 0.01912556], [0.99407016, 0.00592984]]) """ def __init__(self, estimator=None, scoring=None): self.estimator = estimator self.scoring = scoring @property def _postfit_estimator(self): # The estimator instance to use for postfit tasks like score return self.estimator def fit(self, X, y=None, **kwargs): """Fit the underlying estimator. Parameters ---------- X, y : array-like **kwargs Additional fit-kwargs for the underlying estimator. Returns ------- self : object """ logger.info("Starting fit") with _timer("fit", _logger=logger): result = self.estimator.fit(X, y, **kwargs) # Copy over learned attributes copy_learned_attributes(result, self) copy_learned_attributes(result, self.estimator) return self def partial_fit(self, X, y=None, **kwargs): logger.info("Starting partial_fit") with _timer("fit", _logger=logger): result = self.estimator.partial_fit(X, y, **kwargs) # Copy over learned attributes copy_learned_attributes(result, self) copy_learned_attributes(result, self.estimator) return self def transform(self, X): """Transform block or partition-wise for dask inputs. For dask inputs, a dask array or dataframe is returned. For other inputs (NumPy array, pandas dataframe, scipy sparse matrix), the regular return value is returned. If the underlying estimator does not have a ``transform`` method, then an ``AttributeError`` is raised. Parameters ---------- X : array-like Returns ------- transformed : array-like """ transform = self._check_method("transform") if isinstance(X, da.Array): return X.map_blocks(transform) elif isinstance(X, dd._Frame): return _apply_partitionwise(X, transform) else: return transform(X) def score(self, X, y): """Returns the score on the given data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float return self.estimator.score(X, y) """ scoring = self.scoring if not scoring: if type(self._postfit_estimator).score == sklearn.base.RegressorMixin.score: scoring = "r2" elif ( type(self._postfit_estimator).score == sklearn.base.ClassifierMixin.score ): scoring = "accuracy" else: scoring = self.scoring if scoring: if not dask.is_dask_collection(X) and not dask.is_dask_collection(y): scorer = sklearn.metrics.get_scorer(scoring) else: scorer = get_scorer(scoring) return scorer(self, X, y) else: return self._postfit_estimator.score(X, y) def predict(self, X): """Predict for X. For dask inputs, a dask array or dataframe is returned. For other inputs (NumPy array, pandas dataframe, scipy sparse matrix), the regular return value is returned. Parameters ---------- X : array-like Returns ------- y : array-like """ predict = self._check_method("predict") if isinstance(X, da.Array): return X.map_blocks(predict, dtype="int", drop_axis=1) elif isinstance(X, dd._Frame): return _apply_partitionwise(X, predict) else: return predict(X) def predict_proba(self, X): """Predict for X. For dask inputs, a dask array or dataframe is returned. For other inputs (NumPy array, pandas dataframe, scipy sparse matrix), the regular return value is returned. If the underlying estimator does not have a ``predict_proba`` method, then an ``AttributeError`` is raised. Parameters ---------- X : array or dataframe Returns ------- y : array-like """ predict_proba = self._check_method("predict_proba") if isinstance(X, da.Array): # XXX: multiclass return X.map_blocks( predict_proba, dtype="float", chunks=(X.chunks[0], len(self.classes_)) ) elif isinstance(X, dd._Frame): return _apply_partitionwise(X, predict_proba) else: return predict_proba(X) def _check_method(self, method): """Check if self.estimator has 'method'. Raises ------ AttributeError """ estimator = self._postfit_estimator if not hasattr(estimator, method): msg = "The wrapped estimator '{}' does not have a '{}' method.".format( estimator, method ) raise AttributeError(msg) return getattr(estimator, method) class Incremental(ParallelPostFit): """Metaestimator for feeding Dask Arrays to an estimator blockwise. This wrapper provides a bridge between Dask objects and estimators implementing the ``partial_fit`` API. These *incremental learners* can train on batches of data. This fits well with Dask's blocked data structures. .. note:: This meta-estimator is not appropriate for hyperparameter optimization on larger-than-memory datasets. For that, see :class:dask_ml.model_selection.IncrementalSearch`. See the `list of incremental learners`_ in the scikit-learn documentation for a list of estimators that implement the ``partial_fit`` API. Note that `Incremental` is not limited to just these classes, it will work on any estimator implementing ``partial_fit``, including those defined outside of scikit-learn itself. Calling :meth:`Incremental.fit` with a Dask Array will pass each block of the Dask array or arrays to ``estimator.partial_fit`` *sequentially*. Like :class:`ParallelPostFit`, the methods available after fitting (e.g. :meth:`Incremental.predict`, etc.) are all parallel and delayed. The ``estimator_`` attribute is a clone of `estimator` that was actually used during the call to ``fit``. All attributes learned during training are available on ``Incremental`` directly. .. _list of incremental learners: http://scikit-learn.org/stable/modules/scaling_strategies.html#incremental-learning # noqa Parameters ---------- estimator : Estimator Any object supporting the scikit-learn ``parital_fit`` API. scoring : string or callable, optional A single string (see :ref:`scoring_parameter`) or a callable (see :ref:`scoring`) to evaluate the predictions on the test set. For evaluating multiple metrics, either give a list of (unique) strings or a dict with names as keys and callables as values. NOTE that when using custom scorers, each scorer should return a single value. Metric functions returning a list/array of values can be wrapped into multiple scorers that return one value each. See :ref:`multimetric_grid_search` for an example. .. warning:: If None, the estimator's default scorer (if available) is used. Most scikit-learn estimators will convert large Dask arrays to a single NumPy array, which may exhaust the memory of your worker. You probably want to always specify `scoring`. random_state : int or numpy.random.RandomState, optional Random object that determines how to shuffle blocks. shuffle_blocks : bool, default True Determines whether to call ``partial_fit`` on a randomly selected chunk of the Dask arrays (default), or to fit in sequential order. This does not control shuffle between blocks or shuffling each block. Attributes ---------- estimator_ : Estimator A clone of `estimator` that was actually fit during the ``.fit`` call. See Also -------- ParallelPostFit dask_ml.model_selection.IncrementalSearch Examples -------- >>> from dask_ml.wrappers import Incremental >>> from dask_ml.datasets import make_classification >>> import sklearn.linear_model >>> X, y = make_classification(chunks=25) >>> est = sklearn.linear_model.SGDClassifier() >>> clf = Incremental(est, scoring='accuracy') >>> clf.fit(X, y, classes=[0, 1]) When used inside a grid search, prefix the underlying estimator's parameter names with ``estimator__``. >>> from sklearn.model_selection import GridSearchCV >>> param_grid = {"estimator__alpha": [0.1, 1.0, 10.0]} >>> gs = GridSearchCV(clf, param_grid) >>> gs.fit(X, y, classes=[0, 1]) """ def __init__( self, estimator=None, scoring=None, shuffle_blocks=True, random_state=None ): self.shuffle_blocks = shuffle_blocks self.random_state = random_state super(Incremental, self).__init__(estimator=estimator, scoring=scoring) @property def _postfit_estimator(self): check_is_fitted(self, "estimator_") return self.estimator_ def _fit_for_estimator(self, estimator, X, y, **fit_kwargs): check_scoring(estimator, self.scoring) if not dask.is_dask_collection(X) and not dask.is_dask_collection(y): result = estimator.partial_fit(X=X, y=y, **fit_kwargs) else: result = fit( estimator, X, y, random_state=self.random_state, shuffle_blocks=self.shuffle_blocks, **fit_kwargs ) copy_learned_attributes(result, self) self.estimator_ = result return self def fit(self, X, y=None, **fit_kwargs): estimator = sklearn.base.clone(self.estimator) self._fit_for_estimator(estimator, X, y, **fit_kwargs) return self def partial_fit(self, X, y=None, **fit_kwargs): """Fit the underlying estimator. If this estimator has not been previously fit, this is identical to :meth:`Incremental.fit`. If it has been previously fit, ``self.estimator_`` is used as the starting point. Parameters ---------- X, y : array-like **kwargs Additional fit-kwargs for the underlying estimator. Returns ------- self : object """ estimator = getattr(self, "estimator_", None) if estimator is None: estimator = sklearn.base.clone(self.estimator) return self._fit_for_estimator(estimator, X, y, **fit_kwargs) def _first_block(dask_object): """Extract the first block / partition from a dask object """ if isinstance(dask_object, da.Array): if dask_object.ndim > 1 and dask_object.numblocks[-1] != 1: raise NotImplementedError( "IID estimators require that the array " "blocked only along the first axis. " "Rechunk your array before fitting." ) shape = (dask_object.chunks[0][0],) if dask_object.ndim > 1: shape = shape + (dask_object.chunks[1][0],) return da.from_delayed( dask_object.to_delayed().flatten()[0], shape, dask_object.dtype ) if isinstance(dask_object, dd._Frame): return dask_object.get_partition(0) else: return dask_object def _apply_partitionwise(X, func): """Apply a prediction partition-wise to a dask.dataframe""" sample = func(X._meta_nonempty) if sample.ndim <= 1: p = () else: p = (sample.shape[1],) if isinstance(sample, np.ndarray): blocks = X.to_delayed() arrays = [ da.from_delayed( dask.delayed(func)(block), shape=(np.nan,) + p, dtype=sample.dtype ) for block in blocks ] return da.concatenate(arrays) else: return X.map_partitions(func, meta=sample)
33.755556
129
0.628284
4ae726f74d4ff82903218cdfdd2a12cd8562a50b
1,359
py
Python
pymc3/distributions/dist_math.py
MichielCottaar/pymc3
f37198653e7d09881e7bc411cbd10fffbab442c2
[ "Apache-2.0" ]
1
2020-09-29T12:32:32.000Z
2020-09-29T12:32:32.000Z
pymc3/distributions/dist_math.py
MichielCottaar/pymc3
f37198653e7d09881e7bc411cbd10fffbab442c2
[ "Apache-2.0" ]
null
null
null
pymc3/distributions/dist_math.py
MichielCottaar/pymc3
f37198653e7d09881e7bc411cbd10fffbab442c2
[ "Apache-2.0" ]
null
null
null
''' Created on Mar 7, 2011 @author: johnsalvatier ''' from __future__ import division import theano.tensor as t from theano.tensor import ( sum, switch, log, exp, sqrt, eq, neq, lt, gt, le, ge, all, any, cast, round, arange, max, min, maximum, minimum, floor, ceil, zeros_like, ones, ones_like, concatenate, constant, argmax, erf, gamma) from theano.tensor import as_tensor_variable from numpy import pi, inf, nan import numpy as np from .special import gammaln, multigammaln from theano.printing import Print from .distribution import * def bound(logp, *conditions): """ Bounds a log probability density with several conditions Parameters ---------- logp : float *conditionss : booleans Returns ------- logp if all conditions are true -inf if some are false """ return switch(alltrue(conditions), logp, -inf) def alltrue(vals): ret = 1 for c in vals: ret = ret * (1 * c) return ret def logpow(x, m): """ Calculates log(x**m) since m*log(x) will fail when m, x = 0. """ return switch(eq(x, 0) & eq(m, 0), 0, m * log(x)) def factln(n): return gammaln(n + 1) def idfn(x): return x def std_cdf(x): """ Calculates the standard normal cumulative distribution function. """ return 0.5 + 0.5*erf(x / sqrt(2.))
18.616438
68
0.628403
59f8d7fbe4cbb6c4383138680a51e1fbc5666343
1,992
py
Python
API/v1/__init__.py
MisakaMikoto0502/XenXenXenSe
58a4d288dd2ef3f09ee0062b542b50f0b11d1c43
[ "MIT" ]
null
null
null
API/v1/__init__.py
MisakaMikoto0502/XenXenXenSe
58a4d288dd2ef3f09ee0062b542b50f0b11d1c43
[ "MIT" ]
null
null
null
API/v1/__init__.py
MisakaMikoto0502/XenXenXenSe
58a4d288dd2ef3f09ee0062b542b50f0b11d1c43
[ "MIT" ]
null
null
null
from xmlrpc.client import Fault from fastapi import APIRouter, Depends, HTTPException from XenAPI.XenAPI import Failure from XenGarden.session import create_session from API.v1.Common import xenapi_failure_jsonify from API.v1.Console import console_router from API.v1.GuestMetrics import guest_router from API.v1.Host import host_router from API.v1.Network import network_router from API.v1.PIF import pif_router from API.v1.root import root_router from API.v1.SR import sr_router from API.v1.VBD import vbd_router from API.v1.VDI import vdi_router from API.v1.VIF import vif_router from API.v1.VM import vm_router from app.settings import Settings v1_router = APIRouter() v1_router.include_router(root_router) # === Condition Checker === async def verify_cluster_id(cluster_id: str): # KeyError Handling try: session = create_session( cluster_id, get_xen_clusters=Settings.get_xen_clusters() ) session.xenapi.session.logout() except KeyError as key_error: raise HTTPException( status_code=404, detail=f"{key_error} cluster does not exist" ) except Failure as xenapi_error: raise HTTPException( status_code=500, detail=xenapi_failure_jsonify(xenapi_error) ) except Fault as xml_rpc_error: raise HTTPException( status_code=int(xml_rpc_error.faultCode), detail=xml_rpc_error.faultString, ) # === API Functions === _api_router = APIRouter(dependencies=[Depends(verify_cluster_id)]) _api_router.include_router(host_router) _api_router.include_router(console_router) _api_router.include_router(sr_router) _api_router.include_router(vbd_router) _api_router.include_router(vdi_router) _api_router.include_router(vif_router) _api_router.include_router(pif_router) _api_router.include_router(network_router) _api_router.include_router(vm_router) _api_router.include_router(guest_router) # === Add === v1_router.include_router(_api_router)
30.646154
73
0.771084