hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
f9b8b2c39935cb613faefcac6d668663e155e303
2,089
py
Python
transform/color_op.py
Lyken17/Colorize.PyTorch
9d352c52dc879988e2eb518261bc45e8216ffed6
[ "MIT" ]
2
2018-05-23T20:29:07.000Z
2018-11-29T04:20:02.000Z
transform/color_op.py
Lyken17/Colorize.PyTorch
9d352c52dc879988e2eb518261bc45e8216ffed6
[ "MIT" ]
null
null
null
transform/color_op.py
Lyken17/Colorize.PyTorch
9d352c52dc879988e2eb518261bc45e8216ffed6
[ "MIT" ]
null
null
null
import math import numpy as np import torch import torch.nn as nn from torch import autograd from torch.autograd import Variable import torch.nn.functional as F class RGB2GRAY(object): def __init__(self): pass def __call__(self, tensor): assert tensor.size(0) == 3 import cv2, numpy as np npimg = tensor.numpy() npimg = cv2.cvtColor(npimg, cv2.COLOR_RGB2GRAY) npimg = cv2.cvtColor(npimg, cv2.COLOR_GRAY2RGB) tensor = torch.from_numpy(npimg) return tensor class Gamma(object): def __init__(self, power=2): self.power = power def __call__(self, tensor): assert tensor.size(0) == 3 return tensor ** self.power class Linearize(object): def __init__(self, power=2): self.power = power def __call__(self, tensor): assert tensor.size(0) == 3 alpha = 0.055 tensor[tensor < 0.04045] /= 12.92 tensor[tensor > 0.04045] = ((tensor[tensor > 0.04045] + alpha) / (1 + alpha)) ** 2.4 return tensor class __color_space_convert(object): def __init__(self, mat=None): self.mat = mat def __call__(self, tensor): assert tensor.size(0) == 3 if self.mat is None: raise NotImplementedError # tensor: 3xHxW s = tensor.size() t = tensor.permute(1, 2, 0).view(-1, s[0]) res = torch.mm(t, self.mat).view(s[1], s[2], 3).permute(2, 0, 1) return res class SRGB2XYZ(__color_space_convert): # D65 # https://en.wikipedia.org/wiki/SRGB def __init__(self): mat = torch.Tensor( [[0.4124564, 0.3575761, 0.1804375], [0.2126729, 0.7151522, 0.0721750], [0.0193339, 0.1191920, 0.9503041]] ) super(SRGB2XYZ, self).__init__(mat=mat) class XYZ2CIE(__color_space_convert): def __init__(self): mat = torch.Tensor( [[0.4002, 0.7076, -0.0808], [-0.2263, 1.1653, 0.0457], [0.0, 0.0, 0.9182]] ) super(XYZ2CIE, self).__init__(mat=mat)
24.290698
92
0.582097
993a666ee970fbb26f6059d717990b56c017a7a5
8,993
py
Python
a10_octavia/common/data_models.py
sana-a10/a10-octavia
28dc85544b06840a43f3b10b205abb78aa24a795
[ "Apache-2.0" ]
null
null
null
a10_octavia/common/data_models.py
sana-a10/a10-octavia
28dc85544b06840a43f3b10b205abb78aa24a795
[ "Apache-2.0" ]
null
null
null
a10_octavia/common/data_models.py
sana-a10/a10-octavia
28dc85544b06840a43f3b10b205abb78aa24a795
[ "Apache-2.0" ]
null
null
null
# Copyright 2019, A10 Networks # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from datetime import datetime import re import six from sqlalchemy.orm import collections class BaseDataModel(object): def to_dict(self, calling_classes=None, recurse=False, **kwargs): """Converts a data model to a dictionary.""" calling_classes = calling_classes or [] ret = {} for attr in self.__dict__: if attr.startswith('_') or not kwargs.get(attr, True): continue value = self.__dict__[attr] if recurse: if isinstance(getattr(self, attr), list): ret[attr] = [] for item in value: if isinstance(item, BaseDataModel): if type(self) not in calling_classes: ret[attr].append( item.to_dict(calling_classes=( calling_classes + [type(self)]))) else: ret[attr] = None else: ret[attr] = item elif isinstance(getattr(self, attr), BaseDataModel): if type(self) not in calling_classes: ret[attr] = value.to_dict( calling_classes=calling_classes + [type(self)]) else: ret[attr] = None elif six.PY2 and isinstance(value, six.text_type): ret[attr.encode('utf8')] = value.encode('utf8') else: ret[attr] = value else: if isinstance(getattr(self, attr), (BaseDataModel, list)): ret[attr] = None else: ret[attr] = value return ret def __eq__(self, other): if isinstance(other, self.__class__): return self.to_dict() == other.to_dict() return False def __ne__(self, other): return not self.__eq__(other) @classmethod def from_dict(cls, dict): return cls(**dict) @classmethod def _name(cls): """Returns class name in a more human readable form.""" # Split the class name up by capitalized words return ' '.join(re.findall('[A-Z][^A-Z]*', cls.__name__)) def _get_unique_key(self, obj=None): """Returns a unique key for passed object for data model building.""" obj = obj or self # First handle all objects with their own ID, then handle subordinate # objects. if obj.__class__.__name__ in ['VThunder']: return obj.__class__.__name__ + obj.id else: raise NotImplementedError def _find_in_graph(self, key, _visited_nodes=None): """Locates an object with the given unique key in the current object graph and returns a reference to it. """ _visited_nodes = _visited_nodes or [] mykey = self._get_unique_key() if mykey in _visited_nodes: # Seen this node already, don't traverse further return None elif mykey == key: return self else: _visited_nodes.append(mykey) attr_names = [attr_name for attr_name in dir(self) if not attr_name.startswith('_')] for attr_name in attr_names: attr = getattr(self, attr_name) if isinstance(attr, BaseDataModel): result = attr._find_in_graph( key, _visited_nodes=_visited_nodes) if result is not None: return result elif isinstance(attr, (collections.InstrumentedList, list)): for item in attr: if isinstance(item, BaseDataModel): result = item._find_in_graph( key, _visited_nodes=_visited_nodes) if result is not None: return result # If we are here we didn't find it. return None def update(self, update_dict): """Generic update method which works for simple, non-relational attributes. """ for key, value in update_dict.items(): setattr(self, key, value) class Thunder(BaseDataModel): def __init__(self, id=None, vthunder_id=None, amphora_id=None, device_name=None, ip_address=None, username=None, password=None, axapi_version=None, undercloud=None, loadbalancer_id=None, project_id=None, compute_id=None, topology="STANDALONE", role="MASTER", last_udp_update=None, status="ACTIVE", created_at=datetime.utcnow(), updated_at=datetime.utcnow(), partition_name="shared", hierarchical_multitenancy="disable", last_write_mem=None, vrid_floating_ip=None, device_network_map=None, acos_version=None, device_name_as_key=False): self.id = id self.vthunder_id = vthunder_id self.amphora_id = amphora_id self.device_name = device_name self.ip_address = ip_address self.username = username self.password = password self.axapi_version = axapi_version self.undercloud = undercloud self.loadbalancer_id = loadbalancer_id self.project_id = project_id self.compute_id = compute_id self.topology = topology self.role = role self.last_udp_update = last_udp_update self.status = status self.created_at = created_at self.updated_at = updated_at self.partition_name = partition_name self.hierarchical_multitenancy = hierarchical_multitenancy self.last_write_mem = last_write_mem self.vrid_floating_ip = vrid_floating_ip self.device_network_map = device_network_map or [] self.acos_version = acos_version self.device_name_as_key = device_name_as_key class HardwareThunder(Thunder): def __init__(self, **kwargs): Thunder.__init__(self, **kwargs) class VThunder(Thunder): def __init__(self, **kwargs): Thunder.__init__(self, **kwargs) class Certificate(BaseDataModel): def __init__(self, cert_filename=None, cert_content=None, key_filename=None, key_content=None, key_pass=None, template_name=None): self.cert_filename = cert_filename self.cert_content = cert_content self.key_filename = key_filename self.key_content = key_content self.key_pass = key_pass self.template_name = template_name class VRID(BaseDataModel): def __init__(self, id=None, project_id=None, vrid=None, vrid_port_id=None, vrid_floating_ip=None, subnet_id=None): self.id = id self.project_id = project_id self.vrid = vrid self.vrid_port_id = vrid_port_id self.vrid_floating_ip = vrid_floating_ip self.subnet_id = subnet_id class Interface(BaseDataModel): def __init__(self, interface_num=None, tags=None, ve_ips=None): self.interface_num = interface_num self.tags = tags or [] self.ve_ips = ve_ips or [] class DeviceNetworkMap(BaseDataModel): def __init__(self, vcs_device_id=None, mgmt_ip_address=None, ethernet_interfaces=None, trunk_interfaces=None): self.vcs_device_id = vcs_device_id self.mgmt_ip_address = mgmt_ip_address self.ethernet_interfaces = ethernet_interfaces or [] self.trunk_interfaces = trunk_interfaces or [] self.state = 'Unknown' class NATPool(BaseDataModel): def __init__(self, id=None, name=None, subnet_id=None, start_address=None, end_address=None, member_ref_count=None, port_id=None): self.id = id self.name = name self.subnet_id = subnet_id self.start_address = start_address self.end_address = end_address self.member_ref_count = member_ref_count self.port_id = port_id class VrrpSet(BaseDataModel): def __init__(self, mgmt_subnet=None, project_id=None, set_id=None): self.mgmt_subnet = mgmt_subnet self.project_id = project_id self.set_id = set_id
37.161157
93
0.597909
d415301ff727199547cd2261eba6339678b11441
20,616
py
Python
qiskit/pulse/transforms.py
renier/qiskit-terra
1f5e4c8f6768dfac5d68f39e9d38fdd783ba1346
[ "Apache-2.0" ]
null
null
null
qiskit/pulse/transforms.py
renier/qiskit-terra
1f5e4c8f6768dfac5d68f39e9d38fdd783ba1346
[ "Apache-2.0" ]
null
null
null
qiskit/pulse/transforms.py
renier/qiskit-terra
1f5e4c8f6768dfac5d68f39e9d38fdd783ba1346
[ "Apache-2.0" ]
null
null
null
# This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Basic rescheduling functions which take schedules or instructions (and possibly some arguments) and return new schedules. """ import warnings from collections import defaultdict from typing import Callable from typing import List, Optional, Iterable, Union import numpy as np from qiskit.pulse import channels as chans, exceptions, instructions from qiskit.pulse.exceptions import PulseError from qiskit.pulse.instruction_schedule_map import InstructionScheduleMap from qiskit.pulse.instructions import directives from qiskit.pulse.schedule import Schedule def align_measures(schedules: Iterable[Union['Schedule', instructions.Instruction]], inst_map: Optional[InstructionScheduleMap] = None, cal_gate: str = 'u3', max_calibration_duration: Optional[int] = None, align_time: Optional[int] = None, align_all: Optional[bool] = True, ) -> List[Schedule]: """Return new schedules where measurements occur at the same physical time. This transformation will align the first :class:`qiskit.pulse.Acquire` on every channel to occur at the same time. Minimum measurement wait time (to allow for calibration pulses) is enforced and may be set with ``max_calibration_duration``. By default only instructions containing a :class:`~qiskit.pulse.AcquireChannel` or :class:`~qiskit.pulse.MeasureChannel` will be shifted. If you wish to keep the relative timing of all instructions in the schedule set ``align_all=True``. This method assumes that ``MeasureChannel(i)`` and ``AcquireChannel(i)`` correspond to the same qubit and the acquire/play instructions should be shifted together on these channels. .. jupyter-kernel:: python3 :id: align_measures .. jupyter-execute:: from qiskit import pulse from qiskit.pulse import transforms with pulse.build() as sched: with pulse.align_sequential(): pulse.play(pulse.Constant(10, 0.5), pulse.DriveChannel(0)) pulse.play(pulse.Constant(10, 1.), pulse.MeasureChannel(0)) pulse.acquire(20, pulse.AcquireChannel(0), pulse.MemorySlot(0)) sched_shifted = sched << 20 aligned_sched, aligned_sched_shifted = transforms.align_measures([sched, sched_shifted]) assert aligned_sched == aligned_sched_shifted If it is desired to only shift acqusition and measurement stimulus instructions set the flag ``align_all=False``: .. jupyter-execute:: aligned_sched, aligned_sched_shifted = transforms.align_measures( [sched, sched_shifted], align_all=False, ) assert aligned_sched != aligned_sched_shifted Args: schedules: Collection of schedules to be aligned together inst_map: Mapping of circuit operations to pulse schedules cal_gate: The name of the gate to inspect for the calibration time max_calibration_duration: If provided, inst_map and cal_gate will be ignored align_time: If provided, this will be used as final align time. align_all: Shift all instructions in the schedule such that they maintain their relative alignment with the shifted acqusition instruction. If ``False`` only the acqusition and measurement pulse instructions will be shifted. Returns: The input list of schedules transformed to have their measurements aligned. Raises: PulseError: If the provided alignment time is negative. """ def get_first_acquire_times(schedules): """Return a list of first acquire times for each schedule.""" acquire_times = [] for schedule in schedules: visited_channels = set() qubit_first_acquire_times = defaultdict(lambda: None) for time, inst in schedule.instructions: if (isinstance(inst, instructions.Acquire) and inst.channel not in visited_channels): visited_channels.add(inst.channel) qubit_first_acquire_times[inst.channel.index] = time acquire_times.append(qubit_first_acquire_times) return acquire_times def get_max_calibration_duration(inst_map, cal_gate): """Return the time needed to allow for readout discrimination calibration pulses.""" max_calibration_duration = 0 for qubits in inst_map.qubits_with_instruction(cal_gate): cmd = inst_map.get(cal_gate, qubits, np.pi, 0, np.pi) max_calibration_duration = max(cmd.duration, max_calibration_duration) return max_calibration_duration if align_time is not None and align_time < 0: raise exceptions.PulseError("Align time cannot be negative.") first_acquire_times = get_first_acquire_times(schedules) # Extract the maximum acquire in every schedule across all acquires in the schedule. # If there are no acquires in the schedule default to 0. max_acquire_times = [max(0, *times.values()) for times in first_acquire_times] if align_time is None: if max_calibration_duration is None: if inst_map: max_calibration_duration = get_max_calibration_duration(inst_map, cal_gate) else: max_calibration_duration = 0 align_time = max(max_calibration_duration, *max_acquire_times) # Shift acquires according to the new scheduled time new_schedules = [] for sched_idx, schedule in enumerate(schedules): new_schedule = Schedule(name=schedule.name) stop_time = schedule.stop_time if align_all: if first_acquire_times[sched_idx]: shift = align_time - max_acquire_times[sched_idx] else: shift = align_time - stop_time else: shift = 0 for time, inst in schedule.instructions: measurement_channels = { chan.index for chan in inst.channels if isinstance(chan, (chans.MeasureChannel, chans.AcquireChannel)) } if measurement_channels: sched_first_acquire_times = first_acquire_times[sched_idx] max_start_time = max(sched_first_acquire_times[chan] for chan in measurement_channels if chan in sched_first_acquire_times) shift = align_time - max_start_time if shift < 0: warnings.warn( "The provided alignment time is scheduling an acquire instruction " "earlier than it was scheduled for in the original Schedule. " "This may result in an instruction being scheduled before t=0 and " "an error being raised." ) new_schedule.insert(time+shift, inst, inplace=True) new_schedules.append(new_schedule) return new_schedules def add_implicit_acquires(schedule: Union['Schedule', instructions.Instruction], meas_map: List[List[int]] ) -> Schedule: """Return a new schedule with implicit acquires from the measurement mapping replaced by explicit ones. .. warning:: Since new acquires are being added, Memory Slots will be set to match the qubit index. This may overwrite your specification. Args: schedule: Schedule to be aligned. meas_map: List of lists of qubits that are measured together. Returns: A ``Schedule`` with the additional acquisition instructions. """ new_schedule = Schedule(name=schedule.name) acquire_map = dict() for time, inst in schedule.instructions: if isinstance(inst, instructions.Acquire): if inst.mem_slot and inst.mem_slot.index != inst.channel.index: warnings.warn("One of your acquires was mapped to a memory slot which didn't match" " the qubit index. I'm relabeling them to match.") # Get the label of all qubits that are measured with the qubit(s) in this instruction all_qubits = [] for sublist in meas_map: if inst.channel.index in sublist: all_qubits.extend(sublist) # Replace the old acquire instruction by a new one explicitly acquiring all qubits in # the measurement group. for i in all_qubits: explicit_inst = instructions.Acquire(inst.duration, chans.AcquireChannel(i), mem_slot=chans.MemorySlot(i), kernel=inst.kernel, discriminator=inst.discriminator) if time not in acquire_map: new_schedule.insert(time, explicit_inst, inplace=True) acquire_map = {time: {i}} elif i not in acquire_map[time]: new_schedule.insert(time, explicit_inst, inplace=True) acquire_map[time].add(i) else: new_schedule.insert(time, inst, inplace=True) return new_schedule def pad(schedule: Schedule, channels: Optional[Iterable[chans.Channel]] = None, until: Optional[int] = None, inplace: bool = False ) -> Schedule: r"""Pad the input Schedule with ``Delay``\s on all unoccupied timeslots until ``schedule.duration`` or ``until`` if not ``None``. Args: schedule: Schedule to pad. channels: Channels to pad. Defaults to all channels in ``schedule`` if not provided. If the supplied channel is not a member of ``schedule`` it will be added. until: Time to pad until. Defaults to ``schedule.duration`` if not provided. inplace: Pad this schedule by mutating rather than returning a new schedule. Returns: The padded schedule. """ until = until or schedule.duration channels = channels or schedule.channels for channel in channels: if channel not in schedule.channels: schedule |= instructions.Delay(until, channel) continue curr_time = 0 # Use the copy of timeslots. When a delay is inserted before the current interval, # current timeslot is pointed twice and the program crashes with the wrong pointer index. timeslots = schedule.timeslots[channel].copy() # TODO: Replace with method of getting instructions on a channel for interval in timeslots: if curr_time >= until: break if interval[0] != curr_time: end_time = min(interval[0], until) schedule = schedule.insert( curr_time, instructions.Delay(end_time - curr_time, channel), inplace=inplace) curr_time = interval[1] if curr_time < until: schedule = schedule.insert( curr_time, instructions.Delay(until - curr_time, channel), inplace=inplace) return schedule def compress_pulses(schedules: List[Schedule]) -> List[Schedule]: """Optimization pass to replace identical pulses. Args: schedules: Schedules to compress. Returns: Compressed schedules. """ existing_pulses = [] new_schedules = [] for schedule in schedules: new_schedule = Schedule(name=schedule.name) for time, inst in schedule.instructions: if isinstance(inst, instructions.Play): if inst.pulse in existing_pulses: idx = existing_pulses.index(inst.pulse) identical_pulse = existing_pulses[idx] new_schedule.insert(time, instructions.Play(identical_pulse, inst.channel, inst.name), inplace=True) else: existing_pulses.append(inst.pulse) new_schedule.insert(time, inst, inplace=True) else: new_schedule.insert(time, inst, inplace=True) new_schedules.append(new_schedule) return new_schedules def _push_left_append(this: Schedule, other: Union['Schedule', instructions.Instruction], ) -> Schedule: r"""Return ``this`` with ``other`` inserted at the maximum time over all channels shared between ```this`` and ``other``. Args: this: Input schedule to which ``other`` will be inserted. other: Other schedule to insert. Returns: Push left appended schedule. """ this_channels = set(this.channels) other_channels = set(other.channels) shared_channels = list(this_channels & other_channels) ch_slacks = [this.stop_time - this.ch_stop_time(channel) + other.ch_start_time(channel) for channel in shared_channels] if ch_slacks: slack_chan = shared_channels[np.argmin(ch_slacks)] shared_insert_time = this.ch_stop_time(slack_chan) - other.ch_start_time(slack_chan) else: shared_insert_time = 0 # Handle case where channels not common to both might actually start # after ``this`` has finished. other_only_insert_time = other.ch_start_time(*(other_channels - this_channels)) # Choose whichever is greatest. insert_time = max(shared_insert_time, other_only_insert_time) return this.insert(insert_time, other, inplace=True) def align_left(schedule: Schedule) -> Schedule: """Align a list of pulse instructions on the left. Args: schedule: Input schedule of which top-level ``child`` nodes will be reschedulued. Returns: New schedule with input `schedule`` child schedules and instructions left aligned. """ aligned = Schedule() for _, child in schedule._children: _push_left_append(aligned, child) return aligned def _push_right_prepend(this: Union['Schedule', instructions.Instruction], other: Union['Schedule', instructions.Instruction], ) -> Schedule: r"""Return ``this`` with ``other`` inserted at the latest possible time such that ``other`` ends before it overlaps with any of ``this``. If required ``this`` is shifted to start late enough so that there is room to insert ``other``. Args: this: Input schedule to which ``other`` will be inserted. other: Other schedule to insert. Returns: Push right prepended schedule. """ this_channels = set(this.channels) other_channels = set(other.channels) shared_channels = list(this_channels & other_channels) ch_slacks = [this.ch_start_time(channel) - other.ch_stop_time(channel) for channel in shared_channels] if ch_slacks: insert_time = min(ch_slacks) + other.start_time else: insert_time = this.stop_time - other.stop_time + other.start_time if insert_time < 0: this.shift(-insert_time, inplace=True) this.insert(0, other, inplace=True) else: this.insert(insert_time, other, inplace=True) return this def align_right(schedule: Schedule) -> Schedule: """Align a list of pulse instructions on the right. Args: schedule: Input schedule of which top-level ``child`` nodes will be reschedulued. Returns: New schedule with input `schedule`` child schedules and instructions right aligned. """ aligned = Schedule() for _, child in reversed(schedule._children): aligned = _push_right_prepend(aligned, child) return aligned def align_sequential(schedule: Schedule) -> Schedule: """Schedule all top-level nodes in parallel. Args: schedule: Input schedule of which top-level ``child`` nodes will be reschedulued. Returns: New schedule with input `schedule`` child schedules and instructions applied sequentially across channels """ aligned = Schedule() for _, child in schedule._children: aligned.insert(aligned.duration, child, inplace=True) return aligned def align_equispaced(schedule: Schedule, duration: int) -> Schedule: """Schedule a list of pulse instructions with equivalent interval. Args: schedule: Input schedule of which top-level ``child`` nodes will be reschedulued. duration: Duration of context. This should be larger than the schedule duration. Returns: New schedule with input `schedule`` child schedules and instructions aligned with equivalent interval. Notes: This context is convenient for writing PDD or Hahn echo sequence for example. """ if duration and duration < schedule.duration: return schedule else: total_delay = duration - schedule.duration if len(schedule._children) > 1: # Calculate the interval in between sub-schedules. # If the duration cannot be divided by the number of sub-schedules, # the modulo is appended and prepended to the input schedule. interval, mod = np.divmod(total_delay, len(schedule._children) - 1) else: interval = 0 mod = total_delay # Calculate pre schedule delay delay, mod = np.divmod(mod, 2) aligned = Schedule() # Insert sub-schedules with interval _t0 = int(aligned.stop_time + delay + mod) for _, child in schedule._children: aligned.insert(_t0, child, inplace=True) _t0 = int(aligned.stop_time + interval) return pad(aligned, aligned.channels, until=duration, inplace=True) def align_func(schedule: Schedule, duration: int, func: Callable[[int], float]) -> Schedule: """Schedule a list of pulse instructions with schedule position defined by the numerical expression. Args: schedule: Input schedule of which top-level ``child`` nodes will be reschedulued. duration: Duration of context. This should be larger than the schedule duration. func: A function that takes an index of sub-schedule and returns the fractional coordinate of of that sub-schedule. The returned value should be defined within [0, 1]. The pulse index starts from 1. Returns: New schedule with input `schedule`` child schedules and instructions aligned with equivalent interval. Notes: This context is convenient for writing UDD sequence for example. """ if duration < schedule.duration: return schedule aligned = Schedule() for ind, (_, child) in enumerate(schedule._children): _t_center = duration * func(ind + 1) _t0 = int(_t_center - 0.5 * child.duration) if _t0 < 0 or _t0 > duration: PulseError('Invalid schedule position t=%d is specified at index=%d' % (_t0, ind)) aligned.insert(_t0, child, inplace=True) return pad(aligned, aligned.channels, until=duration, inplace=True) def flatten(schedule: Schedule) -> Schedule: """Flatten any called nodes into a Schedule tree with no nested children.""" return schedule.flatten() def remove_directives(schedule: Schedule) -> Schedule: """Remove directives.""" return schedule.exclude(instruction_types=[directives.Directive]) def remove_trivial_barriers(schedule: Schedule) -> Schedule: """Remove trivial barriers with 0 or 1 channels.""" def filter_func(inst): return (isinstance(inst[1], directives.RelativeBarrier) and len(inst[1].channels) < 2) return schedule.exclude(filter_func)
38.534579
99
0.64057
69396c8ac5a886ec2bd896dbb32dbf29ed300351
1,761
py
Python
trax/tf_numpy/examples/mnist/train_test.py
dedsec-9/trax
c394f9df7ee9dfe918cd67f4af2217d361f0f733
[ "Apache-2.0" ]
7,220
2019-10-07T23:46:53.000Z
2022-03-31T16:28:05.000Z
trax/tf_numpy/examples/mnist/train_test.py
dedsec-9/trax
c394f9df7ee9dfe918cd67f4af2217d361f0f733
[ "Apache-2.0" ]
301
2019-10-08T06:42:04.000Z
2022-03-12T07:03:46.000Z
trax/tf_numpy/examples/mnist/train_test.py
dedsec-9/trax
c394f9df7ee9dfe918cd67f4af2217d361f0f733
[ "Apache-2.0" ]
783
2019-10-08T06:36:36.000Z
2022-03-25T02:00:29.000Z
# coding=utf-8 # Copyright 2021 The Trax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test that the example training script works on fake data.""" import mock import numpy as np import tensorflow.compat.v2 as tf from trax.tf_numpy.examples.mnist import dataset from trax.tf_numpy.examples.mnist import train class TFNumpyMnistExampleTest(tf.test.TestCase): def testRuns(self): with mock.patch.object(dataset, 'load', new=fake_mnist_data): train.train( batch_size=1, learning_rate=0.1, num_training_iters=10, validation_steps=5) train.train( batch_size=2, learning_rate=0.1, num_training_iters=5, validation_steps=2) train.train( batch_size=10, learning_rate=0.1, num_training_iters=1, validation_steps=1) def fake_mnist_data(): def gen_examples(num_examples): x = np.array( np.random.randn(num_examples, 784), copy=False, dtype=np.float32) y = np.zeros((num_examples, 10), dtype=np.float32) y[:][0] = 1. return (x, y) return (gen_examples(100), gen_examples(10), gen_examples(10)) if __name__ == '__main__': tf.compat.v1.enable_eager_execution() tf.test.main()
28.868852
74
0.691652
721d479f60ca17e1623e43aab35027cafc8c71c9
2,094
py
Python
aliyun-python-sdk-iot/aliyunsdkiot/request/v20180120/DeleteDeviceFileRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
1,001
2015-07-24T01:32:41.000Z
2022-03-25T01:28:18.000Z
aliyun-python-sdk-iot/aliyunsdkiot/request/v20180120/DeleteDeviceFileRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
363
2015-10-20T03:15:00.000Z
2022-03-08T12:26:19.000Z
aliyun-python-sdk-iot/aliyunsdkiot/request/v20180120/DeleteDeviceFileRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
682
2015-09-22T07:19:02.000Z
2022-03-22T09:51:46.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkiot.endpoint import endpoint_data class DeleteDeviceFileRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Iot', '2018-01-20', 'DeleteDeviceFile','iot') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_IotId(self): return self.get_query_params().get('IotId') def set_IotId(self,IotId): self.add_query_param('IotId',IotId) def get_IotInstanceId(self): return self.get_query_params().get('IotInstanceId') def set_IotInstanceId(self,IotInstanceId): self.add_query_param('IotInstanceId',IotInstanceId) def get_FileId(self): return self.get_query_params().get('FileId') def set_FileId(self,FileId): self.add_query_param('FileId',FileId) def get_ProductKey(self): return self.get_query_params().get('ProductKey') def set_ProductKey(self,ProductKey): self.add_query_param('ProductKey',ProductKey) def get_DeviceName(self): return self.get_query_params().get('DeviceName') def set_DeviceName(self,DeviceName): self.add_query_param('DeviceName',DeviceName)
33.774194
75
0.760267
bfa579575529aad2e823e71f2f0f4e6524b79b9a
1,302
py
Python
scrapers/scrape_fr.py
maekke/covid_19
d287a2937f7f528b4ebd8fa1d1ff27b3dc1ad1ec
[ "CC-BY-4.0" ]
null
null
null
scrapers/scrape_fr.py
maekke/covid_19
d287a2937f7f528b4ebd8fa1d1ff27b3dc1ad1ec
[ "CC-BY-4.0" ]
null
null
null
scrapers/scrape_fr.py
maekke/covid_19
d287a2937f7f528b4ebd8fa1d1ff27b3dc1ad1ec
[ "CC-BY-4.0" ]
1
2020-08-25T06:45:56.000Z
2020-08-25T06:45:56.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import re import datetime import sys from bs4 import BeautifulSoup import scrape_common as sc d = sc.download('https://www.fr.ch/sante/covid-19/coronavirus-statistiques-evolution-de-la-situation-dans-le-canton', silent=True) soup = BeautifulSoup(d, 'html.parser') xls_url = soup.find(href=re.compile("\.xlsx$")).get('href') assert xls_url, "URL is empty" if not xls_url.startswith('http'): xls_url = f'https://www.fr.ch{xls_url}' xls = sc.xlsdownload(xls_url, silent=True) rows = sc.parse_xls(xls, header_row=0, sheet_name='Données sites internet') is_first = True for row in rows: if row['Date'] is None: continue if not isinstance(row['Date'], datetime.datetime): print(f"WARNING: {row['Date']} is not a valid date, skipping.", file=sys.stderr) continue if not is_first: print('-' * 10) is_first = False print('FR') sc.timestamp() print('Downloading:', xls_url) print('Date and time:', row['Date'].date().isoformat()) print('Confirmed cases:', row['Total cas avérés']) print('Hospitalized:', row['Personnes hospitalisées']) print('ICU:', row['dont soins intensifs']) print('Deaths:', row['Total décès']) print('Recovered:', row['Total Sortis de l\'hôpital'])
31.756098
130
0.668971
08b54ce3ee8e1cbf8dba40f6cabf29a64b71fe06
11,185
py
Python
app/lib/ops/tiles.py
matthewzimmer/trajectory-contact-networks
b70e12052447899cea2e21c1dda85aea2f62a469
[ "MIT" ]
null
null
null
app/lib/ops/tiles.py
matthewzimmer/trajectory-contact-networks
b70e12052447899cea2e21c1dda85aea2f62a469
[ "MIT" ]
1
2019-03-08T02:47:25.000Z
2019-03-08T02:47:25.000Z
app/lib/ops/tiles.py
matthewzimmer/trajectory-contact-networks
b70e12052447899cea2e21c1dda85aea2f62a469
[ "MIT" ]
null
null
null
from math import radians, cos, sin, asin, pi, sqrt import itertools import networkx as nx import numpy as np from app.lib.datasets import GeolifeData from app.lib.pipeline_ops import PipelineOp from app.lib.points import TrajectoryPoint class GenerateTilesOp(PipelineOp): EARTH_CIRCUMFERENCE_AT_EQUATOR_METERS = 40075160 EARTH_CIRCUMFERENCE_THROUGH_POLES_METERS = 40008000 """ Generates a dictionary of tiles where the key is a hash of lat/lon/time and the value is a set of unique user ids that have points within that encoded spaciotemporal tile (cube). """ def __init__(self, users, ds, dt, relative_null_point=(39.75872, 116.04142)): PipelineOp.__init__(self) self.tiles = {} self.data_op = GeolifeData() self.users = np.array(users) self.ds = ds self.dt = dt self.relative_null_lat = relative_null_point[0] self.relative_null_lon = relative_null_point[1] def perform(self): for uid in self.users: for pt, plot in self.data_op.trajectories(uid): traj_pt = TrajectoryPoint(pt, uid) lat, lon = self.meters_for_lat_lon(traj_pt.lat, traj_pt.lon) t = traj_pt.t local_lat_meters = int(lat / self.ds) * self.ds local_lon_meters = int(lon / self.ds) * self.ds local_lat, local_lon = self.get_lat_lng_from_meters(local_lat_meters, local_lon_meters) local_t = int(t / self.dt) * self.dt tile_hash = "lat{}_lon{}_t{}".format(local_lat, local_lon, local_t) tile = self.hash_tile(tile_hash) # extract first column (uid) users = [sub_list[0] for sub_list in tile] if traj_pt.uid not in users: tile.append([traj_pt.uid, traj_pt.lat, traj_pt.lon, t, self.ds, self.dt]) return self._apply_output(self.tiles) def hash_tile(self, tile_hash): """ Returns an existing tile based on tile hash if already generated. Otherwise, generates and returns a new list for the given tile_hash. """ tile = self.tiles.get(tile_hash, None) if tile is None: tile = [] self.tiles[tile_hash] = tile return tile def meters_for_lat_lon(self, lat, lon): """ Calculates X and Y distances in meters. https://stackoverflow.com/a/3024728 """ delta_latitude = lat - self.relative_null_lat delta_longitude = lon - self.relative_null_lon latitude_circumference = self.EARTH_CIRCUMFERENCE_AT_EQUATOR_METERS * cos(self.deg_to_rad(self.relative_null_lat)) result_x = delta_longitude * latitude_circumference / 360 result_y = delta_latitude * self.EARTH_CIRCUMFERENCE_THROUGH_POLES_METERS / 360 return result_x, result_y def get_lat_lng_from_meters(self, lat, lon): latitude_circumference = self.EARTH_CIRCUMFERENCE_AT_EQUATOR_METERS * cos(self.deg_to_rad(self.relative_null_lat)) delta_latitude = lon * 360 / self.EARTH_CIRCUMFERENCE_THROUGH_POLES_METERS delta_longitude = lat * 360 / latitude_circumference result_lat = delta_latitude + self.relative_null_lat result_lng = delta_longitude + self.relative_null_lon return result_lat, result_lng @staticmethod def deg_to_rad(degrees): return degrees * pi / 180 class GraphContactPointsOp(PipelineOp): def __init__(self, hashed_tiles, weight): PipelineOp.__init__(self) self.hashed_tiles = hashed_tiles self.weight = weight assert(weight in ['dist_weight', 'count_weight']) def perform(self): contact_points = [['uid1', 'uid2', 'ds', 'dt', 'tile_hash', 'dist_apart', 'time_diff', 'lat1', 'lat2', 'lon1', 'lon2', 't1', 't2']] tiles = self.hashed_tiles.items() tile_count = len(tiles) op_count = 0 graph = nx.Graph() delta = (None, None) for tile_hash, uids in tiles: if not tile_hash: graph_filepath = 'app/data/graphs/no_tiles_from_data.png' return self._apply_output({"graph_filepath": graph_filepath, "graph_generated": False}) if not delta: delta = (uids[0][4], uids[0][5]) if len(uids) > 1: contact_pairs = itertools.combinations(uids, 2) for user_pair in contact_pairs: user1, user2 = user_pair u1_uid, u1_lat, u1_lon, u1_t, u1_ds, u1_dt = user1 u2_uid, u2_lat, u2_lon, u2_t, u2_ds, u2_dt = user2 u1_lat_lon = (u1_lat, u1_lon) u2_lat_lon = (u2_lat, u2_lon) distance = dist_apart(u1_lat_lon, u2_lat_lon) time_difference = abs(u1_t - u2_t) contact_points.append([u1_uid, u2_uid, u1_ds, u1_dt, tile_hash, distance, time_difference, u1_lat, u2_lat, u1_lon, u2_lon, u1_t, u2_t]) if self.weight == 'dist_weight': graph = weight_by_distance(graph, user1, user2) elif self.weight == 'count_weight': graph = weight_by_count(graph, user1, user1) op_count += 1 print("Remaining Tiles: {}".format(tile_count - op_count)) # graph_filepath = 'app/data/graphs/{}.png'.format(str(delta[0]) + 'ds_' + str(delta[1]) + 'dt') # nx.draw_circular(graph, with_labels=True) # spectral circular random # plt.savefig(graph_filepath, bbox_inches='tight') ds, dt = delta gml_filepath = 'app/data/graphs/{}.gml'.format(str(ds) + 'ds_' + str(dt) + 'dt_' + str(self.weight)) nx.write_gml(graph, gml_filepath) # largest_comp = find_largest_component(graph) # avg_degree = find_average_degree(graph) # graph_results(largest_comp, avg_degree, deltas) return self._apply_output({"contact_points": np.asarray(contact_points), "graph_filepath": gml_filepath, "graph_generated": True}) class GraphHottestPointsOp(PipelineOp): def __init__(self, hashed_tiles, weight): PipelineOp.__init__(self) self.hashed_tiles = hashed_tiles self.weight = weight def perform(self): contact_points = [['uid1', 'uid2', 'ds', 'dt', 'tile_hash', 'dist_apart', 'time_diff', 'lat1', 'lat2', 'lon1', 'lon2', 't1', 't2']] user_count_in_tiles = [len(uids) for tile_hash, uids in self.hashed_tiles.items()] hot_zone_count = max(user_count_in_tiles) graph = nx.Graph() delta = (None, None) for tile_hash, uids in self.hashed_tiles.items(): if not delta: delta = (uids[0][4], uids[0][5]) if len(uids) == hot_zone_count: contact_pairs = itertools.combinations(uids, 2) for user_pair in contact_pairs: user1, user2 = user_pair u1_uid, u1_lat, u1_lon, u1_t, u1_ds, u1_dt = user1 u2_uid, u2_lat, u2_lon, u2_t, u2_ds, u2_dt = user2 u1_lat_lon = (u1_lat, u1_lon) u2_lat_lon = (u2_lat, u2_lon) distance = dist_apart(u1_lat_lon, u2_lat_lon) time_difference = abs(u1_t - u2_t) contact_points.append([u1_uid, u2_uid, u1_ds, u1_dt, tile_hash, distance, time_difference, u1_lat, u2_lat, u1_lon, u2_lon, u1_t, u2_t]) if self.weight == 'dist_weight': graph = weight_by_distance(graph, user_pair[0], user_pair[1]) elif self.weight == 'count_weight': graph = weight_by_count(graph, user_pair[0], user_pair[1]) ds, dt = delta gml_filepath = 'app/data/graphs/{}.gml'.format(str(ds) + 'ds_' + str(dt) + 'dt_hot_zones') nx.write_gml(graph, gml_filepath) return self._apply_output({"contact_points": np.asarray(contact_points), "gml_filepath": gml_filepath, "graph_generated": True}) def weight_by_count(graph, user1, user2): u1_uid, u1_lat, u1_lon, u1_t, u1_ds, u1_dt = user1 u2_uid, u2_lat, u2_lon, u2_t, u2_ds, u2_dt = user2 u1_lat_lon = (u1_lat, u1_lon) u2_lat_lon = (u2_lat, u2_lon) distance = dist_apart(u1_lat_lon, u2_lat_lon) time_difference = abs(u1_t - u2_t) if not graph.has_edge(u1_uid, u2_uid): graph.add_edge(u1_uid, u2_uid, weight=1, ds=time_difference, distance=distance) else: graph[u1_uid][u2_uid]['weight'] += 1 graph[u1_uid][u2_uid]['ds'] = time_difference graph[u1_uid][u2_uid]['dt'] = distance return graph def weight_by_distance(graph, user1, user2): u1_uid, u1_lat, u1_lon, u1_t, u1_ds, u1_dt = user1 u2_uid, u2_lat, u2_lon, u2_t, u2_ds, u2_dt = user2 u1_lat_lon = (u1_lat, u1_lon) u2_lat_lon = (u2_lat, u2_lon) distance = dist_apart(u1_lat_lon, u2_lat_lon) time_difference = abs(u1_t - u2_t) delta = (u1_ds, u1_dt) ds, dt = delta weight = dt - distance if not graph.has_edge(u1_uid, u2_uid): graph.add_edge(u1_uid, u2_uid, weight=weight, distance=distance, ds=time_difference, dt=distance) else: if graph[u1_uid][u2_uid]['weight'] > weight: graph[u1_uid][u2_uid]['weight'] = weight graph[u1_uid][u2_uid]['ds'] = time_difference graph[u1_uid][u2_uid]['dt'] = distance return graph def dist_apart(p1, p2): # convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [p1[1], p1[0], p2[1], p2[0]]) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2 c = 2 * asin(sqrt(a)) # Radius of earth in kilometers is 6371 km = 6371 * c return km * 1000 # def find_largest_component(graph): # component_size = [len(c) for c in sorted(nx.connected_components(graph), key=len, reverse=True)] # return str(max(component_size)) # # print("Largest Component Size: " + str(max(component_size))) # # print("Component List: " + str(max(nx.connected_components(Graph), key=len))) # # # def find_average_degree(graph): # degree_list = [] # for n in graph.nodes(): # degree_list.append(graph.degree(n)) # return str(sum(degree_list) / graph.number_of_nodes()) # # print("Average degree of Nodes " + str(sum(listr)/Graph.number_of_nodes())) # # # def graph_results(largest_comps, avg_degrees, deltas): # if largest_comps or avg_degrees != 'NULL': # plt.plot(deltas, largest_comps, label="Largest Component") # plt.title("Size of Largest Connected Component") # plt.ylabel("Largest Component Size") # plt.xlabel("Delta settings") # plt.savefig('app/viz/Largest_Component_Results.png', bbox_inches='tight') # # plt.plot(deltas, avg_degrees, label="Average Degree") # plt.title("Average Degree of Nodes") # plt.ylabel("Mean Degree") # plt.xlabel("Delta settings") # plt.savefig('app/viz/Avg_Degree_Results.png', bbox_inches='tight')
42.528517
155
0.622709
29c588ee15469bb8e40e69a0648e06606bed8a52
671
py
Python
simulator/urls.py
i13-msrg/cidds
bc212404b1d342ddac4bee220afdb440594f7faa
[ "Apache-2.0" ]
8
2018-10-27T19:56:38.000Z
2021-09-23T11:47:52.000Z
simulator/urls.py
i13-msrg/cidds
bc212404b1d342ddac4bee220afdb440594f7faa
[ "Apache-2.0" ]
7
2020-02-01T13:48:41.000Z
2022-03-11T23:35:07.000Z
simulator/urls.py
i13-msrg/cidds
bc212404b1d342ddac4bee220afdb440594f7faa
[ "Apache-2.0" ]
1
2019-04-05T08:00:12.000Z
2019-04-05T08:00:12.000Z
from django.urls import path, include from django.views.generic import TemplateView from simulator.views import StartSim, SimulationHistory, Comparison, Details urlpatterns = [ path('initialize/', StartSim.as_view(), name='initialize'), path('history/', SimulationHistory.as_view(), name='history'), path('start/', include([ path('cidds/', TemplateView.as_view(template_name='start_form_cidds.html'), name='startsim'), path('cac/', TemplateView.as_view(template_name='start_form_cac.html'), name='startcac'), ])), path('compare/', Comparison.as_view(), name='compare'), path('<int:sim_id>/', Details.as_view(), name='detail'), ]
41.9375
101
0.701937
ea64e092b0377a68569a58b2d31713b062791f28
20,407
py
Python
configs/common/Options.py
code-lamem/lamem
c28f72c13a81fbb105c7c83d1b2720a720f3a47f
[ "BSD-3-Clause" ]
null
null
null
configs/common/Options.py
code-lamem/lamem
c28f72c13a81fbb105c7c83d1b2720a720f3a47f
[ "BSD-3-Clause" ]
null
null
null
configs/common/Options.py
code-lamem/lamem
c28f72c13a81fbb105c7c83d1b2720a720f3a47f
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2013 ARM Limited # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Copyright (c) 2006-2008 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Lisa Hsu import m5 from m5.defines import buildEnv from m5.objects import * from common.Benchmarks import * from common import CpuConfig from common import MemConfig from common import PlatformConfig def _listCpuTypes(option, opt, value, parser): CpuConfig.print_cpu_list() sys.exit(0) def _listMemTypes(option, opt, value, parser): MemConfig.print_mem_list() sys.exit(0) def _listPlatformTypes(option, opt, value, parser): PlatformConfig.print_platform_list() sys.exit(0) # Add the very basic options that work also in the case of the no ISA # being used, and consequently no CPUs, but rather various types of # testers and traffic generators. def addNoISAOptions(parser): # Check for extra nvmain configuration override options for arg in sys.argv: if arg[:9] == "--nvmain-": parser.add_option(arg, type="string", default="NULL", help="Set NVMain configuration value for a parameter") parser.add_option("-n", "--num-cpus", type="int", default=1) parser.add_option("--sys-voltage", action="store", type="string", default='1.0V', help = """Top-level voltage for blocks running at system power supply""") parser.add_option("--sys-clock", action="store", type="string", default='1GHz', help = """Top-level clock for blocks running at system speed""") # Memory Options parser.add_option("--list-mem-types", action="callback", callback=_listMemTypes, help="List available memory types") parser.add_option("--mem-type", type="choice", default="DDR3_1600_8x8", choices=MemConfig.mem_names(), help = "type of memory to use") parser.add_option("--mem-channels", type="int", default=1, help = "number of memory channels") parser.add_option("--mem-ranks", type="int", default=None, help = "number of memory ranks per channel") parser.add_option("--mem-size", action="store", type="string", default="512MB", help="Specify the physical memory size (single memory)") parser.add_option("--memchecker", action="store_true") # Cache Options parser.add_option("--external-memory-system", type="string", help="use external ports of this port_type for caches") parser.add_option("--tlm-memory", type="string", help="use external port for SystemC TLM cosimulation") parser.add_option("--caches", action="store_true") parser.add_option("--l2cache", action="store_true") parser.add_option("--num-dirs", type="int", default=1) parser.add_option("--num-l2caches", type="int", default=1) parser.add_option("--num-l3caches", type="int", default=1) parser.add_option("--l1d_size", type="string", default="64kB") parser.add_option("--l1i_size", type="string", default="32kB") parser.add_option("--l2_size", type="string", default="2MB") parser.add_option("--l3_size", type="string", default="16MB") parser.add_option("--l1d_assoc", type="int", default=2) parser.add_option("--l1i_assoc", type="int", default=2) parser.add_option("--l2_assoc", type="int", default=8) parser.add_option("--l3_assoc", type="int", default=16) parser.add_option("--cacheline_size", type="int", default=64) # Enable Ruby parser.add_option("--ruby", action="store_true") # Run duration options parser.add_option("-m", "--abs-max-tick", type="int", default=m5.MaxTick, metavar="TICKS", help="Run to absolute simulated tick " "specified including ticks from a restored checkpoint") parser.add_option("--rel-max-tick", type="int", default=None, metavar="TICKS", help="Simulate for specified number of" " ticks relative to the simulation start tick (e.g. if " "restoring a checkpoint)") parser.add_option("--maxtime", type="float", default=None, help="Run to the specified absolute simulated time in " "seconds") # Add common options that assume a non-NULL ISA. def addCommonOptions(parser): # start by adding the base options that do not assume an ISA addNoISAOptions(parser) # system options parser.add_option("--list-cpu-types", action="callback", callback=_listCpuTypes, help="List available CPU types") parser.add_option("--cpu-type", type="choice", default="AtomicSimpleCPU", choices=CpuConfig.cpu_names(), help = "type of cpu to run with") parser.add_option("--checker", action="store_true"); parser.add_option("--cpu-clock", action="store", type="string", default='2GHz', help="Clock for blocks running at CPU speed") parser.add_option("--smt", action="store_true", default=False, help = """ Only used if multiple programs are specified. If true, then the number of threads per cpu is same as the number of programs.""") parser.add_option("--elastic-trace-en", action="store_true", help="""Enable capture of data dependency and instruction fetch traces using elastic trace probe.""") # Trace file paths input to trace probe in a capture simulation and input # to Trace CPU in a replay simulation parser.add_option("--inst-trace-file", action="store", type="string", help="""Instruction fetch trace file input to Elastic Trace probe in a capture simulation and Trace CPU in a replay simulation""", default="") parser.add_option("--data-trace-file", action="store", type="string", help="""Data dependency trace file input to Elastic Trace probe in a capture simulation and Trace CPU in a replay simulation""", default="") parser.add_option("-l", "--lpae", action="store_true") parser.add_option("-V", "--virtualisation", action="store_true") parser.add_option("--fastmem", action="store_true") # dist-gem5 options parser.add_option("--dist", action="store_true", help="Parallel distributed gem5 simulation.") parser.add_option("--dist-sync-on-pseudo-op", action="store_true", help="Use a pseudo-op to start dist-gem5 synchronization.") parser.add_option("--is-switch", action="store_true", help="Select the network switch simulator process for a"\ "distributed gem5 run") parser.add_option("--dist-rank", default=0, action="store", type="int", help="Rank of this system within the dist gem5 run.") parser.add_option("--dist-size", default=0, action="store", type="int", help="Number of gem5 processes within the dist gem5 run.") parser.add_option("--dist-server-name", default="127.0.0.1", action="store", type="string", help="Name of the message server host\nDEFAULT: localhost") parser.add_option("--dist-server-port", default=2200, action="store", type="int", help="Message server listen port\nDEFAULT: 2200") parser.add_option("--dist-sync-repeat", default="0us", action="store", type="string", help="Repeat interval for synchronisation barriers among dist-gem5 processes\nDEFAULT: --ethernet-linkdelay") parser.add_option("--dist-sync-start", default="5200000000000t", action="store", type="string", help="Time to schedule the first dist synchronisation barrier\nDEFAULT:5200000000000t") parser.add_option("--ethernet-linkspeed", default="10Gbps", action="store", type="string", help="Link speed in bps\nDEFAULT: 10Gbps") parser.add_option("--ethernet-linkdelay", default="10us", action="store", type="string", help="Link delay in seconds\nDEFAULT: 10us") # Run duration options parser.add_option("-I", "--maxinsts", action="store", type="int", default=None, help="""Total number of instructions to simulate (default: run forever)""") parser.add_option("--work-item-id", action="store", type="int", help="the specific work id for exit & checkpointing") parser.add_option("--num-work-ids", action="store", type="int", help="Number of distinct work item types") parser.add_option("--work-begin-cpu-id-exit", action="store", type="int", help="exit when work starts on the specified cpu") parser.add_option("--work-end-exit-count", action="store", type="int", help="exit at specified work end count") parser.add_option("--work-begin-exit-count", action="store", type="int", help="exit at specified work begin count") parser.add_option("--init-param", action="store", type="int", default=0, help="""Parameter available in simulation with m5 initparam""") parser.add_option("--initialize-only", action="store_true", default=False, help="""Exit after initialization. Do not simulate time. Useful when gem5 is run as a library.""") # Simpoint options parser.add_option("--simpoint-profile", action="store_true", help="Enable basic block profiling for SimPoints") parser.add_option("--simpoint-interval", type="int", default=10000000, help="SimPoint interval in num of instructions") parser.add_option("--take-simpoint-checkpoints", action="store", type="string", help="<simpoint file,weight file,interval-length,warmup-length>") parser.add_option("--restore-simpoint-checkpoint", action="store_true", help="restore from a simpoint checkpoint taken with " + "--take-simpoint-checkpoints") # Checkpointing options ###Note that performing checkpointing via python script files will override ###checkpoint instructions built into binaries. parser.add_option("--take-checkpoints", action="store", type="string", help="<M,N> take checkpoints at tick M and every N ticks thereafter") parser.add_option("--max-checkpoints", action="store", type="int", help="the maximum number of checkpoints to drop", default=5) parser.add_option("--checkpoint-dir", action="store", type="string", help="Place all checkpoints in this absolute directory") parser.add_option("-r", "--checkpoint-restore", action="store", type="int", help="restore from checkpoint <N>") parser.add_option("--checkpoint-at-end", action="store_true", help="take a checkpoint at end of run") parser.add_option("--work-begin-checkpoint-count", action="store", type="int", help="checkpoint at specified work begin count") parser.add_option("--work-end-checkpoint-count", action="store", type="int", help="checkpoint at specified work end count") parser.add_option("--work-cpus-checkpoint-count", action="store", type="int", help="checkpoint and exit when active cpu count is reached") parser.add_option("--restore-with-cpu", action="store", type="choice", default="AtomicSimpleCPU", choices=CpuConfig.cpu_names(), help = "cpu type for restoring from a checkpoint") # CPU Switching - default switch model goes from a checkpoint # to a timing simple CPU with caches to warm up, then to detailed CPU for # data measurement parser.add_option("--repeat-switch", action="store", type="int", default=None, help="switch back and forth between CPUs with period <N>") parser.add_option("-s", "--standard-switch", action="store", type="int", default=None, help="switch from timing to Detailed CPU after warmup period of <N>") parser.add_option("-p", "--prog-interval", type="str", help="CPU Progress Interval") # Fastforwarding and simpoint related materials parser.add_option("-W", "--warmup-insts", action="store", type="int", default=None, help="Warmup period in total instructions (requires --standard-switch)") parser.add_option("--bench", action="store", type="string", default=None, help="base names for --take-checkpoint and --checkpoint-restore") parser.add_option("-F", "--fast-forward", action="store", type="string", default=None, help="Number of instructions to fast forward before switching") parser.add_option("-S", "--simpoint", action="store_true", default=False, help="""Use workload simpoints as an instruction offset for --checkpoint-restore or --take-checkpoint.""") parser.add_option("--at-instruction", action="store_true", default=False, help="""Treat value of --checkpoint-restore or --take-checkpoint as a number of instructions.""") parser.add_option("--spec-input", default="ref", type="choice", choices=["ref", "test", "train", "smred", "mdred", "lgred"], help="Input set size for SPEC CPU2000 benchmarks.") parser.add_option("--arm-iset", default="arm", type="choice", choices=["arm", "thumb", "aarch64"], help="ARM instruction set.") def addSEOptions(parser): # Benchmark options parser.add_option("-c", "--cmd", default="", help="The binary to run in syscall emulation mode.") parser.add_option("-o", "--options", default="", help="""The options to pass to the binary, use " " around the entire string""") parser.add_option("-e", "--env", default="", help="Initialize workload environment from text file.") parser.add_option("-i", "--input", default="", help="Read stdin from a file.") parser.add_option("--output", default="", help="Redirect stdout to a file.") parser.add_option("--errout", default="", help="Redirect stderr to a file.") def addFSOptions(parser): from FSConfig import os_types # Simulation options parser.add_option("--timesync", action="store_true", help="Prevent simulated time from getting ahead of real time") # System options parser.add_option("--kernel", action="store", type="string") parser.add_option("--os-type", action="store", type="choice", choices=os_types[buildEnv['TARGET_ISA']], default="linux", help="Specifies type of OS to boot") parser.add_option("--script", action="store", type="string") parser.add_option("--frame-capture", action="store_true", help="Stores changed frame buffers from the VNC server to compressed "\ "files in the gem5 output directory") if buildEnv['TARGET_ISA'] == "arm": parser.add_option("--bare-metal", action="store_true", help="Provide the raw system without the linux specific bits") parser.add_option("--list-machine-types", action="callback", callback=_listPlatformTypes, help="List available platform types") parser.add_option("--machine-type", action="store", type="choice", choices=PlatformConfig.platform_names(), default="VExpress_EMM") parser.add_option("--dtb-filename", action="store", type="string", help="Specifies device tree blob file to use with device-tree-"\ "enabled kernels") parser.add_option("--enable-security-extensions", action="store_true", help="Turn on the ARM Security Extensions") parser.add_option("--enable-context-switch-stats-dump", \ action="store_true", help="Enable stats dump at context "\ "switches and dump tasks file (required for Streamline)") parser.add_option("--generate-dtb", action="store_true", default=False, help="Automatically generate a dtb file") # Benchmark options parser.add_option("--dual", action="store_true", help="Simulate two systems attached with an ethernet link") parser.add_option("-b", "--benchmark", action="store", type="string", dest="benchmark", help="Specify the benchmark to run. Available benchmarks: %s"\ % DefinedBenchmarks) # Metafile options parser.add_option("--etherdump", action="store", type="string", dest="etherdump", help="Specify the filename to dump a pcap capture of the" \ "ethernet traffic") # Disk Image Options parser.add_option("--disk-image", action="store", type="string", default=None, help="Path to the disk image to use.") parser.add_option("--root-device", action="store", type="string", default=None, help="OS device name for root partition") # Command line options parser.add_option("--command-line", action="store", type="string", default=None, help="Template for the kernel command line.") parser.add_option("--command-line-file", action="store", default=None, type="string", help="File with a template for the kernel command line")
53.56168
131
0.621796
305d6d0d48355bcf49bb2023cf4f462d8b108968
8,283
py
Python
pytorch/caffe2/contrib/nccl/nccl_ops_test.py
raghavnauhria/whatmt
c20483a437c82936cb0fb8080925e37b9c4bba87
[ "MIT" ]
15
2019-08-10T02:36:38.000Z
2021-07-14T13:45:32.000Z
caffe2/contrib/nccl/nccl_ops_test.py
wxwoods/mctorch
7cd6eb51fdd01fa75ed9245039a4f145ba342de2
[ "BSD-3-Clause" ]
7
2019-10-21T03:08:51.000Z
2022-03-11T23:54:28.000Z
pytorch/caffe2/contrib/nccl/nccl_ops_test.py
raghavnauhria/whatmt
c20483a437c82936cb0fb8080925e37b9c4bba87
[ "MIT" ]
5
2019-09-27T02:41:40.000Z
2021-11-05T20:40:49.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest import hypothesis.strategies as st from hypothesis import given, assume import numpy as np import time import os from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace, muji, dyndep import caffe2.python.hypothesis_test_util as hu np.random.seed(1) dyndep.InitOpsLibrary('@/caffe2/caffe2/contrib/nccl:nccl_ops') def gpu_device(i): device_option = caffe2_pb2.DeviceOption() device_option.device_type = caffe2_pb2.CUDA device_option.device_id = i return device_option def benchmark(ws, net, warmups=5, iters=100): for _ in range(warmups): ws.run(net) plan = core.Plan("plan") plan.AddStep(core.ExecutionStep("test-step", net, iters)) before = time.time() ws.run(plan) after = time.time() print("Timing network, time taken per-iteration: {:.6f}ms".format(( after - before) / float(iters) * 1000.0)) return after - before @unittest.skipIf(not workspace.has_cuda_support, "NCCL only on CUDA GPU") class NCCLOpsTest(hu.HypothesisTestCase): @given(n=st.integers(min_value=2, max_value=workspace.NumCudaDevices()), m=st.integers(min_value=1, max_value=1000), in_place=st.booleans()) def test_nccl_allreduce(self, n, m, in_place): xs = [np.random.randn(m).astype(np.float32) for i in range(n)] inputs = [str("x_{}".format(i)) for i in range(n)] prefix = "" if in_place else "o" outputs = [str("{}x_{}".format(prefix, i)) for i in range(n)] op = core.CreateOperator("NCCLAllreduce", inputs, outputs) input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)} def allreduce(*args): assert len(args) == n output = np.sum(args, axis=0) return [output for _ in range(n)] outputs = self.assertReferenceChecks( hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)], allreduce, input_device_options) for output in outputs: np.testing.assert_array_equal(outputs[0], output) self.assertEqual(outputs[0].tobytes(), output.tobytes()) @given(n=st.integers(min_value=2, max_value=workspace.NumCudaDevices()), m=st.integers(min_value=1, max_value=1000), root=st.integers(min_value=0, max_value=workspace.NumCudaDevices() - 1)) def test_nccl_broadcast(self, n, m, root): assume(root < n) xs = [np.random.randn(m).astype(np.float32) for i in range(n)] inputs = [str("x_{}".format(i)) for i in range(n)] op = core.CreateOperator("NCCLBroadcast", inputs, inputs, root=root) input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)} def broadcast(*args): assert len(args) == n return [args[root] for _ in range(n)] self.assertReferenceChecks( hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)], broadcast, input_device_options) @given(n=st.integers(min_value=2, max_value=workspace.NumCudaDevices()), m=st.integers(min_value=1, max_value=1000), # NCCL Reduce seems to deadlock for non-zero roots. root=st.integers(min_value=0, max_value=0), in_place=st.booleans()) def test_nccl_reduce(self, n, m, root, in_place): assume(in_place is False or root == 0) xs = [np.random.randn(m).astype(np.float32) for i in range(n)] inputs = [str("x_{}".format(i)) for i in range(n)] op = core.CreateOperator( "NCCLReduce", inputs, inputs[root] if in_place else b"o", root=root) input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)} def reduce(*args): assert len(args) == n return [np.sum(args, axis=0)] self.assertReferenceChecks( hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)], reduce, input_device_options) @given(n=st.integers(min_value=2, max_value=workspace.NumCudaDevices()), m=st.integers(min_value=1, max_value=1000)) def test_nccl_allgather(self, n, m): xs = [np.random.randn(m).astype(np.float32) for i in range(n)] inputs = [str("x_{}".format(i)) for i in range(n)] outputs = [str("o_{}".format(i)) for i in range(n)] op = core.CreateOperator("NCCLAllGather", inputs, outputs) input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)} def allgather(*args): assert len(args) == n return [np.stack(args, axis=0) for _ in range(n)] outputs = self.assertReferenceChecks( hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)], allgather, input_device_options) for output in outputs: np.testing.assert_array_equal(outputs[0], output) self.assertEqual(outputs[0].tobytes(), output.tobytes()) @given(n=st.integers(min_value=2, max_value=workspace.NumCudaDevices()), m=st.integers(min_value=1, max_value=1000)) def test_nccl_reduce_scatter(self, n, m): xs = [np.random.randn(n, m).astype(np.float32) for i in range(n)] inputs = [str("x_{}".format(i)) for i in range(n)] outputs = [str("o_{}".format(i)) for i in range(n)] op = core.CreateOperator("NCCLReduceScatter", inputs, outputs) input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)} def reduce_scatter(*args): assert len(args) == n reduced = sum(args) assert len(reduced.shape) > 1 ref = [reduced[i, :] for i in range(n)] return ref self.assertReferenceChecks( hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)], reduce_scatter, input_device_options) @given(n=st.integers(min_value=2, max_value=workspace.NumCudaDevices()), m=st.integers(min_value=100000, max_value=100000), iters=st.integers(min_value=1, max_value=100), net_type=st.sampled_from(["dag", "async_dag", "simple"])) def _test_nccl_sync(self, n, m, iters, net_type): inputs = [str("x_{}".format(i)) for i in range(n)] extra_inputs = [str("xe_{}".format(i)) for i in range(n)] net = core.Net("asdf") net.Proto().type = net_type net.Proto().num_workers = n for i in range(n): net.ConstantFill([], inputs[i], shape=[m], value=0.0, device_option=gpu_device(i)) net.ConstantFill([], extra_inputs[i], shape=[m], value=1.0, device_option=gpu_device(i)) for _ in range(iters): net.Sum([inputs[i], extra_inputs[i]], [inputs[i]], device_option=gpu_device(i)) net.NCCLReduce(inputs, [inputs[0]], device_option=gpu_device(0)) self.ws.run(net) np.testing.assert_array_equal( self.ws.blobs[inputs[0]].fetch(), np.full(shape=(m,), fill_value=iters * n, dtype=np.float32)) @unittest.skipIf(not os.environ.get("CAFFE2_BENCHMARK"), "Benchmark") def test_timings(self): for n in range(2, workspace.NumCudaDevices()): for in_place in [False, True]: xs = [np.random.randn(1e7).astype(np.float32) for i in range(n)] inputs = [str("x_{}".format(i)) for i in range(n)] prefix = "" if in_place else "o" outputs = [str("{}x_{}".format(prefix, i)) for i in range(n)] net = core.Net("test") net.NCCLAllreduce(inputs, outputs) net.RunAllOnGPU() for i in range(n): self.ws.create_blob(inputs[i]).feed(xs[i], gpu_device(i)) self.ws.run(net) net_time = benchmark(self.ws, net) vanilla = core.Net("vanilla") muji.Allreduce(vanilla, inputs) vanilla_time = benchmark(self.ws, vanilla) print("Speedup for NCCL: {:.2f}".format( vanilla_time / net_time))
42.917098
79
0.602801
29beb8039763bb6b297904924ed5c2e46ee21d91
42,193
py
Python
MiTiSegmentor.py
AIEMMU/MiTSegmentor
190dccff3ebc9167c8bd1ea75786626f1e0efcb8
[ "MIT" ]
null
null
null
MiTiSegmentor.py
AIEMMU/MiTSegmentor
190dccff3ebc9167c8bd1ea75786626f1e0efcb8
[ "MIT" ]
null
null
null
MiTiSegmentor.py
AIEMMU/MiTSegmentor
190dccff3ebc9167c8bd1ea75786626f1e0efcb8
[ "MIT" ]
null
null
null
from tkinter import filedialog from tkinter import * from PIL import Image, ImageTk from tkinter.messagebox import showinfo from skimage import measure, morphology import math import numpy as np import cv2 as cv import os import open3d as o3d import pandas as pd import shutil import time # our files from PopUpClasses import * ####### version info ####### # python 3.6 # tkinter # PIL # numpy = 1.16.2 # cv2 = 4.1.1 # os # open3d = 0.8.0.0 # random class ScanOBJGenerator(Tk): # initialisation def __init__(self): super().__init__() self.threshold = 40 self.blobMinSizeVal = 50 self.downsampleFactor = 4 self.cellBase = 40 self.usedThres =(0,0) self.imgTopSize = (0,0) self.imgSideSize = (0,0) self.imgFrontSize = (0,0) self.maxSize =self.winfo_screenwidth()//3 self.gridSize = (0,0) self.gridCenter = (0,0) self.gridRotation = 0 self.viewThresholdVar = IntVar() self.viewCellVar = IntVar() self.layers = [] self.traySize = 50 self.trayCSV = [] self.init_GUI() self.workingPath = "" self.blobCenterOfMass = [] self.TL = 0 self.TR = 0 self.BL = 0 self.BR = 0 def init_GUI(self): #main window title and size self.title("MiTiSegmenter") self.minsize(self.winfo_screenwidth(),self.winfo_screenheight()) self.imageStack = None # tool bar menubar = Menu(self) self.config(menu=menubar) fileMenu = Menu(menubar) fileMenu.add_command(label="Load Images", command=self.loadImages) fileMenu.add_command(label="Generate Point Cloud", command=self.makeAllPointCloud) fileMenu.add_command(label="Generate Info File", command=self.generateInfoFile) fileMenu.add_command(label="Generate Tiff Stacks", command=self.exportTiffStacks) fileMenu.add_command(label="Export Trays", command=self.exportTrays) menubar.add_cascade(label="File", menu=fileMenu) editMenu = Menu(menubar) editMenu.add_command(label="Flip Trays Horizontal", command=self.flipTrayHor) editMenu.add_command(label="Flip Trays Vertical", command=self.flipTrayVer) menubar.add_cascade(label="Edit", menu=editMenu) # three views front, side, top self.panalFront = None self.panalSide = None self.panalTop = None self.frontBar = None self.sideBar = None self.topBar = None # thresholding self.thresholdBar = Scale(self, from_=0, to=255, orient=HORIZONTAL, label="Threshold Value", length=self.winfo_screenwidth()/3.6, sliderlength=self.winfo_screenheight()//100, command=self.adjustThreshold) self.thresholdBar.grid(row=3,column=0,sticky = W) self.thresholdBar.set(self.threshold) self.viewThresholdCheck = Checkbutton(self,text="View Threshold Image", variable = self.viewThresholdVar, command=self.refreshImages) self.viewThresholdCheck.grid(row=2,column=0,sticky = SE) self.applyThresholdBtn = Button(self,text="Apply Threshold",command=self.applyThreshold) self.applyThresholdBtn.grid(row=3,column=0,sticky = E) # traying self.listboxValues = Listbox(self) self.listboxValues.grid(row=2, column = 2, rowspan=2, sticky = W) self.applyTrayBtn = Button(self, text="Apply Traying",command=self.applyTray) self.applyTrayBtn.grid(row=2,column=1,sticky = N) self.removeTrayBtn = Button(self, text="Delete Tray",command=self.deleteTray) self.removeTrayBtn.grid(row=2, column=1,sticky=W) self.addTrayBtn = Button(self, text="Add Tray",command=self.addTray) self.addTrayBtn.grid(row=2, column=1,sticky=E) self.RotateGridBar = Scale(self, from_=0, to=360, orient=HORIZONTAL, label="Rotate Tray", length=self.winfo_screenwidth()/3, sliderlength=self.winfo_screenheight()//100, command=self.adjustGridRotation) self.RotateGridBar.grid(row=3,column=1,sticky = NW) self.RotateGridBar.set(self.gridRotation) self.ScaleGridBarH = Scale(self, from_=0, to=360, orient=HORIZONTAL, label="Scale Tray Horizontal", length=self.winfo_screenwidth()/6, sliderlength=self.winfo_screenheight()//100, command=self.adjustGridSizeHor) self.ScaleGridBarH.grid(row=4,column=1,sticky = NW) self.ScaleGridBarH.set(self.gridSize[0]) self.ScaleGridBarV = Scale(self, from_=0, to=360, orient=HORIZONTAL, label="Scale Tray Vertical", length=self.winfo_screenwidth()/6, sliderlength=self.winfo_screenheight()//100, command=self.adjustGridSizeVert) self.ScaleGridBarV.grid(row=4,column=1,sticky = NE) self.ScaleGridBarV.set(self.gridSize[1]) self.GridMidX = Scale(self, from_=0,to=360, orient=HORIZONTAL, label="Grid Center X", length=self.winfo_screenwidth()/6, sliderlength=self.winfo_screenheight()//100, command=self.AdjustGridCentreX) self.GridMidX.grid(row=5,column=1,sticky = NW) self.GridMidX.set(self.gridSize[0]) self.GridMidY = Scale(self, from_=0,to=360, orient=HORIZONTAL, label="Grid Center Y", length=self.winfo_screenwidth()/6, sliderlength=self.winfo_screenheight()//100, command=self.AdjustGridCentreY) self.GridMidY.grid(row=5,column=1,sticky = NE) self.GridMidY.set(self.gridSize[1]) self.listbox = Listbox(self) self.listbox.grid(row=2, column = 2, rowspan=2, sticky = E) self.applyTrayBtn = Button(self, text="Load CSVs",command=self.loadCSV) self.applyTrayBtn.grid(row=4,column=2,sticky = N) # blobing self.removeDensity = Button(self,text="Remove Blob Interior", command=self.removeblobDensity) self.removeDensity.grid(row=4, column = 0, sticky = NW) self.blobMinSize = Scale(self, from_=0, to=100, orient=HORIZONTAL, label="Min Blob Size", length=self.winfo_screenwidth()/3.6, sliderlength=self.winfo_screenheight()//100, command=self.minBlobSize) self.blobMinSize.grid(row=5, column = 0, sticky = W) self.blobMinSize.set(self.blobMinSizeVal) self.blobImage = Button(self,text="Seperate the Blobs", command=self.blobDetection) self.blobImage.grid(row=5, column = 0, sticky= E) self.cellBar = Scale(self, from_=0, to=255, orient=HORIZONTAL, label="Cel-shade Base Value", length=self.winfo_screenwidth()/3.6, sliderlength=self.winfo_screenheight()//100, command=self.adjustCellBase) self.cellBar.grid(row=2,column=0,sticky = NW) self.cellBar.set(self.cellBase) self.viewCellCheck = Checkbutton(self,text="View Cel Image", variable = self.viewCellVar, command=self.refreshImages) self.viewCellCheck.grid(row=4, column = 0, sticky = NE)# row=2,column=0,sticky = SE self.applyCellBtn = Button(self,text="Apply Cel-Shade",command=self.cellShade) self.applyCellBtn.grid(row=2,column=0,sticky = E) def flipTrayHor(self): for i in range(len(self.trayCSV)): self.trayCSV[i] = np.fliplr(self.trayCSV[i]) self.refreshImages() def flipTrayVer(self): for i in range(len(self.trayCSV)): self.trayCSV[i] = np.flipud(self.trayCSV[i]) self.refreshImages() def loadCSV(self): #print("create checkbox that gets the path of each of the csv s, : cannot be in a file name") if len(self.layers) == 0: print("no layers created") self.resTrayPopUp = GetTrayCSVs(self,self.layers) self.wait_window(self.resTrayPopUp.top) self.resTrayPopUp = self.resTrayPopUp.value self.resTrayPopUp = self.resTrayPopUp.split("*") for i in range(len(self.resTrayPopUp)): #print(self.resTrayPopUp[i]) if self.resTrayPopUp[i] == ' ': self.trayCSV.append(None) elif self.resTrayPopUp[i] == '': print("blankspace") else: tray = pd.read_csv(self.resTrayPopUp[i],header=None) tray = np.array(tray.values) self.trayCSV.append(tray) self.refreshImages() def deleteTray(self): if self.listboxValues.size() > 0: self.layers.pop(self.listboxValues.curselection()[0]) self.listboxValues.delete(self.listboxValues.curselection()[0]) self.refreshImages def addTray(self): self.listbox.insert(END,"tray part: " + "_" +str(self.topBar.get())) def exportTrays(self): items = self.listbox.get(0, END) numOfOutputs = len(items) # create the folders lastOn = 0 for i in range(numOfOutputs): if os.path.exists(self.workingPath+'/tray' + str(i)) == False: os.mkdir(self.workingPath+'/tray' + str(i)) numberOfFrames = int(items[i].split('_')[1]) infoFile = open(self.workingPath+'/tray' + str(i) +'/' + "a_info.info","w") infoFile.write("pixelsize " + str(self.pixelSizeX) + " " + str(self.pixelSizeY) +"\n") infoFile.write("offset " + str(self.offsetX) + " " + str(self.offsetY) + "\n") startLast = lastOn for o in range(lastOn, numberOfFrames): shutil.copyfile(self.workingPath+'/' + self.imagePaths[o],self.workingPath+'/tray' + str(i)+ '/' +self.imagePaths[o]) infoFile.write('"' + self.imagePaths[o] +'" ' + str(self.imagesHeightSlice[o]-self.imagesHeightSlice[startLast]) +"\n") lastOn = o infoFile.close() def applyTray(self): trayCount = 0 onTray = False self.layers = [] self.listboxValues.delete(0,self.listboxValues.size()) maxValue = 0 layer = 0 loopRate = self.downsampleFactor if loopRate == 0: loopRate = 1 for i in range(0,self.imageStack.shape[0],loopRate): temp = self.imageStack[i,:,:].astype('uint8') #print(np.where(temp>0)[0].shape) if np.where(temp>0)[0].shape[0] > self.blobMinSizeVal*10: if onTray == False: onTray = True trayCount = trayCount + 1 if np.where(temp>0)[0].shape[0] > maxValue: maxValue = np.where(temp>0)[0].shape[0] layer = i elif onTray == True: self.layers.append(layer) layer = 0 maxValue = 0 onTray = False self.gridSize = [] temp = self.imageStack[0,:,:].astype('uint8') for i in range(len(self.layers)): self.gridSize.append(( ((temp.shape[0]//10)*9)//2, ((temp.shape[1]//10)*3)//2)) for i in range(len(self.layers)): self.listboxValues.insert(END,"tray : "+ str(i+1) + "_" +str(self.layers[i])) self.refreshImages() def cellShade(self): self.imageStack = self.imageStack-(self.imageStack%self.cellBase) self.usedThres = (self.usedThres[0],1) self.refreshImages() def removeblobDensity(self): for i in range(self.imageStack.shape[0]): print("\rprocessing image : " + str(i) + " of " + str(self.imageStack.shape[0]),end=" ") img = self.imageStack[i].astype('uint8') img = cv.Canny(img,self.threshold,255) img[img != 0] == 1 self.imageStack[i] = self.imageStack[i] * img self.refreshImages() def AdjustGridCentreY(self, val): self.gridCenter = (self.gridCenter[0],int(val)) self.refreshImages() def AdjustGridCentreX(self, val): self.gridCenter = (int(val),self.gridCenter[1]) self.refreshImages() def minBlobSize(self,val): self.blobMinSizeVal = int(val) def adjustCellBase(self,val): self.cellBase = int(val) self.refreshImages() def adjustThreshold(self,val): self.threshold = int(val) self.refreshImages() def adjustGridRotation(self,val): self.gridRotation = int(val) self.refreshImages() def adjustGridSizeHor(self, val): for i in range(len(self.layers)): if self.layers[i] < self.topBar.get() + self.traySize and self.layers[i] > self.topBar.get() - self.traySize: self.gridSize[i] = (int(val),self.gridSize[i][1]) #print(self.gridSize[i]) self.refreshImages() def adjustGridSizeVert(self, val): for i in range(len(self.layers)): if self.layers[i] < self.topBar.get() + self.traySize and self.layers[i] > self.topBar.get() - self.traySize: self.gridSize[i] = (self.gridSize[i][0],int(val)) self.refreshImages() def applyThreshold(self): if self.imageStack is None: return self.imageStack[self.imageStack <= self.threshold] = 0 self.viewThresholdVar.set(0) self.usedThres = (1,self.usedThres[1]) self.refreshImages() def refreshImages(self): if self.imageStack is None: return self.frontSlider(self.frontBar.get()) self.sideSlider(self.sideBar.get()) self.topSlider(self.topBar.get()) def blobDetection(self): if self.imageStack is None: return self.imageStack[self.imageStack >= self.threshold] = 255 self.imageStack = measure.label(self.imageStack) self.imageStack = morphology.remove_small_objects(self.imageStack, min_size=self.blobMinSizeVal) self.viewThresholdVar.set(0) self.viewThresholdCheck.config(state="disabled") self.refreshImages() def organiseBlobs(self, unique): numOn = 0 for i in range(unique.shape[0]): self.imageStack[self.imageStack == unique[i]] == numOn numOn = numOn + 1 def generate3DModel(self,img,path): if img is None: return try: verts, faces, normals, values = measure.marching_cubes_lewiner((img != 0), 0)#fit this into the model from open3d faces=faces+1 verts = verts- (verts.min(axis=0)+verts.max(axis=0))//2 verts[:,0] = verts[:,0]* self.pixelSizeX # meters to microns verts[:,1] = verts[:,1]* self.pixelSizeY verts[:,2] = verts[:,2]* self.pixelSizeZ thefile = open(os.path.expanduser('~')+'/meshFull.obj', 'w') for item in verts: thefile.write("v {0} {1} {2}\n".format(item[0],item[1],item[2])) for item in normals: thefile.write("vn {0} {1} {2}\n".format(item[0],item[1],item[2])) for item in faces: thefile.write("f {0}//{0} {1}//{1} {2}//{2}\n".format(item[0],item[1],item[2])) thefile.close() pcd_load = o3d.io.read_triangle_mesh(os.path.expanduser('~')+'/meshFull.obj') o3d.io.write_triangle_mesh(path+'/'+"sync.ply", pcd_load) os.remove(os.path.expanduser('~')+'/meshFull.obj') #print("file written") except: print("file not working properly") def makeAllPointCloud(self): if self.imageStack is None: return verts, faces, normals, values = measure.marching_cubes_lewiner((self.imageStack != 0), 0)#fit this into the model from open3d faces=faces+1 thefile = open(os.path.expanduser('~')+'/meshFull.obj', 'w') for item in verts: thefile.write("v {0} {1} {2}\n".format(item[0]/self.downsampleFactor,item[1],item[2])) for item in normals: thefile.write("vn {0} {1} {2}\n".format(item[0],item[1],item[2])) for item in faces: thefile.write("f {0}//{0} {1}//{1} {2}//{2}\n".format(item[0],item[1],item[2])) thefile.close() pcd_load = o3d.io.read_triangle_mesh(os.path.expanduser('~')+'/meshFull.obj') #o3d.visualization.draw_geometries([pcd_load]) o3d.io.write_triangle_mesh(os.path.expanduser('~')+'/sync.ply', pcd_load) os.remove(os.path.expanduser('~')+'/meshFull.obj') def WriteStacks(self, i, blobName, bounds, imType): dirName = "Raw" if imType == 1: #processed dirName = "Pro" elif imType == 2: # segmentation dirName = "Seg" if os.path.isdir(self.workingPath + '/'+"blobstacks" + '/' + str(blobName) + '/' + dirName) == False: os.mkdir(self.workingPath + '/'+"blobstacks"+ '/' + str(blobName) +'/'+dirName) infoFile = open(self.workingPath + '/' + 'blobstacks'+'/' + str(blobName) +'/'+ dirName +'/' + "a_info.info","w") infoFile.write("pixelsize " + str(self.pixelSizeX) + " " + str(self.pixelSizeY) +"\n") infoFile.write("offset " + str(self.offsetX) + " " + str(self.offsetY) + "\n") p = i for o in range(bounds[i][0],bounds[i][1]+1): print("check this +1 doenst break anything") infoFile.write('"' + dirName + self.imagePaths[o] +'" ' + str(self.imagesHeightSlice[o]-self.imagesHeightSlice[bounds[i][0]]) +"\n") img = cv.imread(self.workingPath + '/' + self.imagePaths[o],0).astype("uint8")[bounds[p][2]:bounds[p][3], bounds[p][4]:bounds[p][5]] if imType == 1: #processed img = self.ViewImagePreviews(img,1,1,False,self.downsampleFactor,self.threshold,self.cellBase)#self.processSingleTray(img) elif imType == 2: # segmentation img = self.ViewImagePreviews(img,1,1,False,self.downsampleFactor,self.threshold,self.cellBase)#img * (self.processSingleTray(img)//255) img[img >= 1] = 255 cv.imwrite(self.workingPath + '/' + 'blobstacks'+'/'+ str(blobName) + '/' + dirName +'/' + dirName + self.imagePaths[o], img) infoFile.close() def exportTiffStacks(self): start = time.perf_counter() if self.imageStack is None: return self.resPopUp = GenerateTiffStackWindow(self) self.wait_window(self.resPopUp.top) self.resPopUp.value = self.resPopUp.value.split(';') generateRaw = int(self.resPopUp.value[0]) generatePro = int(self.resPopUp.value[1]) generateMod = int(self.resPopUp.value[2]) generateSeg = int(self.resPopUp.value[3]) #nt("do the segmentation tiffs") if os.path.isdir(self.workingPath + '/'+"blobstacks") == False: os.mkdir(self.workingPath + '/'+"blobstacks") unique = np.unique(self.imageStack) bounds = [] blobCenters = [] gridCenters = [] gridNames = [] for i in range(unique.shape[0]): print("\r Getting blobs : "+str(i),end=" ") if unique[i] == 0: # background continue currentBlob = np.where(self.imageStack == unique[i]) Z = currentBlob[0].reshape((currentBlob[0].shape[0],1)) Y = currentBlob[1].reshape((currentBlob[1].shape[0],1))*self.downsampleFactor X = currentBlob[2].reshape((currentBlob[2].shape[0],1))*self.downsampleFactor bounds.append((np.amin(Z),np.amax(Z),np.amin(Y),np.amax(Y),np.amin(X),np.amax(X))) blobCenters.append( ( (np.amin(Z)+np.amax(Z))//2, (np.amin(Y)+np.amax(Y))//2, (np.amin(X)+np.amax(X))//2 )) if len(self.layers) > 0: self.flipTrayVer() for i in range(len(self.layers)): topInterp = np.linspace((self.TL[0],self.TL[1]),(self.TR[0],self.TR[1]),num=self.trayCSV[i].shape[0]+1,endpoint=True,dtype=('int32')) bottomInterp = np.linspace((self.BL[0],self.BL[1]),(self.BR[0],self.BR[1]),num=self.trayCSV[i].shape[0]+1,endpoint=True,dtype=('int32')) for o in range(self.trayCSV[i].shape[0]): #interpolate between the top and bottom downward looping to fill the gaps cols1 = np.linspace(topInterp[o],bottomInterp[o],num=self.trayCSV[i].shape[1]+1,endpoint=True,dtype=('int32')) cols2 = np.linspace(topInterp[o+1],bottomInterp[o+1],num=self.trayCSV[i].shape[1]+1,endpoint=True,dtype=('int32'))#0+2 for q in range(self.trayCSV[i].shape[1]):#cols1.shape[0] X = (cols1[q][0] + cols2[q][0])//2 Y = (cols1[q][1] + cols2[q][1])//2 gridCenters.append([self.layers[i],Y,X]) gridNames.append(self.trayCSV[i][o][q]) # create a colleration between blobs and spread sheet TrayToBlob = [] for i in range(len(blobCenters)): dist = 999999999 refPoint = 0 # loop round and get the lowest distance for o in range(len(gridCenters)): distance = math.sqrt( (blobCenters[i][0]-gridCenters[o][0])*(blobCenters[i][0]-gridCenters[o][0]) + (blobCenters[i][1]-gridCenters[o][1])*(blobCenters[i][1]-gridCenters[o][1]) + (blobCenters[i][2]-gridCenters[o][2])*(blobCenters[i][2]-gridCenters[o][2])) if dist > distance: dist = distance refPoint = o if refPoint in TrayToBlob: indx = 1 gotName = True while(gotName): if gridNames[refPoint]+str(indx) in gridNames: indx = indx+1 else: gridNames.append(gridNames[refPoint]+str(indx)) refPoint = len(gridNames)-1 gotName = False TrayToBlob.append(refPoint) # cycle through and create directories self.flipTrayVer() for i in range(len(bounds)): # was grid names if len(self.layers) > 0: blobName = gridNames[i] else: blobName = 'blob'+ str(i) print("\r making Directories : "+str(i),end=" ") if os.path.isdir(self.workingPath + '/'+"blobstacks" + '/' + str(blobName) ) == False: os.mkdir(self.workingPath + '/'+"blobstacks"+ '/' + str(blobName)) if generateRaw == 1: self.WriteStacks(i, blobName, bounds, 0) if generatePro == 1: self.WriteStacks(i, blobName, bounds, 1) if generateSeg == 1: self.WriteStacks(i, blobName, bounds, 2) if generateMod == 1: blobs = os.listdir(self.workingPath + '/' + 'blobstacks') for i in range(len(blobs)): folders = os.listdir(self.workingPath + '/' + 'blobstacks' + '/' + blobs[i]) for o in range(len(folders)): # folder containing the tiff stacks stk = self.LoadImageStack(self.workingPath + '/' + 'blobstacks' + '/' + blobs[i]+ '/'+folders[o]) self.generate3DModel(stk,self.workingPath + '/' + 'blobstacks' + '/' + blobs[i]+ '/'+folders[o]) end = time.perf_counter() print(end - start) def ViewImagePreviews(self,img, viewThres, viewCell, downSample, downFactor, thres, cell): #if downSample: #img = np.delete(img,list(range(0,img.shape[0],downFactor)),axis=0) #print("no downsample anymore") if viewCell == 1: img = img-(img%cell) if viewThres == 1: img[img <= thres] = 0 return img def frontSlider(self,val): # right image temp = self.imageStack[:,:,int(val)-1].astype('uint8') temp = cv.cvtColor(temp,cv.COLOR_GRAY2RGB) for i in range(len(self.layers)): temp = cv.line(temp,pt1=(0,self.layers[i]),pt2=(temp.shape[1],self.layers[i]),color=(0,0,255),thickness=3) temp = self.ViewImagePreviews(temp,self.viewThresholdVar.get(),self.viewCellVar.get(),True,self.downsampleFactor,self.threshold,self.cellBase) temp = cv.resize(temp,self.imgFrontSize) temp = Image.fromarray(temp) self.imgFront = ImageTk.PhotoImage(image=temp) self.panalFront.configure(image=self.imgFront) self.panalFront.image = self.imgFront def sideSlider(self,val): temp = self.imageStack[:,int(val)-1,:].astype('uint8') temp = self.ViewImagePreviews(temp,self.viewThresholdVar.get(),self.viewCellVar.get(),True,self.downsampleFactor,self.threshold,self.cellBase) temp = cv.resize(temp,self.imgSideSize) temp = Image.fromarray(temp) self.imgSide = ImageTk.PhotoImage(image=temp) self.panalSide.configure(image=self.imgSide) self.panalSide.image = self.imgSide def rotate(self, origin, point, angle): """ Rotate a point counterclockwise by a given angle around a given origin. """ angle = math.radians(angle) ox, oy = origin px, py = point qx = ox + math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy) qy = oy + math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy) return int(qx),int(qy) def putGridOnImage(self,temp, val): for i in range(len(self.layers)): if self.layers[i] < int(val) + self.traySize and self.layers[i] > int(val) - self.traySize: self.ScaleGridBarV.set(self.gridSize[i][1]) self.ScaleGridBarH.set(self.gridSize[i][0]) halfTemp = (self.gridCenter[0],self.gridCenter[1]) self.TL = (halfTemp[0]-self.gridSize[i][0],halfTemp[1]-self.gridSize[i][1]) self.TR = (halfTemp[0]+self.gridSize[i][0],halfTemp[1]-self.gridSize[i][1]) self.BL = (halfTemp[0]-self.gridSize[i][0],halfTemp[1]+self.gridSize[i][1]) self.BR = (halfTemp[0]+self.gridSize[i][0],halfTemp[1]+self.gridSize[i][1]) self.TL = self.rotate(halfTemp,self.TL,self.gridRotation) self.TR = self.rotate(halfTemp,self.TR,self.gridRotation) self.BL = self.rotate(halfTemp,self.BL,self.gridRotation) self.BR = self.rotate(halfTemp,self.BR,self.gridRotation) #print(self.trayCSV[i]) temp = cv.putText(temp,self.trayCSV[i][0][0],self.TL,cv.FONT_HERSHEY_SIMPLEX,1,(0,255,0),2) temp = cv.putText(temp,self.trayCSV[i][self.trayCSV[i].shape[0]-1][0],self.BL,cv.FONT_HERSHEY_SIMPLEX,1,(0,255,0),2) temp = cv.putText(temp,self.trayCSV[i][0][self.trayCSV[i].shape[1]-1],self.TR,cv.FONT_HERSHEY_SIMPLEX,1,(0,255,0),2) temp = cv.putText(temp,self.trayCSV[i][self.trayCSV[i].shape[0]-1][self.trayCSV[i].shape[1]-1],self.BR,cv.FONT_HERSHEY_SIMPLEX,1,(0,255,0),2) rowsY = np.linspace((self.TL[0],self.TL[1],self.TR[0],self.TR[1]),(self.BL[0],self.BL[1],self.BR[0],self.BR[1]), num=self.trayCSV[i].shape[0]+1, endpoint=True,dtype=('int32')) rowsX = np.linspace((self.TL[0],self.TL[1],self.BL[0],self.BL[1]),(self.TR[0],self.TR[1],self.BR[0],self.BR[1]), num=self.trayCSV[i].shape[1]+1, endpoint=True,dtype=('int32')) for o in range(self.trayCSV[i].shape[0]+ 1): # creates the rows + 2 as we need the number of blocks pnt1 = (rowsY[o][0],rowsY[o][1]) pnt2 = (rowsY[o][2],rowsY[o][3]) temp = cv.line(temp,pt1=pnt1,pt2=pnt2,color=(0,255,0),thickness=1) for o in range(self.trayCSV[i].shape[1]+1): pnt1 = (rowsX[o][0],rowsX[o][1]) pnt2 = (rowsX[o][2],rowsX[o][3]) temp = cv.line(temp,pt1=pnt1,pt2=pnt2,color=(0,255,0),thickness=3) # get the accrow values for the top row and bottom topInterp = np.linspace((self.TL[0],self.TL[1]),(self.TR[0],self.TR[1]),num=self.trayCSV[i].shape[1]+1,endpoint=True,dtype=('int32')) bottomInterp = np.linspace((self.BL[0],self.BL[1]),(self.BR[0],self.BR[1]),num=self.trayCSV[i].shape[1]+1,endpoint=True,dtype=('int32')) for o in range(topInterp.shape[0]):# down #interpolate between the top and bottom downward looping to fill the gaps cols = np.linspace(topInterp[o],bottomInterp[o],num=self.trayCSV[i].shape[0]+1,endpoint=True,dtype=('int32')) #inter top i and bottom i by the shape for q in range(cols.shape[0]): # draw circle at cols temp = cv.circle(temp,(cols[q][0],cols[q][1]),2,(255,0,0)) return temp def topSlider(self,val): # left image temp = self.imageStack[int(val)-1,:,:].astype('uint8') temp = cv.cvtColor(temp,cv.COLOR_GRAY2RGB) temp = self.ViewImagePreviews(temp,self.viewThresholdVar.get(),self.viewCellVar.get(),False,self.downsampleFactor,self.threshold,self.cellBase) temp = self.putGridOnImage(temp,val) temp = cv.resize(temp,self.imgTopSize) temp = Image.fromarray(temp) self.imgTop = ImageTk.PhotoImage(image=temp) self.panalTop.configure(image=self.imgTop) self.panalTop.image = self.imgTop def image_resize(self,image, width = None, height = None, inter = cv.INTER_AREA): # by thewaywewere https://stackoverflow.com/questions/44650888/resize-an-image-without-distortion-opencv accessed 11/11/19 # initialize the dimensions of the image to be resized and # grab the image size dim = None (h, w) = image.shape[:2] # if both the width and height are None, then return the # original image if width is None and height is None: return image # check to see if the width is None if width is None: # calculate the ratio of the height and construct the # dimensions r = height / float(h) dim = (int(w * r), height) # otherwise, the height is None else: # calculate the ratio of the width and construct the # dimensions r = width / float(w) dim = (width, int(h * r)) # resize the image resized = cv.resize(image, dim, interpolation = inter) # return the resized image return resized def generateInfoFile(self): self.resPopUp = InfoWindow(self) self.wait_window(self.resPopUp.top) #print(self.resPopUp.value) resolution = self.resPopUp.value.split(";") if len(resolution) < 3: print("do error") return path = filedialog.askdirectory(title = "select image dir") paths = os.listdir(path) infoFile = open(path+"/a_info.info","w") infoFile.write("pixelsize " + resolution[0] + " " + resolution[1]+"\n") infoFile.write("offset 0 0\n") for i in range(len(paths)): infoFile.write('"' + paths[i]+'" ' + str(float(resolution[2])*i) +"\n") infoFile.close() def LoadImageStack(self, path): imgstk = None paths = os.listdir(path) infoFile = "" if len(paths) < 1: showinfo("File Directory empty",path+ " : contains no files!") return imgstk for i in range(len(paths)): if paths[i].endswith(".info"): infoFile = paths[i] break if infoFile == "": showinfo("No Scanner info file", path + " : contains no .info file from the scanner!") return imgstk info = open(path+'/'+infoFile,'r') info = info.readlines() imagePaths = [] imagesHeightSlice = [] pixelSizeX = 0 pixelSizeY = 0 pixelSizeZ = 0 offsetX = 0 offsetY = 0 for i in range(len(info)): temp = info.pop(0) if temp.startswith('p'): temp = temp.split(" ") pixelSizeX = float(temp[1]) pixelSizeY = float(temp[2]) elif temp.startswith('o'): temp = temp.split(" ") offsetX = float(temp[1]) offsetY = float(temp[2]) elif temp.startswith('"'): temp = temp.replace('"','') temp = temp.split(" ") imagePaths.append(temp[0]) imagesHeightSlice.append(float(temp[1])) imgstk = None if os.path.exists(path + '/' + imagePaths[0]): temp = cv.imread(path + '/' + imagePaths[0],0).astype("uint8") imgstk = np.zeros((len(imagePaths),temp.shape[0],temp.shape[1])).astype("uint8") for i in range(len(imagePaths)): #print(path + '/' + imagePaths[i]) imgstk[i] = cv.imread(path + '/' + imagePaths[i],0).astype("uint8") else: imgstk = np.zeros((10,10,10)) print("this is an error") pixelSizeZ = imagesHeightSlice[1] return imgstk def loadImages(self): path = filedialog.askdirectory() if path == "": # file loading canceled return print("loading images") self.imageStack = None paths = os.listdir(path) self.workingPath = path infoFile = "" if len(paths) < 1: showinfo("File Directory empty",path+ " : contains no files!") return for i in range(len(paths)): if paths[i].endswith(".info"): infoFile = paths[i] break if infoFile == "": showinfo("No Scanner info file", path + " : contains no .info file from the scanner!") return info = open(path+'/'+infoFile,'r') info = info.readlines() self.imagePaths = [] self.imagesHeightSlice = [] self.pixelSizeX = 0 self.pixelSizeY = 0 self.pixelSizeZ = 0 self.offsetX = 0 self.offsetY = 0 print("this code is a duplicat as load image stack, calle the load stack be change to add if downsampling") for i in range(len(info)): temp = info.pop(0) if temp.startswith('p'): temp = temp.split(" ") self.pixelSizeX = float(temp[1]) self.pixelSizeY = float(temp[2]) elif temp.startswith('o'): temp = temp.split(" ") self.offsetX = float(temp[1]) self.offsetY = float(temp[2]) elif temp.startswith('"'): temp = temp.replace('"','') temp = temp.split(" ") self.imagePaths.append(temp[0]) self.imagesHeightSlice.append(float(temp[1])) self.pixelSizeZ = self.imagesHeightSlice[1] temp = cv.imread(path + '/' + self.imagePaths[0],0).astype("uint8") self.imageStack = np.zeros((len(self.imagePaths),temp.shape[0]//self.downsampleFactor,temp.shape[1]//self.downsampleFactor)).astype("uint8") for i in range(len(self.imagePaths)): print("\rprocessing image : " + str(i) + " of " + str(len(self.imagePaths)),end=" ") self.imageStack[i] = cv.resize(cv.imread(path + '/' + self.imagePaths[i],0).astype("uint8"),(temp.shape[1]//self.downsampleFactor,temp.shape[0]//self.downsampleFactor)) # get the bottom image (default in the scan) self.imgTop = self.imageStack[0,:,:].astype('uint8') self.imgTopSize = self.imgTop.shape self.gridSize = ( ((self.imgTop.shape[0]//10)*9)//2, ((self.imgTop.shape[1]//10)*3)//2) self.ScaleGridBarH = Scale(self, from_=0, to=(self.imgTop.shape[0]//2), orient=HORIZONTAL, label="Scale Tray Horizontal", length=self.winfo_screenwidth()/6, sliderlength=self.winfo_screenheight()//100, command=self.adjustGridSizeHor) self.ScaleGridBarH.grid(row=4,column=1,sticky = NW) self.ScaleGridBarH.set(self.gridSize[0]) self.ScaleGridBarV = Scale(self, from_=0, to=(self.imgTop.shape[0]//2), orient=HORIZONTAL, label="Scale Tray Vertical", length=self.winfo_screenwidth()/6, sliderlength=self.winfo_screenheight()//100, command=self.adjustGridSizeVert) self.ScaleGridBarV.grid(row=4,column=1,sticky = NE) self.ScaleGridBarV.set(self.gridSize[1]) self.GridMidX = Scale(self, from_=0,to=(self.imgTop.shape[0]), orient=HORIZONTAL, label="Grid center X", length=self.winfo_screenwidth()/6, sliderlength=self.winfo_screenheight()//100, command=self.AdjustGridCentreX) self.GridMidX.grid(row=5,column=1,sticky = NW) self.GridMidX.set(self.imgTop.shape[0]//2) self.GridMidY = Scale(self, from_=0,to=(self.imgTop.shape[1]), orient=HORIZONTAL, label="Grid center Y", length=self.winfo_screenwidth()/6, sliderlength=self.winfo_screenheight()//100, command=self.AdjustGridCentreY) self.GridMidY.grid(row=5,column=1,sticky = NE) self.GridMidY.set(self.imgTop.shape[1]//2) self.gridCenter = (self.imgTop.shape[0]//2,self.imgTop.shape[1]//2) if self.imgTop.shape[0] > self.imgTop.shape[1] : if self.imgTop.shape[0] > self.maxSize: size = self.imgTop.shape[1]/(self.imgTop.shape[0]/self.maxSize) self.imgTopSize = (int(size),self.maxSize) else: if self.imgTop.shape[1] > self.maxSize: size = self.imgTop.shape[0]/(self.imgTop.shape[1]/self.maxSize) self.imgTopSize = (self.maxSize,int(size)) self.imgTop = cv.resize(self.imgTop,self.imgTopSize) self.imgTop = cv.cvtColor(self.imgTop,cv.COLOR_GRAY2RGB) self.imgTop = Image.fromarray(self.imgTop) self.imgTop = ImageTk.PhotoImage(image=self.imgTop) self.panalTop = Label(self,image=self.imgTop) self.panalTop.grid(row=0,column=0) self.imgSide = self.imageStack[:,0,:].astype('uint8') #if self.downsampleFactor > 1: #self.imgSide = np.delete(self.imgSide,list(range(0,self.imgSide.shape[0],self.downsampleFactor)),axis=0) self.imgSideSize = self.imgSide.shape if self.imgSideSize[0] > self.imgSideSize[1]: self.imgSide = self.image_resize(self.imgSide,height=self.maxSize) else: self.imgSide = self.image_resize(self.imgSide,width=self.maxSize) self.imgSideSize = self.imgSide.shape self.imgSide = cv.cvtColor(self.imgSide,cv.COLOR_GRAY2RGB) self.imgSide = Image.fromarray(self.imgSide) self.imgSide = ImageTk.PhotoImage(image=self.imgSide) self.panalSide = Label(self,image=self.imgSide) self.panalSide.grid(row=0,column=1) self.imgFront = self.imageStack[:,:,0].astype('uint8') #if self.downsampleFactor > 1: # self.imgFront = np.delete(self.imgFront,list(range(0,self.imgFront.shape[0],self.downsampleFactor)),axis=0) self.imgFrontSize = self.imgFront.shape if self.imgFrontSize[0] > self.imgFrontSize[1]: self.imgFront = self.image_resize(self.imgFront,height=self.maxSize) else: self.imgFront = self.image_resize(self.imgFront,width=self.maxSize) self.imgFrontSize = self.imgFront.shape self.imgFront = cv.cvtColor(self.imgFront,cv.COLOR_GRAY2RGB) self.imgFront = Image.fromarray(self.imgFront) self.imgFront = ImageTk.PhotoImage(image=self.imgFront) self.panalFront = Label(self,image=self.imgFront) self.panalFront.grid(row=0,column=2) # bars for showing scale self.frontBar = Scale(self, from_=1, to=self.imageStack.shape[2], orient=HORIZONTAL, length=self.winfo_screenwidth()/3, sliderlength=self.winfo_screenheight()//100, command=self.frontSlider) self.frontBar.grid(row=1,column=2) self.frontBar.set(self.imageStack.shape[2]//2) self.sideBar = Scale(self, from_=1, to=self.imageStack.shape[1], orient=HORIZONTAL, length=self.winfo_screenwidth()/3, sliderlength=self.winfo_screenheight()//100, command=self.sideSlider) self.sideBar.grid(row=1,column=1) self.sideBar.set(self.imageStack.shape[1]//2) self.topBar = Scale(self, from_=1, to=self.imageStack.shape[0], orient=HORIZONTAL, length=self.winfo_screenwidth()/3, sliderlength=self.winfo_screenheight()//100, command=self.topSlider) self.topBar.grid(row=1,column=0) self.topBar.set(self.imageStack.shape[0]//2) root = ScanOBJGenerator() root.mainloop()
50.110451
242
0.56981
09351ba17a423bc5408a207e2dde27d57b6edbd9
104
py
Python
enthought/mayavi/components/custom_grid_plane.py
enthought/etsproxy
4aafd628611ebf7fe8311c9d1a0abcf7f7bb5347
[ "BSD-3-Clause" ]
3
2016-12-09T06:05:18.000Z
2018-03-01T13:00:29.000Z
enthought/mayavi/components/custom_grid_plane.py
enthought/etsproxy
4aafd628611ebf7fe8311c9d1a0abcf7f7bb5347
[ "BSD-3-Clause" ]
1
2020-12-02T00:51:32.000Z
2020-12-02T08:48:55.000Z
enthought/mayavi/components/custom_grid_plane.py
enthought/etsproxy
4aafd628611ebf7fe8311c9d1a0abcf7f7bb5347
[ "BSD-3-Clause" ]
null
null
null
# proxy module from __future__ import absolute_import from mayavi.components.custom_grid_plane import *
26
49
0.855769
8d64f6682732e42b076484abf103dfb02262c359
10,542
py
Python
txweb2/test/test_metafd.py
backwardn/ccs-calendarserver
13c706b985fb728b9aab42dc0fef85aae21921c3
[ "Apache-2.0" ]
462
2016-08-14T17:43:24.000Z
2022-03-17T07:38:16.000Z
txweb2/test/test_metafd.py
backwardn/ccs-calendarserver
13c706b985fb728b9aab42dc0fef85aae21921c3
[ "Apache-2.0" ]
72
2016-09-01T23:19:35.000Z
2020-02-05T02:09:26.000Z
txweb2/test/test_metafd.py
backwardn/ccs-calendarserver
13c706b985fb728b9aab42dc0fef85aae21921c3
[ "Apache-2.0" ]
171
2016-08-16T03:50:30.000Z
2022-03-26T11:49:55.000Z
## # Copyright (c) 2011-2017 Apple Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## """ Tests for txweb2.metafd. """ from socket import error as SocketError, AF_INET from errno import ENOTCONN from twext.internet import sendfdport from txweb2 import metafd from txweb2.channel.http import HTTPChannel from txweb2.metafd import ReportingHTTPService, ConnectionLimiter from twisted.internet.tcp import Server from twisted.application.service import Service from twext.internet.test.test_sendfdport import ReaderAdder from txweb2.metafd import WorkerStatus from twisted.trial.unittest import TestCase class FakeSocket(object): """ A fake socket for testing. """ def __init__(self, test): self.test = test def fileno(self): return "not a socket" def setblocking(self, blocking): return def getpeername(self): if self.test.peerNameSucceed: return ("4.3.2.1", 4321) else: raise SocketError(ENOTCONN, "Transport endpoint not connected") def getsockname(self): return ("4.3.2.1", 4321) class InheritedPortForTesting(sendfdport.InheritedPort): """ L{sendfdport.InheritedPort} subclass that prevents certain I/O operations for better unit testing. """ def startReading(self): "Do nothing." def stopReading(self): "Do nothing." def startWriting(self): "Do nothing." def stopWriting(self): "Do nothing." class ServerTransportForTesting(Server): """ tcp.Server replacement for testing purposes. """ def startReading(self): "Do nothing." def stopReading(self): "Do nothing." def startWriting(self): "Do nothing." def stopWriting(self): "Do nothing." def __init__(self, *a, **kw): super(ServerTransportForTesting, self).__init__(*a, **kw) self.reactor = None class ReportingHTTPServiceTests(TestCase): """ Tests for L{ReportingHTTPService} """ peerNameSucceed = True def setUp(self): def fakefromfd(fd, addressFamily, socketType): return FakeSocket(self) def fakerecvfd(fd): return "not an fd", "not a description" def fakeclose(fd): "" def fakegetsockfam(fd): return AF_INET self.patch(sendfdport, 'recvfd', fakerecvfd) self.patch(sendfdport, 'fromfd', fakefromfd) self.patch(sendfdport, 'close', fakeclose) self.patch(sendfdport, 'getsockfam', fakegetsockfam) self.patch(metafd, 'InheritedPort', InheritedPortForTesting) self.patch(metafd, 'Server', ServerTransportForTesting) # This last stubbed out just to prevent dirty reactor warnings. self.patch(HTTPChannel, "callLater", lambda *a, **k: None) self.svc = ReportingHTTPService(None, None, None) self.svc.startService() def test_quickClosedSocket(self): """ If a socket is closed very quickly after being {accept()}ed, requesting its peer (or even host) address may fail with C{ENOTCONN}. If this happens, its transport should be supplied with a dummy peer address. """ self.peerNameSucceed = False self.svc.reportingFactory.inheritedPort.doRead() channels = self.svc.reportingFactory.connectedChannels self.assertEqual(len(channels), 1) self.assertEqual(list(channels)[0].transport.getPeer().host, "0.0.0.0") class ConnectionLimiterTests(TestCase): """ Tests for L{ConnectionLimiter} """ def test_loadReducedStartsReadingAgain(self): """ L{ConnectionLimiter.statusesChanged} determines whether the current "load" of all subprocesses - that is, the total outstanding request count - is high enough that the listening ports attached to it should be suspended. """ builder = LimiterBuilder(self) builder.fillUp() self.assertEquals(builder.port.reading, False) # sanity check self.assertEquals(builder.highestLoad(), builder.requestsPerSocket) builder.loadDown() self.assertEquals(builder.port.reading, True) def test_processRestartedStartsReadingAgain(self): """ L{ConnectionLimiter.statusesChanged} determines whether the current number of outstanding requests is above the limit, and either stops or resumes reading on the listening port. """ builder = LimiterBuilder(self) builder.fillUp() self.assertEquals(builder.port.reading, False) self.assertEquals(builder.highestLoad(), builder.requestsPerSocket) builder.processRestart() self.assertEquals(builder.port.reading, True) def test_unevenLoadDistribution(self): """ Subprocess sockets should be selected for subsequent socket sends by ascending status. Status should sum sent and successfully subsumed sockets. """ builder = LimiterBuilder(self) # Give one simulated worker a higher acknowledged load than the other. builder.fillUp(True, 1) # There should still be plenty of spare capacity. self.assertEquals(builder.port.reading, True) # Then slam it with a bunch of incoming requests. builder.fillUp(False, builder.limiter.maxRequests - 1) # Now capacity is full. self.assertEquals(builder.port.reading, False) # And everyone should have an even amount of work. self.assertEquals(builder.highestLoad(), builder.requestsPerSocket) def test_processStopsReadingEvenWhenConnectionsAreNotAcknowledged(self): """ L{ConnectionLimiter.statusesChanged} determines whether the current number of outstanding requests is above the limit. """ builder = LimiterBuilder(self) builder.fillUp(acknowledged=False) self.assertEquals(builder.highestLoad(), builder.requestsPerSocket) self.assertEquals(builder.port.reading, False) builder.processRestart() self.assertEquals(builder.port.reading, True) def test_workerStatusRepr(self): """ L{WorkerStatus.__repr__} will show all the values associated with the status of the worker. """ self.assertEquals(repr(WorkerStatus(1, 2, 3, 4, 5, 6, 7, 8)), "<WorkerStatus acknowledged=1 unacknowledged=2 total=3 " "started=4 abandoned=5 unclosed=6 starting=7 stopped=8>") def test_workerStatusNonNegative(self): """ L{WorkerStatus.__repr__} will show all the values associated with the status of the worker. """ w = WorkerStatus() w.adjust( acknowledged=1, unacknowledged=-1, total=1, ) self.assertEquals(w.acknowledged, 1) self.assertEquals(w.unacknowledged, 0) self.assertEquals(w.total, 1) class LimiterBuilder(object): """ A L{LimiterBuilder} can build a L{ConnectionLimiter} and associated objects for a given unit test. """ def __init__(self, test, requestsPerSocket=3, socketCount=2): # Similar to MaxRequests in the configuration. self.requestsPerSocket = requestsPerSocket # Similar to ProcessCount in the configuration. self.socketCount = socketCount self.limiter = ConnectionLimiter( 2, maxRequests=requestsPerSocket * socketCount ) self.dispatcher = self.limiter.dispatcher self.dispatcher.reactor = ReaderAdder() self.service = Service() self.limiter.addPortService("TCP", 4321, "127.0.0.1", 5, self.serverServiceMakerMaker(self.service)) for ignored in xrange(socketCount): subskt = self.dispatcher.addSocket() subskt.start() subskt.restarted() # Has to be running in order to add stuff. self.limiter.startService() self.port = self.service.myPort def highestLoad(self): return max( skt.status.effective() for skt in self.limiter.dispatcher._subprocessSockets ) def serverServiceMakerMaker(self, s): """ Make a serverServiceMaker for use with L{ConnectionLimiter.addPortService}. """ class NotAPort(object): def startReading(self): self.reading = True def stopReading(self): self.reading = False def serverServiceMaker(port, factory, *a, **k): s.factory = factory s.myPort = NotAPort() # TODO: technically, the following should wait for startService s.myPort.startReading() factory.myServer = s return s return serverServiceMaker def fillUp(self, acknowledged=True, count=0): """ Fill up all the slots on the connection limiter. @param acknowledged: Should the virtual connections created by this method send a message back to the dispatcher indicating that the subprocess has acknowledged receipt of the file descriptor? @param count: Amount of load to add; default to the maximum that the limiter. """ for _ignore_x in range(count or self.limiter.maxRequests): self.dispatcher.sendFileDescriptor(None, "SSL") if acknowledged: self.dispatcher.statusMessage( self.dispatcher._subprocessSockets[0], "+" ) def processRestart(self): self.dispatcher._subprocessSockets[0].stop() self.dispatcher._subprocessSockets[0].start() self.dispatcher.statusMessage( self.dispatcher._subprocessSockets[0], "0" ) def loadDown(self): self.dispatcher.statusMessage( self.dispatcher._subprocessSockets[0], "-" )
33.466667
83
0.648928
80b8425866ebca833c4632d39045331f62817786
649
py
Python
run.py
sujianqingfeng/scrapy_xiuren
a05d8fe05777aca26667c5b40573ef0431bcff06
[ "Apache-2.0" ]
49
2018-04-18T03:48:48.000Z
2021-12-21T03:14:07.000Z
run.py
sujianqingfeng/xiuren
a05d8fe05777aca26667c5b40573ef0431bcff06
[ "Apache-2.0" ]
null
null
null
run.py
sujianqingfeng/xiuren
a05d8fe05777aca26667c5b40573ef0431bcff06
[ "Apache-2.0" ]
21
2018-05-10T03:35:20.000Z
2021-08-15T18:19:54.000Z
#!/usr/bin/env python # encoding: utf-8 """ @author: su jian @contact: 121116111@qq.com @file: run.py @time: 2017/8/16 17:58 """ from scrapy.cmdline import execute import os import sys sys.path.append(os.path.dirname(os.path.abspath(__file__))) # execute(['scrapy', 'crawl', 'xiuren_spider']) # execute(['scrapy', 'crawl', 'meizi_spider']) execute('scrapy crawl jcenter_spider'.split(' ')) # def func(): # sys.path.append(os.path.dirname(os.path.abspath(__file__))) # execute(['scrapy', 'crawl', 'xiuren_spider']) # # # if __name__ == '__main__': # func() # import re # print(re.findall(r'(\d+)', 'http://www.mzitu.com/57176')[0])
20.935484
65
0.659476
ac0fbe4f28ab43ea782ea12890e00700d24c9c01
3,761
py
Python
paper/experiments/01_uci_benchmark/01_uci_benchmark_lightgbm.py
ii-research-yu/pgbm
d050a5f71f1a458d8269c4f5201744c0d7c4d487
[ "Apache-2.0" ]
79
2021-06-02T06:59:08.000Z
2022-03-10T20:27:02.000Z
paper/experiments/01_uci_benchmark/01_uci_benchmark_lightgbm.py
ii-research-yu/pgbm
d050a5f71f1a458d8269c4f5201744c0d7c4d487
[ "Apache-2.0" ]
11
2021-06-07T17:39:34.000Z
2022-01-10T14:00:21.000Z
paper/experiments/01_uci_benchmark/01_uci_benchmark_lightgbm.py
ii-research-yu/pgbm
d050a5f71f1a458d8269c4f5201744c0d7c4d487
[ "Apache-2.0" ]
10
2021-06-08T01:04:03.000Z
2022-03-31T23:41:23.000Z
""" Copyright (c) 2021 Olivier Sprangers as part of Airlab Amsterdam Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. https://github.com/elephaint/pgbm/blob/main/LICENSE """ #%% Import packages import numpy as np import time import lightgbm as lgb from sklearn.model_selection import train_test_split import pandas as pd from datasets import get_dataset, get_fold #%% Objective def rmseloss_metric(yhat, y): loss = np.sqrt(np.mean((yhat - y)**2)) return loss #%% Generic Parameters params = {'min_split_gain':0, 'min_data_in_leaf':1, 'max_depth':-1, 'max_bin':64, 'learning_rate':0.1, 'n_estimators':2000, 'verbose':2, 'feature_fraction':1, 'bagging_fraction':1, 'seed':1} #%% LightGBM specific method = 'lightgbm' params['lambda'] = 1 params['device'] = 'cpu' params['objective'] = 'regression' params['metric'] = 'rmse' params['num_leaves'] = 8 params['bagging_freq'] = 1 params['min_data_in_bin'] = 1 #%% Loop datasets = ['boston', 'concrete', 'energy', 'kin8nm', 'msd', 'naval', 'power', 'protein', 'wine', 'yacht', 'higgs'] base_estimators = 2000 df = pd.DataFrame(columns=['method', 'dataset','fold','device','validation_estimators','test_estimators','rmse_test','crps_test','validation_time']) for i, dataset in enumerate(datasets): if dataset == 'msd' or dataset == 'higgs': params['bagging_fraction'] = 0.1 n_folds = 1 else: params['bagging_fraction'] = 1 n_folds = 20 data = get_dataset(dataset) for fold in range(n_folds): print(f'{dataset}: fold {fold + 1}/{n_folds}') # Get data X_train, X_test, y_train, y_test = get_fold(dataset, data, fold) X_train_val, X_val, y_train_val, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=fold) # Build torchdata datasets train_data = lgb.Dataset(X_train, y_train) train_val_data = lgb.Dataset(X_train_val, y_train_val) valid_data = lgb.Dataset(X_val, y_val) test_data = lgb.Dataset(X_test, y_test) params['n_estimators'] = base_estimators # Train to retrieve best iteration print('Validating...') start = time.perf_counter() model = lgb.train(params, train_val_data, valid_sets=valid_data, early_stopping_rounds=2000) end = time.perf_counter() validation_time = end - start print(f'Fold time: {validation_time:.2f}s') # Set iterations to best iteration params['n_estimators'] = model.best_iteration + 1 # Retrain on full set print('Training...') model = lgb.train(params, train_data) #% Predictions print('Prediction...') yhat_point = model.predict(X_test) # Scoring rmse = rmseloss_metric(yhat_point, y_test) crps = 0 # Save data df = df.append({'method':method, 'dataset':dataset, 'fold':fold, 'device':params['device'], 'validation_estimators': base_estimators, 'test_estimators':params['n_estimators'], 'rmse_test': rmse, 'crps_test': crps, 'validation_time':validation_time}, ignore_index=True) #%% Save filename = f"{method}_{params['device']}.csv" df.to_csv(f'experiments/01_uci_benchmark/{filename}')
39.589474
276
0.668439
5867b077be35c9ed8cbdcdb26456b1959feda021
2,155
py
Python
etc/users/users.py
shakhyar/social_engineering
d075b6bda0d9da62e8db7358f43819878a5fef21
[ "MIT" ]
null
null
null
etc/users/users.py
shakhyar/social_engineering
d075b6bda0d9da62e8db7358f43819878a5fef21
[ "MIT" ]
null
null
null
etc/users/users.py
shakhyar/social_engineering
d075b6bda0d9da62e8db7358f43819878a5fef21
[ "MIT" ]
null
null
null
import sqlite3 uconn = sqlite3.connect("etc/users/users.db", check_same_thread=False) uc = uconn.cursor() class Users: """ #? Table name = user #* Columns: email, password, username, website """ def __init__(self): self.create_table(True) self.column1 = [] def create_table(self, true): self.true = true if self.true: uc.execute("CREATE TABLE IF NOT EXISTS user(email TEXT, password TEXT, username TEXT, website TEXT)") uconn.commit() else: pass def user_entry(self, email, password, username, website): self.email = email self.password = password self.username = username self.website = website uc.execute("SELECT * FROM user") uc.execute("INSERT INTO user(email, password, username, website) VALUES (?, ?, ?, ?)", (self.email, self.password, self.username, self.website)) uconn.commit() def get_username(self, email): self.email = str(email) uc.execute(f"SELECT * FROM user WHERE email={self.email}") for row in uc.fetchall(): if self.email == row[0]: return row[2] else: return False def get_webiste(self, email): self.email = email uc.execute(f"SELECT * FROM user WHERE email={self.email}") for row in uc.fetchall(): if self.email == row[0]: return row[3] else: return False def get_password(self, email): self.email == email uc.execute(f"SELECT * FROM user where email={self.email}") for row in uc.fetchall(): if self.email == row[0]: return row[1] else: return False def get_email(self, username): self.username = username uc.execute(f"SELECT * FROM user where username={self.username}") for row in uc.fetchall(): if self.username == row[2]: return row[0] else: return False
31.231884
153
0.535499
3ca9b8f16271cf464fa2cf8805a5646797510cb1
155
py
Python
apps/site_admin/apps.py
aspic2/rendermaps
517905c5f970bbb8bba87e9599be874fc0fd250d
[ "MIT" ]
null
null
null
apps/site_admin/apps.py
aspic2/rendermaps
517905c5f970bbb8bba87e9599be874fc0fd250d
[ "MIT" ]
24
2018-02-21T22:51:24.000Z
2022-03-11T23:12:25.000Z
apps/site_admin/apps.py
aspic2/jobs-by-neighborhood
517905c5f970bbb8bba87e9599be874fc0fd250d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.apps import AppConfig class AdminConfig(AppConfig): name = 'site_admin'
17.222222
39
0.735484
dc1379d7643328d2a0251cd831289813a91a5730
17,532
py
Python
requirements/docutils-0.18/test/test_transforms/test_footnotes.py
QuentinTournier40/AnimationFreeCAD
8eaff8356ec68b948a721b83a6888b652278db8a
[ "Apache-2.0" ]
null
null
null
requirements/docutils-0.18/test/test_transforms/test_footnotes.py
QuentinTournier40/AnimationFreeCAD
8eaff8356ec68b948a721b83a6888b652278db8a
[ "Apache-2.0" ]
null
null
null
requirements/docutils-0.18/test/test_transforms/test_footnotes.py
QuentinTournier40/AnimationFreeCAD
8eaff8356ec68b948a721b83a6888b652278db8a
[ "Apache-2.0" ]
1
2022-02-03T08:03:30.000Z
2022-02-03T08:03:30.000Z
#! /usr/bin/env python # $Id: test_footnotes.py 8771 2021-06-18 18:55:08Z milde $ # Author: David Goodger <goodger@python.org> # Copyright: This module has been placed in the public domain. """ Tests for docutils.transforms.references.Footnotes. """ from __future__ import absolute_import if __name__ == '__main__': import __init__ from test_transforms import DocutilsTestSupport from docutils.transforms.references import Footnotes from docutils.parsers.rst import Parser def suite(): parser = Parser() s = DocutilsTestSupport.TransformTestSuite(parser) s.generateTests(totest) return s totest = {} totest['footnotes'] = ((Footnotes,), [ ["""\ [#autolabel]_ .. [#autolabel] text """, """\ <document source="test data"> <paragraph> <footnote_reference auto="1" ids="footnote-reference-1" refid="autolabel"> 1 <footnote auto="1" backrefs="footnote-reference-1" ids="autolabel" names="autolabel"> <label> 1 <paragraph> text """], ["""\ autonumber: [#]_ .. [#] text """, """\ <document source="test data"> <paragraph> autonumber: \n\ <footnote_reference auto="1" ids="footnote-reference-1" refid="footnote-1"> 1 <footnote auto="1" backrefs="footnote-reference-1" ids="footnote-1" names="1"> <label> 1 <paragraph> text """], ["""\ [#]_ is the first auto-numbered footnote reference. [#]_ is the second auto-numbered footnote reference. .. [#] Auto-numbered footnote 1. .. [#] Auto-numbered footnote 2. .. [#] Auto-numbered footnote 3. [#]_ is the third auto-numbered footnote reference. """, """\ <document source="test data"> <paragraph> <footnote_reference auto="1" ids="footnote-reference-1" refid="footnote-1"> 1 is the first auto-numbered footnote reference. <footnote_reference auto="1" ids="footnote-reference-2" refid="footnote-2"> 2 is the second auto-numbered footnote reference. <footnote auto="1" backrefs="footnote-reference-1" ids="footnote-1" names="1"> <label> 1 <paragraph> Auto-numbered footnote 1. <footnote auto="1" backrefs="footnote-reference-2" ids="footnote-2" names="2"> <label> 2 <paragraph> Auto-numbered footnote 2. <footnote auto="1" backrefs="footnote-reference-3" ids="footnote-3" names="3"> <label> 3 <paragraph> Auto-numbered footnote 3. <paragraph> <footnote_reference auto="1" ids="footnote-reference-3" refid="footnote-3"> 3 is the third auto-numbered footnote reference. """], ["""\ [#third]_ is a reference to the third auto-numbered footnote. .. [#first] First auto-numbered footnote. .. [#second] Second auto-numbered footnote. .. [#third] Third auto-numbered footnote. [#second]_ is a reference to the second auto-numbered footnote. [#first]_ is a reference to the first auto-numbered footnote. [#third]_ is another reference to the third auto-numbered footnote. Here are some internal cross-references to the implicit targets generated by the footnotes: first_, second_, third_. """, """\ <document source="test data"> <paragraph> <footnote_reference auto="1" ids="footnote-reference-1" refid="third"> 3 is a reference to the third auto-numbered footnote. <footnote auto="1" backrefs="footnote-reference-3" ids="first" names="first"> <label> 1 <paragraph> First auto-numbered footnote. <footnote auto="1" backrefs="footnote-reference-2" ids="second" names="second"> <label> 2 <paragraph> Second auto-numbered footnote. <footnote auto="1" backrefs="footnote-reference-1 footnote-reference-4" ids="third" names="third"> <label> 3 <paragraph> Third auto-numbered footnote. <paragraph> <footnote_reference auto="1" ids="footnote-reference-2" refid="second"> 2 is a reference to the second auto-numbered footnote. <footnote_reference auto="1" ids="footnote-reference-3" refid="first"> 1 is a reference to the first auto-numbered footnote. <footnote_reference auto="1" ids="footnote-reference-4" refid="third"> 3 is another reference to the third auto-numbered footnote. <paragraph> Here are some internal cross-references to the implicit targets generated by the footnotes: \n\ <reference name="first" refname="first"> first , \n\ <reference name="second" refname="second"> second , \n\ <reference name="third" refname="third"> third . """], ["""\ Mixed anonymous and labelled auto-numbered footnotes: [#four]_ should be 4, [#]_ should be 1, [#]_ should be 3, [#]_ is one too many, [#two]_ should be 2, and [#six]_ doesn't exist. .. [#] Auto-numbered footnote 1. .. [#two] Auto-numbered footnote 2. .. [#] Auto-numbered footnote 3. .. [#four] Auto-numbered footnote 4. .. [#five] Auto-numbered footnote 5. .. [#five] Auto-numbered footnote 5 again (duplicate). """, """\ <document source="test data"> <paragraph> Mixed anonymous and labelled auto-numbered footnotes: <paragraph> <footnote_reference auto="1" ids="footnote-reference-1" refid="four"> 4 should be 4, \n\ <footnote_reference auto="1" ids="footnote-reference-2" refid="footnote-1"> 1 should be 1, <footnote_reference auto="1" ids="footnote-reference-3" refid="footnote-2"> 3 should be 3, \n\ <problematic ids="problematic-1 footnote-reference-4" refid="system-message-1"> [#]_ is one too many, <footnote_reference auto="1" ids="footnote-reference-5" refid="two"> 2 should be 2, and \n\ <footnote_reference auto="1" ids="footnote-reference-6" refname="six"> doesn't exist. <footnote auto="1" backrefs="footnote-reference-2" ids="footnote-1" names="1"> <label> 1 <paragraph> Auto-numbered footnote 1. <footnote auto="1" backrefs="footnote-reference-5" ids="two" names="two"> <label> 2 <paragraph> Auto-numbered footnote 2. <footnote auto="1" backrefs="footnote-reference-3" ids="footnote-2" names="3"> <label> 3 <paragraph> Auto-numbered footnote 3. <footnote auto="1" backrefs="footnote-reference-1" ids="four" names="four"> <label> 4 <paragraph> Auto-numbered footnote 4. <footnote auto="1" dupnames="five" ids="five"> <label> 5 <paragraph> Auto-numbered footnote 5. <footnote auto="1" dupnames="five" ids="five-1"> <label> 6 <system_message backrefs="five-1" level="2" line="12" source="test data" type="WARNING"> <paragraph> Duplicate explicit target name: "five". <paragraph> Auto-numbered footnote 5 again (duplicate). <system_message backrefs="problematic-1" ids="system-message-1" level="3" line="3" source="test data" type="ERROR"> <paragraph> Too many autonumbered footnote references: only 2 corresponding footnotes available. """], ["""\ Mixed auto-numbered and manual footnotes: .. [1] manually numbered .. [#] auto-numbered .. [#label] autonumber-labeled """, """\ <document source="test data"> <paragraph> Mixed auto-numbered and manual footnotes: <footnote ids="footnote-1" names="1"> <label> 1 <paragraph> manually numbered <footnote auto="1" ids="footnote-2" names="2"> <label> 2 <paragraph> auto-numbered <footnote auto="1" ids="label" names="label"> <label> 3 <paragraph> autonumber-labeled """], ["""\ A labeled autonumbered footnote referece: [#footnote]_. An unlabeled autonumbered footnote referece: [#]_. .. [#] Unlabeled autonumbered footnote. .. [#footnote] Labeled autonumbered footnote. Note that the footnotes are not in the same order as the references. """, """\ <document source="test data"> <paragraph> A labeled autonumbered footnote referece: \n\ <footnote_reference auto="1" ids="footnote-reference-1" refid="footnote"> 2 . <paragraph> An unlabeled autonumbered footnote referece: \n\ <footnote_reference auto="1" ids="footnote-reference-2" refid="footnote-1"> 1 . <footnote auto="1" backrefs="footnote-reference-2" ids="footnote-1" names="1"> <label> 1 <paragraph> Unlabeled autonumbered footnote. <footnote auto="1" backrefs="footnote-reference-1" ids="footnote" names="footnote"> <label> 2 <paragraph> Labeled autonumbered footnote. Note that the footnotes are not in the same order as the references. """], ["""\ Mixed manually-numbered, anonymous auto-numbered, and labelled auto-numbered footnotes: [#four]_ should be 4, [#]_ should be 2, [1]_ is 1, [3]_ is 3, [#]_ should be 6, [#]_ is one too many, [#five]_ should be 5, and [#eight]_ doesn't exist. .. [1] Manually-numbered footnote 1. .. [#] Auto-numbered footnote 2. .. [#four] Auto-numbered footnote 4. .. [3] Manually-numbered footnote 3 .. [#five] Auto-numbered footnote 5. .. [#] Auto-numbered footnote 6. .. [#five] Auto-numbered footnote 5 again (duplicate). """, """\ <document source="test data"> <paragraph> Mixed manually-numbered, anonymous auto-numbered, and labelled auto-numbered footnotes: <paragraph> <footnote_reference auto="1" ids="footnote-reference-1" refid="four"> 4 should be 4, \n\ <footnote_reference auto="1" ids="footnote-reference-2" refid="footnote-2"> 2 should be 2, <footnote_reference ids="footnote-reference-3" refid="footnote-1"> 1 is 1, \n\ <footnote_reference ids="footnote-reference-4" refid="footnote-3"> 3 is 3, <footnote_reference auto="1" ids="footnote-reference-5" refid="footnote-4"> 6 should be 6, \n\ <problematic ids="problematic-1 footnote-reference-6" refid="system-message-1"> [#]_ is one too many, <footnote_reference auto="1" ids="footnote-reference-7" refname="five"> should be 5, and \n\ <footnote_reference auto="1" ids="footnote-reference-8" refname="eight"> doesn't exist. <footnote backrefs="footnote-reference-3" ids="footnote-1" names="1"> <label> 1 <paragraph> Manually-numbered footnote 1. <footnote auto="1" backrefs="footnote-reference-2" ids="footnote-2" names="2"> <label> 2 <paragraph> Auto-numbered footnote 2. <footnote auto="1" backrefs="footnote-reference-1" ids="four" names="four"> <label> 4 <paragraph> Auto-numbered footnote 4. <footnote backrefs="footnote-reference-4" ids="footnote-3" names="3"> <label> 3 <paragraph> Manually-numbered footnote 3 <footnote auto="1" dupnames="five" ids="five"> <label> 5 <paragraph> Auto-numbered footnote 5. <footnote auto="1" backrefs="footnote-reference-5" ids="footnote-4" names="6"> <label> 6 <paragraph> Auto-numbered footnote 6. <footnote auto="1" dupnames="five" ids="five-1"> <label> 7 <system_message backrefs="five-1" level="2" line="15" source="test data" type="WARNING"> <paragraph> Duplicate explicit target name: "five". <paragraph> Auto-numbered footnote 5 again (duplicate). <system_message backrefs="problematic-1" ids="system-message-1" level="3" line="4" source="test data" type="ERROR"> <paragraph> Too many autonumbered footnote references: only 2 corresponding footnotes available. """], ["""\ Referencing a footnote by symbol [*]_. .. [*] This is an auto-symbol footnote. """, """\ <document source="test data"> <paragraph> Referencing a footnote by symbol \n\ <footnote_reference auto="*" ids="footnote-reference-1" refid="footnote-1"> * . <footnote auto="*" backrefs="footnote-reference-1" ids="footnote-1"> <label> * <paragraph> This is an auto-symbol footnote. """], ["""\ A sequence of symbol footnote references: [*]_ [*]_ [*]_ [*]_ [*]_ [*]_ [*]_ [*]_ [*]_ [*]_ [*]_ [*]_. .. [*] Auto-symbol footnote 1. .. [*] Auto-symbol footnote 2. .. [*] Auto-symbol footnote 3. .. [*] Auto-symbol footnote 4. .. [*] Auto-symbol footnote 5. .. [*] Auto-symbol footnote 6. .. [*] Auto-symbol footnote 7. .. [*] Auto-symbol footnote 8. .. [*] Auto-symbol footnote 9. .. [*] Auto-symbol footnote 10. .. [*] Auto-symbol footnote 11. .. [*] Auto-symbol footnote 12. """, u"""\ <document source="test data"> <paragraph> A sequence of symbol footnote references: <footnote_reference auto="*" ids="footnote-reference-1" refid="footnote-1"> * \n\ <footnote_reference auto="*" ids="footnote-reference-2" refid="footnote-2"> \u2020 \n\ <footnote_reference auto="*" ids="footnote-reference-3" refid="footnote-3"> \u2021 \n\ <footnote_reference auto="*" ids="footnote-reference-4" refid="footnote-4"> \u00A7 \n\ <footnote_reference auto="*" ids="footnote-reference-5" refid="footnote-5"> \u00B6 \n\ <footnote_reference auto="*" ids="footnote-reference-6" refid="footnote-6"> # \n\ <footnote_reference auto="*" ids="footnote-reference-7" refid="footnote-7"> \u2660 \n\ <footnote_reference auto="*" ids="footnote-reference-8" refid="footnote-8"> \u2665 \n\ <footnote_reference auto="*" ids="footnote-reference-9" refid="footnote-9"> \u2666 \n\ <footnote_reference auto="*" ids="footnote-reference-10" refid="footnote-10"> \u2663 \n\ <footnote_reference auto="*" ids="footnote-reference-11" refid="footnote-11"> ** \n\ <footnote_reference auto="*" ids="footnote-reference-12" refid="footnote-12"> \u2020\u2020 . <footnote auto="*" backrefs="footnote-reference-1" ids="footnote-1"> <label> * <paragraph> Auto-symbol footnote 1. <footnote auto="*" backrefs="footnote-reference-2" ids="footnote-2"> <label> \u2020 <paragraph> Auto-symbol footnote 2. <footnote auto="*" backrefs="footnote-reference-3" ids="footnote-3"> <label> \u2021 <paragraph> Auto-symbol footnote 3. <footnote auto="*" backrefs="footnote-reference-4" ids="footnote-4"> <label> \u00A7 <paragraph> Auto-symbol footnote 4. <footnote auto="*" backrefs="footnote-reference-5" ids="footnote-5"> <label> \u00B6 <paragraph> Auto-symbol footnote 5. <footnote auto="*" backrefs="footnote-reference-6" ids="footnote-6"> <label> # <paragraph> Auto-symbol footnote 6. <footnote auto="*" backrefs="footnote-reference-7" ids="footnote-7"> <label> \u2660 <paragraph> Auto-symbol footnote 7. <footnote auto="*" backrefs="footnote-reference-8" ids="footnote-8"> <label> \u2665 <paragraph> Auto-symbol footnote 8. <footnote auto="*" backrefs="footnote-reference-9" ids="footnote-9"> <label> \u2666 <paragraph> Auto-symbol footnote 9. <footnote auto="*" backrefs="footnote-reference-10" ids="footnote-10"> <label> \u2663 <paragraph> Auto-symbol footnote 10. <footnote auto="*" backrefs="footnote-reference-11" ids="footnote-11"> <label> ** <paragraph> Auto-symbol footnote 11. <footnote auto="*" backrefs="footnote-reference-12" ids="footnote-12"> <label> \u2020\u2020 <paragraph> Auto-symbol footnote 12. """], ["""\ Duplicate manual footnote labels: .. [1] Footnote. .. [1] Footnote. """, """\ <document source="test data"> <paragraph> Duplicate manual footnote labels: <footnote dupnames="1" ids="footnote-1"> <label> 1 <paragraph> Footnote. <footnote dupnames="1" ids="footnote-2"> <label> 1 <system_message backrefs="footnote-2" level="2" line="5" source="test data" type="WARNING"> <paragraph> Duplicate explicit target name: "1". <paragraph> Footnote. """], ]) if __name__ == '__main__': import unittest unittest.main(defaultTest='suite')
32.051188
119
0.585672
16f61d94a057c0e3360fdbd022c87a9939f3e6dc
1,011
py
Python
modules/platforms/python/tests/test_generic_object.py
FedorUporov/gridgain
883125f943743fa8198d88be98dfe61bde86ad96
[ "CC0-1.0" ]
null
null
null
modules/platforms/python/tests/test_generic_object.py
FedorUporov/gridgain
883125f943743fa8198d88be98dfe61bde86ad96
[ "CC0-1.0" ]
null
null
null
modules/platforms/python/tests/test_generic_object.py
FedorUporov/gridgain
883125f943743fa8198d88be98dfe61bde86ad96
[ "CC0-1.0" ]
null
null
null
# # Copyright 2019 GridGain Systems, Inc. and Contributors. # # Licensed under the GridGain Community Edition License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.gridgain.com/products/software/community-edition/gridgain-community-edition-license # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyignite import GenericObjectMeta from pyignite.datatypes import * def test_go(): class GenericObject( metaclass=GenericObjectMeta, schema={ 'TEST_ID': IntObject, 'TEST_NAME': String, }, version=2, ): pass x = GenericObject() print(x.__class__.__name__)
29.735294
101
0.714144
17ca294d5d018ce4c05139101443ac92c250c02d
2,463
py
Python
tests/marltoolbox/algos/amTFT/test_amTFTRolloutsTorchPolicy.py
tobiasbaumann1/amd
cb6190be92dea54db04ef9202d381b96f6f6218b
[ "MIT" ]
null
null
null
tests/marltoolbox/algos/amTFT/test_amTFTRolloutsTorchPolicy.py
tobiasbaumann1/amd
cb6190be92dea54db04ef9202d381b96f6f6218b
[ "MIT" ]
null
null
null
tests/marltoolbox/algos/amTFT/test_amTFTRolloutsTorchPolicy.py
tobiasbaumann1/amd
cb6190be92dea54db04ef9202d381b96f6f6218b
[ "MIT" ]
null
null
null
from marltoolbox.algos import amTFT from marltoolbox.algos.amTFT import base_policy from test_base_policy import init_amTFT, generate_fake_discrete_actions def test_compute_actions_overwrite(): am_tft_policy, env = init_amTFT(policy_class=amTFT.amTFTRolloutsTorchPolicy) fake_actions = generate_fake_discrete_actions(env) env.reset() observations, rewards, done, info = env.step(fake_actions) am_tft_policy.use_opponent_policies = True fake_actions, fake_state_out, fake_extra_fetches = "fake", "fake", "fake" fake_actions_2nd, fake_state_out_2nd, fake_extra_fetches_2nd = "fake_2nd", "fake_2nd", "fake_2nd" am_tft_policy.overwrite_action = [(fake_actions, fake_state_out, fake_extra_fetches), (fake_actions_2nd, fake_state_out_2nd, fake_extra_fetches_2nd)] actions, state_out, extra_fetches = am_tft_policy.compute_actions(observations[env.players_ids[0]]) assert actions == fake_actions assert state_out == fake_state_out assert extra_fetches == fake_extra_fetches actions, state_out, extra_fetches = am_tft_policy.compute_actions(observations[env.players_ids[0]]) assert actions == fake_actions_2nd assert state_out == fake_state_out_2nd assert extra_fetches == fake_extra_fetches_2nd def test__select_algo_to_use_in_eval(): am_tft_policy, env = init_amTFT(policy_class=amTFT.amTFTRolloutsTorchPolicy) def assert_(working_state_idx, active_algo_idx): am_tft_policy.working_state = base_policy.WORKING_STATES[working_state_idx] am_tft_policy._select_witch_algo_to_use() assert am_tft_policy.active_algo_idx == active_algo_idx am_tft_policy.use_opponent_policies = False am_tft_policy.n_steps_to_punish = 0 assert_(working_state_idx=2, active_algo_idx=base_policy.OWN_COOP_POLICY_IDX) am_tft_policy.use_opponent_policies = False am_tft_policy.n_steps_to_punish = 1 assert_(working_state_idx=2, active_algo_idx=base_policy.OWN_SELFISH_POLICY_IDX) am_tft_policy.use_opponent_policies = True am_tft_policy.performing_rollouts = True am_tft_policy.n_steps_to_punish_opponent = 0 assert_(working_state_idx=2, active_algo_idx=base_policy.OPP_COOP_POLICY_IDX) am_tft_policy.use_opponent_policies = True am_tft_policy.performing_rollouts = True am_tft_policy.n_steps_to_punish_opponent = 1 assert_(working_state_idx=2, active_algo_idx=base_policy.OPP_SELFISH_POLICY_IDX)
48.294118
103
0.794153
52424e97ab94e59b33b6176705c01c645b397684
4,236
py
Python
list_scheduler.py
AdiNar/MGR
e626e333dfbc2f920b507ccae000809d9d479e36
[ "Apache-2.0" ]
null
null
null
list_scheduler.py
AdiNar/MGR
e626e333dfbc2f920b507ccae000809d9d479e36
[ "Apache-2.0" ]
null
null
null
list_scheduler.py
AdiNar/MGR
e626e333dfbc2f920b507ccae000809d9d479e36
[ "Apache-2.0" ]
null
null
null
import heapq import random from decimal import Decimal from typing import List from simulator import Job, Scheduler class ListScheduler(Scheduler): def _list_scheduler_run(self, m: int, jobs: List[Job], start_at=0): schedule = self.schedule action_points = [(start_at, 0, 0)] # (time, machine, resources) # 0 is not in the free_machines set. # Think of it as if there was a virtual job scheduled on machine 0 # that ended at <start_at> and we're starting now. free_machines = set(range(1, m)) scheduled_jobs = set() # First we handle already scheduled jobs, so that they are properly acknowledged by the algorithm org_jobs = schedule.jobs_running_after(start_at).jobs running_jobs = list() for j in sorted(org_jobs, key=lambda x: x.S): if j.S < start_at: running_jobs.append(Job(j.S - start_at + j.p, j.r)) else: running_jobs.append(Job(j.p, j.r)) jobs = list(running_jobs) + jobs rc = Decimal(0) while jobs: t, machine, jr = action_points[0] heapq.heappop(action_points) rc -= Decimal(jr) while action_points and action_points[0][0] <= t: _, m_1, jr_1 = heapq.heappop(action_points) free_machines.add(m_1) rc -= Decimal(jr_1) for j in jobs: if free_machines or machine is not None: if len(free_machines) == m or (len(free_machines) == m - 1 and machine is not None): # Due to floating ops it may be sth above 0 even if all machines are free, # which breaks the algorithm. rc = Decimal(0) if rc + Decimal(j.r) <= 1: if machine is None: machine = free_machines.pop() rc += Decimal(j.r) if j not in running_jobs: schedule.schedule(j, t, schedule.get_machine_by_number(machine), check_for_machine=False) heapq.heappush(action_points, (t + j.p, machine, j.r)) scheduled_jobs.add(j) if free_machines: machine = free_machines.pop() else: machine = None else: break if machine is not None: free_machines.add(machine) jobs = [j for j in jobs if j not in scheduled_jobs] return schedule def _run(self, start_at=0): return self._list_scheduler_run(self.instance.machines_count, self.instance.jobs.jobs, start_at=start_at) class LPT(ListScheduler): """List scheduler with priorities of decreasing job processing times.""" def _run(self, start_at=0): return self._list_scheduler_run(self.instance.machines_count, self.instance.jobs.by_length_descending(), start_at=start_at) class HRR(ListScheduler): """List scheduler with priorities of decreasing job resource requirements.""" def _run(self, start_at=0): return self._list_scheduler_run(self.instance.machines_count, self.instance.jobs.by_resource_descending(), start_at=start_at) class LRR(ListScheduler): """List scheduler with priorities of increasing job resource requirements.""" def _run(self, start_at=0): return self._list_scheduler_run(self.instance.machines_count, self.instance.jobs.by_resource_ascending(), start_at=start_at) class RAND(ListScheduler): """List scheduler with random priorities.""" def _run(self, start_at=0): jobs = list(self.instance.jobs.jobs)[:] random.shuffle(jobs) return self._list_scheduler_run(self.instance.machines_count, jobs, start_at=start_at)
38.509091
117
0.552644
aac60aac253b8fe9c2dfcc26b48a8c667b5db072
10,269
py
Python
env/lib/python2.7/site-packages/django/db/backends/postgresql_psycopg2/introspection.py
diego-d5000/MisValesMd
b641782bc2546776e9f55f452ec7fb48100dc482
[ "MIT" ]
null
null
null
env/lib/python2.7/site-packages/django/db/backends/postgresql_psycopg2/introspection.py
diego-d5000/MisValesMd
b641782bc2546776e9f55f452ec7fb48100dc482
[ "MIT" ]
null
null
null
env/lib/python2.7/site-packages/django/db/backends/postgresql_psycopg2/introspection.py
diego-d5000/MisValesMd
b641782bc2546776e9f55f452ec7fb48100dc482
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from collections import namedtuple from django.db.backends.base.introspection import ( BaseDatabaseIntrospection, FieldInfo, TableInfo, ) from django.utils.encoding import force_text FieldInfo = namedtuple('FieldInfo', FieldInfo._fields + ('default',)) class DatabaseIntrospection(BaseDatabaseIntrospection): # Maps type codes to Django Field types. data_types_reverse = { 16: 'BooleanField', 17: 'BinaryField', 20: 'BigIntegerField', 21: 'SmallIntegerField', 23: 'IntegerField', 25: 'TextField', 700: 'FloatField', 701: 'FloatField', 869: 'GenericIPAddressField', 1042: 'CharField', # blank-padded 1043: 'CharField', 1082: 'DateField', 1083: 'TimeField', 1114: 'DateTimeField', 1184: 'DateTimeField', 1266: 'TimeField', 1700: 'DecimalField', } ignored_tables = [] def get_field_type(self, data_type, description): field_type = super(DatabaseIntrospection, self).get_field_type(data_type, description) if field_type == 'IntegerField' and description.default and 'nextval' in description.default: return 'AutoField' return field_type def get_table_list(self, cursor): """ Returns a list of table and view names in the current database. """ cursor.execute(""" SELECT c.relname, c.relkind FROM pg_catalog.pg_class c LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE c.relkind IN ('r', 'v') AND n.nspname NOT IN ('pg_catalog', 'pg_toast') AND pg_catalog.pg_table_is_visible(c.oid)""") return [TableInfo(row[0], {'r': 't', 'v': 'v'}.get(row[1])) for row in cursor.fetchall() if row[0] not in self.ignored_tables] def get_table_description(self, cursor, table_name): "Returns a description of the table, with the DB-API cursor.description interface." # As cursor.description does not return reliably the nullable property, # we have to query the information_schema (#7783) cursor.execute(""" SELECT column_name, is_nullable, column_default FROM information_schema.columns WHERE table_name = %s""", [table_name]) field_map = {line[0]: line[1:] for line in cursor.fetchall()} cursor.execute("SELECT * FROM %s LIMIT 1" % self.connection.ops.quote_name(table_name)) return [FieldInfo(*((force_text(line[0]),) + line[1:6] + (field_map[force_text(line[0])][0] == 'YES', field_map[force_text(line[0])][1]))) for line in cursor.description] def get_relations(self, cursor, table_name): """ Returns a dictionary of {field_name: (field_name_other_table, other_table)} representing all relationships to the given table. """ cursor.execute(""" SELECT c2.relname, a1.attname, a2.attname FROM pg_constraint con LEFT JOIN pg_class c1 ON con.conrelid = c1.oid LEFT JOIN pg_class c2 ON con.confrelid = c2.oid LEFT JOIN pg_attribute a1 ON c1.oid = a1.attrelid AND a1.attnum = con.conkey[1] LEFT JOIN pg_attribute a2 ON c2.oid = a2.attrelid AND a2.attnum = con.confkey[1] WHERE c1.relname = %s AND con.contype = 'f'""", [table_name]) relations = {} for row in cursor.fetchall(): relations[row[1]] = (row[2], row[0]) return relations def get_key_columns(self, cursor, table_name): key_columns = [] cursor.execute(""" SELECT kcu.column_name, ccu.table_name AS referenced_table, ccu.column_name AS referenced_column FROM information_schema.constraint_column_usage ccu LEFT JOIN information_schema.key_column_usage kcu ON ccu.constraint_catalog = kcu.constraint_catalog AND ccu.constraint_schema = kcu.constraint_schema AND ccu.constraint_name = kcu.constraint_name LEFT JOIN information_schema.table_constraints tc ON ccu.constraint_catalog = tc.constraint_catalog AND ccu.constraint_schema = tc.constraint_schema AND ccu.constraint_name = tc.constraint_name WHERE kcu.table_name = %s AND tc.constraint_type = 'FOREIGN KEY'""", [table_name]) key_columns.extend(cursor.fetchall()) return key_columns def get_indexes(self, cursor, table_name): # This query retrieves each index on the given table, including the # first associated field name cursor.execute(""" SELECT attr.attname, idx.indkey, idx.indisunique, idx.indisprimary FROM pg_catalog.pg_class c, pg_catalog.pg_class c2, pg_catalog.pg_index idx, pg_catalog.pg_attribute attr WHERE c.oid = idx.indrelid AND idx.indexrelid = c2.oid AND attr.attrelid = c.oid AND attr.attnum = idx.indkey[0] AND c.relname = %s""", [table_name]) indexes = {} for row in cursor.fetchall(): # row[1] (idx.indkey) is stored in the DB as an array. It comes out as # a string of space-separated integers. This designates the field # indexes (1-based) of the fields that have indexes on the table. # Here, we skip any indexes across multiple fields. if ' ' in row[1]: continue if row[0] not in indexes: indexes[row[0]] = {'primary_key': False, 'unique': False} # It's possible to have the unique and PK constraints in separate indexes. if row[3]: indexes[row[0]]['primary_key'] = True if row[2]: indexes[row[0]]['unique'] = True return indexes def get_constraints(self, cursor, table_name): """ Retrieves any constraints or keys (unique, pk, fk, check, index) across one or more columns. """ constraints = {} # Loop over the key table, collecting things as constraints # This will get PKs, FKs, and uniques, but not CHECK cursor.execute(""" SELECT kc.constraint_name, kc.column_name, c.constraint_type, array(SELECT table_name::text || '.' || column_name::text FROM information_schema.constraint_column_usage WHERE constraint_name = kc.constraint_name) FROM information_schema.key_column_usage AS kc JOIN information_schema.table_constraints AS c ON kc.table_schema = c.table_schema AND kc.table_name = c.table_name AND kc.constraint_name = c.constraint_name WHERE kc.table_schema = %s AND kc.table_name = %s ORDER BY kc.ordinal_position ASC """, ["public", table_name]) for constraint, column, kind, used_cols in cursor.fetchall(): # If we're the first column, make the record if constraint not in constraints: constraints[constraint] = { "columns": [], "primary_key": kind.lower() == "primary key", "unique": kind.lower() in ["primary key", "unique"], "foreign_key": tuple(used_cols[0].split(".", 1)) if kind.lower() == "foreign key" else None, "check": False, "index": False, } # Record the details constraints[constraint]['columns'].append(column) # Now get CHECK constraint columns cursor.execute(""" SELECT kc.constraint_name, kc.column_name FROM information_schema.constraint_column_usage AS kc JOIN information_schema.table_constraints AS c ON kc.table_schema = c.table_schema AND kc.table_name = c.table_name AND kc.constraint_name = c.constraint_name WHERE c.constraint_type = 'CHECK' AND kc.table_schema = %s AND kc.table_name = %s """, ["public", table_name]) for constraint, column in cursor.fetchall(): # If we're the first column, make the record if constraint not in constraints: constraints[constraint] = { "columns": [], "primary_key": False, "unique": False, "foreign_key": None, "check": True, "index": False, } # Record the details constraints[constraint]['columns'].append(column) # Now get indexes cursor.execute(""" SELECT c2.relname, ARRAY( SELECT (SELECT attname FROM pg_catalog.pg_attribute WHERE attnum = i AND attrelid = c.oid) FROM unnest(idx.indkey) i ), idx.indisunique, idx.indisprimary FROM pg_catalog.pg_class c, pg_catalog.pg_class c2, pg_catalog.pg_index idx WHERE c.oid = idx.indrelid AND idx.indexrelid = c2.oid AND c.relname = %s """, [table_name]) for index, columns, unique, primary in cursor.fetchall(): if index not in constraints: constraints[index] = { "columns": list(columns), "primary_key": primary, "unique": unique, "foreign_key": None, "check": False, "index": True, } return constraints
45.039474
113
0.557114
b08d29a5f920704f166374f6b3cf387611a728e2
841
py
Python
examples/simple_example_1.py
tnarg999/CS238FinalProject
0ecbb66678f60d6cc525936e737d310361f171ad
[ "MIT" ]
1
2019-11-27T20:06:27.000Z
2019-11-27T20:06:27.000Z
examples/simple_example_1.py
tnarg999/CS238FinalProject
0ecbb66678f60d6cc525936e737d310361f171ad
[ "MIT" ]
null
null
null
examples/simple_example_1.py
tnarg999/CS238FinalProject
0ecbb66678f60d6cc525936e737d310361f171ad
[ "MIT" ]
1
2019-12-05T03:16:46.000Z
2019-12-05T03:16:46.000Z
from flatland.envs.rail_env import RailEnv from flatland.envs.rail_generators import rail_from_manual_specifications_generator from flatland.utils.rendertools import RenderTool # Example generate a rail given a manual specification, # a map of tuples (cell_type, rotation) specs = [[(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (7, 0), (0, 0)], [(7, 270), (1, 90), (1, 90), (1, 90), (2, 90), (7, 90)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)]] env = RailEnv(width=6, height=4, rail_generator=rail_from_manual_specifications_generator(specs), number_of_agents=1) env.reset() env_renderer = RenderTool(env) env_renderer.render_env(show=True, show_predictions=False, show_observations=False) # uncomment to keep the renderer open input("Press Enter to continue...")
38.227273
117
0.65874
99e266a9a7e099b2b49741f3e20f3ad5d087c4a4
832
py
Python
Tests/interop/com/compat/hw_client.py
aisk/ironpython3
d492fd811a0cee4d0a07cd46f02a29a3c90d964b
[ "Apache-2.0" ]
1,872
2015-01-02T18:56:47.000Z
2022-03-31T07:34:39.000Z
Tests/interop/com/compat/hw_client.py
aisk/ironpython3
d492fd811a0cee4d0a07cd46f02a29a3c90d964b
[ "Apache-2.0" ]
675
2015-02-27T09:01:01.000Z
2022-03-31T14:03:25.000Z
Tests/interop/com/compat/hw_client.py
aisk/ironpython3
d492fd811a0cee4d0a07cd46f02a29a3c90d964b
[ "Apache-2.0" ]
278
2015-01-02T03:48:20.000Z
2022-03-29T20:40:44.000Z
# Licensed to the .NET Foundation under one or more agreements. # The .NET Foundation licenses this file to you under the Apache 2.0 License. # See the LICENSE file in the project root for more information. ''' For the time being this is a minimal sanity check designed to ensure IP can access COM servers implemented in pywin32. ''' import sys from interop.com.compat.hw import hw_progid, hw_retval from iptest.cominterop_util import * if sys.implementation.name == "ironpython": from System import Type, Activator type = Type.GetTypeFromProgID(hw_progid) com_obj = Activator.CreateInstance(type) else: import win32com.client com_obj = win32com.client.Dispatch(hw_progid) print("dir(obj):", dir(com_obj)) print() print("comMethod():", com_obj.comMethod(None)) AreEqual(com_obj.comMethod(None), hw_retval)
29.714286
82
0.760817
7a622807d9cb870fbf9ac357aeae47e24a0c797a
2,201
py
Python
euca2ools/commands/iam/listroles.py
sjones4/euca2ools
03b0e421eeebd8f402422a0ad6994bd6ee4e4127
[ "BSD-2-Clause" ]
null
null
null
euca2ools/commands/iam/listroles.py
sjones4/euca2ools
03b0e421eeebd8f402422a0ad6994bd6ee4e4127
[ "BSD-2-Clause" ]
null
null
null
euca2ools/commands/iam/listroles.py
sjones4/euca2ools
03b0e421eeebd8f402422a0ad6994bd6ee4e4127
[ "BSD-2-Clause" ]
2
2016-06-24T20:19:40.000Z
2020-02-05T10:50:19.000Z
# Copyright 2014 Eucalyptus Systems, Inc. # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from requestbuilder import Arg from requestbuilder.response import PaginatedResponse from euca2ools.commands.iam import IAMRequest, AS_ACCOUNT class ListRoles(IAMRequest): DESCRIPTION = "List your account's roles" ARGS = [Arg('-p', '--path-prefix', dest='PathPrefix', metavar='PREFIX', help='limit results to roles who begin with a given path'), AS_ACCOUNT] LIST_TAGS = ['Roles'] def main(self): return PaginatedResponse(self, (None,), ('Roles',)) def prepare_for_page(self, page): # Pages are defined by markers self.params['Marker'] = page def get_next_page(self, response): if response.get('IsTruncated') == 'true': return response['Marker'] def print_result(self, result): for role in result.get('Roles', []): print role['Arn']
41.528302
75
0.729668
90ca1523c40f73a27695c958d954f701d7fd9e9a
8,806
py
Python
pages/preprocess.py
raniabrn/Streamlit-Application
1abf667a9ef7c4462864b7e4991799cd63b9f0cb
[ "MIT" ]
1
2022-03-26T17:57:38.000Z
2022-03-26T17:57:38.000Z
pages/preprocess.py
raniabrn/Streamlit-Application
1abf667a9ef7c4462864b7e4991799cd63b9f0cb
[ "MIT" ]
1
2022-03-28T17:12:03.000Z
2022-03-28T17:12:03.000Z
pages/preprocess.py
RacimRgh/generic-dataset-analysis
abbb3ff10ab8b16af471a363defd567c8f3ebd2f
[ "MIT" ]
null
null
null
import streamlit as st import os import pandas as pd from pandas.api.types import is_numeric_dtype import numpy as np import time from sklearn.preprocessing import LabelEncoder as le from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler def standardise_column(df, df_last): df_last = df.copy() df = StandardScaler().fit_transform(df) return df, df_last def normalise_column(df, df_last): min_max_scaler = MinMaxScaler() x_scaled = min_max_scaler.fit_transform(df) df_normalized = pd.DataFrame(x_scaled) return df_normalized, df_last def chg_type(df, df_last, newtype, column_name): df_last = df.copy() if newtype == 'numerical': df[column_name] = pd.to_numeric(df[column_name], errors='ignore') elif newtype == 'object': df = df.astype({column_name: str}, errors='ignore') elif newtype == 'categorical': df = df.astype({column_name: 'category'}, errors='ignore') df.to_csv('data.csv', index=False) st.success("Your changes have been made!") return df, df_last def dumm(df, df_last, column_name): df_last = df.copy() df = pd.get_dummies(df, columns=[column_name]) df.to_csv('data.csv', index=False) return df, df_last def onSubmit(df, df_last, del_na, replace_vals, new_num_val, new_cat_val): df_last = df.copy() categorical = df.select_dtypes( include=['object']).columns.values numerical = df.select_dtypes(include=[np.number]).columns.values if del_na == "Drop columns": df.dropna(axis="columns", how="any", inplace=True) elif del_na == "Drop rows": df.dropna(axis="rows", how="any", inplace=True) elif del_na == "Replace values": for num in numerical: if replace_vals == "Average/Most frequent": new_na_val = df[num].mean() df[num] = df[num].fillna(new_na_val) elif replace_vals == "Interpolation": df[num] = df[num].interpolate( method='linear', limit_direction='forward') elif replace_vals == "Value": df[num].fillna(new_num_val) for cat in categorical: if replace_vals == "Average/Most frequent": new_na_val = df[cat].mode() df[cat] = df[cat].fillna(new_na_val) elif replace_vals == "Value": df[cat].fillna(new_cat_val) df.to_csv('data.csv', index=False) return df, df_last def app(): if 'data.csv' not in os.listdir(os.getcwd()): st.markdown("Please upload data through `Upload Data` page!") else: with st.spinner("Loading the cached dataset, please wait..."): df = pd.read_csv('data.csv') df.to_csv('data_og.csv', index=False) df_last = df.copy() st.title('Preprocessing') """ Change the columns types one by one """ st.markdown("## Change dataframe columns") # Use two column technique col1, col2, col3 = st.columns(3) column_name = col1.selectbox("Select Column", df.columns) if is_numeric_dtype(df[column_name]): current_type = 'numerical' else: try: numvals = len(np.unique(df[column_name]) ) < 0.2 * len(df[column_name]) except Exception as ex: df[column_name] = le().fit_transform(df[column_name]) numvals = len(np.unique(df[column_name]) ) < 0.2 * len(df[column_name]) if numvals: current_type = 'categorical' else: current_type = 'object' column_options = ['numerical', 'categorical', 'object'] current_index = column_options.index(current_type) newtype = col2.selectbox("Select Column Type", options=column_options, index=current_index) newname = col3.text_input('New column name', value=column_name) e1, e2, e3 = st.columns(3) e1.write("""Select your column column_name and the new type from the data. To submit all the changes, click on *Submit changes* """) if e2.button("Change Column Type"): with st.spinner("Modifying type..."): df, df_last = chg_type(df, df_last, newtype, column_name) if e3.button("Change column name"): df.rename(columns={column_name: newname}, inplace=True) """ Check for NA values and show the choices if they exist - Drop rows containing at least one NA value - Drop the entire column containing NA values - Replace the values with: Average/Most frequent, Interpolation (num), Typing """ if pd.isna(df).any().any(): st.markdown("## List of columns with NA values: ") col1, col2, col3, col4, col5, col6 = st.columns(6) j = 0 for d in df.columns: if df[d].isna().sum(): if j == 0: col1.info(d) elif j == 1: col2.info(d) else: col3.info(d) j = 0 j += 1 if len([d for d in df.columns if df[d].isna().sum()]) > 0: replace_vals, new_cat_val, new_num_val = None, None, None del_na = col4.radio( "Action:", ("Drop rows", "Drop columns", "Replace values")) if del_na == 'Replace values': replace_vals = col5.radio( "With:", ("Average/Most frequent", "Interpolation", "Value")) if replace_vals == "Value": new_num_val = st.text_input( "Replacement for numerical NA") new_cat_val = st.text_input( "Replacement for categorical NA") b1, b2, b3, b4, b5 = st.columns(5) if b5.button("Submit"): with st.spinner("Please wait ..."): df, df_last = onSubmit( df, df_last, del_na, replace_vals, new_num_val, new_cat_val) time.sleep(1) df = pd.read_csv('data.csv') st.success("Your changes have been made!") st.markdown('## Ratio of different values and dummification') col1, col2, col3, col4, col5, col6, col7, col8 = st.columns(8) col1.metric(label="Total number of values", value=len(df[column_name]), delta_color="off") col2.metric(label="Number of different values", value=len(np.unique(df[column_name])), delta_color="off") if col6.button("Dummify current column", key=current_index): with st.spinner("Please wait ..."): df, df_last = dumm(df, df_last, column_name) time.sleep(1) st.success("Your changes have been made!") if col7.button("Delete current column"): with st.spinner("Processing..."): df_last = df.copy() df.drop(column_name, inplace=True, axis=1) df.to_csv('data.csv', index=False) st.success("Your changes have been made!") b1, b2, b3, b4, b5, b6, b7, b8 = st.columns(8) if b5.button("Standardise dataset"): with st.spinner("Please wait ..."): df, df_last = standardise_column(df, df_last) time.sleep(1) st.success("Your changes have been made!") if b6.button("Normalise dataset"): with st.spinner("Please wait ..."): df, df_last = normalise_column(df, df_last) time.sleep(1) st.success("Your changes have been made!") if b7.button("Revert last change"): df = df_last.copy() df.to_csv('data.csv', index=False) st.success("Your changes have been Reverted!") if b8.button("Revert all changes"): df_og = pd.read_csv('data_og.csv') df.to_csv('data.csv', index=False) st.success("Your changes have been reverted!") st.markdown('## Dataframe columns and types') c = st.columns(6) c[0].write('Column') c[1].write('Type') c[2].write('Column') c[3].write('Type') c[4].write('Column') c[5].write('Type') i = 0 for idx, val in enumerate(df.columns): if i == 6: i = 0 c[i].write(val) c[i+1].write(df[val].dtype) i += 2
37.47234
94
0.545764
dc0424b068661ba954f18e1693c7bd4868a2aae2
10,391
py
Python
fuel_agent/fuel_agent/tests/test_partition.py
Zipfer/fuel-web
c6c4032eb6e29474e2be0318349265bdb566454c
[ "Apache-2.0" ]
null
null
null
fuel_agent/fuel_agent/tests/test_partition.py
Zipfer/fuel-web
c6c4032eb6e29474e2be0318349265bdb566454c
[ "Apache-2.0" ]
null
null
null
fuel_agent/fuel_agent/tests/test_partition.py
Zipfer/fuel-web
c6c4032eb6e29474e2be0318349265bdb566454c
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mock from oslotest import base as test_base from fuel_agent import errors from fuel_agent.objects import partition class TestMD(test_base.BaseTestCase): def setUp(self): super(TestMD, self).setUp() self.md = partition.Md('name', 'level') def test_add_device_ok(self): self.assertEqual(0, len(self.md.devices)) self.md.add_device('device') self.assertEqual(1, len(self.md.devices)) self.assertEqual('device', self.md.devices[0]) def test_add_device_in_spares_fail(self): self.assertEqual(0, len(self.md.devices)) self.assertEqual(0, len(self.md.spares)) self.md.add_spare('device') self.assertRaises(errors.MDDeviceDuplicationError, self.md.add_device, 'device') def test_add_device_in_devices_fail(self): self.assertEqual(0, len(self.md.devices)) self.assertEqual(0, len(self.md.spares)) self.md.add_device('device') self.assertRaises(errors.MDDeviceDuplicationError, self.md.add_device, 'device') def test_add_spare_in_spares_fail(self): self.assertEqual(0, len(self.md.devices)) self.assertEqual(0, len(self.md.spares)) self.md.add_spare('device') self.assertRaises(errors.MDDeviceDuplicationError, self.md.add_spare, 'device') def test_add_spare_in_devices_fail(self): self.assertEqual(0, len(self.md.devices)) self.assertEqual(0, len(self.md.spares)) self.md.add_device('device') self.assertRaises(errors.MDDeviceDuplicationError, self.md.add_spare, 'device') class TestPartition(test_base.BaseTestCase): def setUp(self): super(TestPartition, self).setUp() self.pt = partition.Partition('name', 'count', 'device', 'begin', 'end', 'partition_type') def test_set_flag(self): self.assertEqual(0, len(self.pt.flags)) self.pt.set_flag('fake_flag') self.assertEqual(1, len(self.pt.flags)) self.assertIn('fake_flag', self.pt.flags) class TestPartitionScheme(test_base.BaseTestCase): def setUp(self): super(TestPartitionScheme, self).setUp() self.p_scheme = partition.PartitionScheme() def test_root_device_not_found(self): self.assertRaises(errors.WrongPartitionSchemeError, self.p_scheme.root_device) def test_fs_by_device(self): expected_fs = partition.Fs('device') self.p_scheme.fss.append(expected_fs) self.p_scheme.fss.append(partition.Fs('wrong_device')) actual_fs = self.p_scheme.fs_by_device('device') self.assertEqual(expected_fs, actual_fs) def test_fs_by_mount(self): expected_fs = partition.Fs('d', mount='mount') self.p_scheme.fss.append(expected_fs) self.p_scheme.fss.append(partition.Fs('w_d', mount='wrong_mount')) actual_fs = self.p_scheme.fs_by_mount('mount') self.assertEqual(expected_fs, actual_fs) def test_pv_by_name(self): expected_pv = partition.Pv('pv') self.p_scheme.pvs.append(expected_pv) self.p_scheme.pvs.append(partition.Pv('wrong_pv')) actual_pv = self.p_scheme.pv_by_name('pv') self.assertEqual(expected_pv, actual_pv) def test_vg_by_name(self): expected_vg = partition.Vg('vg') self.p_scheme.vgs.append(expected_vg) self.p_scheme.vgs.append(partition.Vg('wrong_vg')) actual_vg = self.p_scheme.vg_by_name('vg') self.assertEqual(expected_vg, actual_vg) def test_vg_attach_by_name(self): self.p_scheme.vg_attach_by_name('pvname', 'vgname') self.assertEqual(1, len(self.p_scheme.pvs)) self.assertEqual(1, len(self.p_scheme.vgs)) self.assertIn('pvname', self.p_scheme.vgs[0].pvnames) self.assertIn('vgname', self.p_scheme.vgs[0].name) def test_md_next_name_ok(self): expected_name = '/dev/md0' self.assertEqual(expected_name, self.p_scheme.md_next_name()) def test_md_next_name_fail(self): self.p_scheme.mds = [ partition.Md('/dev/md%s' % x, 'level') for x in range(0, 128)] self.assertRaises(errors.MDAlreadyExistsError, self.p_scheme.md_next_name) def test_md_by_name(self): self.assertEqual(0, len(self.p_scheme.mds)) expected_md = partition.Md('name', 'level') self.p_scheme.mds.append(expected_md) self.p_scheme.mds.append(partition.Md('wrong_name', 'level')) self.assertEqual(expected_md, self.p_scheme.md_by_name('name')) def test_md_by_mount(self): self.assertEqual(0, len(self.p_scheme.mds)) self.assertEqual(0, len(self.p_scheme.fss)) expected_md = partition.Md('name', 'level') expected_fs = partition.Fs('name', mount='mount') self.p_scheme.mds.append(expected_md) self.p_scheme.fss.append(expected_fs) self.p_scheme.fss.append(partition.Fs('wrong_name', mount='wrong_mount')) self.assertEqual(expected_md, self.p_scheme.md_by_mount('mount')) def test_md_attach_by_mount_md_exists(self): self.assertEqual(0, len(self.p_scheme.mds)) self.assertEqual(0, len(self.p_scheme.fss)) expected_md = partition.Md('name', 'level') expected_fs = partition.Fs('name', mount='mount') self.p_scheme.mds.append(expected_md) self.p_scheme.fss.append(expected_fs) actual_md = self.p_scheme.md_attach_by_mount('device', 'mount') self.assertIn('device', actual_md.devices) self.assertEqual(expected_md, actual_md) def test_md_attach_by_mount_no_md(self): self.assertEqual(0, len(self.p_scheme.mds)) self.assertEqual(0, len(self.p_scheme.fss)) actual_md = self.p_scheme.md_attach_by_mount( 'device', 'mount', fs_type='fs_type', fs_options='-F', fs_label='fs_label', name='name', level='level') self.assertIn('device', actual_md.devices) self.assertEqual(1, len(self.p_scheme.fss)) self.assertEqual('name', self.p_scheme.fss[0].device) self.assertEqual('mount', self.p_scheme.fss[0].mount) self.assertEqual('fs_type', self.p_scheme.fss[0].type) self.assertEqual('fs_label', self.p_scheme.fss[0].label) self.assertEqual('-F', self.p_scheme.fss[0].options) class TestParted(test_base.BaseTestCase): def setUp(self): super(TestParted, self).setUp() self.prtd = partition.Parted('name', 'label') @mock.patch.object(partition.Parted, 'next_count') @mock.patch.object(partition.Parted, 'next_type') def test_next_name_none(self, nt_mock, nc_mock): nc_mock.return_value = 1 nt_mock.return_value = 'extended' self.assertEqual(None, self.prtd.next_name()) @mock.patch.object(partition.Parted, 'next_count') @mock.patch.object(partition.Parted, 'next_type') def test_next_name_no_separator(self, nt_mock, nc_mock): nc_mock.return_value = 1 nt_mock.return_value = 'not_extended' expected_name = '%s%s' % (self.prtd.name, 1) self.assertEqual(expected_name, self.prtd.next_name()) @mock.patch.object(partition.Parted, 'next_count') @mock.patch.object(partition.Parted, 'next_type') def test_next_name_with_separator(self, nt_mock, nc_mock): nc_mock.return_value = 1 nt_mock.return_value = 'not_extended' self.prtd.name = 'cciss or loop' expected_name = '%sp%s' % (self.prtd.name, 1) self.assertEqual(expected_name, self.prtd.next_name()) def test_next_begin_empty_partitions(self): self.assertEqual(1, self.prtd.next_begin()) def test_next_begin_last_extended_partition(self): self.prtd.partitions.append( partition.Partition('name', 'count', 'device', 'begin', 'end', 'extended')) self.assertEqual('begin', self.prtd.next_begin()) def test_next_begin_no_last_extended_partition(self): self.prtd.partitions.append( partition.Partition('name', 'count', 'device', 'begin', 'end', 'primary')) self.assertEqual('end', self.prtd.next_begin()) def test_next_count_no_logical(self): self.assertEqual(1, self.prtd.next_count('primary')) def test_next_count_has_logical(self): self.prtd.partitions.append( partition.Partition('name', 'count', 'device', 'begin', 'end', 'logical')) self.assertEqual(6, self.prtd.next_count('logical')) def test_next_type_gpt(self): self.prtd.label = 'gpt' self.assertEqual('primary', self.prtd.next_type()) def test_next_type_no_extended(self): self.prtd.label = 'msdos' self.assertEqual('primary', self.prtd.next_type()) self.prtd.partitions.extend( 3 * [partition.Partition('name', 'count', 'device', 'begin', 'end', 'primary')]) self.assertEqual('extended', self.prtd.next_type()) def test_next_type_has_extended(self): self.prtd.label = 'msdos' self.prtd.partitions.append( partition.Partition('name', 'count', 'device', 'begin', 'end', 'extended')) self.assertEqual('logical', self.prtd.next_type()) def test_primary(self): expected_partitions = [partition.Partition('name', 'count', 'device', 'begin', 'end', 'primary')] self.prtd.partitions.extend(expected_partitions) self.assertEqual(expected_partitions, self.prtd.primary)
41.398406
78
0.649889
5a16b4af295628020448294ff4b390766d576997
2,423
py
Python
Data_loader/Data_loader_facenet_notmask.py
ZouJiu1/Mask_face_recognitionZ
bac006718627d869b8ffaaa2c0605a300efd35e8
[ "MIT" ]
17
2020-12-29T06:00:35.000Z
2022-02-24T13:38:41.000Z
Data_loader/Data_loader_facenet_notmask.py
LY-Road/Mask-Face-Recognition
f256a38084073718628b99a09622f5c830a232e7
[ "MIT" ]
2
2021-01-02T13:12:51.000Z
2021-07-03T04:37:18.000Z
Data_loader/Data_loader_facenet_notmask.py
LY-Road/Mask-Face-Recognition
f256a38084073718628b99a09622f5c830a232e7
[ "MIT" ]
12
2021-01-06T08:38:04.000Z
2022-01-27T15:44:21.000Z
# 路径置顶 import sys import os sys.path.append(os.getcwd()) # 导入包 import torchvision.transforms as transforms import torch # 导入文件 from Data_loader.Data_loader_test_notmask import TestDataset from Data_loader.Data_loader_train_notmask import TrainDataset from config_notmask import config from Data_loader.Data_loadertest_mask import NOTLFWestNOTMaskDataset # 训练数据的变换 train_data_transforms = transforms.Compose([ # transforms.Resize([config['image_size'], config['image_size']]), # resize #transforms.RandomHorizontalFlip(), # 随机翻转 transforms.ToTensor(), # 变成tensor transforms.Normalize( mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5] ) ]) # 测试数据的变换 test_data_transforms = transforms.Compose([ # transforms.Resize([config['image_size'], config['image_size']]), # resize transforms.ToTensor(), transforms.Normalize( mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5] ) ]) # 训练数据生成器 train_dataloader = torch.utils.data.DataLoader( dataset=TrainDataset( face_dir=config['train_data_path'], mask_dir = config['mask_data_path'], csv_name=config['train_data_index'], num_triplets=config['num_train_triplets'], training_triplets_path=config['train_triplets_path'], transform=train_data_transforms, predicter_path=config['predicter_path'], img_size=config['image_size'] ), batch_size=config['train_batch_size'], num_workers=config['num_workers'], shuffle=False ) # 测试数据生成器 test_dataloader = torch.utils.data.DataLoader( dataset=TestDataset( dir=config['LFW_data_path'], pairs_path=config['LFW_pairs'], predicter_path=config['predicter_path'], img_size=config['image_size'], transform=test_data_transforms, test_pairs_paths=config['test_pairs_paths'] ), batch_size=config['test_batch_size'], num_workers=config['num_workers'], shuffle=False ) # # 非LFW不戴口罩测试数据生成器 NOTLFWestNOTMask_dataloader = torch.utils.data.DataLoader( dataset = NOTLFWestNOTMaskDataset( dir=config['LFW_data_path'], pairs_path=config['LFW_pairs'], predicter_path=config['predicter_path'], img_size=config['image_size'], transform=test_data_transforms, test_pairs_paths=config['test_pairs_paths'] ), batch_size=config['test_batch_size'], num_workers=config['num_workers'], shuffle=False )
30.2875
79
0.70161
733f18477779ec9d7c71f76f8ec10dcb3070304c
1,234
py
Python
airflow/kubernetes/pod.py
takuti/airflow
0ac3b8c3dd749c59e60cf0169580b9e7c5049d9e
[ "Apache-2.0" ]
27
2019-02-25T14:20:36.000Z
2022-03-22T09:35:13.000Z
airflow/kubernetes/pod.py
takuti/airflow
0ac3b8c3dd749c59e60cf0169580b9e7c5049d9e
[ "Apache-2.0" ]
200
2019-01-09T15:33:06.000Z
2022-01-12T09:13:42.000Z
airflow/kubernetes/pod.py
takuti/airflow
0ac3b8c3dd749c59e60cf0169580b9e7c5049d9e
[ "Apache-2.0" ]
14
2019-06-25T17:08:29.000Z
2022-03-29T13:25:53.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This module is deprecated. Please use :mod:`kubernetes.client.models for V1ResourceRequirements and Port. """ # flake8: noqa import warnings with warnings.catch_warnings(): from airflow.providers.cncf.kubernetes.backcompat.pod import Port, Resources # noqa: autoflake warnings.warn( "This module is deprecated. Please use `kubernetes.client.models for V1ResourceRequirements and Port.", DeprecationWarning, stacklevel=2, )
36.294118
107
0.769854
0df4965d7e95ee8803932ddebcedcc8bd36fdac9
2,004
py
Python
download_images_from_web.py
TonkWorks/download_images_from_a_website
41e893b3c81258eb572d5fcac517b847faf97446
[ "MIT" ]
null
null
null
download_images_from_web.py
TonkWorks/download_images_from_a_website
41e893b3c81258eb572d5fcac517b847faf97446
[ "MIT" ]
null
null
null
download_images_from_web.py
TonkWorks/download_images_from_a_website
41e893b3c81258eb572d5fcac517b847faf97446
[ "MIT" ]
null
null
null
#!/usr/bin/env python import traceback import argparse import os import shutil import re #Function Info goes here. __info__ = { 'title': "Download all images from a web page", 'description': "Downloadall images from a web page", 'url': "http://github.com/TonkWorks/download_images_from_a_website/archive/master.zip", 'author': "Kevin Dagostino", 'input': [ { 'label': 'Web Page URL to download pictures from', 'type': 'text', 'map': 'site_url', } ] } #And the actual script. def script(): import requests from bs4 import BeautifulSoup parser=argparse.ArgumentParser() parser.add_argument('--site_url') args=parser.parse_args() site_url = args.site_url r = requests.get(site_url) soup = BeautifulSoup(r.text) #images = [a['src'] for a in soup.find_all("img", {"src": re.compile("gstatic.com")})] images = soup.findAll("img") print("Found " + str(len(images)) + " images.") for image in images: try: #Make a filename for the image. filename = image["src"].split("/")[-1] filename ="".join([c for c in filename if c.isalpha() or c.isdigit() or c==' ' or c=='.']).rstrip() #Only valid OS chars filename = os.path.join(os.getcwd(), filename) #Fix relative images if (not image["src"].lower().startswith("http") and not image["src"].lower().startswith("data") ): #Relative image add full path print(image["src"]) image["src"] = site_url + image["src"] print(image["src"]) response = requests.get(image["src"]) if response.status_code == 200: f = open(filename, 'wb') f.write(response.content) f.close() #print (filename) except Exception as e: traceback.print_exc() print(str(e)) if __name__ == '__main__': script()
28.225352
132
0.566367
bc989ba45cca9b4e47c41015ce66d13cf298aa03
1,702
py
Python
Matrix-Layer-Rotation.py
akshatminocha/Demo
25513be11925aceaa69da96a1fa6ed0b546cdc70
[ "MIT" ]
1
2019-02-23T15:58:11.000Z
2019-02-23T15:58:11.000Z
Matrix-Layer-Rotation.py
akshatminocha/Demo
25513be11925aceaa69da96a1fa6ed0b546cdc70
[ "MIT" ]
1
2019-01-25T06:16:29.000Z
2019-01-25T06:17:07.000Z
Matrix-Layer-Rotation.py
akshatminocha/Demo
25513be11925aceaa69da96a1fa6ed0b546cdc70
[ "MIT" ]
null
null
null
import math import os import random import re import sys import copy # Complete the matrixRotation function below. def matrixRotation(matrix, r): for k in range(0,r): a=copy.deepcopy(matrix) b=0 while(b<int(min(m,n)/2)): for i in range(0,m): for j in range(0,n): if(i==(0+b)): if(j==(0+b)): matrix[i][j]=a[i][j+1] if(j>(0+b) and j<(n-1-b)): matrix[i][j]=a[i][j+1] if(j==(0+b)): if(b==0): if(i>(0+b)): matrix[i][j]=a[i-1][j] else: if(i>(0+b) and i<m-1): matrix[i][j]=a[i-1][j] if(i==(m-1-b)): if(b==0): if(j>(0+b)): matrix[i][j]=a[i][j-1] else: if(j>(0+b) and j<n-1): matrix[i][j]=a[i][j-1] if(j==(n-1-b)): if(i<(m-1-b) and i>=b): matrix[i][j]=a[i+1][j] b=b+1 for i in range(0,m): for j in range(0,n): print(matrix[i][j],end='\t') print() if __name__ == '__main__': mnr = input().rstrip().split() m = int(mnr[0]) n = int(mnr[1]) r = int(mnr[2]) matrix = [] for _ in range(m): matrix.append(list(map(int, input().rstrip().split()))) matrixRotation(matrix, r)
28.366667
74
0.331962
c994d04084133177a83b641e8213248d46f896d5
5,084
py
Python
src/openprocurement/tender/pricequotation/validation.py
ProzorroUKR/openprocurement.api
2855a99aa8738fb832ee0dbad4e9590bd3643511
[ "Apache-2.0" ]
10
2020-02-18T01:56:21.000Z
2022-03-28T00:32:57.000Z
src/openprocurement/tender/pricequotation/validation.py
quintagroup/openprocurement.api
2855a99aa8738fb832ee0dbad4e9590bd3643511
[ "Apache-2.0" ]
26
2018-07-16T09:30:44.000Z
2021-02-02T17:51:30.000Z
src/openprocurement/tender/pricequotation/validation.py
ProzorroUKR/openprocurement.api
2855a99aa8738fb832ee0dbad4e9590bd3643511
[ "Apache-2.0" ]
15
2019-08-08T10:50:47.000Z
2022-02-05T14:13:36.000Z
from schematics.exceptions import ValidationError from openprocurement.api.utils import raise_operation_error, get_first_revision_date from openprocurement.api.constants import PQ_CRITERIA_RESPONSES_ALL_FROM from openprocurement.api.validation import validate_data, OPERATIONS, validate_json_data from openprocurement.tender.core.validation import TYPEMAP from openprocurement.tender.pricequotation.constants import PROFILE_PATTERN # tender documents def validate_document_operation_in_not_allowed_period(request, **kwargs): if request.validated["tender_status"] not in ["active.tendering", "draft"]: raise_operation_error( request, "Can't {} document in current ({}) tender status".format( OPERATIONS.get(request.method), request.validated["tender_status"] ), ) # award def validate_create_award_not_in_allowed_period(request, **kwargs): tender = request.validated["tender"] if tender.status != "active.qualification": raise_operation_error( request, "Can't create award in current ({}) tender status".format( tender.status ) ) def validate_award_update_in_terminal_status(request, **kwargs): award_status = request.validated['award'].status if award_status in ('cancelled', 'unsuccessful'): raise_operation_error( request, "Can't update award in current ({}) status".format( award_status ) ) # contract document def validate_contract_document_operation(request, **kwargs): operation = OPERATIONS.get(request.method) if request.validated["tender_status"] not in\ ["active.qualification", "active.awarded"]: raise_operation_error( request, "Can't {} document in current ({}) tender status".format( operation, request.validated["tender_status"] ), ) if request.validated["contract"].status not in ["pending", "active"]: raise_operation_error( request, "Can't {} document in current contract status".format(operation) ) return True def validate_patch_tender_data(request, **kwargs): model = type(request.tender) data = validate_data(request, model, True, validate_json_data(request)) _validate_kind_update(request, model) return data def _validate_kind_update(request, model): data = request.validated["data"] kind = data.get("procuringEntity", {}).get("kind", "") if kind and kind not in model.procuring_entity_kinds: request.errors.add( "body", "kind", "{kind!r} procuringEntity cannot publish this type of procedure. Only {kinds} are allowed.".format( kind=kind, kinds=", ".join(model.procuring_entity_kinds) ) ) request.errors.status = 403 def _validate_bid_value(tender, value): if not value: raise ValidationError("This field is required.") if tender.value.amount < value.amount: raise ValidationError("value of bid should be less than value of tender") if tender.get("value").currency != value.currency: raise ValidationError("currency of bid should be identical to currency of value of tender") if tender.get("value").valueAddedTaxIncluded != value.valueAddedTaxIncluded: raise ValidationError( "valueAddedTaxIncluded of bid should be identical " "to valueAddedTaxIncluded of value of tender" ) def validate_post_bid(request, **kwargs): bid = request.validated["bid"] tender = request.validated["tender"] tenderer_id = bid["tenderers"][0]["identifier"]["id"] if tenderer_id not in [i.identifier.id for i in tender.shortlistedFirms]: raise_operation_error(request, f"Can't add bid if tenderer not in shortlistedFirms") def validate_tender_publish(request, **kwargs): current_status = request.validated['tender'].status tender_status = request.validated['data'].get('status', current_status) error_message = "{} can't switch tender from status ({}) to ({})" if tender_status == current_status: return if current_status == "draft.publishing" and tender_status == "cancelled": raise_operation_error(request, error_message.format("You", current_status, tender_status)) if request.authenticated_role not in ("bots", "Administrator", "chronograph") \ and tender_status != "draft.publishing": raise_operation_error(request, error_message.format(request.authenticated_role, current_status, tender_status)) def validate_profile_pattern(profile): result = PROFILE_PATTERN.findall(profile) if len(result) != 1: raise ValidationError("The profile value doesn't match id pattern")
40.349206
111
0.651652
4553939929ce9a33295f1c2f00578133e869b8dc
271
py
Python
diskfree2.py
slavong/python-parallel
d59855d40c1d6399fef5c2ac6173cebfda47f503
[ "MIT" ]
null
null
null
diskfree2.py
slavong/python-parallel
d59855d40c1d6399fef5c2ac6173cebfda47f503
[ "MIT" ]
null
null
null
diskfree2.py
slavong/python-parallel
d59855d40c1d6399fef5c2ac6173cebfda47f503
[ "MIT" ]
null
null
null
#!/usr/bin/env python3.6 import subprocess # Call the command output = subprocess.run(["df", "-h", "/home"], stdout=subprocess.PIPE) # Read the return code and the output data print ("Return code: %i" % output.returncode) print ("Output data: %s" % output.stdout)
24.636364
70
0.686347
4bba4a3f21ac576ce569c53d0ebb5ce7d3d617c6
2,941
py
Python
blog/files/21/dns_server.py
HowcanoeWang/SigmaMeow
89c7bcd6b505e565875cab66354b67ed0bbb1ee9
[ "MIT" ]
null
null
null
blog/files/21/dns_server.py
HowcanoeWang/SigmaMeow
89c7bcd6b505e565875cab66354b67ed0bbb1ee9
[ "MIT" ]
24
2019-08-20T14:04:34.000Z
2022-01-27T01:24:46.000Z
blog/files/21/dns_server.py
HowcanoeWang/HowcanoeWang.github.io
14a958253ccb6acd47f9d97a66f9b1eed1d7dad6
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import re import sys import socket import traceback from os.path import isfile HOSTS_FILE = "hosts.txt" SERVER_HOST = "0.0.0.0" SERVER_PORT = 53 #ipv4_exp = re.compile(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}") class DNSQuery: def __init__(self, data): self.data = data self.domain = bytearray() tipo = (data[2] >> 3) & 15 if tipo == 0: ini = 12 lon = data[ini] while lon != 0: self.domain += data[ini + 1:ini + lon + 1] + bytes(".", "ascii") ini += lon + 1 lon = data[ini] self.domain = str(self.domain, "utf8").rstrip(".") def response(self, ip): packet = bytearray() if self.domain: packet += self.data[:2] + bytearray([0x81, 0x80]) packet += self.data[4:6] + self.data[4:6] + bytearray([0x00, 0x00, 0x00, 0x00]) # Questions and Answers Counts packet += self.data[12:] # Original Domain Name Question packet += bytearray([0xC0, 0x0C]) # Pointer to domain name packet += bytearray([0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x3c, 0x00, 0x04]) # Response type, ttl and resource data length -> 4 bytes packet += bytearray([int(x) for x in ip.split(".")]) # 4 bytes of IP return packet def parse_host_file_as_regex(data): host_list = [] for line in data.splitlines(): if line != "" and line[0] != "#": split_line = line.split(" ", 1) if len(split_line) == 2: host_regex = split_line[0] ip_addr = split_line[1] host_list.append([re.compile(host_regex), ip_addr]) return host_list if __name__ == '__main__': if isfile(HOSTS_FILE): host_data = parse_host_file_as_regex(open(HOSTS_FILE, "r").read()) sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((SERVER_HOST, SERVER_PORT)) print("DNS Proxy server started on UDP port {}!".format(SERVER_PORT)) while True: try: (data, addr) = sock.recvfrom(1024) p = DNSQuery(data) result = [ip_addr for (regex, ip_addr) in host_data if regex.search(p.domain)] if result: ip = result[0] print("Local: {} -> {}".format(p.domain, ip)) sock.sendto(p.response(ip), addr) else: ip = socket.gethostbyname(p.domain) print("Remote: {} -> {}".format(p.domain, ip)) sock.sendto(p.response(ip), addr) except KeyboardInterrupt: print("Done!") sock.close() sys.exit(0) except: traceback.print_exc() else: print("Host file not found!")
37.227848
151
0.530772
c98052dff5245256100b9f74b9399cb28e704135
1,873
py
Python
scipy/constants/tests/test_codata.py
maxi-marufo/my-scipy
be6c2597fcee86419592ac512319301c7ddfc118
[ "BSD-3-Clause" ]
1
2020-05-14T13:09:58.000Z
2020-05-14T13:09:58.000Z
scipy/constants/tests/test_codata.py
maxi-marufo/my-scipy
be6c2597fcee86419592ac512319301c7ddfc118
[ "BSD-3-Clause" ]
null
null
null
scipy/constants/tests/test_codata.py
maxi-marufo/my-scipy
be6c2597fcee86419592ac512319301c7ddfc118
[ "BSD-3-Clause" ]
null
null
null
from scipy.constants import constants, codata, find, value from numpy.testing import (assert_equal, assert_, assert_almost_equal) def test_find(): keys = find('weak mixing', disp=False) assert_equal(keys, ['weak mixing angle']) keys = find('qwertyuiop', disp=False) assert_equal(keys, []) keys = find('natural unit', disp=False) assert_equal(keys, sorted(['natural unit of velocity', 'natural unit of action', 'natural unit of action in eV s', 'natural unit of mass', 'natural unit of energy', 'natural unit of energy in MeV', 'natural unit of momentum', 'natural unit of momentum in MeV/c', 'natural unit of length', 'natural unit of time'])) def test_basic_table_parse(): c = 'speed of light in vacuum' assert_equal(codata.value(c), constants.c) assert_equal(codata.value(c), constants.speed_of_light) def test_basic_lookup(): assert_equal('%d %s' % (codata.c, codata.unit('speed of light in vacuum')), '299792458 m s^-1') def test_find_all(): assert_(len(codata.find(disp=False)) > 300) def test_find_single(): assert_equal(codata.find('Wien freq', disp=False)[0], 'Wien frequency displacement law constant') def test_2002_vs_2006(): assert_almost_equal(codata.value('magn. flux quantum'), codata.value('mag. flux quantum')) def test_exact_values(): # Check that updating stored values with exact ones worked. for key in codata.exact_values: assert_((codata.exact_values[key][0] - value(key)) / value(key) == 0)
33.446429
79
0.567005
93cb81eb77bb680ad07e61612f8d2b284278db0a
1,826
py
Python
src/multisig.py
valerio-vaccaro/krux
a3718a4e12ef6f92ada98e02d0d286a971a56434
[ "MIT" ]
null
null
null
src/multisig.py
valerio-vaccaro/krux
a3718a4e12ef6f92ada98e02d0d286a971a56434
[ "MIT" ]
null
null
null
src/multisig.py
valerio-vaccaro/krux
a3718a4e12ef6f92ada98e02d0d286a971a56434
[ "MIT" ]
null
null
null
# The MIT License (MIT) # Copyright (c) 2021 Tom J. Sun # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from embit.descriptor.descriptor import Descriptor class MultisigPolicy: def __init__(self, policy): self.policy = policy self.label = policy['label'] self.descriptor = Descriptor.from_string(policy['descriptor']) if not self.descriptor or not self.descriptor.is_basic_multisig: raise ValueError('Not multisig') self.m = int(str(self.descriptor.miniscript.args[0])) self.n = len(self.descriptor.keys) self.cosigners = [key.key.to_base58() for key in self.descriptor.keys] if self.descriptor.is_sorted: self.cosigners = sorted(self.cosigners) def matches_tx_policy(self, tx_policy): return tx_policy['cosigners'] == self.cosigners and tx_policy['m'] == self.m and tx_policy['n'] == self.n
48.052632
107
0.766156
89460777595a74f0070ddcf2e42ac2f7e2a2b299
1,691
py
Python
tests/test_index.py
dkreuer/emrichen
ef2b2ad5cd828a9dfed6d7924cee207e13598b0f
[ "MIT" ]
62
2019-01-17T18:47:45.000Z
2022-03-23T10:00:09.000Z
tests/test_index.py
dkreuer/emrichen
ef2b2ad5cd828a9dfed6d7924cee207e13598b0f
[ "MIT" ]
24
2019-01-18T10:05:36.000Z
2022-02-20T17:46:36.000Z
tests/test_index.py
dkreuer/emrichen
ef2b2ad5cd828a9dfed6d7924cee207e13598b0f
[ "MIT" ]
10
2019-02-12T23:58:29.000Z
2022-02-18T09:42:35.000Z
import pytest from emrichen import Template def test_index(): assert ( Template.parse( ''' !Index over: - name: manifold score: 7.8 - name: John score: 9.9 - name: John score: 9.8 as: flavour by: !Lookup flavour.name duplicates: ignore template: !Lookup flavour.score ''' ).enrich({}) == [{'manifold': 7.8, 'John': 9.8}] ) def test_index_without_template(): assert ( Template.parse( ''' !Index over: - name: manifold score: 7.8 - name: John score: 9.9 - name: John score: 9.8 as: flavour by: !Lookup flavour.name duplicates: ignore ''' ).enrich({}) == [{'manifold': {'name': 'manifold', 'score': 7.8}, 'John': {'name': 'John', 'score': 9.8}}] ) def test_index_result_as(): assert ( Template.parse( ''' !Index over: - name: manifold score: 7.8 - name: John score: 9.9 - name: John score: 9.8 as: flavour template: NAME: !Lookup flavour.name SCORE: !Lookup flavour.score result_as: result by: !Lookup result.NAME duplicates: ignore ''' ).enrich({}) == [{'manifold': {'NAME': 'manifold', 'SCORE': 7.8}, 'John': {'NAME': 'John', 'SCORE': 9.8}}] ) def test_index_duplicates_error(): with pytest.raises(ValueError): assert Template.parse( ''' !Index over: - name: manifold score: 7.8 - name: John score: 9.9 - name: John score: 9.8 as: flavour by: !Lookup flavour.name duplicates: error template: !Lookup flavour.score ''' ).enrich({})
18.380435
101
0.52809
184eddeb97201b81a89002298685bc2db249cef3
15,527
py
Python
tensorflow_probability/python/mcmc/metropolis_hastings_test.py
NeelGhoshal/probability
45ed841e3cff6cdc7cd1b2d96dd874d9070318f7
[ "Apache-2.0" ]
2
2019-10-30T04:45:07.000Z
2019-10-30T04:45:08.000Z
tensorflow_probability/python/mcmc/metropolis_hastings_test.py
gregorystrubel/probability
df96f3d56eff92c6b06fbac68dc58e095e28fed6
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/mcmc/metropolis_hastings_test.py
gregorystrubel/probability
df96f3d56eff92c6b06fbac68dc58e095e28fed6
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for `MetropolisHastings` `TransitionKernel`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import warnings # Dependency imports import numpy as np import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import test_util from tensorflow_probability.python.mcmc.internal.util import is_list_like InnerKernelResultsWithoutCorrection = collections.namedtuple( 'InnerKernelResultsWithoutCorrection', [ 'target_log_prob', # For "next_state". 'grads_target_log_prob', # For "next_state". # We add a "bogus" field just to ensure that the automatic introspection # works as intended. 'extraneous', ]) InnerKernelResultsWithCorrection = collections.namedtuple( 'InnerKernelResultsWithCorrection', [ 'log_acceptance_correction', 'target_log_prob', # For "next_state". 'grads_target_log_prob', # For "next_state". # We add a "bogus" field just to ensure that the automatic introspection # works as intended. 'extraneous', ]) class FakeTransitionKernel(tfp.mcmc.TransitionKernel): """Fake TransitionKernel for testing MetropolisHastings.""" def __init__(self, is_calibrated, one_step_fn, bootstrap_fn, accepts_seed_arg=True): self._is_calibrated = is_calibrated self._one_step_fn = one_step_fn self._bootstrap_fn = bootstrap_fn self._call_count = collections.Counter() self._accepts_seed_arg = accepts_seed_arg @property def call_count(self): return self._call_count @property def is_calibrated(self): self.call_count['is_calibrated'] += 1 return self._is_calibrated def one_step(self, current_state, previous_kernel_results, **kwargs): self.call_count['one_step'] += 1 if ('seed' in kwargs) and not self._accepts_seed_arg: raise TypeError('`seed` arg not welcome') return self._one_step_fn(current_state, previous_kernel_results) def bootstrap_results(self, init_state, **kwargs): self.call_count['bootstrap_results'] += 1 return self._bootstrap_fn(init_state) def make_one_step_fn(dtype): def one_step(current_state, previous_kernel_results): # Make next_state. if is_list_like(current_state): next_state = [] for i, s in enumerate(current_state): next_state.append(tf.identity(s * dtype(i + 2), name='next_state')) else: next_state = tf.identity(2. * current_state, name='next_state') # Make kernel_results. kernel_results = {} for fn in sorted(previous_kernel_results._fields): if fn == 'grads_target_log_prob': kernel_results['grads_target_log_prob'] = [ tf.identity(0.5 * g, name='grad_target_log_prob') for g in previous_kernel_results.grads_target_log_prob] elif fn == 'extraneous': kernel_results[fn] = getattr(previous_kernel_results, fn, None) else: kernel_results[fn] = tf.identity( 0.5 * getattr(previous_kernel_results, fn, None), name=fn) kernel_results = type(previous_kernel_results)(**kernel_results) # Done. return next_state, kernel_results return one_step def make_bootstrap_results_fn(true_kernel_results): kernel_results_cls = type(true_kernel_results) def bootstrap_results(_): fake_kernel_results = {} for fn in sorted(kernel_results_cls._fields): if fn == 'grads_target_log_prob': fake_kernel_results['grads_target_log_prob'] = [ tf.identity(g, name='grad_target_log_prob') for g in true_kernel_results.grads_target_log_prob] else: fake_kernel_results[fn] = tf.identity( getattr(true_kernel_results, fn, None), name=fn) fake_kernel_results = kernel_results_cls(**fake_kernel_results) return fake_kernel_results return bootstrap_results @test_util.test_all_tf_execution_regimes class MetropolisHastingsTest(test_util.TestCase): def setUp(self): self.dtype = np.float32 def testCorrectlyWorksWithoutCorrection(self): current_state_ = [self.dtype([1, 2]), self.dtype([3, 4])] current_state = [tf.convert_to_tensor(s) for s in current_state_] expected_inner_init_kernel_results = InnerKernelResultsWithoutCorrection( target_log_prob=self.dtype([ +100., -100., ]), grads_target_log_prob=[self.dtype([1.25, 1.5]), self.dtype([2.25, 2.5])], extraneous=self.dtype([1.75, 2.])) one_step_fn = make_one_step_fn(dtype=self.dtype) bootstrap_fn = make_bootstrap_results_fn( expected_inner_init_kernel_results) # Collect expected results. expected_init_inner_kernel_results = bootstrap_fn(current_state) _, expected_inner_kernel_results = one_step_fn( current_state, expected_init_inner_kernel_results) # Collect actual results. mh = tfp.mcmc.MetropolisHastings( FakeTransitionKernel( is_calibrated=False, one_step_fn=one_step_fn, bootstrap_fn=bootstrap_fn)) stream = test_util.test_seed_stream() init_kernel_results = mh.bootstrap_results(current_state) next_state, kernel_results = mh.one_step( current_state, init_kernel_results, seed=stream()) # Unmodified state is passed through unmodified. self.assertIs(kernel_results.accepted_results.extraneous, init_kernel_results.accepted_results.extraneous) self.assertIs(kernel_results.proposed_results.extraneous, init_kernel_results.accepted_results.extraneous) # Check correct types and call pattern. self.assertEqual( dict(is_calibrated=1, one_step=1, bootstrap_results=1), mh.inner_kernel.call_count) for kr in [init_kernel_results.accepted_results, init_kernel_results.proposed_results]: self.assertEqual(type(expected_init_inner_kernel_results), type(kr)) for kr in [kernel_results.accepted_results, kernel_results.proposed_results]: self.assertEqual(type(expected_inner_kernel_results), type(kr)) # Now check actual values. [ expected_init_inner_kernel_results_, expected_inner_kernel_results_, init_kernel_results_, kernel_results_, next_state_, ] = self.evaluate([ expected_init_inner_kernel_results, expected_inner_kernel_results, init_kernel_results, kernel_results, next_state, ]) # Check that the bootstrapped kernel results are correctly initialized. for fn in expected_inner_init_kernel_results._fields: self.assertAllClose( getattr(expected_init_inner_kernel_results_, fn, np.nan), getattr(init_kernel_results_.accepted_results, fn, np.nan), atol=0., rtol=1e-5) # Check that the proposal is correctly computed. self.assertAllClose([2 * current_state_[0], 3 * current_state_[1]], kernel_results_.proposed_state, atol=0., rtol=1e-5) for fn in expected_inner_kernel_results._fields: self.assertAllClose( getattr(expected_inner_kernel_results_, fn, np.nan), getattr(kernel_results_.proposed_results, fn, np.nan), atol=0., rtol=1e-5) # Extremely high start prob means first will be rejected. # Extremely low start prob means second will be accepted. self.assertAllEqual([False, True], kernel_results_.is_accepted) self.assertAllEqual([(0.5 * 100.) - (100.), (0.5 * -100.) - (-100.)], kernel_results_.log_accept_ratio) self.assertAllClose([self.dtype([1, 0 + 2]) * current_state_[0], self.dtype([1, 1 + 2]) * current_state_[1]], next_state_) def testCorrectlyWorksWithCorrection(self): current_state_ = [self.dtype([1, 2]), self.dtype([3, 4])] current_state = [tf.convert_to_tensor(s) for s in current_state_] expected_inner_init_kernel_results = InnerKernelResultsWithCorrection( log_acceptance_correction=self.dtype([+300., -300.]), target_log_prob=self.dtype([100., -100.]), grads_target_log_prob=[self.dtype([1.25, 1.5]), self.dtype([2.25, 2.5])], extraneous=self.dtype([1.75, 2.])) one_step_fn = make_one_step_fn(dtype=self.dtype) bootstrap_fn = make_bootstrap_results_fn( expected_inner_init_kernel_results) # Collect expected results. expected_init_inner_kernel_results = bootstrap_fn(current_state) _, expected_inner_kernel_results = one_step_fn( current_state, expected_init_inner_kernel_results) # Collect actual results. mh = tfp.mcmc.MetropolisHastings( FakeTransitionKernel( is_calibrated=False, one_step_fn=one_step_fn, bootstrap_fn=bootstrap_fn)) init_kernel_results = mh.bootstrap_results(current_state) next_state, kernel_results = mh.one_step( current_state, init_kernel_results, seed=test_util.test_seed()) # Unmodified state is passed through unmodified. self.assertIs(kernel_results.accepted_results.extraneous, init_kernel_results.accepted_results.extraneous) self.assertIs(kernel_results.proposed_results.extraneous, init_kernel_results.accepted_results.extraneous) # Check correct types and call pattern. self.assertEqual( dict(is_calibrated=1, one_step=1, bootstrap_results=1), mh.inner_kernel.call_count) for kr in [init_kernel_results.accepted_results, init_kernel_results.proposed_results]: self.assertEqual(type(expected_init_inner_kernel_results), type(kr)) for kr in [kernel_results.accepted_results, kernel_results.proposed_results]: self.assertEqual(type(expected_inner_kernel_results), type(kr)) # Now check actual values. [ expected_init_inner_kernel_results_, expected_inner_kernel_results_, init_kernel_results_, kernel_results_, next_state_, ] = self.evaluate([ expected_init_inner_kernel_results, expected_inner_kernel_results, init_kernel_results, kernel_results, next_state, ]) # Check that the bootstrapped kernel results are correctly initialized. for fn in expected_inner_init_kernel_results._fields: self.assertAllClose( getattr(expected_init_inner_kernel_results_, fn, np.nan), getattr(init_kernel_results_.accepted_results, fn, np.nan), atol=0., rtol=1e-5) # Check that the proposal is correctly computed. self.assertAllClose([2 * current_state_[0], 3 * current_state_[1]], kernel_results_.proposed_state, atol=0., rtol=1e-5) for fn in expected_inner_kernel_results._fields: self.assertAllClose( getattr(expected_inner_kernel_results_, fn, np.nan), getattr(kernel_results_.proposed_results, fn, np.nan), atol=0., rtol=1e-5) # First: Extremely high correction means proposed will be accepted, despite # high prob initial state. # Second: Extremely low correction means proposed will be rejected, despite # low prob initial state. self.assertAllEqual([True, False], kernel_results_.is_accepted) self.assertAllEqual([(0.5 * 100.) - (100.) + (0.5 * 300.), (0.5 * -100.) - (-100.) + (0.5 * -300.)], kernel_results_.log_accept_ratio) self.assertAllClose([self.dtype([0 + 2, 1]) * current_state_[0], self.dtype([1 + 2, 1]) * current_state_[1]], next_state_) @test_util.jax_disable_test_missing_functionality('stateful sampler/legacy') def testInnerOneStepMissingSeedArg(self): current_state_ = [self.dtype([1, 2]), self.dtype([3, 4])] current_state = [tf.convert_to_tensor(s) for s in current_state_] init_inner_kernel_results = InnerKernelResultsWithCorrection( log_acceptance_correction=self.dtype([+300., -300.]), target_log_prob=self.dtype([100., -100.]), grads_target_log_prob=[self.dtype([1.25, 1.5]), self.dtype([2.25, 2.5])], extraneous=self.dtype([1.75, 2.])) one_step_fn = make_one_step_fn(dtype=self.dtype) bootstrap_fn = make_bootstrap_results_fn(init_inner_kernel_results) mh = tfp.mcmc.MetropolisHastings( FakeTransitionKernel( one_step_fn=one_step_fn, bootstrap_fn=bootstrap_fn, is_calibrated=True, accepts_seed_arg=False)) init_kernel_results = mh.bootstrap_results(current_state) # Verify we can execute a step without an exception, as long as no seed arg # is provided to MH. self.evaluate(mh.one_step(current_state, init_kernel_results)) def testWarnings(self): current_state_ = [self.dtype([1, 2]), self.dtype([3, 4])] current_state = [tf.convert_to_tensor(s) for s in current_state_] # Verify the warning about lacking a log-acceptance correction field. expected_inner_init_kernel_results = InnerKernelResultsWithoutCorrection( target_log_prob=self.dtype([100., -100.]), grads_target_log_prob=[ self.dtype([1.25, 1.5]), self.dtype([2.25, 2.5]), ], extraneous=self.dtype([1.75, 2.])) one_step_fn = make_one_step_fn(dtype=self.dtype) bootstrap_fn = make_bootstrap_results_fn( expected_inner_init_kernel_results) with warnings.catch_warnings(record=True) as w: mh = tfp.mcmc.MetropolisHastings( FakeTransitionKernel( is_calibrated=True, # Verify the already-calibrated warning. one_step_fn=one_step_fn, bootstrap_fn=bootstrap_fn)) init_kernel_results = mh.bootstrap_results(current_state) _, _ = mh.one_step(current_state, init_kernel_results, seed=test_util.test_seed()) w = sorted(w, key=lambda w: str(w.message)) self.assertRegexpMatches( str(w[0].message), r'`TransitionKernel` is already calibrated') self.assertRegexpMatches( str(w[1].message), r'`TransitionKernel` does not have a `log_acceptance_correction`') if __name__ == '__main__': test_util.main()
38.624378
80
0.668642
717846d77a73cf304d2b94867f893dcc1d9f33d0
864
py
Python
Python/multiplication/multiply.py
BackEndTea/Learning
ccbf8fdbb8fb23643898d73e64fe7442ab46b791
[ "MIT" ]
1
2018-10-31T10:36:34.000Z
2018-10-31T10:36:34.000Z
Python/multiplication/multiply.py
BackEndTea/Learning
ccbf8fdbb8fb23643898d73e64fe7442ab46b791
[ "MIT" ]
null
null
null
Python/multiplication/multiply.py
BackEndTea/Learning
ccbf8fdbb8fb23643898d73e64fe7442ab46b791
[ "MIT" ]
2
2021-05-06T11:18:25.000Z
2021-12-04T07:56:29.000Z
def main(): x = 3141592653589793238462643383279502884197169399375105820974944592 y = 2718281828459045235360287471352662497757247093699959574966967627 out = 8539734222673567065463550869546574495034888535765114961879601127067743044893204848617875072216249073013374895871952806582723184 print(multiply(x,y)) print(x * y) # Assume x and y are of the same lenght def multiply(x,y): x = str(x) n = len(x) if (n < 2 ): return int(x)*int(y) n_half = n//2 a = int(x[:n_half]) b = int(x[n_half:]) y = str(y) n_half = len(y)//2 if (n_half < 2): return int(x) * int(y) c = int(y[:n_half]) d = int(y[n_half:]) out = (10**n * multiply(a,c) + 10**n_half * (multiply(a,d) + multiply(b,c)) + multiply(b,d)) return out def _multiply(x,y): pass if __name__ == "__main__": main()
24
137
0.640046
4edefd44048497ff7ec6efc87509d05fd544ee60
19,238
py
Python
dpmModule/character/characterTemplate.py
OniOniOn-/maplestory_dpm_calc
fbe824f01ab8e8210b174dd9db8295da80c267cd
[ "MIT" ]
null
null
null
dpmModule/character/characterTemplate.py
OniOniOn-/maplestory_dpm_calc
fbe824f01ab8e8210b174dd9db8295da80c267cd
[ "MIT" ]
null
null
null
dpmModule/character/characterTemplate.py
OniOniOn-/maplestory_dpm_calc
fbe824f01ab8e8210b174dd9db8295da80c267cd
[ "MIT" ]
null
null
null
import yaml import os from copy import copy, deepcopy from typing import List, Optional, Tuple, Union from ..character.characterKernel import GearedCharacter, JobGenerator from ..gear import Gear, GearBuilder, GearType, GearPropType, Scroll, eval_set_item_effect from ..jobs import job_branch_list from ..kernel.core.modifier import ExtendedCharacterModifier as ExMDF def open_yaml(*paths) -> dict: with open(os.path.join(os.path.dirname(__file__), *paths), encoding='utf8') as _file: return yaml.safe_load(_file) '''How template override works: 1. "default" <- "job" (type: override): Override by keys in "job" ex) default.armor = job.armor, default.head = job.head 2. "armor" <- "head": Override by keys in "head" ''' '''Order of template gear attributes: 1. id* 2. bonus 3. upgrade 4. star 5. potential 6. add_potential 7. cdr ''' class TemplateGenerator: def __init__(self): # TODO: 보조무기 성장치 반영 # "데몬슬레이어": 1099004, # 성장으로 STR 9, DEX 9, HP 200, 방어력 20 상승 # "데몬어벤져": 1099009, # 성장으로 STR 9, HP 200, 방어력 20 상승 # "미하일": 1098003, # 성장으로 STR 9, DEX 9, HP 200, 방어력 20 상승 self.parts = ("head", "top", "bottom", "shoes", "glove", "cape", "shoulder", "face", "eye", "ear", "belt", "ring1", "ring2", "ring3", "ring4", "pendant1", "pendant2", "pocket", "badge", "medal", "weapon", "subweapon", "emblem", "heart") # load template.yaml to 'data' self.data = {} _template_yaml = open_yaml('configs', 'template.yaml') for key in _template_yaml: self.data[key] = open_yaml('configs', _template_yaml[key]) def get_spec_names(self) -> Tuple[str]: names: List[str] = [] for name in self.data.keys(): if not name.startswith("_"): names.append(name) return tuple(names) def get_template_and_weapon_stat(self, gen: JobGenerator, spec_name: str, cdr: int = 0): return self.get_template(gen, spec_name, cdr), self.get_weapon_stat(gen, spec_name) def get_weapon_stat(self, gen: JobGenerator, spec_name: str) -> Tuple[int, int]: return self._get_weapon_stat(self._get_template_dict(spec_name, gen.jobname)) def get_template(self, gen: JobGenerator, spec_name: str, cdr: int = 0) -> GearedCharacter: """ :param gen: JobGenerator :param spec_name: 스펙 이름; 유니온 레벨이 사용됩니다. :param cdr: 쿨타임 감소 (초) :return: GearedCharacter """ node = self._get_template_dict(spec_name, gen.jobname) # Create GearedCharacter with level template = GearedCharacter(gen=gen, level=node['level']) # Apply arcane, authentic, pet, cash modifiers template.apply_modifiers([ self._get_arcane_modifier(node, gen.jobtype), self._get_authentic_modifier(node, gen.jobtype), self._get_pet_modifier(node), self._get_cash_modifier(node, gen.jobtype), self._get_job_specific_item_modifier(node) ]) # Equip title template.title = self._get_title(node) template.add_gear_modifier(template.title) # Equip gears gear_list = {} for part in self.parts: # Set zero subweapon if part == "subweapon" and gen.jobname == "제로": gear_list["subweapon"] = self._get_zero_subweapon(gear_list["weapon"]) else: gear_list[part] = self._get_enchanted_gear(part, node, gen, cdr) # Get set item effects gear_list["set_effect"] = self._get_set_effect(gear_list, node) # Apply gear, set item effect to character mdf template.set_gears(gear_list) return template def _get_template_dict(self, spec_name: str, jobname: str) -> dict: if spec_name not in self.data: raise ValueError('Invalid spec_name: ' + spec_name) # Get job specific copy of node node: dict = deepcopy(self.data[spec_name]['default']) if jobname in self.data[spec_name]: if self.data[spec_name][jobname]['type'] == "full": node = deepcopy(self.data[spec_name][jobname]) elif self.data[spec_name][jobname]['type'] == "override": for node_key in self.data[spec_name][jobname]: node[node_key] = deepcopy(self.data[spec_name][jobname][node_key]) # Assert node contains all necessary parts assert("level" in node and set(self.parts) <= node.keys()) return node def _get_weapon_stat(self, node) -> Tuple[int, int]: if 'weapon_stat' not in node or len(node['weapon_stat']) != 2: raise TypeError('template does not contain valid weapon_stat field') return tuple(node['weapon_stat']) def _get_arcane_modifier(self, node, jobtype: str) -> ExMDF: if "arcane_symbol_force" not in node: return ExMDF() value = node["arcane_symbol_force"] // 10 if jobtype in ("STR", "DEX", "INT", "LUK", "LUK2"): return ExMDF(stat_main_fixed=value * 100) elif jobtype == "HP": return ExMDF(stat_main_fixed=value * 1750) elif jobtype == "xenon": # TODO: 제논 아케인심볼 힘덱럭 적용 # return ExMDF(stat_main_fixed=value * 39, stat_sub_fixed=value * 39) return ExMDF(stat_main_fixed=value * 39 * 3) def _get_authentic_modifier(self, node, jobtype: str) -> ExMDF: if "authentic_symbol_level" not in node: return ExMDF() value = sum([(2 * n + 3) for n in node["authentic_symbol_level"]]) if jobtype in ("STR", "DEX", "INT", "LUK", "LUK2"): return ExMDF(stat_main_fixed=value * 100) elif jobtype == "HP": return ExMDF(stat_main_fixed=value * 1750) elif jobtype == "xenon": # TODO: 제논 어센틱심볼 힘덱럭 적용 # return ExMDF(stat_main_fixed=value * 39, stat_sub_fixed=value * 39 * 2) return ExMDF(stat_main_fixed=value * 39 * 3) def _get_pet_modifier(self, node) -> ExMDF: mdf = ExMDF() if "pet_equip" in node: mdf.att += node["pet_equip"] if "pet_set" in node: mdf.att += node["pet_set"] return mdf def _get_cash_modifier(self, node, jobtype: str) -> ExMDF: if "cash" not in node: return ExMDF() mdf = ExMDF() for stat_key in ("att", "stat_main"): if stat_key in node["cash"]: setattr(mdf, stat_key, node["cash"][stat_key]) if "stat_sub" in node["cash"]: # TODO: 캐시장비도 Gear로 처리하도록 변경할것 if jobtype == "xenon": setattr(mdf, "stat_main", getattr(mdf, "stat_main", 0) + node["cash"]["stat_sub"]) else: setattr(mdf, "stat_sub", node["cash"]["stat_sub"]) if "stat_sub2" in node["cash"]: if jobtype == "xenon": setattr(mdf, "stat_main", getattr(mdf, "stat_main", 0) + node["cash"]["stat_sub2"]) if jobtype == "LUK2": setattr(mdf, "stat_sub", getattr(mdf, "stat_sub", 0) + node["cash"]["stat_sub2"]) return mdf def _get_job_specific_item_modifier(self, node) -> ExMDF: if "job_specific_item" not in node: return ExMDF() mdf = ExMDF() for stat_key in node["job_specific_item"]: setattr(mdf, stat_key, node["job_specific_item"][stat_key]) return mdf def _get_title(self, node) -> Gear: if "title" not in node: raise TypeError('template does not contain title.') return Gear.create_title_from_name(node["title"]['id']) def _get_enchanted_gear(self, part: str, node, gen: JobGenerator, cdr: int) -> Gear: return self._apply_gear_options( self._get_gear_base(node[part]['id'], part, gen.jobname), node[part], part, gen.jobtype, cdr ) def _get_gear_base(self, name: Union[int, str], part: str, jobname: str) -> Gear: def _get_job_branch(jobname: str) -> int: return job_branch_list[jobname] def _get_gear_id(name: str, part: str, jobname: str) -> int: part = part.rstrip('0123456789') preset_node = self.data['_preset'] if part in ("weapon", "subweapon", "emblem"): if name in preset_node[part]: if jobname in preset_node[part][name]: return preset_node[part][name][jobname] else: if name in preset_node['default']: if part in preset_node['default'][name]: id_list = preset_node['default'][name][part] if len(id_list) == 6: return id_list[_get_job_branch(jobname)] else: return id_list[0] return Gear.get_id_from_name(name) debug_name = str(name) if type(name) == str: name = _get_gear_id(name, part, jobname) if name <= 0: raise ValueError('Invalid gear name: ' + debug_name + ' (part: ' + part + ', jobname: ' + jobname + ')') return Gear.create_from_id(name) def _apply_gear_options(self, gear: Gear, gear_node, part: str, jobtype: str, cdr) -> Gear: def _apply_bonus(bonus_node): def _is_bonus_gear(part: str): part = part.rstrip("0123456789") return part in ("head", "top", "bottom", "shoes", "glove", "cape", "shoulder", "face", "eye", "ear", "belt", "pendant", "pocket", "weapon") if len(bonus_node) > 0 and not _is_bonus_gear(part): raise TypeError('Cannot apply bonus to gear type: ' + gear.type.name) for bonus_type in bonus_node: if bonus_type == "att_grade": gb.apply_additional_stat(att, bonus_node[bonus_type]) elif bonus_type == "allstat_rate": gb.apply_additional_stat(GearPropType.allstat, bonus_node[bonus_type]) elif stat_type[bonus_type] is not None: gear.additional_stat[stat_type[bonus_type]] = bonus_node[bonus_type] def _apply_upgrade(upgrade_node): # Ignore special case: subweapon / shield if len(upgrade_node) > 0 and gear.tuc < 1 and part != "subweapon": raise TypeError('Cannot apply scroll upgrade to gear: ' + str(gear)) gb.apply_hammer() for scroll in upgrade_node: type = scroll['type'] count = scroll['count'] if count < 0: count = gb.scroll_available if type == "주문의 흔적" or type == "주흔": prob = scroll['prob'] stat = stat_type[scroll['stat']] gb.apply_spell_trace_scroll(prob, stat, count) elif type == "방공" or type == "악공": gb.apply_scroll(Scroll.create_from_dict({att: scroll['value']}), count) elif type == "매지컬": value = scroll['value'] gb.apply_scroll(Scroll.create_from_dict({ GearPropType.STR: 3, GearPropType.DEX: 3, GearPropType.INT: 3, GearPropType.LUK: 3, att: value }), count) elif type == "파편": gb.apply_scroll(Scroll.create_from_dict({ GearPropType.STR: 3, GearPropType.DEX: 3, GearPropType.INT: 3, GearPropType.LUK: 3, GearPropType.MHP: 40, GearPropType.att: 3, GearPropType.matt: 3 }), count) elif type == "혼돈의 주문서" or "혼줌": stat = {} for stat_key in scroll['option']: stat[stat_type[stat_key]] = scroll['option'][stat_key] gb.apply_scroll(Scroll.create_from_dict(stat), count) else: raise TypeError('Invalid upgrade type: ' + type) def _apply_star(gear_node): star = gear_node['star'] # Ignore special case: subweapon / shield if abs(star) > gear.max_star and part != "subweapon": raise TypeError('Tried to apply star ' + str(star) + ' but max_star was ' + str(gear.max_star)) if star > 0: gb.apply_stars(star) elif star < 0: bonus = 0 if 'surprise_bonus' in gear_node: bonus = gear_node['surprise_bonus'] bonus_count = abs(star) * bonus // 100 gb.apply_stars(abs(star) - bonus_count, True, False) gb.apply_stars(bonus_count, True, True) def _apply_potential(potential_node, gear_potential_dict): def _is_potential_gear(part: str): part = part.rstrip("0123456789") return part in ("head", "top", "bottom", "shoes", "glove", "cape", "shoulder", "face", "eye", "ear", "belt", "ring", "pendant", "weapon", "subweapon", "emblem", "heart") if len(potential_node) > 0 and not _is_potential_gear(part): raise TypeError('Cannot apply potential to gear type: ' + gear.type.name) gear_potential_dict.clear() for stat_key in potential_node: if stat_key == "allstat_rate": gear_potential_dict[pstat_main] += potential_node[stat_key] gear_potential_dict[pstat_sub] += potential_node[stat_key] gear_potential_dict[pstat_sub2] += potential_node[stat_key] elif stat_type[stat_key] is not None: gear_potential_dict[stat_type[stat_key]] += potential_node[stat_key] stat_main, pstat_main, stat_sub, pstat_sub, stat_sub2, pstat_sub2, att, patt = _get_stat_type(jobtype) stat_type = { "stat_main": stat_main, "pstat_main": pstat_main, "stat_sub": stat_sub, "pstat_sub": pstat_sub, "stat_sub2": stat_sub2, "pstat_sub2": pstat_sub2, "att": att, "patt": patt, "pdamage": GearPropType.pdamage, "boss_pdamage": GearPropType.boss_pdamage, "armor_ignore": GearPropType.armor_ignore, "crit": GearPropType.crit, "crit_damage": GearPropType.crit_damage, "cooltime_reduce": GearPropType.cooltime_reduce, "pdamage_indep": GearPropType.pdamage_indep, } gb = GearBuilder(gear) # 추가옵션 if 'bonus' in gear_node: _apply_bonus(gear_node['bonus']) # 주문서 강화 if 'upgrade' in gear_node: _apply_upgrade(gear_node['upgrade']) # 스타포스 강화 if 'star' in gear_node: _apply_star(gear_node) # 잠재능력 if 'potential' in gear_node: _apply_potential(gear_node['potential'], gear.potential) # 에디셔널 잠재능력 if 'add_potential' in gear_node: _apply_potential(gear_node['add_potential'], gear.additional_potential) # 모자 쿨타임 감소 옵션 if gear.type == GearType.cap and cdr > 0: if "cdr" not in gear_node or str(cdr) not in gear_node["cdr"]: raise ValueError('template does not contain cdr information for cdr input: ' + str(cdr)) cdr_node = gear_node["cdr"][str(cdr)] if 'potential' in cdr_node: _apply_potential(cdr_node['potential'], gear.potential) if 'add_potential' in cdr_node: _apply_potential(cdr_node['add_potential'], gear.additional_potential) return gear def _get_zero_subweapon(self, zero_weapon: Gear) -> Gear: assert (zero_weapon.type == GearType.sword_zl) subweapon_id = zero_weapon.item_id - 10000 subweapon = Gear.create_from_id(subweapon_id) shared_types = (GearPropType.boss_pdamage, GearPropType.armor_ignore, GearPropType.pdamage, GearPropType.STR_rate, GearPropType.DEX_rate, GearPropType.INT_rate, GearPropType.LUK_rate) for stat_type in shared_types: subweapon.additional_stat[stat_type] = zero_weapon.additional_stat[stat_type] subweapon.potential = copy(zero_weapon.potential) subweapon.additional_potential = copy(zero_weapon.additional_potential) return subweapon def _get_set_effect(self, gears, node) -> Gear: def _get_zero_weapon_set_id(name: str): try: return self.data['_preset']["zero_weapon_set_id"][name] except KeyError: return 0 set_effect = Gear() set_effect.name = "세트효과 합계" set_effect.type = GearType._dummy # Zero set item id effect weapon_id = gears["weapon"].item_id weapon_set_item_id = gears["weapon"].set_item_id if gears["weapon"].type == GearType.sword_zl and "zero_weapon_set_name" in node: gears["weapon"].item_id = 1570000 gears["weapon"].set_item_id = _get_zero_weapon_set_id(node["zero_weapon_set_name"]) set_effect.base_stat = eval_set_item_effect(gears.values()) # Revert zero set item id gears["weapon"].item_id = weapon_id gears["weapon"].set_item_id = weapon_set_item_id return set_effect def _get_stat_type(jobtype: str) -> Tuple[ GearPropType, GearPropType, GearPropType, GearPropType, Optional[GearPropType], Optional[GearPropType], GearPropType, GearPropType]: # stat_main, pstat_main, stat_sub, pstat_sub, stat_sub2, pstat_sub2, att, patt return { "STR": ( GearPropType.STR, GearPropType.STR_rate, GearPropType.DEX, GearPropType.DEX_rate, None, None, GearPropType.att, GearPropType.att_rate ), "DEX": ( GearPropType.DEX, GearPropType.DEX_rate, GearPropType.STR, GearPropType.STR_rate, None, None, GearPropType.att, GearPropType.att_rate ), "INT": ( GearPropType.INT, GearPropType.INT_rate, GearPropType.LUK, GearPropType.LUK_rate, None, None, GearPropType.matt, GearPropType.matt_rate ), "LUK": ( GearPropType.LUK, GearPropType.LUK_rate, GearPropType.DEX, GearPropType.DEX_rate, None, None, GearPropType.att, GearPropType.att_rate ), "LUK2": ( GearPropType.LUK, GearPropType.LUK_rate, GearPropType.DEX, GearPropType.DEX_rate, GearPropType.STR, GearPropType.STR_rate, GearPropType.att, GearPropType.att_rate ), "HP": ( GearPropType.MHP, GearPropType.MHP_rate, GearPropType.STR, GearPropType.STR_rate, None, None, GearPropType.att, GearPropType.att_rate ), "xenon": ( GearPropType.LUK, GearPropType.LUK_rate, GearPropType.DEX, GearPropType.DEX_rate, GearPropType.STR, GearPropType.STR_rate, GearPropType.att, GearPropType.att_rate ), }[jobtype]
44.948598
118
0.58478
c4826366922e9e388c78ffab1f2c206d845740f9
6,229
py
Python
contrib/btorcheckmodel.py
zyedidia/boolector
f1abe139025ca2bda442d094237af66aa6eb7cee
[ "MIT" ]
209
2018-05-22T06:52:46.000Z
2022-03-19T11:13:22.000Z
contrib/btorcheckmodel.py
zyedidia/boolector
f1abe139025ca2bda442d094237af66aa6eb7cee
[ "MIT" ]
166
2018-05-24T06:39:07.000Z
2022-03-14T22:56:03.000Z
contrib/btorcheckmodel.py
zyedidia/boolector
f1abe139025ca2bda442d094237af66aa6eb7cee
[ "MIT" ]
48
2018-05-23T10:01:31.000Z
2022-01-25T09:56:37.000Z
#!/usr/bin/env python # Boolector: Satisfiablity Modulo Theories (SMT) solver. # # Copyright (C) 2007-2021 by the authors listed in the AUTHORS file. # # This file is part of Boolector. # See COPYING for more information on using this software. # import sys, os, random, signal def dec2bin(dec, len): binary = bin(dec).split('b')[1] evalstring= "%0" + str(len) + "d" return evalstring % int(binary) if len(sys.argv) != 4: print("Usage: ./btorcheckmodel <btor-file> <btor-output-model-file> <boolector-binary>") sys.exit(2) pid = os.getpid(); foutname = "/tmp/btorcheckmodel" + str(pid) +".btor" # get absolute path to boolector binary boolector = sys.argv[3] def cleanup(): try: os.remove(foutname) except: pass # ignore exception def signalhandler(signum, frame): cleanup() sys.exit(0) signal.signal(signal.SIGINT, signalhandler) signal.signal(signal.SIGTERM, signalhandler) signal.signal(signal.SIGHUP, signalhandler) fout = open (foutname, "w") arrays = {} arrayass = {} constants = {} foundroot=False with open (sys.argv[1], "r") as fin: for origline in fin: line = origline.strip() words = line.split() if words[1] == "root": if foundroot: print("Multiple roots are not supported") sys.exit(2) foundroot=True id = int(words[0]) rootarg = words[3] else: if words[1] == "array": if int(words[3]) > 8: print("Arrays with index len > 8 are not supported") sys.exit(2) arrays[words[0]]=words[2] + " " + words[3] arrayass[words[0]]={} if words[2] not in constants: randnr = random.randint(0, (2 ** int(words[2])) - 1) constants[words[2]]=dec2bin (randnr, int(words[2])) fout.write (origline) if foundroot == False: print("Root is missing") sys.exit(2) fout.write (str(id) + " const 1 1\n") lastand = id id = id + 1 with open (sys.argv[2], "r") as fin: origline = fin.readline() if origline.strip() != "sat": print("Formula is not SAT") sys.exit(2) for origline in fin: line = origline.strip() words = line.split() opos = words[0].find("[") if opos == -1: #bv model modelid= words[0] #check if modelid is really an integer or an identifier try: temp = int(modelid) except: print("invalid identifier") sys.exit(2) ## modelid is an identifier, we have to get the id #ret = os.popen ("grep \"\<" + modelid + "\>\" " + sys.argv[1] + \ # "| awk '{print $1}'") #lines = ret.readlines() #if len(lines) > 1: # print "BV identifier is not unique" # sys.exit(1) #if len(lines) == 0: # print "Cannot find BV identifier" # sys.exit(1) #modelid = lines[0].strip() ass = words[1] assl = len(ass) randnr = random.randint (0, 1) ass = ass.replace("x", str(randnr)) fout.write (str(id) + " const " + str(assl) + " " + ass + "\n") lastid = str(id) id = id + 1 fout.write (str(id) + " eq 1 " + modelid + " " + lastid + "\n") lastid = str(id) id = id + 1 fout.write (str(id) + " and 1 " + str(lastand) + " " + lastid + "\n") lastand = id id = id + 1 else: cpos = words[0].find("]") if cpos == -1: print("Invalid format of model file") sys.exit(2) aid=line[0:opos] #check if array id is really an integer or an identifier try: temp = int(aid) except: print("invalid identifier") sys.exit(2) ## aid is an identifier, we have to get the id #ret = os.popen ("grep \"\<" + aid + "\>\" " + sys.argv[1] + \ # "| awk '{print $1}'") #lines = ret.readlines() #if len(lines) > 1: # print "Array identifier is not unique" # sys.exit(1) #if len(lines) == 0: # print "Cannot find array identifier" # sys.exit(1) #aid = lines[0].strip() iass=line[opos + 1:cpos] iassl=len(iass) if iass.find("x") != -1: print("Unexpected index assignment") sys.exit(2) vass=words[1] vassl=len(vass) if vass.find("x") != -1: print("Unexpected value assignment") sys.exit(2) fout.write(str(id) + " const " + str(iassl) + " " + iass + "\n") iid = lastid = str(id) id = id + 1 fout.write(str(id) + " const " + str(vassl) + " " + vass + "\n") vid = lastid = str(id) id = id + 1 fout.write(str(id) + " read " + str(vassl) + " " + aid + " " + iid + "\n") lastid = str(id) id = id + 1 fout.write(str(id) + " eq 1 " + vid + " " + lastid + "\n") lastid = str(id) id = id + 1 fout.write (str(id) + " and 1 " + str(lastand) + " " + lastid + "\n") lastand = id id = id + 1 # remember assignment arrayass[aid][iass] = vass for key in arrays: words = arrays[key].split() vlen = words[0] ilen = words[1] looprange = range (0, 2 ** int(ilen)) ass = arrayass[key] constant = constants[vlen] for i in looprange: binary = dec2bin (i, ilen) if binary not in ass: fout.write(str(id) + " const " + str(ilen) + " " + binary + "\n") iid = lastid = str(id) id = id + 1 fout.write(str(id) + " const " + str(vlen) + " " + constant + "\n") vid = lastid = str(id) id = id + 1 fout.write(str(id) + " read " + str(vlen) + " " + key + " " + iid + "\n") lastid = str(id) id = id + 1 fout.write(str(id) + " eq 1 " + vid + " " + lastid + "\n") lastid = str(id) id = id + 1 fout.write (str(id) + " and 1 " + str(lastand) + " " + lastid + "\n") lastand = id id = id + 1 fout.write(str(id) + " implies 1 " + str(lastand) + " " + rootarg + "\n") lastid = id id = id + 1 fout.write(str(id) + " root 1 -" + str(lastid) + "\n") fout.close() ret = os.popen (boolector + " -rwl 0 " + foutname) result = ret.readline().strip() if result == "sat": print("Invalid") sys.exit(1) elif result != "unsat": print("Unexpected result") sys.exit(2) cleanup() print("Valid") sys.exit(0)
28.18552
90
0.533794
3017db53ac8910ac687743788813f6d14d181a87
6,695
py
Python
ui/command_line.py
hkkwok/MachOTool
469c0fd06199356fcc6d68809c7ba15a12eac1fd
[ "Apache-2.0" ]
12
2016-01-08T22:35:14.000Z
2019-07-29T11:50:41.000Z
ui/command_line.py
uvbs/MachOTool
469c0fd06199356fcc6d68809c7ba15a12eac1fd
[ "Apache-2.0" ]
2
2015-12-10T21:28:04.000Z
2019-10-15T10:05:19.000Z
ui/command_line.py
uvbs/MachOTool
469c0fd06199356fcc6d68809c7ba15a12eac1fd
[ "Apache-2.0" ]
6
2016-10-10T05:29:41.000Z
2019-10-15T09:59:17.000Z
from utils.header import Header from mach_o.headers.mach_header import MachHeader, MachHeader64 from mach_o.headers.load_command import LoadCommandHeader from mach_o.non_headers.cstring import Cstring from mach_o.headers.dylib_command import DylibCommand class Command(object): def __init__(self, command, action, desc, flag=None): self.command = command self.action = action self.desc = desc self.flag = flag if self.flag is None: self.flag = '-' + self.command[0] def match(self, line): return self.command.startswith(line.strip()) def _get_tokens(self, line): tokens = line.split() if len(tokens) > 0: assert tokens[0].startswith(self.command) return tokens def getattr(self): return self.command.replace('-', '_') def run(self, line, cli): tokens = self._get_tokens(line) if len(tokens) == 0: return False method = getattr(cli, self.action) assert callable(method) method(*tokens[1:]) class CommandLine(object): COMMANDS = ( Command('cstring', 'print_cstring', 'print all C strings', '-c'), Command('fat-header', 'print_fat_header', 'print the fat header', '-f'), Command('load-command', 'print_load_commands', 'print all load commands', '-l'), Command('mach-header', 'print_mach_header', 'print all mach headers', '-m'), Command('raw', 'print_full', 'print the complete structure of the file', '-R'), Command('shared-library', 'print_shared_libraries', 'print all shared libraries used', '-L'), Command('shared-library-table', 'print_shared_libraries_table', 'print all shared libraries used', ''), ) def __init__(self, byte_range): self.byte_range = byte_range def run(self, line): # find all commands that match matches = list() for cmd in self.COMMANDS: if cmd.match(line): matches.append(cmd) num_matches = len(matches) if num_matches != 1: return matches else: # run the only matched command matches[0].run(line, self) @classmethod def configure_parser(cls, parser): for cmd in cls.COMMANDS: if cmd.flag is None: continue if len(cmd.flag) > 0: parser.add_argument(cmd.flag, '--' + cmd.command, action='store_true', help=cmd.desc) else: parser.add_argument('--' + cmd.command, action='store_true', help=cmd.desc) def parse_options(self, options): for cmd in self.COMMANDS: attr = getattr(options, cmd.getattr()) if attr is True: cmd.run(cmd.command, self) def print_full(self): def format_element(br, start, stop, level): if level == 0: return '' return '%s%d-%d: %s' % (' ' * (level - 1), start, stop, str(br.data)) print '\n'.join(self.byte_range.iterate(format_element)) @staticmethod def format_header(hdr, trailing_lf=True): assert isinstance(hdr, Header) output = hdr.name + '\n ' output += '\n '.join(hdr.get_fields_repr(': ')) if trailing_lf: output += '\n' return output @staticmethod def _list_remove_all(str_list, pattern): return filter(lambda x: x != pattern, str_list) @staticmethod def _list_remove_empty(str_list): return CommandLine._list_remove_all(str_list, '') @staticmethod def _list_remove_none(list_): return CommandLine._list_remove_all(list_, None) def print_mach_header(self): def format_mach_header(br, start, stop, level): assert start is not None and stop is not None and level is not None # get rid of pycharm warning if not isinstance(br.data, (MachHeader, MachHeader64)): return '' return self.format_header(br.data) lines = self.byte_range.iterate(format_mach_header) lines = self._list_remove_empty(lines) print '\n'.join(lines) def print_load_commands(self): def format_load_command(br, start, stop, level): assert start is not None and stop is not None and level is not None # get rid of pycharm warning if not isinstance(br.data, LoadCommandHeader): return '' return self.format_header(br.data) lines = self.byte_range.iterate(format_load_command) lines = self._list_remove_empty(lines) print '\n'.join(lines) print '\n%d load commands' % len(lines) def print_cstring(self): def format_cstring(br, start, stop, level): assert start is not None and stop is not None and level is not None # get rid of pycharm warning if not isinstance(br.data, Cstring): return '' return br.data.string lines = self.byte_range.iterate(format_cstring) lines = self._list_remove_empty(lines) n = 1 for line in lines: print '%d: %s' % (n, line) n += 1 def _get_shared_libraries(self): def filter_dylib_command(br, start, stop, level): assert start is not None and stop is not None and level is not None # get rid of pycharm warning if not isinstance(br.data, DylibCommand): return None parent_br = br.parent assert parent_br is not None assert len(parent_br.subranges) in (2, 3) # 3rd subrange is for optional alignment padding return br.data, parent_br.subranges[1].data subranges = self.byte_range.iterate(filter_dylib_command) dylib_commands = self._list_remove_none(subranges) return dylib_commands def print_shared_libraries(self): for (dylib_command, lc_str) in self._get_shared_libraries(): print self.format_header(dylib_command, trailing_lf=False) print ' %s: %s\n' % (lc_str.desc, lc_str.value) def print_shared_libraries_table(self): print 'timestamp current compatib. name' print '------------------- ---------- ---------- -------------------------' for (dylib_command, lc_str) in self._get_shared_libraries(): print '%18s %10s %10s %s' % ( DylibCommand.FIELDS[3].display(dylib_command), DylibCommand.FIELDS[4].display(dylib_command), DylibCommand.FIELDS[5].display(dylib_command), lc_str.value ) def print_symbol_table(self): pass
38.477011
111
0.603286
dc24a4813fc2346431758022af1f79d4bfd0d09c
651
py
Python
scieio/biotechnology/serializers.py
arnelimperial/scieio
279a25766f20d074a3df824c0fbc8b2d8e35f272
[ "MIT" ]
null
null
null
scieio/biotechnology/serializers.py
arnelimperial/scieio
279a25766f20d074a3df824c0fbc8b2d8e35f272
[ "MIT" ]
8
2021-03-19T01:56:44.000Z
2022-03-12T00:24:21.000Z
scieio/biotechnology/serializers.py
arnelimperial/scieio
279a25766f20d074a3df824c0fbc8b2d8e35f272
[ "MIT" ]
null
null
null
from rest_framework import serializers from scieio.biotechnology import models class BioTechSerializer(serializers.ModelSerializer): class Meta: model = models.BioTech fields = ( 'id', 'life_science', 'name', 'slug', 'description', 'product_code', 'model', 'condition', 'warranty', 'seller', 'manufacturer', 'image', 'availability', 'price', 'created', 'name', 'slug', 'created', 'updated' )
21.7
53
0.44086
789fcec2cefb69de6f17e9747c2df7d7414a6871
48,487
py
Python
seaborn/tests/test_matrix.py
bdice/seaborn
29f5807efdf0544b16c088beac7c1c5eda174084
[ "BSD-3-Clause" ]
null
null
null
seaborn/tests/test_matrix.py
bdice/seaborn
29f5807efdf0544b16c088beac7c1c5eda174084
[ "BSD-3-Clause" ]
null
null
null
seaborn/tests/test_matrix.py
bdice/seaborn
29f5807efdf0544b16c088beac7c1c5eda174084
[ "BSD-3-Clause" ]
null
null
null
import itertools import tempfile import copy import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd from scipy.spatial import distance from scipy.cluster import hierarchy import nose.tools as nt import numpy.testing as npt try: import pandas.testing as pdt except ImportError: import pandas.util.testing as pdt import pytest from .. import matrix as mat from .. import color_palette try: import fastcluster assert fastcluster _no_fastcluster = False except ImportError: _no_fastcluster = True class TestHeatmap: rs = np.random.RandomState(sum(map(ord, "heatmap"))) x_norm = rs.randn(4, 8) letters = pd.Series(["A", "B", "C", "D"], name="letters") df_norm = pd.DataFrame(x_norm, index=letters) x_unif = rs.rand(20, 13) df_unif = pd.DataFrame(x_unif) default_kws = dict(vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=False, fmt=".2f", annot_kws=None, cbar=True, cbar_kws=None, mask=None) def test_ndarray_input(self): p = mat._HeatMapper(self.x_norm, **self.default_kws) npt.assert_array_equal(p.plot_data, self.x_norm) pdt.assert_frame_equal(p.data, pd.DataFrame(self.x_norm)) npt.assert_array_equal(p.xticklabels, np.arange(8)) npt.assert_array_equal(p.yticklabels, np.arange(4)) nt.assert_equal(p.xlabel, "") nt.assert_equal(p.ylabel, "") def test_df_input(self): p = mat._HeatMapper(self.df_norm, **self.default_kws) npt.assert_array_equal(p.plot_data, self.x_norm) pdt.assert_frame_equal(p.data, self.df_norm) npt.assert_array_equal(p.xticklabels, np.arange(8)) npt.assert_array_equal(p.yticklabels, self.letters.values) nt.assert_equal(p.xlabel, "") nt.assert_equal(p.ylabel, "letters") def test_df_multindex_input(self): df = self.df_norm.copy() index = pd.MultiIndex.from_tuples([("A", 1), ("B", 2), ("C", 3), ("D", 4)], names=["letter", "number"]) index.name = "letter-number" df.index = index p = mat._HeatMapper(df, **self.default_kws) combined_tick_labels = ["A-1", "B-2", "C-3", "D-4"] npt.assert_array_equal(p.yticklabels, combined_tick_labels) nt.assert_equal(p.ylabel, "letter-number") p = mat._HeatMapper(df.T, **self.default_kws) npt.assert_array_equal(p.xticklabels, combined_tick_labels) nt.assert_equal(p.xlabel, "letter-number") @pytest.mark.parametrize("dtype", [float, np.int64, object]) def test_mask_input(self, dtype): kws = self.default_kws.copy() mask = self.x_norm > 0 kws['mask'] = mask data = self.x_norm.astype(dtype) p = mat._HeatMapper(data, **kws) plot_data = np.ma.masked_where(mask, data) npt.assert_array_equal(p.plot_data, plot_data) def test_mask_limits(self): """Make sure masked cells are not used to calculate extremes""" kws = self.default_kws.copy() mask = self.x_norm > 0 kws['mask'] = mask p = mat._HeatMapper(self.x_norm, **kws) assert p.vmax == np.ma.array(self.x_norm, mask=mask).max() assert p.vmin == np.ma.array(self.x_norm, mask=mask).min() mask = self.x_norm < 0 kws['mask'] = mask p = mat._HeatMapper(self.x_norm, **kws) assert p.vmin == np.ma.array(self.x_norm, mask=mask).min() assert p.vmax == np.ma.array(self.x_norm, mask=mask).max() def test_default_vlims(self): p = mat._HeatMapper(self.df_unif, **self.default_kws) nt.assert_equal(p.vmin, self.x_unif.min()) nt.assert_equal(p.vmax, self.x_unif.max()) def test_robust_vlims(self): kws = self.default_kws.copy() kws["robust"] = True p = mat._HeatMapper(self.df_unif, **kws) nt.assert_equal(p.vmin, np.percentile(self.x_unif, 2)) nt.assert_equal(p.vmax, np.percentile(self.x_unif, 98)) def test_custom_sequential_vlims(self): kws = self.default_kws.copy() kws["vmin"] = 0 kws["vmax"] = 1 p = mat._HeatMapper(self.df_unif, **kws) nt.assert_equal(p.vmin, 0) nt.assert_equal(p.vmax, 1) def test_custom_diverging_vlims(self): kws = self.default_kws.copy() kws["vmin"] = -4 kws["vmax"] = 5 kws["center"] = 0 p = mat._HeatMapper(self.df_norm, **kws) nt.assert_equal(p.vmin, -4) nt.assert_equal(p.vmax, 5) def test_array_with_nans(self): x1 = self.rs.rand(10, 10) nulls = np.zeros(10) * np.nan x2 = np.c_[x1, nulls] m1 = mat._HeatMapper(x1, **self.default_kws) m2 = mat._HeatMapper(x2, **self.default_kws) nt.assert_equal(m1.vmin, m2.vmin) nt.assert_equal(m1.vmax, m2.vmax) def test_mask(self): df = pd.DataFrame(data={'a': [1, 1, 1], 'b': [2, np.nan, 2], 'c': [3, 3, np.nan]}) kws = self.default_kws.copy() kws["mask"] = np.isnan(df.values) m = mat._HeatMapper(df, **kws) npt.assert_array_equal(np.isnan(m.plot_data.data), m.plot_data.mask) def test_custom_cmap(self): kws = self.default_kws.copy() kws["cmap"] = "BuGn" p = mat._HeatMapper(self.df_unif, **kws) nt.assert_equal(p.cmap, mpl.cm.BuGn) def test_centered_vlims(self): kws = self.default_kws.copy() kws["center"] = .5 p = mat._HeatMapper(self.df_unif, **kws) nt.assert_equal(p.vmin, self.df_unif.values.min()) nt.assert_equal(p.vmax, self.df_unif.values.max()) def test_default_colors(self): vals = np.linspace(.2, 1, 9) cmap = mpl.cm.binary ax = mat.heatmap([vals], cmap=cmap) fc = ax.collections[0].get_facecolors() cvals = np.linspace(0, 1, 9) npt.assert_array_almost_equal(fc, cmap(cvals), 2) def test_custom_vlim_colors(self): vals = np.linspace(.2, 1, 9) cmap = mpl.cm.binary ax = mat.heatmap([vals], vmin=0, cmap=cmap) fc = ax.collections[0].get_facecolors() npt.assert_array_almost_equal(fc, cmap(vals), 2) def test_custom_center_colors(self): vals = np.linspace(.2, 1, 9) cmap = mpl.cm.binary ax = mat.heatmap([vals], center=.5, cmap=cmap) fc = ax.collections[0].get_facecolors() npt.assert_array_almost_equal(fc, cmap(vals), 2) def test_cmap_with_properties(self): kws = self.default_kws.copy() cmap = copy.copy(mpl.cm.get_cmap("BrBG")) cmap.set_bad("red") kws["cmap"] = cmap hm = mat._HeatMapper(self.df_unif, **kws) npt.assert_array_equal( cmap(np.ma.masked_invalid([np.nan])), hm.cmap(np.ma.masked_invalid([np.nan]))) kws["center"] = 0.5 hm = mat._HeatMapper(self.df_unif, **kws) npt.assert_array_equal( cmap(np.ma.masked_invalid([np.nan])), hm.cmap(np.ma.masked_invalid([np.nan]))) kws = self.default_kws.copy() cmap = copy.copy(mpl.cm.get_cmap("BrBG")) cmap.set_under("red") kws["cmap"] = cmap hm = mat._HeatMapper(self.df_unif, **kws) npt.assert_array_equal(cmap(-np.inf), hm.cmap(-np.inf)) kws["center"] = .5 hm = mat._HeatMapper(self.df_unif, **kws) npt.assert_array_equal(cmap(-np.inf), hm.cmap(-np.inf)) kws = self.default_kws.copy() cmap = copy.copy(mpl.cm.get_cmap("BrBG")) cmap.set_over("red") kws["cmap"] = cmap hm = mat._HeatMapper(self.df_unif, **kws) npt.assert_array_equal(cmap(-np.inf), hm.cmap(-np.inf)) kws["center"] = .5 hm = mat._HeatMapper(self.df_unif, **kws) npt.assert_array_equal(cmap(np.inf), hm.cmap(np.inf)) def test_tickabels_off(self): kws = self.default_kws.copy() kws['xticklabels'] = False kws['yticklabels'] = False p = mat._HeatMapper(self.df_norm, **kws) nt.assert_equal(p.xticklabels, []) nt.assert_equal(p.yticklabels, []) def test_custom_ticklabels(self): kws = self.default_kws.copy() xticklabels = list('iheartheatmaps'[:self.df_norm.shape[1]]) yticklabels = list('heatmapsarecool'[:self.df_norm.shape[0]]) kws['xticklabels'] = xticklabels kws['yticklabels'] = yticklabels p = mat._HeatMapper(self.df_norm, **kws) nt.assert_equal(p.xticklabels, xticklabels) nt.assert_equal(p.yticklabels, yticklabels) def test_custom_ticklabel_interval(self): kws = self.default_kws.copy() xstep, ystep = 2, 3 kws['xticklabels'] = xstep kws['yticklabels'] = ystep p = mat._HeatMapper(self.df_norm, **kws) nx, ny = self.df_norm.T.shape npt.assert_array_equal(p.xticks, np.arange(0, nx, xstep) + .5) npt.assert_array_equal(p.yticks, np.arange(0, ny, ystep) + .5) npt.assert_array_equal(p.xticklabels, self.df_norm.columns[0:nx:xstep]) npt.assert_array_equal(p.yticklabels, self.df_norm.index[0:ny:ystep]) def test_heatmap_annotation(self): ax = mat.heatmap(self.df_norm, annot=True, fmt=".1f", annot_kws={"fontsize": 14}) for val, text in zip(self.x_norm.flat, ax.texts): nt.assert_equal(text.get_text(), "{:.1f}".format(val)) nt.assert_equal(text.get_fontsize(), 14) def test_heatmap_annotation_overwrite_kws(self): annot_kws = dict(color="0.3", va="bottom", ha="left") ax = mat.heatmap(self.df_norm, annot=True, fmt=".1f", annot_kws=annot_kws) for text in ax.texts: nt.assert_equal(text.get_color(), "0.3") nt.assert_equal(text.get_ha(), "left") nt.assert_equal(text.get_va(), "bottom") def test_heatmap_annotation_with_mask(self): df = pd.DataFrame(data={'a': [1, 1, 1], 'b': [2, np.nan, 2], 'c': [3, 3, np.nan]}) mask = np.isnan(df.values) df_masked = np.ma.masked_where(mask, df) ax = mat.heatmap(df, annot=True, fmt='.1f', mask=mask) nt.assert_equal(len(df_masked.compressed()), len(ax.texts)) for val, text in zip(df_masked.compressed(), ax.texts): nt.assert_equal("{:.1f}".format(val), text.get_text()) def test_heatmap_annotation_mesh_colors(self): ax = mat.heatmap(self.df_norm, annot=True) mesh = ax.collections[0] nt.assert_equal(len(mesh.get_facecolors()), self.df_norm.values.size) plt.close("all") def test_heatmap_annotation_other_data(self): annot_data = self.df_norm + 10 ax = mat.heatmap(self.df_norm, annot=annot_data, fmt=".1f", annot_kws={"fontsize": 14}) for val, text in zip(annot_data.values.flat, ax.texts): nt.assert_equal(text.get_text(), "{:.1f}".format(val)) nt.assert_equal(text.get_fontsize(), 14) def test_heatmap_annotation_with_limited_ticklabels(self): ax = mat.heatmap(self.df_norm, fmt=".2f", annot=True, xticklabels=False, yticklabels=False) for val, text in zip(self.x_norm.flat, ax.texts): nt.assert_equal(text.get_text(), "{:.2f}".format(val)) def test_heatmap_cbar(self): f = plt.figure() mat.heatmap(self.df_norm) nt.assert_equal(len(f.axes), 2) plt.close(f) f = plt.figure() mat.heatmap(self.df_norm, cbar=False) nt.assert_equal(len(f.axes), 1) plt.close(f) f, (ax1, ax2) = plt.subplots(2) mat.heatmap(self.df_norm, ax=ax1, cbar_ax=ax2) nt.assert_equal(len(f.axes), 2) plt.close(f) @pytest.mark.xfail(mpl.__version__ == "3.1.1", reason="matplotlib 3.1.1 bug") def test_heatmap_axes(self): ax = mat.heatmap(self.df_norm) xtl = [int(l.get_text()) for l in ax.get_xticklabels()] nt.assert_equal(xtl, list(self.df_norm.columns)) ytl = [l.get_text() for l in ax.get_yticklabels()] nt.assert_equal(ytl, list(self.df_norm.index)) nt.assert_equal(ax.get_xlabel(), "") nt.assert_equal(ax.get_ylabel(), "letters") nt.assert_equal(ax.get_xlim(), (0, 8)) nt.assert_equal(ax.get_ylim(), (4, 0)) def test_heatmap_ticklabel_rotation(self): f, ax = plt.subplots(figsize=(2, 2)) mat.heatmap(self.df_norm, xticklabels=1, yticklabels=1, ax=ax) for t in ax.get_xticklabels(): nt.assert_equal(t.get_rotation(), 0) for t in ax.get_yticklabels(): nt.assert_equal(t.get_rotation(), 90) plt.close(f) df = self.df_norm.copy() df.columns = [str(c) * 10 for c in df.columns] df.index = [i * 10 for i in df.index] f, ax = plt.subplots(figsize=(2, 2)) mat.heatmap(df, xticklabels=1, yticklabels=1, ax=ax) for t in ax.get_xticklabels(): nt.assert_equal(t.get_rotation(), 90) for t in ax.get_yticklabels(): nt.assert_equal(t.get_rotation(), 0) plt.close(f) def test_heatmap_inner_lines(self): c = (0, 0, 1, 1) ax = mat.heatmap(self.df_norm, linewidths=2, linecolor=c) mesh = ax.collections[0] nt.assert_equal(mesh.get_linewidths()[0], 2) nt.assert_equal(tuple(mesh.get_edgecolor()[0]), c) def test_square_aspect(self): ax = mat.heatmap(self.df_norm, square=True) obs_aspect = ax.get_aspect() # mpl>3.3 returns 1 for setting "equal" aspect # so test for the two possible equal outcomes assert obs_aspect == "equal" or obs_aspect == 1 def test_mask_validation(self): mask = mat._matrix_mask(self.df_norm, None) nt.assert_equal(mask.shape, self.df_norm.shape) nt.assert_equal(mask.values.sum(), 0) with nt.assert_raises(ValueError): bad_array_mask = self.rs.randn(3, 6) > 0 mat._matrix_mask(self.df_norm, bad_array_mask) with nt.assert_raises(ValueError): bad_df_mask = pd.DataFrame(self.rs.randn(4, 8) > 0) mat._matrix_mask(self.df_norm, bad_df_mask) def test_missing_data_mask(self): data = pd.DataFrame(np.arange(4, dtype=float).reshape(2, 2)) data.loc[0, 0] = np.nan mask = mat._matrix_mask(data, None) npt.assert_array_equal(mask, [[True, False], [False, False]]) mask_in = np.array([[False, True], [False, False]]) mask_out = mat._matrix_mask(data, mask_in) npt.assert_array_equal(mask_out, [[True, True], [False, False]]) def test_cbar_ticks(self): f, (ax1, ax2) = plt.subplots(2) mat.heatmap(self.df_norm, ax=ax1, cbar_ax=ax2, cbar_kws=dict(drawedges=True)) assert len(ax2.collections) == 2 class TestDendrogram: rs = np.random.RandomState(sum(map(ord, "dendrogram"))) x_norm = rs.randn(4, 8) + np.arange(8) x_norm = (x_norm.T + np.arange(4)).T letters = pd.Series(["A", "B", "C", "D", "E", "F", "G", "H"], name="letters") df_norm = pd.DataFrame(x_norm, columns=letters) try: import fastcluster x_norm_linkage = fastcluster.linkage_vector(x_norm.T, metric='euclidean', method='single') except ImportError: x_norm_distances = distance.pdist(x_norm.T, metric='euclidean') x_norm_linkage = hierarchy.linkage(x_norm_distances, method='single') x_norm_dendrogram = hierarchy.dendrogram(x_norm_linkage, no_plot=True, color_threshold=-np.inf) x_norm_leaves = x_norm_dendrogram['leaves'] df_norm_leaves = np.asarray(df_norm.columns[x_norm_leaves]) default_kws = dict(linkage=None, metric='euclidean', method='single', axis=1, label=True, rotate=False) def test_ndarray_input(self): p = mat._DendrogramPlotter(self.x_norm, **self.default_kws) npt.assert_array_equal(p.array.T, self.x_norm) pdt.assert_frame_equal(p.data.T, pd.DataFrame(self.x_norm)) npt.assert_array_equal(p.linkage, self.x_norm_linkage) nt.assert_dict_equal(p.dendrogram, self.x_norm_dendrogram) npt.assert_array_equal(p.reordered_ind, self.x_norm_leaves) npt.assert_array_equal(p.xticklabels, self.x_norm_leaves) npt.assert_array_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, None) nt.assert_equal(p.ylabel, '') def test_df_input(self): p = mat._DendrogramPlotter(self.df_norm, **self.default_kws) npt.assert_array_equal(p.array.T, np.asarray(self.df_norm)) pdt.assert_frame_equal(p.data.T, self.df_norm) npt.assert_array_equal(p.linkage, self.x_norm_linkage) nt.assert_dict_equal(p.dendrogram, self.x_norm_dendrogram) npt.assert_array_equal(p.xticklabels, np.asarray(self.df_norm.columns)[ self.x_norm_leaves]) npt.assert_array_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, 'letters') nt.assert_equal(p.ylabel, '') def test_df_multindex_input(self): df = self.df_norm.copy() index = pd.MultiIndex.from_tuples([("A", 1), ("B", 2), ("C", 3), ("D", 4)], names=["letter", "number"]) index.name = "letter-number" df.index = index kws = self.default_kws.copy() kws['label'] = True p = mat._DendrogramPlotter(df.T, **kws) xticklabels = ["A-1", "B-2", "C-3", "D-4"] xticklabels = [xticklabels[i] for i in p.reordered_ind] npt.assert_array_equal(p.xticklabels, xticklabels) npt.assert_array_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, "letter-number") def test_axis0_input(self): kws = self.default_kws.copy() kws['axis'] = 0 p = mat._DendrogramPlotter(self.df_norm.T, **kws) npt.assert_array_equal(p.array, np.asarray(self.df_norm.T)) pdt.assert_frame_equal(p.data, self.df_norm.T) npt.assert_array_equal(p.linkage, self.x_norm_linkage) nt.assert_dict_equal(p.dendrogram, self.x_norm_dendrogram) npt.assert_array_equal(p.xticklabels, self.df_norm_leaves) npt.assert_array_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, 'letters') nt.assert_equal(p.ylabel, '') def test_rotate_input(self): kws = self.default_kws.copy() kws['rotate'] = True p = mat._DendrogramPlotter(self.df_norm, **kws) npt.assert_array_equal(p.array.T, np.asarray(self.df_norm)) pdt.assert_frame_equal(p.data.T, self.df_norm) npt.assert_array_equal(p.xticklabels, []) npt.assert_array_equal(p.yticklabels, self.df_norm_leaves) nt.assert_equal(p.xlabel, '') nt.assert_equal(p.ylabel, 'letters') def test_rotate_axis0_input(self): kws = self.default_kws.copy() kws['rotate'] = True kws['axis'] = 0 p = mat._DendrogramPlotter(self.df_norm.T, **kws) npt.assert_array_equal(p.reordered_ind, self.x_norm_leaves) def test_custom_linkage(self): kws = self.default_kws.copy() try: import fastcluster linkage = fastcluster.linkage_vector(self.x_norm, method='single', metric='euclidean') except ImportError: d = distance.pdist(self.x_norm, metric='euclidean') linkage = hierarchy.linkage(d, method='single') dendrogram = hierarchy.dendrogram(linkage, no_plot=True, color_threshold=-np.inf) kws['linkage'] = linkage p = mat._DendrogramPlotter(self.df_norm, **kws) npt.assert_array_equal(p.linkage, linkage) nt.assert_dict_equal(p.dendrogram, dendrogram) def test_label_false(self): kws = self.default_kws.copy() kws['label'] = False p = mat._DendrogramPlotter(self.df_norm, **kws) nt.assert_equal(p.xticks, []) nt.assert_equal(p.yticks, []) nt.assert_equal(p.xticklabels, []) nt.assert_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, "") nt.assert_equal(p.ylabel, "") def test_linkage_scipy(self): p = mat._DendrogramPlotter(self.x_norm, **self.default_kws) scipy_linkage = p._calculate_linkage_scipy() from scipy.spatial import distance from scipy.cluster import hierarchy dists = distance.pdist(self.x_norm.T, metric=self.default_kws['metric']) linkage = hierarchy.linkage(dists, method=self.default_kws['method']) npt.assert_array_equal(scipy_linkage, linkage) @pytest.mark.skipif(_no_fastcluster, reason="fastcluster not installed") def test_fastcluster_other_method(self): import fastcluster kws = self.default_kws.copy() kws['method'] = 'average' linkage = fastcluster.linkage(self.x_norm.T, method='average', metric='euclidean') p = mat._DendrogramPlotter(self.x_norm, **kws) npt.assert_array_equal(p.linkage, linkage) @pytest.mark.skipif(_no_fastcluster, reason="fastcluster not installed") def test_fastcluster_non_euclidean(self): import fastcluster kws = self.default_kws.copy() kws['metric'] = 'cosine' kws['method'] = 'average' linkage = fastcluster.linkage(self.x_norm.T, method=kws['method'], metric=kws['metric']) p = mat._DendrogramPlotter(self.x_norm, **kws) npt.assert_array_equal(p.linkage, linkage) def test_dendrogram_plot(self): d = mat.dendrogram(self.x_norm, **self.default_kws) ax = plt.gca() xlim = ax.get_xlim() # 10 comes from _plot_dendrogram in scipy.cluster.hierarchy xmax = len(d.reordered_ind) * 10 nt.assert_equal(xlim[0], 0) nt.assert_equal(xlim[1], xmax) nt.assert_equal(len(ax.collections[0].get_paths()), len(d.dependent_coord)) @pytest.mark.xfail(mpl.__version__ == "3.1.1", reason="matplotlib 3.1.1 bug") def test_dendrogram_rotate(self): kws = self.default_kws.copy() kws['rotate'] = True d = mat.dendrogram(self.x_norm, **kws) ax = plt.gca() ylim = ax.get_ylim() # 10 comes from _plot_dendrogram in scipy.cluster.hierarchy ymax = len(d.reordered_ind) * 10 # Since y axis is inverted, ylim is (80, 0) # and therefore not (0, 80) as usual: nt.assert_equal(ylim[1], 0) nt.assert_equal(ylim[0], ymax) def test_dendrogram_ticklabel_rotation(self): f, ax = plt.subplots(figsize=(2, 2)) mat.dendrogram(self.df_norm, ax=ax) for t in ax.get_xticklabels(): nt.assert_equal(t.get_rotation(), 0) plt.close(f) df = self.df_norm.copy() df.columns = [str(c) * 10 for c in df.columns] df.index = [i * 10 for i in df.index] f, ax = plt.subplots(figsize=(2, 2)) mat.dendrogram(df, ax=ax) for t in ax.get_xticklabels(): nt.assert_equal(t.get_rotation(), 90) plt.close(f) f, ax = plt.subplots(figsize=(2, 2)) mat.dendrogram(df.T, axis=0, rotate=True) for t in ax.get_yticklabels(): nt.assert_equal(t.get_rotation(), 0) plt.close(f) class TestClustermap: rs = np.random.RandomState(sum(map(ord, "clustermap"))) x_norm = rs.randn(4, 8) + np.arange(8) x_norm = (x_norm.T + np.arange(4)).T letters = pd.Series(["A", "B", "C", "D", "E", "F", "G", "H"], name="letters") df_norm = pd.DataFrame(x_norm, columns=letters) try: import fastcluster x_norm_linkage = fastcluster.linkage_vector(x_norm.T, metric='euclidean', method='single') except ImportError: x_norm_distances = distance.pdist(x_norm.T, metric='euclidean') x_norm_linkage = hierarchy.linkage(x_norm_distances, method='single') x_norm_dendrogram = hierarchy.dendrogram(x_norm_linkage, no_plot=True, color_threshold=-np.inf) x_norm_leaves = x_norm_dendrogram['leaves'] df_norm_leaves = np.asarray(df_norm.columns[x_norm_leaves]) default_kws = dict(pivot_kws=None, z_score=None, standard_scale=None, figsize=(10, 10), row_colors=None, col_colors=None, dendrogram_ratio=.2, colors_ratio=.03, cbar_pos=(0, .8, .05, .2)) default_plot_kws = dict(metric='euclidean', method='average', colorbar_kws=None, row_cluster=True, col_cluster=True, row_linkage=None, col_linkage=None, tree_kws=None) row_colors = color_palette('Set2', df_norm.shape[0]) col_colors = color_palette('Dark2', df_norm.shape[1]) def test_ndarray_input(self): cm = mat.ClusterGrid(self.x_norm, **self.default_kws) pdt.assert_frame_equal(cm.data, pd.DataFrame(self.x_norm)) nt.assert_equal(len(cm.fig.axes), 4) nt.assert_equal(cm.ax_row_colors, None) nt.assert_equal(cm.ax_col_colors, None) def test_df_input(self): cm = mat.ClusterGrid(self.df_norm, **self.default_kws) pdt.assert_frame_equal(cm.data, self.df_norm) def test_corr_df_input(self): df = self.df_norm.corr() cg = mat.ClusterGrid(df, **self.default_kws) cg.plot(**self.default_plot_kws) diag = cg.data2d.values[np.diag_indices_from(cg.data2d)] npt.assert_array_equal(diag, np.ones(cg.data2d.shape[0])) def test_pivot_input(self): df_norm = self.df_norm.copy() df_norm.index.name = 'numbers' df_long = pd.melt(df_norm.reset_index(), var_name='letters', id_vars='numbers') kws = self.default_kws.copy() kws['pivot_kws'] = dict(index='numbers', columns='letters', values='value') cm = mat.ClusterGrid(df_long, **kws) pdt.assert_frame_equal(cm.data2d, df_norm) def test_colors_input(self): kws = self.default_kws.copy() kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cm = mat.ClusterGrid(self.df_norm, **kws) npt.assert_array_equal(cm.row_colors, self.row_colors) npt.assert_array_equal(cm.col_colors, self.col_colors) nt.assert_equal(len(cm.fig.axes), 6) def test_nested_colors_input(self): kws = self.default_kws.copy() row_colors = [self.row_colors, self.row_colors] col_colors = [self.col_colors, self.col_colors] kws['row_colors'] = row_colors kws['col_colors'] = col_colors cm = mat.ClusterGrid(self.df_norm, **kws) npt.assert_array_equal(cm.row_colors, row_colors) npt.assert_array_equal(cm.col_colors, col_colors) nt.assert_equal(len(cm.fig.axes), 6) def test_colors_input_custom_cmap(self): kws = self.default_kws.copy() kws['cmap'] = mpl.cm.PRGn kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cm = mat.clustermap(self.df_norm, **kws) npt.assert_array_equal(cm.row_colors, self.row_colors) npt.assert_array_equal(cm.col_colors, self.col_colors) nt.assert_equal(len(cm.fig.axes), 6) def test_z_score(self): df = self.df_norm.copy() df = (df - df.mean()) / df.std() kws = self.default_kws.copy() kws['z_score'] = 1 cm = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cm.data2d, df) def test_z_score_axis0(self): df = self.df_norm.copy() df = df.T df = (df - df.mean()) / df.std() df = df.T kws = self.default_kws.copy() kws['z_score'] = 0 cm = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cm.data2d, df) def test_standard_scale(self): df = self.df_norm.copy() df = (df - df.min()) / (df.max() - df.min()) kws = self.default_kws.copy() kws['standard_scale'] = 1 cm = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cm.data2d, df) def test_standard_scale_axis0(self): df = self.df_norm.copy() df = df.T df = (df - df.min()) / (df.max() - df.min()) df = df.T kws = self.default_kws.copy() kws['standard_scale'] = 0 cm = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cm.data2d, df) def test_z_score_standard_scale(self): kws = self.default_kws.copy() kws['z_score'] = True kws['standard_scale'] = True with nt.assert_raises(ValueError): mat.ClusterGrid(self.df_norm, **kws) def test_color_list_to_matrix_and_cmap(self): matrix, cmap = mat.ClusterGrid.color_list_to_matrix_and_cmap( self.col_colors, self.x_norm_leaves) colors_set = set(self.col_colors) col_to_value = dict((col, i) for i, col in enumerate(colors_set)) matrix_test = np.array([col_to_value[col] for col in self.col_colors])[self.x_norm_leaves] shape = len(self.col_colors), 1 matrix_test = matrix_test.reshape(shape) cmap_test = mpl.colors.ListedColormap(colors_set) npt.assert_array_equal(matrix, matrix_test) npt.assert_array_equal(cmap.colors, cmap_test.colors) def test_nested_color_list_to_matrix_and_cmap(self): colors = [self.col_colors, self.col_colors] matrix, cmap = mat.ClusterGrid.color_list_to_matrix_and_cmap( colors, self.x_norm_leaves) all_colors = set(itertools.chain(*colors)) color_to_value = dict((col, i) for i, col in enumerate(all_colors)) matrix_test = np.array( [color_to_value[c] for color in colors for c in color]) shape = len(colors), len(colors[0]) matrix_test = matrix_test.reshape(shape) matrix_test = matrix_test[:, self.x_norm_leaves] matrix_test = matrix_test.T cmap_test = mpl.colors.ListedColormap(all_colors) npt.assert_array_equal(matrix, matrix_test) npt.assert_array_equal(cmap.colors, cmap_test.colors) def test_color_list_to_matrix_and_cmap_axis1(self): matrix, cmap = mat.ClusterGrid.color_list_to_matrix_and_cmap( self.col_colors, self.x_norm_leaves, axis=1) colors_set = set(self.col_colors) col_to_value = dict((col, i) for i, col in enumerate(colors_set)) matrix_test = np.array([col_to_value[col] for col in self.col_colors])[self.x_norm_leaves] shape = 1, len(self.col_colors) matrix_test = matrix_test.reshape(shape) cmap_test = mpl.colors.ListedColormap(colors_set) npt.assert_array_equal(matrix, matrix_test) npt.assert_array_equal(cmap.colors, cmap_test.colors) def test_savefig(self): # Not sure if this is the right way to test.... cm = mat.ClusterGrid(self.df_norm, **self.default_kws) cm.plot(**self.default_plot_kws) cm.savefig(tempfile.NamedTemporaryFile(), format='png') def test_plot_dendrograms(self): cm = mat.clustermap(self.df_norm, **self.default_kws) nt.assert_equal(len(cm.ax_row_dendrogram.collections[0].get_paths()), len(cm.dendrogram_row.independent_coord)) nt.assert_equal(len(cm.ax_col_dendrogram.collections[0].get_paths()), len(cm.dendrogram_col.independent_coord)) data2d = self.df_norm.iloc[cm.dendrogram_row.reordered_ind, cm.dendrogram_col.reordered_ind] pdt.assert_frame_equal(cm.data2d, data2d) def test_cluster_false(self): kws = self.default_kws.copy() kws['row_cluster'] = False kws['col_cluster'] = False cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(len(cm.ax_row_dendrogram.lines), 0) nt.assert_equal(len(cm.ax_col_dendrogram.lines), 0) nt.assert_equal(len(cm.ax_row_dendrogram.get_xticks()), 0) nt.assert_equal(len(cm.ax_row_dendrogram.get_yticks()), 0) nt.assert_equal(len(cm.ax_col_dendrogram.get_xticks()), 0) nt.assert_equal(len(cm.ax_col_dendrogram.get_yticks()), 0) pdt.assert_frame_equal(cm.data2d, self.df_norm) def test_row_col_colors(self): kws = self.default_kws.copy() kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(len(cm.ax_row_colors.collections), 1) nt.assert_equal(len(cm.ax_col_colors.collections), 1) def test_cluster_false_row_col_colors(self): kws = self.default_kws.copy() kws['row_cluster'] = False kws['col_cluster'] = False kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(len(cm.ax_row_dendrogram.lines), 0) nt.assert_equal(len(cm.ax_col_dendrogram.lines), 0) nt.assert_equal(len(cm.ax_row_dendrogram.get_xticks()), 0) nt.assert_equal(len(cm.ax_row_dendrogram.get_yticks()), 0) nt.assert_equal(len(cm.ax_col_dendrogram.get_xticks()), 0) nt.assert_equal(len(cm.ax_col_dendrogram.get_yticks()), 0) nt.assert_equal(len(cm.ax_row_colors.collections), 1) nt.assert_equal(len(cm.ax_col_colors.collections), 1) pdt.assert_frame_equal(cm.data2d, self.df_norm) def test_row_col_colors_df(self): kws = self.default_kws.copy() kws['row_colors'] = pd.DataFrame({'row_1': list(self.row_colors), 'row_2': list(self.row_colors)}, index=self.df_norm.index, columns=['row_1', 'row_2']) kws['col_colors'] = pd.DataFrame({'col_1': list(self.col_colors), 'col_2': list(self.col_colors)}, index=self.df_norm.columns, columns=['col_1', 'col_2']) cm = mat.clustermap(self.df_norm, **kws) row_labels = [l.get_text() for l in cm.ax_row_colors.get_xticklabels()] nt.assert_equal(cm.row_color_labels, ['row_1', 'row_2']) nt.assert_equal(row_labels, cm.row_color_labels) col_labels = [l.get_text() for l in cm.ax_col_colors.get_yticklabels()] nt.assert_equal(cm.col_color_labels, ['col_1', 'col_2']) nt.assert_equal(col_labels, cm.col_color_labels) def test_row_col_colors_df_shuffled(self): # Tests if colors are properly matched, even if given in wrong order m, n = self.df_norm.shape shuffled_inds = [self.df_norm.index[i] for i in list(range(0, m, 2)) + list(range(1, m, 2))] shuffled_cols = [self.df_norm.columns[i] for i in list(range(0, n, 2)) + list(range(1, n, 2))] kws = self.default_kws.copy() row_colors = pd.DataFrame({'row_annot': list(self.row_colors)}, index=self.df_norm.index) kws['row_colors'] = row_colors.loc[shuffled_inds] col_colors = pd.DataFrame({'col_annot': list(self.col_colors)}, index=self.df_norm.columns) kws['col_colors'] = col_colors.loc[shuffled_cols] cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(list(cm.col_colors)[0], list(self.col_colors)) nt.assert_equal(list(cm.row_colors)[0], list(self.row_colors)) def test_row_col_colors_df_missing(self): kws = self.default_kws.copy() row_colors = pd.DataFrame({'row_annot': list(self.row_colors)}, index=self.df_norm.index) kws['row_colors'] = row_colors.drop(self.df_norm.index[0]) col_colors = pd.DataFrame({'col_annot': list(self.col_colors)}, index=self.df_norm.columns) kws['col_colors'] = col_colors.drop(self.df_norm.columns[0]) cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(list(cm.col_colors)[0], [(1.0, 1.0, 1.0)] + list(self.col_colors[1:])) nt.assert_equal(list(cm.row_colors)[0], [(1.0, 1.0, 1.0)] + list(self.row_colors[1:])) def test_row_col_colors_df_one_axis(self): # Test case with only row annotation. kws1 = self.default_kws.copy() kws1['row_colors'] = pd.DataFrame({'row_1': list(self.row_colors), 'row_2': list(self.row_colors)}, index=self.df_norm.index, columns=['row_1', 'row_2']) cm1 = mat.clustermap(self.df_norm, **kws1) row_labels = [l.get_text() for l in cm1.ax_row_colors.get_xticklabels()] nt.assert_equal(cm1.row_color_labels, ['row_1', 'row_2']) nt.assert_equal(row_labels, cm1.row_color_labels) # Test case with onl col annotation. kws2 = self.default_kws.copy() kws2['col_colors'] = pd.DataFrame({'col_1': list(self.col_colors), 'col_2': list(self.col_colors)}, index=self.df_norm.columns, columns=['col_1', 'col_2']) cm2 = mat.clustermap(self.df_norm, **kws2) col_labels = [l.get_text() for l in cm2.ax_col_colors.get_yticklabels()] nt.assert_equal(cm2.col_color_labels, ['col_1', 'col_2']) nt.assert_equal(col_labels, cm2.col_color_labels) def test_row_col_colors_series(self): kws = self.default_kws.copy() kws['row_colors'] = pd.Series(list(self.row_colors), name='row_annot', index=self.df_norm.index) kws['col_colors'] = pd.Series(list(self.col_colors), name='col_annot', index=self.df_norm.columns) cm = mat.clustermap(self.df_norm, **kws) row_labels = [l.get_text() for l in cm.ax_row_colors.get_xticklabels()] nt.assert_equal(cm.row_color_labels, ['row_annot']) nt.assert_equal(row_labels, cm.row_color_labels) col_labels = [l.get_text() for l in cm.ax_col_colors.get_yticklabels()] nt.assert_equal(cm.col_color_labels, ['col_annot']) nt.assert_equal(col_labels, cm.col_color_labels) def test_row_col_colors_series_shuffled(self): # Tests if colors are properly matched, even if given in wrong order m, n = self.df_norm.shape shuffled_inds = [self.df_norm.index[i] for i in list(range(0, m, 2)) + list(range(1, m, 2))] shuffled_cols = [self.df_norm.columns[i] for i in list(range(0, n, 2)) + list(range(1, n, 2))] kws = self.default_kws.copy() row_colors = pd.Series(list(self.row_colors), name='row_annot', index=self.df_norm.index) kws['row_colors'] = row_colors.loc[shuffled_inds] col_colors = pd.Series(list(self.col_colors), name='col_annot', index=self.df_norm.columns) kws['col_colors'] = col_colors.loc[shuffled_cols] cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(list(cm.col_colors), list(self.col_colors)) nt.assert_equal(list(cm.row_colors), list(self.row_colors)) def test_row_col_colors_series_missing(self): kws = self.default_kws.copy() row_colors = pd.Series(list(self.row_colors), name='row_annot', index=self.df_norm.index) kws['row_colors'] = row_colors.drop(self.df_norm.index[0]) col_colors = pd.Series(list(self.col_colors), name='col_annot', index=self.df_norm.columns) kws['col_colors'] = col_colors.drop(self.df_norm.columns[0]) cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(list(cm.col_colors), [(1.0, 1.0, 1.0)] + list(self.col_colors[1:])) nt.assert_equal(list(cm.row_colors), [(1.0, 1.0, 1.0)] + list(self.row_colors[1:])) def test_row_col_colors_ignore_heatmap_kwargs(self): g = mat.clustermap(self.rs.uniform(0, 200, self.df_norm.shape), row_colors=self.row_colors, col_colors=self.col_colors, cmap="Spectral", norm=mpl.colors.LogNorm(), vmax=100) assert np.array_equal( np.array(self.row_colors)[g.dendrogram_row.reordered_ind], g.ax_row_colors.collections[0].get_facecolors()[:, :3] ) assert np.array_equal( np.array(self.col_colors)[g.dendrogram_col.reordered_ind], g.ax_col_colors.collections[0].get_facecolors()[:, :3] ) def test_row_col_colors_raise_on_mixed_index_types(self): row_colors = pd.Series( list(self.row_colors), name="row_annot", index=self.df_norm.index ) col_colors = pd.Series( list(self.col_colors), name="col_annot", index=self.df_norm.columns ) with pytest.raises(TypeError): mat.clustermap(self.x_norm, row_colors=row_colors) with pytest.raises(TypeError): mat.clustermap(self.x_norm, col_colors=col_colors) def test_mask_reorganization(self): kws = self.default_kws.copy() kws["mask"] = self.df_norm > 0 g = mat.clustermap(self.df_norm, **kws) npt.assert_array_equal(g.data2d.index, g.mask.index) npt.assert_array_equal(g.data2d.columns, g.mask.columns) npt.assert_array_equal(g.mask.index, self.df_norm.index[ g.dendrogram_row.reordered_ind]) npt.assert_array_equal(g.mask.columns, self.df_norm.columns[ g.dendrogram_col.reordered_ind]) def test_ticklabel_reorganization(self): kws = self.default_kws.copy() xtl = np.arange(self.df_norm.shape[1]) kws["xticklabels"] = list(xtl) ytl = self.letters.loc[:self.df_norm.shape[0]] kws["yticklabels"] = ytl g = mat.clustermap(self.df_norm, **kws) xtl_actual = [t.get_text() for t in g.ax_heatmap.get_xticklabels()] ytl_actual = [t.get_text() for t in g.ax_heatmap.get_yticklabels()] xtl_want = xtl[g.dendrogram_col.reordered_ind].astype("<U1") ytl_want = ytl[g.dendrogram_row.reordered_ind].astype("<U1") npt.assert_array_equal(xtl_actual, xtl_want) npt.assert_array_equal(ytl_actual, ytl_want) def test_noticklabels(self): kws = self.default_kws.copy() kws["xticklabels"] = False kws["yticklabels"] = False g = mat.clustermap(self.df_norm, **kws) xtl_actual = [t.get_text() for t in g.ax_heatmap.get_xticklabels()] ytl_actual = [t.get_text() for t in g.ax_heatmap.get_yticklabels()] nt.assert_equal(xtl_actual, []) nt.assert_equal(ytl_actual, []) def test_size_ratios(self): # The way that wspace/hspace work in GridSpec, the mapping from input # ratio to actual width/height of each axes is complicated, so this # test is just going to assert comparative relationships kws1 = self.default_kws.copy() kws1.update(dendrogram_ratio=.2, colors_ratio=.03, col_colors=self.col_colors, row_colors=self.row_colors) kws2 = kws1.copy() kws2.update(dendrogram_ratio=.3, colors_ratio=.05) g1 = mat.clustermap(self.df_norm, **kws1) g2 = mat.clustermap(self.df_norm, **kws2) assert (g2.ax_col_dendrogram.get_position().height > g1.ax_col_dendrogram.get_position().height) assert (g2.ax_col_colors.get_position().height > g1.ax_col_colors.get_position().height) assert (g2.ax_heatmap.get_position().height < g1.ax_heatmap.get_position().height) assert (g2.ax_row_dendrogram.get_position().width > g1.ax_row_dendrogram.get_position().width) assert (g2.ax_row_colors.get_position().width > g1.ax_row_colors.get_position().width) assert (g2.ax_heatmap.get_position().width < g1.ax_heatmap.get_position().width) kws1 = self.default_kws.copy() kws1.update(col_colors=self.col_colors) kws2 = kws1.copy() kws2.update(col_colors=[self.col_colors, self.col_colors]) g1 = mat.clustermap(self.df_norm, **kws1) g2 = mat.clustermap(self.df_norm, **kws2) assert (g2.ax_col_colors.get_position().height > g1.ax_col_colors.get_position().height) kws1 = self.default_kws.copy() kws1.update(dendrogram_ratio=(.2, .2)) kws2 = kws1.copy() kws2.update(dendrogram_ratio=(.2, .3)) g1 = mat.clustermap(self.df_norm, **kws1) g2 = mat.clustermap(self.df_norm, **kws2) assert (g2.ax_row_dendrogram.get_position().width == g1.ax_row_dendrogram.get_position().width) assert (g2.ax_col_dendrogram.get_position().height > g1.ax_col_dendrogram.get_position().height) def test_cbar_pos(self): kws = self.default_kws.copy() kws["cbar_pos"] = (.2, .1, .4, .3) g = mat.clustermap(self.df_norm, **kws) pos = g.ax_cbar.get_position() assert pytest.approx(tuple(pos.p0)) == kws["cbar_pos"][:2] assert pytest.approx(pos.width) == kws["cbar_pos"][2] assert pytest.approx(pos.height) == kws["cbar_pos"][3] kws["cbar_pos"] = None g = mat.clustermap(self.df_norm, **kws) assert g.ax_cbar is None def test_square_warning(self): kws = self.default_kws.copy() g1 = mat.clustermap(self.df_norm, **kws) with pytest.warns(UserWarning): kws["square"] = True g2 = mat.clustermap(self.df_norm, **kws) g1_shape = g1.ax_heatmap.get_position().get_points() g2_shape = g2.ax_heatmap.get_position().get_points() assert np.array_equal(g1_shape, g2_shape) def test_clustermap_annotation(self): g = mat.clustermap(self.df_norm, annot=True, fmt=".1f") for val, text in zip(np.asarray(g.data2d).flat, g.ax_heatmap.texts): assert text.get_text() == "{:.1f}".format(val) g = mat.clustermap(self.df_norm, annot=self.df_norm, fmt=".1f") for val, text in zip(np.asarray(g.data2d).flat, g.ax_heatmap.texts): assert text.get_text() == "{:.1f}".format(val) def test_tree_kws(self): rgb = (1, .5, .2) g = mat.clustermap(self.df_norm, tree_kws=dict(color=rgb)) for ax in [g.ax_col_dendrogram, g.ax_row_dendrogram]: tree, = ax.collections assert tuple(tree.get_color().squeeze())[:3] == rgb
37.097934
79
0.599088
ee8d2a05b16c9767bcd4ad068524fff899eb34a4
1,110
py
Python
training/odsToTsv.py
raoofnaushad/resume_parser_nlp
50519b9b258b8b6a6739e3fd30a70709c1ffd29d
[ "Apache-2.0" ]
2
2020-11-02T16:33:35.000Z
2020-11-02T16:42:13.000Z
training/odsToTsv.py
raoofnaushad/resume_parser_nlp
50519b9b258b8b6a6739e3fd30a70709c1ffd29d
[ "Apache-2.0" ]
null
null
null
training/odsToTsv.py
raoofnaushad/resume_parser_nlp
50519b9b258b8b6a6739e3fd30a70709c1ffd29d
[ "Apache-2.0" ]
null
null
null
import pandas as pd import math import string import training.utils as utils import training.config as config def convertODStoTSV(fromODS, toTSV): data = utils.read_ods(fromODS) df = pd.DataFrame(data) print(len(df)) words_list = [] tags_list = [] for ind in df.index: if df['Word'][ind] == '.' and df['Tag'][ind] == '.': words_list.append('.') tags_list.append('.') continue if df['Word'][ind] == 'XXX': words_list.append('\n') else: words_list.append(df['Word'][ind]) if df['Tag'][ind][:2] in ('B-', 'I-'): tags_list.append(df['Tag'][ind]) else: tags_list.append('O') dict = {'Word': words_list, 'Tag': tags_list} df = pd.DataFrame(dict) print(len(df)) df.to_csv(toTSV,sep='\t', index=False) # convertODStoTSV('/home/accubits/Documents/Projects/AI/resume/training/training_dataset/Education.ods' \ # , '/home/accubits/Documents/Projects/AI/resume/training/training_dataset/Education.tsv')
24.130435
105
0.568468
d7d046dd98a9ccaf7c6962ce4c9469da97f23fcc
1,496
py
Python
paradocx/image.py
jaraco/paradocx
123405b97fc82f60f4bd47cae465802f8063024b
[ "MIT" ]
3
2021-02-13T20:07:18.000Z
2022-03-17T05:26:18.000Z
paradocx/image.py
jaraco/paradocx
123405b97fc82f60f4bd47cae465802f8063024b
[ "MIT" ]
4
2018-03-03T17:45:17.000Z
2021-07-06T02:51:30.000Z
paradocx/image.py
jaraco/paradocx
123405b97fc82f60f4bd47cae465802f8063024b
[ "MIT" ]
2
2021-02-13T17:21:24.000Z
2022-03-26T07:43:00.000Z
from openpack.basepack import DefaultNamed, Part import mimetypes import warnings class ImagePart(DefaultNamed, Part): rel_type = ( 'http://schemas.openxmlformats.org/officeDocument/2006/relationships/image' ) default_name = '/word/media/image.jpeg' """ ECMA-376 3nd Edition Part 1 Page 170 states: A producer that wants interoperability should use one of the following standard formats: - image/png ISO/IEC 15948:2003, http://www.libpng.org/pub/png/spec/ - image/jpeg, http://www.w3.org/Graphics/JPEG """ interoperability_types = ['image/png', 'image/jpeg'] def _set_name(self, name): super(ImagePart, self)._set_name(name) self._guess_mime_type(name) name = property(Part._get_name, _set_name) def _guess_mime_type(self, name): """ When setting the name, guess the mime type from the extension. Set the content_type for this instance only if a content_type is not already defined (this allows an instance to have a content-type pre- defined or for a subclass to define the content type, and it will not be overridden by the guessed type). """ ct, _ = mimetypes.guess_type(name) if ct and not self.content_type: self.content_type = ct if ct not in self.interoperability_types: warnings.warn( "Image type %s is not guaranteed to be interoperable" % ct )
35.619048
83
0.652406
2ff3651403ab10ae4e81527556f605af63e9d493
26,038
py
Python
ivy/stateful/module.py
saurbhc/ivy
20b327b4fab543b26ad5a18acf4deddd6e3c804b
[ "Apache-2.0" ]
2
2022-02-13T20:55:02.000Z
2022-02-26T18:44:19.000Z
ivy/stateful/module.py
saurbhc/ivy
20b327b4fab543b26ad5a18acf4deddd6e3c804b
[ "Apache-2.0" ]
1
2022-03-08T13:29:20.000Z
2022-03-08T13:29:20.000Z
ivy/stateful/module.py
saurbhc/ivy
20b327b4fab543b26ad5a18acf4deddd6e3c804b
[ "Apache-2.0" ]
null
null
null
""" Base class for deriving trainable modules """ # global import os import abc import logging import ivy.functional.backends.numpy import termcolor import numpy as np # local import ivy from ivy.container import Container # Base # # -----# class Module(abc.ABC): def __init__(self, dev=None, v=None, build_mode='on_init', compile_on_next_step=False, store_vars=True, stateful=None, arg_stateful_idxs=None, kwarg_stateful_idxs=None, fallback_to_non_compiled=False, with_partial_v=False, devs=None): """ Initialze Ivy layer, which is a stateful object consisting of trainable variables. :param dev: device on which to create the module's variables 'cuda:0', 'cuda:1', 'cpu' etc. :type dev: ivy.Device, optional :param v: Ivy container of trainable variables. Created internally by default. :type v: ivy container, optional :param build_mode: How the Module is built, either on initialization (now), explicitly by the user by calling build(), or the first time the __call__ method is run. Default is on initialization. :type build_mode: str, optional :param compile_on_next_step: Whether to compile the network on the next forward pass. Default is False. :type compile_on_next_step: bool, optional :param store_vars: Whether or not to store the variables created. Default is True. :type store_vars: bool, optional :param stateful: The constant id stateful items to track as part of the forward pass. Used when graph compiling, default is None. :type stateful: seq of any, optional :param arg_stateful_idxs: The nested argument indices of stateful items to track as part of the forward pass. Used when graph compiling, default is None. :type arg_stateful_idxs: seq of any, optional :param kwarg_stateful_idxs: The nested keyword argument indices of stateful items to track as part of the forward pass. Used when graph compiling, default is None. :type kwarg_stateful_idxs: seq of any, optional :param fallback_to_non_compiled: Whether to fall back to non-compiled forward call in the case that an error is raised during the compiled forward pass. Default is True. :type fallback_to_non_compiled: bool, optional :param with_partial_v: Whether to allow partial specification of variables. Default is False. :type with_partial_v: bool, optional :param devs: devices on which to distribute the module's variables 'cuda:0', 'cuda:1', 'cpu' etc. :type devs: sequence of str, optional :type build_mode: str, optional """ valid_build_modes = ['on_init', 'explicit', 'on_call'] if build_mode not in valid_build_modes: raise Exception('build_mode must be one of {} of type str, but found {} of type{}'.format( valid_build_modes, build_mode, type(build_mode))) self._dev = ivy.default(dev, ivy.default(lambda: devs[0], ivy.default_device(), True)) self._devs = ivy.default(devs, [self._dev]) self._build_mode = build_mode self._stateful = stateful self._arg_stateful_idxs = arg_stateful_idxs self._kwarg_stateful_idxs = kwarg_stateful_idxs self._fallback_to_non_compiled = fallback_to_non_compiled self._with_partial_v = with_partial_v self._store_vars = store_vars self._built = False self._compiled = False self._compiled_fn = None self._compile_on_next_step = compile_on_next_step self._v_in = v if (isinstance(v, Container) or v is None) else Container(v) self.v = v self.top_v = None self.top_mod = None self._track_submod_rets = False self._submod_depth = None self._submods_to_track = None self._track_submod_call_order = False self.submod_rets = ivy.Container(alphabetical_keys=False, ivyh=ivy.functional.backends.numpy) self.expected_submod_rets = None self.submod_dict = dict() self.submod_call_order = ivy.Container(alphabetical_keys=False, ivyh=ivy.functional.backends.numpy) self._sub_mods = set() if build_mode != 'on_init': return self.build() # Private # # --------# def _fn_with_var_arg(self, fn, v_fn): def new_fn(*a, with_grads=None, **kw): with_grads = ivy.with_grads(with_grads) if 'v' in kw.keys(): del kw['v'] v = v_fn(self.v) if not with_grads: v = v.stop_gradients() return fn(*a, **kw, v=v) new_fn.wrapped = True return new_fn def _top_v_fn(self, depth=None, flatten_key_chains=False): if ivy.exists(self.top_v): if ivy.exists(depth): ret = self.top_v(depth - 1) if depth > 1 else self.v else: ret = self.top_v() else: ret = self.v if flatten_key_chains: return ret.flatten_key_chains() return ret def _top_mod_fn(self, depth=None): if ivy.exists(self.top_mod): if ivy.exists(depth): return self.top_mod(depth - 1) if depth > 1 else self return self.top_mod() return self # noinspection PyProtectedMember def track_submod_rets(self): if not ivy.exists(self.top_mod): return False top_mod = self.top_mod() submods = top_mod._submods_to_track if ivy.exists(submods): if self not in submods: return False depth = top_mod._submod_depth if ivy.exists(depth): return self.top_mod(depth - 1)._track_submod_rets if depth > 0 else self._track_submod_rets return top_mod._track_submod_rets def check_submod_rets(self): if not ivy.exists(self.top_mod): return False if ivy.exists(self.top_mod().expected_submod_rets): return True return False # noinspection PyProtectedMember def track_submod_call_order(self): if not ivy.exists(self.top_mod): return False top_mod = self.top_mod() submods = top_mod._submods_to_track if ivy.exists(submods): if self not in submods: return False depth = top_mod._submod_depth if ivy.exists(depth): return self.top_mod(depth - 1)._track_submod_call_order if depth > 0 else self._track_submod_call_order return top_mod._track_submod_call_order def mod_depth(self): depth = 0 mod_above = self while True: if ivy.exists(mod_above.top_mod): mod_above = mod_above.top_mod(1) else: break depth += 1 return depth def mod_height(self): return self.sub_mods().max_depth - 1 def _find_variables(self, obj=None): vs = Container() # ToDo: add support for finding local variables, if/when JAX supports uniquely flagging variables if isinstance(obj, Module) and obj is not self: obj.top_v = lambda depth=None, flatten_key_chains=False: self._top_v_fn(depth, flatten_key_chains) obj.top_mod = lambda depth=None: self._top_mod_fn(depth) self._sub_mods.add(obj) return obj.v elif isinstance(obj, (list, tuple)): for i, v in enumerate(obj): ret = self._find_variables(v) if ret: vs['v' + str(i)] = ret return vs elif isinstance(obj, dict): for k, v in obj.items(): ret = self._find_variables(v) if ret: vs[k[1:] if k[0] == '_' else k] = ret return vs elif not hasattr(obj, '__dict__'): return vs for k, v in obj.__dict__.items(): if v is not None and k[0:2] != '__': ret = self._find_variables(v) if ret: vs[k[1:] if k[0] == '_' else k] = ret return vs @staticmethod def _extract_v(v, keychain_mappings, orig_key_chain): if v.has_key_chain(orig_key_chain): ret_cont = v.at_key_chain(orig_key_chain) else: ret_cont = ivy.Container() for old_kc, new_kc in keychain_mappings.items(): if orig_key_chain in old_kc: ret_cont = ret_cont.set_at_key_chain('/'.join(new_kc.split('/')[1:]), v.at_key_chain(new_kc)) return ret_cont def _wrap_call_methods(self, keychain_mappings, key='', obj=None): if isinstance(obj, Module) and obj is not self: orig_key_chain = key[1:] if key[0] == '_' else key obj.__call__ = self._fn_with_var_arg(obj.__call__, lambda v_: self._extract_v(v_, keychain_mappings, orig_key_chain)) return elif isinstance(obj, (list, tuple)): for i, val in enumerate(obj): self._wrap_call_methods(keychain_mappings, key + '/v' + str(i), val) return elif isinstance(obj, dict): for k, val in obj.items(): k = (key + '/' + k) if key != '' else k self._wrap_call_methods(keychain_mappings, k, val) return if not hasattr(obj, '__dict__'): return for k, val in obj.__dict__.items(): if k[0:2] == '__': continue k = (key + '/' + k) if key != '' else k if val is not None: self._wrap_call_methods(keychain_mappings, k, val) return @staticmethod def _remove_duplicate_variables(vs, created): created_ids = created.map(lambda x, kc: id(x)) vs_ids = vs.map(lambda x, kc: id(x)) ids = dict() duplicate_keychains = list() keychain_mappings = dict() def unique_callback(x, kc): ids[x] = kc def found_dup_callback(x, kc): if ids[x] == kc: return duplicate_keychains.append(kc) keychain_mappings[kc] = ids[x] created_ids.map(lambda x, kc: unique_callback(x, kc)) vs_ids.map(lambda x, kc: unique_callback(x, kc) if x not in ids else found_dup_callback(x, kc)) for dup_kc in duplicate_keychains: vs = vs.prune_key_chain(dup_kc) return vs, keychain_mappings # Overridable # # noinspection PyMethodMayBeStatic,PyUnusedLocal def _create_variables(self, dev): """ create internal trainable variables, and return as arbitrary nested dict. Overridable. :param dev: The device string, specifying the device on which to create the variables. :type dev: ivy.Deviceing """ return {} def _build(self, *args, **kwargs) -> bool: """ Build the internal layers and variables for this module. Overridable. Return False or empty Container if the build only partially completed (i.e. some child Modules have "on_call" build mode). Alternatviely, return True or a container of the built variables if the module is built. """ return True # Abstract # @abc.abstractmethod def _forward(self, *args, **kwargs): """ Forward pass of the layer, called after handling the optional input variables. """ raise NotImplementedError def _forward_with_tracking(self, *args, **kwargs): """ Forward pass while optionally tracking submodule returns and call order """ if self.track_submod_call_order(): self._add_submod_enter() ret = self._forward(*args, **kwargs) track_submod_rets = self.track_submod_rets() check_submod_rets = self.check_submod_rets() if track_submod_rets or check_submod_rets: self._add_submod_ret(ret) if check_submod_rets: self._check_submod_ret() return ret def _call(self, *args, v=None, with_grads=None, **kwargs): """ the forward pass of the layer, treating layer instance as callable function. """ with_grads = ivy.with_grads(with_grads) if not self._built: self.build(*args, **kwargs, from_call=True) if v is not None: v_orig = self.v if not with_grads: v = v.stop_gradients() self.v = Container(v, **v.config) if isinstance(v, Container) else Container(v) ret = self._forward_with_tracking(*args, **kwargs) self.v = v_orig return ret elif hasattr(self.__call__, 'wrapped'): return self.__call__(*args, with_grads=with_grads, **kwargs) elif not with_grads: v_orig = self.v self.v = v_orig.stop_gradients() ret = self._forward_with_tracking(*args, **kwargs) self.v = v_orig return ret return self._forward_with_tracking(*args, **kwargs) # Public # # -------# def sub_mods(self, show_v=True, depth=None, flatten_key_chains=False): if self._sub_mods: if ivy.exists(depth): if depth == 0: if show_v: return self.v return '' next_depth = depth - 1 else: next_depth = None ret = ivy.Container( {ivy.Container.flatten_key_chain(sm.__repr__(), '_'): sm.sub_mods(show_v, next_depth) for sm in self._sub_mods}) if flatten_key_chains: return ret.flatten_key_chains() return ret if show_v: return self.v return '' def show_v_in_top_v(self, depth=None): if ivy.exists(self.top_v) and ivy.exists(self.v): self.top_v(depth).show_sub_container(self.v) else: print('both self.top_v and self.v must be initialized in order to show v in top_v,' 'but found\n\ntop_v: {}\n\nv: {}.'.format(self.top_v, self.v)) def v_with_top_v_key_chains(self, depth=None, flatten_key_chains=False): if ivy.exists(self.top_v) and ivy.exists(self.v): kc = self.top_v(depth).find_sub_container(self.v) if kc: ret = self.v.restructure_key_chains({'': kc}, keep_orig=False) else: ret = self.v if flatten_key_chains: return ret.flatten_key_chains() return ret else: print('both self.top_v and self.v must be initialized in order to show v in top_v,' 'but found\n\ntop_v: {}\n\nv: {}.'.format(self.top_v, self.v)) def mod_with_top_mod_key_chain(self, depth=None, flatten_key_chain=False): if not ivy.exists(self.top_mod) or depth == 0: return self.__repr__() max_depth = depth depth = 1 top_mod = self mods = [ivy.Container.flatten_key_chain(top_mod.__repr__(), '_')] while True: if not ivy.exists(top_mod.top_mod): break top_mod = top_mod.top_mod(1) mods.append(ivy.Container.flatten_key_chain(top_mod.__repr__(), '_')) if depth == max_depth: break depth += 1 if flatten_key_chain: return '__'.join(reversed(mods)) return [mod for mod in reversed(mods)] def show_mod_in_top_mod(self, upper_depth=None, lower_depth=None, flatten_key_chains=False): if ivy.exists(self.top_mod): upper_depth = ivy.default(upper_depth, self.mod_depth()) lower_depth = ivy.default(lower_depth, self.mod_height()) mid_depth = upper_depth + lower_depth upper_sub_mods = self.top_mod(upper_depth).sub_mods(depth=mid_depth) lower_sub_mods = self.sub_mods(depth=lower_depth) if flatten_key_chains: upper_sub_mods = upper_sub_mods.flatten_key_chains() lower_sub_mods = lower_sub_mods.flatten_key_chains() upper_sub_mods.show_sub_container(lower_sub_mods) else: print('self.top_mod must be initialized in order to show mod in top_mod,' 'but found\n\ntop_mod: {}'.format(self.top_mod)) def _set_submod_flags(self, track_submod_rets, submod_depth, submods_to_track, track_submod_call_order, expected_submod_rets): self._track_submod_rets = track_submod_rets self._submod_depth = submod_depth self._submods_to_track = submods_to_track self._track_submod_call_order = track_submod_call_order self.expected_submod_rets = ivy.Container(expected_submod_rets).to_numpy(map_sequences=True) \ if ivy.exists(expected_submod_rets) else expected_submod_rets def _unset_submod_flags(self): self._track_submod_rets = False self._submod_depth = None self._submods_to_track = None self._track_submod_call_order = False self.expected_submod_rets = None def get_mod_key(self, top_mod=None): if top_mod is None: top_mod = self.top_mod() submod_dict = top_mod.submod_dict full_key = self.__repr__().split('.')[-1] name_key = full_key.split(' ')[0] if name_key not in submod_dict: submod_dict[name_key] = dict() id_str = full_key.split(' ')[-1][:-1] if id_str not in submod_dict[name_key]: submod_dict[name_key][id_str] = str(len(submod_dict[name_key])) idx_key = submod_dict[name_key][id_str] return ' '*self.mod_depth() + '_'.join([name_key, idx_key]) def _add_submod_ret(self, ret): top_mod = self.top_mod() sr = top_mod.submod_rets ret = ivy.to_numpy(ret) key = self.get_mod_key(top_mod) if key in sr: sr[key].append(ret) else: sr[key] = [ret] def _check_submod_ret(self): top_mod = self.top_mod() esr = top_mod.expected_submod_rets key = self.get_mod_key(top_mod) esr_key = key if key not in esr: esr_key = key.replace(' ', '') if esr_key not in esr: return sr = self.top_mod().submod_rets rets = sr[key] esr_ret = esr[esr_key] if isinstance(esr_ret, dict): expected_rets = esr_ret['val'] atols = esr_ret['atol'] if 'atol' in esr_ret else None if not isinstance(atols, list): atols = [atols] * len(expected_rets) rtols = esr_ret['rtol'] if 'rtol' in esr_ret else None if not isinstance(rtols, list): rtols = [rtols] * len(expected_rets) else: expected_rets = esr_ret atols = [None] * len(expected_rets) rtols = [None] * len(expected_rets) for ret, expected_ret, atol, rtol in zip(rets, expected_rets, atols, rtols): if expected_ret is None: continue kwargs = {} if atol: kwargs['atol'] = atol if rtol: kwargs['rtol'] = rtol assert np.allclose(ret, expected_ret, **kwargs),\ 'ret\n\n{}\n\nand expected_ret\n\n{}\n\nwere not close enough'.format(ret, expected_ret) # noinspection PyProtectedMember def _is_submod_leaf(self): submod_depth = self.top_mod()._submod_depth submods_to_track = self.top_mod()._submods_to_track return (ivy.exists(submod_depth) and self.mod_depth() == submod_depth) or \ self.mod_height() == 0 or \ (ivy.exists(submods_to_track) and self in submods_to_track) def _add_submod_enter(self): sco = self.top_mod().submod_call_order key_chain = self.mod_with_top_mod_key_chain() for key in key_chain[:-1]: kcs = sco.key_chains_containing(key, include_empty=True) if kcs: max_key = sorted( kcs, key=lambda kc: int(kc.split('/')[-2 if isinstance(sco[kc], np.ndarray) else -1].split('_')[-1]))[-1].split('/')[0] else: max_key = key + '_0' sco[max_key] = ivy.Container(alphabetical_keys=False, ivyh=ivy.functional.backends.numpy) sco = sco[max_key] final_key = key_chain[-1] kcs = sco.key_chains_containing(final_key, include_empty=True) if kcs: sorted_kcs =\ sorted(kcs, key=lambda kc: int(kc.split('/')[-2 if isinstance(sco[kc], np.ndarray) else -1].split('_')[-1])) chosen_kc = sorted_kcs[-1] max_key_idx = int(chosen_kc.split('/')[-2 if isinstance(sco[chosen_kc], np.ndarray) else -1].split('_')[-1]) new_key = final_key + '_{}'.format(max_key_idx + 1) else: new_key = final_key + '_0' if self._is_submod_leaf(): sco[new_key] = self.v_with_top_v_key_chains(flatten_key_chains=True).to_numpy() else: sco[new_key] = ivy.Container(alphabetical_keys=False, ivyh=ivy.functional.backends.numpy) def __call__(self, *args, v=None, with_grads=None, stateful=None, arg_stateful_idxs=None, kwarg_stateful_idxs=None, track_submod_rets=False, submod_depth=None, submods_to_track=None, track_submod_call_order=False, expected_submod_rets=None, **kwargs): with_grads = ivy.with_grads(with_grads) self.submod_rets = ivy.Container(alphabetical_keys=False, ivyh=ivy.functional.backends.numpy) self.submod_call_order = ivy.Container(alphabetical_keys=False, ivyh=ivy.functional.backends.numpy) self._set_submod_flags( track_submod_rets, submod_depth, submods_to_track, track_submod_call_order, expected_submod_rets) ret = self._call(*args, v=v, with_grads=with_grads, **kwargs) self._unset_submod_flags() return ret def save_weights(self, weights_path): """ Save the weights on the Module. :param weights_path: The hdf5 file for saving the weights. :type weights_path: string """ os.makedirs('/'.join(weights_path.split('/')[:-1]), exist_ok=True) self.v.to_disk_as_hdf5(weights_path) def build(self, *args, from_call=False, dev=None, **kwargs): """ Build the internal layers and variables for this module. """ self._dev = ivy.default(dev, self._dev) # return False if not from_call but build_mode is on_call if not from_call and self._build_mode == 'on_call': return self.v # build local Module, and any child modules flagged with "explicit" build mode built = ivy.default(self._build(*args, **kwargs), True) # build variables based on locally built layers, if v not passed in constructor v_from_constructor = self._v_in created = Container(self._create_variables(self._dev)) created_n_found = Container(dict(**self._find_variables(self), **created)) if ivy.exists(v_from_constructor): if self._with_partial_v: if v_from_constructor: created_n_found.assert_contains_sub_structure(v_from_constructor, partial=True) self.v = created_n_found.set_at_key_chains(v_from_constructor) else: created_n_found, _ = self._remove_duplicate_variables(created_n_found, created) ivy.Container.assert_identical_structure([created_n_found, v_from_constructor]) self.v = v_from_constructor else: self.v = created_n_found # remove duplicates self.v, keychain_mappings = self._remove_duplicate_variables(self.v, created) # build any child 'on_call' layers if not built and from_call: # update child modules to share the same device for k, v in self.__dict__.items(): if isinstance(v, ivy.Module): v._dev = self._dev # build during forward pass self._forward(*args, **kwargs) # re-build variables based on additional child on-call layers, if v not passed in constructor if not ivy.exists(v_from_constructor): created_n_found = Container(dict(**self._find_variables(self), **self._create_variables(self._dev))) self.v = created_n_found # remove further duplicates with self.v self.v, keychain_mappings = self._remove_duplicate_variables(self.v, created) # set built flag built = True # wrap call methods if the module is fully built if built: self._wrap_call_methods(keychain_mappings, obj=self) # flag built and remove local variables if specified self._built = bool(built) v_ret = self.v if not self._store_vars: # ToDo: verify variables in self.v are released once this method exits self.v = ivy.Container() return v_ret if bool(v_ret) or isinstance(built, bool) else built def show_structure(self): this_repr = termcolor.colored(object.__repr__(self), 'green') sub_mod_repr = self.sub_mods(False).__repr__() if sub_mod_repr == "''": return this_repr print('\n'.join([this_repr, sub_mod_repr])) def __repr__(self): return object.__repr__(self) # Properties # # -----------# @property def build_mode(self): return self._build_mode @property def built(self): return self._built
41.330159
120
0.603695
b8b78c684217767e724d04aeb02d2238eb98f722
1,223
py
Python
docs/tutorial/grade/tests/q2.py
nalderto/otter-grader
a4714bf48df07b7eb8b3c41530ce7a778fd42c98
[ "BSD-3-Clause" ]
null
null
null
docs/tutorial/grade/tests/q2.py
nalderto/otter-grader
a4714bf48df07b7eb8b3c41530ce7a778fd42c98
[ "BSD-3-Clause" ]
null
null
null
docs/tutorial/grade/tests/q2.py
nalderto/otter-grader
a4714bf48df07b7eb8b3c41530ce7a778fd42c98
[ "BSD-3-Clause" ]
null
null
null
test = { 'name': 'q2', 'points': 1, 'suites': [ { 'cases': [ {'code': '>>> f = fiberator();\n>>> assert next(f) == 0;\n>>> assert next(f) == 1\n', 'hidden': False, 'locked': False}, { 'code': '>>> f = fiberator();\n' '>>> assert next(f) == 0;\n' '>>> assert next(f) == 1;\n' '>>> assert next(f) == 1;\n' '>>> assert next(f) == 2;\n' '>>> assert next(f) == 3;\n' '>>> assert next(f) == 5;\n' '>>> assert next(f) == 8;\n' '>>> assert next(f) == 13;\n' '>>> assert next(f) == 21\n', 'hidden': True, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
61.15
155
0.228945
3c5dc49b7e0b6ab6aedd74323e978dc9dd33e854
15
py
Python
num_thai/__init__.py
lanuxos/num-thai
26e78537fc2789733c2541c3f31cadc76e25844d
[ "MIT" ]
null
null
null
num_thai/__init__.py
lanuxos/num-thai
26e78537fc2789733c2541c3f31cadc76e25844d
[ "MIT" ]
null
null
null
num_thai/__init__.py
lanuxos/num-thai
26e78537fc2789733c2541c3f31cadc76e25844d
[ "MIT" ]
2
2020-03-24T10:03:43.000Z
2021-06-05T03:32:45.000Z
name="num_thai"
15
15
0.8
dfa3a40ebcb9f5d194ef50f4c271b35aecd82147
324
py
Python
osmaxx/excerptexport/templatetags/whitespace_cleanup.py
tyrasd/osmaxx
da4454083d17b2ef8b0623cad62e39992b6bd52a
[ "MIT" ]
27
2015-03-30T14:17:26.000Z
2022-02-19T17:30:44.000Z
osmaxx/excerptexport/templatetags/whitespace_cleanup.py
tyrasd/osmaxx
da4454083d17b2ef8b0623cad62e39992b6bd52a
[ "MIT" ]
483
2015-03-09T16:58:03.000Z
2022-03-14T09:29:06.000Z
osmaxx/excerptexport/templatetags/whitespace_cleanup.py
tyrasd/osmaxx
da4454083d17b2ef8b0623cad62e39992b6bd52a
[ "MIT" ]
6
2015-04-07T07:38:30.000Z
2020-04-01T12:45:53.000Z
from django import template from django.template.defaultfilters import stringfilter register = template.Library() @register.filter @stringfilter def remove_all_whitespace(value): return ''.join(value.split()) @register.filter @stringfilter def strip(value, *args, **kwargs): return value.strip(*args, **kwargs)
19.058824
55
0.762346
facee01a8e1d802cd4f2e581588bb9457cf22b1f
419
py
Python
backend/merp_by_cabosys_29948/wsgi.py
crowdbotics-apps/merp-by-cabosys-29948
770e1c2c74eae77160be81ed5b41b9b5ea934fa4
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/merp_by_cabosys_29948/wsgi.py
crowdbotics-apps/merp-by-cabosys-29948
770e1c2c74eae77160be81ed5b41b9b5ea934fa4
[ "FTL", "AML", "RSA-MD" ]
14
2021-08-23T05:43:02.000Z
2021-10-05T12:42:46.000Z
backend/merp_by_cabosys_29948/wsgi.py
crowdbotics-apps/merp-by-cabosys-29948
770e1c2c74eae77160be81ed5b41b9b5ea934fa4
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" WSGI config for merp_by_cabosys_29948 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'merp_by_cabosys_29948.settings') application = get_wsgi_application()
24.647059
81
0.799523
b8d980af378041bb250f31dba8093d4d00cd289f
1,121
py
Python
src/query_executor/abstract_executor.py
imvinod/Eva
0ed9814ae89db7dce1fb734dc99d5dac69cb3c82
[ "Apache-2.0" ]
1
2019-11-06T03:30:08.000Z
2019-11-06T03:30:08.000Z
src/query_executor/abstract_executor.py
imvinod/Eva
0ed9814ae89db7dce1fb734dc99d5dac69cb3c82
[ "Apache-2.0" ]
1
2019-11-18T03:09:56.000Z
2019-11-18T03:09:56.000Z
src/query_executor/abstract_executor.py
asrayousuf/Eva
f652e5d398556055490c146f37e7a2d7a9d091f3
[ "Apache-2.0" ]
null
null
null
from abc import ABC, abstractmethod from typing import List from src.models import FrameBatch from src.query_planner.abstract_plan import AbstractPlan class AbstractExecutor(ABC): """ An abstract class for the executor engine Arguments: node (AbstractPlan): Plan node corresponding to this executor """ def __init__(self, node: 'AbstractPlan'): self._node = node self._children = [] def append_child(self, child: 'AbstractExecutor'): """ appends a child exector node Arguments: child {AbstractExecutor} -- child node """ self._children.append(child) @property def children(self) -> List['AbstractExecutor']: """ Returns the list of child executor Returns: [] -- list of children """ return self._children @abstractmethod def validate(self): NotImplementedError('Must be implemented in subclasses.') @abstractmethod def execute(self, batch: FrameBatch): NotImplementedError('Must be implemented in subclasses.')
25.477273
69
0.636039
b4c5dd4ba5438d9cfba50375253a097c27d4c031
2,248
py
Python
trick_sims/SIM_sun/RUN_Winter/input.py
gilbertguoze/trick
f0537efb0fa3cb5c0c84e36b60f055c1d1c60d21
[ "NASA-1.3" ]
null
null
null
trick_sims/SIM_sun/RUN_Winter/input.py
gilbertguoze/trick
f0537efb0fa3cb5c0c84e36b60f055c1d1c60d21
[ "NASA-1.3" ]
null
null
null
trick_sims/SIM_sun/RUN_Winter/input.py
gilbertguoze/trick
f0537efb0fa3cb5c0c84e36b60f055c1d1c60d21
[ "NASA-1.3" ]
3
2021-06-22T11:02:39.000Z
2021-10-21T00:58:00.000Z
trick_sys.sched.set_enable_freeze(True) """ Sim Control Panel """ simControlPanel = trick.SimControlPanel() trick.add_external_application(simControlPanel) RECORD_DATA = True if RECORD_DATA: execfile("Modified_data/helios.dr") REALTIME = False if REALTIME: execfile("Modified_data/realtime.py") JAPANESE = False if JAPANESE: execfile("Modified_data/Japanese_labels_alt.py") STRIPCHART = False if STRIPCHART: trickView = trick.TrickView() trickView.set_auto_open_file("sun.tv") trickView.set_strip_charts_only(True) trick.add_external_application(trickView) """ ======================================== """ """ LOCATION """ """ ======================================== """ """ JSC MAIN Gate """ sun_predictor.sun.observer_latitude = trick.sim_services.attach_units("d" , 29.55298) sun_predictor.sun.observer_longitude = trick.sim_services.attach_units("d" , 95.09379) """ ======================================== """ """ TIME ZONE """ """ Pick your time zone by uncommenting the """ """ appropriate line below. """ """ ======================================== """ #sun_predictor.sun.observer_offset_from_UTC = -4 """ Eastern Standard Time """ #sun_predictor.sun.observer_offset_from_UTC = -5 """ Central Daylight Time """ #sun_predictor.sun.observer_offset_from_UTC = -5 """ Central Standard Time """ sun_predictor.sun.observer_offset_from_UTC = -6 """ Mountain Daylight Time """ #sun_predictor.sun.observer_offset_from_UTC = -6 """ Mountain Standard Time """ #sun_predictor.sun.observer_offset_from_UTC = -7 """ Pacific Daylight Time """ #sun_predictor.sun.observer_offset_from_UTC = -7 """ Pacific Standard Time """ #sun_predictor.sun.observer_offset_from_UTC = -8 """ ======================================== """ """ LOCAL TIME """ """ Set local time here. """ """ ======================================== """ sun_predictor.sun.local_time.year = 2006 sun_predictor.sun.local_time.month = 12 sun_predictor.sun.local_time.day = 21 sun_predictor.sun.local_time.hour = 0 sun_predictor.sun.local_time.min = 0 sun_predictor.sun.local_time.sec = 0.0 trick.stop(86400.0)
31.222222
86
0.610765
c305d6a2c74f0f831854743c50f77a294c879fd1
1,472
py
Python
youtuatools/extractor/restudy.py
Pagasis/YouTua
edb44b2065a7224f8b26aaf76166bf7287901567
[ "MIT" ]
47
2021-01-02T07:44:50.000Z
2022-02-28T22:02:13.000Z
nextdl/extractor/restudy.py
devenu85/nextdl
0b458f556e2e0be80cb94bd9a9b1405ad2e9182d
[ "MIT" ]
4
2021-02-07T03:35:13.000Z
2021-10-31T19:23:53.000Z
nextdl/extractor/restudy.py
devenu85/nextdl
0b458f556e2e0be80cb94bd9a9b1405ad2e9182d
[ "MIT" ]
8
2021-01-03T05:44:39.000Z
2021-11-01T05:46:32.000Z
# coding: utf-8 from __future__ import unicode_literals from .common import InfoExtractor class RestudyIE(InfoExtractor): _VALID_URL = ( r"https?://(?:(?:www|portal)\.)?restudy\.dk/video/[^/]+/id/(?P<id>[0-9]+)" ) _TESTS = [ { "url": "https://www.restudy.dk/video/play/id/1637", "info_dict": { "id": "1637", "ext": "flv", "title": "Leiden-frosteffekt", "description": "Denne video er et eksperiment med flydende kvælstof.", }, "params": { # rtmp download "skip_download": True, }, }, { "url": "https://portal.restudy.dk/video/leiden-frosteffekt/id/1637", "only_matching": True, }, ] def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) title = self._og_search_title(webpage).strip() description = self._og_search_description(webpage).strip() formats = self._extract_smil_formats( "https://cdn.portal.restudy.dk/dynamic/themes/front/awsmedia/SmilDirectory/video_%s.xml" % video_id, video_id, ) self._sort_formats(formats) return { "id": video_id, "title": title, "description": description, "formats": formats, }
28.307692
100
0.521739
932f5afba6a61d9d9ef413707433f887a4d5eeb6
1,806
py
Python
venv/lib/python3.6/site-packages/smartfields/processors/video.py
Eccie-K/neighbour-hood
f874f9468160aa34dee294d685374e4c5e2eec4d
[ "MIT" ]
null
null
null
venv/lib/python3.6/site-packages/smartfields/processors/video.py
Eccie-K/neighbour-hood
f874f9468160aa34dee294d685374e4c5e2eec4d
[ "MIT" ]
4
2020-06-05T23:21:40.000Z
2021-06-10T21:57:32.000Z
virtual/lib/python3.6/site-packages/smartfields/processors/video.py
Eccie-K/neighbour-hood
f874f9468160aa34dee294d685374e4c5e2eec4d
[ "MIT" ]
null
null
null
import re from django.utils import six from smartfields.processors.base import ExternalFileProcessor from smartfields.utils import ProcessingError __all__ = [ 'FFMPEGProcessor' ] class FFMPEGProcessor(ExternalFileProcessor): duration_re = re.compile(r'Duration: (?P<hours>\d+):(?P<minutes>\d+):(?P<seconds>\d+)') progress_re = re.compile(r'time=(?P<hours>\d+):(?P<minutes>\d+):(?P<seconds>\d+)') error_re = re.compile(r'Invalid data found when processing input') cmd_template = "ffmpeg -i {input} -y -codec:v {vcodec} -b:v {vbitrate} " \ "-maxrate {maxrate} -bufsize {bufsize} -vf " \ "scale={width}:{height} -threads {threads} -c:a {acodec} {output}" def stdout_handler(self, line, duration=None): if duration is None: duration_time = self.duration_re.search(line) if duration_time: duration = self.timedict_to_seconds(duration_time.groupdict()) elif duration != 0: current_time = self.progress_re.search(line) if current_time: seconds = self.timedict_to_seconds(current_time.groupdict()) progress = float(seconds)/duration progress = progress if progress < 1 else 0.99 self.set_progress(progress) elif self.error_re.search(line): raise ProcessingError("Invalid video file or unknown video format.") return (duration,) def timedict_to_seconds(self, timedict): seconds = 0 for key, t in six.iteritems(timedict): if key == 'seconds': seconds+= int(t) elif key == 'minutes': seconds+= int(t)*60 elif key == 'hours': seconds+= int(t)*3600 return seconds
40.133333
91
0.601883
2e812e3a18aa46e7e0ceb489457e4727057e2d53
23,700
py
Python
sdk/appservice/azure-mgmt-web/azure/mgmt/web/v2020_09_01/operations/_resource_health_metadata_operations.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
2
2021-03-24T06:26:11.000Z
2021-04-18T15:55:59.000Z
sdk/appservice/azure-mgmt-web/azure/mgmt/web/v2020_09_01/operations/_resource_health_metadata_operations.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
4
2019-04-17T17:57:49.000Z
2020-04-24T21:11:22.000Z
sdk/appservice/azure-mgmt-web/azure/mgmt/web/v2020_09_01/operations/_resource_health_metadata_operations.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ResourceHealthMetadataOperations(object): """ResourceHealthMetadataOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.web.v2020_09_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, **kwargs # type: Any ): # type: (...) -> Iterable["_models.ResourceHealthMetadataCollection"] """List all ResourceHealthMetadata for all sites in the subscription. Description for List all ResourceHealthMetadata for all sites in the subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ResourceHealthMetadataCollection or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.web.v2020_09_01.models.ResourceHealthMetadataCollection] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ResourceHealthMetadataCollection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ResourceHealthMetadataCollection', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.DefaultErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Web/resourceHealthMetadata'} # type: ignore def list_by_resource_group( self, resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.ResourceHealthMetadataCollection"] """List all ResourceHealthMetadata for all sites in the resource group in the subscription. Description for List all ResourceHealthMetadata for all sites in the resource group in the subscription. :param resource_group_name: Name of the resource group to which the resource belongs. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ResourceHealthMetadataCollection or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.web.v2020_09_01.models.ResourceHealthMetadataCollection] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ResourceHealthMetadataCollection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+[^\.]$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ResourceHealthMetadataCollection', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.DefaultErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Web/resourceHealthMetadata'} # type: ignore def list_by_site( self, resource_group_name, # type: str name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.ResourceHealthMetadataCollection"] """Gets the category of ResourceHealthMetadata to use for the given site as a collection. Description for Gets the category of ResourceHealthMetadata to use for the given site as a collection. :param resource_group_name: Name of the resource group to which the resource belongs. :type resource_group_name: str :param name: Name of web app. :type name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ResourceHealthMetadataCollection or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.web.v2020_09_01.models.ResourceHealthMetadataCollection] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ResourceHealthMetadataCollection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_site.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+[^\.]$'), 'name': self._serialize.url("name", name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ResourceHealthMetadataCollection', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.DefaultErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_site.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Web/sites/{name}/resourceHealthMetadata'} # type: ignore def get_by_site( self, resource_group_name, # type: str name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ResourceHealthMetadata" """Gets the category of ResourceHealthMetadata to use for the given site. Description for Gets the category of ResourceHealthMetadata to use for the given site. :param resource_group_name: Name of the resource group to which the resource belongs. :type resource_group_name: str :param name: Name of web app. :type name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ResourceHealthMetadata, or the result of cls(response) :rtype: ~azure.mgmt.web.v2020_09_01.models.ResourceHealthMetadata :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ResourceHealthMetadata"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" # Construct URL url = self.get_by_site.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+[^\.]$'), 'name': self._serialize.url("name", name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.DefaultErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('ResourceHealthMetadata', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_by_site.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Web/sites/{name}/resourceHealthMetadata/default'} # type: ignore def list_by_site_slot( self, resource_group_name, # type: str name, # type: str slot, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.ResourceHealthMetadataCollection"] """Gets the category of ResourceHealthMetadata to use for the given site as a collection. Description for Gets the category of ResourceHealthMetadata to use for the given site as a collection. :param resource_group_name: Name of the resource group to which the resource belongs. :type resource_group_name: str :param name: Name of web app. :type name: str :param slot: Name of web app slot. If not specified then will default to production slot. :type slot: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ResourceHealthMetadataCollection or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.web.v2020_09_01.models.ResourceHealthMetadataCollection] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ResourceHealthMetadataCollection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_site_slot.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+[^\.]$'), 'name': self._serialize.url("name", name, 'str'), 'slot': self._serialize.url("slot", slot, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ResourceHealthMetadataCollection', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.DefaultErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_site_slot.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Web/sites/{name}/slots/{slot}/resourceHealthMetadata'} # type: ignore def get_by_site_slot( self, resource_group_name, # type: str name, # type: str slot, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ResourceHealthMetadata" """Gets the category of ResourceHealthMetadata to use for the given site. Description for Gets the category of ResourceHealthMetadata to use for the given site. :param resource_group_name: Name of the resource group to which the resource belongs. :type resource_group_name: str :param name: Name of web app. :type name: str :param slot: Name of web app slot. If not specified then will default to production slot. :type slot: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ResourceHealthMetadata, or the result of cls(response) :rtype: ~azure.mgmt.web.v2020_09_01.models.ResourceHealthMetadata :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ResourceHealthMetadata"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" # Construct URL url = self.get_by_site_slot.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+[^\.]$'), 'name': self._serialize.url("name", name, 'str'), 'slot': self._serialize.url("slot", slot, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.DefaultErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('ResourceHealthMetadata', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_by_site_slot.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Web/sites/{name}/slots/{slot}/resourceHealthMetadata/default'} # type: ignore
49.170124
206
0.651941
35e9849010e5db79126f1d8c4fb6851966622acd
22,160
py
Python
mqtt_bme280.py
grodansparadis/vscp-python-sensor-bme280
8984dd509b7eb2bfb99958c2eb6be44a2281d0c6
[ "MIT" ]
1
2022-01-24T20:17:55.000Z
2022-01-24T20:17:55.000Z
mqtt_bme280.py
grodansparadis/vscp-python-sensor-bme280
8984dd509b7eb2bfb99958c2eb6be44a2281d0c6
[ "MIT" ]
null
null
null
mqtt_bme280.py
grodansparadis/vscp-python-sensor-bme280
8984dd509b7eb2bfb99958c2eb6be44a2281d0c6
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -------------------------------------- # ___ ___ _ ____ # / _ \/ _ \(_) __/__ __ __ # / , _/ ___/ /\ \/ _ \/ // / # /_/|_/_/ /_/___/ .__/\_, / # /_/ /___/ # # bme280.py # Read data from a digital pressure sensor. # # Official datasheet available from : # https://www.bosch-sensortec.com/bst/products/all_products/bme280 # # Author : Matt Hawkins # Date : 21/01/2018 # # https://www.raspberrypi-spy.co.uk/ # # -------------------------------------- # Changes and additions for VSCP © 2021 Ake Hedman, Grodans Paradis AB <info@grodansparadis.com> # File is part of the VSCP project https://www.vscp.org import configparser import getopt import json import math import sys import time from ctypes import c_byte, c_short, c_ubyte import paho.mqtt.client as mqtt import smbus import vscp import vscp_class as vc import vscp_type as vt BMP180_CHIP_ID = 0x55 // 85 BMP280_CHIP_ID = 0x58 // 88 BME280_CHIP_ID = 0x60 // 96 BME280_SOFT_RESET_VAL = 0x86 DEVICE = 0x76 # Default device I2C address # ---------------------------------------------------------------------------- # C O N F I G U R E # ---------------------------------------------------------------------------- # change this to match the location's pressure (hPa) at sea level sea_level_pressure = 1013.25 # Print some info along the way bVerbose = False # Print debug info if true bDebug = False # Subtract this value from reported temperature temp_corr = 0.0 # Height at installation location height_at_location = 0.0 # GUID for sensors (Ethernet MAC used if empty) # Should normally have two LSB's set to zero for sensor id use guid = "" # MQTT broker host = "192.168.1.7" # MQTT broker port port = 1883 # Username to login at server user = "vscp" # Password to login at server password = "secret" # MQTT publish topic. # %guid% is replaced with GUID # %class% is replaced with event class # %type% is replaced with event type topic = "vscp/{xguid}/{xclass}/{xtype}/{xsensorindex}" # Sensor index for sensors (BME280) # Default is to use GUID to identify sensor sensorindex_temperature = 0 sensorindex_humidity = 1 sensorindex_pressure = 2 sensorindex_pressure_adj = 3 sensorindex_altitude = 4 sensorindex_dewpoint = 5 # Zone for module zone = 0 # Subzone for module subzone = 0 # Last two bytes for GUID is made up of number # given here on the form MSB:LSB id_temperature = 0 id_humidity = 1 id_pressure = 2 id_pressure_adj = 3 id_altitude = 4 id_dewpoint = 5 note_temperature = "Temperature from BME280" note_humidity = "Humidity from BME280" note_pressure = "Pressure from BME280" note_pressure_adj = "Sea level pressure from BME280" note_altitude = "Altitude from BME280" note_dewpoint = "Dewpoint from BME280" # Configuration will be read from path set here cfgpath = "" # ---------------------------------------------------------------------------------------- config = configparser.ConfigParser() bus = smbus.SMBus(1) # Rev 2 Pi, Pi 2 & Pi 3 uses bus 1 # Rev 1 Pi uses bus 0 def usage(): print("usage: mqtt-bm280.py -v -c <pat-to-config-file> -h ") print("---------------------------------------------") print("-h/--help - This text.") print("-v/--verbose - Print output also to screen.") print("-c/--config - Path to configuration file.") def getShort(data, index): # return two bytes from data as a signed 16-bit value return c_short((data[index+1] << 8) + data[index]).value def getUShort(data, index): # return two bytes from data as an unsigned 16-bit value return (data[index+1] << 8) + data[index] def getChar(data, index): # return one byte from data as a signed char result = data[index] if result > 127: result -= 256 return result def getUChar(data, index): # return one byte from data as an unsigned char result = data[index] & 0xFF return result def readBME280ID(addr=DEVICE): # Chip ID Register Address REG_ID = 0xD0 (chip_id, chip_version) = bus.read_i2c_block_data(addr, REG_ID, 2) return (chip_id, chip_version) def readBME280All(addr=DEVICE): # Register Addresses REG_DATA = 0xF7 REG_CONTROL = 0xF4 REG_CONFIG = 0xF5 REG_CONTROL_HUM = 0xF2 REG_HUM_MSB = 0xFD REG_HUM_LSB = 0xFE # Oversample setting - page 27 OVERSAMPLE_TEMP = 2 OVERSAMPLE_PRES = 2 MODE = 1 # Oversample setting for humidity register - page 26 OVERSAMPLE_HUM = 2 bus.write_byte_data(addr, REG_CONTROL_HUM, OVERSAMPLE_HUM) control = OVERSAMPLE_TEMP << 5 | OVERSAMPLE_PRES << 2 | MODE bus.write_byte_data(addr, REG_CONTROL, control) # Read blocks of calibration data from EEPROM # See Page 22 data sheet cal1 = bus.read_i2c_block_data(addr, 0x88, 24) cal2 = bus.read_i2c_block_data(addr, 0xA1, 1) cal3 = bus.read_i2c_block_data(addr, 0xE1, 7) # Convert byte data to word values dig_T1 = getUShort(cal1, 0) dig_T2 = getShort(cal1, 2) dig_T3 = getShort(cal1, 4) dig_P1 = getUShort(cal1, 6) dig_P2 = getShort(cal1, 8) dig_P3 = getShort(cal1, 10) dig_P4 = getShort(cal1, 12) dig_P5 = getShort(cal1, 14) dig_P6 = getShort(cal1, 16) dig_P7 = getShort(cal1, 18) dig_P8 = getShort(cal1, 20) dig_P9 = getShort(cal1, 22) dig_H1 = getUChar(cal2, 0) dig_H2 = getShort(cal3, 0) dig_H3 = getUChar(cal3, 2) dig_H4 = getChar(cal3, 3) dig_H4 = (dig_H4 << 24) >> 20 dig_H4 = dig_H4 | (getChar(cal3, 4) & 0x0F) dig_H5 = getChar(cal3, 5) dig_H5 = (dig_H5 << 24) >> 20 dig_H5 = dig_H5 | (getUChar(cal3, 4) >> 4 & 0x0F) dig_H6 = getChar(cal3, 6) # Wait in ms (Datasheet Appendix B: Measurement time and current calculation) wait_time = 1.25 + (2.3 * OVERSAMPLE_TEMP) + ((2.3 * OVERSAMPLE_PRES) + 0.575) + ((2.3 * OVERSAMPLE_HUM)+0.575) time.sleep(wait_time/1000) # Wait the required time # Read temperature/pressure/humidity data = bus.read_i2c_block_data(addr, REG_DATA, 8) pres_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4) temp_raw = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4) hum_raw = (data[6] << 8) | data[7] # Refine temperature var1 = ((((temp_raw >> 3)-(dig_T1 << 1)))*(dig_T2)) >> 11 var2 = (((((temp_raw >> 4) - (dig_T1)) * ((temp_raw >> 4) - (dig_T1))) >> 12) * (dig_T3)) >> 14 t_fine = var1+var2 temperature = float(((t_fine * 5) + 128) >> 8); # Refine pressure and adjust for temperature var1 = t_fine / 2.0 - 64000.0 var2 = var1 * var1 * dig_P6 / 32768.0 var2 = var2 + var1 * dig_P5 * 2.0 var2 = var2 / 4.0 + dig_P4 * 65536.0 var1 = (dig_P3 * var1 * var1 / 524288.0 + dig_P2 * var1) / 524288.0 var1 = (1.0 + var1 / 32768.0) * dig_P1 if var1 == 0: pressure = 0 else: pressure = 1048576.0 - pres_raw pressure = ((pressure - var2 / 4096.0) * 6250.0) / var1 var1 = dig_P9 * pressure * pressure / 2147483648.0 var2 = pressure * dig_P8 / 32768.0 pressure = pressure + (var1 + var2 + dig_P7) / 16.0 # Refine humidity humidity = t_fine - 76800.0 humidity = (hum_raw - (dig_H4 * 64.0 + dig_H5 / 16384.0 * humidity)) * (dig_H2 / 65536.0 * (1.0 + dig_H6 / 67108864.0 * humidity * (1.0 + dig_H3 / 67108864.0 * humidity))) humidity = humidity * (1.0 - dig_H1 * humidity / 524288.0) if humidity > 100: humidity = 100 elif humidity < 0: humidity = 0 return temperature/100.0, pressure/100.0, humidity # def main(): # ---------------------------------------------------------------------------- args = sys.argv[1:] nargs = len(args) try: opts, args = getopt.getopt(args, "hvc:", ["help", "verbose", "config="]) except getopt.GetoptError: print("unrecognized format!") usage() sys.exit(2) for opt, arg in opts: if opt in ("-h", "--help"): print("HELP") usage() sys.exit() elif opt in ("-v", "--verbose"): bVerbose = True elif opt in ("-c", "--config"): cfgpath = arg if (len(cfgpath)): init = config.read(cfgpath) # ----------------- GENERAL ----------------- if 'bVerbose' in config['GENERAL']: bVerbose = config.getboolean('GENERAL', 'bVerbose') if bVerbose: print('Verbose mode enabled.') print('READING CONFIGURATION') print('---------------------') # ----------------- VSCP ----------------- if 'guid' in config['VSCP']: guid = config['VSCP']['guid'] if bVerbose: print("guid =", guid) if 'sensorindex_temperature' in config['VSCP']: sensorindex_temperature = int(config['VSCP']['sensorindex_temperature']) if bVerbose: print("sensorindex_temperature =", sensorindex_temperature) if 'sensorindex_humidity' in config['VSCP']: sensorindex_humidity = int(config['VSCP']['sensorindex_humidity']) if bVerbose: print("sensorindex_humidity =", sensorindex_humidity) if 'sensorindex_pressure' in config['VSCP']: sensorindex_pressure = int(config['VSCP']['sensorindex_pressure']) if bVerbose: print("sensorindex_pressure =", sensorindex_pressure) if 'sensorindex_pressure_adj' in config['VSCP']: sensorindex_pressure_adj = int(config['VSCP']['sensorindex_pressure_adj']) if bVerbose: print("sensorindex_pressure_adj =", sensorindex_pressure_adj) if 'sensorindex_gas' in config['VSCP']: sensorindex_gas = int(config['VSCP']['sensorindex_gas']) if bVerbose: print("sensorindex_gas =", sensorindex_gas) if 'sensorindex_altitude' in config['VSCP']: sensorindex_altitude = int(config['VSCP']['sensorindex_altitude']) if bVerbose: print("sensorindex_altitude =", sensorindex_altitude) if 'sensorindex_dewpoint' in config['VSCP']: sensorindex_dewpoint = int(config['VSCP']['sensorindex_dewpoint']) if bVerbose: print("sensorindex_dewpoint =", sensorindex_dewpoint) if 'zone' in config['VSCP']: zone = int(config['VSCP']['zone']) if bVerbose: print("zone =", zone) if 'subzone' in config['VSCP']: subzone = int(config['VSCP']['subzone']) if bVerbose: print("subzone =", subzone) if 'id_temperature' in config['VSCP']: id_temperature = int(config['VSCP']['id_temperature']) if bVerbose: print("id_temperature =", id_temperature) if 'id_humidity' in config['VSCP']: id_humidity = int(config['VSCP']['id_humidity']) if bVerbose: print("id_humidity =", id_humidity) if 'id_pressure' in config['VSCP']: id_pressure = int(config['VSCP']['id_pressure']) if bVerbose: print("id_pressure =", id_pressure) if 'id_pressure_adj' in config['VSCP']: id_pressure_adj = int(config['VSCP']['id_pressure_adj']) if bVerbose: print("id_pressure_adj =", id_pressure_adj) if 'id_gas' in config['VSCP']: id_gas = int(config['VSCP']['id_gas']) if bVerbose: print("id_gas =", id_gas) if 'id_altitude' in config['VSCP']: id_altitude = int(config['VSCP']['id_altitude']) if bVerbose: print("id_altitude =", id_altitude) if 'id_dewpoint' in config['VSCP']: id_dewpoint = int(config['VSCP']['id_dewpoint']) if bVerbose: print("id_dewpoint =", id_dewpoint) # ----------------- MQTT ----------------- if 'host' in config['MQTT']: host = config['MQTT']['host'] if bVerbose: print("host =", host) if 'port' in config['MQTT']: port = int(config['MQTT']['port']) if bVerbose: print("port =", port) if 'user' in config['MQTT']: user = config['MQTT']['user'] if bVerbose: print("user =", user) if 'password' in config['MQTT']: password = config['MQTT']['password'] if bVerbose: print("password =", "***********") # print("password =", password) if 'topic' in config['MQTT']: topic = config['MQTT']['topic'] if bVerbose: print("topic =", password) if 'note_temperature' in config['MQTT']: note_temperature = config['MQTT']['note_temperature'] if bVerbose: print("note_temperature =", note_temperature) if 'note_humidity' in config['MQTT']: note_humidity = config['MQTT']['note_humidity'] if bVerbose: print("note_humidity =", note_humidity) if 'note_pressure' in config['MQTT']: note_pressure = config['MQTT']['note_pressure'] if bVerbose: print("note_pressure =", note_pressure) if 'note_pressure_adj' in config['MQTT']: note_pressure_adj = config['MQTT']['note_pressure_adj'] if bVerbose: print("note_pressure_adj =", note_pressure_adj) if 'note_gas' in config['MQTT']: note_gas = config['MQTT']['note_gas'] if bVerbose: print("note_gas =", note_gas) if 'note_altitude' in config['MQTT']: note_altitude = config['MQTT']['note_altitude'] if bVerbose: print("note_altitude =", note_altitude) if 'note_dewpoint' in config['MQTT']: note_dewpoint = config['MQTT']['note_dewpoint'] if bVerbose: print("note_dewpoint =", note_dewpoint) # ----------------- BME280 ----------------- if 'sea_level_pressure' in config['BME280']: if not bDebug : sea_level_pressure = float(config['BME280']['sea_level_pressure']) if bVerbose: print("sea_level_pressure =", float(config['BME280']['sea_level_pressure'])) if 'temp_corr' in config['BME280']: if not bDebug : temp_corr = float(config['BME280']['temp_corr']) if bVerbose: print("temp_corr =", temp_corr) if 'height_at_location' in config['BME280']: if not bDebug : height_at_location = float(config['BME280']['height_at_location']) if bVerbose: print("height_at_location =", height_at_location) # ----------------------------------------------------------------------------- # define message callback def on_message(client, userdata, msg): print(msg.topic+" "+str(msg.payload)) # define connect callback def on_connect(client, userdata, flags, rc): print("Connected =",str(rc)) # define publish callback def on_publish(client, userdata, result): print("Publish callback\n", result) # ----------------------------------------------------------------------------- client= mqtt.Client() # bind callback function client.on_message=on_connect client.on_message=on_message client.on_message=on_publish client.username_pw_set(user, password) if bVerbose : print("\n\nConnection in progress...", host, port) client.connect(host,port) client.loop_start() # start loop to process received messages # ----------------------------------------------------------------------------- # Initialize VSCP event content def initEvent(ex,id,vscpClass,vscpType): # Dumb node, priority normal ex.head = vscp.VSCP_PRIORITY_NORMAL | vscp.VSCP_HEADER16_DUMB g = vscp.guid() if ("" == guid): g.setFromString(guid) else : g.setGUIDFromMAC(id) ex.guid = g.guid ex.vscpclass = vscpClass ex.vscptype = vscpType return g # ----------------------------------------------------------------------------- # Read sensor id etc (chip_id, chip_version) = readBME280ID() if bVerbose : print("-------------------------------------------------------------------------------") print("Sending events...") print( "Chip ID : %d" % chip_id) print( "Version : %d" % chip_version) temperature,pressure,humidity = readBME280All() # ----------------------------------------------------------------------------- # T E M P E R A T U R E # ----------------------------------------------------------------------------- temperature_str = "{:0.2f}".format(temperature - temp_corr) if bVerbose : print( "Temperature : %0.2f C" % (temperature - temp_corr)) ex = vscp.vscpEventEx() g = initEvent(ex, id_temperature, vc.VSCP_CLASS2_MEASUREMENT_STR, vt.VSCP_TYPE_MEASUREMENT_TEMPERATURE) # Size is predata + string length + terminating zero ex.sizedata = 4 + len(temperature_str) + 1 ex.data[0] = sensorindex_temperature ex.data[1] = zone ex.data[2] = subzone ex.data[3] = 1 # unit is degrees Celsius b = temperature_str.encode() for idx in range(len(b)): ex.data[idx + 4] = b[idx] ex.data[4 + len(temperature_str)] = 0 # optional terminating zero j = ex.toJSON() j["vscpNote"] = note_temperature # Add extra measurement information j["measurement"] = { "value" : temperature, "unit" : 1, "sensorindex" : sensorindex_temperature, "zone" : zone, "subzone" : subzone } ptopic = topic.format( xguid=g.getAsString(), xclass=ex.vscpclass, xtype=ex.vscptype, xsensorindex=sensorindex_temperature) if ( len(ptopic) ): rv = client.publish(ptopic, json.dumps(j)) if 0 != rv[0] : print("Failed to pressure rv=", rv) # ----------------------------------------------------------------------------- # H U M I D I T Y # ----------------------------------------------------------------------------- if BME280_CHIP_ID == chip_id: humidity_str = "{:0.0f}".format(humidity) if bVerbose : print( "Humidity : %f%%" % humidity) ex = vscp.vscpEventEx() initEvent(ex, id_humidity, vc.VSCP_CLASS2_MEASUREMENT_STR,vt.VSCP_TYPE_MEASUREMENT_HUMIDITY) # Size is predata + string length + terminating zero ex.sizedata = 4 + len(humidity_str) + 1 ex.data[0] = sensorindex_humidity ex.data[1] = zone ex.data[2] = subzone ex.data[3] = 0 # default unit % of moisture b = humidity_str.encode() for idx in range(len(b)): ex.data[idx + 4] = b[idx] ex.data[4 + len(humidity_str)] = 0 # optional terminating zero j = ex.toJSON() j["vscpNote"] = note_humidity # Add extra measurement information j["measurement"] = { "value" : humidity, "unit" : 0, "sensorindex" : sensorindex_humidity, "zone" : zone, "subzone" : subzone } ptopic = topic.format( xguid=g.getAsString(), xclass=ex.vscpclass, xtype=ex.vscptype, xsensorindex=sensorindex_humidity) if ( len(ptopic) ): rv = client.publish(ptopic, json.dumps(j)) if 0 != rv[0] : print("Failed to pressure rv=", rv) # ----------------------------------------------------------------------------- # P R E S S U R E # ----------------------------------------------------------------------------- pressure = pressure pressure_str = "{:0.2f}".format(pressure*100) if bVerbose : print( "Pressure : %0.2f hPa" % pressure) print(pressure_str) ex = vscp.vscpEventEx() initEvent(ex, id_pressure, vc.VSCP_CLASS2_MEASUREMENT_STR,vt.VSCP_TYPE_MEASUREMENT_PRESSURE) # Size is predata + string length + terminating zero ex.sizedata = 4 + len(pressure_str) + 1 ex.data[0] = sensorindex_pressure ex.data[1] = zone ex.data[2] = subzone ex.data[3] = 0 # default unit Pascal b = pressure_str.encode() for idx in range(len(b)): ex.data[idx + 4] = b[idx] ex.data[4 + len(pressure_str)] = 0 # optional terminating zero j = ex.toJSON() j["vscpNote"] = note_pressure # Add extra pressure information j["measurement"] = { "value" : round(pressure*100,2), "unit" : 0, "sensorindex" : sensorindex_pressure, "zone" : zone, "subzone" : subzone } ptopic = topic.format( xguid=g.getAsString(), xclass=ex.vscpclass, xtype=ex.vscptype, xsensorindex=sensorindex_pressure) if ( len(ptopic) ): rv = client.publish(ptopic, payload=json.dumps(j), qos=1) if 0 != rv[0] : print("Failed to pressure rv=", rv) # ----------------------------------------------------------------------------- # Adjusted Pressure # ----------------------------------------------------------------------------- pressure_adj_str = "{:f}".format((pressure*100 + height_at_location/8.3)) if bVerbose : print( "Adjusted pressure : %0.2f hPa" % float(pressure_adj_str)) ex = vscp.vscpEventEx() initEvent(ex, id_pressure_adj, vc.VSCP_CLASS2_MEASUREMENT_STR, vt.VSCP_TYPE_MEASUREMENT_PRESSURE) # Size is predata + string length + terminating zero ex.sizedata = 4 + len(pressure_adj_str) + 1 ex.data[0] = sensorindex_pressure_adj ex.data[1] = zone ex.data[2] = subzone ex.data[3] = 0 # default unit Pascal b = pressure_adj_str.encode() for idx in range(len(b)): ex.data[idx + 4] = b[idx] ex.data[4 + len(pressure_adj_str)] = 0 # optional terminating zero j = ex.toJSON() j["vscpNote"] = note_pressure_adj # Add extra pressure information j["measurement"] = { "value" : round(float(float(pressure_adj_str)),2), "unit" : 0, "sensorindex" : sensorindex_pressure_adj, "zone" : zone, "subzone" : subzone } #print(json.dumps(j)) ptopic = topic.format( xguid=g.getAsString(), xclass=ex.vscpclass, xtype=ex.vscptype, xsensorindex=sensorindex_pressure_adj) if ( len(ptopic) ): rv = client.publish(ptopic, json.dumps(j)) if 0 != rv[0] : print("Failed to send sea level pressure rv=", rv) # ----------------------------------------------------------------------------- # Dewpoint # ----------------------------------------------------------------------------- if BME280_CHIP_ID == chip_id: dewpoint = temperature - ((100 - humidity) / 5) dewpoint_str = "{:0.2f}".format(dewpoint) if bVerbose : print( "Dewpoint : %f C" % dewpoint) ex = vscp.vscpEventEx() initEvent(ex, id_dewpoint, vc.VSCP_CLASS2_MEASUREMENT_STR,vt.VSCP_TYPE_MEASUREMENT_DEWPOINT) # Size is predata + string length + terminating zero ex.sizedata = 4 + len(dewpoint) + 1 ex.data[0] = sensorindex_dewpoint ex.data[1] = zone ex.data[2] = subzone ex.data[3] = 0 # default unit Pascal b = pressure_str.encode() for idx in range(len(b)): ex.data[idx + 4] = b[idx] ex.data[4 + len(dewpoint)] = 0 # optional terminating zero j = ex.toJSON() j["vscpNote"] = note_dewpoint # Add extra pressure information j["measurement"] = { "value" : float(dewpoint), "unit" : 0, "sensorindex" : sensorindex_dewpoint, "zone" : zone, "subzone" : subzone } ptopic = topic.format( xguid=g.getAsString(), xclass=ex.vscpclass, xtype=ex.vscptype, xsensorindex=sensorindex_dewpoint) if ( len(ptopic) ): rv = client.publish(ptopic, json.dumps(j)) if 0 != rv[0] : print("Failed to pressure rv=", rv) # ----------------------------------------------------------------------------- #time.sleep(0.5) client.loop_stop() client.disconnect() if bVerbose : print("-------------------------------------------------------------------------------") print("Closed") # if __name__=="__main__": # main()
29.196311
124
0.606273
5914ea7871b3f3ee65c3748efb01f5e3c999bb7a
2,661
py
Python
src/patent_client/uspto/fulltext/patent/settings.py
parkerhancock/python-ip
046c1ebbe31e9058a0e421659a3300e8a578fd41
[ "Apache-2.0" ]
15
2018-10-23T01:15:29.000Z
2022-02-01T19:53:44.000Z
src/patent_client/uspto/fulltext/patent/settings.py
grimmer0125/patent_client
8943ca970d174ecf8aad10669a95ceddd75f5e13
[ "Apache-2.0" ]
33
2018-10-26T03:48:51.000Z
2022-01-17T09:16:07.000Z
src/patent_client/uspto/fulltext/patent/settings.py
grimmer0125/patent_client
8943ca970d174ecf8aad10669a95ceddd75f5e13
[ "Apache-2.0" ]
7
2019-02-14T20:25:20.000Z
2021-05-24T07:49:34.000Z
SEARCH_PARAMS = { "Sect1": "PTO2", "Sect2": "HITOFF", "u": "/netahtml/PTO/search-adv.htm", "r": "0", "p": "1", "f": "S", "l": "50", "Query": "", "d": "PTXT", } SEARCH_FIELDS = { "patent_number": "PN", "issue_date": "ISD", "title": "TTL", "abstract": "ABST", "claims": "ACLM", "specification": "SPEC", "current_us_classification": "CCL", "current_cpc_classification": "CPC", "current_cpc_classification_class": "CPCL", "international_classification": "ICL", "application_serial_number": "APN", "application_date": "APD", "application_type": "APT", "government_interest": "GOVT", "patent_family_id": "FMID", "parent_case_information": "PARN", "related_us_app._data": "RLAP", "related_application_filing_date": "RLFD", "foreign_priority": "PRIR", "priority_filing_date": "PRAD", "pct_information": "PCT", "pct_filing_date": "PTAD", "pct_national_stage_filing_date": "PT3D", "prior_published_document_date": "PPPD", "reissue_data": "REIS", "reissued_patent_application_filing_date": "RPAF", "130_b_affirmation_flag": "AFFF", "130_b_affirmation_statement": "AFFT", "inventor_name": "IN", "inventor_city": "IC", "inventor_state": "IS", "inventor_country": "ICN", "applicant_name": "AANM", "applicant_city": "AACI", "applicant_state": "AAST", "applicant_country": "AACO", "applicant_type": "AAAT", "attorney_or_agent": "LREP", "assignee_name": "AN", "assignee_city": "AC", "assignee_state": "AS", "assignee_country": "ACN", "primary_examiner": "EXP", "assistant_examiner": "EXA", "referenced_by": "REF", "foreign_references": "FREF", "other_references": "OREF", "certificate_of_correction": "COFC", "reexamination_certificate": "REEX", "ptab_trial_certificate": "PTAB", "supplemental_exam_certificate": "SEC", "international_registration_number": "ILRN", "international_registration_date": "ILRD", "international_registration_publication_date": "ILPD", "hague_international_filing_date": "ILFD", } SEARCH_PARAMS = { "Sect1": "PTO2", "Sect2": "HITOFF", "u": "/netahtml/PTO/search-adv.htm", "r": "0", "p": "1", "f": "S", "l": "50", "Query": "", "d": "PTXT", } SEARCH_URL = "https://patft.uspto.gov/netacgi/nph-Parser" PUBLICATION_URL = ( "https://patft.uspto.gov/netacgi/nph-Parser?" "Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&" "u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1={publication_number}.PN.&" "OS=PN/{publication_number}&RS=PN/{publication_number}" )
29.241758
81
0.622322
1773c5f2cbf43155b4c4ebf00ad4a7af706ef8e0
5,282
py
Python
src_files/loss_functions/losses.py
kprokofi/ML_Decoder
c01c50e0165e607afbebd8d615708ef9c084dd5b
[ "MIT" ]
null
null
null
src_files/loss_functions/losses.py
kprokofi/ML_Decoder
c01c50e0165e607afbebd8d615708ef9c084dd5b
[ "MIT" ]
null
null
null
src_files/loss_functions/losses.py
kprokofi/ML_Decoder
c01c50e0165e607afbebd8d615708ef9c084dd5b
[ "MIT" ]
null
null
null
import torch import torch.nn as nn class AsymmetricLoss(nn.Module): def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=True): super(AsymmetricLoss, self).__init__() self.gamma_neg = gamma_neg self.gamma_pos = gamma_pos self.clip = clip self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss self.eps = eps def forward(self, x, y): """" Parameters ---------- x: input logits y: targets (multi-label binarized vector) """ # Calculating Probabilities x_sigmoid = torch.sigmoid(x) xs_pos = x_sigmoid xs_neg = 1 - x_sigmoid # Asymmetric Clipping if self.clip is not None and self.clip > 0: xs_neg = (xs_neg + self.clip).clamp(max=1) # Basic CE calculation los_pos = y * torch.log(xs_pos.clamp(min=self.eps)) los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps)) loss = los_pos + los_neg # Asymmetric Focusing if self.gamma_neg > 0 or self.gamma_pos > 0: if self.disable_torch_grad_focal_loss: torch.set_grad_enabled(False) pt0 = xs_pos * y pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p pt = pt0 + pt1 one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y) one_sided_w = torch.pow(1 - pt, one_sided_gamma) if self.disable_torch_grad_focal_loss: torch.set_grad_enabled(True) loss *= one_sided_w return -loss.sum() class AsymmetricLossOptimized(nn.Module): ''' Notice - optimized version, minimizes memory allocation and gpu uploading, favors inplace operations''' def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False): super(AsymmetricLossOptimized, self).__init__() self.gamma_neg = gamma_neg self.gamma_pos = gamma_pos self.clip = clip self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss self.eps = eps # prevent memory allocation and gpu uploading every iteration, and encourages inplace operations self.targets = self.anti_targets = self.xs_pos = self.xs_neg = self.asymmetric_w = self.loss = None def forward(self, x, y): """" Parameters ---------- x: input logits y: targets (multi-label binarized vector) """ self.targets = y self.anti_targets = 1 - y # Calculating Probabilities self.xs_pos = torch.sigmoid(x) self.xs_neg = 1.0 - self.xs_pos # Asymmetric Clipping if self.clip is not None and self.clip > 0: self.xs_neg.add_(self.clip).clamp_(max=1) # Basic CE calculation self.loss = self.targets * torch.log(self.xs_pos.clamp(min=self.eps)) self.loss.add_(self.anti_targets * torch.log(self.xs_neg.clamp(min=self.eps))) # Asymmetric Focusing if self.gamma_neg > 0 or self.gamma_pos > 0: if self.disable_torch_grad_focal_loss: torch.set_grad_enabled(False) self.xs_pos = self.xs_pos * self.targets self.xs_neg = self.xs_neg * self.anti_targets self.asymmetric_w = torch.pow(1 - self.xs_pos - self.xs_neg, self.gamma_pos * self.targets + self.gamma_neg * self.anti_targets) if self.disable_torch_grad_focal_loss: torch.set_grad_enabled(True) self.loss *= self.asymmetric_w return -self.loss.sum() class ASLSingleLabel(nn.Module): ''' This loss is intended for single-label classification problems ''' def __init__(self, gamma_pos=0, gamma_neg=4, eps: float = 0.1, reduction='mean'): super(ASLSingleLabel, self).__init__() self.eps = eps self.logsoftmax = nn.LogSoftmax(dim=-1) self.targets_classes = [] self.gamma_pos = gamma_pos self.gamma_neg = gamma_neg self.reduction = reduction def forward(self, inputs, target): ''' "input" dimensions: - (batch_size,number_classes) "target" dimensions: - (batch_size) ''' num_classes = inputs.size()[-1] log_preds = self.logsoftmax(inputs) self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1) # ASL weights targets = self.targets_classes anti_targets = 1 - targets xs_pos = torch.exp(log_preds) xs_neg = 1 - xs_pos xs_pos = xs_pos * targets xs_neg = xs_neg * anti_targets asymmetric_w = torch.pow(1 - xs_pos - xs_neg, self.gamma_pos * targets + self.gamma_neg * anti_targets) log_preds = log_preds * asymmetric_w if self.eps > 0: # label smoothing self.targets_classes = self.targets_classes.mul(1 - self.eps).add(self.eps / num_classes) # loss calculation loss = - self.targets_classes.mul(log_preds) loss = loss.sum(dim=-1) if self.reduction == 'mean': loss = loss.mean() return loss
34.980132
109
0.604127
4f5fcf6cbc29bac6b0739c46abf3694340912518
5,061
py
Python
pybank/bank.py
Nat1405/pychain
a8b01afcf0df3ce24ec30d6f887d16ed3aa28d63
[ "MIT" ]
null
null
null
pybank/bank.py
Nat1405/pychain
a8b01afcf0df3ce24ec30d6f887d16ed3aa28d63
[ "MIT" ]
null
null
null
pybank/bank.py
Nat1405/pychain
a8b01afcf0df3ce24ec30d6f887d16ed3aa28d63
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Basic implementation of a banking application in Python # Copyright Nat Comeau 2017 # STDLIB # LOCAL class Bank(object): """A bank has customers that want to do things with their money This is a simple bank that holds people's money and transfers it to each other. Parameters ---------- name : str name of the bank Attributes ---------- name : str name of bank customers : dict dictionary of customer: <customer_object> pairs """ def __init__(self, name): self.name = name # Create an empty dict to hold class Customer(object): """ A customer starts with just a name. After, you must add accounts to their list of accounts with a starting balance. Parameters ---------- name : str name of the customer Attributes ---------- name : str name of the customer accounts : dict dictionary of account objects with balances Examples -------- Create a new Customer >>> nat = Customer('Nathaniel C') Give them a student banking account and a credit account >>> nat.add_account('Student Banking', 10.00) >>> nat.add_account('Credit', 50.00) >>> print(nat) Valued Customer Name: Nathaniel C Account name: Student Banking Account balance: 10.0 Account name: Credit Account balance: 50.0 >>> nat.deposit('Student Banking', 10.0) >>> print(nat) Valued Customer Name: Nathaniel C Account name: Student Banking Account balance: 20.0 Account name: Credit Account balance: 50.0 """ def __init__(self, name): self.name = name self.accounts = {} def add_account(self, name, start=0.00): """Add account to a customers portfolio Parameters ---------- name : str The account name start : float, optional The starting value of the account """ self.accounts[name] = Account(name, start) def withdraw(self, account, amount): """Withdraw from an account Parameters ---------- account : str name of account to withdraw from amount : float amount of money to withdraw from account Returns ------- withdrawn : float amount of money withdrawn from account """ # Take the amount of money our of the account self.accounts[account].balance -= amount # Return the amount of money we withdrew return amount def deposit(self, account, amount): """Deposit some money in an account Parameters ---------- account : str name of account to deposit in amount : float amount of money to deposit in account """ self.accounts[account].balance += amount def transfer(self, sending, recieving, amount): """Transfer money between two accounts Parameters ---------- sending : str recieving : str amount : float """ pass def __str__(self): """ """ rep = "Valued Customer Name: {}\n".format(self.name) for i, account in enumerate(self.accounts): if i < len(self.accounts) - 1: rep += str(self.accounts[account]) + "\n" else: rep += str(self.accounts[account]) return rep class Account(object): """ Parameters ---------- name : str account name start : float, optional starting balance to begin with; default 0.00 Attributes ---------- name : str account name balance : float account balance Examples -------- >>> acc = Account('Student Banking', 100.00) >>> print(acc) Account name: Student Banking Account balance: 100.0 """ def __init__(self, name, start=0.00): self.name = name self.balance = start def deposit(self, amount): """Add money to self Parameters ---------- amount : float amount to deposit; must be positive Raises ------ ValueError If the amount is not a positive number """ if amount >= 0: self.balance += amount else: raise ValueError def withdraw(self, amount): """Remove money from self Parameters ---------- amount : float amount to withdraw; must be positive Raises ------ ValueError If the amount is not a positive number """ if amount >= 0: self.balance -= amount else: raise ValueError def __str__(self): """ """ return "Account name: {} Account balance: {}".format(self.name, self.balance) if __name__ == "__main__": # Use doctest to test new accounts import doctest doctest.testmod()
22.900452
85
0.550879
4894f0328ee1d21c0f7504ea539c07e66d4009a7
303
py
Python
teamcat_service/docker_build/target/one_step_build/teamcat/doraemon/toolbox/views/commonview.py
zhangyin2088/Teamcat
be9be8d7c1e58c8d2d22ab78d25783d9aee4de71
[ "Apache-2.0" ]
6
2018-11-26T08:42:52.000Z
2020-06-01T08:33:48.000Z
teamcat_service/docker_build/target/one_step_build/teamcat/doraemon/toolbox/views/commonview.py
zhangyin2088/Teamcat
be9be8d7c1e58c8d2d22ab78d25783d9aee4de71
[ "Apache-2.0" ]
null
null
null
teamcat_service/docker_build/target/one_step_build/teamcat/doraemon/toolbox/views/commonview.py
zhangyin2088/Teamcat
be9be8d7c1e58c8d2d22ab78d25783d9aee4de71
[ "Apache-2.0" ]
1
2019-01-22T06:45:36.000Z
2019-01-22T06:45:36.000Z
#coding=utf-8 # coding=utf-8 ''' Created on 2014-3-18 @author: ETHAN ''' from django.shortcuts import render_to_response def loadleftnavigater(request): ''' load left navigater''' print("#####################################") return render_to_response("common/toolboxleftnavigater.html")
21.642857
65
0.636964
305648a78e35a485d26b857f860223b0bbebbc15
1,345
py
Python
plugins/modules/ytthumb.py
bughunter0/Helper-Bot
f03370623160dceec7a790f5836536aefffbdf7b
[ "MIT" ]
null
null
null
plugins/modules/ytthumb.py
bughunter0/Helper-Bot
f03370623160dceec7a790f5836536aefffbdf7b
[ "MIT" ]
null
null
null
plugins/modules/ytthumb.py
bughunter0/Helper-Bot
f03370623160dceec7a790f5836536aefffbdf7b
[ "MIT" ]
2
2021-09-19T17:32:17.000Z
2021-11-21T09:49:09.000Z
import ytthumb from pyrogram import Client, filters from pyrogram.types import Message, InlineKeyboardMarkup, InlineKeyboardButton @Client.on_message( filters.command(["ytthumb", "thumbnail"]), group=1 ) async def youtube_thumbnail(update: Message): reply_markup = InlineKeyboardMarkup( [[InlineKeyboardButton('Join Updates Channel', url='https://telegram.me/FayasNoushad')]] ) if len(update.text.split()) == 1 or len(update.text.split()) >= 4: await update.reply_text( "Send command with youtube video link with quality ( optional )", quote=True, reply_markup=reply_markup ) else: length = len(update.text.split()) video = update.text.split()[1] if length == 2: thumbnail = ytthumb.thumbnail(video) else: quality = update.text.split()[2] thumbnail = ytthumb.thumbnail(video, quality) try: await update.reply_photo( thumbnail, quote=True, reply_markup=reply_markup ) except Exception as error: await update.reply_text( text=error, disable_web_page_preview=True, reply_markup=reply_markup, quote=True )
32.02381
96
0.581413
8e3d4838c58bd05cb7777f9e823275daa2e27454
22,887
py
Python
Lib/test/test_trace.py
ystk/debian-python2.6
17d77164dc5d5748e54aeaa5adc89ac511fc71ae
[ "PSF-2.0" ]
3
2015-09-22T14:04:54.000Z
2021-07-15T07:07:11.000Z
Lib/test/test_trace.py
ystk/debian-python2.6
17d77164dc5d5748e54aeaa5adc89ac511fc71ae
[ "PSF-2.0" ]
1
2020-09-07T15:33:56.000Z
2020-09-07T15:33:56.000Z
Lib/test/test_trace.py
ystk/debian-python2.6
17d77164dc5d5748e54aeaa5adc89ac511fc71ae
[ "PSF-2.0" ]
2
2015-09-22T14:05:27.000Z
2015-11-08T20:15:42.000Z
# Testing the line trace facility. from test import test_support import unittest import sys import difflib import gc # A very basic example. If this fails, we're in deep trouble. def basic(): return 1 basic.events = [(0, 'call'), (1, 'line'), (1, 'return')] # Many of the tests below are tricky because they involve pass statements. # If there is implicit control flow around a pass statement (in an except # clause or else caluse) under what conditions do you set a line number # following that clause? # The entire "while 0:" statement is optimized away. No code # exists for it, so the line numbers skip directly from "del x" # to "x = 1". def arigo_example(): x = 1 del x while 0: pass x = 1 arigo_example.events = [(0, 'call'), (1, 'line'), (2, 'line'), (5, 'line'), (5, 'return')] # check that lines consisting of just one instruction get traced: def one_instr_line(): x = 1 del x x = 1 one_instr_line.events = [(0, 'call'), (1, 'line'), (2, 'line'), (3, 'line'), (3, 'return')] def no_pop_tops(): # 0 x = 1 # 1 for a in range(2): # 2 if a: # 3 x = 1 # 4 else: # 5 x = 1 # 6 no_pop_tops.events = [(0, 'call'), (1, 'line'), (2, 'line'), (3, 'line'), (6, 'line'), (2, 'line'), (3, 'line'), (4, 'line'), (2, 'line'), (2, 'return')] def no_pop_blocks(): y = 1 while not y: bla x = 1 no_pop_blocks.events = [(0, 'call'), (1, 'line'), (2, 'line'), (4, 'line'), (4, 'return')] def called(): # line -3 x = 1 def call(): # line 0 called() call.events = [(0, 'call'), (1, 'line'), (-3, 'call'), (-2, 'line'), (-2, 'return'), (1, 'return')] def raises(): raise Exception def test_raise(): try: raises() except Exception, exc: x = 1 test_raise.events = [(0, 'call'), (1, 'line'), (2, 'line'), (-3, 'call'), (-2, 'line'), (-2, 'exception'), (-2, 'return'), (2, 'exception'), (3, 'line'), (4, 'line'), (4, 'return')] def _settrace_and_return(tracefunc): sys.settrace(tracefunc) sys._getframe().f_back.f_trace = tracefunc def settrace_and_return(tracefunc): _settrace_and_return(tracefunc) settrace_and_return.events = [(1, 'return')] def _settrace_and_raise(tracefunc): sys.settrace(tracefunc) sys._getframe().f_back.f_trace = tracefunc raise RuntimeError def settrace_and_raise(tracefunc): try: _settrace_and_raise(tracefunc) except RuntimeError, exc: pass settrace_and_raise.events = [(2, 'exception'), (3, 'line'), (4, 'line'), (4, 'return')] # implicit return example # This test is interesting because of the else: pass # part of the code. The code generate for the true # part of the if contains a jump past the else branch. # The compiler then generates an implicit "return None" # Internally, the compiler visits the pass statement # and stores its line number for use on the next instruction. # The next instruction is the implicit return None. def ireturn_example(): a = 5 b = 5 if a == b: b = a+1 else: pass ireturn_example.events = [(0, 'call'), (1, 'line'), (2, 'line'), (3, 'line'), (4, 'line'), (6, 'line'), (6, 'return')] # Tight loop with while(1) example (SF #765624) def tightloop_example(): items = range(0, 3) try: i = 0 while 1: b = items[i]; i+=1 except IndexError: pass tightloop_example.events = [(0, 'call'), (1, 'line'), (2, 'line'), (3, 'line'), (4, 'line'), (5, 'line'), (5, 'line'), (5, 'line'), (5, 'line'), (5, 'exception'), (6, 'line'), (7, 'line'), (7, 'return')] def tighterloop_example(): items = range(1, 4) try: i = 0 while 1: i = items[i] except IndexError: pass tighterloop_example.events = [(0, 'call'), (1, 'line'), (2, 'line'), (3, 'line'), (4, 'line'), (4, 'line'), (4, 'line'), (4, 'line'), (4, 'exception'), (5, 'line'), (6, 'line'), (6, 'return')] def generator_function(): try: yield True "continued" finally: "finally" def generator_example(): # any() will leave the generator before its end x = any(generator_function()) # the following lines were not traced for x in range(10): y = x generator_example.events = ([(0, 'call'), (2, 'line'), (-6, 'call'), (-5, 'line'), (-4, 'line'), (-4, 'return'), (-4, 'call'), (-4, 'exception'), (-1, 'line'), (-1, 'return')] + [(5, 'line'), (6, 'line')] * 10 + [(5, 'line'), (5, 'return')]) class Tracer: def __init__(self): self.events = [] def trace(self, frame, event, arg): self.events.append((frame.f_lineno, event)) return self.trace def traceWithGenexp(self, frame, event, arg): (o for o in [1]) self.events.append((frame.f_lineno, event)) return self.trace class TraceTestCase(unittest.TestCase): # Disable gc collection when tracing, otherwise the # deallocators may be traced as well. def setUp(self): self.using_gc = gc.isenabled() gc.disable() def tearDown(self): if self.using_gc: gc.enable() def compare_events(self, line_offset, events, expected_events): events = [(l - line_offset, e) for (l, e) in events] if events != expected_events: self.fail( "events did not match expectation:\n" + "\n".join(difflib.ndiff([str(x) for x in expected_events], [str(x) for x in events]))) def run_and_compare(self, func, events): tracer = Tracer() sys.settrace(tracer.trace) func() sys.settrace(None) self.compare_events(func.func_code.co_firstlineno, tracer.events, events) def run_test(self, func): self.run_and_compare(func, func.events) def run_test2(self, func): tracer = Tracer() func(tracer.trace) sys.settrace(None) self.compare_events(func.func_code.co_firstlineno, tracer.events, func.events) def set_and_retrieve_none(self): sys.settrace(None) assert sys.gettrace() is None def set_and_retrieve_func(self): def fn(*args): pass sys.settrace(fn) try: assert sys.gettrace() is fn finally: sys.settrace(None) def test_01_basic(self): self.run_test(basic) def test_02_arigo(self): self.run_test(arigo_example) def test_03_one_instr(self): self.run_test(one_instr_line) def test_04_no_pop_blocks(self): self.run_test(no_pop_blocks) def test_05_no_pop_tops(self): self.run_test(no_pop_tops) def test_06_call(self): self.run_test(call) def test_07_raise(self): self.run_test(test_raise) def test_08_settrace_and_return(self): self.run_test2(settrace_and_return) def test_09_settrace_and_raise(self): self.run_test2(settrace_and_raise) def test_10_ireturn(self): self.run_test(ireturn_example) def test_11_tightloop(self): self.run_test(tightloop_example) def test_12_tighterloop(self): self.run_test(tighterloop_example) def test_13_genexp(self): self.run_test(generator_example) # issue1265: if the trace function contains a generator, # and if the traced function contains another generator # that is not completely exhausted, the trace stopped. # Worse: the 'finally' clause was not invoked. tracer = Tracer() sys.settrace(tracer.traceWithGenexp) generator_example() sys.settrace(None) self.compare_events(generator_example.__code__.co_firstlineno, tracer.events, generator_example.events) def test_14_onliner_if(self): def onliners(): if True: False else: True return 0 self.run_and_compare( onliners, [(0, 'call'), (1, 'line'), (3, 'line'), (3, 'return')]) def test_15_loops(self): # issue1750076: "while" expression is skipped by debugger def for_example(): for x in range(2): pass self.run_and_compare( for_example, [(0, 'call'), (1, 'line'), (2, 'line'), (1, 'line'), (2, 'line'), (1, 'line'), (1, 'return')]) def while_example(): # While expression should be traced on every loop x = 2 while x > 0: x -= 1 self.run_and_compare( while_example, [(0, 'call'), (2, 'line'), (3, 'line'), (4, 'line'), (3, 'line'), (4, 'line'), (3, 'line'), (3, 'return')]) def test_16_blank_lines(self): exec("def f():\n" + "\n" * 256 + " pass") self.run_and_compare( f, [(0, 'call'), (257, 'line'), (257, 'return')]) class RaisingTraceFuncTestCase(unittest.TestCase): def trace(self, frame, event, arg): """A trace function that raises an exception in response to a specific trace event.""" if event == self.raiseOnEvent: raise ValueError # just something that isn't RuntimeError else: return self.trace def f(self): """The function to trace; raises an exception if that's the case we're testing, so that the 'exception' trace event fires.""" if self.raiseOnEvent == 'exception': x = 0 y = 1 // x else: return 1 def run_test_for_event(self, event): """Tests that an exception raised in response to the given event is handled OK.""" self.raiseOnEvent = event try: for i in xrange(sys.getrecursionlimit() + 1): sys.settrace(self.trace) try: self.f() except ValueError: pass else: self.fail("exception not thrown!") except RuntimeError: self.fail("recursion counter not reset") # Test the handling of exceptions raised by each kind of trace event. def test_call(self): self.run_test_for_event('call') def test_line(self): self.run_test_for_event('line') def test_return(self): self.run_test_for_event('return') def test_exception(self): self.run_test_for_event('exception') def test_trash_stack(self): def f(): for i in range(5): print i # line tracing will raise an exception at this line def g(frame, why, extra): if (why == 'line' and frame.f_lineno == f.func_code.co_firstlineno + 2): raise RuntimeError, "i am crashing" return g sys.settrace(g) try: f() except RuntimeError: # the test is really that this doesn't segfault: import gc gc.collect() else: self.fail("exception not propagated") # 'Jump' tests: assigning to frame.f_lineno within a trace function # moves the execution position - it's how debuggers implement a Jump # command (aka. "Set next statement"). class JumpTracer: """Defines a trace function that jumps from one place to another, with the source and destination lines of the jump being defined by the 'jump' property of the function under test.""" def __init__(self, function): self.function = function self.jumpFrom = function.jump[0] self.jumpTo = function.jump[1] self.done = False def trace(self, frame, event, arg): if not self.done and frame.f_code == self.function.func_code: firstLine = frame.f_code.co_firstlineno if frame.f_lineno == firstLine + self.jumpFrom: # Cope with non-integer self.jumpTo (because of # no_jump_to_non_integers below). try: frame.f_lineno = firstLine + self.jumpTo except TypeError: frame.f_lineno = self.jumpTo self.done = True return self.trace # The first set of 'jump' tests are for things that are allowed: def jump_simple_forwards(output): output.append(1) output.append(2) output.append(3) jump_simple_forwards.jump = (1, 3) jump_simple_forwards.output = [3] def jump_simple_backwards(output): output.append(1) output.append(2) jump_simple_backwards.jump = (2, 1) jump_simple_backwards.output = [1, 1, 2] def jump_out_of_block_forwards(output): for i in 1, 2: output.append(2) for j in [3]: # Also tests jumping over a block output.append(4) output.append(5) jump_out_of_block_forwards.jump = (3, 5) jump_out_of_block_forwards.output = [2, 5] def jump_out_of_block_backwards(output): output.append(1) for i in [1]: output.append(3) for j in [2]: # Also tests jumping over a block output.append(5) output.append(6) output.append(7) jump_out_of_block_backwards.jump = (6, 1) jump_out_of_block_backwards.output = [1, 3, 5, 1, 3, 5, 6, 7] def jump_to_codeless_line(output): output.append(1) # Jumping to this line should skip to the next one. output.append(3) jump_to_codeless_line.jump = (1, 2) jump_to_codeless_line.output = [3] def jump_to_same_line(output): output.append(1) output.append(2) output.append(3) jump_to_same_line.jump = (2, 2) jump_to_same_line.output = [1, 2, 3] # Tests jumping within a finally block, and over one. def jump_in_nested_finally(output): try: output.append(2) finally: output.append(4) try: output.append(6) finally: output.append(8) output.append(9) jump_in_nested_finally.jump = (4, 9) jump_in_nested_finally.output = [2, 9] # The second set of 'jump' tests are for things that are not allowed: def no_jump_too_far_forwards(output): try: output.append(2) output.append(3) except ValueError, e: output.append('after' in str(e)) no_jump_too_far_forwards.jump = (3, 6) no_jump_too_far_forwards.output = [2, True] def no_jump_too_far_backwards(output): try: output.append(2) output.append(3) except ValueError, e: output.append('before' in str(e)) no_jump_too_far_backwards.jump = (3, -1) no_jump_too_far_backwards.output = [2, True] # Test each kind of 'except' line. def no_jump_to_except_1(output): try: output.append(2) except: e = sys.exc_info()[1] output.append('except' in str(e)) no_jump_to_except_1.jump = (2, 3) no_jump_to_except_1.output = [True] def no_jump_to_except_2(output): try: output.append(2) except ValueError: e = sys.exc_info()[1] output.append('except' in str(e)) no_jump_to_except_2.jump = (2, 3) no_jump_to_except_2.output = [True] def no_jump_to_except_3(output): try: output.append(2) except ValueError, e: output.append('except' in str(e)) no_jump_to_except_3.jump = (2, 3) no_jump_to_except_3.output = [True] def no_jump_to_except_4(output): try: output.append(2) except (ValueError, RuntimeError), e: output.append('except' in str(e)) no_jump_to_except_4.jump = (2, 3) no_jump_to_except_4.output = [True] def no_jump_forwards_into_block(output): try: output.append(2) for i in 1, 2: output.append(4) except ValueError, e: output.append('into' in str(e)) no_jump_forwards_into_block.jump = (2, 4) no_jump_forwards_into_block.output = [True] def no_jump_backwards_into_block(output): try: for i in 1, 2: output.append(3) output.append(4) except ValueError, e: output.append('into' in str(e)) no_jump_backwards_into_block.jump = (4, 3) no_jump_backwards_into_block.output = [3, 3, True] def no_jump_into_finally_block(output): try: try: output.append(3) x = 1 finally: output.append(6) except ValueError, e: output.append('finally' in str(e)) no_jump_into_finally_block.jump = (4, 6) no_jump_into_finally_block.output = [3, 6, True] # The 'finally' still runs def no_jump_out_of_finally_block(output): try: try: output.append(3) finally: output.append(5) output.append(6) except ValueError, e: output.append('finally' in str(e)) no_jump_out_of_finally_block.jump = (5, 1) no_jump_out_of_finally_block.output = [3, True] # This verifies the line-numbers-must-be-integers rule. def no_jump_to_non_integers(output): try: output.append(2) except ValueError, e: output.append('integer' in str(e)) no_jump_to_non_integers.jump = (2, "Spam") no_jump_to_non_integers.output = [True] # This verifies that you can't set f_lineno via _getframe or similar # trickery. def no_jump_without_trace_function(): try: previous_frame = sys._getframe().f_back previous_frame.f_lineno = previous_frame.f_lineno except ValueError, e: # This is the exception we wanted; make sure the error message # talks about trace functions. if 'trace' not in str(e): raise else: # Something's wrong - the expected exception wasn't raised. raise RuntimeError, "Trace-function-less jump failed to fail" class JumpTestCase(unittest.TestCase): def compare_jump_output(self, expected, received): if received != expected: self.fail( "Outputs don't match:\n" + "Expected: " + repr(expected) + "\n" + "Received: " + repr(received)) def run_test(self, func): tracer = JumpTracer(func) sys.settrace(tracer.trace) output = [] func(output) sys.settrace(None) self.compare_jump_output(func.output, output) def test_01_jump_simple_forwards(self): self.run_test(jump_simple_forwards) def test_02_jump_simple_backwards(self): self.run_test(jump_simple_backwards) def test_03_jump_out_of_block_forwards(self): self.run_test(jump_out_of_block_forwards) def test_04_jump_out_of_block_backwards(self): self.run_test(jump_out_of_block_backwards) def test_05_jump_to_codeless_line(self): self.run_test(jump_to_codeless_line) def test_06_jump_to_same_line(self): self.run_test(jump_to_same_line) def test_07_jump_in_nested_finally(self): self.run_test(jump_in_nested_finally) def test_08_no_jump_too_far_forwards(self): self.run_test(no_jump_too_far_forwards) def test_09_no_jump_too_far_backwards(self): self.run_test(no_jump_too_far_backwards) def test_10_no_jump_to_except_1(self): self.run_test(no_jump_to_except_1) def test_11_no_jump_to_except_2(self): self.run_test(no_jump_to_except_2) def test_12_no_jump_to_except_3(self): self.run_test(no_jump_to_except_3) def test_13_no_jump_to_except_4(self): self.run_test(no_jump_to_except_4) def test_14_no_jump_forwards_into_block(self): self.run_test(no_jump_forwards_into_block) def test_15_no_jump_backwards_into_block(self): self.run_test(no_jump_backwards_into_block) def test_16_no_jump_into_finally_block(self): self.run_test(no_jump_into_finally_block) def test_17_no_jump_out_of_finally_block(self): self.run_test(no_jump_out_of_finally_block) def test_18_no_jump_to_non_integers(self): self.run_test(no_jump_to_non_integers) def test_19_no_jump_without_trace_function(self): no_jump_without_trace_function() def test_20_large_function(self): d = {} exec("""def f(output): # line 0 x = 0 # line 1 y = 1 # line 2 ''' # line 3 %s # lines 4-1004 ''' # line 1005 x += 1 # line 1006 output.append(x) # line 1007 return""" % ('\n' * 1000,), d) f = d['f'] f.jump = (2, 1007) f.output = [0] self.run_test(f) def test_main(): test_support.run_unittest( TraceTestCase, RaisingTraceFuncTestCase, JumpTestCase ) if __name__ == "__main__": test_main()
29.762029
76
0.546773
970bf22dd34ba9137616d25879b43de3b962c6e0
2,333
py
Python
flask/lib/python2.7/site-packages/sqlparse/__init__.py
navodissa/python-flask
76589828a4eba01ccbf019d9336f359f04f37067
[ "BSD-3-Clause" ]
null
null
null
flask/lib/python2.7/site-packages/sqlparse/__init__.py
navodissa/python-flask
76589828a4eba01ccbf019d9336f359f04f37067
[ "BSD-3-Clause" ]
null
null
null
flask/lib/python2.7/site-packages/sqlparse/__init__.py
navodissa/python-flask
76589828a4eba01ccbf019d9336f359f04f37067
[ "BSD-3-Clause" ]
null
null
null
# Copyright (C) 2008 Andi Albrecht, albrecht.andi@gmail.com # # This module is part of python-sqlparse and is released under # the BSD License: http://www.opensource.org/licenses/bsd-license.php. """Parse SQL statements.""" __version__ = '0.1.13' # Setup namespace from sqlparse import engine from sqlparse import filters from sqlparse import formatter # Deprecated in 0.1.5. Will be removed in 0.2.0 from sqlparse.exceptions import SQLParseError def parse(sql, encoding=None): """Parse sql and return a list of statements. :param sql: A string containting one or more SQL statements. :param encoding: The encoding of the statement (optional). :returns: A tuple of :class:`~sqlparse.sql.Statement` instances. """ return tuple(parsestream(sql, encoding)) def parsestream(stream, encoding=None): """Parses sql statements from file-like object. :param stream: A file-like object. :param encoding: The encoding of the stream contents (optional). :returns: A generator of :class:`~sqlparse.sql.Statement` instances. """ stack = engine.FilterStack() stack.full_analyze() return stack.run(stream, encoding) def format(sql, **options): """Format *sql* according to *options*. Available options are documented in :ref:`formatting`. In addition to the formatting options this function accepts the keyword "encoding" which determines the encoding of the statement. :returns: The formatted SQL statement as string. """ encoding = options.pop('encoding', None) stack = engine.FilterStack() options = formatter.validate_options(options) stack = formatter.build_filter_stack(stack, options) stack.postprocess.append(filters.SerializerUnicode()) return ''.join(stack.run(sql, encoding)) def split(sql, encoding=None): """Split *sql* into single statements. :param sql: A string containting one or more SQL statements. :param encoding: The encoding of the statement (optional). :returns: A list of strings. """ stack = engine.FilterStack() stack.split_statements = True return [unicode(stmt).strip() for stmt in stack.run(sql, encoding)] from sqlparse.engine.filter import StatementFilter def split2(stream): splitter = StatementFilter() return list(splitter.process(None, stream))
29.531646
72
0.71796
d1b39a88deb09497ae687341263900f5b5464bbf
2,761
py
Python
monitor/format.py
madbuda/chia-monitor
88ba28bba0ce54b0b06d4a10b3ed05c886a29d1f
[ "Apache-2.0" ]
null
null
null
monitor/format.py
madbuda/chia-monitor
88ba28bba0ce54b0b06d4a10b3ed05c886a29d1f
[ "Apache-2.0" ]
null
null
null
monitor/format.py
madbuda/chia-monitor
88ba28bba0ce54b0b06d4a10b3ed05c886a29d1f
[ "Apache-2.0" ]
null
null
null
from chia.util.misc import format_bytes, format_minutes def format_og_plot_count(plot_count: int) -> str: return f"🌾 OG Plot Count: {plot_count}" def format_og_plot_size(plot_size: int) -> str: return f"🧺 OG Plot Size: {format_bytes(plot_size)}" def format_portable_plot_count(plot_count: int) -> str: return f"🌾 Portable Plot Count: {plot_count}" def format_portable_plot_size(plot_size: int) -> str: return f"🧺 Portable Plot Size: {format_bytes(plot_size)}" def format_plot_count(plot_count: int) -> str: return f"🌾 Plot Count: {plot_count}" def format_plot_size(plot_size: int) -> str: return f"🧺 Plot Size: {format_bytes(plot_size)}" def format_plot_delta_24h(count_delta: int, size_delta: int) -> str: size_prefix = "+" if size_delta > 0 else "-" return f"🚜 Plot Change 24h: {count_delta:+} ({size_prefix}{format_bytes(abs(size_delta))})" def format_balance(balance: int) -> str: return f"💰 Total Balance: {balance/1e12:.5f} XCH" def format_space(space: int) -> str: return f"💾 Current Netspace: {format_bytes(space)}" def format_diffculty(diffculty: int) -> str: return f"📈 Farming Difficulty: {diffculty}" def format_peak_height(peak_height: int, fix_indent=False) -> str: indent = " " * (1 if fix_indent else 0) return f"🏔️ {indent}Peak Height: {peak_height}" def format_synced(synced: int) -> str: return f"🔄 Synced: {synced}" def format_full_node_count(full_node_count: int, node_type="Full Node") -> str: return f"📶 {node_type} Peer Count: {full_node_count}" def format_hostname(hostname: str, fix_indent=False) -> str: indent = " " * (1 if fix_indent else 0) return f"🖥️ {indent}Host: {hostname}" def format_challenge_hash(challenge_hash: str) -> str: return f"🎰 Challenge Hash: {challenge_hash}" def format_challenges_per_min(challenges_per_min: float) -> str: return f"🎰 Challenges Per Minute: {challenges_per_min:.2f}" def format_signage_point(signage_point: str) -> str: return f"⌛ Signage Point: {signage_point}" def format_signage_points_per_min(signage_points_per_min: float) -> str: return f"⌛ Signage Points Per Minute: {signage_points_per_min:.2f}" def format_signage_point_index(signage_point_index: int) -> str: return f"🔏 Signage Point Index: {signage_point_index}" def format_passed_filter(passed_filter: int) -> str: return f"🔎 Passed Filter: {passed_filter}" def format_passed_filter_per_min(passed_filter_per_min: float) -> str: return f"🔎 Passed Filters Per Minute: {passed_filter_per_min:.2f}" def format_proofs(proofs: int) -> str: return f"✅ Total Proofs found: {proofs}" def format_expected_time_to_win(minutes: int) -> str: return f"🕰️ Time To Win: {format_minutes(minutes)}"
28.463918
95
0.716407
eea7c362d774ff8b826b9c421c8c16ffc1736bce
2,561
py
Python
src/nibeuplink/__init__.py
lipoja/nibeuplink
f8da14cc0d31342cb44026d9eded2bf82b52460b
[ "MIT" ]
20
2018-10-16T11:01:00.000Z
2022-01-04T13:19:42.000Z
src/nibeuplink/__init__.py
lipoja/nibeuplink
f8da14cc0d31342cb44026d9eded2bf82b52460b
[ "MIT" ]
4
2018-05-14T13:05:16.000Z
2022-01-17T05:42:52.000Z
src/nibeuplink/__init__.py
lipoja/nibeuplink
f8da14cc0d31342cb44026d9eded2bf82b52460b
[ "MIT" ]
8
2018-10-16T11:34:51.000Z
2021-08-08T09:45:11.000Z
import asyncio import logging from typing import Dict from .const import ( MAX_REQUEST_PARAMETERS, PARAM_HOTWATER_SYSTEMS, PARAM_CLIMATE_SYSTEMS, PARAM_COMPRESSOR_FREQUENCY, PARAM_PUMP_SPEED_HEATING_MEDIUM, PARAM_STATUS_COOLING, PARAM_VENTILATION_SYSTEMS, SMARTHOME_MODES, ) from .typing import StatusItemIcon, SetThermostatModel, Thermostat, SmartHomeSystem from .types import ( VentilationSystem, ClimateSystem, HotWaterSystem, ) from .monitor import Monitor from .uplink import Uplink from .session import UplinkSession _LOGGER = logging.getLogger(__name__) async def get_active_climate( uplink: Uplink, system_id: int ) -> Dict[str, ClimateSystem]: active = {} async def check(key: str, value: ClimateSystem): if value.active_accessory is None: active[key] = value return available = await uplink.get_parameter(system_id, value.active_accessory) _LOGGER.debug("Climate %s:%s active_accessory: %s", system_id, key, available) if available and available["rawValue"] == 1: active[key] = value await asyncio.gather( *[check(key, value) for key, value in PARAM_CLIMATE_SYSTEMS.items()] ) return active async def get_active_hotwater( uplink: Uplink, system_id: int ) -> Dict[str, HotWaterSystem]: active = {} async def check(key: str, value: HotWaterSystem): if value.hot_water_production is None: active[key] = value return available = await uplink.get_parameter(system_id, value.hot_water_production) _LOGGER.debug( "Hotwater %s:%s hot_water_production: %s", system_id, key, available ) if available and available["rawValue"] == 1: active[key] = value await asyncio.gather( *[check(key, value) for key, value in PARAM_HOTWATER_SYSTEMS.items()] ) return active async def get_active_ventilations( uplink: Uplink, system_id: int ) -> Dict[str, VentilationSystem]: active = {} async def check(key: str, value: VentilationSystem): if value.fan_speed is None: return available = await uplink.get_parameter(system_id, value.fan_speed) _LOGGER.debug("Ventilation %s:%s fan_speed: %s", system_id, key, available) if available and available["rawValue"] != -32768: active[key] = value await asyncio.gather( *[check(key, value) for key, value in PARAM_VENTILATION_SYSTEMS.items()] ) return active
26.402062
86
0.673565
583be644a39ee9a19e6a60a41e8d13fd37ed3b58
381
py
Python
examples/tla202x_simpletest.py
jposada202020/Adafruit_CircuitPython_TLA202x
ab2449aadd4256ec68efd773ef264b1d6e86a3cd
[ "Unlicense", "MIT-0", "MIT" ]
47
2021-02-15T23:02:36.000Z
2022-03-04T21:30:03.000Z
examples/tla202x_simpletest.py
jposada202020/Adafruit_CircuitPython_TLA202x
ab2449aadd4256ec68efd773ef264b1d6e86a3cd
[ "Unlicense", "MIT-0", "MIT" ]
7
2021-02-19T20:00:08.000Z
2022-01-14T10:51:12.000Z
examples/tla202x_simpletest.py
jposada202020/Adafruit_CircuitPython_TLA202x
ab2449aadd4256ec68efd773ef264b1d6e86a3cd
[ "Unlicense", "MIT-0", "MIT" ]
14
2021-02-20T17:40:56.000Z
2022-01-01T19:53:38.000Z
# SPDX-FileCopyrightText: 2020 Bryan Siepert, written for Adafruit Industries # # SPDX-License-Identifier: Unlicense # pylint:disable=no-member import board import busio from adafruit_tla202x import TLA2024 i2c = busio.I2C(board.SCL, board.SDA) tla = TLA2024(i2c) for i in range(4): channel = i tla.input_channel = channel print("Channel", channel, ":", tla.voltage)
23.8125
77
0.742782
dbec6d5e2c5866c22bca8a9ed415125efd9a0de6
29,762
py
Python
vistrails/packages/vtk/tf_widget.py
remram44/VisTrails-mybinder
ee7477b471920d738f3ac430932f01901b56ed44
[ "BSD-3-Clause" ]
83
2015-01-05T14:50:50.000Z
2021-09-17T19:45:26.000Z
vistrails/packages/vtk/tf_widget.py
remram44/VisTrails-mybinder
ee7477b471920d738f3ac430932f01901b56ed44
[ "BSD-3-Clause" ]
254
2015-01-02T20:39:19.000Z
2018-11-28T17:16:44.000Z
vistrails/packages/vtk/tf_widget.py
remram44/VisTrails-mybinder
ee7477b471920d738f3ac430932f01901b56ed44
[ "BSD-3-Clause" ]
40
2015-04-17T16:46:36.000Z
2021-09-28T22:43:24.000Z
############################################################################### ## ## Copyright (C) 2014-2016, New York University. ## Copyright (C) 2011-2014, NYU-Poly. ## Copyright (C) 2006-2011, University of Utah. ## All rights reserved. ## Contact: contact@vistrails.org ## ## This file is part of VisTrails. ## ## "Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are met: ## ## - Redistributions of source code must retain the above copyright notice, ## this list of conditions and the following disclaimer. ## - Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## - Neither the name of the New York University nor the names of its ## contributors may be used to endorse or promote products derived from ## this software without specific prior written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ## THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ## EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ## PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ## OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ## WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR ## OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ## ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ## ############################################################################### ############################################################################## # Transfer Function Widget for VTK from __future__ import division from PyQt4 import QtCore, QtGui from vistrails.core.modules.vistrails_module import Module from vistrails.core.modules.basic_modules import Constant from vistrails.core.modules.module_registry import get_module_registry from vistrails.core.system import get_elementtree_library from vistrails.core.utils.color import ColorByName from vistrails.gui.modules.constant_configuration import ConstantWidgetMixin import vtk import math import pickle import copy import StringIO import unittest ElementTree = get_elementtree_library() ################################################################################ # etc def clamp(v, mn, mx, eps=0.0): mne = mn + eps mxe = mx - eps if v < mne: return mn if v > mxe: return mx return v # Because of a Qt bug see # http://bugreports.qt.nokia.com/browse/QTBUG-17985 # We cannot set the scene from 0 to 1. In this case we will set it # 4000 x 4000 with GLOBAL_SCALE. When the bug is fixed, just set it to 1.0 GLOBAL_SCALE = 4000.0 ############################################################################## # Transfer Function object class TransferFunction(object): def __init__(self): self._min_range = 0.0 self._max_range = 1.0 self._pts = [] def set_range(self, mn, mx): self._min_range = mn self._max_range = mx def set_on_vtk_volume_property(self, vtk_volume_property): # Builds the opacity and color functions of = vtk.vtkPiecewiseFunction() cf = vtk.vtkColorTransferFunction() vp = vtk_volume_property for pt in self._pts: (scalar, opacity, color) = pt # Map scalar to tf range s = self._min_range + (self._max_range - self._min_range) * scalar of.AddPoint(s, opacity) cf.AddRGBPoint(s, color[0], color[1], color[2]) vp.SetScalarOpacity(of) vp.SetColor(cf) def get_vtk_transfer_functions(self): of = vtk.vtkPiecewiseFunction() cf = vtk.vtkColorTransferFunction() for pt in self._pts: (scalar, opacity, color) = pt # Map scalar to tf range s = self._min_range + (self._max_range - self._min_range) * scalar of.AddPoint(s, opacity) cf.AddRGBPoint(s, color[0], color[1], color[2]) return (of,cf) def add_point(self, scalar, opacity, color): self._pts.append((scalar, opacity, color)) self._pts.sort() def get_value(self, scalar): """get_value(scalar): returns the opacity and color linearly interpolated at the value. Useful for adding knots.""" ix = 0 while ix < len(self._pts) and self._pts[ix][0] > scalar: ix += 1 if ix == 0: return (self._pts[0][1], self._pts[0][2]) elif ix == len(self._pts): return (self._pts[-1][1], self._pts[-1][2]) else: u = ((self._pts[ix][0] - scalar) / (self._pts[ix][0] - self._pts[ix-1][0])) do = self._pts[ix][1] - self._pts[ix-1][1] dr = self._pts[ix][2][0] - self._pts[ix-1][2][0] dg = self._pts[ix][2][1] - self._pts[ix-1][2][1] db = self._pts[ix][2][2] - self._pts[ix-1][2][2] return (self._pts[ix-1][1] + u * do, (self._pts[ix-1][2][0] + u * dr, self._pts[ix-1][2][1] + u * dg, self._pts[ix-1][2][2] + u * db)) def __copy__(self): result = TransferFunction() result._min_range = self._min_range result._max_range = self._max_range result._pts = copy.copy(self._pts) return result def __eq__(self, other): if type(other) != type(self): return False if self._min_range != other._min_range: return False if self._max_range != other._max_range: return False for my_pt, other_pt in zip(self._pts, other._pts): if my_pt != other_pt: return False return True def __ne__(self, other): return not self.__eq__(other) def serialize(self, node=None): """serialize(node: ElementTree.Element) -> str Convert this object to an XML representation in string format. """ if node is None: node = ElementTree.Element('transfer_function') node.set('min_range', str(self._min_range)) node.set('max_range', str(self._max_range)) for pt in self._pts: ptNode = ElementTree.SubElement(node, 'point') ptNode.set('scalar', str(pt[0])) ptNode.set('opacity', str(pt[1])) color = pt[2] colorNode = ElementTree.SubElement(ptNode, 'color') colorNode.set('R', str(color[0])) colorNode.set('G', str(color[1])) colorNode.set('B', str(color[2])) return ElementTree.tostring(node) @staticmethod def parse(strNode): """parse(strNode: str) -> TransferFunction Parses a string representing a TransferFunction and returns a TransferFunction object """ try: node = ElementTree.fromstring(strNode) except SyntaxError: #it was serialized using pickle class FixUnpickler(pickle.Unpickler): def find_class(self, module, name): if module == 'packages.vtk.tf_widget': module = 'vistrails.packages.vtk.tf_widget' return pickle.Unpickler.find_class(self, module, name) tf = FixUnpickler(StringIO.StringIO(strNode.decode('hex'))).load() tf._pts.sort() return tf if node.tag != 'transfer_function': return None #read attributes tf = TransferFunction() tf._min_range = float(node.get('min_range', "0.0")) tf._max_range = float(node.get('max_range', "1.0")) for ptNode in node.getchildren(): if ptNode.tag == 'point': scalar = float(ptNode.get('scalar','-1.0')) opacity = float(ptNode.get('opacity', '1.0')) for colorNode in ptNode.getchildren(): if colorNode.tag == 'color': color = (float(colorNode.get('R','0.0')), float(colorNode.get('G','0.0')), float(colorNode.get('B','0.0'))) break else: assert "'point' node has no 'color' child" tf._pts.append((scalar,opacity,color)) tf._pts.sort() return tf ############################################################################## # Graphics Items class TransferFunctionPoint(QtGui.QGraphicsEllipseItem): selection_pens = { True: QtGui.QPen(QtGui.QBrush( QtGui.QColor(*(ColorByName.get_int('goldenrod_medium')))),GLOBAL_SCALE * 0.012), False: QtGui.QPen() } def __init__(self, scalar, opacity, color, parent=None): QtGui.QGraphicsEllipseItem.__init__(self, parent) self._scalar = scalar self._opacity = opacity self._color = QtGui.QColor(color[0]*255, color[1]*255, color[2]*255) self.setPen(QtGui.QPen(QtGui.QColor(0,0,0))) self.setFlag(QtGui.QGraphicsItem.ItemIsMovable) self.setFlag(QtGui.QGraphicsItem.ItemIsSelectable) self.setFlag(QtGui.QGraphicsItem.ItemIsFocusable) if QtCore.QT_VERSION >= 0x40600: self.setFlag(QtGui.QGraphicsItem.ItemSendsGeometryChanges) self.setZValue(2.0) self._sx = 1.0 self._sy = 1.0 # fixed scale self._fsx = GLOBAL_SCALE self._fsy = GLOBAL_SCALE self._left_line = None self._right_line = None self._point = QtCore.QPointF(scalar * self._fsx, opacity * self._fsy) self.refresh() self.setToolTip("Double-click to change color\n" "Right-click to remove point\n" "Scalar: %.5f, Opacity: %.5f" % (self._scalar, self._opacity)) # This sets up the linked list of Lines def keyPressEvent(self, event): if event.key() == QtCore.Qt.Key_Backspace or \ event.key() == QtCore.Qt.Key_Delete: self.remove_self() def refresh(self): dx = self._fsx * 0.025 / self._sx dy = self._fsy * 0.025 / self._sy # this is the setup self.setBrush(QtGui.QBrush(self._color)) self.setRect(-dx, -dy, 2 * dx, 2 * dy) self.setPos(self._fsx * self._scalar, self._fsy * self._opacity) self.update() def update_scale(self, sx, sy): self._sx = sx self._sy = sy self.refresh() def itemChange(self, change, value): if change == QtGui.QGraphicsItem.ItemSelectedChange: self.setPen(self.selection_pens[value]) if change == QtGui.QGraphicsItem.ItemPositionChange: # moves point # value is now a QPointF, not a QPoint so no conversion needed pt = value pt.setY(clamp(pt.y(), 0.0, 1.0 * self._fsy) ) self._opacity = pt.y() / self._fsy self._point.setY(pt.y()) if not self._left_line: pt.setX(0.0) elif not self._right_line: pt.setX(1.0 * self._fsx) else: assert self._left_line._point_right == self assert self._right_line._point_left == self pt.setX(clamp(pt.x(), self._left_line._point_left._point.x(), self._right_line._point_right._point.x(), 1e-6)) self._point.setX(pt.x()) self._scalar = pt.x() / self._fsx if self._left_line: self._left_line.refresh() if self._right_line: self._right_line.refresh() if self.parentItem(): self.parentItem()._tf_poly.setup() self.setToolTip("Double-click to change color\n" "Right-click to remove point\n" "Scalar: %.5f, Opacity: %.5f" % (self._scalar, self._opacity)) return QtGui.QGraphicsItem.itemChange(self, change, pt) return QtGui.QGraphicsItem.itemChange(self, change, value) def remove_self(self): if not self._left_line or not self._right_line: # Ignore, self is a corner node that can't be removed return # Removes the right line and self, re-ties data structure self._left_line._point_right = self._right_line._point_right self._left_line._point_right._left_line = self._left_line # be friends with garbage collector self._right_line._point_left = None self._right_line._point_right = None self.parentItem()._tf_poly.setup() self.scene().removeItem(self._right_line) self.scene().removeItem(self) self._left_line.refresh() def mouseDoubleClickEvent(self, event): new_color = QtGui.QColorDialog.getColor(self._color) if not new_color.isValid(): return self._color = new_color if self._left_line: self._left_line.refresh() if self._right_line: self._right_line.refresh() self.refresh() # sometimes the graphicsitem gets recreated, and we need to abort if self.parentItem(): self.parentItem()._tf_poly.setup() QtGui.QGraphicsEllipseItem.mouseDoubleClickEvent(self, event) def mousePressEvent(self, event): if event.button() == QtCore.Qt.RightButton: event.accept() self.remove_self() else: QtGui.QGraphicsEllipseItem.mousePressEvent(self, event) def paint(self, painter, option, widget=None): """ paint(painter: QPainter, option: QStyleOptionGraphicsItem, widget: QWidget) -> None Peform painting of the point without the ugly default dashed-line black square """ painter.setBrush(self.brush()) painter.setPen(self.pen()) painter.drawEllipse(self.rect()) def add_self_to_transfer_function(self, tf): tf.add_point(self._scalar, self._opacity, (self._color.redF(), self._color.greenF(), self._color.blueF())) class TransferFunctionPolygon(QtGui.QGraphicsPolygonItem): def __init__(self, parent=None): QtGui.QGraphicsPolygonItem.__init__(self, parent) def setup(self): # This inspects the scene, finds the left-most point, and # then builds the polygon traversing the linked list structure pt = self.parentItem().get_leftmost_point() if not pt: return self.setZValue(1.25) g = QtGui.QLinearGradient() g.setStart(0.0, 0.5) g.setFinalStop(1.0, 0.5) g.setCoordinateMode(QtGui.QGradient.ObjectBoundingMode) p = QtGui.QPen() p.setStyle(QtCore.Qt.NoPen) pts = [QtCore.QPointF(pt.x(), 0)] self.setPen(p) while 1: c = QtGui.QColor(pt._color) c.setAlphaF(pt._opacity) g.setColorAt(pt._scalar, c) pts.append(pt._point) # move cursor fwd if pt._right_line: pt = pt._right_line._point_right else: break self.setBrush(QtGui.QBrush(g)) pts.append(QtCore.QPointF(pt._point.x(), 0)) polygon = QtGui.QPolygonF(pts) self.setPolygon(polygon) class TransferFunctionLine(QtGui.QGraphicsPolygonItem): def __init__(self, point_left, point_right, parent=None): assert point_right._scalar >= point_left._scalar QtGui.QGraphicsPolygonItem.__init__(self, parent) self._point_left = point_left self._point_right = point_right self._point_left._right_line = self self._point_right._left_line = self self.setup(1.0, 1.0) self._sx = 1.0 self._sy = 1.0 # fixed scale self._fsx = GLOBAL_SCALE self._fsy = GLOBAL_SCALE self.setToolTip('') def setup(self, sx, sy): d = self._point_right._point - self._point_left._point d_normal = QtCore.QPointF(d.y(), -d.x()) l = math.sqrt(d.x() * d.x() + d.y() * d.y()) if l != 0.0: d_normal /= l d_normal *= GLOBAL_SCALE * 0.010 d_normal.setX(d_normal.x() / sx) d_normal.setY(d_normal.y() / sy) ps = [self._point_left._point + d_normal, self._point_right._point + d_normal, self._point_right._point - d_normal, self._point_left._point - d_normal] self.setPolygon(QtGui.QPolygonF(ps)) self.setZValue(1.5) # Gradient for filling g = QtGui.QLinearGradient() g.setCoordinateMode(QtGui.QGradient.ObjectBoundingMode) g.setStart(self._point_left._scalar, self._point_left._opacity) g.setFinalStop(self._point_right._scalar, self._point_right._opacity) g.setColorAt(0.0, self._point_left._color) g.setColorAt(1.0, self._point_right._color) self.setBrush(QtGui.QBrush(g)) # Gradient for outlining g = QtGui.QLinearGradient() g.setStart(self._point_left._point) g.setFinalStop(self._point_right._point) dark_pl = QtGui.QColor(self._point_left._color.red() * 0.5, self._point_left._color.green() * 0.5, self._point_left._color.blue() * 0.5) dark_pr = QtGui.QColor(self._point_right._color.red() * 0.5, self._point_right._color.green() * 0.5, self._point_right._color.blue() * 0.5) g.setColorAt(0.0, dark_pl) g.setColorAt(1.0, dark_pr) p = QtGui.QPen() p.setBrush(QtGui.QBrush(g)) self.setPen(p) def update_scale(self, sx, sy): self._sx = sx self._sy = sy self.refresh() def refresh(self): self.setup(self._sx, self._sy) def mouseDoubleClickEvent(self, event): p = event.pos() c_left = self._point_left._color c_right = self._point_right._color u = ((p.x() - self._point_left._point.x()) / (self._point_right._point.x() - self._point_left._point.x())) new_c = (u * c_right.redF() + (1-u) * c_left.redF(), u * c_right.greenF() + (1-u) * c_left.greenF(), u * c_right.blueF() + (1-u) * c_left.blueF()) new_point = TransferFunctionPoint(p.x()/ self._fsx, p.y()/self._fsy, new_c, self.parentItem()) self.parentItem()._tf_items.append(new_point) new_line = TransferFunctionLine(new_point, self._point_right, self.parentItem()) self.parentItem()._tf_items.append(new_line) new_point._left_line = self self._point_right = new_point new_line.update_scale(self._point_left._sx, self._point_left._sy) new_point.update_scale(self._point_left._sx, self._point_left._sy) new_point.refresh() self.refresh() def mousePressEvent(self, event): # This needs to be here, otherwise mouseDoubleClickEvent does # not get called. event.accept() ############################################################################## # Scene, view, widget class QGraphicsTransferFunction(QtGui.QGraphicsWidget, ConstantWidgetMixin): contentsChanged = QtCore.pyqtSignal(tuple) def __init__(self, param, parent=None): QtGui.QGraphicsWidget.__init__(self, parent) ConstantWidgetMixin.__init__(self, param.strValue) self.setAcceptHoverEvents(True) if not param.strValue: self._tf = copy.copy(default_tf) else: self._tf = TransferFunction.parse(param.strValue) self._tf_items = [] poly = TransferFunctionPolygon(self) poly.setup() self._tf_poly = poly self.create_tf_items(self._tf) self._tf_poly.setup() #current scale self._sx = 1.0 self._sy = 1.0 # Add outlines line_color = QtGui.QColor(200, 200, 200) pen = QtGui.QPen(line_color) ps = [QtCore.QPointF(0.0, 0.0), QtCore.QPointF(GLOBAL_SCALE, 0.0), QtCore.QPointF(GLOBAL_SCALE, GLOBAL_SCALE), QtCore.QPointF(0.0, GLOBAL_SCALE)] polygon = QtGui.QGraphicsPolygonItem(QtGui.QPolygonF(ps), self) polygon.setPen(pen) for i in xrange(51): u = GLOBAL_SCALE * float(i) / 50.0 line = QtGui.QGraphicsLineItem(QtCore.QLineF(u, 0.0, u, GLOBAL_SCALE), self) line.setPen(pen) line = QtGui.QGraphicsLineItem(QtCore.QLineF(0.0, u, GLOBAL_SCALE, u), self) line.setPen(pen) self.setGeometry(self.boundingRect()) # restore y axis inversion self.setTransform(QtGui.QTransform(1, 0, 0, -1, 0, GLOBAL_SCALE)) self.setTransformOriginPoint(0, GLOBAL_SCALE) self.reset_transfer_function(self._tf) def boundingRect(self): return QtCore.QRectF(0.0, 0.0, GLOBAL_SCALE, GLOBAL_SCALE) def reset_transfer_function(self, tf): self.create_tf_items(tf) self.update_scale(self._sx, self._sy) self._tf_poly.setup() def create_tf_items(self, tf): if self._tf_items and not self.scene(): # not added to scene yet return items = copy.copy(self._tf_items) for item in items: self.scene().removeItem(item) self._tf_items = [] if len(tf._pts) == 0: pt_left = TransferFunctionPoint(0.0, 0.0, (0.0, 0.0, 0.0), self) self._tf_items.append(pt_left) pt_right = TransferFunctionPoint(1.0, 0.0, (0.0, 0.0, 0.0), self) self._tf_items.append(pt_right) self._tf_items.append(TransferFunctionLine(pt_left, pt_right, self)) else: pts = [TransferFunctionPoint(*pt, parent=self) for pt in tf._pts] self._tf_items.extend(pts) lns = [TransferFunctionLine(pt_l, pt_r, self) for (pt_l, pt_r) in zip(pts[:-1], pts[1:])] self._tf_items.extend(lns) def add_knot(self, scalar, opacity): pass def update_scale(self, sx, sy): for item in self._tf_items: item.update_scale(sx, sy) self._sx = sx self._sy = sy def get_leftmost_point(self): pt = None for item in self._tf_items: if hasattr(item, '_left_line') and not item._left_line: pt = item break return pt def get_transfer_function(self): result = TransferFunction() pt = self.get_leftmost_point() while 1: pt.add_self_to_transfer_function(result) if pt._right_line: pt = pt._right_line._point_right else: break return result def contents(self): return self.get_transfer_function().serialize() def setContents(self, strValue, silent=True): if not strValue: self._tf = copy.copy(default_tf) else: self._tf = TransferFunction.parse(strValue) self.reset_transfer_function(self._tf) if not silent: self.update_parent() def hoverLeaveEvent(self, event): self.update_parent() QtGui.QGraphicsWidget.hoverLeaveEvent(self, event) class TransferFunctionScene(QtGui.QGraphicsScene): def __init__(self, param, parent=None): QtGui.QGraphicsScene.__init__(self, parent) self.tf = QGraphicsTransferFunction(param) self.addItem(self.tf) class TransferFunctionView(QtGui.QGraphicsView): def __init__(self, parent=None): QtGui.QGraphicsView.__init__(self, parent) self.setRenderHint(QtGui.QPainter.Antialiasing) self.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) def resizeEvent(self, event): self.resetMatrix() self.setMatrix(QtGui.QMatrix(event.size().width() / (GLOBAL_SCALE *10.0/9) , 0, 0, event.size().height() / (GLOBAL_SCALE*10.0/9), GLOBAL_SCALE, 0)) self.scene().tf.update_scale(event.size().width()/(2000.0/9), event.size().height()/(2000.0/9)) def focusOutEvent(self, event): self.parent().update_parent() QtGui.QGraphicsView.focusOutEvent(self, event) default_tf = TransferFunction() default_tf.add_point(0.0, 0.0, (0.0, 0.0, 0.0)) default_tf.add_point(1.0, 0.0, (0.0, 0.0, 0.0)) class TransferFunctionWidget(QtGui.QWidget, ConstantWidgetMixin): contentsChanged = QtCore.pyqtSignal(tuple) GraphicsItem = QGraphicsTransferFunction def __init__(self, param, parent=None): QtGui.QWidget.__init__(self, parent) self._scene = TransferFunctionScene(param, self) self._scene.tf.update_parent = self.update_parent layout = QtGui.QVBoxLayout() self.setLayout(layout) self._view = TransferFunctionView(self) self._view.setScene(self._scene) self._view.setMinimumSize(200,200) self._view.setMaximumHeight(280) self._view.show() self._view.setSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) # TODO remove this self._view.setMatrix(QtGui.QMatrix(1, 0, 0, -1, GLOBAL_SCALE, 0)) self.setMinimumSize(260,240) caption = QtGui.QLabel("Double-click on the line to add a point") font = QtGui.QFont('Arial', 11) font.setItalic(True) caption.setFont(font) layout.addWidget(self._view) layout.addWidget(caption) def contents(self): return self._scene.tf.contents() def setContents(self, strValue, silent=True): self._scene.tf.setContents(strValue, silent) def set_last_contents(self, contents): self._scene.tf._last_contents = contents def get_last_contents(self): return self._scene.tf._last_contents _last_contents = property(get_last_contents, set_last_contents) ############################################################################## # Helper module to adjust range class vtkScaledTransferFunction(Module): # FIXME Add documentation _input_ports = [ ['Input', 'vtkAlgorithmOutput'], ['Dataset', 'vtkDataObject'], ['Range', '(basic:Float, basic:Float)'], ['TransferFunction', 'TransferFunction']] _output_ports = [ ['TransferFunction', 'TransferFunction'], ['vtkPiecewiseFunction', 'vtkPiecewiseFunction'], ['vtkColorTransferFunction', 'vtkColorTransferFunction']] def compute(self): reg = get_module_registry() tf = self.get_input('TransferFunction') new_tf = copy.copy(tf) if self.has_input('Input'): port = self.get_input('Input') algo = port.GetProducer() output = algo.GetOutput(port.GetIndex()) (new_tf._min_range, new_tf._max_range) = output.GetScalarRange() elif self.has_input('Dataset'): algo = self.get_input('Dataset') output = algo (new_tf._min_range, new_tf._max_range) = output.GetScalarRange() else: (new_tf._min_range, new_tf._max_range) = self.get_input('Range') self.set_output('TransferFunction', new_tf) (of,cf) = new_tf.get_vtk_transfer_functions() self.set_output('vtkPicewiseFunction', of) self.set_output('vtkColorTransferFunction', cf) class TransferFunctionConstant(Constant): default_value = default_tf @staticmethod def translate_to_python(x): return TransferFunction.parse(x) @staticmethod def translate_to_string(x): return x.serialize() @staticmethod def validate(x): return isinstance(x, TransferFunction) @staticmethod def get_widget_class(): return TransferFunctionWidget ############################################################################## class TestTransferFunction(unittest.TestCase): def test_serialization(self): tf = TransferFunction() tf._min_range = 0.1 tf._max_range = 2.0 tf._pts.append((0.3,0.5,(1.0,1.0,1.0))) tf._pts.append((0.6,0.7,(1.0,0.5,1.0))) tf._pts.append((0.2,0.8,(1.0,0.0,1.0))) tf._pts.sort() #simulate old serialization method ser1 = pickle.dumps(tf).encode('hex') ser2 = tf.serialize() tf1 = TransferFunction.parse(ser1) tf2 = TransferFunction.parse(ser2) assert tf == tf1 assert tf == tf2 assert tf1 == tf2 TransferFunctionConstant.__name__ = "TransferFunction" _modules = [TransferFunctionConstant, vtkScaledTransferFunction] if __name__ == "__main__": unittest.main()
38.254499
104
0.586486
275385256995154c07ed305d1e5f2ebd25c41c28
1,574
py
Python
wsgi_entry_test.py
auyeongwy/mportal
e406baea802093569c90c7206649c5afd9431dab
[ "Apache-2.0" ]
null
null
null
wsgi_entry_test.py
auyeongwy/mportal
e406baea802093569c90c7206649c5afd9431dab
[ "Apache-2.0" ]
null
null
null
wsgi_entry_test.py
auyeongwy/mportal
e406baea802093569c90c7206649c5afd9431dab
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Au Yeong Wing Yau # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cgi def application(environ, start_response): """Implements the WSGI entry function. This just prints out everything in the 'environ' dictionary for degugging and testing.""" status = '200 OK' output = str(environ) # Check HTTP Request type and print the parameters output += '\n\nRequest Method: ' if environ['REQUEST_METHOD'] == 'GET' and 'QUERY_STRING' in environ: output += 'GET\nQuery String: '+environ['QUERY_STRING'] elif environ['REQUEST_METHOD'] == 'POST': post_data_len = 0 output += 'POST' if 'CONTENT_LENGTH' in environ and 'wsgi.input' in environ: post_data_len = int(environ['CONTENT_LENGTH']) post_data = environ['wsgi.input'].read(post_data_len) post_data_dic = cgi.parse_qs(post_data) output += '\n'+str(post_data_dic) else: output += '\nPOST ERROR' else: output += '\nPOST ERROR' response_headers = [('Content-type', 'text/plain'),('Content-Length', str(len(output)))] start_response(status, response_headers) return [output]
35.772727
129
0.730623
73a0a41caf69c903d5638add82d4704d6dacfdbc
1,022
py
Python
switchcalendar/urls.py
marcosorive/switchcalendar
a8771929b93e6b69a75d80a72299116e0175e961
[ "MIT" ]
null
null
null
switchcalendar/urls.py
marcosorive/switchcalendar
a8771929b93e6b69a75d80a72299116e0175e961
[ "MIT" ]
1
2019-12-26T07:57:24.000Z
2020-01-02T08:21:20.000Z
switchcalendar/urls.py
marcosorive/switchcalendar
a8771929b93e6b69a75d80a72299116e0175e961
[ "MIT" ]
null
null
null
"""switchcalendar URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path from django.conf.urls import url from django.views.generic import TemplateView from django.contrib.auth import views as auth_views urlpatterns = [ path('',include('games.urls')), path('accounts/',include('accounts.urls')), path('contact/',include('contact.urls')), path('totoro/', admin.site.urls), ]
35.241379
77
0.721135
8f8c483ab12efa4a47f5f74fba0fc177c1543442
892
py
Python
test/test_campfire_callback.py
Logicworks/opsgenie-python-sdk
244c4c40ddcc25e70df5ba4425ab8d7c8da59c18
[ "Apache-2.0" ]
null
null
null
test/test_campfire_callback.py
Logicworks/opsgenie-python-sdk
244c4c40ddcc25e70df5ba4425ab8d7c8da59c18
[ "Apache-2.0" ]
null
null
null
test/test_campfire_callback.py
Logicworks/opsgenie-python-sdk
244c4c40ddcc25e70df5ba4425ab8d7c8da59c18
[ "Apache-2.0" ]
1
2020-11-07T11:27:13.000Z
2020-11-07T11:27:13.000Z
# coding: utf-8 """ OpsGenie REST API OpsGenie OpenAPI Specification # noqa: E501 OpenAPI spec version: 2.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import opsgenie_swagger from opsgenie_swagger.models.campfire_callback import CampfireCallback # noqa: E501 from opsgenie_swagger.rest import ApiException class TestCampfireCallback(unittest.TestCase): """CampfireCallback unit test stubs""" def setUp(self): pass def tearDown(self): pass def testCampfireCallback(self): """Test CampfireCallback""" # FIXME: construct object with mandatory attributes with example values # model = opsgenie_swagger.models.campfire_callback.CampfireCallback() # noqa: E501 pass if __name__ == '__main__': unittest.main()
21.756098
92
0.710762
851f01b02b72aed187e197bb723e94fa414176aa
1,412
py
Python
locations/spiders/stater_bros.py
mfjackson/alltheplaces
37c90b4041c80a574e6e4c2f886883e97df4b636
[ "MIT" ]
null
null
null
locations/spiders/stater_bros.py
mfjackson/alltheplaces
37c90b4041c80a574e6e4c2f886883e97df4b636
[ "MIT" ]
null
null
null
locations/spiders/stater_bros.py
mfjackson/alltheplaces
37c90b4041c80a574e6e4c2f886883e97df4b636
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import scrapy import json from locations.items import GeojsonPointItem class StaterBrosSpider(scrapy.Spider): name = "stater-bros" item_attributes = {"brand": "Stater Bros"} allowed_domains = ["www.staterbros.com"] def start_requests(self): urls = [ "http://www.staterbros.com/store-locator/", ] for url in urls: yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): stores = response.xpath('//div[@class="store"]') for index, store in enumerate(stores): properties = { "addr_full": store.xpath("@data-address").extract_first(), "phone": store.xpath( 'div[@class="left"]/div[@class="phone"]/p/text()' ).extract()[1], "ref": index, "lon": store.xpath("@data-longitude").extract_first(), "lat": store.xpath("@data-latitude").extract_first(), "opening_hours": " ".join( stores[0] .xpath('div[@class="right"]/div[@class="hours"]/p/text()') .extract()[:2] ), "name": store.xpath( 'div[@class="left"]/div[@class="name"]/text()' ).extract_first(), } yield GeojsonPointItem(**properties)
35.3
78
0.50779
327c5809b7bbc3d6fdade2feb4313d4a7615d431
758
py
Python
lib/mpl_toolkits/axisartist/__init__.py
pierre-haessig/matplotlib
0d945044ca3fbf98cad55912584ef80911f330c6
[ "MIT", "PSF-2.0", "BSD-3-Clause" ]
35
2015-10-23T08:15:36.000Z
2022-02-03T10:17:15.000Z
lib/mpl_toolkits/axisartist/__init__.py
pierre-haessig/matplotlib
0d945044ca3fbf98cad55912584ef80911f330c6
[ "MIT", "PSF-2.0", "BSD-3-Clause" ]
3
2015-09-17T16:27:45.000Z
2018-07-31T05:59:33.000Z
lib/mpl_toolkits/axisartist/__init__.py
pierre-haessig/matplotlib
0d945044ca3fbf98cad55912584ef80911f330c6
[ "MIT", "PSF-2.0", "BSD-3-Clause" ]
25
2016-01-18T12:19:11.000Z
2021-12-11T15:45:17.000Z
from axislines import Axes, Subplot, AxesZero, SubplotZero, GridHelperRectlinear, \ AxisArtistHelperRectlinear, AxisArtistHelper, GridHelperBase, AxisArtist from axis_artist import AxisArtist, GridlinesCollection from grid_helper_curvelinear import GridHelperCurveLinear from floating_axes import FloatingAxes, FloatingSubplot from mpl_toolkits.axes_grid1.parasite_axes import \ subplot_class_factory, \ parasite_axes_class_factory, parasite_axes_auxtrans_class_factory, \ host_axes_class_factory ParasiteAxes = parasite_axes_class_factory(Axes) ParasiteAxesAuxTrans = parasite_axes_auxtrans_class_factory(axes_class=ParasiteAxes) HostAxes = host_axes_class_factory(axes_class=Axes) SubplotHost = subplot_class_factory(HostAxes)
32.956522
84
0.853562
55cfd0c7eb226c3fd304b50e219a05863a15743d
13,944
py
Python
zerver/tornado/socket.py
Supermanu/zulip
26f6d708c2e30cfe50d9d61031edb759e8117596
[ "Apache-2.0" ]
null
null
null
zerver/tornado/socket.py
Supermanu/zulip
26f6d708c2e30cfe50d9d61031edb759e8117596
[ "Apache-2.0" ]
15
2020-06-05T18:44:15.000Z
2022-03-11T23:26:03.000Z
zerver/tornado/socket.py
Supermanu/zulip
26f6d708c2e30cfe50d9d61031edb759e8117596
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import from typing import Any, Dict, Mapping, Optional, Text, Union from django.conf import settings from django.utils.timezone import now as timezone_now from django.utils.translation import ugettext as _ from django.contrib.sessions.models import Session as djSession try: from django.middleware.csrf import _compare_salted_tokens except ImportError: # This function was added in Django 1.10. def _compare_salted_tokens(token1, token2): # type: (str, str) -> bool return token1 == token2 import sockjs.tornado from sockjs.tornado.session import ConnectionInfo import tornado.ioloop import ujson import logging import time from zerver.models import UserProfile, get_user_profile_by_id, get_client from zerver.lib.queue import queue_json_publish from zerver.lib.actions import check_send_message, extract_recipients from zerver.decorator import JsonableError from zerver.lib.utils import statsd from zerver.middleware import record_request_start_data, record_request_stop_data, \ record_request_restart_data, write_log_line, format_timedelta from zerver.lib.redis_utils import get_redis_client from zerver.lib.sessions import get_session_user from zerver.tornado.event_queue import get_client_descriptor from zerver.tornado.exceptions import BadEventQueueIdError logger = logging.getLogger('zulip.socket') def get_user_profile(session_id): # type: (Optional[Text]) -> Optional[UserProfile] if session_id is None: return None try: djsession = djSession.objects.get(expire_date__gt=timezone_now(), session_key=session_id) except djSession.DoesNotExist: return None try: return get_user_profile_by_id(get_session_user(djsession)) except (UserProfile.DoesNotExist, KeyError): return None connections = dict() # type: Dict[Union[int, str], SocketConnection] def get_connection(id): # type: (Union[int, str]) -> Optional[SocketConnection] return connections.get(id) def register_connection(id, conn): # type: (Union[int, str], SocketConnection) -> None # Kill any old connections if they exist if id in connections: connections[id].close() conn.client_id = id connections[conn.client_id] = conn def deregister_connection(conn): # type: (SocketConnection) -> None assert conn.client_id is not None del connections[conn.client_id] redis_client = get_redis_client() def req_redis_key(req_id): # type: (Text) -> Text return u'socket_req_status:%s' % (req_id,) class CloseErrorInfo(object): def __init__(self, status_code, err_msg): # type: (int, str) -> None self.status_code = status_code self.err_msg = err_msg class SocketConnection(sockjs.tornado.SockJSConnection): client_id = None # type: Optional[Union[int, str]] def on_open(self, info): # type: (ConnectionInfo) -> None log_data = dict(extra='[transport=%s]' % (self.session.transport_name,)) record_request_start_data(log_data) ioloop = tornado.ioloop.IOLoop.instance() self.authenticated = False self.session.user_profile = None self.close_info = None # type: Optional[CloseErrorInfo] self.did_close = False try: self.browser_session_id = info.get_cookie(settings.SESSION_COOKIE_NAME).value self.csrf_token = info.get_cookie(settings.CSRF_COOKIE_NAME).value except AttributeError: # The request didn't contain the necessary cookie values. We can't # close immediately because sockjs-tornado doesn't expect a close # inside on_open(), so do it on the next tick. self.close_info = CloseErrorInfo(403, "Initial cookie lacked required values") ioloop.add_callback(self.close) return def auth_timeout(): # type: () -> None self.close_info = CloseErrorInfo(408, "Timeout while waiting for authentication") self.close() self.timeout_handle = ioloop.add_timeout(time.time() + 10, auth_timeout) write_log_line(log_data, path='/socket/open', method='SOCKET', remote_ip=info.ip, email='unknown', client_name='?') def authenticate_client(self, msg): # type: (Dict[str, Any]) -> None if self.authenticated: self.session.send_message({'req_id': msg['req_id'], 'type': 'response', 'response': {'result': 'error', 'msg': 'Already authenticated'}}) return user_profile = get_user_profile(self.browser_session_id) if user_profile is None: raise JsonableError(_('Unknown or missing session')) self.session.user_profile = user_profile if not _compare_salted_tokens(msg['request']['csrf_token'], self.csrf_token): raise JsonableError(_('CSRF token does not match that in cookie')) if 'queue_id' not in msg['request']: raise JsonableError(_("Missing 'queue_id' argument")) queue_id = msg['request']['queue_id'] client = get_client_descriptor(queue_id) if client is None: raise BadEventQueueIdError(queue_id) if user_profile.id != client.user_profile_id: raise JsonableError(_("You are not the owner of the queue with id '%s'") % (queue_id,)) self.authenticated = True register_connection(queue_id, self) response = {'req_id': msg['req_id'], 'type': 'response', 'response': {'result': 'success', 'msg': ''}} status_inquiries = msg['request'].get('status_inquiries') if status_inquiries is not None: results = {} # type: Dict[str, Dict[str, str]] for inquiry in status_inquiries: status = redis_client.hgetall(req_redis_key(inquiry)) # type: Dict[bytes, bytes] if len(status) == 0: result = {'status': 'not_received'} elif b'response' not in status: result = {'status': status[b'status'].decode('utf-8')} else: result = {'status': status[b'status'].decode('utf-8'), 'response': ujson.loads(status[b'response'])} results[str(inquiry)] = result response['response']['status_inquiries'] = results self.session.send_message(response) ioloop = tornado.ioloop.IOLoop.instance() ioloop.remove_timeout(self.timeout_handle) def on_message(self, msg_raw): # type: (str) -> None log_data = dict(extra='[transport=%s' % (self.session.transport_name,)) record_request_start_data(log_data) msg = ujson.loads(msg_raw) if self.did_close: logger.info("Received message on already closed socket! transport=%s user=%s client_id=%s" % (self.session.transport_name, self.session.user_profile.email if self.session.user_profile is not None else 'unknown', self.client_id)) self.session.send_message({'req_id': msg['req_id'], 'type': 'ack'}) if msg['type'] == 'auth': log_data['extra'] += ']' try: self.authenticate_client(msg) # TODO: Fill in the correct client write_log_line(log_data, path='/socket/auth', method='SOCKET', remote_ip=self.session.conn_info.ip, email=self.session.user_profile.email, client_name='?') except JsonableError as e: response = e.to_json() self.session.send_message({'req_id': msg['req_id'], 'type': 'response', 'response': response}) write_log_line(log_data, path='/socket/auth', method='SOCKET', remote_ip=self.session.conn_info.ip, email='unknown', client_name='?', status_code=403, error_content=ujson.dumps(response)) return else: if not self.authenticated: response = {'result': 'error', 'msg': "Not yet authenticated"} self.session.send_message({'req_id': msg['req_id'], 'type': 'response', 'response': response}) write_log_line(log_data, path='/socket/service_request', method='SOCKET', remote_ip=self.session.conn_info.ip, email='unknown', client_name='?', status_code=403, error_content=ujson.dumps(response)) return redis_key = req_redis_key(msg['req_id']) with redis_client.pipeline() as pipeline: pipeline.hmset(redis_key, {'status': 'received'}) pipeline.expire(redis_key, 60 * 60 * 24) pipeline.execute() record_request_stop_data(log_data) queue_json_publish("message_sender", dict(request=msg['request'], req_id=msg['req_id'], server_meta=dict(user_id=self.session.user_profile.id, client_id=self.client_id, return_queue="tornado_return", log_data=log_data, request_environ=dict(REMOTE_ADDR=self.session.conn_info.ip))), fake_message_sender) def on_close(self): # type: () -> None log_data = dict(extra='[transport=%s]' % (self.session.transport_name,)) record_request_start_data(log_data) if self.close_info is not None: write_log_line(log_data, path='/socket/close', method='SOCKET', remote_ip=self.session.conn_info.ip, email='unknown', client_name='?', status_code=self.close_info.status_code, error_content=self.close_info.err_msg) else: deregister_connection(self) email = self.session.user_profile.email \ if self.session.user_profile is not None else 'unknown' write_log_line(log_data, path='/socket/close', method='SOCKET', remote_ip=self.session.conn_info.ip, email=email, client_name='?') self.did_close = True def fake_message_sender(event): # type: (Dict[str, Any]) -> None """This function is used only for Casper and backend tests, where rabbitmq is disabled""" log_data = dict() # type: Dict[str, Any] record_request_start_data(log_data) req = event['request'] try: sender = get_user_profile_by_id(event['server_meta']['user_id']) client = get_client("website") msg_id = check_send_message(sender, client, req['type'], extract_recipients(req['to']), req['subject'], req['content'], local_id=req.get('local_id', None), sender_queue_id=req.get('queue_id', None)) resp = {"result": "success", "msg": "", "id": msg_id} except JsonableError as e: resp = {"result": "error", "msg": str(e)} server_meta = event['server_meta'] server_meta.update({'worker_log_data': log_data, 'time_request_finished': time.time()}) result = {'response': resp, 'req_id': event['req_id'], 'server_meta': server_meta} respond_send_message(result) def respond_send_message(data): # type: (Mapping[str, Any]) -> None log_data = data['server_meta']['log_data'] record_request_restart_data(log_data) worker_log_data = data['server_meta']['worker_log_data'] forward_queue_delay = worker_log_data['time_started'] - log_data['time_stopped'] return_queue_delay = log_data['time_restarted'] - data['server_meta']['time_request_finished'] service_time = data['server_meta']['time_request_finished'] - worker_log_data['time_started'] log_data['extra'] += ', queue_delay: %s/%s, service_time: %s]' % ( format_timedelta(forward_queue_delay), format_timedelta(return_queue_delay), format_timedelta(service_time)) client_id = data['server_meta']['client_id'] connection = get_connection(client_id) if connection is None: logger.info("Could not find connection to send response to! client_id=%s" % (client_id,)) else: connection.session.send_message({'req_id': data['req_id'], 'type': 'response', 'response': data['response']}) # TODO: Fill in client name # TODO: Maybe fill in the status code correctly write_log_line(log_data, path='/socket/service_request', method='SOCKET', remote_ip=connection.session.conn_info.ip, email=connection.session.user_profile.email, client_name='?') # We disable the eventsource and htmlfile transports because they cannot # securely send us the zulip.com cookie, which we use as part of our # authentication scheme. sockjs_router = sockjs.tornado.SockJSRouter(SocketConnection, "/sockjs", {'sockjs_url': 'https://%s/static/third/sockjs/sockjs-0.3.4.js' % ( settings.EXTERNAL_HOST,), 'disabled_transports': ['eventsource', 'htmlfile']}) def get_sockjs_router(): # type: () -> sockjs.tornado.SockJSRouter return sockjs_router
44.126582
115
0.606067
d75f79543c37ba1e97e60dd64342f0b326973fe8
1,621
py
Python
progress.py
rockie-yang/japanese-learning
d85e99a54b166c996f33f166be06e19f2bec8d49
[ "MIT" ]
null
null
null
progress.py
rockie-yang/japanese-learning
d85e99a54b166c996f33f166be06e19f2bec8d49
[ "MIT" ]
null
null
null
progress.py
rockie-yang/japanese-learning
d85e99a54b166c996f33f166be06e19f2bec8d49
[ "MIT" ]
null
null
null
__author__ = 'Rockie Yang' import os import codecs class Progress(): def __init__(self, words, progress_file = "progress.data"): self.progress_file = progress_file # self.practise_dict = practise_dict self.progress_data = {} self.words = words def init_progress(self): for word in self.words: self.progress_data[word] = (0, 0) def load_progress(self): """ if the progress file exist update with the progress data""" if os.path.isfile(self.progress_file): with codecs.open(self.progress_file, 'r', 'utf-8') as f: for line in f.readlines(): items = line.split() key = items[0] progress = int(items[1]) self.progress_data[key] = progress def save_progress(self): # write back progress data with codecs.open(self.progress_file, "w", 'utf-8') as f: for key in self.progress_data: progress = self.progress_data[key] f.write("%s %s\n" % (key, progress)) def inc(self, word): self.progress_data[word] += 1 def learnt(self): learnt_word = [word for word,progress in self.progress_data.items() if progress > 0] return learnt_word def least_familar_words(self, num): learnt_word = self.learnt() learnt_word.sort() return learnt_word[:num] def all_in_range(self, score_range): meet = (score_range.begin < score < score_range.end for score in self.progress_data.values()) return all(meet)
30.584906
101
0.590993
a07e2f972c5e31aedbbea133630ec4dc194e1650
703
py
Python
server/djangoapp/admin.py
tquatrep/agfzb-CloudAppDevelopment_Capstone
52042821a17ff83ed3ecf292081755f40c67d6b9
[ "Apache-2.0" ]
null
null
null
server/djangoapp/admin.py
tquatrep/agfzb-CloudAppDevelopment_Capstone
52042821a17ff83ed3ecf292081755f40c67d6b9
[ "Apache-2.0" ]
null
null
null
server/djangoapp/admin.py
tquatrep/agfzb-CloudAppDevelopment_Capstone
52042821a17ff83ed3ecf292081755f40c67d6b9
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from .models import CarMake, CarModel # Register your models here. # CarModelInline class class CarModelInline(admin.StackedInline): model = CarModel extra = 1 # CarModelAdmin class class CarModelAdmin(admin.ModelAdmin): fields = ['car_make', 'name', 'dealer_id', 'car_type', 'year'] #inlines = [CarModelInline] # CarMakeInline class class CarMakeInline(admin.StackedInline): model = CarMake extra = 1 # CarMakeAdmin class class CarMakeAdmin(admin.ModelAdmin): fields = ['name', 'description'] #inlines = [CarMakeInline] # Register models here admin.site.register(CarMake, CarMakeAdmin) admin.site.register(CarModel, CarModelAdmin)
24.241379
66
0.74111
9466aa9488029a4bca4b3cac8c8fd1ba42dd6d7c
261
py
Python
samples/modules/module_use_2.py
nakednamor/naked-python
6580afe41c867888a08c5394d32c2bb4c60fa6d0
[ "MIT" ]
null
null
null
samples/modules/module_use_2.py
nakednamor/naked-python
6580afe41c867888a08c5394d32c2bb4c60fa6d0
[ "MIT" ]
null
null
null
samples/modules/module_use_2.py
nakednamor/naked-python
6580afe41c867888a08c5394d32c2bb4c60fa6d0
[ "MIT" ]
null
null
null
# you can import only specific methods from a module from module_definition import method_a, method_b # if you import like this, you don't need to use the module_name when # calling the method - instead you can simply use the method-name method_a() method_b()
32.625
69
0.785441
241626f46719391987ad5f3f50fe4392cb8253af
416
py
Python
engines.py
haydenshively/AME-261
1cf686835e4eead3a5d23cae65dd7644515fe665
[ "MIT" ]
1
2022-03-29T23:59:23.000Z
2022-03-29T23:59:23.000Z
engines.py
haydenshively/AME-261
1cf686835e4eead3a5d23cae65dd7644515fe665
[ "MIT" ]
null
null
null
engines.py
haydenshively/AME-261
1cf686835e4eead3a5d23cae65dd7644515fe665
[ "MIT" ]
null
null
null
import csv engine_db = {} with open('engines.csv', newline='') as f: csv_reader = csv.reader(f, delimiter=',') line = 0 for row in csv_reader: if line != 0 and row[0] != '': engine_db[row[0]] = { 'thrust': float(row[1]), 'weight': float(row[2]), 'cj': float(row[3]), 'cost': int(row[4]), } line += 1
27.733333
45
0.4375
bd0be94bfdb327a1431e21eae2c1b221653e13fa
1,191
py
Python
lyftbutton/api/dashbutton.py
jairtrejo/lyftbutton-api
4c7d6b8b1ad6b613a23fa30e5e080b78d515762b
[ "MIT" ]
null
null
null
lyftbutton/api/dashbutton.py
jairtrejo/lyftbutton-api
4c7d6b8b1ad6b613a23fa30e5e080b78d515762b
[ "MIT" ]
null
null
null
lyftbutton/api/dashbutton.py
jairtrejo/lyftbutton-api
4c7d6b8b1ad6b613a23fa30e5e080b78d515762b
[ "MIT" ]
null
null
null
import attr from lyftbutton.dashbutton import DashButton from lyftbutton.repository import LyftButton from lyftbutton.utils.lambdafn import Response, api_handler @api_handler def get_dash_button(auth_context=None): if not auth_context: return Response(status_code=403) return LyftButton.find(lyft_id=auth_context["lyft_id"]).dash_button @api_handler(model=DashButton) def edit_dash_button(new_button, auth_context=None): if not auth_context: return Response(status_code=403) lyft_button = LyftButton.find(lyft_id=auth_context["lyft_id"]) dash_button = lyft_button.dash_button if lyft_button else DashButton() button = DashButton( **{ field: getattr(new_button, field, None) or getattr(dash_button, field, None) for field in attr.fields_dict(DashButton).keys() } ) lyft_button.dash_button = button return button @api_handler def delete_dash_button(auth_context=None): if not auth_context: return Response(status_code=403) lyft_button = LyftButton.find(lyft_id=auth_context["lyft_id"]) lyft_button.dash_button = None return Response(status_code=204)
25.340426
74
0.729639
3bbeed5ee1fcf057fc8bbe7c092ddc283a76d309
3,161
py
Python
migrations/versions/a37f76ceca7a_initial_migration.py
Muriithijoe/Pitch
94fdc9dcd0880528873c8b5d96589f66f744f60d
[ "Unlicense" ]
null
null
null
migrations/versions/a37f76ceca7a_initial_migration.py
Muriithijoe/Pitch
94fdc9dcd0880528873c8b5d96589f66f744f60d
[ "Unlicense" ]
null
null
null
migrations/versions/a37f76ceca7a_initial_migration.py
Muriithijoe/Pitch
94fdc9dcd0880528873c8b5d96589f66f744f60d
[ "Unlicense" ]
null
null
null
"""Initial Migration Revision ID: a37f76ceca7a Revises: 1050f7f8b2b3 Create Date: 2018-10-17 11:54:15.778282 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'a37f76ceca7a' down_revision = '1050f7f8b2b3' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('comments', sa.Column('name', sa.String(length=255), nullable=True)) op.drop_constraint('comments_user_id_fkey', 'comments', type_='foreignkey') op.drop_column('comments', 'pitch_id') op.drop_column('comments', 'user_id') op.drop_column('comments', 'comment_content') op.add_column('pitches', sa.Column('comments_id', sa.Integer(), nullable=True)) op.add_column('pitches', sa.Column('description', sa.String(), nullable=True)) op.add_column('pitches', sa.Column('title', sa.String(length=255), nullable=True)) op.drop_constraint('pitches_user_id_fkey', 'pitches', type_='foreignkey') op.create_foreign_key(None, 'pitches', 'comments', ['comments_id'], ['id']) op.drop_column('pitches', 'pitch_content') op.drop_column('pitches', 'user_id') op.drop_column('pitches', 'pitch_category') op.add_column('users', sa.Column('pass_hash', sa.String(length=255), nullable=True)) op.drop_index('ix_users_username', table_name='users') op.drop_column('users', 'profile_pic_path') op.drop_column('users', 'pass_secure') op.drop_column('users', 'bio') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('bio', sa.VARCHAR(length=255), autoincrement=False, nullable=True)) op.add_column('users', sa.Column('pass_secure', sa.VARCHAR(length=255), autoincrement=False, nullable=True)) op.add_column('users', sa.Column('profile_pic_path', sa.VARCHAR(), autoincrement=False, nullable=True)) op.create_index('ix_users_username', 'users', ['username'], unique=False) op.drop_column('users', 'pass_hash') op.add_column('pitches', sa.Column('pitch_category', sa.VARCHAR(length=255), autoincrement=False, nullable=True)) op.add_column('pitches', sa.Column('user_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.add_column('pitches', sa.Column('pitch_content', sa.VARCHAR(), autoincrement=False, nullable=True)) op.drop_constraint(None, 'pitches', type_='foreignkey') op.create_foreign_key('pitches_user_id_fkey', 'pitches', 'users', ['user_id'], ['id']) op.drop_column('pitches', 'title') op.drop_column('pitches', 'description') op.drop_column('pitches', 'comments_id') op.add_column('comments', sa.Column('comment_content', sa.VARCHAR(), autoincrement=False, nullable=True)) op.add_column('comments', sa.Column('user_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.add_column('comments', sa.Column('pitch_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.create_foreign_key('comments_user_id_fkey', 'comments', 'users', ['user_id'], ['id']) op.drop_column('comments', 'name') # ### end Alembic commands ###
50.174603
117
0.708004
c506bcd0294a28d2b751323de1851dd66b9a3006
4,975
py
Python
Python/bokeh_practice/GridPlot_app.py
freestone-lab/irm
bacc43d159a750c8ad3c6e5c5d34962f15eed822
[ "BSD-3-Clause" ]
null
null
null
Python/bokeh_practice/GridPlot_app.py
freestone-lab/irm
bacc43d159a750c8ad3c6e5c5d34962f15eed822
[ "BSD-3-Clause" ]
null
null
null
Python/bokeh_practice/GridPlot_app.py
freestone-lab/irm
bacc43d159a750c8ad3c6e5c5d34962f15eed822
[ "BSD-3-Clause" ]
null
null
null
import logging logging.basicConfig(level=logging.DEBUG) import numpy as np # For now, hack adding it to the path... import sys sys.path.append('../') import correlation_coefficient as cc rpdf = cc.rpdf from bokeh.plotting import figure from bokeh.models import Plot, ColumnDataSource, GridPlot from bokeh.properties import Instance from bokeh.server.app import bokeh_app from bokeh.server.utils.plugins import object_page from bokeh.models.widgets import HBox, VBox, Slider, TextInput, VBoxForm, Tabs, Panel class GridPlot_app(HBox): extra_generated_classes = [["GridPlot_app", "GridPlot_app", "HBox"]] slider_row = Instance(HBox) plot_row = Instance(HBox) rho = Instance(Slider) N = Instance(Slider) grid = Instance(GridPlot) source = Instance(ColumnDataSource) plot = Instance(Plot) tab = Instance(Tabs) panel1 = Instance(Panel) panel2 = Instance(Panel) @classmethod def create(cls): obj = cls() obj.source = ColumnDataSource(data=dict(x=[], y=[])) obj.rho = Slider(title="rho", name='rho', value=0.0, start=-1.0, end=1.1, step=0.1) obj.N = Slider(title="N", name='N', value=26, start=1, end=52, step=1) obj.slider_row = HBox(children=[obj.rho, obj.N]) #obj.children.append(obj.slider_row) def create_plot(): toolset = "crosshair,pan,reset,resize,save,wheel_zoom" plot = figure(title_text_font_size="12pt", plot_height=200, plot_width=200, tools="tap", title='Hey', x_range=[-1, 1], y_range=[0, 0.015], min_border=2) plot.line('x', 'y', source=obj.source, line_width=3, line_alpha=0.6) plot.axis.major_label_text_font_size = '0pt' plot.axis.major_tick_line_color = None # turn off major ticks plot.axis[0].ticker.num_minor_ticks = 0 # turn off minor ticks plot.axis[1].ticker.num_minor_ticks = 0 return plot plots = [] for row in range(5): row_plots = [] for col in range(5): if col >= row: row_plots.append(create_plot()) else: row_plots.append(None) plots.append(row_plots) grid = GridPlot(children=plots, toolbar_location=None) obj.grid = grid obj.plot_row = HBox(children=[obj.grid]) #obj.children.append(obj.plot_row) obj.panel1 = Panel(child=obj.grid, title="Panel1") obj.panel2 = Panel(child=obj.slider_row, title="Panel2") obj.tab = Tabs(tabs=[obj.panel1, obj.panel2]) print(dir(obj.tab)) obj.children.append(obj.tab) return obj def setup_events(self): """Attaches the on_change event to the value property of the widget. The callback is set to the input_change method of this app. """ super(GridPlot_app, self).setup_events() # Slider event registration #print("hi", self.rho.value) #print(getattr(self, 'rho').value) #self.rho.on_change('value', self, 'input_change') #for w in ["rho", "N"]: # getattr(self, w).on_change('value', self, 'input_change') #print(dir(self.grid)) #self.grid.on_change('click', self, 'input_change') #getattr(self, "grid").on_change('click', self, 'input_change') print("hey") def input_change(self, obj, attrname, old, new): """Executes whenever the input form changes. It is responsible for updating the plot, or anything else you want. Args: obj : the object that changed attrname : the attr that changed old : old value of attr new : new value of attr """ self.update_data() def update_data(self): """Called each time that any watched property changes. This updates the sin wave data with the most recent values of the sliders. This is stored as two numpy arrays in a dict into the app's data source property. """ # Generate the CC distribution y = self.dr * rpdf(self.r, self.rho.value, self.N.value) logging.debug("PARAMS: rho: %s N: %s", self.rho.value, self.N.value) self.source.data = dict(x=self.r, y=y) @bokeh_app.route("/IRM/ccDistribution/") @object_page("rpdf") def make_App(): app = GridPlot_app.create() return app
31.891026
85
0.549347
fe47fddb915387fcacdbd576767eb3e381826c79
3,058
py
Python
src/loss.py
kw01sg/style-transfer-flask
3f1d888b5041612bb8be6958ca3be7c3271c9b56
[ "MIT" ]
11
2019-06-30T06:15:31.000Z
2022-01-25T03:32:14.000Z
src/loss.py
kw01sg/style-transfer-flask
3f1d888b5041612bb8be6958ca3be7c3271c9b56
[ "MIT" ]
7
2020-11-13T18:36:55.000Z
2022-02-10T00:32:41.000Z
src/loss.py
kw01sg/style-transfer-flask
3f1d888b5041612bb8be6958ca3be7c3271c9b56
[ "MIT" ]
null
null
null
import tensorflow as tf from src.utils import normalize_weights def gram_matrix(input_tensor): """Expect input_tensor to have shape of n_batch * n_activation_height * n_activation_width * n_channel""" return tf.einsum('abcd,abce->ade', input_tensor, input_tensor) def style_content_loss(generated_outputs, content_targets, style_targets, content_layer_weights, style_layer_weights, alpha, beta): """ Calculates the weighted style and content loss between generated image and content and style image Args: generated_outputs (Dict): Dictionary containing `content_outputs` and `style_outputs` outputs for generated image content_targets (List(Tensor)): output of content layers for target content image style_targets (List(Tensor)): output of style layers for target style image content_layer_weights (List[float]): List of weights of each content output towards content loss style_layer_weights (List[float]): List of weights of each style output towards style loss alpha (float): Weight of content loss towards total loss beta (float): Weight of style loss towards total loss Returns: loss: weighted style and content loss """ # Calculate content loss content_loss = calculate_content_loss( content_targets, generated_outputs['content_outputs'], content_layer_weights) # calculate style loss style_loss = calculate_style_loss( style_targets, generated_outputs['style_outputs'], style_layer_weights) # calculate total weighted loss return alpha*content_loss + beta*style_loss def calculate_content_loss(original_content, generated_content, content_layer_weights): content_loss = 0.5 * tf.reduce_sum([weight * ((original - generated) ** 2) for original, generated, weight in zip(original_content, generated_content, content_layer_weights)]) return content_loss def calculate_style_loss(original_style, generated_style, style_layer_weights): normalized_weights = normalize_weights(style_layer_weights) gram_original = [gram_matrix(layer) for layer in original_style] gram_generated = [gram_matrix(layer) for layer in generated_style] style_loss = 0 for i in range(len(original_style)): layer = original_style[i] # Layers have shape of n_batch * n_activation_height * n_activation_width * n_channel num_channel = layer.shape[-1] activation_size = layer.shape[1] * layer.shape[2] style_loss = style_loss + (normalized_weights[i] * tf.reduce_sum( (gram_generated[i] - gram_original[i]) ** 2) / (4 * num_channel**2 * activation_size**2)) return style_loss def calculate_variation_loss(image): x_var = image[:, :, 1:, :] - image[:, :, :-1, :] y_var = image[:, 1:, :, :] - image[:, :-1, :, :] return tf.reduce_mean((x_var**2)) + tf.reduce_mean((y_var**2))
41.890411
126
0.688031
1f5cc8fd29fd92cf2b6a48e6ca9f06347f3755d7
5,526
py
Python
WANNRelease/prettyNeatWann/domain/config.py
adafok/brain-tokyo-workshop
df581f33d1420076e54aa4243d96b4bdfd7fe49c
[ "Apache-2.0" ]
1,097
2019-07-15T20:43:30.000Z
2022-03-31T15:04:39.000Z
WANNRelease/prettyNeatWann/domain/config.py
icefire-luo/brain-tokyo-workshop
2d50504c14625312a0cd3d569f08d20d51e87bd9
[ "Apache-2.0" ]
37
2019-08-14T13:47:03.000Z
2022-03-17T01:04:21.000Z
WANNRelease/prettyNeatWann/domain/config.py
icefire-luo/brain-tokyo-workshop
2d50504c14625312a0cd3d569f08d20d51e87bd9
[ "Apache-2.0" ]
335
2019-08-06T04:37:37.000Z
2022-03-26T19:02:12.000Z
from collections import namedtuple import numpy as np Game = namedtuple('Game', ['env_name', 'time_factor', 'actionSelect', 'input_size', 'output_size', 'layers', 'i_act', 'h_act', 'o_act', 'weightCap','noise_bias','output_noise','max_episode_length','in_out_labels']) games = {} # -- Car Racing --------------------------------------------------------- -- # # > 32 latent vectors (includes past frames) vae_racing_stack = Game(env_name='VAERacingStack-v0', actionSelect='all', # all, soft, hard input_size=32, output_size=3, time_factor=0, layers=[10, 0], i_act=np.full(32,1), h_act=[1,2,3,4,5,6,7,8,9,10], o_act=np.full(3,1), weightCap = 2.0, noise_bias=0.0, max_episode_length = 500, output_noise=[False, False, False], in_out_labels = ['latent01','latent02','latent03','latent04','latent05',\ 'latent06','latent07','latent08','latent09','latent10',\ 'latent11','latent12','latent13','latent14','latent15',\ 'latent16','latent17','latent18','latent19','latent20',\ 'latent21','latent22','latent23','latent24','latent25',\ 'latent26','latent27','latent28','latent29','latent30',\ 'latent31','latent32','steer' ,'gas' ,'brakes'] ) games['vae_racing_stack'] = vae_racing_stack # > 16 latent vectors (current frame only) vae_racing = vae_racing_stack._replace(\ env_name='VAERacing-v0', input_size=16, i_act=np.full(16,1),\ in_out_labels = ['latent01','latent02','latent03','latent04','latent05',\ 'latent06','latent07','latent08','latent09','latent10',\ 'latent11','latent12','latent13','latent14','latent15',\ 'latent16','steer' ,'gas' ,'brakes'] ) games['vae_racing'] = vae_racing # -- Digit Classification ------------------------------------------------ -- # # > Scikit learn digits data set classify = Game(env_name='Classify_digits', actionSelect='softmax', # all, soft, hard input_size=64, output_size=10, time_factor=0, layers=[128,9], i_act=np.full(64,1), h_act=[1,3,4,5,6,7,8,9,10], # No step function o_act=np.full(10,1), weightCap = 2.0, noise_bias=0.0, output_noise=[False, False, False], max_episode_length = 0, in_out_labels = [] ) L = [list(range(1, classify.input_size)),\ list(range(0, classify.output_size))] label = [item for sublist in L for item in sublist] classify = classify._replace(in_out_labels=label) games['digits'] = classify # > MNIST [28x28] data set mnist784 = classify._replace(\ env_name='Classify_mnist784', input_size=784, i_act=np.full(784,1)) L = [list(range(1, mnist784.input_size)),\ list(range(0, mnist784.output_size))] label = [item for sublist in L for item in sublist] mnist784 = mnist784._replace(in_out_labels=label) games['mnist784'] = mnist784 # > MNIST [16x16] data set mnist256 = classify._replace(\ env_name='Classify_mnist256', input_size=256, i_act=np.full(256,1)) L = [list(range(1, mnist256.input_size)),\ list(range(0, mnist256.output_size))] label = [item for sublist in L for item in sublist] mnist256 = mnist256._replace(in_out_labels=label) games['mnist256'] = mnist256 # -- Cart-pole Swingup --------------------------------------------------- -- # # > Slower reaction speed cartpole_swingup = Game(env_name='CartPoleSwingUp_Hard', actionSelect='all', # all, soft, hard input_size=5, output_size=1, time_factor=0, layers=[5, 5], i_act=np.full(5,1), h_act=[1,2,3,4,5,6,7,8,9,10], o_act=np.full(1,1), weightCap = 2.0, noise_bias=0.0, output_noise=[False, False, False], max_episode_length = 200, in_out_labels = ['x','x_dot','cos(theta)','sin(theta)','theta_dot', 'force'] ) games['swingup_hard'] = cartpole_swingup # > Normal reaction speed cartpole_swingup = cartpole_swingup._replace(\ env_name='CartPoleSwingUp', max_episode_length=1000) games['swingup'] = cartpole_swingup # -- Bipedal Walker ------------------------------------------------------ -- # # > Flat terrain biped = Game(env_name='BipedalWalker-v2', actionSelect='all', # all, soft, hard input_size=24, output_size=4, time_factor=0, layers=[40, 40], i_act=np.full(24,1), h_act=[1,2,3,4,5,6,7,8,9,10], o_act=np.full(4,1), weightCap = 2.0, noise_bias=0.0, output_noise=[False, False, False], max_episode_length = 400, in_out_labels = [ 'hull_angle','hull_vel_angle','vel_x','vel_y', 'hip1_angle','hip1_speed','knee1_angle','knee1_speed','leg1_contact', 'hip2_angle','hip2_speed','knee2_angle','knee2_speed','leg2_contact', 'lidar_0','lidar_1','lidar_2','lidar_3','lidar_4', 'lidar_5','lidar_6','lidar_7','lidar_8','lidar_9', 'hip_1','knee_1','hip_2','knee_2'] ) games['biped'] = biped # > Hilly Terrain bipedmed = biped._replace(env_name='BipedalWalkerMedium-v2') games['bipedmedium'] = bipedmed # > Obstacles, hills, and pits bipedhard = biped._replace(env_name='BipedalWalkerHardcore-v2') games['bipedhard'] = bipedhard # -- Bullet -------------------------------------------------------------- -- # # > Quadruped ant bullet_ant = Game(env_name='AntBulletEnv-v0', actionSelect='all', # all, soft, hard input_size=28, output_size=8, layers=[64, 32], time_factor=1000, i_act=np.full(28,1), h_act=[1,2,3,4,5,6,7,8,9,10], o_act=np.full(8,1), weightCap = 2.0, noise_bias=0.0, output_noise=[False, False, True], max_episode_length = 1000, in_out_labels = [] ) games['bullet_ant'] = bullet_ant
31.942197
89
0.631198
995081937c53582bfe4f31a5b943ae3a7698ff18
35,539
py
Python
Lib/site-packages/debugpy/_vendored/pydevd/pydevd_file_utils.py
KarmaScripter/PiggyPy
25ba1d0c8933a0cb655f09db6c228f74f4d52894
[ "MIT" ]
null
null
null
Lib/site-packages/debugpy/_vendored/pydevd/pydevd_file_utils.py
KarmaScripter/PiggyPy
25ba1d0c8933a0cb655f09db6c228f74f4d52894
[ "MIT" ]
null
null
null
Lib/site-packages/debugpy/_vendored/pydevd/pydevd_file_utils.py
KarmaScripter/PiggyPy
25ba1d0c8933a0cb655f09db6c228f74f4d52894
[ "MIT" ]
null
null
null
r''' This module provides utilities to get the absolute filenames so that we can be sure that: - The case of a file will match the actual file in the filesystem (otherwise breakpoints won't be hit). - Providing means for the user to make path conversions when doing a remote debugging session in one machine and debugging in another. To do that, the PATHS_FROM_ECLIPSE_TO_PYTHON constant must be filled with the appropriate paths. @note: in this context, the server is where your python process is running and the client is where eclipse is running. E.g.: If the server (your python process) has the structure /user/projects/my_project/src/package/module1.py and the client has: c:\my_project\src\package\module1.py the PATHS_FROM_ECLIPSE_TO_PYTHON would have to be: PATHS_FROM_ECLIPSE_TO_PYTHON = [(r'c:\my_project\src', r'/user/projects/my_project/src')] alternatively, this can be set with an environment variable from the command line: set PATHS_FROM_ECLIPSE_TO_PYTHON=[['c:\my_project\src','/user/projects/my_project/src']] @note: DEBUG_CLIENT_SERVER_TRANSLATION can be set to True to debug the result of those translations @note: the case of the paths is important! Note that this can be tricky to get right when one machine uses a case-independent filesystem and the other uses a case-dependent filesystem (if the system being debugged is case-independent, 'normcase()' should be used on the paths defined in PATHS_FROM_ECLIPSE_TO_PYTHON). @note: all the paths with breakpoints must be translated (otherwise they won't be found in the server) @note: to enable remote debugging in the target machine (pydev extensions in the eclipse installation) import pydevd;pydevd.settrace(host, stdoutToServer, stderrToServer, port, suspend) see parameter docs on pydevd.py @note: for doing a remote debugging session, all the pydevd_ files must be on the server accessible through the PYTHONPATH (and the PATHS_FROM_ECLIPSE_TO_PYTHON only needs to be set on the target machine for the paths that'll actually have breakpoints). ''' from _pydev_bundle import pydev_log from _pydevd_bundle.pydevd_constants import IS_PY2, IS_PY3K, DebugInfoHolder, IS_WINDOWS, IS_JYTHON from _pydev_bundle._pydev_filesystem_encoding import getfilesystemencoding from _pydevd_bundle.pydevd_comm_constants import file_system_encoding, filesystem_encoding_is_utf8 from _pydev_bundle.pydev_log import error_once import json import os.path import sys import itertools import ntpath from functools import partial _nt_os_normcase = ntpath.normcase os_path_basename = os.path.basename os_path_exists = os.path.exists join = os.path.join try: FileNotFoundError except NameError: FileNotFoundError = IOError # noqa try: os_path_real_path = os.path.realpath # @UndefinedVariable except: # jython does not support os.path.realpath # realpath is a no-op on systems without islink support os_path_real_path = os.path.abspath def _get_library_dir(): library_dir = None try: import sysconfig library_dir = sysconfig.get_path('purelib') except ImportError: pass # i.e.: Only 2.7 onwards if library_dir is None or not os_path_exists(library_dir): for path in sys.path: if os_path_exists(path) and os.path.basename(path) == 'site-packages': library_dir = path break if library_dir is None or not os_path_exists(library_dir): library_dir = os.path.dirname(os.__file__) return library_dir # Note: we can't call sysconfig.get_path from _apply_func_and_normalize_case (it deadlocks on Python 2.7) so, we # need to get the library dir during module loading. _library_dir = _get_library_dir() # defined as a list of tuples where the 1st element of the tuple is the path in the client machine # and the 2nd element is the path in the server machine. # see module docstring for more details. try: PATHS_FROM_ECLIPSE_TO_PYTHON = json.loads(os.environ.get('PATHS_FROM_ECLIPSE_TO_PYTHON', '[]')) except Exception: pydev_log.critical('Error loading PATHS_FROM_ECLIPSE_TO_PYTHON from environment variable.') pydev_log.exception() PATHS_FROM_ECLIPSE_TO_PYTHON = [] else: if not isinstance(PATHS_FROM_ECLIPSE_TO_PYTHON, list): pydev_log.critical('Expected PATHS_FROM_ECLIPSE_TO_PYTHON loaded from environment variable to be a list.') PATHS_FROM_ECLIPSE_TO_PYTHON = [] else: # Converting json lists to tuple PATHS_FROM_ECLIPSE_TO_PYTHON = [tuple(x) for x in PATHS_FROM_ECLIPSE_TO_PYTHON] # example: # PATHS_FROM_ECLIPSE_TO_PYTHON = [ # (r'd:\temp\temp_workspace_2\test_python\src\yyy\yyy', # r'd:\temp\temp_workspace_2\test_python\src\hhh\xxx') # ] convert_to_long_pathname = lambda filename:filename convert_to_short_pathname = lambda filename:filename get_path_with_real_case = lambda filename:filename if sys.platform == 'win32': try: import ctypes from ctypes.wintypes import MAX_PATH, LPCWSTR, LPWSTR, DWORD GetLongPathName = ctypes.windll.kernel32.GetLongPathNameW # noqa GetLongPathName.argtypes = [LPCWSTR, LPWSTR, DWORD] GetLongPathName.restype = DWORD GetShortPathName = ctypes.windll.kernel32.GetShortPathNameW # noqa GetShortPathName.argtypes = [LPCWSTR, LPWSTR, DWORD] GetShortPathName.restype = DWORD def _convert_to_long_pathname(filename): buf = ctypes.create_unicode_buffer(MAX_PATH) if IS_PY2 and isinstance(filename, str): filename = filename.decode(getfilesystemencoding()) rv = GetLongPathName(filename, buf, MAX_PATH) if rv != 0 and rv <= MAX_PATH: filename = buf.value if IS_PY2: filename = filename.encode(getfilesystemencoding()) return filename def _convert_to_short_pathname(filename): buf = ctypes.create_unicode_buffer(MAX_PATH) if IS_PY2 and isinstance(filename, str): filename = filename.decode(getfilesystemencoding()) rv = GetShortPathName(filename, buf, MAX_PATH) if rv != 0 and rv <= MAX_PATH: filename = buf.value if IS_PY2: filename = filename.encode(getfilesystemencoding()) return filename # Note that we have a cache for previous list dirs... the only case where this may be an # issue is if the user actually changes the case of an existing file on windows while # the debugger is executing (as this seems very unlikely and the cache can save a # reasonable time -- especially on mapped drives -- it seems nice to have it). _listdir_cache = {} def _resolve_listing(resolved, iter_parts, cache=_listdir_cache): while True: # Note: while True to make iterative and not recursive try: resolve_lowercase = next(iter_parts) # must be lowercase already except StopIteration: return resolved resolved_lower = resolved.lower() resolved_joined = cache.get((resolved_lower, resolve_lowercase)) if resolved_joined is None: dir_contents = cache.get(resolved_lower) if dir_contents is None: dir_contents = cache[resolved_lower] = os.listdir(resolved) for filename in dir_contents: if filename.lower() == resolve_lowercase: resolved_joined = os.path.join(resolved, filename) cache[(resolved_lower, resolve_lowercase)] = resolved_joined break else: raise FileNotFoundError('Unable to find: %s in %s' % ( resolve_lowercase, resolved)) resolved = resolved_joined def _get_path_with_real_case(filename): # Note: this previously made: # convert_to_long_pathname(convert_to_short_pathname(filename)) # but this is no longer done because we can't rely on getting the shortname # consistently (there are settings to disable it on Windows). # So, using approach which resolves by listing the dir. if IS_PY2 and isinstance(filename, unicode): # noqa filename = filename.encode(getfilesystemencoding()) if '~' in filename: filename = convert_to_long_pathname(filename) if filename.startswith('<') or not os_path_exists(filename): return filename # Not much we can do. drive, parts = os.path.splitdrive(os.path.normpath(filename)) drive = drive.upper() while parts.startswith(os.path.sep): parts = parts[1:] drive += os.path.sep parts = parts.lower().split(os.path.sep) try: return _resolve_listing(drive, iter(parts)) except FileNotFoundError: _listdir_cache.clear() # Retry once after clearing the cache we have. try: return _resolve_listing(drive, iter(parts)) except FileNotFoundError: if os_path_exists(filename): # This is really strange, ask the user to report as error. pydev_log.critical( 'pydev debugger: critical: unable to get real case for file. Details:\n' 'filename: %s\ndrive: %s\nparts: %s\n' '(please create a ticket in the tracker to address this).', filename, drive, parts ) pydev_log.exception() # Don't fail, just return the original file passed. return filename # Check that it actually works _get_path_with_real_case(__file__) except: # Something didn't quite work out, leave no-op conversions in place. if DebugInfoHolder.DEBUG_TRACE_LEVEL > 2: pydev_log.exception() else: convert_to_long_pathname = _convert_to_long_pathname convert_to_short_pathname = _convert_to_short_pathname get_path_with_real_case = _get_path_with_real_case elif IS_JYTHON and IS_WINDOWS: def get_path_with_real_case(filename): from java.io import File # noqa f = File(filename) ret = f.getCanonicalPath() if IS_PY2 and not isinstance(ret, str): return ret.encode(getfilesystemencoding()) return ret if IS_JYTHON: def _normcase_windows(filename): return filename.lower() else: def _normcase_windows(filename): # `normcase` doesn't lower case on Python 2 for non-English locale, so we should do it manually. if '~' in filename: filename = convert_to_long_pathname(filename) filename = _nt_os_normcase(filename) return filename.lower() def _normcase_linux(filename): return filename # no-op _filename_normalization = os.environ.get('PYDEVD_FILENAME_NORMALIZATION', '').lower() if _filename_normalization == 'lower': # Note: this is mostly for testing (forcing to always lower-case all contents # internally -- used to mimick Windows normalization on Linux). def _normcase_lower(filename): return filename.lower() _default_normcase = _normcase_lower elif _filename_normalization == 'none': # Disable any filename normalization may be an option on Windows if the # user is having issues under some circumstances. _default_normcase = _normcase_linux elif IS_WINDOWS: _default_normcase = _normcase_windows else: _default_normcase = _normcase_linux def normcase(s, NORMCASE_CACHE={}): try: return NORMCASE_CACHE[s] except: normalized = NORMCASE_CACHE[s] = _default_normcase(s) return normalized _ide_os = 'WINDOWS' if IS_WINDOWS else 'UNIX' _normcase_from_client = normcase DEBUG_CLIENT_SERVER_TRANSLATION = os.environ.get('DEBUG_PYDEVD_PATHS_TRANSLATION', 'False').lower() in ('1', 'true') def set_ide_os(os): ''' We need to set the IDE os because the host where the code is running may be actually different from the client (and the point is that we want the proper paths to translate from the client to the server). :param os: 'UNIX' or 'WINDOWS' ''' global _ide_os global _normcase_from_client prev = _ide_os if os == 'WIN': # Apparently PyCharm uses 'WIN' (https://github.com/fabioz/PyDev.Debugger/issues/116) os = 'WINDOWS' assert os in ('WINDOWS', 'UNIX') if DEBUG_CLIENT_SERVER_TRANSLATION: print('pydev debugger: client OS: %s' % (os,)) _normcase_from_client = normcase if os == 'WINDOWS': # Client in Windows and server in Unix, we need to normalize the case. if not IS_WINDOWS: _normcase_from_client = _normcase_windows else: # Client in Unix and server in Windows, we can't normalize the case. if IS_WINDOWS: _normcase_from_client = _normcase_linux if prev != os: _ide_os = os # We need to (re)setup how the client <-> server translation works to provide proper separators. setup_client_server_paths(_last_client_server_paths_set) # Caches filled as requested during the debug session. NORM_PATHS_CONTAINER = {} NORM_PATHS_AND_BASE_CONTAINER = {} def canonical_normalized_path(filename): ''' This returns a filename that is canonical and it's meant to be used internally to store information on breakpoints and see if there's any hit on it. Note that this version is only internal as it may not match the case and may have symlinks resolved (and thus may not match what the user expects in the editor). ''' return get_abs_path_real_path_and_base_from_file(filename)[1] def absolute_path(filename): ''' Provides a version of the filename that's absolute (and NOT normalized). ''' return get_abs_path_real_path_and_base_from_file(filename)[0] def basename(filename): ''' Provides the basename for a file. ''' return get_abs_path_real_path_and_base_from_file(filename)[2] # Returns tuple of absolute path and real path for given filename def _abs_and_canonical_path(filename, NORM_PATHS_CONTAINER=NORM_PATHS_CONTAINER): try: return NORM_PATHS_CONTAINER[filename] except: if filename.__class__ != str: raise AssertionError('Paths passed to _abs_and_canonical_path must be str. Found: %s (%s)' % (filename, type(filename))) if os is None: # Interpreter shutdown return filename, filename os_path = os.path if os_path is None: # Interpreter shutdown return filename, filename os_path_abspath = os_path.abspath os_path_isabs = os_path.isabs if os_path_abspath is None or os_path_isabs is None or os_path_real_path is None: # Interpreter shutdown return filename, filename isabs = os_path_isabs(filename) normalize = False abs_path = _apply_func_and_normalize_case(filename, os_path_abspath, isabs, normalize) normalize = True real_path = _apply_func_and_normalize_case(filename, os_path_real_path, isabs, normalize) # cache it for fast db later NORM_PATHS_CONTAINER[filename] = abs_path, real_path return abs_path, real_path def _get_relative_filename_abs_path(filename, func, os_path_exists=os_path_exists): # If we have a relative path and the file does not exist when made absolute, try to # resolve it based on the sys.path entries. for p in sys.path: r = func(os.path.join(p, filename)) if os_path_exists(r): return r # We couldn't find the real file for the relative path. Resolve it as if it was in # a library (so that it's considered a library file and not a project file). r = func(os.path.join(_library_dir, filename)) return r def _apply_func_and_normalize_case(filename, func, isabs, normalize_case, os_path_exists=os_path_exists, join=join): if filename.startswith('<'): # Not really a file, rather a synthetic name like <string> or <ipython-...>; # shouldn't be normalized. return filename r = func(filename) if not isabs: if not os_path_exists(r): r = _get_relative_filename_abs_path(filename, func) ind = r.find('.zip') if ind == -1: ind = r.find('.egg') if ind != -1: ind += 4 zip_path = r[:ind] inner_path = r[ind:] if inner_path.startswith('!'): # Note (fabioz): although I can replicate this by creating a file ending as # .zip! or .egg!, I don't really know what's the real-world case for this # (still kept as it was added by @jetbrains, but it should probably be reviewed # later on). # Note 2: it goes hand-in-hand with 'exists'. inner_path = inner_path[1:] zip_path = zip_path + '!' if inner_path.startswith('/') or inner_path.startswith('\\'): inner_path = inner_path[1:] if inner_path: if normalize_case: r = join(normcase(zip_path), inner_path) else: r = join(zip_path, inner_path) return r if normalize_case: r = normcase(r) return r _ZIP_SEARCH_CACHE = {} _NOT_FOUND_SENTINEL = object() def exists(filename): if os_path_exists(filename): return True if not os.path.isabs(filename): filename = _get_relative_filename_abs_path(filename, os.path.abspath) if os_path_exists(filename): return True ind = filename.find('.zip') if ind == -1: ind = filename.find('.egg') if ind != -1: ind += 4 zip_path = filename[:ind] inner_path = filename[ind:] if inner_path.startswith("!"): # Note (fabioz): although I can replicate this by creating a file ending as # .zip! or .egg!, I don't really know what's the real-world case for this # (still kept as it was added by @jetbrains, but it should probably be reviewed # later on). # Note 2: it goes hand-in-hand with '_apply_func_and_normalize_case'. inner_path = inner_path[1:] zip_path = zip_path + '!' zip_file_obj = _ZIP_SEARCH_CACHE.get(zip_path, _NOT_FOUND_SENTINEL) if zip_file_obj is None: return False elif zip_file_obj is _NOT_FOUND_SENTINEL: try: import zipfile zip_file_obj = zipfile.ZipFile(zip_path, 'r') _ZIP_SEARCH_CACHE[zip_path] = zip_file_obj except: _ZIP_SEARCH_CACHE[zip_path] = _NOT_FOUND_SENTINEL return False try: if inner_path.startswith('/') or inner_path.startswith('\\'): inner_path = inner_path[1:] _info = zip_file_obj.getinfo(inner_path.replace('\\', '/')) return join(zip_path, inner_path) except KeyError: return False else: pydev_log.debug('os.path.exists(%r) returned False.', filename) return False try: try: code = os_path_real_path.func_code except AttributeError: code = os_path_real_path.__code__ if not os.path.isabs(code.co_filename): pydev_log.critical('This version of python seems to be incorrectly compiled') pydev_log.critical('(internal generated filenames are not absolute).') pydev_log.critical('This may make the debugger miss breakpoints.') pydev_log.critical('Related bug: http://bugs.python.org/issue1666807') elif not exists(code.co_filename): # Note: checks for files inside .zip containers. pydev_log.critical('It seems the debugger cannot resolve %s', code.co_filename) pydev_log.critical('This may make the debugger miss breakpoints in the standard library.') pydev_log.critical('Related bug: https://bugs.python.org/issue1180193') except: # Don't fail if there's something not correct here -- but at least print it to the user so that we can correct that pydev_log.exception() # Note: as these functions may be rebound, users should always import # pydevd_file_utils and then use: # # pydevd_file_utils.map_file_to_client # pydevd_file_utils.map_file_to_server # # instead of importing any of those names to a given scope. def _path_to_expected_str(filename): if IS_PY2: if not filesystem_encoding_is_utf8 and hasattr(filename, "decode"): # filename_in_utf8 is a byte string encoded using the file system encoding # convert it to utf8 filename = filename.decode(file_system_encoding) if not isinstance(filename, bytes): filename = filename.encode('utf-8') else: # py3 if isinstance(filename, bytes): filename = filename.decode(file_system_encoding) return filename def _original_file_to_client(filename, cache={}): try: return cache[filename] except KeyError: translated = _path_to_expected_str(get_path_with_real_case(absolute_path(filename))) cache[filename] = (translated, False) return cache[filename] def _original_map_file_to_server(filename): # By default just mapping to the server does nothing if there are no mappings (usually # afterwards the debugger must do canonical_normalized_path to get a normalized version). return filename map_file_to_client = _original_file_to_client map_file_to_server = _original_map_file_to_server def _fix_path(path, sep, add_end_sep=False): if add_end_sep: if not path.endswith('/') and not path.endswith('\\'): path += '/' else: if path.endswith('/') or path.endswith('\\'): path = path[:-1] if sep != '/': path = path.replace('/', sep) return path _last_client_server_paths_set = [] _source_reference_to_frame_id = {} _source_reference_to_server_filename = {} _line_cache_source_reference_to_server_filename = {} _client_filename_in_utf8_to_source_reference = {} _next_source_reference = partial(next, itertools.count(1)) def get_client_filename_source_reference(client_filename): return _client_filename_in_utf8_to_source_reference.get(client_filename, 0) def get_server_filename_from_source_reference(source_reference): return _source_reference_to_server_filename.get(source_reference, '') def create_source_reference_for_linecache(server_filename): source_reference = _next_source_reference() pydev_log.debug('Created linecache id source reference: %s for server filename: %s', source_reference, server_filename) _line_cache_source_reference_to_server_filename[source_reference] = server_filename return source_reference def get_source_reference_filename_from_linecache(source_reference): return _line_cache_source_reference_to_server_filename.get(source_reference) def create_source_reference_for_frame_id(frame_id, original_filename): source_reference = _next_source_reference() pydev_log.debug('Created frame id source reference: %s for frame id: %s (%s)', source_reference, frame_id, original_filename) _source_reference_to_frame_id[source_reference] = frame_id return source_reference def get_frame_id_from_source_reference(source_reference): return _source_reference_to_frame_id.get(source_reference) def setup_client_server_paths(paths): '''paths is the same format as PATHS_FROM_ECLIPSE_TO_PYTHON''' global map_file_to_client global map_file_to_server global _last_client_server_paths_set global _next_source_reference _last_client_server_paths_set = paths[:] _source_reference_to_server_filename.clear() _client_filename_in_utf8_to_source_reference.clear() _next_source_reference = partial(next, itertools.count(1)) # Work on the client and server slashes. python_sep = '\\' if IS_WINDOWS else '/' eclipse_sep = '\\' if _ide_os == 'WINDOWS' else '/' norm_filename_to_server_container = {} norm_filename_to_client_container = {} initial_paths = [] initial_paths_with_end_sep = [] paths_from_eclipse_to_python = [] paths_from_eclipse_to_python_with_end_sep = [] # Apply normcase to the existing paths to follow the os preferences. for i, (path0, path1) in enumerate(paths): if IS_PY2: if isinstance(path0, unicode): # noqa path0 = path0.encode(sys.getfilesystemencoding()) if isinstance(path1, unicode): # noqa path1 = path1.encode(sys.getfilesystemencoding()) force_only_slash = path0.endswith(('/', '\\')) and path1.endswith(('/', '\\')) if not force_only_slash: path0 = _fix_path(path0, eclipse_sep, False) path1 = _fix_path(path1, python_sep, False) initial_paths.append((path0, path1)) paths_from_eclipse_to_python.append((_normcase_from_client(path0), normcase(path1))) # Now, make a version with a slash in the end. path0 = _fix_path(path0, eclipse_sep, True) path1 = _fix_path(path1, python_sep, True) initial_paths_with_end_sep.append((path0, path1)) paths_from_eclipse_to_python_with_end_sep.append((_normcase_from_client(path0), normcase(path1))) # Fix things so that we always match the versions with a slash in the end first. initial_paths = initial_paths_with_end_sep + initial_paths paths_from_eclipse_to_python = paths_from_eclipse_to_python_with_end_sep + paths_from_eclipse_to_python if not paths_from_eclipse_to_python: # no translation step needed (just inline the calls) map_file_to_client = _original_file_to_client map_file_to_server = _original_map_file_to_server return # only setup translation functions if absolutely needed! def _map_file_to_server(filename, cache=norm_filename_to_server_container): # Eclipse will send the passed filename to be translated to the python process # So, this would be 'NormFileFromEclipseToPython' try: return cache[filename] except KeyError: if eclipse_sep != python_sep: # Make sure that the separators are what we expect from the IDE. filename = filename.replace(python_sep, eclipse_sep) # used to translate a path from the client to the debug server translated = filename translated_normalized = _normcase_from_client(filename) for eclipse_prefix, server_prefix in paths_from_eclipse_to_python: if translated_normalized.startswith(eclipse_prefix): found_translation = True if DEBUG_CLIENT_SERVER_TRANSLATION: pydev_log.critical('pydev debugger: replacing to server: %s', filename) translated = server_prefix + filename[len(eclipse_prefix):] if DEBUG_CLIENT_SERVER_TRANSLATION: pydev_log.critical('pydev debugger: sent to server: %s - matched prefix: %s', translated, eclipse_prefix) break else: found_translation = False # Note that when going to the server, we do the replace first and only later do the norm file. if eclipse_sep != python_sep: translated = translated.replace(eclipse_sep, python_sep) if found_translation: # Note: we don't normalize it here, this must be done as a separate # step by the caller. translated = absolute_path(translated) else: if not os_path_exists(translated): if not translated.startswith('<'): # This is a configuration error, so, write it always so # that the user can fix it. error_once('pydev debugger: unable to find translation for: "%s" in [%s] (please revise your path mappings).\n', filename, ', '.join(['"%s"' % (x[0],) for x in paths_from_eclipse_to_python])) else: # It's possible that we had some round trip (say, we sent /usr/lib and received # it back, so, having no translation is ok too). # Note: we don't normalize it here, this must be done as a separate # step by the caller. translated = absolute_path(translated) cache[filename] = translated return translated def _map_file_to_client(filename, cache=norm_filename_to_client_container): # The result of this method will be passed to eclipse # So, this would be 'NormFileFromPythonToEclipse' try: return cache[filename] except KeyError: abs_path = absolute_path(filename) translated_proper_case = get_path_with_real_case(abs_path) translated_normalized = normcase(abs_path) path_mapping_applied = False if translated_normalized.lower() != translated_proper_case.lower(): if DEBUG_CLIENT_SERVER_TRANSLATION: pydev_log.critical( 'pydev debugger: translated_normalized changed path (from: %s to %s)', translated_proper_case, translated_normalized) for i, (eclipse_prefix, python_prefix) in enumerate(paths_from_eclipse_to_python): if translated_normalized.startswith(python_prefix): if DEBUG_CLIENT_SERVER_TRANSLATION: pydev_log.critical('pydev debugger: replacing to client: %s', translated_normalized) # Note: use the non-normalized version. eclipse_prefix = initial_paths[i][0] translated = eclipse_prefix + translated_proper_case[len(python_prefix):] if DEBUG_CLIENT_SERVER_TRANSLATION: pydev_log.critical('pydev debugger: sent to client: %s - matched prefix: %s', translated, python_prefix) path_mapping_applied = True break else: if DEBUG_CLIENT_SERVER_TRANSLATION: pydev_log.critical('pydev debugger: to client: unable to find matching prefix for: %s in %s', translated_normalized, [x[1] for x in paths_from_eclipse_to_python]) translated = translated_proper_case if eclipse_sep != python_sep: translated = translated.replace(python_sep, eclipse_sep) translated = _path_to_expected_str(translated) # The resulting path is not in the python process, so, we cannot do a normalize the path here, # only at the beginning of this method. cache[filename] = (translated, path_mapping_applied) if translated not in _client_filename_in_utf8_to_source_reference: if path_mapping_applied: source_reference = 0 else: source_reference = _next_source_reference() pydev_log.debug('Created source reference: %s for untranslated path: %s', source_reference, filename) _client_filename_in_utf8_to_source_reference[translated] = source_reference _source_reference_to_server_filename[source_reference] = filename return (translated, path_mapping_applied) map_file_to_server = _map_file_to_server map_file_to_client = _map_file_to_client setup_client_server_paths(PATHS_FROM_ECLIPSE_TO_PYTHON) # For given file f returns tuple of its absolute path, real path and base name def get_abs_path_real_path_and_base_from_file( filename, NORM_PATHS_AND_BASE_CONTAINER=NORM_PATHS_AND_BASE_CONTAINER): try: return NORM_PATHS_AND_BASE_CONTAINER[filename] except: f = filename if not f: # i.e.: it's possible that the user compiled code with an empty string (consider # it as <string> in this case). f = '<string>' if f.startswith('<'): return f, normcase(f), f if _abs_and_canonical_path is None: # Interpreter shutdown i = max(f.rfind('/'), f.rfind('\\')) return (f, f, f[i + 1:]) if f is not None: if f.endswith('.pyc'): f = f[:-1] elif f.endswith('$py.class'): f = f[:-len('$py.class')] + '.py' abs_path, canonical_normalized_filename = _abs_and_canonical_path(f) try: base = os_path_basename(canonical_normalized_filename) except AttributeError: # Error during shutdown. i = max(f.rfind('/'), f.rfind('\\')) base = f[i + 1:] ret = abs_path, canonical_normalized_filename, base NORM_PATHS_AND_BASE_CONTAINER[filename] = ret return ret def get_abs_path_real_path_and_base_from_frame(frame, NORM_PATHS_AND_BASE_CONTAINER=NORM_PATHS_AND_BASE_CONTAINER): try: return NORM_PATHS_AND_BASE_CONTAINER[frame.f_code.co_filename] except: # This one is just internal (so, does not need any kind of client-server translation) f = frame.f_code.co_filename if f is not None and f.startswith (('build/bdist.', 'build\\bdist.')): # files from eggs in Python 2.7 have paths like build/bdist.linux-x86_64/egg/<path-inside-egg> f = frame.f_globals['__file__'] if get_abs_path_real_path_and_base_from_file is None: # Interpreter shutdown if not f: # i.e.: it's possible that the user compiled code with an empty string (consider # it as <string> in this case). f = '<string>' i = max(f.rfind('/'), f.rfind('\\')) return f, f, f[i + 1:] ret = get_abs_path_real_path_and_base_from_file(f) # Also cache based on the frame.f_code.co_filename (if we had it inside build/bdist it can make a difference). NORM_PATHS_AND_BASE_CONTAINER[frame.f_code.co_filename] = ret return ret def get_fullname(mod_name): if IS_PY3K: import pkgutil else: from _pydev_imps import _pydev_pkgutil_old as pkgutil try: loader = pkgutil.get_loader(mod_name) except: return None if loader is not None: for attr in ("get_filename", "_get_filename"): meth = getattr(loader, attr, None) if meth is not None: return meth(mod_name) return None def get_package_dir(mod_name): for path in sys.path: mod_path = join(path, mod_name.replace('.', '/')) if os.path.isdir(mod_path): return mod_path return None
38.92552
136
0.659107
21875050d32f9dd018c443839e96c15189587144
7,494
py
Python
ros/src/twist_controller/twist_controller_mod.py
edufford/CarND-Capstone
dd466a3e9e1eeb3c3f4b37175b9694600d8cc8c8
[ "MIT" ]
9
2018-03-07T01:38:31.000Z
2020-05-14T14:22:52.000Z
ros/src/twist_controller/twist_controller_mod.py
edufford/CarND-Capstone
dd466a3e9e1eeb3c3f4b37175b9694600d8cc8c8
[ "MIT" ]
95
2018-02-27T11:37:30.000Z
2019-02-09T20:37:03.000Z
ros/src/twist_controller/twist_controller_mod.py
edufford/CarND-Capstone
dd466a3e9e1eeb3c3f4b37175b9694600d8cc8c8
[ "MIT" ]
4
2018-02-26T21:20:17.000Z
2019-08-09T15:50:53.000Z
import time import rospy from lowpass import LowPassFilter from pid import PID from yaw_controller import YawController GAS_DENSITY = 2.858 ONE_MPH = 0.44704 class Controller(object): def __init__(self, default_update_interval, wheel_base, steer_ratio, min_speed, max_lat_accel, max_steer_angle, max_deceleration, max_throttle, fuel_capacity, vehicle_mass, wheel_radius, dyn_velo_proportional_control, dyn_velo_integral_control, dyn_braking_proportional_control, dyn_braking_integral_control): self.current_timestep = None self.previous_acceleration = 0. self.max_throttle = max_throttle self.default_update_interval = default_update_interval self.velocity_increase_limit_constant = 0.25 self.velocity_decrease_limit_constant = 0.05 self.braking_to_throttle_threshold_ratio = 4. / 3. self.manual_braking_upper_velocity_limit = 1.4 self.prev_manual_braking_torque = 0 self.manual_braking_torque_to_stop = 700 self.manual_braking_torque_up_rate = 300 self.lpf_tau_throttle = 0.3 self.lpf_tau_brake = 0.3 self.lpf_tau_steering = 0.4 self.manual_braking = False self.max_braking_torque = ( vehicle_mass + fuel_capacity * GAS_DENSITY) * abs(max_deceleration) * wheel_radius rospy.logwarn('max_braking_torque = {:.1f} N'.format(self.max_braking_torque)) self.yaw_controller = YawController( wheel_base, steer_ratio, min_speed, max_lat_accel, max_steer_angle) self.setup_pid_controllers(dyn_velo_proportional_control, dyn_velo_integral_control, dyn_braking_proportional_control, dyn_braking_integral_control) self.throttle_lpf = LowPassFilter(self.lpf_tau_throttle, default_update_interval) self.brake_lpf = LowPassFilter(self.lpf_tau_brake, default_update_interval) self.steering_lpf = LowPassFilter( self.lpf_tau_steering, default_update_interval) def setup_pid_controllers(self, velo_p, velo_i, braking_p, braking_i): rospy.loginfo("Initializing PID controllers with velo_P: {}, velo_I: {}, braking_P: {}, braking_I: {}" .format(velo_p, velo_i, braking_p, braking_i)) # create velocity pid controller thresholded between min and max # acceleration values self.velocity_pid_controller = PID( velo_p, velo_i, 0, 0, 1) # create acceleration pid controller thresholded between 0% and 100% # for throttle self.braking_pid_controller = PID( braking_p, braking_i, 0.0, 0.0, 10000) def control(self, target_linear_velocity, target_angular_velocity, current_linear_velocity, is_decelerating): # compute timestep timestep = self.compute_timestep() velocity_error = target_linear_velocity - current_linear_velocity if (target_linear_velocity == 0 and current_linear_velocity == 0): # reset integrators if we're at a stop self.reset() limit_constant = self.velocity_increase_limit_constant if velocity_error > 0 else self.velocity_decrease_limit_constant error_thresh = limit_constant * current_linear_velocity throttle_command = 0 brake_command = 0 control_mode = "Coasting" if is_decelerating and (target_linear_velocity < self.manual_braking_upper_velocity_limit and current_linear_velocity < self.manual_braking_upper_velocity_limit): # vehicle is coming to a stop or is at a stop; apply fixed braking torque # continuously, even if the vehicle is stopped self.manual_braking = True brake_command = self.prev_manual_braking_torque # Ramp up manual braking torque if brake_command < self.manual_braking_torque_to_stop: brake_command += self.manual_braking_torque_up_rate # Clip manual brake torque to braking_torque_to_full_stop brake_command = min(brake_command, self.manual_braking_torque_to_stop) self.velocity_pid_controller.reset() control_mode = "Manual braking" elif velocity_error < -1 * max(limit_constant * current_linear_velocity, 0.1): # use brake if we want to slow down somewhat significantly self.manual_braking = False brake_command = self.braking_pid_controller.step(-velocity_error, timestep) if velocity_error < (-1 * limit_constant * self.braking_to_throttle_threshold_ratio * current_linear_velocity) or (velocity_error < 0 and current_linear_velocity < 2.5) else 0 self.velocity_pid_controller.reset() control_mode = "PID braking" elif not is_decelerating or (current_linear_velocity > 5 and velocity_error > -1 * limit_constant * current_linear_velocity) or (current_linear_velocity < 5 and velocity_error > limit_constant * current_linear_velocity): # use throttle if we want to speed up or if we want to slow down # just slightly # reset brake lpf to release manually held brake quickly if self.manual_braking: self.brake_lpf.reset() self.manual_braking = False throttle_command = self.velocity_pid_controller.step( velocity_error, timestep) self.braking_pid_controller.reset() control_mode = "PID throttle" # apply low pass filter and maximum limit on brake command filtered_brake = min( self.max_braking_torque, self.brake_lpf.filt(brake_command)) # do not apply throttle if any brake is applied if filtered_brake < 50: # brake is released, ok to apply throttle filtered_brake = 0 else: # brake is still applied, don't apply throttle throttle_command = 0 self.velocity_pid_controller.reset() # apply low pass filter and maximum limit on throttle command filtered_throttle = min( self.max_throttle, self.throttle_lpf.filt(throttle_command)) # Store final brake torque command for next manual braking torque calc self.prev_manual_braking_torque = filtered_brake rospy.loginfo('%s: current linear velocity %.2f, target linear velocity %.2f, is_decelerating %s, throttle_command %.2f, brake_command %.2f, error %.2f, thresh %.2f', control_mode, current_linear_velocity, target_linear_velocity, is_decelerating, filtered_throttle, filtered_brake, velocity_error, error_thresh) # Return throttle, brake, steer return (filtered_throttle, filtered_brake, self.steering_lpf.filt(self.yaw_controller.get_steering(target_linear_velocity, target_angular_velocity, current_linear_velocity))) def reset(self): self.last_timestep = None self.velocity_pid_controller.reset() self.braking_pid_controller.reset() def compute_timestep(self): last_timestep = self.current_timestep self.current_timestep = time.time() if last_timestep == None: last_timestep = self.current_timestep - self.default_update_interval return self.current_timestep - last_timestep
47.732484
313
0.682146
e2c35e3a01fa119523e3f9b1e4c578643515aa92
7,718
py
Python
contrib/go/src/python/pants/contrib/go/subsystems/go_distribution.py
lahosken/pants
1b0340987c9b2eab9411416803c75b80736716e4
[ "Apache-2.0" ]
null
null
null
contrib/go/src/python/pants/contrib/go/subsystems/go_distribution.py
lahosken/pants
1b0340987c9b2eab9411416803c75b80736716e4
[ "Apache-2.0" ]
null
null
null
contrib/go/src/python/pants/contrib/go/subsystems/go_distribution.py
lahosken/pants
1b0340987c9b2eab9411416803c75b80736716e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os import subprocess from collections import OrderedDict, namedtuple from pants.base.workunit import WorkUnit, WorkUnitLabel from pants.binaries.binary_util import BinaryUtil from pants.fs.archive import TGZ from pants.subsystem.subsystem import Subsystem from pants.util.contextutil import temporary_dir from pants.util.memo import memoized_property class GoDistribution(object): """Represents a self-bootstrapping Go distribution.""" class Factory(Subsystem): options_scope = 'go-distribution' @classmethod def subsystem_dependencies(cls): return (BinaryUtil.Factory,) @classmethod def register_options(cls, register): register('--supportdir', advanced=True, default='bin/go', help='Find the go distributions under this dir. Used as part of the path to lookup ' 'the distribution with --binary-util-baseurls and --pants-bootstrapdir') register('--version', advanced=True, default='1.8', help='Go distribution version. Used as part of the path to lookup the distribution ' 'with --binary-util-baseurls and --pants-bootstrapdir') def create(self): # NB: create is an instance method to allow the user to choose global or scoped. # It's not unreasonable to imagine multiple go versions in play; for example: when # transitioning from the 1.x series to the 2.x series. binary_util = BinaryUtil.Factory.create() options = self.get_options() return GoDistribution(binary_util, options.supportdir, options.version) def __init__(self, binary_util, relpath, version): self._binary_util = binary_util self._relpath = relpath self._version = version @property def version(self): """Returns the version of the Go distribution. :returns: The Go distribution version number string. :rtype: string """ return self._version @memoized_property def goroot(self): """Returns the $GOROOT for this go distribution. :returns: The Go distribution $GOROOT. :rtype: string """ go_distribution = self._binary_util.select_binary(self._relpath, self.version, 'go.tar.gz') distribution_workdir = os.path.dirname(go_distribution) outdir = os.path.join(distribution_workdir, 'unpacked') if not os.path.exists(outdir): with temporary_dir(root_dir=distribution_workdir) as tmp_dist: TGZ.extract(go_distribution, tmp_dist) os.rename(tmp_dist, outdir) return os.path.join(outdir, 'go') def go_env(self, gopath=None): """Return an env dict that represents a proper Go environment mapping for this distribution.""" # Forcibly nullify the GOPATH if the command does not need one - this can prevent bad user # GOPATHs from erroring out commands; see: https://github.com/pantsbuild/pants/issues/2321. # NB: As of go 1.8, when GOPATH is unset (set to ''), it defaults to ~/go (assuming HOME is # set - and we can't unset that since it might legitimately be used by the subcommand); so we # set the GOPATH here to a valid value that nonetheless will fail to work if GOPATH is # actually used by the subcommand. no_gopath = os.devnull return OrderedDict(GOROOT=self.goroot, GOPATH=gopath or no_gopath) class GoCommand(namedtuple('GoCommand', ['cmdline', 'env'])): """Encapsulates a go command that can be executed.""" @classmethod def _create(cls, goroot, cmd, go_env, args=None): return cls([os.path.join(goroot, 'bin', 'go'), cmd] + (args or []), env=go_env) def spawn(self, env=None, **kwargs): """ :param dict env: A custom environment to launch the Go command in. If `None` the current environment is used. :param **kwargs: Keyword arguments to pass through to `subprocess.Popen`. :returns: A handle to the spawned go command subprocess. :rtype: :class:`subprocess.Popen` """ env = (env or os.environ).copy() env.update(self.env) return subprocess.Popen(self.cmdline, env=env, **kwargs) def check_output(self, env=None, **kwargs): """Returns the output of the executed Go command. :param dict env: A custom environment to launch the Go command in. If `None` the current environment is used. :param **kwargs: Keyword arguments to pass through to `subprocess.check_output`. :return str: Output of Go command. :raises subprocess.CalledProcessError: Raises if Go command fails. """ env = (env or os.environ).copy() env.update(self.env) return subprocess.check_output(self.cmdline, env=env, **kwargs) def __str__(self): return (' '.join('{}={}'.format(k, v) for k, v in self.env.items()) + ' ' + ' '.join(self.cmdline)) def create_go_cmd(self, cmd, gopath=None, args=None): """Creates a Go command that is optionally targeted to a Go workspace. :param string cmd: Go command to execute, e.g. 'test' for `go test` :param string gopath: An optional $GOPATH which points to a valid Go workspace from which to run the command. :param list args: A list of arguments and flags to pass to the Go command. :returns: A go command that can be executed later. :rtype: :class:`GoDistribution.GoCommand` """ return self.GoCommand._create(self.goroot, cmd, go_env=self.go_env(gopath=gopath), args=args) def execute_go_cmd(self, cmd, gopath=None, args=None, env=None, workunit_factory=None, workunit_name=None, workunit_labels=None, **kwargs): """Runs a Go command that is optionally targeted to a Go workspace. If a `workunit_factory` is supplied the command will run in a work unit context. :param string cmd: Go command to execute, e.g. 'test' for `go test` :param string gopath: An optional $GOPATH which points to a valid Go workspace from which to run the command. :param list args: An optional list of arguments and flags to pass to the Go command. :param dict env: A custom environment to launch the Go command in. If `None` the current environment is used. :param workunit_factory: An optional callable that can produce a `WorkUnit` context :param string workunit_name: An optional name for the work unit; defaults to the `cmd` :param list workunit_labels: An optional sequence of labels for the work unit. :param **kwargs: Keyword arguments to pass through to `subprocess.Popen`. :returns: A tuple of the exit code and the go command that was run. :rtype: (int, :class:`GoDistribution.GoCommand`) """ go_cmd = self.GoCommand._create(self.goroot, cmd, go_env=self.go_env(gopath=gopath), args=args) if workunit_factory is None: return go_cmd.spawn(**kwargs).wait() else: name = workunit_name or cmd labels = [WorkUnitLabel.TOOL] + (workunit_labels or []) with workunit_factory(name=name, labels=labels, cmd=str(go_cmd)) as workunit: process = go_cmd.spawn(env=env, stdout=workunit.output('stdout'), stderr=workunit.output('stderr'), **kwargs) returncode = process.wait() workunit.set_outcome(WorkUnit.SUCCESS if returncode == 0 else WorkUnit.FAILURE) return returncode, go_cmd
45.4
100
0.680228
d906806bd6c9b301631f68150d3e607d3168058d
21,974
py
Python
jstc/test_compiler.py
canaryhealth/jstc
d4be1f213e041b80708e8a7e40edfe2ae308b637
[ "MIT" ]
null
null
null
jstc/test_compiler.py
canaryhealth/jstc
d4be1f213e041b80708e8a7e40edfe2ae308b637
[ "MIT" ]
null
null
null
jstc/test_compiler.py
canaryhealth/jstc
d4be1f213e041b80708e8a7e40edfe2ae308b637
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- #------------------------------------------------------------------------------ # file: $Id$ # auth: Philip J Grabner <phil@canary.md> # date: 2016/09/15 # copy: (C) Copyright 2016-EOT Canary Health, Inc., All Rights Reserved. #------------------------------------------------------------------------------ import unittest import os import textwrap from aadict import aadict import fso #------------------------------------------------------------------------------ class TestCompiler(unittest.TestCase): maxDiff = None #---------------------------------------------------------------------------- def test_fragments(self): import jstc.compiler compiler = jstc.compiler.Compiler() hooks = aadict(name_transform=compiler._name_transform) self.assertEqual( list(compiler.fragments('foo/bar.jst', '', 'i am a template.', hooks)), [('i am a template.', aadict(name='foo/bar', type='.jst'))]) self.assertEqual( list(compiler.fragments('foo/bar.jst', '', '''\ ##! zig i am the zig template. ##! __here__ i am the root template. ''', hooks)), [ (' i am the zig template.\n', aadict(name='foo/bar/zig', type='.jst')), (' i am the root template.\n', aadict(name='foo/bar', type='.jst')), ]) #---------------------------------------------------------------------------- def test_attributes(self): import jstc.compiler compiler = jstc.compiler.Compiler() hooks = aadict(name_transform=compiler._name_transform) self.assertEqual( list(compiler.fragments('foo/bar.jst', '', '''\ ##! zig; channels: "public,protected" i am the zig template. ##! __here__; public; protected i am the root template. ##! zag; type: text/jst; !public; !protected i am the zag template. ''', hooks)), [ (' i am the zig template.\n', aadict(name='foo/bar/zig', type='.jst', channels='public,protected')), (' i am the root template.\n', aadict(name='foo/bar', type='.jst', public=True, protected=True)), (' i am the zag template.\n', aadict(name='foo/bar/zag', type='text/jst', public=False, protected=False)), ]) #---------------------------------------------------------------------------- def writecontent(self, files, dedent=True): for name, content in files.items(): path = os.path.join(os.path.dirname(__file__), name) pdir = os.path.dirname(path) if not os.path.isdir(pdir): os.makedirs(pdir) with open(path, 'wb') as fp: fp.write(textwrap.dedent(content)) #---------------------------------------------------------------------------- def test_render_simple(self): import jstc.compiler compiler = jstc.compiler.Compiler( overrides=dict(inline=True, precompile=False)) with fso.push() as overlay: self.writecontent({ 'test/common/hello.hbs': '''\ ##! __here__ Hello, world! ##! name Hello, {{name}}! ''' }) self.assertEqual( compiler.render_assets('jstc:test/common/hello.hbs', 'test'), '''\ <script type="text/x-handlebars" data-template-name="common/hello">Hello, world!</script>\ <script type="text/x-handlebars" data-template-name="common/hello/name">Hello, {{name}}!</script>\ ''') #---------------------------------------------------------------------------- def test_render_trim_deprecated(self): import jstc.compiler compiler = jstc.compiler.Compiler( overrides=dict(inline=True, precompile=False)) with fso.push() as overlay: self.writecontent({ 'test.hbs': '''\ ##! 0-default <span> text </span> ##! 1-trim; trim <span> text </span> ##! 2-notrim; !trim <span> text </span> ''' }) self.assertEqual( compiler.render_assets('jstc:test.hbs'), '''\ <script type="text/x-handlebars" data-template-name="test/0-default"><span> text </span></script>\ <script type="text/x-handlebars" data-template-name="test/1-trim"><span> text </span></script>\ <script type="text/x-handlebars" data-template-name="test/2-notrim"> <span> text </span> </script>\ ''') #---------------------------------------------------------------------------- def test_render_space_default(self): import jstc.compiler compiler = jstc.compiler.Compiler( overrides=dict(inline=True, precompile=False)) with fso.push() as overlay: self.writecontent({ 'test.hbs': '''\ ##! default {{#if value}} <span> {{value}} </span> {{else}} <span>default</span> {{/if}} ''' }) self.assertEqual( compiler.render_assets('jstc:test.hbs'), '''\ <script type="text/x-handlebars" data-template-name="test/default">{{#if value}} <span> {{value}} </span> {{else}} <span>default</span> {{/if}}</script>\ ''') #---------------------------------------------------------------------------- def test_render_space_preserve(self): import jstc.compiler compiler = jstc.compiler.Compiler( overrides=dict(inline=True, precompile=False)) with fso.push() as overlay: self.writecontent({ 'test.hbs': '''\ ##! preserve; space: preserve {{#if value}} <span> {{value}} </span> {{else}} <span>default</span> {{/if}} ''' }) self.assertEqual( compiler.render_assets('jstc:test.hbs'), '''\ <script type="text/x-handlebars" data-template-name="test/preserve"> {{#if value}} <span> {{value}} </span> {{else}} <span>default</span> {{/if}} </script>\ ''') #---------------------------------------------------------------------------- def test_render_space_trim(self): import jstc.compiler compiler = jstc.compiler.Compiler( overrides=dict(inline=True, precompile=False)) with fso.push() as overlay: self.writecontent({ 'test.hbs': '''\ ##! trim; space: trim {{#if value}} <span> {{value}} </span> {{else}} <span>default</span> {{/if}} ''' }) self.assertEqual( compiler.render_assets('jstc:test.hbs'), '''\ <script type="text/x-handlebars" data-template-name="test/trim">{{#if value}} <span> {{value}} </span> {{else}} <span>default</span> {{/if}}</script>\ ''') #---------------------------------------------------------------------------- def test_render_space_dedent(self): import jstc.compiler compiler = jstc.compiler.Compiler( overrides=dict(inline=True, precompile=False)) with fso.push() as overlay: self.writecontent({ 'test.hbs': '''\ ##! dedent; space: dedent {{#if value}} <span> {{value}} </span> {{else}} <span>default</span> {{/if}} ''' }) self.assertEqual( compiler.render_assets('jstc:test.hbs'), '''\ <script type="text/x-handlebars" data-template-name="test/dedent">{{#if value}} <span> {{value}} </span> {{else}} <span>default</span> {{/if}}</script>\ ''') #---------------------------------------------------------------------------- def test_render_space_collapse_complete(self): import jstc.compiler compiler = jstc.compiler.Compiler( overrides=dict(inline=True, precompile=False)) with fso.push() as overlay: self.writecontent({ 'test.hbs': '''\ ##! collapse/complete; space: collapse {{#if value}} <span> {{value}} </span> {{else}} <span>default</span> {{/if}} ''' }) self.assertEqual( compiler.render_assets('jstc:test.hbs'), '''\ <script type="text/x-handlebars" data-template-name="test/collapse/complete">{{#if value}}<span>{{value}}</span>{{else}}<span>default</span>{{/if}}</script>\ ''') #---------------------------------------------------------------------------- def test_render_space_collapse_htmlSpace(self): import jstc.compiler compiler = jstc.compiler.Compiler( overrides=dict(inline=True, precompile=False)) with fso.push() as overlay: self.writecontent({ 'test.hbs': '''\ ##! collapse/htmlspace; space: collapse {{#if value}} <span > {{value}} </span > {{else}} <span>default</span > {{/if}} ''' }) self.assertEqual( compiler.render_assets('jstc:test.hbs'), '''\ <script type="text/x-handlebars" data-template-name="test/collapse/htmlspace">{{#if value}}<span> {{value}}</span> {{else}}<span>default</span> {{/if}}</script>\ ''') #---------------------------------------------------------------------------- def test_render_space_collapse_hbsSpace(self): import jstc.compiler compiler = jstc.compiler.Compiler( overrides=dict(inline=True, precompile=False)) with fso.push() as overlay: self.writecontent({ 'test.hbs': '''\ ##! collapse/hbsspace; space: collapse {{#if value }} <span> {{value }} </span> {{else }} <span>default</span> {{/if }} ''' }) self.assertEqual( compiler.render_assets('jstc:test.hbs'), '''\ <script type="text/x-handlebars" data-template-name="test/collapse/hbsspace">{{#if value}} <span>{{value}} </span>{{else}} <span>default</span>{{/if}} </script>\ ''') #---------------------------------------------------------------------------- def test_comments(self): import jstc.compiler compiler = jstc.compiler.Compiler( overrides=dict(inline=True, precompile=False)) with fso.push() as overlay: self.writecontent({ 'test/application.hbs': '''\ <div> ## TODO: super-secret comment! Nothing to see here. </div> ''' }) self.assertEqual( compiler.render_assets('jstc:test/application.hbs', 'test'), '''\ <script type="text/x-handlebars" data-template-name="application"><div> Nothing to see here. </div>\ </script>\ ''') #---------------------------------------------------------------------------- def test_root(self): import jstc.compiler compiler = jstc.compiler.Compiler( overrides=dict(inline=True, precompile=False)) with fso.push() as overlay: self.writecontent({ 'test/one/template.hbs': 'template "one".', 'test/two/template.hbs': 'template "two".', }) self.assertEqual( compiler.render_assets('jstc:test/one/template.hbs', 'test/one'), '''\ <script type="text/x-handlebars" data-template-name="template">template "one".</script>\ ''') self.assertEqual( compiler.render_assets('jstc:test/two/template.hbs', 'test/two'), '''\ <script type="text/x-handlebars" data-template-name="template">template "two".</script>\ ''') self.assertEqual( compiler.render_assets( ['jstc:test/one/template.hbs', 'jstc:test/two/template.hbs'], 'test'), '''\ <script type="text/x-handlebars" data-template-name="one/template">template "one".</script>\ <script type="text/x-handlebars" data-template-name="two/template">template "two".</script>\ ''') #---------------------------------------------------------------------------- def test_collision_error(self): import jstc.compiler compiler = jstc.compiler.Compiler( overrides=dict(inline=True, precompile=False)) with fso.push() as overlay: self.writecontent({ 'test/one/template.hbs': 'template "one".', 'test/two/template.hbs': 'template "two".', }) with self.assertRaises(jstc.TemplateCollision) as cm: compiler.render_assets( ['jstc:test/one/template.hbs', 'jstc:test/two/template.hbs'], ['test/one', 'test/two']) self.assertEqual( str(cm.exception), ''''text/x-handlebars' template 'template' is already defined''') #---------------------------------------------------------------------------- def test_collision_ignore(self): import jstc.compiler compiler = jstc.compiler.Compiler( defaults=dict(collision='ignore'), overrides=dict(inline=True, precompile=False), ) with fso.push() as overlay: self.writecontent({ 'test/one/template.hbs': 'template "one".', 'test/two/template.hbs': 'template "two".', }) self.assertEqual( compiler.render_assets( ['jstc:test/one/template.hbs', 'jstc:test/two/template.hbs'], ['test/one', 'test/two']), '''\ <script type="text/x-handlebars" data-template-name="template">template "one".</script>\ ''') #---------------------------------------------------------------------------- def test_collision_override(self): import jstc.compiler compiler = jstc.compiler.Compiler( defaults=dict(collision='override'), overrides=dict(inline=True, precompile=False), ) with fso.push() as overlay: self.writecontent({ 'test/one/template.hbs': 'template "one".', 'test/two/template.hbs': 'template "two".', }) self.assertEqual( compiler.render_assets( ['jstc:test/one/template.hbs', 'jstc:test/two/template.hbs'], ['test/one', 'test/two']), '''\ <script type="text/x-handlebars" data-template-name="template">template "two".</script>\ ''') #---------------------------------------------------------------------------- def test_collision_pertemplate(self): import jstc.compiler compiler = jstc.compiler.Compiler( defaults=dict(collision='ignore'), overrides=dict(inline=True, precompile=False), ) with fso.push() as overlay: self.writecontent({ 'test/one/template.hbs': '''\ ##! a template "one/a". ##! b template "one/b". ''', 'test/two/template.hbs': '''\ ##! a; collision: ignore template "two/a". ##! b; collision: override template "two/b". ''', }) self.assertEqual( compiler.render_assets( ['jstc:test/one/template.hbs', 'jstc:test/two/template.hbs'], ['test/one', 'test/two']), '''\ <script type="text/x-handlebars" data-template-name="template/a">template "one/a".</script>\ <script type="text/x-handlebars" data-template-name="template/b">template "two/b".</script>\ ''') #---------------------------------------------------------------------------- def test_precompile(self): import jstc with fso.push() as overlay: self.writecontent({ 'test/hello.hbs': 'hello, world!', 'test/hello/name.hbs': 'hello, {{name}}!', }) compiled = jstc.render_assets('jstc:test/**.hbs', force_inline=True, force_precompile=True) if 'text/x-handlebars' in compiled: raise unittest.SkipTest( 'handlebars executable not available (use "npm install handlebars")') self.assertMultiLineEqual( compiled, '''\ <script type="text/javascript" >(function(){var t=Handlebars.template,ts=Handlebars.templates=Handlebars.templates||{};ts["hello"]=t({"compiler":[7,">= 4.0.0"],"main":function(container,depth0,helpers,partials,data) { return "hello, world!"; },"useData":true});ts["hello/name"]=t({"compiler":[7,">= 4.0.0"],"main":function(container,depth0,helpers,partials,data) { var helper; return "hello, " + container.escapeExpression(((helper = (helper = helpers.name || (depth0 != null ? depth0.name : depth0)) != null ? helper : helpers.helperMissing),(typeof helper === "function" ? helper.call(depth0 != null ? depth0 : {},{"name":"name","hash":{},"data":data}) : helper))) + "!"; },"useData":true});})();</script>''') #---------------------------------------------------------------------------- def test_asset_filter(self): import jstc with fso.push() as overlay: self.writecontent({ 'test/hello.hbs': 'hello!', 'test/goodbye.hbs': 'so long!', }) self.assertEqual( jstc.render_assets('jstc:test/**.hbs', force_inline=True, force_precompile=False), '''\ <script type="text/x-handlebars" data-template-name="goodbye">so long!</script>\ <script type="text/x-handlebars" data-template-name="hello">hello!</script>\ ''') self.assertEqual( jstc.render_assets( 'jstc:test/**.hbs', force_inline=True, force_precompile=False, asset_filter=lambda name: name == 'test/hello.hbs'), '''\ <script type="text/x-handlebars" data-template-name="hello">hello!</script>\ ''') self.assertEqual( jstc.render_assets('jstc:test/**.hbs', force_inline=True, force_precompile=False, asset_filter=lambda name: name != 'test/hello.hbs'), '''\ <script type="text/x-handlebars" data-template-name="goodbye">so long!</script>\ ''') #---------------------------------------------------------------------------- def test_name_transform(self): import jstc with fso.push() as overlay: self.writecontent({ 'test/hello.hbs': 'hello!', 'test/goodbye.hbs': 'so long!', }) def mynt(name, root): return (name[2:].replace('d', 'd-').split('.')[0], 'text/x-mustache') self.assertEqual( jstc.render_assets('jstc:test/**.hbs', force_inline=True, force_precompile=False, name_transform=mynt), '''\ <script type="text/x-mustache" data-template-name="st/good-bye">so long!</script>\ <script type="text/x-mustache" data-template-name="st/hello">hello!</script>\ ''') #---------------------------------------------------------------------------- def test_template_transform(self): import jstc with fso.push() as overlay: self.writecontent({ 'test/hello.hbs': 'hello!', 'test/goodbye.hbs': 'so long!', }) def mytt(text, attrs): if attrs.name == 'hello': text = 'hello, world!' attrs.id = 'HW' else: attrs.type = 'template/jst' return (text, attrs) self.assertEqual( jstc.render_assets('jstc:test/**.hbs', force_inline=True, force_precompile=False, template_transform=mytt), '''\ <script type="template/jst" data-template-name="goodbye">so long!</script>\ <script type="text/x-handlebars" data-template-name="hello" id="HW">hello, world!</script>\ ''') #---------------------------------------------------------------------------- def test_template_filter(self): import jstc with fso.push() as overlay: self.writecontent({ 'test/hello.hbs': 'hello!', 'test/goodbye.hbs': '''\ ##! __here__ so long! ##! friend ciao! ''' }) self.assertEqual( jstc.render_assets('jstc:test/**.hbs', force_inline=True, force_precompile=False), '''\ <script type="text/x-handlebars" data-template-name="goodbye">so long!</script>\ <script type="text/x-handlebars" data-template-name="goodbye/friend">ciao!</script>\ <script type="text/x-handlebars" data-template-name="hello">hello!</script>\ ''') self.assertEqual( jstc.render_assets('jstc:test/**.hbs', force_inline=True, force_precompile=False, template_filter=lambda text, attrs: 'ciao' not in text), '''\ <script type="text/x-handlebars" data-template-name="goodbye">so long!</script>\ <script type="text/x-handlebars" data-template-name="hello">hello!</script>\ ''') #---------------------------------------------------------------------------- def test_script_wrapper(self): import jstc with fso.push() as overlay: self.writecontent({ 'test/hello.hbs': 'hello, world!', 'test/hello/name.hbs': 'hello, {{name}}!', }) compiled = jstc.render_assets( 'jstc:test/**.hbs', force_inline=True, force_precompile=True, script_wrapper = lambda script, *args, **kw: '<SCRIPT>' + script + '</SCRIPT>') if 'text/x-handlebars' in compiled: raise unittest.SkipTest( 'handlebars executable not available (use "npm install handlebars")') self.assertMultiLineEqual( compiled, '''\ <SCRIPT>(function(){var t=Handlebars.template,ts=Handlebars.templates=Handlebars.templates||{};ts["hello"]=t({"compiler":[7,">= 4.0.0"],"main":function(container,depth0,helpers,partials,data) { return "hello, world!"; },"useData":true});ts["hello/name"]=t({"compiler":[7,">= 4.0.0"],"main":function(container,depth0,helpers,partials,data) { var helper; return "hello, " + container.escapeExpression(((helper = (helper = helpers.name || (depth0 != null ? depth0.name : depth0)) != null ? helper : helpers.helperMissing),(typeof helper === "function" ? helper.call(depth0 != null ? depth0 : {},{"name":"name","hash":{},"data":data}) : helper))) + "!"; },"useData":true});})();</SCRIPT>''') #------------------------------------------------------------------------------ # end of $Id$ # $ChangeLog$ #------------------------------------------------------------------------------
34.990446
276
0.51388
789364317fca14b8a5c905f2ae517530c7309670
27,267
py
Python
bert4keras/snippets.py
Atakey/bert4keras
af6811b182abdd32b2a143a8f303a7a7cbaf76b0
[ "Apache-2.0" ]
1
2021-08-29T16:21:41.000Z
2021-08-29T16:21:41.000Z
bert4keras/snippets.py
Atakey/bert4keras
af6811b182abdd32b2a143a8f303a7a7cbaf76b0
[ "Apache-2.0" ]
null
null
null
bert4keras/snippets.py
Atakey/bert4keras
af6811b182abdd32b2a143a8f303a7a7cbaf76b0
[ "Apache-2.0" ]
null
null
null
#! -*- coding: utf-8 -*- # 代码合集 import os, sys, six, re, json import logging import numpy as np from collections import defaultdict from bert4keras.backend import K, keras, tf _open_ = open is_py2 = six.PY2 if not is_py2: basestring = str def to_array(*args): """批量转numpy的array """ results = [np.array(a) for a in args] if len(args) == 1: return results[0] else: return results def is_string(s): """判断是否是字符串 """ return isinstance(s, basestring) def strQ2B(ustring): """全角符号转对应的半角符号 """ rstring = '' for uchar in ustring: inside_code = ord(uchar) # 全角空格直接转换 if inside_code == 12288: inside_code = 32 # 全角字符(除空格)根据关系转化 elif (inside_code >= 65281 and inside_code <= 65374): inside_code -= 65248 rstring += unichr(inside_code) return rstring def string_matching(s, keywords): """判断s是否至少包含keywords中的至少一个字符串 """ for k in keywords: if re.search(k, s): return True return False def convert_to_unicode(text, encoding='utf-8', errors='ignore'): """字符串转换为unicode格式(假设输入为utf-8格式) """ if is_py2: if isinstance(text, str): text = text.decode(encoding, errors=errors) else: if isinstance(text, bytes): text = text.decode(encoding, errors=errors) return text def convert_to_str(text, encoding='utf-8', errors='ignore'): """字符串转换为str格式(假设输入为utf-8格式) """ if is_py2: if isinstance(text, unicode): text = text.encode(encoding, errors=errors) else: if isinstance(text, bytes): text = text.decode(encoding, errors=errors) return text class open: """模仿python自带的open函数 作用:1.主要是为了同时兼容py2和py3;2.增加了索引功能,方便读取大文件。 """ def __init__( self, name, mode='r', encoding=None, errors='strict', indexable=False ): self.name = name if is_py2: self.file = _open_(name, mode) else: self.file = _open_(name, mode, encoding=encoding, errors=errors) self.encoding = encoding self.errors = errors self.iterator = None if indexable: if is_string(indexable) and os.path.exists(indexable): self.offsets = json.load(_open_(indexable)) else: self.create_indexes() if is_string(indexable): json.dump(self.offsets, _open_(indexable, 'w')) def create_indexes(self): print('creating indexes ...') self.offsets, offset = [], 0 pbar = keras.utils.Progbar(os.path.getsize(self.name)) while self.readline(): self.offsets.append(offset) offset = self.tell() pbar.update(offset) self.seek(0) print('indexes created.') def __getitem__(self, key): self.seek(self.offsets[key]) l = self.readline() if self.encoding: l = convert_to_unicode(l, self.encoding, self.errors) return l def __len__(self): return len(self.offsets) def __iter__(self): if hasattr(self, 'offsets'): for i in range(len(self)): yield self[i] else: for l in self.file: if self.encoding: l = convert_to_unicode(l, self.encoding, self.errors) yield l def next(self): if self.iterator is None: self.iterator = self.__iter__() return next(self.iterator) def __next__(self): return self.next() def read(self): text = self.file.read() if self.encoding: text = convert_to_unicode(text, self.encoding, self.errors) return text def readline(self): text = self.file.readline() if self.encoding: text = convert_to_unicode(text, self.encoding, self.errors) return text def readlines(self): if self.encoding: return [ convert_to_unicode(text, self.encoding, self.errors) for text in self.file.readlines() ] else: return self.file.readlines() def write(self, text): if self.encoding: text = convert_to_str(text, self.encoding, self.errors) self.file.write(text) def flush(self): self.file.flush() def close(self): self.file.close() def tell(self): return self.file.tell() def seek(self, offset=0): return self.file.seek(offset) def __enter__(self): return self def __exit__(self, type, value, tb): self.close() def parallel_apply( func, iterable, workers, max_queue_size, callback=None, dummy=False, random_seeds=True ): """多进程或多线程地将func应用到iterable的每个元素中。 注意这个apply是异步且无序的,也就是说依次输入a,b,c,但是 输出可能是func(c), func(a), func(b)。 参数: callback: 处理单个输出的回调函数; dummy: False是多进程/线性,True则是多线程/线性; random_seeds: 每个进程的随机种子。 """ if dummy: from multiprocessing.dummy import Pool, Queue else: from multiprocessing import Pool, Queue in_queue, out_queue, seed_queue = Queue(max_queue_size), Queue(), Queue() if random_seeds is True: random_seeds = [None] * workers elif random_seeds is None or random_seeds is False: random_seeds = [] for seed in random_seeds: seed_queue.put(seed) def worker_step(in_queue, out_queue): """单步函数包装成循环执行 """ if not seed_queue.empty(): np.random.seed(seed_queue.get()) while True: i, d = in_queue.get() r = func(d) out_queue.put((i, r)) # 启动多进程/线程 pool = Pool(workers, worker_step, (in_queue, out_queue)) if callback is None: results = [] # 后处理函数 def process_out_queue(): out_count = 0 for _ in range(out_queue.qsize()): i, d = out_queue.get() out_count += 1 if callback is None: results.append((i, d)) else: callback(d) return out_count # 存入数据,取出结果 in_count, out_count = 0, 0 for i, d in enumerate(iterable): in_count += 1 while True: try: in_queue.put((i, d), block=False) break except six.moves.queue.Full: out_count += process_out_queue() if in_count % max_queue_size == 0: out_count += process_out_queue() while out_count != in_count: out_count += process_out_queue() pool.terminate() if callback is None: results = sorted(results, key=lambda r: r[0]) return [r[1] for r in results] def sequence_padding(inputs, length=None, value=0, seq_dims=1, mode='post'): """Numpy函数,将序列padding到同一长度 """ if length is None: length = np.max([np.shape(x)[:seq_dims] for x in inputs], axis=0) elif not hasattr(length, '__getitem__'): length = [length] slices = [np.s_[:length[i]] for i in range(seq_dims)] slices = tuple(slices) if len(slices) > 1 else slices[0] pad_width = [(0, 0) for _ in np.shape(inputs[0])] outputs = [] for x in inputs: x = x[slices] for i in range(seq_dims): if mode == 'post': pad_width[i] = (0, length[i] - np.shape(x)[i]) elif mode == 'pre': pad_width[i] = (length[i] - np.shape(x)[i], 0) else: raise ValueError('"mode" argument must be "post" or "pre".') x = np.pad(x, pad_width, 'constant', constant_values=value) outputs.append(x) return np.array(outputs) def truncate_sequences(maxlen, indices, *sequences): """截断总长度至不超过maxlen """ sequences = [s for s in sequences if s] if not isinstance(indices, (list, tuple)): indices = [indices] * len(sequences) while True: lengths = [len(s) for s in sequences] if sum(lengths) > maxlen: i = np.argmax(lengths) sequences[i].pop(indices[i]) else: return sequences def text_segmentate(text, maxlen, seps='\n', strips=None): """将文本按照标点符号划分为若干个短句 """ text = text.strip().strip(strips) if seps and len(text) > maxlen: pieces = text.split(seps[0]) text, texts = '', [] for i, p in enumerate(pieces): if text and p and len(text) + len(p) > maxlen - 1: texts.extend(text_segmentate(text, maxlen, seps[1:], strips)) text = '' if i + 1 == len(pieces): text = text + p else: text = text + p + seps[0] if text: texts.extend(text_segmentate(text, maxlen, seps[1:], strips)) return texts else: return [text] def is_one_of(x, ys): """判断x是否在ys之中 等价于x in ys,但有些情况下x in ys会报错 """ for y in ys: if x is y: return True return False class DataGenerator(object): """数据生成器模版 """ def __init__(self, data, batch_size=32, buffer_size=None): self.data = data self.batch_size = batch_size if hasattr(self.data, '__len__'): self.steps = len(self.data) // self.batch_size if len(self.data) % self.batch_size != 0: self.steps += 1 else: self.steps = None self.buffer_size = buffer_size or batch_size * 1000 def __len__(self): return self.steps def sample(self, random=False): """采样函数,每个样本同时返回一个is_end标记 """ if random: if self.steps is None: def generator(): caches, isfull = [], False for d in self.data: caches.append(d) if isfull: i = np.random.randint(len(caches)) yield caches.pop(i) elif len(caches) == self.buffer_size: isfull = True while caches: i = np.random.randint(len(caches)) yield caches.pop(i) else: def generator(): for i in np.random.permutation(len(self.data)): yield self.data[i] data = generator() else: data = iter(self.data) d_current = next(data) for d_next in data: yield False, d_current d_current = d_next yield True, d_current def __iter__(self, random=False): raise NotImplementedError def forfit(self, random=True): while True: for d in self.__iter__(random): yield d def to_dataset(self, types, shapes, names=None, padded_batch=False): """转为tf.data.Dataset格式 如果传入names的话,自动把数据包装成dict形式。 """ if names is None: generator = self.forfit else: if is_string(names): warps = lambda k, v: {k: v} elif is_string(names[0]): warps = lambda k, v: dict(zip(k, v)) else: warps = lambda k, v: tuple( dict(zip(i, j)) for i, j in zip(k, v) ) def generator(): for d in self.forfit(): yield warps(names, d) types = warps(names, types) shapes = warps(names, shapes) if padded_batch: dataset = tf.data.Dataset.from_generator( generator, output_types=types ) dataset = dataset.padded_batch(self.batch_size, shapes) else: dataset = tf.data.Dataset.from_generator( generator, output_types=types, output_shapes=shapes ) dataset = dataset.batch(self.batch_size) return dataset class ViterbiDecoder(object): """Viterbi解码算法基类 """ def __init__(self, trans, starts=None, ends=None): self.trans = trans self.num_labels = len(trans) self.non_starts = [] self.non_ends = [] if starts is not None: for i in range(self.num_labels): if i not in starts: self.non_starts.append(i) if ends is not None: for i in range(self.num_labels): if i not in ends: self.non_ends.append(i) def decode(self, nodes): """nodes.shape=[seq_len, num_labels] """ # 预处理 nodes[0, self.non_starts] -= np.inf nodes[-1, self.non_ends] -= np.inf # 动态规划 labels = np.arange(self.num_labels).reshape((1, -1)) scores = nodes[0].reshape((-1, 1)) paths = labels for l in range(1, len(nodes)): M = scores + self.trans + nodes[l].reshape((1, -1)) idxs = M.argmax(0) scores = M.max(0).reshape((-1, 1)) paths = np.concatenate([paths[:, idxs], labels], 0) # 最优路径 return paths[:, scores[:, 0].argmax()] def softmax(x, axis=-1): """numpy版softmax """ x = x - x.max(axis=axis, keepdims=True) x = np.exp(x) return x / x.sum(axis=axis, keepdims=True) class AutoRegressiveDecoder(object): """通用自回归生成模型解码基类 包含beam search和random sample两种策略 """ def __init__(self, start_id, end_id, maxlen, minlen=1): self.start_id = start_id self.end_id = end_id self.maxlen = maxlen self.minlen = minlen self.models = {} if start_id is None: self.first_output_ids = np.empty((1, 0), dtype=int) else: self.first_output_ids = np.array([[self.start_id]]) @staticmethod def wraps(default_rtype='probas', use_states=False): """用来进一步完善predict函数 目前包含:1. 设置rtype参数,并做相应处理; 2. 确定states的使用,并做相应处理; 3. 设置温度参数,并做相应处理。 """ def actual_decorator(predict): def new_predict( self, inputs, output_ids, states, temperature=1, rtype=default_rtype ): assert rtype in ['probas', 'logits'] prediction = predict(self, inputs, output_ids, states) if not use_states: prediction = (prediction, None) if default_rtype == 'logits': prediction = ( softmax(prediction[0] / temperature), prediction[1] ) elif temperature != 1: probas = np.power(prediction[0], 1.0 / temperature) probas = probas / probas.sum(axis=-1, keepdims=True) prediction = (probas, prediction[1]) if rtype == 'probas': return prediction else: return np.log(prediction[0] + 1e-12), prediction[1] return new_predict return actual_decorator def last_token(self, model): """创建一个只返回最后一个token输出的新Model """ if model not in self.models: outputs = [ keras.layers.Lambda(lambda x: x[:, -1])(output) for output in model.outputs ] self.models[model] = keras.models.Model(model.inputs, outputs) return self.models[model] def predict(self, inputs, output_ids, states=None): """用户需自定义递归预测函数 说明:定义的时候,需要用wraps方法进行装饰,传入default_rtype和use_states, 其中default_rtype为字符串logits或probas,probas时返回归一化的概率, rtype=logits时则返回softmax前的结果或者概率对数。 返回:二元组 (得分或概率, states) """ raise NotImplementedError def beam_search(self, inputs, topk, states=None, temperature=1, min_ends=1): """beam search解码 说明:这里的topk即beam size; 返回:最优解码序列。 """ inputs = [np.array([i]) for i in inputs] output_ids, output_scores = self.first_output_ids, np.zeros(1) for step in range(self.maxlen): scores, states = self.predict( inputs, output_ids, states, temperature, 'logits' ) # 计算当前得分 if step == 0: # 第1步预测后将输入重复topk次 inputs = [np.repeat(i, topk, axis=0) for i in inputs] scores = output_scores.reshape((-1, 1)) + scores # 综合累积得分 indices = scores.argpartition(-topk, axis=None)[-topk:] # 仅保留topk indices_1 = indices // scores.shape[1] # 行索引 indices_2 = (indices % scores.shape[1]).reshape((-1, 1)) # 列索引 output_ids = np.concatenate([output_ids[indices_1], indices_2], 1) # 更新输出 output_scores = np.take_along_axis( scores, indices, axis=None ) # 更新得分 is_end = output_ids[:, -1] == self.end_id # 标记是否以end标记结束 end_counts = (output_ids == self.end_id).sum(1) # 统计出现的end标记 if output_ids.shape[1] >= self.minlen: # 最短长度判断 best = output_scores.argmax() # 得分最大的那个 if is_end[best] and end_counts[best] >= min_ends: # 如果已经终止 return output_ids[best] # 直接输出 else: # 否则,只保留未完成部分 flag = ~is_end | (end_counts < min_ends) # 标记未完成序列 if not flag.all(): # 如果有已完成的 inputs = [i[flag] for i in inputs] # 扔掉已完成序列 output_ids = output_ids[flag] # 扔掉已完成序列 output_scores = output_scores[flag] # 扔掉已完成序列 end_counts = end_counts[flag] # 扔掉已完成end计数 topk = flag.sum() # topk相应变化 # 达到长度直接输出 return output_ids[output_scores.argmax()] def random_sample( self, inputs, n, topk=None, topp=None, states=None, temperature=1, min_ends=1 ): """随机采样n个结果 说明:非None的topk表示每一步只从概率最高的topk个中采样;而非None的topp 表示每一步只从概率最高的且概率之和刚好达到topp的若干个token中采样。 返回:n个解码序列组成的list。 """ inputs = [np.array([i]) for i in inputs] output_ids = self.first_output_ids results = [] for step in range(self.maxlen): probas, states = self.predict( inputs, output_ids, states, temperature, 'probas' ) # 计算当前概率 probas /= probas.sum(axis=1, keepdims=True) # 确保归一化 if step == 0: # 第1步预测后将结果重复n次 probas = np.repeat(probas, n, axis=0) inputs = [np.repeat(i, n, axis=0) for i in inputs] output_ids = np.repeat(output_ids, n, axis=0) if topk is not None: k_indices = probas.argpartition(-topk, axis=1)[:, -topk:] # 仅保留topk probas = np.take_along_axis(probas, k_indices, axis=1) # topk概率 probas /= probas.sum(axis=1, keepdims=True) # 重新归一化 if topp is not None: p_indices = probas.argsort(axis=1)[:, ::-1] # 从高到低排序 probas = np.take_along_axis(probas, p_indices, axis=1) # 排序概率 cumsum_probas = np.cumsum(probas, axis=1) # 累积概率 flag = np.roll(cumsum_probas >= topp, 1, axis=1) # 标记超过topp的部分 flag[:, 0] = False # 结合上面的np.roll,实现平移一位的效果 probas[flag] = 0 # 后面的全部置零 probas /= probas.sum(axis=1, keepdims=True) # 重新归一化 sample_func = lambda p: np.random.choice(len(p), p=p) # 按概率采样函数 sample_ids = np.apply_along_axis(sample_func, 1, probas) # 执行采样 sample_ids = sample_ids.reshape((-1, 1)) # 对齐形状 if topp is not None: sample_ids = np.take_along_axis( p_indices, sample_ids, axis=1 ) # 对齐原id if topk is not None: sample_ids = np.take_along_axis( k_indices, sample_ids, axis=1 ) # 对齐原id output_ids = np.concatenate([output_ids, sample_ids], 1) # 更新输出 is_end = output_ids[:, -1] == self.end_id # 标记是否以end标记结束 end_counts = (output_ids == self.end_id).sum(1) # 统计出现的end标记 if output_ids.shape[1] >= self.minlen: # 最短长度判断 flag = is_end & (end_counts >= min_ends) # 标记已完成序列 if flag.any(): # 如果有已完成的 for ids in output_ids[flag]: # 存好已完成序列 results.append(ids) flag = (flag == False) # 标记未完成序列 inputs = [i[flag] for i in inputs] # 只保留未完成部分输入 output_ids = output_ids[flag] # 只保留未完成部分候选集 end_counts = end_counts[flag] # 只保留未完成部分end计数 if len(output_ids) == 0: break # 如果还有未完成序列,直接放入结果 for ids in output_ids: results.append(ids) # 返回结果 return results def insert_arguments(**arguments): """装饰器,为类方法增加参数 (主要用于类的__init__方法) """ def actual_decorator(func): def new_func(self, *args, **kwargs): for k, v in arguments.items(): if k in kwargs: v = kwargs.pop(k) setattr(self, k, v) return func(self, *args, **kwargs) return new_func return actual_decorator def delete_arguments(*arguments): """装饰器,为类方法删除参数 (主要用于类的__init__方法) """ def actual_decorator(func): def new_func(self, *args, **kwargs): for k in arguments: if k in kwargs: raise TypeError( '%s got an unexpected keyword argument \'%s\'' % (self.__class__.__name__, k) ) return func(self, *args, **kwargs) return new_func return actual_decorator def longest_common_substring(source, target): """最长公共子串(source和target的最长公共切片区间) 返回:子串长度, 所在区间(四元组) 注意:最长公共子串可能不止一个,所返回的区间只代表其中一个。 """ c, l, span = defaultdict(int), 0, (0, 0, 0, 0) for i, si in enumerate(source, 1): for j, tj in enumerate(target, 1): if si == tj: c[i, j] = c[i - 1, j - 1] + 1 if c[i, j] > l: l = c[i, j] span = (i - l, i, j - l, j) return l, span def longest_common_subsequence(source, target): """最长公共子序列(source和target的最长非连续子序列) 返回:子序列长度, 映射关系(映射对组成的list) 注意:最长公共子序列可能不止一个,所返回的映射只代表其中一个。 """ c = defaultdict(int) for i, si in enumerate(source, 1): for j, tj in enumerate(target, 1): if si == tj: c[i, j] = c[i - 1, j - 1] + 1 elif c[i, j - 1] > c[i - 1, j]: c[i, j] = c[i, j - 1] else: c[i, j] = c[i - 1, j] l, mapping = c[len(source), len(target)], [] i, j = len(source) - 1, len(target) - 1 while len(mapping) < l: if source[i] == target[j]: mapping.append((i, j)) i, j = i - 1, j - 1 elif c[i + 1, j] > c[i, j + 1]: j = j - 1 else: i = i - 1 return l, mapping[::-1] def orthogonally_resize(a, new_shape, window=2): """简单的正交化缩放矩阵 """ assert a.ndim == len(new_shape) slices, a_norm, w = [], np.linalg.norm(a), window for i, (d1, d2) in enumerate(zip(a.shape, new_shape)): if d1 != d2: k = d2 // d1 + int(d2 % d1 != 0) if k > 1: assert d1 % w == 0 a = a.reshape(a.shape[:i] + (d1 // w, w) + a.shape[i + 1:]) a = np.repeat(a, k, axis=i) a = a.reshape(a.shape[:i] + (d1 * k,) + a.shape[i + 2:]) slices.append(np.s_[:d2]) a = a[tuple(slices)] return a / np.linalg.norm(a) * a_norm class WebServing(object): """简单的Web接口 用法: arguments = {'text': (None, True), 'n': (int, False)} web = WebServing(port=8864) web.route('/gen_synonyms', gen_synonyms, arguments) web.start() # 然后访问 http://127.0.0.1:8864/gen_synonyms?text=你好 说明: 基于bottlepy简单封装,仅作为临时测试使用,不保证性能。 目前仅保证支持 Tensorflow 1.x + Keras <= 2.3.1。 欢迎有经验的开发者帮忙改进。 依赖: pip install bottle pip install paste (如果不用 server='paste' 的话,可以不装paste库) """ def __init__(self, host='0.0.0.0', port=8000, server='paste'): import bottle self.host = host self.port = port self.server = server self.graph = tf.get_default_graph() self.sess = K.get_session() self.set_session = K.set_session self.bottle = bottle def wraps(self, func, arguments, method='GET'): """封装为接口函数 参数: func:要转换为接口的函数,需要保证输出可以json化,即需要 保证 json.dumps(func(inputs)) 能被执行成功; arguments:声明func所需参数,其中key为参数名,value[0]为 对应的转换函数(接口获取到的参数值都是字符串 型),value[1]为该参数是否必须; method:GET或者POST。 """ def new_func(): outputs = {'code': 0, 'desc': u'succeeded', 'data': {}} kwargs = {} for key, value in arguments.items(): if method == 'GET': result = self.bottle.request.GET.getunicode(key) else: result = self.bottle.request.POST.getunicode(key) if result is None: if value[1]: outputs['code'] = 1 outputs['desc'] = 'lack of "%s" argument' % key return json.dumps(outputs, ensure_ascii=False) else: if value[0] is not None: result = value[0](result) kwargs[key] = result try: with self.graph.as_default(): self.set_session(self.sess) outputs['data'] = func(**kwargs) except Exception as e: outputs['code'] = 2 outputs['desc'] = str(e) return json.dumps(outputs, ensure_ascii=False) return new_func def route(self, path, func, arguments, method='GET'): """添加接口 """ func = self.wraps(func, arguments, method) self.bottle.route(path, method=method)(func) def start(self): """启动服务 """ self.bottle.run(host=self.host, port=self.port, server=self.server) class Hook: """注入uniout模块,实现import时才触发 """ def __init__(self, module): self.module = module def __getattr__(self, attr): """使得 from bert4keras.backend import uniout 等效于 import uniout (自动识别Python版本,Python3 下则无操作。) """ if attr == 'uniout': if is_py2: import uniout else: return getattr(self.module, attr) Hook.__name__ = __name__ sys.modules[__name__] = Hook(sys.modules[__name__]) del Hook
31.09122
80
0.523233
e21b4ed8dd7e78acf1562b401de08ecabc573262
3,097
py
Python
Connect-four/main.py
MehnoushFaghani/Ripples--PCP
e5e14f1c333f7b4b4935d71caf6c48089870b0f7
[ "MIT" ]
null
null
null
Connect-four/main.py
MehnoushFaghani/Ripples--PCP
e5e14f1c333f7b4b4935d71caf6c48089870b0f7
[ "MIT" ]
null
null
null
Connect-four/main.py
MehnoushFaghani/Ripples--PCP
e5e14f1c333f7b4b4935d71caf6c48089870b0f7
[ "MIT" ]
null
null
null
# "By getting help of Konstantine Tsafatinos" import numpy as np from typing import Optional, Callable from agents.common import PlayerAction, BoardPiece, SavedState, GenMove import timeit # from agents.agent_minimax.minimax import generate_move_minimax # from agents.agent_random.random import generate_move_random from agents.agent_MCTS.MCTS import generate_move_MCTS def user_move(board: np.ndarray, _player: BoardPiece, saved_state: Optional[SavedState]): action = PlayerAction(-1) while not 0 <= action < board.shape[1]: try: action = PlayerAction(input("Column? ")) except: pass return action, saved_state def human_vs_agent( generate_move_1: GenMove, generate_move_2: GenMove = user_move, player_1: str = "Player 1", player_2: str = "Player 2", args_1: tuple = (), args_2: tuple = (), init_1: Callable = lambda board, player: None, init_2: Callable = lambda board, player: None, ): import time from agents.common import PLAYER1, PLAYER2, GameState from agents.common import initialize_game_state, pretty_print_board, apply_player_action, check_end_state players = (PLAYER1, PLAYER2) for play_first in (1, -1): for init, player in zip((init_1, init_2)[::play_first], players): init(initialize_game_state(), player) saved_state = {PLAYER1: None, PLAYER2: None} board = initialize_game_state() gen_moves = (generate_move_1, generate_move_2)[::play_first] player_names = (player_1, player_2)[::play_first] gen_args = (args_1, args_2)[::play_first] playing = True while playing: for player, player_name, gen_move, args in zip( players, player_names, gen_moves, gen_args, ): t0 = time.time() print(pretty_print_board(board)) print( f'{player_name} you are playing with {"X" if player == PLAYER1 else "O"}' ) action, saved_state[player] = gen_move( board.copy(), player, saved_state[player], *args ) print(f"Move time: {time.time() - t0:.3f}s") board, r_board = apply_player_action(board, action, player, True) end_state = check_end_state(board, player) if end_state != GameState.STILL_PLAYING: print(pretty_print_board(board)) if end_state == GameState.IS_DRAW: print("Game ended in draw") else: print( f'{player_name} won playing {"X" if player == PLAYER1 else "O"}' ) playing = False break if __name__ == "__main__": # human_vs_agent(user_move) # human_vs_agent(generate_move_random) # human_vs_agent(generate_move_minimax) human_vs_agent(generate_move_MCTS)
38.234568
109
0.589603
2d323c9357993ceb4e5ff8af8789220beff166c7
3,327
py
Python
command_history_wordcloud/command_history_wordcloud.py
hatappo/command_history_wordcloud
b888aa990ecf66e44260efb622ba6b4e67b2879f
[ "MIT" ]
3
2017-03-30T08:46:03.000Z
2020-06-09T15:34:52.000Z
command_history_wordcloud/command_history_wordcloud.py
hatappo/command_history_wordcloud
b888aa990ecf66e44260efb622ba6b4e67b2879f
[ "MIT" ]
5
2019-06-04T07:59:51.000Z
2022-03-11T23:18:28.000Z
command_history_wordcloud/command_history_wordcloud.py
hatappo/command_history_wordcloud
b888aa990ecf66e44260efb622ba6b4e67b2879f
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import re, codecs, argparse from pprint import pformat from os import path from subprocess import Popen, PIPE, STDOUT from logging import getLogger, StreamHandler, Formatter, DEBUG from wordcloud import WordCloud #################### # Initialization #################### logger = getLogger(__name__) handler = StreamHandler() handler.setLevel(DEBUG) formatter = Formatter('%(asctime)s %(levelname)7s [%(name)s] %(message)s') handler.setFormatter(formatter) logger.setLevel(DEBUG) logger.addHandler(handler) #################### # Constants #################### command_pattern = re.compile("[\s;=<].+$") #################### # Functions #################### def create_history_frequencies(): home = path.expanduser('~') logger.debug("user home path = '%s'" % home) shell_byte = Popen("echo $SHELL", shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT).communicate()[0] shell_path = shell_byte.decode("utf-8").strip() shell_name = shell_path.rsplit("/", 1)[-1] logger.debug("shell path = '%s'" % shell_path) logger.debug("shell name = '%s'" % shell_name) words = {} if shell_name in ["bash", "sh", "ksh"]: if shell_name in ["ksh"]: filepath = home + "/.sh_history" elif shell_name in ["bash", "sh"]: filepath = home + "/.bash_history" else: raise Exception() with codecs.open(filepath, "r", encoding='utf-8', errors='ignore') as f: for line in f: word = command_pattern.sub("", line).strip() words[word] = words.get(word, 0) + 1 elif shell_name in ["zsh"]: with codecs.open(home + "/.zsh_history", "r", encoding='utf-8', errors='ignore') as f: for line in f: parts = line.split(";", 1) if len(parts) < 2: continue word = command_pattern.sub("", parts[1]).strip() words[word] = words.get(word, 0) + 1 elif shell_name in ["csh"]: logger.warning("Not implemented!") # TODO: else: raise Exception("Unknown shell : '%1'" % shell) return tuple(words.items()) def load_stop_words(path): if path == None: return set() with codecs.open(path, "r", encoding='utf-8', errors='ignore') as f: return set(f.read().split()) def create_wordcloud(frequencies, stop_words): if len(frequencies) == 0: Exception("No history is found.") logger.debug("word frequencies count = %s" % len(frequencies)) logger.debug("stop words = %s" % pformat(stop_words)) wordcloud = WordCloud(background_color="black", width=900, height=600, stopwords=stop_words).generate_from_frequencies(frequencies) image = wordcloud.to_image() image.show() def main(): # Command line args parser = argparse.ArgumentParser(description="Parse and count your command line history, and generates a word-cloud image from that.") parser.add_argument("-s,", "--stop_words", nargs="?", help="File path that has words you don't want to use. The words must be separated by space or LineFeed.") args = parser.parse_args() stop_words_file = args.stop_words logger.debug("stop words file = '%s'" % stop_words_file) # main logger.info("Started %s." % path.basename(__file__)) words = create_history_frequencies() stop_words = load_stop_words(stop_words_file) create_wordcloud(words, stop_words) logger.info("Finished %s." % path.basename(__file__)) #################### # Main #################### if __name__ == '__main__': main()
32.300971
160
0.662158
34db83f3867a1a73267441fe711d649a4fdb8259
2,239
py
Python
tools/giws/datatypes/IntBufferDataGiws.py
sguazt/dcsxx-testbed
e7210f0c7f54256d5bf0c90297e0c4f9eaf82da0
[ "Apache-2.0" ]
null
null
null
tools/giws/datatypes/IntBufferDataGiws.py
sguazt/dcsxx-testbed
e7210f0c7f54256d5bf0c90297e0c4f9eaf82da0
[ "Apache-2.0" ]
null
null
null
tools/giws/datatypes/IntBufferDataGiws.py
sguazt/dcsxx-testbed
e7210f0c7f54256d5bf0c90297e0c4f9eaf82da0
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python -u # Copyright or Copr. INRIA/Scilab - Sylvestre LEDRU # # Sylvestre LEDRU - <sylvestre.ledru@scilab.org> <sylvestre@ledru.info> # # This software is a computer program whose purpose is to generate C++ wrapper # for Java objects/methods. # # This software is governed by the CeCILL license under French law and # abiding by the rules of distribution of free software. You can use, # modify and/ or redistribute the software under the terms of the CeCILL # license as circulated by CEA, CNRS and INRIA at the following URL # "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license and that you accept its terms. # # For more information, see the file COPYING from dataBufferGiws import dataBufferGiws from configGiws import configGiws from JNIFrameWork import JNIFrameWork class IntBufferDataGiws(dataBufferGiws): __isArray=True nativeType="int" def getTypeSignature(self): return "Ljava/nio/IntBuffer;" def getJavaTypeSyntax(self): return "jobject" def getRealJavaType(self): return "java.lang.IntBuffer" def getDescription(self): return "Java IntBuffer" def getJavaBufferType(self): return "IntBuffer"
37.316667
79
0.769093
7d5f8a23d8cd9daffc8406367dbf8e0e85e4aca9
3,380
py
Python
test_block.py
mjoniak/adder
c84cb4927b91e6cd7801677ed683795a2026b2a6
[ "MIT" ]
null
null
null
test_block.py
mjoniak/adder
c84cb4927b91e6cd7801677ed683795a2026b2a6
[ "MIT" ]
5
2018-02-07T10:24:51.000Z
2018-02-07T10:25:54.000Z
test_block.py
mjoniak/adder
c84cb4927b91e6cd7801677ed683795a2026b2a6
[ "MIT" ]
null
null
null
from collections import namedtuple from unittest import TestCase from block import Block, source, negation, alternative, conjunction, nand, nor, xor Point = namedtuple('Point', ['x', 'y']) class ConnectorTest(TestCase): def test_inside_connector_no_connectors(self): block = Block(0, 0, input_connectors_n=0, output_connectors_n=0) conn = block.inside_connector(Point(0, 0)) self.assertIsNone(conn) def test_inside_connector_input(self): block = Block(0, 0, input_connectors_n=1, output_connectors_n=0) left_middle = Point(0, Block.HEIGHT / 2) conn = block.inside_connector(left_middle) self.assertTrue(conn.contains(left_middle)) def test_inside_connector_output(self): block = source() right_middle = Point(Block.WIDTH, Block.HEIGHT / 2) conn = block.inside_connector(right_middle) self.assertTrue(conn.contains(right_middle)) def test_source_block_pushes_signal(self): source_block = source() source_block.push() self.assertEqual(1, source_block.outputs[0].value) def test_connector_pushes_to_next(self): source_block = source() second_block = Block(0, 0, input_connectors_n=1, output_connectors_n=0) source_block.outputs[0].connect_with(second_block.inputs[0]) source_block.push() for c2 in second_block.inputs: self.assertEqual(1, c2.value) def test_negation(self): source_block = source(0) not_block = negation() source_block.outputs[0].connect_with(not_block.inputs[0]) source_block.push() not_block.push() self.assertEqual(1, not_block.outputs[0].value) def test_alternative(self): self.assertEqual(0, test_block(0, 0, alternative)) self.assertEqual(1, test_block(1, 0, alternative)) self.assertEqual(1, test_block(0, 1, alternative)) self.assertEqual(1, test_block(1, 1, alternative)) def test_conjunction(self): self.assertEqual(0, test_block(0, 0, conjunction)) self.assertEqual(0, test_block(1, 0, conjunction)) self.assertEqual(0, test_block(0, 1, conjunction)) self.assertEqual(1, test_block(1, 1, conjunction)) def test_nand(self): self.assertEqual(1, test_block(0, 0, nand)) self.assertEqual(1, test_block(1, 0, nand)) self.assertEqual(1, test_block(0, 1, nand)) self.assertEqual(0, test_block(1, 1, nand)) def test_nor(self): self.assertEqual(1, test_block(0, 0, nor)) self.assertEqual(0, test_block(1, 0, nor)) self.assertEqual(0, test_block(0, 1, nor)) self.assertEqual(0, test_block(1, 1, nor)) def test_xor(self): self.assertEqual(0, test_block(0, 0, xor)) self.assertEqual(1, test_block(1, 0, xor)) self.assertEqual(1, test_block(0, 1, xor)) self.assertEqual(0, test_block(1, 1, xor)) def test_block(first_input, second_input, block_factory) -> int: first_source_block = source(value=first_input) second_source_block = source(value=second_input) block = block_factory() first_source_block.outputs[0].connect_with(block.inputs[0]) second_source_block.outputs[0].connect_with(block.inputs[1]) first_source_block.push() second_source_block.push() block.push() return block.outputs[0].value
36.73913
83
0.676036
53c6f49e002caa6233ee8f981d8c685cdef9cc6c
14,189
py
Python
lib/membase/api/esrest_client.py
ramalingam-cb/testrunner
81cea7a5a493cf0c67fca7f97c667cd3c6ad2142
[ "Apache-2.0" ]
null
null
null
lib/membase/api/esrest_client.py
ramalingam-cb/testrunner
81cea7a5a493cf0c67fca7f97c667cd3c6ad2142
[ "Apache-2.0" ]
null
null
null
lib/membase/api/esrest_client.py
ramalingam-cb/testrunner
81cea7a5a493cf0c67fca7f97c667cd3c6ad2142
[ "Apache-2.0" ]
null
null
null
from membase.api.rest_client import RestConnection, Bucket, BucketStats, OtpNode, Node from remote.remote_util import RemoteMachineShellConnection from TestInput import TestInputSingleton from pyes import ES, managers, query import logger import time import requests log = logger.Logger.get_logger() # EsRestConnection: subclasses RestConnection for use against elastic-search nodes. # Instance created by membase.api.rest_client.RestConnection # when elastic-search endpoint is detected so it is not necessary to # directly import this module into tests class EsRestConnection(RestConnection): def __init__(self, serverInfo, proto = "http"): #serverInfo can be a json object #only connect pyes to master es node #in the case that other nodes are taken down #because http requests will fail # TODO: dynamic master node detection if isinstance(serverInfo, dict): self.ip = serverInfo["ip"] self.rest_username = serverInfo["username"] self.rest_password = serverInfo["password"] self.username = serverInfo["es_username"] self.password = serverInfo["es_password"] self.port = 9091 #serverInfo["port"] else: self.ip = serverInfo.ip self.rest_username = serverInfo.rest_username self.rest_password = serverInfo.rest_password self.username = serverInfo.es_username self.password = serverInfo.es_password self.port = 9091 # serverInfo.port self.baseUrl = "http://{0}:{1}/".format(self.ip, self.port) self.capiBaseUrl = self.baseUrl self.esHttpUrl = "http://{0}:9200".format(self.ip) self.http_port = str(int(self.port) + 109) self.proto = proto self.conn = ES(server=self.esHttpUrl) self.manager = managers.Cluster(self.conn) self.test_params = TestInputSingleton.input self.docs = None def get_index_stats(self): return ES.index_stats() def get_indices(self): schema = self.conn.indices.get_mapping() indices_full_list = schema.get_all_indices() just_indices = [index for index in indices_full_list if not index.startswith(".")] return just_indices def get_indices_as_buckets(self, doc_type='couchbaseDocument'): buckets = [] indices = self.get_indices() for index in indices: bucket = Bucket() q = query.MatchAllQuery() docs = self.conn.search(q,index,doc_type) bucket.name = index bucket.type = "es" bucket.port = self.port bucket.authType = None bucket.saslPassword = self.password bucket.nodes = list() #vBucketServerMap bucketStats = BucketStats() bucketStats.itemCount = docs.count() bucket.stats = bucketStats buckets.append(bucket) bucket.master_id = "es@"+self.ip return buckets def get_bucket(self, bucket_name, doc_type='couchbaseDocument'): for bucket in self.get_indices_as_buckets(doc_type): if bucket.name == bucket_name: return bucket return def get_buckets(self): return self.get_indices_as_buckets() def delete_index(self, name): self.conn.indices.delete_index(name) return self.conn.indices.exists_index(name) def create_index(self, name): if self.conn.indices.exists_index(name): self.delete_index(name) self.conn.indices.create_index(name) return self.conn.indices.exists_index(name) def delete_bucket(self, name): return self.delete_index(name) def create_bucket(self, *args, **kwargs): name = 'default' if len(args) > 0: name = args[0] else: name = kwargs['bucket'] return self.create_index(name) def is_ns_server_running(self, timeout_in_seconds=360): return True def node_statuses(self, timeout=120): otp_nodes = [] for node in self.get_nodes(): #get otp,get status otp_node = OtpNode(id=node.id, status=node.status) otp_node.ip = node.ip otp_node.port = node.port otp_node.replication = None otp_nodes.append(node) return otp_nodes def get_nodes_self(self, timeout=120): for node in self.get_nodes(): # force to return master node if node.port == 9091: return node return def get_nodes(self): es_nodes = [] nodes = self.manager.state()['nodes'] status = self.manager.health()['status'] if status == "green": status = "healthy" for node_key in nodes: nodeInfo = nodes[node_key] ex_params = self.get_node_params(nodeInfo) nodeInfo.update({'ssh_password' : ex_params.ssh_password, 'ssh_username' : ex_params.ssh_username}) nodeInfo['key'] = node_key node = ESNode(nodeInfo) node.status = status es_nodes.append(node) return es_nodes def get_node_params(self, info): ip, port = parse_addr(info["transport_address"]) clusters = self.test_params.clusters master_node = None for _id in clusters: for node in clusters[_id]: if node.ip == ip and int(node.port) == port: return node if int(node.port) == 9091: master_node = node # use params from master node return master_node def search_term(self, key, indices=["default"]): result = None params = {"term":{"_id":key}} query = ES.Search(params) row = self.conn.search(query, indices = indices) if row.total > 0: result = row[0] return result def term_exists(self, key, indices=["default"]): return self.search_term(key, indices = indices) is not None def all_docs(self, keys_only = False, indices=["default"],size=10000): q = query.MatchAllQuery() docs = self.conn.search(q,indices=indices,doc_types='couchbaseDocument') res_docs = [] for row in docs: if keys_only: row = row['meta']['id'] res_docs.append(row) return res_docs # check if a key exists by checking all known nodes # See - CBES-17 # for use when it seems nodes are out of sync def search_all_nodes(self, key, indices=["default"]): doc = None for index in indices: for _node in self.get_nodes(): ip, port = (_node.ip, _node.ht_port) r = requests.get('http://%s:%s/%s/couchbaseDocument/%s?preference=_only_node:%s' %\ (ip, port, index, key, _node.key)) if r.status_code == 200 : if r.json()['_id'] == key: doc = r.json() break return doc def fetch_bucket_stats(self, bucket_name='default'): bucket = self.get_bucket(bucket_name=bucket_name) return bucket.stats def start_replication(self, *args, **kwargs): return "es",self.ip def _rebalance_progress(self, *args, **kwargs): return 100 def _rebalance_progress_status(self, *args, **kwargs): return 'not running' def get_vbuckets(self, *args, **kwargs): return () def replace_template(self, node, file): f = open(file, 'r') template = f.read().replace('\n', ' ') api = "http://{0}:9200/_template/couchbase".format(node.ip) status, content, header = self._http_request(api, 'PUT', template) if status: log.info('uploaded couchbase template: '+file) else: log.error('template upload failed: {0}'.format(content)) def add_node(self, user='', password='', remoteIp='', port='8091',zone_name='', services=None): pass def update_configuration(self, node, commands): rmc = RemoteMachineShellConnection(node) shell = rmc._ssh_client.invoke_shell() for command in commands: log.info('Adding elastic search config {0} on node {1}'.format(command, self.ip)) shell.send('echo "{0}" >> ~/elasticsearch/config/elasticsearch.yml \n'.format(command)) while not shell.recv_ready(): time.sleep(2) rc = shell.recv(1024) log.info(rc) def reset_configuration(self, node, count=1): rmc = RemoteMachineShellConnection(node) shell = rmc._ssh_client.invoke_shell() log.info('Removing last {0} lines from elastic search config on node {1}'.format(count, self.ip)) shell.send('head -n -{0} ~/elasticsearch/config/elasticsearch.yml > temp ; mv temp ~/elasticsearch/config/elasticsearch.yml \n'.format(count)) while not shell.recv_ready(): time.sleep(2) rc = shell.recv(1024) log.info(rc) def start_es_node(self, node): rmc = RemoteMachineShellConnection(node) shell=rmc._ssh_client.invoke_shell() es_kill = "pkill -f elasticsearch;" shell.send(es_kill+' \n') while not shell.recv_ready(): time.sleep(2) rc = shell.recv(1024) log.info(rc) log.info("Sleep for 30 seconds") time.sleep(30) # define es exec path if not in $PATH environment es_bin = "~/elasticsearch/bin/elasticsearch -Dtransport.couchbase=TRACE -Dcom.couchbase=TRACE > /var/log/es.log 2>&1 &" if 'es_bin' in TestInputSingleton.input.test_params: es_bin = TestInputSingleton.input.test_params['es_bin'] # connect to remote node log.info('Starting node: %s:%s' % (node.ip, node.port)) # start es service shell.send(es_bin+' \n') while not shell.recv_ready(): time.sleep(2) rc = shell.recv(1024) log.info(rc) log.info("Sleep for 5 seconds before the node can appear") time.sleep(5) # wait for new node tries = 0 while tries < 10: for cluster_node in self.get_nodes(): if cluster_node.ip == node.ip and cluster_node.port == int(node.port): return else: log.info('Waiting for new node to appear') time.sleep(5) tries = tries + 1 raise Exception("failed to add node to cluster: %s:%s" % (node.ip,node.port)) def log_client_error(self, post): # cannot post req errors to 9091 pass def vbucket_map_ready(self, *args, **kwargs): return True def init_cluster(self, *args, **kwargs): pass def init_cluster_memoryQuota(self, *args, **kwargs): pass def set_reb_cons_view(self, *args, **kwargs): pass def set_reb_index_waiting(self, *args, **kwargs): pass def set_rebalance_index_pausing(self, *args, **kwargs): pass def set_max_parallel_indexers(self, *args, **kwargs): pass def set_max_parallel_replica_indexers(self, *args, **kwargs): pass def log_client_error(self, post): # cannot post req errors to 9091 pass def vbucket_map_ready(self, *args, **kwargs): return True def init_cluster(self, *args, **kwargs): pass def init_cluster_memoryQuota(self, *args, **kwargs): pass def set_reb_cons_view(self, *args, **kwargs): pass def set_reb_index_waiting(self, *args, **kwargs): pass def set_rebalance_index_pausing(self, *args, **kwargs): pass def set_max_parallel_indexers(self, *args, **kwargs): pass def set_max_parallel_replica_indexers(self, *args, **kwargs): pass def rebalance(self, otpNodes, ejectedNodes): # shutdown ejected nodes # wait for shards to be rebalanced nodesToShutdown = \ [node for node in self.get_nodes() if node.id in ejectedNodes] for node in nodesToShutdown: self.eject_node(node) def eject_node(self, node): api = "http://%s:9200/_cluster/nodes/local/_shutdown?delay=0s" % (node.ip) status, content, header = self._http_request(api, 'POST', '') if status: log.info('ejected node: '+node.ip) else: log.error('rebalance operation failed: {0}'.format(content)) def monitorRebalance(self, stop_if_loop=False): # since removed nodes are shutdown use master node for monitoring return self.get_nodes_self() def get_pools_info(self): return {'pools' : []} def add_remote_cluster(self, *args, **kwargs): # detect 2:1 mapping and do spectial cluster add # otherwise run super method pass def remove_all_remote_clusters(self): pass def remove_all_replications(self): pass def is_cluster_mixed(self): return False def set_internalSetting(self, param, value): return {'ok' : True} def parse_addr(addr): ip = addr[addr.rfind('/')+1:addr.rfind(':')] port = addr[addr.rfind(':')+1:-1] return str(ip), int(port) class ESNode(Node): def __init__(self, info): super(ESNode, self).__init__() self.key = str(info['key']) self.ip, self.port = parse_addr(info["transport_address"]) self.tr_ip, self.tr_port = parse_addr(info["transport_address"]) self.port = 9091 if 'http_address' in info: self.ht_ip, self.ht_port = parse_addr(info["http_address"]) # truncate after space, or comma name = str(info['name'][:info['name'].find(' ')]) name = name[:name.find(',')] self.id = "es_%s@%s" % (name, self.ip) self.ssh_username = info['ssh_username'] self.ssh_password = info['ssh_password'] self.ssh_key = ''
32.10181
152
0.597717
688d84a74f969b1c00ebf03eca6f3c6c8a4d6970
8,785
py
Python
localstack/utils/aws/aws_models.py
OwnZones/localstack
490408953e2a32d8402a997ea7eb36568c983b7a
[ "Apache-2.0" ]
null
null
null
localstack/utils/aws/aws_models.py
OwnZones/localstack
490408953e2a32d8402a997ea7eb36568c983b7a
[ "Apache-2.0" ]
1
2019-07-01T12:08:26.000Z
2019-07-01T12:08:26.000Z
localstack/utils/aws/aws_models.py
OwnZones/localstack
490408953e2a32d8402a997ea7eb36568c983b7a
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import time import json import six if six.PY3: long = int class Component(object): def __init__(self, id, env=None): self.id = id self.env = env self.created_at = None def name(self): return self.id def __repr__(self): return self.__str__() def __str__(self): return '<%s:%s>' % (self.__class__.__name__, self.id) class KinesisStream(Component): def __init__(self, id, params=None, num_shards=1, connection=None): super(KinesisStream, self).__init__(id) params = params or {} self.shards = [] self.stream_name = params.get('name', self.name()) self.num_shards = params.get('shards', num_shards) self.conn = connection self.stream_info = params def name(self): return self.id.split(':stream/')[-1] def connect(self, connection): self.conn = connection def describe(self): r = self.conn.describe_stream(StreamName=self.stream_name) return r.get('StreamDescription') def create(self, raise_on_error=False): try: self.conn.create_stream(StreamName=self.stream_name, ShardCount=self.num_shards) except Exception as e: # TODO catch stream already exists exception, otherwise rethrow if raise_on_error: raise e def get_status(self): description = self.describe() return description.get('StreamStatus') def put(self, data, key): if not isinstance(data, str): data = json.dumps(data) return self.conn.put_record(StreamName=self.stream_name, Data=data, PartitionKey=key) def read(self, amount=-1, shard='shardId-000000000001'): if not self.conn: raise Exception('Please create the Kinesis connection first.') s_iterator = self.conn.get_shard_iterator(self.stream_name, shard, 'TRIM_HORIZON') record = self.conn.get_records(s_iterator['ShardIterator']) while True: try: if record['NextShardIterator'] is None: break else: next_entry = self.conn.get_records(record['NextShardIterator']) if len(next_entry['Records']): print(next_entry['Records'][0]['Data']) record = next_entry except Exception as e: print('Error reading from Kinesis stream "%s": %s' (self.stream_name, e)) def wait_for(self): GET_STATUS_SLEEP_SECS = 5 GET_STATUS_RETRIES = 50 for i in range(0, GET_STATUS_RETRIES): try: status = self.get_status() if status == 'ACTIVE': return except Exception: # swallowing this exception should be ok, as we are in a retry loop pass time.sleep(GET_STATUS_SLEEP_SECS) raise Exception('Failed to get active status for stream "%s", giving up' % self.stream_name) def destroy(self): self.conn.delete_stream(StreamName=self.stream_name) time.sleep(2) class KinesisShard(Component): MAX_KEY = '340282366920938463463374607431768211455' def __init__(self, id): super(KinesisShard, self).__init__(id) self.stream = None self.start_key = '0' self.end_key = KinesisShard.MAX_KEY # 128 times '1' binary as decimal self.child_shards = [] def print_tree(self, indent=''): print('%s%s' % (indent, self)) for c in self.child_shards: c.print_tree(indent=indent + ' ') def length(self): return long(self.end_key) - long(self.start_key) def percent(self): return 100.0 * self.length() / float(KinesisShard.MAX_KEY) def __str__(self): return ('Shard(%s, length=%s, percent=%s, start=%s, end=%s)' % (self.id, self.length(), self.percent(), self.start_key, self.end_key)) @staticmethod def sort(shards): def compare(x, y): s1 = long(x.start_key) s2 = long(y.start_key) if s1 < s2: return -1 elif s1 > s2: return 1 else: return 0 return sorted(shards, cmp=compare) @staticmethod def max(shards): max_shard = None max_length = long(0) for s in shards: if s.length() > max_length: max_shard = s max_length = s.length() return max_shard class FirehoseStream(KinesisStream): def __init__(self, id): super(FirehoseStream, self).__init__(id) self.destinations = [] def name(self): return self.id.split(':deliverystream/')[-1] class LambdaFunction(Component): def __init__(self, arn): super(LambdaFunction, self).__init__(arn) self.event_sources = [] self.targets = [] self.versions = {} self.aliases = {} self.envvars = {} self.runtime = None self.handler = None self.cwd = None def get_version(self, version): return self.versions.get(version) def name(self): return self.id.split(':function:')[-1] def function(self, qualifier=None): if not qualifier: qualifier = '$LATEST' version = qualifier if qualifier in self.versions else \ self.aliases.get(qualifier).get('FunctionVersion') return self.versions.get(version).get('Function') def qualifier_exists(self, qualifier): return qualifier in self.aliases or qualifier in self.versions def __str__(self): return '<%s:%s>' % (self.__class__.__name__, self.name()) class DynamoDB(Component): def __init__(self, id, env=None): super(DynamoDB, self).__init__(id, env=env) self.count = -1 self.bytes = -1 def name(self): return self.id.split(':table/')[-1] class DynamoDBStream(Component): def __init__(self, id): super(DynamoDBStream, self).__init__(id) self.table = None class DynamoDBItem(Component): def __init__(self, id, table=None, keys=None): super(DynamoDBItem, self).__init__(id) self.table = table self.keys = keys def __eq__(self, other): if not isinstance(other, DynamoDBItem): return False return (other.table == self.table and other.id == self.id and other.keys == self.keys) def __hash__(self): return hash(self.table) + hash(self.id) + hash(self.keys) class ElasticSearch(Component): def __init__(self, id): super(ElasticSearch, self).__init__(id) self.indexes = [] self.endpoint = None def name(self): return self.id.split(':domain/')[-1] class SqsQueue(Component): def __init__(self, id): super(SqsQueue, self).__init__(id) def name(self): return self.id.split(':')[-1] class S3Bucket(Component): def __init__(self, id): super(S3Bucket, self).__init__(id) self.notifications = [] def name(self): return self.id.split('arn:aws:s3:::')[-1] class S3Notification(Component): def __init__(self, id): super(S3Notification, self).__init__(id) self.target = None self.trigger = None class EventSource(Component): def __init__(self, id): super(EventSource, self).__init__(id) @staticmethod def get(obj, pool=None, type=None): pool = pool or {} if not obj: return None if isinstance(obj, Component): obj = obj.id if obj in pool: return pool[obj] inst = None if obj.startswith('arn:aws:kinesis:'): inst = KinesisStream(obj) if obj.startswith('arn:aws:lambda:'): inst = LambdaFunction(obj) elif obj.startswith('arn:aws:dynamodb:'): if '/stream/' in obj: table_id = obj.split('/stream/')[0] table = DynamoDB(table_id) inst = DynamoDBStream(obj) inst.table = table else: inst = DynamoDB(obj) elif type: for o in EventSource.filter_type(pool, type): if o.name() == obj: return o if type == ElasticSearch: if o.endpoint == obj: return o else: print("Unexpected object name: '%s'" % obj) return inst @staticmethod def filter_type(pool, type): return [obj for obj in six.itervalues(pool) if isinstance(obj, type)]
29.479866
100
0.576551
da65495e06fb50dfa719b3a8af0478428d5e9dc6
11,583
py
Python
tools/attack/util/dist_utils.py
rajk97/Adversial-Attacks-on-densely-fused-point-clouds-for-6D-Pose-Estimation
e296e70c3a1286b7491995215369d9f39cfcba17
[ "MIT" ]
36
2020-10-07T05:52:15.000Z
2022-03-11T03:05:32.000Z
tools/attack/util/dist_utils.py
rajk97/Adversial-Attacks-on-densely-fused-point-clouds-for-6D-Pose-Estimation
e296e70c3a1286b7491995215369d9f39cfcba17
[ "MIT" ]
9
2021-01-04T02:11:36.000Z
2021-11-23T16:21:59.000Z
tools/attack/util/dist_utils.py
rajk97/Adversial-Attacks-on-densely-fused-point-clouds-for-6D-Pose-Estimation
e296e70c3a1286b7491995215369d9f39cfcba17
[ "MIT" ]
6
2020-11-29T02:13:55.000Z
2021-12-06T08:19:16.000Z
import numpy as np import torch import torch.nn as nn from util.set_distance import chamfer, hausdorff class L2Dist(nn.Module): def __init__(self): """Compute global L2 distance between two point clouds. """ super(L2Dist, self).__init__() def forward(self, adv_pc, ori_pc, weights=None, batch_avg=True): """Compute L2 distance between two point clouds. Apply different weights for batch input for CW attack. Args: adv_pc (torch.FloatTensor): [B, K, 3] or [B, 3, K] ori_pc (torch.FloatTensor): [B, K, 3] or [B, 3, k] weights (torch.FloatTensor, optional): [B], if None, just use avg batch_avg: (bool, optional): whether to avg over batch dim """ B = adv_pc.shape[0] if weights is None: weights = torch.ones((B,)) weights = weights.float().cuda() dist = torch.sqrt(torch.sum( (adv_pc - ori_pc) ** 2, dim=[1, 2])) # [B] dist = dist * weights if batch_avg: return dist.mean() return dist class ChamferDist(nn.Module): def __init__(self, method='adv2ori'): """Compute chamfer distance between two point clouds. Args: method (str, optional): type of chamfer. Defaults to 'adv2ori'. """ super(ChamferDist, self).__init__() self.method = method def forward(self, adv_pc, ori_pc, weights=None, batch_avg=True): """Compute chamfer distance between two point clouds. Args: adv_pc (torch.FloatTensor): [B, K, 3] ori_pc (torch.FloatTensor): [B, K, 3] weights (torch.FloatTensor, optional): [B], if None, just use avg batch_avg: (bool, optional): whether to avg over batch dim """ B = adv_pc.shape[0] if weights is None: weights = torch.ones((B,)) loss1, loss2 = chamfer(adv_pc, ori_pc) # [B], adv2ori, ori2adv if self.method == 'adv2ori': loss = loss1 elif self.method == 'ori2adv': loss = loss2 else: loss = (loss1 + loss2) / 2. weights = weights.float().cuda() loss = loss * weights if batch_avg: return loss.mean() return loss class HausdorffDist(nn.Module): def __init__(self, method='adv2ori'): """Compute hausdorff distance between two point clouds. Args: method (str, optional): type of hausdorff. Defaults to 'adv2ori'. """ super(HausdorffDist, self).__init__() self.method = method def forward(self, adv_pc, ori_pc, weights=None, batch_avg=True): """Compute hausdorff distance between two point clouds. Args: adv_pc (torch.FloatTensor): [B, K, 3] ori_pc (torch.FloatTensor): [B, K, 3] weights (torch.FloatTensor, optional): [B], if None, just use avg batch_avg: (bool, optional): whether to avg over batch dim """ B = adv_pc.shape[0] if weights is None: weights = torch.ones((B,)) loss1, loss2 = hausdorff(adv_pc, ori_pc) # [B], adv2ori, ori2adv if self.method == 'adv2ori': loss = loss1 elif self.method == 'ori2adv': loss = loss2 else: loss = (loss1 + loss2) / 2. weights = weights.float().cuda() loss = loss * weights if batch_avg: return loss.mean() return loss class KNNDist(nn.Module): def __init__(self, k=5, alpha=1.05): """Compute kNN distance punishment within a point cloud. Args: k (int, optional): kNN neighbor num. Defaults to 5. alpha (float, optional): threshold = mean + alpha * std. Defaults to 1.05. """ super(KNNDist, self).__init__() self.k = k self.alpha = alpha def forward(self, pc, weights=None, batch_avg=True): """KNN distance loss described in AAAI'20 paper. Args: adv_pc (torch.FloatTensor): [B, K, 3] weights (torch.FloatTensor, optional): [B]. Defaults to None. batch_avg: (bool, optional): whether to avg over batch dim """ # build kNN graph B, K = pc.shape[:2] pc = pc.transpose(2, 1) # [B, 3, K] inner = -2. * torch.matmul(pc.transpose(2, 1), pc) # [B, K, K] xx = torch.sum(pc ** 2, dim=1, keepdim=True) # [B, 1, K] dist = xx + inner + xx.transpose(2, 1) # [B, K, K], l2^2 assert dist.min().item() >= -1e-6 # the min is self so we take top (k + 1) neg_value, _ = (-dist).topk(k=self.k + 1, dim=-1) # [B, K, k + 1] value = -(neg_value[..., 1:]) # [B, K, k] value = torch.mean(value, dim=-1) # d_p, [B, K] with torch.no_grad(): mean = torch.mean(value, dim=-1) # [B] std = torch.std(value, dim=-1) # [B] # [B], penalty threshold for batch threshold = mean + self.alpha * std weight_mask = (value > threshold[:, None]).\ float().detach() # [B, K] loss = torch.mean(value * weight_mask, dim=1) # [B] # accumulate loss if weights is None: weights = torch.ones((B,)) weights = weights.float().cuda() loss = loss * weights if batch_avg: return loss.mean() return loss class ChamferkNNDist(nn.Module): def __init__(self, chamfer_method='adv2ori', knn_k=5, knn_alpha=1.05, chamfer_weight=5., knn_weight=3.): """Geometry-aware distance function of AAAI'20 paper. Args: chamfer_method (str, optional): chamfer. Defaults to 'adv2ori'. knn_k (int, optional): k in kNN. Defaults to 5. knn_alpha (float, optional): alpha in kNN. Defaults to 1.1. chamfer_weight (float, optional): weight factor. Defaults to 5.. knn_weight (float, optional): weight factor. Defaults to 3.. """ super(ChamferkNNDist, self).__init__() self.chamfer_dist = ChamferDist(method=chamfer_method) self.knn_dist = KNNDist(k=knn_k, alpha=knn_alpha) self.w1 = chamfer_weight self.w2 = knn_weight def forward(self, adv_pc, ori_pc, weights=None, batch_avg=True): """Adversarial constraint function of AAAI'20 paper. Args: adv_pc (torch.FloatTensor): [B, K, 3] ori_pc (torch.FloatTensor): [B, K, 3] weights (np.array): weight factors batch_avg: (bool, optional): whether to avg over batch dim """ chamfer_loss = self.chamfer_dist( adv_pc, ori_pc, weights=weights, batch_avg=batch_avg) knn_loss = self.knn_dist( adv_pc, weights=weights, batch_avg=batch_avg) loss = chamfer_loss * self.w1 + knn_loss * self.w2 return loss class FarthestDist(nn.Module): def __init__(self): """Used in adding cluster attack. """ super(FarthestDist, self).__init__() def forward(self, adv_pc, weights=None, batch_avg=True): """Compute the farthest pairwise point dist in each added cluster. Args: adv_pc (torch.FloatTensor): [B, num_add, cl_num_p, 3] weights (np.array): weight factors batch_avg: (bool, optional): whether to avg over batch dim """ B = adv_pc.shape[0] if weights is None: weights = torch.ones((B,)) delta_matrix = adv_pc[:, :, None, :, :] - adv_pc[:, :, :, None, :] + 1e-7 # [B, num_add, num_p, num_p, 3] norm_matrix = torch.norm(delta_matrix, p=2, dim=-1) # [B, na, np, np] max_matrix = torch.max(norm_matrix, dim=2)[0] # take the values of max far_dist = torch.max(max_matrix, dim=2)[0] # [B, num_add] far_dist = torch.sum(far_dist, dim=1) # [B] weights = weights.float().cuda() loss = far_dist * weights if batch_avg: return loss.mean() return loss class FarChamferDist(nn.Module): def __init__(self, num_add, chamfer_method='adv2ori', chamfer_weight=0.1): """Distance function used in generating adv clusters. Consisting of a Farthest dist and a chamfer dist. Args: num_add (int): number of added clusters. chamfer_method (str, optional): chamfer. Defaults to 'adv2ori'. chamfer_weight (float, optional): weight factor. Defaults to 0.1. """ super(FarChamferDist, self).__init__() self.num_add = num_add self.far_dist = FarthestDist() self.chamfer_dist = ChamferDist(method=chamfer_method) self.cd_w = chamfer_weight def forward(self, adv_pc, ori_pc, weights=None, batch_avg=True): """Adversarial constraint function of CVPR'19 paper for adv clusters. Args: adv_pc (torch.FloatTensor): [B, num_add * cl_num_p, 3], the added clusters ori_pc (torch.FloatTensor): [B, K, 3] weights (np.array): weight factors batch_avg: (bool, optional): whether to avg over batch dim """ B = adv_pc.shape[0] chamfer_loss = self.chamfer_dist( adv_pc, ori_pc, weights=weights, batch_avg=batch_avg) adv_clusters = adv_pc.view(B, self.num_add, -1, 3) far_loss = self.far_dist( adv_clusters, weights=weights, batch_avg=batch_avg) loss = far_loss + chamfer_loss * self.cd_w return loss class L2ChamferDist(nn.Module): def __init__(self, num_add, chamfer_method='adv2ori', chamfer_weight=0.2): """Distance function used in generating adv objects. Consisting of a L2 dist and a chamfer dist. Args: num_add (int): number of added objects. chamfer_method (str, optional): chamfer. Defaults to 'adv2ori'. chamfer_weight (float, optional): weight factor. Defaults to 0.2. """ super(L2ChamferDist, self).__init__() self.num_add = num_add self.chamfer_dist = ChamferDist(method=chamfer_method) self.cd_w = chamfer_weight self.l2_dist = L2Dist() def forward(self, adv_pc, ori_pc, adv_obj, ori_obj, weights=None, batch_avg=True): """Adversarial constraint function of CVPR'19 paper for adv objects. Args: adv_pc (torch.FloatTensor): [B, num_add * obj_num_p, 3], the added objects after rot and shift ori_pc (torch.FloatTensor): [B, K, 3] adv_obj (torch.FloatTensor): [B, num_add, obj_num_p, 3], the added objects after pert ori_pc (torch.FloatTensor): [B, num_add, obj_num_p, 3], the clean added objects weights (np.array): weight factors batch_avg: (bool, optional): whether to avg over batch dim """ B = adv_pc.shape[0] chamfer_loss = self.chamfer_dist( adv_pc, ori_pc, weights=weights, batch_avg=batch_avg) l2_loss = self.l2_dist( adv_obj.view(B, -1, 3), ori_obj.view(B, -1, 3), weights=weights, batch_avg=batch_avg) loss = l2_loss + self.cd_w * chamfer_loss return loss
36.084112
86
0.563498
e1905291393fcadda73f9d66339e62379ac46428
363
py
Python
scraper/scraper/urls.py
ikeikeikeike/panglao-scraper
e7a4919c40c457ea73e89782e8b2dd3213129bcf
[ "MIT" ]
1
2017-03-04T06:41:03.000Z
2017-03-04T06:41:03.000Z
scraper/scraper/urls.py
ikeikeikeike/panglao-scraper
e7a4919c40c457ea73e89782e8b2dd3213129bcf
[ "MIT" ]
null
null
null
scraper/scraper/urls.py
ikeikeikeike/panglao-scraper
e7a4919c40c457ea73e89782e8b2dd3213129bcf
[ "MIT" ]
null
null
null
from django.http import HttpResponse from django.conf.urls import url, include # from django.contrib import admin urlpatterns = [ # url(r'^admin/', admin.site.urls), url(r'^api/', include('api.urls', namespace='api')), url(r'^lifecycle/', include('lifecycle.urls', namespace='lifecycle')), url(r'^ping', lambda request: HttpResponse("ok")), ]
30.25
74
0.677686
f3a829884bc26558acf612399ec0cd8b634837d5
15,611
py
Python
tasks/test.py
karim7262/datadog-agent
a48b9b58fb9f13e53782a936783da2cc4b7b0c7c
[ "Apache-2.0" ]
1
2021-09-13T03:01:39.000Z
2021-09-13T03:01:39.000Z
tasks/test.py
karim7262/datadog-agent
a48b9b58fb9f13e53782a936783da2cc4b7b0c7c
[ "Apache-2.0" ]
null
null
null
tasks/test.py
karim7262/datadog-agent
a48b9b58fb9f13e53782a936783da2cc4b7b0c7c
[ "Apache-2.0" ]
null
null
null
""" High level testing tasks """ from __future__ import print_function import os import fnmatch import re import operator import sys import yaml import invoke from invoke import task from invoke.exceptions import Exit from .utils import get_build_flags, get_version from .go import fmt, lint, vet, misspell, ineffassign, lint_licenses, golangci_lint, generate from .build_tags import get_default_build_tags, get_build_tags from .agent import integration_tests as agent_integration_tests from .dogstatsd import integration_tests as dsd_integration_tests from .trace_agent import integration_tests as trace_integration_tests from .cluster_agent import integration_tests as dca_integration_tests #We use `basestring` in the code for compat with python2 unicode strings. #This makes the same code work in python3 as well. try: basestring except NameError: basestring = str PROFILE_COV = "profile.cov" DEFAULT_TOOL_TARGETS = [ "./pkg", "./cmd", ] DEFAULT_TEST_TARGETS = [ "./pkg", "./cmd", ] @task() def test(ctx, targets=None, coverage=False, build_include=None, build_exclude=None, verbose=False, race=False, profile=False, fail_on_fmt=False, rtloader_root=None, python_home_2=None, python_home_3=None, cpus=0, major_version='7', python_runtimes='3', timeout=120, arch="x64", cache=True, skip_linters=False, go_mod="vendor"): """ Run all the tools and tests on the given targets. If targets are not specified, the value from `invoke.yaml` will be used. Example invokation: inv test --targets=./pkg/collector/check,./pkg/aggregator --race """ if isinstance(targets, basestring): # when this function is called from the command line, targets are passed # as comma separated tokens in a string tool_targets = test_targets = targets.split(',') elif targets is None: tool_targets = DEFAULT_TOOL_TARGETS test_targets = DEFAULT_TEST_TARGETS else: tool_targets = test_targets = targets build_include = get_default_build_tags(process=True, arch=arch) if build_include is None else build_include.split(",") build_exclude = [] if build_exclude is None else build_exclude.split(",") build_tags = get_build_tags(build_include, build_exclude) timeout = int(timeout) # explicitly run these tasks instead of using pre-tasks so we can # pass the `target` param (pre-tasks are invoked without parameters) print("--- go generating:") generate(ctx) if skip_linters: print("--- [skipping linters]") else: print("--- Linting filenames:") lint_filenames(ctx) print("--- Linting licenses:") lint_licenses(ctx) # Until all packages whitelisted in .golangci.yml are fixed and removed # from the 'skip-dirs' list we need to keep using the old functions that # lint without build flags (linting some file is better than no linting). print("--- Vetting and linting (legacy):") vet(ctx, targets=tool_targets, rtloader_root=rtloader_root, build_tags=build_tags, arch=arch) fmt(ctx, targets=tool_targets, fail_on_fmt=fail_on_fmt) lint(ctx, targets=tool_targets) misspell(ctx, targets=tool_targets) ineffassign(ctx, targets=tool_targets) # for now we only run golangci_lint on Unix as the Windows env need more work if sys.platform != 'win32': print("--- golangci_lint:") golangci_lint(ctx, targets=tool_targets, rtloader_root=rtloader_root, build_tags=build_tags) with open(PROFILE_COV, "w") as f_cov: f_cov.write("mode: count") ldflags, gcflags, env = get_build_flags(ctx, rtloader_root=rtloader_root, python_home_2=python_home_2, python_home_3=python_home_3, major_version=major_version, python_runtimes='3', arch=arch) if sys.platform == 'win32': env['CGO_LDFLAGS'] += ' -Wl,--allow-multiple-definition' if profile: test_profiler = TestProfiler() else: test_profiler = None # Use stdout race_opt = "" covermode_opt = "" build_cpus_opt = "" if cpus: build_cpus_opt = "-p {}".format(cpus) if race: # race doesn't appear to be supported on non-x64 platforms if arch == "x86": print("\n -- Warning... disabling race test, not supported on this platform --\n") else: race_opt = "-race" if coverage: if race: # atomic is quite expensive but it's the only way to run # both the coverage and the race detector at the same time # without getting false positives from the cover counter covermode_opt = "-covermode=atomic" else: covermode_opt = "-covermode=count" matches = ["{}/...".format(t) for t in test_targets] print("\n--- Running unit tests:") coverprofile = "" if coverage: coverprofile = "-coverprofile={}".format(PROFILE_COV) nocache = '-count=1' if not cache else '' build_tags.append("test") cmd = 'go test {verbose} -mod={go_mod} -vet=off -timeout {timeout}s -tags "{go_build_tags}" -gcflags="{gcflags}" ' cmd += '-ldflags="{ldflags}" {build_cpus} {race_opt} -short {covermode_opt} {coverprofile} {nocache} {pkg_folder}' args = { "go_mod": go_mod, "go_build_tags": " ".join(build_tags), "gcflags": gcflags, "ldflags": ldflags, "race_opt": race_opt, "build_cpus": build_cpus_opt, "covermode_opt": covermode_opt, "coverprofile": coverprofile, "pkg_folder": ' '.join(matches), "timeout": timeout, "verbose": '-v' if verbose else '', "nocache": nocache, } ctx.run(cmd.format(**args), env=env, out_stream=test_profiler) if coverage: print("\n--- Test coverage:") ctx.run("go tool cover -func {}".format(PROFILE_COV)) if profile: print ("\n--- Top 15 packages sorted by run time:") test_profiler.print_sorted(15) @task def lint_teamassignment(ctx): """ Make sure PRs are assigned a team label """ pr_url = os.environ.get("CIRCLE_PULL_REQUEST") if pr_url: import requests pr_id = pr_url.rsplit('/')[-1] res = requests.get("https://api.github.com/repos/DataDog/datadog-agent/issues/{}".format(pr_id)) issue = res.json() if any([re.match('team/', l['name']) for l in issue.get('labels', {})]): print("Team Assignment: %s" % l['name']) return print("PR %s requires team assignment" % pr_url) raise Exit(code=1) # The PR has not been created yet else: print("PR not yet created, skipping check for team assignment") @task def lint_milestone(ctx): """ Make sure PRs are assigned a milestone """ pr_url = os.environ.get("CIRCLE_PULL_REQUEST") if pr_url: import requests pr_id = pr_url.rsplit('/')[-1] res = requests.get("https://api.github.com/repos/DataDog/datadog-agent/issues/{}".format(pr_id)) pr = res.json() if pr.get("milestone"): print("Milestone: %s" % pr["milestone"].get("title", "NO_TITLE")) return print("PR %s requires a milestone" % pr_url) raise Exit(code=1) # The PR has not been created yet else: print("PR not yet created, skipping check for milestone") @task def lint_releasenote(ctx): """ Lint release notes with Reno """ # checking if a releasenote has been added/changed pr_url = os.environ.get("CIRCLE_PULL_REQUEST") if pr_url: import requests pr_id = pr_url.rsplit('/')[-1] # first check 'changelog/no-changelog' label res = requests.get("https://api.github.com/repos/DataDog/datadog-agent/issues/{}".format(pr_id)) issue = res.json() if any([l['name'] == 'changelog/no-changelog' for l in issue.get('labels', {})]): print("'changelog/no-changelog' label found on the PR: skipping linting") return # Then check that at least one note was touched by the PR url = "https://api.github.com/repos/DataDog/datadog-agent/pulls/{}/files".format(pr_id) # traverse paginated github response while True: res = requests.get(url) files = res.json() if any([f['filename'].startswith("releasenotes/notes/") or \ f['filename'].startswith("releasenotes-dca/notes/") for f in files]): break if 'next' in res.links: url = res.links['next']['url'] else: print("Error: No releasenote was found for this PR. Please add one using 'reno'"\ ", or apply the label 'changelog/no-changelog' to the PR.") raise Exit(code=1) # The PR has not been created yet, let's compare with master (the usual base branch of the future PR) else: branch = os.environ.get("CIRCLE_BRANCH") if branch is None: print("No branch found, skipping reno linting") else: if re.match(r".*/.*", branch) is None: print("{} is not a feature branch, skipping reno linting".format(branch)) else: import requests # Then check that in the diff with master, at least one note was touched url = "https://api.github.com/repos/DataDog/datadog-agent/compare/master...{}".format(branch) # traverse paginated github response while True: res = requests.get(url) files = res.json().get("files", {}) if any([f['filename'].startswith("releasenotes/notes/") or \ f['filename'].startswith("releasenotes-dca/notes/") for f in files]): break if 'next' in res.links: url = res.links['next']['url'] else: print("Error: No releasenote was found for this PR. Please add one using 'reno'"\ ", or apply the label 'changelog/no-changelog' to the PR.") raise Exit(code=1) ctx.run("reno lint") @task def lint_filenames(ctx): """ Scan files to ensure there are no filenames too long or containing illegal characters """ files = ctx.run("git ls-files -z", hide=True).stdout.split("\0") failure = False if sys.platform == 'win32': print("Running on windows, no need to check filenames for illegal characters") else: print("Checking filenames for illegal characters") forbidden_chars = '<>:"\\|?*' for file in files: if any(char in file for char in forbidden_chars): print("Error: Found illegal character in path {}".format(file)) failure = True print("Checking filename length") # Approximated length of the prefix of the repo during the windows release build prefix_length = 160 # Maximum length supported by the win32 API max_length = 255 for file in files: if prefix_length + len(file) > max_length: print("Error: path {} is too long ({} characters too many)".format(file, prefix_length + len(file) - max_length)) failure = True if failure: raise Exit(code=1) @task def integration_tests(ctx, install_deps=False, race=False, remote_docker=False): """ Run all the available integration tests """ agent_integration_tests(ctx, install_deps, race, remote_docker) dsd_integration_tests(ctx, install_deps, race, remote_docker) dca_integration_tests(ctx, install_deps, race, remote_docker) trace_integration_tests(ctx, install_deps, race, remote_docker) @task def e2e_tests(ctx, target="gitlab", image=""): """ Run e2e tests in several environments. """ choices = ["gitlab", "dev", "local"] if target not in choices: print('target %s not in %s' % (target, choices)) raise Exit(1) if not os.getenv("DATADOG_AGENT_IMAGE"): if not image: print("define DATADOG_AGENT_IMAGE envvar or image flag") raise Exit(1) os.environ["DATADOG_AGENT_IMAGE"] = image ctx.run("./test/e2e/scripts/setup-instance/00-entrypoint-%s.sh" % target) class TestProfiler: times = [] parser = re.compile("^ok\s+github.com\/DataDog\/datadog-agent\/(\S+)\s+([0-9\.]+)s", re.MULTILINE) def write(self, txt): # Output to stdout sys.stdout.write(txt) # Extract the run time for result in self.parser.finditer(txt): self.times.append((result.group(1), float(result.group(2)))) def flush(self): sys.stdout.flush() def reset(self): self.out_buffer = "" def print_sorted(self, limit=0): if self.times: sorted_times = sorted(self.times, key=operator.itemgetter(1), reverse=True) if limit: sorted_times = sorted_times[:limit] for pkg, time in sorted_times: print("{}s\t{}".format(time, pkg)) @task def make_kitchen_gitlab_yml(ctx): """ Replaces .gitlab-ci.yml with one containing only the steps needed to run kitchen-tests """ with open('.gitlab-ci.yml') as f: data = yaml.load(f, Loader=yaml.FullLoader) data['stages'] = ['deps_build', 'binary_build', 'package_build', 'testkitchen_deploy', 'testkitchen_testing', 'testkitchen_cleanup'] for k,v in data.items(): if isinstance(v, dict) and v.get('stage', None) not in ([None] + data['stages']): del data[k] continue if isinstance(v, dict) and v.get('stage', None) == 'binary_build' and k != 'build_system-probe-arm64' and k != 'build_system-probe-x64' and k != 'build_system-probe_with-bcc-arm64' and k != 'build_system-probe_with-bcc-x64': del data[k] continue if 'except' in v: del v['except'] if 'only' in v: del v['only'] if len(v) == 0: del data[k] continue for k,v in data.items(): if 'extends' in v: extended = v['extends'] if extended not in data: del data[k] if 'needs' in v: needed = v['needs'] new_needed = [] for n in needed: if n in data: new_needed.append(n) v['needs'] = new_needed with open('.gitlab-ci.yml', 'w') as f: documents = yaml.dump(data, f, default_style='"') @task def check_gitlab_broken_dependencies(ctx): """ Checks that a gitlab job doesn't depend on (need) other jobs that will be excluded from the build, since this would make gitlab fail when triggering a pipeline with those jobs excluded. """ with open('.gitlab-ci.yml') as f: data = yaml.load(f, Loader=yaml.FullLoader) def is_unwanted(job, version): e = job.get('except',{}) return isinstance(e, dict) and '$RELEASE_VERSION_{} == ""'.format(version) in e.get('variables',{}) for version in [6,7]: for k,v in data.items(): if isinstance(v, dict) and not is_unwanted(v, version) and "needs" in v: needed = v['needs'] for need in needed: if is_unwanted(data[need], version): print("{} needs on {} but it won't be built for A{}".format(k, need, version))
35.887356
232
0.613542
81c5c0423742f7f9787eb2a396c275deb1a118ae
2,686
py
Python
airbyte-integrations/connectors/destination-scaffold-destination-python/destination_scaffold_destination_python/destination.py
onaio/airbyte
38302e82a25f1b66742c3febfbff0668556920f2
[ "MIT" ]
22
2020-08-27T00:47:20.000Z
2020-09-17T15:39:39.000Z
airbyte-integrations/connectors/destination-scaffold-destination-python/destination_scaffold_destination_python/destination.py
onaio/airbyte
38302e82a25f1b66742c3febfbff0668556920f2
[ "MIT" ]
116
2020-08-27T01:11:27.000Z
2020-09-19T02:47:52.000Z
airbyte-integrations/connectors/destination-scaffold-destination-python/destination_scaffold_destination_python/destination.py
onaio/airbyte
38302e82a25f1b66742c3febfbff0668556920f2
[ "MIT" ]
1
2020-09-15T06:10:01.000Z
2020-09-15T06:10:01.000Z
# # Copyright (c) 2022 Airbyte, Inc., all rights reserved. # from typing import Any, Iterable, Mapping from airbyte_cdk import AirbyteLogger from airbyte_cdk.destinations import Destination from airbyte_cdk.models import AirbyteConnectionStatus, AirbyteMessage, ConfiguredAirbyteCatalog, Status class DestinationScaffoldDestinationPython(Destination): def write( self, config: Mapping[str, Any], configured_catalog: ConfiguredAirbyteCatalog, input_messages: Iterable[AirbyteMessage] ) -> Iterable[AirbyteMessage]: """ TODO Reads the input stream of messages, config, and catalog to write data to the destination. This method returns an iterable (typically a generator of AirbyteMessages via yield) containing state messages received in the input message stream. Outputting a state message means that every AirbyteRecordMessage which came before it has been successfully persisted to the destination. This is used to ensure fault tolerance in the case that a sync fails before fully completing, then the source is given the last state message output from this method as the starting point of the next sync. :param config: dict of JSON configuration matching the configuration declared in spec.json :param configured_catalog: The Configured Catalog describing the schema of the data being received and how it should be persisted in the destination :param input_messages: The stream of input messages received from the source :return: Iterable of AirbyteStateMessages wrapped in AirbyteMessage structs """ pass def check(self, logger: AirbyteLogger, config: Mapping[str, Any]) -> AirbyteConnectionStatus: """ Tests if the input configuration can be used to successfully connect to the destination with the needed permissions e.g: if a provided API token or password can be used to connect and write to the destination. :param logger: Logging object to display debug/info/error to the logs (logs will not be accessible via airbyte UI if they are not passed to this logger) :param config: Json object containing the configuration of this destination, content of this json is as specified in the properties of the spec.json file :return: AirbyteConnectionStatus indicating a Success or Failure """ try: # TODO return AirbyteConnectionStatus(status=Status.SUCCEEDED) except Exception as e: return AirbyteConnectionStatus(status=Status.FAILED, message=f"An exception occurred: {repr(e)}")
49.740741
144
0.726359
c6a7e5a0791c50c5fd0534cb5335a8e93aa00e5f
64,150
bzl
Python
tools/build_variables.bzl
gml16/pytorch
fad60484572c490384c107cf625d484e34dc9bcf
[ "Intel" ]
2
2022-02-14T13:56:03.000Z
2022-02-14T13:56:05.000Z
tools/build_variables.bzl
gml16/pytorch
fad60484572c490384c107cf625d484e34dc9bcf
[ "Intel" ]
null
null
null
tools/build_variables.bzl
gml16/pytorch
fad60484572c490384c107cf625d484e34dc9bcf
[ "Intel" ]
null
null
null
# In both open-source and fbcode builds, these are generated into # torch/csrc/{autgrad,jit}/generated.i GENERATED_CPP = [ "autograd/generated/Functions.cpp", "autograd/generated/VariableType_0.cpp", "autograd/generated/VariableType_1.cpp", "autograd/generated/VariableType_2.cpp", "autograd/generated/VariableType_3.cpp", "autograd/generated/VariableType_4.cpp", "autograd/generated/TraceType_0.cpp", "autograd/generated/TraceType_1.cpp", "autograd/generated/TraceType_2.cpp", "autograd/generated/TraceType_3.cpp", "autograd/generated/TraceType_4.cpp", "autograd/generated/ADInplaceOrViewType_0.cpp", "autograd/generated/ADInplaceOrViewType_1.cpp", "autograd/generated/python_functions_0.cpp", "autograd/generated/python_functions_1.cpp", "autograd/generated/python_functions_2.cpp", "autograd/generated/python_functions_3.cpp", "autograd/generated/python_functions_4.cpp", "autograd/generated/python_nn_functions.cpp", "autograd/generated/python_fft_functions.cpp", "autograd/generated/python_linalg_functions.cpp", "autograd/generated/python_return_types.cpp", "autograd/generated/python_sparse_functions.cpp", "autograd/generated/python_special_functions.cpp", "autograd/generated/python_torch_functions_0.cpp", "autograd/generated/python_torch_functions_1.cpp", "autograd/generated/python_torch_functions_2.cpp", "autograd/generated/python_variable_methods.cpp", ] # NVFuser runtime library libtorch_nvfuser_runtime_sources = [ "torch/csrc/jit/codegen/cuda/runtime/bf16_support.cu", "torch/csrc/jit/codegen/cuda/runtime/block_reduction.cu", "torch/csrc/jit/codegen/cuda/runtime/block_sync_atomic.cu", "torch/csrc/jit/codegen/cuda/runtime/block_sync_default.cu", "torch/csrc/jit/codegen/cuda/runtime/broadcast.cu", "torch/csrc/jit/codegen/cuda/runtime/fp16_support.cu", "torch/csrc/jit/codegen/cuda/runtime/grid_broadcast.cu", "torch/csrc/jit/codegen/cuda/runtime/grid_reduction.cu", "torch/csrc/jit/codegen/cuda/runtime/grid_sync.cu", "torch/csrc/jit/codegen/cuda/runtime/helpers.cu", "torch/csrc/jit/codegen/cuda/runtime/index_utils.cu", "torch/csrc/jit/codegen/cuda/runtime/random_numbers.cu", "torch/csrc/jit/codegen/cuda/runtime/tensor.cu", "torch/csrc/jit/codegen/cuda/runtime/welford.cu", "torch/csrc/jit/codegen/cuda/runtime/warp.cu", "aten/src/ATen/cuda/detail/PhiloxCudaStateRaw.cuh", "aten/src/ATen/cuda/detail/UnpackRaw.cuh", ] libtorch_nvfuser_generated_headers = ["{}.h".format(name.split("/")[-1].split(".")[0]) for name in libtorch_nvfuser_runtime_sources] def libtorch_generated_sources(gencode_pattern): return [gencode_pattern.format(name) for name in [ "autograd/generated/Functions.cpp", "autograd/generated/VariableType_0.cpp", "autograd/generated/VariableType_1.cpp", "autograd/generated/VariableType_2.cpp", "autograd/generated/VariableType_3.cpp", "autograd/generated/VariableType_4.cpp", "autograd/generated/TraceType_0.cpp", "autograd/generated/TraceType_1.cpp", "autograd/generated/TraceType_2.cpp", "autograd/generated/TraceType_3.cpp", "autograd/generated/TraceType_4.cpp", "autograd/generated/ADInplaceOrViewType_0.cpp", "autograd/generated/ADInplaceOrViewType_1.cpp", ]] # copied from https://github.com/pytorch/pytorch/blob/f99a693cd9ff7a9b5fdc71357dac66b8192786d3/aten/src/ATen/core/CMakeLists.txt jit_core_headers = [ "torch/csrc/utils/memory.h", "torch/csrc/Export.h", "torch/csrc/jit/frontend/source_range.h", "torch/csrc/jit/serialization/callstack_debug_info_serialization.h", "torch/csrc/jit/serialization/source_range_serialization.h", "torch/csrc/jit/frontend/lexer.h", "torch/csrc/jit/frontend/strtod.h", "torch/csrc/jit/frontend/parser_constants.h", "torch/csrc/jit/frontend/function_schema_parser.h", "torch/csrc/jit/frontend/parse_string_literal.h", "torch/csrc/jit/frontend/schema_type_parser.h", "torch/csrc/jit/frontend/error_report.h", "torch/csrc/jit/frontend/tree.h", "torch/custom_class.h", "torch/custom_class_detail.h", "torch/library.h", ] jit_core_sources = [ "torch/csrc/jit/frontend/error_report.cpp", "torch/csrc/jit/frontend/function_schema_parser.cpp", "torch/csrc/jit/frontend/lexer.cpp", "torch/csrc/jit/frontend/schema_type_parser.cpp", "torch/csrc/jit/frontend/strtod.cpp", "torch/csrc/jit/frontend/source_range.cpp", ] # copied from https://github.com/pytorch/pytorch/blob/0bde610c14b92d351b968a0228df29e92442b1cc/torch/CMakeLists.txt # There are some common files used in both internal lite-interpreter and full-jit. Making a separate # list for the shared files. core_sources_common = [ "torch/csrc/autograd/autograd_meta.cpp", "torch/csrc/autograd/forward_grad.cpp", "torch/csrc/jit/frontend/edit_distance.cpp", "torch/csrc/jit/mobile/compatibility/runtime_compatibility.cpp", "torch/csrc/jit/mobile/type_parser.cpp", "torch/csrc/jit/operator_upgraders/upgraders_guard.cpp", "torch/csrc/jit/operator_upgraders/version_map.cpp", "torch/csrc/jit/runtime/instruction.cpp", "torch/csrc/jit/runtime/jit_exception.cpp", "torch/csrc/jit/runtime/operator.cpp", "torch/csrc/jit/mobile/register_ops_common_utils.cpp", "torch/csrc/jit/runtime/print_handler.cpp", "torch/csrc/jit/runtime/slice_indices_adjust.cpp", "torch/csrc/jit/runtime/register_ops_utils.cpp", "torch/csrc/jit/runtime/vararg_functions.cpp", "torch/csrc/jit/mobile/promoted_prim_ops.cpp", "torch/csrc/jit/mobile/prim_ops_registery.cpp", "torch/csrc/profiler/util.cpp", ] torch_unpickler_common = [ "torch/csrc/jit/serialization/import_read.cpp", "torch/csrc/jit/serialization/unpickler.cpp", ] libtorch_sources_common = sorted(core_sources_common + torch_unpickler_common) # The profilers are not needed in the lite interpreter build. libtorch_profiler_sources = [ "torch/csrc/autograd/profiler_legacy.cpp", "torch/csrc/autograd/profiler_kineto.cpp", "torch/csrc/profiler/api.cpp", "torch/csrc/profiler/kineto_shim.cpp", "torch/csrc/profiler/nvtx_observer.cpp", "torch/csrc/monitor/counters.cpp", "torch/csrc/monitor/events.cpp", ] libtorch_edge_profiler_sources = libtorch_profiler_sources + [ "torch/csrc/jit/mobile/profiler_edge.cpp", ] core_trainer_sources = [ "torch/csrc/autograd/anomaly_mode.cpp", "torch/csrc/autograd/autograd.cpp", "torch/csrc/autograd/autograd_not_implemented_fallback.cpp", "torch/csrc/autograd/cpp_hook.cpp", "torch/csrc/autograd/custom_function.cpp", "torch/csrc/autograd/engine.cpp", "torch/csrc/autograd/function.cpp", "torch/csrc/autograd/function_hook.cpp", "torch/csrc/autograd/functions/accumulate_grad.cpp", "torch/csrc/autograd/functions/basic_ops.cpp", "torch/csrc/autograd/functions/tensor.cpp", "torch/csrc/autograd/functions/utils.cpp", "torch/csrc/autograd/input_buffer.cpp", "torch/csrc/autograd/record_function_ops.cpp", "torch/csrc/autograd/saved_variable.cpp", "torch/csrc/autograd/variable.cpp", "torch/csrc/autograd/utils/warnings.cpp", "torch/csrc/jit/frontend/name_mangler.cpp", "torch/csrc/jit/ir/type_hashing.cpp", "torch/csrc/jit/serialization/pickler.cpp", "torch/csrc/jit/serialization/type_name_uniquer.cpp", ] core_sources_full_mobile_no_backend_interface = [ "torch/csrc/jit/api/function_impl.cpp", "torch/csrc/jit/api/module.cpp", "torch/csrc/jit/api/object.cpp", "torch/csrc/jit/backends/backend_debug_handler.cpp", "torch/csrc/jit/backends/backend_detail.cpp", "torch/csrc/jit/backends/backend_resolver.cpp", "torch/csrc/jit/codegen/fuser/codegen.cpp", "torch/csrc/jit/codegen/fuser/compiler.cpp", "torch/csrc/jit/codegen/fuser/executor.cpp", "torch/csrc/jit/codegen/fuser/fallback.cpp", "torch/csrc/jit/codegen/fuser/interface.cpp", "torch/csrc/jit/codegen/fuser/kernel_cache.cpp", "torch/csrc/jit/frontend/builtin_functions.cpp", "torch/csrc/jit/frontend/versioned_symbols.cpp", "torch/csrc/jit/frontend/canonicalize_modified_loop.cpp", "torch/csrc/jit/frontend/convert_to_ssa.cpp", "torch/csrc/jit/frontend/exit_transforms.cpp", "torch/csrc/jit/frontend/inline_loop_condition.cpp", "torch/csrc/jit/frontend/ir_emitter.cpp", "torch/csrc/jit/frontend/parser.cpp", "torch/csrc/jit/frontend/schema_matching.cpp", "torch/csrc/jit/frontend/script_type_parser.cpp", "torch/csrc/jit/frontend/sugared_value.cpp", "torch/csrc/jit/frontend/tracer.cpp", "torch/csrc/jit/ir/alias_analysis.cpp", "torch/csrc/jit/ir/attributes.cpp", "torch/csrc/jit/ir/constants.cpp", "torch/csrc/jit/ir/ir.cpp", "torch/csrc/jit/ir/irparser.cpp", "torch/csrc/jit/ir/node_hashing.cpp", "torch/csrc/jit/ir/scope.cpp", "torch/csrc/jit/ir/subgraph_matcher.cpp", "torch/csrc/jit/jit_log.cpp", "torch/csrc/jit/jit_opt_limit.cpp", "torch/csrc/jit/mobile/nnc/aot_compiler.cpp", "torch/csrc/jit/mobile/nnc/backend.cpp", "torch/csrc/jit/mobile/nnc/context.cpp", "torch/csrc/jit/mobile/nnc/registry.cpp", "torch/csrc/jit/operator_upgraders/utils.cpp", "torch/csrc/jit/operator_upgraders/upgraders.cpp", "torch/csrc/jit/operator_upgraders/upgraders_entry.cpp", "torch/csrc/jit/passes/annotate_warns.cpp", "torch/csrc/jit/passes/bailout_graph.cpp", "torch/csrc/jit/passes/batch_mm.cpp", "torch/csrc/jit/passes/canonicalize.cpp", "torch/csrc/jit/passes/canonicalize_graph_fuser_ops.cpp", "torch/csrc/jit/passes/clear_profiling.cpp", "torch/csrc/jit/passes/clear_undefinedness.cpp", "torch/csrc/jit/passes/common_subexpression_elimination.cpp", "torch/csrc/jit/passes/common_expression_hoisting.cpp", "torch/csrc/jit/passes/concat_opt.cpp", "torch/csrc/jit/passes/constant_pooling.cpp", "torch/csrc/jit/passes/constant_propagation.cpp", "torch/csrc/jit/passes/restore_mutation.cpp", "torch/csrc/jit/passes/create_autodiff_subgraphs.cpp", "torch/csrc/jit/passes/dead_code_elimination.cpp", "torch/csrc/jit/passes/eliminate_no_ops.cpp", "torch/csrc/jit/passes/remove_redundant_profiles.cpp", "torch/csrc/jit/passes/remove_exceptions.cpp", "torch/csrc/jit/passes/decompose_ops.cpp", "torch/csrc/jit/passes/dtype_analysis.cpp", "torch/csrc/jit/passes/device_type_analysis.cpp", "torch/csrc/jit/passes/erase_number_types.cpp", "torch/csrc/jit/passes/fixup_trace_scope_blocks.cpp", "torch/csrc/jit/passes/freeze_module.cpp", "torch/csrc/jit/passes/fuse_linear.cpp", "torch/csrc/jit/passes/fuse_relu.cpp", "torch/csrc/jit/passes/graph_fuser.cpp", "torch/csrc/jit/passes/graph_rewrite_helper.cpp", "torch/csrc/jit/passes/guard_elimination.cpp", "torch/csrc/jit/passes/hoist_conv_packed_params.cpp", "torch/csrc/jit/passes/inline_autodiff_subgraphs.cpp", "torch/csrc/jit/passes/inline_forked_closures.cpp", "torch/csrc/jit/passes/inline_fork_wait.cpp", "torch/csrc/jit/passes/inliner.cpp", "torch/csrc/jit/passes/inplace_check.cpp", "torch/csrc/jit/passes/insert_guards.cpp", "torch/csrc/jit/passes/lift_closures.cpp", "torch/csrc/jit/passes/liveness.cpp", "torch/csrc/jit/passes/loop_unrolling.cpp", "torch/csrc/jit/passes/lower_grad_of.cpp", "torch/csrc/jit/passes/lower_tuples.cpp", "torch/csrc/jit/passes/normalize_ops.cpp", "torch/csrc/jit/passes/peephole_dict_idioms.cpp", "torch/csrc/jit/passes/peephole_list_idioms.cpp", "torch/csrc/jit/passes/value_refinement_utils.cpp", "torch/csrc/jit/passes/peephole_alias_sensitive.cpp", "torch/csrc/jit/passes/pass_manager.cpp", "torch/csrc/jit/passes/peephole.cpp", "torch/csrc/jit/passes/peephole_non_tensor.cpp", "torch/csrc/jit/passes/create_functional_graphs.cpp", "torch/csrc/jit/passes/remove_mutation.cpp", "torch/csrc/jit/passes/prepack_folding.cpp", "torch/csrc/jit/passes/fold_conv_bn.cpp", "torch/csrc/jit/passes/frozen_concat_linear.cpp", "torch/csrc/jit/passes/frozen_conv_add_relu_fusion.cpp", "torch/csrc/jit/passes/frozen_conv_folding.cpp", "torch/csrc/jit/passes/frozen_linear_transpose.cpp", "torch/csrc/jit/passes/frozen_ops_to_mkldnn.cpp", "torch/csrc/jit/passes/frozen_graph_optimizations.cpp", "torch/csrc/jit/passes/remove_expands.cpp", "torch/csrc/jit/passes/remove_dropout.cpp", "torch/csrc/jit/passes/requires_grad_analysis.cpp", "torch/csrc/jit/passes/shape_analysis.cpp", "torch/csrc/jit/passes/integer_value_refinement.cpp", "torch/csrc/jit/passes/replacement_of_old_operators.cpp", "torch/csrc/jit/passes/symbolic_shape_analysis.cpp", "torch/csrc/jit/passes/symbolic_shape_runtime_fusion.cpp", "torch/csrc/jit/passes/specialize_autogradzero.cpp", "torch/csrc/jit/passes/update_differentiable_graph_requires_grad.cpp", "torch/csrc/jit/passes/variadic_ops.cpp", "torch/csrc/jit/passes/subgraph_rewrite.cpp", "torch/csrc/jit/passes/tensorexpr_fuser.cpp", "torch/csrc/jit/passes/utils/memory_dag.cpp", "torch/csrc/jit/passes/utils/subgraph_utils.cpp", "torch/csrc/jit/passes/utils/optimization_utils.cpp", "torch/csrc/jit/passes/utils/op_registry.cpp", "torch/csrc/jit/passes/xnnpack_rewrite.cpp", "torch/csrc/jit/passes/vulkan_rewrite.cpp", "torch/csrc/jit/passes/metal_rewrite.cpp", "torch/csrc/jit/passes/quantization/helper.cpp", "torch/csrc/jit/passes/quantization/quantization_type.cpp", "torch/csrc/jit/passes/quantization/insert_observers.cpp", "torch/csrc/jit/passes/quantization/insert_quant_dequant.cpp", "torch/csrc/jit/passes/quantization/dedup_module_uses.cpp", "torch/csrc/jit/passes/quantization/finalize.cpp", "torch/csrc/jit/passes/quantization/fusion_passes.cpp", "torch/csrc/jit/python/update_graph_executor_opt.cpp", "torch/csrc/jit/runtime/argument_spec.cpp", "torch/csrc/jit/runtime/autodiff.cpp", "torch/csrc/jit/runtime/graph_executor.cpp", "torch/csrc/jit/runtime/interpreter/frame.cpp", "torch/csrc/jit/runtime/interpreter/preprocess_graph.cpp", "torch/csrc/jit/runtime/interpreter.cpp", "torch/csrc/jit/runtime/logging.cpp", "torch/csrc/jit/runtime/profiling_graph_executor_impl.cpp", "torch/csrc/jit/runtime/profiling_record.cpp", "torch/csrc/jit/runtime/script_profile.cpp", "torch/csrc/jit/runtime/symbolic_script.cpp", "torch/csrc/jit/runtime/symbolic_shape_registry.cpp", "torch/csrc/jit/runtime/symbolic_shape_registry_util.cpp", "torch/csrc/jit/runtime/jit_trace.cpp", "torch/csrc/jit/serialization/callstack_debug_info_serialization.cpp", "torch/csrc/jit/serialization/import.cpp", "torch/csrc/jit/serialization/import_export_helpers.cpp", "torch/csrc/jit/serialization/import_source.cpp", "torch/csrc/jit/serialization/pickle.cpp", "torch/csrc/jit/serialization/python_print.cpp", "torch/csrc/jit/serialization/source_range_serialization.cpp", "torch/csrc/jit/tensorexpr/block_codegen.cpp", "torch/csrc/jit/tensorexpr/bounds_inference.cpp", "torch/csrc/jit/tensorexpr/bounds_overlap.cpp", "torch/csrc/jit/tensorexpr/codegen.cpp", "torch/csrc/jit/tensorexpr/cpp_codegen.cpp", "torch/csrc/jit/tensorexpr/eval.cpp", "torch/csrc/jit/tensorexpr/expr.cpp", "torch/csrc/jit/tensorexpr/external_functions_registry.cpp", "torch/csrc/jit/tensorexpr/graph_opt.cpp", "torch/csrc/jit/tensorexpr/hash_provider.cpp", "torch/csrc/jit/tensorexpr/intrinsic_symbols.cpp", "torch/csrc/jit/tensorexpr/ir.cpp", "torch/csrc/jit/tensorexpr/ir_cloner.cpp", "torch/csrc/jit/tensorexpr/ir_mutator.cpp", "torch/csrc/jit/tensorexpr/ir_printer.cpp", "torch/csrc/jit/tensorexpr/ir_simplifier.cpp", "torch/csrc/jit/tensorexpr/ir_verifier.cpp", "torch/csrc/jit/tensorexpr/ir_visitor.cpp", "torch/csrc/jit/tensorexpr/kernel.cpp", "torch/csrc/jit/tensorexpr/llvm_codegen.cpp", "torch/csrc/jit/tensorexpr/llvm_jit.cpp", "torch/csrc/jit/tensorexpr/loopnest.cpp", "torch/csrc/jit/tensorexpr/loopnest_randomization.cpp", "torch/csrc/jit/tensorexpr/lowerings.cpp", "torch/csrc/jit/tensorexpr/mem_dependency_checker.cpp", "torch/csrc/jit/tensorexpr/operators/conv2d.cpp", "torch/csrc/jit/tensorexpr/operators/matmul.cpp", "torch/csrc/jit/tensorexpr/operators/misc.cpp", "torch/csrc/jit/tensorexpr/operators/norm.cpp", "torch/csrc/jit/tensorexpr/operators/pointwise.cpp", "torch/csrc/jit/tensorexpr/operators/quantization.cpp", "torch/csrc/jit/tensorexpr/operators/reduction.cpp", "torch/csrc/jit/tensorexpr/operators/softmax.cpp", "torch/csrc/jit/tensorexpr/reduction.cpp", "torch/csrc/jit/tensorexpr/registerizer.cpp", "torch/csrc/jit/tensorexpr/tensor.cpp", "torch/csrc/jit/tensorexpr/types.cpp", "torch/csrc/jit/tensorexpr/unique_name_manager.cpp", "torch/csrc/jit/testing/file_check.cpp", "torch/csrc/jit/testing/hooks_for_testing.cpp", "torch/csrc/utils/tensor_flatten.cpp", "torch/csrc/utils/variadic.cpp", ] core_sources_full_mobile = core_sources_full_mobile_no_backend_interface + [ "torch/csrc/jit/backends/backend_debug_info.cpp", "torch/csrc/jit/backends/backend_interface.cpp", ] core_sources_full = core_sources_full_mobile + [ "torch/csrc/jit/runtime/static/fusion.cpp", "torch/csrc/jit/runtime/static/impl.cpp", "torch/csrc/jit/runtime/static/memory_planner.cpp", "torch/csrc/jit/runtime/static/native_ops.cpp", "torch/csrc/jit/runtime/static/ops.cpp", "torch/csrc/jit/runtime/static/passes.cpp", "torch/csrc/jit/runtime/static/te_wrapper.cpp", "torch/csrc/jit/tensorexpr/external_functions.cpp", "torch/csrc/jit/tensorexpr/external_functions_codegen.cpp", ] lazy_tensor_core_sources = [ "torch/csrc/lazy/backend/backend_device.cpp", "torch/csrc/lazy/backend/backend_interface.cpp", "torch/csrc/lazy/backend/lowering_context.cpp", "torch/csrc/lazy/core/config.cpp", "torch/csrc/lazy/core/debug_util.cpp", "torch/csrc/lazy/core/hash.cpp", "torch/csrc/lazy/core/helpers.cpp", "torch/csrc/lazy/core/ir.cpp", "torch/csrc/lazy/core/ir_dump_util.cpp", "torch/csrc/lazy/core/ir_metadata.cpp", "torch/csrc/lazy/core/ir_util.cpp", "torch/csrc/lazy/core/lazy_graph_executor.cpp", "torch/csrc/lazy/core/lazy_view.cpp", "torch/csrc/lazy/core/metrics.cpp", "torch/csrc/lazy/core/multi_wait.cpp", "torch/csrc/lazy/core/permutation_util.cpp", "torch/csrc/lazy/core/shape.cpp", "torch/csrc/lazy/core/tensor.cpp", "torch/csrc/lazy/core/tensor_impl.cpp", "torch/csrc/lazy/core/tensor_util.cpp", "torch/csrc/lazy/core/thread_pool.cpp", "torch/csrc/lazy/core/view_ops/as_strided.cpp", "torch/csrc/lazy/core/view_ops/as_strided_view_update.cpp", "torch/csrc/lazy/core/view_ops/diagonal.cpp", "torch/csrc/lazy/core/view_ops/diagonal_view_update.cpp", "torch/csrc/lazy/core/view_ops/narrow.cpp", "torch/csrc/lazy/core/view_ops/narrow_view_update.cpp", "torch/csrc/lazy/core/view_ops/permute.cpp", "torch/csrc/lazy/core/view_ops/resize.cpp", "torch/csrc/lazy/core/view_ops/select.cpp", "torch/csrc/lazy/core/view_ops/squeeze.cpp", "torch/csrc/lazy/core/view_ops/unsqueeze.cpp", "torch/csrc/lazy/core/view_ops/select_view_update.cpp", "torch/csrc/lazy/core/view_ops/view.cpp", "torch/csrc/lazy/ts_backend/config.cpp", "torch/csrc/lazy/ts_backend/ops/arithmetic_ir_ops.cpp", "torch/csrc/lazy/ts_backend/ops/cast.cpp", "torch/csrc/lazy/ts_backend/ops/device_data.cpp", "torch/csrc/lazy/ts_backend/ops/expand.cpp", "torch/csrc/lazy/ts_backend/ops/generic.cpp", "torch/csrc/lazy/ts_backend/ops/scalar.cpp", "torch/csrc/lazy/ts_backend/ts_node.cpp", ] lazy_tensor_core_python_sources = [ "torch/csrc/lazy/python/init.cpp", "torch/csrc/lazy/python/python_util.cpp", ] libtorch_core_sources = sorted( core_sources_common + torch_unpickler_common + core_sources_full + core_trainer_sources + libtorch_profiler_sources + lazy_tensor_core_sources, ) # These files are the only ones that are supported on Windows. libtorch_distributed_base_sources = [ "torch/csrc/distributed/c10d/FileStore.cpp", "torch/csrc/distributed/c10d/GlooDeviceFactory.cpp", "torch/csrc/distributed/c10d/ParamCommsUtils.cpp", "torch/csrc/distributed/c10d/PrefixStore.cpp", "torch/csrc/distributed/c10d/ProcessGroup.cpp", "torch/csrc/distributed/c10d/ProcessGroupGloo.cpp", "torch/csrc/distributed/c10d/ProcessGroupMPI.cpp", "torch/csrc/distributed/c10d/ProcessGroupWrapper.cpp", "torch/csrc/distributed/c10d/Store.cpp", "torch/csrc/distributed/c10d/TCPStore.cpp", "torch/csrc/distributed/c10d/Utils.cpp", "torch/csrc/distributed/c10d/comm.cpp", "torch/csrc/distributed/c10d/default_comm_hooks.cpp", "torch/csrc/distributed/c10d/exception.cpp", "torch/csrc/distributed/c10d/logger.cpp", "torch/csrc/distributed/c10d/reducer.cpp", "torch/csrc/distributed/c10d/sequence_num.cpp", "torch/csrc/distributed/c10d/socket.cpp", ] # These files are only supported on Linux (and others) but not on Windows. libtorch_distributed_extra_sources = [ "torch/csrc/distributed/autograd/autograd.cpp", "torch/csrc/distributed/autograd/utils.cpp", "torch/csrc/distributed/autograd/context/container.cpp", "torch/csrc/distributed/autograd/context/context.cpp", "torch/csrc/distributed/autograd/engine/dist_engine.cpp", "torch/csrc/distributed/autograd/functions/recvrpc_backward.cpp", "torch/csrc/distributed/autograd/functions/sendrpc_backward.cpp", "torch/csrc/distributed/autograd/rpc_messages/autograd_metadata.cpp", "torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_req.cpp", "torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_resp.cpp", "torch/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_req.cpp", "torch/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_resp.cpp", "torch/csrc/distributed/autograd/rpc_messages/rpc_with_autograd.cpp", "torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_req.cpp", "torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_resp.cpp", "torch/csrc/distributed/autograd/rpc_messages/rref_backward_req.cpp", "torch/csrc/distributed/autograd/rpc_messages/rref_backward_resp.cpp", "torch/csrc/distributed/c10d/HashStore.cpp", "torch/csrc/distributed/c10d/ProcessGroupRoundRobin.cpp", "torch/csrc/distributed/rpc/agent_utils.cpp", "torch/csrc/distributed/rpc/message.cpp", "torch/csrc/distributed/rpc/profiler/remote_profiler_manager.cpp", "torch/csrc/distributed/rpc/profiler/server_process_global_profiler.cpp", "torch/csrc/distributed/rpc/python_call.cpp", "torch/csrc/distributed/rpc/python_remote_call.cpp", "torch/csrc/distributed/rpc/python_resp.cpp", "torch/csrc/distributed/rpc/request_callback.cpp", "torch/csrc/distributed/rpc/request_callback_no_python.cpp", "torch/csrc/distributed/rpc/rpc_agent.cpp", "torch/csrc/distributed/rpc/rref_context.cpp", "torch/csrc/distributed/rpc/rref_impl.cpp", "torch/csrc/distributed/rpc/rref_proto.cpp", "torch/csrc/distributed/rpc/script_call.cpp", "torch/csrc/distributed/rpc/script_remote_call.cpp", "torch/csrc/distributed/rpc/script_resp.cpp", "torch/csrc/distributed/rpc/tensorpipe_agent.cpp", "torch/csrc/distributed/rpc/tensorpipe_utils.cpp", "torch/csrc/distributed/rpc/testing/faulty_tensorpipe_agent.cpp", "torch/csrc/distributed/rpc/torchscript_functions.cpp", "torch/csrc/distributed/rpc/types.cpp", "torch/csrc/distributed/rpc/utils.cpp", ] libtorch_distributed_sources = libtorch_distributed_base_sources + libtorch_distributed_extra_sources jit_sources_full = [ "torch/csrc/jit/codegen/cuda/interface.cpp", "torch/csrc/jit/passes/lower_graph.cpp", "torch/csrc/jit/runtime/register_c10_ops.cpp", "torch/csrc/jit/runtime/register_prim_ops.cpp", "torch/csrc/jit/runtime/register_prim_ops_fulljit.cpp", "torch/csrc/jit/runtime/register_special_ops.cpp", "torch/csrc/jit/passes/remove_inplace_ops.cpp", "torch/csrc/jit/passes/utils/check_alias_annotation.cpp", "torch/csrc/jit/passes/autocast.cpp", ] libtorch_core_jit_sources = sorted(jit_sources_full) torch_mobile_tracer_sources = [ "torch/csrc/jit/mobile/model_tracer/tracer.cpp", "torch/csrc/jit/mobile/model_tracer/TensorUtils.cpp", "torch/csrc/jit/mobile/model_tracer/TracerRunner.cpp", "torch/csrc/jit/mobile/model_tracer/MobileModelRunner.cpp", "torch/csrc/jit/mobile/model_tracer/OperatorCallTracer.cpp", "torch/csrc/jit/mobile/model_tracer/KernelDTypeTracer.cpp", ] torch_mobile_core = [ # backend_debug_info.cpp provides # __torch__.torch.classes.backend.BackendDebugInfo class # This should not be needed eventually. # TODO: Remove this dependency "torch/csrc/jit/backends/backend_debug_info.cpp", "torch/csrc/jit/mobile/compatibility/model_compatibility.cpp", "torch/csrc/jit/mobile/function.cpp", "torch/csrc/jit/mobile/import.cpp", "torch/csrc/jit/mobile/interpreter.cpp", "torch/csrc/jit/mobile/module.cpp", "torch/csrc/jit/mobile/observer.cpp", "torch/csrc/jit/mobile/parse_bytecode.cpp", "torch/csrc/jit/mobile/parse_operators.cpp", "torch/csrc/jit/mobile/upgrader_mobile.cpp", "torch/csrc/jit/runtime/register_prim_ops.cpp", "torch/csrc/jit/runtime/register_special_ops.cpp", ] libtorch_lite_eager_symbolication = [ "torch/csrc/jit/frontend/source_range.cpp", "torch/csrc/jit/ir/scope.cpp", "torch/csrc/jit/mobile/debug_info.cpp", "torch/csrc/jit/serialization/callstack_debug_info_serialization.cpp", "torch/csrc/jit/serialization/source_range_serialization.cpp", # Later we can split serialization and deserialization logic # to have better separation within build and only build relevant parts. "torch/csrc/jit/serialization/pickle.cpp", "torch/csrc/jit/serialization/pickler.cpp", "torch/csrc/jit/serialization/unpickler.cpp", ] # TODO: core_trainer_sources is not necessary for libtorch lite libtorch_lite_cmake_sources = sorted( core_trainer_sources + core_sources_common + torch_unpickler_common + torch_mobile_core, ) libtorch_cmake_sources = libtorch_core_sources + libtorch_core_jit_sources libtorch_extra_sources = libtorch_core_jit_sources + [ "torch/csrc/autograd/TraceTypeManual.cpp", "torch/csrc/autograd/VariableTypeManual.cpp", "torch/csrc/autograd/FunctionsManual.cpp", "torch/csrc/jit/api/module_save.cpp", "torch/csrc/jit/codegen/fuser/cpu/fused_kernel.cpp", "torch/csrc/jit/mobile/compatibility/backport.cpp", "torch/csrc/jit/mobile/compatibility/backport_manager.cpp", "torch/csrc/jit/mobile/compatibility/model_compatibility.cpp", # To be included for eager symbolication in lite interpreter # when it is built in libtorch "torch/csrc/jit/mobile/debug_info.cpp", "torch/csrc/jit/mobile/function.cpp", "torch/csrc/jit/mobile/import.cpp", "torch/csrc/jit/mobile/import_data.cpp", "torch/csrc/jit/mobile/interpreter.cpp", "torch/csrc/jit/mobile/module.cpp", "torch/csrc/jit/mobile/observer.cpp", "torch/csrc/jit/mobile/parse_bytecode.cpp", "torch/csrc/jit/mobile/parse_operators.cpp", "torch/csrc/jit/mobile/train/export_data.cpp", "torch/csrc/jit/mobile/train/optim/sgd.cpp", "torch/csrc/jit/mobile/train/random.cpp", "torch/csrc/jit/mobile/train/sequential.cpp", "torch/csrc/jit/mobile/upgrader_mobile.cpp", "torch/csrc/jit/serialization/onnx.cpp", "torch/csrc/jit/serialization/export.cpp", "torch/csrc/jit/serialization/export_bytecode.cpp", "torch/csrc/jit/serialization/export_module.cpp", "torch/csrc/jit/serialization/import_legacy.cpp", "torch/csrc/utils/byte_order.cpp", "torch/csrc/utils/out_types.cpp", ] def libtorch_sources(gencode_pattern = ":generate-code[{}]"): return libtorch_generated_sources(gencode_pattern) + libtorch_core_sources + libtorch_distributed_sources + libtorch_extra_sources libtorch_cuda_core_sources = [ "torch/csrc/CudaIPCTypes.cpp", "torch/csrc/cuda/comm.cpp", "torch/csrc/jit/codegen/fuser/cuda/fused_kernel.cpp", "torch/csrc/profiler/cuda.cpp", "torch/csrc/autograd/functions/comm.cpp", "torch/csrc/jit/codegen/cuda/arith.cpp", "torch/csrc/jit/codegen/cuda/compute_at.cpp", "torch/csrc/jit/codegen/cuda/compute_at_map.cpp", "torch/csrc/jit/codegen/cuda/codegen.cpp", "torch/csrc/jit/codegen/cuda/dispatch.cpp", "torch/csrc/jit/codegen/cuda/expr_evaluator.cpp", "torch/csrc/jit/codegen/cuda/executor.cpp", "torch/csrc/jit/codegen/cuda/executor_kernel_arg.cpp", "torch/csrc/jit/codegen/cuda/executor_launch_params.cpp", "torch/csrc/jit/codegen/cuda/evaluator_common.cpp", "torch/csrc/jit/codegen/cuda/executor_utils.cpp", "torch/csrc/jit/codegen/cuda/fusion.cpp", "torch/csrc/jit/codegen/cuda/graph_fuser.cpp", "torch/csrc/jit/codegen/cuda/index_compute.cpp", "torch/csrc/jit/codegen/cuda/index_reference_replay.cpp", "torch/csrc/jit/codegen/cuda/instrumentation.cpp", "torch/csrc/jit/codegen/cuda/ir_base_nodes.cpp", "torch/csrc/jit/codegen/cuda/ir_builder.cpp", "torch/csrc/jit/codegen/cuda/ir_cloner.cpp", "torch/csrc/jit/codegen/cuda/ir_container.cpp", "torch/csrc/jit/codegen/cuda/ir_graphviz.cpp", "torch/csrc/jit/codegen/cuda/ir_nodes.cpp", "torch/csrc/jit/codegen/cuda/ir_iostream.cpp", "torch/csrc/jit/codegen/cuda/ir_utils.cpp", "torch/csrc/jit/codegen/cuda/iter_visitor.cpp", "torch/csrc/jit/codegen/cuda/kernel.cpp", "torch/csrc/jit/codegen/cuda/kernel_cache.cpp", "torch/csrc/jit/codegen/cuda/kernel_expr_evaluator.cpp", "torch/csrc/jit/codegen/cuda/kernel_ir.cpp", "torch/csrc/jit/codegen/cuda/kernel_ir_dispatch.cpp", "torch/csrc/jit/codegen/cuda/lower_alias_memory.cpp", "torch/csrc/jit/codegen/cuda/lower_allocation.cpp", "torch/csrc/jit/codegen/cuda/lower_double_buffer.cpp", "torch/csrc/jit/codegen/cuda/lower_expr_sort.cpp", "torch/csrc/jit/codegen/cuda/lower_fusion_simplifier.cpp", "torch/csrc/jit/codegen/cuda/lower_index.cpp", "torch/csrc/jit/codegen/cuda/lower_insert_syncs.cpp", "torch/csrc/jit/codegen/cuda/lower_loops.cpp", "torch/csrc/jit/codegen/cuda/lower_magic_zero.cpp", "torch/csrc/jit/codegen/cuda/lower_misaligned_vectorization.cpp", "torch/csrc/jit/codegen/cuda/lower_predicate.cpp", "torch/csrc/jit/codegen/cuda/lower_replace_size.cpp", "torch/csrc/jit/codegen/cuda/lower_shift.cpp", "torch/csrc/jit/codegen/cuda/lower_thread_predicate.cpp", "torch/csrc/jit/codegen/cuda/lower_trivial_broadcast.cpp", "torch/csrc/jit/codegen/cuda/lower_trivial_reductions.cpp", "torch/csrc/jit/codegen/cuda/lower_unroll.cpp", "torch/csrc/jit/codegen/cuda/lower_utils.cpp", "torch/csrc/jit/codegen/cuda/lower_validation.cpp", "torch/csrc/jit/codegen/cuda/lower_warp_reduce.cpp", "torch/csrc/jit/codegen/cuda/lower2device.cpp", "torch/csrc/jit/codegen/cuda/manager.cpp", "torch/csrc/jit/codegen/cuda/mutator.cpp", "torch/csrc/jit/codegen/cuda/non_divisible_split.cpp", "torch/csrc/jit/codegen/cuda/ops/alias.cpp", "torch/csrc/jit/codegen/cuda/ops/composite.cpp", "torch/csrc/jit/codegen/cuda/ops/normalization.cpp", "torch/csrc/jit/codegen/cuda/parallel_dimension_map.cpp", "torch/csrc/jit/codegen/cuda/parallel_type_bitmap.cpp", "torch/csrc/jit/codegen/cuda/parser.cpp", "torch/csrc/jit/codegen/cuda/partial_split_map.cpp", "torch/csrc/jit/codegen/cuda/partition.cpp", "torch/csrc/jit/codegen/cuda/predicate_compute.cpp", "torch/csrc/jit/codegen/cuda/register_interface.cpp", "torch/csrc/jit/codegen/cuda/root_domain_map.cpp", "torch/csrc/jit/codegen/cuda/scheduler/pointwise.cpp", "torch/csrc/jit/codegen/cuda/scheduler/normalization.cpp", "torch/csrc/jit/codegen/cuda/scheduler/reduction.cpp", "torch/csrc/jit/codegen/cuda/scheduler/reduction_utils.cpp", "torch/csrc/jit/codegen/cuda/scheduler/registry.cpp", "torch/csrc/jit/codegen/cuda/scheduler/utils.cpp", "torch/csrc/jit/codegen/cuda/type_inference.cpp", "torch/csrc/jit/codegen/cuda/type_promotion.cpp", "torch/csrc/jit/codegen/cuda/fusion_segmenter.cpp", "torch/csrc/jit/codegen/cuda/tensor_view.cpp", "torch/csrc/jit/codegen/cuda/transform_iter.cpp", "torch/csrc/jit/codegen/cuda/transform_replay.cpp", "torch/csrc/jit/codegen/cuda/transform_rfactor.cpp", "torch/csrc/jit/codegen/cuda/transform_view.cpp", "torch/csrc/jit/codegen/cuda/type.cpp", "torch/csrc/jit/codegen/cuda/utils.cpp", "torch/csrc/jit/passes/frozen_conv_add_relu_fusion_cuda.cpp", "torch/csrc/jit/tensorexpr/cuda_codegen.cpp", "torch/csrc/jit/runtime/register_cuda_ops.cpp", ] # These files are the only ones that are supported on Windows. libtorch_cuda_distributed_base_sources = [ "torch/csrc/distributed/c10d/reducer_cuda.cpp", ] # These files are only supported on Linux (and others) but not on Windows. libtorch_cuda_distributed_extra_sources = [ "torch/csrc/distributed/c10d/NCCLUtils.cpp", "torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp", "torch/csrc/distributed/rpc/tensorpipe_cuda.cpp", "torch/csrc/distributed/c10d/quantization/quantization_gpu.cu", ] libtorch_cuda_distributed_sources = libtorch_cuda_distributed_base_sources + libtorch_cuda_distributed_extra_sources libtorch_cuda_sources = libtorch_cuda_core_sources + libtorch_cuda_distributed_sources + [ "torch/csrc/cuda/nccl.cpp", ] torch_cpp_srcs = [ "torch/csrc/api/src/cuda.cpp", # this just forwards stuff, no real CUDA "torch/csrc/api/src/data/datasets/mnist.cpp", "torch/csrc/api/src/data/samplers/distributed.cpp", "torch/csrc/api/src/data/samplers/random.cpp", "torch/csrc/api/src/data/samplers/sequential.cpp", "torch/csrc/api/src/data/samplers/stream.cpp", "torch/csrc/api/src/enum.cpp", "torch/csrc/api/src/imethod.cpp", "torch/csrc/api/src/jit.cpp", "torch/csrc/api/src/serialize.cpp", "torch/csrc/api/src/nn/init.cpp", "torch/csrc/api/src/nn/module.cpp", "torch/csrc/api/src/nn/modules/_functions.cpp", "torch/csrc/api/src/nn/modules/activation.cpp", "torch/csrc/api/src/nn/modules/adaptive.cpp", "torch/csrc/api/src/nn/modules/batchnorm.cpp", "torch/csrc/api/src/nn/modules/normalization.cpp", "torch/csrc/api/src/nn/modules/instancenorm.cpp", "torch/csrc/api/src/nn/modules/conv.cpp", "torch/csrc/api/src/nn/modules/dropout.cpp", "torch/csrc/api/src/nn/modules/distance.cpp", "torch/csrc/api/src/nn/modules/embedding.cpp", "torch/csrc/api/src/nn/modules/fold.cpp", "torch/csrc/api/src/nn/modules/linear.cpp", "torch/csrc/api/src/nn/modules/loss.cpp", "torch/csrc/api/src/nn/modules/padding.cpp", "torch/csrc/api/src/nn/modules/pixelshuffle.cpp", "torch/csrc/api/src/nn/modules/pooling.cpp", "torch/csrc/api/src/nn/modules/rnn.cpp", "torch/csrc/api/src/nn/modules/upsampling.cpp", "torch/csrc/api/src/nn/modules/transformer.cpp", "torch/csrc/api/src/nn/modules/container/functional.cpp", "torch/csrc/api/src/nn/options/activation.cpp", "torch/csrc/api/src/nn/options/adaptive.cpp", "torch/csrc/api/src/nn/options/batchnorm.cpp", "torch/csrc/api/src/nn/options/conv.cpp", "torch/csrc/api/src/nn/options/dropout.cpp", "torch/csrc/api/src/nn/options/instancenorm.cpp", "torch/csrc/api/src/nn/options/linear.cpp", "torch/csrc/api/src/nn/options/normalization.cpp", "torch/csrc/api/src/nn/options/embedding.cpp", "torch/csrc/api/src/nn/options/padding.cpp", "torch/csrc/api/src/nn/options/pooling.cpp", "torch/csrc/api/src/nn/options/rnn.cpp", "torch/csrc/api/src/nn/options/vision.cpp", "torch/csrc/api/src/nn/options/transformer.cpp", "torch/csrc/api/src/optim/adagrad.cpp", "torch/csrc/api/src/optim/adam.cpp", "torch/csrc/api/src/optim/adamw.cpp", "torch/csrc/api/src/optim/lbfgs.cpp", "torch/csrc/api/src/optim/optimizer.cpp", "torch/csrc/api/src/optim/rmsprop.cpp", "torch/csrc/api/src/optim/serialize.cpp", "torch/csrc/api/src/optim/sgd.cpp", "torch/csrc/api/src/optim/schedulers/lr_scheduler.cpp", "torch/csrc/api/src/optim/schedulers/step_lr.cpp", "torch/csrc/api/src/serialize/input-archive.cpp", "torch/csrc/api/src/serialize/output-archive.cpp", "torch/csrc/utils/crash_handler.cpp", ] libtorch_python_cuda_core_sources = [ "torch/csrc/cuda/Event.cpp", "torch/csrc/cuda/Module.cpp", "torch/csrc/cuda/python_comm.cpp", "torch/csrc/cuda/Storage.cpp", "torch/csrc/cuda/Stream.cpp", "torch/csrc/cuda/Graph.cpp", "torch/csrc/cuda/serialization.cpp", "torch/csrc/cuda/shared/cudart.cpp", "torch/csrc/cuda/shared/nvtx.cpp", "torch/csrc/cuda/utils.cpp", ] libtorch_python_cuda_sources = libtorch_python_cuda_core_sources + [ "torch/csrc/cuda/python_nccl.cpp", "torch/csrc/cuda/shared/cudnn.cpp", "torch/csrc/cuda/Tensor.cpp", ] libtorch_python_core_sources = [ "torch/csrc/DataLoader.cpp", "torch/csrc/Device.cpp", "torch/csrc/Dtype.cpp", "torch/csrc/DynamicTypes.cpp", "torch/csrc/Exceptions.cpp", "torch/csrc/Generator.cpp", "torch/csrc/Layout.cpp", "torch/csrc/MemoryFormat.cpp", "torch/csrc/QScheme.cpp", "torch/csrc/Module.cpp", "torch/csrc/python_dimname.cpp", "torch/csrc/Size.cpp", "torch/csrc/Storage.cpp", "torch/csrc/Stream.cpp", "torch/csrc/TypeInfo.cpp", "torch/csrc/api/src/python/init.cpp", "torch/csrc/autograd/functions/init.cpp", "torch/csrc/autograd/init.cpp", "torch/csrc/autograd/profiler_python.cpp", "torch/csrc/autograd/python_anomaly_mode.cpp", "torch/csrc/autograd/python_saved_variable_hooks.cpp", "torch/csrc/autograd/python_mode.cpp", "torch/csrc/autograd/python_cpp_function.cpp", "torch/csrc/autograd/python_engine.cpp", "torch/csrc/autograd/python_function.cpp", "torch/csrc/autograd/python_hook.cpp", "torch/csrc/autograd/python_legacy_variable.cpp", "torch/csrc/autograd/python_torch_functions_manual.cpp", "torch/csrc/autograd/python_variable.cpp", "torch/csrc/autograd/python_variable_indexing.cpp", "torch/csrc/jit/backends/backend_init.cpp", "torch/csrc/jit/python/init.cpp", "torch/csrc/jit/passes/onnx.cpp", "torch/csrc/jit/passes/onnx/cast_all_constant_to_floating.cpp", "torch/csrc/jit/passes/onnx/deduplicate_initializers.cpp", "torch/csrc/jit/passes/onnx/eval_peephole.cpp", "torch/csrc/jit/passes/onnx/constant_fold.cpp", "torch/csrc/jit/passes/onnx/constant_map.cpp", "torch/csrc/jit/passes/onnx/eliminate_unused_items.cpp", "torch/csrc/jit/passes/onnx/fixup_onnx_controlflow.cpp", "torch/csrc/jit/passes/onnx/list_model_parameters.cpp", "torch/csrc/jit/passes/onnx/function_substitution.cpp", "torch/csrc/jit/passes/onnx/helper.cpp", "torch/csrc/jit/passes/onnx/peephole.cpp", "torch/csrc/jit/passes/onnx/preprocess_for_onnx.cpp", "torch/csrc/jit/passes/onnx/prepare_division_for_onnx.cpp", "torch/csrc/jit/passes/onnx/scalar_type_analysis.cpp", "torch/csrc/jit/passes/onnx/unpack_quantized_weights.cpp", "torch/csrc/jit/passes/onnx/remove_inplace_ops_for_onnx.cpp", "torch/csrc/jit/passes/onnx/shape_type_inference.cpp", "torch/csrc/jit/passes/onnx/function_extraction.cpp", "torch/csrc/jit/python/pybind_utils.cpp", "torch/csrc/jit/passes/onnx/pattern_conversion/common.cpp", "torch/csrc/jit/passes/onnx/pattern_conversion/pattern_encapsulation.cpp", "torch/csrc/jit/passes/onnx/pattern_conversion/pattern_conversion.cpp", "torch/csrc/jit/python/python_arg_flatten.cpp", "torch/csrc/jit/python/python_custom_class.cpp", "torch/csrc/jit/python/python_dict.cpp", "torch/csrc/jit/python/python_interpreter.cpp", "torch/csrc/jit/python/python_ir.cpp", "torch/csrc/jit/python/python_list.cpp", "torch/csrc/jit/python/python_tracer.cpp", "torch/csrc/jit/python/script_init.cpp", "torch/csrc/jit/frontend/concrete_module_type.cpp", "torch/csrc/jit/frontend/tree_views.cpp", "torch/csrc/jit/python/python_sugared_value.cpp", "torch/csrc/jit/python/python_tree_views.cpp", "torch/csrc/jit/runtime/static/init.cpp", "torch/csrc/jit/tensorexpr/tensorexpr_init.cpp", "torch/csrc/monitor/python_init.cpp", "torch/csrc/multiprocessing/init.cpp", "torch/csrc/onnx/init.cpp", "torch/csrc/serialization.cpp", "torch/csrc/tensor/python_tensor.cpp", "torch/csrc/utils/init.cpp", "torch/csrc/utils/throughput_benchmark.cpp", "torch/csrc/utils.cpp", "torch/csrc/utils/cuda_lazy_init.cpp", "torch/csrc/utils/invalid_arguments.cpp", "torch/csrc/utils/object_ptr.cpp", "torch/csrc/utils/python_arg_parser.cpp", "torch/csrc/utils/python_dispatch.cpp", "torch/csrc/utils/structseq.cpp", "torch/csrc/utils/tensor_apply.cpp", "torch/csrc/utils/tensor_dtypes.cpp", "torch/csrc/utils/tensor_layouts.cpp", "torch/csrc/utils/tensor_memoryformats.cpp", "torch/csrc/utils/tensor_qschemes.cpp", "torch/csrc/utils/tensor_list.cpp", "torch/csrc/utils/tensor_new.cpp", "torch/csrc/utils/tensor_numpy.cpp", "torch/csrc/utils/tensor_types.cpp", "torch/csrc/utils/disable_torch_function.cpp", ] + lazy_tensor_core_python_sources libtorch_python_distributed_core_sources = [ "torch/csrc/distributed/c10d/init.cpp", "torch/csrc/distributed/c10d/python_comm_hook.cpp", "torch/csrc/distributed/c10d/quantization/quantization.cpp", ] libtorch_python_distributed_sources = libtorch_python_distributed_core_sources + [ "torch/csrc/distributed/autograd/init.cpp", "torch/csrc/distributed/rpc/init.cpp", "torch/csrc/distributed/rpc/py_rref.cpp", "torch/csrc/distributed/rpc/python_functions.cpp", "torch/csrc/distributed/rpc/python_rpc_handler.cpp", "torch/csrc/distributed/rpc/request_callback_impl.cpp", "torch/csrc/distributed/rpc/testing/init.cpp", "torch/csrc/distributed/rpc/unpickled_python_call.cpp", "torch/csrc/distributed/rpc/unpickled_python_remote_call.cpp", "torch/csrc/jit/runtime/register_distributed_ops.cpp", ] def glob_libtorch_python_sources(gencode_pattern = ":generate-code[{}]"): _libtorch_python_sources = [gencode_pattern.format(name) for name in [ "autograd/generated/python_functions_0.cpp", "autograd/generated/python_functions_1.cpp", "autograd/generated/python_functions_2.cpp", "autograd/generated/python_functions_3.cpp", "autograd/generated/python_functions_4.cpp", "autograd/generated/python_nn_functions.cpp", "autograd/generated/python_fft_functions.cpp", "autograd/generated/python_linalg_functions.cpp", "autograd/generated/python_return_types.cpp", "autograd/generated/python_sparse_functions.cpp", "autograd/generated/python_special_functions.cpp", "autograd/generated/python_torch_functions_0.cpp", "autograd/generated/python_torch_functions_1.cpp", "autograd/generated/python_torch_functions_2.cpp", "autograd/generated/python_variable_methods.cpp", ]] _libtorch_python_sources.extend(libtorch_python_core_sources) _libtorch_python_sources.extend(libtorch_python_distributed_sources) return _libtorch_python_sources aten_cpu_source_non_codegen_list = [ "aten/src/ATen/AccumulateType.cpp", "aten/src/ATen/BatchedTensorImpl.cpp", "aten/src/ATen/CPUGeneratorImpl.cpp", "aten/src/ATen/Context.cpp", "aten/src/ATen/DLConvertor.cpp", "aten/src/ATen/EmptyTensor.cpp", "aten/src/ATen/ExpandUtils.cpp", "aten/src/ATen/FunctionalInverses.cpp", "aten/src/ATen/FunctionalStorageImpl.cpp", "aten/src/ATen/FunctionalTensorWrapper.cpp", "aten/src/ATen/FunctionalizeFallbackKernel.cpp", "aten/src/ATen/MemoryOverlap.cpp", "aten/src/ATen/MapAllocator.cpp", "aten/src/ATen/NamedTensorUtils.cpp", "aten/src/ATen/ParallelCommon.cpp", "aten/src/ATen/ParallelNative.cpp", "aten/src/ATen/ParallelNativeTBB.cpp", "aten/src/ATen/ParallelOpenMP.cpp", "aten/src/ATen/ParallelThreadPoolNative.cpp", "aten/src/ATen/ScalarOps.cpp", "aten/src/ATen/SequenceNumber.cpp", "aten/src/ATen/SparseTensorImpl.cpp", "aten/src/ATen/SparseCsrTensorImpl.cpp", "aten/src/ATen/SparseTensorUtils.cpp", "aten/src/ATen/TensorGeometry.cpp", "aten/src/ATen/TensorIndexing.cpp", "aten/src/ATen/TensorMeta.cpp", "aten/src/ATen/TensorNames.cpp", "aten/src/ATen/TensorUtils.cpp", "aten/src/ATen/ThreadLocalState.cpp", "aten/src/ATen/FuncTorchTLS.cpp", "aten/src/ATen/Utils.cpp", "aten/src/ATen/Version.cpp", "aten/src/ATen/VmapMode.cpp", "aten/src/ATen/VmapTransforms.cpp", "aten/src/ATen/core/BackendSelectFallbackKernel.cpp", "aten/src/ATen/core/DeprecatedTypeProperties.cpp", "aten/src/ATen/core/DeprecatedTypePropertiesRegistry.cpp", "aten/src/ATen/core/Dict.cpp", "aten/src/ATen/core/Dimname.cpp", "aten/src/ATen/core/Formatting.cpp", "aten/src/ATen/core/Generator.cpp", "aten/src/ATen/core/List.cpp", "aten/src/ATen/core/NamedTensor.cpp", "aten/src/ATen/core/Tensor.cpp", "aten/src/ATen/core/VariableFallbackKernel.cpp", "aten/src/ATen/core/VariableHooksInterface.cpp", "aten/src/ATen/core/Vitals.cpp", "aten/src/ATen/core/boxing/KernelFunction.cpp", "aten/src/ATen/core/custom_class.cpp", "aten/src/ATen/core/dispatch/DispatchKeyExtractor.cpp", "aten/src/ATen/core/dispatch/Dispatcher.cpp", "aten/src/ATen/core/dispatch/ObservedOperators.cpp", "aten/src/ATen/core/dispatch/OperatorEntry.cpp", "aten/src/ATen/core/interned_strings.cpp", "aten/src/ATen/core/ivalue.cpp", "aten/src/ATen/core/library.cpp", "aten/src/ATen/core/op_registration/infer_schema.cpp", "aten/src/ATen/core/op_registration/op_registration.cpp", "aten/src/ATen/core/operator_name.cpp", "aten/src/ATen/core/PythonModeTLS.cpp", "aten/src/ATen/core/register_symbols.cpp", "aten/src/ATen/core/class_type.cpp", "aten/src/ATen/core/type.cpp", "aten/src/ATen/core/type_factory.cpp", "aten/src/ATen/core/dynamic_type.cpp", "aten/src/ATen/core/tensor_type.cpp", "aten/src/ATen/core/union_type.cpp", "aten/src/ATen/cpu/FlushDenormal.cpp", "aten/src/ATen/detail/CPUGuardImpl.cpp", "aten/src/ATen/detail/CUDAHooksInterface.cpp", "aten/src/ATen/detail/HIPHooksInterface.cpp", "aten/src/ATen/detail/ORTHooksInterface.cpp", "aten/src/ATen/metal/Context.cpp", "aten/src/ATen/native/AutogradComposite.cpp", "aten/src/ATen/native/BatchLinearAlgebraKernel.cpp", "aten/src/ATen/native/DispatchStub.cpp", "aten/src/ATen/native/UpSample.cpp", "aten/src/ATen/native/mkl/LinearAlgebra.cpp", "aten/src/ATen/native/mkl/SparseBlasImpl.cpp", "aten/src/ATen/native/mkl/SparseCsrLinearAlgebra.cpp", "aten/src/ATen/native/mkl/SpectralOps.cpp", "aten/src/ATen/native/mkldnn/BinaryOps.cpp", "aten/src/ATen/native/mkldnn/Conv.cpp", "aten/src/ATen/native/mkldnn/Copy.cpp", "aten/src/ATen/native/mkldnn/Gelu.cpp", "aten/src/ATen/native/mkldnn/IDeepRegistration.cpp", "aten/src/ATen/native/mkldnn/Linear.cpp", "aten/src/ATen/native/mkldnn/MKLDNNCommon.cpp", "aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp", "aten/src/ATen/native/mkldnn/MkldnnTensorMath.cpp", "aten/src/ATen/native/mkldnn/Normalization.cpp", "aten/src/ATen/native/mkldnn/Pooling.cpp", "aten/src/ATen/native/mkldnn/Relu.cpp", "aten/src/ATen/native/mkldnn/SoftMax.cpp", "aten/src/ATen/native/mkldnn/TensorFactories.cpp", "aten/src/ATen/native/mkldnn/TensorShape.cpp", "aten/src/ATen/native/mkldnn/UnaryOps.cpp", "aten/src/ATen/native/mkldnn/Utils.cpp", "aten/src/ATen/native/mkldnn/Matmul.cpp", "aten/src/ATen/native/quantized/cpu/init_qnnpack.cpp", "aten/src/ATen/record_function.cpp", "aten/src/ATen/Dispatch.cpp", "aten/src/ATen/SavedTensorHooks.cpp", "aten/src/ATen/vulkan/Context.cpp", "aten/src/ATen/nnapi/nnapi_bind.cpp", "aten/src/ATen/nnapi/nnapi_wrapper.cpp", "aten/src/ATen/nnapi/nnapi_model_loader.cpp", "aten/src/ATen/native/prim_native_functions.cpp", ] aten_cpu_source_codegen_list = [ "aten/src/ATen/native/cpu/AdaptiveAvgPoolKernel.cpp", "aten/src/ATen/native/cpu/AdaptiveMaxPoolKernel.cpp", ] # When building lite interpreter in OSS, "aten/src/ATen/native/cpu/AdaptiveAvgPoolKernel.cpp" will go through # codegen process. The codegen version of this file, like Activation.cpp.DEFAULT.cpp, will be included # in ${cpu_kernel_cpp} in aten/src/ATen/CMakeLists.txt. As a result, in aten/src/ATen/CMakeLists.txt, # only aten_cpu_source_non_codegen_list need to be added to ${all_cpu_cpp}. aten_cpu_source_list = sorted(aten_cpu_source_non_codegen_list + aten_cpu_source_codegen_list) # Same as ${aten_cpu_source_codegen_list}, this list will go through aten codegen, and be included in # ${cpu_kernel_cpp} in aten/src/ATen/CMakeLists.txt. aten_native_source_codegen_list = [ "aten/src/ATen/native/cpu/Activation.cpp", "aten/src/ATen/native/cpu/AvgPoolKernel.cpp", "aten/src/ATen/native/cpu/BinaryOpsKernel.cpp", "aten/src/ATen/native/cpu/BlasKernel.cpp", "aten/src/ATen/native/cpu/CatKernel.cpp", "aten/src/ATen/native/cpu/ChannelShuffleKernel.cpp", "aten/src/ATen/native/cpu/ComplexKernel.cpp", "aten/src/ATen/native/cpu/CopyKernel.cpp", "aten/src/ATen/native/cpu/CrossKernel.cpp", "aten/src/ATen/native/cpu/DepthwiseConvKernel.cpp", "aten/src/ATen/native/cpu/DistanceOpsKernel.cpp", "aten/src/ATen/native/cpu/DistributionKernels.cpp", "aten/src/ATen/native/cpu/FillKernel.cpp", "aten/src/ATen/native/cpu/FunctionOfAMatrixUtilsKernel.cpp", "aten/src/ATen/native/cpu/GridSamplerKernel.cpp", "aten/src/ATen/native/cpu/HistogramKernel.cpp", "aten/src/ATen/native/cpu/IndexKernel.cpp", "aten/src/ATen/native/cpu/LerpKernel.cpp", "aten/src/ATen/native/cpu/LinearAlgebraKernel.cpp", "aten/src/ATen/native/cpu/MaxPooling.cpp", "aten/src/ATen/native/cpu/MaxPoolKernel.cpp", "aten/src/ATen/native/cpu/MaxUnpoolKernel.cpp", "aten/src/ATen/native/cpu/MultinomialKernel.cpp", "aten/src/ATen/native/cpu/PointwiseOpsKernel.cpp", "aten/src/ATen/native/cpu/PowKernel.cpp", "aten/src/ATen/native/cpu/RangeFactoriesKernel.cpp", "aten/src/ATen/native/cpu/ReduceAllOpsKernel.cpp", "aten/src/ATen/native/cpu/ReduceOpsKernel.cpp", "aten/src/ATen/native/cpu/RenormKernel.cpp", "aten/src/ATen/native/cpu/ScatterGatherKernel.cpp", "aten/src/ATen/native/cpu/SoftMaxKernel.cpp", "aten/src/ATen/native/cpu/SortingKernel.cpp", "aten/src/ATen/native/cpu/StackKernel.cpp", "aten/src/ATen/native/cpu/SumKernel.cpp", "aten/src/ATen/native/cpu/TensorCompareKernel.cpp", "aten/src/ATen/native/cpu/UnaryOpsKernel.cpp", "aten/src/ATen/native/cpu/Unfold2d.cpp", "aten/src/ATen/native/cpu/UnfoldBackwardKernel.cpp", "aten/src/ATen/native/cpu/UpSampleKernel.cpp", "aten/src/ATen/native/cpu/UpSampleMoreKernel.cpp", "aten/src/ATen/native/cpu/batch_norm_kernel.cpp", "aten/src/ATen/native/cpu/group_norm_kernel.cpp", "aten/src/ATen/native/cpu/layer_norm_kernel.cpp", "aten/src/ATen/native/quantized/cpu/kernels/QuantizedOpKernels.cpp", ] # This aten native source file list will not go through aten codegen process aten_native_source_non_codegen_list = [ "aten/src/ATen/native/ao_sparse/library.cpp", "aten/src/ATen/native/ao_sparse/quantized/cpu/fbgemm_utils.cpp", "aten/src/ATen/native/ao_sparse/quantized/cpu/qlinear.cpp", "aten/src/ATen/native/ao_sparse/quantized/cpu/qlinear_dynamic.cpp", "aten/src/ATen/native/ao_sparse/quantized/cpu/qlinear_prepack.cpp", "aten/src/ATen/native/ao_sparse/quantized/cpu/qlinear_unpack.cpp", "aten/src/ATen/native/quantized/cpu/fbgemm_utils.cpp", "aten/src/ATen/native/quantized/cpu/fused_obs_fake_quant.cpp", "aten/src/ATen/native/quantized/cpu/int_repr_quant.cpp", "aten/src/ATen/native/quantized/cpu/make_per_tensor_quantized_tensor.cpp", "aten/src/ATen/native/quantized/cpu/q_adaavgpool.cpp", "aten/src/ATen/native/quantized/cpu/q_avgpool.cpp", "aten/src/ATen/native/quantized/cpu/q_avgpool3d.cpp", "aten/src/ATen/native/quantized/cpu/qadd.cpp", "aten/src/ATen/native/quantized/cpu/qbatch_norm.cpp", "aten/src/ATen/native/quantized/cpu/qchannel_shuffle.cpp", "aten/src/ATen/native/quantized/cpu/qclamp.cpp", "aten/src/ATen/native/quantized/cpu/qconcat.cpp", "aten/src/ATen/native/quantized/cpu/qconv.cpp", "aten/src/ATen/native/quantized/cpu/qconv_prepack.cpp", "aten/src/ATen/native/quantized/cpu/qconv_unpack.cpp", "aten/src/ATen/native/quantized/cpu/qelu.cpp", "aten/src/ATen/native/quantized/cpu/qembeddingbag.cpp", "aten/src/ATen/native/quantized/cpu/qembeddingbag_prepack.cpp", "aten/src/ATen/native/quantized/cpu/qembeddingbag_unpack.cpp", "aten/src/ATen/native/quantized/cpu/qgelu.cpp", "aten/src/ATen/native/quantized/cpu/qhardsigmoid.cpp", "aten/src/ATen/native/quantized/cpu/qhardswish.cpp", "aten/src/ATen/native/quantized/cpu/qlinear.cpp", "aten/src/ATen/native/quantized/cpu/qlinear_dynamic.cpp", "aten/src/ATen/native/quantized/cpu/qconv_dynamic.cpp", "aten/src/ATen/native/quantized/cpu/qlinear_prepack.cpp", "aten/src/ATen/native/quantized/cpu/qlinear_unpack.cpp", "aten/src/ATen/native/quantized/cpu/qmatmul.cpp", "aten/src/ATen/native/quantized/cpu/qmul.cpp", "aten/src/ATen/native/quantized/cpu/qnormalization.cpp", "aten/src/ATen/native/quantized/cpu/qpool.cpp", "aten/src/ATen/native/quantized/cpu/qreduction.cpp", "aten/src/ATen/native/quantized/cpu/qrelu.cpp", "aten/src/ATen/native/quantized/cpu/qsigmoid.cpp", "aten/src/ATen/native/quantized/cpu/qsort.cpp", "aten/src/ATen/native/quantized/cpu/qtanh.cpp", "aten/src/ATen/native/quantized/cpu/qthreshold.cpp", "aten/src/ATen/native/quantized/cpu/qupsample_bilinear2d.cpp", "aten/src/ATen/native/quantized/cpu/qupsample_nearest2d.cpp", "aten/src/ATen/native/quantized/cpu/qupsample_nearest3d.cpp", "aten/src/ATen/native/quantized/cpu/tensor_operators.cpp", "aten/src/ATen/native/quantized/Copy.cpp", "aten/src/ATen/native/quantized/QTensor.cpp", "aten/src/ATen/native/quantized/TensorCompare.cpp", "aten/src/ATen/native/quantized/TensorFactories.cpp", "aten/src/ATen/native/quantized/affine_quantizer.cpp", "aten/src/ATen/native/quantized/affine_quantizer_base.cpp", "aten/src/ATen/native/quantized/fake_quant_per_channel_affine.cpp", "aten/src/ATen/native/quantized/fake_quant_per_tensor_affine.cpp", "aten/src/ATen/native/quantized/library.cpp", "aten/src/ATen/quantized/QTensorImpl.cpp", "aten/src/ATen/quantized/Quantizer.cpp", "aten/src/ATen/native/attention.cpp", "aten/src/ATen/native/Activation.cpp", "aten/src/ATen/native/AdaptiveAveragePooling.cpp", "aten/src/ATen/native/AdaptiveAveragePooling3d.cpp", "aten/src/ATen/native/AdaptiveMaxPooling2d.cpp", "aten/src/ATen/native/AdaptiveMaxPooling3d.cpp", "aten/src/ATen/native/AffineGridGenerator.cpp", "aten/src/ATen/native/AveragePool2d.cpp", "aten/src/ATen/native/AveragePool3d.cpp", "aten/src/ATen/native/BatchLinearAlgebra.cpp", "aten/src/ATen/native/Batching.cpp", "aten/src/ATen/native/BinaryOps.cpp", "aten/src/ATen/native/Blas.cpp", "aten/src/ATen/native/BlasKernel.cpp", "aten/src/ATen/native/Bucketization.cpp", "aten/src/ATen/native/CPUBlas.cpp", "aten/src/ATen/native/ChanelShuffle.cpp", "aten/src/ATen/native/Col2Im.cpp", "aten/src/ATen/native/ConstantPadNd.cpp", "aten/src/ATen/native/Convolution.cpp", "aten/src/ATen/native/ConvolutionMM2d.cpp", "aten/src/ATen/native/ConvolutionMM3d.cpp", "aten/src/ATen/native/ConvolutionTBC.cpp", "aten/src/ATen/native/Copy.cpp", "aten/src/ATen/native/Correlation.cpp", "aten/src/ATen/native/CPUFallback.cpp", "aten/src/ATen/native/Cross.cpp", "aten/src/ATen/native/DilatedMaxPool2d.cpp", "aten/src/ATen/native/DilatedMaxPool3d.cpp", # Referenced by both native and ATen/Version.cpp. Does not reference to other native symbols # "aten/src/ATen/native/DispatchStub.cpp", # "aten/src/ATen/native/quantized/cpu/init_qnnpack.cpp", "aten/src/ATen/native/Distance.cpp", "aten/src/ATen/native/Distributions.cpp", "aten/src/ATen/native/Dropout.cpp", "aten/src/ATen/native/Embedding.cpp", "aten/src/ATen/native/EmbeddingBag.cpp", "aten/src/ATen/native/Fill.cpp", "aten/src/ATen/native/ForeachOpsKernels.cpp", "aten/src/ATen/native/FractionalMaxPool2d.cpp", "aten/src/ATen/native/FractionalMaxPool3d.cpp", "aten/src/ATen/native/FunctionOfAMatrixUtils.cpp", "aten/src/ATen/native/GatedLinearUnit.cpp", "aten/src/ATen/native/GridSampler.cpp", "aten/src/ATen/native/Histogram.cpp", "aten/src/ATen/native/Im2Col.cpp", "aten/src/ATen/native/IndexingUtils.cpp", "aten/src/ATen/native/Integration.cpp", "aten/src/ATen/native/Itertools.cpp", "aten/src/ATen/native/LegacyBridge.cpp", "aten/src/ATen/native/Lerp.cpp", "aten/src/ATen/native/Linear.cpp", "aten/src/ATen/native/LinearAlgebra.cpp", "aten/src/ATen/native/Loss.cpp", "aten/src/ATen/native/LossCTC.cpp", "aten/src/ATen/native/LossMultiLabelMargin.cpp", "aten/src/ATen/native/LossMultiMargin.cpp", "aten/src/ATen/native/LossNLL.cpp", "aten/src/ATen/native/LossNLL2d.cpp", "aten/src/ATen/native/MaxPooling.cpp", "aten/src/ATen/native/MaxUnpooling.cpp", "aten/src/ATen/native/Memory.cpp", "aten/src/ATen/native/MetaTensor.cpp", "aten/src/ATen/native/NNPACK.cpp", "aten/src/ATen/native/NaiveConvolutionTranspose2d.cpp", "aten/src/ATen/native/NaiveConvolutionTranspose3d.cpp", "aten/src/ATen/native/NaiveDilatedConvolution.cpp", "aten/src/ATen/native/NamedTensor.cpp", "aten/src/ATen/native/Normalization.cpp", "aten/src/ATen/native/Onehot.cpp", "aten/src/ATen/native/PackedSequence.cpp", "aten/src/ATen/native/PixelShuffle.cpp", "aten/src/ATen/native/PointwiseOps.cpp", "aten/src/ATen/native/Pooling.cpp", "aten/src/ATen/native/Pow.cpp", "aten/src/ATen/native/QuantizedLinear.cpp", "aten/src/ATen/native/RNN.cpp", "aten/src/ATen/native/RangeFactories.cpp", "aten/src/ATen/native/ReduceAllOps.cpp", "aten/src/ATen/native/ReduceOps.cpp", "aten/src/ATen/native/ReflectionPad.cpp", "aten/src/ATen/native/Repeat.cpp", "aten/src/ATen/native/ReplicationPadding.cpp", "aten/src/ATen/native/Resize.cpp", "aten/src/ATen/native/RowwisePrune.cpp", "aten/src/ATen/native/SegmentReduce.cpp", "aten/src/ATen/native/Scalar.cpp", "aten/src/ATen/native/SobolEngineOps.cpp", "aten/src/ATen/native/SobolEngineOpsUtils.cpp", "aten/src/ATen/native/SoftMax.cpp", "aten/src/ATen/native/Sorting.cpp", "aten/src/ATen/native/SpectralOps.cpp", "aten/src/ATen/native/SummaryOps.cpp", "aten/src/ATen/native/TensorAdvancedIndexing.cpp", "aten/src/ATen/native/TensorCompare.cpp", "aten/src/ATen/native/TensorConversions.cpp", "aten/src/ATen/native/TensorFactories.cpp", "aten/src/ATen/native/TensorIteratorReduce.cpp", "aten/src/ATen/native/TensorProperties.cpp", "aten/src/ATen/native/TensorShape.cpp", "aten/src/ATen/native/TensorTransformations.cpp", "aten/src/ATen/native/TestOps.cpp", "aten/src/ATen/native/TriangularOps.cpp", "aten/src/ATen/native/TypeProperties.cpp", "aten/src/ATen/native/UnaryOps.cpp", "aten/src/ATen/native/Unfold2d.cpp", "aten/src/ATen/native/Unfold3d.cpp", "aten/src/ATen/native/UnfoldBackward.cpp", "aten/src/ATen/native/Unique.cpp", # Low-level functions that can be directly referenced # "aten/src/ATen/native/UpSample.cpp", "aten/src/ATen/native/UpSampleBicubic2d.cpp", "aten/src/ATen/native/UpSampleBilinear2d.cpp", "aten/src/ATen/native/UpSampleLinear1d.cpp", "aten/src/ATen/native/UpSampleNearest1d.cpp", "aten/src/ATen/native/UpSampleNearest2d.cpp", "aten/src/ATen/native/UpSampleNearest3d.cpp", "aten/src/ATen/native/UpSampleTrilinear3d.cpp", "aten/src/ATen/native/VariableMethodStubs.cpp", "aten/src/ATen/native/WeightNorm.cpp", "aten/src/ATen/native/group_norm.cpp", "aten/src/ATen/native/layer_norm.cpp", "aten/src/ATen/native/sparse/ParamUtils.cpp", "aten/src/ATen/native/sparse/SoftMax.cpp", "aten/src/ATen/native/sparse/SparseBlas.cpp", "aten/src/ATen/native/sparse/SparseBlasImpl.cpp", "aten/src/ATen/native/sparse/SparseMatMul.cpp", "aten/src/ATen/native/sparse/SparseTensor.cpp", "aten/src/ATen/native/sparse/SparseCsrTensor.cpp", "aten/src/ATen/native/sparse/SparseTensorMath.cpp", "aten/src/ATen/native/sparse/SparseUnaryOps.cpp", "aten/src/ATen/native/sparse/SparseCsrTensorMath.cpp", "aten/src/ATen/native/utils/Factory.cpp", "aten/src/ATen/native/xnnpack/Activation.cpp", "aten/src/ATen/native/xnnpack/ChannelShuffle.cpp", "aten/src/ATen/native/xnnpack/Convolution.cpp", "aten/src/ATen/native/xnnpack/AveragePooling.cpp", "aten/src/ATen/native/xnnpack/Init.cpp", "aten/src/ATen/native/xnnpack/Linear.cpp", "aten/src/ATen/native/xnnpack/MaxPooling.cpp", "aten/src/ATen/native/xnnpack/OpContext.cpp", "aten/src/ATen/native/xnnpack/RegisterOpContextClass.cpp", "aten/src/ATen/native/xnnpack/Shim.cpp", # Files not in native, but depends on native symbols # "aten/src/ATen/TensorIndexing.cpp", "aten/src/ATen/TensorIterator.cpp", "aten/src/ATen/nnapi/nnapi_register.cpp", ] # 1. Files in ATen/native with a few exceptions # TODO: move the exceptions to proper locations # 2. The whole aten native source list includes the list with and without aten codegen process. aten_native_source_list = sorted(aten_native_source_non_codegen_list + aten_native_source_codegen_list) # These are cpp files which need to go in the torch_cuda_cu library # .cu files can be found via glob aten_cuda_cu_source_list = [ "aten/src/ATen/cuda/CUDABlas.cpp", "aten/src/ATen/cuda/CUDASparseBlas.cpp", "aten/src/ATen/cuda/CublasHandlePool.cpp", "aten/src/ATen/native/cuda/Activation.cpp", "aten/src/ATen/native/cuda/Blas.cpp", "aten/src/ATen/native/cuda/Equal.cpp", "aten/src/ATen/native/cuda/GridSampler.cpp", "aten/src/ATen/native/cuda/IndexKernel.cpp", "aten/src/ATen/native/cuda/ReduceOps.cpp", "aten/src/ATen/native/cuda/ScanKernels.cpp", "aten/src/ATen/native/cuda/Sort.cpp", "aten/src/ATen/native/cuda/Sorting.cpp", "aten/src/ATen/native/cuda/TensorModeKernel.cpp", "aten/src/ATen/native/cuda/TensorShapeCUDA.cpp", "aten/src/ATen/native/cuda/TensorTopK.cpp", "aten/src/ATen/native/cuda/jit_utils.cpp", "aten/src/ATen/native/sparse/cuda/SparseBlas.cpp", "aten/src/ATen/native/sparse/cuda/SparseBlasImpl.cpp", "aten/src/ATen/native/sparse/cuda/SparseBlasLegacy.cpp", "aten/src/ATen/native/sparse/cuda/SparseCUDABlas.cpp", ] # Files using thrust::sort_by_key need to be linked last aten_cuda_with_sort_by_key_source_list = [ # empty_cuda is needed by torch_cuda_cpp "aten/src/ATen/native/cuda/TensorFactories.cu", ] aten_cuda_cu_with_sort_by_key_source_list = [ "aten/src/ATen/native/cuda/Unique.cu", ]
46.961933
134
0.738628
d8f80edeedf5a75235661a6e2fa4008b26a23ea3
4,141
py
Python
thing/tasks/planetarycolonies.py
Gillingham/evething
e00b722cf00a6a3a25e1fff3014ed3365c7ef3e4
[ "BSD-2-Clause" ]
33
2015-02-18T00:07:57.000Z
2020-06-09T15:19:05.000Z
thing/tasks/planetarycolonies.py
Gillingham/evething
e00b722cf00a6a3a25e1fff3014ed3365c7ef3e4
[ "BSD-2-Clause" ]
19
2015-03-09T19:51:43.000Z
2019-10-19T12:04:23.000Z
thing/tasks/planetarycolonies.py
Gillingham/evething
e00b722cf00a6a3a25e1fff3014ed3365c7ef3e4
[ "BSD-2-Clause" ]
20
2015-02-20T17:53:17.000Z
2022-02-11T06:29:11.000Z
# ------------------------------------------------------------------------------ # Copyright (c) 2010-2014, EVEthing team # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY # OF SUCH DAMAGE. # ------------------------------------------------------------------------------ from celery.execute import send_task from .apitask import APITask from thing.models import System, Character, Colony class PlanetaryColonies(APITask): name = 'thing.planetary_colonies' def run(self, url, taskstate_id, apikey_id, character_id): if self.init(taskstate_id, apikey_id) is False: return # Make sure the character exists try: character = Character.objects.select_related('details').get(pk=character_id) except Character.DoesNotExist: self.log_warn('Character %s does not exist!', character_id) return params = {'characterID': character_id} if self.fetch_api(url, params) is False or self.root is None: return c_filter = Colony.objects.filter(character=character) c_map = {} for colony in c_filter: c_map[colony.planet_id] = colony system_ids = set() rows = [] for row in self.root.findall('result/rowset/row'): rows.append(row) system_ids.add(int(row.attrib['solarSystemID'])) system_map = System.objects.in_bulk(system_ids) for row in rows: planet_id = int(row.attrib['planetID']) colony = c_map.get(planet_id, None) if colony is not None: colony.last_update = self.parse_api_date(row.attrib['lastUpdate']) colony.level = int(row.attrib['upgradeLevel']) colony.pins = int(row.attrib['numberOfPins']) colony.save() del c_map[planet_id] else: colony = Colony() colony.character = character colony.planet_id = planet_id colony.system = system_map.get(int(row.attrib['solarSystemID'])) colony.planet = row.attrib['planetName'] colony.planet_type = row.attrib['planetTypeName'] colony.last_update = self.parse_api_date(row.attrib['lastUpdate']) colony.level = int(row.attrib['upgradeLevel']) colony.pins = int(row.attrib['numberOfPins']) colony.save() if colony.id: send_task( 'thing.planetary_pins', args=(apikey_id, character_id, colony.id), kwargs={}, queue='et_medium', ) # Remove old colonies that weren't present in the current API request for id in c_map: old_colony = c_map.get(id) old_colony.delete() return True
41
88
0.616518