hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
d221a20f328570df4486c769b0b3faa56183c596
3,357
py
Python
RCJ_pcms_base/scripts/QrCode.py
FablabHome/PCMS_home_robotics
21202fb73811edfcbdfde204ba33fb8bd4360d4b
[ "MIT" ]
1
2021-09-23T09:42:32.000Z
2021-09-23T09:42:32.000Z
RCJ_pcms_base/scripts/QrCode.py
FablabHome/PCMS_home_robotics
21202fb73811edfcbdfde204ba33fb8bd4360d4b
[ "MIT" ]
null
null
null
RCJ_pcms_base/scripts/QrCode.py
FablabHome/PCMS_home_robotics
21202fb73811edfcbdfde204ba33fb8bd4360d4b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import time import cv2 import numpy as np import rospy from cv_bridge import CvBridge from pyzbar import pyzbar from sensor_msgs.msg import CompressedImage from std_msgs.msg import String rospy.init_node('qr_code') def unique_count_app(a): colors, count = np.unique(a.reshape(-1,a.shape[-1]), axis=0, return_counts=True) return colors[count.argmax()] def callback(img: CompressedImage): global bridge, srcframe srcframe = bridge.compressed_imgmsg_to_cv2(img) rospy.set_param('~lock', True) pub = rospy.Publisher( '~status', String, queue_size=1 ) speaker_pub = rospy.Publisher( '/speaker/say', String, queue_size=1 ) rospy.Subscriber( '/top_camera/rgb/image_raw/compressed', CompressedImage, callback, queue_size=1 ) def read_barcodes(frame): barcodes = pyzbar.decode(frame) crop_img2 = None for barcode in barcodes: x, y, w, h = barcode.rect barcode_info = barcode.data.decode('utf-8') cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) crop_img2 = frame[y:y + h, x:x + w] font = cv2.FONT_HERSHEY_DUPLEX return frame, crop_img2 def detect_color(img): try: valid = True height, width, _ = img.shape avg_color_per_row = np.average(img, axis=0) avg_colors = np.average(avg_color_per_row, axis=0) int_averages = np.array(avg_colors, dtype=np.uint8) print(f'int_averages: {int_averages}') if int_averages[-1] >= int_averages[1]: valid = False return valid except ZeroDivisionError: return None srcframe = None bridge = CvBridge() def main(): while not rospy.is_shutdown(): if srcframe is None: continue frame = srcframe.copy() img_y, img_x, c = frame.shape x = int(img_x / 2 - 160) y = int(img_y / 2 - 160) w = 320 h = 320 crop_img = frame[y:y + h, x:x + w] cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 255, 255), 3) crop_img, crop_img2 = read_barcodes(crop_img) frame[y:y + h, x:x + w] = crop_img cv2.imshow('Barcode/QR code', frame) if cv2.waitKey(1) & 0xFF == 27: break if crop_img2 is None: continue valid = detect_color(crop_img2) rospy.loginfo(unique_count_app(crop_img2)) if valid: cv2.putText(frame, "Valid", (int(img_y / 2 - 60), int(img_y / 2 + 200)), cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 255, 0), 5, cv2.LINE_AA, False) cv2.imshow('Barcode/QR code', frame) cv2.waitKey(3) time.sleep(3) pub.publish("Valid") else: cv2.putText(frame, "Invalid", (int(img_y / 2 - 60), int(img_y / 2 + 200)), cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 0, 255), 5, cv2.LINE_AA, False) pub.publish('Invalid') cv2.imshow('Barcode/QR code', frame) cv2.waitKey(3) time.sleep(3) if not rospy.get_param('~lock'): if not valid: speaker_pub.publish('Mister, Your health code is invalid') else: speaker_pub.publish('Your health code is valid') # if __name__ == '__main__': main()
25.625954
113
0.579386
b842c5e20c0185531d6b724ef71046f2b36c1421
3,946
py
Python
deeptrack/sequences.py
BenjaminMidtvedt/DeepTrack-2.0
64245f31e63011fb48d38f211134774bbce28cf4
[ "MIT" ]
1
2022-01-16T14:51:07.000Z
2022-01-16T14:51:07.000Z
deeptrack/sequences.py
BenjaminMidtvedt/DeepTrack-2.0
64245f31e63011fb48d38f211134774bbce28cf4
[ "MIT" ]
null
null
null
deeptrack/sequences.py
BenjaminMidtvedt/DeepTrack-2.0
64245f31e63011fb48d38f211134774bbce28cf4
[ "MIT" ]
null
null
null
"""Features and tools for resolving sequences of images. Classes ------- Sequence Resolves a feature as a sequence. Functions --------- Sequential Converts a feature to be resolved as a sequence. """ from .features import Feature from .properties import SequentialProperty from .types import PropertyLike class Sequence(Feature): """Resolves a feature as a sequence. The input feature is resolved `sequence_length` times, with the kwarg arguments `sequene_length` and `sequence_step` passed to all properties of the feature set. Parameters ---------- feature : Feature The feature to resolve as a sequence. sequence_length : int The number of times to resolve the feature. Attributes ---------- feature : Feature The feature to resolve as a sequence. """ __distributed__ = False def __init__( self, feature: Feature, sequence_length: PropertyLike[int] = 1, **kwargs ): self.feature = feature super().__init__(sequence_length=sequence_length, **kwargs) # Require update # self.update() def get(self, input_list, sequence_length=None, **kwargs): outputs = input_list or [] for sequence_step in range(sequence_length): propagate_sequential_data( self.feature, sequence_step=sequence_step, sequence_length=sequence_length, ) out = self.feature() outputs.append(out) return outputs def Sequential(feature: Feature, **kwargs): """Converts a feature to be resolved as a sequence. Should be called on individual features, not combinations of features. All keyword arguments will be trated as sequential properties and will be passed to the parent feature. If a property from the keyword argument already exists on the feature, the existing property will be used to initilize the passed property (that is, it will be used for the first timestep). Parameters ---------- feature : Feature Feature to make sequential. kwargs Keyword arguments to pass on as sequential properties of `feature`. """ for property_name in kwargs.keys(): if property_name in feature.properties: # Insert property with initialized value feature.properties[property_name] = SequentialProperty( feature.properties[property_name], **feature.properties ) else: # insert empty property feature.properties[property_name] = SequentialProperty() feature.properties.add_dependency(feature.properties[property_name]) feature.properties[property_name].add_child(feature.properties) for property_name, sampling_rule in kwargs.items(): prop = feature.properties[property_name] all_kwargs = dict( previous_value=prop.previous_value, previous_values=prop.previous_values, sequence_length=prop.sequence_length, sequence_step=prop.sequence_step, ) for key, val in feature.properties.items(): if key == property_name: continue if isinstance(val, SequentialProperty): all_kwargs[key] = val all_kwargs["previous_" + key] = val.previous_values else: all_kwargs[key] = val if not prop.initialization: prop.initialization = prop.create_action(sampling_rule, **all_kwargs) prop.current = prop.create_action(sampling_rule, **all_kwargs) return feature def propagate_sequential_data(X, **kwargs): for dep in X.recurse_dependencies(): if isinstance(dep, SequentialProperty): for key, value in kwargs.items(): if hasattr(dep, key): getattr(dep, key).set_value(value)
29.22963
81
0.64369
79f8732c92f509772bfae9066ba9f8555164e21c
113
py
Python
biclustering/__init__.py
lucasbrunialti/biclustering-experiments
30e51e23b0c3d91939bf7ec49c47d3035e6ecb57
[ "BSD-2-Clause" ]
3
2017-11-21T08:21:32.000Z
2020-03-10T14:57:06.000Z
biclustering/__init__.py
lucasbrunialti/biclustering-experiments
30e51e23b0c3d91939bf7ec49c47d3035e6ecb57
[ "BSD-2-Clause" ]
null
null
null
biclustering/__init__.py
lucasbrunialti/biclustering-experiments
30e51e23b0c3d91939bf7ec49c47d3035e6ecb57
[ "BSD-2-Clause" ]
4
2017-01-18T18:10:37.000Z
2021-12-15T02:23:15.000Z
from biclustering import Bicluster, MSR, DeltaBiclustering __all__ = ['Bicluster', 'MSR', 'DeltaBiclustering']
22.6
58
0.769912
0ddb9a5c1a677b74b8d70bf2bc7a8b2fc3800271
11,961
py
Python
modelling/models/input_variation_hydro_zone_model.py
bcgov-c/wally
264bc5d40f9b5cf293159f1bc0424cfd9ff8aa06
[ "Apache-2.0" ]
null
null
null
modelling/models/input_variation_hydro_zone_model.py
bcgov-c/wally
264bc5d40f9b5cf293159f1bc0424cfd9ff8aa06
[ "Apache-2.0" ]
null
null
null
modelling/models/input_variation_hydro_zone_model.py
bcgov-c/wally
264bc5d40f9b5cf293159f1bc0424cfd9ff8aa06
[ "Apache-2.0" ]
null
null
null
import os import json from numpy.core.numeric import allclose import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import math import csv import itertools from ast import literal_eval from sklearn.metrics import mean_squared_error, r2_score from pathlib import Path import matplotlib.backends.backend_pdf import matplotlib.pyplot as plt import seaborn as sns from matplotlib import pyplot from operator import attrgetter import pickle from joblib import dump, load # Model Settings OUTPUT_DIR = 'Sept_9_2021' TESTING_SIZE = 0.3 TEST_ALL_DATA = False FOLDS = 50 DEPENDANT_VARIABLE = '7Q10-S' NORMALIZE_LOWFLOW = True ALLOCATED_THRESHOLD = 2 NET_THRESHOLD = 0 # ZONES = ["all_data"] # ZONES = ["25", "26", "27", "all_data"] ZONES = ["all_data"] ALL_ZONES = False directory = '../data/4_training/sept2_2021' output_directory_base = "./output/" + OUTPUT_DIR zone_scores = {} count = 0 inputs_list = ["average_slope","annual_precipitation","glacial_coverage","potential_evapotranspiration","median_elevation","solar_exposure"] all_combinations = [] for r in range(len(inputs_list) + 1): combinations_object = itertools.combinations(inputs_list, r) combinations_list = list(combinations_object) all_combinations += combinations_list # limit input list size all_combinations = [x for x in all_combinations if len(x)<=5] print('total combinations: ', len(all_combinations)) def filter_data(df): return df[(df["percent_allocated_mad"] <= ALLOCATED_THRESHOLD) | (df["percent_allocated_mad_abs"] == NET_THRESHOLD)] # 1. Find best performing inputs for each zone for filename in sorted(os.listdir(directory)): if filename.endswith(".csv"): zone_name = filename.split('.')[0] # limits zones calculated if constant has zone numbers in it if zone_name in ZONES or ALL_ZONES: print("Starting Zone:", zone_name) else: continue model = LinearRegression() zone_df = pd.read_csv(os.path.join(directory, filename)) zone_df = filter_data(zone_df) zone_df = zone_df.dropna(subset=[DEPENDANT_VARIABLE]) # drop NaNs print(zone_df) # Divide 7Q10-S by MAD if DEPENDANT_VARIABLE == '7Q10-S' and NORMALIZE_LOWFLOW: print('NORMALIZING LOWFLOW BY DIVIDING BY MAD') zone_df['7Q10-S'] = zone_df['7Q10-S'] / ((zone_df['mean'] / 1000) * zone_df['drainage_area']) print("ZONE DATA ROWS COUNT:", zone_df.shape) all_combo_stats = [] local_dir = output_directory_base + "/zone_" + str(zone_name) + "/" Path(local_dir).mkdir(parents=True, exist_ok=True) for inputs in all_combinations: count += 1 inputs = list(inputs) + [DEPENDANT_VARIABLE] # print(inputs) if len(inputs) < 2: continue features_df = zone_df[inputs] X = features_df.dropna(subset=[DEPENDANT_VARIABLE]) # drop NaNs y = X.get(DEPENDANT_VARIABLE) # dependant X = X.drop([DEPENDANT_VARIABLE], axis=1) # independant if len(X.index) <=1: continue best_r2 = 0 min_r2 = 1 all_r2 = [] for i in range(0, FOLDS): if TEST_ALL_DATA: model.fit(X, y) X_test = X y_test = y else: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TESTING_SIZE) model.fit(X_train, y_train) # model_score = model.score(X_test, y_test) r2 = model.score(X, y) y_pred = model.predict(X_test) correlation_matrix = np.corrcoef(y_test.to_numpy(), y_pred) correlation_xy = correlation_matrix[0,1] r2 = correlation_xy**2 # print(r2) if r2 > best_r2: best_r2 = r2 if r2 < min_r2: min_r2 = r2 all_r2.append(r2) combo_stats = { "best_r2": best_r2, "min_r2": min_r2, "avg_r2": sum(all_r2) / len(all_r2), "columns": list(X.columns.values) } print(combo_stats) all_combo_stats.append(combo_stats) # Find best performing combo based on three factors highest_min_r2_combo = {'best_r2': 0, 'min_r2': 0, 'avg_r2': 0, 'columns': []} highest_best_r2_combo = {'best_r2': 0, 'min_r2': 0, 'avg_r2': 0, 'columns': []} highest_avg_r2_combo = {'best_r2': 0, 'min_r2': 0, 'avg_r2': 0, 'columns': []} for combo in all_combo_stats: if combo["best_r2"] == 0 or combo["min_r2"] == 1 or combo["avg_r2"] is math.nan: continue if combo["min_r2"] > highest_min_r2_combo["min_r2"]: highest_min_r2_combo = combo if combo["best_r2"] > highest_best_r2_combo["best_r2"]: highest_best_r2_combo = combo if combo["avg_r2"] > highest_avg_r2_combo["avg_r2"]: highest_avg_r2_combo = combo print("highest_min_r2_combo", highest_min_r2_combo) score = highest_min_r2_combo["min_r2"] best_inputs = highest_min_r2_combo["columns"] zone_scores[zone_name] = { "score": score, "best_inputs": best_inputs } # output all variation results file local_file_path = local_dir + "zone_" + str(zone_name) + "_input_variation_results.csv" df = pd.DataFrame(all_combo_stats) df.to_csv(local_file_path, index=False) print('ZONE:', zone_name, 'SCORE:', score, 'INPUTS:', best_inputs) else: continue # 2. Run iterations on each zones best input set and output the summary for attr, value in zone_scores.items(): zone_name = 'zone_' + str(attr) zone_df = pd.read_csv(os.path.join(directory, str(attr) + '.csv')) zone_df = filter_data(zone_df) # Divide 7Q10-S by MAD if DEPENDANT_VARIABLE == '7Q10-S' and NORMALIZE_LOWFLOW: print('NORMALIZING LOWFLOW BY DIVIDING BY MAD') zone_df['7Q10-S'] = zone_df['7Q10-S'] / ((zone_df['mean'] / 1000) * zone_df['drainage_area']) print("2nd Round Size:", zone_df.shape) inputs = value["best_inputs"] + [DEPENDANT_VARIABLE] model = LinearRegression() features_df = zone_df[inputs + ['station_number']] X = features_df.dropna(subset=[DEPENDANT_VARIABLE]) # drop NaNs y = X.get(DEPENDANT_VARIABLE) # dependant X = X.drop([DEPENDANT_VARIABLE], axis=1) # independant if len(X.index) <=1: continue fold_counter = 1 all_models = [] best_model = None fold_dir = local_dir + 'fold_data/' Path(fold_dir).mkdir(parents=True, exist_ok=True) for i in range(0, FOLDS): # Train Model if TEST_ALL_DATA: model.fit(X, y) X_test = X y_test = y else: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TESTING_SIZE) model.fit(X_train.drop(['station_number'], axis=1), y_train) y_pred = model.predict(X_test.drop(['station_number'], axis=1)) # r2 = r2_score(y_test.to_numpy(), y_pred) r2_test = model.score(X_test.drop(['station_number'], axis=1), y_test) correlation_matrix = np.corrcoef(y_test.to_numpy(), y_pred) correlation_xy = correlation_matrix[0,1] r2 = correlation_xy**2 print("") print("r2_test", r2_test, r2) print(fold_counter, r2) print(y_test.to_numpy()) print(type(y_test.to_numpy())) print(y_pred) print(type(y_pred)) print("") rmse = mean_squared_error(y_test, y_pred, squared=False) X_test['y_test'] = y_test X_test['y_pred'] = y_pred X_test['r2'] = r2 X_test['rmse'] = rmse fold_file_path = fold_dir + str(fold_counter) + '.csv' X_test_df = pd.DataFrame(X_test) try: print(fold_file_path) print(X_test_df) X_test_df.to_csv(fold_file_path, index=False) print("successfully exported fold data") except Exception as e: print("Error exporting fold data", e) feat_import = model.coef_ intercept = model.intercept_ output_dir = output_directory_base + "/zone_" + str(attr) + "/" # Report Output Path(output_dir).mkdir(parents=True, exist_ok=True) pdf = matplotlib.backends.backend_pdf.PdfPages(output_dir + "fold_" + str(fold_counter) + "_stats.pdf") size = (10, 6) marker_size = 9 # Pred MAR vs Real MAR fig_pred, ax1 = plt.subplots(figsize=size) ax1 = sns.regplot(y_pred, y_test, fit_reg=True, truncate=True) fig_pred.suptitle("Predicted MAR vs Real MAR") xlim = ax1.get_xlim()[1] ylim = ax1.get_ylim()[1] max_size = max(xlim, ylim) ax1.set_xlabel('Pred MAR') ax1.set_ylabel('Real MAR') lx = np.linspace(0,max_size/2,100) ly = lx ax1.plot(lx, ly, ':') ax1.legend() pdf.savefig( fig_pred ) # Covariance of Features corr = X.corr() corr.style.background_gradient(cmap='coolwarm') fig_cov, ax = plt.subplots(figsize=size) ax.set_xticks(range(len(corr.columns))) ax.set_yticks(range(len(corr.columns))) fig_cov.suptitle("Feature Correlations") ax = sns.heatmap( corr, vmin=-1, vmax=1, center=0, cmap=sns.diverging_palette(20, 220, n=200), square=True ) ax.set_xticklabels( ax.get_xticklabels(), rotation=45, horizontalalignment='right' ) pdf.savefig( fig_cov ) pdf.close() model_test = { "model": model, "r2": round(r2,4), "rmse": round(rmse,6), "gain": feat_import, "fold": fold_counter } all_models.append(model_test) if best_model is None: best_model = model_test elif rmse < best_model['rmse']: best_model = model_test fold_counter += 1 # Create summary reports model = best_model['model'] rmse = best_model['rmse'] r2 = best_model['r2'] model_output_dir =output_directory_base + "/" + str(zone_name) + "/" + zone_name + '.joblib' dump(model, model_output_dir) r2s = [] rmses = [] foldsArr = [] for item in all_models: # if item["r2"] > 0: r2s.append(item["r2"]) rmses.append(item["rmse"]) foldsArr.append(item["fold"]) fig1, (ax1, ax2, ax3) = pyplot.subplots(3, 1, figsize=(10,20)) fig1.subplots_adjust(hspace=0.4) ax1.plot(r2s, rmses, 'o') ax1.set_xlabel("R2") ax1.set_ylabel("RMSE") ax1.title.set_text('RMSE vs R2') xrng = range(1, FOLDS + 1) ax2.plot(xrng, r2s, 'o') avg = sum(r2s) / len(r2s) ax2.plot(xrng, [avg] * len(xrng), ':') ax2.set_xlabel("FOLDS") ax2.set_ylabel("R2") ax2.title.set_text('Average R2') ax2.set_ylim([min(avg - 0.05, -1),1]) ax3.plot(xrng, rmses, 'o') avg = sum(rmses) / len(rmses) ax3.plot(xrng, [avg] * len(xrng), ':') ax3.set_xlabel("FOLDS") ax3.set_ylabel("RMSE") ax3.title.set_text('Average RMSE') for i, fold in enumerate(foldsArr): ax1.annotate(str(fold), (r2s[i], rmses[i])) # pyplot.show() local_img_path = output_dir + zone_name + "_summary.png" fig1.savefig(local_img_path, bbox_inches='tight') print("zone", zone_name) print("r2 score", r2) rmse_95_p = rmse * 2 print("RMSE 95%", rmse_95_p)
33.317549
140
0.596188
3df36d90ba99b3345b191890bb0ea532728f189f
1,491
py
Python
autoscaler/__init__.py
vanvalenlab/kiosk-autoscaler
770cc8ec47927549e64c032b4df81732235bdbf9
[ "Apache-2.0" ]
null
null
null
autoscaler/__init__.py
vanvalenlab/kiosk-autoscaler
770cc8ec47927549e64c032b4df81732235bdbf9
[ "Apache-2.0" ]
13
2018-10-29T19:54:17.000Z
2020-04-13T20:38:23.000Z
autoscaler/__init__.py
vanvalenlab/kiosk-autoscaler
770cc8ec47927549e64c032b4df81732235bdbf9
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-2020 The Van Valen Lab at the California Institute of # Technology (Caltech), with support from the Paul Allen Family Foundation, # Google, & National Institutes of Health (NIH) under Grant U24CA224309-01. # All rights reserved. # # Licensed under a modified Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.github.com/vanvalenlab/kiosk-autoscaler/LICENSE # # The Work provided may be used for non-commercial academic purposes only. # For any other use of the Work, including commercial use, please contact: # vanvalenlab@gmail.com # # Neither the name of Caltech nor the names of its contributors may be used # to endorse or promote products derived from this software without specific # prior written permission. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from __future__ import absolute_import from __future__ import division from __future__ import print_function from autoscaler import redis from autoscaler.autoscaler import Autoscaler del absolute_import del division del print_function
40.297297
78
0.751844
115d769e78e5d0d9a0e60c0eee72c88e16f1dfd6
4,657
py
Python
Merge-NMAP-XML-Files.py
osvaldohdzm/Port-Services-Scan-Tool
7ecad2d3299fd916eef93b45fbebcd475b3135af
[ "MIT" ]
null
null
null
Merge-NMAP-XML-Files.py
osvaldohdzm/Port-Services-Scan-Tool
7ecad2d3299fd916eef93b45fbebcd475b3135af
[ "MIT" ]
null
null
null
Merge-NMAP-XML-Files.py
osvaldohdzm/Port-Services-Scan-Tool
7ecad2d3299fd916eef93b45fbebcd475b3135af
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 #################################################################################### # # nMapMerge.py # # Description # Combine nMap xml files into one XML # # Example # python nMapMerge.py -f nmap_scan.xml # python nMapMerge.py -f ./nMap/ # # Author: # Hue B. Solutions LLC, CBHue # # #################################################################################### import os import re import time import logging import xml.etree.ElementTree as ET from argparse import ArgumentParser from xml.etree.ElementTree import ParseError def merge_nMap(xmlFile,mf): HOSTS = 0 with open(mf, mode = 'a', encoding='utf-8') as mergFile: with open(xmlFile) as f: try: nMapXML = ET.parse(f) for host in nMapXML.findall('host'): HOSTS = HOSTS + 1 cHost = ET.tostring(host, encoding='unicode', method='xml') mergFile.write(cHost) mergFile.flush() except: print("Hubo error") return HOSTS def addHeader(f): nMap_Header = '<?xml version="1.0" encoding="UTF-8"?>' nMap_Header += '<!DOCTYPE nmaprun>' nMap_Header += '<?xml-stylesheet href="file:///usr/share/nmap/nmap.xsl" type="text/xsl"?>' nMap_Header += '<!-- Nmap Merged with nMapMergER.py https://github.com/CBHue/nMapMergER -->' nMap_Header += '<nmaprun scanner="nmap" args="nmap -iL hostList.txt" start="1" startstr="https://github.com/CBHue/nMapMerge/nMapMerge.py" version="7.70" xmloutputversion="1.04">' nMap_Header += '<scaninfo type="syn" protocol="tcp" numservices="1" services="1"/>' nMap_Header += '<verbose level="0"/>' nMap_Header += '<debugging level="0"/>' mFile = open(f, "w") mFile.write(nMap_Header) mFile.close() def addFooter(f, h): nMap_Footer = '<runstats><finished time="1" timestr="Wed Sep 0 00:00:00 0000" elapsed="0" summary="Nmap done at Wed Sep 0 00:00:00 0000; ' + str(h) + ' IP address scanned in 0.0 seconds" exit="success"/>' nMap_Footer += '</runstats>' nMap_Footer += '</nmaprun>' mFile = open(f, "a") mFile.write(nMap_Footer) mFile.close() def htmlER(mergeFile): import os cmd = '/usr/bin/xsltproc' if os.path.isfile(cmd): out = re.sub(r'.xml', '.html', mergeFile) cmd = cmd + " -o " + out + " " + mergeFile os.system(cmd) print ("Output HTML File:", os.path.abspath(out)) else: print(cmd, "does not exits") def checkDatabase(): mycursor = mydb.cursor() mycursor.execute("CREATE DATABASE mydatabase") # # If you want to use this as a module you need to pass a set of nmap xmls # # nmapSET = set() # nmapSET.add('/nmap-Dir/nmap_10.10.10.10.xml') # # Then call the main function passing the set: # main_nMapMerger(nmapSET) # def main_nMapMerger(xmlSet): HOSTS = 0 # Check to ensute we have work to do if not xmlSet: print("No XML files were found ... No work to do") exit() # Create the Merged filename from datetime import datetime dtNow = datetime.now().strftime("%Y-%m-%d %H:%M:%S") dt = re.sub(r"\s+", '-', str(dtNow)) dt = re.sub(r":", '-', str(dt)) mergeFile = "nmap-merged-" + dt + ".xml" # Add Header to mergefile addHeader(mergeFile) for xml in xmlSet: if xml.endswith('.xml'): logging.debug("Parsing: %r", xml) H = merge_nMap(xml,mergeFile) HOSTS = HOSTS + H # Add Footer to mergefile addFooter(mergeFile, HOSTS) print('') print ("Output XML File:", os.path.abspath(mergeFile)) # Convert merged XML to html htmlER(mergeFile) if __name__ == "__main__": import sys if sys.version_info <= (3, 0): sys.stdout.write("This script requires Python 3.x\n") sys.exit(1) parser = ArgumentParser() parser.add_argument("-f", "--file", dest="filename", help="parse FILE", metavar="FILE") parser.add_argument("-d", "--dir", dest="directory", help="Parse all xml in directory", metavar="DIR") parser.add_argument("-q", "--quiet", dest="verbose", action="store_false", default=True, help="don't print status messages to stdout") args = parser.parse_args() s = set() if args.verbose: logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') print('Debug On') if args.filename is not None: f = args.filename if f.endswith('.xml'): logging.debug("Adding: %r", f) s.add(f) elif args.directory is not None: if os.path.isdir(args.directory): path = args.directory for f in os.listdir(path): # For now we assume xml is nMap if f.endswith('.xml'): fullname = os.path.join(path, f) logging.debug("Adding: %r", fullname) s.add(fullname) else: logging.warn("Not a directory: %r", args.directory) else : print ("usage issues =(") parser.print_help() exit() # Pass set of xml files to main main_nMapMerger(s)
27.886228
208
0.640971
208c707f0053622260b0ec4cb1722fe83c94b57f
2,581
py
Python
Scripts/GenerateLayerOntology.py
allemangD/cell-locator
0bf11d853ade1a0cf82526ca2063618524559ad0
[ "Apache-2.0" ]
12
2018-07-11T20:29:53.000Z
2021-11-20T11:15:16.000Z
Scripts/GenerateLayerOntology.py
allemangD/cell-locator
0bf11d853ade1a0cf82526ca2063618524559ad0
[ "Apache-2.0" ]
173
2018-06-27T12:17:17.000Z
2022-03-15T16:14:48.000Z
Scripts/GenerateLayerOntology.py
allemangD/cell-locator
0bf11d853ade1a0cf82526ca2063618524559ad0
[ "Apache-2.0" ]
7
2018-08-23T20:56:34.000Z
2021-08-05T08:38:22.000Z
"""Generate layer ontology. Prerequisites: pip install allensdk Initial version written by David Feng <davidf@alleninstitute.org> See https://gist.github.com/dyf/056095756b15a6b76dfb28558c4633da """ import argparse import sys try: from allensdk.api.queries.rma_api import RmaApi import allensdk.core.json_utilities as ju except ImportError: raise SystemExit( "allensdk not available: " "consider installing it running 'pip install allensdk'" ) def generate_layer_ontology(output): all_structs = [] root = RmaApi().model_query("Structure", criteria="[graph_id$eq1],[acronym$eqgrey]")[0] all_structs.append(root) layers = [ { 'id': 900000000, 'acronym': 'Isocortex1', 'name': 'Isocortex layer 1', 'color_hex_triplet': '7fc97f' }, { 'id': 900000001, 'acronym': 'Isocortex2/3', 'name': 'Isocortex layer 2/3', 'color_hex_triplet': 'beaed4' }, { 'id': 900000002, 'acronym': 'Isocortex4', 'name': 'Isocortex layer 4', 'color_hex_triplet': 'fdc086' }, { 'id': 900000003, 'acronym': 'Isocortex5', 'name': 'Isocortex layer 5', 'color_hex_triplet': 'ffff99' }, { 'id': 900000004, 'acronym': 'Isocortex6a', 'name': 'Isocortex layer 6a', 'color_hex_triplet': '386cb0' }, { 'id': 900000005, 'acronym': 'Isocortex6b', 'name': 'Isocortex layer 6b', 'color_hex_triplet': 'f0027f' } ] all_structs += layers for layer in layers: layer['structure_id_path'] = '/%d/%d/' % (root['id'], layer['id']) layer['parent_structure_id'] = root['id'] structs = RmaApi().model_query("Structure", criteria="structure_sets[name$eq'%s']"%layer['name']) for struct in structs: struct['structure_id_path'] = '/%d/%d/%d/' % (root['id'], layer['id'], struct['id']) struct['color_hex_triplet'] = layer['color_hex_triplet'] struct['parent_structure_id'] = layer['id'] all_structs += structs # Generate structure similar to the one returned by the http://api.brain-map.org/api/v2/data/Structure/query.json content = { "msg": all_structs, "num_rows": len(all_structs), "start_row": 0, "success": True, "total_rows": len(all_structs) } ju.write(output, content) def main(argv): parser = argparse.ArgumentParser( description='Generate layer ontology.' ) parser.add_argument( '--output', metavar='/path/to/file.json', required=True, help='Path to the output json file' ) args = parser.parse_args(argv) generate_layer_ontology(args.output) if __name__ == '__main__': main(sys.argv[1:])
32.670886
122
0.655947
6d4d373b4c8d8334d333a6a789ca7b6fe43036f0
2,462
py
Python
setup.py
clytwynec/pa11ycrawler
fc672d4524463bc050ade4c7c97801c0d5bf8c9e
[ "Apache-2.0" ]
20
2016-05-18T01:13:05.000Z
2019-09-30T14:34:53.000Z
setup.py
clytwynec/pa11ycrawler
fc672d4524463bc050ade4c7c97801c0d5bf8c9e
[ "Apache-2.0" ]
57
2016-04-01T15:43:39.000Z
2019-03-20T21:44:11.000Z
setup.py
clytwynec/pa11ycrawler
fc672d4524463bc050ade4c7c97801c0d5bf8c9e
[ "Apache-2.0" ]
15
2016-08-10T19:47:18.000Z
2020-02-24T04:21:30.000Z
from setuptools import setup VERSION = '1.7.3' DESCRIPTION = 'A Scrapy spider for a11y auditing Open edX installations.' LONG_DESCRIPTION = """pa11ycrawler is a Scrapy spider that runs a Pa11y check on every page of an Open edX installation, to audit it for accessibility purposes.""" def is_requirement(line): line = line.strip() # Skip blank lines, comments, and editable installs return not ( line == '' or line.startswith('--') or line.startswith('-r') or line.startswith('#') or line.startswith('-e') or line.startswith('git+') ) def get_requirements(path): with open(path) as f: lines = f.readlines() return [l.strip() for l in lines if is_requirement(l)] setup( name='pa11ycrawler', version=VERSION, author='edX', author_email='oscm@edx.org', url='https://github.com/edx/pa11ycrawler', description=DESCRIPTION, long_description=LONG_DESCRIPTION, package_data={ 'pa11ycrawler': [ 'templates/*.*', 'templates/assets/js/*.*', 'templates/assets/css/*.*', ] }, packages=[ 'pa11ycrawler', 'pa11ycrawler.pipelines', 'pa11ycrawler.spiders', 'pa11ycrawler.commands', ], install_requires=get_requirements("requirements.txt"), tests_require=get_requirements("dev-requirements.txt"), license="Apache-2.0", classifiers=['Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Software Development :: Testing', 'Topic :: Software Development :: Quality Assurance'], entry_points={ 'console_scripts': [ 'pa11ycrawler-html=pa11ycrawler.html:main', ] } )
33.27027
79
0.582859
bd237a66b7c7f88908eb6d7b73ac261fc2151108
1,703
py
Python
requests/packages/urllib3/__init__.py
devavenkata/sublimeapex
a4a3d7559b58e4d7b1e5e766731a3d30fce6b2ec
[ "MIT" ]
6
2015-01-20T08:26:53.000Z
2019-01-16T00:09:22.000Z
requests/packages/urllib3/__init__.py
devavenkata/sublimeapex
a4a3d7559b58e4d7b1e5e766731a3d30fce6b2ec
[ "MIT" ]
7
2015-01-03T14:06:32.000Z
2015-05-07T01:40:04.000Z
requests/packages/urllib3/__init__.py
devavenkata/sublimeapex
a4a3d7559b58e4d7b1e5e766731a3d30fce6b2ec
[ "MIT" ]
17
2015-06-09T13:01:39.000Z
2021-03-17T03:10:20.000Z
# urllib3/__init__.py # Copyright 2008-2013 Andrey Petrov and contributors (see CONTRIBUTORS.txt) # # This module is part of urllib3 and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """ urllib3 - Thread-safe connection pooling and re-using. """ __author__ = 'Andrey Petrov (andrey.petrov@shazow.net)' __license__ = 'MIT' __version__ = '1.8.2' from .connectionpool import ( HTTPConnectionPool, HTTPSConnectionPool, connection_from_url ) from . import exceptions from .filepost import encode_multipart_formdata from .poolmanager import PoolManager, ProxyManager, proxy_from_url from .response import HTTPResponse from .util import make_headers, get_host, Timeout # Set default logging handler to avoid "No handler found" warnings. import logging try: # Python 2.7+ from logging import NullHandler except ImportError: class NullHandler(logging.Handler): def emit(self, record): pass logging.getLogger(__name__).addHandler(NullHandler()) def add_stderr_logger(level=logging.DEBUG): """ Helper for quickly adding a StreamHandler to the logger. Useful for debugging. Returns the handler after adding it. """ # This method needs to be in this __init__.py to get the __name__ correct # even if urllib3 is vendored within another package. logger = logging.getLogger(__name__) handler = logging.StreamHandler() handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s')) logger.addHandler(handler) logger.setLevel(level) logger.debug('Added an stderr logging handler to logger: %s' % __name__) return handler # ... Clean up. del NullHandler
28.864407
84
0.741632
8242d655b3181f6dbb86f2f0a38f4a4cc995659a
1,722
py
Python
lib/googlecloudsdk/command_lib/functions/v1/delete/command.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
2
2019-11-10T09:17:07.000Z
2019-12-18T13:44:08.000Z
lib/googlecloudsdk/command_lib/functions/v1/delete/command.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/command_lib/functions/v1/delete/command.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
1
2020-07-25T01:40:19.000Z
2020-07-25T01:40:19.000Z
# -*- coding: utf-8 -*- # # Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This file provides the implementation of the `functions delete` command.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.functions.v1 import exceptions from googlecloudsdk.api_lib.functions.v1 import operations from googlecloudsdk.api_lib.functions.v1 import util from googlecloudsdk.core import log from googlecloudsdk.core.console import console_io def Run(args): """Delete a Google Cloud Function.""" client = util.GetApiClientInstance() messages = client.MESSAGES_MODULE function_ref = args.CONCEPTS.name.Parse() function__url = function_ref.RelativeName() prompt_message = 'Resource [{0}] will be deleted.'.format(function__url) if not console_io.PromptContinue(message=prompt_message): raise exceptions.FunctionsError('Deletion aborted by user.') op = client.projects_locations_functions.Delete( messages.CloudfunctionsProjectsLocationsFunctionsDeleteRequest( name=function__url)) operations.Wait(op, messages, client) log.DeletedResource(function__url)
41
78
0.784553
e6d2b7ad2abd6b80bdb20a12996b2ab9cb380fe6
494
py
Python
Utils/Logger.py
FullMetalNicky/PitchNet
9987398e304238ed67c588a4166ec0cc1801f805
[ "MIT" ]
null
null
null
Utils/Logger.py
FullMetalNicky/PitchNet
9987398e304238ed67c588a4166ec0cc1801f805
[ "MIT" ]
null
null
null
Utils/Logger.py
FullMetalNicky/PitchNet
9987398e304238ed67c588a4166ec0cc1801f805
[ "MIT" ]
null
null
null
import logging def LogProgram(): logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", filename="log.txt", filemode='w') console = logging.StreamHandler() console.setLevel(logging.INFO) formatter = logging.Formatter('%(message)s') console.setFormatter(formatter) logging.getLogger('').addHandler(console)
32.933333
75
0.55668
bf9a835022cf1b5840b3784a239a3bb1c6f2c15d
26
py
Python
spoapy/__init__.py
tprodanov/spoa
3a09bc65a08915a1a3956ef74b5b7cc4391cd08c
[ "MIT" ]
null
null
null
spoapy/__init__.py
tprodanov/spoa
3a09bc65a08915a1a3956ef74b5b7cc4391cd08c
[ "MIT" ]
null
null
null
spoapy/__init__.py
tprodanov/spoa
3a09bc65a08915a1a3956ef74b5b7cc4391cd08c
[ "MIT" ]
null
null
null
from spoapy.core import *
13
25
0.769231
c8e815d0966934bcc798babcd0eb42e3ccdce51e
3,229
py
Python
assignments/assignment2/model.py
nikitakogut/dlcourse_ai
bd5826c04331864e0c37c84cf33674438d3f9b01
[ "MIT" ]
1
2019-03-27T09:18:47.000Z
2019-03-27T09:18:47.000Z
assignments/assignment2/model.py
nikitakogut/dlcourse_ai
bd5826c04331864e0c37c84cf33674438d3f9b01
[ "MIT" ]
null
null
null
assignments/assignment2/model.py
nikitakogut/dlcourse_ai
bd5826c04331864e0c37c84cf33674438d3f9b01
[ "MIT" ]
null
null
null
import numpy as np from layers import FullyConnectedLayer, ReLULayer, softmax, softmax_with_cross_entropy, l2_regularization class TwoLayerNet: """ Neural network with two fully connected layers """ def __init__(self, n_input, n_output, hidden_layer_size, reg): """ Initializes the neural network Arguments: n_input, int - dimension of the model input n_output, int - number of classes to predict hidden_layer_size, int - number of neurons in the hidden layer reg, float - L2 regularization strength """ self.reg = reg # TODO Create necessary layers self.layers = [FullyConnectedLayer(n_input, hidden_layer_size), ReLULayer(), FullyConnectedLayer(hidden_layer_size, n_output)] def compute_loss_and_gradients(self, X, y): """ Computes total loss and updates parameter gradients on a batch of training examples Arguments: X, np array (batch_size, input_features) - input data y, np array of int (batch_size) - classes """ # Before running forward and backward pass through the model, # clear parameter gradients aggregated from the previous pass # TODO Set parameter gradient to zeros # Hint: using self.params() might be useful! for layer in self.layers: if {'W', 'B'} <= set(layer.params()): layer.W.grad = np.zeros(layer.W.value.shape) layer.B.grad = np.zeros(layer.B.value.shape) # TODO Compute loss and fill param gradients # by running forward and backward passes through the model forward_val = X for layer in self.layers: forward_val = layer.forward(forward_val) loss, backward_val = softmax_with_cross_entropy(forward_val, y) for layer in self.layers[::-1]: backward_val = layer.backward(backward_val) # After that, implement l2 regularization on all params # Hint: self.params() is useful again! for layer in self.layers: for param_name, param in layer.params().items(): loss_reg, grad_reg = l2_regularization(param.value, self.reg) loss += loss_reg param.grad += grad_reg return loss def predict(self, X): """ Produces classifier predictions on the set Arguments: X, np array (test_samples, num_features) Returns: y_pred, np.array of int (test_samples) """ # TODO: Implement predict # Hint: some of the code of the compute_loss_and_gradients # can be reused pred = np.zeros(X.shape[0], np.int) forward_val = X for layer in self.layers: forward_val = layer.forward(forward_val) pred = np.argmax(softmax(forward_val), axis=1) return pred def params(self): result = {} # TODO Implement aggregating all of the params for ind, layer in enumerate(self.layers): for param in layer.params().items(): result['layer_' + str(ind/2+1) + '_' + param[0]] = param[1] return result
37.988235
105
0.613503
df3d01211cf05279a83f1d059ec14e3bd3fd7b70
2,206
py
Python
utest/namespace/test_library_cache.py
crylearner/RIDE3X
767f45b0c908f18ecc7473208def8dc7489f43b0
[ "ECL-2.0", "Apache-2.0" ]
1
2017-08-20T14:46:02.000Z
2017-08-20T14:46:02.000Z
utest/namespace/test_library_cache.py
crylearner/RIDE3X
767f45b0c908f18ecc7473208def8dc7489f43b0
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
utest/namespace/test_library_cache.py
crylearner/RIDE3X
767f45b0c908f18ecc7473208def8dc7489f43b0
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
import unittest import sys import os from robotide.spec.librarymanager import LibraryManager from threading import Thread from robotide.namespace.cache import LibraryCache from resources import DATAPATH sys.path.append(os.path.join(DATAPATH, 'libs')) class TestLibraryCache(unittest.TestCase): @classmethod def setUpClass(cls): cls._library_manager = LibraryManager(':memory:') cls._library_manager.start() cls._library_manager.create_database() @classmethod def tearDownClass(cls): cls._library_manager.stop() cls._library_manager = None def test_auto_importing_libraries(self): cache = self._create_cache_with_auto_imports('TestLib') self._assert_keyword_in_keywords(cache.get_default_keywords(), 'Testlib Keyword') def test_auto_importing_libraries_with_arguments(self): cache = self._create_cache_with_auto_imports('ArgLib|foo') self._assert_keyword_in_keywords(cache.get_default_keywords(), 'Get Mandatory') def test_importing_library_with_dictionary_arg(self): LibraryCache({}, lambda:0, self._library_manager)._get_library('ArgLib', [{'moi':'hoi'}, []]) def test_importing_from_two_threads(self): cache = self._create_cache_with_auto_imports('TestLib') self._thread_results = [] def check_test_lib_keyword(): cache.get_default_keywords() self._thread_results.append('ok') t1 = Thread(target=check_test_lib_keyword) t2 = Thread(target=check_test_lib_keyword) t1.start() t2.start() t1.join() t2.join() self.assertEqual(['ok', 'ok'], self._thread_results) def _create_cache_with_auto_imports(self, auto_import): settings = {'auto imports': [auto_import]} return LibraryCache(settings, lambda:0, self._library_manager) def _assert_keyword_in_keywords(self, keywords, name): for kw in keywords: if kw.name == name: return raise AssertionError('Keyword %s not found in default keywords' % name) if __name__ == "__main__": unittest.main()
33.938462
102
0.67815
d614d4d47eb4f0d9ced64a90806b7112c12038c7
2,396
py
Python
etutils/viz/scatter3.py
erdogant/etutils
69be71d2b2a0e7536b9244eb90edd689a6d1148c
[ "MIT" ]
null
null
null
etutils/viz/scatter3.py
erdogant/etutils
69be71d2b2a0e7536b9244eb90edd689a6d1148c
[ "MIT" ]
null
null
null
etutils/viz/scatter3.py
erdogant/etutils
69be71d2b2a0e7536b9244eb90edd689a6d1148c
[ "MIT" ]
null
null
null
""" This function creates a 3d scatterplot from etutils.viz.scatter3 import scatter3 A= scatter3(x,y,z <optional>) INPUT: data: numpy array x y z OPTIONAL verbose: Integer [0..5] if verbose >= DEBUG: print('debug message') 0: (default) 1: ERROR 2: WARN 3: INFO 4: DEBUG OUTPUT output DESCRIPTION Plot 3d scatterplot EXAMPLE from etutils.viz.scatter3 import scatter3 data='hallo' A = scatter3(data,verbose=1) SEE ALSO scatter """ #-------------------------------------------------------------------------- # Name : scatter3.py # Version : 1.0 # Author : E.Taskesen # Contact : erdogant@gmail.com # Date : April. 2019 #-------------------------------------------------------------------------- #%% Libraries import matplotlib.pyplot as plt import pandas as pd import numpy as np #%% Main def scatter3(x, y, z, dtypes=[None,None,None], xlabel='X-axis', ylabel='Y-axis', zlabel='Z-axis', colors='b', verbose=3): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x_num = checktype(x, dtypes[0]) y_num = checktype(y, dtypes[1]) z_num = checktype(z, dtypes[2]) if not 'str' in str(type(colors)): colors = checktype(colors, dtypes=None) # Plot the values ax.scatter(x_num, y_num, z_num, c=colors, marker='.') ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_zlabel(zlabel) plt.show() return #%% Check type def checktype(data, dtypes=None): if isinstance(dtypes, type(None)): score = np.isnan(pd.to_numeric(data,errors='coerce')).sum()/len(data) if score>=0.1: dtypes='cat' else: dtypes='num' if dtypes=='num': if 'pandas' in str(type(data)): out = pd.to_numeric(data,errors='coerce').values if 'numpy' in str(type(data)): out = data.astype(float) if dtypes=='cat': data = data.astype(str) if 'numpy' in str(type(data)): _,out = etutils.ismember(data, np.unique(data)) if 'pandas' in str(type(data)): data = data.astype('category') out = data.cat.codes.values return(out)
24.44898
121
0.514608
b03b2c3be68f7feecfa85afe6e10c72be599c55c
3,260
py
Python
tests/ocd_backend/transformers/test_database_transformer.py
openstate/open-raadsinformatie
bb5cb306d794251334942f34e573a204f52db61b
[ "MIT" ]
23
2015-10-28T09:02:41.000Z
2021-12-15T08:40:41.000Z
tests/ocd_backend/transformers/test_database_transformer.py
openstate/open-raadsinformatie
bb5cb306d794251334942f34e573a204f52db61b
[ "MIT" ]
326
2015-11-03T12:59:48.000Z
2022-03-11T23:18:14.000Z
tests/ocd_backend/transformers/test_database_transformer.py
openstate/open-raadsinformatie
bb5cb306d794251334942f34e573a204f52db61b
[ "MIT" ]
10
2016-02-05T08:43:07.000Z
2022-03-09T10:04:32.000Z
import os import json from unittest import TestCase from ocd_backend.models.model import Model from ocd_backend.transformers.database import database_item class DatabaseTransformerTestCase(TestCase): def setUp(self): self.PWD = os.path.dirname(__file__) self.transformer_class = database_item self.transformer_class.get_supplier = self.mock_get_supplier self.untested_models = set() @staticmethod def mock_get_supplier(ori_id): if ori_id == 35138: return 'allmanak' else: return 'notubiz' def test_transformed_object_properties_equal(self): """ Tests whether the properties of the transformed resource are equal to the properties in the JSON dump. Note that date and datetime properties have been removed from the JSON because they are not JSON serializable. """ with open(os.path.join(self.PWD, '../test_dumps/database_extracted_meeting.json'), 'r') as f: extracted_resource, extracted_subresources = json.loads(f.read()) args = ('object', (extracted_resource, extracted_subresources), '612019', 'source_item_dummy') kwargs = {'source_definition': { 'cleanup': 'ocd_backend.tasks.cleanup_elasticsearch', 'key': 'groningen', } } transformed_meeting = self.transformer_class.apply(args, kwargs).get() # Test properties of the main resource extracted_properties = {_prop['predicate']: _prop['value'] for _prop in extracted_resource['properties'] if _prop['predicate'] != 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type'} self.assertEqual(len(transformed_meeting.values), len(extracted_properties)) for _property in transformed_meeting.values.items(): if isinstance(_property[1], Model): self.untested_models.add(_property[1]) else: self.assertTrue(transformed_meeting.definition(_property[0]).absolute_uri() in extracted_properties) self.assertTrue(extracted_properties[transformed_meeting.definition(_property[0]).absolute_uri()] == _property[1]) # Test properties of subresources for subresource in self.untested_models: extracted_subresource_properties = extracted_subresources[subresource.ori_identifier.rsplit('/')[-1]][0]['properties'] extracted_properties = {_prop['predicate']: _prop['value'] for _prop in extracted_subresource_properties if _prop['predicate'] != 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type'} self.assertEqual(len(subresource.values), len(extracted_properties)) for _property in subresource.values.items(): if isinstance(_property[1], Model): self.untested_models.add(_property[1]) else: self.assertTrue(subresource.definition(_property[0]).absolute_uri() in extracted_properties) self.assertTrue(extracted_properties[subresource.definition(_property[0]).absolute_uri()] == _property[1])
50.9375
130
0.645092
7e703e1301b77456a3c86d21c5923f6f04a26290
699
py
Python
gofile2/errors.py
Itz-fork/Gofile2
14065c6fd5d9ef82baf2fcd099d80c43cee9a564
[ "MIT" ]
9
2021-09-19T15:47:05.000Z
2021-12-10T05:22:44.000Z
gofile2/errors.py
Itz-fork/Gofile2
14065c6fd5d9ef82baf2fcd099d80c43cee9a564
[ "MIT" ]
null
null
null
gofile2/errors.py
Itz-fork/Gofile2
14065c6fd5d9ef82baf2fcd099d80c43cee9a564
[ "MIT" ]
null
null
null
# Original Author: Codec04 # Re-built by Itz-fork # Project: Gofile2 import requests class InvalidToken(Exception): pass class JobFailed(Exception): pass class ResponseError(Exception): pass class InvalidPath(Exception): pass # Function to check if token is valid or not (using request lib as this is just a sync function) def is_valid_token(url, token): get_account_resp = requests.get( url=f"{url}getAccountDetails?token={token}&allDetails=true").json() if get_account_resp["status"] == "error-wrongToken": raise InvalidToken( "Invalid Gofile Token, Get your Gofile token from --> https://gofile.io/myProfile") else: pass
21.181818
96
0.695279
bc6185ab34afcb1afb878944eb9c1ba67938533b
1,659
py
Python
setup.py
mattsanchez/sqlalchemy-sparksql
122f27c8ae7709a5d6df6bbba1194884c59bbb81
[ "Apache-2.0" ]
null
null
null
setup.py
mattsanchez/sqlalchemy-sparksql
122f27c8ae7709a5d6df6bbba1194884c59bbb81
[ "Apache-2.0" ]
null
null
null
setup.py
mattsanchez/sqlalchemy-sparksql
122f27c8ae7709a5d6df6bbba1194884c59bbb81
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from setuptools import setup from setuptools.command.test import test as TestCommand import sqlalchemy_sparksql import sys class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(self.test_args) sys.exit(errno) with open('README.md') as readme: long_description = readme.read() setup( name="sqlalchemy-sparksql", version=sqlalchemy_sparksql.__version__, description="SparkSQL Driver for SQLAlchemy", long_description=long_description, url='https://github.com/matthsanchez/sqlalchemy-sparksql', author="Matt Sanchez", author_email="matt at c12.com", license="Apache License, Version 2.0", packages=['sqlalchemy_sparksql'], classifiers=[ "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Topic :: Database :: Front-Ends", ], install_requires=[ 'sqlalchemy>=0.12.0', 'pyhive[hive]', ], tests_require=[ 'mock>=1.0.0', 'pytest', 'pytest-cov', 'requests>=1.0.0', 'sasl>=0.2.1', 'sqlalchemy>=0.12.0', 'thrift>=0.10.0', ], cmdclass={'test': PyTest}, package_data={ '': ['*.rst'], }, entry_points={ 'sqlalchemy.dialects': [ 'sparksql = sqlalchemy_sparksql.sparksql:SparkSqlDialect', ], } )
26.333333
70
0.615431
7aec0cc19c3157a64f6a4be580841c82830021a6
664
py
Python
koku/cost_models/migrations/0003_auto_20210615_2011.py
rubik-ai/koku
3255d1c217b7b6685cb2e130bf4e025946e76fac
[ "Apache-2.0" ]
157
2018-04-30T16:27:53.000Z
2022-03-31T08:17:21.000Z
koku/cost_models/migrations/0003_auto_20210615_2011.py
rubik-ai/koku
3255d1c217b7b6685cb2e130bf4e025946e76fac
[ "Apache-2.0" ]
3,250
2018-04-26T14:14:25.000Z
2022-03-31T23:49:15.000Z
koku/cost_models/migrations/0003_auto_20210615_2011.py
rubik-ai/koku
3255d1c217b7b6685cb2e130bf4e025946e76fac
[ "Apache-2.0" ]
65
2018-05-10T14:11:50.000Z
2022-03-18T19:22:58.000Z
# Generated by Django 3.1.12 on 2021-06-15 20:11 from django.db import migrations from django.db import models class Migration(migrations.Migration): dependencies = [("cost_models", "0002_auto_20210318_1514")] operations = [ migrations.AddField( model_name="costmodel", name="distribution", field=models.TextField(choices=[("memory", "memory"), ("cpu", "cpu")], default="cpu"), ), migrations.AddField( model_name="costmodelaudit", name="distribution", field=models.TextField(choices=[("memory", "memory"), ("cpu", "cpu")], default="cpu"), ), ]
30.181818
98
0.597892
728938a32a07383a8aeec68d57f3163806ca0f0c
1,721
py
Python
python_modules/libraries/dagster-k8s/setup.py
joeyfreund/dagster
e551ff4bbb2c42b497a3e1c28cfb51fd5f2b1c21
[ "Apache-2.0" ]
null
null
null
python_modules/libraries/dagster-k8s/setup.py
joeyfreund/dagster
e551ff4bbb2c42b497a3e1c28cfb51fd5f2b1c21
[ "Apache-2.0" ]
null
null
null
python_modules/libraries/dagster-k8s/setup.py
joeyfreund/dagster
e551ff4bbb2c42b497a3e1c28cfb51fd5f2b1c21
[ "Apache-2.0" ]
null
null
null
import argparse import sys from setuptools import find_packages, setup def get_version(name): version = {} with open('dagster_k8s/version.py') as fp: exec(fp.read(), version) # pylint: disable=W0122 if name == 'dagster-k8s': return version['__version__'] elif name == 'dagster-k8s-nightly': return version['__nightly__'] else: raise Exception('Shouldn\'t be here: bad package name {name}'.format(name=name)) parser = argparse.ArgumentParser() parser.add_argument('--nightly', action='store_true') def _do_setup(name='dagster-k8s'): setup( name=name, version=get_version(name), author='Elementl', license='Apache-2.0', description='A Dagster integration for k8s', url='https://github.com/dagster-io/dagster/tree/master/python_modules/libraries/dagster-k8s', classifiers=[ 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', ], packages=find_packages(exclude=['test']), install_requires=[ 'dagster', 'dagster_graphql', 'kubernetes', # RSA 4.1+ is incompatible with py2.7 'rsa<=4.0; python_version<"3"', ], tests_require=[], zip_safe=False, ) if __name__ == '__main__': parsed, unparsed = parser.parse_known_args() sys.argv = [sys.argv[0]] + unparsed if parsed.nightly: _do_setup('dagster-k8s-nightly') else: _do_setup('dagster-k8s')
29.169492
101
0.598489
42cbad91992189bb16a322caba1e7ef2e17423ef
511
py
Python
var/spack/repos/builtin.mock/packages/extendee/package.py
whitfin/spack
aabd2be31a511d0e00c1017f7311a421659319d9
[ "ECL-2.0", "Apache-2.0", "MIT" ]
3
2019-06-27T13:26:50.000Z
2019-07-01T16:24:54.000Z
var/spack/repos/builtin.mock/packages/extendee/package.py
openbiox/spack
bb6ec7fb40c14b37e094a860e3625af53f633174
[ "ECL-2.0", "Apache-2.0", "MIT" ]
75
2016-07-27T11:43:00.000Z
2020-12-08T15:56:53.000Z
var/spack/repos/builtin.mock/packages/extendee/package.py
openbiox/spack
bb6ec7fb40c14b37e094a860e3625af53f633174
[ "ECL-2.0", "Apache-2.0", "MIT" ]
8
2015-10-16T13:51:49.000Z
2021-10-18T13:58:03.000Z
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Extendee(Package): """A package with extensions""" homepage = "http://www.example.com" url = "http://www.example.com/extendee-1.0.tar.gz" extendable = True version('1.0', 'hash-extendee-1.0') def install(self, spec, prefix): mkdirp(prefix.bin)
24.333333
73
0.679061
0fde83b717479801193cd7a93ef17b7567607eb9
1,003
py
Python
code/main.py
abdullahkhawer/ak-encoder-decoder
7553476d40d8629d24fd58541d31ea767381cf6a
[ "Apache-2.0" ]
8
2019-07-04T11:13:55.000Z
2021-06-28T13:19:32.000Z
code/main.py
abdullahkhawer/ak-encoder-decoder
7553476d40d8629d24fd58541d31ea767381cf6a
[ "Apache-2.0" ]
null
null
null
code/main.py
abdullahkhawer/ak-encoder-decoder
7553476d40d8629d24fd58541d31ea767381cf6a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python from AKEncoderDecoder import AKEncoderDecoder import os import sys pass_key = os.getenv("AK_ENCODER_DECODER_PASS_KEY", " ") pass_key = '+'.join(str(ord(c)) for c in pass_key) pass_key = eval(pass_key)/2 if __name__ == "__main__": if len(sys.argv) != 3: print("ERROR: Invalid Number of Arguments Passed.") exit(1) code_mode = int(sys.argv[1]) input_str = sys.argv[2] AKEncoderDecoder_OBJ = AKEncoderDecoder() print("Input String: " + input_str) if code_mode == 0: encoded_str = AKEncoderDecoder_OBJ.ak_encoder(input_str, int(pass_key)) print("Encoded String: \"" + encoded_str + "\"") #decoded_str = AKEncoderDecoder_OBJ.ak_decoder(encoded_str, int(pass_key)) #print("Decoded String: " + decoded_str) elif code_mode == 1: decoded_str = AKEncoderDecoder_OBJ.ak_decoder(input_str, int(pass_key)) print("Decoded String: " + decoded_str) else: print("ERROR: Invalid Code Mode.")
30.393939
82
0.666999
e3af27aec21d81cbfbc6c63da67a642852630a5d
1,070
py
Python
mmdet/models/utils/__init__.py
yan-roo/LambdaNetworks-Mask_RCNN
dbd2e3171c69c262a7ed6583f79bdaf329128a2a
[ "Apache-2.0" ]
null
null
null
mmdet/models/utils/__init__.py
yan-roo/LambdaNetworks-Mask_RCNN
dbd2e3171c69c262a7ed6583f79bdaf329128a2a
[ "Apache-2.0" ]
null
null
null
mmdet/models/utils/__init__.py
yan-roo/LambdaNetworks-Mask_RCNN
dbd2e3171c69c262a7ed6583f79bdaf329128a2a
[ "Apache-2.0" ]
null
null
null
from .builder import build_linear_layer, build_transformer from .gaussian_target import gaussian_radius, gen_gaussian_target from .inverted_residual import InvertedResidual from .make_divisible import make_divisible from .normed_predictor import NormedConv2d, NormedLinear from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding) from .res_layer import ResLayer, SimplifiedBasicBlock from .lambda_layer import LambdaBlock, LambdaLayer from .se_layer import SELayer from .transformer import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DynamicConv, Transformer) __all__ = [ 'ResLayer', 'gaussian_radius', 'gen_gaussian_target', 'DetrTransformerDecoderLayer', 'DetrTransformerDecoder', 'Transformer', 'build_transformer', 'build_linear_layer', 'SinePositionalEncoding', 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', 'NormedLinear', 'NormedConv2d', 'make_divisible', 'InvertedResidual', 'SELayer', 'LambdaBlock', 'LambdaLayer' ]
48.636364
78
0.776636
e6033cc0547a0f36d507969825b911bb255aeb53
2,909
py
Python
GUIPackage1/datavisualize/datavisualize6/main_window.py
cybernetor066/test1DesktopAppPySide2
1f6f42bcdb4b0ee39a76c0e2d206c5957cc9ff24
[ "PSF-2.0" ]
null
null
null
GUIPackage1/datavisualize/datavisualize6/main_window.py
cybernetor066/test1DesktopAppPySide2
1f6f42bcdb4b0ee39a76c0e2d206c5957cc9ff24
[ "PSF-2.0" ]
null
null
null
GUIPackage1/datavisualize/datavisualize6/main_window.py
cybernetor066/test1DesktopAppPySide2
1f6f42bcdb4b0ee39a76c0e2d206c5957cc9ff24
[ "PSF-2.0" ]
null
null
null
############################################################################# ## ## Copyright (C) 2016 The Qt Company Ltd. ## Contact: http://www.qt.io/licensing/ ## ## This file is part of the Qt for Python examples of the Qt Toolkit. ## ## $QT_BEGIN_LICENSE:BSD$ ## You may use this file under the terms of the BSD license as follows: ## ## "Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are ## met: ## * Redistributions of source code must retain the above copyright ## notice, this list of conditions and the following disclaimer. ## * Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in ## the documentation and/or other materials provided with the ## distribution. ## * Neither the name of The Qt Company Ltd nor the names of its ## contributors may be used to endorse or promote products derived ## from this software without specific prior written permission. ## ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ## "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ## LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ## A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ## OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ## DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ## THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ## ## $QT_END_LICENSE$ ## ############################################################################# from PySide2.QtCore import Slot, qApp from PySide2.QtWidgets import QMainWindow, QAction class MainWindow(QMainWindow): def __init__(self, widget): QMainWindow.__init__(self) self.setWindowTitle("Eartquakes information") # Menu self.menu = self.menuBar() self.file_menu = self.menu.addMenu("File") # Exit QAction exit_action = QAction("Exit", self) exit_action.setShortcut("Ctrl+Q") exit_action.triggered.connect(self.exit_app) self.file_menu.addAction(exit_action) # Status Bar self.status = self.statusBar() self.status.showMessage("Data loaded and plotted") # Window dimensions geometry = qApp.desktop().availableGeometry(self) self.setFixedSize(geometry.width() * 0.8, geometry.height() * 0.7) self.setCentralWidget(widget) @Slot() def exit_app(self, checked): sys.exit()
40.402778
77
0.676521
f036c65900d0a9bf7e71ab916a8aad398a96e0f2
999
py
Python
myproject/urls.py
ritwickjha99/onlineclass
1d0ea759c33ae4204d1ecaa5078b50ec9f3851ca
[ "Apache-2.0" ]
null
null
null
myproject/urls.py
ritwickjha99/onlineclass
1d0ea759c33ae4204d1ecaa5078b50ec9f3851ca
[ "Apache-2.0" ]
null
null
null
myproject/urls.py
ritwickjha99/onlineclass
1d0ea759c33ae4204d1ecaa5078b50ec9f3851ca
[ "Apache-2.0" ]
null
null
null
"""myproject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('onlinecourse/', include('onlinecourse.urls')), path("",include('onlinecourse.urls')) ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
38.423077
77
0.724725
c7b5a52827f8b09c77b3cde18696f16ed7dca6a3
4,363
py
Python
toontown/toon/DistributedNPCToonBase.py
journeyfan/toontown-journey
7a4db507e5c1c38a014fc65588086d9655aaa5b4
[ "MIT" ]
1
2020-09-27T22:12:47.000Z
2020-09-27T22:12:47.000Z
toontown/toon/DistributedNPCToonBase.py
journeyfan/toontown-journey
7a4db507e5c1c38a014fc65588086d9655aaa5b4
[ "MIT" ]
null
null
null
toontown/toon/DistributedNPCToonBase.py
journeyfan/toontown-journey
7a4db507e5c1c38a014fc65588086d9655aaa5b4
[ "MIT" ]
2
2020-09-26T20:37:18.000Z
2020-11-15T20:55:33.000Z
from direct.directnotify import DirectNotifyGlobal from direct.distributed import ClockDelta from direct.distributed import DistributedObject from direct.fsm import ClassicFSM from direct.fsm import State from direct.interval.IntervalGlobal import * from pandac.PandaModules import * import random from . import DistributedToon from . import NPCToons from toontown.nametag import NametagGlobals from toontown.quest import QuestChoiceGui from toontown.quest import QuestParser from toontown.quest import Quests from toontown.toonbase import ToontownGlobals class DistributedNPCToonBase(DistributedToon.DistributedToon): def __init__(self, cr): try: self.DistributedNPCToon_initialized except: self.DistributedNPCToon_initialized = 1 DistributedToon.DistributedToon.__init__(self, cr) self.__initCollisions() self.setPickable(0) self.setPlayerType(NametagGlobals.CCNonPlayer) def disable(self): self.ignore('enter' + self.cSphereNode.getName()) DistributedToon.DistributedToon.disable(self) def delete(self): try: self.DistributedNPCToon_deleted except: self.DistributedNPCToon_deleted = 1 self.__deleteCollisions() DistributedToon.DistributedToon.delete(self) def generate(self): DistributedToon.DistributedToon.generate(self) self.cSphereNode.setName(self.uniqueName('NPCToon')) self.detectAvatars() self.setParent(ToontownGlobals.SPRender) self.startLookAround() def generateToon(self): self.setLODs() self.generateToonLegs() self.generateToonHead() self.generateToonTorso() self.generateToonColor() self.parentToonParts() self.rescaleToon() self.resetHeight() self.rightHands = [] self.leftHands = [] self.headParts = [] self.hipsParts = [] self.torsoParts = [] self.legsParts = [] self.__bookActors = [] self.__holeActors = [] def announceGenerate(self): self.initToonState() DistributedToon.DistributedToon.announceGenerate(self) def initToonState(self): self.setAnimState('neutral', 0.9, None, None) npcOrigin = render.find('**/npc_origin_' + str(self.posIndex)) if not npcOrigin.isEmpty(): self.reparentTo(npcOrigin) self.initPos() def initPos(self): self.clearMat() def wantsSmoothing(self): return 0 def detectAvatars(self): self.accept('enter' + self.cSphereNode.getName(), self.handleCollisionSphereEnter) def ignoreAvatars(self): self.ignore('enter' + self.cSphereNode.getName()) def getCollSphereRadius(self): return 3.25 def __initCollisions(self): self.cSphere = CollisionTube(0.0, 1.0, 0.0, 0.0, 1.0, 5.0, self.getCollSphereRadius()) self.cSphere.setTangible(0) self.cSphereNode = CollisionNode('cSphereNode') self.cSphereNode.addSolid(self.cSphere) self.cSphereNodePath = self.attachNewNode(self.cSphereNode) self.cSphereNodePath.hide() self.cSphereNode.setCollideMask(ToontownGlobals.WallBitmask) def __deleteCollisions(self): del self.cSphere del self.cSphereNode self.cSphereNodePath.removeNode() del self.cSphereNodePath def handleCollisionSphereEnter(self, collEntry): pass def setupAvatars(self, av): self.ignoreAvatars() av.headsUp(self, 0, 0, 0) self.headsUp(av, 0, 0, 0) av.stopLookAround() av.lerpLookAt(Point3(-0.5, 4, 0), time=0.5) self.stopLookAround() self.lerpLookAt(Point3(av.getPos(self)), time=0.5) def b_setPageNumber(self, paragraph, pageNumber): self.setPageNumber(paragraph, pageNumber) self.d_setPageNumber(paragraph, pageNumber) def d_setPageNumber(self, paragraph, pageNumber): timestamp = ClockDelta.globalClockDelta.getFrameNetworkTime() self.sendUpdate('setPageNumber', [paragraph, pageNumber, timestamp]) def freeAvatar(self): base.localAvatar.posCamera(0, 0) base.cr.playGame.getPlace().setState('walk') def setPositionIndex(self, posIndex): self.posIndex = posIndex
32.559701
94
0.673161
cd609493d26c3581cb9dc00cfdee3a72f669db42
15,229
py
Python
test/IECoreScene/MixSmoothSkinningWeightsOpTest.py
bradleyhenke/cortex
f8245cc6c9464b1de9e6c6e57068248198e63de0
[ "BSD-3-Clause" ]
386
2015-01-02T11:10:43.000Z
2022-03-10T15:12:20.000Z
test/IECoreScene/MixSmoothSkinningWeightsOpTest.py
bradleyhenke/cortex
f8245cc6c9464b1de9e6c6e57068248198e63de0
[ "BSD-3-Clause" ]
484
2015-01-09T18:28:06.000Z
2022-03-31T16:02:04.000Z
test/IECoreScene/MixSmoothSkinningWeightsOpTest.py
bradleyhenke/cortex
f8245cc6c9464b1de9e6c6e57068248198e63de0
[ "BSD-3-Clause" ]
99
2015-01-28T23:18:04.000Z
2022-03-27T00:59:39.000Z
########################################################################## # # Copyright (c) 2010, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import math import unittest import random import imath import IECore import IECoreScene class MixSmoothSkinningWeightsOpTest( unittest.TestCase ) : def createSSD( self, weights ) : names = IECore.StringVectorData( [ 'jointA', 'jointB', 'jointC' ] ) poses = IECore.M44fVectorData( [imath.M44f(1),imath.M44f(2),imath.M44f(3)] ) offsets = IECore.IntVectorData( [0, 2, 5, 6] ) counts = IECore.IntVectorData( [2, 3, 1, 2] ) indices = IECore.IntVectorData( [0, 1, 0, 1, 2, 1, 1, 2] ) ssd = IECoreScene.SmoothSkinningData( names, poses, offsets, counts, indices, weights ) return ssd def original( self ) : weights = IECore.FloatVectorData( [0.7, 0.7, 0.2, 0.6, 0.2, 0.1, 1.2, 0.8] ) return self.createSSD( weights ) def toMix( self ) : weights = IECore.FloatVectorData( [0.5, 0.5, 0.25, 0.75, 0.2, 1.0, 0.6, 0.4] ) return self.createSSD( weights ) def mixed50_50_50( self ) : weights = IECore.FloatVectorData( [0.6, 0.6, 0.225, 0.675, 0.2, 0.55, 0.9, 0.6] ) return self.createSSD( weights ) def mixed75_75_75( self ) : weights = IECore.FloatVectorData( [0.65, 0.65, 0.2125, 0.6375, 0.2, 0.325, 1.05, 0.7] ) return self.createSSD( weights ) def mixed40_60_80( self ) : weights = IECore.FloatVectorData( [0.58, 0.62, 0.23, 0.66, 0.2, 0.46, 0.96, 0.72] ) return self.createSSD( weights ) def mixed0_50_100( self ) : weights = IECore.FloatVectorData( [0.5, 0.6, 0.25, 0.675, 0.2, 0.55, 0.9, 0.8] ) return self.createSSD( weights ) def testTypes( self ) : """ Test MixSmoothSkinningWeightsOp types""" ssd = self.original() op = IECoreScene.MixSmoothSkinningWeightsOp() self.assertEqual( type(op), IECoreScene.MixSmoothSkinningWeightsOp ) self.assertEqual( op.typeId(), IECoreScene.TypeId.MixSmoothSkinningWeightsOp ) op.parameters()['input'].setValue( IECore.IntData(1) ) self.assertRaises( RuntimeError, op.operate ) def testSelfMixing( self ) : """ Test MixSmoothSkinningWeightsOp by mixing with itself""" ssd = self.original() op = IECoreScene.MixSmoothSkinningWeightsOp() op.parameters()['input'].setValue( ssd ) op.parameters()['skinningDataToMix'].setValue( ssd ) op.parameters()['mixingWeights'].setValue( IECore.FloatVectorData( [ 0.5, 0.5, 0.5 ] ) ) result = op.operate() self.assertEqual( result.influenceNames(), ssd.influenceNames() ) self.assertEqual( result.influencePose(), ssd.influencePose() ) self.assertEqual( result.pointIndexOffsets(), ssd.pointIndexOffsets() ) self.assertEqual( result.pointInfluenceCounts(), ssd.pointInfluenceCounts() ) self.assertEqual( result.pointInfluenceIndices(), ssd.pointInfluenceIndices() ) self.assertEqual( result.pointInfluenceWeights(), ssd.pointInfluenceWeights() ) self.assertEqual( result, ssd ) def testMix50_50_50( self ) : """ Test MixSmoothSkinningWeightsOp with a 50-50 split between all weights""" ssd = self.original() op = IECoreScene.MixSmoothSkinningWeightsOp() op.parameters()['input'].setValue( ssd ) op.parameters()['skinningDataToMix'].setValue( self.toMix() ) op.parameters()['mixingWeights'].setValue( IECore.FloatVectorData( [ 0.5, 0.5, 0.5 ] ) ) result = op.operate() self.assertEqual( result.influenceNames(), ssd.influenceNames() ) self.assertEqual( result.influencePose(), ssd.influencePose() ) self.assertEqual( result.pointIndexOffsets(), ssd.pointIndexOffsets() ) self.assertEqual( result.pointInfluenceCounts(), ssd.pointInfluenceCounts() ) self.assertEqual( result.pointInfluenceIndices(), ssd.pointInfluenceIndices() ) self.assertNotEqual( result.pointInfluenceWeights(), ssd.pointInfluenceWeights() ) self.assertNotEqual( result, ssd ) mixed = self.mixed50_50_50() self.assertEqual( result.influenceNames(), mixed.influenceNames() ) self.assertEqual( result.influencePose(), mixed.influencePose() ) self.assertEqual( result.pointIndexOffsets(), mixed.pointIndexOffsets() ) self.assertEqual( result.pointInfluenceCounts(), mixed.pointInfluenceCounts() ) self.assertEqual( result.pointInfluenceIndices(), mixed.pointInfluenceIndices() ) resultWeights = result.pointInfluenceWeights() mixedWeights = mixed.pointInfluenceWeights() for i in range( 0, result.pointInfluenceWeights().size() ) : self.assertAlmostEqual( resultWeights[i], mixedWeights[i], 6 ) def testMix75_75_75( self ) : """ Test MixSmoothSkinningWeightsOp with a 75-25 split between all weights""" ssd = self.original() op = IECoreScene.MixSmoothSkinningWeightsOp() op.parameters()['input'].setValue( ssd ) op.parameters()['skinningDataToMix'].setValue( self.toMix() ) op.parameters()['mixingWeights'].setValue( IECore.FloatVectorData( [ 0.75, 0.75, 0.75 ] ) ) result = op.operate() self.assertEqual( result.influenceNames(), ssd.influenceNames() ) self.assertEqual( result.influencePose(), ssd.influencePose() ) self.assertEqual( result.pointIndexOffsets(), ssd.pointIndexOffsets() ) self.assertEqual( result.pointInfluenceCounts(), ssd.pointInfluenceCounts() ) self.assertEqual( result.pointInfluenceIndices(), ssd.pointInfluenceIndices() ) self.assertNotEqual( result.pointInfluenceWeights(), ssd.pointInfluenceWeights() ) self.assertNotEqual( result, ssd ) mixed = self.mixed75_75_75() self.assertEqual( result.influenceNames(), mixed.influenceNames() ) self.assertEqual( result.influencePose(), mixed.influencePose() ) self.assertEqual( result.pointIndexOffsets(), mixed.pointIndexOffsets() ) self.assertEqual( result.pointInfluenceCounts(), mixed.pointInfluenceCounts() ) self.assertEqual( result.pointInfluenceIndices(), mixed.pointInfluenceIndices() ) resultWeights = result.pointInfluenceWeights() mixedWeights = mixed.pointInfluenceWeights() for i in range( 0, result.pointInfluenceWeights().size() ) : self.assertAlmostEqual( resultWeights[i], mixedWeights[i], 6 ) def testMix40_60_80( self ) : """ Test MixSmoothSkinningWeightsOp with a mixed split between all weights""" ssd = self.original() op = IECoreScene.MixSmoothSkinningWeightsOp() op.parameters()['input'].setValue( ssd ) op.parameters()['skinningDataToMix'].setValue( self.toMix() ) op.parameters()['mixingWeights'].setValue( IECore.FloatVectorData( [ 0.4, 0.6, 0.8 ] ) ) result = op.operate() self.assertEqual( result.influenceNames(), ssd.influenceNames() ) self.assertEqual( result.influencePose(), ssd.influencePose() ) self.assertEqual( result.pointIndexOffsets(), ssd.pointIndexOffsets() ) self.assertEqual( result.pointInfluenceCounts(), ssd.pointInfluenceCounts() ) self.assertEqual( result.pointInfluenceIndices(), ssd.pointInfluenceIndices() ) self.assertNotEqual( result.pointInfluenceWeights(), ssd.pointInfluenceWeights() ) self.assertNotEqual( result, ssd ) mixed = self.mixed40_60_80() self.assertEqual( result.influenceNames(), mixed.influenceNames() ) self.assertEqual( result.influencePose(), mixed.influencePose() ) self.assertEqual( result.pointIndexOffsets(), mixed.pointIndexOffsets() ) self.assertEqual( result.pointInfluenceCounts(), mixed.pointInfluenceCounts() ) self.assertEqual( result.pointInfluenceIndices(), mixed.pointInfluenceIndices() ) resultWeights = result.pointInfluenceWeights() mixedWeights = mixed.pointInfluenceWeights() for i in range( 0, result.pointInfluenceWeights().size() ) : self.assertAlmostEqual( resultWeights[i], mixedWeights[i], 6 ) def testLockedInput( self ) : """ Test MixSmoothSkinningWeightsOp with locked input weights""" ssd = self.original() op = IECoreScene.MixSmoothSkinningWeightsOp() op.parameters()['input'].setValue( ssd ) op.parameters()['skinningDataToMix'].setValue( self.toMix() ) op.parameters()['mixingWeights'].setValue( IECore.FloatVectorData( [ 1, 1, 1 ] ) ) result = op.operate() self.assertEqual( result.influenceNames(), ssd.influenceNames() ) self.assertEqual( result.influencePose(), ssd.influencePose() ) self.assertEqual( result.pointIndexOffsets(), ssd.pointIndexOffsets() ) self.assertEqual( result.pointInfluenceCounts(), ssd.pointInfluenceCounts() ) self.assertEqual( result.pointInfluenceIndices(), ssd.pointInfluenceIndices() ) resultWeights = result.pointInfluenceWeights() mixedWeights = ssd.pointInfluenceWeights() for i in range( 0, result.pointInfluenceWeights().size() ) : self.assertAlmostEqual( resultWeights[i], mixedWeights[i], 6 ) def testLockedMixingData( self ) : """ Test MixSmoothSkinningWeightsOp with locked mixing weights""" ssd = self.original() op = IECoreScene.MixSmoothSkinningWeightsOp() op.parameters()['input'].setValue( ssd ) op.parameters()['skinningDataToMix'].setValue( self.toMix() ) op.parameters()['mixingWeights'].setValue( IECore.FloatVectorData( [ 0, 0, 0 ] ) ) result = op.operate() self.assertEqual( result.influenceNames(), ssd.influenceNames() ) self.assertEqual( result.influencePose(), ssd.influencePose() ) self.assertEqual( result.pointIndexOffsets(), ssd.pointIndexOffsets() ) self.assertEqual( result.pointInfluenceCounts(), ssd.pointInfluenceCounts() ) self.assertEqual( result.pointInfluenceIndices(), ssd.pointInfluenceIndices() ) self.assertNotEqual( result.pointInfluenceWeights(), ssd.pointInfluenceWeights() ) self.assertNotEqual( result, ssd ) mixed = self.toMix() self.assertEqual( result.influenceNames(), mixed.influenceNames() ) self.assertEqual( result.influencePose(), mixed.influencePose() ) self.assertEqual( result.pointIndexOffsets(), mixed.pointIndexOffsets() ) self.assertEqual( result.pointInfluenceCounts(), mixed.pointInfluenceCounts() ) self.assertEqual( result.pointInfluenceIndices(), mixed.pointInfluenceIndices() ) resultWeights = result.pointInfluenceWeights() mixedWeights = mixed.pointInfluenceWeights() for i in range( 0, result.pointInfluenceWeights().size() ) : self.assertAlmostEqual( resultWeights[i], mixedWeights[i], 6 ) def testMix0_50_100( self ) : """ Test MixSmoothSkinningWeightsOp with some mixed and some locked weights""" ssd = self.original() op = IECoreScene.MixSmoothSkinningWeightsOp() op.parameters()['input'].setValue( ssd ) op.parameters()['skinningDataToMix'].setValue( self.toMix() ) op.parameters()['mixingWeights'].setValue( IECore.FloatVectorData( [ 0, 0.5, 1 ] ) ) result = op.operate() self.assertEqual( result.influenceNames(), ssd.influenceNames() ) self.assertEqual( result.influencePose(), ssd.influencePose() ) self.assertEqual( result.pointIndexOffsets(), ssd.pointIndexOffsets() ) self.assertEqual( result.pointInfluenceCounts(), ssd.pointInfluenceCounts() ) self.assertEqual( result.pointInfluenceIndices(), ssd.pointInfluenceIndices() ) self.assertNotEqual( result.pointInfluenceWeights(), ssd.pointInfluenceWeights() ) self.assertNotEqual( result, ssd ) mixed = self.mixed0_50_100() self.assertEqual( result.influenceNames(), mixed.influenceNames() ) self.assertEqual( result.influencePose(), mixed.influencePose() ) self.assertEqual( result.pointIndexOffsets(), mixed.pointIndexOffsets() ) self.assertEqual( result.pointInfluenceCounts(), mixed.pointInfluenceCounts() ) self.assertEqual( result.pointInfluenceIndices(), mixed.pointInfluenceIndices() ) resultWeights = result.pointInfluenceWeights() mixedWeights = mixed.pointInfluenceWeights() for i in range( 0, result.pointInfluenceWeights().size() ) : self.assertAlmostEqual( resultWeights[i], mixedWeights[i], 6 ) def testErrorStates( self ) : """ Test MixSmoothSkinningWeightsOp with the various error states""" ssd = self.original() op = IECoreScene.MixSmoothSkinningWeightsOp() op.parameters()['input'].setValue( ssd ) # no data to mix op.parameters()['mixingWeights'].setValue( IECore.FloatVectorData( [ 0.5, 0.5, 0.5 ] ) ) self.assertRaises( RuntimeError, op.operate ) # wrong number of mixing weights op.parameters()['skinningDataToMix'].setValue( self.toMix() ) op.parameters()['mixingWeights'].setValue( IECore.FloatVectorData( [ 0.5, 0.5 ] ) ) self.assertRaises( RuntimeError, op.operate ) op.parameters()['mixingWeights'].setValue( IECore.FloatVectorData( [ 0.5, 0.5, 0.5, 0.5 ] ) ) self.assertRaises( RuntimeError, op.operate ) # wrong number of influences bad = IECoreScene.SmoothSkinningData( IECore.StringVectorData( [ 'jointA', 'jointB' ] ), ssd.influencePose(), ssd.pointIndexOffsets(), ssd.pointInfluenceCounts(), ssd.pointInfluenceIndices(), ssd.pointInfluenceWeights() ) op.parameters()['skinningDataToMix'].setValue( bad ) op.parameters()['mixingWeights'].setValue( IECore.FloatVectorData( [ 0.5, 0.5, 0.5 ] ) ) self.assertRaises( RuntimeError, op.operate ) bad = IECoreScene.SmoothSkinningData( IECore.StringVectorData( [ 'jointA', 'jointB', 'jointC', 'jointD' ] ), ssd.influencePose(), ssd.pointIndexOffsets(), ssd.pointInfluenceCounts(), ssd.pointInfluenceIndices(), ssd.pointInfluenceWeights() ) op.parameters()['skinningDataToMix'].setValue( bad ) self.assertRaises( RuntimeError, op.operate ) # wrong number of points bad = IECoreScene.SmoothSkinningData( ssd.influenceNames(), ssd.influencePose(), IECore.IntVectorData( [0, 2, 5, 6, 8] ), ssd.pointInfluenceCounts(), ssd.pointInfluenceIndices(), ssd.pointInfluenceWeights() ) op.parameters()['skinningDataToMix'].setValue( bad ) op.parameters()['mixingWeights'].setValue( IECore.FloatVectorData( [ 0.5, 0.5, 0.5 ] ) ) self.assertRaises( RuntimeError, op.operate ) if __name__ == "__main__": unittest.main()
46.288754
243
0.73406
814eb30d2e20c51f9ed9b3a43a6c0bcc5dd63bdb
10,837
py
Python
tests/test_crawl.py
nfunato/scrapy
9d3ded5f2202e1b933e3f38671b114bb0ea238ce
[ "BSD-3-Clause" ]
null
null
null
tests/test_crawl.py
nfunato/scrapy
9d3ded5f2202e1b933e3f38671b114bb0ea238ce
[ "BSD-3-Clause" ]
null
null
null
tests/test_crawl.py
nfunato/scrapy
9d3ded5f2202e1b933e3f38671b114bb0ea238ce
[ "BSD-3-Clause" ]
1
2019-07-17T09:23:13.000Z
2019-07-17T09:23:13.000Z
import json import socket import logging from testfixtures import LogCapture from twisted.internet import defer from twisted.trial.unittest import TestCase from scrapy.http import Request from scrapy.crawler import CrawlerRunner from tests import mock from tests.spiders import FollowAllSpider, DelaySpider, SimpleSpider, \ BrokenStartRequestsSpider, SingleRequestSpider, DuplicateStartRequestsSpider from tests.mockserver import MockServer class CrawlTestCase(TestCase): def setUp(self): self.mockserver = MockServer() self.mockserver.__enter__() self.runner = CrawlerRunner() def tearDown(self): self.mockserver.__exit__(None, None, None) @defer.inlineCallbacks def test_follow_all(self): crawler = self.runner.create_crawler(FollowAllSpider) yield crawler.crawl() self.assertEqual(len(crawler.spider.urls_visited), 11) # 10 + start_url @defer.inlineCallbacks def test_delay(self): # short to long delays yield self._test_delay(0.2, False) yield self._test_delay(1, False) # randoms yield self._test_delay(0.2, True) yield self._test_delay(1, True) @defer.inlineCallbacks def _test_delay(self, delay, randomize): settings = {"DOWNLOAD_DELAY": delay, 'RANDOMIZE_DOWNLOAD_DELAY': randomize} crawler = CrawlerRunner(settings).create_crawler(FollowAllSpider) yield crawler.crawl(maxlatency=delay * 2) t = crawler.spider.times totaltime = t[-1] - t[0] avgd = totaltime / (len(t) - 1) tolerance = 0.6 if randomize else 0.2 self.assertTrue(avgd > delay * (1 - tolerance), "download delay too small: %s" % avgd) @defer.inlineCallbacks def test_timeout_success(self): crawler = self.runner.create_crawler(DelaySpider) yield crawler.crawl(n=0.5) self.assertTrue(crawler.spider.t1 > 0) self.assertTrue(crawler.spider.t2 > 0) self.assertTrue(crawler.spider.t2 > crawler.spider.t1) @defer.inlineCallbacks def test_timeout_failure(self): crawler = CrawlerRunner({"DOWNLOAD_TIMEOUT": 0.35}).create_crawler(DelaySpider) yield crawler.crawl(n=0.5) self.assertTrue(crawler.spider.t1 > 0) self.assertTrue(crawler.spider.t2 == 0) self.assertTrue(crawler.spider.t2_err > 0) self.assertTrue(crawler.spider.t2_err > crawler.spider.t1) # server hangs after receiving response headers yield crawler.crawl(n=0.5, b=1) self.assertTrue(crawler.spider.t1 > 0) self.assertTrue(crawler.spider.t2 == 0) self.assertTrue(crawler.spider.t2_err > 0) self.assertTrue(crawler.spider.t2_err > crawler.spider.t1) @defer.inlineCallbacks def test_retry_503(self): crawler = self.runner.create_crawler(SimpleSpider) with LogCapture() as l: yield crawler.crawl("http://localhost:8998/status?n=503") self._assert_retried(l) @defer.inlineCallbacks def test_retry_conn_failed(self): crawler = self.runner.create_crawler(SimpleSpider) with LogCapture() as l: yield crawler.crawl("http://localhost:65432/status?n=503") self._assert_retried(l) @defer.inlineCallbacks def test_retry_dns_error(self): with mock.patch('socket.gethostbyname', side_effect=socket.gaierror(-5, 'No address associated with hostname')): crawler = self.runner.create_crawler(SimpleSpider) with LogCapture() as l: yield crawler.crawl("http://example.com/") self._assert_retried(l) @defer.inlineCallbacks def test_start_requests_bug_before_yield(self): with LogCapture('scrapy', level=logging.ERROR) as l: crawler = self.runner.create_crawler(BrokenStartRequestsSpider) yield crawler.crawl(fail_before_yield=1) self.assertEqual(len(l.records), 1) record = l.records[0] self.assertIsNotNone(record.exc_info) self.assertIs(record.exc_info[0], ZeroDivisionError) @defer.inlineCallbacks def test_start_requests_bug_yielding(self): with LogCapture('scrapy', level=logging.ERROR) as l: crawler = self.runner.create_crawler(BrokenStartRequestsSpider) yield crawler.crawl(fail_yielding=1) self.assertEqual(len(l.records), 1) record = l.records[0] self.assertIsNotNone(record.exc_info) self.assertIs(record.exc_info[0], ZeroDivisionError) @defer.inlineCallbacks def test_start_requests_lazyness(self): settings = {"CONCURRENT_REQUESTS": 1} crawler = CrawlerRunner(settings).create_crawler(BrokenStartRequestsSpider) yield crawler.crawl() #self.assertTrue(False, crawler.spider.seedsseen) #self.assertTrue(crawler.spider.seedsseen.index(None) < crawler.spider.seedsseen.index(99), # crawler.spider.seedsseen) @defer.inlineCallbacks def test_start_requests_dupes(self): settings = {"CONCURRENT_REQUESTS": 1} crawler = CrawlerRunner(settings).create_crawler(DuplicateStartRequestsSpider) yield crawler.crawl(dont_filter=True, distinct_urls=2, dupe_factor=3) self.assertEqual(crawler.spider.visited, 6) yield crawler.crawl(dont_filter=False, distinct_urls=3, dupe_factor=4) self.assertEqual(crawler.spider.visited, 3) @defer.inlineCallbacks def test_unbounded_response(self): # Completeness of responses without Content-Length or Transfer-Encoding # can not be determined, we treat them as valid but flagged as "partial" from six.moves.urllib.parse import urlencode query = urlencode({'raw': '''\ HTTP/1.1 200 OK Server: Apache-Coyote/1.1 X-Powered-By: Servlet 2.4; JBoss-4.2.3.GA (build: SVNTag=JBoss_4_2_3_GA date=200807181417)/JBossWeb-2.0 Set-Cookie: JSESSIONID=08515F572832D0E659FD2B0D8031D75F; Path=/ Pragma: no-cache Expires: Thu, 01 Jan 1970 00:00:00 GMT Cache-Control: no-cache Cache-Control: no-store Content-Type: text/html;charset=UTF-8 Content-Language: en Date: Tue, 27 Aug 2013 13:05:05 GMT Connection: close foo body with multiples lines '''}) crawler = self.runner.create_crawler(SimpleSpider) with LogCapture() as l: yield crawler.crawl("http://localhost:8998/raw?{0}".format(query)) self.assertEqual(str(l).count("Got response 200"), 1) @defer.inlineCallbacks def test_retry_conn_lost(self): # connection lost after receiving data crawler = self.runner.create_crawler(SimpleSpider) with LogCapture() as l: yield crawler.crawl("http://localhost:8998/drop?abort=0") self._assert_retried(l) @defer.inlineCallbacks def test_retry_conn_aborted(self): # connection lost before receiving data crawler = self.runner.create_crawler(SimpleSpider) with LogCapture() as l: yield crawler.crawl("http://localhost:8998/drop?abort=1") self._assert_retried(l) def _assert_retried(self, log): self.assertEqual(str(log).count("Retrying"), 2) self.assertEqual(str(log).count("Gave up retrying"), 1) @defer.inlineCallbacks def test_referer_header(self): """Referer header is set by RefererMiddleware unless it is already set""" req0 = Request('http://localhost:8998/echo?headers=1&body=0', dont_filter=1) req1 = req0.replace() req2 = req0.replace(headers={'Referer': None}) req3 = req0.replace(headers={'Referer': 'http://example.com'}) req0.meta['next'] = req1 req1.meta['next'] = req2 req2.meta['next'] = req3 crawler = self.runner.create_crawler(SingleRequestSpider) yield crawler.crawl(seed=req0) # basic asserts in case of weird communication errors self.assertIn('responses', crawler.spider.meta) self.assertNotIn('failures', crawler.spider.meta) # start requests doesn't set Referer header echo0 = json.loads(crawler.spider.meta['responses'][2].body) self.assertNotIn('Referer', echo0['headers']) # following request sets Referer to start request url echo1 = json.loads(crawler.spider.meta['responses'][1].body) self.assertEqual(echo1['headers'].get('Referer'), [req0.url]) # next request avoids Referer header echo2 = json.loads(crawler.spider.meta['responses'][2].body) self.assertNotIn('Referer', echo2['headers']) # last request explicitly sets a Referer header echo3 = json.loads(crawler.spider.meta['responses'][3].body) self.assertEqual(echo3['headers'].get('Referer'), ['http://example.com']) @defer.inlineCallbacks def test_engine_status(self): from scrapy.utils.engine import get_engine_status est = [] def cb(response): est.append(get_engine_status(crawler.engine)) crawler = self.runner.create_crawler(SingleRequestSpider) yield crawler.crawl(seed='http://localhost:8998/', callback_func=cb) self.assertEqual(len(est), 1, est) s = dict(est[0]) self.assertEqual(s['engine.spider.name'], crawler.spider.name) self.assertEqual(s['len(engine.scraper.slot.active)'], 1) @defer.inlineCallbacks def test_graceful_crawl_error_handling(self): """ Test whether errors happening anywhere in Crawler.crawl() are properly reported (and not somehow swallowed) after a graceful engine shutdown. The errors should not come from within Scrapy's core but from within spiders/middlewares/etc., e.g. raised in Spider.start_requests(), SpiderMiddleware.process_start_requests(), etc. """ class TestError(Exception): pass class FaultySpider(SimpleSpider): def start_requests(self): raise TestError crawler = self.runner.create_crawler(FaultySpider) yield self.assertFailure(crawler.crawl(), TestError) self.assertFalse(crawler.crawling) @defer.inlineCallbacks def test_crawlerrunner_accepts_crawler(self): crawler = self.runner.create_crawler(SimpleSpider) with LogCapture() as log: yield self.runner.crawl(crawler, "http://localhost:8998/status?n=200") self.assertIn("Got response 200", str(log)) @defer.inlineCallbacks def test_crawl_multiple(self): self.runner.crawl(SimpleSpider, "http://localhost:8998/status?n=200") self.runner.crawl(SimpleSpider, "http://localhost:8998/status?n=503") with LogCapture() as log: yield self.runner.join() self._assert_retried(log) self.assertIn("Got response 200", str(log))
40.286245
103
0.676202
566494acdee128481d5770bf51f3c335ece9b5d1
2,058
py
Python
bot/exts/utils/bookmark.py
dhzdhd/Obsidian-Python
9ab047aeb96bf79f60f7c268c3252528cbb992a7
[ "MIT" ]
null
null
null
bot/exts/utils/bookmark.py
dhzdhd/Obsidian-Python
9ab047aeb96bf79f60f7c268c3252528cbb992a7
[ "MIT" ]
null
null
null
bot/exts/utils/bookmark.py
dhzdhd/Obsidian-Python
9ab047aeb96bf79f60f7c268c3252528cbb992a7
[ "MIT" ]
null
null
null
import datetime import discord from discord.ext import commands from bot.utils.embed import SuccessEmbed # Add embed support class Bookmark(commands.Cog): def __init__(self, bot: commands.Bot) -> None: self.bot = bot self._dict = {} @commands.Cog.listener() async def on_raw_reaction_add(self, payload) -> None: if payload.user_id != self.bot.user.id: if payload.emoji == discord.PartialEmoji(name="📩"): await payload.member.send(embed=self._dict[int(payload.message_id)]) elif payload.emoji == discord.PartialEmoji(name="❌"): channel = await self.bot.fetch_channel(payload.channel_id) message = await channel.fetch_message(payload.message_id) await message.delete() @commands.command(name="bookmark", aliases=("bm",)) async def bookmark(self, ctx: commands.Context, message_id: int = None) -> None: await ctx.message.delete() if message_id is None: if ctx.message.reference is None: return message = await ctx.fetch_message(ctx.message.reference.message_id) else: message = await ctx.fetch_message(message_id) dm_embed = discord.Embed( title="Bookmarked message", description=f"Author: **{message.author.name}**\nContents:\n{message.content}", colour=discord.Colour.blue(), timestamp=datetime.datetime.utcnow() ).set_footer(text=f"Invoked by {ctx.author.name}", icon_url=ctx.author.avatar_url) reaction_embed = SuccessEmbed( description=f"**Message bookmarked!**\nLink to message: \n{message.jump_url}", author=ctx.author ) msg = await ctx.send(embed=reaction_embed, delete_after=3600) await msg.add_reaction("📩") await msg.add_reaction("❌") self._dict.update({int(msg.id): dm_embed}) await ctx.author.send(embed=dm_embed) def setup(bot: commands.Bot) -> None: bot.add_cog(Bookmark(bot))
35.482759
91
0.633139
5bb6946987b63b884e909f8782b091741b5a5567
1,073
py
Python
tests/v2/test_relationship_to_role.py
MichaelTROEHLER/datadog-api-client-python
12c46626622fb1277bb1e172753b342c671348bd
[ "Apache-2.0" ]
null
null
null
tests/v2/test_relationship_to_role.py
MichaelTROEHLER/datadog-api-client-python
12c46626622fb1277bb1e172753b342c671348bd
[ "Apache-2.0" ]
null
null
null
tests/v2/test_relationship_to_role.py
MichaelTROEHLER/datadog-api-client-python
12c46626622fb1277bb1e172753b342c671348bd
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License. # This product includes software developed at Datadog (https://www.datadoghq.com/). # Copyright 2019-Present Datadog, Inc. from __future__ import absolute_import import sys import unittest import datadog_api_client.v2 try: from datadog_api_client.v2.model import relationship_to_role_data except ImportError: relationship_to_role_data = sys.modules[ 'datadog_api_client.v2.model.relationship_to_role_data'] from datadog_api_client.v2.model.relationship_to_role import RelationshipToRole class TestRelationshipToRole(unittest.TestCase): """RelationshipToRole unit test stubs""" def setUp(self): pass def tearDown(self): pass def testRelationshipToRole(self): """Test RelationshipToRole""" # FIXME: construct object with mandatory attributes with example values # model = RelationshipToRole() # noqa: E501 pass if __name__ == '__main__': unittest.main()
27.512821
108
0.746505
3966e2da2fc2c58724cecd98f3d12609bf25c843
1,269
py
Python
src/followbot/scripts/follower_color_filter.py
kaiodt/kaio_ros_ws
d9ee0edb97d16cf2a0a6074fecd049db7367a032
[ "BSD-2-Clause" ]
null
null
null
src/followbot/scripts/follower_color_filter.py
kaiodt/kaio_ros_ws
d9ee0edb97d16cf2a0a6074fecd049db7367a032
[ "BSD-2-Clause" ]
null
null
null
src/followbot/scripts/follower_color_filter.py
kaiodt/kaio_ros_ws
d9ee0edb97d16cf2a0a6074fecd049db7367a032
[ "BSD-2-Clause" ]
null
null
null
#! /usr/bin/env python import rospy, cv2, cv_bridge, numpy from sensor_msgs.msg import Image class Follower: # Constructor def __init__(self): # Instantiate a CvBridge object self.bridge = cv_bridge.CvBridge() # Create a CV window cv2.namedWindow("window", 1) # Create a Subscriber to /camera/rgb/image_raw self.image_sub = rospy.Subscriber("camera/rgb/image_raw", Image, self.image_callback) # Callback function def image_callback(self, msg): # Get the image using the CV bridge image = self.bridge.imgmsg_to_cv2(msg) # Get the HSV representation of the obtained RGB image hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # Define HSV boundaries for the filter (filter the yellow line) lower_yellow = numpy.array([ 50, 50, 170]) upper_yellow = numpy.array([255, 255, 190]) # Generate a binary HSV image inly with the pixels within the filter boundaries mask = cv2.inRange(hsv, lower_yellow, upper_yellow) # Apply the mask to the original image masked = cv2.bitwise_and(image, image, mask=mask) # Show image in opened window cv2.imshow("window", mask) # Wait 3 ms cv2.waitKey(3) if __name__ == '__main__': # Initialize rospy.init_node('follower') follower = Follower() # Pass control to ROS rospy.spin()
25.897959
87
0.723404
ee77237cfafda8535d47a90a63b3e73d28c5a59e
42
py
Python
demon/__main__.py
lapidshay/DEMON
c7eeeb22be279c9dd9a6555bae06702f369021ac
[ "BSD-2-Clause" ]
30
2017-02-24T08:56:57.000Z
2022-03-29T08:52:07.000Z
demon/__main__.py
KDDComplexNetworkAnalysis/DEMON
c32d80198a90c4d6c2165e34cffd79315aa764e7
[ "BSD-2-Clause" ]
139
2017-08-24T08:40:50.000Z
2022-03-24T01:42:47.000Z
demon/__main__.py
KDDComplexNetworkAnalysis/DEMON
c32d80198a90c4d6c2165e34cffd79315aa764e7
[ "BSD-2-Clause" ]
18
2016-06-08T21:39:46.000Z
2021-08-07T20:04:02.000Z
from demon.alg.Demon import main main()
8.4
32
0.738095
3aa823b76fbb9b08519de64730ed5b8cc52abe43
24,288
py
Python
radio/views.py
hayden-t/trunk-player
26e597afe5f967eed36ae31d2bf2297efcf58ab5
[ "MIT" ]
null
null
null
radio/views.py
hayden-t/trunk-player
26e597afe5f967eed36ae31d2bf2297efcf58ab5
[ "MIT" ]
null
null
null
radio/views.py
hayden-t/trunk-player
26e597afe5f967eed36ae31d2bf2297efcf58ab5
[ "MIT" ]
null
null
null
#import functools import ssl import sys import re import json import pytz from itertools import chain from django.shortcuts import render, redirect from django.http import Http404 from django.views.generic import ListView from django.db.models import Q from django.views.decorators.csrf import csrf_protect, csrf_exempt from django.contrib.auth.decorators import login_required from django.http import HttpResponseRedirect, HttpResponse from django.template import RequestContext from django.contrib.auth import authenticate, login from django.conf import settings from django.views.generic import ListView, UpdateView from django.views.generic.detail import DetailView from django.contrib.auth.mixins import PermissionRequiredMixin from django.core.exceptions import ImproperlyConfigured from .models import * from rest_framework import viewsets, generics from .serializers import TransmissionSerializer, TalkGroupSerializer, ScanListSerializer, MenuScanListSerializer, MenuTalkGroupListSerializer, MessageSerializer from datetime import datetime, timedelta from django.utils import timezone from django.contrib.auth.decorators import login_required from django.core.exceptions import ObjectDoesNotExist from django.core.mail import mail_admins from allauth.account.models import EmailAddress as allauth_emailaddress from pprint import pprint from django.contrib import messages import logging from .forms import * logger = logging.getLogger(__name__) def check_anonymous(decorator): """ Decarator used to see if we allow anonymous access """ anonymous = getattr(settings, 'ALLOW_ANONYMOUS', True) return decorator if not anonymous else lambda x: x @login_required def userScanList(request): template = 'radio/userscanlist.html' if request.method == "POST": form = UserScanForm(request.POST) if form.is_valid(): print('Form Valid') name = form.cleaned_data['name'] tgs = form.cleaned_data['talkgroups'] print('Form Data [{}] [{}]'.format(name, tgs)) sl = ScanList() sl.created_by = request.user sl.name = name sl.description = name sl.save() sl.talkgroups.add(*tgs) return redirect('user_profile') else: print('Form not Valid') else: form = UserScanForm() return render(request, template, {'form': form}) @login_required def userProfile(request): template = 'radio/profile.html' if request.method == "POST": form = UserForm(request.POST, instance=request.user) if form.is_valid(): form.save() return redirect('user_profile') else: profile_form = UserForm(instance=request.user) profile = Profile.objects.get(user=request.user) scan_lists = ScanList.objects.filter(created_by=request.user) return render(request, template, {'profile_form': profile_form, 'profile': profile, 'scan_lists': scan_lists} ) def agencyList(request): template = 'radio/agency_list.html' query_data = Agency.objects.exclude(short='_DEF_').order_by('name') return render(request, template, {'agency': query_data}) def cityListView(request): template = 'radio/city_list.html' query_data = City.objects.filter(visible=True) return render(request, template, {'cities': query_data}) def cityDetailView(request, slug): template = 'radio/city_detail.html' query_data = City.objects.get(slug=slug) return render(request, template, {'object': query_data}) def TransDetailView(request, slug): template = 'radio/transmission_detail.html' status = 'Good' try: query_data = Transmission.objects.filter(slug=slug) if not query_data: raise Http404 except Transmission.DoesNotExist: raise Http404 query_data2 = limit_transmission_history(request, query_data) if not query_data2 and not query_data[0].incident_set.filter(public=True): query_data[0].audio_file = None status = 'Expired' restricted, new_query = restrict_talkgroups(request, query_data) if not new_query: raise Http404 return render(request, template, {'object': query_data[0], 'status': status}) def transDownloadView(request, slug): import requests try: query_data = Transmission.objects.filter(slug=slug) if not query_data: raise Http404 except Transmission.DoesNotExist: raise Http404 query_data2 = limit_transmission_history(request, query_data) if not query_data2: raise Http404 # Just raise 404 if its too old restricted, new_query = restrict_talkgroups(request, query_data) if not new_query: raise Http404 trans = new_query[0] if trans.audio_file_type == 'm4a': audio_type = 'audio/m4a' else: audio_type = 'audio/mp3' response = HttpResponse(content_type=audio_type) start_time = timezone.localtime(trans.start_datetime).strftime('%Y%m%d_%H%M%S') filename = '{}_{}.{}'.format(start_time, trans.talkgroup_info.slug, trans.audio_file_type) response['Content-Disposition'] = 'attachment; filename="{}"'.format(filename) url = 'https:{}{}.{}'.format(trans.audio_url, trans.audio_file, trans.audio_file_type) if trans.audio_url[:2] != '//': url = 'http:' if request.is_secure(): url = 'https:' url += '//{}/{}{}.{}'.format(request.get_host(), trans.audio_url, trans.audio_file, trans.audio_file_type) data = requests.get(url, verify=False) response.write(data.content) return response class TransmissionViewSet(viewsets.ModelViewSet): """ API endpoint that allows users to be viewed or edited. """ queryset = Transmission.objects.none() serializer_class = TransmissionSerializer def get_serializer_context(self): return {'request': self.request} class ScanListViewSet(viewsets.ModelViewSet): queryset = ScanList.objects.all().prefetch_related('talkgroups') serializer_class = ScanListSerializer class TalkGroupViewSet(viewsets.ModelViewSet): """ API endpoint that allows groups to be viewed or edited. """ # queryset = TalkGroup.objects.filter(public=True) serializer_class = TalkGroupSerializer base_name = 'TalkGroup' def get_queryset(self): if settings.ACCESS_TG_RESTRICT: tg = allowed_tg_list(self.request.user) else: tg = TalkGroup.objects.filter(public=True) return tg class TransmissionView(ListView): model = Transmission paginate_by = 50 def ScanListFilter(request, filter_val): template = 'radio/transmission.html' return render(request, template, {'filter_data': filter_val, 'api_url': '/api_v1/ScanList'}) def TalkGroupFilterNew(request, filter_val): template = 'radio/transmission_play.html' return render(request, template, {'filter_data': filter_val}) def TalkGroupFilterjq(request, filter_val): template = 'radio/transmission_list_jq.html' return TalkGroupFilterBase(request, filter_val, template) def TalkGroupFilter(request, filter_val): template = 'radio/transmission_list.html' return TalkGroupFilterBase(request, filter_val, template) # Open to anyone def Generic(request, page_name): template = 'radio/generic.html' query_data = WebHtml.objects.get(name=page_name) return render(request, template, {'html_object': query_data}) def get_user_profile(user): if user.is_authenticated: user_profile = Profile.objects.get(user=user) else: try: anon_user = User.objects.get(username='ANONYMOUS_USER') except User.DoesNotExist: raise ImproperlyConfigured('ANONYMOUS_USER is missing from User table, was "./manage.py migrations" not run?') user_profile = Profile.objects.get(user=anon_user) return user_profile def get_history_allow(user): user_profile = get_user_profile(user) if user_profile: history_minutes = user_profile.plan.history else: history_minutes = settings.ANONYMOUS_TIME return history_minutes def limit_transmission_history(request, query_data): history_minutes = get_history_allow(request.user) if history_minutes > 0: time_threshold = timezone.now() - timedelta(minutes=history_minutes) query_data = query_data.filter(start_datetime__gt=time_threshold) return query_data def limit_transmission_history_six_months(request, query_data): history_minutes = 259200 time_threshold = timezone.now() - timedelta(minutes=history_minutes) query_data = query_data.filter(start_datetime__gt=time_threshold) return query_data def allowed_tg_list(user): user_profile = get_user_profile(user) tg_list = None for group in user_profile.talkgroup_access.all(): if tg_list is None: tg_list = group.talkgroups.all() else: tg_list = tg_list | group.talkgroups.all() if tg_list: tg_list = tg_list.distinct() else: # Set blank talkgroup queryset tg_list = TalkGroup.objects.none() return tg_list def restrict_talkgroups(request, query_data): ''' Checks to make sure the user can view each of the talkgroups in the query_data returns ( was_restricted, new query_data ) ''' if not settings.ACCESS_TG_RESTRICT: return False, query_data tg_list = allowed_tg_list(request.user) query_data = query_data.filter(talkgroup_info__in=tg_list) return None, query_data def TalkGroupFilterBase(request, filter_val, template): try: tg = TalkGroup.objects.get(alpha_tag__startswith=filter_val) except TalkGroup.DoesNotExist: raise Http404 try: query_data = Transmission.objects.filter(talkgroup_info=tg).prefetch_related('units') #query_data = limit_transmission_history(self.request, rc_data) query_data = limit_transmission_history_six_months(self.request, rc_data) restrict_talkgroups(self.request, rc_data) except Transmission.DoesNotExist: raise Http404 return render(request, template, {'object_list': query_data, 'filter_data': filter_val}) class ScanViewSet(generics.ListAPIView): serializer_class = TransmissionSerializer def get_queryset(self): scanlist = self.kwargs['filter_val'] try: sl = ScanList.objects.get(slug__iexact=scanlist) except ScanList.DoesNotExist: if scanlist == 'default': tg = TalkGroup.objects.all() else: print("Scan list does not match") raise else: tg = sl.talkgroups.all() rc_data = Transmission.objects.filter(talkgroup_info__in=tg).prefetch_related('units').prefetch_related('talkgroup_info') #rc_data = limit_transmission_history(self.request, rc_data) rc_data = limit_transmission_history_six_months(self.request, rc_data) restricted, rc_data = restrict_talkgroups(self.request, rc_data) return rc_data class IncViewSet(generics.ListAPIView): serializer_class = TransmissionSerializer def get_queryset(self): inc = self.kwargs['filter_val'] try: if self.request.user.is_staff: rc_data = Incident.objects.get(slug__iexact=inc).transmissions.all() else: rc_data = Incident.objects.get(slug__iexact=inc, public=True).transmissions.all() except Incident.DoesNotExist: print("Incident does not exist") raise restricted, rc_data = restrict_talkgroups(self.request, rc_data) return rc_data class MessagePopUpViewSet(generics.ListAPIView): serializer_class = MessageSerializer def get_queryset(self): return MessagePopUp.objects.filter(active=True) class TalkGroupFilterViewSet(generics.ListAPIView): serializer_class = TransmissionSerializer def get_queryset(self): tg_var = self.kwargs['filter_val'] search_tgs = re.split('[\+]', tg_var) q = Q() for stg in search_tgs: q |= Q(common_name__iexact=stg) q |= Q(slug__iexact=stg) tg = TalkGroup.objects.filter(q) rc_data = Transmission.objects.filter(talkgroup_info__in=tg).prefetch_related('units') #rc_data = limit_transmission_history(self.request, rc_data) rc_data = limit_transmission_history_six_months(self.request, rc_data) restricted, rc_data = restrict_talkgroups(self.request, rc_data) return rc_data class UnitFilterViewSet(generics.ListAPIView): serializer_class = TransmissionSerializer def get_queryset(self): unit_var = self.kwargs['filter_val'] search_unit = re.split('[\+]', unit_var) q = Q() for s_unit in search_unit: q |= Q(slug__iexact=s_unit) units = Unit.objects.filter(q) rc_data = Transmission.objects.filter(units__in=units).filter(talkgroup_info__public=True).prefetch_related('units').distinct() #rc_data = limit_transmission_history(self.request, rc_data) rc_data = limit_transmission_history_six_months(self.request, rc_data) restricted, rc_data = restrict_talkgroups(self.request, rc_data) return rc_data class TalkGroupList(ListView): model = TalkGroup context_object_name = 'talkgroups' template_name = 'radio/talkgroup_list.html' #queryset = TalkGroup.objects.filter(public=True) def get_queryset(self): if settings.ACCESS_TG_RESTRICT: tg = allowed_tg_list(self.request.user) else: tg = TalkGroup.objects.filter(public=True) if self.request.GET.get('recent', None): tg = tg.order_by('-recent_usage', '-last_transmission') return tg @login_required @csrf_protect def upgrade(request): if request.method == 'POST': form = PaymentForm(request.POST) if not form.is_valid(): return render( request, 'registration/upgrade.html', {'form': form}, ) try: plan = form.cleaned_data.get('plan_type') card_name = form.cleaned_data.get('cardholder_name') stripe_cust = None logger.error('Change plan to {} for customer {} Card Name {}'.format(plan, stripe_cust, card_name)) stripe_info = None except stripe.InvalidRequestError as e: messages.error(request, "Error with stripe {}".format(e)) logger.error("Error with stripe {}".format(e)) return render( request, 'registration/upgrade.html', {'form': form}, ) except stripe.CardError as e: messages.error(request, "<b>Error</b> Sorry there was an error with processing your card:<br>{}".format(e)) logger.error("Error with stripe user card{}".format(e)) return render( request, 'registration/upgrade.html', {'form': form}, ) print('------ STRIPE DEBUG -----') pprint(stripe_info, sys.stderr) return render( request, 'registration/upgrade_complete.html', ) else: form = PaymentForm() return render( request, 'registration/upgrade.html', {'form': form, }, ) @csrf_protect def register(request): if request.method == 'POST': form = RegistrationForm(request.POST) if form.is_valid(): user = User.objects.create_user( username=form.cleaned_data['username'], password=form.cleaned_data['password1'], email=form.cleaned_data['email'] ) username = form.cleaned_data['username'] password = form.cleaned_data['password1'] new_user = authenticate(username=username, password=password) if new_user is not None: if new_user.is_active: #stripe_actions.customers.create(user=new_user) login(request, new_user) return HttpResponseRedirect('/scan/default/') else: # this would be weird to get here return HttpResponseRedirect('/register/success/') else: return HttpResponseRedirect('/register/success/') else: form = RegistrationForm() return render( request, 'registration/register.html', { 'form': form }, ) def register_success(request): return render( request, 'registration/success.html', {}, ) class MenuScanListViewSet(viewsets.ModelViewSet): serializer_class = MenuScanListSerializer queryset = MenuScanList.objects.all() class MenuTalkGroupListViewSet(viewsets.ModelViewSet): serializer_class = MenuTalkGroupListSerializer queryset = MenuTalkGroupList.objects.all() class UnitUpdateView(PermissionRequiredMixin, UpdateView): model = Unit form_class = UnitEditForm success_url = '/unitupdategood/' permission_required = ('radio.change_unit') def form_valid(self, form): try: update_unit_email = SiteOption.objects.get(name='SEND_ADMIN_EMAIL_ON_UNIT_NAME') if update_unit_email.value_boolean_or_string() == True: Unit = form.save() send_mail( 'Unit ID Change', 'User {} updated unit ID {} Now {}'.format(self.request.user, Unit.dec_id, Unit.description), settings.SERVER_EMAIL, [ mail for name, mail in settings.ADMINS], fail_silently=False, ) except SiteOption.DoesNotExist: pass return super().form_valid(form) def ScanDetailsList(request, name): template = 'radio/scandetaillist.html' scanlist = None try: scanlist = ScanList.objects.get(name=name) except ScanList.DoesNotExist: if name == 'default': query_data = TalkGroup.objects.all() else: raise Http404 if scanlist: query_data = scanlist.talkgroups.all() return render(request, template, {'object_list': query_data, 'scanlist': scanlist, 'request': request}) @login_required @csrf_protect def cancel_plan(request): template = 'radio/cancel.html' if request.method == 'POST': msg = 'User {} ({}) wants to cancel'.format(request.user.username, request.user.pk) mail_admins('Cancel Subscription', msg ) return render(request, template, {'complete': True}) else: return render(request, template, {'complete': False}) @csrf_protect def plans(request): token = None has_verified_email = False plans = None default_plan = None if request.method == 'POST': template = 'radio/subscribed.html' token = request.POST.get('stripeToken') plan = request.POST.get('plan') # See if this user already has a stripe account try: stripe_cust = None except ObjectDoesNotExist: #stripe_actions.customers.create(user=request.user) stripe_cust = None try: stripe_info = None #stripe_actions.subscriptions.create(customer=stripe_cust, plan=plan, token=request.POST.get('stripeToken')) except Exception as e: #stripe.CardError as e: template = 'radio/charge_failed.html' logger.error("Error with stripe user card{}".format(e)) return render(request, template, {'error_msg': e }) for t in request.POST: logger.error("{} {}".format(t, request.POST[t])) else: template = 'radio/plans.html' plans = StripePlanMatrix.objects.filter(order__lt=99).filter(active=True) default_plan = Plan.objects.get(pk=Plan.DEFAULT_PK) # Check if users email address is verified if request.user.is_authenticated: verified_email = allauth_emailaddress.objects.filter(user=request.user, primary=True, verified=True) if verified_email: has_verified_email = True return render(request, template, {'token': token, 'verified_email': has_verified_email, 'plans': plans, 'default_plan': default_plan} ) def incident(request, inc_slug): template = 'radio/player_main.html' try: if request.user.is_staff: inc = Incident.objects.get(slug=inc_slug) else: inc = Incident.objects.get(slug=inc_slug, public=True) except Incident.DoesNotExist: raise Http404 return render(request, template, {'inc':inc}) @csrf_exempt def import_transmission(request): if request.method == "POST": settings_auth_token = getattr(settings, 'ADD_TRANS_AUTH_TOKEN', None) if settings_auth_token == '7cf5857c61284': # Check is default is still set return HttpResponse('Unauthorized, default ADD_TRANS_AUTH_TOKEN still set.', status=401) body_unicode = request.body.decode('utf-8') request_data = json.loads(body_unicode) auth_token = request_data.get('auth_token') if auth_token != settings_auth_token: return HttpResponse('Unauthorized, check auth_token', status=401) # System system_name = request_data.get('system') if system_name is None: return HttpResponse('system is missing', status=400) system, created = System.objects.get_or_create(name=system_name) # Source source_name = request_data.get('source') if source_name is None: return HttpResponse('source is missing', status=400) source, created = Source.objects.get_or_create(description=source_name) # TalkGroup tg_dec = request_data.get('talkgroup') if tg_dec is None: return HttpResponse('talkgroup is missing', status=400) try: tg = TalkGroup.objects.get(dec_id=tg_dec, system=system) except TalkGroup.DoesNotExist: name = '#{}'.format(tg_dec) tg = TalkGroup.objects.create(dec_id=tg_dec, system=system, alpha_tag=name, description='TalkGroup {}'.format(name)) # Transmission start epoc_ts = request_data.get('start_time') start_dt = datetime.fromtimestamp(int(epoc_ts), pytz.UTC) epoc_end_ts = request_data.get('stop_time') end_dt = datetime.fromtimestamp(int(epoc_end_ts), pytz.UTC) play_length = epoc_end_ts - epoc_ts audio_filename = request_data.get('audio_filename') audio_file_url_path = request_data.get('audio_file_url_path') freq = request_data.get('freq') # This should be depricated audio_file_type = request_data.get('audio_file_type') audio_file_play_length = request_data.get('audio_file_play_length', play_length) has_audio = request_data.get('has_audio', True) t = Transmission( start_datetime = start_dt, end_datetime = end_dt, audio_file = audio_filename, talkgroup = tg_dec, talkgroup_info = tg, freq = int(float(freq)), emergency = False, source = source, system = system, audio_file_url_path = audio_file_url_path, audio_file_type = audio_file_type, play_length = audio_file_play_length, has_audio = has_audio, ) t.save() # Units count = 0 for unit in request_data.get('srcList'): try: trans_unit = unit['src'] except TypeError: trans_unit = unit u,created = Unit.objects.get_or_create(dec_id=trans_unit,system=t.system) tu = TranmissionUnit.objects.create(transmission=t, unit=u, order=count) count=count+1 return HttpResponse("Transmission added [{}]".format(t.pk)) else: return HttpResponse(status=405)
35.77025
160
0.65905
0a22aec433b1b8addcebae728212cc6b36bb8f1c
688
py
Python
setup.py
parasKumarSahu/Knolml-Analysis-Package
40fd3589ce045fe662c0fb3869464fc906a7d3ce
[ "MIT" ]
null
null
null
setup.py
parasKumarSahu/Knolml-Analysis-Package
40fd3589ce045fe662c0fb3869464fc906a7d3ce
[ "MIT" ]
null
null
null
setup.py
parasKumarSahu/Knolml-Analysis-Package
40fd3589ce045fe662c0fb3869464fc906a7d3ce
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="kml-analysis-parasKumarSahu", version="0.1.1", author="Paras Kumar", author_email="paraskumardavhehal1@gmail.com", description="Wikipedia Analysis Toolkit", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/parasKumarSahu/Knolml-Analysis-Package", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
31.272727
68
0.681686
d42d1754a1a90dd23bf5fb5f9c37a26c9dda6e6c
1,935
py
Python
exercises/arduino_projects/plant_watering_system/data_plotter.py
aliaksandr-klimovich/sandbox
adab6b18f3d78a891c38609abc71b5d7a751919c
[ "Unlicense" ]
1
2020-12-25T18:21:18.000Z
2020-12-25T18:21:18.000Z
exercises/arduino_projects/plant_watering_system/data_plotter.py
aliaksandr-klimovich/sandbox
adab6b18f3d78a891c38609abc71b5d7a751919c
[ "Unlicense" ]
1
2021-02-11T15:05:59.000Z
2021-02-11T15:05:59.000Z
exercises/arduino_projects/plant_watering_system/data_plotter.py
aliaksandr-klimovich/sandbox
adab6b18f3d78a891c38609abc71b5d7a751919c
[ "Unlicense" ]
null
null
null
import os import webbrowser from collections import namedtuple from datetime import timedelta, datetime from threading import Thread from data_saver import DB from logger import get_logger PLOT_FILE_NAME = 'plot.svg' PLOT_SIZE = namedtuple('PLOT_SIZE', 'width,height')(width=800, height=600) PIPE_NAME = 'tmp_pipe' ROLL_BACK_TIME = timedelta(days=1) log = get_logger(__name__) def gnuplot(): cmd = ( f'exec 0>/dev/null 1>/dev/null 2>/dev/null 3<{PIPE_NAME};' f'gnuplot -e "' f'set terminal svg size {PLOT_SIZE.width},{PLOT_SIZE.height};' f'set output \'{PLOT_FILE_NAME}\';' f'set datafile separator comma;' f'set xdata time;' f'set timefmt \'%Y-%m-%dT%H:%M:%S\';' f'set format x \'%d/%H:%M\';' f'unset key;' f'plot \'<&3\' using 1:2;";' ) log.debug(cmd) os.system(cmd) def pipe_writer(data): log.debug(f'pipe_name = {PIPE_NAME}') fd = os.open(PIPE_NAME, os.O_WRONLY) log.debug(f'fd = {fd}') for x, y in data: assert isinstance(x, datetime) timestamp = x.isoformat(timespec='seconds') os.write(fd, bytes(f'{timestamp},{y}\n', 'utf-8')) os.close(fd) def main(): if not os.path.exists(PIPE_NAME): log.info(f'Pipe does not exit, create pipe {PIPE_NAME}') os.mkfifo(PIPE_NAME) db = DB() data = db.get_data(ROLL_BACK_TIME) db.disconnect() thread_gnuplot = Thread(target=gnuplot) thread_pipe_writer = Thread(target=pipe_writer, args=(data,)) thread_gnuplot.start() thread_pipe_writer.start() thread_gnuplot.join() thread_pipe_writer.join() cwd = os.getcwd() log.debug(cwd) log.info(f'Open svg file {PLOT_FILE_NAME}') webbrowser.open(f'file://{cwd}/{PLOT_FILE_NAME}') if os.path.exists(PIPE_NAME): log.info(f'Remove pipe {PIPE_NAME}') os.remove(PIPE_NAME) if __name__ == '__main__': main()
25.460526
74
0.634625
6c4b4a52848185bdc10cda12f47c4907f59a0324
15,220
py
Python
eqa_nav/tools/train_im_room.py
sawravchy/MT-EQA
9a5483cc29ed6ee8d00590e28264743c6bcbe7ad
[ "BSD-3-Clause" ]
22
2019-06-10T22:50:39.000Z
2021-11-06T15:55:21.000Z
eqa_nav/tools/train_im_room.py
sawravchy/MT-EQA
9a5483cc29ed6ee8d00590e28264743c6bcbe7ad
[ "BSD-3-Clause" ]
1
2019-07-15T08:14:58.000Z
2019-07-18T07:26:20.000Z
eqa_nav/tools/train_im_room.py
sawravchy/MT-EQA
9a5483cc29ed6ee8d00590e28264743c6bcbe7ad
[ "BSD-3-Clause" ]
5
2019-06-10T23:37:13.000Z
2021-11-06T15:55:14.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import h5py import time import argparse import random import numpy as np import os, sys, json import os.path as osp import torch import torch.nn as nn from torch.utils.data import DataLoader import _init_paths from nav.loaders.nav_imitation_loader import NavImitationDataset from nav.models.crits import SeqModelCriterion, MaskedMSELoss from nav.models.navigator import Navigator import nav.models.utils as model_utils def evaluate(val_dataset, model, nll_crit, mse_crit, opt): # set mode model.eval() # predict predictions = [] overall_nll = 0 overall_teacher_forcing_acc, overall_teacher_forcing_cnt = 0, 0 overall_mse = 0 Nav_nll = {'object': 0, 'room': 0} Nav_cnt = {'object': 0, 'room': 0} Nav_teacher_forcing_acc = {'object': 0, 'room': 0} Nav_teacher_forcing_cnt = {'object': 0, 'room': 0} for ix in range(len(val_dataset)): # data = {qid, path_ix, house, id, type, phrase, phrase_emb, ego_feats, next_feats, res_feats, # action_inputs, action_outputs, action_masks, ego_imgs} data = val_dataset[ix] ego_feats = torch.from_numpy(data['ego_feats']).cuda().unsqueeze(0) # (1, L, 3200) phrase_embs = torch.from_numpy(data['phrase_emb']).cuda().unsqueeze(0) # (1, 300) action_inputs = torch.from_numpy(data['action_inputs']).cuda().unsqueeze(0) # (1, L) action_outputs = torch.from_numpy(data['action_outputs']).cuda().unsqueeze(0) # (1, L) action_masks = torch.from_numpy(data['action_masks']).cuda().unsqueeze(0) # (1, L) # forward logprobs, _, pred_feats, _ = model(ego_feats, phrase_embs, action_inputs) # (1, L, #actions), (1, L, 3200) nll_loss = nll_crit(logprobs, action_outputs, action_masks) nll_loss = nll_loss.item() mse_loss = 0 if opt['use_next']: next_feats = torch.from_numpy(data['next_feats']).cuda().unsqueeze(0) # (1, L, 3200) mse_loss = mse_crit(pred_feats, next_feats, action_masks) mse_loss = mse_loss.item() if opt['use_residual']: res_feats = torch.from_numpy(data['res_feats']).cuda().unsqueeze(0) # (1, L, 3200) mse_loss = mse_crit(pred_feats, res_feats, action_masks) mse_loss = mse_loss.item() pred_acts = logprobs[0].argmax(1) # (L, ) # entry entry = {} entry['qid'] = data['qid'] entry['house'] = data['house'] entry['id'] = data['id'] entry['type'] = data['type'] entry['path_ix'] = data['path_ix'] entry['pred_acts'] = pred_acts.tolist() # list of L actions entry['pred_acts_probs'] = torch.exp(logprobs[0]).tolist() # (L, #actions) entry['gd_acts'] = action_outputs[0].tolist() # list of L actions entry['nll_loss'] = nll_loss entry['mse_loss'] = mse_loss # accumulate predictions.append(entry) Nav_nll[data['type']] += nll_loss Nav_cnt[data['type']] += 1 acc, cnt = 0, 0 for pa, ga in zip(entry['pred_acts'], entry['gd_acts']): if pa == ga: acc += 1 cnt += 1 if ga == 3: break Nav_teacher_forcing_acc[data['type']] += acc Nav_teacher_forcing_cnt[data['type']] += cnt overall_nll += nll_loss overall_mse += mse_loss overall_teacher_forcing_acc += acc overall_teacher_forcing_cnt += cnt # print if ix % 10 == 0: print('(%s/%s)qid[%s], id[%s], type[%s], nll_loss=%.3f, mse_loss=%.3f' % \ (ix+1, len(val_dataset), entry['qid'], entry['id'], entry['type'], nll_loss, mse_loss)) # summarize overall_nll /= len(val_dataset) overall_mse /= len(val_dataset) overall_teacher_forcing_acc /= overall_teacher_forcing_cnt for _type in ['object', 'room']: Nav_nll[_type] /= (Nav_cnt[_type]+1e-5) Nav_teacher_forcing_acc[_type] /= (Nav_teacher_forcing_cnt[_type]+1e-5) # return return predictions, overall_nll, overall_teacher_forcing_acc, overall_mse, Nav_nll, Nav_teacher_forcing_acc def main(args): # make output directory if args.checkpoint_dir is None: args.checkpoint_dir = 'output/nav_room' if not osp.isdir(args.checkpoint_dir): os.makedirs(args.checkpoint_dir) # set random seed random.seed(args.seed) np.random.randn(args.seed) torch.manual_seed(args.seed) # set up loaders train_loader_kwargs = { 'data_json': args.data_json, 'data_h5': args.data_h5, 'path_feats_dir': args.path_feats_dir, 'path_images_dir': args.path_images_dir, 'split': 'train', 'max_seq_length': args.max_seq_length, 'requires_imgs': False, 'nav_types': ['room'], 'question_types': ['all'], } train_dataset = NavImitationDataset(**train_loader_kwargs) train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers) val_loader_kwargs = { 'data_json': args.data_json, 'data_h5': args.data_h5, 'path_feats_dir': args.path_feats_dir, 'path_images_dir': args.path_images_dir, 'split': 'val', 'max_seq_length': args.max_seq_length, 'requires_imgs': False, 'nav_types': ['room'], 'question_types': ['all'], } val_dataset = NavImitationDataset(**val_loader_kwargs) # set up models opt = vars(args) opt['act_to_ix'] = train_dataset.act_to_ix opt['num_actions'] = len(opt['act_to_ix']) model = Navigator(opt) model.cuda() print('navigator set up.') # set up criterions nll_crit = SeqModelCriterion().cuda() mse_crit = MaskedMSELoss().cuda() # set up optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, betas=(args.optim_alpha, args.optim_beta), eps=args.optim_epsilon, weight_decay=args.weight_decay) # resume from checkpoint infos = {} iters = infos.get('iters', 0) epoch = infos.get('epoch', 0) val_nll_history = infos.get('val_nll_history', {}) val_mse_history = infos.get('val_mse_history', {}) val_teacher_forcing_acc_history = infos.get('val_teacher_forcing_acc_history', {}) val_nav_object_nll_history = infos.get('val_nav_object_nll_history', {}) val_nav_object_teacher_forcing_acc_history = infos.get('val_nav_object_teacher_forcing_acc_history', {}) val_nav_room_nll_history = infos.get('val_nav_room_nll_history', {}) val_nav_room_teacher_forcing_acc_history = infos.get('val_nav_room_teacher_forcing_acc_history', {}) loss_history = infos.get('loss_history', {}) nll_loss_history = infos.get('nll_loss_history', {}) mse_loss_history = infos.get('mse_loss_history', {}) lr = infos.get('lr', args.learning_rate) best_val_score, best_val_acc, best_predictions = None, None, None # start training while iters <= args.max_iters: print('Starting epoch %d' % epoch) # reset seq_length if args.use_curriculum: # assume we need 4 epochs to get full seq_length seq_length = min((args.max_seq_length // 4) ** (epoch+1), args.max_seq_length) train_dataset.reset_seq_length(seq_length) else: seq_length = args.max_seq_length # train for batch in train_loader: # set mode model.train() # zero gradient optimizer.zero_grad() # batch = {qid, path_ix, house, id, type, phrase, phrase_emb, ego_feats, next_feats, res_feats, # action_inputs, action_outputs, action_masks, ego_imgs} ego_feats = batch['ego_feats'].cuda() # (n, L, 3200) phrase_embs = batch['phrase_emb'].cuda() # (n, 300) action_inputs = batch['action_inputs'].cuda() # (n, L) action_outputs = batch['action_outputs'].cuda() # (n, L) action_masks = batch['action_masks'].cuda() # (n, L) # forward # - logprobs (n, L, #actions) # - output_feats (n, L, rnn_size) # - pred_feats (n, L, 3200) or None logprobs, _, pred_feats, _ = model(ego_feats, phrase_embs, action_inputs) nll_loss = nll_crit(logprobs, action_outputs, action_masks) mse_loss = 0 if args.use_next: next_feats = batch['next_feats'].cuda() # (n, L, 3200) mse_loss = mse_crit(pred_feats, next_feats, action_masks) if args.use_residual: res_feats = batch['res_feats'].cuda() # (n, L, 3200) mse_loss = mse_crit(pred_feats, res_feats, action_masks) loss = nll_loss + args.mse_weight * mse_loss # backward loss.backward() model_utils.clip_gradient(optimizer, args.grad_clip) optimizer.step() # training log if iters % args.losses_log_every == 0: loss_history[iters] = loss.item() nll_loss_history[iters] = nll_loss.item() mse_loss_history[iters] = mse_loss.item() if (args.use_next or args.use_residual) else 0 print('iters[%s]epoch[%s], train_loss=%.3f (nll_loss=%.3f, mse_loss=%.3f) lr=%.2E, cur_seq_length=%s' % \ (iters, epoch, loss_history[iters], nll_loss_history[iters], mse_loss_history[iters], lr, train_loader.dataset.cur_seq_length)) # decay learning rate if args.learning_rate_decay_start > 0 and iters > args.learning_rate_decay_start: frac = (iters - args.learning_rate_decay_start) / args.learning_rate_decay_every decay_factor = 0.1 ** frac lr = args.learning_rate * decay_factor model_utils.set_lr(optimizer, lr) # evaluate if iters % args.save_checkpoint_every == 0: print('Checking validation ...') predictions, overall_nll, overall_teacher_forcing_acc, overall_mse, Nav_nll, Nav_teacher_forcing_acc = \ evaluate(val_dataset, model, nll_crit, mse_crit, opt) val_nll_history[iters] = overall_nll val_teacher_forcing_acc_history[iters] = overall_teacher_forcing_acc val_mse_history[iters] = overall_mse val_nav_object_nll_history[iters] = Nav_nll['object'] val_nav_object_teacher_forcing_acc_history[iters] = Nav_teacher_forcing_acc['object'] val_nav_room_nll_history[iters] = Nav_nll['room'] val_nav_room_teacher_forcing_acc_history[iters] = Nav_teacher_forcing_acc['room'] # save model if best # consider all three accuracy, perhaps a better weighting is needed. current_score = -overall_nll if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_val_acc = overall_teacher_forcing_acc best_predictions = predictions checkpoint_path = osp.join(args.checkpoint_dir, '%s.pth' % args.id) checkpoint = {} checkpoint['model_state'] = model.state_dict() checkpoint['opt'] = vars(args) torch.save(checkpoint, checkpoint_path) print('model saved to %s.' % checkpoint_path) # write to json report infos['iters'] = iters infos['epoch'] = epoch infos['loss_history'] = loss_history infos['nll_loss_history'] = nll_loss_history infos['mse_loss_history'] = mse_loss_history infos['val_nll_history'] = val_nll_history infos['val_teacher_forcing_acc_history'] = val_teacher_forcing_acc_history infos['val_mse_history'] = val_mse_history infos['val_nav_object_nll_history'] = val_nav_object_nll_history infos['val_nav_object_teacher_forcing_acc_history'] = val_nav_object_teacher_forcing_acc_history infos['val_nav_room_nll_history'] = val_nav_room_nll_history infos['val_nav_room_teacher_forcing_acc_history'] = val_nav_room_teacher_forcing_acc_history infos['best_val_score'] = best_val_score infos['best_val_acc'] = best_val_acc infos['best_predictions'] = predictions if best_predictions is None else best_predictions infos['opt'] = vars(args) infos['act_to_ix'] = train_dataset.act_to_ix infos_json = osp.join(args.checkpoint_dir, '%s.json' % args.id) with open(infos_json, 'w') as f: json.dump(infos, f) print('infos saved to %s.' % infos_json) # update iters iters += 1 # update epoch epoch += 1 if __name__ == '__main__': parser = argparse.ArgumentParser() # Data input settings parser.add_argument('--data_json', type=str, default='cache/prepro/imitation/data.json') parser.add_argument('--data_h5', type=str, default='cache/prepro/data.h5') parser.add_argument('--path_feats_dir', type=str, default='cache/path_feats') parser.add_argument('--path_images_dir', type=str, default='cache/path_images') parser.add_argument('--checkpoint_dir', type=str, default='output/nav_room') parser.add_argument('--num_workers', type=int, default=4) parser.add_argument('--seed', type=int, default=24) parser.add_argument('--start_from', type=str, default=None) # Navigator settings parser.add_argument('--max_seq_length', type=int, default=100, help='max_seq_length') parser.add_argument('--rnn_type', type=str, default='lstm') parser.add_argument('--rnn_size', type=int, default=256) parser.add_argument('--num_layers', type=int, default=1) parser.add_argument('--rnn_dropout', type=float, default=0.1) parser.add_argument('--fc_dropout', type=float, default=0.0) parser.add_argument('--seq_dropout', type=float, default=0.0) parser.add_argument('--fc_dim', type=int, default=64) parser.add_argument('--act_dim', type=int, default=64) parser.add_argument('--use_action', dest='use_action', action='store_true', help='if input previous action') parser.add_argument('--use_residual', dest='use_residual', action='store_true', help='if predict the residual featuer') parser.add_argument('--use_next', dest='use_next', action='store_true', help='if predict next image feature') parser.add_argument('--use_curriculum', dest='use_curriculum', action='store_true', help='if use curriculum') # Output settings parser.add_argument('--id', type=str, default='im0') parser.add_argument('--save_checkpoint_every', type=str, default=2000, help='how often to save a model checkpoint') parser.add_argument('--losses_log_every', type=int, default=25) # Optimizer parser.add_argument('--mse_weight', type=float, default=1.0) parser.add_argument('--max_iters', type=int, default=20000, help='max number of iterations to run') parser.add_argument('--batch_size', type=int, default=40, help='batch size in number of questions per batch') parser.add_argument('--grad_clip', type=float, default=0.1, help='clip gradients at this value') parser.add_argument('--learning_rate', type=float, default=4e-4, help='learning rate') parser.add_argument('--learning_rate_decay_start', type=int, default=5000, help='at what iters to start decaying learning rate') parser.add_argument('--learning_rate_decay_every', type=int, default=5000, help='every how many iters thereafter to drop LR by half') parser.add_argument('--optim_alpha', type=float, default=0.8, help='alpha for adam') parser.add_argument('--optim_beta', type=float, default=0.999, help='beta used for adam') parser.add_argument('--optim_epsilon', type=float, default=1e-8, help='epsilon that goes into denominator for smoothing') parser.add_argument('--weight_decay', type=float, default=1e-3, help='weight decay for l2 regularization') args = parser.parse_args() main(args)
44.764706
137
0.693627
6db703564f019e77a5652dc6cc38b331bb877065
1,219
py
Python
examples/pipeline/src/gen-version-header.py
dan65prc/conduit
6f73416c8b5526a84a21415d5079bb2b61772144
[ "BSD-3-Clause" ]
5
2018-08-01T02:52:11.000Z
2020-09-19T08:12:07.000Z
examples/pipeline/src/gen-version-header.py
dan65prc/conduit
6f73416c8b5526a84a21415d5079bb2b61772144
[ "BSD-3-Clause" ]
null
null
null
examples/pipeline/src/gen-version-header.py
dan65prc/conduit
6f73416c8b5526a84a21415d5079bb2b61772144
[ "BSD-3-Clause" ]
1
2021-12-02T21:05:35.000Z
2021-12-02T21:05:35.000Z
#!/usr/bin/env python import sys import os import re import subprocess from pprint import pprint checkout_version = subprocess.Popen('git rev-parse HEAD', shell=True, stdout=subprocess.PIPE).stdout.read() checkout_diff = subprocess.Popen('git diff -w', shell=True, stdout=subprocess.PIPE).stdout.read()[:256] variables = {} variables['checkout'] = '"{0}"'.format(checkout_version.decode('utf-8').strip()) # order on the replacements is important, replace original backslash first. variables['diff'] = '"\\n\\"{0}\\"\\n"'.format(checkout_diff.decode('utf-8').strip().replace('\\', '\\\\').replace('"', '\\"').replace('\r', '').replace('\n', '\\n')) variables['build_path'] = '"{0}"'.format(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../').replace('\\', '/')) if not os.path.exists(os.path.dirname(sys.argv[1])): os.makedirs(os.path.dirname(sys.argv[1])) pprint(variables) outfile = open(sys.argv[1], 'w+') outfile.write(''' #ifndef CONDUIT_PROJECT_VERSION_H_ #define CONDUIT_PROJECT_VERSION_H_ #define CONDUIT_PROJECT_VERSION {checkout} #define CONDUIT_PROJECT_BUILD_PATH {build_path} #define CONDUIT_PROJECT_DIFF {diff} #endif '''.format(**variables))
32.945946
167
0.684988
5d3da0de37ce7616effa12dcef365c94ef6bdd6f
2,898
py
Python
model/model_ss.py
gicsaw/ConDo2
77bd4efdd5b6b72ac119f7ae9b217ef114476d21
[ "MIT" ]
null
null
null
model/model_ss.py
gicsaw/ConDo2
77bd4efdd5b6b72ac119f7ae9b217ef114476d21
[ "MIT" ]
null
null
null
model/model_ss.py
gicsaw/ConDo2
77bd4efdd5b6b72ac119f7ae9b217ef114476d21
[ "MIT" ]
null
null
null
#!/usr/bin/env python import torch import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, hidden_dim, kernel_size, dilation, bn_momentum): super(ResidualBlock, self).__init__() padding = (kernel_size - 1) * dilation // 2 hidden_dim2 = hidden_dim*2 self.conv1 = nn.Conv1d(in_channels=hidden_dim, out_channels=hidden_dim2, kernel_size=kernel_size, padding=padding, dilation=dilation) self.norm1 = nn.BatchNorm1d(hidden_dim2, momentum=bn_momentum) self.conv2 = nn.Conv1d(in_channels=hidden_dim2, out_channels=hidden_dim, kernel_size=kernel_size, padding=padding, dilation=dilation) self.norm2 = nn.BatchNorm1d(hidden_dim, momentum=bn_momentum) def forward(self, X0): X = self.conv1(X0) X = torch.relu(X) X1 = self.norm1(X) X = self.conv2(X1) X = torch.relu(X) X2 = self.norm2(X) Xout = X2 + X0 return Xout class Network(nn.Module): def __init__(self, para): super(Network, self).__init__() self.input_dim = para['input_dim'] self.output_dim = para['output_dim'] self.bn_momentum = para['bn_momentum'] self.hidden_dim = para['hidden_dim'] self.kernel_size = para['kernel_size'] self.dilation = para['dilation'] self.num_layers = para['num_layers'] self.padding = (self.kernel_size - 1) * self.dilation // 2 self.conv_input = nn.Conv1d(in_channels=self.input_dim, out_channels=self.hidden_dim, kernel_size=5, padding=2, dilation=1) self.norm_input = nn.BatchNorm1d( self.hidden_dim, momentum=self.bn_momentum) resblocks = [] for i in range(0, self.num_layers): resblocks += [ResidualBlock(self.hidden_dim, self.kernel_size, self.dilation, self.bn_momentum)] self.resblocks = nn.ModuleList(resblocks) self.conv_o = nn.Conv1d(in_channels=self.hidden_dim, out_channels=self.output_dim, kernel_size=self.kernel_size, padding=self.padding, dilation=self.dilation) def forward(self, X0): X = X0.permute(0, 2, 1) X = self.conv_input(X) X = torch.relu(X) X = self.norm_input(X) for i in range(0, self.num_layers): res_block = self.resblocks[i] X = res_block(X) out = self.conv_o(X) out = out.permute(0, 2, 1) return out
34.5
74
0.534852
649eecdc665b8e745e7c0d92a5697b533cf4a141
1,692
py
Python
helpers.py
ririw/kaggle-bimbo-pymc3
fbf016751e2459b9fa6c8d058aad9c75fca57731
[ "MIT" ]
null
null
null
helpers.py
ririw/kaggle-bimbo-pymc3
fbf016751e2459b9fa6c8d058aad9c75fca57731
[ "MIT" ]
null
null
null
helpers.py
ririw/kaggle-bimbo-pymc3
fbf016751e2459b9fa6c8d058aad9c75fca57731
[ "MIT" ]
null
null
null
""" This script is intended to translate the data in `csv` format to `sqlite db` while fixing the field type and renaming the columns. The idea is to define some directives and let `odo` takes care of the rest ;-). The script will register the `train` and `test` data into tables with the same respective name. """ import dask.dataframe as dd from dask.diagnostics import ProgressBar from odo import odo, dshape def prepare_database(): # Train set df = dd.read_csv("./train.csv") col_map = dict(zip(df.columns, ["week_num","agency_id","channel_id","route_id","client_id","product_id", "sales_unit","sales_peso","returns_unit","returns_peso","adjusted_demand"])) ds = dshape("var * {week_num:int64,agency_id:int64,channel_id:int64,route_id:int64,client_id:int64,product_id:int64,\ sales_unit:int64,sales_peso:float64,returns_unit:int64,returns_peso:float64, adjusted_demand:int64}") df = df.rename(columns=col_map) print("translating the train set...") with ProgressBar(): odo(df, "sqlite:///data.sqlite3::train", dshape=ds) # the dirty part # Test set df = dd.read_csv("./test.csv", usecols=range(1,7)) # discard the `id` (first) column col_map = dict(zip(df.columns, ["week_num","agency_id","channel_id","route_id","client_id","product_id"])) ds = dshape("var * {week_num:int64,agency_id:int64,channel_id:int64,route_id:int64,client_id:int64,product_id:int64}") df = df.rename(columns=col_map) print("translating the test set...") with ProgressBar(): odo(df, "sqlite:///data.sqlite3::test", dshape=ds) prepare_database()
43.384615
132
0.677305
51d72e57aa3e0f2aa1920bf143dd3a56c427a5a8
1,298
py
Python
video_util.py
woo1/youtube-ffmpeg
bef663d34c9a51b4a93454d3a8137fbec08a0d16
[ "MIT" ]
null
null
null
video_util.py
woo1/youtube-ffmpeg
bef663d34c9a51b4a93454d3a8137fbec08a0d16
[ "MIT" ]
null
null
null
video_util.py
woo1/youtube-ffmpeg
bef663d34c9a51b4a93454d3a8137fbec08a0d16
[ "MIT" ]
null
null
null
import os import cv2 def mosaic(img, rect, mosaic_rate=15): x, y, xmax, ymax = rect # if x < 0: # xmax = xmax - x # x = 0 # if y < 0: # ymax = ymax - x # y = 0 if x < 0 or y < 0 or xmax < 0 or ymax < 0: return img w = xmax-x h = ymax-y face_img = img[y:ymax, x:xmax] min_side = min(w, h) if min_side <= mosaic_rate: mosaic_rate = min_side // 2 face_img = cv2.resize(face_img, (w // mosaic_rate, h // mosaic_rate)) face_img = cv2.resize(face_img, (w, h), interpolation=cv2.INTER_AREA) try: img[y:ymax, x:xmax] = face_img except Exception as e: print('w', w, 'h', h, 'rect', rect, 'mosaic_rate', mosaic_rate) print(e) return img def video2img(vdo_path, img_dir, fps, tot_seconds): cmd = 'ffmpeg -t '+str(tot_seconds)+' -i "'+vdo_path+'" -r '+str(fps)+' -qscale:v 2 -f image2 '+img_dir+'/img_%d.jpg' os.system(cmd) import pytube def download_youtube(url, sav_path): yt = pytube.YouTube(url) vids = yt.streams.all() for i in range(len(vids)): print(i, '. ', vids[i]) vnum = int(input('Select video number to download : ')) vids[vnum].download(sav_path) if __name__ == '__main__': download_youtube('YOUTUBE_URL', 'SAVE_DIR')
25.96
121
0.577042
53e9cf0fc42e46ed436d8dddb9e9b5efa9ee89bf
1,307
py
Python
releasetools.py
lihonglinglory/test
d38cb70ada6946abe711d5e5b8d3fac95d48ed9b
[ "FTL" ]
null
null
null
releasetools.py
lihonglinglory/test
d38cb70ada6946abe711d5e5b8d3fac95d48ed9b
[ "FTL" ]
null
null
null
releasetools.py
lihonglinglory/test
d38cb70ada6946abe711d5e5b8d3fac95d48ed9b
[ "FTL" ]
1
2019-04-27T05:20:48.000Z
2019-04-27T05:20:48.000Z
# Copyright (C) 2009 The Android Open Source Project # Copyright (c) 2011, The Linux Foundation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import common import re def FullOTA_Assertions(info): AddTrustZoneAssertion(info, info.input_zip) return def IncrementalOTA_Assertions(info): AddTrustZoneAssertion(info, info.target_zip) return def AddTrustZoneAssertion(info, input_zip): android_info = info.input_zip.read("OTA/android-info.txt") m = re.search(r'require\s+version-trustzone\s*=\s*(\S+)', android_info) if m: versions = m.group(1).split('|') if len(versions) and '*' not in versions: cmd = 'assert(platina.verify_trustzone(' + ','.join(['"%s"' % tz for tz in versions]) + ') == "1");' info.script.AppendExtra(cmd) return
35.324324
106
0.729916
3fa3191830bb8fdf61b47fb64cba18ddcc8f7324
6,128
py
Python
genericadmin/admin.py
whatisjasongoldstein/django-genericadmin
77b246890f3813fcc44f28ded7f4cb36aa261e65
[ "MIT" ]
null
null
null
genericadmin/admin.py
whatisjasongoldstein/django-genericadmin
77b246890f3813fcc44f28ded7f4cb36aa261e65
[ "MIT" ]
null
null
null
genericadmin/admin.py
whatisjasongoldstein/django-genericadmin
77b246890f3813fcc44f28ded7f4cb36aa261e65
[ "MIT" ]
null
null
null
import json from functools import update_wrapper from django.contrib import admin from django.conf.urls import url from django.conf import settings from django.contrib.contenttypes.admin import GenericTabularInline, GenericStackedInline from django.contrib.contenttypes.fields import GenericForeignKey from django.contrib.contenttypes.models import ContentType try: from django.utils.encoding import force_text except ImportError: from django.utils.encoding import force_unicode as force_text from django.utils.text import capfirst from django.contrib.admin.widgets import url_params_from_lookup_dict from django.http import HttpResponse, HttpResponseNotAllowed, Http404 try: from django.contrib.admin.views.main import IS_POPUP_VAR except ImportError: from django.contrib.admin.options import IS_POPUP_VAR JS_PATH = getattr(settings, 'GENERICADMIN_JS', 'genericadmin/js/') class BaseGenericModelAdmin(object): class Media: js = () content_type_lookups = {} generic_fk_fields = [] content_type_blacklist = [] content_type_whitelist = [] def __init__(self, model, admin_site): try: media = list(self.Media.js) except: media = [] media.append(JS_PATH + 'genericadmin.js') self.Media.js = tuple(media) super(BaseGenericModelAdmin, self).__init__(model, admin_site) def get_generic_field_list(self, request, prefix=''): if hasattr(self, 'ct_field') and hasattr(self, 'ct_fk_field'): exclude = [self.ct_field, self.ct_fk_field] else: exclude = [] field_list = [] if hasattr(self, 'generic_fk_fields') and self.generic_fk_fields: for fields in self.generic_fk_fields: if fields['ct_field'] not in exclude and \ fields['fk_field'] not in exclude: fields['inline'] = prefix != '' fields['prefix'] = prefix field_list.append(fields) else: for field in self.model._meta.virtual_fields: if isinstance(field, GenericForeignKey) and \ field.ct_field not in exclude and field.fk_field not in exclude: field_list.append({ 'ct_field': field.ct_field, 'fk_field': field.fk_field, 'inline': prefix != '', 'prefix': prefix, }) if hasattr(self, 'inlines') and len(self.inlines) > 0: for FormSet, inline in zip(self.get_formsets(request), self.get_inline_instances(request)): prefix = FormSet.get_default_prefix() field_list = field_list + inline.get_generic_field_list(request, prefix) return field_list def get_urls(self): def wrap(view): def wrapper(*args, **kwargs): return self.admin_site.admin_view(view)(*args, **kwargs) return update_wrapper(wrapper, view) custom_urls = [ url(r'^obj-data/$', wrap(self.generic_lookup), name='admin_genericadmin_obj_lookup'), url(r'^genericadmin-init/$', wrap(self.genericadmin_js_init), name='admin_genericadmin_init'), ] return custom_urls + super(BaseGenericModelAdmin, self).get_urls() def genericadmin_js_init(self, request): if request.method == 'GET': obj_dict = {} for c in ContentType.objects.all(): val = force_text('%s/%s' % (c.app_label, c.model)) params = self.content_type_lookups.get('%s.%s' % (c.app_label, c.model), {}) params = url_params_from_lookup_dict(params) if self.content_type_whitelist: if val in self.content_type_whitelist: obj_dict[c.id] = (val, params) elif val not in self.content_type_blacklist: obj_dict[c.id] = (val, params) data = { 'url_array': obj_dict, 'fields': self.get_generic_field_list(request), 'popup_var': IS_POPUP_VAR, } resp = json.dumps(data, ensure_ascii=False) return HttpResponse(resp, content_type='application/json') return HttpResponseNotAllowed(['GET']) def generic_lookup(self, request): if request.method != 'GET': return HttpResponseNotAllowed(['GET']) if 'content_type' in request.GET and 'object_id' in request.GET: content_type_id = request.GET['content_type'] object_id = request.GET['object_id'] obj_dict = { 'content_type_id': content_type_id, 'object_id': object_id, } content_type = ContentType.objects.get(pk=content_type_id) obj_dict["content_type_text"] = capfirst(force_text(content_type)) try: obj = content_type.get_object_for_this_type(pk=object_id) obj_dict["object_text"] = capfirst(force_text(obj)) except ObjectDoesNotExist: raise Http404 resp = json.dumps(obj_dict, ensure_ascii=False) else: resp = '' return HttpResponse(resp, content_type='application/json') class GenericAdminModelAdmin(BaseGenericModelAdmin, admin.ModelAdmin): """Model admin for generic relations. """ class GenericTabularInline(BaseGenericModelAdmin, GenericTabularInline): """Model admin for generic tabular inlines. """ class GenericStackedInline(BaseGenericModelAdmin, GenericStackedInline): """Model admin for generic stacked inlines. """ class TabularInlineWithGeneric(BaseGenericModelAdmin, admin.TabularInline): """"Normal tabular inline with a generic relation""" class StackedInlineWithGeneric(BaseGenericModelAdmin, admin.StackedInline): """"Normal stacked inline with a generic relation"""
39.535484
106
0.616678
94f6d714c8aca6d43dca0eb4767f8d0b81d9b12d
9,007
py
Python
musicscore/musictree/treeinstruments.py
alexgorji/music_score
b4176da52295361f3436826903485c5cb8054c5e
[ "MIT" ]
2
2020-06-22T13:33:28.000Z
2020-12-30T15:09:00.000Z
musicscore/musictree/treeinstruments.py
alexgorji/music_score
b4176da52295361f3436826903485c5cb8054c5e
[ "MIT" ]
37
2020-02-18T12:15:00.000Z
2021-12-13T20:01:14.000Z
musicscore/musictree/treeinstruments.py
alexgorji/music_score
b4176da52295361f3436826903485c5cb8054c5e
[ "MIT" ]
null
null
null
import uuid from musicscore.musictree.midi import G, D, A, E, C, MidiNote, Midi, B, F, midi_to_frequency, frequency_to_midi from musicscore.musictree.treeclef import TreeClef, TREBLE_CLEF, ALTO_CLEF, BASS_CLEF from musicscore.musicxml.types.complextypes.midiinstrument import ComplexTypeMidiInstrument from musicscore.musicxml.types.complextypes.scorepart import PartName, PartAbbreviation class TreeInstrument(ComplexTypeMidiInstrument): _TAG = 'midi-instrument' def __init__(self, name, number_of_staves=None, abbreviation=None, number=None, *args, **kwargs): super().__init__(tag=self._TAG, id_='inst' + str(uuid.uuid4()), *args, **kwargs) self._part_name = PartName(name=name) self._part_abbreviation = PartAbbreviation() self._number_of_staves = None self._standard_clefs = None self._number = None self.number_of_staves = number_of_staves self.abbreviation = abbreviation self.number = number # public properties @property def abbreviation(self): return self._part_abbreviation.value @abbreviation.setter def abbreviation(self, val): self._part_abbreviation.value = val @property def name(self): return self._part_name.name @name.setter def name(self, val): self._part_name.name = val @property def number(self): return self._number @number.setter def number(self, val): if self._number is not None: raise AttributeError('number can only be set once') if val is not None and not isinstance(val, int): raise TypeError('number.value must be of type int not{}'.format(type(val))) self._number = val if self._number is not None: self.name += ' ' + str(self._number) self.abbreviation += ' ' + str(self._number) @property def part_name(self): return self._part_name @property def part_abbreviation(self): return self._part_abbreviation @property def standard_clefs(self): return self._standard_clefs @standard_clefs.setter def standard_clefs(self, vals): if not hasattr(vals, '__iter__'): vals = [vals] for index, val in enumerate(vals): if not isinstance(val, TreeClef): raise TypeError('standard_clef.value must be of type TreeClef not{}'.format(type(val))) vals[index] = val.__deepcopy__() if len(vals) > 1: for index, val in enumerate(vals): val.number = index + 1 self._standard_clefs = vals @property def number_of_staves(self): return self._number_of_staves @number_of_staves.setter def number_of_staves(self, val): if val is not None and not isinstance(val, int): raise TypeError('number_of_staves.value must be of type int not{}'.format(type(val))) self._number_of_staves = val # strings class String(object): def __init__(self, number, tuning, *args, **kwargs): super().__init__(*args, **kwargs) self._tuning = None self.number = number self.tuning = tuning @property def tuning(self): return self._tuning @tuning.setter def tuning(self, val): if not isinstance(val, Midi): raise TypeError('tuning.value must be of type Midi not{}'.format(type(val))) self._tuning = val def get_step(self, number): step = self.tuning.__deepcopy__() step.transpose(number) return step class StringInstrument(TreeInstrument): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.strings = {} class Violin(StringInstrument): def __init__(self, number=None, *args, **kwargs): super().__init__(name='Violin', abbreviation='vln.', number=number, *args, **kwargs) self.strings = {4: String(4, G(3)), 3: String(3, D(4)), 2: String(2, A(4)), 1: String(1, E(5)) } self.standard_clefs = TREBLE_CLEF class Viola(StringInstrument): def __init__(self, number=None, *args, **kwargs): super().__init__(name='Viola', abbreviation='vla.', number=number, *args, **kwargs) self.strings = {4: String(4, C(3)), 3: String(3, G(3)), 2: String(2, D(4)), 1: String(1, A(4)) } self.standard_clefs = ALTO_CLEF class Cello(StringInstrument): def __init__(self, number=None, *args, **kwargs): super().__init__(name='Cello', abbreviation='vc.', number=number, *args, **kwargs) self.strings = {4: String(4, C(2)), 3: String(3, G(2)), 2: String(2, D(3)), 1: String(1, A(3)) } self.standard_clefs = BASS_CLEF class ViolaDamore(StringInstrument): def __init__(self, number=None, *args, **kwargs): super().__init__(name='Viola d\'amore\n430', abbreviation='vla.', number=number, *args, **kwargs) # skordatura self.strings = {1: String(1, B(4)), 2: String(2, B(4)), 3: String(3, F(4, '#')), 4: String(4, C(4)), 5: String(5, G(3)), 6: String(6, D(3)), 7: String(7, A(2)) } # keyboards class KeyboardInstrument(TreeInstrument): def __init__(self, number_of_staves=2, *args, **kwargs): super().__init__(number_of_staves=number_of_staves, *args, **kwargs) self.standard_clefs = [TREBLE_CLEF, BASS_CLEF] class Accordion(KeyboardInstrument): def __init__(self, number=None, *args, **kwargs): super().__init__(name='Accordion', abbreviation='acc.', number=number, *args, **kwargs) class Piano(KeyboardInstrument): def __init__(self, *args, **kwargs): super().__init__(name='Piano', abbreviation='pno.', *args, **kwargs) # brass class NaturalInstrument(TreeInstrument): def __init__(self, key, a4=440, *args, **kwargs): super().__init__(*args, **kwargs) self._a4 = None self._key = None self._transposition = None self.a4 = a4 self.key = key @property def a4(self): return self._a4 @a4.setter def a4(self, val): try: float(val) except AttributeError: raise TypeError() self._a4 = val @property def key(self): return self._key @key.setter def key(self, val): if not isinstance(val, MidiNote): raise TypeError('key.value must be of type MidiNote not{}'.format(type(val))) self._key = val @property def transposition(self): return self._transposition @transposition.setter def transposition(self, val): self._transposition = val def get_fundamental_frequency(self): return midi_to_frequency(self.key, self.a4) def get_partial_midi_value(self, number): if not isinstance(number, int): return TypeError() if number <= 0: return ValueError() return frequency_to_midi(self.get_fundamental_frequency() * number, self.a4) class Horn(TreeInstrument): def __init__(self, number=None, *args, **kwargs): super().__init__(name='Horn', abbreviation='hrn.', number=number, *args, **kwargs) class NaturalHorn(NaturalInstrument): def __init__(self, key=E(1, 'b'), a4=430, *args, **kwargs): super().__init__(name='Horn in E♭\n430', abbreviation='hrn.', key=key, a4=a4, *args, **kwargs) self.transposition = 9 # percussion class Percussion(TreeInstrument): def __init__(self, number=None, *args, **kwargs): super().__init__(name='Percussion', abbreviation='perc.', number=number, *args, **kwargs) self.tamtam = TamTam() self.cymbal_1 = Cymbal(1) self.cymbal_2 = Cymbal(2) self.cymbal_3 = Cymbal(3) self.cymbal_4 = Cymbal(4) self.cymbal_5 = Cymbal(5) class TamTam(TreeInstrument): def __init__(self, number=None, *args, **kwargs): super().__init__(name='Tam-tam', abbreviation='Tam-t.', number=number, *args, **kwargs) self.midi = B(3) self.midi.notehead = 'x' class Cymbal(TreeInstrument): midis = {1: E(4), 2: G(4), 3: B(4), 4: D(5), 5: F(5)} def __init__(self, number=1, *args, **kwargs): super().__init__(name='cymbal-' + str(number), abbreviation='cym-' + str(number), number=number, *args, **kwargs) self.midi = self.midis[self.number] self.midi.notehead = 'x' # voice class Voice(TreeInstrument): def __init__(self, *args, **kwargs): super().__init__(name='voice', abbreviation='v.', *args, **kwargs)
31.383275
111
0.597091
255c49363a15c3f3eb8e77eff2b8dcf39564880f
3,852
py
Python
open_spiel/python/egt/visualization_test.py
alexminnaar/open_spiel
c17a390f8a007ccc309f76cb0cfa29f06dc5d2c9
[ "Apache-2.0" ]
1
2019-12-19T01:51:03.000Z
2019-12-19T01:51:03.000Z
open_spiel/python/egt/visualization_test.py
alexminnaar/open_spiel
c17a390f8a007ccc309f76cb0cfa29f06dc5d2c9
[ "Apache-2.0" ]
null
null
null
open_spiel/python/egt/visualization_test.py
alexminnaar/open_spiel
c17a390f8a007ccc309f76cb0cfa29f06dc5d2c9
[ "Apache-2.0" ]
1
2020-12-25T03:02:31.000Z
2020-12-25T03:02:31.000Z
# Copyright 2019 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for open_spiel.python.egt.visualization.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging from absl.testing import absltest # pylint: disable=g-import-not-at-top try: from matplotlib.figure import Figure from matplotlib.quiver import Quiver from matplotlib.streamplot import StreamplotSet except ImportError as e: logging.info("If your tests failed with the error 'ImportError: No module " "named functools_lru_cache', this is a known bug in matplotlib " "and there is a workaround (run sudo apt install " "python-backports.functools-lru-cache. See: " "https://github.com/matplotlib/matplotlib/issues/9344.") raise ImportError(str(e)) import numpy as np from open_spiel.python.egt import dynamics from open_spiel.python.egt import utils from open_spiel.python.egt import visualization import pyspiel def _build_dynamics2x2(): """Build multi-population dynamics.""" game = pyspiel.load_game("matrix_pd") payoff_tensor = utils.nfg_to_ndarray(game) return dynamics.MultiPopulationDynamics(payoff_tensor, dynamics.replicator) def _build_dynamics3x3(): """Build single-population dynamics.""" game = pyspiel.load_game("matrix_rps") payoff_tensor = utils.nfg_to_ndarray(game) return dynamics.SinglePopulationDynamics(payoff_tensor, dynamics.replicator) def _identity_dynamics(x): """Returns same input as output.""" return x class VisualizationTest(absltest.TestCase): def test_meshgrid(self): n = 10 payoff_tensor = np.ones(shape=(2, 2, 2)) identity = lambda x, f: x allzero = lambda x, f: np.zeros(x.shape) dyn = dynamics.MultiPopulationDynamics(payoff_tensor, (identity, allzero)) x, y, u, v = visualization._eval_dynamics_2x2_grid(dyn, n) np.testing.assert_allclose(x, u) np.testing.assert_allclose(v, np.zeros(shape=(n, n))) dyn = dynamics.MultiPopulationDynamics(payoff_tensor, (allzero, identity)) x, y, u, v = visualization._eval_dynamics_2x2_grid(dyn, n) np.testing.assert_allclose(u, np.zeros(shape=(n, n))) np.testing.assert_allclose(y, v) def test_quiver2x2(self): """Test 2x2 quiver plot.""" dyn = _build_dynamics2x2() fig = Figure(figsize=(4, 4)) ax = fig.add_subplot(111, projection="2x2") res = ax.quiver(dyn) self.assertIsInstance(res, Quiver) def test_streamplot2x2(self): """Test 2x2 quiver plot.""" dyn = _build_dynamics2x2() fig = Figure(figsize=(4, 4)) ax = fig.add_subplot(111, projection="2x2") res = ax.streamplot(dyn) self.assertIsInstance(res, StreamplotSet) def test_quiver3x3(self): """Test 3x3 quiver plot.""" dyn = _build_dynamics3x3() fig = Figure(figsize=(4, 4)) ax = fig.add_subplot(111, projection="3x3") res = ax.quiver(dyn) self.assertIsInstance(res, Quiver) def test_streamplot3x3(self): """Test 3x3 quiver plot.""" dyn = _build_dynamics3x3() fig = Figure(figsize=(4, 4)) ax = fig.add_subplot(111, projection="3x3") res = ax.streamplot(dyn) self.assertIsInstance(res, visualization.SimplexStreamMask) if __name__ == "__main__": absltest.main()
33.206897
79
0.722222
322ba076a735a23cbb55ce4e7f4d2ddf5097fbb5
45,724
py
Python
pyAudioAnalysis/audioSegmentation.py
elastic255/pyAudioAnalysis
90cf0ad36194ae73e6c3624a4a84bcbb9f8ed857
[ "Apache-2.0" ]
null
null
null
pyAudioAnalysis/audioSegmentation.py
elastic255/pyAudioAnalysis
90cf0ad36194ae73e6c3624a4a84bcbb9f8ed857
[ "Apache-2.0" ]
null
null
null
pyAudioAnalysis/audioSegmentation.py
elastic255/pyAudioAnalysis
90cf0ad36194ae73e6c3624a4a84bcbb9f8ed857
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import numpy import sklearn.cluster import scipy import os from pyAudioAnalysis import audioFeatureExtraction as aF from pyAudioAnalysis import audioTrainTest as aT from pyAudioAnalysis import audioBasicIO from scipy.spatial import distance import matplotlib.pyplot as plt import sklearn.discriminant_analysis import csv import os.path import sklearn import sklearn.cluster import hmmlearn.hmm import pickle as cPickle import glob """ General utility functions """ def smoothMovingAvg(inputSignal, windowLen=11): windowLen = int(windowLen) if inputSignal.ndim != 1: raise ValueError("") if inputSignal.size < windowLen: raise ValueError("Input vector needs to be bigger than window size.") if windowLen < 3: return inputSignal s = numpy.r_[2*inputSignal[0] - inputSignal[windowLen-1::-1], inputSignal, 2*inputSignal[-1]-inputSignal[-1:-windowLen:-1]] w = numpy.ones(windowLen, 'd') y = numpy.convolve(w/w.sum(), s, mode='same') return y[windowLen:-windowLen+1] def selfSimilarityMatrix(featureVectors): ''' This function computes the self-similarity matrix for a sequence of feature vectors. ARGUMENTS: - featureVectors: a numpy matrix (nDims x nVectors) whose i-th column corresponds to the i-th feature vector RETURNS: - S: the self-similarity matrix (nVectors x nVectors) ''' [nDims, nVectors] = featureVectors.shape [featureVectors2, MEAN, STD] = aT.normalizeFeatures([featureVectors.T]) featureVectors2 = featureVectors2[0].T S = 1.0 - distance.squareform(distance.pdist(featureVectors2.T, 'cosine')) return S def flags2segs(flags, window): ''' ARGUMENTS: - flags: a sequence of class flags (per time window) - window: window duration (in seconds) RETURNS: - segs: a sequence of segment's limits: segs[i,0] is start and segs[i,1] are start and end point of segment i - classes: a sequence of class flags: class[i] is the class ID of the i-th segment ''' preFlag = 0 cur_flag = 0 n_segs = 0 cur_val = flags[cur_flag] segsList = [] classes = [] while (cur_flag < len(flags) - 1): stop = 0 preFlag = cur_flag preVal = cur_val while (stop == 0): cur_flag = cur_flag + 1 tempVal = flags[cur_flag] if ((tempVal != cur_val) | (cur_flag == len(flags) - 1)): # stop n_segs = n_segs + 1 stop = 1 cur_seg = cur_val cur_val = flags[cur_flag] segsList.append((cur_flag * window)) classes.append(preVal) segs = numpy.zeros((len(segsList), 2)) for i in range(len(segsList)): if i > 0: segs[i, 0] = segsList[i-1] segs[i, 1] = segsList[i] return (segs, classes) def segs2flags(seg_start, seg_end, seg_label, win_size): ''' This function converts segment endpoints and respective segment labels to fix-sized class labels. ARGUMENTS: - seg_start: segment start points (in seconds) - seg_end: segment endpoints (in seconds) - seg_label: segment labels - win_size: fix-sized window (in seconds) RETURNS: - flags: numpy array of class indices - class_names: list of classnames (strings) ''' flags = [] class_names = list(set(seg_label)) curPos = win_size / 2.0 while curPos < seg_end[-1]: for i in range(len(seg_start)): if curPos > seg_start[i] and curPos <= seg_end[i]: break flags.append(class_names.index(seg_label[i])) curPos += win_size return numpy.array(flags), class_names def computePreRec(cm, class_names): ''' This function computes the precision, recall and f1 measures, given a confusion matrix ''' n_classes = cm.shape[0] if len(class_names) != n_classes: print("Error in computePreRec! Confusion matrix and class_names " "list must be of the same size!") return precision = [] recall = [] f1 = [] for i, c in enumerate(class_names): precision.append(cm[i,i] / numpy.sum(cm[:,i])) recall.append(cm[i,i] / numpy.sum(cm[i,:])) f1.append( 2 * precision[-1] * recall[-1] / (precision[-1] + recall[-1])) return recall, precision, f1 def readSegmentGT(gt_file): ''' This function reads a segmentation ground truth file, following a simple CSV format with the following columns: <segment start>,<segment end>,<class label> ARGUMENTS: - gt_file: the path of the CSV segment file RETURNS: - seg_start: a numpy array of segments' start positions - seg_end: a numpy array of segments' ending positions - seg_label: a list of respective class labels (strings) ''' f = open(gt_file, 'rt') reader = csv.reader(f, delimiter=',') seg_start = [] seg_end = [] seg_label = [] for row in reader: if len(row) == 3: seg_start.append(float(row[0])) seg_end.append(float(row[1])) #if row[2]!="other": # seg_label.append((row[2])) #else: # seg_label.append("silence") seg_label.append((row[2])) return numpy.array(seg_start), numpy.array(seg_end), seg_label def plotSegmentationResults(flags_ind, flags_ind_gt, class_names, mt_step, ONLY_EVALUATE=False): ''' This function plots statistics on the classification-segmentation results produced either by the fix-sized supervised method or the HMM method. It also computes the overall accuracy achieved by the respective method if ground-truth is available. ''' flags = [class_names[int(f)] for f in flags_ind] (segs, classes) = flags2segs(flags, mt_step) min_len = min(flags_ind.shape[0], flags_ind_gt.shape[0]) if min_len > 0: accuracy = numpy.sum(flags_ind[0:min_len] == flags_ind_gt[0:min_len]) / float(min_len) else: accuracy = -1 if not ONLY_EVALUATE: duration = segs[-1, 1] s_percentages = numpy.zeros((len(class_names), 1)) percentages = numpy.zeros((len(class_names), 1)) av_durations = numpy.zeros((len(class_names), 1)) for iSeg in range(segs.shape[0]): s_percentages[class_names.index(classes[iSeg])] += \ (segs[iSeg, 1]-segs[iSeg, 0]) for i in range(s_percentages.shape[0]): percentages[i] = 100.0 * s_percentages[i] / duration S = sum(1 for c in classes if c == class_names[i]) if S > 0: av_durations[i] = s_percentages[i] / S else: av_durations[i] = 0.0 for i in range(percentages.shape[0]): print(class_names[i], percentages[i], av_durations[i]) font = {'size': 10} plt.rc('font', **font) fig = plt.figure() ax1 = fig.add_subplot(211) ax1.set_yticks(numpy.array(range(len(class_names)))) ax1.axis((0, duration, -1, len(class_names))) ax1.set_yticklabels(class_names) ax1.plot(numpy.array(range(len(flags_ind))) * mt_step + mt_step / 2.0, flags_ind) if flags_ind_gt.shape[0] > 0: ax1.plot(numpy.array(range(len(flags_ind_gt))) * mt_step + mt_step / 2.0, flags_ind_gt + 0.05, '--r') plt.xlabel("time (seconds)") if accuracy >= 0: plt.title('Accuracy = {0:.1f}%'.format(100.0 * accuracy)) ax2 = fig.add_subplot(223) plt.title("Classes percentage durations") ax2.axis((0, len(class_names) + 1, 0, 100)) ax2.set_xticks(numpy.array(range(len(class_names) + 1))) ax2.set_xticklabels([" "] + class_names) ax2.bar(numpy.array(range(len(class_names))) + 0.5, percentages) ax3 = fig.add_subplot(224) plt.title("Segment average duration per class") ax3.axis((0, len(class_names)+1, 0, av_durations.max())) ax3.set_xticks(numpy.array(range(len(class_names) + 1))) ax3.set_xticklabels([" "] + class_names) ax3.bar(numpy.array(range(len(class_names))) + 0.5, av_durations) fig.tight_layout() plt.show() return accuracy def evaluateSpeakerDiarization(flags, flags_gt): min_len = min(flags.shape[0], flags_gt.shape[0]) flags = flags[0:min_len] flags_gt = flags_gt[0:min_len] u_flags = numpy.unique(flags) u_flags_gt = numpy.unique(flags_gt) # compute contigency table: c_matrix = numpy.zeros((u_flags.shape[0], u_flags_gt.shape[0])) for i in range(min_len): c_matrix[int(numpy.nonzero(u_flags == flags[i])[0]), int(numpy.nonzero(u_flags_gt == flags_gt[i])[0])] += 1.0 Nc, Ns = c_matrix.shape N_s = numpy.sum(c_matrix, axis=0) N_c = numpy.sum(c_matrix, axis=1) N = numpy.sum(c_matrix) purity_clust = numpy.zeros((Nc, )) purity_speak = numpy.zeros((Ns, )) # compute cluster purity: for i in range(Nc): purity_clust[i] = numpy.max((c_matrix[i, :])) / (N_c[i]) for j in range(Ns): purity_speak[j] = numpy.max((c_matrix[:, j])) / (N_s[j]) purity_cluster_m = numpy.sum(purity_clust * N_c) / N purity_speaker_m = numpy.sum(purity_speak * N_s) / N return purity_cluster_m, purity_speaker_m def trainHMM_computeStatistics(features, labels): ''' This function computes the statistics used to train an HMM joint segmentation-classification model using a sequence of sequential features and respective labels ARGUMENTS: - features: a numpy matrix of feature vectors (numOfDimensions x n_wins) - labels: a numpy array of class indices (n_wins x 1) RETURNS: - start_prob: matrix of prior class probabilities (n_classes x 1) - transmat: transition matrix (n_classes x n_classes) - means: means matrix (numOfDimensions x 1) - cov: deviation matrix (numOfDimensions x 1) ''' u_labels = numpy.unique(labels) n_comps = len(u_labels) n_feats = features.shape[0] if features.shape[1] < labels.shape[0]: print("trainHMM warning: number of short-term feature vectors " "must be greater or equal to the labels length!") labels = labels[0:features.shape[1]] # compute prior probabilities: start_prob = numpy.zeros((n_comps,)) for i, u in enumerate(u_labels): start_prob[i] = numpy.count_nonzero(labels == u) # normalize prior probabilities start_prob = start_prob / start_prob.sum() # compute transition matrix: transmat = numpy.zeros((n_comps, n_comps)) for i in range(labels.shape[0]-1): transmat[int(labels[i]), int(labels[i + 1])] += 1 # normalize rows of transition matrix: for i in range(n_comps): transmat[i, :] /= transmat[i, :].sum() means = numpy.zeros((n_comps, n_feats)) for i in range(n_comps): means[i, :] = numpy.matrix(features[:, numpy.nonzero(labels == u_labels[i])[0]].mean(axis=1)) cov = numpy.zeros((n_comps, n_feats)) for i in range(n_comps): #cov[i,:,:] = numpy.cov(features[:,numpy.nonzero(labels==u_labels[i])[0]]) # use this lines if HMM using full gaussian distributions are to be used! cov[i, :] = numpy.std(features[:, numpy.nonzero(labels == u_labels[i])[0]], axis=1) return start_prob, transmat, means, cov def trainHMM_fromFile(wav_file, gt_file, hmm_model_name, mt_win, mt_step): ''' This function trains a HMM model for segmentation-classification using a single annotated audio file ARGUMENTS: - wav_file: the path of the audio filename - gt_file: the path of the ground truth filename (a csv file of the form <segment start in seconds>,<segment end in seconds>,<segment label> in each row - hmm_model_name: the name of the HMM model to be stored - mt_win: mid-term window size - mt_step: mid-term window step RETURNS: - hmm: an object to the resulting HMM - class_names: a list of class_names After training, hmm, class_names, along with the mt_win and mt_step values are stored in the hmm_model_name file ''' [seg_start, seg_end, seg_labs] = readSegmentGT(gt_file) flags, class_names = segs2flags(seg_start, seg_end, seg_labs, mt_step) [fs, x] = audioBasicIO.readAudioFile(wav_file) [F, _, _] = aF.mtFeatureExtraction(x, fs, mt_win * fs, mt_step * fs, round(fs * 0.050), round(fs * 0.050)) start_prob, transmat, means, cov = trainHMM_computeStatistics(F, flags) hmm = hmmlearn.hmm.GaussianHMM(start_prob.shape[0], "diag") hmm.startprob_ = start_prob hmm.transmat_ = transmat hmm.means_ = means hmm.covars_ = cov fo = open(hmm_model_name, "wb") cPickle.dump(hmm, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(class_names, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(mt_win, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(mt_step, fo, protocol=cPickle.HIGHEST_PROTOCOL) fo.close() return hmm, class_names def trainHMM_fromDir(dirPath, hmm_model_name, mt_win, mt_step): ''' This function trains a HMM model for segmentation-classification using a where WAV files and .segment (ground-truth files) are stored ARGUMENTS: - dirPath: the path of the data diretory - hmm_model_name: the name of the HMM model to be stored - mt_win: mid-term window size - mt_step: mid-term window step RETURNS: - hmm: an object to the resulting HMM - class_names: a list of class_names After training, hmm, class_names, along with the mt_win and mt_step values are stored in the hmm_model_name file ''' flags_all = numpy.array([]) classes_all = [] for i, f in enumerate(glob.glob(dirPath + os.sep + '*.wav')): # for each WAV file wav_file = f gt_file = f.replace('.wav', '.segments') if not os.path.isfile(gt_file): continue [seg_start, seg_end, seg_labs] = readSegmentGT(gt_file) flags, class_names = segs2flags(seg_start, seg_end, seg_labs, mt_step) for c in class_names: # update class names: if c not in classes_all: classes_all.append(c) [fs, x] = audioBasicIO.readAudioFile(wav_file) [F, _, _] = aF.mtFeatureExtraction(x, fs, mt_win * fs, mt_step * fs, round(fs * 0.050), round(fs * 0.050)) lenF = F.shape[1] lenL = len(flags) min_sm = min(lenF, lenL) F = F[:, 0:min_sm] flags = flags[0:min_sm] flagsNew = [] for j, fl in enumerate(flags): # append features and labels flagsNew.append(classes_all.index(class_names[flags[j]])) flags_all = numpy.append(flags_all, numpy.array(flagsNew)) if i == 0: f_all = F else: f_all = numpy.concatenate((f_all, F), axis=1) start_prob, transmat, means, cov = trainHMM_computeStatistics(f_all, flags_all) # compute HMM statistics hmm = hmmlearn.hmm.GaussianHMM(start_prob.shape[0], "diag") # train HMM hmm.startprob_ = start_prob hmm.transmat_ = transmat hmm.means_ = means hmm.covars_ = cov fo = open(hmm_model_name, "wb") # save HMM model cPickle.dump(hmm, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(classes_all, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(mt_win, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(mt_step, fo, protocol=cPickle.HIGHEST_PROTOCOL) fo.close() return hmm, classes_all def hmmSegmentation(wav_file_name, hmm_model_name, plot_res=False, gt_file_name=""): [fs, x] = audioBasicIO.readAudioFile(wav_file_name) try: fo = open(hmm_model_name, "rb") except IOError: print("didn't find file") return try: hmm = cPickle.load(fo) classes_all = cPickle.load(fo) mt_win = cPickle.load(fo) mt_step = cPickle.load(fo) except: fo.close() fo.close() [Features, _, _] = aF.mtFeatureExtraction(x, fs, mt_win * fs, mt_step * fs, round(fs * 0.050), round(fs * 0.050)) flags_ind = hmm.predict(Features.T) # apply model if os.path.isfile(gt_file_name): [seg_start, seg_end, seg_labs] = readSegmentGT(gt_file_name) flags_gt, class_names_gt = segs2flags(seg_start, seg_end, seg_labs, mt_step) flagsGTNew = [] for j, fl in enumerate(flags_gt): # "align" labels with GT if class_names_gt[flags_gt[j]] in classes_all: flagsGTNew.append(classes_all.index(class_names_gt[flags_gt[j]])) else: flagsGTNew.append(-1) cm = numpy.zeros((len(classes_all), len(classes_all))) flags_ind_gt = numpy.array(flagsGTNew) for i in range(min(flags_ind.shape[0], flags_ind_gt.shape[0])): cm[int(flags_ind_gt[i]),int(flags_ind[i])] += 1 else: flags_ind_gt = numpy.array([]) acc = plotSegmentationResults(flags_ind, flags_ind_gt, classes_all, mt_step, not plot_res) if acc >= 0: print("Overall Accuracy: {0:.2f}".format(acc)) return (flags_ind, class_names_gt, acc, cm) else: return (flags_ind, classes_all, -1, -1) def mtFileClassification(input_file, model_name, model_type, plot_results=False, gt_file=""): ''' This function performs mid-term classification of an audio stream. Towards this end, supervised knowledge is used, i.e. a pre-trained classifier. ARGUMENTS: - input_file: path of the input WAV file - model_name: name of the classification model - model_type: svm or knn depending on the classifier type - plot_results: True if results are to be plotted using matplotlib along with a set of statistics RETURNS: - segs: a sequence of segment's endpoints: segs[i] is the endpoint of the i-th segment (in seconds) - classes: a sequence of class flags: class[i] is the class ID of the i-th segment ''' if not os.path.isfile(model_name): print("mtFileClassificationError: input model_type not found!") return (-1, -1, -1, -1) # Load classifier: if model_type == "knn": [classifier, MEAN, STD, class_names, mt_win, mt_step, st_win, st_step, compute_beat] = \ aT.load_model_knn(model_name) else: [classifier, MEAN, STD, class_names, mt_win, mt_step, st_win, st_step, compute_beat] = aT.load_model(model_name) if compute_beat: print("Model " + model_name + " contains long-term music features " "(beat etc) and cannot be used in " "segmentation") return (-1, -1, -1, -1) [fs, x] = audioBasicIO.readAudioFile(input_file) # load input file if fs == -1: # could not read file return (-1, -1, -1, -1) x = audioBasicIO.stereo2mono(x) # convert stereo (if) to mono duration = len(x) / fs # mid-term feature extraction: [mt_feats, _, _] = aF.mtFeatureExtraction(x, fs, mt_win * fs, mt_step * fs, round(fs * st_win), round(fs * st_step)) flags = [] Ps = [] flags_ind = [] for i in range(mt_feats.shape[1]): # for each feature vector (i.e. for each fix-sized segment): cur_fv = (mt_feats[:, i] - MEAN) / STD # normalize current feature vector [res, P] = aT.classifierWrapper(classifier, model_type, cur_fv) # classify vector flags_ind.append(res) flags.append(class_names[int(res)]) # update class label matrix Ps.append(numpy.max(P)) # update probability matrix flags_ind = numpy.array(flags_ind) # 1-window smoothing for i in range(1, len(flags_ind) - 1): if flags_ind[i-1] == flags_ind[i + 1]: flags_ind[i] = flags_ind[i + 1] # convert fix-sized flags to segments and classes (segs, classes) = flags2segs(flags, mt_step) segs[-1] = len(x) / float(fs) # Load grount-truth: if os.path.isfile(gt_file): [seg_start_gt, seg_end_gt, seg_l_gt] = readSegmentGT(gt_file) flags_gt, class_names_gt = segs2flags(seg_start_gt, seg_end_gt, seg_l_gt, mt_step) flags_ind_gt = [] for j, fl in enumerate(flags_gt): # "align" labels with GT if class_names_gt[flags_gt[j]] in class_names: flags_ind_gt.append(class_names.index(class_names_gt[flags_gt[j]])) else: flags_ind_gt.append(-1) flags_ind_gt = numpy.array(flags_ind_gt) cm = numpy.zeros((len(class_names_gt), len(class_names_gt))) for i in range(min(flags_ind.shape[0], flags_ind_gt.shape[0])): cm[int(flags_ind_gt[i]),int(flags_ind[i])] += 1 else: cm = [] flags_ind_gt = numpy.array([]) acc = plotSegmentationResults(flags_ind, flags_ind_gt, class_names, mt_step, not plot_results) if acc >= 0: print("Overall Accuracy: {0:.3f}".format(acc) ) return (flags_ind, class_names_gt, acc, cm) else: return (flags_ind, class_names, acc, cm) def evaluateSegmentationClassificationDir(dir_name, model_name, method_name): flags_all = numpy.array([]) classes_all = [] accuracies = [] for i, f in enumerate(glob.glob(dir_name + os.sep + '*.wav')): # for each WAV file wav_file = f print(wav_file) gt_file = f.replace('.wav', '.segments') # open for annotated file if method_name.lower() in ["svm", "svm_rbf", "knn", "randomforest","gradientboosting", "extratrees"]: flags_ind, class_names, acc, cm_t = \ mtFileClassification(wav_file, model_name, method_name, False, gt_file) else: flags_ind, class_names, acc, cm_t = hmmSegmentation(wav_file, model_name, False, gt_file) if acc > -1: if i==0: cm = numpy.copy(cm_t) else: cm = cm + cm_t accuracies.append(acc) print(cm_t, class_names) print(cm) [rec, pre, f1] = computePreRec(cm_t, class_names) cm = cm / numpy.sum(cm) [rec, pre, f1] = computePreRec(cm, class_names) print(" - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ") print("Average Accuracy: {0:.1f}".format(100.0*numpy.array(accuracies).mean())) print("Average recall: {0:.1f}".format(100.0*numpy.array(rec).mean())) print("Average precision: {0:.1f}".format(100.0*numpy.array(pre).mean())) print("Average f1: {0:.1f}".format(100.0*numpy.array(f1).mean())) print("Median Accuracy: {0:.1f}".format(100.0*numpy.median(numpy.array(accuracies)))) print("Min Accuracy: {0:.1f}".format(100.0*numpy.array(accuracies).min())) print("Max Accuracy: {0:.1f}".format(100.0*numpy.array(accuracies).max())) def silenceRemoval(x, fs, st_win, st_step, smoothWindow=0.5, weight=0.5, plot=False): ''' Event Detection (silence removal) ARGUMENTS: - x: the input audio signal - fs: sampling freq - st_win, st_step: window size and step in seconds - smoothWindow: (optinal) smooth window (in seconds) - weight: (optinal) weight factor (0 < weight < 1) the higher, the more strict - plot: (optinal) True if results are to be plotted RETURNS: - seg_limits: list of segment limits in seconds (e.g [[0.1, 0.9], [1.4, 3.0]] means that the resulting segments are (0.1 - 0.9) seconds and (1.4, 3.0) seconds ''' if weight >= 1: weight = 0.99 if weight <= 0: weight = 0.01 # Step 1: feature extraction x = audioBasicIO.stereo2mono(x) st_feats, _ = aF.stFeatureExtraction(x, fs, st_win * fs, st_step * fs) # Step 2: train binary svm classifier of low vs high energy frames # keep only the energy short-term sequence (2nd feature) st_energy = st_feats[1, :] en = numpy.sort(st_energy) # number of 10% of the total short-term windows l1 = int(len(en) / 10) # compute "lower" 10% energy threshold t1 = numpy.mean(en[0:l1]) + 0.000000000000001 # compute "higher" 10% energy threshold t2 = numpy.mean(en[-l1:-1]) + 0.000000000000001 # get all features that correspond to low energy class1 = st_feats[:, numpy.where(st_energy <= t1)[0]] # get all features that correspond to high energy class2 = st_feats[:, numpy.where(st_energy >= t2)[0]] # form the binary classification task and ... faets_s = [class1.T, class2.T] # normalize and train the respective svm probabilistic model # (ONSET vs SILENCE) [faets_s_norm, means_s, stds_s] = aT.normalizeFeatures(faets_s) svm = aT.trainSVM(faets_s_norm, 1.0) # Step 3: compute onset probability based on the trained svm prob_on_set = [] for i in range(st_feats.shape[1]): # for each frame cur_fv = (st_feats[:, i] - means_s) / stds_s # get svm probability (that it belongs to the ONSET class) prob_on_set.append(svm.predict_proba(cur_fv.reshape(1,-1))[0][1]) prob_on_set = numpy.array(prob_on_set) # smooth probability: prob_on_set = smoothMovingAvg(prob_on_set, smoothWindow / st_step) # Step 4A: detect onset frame indices: prog_on_set_sort = numpy.sort(prob_on_set) # find probability Threshold as a weighted average # of top 10% and lower 10% of the values Nt = int(prog_on_set_sort.shape[0] / 10) T = (numpy.mean((1 - weight) * prog_on_set_sort[0:Nt]) + weight * numpy.mean(prog_on_set_sort[-Nt::])) max_idx = numpy.where(prob_on_set > T)[0] # get the indices of the frames that satisfy the thresholding i = 0 time_clusters = [] seg_limits = [] # Step 4B: group frame indices to onset segments while i < len(max_idx): # for each of the detected onset indices cur_cluster = [max_idx[i]] if i == len(max_idx)-1: break while max_idx[i+1] - cur_cluster[-1] <= 2: cur_cluster.append(max_idx[i+1]) i += 1 if i == len(max_idx)-1: break i += 1 time_clusters.append(cur_cluster) seg_limits.append([cur_cluster[0] * st_step, cur_cluster[-1] * st_step]) # Step 5: Post process: remove very small segments: min_dur = 0.2 seg_limits_2 = [] for s in seg_limits: if s[1] - s[0] > min_dur: seg_limits_2.append(s) seg_limits = seg_limits_2 if plot: timeX = numpy.arange(0, x.shape[0] / float(fs), 1.0 / fs) plt.subplot(2, 1, 1) plt.plot(timeX, x) for s in seg_limits: plt.axvline(x=s[0]) plt.axvline(x=s[1]) plt.subplot(2, 1, 2) plt.plot(numpy.arange(0, prob_on_set.shape[0] * st_step, st_step), prob_on_set) plt.title('Signal') for s in seg_limits: plt.axvline(x=s[0]) plt.axvline(x=s[1]) plt.title('svm Probability') plt.show() return seg_limits def speakerDiarization(filename, n_speakers, mt_size=2.0, mt_step=0.2, st_win=0.05, lda_dim=35, plot_res=False): ''' ARGUMENTS: - filename: the name of the WAV file to be analyzed - n_speakers the number of speakers (clusters) in the recording (<=0 for unknown) - mt_size (opt) mid-term window size - mt_step (opt) mid-term window step - st_win (opt) short-term window size - lda_dim (opt) LDA dimension (0 for no LDA) - plot_res (opt) 0 for not plotting the results 1 for plottingy ''' [fs, x, audio_file] = audioBasicIO.readAudioFile(filename) x = audioBasicIO.stereo2mono(x) duration = len(x) / fs [classifier_1, MEAN1, STD1, classNames1, mtWin1, mtStep1, stWin1, stStep1, computeBEAT1] = aT.load_model_knn(os.path.join(os.path.dirname(os.path.realpath(__file__)), "data", "knnSpeakerAll")) [classifier_2, MEAN2, STD2, classNames2, mtWin2, mtStep2, stWin2, stStep2, computeBEAT2] = aT.load_model_knn(os.path.join(os.path.dirname(os.path.realpath(__file__)), "data", "knnSpeakerFemaleMale")) [mt_feats, st_feats, _] = aF.mtFeatureExtraction(x, fs, mt_size * fs, mt_step * fs, round(fs * st_win), round(fs*st_win * 0.5)) MidTermFeatures2 = numpy.zeros((mt_feats.shape[0] + len(classNames1) + len(classNames2), mt_feats.shape[1])) for i in range(mt_feats.shape[1]): cur_f1 = (mt_feats[:, i] - MEAN1) / STD1 cur_f2 = (mt_feats[:, i] - MEAN2) / STD2 [res, P1] = aT.classifierWrapper(classifier_1, "knn", cur_f1) [res, P2] = aT.classifierWrapper(classifier_2, "knn", cur_f2) MidTermFeatures2[0:mt_feats.shape[0], i] = mt_feats[:, i] MidTermFeatures2[mt_feats.shape[0]:mt_feats.shape[0]+len(classNames1), i] = P1 + 0.0001 MidTermFeatures2[mt_feats.shape[0] + len(classNames1)::, i] = P2 + 0.0001 mt_feats = MidTermFeatures2 # TODO iFeaturesSelect = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] mt_feats = mt_feats[iFeaturesSelect, :] (mt_feats_norm, MEAN, STD) = aT.normalizeFeatures([mt_feats.T]) mt_feats_norm = mt_feats_norm[0].T n_wins = mt_feats.shape[1] # remove outliers: dist_all = numpy.sum(distance.squareform(distance.pdist(mt_feats_norm.T)), axis=0) m_dist_all = numpy.mean(dist_all) i_non_outliers = numpy.nonzero(dist_all < 1.2 * m_dist_all)[0] # TODO: Combine energy threshold for outlier removal: #EnergyMin = numpy.min(mt_feats[1,:]) #EnergyMean = numpy.mean(mt_feats[1,:]) #Thres = (1.5*EnergyMin + 0.5*EnergyMean) / 2.0 #i_non_outliers = numpy.nonzero(mt_feats[1,:] > Thres)[0] #print i_non_outliers perOutLier = (100.0 * (n_wins - i_non_outliers.shape[0])) / n_wins mt_feats_norm_or = mt_feats_norm mt_feats_norm = mt_feats_norm[:, i_non_outliers] # LDA dimensionality reduction: if lda_dim > 0: #[mt_feats_to_red, _, _] = aF.mtFeatureExtraction(x, fs, mt_size * fs, st_win * fs, round(fs*st_win), round(fs*st_win)); # extract mid-term features with minimum step: mt_win_ratio = int(round(mt_size / st_win)) mt_step_ratio = int(round(st_win / st_win)) mt_feats_to_red = [] num_of_features = len(st_feats) num_of_stats = 2 #for i in range(num_of_stats * num_of_features + 1): for i in range(num_of_stats * num_of_features): mt_feats_to_red.append([]) for i in range(num_of_features): # for each of the short-term features: curPos = 0 N = len(st_feats[i]) while (curPos < N): N1 = curPos N2 = curPos + mt_win_ratio if N2 > N: N2 = N curStFeatures = st_feats[i][N1:N2] mt_feats_to_red[i].append(numpy.mean(curStFeatures)) mt_feats_to_red[i+num_of_features].append(numpy.std(curStFeatures)) curPos += mt_step_ratio mt_feats_to_red = numpy.array(mt_feats_to_red) mt_feats_to_red_2 = numpy.zeros((mt_feats_to_red.shape[0] + len(classNames1) + len(classNames2), mt_feats_to_red.shape[1])) for i in range(mt_feats_to_red.shape[1]): cur_f1 = (mt_feats_to_red[:, i] - MEAN1) / STD1 cur_f2 = (mt_feats_to_red[:, i] - MEAN2) / STD2 [res, P1] = aT.classifierWrapper(classifier_1, "knn", cur_f1) [res, P2] = aT.classifierWrapper(classifier_2, "knn", cur_f2) mt_feats_to_red_2[0:mt_feats_to_red.shape[0], i] = mt_feats_to_red[:, i] mt_feats_to_red_2[mt_feats_to_red.shape[0]:mt_feats_to_red.shape[0] + len(classNames1), i] = P1 + 0.0001 mt_feats_to_red_2[mt_feats_to_red.shape[0]+len(classNames1)::, i] = P2 + 0.0001 mt_feats_to_red = mt_feats_to_red_2 mt_feats_to_red = mt_feats_to_red[iFeaturesSelect, :] #mt_feats_to_red += numpy.random.rand(mt_feats_to_red.shape[0], mt_feats_to_red.shape[1]) * 0.0000010 (mt_feats_to_red, MEAN, STD) = aT.normalizeFeatures([mt_feats_to_red.T]) mt_feats_to_red = mt_feats_to_red[0].T #dist_all = numpy.sum(distance.squareform(distance.pdist(mt_feats_to_red.T)), axis=0) #m_dist_all = numpy.mean(dist_all) #iNonOutLiers2 = numpy.nonzero(dist_all < 3.0*m_dist_all)[0] #mt_feats_to_red = mt_feats_to_red[:, iNonOutLiers2] Labels = numpy.zeros((mt_feats_to_red.shape[1], )); LDAstep = 1.0 LDAstepRatio = LDAstep / st_win #print LDAstep, LDAstepRatio for i in range(Labels.shape[0]): Labels[i] = int(i*st_win/LDAstepRatio); clf = sklearn.discriminant_analysis.LinearDiscriminantAnalysis(n_components=lda_dim) clf.fit(mt_feats_to_red.T, Labels) mt_feats_norm = (clf.transform(mt_feats_norm.T)).T if n_speakers <= 0: s_range = range(2, 10) else: s_range = [n_speakers] clsAll = [] sil_all = [] centersAll = [] for iSpeakers in s_range: k_means = sklearn.cluster.KMeans(n_clusters=iSpeakers) k_means.fit(mt_feats_norm.T) cls = k_means.labels_ means = k_means.cluster_centers_ # Y = distance.squareform(distance.pdist(mt_feats_norm.T)) clsAll.append(cls) centersAll.append(means) sil_1 = []; sil_2 = [] for c in range(iSpeakers): # for each speaker (i.e. for each extracted cluster) clust_per_cent = numpy.nonzero(cls == c)[0].shape[0] / \ float(len(cls)) if clust_per_cent < 0.020: sil_1.append(0.0) sil_2.append(0.0) else: # get subset of feature vectors mt_feats_norm_temp = mt_feats_norm[:, cls==c] # compute average distance between samples # that belong to the cluster (a values) Yt = distance.pdist(mt_feats_norm_temp.T) sil_1.append(numpy.mean(Yt)*clust_per_cent) silBs = [] for c2 in range(iSpeakers): # compute distances from samples of other clusters if c2 != c: clust_per_cent_2 = numpy.nonzero(cls == c2)[0].shape[0] /\ float(len(cls)) MidTermFeaturesNormTemp2 = mt_feats_norm[:, cls == c2] Yt = distance.cdist(mt_feats_norm_temp.T, MidTermFeaturesNormTemp2.T) silBs.append(numpy.mean(Yt)*(clust_per_cent + clust_per_cent_2)/2.0) silBs = numpy.array(silBs) # ... and keep the minimum value (i.e. # the distance from the "nearest" cluster) sil_2.append(min(silBs)) sil_1 = numpy.array(sil_1); sil_2 = numpy.array(sil_2); sil = [] for c in range(iSpeakers): # for each cluster (speaker) compute silhouette sil.append( ( sil_2[c] - sil_1[c]) / (max(sil_2[c], sil_1[c]) + 0.00001)) # keep the AVERAGE SILLOUETTE sil_all.append(numpy.mean(sil)) imax = numpy.argmax(sil_all) # optimal number of clusters nSpeakersFinal = s_range[imax] # generate the final set of cluster labels # (important: need to retrieve the outlier windows: # this is achieved by giving them the value of their # nearest non-outlier window) cls = numpy.zeros((n_wins,)) for i in range(n_wins): j = numpy.argmin(numpy.abs(i-i_non_outliers)) cls[i] = clsAll[imax][j] # Post-process method 1: hmm smoothing for i in range(1): # hmm training start_prob, transmat, means, cov = \ trainHMM_computeStatistics(mt_feats_norm_or, cls) hmm = hmmlearn.hmm.GaussianHMM(start_prob.shape[0], "diag") hmm.startprob_ = start_prob hmm.transmat_ = transmat hmm.means_ = means; hmm.covars_ = cov cls = hmm.predict(mt_feats_norm_or.T) # Post-process method 2: median filtering: cls = scipy.signal.medfilt(cls, 13) cls = scipy.signal.medfilt(cls, 11) sil = sil_all[imax] class_names = ["speaker{0:d}".format(c) for c in range(nSpeakersFinal)]; # load ground-truth if available gt_file = filename.replace('.wav', '.segments') # if groundturh exists if os.path.isfile(gt_file): [seg_start, seg_end, seg_labs] = readSegmentGT(gt_file) flags_gt, class_names_gt = segs2flags(seg_start, seg_end, seg_labs, mt_step) plot_res = False time_stamps = numpy.array(range(len(cls)))*mt_step+mt_step/2.0 if plot_res: fig = plt.figure() if n_speakers > 0: ax1 = fig.add_subplot(111) else: ax1 = fig.add_subplot(211) ax1.set_yticks(numpy.array(range(len(class_names)))) ax1.axis((0, duration, -1, len(class_names))) ax1.set_yticklabels(class_names) ax1.plot(numpy.array(range(len(cls)))*mt_step+mt_step/2.0, cls) if os.path.isfile(gt_file): if plot_res: ax1.plot(numpy.array(range(len(flags_gt))) * mt_step + mt_step / 2.0, flags_gt, 'r') purity_cluster_m, purity_speaker_m = \ evaluateSpeakerDiarization(cls, flags_gt) print("{0:.1f}\t{1:.1f}".format(100 * purity_cluster_m, 100 * purity_speaker_m)) if plot_res: plt.title("Cluster purity: {0:.1f}% - " "Speaker purity: {1:.1f}%".format(100 * purity_cluster_m, 100 * purity_speaker_m)) if plot_res: plt.xlabel("time (seconds)") #print s_range, sil_all if n_speakers<=0: plt.subplot(212) plt.plot(s_range, sil_all) plt.xlabel("number of clusters"); plt.ylabel("average clustering's sillouette"); plt.show() from itertools import groupby i = 0 base_output_filename = filename.split('/')[-1] for speaker, group in groupby(cls): groupList = list(group) init = int(time_stamps[i]*1000) i = i + len(groupList) end = int(time_stamps[i]*1000) if i < len(cls) else len(audio_file) segment = audio_file[init:end] segment.export(base_output_filename + '-speaker' + str(int(speaker)) + '-time-' + str(init) + '-' + str(end) + '.wav', format='wav') print(speaker, init, end) return cls def convertTimeStamp(timeStamp): import datetime return str(datetime.timedelta(seconds=timeStamp)) def speakerDiarizationEvaluateScript(folder_name, ldas): ''' This function prints the cluster purity and speaker purity for each WAV file stored in a provided directory (.SEGMENT files are needed as ground-truth) ARGUMENTS: - folder_name: the full path of the folder where the WAV and SEGMENT (ground-truth) files are stored - ldas: a list of LDA dimensions (0 for no LDA) ''' types = ('*.wav', ) wavFilesList = [] for files in types: wavFilesList.extend(glob.glob(os.path.join(folder_name, files))) wavFilesList = sorted(wavFilesList) # get number of unique speakers per file (from ground-truth) N = [] for wav_file in wavFilesList: gt_file = wav_file.replace('.wav', '.segments'); if os.path.isfile(gt_file): [seg_start, seg_end, seg_labs] = readSegmentGT(gt_file) N.append(len(list(set(seg_labs)))) else: N.append(-1) for l in ldas: print("LDA = {0:d}".format(l)) for i, wav_file in enumerate(wavFilesList): speakerDiarization(wav_file, N[i], 2.0, 0.2, 0.05, l, plot_res=False) print def musicThumbnailing(x, fs, short_term_size=1.0, short_term_step=0.5, thumb_size=10.0, limit_1 = 0, limit_2 = 1): ''' This function detects instances of the most representative part of a music recording, also called "music thumbnails". A technique similar to the one proposed in [1], however a wider set of audio features is used instead of chroma features. In particular the following steps are followed: - Extract short-term audio features. Typical short-term window size: 1 second - Compute the self-silimarity matrix, i.e. all pairwise similarities between feature vectors - Apply a diagonal mask is as a moving average filter on the values of the self-similarty matrix. The size of the mask is equal to the desirable thumbnail length. - Find the position of the maximum value of the new (filtered) self-similarity matrix. The audio segments that correspond to the diagonial around that position are the selected thumbnails ARGUMENTS: - x: input signal - fs: sampling frequency - short_term_size: window size (in seconds) - short_term_step: window step (in seconds) - thumb_size: desider thumbnail size (in seconds) RETURNS: - A1: beginning of 1st thumbnail (in seconds) - A2: ending of 1st thumbnail (in seconds) - B1: beginning of 2nd thumbnail (in seconds) - B2: ending of 2nd thumbnail (in seconds) USAGE EXAMPLE: import audioFeatureExtraction as aF [fs, x] = basicIO.readAudioFile(input_file) [A1, A2, B1, B2] = musicThumbnailing(x, fs) [1] Bartsch, M. A., & Wakefield, G. H. (2005). Audio thumbnailing of popular music using chroma-based representations. Multimedia, IEEE Transactions on, 7(1), 96-104. ''' x = audioBasicIO.stereo2mono(x); # feature extraction: st_feats, _ = aF.stFeatureExtraction(x, fs, fs * short_term_size, fs * short_term_step) # self-similarity matrix S = selfSimilarityMatrix(st_feats) # moving filter: M = int(round(thumb_size / short_term_step)) B = numpy.eye(M,M) S = scipy.signal.convolve2d(S, B, 'valid') # post-processing (remove main diagonal elements) min_sm = numpy.min(S) for i in range(S.shape[0]): for j in range(S.shape[1]): if abs(i-j) < 5.0 / short_term_step or i > j: S[i,j] = min_sm; # find max position: S[0:int(limit_1 * S.shape[0]), :] = min_sm S[:, 0:int(limit_1 * S.shape[0])] = min_sm S[int(limit_2 * S.shape[0])::, :] = min_sm S[:, int(limit_2 * S.shape[0])::] = min_sm maxVal = numpy.max(S) [I, J] = numpy.unravel_index(S.argmax(), S.shape) #plt.imshow(S) #plt.show() # expand: i1 = I i2 = I j1 = J j2 = J while i2-i1<M: if i1 <=0 or j1<=0 or i2 >= S.shape[0]-2 or j2 >= S.shape[1]-2: break if S[i1-1, j1-1] > S[i2 + 1, j2 + 1]: i1 -= 1 j1 -= 1 else: i2 += 1 j2 += 1 return short_term_step * i1, short_term_step * i2, \ short_term_step * j1, short_term_step * j2, S
40.42794
203
0.587219
3db336886ae97fe4bdf97f98dbe18559bee8bc97
20,550
py
Python
flux_combined_high_binding/model_691.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
flux_combined_high_binding/model_691.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
flux_combined_high_binding/model_691.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('Ligand', ['Receptor']) Monomer('ParpU', ['C3A']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('SmacM', ['BaxA']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('Apop', ['C3pro', 'Xiap']) Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('SmacC', ['Xiap']) Monomer('ParpC') Monomer('Xiap', ['SmacC', 'Apop', 'C3A']) Monomer('C9') Monomer('C3ub') Monomer('C8pro', ['Fadd', 'C6A']) Monomer('Bcl2', ['BidM', 'BaxA']) Monomer('C3pro', ['Apop', 'C8A']) Monomer('CytoCM', ['BaxA']) Monomer('CytoCC') Monomer('BaxA', ['BaxM', 'Bcl2', 'BaxA_1', 'BaxA_2', 'SmacM', 'CytoCM']) Monomer('ApafI') Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('ApafA') Monomer('BidM', ['BaxM', 'Bcl2']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C6A', ['C8pro']) Monomer('C6pro', ['C3A']) Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BidM_inh_target_2df', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BidM_inh_target_1dr', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BaxA_inh_target_2xf', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BaxA_inh_target_1xr', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('Ligand_0', 1000.0) Parameter('ParpU_0', 1000000.0) Parameter('C8A_0', 0.0) Parameter('SmacM_0', 100000.0) Parameter('BaxM_0', 40000.0) Parameter('Apop_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('SmacC_0', 0.0) Parameter('ParpC_0', 0.0) Parameter('Xiap_0', 80000.0) Parameter('C9_0', 100000.0) Parameter('C3ub_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('Bcl2_0', 190000.0) Parameter('C3pro_0', 21000.0) Parameter('CytoCM_0', 500000.0) Parameter('CytoCC_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('ApafI_0', 100000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('ApafA_0', 0.0) Parameter('BidM_0', 0.0) Parameter('Receptor_0', 100.0) Parameter('C6A_0', 0.0) Parameter('C6pro_0', 100.0) Observable('Ligand_obs', Ligand()) Observable('ParpU_obs', ParpU()) Observable('C8A_obs', C8A()) Observable('SmacM_obs', SmacM()) Observable('BaxM_obs', BaxM()) Observable('Apop_obs', Apop()) Observable('Fadd_obs', Fadd()) Observable('SmacC_obs', SmacC()) Observable('ParpC_obs', ParpC()) Observable('Xiap_obs', Xiap()) Observable('C9_obs', C9()) Observable('C3ub_obs', C3ub()) Observable('C8pro_obs', C8pro()) Observable('Bcl2_obs', Bcl2()) Observable('C3pro_obs', C3pro()) Observable('CytoCM_obs', CytoCM()) Observable('CytoCC_obs', CytoCC()) Observable('BaxA_obs', BaxA()) Observable('ApafI_obs', ApafI()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('ApafA_obs', ApafA()) Observable('BidM_obs', BidM()) Observable('Receptor_obs', Receptor()) Observable('C6A_obs', C6A()) Observable('C6pro_obs', C6pro()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex', ApafI() + CytoCC() | ApafA(), conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf, conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr) Rule('inhibition_0_SmacC_inhibitor_Xiap_inh_target', SmacC(Xiap=None) + Xiap(SmacC=None, Apop=None, C3A=None) | SmacC(Xiap=1) % Xiap(SmacC=1, Apop=None, C3A=None), inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf, inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr) Rule('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex', ApafA() + C9() | Apop(C3pro=None, Xiap=None), conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf, conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr) Rule('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=None, Xiap=None) + C3pro(Apop=None, C8A=None) | Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None), catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None) >> Apop(C3pro=None, Xiap=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('inhibition_0_Xiap_inhibitor_Apop_inh_target', Xiap(SmacC=None, Apop=None, C3A=None) + Apop(C3pro=None, Xiap=None) | Xiap(SmacC=None, Apop=1, C3A=None) % Apop(C3pro=None, Xiap=1), inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf, inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(SmacC=None, Apop=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None, Bcl2=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None, Bcl2=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1, Bcl2=None) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1, Bcl2=None) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None, Bcl2=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('inhibition_0_Bcl2_inhibitor_BidM_inh_target', Bcl2(BidM=None, BaxA=None) + BidM(BaxM=None, Bcl2=None) | Bcl2(BidM=1, BaxA=None) % BidM(BaxM=None, Bcl2=1), inhibition_0_Bcl2_inhibitor_BidM_inh_target_2df, inhibition_0_Bcl2_inhibitor_BidM_inh_target_1dr) Rule('inhibition_0_Bcl2_inhibitor_BaxA_inh_target', Bcl2(BidM=None, BaxA=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | Bcl2(BidM=None, BaxA=1) % BaxA(BaxM=None, Bcl2=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), inhibition_0_Bcl2_inhibitor_BaxA_inh_target_2xf, inhibition_0_Bcl2_inhibitor_BaxA_inh_target_1xr) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacM(BaxA=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5), transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf, transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr) Rule('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacC(Xiap=None), transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc) Rule('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCM(BaxA=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5), transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf, transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr) Rule('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCC(), transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(Apop=None, C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(Ligand(Receptor=None), Ligand_0) Initial(ParpU(C3A=None), ParpU_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(SmacM(BaxA=None), SmacM_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(Apop(C3pro=None, Xiap=None), Apop_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(SmacC(Xiap=None), SmacC_0) Initial(ParpC(), ParpC_0) Initial(Xiap(SmacC=None, Apop=None, C3A=None), Xiap_0) Initial(C9(), C9_0) Initial(C3ub(), C3ub_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(Bcl2(BidM=None, BaxA=None), Bcl2_0) Initial(C3pro(Apop=None, C8A=None), C3pro_0) Initial(CytoCM(BaxA=None), CytoCM_0) Initial(CytoCC(), CytoCC_0) Initial(BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), BaxA_0) Initial(ApafI(), ApafI_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(ApafA(), ApafA_0) Initial(BidM(BaxM=None, Bcl2=None), BidM_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C6A(C8pro=None), C6A_0) Initial(C6pro(C3A=None), C6pro_0)
95.138889
798
0.804136
7fd87affb47a7320002a226362a75ebc201a96a5
2,347
py
Python
main.py
nikeee/poor-mans-floyd
77d429ffc662394c454c5b776022775958d22a14
[ "Unlicense" ]
null
null
null
main.py
nikeee/poor-mans-floyd
77d429ffc662394c454c5b776022775958d22a14
[ "Unlicense" ]
null
null
null
main.py
nikeee/poor-mans-floyd
77d429ffc662394c454c5b776022775958d22a14
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 from typing import Optional class Node: value: int next: Optional['Node'] def __init__(self, value: int): self.value = value def __str__(self): return f'<{self.value}>' def advance(self) -> Optional['Node']: return self.next def advance_by_two(self): node = self.advance() return node.advance() if node is not None else None graph = Node(1) # 1 graph.next = Node(2) # 1 -> 2 graph.next.next = Node(3) # 1 -> 2 -> 3 graph.next.next.next = Node(4) # 1 -> 2 -> 3 -> 4 graph.next.next.next.next = Node(5) # 1 -> 2 -> 3 -> 4 -> 5 graph.next.next.next.next.next = graph.next.next # 1 -> 2 -> 3 -> 4 -> 5 -> 3 def find_cycle_set(graph: Node) -> Optional[Node]: """ Implements an O(n) space and O(n) time complexity algorithm for finding the start of a cycle. Just notes down which nodes were visited. """ visited = set() current_node = graph while current_node is not None and current_node not in visited: visited.add(current_node) current_node = current_node.next return current_node def find_cycle_floyd(graph: Node) -> Optional[Node]: """ Implements an O(1) space and O(n) time complexity algorithm for finding the start of a cycle. Also called Floyd algorithm, shown in this video: https://www.youtube.com/watch?v=pKO9UjSeLew """ ## TODO: This can be removed if graph.next is graph: return graph # Let them advance until they meet while True: tortoise = graph.advance() hare = graph.advance_by_two() if hare is tortoise: break if tortoise is None or hare is None: return None assert hare is tortoise # both met at node hare/tortoise # Now put hare back to start and let him run as slow as the tortoise # Where they meet is the point of the cycle start hare = graph while hare is not tortoise: hare = hare.advance() tortoise = tortoise.advance() if tortoise is None or hare is None: return None return hare def main(): c = find_cycle_set(graph) print(f'Node where the cycle started (set): {c}') c = find_cycle_floyd(graph) print(f'Node where the cycle started (floyd): {c}') if __name__ == "__main__": main()
25.236559
97
0.624627
88b4def2415c21032dcb9d41dd729f6f90094679
10,923
py
Python
libuavcan/dsdl_compiler/libuavcan_dsdl_compiler/__init__.py
tridge/uavcan_old
6dd432c9742c22e1dd1638c7f91cf937e4bdb2f1
[ "MIT" ]
null
null
null
libuavcan/dsdl_compiler/libuavcan_dsdl_compiler/__init__.py
tridge/uavcan_old
6dd432c9742c22e1dd1638c7f91cf937e4bdb2f1
[ "MIT" ]
null
null
null
libuavcan/dsdl_compiler/libuavcan_dsdl_compiler/__init__.py
tridge/uavcan_old
6dd432c9742c22e1dd1638c7f91cf937e4bdb2f1
[ "MIT" ]
null
null
null
# # UAVCAN DSDL compiler for libuavcan # # Copyright (C) 2014 Pavel Kirienko <pavel.kirienko@gmail.com> # ''' This module implements the core functionality of the UAVCAN DSDL compiler for libuavcan. Supported Python versions: 3.2+, 2.7. It accepts a list of root namespaces and produces the set of C++ header files for libuavcan. It is based on the DSDL parsing package from pyuavcan. ''' from __future__ import division, absolute_import, print_function, unicode_literals import sys, os, logging, errno, re from .pyratemp import Template from pyuavcan import dsdl # Python 2.7 compatibility try: str = unicode except NameError: pass OUTPUT_FILE_EXTENSION = 'hpp' OUTPUT_FILE_PERMISSIONS = 0o444 # Read only for all TEMPLATE_FILENAME = os.path.join(os.path.dirname(__file__), 'data_type_template.tmpl') __all__ = ['run', 'logger', 'DsdlCompilerException'] class DsdlCompilerException(Exception): pass logger = logging.getLogger(__name__) def run(source_dirs, include_dirs, output_dir): ''' This function takes a list of root namespace directories (containing DSDL definition files to parse), a possibly empty list of search directories (containing DSDL definition files that can be referenced from the types that are going to be parsed), and the output directory path (possibly nonexistent) where the generated C++ header files will be stored. Note that this module features lazy write, i.e. if an output file does already exist and its content is not going to change, it will not be overwritten. This feature allows to avoid unnecessary recompilation of dependent object files. Args: source_dirs List of root namespace directories to parse. include_dirs List of root namespace directories with referenced types (possibly empty). This list is automaitcally extended with source_dirs. output_dir Output directory path. Will be created if doesn't exist. ''' assert isinstance(source_dirs, list) assert isinstance(include_dirs, list) output_dir = str(output_dir) types = run_parser(source_dirs, include_dirs + source_dirs) if not types: die('No type definitions were found') logger.info('%d types total', len(types)) run_generator(types, output_dir) # ----------------- def pretty_filename(filename): try: a = os.path.abspath(filename) r = os.path.relpath(filename) return a if '..' in r else r except ValueError: return filename def type_output_filename(t): assert t.category == t.CATEGORY_COMPOUND return t.full_name.replace('.', os.path.sep) + '.' + OUTPUT_FILE_EXTENSION def makedirs(path): try: try: os.makedirs(path, exist_ok=True) # May throw "File exists" when executed as root, which is wrong except TypeError: os.makedirs(path) # Python 2.7 compatibility except OSError as ex: if ex.errno != errno.EEXIST: # http://stackoverflow.com/questions/12468022 raise def die(text): raise DsdlCompilerException(str(text)) def run_parser(source_dirs, search_dirs): try: types = dsdl.parse_namespaces(source_dirs, search_dirs) except dsdl.DsdlException as ex: logger.info('Parser failure', exc_info=True) die(ex) return types def run_generator(types, dest_dir): try: template_expander = make_template_expander(TEMPLATE_FILENAME) dest_dir = os.path.abspath(dest_dir) # Removing '..' makedirs(dest_dir) for t in types: logger.info('Generating type %s', t.full_name) filename = os.path.join(dest_dir, type_output_filename(t)) text = generate_one_type(template_expander, t) write_generated_data(filename, text) except Exception as ex: logger.info('Generator failure', exc_info=True) die(ex) def write_generated_data(filename, data): dirname = os.path.dirname(filename) makedirs(dirname) # Lazy update - file will not be rewritten if its content is not going to change if os.path.exists(filename): with open(filename) as f: existing_data = f.read() if data == existing_data: logger.info('Up to date [%s]', pretty_filename(filename)) return logger.info('Rewriting [%s]', pretty_filename(filename)) os.remove(filename) else: logger.info('Creating [%s]', pretty_filename(filename)) # Full rewrite with open(filename, 'w') as f: f.write(data) try: os.chmod(filename, OUTPUT_FILE_PERMISSIONS) except (OSError, IOError) as ex: logger.warning('Failed to set permissions for %s: %s', pretty_filename(filename), ex) def type_to_cpp_type(t): if t.category == t.CATEGORY_PRIMITIVE: cast_mode = { t.CAST_MODE_SATURATED: '::uavcan::CastModeSaturate', t.CAST_MODE_TRUNCATED: '::uavcan::CastModeTruncate', }[t.cast_mode] if t.kind == t.KIND_FLOAT: return '::uavcan::FloatSpec< %d, %s >' % (t.bitlen, cast_mode) else: signedness = { t.KIND_BOOLEAN: '::uavcan::SignednessUnsigned', t.KIND_UNSIGNED_INT: '::uavcan::SignednessUnsigned', t.KIND_SIGNED_INT: '::uavcan::SignednessSigned', }[t.kind] return '::uavcan::IntegerSpec< %d, %s, %s >' % (t.bitlen, signedness, cast_mode) elif t.category == t.CATEGORY_ARRAY: value_type = type_to_cpp_type(t.value_type) mode = { t.MODE_STATIC: '::uavcan::ArrayModeStatic', t.MODE_DYNAMIC: '::uavcan::ArrayModeDynamic', }[t.mode] return '::uavcan::Array< %s, %s, %d >' % (value_type, mode, t.max_size) elif t.category == t.CATEGORY_COMPOUND: return '::' + t.full_name.replace('.', '::') else: raise DsdlCompilerException('Unknown type category: %s' % t.category) def generate_one_type(template_expander, t): t.short_name = t.full_name.split('.')[-1] t.cpp_type_name = t.short_name + '_' t.cpp_full_type_name = '::' + t.full_name.replace('.', '::') # Dependencies (no duplicates) def fields_includes(fields): def detect_include(t): if t.category == t.CATEGORY_COMPOUND: return type_output_filename(t) if t.category == t.CATEGORY_ARRAY: return detect_include(t.value_type) return list(sorted(set(filter(None, [detect_include(x.type) for x in fields])))) if t.kind == t.KIND_MESSAGE: t.cpp_includes = fields_includes(t.fields) else: t.cpp_includes = fields_includes(t.request_fields + t.response_fields) t.cpp_namespace_components = t.full_name.split('.')[:-1] t.has_default_dtid = t.default_dtid is not None # Attribute types def inject_cpp_types(attributes): for a in attributes: a.cpp_type = type_to_cpp_type(a.type) if t.kind == t.KIND_MESSAGE: inject_cpp_types(t.fields) inject_cpp_types(t.constants) t.all_attributes = t.fields + t.constants else: inject_cpp_types(t.request_fields) inject_cpp_types(t.request_constants) inject_cpp_types(t.response_fields) inject_cpp_types(t.response_constants) t.all_attributes = t.request_fields + t.request_constants + t.response_fields + t.response_constants # Constant properties def inject_constant_info(constants): for c in constants: if c.type.kind == c.type.KIND_FLOAT: float(c.string_value) # Making sure that this is a valid float literal c.cpp_value = c.string_value else: int(c.string_value) # Making sure that this is a valid integer literal c.cpp_value = c.string_value if c.type.kind == c.type.KIND_UNSIGNED_INT: c.cpp_value += 'U' if t.kind == t.KIND_MESSAGE: inject_constant_info(t.constants) else: inject_constant_info(t.request_constants) inject_constant_info(t.response_constants) # Data type kind t.cpp_kind = { t.KIND_MESSAGE: '::uavcan::DataTypeKindMessage', t.KIND_SERVICE: '::uavcan::DataTypeKindService', }[t.kind] # Generation text = template_expander(t=t) # t for Type text = '\n'.join(x.rstrip() for x in text.splitlines()) text = text.replace('\n\n\n\n\n', '\n\n').replace('\n\n\n\n', '\n\n').replace('\n\n\n', '\n\n') text = text.replace('{\n\n ', '{\n ') return text def make_template_expander(filename): ''' Templating is based on pyratemp (http://www.simple-is-better.org/template/pyratemp.html). The pyratemp's syntax is rather verbose and not so human friendly, so we define some custom extensions to make it easier to read and write. The resulting syntax somewhat resembles Mako (which was used earlier instead of pyratemp): Substitution: ${expression} Line joining through backslash (replaced with a single space): ${foo(bar(very_long_arument=42, \ second_line=72))} Blocks: % for a in range(10): % if a == 5: ${foo()} % endif % endfor The extended syntax is converted into pyratemp's through regexp substitution. ''' with open(filename) as f: template_text = f.read() # Backslash-newline elimination template_text = re.sub(r'\\\r{0,1}\n\ *', r' ', template_text) # Substitution syntax transformation: ${foo} ==> $!foo!$ template_text = re.sub(r'([^\$]{0,1})\$\{([^\}]+)\}', r'\1$!\2!$', template_text) # Flow control expression transformation: % foo: ==> <!--(foo)--> template_text = re.sub(r'(?m)^(\ *)\%\ *([^\:]+?):{0,1}$', r'\1<!--(\2)-->', template_text) # Block termination transformation: <!--(endfoo)--> ==> <!--(end)--> template_text = re.sub(r'\<\!--\(end[a-z]+\)--\>', r'<!--(end)-->', template_text) # Pyratemp workaround. # The problem is that if there's no empty line after a macro declaration, first line will be doubly indented. # Workaround: # 1. Remove trailing comments # 2. Add a newline after each macro declaration template_text = re.sub(r'\ *\#\!.*', '', template_text) template_text = re.sub(r'(\<\!--\(macro\ [a-zA-Z0-9_]+\)--\>.*?)', r'\1\n', template_text) # Preprocessed text output for debugging # with open(filename + '.d', 'w') as f: # f.write(template_text) template = Template(template_text) def expand(**args): # This function adds one indentation level (4 spaces); it will be used from the template args['indent'] = lambda text, idnt = ' ': idnt + text.replace('\n', '\n' + idnt) return template(**args) return expand
38.059233
117
0.639568
bbed86d03a3eb78165bf4d4950688e61dc8b5dcf
3,056
py
Python
kuri_objects_mapping/scripts/objects_mapping.py
kucars/kuri_mbzirc_challenge_3
9942aae773eb4d32971b43223e4fea1554c1c8c8
[ "BSD-3-Clause" ]
4
2019-03-02T12:55:51.000Z
2019-07-23T08:45:17.000Z
kuri_objects_mapping/scripts/objects_mapping.py
kucars/kuri_mbzirc_challenge_3
9942aae773eb4d32971b43223e4fea1554c1c8c8
[ "BSD-3-Clause" ]
2
2019-07-23T08:40:18.000Z
2019-07-23T13:22:18.000Z
kuri_objects_mapping/scripts/objects_mapping.py
kucars/kuri_mbzirc_challenge_3
9942aae773eb4d32971b43223e4fea1554c1c8c8
[ "BSD-3-Clause" ]
2
2018-06-08T01:40:13.000Z
2019-07-23T11:24:22.000Z
#! /usr/bin/env python #Copyright (c) 2016, Buti Al Delail #All rights reserved. # #Redistribution and use in source and binary forms, with or without #modification, are permitted provided that the following conditions are met: # #* Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # #* Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # #* Neither the name of kuri_mbzirc_challenge_3 nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # #THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" #AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE #IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE #DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE #FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL #DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR #SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER #CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, #OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE #OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import rospy import thread import threading import time import mavros import actionlib from math import * from mavros.utils import * from mavros import setpoint as SP from tf.transformations import quaternion_from_euler from nav_msgs.msg import * from kuri_msgs.msg import * from mapping_action_server import MappingServer class ObjectsMapping: def __init__(self): self.objects = [] self.objects_map = ObjectsMap() client = actionlib.SimpleActionClient('TrackingAction', TrackingAction) print "Waiting for tracker server" client.wait_for_server() goal = TrackingGoal() goal.uav_id = 3 client.send_goal(goal) print "Waiting for result" client.wait_for_result() print "Result:",client.get_result() self.sub = rospy.Subscriber("TrackingAction/feedback",Object, self.callback) def callback(self, actionServer): print 'Mapping: Recieving Tracked Objects --deprecated', actionServer #for obj in objects.feedback.tracked_objects.objects: ## TODO: Check and process objects # self.objects.append(obj) #self.objects.append(actionServer.feedback.new_object) #self.objects_map.objects = self.objects; #self.objects_map.map = OccupancyGrid() # if self.actionServer.hasGoal: # self.actionServer.update(self.objects_map) # else: # self.actionServer.objects_map = self.objects_map
40.210526
84
0.737565
7240a9e72ee2d0e19528397ff80a5fbf07f69619
5,420
py
Python
features/eolearn/tests/test_radiometric_normalization.py
chorng/eo-learn
a1a3c6fa5568d398f5e43f5ad5aecdfeb05e8d3c
[ "MIT" ]
null
null
null
features/eolearn/tests/test_radiometric_normalization.py
chorng/eo-learn
a1a3c6fa5568d398f5e43f5ad5aecdfeb05e8d3c
[ "MIT" ]
null
null
null
features/eolearn/tests/test_radiometric_normalization.py
chorng/eo-learn
a1a3c6fa5568d398f5e43f5ad5aecdfeb05e8d3c
[ "MIT" ]
null
null
null
""" Credits: Copyright (c) 2018-2019 Johannes Schmid (GeoVille) Copyright (c) 2017-2022 Matej Aleksandrov, Matic Lubej, Devis Peressutti, Žiga Lukšič (Sinergise) This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ from datetime import datetime import copy import numpy as np from numpy.testing import assert_array_equal import pytest from pytest import approx from eolearn.core import FeatureType from eolearn.core.eodata_io import FeatureIO from eolearn.mask import MaskFeatureTask from eolearn.features import ( ReferenceScenesTask, BlueCompositingTask, HOTCompositingTask, MaxNDVICompositingTask, MaxNDWICompositingTask, MaxRatioCompositingTask, HistogramMatchingTask, ) @pytest.fixture(name="eopatch") def eopatch_fixture(example_eopatch): np.random.seed(0) example_eopatch.mask["SCL"] = np.random.randint(0, 11, example_eopatch.data["BANDS-S2-L1C"].shape, np.uint8) blue = BlueCompositingTask( (FeatureType.DATA, "REFERENCE_SCENES"), (FeatureType.DATA_TIMELESS, "REFERENCE_COMPOSITE"), blue_idx=0, interpolation="geoville", ) blue.execute(example_eopatch) return example_eopatch DATA_TEST_FEATURE = FeatureType.DATA, "TEST" DATA_TIMELESS_TEST_FEATURE = FeatureType.DATA_TIMELESS, "TEST" @pytest.mark.parametrize( "task, test_feature, expected_min, expected_max, expected_mean, expected_median", ( [ MaskFeatureTask( (FeatureType.DATA, "BANDS-S2-L1C", "TEST"), (FeatureType.MASK, "SCL"), mask_values=[0, 1, 2, 3, 8, 9, 10, 11], ), DATA_TEST_FEATURE, 0.0002, 1.4244, 0.21167801, 0.142, ], [ ReferenceScenesTask( (FeatureType.DATA, "BANDS-S2-L1C", "TEST"), (FeatureType.SCALAR, "CLOUD_COVERAGE"), max_scene_number=5 ), DATA_TEST_FEATURE, 0.0005, 0.5318, 0.16823094, 0.1404, ], [ BlueCompositingTask( (FeatureType.DATA, "REFERENCE_SCENES"), (FeatureType.DATA_TIMELESS, "TEST"), blue_idx=0, interpolation="geoville", ), DATA_TIMELESS_TEST_FEATURE, 0.0005, 0.5075, 0.11658352, 0.0833, ], [ HOTCompositingTask( (FeatureType.DATA, "REFERENCE_SCENES"), (FeatureType.DATA_TIMELESS, "TEST"), blue_idx=0, red_idx=2, interpolation="geoville", ), DATA_TIMELESS_TEST_FEATURE, 0.0005, 0.5075, 0.117758796, 0.0846, ], [ MaxNDVICompositingTask( (FeatureType.DATA, "REFERENCE_SCENES"), (FeatureType.DATA_TIMELESS, "TEST"), red_idx=2, nir_idx=7, interpolation="geoville", ), DATA_TIMELESS_TEST_FEATURE, 0.0005, 0.5075, 0.13430128, 0.0941, ], [ MaxNDWICompositingTask( (FeatureType.DATA, "REFERENCE_SCENES"), (FeatureType.DATA_TIMELESS, "TEST"), nir_idx=6, swir1_idx=8, interpolation="geoville", ), DATA_TIMELESS_TEST_FEATURE, 0.0005, 0.5318, 0.2580135, 0.2888, ], [ MaxRatioCompositingTask( (FeatureType.DATA, "REFERENCE_SCENES"), (FeatureType.DATA_TIMELESS, "TEST"), blue_idx=0, nir_idx=6, swir1_idx=8, interpolation="geoville", ), DATA_TIMELESS_TEST_FEATURE, 0.0006, 0.5075, 0.13513365, 0.0958, ], [ HistogramMatchingTask( (FeatureType.DATA, "BANDS-S2-L1C", "TEST"), (FeatureType.DATA_TIMELESS, "REFERENCE_COMPOSITE") ), DATA_TEST_FEATURE, -0.049050678, 0.68174845, 0.1165936, 0.08370649, ], ), ) def test_haralick(eopatch, task, test_feature, expected_min, expected_max, expected_mean, expected_median): initial_patch = copy.deepcopy(eopatch) eopatch = task.execute(eopatch) # Test that no other features were modified for feature, value in initial_patch.data.items(): if isinstance(value, FeatureIO): value = value.load() assert_array_equal(value, eopatch.data[feature], err_msg=f"EOPatch data feature '{feature}' has changed") assert isinstance(eopatch.timestamp, list), "Expected a list of timestamps" assert isinstance(eopatch.timestamp[0], datetime), "Expected timestamps of type datetime.datetime" delta = 1e-3 result = eopatch[test_feature] assert np.nanmin(result) == approx(expected_min, abs=delta) assert np.nanmax(result) == approx(expected_max, abs=delta) assert np.nanmean(result) == approx(expected_mean, abs=delta) assert np.nanmedian(result) == approx(expected_median, abs=delta)
30.971429
118
0.569557
f6daec85fffe1ba9b290ed0c873b2ee245a7a6ef
2,846
py
Python
torchsr/datasets/reds.py
mgm52/torchSR
7d9fb3f2f95b58fa3bb0e9ab00dec4c1a2265ac2
[ "MIT" ]
73
2021-04-24T20:50:47.000Z
2022-03-30T09:36:35.000Z
torchsr/datasets/reds.py
DefTruth/torchSR
115c9177cfbe170524e281fc1c2f82af3349bb6a
[ "MIT" ]
7
2021-05-18T09:57:43.000Z
2022-03-21T09:02:09.000Z
torchsr/datasets/reds.py
DefTruth/torchSR
115c9177cfbe170524e281fc1c2f82af3349bb6a
[ "MIT" ]
7
2021-04-26T23:12:42.000Z
2022-03-04T22:50:50.000Z
import os from typing import Callable, List, Optional, Tuple, Union from .common import FolderByDir, pil_loader class REDS(FolderByDir): """`REDS <https://seungjunnah.github.io/Datasets/reds>` Superresolution Dataset Args: root (string): Root directory for the dataset. scale (int, optional): The upsampling ratio: 2, 3, 4 or 8. track (str, optional): The downscaling method: bicubic, unknown, real_mild, real_difficult, real_wild. split (string, optional): The dataset split, supports ``train``, ``val`` or 'test'. transform (callable, optional): A function/transform that takes in several PIL images and returns a transformed version. It is not a torchvision transform! loader (callable, optional): A function to load an image given its path. download (boolean, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. predecode (boolean, optional): If true, decompress the image files to disk preload (boolean, optional): If true, load all images in memory """ urls = [ ] track_dirs = { ('hr', 'train', 1) : os.path.join('train', 'train_sharp') , ('blur', 'train', 1) : os.path.join('train', 'train_blur') , ('blur_comp', 'train', 1) : os.path.join('train', 'train_blur_comp') , ('bicubic', 'train', 4) : os.path.join('train', 'train_sharp_bicubic') , ('blur_bicubic', 'train', 4) : os.path.join('train', 'train_blur_bicubic') , ('hr', 'val', 1) : os.path.join('val', 'val_sharp') , ('blur', 'val', 1) : os.path.join('val', 'val_blur') , ('blur_comp', 'val', 1) : os.path.join('val', 'val_blur_comp') , ('bicubic', 'val', 4) : os.path.join('val', 'val_sharp_bicubic') , ('blur_bicubic', 'val', 4) : os.path.join('val', 'val_blur_bicubic') , ('blur', 'test', 1) : os.path.join('test', 'test_blur') , ('blur_comp', 'test', 1) : os.path.join('test', 'test_blur_comp') , ('bicubic', 'test', 4) : os.path.join('test', 'test_sharp_bicubic') , ('blur_bicubic', 'test', 4) : os.path.join('test', 'test_blur_bicubic') } def __init__( self, root: str, scale: Optional[int] = None, track: Union[str, List[str]] = 'bicubic', split: str = 'train', transform: Optional[Callable] = None, loader: Callable = pil_loader, download: bool = False, predecode: bool = False, preload: bool = False): super(REDS, self).__init__(os.path.join(root, 'REDS'), scale, track, split, transform, loader, download, predecode, preload)
47.433333
93
0.587491
5992050ca04656ac4747d4061661f90452004628
2,173
py
Python
ibis/backends/pandas/tests/execution/test_structs.py
matthewmturner/ibis
9360bf9878e78c06cadd6733abd04bf98ee0a090
[ "Apache-2.0" ]
null
null
null
ibis/backends/pandas/tests/execution/test_structs.py
matthewmturner/ibis
9360bf9878e78c06cadd6733abd04bf98ee0a090
[ "Apache-2.0" ]
null
null
null
ibis/backends/pandas/tests/execution/test_structs.py
matthewmturner/ibis
9360bf9878e78c06cadd6733abd04bf98ee0a090
[ "Apache-2.0" ]
null
null
null
from collections import OrderedDict import pandas as pd import pandas.util.testing as tm import pytest import ibis import ibis.expr.datatypes as dt from ... import connect, execute @pytest.fixture(scope="module") def value(): return OrderedDict([("fruit", "pear"), ("weight", 0)]) @pytest.fixture(scope="module") def struct_client(value): df = pd.DataFrame( { "s": [ OrderedDict([("fruit", "apple"), ("weight", None)]), value, OrderedDict([("fruit", "pear"), ("weight", 1)]), ], "key": list("aab"), "value": [1, 2, 3], } ) return connect({"t": df}) @pytest.fixture def struct_table(struct_client): return struct_client.table( "t", schema={ "s": dt.Struct.from_tuples( [("fruit", dt.string), ("weight", dt.int8)] ) }, ) def test_struct_field_literal(value): struct = ibis.literal(value) assert struct.type() == dt.Struct.from_tuples( [("fruit", dt.string), ("weight", dt.int8)] ) expr = struct.fruit result = execute(expr) assert result == "pear" expr = struct.weight result = execute(expr) assert result == 0 def test_struct_field_series(struct_table): t = struct_table expr = t.s.fruit result = expr.execute() expected = pd.Series(["apple", "pear", "pear"], name="fruit") tm.assert_series_equal(result, expected) def test_struct_field_series_group_by_key(struct_table): t = struct_table expr = t.groupby(t.s.fruit).aggregate(total=t.value.sum()) result = expr.execute() expected = pd.DataFrame( [("apple", 1), ("pear", 5)], columns=["fruit", "total"] ) tm.assert_frame_equal(result, expected) def test_struct_field_series_group_by_value(struct_table): t = struct_table expr = t.groupby(t.key).aggregate(total=t.s.weight.sum()) result = expr.execute() # these are floats because we have a NULL value in the input data expected = pd.DataFrame([("a", 0.0), ("b", 1.0)], columns=["key", "total"]) tm.assert_frame_equal(result, expected)
25.267442
79
0.599632
d387b82fad2600089705a20bc3763b97bad8dd17
5,947
py
Python
Projects/3_Adversarial Search/my_custom_player.py
kdcarlsen/artificial-intelligence
6124dcc5c2caa6b4284dd287a75714cc2b52b0c1
[ "MIT" ]
null
null
null
Projects/3_Adversarial Search/my_custom_player.py
kdcarlsen/artificial-intelligence
6124dcc5c2caa6b4284dd287a75714cc2b52b0c1
[ "MIT" ]
null
null
null
Projects/3_Adversarial Search/my_custom_player.py
kdcarlsen/artificial-intelligence
6124dcc5c2caa6b4284dd287a75714cc2b52b0c1
[ "MIT" ]
null
null
null
from sample_players import DataPlayer # from algorithms import algorithms # from evaluationFuncs import evaluationFuncs _WIDTH = 11 _HEIGHT = 9 _SIZE = (_WIDTH + 2) * _HEIGHT - 2 class CustomPlayer(DataPlayer): """ Implement your own agent to play knight's Isolation The get_action() method is the only required method for this project. You can modify the interface for get_action by adding named parameters with default values, but the function MUST remain compatible with the default interface. ********************************************************************** NOTES: - The test cases will NOT be run on a machine with GPU access, nor be suitable for using any other machine learning techniques. - You can pass state forward to your agent on the next turn by assigning any pickleable object to the self.context attribute. ********************************************************************** """ def minimax(self, state, depth, evalFunc, playerId): def min_value(state, depth, evalFunc, playerId): if state.terminal_test(): return state.utility(playerId) if depth <= 0: return evalFunc(state, playerId) value = float("inf") for action in state.actions(): value = min(value, max_value(state.result(action), depth - 1, evalFunc, playerId)) return value def max_value(state, depth, evalFunc, playerId): if state.terminal_test(): return state.utility(playerId) if depth <= 0: return evalFunc(state, playerId) value = float("-inf") for action in state.actions(): value = max(value, min_value(state.result(action), depth - 1, evalFunc, playerId)) return value return max(state.actions(), key=lambda x: min_value(state.result(x), depth - 1, evalFunc, playerId)) def move_difference(self, gameState, playerId): player_loc = gameState.locs[playerId] opp_loc = gameState.locs[1- playerId] player_libs = gameState.liberties(player_loc) opp_libs = gameState.liberties(opp_loc) return len(player_libs) - len(opp_libs) def centeredness(self, gameState, playerId): # Goal: Maximize self-centeredness while preferring opponents at the edge # Reasoning: In the middle of the board you are more flexible then at the edges player_loc = gameState.locs[playerId] opp_loc = gameState.locs[1- playerId] #Process player location player_xy = self.computeXy(player_loc) x_centeredness = 5-abs(5-player_xy[0]) y_centeredness = 4-abs(4-player_xy[1]) player_centeredness = x_centeredness + y_centeredness #Process opponent location opp_xy = self.computeXy(opp_loc) opp_x_cent = 5-abs(5-opp_xy[0]) opp_y_cent = 4-abs(4-opp_xy[1]) opp_centeredness = opp_x_cent + opp_y_cent return player_centeredness - opp_centeredness def centeredness_and_libs(self, gameState, playerId): center_score = self.centeredness(gameState, playerId) liberties_score = self.move_difference(gameState,playerId) # Do some kind of fancy weighting return liberties_score*2 + center_score*1 def computeXy(self, ind): return (ind % (_WIDTH + 2), ind // (_WIDTH + 2)) def get_action(self, state): """ Employ an adversarial search technique to choose an action available in the current state calls self.queue.put(ACTION) at least This method must call self.queue.put(ACTION) at least once, and may call it as many times as you want; the caller will be responsible for cutting off the function after the search time limit has expired. See RandomPlayer and GreedyPlayer in sample_players for more examples. ********************************************************************** NOTE: - The caller is responsible for cutting off search, so calling get_action() from your own code will create an infinite loop! Refer to (and use!) the Isolation.play() function to run games. ********************************************************************** """ # TODO: Replace the example implementation below with your own search # method by combining techniques from lecture # # EXAMPLE: choose a random move without any search--this function MUST # call self.queue.put(ACTION) at least once before time expires # (the timer is automatically managed for you) #import random #self.queue.put(random.choice(state.actions())) import random SEARCH_DEPTH_MAX = 4 EVAL_FUNC = self.centeredness_and_libs ### BASELINE, NO ITERATIVE DEEPENING ### # randomly select a move as player 1 or 2 on an empty board, otherwise # return the optimal minimax move at a fixed search depth of 3 plies if state.ply_count < 2: self.queue.put(random.choice(state.actions())) else: bestMove = self.minimax(state=state, depth=SEARCH_DEPTH_MAX, evalFunc=EVAL_FUNC, playerId=self.player_id) self.queue.put(bestMove) ### ITERATIVE DEEPENING AND SMART START SELECTION INCLUDED ### # if state.ply_count < 2: # self.queue.put(random.choice(state.actions())) # # self.context = list() # else: # best_move = None # # self.context.append(0) # for depth in range(1, SEARCH_DEPTH_MAX+1): # best_move = algorithms.minimax(state, depth=depth, evalFunc=EVAL_FUNC, playerId=self.player_id) # self.queue.put(best_move) # # self.context = depth # # print("Average Depth Searched: " + str(sum(self.context)/len(self.context))) # # print("Max Depth Searched: " + str(max(self.context)))
41.880282
117
0.624685
a6c25e1b5039c978603c7e689d1cf937f52c7e91
1,631
py
Python
plugins/vmray/komand_vmray/actions/submit_file/action.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
46
2019-06-05T20:47:58.000Z
2022-03-29T10:18:01.000Z
plugins/vmray/komand_vmray/actions/submit_file/action.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
386
2019-06-07T20:20:39.000Z
2022-03-30T17:35:01.000Z
plugins/vmray/komand_vmray/actions/submit_file/action.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
43
2019-07-09T14:13:58.000Z
2022-03-28T12:04:46.000Z
import komand from .schema import SubmitFileInput, SubmitFileOutput # Custom imports below import base64 class SubmitFile(komand.Action): def __init__(self): super(self.__class__, self).__init__( name="submit_file", description="Submit file for analysis", input=SubmitFileInput(), output=SubmitFileOutput(), ) def run(self, params={}): file_ = params.get("file", None) file_name = file_.get("filename") optional_params = params.get("optional_params") analyzer_mode = params.get("analyzer_mode") if analyzer_mode != "default": optional_params["analyzer_mode"] = analyzer_mode try: file_bytes = base64.b64decode(file_.get("content")) except: raise Exception("Error decoding base64, contents of the file must be encoded with base64!") mime_types, check_pass = self.connection.api.check_filetype(file_bytes) if check_pass: self.logger.info(f"File types {mime_types} found for file {file_name} and are supported by VMRay") resp = self.connection.api.submit_file(file_name, file_bytes, optional_params) clean_data = komand.helper.clean(resp) return {"results": clean_data} else: self.logger.error(f"File types, not supported by VMRay: {mime_types}") self.logger.error(f"Here is a list of supported file types {self.connection.api.SUPPORTED_FILETYPES}") return {"results": {"errors": [{"files": f"File types found are not supported by VMRay {mime_types}"}]}}
39.780488
116
0.646229
54eee5cd28339664107001236657aab8deb34e50
3,455
py
Python
optimisation_studies/overvoltage/5_plot_performance.py
sstcam/sstcam-simulation
3fb67ba64329c201d3995971e5f377c5ec71b18e
[ "BSD-3-Clause" ]
1
2019-12-23T23:26:36.000Z
2019-12-23T23:26:36.000Z
optimisation_studies/overvoltage/5_plot_performance.py
cta-chec/sstCASSIM
75bb863675991f1a36b7d430f9253ae09416f33e
[ "BSD-3-Clause" ]
6
2020-09-18T10:59:41.000Z
2022-03-15T11:01:49.000Z
optimisation_studies/overvoltage/5_plot_performance.py
cta-chec/sstCASSIM
75bb863675991f1a36b7d430f9253ae09416f33e
[ "BSD-3-Clause" ]
2
2020-04-14T08:01:01.000Z
2021-11-30T12:11:17.000Z
import numpy as np import pandas as pd from CHECLabPy.plotting.setup import Plotter from CHECLabPy.plotting.resolutions import ChargeResolutionPlotter from scipy.interpolate import RegularGridInterpolator from IPython import embed # Requirements CRREQ_2PE = ChargeResolutionPlotter.requirement(np.array([2]))[0] CRREQ_20PE = ChargeResolutionPlotter.requirement(np.array([20]))[0] CRREQ_200PE = ChargeResolutionPlotter.requirement(np.array([200]))[0] CRREQ_2000PE = ChargeResolutionPlotter.requirement(np.array([2000]))[0] CRREQ_2PE_50PDE = ChargeResolutionPlotter.requirement(np.array([2*0.5]))[0] CRREQ_20PE_50PDE = ChargeResolutionPlotter.requirement(np.array([20*0.5]))[0] CRREQ_200PE_50PDE = ChargeResolutionPlotter.requirement(np.array([200*0.5]))[0] CRREQ_2000PE_50PDE = ChargeResolutionPlotter.requirement(np.array([2000*0.5]))[0] MINIMGAMP_GAMMA_25PDE = 250 * 0.25 MINIMGAMP_PROTON_25PDE = 480 * 0.25 MINIMGAMP_GAMMA_50PDE = 250 * 0.5 MINIMGAMP_PROTON_50PDE = 480 * 0.5 class MIAContourPlot(Plotter): def __init__(self, interpolator, talk): self.interpolator = interpolator super().__init__(talk=talk) def plot_opct_vs_nsb(self, opct: np.ndarray, nsb: np.ndarray, mv_per_pe: float): xg, yg, zg = np.meshgrid(opct, nsb, mv_per_pe, indexing='ij') opct = xg.ravel() nsb = yg.ravel() mv_per_pe = zg.ravel() mia = self.interpolator(opct, nsb, mv_per_pe) c = self.ax.tricontourf(opct, nsb, mia, 15) self.ax.set_xlabel("OCT") self.ax.set_ylabel("NSB (MHz)") cb = self.fig.colorbar(c, ax=self.ax, label="Minimum Image Amplitude") def plot_mv_per_pe_vs_nsb(self, mv_per_pe: np.ndarray, nsb: np.ndarray, opct: float): xg, yg, zg = np.meshgrid(opct, nsb, mv_per_pe, indexing='ij') opct = xg.ravel() nsb = yg.ravel() mv_per_pe = zg.ravel() mia = self.interpolator(opct, nsb, mv_per_pe) c = self.ax.tricontourf(mv_per_pe, nsb, mia, 15) self.ax.set_xlabel("mV per p.e.") self.ax.set_ylabel("NSB (MHz)") cb = self.fig.colorbar(c, ax=self.ax, label="Minimum Image Amplitude") class MinimumImageAmplitudeInterpolator: def __init__(self, df): xcol, ycol, zcol, vcol = "opct", "nsb_rate", "mv_per_pe", "minimum_image_amplitude" df = df.sort_values(by=[xcol, ycol, zcol]) xvals = df[xcol].unique() yvals = df[ycol].unique() zvals = df[zcol].unique() vvals = df[vcol].values.reshape(len(xvals), len(yvals), len(zvals)) self.f = RegularGridInterpolator((xvals, yvals, zvals), vvals) def __call__(self, opct, nsb, mv_per_pe): pts = np.column_stack([opct, nsb, mv_per_pe]) return self.f(pts) def main(): with pd.HDFStore("performance.h5", mode='r') as store: df_ = store['data'] df_g = df_.loc[df_['shower_primary_id'] == 0] df_p = df_.loc[df_['shower_primary_id'] == 101] talk = True interpolator = MinimumImageAmplitudeInterpolator(df_g) opct = np.linspace(0, 0.5, 100) nsb = np.linspace(0, 50, 100) mv_per_pe = np.linspace(0.4, 4, 100) p_2d = MIAContourPlot(interpolator, talk=talk) p_2d.plot_opct_vs_nsb(opct, nsb, 4) p_2d.save("mia_opct_vs_nsb.pdf") p_2d = MIAContourPlot(interpolator, talk=talk) p_2d.plot_mv_per_pe_vs_nsb(mv_per_pe, nsb, 0.08) p_2d.save("mia_mVperpe_vs_nsb.pdf") if __name__ == '__main__': main()
35.989583
91
0.678726
184269e428d5bb9b19887e50f34f9af0b34a9510
621
py
Python
d2go/modeling/modeldef/fbnet_modeldef_registry.py
wenliangzhao2018/d2go
a9dce74e5caf4c2260371a1abb603e3d5f14d763
[ "Apache-2.0" ]
687
2021-03-03T07:50:15.000Z
2022-03-25T19:31:57.000Z
d2go/modeling/modeldef/fbnet_modeldef_registry.py
wenliangzhao2018/d2go
a9dce74e5caf4c2260371a1abb603e3d5f14d763
[ "Apache-2.0" ]
193
2021-03-03T17:15:57.000Z
2022-03-31T03:13:47.000Z
d2go/modeling/modeldef/fbnet_modeldef_registry.py
wenliangzhao2018/d2go
a9dce74e5caf4c2260371a1abb603e3d5f14d763
[ "Apache-2.0" ]
90
2021-03-03T16:08:36.000Z
2022-03-30T23:42:19.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy class FBNetV2ModelArch(object): _MODEL_ARCH = {} @staticmethod def add(name, arch): assert ( name not in FBNetV2ModelArch._MODEL_ARCH ), "Arch name '{}' is already existed".format(name) FBNetV2ModelArch._MODEL_ARCH[name] = arch @staticmethod def add_archs(archs): for name, arch in archs.items(): FBNetV2ModelArch.add(name, arch) @staticmethod def get(name): return copy.deepcopy(FBNetV2ModelArch._MODEL_ARCH[name])
23.884615
70
0.652174
f2821019a7cb7b0da8792e13299db6d724cb7e6e
757
py
Python
test_app.py
hypervectorio/ci-for-data-science-tutorial
8d8fb52ef5bbd13f5e5f9f6f77056f95fbeb8674
[ "MIT" ]
2
2021-08-31T14:34:24.000Z
2021-11-12T09:14:11.000Z
test_app.py
hypervectorio/ci-for-data-science-tutorial
8d8fb52ef5bbd13f5e5f9f6f77056f95fbeb8674
[ "MIT" ]
2
2021-06-08T13:29:22.000Z
2021-07-07T13:02:20.000Z
test_app.py
hypervectorio/ci-for-data-science-tutorial
8d8fb52ef5bbd13f5e5f9f6f77056f95fbeb8674
[ "MIT" ]
1
2021-08-31T14:34:29.000Z
2021-08-31T14:34:29.000Z
import hypervector import pytest from app import get_prediction hypervector.API_KEY = "YOUR_API_KEY" @pytest.fixture def hypervector_fixture(): definition = hypervector.Definition.get("YOUR_DEFINITION_UUID") ensemble = definition.ensembles[0] hypervectors = ensemble.hypervectors() benchmark = ensemble.benchmarks[0] return hypervectors, benchmark def test_single_prediction(): test_case = [0, 0, 0, 0] result = get_prediction(test_case)['prediction'] assert result == [1] def test_bulk_prediction(hypervector_fixture): hypervectors, benchmark = hypervector_fixture results = get_prediction(hypervectors)['prediction'] assertion = benchmark.assert_equal(results) assert assertion['asserted'] is True
25.233333
67
0.754293
370a47dcb0753f25224f60bedb244fcb21d0553a
273
py
Python
src/quanguru/extensions/__init__.py
AngsarM/QuanGuru
5db6105f843bbc78c2d5b1547e32d494fbe10b8d
[ "BSD-3-Clause" ]
9
2021-05-23T06:30:45.000Z
2021-12-27T13:33:54.000Z
src/quanguru/extensions/__init__.py
cahitkargi/QuanGuru
9b5c94465cd58bc32f6ff845f29dfdec7e0f9075
[ "BSD-3-Clause" ]
26
2022-03-18T02:40:54.000Z
2022-03-25T07:00:25.000Z
src/quanguru/extensions/__init__.py
cahitkargi/QuanGuru
9b5c94465cd58bc32f6ff845f29dfdec7e0f9075
[ "BSD-3-Clause" ]
5
2021-05-23T06:30:24.000Z
2022-02-04T02:40:08.000Z
r""" Contains certain extensions, such as saving methods. .. currentmodule:: quanguru.extensions Modules ------- .. autosummary:: saveReadCSV _helpers """ from ._helpers import * from .saveReadH5 import * from .saveReadCSV import *
15.166667
56
0.630037
8c9ea19996ef2989fbc8f3a1e8074ddf67a8b6d9
8,480
py
Python
fab/depends.py
zhester/fab
a453e6f02092af11848693137a45d975c7c4dca4
[ "BSD-2-Clause" ]
null
null
null
fab/depends.py
zhester/fab
a453e6f02092af11848693137a45d975c7c4dca4
[ "BSD-2-Clause" ]
null
null
null
fab/depends.py
zhester/fab
a453e6f02092af11848693137a45d975c7c4dca4
[ "BSD-2-Clause" ]
null
null
null
#============================================================================= # # Dependency Discovery Tool # #============================================================================= """ Dependency Discovery Tool ========================= Allows programs to determine dependency chains based on project-specific rules. Most commonly, dependency relationships are useful for software build systems, but can also be used for content management, testing, or other automated production systems. Usage Examples -------------- import depends # Global configuration interface. depends.setup( paths = [ 'includes' ] ) # Create a dependency scanner. # Note: Directory of a source file is always scanned. # Note: The scanning type and rules are usually detected automatically. scanner = depends.scanner( 'path/to/sourcefile.c' ) # Local configuration interface. scanner.setup( paths = [ 'path/to/includes' ] ) # Iterator supported to retrieve all dependencies. # Note: Each dependency contains complete path information. for dep in scanner: print( 'Dependency:', dep ) #============================================================================= class MyRule( Rule ): ''' Example of a customized dependency scanning and detection rule. ''' # File extensions used to determine what files should match this rule. extensions = ( 'ext1', 'ext2' ) # Patterns used to determine dependencies based on file content. extracts = ( r'!import\s+['"]([^'"]+)['"]', ) # Patterns used to determine what files should match this rule. names = ( r'special_\S+\.ext$', ) #========================================================================= def check_source( self, path, match = None ): ''' Called each time a matching source file is found. Note: If the `extracts` property can comprehensively determine dependencies for a rule, this method does not need to be defined. @param path The complete path to the matched source file @param match A possible match object from file name matching @return An iterable object that enumerates all dependencies ''' return () # Add the custom rule to the dependency scanning system. depends.addrule( MyRule ) """ import os import re __version__ = '0.0.0' #============================================================================= class Rule( object ): """ Models a dependency rule. """ # Patterns used to determine what files should match this rule. names = () # File extensions used to determine what files should match this rule. extensions = () # Patterns used to determine dependencies based on file content. extracts = () #========================================================================= def __init__( self ): """ Initializes a Rule object. """ # The result of the most recent name pattern match test. self.match = None #========================================================================= def check_source( self, path, match = None ): """ Called each time a matching source file is found. Note: If the `extracts` property can comprehensively determine dependencies for a rule, this method does not need to be defined. @param path The complete path to the matched source file @param match A possible match object from file name matching @return An iterable object that enumerates all dependencies """ ### ZIH raise NotImplementedError() #========================================================================= def match_name( self, path ): """ Tests a file name to see if it matches this rule. @param path A complete path to the file name to test @return True for a matching file name """ # Patterns based on file name extensions. patterns = [ r'.+\.' + ext + '$' for ext in self.extensions ] # Special file name patterns. patterns += list( self.names ) # Scan all patterns against this file name. for pattern in patterns: match = re.match( pattern, path ) if match is not None: self.match = match return True # File name did not match any patterns. self.match = None return False #============================================================================= class CRule( object ): """ C code dependency rule. """ extensions = ( 'c', 'h' ) extracts = ( r'#include\s*["]([^"]+)["]', ) #============================================================================= class Scanner( object ): """ Provides an interface for defining dependency scanning techniques. """ #========================================================================= def __init__( self, path ): """ Initializes a Scanner object. @param path The path to the source file to scan for dependencies """ # Path to file being scanned for dependencies. self._path = path # Per-scanner configuration starts with global configuration. self._conf = dict( _conf ) # Directory to this file. path_dir = os.path.dirname( self._path ) # Make sure current path is in list. if path_dir not in self._conf[ 'paths' ]: self._conf[ 'paths' ].insert( 0, path_dir ) #========================================================================= def __iter__( self ): """ Provides iterable object support. @return An iterable object that yields all dependencies for the current scanning context """ ### ZIH raise NotImplementedError() #========================================================================= def setup( self, **kwargs ): """ Scanner configuration function. @param kwargs Keyword arguments specify configuration data paths : List of paths to append to path list """ _setup_dict( self._conf, **kwargs ) #============================================================================= # Module Variables # Module-level configuration. _conf = { 'paths' : [], 'rules' : [] } #============================================================================= # Module Interface Functions #============================================================================= def addrule( rule ): """ Adds a rule to the list of scanning/detection rules. @param rule The rule to add to the list of scanning/detection rules """ _setup_dict( _conf, rules = [ rule ] ) #============================================================================= def scanner( path ): """ Creates a dependency scanning object for a given source file name. ZIH """ # Test for an assumed rule list. if len( _conf[ 'rules' ] ) == 0: _conf[ 'rules' ] = [ CRule ] # Create the dependency scanner for the requested file name. return Scanner( path ) #============================================================================= def setup( **kwargs ): """ Module-level configuration function. ZIH """ _setup_dict( _conf, **kwargs ) #============================================================================= # Module Private Functions #============================================================================= def _setup_dict( conf, **kwargs ): """ Provides normalized dictionary configuration management. @param conf The target configuration dictionary @param kwargs Keyword arguments used to update the configuration """ # Append-mode lists. applists = ( 'paths', 'rules' ) # Existing append-mode lists. oldlists = {} # Save any lists that need to have items appended to them. for alist in applists: if alist in kwargs: oldlists[ alist ] = conf[ alist ] # Update all other config values. conf.update( kwargs ) # Restore the saved lists. for alist in oldlists: conf[ alist ] = oldlists[ alist ] # Append any new entries to the list. for newitem in kwargs[ alist ]: if newitem not in conf[ alist ]: conf[ alist ].append( newitem )
28.843537
78
0.505425
04108873a40aa7e8ea1c9710a18ab1de40f44f67
644
py
Python
disco/extensions/upgrade_simulation/upgrade_inputs.py
NREL/disco
19afa1c397c6c24e37222f6cbf027eb88833beda
[ "BSD-3-Clause" ]
2
2022-03-11T20:04:34.000Z
2022-03-14T22:25:29.000Z
disco/extensions/upgrade_simulation/upgrade_inputs.py
NREL/disco
19afa1c397c6c24e37222f6cbf027eb88833beda
[ "BSD-3-Clause" ]
4
2022-03-11T17:48:50.000Z
2022-03-17T21:39:47.000Z
disco/extensions/upgrade_simulation/upgrade_inputs.py
NREL/disco
19afa1c397c6c24e37222f6cbf027eb88833beda
[ "BSD-3-Clause" ]
null
null
null
import os from jade.utils.utils import load_data from disco.distribution.distribution_inputs import DistributionInputs from disco.extensions.upgrade_simulation.upgrade_parameters import UpgradeParameters class UpgradeInputs(DistributionInputs): def __init__(self, base_directory): super().__init__(base_directory) def _parse_config_files(self): filename = os.path.join(self._base, self._CONFIG_FILE) data = load_data(filename) for job_data in data: job = UpgradeParameters(**job_data) assert job.name not in self._parameters self._parameters[job.name] = job
30.666667
84
0.726708
9d3c6120bbb57c741faa7b645dc3bd84ba58e98c
2,101
py
Python
tests/run_sanity_checks.py
alvarobartt/serving-tensorflow-models
e70a4ea191cf5e888277b8bb72f3934931e270c8
[ "MIT" ]
42
2021-02-14T18:52:25.000Z
2022-02-08T16:04:09.000Z
tests/run_sanity_checks.py
alvarobartt/serving-tensorflow-models
e70a4ea191cf5e888277b8bb72f3934931e270c8
[ "MIT" ]
1
2022-01-25T10:52:40.000Z
2022-01-25T11:04:24.000Z
tests/run_sanity_checks.py
alvarobartt/serving-tensorflow-models
e70a4ea191cf5e888277b8bb72f3934931e270c8
[ "MIT" ]
9
2021-03-08T16:16:59.000Z
2022-02-26T17:38:26.000Z
# Copyright 2021 Alvaro Bartolome, alvarobartt @ GitHub # See LICENSE for details. import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Mapping of ids to labels (The Simpsons characters) MAPPING = { 0: "abraham_grampa_simpson", 1: "apu_nahasapeemapetilon", 2: "barney_gumble", 3: "bart_simpson", 4: "carl_carlson", 5: "charles_montgomery_burns", 6: "chief_wiggum", 7: "comic_book_guy", 8: "disco_stu", 9: "edna_krabappel", 10: "groundskeeper_willie", 11: "homer_simpson", 12: "kent_brockman", 13: "krusty_the_clown", 14: "lenny_leonard", 15: "lisa_simpson", 16: "maggie_simpson", 17: "marge_simpson", 18: "martin_prince", 19: "mayor_quimby", 20: "milhouse_van_houten", 21: "moe_szyslak", 22: "ned_flanders", 23: "nelson_muntz", 24: "patty_bouvier", 25: "principal_skinner", 26: "professor_john_frink", 27: "ralph_wiggum", 28: "selma_bouvier", 29: "sideshow_bob", 30: "snake_jailbird", 31: "waylon_smithers" } def run_sanity_checks(): model = tf.keras.models.load_model("simpsonsnet/1") model.summary(); eval_datagen = ImageDataGenerator(rescale=1./255.) eval_generator = eval_datagen.flow_from_directory( directory="evaluation", class_mode='categorical', target_size=(224, 224), batch_size=16, shuffle=False ) loss, accuracy = model.evaluate(eval_generator) with open("results.txt", "w") as f: f.write(pd.DataFrame([{'accuracy': accuracy, 'loss': loss}]).to_markdown()) predictions = model.predict(eval_generator) predictions = np.argmax(predictions, axis=1) ground_truth = eval_generator.classes conf_mat = tf.math.confusion_matrix(ground_truth, predictions) conf_mat = pd.DataFrame(conf_mat.numpy(), index=list(MAPPING.values()), columns=list(MAPPING.values())) plt.figure(figsize=(12,8)) sns.heatmap(conf_mat, annot=True) plt.tight_layout() plt.savefig("confusion_matrix.png") if __name__ == "__main__": run_sanity_checks()
36.224138
107
0.713946
22f9d667725e3c09af5c57744206ffc1923d44f4
1,553
py
Python
walle/config/settings.py
flying1020/walle-web
c7655a3a258c05dbcb3ba362780864b7d4bc221c
[ "Apache-2.0" ]
null
null
null
walle/config/settings.py
flying1020/walle-web
c7655a3a258c05dbcb3ba362780864b7d4bc221c
[ "Apache-2.0" ]
null
null
null
walle/config/settings.py
flying1020/walle-web
c7655a3a258c05dbcb3ba362780864b7d4bc221c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """Application configuration.""" import os from datetime import timedelta class Config(object): """Base configuration.""" VERSION = '2.0.0' SECRET_KEY = os.environ.get('WALLE_SECRET', 'secret-key') APP_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) PROJECT_ROOT = os.path.abspath(os.path.join(APP_DIR, os.pardir)) BCRYPT_LOG_ROUNDS = 13 ASSETS_DEBUG = False WTF_CSRF_ENABLED = False DEBUG_TB_ENABLED = False DEBUG_TB_INTERCEPT_REDIRECTS = False # Can be "memcached", "redis", etc. CACHE_TYPE = 'simple' SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_COMMIT_ON_TEARDOWN = True LOGIN_DISABLED = False # 设置session的保存时间。 PERMANENT_SESSION_LIFETIME = timedelta(days=1) # 前端项目部署路径 FE_PATH = os.path.abspath(PROJECT_ROOT + '/fe/') + '/' AVATAR_PATH = '/avatar/' UPLOAD_AVATAR = FE_PATH + AVATAR_PATH # 邮箱配置 MAIL_SERVER = 'smtp.exmail.qq.com' MAIL_PORT = 465 MAIL_USE_SSL = True MAIL_USE_TLS = False MAIL_DEFAULT_SENDER = 'service@walle-web.io' MAIL_USERNAME = 'service@walle-web.io' MAIL_PASSWORD = 'Ki9y&3U82' # 日志 LOG_PATH = os.path.join(PROJECT_ROOT, 'logs') LOG_PATH_ERROR = os.path.join(LOG_PATH, 'error.log') LOG_PATH_INFO = os.path.join(LOG_PATH, 'info.log') LOG_FILE_MAX_BYTES = 100 * 1024 * 1024 # 轮转数量是 10 个 LOG_FILE_BACKUP_COUNT = 10 LOG_FORMAT = "%(asctime)s %(thread)d %(message)s" # 登录cookie 防止退出浏览器重新登录 COOKIE_ENABLE = False
28.236364
81
0.676755
7d6fb64f97c29064d4daa2ab8f3596281ece8aa1
2,572
py
Python
app/old/former_init.py
SimonSkade/labplaner
5ca73237713faa0d423374fdcf0bf1185ebc11f8
[ "Apache-2.0" ]
1
2021-06-06T17:56:44.000Z
2021-06-06T17:56:44.000Z
app/old/former_init.py
SimonSkade/labplaner
5ca73237713faa0d423374fdcf0bf1185ebc11f8
[ "Apache-2.0" ]
null
null
null
app/old/former_init.py
SimonSkade/labplaner
5ca73237713faa0d423374fdcf0bf1185ebc11f8
[ "Apache-2.0" ]
null
null
null
import os from flask import Flask, render_template, request, redirect, url_for, flash, g from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_marshmallow import Marshmallow from werkzeug.exceptions import NotFound app = Flask(__name__) config = os.environ.get('LAB_CONFIG', default='config/dev.cfg') app.config.from_pyfile(os.path.abspath(config)) app.secret_key = app.secret_key.encode() db = SQLAlchemy(app) ma = Marshmallow(app) migrate = Migrate(app, db) from app.models.user import Session, User from app.utils import after_this_request, requires_auth @app.errorhandler(404) def not_found(error): return NotFound() @app.after_request def call_after_request_callbacks(response): for callback in getattr(g, 'after_request_callbacks', ()): callback(response) return response @app.before_request def auth_middleware(): sid = request.cookies.get('sid', default='') if sid: session_result = Session.verify(sid) if session_result: g.session = session_result else: _session = Session() db.session.add(_session) db.session.commit() g.session = _session else: _session = Session() db.session.add(_session) db.session.commit() g.session = _session if g.session.authenticated: g.user = User.query.get(g.session.user_id) @after_this_request def set_cookie(response): response.set_cookie('sid', g.session.get_string_cookie(), httponly=True, expires=g.session.expires) from app.blueprints.api.v1 import api from app.blueprints.api.v1 import user from app.blueprints.api.v1 import ag as ag_api from app.blueprints.api.v1 import event as event_api from app.blueprints.api.v1 import date as date_api from app.blueprints import auth from app.blueprints import ag from app.blueprints import cal from app.blueprints import pizza app.register_blueprint(api.bp, url_prefix='/api/v1') app.register_blueprint(user.bp, url_prefix='/api/v1/user') app.register_blueprint(ag_api.bp, url_prefix='/api/v1/ag') app.register_blueprint(event_api.bp, url_prefix='/api/v1/event') app.register_blueprint(date_api.bp, url_prefix='/api/v1/date') app.register_blueprint(auth.bp, url_prefix='/auth') app.register_blueprint(ag.bp, url_prefix='/ag') app.register_blueprint(cal.bp, url_prefix='/cal') app.register_blueprint(pizza.bp, url_prefix='/pizza') @app.route('/') @requires_auth() def index(): return render_template('index.html', title='Dashboard')
30.987952
78
0.726672
0f261fc0e6326e61e6c0a48cea07527f041c307b
13,961
py
Python
cryptography/stream_cipher.py
Ale-Cas/MasterDataAnalytics
fcbdbbb534c97c9796231e4b20747988bcdeced8
[ "MIT" ]
null
null
null
cryptography/stream_cipher.py
Ale-Cas/MasterDataAnalytics
fcbdbbb534c97c9796231e4b20747988bcdeced8
[ "MIT" ]
null
null
null
cryptography/stream_cipher.py
Ale-Cas/MasterDataAnalytics
fcbdbbb534c97c9796231e4b20747988bcdeced8
[ "MIT" ]
null
null
null
""" @author: Alessio Castrica @date: 22/02/2022 Implementazione in python del cifrario A5/1. Ho seguito il paper https://www.rocq.inria.fr/secret/Anne.Canteaut/encyclopedia.pdf senza implementare nè la fase di warm-up nè i clock irregolari. Il keystream è generato facendo lo XOR tra il key bit e i feedback bit dei 3 LSFR. Se la rappresentazione binaria del messaggio è più lunga della somma tra frame_number e secrecy_key allora per i bit eccedenti lo XOR è operato solamente tra i feedback bit dei 3 LSFR. """ from abc import ABC, abstractmethod import os import re from typing import Dict, List, Optional, Union import random def validate_binary_list( list_of_numbers: List[int], ) -> bool: """ Takes a list of bits and returns true if it's made only of 0s and 1s. Parameters ---------- list_of_numbers: List[int] A list of 0s and 1s. Returns ------- A boolean value, true if the list is made only of 0s and 1s. Otherwise it raises value errors. """ validation = False if isinstance(list_of_numbers, List): for index, value in enumerate(list_of_numbers): if isinstance(value, int) and (value == 1 or value == 0): validation = True else: raise ValueError( "All values in the list must be 1s or 0s, " + f"while at index {index} the value is {value}." ) else: raise ValueError("The argument must be a list.") return validation def text_to_bits( text: str, encoding: str = "utf-8", errors: str = "surrogatepass", ) -> List[int]: """ Takes a string and returns it's binary representation. Parameters ---------- text: str Any string. Returns ------- A list of 0s and 1s. """ bits = bin(int.from_bytes(text.encode(encoding, errors), "big"))[2:] bits_list = [] for bit in bits.zfill(8 * ((len(bits) + 7) // 8)): bits_list.append(int(bit)) return bits_list def text_from_bits( bits_list: List[int], encoding: str = "utf-8", errors: str = "surrogatepass", ) -> str: """ Takes a list of bits and returns it's text message. Parameters ---------- bits_list: List[int] A list of 0s and 1s. Returns ------- A string. """ assert validate_binary_list(bits_list) string_list_bits = [str(bit) for bit in bits_list] str_of_bits = "".join(string_list_bits) n = int(str_of_bits, 2) return n.to_bytes((n.bit_length() + 7) // 8, "big").decode(encoding, errors) or "\0" def binary_list_to_string( bits_list: List[int], ) -> str: """ Takes a list of bits and returns it's text message. Parameters ---------- bits_list: List[int] A list of 0s and 1s. Returns ------- A string with 0s and 1s. """ assert validate_binary_list(bits_list) return "".join([str(bit) for bit in bits_list]) class LinearFeedbackShiftRegisters: """ Linear Feedback Shift Registers (LFSRs) are the basic components of many running-key generators for stream cipher applications, because they are appropriate to hardware implementation and they produce sequences with good statistical properties. LFSR refers to a feedback shift register with a linear feedback function. Parameters ---------- length: int The length of the LSFR object. initial_state: Optional[List[int]] = None The initial state of the LSFR object. taps: Optional[List[int]] The taps of the LSFR object. """ def __init__( self, length: int, initial_state: Optional[List[int]] = None, taps: Optional[List[int]] = None, ) -> None: self.length = length if initial_state is None or validate_binary_list(initial_state): self._initial_state = initial_state self._taps = taps self._state = None @property def initial_state(self) -> List[int]: if self._initial_state is None: self._initial_state = [random.randint(0, 1) for _ in range(self.length)] return self._initial_state @initial_state.setter def initial_state(self, init_st: List[int]) -> None: if isinstance(init_st, List): for _ in init_st: if isinstance(_, int) and (_ == 1 or _ == 0): self._initial_state = init_st else: raise ValueError( "All values in the initial state list must be 1s or 0s," + f"while {_} the value is not." ) else: raise ValueError("The initial state must be a list.") assert ( len(self._initial_state) == self.length ), f"The initial state must have the same length as the overall {self.__class__.__name__} object." @property def taps(self) -> List[int]: """Indeces of states that we take for the update.""" if self._taps is None: self._taps = [] return self._taps @taps.setter def taps(self, new_taps: List[int]) -> None: if isinstance(new_taps, List): for _ in new_taps: if isinstance(_, int): self._taps = new_taps else: raise ValueError( "All values in the taps list must be integers," + f"while {_} is not." ) else: raise ValueError("Taps must be a list.") @property def state(self) -> List[int]: if self._state is None: self._state = self.initial_state return self._state @state.setter def state(self, new_state: List[int]): if validate_binary_list(new_state): self._state = new_state assert ( len(self._state) == self.length ), f"The state must have the same length as the overall {self.__class__.__name__} object." def update(self, n_cicles: int = 1) -> Dict[int, int]: """ Update the state of the LSFR object as many times as n_cicles. Parameters ---------- n_cicles: int Number of times the user wants to update the state. Returns ------- feedback_bits: Dict[int, int] The feedback bit at each iteration. The key is the number of the iteration while the value is the feedback bit. """ self.states_in_time = {0: self.state} feedback_bits: Dict[int, int] = {} for cicle in range(n_cicles): # insert sum of bits feedback_bit = sum([self.state[i] for i in self.taps]) % 2 self.state.insert(0, feedback_bit) # remove last bit self.state.pop() self.states_in_time[cicle + 1] = self.state feedback_bits[cicle] = feedback_bit return feedback_bits class StreamCipher(ABC): """ Abstract class that represents a stream cipher. A stream cipher is a symmetric cipher which operates with a time-varying transformation on individual plaintext digits. """ @abstractmethod def encrypt(self, plaintext: Union[List[int], str]) -> List[int]: pass @abstractmethod def decrypt(self, ciphertext: List[int]) -> List[Union[int, str]]: pass class A5_1(StreamCipher): """ A5/1 is the symmetric cipher used for encrypting over-the-air transmissions in the GSM standard. Parameters ---------- secrecy_key: List[int] A user defined key, default is a random 64-bit key. frame_number: List[int] A public frame number, default is a random 22-bit key. """ def __init__( self, secrecy_key: List[int] = [random.randint(0, 1) for _ in range(64)], frame_number: List[int] = [random.randint(0, 1) for _ in range(22)], ) -> None: super().__init__() if validate_binary_list(secrecy_key) and len(secrecy_key) == 64: self.secrecy_key = secrecy_key else: raise ValueError("The key must be a 64-bit list of 1s and 0s") if validate_binary_list(frame_number) and len(frame_number) == 22: self.frame_number = frame_number else: raise ValueError("The frame number must be a 22-bit list of 1s and 0s") lsfr1 = LinearFeedbackShiftRegisters( length=19, taps=[13, 16, 17, 18], initial_state=self.secrecy_key[0:19] ) lsfr2 = LinearFeedbackShiftRegisters( length=22, taps=[20, 21], initial_state=self.secrecy_key[0:22] ) lsfr3 = LinearFeedbackShiftRegisters( length=23, taps=[7, 20, 21, 22], initial_state=self.secrecy_key[0:23] ) self.set_of_lsfrs = {lsfr1, lsfr2, lsfr3} def get_key_from_user_input(self) -> None: """Get secrecy key from user input in the terminal.""" user_key = "" while len(user_key) != 64 or not re.match("^([01])+", user_key): user_key = str(input("Please enter a 64-bit key: ")) if len(user_key) == 64 and re.match("^([01])+", user_key): self.secrecy_key = [int(bit) for bit in user_key] def generate_keystream(self, binary_messsage_represenation: List[int]) -> List[int]: """ The keystream is generated by xored the key bit Kt to the feedback bit of each LSFR. """ # TODO: da rivedere! generator_initial_state = self.secrecy_key + self.frame_number lsfr_feedback_bits = {} for index, lsfr in enumerate(self.set_of_lsfrs): lsfr_feedback_bits[index] = list( lsfr.update(n_cicles=len(binary_messsage_represenation)).values() ) keystream = [] if len(binary_messsage_represenation) <= len(generator_initial_state): for bit in range(len(binary_messsage_represenation)): keystream.append( generator_initial_state[bit] ^ lsfr_feedback_bits[0][bit] ^ lsfr_feedback_bits[1][bit] ^ lsfr_feedback_bits[2][bit] ) else: for bit in range(len(generator_initial_state)): keystream.append( generator_initial_state[bit] ^ lsfr_feedback_bits[0][bit] ^ lsfr_feedback_bits[1][bit] ^ lsfr_feedback_bits[2][bit] ) for bit in range( len(binary_messsage_represenation) - len(generator_initial_state) ): keystream.append( lsfr_feedback_bits[0][bit] ^ lsfr_feedback_bits[1][bit] ^ lsfr_feedback_bits[2][bit] ) self.keystream = keystream return self.keystream def encrypt(self, plaintext: Union[List[int], str]) -> List[int]: if isinstance(plaintext, str): binary_representation = text_to_bits(plaintext) elif isinstance(plaintext, list): if validate_binary_list(plaintext): binary_representation = plaintext else: raise ValueError("Plaintext must be a string or a list of 0s and 1s.") self.keystream = self.generate_keystream(binary_representation) ciphertext = [] for bit in range(len(binary_representation)): ciphertext.append(self.keystream[bit] ^ binary_representation[bit]) return ciphertext def decrypt(self, ciphertext: List[int]) -> List[Union[int, str]]: plaintext = [] for bit in range(len(ciphertext)): plaintext.append(self.keystream[bit] ^ ciphertext[bit]) return text_from_bits(plaintext) if __name__ == "__main__": ## UNCOMMENT THIS LINES IF YOU WANT TO TEST THE IMPLEMENTATION OF THE LSFR ## # print("\033[1mSingle LSFR implementation\033[0m:") # lsfr = LinearFeedbackShiftRegisters( # length=19, # taps=[13, 16, 17, 18], # ) # print(f"The initial state of the LSFR is: \n{lsfr.state} ") # print(f"The taps (0-based indexing) of the LSFR are: \n{lsfr.taps}\n ") # n_updates = 3 # print( # f"The feedback bits of the LSFR when updating {n_updates} times are: \n{lsfr.update(n_updates)}\n " # ) # print(f"The state after the update of the LSFR is: \n{lsfr.state}\n ") # print(f"The states along time of the LSFR are: \n{lsfr.states_in_time}\n ") os.system("cls") print("\033[1mA5/1 implementation\033[0m\n") a5_1 = A5_1() ## UNCOMMENT THIS LINES IF YOU WANT TO PROVIDE A CUSTOM 64-BIT KEY ## # print( # f"Default random 64-bit secrecy key: {binary_list_to_string(a5_1.secrecy_key)}" # ) # print("The user can provide a custom key.") # a5_1.get_key_from_user_input() # print("If provided the secrecy key of the object will be updated:") # print(a5_1.secrecy_key) # Può inserire il messaggio sia nella variabile sottostante che nel terminal message = "" while len(message) == 0: message = str(input("Please enter a message: ")) print(f"Message: {message}") print(f"Message in bits: \n{text_to_bits(message)}") print(f"Length of message in bits: {len(text_to_bits(message))}") print("\nKeystream:") print(a5_1.generate_keystream(text_to_bits(message))) print("Length: " + str(len(a5_1.generate_keystream(text_to_bits(message))))) enc_message = a5_1.encrypt(plaintext=str(message)) print(f"\n\033[1mEncrypted message\033[0m: \n{enc_message}") print(f"Length encrypted message: \n{len(enc_message)}") dec_message = a5_1.decrypt(ciphertext=enc_message) print(f"\n\033[1mDecrypted message\033[0m: \n{dec_message}") assert dec_message == message
34.728856
109
0.601461
5612ed503513f0f00da0327e7ab1ccb23a16aa99
7,063
py
Python
app/api_1_0/users.py
ToonoW/flashy
565f5348be8f7f7369346be06ed64e2c4f403a1d
[ "MIT" ]
null
null
null
app/api_1_0/users.py
ToonoW/flashy
565f5348be8f7f7369346be06ed64e2c4f403a1d
[ "MIT" ]
null
null
null
app/api_1_0/users.py
ToonoW/flashy
565f5348be8f7f7369346be06ed64e2c4f403a1d
[ "MIT" ]
null
null
null
from flask import jsonify, request, current_app, url_for from flask.ext.login import current_user, login_required from .decorators import permission_required from . import api from ..models import User, Post, Permission from .. import db from .authentication import verify_password @api.route('/users/<int:id>') def get_user(id): user = User.query.get_or_404(id) return jsonify(user.to_json()) @api.route('/users/<int:id>/posts/') def get_user_posts(id): user = User.query.get_or_404(id) page = request.args.get('page', 1, type=int) pagination = user.posts.order_by(Post.timestamp.desc()).paginate( page, per_page=current_app.config['FLASKY_POSTS_PER_PAGE'], error_out=False) posts = pagination.items prev = None if pagination.has_prev: prev = url_for('api.get_posts', page=page-1, _external=True) next = None if pagination.has_next: next = url_for('api.get_posts', page=page+1, _external=True) return jsonify({ 'posts': [post.to_json() for post in posts], 'prev': prev, 'next': next, 'count': pagination.total }) @api.route('/users/<int:id>/timeline/') def get_user_followed_posts(id): user = User.query.get_or_404(id) page = request.args.get('page', 1, type=int) pagination = user.followed_posts.order_by(Post.timestamp.desc()).paginate( page, per_page=current_app.config['FLASKY_POSTS_PER_PAGE'], error_out=False) posts = pagination.items prev = None if pagination.has_prev: prev = url_for('api.get_posts', page=page-1, _external=True) next = None if pagination.has_next: next = url_for('api.get_posts', page=page+1, _external=True) return jsonify({ 'posts': [post.to_json() for post in posts], 'prev': prev, 'next': next, 'count': pagination.total }) @api.route('/user/<int:id>/setsex/<string:sex>') def set_sex(id, sex): user = User.query.filter(User.id == id).first() if user is not None and (sex in ['male', 'female', 'secret']): user.sex = sex db.session.commit() return jsonify({ 'status': 1, 'msg': 'modified success' }) return jsonify({ 'status': 0, 'msg': 'please check your data' }) @api.route('/user/<int:id>/setusername/', methods=['POST']) def set_username(id): body = request.json username = body.get('username') user = User.query.filter(User.id == id).first() if user is not None and username is not None: user.username = username db.session.commit() return jsonify({ 'status': 1, 'msg': 'modified success' }) return jsonify({ 'status': 0, 'msg': 'please check your data' }) @api.route('/user/<int:id>/setaboutme/', methods=['POST']) def set_aboutme(id): body = request.json about_me = body.get('about_me') user = User.query.filter(User.id == id).first() if user is not None and about_me is not None: user.about_me = about_me db.session.commit() return jsonify({ 'status': 1, 'msg': 'modified success' }) return jsonify({ 'status': 0, 'msg': 'please check your data' }) @api.route('/user/<int:id>/setavatar/', methods=['POST', 'GET']) def avatar_upload(id): from ..main.forms import UploadAvatarForm_forAPI form = UploadAvatarForm_forAPI() if request.method == 'GET': from flask import render_template return render_template('upload_avatar.html', id=id) user = User.query.filter(User.id == id).first() image = form.image.data if user is not None and image is not None: # 保存图片,文件名用hash命名 import os, hashlib m1 = hashlib.md5() m1.update(user.email.encode('utf-8')) (name, ext) = os.path.splitext(form.image.data.filename) filename = m1.hexdigest() + ext abspath = os.path.abspath('app/static/avatar') filepath = os.path.join(abspath, filename) image.save(filepath) # 写入数据库 user.avatar_url = '/static/avatar/' + filename db.session.commit() return jsonify({ 'status': 1, 'msg': 'upload avatar success', 'avatar_url': user.avatar_url }) return jsonify({ 'status': 0, 'msg': 'fail to upload avatar' }) @api.route('/user/<int:id>/setbirthday/<int:birthday>') def set_birthday(id, birthday): user = User.query.filter(User.id == id).first() if user is not None and birthday>0: user.birthday = birthday; db.session.commit() return jsonify({ 'status': 1, 'msg': 'set birthday success' }) return jsonify({ 'status': 0, 'msg': 'please check your data' }) @api.route('/follow/<int:id>/<int:id2>') def follow_user(id, id2): current_user = User.query.filter(User.id == id2).first() user = User.query.filter(User.id == id).first() if user is not None: current_user.follow(user) return jsonify({ "status": 1, "msg": "follow success" }) return jsonify({ "status": 0, "msg": "follow fail, can't find user" }) @api.route('/unfollow/<int:id>/<int:id2>') def unfollow_user(id, id2): current_user = User.query.filter(User.id == id2).first() user = User.query.filter(User.id == id).first() if user is not None: current_user.unfollow(user) return jsonify({ "status": 1, "msg": "unfollow success" }) return jsonify({ "status": 0, "msg": "follow fail, can't find user" }) # 检查是否处于关注状态 @api.route('/check_follow/<int:id>/<int:id2>') def check_follow(id, id2): current_user = User.query.filter(User.id == id2).first() user = User.query.filter(User.id == id).first() if user is not None: follow_status = current_user.is_following(user) return jsonify({ "status": 1, "msg": "check success", "result": follow_status }) return jsonify({ "status": 0, "msg": "check fail, can't find user" }) # 分页获取关注人列表 @api.route('/followers/<int:id>') def followers(id): user = User.query.filter_by(id=id).first() if user is None: return jsonify({ 'status': 0, 'msg': "can't find user" }) followeds = user.followed.all() follower = [] for f in followeds: try: u = User.query.filter(User.id == f.followed_id).first() info_dic = {'id': u.id, 'username': u.username, 'avatar_url': u.avatar_url, 'about_me': u.about_me } follower.append(info_dic) except: pass return jsonify({ 'status': 1, 'msg': 'pull followers list success', 'results': follower })
28.479839
78
0.5778
8218ba54c46df3f37419aa6fc32e6ae83c5dc62d
3,257
py
Python
scripts/data_congress_legislators.py
aclu-national/elections-api
8af28a2dcc9507004f28e8ec98aa9e9fee566eaa
[ "MIT" ]
28
2018-11-14T21:07:10.000Z
2022-03-09T04:55:30.000Z
scripts/data_congress_legislators.py
aclu-national/elections-api
8af28a2dcc9507004f28e8ec98aa9e9fee566eaa
[ "MIT" ]
31
2019-01-24T20:57:18.000Z
2021-12-08T15:20:44.000Z
scripts/data_congress_legislators.py
aclu-national/elections-api
8af28a2dcc9507004f28e8ec98aa9e9fee566eaa
[ "MIT" ]
3
2019-04-19T15:39:19.000Z
2021-09-17T23:39:58.000Z
#!/bin/env python import os, re, sys, yaml, json, unicodedata import data_index script = os.path.realpath(sys.argv[0]) scripts_dir = os.path.dirname(script) root_dir = os.path.dirname(scripts_dir) # Build lookup of existing legislators to avoid duplicate records existing_legislator_lookup = {} index = data_index.get_index('elections-api') for path in index['lookup'] : if ('congress_legislators' in path) : abs_path = "%s/data/%s" % (root_dir, path) with open(abs_path, 'r') as f: legislator = json.load(f) bioguide_id = legislator['id']['bioguide'] existing_legislator_lookup[bioguide_id] = index['lookup'][path] source_path = "%s/sources/congress_legislators/legislators-current.yaml" % root_dir print("Loading %s" % source_path) file = open(source_path, "r") data = yaml.load(file) legislator_lookup = {} legislator_list = [] for legislator in data: id = legislator["id"]["bioguide"] legislator_lookup[id] = legislator source_path = "%s/sources/congress_legislators/legislators-social-media.yaml" % root_dir print("Loading %s" % source_path) file = open(source_path, "r") data = yaml.load(file) for legislator in data: id = legislator["id"]["bioguide"] legislator_lookup[id]["social"] = legislator["social"] def strip_accents(s): if (type(s) == str): s = s.decode('utf-8') return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn') def get_filename(legislator): fname = strip_accents(legislator["name"]["first"]) lname = strip_accents(legislator["name"]["last"]) name = "%s-%s" % (fname, lname) slug = re.sub('[^A-Za-z]+', '-', name).lower() state = legislator["terms"][0]["state"].lower() filename = "congress_legislator_%s_%s.json" % (state, slug) return filename def get_url_slug(legislator): lname = strip_accents(legislator["name"]["last"]) fname = strip_accents(legislator["name"]["first"]) name = "%s-%s" % (fname, lname) name = re.sub('[^A-Za-z]+', '-', name).lower() state = legislator["terms"][0]["state"].lower() return "%s-%s" % (state, name) def sort_legislators(a, b): a_filename = get_filename(a) b_filename = get_filename(b) if a_filename > b_filename: return 1 else: return -1 legislator_list.sort(sort_legislators) # TODO: sort the list of keys instead? for bioguide_id in legislator_lookup: legislator = legislator_lookup[bioguide_id] if (bioguide_id in existing_legislator_lookup): path_index = 1 path = existing_legislator_lookup[bioguide_id][path_index] else: filename = get_filename(legislator) state = legislator["terms"][0]["state"].lower() path = "congress_legislators/%s/%s" % (state, filename) fname = legislator["name"]["first"] lname = legislator["name"]["last"] name = "%s %s" % (fname, lname) abs_path = "%s/data/%s" % (root_dir, path) aclu_id = data_index.get_id('elections-api', 'congress_legislator', path, name) legislator["id"]["aclu_id"] = aclu_id legislator["url_slug"] = get_url_slug(legislator) print("Saving %s" % path) dirname = os.path.dirname(abs_path) if not os.path.exists(dirname): os.makedirs(dirname) with open(abs_path, 'w') as outfile: json.dump(legislator, outfile, indent=2, sort_keys=True) print("Saving index") data_index.save_index('elections-api') print("Done")
29.342342
88
0.706171
be11ed0f98b8eb0dbef70620ff48369e9cafc4f5
888
py
Python
carts/migrations/0001_initial.py
RafaAlkhamry2020/django
f7a5b7c34890e08d753dc0dba0aaf85d06c7cc0b
[ "MIT" ]
null
null
null
carts/migrations/0001_initial.py
RafaAlkhamry2020/django
f7a5b7c34890e08d753dc0dba0aaf85d06c7cc0b
[ "MIT" ]
8
2021-03-30T13:48:27.000Z
2022-03-12T00:40:39.000Z
carts/migrations/0001_initial.py
RafaAlkhamry2020/django
f7a5b7c34890e08d753dc0dba0aaf85d06c7cc0b
[ "MIT" ]
null
null
null
# Generated by Django 3.0.7 on 2020-07-16 18:48 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('products', '0002_product_image'), ] operations = [ migrations.CreateModel( name='Cart', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('updateed_at', models.DateTimeField(auto_now=True)), ('items', models.ManyToManyField(to='products.product')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='cart', to=settings.AUTH_USER_MODEL)), ], ), ]
31.714286
142
0.638514
fb1186aacea091b10139be4a9662cdaa45a024d7
11,246
py
Python
diofant/tensor/array/ndim_array.py
diofant/omg
72fd45f832240d1ded6f0a411e97bb9f7aa9f1d2
[ "BSD-3-Clause" ]
null
null
null
diofant/tensor/array/ndim_array.py
diofant/omg
72fd45f832240d1ded6f0a411e97bb9f7aa9f1d2
[ "BSD-3-Clause" ]
null
null
null
diofant/tensor/array/ndim_array.py
diofant/omg
72fd45f832240d1ded6f0a411e97bb9f7aa9f1d2
[ "BSD-3-Clause" ]
null
null
null
import collections from ...core import Expr, Integer from ...core.sympify import sympify from ...logic import true from ...matrices import MatrixBase from ...printing.defaults import DefaultPrinting from ..indexed import Indexed class NDimArray(DefaultPrinting): """N-dim array. Examples ======== Create an N-dim array of zeros: >>> a = MutableDenseNDimArray.zeros(2, 3, 4) >>> a [[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]] Create an N-dim array from a list; >>> a = MutableDenseNDimArray([[2, 3], [4, 5]]) >>> a [[2, 3], [4, 5]] >>> b = MutableDenseNDimArray([[[1, 2], [3, 4], [5, 6]], ... [[7, 8], [9, 10], [11, 12]]]) >>> b [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]] Create an N-dim array from a flat list with dimension shape: >>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3)) >>> a [[1, 2, 3], [4, 5, 6]] Create an N-dim array from a matrix: >>> a = Matrix([[1, 2], [3, 4]]) >>> a Matrix([ [1, 2], [3, 4]]) >>> b = MutableDenseNDimArray(a) >>> b [[1, 2], [3, 4]] Arithmetic operations on N-dim arrays >>> a = MutableDenseNDimArray([1, 1, 1, 1], (2, 2)) >>> b = MutableDenseNDimArray([4, 4, 4, 4], (2, 2)) >>> c = a + b >>> c [[5, 5], [5, 5]] >>> a - b [[-3, -3], [-3, -3]] """ def _parse_index(self, index): if isinstance(index, (int, Integer)): if index >= self._loop_size: raise ValueError('index out of range') return index if len(index) != self._rank: raise ValueError('Wrong number of array axes') real_index = 0 # check if input index can exist in current indexing for i in range(self._rank): if index[i] >= self.shape[i]: raise ValueError('Index ' + str(index) + ' out of border') real_index = real_index*self.shape[i] + index[i] return real_index def _get_tuple_index(self, integer_index): index = [] for sh in reversed(self.shape): index.append(integer_index % sh) integer_index //= sh index.reverse() return tuple(index) def _check_symbolic_index(self, index): # Check if any index is symbolic: tuple_index = (index if isinstance(index, tuple) else (index,)) if any((isinstance(i, Expr) and (not i.is_number)) for i in tuple_index): for i, nth_dim in zip(tuple_index, self.shape): i = sympify(i) if ((i < 0) is true) or ((i >= nth_dim) is true): raise ValueError('index out of range') return Indexed(self, *tuple_index) def _setter_iterable_check(self, value): if isinstance(value, (collections.abc.Iterable, MatrixBase, NDimArray)): raise NotImplementedError @classmethod def _scan_iterable_shape(cls, iterable): def f(pointer): if not isinstance(pointer, collections.abc.Iterable): return [pointer], () result = [] elems, shapes = zip(*[f(i) for i in pointer]) if len(set(shapes)) != 1: raise ValueError('could not determine shape unambiguously') for i in elems: result.extend(i) return result, (len(shapes),)+shapes[0] return f(iterable) @classmethod def _handle_ndarray_creation_inputs(cls, iterable=None, shape=None, **kwargs): if shape is None and iterable is None: shape = () iterable = () # Construction from another `NDimArray`: elif shape is None and isinstance(iterable, NDimArray): shape = iterable.shape iterable = list(iterable) # Construct N-dim array from an iterable (numpy arrays included): elif shape is None and isinstance(iterable, collections.abc.Iterable): iterable, shape = cls._scan_iterable_shape(iterable) # Construct N-dim array from a Matrix: elif shape is None and isinstance(iterable, MatrixBase): shape = iterable.shape # Construct NDimArray(iterable, shape) elif shape is not None: pass else: raise TypeError('Data type not understood') if isinstance(shape, (int, Integer)): shape = shape, shape = tuple(shape) if any(not isinstance(dim, (int, Integer)) for dim in shape): raise TypeError('Shape should contain integers only.') if isinstance(iterable, collections.abc.Mapping): for k in list(iterable): if not isinstance(k, collections.abc.Sequence): continue new_key = 0 for i, idx in enumerate(k): new_key = new_key * shape[i] + idx iterable[new_key] = iterable[k] del iterable[k] return shape, iterable def __len__(self): """Overload common function len(). Returns number of elements in array. Examples ======== >>> a = MutableDenseNDimArray.zeros(3, 3) >>> a [[0, 0, 0], [0, 0, 0], [0, 0, 0]] >>> len(a) 9 """ return self._loop_size @property def shape(self): """ Returns array shape (dimension). Examples ======== >>> a = MutableDenseNDimArray.zeros(3, 3) >>> a.shape (3, 3) """ return self._shape def rank(self): """ Returns rank of array. Examples ======== >>> a = MutableDenseNDimArray.zeros(3, 4, 5, 6, 3) >>> a.rank() 5 """ return self._rank def diff(self, *args, **kwargs): """ Calculate the derivative of each element in the array. Examples ======== >>> M = ImmutableDenseNDimArray([[x, y], [1, x*y]]) >>> M.diff(x) [[1, 0], [0, y]] """ # pylint: disable=not-an-iterable return type(self)((x.diff(*args, **kwargs) for x in self), self.shape) def applyfunc(self, f): """Apply a function to each element of the N-dim array. Examples ======== >>> m = ImmutableDenseNDimArray([i*2+j for i in range(2) ... for j in range(2)], (2, 2)) >>> m [[0, 1], [2, 3]] >>> m.applyfunc(lambda i: 2*i) [[0, 2], [4, 6]] """ return type(self)(map(f, self), self.shape) def __str__(self): """Returns string, allows to use standard functions print() and str(). Examples ======== >>> a = MutableDenseNDimArray.zeros(2, 2) >>> a [[0, 0], [0, 0]] """ def f(sh, shape_left, i, j): # pylint: disable=unsubscriptable-object if len(shape_left) == 1: return '['+', '.join([str(self[e]) for e in range(i, j)])+']' sh //= shape_left[0] return '[' + ', '.join([f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh) for e in range(shape_left[0])]) + ']' # + '\n'*len(shape_left) return f(self._loop_size, self.shape, 0, self._loop_size) def tolist(self): """ Conveting MutableDenseNDimArray to one-dim list Examples ======== >>> a = MutableDenseNDimArray([1, 2, 3, 4], (2, 2)) >>> a [[1, 2], [3, 4]] >>> b = a.tolist() >>> b [[1, 2], [3, 4]] """ def f(sh, shape_left, i, j): # pylint: disable=unsubscriptable-object if len(shape_left) == 1: return [self[e] for e in range(i, j)] result = [] sh //= shape_left[0] for e in range(shape_left[0]): result.append(f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh)) return result return f(self._loop_size, self.shape, 0, self._loop_size) def __add__(self, other): if not isinstance(other, NDimArray): raise TypeError(str(other)) if self.shape != other.shape: raise ValueError('array shape mismatch') result_list = [i + j for i, j in zip(self, other)] return type(self)(result_list, self.shape) def __sub__(self, other): if not isinstance(other, NDimArray): raise TypeError(str(other)) if self.shape != other.shape: raise ValueError('array shape mismatch') result_list = [i - j for i, j in zip(self, other)] return type(self)(result_list, self.shape) def __mul__(self, other): if isinstance(other, (collections.abc.Iterable, NDimArray, MatrixBase)): raise ValueError('scalar expected, use tensorproduct(...) for tensorial product') other = sympify(other) result_list = [i*other for i in self] # pylint: disable=not-an-iterable return type(self)(result_list, self.shape) def __rmul__(self, other): if isinstance(other, (collections.abc.Iterable, NDimArray, MatrixBase)): raise ValueError('scalar expected, use tensorproduct(...) for tensorial product') other = sympify(other) result_list = [other*i for i in self] # pylint: disable=not-an-iterable return type(self)(result_list, self.shape) def __truediv__(self, other): if isinstance(other, (collections.abc.Iterable, NDimArray, MatrixBase)): raise ValueError('scalar expected') other = sympify(other) result_list = [i/other for i in self] # pylint: disable=not-an-iterable return type(self)(result_list, self.shape) def __rtruediv__(self, other): return NotImplemented def __eq__(self, other): """ Compare NDimArray instances. Instances equal if they have same shape and data. Examples ======== >>> a = MutableDenseNDimArray.zeros(2, 3) >>> b = MutableDenseNDimArray.zeros(2, 3) >>> a == b True >>> c = a.reshape(3, 2) >>> c == b False >>> a[0, 0] = 1 >>> b[0, 0] = 2 >>> a == b False """ if not isinstance(other, NDimArray): return False return (self.shape == other.shape) and (list(self) == list(other)) def _eval_transpose(self): from .arrayop import permutedims if self.rank() != 2: raise ValueError('array rank not 2') return permutedims(self, (1, 0)) def transpose(self): return self._eval_transpose() def _eval_conjugate(self): return self.func([i.conjugate() for i in self], self.shape) # pylint: disable=not-an-iterable def conjugate(self): return self._eval_conjugate() def _eval_adjoint(self): return self.transpose().conjugate() def adjoint(self): return self._eval_adjoint() class ImmutableNDimArray(NDimArray, Expr): """An immutable version of the N-dim array.""" _op_priority = 11.0
28.984536
141
0.533256
bd75dfe22ca10f655ffde16866d4f2c3b12b6e9f
489
py
Python
sdk/loganalytics/azure-mgmt-loganalytics/azure/mgmt/loganalytics/_version.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
1
2022-02-18T01:17:27.000Z
2022-02-18T01:17:27.000Z
sdk/loganalytics/azure-mgmt-loganalytics/azure/mgmt/loganalytics/_version.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
null
null
null
sdk/loganalytics/azure-mgmt-loganalytics/azure/mgmt/loganalytics/_version.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- VERSION = "13.0.0b1"
48.9
94
0.529652
cdfa51015480acd661f3e2524e13710458207bb8
5,860
py
Python
homeassistant/components/mqtt/lock.py
edofullin/core
106dc4d28ad59cb192c60fc7a354cafa86899ea4
[ "Apache-2.0" ]
1
2021-03-23T07:20:03.000Z
2021-03-23T07:20:03.000Z
homeassistant/components/mqtt/lock.py
edofullin/core
106dc4d28ad59cb192c60fc7a354cafa86899ea4
[ "Apache-2.0" ]
60
2020-08-03T07:32:56.000Z
2022-03-31T06:02:07.000Z
homeassistant/components/mqtt/lock.py
edofullin/core
106dc4d28ad59cb192c60fc7a354cafa86899ea4
[ "Apache-2.0" ]
4
2017-01-10T04:17:33.000Z
2021-09-02T16:37:24.000Z
"""Support for MQTT locks.""" import functools import voluptuous as vol from homeassistant.components import lock from homeassistant.components.lock import LockEntity from homeassistant.const import CONF_NAME, CONF_OPTIMISTIC, CONF_VALUE_TEMPLATE from homeassistant.core import callback import homeassistant.helpers.config_validation as cv from homeassistant.helpers.reload import async_setup_reload_service from homeassistant.helpers.typing import ConfigType, HomeAssistantType from . import ( CONF_COMMAND_TOPIC, CONF_QOS, CONF_RETAIN, CONF_STATE_TOPIC, DOMAIN, PLATFORMS, subscription, ) from .. import mqtt from .debug_info import log_messages from .mixins import MQTT_ENTITY_COMMON_SCHEMA, MqttEntity, async_setup_entry_helper CONF_PAYLOAD_LOCK = "payload_lock" CONF_PAYLOAD_UNLOCK = "payload_unlock" CONF_STATE_LOCKED = "state_locked" CONF_STATE_UNLOCKED = "state_unlocked" DEFAULT_NAME = "MQTT Lock" DEFAULT_OPTIMISTIC = False DEFAULT_PAYLOAD_LOCK = "LOCK" DEFAULT_PAYLOAD_UNLOCK = "UNLOCK" DEFAULT_STATE_LOCKED = "LOCKED" DEFAULT_STATE_UNLOCKED = "UNLOCKED" PLATFORM_SCHEMA = mqtt.MQTT_RW_PLATFORM_SCHEMA.extend( { vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_OPTIMISTIC, default=DEFAULT_OPTIMISTIC): cv.boolean, vol.Optional(CONF_PAYLOAD_LOCK, default=DEFAULT_PAYLOAD_LOCK): cv.string, vol.Optional(CONF_PAYLOAD_UNLOCK, default=DEFAULT_PAYLOAD_UNLOCK): cv.string, vol.Optional(CONF_STATE_LOCKED, default=DEFAULT_STATE_LOCKED): cv.string, vol.Optional(CONF_STATE_UNLOCKED, default=DEFAULT_STATE_UNLOCKED): cv.string, } ).extend(MQTT_ENTITY_COMMON_SCHEMA.schema) async def async_setup_platform( hass: HomeAssistantType, config: ConfigType, async_add_entities, discovery_info=None ): """Set up MQTT lock panel through configuration.yaml.""" await async_setup_reload_service(hass, DOMAIN, PLATFORMS) await _async_setup_entity(hass, async_add_entities, config) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up MQTT lock dynamically through MQTT discovery.""" setup = functools.partial( _async_setup_entity, hass, async_add_entities, config_entry=config_entry ) await async_setup_entry_helper(hass, lock.DOMAIN, setup, PLATFORM_SCHEMA) async def _async_setup_entity( hass, async_add_entities, config, config_entry=None, discovery_data=None ): """Set up the MQTT Lock platform.""" async_add_entities([MqttLock(hass, config, config_entry, discovery_data)]) class MqttLock(MqttEntity, LockEntity): """Representation of a lock that can be toggled using MQTT.""" def __init__(self, hass, config, config_entry, discovery_data): """Initialize the lock.""" self._state = False self._optimistic = False MqttEntity.__init__(self, hass, config, config_entry, discovery_data) @staticmethod def config_schema(): """Return the config schema.""" return PLATFORM_SCHEMA def _setup_from_config(self, config): """(Re)Setup the entity.""" self._optimistic = config[CONF_OPTIMISTIC] value_template = self._config.get(CONF_VALUE_TEMPLATE) if value_template is not None: value_template.hass = self.hass async def _subscribe_topics(self): """(Re)Subscribe to topics.""" @callback @log_messages(self.hass, self.entity_id) def message_received(msg): """Handle new MQTT messages.""" payload = msg.payload value_template = self._config.get(CONF_VALUE_TEMPLATE) if value_template is not None: payload = value_template.async_render_with_possible_json_value(payload) if payload == self._config[CONF_STATE_LOCKED]: self._state = True elif payload == self._config[CONF_STATE_UNLOCKED]: self._state = False self.async_write_ha_state() if self._config.get(CONF_STATE_TOPIC) is None: # Force into optimistic mode. self._optimistic = True else: self._sub_state = await subscription.async_subscribe_topics( self.hass, self._sub_state, { "state_topic": { "topic": self._config.get(CONF_STATE_TOPIC), "msg_callback": message_received, "qos": self._config[CONF_QOS], } }, ) @property def is_locked(self): """Return true if lock is locked.""" return self._state @property def assumed_state(self): """Return true if we do optimistic updates.""" return self._optimistic async def async_lock(self, **kwargs): """Lock the device. This method is a coroutine. """ mqtt.async_publish( self.hass, self._config[CONF_COMMAND_TOPIC], self._config[CONF_PAYLOAD_LOCK], self._config[CONF_QOS], self._config[CONF_RETAIN], ) if self._optimistic: # Optimistically assume that the lock has changed state. self._state = True self.async_write_ha_state() async def async_unlock(self, **kwargs): """Unlock the device. This method is a coroutine. """ mqtt.async_publish( self.hass, self._config[CONF_COMMAND_TOPIC], self._config[CONF_PAYLOAD_UNLOCK], self._config[CONF_QOS], self._config[CONF_RETAIN], ) if self._optimistic: # Optimistically assume that the lock has changed state. self._state = False self.async_write_ha_state()
33.485714
88
0.66843
6a43438b1488464f970c2766390391cf27ee0bc1
15,212
py
Python
neutron/services/metering/drivers/iptables/iptables_driver.py
NeCTAR-RC/neutron
acf78cc3c88aff638180819419a65145a9a79695
[ "Apache-2.0" ]
5
2015-10-20T07:56:53.000Z
2017-12-31T22:39:15.000Z
neutron/services/metering/drivers/iptables/iptables_driver.py
NeCTAR-RC/neutron
acf78cc3c88aff638180819419a65145a9a79695
[ "Apache-2.0" ]
null
null
null
neutron/services/metering/drivers/iptables/iptables_driver.py
NeCTAR-RC/neutron
acf78cc3c88aff638180819419a65145a9a79695
[ "Apache-2.0" ]
3
2015-05-08T22:36:28.000Z
2015-10-24T21:25:35.000Z
# Copyright (C) 2013 eNovance SAS <licensing@enovance.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from oslo_log import helpers as log_helpers from oslo_log import log as logging from oslo_utils import importutils import six from neutron.agent.common import config from neutron.agent.linux import interface from neutron.agent.linux import iptables_manager from neutron.common import constants as constants from neutron.common import ipv6_utils from neutron.i18n import _LE, _LI from neutron.services.metering.drivers import abstract_driver LOG = logging.getLogger(__name__) NS_PREFIX = 'qrouter-' WRAP_NAME = 'neutron-meter' EXTERNAL_DEV_PREFIX = 'qg-' TOP_CHAIN = WRAP_NAME + "-FORWARD" RULE = '-r-' LABEL = '-l-' config.register_interface_driver_opts_helper(cfg.CONF) config.register_use_namespaces_opts_helper(cfg.CONF) cfg.CONF.register_opts(interface.OPTS) class IptablesManagerTransaction(object): __transactions = {} def __init__(self, im): self.im = im transaction = self.__transactions.get(im, 0) transaction += 1 self.__transactions[im] = transaction def __enter__(self): return self.im def __exit__(self, type, value, traceback): transaction = self.__transactions.get(self.im) if transaction == 1: self.im.apply() del self.__transactions[self.im] else: transaction -= 1 self.__transactions[self.im] = transaction class RouterWithMetering(object): def __init__(self, conf, router): self.conf = conf self.id = router['id'] self.router = router self.ns_name = NS_PREFIX + self.id if conf.use_namespaces else None self.iptables_manager = iptables_manager.IptablesManager( namespace=self.ns_name, binary_name=WRAP_NAME, use_ipv6=ipv6_utils.is_enabled()) self.metering_labels = {} class IptablesMeteringDriver(abstract_driver.MeteringAbstractDriver): def __init__(self, plugin, conf): self.plugin = plugin self.conf = conf or cfg.CONF self.routers = {} if not self.conf.interface_driver: raise SystemExit(_('An interface driver must be specified')) LOG.info(_LI("Loading interface driver %s"), self.conf.interface_driver) self.driver = importutils.import_object(self.conf.interface_driver, self.conf) def _update_router(self, router): r = self.routers.get(router['id'], RouterWithMetering(self.conf, router)) r.router = router self.routers[r.id] = r return r @log_helpers.log_method_call def update_routers(self, context, routers): # disassociate removed routers router_ids = set(router['id'] for router in routers) for router_id, rm in six.iteritems(self.routers): if router_id not in router_ids: self._process_disassociate_metering_label(rm.router) for router in routers: old_gw_port_id = None old_rm = self.routers.get(router['id']) if old_rm: old_gw_port_id = old_rm.router['gw_port_id'] gw_port_id = router['gw_port_id'] if gw_port_id != old_gw_port_id: if old_rm: with IptablesManagerTransaction(old_rm.iptables_manager): self._process_disassociate_metering_label(router) if gw_port_id: self._process_associate_metering_label(router) elif gw_port_id: self._process_associate_metering_label(router) @log_helpers.log_method_call def remove_router(self, context, router_id): if router_id in self.routers: del self.routers[router_id] def get_external_device_name(self, port_id): return (EXTERNAL_DEV_PREFIX + port_id)[:self.driver.DEV_NAME_LEN] def _process_metering_label_rules(self, rm, rules, label_chain, rules_chain): im = rm.iptables_manager ext_dev = self.get_external_device_name(rm.router['gw_port_id']) if not ext_dev: return for rule in rules: self._add_rule_to_chain(ext_dev, rule, im, label_chain, rules_chain) def _process_metering_label_rule_add(self, rm, rule, ext_dev, label_chain, rules_chain): im = rm.iptables_manager self._add_rule_to_chain(ext_dev, rule, im, label_chain, rules_chain) def _process_metering_label_rule_delete(self, rm, rule, ext_dev, label_chain, rules_chain): im = rm.iptables_manager self._remove_rule_from_chain(ext_dev, rule, im, label_chain, rules_chain) def _add_rule_to_chain(self, ext_dev, rule, im, label_chain, rules_chain): ipt_rule = self._prepare_rule(ext_dev, rule, label_chain) if rule['excluded']: im.ipv4['filter'].add_rule(rules_chain, ipt_rule, wrap=False, top=True) else: im.ipv4['filter'].add_rule(rules_chain, ipt_rule, wrap=False, top=False) def _remove_rule_from_chain(self, ext_dev, rule, im, label_chain, rules_chain): ipt_rule = self._prepare_rule(ext_dev, rule, label_chain) if rule['excluded']: im.ipv4['filter'].remove_rule(rules_chain, ipt_rule, wrap=False, top=True) else: im.ipv4['filter'].remove_rule(rules_chain, ipt_rule, wrap=False, top=False) def _prepare_rule(self, ext_dev, rule, label_chain): remote_ip = rule['remote_ip_prefix'] if rule['direction'] == 'egress': dir_opt = '-o %s -s %s' % (ext_dev, remote_ip) else: dir_opt = '-i %s -d %s' % (ext_dev, remote_ip) if rule['excluded']: ipt_rule = '%s -j RETURN' % dir_opt else: ipt_rule = '%s -j %s' % (dir_opt, label_chain) return ipt_rule def _process_associate_metering_label(self, router): self._update_router(router) rm = self.routers.get(router['id']) with IptablesManagerTransaction(rm.iptables_manager): labels = router.get(constants.METERING_LABEL_KEY, []) for label in labels: label_id = label['id'] label_chain = iptables_manager.get_chain_name(WRAP_NAME + LABEL + label_id, wrap=False) rm.iptables_manager.ipv4['filter'].add_chain(label_chain, wrap=False) rules_chain = iptables_manager.get_chain_name(WRAP_NAME + RULE + label_id, wrap=False) rm.iptables_manager.ipv4['filter'].add_chain(rules_chain, wrap=False) rm.iptables_manager.ipv4['filter'].add_rule(TOP_CHAIN, '-j ' + rules_chain, wrap=False) rm.iptables_manager.ipv4['filter'].add_rule(label_chain, '', wrap=False) rules = label.get('rules') if rules: self._process_metering_label_rules(rm, rules, label_chain, rules_chain) rm.metering_labels[label_id] = label def _process_disassociate_metering_label(self, router): rm = self.routers.get(router['id']) if not rm: return with IptablesManagerTransaction(rm.iptables_manager): labels = router.get(constants.METERING_LABEL_KEY, []) for label in labels: label_id = label['id'] if label_id not in rm.metering_labels: continue label_chain = iptables_manager.get_chain_name(WRAP_NAME + LABEL + label_id, wrap=False) rules_chain = iptables_manager.get_chain_name(WRAP_NAME + RULE + label_id, wrap=False) rm.iptables_manager.ipv4['filter'].remove_chain(label_chain, wrap=False) rm.iptables_manager.ipv4['filter'].remove_chain(rules_chain, wrap=False) del rm.metering_labels[label_id] @log_helpers.log_method_call def add_metering_label(self, context, routers): for router in routers: self._process_associate_metering_label(router) @log_helpers.log_method_call def add_metering_label_rule(self, context, routers): for router in routers: self._add_metering_label_rule(router) @log_helpers.log_method_call def remove_metering_label_rule(self, context, routers): for router in routers: self._remove_metering_label_rule(router) @log_helpers.log_method_call def update_metering_label_rules(self, context, routers): for router in routers: self._update_metering_label_rules(router) def _add_metering_label_rule(self, router): self._process_metering_rule_action(router, 'create') def _remove_metering_label_rule(self, router): self._process_metering_rule_action(router, 'delete') def _process_metering_rule_action(self, router, action): rm = self.routers.get(router['id']) if not rm: return ext_dev = self.get_external_device_name(rm.router['gw_port_id']) if not ext_dev: return with IptablesManagerTransaction(rm.iptables_manager): labels = router.get(constants.METERING_LABEL_KEY, []) for label in labels: label_id = label['id'] label_chain = iptables_manager.get_chain_name(WRAP_NAME + LABEL + label_id, wrap=False) rules_chain = iptables_manager.get_chain_name(WRAP_NAME + RULE + label_id, wrap=False) rule = label.get('rule') if rule: if action == 'create': self._process_metering_label_rule_add(rm, rule, ext_dev, label_chain, rules_chain) elif action == 'delete': self._process_metering_label_rule_delete(rm, rule, ext_dev, label_chain, rules_chain) def _update_metering_label_rules(self, router): rm = self.routers.get(router['id']) if not rm: return with IptablesManagerTransaction(rm.iptables_manager): labels = router.get(constants.METERING_LABEL_KEY, []) for label in labels: label_id = label['id'] label_chain = iptables_manager.get_chain_name(WRAP_NAME + LABEL + label_id, wrap=False) rules_chain = iptables_manager.get_chain_name(WRAP_NAME + RULE + label_id, wrap=False) rm.iptables_manager.ipv4['filter'].empty_chain(rules_chain, wrap=False) rules = label.get('rules') if rules: self._process_metering_label_rules(rm, rules, label_chain, rules_chain) @log_helpers.log_method_call def remove_metering_label(self, context, routers): for router in routers: self._process_disassociate_metering_label(router) @log_helpers.log_method_call def get_traffic_counters(self, context, routers): accs = {} for router in routers: rm = self.routers.get(router['id']) if not rm: continue for label_id, label in rm.metering_labels.items(): try: chain = iptables_manager.get_chain_name(WRAP_NAME + LABEL + label_id, wrap=False) chain_acc = rm.iptables_manager.get_traffic_counters( chain, wrap=False, zero=True) except RuntimeError: LOG.exception(_LE('Failed to get traffic counters, ' 'router: %s'), router) continue if not chain_acc: continue acc = accs.get(label_id, {'pkts': 0, 'bytes': 0}) acc['pkts'] += chain_acc['pkts'] acc['bytes'] += chain_acc['bytes'] accs[label_id] = acc return accs
41.002695
79
0.522548
6f470000566de2292d447debe0a81c004c319943
548
py
Python
Kraven/urls.py
nhaines/Kraven
3bfc091aefe8d00a91f5b993b25e7d6329db4aa2
[ "Apache-2.0" ]
null
null
null
Kraven/urls.py
nhaines/Kraven
3bfc091aefe8d00a91f5b993b25e7d6329db4aa2
[ "Apache-2.0" ]
null
null
null
Kraven/urls.py
nhaines/Kraven
3bfc091aefe8d00a91f5b993b25e7d6329db4aa2
[ "Apache-2.0" ]
null
null
null
from django.conf.urls import patterns, include, url # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', # Examples: # url(r'^$', 'Kraven.views.home', name='home'), # url(r'^Kraven/', include('Kraven.foo.urls')), # Uncomment the admin/doc line below to enable admin documentation: url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: url(r'^admin/', include(admin.site.urls)), )
30.444444
71
0.686131
1d1f1e3bf9aa2fc994be565b206ec315d675dab9
3,640
py
Python
detectron2/modeling/backbone/vgg16.py
mbsariyildiz/detectron2
1353101f05349c2b54079e896e88cb05ab939475
[ "Apache-2.0" ]
4
2019-12-19T06:30:20.000Z
2022-03-09T10:08:32.000Z
detectron2/modeling/backbone/vgg16.py
mbsariyildiz/detectron2
1353101f05349c2b54079e896e88cb05ab939475
[ "Apache-2.0" ]
null
null
null
detectron2/modeling/backbone/vgg16.py
mbsariyildiz/detectron2
1353101f05349c2b54079e896e88cb05ab939475
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import math from .backbone import Backbone from .build import BACKBONE_REGISTRY from detectron2.layers import ShapeSpec from detectron2.layers import FrozenBatchNorm2d __all__ = [ 'VGG16', 'build_vgg16_backbone'] class VGG16(Backbone): def __init__(self, features, sobel): super().__init__() self.features = features self.d_ft = 512 self._out_features = ["features"] self._out_feature_strides = {"features": 16} self._out_feature_channels = {"features": 512} self._initialize_weights() if sobel: grayscale = nn.Conv2d(3, 1, kernel_size=1, stride=1, padding=0) grayscale.weight.data.fill_(1.0 / 3.0) grayscale.bias.data.zero_() sobel_filter = nn.Conv2d(1, 2, kernel_size=3, stride=1, padding=1) sobel_filter.weight.data[0,0].copy_( torch.FloatTensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]]) ) sobel_filter.weight.data[1,0].copy_( torch.FloatTensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) ) sobel_filter.bias.data.zero_() self.sobel = nn.Sequential(grayscale, sobel_filter) for p in self.sobel.parameters(): p.requires_grad = False else: self.sobel = None def forward(self, x): if self.sobel: x = self.sobel(x) x = self.features(x) return { "features": x } def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in self._out_features } def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def make_layers(input_dim, batch_norm): layers = [] in_channels = input_dim cfg = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, "M"] for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) @BACKBONE_REGISTRY.register() def build_vgg16_backbone(cfg, input_shape): """ Creates a VGG16 instance from the config. Returns: VGG16: a :class:`VGG16` instance. """ sobel = cfg.MODEL.BACKBONE.SOBEL bn = cfg.MODEL.BACKBONE.BN dim = 2 + int(not sobel) model = VGG16(make_layers(dim, bn), sobel) freeze_bn = cfg.MODEL.BACKBONE.FREEZE_BN if freeze_bn: model = FrozenBatchNorm2d.convert_frozen_batchnorm(model) freeze = cfg.MODEL.BACKBONE.FREEZE_AT > 0 if freeze: for p in model.parameters(): p.requires_grad = False return model
32.212389
99
0.583242
2bceeff51e2d74c6a189803f27b3089aa587ffbc
4,685
py
Python
otp/chat/ChatInputTyped.py
MasterLoopyBM/Toontown
ebed7fc3f2ef06a529cf02eda7ab46361aceef9d
[ "MIT" ]
1
2020-02-07T18:15:12.000Z
2020-02-07T18:15:12.000Z
otp/chat/ChatInputTyped.py
TrueBlueDogemon/Toontown
ebed7fc3f2ef06a529cf02eda7ab46361aceef9d
[ "MIT" ]
null
null
null
otp/chat/ChatInputTyped.py
TrueBlueDogemon/Toontown
ebed7fc3f2ef06a529cf02eda7ab46361aceef9d
[ "MIT" ]
2
2020-11-08T03:38:35.000Z
2021-09-02T07:03:47.000Z
from direct.gui.DirectGui import * from direct.showbase import DirectObject from pandac.PandaModules import * import sys from otp.otpbase import OTPGlobals from otp.otpbase import OTPLocalizer from toontown.chat.ChatGlobals import * class ChatInputTyped(DirectObject.DirectObject): def __init__(self, mainEntry = 0): self.whisperName = None self.whisperId = None self.toPlayer = 0 self.mainEntry = mainEntry wantHistory = 0 if __dev__: wantHistory = 1 self.wantHistory = base.config.GetBool('want-chat-history', wantHistory) self.history = [''] self.historySize = base.config.GetInt('chat-history-size', 10) self.historyIndex = 0 return def typeCallback(self, extraArgs): self.activate() def delete(self): self.ignore('arrow_up-up') self.ignore('arrow_down-up') self.chatFrame.destroy() del self.chatFrame del self.chatButton del self.cancelButton del self.chatEntry del self.whisperLabel del self.chatMgr def show(self, whisperId = None, toPlayer = 0): self.toPlayer = toPlayer self.whisperId = whisperId self.whisperName = None if self.whisperId: self.whisperName = base.talkAssistant.findName(whisperId, toPlayer) if hasattr(self, 'whisperPos'): self.chatFrame.setPos(self.whisperPos) self.whisperLabel['text'] = OTPLocalizer.ChatInputWhisperLabel % self.whisperName self.whisperLabel.show() else: if hasattr(self, 'normalPos'): self.chatFrame.setPos(self.normalPos) self.whisperLabel.hide() self.chatEntry['focus'] = 1 self.chatEntry.set('') self.chatFrame.show() self.chatEntry.show() self.cancelButton.show() self.typedChatButton.hide() self.typedChatBar.hide() if self.wantHistory: self.accept('arrow_up-up', self.getPrevHistory) self.accept('arrow_down-up', self.getNextHistory) return def hide(self): self.chatEntry.set('') self.chatEntry['focus'] = 0 self.chatFrame.hide() self.chatEntry.hide() self.cancelButton.hide() self.typedChatButton.show() self.typedChatBar.show() self.ignore('arrow_up-up') self.ignore('arrow_down-up') def activate(self): self.chatEntry.set('') self.chatEntry['focus'] = 1 self.chatFrame.show() self.chatEntry.show() self.cancelButton.show() self.typedChatButton.hide() self.typedChatBar.hide() if self.whisperId: if self.toPlayer: if not base.talkAssistant.checkWhisperTypedChatPlayer(self.whisperId): messenger.send('Chat-Failed player typed chat test') self.deactivate() elif not base.talkAssistant.checkWhisperTypedChatAvatar(self.whisperId): messenger.send('Chat-Failed avatar typed chat test') self.deactivate() elif not base.talkAssistant.checkOpenTypedChat(): messenger.send('Chat-Failed open typed chat test') self.deactivate() def deactivate(self): self.chatEntry.set('') self.chatEntry['focus'] = 0 self.chatFrame.show() self.chatEntry.hide() self.cancelButton.hide() self.typedChatButton.show() self.typedChatBar.show() def sendChat(self, text): self.deactivate() if text: if self.toPlayer: if self.whisperId: pass elif self.whisperId: pass else: base.talkAssistant.sendOpenTalk(text) if self.wantHistory: self.addToHistory(text) self.chatEntry.set('') def chatOverflow(self, overflowText): self.sendChat(self.chatEntry.get()) def cancelButtonPressed(self): self.chatEntry.set('') self.deactivate() def chatButtonPressed(self): self.sendChat(self.chatEntry.get()) def addToHistory(self, text): self.history = [text] + self.history[:self.historySize - 1] self.historyIndex = 0 def getPrevHistory(self): self.chatEntry.set(self.history[self.historyIndex]) self.historyIndex += 1 self.historyIndex %= len(self.history) def getNextHistory(self): self.chatEntry.set(self.history[self.historyIndex]) self.historyIndex -= 1 self.historyIndex %= len(self.history)
32.762238
93
0.60683
6dd6b99ca3f23dab3041fbd0d9fe8d62084390f0
911
py
Python
python_pipe_test.py
darth-cheney/jtf-lib
8430e6590c30db67c157159be016d6972121de26
[ "MIT" ]
null
null
null
python_pipe_test.py
darth-cheney/jtf-lib
8430e6590c30db67c157159be016d6972121de26
[ "MIT" ]
null
null
null
python_pipe_test.py
darth-cheney/jtf-lib
8430e6590c30db67c157159be016d6972121de26
[ "MIT" ]
null
null
null
import subprocess, sys, asyncio, requests, json if 'win32' in sys.platform: # Windows specific event-loop policy & cmd asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy()) async def command(): ''' ''' command = ['jtf', 'get', 'cdli', '-p', 'import.txt'] #command = ['jtf', 'get', 'cdli', '-a', '-p', 'import.txt'] proc = await asyncio.create_subprocess_shell( ' '.join(command), stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE) while True: data = await proc.stdout.readline() line = data.decode('utf-8').rstrip() if 'Endpoint set' in line: return await fetch_data() async def fetch_data(): ''' ''' while True: try: return json.loads(requests.get("http://localhost:9000/").text) except: print("Unexpected error:", sys.exc_info()[0]) raise result = asyncio.run(command()) print(result)
26.028571
75
0.641054
c01d09f141c95d2d673f6778836456ebec075f3f
8,772
py
Python
storyscript/ErrorCodes.py
marqov/storyscript
4b99ff904305109cfb4310cb504127e2649ba44a
[ "MIT" ]
null
null
null
storyscript/ErrorCodes.py
marqov/storyscript
4b99ff904305109cfb4310cb504127e2649ba44a
[ "MIT" ]
null
null
null
storyscript/ErrorCodes.py
marqov/storyscript
4b99ff904305109cfb4310cb504127e2649ba44a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- class ErrorCodes: unidentified_error = ('E0001', '') service_name = ('E0002', "A service name can't contain `.`") arguments_noservice = ('E0003', 'You have defined an argument, but not a service') return_outside = ('E0004', '`return` is allowed only inside functions') variables_backslash = ('E0005', "A variable name can't contain `/`") variables_dash = ('E0006', "A variable name can't contain `-`") assignment_incomplete = ('E0007', 'Missing value after `=`') function_misspell = ('E0008', 'You have misspelt `function`') import_misspell = ('E0009', 'You have misspelt `import`') import_misspell_as = ('E0010', 'You have misspelt `as` in an import statement') import_unquoted_file = ('E0011', 'The imported filename must be in quotes') string_opening_quote = ('E0012', 'Missing opening quote for string') string_closing_quote = ('E0013', 'Missing closing quote for string') list_trailing_comma = ('E0014', 'Trailing comma in list') list_opening_bracket = ('E0015', 'Missing opening bracket for list') list_closing_bracket = ('E0016', 'Missing closing bracket for list') object_opening_bracket = ('E0017', 'Missing opening bracket for object') object_closing_bracket = ('E0018', 'Missing closing bracket for object') service_argument_colon = ('E0019', 'Missing colon in service argument') reserved_keyword = ('E0020', '`{keyword}` is a reserved keyword') future_reserved_keyword = ('E0030', '`{keyword}` is reserved for future use') arguments_nomutation = ( 'E0039', 'You have defined a chained mutation, but not a mutation') compiler_error_no_operator = ( 'E0040', 'Invalid operator `{operator}` provided.') invalid_character = ('E0041', '`{character}` is not allowed here') unexpected_token = ('E0043', '`{token}` is not allowed here. Allowed: {allowed}') break_outside = ('E0044', '`break` is allowed only inside loops') unnecessary_colon = ( 'E0045', 'There is an unnecessary colon at the end of the line') block_expected_after = ('E0045', 'An indented block is required to follow here') block_expected_before = ('E0046', 'An indented block is required to be before here') file_not_found = ('E0047', 'File `{path}` not found at `{abspath}`') function_call_invalid_path = ('E0049', 'Functions can only be called by name') function_call_no_inline_expression = ( 'E0050', 'Service output can not be called as a function') when_no_output_parent = ( 'E0051', 'No service parent has been found.') service_without_command = ( 'E0052', 'Service calls require a command.') unexpected_end_of_line = ( 'E0053', 'Unexpected end of line. Expected: {allowed}.') arguments_expected = ( 'E0054', 'Arguments need to be declared with `key:value`') first_option_more_stories = ( 'E0055', 'The option `--first`/-`f` can only be used if one story is complied.') expected_end_of_line = ( 'E0056', 'Expected end of line instead of `{token}`.') string_templates_no_assignment = ( 'E0057', 'Only expressions are allowed inside string templates') path_name_internal = ( 'E0058', "Path names can't start with double underscore") string_templates_nested = ( 'E0059', "String templates can't be nested") string_templates_empty = ( 'E0060', "String templates can't be empty") path_name_invalid_char = ( 'E0061', 'Invalid path name: `{path}`. ' "Path names can't contain `{token}`") return_required = ('E0062', 'All paths of a function need to return') assignment_inline_expression = ( 'E0063', "Can't assign to inline expressions.") foreach_output_required = ( 'E0064', 'Foreach blocks require an output (e.g. `as item`)') nested_service_block = ('E0065', 'Nested service blocks are not allowed') nested_when_block = ('E0066', 'Nested when blocks are not allowed') time_value_inconsistent_week = ( 'E0067', 'Time value inconsistency: `w` must be the first time unit') time_value_inconsistent = ( 'E0068', 'Time value inconsistency: `{current}` must to be before `{prev}`') time_value_duplicate = ( 'E0069', 'Time value duplication: `{time_type}` must only occur once') string_templates_unclosed = ( 'E0070', 'Unclosed string template. Did you forget a `}}`?') string_templates_unopened = ( 'E0071', ('Unopened string template. Did you forget a `{{` or ' 'wanted to escape with `\\}}`?')) object_destructoring_invalid_path = ( 'E0072', 'Objects can only be destructored into variable names.') object_destructoring_no_variables = ( 'E0073', 'Objects destructoring requires variable names.') unicode_decode_error = ( 'E0074', 'Unicode decode error: {reason}.') expected_closing_parenthesis = ( 'E0075', 'Expected closing parenthesis: {cp}') expected_closing_block = ( 'E0076', 'Unexpected end of line. Maybe close a `}}` or `]` expression?') indentation_error = ( 'E0077', 'Invalid indentation detected. Did you mix tabs and spaces?') type_assignment_different = ( 'E0100', "Can't assign `{source}` to `{target}`") var_not_defined = ( 'E0101', 'Variable `{name}` has not been defined.') return_type_differs = ( 'E0102', "`{source}` can't be implicitly converted to expected " 'return type `{target}`.') type_operation_incompatible = ( 'E0103', '`{op}` between `{left}` and `{right}` is not supported.' ) type_index_incompatible = ( 'E0104', "`{left}` can't be indexed with `{right}`" ) foreach_output_children = ( 'E0105', '`foreach` can only have one or two outputs' ) foreach_iterable_required = ( 'E0106', '`foreach` requires an iterable type, but `{target}` is not' ) output_type_only_one = ( 'E0107', 'Only one output is allowed for `{target}` blocks.' ) output_unique = ( 'E0108', 'Service output `{name}` must be unique. Use `as outputName`') service_no_inline_output = ( 'E0109', "Inline service calls can't define an output") function_without_output_return = ( 'E0110', ('Function has no return output defined. ' 'Only `return` is allowed.')) function_redeclaration = ( 'E0111', 'Function `{name}` has already been declared') function_not_found = ( 'E0112', 'Function `{name}` has not been declared') function_arg_required = ( 'E0113', '{fn_type} `{name}` requires argument `{arg}`') function_arg_invalid = ( 'E0114', '{fn_type} `{name}` does not accept argument `{arg}`') function_arg_type_mismatch = ( 'E0115', '{fn_type} `{name}` requires argument `{arg_name}` to be of ' '`{target}`, not `{source}`') assignment_type_none = ( 'E0116', 'Assignments with the type `None` are not allowed') mutation_invalid_name = ( 'E0117', 'Invalid mutation `{name}`') arg_name_required = ( 'E0118', '{fn_type} `{name}` requires arguments to be named') mutation_nested = ( 'E0119', "Mutations can't have nested blocks.") mutation_output = ( 'E0120', "Mutations can't have outputs.") mutation_overload_mismatch = ( 'E0121', 'Multiple mutation overloads for `{name}` found:' '{overloads}\n' 'but none matches.') type_operation_boolean_incompatible = ( 'E0122', "`{val}` can't be converted to `boolean`" ) type_operation_cmp_incompatible = ( 'E0123', "`{left}` can't be compared with `{right}`" ) type_operation_equal_incompatible = ( 'E0124', 'Equality comparison not supported between `{left}` and `{right}`.' ) type_key_not_hashable = ( 'E0125', "`{key}` is not hashable and can't be used as an object key." ) @staticmethod def is_error(error_name): """ Checks whether a given error name is a valid error. """ if isinstance(error_name, str): if hasattr(ErrorCodes, error_name): return True @staticmethod def get_error(error_name): """ Retrieve the error object for a valid error name. """ return getattr(ErrorCodes, error_name)
43
79
0.614569
ed9cf9f6c28123b6378673d088d26f4a71fee268
1,664
py
Python
tests/reducers/test_class_weighted_reducer.py
kvzhao/pytorch-metric-learning
9c8a94bd1a906317d5834f26d8a94e59d578b825
[ "MIT" ]
2
2020-08-11T03:42:15.000Z
2022-01-11T07:25:30.000Z
tests/reducers/test_class_weighted_reducer.py
FadouaKhm/pytorch-metric-learning
9eb792bcfc1616b599e6ee457514e3cb3a7235dd
[ "MIT" ]
null
null
null
tests/reducers/test_class_weighted_reducer.py
FadouaKhm/pytorch-metric-learning
9eb792bcfc1616b599e6ee457514e3cb3a7235dd
[ "MIT" ]
1
2021-03-15T04:24:52.000Z
2021-03-15T04:24:52.000Z
import unittest import torch from pytorch_metric_learning.reducers import ClassWeightedReducer class TestClassWeightedReducer(unittest.TestCase): def test_class_weighted_reducer(self): class_weights = torch.tensor([1, 0.9, 1, 0.1, 0, 0, 0, 0, 0, 0]) reducer = ClassWeightedReducer(class_weights) batch_size = 100 num_classes = 10 embedding_size = 64 embeddings = torch.randn(batch_size, embedding_size) labels = torch.randint(0,num_classes,(batch_size,)) pair_indices = (torch.randint(0,batch_size,(batch_size,)), torch.randint(0,batch_size,(batch_size,))) triplet_indices = pair_indices + (torch.randint(0,batch_size,(batch_size,)),) losses = torch.randn(batch_size) for indices, reduction_type in [(torch.arange(batch_size), "element"), (pair_indices, "pos_pair"), (pair_indices, "neg_pair"), (triplet_indices, "triplet")]: loss_dict = {"loss": {"losses": losses, "indices": indices, "reduction_type": reduction_type}} output = reducer(loss_dict, embeddings, labels) correct_output = 0 for i in range(len(losses)): if reduction_type == "element": batch_idx = indices[i] else: batch_idx = indices[0][i] class_label = labels[batch_idx] correct_output += losses[i]*class_weights[class_label] correct_output /= len(losses) self.assertTrue(torch.isclose(output,correct_output))
50.424242
109
0.594351
c93c51d35d5b8ddd26ad70d489a459583c331a74
88,234
py
Python
statsmodels/tsa/regime_switching/markov_switching.py
larsoner/statsmodels
e0b772ed95880e58fd0c089c04ab01eb393c2485
[ "BSD-3-Clause" ]
1
2017-11-13T17:13:04.000Z
2017-11-13T17:13:04.000Z
statsmodels/tsa/regime_switching/markov_switching.py
bert9bert/statsmodels
898ddfc483c45bb0f8e5156dd8506abda84c9b63
[ "BSD-3-Clause" ]
null
null
null
statsmodels/tsa/regime_switching/markov_switching.py
bert9bert/statsmodels
898ddfc483c45bb0f8e5156dd8506abda84c9b63
[ "BSD-3-Clause" ]
2
2018-05-22T11:32:30.000Z
2018-11-17T13:58:01.000Z
""" Markov switching models Author: Chad Fulton License: BSD-3 """ from __future__ import division, absolute_import, print_function import warnings import numpy as np import pandas as pd from statsmodels.compat.collections import OrderedDict from scipy.misc import logsumexp from statsmodels.base.data import PandasData import statsmodels.tsa.base.tsa_model as tsbase from statsmodels.tools.data import _is_using_pandas from statsmodels.tools.tools import Bunch from statsmodels.tools.numdiff import approx_fprime_cs, approx_hess_cs from statsmodels.tools.decorators import cache_readonly, resettable_cache from statsmodels.tools.eval_measures import aic, bic, hqic from statsmodels.tools.tools import pinv_extended from statsmodels.tools.sm_exceptions import EstimationWarning import statsmodels.base.wrapper as wrap from statsmodels.tsa.statespace.tools import find_best_blas_type from statsmodels.tsa.regime_switching._hamilton_filter import ( shamilton_filter, dhamilton_filter, chamilton_filter, zhamilton_filter) from statsmodels.tsa.regime_switching._kim_smoother import ( skim_smoother, dkim_smoother, ckim_smoother, zkim_smoother) prefix_hamilton_filter_map = { 's': shamilton_filter, 'd': dhamilton_filter, 'c': chamilton_filter, 'z': zhamilton_filter } prefix_kim_smoother_map = { 's': skim_smoother, 'd': dkim_smoother, 'c': ckim_smoother, 'z': zkim_smoother } def _prepare_exog(exog): k_exog = 0 if exog is not None: exog_is_using_pandas = _is_using_pandas(exog, None) if not exog_is_using_pandas: exog = np.asarray(exog) # Make sure we have 2-dimensional array if exog.ndim == 1: if not exog_is_using_pandas: exog = exog[:, None] else: exog = pd.DataFrame(exog) k_exog = exog.shape[1] return k_exog, exog def _logistic(x): """ Note that this is not a vectorized function """ x = np.array(x) # np.exp(x) / (1 + np.exp(x)) if x.ndim == 0: y = np.reshape(x, (1, 1, 1)) # np.exp(x[i]) / (1 + np.sum(np.exp(x[:]))) elif x.ndim == 1: y = np.reshape(x, (len(x), 1, 1)) # np.exp(x[i,t]) / (1 + np.sum(np.exp(x[:,t]))) elif x.ndim == 2: y = np.reshape(x, (x.shape[0], 1, x.shape[1])) # np.exp(x[i,j,t]) / (1 + np.sum(np.exp(x[:,j,t]))) elif x.ndim == 3: y = x else: raise NotImplementedError tmp = np.c_[np.zeros((y.shape[-1], y.shape[1], 1)), y.T].T evaluated = np.reshape(np.exp(y - logsumexp(tmp, axis=0)), x.shape) return evaluated def _partials_logistic(x): """ Note that this is not a vectorized function """ tmp = _logistic(x) # k if tmp.ndim == 0: return tmp - tmp**2 # k x k elif tmp.ndim == 1: partials = np.diag(tmp - tmp**2) # k x k x t elif tmp.ndim == 2: partials = [np.diag(tmp[:, t] - tmp[:, t]**2) for t in range(tmp.shape[1])] shape = tmp.shape[1], tmp.shape[0], tmp.shape[0] partials = np.concatenate(partials).reshape(shape).transpose((1, 2, 0)) # k x k x j x t else: partials = [[np.diag(tmp[:, j, t] - tmp[:, j, t]**2) for t in range(tmp.shape[2])] for j in range(tmp.shape[1])] shape = tmp.shape[1], tmp.shape[2], tmp.shape[0], tmp.shape[0] partials = np.concatenate(partials).reshape(shape).transpose( (2, 3, 0, 1)) for i in range(tmp.shape[0]): for j in range(i): partials[i, j, ...] = -tmp[i, ...] * tmp[j, ...] partials[j, i, ...] = partials[i, j, ...] return partials def py_hamilton_filter(initial_probabilities, regime_transition, conditional_likelihoods): """ Hamilton filter using pure Python Parameters ---------- initial_probabilities : array Array of initial probabilities, shaped (k_regimes,). regime_transition : array Matrix of regime transition probabilities, shaped either (k_regimes, k_regimes, 1) or if there are time-varying transition probabilities (k_regimes, k_regimes, nobs). conditional_likelihoods : array Array of likelihoods conditional on the last `order+1` regimes, shaped (k_regimes,)*(order + 1) + (nobs,). Returns ------- filtered_marginal_probabilities : array Array containing Pr[S_t=s_t | Y_t] - the probability of being in each regime conditional on time t information. Shaped (k_regimes, nobs). predicted_joint_probabilities : array Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t-1}] - the joint probability of the current and previous `order` periods being in each combination of regimes conditional on time t-1 information. Shaped (k_regimes,) * (order + 1) + (nobs,). joint_likelihoods : array Array of likelihoods condition on time t information, shaped (nobs,). filtered_joint_probabilities : array Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t}] - the joint probability of the current and previous `order` periods being in each combination of regimes conditional on time t information. Shaped (k_regimes,) * (order + 1) + (nobs,). """ # Dimensions k_regimes = len(initial_probabilities) nobs = conditional_likelihoods.shape[-1] order = conditional_likelihoods.ndim - 2 dtype = conditional_likelihoods.dtype # Storage # Pr[S_t = s_t | Y_t] filtered_marginal_probabilities = ( np.zeros((k_regimes, nobs), dtype=dtype)) # Pr[S_t = s_t, ... S_{t-r} = s_{t-r} | Y_{t-1}] predicted_joint_probabilities = np.zeros( (k_regimes,) * (order + 1) + (nobs,), dtype=dtype) # f(y_t | Y_{t-1}) joint_likelihoods = np.zeros((nobs,), dtype) # Pr[S_t = s_t, ... S_{t-r} = s_{t-r} | Y_t] filtered_joint_probabilities = np.zeros( (k_regimes,) * (order + 1) + (nobs + 1,), dtype=dtype) # Initial probabilities filtered_marginal_probabilities[:, 0] = initial_probabilities tmp = np.copy(initial_probabilities) shape = (k_regimes, k_regimes) for i in range(order): tmp = np.reshape(regime_transition[..., i], shape + (1,) * i) * tmp filtered_joint_probabilities[..., 0] = tmp # Reshape regime_transition so we can use broadcasting shape = (k_regimes, k_regimes) shape += (1,) * (order-1) shape += (regime_transition.shape[-1],) regime_transition = np.reshape(regime_transition, shape) # Get appropriate subset of transition matrix if regime_transition.shape[-1] > 1: regime_transition = regime_transition[..., order:] # Hamilton filter iterations transition_t = 0 for t in range(nobs): if regime_transition.shape[-1] > 1: transition_t = t # S_t, S_{t-1}, ..., S_{t-r} | t-1, stored at zero-indexed location t predicted_joint_probabilities[..., t] = ( # S_t | S_{t-1} regime_transition[..., transition_t] * # S_{t-1}, S_{t-2}, ..., S_{t-r} | t-1 filtered_joint_probabilities[..., t].sum(axis=-1)) # f(y_t, S_t, ..., S_{t-r} | t-1) tmp = (conditional_likelihoods[..., t] * predicted_joint_probabilities[..., t]) # f(y_t | t-1) joint_likelihoods[t] = np.sum(tmp) # S_t, S_{t-1}, ..., S_{t-r} | t, stored at index t+1 filtered_joint_probabilities[..., t+1] = ( tmp / joint_likelihoods[t]) # S_t | t filtered_marginal_probabilities = filtered_joint_probabilities[..., 1:] for i in range(1, filtered_marginal_probabilities.ndim - 1): filtered_marginal_probabilities = np.sum( filtered_marginal_probabilities, axis=-2) return (filtered_marginal_probabilities, predicted_joint_probabilities, joint_likelihoods, filtered_joint_probabilities[..., 1:]) def cy_hamilton_filter(initial_probabilities, regime_transition, conditional_likelihoods): """ Hamilton filter using Cython inner loop Parameters ---------- initial_probabilities : array Array of initial probabilities, shaped (k_regimes,). regime_transition : array Matrix of regime transition probabilities, shaped either (k_regimes, k_regimes, 1) or if there are time-varying transition probabilities (k_regimes, k_regimes, nobs). conditional_likelihoods : array Array of likelihoods conditional on the last `order+1` regimes, shaped (k_regimes,)*(order + 1) + (nobs,). Returns ------- filtered_marginal_probabilities : array Array containing Pr[S_t=s_t | Y_t] - the probability of being in each regime conditional on time t information. Shaped (k_regimes, nobs). predicted_joint_probabilities : array Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t-1}] - the joint probability of the current and previous `order` periods being in each combination of regimes conditional on time t-1 information. Shaped (k_regimes,) * (order + 1) + (nobs,). joint_likelihoods : array Array of likelihoods condition on time t information, shaped (nobs,). filtered_joint_probabilities : array Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t}] - the joint probability of the current and previous `order` periods being in each combination of regimes conditional on time t information. Shaped (k_regimes,) * (order + 1) + (nobs,). """ # Dimensions k_regimes = len(initial_probabilities) nobs = conditional_likelihoods.shape[-1] order = conditional_likelihoods.ndim - 2 dtype = conditional_likelihoods.dtype # Storage # Pr[S_t = s_t | Y_t] filtered_marginal_probabilities = ( np.zeros((k_regimes, nobs), dtype=dtype)) # Pr[S_t = s_t, ... S_{t-r} = s_{t-r} | Y_{t-1}] # Has k_regimes^(order+1) elements predicted_joint_probabilities = np.zeros( (k_regimes,) * (order + 1) + (nobs,), dtype=dtype) # f(y_t | Y_{t-1}) joint_likelihoods = np.zeros((nobs,), dtype) # Pr[S_t = s_t, ... S_{t-r+1} = s_{t-r+1} | Y_t] # Has k_regimes^order elements filtered_joint_probabilities = np.zeros( (k_regimes,) * (order + 1) + (nobs + 1,), dtype=dtype) # Initial probabilities filtered_marginal_probabilities[:, 0] = initial_probabilities tmp = np.copy(initial_probabilities) shape = (k_regimes, k_regimes) transition_t = 0 for i in range(order): if regime_transition.shape[-1] > 1: transition_t = i tmp = np.reshape(regime_transition[..., transition_t], shape + (1,) * i) * tmp filtered_joint_probabilities[..., 0] = tmp # Get appropriate subset of transition matrix if regime_transition.shape[-1] > 1: regime_transition = regime_transition[..., order:] # Run Cython filter iterations prefix, dtype, _ = find_best_blas_type(( regime_transition, conditional_likelihoods, joint_likelihoods, predicted_joint_probabilities, filtered_joint_probabilities)) func = prefix_hamilton_filter_map[prefix] func(nobs, k_regimes, order, regime_transition, conditional_likelihoods.reshape(k_regimes**(order+1), nobs), joint_likelihoods, predicted_joint_probabilities.reshape(k_regimes**(order+1), nobs), filtered_joint_probabilities.reshape(k_regimes**(order+1), nobs+1)) # S_t | t filtered_marginal_probabilities = filtered_joint_probabilities[..., 1:] for i in range(1, filtered_marginal_probabilities.ndim - 1): filtered_marginal_probabilities = np.sum( filtered_marginal_probabilities, axis=-2) return (filtered_marginal_probabilities, predicted_joint_probabilities, joint_likelihoods, filtered_joint_probabilities[..., 1:]) def py_kim_smoother(regime_transition, predicted_joint_probabilities, filtered_joint_probabilities): """ Kim smoother using pure Python Parameters ---------- regime_transition : array Matrix of regime transition probabilities, shaped either (k_regimes, k_regimes, 1) or if there are time-varying transition probabilities (k_regimes, k_regimes, nobs). predicted_joint_probabilities : array Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t-1}] - the joint probability of the current and previous `order` periods being in each combination of regimes conditional on time t-1 information. Shaped (k_regimes,) * (order + 1) + (nobs,). filtered_joint_probabilities : array Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t}] - the joint probability of the current and previous `order` periods being in each combination of regimes conditional on time t information. Shaped (k_regimes,) * (order + 1) + (nobs,). Returns ------- smoothed_joint_probabilities : array Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_T] - the joint probability of the current and previous `order` periods being in each combination of regimes conditional on all information. Shaped (k_regimes,) * (order + 1) + (nobs,). smoothed_marginal_probabilities : array Array containing Pr[S_t=s_t | Y_T] - the probability of being in each regime conditional on all information. Shaped (k_regimes, nobs). """ # Dimensions k_regimes = filtered_joint_probabilities.shape[0] nobs = filtered_joint_probabilities.shape[-1] order = filtered_joint_probabilities.ndim - 2 dtype = filtered_joint_probabilities.dtype # Storage smoothed_joint_probabilities = np.zeros( (k_regimes,) * (order + 1) + (nobs,), dtype=dtype) smoothed_marginal_probabilities = np.zeros((k_regimes, nobs), dtype=dtype) # S_T, S_{T-1}, ..., S_{T-r} | T smoothed_joint_probabilities[..., -1] = ( filtered_joint_probabilities[..., -1]) # Reshape transition so we can use broadcasting shape = (k_regimes, k_regimes) shape += (1,) * (order) shape += (regime_transition.shape[-1],) regime_transition = np.reshape(regime_transition, shape) # Get appropriate subset of transition matrix if regime_transition.shape[-1] == nobs + order: regime_transition = regime_transition[..., order:] # Kim smoother iterations transition_t = 0 for t in range(nobs - 2, -1, -1): if regime_transition.shape[-1] > 1: transition_t = t + 1 # S_{t+1}, S_t, ..., S_{t-r+1} | t # x = predicted_joint_probabilities[..., t] x = (filtered_joint_probabilities[..., t] * regime_transition[..., transition_t]) # S_{t+1}, S_t, ..., S_{t-r+2} | T / S_{t+1}, S_t, ..., S_{t-r+2} | t y = (smoothed_joint_probabilities[..., t+1] / predicted_joint_probabilities[..., t+1]) # S_t, S_{t-1}, ..., S_{t-r+1} | T smoothed_joint_probabilities[..., t] = (x * y[..., None]).sum(axis=0) # Get smoothed marginal probabilities S_t | T by integrating out # S_{t-k+1}, S_{t-k+2}, ..., S_{t-1} smoothed_marginal_probabilities = smoothed_joint_probabilities for i in range(1, smoothed_marginal_probabilities.ndim - 1): smoothed_marginal_probabilities = np.sum( smoothed_marginal_probabilities, axis=-2) return smoothed_joint_probabilities, smoothed_marginal_probabilities def cy_kim_smoother(regime_transition, predicted_joint_probabilities, filtered_joint_probabilities): """ Kim smoother using Cython inner loop Parameters ---------- regime_transition : array Matrix of regime transition probabilities, shaped either (k_regimes, k_regimes, 1) or if there are time-varying transition probabilities (k_regimes, k_regimes, nobs). predicted_joint_probabilities : array Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t-1}] - the joint probability of the current and previous `order` periods being in each combination of regimes conditional on time t-1 information. Shaped (k_regimes,) * (order + 1) + (nobs,). filtered_joint_probabilities : array Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t}] - the joint probability of the current and previous `order` periods being in each combination of regimes conditional on time t information. Shaped (k_regimes,) * (order + 1) + (nobs,). Returns ------- smoothed_joint_probabilities : array Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_T] - the joint probability of the current and previous `order` periods being in each combination of regimes conditional on all information. Shaped (k_regimes,) * (order + 1) + (nobs,). smoothed_marginal_probabilities : array Array containing Pr[S_t=s_t | Y_T] - the probability of being in each regime conditional on all information. Shaped (k_regimes, nobs). """ # Dimensions k_regimes = filtered_joint_probabilities.shape[0] nobs = filtered_joint_probabilities.shape[-1] order = filtered_joint_probabilities.ndim - 2 dtype = filtered_joint_probabilities.dtype # Storage smoothed_joint_probabilities = np.zeros( (k_regimes,) * (order + 1) + (nobs,), dtype=dtype) # Get appropriate subset of transition matrix if regime_transition.shape[-1] == nobs + order: regime_transition = regime_transition[..., order:] # Run Cython smoother iterations prefix, dtype, _ = find_best_blas_type(( regime_transition, predicted_joint_probabilities, filtered_joint_probabilities)) func = prefix_kim_smoother_map[prefix] func(nobs, k_regimes, order, regime_transition, predicted_joint_probabilities.reshape(k_regimes**(order+1), nobs), filtered_joint_probabilities.reshape(k_regimes**(order+1), nobs), smoothed_joint_probabilities.reshape(k_regimes**(order+1), nobs)) # Get smoothed marginal probabilities S_t | T by integrating out # S_{t-k+1}, S_{t-k+2}, ..., S_{t-1} smoothed_marginal_probabilities = smoothed_joint_probabilities for i in range(1, smoothed_marginal_probabilities.ndim - 1): smoothed_marginal_probabilities = np.sum( smoothed_marginal_probabilities, axis=-2) return smoothed_joint_probabilities, smoothed_marginal_probabilities class MarkovSwitchingParams(object): """ Class to hold parameters in Markov switching models Parameters ---------- k_regimes : int The number of regimes between which parameters may switch. Notes ----- The purpose is to allow selecting parameter indexes / slices based on parameter type, regime number, or both. Parameters are lexicographically ordered in the following way: 1. Named type string (e.g. "autoregressive") 2. Number (e.g. the first autoregressive parameter, then the second) 3. Regime (if applicable) Parameter blocks are set using dictionary setter notation where the key is the named type string and the value is a list of boolean values indicating whether a given parameter is switching or not. For example, consider the following code: parameters = MarkovSwitchingParams(k_regimes=2) parameters['regime_transition'] = [1,1] parameters['exog'] = [0, 1] This implies the model has 7 parameters: 4 "regime_transition"-related parameters (2 parameters that each switch according to regimes) and 3 "exog"-related parameters (1 parameter that does not switch, and one 1 that does). The order of parameters is then: 1. The first "regime_transition" parameter, regime 0 2. The first "regime_transition" parameter, regime 1 3. The second "regime_transition" parameter, regime 1 4. The second "regime_transition" parameter, regime 1 5. The first "exog" parameter 6. The second "exog" parameter, regime 0 7. The second "exog" parameter, regime 1 Retrieving indexes / slices is done through dictionary getter notation. There are three options for the dictionary key: - Regime number (zero-indexed) - Named type string (e.g. "autoregressive") - Regime number and named type string In the above example, consider the following getters: >>> parameters[0] array([0, 2, 4, 6]) >>> parameters[1] array([1, 3, 5, 6]) >>> parameters['exog'] slice(4, 7, None) >>> parameters[0, 'exog'] [4, 6] >>> parameters[1, 'exog'] [4, 7] Notice that in the last two examples, both lists of indexes include 4. That's because that is the index of the the non-switching first "exog" parameter, which should be selected regardless of the regime. In addition to the getter, the `k_parameters` attribute is an OrderedDict with the named type strings as the keys. It can be used to get the total number of parameters of each type: >>> parameters.k_parameters['regime_transition'] 4 >>> parameters.k_parameters['exog'] 3 """ def __init__(self, k_regimes): self.k_regimes = k_regimes self.k_params = 0 self.k_parameters = OrderedDict() self.switching = OrderedDict() self.slices_purpose = OrderedDict() self.relative_index_regime_purpose = [ OrderedDict() for i in range(self.k_regimes)] self.index_regime_purpose = [ OrderedDict() for i in range(self.k_regimes)] self.index_regime = [[] for i in range(self.k_regimes)] def __getitem__(self, key): _type = type(key) # Get a slice for a block of parameters by purpose if _type is str: return self.slices_purpose[key] # Get a slice for a block of parameters by regime elif _type is int: return self.index_regime[key] elif _type is tuple: if not len(key) == 2: raise IndexError('Invalid index') if type(key[1]) == str and type(key[0]) == int: return self.index_regime_purpose[key[0]][key[1]] elif type(key[0]) == str and type(key[1]) == int: return self.index_regime_purpose[key[1]][key[0]] else: raise IndexError('Invalid index') else: raise IndexError('Invalid index') def __setitem__(self, key, value): _type = type(key) if _type is str: value = np.array(value, dtype=bool, ndmin=1) k_params = self.k_params self.k_parameters[key] = ( value.size + np.sum(value) * (self.k_regimes - 1)) self.k_params += self.k_parameters[key] self.switching[key] = value self.slices_purpose[key] = np.s_[k_params:self.k_params] for j in range(self.k_regimes): self.relative_index_regime_purpose[j][key] = [] self.index_regime_purpose[j][key] = [] offset = 0 for i in range(value.size): switching = value[i] for j in range(self.k_regimes): # Non-switching parameters if not switching: self.relative_index_regime_purpose[j][key].append( offset) # Switching parameters else: self.relative_index_regime_purpose[j][key].append( offset + j) offset += 1 if not switching else self.k_regimes for j in range(self.k_regimes): offset = 0 indices = [] for k, v in self.relative_index_regime_purpose[j].items(): v = (np.r_[v] + offset).tolist() self.index_regime_purpose[j][k] = v indices.append(v) offset += self.k_parameters[k] self.index_regime[j] = np.concatenate(indices).astype(int) else: raise IndexError('Invalid index') class MarkovSwitching(tsbase.TimeSeriesModel): """ First-order k-regime Markov switching model Parameters ---------- endog : array_like The endogenous variable. k_regimes : integer The number of regimes. order : integer, optional The order of the model describes the dependence of the likelihood on previous regimes. This depends on the model in question and should be set appropriately by subclasses. exog_tvtp : array_like, optional Array of exogenous or lagged variables to use in calculating time-varying transition probabilities (TVTP). TVTP is only used if this variable is provided. If an intercept is desired, a column of ones must be explicitly included in this array. Notes ----- This model is new and API stability is not guaranteed, although changes will be made in a backwards compatible way if possible. References ---------- Kim, Chang-Jin, and Charles R. Nelson. 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications". MIT Press Books. The MIT Press. """ def __init__(self, endog, k_regimes, order=0, exog_tvtp=None, exog=None, dates=None, freq=None, missing='none'): # Properties self.k_regimes = k_regimes self.tvtp = exog_tvtp is not None # The order of the model may be overridden in subclasses self.order = order # Exogenous data # TODO add checks for exog_tvtp consistent shape and indices self.k_tvtp, self.exog_tvtp = _prepare_exog(exog_tvtp) # Initialize the base model super(MarkovSwitching, self).__init__(endog, exog, dates=dates, freq=freq, missing=missing) # Dimensions self.nobs = self.endog.shape[0] # Sanity checks if self.endog.ndim > 1 and self.endog.shape[1] > 1: raise ValueError('Must have univariate endogenous data.') if self.k_regimes < 2: raise ValueError('Markov switching models must have at least two' ' regimes.') if not(self.exog_tvtp is None or self.exog_tvtp.shape[0] == self.nobs): raise ValueError('Time-varying transition probabilities exogenous' ' array must have the same number of observations' ' as the endogenous array.') # Parameters self.parameters = MarkovSwitchingParams(self.k_regimes) k_transition = self.k_regimes - 1 if self.tvtp: k_transition *= self.k_tvtp self.parameters['regime_transition'] = [1] * k_transition # Internal model properties: default is steady-state initialization self._initialization = 'steady-state' self._initial_probabilities = None @property def k_params(self): """ (int) Number of parameters in the model """ return self.parameters.k_params def initialize_steady_state(self): """ Set initialization of regime probabilities to be steady-state values Notes ----- Only valid if there are not time-varying transition probabilities. """ if self.tvtp: raise ValueError('Cannot use steady-state initialization when' ' the regime transition matrix is time-varying.') self._initialization = 'steady-state' self._initial_probabilities = None def initialize_known(self, probabilities, tol=1e-8): """ Set initialization of regime probabilities to use known values """ self._initialization = 'known' probabilities = np.array(probabilities, ndmin=1) if not probabilities.shape == (self.k_regimes,): raise ValueError('Initial probabilities must be a vector of shape' ' (k_regimes,).') if not np.abs(np.sum(probabilities) - 1) < tol: raise ValueError('Initial probabilities vector must sum to one.') self._initial_probabilities = probabilities def initial_probabilities(self, params, regime_transition=None): """ Retrieve initial probabilities """ params = np.array(params, ndmin=1) if self._initialization == 'steady-state': if regime_transition is None: regime_transition = self.regime_transition_matrix(params) if regime_transition.ndim == 3: regime_transition = regime_transition[..., 0] m = regime_transition.shape[0] A = np.c_[(np.eye(m) - regime_transition).T, np.ones(m)].T try: probabilities = np.linalg.pinv(A)[:, -1] except np.linalg.LinAlgError: raise RuntimeError('Steady-state probabilities could not be' ' constructed.') elif self._initialization == 'known': probabilities = self._initial_probabilities else: raise RuntimeError('Invalid initialization method selected.') return probabilities def _regime_transition_matrix_tvtp(self, params, exog_tvtp=None): if exog_tvtp is None: exog_tvtp = self.exog_tvtp nobs = len(exog_tvtp) regime_transition_matrix = np.zeros( (self.k_regimes, self.k_regimes, nobs), dtype=np.promote_types(np.float64, params.dtype)) # Compute the predicted values from the regression for i in range(self.k_regimes): coeffs = params[self.parameters[i, 'regime_transition']] regime_transition_matrix[:-1, i, :] = np.dot( exog_tvtp, np.reshape(coeffs, (self.k_regimes-1, self.k_tvtp)).T).T # Perform the logistic transformation tmp = np.c_[np.zeros((nobs, self.k_regimes, 1)), regime_transition_matrix[:-1, :, :].T].T regime_transition_matrix[:-1, :, :] = np.exp( regime_transition_matrix[:-1, :, :] - logsumexp(tmp, axis=0)) # Compute the last column of the transition matrix regime_transition_matrix[-1, :, :] = ( 1 - np.sum(regime_transition_matrix[:-1, :, :], axis=0)) return regime_transition_matrix def regime_transition_matrix(self, params, exog_tvtp=None): """ Construct the left-stochastic transition matrix Notes ----- This matrix will either be shaped (k_regimes, k_regimes, 1) or if there are time-varying transition probabilities, it will be shaped (k_regimes, k_regimes, nobs). The (i,j)th element of this matrix is the probability of transitioning from regime j to regime i; thus the previous regime is represented in a column and the next regime is represented by a row. It is left-stochastic, meaning that each column sums to one (because it is certain that from one regime (j) you will transition to *some other regime*). """ params = np.array(params, ndmin=1) if not self.tvtp: regime_transition_matrix = np.zeros( (self.k_regimes, self.k_regimes, 1), dtype=np.promote_types(np.float64, params.dtype)) regime_transition_matrix[:-1, :, 0] = np.reshape( params[self.parameters['regime_transition']], (self.k_regimes-1, self.k_regimes)) regime_transition_matrix[-1, :, 0] = ( 1 - np.sum(regime_transition_matrix[:-1, :, 0], axis=0)) else: regime_transition_matrix = ( self._regime_transition_matrix_tvtp(params, exog_tvtp)) return regime_transition_matrix def predict(self, params, start=None, end=None, probabilities=None, conditional=False): """ In-sample prediction and out-of-sample forecasting Parameters ---------- params : array Parameters at which to form predictions start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. Default is the last observation in the sample. probabilities : string or array_like, optional Specifies the weighting probabilities used in constructing the prediction as a weighted average. If a string, can be 'predicted', 'filtered', or 'smoothed'. Otherwise can be an array of probabilities to use. Default is smoothed. conditional: boolean or int, optional Whether or not to return predictions conditional on current or past regimes. If False, returns a single vector of weighted predictions. If True or 1, returns predictions conditional on the current regime. For larger integers, returns predictions conditional on the current regime and some number of past regimes. Returns ------- predict : array Array of out of in-sample predictions and / or out-of-sample forecasts. """ if start is None: start = self._index[0] # Handle start, end start, end, out_of_sample, prediction_index = ( self._get_prediction_index(start, end)) if out_of_sample > 0: raise NotImplementedError # Perform in-sample prediction predict = self.predict_conditional(params) squeezed = np.squeeze(predict) # Check if we need to do weighted averaging if squeezed.ndim - 1 > conditional: # Determine in-sample weighting probabilities if probabilities is None or probabilities == 'smoothed': results = self.smooth(params, return_raw=True) probabilities = results.smoothed_joint_probabilities elif probabilities == 'filtered': results = self.filter(params, return_raw=True) probabilities = results.filtered_joint_probabilities elif probabilities == 'predicted': results = self.filter(params, return_raw=True) probabilities = results.predicted_joint_probabilities # Compute weighted average predict = (predict * probabilities) for i in range(predict.ndim - 1 - int(conditional)): predict = np.sum(predict, axis=-2) else: predict = squeezed return predict[start:end + out_of_sample + 1] def predict_conditional(self, params): """ In-sample prediction, conditional on the current, and possibly past, regimes Parameters ---------- params : array_like Array of parameters at which to perform prediction. Returns ------- predict : array_like Array of predictions conditional on current, and possibly past, regimes """ raise NotImplementedError def _conditional_likelihoods(self, params): """ Compute likelihoods conditional on the current period's regime (and the last self.order periods' regimes if self.order > 0). Must be implemented in subclasses. """ raise NotImplementedError def _filter(self, params, regime_transition=None): # Get the regime transition matrix if not provided if regime_transition is None: regime_transition = self.regime_transition_matrix(params) # Get the initial probabilities initial_probabilities = self.initial_probabilities( params, regime_transition) # Compute the conditional likelihoods conditional_likelihoods = self._conditional_likelihoods(params) # Apply the filter return ((regime_transition, initial_probabilities, conditional_likelihoods) + cy_hamilton_filter(initial_probabilities, regime_transition, conditional_likelihoods)) def filter(self, params, transformed=True, cov_type=None, cov_kwds=None, return_raw=False, results_class=None, results_wrapper_class=None): """ Apply the Hamilton filter Parameters ---------- params : array_like Array of parameters at which to perform filtering. transformed : boolean, optional Whether or not `params` is already transformed. Default is True. cov_type : str, optional See `fit` for a description of covariance matrix types for results object. cov_kwds : dict or None, optional See `fit` for a description of required keywords for alternative covariance estimators return_raw : boolean,optional Whether or not to return only the raw Hamilton filter output or a full results object. Default is to return a full results object. results_class : type, optional A results class to instantiate rather than `MarkovSwitchingResults`. Usually only used internally by subclasses. results_wrapper_class : type, optional A results wrapper class to instantiate rather than `MarkovSwitchingResults`. Usually only used internally by subclasses. Returns ------- MarkovSwitchingResults """ params = np.array(params, ndmin=1) if not transformed: params = self.transform_params(params) # Save the parameter names self.data.param_names = self.param_names # Get the result names = ['regime_transition', 'initial_probabilities', 'conditional_likelihoods', 'filtered_marginal_probabilities', 'predicted_joint_probabilities', 'joint_likelihoods', 'filtered_joint_probabilities'] result = HamiltonFilterResults( self, Bunch(**dict(zip(names, self._filter(params))))) # Wrap in a results object if not return_raw: result_kwargs = {} if cov_type is not None: result_kwargs['cov_type'] = cov_type if cov_kwds is not None: result_kwargs['cov_kwds'] = cov_kwds if results_class is None: results_class = MarkovSwitchingResults if results_wrapper_class is None: results_wrapper_class = MarkovSwitchingResultsWrapper result = results_wrapper_class( results_class(self, params, result, **result_kwargs) ) return result def _smooth(self, params, filtered_marginal_probabilities, predicted_joint_probabilities, filtered_joint_probabilities, regime_transition=None): # Get the regime transition matrix if regime_transition is None: regime_transition = self.regime_transition_matrix(params) # Apply the smoother return cy_kim_smoother(regime_transition, predicted_joint_probabilities, filtered_joint_probabilities) def smooth(self, params, transformed=True, cov_type=None, cov_kwds=None, return_raw=False, results_class=None, results_wrapper_class=None): """ Apply the Kim smoother and Hamilton filter Parameters ---------- params : array_like Array of parameters at which to perform filtering. transformed : boolean, optional Whether or not `params` is already transformed. Default is True. cov_type : str, optional See `fit` for a description of covariance matrix types for results object. cov_kwds : dict or None, optional See `fit` for a description of required keywords for alternative covariance estimators return_raw : boolean,optional Whether or not to return only the raw Hamilton filter output or a full results object. Default is to return a full results object. results_class : type, optional A results class to instantiate rather than `MarkovSwitchingResults`. Usually only used internally by subclasses. results_wrapper_class : type, optional A results wrapper class to instantiate rather than `MarkovSwitchingResults`. Usually only used internally by subclasses. Returns ------- MarkovSwitchingResults """ params = np.array(params, ndmin=1) if not transformed: params = self.transform_params(params) # Save the parameter names self.data.param_names = self.param_names # Hamilton filter names = ['regime_transition', 'initial_probabilities', 'conditional_likelihoods', 'filtered_marginal_probabilities', 'predicted_joint_probabilities', 'joint_likelihoods', 'filtered_joint_probabilities'] result = Bunch(**dict(zip(names, self._filter(params)))) # Kim smoother out = self._smooth(params, result.filtered_marginal_probabilities, result.predicted_joint_probabilities, result.filtered_joint_probabilities) result['smoothed_joint_probabilities'] = out[0] result['smoothed_marginal_probabilities'] = out[1] result = KimSmootherResults(self, result) # Wrap in a results object if not return_raw: result_kwargs = {} if cov_type is not None: result_kwargs['cov_type'] = cov_type if cov_kwds is not None: result_kwargs['cov_kwds'] = cov_kwds if results_class is None: results_class = MarkovSwitchingResults if results_wrapper_class is None: results_wrapper_class = MarkovSwitchingResultsWrapper result = results_wrapper_class( results_class(self, params, result, **result_kwargs) ) return result def loglikeobs(self, params, transformed=True): """ Loglikelihood evaluation for each period Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : boolean, optional Whether or not `params` is already transformed. Default is True. """ params = np.array(params, ndmin=1) if not transformed: params = self.transform_params(params) results = self._filter(params) return np.log(results[5]) def loglike(self, params, transformed=True): """ Loglikelihood evaluation Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : boolean, optional Whether or not `params` is already transformed. Default is True. """ return np.sum(self.loglikeobs(params, transformed)) def score(self, params, transformed=True): """ Compute the score function at params. Parameters ---------- params : array_like Array of parameters at which to evaluate the score function. transformed : boolean, optional Whether or not `params` is already transformed. Default is True. """ params = np.array(params, ndmin=1) return approx_fprime_cs(params, self.loglike, args=(transformed,)) def score_obs(self, params, transformed=True): """ Compute the score per observation, evaluated at params Parameters ---------- params : array_like Array of parameters at which to evaluate the score function. transformed : boolean, optional Whether or not `params` is already transformed. Default is True. """ params = np.array(params, ndmin=1) return approx_fprime_cs(params, self.loglikeobs, args=(transformed,)) def hessian(self, params, transformed=True): """ Hessian matrix of the likelihood function, evaluated at the given parameters Parameters ---------- params : array_like Array of parameters at which to evaluate the Hessian function. transformed : boolean, optional Whether or not `params` is already transformed. Default is True. """ params = np.array(params, ndmin=1) return approx_hess_cs(params, self.loglike) def fit(self, start_params=None, transformed=True, cov_type='approx', cov_kwds=None, method='bfgs', maxiter=100, full_output=1, disp=0, callback=None, return_params=False, em_iter=5, search_reps=0, search_iter=5, search_scale=1., **kwargs): """ Fits the model by maximum likelihood via Hamilton filter. Parameters ---------- start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. If None, the default is given by Model.start_params. transformed : boolean, optional Whether or not `start_params` is already transformed. Default is True. cov_type : str, optional The type of covariance matrix estimator to use. Can be one of 'approx', 'opg', 'robust', or 'none'. Default is 'approx'. cov_kwds : dict or None, optional Keywords for alternative covariance estimators method : str, optional The `method` determines which solver from `scipy.optimize` is used, and it can be chosen from among the following strings: - 'newton' for Newton-Raphson, 'nm' for Nelder-Mead - 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno (BFGS) - 'lbfgs' for limited-memory BFGS with optional box constraints - 'powell' for modified Powell's method - 'cg' for conjugate gradient - 'ncg' for Newton-conjugate gradient - 'basinhopping' for global basin-hopping solver The explicit arguments in `fit` are passed to the solver, with the exception of the basin-hopping solver. Each solver has several optional arguments that are not the same across solvers. See the notes section below (or scipy.optimize) for the available arguments and for the list of explicit arguments that the basin-hopping solver supports. maxiter : int, optional The maximum number of iterations to perform. full_output : boolean, optional Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : boolean, optional Set to True to print convergence messages. callback : callable callback(xk), optional Called after each iteration, as callback(xk), where xk is the current parameter vector. return_params : boolean, optional Whether or not to return only the array of maximizing parameters. Default is False. em_iter : int, optional Number of initial EM iteration steps used to improve starting parameters. search_reps : int, optional Number of randomly drawn search parameters that are drawn around `start_params` to try and improve starting parameters. Default is 0. search_iter : int, optional Number of initial EM iteration steps used to improve each of the search parameter repetitions. search_scale : float or array, optional. Scale of variates for random start parameter search. **kwargs Additional keyword arguments to pass to the optimizer. Returns ------- MarkovSwitchingResults """ if start_params is None: start_params = self.start_params transformed = True else: start_params = np.array(start_params, ndmin=1) # Random search for better start parameters if search_reps > 0: start_params = self._start_params_search( search_reps, start_params=start_params, transformed=transformed, em_iter=search_iter, scale=search_scale) transformed = True # Get better start params through EM algorithm if em_iter and not self.tvtp: start_params = self._fit_em(start_params, transformed=transformed, maxiter=em_iter, tolerance=0, return_params=True) transformed = True if transformed: start_params = self.untransform_params(start_params) # Maximum likelihood estimation by scoring fargs = (False,) mlefit = super(MarkovSwitching, self).fit(start_params, method=method, fargs=fargs, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, skip_hessian=True, **kwargs) # Just return the fitted parameters if requested if return_params: result = self.transform_params(mlefit.params) # Otherwise construct the results class if desired else: result = self.smooth(mlefit.params, transformed=False, cov_type=cov_type, cov_kwds=cov_kwds) result.mlefit = mlefit result.mle_retvals = mlefit.mle_retvals result.mle_settings = mlefit.mle_settings return result def _fit_em(self, start_params=None, transformed=True, cov_type='none', cov_kwds=None, maxiter=50, tolerance=1e-6, full_output=True, return_params=False, **kwargs): """ Fits the model using the Expectation-Maximization (EM) algorithm Parameters ---------- start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. If None, the default is given by `start_params`. transformed : boolean, optional Whether or not `start_params` is already transformed. Default is True. cov_type : str, optional The type of covariance matrix estimator to use. Can be one of 'approx', 'opg', 'robust', or 'none'. Default is 'none'. cov_kwds : dict or None, optional Keywords for alternative covariance estimators maxiter : int, optional The maximum number of iterations to perform. tolerance : float, optional The iteration stops when the difference between subsequent loglikelihood values is less than this tolerance. full_output : bool, optional Set to True to have all available output in the Results object's mle_retvals attribute. This includes all intermediate values for parameters and loglikelihood values return_params : boolean, optional Whether or not to return only the array of maximizing parameters. Default is False. **kwargs Additional keyword arguments to pass to the optimizer. Notes ----- This is a private method for finding good starting parameters for MLE by scoring. It has not been tested for a thoroughly correct EM implementation in all cases. It does not support TVTP transition probabilities. Returns ------- MarkovSwitchingResults """ if start_params is None: start_params = self.start_params transformed = True else: start_params = np.array(start_params, ndmin=1) if not transformed: start_params = self.transform_params(start_params) # Perform expectation-maximization llf = [] params = [start_params] i = 0 delta = 0 while i < maxiter and (i < 2 or (delta > tolerance)): out = self._em_iteration(params[-1]) llf.append(out[0].llf) params.append(out[1]) if i > 0: delta = 2 * (llf[-1] - llf[-2]) / np.abs((llf[-1] + llf[-2])) i += 1 # Just return the fitted parameters if requested if return_params: result = params[-1] # Otherwise construct the results class if desired else: result = self.filter(params[-1], transformed=True, cov_type=cov_type, cov_kwds=cov_kwds) # Save the output if full_output: em_retvals = Bunch(**{'params': np.array(params), 'llf': np.array(llf), 'iter': i}) em_settings = Bunch(**{'tolerance': tolerance, 'maxiter': maxiter}) else: em_retvals = None em_settings = None result.mle_retvals = em_retvals result.mle_settings = em_settings return result def _em_iteration(self, params0): """ EM iteration Notes ----- The EM iteration in this base class only performs the EM step for non-TVTP transition probabilities. """ params1 = np.zeros(params0.shape, dtype=np.promote_types(np.float64, params0.dtype)) # Smooth at the given parameters result = self.smooth(params0, transformed=True, return_raw=True) # The EM with TVTP is not yet supported, just return the previous # iteration parameters if self.tvtp: params1[self.parameters['regime_transition']] = ( params0[self.parameters['regime_transition']]) else: regime_transition = self._em_regime_transition(result) for i in range(self.k_regimes): params1[self.parameters[i, 'regime_transition']] = ( regime_transition[i]) return result, params1 def _em_regime_transition(self, result): """ EM step for regime transition probabilities """ # Marginalize the smoothed joint probabilites to just S_t, S_{t-1} | T tmp = result.smoothed_joint_probabilities for i in range(tmp.ndim - 3): tmp = np.sum(tmp, -2) smoothed_joint_probabilities = tmp # Transition parameters (recall we're not yet supporting TVTP here) k_transition = len(self.parameters[0, 'regime_transition']) regime_transition = np.zeros((self.k_regimes, k_transition)) for i in range(self.k_regimes): # S_{t_1} for j in range(self.k_regimes - 1): # S_t regime_transition[i, j] = ( np.sum(smoothed_joint_probabilities[j, i]) / np.sum(result.smoothed_marginal_probabilities[i])) # It may be the case that due to rounding error this estimates # transition probabilities that sum to greater than one. If so, # re-scale the probabilities and warn the user that something # is not quite right delta = np.sum(regime_transition[i]) - 1 if delta > 0: warnings.warn('Invalid regime transition probabilities' ' estimated in EM iteration; probabilities have' ' been re-scaled to continue estimation.', EstimationWarning) regime_transition[i] /= 1 + delta + 1e-6 return regime_transition def _start_params_search(self, reps, start_params=None, transformed=True, em_iter=5, scale=1.): """ Search for starting parameters as random permutations of a vector Parameters ---------- reps : int Number of random permutations to try. start_params : array, optional Starting parameter vector. If not given, class-level start parameters are used. transformed : boolean, optional If `start_params` was provided, whether or not those parameters are already transformed. Default is True. em_iter : int, optional Number of EM iterations to apply to each random permutation. scale : array or float, optional Scale of variates for random start parameter search. Can be given as an array of length equal to the number of parameters or as a single scalar. Notes ----- This is a private method for finding good starting parameters for MLE by scoring, where the defaults have been set heuristically. """ if start_params is None: start_params = self.start_params transformed = True else: start_params = np.array(start_params, ndmin=1) # Random search is over untransformed space if transformed: start_params = self.untransform_params(start_params) # Construct the standard deviations scale = np.array(scale, ndmin=1) if scale.size == 1: scale = np.ones(self.k_params) * scale if not scale.size == self.k_params: raise ValueError('Scale of variates for random start' ' parameter search must be given for each' ' parameter or as a single scalar.') # Construct the random variates variates = np.zeros((reps, self.k_params)) for i in range(self.k_params): variates[:, i] = scale[i] * np.random.uniform(-0.5, 0.5, size=reps) llf = self.loglike(start_params, transformed=False) params = start_params for i in range(reps): with warnings.catch_warnings(): warnings.simplefilter("ignore") try: proposed_params = self._fit_em( start_params + variates[i], transformed=False, maxiter=em_iter, return_params=True) proposed_llf = self.loglike(proposed_params) if proposed_llf > llf: llf = proposed_llf params = self.untransform_params(proposed_params) except: pass # Return transformed parameters return self.transform_params(params) @property def start_params(self): """ (array) Starting parameters for maximum likelihood estimation. """ params = np.zeros(self.k_params, dtype=np.float64) # Transition probabilities if self.tvtp: params[self.parameters['regime_transition']] = 0. else: params[self.parameters['regime_transition']] = 1. / self.k_regimes return params @property def param_names(self): """ (list of str) List of human readable parameter names (for parameters actually included in the model). """ param_names = np.zeros(self.k_params, dtype=object) # Transition probabilities if self.tvtp: # TODO add support for exog_tvtp_names param_names[self.parameters['regime_transition']] = [ 'p[%d->%d].tvtp%d' % (j, i, k) for i in range(self.k_regimes-1) for k in range(self.k_tvtp) for j in range(self.k_regimes) ] else: param_names[self.parameters['regime_transition']] = [ 'p[%d->%d]' % (j, i) for i in range(self.k_regimes-1) for j in range(self.k_regimes)] return param_names.tolist() def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evalation. Notes ----- In the base class, this only transforms the transition-probability- related parameters. """ constrained = np.array(unconstrained, copy=True) constrained = constrained.astype( np.promote_types(np.float64, constrained.dtype)) # Nothing to do for transition probabilities if TVTP if self.tvtp: constrained[self.parameters['regime_transition']] = ( unconstrained[self.parameters['regime_transition']]) # Otherwise do logistic transformation else: # Transition probabilities for i in range(self.k_regimes): tmp1 = unconstrained[self.parameters[i, 'regime_transition']] tmp2 = np.r_[0, tmp1] constrained[self.parameters[i, 'regime_transition']] = np.exp( tmp1 - logsumexp(tmp2)) # Do not do anything for the rest of the parameters return constrained def _untransform_logistic(self, unconstrained, constrained): """ Function to allow using a numerical root-finder to reverse the logistic transform. """ resid = np.zeros(unconstrained.shape, dtype=unconstrained.dtype) exp = np.exp(unconstrained) sum_exp = np.sum(exp) for i in range(len(unconstrained)): resid[i] = (unconstrained[i] - np.log(1 + sum_exp - exp[i]) + np.log(1 / constrained[i] - 1)) return resid def untransform_params(self, constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evalution, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. Notes ----- In the base class, this only untransforms the transition-probability- related parameters. """ unconstrained = np.array(constrained, copy=True) unconstrained = unconstrained.astype( np.promote_types(np.float64, unconstrained.dtype)) # Nothing to do for transition probabilities if TVTP if self.tvtp: unconstrained[self.parameters['regime_transition']] = ( constrained[self.parameters['regime_transition']]) # Otherwise reverse logistic transformation else: for i in range(self.k_regimes): s = self.parameters[i, 'regime_transition'] if self.k_regimes == 2: unconstrained[s] = -np.log(1. / constrained[s] - 1) else: from scipy.optimize import root out = root(self._untransform_logistic, np.zeros(unconstrained[s].shape, unconstrained.dtype), args=(constrained[s],)) if not out['success']: raise ValueError('Could not untransform parameters.') unconstrained[s] = out['x'] # Do not do anything for the rest of the parameters return unconstrained class HamiltonFilterResults(object): """ Results from applying the Hamilton filter to a state space model. Parameters ---------- model : Representation A Statespace representation Attributes ---------- nobs : int Number of observations. k_endog : int The dimension of the observation series. k_regimes : int The number of unobserved regimes. regime_transition : array The regime transition matrix. initialization : str Initialization method for regime probabilities. initial_probabilities : array Initial regime probabilities conditional_likelihoods : array The likelihood values at each time period, conditional on regime. predicted_joint_probabilities : array Predicted joint probabilities at each time period. filtered_marginal_probabilities : array Filtered marginal probabilities at each time period. filtered_joint_probabilities : array Filtered joint probabilities at each time period. joint_likelihoods : array The likelihood values at each time period. llf_obs : array The loglikelihood values at each time period. """ def __init__(self, model, result): self.model = model self.nobs = model.nobs self.order = model.order self.k_regimes = model.k_regimes attributes = ['regime_transition', 'initial_probabilities', 'conditional_likelihoods', 'predicted_joint_probabilities', 'filtered_marginal_probabilities', 'filtered_joint_probabilities', 'joint_likelihoods'] for name in attributes: setattr(self, name, getattr(result, name)) self.initialization = model._initialization self.llf_obs = np.log(self.joint_likelihoods) self.llf = np.sum(self.llf_obs) # Subset transition if necessary (e.g. for Markov autoregression) if self.regime_transition.shape[-1] > 1 and self.order > 0: self.regime_transition = self.regime_transition[..., self.order:] # Cache for predicted marginal probabilities self._predicted_marginal_probabilities = None @property def predicted_marginal_probabilities(self): if self._predicted_marginal_probabilities is None: self._predicted_marginal_probabilities = ( self.predicted_joint_probabilities) for i in range(self._predicted_marginal_probabilities.ndim - 2): self._predicted_marginal_probabilities = np.sum( self._predicted_marginal_probabilities, axis=-2) return self._predicted_marginal_probabilities @property def expected_durations(self): """ (array) Expected duration of a regime, possibly time-varying. """ return 1. / (1 - np.diagonal(self.regime_transition).squeeze()) class KimSmootherResults(HamiltonFilterResults): """ Results from applying the Kim smoother to a Markov switching model. Parameters ---------- model : MarkovSwitchingModel The model object. result : dict A dictionary containing two keys: 'smoothd_joint_probabilities' and 'smoothed_marginal_probabilities'. Attributes ---------- nobs : int Number of observations. k_endog : int The dimension of the observation series. k_states : int The dimension of the unobserved state process. """ def __init__(self, model, result): super(KimSmootherResults, self).__init__(model, result) attributes = ['smoothed_joint_probabilities', 'smoothed_marginal_probabilities'] for name in attributes: setattr(self, name, getattr(result, name)) class MarkovSwitchingResults(tsbase.TimeSeriesModelResults): r""" Class to hold results from fitting a Markov switching model Parameters ---------- model : MarkovSwitching instance The fitted model instance params : array Fitted parameters filter_results : HamiltonFilterResults or KimSmootherResults instance The underlying filter and, optionally, smoother output cov_type : string The type of covariance matrix estimator to use. Can be one of 'approx', 'opg', 'robust', or 'none'. Attributes ---------- model : Model instance A reference to the model that was fit. filter_results : HamiltonFilterResults or KimSmootherResults instance The underlying filter and, optionally, smoother output nobs : float The number of observations used to fit the model. params : array The parameters of the model. scale : float This is currently set to 1.0 and not used by the model or its results. """ use_t = False def __init__(self, model, params, results, cov_type='opg', cov_kwds=None, **kwargs): self.data = model.data tsbase.TimeSeriesModelResults.__init__(self, model, params, normalized_cov_params=None, scale=1.) # Save the filter / smoother output self.filter_results = results if isinstance(results, KimSmootherResults): self.smoother_results = results else: self.smoother_results = None # Dimensions self.nobs = model.nobs self.order = model.order self.k_regimes = model.k_regimes # Setup covariance matrix notes dictionary if not hasattr(self, 'cov_kwds'): self.cov_kwds = {} self.cov_type = cov_type # Setup the cache self._cache = resettable_cache() # Handle covariance matrix calculation if cov_kwds is None: cov_kwds = {} self._cov_approx_complex_step = ( cov_kwds.pop('approx_complex_step', True)) self._cov_approx_centered = cov_kwds.pop('approx_centered', False) try: self._rank = None self._get_robustcov_results(cov_type=cov_type, use_self=True, **cov_kwds) except np.linalg.LinAlgError: self._rank = 0 k_params = len(self.params) self.cov_params_default = np.zeros((k_params, k_params)) * np.nan self.cov_kwds['cov_type'] = ( 'Covariance matrix could not be calculated: singular.' ' information matrix.') # Copy over arrays attributes = ['regime_transition', 'initial_probabilities', 'conditional_likelihoods', 'predicted_marginal_probabilities', 'predicted_joint_probabilities', 'filtered_marginal_probabilities', 'filtered_joint_probabilities', 'joint_likelihoods', 'expected_durations'] for name in attributes: setattr(self, name, getattr(self.filter_results, name)) attributes = ['smoothed_joint_probabilities', 'smoothed_marginal_probabilities'] for name in attributes: if self.smoother_results is not None: setattr(self, name, getattr(self.smoother_results, name)) else: setattr(self, name, None) # Reshape some arrays to long-format self.predicted_marginal_probabilities = ( self.predicted_marginal_probabilities.T) self.filtered_marginal_probabilities = ( self.filtered_marginal_probabilities.T) if self.smoother_results is not None: self.smoothed_marginal_probabilities = ( self.smoothed_marginal_probabilities.T) # Make into Pandas arrays if using Pandas data if isinstance(self.data, PandasData): index = self.data.row_labels if self.expected_durations.ndim > 1: self.expected_durations = pd.DataFrame( self.expected_durations, index=index) self.predicted_marginal_probabilities = pd.DataFrame( self.predicted_marginal_probabilities, index=index) self.filtered_marginal_probabilities = pd.DataFrame( self.filtered_marginal_probabilities, index=index) if self.smoother_results is not None: self.smoothed_marginal_probabilities = pd.DataFrame( self.smoothed_marginal_probabilities, index=index) def _get_robustcov_results(self, cov_type='opg', **kwargs): use_self = kwargs.pop('use_self', False) if use_self: res = self else: raise NotImplementedError res = self.__class__( self.model, self.params, normalized_cov_params=self.normalized_cov_params, scale=self.scale) # Set the new covariance type res.cov_type = cov_type res.cov_kwds = {} # Calculate the new covariance matrix k_params = len(self.params) if k_params == 0: res.cov_params_default = np.zeros((0, 0)) res._rank = 0 res.cov_kwds['description'] = 'No parameters estimated.' elif cov_type == 'none': res.cov_params_default = np.zeros((k_params, k_params)) * np.nan res._rank = np.nan res.cov_kwds['description'] = 'Covariance matrix not calculated.' elif self.cov_type == 'approx': res.cov_params_default = res.cov_params_approx res.cov_kwds['description'] = ( 'Covariance matrix calculated using numerical' ' differentiation.') elif self.cov_type == 'opg': res.cov_params_default = res.cov_params_opg res.cov_kwds['description'] = ( 'Covariance matrix calculated using the outer product of' ' gradients.' ) elif self.cov_type == 'robust': res.cov_params_default = res.cov_params_robust res.cov_kwds['description'] = ( 'Quasi-maximum likelihood covariance matrix used for' ' robustness to some misspecifications; calculated using' ' numerical differentiation.') else: raise NotImplementedError('Invalid covariance matrix type.') return res @cache_readonly def aic(self): """ (float) Akaike Information Criterion """ # return -2*self.llf + 2*self.params.shape[0] return aic(self.llf, self.nobs, self.params.shape[0]) @cache_readonly def bic(self): """ (float) Bayes Information Criterion """ # return -2*self.llf + self.params.shape[0]*np.log(self.nobs) return bic(self.llf, self.nobs, self.params.shape[0]) @cache_readonly def cov_params_approx(self): """ (array) The variance / covariance matrix. Computed using the numerical Hessian approximated by complex step or finite differences methods. """ evaluated_hessian = self.model.hessian(self.params, transformed=True) neg_cov, singular_values = pinv_extended(evaluated_hessian) if self._rank is None: self._rank = np.linalg.matrix_rank(np.diag(singular_values)) return -neg_cov @cache_readonly def cov_params_opg(self): """ (array) The variance / covariance matrix. Computed using the outer product of gradients method. """ score_obs = self.model.score_obs(self.params, transformed=True).T cov_params, singular_values = pinv_extended( np.inner(score_obs, score_obs)) if self._rank is None: self._rank = np.linalg.matrix_rank(np.diag(singular_values)) return cov_params @cache_readonly def cov_params_robust(self): """ (array) The QMLE variance / covariance matrix. Computed using the numerical Hessian as the evaluated hessian. """ cov_opg = self.cov_params_opg evaluated_hessian = self.model.hessian(self.params, transformed=True) cov_params, singular_values = pinv_extended( np.dot(np.dot(evaluated_hessian, cov_opg), evaluated_hessian) ) if self._rank is None: self._rank = np.linalg.matrix_rank(np.diag(singular_values)) return cov_params @cache_readonly def fittedvalues(self): """ (array) The predicted values of the model. An (nobs x k_endog) array. """ return self.model.predict(self.params) @cache_readonly def hqic(self): """ (float) Hannan-Quinn Information Criterion """ # return -2*self.llf + 2*np.log(np.log(self.nobs))*self.params.shape[0] return hqic(self.llf, self.nobs, self.params.shape[0]) @cache_readonly def llf_obs(self): """ (float) The value of the log-likelihood function evaluated at `params`. """ return self.model.loglikeobs(self.params) @cache_readonly def llf(self): """ (float) The value of the log-likelihood function evaluated at `params`. """ return self.model.loglike(self.params) @cache_readonly def resid(self): """ (array) The model residuals. An (nobs x k_endog) array. """ return self.model.endog - self.fittedvalues def predict(self, start=None, end=None, probabilities=None, conditional=False): """ In-sample prediction and out-of-sample forecasting Parameters ---------- start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. Default is the last observation in the sample. probabilities : string or array_like, optional Specifies the weighting probabilities used in constructing the prediction as a weighted average. If a string, can be 'predicted', 'filtered', or 'smoothed'. Otherwise can be an array of probabilities to use. Default is smoothed. conditional: boolean or int, optional Whether or not to return predictions conditional on current or past regimes. If False, returns a single vector of weighted predictions. If True or 1, returns predictions conditional on the current regime. For larger integers, returns predictions conditional on the current regime and some number of past regimes. Returns ------- predict : array Array of out of in-sample predictions and / or out-of-sample forecasts. An (npredict x k_endog) array. """ return self.model.predict(self.params, start=start, end=end, probabilities=probabilities, conditional=conditional) def forecast(self, steps=1, **kwargs): """ Out-of-sample forecasts Parameters ---------- steps : int, str, or datetime, optional If an integer, the number of steps to forecast from the end of the sample. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, steps must be an integer. Default **kwargs Additional arguments may required for forecasting beyond the end of the sample. See `FilterResults.predict` for more details. Returns ------- forecast : array Array of out of sample forecasts. A (steps x k_endog) array. """ raise NotImplementedError def summary(self, alpha=.05, start=None, title=None, model_name=None, display_params=True): """ Summarize the Model Parameters ---------- alpha : float, optional Significance level for the confidence intervals. Default is 0.05. start : int, optional Integer of the start observation. Default is 0. title : str, optional The title of the summary table. model_name : string The name of the model used. Default is to use model class name. display_params : boolean, optional Whether or not to display tables of estimated parameters. Default is True. Usually only used internally. Returns ------- summary : Summary instance This holds the summary table and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary """ from statsmodels.iolib.summary import Summary # Model specification results model = self.model if title is None: title = 'Markov Switching Model Results' if start is None: start = 0 if self.data.dates is not None: dates = self.data.dates d = dates[start] sample = ['%02d-%02d-%02d' % (d.month, d.day, d.year)] d = dates[-1] sample += ['- ' + '%02d-%02d-%02d' % (d.month, d.day, d.year)] else: sample = [str(start), ' - ' + str(self.model.nobs)] # Standardize the model name as a list of str if model_name is None: model_name = model.__class__.__name__ # Create the tables if not isinstance(model_name, list): model_name = [model_name] top_left = [('Dep. Variable:', None)] top_left.append(('Model:', [model_name[0]])) for i in range(1, len(model_name)): top_left.append(('', ['+ ' + model_name[i]])) top_left += [ ('Date:', None), ('Time:', None), ('Sample:', [sample[0]]), ('', [sample[1]]) ] top_right = [ ('No. Observations:', [self.model.nobs]), ('Log Likelihood', ["%#5.3f" % self.llf]), ('AIC', ["%#5.3f" % self.aic]), ('BIC', ["%#5.3f" % self.bic]), ('HQIC', ["%#5.3f" % self.hqic]) ] if hasattr(self, 'cov_type'): top_left.append(('Covariance Type:', [self.cov_type])) summary = Summary() summary.add_table_2cols(self, gleft=top_left, gright=top_right, title=title) # Make parameters tables for each regime from statsmodels.iolib.summary import summary_params import re def make_table(self, mask, title, strip_end=True): res = (self, self.params[mask], self.bse[mask], self.tvalues[mask], self.pvalues[mask], self.conf_int(alpha)[mask]) param_names = [ re.sub('\[\d+\]$', '', name) for name in np.array(self.data.param_names)[mask].tolist() ] return summary_params(res, yname=None, xname=param_names, alpha=alpha, use_t=False, title=title) params = model.parameters regime_masks = [[] for i in range(model.k_regimes)] other_masks = {} for key, switching in params.switching.items(): k_params = len(switching) if key == 'regime_transition': continue other_masks[key] = [] for i in range(k_params): if switching[i]: for j in range(self.k_regimes): regime_masks[j].append(params[j, key][i]) else: other_masks[key].append(params[0, key][i]) for i in range(self.k_regimes): mask = regime_masks[i] if len(mask) > 0: table = make_table(self, mask, 'Regime %d parameters' % i) summary.tables.append(table) mask = [] for key, _mask in other_masks.items(): mask.extend(_mask) if len(mask) > 0: table = make_table(self, mask, 'Non-switching parameters') summary.tables.append(table) # Transition parameters mask = params['regime_transition'] table = make_table(self, mask, 'Regime transition parameters') summary.tables.append(table) # Add warnings/notes, added to text format only etext = [] if hasattr(self, 'cov_type') and 'description' in self.cov_kwds: etext.append(self.cov_kwds['description']) if self._rank < len(self.params): etext.append("Covariance matrix is singular or near-singular," " with condition number %6.3g. Standard errors may be" " unstable." % np.linalg.cond(self.cov_params())) if etext: etext = ["[{0}] {1}".format(i + 1, text) for i, text in enumerate(etext)] etext.insert(0, "Warnings:") summary.add_extra_txt(etext) return summary class MarkovSwitchingResultsWrapper(wrap.ResultsWrapper): _attrs = { 'cov_params_approx': 'cov', 'cov_params_default': 'cov', 'cov_params_opg': 'cov', 'cov_params_robust': 'cov', } _wrap_attrs = wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_attrs, _attrs) _methods = { 'forecast': 'dates', } _wrap_methods = wrap.union_dicts( tsbase.TimeSeriesResultsWrapper._wrap_methods, _methods) wrap.populate_wrapper(MarkovSwitchingResultsWrapper, MarkovSwitchingResults)
38.530131
79
0.607725
7cd77f5505bcc4d14b703fb11fb347a93ad28fc4
1,544
py
Python
ejabberd/tests/namecoding.py
ismailqau/xid
e084f04b23c17ad0afc073f1d5ed72d236109832
[ "MIT" ]
9
2019-02-14T15:21:55.000Z
2021-11-09T17:06:58.000Z
ejabberd/tests/namecoding.py
ismailqau/xid
e084f04b23c17ad0afc073f1d5ed72d236109832
[ "MIT" ]
5
2019-02-27T16:10:37.000Z
2020-04-19T10:07:21.000Z
ejabberd/tests/namecoding.py
ismailqau/xid
e084f04b23c17ad0afc073f1d5ed72d236109832
[ "MIT" ]
5
2020-05-01T13:47:02.000Z
2022-02-17T18:08:45.000Z
#!/usr/bin/env python3 # coding=utf-8 # Copyright (C) 2019-2020 The Xaya developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from xidauth import EjabberdXidAuth import logging import sys import unittest class NameCodingTest (unittest.TestCase): def setUp (self): self.auth = EjabberdXidAuth ({}, "http://localhost", logging.StreamHandler (sys.stderr)) def testSimpleNames (self): simpleNames = ["domob", "0", "foo42bar", "xxx"] for n in simpleNames: self.assertEqual (self.auth.decodeXmppName (n), n) def testEncodedNames (self): names = { "x-": "", "x-782d666f6f": "x-foo", "x-c3a4c3b6c3bc": u"äöü", "x-466f6f20426172": "Foo Bar", } for enc, nm in names.items (): self.assertEqual (self.auth.decodeXmppName (enc), nm) def testInvalidNames (self): invalid = [ # Empty string is invalid (should be hex-encoded). "", # Invalid characters for simple names. "domob foobar", "Abc", "abc.def", "no-dash", "dom\nob", u"äöü", # Invalid hex characters (including upper case for otherwise valid name). "x-x", "x-2D", "x-\nabc", # Hex-encoded name that is actually simple. "x-616263", # Hex-encoded name with an odd number of characters. "x-a", ] for n in invalid: self.assertEqual (self.auth.decodeXmppName (n), None) if __name__ == "__main__": unittest.main ()
26.169492
79
0.630181
7e55416b86182567f1c0e9a6a9eb0d4bc9ce326b
2,182
py
Python
zolware_data/models/datasource.py
zolware/zolware_data
5d3e5d654e1282c04225e07ec7897a1d54fe7bb5
[ "MIT" ]
null
null
null
zolware_data/models/datasource.py
zolware/zolware_data
5d3e5d654e1282c04225e07ec7897a1d54fe7bb5
[ "MIT" ]
null
null
null
zolware_data/models/datasource.py
zolware/zolware_data
5d3e5d654e1282c04225e07ec7897a1d54fe7bb5
[ "MIT" ]
null
null
null
import requests import json from bson.objectid import ObjectId from zolware_data import signal_manager from zolware_data.models import signal from zolware_data import config class Datasource: def __init__(self, user, datasource=None): self.signals = [] self.user = user if datasource is not None: self.id = datasource["_id"] self.name = datasource["name"] self.description = datasource["description"] self.dt = datasource["dt"] self.file_line_cursor = datasource["file_line_cursor"] self.file_data_col_names = datasource["file_data_col_names"] self.file_uri = datasource["file_uri"] self.data_source = datasource["data_source"] self.status = datasource["status"] def fetch(self, user, datasource_id): headers = self.__construct_headers__() url = config.api_endpoint + '/datasources/' + datasource_id data = {} res = requests.get(url, data=data, headers=headers) if res.ok: self.datasource = res.json()['datasource'] else: self.datasource = None def get_signals(self): signal_array = [] for sig in self.datasource["signals"]: signalobject = Datasource.get_signal(sig) signal_array.append(signalobject) return signal_array @staticmethod def get_signal(signal_id): signal_id = ObjectId(signal_id) signalobject = signal.Signal(signal_id) return signalobject def populate_signals(self): headers = self.__construct_headers__() url = config.api_endpoint + '/datasources/' + self.id + '/signals' data = {} res = requests.get(url, data=data, headers=headers) if res.ok: signals = res.json()['signals'] for sig in signals: self.signals.append(signal.Signal(sig)) else: print(res.status_code) return [] def __construct_headers__(self): return { "content-type": "application/json", "Authorization": "Bearer " + self.user.token }
32.567164
74
0.609533
8b7101aefe16d5a9593e362e0821775afeb917bf
4,855
py
Python
code/apps/Managed Software Center/Managed Software Center/MSCBadgedTemplateImage.py
dannooooo/munki
3c7cc64a0659e2d5def8dd455a89dd3edf67cfd9
[ "Apache-2.0" ]
1
2018-07-25T21:29:43.000Z
2018-07-25T21:29:43.000Z
code/apps/Managed Software Center/Managed Software Center/MSCBadgedTemplateImage.py
bruienne/munki
55936d96ed2f45ede1469873836d61596486020a
[ "Apache-2.0" ]
null
null
null
code/apps/Managed Software Center/Managed Software Center/MSCBadgedTemplateImage.py
bruienne/munki
55936d96ed2f45ede1469873836d61596486020a
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 # # MSCBadgedTemplateImage.py # Managed Software Center # # Copyright 2014-2016 Greg Neagle. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from Foundation import * from AppKit import * class MSCBadgedTemplateImage(NSImage): '''Subclass to handle our updates template image with a badge showing the count of available updates''' @classmethod def imageNamed_withCount_(self, name, count): '''Returns a template image with a count badge composited in the upper-right corner of the image''' # some magic values NSBoldFontMask = 2 badgeFontSize = 11 badgeFontFamilyName = u'Helvetica' rrRadius = 7.0 if count == 0: # no badge if there are no updates return super(MSCBadgedTemplateImage, self).imageNamed_(name) # build badge string and get its size badgeString = NSString.stringWithString_(unicode(count)) badgeFont = NSFontManager.sharedFontManager().fontWithFamily_traits_weight_size_( badgeFontFamilyName, NSBoldFontMask, 0, badgeFontSize) stringAttributes = { NSFontAttributeName: badgeFont } textSize = badgeString.sizeWithAttributes_(stringAttributes) # use textSize as the basis for the badge outline rect badgeOutlineHeight = textSize.height badgeOutlineWidth = textSize.width + rrRadius if textSize.height > badgeOutlineWidth: badgeOutlineWidth = badgeOutlineHeight # get our base image baseImage = super(MSCBadgedTemplateImage, self).imageNamed_(name).copy() # size our composite image large enough to include the badge compositeImageSize = NSMakeSize(baseImage.size().width + badgeOutlineHeight, baseImage.size().height + badgeOutlineHeight) # layout the rect for the text badgeStringRect = NSMakeRect(compositeImageSize.width - textSize.width, compositeImageSize.height - textSize.height, textSize.width, textSize.height) # layout the rect for the badge outline badgeOutlineRect = NSMakeRect(compositeImageSize.width - badgeOutlineWidth, compositeImageSize.height - badgeOutlineHeight, badgeOutlineWidth, badgeOutlineHeight) # shift the rects around to look better. These are magic numbers. badgeStringRect = NSOffsetRect(badgeStringRect, -4.75, -2) badgeOutlineRect = NSOffsetRect(badgeOutlineRect, -1, -5) # our erase rect needs to be a little bigger than the badge itself badgeEraseRect = NSInsetRect(badgeOutlineRect, -1.5, -1.5) # build paths for the badge outline and the badge erase mask badgeOutline = NSBezierPath.bezierPathWithRoundedRect_xRadius_yRadius_( badgeOutlineRect, rrRadius, rrRadius) badgeEraseMask = NSBezierPath.bezierPathWithRoundedRect_xRadius_yRadius_( badgeEraseRect, rrRadius, rrRadius) # start drawing our composite image compositeImage = NSImage.alloc().initWithSize_(compositeImageSize) compositeImage.lockFocus() # draw base image baseImageOrigin = NSMakePoint(badgeOutlineHeight/2, badgeOutlineHeight/2) baseImage.drawAtPoint_fromRect_operation_fraction_( baseImageOrigin, NSZeroRect, NSCompositeCopy, 1.0) # erase the part that the badge will be drawn over NSGraphicsContext.saveGraphicsState() NSGraphicsContext.currentContext().setCompositingOperation_(NSCompositeCopy) NSColor.blackColor().colorWithAlphaComponent_(0.0).setFill() badgeEraseMask.fill() NSGraphicsContext.restoreGraphicsState() # draw badge outline badgeOutline.stroke() # draw count string badgeString.drawWithRect_options_attributes_(badgeStringRect, 0, stringAttributes) # all done drawing! compositeImage.unlockFocus() compositeImage.setTemplate_(True) return compositeImage
44.541284
90
0.657673
6d3c24f99d3cca6ed0c708c1fd6d820f29a031cf
2,171
py
Python
architecture/face/dcgan.py
kad99kev/FGTD-Streamlit
0dc8d2894eadf2260d5e5dcf10ead12ff62f6cd8
[ "MIT" ]
null
null
null
architecture/face/dcgan.py
kad99kev/FGTD-Streamlit
0dc8d2894eadf2260d5e5dcf10ead12ff62f6cd8
[ "MIT" ]
null
null
null
architecture/face/dcgan.py
kad99kev/FGTD-Streamlit
0dc8d2894eadf2260d5e5dcf10ead12ff62f6cd8
[ "MIT" ]
null
null
null
import torch import torch.nn as nn class DCGAN(nn.Module): def __init__( self, noise_size=100, feature_size=128, num_channels=3, embedding_size=768, reduced_dim_size=256, ): super(DCGAN, self).__init__() self.reduced_dim_size = reduced_dim_size self.projection = nn.Sequential( nn.Linear(in_features=embedding_size, out_features=reduced_dim_size), nn.BatchNorm1d(num_features=reduced_dim_size), nn.LeakyReLU(negative_slope=0.2, inplace=True), ) self.layer = nn.Sequential( nn.ConvTranspose2d( noise_size + reduced_dim_size, feature_size * 8, 4, 1, 0, bias=False ), nn.BatchNorm2d(feature_size * 8), nn.LeakyReLU(negative_slope=0.2, inplace=True), # state size (ngf*4) x 4 x 4 nn.ConvTranspose2d(feature_size * 8, feature_size * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(feature_size * 4), nn.ReLU(True), # state size. (ngf*4) x 8 x 8 nn.ConvTranspose2d(feature_size * 4, feature_size * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(feature_size * 2), nn.ReLU(True), # state size. (ngf*2) x 16 x 16 nn.ConvTranspose2d(feature_size * 2, feature_size, 4, 2, 1, bias=False), nn.BatchNorm2d(feature_size), nn.ReLU(True), # state size. (ngf*2) x 32 x 32 nn.ConvTranspose2d(feature_size, feature_size, 4, 2, 1, bias=False), nn.BatchNorm2d(feature_size), nn.ReLU(True), # state size. (ngf) x 64 x 64 nn.ConvTranspose2d(feature_size, num_channels, 4, 2, 1, bias=False), nn.Tanh(), ) self.optimizer = torch.optim.Adam( self.parameters(), lr=0.0002, betas=(0.5, 0.5) ) def forward(self, noise, text_embeddings): encoded_text = self.projection(text_embeddings) concat_input = torch.cat([noise, encoded_text], dim=1).unsqueeze(2).unsqueeze(2) output = self.layer(concat_input) return output
37.431034
88
0.578075
956052869a0dfcbc18fed41bc11fed1b53dae2a6
4,645
py
Python
tests/github/python_native_tf.py
brandon-edwards/openfl
9e0521252253eab09571dc2be40f46bfeaf9746a
[ "Apache-2.0" ]
297
2021-01-13T08:49:35.000Z
2022-03-31T15:06:43.000Z
tests/github/python_native_tf.py
brandon-edwards/openfl
9e0521252253eab09571dc2be40f46bfeaf9746a
[ "Apache-2.0" ]
265
2021-02-02T09:57:33.000Z
2022-03-30T22:51:55.000Z
tests/github/python_native_tf.py
brandon-edwards/openfl
9e0521252253eab09571dc2be40f46bfeaf9746a
[ "Apache-2.0" ]
81
2021-01-18T07:52:36.000Z
2022-03-26T18:55:54.000Z
# Copyright (C) 2020-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 """Python native tests.""" import numpy as np import openfl.native as fx def one_hot(labels, classes): """ One Hot encode a vector. Args: labels (list): List of labels to onehot encode classes (int): Total number of categorical classes Returns: np.array: Matrix of one-hot encoded labels """ return np.eye(classes)[labels] def build_model(input_shape, num_classes, conv_kernel_size=(4, 4), conv_strides=(2, 2), conv1_channels_out=16, conv2_channels_out=32, final_dense_inputsize=100, **kwargs): """ Define the model architecture. Args: input_shape (numpy.ndarray): The shape of the data num_classes (int): The number of classes of the dataset Returns: tensorflow.python.keras.engine.sequential.Sequential: The model defined in Keras """ import tensorflow as tf # NOQA import tensorflow.keras as ke # NOQA from tensorflow.keras import Sequential # NOQA from tensorflow.keras.layers import Conv2D, Flatten, Dense # NOQA config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True config.intra_op_parallelism_threads = 112 config.inter_op_parallelism_threads = 1 sess = tf.compat.v1.Session(config=config) model = Sequential() model.add(Conv2D(conv1_channels_out, kernel_size=conv_kernel_size, strides=conv_strides, activation='relu', input_shape=input_shape)) model.add(Conv2D(conv2_channels_out, kernel_size=conv_kernel_size, strides=conv_strides, activation='relu')) model.add(Flatten()) model.add(Dense(final_dense_inputsize, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=ke.losses.categorical_crossentropy, optimizer=ke.optimizers.Adam(), metrics=['accuracy']) # initialize the optimizer variables opt_vars = model.optimizer.variables() for v in opt_vars: v.initializer.run(session=sess) return model if __name__ == '__main__': fx.init('keras_cnn_mnist') from openfl.federated import FederatedDataSet from openfl.federated import FederatedModel from tensorflow.python.keras.utils.data_utils import get_file origin_folder = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/' path = get_file('mnist.npz', origin=origin_folder + 'mnist.npz', file_hash='731c5ac602752760c8e48fbffcf8c3b850d9dc2a2aedcf2cc48468fc17b673d1') with np.load(path) as f: # get all of mnist X_train = f['x_train'] y_train = f['y_train'] X_valid = f['x_test'] y_valid = f['y_test'] img_rows, img_cols = 28, 28 X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1) X_valid = X_valid.reshape(X_valid.shape[0], img_rows, img_cols, 1) X_train = X_train.astype('float32') X_valid = X_valid.astype('float32') X_train /= 255 X_valid /= 255 classes = 10 y_train = one_hot(y_train, classes) y_valid = one_hot(y_valid, classes) feature_shape = X_train.shape[1] fl_data = FederatedDataSet(X_train, y_train, X_valid, y_valid, batch_size=32, num_classes=classes) fl_model = FederatedModel(build_model=build_model, data_loader=fl_data) collaborator_models = fl_model.setup(num_collaborators=2) collaborators = {'one': collaborator_models[0], 'two': collaborator_models[1]} print(f'Original training data size: {len(X_train)}') print(f'Original validation data size: {len(X_valid)}\n') # Collaborator one's data print(f'Collaborator one\'s training data size: ' f'{len(collaborator_models[0].data_loader.X_train)}') print(f'Collaborator one\'s validation data size: ' f'{len(collaborator_models[0].data_loader.X_valid)}\n') # Collaborator two's data print(f'Collaborator two\'s training data size: ' f'{len(collaborator_models[1].data_loader.X_train)}') print(f'Collaborator two\'s validation data size: ' f'{len(collaborator_models[1].data_loader.X_valid)}\n') print(fx.get_plan()) final_fl_model = fx.run_experiment(collaborators, {'aggregator.settings.rounds_to_train': 5}) final_fl_model.save_native('final_pytorch_model.h5')
32.943262
97
0.654252
46741dc98d35375c8a1d01fc15147ebfd6d18d27
3,948
py
Python
high_performance_pyspark/bad_pyspark.py
fouradam/high-performance-spark-examples
877234d402b7a78c312c481985f57fb285a5ac8b
[ "Apache-2.0" ]
504
2015-10-06T16:42:42.000Z
2022-02-01T02:56:52.000Z
high_performance_pyspark/bad_pyspark.py
pengshuangbao/high-performance-spark-examples
aa835d8cad02befe440a24f802eac5469bb40bbb
[ "Apache-2.0" ]
53
2015-12-21T21:58:16.000Z
2021-04-02T14:05:37.000Z
high_performance_pyspark/bad_pyspark.py
pengshuangbao/high-performance-spark-examples
aa835d8cad02befe440a24f802eac5469bb40bbb
[ "Apache-2.0" ]
232
2015-10-06T04:23:13.000Z
2022-03-25T16:48:41.000Z
# This script triggers a number of different PySpark errors from pyspark import * from pyspark.sql.session import SparkSession global sc def nonExistentInput(sc): """ Attempt to load non existent input >>> nonExistentInput(sc) Traceback (most recent call last): ... Py4JJavaError:... """ # tag::nonExistent[] failedRdd = sc.textFile("file:///doesnotexist") failedRdd.count() # end::nonExistent[] def throwOuter(sc): """ Attempt to load non existant input >>> throwOuter(sc) Traceback (most recent call last): ... Py4JJavaError:... """ # tag::throwOuter[] data = sc.parallelize(range(10)) transform1 = data.map(lambda x: x + 1) transform2 = transform1.map(lambda x: x / 0) transform2.count() # end::throwOuter[] def throwInner(sc): """ Attempt to load non existant input >>> throwInner(sc) Traceback (most recent call last): ... Py4JJavaError:... """ # tag::throwInner[] data = sc.parallelize(range(10)) transform1 = data.map(lambda x: x / 0) transform2 = transform1.map(lambda x: x + 1) transform2.count() # end::throwInner[] # tag::rewrite[] def add1(x): """ Add 1 >>> add1(2) 3 """ return x + 1 def divZero(x): """ Divide by zero (cause an error) >>> divZero(2) Traceback (most recent call last): ... ZeroDivisionError: integer division or modulo by zero """ return x / 0 def throwOuter2(sc): """ Attempt to load non existant input >>> throwOuter2(sc) Traceback (most recent call last): ... Py4JJavaError:... """ data = sc.parallelize(range(10)) transform1 = data.map(add1) transform2 = transform1.map(divZero) transform2.count() def throwInner2(sc): """ Attempt to load non existant input >>> throwInner2(sc) Traceback (most recent call last): ... Py4JJavaError:... """ data = sc.parallelize(range(10)) transform1 = data.map(divZero) transform2 = transform1.map(add1) transform2.count() # end::rewrite[] def throwInner3(sc): """ Attempt to load non existant input >>> throwInner3(sc) Reject 10 """ data = sc.parallelize(range(10)) rejectedCount = sc.accumulator(0) def loggedDivZero(x): import logging try: return [x / 0] except Exception as e: rejectedCount.add(1) logging.warning("Error found " + repr(e)) return [] transform1 = data.flatMap(loggedDivZero) transform2 = transform1.map(add1) transform2.count() print("Reject " + str(rejectedCount.value)) def runOutOfMemory(sc): """ Run out of memory on the workers. In standalone modes results in a memory error, but in YARN may trigger YARN container overhead errors. >>> runOutOfMemory(sc) Traceback (most recent call last): ... Py4JJavaError:... """ # tag::worker_oom[] data = sc.parallelize(range(10)) def generate_too_much(itr): return range(10000000000000) itr = data.flatMap(generate_too_much) itr.count() # end::worker_oom[] def _setupTest(): globs = globals() spark = SparkSession.builder \ .master("local[4]") \ .getOrCreate() sc = spark._sc globs['sc'] = sc return globs def _test(): """ Run the tests. Note this will print a lot of error message to stderr since we don't capture the JVM sub process stdout/stderr for doctests. """ import doctest globs = setupTest() (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) import sys if __name__ == "__main__": _test() # Hack to support running in nose elif sys.stdout != sys.__stdout__: _setupTest()
23.927273
100
0.604357
0bf3ba75b24671016890cb5f061ad313534cc798
26,392
py
Python
lib/translations.py
alindt/wttr.in
f8e7aef267c720dec0303c8e31091815f8e51a40
[ "Apache-2.0" ]
null
null
null
lib/translations.py
alindt/wttr.in
f8e7aef267c720dec0303c8e31091815f8e51a40
[ "Apache-2.0" ]
null
null
null
lib/translations.py
alindt/wttr.in
f8e7aef267c720dec0303c8e31091815f8e51a40
[ "Apache-2.0" ]
null
null
null
# vim: fileencoding=utf-8 """ Translation of almost everything. """ FULL_TRANSLATION = [ "af", "da", "de", "fr", "fa", "id", "it", "nb", "nl", "pl", "ru", ] PARTIAL_TRANSLATION = [ "az", "be", "bg", "bs", "ca", "cy", "cs", "el", "eo", "es", "et", "fi", "hi", "hr", "hu", "hy", "is", "ja", "jv", "ka", "kk", "ko", "ky", "lt", "lv", "mk", "ml", "nl", "nn", "pt", "ro", "sk", "sl", "sr", "sr-lat", "sv", "sw", "th", "tr", "te", "uk", "uz", "vi", "zh", "zu", "he", ] PROXY_LANGS = [ 'az', 'be', 'bs', 'ca', 'cy', 'eo', 'fa', 'he', 'hr', 'hy', 'id', 'is', 'it', 'ja', 'kk', 'lv', 'mk', 'nb', 'nn', 'sl', 'uz' ] SUPPORTED_LANGS = FULL_TRANSLATION + PARTIAL_TRANSLATION MESSAGE = { 'NOT_FOUND_MESSAGE': { 'en': u""" We were unable to find your location so we have brought you to Oymyakon, one of the coldest permanently inhabited locales on the planet. """, 'af': u""" Ons kon nie u ligging opspoor nie gevolglik het ons vir u na Oymyakon geneem, een van die koudste permanent bewoonde plekke op aarde. """, 'be': u""" Ваша месцазнаходжанне вызначыць не атрымалася, таму мы пакажам вам надвор'е ў Аймяконе, самым халодным населеным пункце на планеце. Будзем спадзявацца, што ў вас сёння надвор'е лепей! """, 'bs': u""" Nismo mogli pronaći vašu lokaciju, tako da smo te doveli do Oymyakon, jedan od najhladnijih stalno naseljena mjesta na planeti. Nadamo se da ćete imati bolje vreme! """, 'ca': u""" Hem estat incapaços de trobar la seva ubicació, és per aquest motiu que l'hem portat fins Oymyakon, un dels llocs més freds inhabitats de manera permanent al planeta. """, 'cs': u""" Nepodařilo se nám najít vaši polohu, takže jsme vás přivedl do Ojmjakonu. Je to jedno z nejchladnějších trvale obydlených míst na planetě. Doufáme, že budete mít lepší počasí! """, 'cy': u""" Ni darganfyddwyd eich lleoliad, felly rydym wedi dod â chi i Oymyakon, un o'r llefydd oeraf ar y blaned ble mae pobl yn dal i fyw! """, 'de': u""" Wir konnten Ihren Standort nicht finden, also haben wir Sie nach Oimjakon gebracht, einer der kältesten dauerhaft bewohnten Orte auf dem Planeten. Wir hoffen, dass Sie besseres Wetter haben! """, 'el': u""" Δεν μπορέσαμε να βρούμε την τοποθεσία σου, για αυτό διαλέξαμε το Οϊμιάκον για εσένα, μία από τις πιο κρύες μόνιμα κατοικημένες περιοχές στον πλανήτη. Ελπίζουμε να έχεις καλύτερο καιρό! """, 'es': u""" No hemos logrado encontrar tu ubicación, asi que hemos decidido enseñarte el tiempo en Oymyakon, uno de los sitios más fríos y permanentemente deshabitados del planeta. """, 'fa': u""" ما نتونستیم مکان شما رو پیدا کنیم. به همین خاطر شما رو به om بردیم ، یکی از سردترین مکان های روی زمین که اصلا قابل سکونت نیست! """, 'fi': u""" Emme löytänyt sijaintiasi, joten toimme sinut Oimjakoniin, yhteen maailman kylmimmistä pysyvästi asutetuista paikoista. Toivottavasti sinulla on parempi sää! """, 'fr': u""" Nous n'avons pas pu déterminer votre position, Nous vous avons donc amenés à Oïmiakon, l'un des endroits les plus froids habités en permanence sur la planète. Nous espérons qu'il fait meilleur chez vous ! """, 'hy': u""" Ձեր գտնվելու վայրը չհաջողվեց որոշել, այդ պատճառով մենք ձեզ կցուցադրենք եղանակը Օյմյակոնում. երկրագնդի ամենասառը բնակավայրում։ Հույս ունենք որ ձեր եղանակը այսօր ավելի լավն է։ """, 'id': u""" Kami tidak dapat menemukan lokasi anda, jadi kami membawa anda ke Oymyakon, salah satu tempat terdingin yang selalu dihuni di planet ini! """, 'is': u""" Við finnum ekki staðsetninguna þína og vísum þér þar með á Ojmjakon, ein af köldustu byggðum jarðar. Vonandi er betra veður hjá þér. """, 'it': u""" Non siamo riusciti a trovare la sua posizione quindi la abbiamo portato a Oymyakon, uno dei luoghi abitualmente abitati più freddi del pianeta. Ci auguriamo che le condizioni dove lei si trova siano migliori! """, 'ja': u""" 指定された場所が見つかりませんでした。 代わりにオイミャコンの天気予報を表示しています。 オイミャコンは地球上で最も寒い居住地の一つです。 """, 'ko': u""" 지정된 장소를 찾을 수 없습니다, 대신 오이먀콘의 일기 예보를 표시합니다, 오이먀콘은 지구상에서 가장 추운 곳에 위치한 마을입니다! """, 'lv': u""" Mēs nevarējām atrast jūsu atrašanās vietu tādēļ nogādājām jūs Oimjakonā, vienā no aukstākajām apdzīvotajām vietām uz planētas. """, 'mk': u""" Неможевме да ја пронајдеме вашата локација, затоа ве однесовме во Ојмајкон, еден од најладните трајно населени места на планетата. """, 'nb': u""" Vi kunne ikke finne din lokasjon, så her får du Ojmjakon, et av de kaldeste bebodde stedene på planeten. Vi håper været er bedre hos deg! """, 'nl': u""" Wij konden uw locatie niet vaststellen dus hebben we u naar Ojmjakon gebracht, één van de koudste permanent bewoonde gebieden op deze planeet. """, 'pt': u""" Não conseguimos encontrar a sua localização, então decidimos te mostrar o tempo em Oymyakon, um dos lugares mais frios e permanentemente desabitados do planeta. """, 'pl': u""" Nie udało nam się znaleźć podanej przez Ciebie lokalizacji, więc zabraliśmy Cię do Ojmiakonu, jednego z najzimniejszych, stale zamieszkanych miejsc na Ziemi. Mamy nadzieję, że u Ciebie jest cieplej! """, 'ro': u""" Nu v-am putut identifica locația, prin urmare va aratam vremea din Oimiakon, una dintre cele mai reci localități permanent locuite de pe planetă. Sperăm că aveți vreme mai bună! """, 'ru': u""" Ваше местоположение определить не удалось, поэтому мы покажем вам погоду в Оймяконе, самом холодном населённом пункте на планете. Будем надеяться, что у вас сегодня погода лучше! """, 'sk': u""" Nepodarilo sa nám nájsť vašu polohu, takže sme vás priviedli do Ojmiakonu. Je to jedno z najchladnejších trvale obývaných miest na planéte. Dúfame, že budete mať lepšie počasie! """, 'sr': u""" Нисмо успели да пронађемо Вашу локацију, па смо Вас довели у Ојмјакон, једно од најхладнијих стално насељених места на планети. Надамо се да је време код Вас боље него што је то случај овде! """, 'sv': u""" Vi lyckades inte hitta er plats så vi har istället tagit er till Ojmjakon, en av planetens kallaste platser med permanent bosättning. Vi hoppas att vädret är bättre hos dig! """, 'tr': u""" Aradığınız konum bulunamadı. O yüzden sizi dünyadaki en soğuk sürekli yerleşim yerlerinden biri olan Oymyakon'e getirdik. Umarız sizin olduğunuz yerde havalar daha iyidir! """, 'te': u""" మేము మీ స్థానాన్ని కనుగొనలేకపోయాము కనుక మనం "ఓమాయకాన్కు" తీసుకొని వచ్చాము, భూమిపై అత్యల్ప శాశ్వతంగా నివసించే స్థానిక ప్రదేశాలలో ఒకటి. """, 'uk': u""" Ваше місце розташування визначити не вдалося, тому ми покажемо вам погоду в Оймяконе, найхолоднішому населеному пункті на планеті. Будемо сподіватися, що у вас сьогодні погода краще! """, 'uz': u""" Sizning joylashuvingizni aniqlay olmadik, shuning uchun sizga sayyoramizning eng sovuq aholi punkti - Oymyakondagi ob-havo haqida ma'lumot beramiz. Umid qilamizki, sizda bugungi ob-havo bundan yaxshiroq! """, 'da': u""" Vi kunne desværre ikke finde din lokation så vi har bragt dig til Oymyakon, En af koldeste og helt ubolige lokationer på planeten. """, }, 'UNKNOWN_LOCATION': { 'en': u'Unknown location', 'af': u'Onbekende ligging', 'be': u'Невядомае месцазнаходжанне', 'bs': u'Nepoznatoja lokacija', 'ca': u'Localització desconeguda', 'cs': u'Neznámá poloha', 'cy': u'Lleoliad anhysbys', 'de': u'Unbekannter Ort', 'da': u'Ukendt lokation', 'el': u'Άνγωστη τοποθεσία', 'es': u'Ubicación desconocida', 'fa': u'مکان نامعلوم', 'fi': u'Tuntematon sijainti', 'fr': u'Emplacement inconnu', 'hy': u'Անհայտ գտնվելու վայր', 'id': u'Lokasi tidak diketahui', 'is': u'Óþekkt staðsetning', 'it': u'Località sconosciuta', 'ja': u'未知の場所です', 'ko': u'알 수 없는 장소', 'kk': u'', 'lv': u'Nezināma atrašanās vieta', 'mk': u'Непозната локација', 'nb': u'Ukjent sted', 'nl': u'Onbekende locatie', 'pl': u'Nieznana lokalizacja', 'pt': u'Localização desconhecida', 'ro': u'Locaţie necunoscută', 'ru': u'Неизвестное местоположение', 'sk': u'Neznáma poloha', 'sl': u'Neznano lokacijo', 'sr': u'Непозната локација', 'sv': u'Okänd plats', 'te': u'తెలియని ప్రదేశం', 'tr': u'Bilinmeyen konum', 'ua': u'Невідоме місце', 'uz': u'Аникланмаган худуд', }, 'LOCATION': { 'en': u'Location', 'af': u'Ligging', 'be': u'Месцазнаходжанне', 'bs': u'Lokacija', 'ca': u'Localització', 'cs': u'Poloha', 'cy': u'Lleoliad', 'de': u'Ort', 'da': u'Lokation', 'el': u'Τοποθεσία', 'es': u'Ubicación', 'fa': u'مکان', 'fi': u'Tuntematon sijainti', 'fr': u'Emplacement', 'hy': u'Դիրք', 'id': u'Lokasi', 'is': u'Staðsetning', 'it': u'Località', 'ja': u'位置情報', 'ko': u'위치', 'kk': u'', 'lv': u'Atrašanās vieta', 'mk': u'Локација', 'nb': u'Sted', 'nl': u'Locatie', 'pl': u'Lokalizacja', 'pt': u'Localização', 'ro': u'Locaţie', 'ru': u'Местоположение', 'sk': u'Poloha', 'sl': u'Lokacijo', 'sr': u'Локација', 'sv': u'Plats', 'te': u'స్థానము', 'tr': u'Konum', 'ua': u'Місце', }, 'CAPACITY_LIMIT_REACHED': { 'en': u""" Sorry, we are running out of queries to the weather service at the moment. Here is the weather report for the default city (just to show you, how it looks like). We will get new queries as soon as possible. You can follow https://twitter.com/igor_chubin for the updates. ====================================================================================== """, 'af': u""" Verskoning, ons oorskry tans die vermoë om navrae aan die weerdiens te rig. Hier is die weerberig van 'n voorbeeld ligging (bloot om aan u te wys hoe dit lyk). Ons sal weereens nuwe navrae kan hanteer so gou as moontlik. U kan vir https://twitter.com/igor_chubin volg vir opdaterings. ====================================================================================== """, 'be': u""" Прабачце, мы выйшлі за ліміты колькасці запытаў да службы надвор'я ў дадзены момант. Вось прагноз надвор'я для горада па змаўчанні (толькі, каб паказаць вам, як гэта выглядае). Мы вернемся як мага хутчэй. Вы можаце сачыць на https://twitter.com/igor_chubin за абнаўленнямі. ====================================================================================== """, 'bs': u""" Žao mi je, mi ponestaje upita i vremenska prognoza u ovom trenutku. Ovdje je izvještaj o vremenu za default grada (samo da vam pokažem kako to izgleda). Mi ćemo dobiti nove upite u najkraćem mogućem roku. Možete pratiti https://twitter.com/igor_chubin za ažuriranja. ====================================================================================== """, 'ca': u""" Disculpi'ns, ens hem quedat sense consultes al servei meteorològic momentàniament. Aquí li oferim l'informe del temps a la ciutat per defecte (només per mostrar, quin aspecte té). Obtindrem noves consultes tan aviat com ens sigui possible. Pot seguir https://twitter.com/igor_chubin per noves actualitzacions. ====================================================================================== """, 'de': u""" Entschuldigung, wir können momentan den Wetterdienst nicht erreichen. Dafür zeigen wir Ihnen das Wetter an einem Beispielort, damit Sie sehen wie die Seite das Wetter anzeigt. Wir werden versuchen das Problem so schnell wie möglich zu beheben. Folgen Sie https://twitter.com/igor_chubin für Updates. ====================================================================================== """, 'cy': u""" Rydym yn brin o ymholiadau i'r gwasanaeth tywydd ar hyn o bryd. Felly dyma'r adroddiad tywydd ar gyfer y ddinas ragosod (er mwyn arddangos sut mae'n edrych). Byddwn gyda ymholiadau newydd yn fuan. Gellir dilyn https://twitter.com/igor_chubin i gael newyddion pellach. ====================================================================================== """, 'es': u""" Lo siento, hemos alcanzado el límite de peticiones al servicio de previsión del tiempo en este momento. A continuación, la previsión del tiempo para una ciudad estándar (solo para que puedas ver que aspecto tiene el informe). Muy pronto volveremos a tener acceso a las peticiones. Puedes seguir https://twitter.com/igor_chubin para estar al tanto de la situación. ====================================================================================== """, 'fa': u""" متأسفانه در حال حاضر ظرفیت ما برای درخواست به سرویس هواشناسی به اتمام رسیده. اینجا می تونید گزارش هواشناسی برای شهر پیش فرض رو ببینید (فقط برای اینه که بهتون نشون بدیم چه شکلی هست) ما تلاش میکنیم در اسرع وقت ظرفیت جدید به دست بیاریم. برای دنبال کردن اخبار جدید میتونید https://twitter.com/igor_chubin رو فالو کنید. ====================================================================================== """, 'fr': u""" Désolé, nous avons épuisé les requêtes vers le service météo. Voici un bulletin météo de l'emplacement par défaut (pour vous donner un aperçu). Nous serons très bientôt en mesure de faire de nouvelles requêtes. Vous pouvez suivre https://twitter.com/igor_chubin pour rester informé. ====================================================================================== """, 'hy': u""" Կներեք, այս պահին մենք գերազանցել ենք եղանակային տեսության կայանին հարցումների քանակը. Կարող եք տեսնել տիպային եղանակը զեկուցում հիմնական քաղաքի համար (Ուղղակի որպես նմուշ): Մենք մշտապես աշխատում ենք հարցումների քանակը բարելավելու ուղղությամբ: Կարող եք հետևել մեզ https://twitter.com/igor_chubin թարմացումների համար. ====================================================================================== """, 'id': u""" Maaf, kami kehabian permintaan ke layanan cuaca saat ini. Ini adalah laporan cuaca dari kota standar (hanya untuk menunjukkan kepada anda bagaimana tampilannya). Kami akan mencoba permintaan baru lagi sesegera mungkin. Anda dapat mengikuti https://twitter.com/igor_chubin untuk informasi terbaru. ====================================================================================== """, 'it': u""" Scusate, attualmente stiamo esaurendo le risorse a disposizione del servizio meteo. Qui trovate il bollettino del tempo per la città di default (solo per mostrarvi come si presenta). Potremo elaborare nuove richieste appena possibile. Potete seguire https://twitter.com/igor_chubin per gli aggiornamenti. ====================================================================================== """, 'ko': u""" 죄송합니다. 현재 날씨 정보를 가져오는 쿼리 요청이 한도에 도달했습니다. 대신 기본으로 설정된 도시에 대한 일기 예보를 보여드리겠습니다. (이는 단지 어떻게 보이는지 알려주기 위함입니다). 쿼리 요청이 가능한 한 빨리 이루어질 수 있도록 하겠습니다. 업데이트 소식을 원하신다면 https://twitter.com/igor_chubin 을 팔로우 해주세요. ====================================================================================== """, 'lv': u""" Atvainojiet, uz doto brīdi mēs esam mazliet noslogoti. Šeit ir laika ziņas noklusējuma pilsētai (lai parādītu jums, kā izskatās izveidotais ziņojums). Mēs atsāksim darbu cik ātri vien varēsim. Jūs varat sekot https://twitter.com/igor_chubin lai redzētu visus jaunumus. ====================================================================================== """, 'mk': u""" Извинете, ни снемуваат барања за до сервисот кој ни нуди временска прогноза во моментот. Еве една временска прогноза за град (за да видите како изгледа). Ќе добиеме нови барања најбрзо што можеме. Следете го https://twitter.com/igor_chubin за известувања ====================================================================================== """, 'nb': u""" Beklager, vi kan ikke nå værtjenesten for øyeblikket. Her er værmeldingen for standardbyen så du får se hvordan tjenesten ser ut. Vi vil forsøke å fikse problemet så snart som mulig. Du kan følge https://twitter.com/igor_chubin for oppdateringer. ====================================================================================== """, 'nl': u""" Excuse, wij kunnen u op dit moment dit weerbericht niet laten zien. Hier is het weerbericht voor de standaard stad(zodat u weet hoe het er uitziet) Wij lossen dit probleem zo snel mogelijk op. voor updates kunt u ons op https://twitter.com/igor_chubin volgen. ====================================================================================== """, 'pl': u""" Bardzo nam przykro, ale chwilowo wykorzystaliśmy limit zapytań do serwisu pogodowego. To, co widzisz jest przykładowym raportem pogodowym dla domyślnego miasta. Postaramy się przywrócić funkcjonalność tak szybko, jak to tylko możliwe. Możesz śledzić https://twitter.com/igor_chubin na Twitterze, aby być na bieżąco. ====================================================================================== """, 'pt': u""" Desculpe-nos, estamos atingindo o limite de consultas ao serviço de previsão do tempo neste momento. Veja a seguir a previsão do tempo para uma cidade padrão (apenas para você ver que aspecto o relatório tem). Em breve voltaremos a ter acesso às consultas. Você pode seguir https://twitter.com/igor_chubin para acompanhar a situação. ====================================================================================== """, 'te': u""" క్షమించండి, ప్రస్తుతానికి మేము వాతావరణ సేవకు ప్రశ్నలను గడుపుతున్నాం. ఇక్కడ డిఫాల్ట్ నగరం కోసం వాతావరణ నివేదిక (కేవలం మీకు చూపించడానికి, ఇది ఎలా కనిపిస్తుంది). సాధ్యమైనంత త్వరలో కొత్త ప్రశ్నలను పొందుతారు. నవీకరణల కోసం https://twitter.com/igor_chubin ను మీరు అనుసరించవచ్చు. ====================================================================================== """, 'tr': u""" Üzgünüz, an itibariyle hava durumu servisine yapabileceğimiz sorgu limitine ulaştık. Varsayılan şehir için hava durumu bilgisini görüyorsunuz (neye benzediğini gösterebilmek için). Mümkün olan en kısa sürede servise yeniden sorgu yapmaya başlayacağız. Gelişmeler için https://twitter.com/igor_chubin adresini takip edebilirsiniz. ====================================================================================== """, 'da': u""" Beklager, men vi er ved at løbe tør for forespørgsler til vejr-servicen lige nu. Her er vejr rapporten for standard byen (bare så du ved hvordan det kan se ud). Vi får nye forespørsler hurtigst muligt. Du kan følge https://twitter.com/igor_chubin for at få opdateringer. ====================================================================================== """, }, # Historical messages: # 'Check new Feature: \033[92mwttr.in/Moon\033[0m or \033[92mwttr.in/Moon@2016-Mar-23\033[0m to see the phase of the Moon' # 'New feature: \033[92mwttr.in/Rome?lang=it\033[0m or \033[92mcurl -H "Accept-Language: it" wttr.in/Rome\033[0m for the localized version. Your lang instead of "it"' 'NEW_FEATURE': { 'en': u'New feature: multilingual location names \033[92mwttr.in/станция+Восток\033[0m (in UTF-8) and location search \033[92mwttr.in/~Kilimanjaro\033[0m (just add ~ before)', 'af': u'Nuwe eienskap: veeltalige name vir liggings \033[92mwttr.in/станция+Восток\033[0m (in UTF-8) en ligging soek \033[92mwttr.in/~Kilimanjaro\033[0m (plaas net ~ vooraan)', 'be': u'Новыя магчымасці: назвы месц на любой мове \033[92mwttr.in/станция+Восток\033[0m (в UTF-8) i пошук месц \033[92mwttr.in/~Kilimanjaro\033[0m (трэба дадаць ~ ў пачатак)', 'bs': u'XXXXXXXXXXXXXXXXXXXX: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX\033[92mwttr.in/станция+Восток\033[0m (XX UTF-8) XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX', 'ca': u'Noves funcionalitats: noms d\'ubicació multilingües \033[92mwttr.in/станция+Восток\033[0m (en UTF-8) i la ubicació de recerca \033[92mwttr.in/~Kilimanjaro\033[0m (només cal afegir ~ abans)', 'es': u'Nuevas funcionalidades: los nombres de las ubicaciones en vários idiomas \033[92mwttr.in/станция+Восток\033[0m (em UTF-8) y la búsqueda por ubicaciones \033[92mwttr.in/~Kilimanjaro\033[0m (tan solo inserte ~ en frente)', 'fa': u'قابلیت جدید: پشتیبانی از نام چند زبانه مکانها \033[92mwttr.in/станция+Восток\033[0m (در فرمت UTF-8) و جسجتوی مکان ها \033[92mwttr.in/~Kilimanjaro\033[0m (فقط قبل از اون ~ اضافه کنید)', 'fr': u'Nouvelles fonctionnalités: noms d\'emplacements multilingues \033[92mwttr.in/станция+Восток\033[0m (en UTF-8) et recherche d\'emplacement \033[92mwttr.in/~Kilimanjaro\033[0m (ajouter ~ devant)', 'mk': u'Нова функција: повеќе јазично локациски имиња \033[92mwttr.in/станция+Восток\033[0m (во UTF-8) и локациско пребарување \033[92mwttr.in/~Kilimanjaro\033[0m (just add ~ before)', 'nb': u'Ny funksjon: flerspråklige stedsnavn \033[92mwttr.in/станция+Восток\033[0m (i UTF-8) og lokasjonssøk \033[92mwttr.in/~Kilimanjaro\033[0m (bare legg til ~ foran)', 'nl': u'Nieuwe functie: tweetalige locatie namen \033[92mwttr.in/станция+Восток\033[0m (in UTF-8) en locatie zoeken \033[92mwttr.in/~Kilimanjaro\033[0m (zet er gewoon een ~ voor)', 'cy': u'Nodwedd newydd: enwau lleoliadau amlieithog \033[92mwttr.in/станция+Восток\033[0m (yn UTF-8) a chwilio am leoliad \033[92mwttr.in/~Kilimanjaro\033[0m (ychwanegwch ~ yn gyntaf)', 'de': u'Neue Funktion: mehrsprachige Ortsnamen \033[92mwttr.in/станция+Восток\033[0m (in UTF-8) und Ortssuche \033[92mwttr.in/~Kilimanjaro\033[0m (fügen Sie ein ~ vor dem Ort ein)', 'hy': u'Փորձարկեք: տեղամասերի անունները կամայական լեզվով \033[92mwttr.in/Դիլիջան\033[0m (в UTF-8) և տեղանքի որոնում \033[92mwttr.in/~Kilimanjaro\033[0m (հարկավոր է ~ ավելացնել դիմացից)', 'id': u'Fitur baru: nama lokasi dalam multibahasa \033[92mwttr.in/станция+Восток\033[0m (in UTF-8) dan pencarian lokasi \033[92mwttr.in/~Kilimanjaro\033[0m (hanya tambah tanda ~ sebelumnya)', 'it': u'Nuove funzionalità: nomi delle località multilingue \033[92mwttr.in/станция+Восток\033[0m (in UTF-8) e ricerca della località \033[92mwttr.in/~Kilimanjaro\033[0m (basta premettere ~)', 'ko': u'새로운 기능: 다국어로 대응된 위치 \033[92mwttr.in/서울\033[0m (UTF-8에서) 장소 검색 \033[92mwttr.in/~Kilimanjaro\033[0m (앞에 ~를 붙이세요)', 'kk': u'', 'lv': u'Jaunums: Daudzvalodu atrašanās vietu nosaukumi \033[92mwttr.in/станция+Восток\033[0m (in UTF-8) un dabas objektu meklēšana \033[92mwttr.in/~Kilimanjaro\033[0m (tikai priekšā pievieno ~)', 'mk': u'Нова функција: повеќе јазично локациски имиња \033[92mwttr.in/станция+Восток\033[0m (во UTF-8) и локациско пребарување \033[92mwttr.in/~Kilimanjaro\033[0m (just add ~ before)', 'pl': u'Nowa funkcjonalność: wielojęzyczne nazwy lokalizacji \033[92mwttr.in/станция+Восток\033[0m (w UTF-8) i szukanie lokalizacji \033[92mwttr.in/~Kilimanjaro\033[0m (poprzedź zapytanie ~ - znakiem tyldy)', 'pt': u'Nova funcionalidade: nomes de localidades em várias línguas \033[92mwttr.in/станция+Восток\033[0m (em UTF-8) e procura por localidades \033[92mwttr.in/~Kilimanjaro\033[0m (é só colocar ~ antes)', 'ru': u'Попробуйте: названия мест на любом языке \033[92mwttr.in/станция+Восток\033[0m (в UTF-8) и поиск мест \033[92mwttr.in/~Kilimanjaro\033[0m (нужно добавить ~ спереди)', 'tr': u'Yeni özellik: çok dilli konum isimleri \033[92mwttr.in/станция+Восток\033[0m (UTF-8 ile) ve konum arama \033[92mwttr.in/~Kilimanjaro\033[0m (sadece önüne ~ ekleyin)', 'te': u'క్రొత్త లక్షణం: బహుభాషా స్థాన పేర్లు \ 033 [92mwttr.in/stancelя+Vostок\033 [0 U (UTF-8 లో) మరియు స్థానం శోధన \ 033 [92mwttr.in/~kilimanjaro\033 [0m (కేవలం ~ ముందుకి జోడించండి)', 'da': u'Ny funktion: flersprogede lokationsnavne \033[92mwttr.in/станция+Восток\033[0m (som UTF-8) og lokations søgning \033[92mwttr.in/~Kilimanjaro\033[0m (bare tilføj ~ inden)', }, 'FOLLOW_ME': { 'en': u'Follow \033[46m\033[30m@igor_chubin\033[0m for wttr.in updates', 'af': u'Volg \033[46m\033[30m@igor_chubin\033[0m vir wttr.in opdaterings', 'be': u'Сачыце за \033[46m\033[30m@igor_chubin\033[0m за навінамі wttr.in', 'bs': u'XXXXXX \033[46m\033[30m@igor_chubin\033[0m XXXXXXXXXXXXXXXXXXX', 'ca': u'Seguiu \033[46m\033[30m@igor_chubin\033[0m per actualitzacions de wttr.in', 'es': u'Seguir \033[46m\033[30m@igor_chubin\033[0m para recibir las novedades de wttr.in', 'cy': u'Dilyner \033[46m\033[30m@igor_Chubin\033[0m am diweddariadau wttr.in', 'fa': u'برای دنبال کردن خبرهای wttr.in شناسه \033[46m\033[30m@igor_chubin\033[0m رو فالو کنید.', 'fr': u'Suivez \033[46m\033[30m@igor_Chubin\033[0m pour rester informé sur wttr.in', 'de': u'Folgen Sie \033[46m\033[30mhttps://twitter.com/igor_chubin\033[0m für wttr.in Updates', 'hy': u'Նոր ֆիչռների համար հետևեք՝ \033[46m\033[30m@igor_chubin\033[0m', 'id': u'Ikuti \033[46m\033[30m@igor_chubin\033[0m untuk informasi wttr.in terbaru', 'it': u'Seguite \033[46m\033[30m@igor_chubin\033[0m per aggiornamenti a wttr.in', 'ko': u'wttr.in의 업데이트 소식을 원하신다면 \033[46m\033[30m@igor_chubin\033[0m 을 팔로우 해주세요', 'kk': u'', 'lv': u'Seko \033[46m\033[30m@igor_chubin\033[0m , lai uzzinātu wttr.in jaunumus', 'mk': u'Следете \033[46m\033[30m@igor_chubin\033[0m за wttr.in новости', 'nb': u'Følg \033[46m\033[30m@igor_chubin\033[0m for wttr.in oppdateringer', 'nl': u'Volg \033[46m\033[30m@igor_chubin\033[0m voor wttr.in updates', 'pl': u'Śledź \033[46m\033[30m@igor_chubin\033[0m aby być na bieżąco z nowościami dotyczącymi wttr.in', 'pt': u'Seguir \033[46m\033[30m@igor_chubin\033[0m para as novidades de wttr.in', 'ru': u'Все новые фичи публикуются здесь: \033[46m\033[30m@igor_chubin\033[0m', 'te': u'అనుసరించండి \ 033 [46m \ 033 [30m @ igor_chubin \ 033 [wttr.in నవీకరణలను కోసం', 'tr': u'wttr.in ile ilgili gelişmeler için \033[46m\033[30m@igor_chubin\033[0m adresini takip edin', 'da': u'Følg \033[46m\033[30m@igor_chubin\033[0m for at få wttr.in opdateringer', }, } def get_message(message_name, lang): if message_name not in MESSAGE: return '' message_dict = MESSAGE[message_name] return message_dict.get(lang, message_dict.get('en', ''))
49.515947
236
0.634624
432ba9f657cddc6e961d3399b5cf1c28eb5ad8e4
4,176
py
Python
render/BitcoinTradingGraph.py
skywalker0803r/Bitcoin-Trader-RL
e6b72d58dd773d9a775a580d6a35051ef8da513e
[ "MIT" ]
null
null
null
render/BitcoinTradingGraph.py
skywalker0803r/Bitcoin-Trader-RL
e6b72d58dd773d9a775a580d6a35051ef8da513e
[ "MIT" ]
null
null
null
render/BitcoinTradingGraph.py
skywalker0803r/Bitcoin-Trader-RL
e6b72d58dd773d9a775a580d6a35051ef8da513e
[ "MIT" ]
2
2021-08-22T13:01:06.000Z
2021-10-14T02:47:52.000Z
import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib import style from datetime import datetime from mpl_finance import candlestick_ochl as candlestick style.use('ggplot') class BitcoinTradingGraph: def __init__(self, df, title=None): self.df = df self.net_worths = np.zeros(len(df)) fig = plt.figure() fig.suptitle(title) self.net_worth_ax = plt.subplot2grid((6, 1), (0, 0), rowspan=2, colspan=1) self.price_ax = plt.subplot2grid((6, 1), (2, 0), rowspan=8, colspan=1, sharex=self.net_worth_ax) plt.subplots_adjust(left=0.11, bottom=0.24,right=0.90, top=0.90, wspace=0.2, hspace=0) plt.show(block=False) def _render_net_worth(self, current_step, net_worth, step_range, dates): self.net_worth_ax.clear() self.net_worth_ax.plot_date(dates, self.net_worths[step_range], '-', label='Net Worth') self.net_worth_ax.legend() legend = self.net_worth_ax.legend(loc=2, ncol=2, prop={'size': 8}) legend.get_frame().set_alpha(0.4) last_date = self.df['Timestamp'].values[current_step] last_net_worth = self.net_worths[current_step] self.net_worth_ax.annotate('{0:.2f}'.format(net_worth), (last_date, last_net_worth), xytext=(last_date, last_net_worth), bbox=dict(boxstyle='round',fc='w', ec='k', lw=1), color="black", fontsize="small") self.net_worth_ax.set_ylim( min(self.net_worths[np.nonzero(self.net_worths)]) / 1.25, max(self.net_worths) * 1.25) def _render_price(self, current_step, net_worth, step_range, dates): self.price_ax.clear() candlesticks = zip(dates, self.df['Open'].values[step_range], self.df['Close'].values[step_range], self.df['High'].values[step_range], self.df['Low'].values[step_range]) candlestick(self.price_ax, candlesticks, width=20) last_date = self.df['Timestamp'].values[current_step] last_close = self.df['Close'].values[current_step] last_high = self.df['High'].values[current_step] def _render_trades(self, current_step, trades, step_range): for trade in trades: if trade['step'] in step_range: date = self.df['Timestamp'].values[trade['step']] close = self.df['Close'].values[trade['step']] high = self.df['High'].values[trade['step']] low = self.df['Low'].values[trade['step']] if trade['type'] == 'buy': high_low = low color = 'g' else: high_low = high color = 'r' total = '{0:.2f}'.format(trade['total']) self.price_ax.annotate('$' + str(total), (date, close), xytext=(date, high_low), bbox=dict(boxstyle='round',fc='w', ec='k', lw=1, alpha=0.4), color=color, alpha=0.4, fontsize="small") def render(self, current_step, net_worth, trades, window_size=40): self.net_worths[current_step] = net_worth window_start = max(current_step - window_size, 0) step_range = range(window_start, current_step + 1) dates = self.df['Timestamp'].values[step_range] self._render_net_worth(current_step, net_worth, step_range, dates) self._render_price(current_step, net_worth, step_range, dates) self._render_trades(current_step, trades, step_range) date_labels = np.array([datetime.utcfromtimestamp(x).strftime( '%Y-%m-%d %H:%M') for x in self.df['Timestamp'].values[step_range]]) self.price_ax.set_xticklabels( date_labels, rotation=45, horizontalalignment='right') plt.setp(self.net_worth_ax.get_xticklabels(), visible=False) plt.pause(0.2) def close(self): plt.close()
49.714286
104
0.577586
dec05f70c75d896ee821a1eab4bb137c60d59d60
6,545
py
Python
selfdrive/car/hyundai/carcontroller.py
advpilot/advpilot
0d8940cd678c34c243a8590afb998c49d88599d0
[ "MIT" ]
null
null
null
selfdrive/car/hyundai/carcontroller.py
advpilot/advpilot
0d8940cd678c34c243a8590afb998c49d88599d0
[ "MIT" ]
null
null
null
selfdrive/car/hyundai/carcontroller.py
advpilot/advpilot
0d8940cd678c34c243a8590afb998c49d88599d0
[ "MIT" ]
null
null
null
from cereal import car from common.realtime import DT_CTRL from common.numpy_fast import clip, interp from common.conversions import Conversions as CV from selfdrive.car import apply_std_steer_torque_limits from selfdrive.car.hyundai.hyundaican import create_lkas11, create_clu11, create_lfahda_mfc, create_acc_commands, create_acc_opt, create_frt_radar_opt from selfdrive.car.hyundai.values import Buttons, CarControllerParams, CAR from opendbc.can.packer import CANPacker VisualAlert = car.CarControl.HUDControl.VisualAlert LongCtrlState = car.CarControl.Actuators.LongControlState STEER_FAULT_MAX_ANGLE = 85 # EPS max is 90 STEER_FAULT_MAX_FRAMES = 90 # EPS counter is 95 def process_hud_alert(enabled, fingerprint, hud_control): sys_warning = (hud_control.visualAlert in (VisualAlert.steerRequired, VisualAlert.ldw)) # initialize to no line visible sys_state = 1 if hud_control.leftLaneVisible and hud_control.rightLaneVisible or sys_warning: # HUD alert only display when LKAS status is active sys_state = 3 if enabled or sys_warning else 4 elif hud_control.leftLaneVisible: sys_state = 5 elif hud_control.rightLaneVisible: sys_state = 6 # initialize to no warnings left_lane_warning = 0 right_lane_warning = 0 if hud_control.leftLaneDepart: left_lane_warning = 1 if fingerprint in (CAR.GENESIS_G90, CAR.GENESIS_G80) else 2 if hud_control.rightLaneDepart: right_lane_warning = 1 if fingerprint in (CAR.GENESIS_G90, CAR.GENESIS_G80) else 2 return sys_warning, sys_state, left_lane_warning, right_lane_warning class CarController: def __init__(self, dbc_name, CP, VM): self.CP = CP self.params = CarControllerParams(CP) self.packer = CANPacker(dbc_name) self.frame = 0 self.angle_limit_counter = 0 self.cut_steer_frames = 0 self.cut_steer = False self.apply_steer_last = 0 self.car_fingerprint = CP.carFingerprint self.steer_rate_limited = False self.last_resume_frame = 0 self.accel = 0 def update(self, CC, CS): actuators = CC.actuators hud_control = CC.hudControl pcm_cancel_cmd = CC.cruiseControl.cancel # Steering Torque new_steer = int(round(actuators.steer * self.params.STEER_MAX)) apply_steer = apply_std_steer_torque_limits(new_steer, self.apply_steer_last, CS.out.steeringTorque, self.params) self.steer_rate_limited = new_steer != apply_steer if not CC.latActive: apply_steer = 0 self.apply_steer_last = apply_steer sys_warning, sys_state, left_lane_warning, right_lane_warning = process_hud_alert(CC.enabled, self.car_fingerprint, hud_control) can_sends = [] # tester present - w/ no response (keeps radar disabled) if self.CP.openpilotLongitudinalControl: if self.frame % 100 == 0: can_sends.append([0x7D0, 0, b"\x02\x3E\x80\x00\x00\x00\x00\x00", 0]) if CC.latActive and abs(CS.out.steeringAngleDeg) > STEER_FAULT_MAX_ANGLE: self.angle_limit_counter += 1 else: self.angle_limit_counter = 0 # stop requesting torque to avoid 90 degree fault and hold torque with induced temporary fault # two cycles avoids race conditions every few minutes if self.angle_limit_counter > STEER_FAULT_MAX_FRAMES: self.cut_steer = True elif self.cut_steer_frames > 1: self.cut_steer_frames = 0 self.cut_steer = False cut_steer_temp = False if self.cut_steer: cut_steer_temp = True self.angle_limit_counter = 0 self.cut_steer_frames += 1 can_sends.append(create_lkas11(self.packer, self.frame, self.car_fingerprint, apply_steer, CC.latActive, cut_steer_temp, CS.lkas11, sys_warning, sys_state, CC.enabled, hud_control.leftLaneVisible, hud_control.rightLaneVisible, left_lane_warning, right_lane_warning)) if not self.CP.openpilotLongitudinalControl: if pcm_cancel_cmd: can_sends.append(create_clu11(self.packer, self.frame, CS.clu11, Buttons.CANCEL)) elif CS.out.cruiseState.standstill: # send resume at a max freq of 10Hz if (self.frame - self.last_resume_frame) * DT_CTRL > 0.1: # send 25 messages at a time to increases the likelihood of resume being accepted can_sends.extend([create_clu11(self.packer, self.frame, CS.clu11, Buttons.RES_ACCEL)] * 25) self.last_resume_frame = self.frame if self.frame % 2 == 0 and self.CP.openpilotLongitudinalControl: accel = actuators.accel jerk = 0 if CC.longActive: jerk = clip(2.0 * (accel - CS.out.aEgo), -12.7, 12.7) if accel < 0: accel = interp(accel - CS.out.aEgo, [-1.0, -0.5], [2 * accel, accel]) accel = clip(accel, CarControllerParams.ACCEL_MIN, CarControllerParams.ACCEL_MAX) lead_visible = False stopping = actuators.longControlState == LongCtrlState.stopping set_speed_in_units = hud_control.setSpeed * (CV.MS_TO_MPH if CS.clu11["CF_Clu_SPEED_UNIT"] == 1 else CV.MS_TO_KPH) can_sends.extend(create_acc_commands(self.packer, CC.enabled, accel, jerk, int(self.frame / 2), lead_visible, set_speed_in_units, stopping, CS.out.gasPressed)) self.accel = accel # 20 Hz LFA MFA message if self.frame % 5 == 0 and self.car_fingerprint in (CAR.SONATA, CAR.PALISADE, CAR.IONIQ, CAR.KIA_NIRO_EV, CAR.KIA_NIRO_HEV_2021, CAR.IONIQ_EV_2020, CAR.IONIQ_PHEV, CAR.KIA_CEED, CAR.KIA_SELTOS, CAR.KONA_EV, CAR.ELANTRA_2021, CAR.ELANTRA_HEV_2021, CAR.SONATA_HYBRID, CAR.KONA_HEV, CAR.SANTA_FE_2022, CAR.KIA_K5_2021, CAR.IONIQ_HEV_2022, CAR.SANTA_FE_HEV_2022, CAR.GENESIS_G70_2020, CAR.SANTA_FE_PHEV_2022): can_sends.append(create_lfahda_mfc(self.packer, CC.enabled)) # 5 Hz ACC options if self.frame % 20 == 0 and self.CP.openpilotLongitudinalControl: can_sends.extend(create_acc_opt(self.packer)) # 2 Hz front radar options if self.frame % 50 == 0 and self.CP.openpilotLongitudinalControl: can_sends.append(create_frt_radar_opt(self.packer)) new_actuators = actuators.copy() new_actuators.steer = apply_steer / self.params.STEER_MAX new_actuators.accel = self.accel self.frame += 1 return new_actuators, can_sends
42.225806
162
0.696409
b6157fe1318c14278f48513a6f3ca2726bddb06b
2,294
py
Python
python/ray/data/_internal/delegating_block_builder.py
LaudateCorpus1/ray
20cf2edfef7103c269358a49a48c2159315ee132
[ "Apache-2.0" ]
null
null
null
python/ray/data/_internal/delegating_block_builder.py
LaudateCorpus1/ray
20cf2edfef7103c269358a49a48c2159315ee132
[ "Apache-2.0" ]
41
2021-09-21T01:13:48.000Z
2022-03-19T07:12:22.000Z
python/ray/data/_internal/delegating_block_builder.py
LaudateCorpus1/ray
20cf2edfef7103c269358a49a48c2159315ee132
[ "Apache-2.0" ]
null
null
null
from typing import Any from ray.data.block import Block, T, BlockAccessor from ray.data._internal.block_builder import BlockBuilder from ray.data._internal.simple_block import SimpleBlockBuilder from ray.data._internal.arrow_block import ArrowRow, ArrowBlockBuilder from ray.data._internal.pandas_block import PandasRow, PandasBlockBuilder class DelegatingBlockBuilder(BlockBuilder[T]): def __init__(self): self._builder = None self._empty_block = None def add(self, item: Any) -> None: if self._builder is None: # TODO (kfstorm): Maybe we can use Pandas block format for dict. if isinstance(item, dict) or isinstance(item, ArrowRow): import pyarrow try: check = ArrowBlockBuilder() check.add(item) check.build() self._builder = ArrowBlockBuilder() except (TypeError, pyarrow.lib.ArrowInvalid): self._builder = SimpleBlockBuilder() elif isinstance(item, PandasRow): self._builder = PandasBlockBuilder() else: self._builder = SimpleBlockBuilder() self._builder.add(item) def add_block(self, block: Block) -> None: accessor = BlockAccessor.for_block(block) if accessor.num_rows() == 0: # Don't infer types of empty lists. Store the block and use it if no # other data is added. https://github.com/ray-project/ray/issues/20290 self._empty_block = block return if self._builder is None: self._builder = accessor.builder() self._builder.add_block(block) def build(self) -> Block: if self._builder is None: if self._empty_block is not None: self._builder = BlockAccessor.for_block(self._empty_block).builder() else: self._builder = ArrowBlockBuilder() return self._builder.build() def num_rows(self) -> int: return self._builder.num_rows() if self._builder is not None else 0 def get_estimated_memory_usage(self) -> int: if self._builder is None: return 0 return self._builder.get_estimated_memory_usage()
37.606557
84
0.622929
1be450d881fa28c0a6d072ff762f6992170ad80a
166
py
Python
play-travis/test.py
otus-devops-2019-05/kalinkina_infra
cf1e3fa1b90a3ba1243172e51af25f852566f452
[ "MIT" ]
null
null
null
play-travis/test.py
otus-devops-2019-05/kalinkina_infra
cf1e3fa1b90a3ba1243172e51af25f852566f452
[ "MIT" ]
2
2019-08-08T11:41:41.000Z
2019-08-26T10:43:35.000Z
play-travis/test.py
otus-devops-2019-05/kalinkina_infra
cf1e3fa1b90a3ba1243172e51af25f852566f452
[ "MIT" ]
null
null
null
import unittest class NumbersTest(unittest.TestCase): def test_equal(self): self.assertEqual(1 + 0, 1) if __name__ == '__main__': unittest.main()
15.090909
37
0.668675
3ced4170782a334ab502aff4feae84c9276a6445
19,985
py
Python
tests/unit_tests/gui/mainWmixin/test_tabEnviron.py
mworion/MountWizzard4
4e06b29ec2ef70be40e114b911b7bdf2f858a4b1
[ "Apache-2.0" ]
16
2020-01-11T22:32:26.000Z
2022-03-31T15:18:14.000Z
tests/unit_tests/gui/mainWmixin/test_tabEnviron.py
mworion/MountWizzard4
4e06b29ec2ef70be40e114b911b7bdf2f858a4b1
[ "Apache-2.0" ]
196
2020-01-16T13:56:01.000Z
2022-03-29T02:06:51.000Z
tests/unit_tests/gui/mainWmixin/test_tabEnviron.py
mworion/MountWizzard4
4e06b29ec2ef70be40e114b911b7bdf2f858a4b1
[ "Apache-2.0" ]
6
2019-12-01T19:39:33.000Z
2021-05-27T13:14:20.000Z
############################################################ # -*- coding: utf-8 -*- # # # # # # # # # ## ## # ## # # # # # # # # # # # # # # # ## # ## ## ###### # # # # # # # # # Python-based Tool for interaction with the 10micron mounts # GUI with PyQT5 for python # # written in python3, (c) 2019-2021 by mworion # Licence APL2.0 # ########################################################### # standard libraries import pytest from unittest import mock from pathlib import Path # external packages from PyQt5.QtGui import QImage from PyQt5.QtGui import QPixmap from PyQt5.QtCore import QObject from PyQt5.QtCore import QThreadPool from PyQt5.QtCore import pyqtSignal from mountcontrol.qtmount import Mount import requests from skyfield.api import wgs84 from skyfield.api import Loader import numpy as np # local import from gui.mainWmixin.tabEnviron import Environ from gui.widgets.main_ui import Ui_MainWindow from gui.utilities.toolsQtWidget import MWidget from logic.environment.sensorWeather import SensorWeather from logic.environment.onlineWeather import OnlineWeather from logic.environment.weatherUPB import WeatherUPB from logic.environment.skymeter import Skymeter from base.loggerMW import setupLogging setupLogging() @pytest.fixture(autouse=True, scope='module') def module(qapp): yield @pytest.fixture(autouse=True, scope='function') def function(module): class Test1(QObject): mount = Mount(host='localhost', MAC='00:00:00:00:00:00', verbose=False, pathToData='tests/workDir/data') update10s = pyqtSignal() threadPool = QThreadPool() class Test(QObject): config = {'mainW': {}} threadPool = QThreadPool() update1s = pyqtSignal() update30m = pyqtSignal() message = pyqtSignal(str, int) mount = Mount(host='localhost', MAC='00:00:00:00:00:00', verbose=False, pathToData='tests/workDir/data') mount.obsSite.location = wgs84.latlon(latitude_degrees=20, longitude_degrees=10, elevation_m=500) loader = Loader('tests/testData', verbose=False) planets = loader('de421_23.bsp') sensorWeather = SensorWeather(app=Test1()) onlineWeather = OnlineWeather(app=Test1()) powerWeather = WeatherUPB(app=Test1()) skymeter = Skymeter(app=Test1()) class Mixin(MWidget, Environ): def __init__(self): super().__init__() self.app = Test() self.deviceStat = {} self.threadPool = self.app.threadPool self.ui = Ui_MainWindow() self.ui.setupUi(self) Environ.__init__(self) window = Mixin() yield window def test_initConfig_1(function): suc = function.initConfig() assert suc def test_storeConfig_1(function): suc = function.storeConfig() assert suc def test_updateRefractionUpdateType_1(function): class Test: weatherStatus = 3 function.refractionSource = 'onlineWeather' suc = function.updateRefractionUpdateType(setting=Test()) assert not suc def test_updateRefractionUpdateType_2(function): class Test: weatherStatus = 3 function.refractionSource = 'directWeather' suc = function.updateRefractionUpdateType(setting=Test()) assert not suc def test_updateRefractionUpdateType_3(function): class Test: weatherStatus = 0 function.refractionSource = 'directWeather' function.ui.checkRefracNone.setChecked(False) suc = function.updateRefractionUpdateType(setting=Test()) assert suc assert function.ui.checkRefracNone.isChecked() def test_updateRefractionUpdateType_4(function): class Test: weatherStatus = 1 function.refractionSource = 'directWeather' function.ui.checkRefracNoTrack.setChecked(False) suc = function.updateRefractionUpdateType(setting=Test()) assert suc def test_updateRefractionUpdateType_5(function): class Test: weatherStatus = 2 function.refractionSource = 'directWeather' function.ui.checkRefracCont.setChecked(False) suc = function.updateRefractionUpdateType(setting=Test()) assert suc def test_setRefractionUpdateType_1(function): function.refractionSource = 'onlineWeather' suc = function.setRefractionUpdateType() assert not suc def test_setRefractionUpdateType_2(function): function.refractionSource = 'directWeather' function.ui.checkRefracNone.setChecked(True) suc = function.setRefractionUpdateType() assert not suc def test_setRefractionUpdateType_3(function): function.refractionSource = 'directWeather' function.ui.checkRefracNoTrack.setChecked(True) suc = function.setRefractionUpdateType() assert not suc def test_setRefractionUpdateType_4(function): function.refractionSource = 'directWeather' function.ui.checkRefracCont.setChecked(True) suc = function.setRefractionUpdateType() assert not suc def test_setRefractionSourceGui_1(function): suc = function.setRefractionSourceGui() assert suc def test_setRefractionSourceGui_2(function): function.refractionSource = 'onlineWeather' suc = function.setRefractionSourceGui() assert suc def test_selectRefractionSource_1(function): def Sender(): return function.ui.powerPort1 function.sender = Sender suc = function.selectRefractionSource() assert suc def test_selectRefractionSource_2(function): def Sender(): return function.ui.onlineWeatherGroup function.refractionSource = 'onlineWeather' function.sender = Sender suc = function.selectRefractionSource() assert suc def test_selectRefractionSource_3(function): def Sender(): return function.ui.onlineWeatherGroup function.refractionSource = 'onlineWeather' function.ui.onlineWeatherGroup.setChecked(True) function.sender = Sender suc = function.selectRefractionSource() assert suc def test_updateFilterRefractionParameters_1(function): function.refractionSource = 'onlineWeather' function.app.onlineWeather.data = {} suc = function.updateFilterRefractionParameters() assert not suc def test_updateFilterRefractionParameters_2(function): function.refractionSource = 'weather' function.app.onlineWeather.data = {'temperature': 10, 'pressure': 1000} suc = function.updateFilterRefractionParameters() assert not suc def test_updateFilterRefractionParameters_3(function): function.refractionSource = 'onlineWeather' function.app.onlineWeather.data = {'temperature': 10, 'pressure': 1000} suc = function.updateFilterRefractionParameters() assert suc def test_updateFilterRefractionParameters_4(function): function.refractionSource = 'sensorWeather' suc = function.updateFilterRefractionParameters() assert not suc def test_updateFilterRefractionParameters_5(function): function.refractionSource = 'sensorWeather' function.app.sensorWeather.data = {'WEATHER_PARAMETERS.WEATHER_TEMPERATURE': 10, 'WEATHER_PARAMETERS.WEATHER_PRESSURE': 1000} suc = function.updateFilterRefractionParameters() assert suc def test_updateFilterRefractionParameters_6(function): function.refractionSource = 'sensorWeather' function.filteredTemperature = None function.app.sensorWeather.data = {'WEATHER_PARAMETERS.WEATHER_TEMPERATURE': 10, 'WEATHER_PARAMETERS.WEATHER_PRESSURE': 1000} suc = function.updateFilterRefractionParameters() assert suc def test_updateFilterRefractionParameters_7(function): function.refractionSource = 'sensorWeather' function.filteredPressure = None function.app.sensorWeather.data = {'WEATHER_PARAMETERS.WEATHER_TEMPERATURE': 10, 'WEATHER_PARAMETERS.WEATHER_PRESSURE': 1000} suc = function.updateFilterRefractionParameters() assert suc def test_updateFilterRefractionParameters_8(function): function.refractionSource = 'sensorWeather' function.filteredTemperature = np.full(100, 10) function.app.sensorWeather.data = {'WEATHER_PARAMETERS.WEATHER_TEMPERATURE': 10, 'WEATHER_PARAMETERS.WEATHER_PRESSURE': 1000} suc = function.updateFilterRefractionParameters() assert suc def test_updateFilterRefractionParameters_9(function): function.refractionSource = 'sensorWeather' function.filteredPressure = np.full(100, 1000) function.app.sensorWeather.data = {'WEATHER_PARAMETERS.WEATHER_TEMPERATURE': 10, 'WEATHER_PARAMETERS.WEATHER_PRESSURE': 1000} suc = function.updateFilterRefractionParameters() assert suc def test_movingAverageRefractionParameters_1(function): v1, v2 = function.movingAverageRefractionParameters() assert v1 is None assert v2 is None def test_movingAverageRefractionParameters_2(function): function.filteredTemperature = np.full(100, 10) function.filteredPressure = np.full(100, 1000) v1, v2 = function.movingAverageRefractionParameters() assert v1 == 10.0 assert v2 == 1000.0 def test_updateRefractionParameters_1(function, qtbot): function.refractionSource = 'directWeather' suc = function.updateRefractionParameters() assert not suc def test_updateRefractionParameters_2(function, qtbot): function.refractionSource = 'onlineWeather' function.deviceStat['mount'] = False suc = function.updateRefractionParameters() assert not suc def test_updateRefractionParameters_3(function, qtbot): function.refractionSource = 'onlineWeather' function.deviceStat['mount'] = True with mock.patch.object(function, 'movingAverageRefractionParameters', return_value=(None, None)): suc = function.updateRefractionParameters() assert not suc def test_updateRefractionParameters_4(function, qtbot): def Sender(): return function.ui.isOnline function.sender = Sender function.refractionSource = 'onlineWeather' function.deviceStat['mount'] = True function.ui.checkRefracNone.setChecked(True) with mock.patch.object(function, 'movingAverageRefractionParameters', return_value=(10, 10)): suc = function.updateRefractionParameters() assert not suc def test_updateRefractionParameters_5(function, qtbot): def Sender(): return function.ui.isOnline function.sender = Sender function.refractionSource = 'onlineWeather' function.deviceStat['mount'] = True function.ui.checkRefracNone.setChecked(False) function.ui.checkRefracNoTrack.setChecked(True) function.app.mount.obsSite.status = '0' with mock.patch.object(function, 'movingAverageRefractionParameters', return_value=(10, 10)): suc = function.updateRefractionParameters() assert not suc def test_updateRefractionParameters_6(function, qtbot): def Sender(): return function.ui.setRefractionManual function.sender = Sender function.refractionSource = 'onlineWeather' function.deviceStat['mount'] = True with mock.patch.object(function, 'movingAverageRefractionParameters', return_value=(10, 10)): with mock.patch.object(function.app.mount.setting, 'setRefractionParam', return_value=False): suc = function.updateRefractionParameters() assert not suc def test_updateRefractionParameters_7(function, qtbot): def Sender(): return function.ui.setRefractionManual function.sender = Sender function.refractionSource = 'onlineWeather' function.deviceStat['mount'] = True with mock.patch.object(function, 'movingAverageRefractionParameters', return_value=(10, 10)): with mock.patch.object(function.app.mount.setting, 'setRefractionParam', return_value=True): suc = function.updateRefractionParameters() assert suc def test_clearEnvironGui_1(function): function.clearSensorWeatherGui('test') assert function.ui.sensorWeatherTemp.text() == '-' assert function.ui.sensorWeatherPress.text() == '-' assert function.ui.sensorWeatherDewPoint.text() == '-' assert function.ui.sensorWeatherHumidity.text() == '-' def test_updateEnvironGui_1(function): function.app.sensorWeather.name = 'test' function.app.sensorWeather.data['WEATHER_PARAMETERS.WEATHER_TEMPERATURE'] = 10.5 function.updateSensorWeatherGui() assert function.ui.sensorWeatherTemp.text() == '10.5' def test_updateEnvironGui_2(function): function.app.sensorWeather.name = 'test' function.app.sensorWeather.data['WEATHER_PARAMETERS.WEATHER_PRESSURE'] = 10.5 function.updateSensorWeatherGui() assert function.ui.sensorWeatherPress.text() == '10.5' def test_updateEnvironGui_3(function): function.app.sensorWeather.name = 'test' function.app.sensorWeather.data['WEATHER_PARAMETERS.WEATHER_DEWPOINT'] = 10.5 function.updateSensorWeatherGui() assert function.ui.sensorWeatherDewPoint.text() == '10.5' def test_updateEnvironGui_4(function): function.app.sensorWeather.name = 'test' function.app.sensorWeather.data['WEATHER_PARAMETERS.WEATHER_HUMIDITY'] = 10 function.updateSensorWeatherGui() assert function.ui.sensorWeatherHumidity.text() == ' 10' def test_clearSkymeterGui_1(function): function.clearSkymeterGui() assert function.ui.skymeterSQR.text() == '-' assert function.ui.skymeterTemp.text() == '-' def test_updateSkymeterGui_1(function): function.app.skymeter.name = 'test' function.app.skymeter.data['SKY_QUALITY.SKY_BRIGHTNESS'] = 10.5 function.updateSkymeterGui() assert function.ui.skymeterSQR.text() == '10.50' def test_updateSkymeterGui_2(function): function.app.skymeter.name = 'test' function.app.skymeter.data['SKY_QUALITY.SKY_TEMPERATURE'] = 10.5 function.updateSkymeterGui() assert function.ui.skymeterTemp.text() == '10.5' def test_clearPowerWeatherGui_1(function): function.clearPowerWeatherGui() assert function.ui.powerHumidity.text() == '-' assert function.ui.powerTemp.text() == '-' assert function.ui.powerDewPoint.text() == '-' def test_updatePowerWeatherGui_1(function): function.app.powerWeather.name = 'test' function.app.powerWeather.data['WEATHER_PARAMETERS.WEATHER_TEMPERATURE'] = 10.5 function.updatePowerWeatherGui() assert function.ui.powerTemp.text() == '10.5' def test_updatePowerWeatherGui_2(function): function.app.powerWeather.name = 'test' function.app.powerWeather.data['WEATHER_PARAMETERS.WEATHER_HUMIDITY'] = 10 function.updatePowerWeatherGui() assert function.ui.powerHumidity.text() == ' 10' def test_updatePowerWeatherGui_3(function): function.app.powerWeather.name = 'test' function.app.powerWeather.data['WEATHER_PARAMETERS.WEATHER_DEWPOINT'] = 10.5 function.updatePowerWeatherGui() assert function.ui.powerDewPoint.text() == '10.5' def test_getWebDataWorker_1(function): suc = function.getWebDataWorker() assert not suc def test_getWebDataWorker_2(function): suc = function.getWebDataWorker(url='http://test') assert not suc def test_getWebDataWorker_3(function): class Test: status_code = 300 with mock.patch.object(requests, 'get', return_value=Test()): suc = function.getWebDataWorker(url='http://test') assert not suc def test_getWebDataWorker_4(function): class Test: status_code = 200 with mock.patch.object(requests, 'get', return_value=Test()): suc = function.getWebDataWorker(url='http://test') assert suc def test_getWebDataWorker_5(function): class Test: status_code = 200 with mock.patch.object(requests, 'get', return_value=Test(), side_effect=Exception): suc = function.getWebDataWorker(url='http://test') assert not suc def test_processClearOutsideImage_1(function): image = QImage('tests/testData/forecast.png') suc = function.processClearOutsideImage(image=image) assert suc def test_updateClearOutsideImage_1(function): suc = function.updateClearOutsideImage() assert not suc def test_updateClearOutsideImage_2(function): class Test: content = 'test' suc = function.updateClearOutsideImage(Test()) assert not suc def test_updateClearOutsideImage_3(function): image = QImage('tests/testData/forecast.png') pixmapBase = QPixmap().fromImage(image) with open(Path('tests/testData/forecast.png'), 'rb') as image: f = image.read() b = bytes(f) class Test: content = b with mock.patch.object(function, 'processClearOutsideImage', return_value=pixmapBase): suc = function.updateClearOutsideImage(Test()) assert suc def test_updateClearOutsideImage_4(function): class Test: pass suc = function.updateClearOutsideImage(Test()) assert not suc def test_updateClearOutside_1(function): function.ui.isOnline.setChecked(False) suc = function.updateClearOutside() assert not suc def test_updateClearOutside_2(function): function.ui.isOnline.setChecked(True) suc = function.updateClearOutside() assert suc def test_clearOnlineWeatherGui_1(function): function.clearOnlineWeatherGui() assert function.ui.onlineWeatherTemp.text() == '-' assert function.ui.onlineWeatherPress.text() == '-' assert function.ui.onlineWeatherHumidity.text() == '-' assert function.ui.onlineWeatherCloudCover.text() == '-' assert function.ui.onlineWeatherWindSpeed.text() == '-' assert function.ui.onlineWeatherWindDir.text() == '-' assert function.ui.onlineWeatherRainVol.text() == '-' def test_updateOnlineWeatherGui_1(function): suc = function.updateOnlineWeatherGui() assert not suc def test_updateOnlineWeatherGui_2(function): suc = function.updateOnlineWeatherGui(data={'temperature': 10, 'pressure': 1000, 'humidity': 50, 'dewPoint': 10, 'cloudCover': 50, 'windSpeed': 10, 'windDir': 120, 'rain': 5}) assert suc def test_clearDirectWeatherGui_1(function): suc = function.clearDirectWeatherGui() assert suc def test_updateDirectWeatherGui_1(function): function.deviceStat['directWeather'] = False suc = function.updateDirectWeatherGui() assert not suc def test_updateDirectWeatherGui_2(function): function.deviceStat['directWeather'] = True suc = function.updateDirectWeatherGui() assert not suc def test_updateDirectWeatherGui_3(function): class Test: weatherTemperature = 3 weatherPressure = 1000 weatherHumidity = 50 weatherDewPoint = 10 function.deviceStat['directWeather'] = True suc = function.updateDirectWeatherGui(setting=Test()) assert suc
31.621835
84
0.677808
7511679e73371585ea0c3b5905da6003649ede50
20,982
py
Python
Products/CMFCore/exportimport/tests/test_actions.py
fulv/Products.CMFCore
1d6ce101b10aaefba8aa917b6aa404e6c49e254d
[ "ZPL-2.1" ]
null
null
null
Products/CMFCore/exportimport/tests/test_actions.py
fulv/Products.CMFCore
1d6ce101b10aaefba8aa917b6aa404e6c49e254d
[ "ZPL-2.1" ]
null
null
null
Products/CMFCore/exportimport/tests/test_actions.py
fulv/Products.CMFCore
1d6ce101b10aaefba8aa917b6aa404e6c49e254d
[ "ZPL-2.1" ]
null
null
null
############################################################################## # # Copyright (c) 2005 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Actions tool node adapter unit tests. """ import unittest from Acquisition import Implicit from Acquisition import aq_parent from OFS.OrderedFolder import OrderedFolder from Products.GenericSetup.testing import BodyAdapterTestCase from Products.GenericSetup.testing import NodeAdapterTestCase from Products.GenericSetup.tests.common import BaseRegistryTests from Products.GenericSetup.tests.common import DummyExportContext from Products.GenericSetup.tests.common import DummyImportContext from zope.component import getSiteManager from zope.interface import implementer from ...ActionProviderBase import ActionProviderBase from ...interfaces import IActionProvider from ...interfaces import IActionsTool from ...interfaces import IMembershipTool from ...testing import ExportImportZCMLLayer from ...tests.base.dummy import DummySite _ACTION_XML = b"""\ <object name="foo_action" meta_type="CMF Action"> <property name="title">Foo</property> <property name="description"></property> <property name="url_expr">string:${object_url}/foo</property> <property name="link_target"></property> <property name="icon_expr"></property> <property name="available_expr">python:1</property> <property name="permissions"/> <property name="visible">True</property> </object> """ _ACTIONCATEGORY_XML = b"""\ <object name="foo_category" meta_type="CMF Action Category"> <property name="title"></property> <object name="foo_action" meta_type="CMF Action"> <property name="title"></property> <property name="description"></property> <property name="url_expr"></property> <property name="link_target"></property> <property name="icon_expr"></property> <property name="available_expr"></property> <property name="permissions"/> <property name="visible">True</property> </object> </object> """ _ACTIONSTOOL_BODY = b"""\ <?xml version="1.0" encoding="utf-8"?> <object name="portal_actions" meta_type="CMF Actions Tool" xmlns:i18n="http://xml.zope.org/namespaces/i18n"> <action-provider name="portal_actions"/> <object name="foo_category" meta_type="CMF Action Category"> <property name="title"></property> <object name="foo_action" meta_type="CMF Action" i18n:domain="foo_domain"> <property name="title" i18n:translate=""></property> <property name="description" i18n:translate=""></property> <property name="url_expr"></property> <property name="link_target"></property> <property name="icon_expr"></property> <property name="available_expr"></property> <property name="permissions"/> <property name="visible">True</property> </object> </object> </object> """ _EMPTY_EXPORT = b"""\ <?xml version="1.0"?> <object name="portal_actions" meta_type="CMF Actions Tool" xmlns:i18n="http://xml.zope.org/namespaces/i18n"> <action-provider name="portal_actions"/> </object> """ _OLD_EXPORT = b"""\ <?xml version="1.0"?> <object name="portal_actions" meta_type="CMF Actions Tool" xmlns:i18n="http://xml.zope.org/namespaces/i18n"> <action-provider name="portal_actions"> <action action_id="baz" title="Baz" url_expr="string:${object_url}/baz" condition_expr="python:1" category="dummy" visible="True"/> </action-provider> <action-provider name="portal_foo"> <action action_id="foo" title="Foo" url_expr="string:${object_url}/foo" condition_expr="python:1" category="dummy" visible="True"/> </action-provider> <action-provider name="portal_bar"> <action action_id="bar" title="Bar" url_expr="string:${object_url}/bar" condition_expr="python:0" category="dummy" visible="False"> <permission>Manage portal</permission> </action> </action-provider> </object> """ _NORMAL_EXPORT = """\ <?xml version="1.0" encoding="utf-8"?> <object name="portal_actions" meta_type="CMF Actions Tool" xmlns:i18n="http://xml.zope.org/namespaces/i18n"> <action-provider name="portal_actions"> <action action_id="baz" title="Baz" url_expr="string:${object_url}/baz" condition_expr="python:1" category="dummy" visible="True"/> </action-provider> <action-provider name="portal_foo"/> <action-provider name="portal_bar"/> </object> """ _NEWSYTLE_EXPORT = b"""\ <?xml version="1.0"?> <object name="portal_actions" meta_type="CMF Actions Tool" xmlns:i18n="http://xml.zope.org/namespaces/i18n"> <action-provider name="portal_actions"/> <action-provider name="portal_foo"/> <action-provider name="portal_bar"/> <object name="dummy" meta_type="CMF Action Category"> <property name="title"></property> <object name="baz" meta_type="CMF Action"> <property name="title">Baz</property> <property name="description"></property> <property name="url_expr">string:${object_url}/baz</property> <property name="link_target"></property> <property name="icon_expr"></property> <property name="available_expr">python:1</property> <property name="permissions"></property> <property name="visible">True</property> </object> </object> </object> """ _I18N_IMPORT = """\ <?xml version="1.0"?> <object name="portal_actions" meta_type="CMF Actions Tool" xmlns:i18n="http://xml.zope.org/namespaces/i18n"> <action-provider name="portal_actions"/> <object name="dummy" meta_type="CMF Action Category"> <property name="title"></property> <object name="foo" meta_type="CMF Action" i18n:domain="foo_domain"> <property name="title" i18n:translate="">Foo</property> <property name="description" i18n:translate=""></property> <property name="url_expr">string:${object_url}/foo</property> <property name="link_target"></property> <property name="icon_expr"></property> <property name="available_expr">python:1</property> <property name="permissions"></property> <property name="visible">True</property> </object> </object> </object> """ _INSERT_IMPORT = """\ <?xml version="1.0"?> <object name="portal_actions"> <object name="dummy"> <object name="spam" meta_type="CMF Action" insert-before="*"> <property name="title">Spam</property> <property name="description"></property> <property name="url_expr">string:${object_url}/spam</property> <property name="icon_expr">string:spam_icon.png</property> <property name="available_expr"></property> <property name="permissions"> <element value="View" /></property> <property name="visible">True</property> </object> <object name="baz" insert-after="*"> <property name="icon_expr">string:baz_icon.png</property> </object> </object> </object> """ _REMOVE_IMPORT = """\ <?xml version="1.0"?> <object name="portal_actions"> <action-provider name="portal_actions" remove=""/> <action-provider name="not_existing" remove=""/> <action-provider name="portal_bar" remove=""/> </object> """ @implementer(IActionProvider) class DummyTool(OrderedFolder, ActionProviderBase): pass class DummyUser(Implicit): def getId(self): return 'dummy' class DummyMembershipTool(DummyTool): def isAnonymousUser(self): return False def getAuthenticatedMember(self): return DummyUser().__of__(aq_parent(self)) @implementer(IActionsTool) class DummyActionsTool(DummyTool): id = 'portal_actions' meta_type = 'CMF Actions Tool' def __init__(self): self._providers = [] def addActionProvider(self, provider_name): self._providers.append(provider_name) def listActionProviders(self): return self._providers[:] def deleteActionProvider(self, provider_name): self._providers = [x for x in self._providers if x != provider_name] class ActionNodeAdapterTests(NodeAdapterTestCase, unittest.TestCase): layer = ExportImportZCMLLayer def _getTargetClass(self): from ..actions import ActionNodeAdapter return ActionNodeAdapter def _populate(self, obj): obj._setPropValue('title', 'Foo') obj._setPropValue('url_expr', 'string:${object_url}/foo') obj._setPropValue('available_expr', 'python:1') def _verifyImport(self, obj): self.assertEqual(type(obj.title), str) self.assertEqual(obj.title, 'Foo') self.assertEqual(type(obj.description), str) self.assertEqual(obj.description, '') self.assertEqual(type(obj.url_expr), str) self.assertEqual(obj.url_expr, 'string:${object_url}/foo') self.assertEqual(type(obj.icon_expr), str) self.assertEqual(obj.icon_expr, '') self.assertEqual(type(obj.available_expr), str) self.assertEqual(obj.available_expr, 'python:1') self.assertEqual(type(obj.permissions), tuple) self.assertEqual(obj.permissions, ()) self.assertEqual(type(obj.visible), bool) self.assertEqual(obj.visible, True) def setUp(self): from ...ActionInformation import Action self._obj = Action('foo_action') self._XML = _ACTION_XML class ActionCategoryNodeAdapterTests(NodeAdapterTestCase, unittest.TestCase): layer = ExportImportZCMLLayer def _getTargetClass(self): from ..actions import ActionCategoryNodeAdapter return ActionCategoryNodeAdapter def _populate(self, obj): from ...ActionInformation import Action obj._setObject('foo_action', Action('foo_action')) def _verifyImport(self, obj): self.assertEqual(type(obj.title), str) self.assertEqual(obj.title, '') def setUp(self): from ...ActionInformation import ActionCategory self._obj = ActionCategory('foo_category') self._XML = _ACTIONCATEGORY_XML class ActionsToolXMLAdapterTests(BodyAdapterTestCase, unittest.TestCase): layer = ExportImportZCMLLayer def _getTargetClass(self): from ..actions import ActionsToolXMLAdapter return ActionsToolXMLAdapter def _populate(self, obj): from ...ActionInformation import Action from ...ActionInformation import ActionCategory obj._setObject('foo_category', ActionCategory('foo_category')) obj.action_providers = ('portal_actions',) obj.foo_category._setObject('foo_action', Action('foo_action')) obj.foo_category.foo_action.i18n_domain = 'foo_domain' def _verifyImport(self, obj): self.assertEqual(type(obj.action_providers), tuple) self.assertEqual(obj.action_providers, ('portal_actions',)) self.assertEqual(type(obj.action_providers[0]), str) self.assertEqual(obj.action_providers[0], 'portal_actions') def setUp(self): from ...ActionsTool import ActionsTool self._obj = ActionsTool('portal_actions') self._BODY = _ACTIONSTOOL_BODY getSiteManager().registerUtility(self._obj, IActionsTool) class _ActionSetup(BaseRegistryTests): def _initSite(self, foo=2, bar=2): site = DummySite('site') sm = getSiteManager() sm.registerUtility(DummyMembershipTool(), IMembershipTool) atool = DummyActionsTool() atool.addActionProvider('portal_actions') sm.registerUtility(atool, IActionsTool) if foo > 0: site.portal_foo = DummyTool() if foo > 1: site.portal_foo.addAction(id='foo', name='Foo', action='foo', condition='python:1', permission=(), category='dummy', visible=1) atool.addActionProvider('portal_foo') if bar > 0: site.portal_bar = DummyTool() if bar > 1: site.portal_bar.addAction(id='bar', name='Bar', action='bar', condition='python:0', permission=('Manage portal',), category='dummy', visible=0) atool.addActionProvider('portal_bar') return site, atool class exportActionProvidersTests(_ActionSetup): layer = ExportImportZCMLLayer def test_unchanged(self): from ..actions import exportActionProviders site, _atool = self._initSite(0, 0) context = DummyExportContext(site) exportActionProviders(context) self.assertEqual(len(context._wrote), 1) filename, text, content_type = context._wrote[0] self.assertEqual(filename, 'actions.xml') self._compareDOM(text.decode('utf8'), _EMPTY_EXPORT) self.assertEqual(content_type, 'text/xml') def test_normal(self): from ..actions import exportActionProviders site, atool = self._initSite() # Set up an old action for added difficulty atool.addAction(id='baz', name='Baz', action='baz', condition='python:1', permission=(), category='dummy', visible=1) context = DummyExportContext(site) exportActionProviders(context) self.assertEqual(len(context._wrote), 1) filename, text, content_type = context._wrote[0] self.assertEqual(filename, 'actions.xml') self._compareDOM(text.decode('utf-8'), _NORMAL_EXPORT) self.assertEqual(content_type, 'text/xml') class importActionProvidersTests(_ActionSetup): layer = ExportImportZCMLLayer def test_empty_default_purge(self): from ..actions import importActionProviders site, atool = self._initSite(2, 0) self.assertEqual(len(atool.listActionProviders()), 2) self.assertTrue('portal_foo' in atool.listActionProviders()) self.assertTrue('portal_actions' in atool.listActionProviders()) context = DummyImportContext(site) context._files['actions.xml'] = _EMPTY_EXPORT importActionProviders(context) self.assertEqual(len(atool.listActionProviders()), 1) self.assertFalse('portal_foo' in atool.listActionProviders()) self.assertTrue('portal_actions' in atool.listActionProviders()) self.assertEqual(len(atool.objectIds()), 0) def test_empty_explicit_purge(self): from ..actions import importActionProviders site, atool = self._initSite(2, 0) self.assertEqual(len(atool.listActionProviders()), 2) self.assertTrue('portal_foo' in atool.listActionProviders()) self.assertTrue('portal_actions' in atool.listActionProviders()) context = DummyImportContext(site, True) context._files['actions.xml'] = _EMPTY_EXPORT importActionProviders(context) self.assertEqual(len(atool.listActionProviders()), 1) self.assertFalse('portal_foo' in atool.listActionProviders()) self.assertTrue('portal_actions' in atool.listActionProviders()) self.assertEqual(len(atool.objectIds()), 0) def test_empty_skip_purge(self): from ..actions import importActionProviders site, atool = self._initSite(2, 0) self.assertEqual(len(atool.listActionProviders()), 2) self.assertTrue('portal_foo' in atool.listActionProviders()) self.assertTrue('portal_actions' in atool.listActionProviders()) context = DummyImportContext(site, False) context._files['actions.xml'] = _EMPTY_EXPORT importActionProviders(context) self.assertEqual(len(atool.listActionProviders()), 2) self.assertTrue('portal_foo' in atool.listActionProviders()) self.assertTrue('portal_actions' in atool.listActionProviders()) def test_normal(self): from ..actions import exportActionProviders from ..actions import importActionProviders site, atool = self._initSite(1, 1) foo = site.portal_foo bar = site.portal_bar self.assertEqual(len(atool.listActionProviders()), 1) self.assertFalse('portal_foo' in atool.listActionProviders()) self.assertFalse(foo.listActions()) self.assertFalse('portal_bar' in atool.listActionProviders()) self.assertFalse(bar.listActions()) self.assertTrue('portal_actions' in atool.listActionProviders()) context = DummyImportContext(site) context._files['actions.xml'] = _OLD_EXPORT importActionProviders(context) self.assertEqual(len(atool.listActionProviders()), 3) self.assertTrue('portal_bar' in atool.listActionProviders()) self.assertTrue('portal_foo' in atool.listActionProviders()) self.assertTrue('portal_actions' in atool.listActionProviders()) self.assertEqual(len(atool.objectIds()), 1) self.assertTrue('dummy' in atool.objectIds()) # Only one action appears. The importer only deals with actions # defined by the actions tool. Other tools are responsible for # exporting/importing actions themselves. self.assertEqual(len(atool.dummy.objectIds()), 1) self.assertTrue('baz' in atool.dummy.objectIds()) self.assertFalse(foo.listActions()) self.assertFalse(bar.listActions()) # complete the roundtrip context = DummyExportContext(site) exportActionProviders(context) self.assertEqual(len(context._wrote), 1) filename, text, content_type = context._wrote[0] self.assertEqual(filename, 'actions.xml') self._compareDOM(text.decode('utf8'), _NEWSYTLE_EXPORT) self.assertEqual(content_type, 'text/xml') def test_i18n(self): from ..actions import exportActionProviders from ..actions import importActionProviders site, atool = self._initSite(0, 0) context = DummyImportContext(site) context._files['actions.xml'] = _I18N_IMPORT importActionProviders(context) self.assertEqual(len(atool.listActionProviders()), 1) self.assertEqual(atool.objectIds(), ['dummy']) self.assertEqual(atool.dummy.objectIds(), ['foo']) self.assertEqual(atool.dummy.foo.i18n_domain, 'foo_domain') # complete the roundtrip context = DummyExportContext(site) exportActionProviders(context) self.assertEqual(len(context._wrote), 1) filename, text, content_type = context._wrote[0] self.assertEqual(filename, 'actions.xml') self._compareDOM(text.decode('utf8'), _I18N_IMPORT) self.assertEqual(content_type, 'text/xml') def test_insert_skip_purge(self): from ..actions import importActionProviders site, atool = self._initSite(0, 0) context = DummyImportContext(site) context._files['actions.xml'] = _NEWSYTLE_EXPORT importActionProviders(context) self.assertEqual(len(atool.listActionProviders()), 3) self.assertEqual(atool.objectIds(), ['dummy']) self.assertEqual(atool.dummy.objectIds(), ['baz']) self.assertEqual(atool.dummy.baz.icon_expr, '') context = DummyImportContext(site, False) context._files['actions.xml'] = _INSERT_IMPORT importActionProviders(context) self.assertEqual(len(atool.listActionProviders()), 3) self.assertEqual(atool.objectIds(), ['dummy']) self.assertEqual(atool.dummy.objectIds(), ['spam', 'baz']) self.assertEqual(atool.dummy.baz.icon_expr, 'string:baz_icon.png') def test_remove_skip_purge(self): from ..actions import importActionProviders site, atool = self._initSite(2, 2) self.assertEqual(atool.listActionProviders(), ['portal_actions', 'portal_foo', 'portal_bar']) context = DummyImportContext(site, False) context._files['actions.xml'] = _REMOVE_IMPORT importActionProviders(context) self.assertEqual(atool.listActionProviders(), ['portal_foo']) def test_suite(): return unittest.TestSuite(( unittest.makeSuite(ActionNodeAdapterTests), unittest.makeSuite(ActionCategoryNodeAdapterTests), unittest.makeSuite(ActionsToolXMLAdapterTests), unittest.makeSuite(exportActionProvidersTests), unittest.makeSuite(importActionProvidersTests), ))
34.738411
78
0.665761
a2ed779ee3b43671fe31f413817a02f08590fe08
8,641
py
Python
packages/python/plotly/plotly/graph_objs/layout/mapbox/layer/symbol/_textfont.py
labaran1/plotly.py
7ec751e8fed4a570c11ea4bea2231806389d62eb
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/graph_objs/layout/mapbox/layer/symbol/_textfont.py
labaran1/plotly.py
7ec751e8fed4a570c11ea4bea2231806389d62eb
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/graph_objs/layout/mapbox/layer/symbol/_textfont.py
labaran1/plotly.py
7ec751e8fed4a570c11ea4bea2231806389d62eb
[ "MIT" ]
null
null
null
from plotly.basedatatypes import BaseLayoutHierarchyType as _BaseLayoutHierarchyType import copy as _copy class Textfont(_BaseLayoutHierarchyType): # class properties # -------------------- _parent_path_str = "layout.mapbox.layer.symbol" _path_str = "layout.mapbox.layer.symbol.textfont" _valid_props = {"color", "family", "size"} # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"] @family.setter def family(self, val): self["family"] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size """ def __init__(self, arg=None, color=None, family=None, size=None, **kwargs): """ Construct a new Textfont object Sets the icon text font (color=mapbox.layer.paint.text-color, size=mapbox.layer.layout.text-size). Has an effect only when `type` is set to "symbol". Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.mapbox. layer.symbol.Textfont` color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Textfont """ super(Textfont, self).__init__("textfont") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.layout.mapbox.layer.symbol.Textfont constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.mapbox.layer.symbol.Textfont`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("family", None) _v = family if family is not None else _v if _v is not None: self["family"] = _v _v = arg.pop("size", None) _v = size if size is not None else _v if _v is not None: self["size"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
37.569565
84
0.569841
fddb4ad33a5f5489b14fb299a7c665f266e660db
212
py
Python
compiler.py
Askar-LLC/hippopserver
5be08ed26f091ff80f46a097c300ad8ba6f19721
[ "Apache-2.0" ]
1
2019-09-02T23:10:36.000Z
2019-09-02T23:10:36.000Z
compiler.py
Askar-LLC/hippopserver
5be08ed26f091ff80f46a097c300ad8ba6f19721
[ "Apache-2.0" ]
null
null
null
compiler.py
Askar-LLC/hippopserver
5be08ed26f091ff80f46a097c300ad8ba6f19721
[ "Apache-2.0" ]
null
null
null
import sys import os import debug #import a debugger from git hub def stateRun(): x = 1 if x: return x def runCode(): cprint = print() def runStation(): runCode() runStation()
9.636364
32
0.599057
67fac0137ddadd93b778cbc88082e6ba92e871d2
8,313
py
Python
attic/encrypt_files_in_dir_to_s3.py
BD2KGenomics/PrecisionImmunology
06310682c50dcf8917b912c8e551299ff7ee41ce
[ "Apache-2.0" ]
28
2016-04-16T21:11:46.000Z
2022-02-07T18:01:56.000Z
attic/encrypt_files_in_dir_to_s3.py
BD2KGenomics/PrecisionImmunology
06310682c50dcf8917b912c8e551299ff7ee41ce
[ "Apache-2.0" ]
207
2016-03-30T20:47:34.000Z
2021-10-15T20:58:10.000Z
attic/encrypt_files_in_dir_to_s3.py
BD2KGenomics/PrecisionImmunology
06310682c50dcf8917b912c8e551299ff7ee41ce
[ "Apache-2.0" ]
9
2016-04-12T23:33:58.000Z
2020-08-17T19:27:49.000Z
#!/usr/bin/env python2.7 # Copyright (C) 2016 UCSC Computational Genomics Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Author : Arjun Arkal Rao Affiliation : UCSC BME, UCSC Genomics Institute File : encrypt_files_in_dir_to_s3.py SOURCE: https://github.com/jvivian/one_off_scripts/blob/master/ encrypt_files_in_dir_to_s3.py ORIGINAL AUTHOR: John Vivian Move files in a directory, or entire directory structures to S3 with (or without) encryption. """ from __future__ import print_function import argparse import base64 import hashlib import os import subprocess import sys import re from boto.s3.connection import S3Connection class InputParameterError(Exception): """ This Error Class will be raised in the case of a bad parameter provided. """ __module__ = Exception.__module__ def generate_unique_key(master_key, url): """ This module will take a master key and a url, and then make a new key specific to the url, based off the master. :param str master_key: Path to the master key used for encryption. :param str url: Full URL to the potential file location in S3. :returns new_key: The new key that is obtained by hashing the master key:url combination. """ with open(master_key, 'r') as keyfile: master_key = keyfile.read() assert len(master_key) == 32, 'Invalid Key! Must be 32 characters. Key: %s' % master_key + \ ', Length: %s' % len(master_key) new_key = hashlib.sha256(master_key + url).digest() assert len(new_key) == 32, 'New key is invalid and is not ' + \ '32 characters: {}'.format(new_key) return new_key class BucketInfo(object): """ This class contains all the functions relevant to this script for working with a given S3 bucket. """ def __init__(self, bucket_name): self.bucket_name = bucket_name # Set up the https url base. A typical s3 endpoint url base would look like # https://s3-ENDPOINT.amazonaws.com/ # However the https endpoints for us-east-1 are slightly different and use # https://s3.amazonaws.com/ # REF: http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region endpoint = self._get_bucket_endpoint() endpoint = '-' + endpoint if endpoint else '' self._https_url_base = 'https://s3' + endpoint + '.amazonaws.com/' + self.bucket_name # Set up the s3 url base self._s3_url_base = 'S3://' + self.bucket_name def _get_bucket_endpoint(self): """ Queries S3 to identify the region hosting the provided bucket. """ conn = S3Connection() bucket = conn.lookup(self.bucket_name) if not bucket: # TODO: Make the bucket here? raise InputParameterError('The provided bucket %s doesn\'t exist' % self.bucket_name) endpoint = str(bucket.get_location()) return endpoint def object_https_url(self, key): """ Returns the full https url for key given this bucket. :param key: the remote filename :return: Full https url to the file in S3 """ return os.path.join(self._https_url_base, key) def object_s3_url(self, key): """ Returns the full s3 url for key given this bucket. :param key: the remote filename :return: Full https url to the file in S3 """ return os.path.join(self._s3_url_base, key) def write_to_s3(datum, master_key, bucket_name, remote_dir=''): """ This module will take in some datum (a file, or a folder) and write it to S3. It requires a master key to encrypt the datum with, and a bucket to drop the results into. If remote dir is set, the datum is dropped into the provided directory. :param str datum: File or folder that needs to be transferred to S3 :param str master_key: Path to the master key used for encryption. :param str bucket_name: AWS bucket to store the remote data :param str remote_dir: An optional parameter describing a remote pseudo directory in the bucket where the data will be stored. """ # Instantiate the bucket info class to set up the https and s3 url bases. bucket_info = BucketInfo(bucket_name) # Retain the base dir separately from the file name / folder structure of DATUM. This way it # can be easily joined into an AWS filename folder_base_dir = os.path.split(datum)[0] # Ensure files are either "regular files" or folders if os.path.isfile(datum): files = [os.path.basename(datum)] elif os.path.isdir(datum): files = ['/'.join([re.sub(folder_base_dir, '', folder), filename]).lstrip('/') for folder, _, files in os.walk(datum) for filename in files] else: raise RuntimeError(datum + 'was neither regular file nor folder.') # Write each file to S3 for file_path in files: # key, here, refers to the key or token used to access the file once it's in S3. # THIS IS NOT RELATED TO THE ENCRYPTION KEY. key = os.path.join(remote_dir, file_path) # base command call command = ['s3am', 'upload'] if master_key: new_key = generate_unique_key(master_key, bucket_info.object_https_url(key)) # Add base64 encoded key command.extend(['--sse-key-base64', base64.b64encode(new_key)]) # Add source path info to the call command.extend(['file://' + os.path.join(folder_base_dir, file_path)]) # Add destination to the call command.append(bucket_info.object_s3_url(key)) subprocess.call(command) return None def main(): """ This is the main module for the script. The script will accept a file, or a directory, and then encrypt it with a provided key before pushing it to S3 into a specified bucket. """ parser = argparse.ArgumentParser(description=main.__doc__, add_help=True) parser.add_argument('-M', '--master_key', dest='master_key', help='Path to the master key ' + 'used for the encryption. Data is transferred without encryption if this' + 'is not provided.', type=str, required=False, default=None) parser.add_argument('-B', '--bucket', dest='bucket', help='S3 bucket.', type=str, required=True) parser.add_argument('-R', '--remote_dir', dest='remote_dir', help='Pseudo directory within ' + 'the bucket to store the file(s). NOTE: Folder structure below ' + 'REMOTE_DIR will be retained.', type=str, required=False, default='') parser.add_argument('data', help='File(s) or folder(s) to transfer to S3.', type=str, nargs='+') params = parser.parse_args() # Input handling if params.master_key and not os.path.exists(params.master_key): raise InputParameterError('The master key was not found at ' + params.master_key) # If the user doesn't have ~/.boto , it doesn't even make sense to go ahead if not os.path.exists(os.path.expanduser('~/.boto')): raise RuntimeError('~/.boto not found') # Ensure that the remote directory doesn't start with a / if params.remote_dir.startswith('/'): raise InputParameterError('The remote dir cannot start with a \'/\'') # Process each of the input arguments. for datum in params.data: datum = os.path.abspath(datum) if not os.path.exists(datum): print('ERROR: %s could not be found.' % datum, file=sys.stderr) continue write_to_s3(datum, params.master_key, params.bucket, params.remote_dir) return None if __name__ == '__main__': main()
42.630769
100
0.659569
caae29c7907bf9f98169c242c63d8112447bcc27
2,860
py
Python
keras/layers/merging/multiply.py
itsraina/keras
5e9376b5b94b6fb445dd52dbfafbc4e95bff5e35
[ "Apache-2.0" ]
null
null
null
keras/layers/merging/multiply.py
itsraina/keras
5e9376b5b94b6fb445dd52dbfafbc4e95bff5e35
[ "Apache-2.0" ]
null
null
null
keras/layers/merging/multiply.py
itsraina/keras
5e9376b5b94b6fb445dd52dbfafbc4e95bff5e35
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Layer that multiplies (element-wise) several inputs.""" from keras.layers.merging.base_merge import _Merge # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.Multiply") class Multiply(_Merge): """Layer that multiplies (element-wise) a list of inputs. It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same shape). >>> tf.keras.layers.Multiply()([np.arange(5).reshape(5, 1), ... np.arange(5, 10).reshape(5, 1)]) <tf.Tensor: shape=(5, 1), dtype=int64, numpy= array([[ 0], [ 6], [14], [24], [36]])> >>> x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2)) >>> x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2)) >>> multiplied = tf.keras.layers.Multiply()([x1, x2]) >>> multiplied.shape TensorShape([5, 8]) """ def _merge_function(self, inputs): output = inputs[0] for i in range(1, len(inputs)): output = output * inputs[i] return output @keras_export("keras.layers.multiply") def multiply(inputs, **kwargs): """Functional interface to the `Multiply` layer. Example: >>> x1 = np.arange(3.0) >>> x2 = np.arange(3.0) >>> tf.keras.layers.multiply([x1, x2]) <tf.Tensor: shape=(3,), dtype=float32, numpy=array([0., 1., 4.], ...)> Usage in a functional model: >>> input1 = tf.keras.layers.Input(shape=(16,)) >>> x1 = tf.keras.layers.Dense( ... 8, activation='relu')(input1) #shape=(None, 8) >>> input2 = tf.keras.layers.Input(shape=(32,)) >>> x2 = tf.keras.layers.Dense( ... 8, activation='relu')(input2) #shape=(None, 8) >>> out = tf.keras.layers.multiply([x1,x2]) #shape=(None, 8) >>> out = tf.keras.layers.Dense(4)(out) >>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out) Args: inputs: A list of input tensors. **kwargs: Standard layer keyword arguments. Returns: A tensor, the element-wise product of the inputs. """ return Multiply(**kwargs)(inputs)
33.647059
80
0.613287
2feb0316a00b27eb2af11be358cf57539ce25e72
6,456
py
Python
app.py
abhishekkagautam/AI-model-traing-platform
385a1b52c558e2bfc0856077ef41ddfd600e3cf7
[ "Apache-2.0" ]
null
null
null
app.py
abhishekkagautam/AI-model-traing-platform
385a1b52c558e2bfc0856077ef41ddfd600e3cf7
[ "Apache-2.0" ]
null
null
null
app.py
abhishekkagautam/AI-model-traing-platform
385a1b52c558e2bfc0856077ef41ddfd600e3cf7
[ "Apache-2.0" ]
null
null
null
from flask import Flask ,render_template, request, session, redirect, url_for, jsonify, flash import sklearn import pandas as pd from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.metrics import confusion_matrix import pickle from flask_session import Session from flask import send_file #app = Flask(__name__) app = Flask(__name__) app.config["SESSION_PERMANENT"] = False app.config["SESSION_TYPE"] = "filesystem" Session(app) """ @app.route("/") def hello_world(): return render_template("index.html") """ @app.route("/") def index(): # check if the users exist or not if not session.get("name"): # if not there in the session then redirect to the login page return redirect("/login") return render_template('index.html') @app.route("/login", methods=["POST", "GET"]) def login(): # if form is submited if request.method == "POST": # record the user name session["name"] = request.form.get("name") # redirect to the main page return redirect("/") return render_template("login.html") @app.route("/logout") def logout(): session["name"] = None return redirect("/") @app.route('/data_model', methods = ['POST']) def data_model(): if request.method == 'POST': problemTypeDic = {"1":"Classification","2":"Regression"} modelNameDic = {"1":"Linear Regression", "2":"Logistic Regression", "3":"Random Forest", "4":"Decision Tree", "5":"kNN", "6":"SVM"} #title = request.form["title"] #firstName = request.form['nameFirst'] #lastName = request.form['nameLast'] email = request.form['email'] contact = request.form['number'] modelName = request.form['modelName'] problemType = request.form['problemType'] dataSet = request.files['dataSet'] ytrainName = request.form["ytrain"] problem = problemTypeDic[problemType] model = modelNameDic[modelName] #userData = [title,firstName,lastName,email,contact,problem,model] dataframe = pd.read_csv(dataSet) X = dataframe.loc[:, dataframe.columns != ytrainName] # Features y = dataframe[ytrainName] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) userId = email[:email.index("@")] # print(userId) if problem == "Classification": session["modelName"] = userId+"_"+"finalized_model.sav" if model == "Linear Regression": values,modeld = linearRegression(X_train, X_test, y_train, y_test) pickle.dump(modeld, open(session["modelName"], 'wb')) pass elif model =="Logistic Regression": values,modeld = logisticRegression(X_train, X_test, y_train, y_test) pickle.dump(modeld, open(session["modelName"], 'wb')) pass elif model == "Random Forest": values,modeld = randomForestClassifier(X_train, X_test, y_train, y_test) pickle.dump(modeld, open(session["modelName"], 'wb')) pass elif model == "Decision Tree": values,modeld = decisionTreeClassifier(X_train, X_test, y_train, y_test) pickle.dump(modeld, open(session["modelName"], 'wb')) pass elif model == "kNN": values,modeld = kNN(X_train, X_test, y_train, y_test) pickle.dump(modeld, open(session["modelName"], 'wb')) pass elif model =="SVM": values,modeld = sVM(X_train, X_test, y_train, y_test) pickle.dump(modeld, open(session["modelName"], 'wb')) pass # fileSender(path) session["path"] = str(session["name"]+'finalized_model.sav') return render_template('output.html',values=values) if problem == "Regression": if model == "Linear Regression": pass pass @app.route("/return-file") def fileSender(): q= session["modelName"] return send_file(q, as_attachment=True) def decisionTreeClassifier(X_train, X_test, y_train, y_test): model = sklearn.tree.DecisionTreeClassifier() model = model.fit(X_train,y_train) y_pred = model.predict(X_test) acc=metrics.accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) values = {"cm":cm,"acc":acc} return(values,model) def randomForestClassifier(X_train, X_test, y_train, y_test): from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() model = model.fit(X_train,y_train) y_pred = model.predict(X_test) acc=metrics.accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) values = {"cm":cm,"acc":acc} return(values,model) def linearRegression(X_train, X_test, y_train, y_test): model = sklearn.linear_model.LinearRegression() model = model.fit(X_train,y_train) y_pred = model.predict(X_test) acc=metrics.accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) values = {"cm":cm,"acc":acc} return(values,model) def logisticRegression(X_train, X_test, y_train, y_test): from sklearn import linear_model model = linear_model.LogisticRegression() model = model.fit(X_train,y_train) y_pred = model.predict(X_test) acc=metrics.accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) values = {"cm":cm,"acc":acc} return(values,model) def sVM(X_train, X_test, y_train, y_test): from sklearn import svm model = svm.SVC() model = model.fit(X_train,y_train) y_pred = model.predict(X_test) acc=metrics.accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) values = {"cm":cm,"acc":acc} return(values,model) def kNN(X_train, X_test, y_train, y_test): model = sklearn.neighbors.KNeighborsClassifier() model = model.fit(X_train,y_train) y_pred = model.predict(X_test) acc=metrics.accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) values = {"cm":cm,"acc":acc} return(values,model) if __name__ == '__main__': app.run(debug=True)
34.897297
96
0.620818
1469ae10a1eb10f50cf6b614d125dc6b6038c700
1,183
py
Python
src/python/__init__.py
Dnargne/blackhole
17ffa8c910039878d5352fbd71936c37c7576822
[ "MIT" ]
null
null
null
src/python/__init__.py
Dnargne/blackhole
17ffa8c910039878d5352fbd71936c37c7576822
[ "MIT" ]
null
null
null
src/python/__init__.py
Dnargne/blackhole
17ffa8c910039878d5352fbd71936c37c7576822
[ "MIT" ]
null
null
null
# -*- coding:iso-8859-1 -*- # MIT License # # Copyright (c) 2017 Dnargne # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. __author__ = u'Tegona SA'
45.5
81
0.752325
037d3dbc95ead288eafa27da0f6fec1fb4e3e82f
1,892
py
Python
sololink/flightcode/dflog/loadLog.py
meee1/OpenSolo
6f299639adbad1e8d573c8ae1135832711b600e4
[ "Apache-2.0" ]
68
2019-09-23T03:27:05.000Z
2022-03-12T03:00:41.000Z
sololink/flightcode/dflog/loadLog.py
meee1/OpenSolo
6f299639adbad1e8d573c8ae1135832711b600e4
[ "Apache-2.0" ]
22
2019-10-26T20:15:56.000Z
2022-02-12T05:41:56.000Z
sololink/flightcode/dflog/loadLog.py
meee1/OpenSolo
6f299639adbad1e8d573c8ae1135832711b600e4
[ "Apache-2.0" ]
33
2019-09-29T19:52:19.000Z
2022-03-12T03:00:43.000Z
#!/usr/bin/env python import subprocess import sys import os import time from pymavlink import mavutil import glob import ConfigParser import shutil from datetime import datetime import argparse SELECT_GPIO = "21" ENABLE_GPIO = "19" #GPIO direction set def setGPIODir(gpio, direction): dir_fd = open("/sys/class/gpio/gpio"+str(gpio)+"/direction", "w") dir_fd.write(direction) dir_fd.close() #Open the GPIO def openGPIO(gpio): #Check and see if the GPIO is already exported if not os.path.isdir("/sys/class/gpio/gpio"+str(gpio)): #otherwise export it exp_fd = open("/sys/class/gpio/export", "w") exp_fd.write(gpio) exp_fd.close() setGPIODir(gpio, "out"); def closeGPIO(gpio): unexp_fd = open("/sys/class/gpio/unexport", "w") unexp_fd.write(gpio) unexp_fd.close() def setGPIO(gpio, value): val_fd = open("/sys/class/gpio/gpio"+str(gpio)+"/value", "w") val_fd.write(value) val_fd.close() def openSetClose(gpio, value): openGPIO(gpio) setGPIO(gpio, value) closeGPIO(gpio) #Set the GPIO low def disconnectAndExit(): openSetClose(SELECT_GPIO, "0") openSetClose(ENABLE_GPIO, "1") sys.exit() parser = argparse.ArgumentParser() parser.add_argument("lognum", help="Log number to download, or 'latest'") args = parser.parse_args() #Log downloading process print "Pixhawk log loader" #Set the USB select GPIOs openSetClose(SELECT_GPIO, "1") openSetClose(ENABLE_GPIO, "0") time.sleep(1) print "Checking for pixhawk on USB" usb_devs = glob.glob('/dev/serial/by-id/usb-3D*') if not usb_devs: print "No pixhawk found on USB. Exiting." disconnectAndExit() print "Pixhawk found on USB, requesting log." pixhawk_usb = usb_devs[-1] m = mavutil.mavlink_connection(pixhawk_usb) #Call the log downloader app ret = subprocess.call(["dflog", str(args.lognum)]) disconnectAndExit()
22.795181
73
0.701374
7ef3d9b68f82e21ed6a6cbdaaa3e57f54a14a9f6
1,863
py
Python
active_directory_ldap/komand_active_directory_ldap/connection/schema.py
emartin-merrill-r7/insightconnect-plugins
a589745dbcc9f01d3e601431e77ab7221a84c117
[ "MIT" ]
6
2020-11-10T03:07:00.000Z
2022-02-24T18:07:57.000Z
active_directory_ldap/komand_active_directory_ldap/connection/schema.py
OSSSP/insightconnect-plugins
846758dab745170cf1a8c146211a8bea9592e8ff
[ "MIT" ]
17
2020-01-21T16:02:04.000Z
2022-01-12T15:11:26.000Z
active_directory_ldap/komand_active_directory_ldap/connection/schema.py
OSSSP/insightconnect-plugins
846758dab745170cf1a8c146211a8bea9592e8ff
[ "MIT" ]
2
2020-12-26T11:33:23.000Z
2021-09-30T22:22:43.000Z
# GENERATED BY KOMAND SDK - DO NOT EDIT import komand import json class Input: HOST = "host" PORT = "port" USE_SSL = "use_ssl" USERNAME_PASSWORD = "username_password" class ConnectionSchema(komand.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "host": { "type": "string", "title": "Host", "description": "Server Host, e.g. ldap://192.5.5.5. Must use either ldap:// or ldaps:// for SSL prefix", "order": 1 }, "port": { "type": "integer", "title": "Port", "description": "Port, e.g. 389", "default": 389, "order": 2 }, "use_ssl": { "type": "boolean", "title": "Use SSL", "description": "Use SSL?", "order": 3 }, "username_password": { "$ref": "#/definitions/credential_username_password", "title": "Username and Password", "description": "Username and password", "order": 4 } }, "required": [ "host", "port", "use_ssl", "username_password" ], "definitions": { "credential_username_password": { "id": "credential_username_password", "type": "object", "title": "Credential: Username and Password", "description": "A username and password combination", "properties": { "password": { "type": "string", "title": "Password", "displayType": "password", "description": "The password", "format": "password" }, "username": { "type": "string", "title": "Username", "description": "The username to log in with" } }, "required": [ "username", "password" ] } } } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
22.719512
110
0.520129
62d9edc006b52744bc7cc5ab5b83cc28c9f8dd3a
2,213
py
Python
images/backer/src/app.py
elston/flaskit
849e1fcfa8904771e2ebcb55877bb41440359cd5
[ "MIT" ]
2
2018-08-08T22:01:33.000Z
2018-08-08T23:14:43.000Z
images/backer/src/app.py
elston/flaskit
849e1fcfa8904771e2ebcb55877bb41440359cd5
[ "MIT" ]
null
null
null
images/backer/src/app.py
elston/flaskit
849e1fcfa8904771e2ebcb55877bb41440359cd5
[ "MIT" ]
null
null
null
import traceback from flask import ( Flask, render_template) from flask_uploads import ( configure_uploads, patch_request_class) from extensions import ( config, bcrypt, csrf_protect, db, login_manager, migrate, webpack ) def register_extensions(app): # ..config config.init_app(app) # ..bcrypt bcrypt.init_app(app) # ..db db.init_app(app) # ..csrf csrf_protect.init_app(app) # ...login_manager login_manager.init_app(app) login_manager.login_view = 'accounts.login' login_manager.login_message = None @login_manager.user_loader def load_user(user_id): from accounts.models import User return User.get_by_id(user_id) # ..migrate migrate.init_app(app, db) # ..webpack if not app.config['MIGRATION_MODE']: webpack.init_app(app) # ... return None # ...blueprints from lending import views as lending_views from accounts import views as accounts_views # ... def register_blueprints(app): # .. app.register_blueprint(lending_views.blueprint) app.register_blueprint(accounts_views.blueprint) # .. return None def register_errorhandlers(app): # .. def render_error(error): error_code = getattr(error, 'code', 500) return render_template('{0}.html'.format(error_code)), error_code # .. for errcode in [401, 404, 500]: app.errorhandler(errcode)(render_error) # .. return None # ...models from accounts import models as accounts_models # ... def register_shellcontext(app): # ... def shell_context(): return { 'db': db, 'User': accounts_models.User, } # ... app.shell_context_processor(shell_context) # ..commands import commands # .. def register_commands(app): # .. app.cli.add_command(commands.createadmin) def create_app(): # .. app = Flask(__name__.split('.')[0]) # ... register_extensions(app) register_blueprints(app) register_errorhandlers(app) register_shellcontext(app) register_commands(app) # .. return app app = create_app() # print(app.url_map)
18.139344
73
0.639404