hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
e21389138faeef26f2c2ee2be44922a1fad42cf9
6,501
py
Python
oldScripts/xtraScripts/tracker_cm.py
crackmech/flyclimb
551621d1d2747d22b407a6b640d7ccaf680b53e5
[ "MIT" ]
null
null
null
oldScripts/xtraScripts/tracker_cm.py
crackmech/flyclimb
551621d1d2747d22b407a6b640d7ccaf680b53e5
[ "MIT" ]
null
null
null
oldScripts/xtraScripts/tracker_cm.py
crackmech/flyclimb
551621d1d2747d22b407a6b640d7ccaf680b53e5
[ "MIT" ]
null
null
null
''' File name : tracker.py File Description : Tracker Using Kalman Filter & Hungarian Algorithm Author : Srini Ananthakrishnan Date created : 07/14/2017 Date last modified: 07/16/2017 Python Version : 2.7 ''' # Import python libraries import numpy as np from kalman_filter import KalmanFilter from common import dprint from scipy.optimize import linear_sum_assignment class Track(object): """Track class for every object to be tracked Attributes: None """ def __init__(self, prediction, trackIdCount): """Initialize variables used by Track class Args: prediction: predicted centroids of object to be tracked trackIdCount: identification of each track object Return: None """ self.track_id = trackIdCount # identification of each track object self.KF = KalmanFilter() # KF instance to track this object self.prediction = np.asarray(prediction) # predicted centroids (x,y) self.skipped_frames = 0 # number of frames skipped undetected self.trace = [] # trace path class Tracker(object): """Tracker class that updates track vectors of object tracked Attributes: None """ def __init__(self, dist_thresh, max_frames_to_skip, max_trace_length, trackIdCount): """Initialize variable used by Tracker class Args: dist_thresh: distance threshold. When exceeds the threshold, track will be deleted and new track is created max_frames_to_skip: maximum allowed frames to be skipped for the track object undetected max_trace_lenght: trace path history length trackIdCount: identification of each track object Return: None """ self.dist_thresh = dist_thresh self.max_frames_to_skip = max_frames_to_skip self.max_trace_length = max_trace_length self.tracks = [] self.trackIdCount = trackIdCount def Update(self, detections): """Update tracks vector using following steps: - Create tracks if no tracks vector found - Calculate cost using sum of square distance between predicted vs detected centroids - Using Hungarian Algorithm assign the correct detected measurements to predicted tracks https://en.wikipedia.org/wiki/Hungarian_algorithm - Identify tracks with no assignment, if any - If tracks are not detected for long time, remove them - Now look for un_assigned detects - Start new tracks - Update KalmanFilter state, lastResults and tracks trace Args: detections: detected centroids of object to be tracked Return: None """ # Create tracks if no tracks vector found if (len(self.tracks) == 0): for i in range(len(detections)): track = Track(detections[i], self.trackIdCount) self.trackIdCount += 1 self.tracks.append(track) # Calculate cost using sum of square distance between # predicted vs detected centroids N = len(self.tracks) M = len(detections) cost = np.zeros(shape=(N, M)) # Cost matrix for i in range(len(self.tracks)): for j in range(len(detections)): try: diff = self.tracks[i].prediction - detections[j] distance = np.sqrt(diff[0][0]*diff[0][0] + diff[1][0]*diff[1][0]) cost[i][j] = distance except: pass # Let's average the squared ERROR cost = (0.5) * cost # Using Hungarian Algorithm assign the correct detected measurements # to predicted tracks assignment = [] for _ in range(N): assignment.append(-1) row_ind, col_ind = linear_sum_assignment(cost) for i in range(len(row_ind)): assignment[row_ind[i]] = col_ind[i] # Identify tracks with no assignment, if any un_assigned_tracks = [] for i in range(len(assignment)): if (assignment[i] != -1): # check for cost distance threshold. # If cost is very high then un_assign (delete) the track if (cost[i][assignment[i]] > self.dist_thresh): assignment[i] = -1 un_assigned_tracks.append(i) pass else: self.tracks[i].skipped_frames += 1 # If tracks are not detected for long time, remove them del_tracks = [] for i in range(len(self.tracks)): if (self.tracks[i].skipped_frames > self.max_frames_to_skip): del_tracks.append(i) if len(del_tracks) > 0: # only when skipped frame exceeds max for id in del_tracks: if id < len(self.tracks): del self.tracks[id] del assignment[id] else: dprint("ERROR: id is greater than length of tracks") # Now look for un_assigned detects un_assigned_detects = [] for i in range(len(detections)): if i not in assignment: un_assigned_detects.append(i) # Start new tracks if(len(un_assigned_detects) != 0): for i in range(len(un_assigned_detects)): track = Track(detections[un_assigned_detects[i]], self.trackIdCount) self.trackIdCount += 1 self.tracks.append(track) # Update KalmanFilter state, lastResults and tracks trace for i in range(len(assignment)): if(assignment[i] != -1): self.tracks[i].skipped_frames = 0 self.tracks[i].prediction = detections[assignment[i]] else: self.tracks[i].prediction = np.array([[0], [0]]) if(len(self.tracks[i].trace) > self.max_trace_length): for j in range(len(self.tracks[i].trace) - self.max_trace_length): del self.tracks[i].trace[j] self.tracks[i].trace.append(self.tracks[i].prediction)
38.241176
77
0.57022
ea9841da21e8b47ec62894276ccac4299b18217e
3,921
py
Python
xarray/backends/pynio_.py
apkrelling/xarray
abcae54664539e50a34d4b713faadf108cf6d22e
[ "CC-BY-4.0", "PSF-2.0", "BSD-2-Clause", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
xarray/backends/pynio_.py
apkrelling/xarray
abcae54664539e50a34d4b713faadf108cf6d22e
[ "CC-BY-4.0", "PSF-2.0", "BSD-2-Clause", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
xarray/backends/pynio_.py
apkrelling/xarray
abcae54664539e50a34d4b713faadf108cf6d22e
[ "CC-BY-4.0", "PSF-2.0", "BSD-2-Clause", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
import numpy as np from ..core import indexing from ..core.utils import Frozen, FrozenDict, close_on_error from ..core.variable import Variable from .common import ( BACKEND_ENTRYPOINTS, AbstractDataStore, BackendArray, BackendEntrypoint, ) from .file_manager import CachingFileManager from .locks import HDF5_LOCK, NETCDFC_LOCK, SerializableLock, combine_locks, ensure_lock from .store import StoreBackendEntrypoint try: import Nio has_pynio = True except ModuleNotFoundError: has_pynio = False # PyNIO can invoke netCDF libraries internally # Add a dedicated lock just in case NCL as well isn't thread-safe. NCL_LOCK = SerializableLock() PYNIO_LOCK = combine_locks([HDF5_LOCK, NETCDFC_LOCK, NCL_LOCK]) class NioArrayWrapper(BackendArray): def __init__(self, variable_name, datastore): self.datastore = datastore self.variable_name = variable_name array = self.get_array() self.shape = array.shape self.dtype = np.dtype(array.typecode()) def get_array(self, needs_lock=True): ds = self.datastore._manager.acquire(needs_lock) return ds.variables[self.variable_name] def __getitem__(self, key): return indexing.explicit_indexing_adapter( key, self.shape, indexing.IndexingSupport.BASIC, self._getitem ) def _getitem(self, key): with self.datastore.lock: array = self.get_array(needs_lock=False) if key == () and self.ndim == 0: return array.get_value() return array[key] class NioDataStore(AbstractDataStore): """Store for accessing datasets via PyNIO""" def __init__(self, filename, mode="r", lock=None, **kwargs): if lock is None: lock = PYNIO_LOCK self.lock = ensure_lock(lock) self._manager = CachingFileManager( Nio.open_file, filename, lock=lock, mode=mode, kwargs=kwargs ) # xarray provides its own support for FillValue, # so turn off PyNIO's support for the same. self.ds.set_option("MaskedArrayMode", "MaskedNever") @property def ds(self): return self._manager.acquire() def open_store_variable(self, name, var): data = indexing.LazilyIndexedArray(NioArrayWrapper(name, self)) return Variable(var.dimensions, data, var.attributes) def get_variables(self): return FrozenDict( (k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items() ) def get_attrs(self): return Frozen(self.ds.attributes) def get_dimensions(self): return Frozen(self.ds.dimensions) def get_encoding(self): return { "unlimited_dims": {k for k in self.ds.dimensions if self.ds.unlimited(k)} } def close(self): self._manager.close() class PynioBackendEntrypoint(BackendEntrypoint): def open_dataset( self, filename_or_obj, mask_and_scale=True, decode_times=True, concat_characters=True, decode_coords=True, drop_variables=None, use_cftime=None, decode_timedelta=None, mode="r", lock=None, ): store = NioDataStore( filename_or_obj, mode=mode, lock=lock, ) store_entrypoint = StoreBackendEntrypoint() with close_on_error(store): ds = store_entrypoint.open_dataset( store, mask_and_scale=mask_and_scale, decode_times=decode_times, concat_characters=concat_characters, decode_coords=decode_coords, drop_variables=drop_variables, use_cftime=use_cftime, decode_timedelta=decode_timedelta, ) return ds if has_pynio: BACKEND_ENTRYPOINTS["pynio"] = PynioBackendEntrypoint
28.620438
88
0.646009
1928ba7d70f868a32501d4af9dcd3725eee43519
1,392
py
Python
beakerx_tabledisplay/beakerx_tabledisplay/__init__.py
fcollonval/beakerx_tabledisplay
0c05d69b5d1431953b372621dd1478661a77a586
[ "Apache-2.0" ]
6
2020-05-07T22:25:44.000Z
2021-01-15T21:53:16.000Z
beakerx_tabledisplay/beakerx_tabledisplay/__init__.py
fcollonval/beakerx_tabledisplay
0c05d69b5d1431953b372621dd1478661a77a586
[ "Apache-2.0" ]
48
2020-05-20T09:55:37.000Z
2022-03-26T15:07:35.000Z
beakerx_tabledisplay/beakerx_tabledisplay/__init__.py
fcollonval/beakerx_tabledisplay
0c05d69b5d1431953b372621dd1478661a77a586
[ "Apache-2.0" ]
5
2020-07-14T03:39:12.000Z
2022-02-23T08:18:13.000Z
# Copyright 2019 TWO SIGMA OPEN SOURCE, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ._version import version_info, __version__ from .commands import beakerx_parse from .handlers import load_jupyter_server_extension from .tabledisplay import * from .tableitems import * from .object import beakerx_tabledisplay from beakerx_base import * def _jupyter_nbextension_paths(): return [{ 'section': 'notebook', 'src': 'static', 'dest': 'beakerx_tabledisplay', 'require': 'beakerx_tabledisplay/extension' }] def _jupyter_labextension_paths(): return [{ 'src': 'labextension', 'dest': '@beakerx/beakerx-tabledisplay', }] def _jupyter_server_extension_paths(): return [dict(module="beakerx_tabledisplay")] def run(): try: beakerx_parse() except KeyboardInterrupt: return 130 return 0
28.408163
74
0.718391
97c68d2483789610ca03ede57f5af6c81a4f8302
421
py
Python
projfd/appfd/models/activation.py
FirstDraftGIS/firstdraft
2f1f2124c9c75b1b1d380a9b8b16e2dfb99db873
[ "Apache-2.0" ]
10
2016-04-23T19:40:28.000Z
2021-09-27T19:06:45.000Z
projfd/appfd/models/activation.py
FirstDraftGIS/firstdraft
2f1f2124c9c75b1b1d380a9b8b16e2dfb99db873
[ "Apache-2.0" ]
19
2016-06-22T03:22:45.000Z
2018-02-09T04:55:34.000Z
projfd/appfd/models/activation.py
FirstDraftGIS/firstdraft
2f1f2124c9c75b1b1d380a9b8b16e2dfb99db873
[ "Apache-2.0" ]
1
2016-04-23T19:40:38.000Z
2016-04-23T19:40:38.000Z
#-*- coding: utf-8 -*- from .base import Base from django.contrib.gis.db.models import BooleanField, CASCADE, CharField, OneToOneField from django.contrib.auth.models import User class Activation(Base): expired = BooleanField(default=False) key = CharField(max_length=200) notified_success = BooleanField(default=False) used = BooleanField(default=False) user = OneToOneField(User, on_delete=CASCADE)
38.272727
88
0.760095
c973cfa4bafcb20c7a5b5b4bd31a093991c368fb
408
py
Python
data/scripts/templates/object/ship/shared_xwing_tier1.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/ship/shared_xwing_tier1.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/ship/shared_xwing_tier1.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Ship() result.template = "object/ship/shared_xwing_tier1.iff" result.attribute_template_id = -1 result.stfName("","") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
24
55
0.703431
182869af39d8470c966ae1f394a3a8635b793864
19,287
py
Python
chat/ui_client.py
Adhesh148/BaBbLe
e86cd19a25759728dd731201b62de239efa2fc3f
[ "MIT" ]
8
2020-09-23T10:30:46.000Z
2022-03-07T09:31:13.000Z
chat/ui_client.py
Ashwin-op/BaBbLe
e86cd19a25759728dd731201b62de239efa2fc3f
[ "MIT" ]
null
null
null
chat/ui_client.py
Ashwin-op/BaBbLe
e86cd19a25759728dd731201b62de239efa2fc3f
[ "MIT" ]
2
2020-11-30T04:25:15.000Z
2021-09-28T04:41:15.000Z
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'chat.ui' # # Created by: PyQt5 UI code generator 5.15.0 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. import sys import os import time import socket from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import pyqtSignal, QThread import threading HEADER = 64 # PORT = 18521 # SERVER = "2.tcp.ngrok.io" # ADDR = (SERVER,PORT) FORMAT = 'utf-8' DISCONNECT_MSG = "!END" test_client = socket.socket() class Ui_MainWindow(object): global_client = socket.socket() def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(492, 846) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(21, 18, 50)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(37, 35, 49)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(21, 18, 50)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(37, 35, 49)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(190, 190, 190)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(37, 35, 49)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(37, 35, 49)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) MainWindow.setPalette(palette) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(400, 760, 71, 41)) font = QtGui.QFont() font.setFamily("UnYetgul") font.setPointSize(14) font.setBold(True) font.setWeight(75) self.pushButton.setFont(font) self.pushButton.setStyleSheet("color:#004cf5;\n" "background-color:#1f1e2b;\n" "border-radius: 15px;") self.pushButton.setObjectName("pushButton") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(20, 20, 141, 41)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(190, 190, 190)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(190, 190, 190)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(190, 190, 190)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.PlaceholderText, brush) self.label.setPalette(palette) font = QtGui.QFont() font.setFamily("UnYetgul") font.setPointSize(28) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setObjectName("label") self.lineEdit = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit.setGeometry(QtCore.QRect(20, 760, 371, 41)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(195, 193, 197)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 69, 91)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(195, 193, 197)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(195, 193, 197)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 69, 91)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 69, 91)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(67, 69, 91)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.HighlightedText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0, 128)) brush.setStyle(QtCore.Qt.NoBrush) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(195, 193, 197)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 69, 91)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(195, 193, 197)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(195, 193, 197)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 69, 91)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 69, 91)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(67, 69, 91)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.HighlightedText, brush) brush = QtGui.QBrush(QtGui.QColor(195, 193, 197, 128)) brush.setStyle(QtCore.Qt.NoBrush) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(195, 193, 197)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 69, 91)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(195, 193, 197)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(195, 193, 197)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(67, 69, 91)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(67, 69, 91)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(67, 69, 91)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.HighlightedText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0, 128)) brush.setStyle(QtCore.Qt.NoBrush) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.PlaceholderText, brush) self.lineEdit.setPalette(palette) self.lineEdit.setStyleSheet("border-radius: 10px;\n" "background-color: #43455b;\n" "padding: 10px;\n" "color: #c3c1c5;\n" "font-size: 13px;") self.lineEdit.setObjectName("lineEdit") self.plainTextEdit = QtWidgets.QPlainTextEdit(self.centralwidget) self.plainTextEdit.setGeometry(QtCore.QRect(20, 270, 451, 471)) self.plainTextEdit.setStyleSheet("background-color: #43455b;\n" "color: white;\n" "padding: 10px;\n" "font-size: 13px;") self.plainTextEdit.setReadOnly(True) self.plainTextEdit.setObjectName("plainTextEdit") self.line = QtWidgets.QFrame(self.centralwidget) self.line.setGeometry(QtCore.QRect(10, 240, 471, 20)) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(30, 160, 61, 16)) font = QtGui.QFont() font.setPointSize(11) self.label_2.setFont(font) self.label_2.setStyleSheet("color:white;") self.label_2.setObjectName("label_2") self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(50, 210, 31, 16)) font = QtGui.QFont() font.setPointSize(11) self.label_3.setFont(font) self.label_3.setStyleSheet("color:white;") self.label_3.setObjectName("label_3") self.line_2 = QtWidgets.QFrame(self.centralwidget) self.line_2.setGeometry(QtCore.QRect(10, 70, 471, 20)) self.line_2.setFrameShape(QtWidgets.QFrame.HLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.lineEdit_2 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_2.setGeometry(QtCore.QRect(100, 150, 181, 31)) self.lineEdit_2.setStyleSheet("border-radius: 10px;\n" "background-color: #43455b;\n" "padding: 5px;\n" "color: #c3c1c5;\n" "font-size: 13px;") self.lineEdit_2.setObjectName("lineEdit_2") self.lineEdit_3 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_3.setGeometry(QtCore.QRect(100, 200, 181, 31)) self.lineEdit_3.setStyleSheet("border-radius: 10px;\n" "background-color: #43455b;\n" "padding: 5px;\n" "color: #c3c1c5;\n" "font-size: 13px;") self.lineEdit_3.setObjectName("lineEdit_3") self.label_4 = QtWidgets.QLabel(self.centralwidget) self.label_4.setGeometry(QtCore.QRect(10, 110, 91, 16)) font = QtGui.QFont() font.setPointSize(11) self.label_4.setFont(font) self.label_4.setStyleSheet("color:white;") self.label_4.setObjectName("label_4") self.lineEdit_4 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_4.setGeometry(QtCore.QRect(100, 100, 181, 31)) self.lineEdit_4.setStyleSheet("border-radius: 10px;\n" "background-color: #43455b;\n" "padding: 5px;\n" "color: #c3c1c5;\n" "font-size: 13px;") self.lineEdit_4.setObjectName("lineEdit_4") self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_2.setGeometry(QtCore.QRect(340, 120, 91, 41)) font = QtGui.QFont() font.setFamily("Ubuntu") font.setPointSize(14) font.setBold(True) font.setWeight(75) self.pushButton_2.setFont(font) self.pushButton_2.setStyleSheet("color:#004cf5;\n" "background-color:#1f1e2b;\n" "border-radius: 15px;") self.pushButton_2.setObjectName("pushButton_2") self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_3.setGeometry(QtCore.QRect(340, 170, 91, 41)) font = QtGui.QFont() font.setFamily("Ubuntu") font.setPointSize(14) font.setBold(True) font.setWeight(75) self.pushButton_3.setFont(font) self.pushButton_3.setStyleSheet("color:#004cf5;\n" "background-color:#1f1e2b;\n" "border-radius: 15px;") self.pushButton_3.setObjectName("pushButton_3") self.lineEdit.raise_() self.pushButton.raise_() self.label.raise_() self.plainTextEdit.raise_() self.line.raise_() self.label_2.raise_() self.label_3.raise_() self.line_2.raise_() self.lineEdit_2.raise_() self.lineEdit_3.raise_() self.label_4.raise_() self.lineEdit_4.raise_() self.pushButton_2.raise_() self.pushButton_3.raise_() MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) # on startup self.lineEdit.setEnabled(False) self.pushButton.setEnabled(False) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) # add a listener to "Join" button self.pushButton_2.clicked.connect(lambda: self.connectToServer()) # add a listener to "Send" button self.pushButton.clicked.connect(lambda: self.sendMessage()) # add a listener to "Leave" button self.pushButton_3.clicked.connect(lambda: self.closeConn()) def connectToServer(self): # Get connection details username = self.lineEdit_4.text() server = self.lineEdit_2.text() port = (int)(self.lineEdit_3.text()) # Establish Connection addr = (server,port) client = socket.socket(socket.AF_INET,socket.SOCK_STREAM) client.connect(addr) self.global_client = client # test the global client global test_client test_client = client # On successful connection, Disable lineEdits self.lineEdit_4.setEnabled(False) self.lineEdit_2.setEnabled(False) self.lineEdit_3.setEnabled(False) self.pushButton_2.setEnabled(False) self.lineEdit.setEnabled(True) self.pushButton.setEnabled(True) print(username,server,port) # send the username to the server client.send(username.encode(FORMAT)) # lets start a thread to continously listen to server self.thread = ExecuteThread() self.thread.start() self.thread.my_signal.connect(self.appendToChat) def appendToChat(self,msg): self.plainTextEdit.appendPlainText(msg) def closeConn(self): print("close") test_client.send(DISCONNECT_MSG.encode(FORMAT)) self.lineEdit.setEnabled(False) self.pushButton.setEnabled(False) time.sleep(1) sys.exit() def sendMessage(self): # get the message in the lineEdit msg = self.lineEdit.text() # Send the msg to the server to be broadcasted self.global_client.send(msg.encode(FORMAT)) # Clear the lineEdit self.lineEdit.setText("") def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.pushButton.setText(_translate("MainWindow", "Send")) self.label.setText(_translate("MainWindow", "Chat")) self.lineEdit.setPlaceholderText(_translate("MainWindow", "Type a message")) self.label_2.setText(_translate("MainWindow", "Server")) self.label_3.setText(_translate("MainWindow", "Port")) self.label_4.setText(_translate("MainWindow", "Username")) self.pushButton_2.setText(_translate("MainWindow", "Join")) self.pushButton_3.setText(_translate("MainWindow", "Leave")) class ExecuteThread(QThread): my_signal = pyqtSignal(str) def run(self): while 1: # recevie message msg = test_client.recv(4096).decode(FORMAT) # If the received message is DISCONNECT_MSG then exit if(msg == DISCONNECT_MSG): closeConn(test_client) # emit signal self.my_signal.emit(msg) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
45.168618
88
0.679266
aa8e4092627663702e9df52551c5189436a97823
1,209
py
Python
main.py
amanda/randcamp
1e2a46c2bbae9456a595b796d7e5730661d24c91
[ "MIT" ]
null
null
null
main.py
amanda/randcamp
1e2a46c2bbae9456a595b796d7e5730661d24c91
[ "MIT" ]
null
null
null
main.py
amanda/randcamp
1e2a46c2bbae9456a595b796d7e5730661d24c91
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup import requests import json def get_page_html(num): url = f"https://bandcamp.com/artist_index?page={num}" html = requests.get(url).text return html def get_artist_info(html): soup = BeautifulSoup(html, 'html.parser') names = soup.find_all(class_="item") return [[n.get_text().strip(), n.find('a').get('href')] for n in names] def get_artist_links(html): soup = BeautifulSoup(html, 'html.parser') names = soup.find_all(class_="item") return [n.find('a').get('href') for n in names] def get_bands_on_page(page_number): return get_artist_links(get_page_html(page_number)) def write_file(): for i in range(1, 3449): # todo last page changes as more bands added with open(f"results-{i}.txt", "w") as f: bands = get_bands_on_page(i) # print(bands) f.write("\n".join(bands)) def write_json(): with open("results.txt") as fin: dicty = {"bands": []} for line in fin.readlines(): dicty["bands"].append(line.strip()) with open("results.json", "w") as fout: json.dump(dicty, fout) if __name__ == "__main__": write_file() # write_json()
25.1875
75
0.630273
ec5a9c34b785575c1af4f6cd07336300b34a698c
2,730
py
Python
scheduler/setup.py
Kami/google-cloud-python
a14ffbaa50f7823c2792e91413a37cbc3ce687f5
[ "Apache-2.0" ]
1
2019-06-14T10:11:59.000Z
2019-06-14T10:11:59.000Z
scheduler/setup.py
Kami/google-cloud-python
a14ffbaa50f7823c2792e91413a37cbc3ce687f5
[ "Apache-2.0" ]
null
null
null
scheduler/setup.py
Kami/google-cloud-python
a14ffbaa50f7823c2792e91413a37cbc3ce687f5
[ "Apache-2.0" ]
1
2020-04-14T10:47:41.000Z
2020-04-14T10:47:41.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import os import setuptools # Package metadata. name = "google-cloud-scheduler" description = "Cloud Scheduler API API client library" version = "1.1.0" # Should be one of: # 'Development Status :: 3 - Alpha' # 'Development Status :: 4 - Beta' # 'Development Status :: 5 - Production/Stable' release_status = "Development Status :: 5 - Production/Stable" dependencies = [ "google-api-core[grpc] >= 1.6.0, < 2.0.0dev", 'enum34; python_version < "3.4"', ] # Setup boilerplate below this line. package_root = os.path.abspath(os.path.dirname(__file__)) readme_filename = os.path.join(package_root, "README.rst") with io.open(readme_filename, encoding="utf-8") as readme_file: readme = readme_file.read() # Only include packages under the 'google' namespace. Do not include tests, # benchmarks, etc. packages = [ package for package in setuptools.find_packages() if package.startswith("google") ] # Determine which namespaces are needed. namespaces = ["google"] if "google.cloud" in packages: namespaces.append("google.cloud") setuptools.setup( name=name, version=version, description=description, long_description=readme, author="Google LLC", author_email="googleapis-packages@google.com", license="Apache 2.0", url="https://github.com/GoogleCloudPlatform/google-cloud-python", classifiers=[ release_status, "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Operating System :: OS Independent", "Topic :: Internet", ], platforms="Posix; MacOS X; Windows", packages=packages, namespace_packages=namespaces, install_requires=dependencies, python_requires=">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*", include_package_data=True, zip_safe=False, )
32.117647
85
0.689377
f809ebecd2f77cc3042cc11c130c8b897be36a6f
1,020
py
Python
V2RaycSpider1225/src/BusinessLogicLayer/plugins/accelerator/vulcan_ash.py
pgymail00/V2RayCloudSpider
d2222ed1374817f328dc378acb8dca21b06cc073
[ "MIT" ]
1
2021-12-10T14:28:14.000Z
2021-12-10T14:28:14.000Z
V2RaycSpider1225/src/BusinessLogicLayer/plugins/accelerator/vulcan_ash.py
codemonkeyBeginner/V2RayCloudSpider
9cb8acc0bab3c81168256e9498f5a6a926396646
[ "MIT" ]
null
null
null
V2RaycSpider1225/src/BusinessLogicLayer/plugins/accelerator/vulcan_ash.py
codemonkeyBeginner/V2RayCloudSpider
9cb8acc0bab3c81168256e9498f5a6a926396646
[ "MIT" ]
1
2021-11-30T09:12:49.000Z
2021-11-30T09:12:49.000Z
""" - 核心功能: - “解压”与实例化采集器管理模块 - 加速器性能释放 """ from BusinessCentralLayer.setting import logger, DEFAULT_POWER from .core import CoroutineSpeedup class ShuntRelease(CoroutineSpeedup): """accelerator性能释放关口""" def __init__( self, work_queue=None, task_docker: list = None, power: int = DEFAULT_POWER ): super(ShuntRelease, self).__init__( work_q=work_queue, task_docker=task_docker, power=power ) def control_driver(self, task): try: task() except Exception as e: logger.exception(e) class ForceRunRelease(CoroutineSpeedup): """collector管理器实例化关口""" def __init__(self, task_docker: list = None, power: int = DEFAULT_POWER): super(ForceRunRelease, self).__init__(task_docker=task_docker, power=power) from src.BusinessLogicLayer.cluster.sailor import manage_task self.core = manage_task def control_driver(self, task): self.core(class_=task, beat_sync=True, force_run=True)
26.153846
83
0.673529
ff81c9fbb03fb71c1e76f433d7db8c82cb55aac3
4,309
py
Python
function/python/brightics/function/statistics/cross_table.py
parkjh80/studio
6d8d8384272e5e1b2838b12e5557272a19408e89
[ "Apache-2.0" ]
1
2020-02-08T10:56:29.000Z
2020-02-08T10:56:29.000Z
function/python/brightics/function/statistics/cross_table.py
data-weirdo/studio
48852c4f097f773ce3d408b59f79fda2e2d60470
[ "Apache-2.0" ]
null
null
null
function/python/brightics/function/statistics/cross_table.py
data-weirdo/studio
48852c4f097f773ce3d408b59f79fda2e2d60470
[ "Apache-2.0" ]
null
null
null
""" Copyright 2019 Samsung SDS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from brightics.common.repr import BrtcReprBuilder, strip_margin, pandasDF2MD from brightics.function.utils import _model_dict from brightics.common.groupby import _function_by_group from brightics.common.utils import check_required_parameters from brightics.common.validation import raise_runtime_error import numpy as np import pandas as pd def cross_table(table, group_by=None, **params): check_required_parameters(_cross_table, params, ['table']) if group_by is not None: return _function_by_group(_cross_table, table, group_by=group_by, **params) else: return _cross_table(table, **params) def _cross_table(table, input_cols_1, input_cols_2, result='N', margins=False): df1 = [table[col] for col in input_cols_1] df2 = [table[col] for col in input_cols_2] # cross table if result == 'N': result_table = pd.crosstab(df1, df2, margins=margins) elif result == 'N / Row Total': result_table = pd.crosstab(df1, df2, margins=margins, normalize='index') elif result == 'N / Column Total': result_table = pd.crosstab(df1, df2, margins=margins, normalize='columns') elif result == 'N / Total': result_table = pd.crosstab(df1, df2, margins=margins, normalize='all') else: raise_runtime_error("Please check 'result'.") # each row and column name row_names = list(result_table.index)[:] if len(input_cols_1) == 1: joined_row_name = [str(i) for i in row_names] else: if margins == False: joined_row_name = ['_'.join(str(s) for s in row_names[i]) for i in range(len(row_names))] elif margins == True: joined_row_name = ['_'.join(str(s) for s in row_names[i]) for i in range(len(row_names) - 1)] + [row_names[-1][0]] column_names = list(result_table.columns)[:] if len(input_cols_2) == 1: joined_column_name = [str(i) for i in column_names] else: if margins == False: joined_column_name = ['_'.join(str(s) for s in column_names[i]) for i in range(len(column_names))] elif margins == True: joined_column_name = ['_'.join(str(s) for s in column_names[i]) for i in range(len(column_names) - 1)] + [column_names[-1][0]] # cross table if result == 'N': result_table.insert(loc=0, column=' ', value=joined_row_name) result_table.columns = np.append('N', joined_column_name) # cross table normalize by row elif result == 'N / Row Total': result_table.insert(loc=0, column=' ', value=joined_row_name) result_table.columns = np.append('N / Row Total', joined_column_name) # cross table normalize by column elif result == 'N / Column Total': result_table.insert(loc=0, column=' ', value=joined_row_name) result_table.columns = np.append('N / Column Total', joined_column_name) # cross table normalize by all values elif result == 'N / Total': result_table.insert(loc=0, column=' ', value=joined_row_name) result_table.columns = np.append('N / Total', joined_column_name) else: raise_runtime_error("Please check 'result'.") rb = BrtcReprBuilder() rb.addMD(strip_margin(""" | ## Cross Table Result | ### Result Type : {result} | | #### Result Table | | {result_table} | """.format(result=result, result_table=pandasDF2MD(result_table, num_rows=len(result_table.index) + 1)))) model = _model_dict('cross_table') model['result'] = result model['result_table'] = result_table model['_repr_brtc_'] = rb.get() return {'model': model}
40.271028
138
0.656301
6d03d1a742ef0150dff47550dd4df73aa6816049
2,499
py
Python
app.py
Ethan1498/Custom-URL-Shortener
405a23db5b2cb6900ab92a1b03998529c4173b50
[ "MIT" ]
null
null
null
app.py
Ethan1498/Custom-URL-Shortener
405a23db5b2cb6900ab92a1b03998529c4173b50
[ "MIT" ]
null
null
null
app.py
Ethan1498/Custom-URL-Shortener
405a23db5b2cb6900ab92a1b03998529c4173b50
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from flask import Flask from flask import request from flask import render_template from flask import redirect import sqlite3 as sql import requests app = Flask(__name__) @app.route('/',methods=['GET']) def hello_world(): return render_template('index.html') @app.route('/s',methods=['GET','POST']) def short(): if request.method=='POST': longurl = request.form['longurl'] custom = request.form['custom'] if not longurl and custom: return 'Error <script>alert("Invalid Credentials");</script>' if longurl.startswith("http://" or "https://"): pass else: longurl = str("http://"+str(longurl)) try: r = requests.get(longurl) if r.status_code == 200: pass else: return 'Invalid URL <script>alert("Invalid URL");</script>' except: return '''Invalid URL <script>alert("Invalid URL"); var meta = document.createElement('meta'); meta.httpEquiv = "REFRESH"; meta.content = "0;URL=/"; document.getElementsByTagName('head')[0].appendChild(meta); </script>''' print (longurl) print (custom) conn = sql.connect('urls.db') cursor = conn.cursor() #print cursor.execute("SELECT * FROM urls;") try: cursor.execute("INSERT INTO urls(longurl,custom) VALUES (?,?);", (str(longurl),str(custom))) except: return '''Invalid/Already existing custom url <script>alert("Invalid/Already existing custom url"); var meta = document.createElement('meta'); meta.httpEquiv = "REFRESH"; meta.content = "0;URL=/"; document.getElementsByTagName('head')[0].appendChild(meta); </script>''' conn.commit() conn.close() url = "https://shrink-link/s/"+custom return 'Live at <a target="_blank" href="'+url+'">'+url+'</a>' return "" @app.route('/s/<custom>',methods=['GET','POST']) def final(custom): conn = sql.connect('urls.db') cursor = conn.cursor() cursor.execute('SELECT * FROM urls WHERE custom=?;', (str(custom),)) #return_this = cursor.fetchall() #return_this = [[str(item) for item in results] for results in cursor.fetchall()] for row in cursor.fetchall(): return_this= row[0] print (return_this) return redirect(return_this,code=302) if __name__ == '__main__': app.run(port=5000)
27.766667
111
0.590236
3b84b68332c5ab4e64a14548d8329ad4ddddbf72
3,432
py
Python
explorer/services/worker/manager.py
cryptassic/dex-explorer
1588011db1666b8f1ffb6499d909e4eff3f6b09b
[ "MIT" ]
null
null
null
explorer/services/worker/manager.py
cryptassic/dex-explorer
1588011db1666b8f1ffb6499d909e4eff3f6b09b
[ "MIT" ]
null
null
null
explorer/services/worker/manager.py
cryptassic/dex-explorer
1588011db1666b8f1ffb6499d909e4eff3f6b09b
[ "MIT" ]
null
null
null
import time import threading import time from multiprocessing import Process, Queue from explorer.utils.misc_helpers import get_sliced_range from explorer.utils import CustomLogger from explorer.models import WorkerTask from explorer.services import Worker class WorkerManager(): def __init__(self, callback_func, start_block: int, end_block: int,max_parallel:int=3): self._logger = CustomLogger() self._max_parallelism = max_parallel self._callback_func = callback_func self.workers = [] self.block_start = start_block self.block_end = end_block def __callback_service(self) -> None: while True: if not self.output_queue._closed: if not self.output_queue.empty(): data_to_pass = self.output_queue.get() self._callback_func(data_to_pass) else: time.sleep(1) else: break def __start_callback_thread(self) -> None: self._callback_thread = threading.Thread(target=self.__callback_service, args=()) self._callback_thread.start() def __boot_workers(self) -> None: for _ in range(self._max_parallelism): worker = Worker(input_queue=self.input_queue, output_queue=self.output_queue) w_process = Process(target=worker.start, args=()) self.workers.append(w_process) [worker.start() for worker in self.workers] def __start(self) -> None: if hasattr(self,'input_queue'): if self.input_queue and not self.input_queue.empty: self._logger.warning(f"WorkerManager:Input Queue not empty! Keeping old queue") else: self.input_queue = Queue( self._max_parallelism*2) if hasattr(self,'output_queue'): if self.output_queue and not self.output_queue.empty: self._logger.warning(f"WorkerManager: Output Queue not empty! Keeping old queue") else: self.output_queue = Queue() self.__start_callback_thread() if len(self.workers): self._logger.warning(f"WorkerManager: Found old workers. Overrding") self.workers.clear() self.__boot_workers() if not len(self.workers): raise Exception("Failed to launch workers") def stop(self) -> None: # Putting dead pill in queue self.input_queue.put(None) for worker in self.workers: worker.join() self._logger.info(f"Job Completed. Exiting...") self.input_queue.close() #This will close callback thread self.output_queue.close() def start(self) -> None: self.__start() starting_block = self.block_start # Slicing big ranges to smaller chunks of self._max_parallelism size for block_range_slice in get_sliced_range(start_block=starting_block, end_block=self.block_end, step=self._max_parallelism): # Extend last slice to include last block if block_range_slice == self.block_end: block_range_slice += 1 for block_index in range(starting_block, block_range_slice): task = WorkerTask(block_number=block_index) self.input_queue.put(task) starting_block = block_range_slice
33.320388
132
0.629662
4ec023f00ce83ba799cd5221b2d97a4a868f7fc4
14,240
py
Python
src/lib/models/networks/msra_resnet_fpn.py
evitself/CenterNet
db3714397c776f3f84c6ab9b61a47160f78462f5
[ "MIT" ]
null
null
null
src/lib/models/networks/msra_resnet_fpn.py
evitself/CenterNet
db3714397c776f3f84c6ab9b61a47160f78462f5
[ "MIT" ]
null
null
null
src/lib/models/networks/msra_resnet_fpn.py
evitself/CenterNet
db3714397c776f3f84c6ab9b61a47160f78462f5
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by Bin Xiao (Bin.Xiao@microsoft.com) # Modified by Xingyi Zhou # ------------------------------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.model_zoo as model_zoo from typing import List BN_MOMENTUM = 0.1 model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNetFpn(nn.Module): def __init__(self, block, layers, heads, head_conv, **kwargs): self.inplanes = 64 self.deconv_with_bias = False self.heads = heads super(ResNetFpn, self).__init__() # multi stem self.k3_conv = nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False) self.k3_bn = nn.BatchNorm2d(32, momentum=BN_MOMENTUM) self.k3_relu = nn.ReLU(inplace=True) self.k3_maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.k7_conv = nn.Conv2d(3, 24, kernel_size=7, stride=2, padding=3, bias=False) self.k7_bn = nn.BatchNorm2d(24, momentum=BN_MOMENTUM) self.k7_relu = nn.ReLU(inplace=True) self.k7_maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.k11_conv = nn.Conv2d(3, 8, kernel_size=11, stride=2, padding=5, bias=False) self.k11_bn = nn.BatchNorm2d(8, momentum=BN_MOMENTUM) self.k11_relu = nn.ReLU(inplace=True) self.k11_maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1, l1_in, l1_out = self._make_layer(block, 64, layers[0]) self.layer2, l2_in, l2_out = self._make_layer(block, 128, layers[1], stride=2) self.layer3, l3_in, l3_out = self._make_layer(block, 256, layers[2], stride=2) self.layer4, l4_in, l4_out = self._make_layer(block, 512, layers[3], stride=2) # used for deconv layers # self.deconv_layers = self._make_deconv_layer( # 3, # [256, 256, 256], # [4, 4, 4], # ) self.deconv_layer1 = self._make_deconv_layer_one(l4_out, 256, 4) self.deconv_layer2 = self._make_deconv_layer_one(256, 256, 4) self.deconv_layer3 = self._make_deconv_layer_one(256, 256, 4) self.deconv_layers = [ self.deconv_layer1, self.deconv_layer2, self.deconv_layer3 ] # self.final_layer = [] self.layer3_projection = self._make_fpn_projection_layer(l3_out, 256) self.layer2_projection = self._make_fpn_projection_layer(l2_out, 256) self.layer1_projection = self._make_fpn_projection_layer(l1_out, 256) self.projection_layers = [ self.layer3_projection, self.layer2_projection, self.layer1_projection ] for head in sorted(self.heads): num_output = self.heads[head] if head_conv > 0: fc = nn.Sequential( nn.Conv2d(256, head_conv, kernel_size=3, padding=1, bias=True), nn.ReLU(inplace=True), nn.Conv2d(head_conv, num_output, kernel_size=1, stride=1, padding=0)) else: fc = nn.Conv2d( in_channels=256, out_channels=num_output, kernel_size=1, stride=1, padding=0 ) self.__setattr__(head, fc) # self.final_layer = nn.ModuleList(self.final_layer) def _make_layer(self, block, planes, blocks, stride=1): downsample = None layer_in_ch = self.inplanes if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) layer_out_ch = self.inplanes return nn.Sequential(*layers), int(layer_in_ch), int(layer_out_ch) def _get_deconv_cfg(self, deconv_kernel, index): if deconv_kernel == 4: padding = 1 output_padding = 0 elif deconv_kernel == 3: padding = 1 output_padding = 1 elif deconv_kernel == 2: padding = 0 output_padding = 0 return deconv_kernel, padding, output_padding def _make_deconv_layer(self, num_layers, num_filters, num_kernels) -> List[torch.nn.Sequential]: assert num_layers == len(num_filters), \ 'ERROR: num_deconv_layers is different len(num_deconv_filters)' assert num_layers == len(num_kernels), \ 'ERROR: num_deconv_layers is different len(num_deconv_filters)' deconv_blocks = [] for i in range(num_layers): layers = [] kernel, padding, output_padding = \ self._get_deconv_cfg(num_kernels[i], i) planes = num_filters[i] layers.append( nn.ConvTranspose2d( in_channels=self.inplanes, out_channels=planes, kernel_size=kernel, stride=2, padding=padding, output_padding=output_padding, bias=self.deconv_with_bias)) layers.append(nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)) layers.append(nn.ReLU(inplace=True)) self.inplanes = planes deconv_blocks.append(nn.Sequential(*layers)) return deconv_blocks def _make_deconv_layer_one(self, in_channels, out_channels, kernel): kernel, padding, output_padding = self._get_deconv_cfg(kernel, 0) layers = [] layers.append( nn.ConvTranspose2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel, stride=2, padding=padding, output_padding=output_padding, bias=self.deconv_with_bias)) layers.append(nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM)) layers.append(nn.ReLU(inplace=True)) return nn.Sequential(*layers) def _make_fpn_projection_layer(self, in_plains, out_plains): layers = [ nn.Conv2d( in_channels=in_plains, out_channels=out_plains, kernel_size=1, stride=1, padding=0, bias=self.deconv_with_bias )] return nn.Sequential(*layers) def forward(self, x): x_k3 = self.k3_maxpool(self.k3_relu(self.k3_bn(self.k3_conv(x)))) x_k7 = self.k7_maxpool(self.k7_relu(self.k7_bn(self.k7_conv(x)))) x_k11 = self.k7_maxpool(self.k11_relu(self.k11_bn(self.k11_conv(x)))) x_cat = torch.cat((x_k3, x_k7, x_k11), 1) l1 = self.layer1(x_cat) p1 = self.layer1_projection(l1) l2 = self.layer2(l1) p2 = self.layer2_projection(l2) l3 = self.layer3(l2) p3 = self.layer3_projection(l3) l4 = self.layer4(l3) d1 = self.deconv_layer1(l4) d2 = self.deconv_layer2(d1 + p3) d3 = self.deconv_layer3(d2 + p2) feature = d3 + p1 ret = {} for head in self.heads: ret[head] = self.__getattr__(head)(feature) return [ret] def init_weights(self, num_layers, pretrained=True): for backbone_layer in (self.k3_conv, self.k3_bn, self.k7_conv, self.k7_bn, self.k11_conv, self.k11_bn, self.layer1, self.layer2, self.layer3, self.layer4): for _, m in backbone_layer.named_modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, std=0.001) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # print('=> init resnet deconv weights from normal distribution') for deconv_layer in self.deconv_layers: for _, m in deconv_layer.named_modules(): if isinstance(m, nn.ConvTranspose2d): # print('=> init {}.weight as normal(0, 0.001)'.format(name)) # print('=> init {}.bias as 0'.format(name)) nn.init.normal_(m.weight, std=0.001) if self.deconv_with_bias: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): # print('=> init {}.weight as 1'.format(name)) # print('=> init {}.bias as 0'.format(name)) nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) for proj_layer in self.projection_layers: for _, m in proj_layer.named_modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, std=0.001) if self.deconv_with_bias: nn.init.constant_(m.bias, 0) # print('=> init final conv weights from normal distribution') for head in self.heads: final_layer = self.__getattr__(head) for i, m in enumerate(final_layer.modules()): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') # print('=> init {}.weight as normal(0, 0.001)'.format(name)) # print('=> init {}.bias as 0'.format(name)) if m.weight.shape[0] == self.heads[head]: if 'hm' in head: nn.init.constant_(m.bias, -2.19) else: nn.init.normal_(m.weight, std=0.001) nn.init.constant_(m.bias, 0) if pretrained: # pretrained_state_dict = torch.load(pretrained) url = model_urls['resnet{}'.format(num_layers)] pretrained_state_dict = model_zoo.load_url(url) print('=> loading pretrained model {}'.format(url)) self.load_state_dict(pretrained_state_dict, strict=False) # else: # print('=> imagenet pretrained model dose not exist') # print('=> please download it first') # raise ValueError('imagenet pretrained model does not exist') resnet_spec = {18: (BasicBlock, [2, 2, 2, 2]), 34: (BasicBlock, [3, 4, 6, 3]), 50: (Bottleneck, [3, 4, 6, 3]), 101: (Bottleneck, [3, 4, 23, 3]), 152: (Bottleneck, [3, 8, 36, 3])} def get_resnet_fpn(num_layers, heads, head_conv): block_class, layers = resnet_spec[num_layers] model = ResNetFpn(block_class, layers, heads, head_conv=head_conv) model.init_weights(num_layers, pretrained=True) return model
38.27957
100
0.56889
1069c773ae75dccc1862c813261c20a19dfca163
512
py
Python
src/hypermodern_python_tutorial/console.py
arwinlashawn/hypermodern-python-tutorial
94e266aab271d0da64d222ba8821766eca34578e
[ "MIT" ]
null
null
null
src/hypermodern_python_tutorial/console.py
arwinlashawn/hypermodern-python-tutorial
94e266aab271d0da64d222ba8821766eca34578e
[ "MIT" ]
null
null
null
src/hypermodern_python_tutorial/console.py
arwinlashawn/hypermodern-python-tutorial
94e266aab271d0da64d222ba8821766eca34578e
[ "MIT" ]
null
null
null
import textwrap import click import requests from . import __version__ API_URL = "https://en.wikipedia.org/api/rest_v1/page/random/summary" @click.command() @click.version_option(version=__version__) def main(): """The hypermodern Python project.""" with requests.get(API_URL) as response: response.raise_for_status() data = response.json() title = data["title"] extract = data["extract"] click.secho(title, fg="green") click.echo(textwrap.fill(extract))
17.655172
68
0.683594
6849578bbb9ac0aaf07f530ccd81bf3d876a1050
6,940
py
Python
tests/components/mfi/test_sensor.py
Hypfer/home-assistant
204ca3f3a6e24ef11ece2e2ee490a8d77553c147
[ "Apache-2.0" ]
1
2019-12-06T08:49:19.000Z
2019-12-06T08:49:19.000Z
tests/components/mfi/test_sensor.py
FuqiangSong/home-assistant
d5419b77f9c245e5af006143eb55ae4dda3f174e
[ "Apache-2.0" ]
2
2021-02-08T20:39:43.000Z
2021-09-08T01:36:57.000Z
tests/components/mfi/test_sensor.py
FuqiangSong/home-assistant
d5419b77f9c245e5af006143eb55ae4dda3f174e
[ "Apache-2.0" ]
null
null
null
"""The tests for the mFi sensor platform.""" import unittest import unittest.mock as mock import requests from mficlient.client import FailedToLogin from homeassistant.setup import setup_component import homeassistant.components.sensor as sensor import homeassistant.components.mfi.sensor as mfi from homeassistant.const import TEMP_CELSIUS from tests.common import get_test_home_assistant class TestMfiSensorSetup(unittest.TestCase): """Test the mFi sensor platform.""" PLATFORM = mfi COMPONENT = sensor THING = "sensor" GOOD_CONFIG = { "sensor": { "platform": "mfi", "host": "foo", "port": 6123, "username": "user", "password": "pass", "ssl": True, "verify_ssl": True, } } def setup_method(self, method): """Set up things to be run when tests are started.""" self.hass = get_test_home_assistant() def teardown_method(self, method): """Stop everything that was started.""" self.hass.stop() @mock.patch("homeassistant.components.mfi.sensor.MFiClient") def test_setup_missing_config(self, mock_client): """Test setup with missing configuration.""" config = {"sensor": {"platform": "mfi"}} assert setup_component(self.hass, "sensor", config) assert not mock_client.called @mock.patch("homeassistant.components.mfi.sensor.MFiClient") def test_setup_failed_login(self, mock_client): """Test setup with login failure.""" mock_client.side_effect = FailedToLogin assert not self.PLATFORM.setup_platform(self.hass, dict(self.GOOD_CONFIG), None) @mock.patch("homeassistant.components.mfi.sensor.MFiClient") def test_setup_failed_connect(self, mock_client): """Test setup with connection failure.""" mock_client.side_effect = requests.exceptions.ConnectionError assert not self.PLATFORM.setup_platform(self.hass, dict(self.GOOD_CONFIG), None) @mock.patch("homeassistant.components.mfi.sensor.MFiClient") def test_setup_minimum(self, mock_client): """Test setup with minimum configuration.""" config = dict(self.GOOD_CONFIG) del config[self.THING]["port"] assert setup_component(self.hass, self.COMPONENT.DOMAIN, config) assert mock_client.call_count == 1 assert mock_client.call_args == mock.call( "foo", "user", "pass", port=6443, use_tls=True, verify=True ) @mock.patch("homeassistant.components.mfi.sensor.MFiClient") def test_setup_with_port(self, mock_client): """Test setup with port.""" config = dict(self.GOOD_CONFIG) config[self.THING]["port"] = 6123 assert setup_component(self.hass, self.COMPONENT.DOMAIN, config) assert mock_client.call_count == 1 assert mock_client.call_args == mock.call( "foo", "user", "pass", port=6123, use_tls=True, verify=True ) @mock.patch("homeassistant.components.mfi.sensor.MFiClient") def test_setup_with_tls_disabled(self, mock_client): """Test setup without TLS.""" config = dict(self.GOOD_CONFIG) del config[self.THING]["port"] config[self.THING]["ssl"] = False config[self.THING]["verify_ssl"] = False assert setup_component(self.hass, self.COMPONENT.DOMAIN, config) assert mock_client.call_count == 1 assert mock_client.call_args == mock.call( "foo", "user", "pass", port=6080, use_tls=False, verify=False ) @mock.patch("homeassistant.components.mfi.sensor.MFiClient") @mock.patch("homeassistant.components.mfi.sensor.MfiSensor") def test_setup_adds_proper_devices(self, mock_sensor, mock_client): """Test if setup adds devices.""" ports = { i: mock.MagicMock(model=model) for i, model in enumerate(mfi.SENSOR_MODELS) } ports["bad"] = mock.MagicMock(model="notasensor") mock_client.return_value.get_devices.return_value = [ mock.MagicMock(ports=ports) ] assert setup_component(self.hass, sensor.DOMAIN, self.GOOD_CONFIG) for ident, port in ports.items(): if ident != "bad": mock_sensor.assert_any_call(port, self.hass) assert mock.call(ports["bad"], self.hass) not in mock_sensor.mock_calls class TestMfiSensor(unittest.TestCase): """Test for mFi sensor platform.""" def setup_method(self, method): """Set up things to be run when tests are started.""" self.hass = get_test_home_assistant() self.port = mock.MagicMock() self.sensor = mfi.MfiSensor(self.port, self.hass) def teardown_method(self, method): """Stop everything that was started.""" self.hass.stop() def test_name(self): """Test the name.""" assert self.port.label == self.sensor.name def test_uom_temp(self): """Test the UOM temperature.""" self.port.tag = "temperature" assert TEMP_CELSIUS == self.sensor.unit_of_measurement def test_uom_power(self): """Test the UOEM power.""" self.port.tag = "active_pwr" assert "Watts" == self.sensor.unit_of_measurement def test_uom_digital(self): """Test the UOM digital input.""" self.port.model = "Input Digital" assert "State" == self.sensor.unit_of_measurement def test_uom_unknown(self): """Test the UOM.""" self.port.tag = "balloons" assert "balloons" == self.sensor.unit_of_measurement def test_uom_uninitialized(self): """Test that the UOM defaults if not initialized.""" type(self.port).tag = mock.PropertyMock(side_effect=ValueError) assert "State" == self.sensor.unit_of_measurement def test_state_digital(self): """Test the digital input.""" self.port.model = "Input Digital" self.port.value = 0 assert mfi.STATE_OFF == self.sensor.state self.port.value = 1 assert mfi.STATE_ON == self.sensor.state self.port.value = 2 assert mfi.STATE_ON == self.sensor.state def test_state_digits(self): """Test the state of digits.""" self.port.tag = "didyoucheckthedict?" self.port.value = 1.25 with mock.patch.dict(mfi.DIGITS, {"didyoucheckthedict?": 1}): assert 1.2 == self.sensor.state with mock.patch.dict(mfi.DIGITS, {}): assert 1.0 == self.sensor.state def test_state_uninitialized(self): """Test the state of uninitialized sensors.""" type(self.port).tag = mock.PropertyMock(side_effect=ValueError) assert mfi.STATE_OFF == self.sensor.state def test_update(self): """Test the update.""" self.sensor.update() assert self.port.refresh.call_count == 1 assert self.port.refresh.call_args == mock.call()
37.513514
88
0.646974
09758795cd0dbf301f57a6b93a4722caa3245e0c
11,493
py
Python
010train_model_10_preprocess.py
qiufengdiewu/LPInsider
92fcc2ad9e05cb634c4e3f1accd1220b984a027d
[ "Apache-2.0" ]
null
null
null
010train_model_10_preprocess.py
qiufengdiewu/LPInsider
92fcc2ad9e05cb634c4e3f1accd1220b984a027d
[ "Apache-2.0" ]
null
null
null
010train_model_10_preprocess.py
qiufengdiewu/LPInsider
92fcc2ad9e05cb634c4e3f1accd1220b984a027d
[ "Apache-2.0" ]
null
null
null
# coding:utf-8 import pandas as pd import numpy as np import gensim from sklearn.svm import SVC from sklearn import preprocessing from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn import metrics import xgboost import lightgbm from sklearn.metrics.pairwise import pairwise_distances import joblib # 计算词向量 # 包括计算对应的位置特征 def get_sent_vec(size, npLength, sent, model, model_train, lncRNA,protein,length_POS,sent_POS,POS_classified0,POS_matrix,length_classified): vec = [] sent = str(sent).replace(',', ' ') sent = sent.replace('(', ' ') sent = sent.replace(')', ' ') sent = sent.replace("'", ' ') sent = sent.replace('.', ' ') sent = sent.replace(':', ' ') sent = sent.replace(']', ' ') sent = sent.replace('[', ' ') sent = sent.replace('/', ' ') words = sent.split(" ") for word in words: try: vec_word = model[word].reshape(1, size) vec = np.append(vec, vec_word) npLength -= 1 except: try: vec_word = model_train[word].reshape(1, size) vec = np.append(vec, vec_word) npLength -= 1 except: continue while npLength >= 0: vec = np.append(vec, np.zeros(size).reshape(1, size)) npLength -= 1 # 计算位置特征 matrix = np.zeros((1, 6)) lncRNA_matrix = matrix[0] protein_matrix = matrix[0] if lncRNA == "5'aHIF1alpha": words[words.index('aHIF1alpha')] = "5'aHIF1alpha" try: lncRNA_location = words.index(lncRNA) except: lncRNA_location=-1 try: protein_location = words.index(protein) except: protein_location=-1 try: lncRNA_w2v = model_train[lncRNA] protein_w2v = model_train[protein] count = 0 # 计算lncRNA的距离矩阵 for i in range(lncRNA_location - 1, -1, -1): try: word_w2v = model_train[words[i]] lncRNA_matrix[2 - count] = pairwise_distances([lncRNA_w2v, word_w2v])[0][1] count += 1 if count >= 3: break except: pass count = 0 for i in range(lncRNA_location + 1, len(words)): try: word_w2v = model_train[words[i]] lncRNA_matrix[3 + count] = pairwise_distances([lncRNA_w2v, word_w2v])[0][1] count += 1 if count >= 3: break except: pass # 计算protein的距离矩阵 # 这里可以写成一个函数,减少行数,but我没改。emmm count = 0 for i in range(protein_location - 1, -1, -1): try: word_w2v = model_train[words[i]] protein_matrix[2 - count] = pairwise_distances([protein_w2v, word_w2v])[0][1] count += 1 if count >= 3: break except: pass count = 0 for i in range(protein_location + 1, len(words)): try: word_w2v = model_train[words[i]] protein_matrix[3 + count] = pairwise_distances([protein_w2v, word_w2v])[0][1] count += 1 if count >= 3: break except: pass except: pass ######计算词性特征 vec_POS=[] words_POS=str(sent_POS).split(" ") for word_POS in words_POS: for i in range(length_classified): if str(word_POS)==str(POS_classified0[i]): vec_POS=np.append(vec_POS,POS_matrix[i]) length_POS-=1 break while length_POS >= 0: vec_POS = np.append(vec_POS,np.zeros(length_classified).reshape(1,length_classified)) length_POS -= 1 ##################### vec = nomalization(vec) lncRNA_matrix = nomalization(lncRNA_matrix) protein_matrix = nomalization(protein_matrix) vec_POS = nomalization(vec_POS) vec = np.concatenate((vec, lncRNA_matrix, protein_matrix, vec_POS), axis=0) return vec # 训练模型 X = pd.read_csv("./out/007X_with_entity_and_stanford_parser_preprocess.txt", sep='\t', header=None, encoding='ISO-8859-1') ####### _025POS_transform_to_unite=pd.read_csv("./in/025POS_transform_to_unite_preprocess.txt",sep="\t",header=None,encoding="utf-8") y = np.load('./out/007X_with_entity_and_stanford_parser_preprocess.npy') #### f_svm = open("./out/results/010svm_10_preprocess.txt", 'a+') ################################################### f_LogisticR = open("./out/results/010LogisticR_10_preprocess.txt", 'a+') ################################################### f_RandomF = open('./out/results/010RandomF_10_preprocess.txt', 'a+') ################################################### f_xgboost = open('./out/results/010xgboost_10_preprocess.txt', 'a+') ###################################################) f_lightGBM = open('./out/results/010lightGBM_10_preprocess.txt', 'a+') ###################################################) def train(X, y, count): # 导入模型 word2vec_path = "I:/Word2vecModel/wikipedia-pubmed-and-PMC-w2v.bin" word2vec_path_train = "./out/03721Word2vec_word2vec_format_model" model = gensim.models.KeyedVectors.load_word2vec_format(word2vec_path, binary=True) model_train = gensim.models.word2vec.Word2Vec.load(word2vec_path_train) for c in range(10):################### sentX = [] sentX_POS=[] length = 0 length_POS=0 for i in range(0, len(X), 1): sentX.append(X[2][i]) for sent in sentX: sent = str(sent).replace(',', ' ') sent = sent.replace('(', ' ') sent = sent.replace(')', ' ') sent = sent.replace("'", ' ') sent = sent.replace('.', ' ') sent = sent.replace(':', ' ') sent = sent.replace(']', ' ') sent = sent.replace('[', ' ') sent = sent.replace('/', ' ') words = sent.split(" ") if len(words) > length: length = len(words)#########小样本数据集的单词最大长度是97 print("length"+str(length)) for i in range(len(_025POS_transform_to_unite)): sentX_POS.append(_025POS_transform_to_unite[2][i]) for sent in sentX_POS: words=str(sent).split(" ") if len(words) > length_POS: length_POS = len(words) print("length_POS" + str(length_POS)) lncRNAs=[] proteins=[] for i in range(len(X)): lncRNAs.append(X[0][i]) proteins.append(X[1][i]) XX = [] ############计算词性矩阵,例如NN:[0,1,0,0,0,0,0,0,0,0,0] POS_classified = pd.read_csv("./in/POS_classified.txt", sep='\t', header=None) length_classified = len(POS_classified) POS_classified0 = POS_classified[0] POS_matrix=np.zeros((length_classified,length_classified)) for i in range(length_classified): POS_matrix[i][i] = 1 ############### for i in range(len(sentX)): sent=sentX[i] sent_POS=sentX_POS[i] XX.append([get_sent_vec(200, length, sent, model, model_train,X[0][i],X[1][i],length_POS,sent_POS,POS_classified0,POS_matrix,length_classified)]) #i += 1 XX = np.concatenate(XX) #################################### floder = KFold(n_splits=10, random_state=5 * c, shuffle=True) for train_loc, test_loc in floder.split(XX, y): train_vec = XX[train_loc] y_train = y[train_loc] test_vec = XX[test_loc] y_test = y[test_loc] print("lightGBM") # lightGBM############################################ LGBM = lightgbm.LGBMClassifier() LGBM.fit(train_vec, y_train) accuracy_LGBM = LGBM.score(test_vec, y_test) predict_LGBM = LGBM.predict(test_vec) precision_LGBM = metrics.precision_score(y_test, predict_LGBM) recall_LGBM = metrics.recall_score(y_test, predict_LGBM) f1_LGBM = metrics.f1_score(y_test, predict_LGBM) ################### joblib.dump(LGBM, './out/010LGBM_model.pkl') print("joblib.dump(LGBM, './out/010LGBM_model.pkl')") f_lightGBM.write(str(accuracy_LGBM) + '\t') f_lightGBM.write(str(precision_LGBM) + '\t' + str(recall_LGBM) + '\t' + str(f1_LGBM) + '\n') # xgboost############################################### reg = xgboost.XGBClassifier(silent=1) reg.fit(train_vec, y_train) accuracy_XGB = reg.score(test_vec, y_test) predict_XGB = reg.predict(test_vec) precision_XGB = metrics.precision_score(y_test, predict_XGB) recall_XGB = metrics.recall_score(y_test, predict_XGB) f1_XGB = metrics.f1_score(y_test, predict_XGB) f_xgboost.write(str(accuracy_XGB) + '\t') f_xgboost.write(str(precision_XGB) + '\t' + str(recall_XGB) + '\t' + str(f1_XGB) + '\n') # svm################################################### clf_svm = SVC(kernel='rbf', verbose=True, C=10) clf_svm.fit(train_vec, y_train) accuracy_SVM = clf_svm.score(test_vec, y_test) predict = clf_svm.predict(test_vec) precision_SVM = metrics.precision_score(y_test, predict) recall_SVM = metrics.recall_score(y_test, predict) f1_SVM = metrics.f1_score(y_test, predict) f_svm.write(str(accuracy_SVM) + '\t') f_svm.write(str(precision_SVM) + '\t' + str(recall_SVM) + '\t' + str(f1_SVM) + '\n') # 逻辑回归################################################## clf_LogR = LogisticRegression(C=100, max_iter=200) clf_LogR.fit(train_vec, y_train) accuracy_LogR = clf_LogR.score(test_vec, y_test) predict_logR = clf_LogR.predict(test_vec) precision_logR = metrics.precision_score(y_test, predict_logR) recall_logR = metrics.recall_score(y_test, predict_logR) f1_logR = metrics.f1_score(y_test, predict_logR) f_LogisticR.write(str(accuracy_LogR) + '\t') f_LogisticR.write(str(precision_logR) + '\t' + str(recall_logR) + '\t' + str(f1_logR) + '\n') # RandomForestClassifier ################################################## forest = RandomForestClassifier(criterion='entropy', n_estimators=1000) forest.fit(train_vec, y_train) acc_RF = forest.score(test_vec, y_test) predict_RF = forest.predict(test_vec) precision_RF = metrics.precision_score(y_test, predict_RF) recall_RF = metrics.recall_score(y_test, predict_RF) f1_RF = metrics.f1_score(y_test, predict_RF) f_RandomF.write(str(acc_RF) + '\t') f_RandomF.write(str(precision_RF) + '\t' + str(recall_RF) + '\t' + str(f1_RF) + '\n') count += 1 print("#################success:" + str(int(c) + 1) + ' ' + str(count)) def nomalization(X): return preprocessing.scale(X, axis=0) count = 0 train(X, y, count) f_svm.close() f_LogisticR.close() f_RandomF.close() f_xgboost.close() f_lightGBM.close()
38.567114
157
0.541982
ee81a941b2355a6c775d591c3a7c0df2d0a4cac8
5,442
py
Python
xeno/model.py
sourcery-ai-bot/xeno
df7e9448b681024fae7a899bb2060b9bcda84ecf
[ "MIT" ]
null
null
null
xeno/model.py
sourcery-ai-bot/xeno
df7e9448b681024fae7a899bb2060b9bcda84ecf
[ "MIT" ]
null
null
null
xeno/model.py
sourcery-ai-bot/xeno
df7e9448b681024fae7a899bb2060b9bcda84ecf
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Linear stack of layers. """ import sys import numpy as np from xeno.utils.random import get_rng from .layers import Layer from .optimizers import SGD from . import optimizers from xeno.utils.random import get_dtype from .objectives import SoftmaxCategoricalCrossEntropy from . import objectives class Model(object): def __init__(self, layers=None): self.layers = [] if layers is None else layers self.loss = None self.optimizer = None def add(self, layer): assert isinstance(layer, Layer), "Must be 'Layer' instance." self.layers.append(layer) def compile(self, loss=SoftmaxCategoricalCrossEntropy(), optimizer=SGD()): # check # assert isinstance(self.layers[0], InputLayer) self.layers[0].first_layer = True # connect to next_layer = None for layer in self.layers: layer.connect_to(next_layer) next_layer = layer # for pre_layer, layer in zip(self.layers[:-1], self.layers[1:]): # layer.connect_to(pre_layer) # get loss class self.loss = objectives.get(loss) # get optimizer class self.optimizer = optimizers.get(optimizer) def fit(self, X, Y, max_iter=100, batch_size=64, shuffle=True, validation_split=0., validation_data=None, file=sys.stdout): # prepare data train_X = X.astype(get_dtype()) if np.issubdtype(np.float64, X.dtype) else X train_Y = Y.astype(get_dtype()) if np.issubdtype(np.float64, Y.dtype) else Y if 1. > validation_split > 0.: split = int(train_Y.shape[0] * validation_split) valid_X, valid_Y = train_X[-split:], train_Y[-split:] train_X, train_Y = train_X[:-split], train_Y[:-split] elif validation_data is not None: valid_X, valid_Y = validation_data else: valid_X, valid_Y = None, None for iter_idx in range(1, max_iter + 1): # shuffle if shuffle: seed = get_rng().randint(111, 1111111) np.random.seed(seed) np.random.shuffle(train_X) np.random.seed(seed) np.random.shuffle(train_Y) # train train_losses, train_predicts, train_targets = [], [], [] for b in range(train_Y.shape[0] // batch_size): batch_begin = b * batch_size batch_end = batch_begin + batch_size x_batch = train_X[batch_begin:batch_end] y_batch = train_Y[batch_begin:batch_end] # forward propagation y_pred = self.predict(x_batch) # backward propagation next_grad = self.loss.backward(y_pred, y_batch) for layer in self.layers[::-1]: next_grad = layer.backward(next_grad) # get parameter and gradients params = [] grads = [] for layer in self.layers: params += layer.params grads += layer.grads # update parameters self.optimizer.update(params, grads) # got loss and predict train_losses.append(self.loss.forward(y_pred, y_batch)) train_predicts.extend(y_pred) train_targets.extend(y_batch) # output train status runout = "iter %d, train-[loss %.4f, acc %.4f]; " % ( iter_idx, float(np.mean(train_losses)), float(self.accuracy(train_predicts, train_targets))) # runout = "iter %d, train-[loss %.4f, ]; " % ( # iter_idx, float(np.mean(train_losses))) if valid_X is not None and valid_Y is not None: # valid valid_losses, valid_predicts, valid_targets = [], [], [] for b in range(valid_X.shape[0] // batch_size): batch_begin = b * batch_size batch_end = batch_begin + batch_size x_batch = valid_X[batch_begin:batch_end] y_batch = valid_Y[batch_begin:batch_end] # forward propagation y_pred = self.predict(x_batch) # got loss and predict valid_losses.append(self.loss.forward(y_pred, y_batch)) valid_predicts.extend(y_pred) valid_targets.extend(y_batch) # output valid status runout += "valid-[loss %.4f, acc %.4f]; " % ( float(np.mean(valid_losses)), float(self.accuracy(valid_predicts, valid_targets))) print(runout, file=file) def predict(self, X): """ Calculate an output Y for the given input X. """ x_next = X for layer in self.layers[:]: x_next = layer.forward(x_next) return x_next def accuracy(self, outputs, targets): y_predicts = np.argmax(outputs, axis=1) y_targets = np.argmax(targets, axis=1) acc = y_predicts == y_targets return np.mean(acc) # acc = 0 # for i in range(y_targets.shape[0]): # if y_targets[i] == y_predicts[i]: # acc += 1 # return acc / y_targets.shape[0] def evaluate(self, X, Y): raise NotImplementedError()
34.443038
108
0.557883
0be4a25a2f23dd134f5ee848dd00ece8e15d4599
9,949
py
Python
tests/test_fellowships.py
oleksost/continuum
682d66540bfbfa171ac73281ed2989f9338e88bf
[ "MIT" ]
null
null
null
tests/test_fellowships.py
oleksost/continuum
682d66540bfbfa171ac73281ed2989f9338e88bf
[ "MIT" ]
null
null
null
tests/test_fellowships.py
oleksost/continuum
682d66540bfbfa171ac73281ed2989f9338e88bf
[ "MIT" ]
null
null
null
import os import copy import pytest import numpy as np from torch.utils.data import DataLoader import torchvision.transforms as trsf from continuum.tasks import TaskType from continuum.scenarios import ClassIncremental, InstanceIncremental, OnlineFellowship from continuum.datasets import ( CIFAR10, CIFAR100, KMNIST, MNIST, CIFARFellowship, FashionMNIST, Fellowship, MNISTFellowship, InMemoryDataset, Fellowship, Core50 ) DATA_PATH = os.environ.get("CONTINUUM_DATA_PATH") @pytest.fixture def dataset7c(): return InMemoryDataset(*gen_dataset(7, 0)) @pytest.fixture def dataset10c(): return InMemoryDataset(*gen_dataset(10, 1)) @pytest.fixture def dataset20c(): return InMemoryDataset(*gen_dataset(20, 2)) @pytest.fixture def dataset20c_3channels(): return InMemoryDataset(*gen_dataset_3channels(20, 2)) def gen_dataset(nb_classes, pixel_value): nb_items_per_class = 5 x_train = np.ones((nb_items_per_class * nb_classes, 32, 32, 3)) * pixel_value y_train = [] for i in range(nb_classes): y_train.append(np.ones(nb_items_per_class, dtype=np.int64) * i) y_train = np.concatenate(y_train) return (x_train, y_train) def gen_dataset_3channels(nb_classes, pixel_value): nb_items_per_class = 5 x_train = np.ones((nb_items_per_class * nb_classes, 32, 32, 3)) * pixel_value y_train = [] for i in range(nb_classes): y_train.append(np.ones(nb_items_per_class, dtype=np.int64) * i) y_train = np.concatenate(y_train) return (x_train, y_train) @pytest.mark.parametrize("increment", [1, [7, 10, 20]]) def test_inMemory_updateLabels_Fellowship(increment, dataset7c, dataset10c, dataset20c): fellow = Fellowship([dataset7c, dataset10c, dataset20c], update_labels=True) x, y, t = fellow.get_data() assert len(np.unique(t)) == 3 assert len(np.unique(y)) == 37 if isinstance(increment, list): continuum = ClassIncremental(fellow, increment=increment) assert continuum.nb_classes == 37 assert continuum.nb_tasks == len(increment) else: continuum = ClassIncremental(fellow, increment=increment) assert continuum.nb_tasks == 37 assert continuum.nb_classes == 37 def test_Online_Fellowship(dataset7c, dataset10c, dataset20c): scenario = OnlineFellowship([dataset7c, dataset10c, dataset20c]) for i, task_set in enumerate(scenario): if i == 0: assert task_set.nb_classes == 7 if i == 1: assert task_set.nb_classes == 10 if i == 2: assert task_set.nb_classes == 20 assert scenario[0].nb_classes == 7 assert scenario[1].nb_classes == 10 assert scenario[2].nb_classes == 20 @pytest.mark.parametrize("types,error", ( [[TaskType.IMAGE_PATH], False], [[TaskType.H5, TaskType.IMAGE_PATH, TaskType.IMAGE_ARRAY, TaskType.TENSOR], False], [[TaskType.H5, TaskType.IMAGE_PATH, TaskType.IMAGE_ARRAY, TaskType.TENSOR, TaskType.SEGMENTATION], True], [[TaskType.H5, TaskType.IMAGE_PATH, TaskType.IMAGE_ARRAY, TaskType.TENSOR, TaskType.TEXT], True], [[TaskType.H5, TaskType.IMAGE_PATH, TaskType.IMAGE_ARRAY, TaskType.TENSOR, TaskType.OBJ_DETECTION], True], [[TaskType.SEGMENTATION, TaskType.OBJ_DETECTION], True], [[TaskType.SEGMENTATION], False], )) def test_online_Fellowship_mixeddatatype(dataset10c, types, error): datasets = [] for typ in types: d = copy.deepcopy(dataset10c) d._data_type = typ d._nb_classes = 10 datasets.append(d) if error: with pytest.raises(ValueError): scenario = OnlineFellowship(datasets) else: scenario = OnlineFellowship(datasets) @pytest.mark.slow @pytest.mark.parametrize( "list_datasets", [ ([MNIST, FashionMNIST]), ([KMNIST, MNIST, FashionMNIST]), ([CIFAR10, CIFAR100, KMNIST, MNIST, FashionMNIST]), ] ) def test_online_Fellowship_inMemory(list_datasets): list_dict_args = {"data_path": DATA_PATH, "train": True, "download": False} list_instanciate_datasets = [] for dataset in list_datasets: list_instanciate_datasets.append(dataset(**list_dict_args)) scenario = OnlineFellowship(list_instanciate_datasets, update_labels=True) assert len(scenario) == len(list_datasets) tot_nb_classes = 0 for task_id, taskset in enumerate(scenario): tot_nb_classes += taskset.nb_classes loader = DataLoader(taskset) _, _, _ = next(iter(loader)) assert tot_nb_classes == scenario.nb_classes @pytest.mark.slow @pytest.mark.parametrize( "list_datasets", [ ([Core50, CIFAR10]) ] ) def test_online_Fellowship_mix_path_array(list_datasets): list_dict_args = [{"data_path": DATA_PATH, "train": True, "download": False}] * len(list_datasets) list_instanciate_datasets = [] for i, dataset in enumerate(list_datasets): list_instanciate_datasets.append(dataset(**list_dict_args[i])) scenario = OnlineFellowship(list_instanciate_datasets, update_labels=True) assert len(scenario) == len(list_datasets) tot_nb_classes = 0 for task_id, taskset in enumerate(scenario): tot_nb_classes += taskset.nb_classes loader = DataLoader(taskset) _, _, _ = next(iter(loader)) assert tot_nb_classes == scenario.nb_classes @pytest.mark.parametrize( "transformations", [ ([trsf.Resize(size=(16, 16)), trsf.ToTensor()]), #single for all ([[trsf.ToTensor()], [trsf.ToTensor()], [trsf.ToTensor()]]) # one each ] ) def test_online_Fellowship_transformation(dataset7c, dataset10c, dataset20c, transformations): scenario = OnlineFellowship([dataset7c, dataset10c, dataset20c], transformations=transformations) assert len(scenario) == 3 tot_nb_classes = 0 for task_id, taskset in enumerate(scenario): tot_nb_classes += taskset.nb_classes loader = DataLoader(taskset) _, _, _ = next(iter(loader)) assert tot_nb_classes == scenario.nb_classes def test_online_Fellowship_transformation2(dataset7c, dataset10c, dataset20c): sizes = [16, 24, 40] transformations = [[trsf.Resize(size=(sizes[0], sizes[0])), trsf.ToTensor()], [trsf.Resize(size=(sizes[1], sizes[1])), trsf.ToTensor()], [trsf.Resize(size=(sizes[2], sizes[2])), trsf.ToTensor()]] scenario = OnlineFellowship([dataset7c, dataset10c, dataset20c], transformations=transformations) for task_id, taskset in enumerate(scenario): loader = DataLoader(taskset) x, _, _ = next(iter(loader)) assert x.shape[-1] == sizes[task_id] @pytest.mark.parametrize("increment", [1, [7, 10, 20]]) def test_inMemory_keepLabels_Fellowship(increment, dataset7c, dataset10c, dataset20c): fellow = Fellowship([dataset7c, dataset10c, dataset20c], update_labels=False) x, y, t = fellow.get_data() assert len(np.unique(t)) == 3 assert len(np.unique(y)) == 20 if isinstance(increment, list): with pytest.raises(Exception): scenario = ClassIncremental(fellow, increment=increment) else: scenario = ClassIncremental(fellow, increment=increment) assert scenario.nb_classes == 20 assert scenario.nb_tasks == 20 @pytest.mark.parametrize("update_labels,nb_tasks", [ (True, 0), (True, 3), (False, 0), (False, 3), ]) def test_inMemory_Fellowship(update_labels, nb_tasks, dataset7c, dataset10c, dataset20c): fellow = Fellowship([dataset7c, dataset10c, dataset20c], update_labels=update_labels) continuum = InstanceIncremental(fellow, nb_tasks=nb_tasks) assert continuum.nb_tasks == 3 @pytest.mark.slow @pytest.mark.parametrize("nb_tasks", [0, 3]) def test_MNIST_Fellowship_Instance_Incremental(nb_tasks, tmpdir): dataset = MNISTFellowship(data_path=tmpdir, train=True, download=True) dataset.get_data() continuum = InstanceIncremental(dataset, nb_tasks=nb_tasks) assert len(continuum) == 3 @pytest.mark.slow def test_MNIST_Fellowship_nb_classes(tmpdir): dataset = MNISTFellowship(data_path=tmpdir, train=True, download=True) x, y, t = dataset.get_data() assert len(np.unique(y)) == 30 dataset = MNISTFellowship(data_path=tmpdir, train=True, download=True, update_labels=False) x, y, t = dataset.get_data() assert len(np.unique(y)) == 10 @pytest.mark.slow def test_MNIST_Fellowship(tmpdir): dataset = MNISTFellowship(data_path=tmpdir, train=True, download=True) dataset.get_data() continuum = ClassIncremental(dataset, increment=10) assert len(continuum) == 3 @pytest.mark.slow def test_CIFAR_Fellowship(tmpdir): cl_dataset = CIFARFellowship(data_path=tmpdir, train=True, download=True) scenario = ClassIncremental(cl_dataset, increment=10) assert len(scenario) == 11 @pytest.mark.slow @pytest.mark.parametrize( "list_datasets,nb_tasks", [ ([MNIST, FashionMNIST], 2), ([KMNIST, MNIST, FashionMNIST], 3), ([CIFAR10, CIFAR100], 11), ] ) def test_Fellowship_classes(tmpdir, list_datasets, nb_tasks): cl_dataset = Fellowship( datasets=[d(data_path=tmpdir, download=True, train=True) for d in list_datasets] ) scenario = ClassIncremental(cl_dataset, increment=10) assert len(scenario) == nb_tasks for task_id, taskset in enumerate(scenario): classes = taskset.get_classes() # we check if all classes are here assert len(classes) == (classes.max() - classes.min() + 1) @pytest.mark.slow @pytest.mark.parametrize("list_datasets", [[MNIST, CIFAR10]]) def test_Fellowship_Dimension_Fail(tmpdir, list_datasets): cl_dataset = Fellowship( datasets=[d(data_path=tmpdir, download=True, train=True) for d in list_datasets] ) # This does not work since CIFAR10 and MNIST data are not same shape with pytest.raises(ValueError): continuum = ClassIncremental(cl_dataset, increment=10)
32.619672
110
0.699266
566c645e15c57d77c5cad22956ee9d60863d8e37
16,509
py
Python
neutron/plugins/vmware/nsxlib/switch.py
gampel/neutron
51a6260266dc59c066072ca890ad9c40b1aad6cf
[ "Apache-2.0" ]
10
2015-09-22T10:22:53.000Z
2016-02-25T06:12:05.000Z
neutron/plugins/vmware/nsxlib/switch.py
gampel/neutron
51a6260266dc59c066072ca890ad9c40b1aad6cf
[ "Apache-2.0" ]
12
2015-01-08T18:30:45.000Z
2015-03-13T21:04:15.000Z
neutron/plugins/vmware/nsxlib/switch.py
gampel/neutron
51a6260266dc59c066072ca890ad9c40b1aad6cf
[ "Apache-2.0" ]
7
2015-02-05T10:23:52.000Z
2019-05-18T17:11:19.000Z
# Copyright 2014 VMware, Inc. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from oslo.config import cfg from oslo.serialization import jsonutils from neutron.common import constants from neutron.common import exceptions as exception from neutron.i18n import _LE, _LI, _LW from neutron.openstack.common import log from neutron.plugins.vmware.api_client import exception as api_exc from neutron.plugins.vmware.common import exceptions as nsx_exc from neutron.plugins.vmware.common import utils from neutron.plugins.vmware import nsxlib HTTP_GET = "GET" HTTP_POST = "POST" HTTP_DELETE = "DELETE" HTTP_PUT = "PUT" LSWITCH_RESOURCE = "lswitch" LSWITCHPORT_RESOURCE = "lport/%s" % LSWITCH_RESOURCE LOG = log.getLogger(__name__) def _configure_extensions(lport_obj, mac_address, fixed_ips, port_security_enabled, security_profiles, queue_id, mac_learning_enabled, allowed_address_pairs): lport_obj['allowed_address_pairs'] = [] if port_security_enabled: for fixed_ip in fixed_ips: ip_address = fixed_ip.get('ip_address') if ip_address: lport_obj['allowed_address_pairs'].append( {'mac_address': mac_address, 'ip_address': ip_address}) # add address pair allowing src_ip 0.0.0.0 to leave # this is required for outgoing dhcp request lport_obj["allowed_address_pairs"].append( {"mac_address": mac_address, "ip_address": "0.0.0.0"}) lport_obj['security_profiles'] = list(security_profiles or []) lport_obj['queue_uuid'] = queue_id if mac_learning_enabled is not None: lport_obj["mac_learning"] = mac_learning_enabled lport_obj["type"] = "LogicalSwitchPortConfig" for address_pair in list(allowed_address_pairs or []): lport_obj['allowed_address_pairs'].append( {'mac_address': address_pair['mac_address'], 'ip_address': address_pair['ip_address']}) def get_lswitch_by_id(cluster, lswitch_id): try: lswitch_uri_path = nsxlib._build_uri_path( LSWITCH_RESOURCE, lswitch_id, relations="LogicalSwitchStatus") return nsxlib.do_request(HTTP_GET, lswitch_uri_path, cluster=cluster) except exception.NotFound: # FIXME(salv-orlando): this should not raise a neutron exception raise exception.NetworkNotFound(net_id=lswitch_id) def get_lswitches(cluster, neutron_net_id): def lookup_switches_by_tag(): # Fetch extra logical switches lswitch_query_path = nsxlib._build_uri_path( LSWITCH_RESOURCE, fields="uuid,display_name,tags,lport_count", relations="LogicalSwitchStatus", filters={'tag': neutron_net_id, 'tag_scope': 'quantum_net_id'}) return nsxlib.get_all_query_pages(lswitch_query_path, cluster) lswitch_uri_path = nsxlib._build_uri_path(LSWITCH_RESOURCE, neutron_net_id, relations="LogicalSwitchStatus") results = [] try: ls = nsxlib.do_request(HTTP_GET, lswitch_uri_path, cluster=cluster) results.append(ls) for tag in ls['tags']: if (tag['scope'] == "multi_lswitch" and tag['tag'] == "True"): results.extend(lookup_switches_by_tag()) except exception.NotFound: # This is legit if the neutron network was created using # a post-Havana version of the plugin results.extend(lookup_switches_by_tag()) if results: return results else: raise exception.NetworkNotFound(net_id=neutron_net_id) def create_lswitch(cluster, neutron_net_id, tenant_id, display_name, transport_zones_config, shared=None, **kwargs): # The tag scope adopts a slightly different naming convention for # historical reasons lswitch_obj = {"display_name": utils.check_and_truncate(display_name), "transport_zones": transport_zones_config, "replication_mode": cfg.CONF.NSX.replication_mode, "tags": utils.get_tags(os_tid=tenant_id, quantum_net_id=neutron_net_id)} # TODO(salv-orlando): Now that we have async status synchronization # this tag is perhaps not needed anymore if shared: lswitch_obj["tags"].append({"tag": "true", "scope": "shared"}) if "tags" in kwargs: lswitch_obj["tags"].extend(kwargs["tags"]) uri = nsxlib._build_uri_path(LSWITCH_RESOURCE) lswitch = nsxlib.do_request(HTTP_POST, uri, jsonutils.dumps(lswitch_obj), cluster=cluster) LOG.debug("Created logical switch: %s", lswitch['uuid']) return lswitch def update_lswitch(cluster, lswitch_id, display_name, tenant_id=None, **kwargs): uri = nsxlib._build_uri_path(LSWITCH_RESOURCE, resource_id=lswitch_id) lswitch_obj = {"display_name": utils.check_and_truncate(display_name)} # NOTE: tag update will not 'merge' existing tags with new ones. tags = [] if tenant_id: tags = utils.get_tags(os_tid=tenant_id) # The 'tags' kwarg might existing and be None tags.extend(kwargs.get('tags') or []) if tags: lswitch_obj['tags'] = tags try: return nsxlib.do_request(HTTP_PUT, uri, jsonutils.dumps(lswitch_obj), cluster=cluster) except exception.NotFound: LOG.exception(_LE("Network not found.")) raise exception.NetworkNotFound(net_id=lswitch_id) def delete_network(cluster, net_id, lswitch_id): delete_networks(cluster, net_id, [lswitch_id]) #TODO(salvatore-orlando): Simplify and harmonize def delete_networks(cluster, net_id, lswitch_ids): for ls_id in lswitch_ids: path = "/ws.v1/lswitch/%s" % ls_id try: nsxlib.do_request(HTTP_DELETE, path, cluster=cluster) except exception.NotFound: LOG.exception(_LE("Network not found.")) raise exception.NetworkNotFound(net_id=ls_id) def query_lswitch_lports(cluster, ls_uuid, fields="*", filters=None, relations=None): # Fix filter for attachments if filters and "attachment" in filters: filters['attachment_vif_uuid'] = filters["attachment"] del filters['attachment'] uri = nsxlib._build_uri_path(LSWITCHPORT_RESOURCE, parent_resource_id=ls_uuid, fields=fields, filters=filters, relations=relations) return nsxlib.do_request(HTTP_GET, uri, cluster=cluster)['results'] def delete_port(cluster, switch, port): uri = "/ws.v1/lswitch/" + switch + "/lport/" + port try: nsxlib.do_request(HTTP_DELETE, uri, cluster=cluster) except exception.NotFound: LOG.exception(_LE("Port or Network not found")) raise exception.PortNotFoundOnNetwork( net_id=switch, port_id=port) except api_exc.NsxApiException: raise exception.NeutronException() def get_ports(cluster, networks=None, devices=None, tenants=None): vm_filter_obsolete = "" vm_filter = "" tenant_filter = "" # This is used when calling delete_network. Neutron checks to see if # the network has any ports. if networks: # FIXME (Aaron) If we get more than one network_id this won't work lswitch = networks[0] else: lswitch = "*" if devices: for device_id in devices: vm_filter_obsolete = '&'.join( ["tag_scope=vm_id", "tag=%s" % utils.device_id_to_vm_id(device_id, obfuscate=True), vm_filter_obsolete]) vm_filter = '&'.join( ["tag_scope=vm_id", "tag=%s" % utils.device_id_to_vm_id(device_id), vm_filter]) if tenants: for tenant in tenants: tenant_filter = '&'.join( ["tag_scope=os_tid", "tag=%s" % tenant, tenant_filter]) nsx_lports = {} lport_fields_str = ("tags,admin_status_enabled,display_name," "fabric_status_up") try: lport_query_path_obsolete = ( "/ws.v1/lswitch/%s/lport?fields=%s&%s%stag_scope=q_port_id" "&relations=LogicalPortStatus" % (lswitch, lport_fields_str, vm_filter_obsolete, tenant_filter)) lport_query_path = ( "/ws.v1/lswitch/%s/lport?fields=%s&%s%stag_scope=q_port_id" "&relations=LogicalPortStatus" % (lswitch, lport_fields_str, vm_filter, tenant_filter)) try: # NOTE(armando-migliaccio): by querying with obsolete tag first # current deployments won't take the performance hit of a double # call. In release L-** or M-**, we might want to swap the calls # as it's likely that ports with the new tag would outnumber the # ones with the old tag ports = nsxlib.get_all_query_pages(lport_query_path_obsolete, cluster) if not ports: ports = nsxlib.get_all_query_pages(lport_query_path, cluster) except exception.NotFound: LOG.warn(_LW("Lswitch %s not found in NSX"), lswitch) ports = None if ports: for port in ports: for tag in port["tags"]: if tag["scope"] == "q_port_id": nsx_lports[tag["tag"]] = port except Exception: err_msg = _("Unable to get ports") LOG.exception(err_msg) raise nsx_exc.NsxPluginException(err_msg=err_msg) return nsx_lports def get_port_by_neutron_tag(cluster, lswitch_uuid, neutron_port_id): """Get port by neutron tag. Returns the NSX UUID of the logical port with tag q_port_id equal to neutron_port_id or None if the port is not Found. """ uri = nsxlib._build_uri_path(LSWITCHPORT_RESOURCE, parent_resource_id=lswitch_uuid, fields='uuid', filters={'tag': neutron_port_id, 'tag_scope': 'q_port_id'}) LOG.debug("Looking for port with q_port_id tag '%(neutron_port_id)s' " "on: '%(lswitch_uuid)s'", {'neutron_port_id': neutron_port_id, 'lswitch_uuid': lswitch_uuid}) res = nsxlib.do_request(HTTP_GET, uri, cluster=cluster) num_results = len(res["results"]) if num_results >= 1: if num_results > 1: LOG.warn(_LW("Found '%(num_ports)d' ports with " "q_port_id tag: '%(neutron_port_id)s'. " "Only 1 was expected."), {'num_ports': num_results, 'neutron_port_id': neutron_port_id}) return res["results"][0] def get_port(cluster, network, port, relations=None): LOG.info(_LI("get_port() %(network)s %(port)s"), {'network': network, 'port': port}) uri = "/ws.v1/lswitch/" + network + "/lport/" + port + "?" if relations: uri += "relations=%s" % relations try: return nsxlib.do_request(HTTP_GET, uri, cluster=cluster) except exception.NotFound: LOG.exception(_LE("Port or Network not found.")) raise exception.PortNotFoundOnNetwork( port_id=port, net_id=network) def update_port(cluster, lswitch_uuid, lport_uuid, neutron_port_id, tenant_id, display_name, device_id, admin_status_enabled, mac_address=None, fixed_ips=None, port_security_enabled=None, security_profiles=None, queue_id=None, mac_learning_enabled=None, allowed_address_pairs=None): lport_obj = dict( admin_status_enabled=admin_status_enabled, display_name=utils.check_and_truncate(display_name), tags=utils.get_tags(os_tid=tenant_id, q_port_id=neutron_port_id, vm_id=utils.device_id_to_vm_id(device_id))) _configure_extensions(lport_obj, mac_address, fixed_ips, port_security_enabled, security_profiles, queue_id, mac_learning_enabled, allowed_address_pairs) path = "/ws.v1/lswitch/" + lswitch_uuid + "/lport/" + lport_uuid try: result = nsxlib.do_request(HTTP_PUT, path, jsonutils.dumps(lport_obj), cluster=cluster) LOG.debug("Updated logical port %(result)s " "on logical switch %(uuid)s", {'result': result['uuid'], 'uuid': lswitch_uuid}) return result except exception.NotFound: LOG.exception(_LE("Port or Network not found.")) raise exception.PortNotFoundOnNetwork( port_id=lport_uuid, net_id=lswitch_uuid) def create_lport(cluster, lswitch_uuid, tenant_id, neutron_port_id, display_name, device_id, admin_status_enabled, mac_address=None, fixed_ips=None, port_security_enabled=None, security_profiles=None, queue_id=None, mac_learning_enabled=None, allowed_address_pairs=None): """Creates a logical port on the assigned logical switch.""" display_name = utils.check_and_truncate(display_name) lport_obj = dict( admin_status_enabled=admin_status_enabled, display_name=display_name, tags=utils.get_tags(os_tid=tenant_id, q_port_id=neutron_port_id, vm_id=utils.device_id_to_vm_id(device_id)) ) _configure_extensions(lport_obj, mac_address, fixed_ips, port_security_enabled, security_profiles, queue_id, mac_learning_enabled, allowed_address_pairs) path = nsxlib._build_uri_path(LSWITCHPORT_RESOURCE, parent_resource_id=lswitch_uuid) result = nsxlib.do_request(HTTP_POST, path, jsonutils.dumps(lport_obj), cluster=cluster) LOG.debug("Created logical port %(result)s on logical switch %(uuid)s", {'result': result['uuid'], 'uuid': lswitch_uuid}) return result def get_port_status(cluster, lswitch_id, port_id): """Retrieve the operational status of the port.""" try: r = nsxlib.do_request(HTTP_GET, "/ws.v1/lswitch/%s/lport/%s/status" % (lswitch_id, port_id), cluster=cluster) except exception.NotFound: LOG.exception(_LE("Port not found.")) raise exception.PortNotFoundOnNetwork( port_id=port_id, net_id=lswitch_id) if r['link_status_up'] is True: return constants.PORT_STATUS_ACTIVE else: return constants.PORT_STATUS_DOWN def plug_interface(cluster, lswitch_id, lport_id, att_obj): return nsxlib.do_request(HTTP_PUT, nsxlib._build_uri_path(LSWITCHPORT_RESOURCE, lport_id, lswitch_id, is_attachment=True), jsonutils.dumps(att_obj), cluster=cluster) def plug_vif_interface( cluster, lswitch_id, port_id, port_type, attachment=None): """Plug a VIF Attachment object in a logical port.""" lport_obj = {} if attachment: lport_obj["vif_uuid"] = attachment lport_obj["type"] = port_type return plug_interface(cluster, lswitch_id, port_id, lport_obj)
41.37594
79
0.617057
0a4820c69ba70ad4aed96303c064eca8f15d9111
482
py
Python
testing/example_scripts/dataclasses/test_compare_two_different_dataclasses.py
markshao/pytest
611b579d21f7e62b4c8ed54ab70fbfee7c6f5f64
[ "MIT" ]
9,225
2015-06-15T21:56:14.000Z
2022-03-31T20:47:38.000Z
testing/example_scripts/dataclasses/test_compare_two_different_dataclasses.py
markshao/pytest
611b579d21f7e62b4c8ed54ab70fbfee7c6f5f64
[ "MIT" ]
7,794
2015-06-15T21:06:34.000Z
2022-03-31T10:56:54.000Z
testing/example_scripts/dataclasses/test_compare_two_different_dataclasses.py
markshao/pytest
611b579d21f7e62b4c8ed54ab70fbfee7c6f5f64
[ "MIT" ]
2,598
2015-06-15T21:42:39.000Z
2022-03-29T13:48:22.000Z
from dataclasses import dataclass from dataclasses import field def test_comparing_two_different_data_classes() -> None: @dataclass class SimpleDataObjectOne: field_a: int = field() field_b: str = field() @dataclass class SimpleDataObjectTwo: field_a: int = field() field_b: str = field() left = SimpleDataObjectOne(1, "b") right = SimpleDataObjectTwo(1, "c") assert left != right # type: ignore[comparison-overlap]
24.1
60
0.670124
7237fc5f21c6128c50c86b45f420896704a67e19
365
py
Python
bot_client/utils/constants.py
yankai14/AntiFish
2218d1403a1f9d82a64fd6c0d336a78d12a272bd
[ "MIT" ]
1
2022-02-27T12:34:36.000Z
2022-02-27T12:34:36.000Z
bot_client/utils/constants.py
yankai14/AntiFish
2218d1403a1f9d82a64fd6c0d336a78d12a272bd
[ "MIT" ]
null
null
null
bot_client/utils/constants.py
yankai14/AntiFish
2218d1403a1f9d82a64fd6c0d336a78d12a272bd
[ "MIT" ]
null
null
null
from enum import Enum class STATE(Enum): # Conversation states FEATURE_SELECTION = 1 PHISHING_CHECK = 10 PHISING_GET_LINK = 11 REPORT = 20 REPORT_GET_LINK = 21 ABOUT = 30 # Meta states SHOWING = 1000 BACK = 1001 STOPPING = 1002 START_OVER = 1004 END = -1. class CONSTANTS: START_OVER = "start_over"
13.035714
29
0.621918
6deff95f8012cf460c6b296f126e2b7ea3f9b092
2,307
py
Python
res_viz.py
Fork-for-Modify/CSENDistance
6f6d1b87ea776389d543c7873422e44b35a3f0af
[ "MIT" ]
null
null
null
res_viz.py
Fork-for-Modify/CSENDistance
6f6d1b87ea776389d543c7873422e44b35a3f0af
[ "MIT" ]
null
null
null
res_viz.py
Fork-for-Modify/CSENDistance
6f6d1b87ea776389d543c7873422e44b35a3f0af
[ "MIT" ]
null
null
null
# visualization of the distance estimation results import os from os.path import dirname as opd import pandas as pd from numpy.random import randint as np_randint import cv2 import scipy.io as sio import matplotlib.pyplot as plt # %% params data_dir = './data/orig-data/test-data/parking-redgray/' csv_path = data_dir + 'annotations.csv' img_dir = data_dir+'image/' result_dir = './results/test-parking-redgray/CL-CSEN/' result_name = 'VGG19_mr_0.5_predictions' save_dir = result_dir + result_name + '/' save_flag = True img_suf = '.png' show_delay = 1000 #%% load data df = pd.read_csv(csv_path) resmat = sio.loadmat(result_dir+result_name+'.mat') y_preds = resmat['y_preds'][0] y_trues = resmat['y_trues'][0] #%% visualziation # create dir if not os.path.exists(save_dir): os.makedirs(save_dir) # show pred distance and true distance # print('y_preds: ', y_preds, '\n', 'y_trues', y_trues) # plt.figure() plt.title('Pred. v.s. True distance') plt.scatter(y_trues, y_preds, marker = 'o', s=40) plt.xlabel("actual distance",fontsize=13) plt.ylabel("predicted distance",fontsize=13) if save_flag: plt.savefig(save_dir+'predVStrue.png') plt.show() # exit() # visualze result estimation last_img_name = '' idx = -1 for _, row in df.iterrows(): img_name = row['filename'].replace('.txt', img_suf) # skip out of range data if row['zloc']>60 or row['zloc']<1: print('warning: out of range data skiped!') continue else: idx = idx+1 if last_img_name==img_name: im = cv2.imread(save_dir + img_name) else: im = cv2.imread(img_dir + img_name) # Load the image. # Object Location. x1 = int(row['xmin']) y1 = int(row['ymin']) x2 = int(row['xmax']) y2 = int(row['ymax']) cv2.rectangle(im, (x1, y1), (x2, y2), (0, 255, 0), 2) string = "(pred {:.2f}, true {:2f})".format(y_preds[idx], y_trues[idx]) # text_color = np_randint(256,size=(1,3)).tolist()[0] text_color = [50,0,255] cv2.putText(im, string, (int((x1+x2)/2), int((y1+y2)/2)), cv2.FONT_HERSHEY_SIMPLEX, 0.4, text_color, 1, cv2.LINE_AA) cv2.imshow("detections", im) if cv2.waitKey(show_delay) & 0xFF == ord('q'): break if save_flag: cv2.imwrite(save_dir+img_name, im) last_img_name = img_name
28.134146
120
0.658431
7c54a827cf98f5f3f2974230eef0cd3cad380912
658
py
Python
contracts/tests/test_push.py
drLis/AnchorFintechLedger
e3f6e55a79c75f2385dc2a7cf753e01514464616
[ "MIT" ]
null
null
null
contracts/tests/test_push.py
drLis/AnchorFintechLedger
e3f6e55a79c75f2385dc2a7cf753e01514464616
[ "MIT" ]
null
null
null
contracts/tests/test_push.py
drLis/AnchorFintechLedger
e3f6e55a79c75f2385dc2a7cf753e01514464616
[ "MIT" ]
null
null
null
from brownie import * import pytest def test_push(accounts, test): def transfer(sender, receiver, id): sender_hash = test.computeSenderHash(accounts[0], id) receiver_hash = test.computeReceiverHash(id, accounts[1]) test.push(sender_hash, receiver_hash) def check_transfer(sender, receiver, id): sender_hash = test.computeSenderHash(accounts[0], id) receiver_hash = test.computeReceiverHash(id, accounts[1]) return test.anchors(sender_hash) == receiver_hash transfer(accounts[0], accounts[1], 1) assert check_transfer(accounts[0], accounts[1], 1) transfer(accounts[1], accounts[2], 1) assert check_transfer(accounts[1], accounts[2], 1)
34.631579
59
0.756839
96040105712945c9c70cc483ea0cbff3e28de508
3,108
py
Python
pandas/tests/arrays/interval/test_interval.py
YuechengWu/pandas
7f753892eb6b29aaa62176cb9f00ad84c092c09a
[ "BSD-3-Clause" ]
1
2018-12-19T09:09:37.000Z
2018-12-19T09:09:37.000Z
pandas/tests/arrays/interval/test_interval.py
YuechengWu/pandas
7f753892eb6b29aaa62176cb9f00ad84c092c09a
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/arrays/interval/test_interval.py
YuechengWu/pandas
7f753892eb6b29aaa62176cb9f00ad84c092c09a
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import numpy as np import pytest import pandas as pd from pandas import Index, Interval, IntervalIndex, date_range, timedelta_range from pandas.core.arrays import IntervalArray import pandas.util.testing as tm @pytest.fixture(params=[ (Index([0, 2, 4]), Index([1, 3, 5])), (Index([0., 1., 2.]), Index([1., 2., 3.])), (timedelta_range('0 days', periods=3), timedelta_range('1 day', periods=3)), (date_range('20170101', periods=3), date_range('20170102', periods=3)), (date_range('20170101', periods=3, tz='US/Eastern'), date_range('20170102', periods=3, tz='US/Eastern'))], ids=lambda x: str(x[0].dtype)) def left_right_dtypes(request): """ Fixture for building an IntervalArray from various dtypes """ return request.param class TestMethods(object): @pytest.mark.parametrize('repeats', [0, 1, 5]) def test_repeat(self, left_right_dtypes, repeats): left, right = left_right_dtypes result = IntervalArray.from_arrays(left, right).repeat(repeats) expected = IntervalArray.from_arrays( left.repeat(repeats), right.repeat(repeats)) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize('bad_repeats, msg', [ (-1, 'negative dimensions are not allowed'), ('foo', r'invalid literal for (int|long)\(\) with base 10')]) def test_repeat_errors(self, bad_repeats, msg): array = IntervalArray.from_breaks(range(4)) with pytest.raises(ValueError, match=msg): array.repeat(bad_repeats) @pytest.mark.parametrize('new_closed', [ 'left', 'right', 'both', 'neither']) def test_set_closed(self, closed, new_closed): # GH 21670 array = IntervalArray.from_breaks(range(10), closed=closed) result = array.set_closed(new_closed) expected = IntervalArray.from_breaks(range(10), closed=new_closed) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize('other', [ Interval(0, 1, closed='right'), IntervalArray.from_breaks([1, 2, 3, 4], closed='right'), ]) def test_where_raises(self, other): ser = pd.Series(IntervalArray.from_breaks([1, 2, 3, 4], closed='left')) match = "'value.closed' is 'right', expected 'left'." with pytest.raises(ValueError, match=match): ser.where([True, False, True], other=other) class TestSetitem(object): def test_set_na(self, left_right_dtypes): left, right = left_right_dtypes result = IntervalArray.from_arrays(left, right) result[0] = np.nan expected_left = Index([left._na_value] + list(left[1:])) expected_right = Index([right._na_value] + list(right[1:])) expected = IntervalArray.from_arrays(expected_left, expected_right) tm.assert_extension_array_equal(result, expected) def test_repr_matches(): idx = IntervalIndex.from_breaks([1, 2, 3]) a = repr(idx) b = repr(idx.values) assert a.replace("Index", "Array") == b
36.564706
78
0.646396
912d7400df20fac4aba2c9229a63bb6358e3a7b4
1,379
py
Python
scripts/utils_specs/download_spec_csv_from_gsheet.py
rathp/time_series_prediction
c776f988c633868c7106041ac91ab56ca9fd7968
[ "MIT" ]
1
2020-09-17T20:59:46.000Z
2020-09-17T20:59:46.000Z
scripts/utils_specs/download_spec_csv_from_gsheet.py
rathp/time_series_prediction
c776f988c633868c7106041ac91ab56ca9fd7968
[ "MIT" ]
null
null
null
scripts/utils_specs/download_spec_csv_from_gsheet.py
rathp/time_series_prediction
c776f988c633868c7106041ac91ab56ca9fd7968
[ "MIT" ]
null
null
null
import argparse import requests import json import os if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--config_json_path", type=str) parser.add_argument("--output_dir", type=str) args = parser.parse_args() with open(args.config_json_path, 'r') as f: gsheet_info = json.load(f) print("Downloading sheets from provided URL") for gid, sheet_name in zip(gsheet_info['spec_gid_list'], gsheet_info['spec_sheet_name_list']): sheet_url = gsheet_info['spec_gsheet_url_pattern'] for var, val in gsheet_info.items(): if sheet_url.count("{{%s}}" % var): sheet_url = sheet_url.replace("{{%s}}" % var, val) for var, val in [('gid', gid), ('sheet_name', sheet_name)]: if sheet_url.count("{{%s}}" % var): sheet_url = sheet_url.replace("{{%s}}" % var, val) ans = requests.get(sheet_url) ans.raise_for_status() csv_str = ans.content.decode('utf-8') out_csv_path = os.path.join( args.output_dir, gsheet_info['output_csv_path_pattern'].replace("{{sheet_name}}", sheet_name) ) with open(out_csv_path, 'w') as f: for line in csv_str.split('\n'): f.write("%s\n" % line) print("... wrote sheet %s to %s" % (sheet_name, out_csv_path))
36.289474
98
0.60116
a3320b20930cf2228206af860debb3962e5ad12f
630
py
Python
cloudmesh/foo/command/foo.py
cloudmesh/cloudmesh-bar
5ead95e8502e0ee761baa3ddce74680e919237ea
[ "Apache-2.0" ]
null
null
null
cloudmesh/foo/command/foo.py
cloudmesh/cloudmesh-bar
5ead95e8502e0ee761baa3ddce74680e919237ea
[ "Apache-2.0" ]
null
null
null
cloudmesh/foo/command/foo.py
cloudmesh/cloudmesh-bar
5ead95e8502e0ee761baa3ddce74680e919237ea
[ "Apache-2.0" ]
null
null
null
from cloudmesh.shell.command import command from cloudmesh.shell.command import PluginCommand from cloudmesh.common.debug import VERBOSE from cloudmesh.shell.command import map_parameters class FooCommand(PluginCommand): # noinspection PyUnusedLocal @command def do_foo(self, args, arguments): """ :: Usage: foo -f FILE foo FILE foo list This command does some useful things. Arguments: FILE a file name Options: -f specify the file """ VERBOSE(arguments)
21.724138
50
0.584127
6cabf0b0b9c676b7c8442047d674d783bd057768
551
py
Python
tests/test_value.py
virtuehive/traychain
8e3d869ec9354b7787452baf4fcb7d6f0a06d824
[ "Apache-2.0" ]
null
null
null
tests/test_value.py
virtuehive/traychain
8e3d869ec9354b7787452baf4fcb7d6f0a06d824
[ "Apache-2.0" ]
null
null
null
tests/test_value.py
virtuehive/traychain
8e3d869ec9354b7787452baf4fcb7d6f0a06d824
[ "Apache-2.0" ]
null
null
null
import traychain as tc import unittest from testutils import start_host ENDPOINT = "/transact/hypothetical" class NumberTests(unittest.TestCase): @classmethod def setUpClass(cls): cls.host = start_host("test_values") def testDivideByZero(self): cxt = tc.Context() cxt.result = tc.F32(3.14) / tc.F32(0.) self.assertRaises(tc.error.BadRequest, lambda: self.host.post(ENDPOINT, cxt)) @classmethod def tearDownClass(cls): cls.host.stop() if __name__ == "__main__": unittest.main()
19.678571
85
0.667877
4918eba2d1eea76a6a27c91d0ee87580710d172e
874
py
Python
Chapter10/programs/prog05.py
gits00/raspberry-pi-computer-vision-programming
dfd5588c5d3e410945f862427c0f987536b04d9f
[ "MIT" ]
17
2020-08-08T20:47:29.000Z
2022-03-12T03:08:21.000Z
Chapter10/programs/prog05.py
gits00/raspberry-pi-computer-vision-programming
dfd5588c5d3e410945f862427c0f987536b04d9f
[ "MIT" ]
1
2020-07-27T09:57:19.000Z
2020-08-18T10:57:31.000Z
Chapter10/programs/prog05.py
gits00/raspberry-pi-computer-vision-programming
dfd5588c5d3e410945f862427c0f987536b04d9f
[ "MIT" ]
15
2020-06-30T01:52:06.000Z
2022-02-08T08:28:48.000Z
import cv2 import matplotlib.pyplot as plt img = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) R, G, B = cv2.split(img) output1_R = cv2.equalizeHist(R) output1_G = cv2.equalizeHist(G) output1_B = cv2.equalizeHist(B) output1 = cv2.merge((output1_R, output1_G, output1_B)) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) output2_R = clahe.apply(R) output2_G = clahe.apply(G) output2_B = clahe.apply(B) output2 = cv2.merge((output2_R, output2_G, output2_B)) output = [img, output1, output2] titles = ['Original Image', 'Adjusted Histogram', 'CLAHE'] for i in range(3): plt.subplot(1, 3, i+1) plt.imshow(output[i]) plt.title(titles[i]) plt.xticks([]) plt.yticks([]) plt.show()
28.193548
56
0.606407
e428e30c9f39fab1d2cdbe5d303f9da318f50e82
18,870
py
Python
seaborn/utils.py
romanwerpachowski/seaborn
6b7fa4270294e68d79f8ed561ce8eab2b6dbc9f5
[ "BSD-3-Clause" ]
2
2020-07-24T04:45:51.000Z
2020-09-04T11:10:27.000Z
seaborn/utils.py
romanwerpachowski/seaborn
6b7fa4270294e68d79f8ed561ce8eab2b6dbc9f5
[ "BSD-3-Clause" ]
null
null
null
seaborn/utils.py
romanwerpachowski/seaborn
6b7fa4270294e68d79f8ed561ce8eab2b6dbc9f5
[ "BSD-3-Clause" ]
2
2020-11-02T18:25:54.000Z
2021-07-23T16:15:34.000Z
"""Utility functions, mostly for internal use.""" import os import colorsys import warnings from urllib.request import urlopen, urlretrieve from http.client import HTTPException import numpy as np from scipy import stats import pandas as pd import matplotlib as mpl import matplotlib.colors as mplcol import matplotlib.pyplot as plt __all__ = ["desaturate", "saturate", "set_hls_values", "despine", "get_dataset_names", "get_data_home", "load_dataset"] def sort_df(df, *args, **kwargs): """Wrapper to handle different pandas sorting API pre/post 0.17.""" msg = "This function is deprecated and will be removed in a future version" warnings.warn(msg) try: return df.sort_values(*args, **kwargs) except AttributeError: return df.sort(*args, **kwargs) def ci_to_errsize(cis, heights): """Convert intervals to error arguments relative to plot heights. Parameters ---------- cis: 2 x n sequence sequence of confidence interval limits heights : n sequence sequence of plot heights Returns ------- errsize : 2 x n array sequence of error size relative to height values in correct format as argument for plt.bar """ cis = np.atleast_2d(cis).reshape(2, -1) heights = np.atleast_1d(heights) errsize = [] for i, (low, high) in enumerate(np.transpose(cis)): h = heights[i] elow = h - low ehigh = high - h errsize.append([elow, ehigh]) errsize = np.asarray(errsize).T return errsize def pmf_hist(a, bins=10): """Return arguments to plt.bar for pmf-like histogram of an array. DEPRECATED: will be removed in a future version. Parameters ---------- a: array-like array to make histogram of bins: int number of bins Returns ------- x: array left x position of bars h: array height of bars w: float width of bars """ msg = "This function is deprecated and will be removed in a future version" warnings.warn(msg, FutureWarning) n, x = np.histogram(a, bins) h = n / n.sum() w = x[1] - x[0] return x[:-1], h, w def desaturate(color, prop): """Decrease the saturation channel of a color by some percent. Parameters ---------- color : matplotlib color hex, rgb-tuple, or html color name prop : float saturation channel of color will be multiplied by this value Returns ------- new_color : rgb tuple desaturated color code in RGB tuple representation """ # Check inputs if not 0 <= prop <= 1: raise ValueError("prop must be between 0 and 1") # Get rgb tuple rep rgb = mplcol.colorConverter.to_rgb(color) # Convert to hls h, l, s = colorsys.rgb_to_hls(*rgb) # Desaturate the saturation channel s *= prop # Convert back to rgb new_color = colorsys.hls_to_rgb(h, l, s) return new_color def saturate(color): """Return a fully saturated color with the same hue. Parameters ---------- color : matplotlib color hex, rgb-tuple, or html color name Returns ------- new_color : rgb tuple saturated color code in RGB tuple representation """ return set_hls_values(color, s=1) def set_hls_values(color, h=None, l=None, s=None): # noqa """Independently manipulate the h, l, or s channels of a color. Parameters ---------- color : matplotlib color hex, rgb-tuple, or html color name h, l, s : floats between 0 and 1, or None new values for each channel in hls space Returns ------- new_color : rgb tuple new color code in RGB tuple representation """ # Get an RGB tuple representation rgb = mplcol.colorConverter.to_rgb(color) vals = list(colorsys.rgb_to_hls(*rgb)) for i, val in enumerate([h, l, s]): if val is not None: vals[i] = val rgb = colorsys.hls_to_rgb(*vals) return rgb def axlabel(xlabel, ylabel, **kwargs): """Grab current axis and label it. DEPRECATED: will be removed in a future version. """ msg = "This function is deprecated and will be removed in a future version" warnings.warn(msg, FutureWarning) ax = plt.gca() ax.set_xlabel(xlabel, **kwargs) ax.set_ylabel(ylabel, **kwargs) def remove_na(vector): """Helper method for removing null values from data vectors. Parameters ---------- vector : vector object Must implement boolean masking with [] subscript syntax. Returns ------- clean_clean : same type as ``vector`` Vector of data with null values removed. May be a copy or a view. """ return vector[pd.notnull(vector)] def get_color_cycle(): """Return the list of colors in the current matplotlib color cycle Parameters ---------- None Returns ------- colors : list List of matplotlib colors in the current cycle, or dark gray if the current color cycle is empty. """ cycler = mpl.rcParams['axes.prop_cycle'] return cycler.by_key()['color'] if 'color' in cycler.keys else [".15"] def despine(fig=None, ax=None, top=True, right=True, left=False, bottom=False, offset=None, trim=False): """Remove the top and right spines from plot(s). fig : matplotlib figure, optional Figure to despine all axes of, default uses current figure. ax : matplotlib axes, optional Specific axes object to despine. top, right, left, bottom : boolean, optional If True, remove that spine. offset : int or dict, optional Absolute distance, in points, spines should be moved away from the axes (negative values move spines inward). A single value applies to all spines; a dict can be used to set offset values per side. trim : bool, optional If True, limit spines to the smallest and largest major tick on each non-despined axis. Returns ------- None """ # Get references to the axes we want if fig is None and ax is None: axes = plt.gcf().axes elif fig is not None: axes = fig.axes elif ax is not None: axes = [ax] for ax_i in axes: for side in ["top", "right", "left", "bottom"]: # Toggle the spine objects is_visible = not locals()[side] ax_i.spines[side].set_visible(is_visible) if offset is not None and is_visible: try: val = offset.get(side, 0) except AttributeError: val = offset ax_i.spines[side].set_position(('outward', val)) # Potentially move the ticks if left and not right: maj_on = any( t.tick1line.get_visible() for t in ax_i.yaxis.majorTicks ) min_on = any( t.tick1line.get_visible() for t in ax_i.yaxis.minorTicks ) ax_i.yaxis.set_ticks_position("right") for t in ax_i.yaxis.majorTicks: t.tick2line.set_visible(maj_on) for t in ax_i.yaxis.minorTicks: t.tick2line.set_visible(min_on) if bottom and not top: maj_on = any( t.tick1line.get_visible() for t in ax_i.xaxis.majorTicks ) min_on = any( t.tick1line.get_visible() for t in ax_i.xaxis.minorTicks ) ax_i.xaxis.set_ticks_position("top") for t in ax_i.xaxis.majorTicks: t.tick2line.set_visible(maj_on) for t in ax_i.xaxis.minorTicks: t.tick2line.set_visible(min_on) if trim: # clip off the parts of the spines that extend past major ticks xticks = np.asarray(ax_i.get_xticks()) if xticks.size: firsttick = np.compress(xticks >= min(ax_i.get_xlim()), xticks)[0] lasttick = np.compress(xticks <= max(ax_i.get_xlim()), xticks)[-1] ax_i.spines['bottom'].set_bounds(firsttick, lasttick) ax_i.spines['top'].set_bounds(firsttick, lasttick) newticks = xticks.compress(xticks <= lasttick) newticks = newticks.compress(newticks >= firsttick) ax_i.set_xticks(newticks) yticks = np.asarray(ax_i.get_yticks()) if yticks.size: firsttick = np.compress(yticks >= min(ax_i.get_ylim()), yticks)[0] lasttick = np.compress(yticks <= max(ax_i.get_ylim()), yticks)[-1] ax_i.spines['left'].set_bounds(firsttick, lasttick) ax_i.spines['right'].set_bounds(firsttick, lasttick) newticks = yticks.compress(yticks <= lasttick) newticks = newticks.compress(newticks >= firsttick) ax_i.set_yticks(newticks) def _kde_support(data, bw, gridsize, cut, clip): """Establish support for a kernel density estimate.""" support_min = max(data.min() - bw * cut, clip[0]) support_max = min(data.max() + bw * cut, clip[1]) return np.linspace(support_min, support_max, gridsize) def percentiles(a, pcts, axis=None): """Like scoreatpercentile but can take and return array of percentiles. DEPRECATED: will be removed in a future version. Parameters ---------- a : array data pcts : sequence of percentile values percentile or percentiles to find score at axis : int or None if not None, computes scores over this axis Returns ------- scores: array array of scores at requested percentiles first dimension is length of object passed to ``pcts`` """ msg = "This function is deprecated and will be removed in a future version" warnings.warn(msg, FutureWarning) scores = [] try: n = len(pcts) except TypeError: pcts = [pcts] n = 0 for i, p in enumerate(pcts): if axis is None: score = stats.scoreatpercentile(a.ravel(), p) else: score = np.apply_along_axis(stats.scoreatpercentile, axis, a, p) scores.append(score) scores = np.asarray(scores) if not n: scores = scores.squeeze() return scores def ci(a, which=95, axis=None): """Return a percentile range from an array of values.""" p = 50 - which / 2, 50 + which / 2 return np.percentile(a, p, axis) def sig_stars(p): """Return a R-style significance string corresponding to p values. DEPRECATED: will be removed in a future version. """ msg = "This function is deprecated and will be removed in a future version" warnings.warn(msg, FutureWarning) if p < 0.001: return "***" elif p < 0.01: return "**" elif p < 0.05: return "*" elif p < 0.1: return "." return "" def iqr(a): """Calculate the IQR for an array of numbers. DEPRECATED: will be removed in a future version. """ msg = "This function is deprecated and will be removed in a future version" warnings.warn(msg, FutureWarning) a = np.asarray(a) q1 = stats.scoreatpercentile(a, 25) q3 = stats.scoreatpercentile(a, 75) return q3 - q1 def get_dataset_names(): """Report available example datasets, useful for reporting issues.""" # delayed import to not demand bs4 unless this function is actually used from bs4 import BeautifulSoup http = urlopen('https://github.com/mwaskom/seaborn-data/') gh_list = BeautifulSoup(http) return [l.text.replace('.csv', '') for l in gh_list.find_all("a", {"class": "js-navigation-open"}) if l.text.endswith('.csv')] def get_data_home(data_home=None): """Return a path to the cache directory for example datasets. This directory is then used by :func:`load_dataset`. If the ``data_home`` argument is not specified, it tries to read from the ``SEABORN_DATA`` environment variable and defaults to ``~/seaborn-data``. """ if data_home is None: data_home = os.environ.get('SEABORN_DATA', os.path.join('~', 'seaborn-data')) data_home = os.path.expanduser(data_home) if not os.path.exists(data_home): os.makedirs(data_home) return data_home def load_dataset(name, cache=True, data_home=None, **kws): """Load an example dataset from the online repository (requires internet). This function provides quick access to a small number of example datasets that are useful for documenting seaborn or generating reproducible examples for bug reports. It is not necessary for normal usage. Note that some of the datasets have a small amount of preprocessing applied to define a proper ordering for categorical variables. Use :func:`get_dataset_names` to see a list of available datasets. Parameters ---------- name : str Name of the dataset (``{name}.csv`` on https://github.com/mwaskom/seaborn-data). cache : boolean, optional If True, try to load from the local cache first, and save to the cache if a download is required. data_home : string, optional The directory in which to cache data; see :func:`get_data_home`. kws : keys and values, optional Additional keyword arguments are passed to passed through to :func:`pandas.read_csv`. Returns ------- df : :class:`pandas.DataFrame` Tabular data, possibly with some preprocessing applied. """ path = ("https://raw.githubusercontent.com/" "mwaskom/seaborn-data/master/{}.csv") full_path = path.format(name) if cache: cache_path = os.path.join(get_data_home(data_home), os.path.basename(full_path)) if not os.path.exists(cache_path): urlretrieve(full_path, cache_path) full_path = cache_path df = pd.read_csv(full_path, **kws) if df.iloc[-1].isnull().all(): df = df.iloc[:-1] # Set some columns as a categorical type with ordered levels if name == "tips": df["day"] = pd.Categorical(df["day"], ["Thur", "Fri", "Sat", "Sun"]) df["sex"] = pd.Categorical(df["sex"], ["Male", "Female"]) df["time"] = pd.Categorical(df["time"], ["Lunch", "Dinner"]) df["smoker"] = pd.Categorical(df["smoker"], ["Yes", "No"]) if name == "flights": df["month"] = pd.Categorical(df["month"], df.month.unique()) if name == "exercise": df["time"] = pd.Categorical(df["time"], ["1 min", "15 min", "30 min"]) df["kind"] = pd.Categorical(df["kind"], ["rest", "walking", "running"]) df["diet"] = pd.Categorical(df["diet"], ["no fat", "low fat"]) if name == "titanic": df["class"] = pd.Categorical(df["class"], ["First", "Second", "Third"]) df["deck"] = pd.Categorical(df["deck"], list("ABCDEFG")) return df def axis_ticklabels_overlap(labels): """Return a boolean for whether the list of ticklabels have overlaps. Parameters ---------- labels : list of matplotlib ticklabels Returns ------- overlap : boolean True if any of the labels overlap. """ if not labels: return False try: bboxes = [l.get_window_extent() for l in labels] overlaps = [b.count_overlaps(bboxes) for b in bboxes] return max(overlaps) > 1 except RuntimeError: # Issue on macos backend raises an error in the above code return False def axes_ticklabels_overlap(ax): """Return booleans for whether the x and y ticklabels on an Axes overlap. Parameters ---------- ax : matplotlib Axes Returns ------- x_overlap, y_overlap : booleans True when the labels on that axis overlap. """ return (axis_ticklabels_overlap(ax.get_xticklabels()), axis_ticklabels_overlap(ax.get_yticklabels())) def locator_to_legend_entries(locator, limits, dtype): """Return levels and formatted levels for brief numeric legends.""" raw_levels = locator.tick_values(*limits).astype(dtype) class dummy_axis: def get_view_interval(self): return limits if isinstance(locator, mpl.ticker.LogLocator): formatter = mpl.ticker.LogFormatter() else: formatter = mpl.ticker.ScalarFormatter() formatter.axis = dummy_axis() # TODO: The following two lines should be replaced # once pinned matplotlib>=3.1.0 with: # formatted_levels = formatter.format_ticks(raw_levels) formatter.set_locs(raw_levels) formatted_levels = [formatter(x) for x in raw_levels] return raw_levels, formatted_levels def relative_luminance(color): """Calculate the relative luminance of a color according to W3C standards Parameters ---------- color : matplotlib color or sequence of matplotlib colors Hex code, rgb-tuple, or html color name. Returns ------- luminance : float(s) between 0 and 1 """ rgb = mpl.colors.colorConverter.to_rgba_array(color)[:, :3] rgb = np.where(rgb <= .03928, rgb / 12.92, ((rgb + .055) / 1.055) ** 2.4) lum = rgb.dot([.2126, .7152, .0722]) try: return lum.item() except ValueError: return lum def to_utf8(obj): """Return a string representing a Python object. Strings (i.e. type ``str``) are returned unchanged. Byte strings (i.e. type ``bytes``) are returned as UTF-8-decoded strings. For other objects, the method ``__str__()`` is called, and the result is returned as a string. Parameters ---------- obj : object Any Python object Returns ------- s : str UTF-8-decoded string representation of ``obj`` """ if isinstance(obj, str): return obj try: return obj.decode(encoding="utf-8") except AttributeError: # obj is not bytes-like return str(obj) def _network(t=None, url='https://google.com'): """ Decorator that will skip a test if `url` is unreachable. Parameters ---------- t : function, optional url : str, optional """ import nose if t is None: return lambda x: _network(x, url=url) def wrapper(*args, **kwargs): # attempt to connect try: f = urlopen(url) except (IOError, HTTPException): raise nose.SkipTest() else: f.close() return t(*args, **kwargs) return wrapper
29.12037
79
0.605034
cc870662a4e16e7d3e3f1453d9cebbe9e102cb34
5,201
py
Python
kubernetes/client/api/core_api.py
sthagen/kubernetes-client-python
3a183048d7d568ba5ea418bcfb8f61713908d3ea
[ "Apache-2.0" ]
null
null
null
kubernetes/client/api/core_api.py
sthagen/kubernetes-client-python
3a183048d7d568ba5ea418bcfb8f61713908d3ea
[ "Apache-2.0" ]
3
2021-11-30T03:11:13.000Z
2022-02-09T03:39:41.000Z
kubernetes/client/api/core_api.py
sthagen/kubernetes-client-python
3a183048d7d568ba5ea418bcfb8f61713908d3ea
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: release-1.24 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from kubernetes.client.api_client import ApiClient from kubernetes.client.exceptions import ( # noqa: F401 ApiTypeError, ApiValueError ) class CoreApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def get_api_versions(self, **kwargs): # noqa: E501 """get_api_versions # noqa: E501 get available API versions # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_api_versions(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1APIVersions If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.get_api_versions_with_http_info(**kwargs) # noqa: E501 def get_api_versions_with_http_info(self, **kwargs): # noqa: E501 """get_api_versions # noqa: E501 get available API versions # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_api_versions_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1APIVersions, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_api_versions" % key ) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/api/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1APIVersions', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats)
36.370629
124
0.59777
1829f2310b132819505a34d44774b0ec98f902d2
9,032
py
Python
admin_interface/migrations/0006_bytes_to_str.py
Mustafa-Abu-Ghazy/django-admin-interface
a04878a1b3220e9e33e15f06cc2b7d075e61542e
[ "MIT" ]
null
null
null
admin_interface/migrations/0006_bytes_to_str.py
Mustafa-Abu-Ghazy/django-admin-interface
a04878a1b3220e9e33e15f06cc2b7d075e61542e
[ "MIT" ]
null
null
null
admin_interface/migrations/0006_bytes_to_str.py
Mustafa-Abu-Ghazy/django-admin-interface
a04878a1b3220e9e33e15f06cc2b7d075e61542e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals import colorfield.fields from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("admin_interface", "0005_add_recent_actions_visible"), ] operations = [ migrations.AlterField( model_name="theme", name="css_delete_button_background_color", field=colorfield.fields.ColorField( blank=True, default="#BA2121", help_text="#BA2121", max_length=10, verbose_name="background color", ), ), migrations.AlterField( model_name="theme", name="css_delete_button_background_hover_color", field=colorfield.fields.ColorField( blank=True, default="#A41515", help_text="#A41515", max_length=10, verbose_name="background hover color", ), ), migrations.AlterField( model_name="theme", name="css_delete_button_text_color", field=colorfield.fields.ColorField( blank=True, default="#FFFFFF", help_text="#FFFFFF", max_length=10, verbose_name="text color", ), ), migrations.AlterField( model_name="theme", name="css_generic_link_color", field=colorfield.fields.ColorField( blank=True, default="#0C3C26", help_text="#0C3C26", max_length=10, verbose_name="link color", ), ), migrations.AlterField( model_name="theme", name="css_generic_link_hover_color", field=colorfield.fields.ColorField( blank=True, default="#156641", help_text="#156641", max_length=10, verbose_name="link hover color", ), ), migrations.AlterField( model_name="theme", name="css_header_background_color", field=colorfield.fields.ColorField( blank=True, default="#0C4B33", help_text="#0C4B33", max_length=10, verbose_name="background color", ), ), migrations.AlterField( model_name="theme", name="css_header_link_color", field=colorfield.fields.ColorField( blank=True, default="#FFFFFF", help_text="#FFFFFF", max_length=10, verbose_name="link color", ), ), migrations.AlterField( model_name="theme", name="css_header_link_hover_color", field=colorfield.fields.ColorField( blank=True, default="#C9F0DD", help_text="#C9F0DD", max_length=10, verbose_name="link hover color", ), ), migrations.AlterField( model_name="theme", name="css_header_text_color", field=colorfield.fields.ColorField( blank=True, default="#44B78B", help_text="#44B78B", max_length=10, verbose_name="text color", ), ), migrations.AlterField( model_name="theme", name="css_module_background_color", field=colorfield.fields.ColorField( blank=True, default="#44B78B", help_text="#44B78B", max_length=10, verbose_name="background color", ), ), migrations.AlterField( model_name="theme", name="css_module_link_color", field=colorfield.fields.ColorField( blank=True, default="#FFFFFF", help_text="#FFFFFF", max_length=10, verbose_name="link color", ), ), migrations.AlterField( model_name="theme", name="css_module_link_hover_color", field=colorfield.fields.ColorField( blank=True, default="#C9F0DD", help_text="#C9F0DD", max_length=10, verbose_name="link hover color", ), ), migrations.AlterField( model_name="theme", name="css_module_rounded_corners", field=models.BooleanField(default=True, verbose_name="rounded corners"), ), migrations.AlterField( model_name="theme", name="css_module_text_color", field=colorfield.fields.ColorField( blank=True, default="#FFFFFF", help_text="#FFFFFF", max_length=10, verbose_name="text color", ), ), migrations.AlterField( model_name="theme", name="css_save_button_background_color", field=colorfield.fields.ColorField( blank=True, default="#0C4B33", help_text="#0C4B33", max_length=10, verbose_name="background color", ), ), migrations.AlterField( model_name="theme", name="css_save_button_background_hover_color", field=colorfield.fields.ColorField( blank=True, default="#0C3C26", help_text="#0C3C26", max_length=10, verbose_name="background hover color", ), ), migrations.AlterField( model_name="theme", name="css_save_button_text_color", field=colorfield.fields.ColorField( blank=True, default="#FFFFFF", help_text="#FFFFFF", max_length=10, verbose_name="text color", ), ), migrations.AlterField( model_name="theme", name="list_filter_dropdown", field=models.BooleanField(default=False, verbose_name="use dropdown"), ), migrations.AlterField( model_name="theme", name="logo_visible", field=models.BooleanField(default=True, verbose_name="visible"), ), migrations.AlterField( model_name="theme", name="name", field=models.CharField(default="Django", max_length=50), ), migrations.AlterField( model_name="theme", name="related_modal_active", field=models.BooleanField(default=True, verbose_name="active"), ), migrations.AlterField( model_name="theme", name="related_modal_background_color", field=colorfield.fields.ColorField( blank=True, default="#000000", help_text="#000000", max_length=10, verbose_name="background color", ), ), migrations.AlterField( model_name="theme", name="related_modal_background_opacity", field=models.FloatField( choices=[ (0.1, "10%"), (0.2, "20%"), (0.3, "30%"), (0.4, "40%"), (0.5, "50%"), (0.6, "60%"), (0.7, "70%"), (0.8, "80%"), (0.9, "90%"), ], default=0.2, help_text="20%", verbose_name="background opacity", ), ), migrations.AlterField( model_name="theme", name="related_modal_rounded_corners", field=models.BooleanField(default=True, verbose_name="rounded corners"), ), migrations.AlterField( model_name="theme", name="title", field=models.CharField( blank=True, default="Django administration", max_length=50 ), ), migrations.AlterField( model_name="theme", name="title_color", field=colorfield.fields.ColorField( blank=True, default="#F5DD5D", help_text="#F5DD5D", max_length=10, verbose_name="title color", ), ), migrations.AlterField( model_name="theme", name="title_visible", field=models.BooleanField(default=True, verbose_name="visible"), ), ]
32.489209
84
0.481178
f9a84236d09bb8b64cea330c2a38530fdf6003c0
9,547
py
Python
models/backbone.py
GUOShuxuan/detr
80d45bf5df940ac6457e7cc9e3ccd6441518a903
[ "Apache-2.0" ]
null
null
null
models/backbone.py
GUOShuxuan/detr
80d45bf5df940ac6457e7cc9e3ccd6441518a903
[ "Apache-2.0" ]
null
null
null
models/backbone.py
GUOShuxuan/detr
80d45bf5df940ac6457e7cc9e3ccd6441518a903
[ "Apache-2.0" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Backbone modules. """ from collections import OrderedDict import os import torch import torch.nn.functional as F import torchvision from torch import nn from torchvision.models._utils import IntermediateLayerGetter from typing import Dict, List from util.misc import NestedTensor, is_main_process from .position_encoding import build_position_encoding ## adding for autonet from sandbox.ptpoc.utils import deserialize_object, load_spec import IPython class FrozenBatchNorm2d(torch.nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n): super(FrozenBatchNorm2d, self).__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): num_batches_tracked_key = prefix + 'num_batches_tracked' if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super(FrozenBatchNorm2d, self)._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def forward(self, x): # move reshapes to the beginning # to make it fuser-friendly w = self.weight.reshape(1, -1, 1, 1) b = self.bias.reshape(1, -1, 1, 1) rv = self.running_var.reshape(1, -1, 1, 1) rm = self.running_mean.reshape(1, -1, 1, 1) eps = 1e-5 scale = w * (rv + eps).rsqrt() bias = b - rm * scale return x * scale + bias class BackboneBase(nn.Module): def __init__(self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool): super().__init__() for name, parameter in backbone.named_parameters(): if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name: # train_backbone is True, layer1 not train, while train others parameter.requires_grad_(False) if return_interm_layers: return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} else: return_layers = {'layer4': "0"} # IPython.embed() self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) self.num_channels = num_channels def forward(self, tensor_list: NestedTensor): xs = self.body(tensor_list.tensors) # input: torch.Size([2, 3, 604, 960]) #xs['0'].size(): torch.Size([2, 2048, 19, 30]) 'orderdict' # IPython.embed() out: Dict[str, NestedTensor] = {} for name, x in xs.items(): m = tensor_list.mask assert m is not None mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] out[name] = NestedTensor(x, mask) #x.size():torch.Size([2, 2048, 19, 30]) mask.size():[2, 19, 30]) # IPython.embed() return out class BackboneAutoNetBase(BackboneBase): def __init__(self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool): super(BackboneBase, self).__init__() for name, parameter in backbone.named_parameters(): # print(name) if not train_backbone: #or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name: parameter.requires_grad_(False) # IPython.embed() # if return_interm_layers: # return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} # else: # return_layers = {'layer4': "0"} self.body = backbone self.num_channels = num_channels def forward(self, tensor_list: NestedTensor): xs = self.body(tensor_list.tensors) #torch.Size([2, 256, 38, 60]) # IPython.embed() xs = {'0': xs} out: Dict[str, NestedTensor] = {} for name, x in xs.items(): m = tensor_list.mask assert m is not None mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] out[name] = NestedTensor(x, mask) # torch.Size([2, 256, 38, 60]) # IPython.embed() return out class BackboneAutoNet(BackboneAutoNetBase): # add autonet backbone def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool, training_spec: str, auto_checkpoint: str ): if name.startswith('autonet'): # training_spec = 'sandbox/williamz/detr/res_autonet/autonet_training_spec.yaml' # training_spec = os.path.join(os.environ["HOME"],'datasets/specs/autonet_training_spec.yaml') training_spec = load_spec(training_spec) model = deserialize_object(training_spec["model"]) # autonet checkpoint # checkpoint = 'sandbox/williamz/detr/res_autonet/final_epoch.checkpoint' checkpoint = auto_checkpoint # checkpoint = os.path.join(os.environ["HOME"],'datasets/autonet/final_epoch.checkpoint') if checkpoint is not None and os.path.isfile(checkpoint) and is_main_process(): print(f'---------- Loading checkpoint for AutoNet -----') loaded_states = torch.load(checkpoint) model_state = loaded_states["model_state"] model.load_state_dict(model_state, strict=False) # backbone = model else: print(f'---------- No checkpoint for AutoNet -----') # get drivenet # IPython.embed() modules = [] for block in model._blocks: if 'drive2d' in block["task_name"]: modules.append(getattr(model, block['name'])) backbone = nn.Sequential(*modules[:-1]) num_channels = 256 super().__init__(backbone, train_backbone, num_channels, return_interm_layers) class Backbone(BackboneBase): """ResNet backbone with frozen BatchNorm.""" def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool): if name.startswith('resnet'): backbone = getattr(torchvision.models, name)( replace_stride_with_dilation=[False, False, dilation], # pretrained=False, norm_layer=FrozenBatchNorm2d) pretrained=is_main_process(), norm_layer=FrozenBatchNorm2d) num_channels = 512 if name in ('resnet18', 'resnet34') else 2048 super().__init__(backbone, train_backbone, num_channels, return_interm_layers) class Joiner(nn.Sequential): def __init__(self, backbone, position_embedding): super().__init__(backbone, position_embedding) def forward(self, tensor_list: NestedTensor): xs = self[0](tensor_list) out: List[NestedTensor] = [] pos = [] for name, x in xs.items(): out.append(x) # position encoding pos.append(self[1](x).to(x.tensors.dtype)) return out, pos def build_backbone(args): position_embedding = build_position_encoding(args) train_backbone = args.lr_backbone > 0 return_interm_layers = args.masks if args.backbone.startswith('resnet'): backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation) elif args.backbone.startswith('autonet'): backbone = BackboneAutoNet(args.backbone, train_backbone, return_interm_layers, args.dilation, args.training_spec, args.auto_checkpoint) model = Joiner(backbone, position_embedding) model.num_channels = backbone.num_channels return model # debug test for drivenet part # inputs = torch.rand((4, 3, 544, 960)) # out = model(inputs) # out.keys(): dict_keys(['drive2d', 'openroad', 'map', 'wait_sky']) # out['drive2d'].keys(): ['1_cycle', '1_person', '1_vehicle'] # out['drive2d']['1_cycle'].keys(): dict_keys(['cov', 'bbox']) # 1, 4 # bbox = out['drive2d']['1_cycle']['bbox'] # cov = out['drive2d']['1_cycle']['cov'] # # module = getattr(model, 'drive2d') # # drive2d = getattr(model, 'drive2d') # # rebuild drive2d # modules = [] # for block in model._blocks: # if 'drive2d' in block["task_name"]: # modules.append(getattr(model, block['name'])) # drivenet = nn.ModuleList(modules) # f = open('/home/shuxuang/experiments/demos/detection-f/drive2d.txt', 'w') # f.write(str(drivenet)) # # drivenet[0](inputs).size(): [4, 64, 136, 240] # # drivenet[1](drivenet[0](inputs)).size(): ([4, 256, 34, 60]) # # dout = drivenet[2](drivenet[1](drivenet[0](inputs))) # # d_bbox = dout['1_cycle']['bbox'] # d_cov = dout['1_cycle']['cov'] # torch.all(torch.eq(bbox, d_bbox)) #True # torch.all(torch.eq(cov, d_cov)) # True # drivnet = nn.Sequential(*modules) # ddout = drivnet(inputs) # dd_bbox = ddout['1_cycle']['bbox'] # dd_cov = ddout['1_cycle']['cov']
41.689956
171
0.62648
ff09d56f312c9b56f4723c7d2a1174d177cdb820
1,130
py
Python
misc/make-apidoc.py
jayvdb/Nuitka
0ff702e065b1b53231ba0cae451385a3da0fe766
[ "Apache-2.0" ]
1
2019-03-31T09:56:11.000Z
2019-03-31T09:56:11.000Z
misc/make-apidoc.py
jayvdb/Nuitka
0ff702e065b1b53231ba0cae451385a3da0fe766
[ "Apache-2.0" ]
null
null
null
misc/make-apidoc.py
jayvdb/Nuitka
0ff702e065b1b53231ba0cae451385a3da0fe766
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 2019, Kay Hayen, mailto:kay.hayen@gmail.com # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Launcher for API doc upload tool. """ import os import sys # Unchanged, running from checkout, use the parent directory, the nuitka # package ought be there. sys.path.insert(0, os.path.normpath(os.path.join(os.path.dirname(__file__), ".."))) # isort:start from nuitka.tools.quality.apidoc.__main__ import main main()
31.388889
83
0.718584
2c317d60277bbe6cee39f90c753471ec43c003e6
767
py
Python
bin/clean_log_files.py
davidcorne/markdown-editor
1d6f2684f06dd7f350c68588aa3a6b5d61e3fdd5
[ "MIT" ]
null
null
null
bin/clean_log_files.py
davidcorne/markdown-editor
1d6f2684f06dd7f350c68588aa3a6b5d61e3fdd5
[ "MIT" ]
null
null
null
bin/clean_log_files.py
davidcorne/markdown-editor
1d6f2684f06dd7f350c68588aa3a6b5d61e3fdd5
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Written by: DGC # python imports import os import logging import sys # local imports sys.path.append(".") sys.path.append("..") import Log # immediately stop logging logging.getLogger("").handlers = [] #============================================================================== def main(): log_directory = os.path.dirname(Log.log_file()) print("Removing: ") for temp_file in os.listdir(log_directory): if ("Markdown_Editor_" in temp_file and temp_file[-4:] == ".log"): file_path = os.path.join(log_directory, temp_file) print(file_path) os.remove(file_path) #============================================================================== if (__name__ == "__main__"): main()
25.566667
79
0.514993
cfa1c410b8f3ef96e7130028a58645925fc06877
2,170
py
Python
share/qt/extract_strings_qt.py
needycoin/needycore
05c0ce57f27d66c37696a9c5eb3c067120fd68b8
[ "MIT" ]
1
2020-06-04T14:05:04.000Z
2020-06-04T14:05:04.000Z
share/qt/extract_strings_qt.py
needycoin/needycore
05c0ce57f27d66c37696a9c5eb3c067120fd68b8
[ "MIT" ]
null
null
null
share/qt/extract_strings_qt.py
needycoin/needycore
05c0ce57f27d66c37696a9c5eb3c067120fd68b8
[ "MIT" ]
1
2020-07-13T17:00:15.000Z
2020-07-13T17:00:15.000Z
#!/usr/bin/python ''' Extract _("...") strings for translation and convert to Qt stringdefs so that they can be picked up by Qt linguist. ''' from __future__ import division,print_function,unicode_literals from subprocess import Popen, PIPE import glob import operator import os import sys OUT_CPP="qt/needycoinstrings.cpp" EMPTY=['""'] def parse_po(text): """ Parse 'po' format produced by xgettext. Return a list of (msgid,msgstr) tuples. """ messages = [] msgid = [] msgstr = [] in_msgid = False in_msgstr = False for line in text.split('\n'): line = line.rstrip('\r') if line.startswith('msgid '): if in_msgstr: messages.append((msgid, msgstr)) in_msgstr = False # message start in_msgid = True msgid = [line[6:]] elif line.startswith('msgstr '): in_msgid = False in_msgstr = True msgstr = [line[7:]] elif line.startswith('"'): if in_msgid: msgid.append(line) if in_msgstr: msgstr.append(line) if in_msgstr: messages.append((msgid, msgstr)) return messages files = sys.argv[1:] # xgettext -n --keyword=_ $FILES XGETTEXT=os.getenv('XGETTEXT', 'xgettext') if not XGETTEXT: print('Cannot extract strings: xgettext utility is not installed or not configured.',file=sys.stderr) print('Please install package "gettext" and re-run \'./configure\'.',file=sys.stderr) exit(1) child = Popen([XGETTEXT,'--output=-','-n','--keyword=_'] + files, stdout=PIPE) (out, err) = child.communicate() messages = parse_po(out.decode('utf-8')) f = open(OUT_CPP, 'w') f.write(""" #include <QtGlobal> // Automatically generated by extract_strings.py #ifdef __GNUC__ #define UNUSED __attribute__((unused)) #else #define UNUSED #endif """) f.write('static const char UNUSED *needycoin_strings[] = {\n') messages.sort(key=operator.itemgetter(0)) for (msgid, msgstr) in messages: if msgid != EMPTY: f.write('QT_TRANSLATE_NOOP("needycoin-core", %s),\n' % ('\n'.join(msgid))) f.write('};\n') f.close()
25.833333
105
0.620737
0ec4578ba3bfa1049ec9f68f568213567bfe363d
857
py
Python
python/mxnet/ndarray/random.py
saurabh3949/mxnet
e25074a469b45f2cbde68e2a0c8963daea93b66b
[ "Apache-2.0" ]
4
2017-11-17T07:28:09.000Z
2019-07-23T06:24:16.000Z
python/mxnet/ndarray/random.py
saurabh3949/mxnet
e25074a469b45f2cbde68e2a0c8963daea93b66b
[ "Apache-2.0" ]
null
null
null
python/mxnet/ndarray/random.py
saurabh3949/mxnet
e25074a469b45f2cbde68e2a0c8963daea93b66b
[ "Apache-2.0" ]
2
2019-06-12T12:40:20.000Z
2020-11-03T14:33:14.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Random distribution generator NDArray API of MXNet.""" __all__ = []
42.85
62
0.767795
5a95f4834a853c917ee718bb2b595b99ee0b52fa
1,892
py
Python
tests/l0_retr_test.py
colligant/wrfxpy
eacce15cad55820d9fb82dac9597021e00eb99f8
[ "MIT" ]
null
null
null
tests/l0_retr_test.py
colligant/wrfxpy
eacce15cad55820d9fb82dac9597021e00eb99f8
[ "MIT" ]
null
null
null
tests/l0_retr_test.py
colligant/wrfxpy
eacce15cad55820d9fb82dac9597021e00eb99f8
[ "MIT" ]
1
2020-11-23T23:40:43.000Z
2020-11-23T23:40:43.000Z
# # Dalton Burke # # Test correct functionality of the retrieval of level0 files import os import subprocess import datetime import shutil # Set root directory of wrfxpy as working directory script_path = os.path.realpath(__file__) # + 6 gets us to wrfxpy index = script_path.find('wrfxpy/tests') + 6 os.chdir(script_path[:index]) # Path where the download files should go local_path = 'tests/l0_test_ingest' # Remove data from old tests shutil.rmtree(local_path, ignore_errors=True) current_time = datetime.datetime.utcnow() ten_hours_ago = str(current_time - datetime.timedelta(hours=10)).replace(' ', '_') five_hours_ago = str(current_time - datetime.timedelta(hours=5)).replace(' ', '_') current_time = str(current_time).replace(' ', '_') source_types = ['MODIS_AQUA', 'MODIS_TERRA', 'VIIRS_NPP'] # ----------------------------------------------------------------------- # Download all data sources from the last 5 hours print "TESTING SOURCES FOR FILES IN LAST 5 HOURS\n" for t in source_types: print "\nRETRIEVING %s FILES FROM THE LAST 5 HOURS WITH CALL:" % t print './level0_retr.sh %s %s %s %s \n' % (t, five_hours_ago, current_time, local_path) subprocess.call(['./level0_retr.sh', t, five_hours_ago, current_time, local_path]) print "\nDONE RETRIEVING FILES FROM LAST 5 HOURS \n\n" # ----------------------------------------------------------------------- # Download all data sources from the last 10 hours # (some data we should already have, so those should be skipped) print "TESTING SOURCES FOR FILES IN LAST 10 HOURS\n" for t in source_types: print "\nRETRIEVING %s FILES FROM THE LAST 10 HOURS WITH CALL:" % t print './level0_retr.sh %s %s %s %s \n' % (t, ten_hours_ago, current_time, local_path) subprocess.call(['./level0_retr.sh', t, ten_hours_ago, current_time, local_path]) print "\nDONE RETRIEVING FILES FROM LAST 10 HOURS"
31.016393
91
0.676533
d4e577c157a6a62760a3d078b1487ac6618cafc6
1,973
py
Python
_Spark_makeSource_DailyC.py
developeration/stock
d1df7e152fd1fc7b5f0446148276cd16928071bb
[ "MIT" ]
null
null
null
_Spark_makeSource_DailyC.py
developeration/stock
d1df7e152fd1fc7b5f0446148276cd16928071bb
[ "MIT" ]
null
null
null
_Spark_makeSource_DailyC.py
developeration/stock
d1df7e152fd1fc7b5f0446148276cd16928071bb
[ "MIT" ]
null
null
null
from pyspark import SparkConf from _Setting import StockSetting import tushare as ts import numpy as np import pandas as pd from pyspark.sql import SparkSession from pyspark.sql.types import StructType, StructField, StringType, DoubleType import json #spark-submit --master yarn --py-files ./_Setting.py --deploy-mode cluster ./_Spark_makeSource_DailyC.py if __name__ == "__main__": settings = StockSetting() spark = SparkSession.builder \ .appName("_Spark_makeSource") \ .master("yarn") \ .config('spark.submit.pyFiles', '/work/dev/stock/_Setting.py') \ .getOrCreate() # .appName("_Spark_makeSource_DailyC") \ # .getOrCreate() # conf = SparkConf() # conf.set("spark.default.parallelism","15") sc = spark.sparkContext pro = ts.pro_api(settings.tushareKey) # data_local = pro.stock_basic(exchange='', list_status='L',market='主板') # data_hadop = spark.createDataFrame(data_local) savepath = settings.datasource_path+"stock_basic_main" # data_hadop.write.mode("overwrite").format("json").save(savepath) data_hadop = spark.read.format("json").load(savepath) #Debug #data_hadop.show() def getdailydata(item): try: savepath = settings.datasource_moneyflow_path+item.ts_code if(settings.file_exists(sc,savepath) == False): print("moneyflow",item.ts_code) data_daily_local = pro.moneyflow(ts_code=item.ts_code ) if data_daily_local.empty : return data_daily_hadop = spark.createDataFrame(data_daily_local) data_daily_hadop.write.mode("overwrite").format("json").save(savepath) except Exception as e: print(item.ts_code,"moneyflow",e) #data_hadop.foreach(getdailydata) stock_list = data_hadop.collect() for item in stock_list: getdailydata(item) print("Finished")
35.872727
107
0.657375
a5513efdfc8f1ec2e31f933562c3afc866a8dd62
1,180
py
Python
thrift/compiler/py/setup.py
jesboat/fbthrift
7d8e1dcec59024e526e6768d3d4a66f6c4abe5ac
[ "Apache-2.0" ]
5
2015-11-23T00:26:06.000Z
2020-07-31T12:56:08.000Z
thrift/compiler/py/setup.py
jesboat/fbthrift
7d8e1dcec59024e526e6768d3d4a66f6c4abe5ac
[ "Apache-2.0" ]
2
2017-05-10T15:43:34.000Z
2018-01-04T22:36:04.000Z
thrift/compiler/py/setup.py
jesboat/fbthrift
7d8e1dcec59024e526e6768d3d4a66f6c4abe5ac
[ "Apache-2.0" ]
7
2017-09-01T01:30:25.000Z
2019-02-04T17:46:24.000Z
#!/usr/bin/env python import sys import shutil try: from setuptools import setup, Extension except: from distutils.core import setup, Extension, Command def run_setup(): if sys.argv[1] == 'build': shutil.copy('.libs/frontend.so', 'frontend.so') setup(name = 'thrift-py', version = '0.9.0', description = 'Thrift python compiler', author = ['Thrift Developers'], author_email = ['dev@thrift.apache.org'], url = 'http://thrift.apache.org', license = 'Apache License 2.0', packages = [ 'thrift_compiler', 'thrift_compiler.generate', ], package_dir = {'thrift_compiler' : '.'}, package_data = {'thrift_compiler':['frontend.so']}, classifiers = [ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Developers', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Topic :: Software Development :: Libraries', 'Topic :: System :: Networking' ], zip_safe = False, ) run_setup()
29.5
59
0.561864
b8d4e9959fb21ceacb071fcf88fad10f793901d6
2,529
py
Python
homework/Testing with Examples (Data Format)/impl-temperature04.py
rvprasad/software-testing-course
3803851dcf9f7bbd0f0b89fca6c9c5e3a48f22e0
[ "CC-BY-4.0" ]
11
2018-02-08T05:23:28.000Z
2021-05-24T13:23:56.000Z
homework/Testing with Examples (Data Format)/impl-temperature04.py
rvprasad/software-testing-course
3803851dcf9f7bbd0f0b89fca6c9c5e3a48f22e0
[ "CC-BY-4.0" ]
null
null
null
homework/Testing with Examples (Data Format)/impl-temperature04.py
rvprasad/software-testing-course
3803851dcf9f7bbd0f0b89fca6c9c5e3a48f22e0
[ "CC-BY-4.0" ]
2
2020-09-15T08:51:22.000Z
2021-01-26T12:07:18.000Z
import re class PhysicalInfo(object): def set_date(self, date): if not isinstance(date, str): raise ValueError("date should be a string") t = date.split("-") if len(t) != 3: raise ValueError("date should be in MM-DD-YYYY format") if re.search(r'[^0-9\-]', date): raise ValueError("date should contain only numbers and -") year = int(t[2]) if year < 1900 or year > 2100: raise ValueError("invalid year {0}".format(year)) is_leap = year % 4 == 0 and (year % 400 == 0 or year % 100 != 0) month = int(t[0]) if month < 1 or month > 12: raise ValueError("invalid month {0}".format(month)) day_limit = 31 if month in [4, 6, 7, 9, 11]: day_limit = 30 elif month == 2: if is_leap: day_limit = 29 else: day_limit = 28 day = int(t[1]) if day < 1 or day > day_limit: raise ValueError("invalid day {0}".format(day)) self.date = date def set_name(self, name): if not isinstance(name, str): raise ValueError("name should be a string") tmp1 = name.lower() if re.search(r'[^a-z0-9 -]', tmp1): raise ValueError("name should contain letters, numbers, -, and space") if len(tmp1.strip()) < 2 or len(tmp1.replace("-", '')) < 2: raise ValueError("name should be at least two characters long") if not re.search(r'[a-z]', tmp1): raise ValueError("name should contain at least one character") self.name = name def set_gender(self, gender): if gender != 'M' and gender != 'F': raise ValueError("gender should be either M or F") self.gender = gender def set_height(self, height): if not isinstance(height, int): raise ValueError("height should be an integer") if height < 17 or height > 84: raise ValueError("height should be an integer between 17 and 84") self.height = height def set_temperature(self, temperature): if not isinstance(temperature, float): raise ValueError("temperature should be a float") #if temperature < 95 or temperature > 104: if temperature > 104: raise ValueError("temperature should be a float between 95 and 104") self.temperature = temperature
37.191176
82
0.546066
625ed42d7399daf03766381b06d76d1bdd3cc8e0
4,586
py
Python
src/CADRE/parameters.py
JustinSGray/OpenMDAO-CADRE
d8378a8a571179990531d8a409efe727cbdf2bb7
[ "Apache-2.0" ]
1
2021-07-11T19:15:22.000Z
2021-07-11T19:15:22.000Z
src/CADRE/parameters.py
JustinSGray/OpenMDAO-CADRE
d8378a8a571179990531d8a409efe727cbdf2bb7
[ "Apache-2.0" ]
null
null
null
src/CADRE/parameters.py
JustinSGray/OpenMDAO-CADRE
d8378a8a571179990531d8a409efe727cbdf2bb7
[ "Apache-2.0" ]
1
2015-11-19T18:18:01.000Z
2015-11-19T18:18:01.000Z
''' Bspline module for CADRE ''' from openmdao.main.api import Component from openmdao.lib.datatypes.api import Float, Array from MBI.MBI import MBI import numpy as np class BsplineParameters(Component): '''Creates a Bspline interpolant for several CADRE variables so that their time histories can be shaped with m control points instead of n time points.''' def __init__(self, n, m): super(BsplineParameters, self).__init__() self.n = n self.m = m self.add('t1', Float(0., units='s', desc='Start time', iotype='in')) self.add('t2', Float(43200., units='s', desc='End time', iotype='in')) self.B = MBI(np.zeros(n), [np.linspace(self.t1,self.t2,n)], [self.m], [4]).getJacobian(0,0) self.Bdot = MBI(np.zeros(n), [np.linspace(self.t1,self.t2,n)], [self.m], [4]).getJacobian(1,0) self.BT = self.B.transpose() self.BdotT = self.Bdot.transpose() self.add('CP_P_comm', Array(np.zeros((self.m,)), size=(self.m,), dtype=float, units='W', desc='Communication power at the control points', iotype='in')) self.add('CP_gamma', Array(np.zeros((self.m,)), size=(self.m,), dtype=float, units='rad', desc='Satellite roll angle at control points', iotype='in')) self.add('CP_Isetpt', Array(np.zeros((12,self.m)), size=(12,self.m), dtype=float, units='A', desc='Currents of the solar panels at the control points', iotype='in')) self.add('P_comm', Array(np.ones((n,)), size=(n,), dtype=float, units='W', desc='Communication power over time', iotype='out')) self.add('Gamma', Array(0.1*np.ones((n,)), size=(n,), dtype=float, units='rad', desc='Satellite roll angle over time', iotype='out')) self.add('Isetpt',Array(0.2*np.ones((12,n)), size=(12,n), dtype=float, units="A", desc="Currents of the solar panels over time", iotype='out')) def list_deriv_vars(self): input_keys = ('CP_P_comm', 'CP_gamma', 'CP_Isetpt') output_keys = ('P_comm', 'Gamma', 'Isetpt') return input_keys, output_keys def provideJ(self): """ Calculate and save derivatives (i.e., Jacobian). """ # Derivatives are simple return def execute(self): """ Calculate output. """ self.P_comm = self.B.dot(self.CP_P_comm) self.Gamma = self.B.dot(self.CP_gamma) for k in range(12): self.Isetpt[k, :] = self.B.dot(self.CP_Isetpt[k, :]) def apply_deriv(self, arg, result): """ Matrix-vector product with the Jacobian """ if 'CP_P_comm' in arg: result['P_comm'] += self.B.dot(arg['CP_P_comm']) if 'CP_gamma' in arg: result['Gamma'] += self.B.dot(arg['CP_gamma']) if 'CP_Isetpt' in arg: for k in range(12): result['Isetpt'][k, :] += self.B.dot(arg['CP_Isetpt'][k, :]) def apply_derivT(self, arg, result): """ Matrix-vector product with the transpose of the Jacobian """ if 'P_comm' in arg and 'CP_P_comm' in result: result['CP_P_comm'] += self.BT.dot(arg['P_comm']) if 'Gamma' in arg and 'CP_gamma' in result: result['CP_gamma'] += self.BT.dot(arg['Gamma']) if 'Isetpt' in arg and 'CP_Isetpt' in result: for k in range(12): result['CP_Isetpt'][k, :] += self.BT.dot(arg['Isetpt'][k, :])
36.688
94
0.441343
5de86698fbf5992b1c327a7a3e37baafc94f4b70
5,901
py
Python
service/auth/api.py
alan-turing-institute/science-gateway-counter
f27c5ad426f1808a81e7a531ed56be341e7ef683
[ "MIT" ]
null
null
null
service/auth/api.py
alan-turing-institute/science-gateway-counter
f27c5ad426f1808a81e7a531ed56be341e7ef683
[ "MIT" ]
null
null
null
service/auth/api.py
alan-turing-institute/science-gateway-counter
f27c5ad426f1808a81e7a531ed56be341e7ef683
[ "MIT" ]
null
null
null
from flask_restful import Resource, abort from flask import request, make_response, jsonify from service.database import db, bcrypt from service.models import Organisation, User DEFAULT_ORGANISATION_CREDIT = 400 DEFAULT_USER_CREDIT = 50 DEFAULT_ORGANISATION_NAME = 'Industry User' class CounterApi(Resource): """ Counter Resource """ def get(self): # extract the auth token auth_header = request.headers.get('Authorization') if auth_header: try: auth_token = auth_header.split(" ")[1] except IndexError: responseObject = { 'status': 'fail', 'message': 'Bearer token malformed.' } return make_response(jsonify(responseObject), 401) else: auth_token = '' if auth_token: resp = Organisation.decode_auth_token(auth_token) user_id = resp # fetch organisation information organisation = Organisation.query.first() if organisation: organisation_credit = organisation.credit organisation_tally = organisation.tally else: organisation_credit = DEFAULT_ORGANISATION_CREDIT organisation_tally = 0 # fetch user information user = db.session.query(User).filter_by(id=user_id).first() if user is None: user_credit = DEFAULT_USER_CREDIT user_tally = 0 else: user_credit = user.credit user_tally = user.tally responseObject = { 'status': 'success', 'message': 'user credit', 'organisation':{ 'credit': organisation_credit, 'tally': organisation_tally, }, 'user':{ 'credit': user_credit, 'tally': user_tally, } } return make_response(jsonify(responseObject), 200) else: responseObject = { 'status': 'fail', 'message': 'Provide a valid auth token.' } return make_response(jsonify(responseObject), 401) def post(self): # extract the auth token auth_header = request.headers.get('Authorization') if auth_header: try: auth_token = auth_header.split(" ")[1] except IndexError: responseObject = { 'status': 'fail', 'message': 'Bearer token malformed.' } return make_response(jsonify(responseObject), 401) else: auth_token = '' if auth_token: resp = Organisation.decode_auth_token(auth_token) if not isinstance(resp, str): user_id = resp organisation = Organisation.query.first() # create the counter if we need to if organisation is None: organisation = Organisation( name=DEFAULT_ORGANISATION_NAME, credit=DEFAULT_ORGANISATION_CREDIT) # create the user if we need to user = db.session.query(User).filter_by(id=user_id).first() if user is None: user = User(organisation=organisation, credit=DEFAULT_USER_CREDIT) if organisation.credit < 1 or user.credit < 1: responseObject = { 'status': 'error', 'message': 'insufficient organisation credit remaining', 'organisation': { 'name': organisation.name, 'tally': organisation.tally, 'credit': organisation.credit }, 'user': { 'id': user_id, 'credit': user.credit, 'tally': user.tally, } } return make_response(jsonify(responseObject), 200) else: # decrement credit organisation.credit = organisation.credit - 1 user.credit = user.credit - 1 # increment tally organisation.tally = organisation.tally + 1 user.tally = user.tally + 1 db.session.add(organisation) db.session.add(user) db.session.commit() # TODO re-query to check persistence of updated fields responseObject = { 'status': 'success', 'message': 'updated tally', 'organisation': { 'name': organisation.name, 'tally': organisation.tally, 'credit': organisation.credit }, 'user': { 'id': user_id, 'credit': user.credit, 'tally': user.tally, } } return make_response(jsonify(responseObject), 200) responseObject = { 'status': 'fail', 'message': resp } return make_response(jsonify(responseObject), 401) else: responseObject = { 'status': 'fail', 'message': 'Provide a valid auth token.' } return make_response(jsonify(responseObject), 401)
35.548193
86
0.469581
d17534ec4b4437f3848a1542dc81f17c37278d56
2,289
py
Python
tools/rvm.py
fyviezhao/Anim-NeRF
65f59a7993093e6530c05c0c47842f6f7866d7c4
[ "MIT" ]
1
2022-03-28T09:30:22.000Z
2022-03-28T09:30:22.000Z
tools/rvm.py
fyviezhao/Anim-NeRF
65f59a7993093e6530c05c0c47842f6f7866d7c4
[ "MIT" ]
null
null
null
tools/rvm.py
fyviezhao/Anim-NeRF
65f59a7993093e6530c05c0c47842f6f7866d7c4
[ "MIT" ]
null
null
null
import os import cv2 import pickle import shutil import argparse import torch import numpy as np from tqdm import tqdm import sys sys.path.append('third_party/RobustVideoMatting') from model import MattingNetwork from inference_utils import ImageSequenceReader, ImageSequenceWriter device = torch.device('cuda:0') EXTS = ['jpg', 'jpeg', 'png'] def main(args): segmentor = MattingNetwork(variant='resnet50').eval().to(device) segmentor.load_state_dict(torch.load(args.ckpt_path)) images_folder = args.images_folder output_folder = args.output_folder frame_IDs = os.listdir(images_folder) frame_IDs = [id.split('.')[0] for id in frame_IDs if id.split('.')[-1] in EXTS] frame_IDs.sort() frame_IDs = frame_IDs[:4][::-1] + frame_IDs rec = [None] * 4 # Initial recurrent downsample_ratio = 1.0 # Adjust based on your video. for i in tqdm(range(len(frame_IDs))): frame_ID = frame_IDs[i] img_path = os.path.join(images_folder, '{}.png'.format(frame_ID)) img_masked_path = os.path.join(output_folder, '{}.png'.format(frame_ID)) img = cv2.imread(img_path) src = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) src = torch.from_numpy(src).float() / 255. src = src.permute(2, 0, 1).unsqueeze(0) with torch.no_grad(): fgr, pha, *rec = segmentor(src.to(device), *rec, downsample_ratio) # Cycle the recurrent states. pha = pha.permute(0, 2, 3, 1).cpu().numpy().squeeze(0) mask = (pha > 0.5).astype(np.int32) mask = (mask * 255).astype(np.uint8) img_masked = np.concatenate([img, mask], axis=-1) cv2.imwrite(img_masked_path, img_masked) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--images_folder', type=str, help='the images folder for segmentation') parser.add_argument('--output_folder', type=str, help='the output folder to save results') parser.add_argument('--ckpt_path', type=str, default='third_party/RobustVideoMatting/checkpoints/rvm_resnet50.pth', help='the checkpoints for rvm') args = parser.parse_args() main(args)
35.765625
119
0.637396
676f0f3a778530b225a64817daa14cce75bcf4cf
317
py
Python
authentication/forms.py
RAGNAROSaa/-
833688d556ecc70570a9b464160271ace07380d9
[ "Apache-2.0" ]
5
2016-09-25T02:59:13.000Z
2018-07-18T05:20:58.000Z
authentication/forms.py
RAGNAROSaa/-
833688d556ecc70570a9b464160271ace07380d9
[ "Apache-2.0" ]
1
2016-12-01T01:11:53.000Z
2016-12-01T01:11:53.000Z
authentication/forms.py
RAGNAROSaa/-
833688d556ecc70570a9b464160271ace07380d9
[ "Apache-2.0" ]
6
2016-09-24T02:42:57.000Z
2016-11-10T13:35:13.000Z
from django import forms from django.contrib.auth import authenticate class LoginForm(forms.Form): username = forms.CharField() password = forms.CharField() def login(self): user = authenticate(username=self.cleaned_data['username'], password=self.cleaned_data['password']) return user
26.416667
107
0.722397
67d74cb95423d800e53a6caf33db67e848c0e12a
6,229
py
Python
w3testrunner/third_party/talos/ffprocess_linux.py
formido/browsercontrol
a4259cf239cdfe439e37ac13c2b7b4329c42198b
[ "BSD-3-Clause" ]
null
null
null
w3testrunner/third_party/talos/ffprocess_linux.py
formido/browsercontrol
a4259cf239cdfe439e37ac13c2b7b4329c42198b
[ "BSD-3-Clause" ]
null
null
null
w3testrunner/third_party/talos/ffprocess_linux.py
formido/browsercontrol
a4259cf239cdfe439e37ac13c2b7b4329c42198b
[ "BSD-3-Clause" ]
null
null
null
# ***** BEGIN LICENSE BLOCK ***** # Version: MPL 1.1/GPL 2.0/LGPL 2.1 # # The contents of this file are subject to the Mozilla Public License Version # 1.1 (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # http://www.mozilla.org/MPL/ # # Software distributed under the License is distributed on an "AS IS" basis, # WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License # for the specific language governing rights and limitations under the # License. # # The Original Code is standalone Firefox Windows performance test. # # The Initial Developer of the Original Code is Google Inc. # Portions created by the Initial Developer are Copyright (C) 2006 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Annie Sullivan <annie.sullivan@gmail.com> (original author) # Ben Hearsum <bhearsum@wittydomain.com> (OS independence) # # Alternatively, the contents of this file may be used under the terms of # either the GNU General Public License Version 2 or later (the "GPL"), or # the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), # in which case the provisions of the GPL or the LGPL are applicable instead # of those above. If you wish to allow use of your version of this file only # under the terms of either the GPL or the LGPL, and not to allow others to # use your version of this file under the terms of the MPL, indicate your # decision by deleting the provisions above and replace them with the notice # and other provisions required by the GPL or the LGPL. If you do not delete # the provisions above, a recipient may use your version of this file under # the terms of any one of the MPL, the GPL or the LGPL. # # ***** END LICENSE BLOCK ***** import subprocess import signal import os from select import select import time def GenerateFirefoxCommandLine(firefox_path, profile_dir, url): """Generates the command line for a process to run Firefox Args: firefox_path: String containing the path to the firefox exe to use profile_dir: String containing the directory of the profile to run Firefox in url: String containing url to start with. """ profile_arg = '' if profile_dir: profile_arg = '-profile %s' % profile_dir cmd = '%s %s %s' % (firefox_path, profile_arg, url) return cmd def GetPidsByName(process_name): """Searches for processes containing a given string. This function is UNIX specific. Args: process_name: The string to be searched for Returns: A list of PIDs containing the string. An empty list is returned if none are found. """ # BT: new implementation using ps -C in order to filter better. ps_output = subprocess.Popen(('ps', '--no-headers', '-o', 'pid,cmd', '-C', process_name), stdout=subprocess.PIPE).communicate()[0] pids = [] for line in ps_output.splitlines(): line = line.strip() pid, cmd = line.split(" ", 1) if "<defunct>" in cmd: continue pids.append(int(pid)) return pids # BT: original implementation, unused: matchingPids = [] command = ['ps', 'ax'] handle = subprocess.Popen(command, stdout=subprocess.PIPE) # wait for the process to terminate handle.wait() data = handle.stdout.read() # find all matching processes and add them to the list for line in data.splitlines(): if line.find(process_name) >= 0: # splits by whitespace, the first one should be the pid pid = int(line.split()[0]) matchingPids.append(pid) return matchingPids def ProcessesWithNameExist(*process_names): """Returns true if there are any processes running with the given name. Useful to check whether a Firefox process is still running Args: process_names: String or strings containing the process name, i.e. "firefox" Returns: True if any processes with that name are running, False otherwise. """ for process_name in process_names: pids = GetPidsByName(process_name) if len(pids) > 0: return True return False # BT: new function def ProcessWithPidExists(pid): lines = subprocess.Popen(('ps', '--no-headers', '-o', 'pid', 'ax'), stdout=subprocess.PIPE).communicate()[0] return pid in [int(pid) for pid in lines.split()] def TerminateProcess(pid): """Helper function to terminate a process, given the pid Args: pid: integer process id of the process to terminate. """ try: # BT: use ProcessWithPidExists instead of ProcessesWithNameExist if ProcessWithPidExists(pid): os.kill(pid, signal.SIGTERM) # BT: lowered the delay time.sleep(2) if ProcessWithPidExists(pid): os.kill(pid, signal.SIGKILL) except OSError, (errno, strerror): print 'WARNING: failed os.kill: %s : %s' % (errno, strerror) def TerminateAllProcesses(*process_names): """Helper function to terminate all processes with the given process name Args: process_names: String or strings containing the process name, i.e. "firefox" """ # Get all the process ids of running instances of this process, # and terminate them for process_name in process_names: pids = GetPidsByName(process_name) for pid in pids: TerminateProcess(pid) def NonBlockingReadProcessOutput(handle): """Does a non-blocking read from the output of the process with the given handle. Args: handle: The process handle returned from os.popen() Returns: A tuple (bytes, output) containing the number of output bytes read, and the actual output. """ output = "" num_avail = 0 # check for data # select() does not seem to work well with pipes. # after data is available once it *always* thinks there is data available # readline() will continue to return an empty string however # so we can use this behavior to work around the problem while select([handle], [], [], 0)[0]: line = handle.readline() if line: output += line else: break # this statement is true for encodings that have 1byte/char num_avail = len(output) return (num_avail, output)
32.108247
81
0.69353
c7016dcb800e6d01ef6ec50b9aca62be58228d0b
1,628
py
Python
PythonLib/solvers/uflp.py
xNok/OR_NETWORK-AND-DISCRETE-LOCATION
0941e09a5a09322fe0aceca631c44f3288a74fe2
[ "MIT" ]
null
null
null
PythonLib/solvers/uflp.py
xNok/OR_NETWORK-AND-DISCRETE-LOCATION
0941e09a5a09322fe0aceca631c44f3288a74fe2
[ "MIT" ]
null
null
null
PythonLib/solvers/uflp.py
xNok/OR_NETWORK-AND-DISCRETE-LOCATION
0941e09a5a09322fe0aceca631c44f3288a74fe2
[ "MIT" ]
null
null
null
from docplex.mp.model import Model def uflp(I, J, f, c, name='UFLP'): """ Inputs: I = Set of customers (1d-array) J = Set of Facilities (1d-array) f = Fixed cost associated to each facility (1d-array) c = Cost of connecting element of I with J (2d-arra) Ouputs: m = cplex Model Object X = decision variables related to the routing Y = decision variablse related to open facilities """ ################### # create one model instance m = Model(name=name) ################### # Define variables # x(i,j) equals 1 if arc ij is in the solution X = m.binary_var_dict([(i,j) for i in I for j in J], name="X") # y(j) equales 1 if node j is in the solution Y = m.binary_var_dict([(j) for j in J], name="Y") ################### # Define Objective m.minimize(m.sum(X[i,j] * c[i][j] for i in I for j in J) \ + m.sum(Y[j] * f[j] for j in J)) m.add_kpi(m.sum(X[i,j] * c[i][j] for i in I for j in J), "transportation cost") m.add_kpi(m.sum(Y[j] * f[j] for j in J), "fixed cost") ################### # Define constraints # constraint #1: each customer is affected to a facility for i in I: m.add_constraint(m.sum(X[i,j] for j in J) == 1, ctname='demande_%s' % i) # constraint #2: customer can only be associated to open facilities for i in I: for j in J: m.add_constraint(X[i,j] <= Y[j], ctname='flow_%s_%s' % (i,j)) return m, X, Y
31.921569
83
0.512285
86ec11d4a486f6d91bee29476d2b3777a70234a6
5,856
py
Python
dataset/voc.py
francescodisalvo05/MiB
01faa3e62b20c5629da0e4b5bed902ea76a6aaa3
[ "MIT" ]
null
null
null
dataset/voc.py
francescodisalvo05/MiB
01faa3e62b20c5629da0e4b5bed902ea76a6aaa3
[ "MIT" ]
null
null
null
dataset/voc.py
francescodisalvo05/MiB
01faa3e62b20c5629da0e4b5bed902ea76a6aaa3
[ "MIT" ]
null
null
null
import os import random import torch.utils.data as data from torch import distributed import torchvision as tv import numpy as np from .utils import Subset, filter_images, group_images from PIL import Image classes = { 0: 'background', 1: 'aeroplane', 2: 'bicycle', 3: 'bird', 4: 'boat', 5: 'bottle', 6: 'bus', 7: 'car', 8: 'cat', 9: 'chair', 10: 'cow', 11: 'diningtable', 12: 'dog', 13: 'horse', 14: 'motorbike', 15: 'person', 16: 'pottedplant', 17: 'sheep', 18: 'sofa', 19: 'train', 20: 'tvmonitor' } class VOCSegmentation(data.Dataset): """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Segmentation Dataset. Args: root (string): Root directory of the VOC Dataset. image_set (string, optional): Select the image_set to use, ``train``, ``trainval`` or ``val`` is_aug (bool, optional): If you want to use the augmented train set or not (default is True) transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` """ def __init__(self, root, image_set='train', is_aug=True, transform=None): self.root = os.path.expanduser(root) self.year = "2012" self.transform = transform self.image_set = image_set base_dir = "PascalVOC12" voc_root = os.path.join(self.root, base_dir) splits_dir = os.path.join(voc_root, 'splits') if not os.path.isdir(voc_root): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') if is_aug and image_set == 'train': mask_dir = os.path.join(voc_root, 'SegmentationClassAug') assert os.path.exists( mask_dir), "SegmentationClassAug not found" split_f = os.path.join(splits_dir, 'train_aug.txt') else: split_f = os.path.join(splits_dir, image_set.rstrip('\n') + '.txt') if not os.path.exists(split_f): raise ValueError( 'Wrong image_set entered! Please use image_set="train" ' 'or image_set="trainval" or image_set="val"') # remove leading \n with open(os.path.join(split_f), "r") as f: file_names = [x[:-1].split(' ') for x in f.readlines()] # REMOVE FIRST SLASH OTHERWISE THE JOIN WILL start from root self.images = [(os.path.join(voc_root, x[0][1:]), os.path.join(voc_root, x[1][1:])) for x in file_names] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is the image segmentation. """ img = Image.open(self.images[index][0]).convert('RGB') target = Image.open(self.images[index][1]) if self.transform is not None: img, target = self.transform(img, target) return img, target def __len__(self): return len(self.images) class VOCSegmentationIncremental(data.Dataset): def __init__(self, root, train=True, transform=None, labels=None, labels_old=None, idxs_path=None, masking=True, overlap=True): full_voc = VOCSegmentation(root, 'train' if train else 'val', is_aug=True, transform=None) self.labels = [] self.labels_old = [] if labels is not None: # store the labels labels_old = labels_old if labels_old is not None else [] self.__strip_zero(labels) self.__strip_zero(labels_old) assert not any(l in labels_old for l in labels), "labels and labels_old must be disjoint sets" self.labels = [0] + labels self.labels_old = [0] + labels_old self.order = [0] + labels_old + labels # take index of images with at least one class in labels and all classes in labels+labels_old+[0,255] if idxs_path is not None and os.path.exists(idxs_path): idxs = np.load(idxs_path).tolist() else: idxs = filter_images(full_voc, labels, labels_old, overlap=overlap) if idxs_path is not None: np.save(idxs_path, np.array(idxs, dtype=int)) if train: masking_value = 0 else: masking_value = 255 self.inverted_order = {label: self.order.index(label) for label in self.order} self.inverted_order[255] = masking_value reorder_transform = tv.transforms.Lambda( lambda t: t.apply_(lambda x: self.inverted_order[x] if x in self.inverted_order else masking_value)) if masking: tmp_labels = self.labels + [255] target_transform = tv.transforms.Lambda( lambda t: t.apply_(lambda x: self.inverted_order[x] if x in tmp_labels else masking_value)) else: target_transform = reorder_transform # make the subset of the dataset self.dataset = Subset(full_voc, idxs, transform, target_transform) else: self.dataset = full_voc def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is the image segmentation. """ return self.dataset[index] def __len__(self): return len(self.dataset) @staticmethod def __strip_zero(labels): while 0 in labels: labels.remove(0)
32.353591
116
0.569672
e4890933ee2a8d1b92ede30172b2815b6173624f
3,342
py
Python
sdk/formrecognizer/azure-ai-formrecognizer/samples/v3.2-beta/async_samples/sample_get_words_on_document_line_async.py
mrwbarg/azure-sdk-for-python
ecfd1093cd623040d1359444d76ac0b57a786f63
[ "MIT" ]
2
2021-09-07T18:30:33.000Z
2021-11-23T02:50:57.000Z
sdk/formrecognizer/azure-ai-formrecognizer/samples/v3.2-beta/async_samples/sample_get_words_on_document_line_async.py
mrwbarg/azure-sdk-for-python
ecfd1093cd623040d1359444d76ac0b57a786f63
[ "MIT" ]
4
2021-10-06T16:39:52.000Z
2021-11-18T18:33:37.000Z
sdk/formrecognizer/azure-ai-formrecognizer/samples/v3.2-beta/async_samples/sample_get_words_on_document_line_async.py
mrwbarg/azure-sdk-for-python
ecfd1093cd623040d1359444d76ac0b57a786f63
[ "MIT" ]
null
null
null
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ FILE: sample_get_words_on_document_line_async.py DESCRIPTION: This sample demonstrates how to get the words contained in a DocumentLine. Please note that `get_words` on DocumentLine is only available in SDK version 3.2.0b2 and later. USAGE: python sample_get_words_on_document_line_async.py Set the environment variables with your own values before running the sample: 1) AZURE_FORM_RECOGNIZER_ENDPOINT - the endpoint to your Cognitive Services resource. 2) AZURE_FORM_RECOGNIZER_KEY - your Form Recognizer API key """ import os import asyncio def format_bounding_region(bounding_regions): if not bounding_regions: return "N/A" return ", ".join("Page #{}: {}".format(region.page_number, format_bounding_box(region.bounding_box)) for region in bounding_regions) def format_bounding_box(bounding_box): if not bounding_box: return "N/A" return ", ".join(["[{}, {}]".format(p.x, p.y) for p in bounding_box]) async def get_words_on_document_line_async(): path_to_sample_documents = os.path.abspath( os.path.join( os.path.abspath(__file__), "..", "..", "..", "./sample_forms/forms/Form_1.jpg", ) ) from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import DocumentAnalysisClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) async with document_analysis_client: with open(path_to_sample_documents, "rb") as f: poller = await document_analysis_client.begin_analyze_document( "prebuilt-document", document=f ) result = await poller.result() for idx, page in enumerate(result.pages): print("----Analyzing lines and words from page #{}----".format(idx + 1)) print( "Page has width: {} and height: {}, measured with unit: {}".format( page.width, page.height, page.unit ) ) for line_idx, line in enumerate(page.lines): words = line.get_words() print( "...Line # {} has word count {} and text '{}' within bounding box '{}'".format( line_idx, len(words), line.content, format_bounding_box(line.bounding_box), ) ) for word in words: print( "......Word '{}' has a confidence of {}".format( word.content, word.confidence ) ) print("----------------------------------------") async def main(): await get_words_on_document_line_async() if __name__ == "__main__": loop = asyncio.get_event_loop() loop.run_until_complete(main())
32.764706
136
0.585877
93e48f7d9df603bafdddc5903766549487355f3c
9,845
py
Python
powerdns_client/models/cryptokey.py
nrfta/python-powerdns-client
57dd0460995a5407c6f5c963553b4df0f4859667
[ "MIT" ]
1
2021-04-05T21:37:17.000Z
2021-04-05T21:37:17.000Z
powerdns_client/models/cryptokey.py
nrfta/python-powerdns-client
57dd0460995a5407c6f5c963553b4df0f4859667
[ "MIT" ]
null
null
null
powerdns_client/models/cryptokey.py
nrfta/python-powerdns-client
57dd0460995a5407c6f5c963553b4df0f4859667
[ "MIT" ]
1
2021-12-18T04:33:58.000Z
2021-12-18T04:33:58.000Z
# coding: utf-8 """ PowerDNS Authoritative HTTP API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 0.0.13 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class Cryptokey(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'type': 'str', 'id': 'int', 'keytype': 'str', 'active': 'bool', 'published': 'bool', 'dnskey': 'str', 'ds': 'list[str]', 'privatekey': 'str', 'algorithm': 'str', 'bits': 'int' } attribute_map = { 'type': 'type', 'id': 'id', 'keytype': 'keytype', 'active': 'active', 'published': 'published', 'dnskey': 'dnskey', 'ds': 'ds', 'privatekey': 'privatekey', 'algorithm': 'algorithm', 'bits': 'bits' } def __init__(self, type=None, id=None, keytype=None, active=None, published=None, dnskey=None, ds=None, privatekey=None, algorithm=None, bits=None): # noqa: E501 """Cryptokey - a model defined in Swagger""" # noqa: E501 self._type = None self._id = None self._keytype = None self._active = None self._published = None self._dnskey = None self._ds = None self._privatekey = None self._algorithm = None self._bits = None self.discriminator = None if type is not None: self.type = type if id is not None: self.id = id if keytype is not None: self.keytype = keytype if active is not None: self.active = active if published is not None: self.published = published if dnskey is not None: self.dnskey = dnskey if ds is not None: self.ds = ds if privatekey is not None: self.privatekey = privatekey if algorithm is not None: self.algorithm = algorithm if bits is not None: self.bits = bits @property def type(self): """Gets the type of this Cryptokey. # noqa: E501 set to \"Cryptokey\" # noqa: E501 :return: The type of this Cryptokey. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this Cryptokey. set to \"Cryptokey\" # noqa: E501 :param type: The type of this Cryptokey. # noqa: E501 :type: str """ self._type = type @property def id(self): """Gets the id of this Cryptokey. # noqa: E501 The internal identifier, read only # noqa: E501 :return: The id of this Cryptokey. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this Cryptokey. The internal identifier, read only # noqa: E501 :param id: The id of this Cryptokey. # noqa: E501 :type: int """ self._id = id @property def keytype(self): """Gets the keytype of this Cryptokey. # noqa: E501 :return: The keytype of this Cryptokey. # noqa: E501 :rtype: str """ return self._keytype @keytype.setter def keytype(self, keytype): """Sets the keytype of this Cryptokey. :param keytype: The keytype of this Cryptokey. # noqa: E501 :type: str """ allowed_values = ["ksk", "zsk", "csk"] # noqa: E501 if keytype not in allowed_values: raise ValueError( "Invalid value for `keytype` ({0}), must be one of {1}" # noqa: E501 .format(keytype, allowed_values) ) self._keytype = keytype @property def active(self): """Gets the active of this Cryptokey. # noqa: E501 Whether or not the key is in active use # noqa: E501 :return: The active of this Cryptokey. # noqa: E501 :rtype: bool """ return self._active @active.setter def active(self, active): """Sets the active of this Cryptokey. Whether or not the key is in active use # noqa: E501 :param active: The active of this Cryptokey. # noqa: E501 :type: bool """ self._active = active @property def published(self): """Gets the published of this Cryptokey. # noqa: E501 Whether or not the DNSKEY record is published in the zone # noqa: E501 :return: The published of this Cryptokey. # noqa: E501 :rtype: bool """ return self._published @published.setter def published(self, published): """Sets the published of this Cryptokey. Whether or not the DNSKEY record is published in the zone # noqa: E501 :param published: The published of this Cryptokey. # noqa: E501 :type: bool """ self._published = published @property def dnskey(self): """Gets the dnskey of this Cryptokey. # noqa: E501 The DNSKEY record for this key # noqa: E501 :return: The dnskey of this Cryptokey. # noqa: E501 :rtype: str """ return self._dnskey @dnskey.setter def dnskey(self, dnskey): """Sets the dnskey of this Cryptokey. The DNSKEY record for this key # noqa: E501 :param dnskey: The dnskey of this Cryptokey. # noqa: E501 :type: str """ self._dnskey = dnskey @property def ds(self): """Gets the ds of this Cryptokey. # noqa: E501 An array of DS records for this key # noqa: E501 :return: The ds of this Cryptokey. # noqa: E501 :rtype: list[str] """ return self._ds @ds.setter def ds(self, ds): """Sets the ds of this Cryptokey. An array of DS records for this key # noqa: E501 :param ds: The ds of this Cryptokey. # noqa: E501 :type: list[str] """ self._ds = ds @property def privatekey(self): """Gets the privatekey of this Cryptokey. # noqa: E501 The private key in ISC format # noqa: E501 :return: The privatekey of this Cryptokey. # noqa: E501 :rtype: str """ return self._privatekey @privatekey.setter def privatekey(self, privatekey): """Sets the privatekey of this Cryptokey. The private key in ISC format # noqa: E501 :param privatekey: The privatekey of this Cryptokey. # noqa: E501 :type: str """ self._privatekey = privatekey @property def algorithm(self): """Gets the algorithm of this Cryptokey. # noqa: E501 The name of the algorithm of the key, should be a mnemonic # noqa: E501 :return: The algorithm of this Cryptokey. # noqa: E501 :rtype: str """ return self._algorithm @algorithm.setter def algorithm(self, algorithm): """Sets the algorithm of this Cryptokey. The name of the algorithm of the key, should be a mnemonic # noqa: E501 :param algorithm: The algorithm of this Cryptokey. # noqa: E501 :type: str """ self._algorithm = algorithm @property def bits(self): """Gets the bits of this Cryptokey. # noqa: E501 The size of the key # noqa: E501 :return: The bits of this Cryptokey. # noqa: E501 :rtype: int """ return self._bits @bits.setter def bits(self, bits): """Sets the bits of this Cryptokey. The size of the key # noqa: E501 :param bits: The bits of this Cryptokey. # noqa: E501 :type: int """ self._bits = bits def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Cryptokey, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Cryptokey): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
26.323529
166
0.549518
b9f07a32840b99c95fe43dfb7009e598c69d89e4
44,774
py
Python
salt/modules/schedule.py
eiginn/salt
fae5bc757ad0f1716483ce7ae180b451545c2058
[ "Apache-2.0" ]
9,425
2015-01-01T05:59:24.000Z
2022-03-31T20:44:05.000Z
salt/modules/schedule.py
eiginn/salt
fae5bc757ad0f1716483ce7ae180b451545c2058
[ "Apache-2.0" ]
33,507
2015-01-01T00:19:56.000Z
2022-03-31T23:48:20.000Z
salt/modules/schedule.py
eiginn/salt
fae5bc757ad0f1716483ce7ae180b451545c2058
[ "Apache-2.0" ]
5,810
2015-01-01T19:11:45.000Z
2022-03-31T02:37:20.000Z
""" Module for managing the Salt schedule on a minion .. versionadded:: 2014.7.0 """ import copy as pycopy import datetime import logging import os import salt.utils.event import salt.utils.files import salt.utils.odict import salt.utils.yaml try: import dateutil.parser as dateutil_parser _WHEN_SUPPORTED = True _RANGE_SUPPORTED = True except ImportError: _WHEN_SUPPORTED = False _RANGE_SUPPORTED = False __proxyenabled__ = ["*"] log = logging.getLogger(__name__) __func_alias__ = {"list_": "list", "reload_": "reload"} SCHEDULE_CONF = [ "name", "maxrunning", "function", "splay", "range", "when", "once", "once_fmt", "returner", "jid_include", "args", "kwargs", "_seconds", "seconds", "minutes", "hours", "days", "enabled", "return_job", "metadata", "cron", "until", "after", "return_config", "return_kwargs", "run_on_start", "skip_during_range", "run_after_skip_range", ] def list_(show_all=False, show_disabled=True, where=None, return_yaml=True): """ List the jobs currently scheduled on the minion CLI Example: .. code-block:: bash salt '*' schedule.list # Show all jobs including hidden internal jobs salt '*' schedule.list show_all=True # Hide disabled jobs from list of jobs salt '*' schedule.list show_disabled=False """ schedule = {} try: with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"]( {"func": "list", "where": where}, "manage_schedule" ) if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_list_complete", wait=30 ) if event_ret and event_ret["complete"]: schedule = event_ret["schedule"] except KeyError: # Effectively a no-op, since we can't really return without an event system ret = {} ret["comment"] = "Event module not available. Schedule list failed." ret["result"] = True log.debug("Event module not available. Schedule list failed.") return ret _hidden = ["enabled", "skip_function", "skip_during_range"] for job in list(schedule.keys()): # iterate over a copy since we will mutate it if job in _hidden: continue # Default jobs added by salt begin with __ # by default hide them unless show_all is True. if job.startswith("__") and not show_all: del schedule[job] continue # if enabled is not included in the job, # assume job is enabled. if "enabled" not in schedule[job]: schedule[job]["enabled"] = True for item in pycopy.copy(schedule[job]): if item not in SCHEDULE_CONF: del schedule[job][item] continue if schedule[job][item] is None: del schedule[job][item] continue if schedule[job][item] == "true": schedule[job][item] = True if schedule[job][item] == "false": schedule[job][item] = False # if the job is disabled and show_disabled is False, skip job if not show_disabled and not schedule[job]["enabled"]: del schedule[job] continue if "_seconds" in schedule[job]: # remove _seconds from the listing del schedule[job]["_seconds"] if schedule: if return_yaml: tmp = {"schedule": schedule} return salt.utils.yaml.safe_dump(tmp, default_flow_style=False) else: return schedule else: return {"schedule": {}} def is_enabled(name=None): """ List a Job only if its enabled If job is not specified, indicate if the scheduler is enabled or disabled. .. versionadded:: 2015.5.3 CLI Example: .. code-block:: bash salt '*' schedule.is_enabled name=job_name salt '*' schedule.is_enabled """ current_schedule = __salt__["schedule.list"](show_all=False, return_yaml=False) if not name: return current_schedule.get("enabled", True) else: if name in current_schedule: return current_schedule[name] else: return {} def purge(**kwargs): """ Purge all the jobs currently scheduled on the minion CLI Example: .. code-block:: bash salt '*' schedule.purge """ ret = {"comment": [], "result": True} for name in list_(show_all=True, return_yaml=False): if name == "enabled": continue if name.startswith("__"): continue if "test" in kwargs and kwargs["test"]: ret["result"] = True ret["comment"].append( "Job: {} would be deleted from schedule.".format(name) ) else: persist = kwargs.get("persist", True) try: with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"]( {"name": name, "func": "delete", "persist": persist}, "manage_schedule", ) if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_delete_complete", wait=30 ) if event_ret and event_ret["complete"]: _schedule_ret = event_ret["schedule"] if name not in _schedule_ret: ret["result"] = True ret["comment"].append( "Deleted job: {} from schedule.".format(name) ) else: ret["comment"].append( "Failed to delete job {} from schedule.".format( name ) ) ret["result"] = True except KeyError: # Effectively a no-op, since we can't really return without an event system ret["comment"] = "Event module not available. Schedule add failed." ret["result"] = True return ret def delete(name, **kwargs): """ Delete a job from the minion's schedule CLI Example: .. code-block:: bash salt '*' schedule.delete job1 """ ret = { "comment": "Failed to delete job {} from schedule.".format(name), "result": False, "changes": {}, } if not name: ret["comment"] = "Job name is required." if "test" in kwargs and kwargs["test"]: ret["comment"] = "Job: {} would be deleted from schedule.".format(name) ret["result"] = True else: persist = kwargs.get("persist", True) if name in list_(show_all=True, where="opts", return_yaml=False): event_data = {"name": name, "func": "delete", "persist": persist} elif name in list_(show_all=True, where="pillar", return_yaml=False): event_data = { "name": name, "where": "pillar", "func": "delete", "persist": False, } else: ret["comment"] = "Job {} does not exist.".format(name) return ret try: with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"](event_data, "manage_schedule") if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_delete_complete", wait=30, ) if event_ret and event_ret["complete"]: schedule = event_ret["schedule"] if name not in schedule: ret["result"] = True ret["comment"] = "Deleted Job {} from schedule.".format( name ) ret["changes"][name] = "removed" else: ret[ "comment" ] = "Failed to delete job {} from schedule.".format(name) return ret except KeyError: # Effectively a no-op, since we can't really return without an event system ret["comment"] = "Event module not available. Schedule add failed." return ret def build_schedule_item(name, **kwargs): """ Build a schedule job CLI Example: .. code-block:: bash salt '*' schedule.build_schedule_item job1 function='test.ping' seconds=3600 """ ret = {"comment": [], "result": True} if not name: ret["comment"] = "Job name is required." ret["result"] = False return ret schedule = {} schedule[name] = salt.utils.odict.OrderedDict() schedule[name]["function"] = kwargs["function"] time_conflict = False for item in ["seconds", "minutes", "hours", "days"]: if item in kwargs and "when" in kwargs: time_conflict = True if item in kwargs and "cron" in kwargs: time_conflict = True if time_conflict: ret["result"] = False ret["comment"] = ( 'Unable to use "seconds", "minutes", "hours", or "days" with "when" or' ' "cron" options.' ) return ret if "when" in kwargs and "cron" in kwargs: ret["result"] = False ret["comment"] = 'Unable to use "when" and "cron" options together. Ignoring.' return ret for item in ["seconds", "minutes", "hours", "days"]: if item in kwargs: schedule[name][item] = kwargs[item] if "return_job" in kwargs: schedule[name]["return_job"] = kwargs["return_job"] if "metadata" in kwargs: schedule[name]["metadata"] = kwargs["metadata"] if "job_args" in kwargs: schedule[name]["args"] = kwargs["job_args"] if "job_kwargs" in kwargs: schedule[name]["kwargs"] = kwargs["job_kwargs"] if "maxrunning" in kwargs: schedule[name]["maxrunning"] = kwargs["maxrunning"] else: schedule[name]["maxrunning"] = 1 if "name" in kwargs: schedule[name]["name"] = kwargs["name"] else: schedule[name]["name"] = name if "enabled" in kwargs: schedule[name]["enabled"] = kwargs["enabled"] else: schedule[name]["enabled"] = True if "jid_include" not in kwargs or kwargs["jid_include"]: schedule[name]["jid_include"] = True if "splay" in kwargs: if isinstance(kwargs["splay"], dict): # Ensure ordering of start and end arguments schedule[name]["splay"] = salt.utils.odict.OrderedDict() schedule[name]["splay"]["start"] = kwargs["splay"]["start"] schedule[name]["splay"]["end"] = kwargs["splay"]["end"] else: schedule[name]["splay"] = kwargs["splay"] if "when" in kwargs: if not _WHEN_SUPPORTED: ret["result"] = False ret["comment"] = 'Missing dateutil.parser, "when" is unavailable.' return ret else: validate_when = kwargs["when"] if not isinstance(validate_when, list): validate_when = [validate_when] for _when in validate_when: try: dateutil_parser.parse(_when) except ValueError: ret["result"] = False ret["comment"] = 'Schedule item {} for "when" in invalid.'.format( _when ) return ret for item in [ "range", "when", "once", "once_fmt", "cron", "returner", "after", "return_config", "return_kwargs", "until", "run_on_start", "skip_during_range", ]: if item in kwargs: schedule[name][item] = kwargs[item] return schedule[name] def add(name, **kwargs): """ Add a job to the schedule CLI Example: .. code-block:: bash salt '*' schedule.add job1 function='test.ping' seconds=3600 # If function have some arguments, use job_args salt '*' schedule.add job2 function='cmd.run' job_args="['date >> /tmp/date.log']" seconds=60 """ ret = { "comment": "Failed to add job {} to schedule.".format(name), "result": False, "changes": {}, } if name in list_(show_all=True, return_yaml=False): ret["comment"] = "Job {} already exists in schedule.".format(name) ret["result"] = False return ret if not name: ret["comment"] = "Job name is required." ret["result"] = False time_conflict = False for item in ["seconds", "minutes", "hours", "days"]: if item in kwargs and "when" in kwargs: time_conflict = True if item in kwargs and "cron" in kwargs: time_conflict = True if time_conflict: ret["comment"] = ( 'Error: Unable to use "seconds", "minutes", "hours", or "days" with "when"' ' or "cron" options.' ) return ret if "when" in kwargs and "cron" in kwargs: ret["comment"] = 'Unable to use "when" and "cron" options together. Ignoring.' return ret persist = kwargs.get("persist", True) _new = build_schedule_item(name, **kwargs) if "result" in _new and not _new["result"]: return _new schedule_data = {} schedule_data[name] = _new if "test" in kwargs and kwargs["test"]: ret["comment"] = "Job: {} would be added to schedule.".format(name) ret["result"] = True else: try: with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"]( { "name": name, "schedule": schedule_data, "func": "add", "persist": persist, }, "manage_schedule", ) if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_add_complete", wait=30, ) if event_ret and event_ret["complete"]: schedule = event_ret["schedule"] if name in schedule: ret["result"] = True ret["comment"] = "Added job: {} to schedule.".format(name) ret["changes"][name] = "added" return ret except KeyError: # Effectively a no-op, since we can't really return without an event system ret["comment"] = "Event module not available. Schedule add failed." return ret def modify(name, **kwargs): """ Modify an existing job in the schedule CLI Example: .. code-block:: bash salt '*' schedule.modify job1 function='test.ping' seconds=3600 """ ret = {"comment": "", "changes": {}, "result": True} time_conflict = False for item in ["seconds", "minutes", "hours", "days"]: if item in kwargs and "when" in kwargs: time_conflict = True if item in kwargs and "cron" in kwargs: time_conflict = True if time_conflict: ret["result"] = False ret["comment"] = ( 'Error: Unable to use "seconds", "minutes", "hours", or "days" with "when"' " option." ) return ret if "when" in kwargs and "cron" in kwargs: ret["result"] = False ret["comment"] = 'Unable to use "when" and "cron" options together. Ignoring.' return ret current_schedule = list_(show_all=True, return_yaml=False) if name not in current_schedule: ret["comment"] = "Job {} does not exist in schedule.".format(name) ret["result"] = False return ret _current = current_schedule[name] if "function" not in kwargs: kwargs["function"] = _current.get("function") # Remove the auto generated _seconds value if "_seconds" in _current: _current["seconds"] = _current.pop("_seconds") # Copy _current _new, then update values from kwargs _new = pycopy.deepcopy(_current) _new.update(kwargs) # Remove test from kwargs, it's not a valid schedule option _new.pop("test", None) if "result" in _new and not _new["result"]: return _new if _new == _current: ret["comment"] = "Job {} in correct state".format(name) return ret ret["changes"][name] = { "old": salt.utils.odict.OrderedDict(_current), "new": salt.utils.odict.OrderedDict(_new), } if "test" in kwargs and kwargs["test"]: ret["comment"] = "Job: {} would be modified in schedule.".format(name) else: persist = kwargs.get("persist", True) if name in list_(show_all=True, where="opts", return_yaml=False): event_data = { "name": name, "schedule": _new, "func": "modify", "persist": persist, } elif name in list_(show_all=True, where="pillar", return_yaml=False): event_data = { "name": name, "schedule": _new, "where": "pillar", "func": "modify", "persist": False, } out = __salt__["event.fire"](event_data, "manage_schedule") if out: ret["comment"] = "Modified job: {} in schedule.".format(name) else: ret["comment"] = "Failed to modify job {} in schedule.".format(name) ret["result"] = False return ret def run_job(name, force=False): """ Run a scheduled job on the minion immediately CLI Example: .. code-block:: bash salt '*' schedule.run_job job1 salt '*' schedule.run_job job1 force=True Force the job to run even if it is disabled. """ ret = {"comment": [], "result": True} if not name: ret["comment"] = "Job name is required." ret["result"] = False schedule = list_(show_all=True, return_yaml=False) if name in schedule: data = schedule[name] if "enabled" in data and not data["enabled"] and not force: ret["comment"] = "Job {} is disabled.".format(name) else: out = __salt__["event.fire"]( {"name": name, "func": "run_job"}, "manage_schedule" ) if out: ret["comment"] = "Scheduling Job {} on minion.".format(name) else: ret["comment"] = "Failed to run job {} on minion.".format(name) ret["result"] = False else: ret["comment"] = "Job {} does not exist.".format(name) ret["result"] = False return ret def enable_job(name, **kwargs): """ Enable a job in the minion's schedule CLI Example: .. code-block:: bash salt '*' schedule.enable_job job1 """ ret = {"comment": [], "result": True, "changes": {}} if not name: ret["comment"] = "Job name is required." ret["result"] = False if "test" in __opts__ and __opts__["test"]: ret["comment"] = "Job: {} would be enabled in schedule.".format(name) else: persist = kwargs.get("persist", True) if name in list_(show_all=True, where="opts", return_yaml=False): event_data = {"name": name, "func": "enable_job", "persist": persist} elif name in list_(show_all=True, where="pillar", return_yaml=False): event_data = { "name": name, "where": "pillar", "func": "enable_job", "persist": False, } else: ret["comment"] = "Job {} does not exist.".format(name) ret["result"] = False return ret try: with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"](event_data, "manage_schedule") if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_enabled_job_complete", wait=30, ) if event_ret and event_ret["complete"]: schedule = event_ret["schedule"] # check item exists in schedule and is enabled if name in schedule and schedule[name]["enabled"]: ret["result"] = True ret["comment"] = "Enabled Job {} in schedule.".format(name) ret["changes"][name] = "enabled" else: ret["result"] = False ret[ "comment" ] = "Failed to enable job {} in schedule.".format(name) return ret except KeyError: # Effectively a no-op, since we can't really return without an event system ret["comment"] = "Event module not available. Schedule enable job failed." return ret def disable_job(name, **kwargs): """ Disable a job in the minion's schedule CLI Example: .. code-block:: bash salt '*' schedule.disable_job job1 """ ret = {"comment": [], "result": True, "changes": {}} if not name: ret["comment"] = "Job name is required." ret["result"] = False if "test" in kwargs and kwargs["test"]: ret["comment"] = "Job: {} would be disabled in schedule.".format(name) else: persist = kwargs.get("persist", True) if name in list_(show_all=True, where="opts", return_yaml=False): event_data = {"name": name, "func": "disable_job", "persist": persist} elif name in list_(show_all=True, where="pillar"): event_data = { "name": name, "where": "pillar", "func": "disable_job", "persist": False, } else: ret["comment"] = "Job {} does not exist.".format(name) ret["result"] = False return ret try: with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"](event_data, "manage_schedule") if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_disabled_job_complete", wait=30, ) if event_ret and event_ret["complete"]: schedule = event_ret["schedule"] # check item exists in schedule and is enabled if name in schedule and not schedule[name]["enabled"]: ret["result"] = True ret["comment"] = "Disabled Job {} in schedule.".format(name) ret["changes"][name] = "disabled" else: ret["result"] = False ret[ "comment" ] = "Failed to disable job {} in schedule.".format(name) return ret except KeyError: # Effectively a no-op, since we can't really return without an event system ret["comment"] = "Event module not available. Schedule enable job failed." return ret def save(**kwargs): """ Save all scheduled jobs on the minion CLI Example: .. code-block:: bash salt '*' schedule.save """ ret = {"comment": [], "result": True} if "test" in kwargs and kwargs["test"]: ret["comment"] = "Schedule would be saved." else: try: with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"]( {"func": "save_schedule"}, "manage_schedule" ) if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_saved", wait=30, ) if event_ret and event_ret["complete"]: ret["result"] = True ret["comment"] = "Schedule (non-pillar items) saved." else: ret["result"] = False ret["comment"] = "Failed to save schedule." except KeyError: # Effectively a no-op, since we can't really return without an event system ret["comment"] = "Event module not available. Schedule save failed." return ret def enable(**kwargs): """ Enable all scheduled jobs on the minion CLI Example: .. code-block:: bash salt '*' schedule.enable """ ret = {"comment": [], "changes": {}, "result": True} if "test" in kwargs and kwargs["test"]: ret["comment"] = "Schedule would be enabled." else: persist = kwargs.get("persist", True) try: with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"]( {"func": "enable", "persist": persist}, "manage_schedule" ) if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_enabled_complete", wait=30, ) if event_ret and event_ret["complete"]: schedule = event_ret["schedule"] if "enabled" in schedule and schedule["enabled"]: ret["result"] = True ret["comment"] = "Enabled schedule on minion." ret["changes"]["schedule"] = "enabled" else: ret["result"] = False ret["comment"] = "Failed to enable schedule on minion." return ret except KeyError: # Effectively a no-op, since we can't really return without an event system ret["comment"] = "Event module not available. Schedule enable job failed." return ret def disable(**kwargs): """ Disable all scheduled jobs on the minion CLI Example: .. code-block:: bash salt '*' schedule.disable """ ret = {"comment": [], "changes": {}, "result": True} if "test" in kwargs and kwargs["test"]: ret["comment"] = "Schedule would be disabled." else: persist = kwargs.get("persist", True) try: with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"]( {"func": "disable", "persist": persist}, "manage_schedule" ) if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_disabled_complete", wait=30, ) if event_ret and event_ret["complete"]: schedule = event_ret["schedule"] if "enabled" in schedule and not schedule["enabled"]: ret["result"] = True ret["comment"] = "Disabled schedule on minion." ret["changes"]["schedule"] = "disabled" else: ret["result"] = False ret["comment"] = "Failed to disable schedule on minion." return ret except KeyError: # Effectively a no-op, since we can't really return without an event system ret["comment"] = "Event module not available. Schedule disable job failed." return ret def reload_(): """ Reload saved scheduled jobs on the minion CLI Example: .. code-block:: bash salt '*' schedule.reload """ ret = {"comment": [], "result": True} # If there a schedule defined in pillar, refresh it. if "schedule" in __pillar__: out = __salt__["event.fire"]({}, "pillar_refresh") if out: ret["comment"].append("Reloaded schedule from pillar on minion.") else: ret["comment"].append("Failed to reload schedule from pillar on minion.") ret["result"] = False # move this file into an configurable opt sfn = "{}/{}/schedule.conf".format( __opts__["config_dir"], os.path.dirname(__opts__["default_include"]) ) if os.path.isfile(sfn): with salt.utils.files.fopen(sfn, "rb") as fp_: try: schedule = salt.utils.yaml.safe_load(fp_) except salt.utils.yaml.YAMLError as exc: ret["comment"].append( "Unable to read existing schedule file: {}".format(exc) ) if schedule: if "schedule" in schedule and schedule["schedule"]: out = __salt__["event.fire"]( {"func": "reload", "schedule": schedule}, "manage_schedule" ) if out: ret["comment"].append( "Reloaded schedule on minion from schedule.conf." ) else: ret["comment"].append( "Failed to reload schedule on minion from schedule.conf." ) ret["result"] = False else: ret["comment"].append( "Failed to reload schedule on minion. Saved file is empty or" " invalid." ) ret["result"] = False else: ret["comment"].append( "Failed to reload schedule on minion. Saved file is empty or invalid." ) ret["result"] = False return ret def move(name, target, **kwargs): """ Move scheduled job to another minion or minions. CLI Example: .. code-block:: bash salt '*' schedule.move jobname target """ ret = {"comment": [], "result": True} if not name: ret["comment"] = "Job name is required." ret["result"] = False if "test" in kwargs and kwargs["test"]: ret["comment"] = "Job: {} would be moved from schedule.".format(name) else: opts_schedule = list_(show_all=True, where="opts", return_yaml=False) pillar_schedule = list_(show_all=True, where="pillar", return_yaml=False) if name in opts_schedule: schedule_data = opts_schedule[name] where = None elif name in pillar_schedule: schedule_data = pillar_schedule[name] where = "pillar" else: ret["comment"] = "Job {} does not exist.".format(name) ret["result"] = False return ret schedule_opts = [] for key, value in schedule_data.items(): temp = "{}={}".format(key, value) schedule_opts.append(temp) response = __salt__["publish.publish"](target, "schedule.add", schedule_opts) # Get errors and list of affeced minions errors = [] minions = [] for minion in response: minions.append(minion) if not response[minion]: errors.append(minion) # parse response if not response: ret["comment"] = "no servers answered the published schedule.add command" return ret elif len(errors) > 0: ret["comment"] = "the following minions return False" ret["minions"] = errors return ret else: delete(name, where=where) ret["result"] = True ret["comment"] = "Moved Job {} from schedule.".format(name) ret["minions"] = minions return ret return ret def copy(name, target, **kwargs): """ Copy scheduled job to another minion or minions. CLI Example: .. code-block:: bash salt '*' schedule.copy jobname target """ ret = {"comment": [], "result": True} if not name: ret["comment"] = "Job name is required." ret["result"] = False if "test" in kwargs and kwargs["test"]: ret["comment"] = "Job: {} would be copied from schedule.".format(name) else: opts_schedule = list_(show_all=True, where="opts", return_yaml=False) pillar_schedule = list_(show_all=True, where="pillar", return_yaml=False) if name in opts_schedule: schedule_data = opts_schedule[name] elif name in pillar_schedule: schedule_data = pillar_schedule[name] else: ret["comment"] = "Job {} does not exist.".format(name) ret["result"] = False return ret schedule_opts = [] for key, value in schedule_data.items(): temp = "{}={}".format(key, value) schedule_opts.append(temp) response = __salt__["publish.publish"](target, "schedule.add", schedule_opts) # Get errors and list of affeced minions errors = [] minions = [] for minion in response: minions.append(minion) if not response[minion]: errors.append(minion) # parse response if not response: ret["comment"] = "no servers answered the published schedule.add command" return ret elif len(errors) > 0: ret["comment"] = "the following minions return False" ret["minions"] = errors return ret else: ret["result"] = True ret["comment"] = "Copied Job {} from schedule to minion(s).".format(name) ret["minions"] = minions return ret return ret def postpone_job(name, current_time, new_time, **kwargs): """ Postpone a job in the minion's schedule Current time and new time should be in date string format, default value is %Y-%m-%dT%H:%M:%S. .. versionadded:: 2018.3.0 CLI Example: .. code-block:: bash salt '*' schedule.postpone_job job current_time new_time salt '*' schedule.postpone_job job current_time new_time time_fmt='%Y-%m-%dT%H:%M:%S' """ time_fmt = kwargs.get("time_fmt") or "%Y-%m-%dT%H:%M:%S" ret = {"comment": [], "result": True} if not name: ret["comment"] = "Job name is required." ret["result"] = False return ret if not current_time: ret["comment"] = "Job current time is required." ret["result"] = False return ret else: try: # Validate date string datetime.datetime.strptime(current_time, time_fmt) except (TypeError, ValueError): log.error("Date string could not be parsed: %s, %s", new_time, time_fmt) ret["comment"] = "Date string could not be parsed." ret["result"] = False return ret if not new_time: ret["comment"] = "Job new_time is required." ret["result"] = False return ret else: try: # Validate date string datetime.datetime.strptime(new_time, time_fmt) except (TypeError, ValueError): log.error("Date string could not be parsed: %s, %s", new_time, time_fmt) ret["comment"] = "Date string could not be parsed." ret["result"] = False return ret if "test" in __opts__ and __opts__["test"]: ret["comment"] = "Job: {} would be postponed in schedule.".format(name) else: if name in list_(show_all=True, where="opts", return_yaml=False): event_data = { "name": name, "time": current_time, "new_time": new_time, "time_fmt": time_fmt, "func": "postpone_job", } elif name in list_(show_all=True, where="pillar", return_yaml=False): event_data = { "name": name, "time": current_time, "new_time": new_time, "time_fmt": time_fmt, "where": "pillar", "func": "postpone_job", } else: ret["comment"] = "Job {} does not exist.".format(name) ret["result"] = False return ret try: with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"](event_data, "manage_schedule") if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_postpone_job_complete", wait=30, ) if event_ret and event_ret["complete"]: schedule = event_ret["schedule"] # check item exists in schedule and is enabled if name in schedule and schedule[name]["enabled"]: ret["result"] = True ret["comment"] = "Postponed Job {} in schedule.".format( name ) else: ret["result"] = False ret[ "comment" ] = "Failed to postpone job {} in schedule.".format(name) return ret except KeyError: # Effectively a no-op, since we can't really return without an event system ret["comment"] = "Event module not available. Schedule postpone job failed." return ret def skip_job(name, current_time, **kwargs): """ Skip a job in the minion's schedule at specified time. Time to skip should be specified as date string format, default value is %Y-%m-%dT%H:%M:%S. .. versionadded:: 2018.3.0 CLI Example: .. code-block:: bash salt '*' schedule.skip_job job time """ time_fmt = kwargs.get("time_fmt") or "%Y-%m-%dT%H:%M:%S" ret = {"comment": [], "result": True} if not name: ret["comment"] = "Job name is required." ret["result"] = False if not current_time: ret["comment"] = "Job time is required." ret["result"] = False else: # Validate date string try: datetime.datetime.strptime(current_time, time_fmt) except (TypeError, ValueError): log.error("Date string could not be parsed: %s, %s", current_time, time_fmt) ret["comment"] = "Date string could not be parsed." ret["result"] = False return ret if "test" in __opts__ and __opts__["test"]: ret["comment"] = "Job: {} would be skipped in schedule.".format(name) else: if name in list_(show_all=True, where="opts", return_yaml=False): event_data = { "name": name, "time": current_time, "time_fmt": time_fmt, "func": "skip_job", } elif name in list_(show_all=True, where="pillar", return_yaml=False): event_data = { "name": name, "time": current_time, "time_fmt": time_fmt, "where": "pillar", "func": "skip_job", } else: ret["comment"] = "Job {} does not exist.".format(name) ret["result"] = False return ret try: with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"](event_data, "manage_schedule") if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_skip_job_complete", wait=30, ) if event_ret and event_ret["complete"]: schedule = event_ret["schedule"] # check item exists in schedule and is enabled if name in schedule and schedule[name]["enabled"]: ret["result"] = True ret["comment"] = "Added Skip Job {} in schedule.".format( name ) else: ret["result"] = False ret[ "comment" ] = "Failed to skip job {} in schedule.".format(name) return ret except KeyError: # Effectively a no-op, since we can't really return without an event system ret["comment"] = "Event module not available. Schedule skip job failed." return ret def show_next_fire_time(name, **kwargs): """ Show the next fire time for scheduled job .. versionadded:: 2018.3.0 CLI Example: .. code-block:: bash salt '*' schedule.show_next_fire_time job_name """ ret = {"result": True} if not name: ret["comment"] = "Job name is required." ret["result"] = False try: event_data = {"name": name, "func": "get_next_fire_time"} with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"](event_data, "manage_schedule") if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_next_fire_time_complete", wait=30, ) except KeyError: # Effectively a no-op, since we can't really return without an event system ret = {} ret[ "comment" ] = "Event module not available. Schedule show next fire time failed." ret["result"] = True return ret if "next_fire_time" in event_ret: ret["next_fire_time"] = event_ret["next_fire_time"] else: ret["comment"] = "next fire time not available." return ret def job_status(name, time_fmt="%Y-%m-%dT%H:%M:%S"): """ Show the information for a particular job. CLI Example: .. code-block:: bash salt '*' schedule.job_status job_name """ def convert_datetime_objects_in_dict_to_string(data_dict, time_fmt): return { key: value.strftime(time_fmt) if isinstance(value, datetime.datetime) else value for key, value in data_dict.items() } schedule = {} try: with salt.utils.event.get_event("minion", opts=__opts__) as event_bus: res = __salt__["event.fire"]( {"func": "job_status", "name": name, "fire_event": True}, "manage_schedule", ) if res: event_ret = event_bus.get_event( tag="/salt/minion/minion_schedule_job_status_complete", wait=30 ) data = event_ret.get("data", {}) return convert_datetime_objects_in_dict_to_string(data, time_fmt) except KeyError: # Effectively a no-op, since we can't really return without an event system ret = {} ret["comment"] = "Event module not available. Schedule list failed." ret["result"] = True log.debug("Event module not available. Schedule list failed.") return ret
32.397974
101
0.51521
0d73ef7c7561d1d7cf7848df5799ad6e9ef34323
4,590
py
Python
rest_framework_mongoengine/tests/test_serializers.py
Careerleaf/django-rest-framework-mongoengine
fc28dbf7af760528f6f7247e567328df46458799
[ "MIT" ]
null
null
null
rest_framework_mongoengine/tests/test_serializers.py
Careerleaf/django-rest-framework-mongoengine
fc28dbf7af760528f6f7247e567328df46458799
[ "MIT" ]
null
null
null
rest_framework_mongoengine/tests/test_serializers.py
Careerleaf/django-rest-framework-mongoengine
fc28dbf7af760528f6f7247e567328df46458799
[ "MIT" ]
null
null
null
from datetime import datetime import mongoengine as me from unittest import TestCase from bson import objectid from rest_framework_mongoengine.serializers import MongoEngineModelSerializer from rest_framework import serializers as s class Job(me.Document): title = me.StringField() status = me.StringField(choices=('draft', 'published')) notes = me.StringField(required=False) on = me.DateTimeField(default=datetime.utcnow) weight = me.IntField(default=0) class JobSerializer(MongoEngineModelSerializer): id = s.Field() title = s.CharField() status = s.ChoiceField(read_only=True) sort_weight = s.IntegerField(source='weight') class Meta: model = Job fields = ('id', 'title','status', 'sort_weight') class TestReadonlyRestore(TestCase): def test_restore_object(self): job = Job(title='original title', status='draft', notes='secure') data = { 'title': 'updated title ...', 'status': 'published', # this one is read only 'notes': 'hacked', # this field should not update 'sort_weight': 10 # mapped to a field with differet name } serializer = JobSerializer(job, data=data, partial=True) self.assertTrue(serializer.is_valid()) obj = serializer.object self.assertEqual(data['title'], obj.title) self.assertEqual('draft', obj.status) self.assertEqual('secure', obj.notes) self.assertEqual(10, obj.weight) # Testing restoring embedded property class Location(me.EmbeddedDocument): city = me.StringField() # list of class Category(me.EmbeddedDocument): id = me.StringField() counter = me.IntField(default=0, required=True) class Secret(me.EmbeddedDocument): key = me.StringField() class SomeObject(me.Document): name = me.StringField() loc = me.EmbeddedDocumentField('Location') categories = me.ListField(me.EmbeddedDocumentField(Category)) codes = me.ListField(me.EmbeddedDocumentField(Secret)) class LocationSerializer(MongoEngineModelSerializer): city = s.CharField() class Meta: model = Location class CategorySerializer(MongoEngineModelSerializer): id = s.CharField(max_length=24) class Meta: model = Category fields = ('id',) class SomeObjectSerializer(MongoEngineModelSerializer): location = LocationSerializer(source='loc') categories = CategorySerializer(many=True, allow_add_remove=True) class Meta: model = SomeObject fields = ('name', 'location', 'categories') class TestRestoreEmbedded(TestCase): def setUp(self): self.data = { 'name': 'some anme', 'location': { 'city': 'Toronto' }, 'categories': [{'id': 'cat1'}, {'id': 'category_2', 'counter': 666}], 'codes': [{'key': 'mykey1'}] } def test_restore_new(self): serializer = SomeObjectSerializer(data=self.data) self.assertTrue(serializer.is_valid()) obj = serializer.object self.assertEqual(self.data['name'], obj.name ) self.assertEqual('Toronto', obj.loc.city ) self.assertEqual(2, len(obj.categories)) self.assertEqual('category_2', obj.categories[1].id) # counter is not listed in serializer fields, cannot be updated self.assertEqual(0, obj.categories[1].counter) # codes are not listed, should not be updatable self.assertEqual(0, len(obj.codes)) def test_restore_update(self): data = self.data instance = SomeObject( name='original', loc=Location(city="New York"), categories=[Category(id='orig1', counter=777)], codes=[Secret(key='confidential123')] ) serializer = SomeObjectSerializer(instance, data=data, partial=True) # self.assertTrue(serializer.is_valid()) if not serializer.is_valid(): print 'errors: %s' % serializer._errors assert False, 'errors' obj = serializer.object self.assertEqual(data['name'], obj.name ) self.assertEqual('Toronto', obj.loc.city ) # codes is not listed, should not be updatable self.assertEqual(1, len(obj.codes[0])) self.assertEqual('confidential123', obj.codes[0].key) # should keep original val self.assertEqual(2, len(obj.categories)) self.assertEqual('category_2', obj.categories[1].id) self.assertEqual(0, obj.categories[1].counter)
30
88
0.641394
833dd20b5a3ca24a89bcf9ea536cbba27fe9e76a
1,431
py
Python
tensorflow/contrib/quantization/__init__.py
jdehotin/TensorFlow
a6c5f8e4e013e54fed8dfcf49fb6de365f018022
[ "Apache-2.0" ]
680
2016-12-03T14:38:28.000Z
2022-02-16T04:06:45.000Z
tensorflow/contrib/quantization/__init__.py
alainrk/tensorflow
314d9cd9b607460f8bfea80fc828b1521ca18443
[ "Apache-2.0" ]
38
2016-11-17T08:43:51.000Z
2019-11-12T12:27:04.000Z
tensorflow/contrib/quantization/__init__.py
alainrk/tensorflow
314d9cd9b607460f8bfea80fc828b1521ca18443
[ "Apache-2.0" ]
250
2016-12-05T10:37:17.000Z
2022-03-18T21:26:55.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops for building quantized models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import,wildcard-import,g-bad-import-order from tensorflow.contrib.quantization.python import array_ops as quantized_array_ops from tensorflow.contrib.quantization.python.math_ops import * from tensorflow.contrib.quantization.python.nn_ops import * from tensorflow.contrib.quantization.ops import gen_array_ops as quantized_gen_array_ops from tensorflow.contrib.quantization.ops.gen_array_ops import dequantize from tensorflow.contrib.quantization.ops.gen_array_ops import quantize_v2 from tensorflow.contrib.quantization.ops.gen_array_ops import quantized_concat
46.16129
88
0.773585
40f8edfcdd18eeef63a20b8590172b5d186fbf8c
27,514
py
Python
tensorflow/python/ops/map_fn.py
Mithilesh1609/tensorflow
63f70b5611d7f50512ea26295d26016c2704901b
[ "Apache-2.0" ]
8
2020-07-29T18:50:45.000Z
2021-07-25T07:06:43.000Z
tensorflow/python/ops/map_fn.py
3ecurityy/tensorflow
f8c0e68a8aa5d575a19129ec67c9ed6262652082
[ "Apache-2.0" ]
203
2019-06-14T23:53:10.000Z
2022-02-10T02:27:23.000Z
tensorflow/python/ops/map_fn.py
3ecurityy/tensorflow
f8c0e68a8aa5d575a19129ec67c9ed6262652082
[ "Apache-2.0" ]
11
2020-05-31T13:14:56.000Z
2021-12-14T04:39:25.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Functional operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from tensorflow.python.autograph.core import ag_ctx as autograph_ctx from tensorflow.python.autograph.impl import api as autograph from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import type_spec from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variable_scope as vs from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import deprecation from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export @tf_export(v1=["map_fn"]) @deprecation.deprecated_args(None, "Use fn_output_signature instead", "dtype") def map_fn(fn, elems, dtype=None, parallel_iterations=None, back_prop=True, swap_memory=False, infer_shape=True, name=None, fn_output_signature=None): """Transforms `elems` by applying `fn` to each element unstacked on axis 0. See also `tf.scan`. `map_fn` unstacks `elems` on axis 0 to obtain a sequence of elements; calls `fn` to transform each element; and then stacks the transformed values back together. #### Mapping functions with single-Tensor inputs and outputs If `elems` is a single tensor and `fn`'s signature is `tf.Tensor->tf.Tensor`, then `map_fn(fn, elems)` is equivalent to `tf.stack([fn(elem) for elem in tf.unstack(elems)])`. E.g.: >>> tf.map_fn(fn=lambda t: tf.range(t, t + 3), elems=tf.constant([3, 5, 2])) <tf.Tensor: shape=(3, 3), dtype=int32, numpy= array([[3, 4, 5], [5, 6, 7], [2, 3, 4]], dtype=int32)> `map_fn(fn, elems).shape = [elems.shape[0]] + fn(elems[0]).shape`. #### Mapping functions with multi-arity inputs and outputs `map_fn` also supports functions with multi-arity inputs and outputs: * If `elems` is a tuple (or nested structure) of tensors, then those tensors must all have the same outer-dimension size (`num_elems`); and `fn` is used to transform each tuple (or structure) of corresponding slices from `elems`. E.g., if `elems` is a tuple `(t1, t2, t3)`, then `fn` is used to transform each tuple of slices `(t1[i], t2[i], t3[i])` (where `0 <= i < num_elems`). * If `fn` returns a tuple (or nested structure) of tensors, then the result is formed by stacking corresponding elements from those structures. #### Specifying `fn`'s output signature If `fn`'s input and output signatures are different, then the output signature must be specified using `fn_output_signature`. (The input and output signatures are differ if their structures, dtypes, or tensor types do not match). E.g.: >>> tf.map_fn(fn=tf.strings.length, # input & output have different dtypes ... elems=tf.constant(["hello", "moon"]), ... fn_output_signature=tf.int32) <tf.Tensor: shape=(2,), dtype=int32, numpy=array([5, 4], dtype=int32)> >>> tf.map_fn(fn=tf.strings.join, # input & output have different structures ... elems=[tf.constant(['The', 'A']), tf.constant(['Dog', 'Cat'])], ... fn_output_signature=tf.string) <tf.Tensor: shape=(2,), dtype=string, numpy=array([b'TheDog', b'ACat'], dtype=object)> `fn_output_signature` can be specified using any of the following: * A `tf.DType` or `tf.TensorSpec` (to describe a `tf.Tensor`) * A `tf.RaggedTensorSpec` (to describe a `tf.RaggedTensor`) * A `tf.SparseTensorSpec` (to describe a `tf.sparse.SparseTensor`) * A (possibly nested) tuple, list, or dict containing the above types. #### RaggedTensors `map_fn` supports `tf.RaggedTensor` inputs and outputs. In particular: * If `elems` is a `RaggedTensor`, then `fn` will be called with each row of that ragged tensor. * If `elems` has only one ragged dimension, then the values passed to `fn` will be `tf.Tensor`s. * If `elems` has multiple ragged dimensions, then the values passed to `fn` will be `tf.RaggedTensor`s with one fewer ragged dimension. * If the result of `map_fn` should be a `RaggedTensor`, then use a `tf.RaggedTensorSpec` to specify `fn_output_signature`. * If `fn` returns `tf.Tensor`s with varying sizes, then use a `tf.RaggedTensorSpec` with `ragged_rank=0` to combine them into a single ragged tensor (which will have ragged_rank=1). * If `fn` returns `tf.RaggedTensor`s, then use a `tf.RaggedTensorSpec` with the same `ragged_rank`. >>> # Example: RaggedTensor input >>> rt = tf.ragged.constant([[1, 2, 3], [], [4, 5], [6]]) >>> tf.map_fn(tf.reduce_sum, rt, fn_output_signature=tf.int32) <tf.Tensor: shape=(4,), dtype=int32, numpy=array([6, 0, 9, 6], dtype=int32)> >>> # Example: RaggedTensor output >>> elems = tf.constant([3, 5, 0, 2]) >>> tf.map_fn(tf.range, elems, ... fn_output_signature=tf.RaggedTensorSpec(shape=[None], ... dtype=tf.int32)) <tf.RaggedTensor [[0, 1, 2], [0, 1, 2, 3, 4], [], [0, 1]]> Note: `map_fn` should only be used if you need to map a function over the *rows* of a `RaggedTensor`. If you wish to map a function over the individual values, then you should use: * `tf.ragged.map_flat_values(fn, rt)` (if fn is expressible as TensorFlow ops) * `rt.with_flat_values(map_fn(fn, rt.flat_values))` (otherwise) E.g.: >>> rt = tf.ragged.constant([[1, 2, 3], [], [4, 5], [6]]) >>> tf.ragged.map_flat_values(lambda x: x + 2, rt) <tf.RaggedTensor [[3, 4, 5], [], [6, 7], [8]]> #### SparseTensors `map_fn` supports `tf.sparse.SparseTensor` inputs and outputs. In particular: * If `elems` is a `SparseTensor`, then `fn` will be called with each row of that sparse tensor. In particular, the value passed to `fn` will be a `tf.sparse.SparseTensor` with one fewer dimension than `elems`. * If the result of `map_fn` should be a `SparseTensor`, then use a `tf.SparseTensorSpec` to specify `fn_output_signature`. The individual `SparseTensor`s returned by `fn` will be stacked into a single `SparseTensor` with one more dimension. >>> # Example: SparseTensor input >>> st = tf.sparse.SparseTensor([[0, 0], [2, 0], [2, 1]], [2, 3, 4], [4, 4]) >>> tf.map_fn(tf.sparse.reduce_sum, st, fn_output_signature=tf.int32) <tf.Tensor: shape=(4,), dtype=int32, numpy=array([2, 0, 7, 0], dtype=int32)> >>> # Example: SparseTensor output >>> tf.sparse.to_dense( ... tf.map_fn(tf.sparse.eye, tf.constant([2, 3]), ... fn_output_signature=tf.SparseTensorSpec(None, tf.float32))) <tf.Tensor: shape=(2, 3, 3), dtype=float32, numpy= array([[[1., 0., 0.], [0., 1., 0.], [0., 0., 0.]], [[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]], dtype=float32)> Note: `map_fn` should only be used if you need to map a function over the *rows* of a `SparseTensor`. If you wish to map a function over the nonzero values, then you should use: * If the function is expressible as TensorFlow ops, use: ```python tf.sparse.SparseTensor(st.indices, fn(st.values), st.dense_shape) ``` * Otherwise, use: ```python tf.sparse.SparseTensor(st.indices, tf.map_fn(fn, st.values), st.dense_shape) ``` #### `map_fn` vs. vectorized operations `map_fn` will apply the operations used by `fn` to each element of `elems`, resulting in `O(elems.shape[0])` total operations. This is somewhat mitigated by the fact that `map_fn` can process elements in parallel. However, a transform expressed using `map_fn` is still typically less efficient than an equivalent transform expressed using vectorized operations. `map_fn` should typically only be used if one of the following is true: * It is difficult or expensive to express the desired transform with vectorized operations. * `fn` creates large intermediate values, so an equivalent vectorized transform would take too much memory. * Processing elements in parallel is more efficient than an equivalent vectorized transform. * Efficiency of the transform is not critical, and using `map_fn` is more readable. E.g., the example given above that maps `fn=lambda t: tf.range(t, t + 3)` across `elems` could be rewritten more efficiently using vectorized ops: >>> elems = tf.constant([3, 5, 2]) >>> tf.range(3) + tf.expand_dims(elems, 1) <tf.Tensor: shape=(3, 3), dtype=int32, numpy= array([[3, 4, 5], [5, 6, 7], [2, 3, 4]], dtype=int32)> In some cases, `tf.vectorized_map` can be used to automatically convert a function to a vectorized eqivalent. #### Eager execution When executing eagerly, `map_fn` does not execute in parallel even if `parallel_iterations` is set to a value > 1. You can still get the performance benefits of running a function in parallel by using the `tf.function` decorator: >>> fn=lambda t: tf.range(t, t + 3) >>> @tf.function ... def func(elems): ... return tf.map_fn(fn, elems, parallel_iterations=3) >>> func(tf.constant([3, 5, 2])) <tf.Tensor: shape=(3, 3), dtype=int32, numpy= array([[3, 4, 5], [5, 6, 7], [2, 3, 4]], dtype=int32)> Note that if you use the `tf.function` decorator, any non-TensorFlow Python code that you may have written in your function won't get executed. See `tf.function` for more details. The recommendation would be to debug without `tf.function` but switch to it to get performance benefits of running `map_fn` in parallel. Args: fn: The callable to be performed. It accepts one argument, which will have the same (possibly nested) structure as `elems`. Its output must have the same structure as `fn_output_signature` if one is provided; otherwise it must have the same structure as `elems`. elems: A tensor or (possibly nested) sequence of tensors, each of which will be unstacked along their first dimension. `fn` will be applied to the nested sequence of the resulting slices. `elems` may include ragged and sparse tensors. dtype: Deprecated: Equivalent to `fn_output_signature`. parallel_iterations: (optional) The number of iterations allowed to run in parallel. When graph building, the default value is 10. While executing eagerly, the default value is set to 1. back_prop: (optional) False disables support for back propagation. swap_memory: (optional) True enables GPU-CPU memory swapping. infer_shape: (optional) False disables tests for consistent output shapes. name: (optional) Name prefix for the returned tensors. fn_output_signature: The output signature of `fn`. Must be specified if `fn`'s input and output signatures are different (i.e., if their structures, dtypes, or tensor types do not match). `fn_output_signature` can be specified using any of the following: * A `tf.DType` or `tf.TensorSpec` (to describe a `tf.Tensor`) * A `tf.RaggedTensorSpec` (to describe a `tf.RaggedTensor`) * A `tf.SparseTensorSpec` (to describe a `tf.sparse.SparseTensor`) * A (possibly nested) tuple, list, or dict containing the above types. Returns: A tensor or (possibly nested) sequence of tensors. Each tensor stacks the results of applying `fn` to tensors unstacked from `elems` along the first dimension, from first to last. The result may include ragged and sparse tensors. Raises: TypeError: if `fn` is not callable or the structure of the output of `fn` and `fn_output_signature` do not match. ValueError: if the lengths of the output of `fn` and `fn_output_signature` do not match. Examples: >>> elems = np.array([1, 2, 3, 4, 5, 6]) >>> tf.map_fn(lambda x: x * x, elems) <tf.Tensor: shape=(6,), dtype=int64, numpy=array([ 1, 4, 9, 16, 25, 36])> >>> elems = (np.array([1, 2, 3]), np.array([-1, 1, -1])) >>> tf.map_fn(lambda x: x[0] * x[1], elems, fn_output_signature=tf.int64) <tf.Tensor: shape=(3,), dtype=int64, numpy=array([-1, 2, -3])> >>> elems = np.array([1, 2, 3]) >>> tf.map_fn(lambda x: (x, -x), elems, ... fn_output_signature=(tf.int64, tf.int64)) (<tf.Tensor: shape=(3,), dtype=int64, numpy=array([1, 2, 3])>, <tf.Tensor: shape=(3,), dtype=int64, numpy=array([-1, -2, -3])>) """ # This function uses a `while_loop` to call `fn` on each value of the input # tensor(s) (unstacked on dimension 0). The following sequence of variables # are used to transform the input tensor(s) (`elems`) into the output # tensor(s) (`result`): # # - Preparing and unstacking input values for the while_loop: # - elems: The input tensor(s) to map_fn. May include composite tensors. # - elems_flat: Flattened list of tensors from elems (using nest.flatten) # May include composite tensors. # - elems_batchable: Concatenation of "batchable tensor lists" for each # tensor in elems_flat. This "boxes" composite tensors # into sliceable tf.Tensor objects. For more info see: # TensorSpec._to_batched_tensor_list # - elems_batchable_ta: List of TensorArrays used to unstack each Tensor # in elems_batchable into elems_value_batchable. # # - Calling `fn` on each unstacked value in the body of the while_loop: # - elems_value_batchable: Single unstacked value from elems_batchable. # - elems_value_flat: Single unstacked value from elems_flat, # constructed from elems_value_batchable (using # TensorSpec._from_tensor_list). # - elems_value: Single unstacked value from elems (the input to fn). # - result_value: Result of calling `fn(elems_value)`. May contain # composite tensors. # - result_value_flat: Flattened list of tensors from result_value. # May contain composite tensors. # - result_value_batchable: Concatenation of batchable tensor lists for # each tensor in result_value_flat # (using TensorSpec._to_tensor_list). # # - Collecting and stacking output values from the while_loop: # - result_batchable_ta: List of TensorArrays used to stack each tensor # ta result_value_batchable into result_batchable. # - result_batchable: Stacked tensors from result_batchable_ta. # - result_flat: Flat list of tensors for the result, constructed from # results bactchable (using TensorSpec._from_tensor_list). # - result: Structured result value packed from results flat # (using nest.pack_sequence_as). if fn_output_signature is None: fn_output_signature = dtype if not callable(fn): raise TypeError("fn must be callable.") in_graph_mode = not context.executing_eagerly() # Set the default number of parallel_iterations depending on graph/eager mode. if in_graph_mode and not parallel_iterations: parallel_iterations = 10 elif not in_graph_mode and not parallel_iterations: parallel_iterations = 1 elif not in_graph_mode and parallel_iterations > 1: logging.log_first_n( logging.WARN, "Setting parallel_iterations > 1 has no " "effect when executing eagerly. Consider calling map_fn" " with tf.function to execute fn in " "parallel.", 1) parallel_iterations = 1 # Flatten the input tensors, and get the TypeSpec for each one. elems_flat = nest.flatten(elems) elems_flat_signature = [type_spec.type_spec_from_value(e) for e in elems_flat] elems_unflatten = lambda x: nest.pack_sequence_as(elems, x) # Flatten fn's output signature. if fn_output_signature is None: # If fn_output_signature was not specified, then assume that it matches the # input signature. result_flat_signature = [ _most_general_compatible_type(s)._unbatch() # pylint: disable=protected-access for s in elems_flat_signature ] result_unflatten = elems_unflatten else: result_flat_signature = [ _dtype_to_spec(d) for d in nest.flatten(fn_output_signature) ] result_unflatten = lambda x: nest.pack_sequence_as(fn_output_signature, x) with ops.name_scope(name, "map", elems_flat): # TODO(akshayka): Remove the in_graph_mode check once caching devices are # supported in Eager if in_graph_mode: # Any get_variable calls in fn will cache the first call locally # and not issue repeated network I/O requests for each iteration. varscope = vs.get_variable_scope() varscope_caching_device_was_none = False if varscope.caching_device is None: # TODO(ebrevdo): Change to using colocate_with here and in other # methods. varscope.set_caching_device(lambda op: op.device) varscope_caching_device_was_none = True elems_flat = [ ops.convert_to_tensor_or_composite(t, name="elem") for t in elems_flat ] # Check that inputs are not scalars. elems_static_shape = elems_flat[0].shape if elems_static_shape.ndims is not None and elems_static_shape.ndims < 1: if len(elems_flat) == 1: raise ValueError("elems must be a 1+ dimensional Tensor, not a scalar") else: raise ValueError( "elements in elems must be 1+ dimensional Tensors, not scalars" ) # Box any composite tensors into tensor lists. elems_batchable = _elems_flat_to_batchable(elems_flat) # Find the number of iterations, n. (may be known statically.) n_static = tensor_shape.Dimension( tensor_shape.dimension_value( elems_batchable[0].get_shape().with_rank_at_least(1)[0])) for tensor in elems_batchable[1:]: n_static.merge_with( tensor_shape.Dimension( tensor_shape.dimension_value( tensor.get_shape().with_rank_at_least(1)[0]))) n = n_static.value or array_ops.shape(elems_batchable[0])[0] # Convert elems to tensor array. # TODO(edloper): Should we set infer_shape=False for composite tensors? elems_batchable_ta = [ tensor_array_ops.TensorArray( dtype=t.dtype, size=n, dynamic_size=False, infer_shape=True) for t in elems_batchable ] # Unpack elements elems_batchable_ta = [ ta.unstack(t) for (ta, t) in zip(elems_batchable_ta, elems_batchable) ] i = constant_op.constant(0) # Prepare result tensor array. # TODO(edloper): Should we set infer_shape=False for composite tensors? result_batchable_dtype = _result_flat_signature_to_batchable_dtype( result_flat_signature) result_batchable_ta = [ tensor_array_ops.TensorArray( dtype=dt, size=n, dynamic_size=False, infer_shape=infer_shape) for dt in result_batchable_dtype ] def compute(i, tas): """The loop body of map_fn. Args: i: the loop counter tas: the flat TensorArray accumulator list Returns: (i + 1, tas): the updated counter + updated TensorArrays Raises: TypeError: if fn_output_signature and result_value structure don't match ValueType: if fn_output_signature and result_value lengths don't match """ elems_value_batchable = [ta.read(i) for ta in elems_batchable_ta] elems_value_flat = _elems_value_batchable_to_flat(elems_value_batchable, elems_flat_signature) elems_value = elems_unflatten(elems_value_flat) ag_ctx = autograph_ctx.control_status_ctx() autographed_fn = autograph.tf_convert(fn, ag_ctx) result_value = autographed_fn(elems_value) nest.assert_same_structure(fn_output_signature or elems, result_value) result_value_flat = nest.flatten(result_value) result_value_batchable = _result_value_flat_to_batchable( result_value_flat, result_flat_signature) tas = [ ta.write(i, value) for (ta, value) in zip(tas, result_value_batchable) ] return (i + 1, tas) _, r_a = control_flow_ops.while_loop( lambda i, _: i < n, compute, (i, result_batchable_ta), parallel_iterations=parallel_iterations, back_prop=back_prop, swap_memory=swap_memory, maximum_iterations=n) result_batchable = [r.stack() for r in r_a] # Update each output tensor w/ static shape info about the outer dimension. for r in result_batchable: r.set_shape(tensor_shape.TensorShape(n_static).concatenate( r.get_shape()[1:])) # TODO(akshayka): Remove the in_graph_mode check once caching devices are # supported in Eager if in_graph_mode and varscope_caching_device_was_none: varscope.set_caching_device(None) result_flat = _result_batchable_to_flat(result_batchable, result_flat_signature) result = result_unflatten(result_flat) return result def _dtype_to_spec(d): if not isinstance(d, type_spec.TypeSpec): d = tensor_spec.TensorSpec(None, d) return d def _most_general_compatible_type(spec): """Returns the most general TypeSpec compatible with `spec`.""" # TODO(edloper): Consider adding most_general_compatible_type to TypeSpec API if isinstance(spec, tensor_spec.TensorSpec): return tensor_spec.TensorSpec(None, spec.dtype) elif isinstance(spec, ragged_tensor.RaggedTensorSpec): # pylint: disable=protected-access return ragged_tensor.RaggedTensorSpec(None, spec._dtype, spec._ragged_rank, spec._row_splits_dtype) elif isinstance(spec, sparse_tensor.SparseTensorSpec): # pylint: disable=protected-access return sparse_tensor.SparseTensorSpec(None, spec.dtype) else: return spec def _result_flat_signature_to_batchable_dtype(result_flat_signature): """Converts result_flat_signature -> result_batchable_dtype.""" components = [] for spec in result_flat_signature: if not isinstance(spec, type_spec.BatchableTypeSpec): raise TypeError("map_fn can not generate %s outputs" % (spec,)) # pylint: disable=protected-access components.extend([s.dtype for s in spec._flat_tensor_specs]) return components def _elems_flat_to_batchable(elems_flat): """Converts elems_flat -> elems_batchable.""" elems_batchable = [] for elems_tensor in elems_flat: spec = type_spec.type_spec_from_value(elems_tensor) if not isinstance(spec, type_spec.BatchableTypeSpec): raise TypeError("map_fn can not consume %s inputs: got %r" % (spec, elems_tensor)) # pylint: disable=protected-access elems_batchable.extend(spec._to_batched_tensor_list(elems_tensor)) return elems_batchable def _elems_value_batchable_to_flat(elems_value_batchable, elems_flat_signature): """Converts elems_value_batchable -> elems_value_flat.""" elems_value_flat = [] i = 0 for spec in elems_flat_signature: # pylint: disable=protected-access spec = spec._unbatch() tensor_list = elems_value_batchable[i:i + len(spec._flat_tensor_specs)] elems_value_flat.append(spec._from_compatible_tensor_list(tensor_list)) i += len(tensor_list) assert i == len(elems_value_batchable) return elems_value_flat def _result_value_flat_to_batchable(result_value_flat, result_flat_signature): """Converts result_value_flat -> result_value_batchable.""" result_value_batchable = [] for (r_value, r_spec) in zip(result_value_flat, result_flat_signature): if isinstance(r_spec, tensor_spec.TensorSpec): result_value_batchable.append(r_value) else: if not r_spec.is_compatible_with(r_value): raise ValueError( "Error in map_fn:\n Expected `fn` to return a:\n %s\n" " But it returned a:\n %s\n (value=%s)\n" " To fix, update the `fn_output_signature` (or `dtype`) " "argument to `map_fn`." % (r_spec, type_spec.type_spec_from_value(r_value), r_value)) result_value_batchable.extend(r_spec._to_tensor_list(r_value)) # pylint: disable=protected-access return result_value_batchable def _result_batchable_to_flat(result_batchable, result_flat_signature): """Converts result_batchable -> result_flat.""" result_flat = [] i = 0 for spec in result_flat_signature: # pylint: disable=protected-access num_tensors = len(spec._flat_tensor_specs) result_flat.append( spec._batch(None)._from_compatible_tensor_list( result_batchable[i:i + num_tensors])) i += num_tensors assert i == len(result_batchable) return result_flat @tf_export("map_fn", v1=[]) @deprecation.deprecated_arg_values( None, """back_prop=False is deprecated. Consider using tf.stop_gradient instead. Instead of: results = tf.map_fn(fn, elems, back_prop=False) Use: results = tf.nest.map_structure(tf.stop_gradient, tf.map_fn(fn, elems))""", warn_once=True, back_prop=False) @deprecation.deprecated_args(None, "Use fn_output_signature instead", "dtype") def map_fn_v2(fn, elems, dtype=None, parallel_iterations=None, back_prop=True, swap_memory=False, infer_shape=True, name=None, fn_output_signature=None): """Transform `elems` by applying `fn` to each element unstacked on axis 0.""" if fn_output_signature is None: fn_output_signature = dtype return map_fn( fn=fn, elems=elems, fn_output_signature=fn_output_signature, parallel_iterations=parallel_iterations, back_prop=back_prop, swap_memory=swap_memory, infer_shape=infer_shape, name=name) # Docstring for v2 is the same as v1, except that back_prop is deprecated. map_fn_v2.__doc__ = re.sub( r"( back_prop: \(optional\) )(.*)", r"\1Deprecated: prefer using `tf.stop_gradient` instead. \2", map_fn.__doc__) assert "prefer using `tf.stop_gradient` instead" in map_fn_v2.__doc__
42.199387
104
0.680054
30c69c20cd3deafad62d472339b84377d8396a95
9,798
py
Python
tests/wallet/test_wallet_store.py
Stor-Network/stor-blockchain
3c3cd1a3b99592e88160107ca5b81afc0937b992
[ "Apache-2.0" ]
19
2021-06-29T20:06:09.000Z
2022-02-09T04:33:00.000Z
tests/wallet/test_wallet_store.py
Stor-Network/stor-blockchain
3c3cd1a3b99592e88160107ca5b81afc0937b992
[ "Apache-2.0" ]
8
2021-07-04T03:21:51.000Z
2021-12-27T07:56:09.000Z
tests/wallet/test_wallet_store.py
Stor-Network/stor-blockchain
3c3cd1a3b99592e88160107ca5b81afc0937b992
[ "Apache-2.0" ]
6
2021-10-04T17:15:30.000Z
2022-03-15T08:40:01.000Z
# TODO: write tests for other stores # import asyncio # from pathlib import Path # from secrets import token_bytes # import aiosqlite # import pytest # from stor.util.ints import uint32, uint64, uint128 # from stor.wallet.wallet_coin_record import WalletCoinRecord # from stor.wallet.util.wallet_types import WalletType # from stor.types.coin import Coin # # # @pytest.fixture(scope="module") # def event_loop(): # loop = asyncio.get_event_loop() # yield loop # # # class TestWalletStore: # @pytest.mark.asyncio # async def test_store(self): # db_filename = Path("blockchain_wallet_store_test.db") # # if db_filename.exists(): # db_filename.unlink() # # db_connection = await aiosqlite.connect(db_filename) # store = await WalletStore.create(db_connection) # try: # coin_1 = Coin(token_bytes(32), token_bytes(32), uint64(12312)) # coin_2 = Coin(token_bytes(32), token_bytes(32), uint64(12312)) # coin_3 = Coin(token_bytes(32), token_bytes(32), uint64(12312)) # coin_4 = Coin(token_bytes(32), token_bytes(32), uint64(12312)) # record_replaced = WalletCoinRecord(coin_1, uint32(8), uint32(0), # False, True, WalletType.STANDARD_WALLET, 0) # record_1 = WalletCoinRecord(coin_1, uint32(4), uint32(0), False, # True, WalletType.STANDARD_WALLET, 0) # record_2 = WalletCoinRecord(coin_2, uint32(5), uint32(0), # False, True, WalletType.STANDARD_WALLET, 0) # record_3 = WalletCoinRecord( # coin_3, # uint32(5), # uint32(10), # True, # False, # WalletType.STANDARD_WALLET, # 0, # ) # record_4 = WalletCoinRecord( # coin_4, # uint32(5), # uint32(15), # True, # False, # WalletType.STANDARD_WALLET, # 0, # ) # # # Test add (replace) and get # assert await store.get_coin_record(coin_1.name()) is None # await store.add_coin_record(record_replaced) # await store.add_coin_record(record_1) # await store.add_coin_record(record_2) # await store.add_coin_record(record_3) # await store.add_coin_record(record_4) # assert await store.get_coin_record(coin_1.name()) == record_1 # # # Test persistance # await db_connection.close() # db_connection = await aiosqlite.connect(db_filename) # store = await WalletStore.create(db_connection) # assert await store.get_coin_record(coin_1.name()) == record_1 # # # Test set spent # await store.set_spent(coin_1.name(), uint32(12)) # assert (await store.get_coin_record(coin_1.name())).spent # assert (await store.get_coin_record(coin_1.name())).spent_block_index == 12 # # # No coins at height 3 # assert len(await store.get_unspent_coins_at_height(3)) == 0 # assert len(await store.get_unspent_coins_at_height(4)) == 1 # assert len(await store.get_unspent_coins_at_height(5)) == 4 # assert len(await store.get_unspent_coins_at_height(11)) == 3 # assert len(await store.get_unspent_coins_at_height(12)) == 2 # assert len(await store.get_unspent_coins_at_height(15)) == 1 # assert len(await store.get_unspent_coins_at_height(16)) == 1 # assert len(await store.get_unspent_coins_at_height()) == 1 # # assert len(await store.get_unspent_coins_for_wallet(0)) == 1 # assert len(await store.get_unspent_coins_for_wallet(1)) == 0 # # coin_5 = Coin(token_bytes(32), token_bytes(32), uint64(12312)) # record_5 = WalletCoinRecord( # coin_5, # uint32(5), # uint32(15), # False, # False, # WalletType.STANDARD_WALLET, # 1, # ) # await store.add_coin_record(record_5) # assert len(await store.get_unspent_coins_for_wallet(1)) == 1 # # assert len(await store.get_spendable_for_index(100, 1)) == 1 # assert len(await store.get_spendable_for_index(100, 0)) == 1 # assert len(await store.get_spendable_for_index(0, 0)) == 0 # # coin_6 = Coin(token_bytes(32), coin_4.puzzle_hash, uint64(12312)) # await store.add_coin_record(record_5) # record_6 = WalletCoinRecord( # coin_6, # uint32(5), # uint32(15), # True, # False, # WalletType.STANDARD_WALLET, # 2, # ) # await store.add_coin_record(record_6) # assert len(await store.get_coin_records_by_puzzle_hash(record_6.coin.puzzle_hash)) == 2 # 4 and 6 # assert len(await store.get_coin_records_by_puzzle_hash(token_bytes(32))) == 0 # # assert await store.get_coin_record_by_coin_id(coin_6.name()) == record_6 # assert await store.get_coin_record_by_coin_id(token_bytes(32)) is None # # # BLOCKS # assert len(await store.get_lca_path()) == 0 # # # NOT lca block # br_1 = BlockRecord( # token_bytes(32), # token_bytes(32), # uint32(0), # uint128(100), # None, # None, # None, # None, # uint64(0), # ) # assert await store.get_block_record(br_1.header_hash) is None # await store.add_block_record(br_1, False) # assert len(await store.get_lca_path()) == 0 # assert await store.get_block_record(br_1.header_hash) == br_1 # # # LCA genesis # await store.add_block_record(br_1, True) # assert await store.get_block_record(br_1.header_hash) == br_1 # assert len(await store.get_lca_path()) == 1 # assert (await store.get_lca_path())[br_1.header_hash] == br_1 # # br_2 = BlockRecord( # token_bytes(32), # token_bytes(32), # uint32(1), # uint128(100), # None, # None, # None, # None, # uint64(0), # ) # await store.add_block_record(br_2, False) # assert len(await store.get_lca_path()) == 1 # await store.add_block_to_path(br_2.header_hash) # assert len(await store.get_lca_path()) == 2 # assert (await store.get_lca_path())[br_2.header_hash] == br_2 # # br_3 = BlockRecord( # token_bytes(32), # token_bytes(32), # uint32(2), # uint128(100), # None, # None, # None, # None, # uint64(0), # ) # await store.add_block_record(br_3, True) # assert len(await store.get_lca_path()) == 3 # await store.remove_block_records_from_path(1) # assert len(await store.get_lca_path()) == 2 # # await store.rollback_lca_to_block(0) # assert len(await store.get_unspent_coins_at_height()) == 0 # # coin_7 = Coin(token_bytes(32), token_bytes(32), uint64(12312)) # coin_8 = Coin(token_bytes(32), token_bytes(32), uint64(12312)) # coin_9 = Coin(token_bytes(32), token_bytes(32), uint64(12312)) # coin_10 = Coin(token_bytes(32), token_bytes(32), uint64(12312)) # record_7 = WalletCoinRecord(coin_7, uint32(0), uint32(1), True, False, WalletType.STANDARD_WALLET, 1) # record_8 = WalletCoinRecord(coin_8, uint32(1), uint32(2), True, False, WalletType.STANDARD_WALLET, 1) # record_9 = WalletCoinRecord(coin_9, uint32(2), uint32(3), True, False, WalletType.STANDARD_WALLET, 1) # record_10 = WalletCoinRecord( # coin_10, # uint32(3), # uint32(4), # True, # False, # WalletType.STANDARD_WALLET, # 1, # ) # # await store.add_coin_record(record_7) # await store.add_coin_record(record_8) # await store.add_coin_record(record_9) # await store.add_coin_record(record_10) # assert len(await store.get_unspent_coins_at_height(0)) == 1 # assert len(await store.get_unspent_coins_at_height(1)) == 1 # assert len(await store.get_unspent_coins_at_height(2)) == 1 # assert len(await store.get_unspent_coins_at_height(3)) == 1 # assert len(await store.get_unspent_coins_at_height(4)) == 0 # # await store.add_block_record(br_2, True) # await store.add_block_record(br_3, True) # # await store.rollback_lca_to_block(1) # # assert len(await store.get_unspent_coins_at_height(0)) == 1 # assert len(await store.get_unspent_coins_at_height(1)) == 1 # assert len(await store.get_unspent_coins_at_height(2)) == 1 # assert len(await store.get_unspent_coins_at_height(3)) == 1 # assert len(await store.get_unspent_coins_at_height(4)) == 1 # # except AssertionError: # await db_connection.close() # raise # await db_connection.close()
42.415584
115
0.554807
910575af3ef295d329853394944fed12da2e13d0
868
py
Python
duke-cs671-fall21-coupon-recommendation/outputs/rules/RF/3_features/numtrees_45/rule_36.py
apcarrik/kaggle
6e2d4db58017323e7ba5510bcc2598e01a4ee7bf
[ "MIT" ]
null
null
null
duke-cs671-fall21-coupon-recommendation/outputs/rules/RF/3_features/numtrees_45/rule_36.py
apcarrik/kaggle
6e2d4db58017323e7ba5510bcc2598e01a4ee7bf
[ "MIT" ]
null
null
null
duke-cs671-fall21-coupon-recommendation/outputs/rules/RF/3_features/numtrees_45/rule_36.py
apcarrik/kaggle
6e2d4db58017323e7ba5510bcc2598e01a4ee7bf
[ "MIT" ]
null
null
null
def findDecision(obj): #obj[0]: Coupon, obj[1]: Education, obj[2]: Occupation # {"feature": "Occupation", "instances": 23, "metric_value": 0.8281, "depth": 1} if obj[2]<=5: # {"feature": "Coupon", "instances": 12, "metric_value": 0.4138, "depth": 2} if obj[0]>0: return 'True' elif obj[0]<=0: # {"feature": "Education", "instances": 3, "metric_value": 0.9183, "depth": 3} if obj[1]>0: return 'True' elif obj[1]<=0: return 'True' else: return 'True' else: return 'True' elif obj[2]>5: # {"feature": "Coupon", "instances": 11, "metric_value": 0.994, "depth": 2} if obj[0]<=3: # {"feature": "Education", "instances": 10, "metric_value": 0.971, "depth": 3} if obj[1]<=2: return 'False' elif obj[1]>2: return 'True' else: return 'True' elif obj[0]>3: return 'False' else: return 'False' else: return 'True'
31
81
0.587558
65e3f3af76395ed6257d4a10ffa5a758f13fb622
119
py
Python
PIP/Minor Assignment 3/A3Q9.py
ankitrajbiswal/SEM_5
db716e242e77149a4091e0e564356ddc724aeff0
[ "Apache-2.0" ]
10
2021-04-24T11:46:48.000Z
2022-01-17T05:14:37.000Z
PIP/Minor Assignment 3/A3Q9.py
ankitrajbiswal/SEM_5
db716e242e77149a4091e0e564356ddc724aeff0
[ "Apache-2.0" ]
2
2021-06-28T11:51:50.000Z
2021-11-01T08:21:53.000Z
PIP/Minor Assignment 3/A3Q9.py
ankitrajbiswal/SEM_5
db716e242e77149a4091e0e564356ddc724aeff0
[ "Apache-2.0" ]
16
2021-04-24T11:46:58.000Z
2022-03-02T05:08:19.000Z
def printSum(n): s=0 for i in n: s=s+int(i) print (s) n=input("Enter the number") printSum(n)
17
28
0.521008
bca0161f142480bcbc52dd96803edecc387e8c64
8,711
py
Python
neurom/check/tests/test_runner.py
mgeplf/NeuroM
e21c01979de3db643c309b6bf2fe0b5dc9363c3a
[ "BSD-3-Clause" ]
null
null
null
neurom/check/tests/test_runner.py
mgeplf/NeuroM
e21c01979de3db643c309b6bf2fe0b5dc9363c3a
[ "BSD-3-Clause" ]
3
2019-11-15T05:22:14.000Z
2019-12-09T01:56:24.000Z
neurom/check/tests/test_runner.py
NeuroDataDesign/NeuroM
61a7b5de0c3bf3c07d6eb3270c28d21be6ea7865
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2015, Ecole Polytechnique Federale de Lausanne, Blue Brain Project # All rights reserved. # # This file is part of NeuroM <https://github.com/BlueBrain/NeuroM> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of # its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os from copy import copy from nose import tools as nt from neurom.check.runner import CheckRunner from neurom.exceptions import ConfigError _path = os.path.dirname(os.path.abspath(__file__)) SWC_PATH = os.path.join(_path, '../../../test_data/swc/') NRN_PATH_0 = os.path.join(SWC_PATH, 'Neuron.swc') NRN_PATH_1 = os.path.join(SWC_PATH, 'Neuron_zero_length_sections.swc') NRN_PATH_2 = os.path.join(SWC_PATH, 'Single_apical.swc') NRN_PATH_3 = os.path.join(SWC_PATH, 'Single_basal.swc') NRN_PATH_4 = os.path.join(SWC_PATH, 'Single_axon.swc') NRN_PATH_5 = os.path.join(SWC_PATH, 'Single_apical_no_soma.swc') CONFIG = { 'checks': { 'structural_checks': [ 'is_single_tree', 'has_soma_points', 'has_sequential_ids', 'has_increasing_ids', 'has_valid_soma', 'has_valid_neurites' ], 'neuron_checks': [ 'has_basal_dendrite', 'has_axon', 'has_apical_dendrite', 'has_all_nonzero_segment_lengths', 'has_all_nonzero_section_lengths', 'has_all_nonzero_neurite_radii', 'has_nonzero_soma_radius' ] }, 'options': { 'has_nonzero_soma_radius': 0.0, "has_all_nonzero_neurite_radii": 0.007, "has_all_nonzero_segment_lengths": 0.01, "has_all_nonzero_section_lengths": [0.01] }, } CONFIG_COLOR = copy(CONFIG) CONFIG_COLOR['color'] = True REF_0 = { 'files': { NRN_PATH_0: { "Is single tree": True, "Has soma points": True, "Has sequential ids": True, "Has increasing ids": True, "Has valid soma": True, "Has valid neurites": True, "Has basal dendrite": True, "Has axon": True, "Has apical dendrite": True, "Has all nonzero segment lengths": True, "Has all nonzero section lengths": True, "Has all nonzero neurite radii": True, "Has nonzero soma radius": True, "ALL": True } }, "STATUS": "PASS" } REF_1 = { 'files': { NRN_PATH_1: { "Is single tree": True, "Has soma points": True, "Has sequential ids": True, "Has increasing ids": True, "Has valid soma": True, "Has valid neurites": True, "Has basal dendrite": True, "Has axon": True, "Has apical dendrite": True, "Has all nonzero segment lengths": False, "Has all nonzero section lengths": False, "Has all nonzero neurite radii": True, "Has nonzero soma radius": True, "ALL": False } }, "STATUS": "FAIL" } REF_2 = { 'files': { NRN_PATH_2: { "Is single tree": True, "Has soma points": True, "Has sequential ids": True, "Has increasing ids": True, "Has valid soma": True, "Has valid neurites": True, "Has basal dendrite": False, "Has axon": False, "Has apical dendrite": True, "Has all nonzero segment lengths": False, "Has all nonzero section lengths": True, "Has all nonzero neurite radii": True, "Has nonzero soma radius": True, "ALL": False } }, "STATUS": "FAIL" } REF_3 = { 'files': { NRN_PATH_3: { "Is single tree": True, "Has soma points": True, "Has sequential ids": True, "Has increasing ids": True, "Has valid soma": True, "Has valid neurites": True, "Has basal dendrite": True, "Has axon": False, "Has apical dendrite": False, "Has all nonzero segment lengths": False, "Has all nonzero section lengths": True, "Has all nonzero neurite radii": True, "Has nonzero soma radius": False, "ALL": False } }, "STATUS": "FAIL" } REF_4 = { 'files': { NRN_PATH_4: { "Is single tree": True, "Has soma points": True, "Has sequential ids": True, "Has increasing ids": True, "Has valid soma": True, "Has valid neurites": True, "Has basal dendrite": False, "Has axon": True, "Has apical dendrite": False, "Has all nonzero segment lengths": False, "Has all nonzero section lengths": True, "Has all nonzero neurite radii": True, "Has nonzero soma radius": True, "ALL": False } }, "STATUS": "FAIL" } REF_5 = { 'files': { NRN_PATH_5: { "Is single tree": True, "Has soma points": False, "Has sequential ids": True, "Has increasing ids": True, "Has valid soma": False, "Has valid neurites": False, "ALL": False } }, "STATUS": "FAIL" } def test_ok_neuron(): checker = CheckRunner(CONFIG) summ = checker.run(NRN_PATH_0) nt.assert_equal(summ, REF_0) def test_ok_neuron_color(): checker = CheckRunner(CONFIG_COLOR) summ = checker.run(NRN_PATH_0) nt.assert_equal(summ, REF_0) def test_zero_length_sections_neuron(): checker = CheckRunner(CONFIG) summ = checker.run(NRN_PATH_1) nt.assert_equal(summ, REF_1) def test_single_apical_neuron(): checker = CheckRunner(CONFIG) summ = checker.run(NRN_PATH_2) nt.assert_equal(summ, REF_2) def test_single_basal_neuron(): checker = CheckRunner(CONFIG) summ = checker.run(NRN_PATH_3) nt.assert_equal(summ, REF_3) def test_single_axon_neuron(): checker = CheckRunner(CONFIG) summ = checker.run(NRN_PATH_4) nt.assert_equal(summ, REF_4) def test_single_apical_no_soma(): checker = CheckRunner(CONFIG) summ = checker.run(NRN_PATH_5) nt.assert_equal(summ, REF_5) def test_directory_input(): checker = CheckRunner(CONFIG) summ = checker.run(SWC_PATH) nt.eq_(summ['files'][NRN_PATH_0]['Has axon'], True) nt.eq_(summ['files'][NRN_PATH_2]['Has axon'], False) @nt.raises(IOError) def test_invalid_data_path_raises_IOError(): checker = CheckRunner(CONFIG) _ = checker.run('foo/bar/baz') def test__sanitize_config(): # fails if missing 'checks' nt.assert_raises(ConfigError, CheckRunner._sanitize_config, {}) # creates minimal config new_config = CheckRunner._sanitize_config({'checks': {}}) nt.eq_(new_config, {'checks': {'structural_checks': [], 'neuron_checks': [], }, 'options': {}, 'color': False, }) # makes no changes to already filled out config new_config = CheckRunner._sanitize_config(CONFIG) nt.eq_(CONFIG, new_config)
31.561594
86
0.601538
34abaf2123b0874dd559738c633638d6ca60ad3c
4,614
py
Python
tests/test_blueprints_container.py
celery/bootsteps
f2e788edb182d54037c5f2b9fad28dc81f701f8e
[ "BSD-3-Clause" ]
null
null
null
tests/test_blueprints_container.py
celery/bootsteps
f2e788edb182d54037c5f2b9fad28dc81f701f8e
[ "BSD-3-Clause" ]
1
2019-10-24T16:46:50.000Z
2019-10-24T16:46:50.000Z
tests/test_blueprints_container.py
celery/bootsteps
f2e788edb182d54037c5f2b9fad28dc81f701f8e
[ "BSD-3-Clause" ]
1
2019-09-29T03:36:17.000Z
2019-09-29T03:36:17.000Z
from unittest.mock import Mock import pytest from eliot.testing import LoggedAction from bootsteps import BlueprintContainer, Step from tests.assertions import ( assert_log_message_field_equals, assert_logged_action_failed, assert_logged_action_succeeded, ) from tests.mocks import TrioCoroutineMock, create_mock_step, create_start_stop_mock_step def test_blueprint_container_dependencies_graph(logger): mock_step1 = create_mock_step("step1") mock_step2 = create_mock_step("step2", requires={mock_step1}) mock_step3 = create_mock_step("step3", last=True) mock_step4 = create_mock_step("step4", required_by={mock_step2}) mock_step5 = create_mock_step("step5", include_if=False) mock_bootsteps = [mock_step1, mock_step4, mock_step2, mock_step3, mock_step5] class MyBlueprintContainer(BlueprintContainer): bootsteps = mock_bootsteps mock_bootsteps.remove(mock_step5) assert list(MyBlueprintContainer.blueprint._steps.nodes) == mock_bootsteps assert set(MyBlueprintContainer.blueprint._steps.edges) == { (mock_step2, mock_step1), (mock_step2, mock_step4), (mock_step3, mock_step1), (mock_step3, mock_step4), (mock_step3, mock_step2), } logged_actions = LoggedAction.of_type( logger.messages, "bootsteps:blueprint:building_dependency_graph" ) logged_action = logged_actions[0] assert_log_message_field_equals( logged_action.start_message, "name", MyBlueprintContainer.blueprint.name ) assert_log_message_field_equals( logged_action.end_message, "name", MyBlueprintContainer.blueprint.name ) assert_log_message_field_equals( logged_action.end_message, "graph", lambda value: value.nodes == MyBlueprintContainer.blueprint._steps.nodes and value.edges == MyBlueprintContainer.blueprint._steps.edges, ) assert_logged_action_succeeded(logged_action) def test_blueprint_container_dependencies_graph_with_two_last_steps(logger): mock_step1 = create_mock_step("step1", last=True) mock_step2 = create_mock_step("step2", requires={mock_step1}) mock_step3 = create_mock_step("step3", last=True) mock_bootsteps = [mock_step1, mock_step2, mock_step3] class MyBlueprintContainer(BlueprintContainer): bootsteps = mock_bootsteps with pytest.raises(ValueError, match="Only one boot step can be last. Found 2."): MyBlueprintContainer.blueprint logged_actions = LoggedAction.of_type( logger.messages, "bootsteps:blueprint:building_dependency_graph" ) logged_action = logged_actions[0] assert_log_message_field_equals( logged_action.start_message, "name", MyBlueprintContainer.name ) assert_logged_action_failed(logged_action) assert_log_message_field_equals( logged_action.end_message, "reason", "Only one boot step can be last. Found 2." ) assert_log_message_field_equals( logged_action.end_message, "exception", "builtins.ValueError" ) def test_blueprint_container_dependencies_graph_with_circular_dependencies(logger): # Can't use the create_mock_step helper here because of the circular dependency mock_step2 = Mock(name="step2", spec=Step) mock_step1 = Mock(name="step1", spec=Step) mock_step1.requires = {mock_step2} mock_step1.required_by = set() mock_step1.last = True mock_step2.requires = {mock_step1} mock_step2.required_by = set() mock_step2.last = False mock_bootsteps = [mock_step1, mock_step2] class MyBlueprintContainer(BlueprintContainer): bootsteps = mock_bootsteps with pytest.raises(ValueError, match="Circular dependencies found."): MyBlueprintContainer.blueprint def test_blueprint_container_dependencies_graph_with_no_circular_dependencies_other_step_not_included( logger ): # Can't use the create_mock_step helper here because of the circular dependency mock_step2 = Mock(name="step2", spec=Step) mock_step1 = Mock(name="step1", spec=Step) mock_step1.requires = {mock_step2} mock_step1.required_by = set() mock_step1.last = True mock_step2.include_if.return_value = True mock_step2.requires = {mock_step1} mock_step2.required_by = set() mock_step2.last = False mock_step2.include_if.return_value = False mock_bootsteps = [mock_step1, mock_step2] class MyBlueprintContainer(BlueprintContainer): bootsteps = mock_bootsteps try: MyBlueprintContainer.blueprint except ValueError: pytest.fail("Circular dependencies found")
33.926471
102
0.747291
475872cef6090c7295bdf050dcb74b11587a58f1
9,773
py
Python
runtime/python/Lib/unittest/test/test_break.py
hwaipy/InteractionFreeNode
88642b68430f57b028fd0f276a5709f89279e30d
[ "MIT" ]
207
2018-10-01T08:53:01.000Z
2022-03-14T12:15:54.000Z
Thonny/Lib/unittest/test/test_break.py
Pydiderot/pydiderotIDE
a42fcde3ea837ae40c957469f5d87427e8ce46d3
[ "MIT" ]
30
2019-01-04T10:14:56.000Z
2020-10-12T14:00:31.000Z
Thonny/Lib/unittest/test/test_break.py
Pydiderot/pydiderotIDE
a42fcde3ea837ae40c957469f5d87427e8ce46d3
[ "MIT" ]
53
2019-03-12T16:50:21.000Z
2022-03-15T23:16:18.000Z
import gc import io import os import sys import signal import weakref import unittest @unittest.skipUnless(hasattr(os, 'kill'), "Test requires os.kill") @unittest.skipIf(sys.platform =="win32", "Test cannot run on Windows") class TestBreak(unittest.TestCase): int_handler = None def setUp(self): self._default_handler = signal.getsignal(signal.SIGINT) if self.int_handler is not None: signal.signal(signal.SIGINT, self.int_handler) def tearDown(self): signal.signal(signal.SIGINT, self._default_handler) unittest.signals._results = weakref.WeakKeyDictionary() unittest.signals._interrupt_handler = None def testInstallHandler(self): default_handler = signal.getsignal(signal.SIGINT) unittest.installHandler() self.assertNotEqual(signal.getsignal(signal.SIGINT), default_handler) try: pid = os.getpid() os.kill(pid, signal.SIGINT) except KeyboardInterrupt: self.fail("KeyboardInterrupt not handled") self.assertTrue(unittest.signals._interrupt_handler.called) def testRegisterResult(self): result = unittest.TestResult() self.assertNotIn(result, unittest.signals._results) unittest.registerResult(result) try: self.assertIn(result, unittest.signals._results) finally: unittest.removeResult(result) def testInterruptCaught(self): default_handler = signal.getsignal(signal.SIGINT) result = unittest.TestResult() unittest.installHandler() unittest.registerResult(result) self.assertNotEqual(signal.getsignal(signal.SIGINT), default_handler) def test(result): pid = os.getpid() os.kill(pid, signal.SIGINT) result.breakCaught = True self.assertTrue(result.shouldStop) try: test(result) except KeyboardInterrupt: self.fail("KeyboardInterrupt not handled") self.assertTrue(result.breakCaught) def testSecondInterrupt(self): # Can't use skipIf decorator because the signal handler may have # been changed after defining this method. if signal.getsignal(signal.SIGINT) == signal.SIG_IGN: self.skipTest("test requires SIGINT to not be ignored") result = unittest.TestResult() unittest.installHandler() unittest.registerResult(result) def test(result): pid = os.getpid() os.kill(pid, signal.SIGINT) result.breakCaught = True self.assertTrue(result.shouldStop) os.kill(pid, signal.SIGINT) self.fail("Second KeyboardInterrupt not raised") try: test(result) except KeyboardInterrupt: pass else: self.fail("Second KeyboardInterrupt not raised") self.assertTrue(result.breakCaught) def testTwoResults(self): unittest.installHandler() result = unittest.TestResult() unittest.registerResult(result) new_handler = signal.getsignal(signal.SIGINT) result2 = unittest.TestResult() unittest.registerResult(result2) self.assertEqual(signal.getsignal(signal.SIGINT), new_handler) result3 = unittest.TestResult() def test(result): pid = os.getpid() os.kill(pid, signal.SIGINT) try: test(result) except KeyboardInterrupt: self.fail("KeyboardInterrupt not handled") self.assertTrue(result.shouldStop) self.assertTrue(result2.shouldStop) self.assertFalse(result3.shouldStop) def testHandlerReplacedButCalled(self): # Can't use skipIf decorator because the signal handler may have # been changed after defining this method. if signal.getsignal(signal.SIGINT) == signal.SIG_IGN: self.skipTest("test requires SIGINT to not be ignored") # If our handler has been replaced (is no longer installed) but is # called by the *new* handler, then it isn't safe to delay the # SIGINT and we should immediately delegate to the default handler unittest.installHandler() handler = signal.getsignal(signal.SIGINT) def new_handler(frame, signum): handler(frame, signum) signal.signal(signal.SIGINT, new_handler) try: pid = os.getpid() os.kill(pid, signal.SIGINT) except KeyboardInterrupt: pass else: self.fail("replaced but delegated handler doesn't raise interrupt") def testRunner(self): # Creating a TextTestRunner with the appropriate argument should # register the TextTestResult it creates runner = unittest.TextTestRunner(stream=io.StringIO()) result = runner.run(unittest.TestSuite()) self.assertIn(result, unittest.signals._results) def testWeakReferences(self): # Calling registerResult on a result should not keep it alive result = unittest.TestResult() unittest.registerResult(result) ref = weakref.ref(result) del result # For non-reference counting implementations gc.collect();gc.collect() self.assertIsNone(ref()) def testRemoveResult(self): result = unittest.TestResult() unittest.registerResult(result) unittest.installHandler() self.assertTrue(unittest.removeResult(result)) # Should this raise an error instead? self.assertFalse(unittest.removeResult(unittest.TestResult())) try: pid = os.getpid() os.kill(pid, signal.SIGINT) except KeyboardInterrupt: pass self.assertFalse(result.shouldStop) def testMainInstallsHandler(self): failfast = object() test = object() verbosity = object() result = object() default_handler = signal.getsignal(signal.SIGINT) class FakeRunner(object): initArgs = [] runArgs = [] def __init__(self, *args, **kwargs): self.initArgs.append((args, kwargs)) def run(self, test): self.runArgs.append(test) return result class Program(unittest.TestProgram): def __init__(self, catchbreak): self.exit = False self.verbosity = verbosity self.failfast = failfast self.catchbreak = catchbreak self.tb_locals = False self.testRunner = FakeRunner self.test = test self.result = None p = Program(False) p.runTests() self.assertEqual(FakeRunner.initArgs, [((), {'buffer': None, 'verbosity': verbosity, 'failfast': failfast, 'tb_locals': False, 'warnings': None})]) self.assertEqual(FakeRunner.runArgs, [test]) self.assertEqual(p.result, result) self.assertEqual(signal.getsignal(signal.SIGINT), default_handler) FakeRunner.initArgs = [] FakeRunner.runArgs = [] p = Program(True) p.runTests() self.assertEqual(FakeRunner.initArgs, [((), {'buffer': None, 'verbosity': verbosity, 'failfast': failfast, 'tb_locals': False, 'warnings': None})]) self.assertEqual(FakeRunner.runArgs, [test]) self.assertEqual(p.result, result) self.assertNotEqual(signal.getsignal(signal.SIGINT), default_handler) def testRemoveHandler(self): default_handler = signal.getsignal(signal.SIGINT) unittest.installHandler() unittest.removeHandler() self.assertEqual(signal.getsignal(signal.SIGINT), default_handler) # check that calling removeHandler multiple times has no ill-effect unittest.removeHandler() self.assertEqual(signal.getsignal(signal.SIGINT), default_handler) def testRemoveHandlerAsDecorator(self): default_handler = signal.getsignal(signal.SIGINT) unittest.installHandler() @unittest.removeHandler def test(): self.assertEqual(signal.getsignal(signal.SIGINT), default_handler) test() self.assertNotEqual(signal.getsignal(signal.SIGINT), default_handler) @unittest.skipUnless(hasattr(os, 'kill'), "Test requires os.kill") @unittest.skipIf(sys.platform =="win32", "Test cannot run on Windows") class TestBreakDefaultIntHandler(TestBreak): int_handler = signal.default_int_handler @unittest.skipUnless(hasattr(os, 'kill'), "Test requires os.kill") @unittest.skipIf(sys.platform =="win32", "Test cannot run on Windows") class TestBreakSignalIgnored(TestBreak): int_handler = signal.SIG_IGN @unittest.skipUnless(hasattr(os, 'kill'), "Test requires os.kill") @unittest.skipIf(sys.platform =="win32", "Test cannot run on Windows") class TestBreakSignalDefault(TestBreak): int_handler = signal.SIG_DFL if __name__ == "__main__": unittest.main()
34.779359
80
0.597769
e958e64f6b51e6a1aeab18669eaf6df61c48347f
8,273
py
Python
conary/build/derive.py
sassoftware/conary
d418968acd5e11ee17ed6d91ca395ea10a040222
[ "Apache-2.0" ]
43
2015-03-31T01:37:10.000Z
2021-11-14T16:26:48.000Z
conary/build/derive.py
sassoftware/conary
d418968acd5e11ee17ed6d91ca395ea10a040222
[ "Apache-2.0" ]
9
2015-06-10T16:39:41.000Z
2020-01-27T16:35:01.000Z
conary/build/derive.py
sassoftware/conary
d418968acd5e11ee17ed6d91ca395ea10a040222
[ "Apache-2.0" ]
9
2015-04-07T08:12:37.000Z
2020-01-26T09:54:18.000Z
# # Copyright (c) SAS Institute Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Contains the functions which derive a package and commit the resulting packages to the repository. """ import os import stat from conary.cmds import branch from conary import checkin from conary import state from conary.conaryclient import cmdline from conary.lib import log, util from conary.versions import Label from conary.repository.changeset import ChangesetExploder class DeriveCallback(checkin.CheckinCallback): def setUpdateJob(self, *args, **kw): # stifle update announcement for extract pass def derive(repos, cfg, targetLabel, troveSpec, checkoutDir=None, extract=False, info=False, callback=None): """ Performs all the commands necessary to create a derived recipe. First it shadows the package, then it creates a checkout of the shadow and converts the checkout to a derived recipe package. Finally if extract = True, it installs an version of the binary package into a root. @param repos: trovesource to search for and derive packages from @param cfg: configuration to use when deriving the package @type cfg: ConaryConfiguration object @param targetLabel: label to derive from @type targetLabel: versions.Label @param checkoutDir: directory to create the checkout in. If None, defaults to currentDir + packageName. @param extract: If True, creates a subdirectory of the checkout named _ROOT_ with the contents of the binary of the derived package. @param info: If true, only display the information about the shadow that would be performed if the derive command were completed. @param callback: """ origDir = os.getcwd() try: if callback is None: callback = DeriveCallback() if isinstance(troveSpec, tuple): troveName, versionSpec, flavor = troveSpec versionSpec = str(versionSpec) troveSpec = cmdline.toTroveSpec(troveName, versionSpec, flavor) else: troveName, versionSpec, flavor = cmdline.parseTroveSpec(troveSpec) if isinstance(targetLabel, str): targetLabel = Label(targetLabel) troveName, versionSpec, flavor = cmdline.parseTroveSpec(troveSpec) result = repos.findTrove(cfg.buildLabel, (troveName, versionSpec, flavor), cfg.flavor) # findTrove shouldn't return multiple items for one package anymore # when a flavor is specified. troveToDerive, = result # displaying output along the screen allows there to be a record # of what operations were performed. Since this command is # an aggregate of several commands I think that is appropriate, # rather than simply using a progress callback. log.info('Shadowing %s=%s[%s] onto %s' % (troveToDerive[0], troveToDerive[1], troveToDerive[2], targetLabel)) if info: cfg.interactive = False error = branch.branch(repos, cfg, str(targetLabel), ['%s=%s[%s]'%troveToDerive], makeShadow=True, sourceOnly=True, binaryOnly=False, allowEmptyShadow=True, info=info) if info or error: return shadowedVersion = troveToDerive[1].createShadow(targetLabel) shadowedVersion = shadowedVersion.getSourceVersion(False) troveName = troveName.split(':')[0] checkoutDir = checkoutDir or troveName checkin.checkout(repos, cfg, checkoutDir, ["%s=%s" % (troveName, shadowedVersion)], callback=callback) os.chdir(checkoutDir) nvfs = repos.getTrovesBySource(troveToDerive[0]+':source', troveToDerive[1].getSourceVersion()) trvs = repos.getTroves(nvfs) hasCapsule = [ x for x in trvs if x.troveInfo.capsule.type() ] if hasCapsule: derivedRecipeType = 'DerivedCapsuleRecipe' removeText = '' else: derivedRecipeType = 'DerivedPackageRecipe' removeText = \ """ # This appliance uses PHP as a command interpreter but does # not include a web server, so remove the file that creates # a dependency on the web server r.Remove('/etc/httpd/conf.d/php.conf') """ log.info('Rewriting recipe file') recipeName = troveName + '.recipe' className = util.convertPackageNameToClassName(troveName) derivedRecipe = """ class %(className)sRecipe(%(recipeBaseClass)s): name = '%(name)s' version = '%(version)s' def setup(r): ''' In this recipe, you can make modifications to the package. Examples: # This appliance has high-memory-use PHP scripts r.Replace('memory_limit = 8M', 'memory_limit = 32M', '/etc/php.ini') %(removeText)s # This appliance requires that a few binaries be replaced # with binaries built from a custom archive that includes # a Makefile that honors the DESTDIR variable for its # install target. r.addArchive('foo.tar.gz') r.Make() r.MakeInstall() # This appliance requires an extra configuration file r.Create('/etc/myconfigfile', contents='some data') ''' """ % dict(className=className, name=troveName, version=shadowedVersion.trailingRevision().getVersion(), recipeBaseClass=derivedRecipeType, removeText=removeText) open(recipeName, 'w').write(derivedRecipe) log.info('Removing extra files from checkout') conaryState = state.ConaryStateFromFile('CONARY', repos) sourceState = conaryState.getSourceState() # clear the factory since we don't care about how the parent trove was # created sourceState.setFactory('') addRecipe=True for (pathId, path, fileId, version) in list(sourceState.iterFileList()): if path == recipeName: addRecipe = False continue sourceState.removeFile(pathId) if util.exists(path): statInfo = os.lstat(path) try: if statInfo.st_mode & stat.S_IFDIR: os.rmdir(path) else: os.unlink(path) except OSError, e: log.warning("cannot remove %s: %s" % (path, e.strerror)) conaryState.write('CONARY') if addRecipe: checkin.addFiles([recipeName]) if extract: log.info('extracting files from %s=%s[%s]' % (troveToDerive)) # extract to _ROOT_ extractDir = os.path.join(os.getcwd(), '_ROOT_') ts = [ (troveToDerive[0], (None, None), (troveToDerive[1], troveToDerive[2]), True) ] cs = repos.createChangeSet(ts, recurse = True) ChangesetExploder(cs, extractDir) # extract to _OLD_ROOT_ secondDir = os.path.join(os.getcwd(), '_OLD_ROOT_') cs = repos.createChangeSet(ts, recurse = True) ChangesetExploder(cs, secondDir) finally: # restore the original directory before we started os.chdir(origDir)
38.658879
80
0.60365
b8a65323c4d835428a8c5ea7deb999b86ba3460c
3,755
py
Python
plugins/quetz_conda_suggest/tests/test_quetz_conda_suggest.py
maresb/quetz
55313ca9c2ae04577d23a1dddb38c045b4a056f4
[ "BSD-3-Clause" ]
108
2020-09-16T16:15:01.000Z
2022-03-29T02:49:31.000Z
plugins/quetz_conda_suggest/tests/test_quetz_conda_suggest.py
maresb/quetz
55313ca9c2ae04577d23a1dddb38c045b4a056f4
[ "BSD-3-Clause" ]
317
2020-09-07T18:37:33.000Z
2022-03-25T13:10:41.000Z
plugins/quetz_conda_suggest/tests/test_quetz_conda_suggest.py
LaudateCorpus1/quetz
339018ee3c35ae6700bea611d16a9924a33a0606
[ "BSD-3-Clause" ]
36
2020-09-07T22:01:27.000Z
2022-03-26T17:06:07.000Z
import io import shutil import tarfile import tempfile from contextlib import contextmanager from unittest import mock import pytest from quetz_conda_suggest import db_models from quetz.condainfo import CondaInfo def test_conda_suggest_endpoint_without_upload(client, channel, subdir): response = client.get( f"/api/channels/{channel.name}/{subdir}/conda-suggest" ) # noqa assert response.status_code == 200 assert response.content == b'null' assert response.json() == None # noqa: E711 def test_post_add_package_version(package_version, db, config): filename = "test-package-0.1-0.tar.bz2" with tempfile.SpooledTemporaryFile(mode='wb') as target: with open(filename, 'rb') as fid: shutil.copyfileobj(fid, target) target.seek(0) condainfo = CondaInfo(target, filename) @contextmanager def get_db(): yield db from quetz_conda_suggest import main with mock.patch("quetz_conda_suggest.main.get_db_manager", get_db): main.post_add_package_version(package_version, condainfo) meta = db.query(db_models.CondaSuggestMetadata).first() assert meta.data == '{}' # modify `files` and re-save condainfo.files = [ b'bin/test-bin\n', b'include/tpkg.h\n', b'include/tpkg_utils.h\n', b'lib/cmake/test-package/tpkgConfig.cmake\n', b'lib/cmake/test-package/tpkgConfigVersion.cmake\n', b'lib/libtpkg.so\n', b'lib/pkgconfig/libtpkg.pc\n', ] with mock.patch("quetz_conda_suggest.main.get_db_manager", get_db): main.post_add_package_version(package_version, condainfo) meta = db.query(db_models.CondaSuggestMetadata).all() assert len(meta) == 1 assert meta[0].data == '{"test-bin": "test-package"}' @pytest.fixture def plugins(): return ["quetz-conda_suggest"] def test_conda_suggest_endpoint_with_upload( client, db, channel, package, subdir, config, profile, ): response = client.get("/api/dummylogin/madhurt") filename = "test-package-0.1-0.tar.bz2" @contextmanager def get_db(): yield db # extract existing data tar = tarfile.open(name=filename, mode='r:bz2') existing_files = tar.getmembers() existing_files_data = {} for each_file in existing_files: each_file_data = tar.extractfile(each_file).read() existing_files_data[each_file] = each_file_data tar.close() # write content in `info/files` files_data = [ 'bin/test-bin\n', 'include/tpkg.h\n', 'include/tpkg_utils.h\n', 'lib/cmake/test-package/tpkgConfig.cmake\n', 'lib/cmake/test-package/tpkgConfigVersion.cmake\n', 'lib/libtpkg.so\n', 'lib/pkgconfig/libtpkg.pc\n', ] files_content = "".join(files_data) b = files_content.encode("utf-8").strip() t = tarfile.TarInfo("info/files") t.size = len(b) # re-create archive with updated `info/files` tar = tarfile.open(name=filename, mode='w:bz2') for each_file, each_file_data in existing_files_data.items(): tar.addfile(each_file, io.BytesIO(each_file_data)) tar.addfile(t, io.BytesIO(b)) tar.close() with mock.patch("quetz_conda_suggest.main.get_db_manager", get_db): url = f'/api/channels/{channel.name}/files/' files = {'files': (filename, open(filename, 'rb'))} response = client.post(url, files=files) assert response.status_code == 201 response = client.get( f"/api/channels/{channel.name}/{subdir}/conda-suggest" ) # noqa assert response.status_code == 200 assert response.headers['content-length'] == '22' assert response.content == b'test-bin:test-package\n'
28.884615
72
0.665246
39a45b8b0cbdefb279eec45fe60a0167c18cb7f9
2,148
py
Python
svgwrite/elementfactory.py
bntre/py-harmony
c849b8be863f620b4e7c6661e0e40c1414d6b17c
[ "CC0-1.0" ]
null
null
null
svgwrite/elementfactory.py
bntre/py-harmony
c849b8be863f620b4e7c6661e0e40c1414d6b17c
[ "CC0-1.0" ]
null
null
null
svgwrite/elementfactory.py
bntre/py-harmony
c849b8be863f620b4e7c6661e0e40c1414d6b17c
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python #coding:utf-8 # Author: mozman --<mozman@gmx.at> # Purpose: element factory # Created: 15.10.2010 # Copyright (C) 2010, Manfred Moitzi # License: MIT License from svgwrite import container from svgwrite import shapes from svgwrite import path from svgwrite import image from svgwrite import text from svgwrite import gradients from svgwrite import pattern from svgwrite import masking from svgwrite import animate from svgwrite import filters factoryelements = { 'g': container.Group, 'svg': container.SVG, 'defs': container.Defs, 'symbol': container.Symbol, 'marker': container.Marker, 'use': container.Use, 'a': container.Hyperlink, 'script': container.Script, 'style': container.Style, 'line': shapes.Line, 'rect': shapes.Rect, 'circle': shapes.Circle, 'ellipse': shapes.Ellipse, 'polyline': shapes.Polyline, 'polygon': shapes.Polygon, 'path': path.Path, 'image': image.Image, 'text': text.Text, 'tspan': text.TSpan, 'tref': text.TRef, 'textPath': text.TextPath, 'textArea': text.TextArea, 'linearGradient': gradients.LinearGradient, 'radialGradient': gradients.RadialGradient, 'pattern': pattern.Pattern, 'clipPath': masking.ClipPath, 'mask': masking.Mask, 'animate': animate.Animate, 'set': animate.Set, 'animateColor': animate.AnimateColor, 'animateMotion': animate.AnimateMotion, 'animateTransform': animate.AnimateTransform, 'filter': filters.Filter, } class ElementBuilder(object): def __init__(self, cls, factory): self.cls = cls self.factory = factory def __call__(self, *args, **kwargs): # inject creator object - inherit _parameter from factory kwargs['factory'] = self.factory # create an object of type 'cls' return self.cls(*args, **kwargs) class ElementFactory(object): def __getattr__(self, name): if name in factoryelements: return ElementBuilder(factoryelements[name], self) else: raise AttributeError("'%s' has no attribute '%s'" % (self.__class__.__name__, name))
28.64
96
0.675047
bab1144813ba0fec2fb34b151d08023eb6d23705
18,157
py
Python
swagger_client/api/account_api.py
chbndrhnns/ahoi-client
8bd25f541c05af17c82904fa250272514b7971f2
[ "MIT" ]
null
null
null
swagger_client/api/account_api.py
chbndrhnns/ahoi-client
8bd25f541c05af17c82904fa250272514b7971f2
[ "MIT" ]
null
null
null
swagger_client/api/account_api.py
chbndrhnns/ahoi-client
8bd25f541c05af17c82904fa250272514b7971f2
[ "MIT" ]
null
null
null
# coding: utf-8 """ [AHOI cookbook](/ahoi/docs/cookbook/index.html) [Data Privacy](/sandboxmanager/#/privacy) [Terms of Service](/sandboxmanager/#/terms) [Imprint](https://sparkassen-hub.com/impressum/) &copy; 2016&dash;2017 Starfinanz - Ein Unternehmen der Finanz Informatik # noqa: E501 OpenAPI spec version: 2.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from swagger_client.api_client import ApiClient class AccountApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def delete_account(self, access_id, account_id, **kwargs): # noqa: E501 """Delete account # noqa: E501 Delete the account identified by **accountId**. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_account(access_id, account_id, async=True) >>> result = thread.get() :param async bool :param int access_id: The **accessId** for the account to delete (required) :param int account_id: The **id** for the account to delete (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.delete_account_with_http_info(access_id, account_id, **kwargs) # noqa: E501 else: (data) = self.delete_account_with_http_info(access_id, account_id, **kwargs) # noqa: E501 return data def delete_account_with_http_info(self, access_id, account_id, **kwargs): # noqa: E501 """Delete account # noqa: E501 Delete the account identified by **accountId**. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_account_with_http_info(access_id, account_id, async=True) >>> result = thread.get() :param async bool :param int access_id: The **accessId** for the account to delete (required) :param int account_id: The **id** for the account to delete (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['access_id', 'account_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_account" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'access_id' is set if ('access_id' not in params or params['access_id'] is None): raise ValueError("Missing the required parameter `access_id` when calling `delete_account`") # noqa: E501 # verify the required parameter 'account_id' is set if ('account_id' not in params or params['account_id'] is None): raise ValueError("Missing the required parameter `account_id` when calling `delete_account`") # noqa: E501 collection_formats = {} path_params = {} if 'access_id' in params: path_params['accessId'] = params['access_id'] # noqa: E501 if 'account_id' in params: path_params['accountId'] = params['account_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = ['oauth2'] # noqa: E501 return self.api_client.call_api( '/accesses/{accessId}/accounts/{accountId}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_account(self, access_id, account_id, **kwargs): # noqa: E501 """Get account # noqa: E501 Returns the account identified by **accountId**. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_account(access_id, account_id, async=True) >>> result = thread.get() :param async bool :param int access_id: The **accessId** for the account to retrieve (required) :param int account_id: The **id** for the account to retrieve (required) :return: Account If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_account_with_http_info(access_id, account_id, **kwargs) # noqa: E501 else: (data) = self.get_account_with_http_info(access_id, account_id, **kwargs) # noqa: E501 return data def get_account_with_http_info(self, access_id, account_id, **kwargs): # noqa: E501 """Get account # noqa: E501 Returns the account identified by **accountId**. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_account_with_http_info(access_id, account_id, async=True) >>> result = thread.get() :param async bool :param int access_id: The **accessId** for the account to retrieve (required) :param int account_id: The **id** for the account to retrieve (required) :return: Account If the method is called asynchronously, returns the request thread. """ all_params = ['access_id', 'account_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_account" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'access_id' is set if ('access_id' not in params or params['access_id'] is None): raise ValueError("Missing the required parameter `access_id` when calling `get_account`") # noqa: E501 # verify the required parameter 'account_id' is set if ('account_id' not in params or params['account_id'] is None): raise ValueError("Missing the required parameter `account_id` when calling `get_account`") # noqa: E501 collection_formats = {} path_params = {} if 'access_id' in params: path_params['accessId'] = params['access_id'] # noqa: E501 if 'account_id' in params: path_params['accountId'] = params['account_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['oauth2'] # noqa: E501 return self.api_client.call_api( '/accesses/{accessId}/accounts/{accountId}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Account', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_accounts(self, access_id, **kwargs): # noqa: E501 """List accounts # noqa: E501 Retrieve all accounts for the current user under the **accessId**. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_accounts(access_id, async=True) >>> result = thread.get() :param async bool :param int access_id: The **id** for the access for which to retrieve all accounts (required) :return: list[Account] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_accounts_with_http_info(access_id, **kwargs) # noqa: E501 else: (data) = self.get_accounts_with_http_info(access_id, **kwargs) # noqa: E501 return data def get_accounts_with_http_info(self, access_id, **kwargs): # noqa: E501 """List accounts # noqa: E501 Retrieve all accounts for the current user under the **accessId**. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_accounts_with_http_info(access_id, async=True) >>> result = thread.get() :param async bool :param int access_id: The **id** for the access for which to retrieve all accounts (required) :return: list[Account] If the method is called asynchronously, returns the request thread. """ all_params = ['access_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_accounts" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'access_id' is set if ('access_id' not in params or params['access_id'] is None): raise ValueError("Missing the required parameter `access_id` when calling `get_accounts`") # noqa: E501 collection_formats = {} path_params = {} if 'access_id' in params: path_params['accessId'] = params['access_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['oauth2'] # noqa: E501 return self.api_client.call_api( '/accesses/{accessId}/accounts', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[Account]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update_account(self, access_id, account_id, name, **kwargs): # noqa: E501 """Update account name # noqa: E501 Update the account name used in AHOI. Name must be URL encoded. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.update_account(access_id, account_id, name, async=True) >>> result = thread.get() :param async bool :param int access_id: The **accessId** for which the user-defined account name should be altered (required) :param int account_id: The **id** for which the user-defined account name should be altered (required) :param str name: The new URL-encoded name (required) :return: Account If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.update_account_with_http_info(access_id, account_id, name, **kwargs) # noqa: E501 else: (data) = self.update_account_with_http_info(access_id, account_id, name, **kwargs) # noqa: E501 return data def update_account_with_http_info(self, access_id, account_id, name, **kwargs): # noqa: E501 """Update account name # noqa: E501 Update the account name used in AHOI. Name must be URL encoded. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.update_account_with_http_info(access_id, account_id, name, async=True) >>> result = thread.get() :param async bool :param int access_id: The **accessId** for which the user-defined account name should be altered (required) :param int account_id: The **id** for which the user-defined account name should be altered (required) :param str name: The new URL-encoded name (required) :return: Account If the method is called asynchronously, returns the request thread. """ all_params = ['access_id', 'account_id', 'name'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_account" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'access_id' is set if ('access_id' not in params or params['access_id'] is None): raise ValueError("Missing the required parameter `access_id` when calling `update_account`") # noqa: E501 # verify the required parameter 'account_id' is set if ('account_id' not in params or params['account_id'] is None): raise ValueError("Missing the required parameter `account_id` when calling `update_account`") # noqa: E501 # verify the required parameter 'name' is set if ('name' not in params or params['name'] is None): raise ValueError("Missing the required parameter `name` when calling `update_account`") # noqa: E501 collection_formats = {} path_params = {} if 'access_id' in params: path_params['accessId'] = params['access_id'] # noqa: E501 if 'account_id' in params: path_params['accountId'] = params['account_id'] # noqa: E501 if 'name' in params: path_params['name'] = params['name'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['oauth2'] # noqa: E501 return self.api_client.call_api( '/accesses/{accessId}/accounts/{accountId}/userdefinedname/{name}', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Account', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
40.986456
277
0.611445
b0592da7eda0ba99e9752b4f9f904b040939e2a5
12,658
py
Python
pydass_vasp/electronic_structure/dos.py
terencezl/pydass_vasp
77b5e285d6e9755f8f170159b7818a090a364917
[ "MIT" ]
9
2015-11-13T15:30:07.000Z
2020-06-02T12:54:55.000Z
pydass_vasp/electronic_structure/dos.py
dlnguyen/pydass_vasp
77b5e285d6e9755f8f170159b7818a090a364917
[ "MIT" ]
2
2016-02-26T16:49:48.000Z
2018-05-23T02:22:37.000Z
pydass_vasp/electronic_structure/dos.py
dlnguyen/pydass_vasp
77b5e285d6e9755f8f170159b7818a090a364917
[ "MIT" ]
3
2018-10-01T17:45:19.000Z
2021-04-16T21:08:43.000Z
import re import numpy as np import pandas as pd import matplotlib.pyplot as plt from .helpers import determine_tag_value, figs_assert, initiate_figs, plot_helper_settings from ..xml_utils import parse def get_tdos(filepath='DOSCAR', ISPIN=None, Ef=None, plot=False, xlim=None, ylim_upper=None, on_figs=None): """ Get the total density of states, with consideration of spin-polarization. Accepts file type 'DOSCAR', or 'vasprun.xml'. Parameters ---------- filepath: string filepath, default to 'DOSCAR' For DOSCAR-type file, can be any string containing 'DOSCAR'. For vasprun.xml-type file, can be any string ending with '.xml'. ISPIN: int user specified ISPIN If not given, for DOSCAR-type file, infer from 'OUTCAR'/'INCAR'. Ef: float user specified Ef plot: bool whether to plot the data, default to False xlim: list the range of x-axis, 2 values in a list ylim_upper: int/float the upper limit of y-axis(, of the spin-combined plot if ISPIN == 2) on_figs: list/int the current figure numbers to plot to, default to new figures Returns ------- a dict, containing 'data': a pandas dataframe 'ax': the axes reference """ # get data if re.match(r".*\.xml", filepath): root = parse(filepath) NEDOS = int(root.find("./parameters/separator[@name='dos']/i[@name='NEDOS']").text) Ef = float(root.find("./calculation/dos/i[@name='efermi']").text) if ISPIN: print("Using user specified ISPIN.") else: ISPIN = int(root.find( "./parameters/separator[@name='electronic']/separator[@name='electronic spin']/i[@name='ISPIN']").text) if ISPIN == 1: data = np.zeros((NEDOS, 3)) for n_step, elem in enumerate(root.findall( "./calculation/dos/total/array/set/set[@comment='spin 1']/r")): data[n_step] = elem.text.split() elif ISPIN == 2: data1 = np.zeros((NEDOS, 3)) for n_step, elem in enumerate(root.findall( "./calculation/dos/total/array/set/set[@comment='spin 1']/r")): data1[n_step] = elem.text.split() data2 = np.zeros((NEDOS, 3)) for n_step, elem in enumerate(root.findall( "./calculation/dos/total/array/set/set[@comment='spin 2']/r")): data2[n_step] = elem.text.split() elif re.match(r".*DOSCAR.*", filepath): with open(filepath, 'r') as f: DOSCAR = f.readlines() for i in range(len(DOSCAR)): DOSCAR[i] = DOSCAR[i].split() NEDOS = int(DOSCAR[5][2]) Ef = float(DOSCAR[5][3]) if ISPIN: print("Using user specified ISPIN.") else: ISPIN = determine_tag_value('ISPIN', filepath) data = np.array(DOSCAR[6:6 + NEDOS], dtype=float) if ISPIN == 2: data1 = data[:, [0, 1, 3]] data2 = data[:, [0, 2, 4]] # confluence and data organizing if ISPIN == 1: col_names = ['E', 'tot', 'tot_integrated'] data[:, 0] -= Ef return_dict = {'data': pd.DataFrame(**{'columns': col_names, 'data': data})} elif ISPIN == 2: col_names1 = ['E', 'tot_up', 'tot_integrated_up'] col_names2 = ['E', 'tot_down', 'tot_integrated_down'] data1[:, 0] -= Ef data2[:, 0] -= Ef return_dict = {'data_spin_up': pd.DataFrame(**{'columns': col_names1, 'data': data1}), 'data_spin_down': pd.DataFrame(**{'columns': col_names2, 'data': data2}), } if plot: # start plotting figs_assert(on_figs, ISPIN, 'tdos') if ISPIN == 1: initiate_figs(on_figs) plt.plot(data[:, 0], data[:, 1]) ax = plt.gca() plot_helper_settings((xlim, [0, ylim_upper]), 'tdos') return_dict.update({'ax': ax}) elif ISPIN == 2: # Plot the combined TDOS initiate_figs(on_figs) plt.plot(data1[:, 0], data1[:, 1] + data2[:, 1], label='spin up + down') ax1 = plt.gca() plot_helper_settings((xlim, [0, ylim_upper]), 'tdos') # Plot the separated TDOS initiate_figs(on_figs) plt.plot(data1[:, 0], data1[:, 1], label='spin up') plt.plot(data2[:, 0], -data2[:, 1], label='spin down') ax2 = plt.gca() ylim_upper_sp = None ylim_lower_sp = None if ylim_upper: ylim_upper_sp = ylim_upper/2. ylim_lower_sp = -ylim_upper_sp plot_helper_settings((xlim, [ylim_lower_sp, ylim_upper_sp]), 'tdos') return_dict.update({'ax_spin_combined': ax1, 'ax_spin_separated': ax2}) return return_dict def get_ldos(atom, filepath='DOSCAR', ISPIN=None, LORBIT=None, Ef=None, plot=False, xlim=None, ylim_upper=None, on_figs=None): """ Get the local projected density of states, with consideration of spin-polarization. Accepts file type 'DOSCAR', or 'vasprun.xml'. Parameters ---------- atom: int the atom number in DOSCAR/POSCAR interested, counting from 1 filepath: string filepath, default to 'DOSCAR' For DOSCAR-type file, can be any string containing 'DOSCAR'. For vasprun.xml-type file, can be any string ending with '.xml'. ISPIN: int user specified ISPIN If not given, for DOSCAR-type file, infer from 'OUTCAR'/'INCAR'. LORBIT: int user specified LORBIT If not given, for both DOSCAR- and vasprun.xml-types of file, infer from 'OUTCAR'/'INCAR'. Because there is an error in vasprun.xml. Ef: float user specified Ef plot: bool whether to plot the data, default to False xlim: list the range of x-axis, 2 values in a list ylim_upper: int/float the upper limit of y-axis(, of the spin-combined plot if ISPIN == 2) on_figs: list/int the current figure numbers to plot to, default to new figures Returns ------- a dict, containing 'data': a dataframe 'ax': the axes reference """ # get data if re.match(r".*\.xml", filepath): root = parse(filepath) NEDOS = int(root.find("./parameters/separator[@name='dos']/i[@name='NEDOS']").text) Ef = float(root.find("./calculation/dos/i[@name='efermi']").text) if ISPIN: print("Using user specified ISPIN.") else: ISPIN = int(root.find( "./parameters/separator[@name='electronic']/separator[@name='electronic spin']/i[@name='ISPIN']").text) # vasprun.xml's LORBIT is not correct if LORBIT: print("Using user specified LORBIT.") else: LORBIT = determine_tag_value('LORBIT', filepath) if ISPIN == 1: if LORBIT == 10 or LORBIT == 0: data = np.zeros((NEDOS, 4)) elif LORBIT == 11 or LORBIT == 1: data = np.zeros((NEDOS, 10)) for n_step, elem in enumerate(root.findall( "./calculation/dos/partial/array/set/set[@comment='ion " + str( atom) + "']/set[@comment='spin 1']/r")): data[n_step] = elem.text.split() elif ISPIN == 2: if LORBIT == 10 or LORBIT == 0: data1 = np.zeros((NEDOS, 4)) data2 = np.zeros((NEDOS, 4)) elif LORBIT == 11 or LORBIT == 1: data1 = np.zeros((NEDOS, 10)) data2 = np.zeros((NEDOS, 10)) for n_step, elem in enumerate(root.findall( "./calculation/dos/partial/array/set/set[@comment='ion " + str( atom) + "']/set[@comment='spin 1']/r")): data1[n_step] = elem.text.split() for n_step, elem in enumerate(root.findall( "./calculation/dos/partial/array/set/set[@comment='ion " + str( atom) + "']/set[@comment='spin 2']/r")): data2[n_step] = elem.text.split() elif re.match(r".*DOSCAR.*", filepath): with open(filepath, 'r') as f: DOSCAR = f.readlines() for i in range(len(DOSCAR)): DOSCAR[i] = DOSCAR[i].split() NEDOS = int(DOSCAR[5][2]) Ef = float(DOSCAR[5][3]) if ISPIN: print("Using user specified ISPIN.") else: ISPIN = determine_tag_value('ISPIN', filepath) if LORBIT: print("Using user specified LORBIT.") else: LORBIT = determine_tag_value('LORBIT', filepath) data = np.array(DOSCAR[(6 + (NEDOS + 1) * atom):(6 + (NEDOS + 1) * atom + NEDOS)], dtype=float) if ISPIN == 2: if LORBIT == 10 or LORBIT == 0: data1 = data[:, [0, 1, 3, 5]] data2 = data[:, [0, 2, 4, 6]] elif LORBIT == 11 or LORBIT == 1: data1 = data[:, [0, 1, 3, 5, 7, 9, 11, 13, 15, 17]] data2 = data[:, [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]] # confluence and data organizing if ISPIN == 1: if LORBIT == 10 or LORBIT == 0: col_names = ['E', 's', 'p', 'd'] elif LORBIT == 11 or LORBIT == 1: col_names = ['E', 's', 'p_y', 'p_z', 'p_x', 'd_xy', 'd_yz', 'd_z2', 'd_xz', 'd_x2y2'] data[:, 0] -= Ef return_dict = {'data': pd.DataFrame(**{'columns': col_names, 'data': data})} elif ISPIN == 2: if LORBIT == 10 or LORBIT == 0: col_names1 = ['E', 's_up', 'p_up', 'd_up'] col_names2 = ['E', 's_down', 'p_down', 'd_down'] elif LORBIT == 11 or LORBIT == 1: col_names1 = ['E', 's_up', 'p_y_up', 'p_z_up', 'p_x_up', 'd_xy_up', 'd_yz_up', 'd_z2_up', 'd_xz_up', 'd_x2y2_up'] col_names2 = ['E', 's_down', 'p_y_down', 'p_z_down', 'p_x_down', 'd_xy_down', 'd_yz_down', 'd_z2_down', 'd_xz_down', 'd_x2y2_down'] data1[:, 0] -= Ef data2[:, 0] -= Ef return_dict = {'data_spin_up': pd.DataFrame(**{'columns': col_names1, 'data': data1}), 'data_spin_down': pd.DataFrame(**{'columns': col_names2, 'data': data2}), } if plot: # start plotting figs_assert(on_figs, ISPIN, 'ldos') if ISPIN == 1: initiate_figs(on_figs) if LORBIT == 10 or LORBIT == 0: for i in range(1, 4): plt.plot(data[:, 0], data[:, i], label=col_names[i]) elif LORBIT == 11 or LORBIT == 1: for i in range(1, 10): plt.plot(data[:, 0], data[:, i], label=col_names[i]) ax = plt.gca() plot_helper_settings((xlim, [0, ylim_upper]), 'ldos') return_dict.update({'ax': ax}) elif ISPIN == 2: # plot spin combined initiate_figs(on_figs) if LORBIT == 10 or LORBIT == 0: for i in range(1, 4): plt.plot(data1[:, 0], data1[:, i] + data2[:, i], label=col_names1[i] + ' + ' + col_names2[i]) elif LORBIT == 11 or LORBIT == 1: for i in range(1, 10): plt.plot(data1[:, 0], data1[:, i] + data2[:, i], label=col_names1[i] + ' + ' + col_names2[i]) ax1 = plt.gca() plot_helper_settings((xlim, [0, ylim_upper]), 'ldos') # plot spin separated initiate_figs(on_figs) if LORBIT == 10 or LORBIT == 0: for i in range(1, 4): plt.plot(data1[:, 0], data1[:, i], label=col_names1[i]) plt.plot(data2[:, 0], -data2[:, i], label=col_names2[i]) elif LORBIT == 11 or LORBIT == 1: for i in range(1, 10): plt.plot(data1[:, 0], data1[:, i], label=col_names1[i]) plt.plot(data2[:, 0], -data2[:, i], label=col_names2[i]) ax2 = plt.gca() ylim_upper_sp = None ylim_lower_sp = None if ylim_upper: ylim_upper_sp = ylim_upper/2. ylim_lower_sp = -ylim_upper_sp plot_helper_settings((xlim, [ylim_lower_sp, ylim_upper_sp]), 'ldos') return_dict.update({'ax_spin_combined': ax1, 'ax_spin_separated': ax2}) return return_dict
40.570513
119
0.523937
903331cee03bdc293e9600b4a758b4eed8e7b089
11,451
py
Python
tensorflow/python/saved_model/function_deserialization.py
mickyLing/tensorflow
170d8a86c72a1b4f025d53c3df2992b954effbbd
[ "Apache-2.0" ]
1
2019-02-01T09:52:07.000Z
2019-02-01T09:52:07.000Z
tensorflow/python/saved_model/function_deserialization.py
mickyLing/tensorflow
170d8a86c72a1b4f025d53c3df2992b954effbbd
[ "Apache-2.0" ]
null
null
null
tensorflow/python/saved_model/function_deserialization.py
mickyLing/tensorflow
170d8a86c72a1b4f025d53c3df2992b954effbbd
[ "Apache-2.0" ]
1
2021-08-08T19:12:44.000Z
2021-08-08T19:12:44.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools for deserializing `Function`s.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import re from tensorflow.core.framework import function_pb2 from tensorflow.python.eager import def_function from tensorflow.python.eager import function as function_lib from tensorflow.python.framework import function_def_to_graph as function_def_lib from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.ops import resource_variable_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import nested_structure_coder from tensorflow.python.util import compat from tensorflow.python.util import nest def _is_tensor(t): return isinstance(t, (ops.Tensor, resource_variable_ops.ResourceVariable)) def _inputs_compatible(args, stored_inputs): """Checks whether function arguments are compatible with parameters.""" if len(args) != len(stored_inputs): return False for arg, stored_input in zip(args, stored_inputs): if not function_lib.is_same_structure(arg, stored_input): return False flattened_arg = nest.flatten(arg) flattened_stored_input = nest.flatten(stored_input) for a, b in zip(flattened_arg, flattened_stored_input): if _is_tensor(a): if not isinstance(b, tensor_spec.TensorSpec): return False if a.dtype != b.dtype or not b.shape.is_compatible_with(a.shape): return False else: if a != b: return False return True def _deserialize_function_spec(function_spec_proto, coder): """Deserialize a FunctionSpec object from its proto representation.""" fullargspec = coder.decode_proto(function_spec_proto.fullargspec) is_method = function_spec_proto.is_method args_to_prepend = coder.decode_proto(function_spec_proto.args_to_prepend) kwargs_to_include = coder.decode_proto(function_spec_proto.kwargs_to_include) input_signature = coder.decode_proto(function_spec_proto.input_signature) return function_lib.FunctionSpec(fullargspec, is_method, args_to_prepend, kwargs_to_include, input_signature) def recreate_concrete_function(saved_concrete_function, concrete_functions): """Recreates a user-facing concrete function.""" coder = nested_structure_coder.StructureCoder() concrete_function = concrete_functions[saved_concrete_function.name] input_signature = coder.decode_proto( saved_concrete_function.canonicalized_input_signature) input_signature_args, input_signature_kwargs = input_signature if input_signature_kwargs: raise ValueError("Restoring concrete function with non-empty kwargs (%s)." % input_signature_kwargs) # pylint: disable=protected-access # Set metadata required for the concrete function to accept keyword and # positional arguments in __call__. Normally this is set in # get_concrete_function. concrete_function._arg_keywords = [spec.name for spec in input_signature_args] # TODO(allenl): Should we preserve the number of allowed positional arguments? concrete_function._num_positional_args = len(input_signature_args) # pylint: enable=protected-access concrete_function.add_to_graph() return concrete_function class RestoredFunction(def_function.Function): """Wrapper class for a function that has been restored from saved state. See `def_function.Function`. """ def __init__(self, python_function, name, function_spec, concrete_functions): # TODO(mdan): We may enable autograph once exceptions are supported. super(RestoredFunction, self).__init__( python_function, name, autograph=False) self._concrete_functions = concrete_functions # TODO(vbardiovsky): This does not propagate to stateful and stateless # functions of the RestoredFunction, which will have seen only defunned # restored_function_body(*args, **kwargs). Therefore get_concrete_function() # called on RestoredFunction will not work properly. self._function_spec = function_spec def _list_all_concrete_functions_for_serialization(self): return self._concrete_functions def get_concrete_function(self, *args, **kwargs): raise NotImplementedError() def recreate_function(saved_function, concrete_functions): """Creates a `Function` from a `SavedFunction`. Args: saved_function: `SavedFunction` proto. concrete_functions: map from function name to `ConcreteFunction`. Returns: A `Function`. """ # TODO(andresp): Construct a `Function` with the cache populated # instead of creating a new `Function` backed by a Python layer to # glue things together. Current approach is nesting functions deeper for each # serialization cycle. coder = nested_structure_coder.StructureCoder() function_spec = _deserialize_function_spec(saved_function.function_spec, coder) def restored_function_body(*args, **kwargs): """Calls a restored function.""" # TODO(allenl): Functions saved with input_signatures should revive with # input_signatures. try: canonicalized_inputs = function_spec.canonicalize_function_inputs( *args, **kwargs) except ValueError as e: raise ValueError( "Cannot canonicalize input args %r and kwargs %r. Error: %r." % (args, kwargs, e)) debug_considered_signatures = [] for concrete_function in saved_function.concrete_function: function_obj = concrete_functions[concrete_function.name] canonicalized_original_inputs = coder.decode_proto( concrete_function.canonicalized_input_signature) debug_considered_signatures.append(canonicalized_original_inputs) if _inputs_compatible(canonicalized_inputs, canonicalized_original_inputs): flattened_inputs = nest.flatten(canonicalized_inputs) filtered_inputs = [t for t in flattened_inputs if _is_tensor(t)] return function_obj._call_flat(filtered_inputs) # pylint: disable=protected-access raise AssertionError( "Could not find matching function to call for canonicalized inputs %r. " "Only existing signatures are %r." % (canonicalized_inputs, debug_considered_signatures)) cfs = [concrete_functions[f.name] for f in saved_function.concrete_function] return RestoredFunction(restored_function_body, restored_function_body.__name__, function_spec, cfs) def load_function_def_library(library): """Load a set of functions as concrete functions without captured inputs. Functions names are manipulated during load such that they do not overlap with previously created ones. Args: library: FunctionDefLibrary proto message. Returns: Map of original function names in the library to instances of `ConcreteFunction` without captured inputs. Raises: ValueError: if functions dependencies have a cycle. """ functions = {} for fdef in _sort_function_defs(library): copy = _fix_fdef(fdef, functions) func_graph = function_def_lib.function_def_to_graph(copy) func = function_lib.ConcreteFunction(func_graph) func.add_to_graph() functions[fdef.signature.name] = func # Also register the gradients in the current root context. with ops.init_scope(): func._register_gradient() # pylint: disable=protected-access return functions def _sort_function_defs(library): """Return a topologic sort of FunctionDefs in a library.""" edges = collections.defaultdict(list) in_count = collections.defaultdict(lambda: 0) for fdef in library.function: for dep in _list_function_deps(fdef): edges[dep].append(fdef.signature.name) in_count[fdef.signature.name] += 1 ready = [ fdef.signature.name for fdef in library.function if in_count[fdef.signature.name] == 0 ] output = [] while ready: node = ready.pop() output.append(node) for dest in edges[node]: in_count[dest] -= 1 if not in_count[dest]: ready.append(dest) if len(output) != len(library.function): failed_to_resolve = sorted(set(in_count.keys()) - set(output)) raise ValueError("There is a cyclic-dependency between functions. ", "Could not resolve %r." % (failed_to_resolve,)) reverse = {fdef.signature.name: fdef for fdef in library.function} return [reverse[x] for x in output] def _fix_fdef(orig_fdef, functions): """Fixes a FunctionDef proto to be loaded in current context. In particular, when loading a function library into an eager context, one must rename the functions to avoid conflicts with existent functions. Args: orig_fdef: FunctionDef proto to fix. It is not modified. functions: map from function name to a ConcreteFunction instance. Returns: A fixed copy of the original FunctionDef. """ fdef = function_pb2.FunctionDef() fdef.CopyFrom(orig_fdef) for node_def in fdef.node_def: if "_gradient_op_type" in node_def.attr: if node_def.op in ["StatefulPartitionedCall", "PartitionedCall"]: # TODO(andresp): This code assumes that the gradient registered for this # function call is the default gradient for the function and not a # custom one. fname = node_def.attr["f"].func.name node_def.attr["_gradient_op_type"].s = compat.as_bytes( functions[fname]._gradient_name) # pylint: disable=protected-access else: logging.warning("Importing a function (%s) with ops with custom " "gradients. Will likely fail if a gradient is " "requested.", fdef.signature.name) for _, attr_value in node_def.attr.items(): if attr_value.func.name: attr_value.func.name = functions[attr_value.func.name].name fdef.signature.name = _clean_function_name(fdef.signature.name) return fdef def _list_function_deps(fdef): # TODO(andresp): Recurse into list attributes and into NameAttrList attrs both # when listing deps and when fixing them. `function_def_to_graph` also # requires fixes. deps = set() for node_def in fdef.node_def: for _, attr_value in node_def.attr.items(): if attr_value.WhichOneof("value") == "func": deps.add(attr_value.func.name) return deps def _clean_function_name(name): """Vanity function to keep the function names comprehensible.""" # Note: each time a function is wrapped into `function_lib.ConcreteFunction` # its name becomes "__inference_<orig>_xyz". match = re.search(r"^__inference_(.*)_\d+$", name) if match: return match.group(1) else: return name
37.792079
91
0.733648
13c685267fbbcc38a887ff06c4f3848259f98ac3
691
py
Python
config/lisa_config.py
agoila/lisa-faster-R-CNN
3b88c9b7da2106a805089f9619ea62cdc1f21d99
[ "MIT" ]
17
2018-09-09T10:56:58.000Z
2022-02-22T07:18:50.000Z
config/lisa_config.py
agoila/lisa-faster-R-CNN
3b88c9b7da2106a805089f9619ea62cdc1f21d99
[ "MIT" ]
null
null
null
config/lisa_config.py
agoila/lisa-faster-R-CNN
3b88c9b7da2106a805089f9619ea62cdc1f21d99
[ "MIT" ]
21
2018-09-19T11:07:10.000Z
2022-02-22T07:18:45.000Z
# import the necessary packages import os # initialize the base path for the LISA dataset BASE_PATH = "lisa" # build the path to the annotations file ANNOT_PATH = os.path.sep.join([BASE_PATH, "allAnnotations.csv"]) # build the path to the output training and testing record files, # along with the class labels file TRAIN_RECORD = os.path.sep.join([BASE_PATH, "records/training.record"]) TEST_RECORD = os.path.sep.join([BASE_PATH, "records/testing.record"]) CLASSES_FILE = os.path.sep.join([BASE_PATH, "records/classes.pbtxt"]) # initialize the test split size TEST_SIZE = 0.25 # initialize the class labels dictionary CLASSES = {"pedestrianCrossing": 1, "signalAhead": 2, "stop": 3}
30.043478
65
0.75398
9e34312fcb8aa63e72558ec64b9b4c820f2243d5
19,649
py
Python
process_data_script/rolling_mean_annual.py
idunnam/Thesis
a567a25aa037c949de285158804a6ee396fc0e6c
[ "MIT" ]
null
null
null
process_data_script/rolling_mean_annual.py
idunnam/Thesis
a567a25aa037c949de285158804a6ee396fc0e6c
[ "MIT" ]
1
2022-01-28T13:12:26.000Z
2022-01-28T13:12:26.000Z
process_data_script/rolling_mean_annual.py
idunnam/Thesis
a567a25aa037c949de285158804a6ee396fc0e6c
[ "MIT" ]
null
null
null
import xarray as xr import numpy as np import matplotlib.pyplot as plt ACCESS = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/ACCESS_anomaly_annual.nc') HADGEM_cloud = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/HADGEM_anomaly_cloud_annual.nc') HADGEM_SMB = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/HADGEM_anomaly_SMB_annual.nc') HADGEM = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/HADGEM_anomaly_annual.nc') CSIRO = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/CSIRO_anomaly_annual.nc') IPSL = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/IPSL_anomaly_annual.nc') MIROC5 = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/MIROC5_anomaly_annual.nc') NORESM = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/NORESM_anomaly_annual.nc') #CMIP6 models CESM = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/CESM_anomaly_annual.nc') CNRM_ESM2 = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/CNRM_ESM2_anomaly_annual.nc') CNRM_CM6 = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/CNRM_CM6_anomaly_annual.nc') MRI = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/MRI_anomaly_annual.nc') UKMO = xr.open_dataset('/projects/NS9600K/idunnam/Thesis/src/SEB_anomalies_annual/UKMO_anomaly_annual.nc') #Spatial-rolling mean ACCESS_time = ACCESS.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() HADGEM_time = HADGEM.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() HADGEM_cloud_time = HADGEM_cloud.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() HADGEM_SMB_time = HADGEM_SMB.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() CSIRO_time = CSIRO.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() IPSL_time = IPSL.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() MIROC5_time = MIROC5.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() NORESM_time = NORESM.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() CESM_time = CESM.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() CNRM_ESM2_time = CNRM_ESM2.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() CNRM_CM6_time = CNRM_CM6.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() MRI_time = MRI.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() UKMO_time = UKMO.mean(dim=['X10_105', 'Y21_199']).rolling(year=20,center= True).mean() """ #Rolling mean ACCESS_r = ACCESS.rolling(year=20,center= True).mean() HADGEM_r = HADGEM.rolling(year=20,center= True).mean() HADGEM_cloud_r = HADGEM_cloud.rolling(year=20,center= True).mean() CSIRO_r = CSIRO.rolling(year=20,center= True).mean() IPSL_r = IPSL.rolling(year=20,center= True).mean() MIROC5_r = MIROC5.rolling(year=20,center= True).mean() NORESM_r = NORESM.rolling(year=20,center= True).mean() CESM_r = CESM.rolling(year=20,center= True).mean() CNRM_ESM2_r = CNRM_ESM2.rolling(year=20,center= True).mean() CNRM_CM6_r = CNRM_CM6.rolling(year=20,center= True).mean() MRI_r = MRI.rolling(year=20,center= True).mean() UKMO_r = UKMO.rolling(year=20,center= True).mean() """ TAS = int(input('Enter TAS=')) #Select the year -/+10year interval of the year closest to 3.5deg warming for each model. ACCESS_sel = ACCESS.sel(year= slice(str(ACCESS_time.year.where((ACCESS_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(ACCESS_time.year.where((ACCESS_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) HADGEM_sel = HADGEM.sel(year= slice(str(HADGEM_time.year.where((HADGEM_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(HADGEM_time.year.where((HADGEM_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) HADGEM_cloud_sel = HADGEM_cloud.sel(year= slice(str(HADGEM_cloud_time.year.where((HADGEM_cloud_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(HADGEM_cloud_time.year.where((HADGEM_cloud_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) HADGEM_SMB_sel = HADGEM_SMB.sel(year= slice(str(HADGEM_SMB_time.year.where((HADGEM_SMB_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(HADGEM_SMB_time.year.where((HADGEM_SMB_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) #if season == 'JJA': # CSIRO_sel= CSIRO.sel(year=slice('2080','2100')) #else: CSIRO_sel = CSIRO.sel(year= slice(str(CSIRO_time.year.where((CSIRO_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(CSIRO_time.year.where((CSIRO_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) IPSL_sel = IPSL.sel(year= slice(str(IPSL_time.year.where((IPSL_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(IPSL_time.year.where((IPSL_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) MIROC5_sel = MIROC5.sel(year= slice(str(MIROC5_time.year.where((MIROC5_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(MIROC5_time.year.where((MIROC5_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) NORESM_sel = NORESM.sel(year= slice(str(NORESM_time.year.where((NORESM_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(NORESM_time.year.where((NORESM_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) CESM_sel = CESM.sel(year= slice(str(CESM_time.year.where((CESM_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(CESM_time.year.where((CESM_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) CNRM_ESM2_sel = CNRM_ESM2.sel(year= slice(str(CNRM_ESM2_time.year.where((CNRM_ESM2_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(CNRM_ESM2_time.year.where((CNRM_ESM2_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) CNRM_CM6_sel = CNRM_CM6.sel(year= slice(str(CNRM_CM6_time.year.where((CNRM_CM6_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(CNRM_CM6_time.year.where((CNRM_CM6_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) MRI_sel = MRI.sel(year= slice(str(MRI_time.year.where((MRI_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(MRI_time.year.where((MRI_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) UKMO_sel = UKMO.sel(year= slice(str(UKMO_time.year.where((UKMO_time.TT >=TAS)).dropna(dim='year')[0].values - 10), str(UKMO_time.year.where((UKMO_time.TT >=TAS)).dropna(dim='year')[0].values + 10))) #Yearly mean of the 20year interval selected above ACCESS_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/ACCESS_rol_'+str(TAS)+'_annual.nc') HADGEM_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/HADGEM_rol_'+str(TAS)+'_annual.nc') HADGEM_cloud_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/HADGEM_cloud_rol_'+str(TAS)+'_annual.nc') HADGEM_SMB_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/HADGEM_SMB_rol_'+str(TAS)+'_annual.nc') CSIRO_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/CSIRO_rol_'+str(TAS)+'_annual.nc') IPSL_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/IPSL_rol_'+str(TAS)+'_annual.nc') MIROC5_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/MIROC5_rol_'+str(TAS)+'_annual.nc') NORESM_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/NORESM_rol_'+str(TAS)+'_annual.nc') CESM_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/CESM_rol_'+str(TAS)+'_annual.nc') CNRM_ESM2_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/CNRM_ESM2_rol_'+str(TAS)+'_annual.nc') CNRM_CM6_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/CNRM_CM6_rol_'+str(TAS)+'_annual.nc') MRI_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/MRI_rol_'+str(TAS)+'_annual.nc') UKMO_sel.to_netcdf('/projects/NS9600K/idunnam/Thesis/src/rol_mean_3_5_deg/UKMO_rol_'+str(TAS)+'_annual.nc') #Print ACCESS = ACCESS.mean(dim=['X10_105', 'Y21_199']) HADGEM = HADGEM.mean(dim=['X10_105', 'Y21_199']) CSIRO = CSIRO.mean(dim=['X10_105', 'Y21_199']) IPSL = IPSL.mean(dim=['X10_105', 'Y21_199']) MIROC5 = MIROC5.mean(dim=['X10_105', 'Y21_199']) NORESM = NORESM.mean(dim=['X10_105', 'Y21_199']) CESM = CESM.mean(dim=['X10_105', 'Y21_199']) CNRM_ESM2 = CNRM_ESM2.mean(dim=['X10_105', 'Y21_199']) CNRM_CM6 = CNRM_CM6.mean(dim=['X10_105', 'Y21_199']) MRI = MRI.mean(dim=['X10_105', 'Y21_199']) UKMO = UKMO.mean(dim=['X10_105', 'Y21_199']) ACCESS = ACCESS.rolling(year=20,center= True).mean() HADGEM = HADGEM.rolling(year=20,center= True).mean() CSIRO = CSIRO.rolling(year=20,center= True).mean() IPSL = IPSL.rolling(year=20,center= True).mean() MIROC5 = MIROC5.rolling(year=20,center= True).mean() NORESM = NORESM.rolling(year=20,center= True).mean() CESM = CESM.rolling(year=20,center= True).mean() CNRM_ESM2 = CNRM_ESM2.rolling(year=20,center= True).mean() CNRM_CM6 = CNRM_CM6.rolling(year=20,center= True).mean() MRI = MRI.rolling(year=20,center= True).mean() UKMO = UKMO.rolling(year=20,center= True).mean() TAS = [1.5, 2.0 ,2.5, 3.0, 3.5, 4.0] for i in range(0,6): print('TAS:', TAS[i]) print('Model',' year', ' interval', ' mean', ' std') print('--------------------------------------------------') print('ACCESS :',np.int(ACCESS.year.where((ACCESS.TT >=TAS[i])).dropna(dim='year')[0].values), ' (', np.int(ACCESS.year.where((ACCESS.TT >=TAS[i])).dropna(dim='year')[0].values - 10), '-', np.int(ACCESS.year.where((ACCESS.TT >=TAS[i])).dropna(dim='year')[0].values + 10), ') ', np.round((ACCESS.sel(year=slice( str(np.int(ACCESS.year.where((ACCESS.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(ACCESS.year.where((ACCESS.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT.mean()).values,2), ' ', np.round(np.std((ACCESS.sel(year=slice( str(np.int(ACCESS.year.where((ACCESS.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(ACCESS.year.where((ACCESS.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT)).values,2)) print('HADGEM :',np.int(HADGEM.year.where((HADGEM.TT >=TAS[i])).dropna(dim='year')[0].values), ' (', np.int(HADGEM.year.where((HADGEM.TT >=TAS[i])).dropna(dim='year')[0].values - 10), '-', np.int(HADGEM.year.where((HADGEM.TT >=TAS[i])).dropna(dim='year')[0].values + 10), ') ', np.round((HADGEM.sel(year=slice( str(np.int(HADGEM.year.where((HADGEM.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(HADGEM.year.where((HADGEM.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT.mean()).values,2), ' ', np.round(np.std((HADGEM.sel(year=slice( str(np.int(HADGEM.year.where((HADGEM.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(HADGEM.year.where((HADGEM.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT)).values,2)) print('CSIRO :',np.int(CSIRO.year.where((CSIRO.TT >=TAS[i])).dropna(dim='year')[0].values), ' (', np.int(CSIRO.year.where((CSIRO.TT >=TAS[i])).dropna(dim='year')[0].values - 10), '-', np.int(CSIRO.year.where((CSIRO.TT >=TAS[i])).dropna(dim='year')[0].values + 10), ') ', np.round((CSIRO.sel(year=slice( str(np.int(CSIRO.year.where((CSIRO.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(CSIRO.year.where((CSIRO.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT.mean()).values,2), ' ', np.round(np.std((CSIRO.sel(year=slice( str(np.int(CSIRO.year.where((CSIRO.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(CSIRO.year.where((CSIRO.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT)).values,2)) print('IPSL :',np.int(IPSL.year.where((IPSL.TT >=TAS[i])).dropna(dim='year')[0].values), ' (', np.int(IPSL.year.where((IPSL.TT >=TAS[i])).dropna(dim='year')[0].values - 10), '-', np.int(IPSL.year.where((IPSL.TT >=TAS[i])).dropna(dim='year')[0].values + 10), ') ', np.round((IPSL.sel(year=slice( str(np.int(IPSL.year.where((IPSL.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(IPSL.year.where((IPSL.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT.mean()).values,2), ' ', np.round(np.std((IPSL.sel(year=slice( str(np.int(IPSL.year.where((IPSL.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(IPSL.year.where((IPSL.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT)).values,2)) print('MIROC5 :',np.int(MIROC5.year.where((MIROC5.TT >=TAS[i])).dropna(dim='year')[0].values), ' (', np.int(MIROC5.year.where((MIROC5.TT >=TAS[i])).dropna(dim='year')[0].values - 10), '-', np.int(MIROC5.year.where((MIROC5.TT >=TAS[i])).dropna(dim='year')[0].values + 10), ') ', np.round((MIROC5.sel(year=slice( str(np.int(MIROC5.year.where((MIROC5.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(MIROC5.year.where((MIROC5.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT.mean()).values,2), ' ', np.round(np.std((MIROC5.sel(year=slice( str(np.int(MIROC5.year.where((MIROC5.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(MIROC5.year.where((MIROC5.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT)).values,2)) print('NORESM :',np.int(NORESM.year.where((NORESM.TT >=TAS[i])).dropna(dim='year')[0].values), ' (', np.int(NORESM.year.where((NORESM.TT >=TAS[i])).dropna(dim='year')[0].values - 10), '-', np.int(NORESM.year.where((NORESM.TT >=TAS[i])).dropna(dim='year')[0].values + 10), ') ', np.round((NORESM.sel(year=slice( str(np.int(NORESM.year.where((NORESM.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(NORESM.year.where((NORESM.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT.mean()).values,2), ' ', np.round(np.std((NORESM.sel(year=slice( str(np.int(NORESM.year.where((NORESM.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(NORESM.year.where((NORESM.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT)).values,2)) print('CESM :',np.int(CESM.year.where((CESM.TT >=TAS[i])).dropna(dim='year')[0].values), ' (', np.int(CESM.year.where((CESM.TT >=TAS[i])).dropna(dim='year')[0].values - 10), '-', np.int(CESM.year.where((CESM.TT >=TAS[i])).dropna(dim='year')[0].values + 10), ') ', np.round((CESM.sel(year=slice( str(np.int(CESM.year.where((CESM.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(CESM.year.where((CESM.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT.mean()).values,2), ' ', np.round(np.std((CESM.sel(year=slice( str(np.int(CESM.year.where((CESM.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(CESM.year.where((CESM.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT)).values,2)) print('CNRM_ESM2:',np.int(CNRM_ESM2.year.where((CNRM_ESM2.TT >=TAS[i])).dropna(dim='year')[0].values), ' (', np.int(CNRM_ESM2.year.where((CNRM_ESM2.TT >=TAS[i])).dropna(dim='year')[0].values - 10), '-', np.int(CNRM_ESM2.year.where((CNRM_ESM2.TT >=TAS[i])).dropna(dim='year')[0].values + 10), ') ', np.round((CNRM_ESM2.sel(year=slice( str(np.int(CNRM_ESM2.year.where((CNRM_ESM2.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(CNRM_ESM2.year.where((CNRM_ESM2.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT.mean()).values,2), ' ', np.round(np.std((CNRM_ESM2.sel(year=slice( str(np.int(CNRM_ESM2.year.where((CNRM_ESM2.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(CNRM_ESM2.year.where((CNRM_ESM2.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT)).values,2)) print('CNRM_CM6 :',np.int(CNRM_CM6.year.where((CNRM_CM6.TT >=TAS[i])).dropna(dim='year')[0].values), ' (', np.int(CNRM_CM6.year.where((CNRM_CM6.TT >=TAS[i])).dropna(dim='year')[0].values - 10), '-', np.int(CNRM_CM6.year.where((CNRM_CM6.TT >=TAS[i])).dropna(dim='year')[0].values + 10), ') ', np.round((CNRM_CM6.sel(year=slice( str(np.int(CNRM_CM6.year.where((CNRM_CM6.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(CNRM_CM6.year.where((CNRM_CM6.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT.mean()).values,2), ' ', np.round(np.std((CNRM_CM6.sel(year=slice( str(np.int(CNRM_CM6.year.where((CNRM_CM6.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(CNRM_CM6.year.where((CNRM_CM6.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT)).values,2)) print('MRI :',np.int(MRI.year.where((MRI.TT >=TAS[i])).dropna(dim='year')[0].values), ' (', np.int(MRI.year.where((MRI.TT >=TAS[i])).dropna(dim='year')[0].values - 10), '-', np.int(MRI.year.where((MRI.TT >=TAS[i])).dropna(dim='year')[0].values + 10), ') ', np.round((MRI.sel(year=slice( str(np.int(MRI.year.where((MRI.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(MRI.year.where((MRI.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT.mean()).values,2), ' ', np.round(np.std((MRI.sel(year=slice( str(np.int(MRI.year.where((MRI.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(MRI.year.where((MRI.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT)).values,2)) print('UKESM :',np.int(UKMO.year.where((UKMO.TT >=TAS[i])).dropna(dim='year')[0].values), ' (', np.int(UKMO.year.where((UKMO.TT >=TAS[i])).dropna(dim='year')[0].values - 10), '-', np.int(UKMO.year.where((UKMO.TT >=TAS[i])).dropna(dim='year')[0].values + 10), ') ', np.round((UKMO.sel(year=slice( str(np.int(UKMO.year.where((UKMO.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(UKMO.year.where((UKMO.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT.mean()).values,2), ' ', np.round(np.std((UKMO.sel(year=slice( str(np.int(UKMO.year.where((UKMO.TT >=TAS[i])).dropna(dim='year')[0].values - 10)), str(UKMO.year.where((UKMO.TT >=TAS[i])).dropna(dim='year')[0].values + 10))).TT)).values,2)) print('--------------------------------------------------') print('--------------------------------------------------')
61.403125
147
0.608021
0b5eaeb1760454cb4b36ceb35fbb5f1cdaa8f01f
3,115
py
Python
paystackapi/transaction_split.py
eadwinCode/paystack-python
dde449e3c62d843d047ef99eb8eb4c8731cb88de
[ "MIT" ]
89
2016-03-18T17:08:43.000Z
2022-03-27T09:56:27.000Z
paystackapi/transaction_split.py
eadwinCode/paystack-python
dde449e3c62d843d047ef99eb8eb4c8731cb88de
[ "MIT" ]
46
2016-04-01T14:59:47.000Z
2022-03-31T17:18:12.000Z
paystackapi/transaction_split.py
eadwinCode/paystack-python
dde449e3c62d843d047ef99eb8eb4c8731cb88de
[ "MIT" ]
38
2016-03-29T16:22:23.000Z
2022-03-27T09:57:19.000Z
"""Script used to define the paystack Plan class.""" from paystackapi.base import PayStackBase class TransactionSplit(PayStackBase): """docstring for Transaction Split.""" @classmethod def create(cls, **kwargs): """ Create a split payment on your integration Args: name: Name of the transaction split type: The type of transaction split you want to create [ percentage | flat ] currency: Any of NGN, GHS, ZAR, or USD subaccounts: A list of object containing subaccount code and number of shares bearer_type: Any of subaccount | account | all-proportional | all bearer_subaccount: Subaccount code **kwargs Returns: Json data from paystack API. """ return cls().requests.post('split', data=kwargs) @classmethod def list(cls, **kwargs): """ List/search for the transaction splits available on your integration. Args: perPage: records you want to retrieve per page (Integer) page: what page you want to retrieve (Integer) Returns: JSON data from paystack's API. """ return cls().requests.get("split", qs=kwargs) @classmethod def fetch(cls, split_id): """ Get details of a split on your integration. Args: split_id: split ID Returns: Json data from paystack API. """ return cls().requests.get(f"split/{split_id}") @classmethod def update(cls, split_id, **kwargs): """ Update a transaction split details on your integration Args: split_id: split ID name: Name of the transaction split active: True or False subaccounts: A list of object containing subaccount code and number of shares bearer_type: Any of subaccount | account | all-proportional | all bearer_subaccount: Subaccount code **kwargs Returns: Json data from paystack API. """ return cls().requests.put(f"split/{split_id}", data=kwargs) @classmethod def add_or_update_split_subaccount(cls, split_id, **kwargs): """ Add a Subaccount to a Transaction Split, or update the share of an existing Subaccount in a Transaction Split Args: split_id: split ID subaccount: This is the sub account code share: This is the transaction share for the subaccount Returns: Json data from paystack API. """ return cls().requests.post(f"split/{split_id}/subaccount/add", data=kwargs) @classmethod def remove_split_subaccount(cls, split_id, **kwargs): """ Remove a subaccount from a transaction split Args: split_id: split ID subaccount: This is the sub account code Returns: Json data from paystack API. """ return cls().requests.post(f"split/{split_id}/subaccount/remove", data=kwargs)
30.539216
117
0.6
1bece2e2659068cbf1198b77d77fa472941a1f3d
7,856
py
Python
sdk/python/pulumi_azure_nextgen/network/v20200701/get_ip_allocation.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/network/v20200701/get_ip_allocation.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/network/v20200701/get_ip_allocation.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetIpAllocationResult', 'AwaitableGetIpAllocationResult', 'get_ip_allocation', ] @pulumi.output_type class GetIpAllocationResult: """ IpAllocation resource. """ def __init__(__self__, allocation_tags=None, etag=None, id=None, ipam_allocation_id=None, location=None, name=None, prefix=None, prefix_length=None, prefix_type=None, subnet=None, tags=None, type=None, virtual_network=None): if allocation_tags and not isinstance(allocation_tags, dict): raise TypeError("Expected argument 'allocation_tags' to be a dict") pulumi.set(__self__, "allocation_tags", allocation_tags) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if ipam_allocation_id and not isinstance(ipam_allocation_id, str): raise TypeError("Expected argument 'ipam_allocation_id' to be a str") pulumi.set(__self__, "ipam_allocation_id", ipam_allocation_id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if prefix and not isinstance(prefix, str): raise TypeError("Expected argument 'prefix' to be a str") pulumi.set(__self__, "prefix", prefix) if prefix_length and not isinstance(prefix_length, int): raise TypeError("Expected argument 'prefix_length' to be a int") pulumi.set(__self__, "prefix_length", prefix_length) if prefix_type and not isinstance(prefix_type, str): raise TypeError("Expected argument 'prefix_type' to be a str") pulumi.set(__self__, "prefix_type", prefix_type) if subnet and not isinstance(subnet, dict): raise TypeError("Expected argument 'subnet' to be a dict") pulumi.set(__self__, "subnet", subnet) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if virtual_network and not isinstance(virtual_network, dict): raise TypeError("Expected argument 'virtual_network' to be a dict") pulumi.set(__self__, "virtual_network", virtual_network) @property @pulumi.getter(name="allocationTags") def allocation_tags(self) -> Optional[Mapping[str, str]]: """ IpAllocation tags. """ return pulumi.get(self, "allocation_tags") @property @pulumi.getter def etag(self) -> str: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter(name="ipamAllocationId") def ipam_allocation_id(self) -> Optional[str]: """ The IPAM allocation ID. """ return pulumi.get(self, "ipam_allocation_id") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter def prefix(self) -> Optional[str]: """ The address prefix for the IpAllocation. """ return pulumi.get(self, "prefix") @property @pulumi.getter(name="prefixLength") def prefix_length(self) -> Optional[int]: """ The address prefix length for the IpAllocation. """ return pulumi.get(self, "prefix_length") @property @pulumi.getter(name="prefixType") def prefix_type(self) -> Optional[str]: """ The address prefix Type for the IpAllocation. """ return pulumi.get(self, "prefix_type") @property @pulumi.getter def subnet(self) -> 'outputs.SubResourceResponse': """ The Subnet that using the prefix of this IpAllocation resource. """ return pulumi.get(self, "subnet") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="virtualNetwork") def virtual_network(self) -> 'outputs.SubResourceResponse': """ The VirtualNetwork that using the prefix of this IpAllocation resource. """ return pulumi.get(self, "virtual_network") class AwaitableGetIpAllocationResult(GetIpAllocationResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetIpAllocationResult( allocation_tags=self.allocation_tags, etag=self.etag, id=self.id, ipam_allocation_id=self.ipam_allocation_id, location=self.location, name=self.name, prefix=self.prefix, prefix_length=self.prefix_length, prefix_type=self.prefix_type, subnet=self.subnet, tags=self.tags, type=self.type, virtual_network=self.virtual_network) def get_ip_allocation(expand: Optional[str] = None, ip_allocation_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetIpAllocationResult: """ IpAllocation resource. :param str expand: Expands referenced resources. :param str ip_allocation_name: The name of the IpAllocation. :param str resource_group_name: The name of the resource group. """ __args__ = dict() __args__['expand'] = expand __args__['ipAllocationName'] = ip_allocation_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:network/v20200701:getIpAllocation', __args__, opts=opts, typ=GetIpAllocationResult).value return AwaitableGetIpAllocationResult( allocation_tags=__ret__.allocation_tags, etag=__ret__.etag, id=__ret__.id, ipam_allocation_id=__ret__.ipam_allocation_id, location=__ret__.location, name=__ret__.name, prefix=__ret__.prefix, prefix_length=__ret__.prefix_length, prefix_type=__ret__.prefix_type, subnet=__ret__.subnet, tags=__ret__.tags, type=__ret__.type, virtual_network=__ret__.virtual_network)
34.761062
228
0.635056
e63ea67ba2cdb5892ddd6714ac230748ce283df7
4,002
py
Python
trackchanges.py
farooqy/feizhonglaravel
93847038b021ccf449427066a755caaa260ac791
[ "MIT" ]
null
null
null
trackchanges.py
farooqy/feizhonglaravel
93847038b021ccf449427066a755caaa260ac791
[ "MIT" ]
5
2020-08-24T16:49:50.000Z
2022-02-26T18:43:43.000Z
trackchanges.py
farooqy/feizhonglaravel
93847038b021ccf449427066a755caaa260ac791
[ "MIT" ]
null
null
null
import os import json import hashlib def deunicodify_hook(pairs): new_pairs = [] for key, value in pairs: if isinstance(value, unicode): value = value.encode('utf-8') if isinstance(key, unicode): key = key.encode('utf-8') new_pairs.append((key, value)) return dict(new_pairs) if(os.path.isfile('hash_file.json') is False): print("[-] The hash file has not been found") create_now = raw_input("Do you want to create now? (Y/N): ") if(create_now is "Y"): hash_file = open('hash_file.json', 'w') if(hash_file is False): print("[-] Failed to create the hash file") else: print("[+] Successfully created the hash file") # close(hash_file) else: print("[-] Exiting tracker ") exit(0) hash_file = open('hash_file.json','r') filedata = hash_file.read() if(filedata is ""): filedata = "{}" data = json.loads(filedata, object_pairs_hook=deunicodify_hook) # print(data) directory = raw_input("Specific directory?: ") copy_dir = raw_input("Copy to which directory?: ") if(directory is ""): directory = "." elif(os.path.exists(directory) is False): print("[+] The directory ",directory," Does not exist") exit(0) elif(os.path.exists(copy_dir) is False): print("[+] The copy directory ",copy_dir," Does not exist") exit(0) applied_changes = False print("") print("") exception_files_dir = [ "index.php",".htaccess" ] for root, dirs, files in os.walk(directory): for filename in files: skip = False for dir in exception_files_dir: if(dir in root or dir == filename): skip = True if(skip): print("[**] Exception file or directory. Skipping ....") continue # print('Filname: ',filename) # _go_on = raw_input("Continue? (Y/N): ") # if(_go_on is "N"): # continue # else: if(filename in exception_files_dir): print("[**] Found exceptional file. Skipping ...") continue file_content = open(root+"/"+filename, 'rb') if(file_content is False): print("[-] The file ", filename, " failed to open, possible permission error") continue index = root+filename hash_object = hashlib.md5(file_content.read()) digest = hash_object.hexdigest() # print("[+] ",filename, " ---> ",digest) # write_json = raw_input("Write to json file? (y/n) : ") # if(write_json is "Y"): source = root+"/" if directory in source: sub_dir = source.split(directory)[1] else: sub_dir = "" target_dr = copy_dir+sub_dir if(os.path.exists(target_dr) is False): os.system("mkdir -p "+target_dr) if(index in data and data[index] == digest): # print("[+] files are equal digest ",index) continue elif index in data: print("[*] file change detected at ",index, ' new digest ',digest, ' ---> ',data[index]) print("[*] Tracking changes .... ") data[index] = digest applied_changes = True else: print("[*] New file has been discovered at ",filename," setting digest ---> ",digest) # track = raw_input(" Track new file? (y/n): ") # if(track is "y"): data[index] = digest os.system("cp "+root+"/"+filename+" "+target_dr+filename) applied_changes = True # elif track is "x": # hash_file = open('hash_file.json', 'w') # json.dump(data, hash_file) # exit(0) hash_file = open('hash_file.json', 'w') json.dump(data, hash_file) # exit(0) if(applied_changes): print("") print("") print("[***] Completed changes Successfully") else: print("") print("") print("[****] No changes detected. Process completed")
33.07438
100
0.55922
ba31ad3b491508ba28d7c89b2479c7a02abc77bb
21,044
py
Python
electrum/plugins/keepkey/keepkey.py
fujicoin/electrum-fjc-3.3.9
051fe8988058a64ee61a84aa28baf0f029982d73
[ "MIT" ]
4
2017-07-10T00:10:05.000Z
2020-05-22T12:16:38.000Z
electrum/plugins/keepkey/keepkey.py
fujicoin/electrum-fjc-3.3.9
051fe8988058a64ee61a84aa28baf0f029982d73
[ "MIT" ]
7
2018-02-08T03:52:12.000Z
2021-11-15T17:49:57.000Z
electrum/plugins/keepkey/keepkey.py
fujicoin/electrum-fjc-3.3.9
051fe8988058a64ee61a84aa28baf0f029982d73
[ "MIT" ]
11
2017-07-13T02:53:08.000Z
2022-02-05T13:48:32.000Z
from binascii import hexlify, unhexlify import traceback import sys from electrum.util import bfh, bh2u, UserCancelled, UserFacingException from electrum.bitcoin import TYPE_ADDRESS, TYPE_SCRIPT from electrum.bip32 import BIP32Node from electrum import constants from electrum.i18n import _ from electrum.transaction import deserialize, Transaction from electrum.keystore import Hardware_KeyStore, is_xpubkey, parse_xpubkey from electrum.base_wizard import ScriptTypeNotSupported from ..hw_wallet import HW_PluginBase from ..hw_wallet.plugin import is_any_tx_output_on_change_branch, trezor_validate_op_return_output_and_get_data # TREZOR initialization methods TIM_NEW, TIM_RECOVER, TIM_MNEMONIC, TIM_PRIVKEY = range(0, 4) class KeepKey_KeyStore(Hardware_KeyStore): hw_type = 'keepkey' device = 'KeepKey' def get_derivation(self): return self.derivation def get_client(self, force_pair=True): return self.plugin.get_client(self, force_pair) def decrypt_message(self, sequence, message, password): raise UserFacingException(_('Encryption and decryption are not implemented by {}').format(self.device)) def sign_message(self, sequence, message, password): client = self.get_client() address_path = self.get_derivation() + "/%d/%d"%sequence address_n = client.expand_path(address_path) msg_sig = client.sign_message(self.plugin.get_coin_name(), address_n, message) return msg_sig.signature def sign_transaction(self, tx, password): if tx.is_complete(): return # previous transactions used as inputs prev_tx = {} # path of the xpubs that are involved xpub_path = {} for txin in tx.inputs(): pubkeys, x_pubkeys = tx.get_sorted_pubkeys(txin) tx_hash = txin['prevout_hash'] if txin.get('prev_tx') is None and not Transaction.is_segwit_input(txin): raise UserFacingException(_('Offline signing with {} is not supported for legacy inputs.').format(self.device)) prev_tx[tx_hash] = txin['prev_tx'] for x_pubkey in x_pubkeys: if not is_xpubkey(x_pubkey): continue xpub, s = parse_xpubkey(x_pubkey) if xpub == self.get_master_public_key(): xpub_path[xpub] = self.get_derivation() self.plugin.sign_transaction(self, tx, prev_tx, xpub_path) class KeepKeyPlugin(HW_PluginBase): # Derived classes provide: # # class-static variables: client_class, firmware_URL, handler_class, # libraries_available, libraries_URL, minimum_firmware, # wallet_class, ckd_public, types, HidTransport firmware_URL = 'https://www.keepkey.com' libraries_URL = 'https://github.com/keepkey/python-keepkey' minimum_firmware = (1, 0, 0) keystore_class = KeepKey_KeyStore SUPPORTED_XTYPES = ('standard', 'p2wpkh-p2sh', 'p2wpkh', 'p2wsh-p2sh', 'p2wsh') MAX_LABEL_LEN = 32 def __init__(self, parent, config, name): HW_PluginBase.__init__(self, parent, config, name) try: from . import client import keepkeylib import keepkeylib.ckd_public import keepkeylib.transport_hid import keepkeylib.transport_webusb self.client_class = client.KeepKeyClient self.ckd_public = keepkeylib.ckd_public self.types = keepkeylib.client.types self.DEVICE_IDS = (keepkeylib.transport_hid.DEVICE_IDS + keepkeylib.transport_webusb.DEVICE_IDS) self.device_manager().register_devices(self.DEVICE_IDS) self.libraries_available = True except ImportError: self.libraries_available = False def hid_transport(self, pair): from keepkeylib.transport_hid import HidTransport return HidTransport(pair) def webusb_transport(self, device): from keepkeylib.transport_webusb import WebUsbTransport for d in WebUsbTransport.enumerate(): if device.id_.startswith(d.getSerialNumber()): return WebUsbTransport(d) return WebUsbTransport(device) def _try_hid(self, device): self.logger.info("Trying to connect over USB...") if device.interface_number == 1: pair = [None, device.path] else: pair = [device.path, None] try: return self.hid_transport(pair) except BaseException as e: # see fdb810ba622dc7dbe1259cbafb5b28e19d2ab114 # raise self.logger.info(f"cannot connect at {device.path} {e}") return None def _try_webusb(self, device): self.logger.info("Trying to connect over WebUSB...") try: return self.webusb_transport(device) except BaseException as e: self.logger.info(f"cannot connect at {device.path} {e}") return None def create_client(self, device, handler): if device.product_key[1] == 2: transport = self._try_webusb(device) else: transport = self._try_hid(device) if not transport: self.logger.info("cannot connect to device") return self.logger.info(f"connected to device at {device.path}") client = self.client_class(transport, handler, self) # Try a ping for device sanity try: client.ping('t') except BaseException as e: self.logger.info(f"ping failed {e}") return None if not client.atleast_version(*self.minimum_firmware): msg = (_('Outdated {} firmware for device labelled {}. Please ' 'download the updated firmware from {}') .format(self.device, client.label(), self.firmware_URL)) self.logger.info(msg) if handler: handler.show_error(msg) else: raise UserFacingException(msg) return None return client def get_client(self, keystore, force_pair=True): devmgr = self.device_manager() handler = keystore.handler with devmgr.hid_lock: client = devmgr.client_for_keystore(self, handler, keystore, force_pair) # returns the client for a given keystore. can use xpub if client: client.used() return client def get_coin_name(self): return "Testnet" if constants.net.TESTNET else "Fujicoin" def initialize_device(self, device_id, wizard, handler): # Initialization method msg = _("Choose how you want to initialize your {}.\n\n" "The first two methods are secure as no secret information " "is entered into your computer.\n\n" "For the last two methods you input secrets on your keyboard " "and upload them to your {}, and so you should " "only do those on a computer you know to be trustworthy " "and free of malware." ).format(self.device, self.device) choices = [ # Must be short as QT doesn't word-wrap radio button text (TIM_NEW, _("Let the device generate a completely new seed randomly")), (TIM_RECOVER, _("Recover from a seed you have previously written down")), (TIM_MNEMONIC, _("Upload a BIP39 mnemonic to generate the seed")), (TIM_PRIVKEY, _("Upload a master private key")) ] def f(method): import threading settings = self.request_trezor_init_settings(wizard, method, self.device) t = threading.Thread(target=self._initialize_device_safe, args=(settings, method, device_id, wizard, handler)) t.setDaemon(True) t.start() exit_code = wizard.loop.exec_() if exit_code != 0: # this method (initialize_device) was called with the expectation # of leaving the device in an initialized state when finishing. # signal that this is not the case: raise UserCancelled() wizard.choice_dialog(title=_('Initialize Device'), message=msg, choices=choices, run_next=f) def _initialize_device_safe(self, settings, method, device_id, wizard, handler): exit_code = 0 try: self._initialize_device(settings, method, device_id, wizard, handler) except UserCancelled: exit_code = 1 except BaseException as e: self.logger.exception('') handler.show_error(str(e)) exit_code = 1 finally: wizard.loop.exit(exit_code) def _initialize_device(self, settings, method, device_id, wizard, handler): item, label, pin_protection, passphrase_protection = settings language = 'english' devmgr = self.device_manager() client = devmgr.client_by_id(device_id) if not client: raise Exception(_("The device was disconnected.")) if method == TIM_NEW: strength = 64 * (item + 2) # 128, 192 or 256 client.reset_device(True, strength, passphrase_protection, pin_protection, label, language) elif method == TIM_RECOVER: word_count = 6 * (item + 2) # 12, 18 or 24 client.step = 0 client.recovery_device(word_count, passphrase_protection, pin_protection, label, language) elif method == TIM_MNEMONIC: pin = pin_protection # It's the pin, not a boolean client.load_device_by_mnemonic(str(item), pin, passphrase_protection, label, language) else: pin = pin_protection # It's the pin, not a boolean client.load_device_by_xprv(item, pin, passphrase_protection, label, language) def _make_node_path(self, xpub, address_n): bip32node = BIP32Node.from_xkey(xpub) node = self.types.HDNodeType( depth=bip32node.depth, fingerprint=int.from_bytes(bip32node.fingerprint, 'big'), child_num=int.from_bytes(bip32node.child_number, 'big'), chain_code=bip32node.chaincode, public_key=bip32node.eckey.get_public_key_bytes(compressed=True), ) return self.types.HDNodePathType(node=node, address_n=address_n) def setup_device(self, device_info, wizard, purpose): devmgr = self.device_manager() device_id = device_info.device.id_ client = devmgr.client_by_id(device_id) if client is None: raise UserFacingException(_('Failed to create a client for this device.') + '\n' + _('Make sure it is in the correct state.')) # fixme: we should use: client.handler = wizard client.handler = self.create_handler(wizard) if not device_info.initialized: self.initialize_device(device_id, wizard, client.handler) client.get_xpub('m', 'standard') client.used() def get_xpub(self, device_id, derivation, xtype, wizard): if xtype not in self.SUPPORTED_XTYPES: raise ScriptTypeNotSupported(_('This type of script is not supported with {}.').format(self.device)) devmgr = self.device_manager() client = devmgr.client_by_id(device_id) client.handler = wizard xpub = client.get_xpub(derivation, xtype) client.used() return xpub def get_keepkey_input_script_type(self, electrum_txin_type: str): if electrum_txin_type in ('p2wpkh', 'p2wsh'): return self.types.SPENDWITNESS if electrum_txin_type in ('p2wpkh-p2sh', 'p2wsh-p2sh'): return self.types.SPENDP2SHWITNESS if electrum_txin_type in ('p2pkh', ): return self.types.SPENDADDRESS if electrum_txin_type in ('p2sh', ): return self.types.SPENDMULTISIG raise ValueError('unexpected txin type: {}'.format(electrum_txin_type)) def get_keepkey_output_script_type(self, electrum_txin_type: str): if electrum_txin_type in ('p2wpkh', 'p2wsh'): return self.types.PAYTOWITNESS if electrum_txin_type in ('p2wpkh-p2sh', 'p2wsh-p2sh'): return self.types.PAYTOP2SHWITNESS if electrum_txin_type in ('p2pkh', ): return self.types.PAYTOADDRESS if electrum_txin_type in ('p2sh', ): return self.types.PAYTOMULTISIG raise ValueError('unexpected txin type: {}'.format(electrum_txin_type)) def sign_transaction(self, keystore, tx, prev_tx, xpub_path): self.prev_tx = prev_tx self.xpub_path = xpub_path client = self.get_client(keystore) inputs = self.tx_inputs(tx, True) outputs = self.tx_outputs(keystore.get_derivation(), tx) signatures = client.sign_tx(self.get_coin_name(), inputs, outputs, lock_time=tx.locktime, version=tx.version)[0] signatures = [(bh2u(x) + '01') for x in signatures] tx.update_signatures(signatures) def show_address(self, wallet, address, keystore=None): if keystore is None: keystore = wallet.get_keystore() if not self.show_address_helper(wallet, address, keystore): return client = self.get_client(keystore) if not client.atleast_version(1, 3): keystore.handler.show_error(_("Your device firmware is too old")) return change, index = wallet.get_address_index(address) derivation = keystore.derivation address_path = "%s/%d/%d"%(derivation, change, index) address_n = client.expand_path(address_path) xpubs = wallet.get_master_public_keys() if len(xpubs) == 1: script_type = self.get_keepkey_input_script_type(wallet.txin_type) client.get_address(self.get_coin_name(), address_n, True, script_type=script_type) else: def f(xpub): return self._make_node_path(xpub, [change, index]) pubkeys = wallet.get_public_keys(address) # sort xpubs using the order of pubkeys sorted_pubkeys, sorted_xpubs = zip(*sorted(zip(pubkeys, xpubs))) pubkeys = list(map(f, sorted_xpubs)) multisig = self.types.MultisigRedeemScriptType( pubkeys=pubkeys, signatures=[b''] * wallet.n, m=wallet.m, ) script_type = self.get_keepkey_input_script_type(wallet.txin_type) client.get_address(self.get_coin_name(), address_n, True, multisig=multisig, script_type=script_type) def tx_inputs(self, tx, for_sig=False): inputs = [] for txin in tx.inputs(): txinputtype = self.types.TxInputType() if txin['type'] == 'coinbase': prev_hash = b"\x00"*32 prev_index = 0xffffffff # signed int -1 else: if for_sig: x_pubkeys = txin['x_pubkeys'] if len(x_pubkeys) == 1: x_pubkey = x_pubkeys[0] xpub, s = parse_xpubkey(x_pubkey) xpub_n = self.client_class.expand_path(self.xpub_path[xpub]) txinputtype.address_n.extend(xpub_n + s) txinputtype.script_type = self.get_keepkey_input_script_type(txin['type']) else: def f(x_pubkey): xpub, s = parse_xpubkey(x_pubkey) return self._make_node_path(xpub, s) pubkeys = list(map(f, x_pubkeys)) multisig = self.types.MultisigRedeemScriptType( pubkeys=pubkeys, signatures=map(lambda x: bfh(x)[:-1] if x else b'', txin.get('signatures')), m=txin.get('num_sig'), ) script_type = self.get_keepkey_input_script_type(txin['type']) txinputtype = self.types.TxInputType( script_type=script_type, multisig=multisig ) # find which key is mine for x_pubkey in x_pubkeys: if is_xpubkey(x_pubkey): xpub, s = parse_xpubkey(x_pubkey) if xpub in self.xpub_path: xpub_n = self.client_class.expand_path(self.xpub_path[xpub]) txinputtype.address_n.extend(xpub_n + s) break prev_hash = unhexlify(txin['prevout_hash']) prev_index = txin['prevout_n'] if 'value' in txin: txinputtype.amount = txin['value'] txinputtype.prev_hash = prev_hash txinputtype.prev_index = prev_index if txin.get('scriptSig') is not None: script_sig = bfh(txin['scriptSig']) txinputtype.script_sig = script_sig txinputtype.sequence = txin.get('sequence', 0xffffffff - 1) inputs.append(txinputtype) return inputs def tx_outputs(self, derivation, tx): def create_output_by_derivation(): script_type = self.get_keepkey_output_script_type(info.script_type) if len(xpubs) == 1: address_n = self.client_class.expand_path(derivation + "/%d/%d" % index) txoutputtype = self.types.TxOutputType( amount=amount, script_type=script_type, address_n=address_n, ) else: address_n = self.client_class.expand_path("/%d/%d" % index) pubkeys = [self._make_node_path(xpub, address_n) for xpub in xpubs] multisig = self.types.MultisigRedeemScriptType( pubkeys=pubkeys, signatures=[b''] * len(pubkeys), m=m) txoutputtype = self.types.TxOutputType( multisig=multisig, amount=amount, address_n=self.client_class.expand_path(derivation + "/%d/%d" % index), script_type=script_type) return txoutputtype def create_output_by_address(): txoutputtype = self.types.TxOutputType() txoutputtype.amount = amount if _type == TYPE_SCRIPT: txoutputtype.script_type = self.types.PAYTOOPRETURN txoutputtype.op_return_data = trezor_validate_op_return_output_and_get_data(o) elif _type == TYPE_ADDRESS: txoutputtype.script_type = self.types.PAYTOADDRESS txoutputtype.address = address return txoutputtype outputs = [] has_change = False any_output_on_change_branch = is_any_tx_output_on_change_branch(tx) for o in tx.outputs(): _type, address, amount = o.type, o.address, o.value use_create_by_derivation = False info = tx.output_info.get(address) if info is not None and not has_change: index, xpubs, m = info.address_index, info.sorted_xpubs, info.num_sig on_change_branch = index[0] == 1 # prioritise hiding outputs on the 'change' branch from user # because no more than one change address allowed if on_change_branch == any_output_on_change_branch: use_create_by_derivation = True has_change = True if use_create_by_derivation: txoutputtype = create_output_by_derivation() else: txoutputtype = create_output_by_address() outputs.append(txoutputtype) return outputs def electrum_tx_to_txtype(self, tx): t = self.types.TransactionType() if tx is None: # probably for segwit input and we don't need this prev txn return t d = deserialize(tx.raw) t.version = d['version'] t.lock_time = d['lockTime'] inputs = self.tx_inputs(tx) t.inputs.extend(inputs) for vout in d['outputs']: o = t.bin_outputs.add() o.amount = vout['value'] o.script_pubkey = bfh(vout['scriptPubKey']) return t # This function is called from the TREZOR libraries (via tx_api) def get_tx(self, tx_hash): tx = self.prev_tx[tx_hash] return self.electrum_tx_to_txtype(tx)
42.772358
127
0.598318
699dcbbb67022941a57e874522d19f3274e0f9fe
56
py
Python
src/optimizer.py
muzammil360/DL-learn
16e90d099246e75eb7a9cc4a6e0515c0178423e0
[ "MIT" ]
null
null
null
src/optimizer.py
muzammil360/DL-learn
16e90d099246e75eb7a9cc4a6e0515c0178423e0
[ "MIT" ]
null
null
null
src/optimizer.py
muzammil360/DL-learn
16e90d099246e75eb7a9cc4a6e0515c0178423e0
[ "MIT" ]
null
null
null
def getOptimizer(): print("This is getOptimizer") pass
18.666667
30
0.75
3f08e9f432e88955762abf66ae6c2e3b2acdb5b3
1,821
py
Python
tools/importHexo.py
OhYee/OBlog
a9d7e4fda5651cf9c5afd4c128c4df4442794e97
[ "BSD-3-Clause" ]
23
2018-02-23T12:56:43.000Z
2021-12-20T13:21:47.000Z
tools/importHexo.py
OhYee/OBlog
a9d7e4fda5651cf9c5afd4c128c4df4442794e97
[ "BSD-3-Clause" ]
17
2018-02-23T12:52:39.000Z
2018-12-04T05:50:58.000Z
tools/importHexo.py
OhYee/OBlog
a9d7e4fda5651cf9c5afd4c128c4df4442794e97
[ "BSD-3-Clause" ]
2
2018-06-16T20:52:23.000Z
2021-04-08T15:29:44.000Z
import os import re import json Hexo_source_post_dir = r"D:\OneDrive\OneDrive - eclass inc\Workspace\Code\Blog\source\_posts" def listFiles(root, relative=''): res = [] List = os.listdir(root + relative) for file in List: filename = root + relative + '/' + file if os.path.isdir(filename): res += listFiles(root, relative + '/' + file) elif os.path.isfile(filename): res.append(relative + '/' + file) else: print("error at ", file) return res if __name__ == '__main__': List = listFiles(Hexo_source_post_dir) posts = [] idx = 0 for path in List: print(path) f = open(Hexo_source_post_dir + path, 'r', encoding='utf-8') text = f.read() res = re.match(r'^---\n(.*?)\n---\n(.*)$', text, flags=re.S) raw = res.group(2) title = re.findall(r'.*title: (.+?)\n', res.group(1))[0] time = re.findall(r'^date: (.+?)$', res.group(1), re.M)[0] taglist = re.findall(r'^[ ]*-[ ]+(.+?)[ ]*$', res.group(1), re.M) taglist += re.findall(r'^categories:[ ]+(.+?)[ ]*$', res.group(1), re.M) taglist += re.findall(r'^tags:[ ]+(.+?)[ ]*$', res.group(1), re.M) tags = ','.join(taglist) taglist = set(taglist) post = { "url": path[1:-3], "title": title, "time": time, "tags": tags, "raw": raw, } posts.append(post) # print(post) # break # idx += 1 # if idx >= 20: # break f.close() f = open('./posts.json', 'w', encoding='utf-8') # f.write(str(posts)) f.write(json.dumps(posts)) f.close()
28.015385
94
0.462932
858dbaa4da12d06e147f06ed5e02dad82f27473a
1,152
py
Python
migrations/versions/15831a43fb71_add_the_user_login_model_attributes.py
ThiraTheNerd/the_blog
3edd51b2507726b4339f3b59b95133f9e2005700
[ "MIT" ]
null
null
null
migrations/versions/15831a43fb71_add_the_user_login_model_attributes.py
ThiraTheNerd/the_blog
3edd51b2507726b4339f3b59b95133f9e2005700
[ "MIT" ]
null
null
null
migrations/versions/15831a43fb71_add_the_user_login_model_attributes.py
ThiraTheNerd/the_blog
3edd51b2507726b4339f3b59b95133f9e2005700
[ "MIT" ]
null
null
null
"""add the user login model attributes Revision ID: 15831a43fb71 Revises: 7951013acf32 Create Date: 2021-06-23 00:02:56.627253 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '15831a43fb71' down_revision = '7951013acf32' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint('users_role_id_fkey', 'users', type_='foreignkey') op.drop_column('users', 'role_id') op.drop_column('users', 'profile_pic_path') op.drop_column('users', 'bio') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('bio', sa.VARCHAR(length=255), autoincrement=False, nullable=True)) op.add_column('users', sa.Column('profile_pic_path', sa.VARCHAR(), autoincrement=False, nullable=True)) op.add_column('users', sa.Column('role_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.create_foreign_key('users_role_id_fkey', 'users', 'roles', ['role_id'], ['id']) # ### end Alembic commands ###
32.914286
107
0.702257
4d1f1ccdc13883c1c64f142d8434d485fd196847
10,446
py
Python
test/functional/wallet_balance.py
go-keiryo/bitcoin
385bb453040542b4c428ba120c84e438311ff49b
[ "MIT" ]
2
2019-05-15T17:03:40.000Z
2021-04-05T20:40:18.000Z
test/functional/wallet_balance.py
go-keiryo/bitcoin
385bb453040542b4c428ba120c84e438311ff49b
[ "MIT" ]
4
2019-07-23T08:32:01.000Z
2020-07-22T08:05:26.000Z
test/functional/wallet_balance.py
go-keiryo/bitcoin
385bb453040542b4c428ba120c84e438311ff49b
[ "MIT" ]
10
2019-05-23T03:15:07.000Z
2021-12-04T13:32:05.000Z
#!/usr/bin/env python3 # Copyright (c) 2018-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the wallet balance RPC methods.""" from decimal import Decimal import struct from test_framework.address import ADDRESS_BCRT1_UNSPENDABLE as ADDRESS_WATCHONLY from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, connect_nodes_bi, sync_blocks, ) def create_transactions(node, address, amt, fees): # Create and sign raw transactions from node to address for amt. # Creates a transaction for each fee and returns an array # of the raw transactions. utxos = [u for u in node.listunspent(0) if u['spendable']] # Create transactions inputs = [] ins_total = 0 for utxo in utxos: inputs.append({"txid": utxo["txid"], "vout": utxo["vout"]}) ins_total += utxo['amount'] if ins_total + max(fees) > amt: break txs = [] for fee in fees: outputs = {address: amt, node.getrawchangeaddress(): ins_total - amt - fee} raw_tx = node.createrawtransaction(inputs, outputs, 0, True) raw_tx = node.signrawtransactionwithwallet(raw_tx) assert_equal(raw_tx['complete'], True) txs.append(raw_tx) return txs class WalletTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True self.extra_args = [ ['-limitdescendantcount=3'], # Limit mempool descendants as a hack to have wallet txs rejected from the mempool [], ] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): self.nodes[0].importaddress(ADDRESS_WATCHONLY) # Check that nodes don't own any UTXOs assert_equal(len(self.nodes[0].listunspent()), 0) assert_equal(len(self.nodes[1].listunspent()), 0) self.log.info("Check that only node 0 is watching an address") assert 'watchonly' in self.nodes[0].getbalances() assert 'watchonly' not in self.nodes[1].getbalances() self.log.info("Mining blocks ...") self.nodes[0].generate(1) self.sync_all() self.nodes[1].generate(1) self.nodes[1].generatetoaddress(101, ADDRESS_WATCHONLY) self.sync_all() assert_equal(self.nodes[0].getbalances()['mine']['trusted'], 50) assert_equal(self.nodes[0].getwalletinfo()['balance'], 50) assert_equal(self.nodes[1].getbalances()['mine']['trusted'], 50) assert_equal(self.nodes[0].getbalances()['watchonly']['immature'], 5000) assert 'watchonly' not in self.nodes[1].getbalances() assert_equal(self.nodes[0].getbalance(), 50) assert_equal(self.nodes[1].getbalance(), 50) self.log.info("Test getbalance with different arguments") assert_equal(self.nodes[0].getbalance("*"), 50) assert_equal(self.nodes[0].getbalance("*", 1), 50) assert_equal(self.nodes[0].getbalance("*", 1, True), 100) assert_equal(self.nodes[0].getbalance(minconf=1), 50) assert_equal(self.nodes[0].getbalance(minconf=0, include_watchonly=True), 100) assert_equal(self.nodes[1].getbalance(minconf=0, include_watchonly=True), 50) # Send 40 BTC from 0 to 1 and 60 BTC from 1 to 0. txs = create_transactions(self.nodes[0], self.nodes[1].getnewaddress(), 40, [Decimal('0.01')]) self.nodes[0].sendrawtransaction(txs[0]['hex']) self.nodes[1].sendrawtransaction(txs[0]['hex']) # sending on both nodes is faster than waiting for propagation self.sync_all() txs = create_transactions(self.nodes[1], self.nodes[0].getnewaddress(), 60, [Decimal('0.01'), Decimal('0.02')]) self.nodes[1].sendrawtransaction(txs[0]['hex']) self.nodes[0].sendrawtransaction(txs[0]['hex']) # sending on both nodes is faster than waiting for propagation self.sync_all() # First argument of getbalance must be set to "*" assert_raises_rpc_error(-32, "dummy first argument must be excluded or set to \"*\"", self.nodes[1].getbalance, "") self.log.info("Test getbalance and getunconfirmedbalance with unconfirmed inputs") def test_balances(*, fee_node_1=0): # getbalance without any arguments includes unconfirmed transactions, but not untrusted transactions assert_equal(self.nodes[0].getbalance(), Decimal('9.99')) # change from node 0's send assert_equal(self.nodes[1].getbalance(), Decimal('30') - fee_node_1) # change from node 1's send # Same with minconf=0 assert_equal(self.nodes[0].getbalance(minconf=0), Decimal('9.99')) assert_equal(self.nodes[1].getbalance(minconf=0), Decimal('30') - fee_node_1) # getbalance with a minconf incorrectly excludes coins that have been spent more recently than the minconf blocks ago # TODO: fix getbalance tracking of coin spentness depth assert_equal(self.nodes[0].getbalance(minconf=1), Decimal('0')) assert_equal(self.nodes[1].getbalance(minconf=1), Decimal('0')) # getunconfirmedbalance assert_equal(self.nodes[0].getunconfirmedbalance(), Decimal('60')) # output of node 1's spend assert_equal(self.nodes[0].getbalances()['mine']['untrusted_pending'], Decimal('60')) assert_equal(self.nodes[0].getwalletinfo()["unconfirmed_balance"], Decimal('60')) assert_equal(self.nodes[1].getunconfirmedbalance(), Decimal('0')) # Doesn't include output of node 0's send since it was spent assert_equal(self.nodes[1].getbalances()['mine']['untrusted_pending'], Decimal('0')) assert_equal(self.nodes[1].getwalletinfo()["unconfirmed_balance"], Decimal('0')) test_balances(fee_node_1=Decimal('0.01')) # Node 1 bumps the transaction fee and resends self.nodes[1].sendrawtransaction(txs[1]['hex']) self.nodes[0].sendrawtransaction(txs[1]['hex']) # sending on both nodes is faster than waiting for propagation self.sync_all() self.log.info("Test getbalance and getunconfirmedbalance with conflicted unconfirmed inputs") test_balances(fee_node_1=Decimal('0.02')) self.nodes[1].generatetoaddress(1, ADDRESS_WATCHONLY) self.sync_all() # balances are correct after the transactions are confirmed assert_equal(self.nodes[0].getbalance(), Decimal('69.99')) # node 1's send plus change from node 0's send assert_equal(self.nodes[1].getbalance(), Decimal('29.98')) # change from node 0's send # Send total balance away from node 1 txs = create_transactions(self.nodes[1], self.nodes[0].getnewaddress(), Decimal('29.97'), [Decimal('0.01')]) self.nodes[1].sendrawtransaction(txs[0]['hex']) self.nodes[1].generatetoaddress(2, ADDRESS_WATCHONLY) self.sync_all() # getbalance with a minconf incorrectly excludes coins that have been spent more recently than the minconf blocks ago # TODO: fix getbalance tracking of coin spentness depth # getbalance with minconf=3 should still show the old balance assert_equal(self.nodes[1].getbalance(minconf=3), Decimal('0')) # getbalance with minconf=2 will show the new balance. assert_equal(self.nodes[1].getbalance(minconf=2), Decimal('0')) # check mempool transactions count for wallet unconfirmed balance after # dynamically loading the wallet. before = self.nodes[1].getunconfirmedbalance() dst = self.nodes[1].getnewaddress() self.nodes[1].unloadwallet('') self.nodes[0].sendtoaddress(dst, 0.1) self.sync_all() self.nodes[1].loadwallet('') after = self.nodes[1].getunconfirmedbalance() assert_equal(before + Decimal('0.1'), after) # Create 3 more wallet txs, where the last is not accepted to the # mempool because it is the third descendant of the tx above for _ in range(3): # Set amount high enough such that all coins are spent by each tx txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 99) self.log.info('Check that wallet txs not in the mempool are untrusted') assert txid not in self.nodes[0].getrawmempool() assert_equal(self.nodes[0].gettransaction(txid)['trusted'], False) assert_equal(self.nodes[0].getbalance(minconf=0), 0) self.log.info("Test replacement and reorg of non-mempool tx") tx_orig = self.nodes[0].gettransaction(txid)['hex'] # Increase fee by 1 coin tx_replace = tx_orig.replace( struct.pack("<q", 99 * 10**8).hex(), struct.pack("<q", 98 * 10**8).hex(), ) tx_replace = self.nodes[0].signrawtransactionwithwallet(tx_replace)['hex'] # Total balance is given by the sum of outputs of the tx total_amount = sum([o['value'] for o in self.nodes[0].decoderawtransaction(tx_replace)['vout']]) self.sync_all() self.nodes[1].sendrawtransaction(hexstring=tx_replace, maxfeerate=0) # Now confirm tx_replace block_reorg = self.nodes[1].generatetoaddress(1, ADDRESS_WATCHONLY)[0] self.sync_all() assert_equal(self.nodes[0].getbalance(minconf=0), total_amount) self.log.info('Put txs back into mempool of node 1 (not node 0)') self.nodes[0].invalidateblock(block_reorg) self.nodes[1].invalidateblock(block_reorg) assert_equal(self.nodes[0].getbalance(minconf=0), 0) # wallet txs not in the mempool are untrusted self.nodes[0].generatetoaddress(1, ADDRESS_WATCHONLY) assert_equal(self.nodes[0].getbalance(minconf=0), 0) # wallet txs not in the mempool are untrusted # Now confirm tx_orig self.restart_node(1, ['-persistmempool=0']) connect_nodes_bi(self.nodes, 0, 1) sync_blocks(self.nodes) self.nodes[1].sendrawtransaction(tx_orig) self.nodes[1].generatetoaddress(1, ADDRESS_WATCHONLY) self.sync_all() assert_equal(self.nodes[0].getbalance(minconf=0), total_amount + 1) # The reorg recovered our fee of 1 coin if __name__ == '__main__': WalletTest().main()
48.138249
139
0.664465
6c309715469c07a7de64996c388446f36fe89c1c
1,953
py
Python
src/engine/SCons/Tool/f03.py
moroten/scons
20927b42ed4f0cb87f51287fa3b4b6cf915afcf8
[ "MIT" ]
1
2017-01-28T15:39:07.000Z
2017-01-28T15:39:07.000Z
src/engine/SCons/Tool/f03.py
moroten/scons
20927b42ed4f0cb87f51287fa3b4b6cf915afcf8
[ "MIT" ]
4
2019-04-11T16:27:45.000Z
2019-04-11T23:56:30.000Z
src/engine/SCons/Tool/f03.py
moroten/scons
20927b42ed4f0cb87f51287fa3b4b6cf915afcf8
[ "MIT" ]
2
2018-01-16T11:29:16.000Z
2020-05-13T16:48:26.000Z
"""engine.SCons.Tool.f03 Tool-specific initialization for the generic Posix f03 Fortran compiler. There normally shouldn't be any need to import this module directly. It will usually be imported through the generic SCons.Tool.Tool() selection method. """ # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" import SCons.Defaults import SCons.Tool import SCons.Util from . import fortran from SCons.Tool.FortranCommon import add_all_to_env, add_f03_to_env compilers = ['f03'] def generate(env): add_all_to_env(env) add_f03_to_env(env) fcomp = env.Detect(compilers) or 'f03' env['F03'] = fcomp env['SHF03'] = fcomp env['FORTRAN'] = fcomp env['SHFORTRAN'] = fcomp def exists(env): return env.Detect(compilers) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
30.515625
73
0.757296
7e2d20529b3f2eca13d19d9df5b3fc00906b93ac
914
py
Python
dash_docs/reusable_components/Chapter.py
joelostblom/dash-docs
7be5aed7795f61ac32375ce33a18046b8f2f5254
[ "MIT" ]
379
2017-06-21T14:35:52.000Z
2022-03-20T01:47:14.000Z
dash_docs/reusable_components/Chapter.py
joelostblom/dash-docs
7be5aed7795f61ac32375ce33a18046b8f2f5254
[ "MIT" ]
746
2017-06-21T19:58:17.000Z
2022-03-23T14:51:24.000Z
dash_docs/reusable_components/Chapter.py
joelostblom/dash-docs
7be5aed7795f61ac32375ce33a18046b8f2f5254
[ "MIT" ]
201
2017-06-21T21:53:19.000Z
2022-03-17T13:23:55.000Z
import dash_html_components as html import dash_core_components as dcc from dash_docs.tools import relpath from .Markdown import Markdown def Chapter(name, href=None, caption=None, className='', chapter='', icon=''): linkComponent = html.A if href.startswith('http') else dcc.Link return html.Div(className='toc--chapter', children=[ html.Li([ html.I(className=icon, style={'width': 25}) if icon != '' else None, linkComponent( name, href=relpath(href), id=href, className='toc--chapter-link ' + className ), ]), html.Small( className='toc--chapter-content', children=Markdown(caption or ''), style={ 'display': 'block', 'marginTop': '-10px' if caption else '' } ) if caption else None ])
33.851852
80
0.549234
5eeb40c1ede297d25c98ad543d0116e9893c363c
1,118
py
Python
app.py
AyushShaw/todo-flask
0a3335c91c83541e2d098b5633354ac6a743e2de
[ "MIT" ]
null
null
null
app.py
AyushShaw/todo-flask
0a3335c91c83541e2d098b5633354ac6a743e2de
[ "MIT" ]
null
null
null
app.py
AyushShaw/todo-flask
0a3335c91c83541e2d098b5633354ac6a743e2de
[ "MIT" ]
null
null
null
from flask import Flask, render_template, request, redirect from flask_sqlalchemy import SQLAlchemy from datetime import datetime app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///test.db' db = SQLAlchemy(app) class Todo(db.Model): id = db.Column(db.Integer,primary_key=True) content = db.Column(db.String(255),nullable=False) date_created = db.Column(db.DateTime, default=datetime.utcnow) def __repr__(self): return '<Task {}>'.format(self.id) @app.route('/', methods=['GET', 'POST']) def index(): if request.method=='POST': task_content=request.form['content'] new_task = Todo(content=task_content) try: print("Trying data Entry.") db.session.add(new_task) db.session.commit() return redirect('/') except: return 'Issue in Post CodeBlock' else: task = Todo.query.order_by(Todo.date_created).all() return render_template('index.html', tasks=task) if __name__ == "__main__": app.run(debug=True)
27.268293
67
0.620751
dd0df19f02b08c93eee4eb48c9dbacd144d6bd47
414
py
Python
example/subuser/post_trade_market.py
bailzx5522/huobi_Python
d87cb11b44304c32da6e57c8ada8d03ee5fdb0e7
[ "Apache-2.0" ]
611
2019-07-10T08:17:50.000Z
2022-03-21T18:56:39.000Z
example/subuser/post_trade_market.py
bailzx5522/huobi_Python
d87cb11b44304c32da6e57c8ada8d03ee5fdb0e7
[ "Apache-2.0" ]
105
2019-07-12T03:43:41.000Z
2022-03-30T10:33:06.000Z
example/subuser/post_trade_market.py
bailzx5522/huobi_Python
d87cb11b44304c32da6e57c8ada8d03ee5fdb0e7
[ "Apache-2.0" ]
325
2019-07-12T02:46:54.000Z
2022-03-21T18:56:41.000Z
from huobi.client.subuser import SubuserClient from huobi.constant import * from huobi.utils import * subuser_client = SubuserClient(api_key=g_api_key, secret_key=g_secret_key) subUids = '159284259' accountType = SubuserTradePrivilegeType.MARGIN activation = SubUserTradeStatus.DEACTIVATED subUserList = subuser_client.post_set_tradable_market(subUids, accountType, activation) LogInfo.output_list(subUserList)
31.846154
87
0.850242
360f92f5356106a4aec5e9aa8eca378c90277e03
3,761
py
Python
tests/oauth2/test_id_token.py
yhuang/google-auth-library-python
ccf2e502e0b15633956c007fae92e2404a6418ad
[ "Apache-2.0" ]
1
2020-05-27T15:48:51.000Z
2020-05-27T15:48:51.000Z
tests/oauth2/test_id_token.py
yhuang/google-auth-library-python
ccf2e502e0b15633956c007fae92e2404a6418ad
[ "Apache-2.0" ]
null
null
null
tests/oauth2/test_id_token.py
yhuang/google-auth-library-python
ccf2e502e0b15633956c007fae92e2404a6418ad
[ "Apache-2.0" ]
1
2019-11-11T18:39:46.000Z
2019-11-11T18:39:46.000Z
# Copyright 2014 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import mock import pytest from google.auth import exceptions from google.auth import transport from google.oauth2 import id_token def make_request(status, data=None): response = mock.create_autospec(transport.Response, instance=True) response.status = status if data is not None: response.data = json.dumps(data).encode('utf-8') request = mock.create_autospec(transport.Request) request.return_value = response return request def test__fetch_certs_success(): certs = {'1': 'cert'} request = make_request(200, certs) returned_certs = id_token._fetch_certs(request, mock.sentinel.cert_url) request.assert_called_once_with(mock.sentinel.cert_url, method='GET') assert returned_certs == certs def test__fetch_certs_failure(): request = make_request(404) with pytest.raises(exceptions.TransportError): id_token._fetch_certs(request, mock.sentinel.cert_url) request.assert_called_once_with(mock.sentinel.cert_url, method='GET') @mock.patch('google.auth.jwt.decode', autospec=True) @mock.patch('google.oauth2.id_token._fetch_certs', autospec=True) def test_verify_token(_fetch_certs, decode): result = id_token.verify_token(mock.sentinel.token, mock.sentinel.request) assert result == decode.return_value _fetch_certs.assert_called_once_with( mock.sentinel.request, id_token._GOOGLE_OAUTH2_CERTS_URL) decode.assert_called_once_with( mock.sentinel.token, certs=_fetch_certs.return_value, audience=None) @mock.patch('google.auth.jwt.decode', autospec=True) @mock.patch('google.oauth2.id_token._fetch_certs', autospec=True) def test_verify_token_args(_fetch_certs, decode): result = id_token.verify_token( mock.sentinel.token, mock.sentinel.request, audience=mock.sentinel.audience, certs_url=mock.sentinel.certs_url) assert result == decode.return_value _fetch_certs.assert_called_once_with( mock.sentinel.request, mock.sentinel.certs_url) decode.assert_called_once_with( mock.sentinel.token, certs=_fetch_certs.return_value, audience=mock.sentinel.audience) @mock.patch('google.oauth2.id_token.verify_token', autospec=True) def test_verify_oauth2_token(verify_token): result = id_token.verify_oauth2_token( mock.sentinel.token, mock.sentinel.request, audience=mock.sentinel.audience) assert result == verify_token.return_value verify_token.assert_called_once_with( mock.sentinel.token, mock.sentinel.request, audience=mock.sentinel.audience, certs_url=id_token._GOOGLE_OAUTH2_CERTS_URL) @mock.patch('google.oauth2.id_token.verify_token', autospec=True) def test_verify_firebase_token(verify_token): result = id_token.verify_firebase_token( mock.sentinel.token, mock.sentinel.request, audience=mock.sentinel.audience) assert result == verify_token.return_value verify_token.assert_called_once_with( mock.sentinel.token, mock.sentinel.request, audience=mock.sentinel.audience, certs_url=id_token._GOOGLE_APIS_CERTS_URL)
32.422414
78
0.742888
df6f247ff1a917d043c3d95694c6cea1c8add65a
979
py
Python
src/db-up/azext_db_up/vendored_sdks/azure_mgmt_rdbms/postgresql/models/virtual_network_rule_paged.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
207
2017-11-29T06:59:41.000Z
2022-03-31T10:00:53.000Z
src/db-up/azext_db_up/vendored_sdks/azure_mgmt_rdbms/postgresql/models/virtual_network_rule_paged.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
4,061
2017-10-27T23:19:56.000Z
2022-03-31T23:18:30.000Z
src/db-up/azext_db_up/vendored_sdks/azure_mgmt_rdbms/postgresql/models/virtual_network_rule_paged.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
802
2017-10-11T17:36:26.000Z
2022-03-31T22:24:32.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.paging import Paged class VirtualNetworkRulePaged(Paged): """ A paging container for iterating over a list of :class:`VirtualNetworkRule <azure.mgmt.rdbms.postgresql.models.VirtualNetworkRule>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VirtualNetworkRule]'} } def __init__(self, *args, **kwargs): super(VirtualNetworkRulePaged, self).__init__(*args, **kwargs)
34.964286
142
0.592441
a5be4c8a7562c5766de5d64b5112e734682f2410
22,381
py
Python
azimuth/load_data.py
bowhan/Azimuth
d49ea6ee97efa67af4081631c75c333f724cc18a
[ "BSD-3-Clause" ]
null
null
null
azimuth/load_data.py
bowhan/Azimuth
d49ea6ee97efa67af4081631c75c333f724cc18a
[ "BSD-3-Clause" ]
null
null
null
azimuth/load_data.py
bowhan/Azimuth
d49ea6ee97efa67af4081631c75c333f724cc18a
[ "BSD-3-Clause" ]
1
2021-10-05T14:42:17.000Z
2021-10-05T14:42:17.000Z
import pandas from . import util import matplotlib.pyplot as plt import scipy as sp import scipy.stats import numpy as np import os cur_dir = os.path.dirname(os.path.abspath(__file__)) def from_custom_file(data_file, learn_options): # use semantics of when we load V2 data print("Loading inputs to predict from %s" % data_file) data = pandas.read_csv(data_file) mandatory_columns = ['30mer', 'Target gene', 'Percent Peptide', 'Amino Acid Cut position'] for col in mandatory_columns: assert col in data.columns, "inputs for prediction must include these columns: %s" % mandatory_columns Xdf = pandas.DataFrame(data) Xdf['30mercopy'] = Xdf['30mer'] Xdf = Xdf.set_index(['30mer', 'Target gene']) Xdf['30mer'] = Xdf['30mercopy'] Xdf.index.names = ['Sequence', 'Target'] Xdf['drug']= ['dummydrug%s' % i for i in range(Xdf.shape[0])] Xdf = Xdf.set_index('drug', append=True) Y = None gene_position = Xdf[['Percent Peptide', 'Amino Acid Cut position']] target_genes = np.unique(Xdf.index.levels[1]) learn_options = set_V2_target_names(learn_options) return Xdf, Y, gene_position, target_genes def from_file(data_file, learn_options, data_file2=None, data_file3=None): if learn_options["V"] == 1: # from Nature Biotech paper print("loading V%d data" % learn_options["V"]) assert not learn_options["weighted"] is not None, "not supported for V1 data" annotations, gene_position, target_genes, Xdf, Y = read_V1_data(data_file, learn_options) learn_options['binary target name'] = 'average threshold' learn_options['rank-transformed target name'] = 'average rank' learn_options['raw target name'] = 'average activity' # NF: not sure why the line below was uncommented # gene_position, selected_ind, target_genes, Xdf, Y = extract_by_organism("mouse", Xdf, Y, gene_position) elif learn_options["V"] == 2: # from Nov 2014, hot off the machines Xdf, drugs_to_genes, target_genes, Y, gene_position = read_V2_data(data_file, learn_options) # check that data is consistent with sgRNA score xx = Xdf['sgRNA Score'].values yy = Y['score_drug_gene_rank'].values rr,pp = sp.stats.pearsonr(xx, yy) assert rr > 0, "data processing has gone wrong as correlation with previous predictions is negative" learn_options = set_V2_target_names(learn_options) elif learn_options["V"] == 3: # merge of V1 and V2--this is what is used for the final model # these are relative to the V2 data, and V1 will be made to automatically match learn_options['binary target name'] = 'score_drug_gene_threshold' learn_options['rank-transformed target name'] = 'score_drug_gene_rank' learn_options['raw target name'] = None Xdf, Y, gene_position, target_genes = mergeV1_V2(data_file, data_file2, learn_options) elif learn_options["V"] == 4: # merge of V1 and V2 and the Xu et al data # these are relative to the V2 data, and V1 and Xu et al. will be made to automatically match learn_options['binary target name'] = 'score_drug_gene_threshold' learn_options['rank-transformed target name'] = 'score_drug_gene_rank' learn_options['raw target name'] = None Xdf, Y, gene_position, target_genes = merge_all(data_file, data_file2, data_file3, learn_options) elif learn_options['V'] == 5: learn_options['binary target name'] = 'score_drug_gene_threshold' learn_options['rank-transformed target name'] = 'score_drug_gene_rank' learn_options['raw target name'] = None gene_position, target_genes, Xdf, Y = read_xu_et_al(data_file3) # truncate down to 30--some data sets gave us more. Xdf["30mer"] = Xdf["30mer"].apply(lambda x: x[0:30]) return Xdf, Y, gene_position, target_genes def set_V2_target_names(learn_options): if 'binary target name' not in list(learn_options.keys()): learn_options['binary target name'] = 'score_drug_gene_threshold' if 'rank-transformed target name' not in list(learn_options.keys()): learn_options['rank-transformed target name'] = 'score_drug_gene_rank' learn_options['raw target name'] = 'score' return learn_options def combine_organisms(human_data, mouse_data): # 'Target' is the column name, 'CD13' are some rows in that column # xs slices through the pandas data frame to return another one cd13 = human_data.xs('CD13', level='Target', drop_level=False) # y_names are column names, cd13 is a pandas object X_CD13, Y_CD13 = util.get_data(cd13, y_names=['NB4 CD13', 'TF1 CD13']) cd33 = human_data.xs('CD33', level='Target', drop_level=False) X_CD33, Y_CD33 = util.get_data(cd33, y_names=['MOLM13 CD33', 'TF1 CD33', 'NB4 CD33']) cd15 = human_data.xs('CD15', level='Target', drop_level=False) X_CD15, Y_CD15 = util.get_data(cd15, y_names=['MOLM13 CD15']) mouse_X = pandas.DataFrame() mouse_Y = pandas.DataFrame() for k in mouse_data.index.levels[1]: # is k the gene X, Y = util.get_data(mouse_data.xs(k, level='Target', drop_level=False), ["On-target Gene"], target_gene=k, organism='mouse') mouse_X = pandas.concat([mouse_X, X], axis=0) mouse_Y = pandas.concat([mouse_Y, Y], axis=0) X = pandas.concat([X_CD13, X_CD15, X_CD33, mouse_X], axis=0) Y = pandas.concat([Y_CD13, Y_CD15, Y_CD33, mouse_Y], axis=0) return X, Y def read_V1_data(data_file, learn_options, AML_file=cur_dir + "/data/V1_suppl_data.txt"): if data_file is None: data_file = cur_dir + "/data/V1_data.xlsx" human_data = pandas.read_excel(data_file, sheet_name=0, index_col=[0, 1]) mouse_data = pandas.read_excel(data_file, sheet_name=1, index_col=[0, 1]) Xdf, Y = combine_organisms(human_data, mouse_data) # get position within each gene, then join and re-order # note that 11 missing guides we were told to ignore annotations = pandas.read_csv(AML_file, delimiter='\t', index_col=[0, 4]) annotations.index.names = Xdf.index.names gene_position = pandas.merge(Xdf, annotations, how="inner", left_index=True, right_index=True) gene_position = util.impute_gene_position(gene_position) gene_position = gene_position[['Amino Acid Cut position', 'Nucleotide cut position', 'Percent Peptide']] Y = Y.loc[gene_position.index] Xdf = Xdf.loc[gene_position.index] Y['test'] = 1 # for bookeeping to keep consistent with V2 which uses this for "extra pairs" target_genes = Y['Target gene'].unique() Y.index.names = ['Sequence', 'Target gene'] assert Xdf.index.equals(Y.index), "The index of Xdf is different from the index of Y (this can cause inconsistencies/random performance later on)" if learn_options is not None and learn_options["flipV1target"]: print("************************************************************************") print("*****************MATCHING DOENCH CODE (DEBUG MODE)**********************") print("************************************************************************") # normally it is: Y['average threshold'] = Y['average rank'] > 0.8, where 1s are good guides, 0s are not Y['average threshold'] = Y['average rank'] < 0.2 # 1s are bad guides print("press c to continue") import ipdb ipdb.set_trace() return annotations, gene_position, target_genes, Xdf, Y def rank_transform(x): return 1.0 - sp.stats.mstats.rankdata(x)/sp.stats.mstats.rankdata(x).max() def read_xu_et_al(data_file, learn_options=None, verbose=True, subsetting='ours'): if data_file is None: data_file = '../data/xu_et_al_data.xlsx' datasets = ['ribo', 'non_ribo', 'mESC'] aggregated = None for d in datasets: data_efficient = pandas.read_excel(data_file, sheet_name='%s_efficient_sgRNA' % d, skiprows=2) data_inefficient = pandas.read_excel(data_file, sheet_name='%s_inefficient_sgRNA' % d, skiprows=2) data_efficient['threshold'] = 1. data_inefficient['threshold'] = 0. exp_data = pandas.concat((data_efficient, data_inefficient)) exp_data['rank_KBM7'] = exp_data.groupby('Gene Symbol')['log2 fold change, KBM7'].transform(rank_transform) exp_data['rank_HL60'] = exp_data.groupby('Gene Symbol')['log2 fold change, HL60'].transform(rank_transform) if aggregated is None: aggregated = exp_data else: aggregated = pandas.concat((aggregated, exp_data)) # go from 40mer to 30mer if subsetting == 'ours': aggregated["sequence(target+3'+5')"] = aggregated["sequence(target+3'+5')"].apply(lambda x: x[6:-4]) else: aggregated["sequence(target+3'+5')"] = aggregated["sequence(target+3'+5')"].apply(lambda x: x[10:]) # make sure EVEYTHING is uppercase aggregated["sequence(target+3'+5')"] = aggregated["sequence(target+3'+5')"].apply(lambda x: x.upper()) # rename columns aggregated.rename(columns={"sequence(target+3'+5')": '30mer', 'Gene Symbol': 'Target gene', 'strand':'Strand'}, inplace=True) aggregated['Strand'].loc[aggregated['Strand']=='+'] = 'sense' aggregated['Strand'].loc[aggregated['Strand']=='-'] = 'antisense' aggregated['average rank'] = aggregated[['rank_HL60', 'rank_KBM7']].mean(axis=1) df = aggregated df = df.rename(columns={'30mer': 'Sequence', 'Target gene': 'Target'}) df['drug'] = 'nodrug' df['test'] = 1 df = df.set_index(['Sequence', 'Target', 'drug']) df['30mer'] = df.index.get_level_values(0) df['Target gene'] = df.index.get_level_values(1) df['Organism'] = 'unknown' df['score_drug_gene_rank'] = df['average rank'] df['score_drug_gene_threshold'] = df['threshold'] df['Nucleotide cut position'] = df['start of target'] df['Percent Peptide'] = 0 df['Amino Acid Cut position'] = 0 target_genes = np.unique(df['Target gene'].values) return df[['Nucleotide cut position', 'Percent Peptide', 'Amino Acid Cut position']], target_genes, df[['30mer', 'Strand']], df[['score_drug_gene_rank', 'score_drug_gene_threshold', 'test', 'Target gene']] def read_V2_data(data_file, learn_options=None, verbose=True): if data_file is None: data_file = cur_dir + "/data/V2_data.xlsx" # to compare # import predict as pr; a1, g1, t1, X1, Y1 = pr.data_setup() # a1.index.names data = pandas.read_excel(data_file, sheet_name="ResultsFiltered", skiprows=list(range(0, 6+1)), index_col=[0, 4]) # grab data relevant to each of three drugs, which exludes some genes # note gene MED12 has two drugs, all others have at most one Xdf = pandas.DataFrame() # This comes from the "Pairs" tab in their excel sheet, # note HPRT/HPRT1 are same thing, and also PLX_2uM/PLcX_2uM known_pairs = {'AZD_200nM': ['CCDC101', 'MED12', 'TADA2B', 'TADA1'], '6TG_2ug/mL': ['HPRT1'], 'PLX_2uM': ['CUL3', 'NF1', 'NF2', 'MED12']} drugs_to_genes = {'AZD_200nM': ['CCDC101', 'MED12', 'TADA2B', 'TADA1'], '6TG_2ug/mL': ['HPRT1'], 'PLX_2uM': ['CUL3', 'NF1', 'NF2', 'MED12']} if learn_options is not None: assert not (learn_options['extra pairs'] and learn_options['all pairs']), "extra pairs and all pairs options (in learn_options) can't be active simultaneously." if learn_options['extra pairs']: drugs_to_genes['AZD_200nM'].extend(['CUL3', 'NF1', 'NF2']) elif learn_options['all pairs']: drugs_to_genes['AZD_200nM'].extend(['HPRT1', 'CUL3', 'NF1', 'NF2']) drugs_to_genes['PLX_2uM'].extend(['HPRT1', 'CCDC101', 'TADA2B', 'TADA1']) drugs_to_genes['6TG_2ug/mL'].extend(['CCDC101', 'MED12', 'TADA2B', 'TADA1', 'CUL3', 'NF1', 'NF2']) count = 0 for drug in list(drugs_to_genes.keys()): genes = drugs_to_genes[drug] for g in genes: Xtmp = data.copy().xs(g, level='Target gene', drop_level=False) Xtmp['drug'] = drug Xtmp['score'] = Xtmp[drug].copy() # grab the drug results that are relevant for this gene if g in known_pairs[drug]: Xtmp['test'] = 1. else: Xtmp['test'] = 0. count = count + Xtmp.shape[0] Xdf = pandas.concat([Xdf, Xtmp], axis=0) if verbose: print("Loaded %d samples for gene %s \ttotal number of samples: %d" % (Xtmp.shape[0], g, count)) # create new index that includes the drug Xdf = Xdf.set_index('drug', append=True) Y = pandas.DataFrame(Xdf.pop("score")) Y.columns.names = ["score"] test_gene = pandas.DataFrame(Xdf.pop('test')) target = pandas.DataFrame(Xdf.index.get_level_values('Target gene').values, index=Y.index, columns=["Target gene"]) Y = pandas.concat((Y, target, test_gene), axis=1) target_genes = Y['Target gene'].unique() gene_position = Xdf[["Percent Peptide", "Amino Acid Cut position"]].copy() # convert to ranks for each (gene, drug combo) # flip = True y_rank = pandas.DataFrame() y_threshold = pandas.DataFrame() y_quant = pandas.DataFrame() for drug in list(drugs_to_genes.keys()): gene_list = drugs_to_genes[drug] for gene in gene_list: ytmp = pandas.DataFrame(Y.xs((gene, drug), level=["Target gene", "drug"], drop_level=False)['score']) y_ranktmp, y_rank_raw, y_thresholdtmp, y_quanttmp = util.get_ranks(ytmp, thresh=0.8, prefix="score_drug_gene", flip=False) # np.unique(y_rank.values-y_rank_raw.values) y_rank = pandas.concat((y_rank, y_ranktmp), axis=0) y_threshold = pandas.concat((y_threshold, y_thresholdtmp), axis=0) y_quant = pandas.concat((y_quant, y_quanttmp), axis=0) yall = pandas.concat((y_rank, y_threshold, y_quant), axis=1) Y = pandas.merge(Y, yall, how='inner', left_index=True, right_index=True) # convert also by drug only, irrespective of gene y_rank = pandas.DataFrame() y_threshold = pandas.DataFrame() y_quant = pandas.DataFrame() for drug in list(drugs_to_genes.keys()): ytmp = pandas.DataFrame(Y.xs(drug, level="drug", drop_level=False)['score']) y_ranktmp, y_rank_raw, y_thresholdtmp, y_quanttmp = util.get_ranks(ytmp, thresh=0.8, prefix="score_drug", flip=False) # np.unique(y_rank.values-y_rank_raw.values) y_rank = pandas.concat((y_rank, y_ranktmp), axis=0) y_threshold = pandas.concat((y_threshold, y_thresholdtmp), axis=0) y_quant = pandas.concat((y_quant, y_quanttmp), axis=0) yall = pandas.concat((y_rank, y_threshold, y_quant), axis=1) Y = pandas.merge(Y, yall, how='inner', left_index=True, right_index=True) PLOT = False if PLOT: # to better understand, try plotting something like: labels = ["score", "score_drug_gene_rank", "score_drug_rank", "score_drug_gene_threshold", "score_drug_threshold"] for label in labels: plt.figure() plt.plot(Xdf['sgRNA Score'].values, Y[label].values, '.') r, pearp = sp.stats.pearsonr(Xdf['sgRNA Score'].values.flatten(), Y[label].values.flatten()) plt.title(label + ' VS pred. score, $r$=%0.2f (p=%0.2e)' % (r, pearp)) plt.xlabel("sgRNA prediction score") plt.ylabel(label) gene_position = util.impute_gene_position(gene_position) if learn_options is not None and learn_options["weighted"] == "variance": print("computing weights from replicate variance...") # compute the variance across replicates so can use it as a weight data = pandas.read_excel(data_file, sheet_name="Normalized", skiprows=list(range(0, 6+1)), index_col=[0, 4]) data.index.names = ["Sequence", "Target gene"] experiments = {} experiments['AZD_200nM'] = ['Deep 25', 'Deep 27', 'Deep 29 ', 'Deep 31'] experiments['6TG_2ug/mL'] = ['Deep 33', 'Deep 35', 'Deep 37', 'Deep 39'] experiments['PLX_2uM'] = ['Deep 49', 'Deep 51', 'Deep 53', 'Deep 55'] variance = None for drug in list(drugs_to_genes.keys()): data_tmp = data.iloc[data.index.get_level_values('Target gene').isin(drugs_to_genes[drug])][experiments[drug]] data_tmp["drug"] = drug data_tmp = data_tmp.set_index('drug', append=True) data_tmp["variance"] = np.var(data_tmp.values, axis=1) if variance is None: variance = data_tmp["variance"].copy() else: variance = pandas.concat((variance, data_tmp["variance"]), axis=0) orig_index = Y.index.copy() Y = pandas.merge(Y, pandas.DataFrame(variance), how="inner", left_index=True, right_index=True) Y = Y.ix[orig_index] print("done.") # Make sure to keep this check last in this function assert Xdf.index.equals(Y.index), "The index of Xdf is different from the index of Y (this can cause inconsistencies/random performance later on)" return Xdf, drugs_to_genes, target_genes, Y, gene_position def merge_all(data_file=None, data_file2=None, data_file3=None, learn_options=None): Xdf, Y, gene_position, target_genes = mergeV1_V2(data_file, data_file2, learn_options) gene_position_xu, target_genes_xu, Xdf_xu, Y_xu = read_xu_et_al(data_file3, learn_options) Xdf = pandas.concat((Xdf, Xdf_xu)) Y = pandas.concat((Y, Y_xu)) gene_position = pandas.concat((gene_position, gene_position_xu)) target_genes = np.concatenate((target_genes, target_genes_xu)) return Xdf, Y, gene_position, target_genes def mergeV1_V2(data_file, data_file2, learn_options): ''' ground_truth_label, etc. are taken to correspond to the V2 data, and then the V1 is appropriately matched based on semantics ''' assert not learn_options['include_strand'], "don't currently have 'Strand' column in V1 data" annotations, gene_position1, target_genes1, Xdf1, Y1 = read_V1_data(data_file, learn_options) Xdf2, drugs_to_genes, target_genes2, Y2, gene_position2 = read_V2_data(data_file2) Y1.rename(columns={'average rank': learn_options["rank-transformed target name"]}, inplace=True) Y1.rename(columns={'average threshold': learn_options["binary target name"]}, inplace=True) # rename columns, and add a dummy "drug" to V1 so can join the data sets Y1["drug"] = ["nodrug" for x in range(Y1.shape[0])] Y1 = Y1.set_index('drug', append=True) Y1.index.names = ['Sequence', 'Target gene', 'drug'] Y_cols_to_keep = np.unique(['Target gene', 'test', 'score_drug_gene_rank', 'score_drug_gene_threshold']) Y1 = Y1[Y_cols_to_keep] Y2 = Y2[Y_cols_to_keep] Xdf1["drug"] = ["nodrug" for x in range(Xdf1.shape[0])] Xdf1 = Xdf1.set_index('drug', append=True) X_cols_to_keep = ['30mer', 'Strand'] Xdf1 = Xdf1[X_cols_to_keep] Xdf2 = Xdf2[X_cols_to_keep] gene_position1["drug"] = ["nodrug" for x in range(gene_position1.shape[0])] gene_position1 = gene_position1.set_index('drug', append=True) gene_position1.index.names = ['Sequence', 'Target gene', 'drug'] cols_to_keep = ['Percent Peptide', 'Amino Acid Cut position'] gene_position1 = gene_position1[cols_to_keep] gene_position2 = gene_position2[cols_to_keep] Y = pandas.concat((Y1, Y2), axis=0) Xdf = pandas.concat((Xdf1, Xdf2), axis=0) gene_position = pandas.concat((gene_position1, gene_position2)) # target_genes = target_genes1 + target_genes2 target_genes = np.concatenate((target_genes1, target_genes2)) save_to_file = False if save_to_file: Y.index.names = ['Sequence', 'Target', 'drug'] assert np.all(Xdf.index.values==Y.index.values), "rows don't match up" onedupind = np.where(Y.index.duplicated())[0][0] alldupind = np.where(Y.index.get_level_values(0).values==Y.index[onedupind][0])[0] #arbitrarily set one of these to have "nodrug2" as the third level index #so that they are not repeated, and the joints therefore do not augment the data set assert len(alldupind)==2, "expected only duplicates" newindex = Y.index.tolist() newindex[onedupind] = (newindex[onedupind][0], newindex[onedupind][1], "nodrug2") Y.index = pandas.MultiIndex.from_tuples(newindex, names = Y.index.names) Xdf.index = pandas.MultiIndex.from_tuples(newindex, names = Y.index.names) # there seems to be a duplicate index, and thus this increases the data set size, so doing it the hacky way... XandY = pandas.merge(Xdf, Y, how="inner", left_index=True, right_index=True) gene_position_tmp = gene_position.copy() gene_position_tmp.index.names = ['Sequence', 'Target', 'drug'] gene_position_tmp.index = pandas.MultiIndex.from_tuples(newindex, names = Y.index.names) XandY = pandas.merge(XandY, gene_position_tmp, how="inner", left_index=True, right_index=True) # truncate to 30mers XandY["30mer"] = XandY["30mer"].apply(lambda x: x[0:30]) XandY.to_csv(r'D:\Source\CRISPR\data\tmp\V3.csv') return Xdf, Y, gene_position, target_genes def get_V1_genes(data_file=None): annotations, gene_position, target_genes, Xdf, Y = read_V1_data(data_file, learn_options=None) return target_genes def get_V2_genes(data_file=None): Xdf, drugs_to_genes, target_genes, Y, gene_position = read_V2_data(data_file, verbose=False) return target_genes def get_V3_genes(data_fileV1=None, data_fileV2=None): target_genes = np.concatenate((get_V1_genes(data_fileV1), get_V2_genes(data_fileV2))) return target_genes def get_xu_genes(data_file=None): return read_xu_et_al(data_file)[1] def get_mouse_genes(data_file=None): annotations, gene_position, target_genes, Xdf, Y = read_V1_data(data_file, learn_options=None) return Xdf[Xdf['Organism'] == 'mouse']['Target gene'].unique() def get_human_genes(data_file=None): annotations, gene_position, target_genes, Xdf, Y = read_V1_data(data_file, learn_options=None) mouse_genes = Xdf[Xdf['Organism'] == 'mouse']['Target gene'].unique() all_genes = get_V3_genes(None, None) # TODO this needs to support specifying file names (!= 'None') return np.setdiff1d(all_genes, mouse_genes)
46.43361
209
0.663822
ea33183c689686f9df52f9bbc4b7c6d967dd9d72
839
py
Python
examples/multilayer_neural_network.py
TK-21st/Neuroballad
6d4800e969c35b0f2d64897db24b734a9daaa160
[ "BSD-3-Clause" ]
null
null
null
examples/multilayer_neural_network.py
TK-21st/Neuroballad
6d4800e969c35b0f2d64897db24b734a9daaa160
[ "BSD-3-Clause" ]
null
null
null
examples/multilayer_neural_network.py
TK-21st/Neuroballad
6d4800e969c35b0f2d64897db24b734a9daaa160
[ "BSD-3-Clause" ]
null
null
null
from neuroballad import * #Import Neuroballad # Create a circuit C = Circuit() # Create 784 LeakyIAF neurons and get their ID's in_neurons = C.add_cluster(784, LeakyIAF()) # Create 32 Hodgkin-Huxley neurons and get their ID's middle_neurons = C.add_cluster(32, HodgkinHuxley()) # Join nodes together via alpha synapses C.dense_connect_via(in_neurons, middle_neurons, AlphaSynapse()) # Create 10 more Hodgkin-Huxley neurons and get their ID's out_neurons = C.add_cluster(10, HodgkinHuxley()) # Join nodes together via alpha synapses C.dense_connect_via(middle_neurons, out_neurons, AlphaSynapse()) # Create inputs for the first set of neurons input_list = [] for i in in_neurons: input_list.append(InIStep(i, 40., 0.25, 0.50)) # Simulate the circuit C.sim(1., 1e-4, input_list) sim_results = C.collect_results() #Get simulation results
39.952381
64
0.77354
4d786ce53bf4f41b8ff352eec66640dd8755af58
2,955
py
Python
datcore-sdk/python/datcore_sdk/models/create_consortium.py
mguidon/aiohttp-dsm
612e4c7f6f73df7d6752269965c428fda0276191
[ "MIT" ]
null
null
null
datcore-sdk/python/datcore_sdk/models/create_consortium.py
mguidon/aiohttp-dsm
612e4c7f6f73df7d6752269965c428fda0276191
[ "MIT" ]
null
null
null
datcore-sdk/python/datcore_sdk/models/create_consortium.py
mguidon/aiohttp-dsm
612e4c7f6f73df7d6752269965c428fda0276191
[ "MIT" ]
null
null
null
# coding: utf-8 """ Blackfynn Swagger Swagger documentation for the Blackfynn api # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class CreateConsortium(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'name': 'str' } attribute_map = { 'name': 'name' } def __init__(self, name=None): # noqa: E501 """CreateConsortium - a model defined in OpenAPI""" # noqa: E501 self._name = None self.discriminator = None self.name = name @property def name(self): """Gets the name of this CreateConsortium. # noqa: E501 :return: The name of this CreateConsortium. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this CreateConsortium. :param name: The name of this CreateConsortium. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CreateConsortium): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
25.921053
90
0.548223
8a5f8e4c15f6fe7ae0c84b81a60209edf51c3c8b
11,977
py
Python
rslgym/wrapper/script/base_vec_env.py
mcx/RSLGym
9211c8c23042c7a56802751f8d7cfd4e7248d7a2
[ "MIT" ]
13
2021-04-16T07:14:48.000Z
2022-03-14T04:20:03.000Z
rslgym/wrapper/script/base_vec_env.py
mcx/RSLGym
9211c8c23042c7a56802751f8d7cfd4e7248d7a2
[ "MIT" ]
null
null
null
rslgym/wrapper/script/base_vec_env.py
mcx/RSLGym
9211c8c23042c7a56802751f8d7cfd4e7248d7a2
[ "MIT" ]
2
2021-11-02T06:22:27.000Z
2021-12-21T06:16:17.000Z
# The MIT License # # Copyright (c) 2017 OpenAI (http://openai.com) # Copyright (c) 2018-2019 Stable-Baselines Team # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from abc import ABC, abstractmethod import inspect import pickle from typing import Sequence, Optional, List, Union import cloudpickle import numpy as np class AlreadySteppingError(Exception): """ Raised when an asynchronous step is running while step_async() is called again. """ def __init__(self): msg = 'already running an async step' Exception.__init__(self, msg) class NotSteppingError(Exception): """ Raised when an asynchronous step is not running but step_wait() is called. """ def __init__(self): msg = 'not running an async step' Exception.__init__(self, msg) class VecEnv(ABC): """ An abstract asynchronous, vectorized environment. :param num_envs: (int) the number of environments :param observation_space: (Gym Space) the observation space :param action_space: (Gym Space) the action space """ metadata = { 'render.modes': ['human', 'rgb_array'] } def __init__(self, num_envs, observation_space, action_space): self.num_envs = num_envs self.observation_space = observation_space self.action_space = action_space @abstractmethod def reset(self): """ Reset all the environments and return an array of observations, or a tuple of observation arrays. If step_async is still doing work, that work will be cancelled and step_wait() should not be called until step_async() is invoked again. :return: ([int] or [float]) observation """ pass @abstractmethod def step_async(self, actions): """ Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of the step. You should not call this if a step_async run is already pending. """ pass @abstractmethod def step_wait(self): """ Wait for the step taken with step_async(). :return: ([int] or [float], [float], [bool], dict) observation, reward, done, information """ pass @abstractmethod def close(self): """ Clean up the environment's resources. """ pass @abstractmethod def get_attr(self, attr_name, indices=None): """ Return attribute from vectorized environment. :param attr_name: (str) The name of the attribute whose value to return :param indices: (list,int) Indices of envs to get attribute from :return: (list) List of values of 'attr_name' in all environments """ pass @abstractmethod def set_attr(self, attr_name, value, indices=None): """ Set attribute inside vectorized environments. :param attr_name: (str) The name of attribute to assign new value :param value: (obj) Value to assign to `attr_name` :param indices: (list,int) Indices of envs to assign value :return: (NoneType) """ pass @abstractmethod def env_method(self, method_name, *method_args, indices=None, **method_kwargs): """ Call instance methods of vectorized environments. :param method_name: (str) The name of the environment method to invoke. :param indices: (list,int) Indices of envs whose method to call :param method_args: (tuple) Any positional arguments to provide in the call :param method_kwargs: (dict) Any keyword arguments to provide in the call :return: (list) List of items returned by the environment's method call """ pass @abstractmethod def seed(self, seed: Optional[int] = None) -> List[Union[None, int]]: """ Sets the random seeds for all environments, based on a given seed. Each individual environment will still get its own seed, by incrementing the given seed. :param seed: (Optional[int]) The random seed. May be None for completely random seeding. :return: (List[Union[None, int]]) Returns a list containing the seeds for each individual env. Note that all list elements may be None, if the env does not return anything when being seeded. """ pass def step(self, actions): """ Step the environments with the given action :param actions: ([int] or [float]) the action :return: ([int] or [float], [float], [bool], dict) observation, reward, done, information """ self.step_async(actions) return self.step_wait() def get_images(self) -> Sequence[np.ndarray]: """ Return RGB images from each environment """ raise NotImplementedError def render(self, mode: str = 'human'): """ Gym environment rendering :param mode: the rendering type """ raise NotImplementedError @property def unwrapped(self): if isinstance(self, VecEnvWrapper): return self.venv.unwrapped else: return self def getattr_depth_check(self, name, already_found): """Check if an attribute reference is being hidden in a recursive call to __getattr__ :param name: (str) name of attribute to check for :param already_found: (bool) whether this attribute has already been found in a wrapper :return: (str or None) name of module whose attribute is being shadowed, if any. """ if hasattr(self, name) and already_found: return "{0}.{1}".format(type(self).__module__, type(self).__name__) else: return None def _get_indices(self, indices): """ Convert a flexibly-typed reference to environment indices to an implied list of indices. :param indices: (None,int,Iterable) refers to indices of envs. :return: (list) the implied list of indices. """ if indices is None: indices = range(self.num_envs) elif isinstance(indices, int): indices = [indices] return indices class VecEnvWrapper(VecEnv): """ Vectorized environment base class :param venv: (VecEnv) the vectorized environment to wrap :param observation_space: (Gym Space) the observation space (can be None to load from venv) :param action_space: (Gym Space) the action space (can be None to load from venv) """ def __init__(self, venv, observation_space=None, action_space=None): self.venv = venv VecEnv.__init__(self, num_envs=venv.num_envs, observation_space=observation_space or venv.observation_space, action_space=action_space or venv.action_space) self.class_attributes = dict(inspect.getmembers(self.__class__)) def step_async(self, actions): self.venv.step_async(actions) @abstractmethod def reset(self): pass @abstractmethod def step_wait(self): pass def seed(self, seed=None): return self.venv.seed(seed) def close(self): return self.venv.close() def render(self, mode: str = 'human'): return self.venv.render(mode=mode) def get_images(self): return self.venv.get_images() def get_attr(self, attr_name, indices=None): return self.venv.get_attr(attr_name, indices) def set_attr(self, attr_name, value, indices=None): return self.venv.set_attr(attr_name, value, indices) def env_method(self, method_name, *method_args, indices=None, **method_kwargs): return self.venv.env_method(method_name, *method_args, indices=indices, **method_kwargs) def __getattr__(self, name): """Find attribute from wrapped venv(s) if this wrapper does not have it. Useful for accessing attributes from venvs which are wrapped with multiple wrappers which have unique attributes of interest. """ blocked_class = self.getattr_depth_check(name, already_found=False) if blocked_class is not None: own_class = "{0}.{1}".format(type(self).__module__, type(self).__name__) format_str = ("Error: Recursive attribute lookup for {0} from {1} is " "ambiguous and hides attribute from {2}") raise AttributeError(format_str.format(name, own_class, blocked_class)) return self.getattr_recursive(name) def _get_all_attributes(self): """Get all (inherited) instance and class attributes :return: (dict<str, object>) all_attributes """ all_attributes = self.__dict__.copy() all_attributes.update(self.class_attributes) return all_attributes def getattr_recursive(self, name): """Recursively check wrappers to find attribute. :param name (str) name of attribute to look for :return: (object) attribute """ all_attributes = self._get_all_attributes() if name in all_attributes: # attribute is present in this wrapper attr = getattr(self, name) elif hasattr(self.venv, 'getattr_recursive'): # Attribute not present, child is wrapper. Call getattr_recursive rather than getattr # to avoid a duplicate call to getattr_depth_check. attr = self.venv.getattr_recursive(name) else: # attribute not present, child is an unwrapped VecEnv attr = getattr(self.venv, name) return attr def getattr_depth_check(self, name, already_found): """See base class. :return: (str or None) name of module whose attribute is being shadowed, if any. """ all_attributes = self._get_all_attributes() if name in all_attributes and already_found: # this venv's attribute is being hidden because of a higher venv. shadowed_wrapper_class = "{0}.{1}".format(type(self).__module__, type(self).__name__) elif name in all_attributes and not already_found: # we have found the first reference to the attribute. Now check for duplicates. shadowed_wrapper_class = self.venv.getattr_depth_check(name, True) else: # this wrapper does not have the attribute. Keep searching. shadowed_wrapper_class = self.venv.getattr_depth_check(name, already_found) return shadowed_wrapper_class class CloudpickleWrapper(object): def __init__(self, var): """ Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle) :param var: (Any) the variable you wish to wrap for pickling with cloudpickle """ self.var = var def __getstate__(self): return cloudpickle.dumps(self.var) def __setstate__(self, obs): self.var = cloudpickle.loads(obs)
37.080495
116
0.659097
93ceb6fd70900f77e9a54919d165033e6d323ebf
353
py
Python
MySQL_Databses.py
windloid/PythonExamples
6a9d1d79cb9e58dd46b2b0e1a708f7cda94ff6a5
[ "MIT" ]
3
2020-05-22T09:16:02.000Z
2022-02-08T20:20:51.000Z
MySQL_Databses.py
windloid/PythonExamples
6a9d1d79cb9e58dd46b2b0e1a708f7cda94ff6a5
[ "MIT" ]
5
2021-03-19T08:04:40.000Z
2022-03-12T00:04:25.000Z
MySQL_Databses.py
windloid/PythonExamples
6a9d1d79cb9e58dd46b2b0e1a708f7cda94ff6a5
[ "MIT" ]
4
2020-05-22T09:16:04.000Z
2021-08-20T13:42:41.000Z
import mysql.connector # MySQl databses details mydb = mysql.connector.connect( host="localhost", user="root", passwd="", database="db_name" ) mycursor = mydb.cursor() # Execute SQL Query =>>>> mycursor.execute("SQL Query") mycursor.execute("SELECT column FROM table") myresult = mycursor.fetchall() for x in myresult: print(x)
17.65
55
0.688385
7c08eb1d39014f6f159ba4755eff24f437084934
4,558
py
Python
DRFdemo/BookTest/serializers.py
Nicholas-violet/Django_Rest_Framework
5f9fef4836980cb3de04cc47fa0f5ed7e065cd89
[ "MIT" ]
null
null
null
DRFdemo/BookTest/serializers.py
Nicholas-violet/Django_Rest_Framework
5f9fef4836980cb3de04cc47fa0f5ed7e065cd89
[ "MIT" ]
null
null
null
DRFdemo/BookTest/serializers.py
Nicholas-violet/Django_Rest_Framework
5f9fef4836980cb3de04cc47fa0f5ed7e065cd89
[ "MIT" ]
null
null
null
# 针对BookInfo模型类数据,定义一个BookInfoSerializer序列化器 # 来对BooKinfo数据进行序列化操作 ''' from rest_framework import serializers # # 我们自己心里清楚,这个序列化器是针对BookInfo的!!! # class BookInfoSerializer(serializers.Serializer): # # 通过指定同名类属性的形式,来定义转化结果字典中的属性 # # btitle = serializers.CharField() # bpub_date = serializers.DateField() # bread = serializers.IntegerField() # bcomment = serializers.IntegerField() # is_delete = serializers.BooleanField() # image = serializers.ImageField() class HeroInfoSerializer2(serializers.Serializer): GENDER_CHOICES = ( (0, 'male'), (1, 'female') ) id = serializers.IntegerField(label='ID', read_only=True) hname = serializers.CharField(label='名字', max_length=20) hgender = serializers.ChoiceField(choices=GENDER_CHOICES, label='性别', required=False) # 定义一个针对btitle的校验函数 # def check_btitle(value): # # 参数value:经过前序校验之后的btitle数据 # # 我们通过抛出ValidationError异常表示校验失败!! # # 返回值无 # # # 如果"django"字符串不再value中,表示不符合格式 # # {"btitle": "围城"} # if "django" not in value: # # 不是一本关于django的书 # raise serializers.ValidationError("这不是一本关于djangod的书!") class BookInfoSerializer(serializers.Serializer): """图书数据序列化器""" # read_only设置为True表示该字段只作用于序列化,反序列化的时候直接忽略 id = serializers.IntegerField(label='ID', read_only=True) # write_only设置为True表示该字段只作用于反序列化,序列化的时候直接忽略 btitle = serializers.CharField(label='名称', max_length=20, min_length=2, # validators约束条件指定多个针对当前字段的校验函数 # validators=[check_btitle] ) bpub_date = serializers.DateField(label='发布日期', required=True) bread = serializers.IntegerField(label='阅读量', required=False, min_value=0) bcomment = serializers.IntegerField(label='评论量', required=False, min_value=0) image = serializers.ImageField(label='图片', required=False, allow_null=True) is_delete =serializers.BooleanField(required=False) # heros隐藏字段,多个从表HeroInfo对象 # heros = serializers.PrimaryKeyRelatedField(read_only=True, many=True) # heros = serializers.StringRelatedField(many=True) # heros = HeroInfoSerializer2(many=True) class HeroInfoSerializer(serializers.Serializer): """英雄数据序列化器""" GENDER_CHOICES = ( (0, 'male'), (1, 'female') ) # HeroInfo的固有字段/属性 id = serializers.IntegerField(label='ID', read_only=True) hname = serializers.CharField(label='名字', max_length=20) hgender = serializers.ChoiceField(choices=GENDER_CHOICES, label='性别', required=False) hcomment = serializers.CharField(label='描述信息', max_length=200, required=False, allow_null=True) is_delete = serializers.BooleanField() # 外间关联属性 # hbook是当前英雄对象关联的"唯一"的主表"BookInfo对象" # (1)如果想把关联字段,序列化成关联对象数据的主键; read_only=True当前字段只作用于序列化操作 # hbook = serializers.PrimaryKeyRelatedField(read_only=True) # (2) 把关联字段,序列化成它的__str__方法返回的结果 # { # "hname": xxx, # "hgener": xxx, # ... # "hbook": "射雕英雄传" # } hbook = serializers.StringRelatedField() # 无约束条件,默认read_only=True # (3) 关联字段自定义序列化 # { # "hname": xxx, # "hgener": xxx, # ... # "hbook": {"btitle": xxx, "bpub_date": xxx} # } # hbook = BookInfoSerializer() ''' """ 使用模型类序列化器 """ from rest_framework import serializers from .models import * # serializers.Serializer ---- 自定义序列化器所继承的 # serializers.ModelSerializer ---- 专门针对模型类数据的序列化器 # 定义一个针对BookInfo的模型类序列化器 class BookInfoModelSerializer(serializers.ModelSerializer): # 可以通过在序列化器中手动自定映射的字段 # 对于非主键的隐藏字段 # heros = serializers.StringRelatedField(many=True) # 手动定义的字段,会覆盖自动映射的字段 # btitle = serializers.CharField(min_length=2, max_length=20, required=True) class Meta: model = BookInfo # 声明当前序列化器操作的目标模型类 fields = "__all__" # 声明操作的模型类的字段为所有:把所有的字段映射到序列化器中 # fields = ['id', 'btitle', 'bpub_date', 'bread'] # 指定字段映射 # exclude = ['image'] # 除了image字段,其他的字段映射到序列化器中 # 对模型类序列化器自动构建的约束条件进行修订 extra_kwargs = { "bread": {"min_value": 0}, # 把bread字段的min_value约束条件设置为0 # "required": True, } # 批量地把一些字段设置为read_only=True # read_only_fields = ['id', 'bread'] class HeroInfoModelSerializer(serializers.ModelSerializer): # 外间关联字段,自动映射的类型是PrimaryKeyRelatedField # 关联对象的主键隐藏字段不会自动映射 hbook_id = serializers.IntegerField() class Meta: model = HeroInfo fields = "__all__"
28.4875
99
0.659061
973fb64d8c966361515128612fec065da2e3b0c2
144,236
py
Python
nova/tests/unit/virt/vmwareapi/test_vmops.py
10088/nova
972c06c608f0b00e9066d7f581fd81197065cf49
[ "Apache-2.0" ]
null
null
null
nova/tests/unit/virt/vmwareapi/test_vmops.py
10088/nova
972c06c608f0b00e9066d7f581fd81197065cf49
[ "Apache-2.0" ]
null
null
null
nova/tests/unit/virt/vmwareapi/test_vmops.py
10088/nova
972c06c608f0b00e9066d7f581fd81197065cf49
[ "Apache-2.0" ]
null
null
null
# Copyright 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import time import mock from oslo_serialization import jsonutils from oslo_utils.fixture import uuidsentinel as uuids from oslo_utils import units from oslo_utils import uuidutils from oslo_vmware import exceptions as vexc from oslo_vmware.objects import datastore as ds_obj from oslo_vmware import vim_util as vutil from nova.compute import power_state from nova import context from nova import exception from nova.network import model as network_model from nova import objects from nova import test from nova.tests.unit import fake_flavor from nova.tests.unit import fake_instance from nova.tests.unit.virt.vmwareapi import fake as vmwareapi_fake from nova.tests.unit.virt.vmwareapi import stubs from nova import version from nova.virt import hardware from nova.virt.vmwareapi import constants from nova.virt.vmwareapi import ds_util from nova.virt.vmwareapi import images from nova.virt.vmwareapi import session from nova.virt.vmwareapi import vif from nova.virt.vmwareapi import vim_util from nova.virt.vmwareapi import vm_util from nova.virt.vmwareapi import vmops class DsPathMatcher(object): def __init__(self, expected_ds_path_str): self.expected_ds_path_str = expected_ds_path_str def __eq__(self, ds_path_param): return str(ds_path_param) == self.expected_ds_path_str class VMwareVMOpsTestCase(test.NoDBTestCase): def setUp(self): super(VMwareVMOpsTestCase, self).setUp() ds_util.dc_cache_reset() vmwareapi_fake.reset() stubs.set_stubs(self) self.flags(enabled=True, group='vnc') self.flags(subdirectory_name='vmware_base', group='image_cache') self.flags(my_ip='', flat_injected=True) self._context = context.RequestContext('fake_user', 'fake_project') self._session = session.VMwareAPISession() self._virtapi = mock.Mock() self._image_id = uuids.image fake_ds_ref = vmwareapi_fake.ManagedObjectReference( name='Datastore', value='fake-ds') self._ds = ds_obj.Datastore( ref=fake_ds_ref, name='fake_ds', capacity=10 * units.Gi, freespace=10 * units.Gi) self._dc_info = ds_util.DcInfo( ref='fake_dc_ref', name='fake_dc', vmFolder=vmwareapi_fake.ManagedObjectReference( name='Folder', value='fake_vm_folder')) cluster = vmwareapi_fake.create_cluster('fake_cluster', fake_ds_ref) self._uuid = uuids.foo fake_info_cache = { 'created_at': None, 'updated_at': None, 'deleted_at': None, 'deleted': False, 'instance_uuid': self._uuid, 'network_info': '[]', } self._instance_values = { 'name': 'fake_name', 'display_name': 'fake_display_name', 'uuid': self._uuid, 'vcpus': 1, 'memory_mb': 512, 'image_ref': self._image_id, 'root_gb': 10, 'node': '%s(%s)' % (cluster.mo_id, cluster.name), 'info_cache': fake_info_cache, 'expected_attrs': ['system_metadata', 'info_cache'], } self._instance = fake_instance.fake_instance_obj( self._context, **self._instance_values) self._flavor = objects.Flavor(name='m1.small', memory_mb=512, vcpus=1, root_gb=10, ephemeral_gb=0, swap=0, extra_specs={}) self._instance.flavor = self._flavor self._vmops = vmops.VMwareVMOps(self._session, self._virtapi, None, cluster=cluster.obj) self._cluster = cluster self._image_meta = objects.ImageMeta.from_dict({'id': self._image_id}) subnet_4 = network_model.Subnet(cidr='192.168.0.1/24', dns=[network_model.IP('192.168.0.1')], gateway= network_model.IP('192.168.0.1'), ips=[ network_model.IP('192.168.0.100')], routes=None) subnet_6 = network_model.Subnet(cidr='dead:beef::1/64', dns=None, gateway= network_model.IP('dead:beef::1'), ips=[network_model.IP( 'dead:beef::dcad:beff:feef:0')], routes=None) network = network_model.Network(id=0, bridge='fa0', label='fake', subnets=[subnet_4, subnet_6], vlan=None, bridge_interface=None, injected=True) self._network_values = { 'id': None, 'address': 'DE:AD:BE:EF:00:00', 'network': network, 'type': network_model.VIF_TYPE_OVS, 'devname': None, 'ovs_interfaceid': None, 'rxtx_cap': 3 } self.network_info = network_model.NetworkInfo([ network_model.VIF(**self._network_values) ]) pure_IPv6_network = network_model.Network(id=0, bridge='fa0', label='fake', subnets=[subnet_6], vlan=None, bridge_interface=None, injected=True) self.pure_IPv6_network_info = network_model.NetworkInfo([ network_model.VIF(id=None, address='DE:AD:BE:EF:00:00', network=pure_IPv6_network, type=None, devname=None, ovs_interfaceid=None, rxtx_cap=3) ]) self._metadata = ( "name:fake_display_name\n" "userid:fake_user\n" "username:None\n" "projectid:fake_project\n" "projectname:None\n" "flavor:name:m1.micro\n" "flavor:memory_mb:8\n" "flavor:vcpus:28\n" "flavor:ephemeral_gb:8128\n" "flavor:root_gb:496\n" "flavor:swap:33550336\n" "imageid:%s\n" "package:%s\n" % ( uuids.image, version.version_string_with_package())) def test_get_machine_id_str(self): result = vmops.VMwareVMOps._get_machine_id_str(self.network_info) self.assertEqual('DE:AD:BE:EF:00:00;192.168.0.100;255.255.255.0;' '192.168.0.1;192.168.0.255;192.168.0.1#', result) result = vmops.VMwareVMOps._get_machine_id_str( self.pure_IPv6_network_info) self.assertEqual('DE:AD:BE:EF:00:00;;;;;#', result) def _setup_create_folder_mocks(self): ops = vmops.VMwareVMOps(mock.Mock(), mock.Mock(), mock.Mock()) base_name = 'folder' ds_name = "datastore" ds_ref = vmwareapi_fake.ManagedObjectReference(value=1) dc_ref = mock.Mock() ds_util._DS_DC_MAPPING[ds_ref.value] = ds_util.DcInfo( ref=dc_ref, name='fake-name', vmFolder='fake-folder') path = ds_obj.DatastorePath(ds_name, base_name) return ds_name, ds_ref, ops, path, dc_ref @mock.patch.object(ds_util, 'mkdir') def test_create_folder_if_missing(self, mock_mkdir): ds_name, ds_ref, ops, path, dc = self._setup_create_folder_mocks() ops._create_folder_if_missing(ds_name, ds_ref, 'folder') mock_mkdir.assert_called_with(ops._session, path, dc) @mock.patch.object(ds_util, 'mkdir') def test_create_folder_if_missing_exception(self, mock_mkdir): ds_name, ds_ref, ops, path, dc = self._setup_create_folder_mocks() ds_util.mkdir.side_effect = vexc.FileAlreadyExistsException() ops._create_folder_if_missing(ds_name, ds_ref, 'folder') mock_mkdir.assert_called_with(ops._session, path, dc) def test_get_valid_vms_from_retrieve_result(self): ops = vmops.VMwareVMOps(self._session, mock.Mock(), mock.Mock()) fake_objects = vmwareapi_fake.FakeRetrieveResult() for x in range(0, 3): vm = vmwareapi_fake.VirtualMachine() vm.set('config.extraConfig["nvp.vm-uuid"]', vmwareapi_fake.OptionValue( value=uuidutils.generate_uuid())) fake_objects.add_object(vm) vms = ops._get_valid_vms_from_retrieve_result(fake_objects) self.assertEqual(3, len(vms)) def test_get_valid_vms_from_retrieve_result_with_invalid(self): ops = vmops.VMwareVMOps(self._session, mock.Mock(), mock.Mock()) fake_objects = vmwareapi_fake.FakeRetrieveResult() valid_vm = vmwareapi_fake.VirtualMachine() valid_vm.set('config.extraConfig["nvp.vm-uuid"]', vmwareapi_fake.OptionValue( value=uuidutils.generate_uuid())) fake_objects.add_object(valid_vm) invalid_vm1 = vmwareapi_fake.VirtualMachine() invalid_vm1.set('runtime.connectionState', 'orphaned') invalid_vm1.set('config.extraConfig["nvp.vm-uuid"]', vmwareapi_fake.OptionValue( value=uuidutils.generate_uuid())) invalid_vm2 = vmwareapi_fake.VirtualMachine() invalid_vm2.set('runtime.connectionState', 'inaccessible') invalid_vm2.set('config.extraConfig["nvp.vm-uuid"]', vmwareapi_fake.OptionValue( value=uuidutils.generate_uuid())) fake_objects.add_object(invalid_vm1) fake_objects.add_object(invalid_vm2) vms = ops._get_valid_vms_from_retrieve_result(fake_objects) self.assertEqual(1, len(vms)) def test_delete_vm_snapshot(self): def fake_call_method(module, method, *args, **kwargs): self.assertEqual('RemoveSnapshot_Task', method) self.assertEqual('fake_vm_snapshot', args[0]) self.assertFalse(kwargs['removeChildren']) self.assertTrue(kwargs['consolidate']) return 'fake_remove_snapshot_task' with test.nested( mock.patch.object(self._session, '_wait_for_task'), mock.patch.object(self._session, '_call_method', fake_call_method) ) as (_wait_for_task, _call_method): self._vmops._delete_vm_snapshot(self._instance, "fake_vm_ref", "fake_vm_snapshot") _wait_for_task.assert_has_calls([ mock.call('fake_remove_snapshot_task')]) def test_create_vm_snapshot(self): method_list = ['CreateSnapshot_Task', 'get_object_property'] def fake_call_method(module, method, *args, **kwargs): expected_method = method_list.pop(0) self.assertEqual(expected_method, method) if (expected_method == 'CreateSnapshot_Task'): self.assertEqual('fake_vm_ref', args[0]) self.assertFalse(kwargs['memory']) self.assertTrue(kwargs['quiesce']) return 'fake_snapshot_task' elif (expected_method == 'get_object_property'): task_info = mock.Mock() task_info.result = "fake_snapshot_ref" self.assertEqual(('fake_snapshot_task', 'info'), args) return task_info with test.nested( mock.patch.object(self._session, '_wait_for_task'), mock.patch.object(self._session, '_call_method', fake_call_method) ) as (_wait_for_task, _call_method): snap = self._vmops._create_vm_snapshot(self._instance, "fake_vm_ref") self.assertEqual("fake_snapshot_ref", snap) _wait_for_task.assert_has_calls([ mock.call('fake_snapshot_task')]) def test_update_instance_progress(self): with mock.patch.object(self._instance, 'save') as mock_save: self._vmops._update_instance_progress(self._instance._context, self._instance, 5, 10) mock_save.assert_called_once_with() self.assertEqual(50, self._instance.progress) @mock.patch.object(vm_util, 'get_vm_ref', return_value=vmwareapi_fake.ManagedObjectReference()) def test_get_info(self, mock_get_vm_ref): result = { 'summary.config.numCpu': 4, 'summary.config.memorySizeMB': 128, 'runtime.powerState': 'poweredOn' } with mock.patch.object(self._session, '_call_method', return_value=result): info = self._vmops.get_info(self._instance) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) expected = hardware.InstanceInfo(state=power_state.RUNNING) self.assertEqual(expected, info) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake_ref') def test_get_info_when_ds_unavailable(self, mock_get_vm_ref): result = { 'runtime.powerState': 'poweredOff' } with mock.patch.object(self._session, '_call_method', return_value=result): info = self._vmops.get_info(self._instance) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) self.assertEqual(hardware.InstanceInfo(state=power_state.SHUTDOWN), info) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake_ref') def test_get_info_instance_deleted(self, mock_get_vm_ref): props = ['summary.config.numCpu', 'summary.config.memorySizeMB', 'runtime.powerState'] prop_cpu = vmwareapi_fake.Prop(props[0], 4) prop_mem = vmwareapi_fake.Prop(props[1], 128) prop_state = vmwareapi_fake.Prop(props[2], 'poweredOn') prop_list = [prop_state, prop_mem, prop_cpu] obj_content = vmwareapi_fake.ObjectContent(None, prop_list=prop_list) result = vmwareapi_fake.FakeRetrieveResult() result.add_object(obj_content) def mock_call_method(module, method, *args, **kwargs): raise vexc.ManagedObjectNotFoundException() with mock.patch.object(self._session, '_call_method', mock_call_method): self.assertRaises(exception.InstanceNotFound, self._vmops.get_info, self._instance) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) def _test_get_datacenter_ref_and_name(self, ds_ref_exists=False): instance_ds_ref = vmwareapi_fake.ManagedObjectReference(value='ds-1') _vcvmops = vmops.VMwareVMOps(self._session, None, None) result = vmwareapi_fake.FakeRetrieveResult() if ds_ref_exists: ds_ref = vmwareapi_fake.ManagedObjectReference(value='ds-1') result.add_object(vmwareapi_fake.Datacenter(ds_ref=ds_ref)) else: result.add_object(vmwareapi_fake.Datacenter(ds_ref=None)) result.add_object(vmwareapi_fake.Datacenter()) with mock.patch.object(self._session, '_call_method', return_value=result) as fake_call: dc_info = _vcvmops.get_datacenter_ref_and_name(instance_ds_ref) fake_call.assert_called_once_with( vim_util, "get_objects", "Datacenter", ["name", "datastore", "vmFolder"]) if ds_ref_exists: self.assertEqual(1, len(ds_util._DS_DC_MAPPING)) self.assertEqual("ha-datacenter", dc_info.name) else: self.assertIsNone(dc_info) def test_get_datacenter_ref_and_name(self): self._test_get_datacenter_ref_and_name(ds_ref_exists=True) def test_get_datacenter_ref_and_name_with_no_datastore(self): self._test_get_datacenter_ref_and_name() @mock.patch('nova.image.glance.API.get') @mock.patch.object(vm_util, 'power_off_instance') @mock.patch.object(ds_util, 'disk_copy') @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') @mock.patch.object(vm_util, 'find_rescue_device') @mock.patch.object(vm_util, 'get_vm_boot_spec') @mock.patch.object(vm_util, 'reconfigure_vm') @mock.patch.object(vm_util, 'power_on_instance') @mock.patch.object(ds_obj, 'get_datastore_by_ref') def test_rescue(self, mock_get_ds_by_ref, mock_power_on, mock_reconfigure, mock_get_boot_spec, mock_find_rescue, mock_get_vm_ref, mock_disk_copy, mock_power_off, mock_glance): _volumeops = mock.Mock() self._vmops._volumeops = _volumeops ds_ref = vmwareapi_fake.ManagedObjectReference(value='fake-ref') ds = ds_obj.Datastore(ds_ref, 'ds1') mock_get_ds_by_ref.return_value = ds mock_find_rescue.return_value = 'fake-rescue-device' mock_get_boot_spec.return_value = 'fake-boot-spec' vm_ref = vmwareapi_fake.ManagedObjectReference() mock_get_vm_ref.return_value = vm_ref device = vmwareapi_fake.DataObject() backing = vmwareapi_fake.DataObject() backing.datastore = ds.ref device.backing = backing vmdk = vm_util.VmdkInfo('[fake] test (uuid)/root.vmdk', 'fake-adapter', 'fake-disk', 'fake-capacity', device) with test.nested( mock.patch.object(self._vmops, 'get_datacenter_ref_and_name'), mock.patch.object(vm_util, 'get_vmdk_info', return_value=vmdk) ) as (_get_dc_ref_and_name, fake_vmdk_info): dc_info = mock.Mock() _get_dc_ref_and_name.return_value = dc_info self._vmops.rescue( self._context, self._instance, None, self._image_meta) mock_power_off.assert_called_once_with(self._session, self._instance, vm_ref) uuid = self._instance.image_ref cache_path = ds.build_path('vmware_base', uuid, uuid + '.vmdk') vm_folder = ds_obj.DatastorePath.parse(vmdk.path).dirname rescue_path = ds.build_path(vm_folder, uuid + '-rescue.vmdk') mock_disk_copy.assert_called_once_with(self._session, dc_info.ref, cache_path, rescue_path) _volumeops.attach_disk_to_vm.assert_called_once_with(vm_ref, self._instance, mock.ANY, mock.ANY, rescue_path) mock_get_boot_spec.assert_called_once_with(mock.ANY, 'fake-rescue-device') mock_reconfigure.assert_called_once_with(self._session, vm_ref, 'fake-boot-spec') mock_power_on.assert_called_once_with(self._session, self._instance, vm_ref=vm_ref) def test_unrescue_power_on(self): self._test_unrescue(True) def test_unrescue_power_off(self): self._test_unrescue(False) def _test_unrescue(self, power_on): _volumeops = mock.Mock() self._vmops._volumeops = _volumeops vm_ref = mock.Mock() def fake_call_method(module, method, *args, **kwargs): expected_args = (vm_ref, 'config.hardware.device') self.assertEqual('get_object_property', method) self.assertEqual(expected_args, args) with test.nested( mock.patch.object(vm_util, 'power_on_instance'), mock.patch.object(vm_util, 'find_rescue_device'), mock.patch.object(vm_util, 'get_vm_ref', return_value=vm_ref), mock.patch.object(self._session, '_call_method', fake_call_method), mock.patch.object(vm_util, 'power_off_instance') ) as (_power_on_instance, _find_rescue, _get_vm_ref, _call_method, _power_off): self._vmops.unrescue(self._instance, power_on=power_on) if power_on: _power_on_instance.assert_called_once_with(self._session, self._instance, vm_ref=vm_ref) else: self.assertFalse(_power_on_instance.called) _get_vm_ref.assert_called_once_with(self._session, self._instance) _power_off.assert_called_once_with(self._session, self._instance, vm_ref) _volumeops.detach_disk_from_vm.assert_called_once_with( vm_ref, self._instance, mock.ANY, destroy_disk=True) @mock.patch.object(time, 'sleep') def _test_clean_shutdown(self, mock_sleep, timeout, retry_interval, returns_on, returns_off, vmware_tools_status, succeeds): """Test the _clean_shutdown method :param timeout: timeout before soft shutdown is considered a fail :param retry_interval: time between rechecking instance power state :param returns_on: how often the instance is reported as poweredOn :param returns_off: how often the instance is reported as poweredOff :param vmware_tools_status: Status of vmware tools :param succeeds: the expected result """ instance = self._instance vm_ref = mock.Mock() return_props = [] expected_methods = ['get_object_properties_dict'] props_on = {'runtime.powerState': 'poweredOn', 'summary.guest.toolsStatus': vmware_tools_status, 'summary.guest.toolsRunningStatus': 'guestToolsRunning'} props_off = {'runtime.powerState': 'poweredOff', 'summary.guest.toolsStatus': vmware_tools_status, 'summary.guest.toolsRunningStatus': 'guestToolsRunning'} # initialize expected instance methods and returned properties if vmware_tools_status == "toolsOk": if returns_on > 0: expected_methods.append('ShutdownGuest') for x in range(returns_on + 1): return_props.append(props_on) for x in range(returns_on): expected_methods.append('get_object_properties_dict') for x in range(returns_off): return_props.append(props_off) if returns_on > 0: expected_methods.append('get_object_properties_dict') else: return_props.append(props_off) def fake_call_method(module, method, *args, **kwargs): expected_method = expected_methods.pop(0) self.assertEqual(expected_method, method) if expected_method == 'get_object_properties_dict': props = return_props.pop(0) return props elif expected_method == 'ShutdownGuest': return with test.nested( mock.patch.object(vm_util, 'get_vm_ref', return_value=vm_ref), mock.patch.object(self._session, '_call_method', side_effect=fake_call_method) ) as (mock_get_vm_ref, mock_call_method): result = self._vmops._clean_shutdown(instance, timeout, retry_interval) self.assertEqual(succeeds, result) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) def test_clean_shutdown_first_time(self): self._test_clean_shutdown(timeout=10, retry_interval=3, returns_on=1, returns_off=1, vmware_tools_status="toolsOk", succeeds=True) def test_clean_shutdown_second_time(self): self._test_clean_shutdown(timeout=10, retry_interval=3, returns_on=2, returns_off=1, vmware_tools_status="toolsOk", succeeds=True) def test_clean_shutdown_timeout(self): self._test_clean_shutdown(timeout=10, retry_interval=3, returns_on=4, returns_off=0, vmware_tools_status="toolsOk", succeeds=False) def test_clean_shutdown_already_off(self): self._test_clean_shutdown(timeout=10, retry_interval=3, returns_on=0, returns_off=1, vmware_tools_status="toolsOk", succeeds=False) def test_clean_shutdown_no_vwaretools(self): self._test_clean_shutdown(timeout=10, retry_interval=3, returns_on=1, returns_off=0, vmware_tools_status="toolsNotOk", succeeds=False) def _test_finish_migration(self, power_on=True, resize_instance=False): with test.nested( mock.patch.object(self._vmops, '_resize_create_ephemerals_and_swap'), mock.patch.object(self._vmops, "_update_instance_progress"), mock.patch.object(vm_util, "power_on_instance"), mock.patch.object(vm_util, "get_vm_ref", return_value='fake-ref') ) as (fake_resize_create_ephemerals_and_swap, fake_update_instance_progress, fake_power_on, fake_get_vm_ref): self._vmops.finish_migration(context=self._context, migration=None, instance=self._instance, disk_info=None, network_info=None, block_device_info=None, resize_instance=resize_instance, image_meta=None, power_on=power_on) fake_resize_create_ephemerals_and_swap.assert_called_once_with( 'fake-ref', self._instance, None) if power_on: fake_power_on.assert_called_once_with(self._session, self._instance, vm_ref='fake-ref') else: self.assertFalse(fake_power_on.called) calls = [ mock.call(self._context, self._instance, step=5, total_steps=vmops.RESIZE_TOTAL_STEPS), mock.call(self._context, self._instance, step=6, total_steps=vmops.RESIZE_TOTAL_STEPS)] fake_update_instance_progress.assert_has_calls(calls) def test_finish_migration_power_on(self): self._test_finish_migration(power_on=True, resize_instance=False) def test_finish_migration_power_off(self): self._test_finish_migration(power_on=False, resize_instance=False) def test_finish_migration_power_on_resize(self): self._test_finish_migration(power_on=True, resize_instance=True) @mock.patch.object(vmops.VMwareVMOps, '_create_swap') @mock.patch.object(vmops.VMwareVMOps, '_create_ephemeral') @mock.patch.object(ds_obj, 'get_datastore_by_ref', return_value='fake-ds-ref') @mock.patch.object(vm_util, 'get_vmdk_info') def _test_resize_create_ephemerals(self, vmdk, datastore, mock_get_vmdk_info, mock_get_datastore_by_ref, mock_create_ephemeral, mock_create_swap): mock_get_vmdk_info.return_value = vmdk dc_info = ds_util.DcInfo(ref='fake_ref', name='fake', vmFolder='fake_folder') with mock.patch.object(self._vmops, 'get_datacenter_ref_and_name', return_value=dc_info) as mock_get_dc_ref_and_name: self._vmops._resize_create_ephemerals_and_swap( 'vm-ref', self._instance, 'block-devices') mock_get_vmdk_info.assert_called_once_with( self._session, 'vm-ref', uuid=self._instance.uuid) if vmdk.device: mock_get_datastore_by_ref.assert_called_once_with( self._session, datastore.ref) mock_get_dc_ref_and_name.assert_called_once_with(datastore.ref) mock_create_ephemeral.assert_called_once_with( 'block-devices', self._instance, 'vm-ref', dc_info, 'fake-ds-ref', 'uuid', 'fake-adapter') mock_create_swap.assert_called_once_with( 'block-devices', self._instance, 'vm-ref', dc_info, 'fake-ds-ref', 'uuid', 'fake-adapter') else: self.assertFalse(mock_create_ephemeral.called) self.assertFalse(mock_get_dc_ref_and_name.called) self.assertFalse(mock_get_datastore_by_ref.called) def test_resize_create_ephemerals(self): datastore = ds_obj.Datastore(ref='fake-ref', name='fake') device = vmwareapi_fake.DataObject() backing = vmwareapi_fake.DataObject() backing.datastore = datastore.ref device.backing = backing vmdk = vm_util.VmdkInfo('[fake] uuid/root.vmdk', 'fake-adapter', 'fake-disk', 'fake-capacity', device) self._test_resize_create_ephemerals(vmdk, datastore) def test_resize_create_ephemerals_no_root(self): vmdk = vm_util.VmdkInfo(None, None, None, 0, None) self._test_resize_create_ephemerals(vmdk, None) @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(vmops.VMwareVMOps, '_resize_create_ephemerals_and_swap') @mock.patch.object(vmops.VMwareVMOps, '_remove_ephemerals_and_swap') @mock.patch.object(ds_util, 'disk_delete') @mock.patch.object(ds_util, 'disk_move') @mock.patch.object(ds_util, 'file_exists', return_value=True) @mock.patch.object(vmops.VMwareVMOps, '_get_ds_browser', return_value='fake-browser') @mock.patch.object(vm_util, 'reconfigure_vm') @mock.patch.object(vm_util, 'get_vm_resize_spec', return_value='fake-spec') @mock.patch.object(vm_util, 'power_off_instance') @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') @mock.patch.object(vm_util, 'power_on_instance') def _test_finish_revert_migration(self, fake_power_on, fake_get_vm_ref, fake_power_off, fake_resize_spec, fake_reconfigure_vm, fake_get_browser, fake_original_exists, fake_disk_move, fake_disk_delete, fake_remove_ephemerals_and_swap, fake_resize_create_ephemerals_and_swap, fake_get_extra_specs, power_on): """Tests the finish_revert_migration method on vmops.""" datastore = ds_obj.Datastore(ref='fake-ref', name='fake') device = vmwareapi_fake.DataObject() backing = vmwareapi_fake.DataObject() backing.datastore = datastore.ref device.backing = backing vmdk = vm_util.VmdkInfo('[fake] uuid/root.vmdk', 'fake-adapter', 'fake-disk', 'fake-capacity', device) dc_info = ds_util.DcInfo(ref='fake_ref', name='fake', vmFolder='fake_folder') extra_specs = vm_util.ExtraSpecs() fake_get_extra_specs.return_value = extra_specs with test.nested( mock.patch.object(self._vmops, 'get_datacenter_ref_and_name', return_value=dc_info), mock.patch.object(vm_util, 'get_vmdk_info', return_value=vmdk) ) as (fake_get_dc_ref_and_name, fake_get_vmdk_info): self._vmops._volumeops = mock.Mock() mock_attach_disk = self._vmops._volumeops.attach_disk_to_vm mock_detach_disk = self._vmops._volumeops.detach_disk_from_vm self._vmops.finish_revert_migration(self._context, instance=self._instance, network_info=None, block_device_info=None, power_on=power_on) fake_get_vm_ref.assert_called_once_with(self._session, self._instance) fake_power_off.assert_called_once_with(self._session, self._instance, 'fake-ref') # Validate VM reconfiguration metadata = ('name:fake_display_name\n' 'userid:fake_user\n' 'username:None\n' 'projectid:fake_project\n' 'projectname:None\n' 'flavor:name:m1.small\n' 'flavor:memory_mb:512\n' 'flavor:vcpus:1\n' 'flavor:ephemeral_gb:0\n' 'flavor:root_gb:10\n' 'flavor:swap:0\n' 'imageid:%s\n' 'package:%s\n' % ( uuids.image, version.version_string_with_package())) fake_resize_spec.assert_called_once_with( self._session.vim.client.factory, int(self._instance.vcpus), int(self._instance.memory_mb), extra_specs, metadata=metadata) fake_reconfigure_vm.assert_called_once_with(self._session, 'fake-ref', 'fake-spec') # Validate disk configuration fake_get_vmdk_info.assert_called_once_with( self._session, 'fake-ref', uuid=self._instance.uuid) fake_get_browser.assert_called_once_with('fake-ref') fake_original_exists.assert_called_once_with( self._session, 'fake-browser', ds_obj.DatastorePath(datastore.name, 'uuid'), 'original.vmdk') mock_detach_disk.assert_called_once_with('fake-ref', self._instance, device) fake_disk_delete.assert_called_once_with( self._session, dc_info.ref, '[fake] uuid/root.vmdk') fake_disk_move.assert_called_once_with( self._session, dc_info.ref, '[fake] uuid/original.vmdk', '[fake] uuid/root.vmdk') mock_attach_disk.assert_called_once_with( 'fake-ref', self._instance, 'fake-adapter', 'fake-disk', '[fake] uuid/root.vmdk', disk_io_limits=extra_specs.disk_io_limits) fake_remove_ephemerals_and_swap.assert_called_once_with('fake-ref') fake_resize_create_ephemerals_and_swap.assert_called_once_with( 'fake-ref', self._instance, None) if power_on: fake_power_on.assert_called_once_with(self._session, self._instance) else: self.assertFalse(fake_power_on.called) def test_finish_revert_migration_power_on(self): self._test_finish_revert_migration(power_on=True) def test_finish_revert_migration_power_off(self): self._test_finish_revert_migration(power_on=False) def _test_find_esx_host(self, cluster_hosts, ds_hosts): def mock_call_method(module, method, *args, **kwargs): if args[0] == 'fake_cluster': ret = mock.MagicMock() ret.ManagedObjectReference = cluster_hosts return ret elif args[0] == 'fake_ds': ret = mock.MagicMock() ret.DatastoreHostMount = ds_hosts return ret with mock.patch.object(self._session, '_call_method', mock_call_method): return self._vmops._find_esx_host('fake_cluster', 'fake_ds') def test_find_esx_host(self): ch1 = vmwareapi_fake.ManagedObjectReference(value='host-10') ch2 = vmwareapi_fake.ManagedObjectReference(value='host-12') ch3 = vmwareapi_fake.ManagedObjectReference(value='host-15') dh1 = vmwareapi_fake.DatastoreHostMount('host-8') dh2 = vmwareapi_fake.DatastoreHostMount('host-12') dh3 = vmwareapi_fake.DatastoreHostMount('host-17') ret = self._test_find_esx_host([ch1, ch2, ch3], [dh1, dh2, dh3]) self.assertEqual('host-12', ret.value) def test_find_esx_host_none(self): ch1 = vmwareapi_fake.ManagedObjectReference(value='host-10') ch2 = vmwareapi_fake.ManagedObjectReference(value='host-12') ch3 = vmwareapi_fake.ManagedObjectReference(value='host-15') dh1 = vmwareapi_fake.DatastoreHostMount('host-8') dh2 = vmwareapi_fake.DatastoreHostMount('host-13') dh3 = vmwareapi_fake.DatastoreHostMount('host-17') ret = self._test_find_esx_host([ch1, ch2, ch3], [dh1, dh2, dh3]) self.assertIsNone(ret) @mock.patch.object(vm_util, 'get_vmdk_info') @mock.patch.object(ds_obj, 'get_datastore_by_ref') def test_find_datastore_for_migration(self, mock_get_ds, mock_get_vmdk): def mock_call_method(module, method, *args, **kwargs): ds1 = vmwareapi_fake.ManagedObjectReference(value='datastore-10') ds2 = vmwareapi_fake.ManagedObjectReference(value='datastore-12') ds3 = vmwareapi_fake.ManagedObjectReference(value='datastore-15') ret = mock.MagicMock() ret.ManagedObjectReference = [ds1, ds2, ds3] return ret ds_ref = vmwareapi_fake.ManagedObjectReference(value='datastore-12') vmdk_dev = mock.MagicMock() vmdk_dev.device.backing.datastore = ds_ref mock_get_vmdk.return_value = vmdk_dev ds = ds_obj.Datastore(ds_ref, 'datastore1') mock_get_ds.return_value = ds with mock.patch.object(self._session, '_call_method', mock_call_method): ret = self._vmops._find_datastore_for_migration(self._instance, 'fake_vm', 'cluster_ref', None) self.assertIs(ds, ret) mock_get_vmdk.assert_called_once_with(self._session, 'fake_vm', uuid=self._instance.uuid) mock_get_ds.assert_called_once_with(self._session, ds_ref) @mock.patch.object(vm_util, 'get_vmdk_info') @mock.patch.object(ds_util, 'get_datastore') def test_find_datastore_for_migration_other(self, mock_get_ds, mock_get_vmdk): def mock_call_method(module, method, *args, **kwargs): ds1 = vmwareapi_fake.ManagedObjectReference(value='datastore-10') ds2 = vmwareapi_fake.ManagedObjectReference(value='datastore-12') ds3 = vmwareapi_fake.ManagedObjectReference(value='datastore-15') ret = mock.MagicMock() ret.ManagedObjectReference = [ds1, ds2, ds3] return ret ds_ref = vmwareapi_fake.ManagedObjectReference(value='datastore-18') vmdk_dev = mock.MagicMock() vmdk_dev.device.backing.datastore = ds_ref mock_get_vmdk.return_value = vmdk_dev ds = ds_obj.Datastore(ds_ref, 'datastore1') mock_get_ds.return_value = ds with mock.patch.object(self._session, '_call_method', mock_call_method): ret = self._vmops._find_datastore_for_migration(self._instance, 'fake_vm', 'cluster_ref', None) self.assertIs(ds, ret) mock_get_vmdk.assert_called_once_with(self._session, 'fake_vm', uuid=self._instance.uuid) mock_get_ds.assert_called_once_with(self._session, 'cluster_ref', None) @mock.patch.object(vm_util, 'relocate_vm') @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake_vm') @mock.patch.object(vm_util, 'get_cluster_ref_by_name', return_value='fake_cluster') @mock.patch.object(vm_util, 'get_res_pool_ref', return_value='fake_pool') @mock.patch.object(vmops.VMwareVMOps, '_find_datastore_for_migration') @mock.patch.object(vmops.VMwareVMOps, '_find_esx_host', return_value='fake_host') def test_live_migration(self, mock_find_host, mock_find_datastore, mock_get_respool, mock_get_cluster, mock_get_vm, mock_relocate): post_method = mock.MagicMock() migrate_data = objects.VMwareLiveMigrateData() migrate_data.cluster_name = 'fake-cluster' migrate_data.datastore_regex = 'ds1|ds2' mock_find_datastore.return_value = ds_obj.Datastore('ds_ref', 'ds') with mock.patch.object(self._session, '_call_method', return_value='hardware-devices'): self._vmops.live_migration( self._context, self._instance, 'fake-host', post_method, None, False, migrate_data) mock_get_vm.assert_called_once_with(self._session, self._instance) mock_get_cluster.assert_called_once_with(self._session, 'fake-cluster') mock_find_datastore.assert_called_once_with(self._instance, 'fake_vm', 'fake_cluster', mock.ANY) mock_find_host.assert_called_once_with('fake_cluster', 'ds_ref') mock_relocate.assert_called_once_with(self._session, 'fake_vm', 'fake_pool', 'ds_ref', 'fake_host', devices=[]) post_method.assert_called_once_with(self._context, self._instance, 'fake-host', False, migrate_data) @mock.patch.object(vmops.VMwareVMOps, '_get_instance_metadata') @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(vm_util, 'reconfigure_vm') @mock.patch.object(vm_util, 'get_vm_resize_spec', return_value='fake-spec') def test_resize_vm(self, fake_resize_spec, fake_reconfigure, fake_get_extra_specs, fake_get_metadata): extra_specs = vm_util.ExtraSpecs() fake_get_extra_specs.return_value = extra_specs fake_get_metadata.return_value = self._metadata flavor = objects.Flavor(name='m1.small', memory_mb=1024, vcpus=2, extra_specs={}) self._vmops._resize_vm(self._context, self._instance, 'vm-ref', flavor, None) fake_get_metadata.assert_called_once_with(self._context, self._instance, flavor=flavor) fake_resize_spec.assert_called_once_with( self._session.vim.client.factory, 2, 1024, extra_specs, metadata=self._metadata) fake_reconfigure.assert_called_once_with(self._session, 'vm-ref', 'fake-spec') @mock.patch.object(vmops.VMwareVMOps, '_extend_virtual_disk') @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(ds_util, 'disk_move') @mock.patch.object(ds_util, 'disk_copy') def test_resize_disk(self, fake_disk_copy, fake_disk_move, fake_get_extra_specs, fake_extend): datastore = ds_obj.Datastore(ref='fake-ref', name='fake') device = vmwareapi_fake.DataObject() backing = vmwareapi_fake.DataObject() backing.datastore = datastore.ref device.backing = backing vmdk = vm_util.VmdkInfo('[fake] uuid/root.vmdk', 'fake-adapter', 'fake-disk', self._instance.flavor.root_gb * units.Gi, device) dc_info = ds_util.DcInfo(ref='fake_ref', name='fake', vmFolder='fake_folder') with mock.patch.object(self._vmops, 'get_datacenter_ref_and_name', return_value=dc_info) as fake_get_dc_ref_and_name: self._vmops._volumeops = mock.Mock() mock_attach_disk = self._vmops._volumeops.attach_disk_to_vm mock_detach_disk = self._vmops._volumeops.detach_disk_from_vm extra_specs = vm_util.ExtraSpecs() fake_get_extra_specs.return_value = extra_specs flavor = fake_flavor.fake_flavor_obj(self._context, root_gb=self._instance.flavor.root_gb + 1) self._vmops._resize_disk(self._instance, 'fake-ref', vmdk, flavor) fake_get_dc_ref_and_name.assert_called_once_with(datastore.ref) fake_disk_copy.assert_called_once_with( self._session, dc_info.ref, '[fake] uuid/root.vmdk', '[fake] uuid/resized.vmdk') mock_detach_disk.assert_called_once_with('fake-ref', self._instance, device) fake_extend.assert_called_once_with( self._instance, flavor['root_gb'] * units.Mi, '[fake] uuid/resized.vmdk', dc_info.ref) calls = [ mock.call(self._session, dc_info.ref, '[fake] uuid/root.vmdk', '[fake] uuid/original.vmdk'), mock.call(self._session, dc_info.ref, '[fake] uuid/resized.vmdk', '[fake] uuid/root.vmdk')] fake_disk_move.assert_has_calls(calls) mock_attach_disk.assert_called_once_with( 'fake-ref', self._instance, 'fake-adapter', 'fake-disk', '[fake] uuid/root.vmdk', disk_io_limits=extra_specs.disk_io_limits) @mock.patch.object(vm_util, 'detach_devices_from_vm') @mock.patch.object(vm_util, 'get_swap') @mock.patch.object(vm_util, 'get_ephemerals') def test_remove_ephemerals_and_swap(self, get_ephemerals, get_swap, detach_devices): get_ephemerals.return_value = [mock.sentinel.ephemeral0, mock.sentinel.ephemeral1] get_swap.return_value = mock.sentinel.swap devices = [mock.sentinel.ephemeral0, mock.sentinel.ephemeral1, mock.sentinel.swap] self._vmops._remove_ephemerals_and_swap(mock.sentinel.vm_ref) detach_devices.assert_called_once_with(self._vmops._session, mock.sentinel.vm_ref, devices) @mock.patch.object(ds_util, 'disk_delete') @mock.patch.object(ds_util, 'file_exists', return_value=True) @mock.patch.object(vmops.VMwareVMOps, '_get_ds_browser', return_value='fake-browser') @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') def test_confirm_migration(self, fake_get_vm_ref, fake_get_browser, fake_original_exists, fake_disk_delete): """Tests the confirm_migration method on vmops.""" datastore = ds_obj.Datastore(ref='fake-ref', name='fake') device = vmwareapi_fake.DataObject() backing = vmwareapi_fake.DataObject() backing.datastore = datastore.ref device.backing = backing vmdk = vm_util.VmdkInfo('[fake] uuid/root.vmdk', 'fake-adapter', 'fake-disk', 'fake-capacity', device) dc_info = ds_util.DcInfo(ref='fake_ref', name='fake', vmFolder='fake_folder') with test.nested( mock.patch.object(self._vmops, 'get_datacenter_ref_and_name', return_value=dc_info), mock.patch.object(vm_util, 'get_vmdk_info', return_value=vmdk) ) as (fake_get_dc_ref_and_name, fake_get_vmdk_info): self._vmops.confirm_migration(None, self._instance, None) fake_get_vm_ref.assert_called_once_with(self._session, self._instance) fake_get_vmdk_info.assert_called_once_with( self._session, 'fake-ref', uuid=self._instance.uuid) fake_get_browser.assert_called_once_with('fake-ref') fake_original_exists.assert_called_once_with( self._session, 'fake-browser', ds_obj.DatastorePath(datastore.name, 'uuid'), 'original.vmdk') fake_disk_delete.assert_called_once_with( self._session, dc_info.ref, '[fake] uuid/original.vmdk') def test_migrate_disk_and_power_off(self): self._test_migrate_disk_and_power_off( flavor_root_gb=self._instance.flavor.root_gb + 1) def test_migrate_disk_and_power_off_zero_disk_flavor(self): self._instance.flavor.root_gb = 0 self._test_migrate_disk_and_power_off(flavor_root_gb=0) def test_migrate_disk_and_power_off_disk_shrink(self): self.assertRaises(exception.InstanceFaultRollback, self._test_migrate_disk_and_power_off, flavor_root_gb=self._instance.flavor.root_gb - 1) @mock.patch.object(vmops.VMwareVMOps, "_remove_ephemerals_and_swap") @mock.patch.object(vm_util, 'get_vmdk_info') @mock.patch.object(vmops.VMwareVMOps, "_resize_disk") @mock.patch.object(vmops.VMwareVMOps, "_resize_vm") @mock.patch.object(vm_util, 'power_off_instance') @mock.patch.object(vmops.VMwareVMOps, "_update_instance_progress") @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') def _test_migrate_disk_and_power_off(self, fake_get_vm_ref, fake_progress, fake_power_off, fake_resize_vm, fake_resize_disk, fake_get_vmdk_info, fake_remove_ephemerals_and_swap, flavor_root_gb): vmdk = vm_util.VmdkInfo('[fake] uuid/root.vmdk', 'fake-adapter', 'fake-disk', self._instance.flavor.root_gb * units.Gi, 'fake-device') fake_get_vmdk_info.return_value = vmdk flavor = fake_flavor.fake_flavor_obj(self._context, root_gb=flavor_root_gb) self._vmops.migrate_disk_and_power_off(self._context, self._instance, None, flavor) fake_get_vm_ref.assert_called_once_with(self._session, self._instance) fake_power_off.assert_called_once_with(self._session, self._instance, 'fake-ref') fake_resize_vm.assert_called_once_with(self._context, self._instance, 'fake-ref', flavor, mock.ANY) fake_resize_disk.assert_called_once_with(self._instance, 'fake-ref', vmdk, flavor) calls = [mock.call(self._context, self._instance, step=i, total_steps=vmops.RESIZE_TOTAL_STEPS) for i in range(4)] fake_progress.assert_has_calls(calls) @mock.patch.object(vutil, 'get_inventory_path', return_value='fake_path') @mock.patch.object(vmops.VMwareVMOps, '_attach_cdrom_to_vm') @mock.patch.object(vmops.VMwareVMOps, '_create_config_drive') def test_configure_config_drive(self, mock_create_config_drive, mock_attach_cdrom_to_vm, mock_get_inventory_path): injected_files = mock.Mock() admin_password = mock.Mock() network_info = mock.Mock() vm_ref = mock.Mock() mock_create_config_drive.return_value = "fake_iso_path" self._vmops._configure_config_drive( self._context, self._instance, vm_ref, self._dc_info, self._ds, injected_files, admin_password, network_info) upload_iso_path = self._ds.build_path("fake_iso_path") mock_get_inventory_path.assert_called_once_with(self._session.vim, self._dc_info.ref) mock_create_config_drive.assert_called_once_with( self._context, self._instance, injected_files, admin_password, network_info, self._ds.name, 'fake_path', self._instance.uuid, "Fake-CookieJar") mock_attach_cdrom_to_vm.assert_called_once_with( vm_ref, self._instance, self._ds.ref, str(upload_iso_path)) def test_prepare_for_spawn_invalid_ram(self): instance = self._instance.obj_clone() flavor = objects.Flavor(vcpus=1, memory_mb=6, ephemeral_gb=1, swap=1024, extra_specs={}) instance.flavor = flavor self.assertRaises(exception.InstanceUnacceptable, self._vmops.prepare_for_spawn, instance) @mock.patch('nova.image.glance.API.get') @mock.patch.object(vmops.LOG, 'debug') @mock.patch.object(vmops.VMwareVMOps, '_fetch_image_if_missing') @mock.patch.object(vmops.VMwareVMOps, '_get_vm_config_info') @mock.patch.object(vmops.VMwareVMOps, 'build_virtual_machine') @mock.patch.object(vmops.lockutils, 'lock') def test_spawn_mask_block_device_info_password(self, mock_lock, mock_build_virtual_machine, mock_get_vm_config_info, mock_fetch_image_if_missing, mock_debug, mock_glance): # Very simple test that just ensures block_device_info auth_password # is masked when logged; the rest of the test just fails out early. data = {'auth_password': 'scrubme'} bdm = [{'boot_index': 0, 'disk_bus': constants.DEFAULT_ADAPTER_TYPE, 'connection_info': {'data': data}}] bdi = {'block_device_mapping': bdm} self.password_logged = False # Tests that the parameters to the to_xml method are sanitized for # passwords when logged. def fake_debug(*args, **kwargs): if 'auth_password' in args[0]: self.password_logged = True self.assertNotIn('scrubme', args[0]) mock_debug.side_effect = fake_debug self.flags(flat_injected=False) self.flags(enabled=False, group='vnc') mock_vi = mock.Mock() mock_vi.root_gb = 1 mock_vi.ii.file_size = 2 * units.Gi mock_vi.instance.flavor.root_gb = 1 mock_get_vm_config_info.return_value = mock_vi # Call spawn(). We don't care what it does as long as it generates # the log message, which we check below. with mock.patch.object(self._vmops, '_volumeops') as mock_vo: mock_vo.attach_root_volume.side_effect = test.TestingException try: self._vmops.spawn( self._context, self._instance, self._image_meta, injected_files=None, admin_password=None, network_info=[], block_device_info=bdi ) except test.TestingException: pass # Check that the relevant log message was generated, and therefore # that we checked it was scrubbed self.assertTrue(self.password_logged) def _get_metadata(self, is_image_used=True): return ("name:fake_display_name\n" "userid:fake_user\n" "username:None\n" "projectid:fake_project\n" "projectname:None\n" "flavor:name:m1.small\n" "flavor:memory_mb:512\n" "flavor:vcpus:1\n" "flavor:ephemeral_gb:0\n" "flavor:root_gb:10\n" "flavor:swap:0\n" "imageid:%(image_id)s\n" "package:%(version)s\n" % { 'image_id': uuids.image if is_image_used else None, 'version': version.version_string_with_package()}) @mock.patch.object(vm_util, 'rename_vm') @mock.patch.object(vmops.VMwareVMOps, '_create_folders', return_value='fake_vm_folder') @mock.patch('nova.virt.vmwareapi.vm_util.power_on_instance') @mock.patch.object(vmops.VMwareVMOps, '_use_disk_image_as_linked_clone') @mock.patch.object(vmops.VMwareVMOps, '_fetch_image_if_missing') @mock.patch( 'nova.virt.vmwareapi.imagecache.ImageCacheManager.enlist_image') @mock.patch.object(vmops.VMwareVMOps, 'build_virtual_machine') @mock.patch.object(vmops.VMwareVMOps, '_get_vm_config_info') @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(images.VMwareImage, 'from_image') def test_spawn_non_root_block_device(self, from_image, get_extra_specs, get_vm_config_info, build_virtual_machine, enlist_image, fetch_image, use_disk_image, power_on_instance, create_folders, rename_vm): self._instance.flavor = self._flavor extra_specs = get_extra_specs.return_value connection_info1 = {'data': 'fake-data1', 'serial': 'volume-fake-id1'} connection_info2 = {'data': 'fake-data2', 'serial': 'volume-fake-id2'} bdm = [{'connection_info': connection_info1, 'disk_bus': constants.ADAPTER_TYPE_IDE, 'mount_device': '/dev/sdb'}, {'connection_info': connection_info2, 'disk_bus': constants.DEFAULT_ADAPTER_TYPE, 'mount_device': '/dev/sdc'}] bdi = {'block_device_mapping': bdm, 'root_device_name': '/dev/sda'} self.flags(flat_injected=False) self.flags(enabled=False, group='vnc') image_size = (self._instance.flavor.root_gb) * units.Gi / 2 image_info = images.VMwareImage( image_id=self._image_id, file_size=image_size) vi = get_vm_config_info.return_value from_image.return_value = image_info build_virtual_machine.return_value = 'fake-vm-ref' with mock.patch.object(self._vmops, '_volumeops') as volumeops: self._vmops.spawn(self._context, self._instance, self._image_meta, injected_files=None, admin_password=None, network_info=[], block_device_info=bdi) from_image.assert_called_once_with(self._context, self._instance.image_ref, self._image_meta) get_vm_config_info.assert_called_once_with(self._instance, image_info, extra_specs) build_virtual_machine.assert_called_once_with(self._instance, image_info, vi.dc_info, vi.datastore, [], extra_specs, self._get_metadata()) enlist_image.assert_called_once_with(image_info.image_id, vi.datastore, vi.dc_info.ref) fetch_image.assert_called_once_with(self._context, vi) use_disk_image.assert_called_once_with('fake-vm-ref', vi) volumeops.attach_volume.assert_any_call( connection_info1, self._instance, constants.ADAPTER_TYPE_IDE) volumeops.attach_volume.assert_any_call( connection_info2, self._instance, constants.DEFAULT_ADAPTER_TYPE) @mock.patch.object(vm_util, 'rename_vm') @mock.patch.object(vmops.VMwareVMOps, '_create_folders', return_value='fake_vm_folder') @mock.patch('nova.virt.vmwareapi.vm_util.power_on_instance') @mock.patch.object(vmops.VMwareVMOps, 'build_virtual_machine') @mock.patch.object(vmops.VMwareVMOps, '_get_vm_config_info') @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(images.VMwareImage, 'from_image') def test_spawn_with_no_image_and_block_devices(self, from_image, get_extra_specs, get_vm_config_info, build_virtual_machine, power_on_instance, create_folders, rename_vm): self._instance.image_ref = None self._instance.flavor = self._flavor extra_specs = get_extra_specs.return_value connection_info1 = {'data': 'fake-data1', 'serial': 'volume-fake-id1'} connection_info2 = {'data': 'fake-data2', 'serial': 'volume-fake-id2'} connection_info3 = {'data': 'fake-data3', 'serial': 'volume-fake-id3'} bdm = [{'boot_index': 0, 'connection_info': connection_info1, 'disk_bus': constants.ADAPTER_TYPE_IDE}, {'boot_index': 1, 'connection_info': connection_info2, 'disk_bus': constants.DEFAULT_ADAPTER_TYPE}, {'boot_index': 2, 'connection_info': connection_info3, 'disk_bus': constants.ADAPTER_TYPE_LSILOGICSAS}] bdi = {'block_device_mapping': bdm} self.flags(flat_injected=False) self.flags(enabled=False, group='vnc') image_info = mock.sentinel.image_info vi = get_vm_config_info.return_value from_image.return_value = image_info build_virtual_machine.return_value = 'fake-vm-ref' with mock.patch.object(self._vmops, '_volumeops') as volumeops: self._vmops.spawn(self._context, self._instance, self._image_meta, injected_files=None, admin_password=None, network_info=[], block_device_info=bdi) from_image.assert_called_once_with(self._context, self._instance.image_ref, self._image_meta) get_vm_config_info.assert_called_once_with(self._instance, image_info, extra_specs) build_virtual_machine.assert_called_once_with(self._instance, image_info, vi.dc_info, vi.datastore, [], extra_specs, self._get_metadata(is_image_used=False)) volumeops.attach_root_volume.assert_called_once_with( connection_info1, self._instance, vi.datastore.ref, constants.ADAPTER_TYPE_IDE) volumeops.attach_volume.assert_any_call( connection_info2, self._instance, constants.DEFAULT_ADAPTER_TYPE) volumeops.attach_volume.assert_any_call( connection_info3, self._instance, constants.ADAPTER_TYPE_LSILOGICSAS) @mock.patch.object(vmops.VMwareVMOps, '_create_folders', return_value='fake_vm_folder') @mock.patch('nova.virt.vmwareapi.vm_util.power_on_instance') @mock.patch.object(vmops.VMwareVMOps, 'build_virtual_machine') @mock.patch.object(vmops.VMwareVMOps, '_get_vm_config_info') @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(images.VMwareImage, 'from_image') def test_spawn_unsupported_hardware(self, from_image, get_extra_specs, get_vm_config_info, build_virtual_machine, power_on_instance, create_folders): self._instance.image_ref = None self._instance.flavor = self._flavor extra_specs = get_extra_specs.return_value connection_info = {'data': 'fake-data', 'serial': 'volume-fake-id'} bdm = [{'boot_index': 0, 'connection_info': connection_info, 'disk_bus': 'invalid_adapter_type'}] bdi = {'block_device_mapping': bdm} self.flags(flat_injected=False) self.flags(enabled=False, group='vnc') image_info = mock.sentinel.image_info vi = get_vm_config_info.return_value from_image.return_value = image_info build_virtual_machine.return_value = 'fake-vm-ref' self.assertRaises(exception.UnsupportedHardware, self._vmops.spawn, self._context, self._instance, self._image_meta, injected_files=None, admin_password=None, network_info=[], block_device_info=bdi) from_image.assert_called_once_with(self._context, self._instance.image_ref, self._image_meta) get_vm_config_info.assert_called_once_with( self._instance, image_info, extra_specs) build_virtual_machine.assert_called_once_with(self._instance, image_info, vi.dc_info, vi.datastore, [], extra_specs, self._get_metadata(is_image_used=False)) def test_get_ds_browser(self): cache = self._vmops._datastore_browser_mapping ds_browser = mock.Mock() moref = vmwareapi_fake.ManagedObjectReference(value='datastore-100') self.assertIsNone(cache.get(moref.value)) mock_call_method = mock.Mock(return_value=ds_browser) with mock.patch.object(self._session, '_call_method', mock_call_method): ret = self._vmops._get_ds_browser(moref) mock_call_method.assert_called_once_with(vutil, 'get_object_property', moref, 'browser') self.assertIs(ds_browser, ret) self.assertIs(ds_browser, cache.get(moref.value)) @mock.patch.object( vmops.VMwareVMOps, '_sized_image_exists', return_value=False) @mock.patch.object(vmops.VMwareVMOps, '_extend_virtual_disk') @mock.patch.object(vm_util, 'copy_virtual_disk') def _test_use_disk_image_as_linked_clone(self, mock_copy_virtual_disk, mock_extend_virtual_disk, mock_sized_image_exists, flavor_fits_image=False): extra_specs = vm_util.ExtraSpecs() file_size = 10 * units.Gi if flavor_fits_image else 5 * units.Gi image_info = images.VMwareImage( image_id=self._image_id, file_size=file_size, linked_clone=False) cache_root_folder = self._ds.build_path("vmware_base", self._image_id) mock_imagecache = mock.Mock() mock_imagecache.get_image_cache_folder.return_value = cache_root_folder vi = vmops.VirtualMachineInstanceConfigInfo( self._instance, image_info, self._ds, self._dc_info, mock_imagecache, extra_specs) sized_cached_image_ds_loc = cache_root_folder.join( "%s.%s.vmdk" % (self._image_id, vi.root_gb)) self._vmops._volumeops = mock.Mock() mock_attach_disk_to_vm = self._vmops._volumeops.attach_disk_to_vm self._vmops._use_disk_image_as_linked_clone("fake_vm_ref", vi) mock_copy_virtual_disk.assert_called_once_with( self._session, self._dc_info.ref, str(vi.cache_image_path), str(sized_cached_image_ds_loc)) if not flavor_fits_image: mock_extend_virtual_disk.assert_called_once_with( self._instance, vi.root_gb * units.Mi, str(sized_cached_image_ds_loc), self._dc_info.ref) mock_attach_disk_to_vm.assert_called_once_with( "fake_vm_ref", self._instance, vi.ii.adapter_type, vi.ii.disk_type, str(sized_cached_image_ds_loc), vi.root_gb * units.Mi, False, disk_io_limits=vi._extra_specs.disk_io_limits) def test_use_disk_image_as_linked_clone(self): self._test_use_disk_image_as_linked_clone() def test_use_disk_image_as_linked_clone_flavor_fits_image(self): self._test_use_disk_image_as_linked_clone(flavor_fits_image=True) @mock.patch.object(vmops.VMwareVMOps, '_extend_virtual_disk') @mock.patch.object(vm_util, 'copy_virtual_disk') def _test_use_disk_image_as_full_clone(self, mock_copy_virtual_disk, mock_extend_virtual_disk, flavor_fits_image=False): extra_specs = vm_util.ExtraSpecs() file_size = 10 * units.Gi if flavor_fits_image else 5 * units.Gi image_info = images.VMwareImage( image_id=self._image_id, file_size=file_size, linked_clone=False) cache_root_folder = self._ds.build_path("vmware_base", self._image_id) mock_imagecache = mock.Mock() mock_imagecache.get_image_cache_folder.return_value = cache_root_folder vi = vmops.VirtualMachineInstanceConfigInfo( self._instance, image_info, self._ds, self._dc_info, mock_imagecache, extra_specs) self._vmops._volumeops = mock.Mock() mock_attach_disk_to_vm = self._vmops._volumeops.attach_disk_to_vm self._vmops._use_disk_image_as_full_clone("fake_vm_ref", vi) fake_path = '[fake_ds] %(uuid)s/%(uuid)s.vmdk' % {'uuid': self._uuid} mock_copy_virtual_disk.assert_called_once_with( self._session, self._dc_info.ref, str(vi.cache_image_path), fake_path) if not flavor_fits_image: mock_extend_virtual_disk.assert_called_once_with( self._instance, vi.root_gb * units.Mi, fake_path, self._dc_info.ref) mock_attach_disk_to_vm.assert_called_once_with( "fake_vm_ref", self._instance, vi.ii.adapter_type, vi.ii.disk_type, fake_path, vi.root_gb * units.Mi, False, disk_io_limits=vi._extra_specs.disk_io_limits) def test_use_disk_image_as_full_clone(self): self._test_use_disk_image_as_full_clone() def test_use_disk_image_as_full_clone_image_too_big(self): self._test_use_disk_image_as_full_clone(flavor_fits_image=True) @mock.patch.object(vmops.VMwareVMOps, '_attach_cdrom_to_vm') @mock.patch.object(vm_util, 'create_virtual_disk') def _test_use_iso_image(self, mock_create_virtual_disk, mock_attach_cdrom, with_root_disk): extra_specs = vm_util.ExtraSpecs() image_info = images.VMwareImage( image_id=self._image_id, file_size=10 * units.Mi, linked_clone=True) cache_root_folder = self._ds.build_path("vmware_base", self._image_id) mock_imagecache = mock.Mock() mock_imagecache.get_image_cache_folder.return_value = cache_root_folder vi = vmops.VirtualMachineInstanceConfigInfo( self._instance, image_info, self._ds, self._dc_info, mock_imagecache, extra_specs) self._vmops._volumeops = mock.Mock() mock_attach_disk_to_vm = self._vmops._volumeops.attach_disk_to_vm self._vmops._use_iso_image("fake_vm_ref", vi) mock_attach_cdrom.assert_called_once_with( "fake_vm_ref", self._instance, self._ds.ref, str(vi.cache_image_path)) fake_path = '[fake_ds] %(uuid)s/%(uuid)s.vmdk' % {'uuid': self._uuid} if with_root_disk: mock_create_virtual_disk.assert_called_once_with( self._session, self._dc_info.ref, vi.ii.adapter_type, vi.ii.disk_type, fake_path, vi.root_gb * units.Mi) linked_clone = False mock_attach_disk_to_vm.assert_called_once_with( "fake_vm_ref", self._instance, vi.ii.adapter_type, vi.ii.disk_type, fake_path, vi.root_gb * units.Mi, linked_clone, disk_io_limits=vi._extra_specs.disk_io_limits) def test_use_iso_image_with_root_disk(self): self._test_use_iso_image(with_root_disk=True) def test_use_iso_image_without_root_disk(self): self._test_use_iso_image(with_root_disk=False) def _verify_spawn_method_calls(self, mock_call_method, extras=None): # TODO(vui): More explicit assertions of spawn() behavior # are waiting on additional refactoring pertaining to image # handling/manipulation. Till then, we continue to assert on the # sequence of VIM operations invoked. expected_methods = ['get_object_property', 'SearchDatastore_Task', 'CreateVirtualDisk_Task', 'DeleteDatastoreFile_Task', 'MoveDatastoreFile_Task', 'DeleteDatastoreFile_Task', 'SearchDatastore_Task', 'ExtendVirtualDisk_Task', ] if extras: expected_methods.extend(extras) # Last call should be renaming the instance expected_methods.append('Rename_Task') recorded_methods = [c[1][1] for c in mock_call_method.mock_calls] self.assertEqual(expected_methods, recorded_methods) @mock.patch.object(vmops.VMwareVMOps, '_create_folders', return_value='fake_vm_folder') @mock.patch( 'nova.virt.vmwareapi.vmops.VMwareVMOps._update_vnic_index') @mock.patch( 'nova.virt.vmwareapi.vmops.VMwareVMOps._configure_config_drive') @mock.patch('nova.virt.vmwareapi.ds_util.get_datastore') @mock.patch( 'nova.virt.vmwareapi.vmops.VMwareVMOps.get_datacenter_ref_and_name') @mock.patch('nova.virt.vmwareapi.vif.get_vif_info', return_value=[]) @mock.patch('nova.virt.vmwareapi.vm_util.get_vm_create_spec', return_value='fake_create_spec') @mock.patch('nova.virt.vmwareapi.vm_util.create_vm', return_value='fake_vm_ref') @mock.patch('nova.virt.vmwareapi.ds_util.mkdir') @mock.patch('nova.virt.vmwareapi.vmops.VMwareVMOps._set_machine_id') @mock.patch( 'nova.virt.vmwareapi.imagecache.ImageCacheManager.enlist_image') @mock.patch.object(vmops.VMwareVMOps, '_get_and_set_vnc_config') @mock.patch('nova.virt.vmwareapi.vm_util.power_on_instance') @mock.patch('nova.virt.vmwareapi.vm_util.copy_virtual_disk') # TODO(dims): Need to add tests for create_virtual_disk after the # disk/image code in spawn gets refactored def _test_spawn(self, mock_copy_virtual_disk, mock_power_on_instance, mock_get_and_set_vnc_config, mock_enlist_image, mock_set_machine_id, mock_mkdir, mock_create_vm, mock_get_create_spec, mock_get_vif_info, mock_get_datacenter_ref_and_name, mock_get_datastore, mock_configure_config_drive, mock_update_vnic_index, mock_create_folders, block_device_info=None, extra_specs=None, config_drive=False): if extra_specs is None: extra_specs = vm_util.ExtraSpecs() image_size = (self._instance.flavor.root_gb) * units.Gi / 2 image = { 'id': self._image_id, 'disk_format': 'vmdk', 'size': image_size, } image = objects.ImageMeta.from_dict(image) image_info = images.VMwareImage( image_id=self._image_id, file_size=image_size) vi = self._vmops._get_vm_config_info( self._instance, image_info, extra_specs) self._vmops._volumeops = mock.Mock() network_info = mock.Mock() mock_get_datastore.return_value = self._ds mock_get_datacenter_ref_and_name.return_value = self._dc_info mock_call_method = mock.Mock(return_value='fake_task') if extra_specs is None: extra_specs = vm_util.ExtraSpecs() with test.nested( mock.patch.object(self._session, '_wait_for_task'), mock.patch.object(self._session, '_call_method', mock_call_method), mock.patch.object(uuidutils, 'generate_uuid', return_value='tmp-uuid'), mock.patch.object(images, 'fetch_image'), mock.patch('nova.image.glance.API.get'), mock.patch.object(vutil, 'get_inventory_path', return_value=self._dc_info.name), mock.patch.object(self._vmops, '_get_extra_specs', return_value=extra_specs), mock.patch.object(self._vmops, '_get_instance_metadata', return_value='fake-metadata') ) as (_wait_for_task, _call_method, _generate_uuid, _fetch_image, _get_img_svc, _get_inventory_path, _get_extra_specs, _get_instance_metadata): self._vmops.spawn(self._context, self._instance, image, injected_files='fake_files', admin_password='password', network_info=network_info, block_device_info=block_device_info) self.assertEqual(2, mock_mkdir.call_count) mock_get_vif_info.assert_called_once_with( self._session, self._cluster.obj, constants.DEFAULT_VIF_MODEL, network_info) mock_get_create_spec.assert_called_once_with( self._session.vim.client.factory, self._instance, 'fake_ds', [], extra_specs, constants.DEFAULT_OS_TYPE, profile_spec=None, metadata='fake-metadata') mock_create_vm.assert_called_once_with( self._session, self._instance, 'fake_vm_folder', 'fake_create_spec', self._cluster.resourcePool) mock_get_and_set_vnc_config.assert_called_once_with( self._session.vim.client.factory, self._instance, 'fake_vm_ref') mock_set_machine_id.assert_called_once_with( self._session.vim.client.factory, self._instance, network_info, vm_ref='fake_vm_ref') mock_power_on_instance.assert_called_once_with( self._session, self._instance, vm_ref='fake_vm_ref') if (block_device_info and 'block_device_mapping' in block_device_info): bdms = block_device_info['block_device_mapping'] for bdm in bdms: mock_attach_root = ( self._vmops._volumeops.attach_root_volume) mock_attach = self._vmops._volumeops.attach_volume adapter_type = bdm.get('disk_bus') or vi.ii.adapter_type if bdm.get('boot_index') == 0: mock_attach_root.assert_any_call( bdm['connection_info'], self._instance, self._ds.ref, adapter_type) else: mock_attach.assert_any_call( bdm['connection_info'], self._instance, self._ds.ref, adapter_type) mock_enlist_image.assert_called_once_with( self._image_id, self._ds, self._dc_info.ref) upload_file_name = 'vmware_temp/tmp-uuid/%s/%s-flat.vmdk' % ( self._image_id, self._image_id) _fetch_image.assert_called_once_with( self._context, self._instance, self._session._host, self._session._port, self._dc_info.name, self._ds.name, upload_file_name, cookies='Fake-CookieJar') self.assertGreater(len(_wait_for_task.mock_calls), 0) _get_inventory_path.call_count = 1 extras = None if block_device_info and ('ephemerals' in block_device_info or 'swap' in block_device_info): extras = ['CreateVirtualDisk_Task'] self._verify_spawn_method_calls(_call_method, extras) dc_ref = 'fake_dc_ref' source_file = ('[fake_ds] vmware_base/%s/%s.vmdk' % (self._image_id, self._image_id)) dest_file = ('[fake_ds] vmware_base/%s/%s.%d.vmdk' % (self._image_id, self._image_id, self._instance['root_gb'])) # TODO(dims): add more tests for copy_virtual_disk after # the disk/image code in spawn gets refactored mock_copy_virtual_disk.assert_called_with(self._session, dc_ref, source_file, dest_file) if config_drive: mock_configure_config_drive.assert_called_once_with( self._context, self._instance, 'fake_vm_ref', self._dc_info, self._ds, 'fake_files', 'password', network_info) mock_update_vnic_index.assert_called_once_with( self._context, self._instance, network_info) @mock.patch.object(ds_util, 'get_datastore') @mock.patch.object(vmops.VMwareVMOps, 'get_datacenter_ref_and_name') def _test_get_spawn_vm_config_info(self, mock_get_datacenter_ref_and_name, mock_get_datastore, image_size_bytes=0): image_info = images.VMwareImage( image_id=self._image_id, file_size=image_size_bytes, linked_clone=True) mock_get_datastore.return_value = self._ds mock_get_datacenter_ref_and_name.return_value = self._dc_info extra_specs = vm_util.ExtraSpecs() vi = self._vmops._get_vm_config_info(self._instance, image_info, extra_specs) self.assertEqual(image_info, vi.ii) self.assertEqual(self._ds, vi.datastore) self.assertEqual(self._instance.flavor.root_gb, vi.root_gb) self.assertEqual(self._instance, vi.instance) self.assertEqual(self._instance.uuid, vi.instance.uuid) self.assertEqual(extra_specs, vi._extra_specs) cache_image_path = '[%s] vmware_base/%s/%s.vmdk' % ( self._ds.name, self._image_id, self._image_id) self.assertEqual(cache_image_path, str(vi.cache_image_path)) cache_image_folder = '[%s] vmware_base/%s' % ( self._ds.name, self._image_id) self.assertEqual(cache_image_folder, str(vi.cache_image_folder)) def test_get_spawn_vm_config_info(self): image_size = (self._instance.flavor.root_gb) * units.Gi / 2 self._test_get_spawn_vm_config_info(image_size_bytes=image_size) def test_get_spawn_vm_config_info_image_too_big(self): image_size = (self._instance.flavor.root_gb + 1) * units.Gi self.assertRaises(exception.InstanceUnacceptable, self._test_get_spawn_vm_config_info, image_size_bytes=image_size) def test_spawn(self): self._test_spawn() def test_spawn_config_drive_enabled(self): self.flags(force_config_drive=True) self._test_spawn(config_drive=True) def test_spawn_with_block_device_info(self): block_device_info = { 'block_device_mapping': [{'boot_index': 0, 'connection_info': 'fake', 'mount_device': '/dev/vda'}] } self._test_spawn(block_device_info=block_device_info) def test_spawn_with_block_device_info_with_config_drive(self): self.flags(force_config_drive=True) block_device_info = { 'block_device_mapping': [{'boot_index': 0, 'connection_info': 'fake', 'mount_device': '/dev/vda'}] } self._test_spawn(block_device_info=block_device_info, config_drive=True) def _spawn_with_block_device_info_ephemerals(self, ephemerals): block_device_info = {'ephemerals': ephemerals} self._test_spawn(block_device_info=block_device_info) def test_spawn_with_block_device_info_ephemerals(self): ephemerals = [{'device_type': 'disk', 'disk_bus': 'virtio', 'device_name': '/dev/vdb', 'size': 1}] self._spawn_with_block_device_info_ephemerals(ephemerals) def test_spawn_with_block_device_info_ephemerals_no_disk_bus(self): ephemerals = [{'device_type': 'disk', 'disk_bus': None, 'device_name': '/dev/vdb', 'size': 1}] self._spawn_with_block_device_info_ephemerals(ephemerals) def test_spawn_with_block_device_info_swap(self): block_device_info = {'swap': {'disk_bus': None, 'swap_size': 512, 'device_name': '/dev/sdb'}} self._test_spawn(block_device_info=block_device_info) @mock.patch.object(vm_util, 'rename_vm') @mock.patch('nova.virt.vmwareapi.vm_util.power_on_instance') @mock.patch.object(vmops.VMwareVMOps, '_create_and_attach_thin_disk') @mock.patch.object(vmops.VMwareVMOps, '_use_disk_image_as_linked_clone') @mock.patch.object(vmops.VMwareVMOps, '_fetch_image_if_missing') @mock.patch( 'nova.virt.vmwareapi.imagecache.ImageCacheManager.enlist_image') @mock.patch.object(vmops.VMwareVMOps, 'build_virtual_machine') @mock.patch.object(vmops.VMwareVMOps, '_get_vm_config_info') @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(images.VMwareImage, 'from_image') def test_spawn_with_ephemerals_and_swap(self, from_image, get_extra_specs, get_vm_config_info, build_virtual_machine, enlist_image, fetch_image, use_disk_image, create_and_attach_thin_disk, power_on_instance, rename_vm): self._instance.flavor = objects.Flavor(vcpus=1, memory_mb=512, name="m1.tiny", root_gb=1, ephemeral_gb=1, swap=512, extra_specs={}) extra_specs = self._vmops._get_extra_specs(self._instance.flavor) ephemerals = [{'device_type': 'disk', 'disk_bus': None, 'device_name': '/dev/vdb', 'size': 1}, {'device_type': 'disk', 'disk_bus': None, 'device_name': '/dev/vdc', 'size': 1}] swap = {'disk_bus': None, 'swap_size': 512, 'device_name': '/dev/vdd'} bdi = {'block_device_mapping': [], 'root_device_name': '/dev/sda', 'ephemerals': ephemerals, 'swap': swap} metadata = self._vmops._get_instance_metadata(self._context, self._instance) self.flags(enabled=False, group='vnc') self.flags(flat_injected=False) image_size = (self._instance.flavor.root_gb) * units.Gi / 2 image_info = images.VMwareImage( image_id=self._image_id, file_size=image_size) vi = get_vm_config_info.return_value from_image.return_value = image_info build_virtual_machine.return_value = 'fake-vm-ref' self._vmops.spawn(self._context, self._instance, {}, injected_files=None, admin_password=None, network_info=[], block_device_info=bdi) from_image.assert_called_once_with( self._context, self._instance.image_ref, {}) get_vm_config_info.assert_called_once_with(self._instance, image_info, extra_specs) build_virtual_machine.assert_called_once_with(self._instance, image_info, vi.dc_info, vi.datastore, [], extra_specs, metadata) enlist_image.assert_called_once_with(image_info.image_id, vi.datastore, vi.dc_info.ref) fetch_image.assert_called_once_with(self._context, vi) use_disk_image.assert_called_once_with('fake-vm-ref', vi) # _create_and_attach_thin_disk should be called for each ephemeral # and swap disk eph0_path = str(ds_obj.DatastorePath(vi.datastore.name, self._uuid, 'ephemeral_0.vmdk')) eph1_path = str(ds_obj.DatastorePath(vi.datastore.name, self._uuid, 'ephemeral_1.vmdk')) swap_path = str(ds_obj.DatastorePath(vi.datastore.name, self._uuid, 'swap.vmdk')) create_and_attach_thin_disk.assert_has_calls([ mock.call(self._instance, 'fake-vm-ref', vi.dc_info, ephemerals[0]['size'] * units.Mi, vi.ii.adapter_type, eph0_path), mock.call(self._instance, 'fake-vm-ref', vi.dc_info, ephemerals[1]['size'] * units.Mi, vi.ii.adapter_type, eph1_path), mock.call(self._instance, 'fake-vm-ref', vi.dc_info, swap['swap_size'] * units.Ki, vi.ii.adapter_type, swap_path) ]) power_on_instance.assert_called_once_with(self._session, self._instance, vm_ref='fake-vm-ref') def _get_fake_vi(self): image_info = images.VMwareImage( image_id=self._image_id, file_size=7, linked_clone=False) vi = vmops.VirtualMachineInstanceConfigInfo( self._instance, image_info, self._ds, self._dc_info, mock.Mock()) return vi @mock.patch.object(vm_util, 'create_virtual_disk') def test_create_and_attach_thin_disk(self, mock_create): vi = self._get_fake_vi() self._vmops._volumeops = mock.Mock() mock_attach_disk_to_vm = self._vmops._volumeops.attach_disk_to_vm path = str(ds_obj.DatastorePath(vi.datastore.name, self._uuid, 'fake-filename')) self._vmops._create_and_attach_thin_disk(self._instance, 'fake-vm-ref', vi.dc_info, 1, 'fake-adapter-type', path) mock_create.assert_called_once_with( self._session, self._dc_info.ref, 'fake-adapter-type', 'thin', path, 1) mock_attach_disk_to_vm.assert_called_once_with( 'fake-vm-ref', self._instance, 'fake-adapter-type', 'thin', path, 1, False) def test_create_ephemeral_with_bdi(self): ephemerals = [{'device_type': 'disk', 'disk_bus': 'virtio', 'device_name': '/dev/vdb', 'size': 1}] block_device_info = {'ephemerals': ephemerals} vi = self._get_fake_vi() with mock.patch.object( self._vmops, '_create_and_attach_thin_disk') as mock_caa: self._vmops._create_ephemeral(block_device_info, self._instance, 'fake-vm-ref', vi.dc_info, vi.datastore, self._uuid, vi.ii.adapter_type) mock_caa.assert_called_once_with( self._instance, 'fake-vm-ref', vi.dc_info, 1 * units.Mi, 'virtio', '[fake_ds] %s/ephemeral_0.vmdk' % self._uuid) def _test_create_ephemeral_from_instance(self, bdi): vi = self._get_fake_vi() with mock.patch.object( self._vmops, '_create_and_attach_thin_disk') as mock_caa: self._vmops._create_ephemeral(bdi, self._instance, 'fake-vm-ref', vi.dc_info, vi.datastore, self._uuid, vi.ii.adapter_type) mock_caa.assert_called_once_with( self._instance, 'fake-vm-ref', vi.dc_info, 1 * units.Mi, constants.DEFAULT_ADAPTER_TYPE, '[fake_ds] %s/ephemeral_0.vmdk' % self._uuid) def test_create_ephemeral_with_bdi_but_no_ephemerals(self): block_device_info = {'ephemerals': []} self._instance.flavor.ephemeral_gb = 1 self._test_create_ephemeral_from_instance(block_device_info) def test_create_ephemeral_with_no_bdi(self): self._instance.flavor.ephemeral_gb = 1 self._test_create_ephemeral_from_instance(None) def _test_create_swap_from_instance(self, bdi): vi = self._get_fake_vi() flavor = objects.Flavor(vcpus=1, memory_mb=1024, ephemeral_gb=1, swap=1024, extra_specs={}) self._instance.flavor = flavor with mock.patch.object( self._vmops, '_create_and_attach_thin_disk' ) as create_and_attach: self._vmops._create_swap(bdi, self._instance, 'fake-vm-ref', vi.dc_info, vi.datastore, self._uuid, 'lsiLogic') size = flavor.swap * units.Ki if bdi is not None: swap = bdi.get('swap', {}) size = swap.get('swap_size', 0) * units.Ki path = str(ds_obj.DatastorePath(vi.datastore.name, self._uuid, 'swap.vmdk')) create_and_attach.assert_called_once_with(self._instance, 'fake-vm-ref', vi.dc_info, size, 'lsiLogic', path) def test_create_swap_with_bdi(self): block_device_info = {'swap': {'disk_bus': None, 'swap_size': 512, 'device_name': '/dev/sdb'}} self._test_create_swap_from_instance(block_device_info) def test_create_swap_with_no_bdi(self): self._test_create_swap_from_instance(None) @mock.patch.object(vmops.VMwareVMOps, '_create_folders', return_value='fake_vm_folder') def test_build_virtual_machine(self, mock_create_folder): image = images.VMwareImage(image_id=self._image_id) extra_specs = vm_util.ExtraSpecs() vm_ref = self._vmops.build_virtual_machine(self._instance, image, self._dc_info, self._ds, self.network_info, extra_specs, self._metadata) vm = vmwareapi_fake.get_object(vm_ref) # Test basic VM parameters self.assertEqual(self._instance.uuid, vm.name) self.assertEqual(self._instance.uuid, vm.get('summary.config.instanceUuid')) self.assertEqual(self._instance_values['vcpus'], vm.get('summary.config.numCpu')) self.assertEqual(self._instance_values['memory_mb'], vm.get('summary.config.memorySizeMB')) # Test NSX config for optval in vm.get('config.extraConfig').OptionValue: if optval.key == 'nvp.vm-uuid': self.assertEqual(self._instance_values['uuid'], optval.value) break else: self.fail('nvp.vm-uuid not found in extraConfig') # Test that the VM is associated with the specified datastore datastores = vm.datastore.ManagedObjectReference self.assertEqual(1, len(datastores)) datastore = vmwareapi_fake.get_object(datastores[0]) self.assertEqual(self._ds.name, datastore.get('summary.name')) # Test that the VM's network is configured as specified devices = vm.get('config.hardware.device').VirtualDevice for device in devices: if device.obj_name != 'ns0:VirtualE1000': continue self.assertEqual(self._network_values['address'], device.macAddress) break else: self.fail('NIC not configured') def test_spawn_cpu_limit(self): cpu_limits = vm_util.Limits(limit=7) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_cpu_reservation(self): cpu_limits = vm_util.Limits(reservation=7) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_cpu_allocations(self): cpu_limits = vm_util.Limits(limit=7, reservation=6) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_cpu_shares_level(self): cpu_limits = vm_util.Limits(shares_level='high') extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_cpu_shares_custom(self): cpu_limits = vm_util.Limits(shares_level='custom', shares_share=1948) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_memory_limit(self): memory_limits = vm_util.Limits(limit=7) extra_specs = vm_util.ExtraSpecs(memory_limits=memory_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_memory_reservation(self): memory_limits = vm_util.Limits(reservation=7) extra_specs = vm_util.ExtraSpecs(memory_limits=memory_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_memory_allocations(self): memory_limits = vm_util.Limits(limit=7, reservation=6) extra_specs = vm_util.ExtraSpecs(memory_limits=memory_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_memory_shares_level(self): memory_limits = vm_util.Limits(shares_level='high') extra_specs = vm_util.ExtraSpecs(memory_limits=memory_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_memory_shares_custom(self): memory_limits = vm_util.Limits(shares_level='custom', shares_share=1948) extra_specs = vm_util.ExtraSpecs(memory_limits=memory_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_vif_limit(self): vif_limits = vm_util.Limits(limit=7) extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_vif_reservation(self): vif_limits = vm_util.Limits(reservation=7) extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_vif_shares_level(self): vif_limits = vm_util.Limits(shares_level='high') extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_vif_shares_custom(self): vif_limits = vm_util.Limits(shares_level='custom', shares_share=1948) extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) self._test_spawn(extra_specs=extra_specs) def _validate_extra_specs(self, expected, actual): self.assertEqual(expected.cpu_limits.limit, actual.cpu_limits.limit) self.assertEqual(expected.cpu_limits.reservation, actual.cpu_limits.reservation) self.assertEqual(expected.cpu_limits.shares_level, actual.cpu_limits.shares_level) self.assertEqual(expected.cpu_limits.shares_share, actual.cpu_limits.shares_share) def _validate_flavor_extra_specs(self, flavor_extra_specs, expected): # Validate that the extra specs are parsed correctly flavor = objects.Flavor(name='my-flavor', memory_mb=8, vcpus=28, root_gb=496, ephemeral_gb=8128, swap=33550336, extra_specs=flavor_extra_specs) flavor_extra_specs = self._vmops._get_extra_specs(flavor, None) self._validate_extra_specs(expected, flavor_extra_specs) """ The test covers the negative failure scenario, where `hw_video_ram`, coming from the image is bigger than the maximum allowed video ram from the flavor. """ def test_video_ram(self): meta_dict = {'id': self._image_id, 'properties': {'hw_video_ram': 120}} image_meta, flavor = self._get_image_and_flavor_for_test_video( meta_dict) self.assertRaises(exception.RequestedVRamTooHigh, self._vmops._get_extra_specs, flavor, image_meta) """ Testing VM provisioning result in the case where `hw_video_ram`, coming from the image is not specified. This is a success scenario, in the case where `hw_video_ram` property is not set. """ def test_video_ram_if_none(self): meta_dict = {'id': self._image_id, 'properties': {}} image_meta, flavor = self._get_image_and_flavor_for_test_video( meta_dict) extra_specs = self._vmops._get_extra_specs(flavor, image_meta) self.assertIsNone(extra_specs.hw_video_ram) """ Testing VM provisioning result in the case where `hw_video:ram_max_mb`, coming from the flavor is not specified. This is a success scenario, in the case where `hw_video_ram` property is not set. """ def test_max_video_ram_none(self): meta_dict = {'id': self._image_id, 'properties': {'hw_video_ram': 120}} image_meta = objects.ImageMeta.from_dict(meta_dict) flavor_extra_specs = {'quota:cpu_limit': 7, 'quota:cpu_reservation': 6} flavor = objects.Flavor(name='my-flavor', memory_mb=8, vcpus=28, root_gb=496, ephemeral_gb=8128, swap=33550336, extra_specs=flavor_extra_specs) self.assertRaises(exception.RequestedVRamTooHigh, self._vmops._get_extra_specs, flavor, image_meta) """ Testing VM provisioning result in the case where `hw_video_ram`, coming from the image is less than the maximum allowed video ram from the flavor. This is a success scenario, in the case where `hw_video_ram` property is set in the extra spec. """ def test_success_video_ram(self): expected_video_ram = 90 meta_dict = {'id': self._image_id, 'properties': { 'hw_video_ram': expected_video_ram}} image_meta, flavor = self._get_image_and_flavor_for_test_video( meta_dict) extra_specs = self._vmops._get_extra_specs(flavor, image_meta) self.assertEqual(self._calculate_expected_fake_video_ram( expected_video_ram), extra_specs.hw_video_ram) """ Testing VM provisioning result in the case where `hw_video_ram`, coming from the image is equal to 0. This is a success scenario, in the case where `hw_video_ram` property is not set in the extra spec. """ def test_zero_video_ram(self): meta_dict = {'id': self._image_id, 'properties': {'hw_video_ram': 0}} image_meta, flavor = self._get_image_and_flavor_for_test_video( meta_dict) extra_specs = self._vmops._get_extra_specs(flavor, image_meta) self.assertIsNone(extra_specs.hw_video_ram) def _calculate_expected_fake_video_ram(self, amount): return amount * units.Mi / units.Ki def _get_image_and_flavor_for_test_video(self, meta_dict): image_meta = objects.ImageMeta.from_dict(meta_dict) flavor_extra_specs = {'quota:cpu_limit': 7, 'quota:cpu_reservation': 6, 'hw_video:ram_max_mb': 100} flavor = objects.Flavor(name='my-flavor', memory_mb=8, vcpus=28, root_gb=496, ephemeral_gb=8128, swap=33550336, extra_specs=flavor_extra_specs) return image_meta, flavor def test_extra_specs_cpu_limit(self): flavor_extra_specs = {'quota:cpu_limit': 7} cpu_limits = vm_util.Limits(limit=7) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._validate_flavor_extra_specs(flavor_extra_specs, extra_specs) def test_extra_specs_cpu_reservations(self): flavor_extra_specs = {'quota:cpu_reservation': 7} cpu_limits = vm_util.Limits(reservation=7) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._validate_flavor_extra_specs(flavor_extra_specs, extra_specs) def test_extra_specs_cpu_allocations(self): flavor_extra_specs = {'quota:cpu_limit': 7, 'quota:cpu_reservation': 6} cpu_limits = vm_util.Limits(limit=7, reservation=6) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._validate_flavor_extra_specs(flavor_extra_specs, extra_specs) def test_extra_specs_cpu_shares_level(self): flavor_extra_specs = {'quota:cpu_shares_level': 'high'} cpu_limits = vm_util.Limits(shares_level='high') extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._validate_flavor_extra_specs(flavor_extra_specs, extra_specs) def test_extra_specs_cpu_shares_custom(self): flavor_extra_specs = {'quota:cpu_shares_level': 'custom', 'quota:cpu_shares_share': 1948} cpu_limits = vm_util.Limits(shares_level='custom', shares_share=1948) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._validate_flavor_extra_specs(flavor_extra_specs, extra_specs) def test_extra_specs_vif_shares_custom_pos01(self): flavor_extra_specs = {'quota:vif_shares_level': 'custom', 'quota:vif_shares_share': 40} vif_limits = vm_util.Limits(shares_level='custom', shares_share=40) extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) self._validate_flavor_extra_specs(flavor_extra_specs, extra_specs) def test_extra_specs_vif_shares_with_invalid_level(self): flavor_extra_specs = {'quota:vif_shares_level': 'high', 'quota:vif_shares_share': 40} vif_limits = vm_util.Limits(shares_level='custom', shares_share=40) extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) self.assertRaises(exception.InvalidInput, self._validate_flavor_extra_specs, flavor_extra_specs, extra_specs) def _make_vm_config_info(self, is_iso=False, is_sparse_disk=False, vsphere_location=None): disk_type = (constants.DISK_TYPE_SPARSE if is_sparse_disk else constants.DEFAULT_DISK_TYPE) file_type = (constants.DISK_FORMAT_ISO if is_iso else constants.DEFAULT_DISK_FORMAT) image_info = images.VMwareImage( image_id=self._image_id, file_size=10 * units.Mi, file_type=file_type, disk_type=disk_type, linked_clone=True, vsphere_location=vsphere_location) cache_root_folder = self._ds.build_path("vmware_base", self._image_id) mock_imagecache = mock.Mock() mock_imagecache.get_image_cache_folder.return_value = cache_root_folder vi = vmops.VirtualMachineInstanceConfigInfo( self._instance, image_info, self._ds, self._dc_info, mock_imagecache) return vi @mock.patch.object(vmops.VMwareVMOps, 'check_cache_folder') @mock.patch.object(vmops.VMwareVMOps, '_fetch_image_as_file') @mock.patch.object(vmops.VMwareVMOps, '_prepare_iso_image') @mock.patch.object(vmops.VMwareVMOps, '_prepare_sparse_image') @mock.patch.object(vmops.VMwareVMOps, '_prepare_flat_image') @mock.patch.object(vmops.VMwareVMOps, '_cache_iso_image') @mock.patch.object(vmops.VMwareVMOps, '_cache_sparse_image') @mock.patch.object(vmops.VMwareVMOps, '_cache_flat_image') @mock.patch.object(vmops.VMwareVMOps, '_delete_datastore_file') @mock.patch.object(vmops.VMwareVMOps, '_update_image_size') def _test_fetch_image_if_missing(self, mock_update_image_size, mock_delete_datastore_file, mock_cache_flat_image, mock_cache_sparse_image, mock_cache_iso_image, mock_prepare_flat_image, mock_prepare_sparse_image, mock_prepare_iso_image, mock_fetch_image_as_file, mock_check_cache_folder, is_iso=False, is_sparse_disk=False): tmp_dir_path = mock.Mock() tmp_image_path = mock.Mock() if is_iso: mock_prepare = mock_prepare_iso_image mock_cache = mock_cache_iso_image elif is_sparse_disk: mock_prepare = mock_prepare_sparse_image mock_cache = mock_cache_sparse_image else: mock_prepare = mock_prepare_flat_image mock_cache = mock_cache_flat_image mock_prepare.return_value = tmp_dir_path, tmp_image_path vi = self._make_vm_config_info(is_iso, is_sparse_disk) self._vmops._fetch_image_if_missing(self._context, vi) mock_check_cache_folder.assert_called_once_with( self._ds.name, self._ds.ref) mock_prepare.assert_called_once_with(vi) mock_fetch_image_as_file.assert_called_once_with( self._context, vi, tmp_image_path) mock_cache.assert_called_once_with(vi, tmp_image_path) mock_delete_datastore_file.assert_called_once_with( str(tmp_dir_path), self._dc_info.ref) if is_sparse_disk: mock_update_image_size.assert_called_once_with(vi) def test_fetch_image_if_missing(self): self._test_fetch_image_if_missing() def test_fetch_image_if_missing_with_sparse(self): self._test_fetch_image_if_missing( is_sparse_disk=True) def test_fetch_image_if_missing_with_iso(self): self._test_fetch_image_if_missing( is_iso=True) def test_get_esx_host_and_cookies(self): datastore = mock.Mock() datastore.get_connected_hosts.return_value = ['fira-host'] file_path = mock.Mock() def fake_invoke(module, method, *args, **kwargs): if method == 'AcquireGenericServiceTicket': ticket = mock.Mock() ticket.id = 'fira-ticket' return ticket elif method == 'get_object_property': return 'fira-host' with mock.patch.object(self._session, 'invoke_api', fake_invoke): result = self._vmops._get_esx_host_and_cookies(datastore, 'ha-datacenter', file_path) self.assertEqual('fira-host', result[0]) cookies = result[1] self.assertEqual(1, len(cookies)) self.assertEqual('vmware_cgi_ticket', cookies[0].name) self.assertEqual('"fira-ticket"', cookies[0].value) def test_fetch_vsphere_image(self): vsphere_location = 'vsphere://my?dcPath=mycenter&dsName=mystore' vi = self._make_vm_config_info(vsphere_location=vsphere_location) image_ds_loc = mock.Mock() datacenter_moref = mock.Mock() fake_copy_task = mock.Mock() with test.nested( mock.patch.object( self._session, 'invoke_api', side_effect=[datacenter_moref, fake_copy_task]), mock.patch.object(self._session, '_wait_for_task')) as ( invoke_api, wait_for_task): self._vmops._fetch_vsphere_image(self._context, vi, image_ds_loc) expected_calls = [ mock.call( self._session.vim, 'FindByInventoryPath', self._session.vim.service_content.searchIndex, inventoryPath='mycenter'), mock.call(self._session.vim, 'CopyDatastoreFile_Task', self._session.vim.service_content.fileManager, destinationDatacenter=self._dc_info.ref, destinationName=str(image_ds_loc), sourceDatacenter=datacenter_moref, sourceName='[mystore]')] invoke_api.assert_has_calls(expected_calls) wait_for_task.assert_called_once_with(fake_copy_task) @mock.patch.object(images, 'fetch_image') @mock.patch.object(vmops.VMwareVMOps, '_get_esx_host_and_cookies') def test_fetch_image_as_file(self, mock_get_esx_host_and_cookies, mock_fetch_image): vi = self._make_vm_config_info() image_ds_loc = mock.Mock() host = mock.Mock() dc_name = 'ha-datacenter' cookies = mock.Mock() mock_get_esx_host_and_cookies.return_value = host, cookies self._vmops._fetch_image_as_file(self._context, vi, image_ds_loc) mock_get_esx_host_and_cookies.assert_called_once_with( vi.datastore, dc_name, image_ds_loc.rel_path) mock_fetch_image.assert_called_once_with( self._context, vi.instance, host, self._session._port, dc_name, self._ds.name, image_ds_loc.rel_path, cookies=cookies) @mock.patch.object(vutil, 'get_inventory_path') @mock.patch.object(images, 'fetch_image') @mock.patch.object(vmops.VMwareVMOps, '_get_esx_host_and_cookies') def test_fetch_image_as_file_exception(self, mock_get_esx_host_and_cookies, mock_fetch_image, mock_get_inventory_path): vi = self._make_vm_config_info() image_ds_loc = mock.Mock() dc_name = 'ha-datacenter' mock_get_esx_host_and_cookies.side_effect = \ exception.HostNotFound(host='') mock_get_inventory_path.return_value = self._dc_info.name self._vmops._fetch_image_as_file(self._context, vi, image_ds_loc) mock_get_esx_host_and_cookies.assert_called_once_with( vi.datastore, dc_name, image_ds_loc.rel_path) mock_fetch_image.assert_called_once_with( self._context, vi.instance, self._session._host, self._session._port, self._dc_info.name, self._ds.name, image_ds_loc.rel_path, cookies='Fake-CookieJar') @mock.patch.object(images, 'fetch_image_stream_optimized', return_value=123) def test_fetch_image_as_vapp(self, mock_fetch_image): vi = self._make_vm_config_info() image_ds_loc = mock.Mock() image_ds_loc.parent.basename = 'fake-name' self._vmops._fetch_image_as_vapp(self._context, vi, image_ds_loc) mock_fetch_image.assert_called_once_with( self._context, vi.instance, self._session, 'fake-name', self._ds.name, vi.dc_info.vmFolder, self._vmops._root_resource_pool) self.assertEqual(vi.ii.file_size, 123) @mock.patch.object(images, 'fetch_image_ova', return_value=123) def test_fetch_image_as_ova(self, mock_fetch_image): vi = self._make_vm_config_info() image_ds_loc = mock.Mock() image_ds_loc.parent.basename = 'fake-name' self._vmops._fetch_image_as_ova(self._context, vi, image_ds_loc) mock_fetch_image.assert_called_once_with( self._context, vi.instance, self._session, 'fake-name', self._ds.name, vi.dc_info.vmFolder, self._vmops._root_resource_pool) self.assertEqual(vi.ii.file_size, 123) @mock.patch.object(uuidutils, 'generate_uuid', return_value='tmp-uuid') def test_prepare_iso_image(self, mock_generate_uuid): vi = self._make_vm_config_info(is_iso=True) tmp_dir_loc, tmp_image_ds_loc = self._vmops._prepare_iso_image(vi) expected_tmp_dir_path = '[%s] vmware_temp/tmp-uuid' % (self._ds.name) expected_image_path = '[%s] vmware_temp/tmp-uuid/%s/%s.iso' % ( self._ds.name, self._image_id, self._image_id) self.assertEqual(str(tmp_dir_loc), expected_tmp_dir_path) self.assertEqual(str(tmp_image_ds_loc), expected_image_path) @mock.patch.object(uuidutils, 'generate_uuid', return_value='tmp-uuid') @mock.patch.object(ds_util, 'mkdir') def test_prepare_sparse_image(self, mock_mkdir, mock_generate_uuid): vi = self._make_vm_config_info(is_sparse_disk=True) tmp_dir_loc, tmp_image_ds_loc = self._vmops._prepare_sparse_image(vi) expected_tmp_dir_path = '[%s] vmware_temp/tmp-uuid' % (self._ds.name) expected_image_path = '[%s] vmware_temp/tmp-uuid/%s/%s' % ( self._ds.name, self._image_id, "tmp-sparse.vmdk") self.assertEqual(str(tmp_dir_loc), expected_tmp_dir_path) self.assertEqual(str(tmp_image_ds_loc), expected_image_path) mock_mkdir.assert_called_once_with(self._session, tmp_image_ds_loc.parent, vi.dc_info.ref) @mock.patch.object(ds_util, 'mkdir') @mock.patch.object(vm_util, 'create_virtual_disk') @mock.patch.object(vmops.VMwareVMOps, '_delete_datastore_file') @mock.patch.object(uuidutils, 'generate_uuid', return_value='tmp-uuid') def test_prepare_flat_image(self, mock_generate_uuid, mock_delete_datastore_file, mock_create_virtual_disk, mock_mkdir): vi = self._make_vm_config_info() tmp_dir_loc, tmp_image_ds_loc = self._vmops._prepare_flat_image(vi) expected_tmp_dir_path = '[%s] vmware_temp/tmp-uuid' % (self._ds.name) expected_image_path = '[%s] vmware_temp/tmp-uuid/%s/%s-flat.vmdk' % ( self._ds.name, self._image_id, self._image_id) expected_image_path_parent = '[%s] vmware_temp/tmp-uuid/%s' % ( self._ds.name, self._image_id) expected_path_to_create = '[%s] vmware_temp/tmp-uuid/%s/%s.vmdk' % ( self._ds.name, self._image_id, self._image_id) mock_mkdir.assert_called_once_with( self._session, DsPathMatcher(expected_image_path_parent), self._dc_info.ref) self.assertEqual(str(tmp_dir_loc), expected_tmp_dir_path) self.assertEqual(str(tmp_image_ds_loc), expected_image_path) image_info = vi.ii mock_create_virtual_disk.assert_called_once_with( self._session, self._dc_info.ref, image_info.adapter_type, image_info.disk_type, DsPathMatcher(expected_path_to_create), image_info.file_size_in_kb) mock_delete_datastore_file.assert_called_once_with( DsPathMatcher(expected_image_path), self._dc_info.ref) @mock.patch.object(ds_util, 'file_move') def test_cache_iso_image(self, mock_file_move): vi = self._make_vm_config_info(is_iso=True) tmp_image_ds_loc = mock.Mock() self._vmops._cache_iso_image(vi, tmp_image_ds_loc) mock_file_move.assert_called_once_with( self._session, self._dc_info.ref, tmp_image_ds_loc.parent, DsPathMatcher('[fake_ds] vmware_base/%s' % self._image_id)) @mock.patch.object(ds_util, 'file_move') def test_cache_flat_image(self, mock_file_move): vi = self._make_vm_config_info() tmp_image_ds_loc = mock.Mock() self._vmops._cache_flat_image(vi, tmp_image_ds_loc) mock_file_move.assert_called_once_with( self._session, self._dc_info.ref, tmp_image_ds_loc.parent, DsPathMatcher('[fake_ds] vmware_base/%s' % self._image_id)) @mock.patch.object(ds_util, 'disk_move') @mock.patch.object(ds_util, 'mkdir') def test_cache_stream_optimized_image(self, mock_mkdir, mock_disk_move): vi = self._make_vm_config_info() self._vmops._cache_stream_optimized_image(vi, mock.sentinel.tmp_image) mock_mkdir.assert_called_once_with( self._session, DsPathMatcher('[fake_ds] vmware_base/%s' % self._image_id), self._dc_info.ref) mock_disk_move.assert_called_once_with( self._session, self._dc_info.ref, mock.sentinel.tmp_image, DsPathMatcher('[fake_ds] vmware_base/%s/%s.vmdk' % (self._image_id, self._image_id))) @mock.patch.object(ds_util, 'file_move') @mock.patch.object(vm_util, 'copy_virtual_disk') @mock.patch.object(vmops.VMwareVMOps, '_delete_datastore_file') def test_cache_sparse_image(self, mock_delete_datastore_file, mock_copy_virtual_disk, mock_file_move): vi = self._make_vm_config_info(is_sparse_disk=True) sparse_disk_path = "[%s] vmware_temp/tmp-uuid/%s/tmp-sparse.vmdk" % ( self._ds.name, self._image_id) tmp_image_ds_loc = ds_obj.DatastorePath.parse(sparse_disk_path) self._vmops._cache_sparse_image(vi, tmp_image_ds_loc) target_disk_path = "[%s] vmware_temp/tmp-uuid/%s/%s.vmdk" % ( self._ds.name, self._image_id, self._image_id) mock_copy_virtual_disk.assert_called_once_with( self._session, self._dc_info.ref, sparse_disk_path, DsPathMatcher(target_disk_path)) def test_get_storage_policy_none(self): flavor = objects.Flavor(name='m1.small', memory_mb=8, vcpus=28, root_gb=496, ephemeral_gb=8128, swap=33550336, extra_specs={}) self.flags(pbm_enabled=True, pbm_default_policy='fake-policy', group='vmware') extra_specs = self._vmops._get_extra_specs(flavor, None) self.assertEqual('fake-policy', extra_specs.storage_policy) def test_get_storage_policy_extra_specs(self): extra_specs = {'vmware:storage_policy': 'flavor-policy'} flavor = objects.Flavor(name='m1.small', memory_mb=8, vcpus=28, root_gb=496, ephemeral_gb=8128, swap=33550336, extra_specs=extra_specs) self.flags(pbm_enabled=True, pbm_default_policy='default-policy', group='vmware') extra_specs = self._vmops._get_extra_specs(flavor, None) self.assertEqual('flavor-policy', extra_specs.storage_policy) def test_get_base_folder_not_set(self): self.flags(subdirectory_name='vmware_base', group='image_cache') base_folder = self._vmops._get_base_folder() self.assertEqual('vmware_base', base_folder) def test_get_base_folder_host_ip(self): self.flags(my_ip='7.7.7.7') self.flags(subdirectory_name='_base', group='image_cache') base_folder = self._vmops._get_base_folder() self.assertEqual('7.7.7.7_base', base_folder) def test_get_base_folder_cache_prefix(self): self.flags(cache_prefix='my_prefix', group='vmware') self.flags(subdirectory_name='_base', group='image_cache') base_folder = self._vmops._get_base_folder() self.assertEqual('my_prefix_base', base_folder) def _test_reboot_vm(self, reboot_type="SOFT", tool_status=True): expected_methods = ['get_object_properties_dict'] if reboot_type == "SOFT": expected_methods.append('RebootGuest') else: expected_methods.append('ResetVM_Task') def fake_call_method(module, method, *args, **kwargs): expected_method = expected_methods.pop(0) self.assertEqual(expected_method, method) if expected_method == 'get_object_properties_dict' and tool_status: return { "runtime.powerState": "poweredOn", "summary.guest.toolsStatus": "toolsOk", "summary.guest.toolsRunningStatus": "guestToolsRunning"} elif expected_method == 'get_object_properties_dict': return {"runtime.powerState": "poweredOn"} elif expected_method == 'ResetVM_Task': return 'fake-task' with test.nested( mock.patch.object(vm_util, "get_vm_ref", return_value='fake-vm-ref'), mock.patch.object(self._session, "_call_method", fake_call_method), mock.patch.object(self._session, "_wait_for_task") ) as (_get_vm_ref, fake_call_method, _wait_for_task): self._vmops.reboot(self._instance, self.network_info, reboot_type) _get_vm_ref.assert_called_once_with(self._session, self._instance) if reboot_type == "HARD": _wait_for_task.assert_has_calls([ mock.call('fake-task')]) def test_reboot_vm_soft(self): self._test_reboot_vm() def test_reboot_vm_hard_toolstatus(self): self._test_reboot_vm(reboot_type="HARD", tool_status=False) def test_reboot_vm_hard(self): self._test_reboot_vm(reboot_type="HARD") def test_get_instance_metadata(self): flavor = objects.Flavor(id=7, name='m1.small', memory_mb=8, vcpus=28, root_gb=496, ephemeral_gb=8128, swap=33550336, extra_specs={}) self._instance.flavor = flavor metadata = self._vmops._get_instance_metadata( self._context, self._instance) expected = ("name:fake_display_name\n" "userid:fake_user\n" "username:None\n" "projectid:fake_project\n" "projectname:None\n" "flavor:name:m1.small\n" "flavor:memory_mb:8\n" "flavor:vcpus:28\n" "flavor:ephemeral_gb:8128\n" "flavor:root_gb:496\n" "flavor:swap:33550336\n" "imageid:%s\n" "package:%s\n" % ( uuids.image, version.version_string_with_package())) self.assertEqual(expected, metadata) def test_get_instance_metadata_flavor(self): # Construct a flavor different from instance.flavor flavor_int_meta_fields = ['memory_mb', 'vcpus', 'root_gb', 'ephemeral_gb', 'swap'] flavor = self._instance.flavor.obj_clone() for field in flavor_int_meta_fields: # Set int fields of flavor to instance.flavor value + 1 setattr(flavor, field, getattr(self._instance.flavor, field) + 1) flavor.name = self._instance.flavor.name + '1' metadata = self._vmops._get_instance_metadata( self._context, self._instance, flavor) # Verify metadata contains the values from flavor parameter meta_lines = metadata.split('\n') flavor_meta_fields = flavor_int_meta_fields[:] flavor_meta_fields.append('name') for field in flavor_meta_fields: meta_repr = 'flavor:%s:%s' % (field, getattr(flavor, field)) self.assertIn(meta_repr, meta_lines) @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(vm_util, 'reconfigure_vm') @mock.patch.object(vm_util, 'get_network_attach_config_spec', return_value='fake-attach-spec') @mock.patch.object(vm_util, 'get_attach_port_index', return_value=1) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') def test_attach_interface(self, mock_get_vm_ref, mock_get_attach_port_index, mock_get_network_attach_config_spec, mock_reconfigure_vm, mock_extra_specs): _network_api = mock.Mock() self._vmops._network_api = _network_api vif_info = vif.get_vif_dict(self._session, self._cluster, 'VirtualE1000', self._network_values) extra_specs = vm_util.ExtraSpecs() mock_extra_specs.return_value = extra_specs self._vmops.attach_interface(self._context, self._instance, self._image_meta, self._network_values) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) mock_get_attach_port_index.assert_called_once_with(self._session, 'fake-ref') mock_get_network_attach_config_spec.assert_called_once_with( self._session.vim.client.factory, vif_info, 1, extra_specs.vif_limits) mock_reconfigure_vm.assert_called_once_with(self._session, 'fake-ref', 'fake-attach-spec') _network_api.update_instance_vnic_index.assert_called_once_with( mock.ANY, self._instance, self._network_values, 1) @mock.patch.object(vif, 'get_network_device', return_value='device') @mock.patch.object(vm_util, 'reconfigure_vm') @mock.patch.object(vm_util, 'get_network_detach_config_spec', return_value='fake-detach-spec') @mock.patch.object(vm_util, 'get_vm_detach_port_index', return_value=1) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') def test_detach_interface(self, mock_get_vm_ref, mock_get_detach_port_index, mock_get_network_detach_config_spec, mock_reconfigure_vm, mock_get_network_device): _network_api = mock.Mock() self._vmops._network_api = _network_api with mock.patch.object(self._session, '_call_method', return_value='hardware-devices'): self._vmops.detach_interface(self._context, self._instance, self._network_values) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) mock_get_detach_port_index.assert_called_once_with(self._session, 'fake-ref', None) mock_get_network_detach_config_spec.assert_called_once_with( self._session.vim.client.factory, 'device', 1) mock_reconfigure_vm.assert_called_once_with(self._session, 'fake-ref', 'fake-detach-spec') _network_api.update_instance_vnic_index.assert_called_once_with( mock.ANY, self._instance, self._network_values, None) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') def test_get_mks_console(self, mock_get_vm_ref): ticket = mock.MagicMock() ticket.host = 'esx1' ticket.port = 902 ticket.ticket = 'fira' ticket.sslThumbprint = 'aa:bb:cc:dd:ee:ff' ticket.cfgFile = '[ds1] fira/foo.vmx' with mock.patch.object(self._session, '_call_method', return_value=ticket): console = self._vmops.get_mks_console(self._instance) self.assertEqual('esx1', console.host) self.assertEqual(902, console.port) path = jsonutils.loads(console.internal_access_path) self.assertEqual('fira', path['ticket']) self.assertEqual('aabbccddeeff', path['thumbprint']) self.assertEqual('[ds1] fira/foo.vmx', path['cfgFile']) def test_get_cores_per_socket(self): extra_specs = {'hw:cpu_sockets': 7} flavor = objects.Flavor(name='m1.small', memory_mb=8, vcpus=28, root_gb=496, ephemeral_gb=8128, swap=33550336, extra_specs=extra_specs) extra_specs = self._vmops._get_extra_specs(flavor, None) self.assertEqual(4, int(extra_specs.cores_per_socket)) def test_get_folder_name(self): uuid = uuidutils.generate_uuid() name = 'fira' expected = 'fira (%s)' % uuid folder_name = self._vmops._get_folder_name(name, uuid) self.assertEqual(expected, folder_name) name = 'X' * 255 expected = '%s (%s)' % ('X' * 40, uuid) folder_name = self._vmops._get_folder_name(name, uuid) self.assertEqual(expected, folder_name) self.assertEqual(79, len(folder_name)) @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(vm_util, 'reconfigure_vm') @mock.patch.object(vm_util, 'get_network_attach_config_spec', return_value='fake-attach-spec') @mock.patch.object(vm_util, 'get_attach_port_index', return_value=1) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') def test_attach_interface_with_limits(self, mock_get_vm_ref, mock_get_attach_port_index, mock_get_network_attach_config_spec, mock_reconfigure_vm, mock_extra_specs): _network_api = mock.Mock() self._vmops._network_api = _network_api vif_info = vif.get_vif_dict(self._session, self._cluster, 'VirtualE1000', self._network_values) vif_limits = vm_util.Limits(shares_level='custom', shares_share=40) extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) mock_extra_specs.return_value = extra_specs self._vmops.attach_interface(self._context, self._instance, self._image_meta, self._network_values) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) mock_get_attach_port_index.assert_called_once_with(self._session, 'fake-ref') mock_get_network_attach_config_spec.assert_called_once_with( self._session.vim.client.factory, vif_info, 1, extra_specs.vif_limits) mock_reconfigure_vm.assert_called_once_with(self._session, 'fake-ref', 'fake-attach-spec') _network_api.update_instance_vnic_index.assert_called_once_with( mock.ANY, self._instance, self._network_values, 1)
48.352665
79
0.582192
adce03f2f3fc91dd267ac242fdcee4f18ea7a73e
1,924
py
Python
CountFingers_v2.py
VDHARV/hand-tracking
03653f5b0a0a6f0f362047d86c94b0624e8e6a43
[ "MIT" ]
null
null
null
CountFingers_v2.py
VDHARV/hand-tracking
03653f5b0a0a6f0f362047d86c94b0624e8e6a43
[ "MIT" ]
null
null
null
CountFingers_v2.py
VDHARV/hand-tracking
03653f5b0a0a6f0f362047d86c94b0624e8e6a43
[ "MIT" ]
null
null
null
import cv2 from HandDetector import HandDetector def CountFingersV2(detector, vid): detector = HandDetector(detectionCon = 0.75, trackCon = 0.75) vid = cv2.VideoCapture(0) i = 0 while True: success, img = vid.read() img = detector.find_hands(img) landmark_list = detector.find_position(img) if landmark_list: fingers = [(landmark_list[8][2], landmark_list[7][2], 0), (landmark_list[12][2], landmark_list[11][2], 1), (landmark_list[16][2], landmark_list[15][2], 2), (landmark_list[20][2], landmark_list[19][2], 3), (landmark_list[5][1], landmark_list[4][1], 4)] finger_up = [0, 0, 0, 0, 0] for finger in fingers: if finger[0] < finger[1]: finger_up[finger[2]] = 1 if finger_up[0]: if finger_up[1]: if finger_up[2]: if finger_up[3]: if finger_up[4]: cv2.putText(img, '5', (500, 500), cv2.FONT_HERSHEY_TRIPLEX, 5, (250, 0, 250), 3) else: cv2.putText(img, '4', (500, 500), cv2.FONT_HERSHEY_TRIPLEX, 5, (250, 0, 250), 3) else: cv2.putText(img, '3', (500, 500), cv2.FONT_HERSHEY_TRIPLEX, 5, (250, 0, 250), 3) else: cv2.putText(img, '2', (500, 500), cv2.FONT_HERSHEY_TRIPLEX, 5, (250, 0, 250), 3) else: cv2.putText(img, '1', (500, 500), cv2.FONT_HERSHEY_TRIPLEX, 5, (250, 0, 250), 3) else: cv2.putText(img, '0', (500, 500), cv2.FONT_HERSHEY_TRIPLEX, 5, (250, 0, 250), 3) cv2.imshow('Finger Count', img) if cv2.waitKey(1) and 0xFF == ord('q'): break
45.809524
112
0.476611
de21d33245a062cdc438482f3d2e51c3d1e0a7cc
510
py
Python
thirdparty/antlr3-antlr-3.5/runtime/Python/tests/t019lexer.py
mail2nsrajesh/congress
a724dfb59c43a5e88e2b03e714a5f962d6976762
[ "Apache-2.0" ]
3,266
2017-08-06T16:51:46.000Z
2022-03-30T07:34:24.000Z
thirdparty/antlr3-antlr-3.5/runtime/Python/tests/t019lexer.py
mail2nsrajesh/congress
a724dfb59c43a5e88e2b03e714a5f962d6976762
[ "Apache-2.0" ]
150
2017-08-28T14:59:36.000Z
2022-03-11T23:21:35.000Z
thirdparty/antlr3-antlr-3.5/runtime/Python/tests/t019lexer.py
mail2nsrajesh/congress
a724dfb59c43a5e88e2b03e714a5f962d6976762
[ "Apache-2.0" ]
1,449
2017-08-06T17:40:59.000Z
2022-03-31T12:03:24.000Z
import os import antlr3 import testbase import unittest class t019lexer(testbase.ANTLRTest): def setUp(self): self.compileGrammar() def testValid(self): inputPath = os.path.splitext(__file__)[0] + '.input' stream = antlr3.StringStream(open(inputPath).read()) lexer = self.getLexer(stream) while True: token = lexer.nextToken() if token.type == antlr3.EOF: break if __name__ == '__main__': unittest.main()
22.173913
60
0.605882
8f6a26173e6f16cb64da1a758c8a68859a440133
22,250
py
Python
python/backup/_app.py
katie0809/2021AiHub-ODQA
a6377efd336217afab5de6797e0449ebce5837a2
[ "MIT" ]
null
null
null
python/backup/_app.py
katie0809/2021AiHub-ODQA
a6377efd336217afab5de6797e0449ebce5837a2
[ "MIT" ]
null
null
null
python/backup/_app.py
katie0809/2021AiHub-ODQA
a6377efd336217afab5de6797e0449ebce5837a2
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf import tensorflow.keras.backend as K import tensorflow_addons as tfa import os import re import numpy as np import pandas as pd import pickle import random import collections import json from datetime import datetime import sentencepiece as spm from flask import Flask, request from flask_api import status random_seed = 1234 random.seed(random_seed) np.random.seed(random_seed) tf.random.set_seed(random_seed) class Config(dict): """ json을 config 형태로 사용하기 위한 Class :param dict: config dictionary """ __getattr__ = dict.__getitem__ __setattr__ = dict.__setitem__ args = Config({ 'max_seq_length': 384, 'max_query_length': 64, }) def get_vocab(): vocab = spm.SentencePieceProcessor() vocab.load( f"../models/ko_32000.model") return vocab vocab = get_vocab() # 유틸리티 함수들 def get_pad_mask(tokens, i_pad=0): """ pad mask 계산하는 함수 :param tokens: tokens (bs, n_seq) :param i_pad: id of pad :return mask: pad mask (pad: 1, other: 0) """ mask = tf.cast(tf.math.equal(tokens, i_pad), tf.float32) mask = tf.expand_dims(mask, axis=1) return mask def get_ahead_mask(tokens, i_pad=0): """ ahead mask 계산하는 함수 :param tokens: tokens (bs, n_seq) :param i_pad: id of pad :return mask: ahead and pad mask (ahead or pad: 1, other: 0) """ n_seq = tf.shape(tokens)[1] ahead_mask = 1 - tf.linalg.band_part(tf.ones((n_seq, n_seq)), -1, 0) ahead_mask = tf.expand_dims(ahead_mask, axis=0) pad_mask = get_pad_mask(tokens, i_pad) mask = tf.maximum(ahead_mask, pad_mask) return mask @tf.function(experimental_relax_shapes=True) def gelu(x): """ gelu activation 함수 :param x: 입력 값 :return: gelu activation result """ return 0.5 * x * (1 + K.tanh(x * 0.7978845608 * (1 + 0.044715 * x * x))) def kernel_initializer(stddev=0.02): """ parameter initializer 생성 :param stddev: 생성할 랜덤 변수의 표준편차 """ return tf.keras.initializers.TruncatedNormal(stddev=stddev) def bias_initializer(): """ bias initializer 생성 """ return tf.zeros_initializer class Config(dict): """ json을 config 형태로 사용하기 위한 Class :param dict: config dictionary """ __getattr__ = dict.__getitem__ __setattr__ = dict.__setitem__ @classmethod def load(cls, file): """ file에서 Config를 생성 함 :param file: filename """ with open(file, 'r') as f: config = json.loads(f.read()) return Config(config) # mode == "embedding" 일 경우 Token Embedding Layer 로 사용되는 layer 클래스입니다. class SharedEmbedding(tf.keras.layers.Layer): """ Weighed Shared Embedding Class """ def __init__(self, config, name="weight_shared_embedding"): """ 생성자 :param config: Config 객체 :param name: layer name """ super().__init__(name=name) self.n_vocab = config.n_vocab self.d_model = config.d_model def build(self, input_shape): """ shared weight 생성 :param input_shape: Tensor Shape (not used) """ with tf.name_scope("shared_embedding_weight"): self.shared_weights = self.add_weight( "weights", shape=[self.n_vocab, self.d_model], initializer=kernel_initializer() ) def call(self, inputs, mode="embedding"): """ layer 실행 :param inputs: 입력 :param mode: 실행 모드 :return: embedding or linear 실행 결과 """ # mode가 embedding일 경우 embedding lookup 실행 if mode == "embedding": return self._embedding(inputs) # mode가 linear일 경우 linear 실행 elif mode == "linear": return self._linear(inputs) # mode가 기타일 경우 오류 발생 else: raise ValueError(f"mode {mode} is not valid.") def _embedding(self, inputs): """ embedding lookup :param inputs: 입력 """ embed = tf.gather(self.shared_weights, tf.cast(inputs, tf.int32)) return embed def _linear(self, inputs): # (bs, n_seq, d_model) """ linear 실행 :param inputs: 입력 """ n_batch = tf.shape(inputs)[0] n_seq = tf.shape(inputs)[1] # (bs * n_seq, d_model) inputs = tf.reshape(inputs, [-1, self.d_model]) outputs = tf.matmul(inputs, self.shared_weights, transpose_b=True) # (bs, n_seq, n_vocab) outputs = tf.reshape(outputs, [n_batch, n_seq, self.n_vocab]) return outputs class PositionalEmbedding(tf.keras.layers.Layer): """ Positional Embedding Class """ def __init__(self, config, name="position_embedding"): """ 생성자 :param config: Config 객체 :param name: layer name """ super().__init__(name=name) self.embedding = tf.keras.layers.Embedding( config.n_seq, config.d_model, embeddings_initializer=kernel_initializer()) def call(self, inputs): """ layer 실행 :param inputs: 입력 :return embed: positional embedding lookup 결과 """ position = tf.cast(tf.math.cumsum(tf.ones_like( inputs), axis=1, exclusive=True), tf.int32) embed = self.embedding(position) return embed class ScaleDotProductAttention(tf.keras.layers.Layer): """ Scale Dot Product Attention Class """ def __init__(self, name="scale_dot_product_attention"): """ 생성자 :param name: layer name """ super().__init__(name=name) def call(self, Q, K, V, attn_mask): """ layer 실행 :param Q: Q value :param K: K value :param V: V value :param attn_mask: 실행 모드 :return attn_out: attention 실행 결과 """ attn_score = tf.matmul(Q, K, transpose_b=True) scale = tf.math.sqrt(tf.cast(tf.shape(K)[-1], tf.float32)) attn_scale = tf.math.divide(attn_score, scale) attn_scale -= 1.e9 * attn_mask attn_prob = tf.nn.softmax(attn_scale, axis=-1) attn_out = tf.matmul(attn_prob, V) return attn_out class MultiHeadAttention(tf.keras.layers.Layer): """ Multi Head Attention Class """ def __init__(self, config, name="multi_head_attention"): """ 생성자 :param config: Config 객체 :param name: layer name """ super().__init__(name=name) self.d_model = config.d_model self.n_head = config.n_head self.d_head = config.d_head # Q, K, V input dense layer self.W_Q = tf.keras.layers.Dense( config.n_head * config.d_head, kernel_initializer=kernel_initializer(), bias_initializer=bias_initializer()) self.W_K = tf.keras.layers.Dense( config.n_head * config.d_head, kernel_initializer=kernel_initializer(), bias_initializer=bias_initializer()) self.W_V = tf.keras.layers.Dense( config.n_head * config.d_head, kernel_initializer=kernel_initializer(), bias_initializer=bias_initializer()) # Scale Dot Product Attention class self.attention = ScaleDotProductAttention(name="self_attention") # output dense layer self.W_O = tf.keras.layers.Dense( config.d_model, kernel_initializer=kernel_initializer(), bias_initializer=bias_initializer()) def call(self, Q, K, V, attn_mask): """ layer 실행 :param Q: Q value :param K: K value :param V: V value :param attn_mask: 실행 모드 :return attn_out: attention 실행 결과 """ # reshape Q, K, V, attn_mask batch_size = tf.shape(Q)[0] Q_m = tf.transpose(tf.reshape(self.W_Q(Q), [ batch_size, -1, self.n_head, self.d_head]), [0, 2, 1, 3]) # (bs, n_head, Q_len, d_head) K_m = tf.transpose(tf.reshape(self.W_K(K), [ batch_size, -1, self.n_head, self.d_head]), [0, 2, 1, 3]) # (bs, n_head, K_len, d_head) V_m = tf.transpose(tf.reshape(self.W_V(V), [ batch_size, -1, self.n_head, self.d_head]), [0, 2, 1, 3]) # (bs, n_head, K_len, d_head) attn_mask_m = tf.expand_dims(attn_mask, axis=1) # Scale Dot Product Attention with multi head Q, K, V, attn_mask # (bs, n_head, Q_len, d_head) attn_out = self.attention(Q_m, K_m, V_m, attn_mask_m) # transpose and liner # (bs, Q_len, n_head, d_head) attn_out_m = tf.transpose(attn_out, perm=[0, 2, 1, 3]) # (bs, Q_len, d_model) attn_out = tf.reshape( attn_out_m, [batch_size, -1, config.n_head * config.d_head]) attn_out = self.W_O(attn_out) # (bs, Q_len, d_model) return attn_out class PositionWiseFeedForward(tf.keras.layers.Layer): """ Position Wise Feed Forward Class """ def __init__(self, config, name="feed_forward"): """ 생성자 :param config: Config 객체 :param name: layer name """ super().__init__(name=name) self.W_1 = tf.keras.layers.Dense( config.d_ff, activation=gelu, kernel_initializer=kernel_initializer(), bias_initializer=bias_initializer()) self.W_2 = tf.keras.layers.Dense( config.d_model, kernel_initializer=kernel_initializer(), bias_initializer=bias_initializer()) def call(self, inputs): """ layer 실행 :param inputs: inputs :return ff_val: feed forward 실행 결과 """ ff_val = self.W_2(self.W_1(inputs)) return ff_val class EncoderLayer(tf.keras.layers.Layer): """ Encoder Layer Class """ def __init__(self, config, name="encoder_layer"): """ 생성자 :param config: Config 객체 :param name: layer name """ super().__init__(name=name) self.self_attention = MultiHeadAttention(config) self.norm1 = tf.keras.layers.LayerNormalization( epsilon=config.layernorm_epsilon) self.ffn = PositionWiseFeedForward(config) self.norm2 = tf.keras.layers.LayerNormalization( epsilon=config.layernorm_epsilon) self.dropout = tf.keras.layers.Dropout(config.dropout) def call(self, enc_embed, self_mask): """ layer 실행 :param enc_embed: enc_embed 또는 이전 EncoderLayer의 출력 :param self_mask: enc_tokens의 pad mask :return enc_out: EncoderLayer 실행 결과 """ self_attn_val = self.self_attention( enc_embed, enc_embed, enc_embed, self_mask) norm1_val = self.norm1(enc_embed + self.dropout(self_attn_val)) ffn_val = self.ffn(norm1_val) enc_out = self.norm2(norm1_val + self.dropout(ffn_val)) return enc_out class BERT(tf.keras.layers.Layer): """ BERT Class """ def __init__(self, config, name="bert"): """ 생성자 :param config: Config 객체 :param name: layer name """ super().__init__(name=name) self.i_pad = config.i_pad self.embedding = SharedEmbedding(config) self.position = PositionalEmbedding(config) self.segment = tf.keras.layers.Embedding( 2, config.d_model, embeddings_initializer=kernel_initializer()) self.norm = tf.keras.layers.LayerNormalization( epsilon=config.layernorm_epsilon) self.encoder_layers = [EncoderLayer( config, name=f"encoder_layer_{i}") for i in range(config.n_layer)] self.dropout = tf.keras.layers.Dropout(config.dropout) def call(self, enc_tokens, segments): """ layer 실행 :param enc_tokens: encoder tokens :param segments: token segments :return logits_cls: CLS 결과 logits :return logits_lm: LM 결과 logits """ enc_self_mask = get_pad_mask(enc_tokens, self.i_pad) enc_embed = self.get_embedding(enc_tokens, segments) enc_out = self.dropout(enc_embed) for encoder_layer in self.encoder_layers: enc_out = encoder_layer(enc_out, enc_self_mask) logits_cls = enc_out[:, 0] logits_lm = enc_out return logits_cls, logits_lm def get_embedding(self, tokens, segments): """ token embedding, position embedding lookup :param tokens: 입력 tokens :param segments: 입력 segments :return embed: embedding 결과 """ embed = self.embedding(tokens) + \ self.position(tokens) + self.segment(segments) embed = self.norm(embed) return embed class BERT4KorQuAD(tf.keras.Model): def __init__(self, config): super().__init__(name='BERT4KorQuAD') self.bert = BERT(config) self.dense = tf.keras.layers.Dense(2) def call(self, enc_tokens, segments): logits_cls, logits_lm = self.bert(enc_tokens, segments) hidden = self.dense(logits_lm) # (bs, n_seq, 2) start_logits, end_logits = tf.split( hidden, 2, axis=-1) # (bs, n_seq, 1), (bs, n_seq, 1) start_logits = tf.squeeze(start_logits, axis=-1) start_outputs = tf.keras.layers.Softmax(name="start")(start_logits) end_logits = tf.squeeze(end_logits, axis=-1) end_outputs = tf.keras.layers.Softmax(name="end")(end_logits) return start_outputs, end_outputs config = Config({"d_model": 256, "n_head": 4, "d_head": 64, "dropout": 0.1, "d_ff": 1024, "layernorm_epsilon": 0.001, "n_layer": 3, "n_seq": 384, "n_vocab": 0, "i_pad": 0}) config.n_vocab = len(vocab) config.i_pad = vocab.pad_id() config bert_batch_size = 32 model = BERT4KorQuAD(config) def train_epoch(model, dataset, loss_fn, acc_fn, optimizer): metric_start_loss = tf.keras.metrics.Mean(name='start_loss') metric_end_loss = tf.keras.metrics.Mean(name='end_loss') metric_start_acc = tf.keras.metrics.Mean(name='start_acc') metric_end_acc = tf.keras.metrics.Mean(name='end_acc') p_bar = dataset for batch, ((enc_tokens, segments), (start_labels, end_labels)) in enumerate(p_bar): with tf.GradientTape() as tape: start_outputs, end_outputs = model(enc_tokens, segments) start_loss = loss_fn(start_labels, start_outputs) end_loss = loss_fn(end_labels, end_outputs) loss = start_loss + end_loss start_acc = acc_fn(start_labels, start_outputs) end_acc = acc_fn(end_labels, end_outputs) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) metric_start_loss(start_loss) metric_end_loss(end_loss) metric_start_acc(start_acc) metric_end_acc(end_acc) return metric_start_loss.result(), metric_end_loss.result(), metric_start_acc.result(), metric_end_acc.result() def eval_epoch(model, dataset, loss_fn, acc_fn): metric_start_loss = tf.keras.metrics.Mean(name='start_loss') metric_end_loss = tf.keras.metrics.Mean(name='end_loss') metric_start_acc = tf.keras.metrics.Mean(name='start_acc') metric_end_acc = tf.keras.metrics.Mean(name='end_acc') for batch, ((enc_tokens, segments), (start_labels, end_labels)) in enumerate(dataset): start_outputs, end_outputs = model(enc_tokens, segments) start_loss = loss_fn(start_labels, start_outputs) end_loss = loss_fn(end_labels, end_outputs) start_acc = acc_fn(start_labels, start_outputs) end_acc = acc_fn(end_labels, end_outputs) metric_start_loss(start_loss) metric_end_loss(end_loss) metric_start_acc(start_acc) metric_end_acc(end_acc) return metric_start_loss.result(), metric_end_loss.result(), metric_start_acc.result(), metric_end_acc.result() def _is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False def _improve_span(vocab, context_tokens, token_start, token_end, char_answer): token_answer = " ".join(vocab.encode_as_pieces(char_answer)) for new_start in range(token_start, token_end + 1): for new_end in range(token_end, new_start - 1, -1): text_span = " ".join(context_tokens[new_start : (new_end + 1)]) if text_span == token_answer: return (new_start, new_end) return (token_start, token_end) def _tokenize_vocab(vocab, context_words): word_to_token = [] context_tokens = [] for (i, word) in enumerate(context_words): word_to_token.append(len(context_tokens)) tokens = vocab.encode_as_pieces(word) for token in tokens: context_tokens.append(token) return context_tokens, word_to_token def _tokenize_whitespace(string): word_tokens = [] char_to_word = [] prev_is_whitespace = True for c in string: if _is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: word_tokens.append(c) else: word_tokens[-1] += c prev_is_whitespace = False char_to_word.append(len(word_tokens) - 1) return word_tokens, char_to_word def get_context_tokens(vocab, context): context_words, char_to_word = _tokenize_whitespace(context) context_tokens, word_to_token = _tokenize_vocab(vocab, context_words) return context_tokens def get_encoded_question_(vocab, question): return vocab.encode_as_pieces(question) def load_data_and_check(count=10): rootdir = "/data/qa" onlyfiles = [f for f in os.listdir( rootdir)[:count] if os.path.isfile(os.path.join(rootdir, f))] for file in onlyfiles: filePath = rootdir + '/' + file with open(filePath, "r") as f: print(f'read {filePath}') for i, line in enumerate(f): data = json.loads(line) #question = vocab.decode_pieces(data['qas'][0]['question']) #context = vocab.decode_pieces(data['context']) #answer = data['answer'] context = data['context'] for qa in data['qas']: question = qa['question'] answer = qa['answer']['answer_text'] answer_predict = do_predict(model, question, context) # if answer in answer_predict: print(i) print("질문 : ", question) # print("지문 : ", context) print("정답 : ", answer) print("예측 : ", answer_predict, "\n") def preprocess(text): text = text.strip() text = re.sub(r'\n', ' ', text) text = re.sub('[-=+,#/\?:^$.@*\"※~&%ㆍ!』\\‘|\(\)\[\]\<\>`\'…》]', '', text) # text = re.sub(r"\\n", " ", text) # text = re.sub(r"\s+", " ", text) # text = re.sub(r'#', ' ', text) text = re.sub(r"[^a-zA-Z0-9가-힣ㄱ-ㅎㅏ-ㅣぁ-ゔァ-ヴー々〆〤一-龥<>()\s\.\?!》《≪≫\'<>〈〉:‘’%,『』「」<>・\"-“”∧]", "", text) text = re.sub(r' ', '', text) return text def do_predict(model, question, context): """ 입력에 대한 답변 생성하는 함수 :param model: model :param question: 입력 문자열 :param context: 입력 문자열 """ # args.max_seq_length = 500 # context = get_context_tokens(vocab, context) #전처리 context_words, char_to_word = _tokenize_whitespace(context) context_tokens, word_to_token = _tokenize_vocab(vocab, context_words) question = vocab.encode_as_pieces(question) question = vocab.decode_pieces(question) context = vocab.decode_pieces(context_tokens) q_tokens = vocab.encode_as_pieces(question) c_tokens = vocab.encode_as_pieces(context)[:args.max_seq_length - len(q_tokens) - 3] tokens = ['[CLS]'] + q_tokens + ['[SEP]'] + c_tokens + ['[SEP]'] token_ids = [vocab.piece_to_id(token) for token in tokens] segments = [0] * (len(q_tokens) + 2) + [1] * (len(c_tokens) + 1) y_start, y_end = model(np.array([token_ids]), np.array([segments])) # print(y_start, y_end) y_start_idx = K.argmax(y_start, axis=-1)[0].numpy() y_end_idx = K.argmax(y_end, axis=-1)[0].numpy() answer_tokens = tokens[y_start_idx:y_end_idx + 1] return vocab.decode_pieces(answer_tokens) model_dir = "../models" checkpoint_file = os.path.join(model_dir, 'korquad_bert_jihoon_pretrain2.hdf5') model = BERT4KorQuAD(config) if os.path.exists(checkpoint_file): # model 을 로드하기 위해 먼저 모델이 생성되어 있어야 한다. enc_tokens = np.random.randint(0, len(vocab), (4, 10)) segments = np.random.randint(0, 2, (4, 10)) model(enc_tokens, segments) # checkpoint 파일로부터 필요한 layer를 불러온다. model.load_weights(checkpoint_file, by_name=True) model.summary() else: print('NO Pretrained Model') loss_fn = tf.keras.losses.sparse_categorical_crossentropy acc_fn = tf.keras.metrics.sparse_categorical_accuracy optimizer = tf.keras.optimizers.Adam(learning_rate=5e-4) after_pretrained_loss_raw = [] after_pretrained_acc_raw = [] best_acc = .0 patience = 0 app = Flask(__name__) @app.route('/') def greeting(): return "This is Tensorflow Python API ! " @app.route('/predict', methods=['POST']) def get_predict(): if request.method == 'POST': print("request", request) question = request.json["question"] print("question", question) context = request.json["context"] print("context", context) answer = do_predict(model,question,context) print("answer", answer) result = json.dumps(answer) return result, status.HTTP_200_OK, {"Content-Type": "application/json; charset=utf-8", "Access-Control-Allow-Origin": "*"} # def main(): # # def main(args): # # ------------- 모델사용 -------------------------------- # # do_predict(model, question, context): # if __name__ == '__main__': # # parser = argparse.ArgumentParser() # # parser.add_argument('--question', type=str) # # parser.add_argument('--context', type=str) # # args = parser.parse_args() # # main(args) # main()
31.293952
126
0.617843
5112280a8e6c20b8239624c5df00423f183d2cec
11,169
py
Python
cellpy/utils/batch_tools/batch_helpers.py
jepegit/cellpy
b9ddb7afa3f7453bfb5f2f24a3268279bccf24c6
[ "MIT" ]
38
2016-08-16T10:54:56.000Z
2022-03-03T04:43:20.000Z
cellpy/utils/batch_tools/batch_helpers.py
jepegit/cellpy
b9ddb7afa3f7453bfb5f2f24a3268279bccf24c6
[ "MIT" ]
88
2016-08-16T13:10:27.000Z
2022-03-29T10:36:39.000Z
cellpy/utils/batch_tools/batch_helpers.py
jepegit/cellpy
b9ddb7afa3f7453bfb5f2f24a3268279bccf24c6
[ "MIT" ]
13
2019-01-02T03:57:52.000Z
2022-01-19T08:06:49.000Z
import logging import os import warnings import pandas as pd import csv import itertools from cellpy import filefinder, prms from cellpy.exceptions import ExportFailed, NullData, WrongFileVersion import cellpy.parameters.internal_settings # logger = logging.getLogger(__name__) hdr_summary = cellpy.parameters.internal_settings.get_headers_summary() hdr_journal = cellpy.parameters.internal_settings.get_headers_journal() def look_up_and_get(cellpy_file_name, table_name, root=None): """Extracts table from cellpy hdf5-file.""" # infoname = '/CellpyData/info' # dataname = '/CellpyData/dfdata' # summaryname = '/CellpyData/dfsummary' # fidname = '/CellpyData/fidtable' # stepname = '/CellpyData/step_table' if root is None: root = "/CellpyData" table_path = "/".join([root, table_name]) logging.debug(f"look_up_and_get({cellpy_file_name}, {table_name}") store = pd.HDFStore(cellpy_file_name) try: table = store.select(table_path) store.close() except KeyError as e: logging.warning("Could not read the table") store.close() raise WrongFileVersion(e) return table def create_folder_structure(project_name, batch_name): """This function creates a folder structure for the batch project. The folder structure consists of main working folder ``project_name` located in the ``outdatadir`` (as defined in the cellpy configuration file) with a sub-folder named ``batch_name``. It also creates a folder inside the ``batch_name`` folder for storing the raw data. If the folders does not exist, they will be made. The function also returns the name of the info-df. Args: project_name: name of the project batch_name: name of the batch Returns: (info_file, (project_dir, batch_dir, raw_dir)) """ out_data_dir = prms.Paths["outdatadir"] project_dir = os.path.join(out_data_dir, project_name) batch_dir = os.path.join(project_dir, batch_name) raw_dir = os.path.join(batch_dir, "raw_data") # create folders if not os.path.isdir(project_dir): os.mkdir(project_dir) if not os.path.isdir(batch_dir): os.mkdir(batch_dir) if not os.path.isdir(raw_dir): os.mkdir(raw_dir) # create file-name for the info_df (json) info_file = "cellpy_batch_%s.json" % batch_name info_file = os.path.join(project_dir, info_file) return info_file, (project_dir, batch_dir, raw_dir) def find_files(info_dict, file_list=None, pre_path=None, **kwargs): """Find files using cellpy.filefinder. Args: info_dict: journal pages. file_list: list of files names to search through. pre_path: path to prepend found files from file_list (if file_list is given). **kwargs: sent to filefinder.search_for_files. Returns: info_dict """ # searches for the raw data files and the cellpyfile-name # TODO: implement faster file searching # TODO: implement option for not searching for raw-file names if force_cellpy is True for run_name in info_dict[hdr_journal["filename"]]: logging.debug(f"checking for {run_name}") raw_files, cellpyfile = filefinder.search_for_files( run_name, file_list=file_list, pre_path=pre_path, **kwargs ) if not raw_files: raw_files = None info_dict[hdr_journal["raw_file_names"]].append(raw_files) info_dict[hdr_journal["cellpy_file_name"]].append(cellpyfile) return info_dict def fix_groups(groups): """Takes care of strange group numbers.""" _groups = [] for g in groups: try: if not float(g) > 0: _groups.append(1000) else: _groups.append(int(g)) except TypeError as e: logging.info("Error in reading group number (check your db)") logging.debug(g) logging.debug(e) _groups.append(1000) return _groups def save_multi(data, file_name, sep=";"): """Convenience function for storing data column-wise in a csv-file.""" logging.debug("saving multi") with open(file_name, "w", newline="") as f: logging.debug(f"{file_name} opened") writer = csv.writer(f, delimiter=sep) try: writer.writerows(itertools.zip_longest(*data)) logging.info(f"{file_name} OK") except Exception as e: logging.info(f"Exception encountered in batch._save_multi: {e}") raise ExportFailed logging.debug("wrote rows using itertools in _save_multi") def make_unique_groups(info_df): """This function cleans up the group numbers a bit.""" # fixes group numbering unique_g = info_df[hdr_journal.group].unique() unique_g = sorted(unique_g) new_unique_g = list(range(len(unique_g))) info_df[hdr_journal.sub_group] = info_df[hdr_journal.group] * 0 for i, j in zip(unique_g, new_unique_g): counter = 1 for indx, row in info_df.loc[info_df[hdr_journal.group] == i].iterrows(): info_df.at[indx, hdr_journal.sub_group] = counter counter += 1 info_df.loc[info_df[hdr_journal.group] == i, hdr_journal.group] = j + 1 return info_df def _remove_date_and_celltype(label,): parts = label.split("_") parts.pop(0) if parts[-1] in ["cc", "ec", "eth"]: parts.pop(-1) return "_".join(parts) def create_labels(label, *args): """Returns a re-formatted label (currently it only removes the dates from the run-name)""" return _remove_date_and_celltype(label) def create_selected_summaries_dict(summaries_list): """Creates a dictionary with summary column headers. Examples: >>> summaries_to_output = ["discharge_capacity", "charge_capacity"] >>> summaries_to_output_dict = create_selected_summaries_dict( >>> summaries_to_output >>> ) >>> print(summaries_to_output_dict) {'discharge_capacity': "Discharge_Capacity(mAh/g)", 'charge_capacity': "Charge_Capacity(mAh/g)} Args: summaries_list: list containing cellpy summary column id names Returns: dictionary of the form {cellpy id name: cellpy summary header name,} """ selected_summaries = dict() for h in summaries_list: selected_summaries[h] = hdr_summary[h] return selected_summaries def pick_summary_data(key, summary_df, selected_summaries): """picks the selected pandas.DataFrame""" selected_summaries_dict = create_selected_summaries_dict(selected_summaries) value = selected_summaries_dict[key] return summary_df.iloc[:, summary_df.columns.get_level_values(1) == value] def join_summaries(summary_frames, selected_summaries, keep_old_header=False): """parse the summaries and combine based on column (selected_summaries)""" if not summary_frames: raise NullData("No summaries available to join") selected_summaries_dict = create_selected_summaries_dict(selected_summaries) frames = [] keys = [] # test-name for key in summary_frames: keys.append(key) if summary_frames[key].empty: logging.debug("Empty summary_frame encountered") frames.append(summary_frames[key]) out = [] summary_df = pd.concat(frames, keys=keys, axis=1) for key, value in selected_summaries_dict.items(): _summary_df = summary_df.iloc[ :, summary_df.columns.get_level_values(1) == value ] _summary_df.name = key if not keep_old_header: try: _summary_df.columns = _summary_df.columns.droplevel(-1) except AttributeError as e: logging.debug("could not drop level from frame") logging.debug(e) out.append(_summary_df) logging.debug("finished joining summaries") return out def generate_folder_names(name, project): """Creates sensible folder names.""" out_data_dir = prms.Paths.outdatadir project_dir = os.path.join(out_data_dir, project) batch_dir = os.path.join(project_dir, name) raw_dir = os.path.join(batch_dir, "raw_data") return out_data_dir, project_dir, batch_dir, raw_dir def _extract_dqdv(cell_data, extract_func, last_cycle): """Simple wrapper around the cellpy.utils.ica.dqdv function.""" from cellpy.utils.ica import dqdv list_of_cycles = cell_data.get_cycle_numbers() if last_cycle is not None: list_of_cycles = [c for c in list_of_cycles if c <= int(last_cycle)] logging.debug(f"only processing up to cycle {last_cycle}") logging.debug(f"you have {len(list_of_cycles)} cycles to process") out_data = [] for cycle in list_of_cycles: try: c, v = extract_func(cycle) v, dq = dqdv(v, c) v = v.tolist() dq = dq.tolist() except NullData as e: v = list() dq = list() logging.info(" Ups! Could not process this (cycle %i)" % cycle) logging.info(" %s" % e) header_x = "dQ cycle_no %i" % cycle header_y = "voltage cycle_no %i" % cycle dq.insert(0, header_x) v.insert(0, header_y) out_data.append(v) out_data.append(dq) return out_data def export_dqdv(cell_data, savedir, sep, last_cycle=None): """Exports dQ/dV data from a CellpyData instance. Args: cell_data: CellpyData instance savedir: path to the folder where the files should be saved sep: separator for the .csv-files. last_cycle: only export up to this cycle (if not None) """ logging.debug("exporting dqdv") filename = cell_data.cell.loaded_from no_merged_sets = "" firstname, extension = os.path.splitext(filename) firstname += no_merged_sets if savedir: firstname = os.path.join(savedir, os.path.basename(firstname)) logging.debug(f"savedir is true: {firstname}") outname_charge = firstname + "_dqdv_charge.csv" outname_discharge = firstname + "_dqdv_discharge.csv" list_of_cycles = cell_data.get_cycle_numbers() number_of_cycles = len(list_of_cycles) logging.debug("%s: you have %i cycles" % (filename, number_of_cycles)) # extracting charge out_data = _extract_dqdv(cell_data, cell_data.get_ccap, last_cycle) logging.debug("extracted ica for charge") try: save_multi(data=out_data, file_name=outname_charge, sep=sep) except ExportFailed as e: logging.info("could not export ica for charge") warnings.warn(f"ExportFailed exception raised: {e}") else: logging.debug("saved ica for charge") # extracting discharge out_data = _extract_dqdv(cell_data, cell_data.get_dcap, last_cycle) logging.debug("extracted ica for discharge") try: save_multi(data=out_data, file_name=outname_discharge, sep=sep) except ExportFailed as e: logging.info("could not export ica for discharge") warnings.warn(f"ExportFailed exception raised: {e}") else: logging.debug("saved ica for discharge")
34.155963
89
0.669532
70f3c6a650e0bb3477dbf33fa3c09be95644645b
3,383
py
Python
mavlinkAPI/unloadDrone.py
CopterExpress/DronePoint-home
2800c77fd0aaaab8080e157ffc9bee875171db48
[ "Apache-2.0" ]
null
null
null
mavlinkAPI/unloadDrone.py
CopterExpress/DronePoint-home
2800c77fd0aaaab8080e157ffc9bee875171db48
[ "Apache-2.0" ]
null
null
null
mavlinkAPI/unloadDrone.py
CopterExpress/DronePoint-home
2800c77fd0aaaab8080e157ffc9bee875171db48
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import time, os, sys from pymavlink import mavutil import threading import json #CUSTOM_MODE CUSTOM_MODE_UNKNOWN=0 CUSTOM_MODE_COVER_INSTALLATION=2 CUSTOM_MODE_COVER_REMOVAL=4 CUSTOM_MODE_LOADING_DRONE = 5 CUSTOM_MODE_UNLOADING_DRONE = 6 CUSTOM_MODE_GETTING_FROM_USER = 7 CUSTOM_MODE_UNLOADING_TO_USER = 8 CUSTOM_MODE_CONTAINER_UNLOADING = 9 SERVICE = 10 RESET = 11 STANDBY = 12 ERROR = 13 #CUSTOM_SUBMODE LOCK_RELEASE = 0 LOCK_LOCK = 1 LOCK_STOP = 2 OPEN_TOP_HATCH = 3 CLOSE_TOP_HATCH = 4 GOTO_CELL = 5 LOAD_CHARGING_CELL = 6 UNLOAD_CHARGING_CELL = 7 LOAD_PAYLOAD_CELL = 8 UNLOAD_PAYLOAD_CELL = 9 GET_FROM_USER = 10 UNLOAD_TO_USER = 11 STOP = 12 GET_PAYLOAD_FROM_DRONE = 13 INSERT_PAYLOAD_INTO_DRONE = 14 LOCK_PAYLOAD = 15 RELEASE_PAYLOAD = 16 LOCK_CHARGING_CELL_LOCK = 17 RELEASE_CHARGING_CELL_LOCK = 18 LOCK_TOP_HATCH_LOCK = 19 RELEASE_TOP_HATCH_LOCK = 20 OPEN_BOTTOM_HATCH = 21 CLOSE_BOTTOM_HATCH = 22 LOCK_USER_CELL_LOCK = 23 RELEASE_USER_CELL_LOCK = 24 GOTO_CHARGING_CELL = 25 CCSM=12 NUMO=0 master = mavutil.mavlink_connection('udpout:127.0.0.1:14590') def telemet(): #show incoming mavlink messages global CCSM while True: msg = master.recv_match(type = 'HEARTBEAT', blocking = False) if not msg: continue else: #print(msg) try: state = msg.to_dict() #print(state) if state.get("type")==31: #print(state) CCSM = state.get("custom_mode") print("CUSTOM_MODE =", CCSM) except ValueError as e: # Incorrect message print(e) def sendheard(): '''heartbeat bistro''' while True: try: master.mav.heartbeat_send(0,0,0,0,0) time.sleep(1) except ValueError as e: # nemogu message send print(e) task1 = threading.Thread(target=telemet) task2 = threading.Thread(target=sendheard) task1.start() task2.start() while True: try: #LOAD_DRONE CUSTOM_MODE операция меняет стэйт #vynet iz iacheyki snimet kryshku, zagruzit v dron print("LOAD_DRONE X0Y3Z2Kr0") master.mav.command_long_send(master.target_system, master.target_component, mavutil.mavlink.MAV_CMD_DO_SET_MODE, 1, mavutil.mavlink.MAV_MODE_FLAG_CUSTOM_MODE_ENABLED, CUSTOM_MODE_LOADING_DRONE, #5 стэйт 0, 3, 2, 0, 0) #X, Y, Z, Kr0 time.sleep(5) while CCSM!=12: pass time.sleep(7) #UNLOAD_DRONE CUSTOM_MODE операция меняет стэйт #snimet s drona vstavit krishku, zagruzut v iacheyku print("UNLOAD_DRONE X0Y3Z2Kr0") master.mav.command_long_send(master.target_system, master.target_component, mavutil.mavlink.MAV_CMD_DO_SET_MODE, 1, mavutil.mavlink.MAV_MODE_FLAG_CUSTOM_MODE_ENABLED, CUSTOM_MODE_UNLOADING_DRONE, #6 стэйт 0, 3, 2, 0, 0) time.sleep(5) while CCSM!=12: pass time.sleep(7) except BaseException as e: print(e) time.sleep(3) print('OK')
27.064
84
0.619568
2dce049f24dfa2c170d50681a93b451eac694eef
20,640
py
Python
auth-api/src/auth_api/services/invitation.py
mengdong19/sbc-auth
66fbd94a79d6de18102d3db29743ffeab89ea161
[ "Apache-2.0" ]
null
null
null
auth-api/src/auth_api/services/invitation.py
mengdong19/sbc-auth
66fbd94a79d6de18102d3db29743ffeab89ea161
[ "Apache-2.0" ]
null
null
null
auth-api/src/auth_api/services/invitation.py
mengdong19/sbc-auth
66fbd94a79d6de18102d3db29743ffeab89ea161
[ "Apache-2.0" ]
1
2019-07-25T18:20:41.000Z
2019-07-25T18:20:41.000Z
# Copyright © 2019 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Service for managing Invitation data.""" from datetime import datetime from typing import Dict from flask import current_app from itsdangerous import URLSafeTimedSerializer from jinja2 import Environment, FileSystemLoader from sbc_common_components.tracing.service_tracing import ServiceTracing # noqa: I001 from auth_api.config import get_named_config from auth_api.exceptions import BusinessException from auth_api.exceptions.errors import Error from auth_api.models import AccountLoginOptions as AccountLoginOptionsModel from auth_api.models import Documents as DocumentsModel from auth_api.models import Invitation as InvitationModel from auth_api.models import InvitationStatus as InvitationStatusModel from auth_api.models import Membership as MembershipModel from auth_api.models.org import Org as OrgModel from auth_api.schemas import InvitationSchema from auth_api.services.user import User as UserService from auth_api.utils.enums import AccessType, DocumentType, InvitationStatus, InvitationType, Status, LoginSource, \ OrgStatus as OrgStatusEnum from auth_api.utils.roles import ADMIN, COORDINATOR, STAFF, USER from auth_api.utils.constants import GROUP_GOV_ACCOUNT_USERS from .authorization import check_auth from .keycloak import KeycloakService from .membership import Membership as MembershipService from .notification import send_email from ..utils.account_mailer import publish_to_mailer from ..utils.util import escape_wam_friendly_url ENV = Environment(loader=FileSystemLoader('.'), autoescape=True) CONFIG = get_named_config() class Invitation: """Manages Invitation data. This service manages creating, updating, and retrieving Invitation data via the Invitation model. """ def __init__(self, model): """Return an invitation service instance.""" self._model = model @ServiceTracing.disable_tracing def as_dict(self): """Return the internal Invitation model as a dictionary.""" invitation_schema = InvitationSchema() obj = invitation_schema.dump(self._model, many=False) return obj @staticmethod def create_invitation(invitation_info: Dict, user, # pylint: disable=too-many-locals token_info: Dict, invitation_origin): """Create a new invitation.""" # Ensure that the current user is ADMIN or COORDINATOR on each org being invited to context_path = CONFIG.AUTH_WEB_TOKEN_CONFIRM_PATH org_id = invitation_info['membership'][0]['orgId'] # get the org and check the access_type org: OrgModel = OrgModel.find_by_org_id(org_id) if not org: raise BusinessException(Error.DATA_NOT_FOUND, None) check_auth(token_info, org_id=org_id, one_of_roles=(ADMIN, COORDINATOR, STAFF)) org_name = org.name invitation_type = Invitation._get_inv_type(org) if org.access_type == AccessType.ANONYMOUS.value: # anonymous account never get bceid or bcsc choices mandatory_login_source = LoginSource.BCROS.value elif org.access_type == AccessType.GOVM.value: mandatory_login_source = LoginSource.STAFF.value else: default_login_option_based_on_accesstype = LoginSource.BCSC.value if \ org.access_type == AccessType.REGULAR.value else LoginSource.BCEID.value role = invitation_info['membership'][0]['membershipType'] account_login_options = AccountLoginOptionsModel.find_active_by_org_id(org.id) mandatory_login_source = LoginSource.BCSC.value if \ role == ADMIN else getattr(account_login_options, 'login_source', default_login_option_based_on_accesstype) invitation = InvitationModel.create_from_dict(invitation_info, user.identifier, invitation_type) confirmation_token = Invitation.generate_confirmation_token(invitation.id, invitation.type) invitation.token = confirmation_token invitation.login_source = mandatory_login_source invitation.save() Invitation.send_invitation(invitation, org_name, user.as_dict(), '{}/{}'.format(invitation_origin, context_path), mandatory_login_source, org_status=org.status_code) # notify admin if staff adds team members is_staff_access = token_info and 'staff' in token_info.get('realm_access', {}).get('roles', None) if is_staff_access and invitation_type == InvitationType.STANDARD.value: publish_to_mailer(notification_type='teamMemberInvited', org_id=org_id) return Invitation(invitation) @staticmethod def _get_inv_type(org): """Return the correct invitation type.""" inv_types = { AccessType.GOVM.value: InvitationType.GOVM.value, AccessType.ANONYMOUS.value: InvitationType.DIRECTOR_SEARCH.value, AccessType.REGULAR.value: InvitationType.STANDARD.value } return inv_types.get(org.access_type, InvitationType.STANDARD.value) def update_invitation(self, user, token_info: Dict, invitation_origin): """Update the specified invitation with new data.""" # Ensure that the current user is ADMIN or COORDINATOR on each org being re-invited to context_path = CONFIG.AUTH_WEB_TOKEN_CONFIRM_PATH for membership in self._model.membership: org_id = membership.org_id check_auth(token_info, org_id=org_id, one_of_roles=(ADMIN, COORDINATOR, STAFF)) # TODO doesnt work when invited to multiple teams.. Re-work the logic when multiple teams introduced confirmation_token = Invitation.generate_confirmation_token(self._model.id, self._model.type) self._model.token = confirmation_token updated_invitation = self._model.update_invitation_as_retried() org_name = OrgModel.find_by_org_id(self._model.membership[0].org_id).name Invitation.send_invitation(updated_invitation, org_name, user.as_dict(), '{}/{}'.format(invitation_origin, context_path), self._model.login_source) return Invitation(updated_invitation) @staticmethod def delete_invitation(invitation_id, token_info: Dict = None): """Delete the specified invitation.""" # Ensure that the current user is ADMIN or COORDINATOR for each org in the invitation invitation = InvitationModel.find_invitation_by_id(invitation_id) if invitation is None: raise BusinessException(Error.DATA_NOT_FOUND, None) for membership in invitation.membership: org_id = membership.org_id check_auth(token_info, org_id=org_id, one_of_roles=(ADMIN, COORDINATOR, STAFF)) invitation.delete() @staticmethod def get_invitations_for_org(org_id, status=None, token_info: Dict = None): """Get invitations for an org.""" org_model = OrgModel.find_by_org_id(org_id) if not org_model: return None if status: status = InvitationStatus[status] # If staff return full list if 'staff' in token_info.get('realm_access').get('roles'): return InvitationModel.find_pending_invitations_by_org(org_id) current_user: UserService = UserService.find_by_jwt_token(token_info) current_user_membership: MembershipModel = \ MembershipModel.find_membership_by_user_and_org(user_id=current_user.identifier, org_id=org_id) # If no active membership return empty array if current_user_membership is None or \ current_user_membership.status != Status.ACTIVE.value: return [] # Ensure either ADMIN or COORDINATOR if current_user_membership.membership_type_code == USER: return [] return InvitationModel.find_invitations_by_org(org_id=org_id, status=status) @staticmethod def find_invitation_by_id(invitation_id, token_info: Dict = None): """Find an existing invitation with the provided id.""" if invitation_id is None: return None invitation = InvitationModel.find_invitation_by_id(invitation_id) if not invitation: return None # Ensure that the current user is an ADMIN or COORDINATOR on each org in the invite being retrieved for membership in invitation.membership: org_id = membership.org_id check_auth(token_info, org_id=org_id, one_of_roles=(ADMIN, COORDINATOR, STAFF)) return Invitation(invitation) @staticmethod def send_admin_notification(user, url, recipient_email_list, org_name): """Send the admin email notification.""" subject = '[BC Registries and Online Services] {} {} has responded for the invitation to join the account {}'. \ format(user['firstname'], user['firstname'], org_name) sender = CONFIG.MAIL_FROM_ID try: template = ENV.get_template('email_templates/admin_notification_email.html') except Exception: # NOQA # pylint: disable=broad-except raise BusinessException(Error.FAILED_INVITATION, None) sent_response = send_email(subject, sender, recipient_email_list, template.render(url=url, user=user, org_name=org_name, logo_url=f'{url}/{CONFIG.REGISTRIES_LOGO_IMAGE_NAME}')) if not sent_response: # invitation.invitation_status_code = 'FAILED' # invitation.save() raise BusinessException(Error.FAILED_INVITATION, None) @staticmethod def send_invitation(invitation: InvitationModel, org_name, user, # pylint: disable=too-many-arguments app_url, login_source, org_status=None): """Send the email notification.""" current_app.logger.debug('<send_invitation') mail_configs = Invitation._get_invitation_configs(org_name, login_source, org_status) subject = mail_configs.get('subject').format(user['firstname'], user['lastname']) sender = CONFIG.MAIL_FROM_ID recipient = invitation.recipient_email token_confirm_url = '{}/{}/{}'.format(app_url, mail_configs.get('token_confirm_path'), invitation.token) template = ENV.get_template(f"email_templates/{mail_configs.get('template_name')}.html") sent_response = send_email(subject, sender, recipient, template.render(invitation=invitation, url=token_confirm_url, user=user, org_name=org_name, logo_url=f'{app_url}/{CONFIG.REGISTRIES_LOGO_IMAGE_NAME}')) if not sent_response: invitation.invitation_status_code = 'FAILED' invitation.save() current_app.logger.debug('>send_invitation failed') raise BusinessException(Error.FAILED_INVITATION, None) current_app.logger.debug('>send_invitation') @staticmethod def _get_invitation_configs(org_name, login_source, org_status=None): """Get the config for different email types.""" login_source = login_source or LoginSource.BCSC.value escape_url = escape_wam_friendly_url(org_name) token_confirm_path = f'{escape_url}/validatetoken/{login_source}' if login_source == LoginSource.STAFF.value: # for GOVM accounts , there are two kinda of invitation. Its same login source # if its first invitation to org , its an account set up invitation else normal joining invite login_source = 'IDIR/ACCOUNTSETUP' if Invitation._is_first_user_to_a_gov_accnt(org_status) else login_source govm_setup_configs = { 'token_confirm_path': token_confirm_path, 'template_name': 'govm_business_invitation_email', 'subject': '[BC Registries and Online Services] You’ve been invited to create a BC Registries account', } govm_member_configs = { 'token_confirm_path': token_confirm_path, 'template_name': 'govm_member_invitation_email', 'subject': '[BC Registries and Online Services] You have been added as a team member.', } director_search_configs = { 'token_confirm_path': token_confirm_path, 'template_name': 'dirsearch_business_invitation_email', 'subject': 'Your BC Registries Account has been created', } bceid_configs = { 'token_confirm_path': token_confirm_path, 'template_name': 'business_invitation_email_for_bceid', 'subject': '[BC Registries and Online Services] {} {} has invited you to join an account', } default_configs = { 'token_confirm_path': token_confirm_path, 'template_name': 'business_invitation_email', 'subject': '[BC Registries and Online Services] {} {} has invited you to join an account', } mail_configs = { 'BCROS': director_search_configs, 'BCEID': bceid_configs, 'IDIR': govm_member_configs, 'IDIR/ACCOUNTSETUP': govm_setup_configs } return mail_configs.get(login_source, default_configs) @staticmethod def generate_confirmation_token(invitation_id, invitation_type=''): """Generate the token to be sent in the email.""" serializer = URLSafeTimedSerializer(CONFIG.EMAIL_TOKEN_SECRET_KEY) token = {'id': invitation_id, 'type': invitation_type} return serializer.dumps(token, salt=CONFIG.EMAIL_SECURITY_PASSWORD_SALT) @staticmethod def _is_first_user_to_a_gov_accnt(org_status: str) -> bool: return org_status == OrgStatusEnum.PENDING_INVITE_ACCEPT.value @staticmethod def validate_token(token): """Check whether the passed token is valid.""" serializer = URLSafeTimedSerializer(CONFIG.EMAIL_TOKEN_SECRET_KEY) token_valid_for = int(CONFIG.TOKEN_EXPIRY_PERIOD) * 3600 * 24 if CONFIG.TOKEN_EXPIRY_PERIOD else 3600 * 24 * 7 try: invitation_id = serializer.loads(token, salt=CONFIG.EMAIL_SECURITY_PASSWORD_SALT, max_age=token_valid_for).get('id') except: # noqa: E722 raise BusinessException(Error.EXPIRED_INVITATION, None) invitation: InvitationModel = InvitationModel.find_invitation_by_id(invitation_id) if invitation is None: raise BusinessException(Error.DATA_NOT_FOUND, None) if invitation.invitation_status_code == 'ACCEPTED': raise BusinessException(Error.ACTIONED_INVITATION, None) if invitation.invitation_status_code == 'EXPIRED': raise BusinessException(Error.EXPIRED_INVITATION, None) return Invitation(invitation) @staticmethod def notify_admin(user, invitation_id, membership_id, invitation_origin): """Admins should be notified if user has responded to invitation.""" current_app.logger.debug('<notify_admin') admin_list = UserService.get_admins_for_membership(membership_id) invitation: InvitationModel = InvitationModel.find_invitation_by_id(invitation_id) context_path = CONFIG.AUTH_WEB_TOKEN_CONFIRM_PATH # Don't send email in case no admin exist in the org. (staff sent invitation) if len(admin_list) >= 1: admin_emails = ','.join([str(x.contacts[0].contact.email) for x in admin_list if x.contacts]) else: # No admin, find Sender email to notify sender (staff) admin_emails = invitation.sender.email if admin_emails != '': Invitation.send_admin_notification(user.as_dict(), '{}/{}'.format(invitation_origin, context_path), admin_emails, invitation.membership[0].org.name) current_app.logger.debug('>notify_admin') return Invitation(invitation) @staticmethod def accept_invitation(invitation_id, user: UserService, origin, add_membership: bool = True, token_info: Dict = None): """Add user, role and org from the invitation to membership.""" current_app.logger.debug('>accept_invitation') invitation: InvitationModel = InvitationModel.find_invitation_by_id(invitation_id) if invitation is None: raise BusinessException(Error.DATA_NOT_FOUND, None) if invitation.invitation_status_code == 'ACCEPTED': raise BusinessException(Error.ACTIONED_INVITATION, None) if invitation.invitation_status_code == 'EXPIRED': raise BusinessException(Error.EXPIRED_INVITATION, None) if getattr(token_info, 'loginSource', None) is not None: # bcros comes with out token login_source = token_info.get('loginSource', None) if invitation.login_source != login_source: raise BusinessException(Error.INVALID_USER_CREDENTIALS, None) if add_membership: for membership in invitation.membership: membership_model = MembershipModel() membership_model.org_id = membership.org_id membership_model.user_id = user.identifier membership_model.membership_type = membership.membership_type # check to ensure an invitation for this user/org has not already been processed existing_membership = MembershipService \ .get_membership_for_org_and_user(org_id=membership_model.org_id, user_id=membership_model.user_id) if existing_membership: raise BusinessException(Error.DATA_ALREADY_EXISTS, None) org_model: OrgModel = OrgModel.find_by_org_id(membership.org_id) # GOVM users gets direct approval since they are IDIR users. membership_model.status = Invitation._get_status_based_on_org(org_model) membership_model.save() try: # skip notifying admin if it auto approved # for now , auto approval happens for GOVM.If more auto approval comes , just check if its GOVM if membership_model.status != Status.ACTIVE.value: Invitation.notify_admin(user, invitation_id, membership_model.id, origin) except BusinessException as exception: current_app.logger.error('<send_notification_to_admin failed', exception.message) invitation.accepted_date = datetime.now() invitation.invitation_status = InvitationStatusModel.get_status_by_code('ACCEPTED') invitation.save() # Call keycloak to add the user to the group. if user: group_name: str = KeycloakService.join_users_group(token_info) KeycloakService.join_account_holders_group(user.keycloak_guid) if group_name == GROUP_GOV_ACCOUNT_USERS: # TODO Remove this if gov account users needs Terms of Use. tos_document = DocumentsModel.fetch_latest_document_by_type(DocumentType.TERMS_OF_USE.value) user.update_terms_of_use(token_info, True, tos_document.version_id) # Add contact to the user. user.add_contact(token_info, dict(email=token_info.get('email', None)), throw_error_for_duplicates=False) current_app.logger.debug('<accept_invitation') return Invitation(invitation) @staticmethod def _get_status_based_on_org(org_model: OrgModel): if org_model.access_type == AccessType.GOVM.value: return Status.ACTIVE.value return Status.PENDING_APPROVAL.value
50.341463
120
0.680233
9a58237bcdc7bd5843d51e6ffd9a17f45794da09
8,563
py
Python
src/pyth2/fs/StagingFileSystem.py
gnomeberry/pyth2
532d89e4ed22b4f9427069bf187ab836e2c2f538
[ "MIT" ]
null
null
null
src/pyth2/fs/StagingFileSystem.py
gnomeberry/pyth2
532d89e4ed22b4f9427069bf187ab836e2c2f538
[ "MIT" ]
null
null
null
src/pyth2/fs/StagingFileSystem.py
gnomeberry/pyth2
532d89e4ed22b4f9427069bf187ab836e2c2f538
[ "MIT" ]
null
null
null
# encoding: utf-8 ''' Created on 2016/01/24 @author: _ ''' import codecs import json import os import sys FILESYSTEM_CHARACTER_ENCODING = sys.getfilesystemencoding() STAGING_CONTEXT_FILE_PATTERN = "%s_context" def ensureDirectory(path): if not os.path.isdir(path): os.mkdir(path) if not os.path.isdir(path): raise ValueError("Cannot ensure directory(s) %s" % path) return True def ensureFile(path): if os.path.isfile(path): return True ensureDirectory(os.path.join(path, os.pardir)) with open(path, "w") as f: # @UnusedVariable pass if os.path.isfile(path): return True else: raise ValueError("Cannot ensure file %s" % path) def fileDateComparator(dateFunctor): def comparator(f1, f2): return dateFunctor(f1) < dateFunctor(f2) return comparator def fileRegexComparator(regex, onlyBaseName = True, errorOnMismatch = True, *foundTranslators): import re pat = re.compile(regex, re.DOTALL) def comparator(f1, f2): m1 = pat.match(os.path.basename(f1) if onlyBaseName else f1) m2 = pat.match(os.path.basename(f2) if onlyBaseName else f2) if errorOnMismatch: if not m1: raise ValueError("Mismatch %s for %s" % (f1, regex)) if not m2: raise ValueError("Mismatch %s for %s" % (f2, regex)) g1 = [] if not m1 else m1.groups() g2 = [] if not m2 else m2.groups() if len(g1) != len(g2): return len(g1) - len(g2) else: for i, s in enumerate(zip(g1, g2)): s = map(foundTranslators[i], s) if i < len(foundTranslators) else s c = cmp(s[0], s[1]) if c != 0: return c return 0 return comparator class FilesystemBoundObject(object): def __init__(self, isFileObject = True): self.isFileObject = isFileObject def assocFile(self): raise ValueError("Abstract method") def ensureFile(self): if self.isFileObject: ensureFile(self.assocFile()) else: ensureDirectory(self.assocFile()) class FilesystemView(FilesystemBoundObject): def __init__(self, stage, files, autoCommit): super(FilesystemView, self).__init__(False) self.__stage = stage self.__files = tuple(files) self.autoCommit = autoCommit def assocFile(self): return self.__stage.assocFile() def listFiles(self, sort_comparator = None): if callable(sort_comparator): return tuple(sorted(self.__files, cmp = sort_comparator)) else: return self.__files def commit(self): self.__stage.__commit_currentView(self) def __enter__(self): pass def __exit__(self, excType, excInstance, excTrace): if not excInstance: raise elif self.autoCommit: self.commit() class Stages(object): ''' Stageをまとめたもの ''' baseDirectory = None stages = [] def __init__(self, baseDirectory): self.baseDirectory = unicode(baseDirectory, FILESYSTEM_CHARACTER_ENCODING) if not isinstance(baseDirectory, unicode) else baseDirectory ensureDirectory(self.baseDirectory) def addStage(self, stageName = "", changeBaseDir = None): if changeBaseDir: changeBaseDir = unicode(changeBaseDir, FILESYSTEM_CHARACTER_ENCODING) if not isinstance(changeBaseDir, unicode) else changeBaseDir ensureDirectory(changeBaseDir) else: changeBaseDir = self.baseDirectory stage = Stage(self, changeBaseDir, stageName) if stage in self.stages: raise ValueError("%s is already exist in %s" % (stage, self.stages)) self.stages.append(stage) return stage def __contains__(self, val): return val in self.stages def findStageIndex(self, stageName): for i, s in enumerate(self.stages): if s._name == stageName: return i return None class Stage(FilesystemBoundObject): __stageManager = None _name = "" class StageContext(FilesystemBoundObject): def __init__(self, stage): super(stage.StageContext, self).__init__(True) self.stage = stage self.__frozen = self.__dict__.keys() + ["_StageContext__frozen"] def assocFile(self): return os.path.join(self.stage._baseDirectory, STAGING_CONTEXT_FILE_PATTERN % self.stage._name) def __attributes(self): return {k: getattr(self, k) for k in self.__dict__ if not k in self.__frozen} def __contains__(self, k): return hasattr(self, k) def clear(self): for k in [_ for _ in self.__dict__ if not _ in self.__frozen]: delattr(self, k) def store(self): self.ensureFile() with codecs.open(self.assocFile(), "wb", "utf-8", buffering = 1) as fp: json.dump(self.__attributes(), fp, indent = 4) def load(self): self.ensureFile() self.clear() with codecs.open(self.assocFile(), "rb", "utf-8", buffering = 1) as fp: for k, v in json.load(fp).items(): setattr(self, k, v) def __init__(self, stageManager, baseDirectory, name): super(Stage, self).__init__(False) if not stageManager: raise ValueError("Must specify stage manager") if not name: raise ValueError("%s is not valid for stage name" % name) self.__stageManager = stageManager self._name = unicode(name, FILESYSTEM_CHARACTER_ENCODING) if not isinstance(name, unicode) else name self._baseDirectory = baseDirectory self.__stageDirectory = os.path.join(self._baseDirectory, self._name) self.__context = self.StageContext(self) ensureDirectory(self.__stageDirectory) def __str__(self, *args, **kwargs): return "Stage[%s, dir=%s]" % (self._name, self.__stageDirectory) def __eq__(self, other): return isinstance(other, Stage) and other._name == self._name def __hash__(self, *args, **kwargs): return self._name.__hash__() def assocFile(self): return self.__stageDirectory def stageManager(self): return self.__stageManager def stageName(self): return self._name def previousStage(self): index = self.__stageManager.findStageIndex(self._name) if index: return self.__stageManager.stage[index - 1] if index >= 1 else None def nextStage(self): index = self.__stageManager.findStageIndex(self._name) if index: return self.__stageManager.stage[index + 1] if index <= len(self.__stageManager) - 1 else None def context(self): return self.__context def currentView(self, pathSelector = None, autoCommit = False): files = (os.path.join(self.__stageDirectory, (unicode(fpath, FILESYSTEM_CHARACTER_ENCODING) if not isinstance(fpath, unicode) else fpath)) for fpath in os.listdir(self.assocFile())) if pathSelector and callable(pathSelector): files = (fpath for fpath in files if pathSelector(fpath)) return FilesystemView(self, list(files), autoCommit) def __commit_currentView(self, filesystemView): print "Commit current view", filesystemView.listFiles() nextStage = self.nextStage() print "Next stage=%s" % nextStage if nextStage: pass else: # delete? pass if __name__ == "__main__": x=Stages("z:\\hoge") print x.baseDirectory stage1 = x.addStage("stage1") ctx = stage1.context() ctx.load() if "initial" in ctx: print ctx.val1, ctx.val2 ctx.initial = False ctx.val1 = 1 ctx.val2 = "abc" ctx.store() ctx.clear() print ctx.val1 fsv = stage1.currentView() for fn in fsv.listFiles(fileRegexComparator(r"(.*)(\d+).*$", True, False, unicode, int)): print fn
33.580392
190
0.589046
2c3d4c73931373fdd1d07e3bc986e28ba95b1307
1,564
py
Python
src/gui/MainWindow/MainRadioButton.py
bochkovoi/AHP
b51dc598f8f7a65a2ade039d887dccfa6d070f1e
[ "MIT" ]
null
null
null
src/gui/MainWindow/MainRadioButton.py
bochkovoi/AHP
b51dc598f8f7a65a2ade039d887dccfa6d070f1e
[ "MIT" ]
null
null
null
src/gui/MainWindow/MainRadioButton.py
bochkovoi/AHP
b51dc598f8f7a65a2ade039d887dccfa6d070f1e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from PyQt5 import QtWidgets from PyQt5.QtCore import pyqtSignal import sys, os.path as op path1 = op.join( op.abspath(op.dirname(__file__)), '..', '..') path2 = op.join( op.abspath(op.dirname(__file__)), '..') sys.path.append(path1) sys.path.append(path2) from Structure import * from .MainCategoriesVision import * from .MainAlternativesVision import * from SubCriteriasVision import * class MainRadioButton( QtWidgets.QWidget ): ''' Окно режима объекта''' is_changed = pyqtSignal() def __init__( self, main_obj, parent=None ): super().__init__( parent=parent ) self.main_obj = main_obj #Делаем надпись и две радиокнопки label = QtWidgets.QLabel("Сложность модели") setTrueButton = QtWidgets.QRadioButton("Две категории") setFalseButton = QtWidgets.QRadioButton("Четыре категории") #Соединяем одну из кнопок с методов и ставим указатель на ней setTrueButton.toggled.connect( self.setTrue ) setTrueButton.setChecked(True) box = QtWidgets.QHBoxLayout() box.addWidget(setTrueButton) box.addWidget(setFalseButton) form = QtWidgets.QFormLayout() form.addRow(label) form.addRow(box) self.setLayout( form ) def setTrue( self, is_right ): if is_right: self.main_obj.is_simple = True else: self.main_obj.is_simple = False self.is_changed.emit()
30.076923
69
0.634271
c0223ac12b2bb0b17c73ec8c84482a7b47cb243f
618
py
Python
eth/tools/rlp.py
jin10086/py-evm
da04e8de42fdbf3bc5ca596f5f6b3d810c1afea8
[ "MIT" ]
5
2018-09-28T20:01:42.000Z
2022-02-22T19:54:46.000Z
eth/tools/rlp.py
jin10086/py-evm
da04e8de42fdbf3bc5ca596f5f6b3d810c1afea8
[ "MIT" ]
null
null
null
eth/tools/rlp.py
jin10086/py-evm
da04e8de42fdbf3bc5ca596f5f6b3d810c1afea8
[ "MIT" ]
2
2018-12-09T15:58:11.000Z
2020-09-29T07:10:21.000Z
from eth_utils import ( replace_exceptions, ValidationError, ) from eth.utils.rlp import ( validate_rlp_equal, ) assert_imported_genesis_header_unchanged = replace_exceptions({ ValidationError: AssertionError, })(validate_rlp_equal(obj_a_name='genesis header', obj_b_name='imported header')) assert_mined_block_unchanged = replace_exceptions({ ValidationError: AssertionError, })(validate_rlp_equal(obj_a_name='block', obj_b_name='mined block')) assert_headers_eq = replace_exceptions({ ValidationError: AssertionError, })(validate_rlp_equal(obj_a_name='expected', obj_b_name='actual'))
25.75
81
0.788026
8f30d2d9e347bcd18899497d2eb129dde3e0de29
42,344
py
Python
plugin.video.xbmcfilm/resources/lib/mrknow_Pageparser.py
mrknow/filmkodi
0162cde9ae25ddbf4a69330948714833ff2f78c9
[ "Apache-2.0" ]
105
2015-11-28T00:03:11.000Z
2021-05-05T20:47:42.000Z
plugin.video.xbmcfilm/resources/lib/mrknow_Pageparser.py
rrosajp/filmkodi
0162cde9ae25ddbf4a69330948714833ff2f78c9
[ "Apache-2.0" ]
918
2015-11-28T14:12:40.000Z
2022-03-23T20:24:49.000Z
plugin.video.xbmcfilm/resources/lib/mrknow_Pageparser.py
rrosajp/filmkodi
0162cde9ae25ddbf4a69330948714833ff2f78c9
[ "Apache-2.0" ]
111
2015-12-01T14:06:10.000Z
2020-08-01T10:44:39.000Z
# -*- coding: utf-8 -*- import cookielib, os, string, StringIO import os, time, base64, logging, calendar import urllib, urllib2, re, sys, math import xbmcaddon, xbmc, xbmcgui try: import simplejson as json except ImportError: import json import urlparse, httplib, random, string ptv = xbmcaddon.Addon() scriptID = ptv.getAddonInfo('id') scriptname = ptv.getAddonInfo('name') #dbg = ptv.getSetting('default_debug') in ('true') ptv = xbmcaddon.Addon(scriptID) import mrknow_pLog, mrknow_pCommon, mrknow_urlparser, mrknow_utils from BeautifulSoup import BeautifulSoup log = mrknow_pLog.pLog() class mrknow_Pageparser: def __init__(self): self.cm = mrknow_pCommon.common() self.up = mrknow_urlparser.mrknow_urlparser() def hostSelect(self, v): hostUrl = False d = xbmcgui.Dialog() if len(v) > 0: valTab = [] for i in range(len(v)): valTab.append(str(i+1) + '. ' + self.getHostName(v[i], True)) item = d.select("Wybor hostingu", valTab) if item >= 0: hostUrl = v[item] else: d.ok ('Brak linkow','Przykro nam, ale nie znalezlismy zadnego linku do video.', 'Sproboj ponownie za jakis czas') return hostUrl def getHostName(self, url, nameOnly = False): hostName = '' match = re.search('http[s]?://(.+?)/',url) if match: hostName = match.group(1) if (nameOnly): n = hostName.split('.') hostName = n[-2] return hostName def getVideoLink(self, url, referer=''): nUrl='' host = self.getHostName(url) log.info("PAGEPARSER video hosted by: " + host) if host == 'livemecz.com': nUrl = self.livemecz(url) print "Self",nUrl if host == 'www.drhtv.com.pl': nUrl = self.drhtv(url) elif host == 'www.realtv.com.pl': nUrl = self.realtv(url) elif host == 'www.transmisje.info': nUrl = self.transmisjeinfo(url) elif host == '79.96.137.217' or host == 'http://178.216.200.26': nUrl = self.azap(url) elif host == 'bbpolska.webd.pl': nUrl = self.bbpolska(url) elif host == 'fotosend.pl': nUrl = self.azap(url) elif host == 'typertv.com' or host == 'www.typertv.com.pl': nUrl = self.typertv(url) elif host == 'streamon.pl': nUrl = self.streamon(url) elif host == 'goodcast.tv': nUrl = self.goodcasttv(url) elif host == 'mecz.tv': nUrl = self.mecztv(url) elif host == 'www.fupptv.pl': nUrl = self.fupptvpl(url) elif host == 'team-cast.pl': nUrl = self.teamcastpl(url) elif host == 'www.yousat.tv': nUrl = self.yousattv(url) elif host == 'zobacztv.beep.pl': nUrl = self.zobaczxyz(url) elif host == 'alltube.tv': nUrl = self.alltubetv(url,referer='') elif host == 'zobaczto.tv': nUrl = self.zobacztotv(url, referer='') elif host == 'zalukaj.tv': nUrl = self.zalukajtv(url, referer='') elif host == 'zalukaj.com': nUrl = self.zalukajtv(url, referer='') elif host == 'www.efilmy.tv': nUrl = self.efilmytv(url, referer='') elif host == 'www.filmydokumentalne.eu': nUrl = self.filmydokumentalneeu(url, referer='') elif host == 'www.tvseriesonline.pl': nUrl = self.tvseriesonline(url, referer='') elif 'looknij.tv' in host: nUrl = self.looknijtv(url, referer='') elif 'ustream.tv' in host: nUrl = self.ustream(url, referer='') elif 'telewizjoner.pl' in host: nUrl = self.nettvpw(url, referer='') elif 'screen-tv.pl' in host: nUrl = self.screentv(url, referer='') elif nUrl == '': print "Jedziemy na ELSE - "+ url+ "Host" + host nUrl = self.pageanalyze(url,host) print ("Link:",nUrl) return nUrl def efilmytv(self,url,referer): COOKIEFILE = ptv.getAddonInfo('path') + os.path.sep + "cookies" + os.path.sep + "efilmytv.cookie" IMAGEFILE = ptv.getAddonInfo('path') + os.path.sep + "cookies" + os.path.sep + "efilmytv.jpg" linkVideo='' query_data = { 'url': url, 'use_host': False, 'use_cookie': True, 'cookiefile': COOKIEFILE, 'load_cookie': True, 'save_cookie': True, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) myfile1 = re.compile('<div id="(.*?)" alt="n" class="embedbg"><img src="(.*?)"/></div><div class="versionholder">').findall(link) print("m",myfile1) if len(myfile1)>0: print("url", 'http://www.efilmy.tv/seriale.php?cmd=show_player&id=' + myfile1[0][0] ) HEADER = {'Referer' : 'http://www.efilmy.tv/seriale.php?cmd=show_player&id=' + myfile1[0][0], 'User-Agent':'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:43.0) Gecko/20100101 Firefox/43.0' } query_data = { 'url': 'http://www.efilmy.tv/seriale.php?cmd=show_player&id=' + myfile1[0][0], 'use_host': False, 'use_header': True, 'header': HEADER,'use_cookie': True, 'cookiefile': COOKIEFILE, 'load_cookie': True, 'save_cookie': False, 'use_post': False, 'return_data': True } link2 = self.cm.getURLRequestData(query_data) print("link2",link2) if '<p><strong>Zabezpieczenie przeciwko robotom</strong></p>' in link2: print("link",link2) mymatch=re.compile('<input type="hidden" name="id" value=(\d+) />\r\n<input type="hidden" name="mode" value=(\w+) />').findall(link2) print(("mymatch",mymatch)) query_data = { 'url': 'http://www.efilmy.tv//mirrory.php?cmd=generate_captcha&time=' +str(random.randint(1, 1000)), 'use_host': False, 'use_header': True, 'header': HEADER,'use_cookie': True, 'cookiefile': COOKIEFILE, 'load_cookie': True, 'save_cookie': False, 'use_post': False, 'return_data': True } link20 = self.cm.getURLRequestData(query_data) with open(IMAGEFILE, 'wb') as f: f.write(link20) img = xbmcgui.ControlImage(450, 0, 400, 130, IMAGEFILE) wdlg = xbmcgui.WindowDialog() wdlg.addControl(img) wdlg.show() kb = xbmc.Keyboard('', 'Type the letters in the image', False) kb.doModal() if (kb.isConfirmed()): solution = kb.getText() if solution == '': raise Exception('You must enter text in the image to access video') else: dialog = xbmcgui.Dialog() dialog.ok(" Problem"," Nie wprowadzono kodu Captcha") return '' xbmc.sleep(2 * 1000) query_data = { 'url': 'http://www.efilmy.tv//mirrory.php?cmd=check_captcha', 'use_host': False, 'use_header': True, 'header': HEADER,'use_cookie': True, 'cookiefile': COOKIEFILE, 'load_cookie': True, 'save_cookie': True, 'use_post': True, 'return_data': True } postdata = {'captcha':solution,"id":str(mymatch[0][0]),"mode":str(mymatch[0][1])} link2 = self.cm.getURLRequestData(query_data, postdata) myfile2 = re.compile('Base64.decode\("(.*?)"\)').findall(link2) print("m2",myfile2 ) if len(myfile2)>0: import base64 decode = base64.b64decode(myfile2[0]) print("myfile",decode) myfile3 = re.compile('<IFRAME SRC="([^"]+)".*?>').findall(decode) myfile4 = re.compile('<iframe src="([^"]+)".*?>').findall(decode) if len(myfile3)>0: linkVideo = self.up.getVideoLink(myfile3[0]) if len(myfile4)>0: query_data = { 'url': myfile4[0] , 'use_host': False, 'use_header': True, 'header': HEADER,'use_cookie': True, 'cookiefile': COOKIEFILE, 'load_cookie': True, 'save_cookie': False, 'use_post': False, 'return_data': True } link20 = self.cm.getURLRequestData(query_data) mymatch1=re.compile(' <a href="(.*?)" style="display:block;width:100%;height:320px" id="player">').findall(link20) linkVideo = mymatch1[0] return linkVideo def zalukajtv(self,url,referer): linkVideo='' query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) #myfile1 = re.compile('<a style="color:white;font-size:20px;font-weight:bold;" href="(.*?)" target="_blank">(.*?)</a><br />').findall(link) myfile1 = re.compile('<iframe allowTransparency="true" src="(.*?)" width="490" height="370" scrolling="no" frameborder="0">').findall(link) # #log("m %s" % str(link)) log("m %s" % myfile1) if len(myfile1)>0: log.info("url %s " % myfile1[0][0] ) query_data = { 'url': 'http://zalukaj.tv' + myfile1[0], 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link2 = self.cm.getURLRequestData(query_data) myfile2 = re.compile('<a href="(.*?)">').findall(link2) log("m2 %s" % myfile2) if len(myfile2)>0: if len(myfile2)==1: query_data = { 'url': 'http://zalukaj.tv' + myfile2[0], 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link3 = self.cm.getURLRequestData(query_data) myfile3 = re.compile('<iframe src="([^"]+)".*?>').findall(link3) log("myfile %s" % myfile3[0]) if len(myfile3)>0: return self.up.getVideoLink(myfile3[0]) linkVideo = self.up.getVideoLink(myfile1[0][0]) return linkVideo def filmydokumentalneeu(self, url, referer): linkVideo='' query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) #match1=re.compile('<div id="news">\n \t<h1><span>(.*?)</span>(.*?)</h1>\n\t\t\t\n\n<div class="fb-social-plugin fb-follow" data-font="lucida grande" data-href="(.*?)" data-width="450"></div>\n\n<div class="fb-social-plugin fb-like" data-font="lucida grande" data-ref="above-post" data-href="(.*?)" data-width="450"></div>\n<p>(.*)</p>\n<p><iframe(.*)></iframe>').findall(link) match1=re.compile('<p><iframe(.*)></iframe>').findall(link) match10=re.compile('<embed(.*)>').findall(link) if len(match1)>0: match2=re.compile('src="(.*?)"').findall(match1[0]) if len(match2)>0: linkVideo = self.up.getVideoLink(self.cm.html_special_chars(match2[0])) elif len(match10)>0: match2=re.compile('src="(.*?)"').findall(match10[0]) if len(match2)>0: linkVideo = self.up.getVideoLink(self.cm.html_special_chars(match2[0])) return linkVideo def alltubetv(self, url, referer): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match1=re.compile('<td><img src="(.*?)" alt="(.*?)"> (.*?)</td>\n <td class="text-center">(.*?)</td>\n <td class="text-center"><a class="watch" data-urlhost="(.*?)" data-iframe="(.*?)" data-version="(.*?)" data-short="(.*?)" data-size="(.*?)" (.*?)>(.*?)</a>\n </td>').findall(link) #print("Match1",match1) tab = [] tab2 = [] if match1: for i in range(len(match1)): #print("Link", match1[i]) tab.append(match1[i][6] +' - ' + self.getHostName(match1[i][4]) ) tab2.append(match1[i][4]) d = xbmcgui.Dialog() video_menu = d.select("Wybór strony video", tab) if video_menu != "": linkVideo = self.up.getVideoLink(tab2[video_menu],url) return linkVideo else: return '' def tvseriesonline(self, url, referer): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) #Sprawdamy linki napisy linki_lektor = mrknow_utils.soup_get_links(link, "li", {"id": "lektor_pl"}) linki_pl = mrknow_utils.soup_get_links(link, "li", {"id": "napisy_pl"}) linki_en = mrknow_utils.soup_get_links(link, "li", {"id": "wersja_eng"}) linki_all = linki_lektor + linki_pl + linki_en tab = [] tab2 = [] if len(linki_all)>0: for i in range(len(linki_all)): #print("Link", linki_all[i]['text'], linki_all[i]['id']['id']) tab.append(linki_all[i]['id']['id'] + ' - ' + mrknow_utils.getHostName(linki_all[i]['text']) ) tab2.append(linki_all[i]['link']) d = xbmcgui.Dialog() video_menu = d.select("Wybór strony video", tab) if video_menu != "": linkVideo = self.up.getVideoLink(tab2[video_menu],url) return linkVideo else: return '' def zobacztotv(self, url, referer): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match1=re.compile('<div class="play-free" id="loading-(.*?)">Oglądaj na:<br />(.*?)</div>').findall(link) tab = [] tab2 = [] if len(match1)>0: for i in range(len(match1)): match2 = re.compile("\$\('#(.*?)-"+match1[i][0]+"'\).load\('(.*?)'\);").findall(link) if len(match2)>0: tab.append('Strona - ' + match2[0][0] ) tab2.append(match2[0][1]) d = xbmcgui.Dialog() video_menu = d.select("Wybór strony video", tab) if video_menu != "": query_data = {'url': tab2[video_menu], 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True} link = self.cm.getURLRequestData(query_data) match = re.search("""<iframe src="(.*?)" (.*?)></iframe>""", link) if match: linkVideo = self.up.getVideoLink(match.group(1),url) return linkVideo else: return '' else: return '' def screentv(self, url, referer): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) # <iframe width="720" height="490" frameborder="0" scrolling="no" src="http://www.typertv.com.pl/emded/canal.php" allowfullscreen> match1=re.compile('<iframe name="stream" id="stream-frame-iframe" src="embed/(.*?)"scrolling="no"> </iframe>').findall(link) if match1: mylink = 'http://screen-tv.pl/embed/' + match1[0] return self.pageanalyze(mylink, url) def typertv(self, url): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) # <iframe width="720" height="490" frameborder="0" scrolling="no" src="http://www.typertv.com.pl/emded/canal.php" allowfullscreen> match1=re.compile('<iframe (.*?)src="(.*?)/emded/(.*?)" (.*?)></iframe>').findall(link) if match1: mylink = match1[0][1] + '/emded/' + match1[0][2] return self.pageanalyze(mylink, url) def nettvpw(self, url, referer=''): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match1=re.compile('<embed src="(.*?)" width="700" height="418" (.*?)></embed>').findall(link) if len(match1)>0: return self.getVideoLink(match1[0][0],match1[0][0]) else: return self.pageanalyze(url, url) def zobaczxyz(self, url): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match1=re.compile('<iframe(.*?)width="700px" height="500px" src="(.*?)" allowfullscreen="" scrolling="no" frameborder="0"></iframe>').findall(link) if len(match1)>0: nUrl = self.pageanalyze(match1[0][1],match1[0][1]) return nUrl else: return '' def looknijtv(self,url, referer): import looknijtv self.looklink = looknijtv.looknijtv() link= self.looklink.getMovieLinkFromXML(url) return link def ustream(self,url, referer): video_id = '0' query = urlparse.urlparse(url) channel = query.path p = urlparse.parse_qs(query.query) params = query.path.split("/") if query.path[:16] == '/swf/live/viewer': video_id = p['cid'][0] if query.path[:9] == '/channel/': query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match1=re.compile('<meta name="ustream:channel_id" content="(.*?)"').findall(link) video_id=match1[0] query_data = { 'url': 'https://api.ustream.tv/channels/'+video_id+'.json', 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) data = json.loads(link) if video_id != '0': if data['channel']['status'] == u'live' and video_id != '0': nUrl = data['channel']['stream']['hls'] return nUrl else: return '' else: return '' def yousattv(self,url): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match1=re.compile('<a href="(.*?)"(.*?)><span class="belka1a">(.*?)</span></a>').findall(link) if len(match1[0][0])>0: nUrl = self.getVideoLink(match1[0][0]) return nUrl else: return '' def fupptvpl(self,url): nUrl = self.up.getVideoLink(url, url) return nUrl def teamcastpl(self,url): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match1=re.compile('<iframe(.*?)src="(.*?)"(.*?)></iframe>').findall(link) if len(match1)>0: nUrl = self.pageanalyze(match1[0][1],url) return nUrl else: nUrl = self.pageanalyze(url,url) return nUrl def mecztv(self,url): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match1=re.compile('<iframe frameborder="0" height="480" marginheight="0px" marginwidth="0px" name="livemecz.com" scrolling="no" src="(.*?)" width="640"></iframe>').findall(link) if len(match1[1])>0: query_data = { 'url': match1[0], 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match2=re.compile('<iframe marginheight="0" marginwidth="0" name="mecz.tv" src="(.*?)" frameborder="0" height="480" scrolling="no" width="640"></iframe>').findall(link) if len(match2[0])>0: query_data = { 'url': match2[0], 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match3=re.compile('<iframe(.*?)src="(.*?)"(.*?)>').findall(link) if len(match3)>0: nUrl = self.pageanalyze(match3[0][1],url) else: nUrl = self.pageanalyze(match2[0],url) #nUrl = self.pageanalyze('http://goodcast.tv/' + match1[0][0], 'http://goodcast.tv/' + match1[0][0]) #return nUrl return False def goodcasttv(self,url): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match1=re.compile('<iframe frameborder="0" width="630" height="360" margin="0px" name="goodcast.tv" scrolling="no" src="(.*?)"></iframe>').findall(link) query_data = { 'url': match1[0], 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match2=re.compile('<iframe width="630px" height="350px" scrolling="no" frameborder="0" src="(.*?)"></iframe>').findall(link) match3=re.compile("file: '(.*?)',").findall(link) if len(match2)>0: nUrl = self.up.getVideoLink(match2[0], url) return nUrl if len(match3)>0: nUrl = self.up.getVideoLink(match1[0], url) return nUrl def streamon(self,url): self.COOKIEFILE = ptv.getAddonInfo('path') + os.path.sep + "cookies" + os.path.sep + "streamon.cookie" nUrl = self.pageanalyze(url,url) return nUrl def azap(self,url): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match1=re.compile('<meta http-equiv="Refresh" content="(.*?); url=(.*?)" />').findall(link) if len(match1)>0: url = match1[0][1] nUrl = self.up.getVideoLink(url) return nUrl else: return self.pageanalyze(match1[0]) def bbpolska(self,url): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match=re.compile('<div id="player">(.*?)</div>').findall(link) if len(match)>0: match1=re.compile('src="(.*?)"').findall(match[0]) return self.pageanalyze(match1[0],match1[0]) else: return False match=re.compile('<iframe width="(.*?)" height="(.*?)" src="(.*?)" scrolling="no" frameborder="0" style="border: 0px none transparent;">').findall(link) return self.pageanalyze('http://www.transmisje.info'+match[0][2],'http://www.transmisje.info') def transmisjeinfo(self,url): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match=re.compile('<iframe width="(.*?)" height="(.*?)" src="(.*?)" scrolling="no" frameborder="0" style="border: 0px none transparent;">').findall(link) return self.pageanalyze('http://www.transmisje.info'+match[0][2],'http://www.transmisje.info') def realtv(self,url): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match=re.compile('<iframe frameborder="0" height="420" marginheight="0px" marginwidth="0px" name="RealTV.com.pl" scrolling="no" src="(.*?)" width="650">').findall(link) return self.pageanalyze(match[0],'http://www.realtv.com.pl') def livemecz(self,url): query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match=re.compile('<iframe frameborder="0" height="480" marginheight="0px" marginwidth="0px" name="livemecz.com" scrolling="no" src="(.+?)" width="640"></iframe>').findall(link) query_data = { 'url': match[0], 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) match=re.compile('<iframe marginheight="0" marginwidth="0" name="livemecz.com" src="(.*?)" frameborder="0" height="480" scrolling="no" width="640">').findall(link) videolink = self.pageanalyze(match[0],'http://livemecz.com/') return videolink def drhtv(self,url): self.COOKIEFILE = ptv.getAddonInfo('path') + os.path.sep + "cookies" + os.path.sep + "streamon.cookie" return self.pageanalyze(url,url,'','Accept-Encoding: gzip, deflate') def pageanalyze(self,url,referer='',cookie='',headers=''): print ('DANE',url,referer,cookie,headers) if cookie != '': query_data = { 'url': url, 'use_host': False, 'use_cookie': True, 'save_cookie': False, 'load_cookie': True, 'cookiefile': cookie, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) elif headers != '': query_data = { 'url': url, 'use_host': True, 'host': headers, 'use_cookie': False, 'use_post': False, 'return_data': True } link = self.cm.getURLRequestData(query_data) elif referer != '': print "Refe" query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True, 'header' : {'Referer': referer, 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; rv:31.0) Gecko/20100101 Firefox/31.0'}} link = self.cm.getURLRequestData(query_data) else: query_data = { 'url': url, 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True} link = self.cm.getURLRequestData(query_data) match=re.compile('<script type="text/javascript"> channel="(.*?)"; width="(.*?)"; height="(.*?)";</script><script type="text/javascript" src="http://yukons.net/share.js"></script>').findall(link) match1000=re.compile('<script type="text/javascript"> channel="(.*?)"; width="(.*?)"; height="(.*?)";</script>\n<script type="text/javascript" src="http://yukons.net/share.js"></script>').findall(link) match1=re.compile("<script type='text/javascript'>fid='(.*?)'; v_width=(.*?); v_height=(.*?);</script><script type='text/javascript' src='http://www.reyhq.com/player.js'></script>").findall(link) match2=re.compile("<script type='text/javascript' src='http://www.sawlive.tv/embed/(.*?)'>").findall(link) match3=re.compile("<script type='text/javascript' src='http://sawlive.tv/embed/(.*?)'>").findall(link) match4=re.compile('<script type="text/javascript" src="http://www.ilive.to/embed/(.*?)">').findall(link) match5=re.compile("<script type='text/javascript'> channel='(.*?)'; user='(.*?)'; width='640'; height='400';</script><script type='text/javascript' src='http://jimey.tv/player/jimeytv_embed.js'>").findall(link) match6=re.compile("<script type='text/javascript'> width=(.*?), height=(.*?), channel='(.*?)', e='(.*?)';</script><script type='text/javascript' src='http://www.mips.tv/content/scripts/mipsEmbed.js'>").findall(link) match7=re.compile('<script type="text/javascript">fid="(.*?)"; v_width=(.*?); v_height=(.*?);</script><script type="text/javascript" src="http://www.ukcast.tv/embed.js"></script>').findall(link) match8=re.compile('<script type="text/javascript"> channel="(.*?)"; vwidth="(.*?)"; vheight="(.*?)";</script><script type="text/javascript" src="http://castamp.com/embed.js"></script>').findall(link) match9=re.compile("<script type='text/javascript'>id='(.*?)'; width='(.*?)'; height='(.*?)';</script><script type='text/javascript' src='http://liveview365.tv/js/player.js'></script>").findall(link) match10=re.compile('<script type="text/javascript"> channel="(.*?)"; width="(.*?)"; height="(.*?)";</script>\r\n<script type="text/javascript" src="http://yukons.net/share.js"></script>').findall(link) match11=re.compile('<iframe width="600px" height="400px" scrolling="no" frameborder="0" src="http://www.putlive.in/(.*?)"></iframe>').findall(link) match12=re.compile('<iframe frameborder=0 marginheight=0 marginwidth=0 scrolling=\'no\'src="(.*?)" width="(.*?)" height="(.*?)">').findall(link) match13=re.compile("<script type='text/javascript'> width=640, height=480, channel='(.*?)', g='(.*?)';</script><script type='text/javascript' src='http://www.ucaster.eu/static/scripts/ucaster.js'></script>").findall(link) match14=re.compile("<script type='text/javascript'>fid='(.*?)'; v_width=(.*?); v_height=(.*?);</script><script type='text/javascript' src='http://www.flashwiz.tv/player.js'></script>").findall(link) match15=re.compile('<script type="text/javascript"> fid="(.*?)"; v_width=(.*?); v_height=(.*?);</script><script type="text/javascript" src="http://www.yycast.com/javascript/embedPlayer.js"></script>').findall(link) match16=re.compile("<script type='text/javascript'> width=(.*?), height=(.*?), channel='(.*?)', g='(.*?)';</script><script type='text/javascript' src='http://www.liveflash.tv/resources/scripts/liveFlashEmbed.js'></script>").findall(link) match17=re.compile('<script type="text/javascript">ca="(.*?)";width="(.*?)"; height="(.*?)";</script><script type="text/javascript" src="https://ovcast.com/js/embed.js"></script>').findall(link) match18=re.compile("<script type=\'text/javascript\'>id=\'(.*?)\'; width=\'(.*?)\'; height=\'(.*?)\';</script><script type=\'text/javascript\' src=\'http://stream4.tv/player.js\'>").findall(link) match19=re.compile("<script type='text/javascript'>id='(.*?)'; width='(.*?)'; height='(.*?)';</script><script type='text/javascript' src='http://goodcast.org/player.js'></script>").findall(link) match20=re.compile('<script type="text/javascript" src="http://(.*?)jjcast.com/(.*?)">').findall(link) match21=re.compile('<script type="text/javascript" language="JavaScript" src="http://hqstream.tv/pl?(.*?)"></script>').findall(link) match22=re.compile("<script type='text/javascript'>(.*?)</script><script type='text/javascript' src='http://cdn.tiv.pw/stream(.*?).js'></script>").findall(link) match23=re.compile('<script type="text/javascript" src="http://7cast.net/embed/(.*?)/(.*?)/(.*?)"></script>').findall(link) match24=re.compile('<script type=\'text/javascript\'> file=\'(.*?)\'(.*?)</script>\n<script type=\'text/javascript\' src=\'http://abcast.biz/embedPlayer.js\'>').findall(link) match25=re.compile('<script type=\'text/javascript\'> file=\'(.*?)\'; width=\'(.*?)\'; height=\'(.*?)\';</script><script type=\'text/javascript\' src=\'http://flexstream.net/embedPlayer.js\'></script>').findall(link) match26=re.compile('<script type=\'text/javascript\'> file=\'(.*?)\'(.*?)</script><script type=\'text/javascript\' src=\'http://abcast.biz/embedPlayer.js\'></script>').findall(link) match27=re.compile('<script type=\'text/javascript\'> file=\'(.*?)\'(.*?)</script>\n<script type=\'text/javascript\' src=\'http://www.freelivestream.tv/embedPlayerScript.js\'></script>').findall(link) match28=re.compile('<script type=\'text/javascript\'>id=\'(.*?)\'(.*?)</script><script type=\'text/javascript\' src=\'http://up4free.com/player.js\'></script>').findall(link) match29=re.compile('<script type=\'text/javascript\'>id=\'(.*?)\'(.*?)</script><script type=\'text/javascript\' src=\'http://goodcast.me/player.js\'></script>').findall(link) match30=re.compile('<script type=\'text/javascript\' src=\'http://www.shidurlive.com/embed/(.*?)\'></script>').findall(link) match31=re.compile('<script type="text/javascript"> id="(.*?)"; ew="(.*?)"; eh="(.*?)";</script><script type="text/javascript" src="http://www.castalba.tv/js/embed.js"></script>').findall(link) match32=re.compile('<script type=\'text/javascript\'> file=\'(.*?)\'(.*?)</script><script type=\'text/javascript\' src=\'http://abcast.net/abc.js\'></script>').findall(link) match33=re.compile('<script type=\'text/javascript\'>id=\'(.*?)\'(.*?)</script><script type=\'text/javascript\' src=\'http://player.goodcast.co/goodcast/player.js\'></script>').findall(link) match34=re.compile('<script type="text/javascript"> fid="(.*?)"; v_width=(.*?); v_height=(.*?);</script><script type="text/javascript" src="http://static.castto.me/js/embedplayer.js">').findall(link) match35=re.compile('<script type="text/javascript" src="http://www.byetv.org/(.*?)"></script>').findall(link) match36=re.compile('<script type="text/javascript" src="http://www.hdcast.me/(.*?)"></script>').findall(link) match37=re.compile("<script type='text/javascript'> file='(.*?)'(.*?)</script><script type='text/javascript' src='http://pxstream.tv/embedPlayerScript.js'></script>").findall(link) match38=re.compile("<script type='text/javascript'>id='(.*?)';(.*?)</script><script type='text/javascript' src='http://deltatv.pw/player.js'></script>").findall(link) match39=re.compile("<script type='text/javascript'> id='(.*?)';(.*?)</script><script type='text/javascript' src='http://ultracast.me/player.js'></script>").findall(link) match40=re.compile("<script type='text/javascript'>(.*?)</script><script type='text/javascript' src='http://shidurlive.com/embed/(.*?)'></script>").findall(link) match41=re.compile("<script type='text/javascript'>id='(.*?)'(.*?)</script><script type='text/javascript' src='http://biggestplayer.me/player.js'></script>").findall(link) match42=re.compile("<script type='text/javascript'> file='(.*?)';(.*?)</script><script type='text/javascript' src='http://pxstream.tv/embedRouter.js'></script>").findall(link) match43=re.compile("<script type='text/javascript'>id='(.*?)';(.*?)</script><script type='text/javascript' src='http://js.p2pcast.tv/p2pcast/player.js'></script>").findall(link) match44=re.compile("<script type='text/javascript'>(.*?)channel='(.*?)',(.*?)</script><script type='text/javascript' src='http://tutelehd.com/embedPlayer.js'></script>").findall(link) # match1001=re.compile("file : '(.*?)'").findall(link) if len(match) > 0: return self.up.getVideoLink('http://yukons.net/'+match[0][0],referer) elif len(match1000) > 0: return self.up.getVideoLink('http://yukons.net/'+match1000[0][0],referer) elif len(match1) > 0: return self.up.getVideoLink('http://www.reyhq.com/'+match1[0][0]) elif len(match2) > 0: print ("Match2",match2) return self.up.getVideoLink('http://www.sawlive.tv/embed/'+match2[0],url) elif len(match3) > 0: return self.up.getVideoLink('http://www.sawlive.tv/embed/'+match3[0],url) elif len(match4) > 0: print ("Match4",match4) return self.up.getVideoLink('http://www.ilive.to/embed/'+match4[0],referer) elif len(match6) > 0: print ("Match6",match6[0]) return self.up.getVideoLink('http://mips.tv/embedplayer/'+match6[0][2]+'/'+match6[0][3]+'/'+match6[0][0]+'/'+match6[0][1]) elif len(match7) > 0: print ("Match7",match7) return self.up.getVideoLink('http://www.ukcast.tv/embed.php?u='+match7[0][0]+'&amp;vw='+match7[0][1]+'&amp;vh='+match7[0][2]) elif len(match8) > 0: print ("Match8",match8) query_data = { 'url': 'http://castamp.com/embed.js', 'use_host': False, 'use_cookie': False, 'use_post': False, 'return_data': True} link = self.cm.getURLRequestData(query_data) print("Link",link) chars = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXTZabcdefghiklmnopqrstuvwxyz"; string_length = 8; randomstring = ''; for i in range(0, string_length): rnum = int(math.floor(random.randint(0, len(chars)))) print("AAA",rnum, chars[1]) randomstring = randomstring + chars[rnum] return self.up.getVideoLink('http://castamp.com/embed.php?c='+match8[0][0]+'&tk='+randomstring+'&vwidth=710&vheight=460',referer) elif len(match9) > 0: print ("Match9",match9) return self.up.getVideoLink('http://liveview365.tv/embedded?id='+match9[0][0],referer) elif len(match10) > 0: print ("Match10",match10) return self.up.getVideoLink('http://yukons.net/'+match10[0][0]) elif len(match11) > 0: print ("Match11",'http://www.putlive.in/'+match11[0]) return self.up.getVideoLink('http://www.putlive.in/'+match11[0],referer) elif len(match12) > 0: print ("Match12",match12) return self.up.getVideoLink(match12[0][0],referer) elif len(match13) > 0: print ("Match13",match13) return self.up.getVideoLink('http://www.ucaster.eu/embedded/'+match13[0][0]+'/'+match13[0][1]+'/400/480',referer) elif len(match14) > 0: print ("Match14",match14) return self.up.getVideoLink('http://www.flashwiz.tv/embed.php?live='+match14[0][0]+'&vw='+match14[0][1]+'&vh='+match14[0][2],referer) elif len(match15) > 0: print ("Match15",match15) return self.up.getVideoLink('http://www.yycast.com/embed.php?fileid='+match15[0][0]+'&vw='+match15[0][1]+'&vh='+match15[0][2],referer) elif len(match16) > 0: print ("Match16",match16) return self.up.getVideoLink('http://www.liveflash.tv/embedplayer/'+match16[0][2]+'/'+match16[0][3]+'/'+match16[0][0]+'/'+match16[0][1],referer) elif len(match17) > 0: print ("Match17",match17) return self.up.getVideoLink('https://ovcast.com/gen.php?ch='+match17[0][0]+'&width='+match17[0][1]+'&height='+match17[0][2],referer) elif len(match18) > 0: print ("Match18",match18) return self.up.getVideoLink('http://stream4.tv/player.php?id='+match18[0][0]+'&width='+match18[0][1]+'&height='+match18[0][2],referer) elif len(match19) > 0: print ("Match19",match19) return self.up.getVideoLink('http://goodcast.org/stream.php?id='+match19[0][0]+'&width='+match19[0][1]+'&height='+match19[0][2],referer) elif len(match20) > 0: print ("Match20",match20) return self.up.getVideoLink('http://jjcast.com/'+match20[0][1].replace('embed','player'),referer) elif len(match21) > 0: print ("Match21",match21) return self.up.getVideoLink('http://hqstream.tv/player.php'+match21[0],referer) elif len(match22) > 0: print ("Match22",match22) return self.up.getVideoLink('http://cdn.tiv.pw/stream'++match22[0] +'.html',referer) elif len(match23) > 0: print ("Match23",match23) return self.up.getVideoLink('http://7cast.net/player/'+match23[0][0]+'/650/450',referer) elif len(match24) > 0: print ("Match24",match24) return self.up.getVideoLink('http://abcast.biz/embed.php?file='+match24[0][0]+'&amp;width=640&amp;height=400',referer) elif len(match25) > 0: print ("Match25",match25) return self.up.getVideoLink('http://flexstream.net/embed.php?file='+match25[0][0]+'&amp;width=640&amp;height=400',referer) elif len(match26) > 0: print ("Match26",match26) return self.up.getVideoLink('http://abcast.biz/embed.php?file='+match26[0][0]+'&amp;width=640&amp;height=400',referer) elif len(match27) > 0: print ("Match27",match27) return self.up.getVideoLink('http://www.freelivestream.tv/embedPlayer.php?file='+match27[0][0]+'&amp;width=600&amp;height=400',referer) elif len(match28) > 0: print ("Match28",match28, url) #http://embed.up4free.com/stream.php?id=nsajfnidg&width=700&height=450&stretching= url2 = 'http://embed.up4free.com/stream.php?id='+match28[0][0]+'&width=700&height=450&stretching=' mylink10 = mrknow_Pageparser() mylink3 = mylink10.pageanalyze(url2,url) print("MyLink3",mylink3,referer) print("MyLink3",url2, mylink3,match28[0][0],link) return mylink3 elif len(match29) > 0: print ("Match29",match29) return self.up.getVideoLink('http://goodcast.me/stream.php?id='+match29[0][0]+'&amp;width=640&amp;height=480&amp;stretching=',referer) elif len(match30) > 0: print ("Match30",match30) return self.up.getVideoLink('http://www.shidurlive.com/embed/'+match30[0],referer) elif len(match31) > 0: print ("Match31",match31) return self.up.getVideoLink('http://castalba.tv/embed.php?cid='+match31[0][0]+'&amp;wh=640&amp;ht=400&amp;r='+self.getHostName(referer),referer) elif len(match32) > 0: print ("Match32",match32) return self.up.getVideoLink('http://abcast.net/abc.php?file='+match32[0][0]+'&amp;width=640&amp;height=400',referer) elif len(match33) > 0: print ("Match33",match33, referer) host = self.getHostName(url) if host == 'embed.up4free.com': return self.up.getVideoLink('http://goodcast.co/stream.php?id='+match33[0][0]+'&amp;width=640&amp;height=480&amp;stretching=',url) else: return self.up.getVideoLink('http://goodcast.co/stream.php?id='+match33[0][0]+'&amp;width=640&amp;height=480&amp;stretching=',referer) elif len(match34) > 0: print ("Match34",match34, referer) mylink = self.up.getVideoLink('http://static.castto.me/embed.php?channel='+match34[0][0]+'&vw=710&vh=460', referer) print("Match34", mylink) return mylink elif len(match35) > 0: print ("Match35",match35, referer) link = match35[0].replace('channel.php?file=','http://www.byetv.org/embed.php?a=') mylink = self.up.getVideoLink(link, referer) return mylink elif len(match36)>0: print ("Match36",match36, referer) mylink = self.up.getVideoLink('http://hdcast.me/'+match36[0].replace('embed.php?','embedplayer.php?'), referer) return mylink elif len(match37)>0: print ("Match37",match37, referer, match37[0][0]) return self.up.getVideoLink('http://pxstream.tv/embed.php?file='+match37[0][0]+'&width=710&height=460',referer) elif len(match38)>0: print ("Match38",match38, referer) return self.up.getVideoLink('http://deltatv.pw/stream.php?id='+match38[0][0]+'&width=710&height=460',referer) elif len(match39)>0: print ("Match39",match39, referer) return self.up.getVideoLink('http://www.ultracast.me/player.php?id='+match39[0][0]+'&width=710&height=460',referer) elif len(match40) > 0: print ("Match40",match40) return self.up.getVideoLink('http://www.shidurlive.com/embed/'+match40[0][1],referer) elif len(match41) > 0: print ("Match41",match41) return self.up.getVideoLink('http://biggestplayer.me/stream.php?id='+match41[0][0]+'&width=690&height=440',referer) elif len(match42) > 0: print ("Match42",match42) return self.up.getVideoLink('http://pxstream.tv/embed.php?file='+match42[0][0]+'&width=710&height=460',referer) elif len(match43) > 0: print ("Match43",match43) return self.up.getVideoLink('http://p2pcast.tv/stream.php?id='+match43[0][0]+'&live=0&p2p=0&stretching=uniform',referer) elif len(match44) > 0: print ("Match44",match44) return self.up.getVideoLink('http://tutelehd.com/embed/embed.php?channel='+match44[0][1]+'&w=690&h=440',referer) elif len(match1001) > 0: print ("match1001",match1001) if len(match1001)>0: return match1001[0] + " live=true timeout=30" else: return '' else: print ("jEDZIEMY NA ELSE",link) return self.up.getVideoLink(url,referer)
56.837584
390
0.617868
175cbea9180c9b976613acc8290cc47149763254
1,134
py
Python
diskcollections/handlers.py
ectomancer/python-disk-collections
eff4e54c56cef3120a0ffda231b962880f279bda
[ "MIT" ]
1
2018-12-10T15:08:33.000Z
2018-12-10T15:08:33.000Z
diskcollections/handlers.py
ectomancer/python-disk-collections
eff4e54c56cef3120a0ffda231b962880f279bda
[ "MIT" ]
null
null
null
diskcollections/handlers.py
ectomancer/python-disk-collections
eff4e54c56cef3120a0ffda231b962880f279bda
[ "MIT" ]
null
null
null
import json import pickle import zlib from diskcollections.interfaces import IHandler class PickleHandler(IHandler): dumps = staticmethod(pickle.dumps) loads = staticmethod(pickle.loads) class PickleZLibHandler(IHandler): @staticmethod def dumps( obj, protocol=pickle.HIGHEST_PROTOCOL, level=zlib.Z_DEFAULT_COMPRESSION ): pickled = pickle.dumps(obj, protocol=protocol) compressed = zlib.compress(pickled, level) return compressed @staticmethod def loads(compressed): pickled = zlib.decompress(compressed) obj = pickle.loads(pickled) return obj class JsonHandler(IHandler): dumps = staticmethod(json.dumps) loads = staticmethod(json.loads) class JsonZLibHandler(IHandler): @staticmethod def dumps(obj, level=zlib.Z_DEFAULT_COMPRESSION): jsoned = json.dumps(obj).encode() compressed = zlib.compress(jsoned, level) return compressed @staticmethod def loads(compressed): jsoned = zlib.decompress(compressed).decode() obj = json.loads(jsoned) return obj
22.68
54
0.679894
d8daedf3b853a8a809b6205c0aa04031f2913898
19,093
py
Python
tests/integration/cattletest/core/test_authorization.py
mbrukman/rancher-cattle
ac7caffb97346f601043458411391d2d00fd6129
[ "Apache-2.0" ]
null
null
null
tests/integration/cattletest/core/test_authorization.py
mbrukman/rancher-cattle
ac7caffb97346f601043458411391d2d00fd6129
[ "Apache-2.0" ]
null
null
null
tests/integration/cattletest/core/test_authorization.py
mbrukman/rancher-cattle
ac7caffb97346f601043458411391d2d00fd6129
[ "Apache-2.0" ]
null
null
null
from common_fixtures import * # NOQA def test_client_access(clients): typesLen = { 'admin': 91, 'agent': 8, 'user': 69, 'agentRegister': 4, 'test': 140, 'readAdmin': 91, 'token': 2, 'superadmin': 141, 'service': 91, 'project': 69, } for tuple in clients.items(): assert typesLen[tuple[0]] == len(tuple[1].schema.types.items()) def test_instance_link_auth(admin_client, client): auth_check(admin_client.schema, 'instanceLink', 'ru', { 'accountId': 'r', 'data': 'r', 'instanceId': 'r', 'linkName': 'r', 'ports': 'r', 'targetInstanceId': 'ru', }) auth_check(client.schema, 'instanceLink', 'ru', { 'accountId': 'r', 'instanceId': 'r', 'linkName': 'r', 'targetInstanceId': 'ru', }) def test_token_auth(token_client): auth_check(token_client.schema, 'token', 'cr', { 'jwt': 'r', 'code': 'cr', 'user': 'r', 'orgs': 'r', 'clientId': 'r', 'security': 'r', 'teams': 'r', 'userType': 'r', 'accountId': 'r', 'defaultProject': 'r' }) def test_github_auth(admin_client): auth_check(admin_client.schema, 'githubconfig', 'cru', { 'enabled': 'cr', 'allowedOrganizations': 'cr', 'allowedUsers': 'cr', 'clientId': 'cr', 'clientSecret': 'cr', 'accessMode': 'cr' }) def test_project_auth(admin_client, client): auth_check(admin_client.schema, 'project', 'crud', { 'description': 'cru', 'kind': 'r', 'name': 'cru', 'uuid': 'cr', 'data': 'r', 'members': 'cr', 'projectId': 'r' }) auth_check(client.schema, 'project', 'crud', { 'description': 'cru', 'kind': 'r', 'name': 'cru', 'uuid': 'r', 'members': 'cr' }) def test_project_member_auth(admin_client, client): auth_check(admin_client.schema, 'projectMember', 'r', { "role": "r", "externalId": "r", "externalIdType": "r", "projectId": "r", "data": 'r' }) auth_check(client.schema, 'projectMember', 'r', { "role": "r", "externalId": "r", "externalIdType": "r", "projectId": "r" }) def test_host_auth(admin_client, client): auth_check(admin_client.schema, 'host', 'rud', { 'accountId': 'r', 'apiProxy': 'ru', 'agentId': 'r', 'computeTotal': 'r', 'data': 'r', 'physicalHostId': 'r', 'info': 'r', }) auth_check(client.schema, 'host', 'rud', { 'accountId': 'r', 'computeTotal': 'r', 'physicalHostId': 'r', 'info': 'r', }) def test_ip_address_auth(admin_client, client): auth_check(admin_client.schema, 'ipAddress', 'r', { 'accountId': 'r', 'networkId': 'r', 'address': 'r', 'data': 'r', }) auth_check(client.schema, 'ipAddress', 'r', { 'accountId': 'r', 'address': 'r', 'networkId': 'r', }) def test_task_instance_auth(admin_client, client): auth_check(admin_client.schema, 'taskInstance', 'r', { 'endTime': 'r', 'exception': 'r', 'serverId': 'r', 'startTime': 'r', 'taskId': 'r', }) def test_volume_auth(admin_client, client): auth_check(admin_client.schema, 'volume', 'rd', { 'accountId': 'r', 'created': 'r', 'data': 'r', 'description': 'r', 'id': 'r', 'imageId': 'r', 'instanceId': 'r', 'kind': 'r', 'name': 'r', 'removeTime': 'r', 'removed': 'r', 'state': 'r', 'uri': 'r', 'uuid': 'r', 'transitioning': 'r', 'transitioningMessage': 'r', 'transitioningProgress': 'r', 'isHostPath': 'r' }) auth_check(client.schema, 'volume', 'rd', { 'accountId': 'r', 'created': 'r', 'description': 'r', 'id': 'r', 'imageId': 'r', 'instanceId': 'r', 'kind': 'r', 'name': 'r', 'removed': 'r', 'state': 'r', 'uri': 'r', 'uuid': 'r', 'transitioning': 'r', 'transitioningMessage': 'r', 'transitioningProgress': 'r', 'isHostPath': 'r' }) def test_container_auth(admin_client, client): auth_check(admin_client.schema, 'container', 'crud', { 'accountId': 'r', 'agentId': 'r', 'allocationState': 'r', 'capAdd': 'cr', 'capDrop': 'cr', 'command': 'cr', 'count': 'cr', 'cpuSet': 'cr', 'cpuShares': 'cr', 'created': 'r', 'data': 'r', 'dataVolumes': 'cr', 'dataVolumesFrom': 'cr', 'description': 'cru', 'devices': 'cr', 'directory': 'cr', 'dns': 'cr', 'dnsSearch': 'cr', 'domainName': 'cr', 'entryPoint': 'cr', 'environment': 'cr', 'firstRunning': 'r', 'hostname': 'cr', 'id': 'r', 'imageUuid': 'cr', 'instanceLinks': 'cr', 'lxcConf': 'cr', 'memory': 'cr', 'memorySwap': 'cr', 'networkIds': 'cr', 'ports': 'cr', 'primaryIpAddress': 'r', 'privileged': 'cr', 'publishAllPorts': 'cr', 'removeTime': 'r', 'registryCredentialId': 'cr', 'requestedHostId': 'cr', 'restartPolicy': 'cr', 'startOnCreate': 'cr', 'stdinOpen': 'cr', 'token': 'r', 'tty': 'cr', 'user': 'cr', 'systemContainer': 'r', 'nativeContainer': 'r', 'externalId': 'r' }) auth_check(client.schema, 'container', 'crud', { 'accountId': 'r', 'capAdd': 'cr', 'capDrop': 'cr', 'command': 'cr', 'count': 'cr', 'cpuSet': 'cr', 'cpuShares': 'cr', 'created': 'r', 'dataVolumes': 'cr', 'dataVolumesFrom': 'cr', 'description': 'cru', 'devices': 'cr', 'directory': 'cr', 'dns': 'cr', 'dnsSearch': 'cr', 'domainName': 'cr', 'entryPoint': 'cr', 'environment': 'cr', 'firstRunning': 'r', 'hostname': 'cr', 'id': 'r', 'imageUuid': 'cr', 'instanceLinks': 'cr', 'lxcConf': 'cr', 'memory': 'cr', 'memorySwap': 'cr', 'networkIds': 'cr', 'ports': 'cr', 'primaryIpAddress': 'r', 'privileged': 'cr', 'publishAllPorts': 'cr', 'registryCredentialId': 'cr', 'requestedHostId': 'cr', 'restartPolicy': 'cr', 'startOnCreate': 'cr', 'stdinOpen': 'cr', 'tty': 'cr', 'user': 'cr', 'systemContainer': 'r', 'nativeContainer': 'r', 'externalId': 'r', }) def test_port_auth(admin_client, client): auth_check(admin_client.schema, 'port', 'ru', { 'accountId': 'r', 'data': 'r', 'instanceId': 'r', 'privateIpAddressId': 'r', 'privatePort': 'r', 'protocol': 'r', 'publicIpAddressId': 'r', 'publicPort': 'ru', }) auth_check(client.schema, 'port', 'ru', { 'accountId': 'r', 'instanceId': 'r', 'privateIpAddressId': 'r', 'privatePort': 'r', 'protocol': 'r', 'publicIpAddressId': 'r', 'publicPort': 'ru', }) def test_mount_auth(admin_client, client): auth_check(admin_client.schema, 'mount', 'r', { 'name': 'r', 'description': 'r', 'data': 'r', 'accountId': 'r', 'instanceId': 'r', 'volumeId': 'r', 'kind': 'r', 'uuid': 'r', 'removeTime': 'r', 'id': 'r', 'created': 'r', 'path': 'r', 'permissions': 'r', 'removed': 'r', 'state': 'r', 'transitioning': 'r', 'transitioningMessage': 'r', 'transitioningProgress': 'r' }) auth_check(client.schema, 'mount', 'r', { 'accountId': 'r', 'name': 'r', 'description': 'r', 'instanceId': 'r', 'volumeId': 'r', 'kind': 'r', 'uuid': 'r', 'id': 'r', 'created': 'r', 'path': 'r', 'permissions': 'r', 'removed': 'r', 'state': 'r', 'transitioning': 'r', 'transitioningMessage': 'r', 'transitioningProgress': 'r' }) def test_process_instance_auth(admin_client, client): auth_check(admin_client.schema, 'processInstance', 'r', { 'endTime': 'r', 'exitReason': 'r', 'phase': 'r', 'priority': 'r', 'processName': 'r', 'resourceId': 'r', 'resourceType': 'r', 'result': 'r', 'runningProcessServerId': 'r', 'startProcessServerId': 'r', 'startTime': 'r', 'data': 'r', }) def test_process_execution(admin_client, client): auth_check(admin_client.schema, 'processExecution', 'r', { 'log': 'r', 'processInstanceId': 'r', }) def test_process_definition(admin_client, client): auth_check(admin_client.schema, 'processDefinition', 'r', { 'extensionBased': 'r', 'preProcessListeners': 'r', 'postProcessListeners': 'r', 'processHandlers': 'r', 'resourceType': 'r', 'stateTransitions': 'r', }) def test_config_item(admin_client, client): auth_check(admin_client.schema, 'configItem', 'r', { 'sourceVersion': 'r', }) def test_config_item_status_auth(admin_client, client): auth_check(admin_client.schema, 'configItemStatus', 'ru', { 'agentId': 'r', 'appliedUpdated': 'r', 'appliedVersion': 'ru', 'requestedUpdated': 'r', 'requestedVersion': 'r', 'sourceVersion': 'r', }) def test_setting_auth(admin_client, client): auth_check(admin_client.schema, 'setting', 'crud', { 'name': 'cr', 'value': 'cru', }) def git(admin_client, client): auth_check(admin_client.schema, 'schema', 'r', { 'collectionActions': 'r', 'collectionFields': 'r', 'collectionFilters': 'r', 'collectionMethods': 'r', 'includeableLinks': 'r', 'pluralName': 'r', 'resourceActions': 'r', 'resourceFields': 'r', 'resourceMethods': 'r', }) auth_check(client.schema, 'schema', 'r', { 'collectionActions': 'r', 'collectionFields': 'r', 'collectionFilters': 'r', 'collectionMethods': 'r', 'includeableLinks': 'r', 'pluralName': 'r', 'resourceActions': 'r', 'resourceFields': 'r', 'resourceMethods': 'r', }) def test_account_auth(admin_client, client): auth_check(admin_client.schema, 'account', 'crud', { 'id': 'r', 'externalId': 'cru', 'externalIdType': 'cru', 'removeTime': 'r', 'data': 'r', 'kind': 'cru', 'uuid': 'cr', 'projectId': 'r' }) auth_check(client.schema, 'account', 'r', { }) def test_agent_auth(admin_client, client): auth_check(admin_client.schema, 'agent', 'r', { 'managedConfig': 'r', 'uri': 'r', 'accountId': 'r', 'data': 'r', }) def test_extension_point_auth(admin_client, client): auth_check(admin_client.schema, 'extensionPoint', 'r', { 'excludeSetting': 'r', 'includeSetting': 'r', 'listSetting': 'r', 'implementations': 'r', }) def test_api_key_auth(admin_client, client): auth_check(admin_client.schema, 'apiKey', 'crud', { 'publicValue': 'cr', 'secretValue': 'cr', 'removeTime': 'r', 'data': 'r', 'accountId': 'cr', }) auth_check(client.schema, 'apiKey', 'crud', { 'publicValue': 'r', 'accountId': 'r', 'secretValue': 'r', }) def test_subscribe_auth(admin_client, client): auth_check(admin_client.schema, 'subscribe', 'cr', { 'eventNames': 'cr', 'agentId': 'cr', }) auth_check(client.schema, 'subscribe', 'cr', { 'eventNames': 'cr', }) def test_registration_tokens_auth(admin_client, client, service_client): auth_check(admin_client.schema, 'registrationToken', 'cr', { 'created': 'r', 'data': 'r', 'description': 'cr', 'removeTime': 'r', 'accountId': 'r', }) auth_check(service_client.schema, 'registrationToken', 'cr', { 'created': 'r', 'data': 'r', 'description': 'cr', 'removeTime': 'r', 'accountId': 'cr', }) auth_check(client.schema, 'registrationToken', 'cr', { 'accountId': 'r', 'created': 'r', 'description': 'cr', 'uuid': 'r', }) def test_type_documentation_auth(admin_client, client): auth_check(admin_client.schema, 'typeDocumentation', 'r', { }) auth_check(client.schema, 'typeDocumentation', 'r', { }) def test_stats_access_auth(admin_client, client): auth_check(admin_client.schema, 'statsAccess', 'r', { 'token': 'r', 'url': 'r', }) auth_check(client.schema, 'statsAccess', 'r', { 'token': 'r', 'url': 'r', }) def test_account_resource_auth(admin_client, client): resource_action_check(admin_client.schema, 'account', [ 'update', 'activate', 'deactivate', 'restore', 'remove', 'purge', 'create' ]) def test_machine(admin_client, client, service_client): auth_check(admin_client.schema, 'machine', 'crd', { 'driver': 'r', 'accountId': 'r', 'externalId': 'r', 'data': 'r', 'authCertificateAuthority': 'cr', 'authKey': 'cr', 'virtualboxConfig': 'cr', 'digitaloceanConfig': 'cr', 'amazonec2Config': 'cr', }) auth_check(client.schema, 'machine', 'crd', { 'driver': 'r', 'accountId': 'r', 'externalId': 'r', 'authCertificateAuthority': 'cr', 'authKey': 'cr', 'virtualboxConfig': 'cr', 'digitaloceanConfig': 'cr', 'amazonec2Config': 'cr', }) auth_check(service_client.schema, 'machine', 'crud', { 'driver': 'r', 'accountId': 'r', 'externalId': 'r', 'data': 'cru', 'authCertificateAuthority': 'cr', 'authKey': 'cr', 'extractedConfig': 'ru', 'virtualboxConfig': 'cr', 'digitaloceanConfig': 'cr', 'amazonec2Config': 'cr', }) def test_physical_host(admin_client, client, service_client): auth_check(admin_client.schema, 'physicalHost', 'r', { 'accountId': 'r', 'data': 'r', }) auth_check(client.schema, 'physicalHost', 'r', { 'accountId': 'r', }) def test_registry_credentials(admin_client, client): auth_check(admin_client.schema, 'registryCredential', 'crud', { 'accountId': 'r', 'data': 'r', 'email': 'cru', 'publicValue': 'cru', 'secretValue': 'cru', 'registryId': 'cr', }) auth_check(client.schema, 'registryCredential', 'crud', { 'accountId': 'r', 'email': 'cru', 'publicValue': 'cru', 'secretValue': 'cru', 'registryId': 'cr', }) def test_registry(admin_client, client): auth_check(admin_client.schema, 'registry', 'crud', { 'accountId': 'r', 'data': 'r', 'serverAddress': 'cr', }) auth_check(client.schema, 'registry', 'crud', { 'accountId': 'r', 'serverAddress': 'cr', }) def test_lb_config_listener_map(admin_client, client): auth_check(admin_client.schema, 'loadBalancerConfigListenerMap', 'r', { 'loadBalancerConfigId': 'r', 'loadBalancerListenerId': 'r', 'accountId': 'r', 'data': 'r', }) auth_check(client.schema, 'loadBalancerConfigListenerMap', 'r', { 'loadBalancerConfigId': 'r', 'loadBalancerListenerId': 'r', 'accountId': 'r', }) def test_lb_host_map(admin_client, client): auth_check(admin_client.schema, 'loadBalancerHostMap', 'r', { 'hostId': 'r', 'loadBalancerId': 'r', 'accountId': 'r', 'data': 'r', }) auth_check(client.schema, 'loadBalancerHostMap', 'r', { 'hostId': 'r', 'loadBalancerId': 'r', 'accountId': 'r', }) def test_container_events(admin_client, client, agent_client): auth_check(admin_client.schema, 'containerEvent', 'r', { 'externalTimestamp': 'r', 'hostId': 'r', 'accountId': 'r', 'externalFrom': 'r', 'reportedHostUuid': 'r', 'externalId': 'r', 'externalStatus': 'r', 'data': 'r', 'dockerInspect': 'r' }) auth_check(agent_client.schema, 'containerEvent', 'cr', { 'externalTimestamp': 'cr', 'externalFrom': 'cr', 'reportedHostUuid': 'cr', 'externalId': 'cr', 'externalStatus': 'cr', 'dockerInspect': 'cr', 'data': 'cr', 'id': 'r' }) auth_check(client.schema, 'containerEvent', 'r', { 'externalTimestamp': 'r', 'hostId': 'r', 'externalFrom': 'r', 'reportedHostUuid': 'r', 'externalId': 'r', 'externalStatus': 'r', 'accountId': 'r', 'dockerInspect': 'r' }) def test_svc_discovery_service(admin_client, client): auth_check(admin_client.schema, 'service', 'crud', { 'name': 'cr', 'environmentId': 'cr', 'scale': 'cru', 'dataVolumesFromService': 'cr', 'launchConfig': 'cr', 'accountId': 'r', 'data': 'r', }) auth_check(client.schema, 'service', 'crud', { 'name': 'cr', 'environmentId': 'cr', 'scale': 'cru', 'dataVolumesFromService': 'cr', 'launchConfig': 'cr', 'accountId': 'r', }) def test_svc_discovery_environment(admin_client, client): auth_check(admin_client.schema, 'environment', 'crud', { 'name': 'cru', 'accountId': 'r', 'data': 'r', }) auth_check(client.schema, 'environment', 'crud', { 'name': 'cru', 'accountId': 'r', }) def test_svc_discovery_lb_service(admin_client, client): auth_check(admin_client.schema, 'loadBalancerService', 'crud', { 'name': 'cr', 'environmentId': 'cr', 'scale': 'cru', 'dataVolumesFromService': 'cr', 'launchConfig': 'cr', 'accountId': 'r', 'data': 'r', 'loadBalancerConfig': 'cr', }) auth_check(client.schema, 'loadBalancerService', 'crud', { 'name': 'cr', 'environmentId': 'cr', 'scale': 'cru', 'dataVolumesFromService': 'cr', 'launchConfig': 'cr', 'accountId': 'r', 'loadBalancerConfig': 'cr', })
25.322281
75
0.500917