hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
22e9a9f563dd19050f2b5c338c0fc75d7af0c466
3,452
py
Python
upcloud_api/cloud_manager/base.py
akx/upcloud-python-api
c18226ab5f991a495d3461f2cb534da30d147a2d
[ "MIT" ]
null
null
null
upcloud_api/cloud_manager/base.py
akx/upcloud-python-api
c18226ab5f991a495d3461f2cb534da30d147a2d
[ "MIT" ]
null
null
null
upcloud_api/cloud_manager/base.py
akx/upcloud-python-api
c18226ab5f991a495d3461f2cb534da30d147a2d
[ "MIT" ]
null
null
null
from __future__ import unicode_literals import json import requests from upcloud_api import UpCloudAPIError, __version__ class BaseAPI(object): """ CloudManager base that handles basic HTTP communication with API. """ api = 'api.upcloud.com' api_v = '1.3' def __init__(self, token, timeout=None): # noqa self.token = token self.timeout = timeout def request(self, method, endpoint, body=None, params=None, timeout=-1, request_to_api=True): """ Perform a request with a given body to a given endpoint in UpCloud's API or UpCloud's uploader session. Handles errors with __error_middleware. """ if method not in set(['GET', 'POST', 'PUT', 'PATCH', 'DELETE']): raise Exception('Invalid/Forbidden HTTP method') url = 'https://api.upcloud.com/' + self.api_v + endpoint if request_to_api else endpoint headers = { 'Authorization': self.token, 'User-Agent': 'upcloud-python-api/{}'.format(__version__) } headers['Content-Type'] = 'application/json' if request_to_api else 'application/octet-stream' if body and request_to_api: data = json.dumps(body) elif body and not request_to_api: data = body else: data = None call_timeout = timeout if timeout != -1 else self.timeout APIcall = getattr(requests, method.lower()) res = APIcall(url, data=data, params=params, headers=headers, timeout=call_timeout) if res.text: res_json = res.json() else: res_json = {} return self.__error_middleware(res, res_json) def get_request(self, endpoint, params=None, timeout=-1): """ Perform a GET request to a given endpoint in UpCloud's API. """ return self.request('GET', endpoint, params=params, timeout=timeout) def post_request(self, endpoint, body=None, timeout=-1): """ Perform a POST request to a given endpoint in UpCloud's API. """ return self.request('POST', endpoint, body=body, timeout=timeout) def put_request(self, endpoint, body=None, timeout=-1, request_to_api=True): """ Perform a PUT request to a given endpoint in UpCloud's API or UpCloud's uploader session. """ return self.request('PUT', endpoint, body=body, timeout=timeout, request_to_api=request_to_api) def patch_request(self, endpoint, body=None, timeout=-1): """ Perform a PATCH request to a given endpoint in UpCloud's API. """ return self.request('PATCH', endpoint, body=body, timeout=timeout) def delete_request(self, endpoint, timeout=-1): """ Perform a DELETE request to a given endpoint in UpCloud's API. """ return self.request('DELETE', endpoint, timeout=timeout) def __error_middleware(self, res, res_json): """ Middleware that raises an exception when HTTP statuscode is an error code. """ if(res.status_code in [400, 401, 402, 403, 404, 405, 406, 409]): err_dict = res_json.get('error', {}) raise UpCloudAPIError(error_code=err_dict.get('error_code'), error_message=err_dict.get('error_message')) return res_json
34.178218
111
0.607184
de0c315a09299e386335a9dbaa3cb7a35680d8f6
3,495
py
Python
src/azure-cli-core/azure/cli/core/file_util.py
cliffwoodave14/azure-cli
a413f216c0a7e792b4e5c78d0a1acb65753b5d29
[ "MIT" ]
null
null
null
src/azure-cli-core/azure/cli/core/file_util.py
cliffwoodave14/azure-cli
a413f216c0a7e792b4e5c78d0a1acb65753b5d29
[ "MIT" ]
null
null
null
src/azure-cli-core/azure/cli/core/file_util.py
cliffwoodave14/azure-cli
a413f216c0a7e792b4e5c78d0a1acb65753b5d29
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from __future__ import print_function from knack.util import CLIError from azure.cli.core._help import CliCommandHelpFile, CliGroupHelpFile def get_all_help(cli_ctx): invoker = cli_ctx.invocation help_ctx = cli_ctx.help_cls(cli_ctx) if not invoker: raise CLIError('CLI context does not contain invocation.') parser_keys = [] parser_values = [] sub_parser_keys = [] sub_parser_values = [] _store_parsers(invoker.parser, parser_keys, parser_values, sub_parser_keys, sub_parser_values) for cmd, parser in zip(parser_keys, parser_values): if cmd not in sub_parser_keys: sub_parser_keys.append(cmd) sub_parser_values.append(parser) help_files = [] for cmd, parser in zip(sub_parser_keys, sub_parser_values): try: help_file = CliGroupHelpFile(help_ctx, cmd, parser) if _is_group(parser) \ else CliCommandHelpFile(help_ctx, cmd, parser) help_file.load(parser) help_files.append(help_file) except Exception as ex: # pylint: disable=broad-except print("Skipped '{}' due to '{}'".format(cmd, ex)) help_files = sorted(help_files, key=lambda x: x.command) return help_files def create_invoker_and_load_cmds_and_args(cli_ctx): from knack import events from azure.cli.core.commands.arm import register_global_subscription_argument, register_ids_argument invoker = cli_ctx.invocation_cls(cli_ctx=cli_ctx, commands_loader_cls=cli_ctx.commands_loader_cls, parser_cls=cli_ctx.parser_cls, help_cls=cli_ctx.help_cls) cli_ctx.invocation = invoker invoker.commands_loader.skip_applicability = True invoker.commands_loader.load_command_table(None) # turn off applicability check for all loaders for loaders in invoker.commands_loader.cmd_to_loader_map.values(): for loader in loaders: loader.skip_applicability = True for command in invoker.commands_loader.command_table: invoker.commands_loader.load_arguments(command) register_global_subscription_argument(cli_ctx) register_ids_argument(cli_ctx) # global subscription must be registered first! cli_ctx.raise_event(events.EVENT_INVOKER_POST_CMD_TBL_CREATE, commands_loader=invoker.commands_loader) invoker.parser.load_command_table(invoker.commands_loader) def _store_parsers(parser, parser_keys, parser_values, sub_parser_keys, sub_parser_values): for s in parser.subparsers.values(): parser_keys.append(_get_parser_name(s)) parser_values.append(s) if _is_group(s): for c in s.choices.values(): sub_parser_keys.append(_get_parser_name(c)) sub_parser_values.append(c) _store_parsers(c, parser_keys, parser_values, sub_parser_keys, sub_parser_values) def _get_parser_name(s): return (s._prog_prefix if hasattr(s, '_prog_prefix') else s.prog)[3:] # pylint: disable=protected-access def _is_group(parser): return getattr(parser, '_subparsers', None) is not None \ or getattr(parser, 'choices', None) is not None
42.621951
109
0.68412
c023b07a74ce23ff5f802df1c30d4b622ee4e78a
2,139
py
Python
app/core/profiles.py
9b/split-key-roast
2becb2589bc7031f6fcc5e3527ffc56107c5be08
[ "MIT" ]
3
2017-11-30T06:26:13.000Z
2020-08-06T21:06:42.000Z
app/core/profiles.py
9b/split-key-roast
2becb2589bc7031f6fcc5e3527ffc56107c5be08
[ "MIT" ]
8
2017-11-27T00:49:42.000Z
2022-03-12T00:46:44.000Z
app/core/profiles.py
9b/split-key-roast
2becb2589bc7031f6fcc5e3527ffc56107c5be08
[ "MIT" ]
2
2020-05-03T14:10:56.000Z
2020-08-06T21:06:37.000Z
"""Calls related to roast profiles.""" from . import core from .. import mongo from ..libs.utils import paranoid_clean from .forms import ProfileForm from bson.objectid import ObjectId from flask import ( render_template, redirect, url_for, jsonify, request ) from flask import current_app as app from flask_login import login_required, current_user @core.route('/profiles') @login_required def profiles(): """Render the profiles page.""" c = mongo.db[app.config['PROFILE_COLLECTION']] items = c.find({'user': current_user.get_id()}) output = list() for x in items: x['id'] = str(x['_id']) output.append(x) output.sort(key=lambda x: x['datetime'], reverse=True) return render_template('profiles.html', profiles=output) @core.route('/profiles/edit-profile', methods=['POST']) @login_required def edit_profile(): """Render the index page.""" form = ProfileForm(request.form) if form.validate(): if 'profile_id' not in request.form: return jsonify({'success': False, 'error': 'ID not found in edit!'}) edit_id = paranoid_clean(request.form.get('profile_id')) c = mongo.db[app.config['PROFILE_COLLECTION']] item = {'coffee': form.coffee.data, 'roast': form.roast.data, 'drop_temp': form.drop_temp.data, 'notes': form.notes.data, 'brew_methods': form.brew_methods.data, 'tags': list()} c.update({'_id': ObjectId(edit_id)}, {'$set': item}) return redirect(url_for('core.profiles')) errors = ','.join([value[0] for value in list(form.errors.values())]) return jsonify({'errors': errors}) @core.route('/profiles/remove-item', methods=['POST']) @login_required def remove_profile(): """Render the index page.""" args = request.get_json() if 'id' not in args: return jsonify({'success': False, 'error': 'ID not found in request!'}) c = mongo.db[app.config['PROFILE_COLLECTION']] remove_id = paranoid_clean(args.get('id')) c.remove({'_id': ObjectId(remove_id)}) return jsonify({'success': True})
35.65
75
0.640954
2bca33cdbc6eb32e4015628d8fd825b2fdcae13a
3,587
py
Python
cities_light/contrib/restframework3.py
st4lk/django-cities-light
ad303f500f506d44d287ec3d531ff9fd8bc33e34
[ "MIT" ]
1
2021-02-17T13:11:35.000Z
2021-02-17T13:11:35.000Z
cities_light/contrib/restframework3.py
st4lk/django-cities-light
ad303f500f506d44d287ec3d531ff9fd8bc33e34
[ "MIT" ]
null
null
null
cities_light/contrib/restframework3.py
st4lk/django-cities-light
ad303f500f506d44d287ec3d531ff9fd8bc33e34
[ "MIT" ]
null
null
null
""" Couple djangorestframework and cities_light. It defines a urlpatterns variables, with the following urls: - cities-light-api-city-list - cities-light-api-city-detail - cities-light-api-region-list - cities-light-api-region-detail - cities-light-api-country-list - cities-light-api-country-detail If rest_framework (v3) is installed, all you have to do is add this url include:: url(r'^cities_light/api/', include('cities_light.contrib.restframework3')), And that's all ! """ from rest_framework import viewsets, relations from rest_framework.serializers import HyperlinkedModelSerializer from rest_framework import routers try: from django.conf.urls.defaults import patterns, url, include except ImportError: from django.conf.urls import patterns, url, include from ..models import Country, Region, City class CitySerializer(HyperlinkedModelSerializer): """ HyperlinkedModelSerializer for City. """ url = relations.HyperlinkedIdentityField( view_name='cities-light-api-city-detail') country = relations.HyperlinkedRelatedField( view_name='cities-light-api-country-detail', read_only=True) region = relations.HyperlinkedRelatedField( view_name='cities-light-api-region-detail', read_only=True) class Meta: model = City exclude = ('slug',) class RegionSerializer(HyperlinkedModelSerializer): """ HyperlinkedModelSerializer for Region. """ url = relations.HyperlinkedIdentityField( view_name='cities-light-api-region-detail') country = relations.HyperlinkedRelatedField( view_name='cities-light-api-country-detail', read_only=True) class Meta: model = Region exclude = ('slug',) class CountrySerializer(HyperlinkedModelSerializer): """ HyperlinkedModelSerializer for Country. """ url = relations.HyperlinkedIdentityField( view_name='cities-light-api-country-detail') class Meta: model = Country class CitiesLightListModelViewSet(viewsets.ReadOnlyModelViewSet): def get_queryset(self): """ Allows a GET param, 'q', to be used against name_ascii. """ queryset = super(CitiesLightListModelViewSet, self).get_queryset() if self.request.GET.get('q', None): return queryset.filter(name_ascii__icontains=self.request.GET['q']) return queryset class CountryModelViewSet(CitiesLightListModelViewSet): serializer_class = CountrySerializer queryset = Country.objects.all() class RegionModelViewSet(CitiesLightListModelViewSet): serializer_class = RegionSerializer queryset = Region.objects.all() class CityModelViewSet(CitiesLightListModelViewSet): """ ListRetrieveView for City. """ serializer_class = CitySerializer queryset = City.objects.all() def get_queryset(self): """ Allows a GET param, 'q', to be used against search_names. """ queryset = super(CitiesLightListModelViewSet, self).get_queryset() if self.request.GET.get('q', None): return queryset.filter( search_names__icontains=self.request.GET['q']) return queryset router = routers.SimpleRouter() router.register(r'cities', CityModelViewSet, base_name='cities-light-api-city') router.register(r'countries', CountryModelViewSet, base_name='cities-light-api-country') router.register(r'regions', RegionModelViewSet, base_name='cities-light-api-region') urlpatterns = patterns('', url(r'^', include(router.urls)), )
28.244094
79
0.708113
078748f7515aaa7ebb738471f523ec2987b26d76
5,540
py
Python
bundle/sagemaker_rl_agent/lib/python3.5/site-packages/markov/agent_ctrl/constants.py
Asdafers/deepracer-simapp
539ee72942c18c453c65fb7300beb586dd440690
[ "MIT" ]
null
null
null
bundle/sagemaker_rl_agent/lib/python3.5/site-packages/markov/agent_ctrl/constants.py
Asdafers/deepracer-simapp
539ee72942c18c453c65fb7300beb586dd440690
[ "MIT" ]
null
null
null
bundle/sagemaker_rl_agent/lib/python3.5/site-packages/markov/agent_ctrl/constants.py
Asdafers/deepracer-simapp
539ee72942c18c453c65fb7300beb586dd440690
[ "MIT" ]
null
null
null
'''This module houses the constants for the agent ctlr package''' from enum import Enum # Default max number of steps to allow per episode MAX_STEPS = 10000 # Local offset of the front of the car RELATIVE_POSITION_OF_FRONT_OF_CAR = [0.14, 0, 0] # Normalized track distance to move with each reset # now config ROUND_ROBIN_ADVANCE_DIST = 0.05 # Reward to give the car when it paused and parked ZERO_REWARD = 0.0 # Reward to give the car when it "crashes" CRASHED = 1e-8 # The number of steps to wait before checking if the car is stuck # This number should correspond to the camera FPS, since it is pacing the # step rate. NUM_STEPS_TO_CHECK_STUCK = 15 # Radius of the wheels of the car in meters WHEEL_RADIUS = 0.1 # Allowed closest object distance CLOSEST_OBJ_GAP = 1.00 # Reset behind object distance RESET_BEHIND_DIST = 1.00 # Bot car z BOT_CAR_Z = 0.0 # Obstacle z OBSTACLE_Z = 0.1 # Obstacle OBSTACLE_NAME_PREFIX = "obstacle" BLINK_MIN_ALPHA = 0.3 # Single Blink interval in sec BLINK_INTERVAL = 0.5 class ConfigParams(Enum): '''This enum defines the keys for the input keys for the rollout ctr config dict ''' AGENT_NAME = 'agent_name' LINK_NAME_LIST = 'agent_link_name_list' STEERING_LIST = 'steering_list' VELOCITY_LIST = 'velocity_list' REWARD = 'reward' ACTION_SPACE_PATH = 'path_to_json' CHANGE_START = 'change_start' ALT_DIR = 'alternate_dir' VERSION = 'version' CAR_CTRL_CONFIG = 'car_ctrl_config' NUMBER_OF_RESETS = 'number_of_resets' PENALTY_SECONDS = 'penalty_seconds' IS_CONTINUOUS = 'is_continuous' NUMBER_OF_TRIALS = 'number_of_trials' RACE_TYPE = 'race_type' COLLISION_PENALTY = 'collision_penalty' OFF_TRACK_PENALTY = 'off_track_penalty' START_POSITION = 'start_position' PARK_POSITIONS = 'park_positions' DONE_CONDITION = 'done_condition' ROUND_ROBIN_ADVANCE_DIST = 'round_robin_advance_dist' START_POSITION_OFFSET = 'start_position_offset' class RewardParam(Enum): '''This enum contains the keys and default values for the parameters to be feed into the reward function. ''' # boolean: all wheel on track WHEELS_ON_TRACK = ['all_wheels_on_track', True] X = ['x', 0.0] # float: race car x position Y = ['y', 0.0] # float: race car y position HEADING = ['heading', 0.0] # float: race car heading angle CENTER_DIST = ['distance_from_center', 0.0] # float: race car distance from centerline PROJECTION_DISTANCE = ['projection_distance', 0.0] # float: race car distance projected on the centerline PROG = ['progress', 0.0] # float: race car track progress [0,1] STEPS = ['steps', 0] # int: number of steps race car have taken SPEED = ['speed', 0.0] # float: race car speed STEER = ['steering_angle', 0.0] # float: race car steering angle TRACK_WIDTH = ['track_width', 0.0] # float: track width TRACK_LEN = ['track_length', 0.0] # float: track length WAYPNTS = ['waypoints', 0] # list of tuple: list of waypoints (x, y) tuple CLS_WAYPNY = ['closest_waypoints', [0, 0]] # list of int: list of int with size 2 containing closest prev and next waypoint indexes LEFT_CENT = ['is_left_of_center', False] # boolean: race car left of centerline REVERSE = ['is_reversed', False] # boolean: race car direction CLOSEST_OBJECTS = ['closest_objects', [0, 0]] # list of int: list of int with size 2 containing closest prev and next object indexes OBJECT_LOCATIONS = ['objects_location', []] # list of tuple: list of all object (x, y) locations OBJECTS_LEFT_OF_CENTER = ['objects_left_of_center', []] # list of boolean: list of all object to the left of centerline or not OBJECT_IN_CAMERA = ['object_in_camera', False] # boolean: any object in camera OBJECT_SPEEDS = ['objects_speed', []] # list of float: list of objects speed OBJECT_HEADINGS = ['objects_heading', []] # list of float: list of objects heading OBJECT_CENTER_DISTS = ['objects_distance_from_center', []] # list of float: list of object distance from centerline OBJECT_CENTERLINE_PROJECTION_DISTANCES = ['objects_distance', []] # list of float: list of object distance projected on the centerline CRASHED = ['is_crashed', False] # boolean: crashed into an object or bot car OFFTRACK = ['is_offtrack', False] # boolean: all four wheels went off-track @classmethod def make_default_param(cls): '''Returns a dictionary with the default values for the reward function''' return {key.value[0] : key.value[-1] for key in cls} @classmethod def validate_dict(cls, input_dict): '''Will raise an exception if input dict does not contain all the keys in the enum''' for key in cls: _ = input_dict[key.value[0]]
48.596491
160
0.611913
f389a5c60527c83e20cc357286b37fc44a02d662
4,385
py
Python
main.py
kmhmubin/Flash-Card
3ab4f179d775949f65190e5ac8c11b4d84d0c6a8
[ "MIT" ]
null
null
null
main.py
kmhmubin/Flash-Card
3ab4f179d775949f65190e5ac8c11b4d84d0c6a8
[ "MIT" ]
null
null
null
main.py
kmhmubin/Flash-Card
3ab4f179d775949f65190e5ac8c11b4d84d0c6a8
[ "MIT" ]
null
null
null
import random import pandas from tkinter import * # ------------------------- CONSTANT ---------------------------------- # BLACK = "#2C333D" YELLOW = "#FCD836" WHITE = "#FFFFFF" GRAY_WHITE = "#F4F4F4" BAHNSCHRIFT = "Bahnschrift" CALIBRI = "Calibri" # -------------------------- WORD DICT ------------------------------- # # default card is empty current_card = {} # know word dictionary is empty known_words = {} # reading the data from know data try: know_data = pandas.read_csv("data/know_word.csv") except FileNotFoundError: # if know data not found then go to original data original_data = pandas.read_csv("data/Bangla_word_list.csv") learning = original_data.to_dict(orient="records") else: # creating dictionary using pandas learning = know_data.to_dict(orient="records") # -------------------------- NEXT CARD ------------------------------- # # TODO: when cross button pressed show the next word in english and flip the image def next_card(): """Return next value randomly from the dictionary""" # global current cart global current_card, flip_timer # cancel the timer window.after_cancel(flip_timer) # randomly choose word from the dictionary current_card = random.choice(learning) # replace the title text in the UI canvas.itemconfig(card_title, text="English", fill=BLACK) # replace the word text in the UI canvas.itemconfig(card_word, text=current_card["English"], fill=BLACK) # change the background images if button pressed canvas.itemconfig(card_background, image=front_card_image) # flip timer flip_timer = window.after(3000, func=flip_card) # ------------------------- FLIP CARD -------------------------------- # # TODO: Flip card after 3 seconds and show the bangla value def flip_card(): """Flip the card after 3 seconds """ canvas.itemconfig(card_title, text="Bangla", fill=WHITE) # show the equivalent meaning of the current word canvas.itemconfig(card_word, text=current_card["Bangla"], fill=WHITE) # changing the background images canvas.itemconfig(card_background, image=back_card_image) # --------------------------- KNOWN WORD ------------------------------ # # TODO: When know button pressed it save in the know dictionary def know_word(): """Save Know word into new file""" learning.remove(current_card) # remove data from current card new_data = pandas.DataFrame(learning) # create a new csv file using pandas without index new_data.to_csv("data/know_word.csv", index=False) # show the next word next_card() # --------------------------- UI SETUP -------------------------------- # # TODO: Creating Program window # creating window object window = Tk() # add title to the program window.title("Learn English to Bangla Vocabulary") # window size window.config(padx=50, pady=50, bg=GRAY_WHITE) # add custom favicon window.iconbitmap(r'images/favicon.ico') # flip the card after 3 seconds flip_timer = window.after(3000, func=flip_card) # TODO: Creating canvas # creating a canvas canvas = Canvas(width=800, height=526) # front card image front_card_image = PhotoImage(file="images/card_front.png") # back card image back_card_image = PhotoImage(file="images/card_back.png") # assigning the position for front card card_background = canvas.create_image(400, 263, image=front_card_image) # Canvas card title card_title = canvas.create_text(400, 150, text="Title", font=(BAHNSCHRIFT, 40, "normal")) # canvas card word card_word = canvas.create_text(400, 263, text="Word", font=(CALIBRI, 60, "bold")) # canvas config canvas.config(bg=GRAY_WHITE, highlightthicknes=0) # canvas grid canvas.grid(row=0, column=0, columnspan=2) # TODO: Buttons # cross icon cross_icon = PhotoImage(file="images/cancel.png") # assign icon to the button without border or background thickness cross_button = Button(image=cross_icon, highlightthicknes=0, borderwidth=0, command=next_card) # cross button grid cross_button.grid(row=1, column=0) # check icon check_icon = PhotoImage(file="images/checked.png") # assign icon to the button without border or background thickness cross_button = Button(image=check_icon, highlightthicknes=0, borderwidth=0, command=know_word) # check button grid cross_button.grid(row=1, column=1) # calling the next card function next_card() # run the window window.mainloop()
29.42953
94
0.680274
77cbfac7e852bc334c2209e8c4ddfb7bf76e840b
2,269
py
Python
src/database.py
vtainio/Nordea-to-YNAB
f8b336f08fbcbab518d58a07b3590fac883ec4b6
[ "MIT" ]
5
2018-10-21T15:17:39.000Z
2020-04-25T15:32:39.000Z
src/database.py
vtainio/Nordea-to-YNAB
f8b336f08fbcbab518d58a07b3590fac883ec4b6
[ "MIT" ]
6
2017-06-05T19:44:45.000Z
2017-07-11T07:39:32.000Z
src/database.py
vtainio/Nordea-to-YNAB
f8b336f08fbcbab518d58a07b3590fac883ec4b6
[ "MIT" ]
1
2017-06-29T20:51:17.000Z
2017-06-29T20:51:17.000Z
from __future__ import print_function import sqlite3 from tabulate import tabulate DATABASE_NAME = 'nordea_to_ynab.db' def prepare_tables(cursor): cursor.execute('CREATE TABLE IF NOT EXISTS category (category_id text primary key not null, name text)') cursor.execute('CREATE TABLE IF NOT EXISTS payment (name text primary key not null, category_id text, FOREIGN KEY(category_id) REFERENCES category(category_id))') def get_db_connection(): conn = get_sqlite_connection() conn.text_factory = str c = conn.cursor() prepare_tables(c) return conn, c def get_sqlite_connection(): return sqlite3.connect(DATABASE_NAME) def store_categories(categories): conn, c = get_db_connection() for category in categories: c.execute("INSERT OR REPLACE INTO category VALUES (?, ?)", (category.id, category.name)) conn.commit() conn.close() def get_subcategory_for_transaction(transaction): conn, c = get_db_connection() c.execute("SELECT category_id FROM payment WHERE name=:name", {"name": transaction.target}) category_id = c.fetchone() if not category_id: category_id = get_subcategory_from_user(c, transaction.target) c.execute("INSERT INTO payment VALUES (?, ?)", (transaction.target, category_id)) else: category_id = category_id[0] # Get the value from a single element tuple conn.commit() conn.close() return category_id def get_subcategory_from_user(cursor, target): cursor.execute("SELECT * FROM category") categories = cursor.fetchall() options = [] categories_by_name = {} for index, category in enumerate(categories): category_id, name = category categories_by_name[name] = category_id options.append([index, name]) id = prompt_user_for_id(target, options) return categories_by_name[options[id][1]] def prompt_user_for_id(target, options): print("No category found for %s. Please select one from below:\n\n" % target) print(tabulate(options, headers=["ID, Name"])) while True: selection = raw_input("Enter the ID for %s: " % target) if selection.isdigit() and int(selection) >= 0 and int(selection) < len(options): break return int(selection)
29.855263
166
0.70119
94afc5e553115de04643f3387991b359a9ec4cfa
471
py
Python
Pygame/Pygame18.py
liyuanyuan11/Python
d94cc7ab39e56c6e24bfc741a30da77590d1d220
[ "MIT" ]
null
null
null
Pygame/Pygame18.py
liyuanyuan11/Python
d94cc7ab39e56c6e24bfc741a30da77590d1d220
[ "MIT" ]
null
null
null
Pygame/Pygame18.py
liyuanyuan11/Python
d94cc7ab39e56c6e24bfc741a30da77590d1d220
[ "MIT" ]
null
null
null
import pygame pygame.init() windowSurface = pygame.display.set_mode([500,400]) music = pygame.mixer.Sound("/Users/chenchaoyang/Desktop/python/Python/Music/Music2.wav") music.play() Running = True while Running: for event in pygame.event.get(): if event.type == pygame.QUIT: Running = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: music.stop() pygame.display.update() pygame.quit()
31.4
88
0.653928
7872dadb269a553e1f6d144943d1572209d7ef65
648
py
Python
algorithms/QuickSort.py
zhaoxinlu/leetcode-algorithms
f5e1c94c99628e7fb04ba158f686a55a8093e933
[ "MIT" ]
null
null
null
algorithms/QuickSort.py
zhaoxinlu/leetcode-algorithms
f5e1c94c99628e7fb04ba158f686a55a8093e933
[ "MIT" ]
null
null
null
algorithms/QuickSort.py
zhaoxinlu/leetcode-algorithms
f5e1c94c99628e7fb04ba158f686a55a8093e933
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- def partition(arr, left, right): low = left high = right key = arr[low] while low < high: while low < high and arr[high] >= key: high -= 1 arr[low] = arr[high] while low < high and arr[low] <= key: low += 1 arr[high] = arr[low] arr[low] = key return low def QuickSort(arr, left, right): if left < right: low = partition(arr, left, right) QuickSort(arr, left, low-1) QuickSort(arr, low+1, right) return arr if __name__ == '__main__': arr = [6, 8, 1, 4, 3, 9] print QuickSort(arr, 0, len(arr)-1)
21.6
46
0.515432
c29f595de702c2143dad579ff5bd308fad528c4f
16,342
py
Python
sdk/python/pulumi_azure_native/datashare/v20200901/share_subscription.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/datashare/v20200901/share_subscription.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/datashare/v20200901/share_subscription.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = ['ShareSubscriptionArgs', 'ShareSubscription'] @pulumi.input_type class ShareSubscriptionArgs: def __init__(__self__, *, account_name: pulumi.Input[str], invitation_id: pulumi.Input[str], resource_group_name: pulumi.Input[str], source_share_location: pulumi.Input[str], expiration_date: Optional[pulumi.Input[str]] = None, share_subscription_name: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a ShareSubscription resource. :param pulumi.Input[str] account_name: The name of the share account. :param pulumi.Input[str] invitation_id: The invitation id. :param pulumi.Input[str] resource_group_name: The resource group name. :param pulumi.Input[str] source_share_location: Source share location. :param pulumi.Input[str] expiration_date: The expiration date of the share subscription. :param pulumi.Input[str] share_subscription_name: The name of the shareSubscription. """ pulumi.set(__self__, "account_name", account_name) pulumi.set(__self__, "invitation_id", invitation_id) pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "source_share_location", source_share_location) if expiration_date is not None: pulumi.set(__self__, "expiration_date", expiration_date) if share_subscription_name is not None: pulumi.set(__self__, "share_subscription_name", share_subscription_name) @property @pulumi.getter(name="accountName") def account_name(self) -> pulumi.Input[str]: """ The name of the share account. """ return pulumi.get(self, "account_name") @account_name.setter def account_name(self, value: pulumi.Input[str]): pulumi.set(self, "account_name", value) @property @pulumi.getter(name="invitationId") def invitation_id(self) -> pulumi.Input[str]: """ The invitation id. """ return pulumi.get(self, "invitation_id") @invitation_id.setter def invitation_id(self, value: pulumi.Input[str]): pulumi.set(self, "invitation_id", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The resource group name. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="sourceShareLocation") def source_share_location(self) -> pulumi.Input[str]: """ Source share location. """ return pulumi.get(self, "source_share_location") @source_share_location.setter def source_share_location(self, value: pulumi.Input[str]): pulumi.set(self, "source_share_location", value) @property @pulumi.getter(name="expirationDate") def expiration_date(self) -> Optional[pulumi.Input[str]]: """ The expiration date of the share subscription. """ return pulumi.get(self, "expiration_date") @expiration_date.setter def expiration_date(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "expiration_date", value) @property @pulumi.getter(name="shareSubscriptionName") def share_subscription_name(self) -> Optional[pulumi.Input[str]]: """ The name of the shareSubscription. """ return pulumi.get(self, "share_subscription_name") @share_subscription_name.setter def share_subscription_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "share_subscription_name", value) class ShareSubscription(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, expiration_date: Optional[pulumi.Input[str]] = None, invitation_id: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, share_subscription_name: Optional[pulumi.Input[str]] = None, source_share_location: Optional[pulumi.Input[str]] = None, __props__=None): """ A share subscription data transfer object. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: The name of the share account. :param pulumi.Input[str] expiration_date: The expiration date of the share subscription. :param pulumi.Input[str] invitation_id: The invitation id. :param pulumi.Input[str] resource_group_name: The resource group name. :param pulumi.Input[str] share_subscription_name: The name of the shareSubscription. :param pulumi.Input[str] source_share_location: Source share location. """ ... @overload def __init__(__self__, resource_name: str, args: ShareSubscriptionArgs, opts: Optional[pulumi.ResourceOptions] = None): """ A share subscription data transfer object. :param str resource_name: The name of the resource. :param ShareSubscriptionArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ShareSubscriptionArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, expiration_date: Optional[pulumi.Input[str]] = None, invitation_id: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, share_subscription_name: Optional[pulumi.Input[str]] = None, source_share_location: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = ShareSubscriptionArgs.__new__(ShareSubscriptionArgs) if account_name is None and not opts.urn: raise TypeError("Missing required property 'account_name'") __props__.__dict__["account_name"] = account_name __props__.__dict__["expiration_date"] = expiration_date if invitation_id is None and not opts.urn: raise TypeError("Missing required property 'invitation_id'") __props__.__dict__["invitation_id"] = invitation_id if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["share_subscription_name"] = share_subscription_name if source_share_location is None and not opts.urn: raise TypeError("Missing required property 'source_share_location'") __props__.__dict__["source_share_location"] = source_share_location __props__.__dict__["created_at"] = None __props__.__dict__["name"] = None __props__.__dict__["provider_email"] = None __props__.__dict__["provider_name"] = None __props__.__dict__["provider_tenant_name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["share_description"] = None __props__.__dict__["share_kind"] = None __props__.__dict__["share_name"] = None __props__.__dict__["share_subscription_status"] = None __props__.__dict__["share_terms"] = None __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None __props__.__dict__["user_email"] = None __props__.__dict__["user_name"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:datashare/v20200901:ShareSubscription"), pulumi.Alias(type_="azure-native:datashare:ShareSubscription"), pulumi.Alias(type_="azure-nextgen:datashare:ShareSubscription"), pulumi.Alias(type_="azure-native:datashare/v20181101preview:ShareSubscription"), pulumi.Alias(type_="azure-nextgen:datashare/v20181101preview:ShareSubscription"), pulumi.Alias(type_="azure-native:datashare/v20191101:ShareSubscription"), pulumi.Alias(type_="azure-nextgen:datashare/v20191101:ShareSubscription"), pulumi.Alias(type_="azure-native:datashare/v20201001preview:ShareSubscription"), pulumi.Alias(type_="azure-nextgen:datashare/v20201001preview:ShareSubscription"), pulumi.Alias(type_="azure-native:datashare/v20210801:ShareSubscription"), pulumi.Alias(type_="azure-nextgen:datashare/v20210801:ShareSubscription")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(ShareSubscription, __self__).__init__( 'azure-native:datashare/v20200901:ShareSubscription', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'ShareSubscription': """ Get an existing ShareSubscription resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = ShareSubscriptionArgs.__new__(ShareSubscriptionArgs) __props__.__dict__["created_at"] = None __props__.__dict__["expiration_date"] = None __props__.__dict__["invitation_id"] = None __props__.__dict__["name"] = None __props__.__dict__["provider_email"] = None __props__.__dict__["provider_name"] = None __props__.__dict__["provider_tenant_name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["share_description"] = None __props__.__dict__["share_kind"] = None __props__.__dict__["share_name"] = None __props__.__dict__["share_subscription_status"] = None __props__.__dict__["share_terms"] = None __props__.__dict__["source_share_location"] = None __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None __props__.__dict__["user_email"] = None __props__.__dict__["user_name"] = None return ShareSubscription(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="createdAt") def created_at(self) -> pulumi.Output[str]: """ Time at which the share subscription was created. """ return pulumi.get(self, "created_at") @property @pulumi.getter(name="expirationDate") def expiration_date(self) -> pulumi.Output[Optional[str]]: """ The expiration date of the share subscription. """ return pulumi.get(self, "expiration_date") @property @pulumi.getter(name="invitationId") def invitation_id(self) -> pulumi.Output[str]: """ The invitation id. """ return pulumi.get(self, "invitation_id") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Name of the azure resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="providerEmail") def provider_email(self) -> pulumi.Output[str]: """ Email of the provider who created the resource """ return pulumi.get(self, "provider_email") @property @pulumi.getter(name="providerName") def provider_name(self) -> pulumi.Output[str]: """ Name of the provider who created the resource """ return pulumi.get(self, "provider_name") @property @pulumi.getter(name="providerTenantName") def provider_tenant_name(self) -> pulumi.Output[str]: """ Tenant name of the provider who created the resource """ return pulumi.get(self, "provider_tenant_name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ Provisioning state of the share subscription """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="shareDescription") def share_description(self) -> pulumi.Output[str]: """ Description of share """ return pulumi.get(self, "share_description") @property @pulumi.getter(name="shareKind") def share_kind(self) -> pulumi.Output[str]: """ Kind of share """ return pulumi.get(self, "share_kind") @property @pulumi.getter(name="shareName") def share_name(self) -> pulumi.Output[str]: """ Name of the share """ return pulumi.get(self, "share_name") @property @pulumi.getter(name="shareSubscriptionStatus") def share_subscription_status(self) -> pulumi.Output[str]: """ Gets the current status of share subscription. """ return pulumi.get(self, "share_subscription_status") @property @pulumi.getter(name="shareTerms") def share_terms(self) -> pulumi.Output[str]: """ Terms of a share """ return pulumi.get(self, "share_terms") @property @pulumi.getter(name="sourceShareLocation") def source_share_location(self) -> pulumi.Output[str]: """ Source share location. """ return pulumi.get(self, "source_share_location") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ System Data of the Azure resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Type of the azure resource """ return pulumi.get(self, "type") @property @pulumi.getter(name="userEmail") def user_email(self) -> pulumi.Output[str]: """ Email of the user who created the resource """ return pulumi.get(self, "user_email") @property @pulumi.getter(name="userName") def user_name(self) -> pulumi.Output[str]: """ Name of the user who created the resource """ return pulumi.get(self, "user_name")
41.163728
881
0.651817
9ea2cffda4c7fc49158cc6da3f2e0056635f1192
2,109
py
Python
neural_compressor/data/dataloaders/dataloader.py
intel/neural-compressor
16a4a12045fcb468da4d33769aff2c1a5e2ba6ba
[ "Apache-2.0" ]
172
2021-09-14T18:34:17.000Z
2022-03-30T06:49:53.000Z
neural_compressor/data/dataloaders/dataloader.py
intel/neural-compressor
16a4a12045fcb468da4d33769aff2c1a5e2ba6ba
[ "Apache-2.0" ]
40
2021-09-14T02:26:12.000Z
2022-03-29T08:34:04.000Z
neural_compressor/data/dataloaders/dataloader.py
intel/neural-compressor
16a4a12045fcb468da4d33769aff2c1a5e2ba6ba
[ "Apache-2.0" ]
33
2021-09-15T07:27:25.000Z
2022-03-25T08:30:57.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from neural_compressor.experimental.data.dataloaders import DATALOADERS # THIS API IS TO BE DEPRECATED! class DataLoader(object): """Entrance of all configured DataLoaders. Will dispatch the DataLoaders to framework specific one. Users will be not aware of the dispatching, and the Interface is unified. """ def __new__(cls, framework, dataset, batch_size=1, collate_fn=None, last_batch='rollover', sampler=None, batch_sampler=None, num_workers=0, pin_memory=False, shuffle=False, distributed=False): assert framework in ('tensorflow', 'tensorflow_itex', 'pytorch', 'pytorch_ipex', 'pytorch_fx', 'onnxrt_qdq', \ 'onnxrt_qlinearops', 'onnxrt_integerops', 'mxnet'), \ "framework support tensorflow pytorch mxnet onnxruntime" return DATALOADERS[framework](dataset=dataset, batch_size=batch_size, last_batch=last_batch, collate_fn=collate_fn, sampler=sampler, batch_sampler=batch_sampler, num_workers=num_workers, pin_memory=pin_memory, shuffle=shuffle, distributed=distributed)
46.866667
94
0.598862
6b04f08f5cb5b74b115b84fe92c354a9bea448ee
608
py
Python
lib/webui/tool.py
pcn/resgate
3aa6cda0f31d2b1bc5a74dbac3fa22a5fb3043ed
[ "Apache-2.0" ]
1
2021-03-22T13:40:15.000Z
2021-03-22T13:40:15.000Z
lib/webui/tool.py
pcn/resgate
3aa6cda0f31d2b1bc5a74dbac3fa22a5fb3043ed
[ "Apache-2.0" ]
null
null
null
lib/webui/tool.py
pcn/resgate
3aa6cda0f31d2b1bc5a74dbac3fa22a5fb3043ed
[ "Apache-2.0" ]
null
null
null
import json.decoder import logging import json import pprint from aiohttp import web from pywebio.platform.aiohttp import webio_handler from jmespath import exceptions as jmesex import webui.ui_webhook as webhook import webui.ui_rules as webrules import extractions import rules routes = web.RouteTableDef() app = web.Application() app.add_routes( [ web.get( "/tool", webio_handler( { "edit_rules": webrules.edit_rules, "edit_webhook": webhook.edit_webhook, } ), ) ] )
17.882353
57
0.615132
0db8647925b61fff94e12a33af34dd3c5c5ca390
800
py
Python
tests/conftest.py
santegoeds/bfair
36c80fe60a570b6aa4ac030fc202648acb8d08c9
[ "Apache-2.0" ]
null
null
null
tests/conftest.py
santegoeds/bfair
36c80fe60a570b6aa4ac030fc202648acb8d08c9
[ "Apache-2.0" ]
36
2015-07-06T15:10:33.000Z
2015-07-06T15:10:39.000Z
tests/conftest.py
santegoeds/bfair
36c80fe60a570b6aa4ac030fc202648acb8d08c9
[ "Apache-2.0" ]
null
null
null
import pytest from bfair.session import Session def pytest_addoption(parser): parser.addoption("--user", action="store") parser.addoption("--password", action="store") def setup_session(request): if not request.config.option.user or not request.config.option.password: pytest.skip("needs --user and --password") user = request.config.option.user password = request.config.option.password session = Session(user, password) session.login() return session def teardown_session(session): session.logout() def pytest_funcarg__session(request): return request.cached_setup(setup = lambda: setup_session(request), teardown = teardown_session, scope = "session")
25.806452
76
0.65
bbe2858b8159a919f47241a208480827f11d4ca5
7,270
py
Python
grr/server/grr_response_server/hunts/process_results.py
ahmednofal/grr
08a57f6873ee13f425d0106e4143663bc6dbdd60
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/hunts/process_results.py
ahmednofal/grr
08a57f6873ee13f425d0106e4143663bc6dbdd60
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/hunts/process_results.py
ahmednofal/grr
08a57f6873ee13f425d0106e4143663bc6dbdd60
[ "Apache-2.0" ]
2
2020-08-24T00:22:03.000Z
2020-11-14T08:34:43.000Z
#!/usr/bin/env python """Cron job to process hunt results. """ from __future__ import absolute_import from __future__ import unicode_literals import logging from future.utils import iteritems from future.utils import itervalues from grr_response_core.lib import rdfvalue from grr_response_core.lib import utils from grr_response_core.lib.util import collection from grr_response_core.stats import stats_collector_instance from grr_response_server import aff4 from grr_response_server import data_store from grr_response_server import output_plugin from grr_response_server.aff4_objects import cronjobs from grr_response_server.hunts import implementation from grr_response_server.hunts import results as hunts_results class ResultsProcessingError(Exception): """This exception is raised when errors happen during results processing.""" def __init__(self): self.exceptions_by_hunt = {} super(ResultsProcessingError, self).__init__() def RegisterSubException(self, hunt_urn, plugin_name, exception): self.exceptions_by_hunt.setdefault(hunt_urn, {}).setdefault( plugin_name, []).append(exception) def __repr__(self): messages = [] for hunt_urn, exceptions_by_plugin in iteritems(self.exceptions_by_hunt): for plugin_name, exception in iteritems(exceptions_by_plugin): messages.append("Exception for hunt %s (plugin %s): %s" % (hunt_urn, plugin_name, exception)) return "\n".join(messages) class ProcessHuntResultCollectionsCronFlow(cronjobs.SystemCronFlow): """Periodic cron flow that processes hunt results. The ProcessHuntResultCollectionsCronFlow reads hunt results stored in HuntResultCollections and feeds runs output plugins on them. """ frequency = rdfvalue.Duration("5m") lifetime = rdfvalue.Duration("40m") allow_overruns = True BATCH_SIZE = 5000 def CheckIfRunningTooLong(self): if self.max_running_time: elapsed = rdfvalue.RDFDatetime.Now() - self.start_time if elapsed > self.max_running_time: return True return False def LoadPlugins(self, metadata_obj): output_plugins = metadata_obj.Get(metadata_obj.Schema.OUTPUT_PLUGINS) if not output_plugins: return output_plugins, [] output_plugins = output_plugins.ToDict() used_plugins = [] unused_plugins = [] for plugin_def, state in itervalues(output_plugins): if not hasattr(plugin_def, "GetPluginForState"): logging.error("Invalid plugin_def: %s", plugin_def) continue used_plugins.append((plugin_def, plugin_def.GetPluginForState(state))) return output_plugins, used_plugins def RunPlugins(self, hunt_urn, plugins, results, exceptions_by_plugin): for plugin_def, plugin in plugins: try: plugin.ProcessResponses(results) plugin.Flush() plugin_status = output_plugin.OutputPluginBatchProcessingStatus( plugin_descriptor=plugin_def, status="SUCCESS", batch_size=len(results)) stats_collector_instance.Get().IncrementCounter( "hunt_results_ran_through_plugin", delta=len(results), fields=[plugin_def.plugin_name]) except Exception as e: # pylint: disable=broad-except logging.exception( "Error processing hunt results: hunt %s, " "plugin %s", hunt_urn, utils.SmartStr(plugin)) self.Log("Error processing hunt results (hunt %s, " "plugin %s): %s" % (hunt_urn, utils.SmartStr(plugin), e)) stats_collector_instance.Get().IncrementCounter( "hunt_output_plugin_errors", fields=[plugin_def.plugin_name]) plugin_status = output_plugin.OutputPluginBatchProcessingStatus( plugin_descriptor=plugin_def, status="ERROR", summary=utils.SmartStr(e), batch_size=len(results)) exceptions_by_plugin.setdefault(plugin_def, []).append(e) with data_store.DB.GetMutationPool() as pool: implementation.GRRHunt.PluginStatusCollectionForHID(hunt_urn).Add( plugin_status, mutation_pool=pool) if plugin_status.status == plugin_status.Status.ERROR: implementation.GRRHunt.PluginErrorCollectionForHID(hunt_urn).Add( plugin_status, mutation_pool=pool) def ProcessOneHunt(self, exceptions_by_hunt): """Reads results for one hunt and process them.""" hunt_results_urn, results = ( hunts_results.HuntResultQueue.ClaimNotificationsForCollection( token=self.token, lease_time=self.lifetime)) logging.debug("Found %d results for hunt %s", len(results), hunt_results_urn) if not results: return 0 hunt_urn = rdfvalue.RDFURN(hunt_results_urn.Dirname()) batch_size = self.BATCH_SIZE metadata_urn = hunt_urn.Add("ResultsMetadata") exceptions_by_plugin = {} num_processed_for_hunt = 0 collection_obj = implementation.GRRHunt.ResultCollectionForHID(hunt_urn) try: with aff4.FACTORY.OpenWithLock( metadata_urn, lease_time=600, token=self.token) as metadata_obj: all_plugins, used_plugins = self.LoadPlugins(metadata_obj) num_processed = int( metadata_obj.Get(metadata_obj.Schema.NUM_PROCESSED_RESULTS)) for batch in collection.Batch(results, batch_size): results = list( collection_obj.MultiResolve( [r.value.ResultRecord() for r in batch])) self.RunPlugins(hunt_urn, used_plugins, results, exceptions_by_plugin) hunts_results.HuntResultQueue.DeleteNotifications( batch, token=self.token) num_processed += len(batch) num_processed_for_hunt += len(batch) self.HeartBeat() metadata_obj.Set( metadata_obj.Schema.NUM_PROCESSED_RESULTS(num_processed)) metadata_obj.UpdateLease(600) if self.CheckIfRunningTooLong(): logging.warning("Run too long, stopping.") break metadata_obj.Set(metadata_obj.Schema.OUTPUT_PLUGINS(all_plugins)) metadata_obj.Set( metadata_obj.Schema.NUM_PROCESSED_RESULTS(num_processed)) except aff4.LockError: logging.warn( "ProcessHuntResultCollectionsCronFlow: " "Could not get lock on hunt metadata %s.", metadata_urn) return 0 if exceptions_by_plugin: for plugin, exceptions in iteritems(exceptions_by_plugin): exceptions_by_hunt.setdefault(hunt_urn, {}).setdefault( plugin, []).extend(exceptions) logging.debug("Processed %d results.", num_processed_for_hunt) return len(results) def Start(self): self.start_time = rdfvalue.RDFDatetime.Now() exceptions_by_hunt = {} self.max_running_time = self.lifetime * 0.6 while not self.CheckIfRunningTooLong(): count = self.ProcessOneHunt(exceptions_by_hunt) if not count: break if exceptions_by_hunt: e = ResultsProcessingError() for hunt_urn, exceptions_by_plugin in iteritems(exceptions_by_hunt): for plugin, exceptions in iteritems(exceptions_by_plugin): for exception in exceptions: e.RegisterSubException(hunt_urn, plugin, exception) raise e
37.282051
80
0.705365
a562f6d8ca95b18ef2b75191aad086604d769616
5,524
py
Python
venv/Lib/site-packages/sklearn/feature_extraction/tests/test_feature_hasher.py
arnoyu-hub/COMP0016miemie
59af664dcf190eab4f93cefb8471908717415fea
[ "MIT" ]
null
null
null
venv/Lib/site-packages/sklearn/feature_extraction/tests/test_feature_hasher.py
arnoyu-hub/COMP0016miemie
59af664dcf190eab4f93cefb8471908717415fea
[ "MIT" ]
null
null
null
venv/Lib/site-packages/sklearn/feature_extraction/tests/test_feature_hasher.py
arnoyu-hub/COMP0016miemie
59af664dcf190eab4f93cefb8471908717415fea
[ "MIT" ]
null
null
null
import numpy as np from numpy.testing import assert_array_equal import pytest from sklearn.feature_extraction import FeatureHasher from sklearn.utils._testing import ignore_warnings, fails_if_pypy pytestmark = fails_if_pypy def test_feature_hasher_dicts(): h = FeatureHasher(n_features=16) assert "dict" == h.input_type raw_X = [{"foo": "bar", "dada": 42, "tzara": 37}, {"foo": "baz", "gaga": "string1"}] X1 = FeatureHasher(n_features=16).transform(raw_X) gen = (iter(d.items()) for d in raw_X) X2 = FeatureHasher(n_features=16, input_type="pair").transform(gen) assert_array_equal(X1.toarray(), X2.toarray()) def test_feature_hasher_strings(): # mix byte and Unicode strings; note that "foo" is a duplicate in row 0 raw_X = [ ["foo", "bar", "baz", "foo".encode("ascii")], ["bar".encode("ascii"), "baz", "quux"], ] for lg_n_features in (7, 9, 11, 16, 22): n_features = 2 ** lg_n_features it = (x for x in raw_X) # iterable h = FeatureHasher( n_features=n_features, input_type="string", alternate_sign=False ) X = h.transform(it) assert X.shape[0] == len(raw_X) assert X.shape[1] == n_features assert X[0].sum() == 4 assert X[1].sum() == 3 assert X.nnz == 6 def test_hashing_transform_seed(): # check the influence of the seed when computing the hashes # import is here to avoid importing on pypy from sklearn.feature_extraction._hashing_fast import transform as _hashing_transform raw_X = [ ["foo", "bar", "baz", "foo".encode("ascii")], ["bar".encode("ascii"), "baz", "quux"], ] raw_X_ = (((f, 1) for f in x) for x in raw_X) indices, indptr, _ = _hashing_transform(raw_X_, 2 ** 7, str, False) raw_X_ = (((f, 1) for f in x) for x in raw_X) indices_0, indptr_0, _ = _hashing_transform(raw_X_, 2 ** 7, str, False, seed=0) assert_array_equal(indices, indices_0) assert_array_equal(indptr, indptr_0) raw_X_ = (((f, 1) for f in x) for x in raw_X) indices_1, _, _ = _hashing_transform(raw_X_, 2 ** 7, str, False, seed=1) with pytest.raises(AssertionError): assert_array_equal(indices, indices_1) def test_feature_hasher_pairs(): raw_X = ( iter(d.items()) for d in [{"foo": 1, "bar": 2}, {"baz": 3, "quux": 4, "foo": -1}] ) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert [1, 2] == x1_nz assert [1, 3, 4] == x2_nz def test_feature_hasher_pairs_with_string_values(): raw_X = ( iter(d.items()) for d in [{"foo": 1, "bar": "a"}, {"baz": "abc", "quux": 4, "foo": -1}] ) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert [1, 1] == x1_nz assert [1, 1, 4] == x2_nz raw_X = (iter(d.items()) for d in [{"bax": "abc"}, {"bax": "abc"}]) x1, x2 = h.transform(raw_X).toarray() x1_nz = np.abs(x1[x1 != 0]) x2_nz = np.abs(x2[x2 != 0]) assert [1] == x1_nz assert [1] == x2_nz assert_array_equal(x1, x2) def test_hash_empty_input(): n_features = 16 raw_X = [[], (), iter(range(0))] h = FeatureHasher(n_features=n_features, input_type="string") X = h.transform(raw_X) assert_array_equal(X.A, np.zeros((len(raw_X), n_features))) def test_hasher_invalid_input(): with pytest.raises(ValueError): FeatureHasher(input_type="gobbledygook") with pytest.raises(ValueError): FeatureHasher(n_features=-1) with pytest.raises(ValueError): FeatureHasher(n_features=0) with pytest.raises(TypeError): FeatureHasher(n_features="ham") h = FeatureHasher(n_features=np.uint16(2 ** 6)) with pytest.raises(ValueError): h.transform([]) with pytest.raises(Exception): h.transform([[5.5]]) with pytest.raises(Exception): h.transform([[None]]) def test_hasher_set_params(): # Test delayed input validation in fit (useful for grid search). hasher = FeatureHasher() hasher.set_params(n_features=np.inf) with pytest.raises(TypeError): hasher.fit() def test_hasher_zeros(): # Assert that no zeros are materialized in the output. X = FeatureHasher().transform([{"foo": 0}]) assert X.data.shape == (0,) @ignore_warnings(category=FutureWarning) def test_hasher_alternate_sign(): X = [list("Thequickbrownfoxjumped")] Xt = FeatureHasher(alternate_sign=True, input_type="string").fit_transform(X) assert Xt.data.min() < 0 and Xt.data.max() > 0 Xt = FeatureHasher(alternate_sign=False, input_type="string").fit_transform(X) assert Xt.data.min() > 0 def test_hash_collisions(): X = [list("Thequickbrownfoxjumped")] Xt = FeatureHasher( alternate_sign=True, n_features=1, input_type="string" ).fit_transform(X) # check that some of the hashed tokens are added # with an opposite sign and cancel out assert abs(Xt.data[0]) < len(X[0]) Xt = FeatureHasher( alternate_sign=False, n_features=1, input_type="string" ).fit_transform(X) assert Xt.data[0] == len(X[0])
31.747126
89
0.612238
d99ffa7a76dbc0efee5284edd8b729835de299f7
5,197
py
Python
src/oci/core/models/update_vcn_details.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/core/models/update_vcn_details.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/core/models/update_vcn_details.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class UpdateVcnDetails(object): """ UpdateVcnDetails model. """ def __init__(self, **kwargs): """ Initializes a new UpdateVcnDetails object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param defined_tags: The value to assign to the defined_tags property of this UpdateVcnDetails. :type defined_tags: dict(str, dict(str, object)) :param display_name: The value to assign to the display_name property of this UpdateVcnDetails. :type display_name: str :param freeform_tags: The value to assign to the freeform_tags property of this UpdateVcnDetails. :type freeform_tags: dict(str, str) """ self.swagger_types = { 'defined_tags': 'dict(str, dict(str, object))', 'display_name': 'str', 'freeform_tags': 'dict(str, str)' } self.attribute_map = { 'defined_tags': 'definedTags', 'display_name': 'displayName', 'freeform_tags': 'freeformTags' } self._defined_tags = None self._display_name = None self._freeform_tags = None @property def defined_tags(self): """ Gets the defined_tags of this UpdateVcnDetails. Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see `Resource Tags`__. Example: `{\"Operations\": {\"CostCenter\": \"42\"}}` __ https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm :return: The defined_tags of this UpdateVcnDetails. :rtype: dict(str, dict(str, object)) """ return self._defined_tags @defined_tags.setter def defined_tags(self, defined_tags): """ Sets the defined_tags of this UpdateVcnDetails. Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see `Resource Tags`__. Example: `{\"Operations\": {\"CostCenter\": \"42\"}}` __ https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm :param defined_tags: The defined_tags of this UpdateVcnDetails. :type: dict(str, dict(str, object)) """ self._defined_tags = defined_tags @property def display_name(self): """ Gets the display_name of this UpdateVcnDetails. A user-friendly name. Does not have to be unique, and it's changeable. Avoid entering confidential information. :return: The display_name of this UpdateVcnDetails. :rtype: str """ return self._display_name @display_name.setter def display_name(self, display_name): """ Sets the display_name of this UpdateVcnDetails. A user-friendly name. Does not have to be unique, and it's changeable. Avoid entering confidential information. :param display_name: The display_name of this UpdateVcnDetails. :type: str """ self._display_name = display_name @property def freeform_tags(self): """ Gets the freeform_tags of this UpdateVcnDetails. Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see `Resource Tags`__. Example: `{\"Department\": \"Finance\"}` __ https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm :return: The freeform_tags of this UpdateVcnDetails. :rtype: dict(str, str) """ return self._freeform_tags @freeform_tags.setter def freeform_tags(self, freeform_tags): """ Sets the freeform_tags of this UpdateVcnDetails. Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see `Resource Tags`__. Example: `{\"Department\": \"Finance\"}` __ https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm :param freeform_tags: The freeform_tags of this UpdateVcnDetails. :type: dict(str, str) """ self._freeform_tags = freeform_tags def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
33.529032
245
0.653069
f1e67489bbc1cf9c0aa668e037509418887d6c49
2,329
py
Python
authapi/tests/test_pagination.py
praekeltfoundation/seed-auth-api
2238f7ecde2f75143bea0ac36f875793a19dde9b
[ "BSD-3-Clause" ]
null
null
null
authapi/tests/test_pagination.py
praekeltfoundation/seed-auth-api
2238f7ecde2f75143bea0ac36f875793a19dde9b
[ "BSD-3-Clause" ]
2
2019-08-06T08:30:42.000Z
2020-02-12T06:32:54.000Z
authapi/tests/test_pagination.py
praekeltfoundation/seed-auth-api
2238f7ecde2f75143bea0ac36f875793a19dde9b
[ "BSD-3-Clause" ]
null
null
null
from rest_framework.generics import ListAPIView from rest_framework.test import APITestCase from rest_framework.test import APIRequestFactory from authapi.serializers import OrganizationSummarySerializer from authapi.models import SeedOrganization from authapi.pagination import LinkHeaderPagination class DummyView(ListAPIView): queryset = SeedOrganization.objects.all() serializer_class = OrganizationSummarySerializer pagination_class = LinkHeaderPagination class LinkHeaderPaginationTests(APITestCase): def setUp(self): self.requests = APIRequestFactory() def handle(self, req): resp = DummyView.as_view()(req) resp.render() return resp def test_next(self): ''''The paginator should set the Link header to a next link if there is a next page''' for _ in range(3): SeedOrganization.objects.create() resp = self.handle(self.requests.get('/?page=1&page_size=2')) self.assertEqual( resp['Link'], '<http://testserver/?page=2&page_size=2>; rel="next"') def test_prev(self): ''''The paginator should set the Link header to a previous link if there is a previous page''' for _ in range(3): SeedOrganization.objects.create() resp = self.handle(self.requests.get('/?page=2&page_size=2')) self.assertEqual( resp['Link'], '<http://testserver/?page_size=2>; rel="prev"') def test_next_and_prev(self): ''''The paginator should set the Link header to a next and previous link if there are both a next and a previous page''' pass for _ in range(5): SeedOrganization.objects.create() resp = self.handle(self.requests.get('/?page=2&page_size=2')) self.assertEqual( resp['Link'], '<http://testserver/?page=3&page_size=2>; rel="next", ' '<http://testserver/?page_size=2>; rel="prev"') def test_no_next_no_prev(self): '''The paginator should not set the Link header if there is not a next or previous page''' for _ in range(2): SeedOrganization.objects.create() resp = self.handle(self.requests.get('/?page=1&page_size=2')) self.assertTrue('Link' not in resp)
32.347222
79
0.644912
71fb3f01c863748cab11ec79b0488c344479af57
269
py
Python
scripts/valid_features.py
SaraLatif99/udacity-mlnd-deeplearning-capstone
b781a98bad40032803a4270457e5b27e2b4e4ed7
[ "MIT" ]
27
2017-03-01T11:06:40.000Z
2021-02-01T07:32:39.000Z
scripts/valid_features.py
SaraLatif99/udacity-mlnd-deeplearning-capstone
b781a98bad40032803a4270457e5b27e2b4e4ed7
[ "MIT" ]
null
null
null
scripts/valid_features.py
SaraLatif99/udacity-mlnd-deeplearning-capstone
b781a98bad40032803a4270457e5b27e2b4e4ed7
[ "MIT" ]
24
2017-05-20T19:49:29.000Z
2021-06-11T00:25:06.000Z
import numpy as np from keras.applications import VGG16 model = VGG16(weights="imagenet",include_top=False) valid_images = np.load('validation_images.npy') valid_features = model.predict(valid_images,batch_size=1,verbose=1) np.save("valid_features.npy",valid_features)
38.428571
67
0.817844
dde10098eb08fc43c5cda5d430d6f7d5f5dd14ac
586
py
Python
face_detection.py
VinayDagar/movement-detection
1c3ce2874f4903c167f065e928d4b77d6edcf05a
[ "MIT" ]
null
null
null
face_detection.py
VinayDagar/movement-detection
1c3ce2874f4903c167f065e928d4b77d6edcf05a
[ "MIT" ]
null
null
null
face_detection.py
VinayDagar/movement-detection
1c3ce2874f4903c167f065e928d4b77d6edcf05a
[ "MIT" ]
null
null
null
import cv2 # using haar cascader classifier for face detection face_classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cap = cv2.VideoCapture(0) while cap.isOpened(): ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_classifier.detectMultiScale(gray, 1.1, 4) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x + w, y + h), (118, 223, 111), 3) cv2.imshow('Face Detection', frame) if cv2.waitKey(0): break cap.release() cv2.destroyAllWindows()
24.416667
79
0.636519
08d36a940b0b267910cc2f29bc0846b645210cea
639
py
Python
djgumroad/products/migrations/0002_product_user.py
Maharshi-Pathak/gumroad-clone
97ab1bd71585ee7a4279ad0189980e1b69c31948
[ "MIT" ]
11
2021-04-22T06:26:42.000Z
2022-03-27T21:19:57.000Z
djgumroad/products/migrations/0002_product_user.py
Maharshi-Pathak/gumroad-clone
97ab1bd71585ee7a4279ad0189980e1b69c31948
[ "MIT" ]
null
null
null
djgumroad/products/migrations/0002_product_user.py
Maharshi-Pathak/gumroad-clone
97ab1bd71585ee7a4279ad0189980e1b69c31948
[ "MIT" ]
6
2021-02-10T18:12:27.000Z
2022-03-14T02:17:38.000Z
# Generated by Django 3.0.11 on 2021-01-29 12:55 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('products', '0001_initial'), ] operations = [ migrations.AddField( model_name='product', name='user', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='products', to=settings.AUTH_USER_MODEL), preserve_default=False, ), ]
27.782609
146
0.671362
79c5c30a8f8726e97c45f0d8cd8ce92450bddabc
1,483
py
Python
tests/counterfit/core/test_state.py
Mandroide/counterfit
3252588d45514192edd4444b3bff0bf006f92bf0
[ "MIT" ]
null
null
null
tests/counterfit/core/test_state.py
Mandroide/counterfit
3252588d45514192edd4444b3bff0bf006f92bf0
[ "MIT" ]
null
null
null
tests/counterfit/core/test_state.py
Mandroide/counterfit
3252588d45514192edd4444b3bff0bf006f92bf0
[ "MIT" ]
null
null
null
from collections import defaultdict from unittest.mock import Mock import pytest from counterfit.core.state import CFState class TestCFState: @pytest.fixture(scope='function') def target_singleton_handler(self): target_singleton_obj = CFState.get_instance() return target_singleton_obj def test_singleton_obj(self, target_singleton_handler): a = target_singleton_handler b = CFState.get_instance() assert a == b def test_set_active_target(self, target_singleton_handler): target_singleton_handler.loaded_targets['TEMP_MODEL_NAME'] = Mock() target_singleton_handler.set_active_target('TEMP_MODEL_NAME') assert target_singleton_handler.active_target._mock_parent == None def test_set_active_attack(self, target_singleton_handler): target_singleton_handler.active_target = Mock() target_singleton_handler.active_target.attacks = defaultdict() target_singleton_handler.active_target.attacks['TEMP_ATTACK_ID'] = Mock() target_singleton_handler.set_active_attack('TEMP_ATTACK_ID') assert target_singleton_handler.active_target.active_attack._mock_new_name == 'active_attack' def test_load_attack(self, target_singleton_handler): attack_obj = Mock() attack_obj.attack_name = 'TEMP_ATTACK' target_singleton_handler.load_attack(attack_obj) assert 'TEMP_ATTACK' in target_singleton_handler.loaded_attacks
40.081081
101
0.751854
c30c7aa9e8c8e507f6e64b82e05f179c20efd08f
138,828
py
Python
lib/galaxy/model/mapping.py
ClayBirkett/galaxy
b5afa3c1a90d269f1d438ffde481ff2e4178a72b
[ "CC-BY-3.0" ]
1
2019-11-15T01:50:38.000Z
2019-11-15T01:50:38.000Z
lib/galaxy/model/mapping.py
userssss/galaxy
9662164ad68b39adf5a5606a7aa8e388f6a79f1e
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy/model/mapping.py
userssss/galaxy
9662164ad68b39adf5a5606a7aa8e388f6a79f1e
[ "CC-BY-3.0" ]
null
null
null
""" Details of how the data model objects are mapped onto the relational database are encapsulated here. """ import logging from sqlalchemy import ( and_, asc, Boolean, Column, DateTime, desc, false, ForeignKey, func, Index, Integer, MetaData, not_, Numeric, select, String, Table, TEXT, Text, true, Unicode, UniqueConstraint, VARCHAR ) from sqlalchemy.ext.associationproxy import association_proxy from sqlalchemy.ext.orderinglist import ordering_list from sqlalchemy.orm import backref, class_mapper, column_property, deferred, mapper, object_session, relation from sqlalchemy.orm.collections import attribute_mapped_collection from sqlalchemy.sql import exists from sqlalchemy.types import BigInteger from galaxy import model from galaxy.model.base import ModelMapping from galaxy.model.custom_types import JSONType, MetadataType, TrimmedString, UUIDType from galaxy.model.orm.engine_factory import build_engine from galaxy.model.orm.now import now from galaxy.model.security import GalaxyRBACAgent log = logging.getLogger(__name__) metadata = MetaData() model.WorkerProcess.table = Table( 'worker_process', metadata, Column("id", Integer, primary_key=True), Column("server_name", String(255), index=True), Column("hostname", String(255)), Column("update_time", DateTime, default=now, onupdate=now), UniqueConstraint('server_name', 'hostname'), ) model.User.table = Table( "galaxy_user", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("email", TrimmedString(255), index=True, nullable=False), Column("username", TrimmedString(255), index=True, unique=True), Column("password", TrimmedString(255), nullable=False), Column("last_password_change", DateTime, default=now), Column("external", Boolean, default=False), Column("form_values_id", Integer, ForeignKey("form_values.id"), index=True), Column("deleted", Boolean, index=True, default=False), Column("purged", Boolean, index=True, default=False), Column("disk_usage", Numeric(15, 0), index=True), Column("active", Boolean, index=True, default=True, nullable=False), Column("activation_token", TrimmedString(64), nullable=True, index=True)) model.UserAddress.table = Table( "user_address", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("desc", TrimmedString(255)), Column("name", TrimmedString(255), nullable=False), Column("institution", TrimmedString(255)), Column("address", TrimmedString(255), nullable=False), Column("city", TrimmedString(255), nullable=False), Column("state", TrimmedString(255), nullable=False), Column("postal_code", TrimmedString(255), nullable=False), Column("country", TrimmedString(255), nullable=False), Column("phone", TrimmedString(255)), Column("deleted", Boolean, index=True, default=False), Column("purged", Boolean, index=True, default=False)) model.PSAAssociation.table = Table( "psa_association", metadata, Column('id', Integer, primary_key=True), Column('server_url', VARCHAR(255)), Column('handle', VARCHAR(255)), Column('secret', VARCHAR(255)), Column('issued', Integer), Column('lifetime', Integer), Column('assoc_type', VARCHAR(64))) model.PSACode.table = Table( "psa_code", metadata, Column('id', Integer, primary_key=True), Column('email', VARCHAR(200)), Column('code', VARCHAR(32))) model.PSANonce.table = Table( "psa_nonce", metadata, Column('id', Integer, primary_key=True), Column('server_url', VARCHAR(255)), Column('timestamp', Integer), Column('salt', VARCHAR(40))) model.PSAPartial.table = Table( "psa_partial", metadata, Column('id', Integer, primary_key=True), Column('token', VARCHAR(32)), Column('data', TEXT), Column('next_step', Integer), Column('backend', VARCHAR(32))) model.UserAuthnzToken.table = Table( "oidc_user_authnz_tokens", metadata, Column('id', Integer, primary_key=True), Column('user_id', Integer, ForeignKey("galaxy_user.id"), index=True), Column('uid', VARCHAR(255)), Column('provider', VARCHAR(32)), Column('extra_data', JSONType, nullable=True), Column('lifetime', Integer), Column('assoc_type', VARCHAR(64))) model.CustosAuthnzToken.table = Table( "custos_authnz_token", metadata, Column('id', Integer, primary_key=True), Column('user_id', Integer, ForeignKey("galaxy_user.id")), Column('external_user_id', String(64)), Column('provider', String(255)), Column('access_token', Text), Column('id_token', Text), Column('refresh_token', Text), Column("expiration_time", DateTime), Column("refresh_expiration_time", DateTime), UniqueConstraint("user_id", "external_user_id", "provider"), UniqueConstraint("external_user_id", "provider"), ) model.CloudAuthz.table = Table( "cloudauthz", metadata, Column('id', Integer, primary_key=True), Column('user_id', Integer, ForeignKey("galaxy_user.id"), index=True), Column('provider', String(255)), Column('config', JSONType), Column('authn_id', Integer, ForeignKey("oidc_user_authnz_tokens.id"), index=True), Column('tokens', JSONType), Column('last_update', DateTime), Column('last_activity', DateTime), Column('description', TEXT), Column('create_time', DateTime, default=now)) model.PasswordResetToken.table = Table( "password_reset_token", metadata, Column("token", String(32), primary_key=True, unique=True, index=True), Column("expiration_time", DateTime), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True)) model.DynamicTool.table = Table( "dynamic_tool", metadata, Column("id", Integer, primary_key=True), Column("uuid", UUIDType()), Column("create_time", DateTime, default=now), Column("update_time", DateTime, index=True, default=now, onupdate=now), Column("tool_id", Unicode(255)), Column("tool_version", Unicode(255)), Column("tool_format", Unicode(255)), Column("tool_path", Unicode(255)), Column("tool_directory", Unicode(255)), Column("hidden", Boolean, default=True), Column("active", Boolean, default=True), Column("value", JSONType()), ) model.History.table = Table( "history", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, index=True, default=now, onupdate=now), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("name", TrimmedString(255)), Column("hid_counter", Integer, default=1), Column("deleted", Boolean, index=True, default=False), Column("purged", Boolean, index=True, default=False), Column("importing", Boolean, index=True, default=False), Column("genome_build", TrimmedString(40)), Column("importable", Boolean, default=False), Column("slug", TEXT), Column("published", Boolean, index=True, default=False), Index('ix_history_slug', 'slug', mysql_length=200), ) model.HistoryUserShareAssociation.table = Table( "history_user_share_association", metadata, Column("id", Integer, primary_key=True), Column("history_id", Integer, ForeignKey("history.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True)) model.HistoryDatasetAssociation.table = Table( "history_dataset_association", metadata, Column("id", Integer, primary_key=True), Column("history_id", Integer, ForeignKey("history.id"), index=True), Column("dataset_id", Integer, ForeignKey("dataset.id"), index=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("state", TrimmedString(64), index=True, key="_state"), Column("copied_from_history_dataset_association_id", Integer, ForeignKey("history_dataset_association.id"), nullable=True), Column("copied_from_library_dataset_dataset_association_id", Integer, ForeignKey("library_dataset_dataset_association.id"), nullable=True), Column("name", TrimmedString(255)), Column("info", TrimmedString(255)), Column("blurb", TrimmedString(255)), Column("peek", TEXT, key="_peek"), Column("tool_version", TEXT), Column("extension", TrimmedString(64)), Column("metadata", MetadataType(), key="_metadata"), Column("parent_id", Integer, ForeignKey("history_dataset_association.id"), nullable=True), Column("designation", TrimmedString(255)), Column("deleted", Boolean, index=True, default=False), Column("visible", Boolean), Column("extended_metadata_id", Integer, ForeignKey("extended_metadata.id"), index=True), Column("version", Integer, default=1, nullable=True, index=True), Column("hid", Integer), Column("purged", Boolean, index=True, default=False), Column("validated_state", TrimmedString(64), default='unvalidated', nullable=False), Column("validated_state_message", TEXT), Column("hidden_beneath_collection_instance_id", ForeignKey("history_dataset_collection_association.id"), nullable=True)) model.HistoryDatasetAssociationHistory.table = Table( "history_dataset_association_history", metadata, Column("id", Integer, primary_key=True), Column("history_dataset_association_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("update_time", DateTime, default=now), Column("version", Integer), Column("name", TrimmedString(255)), Column("extension", TrimmedString(64)), Column("metadata", MetadataType(), key="_metadata"), Column("extended_metadata_id", Integer, ForeignKey("extended_metadata.id"), index=True), ) model.Dataset.table = Table( "dataset", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, index=True, default=now, onupdate=now), Column("state", TrimmedString(64), index=True), Column("deleted", Boolean, index=True, default=False), Column("purged", Boolean, index=True, default=False), Column("purgable", Boolean, default=True), Column("object_store_id", TrimmedString(255), index=True), Column("external_filename", TEXT), Column("_extra_files_path", TEXT), Column("created_from_basename", TEXT), Column('file_size', Numeric(15, 0)), Column('total_size', Numeric(15, 0)), Column('uuid', UUIDType())) model.DatasetSource.table = Table( "dataset_source", metadata, Column("id", Integer, primary_key=True), Column("dataset_id", Integer, ForeignKey("dataset.id"), index=True), Column("source_uri", TEXT), Column("extra_files_path", TEXT), Column("transform", JSONType) ) model.DatasetHash.table = Table( "dataset_hash", metadata, Column("id", Integer, primary_key=True), Column("dataset_id", Integer, ForeignKey("dataset.id"), index=True), Column("hash_function", TEXT), Column("hash_value", TEXT), Column("extra_files_path", TEXT), ) model.DatasetSourceHash.table = Table( "dataset_source_hash", metadata, Column("id", Integer, primary_key=True), Column("dataset_source_id", Integer, ForeignKey("dataset_source.id"), index=True), Column("hash_function", TEXT), Column("hash_value", TEXT) ) # hda read access permission given by a user to a specific site (gen. for external display applications) model.HistoryDatasetAssociationDisplayAtAuthorization.table = Table( "history_dataset_association_display_at_authorization", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, index=True, default=now, onupdate=now), Column("history_dataset_association_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("site", TrimmedString(255))) model.HistoryDatasetAssociationSubset.table = Table( "history_dataset_association_subset", metadata, Column("id", Integer, primary_key=True), Column("history_dataset_association_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("history_dataset_association_subset_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("location", Unicode(255), index=True)) model.ImplicitlyConvertedDatasetAssociation.table = Table( "implicitly_converted_dataset_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("hda_id", Integer, ForeignKey("history_dataset_association.id"), index=True, nullable=True), Column("ldda_id", Integer, ForeignKey("library_dataset_dataset_association.id"), index=True, nullable=True), Column("hda_parent_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("ldda_parent_id", Integer, ForeignKey("library_dataset_dataset_association.id"), index=True), Column("deleted", Boolean, index=True, default=False), Column("metadata_safe", Boolean, index=True, default=True), Column("type", TrimmedString(255))) model.ValidationError.table = Table( "validation_error", metadata, Column("id", Integer, primary_key=True), Column("dataset_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("message", TrimmedString(255)), Column("err_type", TrimmedString(64)), Column("attributes", TEXT)) model.Group.table = Table( "galaxy_group", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("name", String(255), index=True, unique=True), Column("deleted", Boolean, index=True, default=False)) model.UserGroupAssociation.table = Table( "user_group_association", metadata, Column("id", Integer, primary_key=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("group_id", Integer, ForeignKey("galaxy_group.id"), index=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now)) model.UserRoleAssociation.table = Table( "user_role_association", metadata, Column("id", Integer, primary_key=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("role_id", Integer, ForeignKey("role.id"), index=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now)) model.GroupRoleAssociation.table = Table( "group_role_association", metadata, Column("id", Integer, primary_key=True), Column("group_id", Integer, ForeignKey("galaxy_group.id"), index=True), Column("role_id", Integer, ForeignKey("role.id"), index=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now)) model.Role.table = Table( "role", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("name", String(255), index=True, unique=True), Column("description", TEXT), Column("type", String(40), index=True), Column("deleted", Boolean, index=True, default=False)) model.UserQuotaAssociation.table = Table( "user_quota_association", metadata, Column("id", Integer, primary_key=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("quota_id", Integer, ForeignKey("quota.id"), index=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now)) model.GroupQuotaAssociation.table = Table( "group_quota_association", metadata, Column("id", Integer, primary_key=True), Column("group_id", Integer, ForeignKey("galaxy_group.id"), index=True), Column("quota_id", Integer, ForeignKey("quota.id"), index=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now)) model.Quota.table = Table( "quota", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("name", String(255), index=True, unique=True), Column("description", TEXT), Column("bytes", BigInteger), Column("operation", String(8)), Column("deleted", Boolean, index=True, default=False)) model.DefaultQuotaAssociation.table = Table( "default_quota_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("type", String(32), index=True, unique=True), Column("quota_id", Integer, ForeignKey("quota.id"), index=True)) model.DatasetPermissions.table = Table( "dataset_permissions", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("action", TEXT), Column("dataset_id", Integer, ForeignKey("dataset.id"), index=True), Column("role_id", Integer, ForeignKey("role.id"), index=True)) model.LibraryPermissions.table = Table( "library_permissions", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("action", TEXT), Column("library_id", Integer, ForeignKey("library.id"), nullable=True, index=True), Column("role_id", Integer, ForeignKey("role.id"), index=True)) model.LibraryFolderPermissions.table = Table( "library_folder_permissions", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("action", TEXT), Column("library_folder_id", Integer, ForeignKey("library_folder.id"), nullable=True, index=True), Column("role_id", Integer, ForeignKey("role.id"), index=True)) model.LibraryDatasetPermissions.table = Table( "library_dataset_permissions", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("action", TEXT), Column("library_dataset_id", Integer, ForeignKey("library_dataset.id"), nullable=True, index=True), Column("role_id", Integer, ForeignKey("role.id"), index=True)) model.LibraryDatasetDatasetAssociationPermissions.table = Table( "library_dataset_dataset_association_permissions", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("action", TEXT), Column("library_dataset_dataset_association_id", Integer, ForeignKey("library_dataset_dataset_association.id"), nullable=True, index=True), Column("role_id", Integer, ForeignKey("role.id"), index=True)) model.DefaultUserPermissions.table = Table( "default_user_permissions", metadata, Column("id", Integer, primary_key=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("action", TEXT), Column("role_id", Integer, ForeignKey("role.id"), index=True)) model.DefaultHistoryPermissions.table = Table( "default_history_permissions", metadata, Column("id", Integer, primary_key=True), Column("history_id", Integer, ForeignKey("history.id"), index=True), Column("action", TEXT), Column("role_id", Integer, ForeignKey("role.id"), index=True)) model.LibraryDataset.table = Table( "library_dataset", metadata, Column("id", Integer, primary_key=True), # current version of dataset, if null, there is not a current version selected Column("library_dataset_dataset_association_id", Integer, ForeignKey("library_dataset_dataset_association.id", use_alter=True, name="library_dataset_dataset_association_id_fk"), nullable=True, index=True), Column("folder_id", Integer, ForeignKey("library_folder.id"), index=True), # not currently being used, but for possible future use Column("order_id", Integer), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), # when not None/null this will supercede display in library (but not when imported into user's history?) Column("name", TrimmedString(255), key="_name", index=True), # when not None/null this will supercede display in library (but not when imported into user's history?) Column("info", TrimmedString(255), key="_info"), Column("deleted", Boolean, index=True, default=False), Column("purged", Boolean, index=True, default=False)) model.LibraryDatasetDatasetAssociation.table = Table( "library_dataset_dataset_association", metadata, Column("id", Integer, primary_key=True), Column("library_dataset_id", Integer, ForeignKey("library_dataset.id"), index=True), Column("dataset_id", Integer, ForeignKey("dataset.id"), index=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("state", TrimmedString(64), index=True, key="_state"), Column("copied_from_history_dataset_association_id", Integer, ForeignKey("history_dataset_association.id", use_alter=True, name='history_dataset_association_dataset_id_fkey'), nullable=True), Column("copied_from_library_dataset_dataset_association_id", Integer, ForeignKey("library_dataset_dataset_association.id", use_alter=True, name='library_dataset_dataset_association_id_fkey'), nullable=True), Column("name", TrimmedString(255), index=True), Column("info", TrimmedString(255)), Column("blurb", TrimmedString(255)), Column("peek", TEXT, key="_peek"), Column("tool_version", TEXT), Column("extension", TrimmedString(64)), Column("metadata", MetadataType(), key="_metadata"), Column("parent_id", Integer, ForeignKey("library_dataset_dataset_association.id"), nullable=True), Column("designation", TrimmedString(255)), Column("deleted", Boolean, index=True, default=False), Column("validated_state", TrimmedString(64), default='unvalidated', nullable=False), Column("validated_state_message", TEXT), Column("visible", Boolean), Column("extended_metadata_id", Integer, ForeignKey("extended_metadata.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("message", TrimmedString(255))) model.ExtendedMetadata.table = Table( "extended_metadata", metadata, Column("id", Integer, primary_key=True), Column("data", JSONType)) model.ExtendedMetadataIndex.table = Table( "extended_metadata_index", metadata, Column("id", Integer, primary_key=True), Column("extended_metadata_id", Integer, ForeignKey("extended_metadata.id", onupdate="CASCADE", ondelete="CASCADE"), index=True), Column("path", String(255)), Column("value", TEXT)) model.Library.table = Table( "library", metadata, Column("id", Integer, primary_key=True), Column("root_folder_id", Integer, ForeignKey("library_folder.id"), index=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("name", String(255), index=True), Column("deleted", Boolean, index=True, default=False), Column("purged", Boolean, index=True, default=False), Column("description", TEXT), Column("synopsis", TEXT)) model.LibraryFolder.table = Table( "library_folder", metadata, Column("id", Integer, primary_key=True), Column("parent_id", Integer, ForeignKey("library_folder.id"), nullable=True, index=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("name", TEXT), Column("description", TEXT), Column("order_id", Integer), # not currently being used, but for possible future use Column("item_count", Integer), Column("deleted", Boolean, index=True, default=False), Column("purged", Boolean, index=True, default=False), Column("genome_build", TrimmedString(40)), Index('ix_library_folder_name', 'name', mysql_length=200), ) model.LibraryInfoAssociation.table = Table( "library_info_association", metadata, Column("id", Integer, primary_key=True), Column("library_id", Integer, ForeignKey("library.id"), index=True), Column("form_definition_id", Integer, ForeignKey("form_definition.id"), index=True), Column("form_values_id", Integer, ForeignKey("form_values.id"), index=True), Column("inheritable", Boolean, index=True, default=False), Column("deleted", Boolean, index=True, default=False)) model.LibraryFolderInfoAssociation.table = Table( "library_folder_info_association", metadata, Column("id", Integer, primary_key=True), Column("library_folder_id", Integer, ForeignKey("library_folder.id"), nullable=True, index=True), Column("form_definition_id", Integer, ForeignKey("form_definition.id"), index=True), Column("form_values_id", Integer, ForeignKey("form_values.id"), index=True), Column("inheritable", Boolean, index=True, default=False), Column("deleted", Boolean, index=True, default=False)) model.LibraryDatasetDatasetInfoAssociation.table = Table( "library_dataset_dataset_info_association", metadata, Column("id", Integer, primary_key=True), Column("library_dataset_dataset_association_id", Integer, ForeignKey("library_dataset_dataset_association.id"), nullable=True, index=True), Column("form_definition_id", Integer, ForeignKey("form_definition.id"), index=True), Column("form_values_id", Integer, ForeignKey("form_values.id"), index=True), Column("deleted", Boolean, index=True, default=False)) model.Job.table = Table( "job", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("history_id", Integer, ForeignKey("history.id"), index=True), Column("library_folder_id", Integer, ForeignKey("library_folder.id"), index=True), Column("tool_id", String(255)), Column("tool_version", TEXT, default="1.0.0"), Column("galaxy_version", String(64), default=None), Column("dynamic_tool_id", Integer, ForeignKey("dynamic_tool.id"), index=True, nullable=True), Column("state", String(64), index=True), Column("info", TrimmedString(255)), Column("copied_from_job_id", Integer, nullable=True), Column("command_line", TEXT), Column("dependencies", JSONType, nullable=True), Column("job_messages", JSONType, nullable=True), Column("param_filename", String(1024)), Column("runner_name", String(255)), Column("job_stdout", TEXT), Column("job_stderr", TEXT), Column("tool_stdout", TEXT), Column("tool_stderr", TEXT), Column("exit_code", Integer, nullable=True), Column("traceback", TEXT), Column("session_id", Integer, ForeignKey("galaxy_session.id"), index=True, nullable=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True, nullable=True), Column("job_runner_name", String(255)), Column("job_runner_external_id", String(255), index=True), Column("destination_id", String(255), nullable=True), Column("destination_params", JSONType, nullable=True), Column("object_store_id", TrimmedString(255), index=True), Column("imported", Boolean, default=False, index=True), Column("params", TrimmedString(255), index=True), Column("handler", TrimmedString(255), index=True)) model.JobStateHistory.table = Table( "job_state_history", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("state", String(64), index=True), Column("info", TrimmedString(255))) model.JobParameter.table = Table( "job_parameter", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("name", String(255)), Column("value", TEXT)) model.JobToInputDatasetAssociation.table = Table( "job_to_input_dataset", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("dataset_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("dataset_version", Integer), Column("name", String(255))) model.JobToOutputDatasetAssociation.table = Table( "job_to_output_dataset", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("dataset_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("name", String(255))) model.JobToInputDatasetCollectionAssociation.table = Table( "job_to_input_dataset_collection", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("dataset_collection_id", Integer, ForeignKey("history_dataset_collection_association.id"), index=True), Column("name", Unicode(255))) model.JobToImplicitOutputDatasetCollectionAssociation.table = Table( "job_to_implicit_output_dataset_collection", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("dataset_collection_id", Integer, ForeignKey("dataset_collection.id"), index=True), Column("name", Unicode(255))) model.JobToOutputDatasetCollectionAssociation.table = Table( "job_to_output_dataset_collection", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("dataset_collection_id", Integer, ForeignKey("history_dataset_collection_association.id"), index=True), Column("name", Unicode(255))) model.JobToInputLibraryDatasetAssociation.table = Table( "job_to_input_library_dataset", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("ldda_id", Integer, ForeignKey("library_dataset_dataset_association.id"), index=True), Column("name", String(255))) model.JobToOutputLibraryDatasetAssociation.table = Table( "job_to_output_library_dataset", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("ldda_id", Integer, ForeignKey("library_dataset_dataset_association.id"), index=True), Column("name", String(255))) model.ImplicitlyCreatedDatasetCollectionInput.table = Table( "implicitly_created_dataset_collection_inputs", metadata, Column("id", Integer, primary_key=True), Column("dataset_collection_id", Integer, ForeignKey("history_dataset_collection_association.id"), index=True), Column("input_dataset_collection_id", Integer, ForeignKey("history_dataset_collection_association.id"), index=True), Column("name", Unicode(255))) model.ImplicitCollectionJobs.table = Table( "implicit_collection_jobs", metadata, Column("id", Integer, primary_key=True), Column("populated_state", TrimmedString(64), default='new', nullable=False), ) model.ImplicitCollectionJobsJobAssociation.table = Table( "implicit_collection_jobs_job_association", metadata, Column("id", Integer, primary_key=True), Column("implicit_collection_jobs_id", Integer, ForeignKey("implicit_collection_jobs.id"), index=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), # Consider making this nullable... Column("order_index", Integer, nullable=False), ) model.JobExternalOutputMetadata.table = Table( "job_external_output_metadata", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("history_dataset_association_id", Integer, ForeignKey("history_dataset_association.id"), index=True, nullable=True), Column("library_dataset_dataset_association_id", Integer, ForeignKey("library_dataset_dataset_association.id"), index=True, nullable=True), Column("is_valid", Boolean, default=True), Column("filename_in", String(255)), Column("filename_out", String(255)), Column("filename_results_code", String(255)), Column("filename_kwds", String(255)), Column("filename_override_metadata", String(255)), Column("job_runner_external_pid", String(255))) model.JobExportHistoryArchive.table = Table( "job_export_history_archive", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("history_id", Integer, ForeignKey("history.id"), index=True), Column("dataset_id", Integer, ForeignKey("dataset.id"), index=True), Column("compressed", Boolean, index=True, default=False), Column("history_attrs_filename", TEXT)) model.JobImportHistoryArchive.table = Table( "job_import_history_archive", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("history_id", Integer, ForeignKey("history.id"), index=True), Column("archive_dir", TEXT)) model.JobMetricText.table = Table( "job_metric_text", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("plugin", Unicode(255)), Column("metric_name", Unicode(255)), Column("metric_value", Unicode(model.JOB_METRIC_MAX_LENGTH))) model.TaskMetricText.table = Table( "task_metric_text", metadata, Column("id", Integer, primary_key=True), Column("task_id", Integer, ForeignKey("task.id"), index=True), Column("plugin", Unicode(255)), Column("metric_name", Unicode(255)), Column("metric_value", Unicode(model.JOB_METRIC_MAX_LENGTH))) model.JobMetricNumeric.table = Table( "job_metric_numeric", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("plugin", Unicode(255)), Column("metric_name", Unicode(255)), Column("metric_value", Numeric(model.JOB_METRIC_PRECISION, model.JOB_METRIC_SCALE))) model.TaskMetricNumeric.table = Table( "task_metric_numeric", metadata, Column("id", Integer, primary_key=True), Column("task_id", Integer, ForeignKey("task.id"), index=True), Column("plugin", Unicode(255)), Column("metric_name", Unicode(255)), Column("metric_value", Numeric(model.JOB_METRIC_PRECISION, model.JOB_METRIC_SCALE))) model.GenomeIndexToolData.table = Table( "genome_index_tool_data", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("deferred_job_id", Integer, ForeignKey("deferred_job.id"), index=True), Column("transfer_job_id", Integer, ForeignKey("transfer_job.id"), index=True), Column("dataset_id", Integer, ForeignKey("dataset.id"), index=True), Column("fasta_path", String(255)), Column("created_time", DateTime, default=now), Column("modified_time", DateTime, default=now, onupdate=now), Column("indexer", String(64)), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True)) model.InteractiveToolEntryPoint.table = Table( "interactivetool_entry_point", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("name", TEXT), Column("token", TEXT), Column("tool_port", Integer), Column("host", TEXT), Column("port", Integer), Column("protocol", TEXT), Column("entry_url", TEXT), Column("info", JSONType, nullable=True), Column("configured", Boolean, default=False), Column("deleted", Boolean, default=False), Column("created_time", DateTime, default=now), Column("modified_time", DateTime, default=now, onupdate=now)) model.JobContainerAssociation.table = Table( "job_container_association", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("container_type", TEXT), Column("container_name", TEXT), Column("container_info", JSONType, nullable=True), Column("created_time", DateTime, default=now), Column("modified_time", DateTime, default=now, onupdate=now)) model.Task.table = Table( "task", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("execution_time", DateTime), Column("update_time", DateTime, default=now, onupdate=now), Column("state", String(64), index=True), Column("command_line", TEXT), Column("param_filename", String(1024)), Column("runner_name", String(255)), Column("job_stdout", TEXT), # job_stdout makes sense here because it is short for job script standard out. Column("job_stderr", TEXT), Column("tool_stdout", TEXT), Column("tool_stderr", TEXT), Column("exit_code", Integer, nullable=True), Column("job_messages", JSONType, nullable=True), Column("info", TrimmedString(255)), Column("traceback", TEXT), Column("job_id", Integer, ForeignKey("job.id"), index=True, nullable=False), Column("working_directory", String(1024)), Column("task_runner_name", String(255)), Column("task_runner_external_id", String(255)), Column("prepare_input_files_cmd", TEXT)) model.PostJobAction.table = Table( "post_job_action", metadata, Column("id", Integer, primary_key=True), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id"), index=True, nullable=False), Column("action_type", String(255), nullable=False), Column("output_name", String(255), nullable=True), Column("action_arguments", JSONType, nullable=True)) model.PostJobActionAssociation.table = Table( "post_job_action_association", metadata, Column("id", Integer, primary_key=True), Column("job_id", Integer, ForeignKey("job.id"), index=True, nullable=False), Column("post_job_action_id", Integer, ForeignKey("post_job_action.id"), index=True, nullable=False)) model.DeferredJob.table = Table( "deferred_job", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("state", String(64), index=True), Column("plugin", String(128), index=True), Column("params", JSONType)) model.TransferJob.table = Table( "transfer_job", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("state", String(64), index=True), Column("path", String(1024)), Column("info", TEXT), Column("pid", Integer), Column("socket", Integer), Column("params", JSONType)) model.DatasetCollection.table = Table( "dataset_collection", metadata, Column("id", Integer, primary_key=True), Column("collection_type", Unicode(255), nullable=False), Column("populated_state", TrimmedString(64), default='ok', nullable=False), Column("populated_state_message", TEXT), Column("element_count", Integer, nullable=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now)) model.HistoryDatasetCollectionAssociation.table = Table( "history_dataset_collection_association", metadata, Column("id", Integer, primary_key=True), Column("collection_id", Integer, ForeignKey("dataset_collection.id"), index=True), Column("history_id", Integer, ForeignKey("history.id"), index=True), Column("name", TrimmedString(255)), Column("hid", Integer), Column("visible", Boolean), Column("deleted", Boolean, default=False), Column("copied_from_history_dataset_collection_association_id", Integer, ForeignKey("history_dataset_collection_association.id"), nullable=True), Column("implicit_output_name", Unicode(255), nullable=True), Column("job_id", ForeignKey("job.id"), index=True, nullable=True), Column("implicit_collection_jobs_id", ForeignKey("implicit_collection_jobs.id"), index=True, nullable=True), ) model.LibraryDatasetCollectionAssociation.table = Table( "library_dataset_collection_association", metadata, Column("id", Integer, primary_key=True), Column("collection_id", Integer, ForeignKey("dataset_collection.id"), index=True), Column("folder_id", Integer, ForeignKey("library_folder.id"), index=True), Column("name", TrimmedString(255)), Column("deleted", Boolean, default=False)) model.DatasetCollectionElement.table = Table( "dataset_collection_element", metadata, Column("id", Integer, primary_key=True), # Parent collection id describing what collection this element belongs to. Column("dataset_collection_id", Integer, ForeignKey("dataset_collection.id"), index=True, nullable=False), # Child defined by this association - HDA, LDDA, or another dataset association... Column("hda_id", Integer, ForeignKey("history_dataset_association.id"), index=True, nullable=True), Column("ldda_id", Integer, ForeignKey("library_dataset_dataset_association.id"), index=True, nullable=True), Column("child_collection_id", Integer, ForeignKey("dataset_collection.id"), index=True, nullable=True), # Element index and identifier to define this parent-child relationship. Column("element_index", Integer), Column("element_identifier", Unicode(255), )) model.Event.table = Table( "event", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("history_id", Integer, ForeignKey("history.id"), index=True, nullable=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True, nullable=True), Column("message", TrimmedString(1024)), Column("session_id", Integer, ForeignKey("galaxy_session.id"), index=True, nullable=True), Column("tool_id", String(255))) model.GalaxySession.table = Table( "galaxy_session", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True, nullable=True), Column("remote_host", String(255)), Column("remote_addr", String(255)), Column("referer", TEXT), Column("current_history_id", Integer, ForeignKey("history.id"), nullable=True), # unique 128 bit random number coerced to a string Column("session_key", TrimmedString(255), index=True, unique=True), Column("is_valid", Boolean, default=False), # saves a reference to the previous session so we have a way to chain them together Column("prev_session_id", Integer), Column("disk_usage", Numeric(15, 0), index=True), Column("last_action", DateTime)) model.GalaxySessionToHistoryAssociation.table = Table( "galaxy_session_to_history", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("session_id", Integer, ForeignKey("galaxy_session.id"), index=True), Column("history_id", Integer, ForeignKey("history.id"), index=True)) model.StoredWorkflow.table = Table( "stored_workflow", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True, nullable=False), Column("latest_workflow_id", Integer, ForeignKey("workflow.id", use_alter=True, name='stored_workflow_latest_workflow_id_fk'), index=True), Column("name", TEXT), Column("deleted", Boolean, default=False), Column("importable", Boolean, default=False), Column("slug", TEXT), Column("from_path", TEXT), Column("published", Boolean, index=True, default=False), Index('ix_stored_workflow_slug', 'slug', mysql_length=200), ) model.Workflow.table = Table( "workflow", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), # workflows will belong to either a stored workflow or a parent/nesting workflow. Column("stored_workflow_id", Integer, ForeignKey("stored_workflow.id"), index=True, nullable=True), Column("parent_workflow_id", Integer, ForeignKey("workflow.id"), index=True, nullable=True), Column("name", TEXT), Column("has_cycles", Boolean), Column("has_errors", Boolean), Column("reports_config", JSONType), Column("uuid", UUIDType, nullable=True)) model.WorkflowStep.table = Table( "workflow_step", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("workflow_id", Integer, ForeignKey("workflow.id"), index=True, nullable=False), Column("subworkflow_id", Integer, ForeignKey("workflow.id"), index=True, nullable=True), Column("dynamic_tool_id", Integer, ForeignKey("dynamic_tool.id"), index=True, nullable=True), Column("type", String(64)), Column("tool_id", TEXT), Column("tool_version", TEXT), Column("tool_inputs", JSONType), Column("tool_errors", JSONType), Column("position", JSONType), Column("config", JSONType), Column("order_index", Integer), Column("uuid", UUIDType), # Column( "input_connections", JSONType ), Column("label", Unicode(255))) model.WorkflowStepInput.table = Table( "workflow_step_input", metadata, Column("id", Integer, primary_key=True), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id"), index=True), Column("name", TEXT), Column("merge_type", TEXT), Column("scatter_type", TEXT), Column("value_from", JSONType), Column("value_from_type", TEXT), Column("default_value", JSONType), Column("default_value_set", Boolean, default=False), Column("runtime_value", Boolean, default=False), Index('ix_workflow_step_input_workflow_step_id_name_unique', "workflow_step_id", "name", unique=True, mysql_length={'name': 200}), ) model.WorkflowRequestStepState.table = Table( "workflow_request_step_states", metadata, Column("id", Integer, primary_key=True), Column("workflow_invocation_id", Integer, ForeignKey("workflow_invocation.id", onupdate="CASCADE", ondelete="CASCADE")), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id")), Column("value", JSONType)) model.WorkflowRequestInputParameter.table = Table( "workflow_request_input_parameters", metadata, Column("id", Integer, primary_key=True), Column("workflow_invocation_id", Integer, ForeignKey("workflow_invocation.id", onupdate="CASCADE", ondelete="CASCADE")), Column("name", Unicode(255)), Column("value", TEXT), Column("type", Unicode(255))) model.WorkflowRequestInputStepParameter.table = Table( "workflow_request_input_step_parameter", metadata, Column("id", Integer, primary_key=True), Column("workflow_invocation_id", Integer, ForeignKey("workflow_invocation.id"), index=True), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id")), Column("parameter_value", JSONType), ) model.WorkflowRequestToInputDatasetAssociation.table = Table( "workflow_request_to_input_dataset", metadata, Column("id", Integer, primary_key=True), Column("name", String(255)), Column("workflow_invocation_id", Integer, ForeignKey("workflow_invocation.id"), index=True), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id")), Column("dataset_id", Integer, ForeignKey("history_dataset_association.id"), index=True)) model.WorkflowRequestToInputDatasetCollectionAssociation.table = Table( "workflow_request_to_input_collection_dataset", metadata, Column("id", Integer, primary_key=True), Column("name", String(255)), Column("workflow_invocation_id", Integer, ForeignKey("workflow_invocation.id"), index=True), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id")), Column("dataset_collection_id", Integer, ForeignKey("history_dataset_collection_association.id"), index=True)) model.WorkflowStepConnection.table = Table( "workflow_step_connection", metadata, Column("id", Integer, primary_key=True), Column("output_step_id", Integer, ForeignKey("workflow_step.id"), index=True), Column("input_step_input_id", Integer, ForeignKey("workflow_step_input.id"), index=True), Column("output_name", TEXT), Column("input_subworkflow_step_id", Integer, ForeignKey("workflow_step.id"), index=True), ) model.WorkflowOutput.table = Table( "workflow_output", metadata, Column("id", Integer, primary_key=True), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id"), index=True, nullable=False), Column("output_name", String(255), nullable=True), Column("label", Unicode(255)), Column("uuid", UUIDType), ) model.WorkflowInvocation.table = Table( "workflow_invocation", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("workflow_id", Integer, ForeignKey("workflow.id"), index=True, nullable=False), Column("state", TrimmedString(64), index=True), Column("scheduler", TrimmedString(255), index=True), Column("handler", TrimmedString(255), index=True), Column('uuid', UUIDType()), Column("history_id", Integer, ForeignKey("history.id"), index=True)) model.WorkflowInvocationStep.table = Table( "workflow_invocation_step", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("workflow_invocation_id", Integer, ForeignKey("workflow_invocation.id"), index=True, nullable=False), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id"), index=True, nullable=False), Column("state", TrimmedString(64), index=True), Column("job_id", Integer, ForeignKey("job.id"), index=True, nullable=True), Column("implicit_collection_jobs_id", Integer, ForeignKey("implicit_collection_jobs.id"), index=True, nullable=True), Column("action", JSONType, nullable=True)) model.WorkflowInvocationOutputDatasetAssociation.table = Table( "workflow_invocation_output_dataset_association", metadata, Column("id", Integer, primary_key=True), Column("workflow_invocation_id", Integer, ForeignKey("workflow_invocation.id"), index=True), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id")), Column("dataset_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("workflow_output_id", Integer, ForeignKey("workflow_output.id")), ) model.WorkflowInvocationOutputDatasetCollectionAssociation.table = Table( "workflow_invocation_output_dataset_collection_association", metadata, Column("id", Integer, primary_key=True), Column("workflow_invocation_id", Integer, ForeignKey("workflow_invocation.id", name='fk_wiodca_wii'), index=True), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id", name='fk_wiodca_wsi')), Column("dataset_collection_id", Integer, ForeignKey("history_dataset_collection_association.id", name='fk_wiodca_dci'), index=True), Column("workflow_output_id", Integer, ForeignKey("workflow_output.id", name='fk_wiodca_woi')), ) model.WorkflowInvocationStepOutputDatasetAssociation.table = Table( "workflow_invocation_step_output_dataset_association", metadata, Column("id", Integer, primary_key=True), Column("workflow_invocation_step_id", Integer, ForeignKey("workflow_invocation_step.id"), index=True), Column("dataset_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("output_name", String(255), nullable=True), ) model.WorkflowInvocationStepOutputDatasetCollectionAssociation.table = Table( "workflow_invocation_step_output_dataset_collection_association", metadata, Column("id", Integer, primary_key=True), Column("workflow_invocation_step_id", Integer, ForeignKey("workflow_invocation_step.id", name='fk_wisodca_wisi'), index=True), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id", name='fk_wisodca_wsi')), Column("dataset_collection_id", Integer, ForeignKey("history_dataset_collection_association.id", name='fk_wisodca_dci'), index=True), Column("output_name", String(255), nullable=True), ) model.WorkflowInvocationToSubworkflowInvocationAssociation.table = Table( "workflow_invocation_to_subworkflow_invocation_association", metadata, Column("id", Integer, primary_key=True), Column("workflow_invocation_id", Integer, ForeignKey("workflow_invocation.id", name='fk_wfi_swi_wfi'), index=True), Column("subworkflow_invocation_id", Integer, ForeignKey("workflow_invocation.id", name='fk_wfi_swi_swi'), index=True), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id", name='fk_wfi_swi_ws')), ) model.StoredWorkflowUserShareAssociation.table = Table( "stored_workflow_user_share_connection", metadata, Column("id", Integer, primary_key=True), Column("stored_workflow_id", Integer, ForeignKey("stored_workflow.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True)) model.StoredWorkflowMenuEntry.table = Table( "stored_workflow_menu_entry", metadata, Column("id", Integer, primary_key=True), Column("stored_workflow_id", Integer, ForeignKey("stored_workflow.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("order_index", Integer)) model.MetadataFile.table = Table( "metadata_file", metadata, Column("id", Integer, primary_key=True), Column("name", TEXT), Column("hda_id", Integer, ForeignKey("history_dataset_association.id"), index=True, nullable=True), Column("lda_id", Integer, ForeignKey("library_dataset_dataset_association.id"), index=True, nullable=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, index=True, default=now, onupdate=now), Column("object_store_id", TrimmedString(255), index=True), Column("uuid", UUIDType(), index=True), Column("deleted", Boolean, index=True, default=False), Column("purged", Boolean, index=True, default=False)) model.FormDefinitionCurrent.table = Table( "form_definition_current", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("latest_form_id", Integer, ForeignKey("form_definition.id"), index=True), Column("deleted", Boolean, index=True, default=False)) model.FormDefinition.table = Table( "form_definition", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("name", TrimmedString(255), nullable=False), Column("desc", TEXT), Column("form_definition_current_id", Integer, ForeignKey("form_definition_current.id", use_alter=True), index=True, nullable=False), Column("fields", JSONType()), Column("type", TrimmedString(255), index=True), Column("layout", JSONType())) model.FormValues.table = Table( "form_values", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("form_definition_id", Integer, ForeignKey("form_definition.id"), index=True), Column("content", JSONType())) model.Page.table = Table( "page", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True, nullable=False), Column("latest_revision_id", Integer, ForeignKey("page_revision.id", use_alter=True, name='page_latest_revision_id_fk'), index=True), Column("title", TEXT), Column("deleted", Boolean, index=True, default=False), Column("importable", Boolean, index=True, default=False), Column("slug", TEXT), Column("published", Boolean, index=True, default=False), Index('ix_page_slug', 'slug', mysql_length=200), ) model.PageRevision.table = Table( "page_revision", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("page_id", Integer, ForeignKey("page.id"), index=True, nullable=False), Column("title", TEXT), Column("content", TEXT)) model.PageUserShareAssociation.table = Table( "page_user_share_association", metadata, Column("id", Integer, primary_key=True), Column("page_id", Integer, ForeignKey("page.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True)) model.Visualization.table = Table( "visualization", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True, nullable=False), Column("latest_revision_id", Integer, ForeignKey("visualization_revision.id", use_alter=True, name='visualization_latest_revision_id_fk'), index=True), Column("title", TEXT), Column("type", TEXT), Column("dbkey", TEXT), Column("deleted", Boolean, default=False, index=True), Column("importable", Boolean, default=False, index=True), Column("slug", TEXT), Column("published", Boolean, default=False, index=True), Index('ix_visualization_dbkey', 'dbkey', mysql_length=200), Index('ix_visualization_slug', 'slug', mysql_length=200), ) model.VisualizationRevision.table = Table( "visualization_revision", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("visualization_id", Integer, ForeignKey("visualization.id"), index=True, nullable=False), Column("title", TEXT), Column("dbkey", TEXT), Column("config", JSONType), Index('ix_visualization_revision_dbkey', 'dbkey', mysql_length=200), ) model.VisualizationUserShareAssociation.table = Table( "visualization_user_share_association", metadata, Column("id", Integer, primary_key=True), Column("visualization_id", Integer, ForeignKey("visualization.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True)) # Data Manager tables model.DataManagerHistoryAssociation.table = Table( "data_manager_history_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, index=True, default=now, onupdate=now), Column("history_id", Integer, ForeignKey("history.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True)) model.DataManagerJobAssociation.table = Table( "data_manager_job_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, index=True, default=now, onupdate=now), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("data_manager_id", TEXT), Index('ix_data_manager_job_association_data_manager_id', 'data_manager_id', mysql_length=200), ) # Tagging tables. model.Tag.table = Table( "tag", metadata, Column("id", Integer, primary_key=True), Column("type", Integer), Column("parent_id", Integer, ForeignKey("tag.id")), Column("name", TrimmedString(255)), UniqueConstraint("name")) model.HistoryTagAssociation.table = Table( "history_tag_association", metadata, Column("id", Integer, primary_key=True), Column("history_id", Integer, ForeignKey("history.id"), index=True), Column("tag_id", Integer, ForeignKey("tag.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("user_tname", TrimmedString(255), index=True), Column("value", TrimmedString(255), index=True), Column("user_value", TrimmedString(255), index=True)) model.DatasetTagAssociation.table = Table( "dataset_tag_association", metadata, Column("id", Integer, primary_key=True), Column("dataset_id", Integer, ForeignKey("dataset.id"), index=True), Column("tag_id", Integer, ForeignKey("tag.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("user_tname", TrimmedString(255), index=True), Column("value", TrimmedString(255), index=True), Column("user_value", TrimmedString(255), index=True)) model.HistoryDatasetAssociationTagAssociation.table = Table( "history_dataset_association_tag_association", metadata, Column("id", Integer, primary_key=True), Column("history_dataset_association_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("tag_id", Integer, ForeignKey("tag.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("user_tname", TrimmedString(255), index=True), Column("value", TrimmedString(255), index=True), Column("user_value", TrimmedString(255), index=True)) model.LibraryDatasetDatasetAssociationTagAssociation.table = Table( "library_dataset_dataset_association_tag_association", metadata, Column("id", Integer, primary_key=True), Column("library_dataset_dataset_association_id", Integer, ForeignKey("library_dataset_dataset_association.id"), index=True), Column("tag_id", Integer, ForeignKey("tag.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("user_tname", TrimmedString(255), index=True), Column("value", TrimmedString(255), index=True), Column("user_value", TrimmedString(255), index=True)) model.StoredWorkflowTagAssociation.table = Table( "stored_workflow_tag_association", metadata, Column("id", Integer, primary_key=True), Column("stored_workflow_id", Integer, ForeignKey("stored_workflow.id"), index=True), Column("tag_id", Integer, ForeignKey("tag.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("user_tname", Unicode(255), index=True), Column("value", Unicode(255), index=True), Column("user_value", Unicode(255), index=True)) model.PageTagAssociation.table = Table( "page_tag_association", metadata, Column("id", Integer, primary_key=True), Column("page_id", Integer, ForeignKey("page.id"), index=True), Column("tag_id", Integer, ForeignKey("tag.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("user_tname", TrimmedString(255), index=True), Column("value", TrimmedString(255), index=True), Column("user_value", TrimmedString(255), index=True)) model.WorkflowStepTagAssociation.table = Table( "workflow_step_tag_association", metadata, Column("id", Integer, primary_key=True), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id"), index=True), Column("tag_id", Integer, ForeignKey("tag.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("user_tname", Unicode(255), index=True), Column("value", Unicode(255), index=True), Column("user_value", Unicode(255), index=True)) model.VisualizationTagAssociation.table = Table( "visualization_tag_association", metadata, Column("id", Integer, primary_key=True), Column("visualization_id", Integer, ForeignKey("visualization.id"), index=True), Column("tag_id", Integer, ForeignKey("tag.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("user_tname", TrimmedString(255), index=True), Column("value", TrimmedString(255), index=True), Column("user_value", TrimmedString(255), index=True)) model.HistoryDatasetCollectionTagAssociation.table = Table( "history_dataset_collection_tag_association", metadata, Column("id", Integer, primary_key=True), Column("history_dataset_collection_id", Integer, ForeignKey("history_dataset_collection_association.id"), index=True), Column("tag_id", Integer, ForeignKey("tag.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("user_tname", TrimmedString(255), index=True), Column("value", TrimmedString(255), index=True), Column("user_value", TrimmedString(255), index=True)) model.LibraryDatasetCollectionTagAssociation.table = Table( "library_dataset_collection_tag_association", metadata, Column("id", Integer, primary_key=True), Column("library_dataset_collection_id", Integer, ForeignKey("library_dataset_collection_association.id"), index=True), Column("tag_id", Integer, ForeignKey("tag.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("user_tname", TrimmedString(255), index=True), Column("value", TrimmedString(255), index=True), Column("user_value", TrimmedString(255), index=True)) model.ToolTagAssociation.table = Table( "tool_tag_association", metadata, Column("id", Integer, primary_key=True), Column("tool_id", TrimmedString(255), index=True), Column("tag_id", Integer, ForeignKey("tag.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("user_tname", TrimmedString(255), index=True), Column("value", TrimmedString(255), index=True), Column("user_value", TrimmedString(255), index=True)) # Annotation tables. model.HistoryAnnotationAssociation.table = Table( "history_annotation_association", metadata, Column("id", Integer, primary_key=True), Column("history_id", Integer, ForeignKey("history.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("annotation", TEXT), Index('ix_history_anno_assoc_annotation', 'annotation', mysql_length=200), ) model.HistoryDatasetAssociationAnnotationAssociation.table = Table( "history_dataset_association_annotation_association", metadata, Column("id", Integer, primary_key=True), Column("history_dataset_association_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("annotation", TEXT), Index('ix_history_dataset_anno_assoc_annotation', 'annotation', mysql_length=200), ) model.StoredWorkflowAnnotationAssociation.table = Table( "stored_workflow_annotation_association", metadata, Column("id", Integer, primary_key=True), Column("stored_workflow_id", Integer, ForeignKey("stored_workflow.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("annotation", TEXT), Index('ix_stored_workflow_ann_assoc_annotation', 'annotation', mysql_length=200), ) model.WorkflowStepAnnotationAssociation.table = Table( "workflow_step_annotation_association", metadata, Column("id", Integer, primary_key=True), Column("workflow_step_id", Integer, ForeignKey("workflow_step.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("annotation", TEXT), Index('ix_workflow_step_ann_assoc_annotation', 'annotation', mysql_length=200), ) model.PageAnnotationAssociation.table = Table( "page_annotation_association", metadata, Column("id", Integer, primary_key=True), Column("page_id", Integer, ForeignKey("page.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("annotation", TEXT), Index('ix_page_annotation_association_annotation', 'annotation', mysql_length=200), ) model.VisualizationAnnotationAssociation.table = Table( "visualization_annotation_association", metadata, Column("id", Integer, primary_key=True), Column("visualization_id", Integer, ForeignKey("visualization.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("annotation", TEXT), Index('ix_visualization_annotation_association_annotation', 'annotation', mysql_length=200), ) model.HistoryDatasetCollectionAssociationAnnotationAssociation.table = Table( "history_dataset_collection_annotation_association", metadata, Column("id", Integer, primary_key=True), Column("history_dataset_collection_id", Integer, ForeignKey("history_dataset_collection_association.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("annotation", TEXT), ) model.LibraryDatasetCollectionAnnotationAssociation.table = Table( "library_dataset_collection_annotation_association", metadata, Column("id", Integer, primary_key=True), Column("library_dataset_collection_id", Integer, ForeignKey("library_dataset_collection_association.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("annotation", TEXT), ) # Ratings tables. model.HistoryRatingAssociation.table = Table("history_rating_association", metadata, Column("id", Integer, primary_key=True), Column("history_id", Integer, ForeignKey("history.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("rating", Integer, index=True)) model.HistoryDatasetAssociationRatingAssociation.table = Table( "history_dataset_association_rating_association", metadata, Column("id", Integer, primary_key=True), Column("history_dataset_association_id", Integer, ForeignKey("history_dataset_association.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("rating", Integer, index=True)) model.StoredWorkflowRatingAssociation.table = Table( "stored_workflow_rating_association", metadata, Column("id", Integer, primary_key=True), Column("stored_workflow_id", Integer, ForeignKey("stored_workflow.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("rating", Integer, index=True)) model.PageRatingAssociation.table = Table( "page_rating_association", metadata, Column("id", Integer, primary_key=True), Column("page_id", Integer, ForeignKey("page.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("rating", Integer, index=True)) model.VisualizationRatingAssociation.table = Table( "visualization_rating_association", metadata, Column("id", Integer, primary_key=True), Column("visualization_id", Integer, ForeignKey("visualization.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("rating", Integer, index=True)) model.HistoryDatasetCollectionRatingAssociation.table = Table( "history_dataset_collection_rating_association", metadata, Column("id", Integer, primary_key=True), Column("history_dataset_collection_id", Integer, ForeignKey("history_dataset_collection_association.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("rating", Integer, index=True)) model.LibraryDatasetCollectionRatingAssociation.table = Table( "library_dataset_collection_rating_association", metadata, Column("id", Integer, primary_key=True), Column("library_dataset_collection_id", Integer, ForeignKey("library_dataset_collection_association.id"), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("rating", Integer, index=True)) # User tables. model.UserPreference.table = Table( "user_preference", metadata, Column("id", Integer, primary_key=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("name", Unicode(255), index=True), Column("value", Text)) model.UserAction.table = Table( "user_action", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("session_id", Integer, ForeignKey("galaxy_session.id"), index=True), Column("action", Unicode(255)), Column("context", Unicode(512)), Column("params", Unicode(1024))) model.APIKeys.table = Table( "api_keys", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("key", TrimmedString(32), index=True, unique=True)) CleanupEvent_table = Table("cleanup_event", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("message", TrimmedString(1024))) CleanupEventDatasetAssociation_table = Table("cleanup_event_dataset_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("cleanup_event_id", Integer, ForeignKey("cleanup_event.id"), index=True, nullable=True), Column("dataset_id", Integer, ForeignKey("dataset.id"), index=True)) CleanupEventMetadataFileAssociation_table = Table("cleanup_event_metadata_file_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("cleanup_event_id", Integer, ForeignKey("cleanup_event.id"), index=True, nullable=True), Column("metadata_file_id", Integer, ForeignKey("metadata_file.id"), index=True)) CleanupEventHistoryAssociation_table = Table("cleanup_event_history_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("cleanup_event_id", Integer, ForeignKey("cleanup_event.id"), index=True, nullable=True), Column("history_id", Integer, ForeignKey("history.id"), index=True)) CleanupEventHistoryDatasetAssociationAssociation_table = Table("cleanup_event_hda_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("cleanup_event_id", Integer, ForeignKey("cleanup_event.id"), index=True, nullable=True), Column("hda_id", Integer, ForeignKey("history_dataset_association.id"), index=True)) CleanupEventLibraryAssociation_table = Table("cleanup_event_library_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("cleanup_event_id", Integer, ForeignKey("cleanup_event.id"), index=True, nullable=True), Column("library_id", Integer, ForeignKey("library.id"), index=True)) CleanupEventLibraryFolderAssociation_table = Table("cleanup_event_library_folder_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("cleanup_event_id", Integer, ForeignKey("cleanup_event.id"), index=True, nullable=True), Column("library_folder_id", Integer, ForeignKey("library_folder.id"), index=True)) CleanupEventLibraryDatasetAssociation_table = Table("cleanup_event_library_dataset_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("cleanup_event_id", Integer, ForeignKey("cleanup_event.id"), index=True, nullable=True), Column("library_dataset_id", Integer, ForeignKey("library_dataset.id"), index=True)) CleanupEventLibraryDatasetDatasetAssociationAssociation_table = Table("cleanup_event_ldda_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("cleanup_event_id", Integer, ForeignKey("cleanup_event.id"), index=True, nullable=True), Column("ldda_id", Integer, ForeignKey("library_dataset_dataset_association.id"), index=True)) CleanupEventImplicitlyConvertedDatasetAssociationAssociation_table = Table("cleanup_event_icda_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("cleanup_event_id", Integer, ForeignKey("cleanup_event.id"), index=True, nullable=True), Column("icda_id", Integer, ForeignKey("implicitly_converted_dataset_association.id"), index=True)) # With the tables defined we can define the mappers and setup the # relationships between the model objects. def simple_mapping(model, **kwds): mapper(model, model.table, properties=kwds) simple_mapping(model.WorkerProcess) mapper(model.FormValues, model.FormValues.table, properties=dict( form_definition=relation(model.FormDefinition, primaryjoin=(model.FormValues.table.c.form_definition_id == model.FormDefinition.table.c.id)) )) mapper(model.FormDefinition, model.FormDefinition.table, properties=dict( current=relation(model.FormDefinitionCurrent, primaryjoin=(model.FormDefinition.table.c.form_definition_current_id == model.FormDefinitionCurrent.table.c.id)) )) mapper(model.FormDefinitionCurrent, model.FormDefinitionCurrent.table, properties=dict( forms=relation(model.FormDefinition, backref='form_definition_current', cascade="all, delete-orphan", primaryjoin=(model.FormDefinitionCurrent.table.c.id == model.FormDefinition.table.c.form_definition_current_id)), latest_form=relation(model.FormDefinition, post_update=True, primaryjoin=(model.FormDefinitionCurrent.table.c.latest_form_id == model.FormDefinition.table.c.id)) )) mapper(model.UserAddress, model.UserAddress.table, properties=dict( user=relation(model.User, primaryjoin=(model.UserAddress.table.c.user_id == model.User.table.c.id), backref='addresses', order_by=desc(model.UserAddress.table.c.update_time)), )) mapper(model.PSAAssociation, model.PSAAssociation.table, properties=None) mapper(model.PSACode, model.PSACode.table, properties=None) mapper(model.PSANonce, model.PSANonce.table, properties=None) mapper(model.PSAPartial, model.PSAPartial.table, properties=None) mapper(model.UserAuthnzToken, model.UserAuthnzToken.table, properties=dict( user=relation(model.User, primaryjoin=(model.UserAuthnzToken.table.c.user_id == model.User.table.c.id), backref='social_auth') )) mapper(model.CustosAuthnzToken, model.CustosAuthnzToken.table, properties=dict( user=relation(model.User, primaryjoin=(model.CustosAuthnzToken.table.c.user_id == model.User.table.c.id), backref='custos_auth') )) mapper(model.CloudAuthz, model.CloudAuthz.table, properties=dict( user=relation(model.User, primaryjoin=(model.CloudAuthz.table.c.user_id == model.User.table.c.id), backref='cloudauthz'), authn=relation(model.UserAuthnzToken, primaryjoin=(model.CloudAuthz.table.c.authn_id == model.UserAuthnzToken.table.c.id), backref='cloudauthz') )) mapper(model.ValidationError, model.ValidationError.table) simple_mapping(model.DynamicTool) simple_mapping(model.HistoryDatasetAssociation, dataset=relation(model.Dataset, primaryjoin=(model.Dataset.table.c.id == model.HistoryDatasetAssociation.table.c.dataset_id), lazy=False), # .history defined in History mapper copied_from_history_dataset_association=relation(model.HistoryDatasetAssociation, primaryjoin=(model.HistoryDatasetAssociation.table.c.copied_from_history_dataset_association_id == model.HistoryDatasetAssociation.table.c.id), remote_side=[model.HistoryDatasetAssociation.table.c.id], uselist=False), copied_to_history_dataset_associations=relation(model.HistoryDatasetAssociation, primaryjoin=(model.HistoryDatasetAssociation.table.c.copied_from_history_dataset_association_id == model.HistoryDatasetAssociation.table.c.id)), copied_from_library_dataset_dataset_association=relation( model.LibraryDatasetDatasetAssociation, primaryjoin=(model.HistoryDatasetAssociation.table.c.copied_from_library_dataset_dataset_association_id == model.LibraryDatasetDatasetAssociation.table.c.id), uselist=False), copied_to_library_dataset_dataset_associations=relation(model.LibraryDatasetDatasetAssociation, primaryjoin=(model.HistoryDatasetAssociation.table.c.copied_from_library_dataset_dataset_association_id == model.LibraryDatasetDatasetAssociation.table.c.id)), implicitly_converted_datasets=relation(model.ImplicitlyConvertedDatasetAssociation, primaryjoin=(model.ImplicitlyConvertedDatasetAssociation.table.c.hda_parent_id == model.HistoryDatasetAssociation.table.c.id)), tags=relation(model.HistoryDatasetAssociationTagAssociation, order_by=model.HistoryDatasetAssociationTagAssociation.table.c.id, backref='history_tag_associations'), annotations=relation(model.HistoryDatasetAssociationAnnotationAssociation, order_by=model.HistoryDatasetAssociationAnnotationAssociation.table.c.id, backref="hdas"), ratings=relation(model.HistoryDatasetAssociationRatingAssociation, order_by=model.HistoryDatasetAssociationRatingAssociation.table.c.id, backref="hdas"), extended_metadata=relation(model.ExtendedMetadata, primaryjoin=((model.HistoryDatasetAssociation.table.c.extended_metadata_id == model.ExtendedMetadata.table.c.id))), hidden_beneath_collection_instance=relation(model.HistoryDatasetCollectionAssociation, primaryjoin=((model.HistoryDatasetAssociation.table.c.hidden_beneath_collection_instance_id == model.HistoryDatasetCollectionAssociation.table.c.id)), uselist=False, backref="hidden_dataset_instances"), _metadata=deferred(model.HistoryDatasetAssociation.table.c._metadata) ) simple_mapping(model.Dataset, history_associations=relation(model.HistoryDatasetAssociation, primaryjoin=(model.Dataset.table.c.id == model.HistoryDatasetAssociation.table.c.dataset_id)), active_history_associations=relation(model.HistoryDatasetAssociation, primaryjoin=( (model.Dataset.table.c.id == model.HistoryDatasetAssociation.table.c.dataset_id) & (model.HistoryDatasetAssociation.table.c.deleted == false()) & (model.HistoryDatasetAssociation.table.c.purged == false()))), purged_history_associations=relation(model.HistoryDatasetAssociation, primaryjoin=( (model.Dataset.table.c.id == model.HistoryDatasetAssociation.table.c.dataset_id) & (model.HistoryDatasetAssociation.table.c.purged == true()))), library_associations=relation(model.LibraryDatasetDatasetAssociation, primaryjoin=(model.Dataset.table.c.id == model.LibraryDatasetDatasetAssociation.table.c.dataset_id)), active_library_associations=relation(model.LibraryDatasetDatasetAssociation, primaryjoin=( (model.Dataset.table.c.id == model.LibraryDatasetDatasetAssociation.table.c.dataset_id) & (model.LibraryDatasetDatasetAssociation.table.c.deleted == false()))), tags=relation(model.DatasetTagAssociation, order_by=model.DatasetTagAssociation.table.c.id, backref='datasets') ) mapper(model.DatasetHash, model.DatasetHash.table, properties=dict( dataset=relation(model.Dataset, backref='hashes') )) mapper(model.DatasetSource, model.DatasetSource.table, properties=dict( dataset=relation(model.Dataset, backref='sources') )) mapper(model.DatasetSourceHash, model.DatasetSourceHash.table, properties=dict( source=relation(model.DatasetSource, backref='hashes') )) mapper(model.HistoryDatasetAssociationHistory, model.HistoryDatasetAssociationHistory.table) mapper(model.HistoryDatasetAssociationDisplayAtAuthorization, model.HistoryDatasetAssociationDisplayAtAuthorization.table, properties=dict( history_dataset_association=relation(model.HistoryDatasetAssociation), user=relation(model.User) )) mapper(model.HistoryDatasetAssociationSubset, model.HistoryDatasetAssociationSubset.table, properties=dict( hda=relation(model.HistoryDatasetAssociation, primaryjoin=(model.HistoryDatasetAssociationSubset.table.c.history_dataset_association_id == model.HistoryDatasetAssociation.table.c.id)), subset=relation(model.HistoryDatasetAssociation, primaryjoin=(model.HistoryDatasetAssociationSubset.table.c.history_dataset_association_subset_id == model.HistoryDatasetAssociation.table.c.id)) )) mapper(model.ImplicitlyConvertedDatasetAssociation, model.ImplicitlyConvertedDatasetAssociation.table, properties=dict( parent_hda=relation(model.HistoryDatasetAssociation, primaryjoin=(model.ImplicitlyConvertedDatasetAssociation.table.c.hda_parent_id == model.HistoryDatasetAssociation.table.c.id)), parent_ldda=relation(model.LibraryDatasetDatasetAssociation, primaryjoin=(model.ImplicitlyConvertedDatasetAssociation.table.c.ldda_parent_id == model.LibraryDatasetDatasetAssociation.table.c.id)), dataset_ldda=relation(model.LibraryDatasetDatasetAssociation, primaryjoin=(model.ImplicitlyConvertedDatasetAssociation.table.c.ldda_id == model.LibraryDatasetDatasetAssociation.table.c.id), backref="implicitly_converted_parent_datasets"), dataset=relation(model.HistoryDatasetAssociation, primaryjoin=(model.ImplicitlyConvertedDatasetAssociation.table.c.hda_id == model.HistoryDatasetAssociation.table.c.id), backref="implicitly_converted_parent_datasets") )) mapper(model.History, model.History.table, properties=dict( galaxy_sessions=relation(model.GalaxySessionToHistoryAssociation), datasets=relation(model.HistoryDatasetAssociation, backref="history", order_by=asc(model.HistoryDatasetAssociation.table.c.hid)), exports=relation(model.JobExportHistoryArchive, primaryjoin=(model.JobExportHistoryArchive.table.c.history_id == model.History.table.c.id), order_by=desc(model.JobExportHistoryArchive.table.c.id)), active_datasets=relation(model.HistoryDatasetAssociation, primaryjoin=( (model.HistoryDatasetAssociation.table.c.history_id == model.History.table.c.id) & not_(model.HistoryDatasetAssociation.table.c.deleted) ), order_by=asc(model.HistoryDatasetAssociation.table.c.hid), viewonly=True), active_dataset_collections=relation(model.HistoryDatasetCollectionAssociation, primaryjoin=( (model.HistoryDatasetCollectionAssociation.table.c.history_id == model.History.table.c.id) & not_(model.HistoryDatasetCollectionAssociation.table.c.deleted) ), order_by=asc(model.HistoryDatasetCollectionAssociation.table.c.hid), viewonly=True), visible_datasets=relation(model.HistoryDatasetAssociation, primaryjoin=( (model.HistoryDatasetAssociation.table.c.history_id == model.History.table.c.id) & not_(model.HistoryDatasetAssociation.table.c.deleted) & model.HistoryDatasetAssociation.table.c.visible ), order_by=asc(model.HistoryDatasetAssociation.table.c.hid), viewonly=True), visible_dataset_collections=relation(model.HistoryDatasetCollectionAssociation, primaryjoin=( (model.HistoryDatasetCollectionAssociation.table.c.history_id == model.History.table.c.id) & not_(model.HistoryDatasetCollectionAssociation.table.c.deleted) & model.HistoryDatasetCollectionAssociation.table.c.visible ), order_by=asc(model.HistoryDatasetCollectionAssociation.table.c.hid), viewonly=True), tags=relation(model.HistoryTagAssociation, order_by=model.HistoryTagAssociation.table.c.id, backref="histories"), annotations=relation(model.HistoryAnnotationAssociation, order_by=model.HistoryAnnotationAssociation.table.c.id, backref="histories"), ratings=relation(model.HistoryRatingAssociation, order_by=model.HistoryRatingAssociation.table.c.id, backref="histories"), average_rating=column_property( select([func.avg(model.HistoryRatingAssociation.table.c.rating)]).where(model.HistoryRatingAssociation.table.c.history_id == model.History.table.c.id), deferred=True ), users_shared_with_count=column_property( select([func.count(model.HistoryUserShareAssociation.table.c.id)]).where(model.History.table.c.id == model.HistoryUserShareAssociation.table.c.history_id), deferred=True ) )) # Set up proxy so that # History.users_shared_with # returns a list of users that history is shared with. model.History.users_shared_with_dot_users = association_proxy('users_shared_with', 'user') mapper(model.HistoryUserShareAssociation, model.HistoryUserShareAssociation.table, properties=dict( user=relation(model.User, backref='histories_shared_by_others'), history=relation(model.History, backref='users_shared_with') )) mapper(model.User, model.User.table, properties=dict( histories=relation(model.History, backref="user", order_by=desc(model.History.table.c.update_time)), active_histories=relation(model.History, primaryjoin=( (model.History.table.c.user_id == model.User.table.c.id) & (not_(model.History.table.c.deleted)) ), order_by=desc(model.History.table.c.update_time)), galaxy_sessions=relation(model.GalaxySession, order_by=desc(model.GalaxySession.table.c.update_time)), stored_workflow_menu_entries=relation(model.StoredWorkflowMenuEntry, primaryjoin=( (model.StoredWorkflowMenuEntry.table.c.user_id == model.User.table.c.id) & (model.StoredWorkflowMenuEntry.table.c.stored_workflow_id == model.StoredWorkflow.table.c.id) & not_(model.StoredWorkflow.table.c.deleted) ), backref="user", cascade="all, delete-orphan", collection_class=ordering_list('order_index')), _preferences=relation(model.UserPreference, backref="user", collection_class=attribute_mapped_collection('name')), # addresses=relation( UserAddress, # primaryjoin=( User.table.c.id == UserAddress.table.c.user_id ) ), values=relation(model.FormValues, primaryjoin=(model.User.table.c.form_values_id == model.FormValues.table.c.id)), api_keys=relation(model.APIKeys, backref="user", order_by=desc(model.APIKeys.table.c.create_time)), cloudauthzs=relation(model.CloudAuthz, primaryjoin=model.CloudAuthz.table.c.user_id == model.User.table.c.id), )) mapper(model.PasswordResetToken, model.PasswordResetToken.table, properties=dict(user=relation(model.User, backref="reset_tokens"))) # Set up proxy so that this syntax is possible: # <user_obj>.preferences[pref_name] = pref_value model.User.preferences = association_proxy('_preferences', 'value', creator=model.UserPreference) mapper(model.Group, model.Group.table, properties=dict( users=relation(model.UserGroupAssociation) )) mapper(model.UserGroupAssociation, model.UserGroupAssociation.table, properties=dict( user=relation(model.User, backref="groups"), group=relation(model.Group, backref="members") )) mapper(model.DefaultUserPermissions, model.DefaultUserPermissions.table, properties=dict( user=relation(model.User, backref="default_permissions"), role=relation(model.Role) )) mapper(model.DefaultHistoryPermissions, model.DefaultHistoryPermissions.table, properties=dict( history=relation(model.History, backref="default_permissions"), role=relation(model.Role) )) mapper(model.Role, model.Role.table, properties=dict( users=relation(model.UserRoleAssociation), groups=relation(model.GroupRoleAssociation) )) mapper(model.UserRoleAssociation, model.UserRoleAssociation.table, properties=dict( user=relation(model.User, backref="roles"), non_private_roles=relation( model.User, backref="non_private_roles", primaryjoin=( (model.User.table.c.id == model.UserRoleAssociation.table.c.user_id) & (model.UserRoleAssociation.table.c.role_id == model.Role.table.c.id) & not_(model.Role.table.c.name == model.User.table.c.email)) ), role=relation(model.Role) )) mapper(model.GroupRoleAssociation, model.GroupRoleAssociation.table, properties=dict( group=relation(model.Group, backref="roles"), role=relation(model.Role) )) mapper(model.Quota, model.Quota.table, properties=dict( users=relation(model.UserQuotaAssociation), groups=relation(model.GroupQuotaAssociation) )) mapper(model.UserQuotaAssociation, model.UserQuotaAssociation.table, properties=dict( user=relation(model.User, backref="quotas"), quota=relation(model.Quota) )) mapper(model.GroupQuotaAssociation, model.GroupQuotaAssociation.table, properties=dict( group=relation(model.Group, backref="quotas"), quota=relation(model.Quota) )) mapper(model.DefaultQuotaAssociation, model.DefaultQuotaAssociation.table, properties=dict( quota=relation(model.Quota, backref="default") )) mapper(model.DatasetPermissions, model.DatasetPermissions.table, properties=dict( dataset=relation(model.Dataset, backref="actions"), role=relation(model.Role, backref="dataset_actions") )) mapper(model.LibraryPermissions, model.LibraryPermissions.table, properties=dict( library=relation(model.Library, backref="actions"), role=relation(model.Role, backref="library_actions") )) mapper(model.LibraryFolderPermissions, model.LibraryFolderPermissions.table, properties=dict( folder=relation(model.LibraryFolder, backref="actions"), role=relation(model.Role, backref="library_folder_actions") )) mapper(model.LibraryDatasetPermissions, model.LibraryDatasetPermissions.table, properties=dict( library_dataset=relation(model.LibraryDataset, backref="actions"), role=relation(model.Role, backref="library_dataset_actions") )) mapper(model.LibraryDatasetDatasetAssociationPermissions, model.LibraryDatasetDatasetAssociationPermissions.table, properties=dict( library_dataset_dataset_association=relation(model.LibraryDatasetDatasetAssociation, backref="actions"), role=relation(model.Role, backref="library_dataset_dataset_actions") )) mapper(model.Library, model.Library.table, properties=dict( root_folder=relation(model.LibraryFolder, backref=backref("library_root")) )) mapper(model.ExtendedMetadata, model.ExtendedMetadata.table, properties=dict( children=relation(model.ExtendedMetadataIndex, primaryjoin=(model.ExtendedMetadataIndex.table.c.extended_metadata_id == model.ExtendedMetadata.table.c.id), backref=backref("parent", primaryjoin=(model.ExtendedMetadataIndex.table.c.extended_metadata_id == model.ExtendedMetadata.table.c.id))) )) mapper(model.ExtendedMetadataIndex, model.ExtendedMetadataIndex.table, properties=dict( extended_metadata=relation(model.ExtendedMetadata, primaryjoin=((model.ExtendedMetadataIndex.table.c.extended_metadata_id == model.ExtendedMetadata.table.c.id))) )) mapper(model.LibraryInfoAssociation, model.LibraryInfoAssociation.table, properties=dict( library=relation(model.Library, primaryjoin=( (model.LibraryInfoAssociation.table.c.library_id == model.Library.table.c.id) & (not_(model.LibraryInfoAssociation.table.c.deleted)) ), backref="info_association"), template=relation(model.FormDefinition, primaryjoin=(model.LibraryInfoAssociation.table.c.form_definition_id == model.FormDefinition.table.c.id)), info=relation(model.FormValues, primaryjoin=(model.LibraryInfoAssociation.table.c.form_values_id == model.FormValues.table.c.id)) )) mapper(model.LibraryFolder, model.LibraryFolder.table, properties=dict( folders=relation(model.LibraryFolder, primaryjoin=(model.LibraryFolder.table.c.parent_id == model.LibraryFolder.table.c.id), order_by=asc(model.LibraryFolder.table.c.name), backref=backref("parent", primaryjoin=(model.LibraryFolder.table.c.parent_id == model.LibraryFolder.table.c.id), remote_side=[model.LibraryFolder.table.c.id])), active_folders=relation(model.LibraryFolder, primaryjoin=( (model.LibraryFolder.table.c.parent_id == model.LibraryFolder.table.c.id) & (not_(model.LibraryFolder.table.c.deleted)) ), order_by=asc(model.LibraryFolder.table.c.name), # """sqlalchemy.exc.ArgumentError: Error creating eager relationship 'active_folders' # on parent class '<class 'galaxy.model.LibraryFolder'>' to child class '<class 'galaxy.model.LibraryFolder'>': # Cant use eager loading on a self referential relationship.""" lazy=True, viewonly=True), datasets=relation(model.LibraryDataset, primaryjoin=((model.LibraryDataset.table.c.folder_id == model.LibraryFolder.table.c.id)), order_by=asc(model.LibraryDataset.table.c._name), lazy=True, viewonly=True), active_datasets=relation(model.LibraryDataset, primaryjoin=( (model.LibraryDataset.table.c.folder_id == model.LibraryFolder.table.c.id) & (not_(model.LibraryDataset.table.c.deleted)) ), order_by=asc(model.LibraryDataset.table.c._name), lazy=True, viewonly=True) )) mapper(model.LibraryFolderInfoAssociation, model.LibraryFolderInfoAssociation.table, properties=dict( folder=relation(model.LibraryFolder, primaryjoin=( (model.LibraryFolderInfoAssociation.table.c.library_folder_id == model.LibraryFolder.table.c.id) & (not_(model.LibraryFolderInfoAssociation.table.c.deleted)) ), backref="info_association"), template=relation(model.FormDefinition, primaryjoin=(model.LibraryFolderInfoAssociation.table.c.form_definition_id == model.FormDefinition.table.c.id)), info=relation(model.FormValues, primaryjoin=(model.LibraryFolderInfoAssociation.table.c.form_values_id == model.FormValues.table.c.id)) )) mapper(model.LibraryDataset, model.LibraryDataset.table, properties=dict( folder=relation(model.LibraryFolder), library_dataset_dataset_association=relation(model.LibraryDatasetDatasetAssociation, primaryjoin=(model.LibraryDataset.table.c.library_dataset_dataset_association_id == model.LibraryDatasetDatasetAssociation.table.c.id)), expired_datasets=relation(model.LibraryDatasetDatasetAssociation, foreign_keys=[model.LibraryDataset.table.c.id, model.LibraryDataset.table.c.library_dataset_dataset_association_id], primaryjoin=( (model.LibraryDataset.table.c.id == model.LibraryDatasetDatasetAssociation.table.c.library_dataset_id) & (not_(model.LibraryDataset.table.c.library_dataset_dataset_association_id == model.LibraryDatasetDatasetAssociation.table.c.id)) ), viewonly=True, uselist=True) )) mapper(model.LibraryDatasetDatasetAssociation, model.LibraryDatasetDatasetAssociation.table, properties=dict( dataset=relation(model.Dataset), library_dataset=relation(model.LibraryDataset, primaryjoin=(model.LibraryDatasetDatasetAssociation.table.c.library_dataset_id == model.LibraryDataset.table.c.id)), # user=relation( model.User.mapper ), user=relation(model.User), copied_from_library_dataset_dataset_association=relation(model.LibraryDatasetDatasetAssociation, primaryjoin=(model.LibraryDatasetDatasetAssociation.table.c.copied_from_library_dataset_dataset_association_id == model.LibraryDatasetDatasetAssociation.table.c.id), remote_side=[model.LibraryDatasetDatasetAssociation.table.c.id], uselist=False), copied_to_library_dataset_dataset_associations=relation(model.LibraryDatasetDatasetAssociation, primaryjoin=(model.LibraryDatasetDatasetAssociation.table.c.copied_from_library_dataset_dataset_association_id == model.LibraryDatasetDatasetAssociation.table.c.id)), copied_from_history_dataset_association=relation(model.HistoryDatasetAssociation, primaryjoin=(model.LibraryDatasetDatasetAssociation.table.c.copied_from_history_dataset_association_id == model.HistoryDatasetAssociation.table.c.id), uselist=False), copied_to_history_dataset_associations=relation(model.HistoryDatasetAssociation, primaryjoin=(model.HistoryDatasetAssociation.table.c.copied_from_library_dataset_dataset_association_id == model.LibraryDatasetDatasetAssociation.table.c.id)), implicitly_converted_datasets=relation(model.ImplicitlyConvertedDatasetAssociation, primaryjoin=(model.ImplicitlyConvertedDatasetAssociation.table.c.ldda_parent_id == model.LibraryDatasetDatasetAssociation.table.c.id)), tags=relation(model.LibraryDatasetDatasetAssociationTagAssociation, order_by=model.LibraryDatasetDatasetAssociationTagAssociation.table.c.id, backref='history_tag_associations'), extended_metadata=relation(model.ExtendedMetadata, primaryjoin=((model.LibraryDatasetDatasetAssociation.table.c.extended_metadata_id == model.ExtendedMetadata.table.c.id)) ), _metadata=deferred(model.LibraryDatasetDatasetAssociation.table.c._metadata) )) mapper(model.LibraryDatasetDatasetInfoAssociation, model.LibraryDatasetDatasetInfoAssociation.table, properties=dict( library_dataset_dataset_association=relation(model.LibraryDatasetDatasetAssociation, primaryjoin=( (model.LibraryDatasetDatasetInfoAssociation.table.c.library_dataset_dataset_association_id == model.LibraryDatasetDatasetAssociation.table.c.id) & (not_(model.LibraryDatasetDatasetInfoAssociation.table.c.deleted)) ), backref="info_association"), template=relation(model.FormDefinition, primaryjoin=(model.LibraryDatasetDatasetInfoAssociation.table.c.form_definition_id == model.FormDefinition.table.c.id)), info=relation(model.FormValues, primaryjoin=(model.LibraryDatasetDatasetInfoAssociation.table.c.form_values_id == model.FormValues.table.c.id)) )) mapper(model.JobToInputDatasetAssociation, model.JobToInputDatasetAssociation.table, properties=dict( job=relation(model.Job), dataset=relation(model.HistoryDatasetAssociation, lazy=False, backref="dependent_jobs") )) mapper(model.JobToOutputDatasetAssociation, model.JobToOutputDatasetAssociation.table, properties=dict( job=relation(model.Job), dataset=relation(model.HistoryDatasetAssociation, lazy=False) )) mapper(model.JobToInputDatasetCollectionAssociation, model.JobToInputDatasetCollectionAssociation.table, properties=dict( job=relation(model.Job), dataset_collection=relation(model.HistoryDatasetCollectionAssociation, lazy=False) )) mapper(model.JobToOutputDatasetCollectionAssociation, model.JobToOutputDatasetCollectionAssociation.table, properties=dict( job=relation(model.Job), dataset_collection_instance=relation(model.HistoryDatasetCollectionAssociation, lazy=False, backref="output_dataset_collection_instances") )) mapper(model.JobToImplicitOutputDatasetCollectionAssociation, model.JobToImplicitOutputDatasetCollectionAssociation.table, properties=dict( job=relation(model.Job), dataset_collection=relation(model.DatasetCollection, backref="output_dataset_collections") )) mapper(model.JobToInputLibraryDatasetAssociation, model.JobToInputLibraryDatasetAssociation.table, properties=dict( job=relation(model.Job), dataset=relation(model.LibraryDatasetDatasetAssociation, lazy=False, backref="dependent_jobs") )) mapper(model.JobToOutputLibraryDatasetAssociation, model.JobToOutputLibraryDatasetAssociation.table, properties=dict( job=relation(model.Job), dataset=relation(model.LibraryDatasetDatasetAssociation, lazy=False) )) simple_mapping(model.JobStateHistory, job=relation(model.Job, backref="state_history")) simple_mapping(model.JobMetricText, job=relation(model.Job, backref="text_metrics")) simple_mapping(model.TaskMetricText, task=relation(model.Task, backref="text_metrics")) simple_mapping(model.JobMetricNumeric, job=relation(model.Job, backref="numeric_metrics")) simple_mapping(model.TaskMetricNumeric, task=relation(model.Task, backref="numeric_metrics")) simple_mapping(model.ImplicitlyCreatedDatasetCollectionInput, input_dataset_collection=relation(model.HistoryDatasetCollectionAssociation, primaryjoin=((model.HistoryDatasetCollectionAssociation.table.c.id == model.ImplicitlyCreatedDatasetCollectionInput.table.c.input_dataset_collection_id)), # backref="implicitly_created_dataset_collections", ), ) simple_mapping(model.ImplicitCollectionJobs) # simple_mapping( # model.ImplicitCollectionJobsHistoryDatasetCollectionAssociation, # history_dataset_collection_associations=relation( # model.HistoryDatasetCollectionAssociation, # backref=backref("implicit_collection_jobs_association", uselist=False), # uselist=True, # ), # ) simple_mapping( model.ImplicitCollectionJobsJobAssociation, implicit_collection_jobs=relation( model.ImplicitCollectionJobs, backref=backref("jobs", uselist=True), uselist=False, ), job=relation( model.Job, backref=backref("implicit_collection_jobs_association", uselist=False), uselist=False, ), ) mapper(model.JobParameter, model.JobParameter.table) mapper(model.JobExternalOutputMetadata, model.JobExternalOutputMetadata.table, properties=dict( job=relation(model.Job), history_dataset_association=relation(model.HistoryDatasetAssociation, lazy=False), library_dataset_dataset_association=relation(model.LibraryDatasetDatasetAssociation, lazy=False) )) mapper(model.JobExportHistoryArchive, model.JobExportHistoryArchive.table, properties=dict( job=relation(model.Job), history=relation(model.History), dataset=relation(model.Dataset, backref='job_export_history_archive') )) mapper(model.JobImportHistoryArchive, model.JobImportHistoryArchive.table, properties=dict( job=relation(model.Job), history=relation(model.History) )) mapper(model.GenomeIndexToolData, model.GenomeIndexToolData.table, properties=dict( job=relation(model.Job, backref='job'), dataset=relation(model.Dataset, backref='genome_index_tool_data'), user=relation(model.User), deferred=relation(model.DeferredJob, backref='deferred_job'), transfer=relation(model.TransferJob, backref='transfer_job') )) mapper(model.InteractiveToolEntryPoint, model.InteractiveToolEntryPoint.table, properties=dict( job=relation(model.Job, backref=backref('interactivetool_entry_points', uselist=True), uselist=False) )) mapper(model.JobContainerAssociation, model.JobContainerAssociation.table, properties=dict( job=relation(model.Job, backref=backref('container', uselist=False), uselist=False) )) mapper(model.PostJobAction, model.PostJobAction.table, properties=dict( workflow_step=relation(model.WorkflowStep, backref='post_job_actions', primaryjoin=(model.WorkflowStep.table.c.id == model.PostJobAction.table.c.workflow_step_id)) )) mapper(model.PostJobActionAssociation, model.PostJobActionAssociation.table, properties=dict( job=relation(model.Job), post_job_action=relation(model.PostJobAction) )) mapper(model.Job, model.Job.table, properties=dict( # user=relation( model.User.mapper ), user=relation(model.User), galaxy_session=relation(model.GalaxySession), history=relation(model.History, backref="jobs"), library_folder=relation(model.LibraryFolder, lazy=True), parameters=relation(model.JobParameter, lazy=True), input_datasets=relation(model.JobToInputDatasetAssociation), input_dataset_collections=relation(model.JobToInputDatasetCollectionAssociation, lazy=True), output_datasets=relation(model.JobToOutputDatasetAssociation, lazy=True), any_output_dataset_deleted=column_property( exists([model.HistoryDatasetAssociation], and_(model.Job.table.c.id == model.JobToOutputDatasetAssociation.table.c.job_id, model.HistoryDatasetAssociation.table.c.id == model.JobToOutputDatasetAssociation.table.c.dataset_id, model.HistoryDatasetAssociation.table.c.deleted == true()) ) ), any_output_dataset_collection_instances_deleted=column_property( exists([model.HistoryDatasetCollectionAssociation.table.c.id], and_(model.Job.table.c.id == model.JobToOutputDatasetCollectionAssociation.table.c.job_id, model.HistoryDatasetCollectionAssociation.table.c.id == model.JobToOutputDatasetCollectionAssociation.table.c.dataset_collection_id, model.HistoryDatasetCollectionAssociation.table.c.deleted == true()) ) ), output_dataset_collection_instances=relation(model.JobToOutputDatasetCollectionAssociation, lazy=True), output_dataset_collections=relation(model.JobToImplicitOutputDatasetCollectionAssociation, lazy=True), post_job_actions=relation(model.PostJobActionAssociation, lazy=False), input_library_datasets=relation(model.JobToInputLibraryDatasetAssociation), output_library_datasets=relation(model.JobToOutputLibraryDatasetAssociation, lazy=True), external_output_metadata=relation(model.JobExternalOutputMetadata, lazy=True), tasks=relation(model.Task) )) mapper(model.Task, model.Task.table, properties=dict( job=relation(model.Job) )) mapper(model.DeferredJob, model.DeferredJob.table, properties={}) mapper(model.TransferJob, model.TransferJob.table, properties={}) simple_mapping(model.DatasetCollection, elements=relation(model.DatasetCollectionElement, primaryjoin=(model.DatasetCollection.table.c.id == model.DatasetCollectionElement.table.c.dataset_collection_id), remote_side=[model.DatasetCollectionElement.table.c.dataset_collection_id], backref="collection", order_by=model.DatasetCollectionElement.table.c.element_index) ) simple_mapping(model.HistoryDatasetCollectionAssociation, collection=relation(model.DatasetCollection), history=relation(model.History, backref='dataset_collections'), copied_from_history_dataset_collection_association=relation(model.HistoryDatasetCollectionAssociation, primaryjoin=(model.HistoryDatasetCollectionAssociation.table.c.copied_from_history_dataset_collection_association_id == model.HistoryDatasetCollectionAssociation.table.c.id), remote_side=[model.HistoryDatasetCollectionAssociation.table.c.id], uselist=False), copied_to_history_dataset_collection_associations=relation(model.HistoryDatasetCollectionAssociation, primaryjoin=(model.HistoryDatasetCollectionAssociation.table.c.copied_from_history_dataset_collection_association_id == model.HistoryDatasetCollectionAssociation.table.c.id)), implicit_input_collections=relation(model.ImplicitlyCreatedDatasetCollectionInput, primaryjoin=((model.HistoryDatasetCollectionAssociation.table.c.id == model.ImplicitlyCreatedDatasetCollectionInput.table.c.dataset_collection_id)), backref="dataset_collection", ), implicit_collection_jobs=relation( model.ImplicitCollectionJobs, backref=backref("history_dataset_collection_associations", uselist=True), uselist=False, ), job=relation( model.Job, backref=backref("history_dataset_collection_associations", uselist=True), uselist=False, ), tags=relation(model.HistoryDatasetCollectionTagAssociation, order_by=model.HistoryDatasetCollectionTagAssociation.table.c.id, backref='dataset_collections'), annotations=relation(model.HistoryDatasetCollectionAssociationAnnotationAssociation, order_by=model.HistoryDatasetCollectionAssociationAnnotationAssociation.table.c.id, backref="dataset_collections"), ratings=relation(model.HistoryDatasetCollectionRatingAssociation, order_by=model.HistoryDatasetCollectionRatingAssociation.table.c.id, backref="dataset_collections") ) simple_mapping(model.LibraryDatasetCollectionAssociation, collection=relation(model.DatasetCollection), folder=relation(model.LibraryFolder, backref='dataset_collections'), tags=relation(model.LibraryDatasetCollectionTagAssociation, order_by=model.LibraryDatasetCollectionTagAssociation.table.c.id, backref='dataset_collections'), annotations=relation(model.LibraryDatasetCollectionAnnotationAssociation, order_by=model.LibraryDatasetCollectionAnnotationAssociation.table.c.id, backref="dataset_collections"), ratings=relation(model.LibraryDatasetCollectionRatingAssociation, order_by=model.LibraryDatasetCollectionRatingAssociation.table.c.id, backref="dataset_collections")) simple_mapping(model.DatasetCollectionElement, hda=relation(model.HistoryDatasetAssociation, primaryjoin=(model.DatasetCollectionElement.table.c.hda_id == model.HistoryDatasetAssociation.table.c.id)), ldda=relation(model.LibraryDatasetDatasetAssociation, primaryjoin=(model.DatasetCollectionElement.table.c.ldda_id == model.LibraryDatasetDatasetAssociation.table.c.id)), child_collection=relation(model.DatasetCollection, primaryjoin=(model.DatasetCollectionElement.table.c.child_collection_id == model.DatasetCollection.table.c.id))) mapper(model.Event, model.Event.table, properties=dict( history=relation(model.History), galaxy_session=relation(model.GalaxySession), # user=relation( model.User.mapper ) ) ) user=relation(model.User) )) mapper(model.GalaxySession, model.GalaxySession.table, properties=dict( histories=relation(model.GalaxySessionToHistoryAssociation), current_history=relation(model.History), # user=relation( model.User.mapper ) ) ) user=relation(model.User) )) mapper(model.GalaxySessionToHistoryAssociation, model.GalaxySessionToHistoryAssociation.table, properties=dict( galaxy_session=relation(model.GalaxySession), history=relation(model.History) )) mapper(model.Workflow, model.Workflow.table, properties=dict( steps=relation(model.WorkflowStep, backref='workflow', primaryjoin=((model.Workflow.table.c.id == model.WorkflowStep.table.c.workflow_id)), order_by=asc(model.WorkflowStep.table.c.order_index), cascade="all, delete-orphan", lazy=False), step_count=column_property( select([func.count(model.WorkflowStep.table.c.id)]).where(model.Workflow.table.c.id == model.WorkflowStep.table.c.workflow_id), deferred=True ) )) mapper(model.WorkflowStep, model.WorkflowStep.table, properties=dict( subworkflow=relation(model.Workflow, primaryjoin=(model.Workflow.table.c.id == model.WorkflowStep.table.c.subworkflow_id), backref="parent_workflow_steps"), dynamic_tool=relation(model.DynamicTool, primaryjoin=(model.DynamicTool.table.c.id == model.WorkflowStep.table.c.dynamic_tool_id), backref="workflow_steps"), tags=relation(model.WorkflowStepTagAssociation, order_by=model.WorkflowStepTagAssociation.table.c.id, backref="workflow_steps"), annotations=relation(model.WorkflowStepAnnotationAssociation, order_by=model.WorkflowStepAnnotationAssociation.table.c.id, backref="workflow_steps") )) mapper(model.WorkflowStepInput, model.WorkflowStepInput.table, properties=dict( workflow_step=relation(model.WorkflowStep, backref=backref("inputs", uselist=True), cascade="all", primaryjoin=(model.WorkflowStepInput.table.c.workflow_step_id == model.WorkflowStep.table.c.id)) )) mapper(model.WorkflowOutput, model.WorkflowOutput.table, properties=dict( workflow_step=relation(model.WorkflowStep, backref='workflow_outputs', primaryjoin=(model.WorkflowStep.table.c.id == model.WorkflowOutput.table.c.workflow_step_id)) )) mapper(model.WorkflowStepConnection, model.WorkflowStepConnection.table, properties=dict( input_step_input=relation(model.WorkflowStepInput, backref="connections", cascade="all", primaryjoin=(model.WorkflowStepConnection.table.c.input_step_input_id == model.WorkflowStepInput.table.c.id)), input_subworkflow_step=relation(model.WorkflowStep, backref=backref("parent_workflow_input_connections", uselist=True), primaryjoin=(model.WorkflowStepConnection.table.c.input_subworkflow_step_id == model.WorkflowStep.table.c.id), ), output_step=relation(model.WorkflowStep, backref="output_connections", cascade="all", primaryjoin=(model.WorkflowStepConnection.table.c.output_step_id == model.WorkflowStep.table.c.id)), )) mapper(model.StoredWorkflow, model.StoredWorkflow.table, properties=dict( user=relation(model.User, primaryjoin=(model.User.table.c.id == model.StoredWorkflow.table.c.user_id), backref='stored_workflows'), workflows=relation(model.Workflow, backref='stored_workflow', cascade="all, delete-orphan", primaryjoin=(model.StoredWorkflow.table.c.id == model.Workflow.table.c.stored_workflow_id), order_by=-model.Workflow.id), latest_workflow=relation(model.Workflow, post_update=True, primaryjoin=(model.StoredWorkflow.table.c.latest_workflow_id == model.Workflow.table.c.id), lazy=False), tags=relation(model.StoredWorkflowTagAssociation, order_by=model.StoredWorkflowTagAssociation.table.c.id, backref="stored_workflows"), owner_tags=relation(model.StoredWorkflowTagAssociation, primaryjoin=( and_(model.StoredWorkflow.table.c.id == model.StoredWorkflowTagAssociation.table.c.stored_workflow_id, model.StoredWorkflow.table.c.user_id == model.StoredWorkflowTagAssociation.table.c.user_id) ), order_by=model.StoredWorkflowTagAssociation.table.c.id), annotations=relation(model.StoredWorkflowAnnotationAssociation, order_by=model.StoredWorkflowAnnotationAssociation.table.c.id, backref="stored_workflows"), ratings=relation(model.StoredWorkflowRatingAssociation, order_by=model.StoredWorkflowRatingAssociation.table.c.id, backref="stored_workflows"), average_rating=column_property( select([func.avg(model.StoredWorkflowRatingAssociation.table.c.rating)]).where(model.StoredWorkflowRatingAssociation.table.c.stored_workflow_id == model.StoredWorkflow.table.c.id), deferred=True ) )) # Set up proxy so that # StoredWorkflow.users_shared_with # returns a list of users that workflow is shared with. model.StoredWorkflow.users_shared_with_dot_users = association_proxy('users_shared_with', 'user') mapper(model.StoredWorkflowUserShareAssociation, model.StoredWorkflowUserShareAssociation.table, properties=dict( user=relation(model.User, backref='workflows_shared_by_others'), stored_workflow=relation(model.StoredWorkflow, backref='users_shared_with') )) mapper(model.StoredWorkflowMenuEntry, model.StoredWorkflowMenuEntry.table, properties=dict( stored_workflow=relation(model.StoredWorkflow) )) mapper(model.WorkflowInvocation, model.WorkflowInvocation.table, properties=dict( history=relation(model.History, backref=backref('workflow_invocations', uselist=True)), input_parameters=relation(model.WorkflowRequestInputParameter), step_states=relation(model.WorkflowRequestStepState), input_step_parameters=relation(model.WorkflowRequestInputStepParameter), input_datasets=relation(model.WorkflowRequestToInputDatasetAssociation), input_dataset_collections=relation(model.WorkflowRequestToInputDatasetCollectionAssociation), subworkflow_invocations=relation(model.WorkflowInvocationToSubworkflowInvocationAssociation, primaryjoin=((model.WorkflowInvocationToSubworkflowInvocationAssociation.table.c.workflow_invocation_id == model.WorkflowInvocation.table.c.id)), backref=backref("parent_workflow_invocation", uselist=False), uselist=True, ), steps=relation(model.WorkflowInvocationStep, backref="workflow_invocation"), workflow=relation(model.Workflow) )) mapper(model.WorkflowInvocationToSubworkflowInvocationAssociation, model.WorkflowInvocationToSubworkflowInvocationAssociation.table, properties=dict( subworkflow_invocation=relation(model.WorkflowInvocation, primaryjoin=((model.WorkflowInvocationToSubworkflowInvocationAssociation.table.c.subworkflow_invocation_id == model.WorkflowInvocation.table.c.id)), backref="parent_workflow_invocation_association", uselist=False, ), workflow_step=relation(model.WorkflowStep), )) simple_mapping(model.WorkflowInvocationStep, workflow_step=relation(model.WorkflowStep), job=relation(model.Job, backref=backref('workflow_invocation_step', uselist=False), uselist=False), implicit_collection_jobs=relation(model.ImplicitCollectionJobs, backref=backref('workflow_invocation_step', uselist=False), uselist=False),) simple_mapping(model.WorkflowRequestInputParameter, workflow_invocation=relation(model.WorkflowInvocation)) simple_mapping(model.WorkflowRequestStepState, workflow_invocation=relation(model.WorkflowInvocation), workflow_step=relation(model.WorkflowStep)) simple_mapping(model.WorkflowRequestInputStepParameter, workflow_invocation=relation(model.WorkflowInvocation), workflow_step=relation(model.WorkflowStep)) simple_mapping(model.WorkflowRequestToInputDatasetAssociation, workflow_invocation=relation(model.WorkflowInvocation), workflow_step=relation(model.WorkflowStep), dataset=relation(model.HistoryDatasetAssociation)) simple_mapping(model.WorkflowRequestToInputDatasetCollectionAssociation, workflow_invocation=relation(model.WorkflowInvocation), workflow_step=relation(model.WorkflowStep), dataset_collection=relation(model.HistoryDatasetCollectionAssociation)) mapper(model.MetadataFile, model.MetadataFile.table, properties=dict( history_dataset=relation(model.HistoryDatasetAssociation), library_dataset=relation(model.LibraryDatasetDatasetAssociation) )) simple_mapping( model.WorkflowInvocationOutputDatasetAssociation, workflow_invocation=relation(model.WorkflowInvocation, backref="output_datasets"), workflow_step=relation(model.WorkflowStep), dataset=relation(model.HistoryDatasetAssociation), workflow_output=relation(model.WorkflowOutput), ) simple_mapping( model.WorkflowInvocationOutputDatasetCollectionAssociation, workflow_invocation=relation(model.WorkflowInvocation, backref="output_dataset_collections"), workflow_step=relation(model.WorkflowStep), dataset_collection=relation(model.HistoryDatasetCollectionAssociation), workflow_output=relation(model.WorkflowOutput), ) simple_mapping( model.WorkflowInvocationStepOutputDatasetAssociation, workflow_invocation_step=relation(model.WorkflowInvocationStep, backref="output_datasets"), dataset=relation(model.HistoryDatasetAssociation), ) simple_mapping( model.WorkflowInvocationStepOutputDatasetCollectionAssociation, workflow_invocation_step=relation(model.WorkflowInvocationStep, backref="output_dataset_collections"), dataset_collection=relation(model.HistoryDatasetCollectionAssociation), ) mapper(model.PageRevision, model.PageRevision.table) mapper(model.Page, model.Page.table, properties=dict( user=relation(model.User), revisions=relation(model.PageRevision, backref='page', cascade="all, delete-orphan", primaryjoin=(model.Page.table.c.id == model.PageRevision.table.c.page_id)), latest_revision=relation(model.PageRevision, post_update=True, primaryjoin=(model.Page.table.c.latest_revision_id == model.PageRevision.table.c.id), lazy=False), tags=relation(model.PageTagAssociation, order_by=model.PageTagAssociation.table.c.id, backref="pages"), annotations=relation(model.PageAnnotationAssociation, order_by=model.PageAnnotationAssociation.table.c.id, backref="pages"), ratings=relation(model.PageRatingAssociation, order_by=model.PageRatingAssociation.table.c.id, backref="pages"), average_rating=column_property( select([func.avg(model.PageRatingAssociation.table.c.rating)]).where(model.PageRatingAssociation.table.c.page_id == model.Page.table.c.id), deferred=True ) )) # Set up proxy so that # Page.users_shared_with # returns a list of users that page is shared with. model.Page.users_shared_with_dot_users = association_proxy('users_shared_with', 'user') mapper(model.PageUserShareAssociation, model.PageUserShareAssociation.table, properties=dict(user=relation(model.User, backref='pages_shared_by_others'), page=relation(model.Page, backref='users_shared_with'))) mapper(model.VisualizationRevision, model.VisualizationRevision.table) mapper(model.Visualization, model.Visualization.table, properties=dict( user=relation(model.User), revisions=relation(model.VisualizationRevision, backref='visualization', cascade="all, delete-orphan", primaryjoin=(model.Visualization.table.c.id == model.VisualizationRevision.table.c.visualization_id)), latest_revision=relation(model.VisualizationRevision, post_update=True, primaryjoin=(model.Visualization.table.c.latest_revision_id == model.VisualizationRevision.table.c.id), lazy=False), tags=relation(model.VisualizationTagAssociation, order_by=model.VisualizationTagAssociation.table.c.id, backref="visualizations"), annotations=relation(model.VisualizationAnnotationAssociation, order_by=model.VisualizationAnnotationAssociation.table.c.id, backref="visualizations"), ratings=relation(model.VisualizationRatingAssociation, order_by=model.VisualizationRatingAssociation.table.c.id, backref="visualizations"), average_rating=column_property( select([func.avg(model.VisualizationRatingAssociation.table.c.rating)]).where(model.VisualizationRatingAssociation.table.c.visualization_id == model.Visualization.table.c.id), deferred=True ) )) # Set up proxy so that # Visualization.users_shared_with # returns a list of users that visualization is shared with. model.Visualization.users_shared_with_dot_users = association_proxy('users_shared_with', 'user') mapper(model.VisualizationUserShareAssociation, model.VisualizationUserShareAssociation.table, properties=dict( user=relation(model.User, backref='visualizations_shared_by_others'), visualization=relation(model.Visualization, backref='users_shared_with') )) # Tag tables. simple_mapping(model.Tag, children=relation(model.Tag, backref=backref('parent', remote_side=[model.Tag.table.c.id]))) def tag_mapping(tag_association_class, backref_name): simple_mapping(tag_association_class, tag=relation(model.Tag, backref=backref_name), user=relation(model.User)) tag_mapping(model.HistoryTagAssociation, "tagged_histories") tag_mapping(model.DatasetTagAssociation, "tagged_datasets") tag_mapping(model.HistoryDatasetAssociationTagAssociation, "tagged_history_dataset_associations") tag_mapping(model.LibraryDatasetDatasetAssociationTagAssociation, "tagged_library_dataset_dataset_associations") tag_mapping(model.PageTagAssociation, "tagged_pages") tag_mapping(model.StoredWorkflowTagAssociation, "tagged_workflows") tag_mapping(model.WorkflowStepTagAssociation, "tagged_workflow_steps") tag_mapping(model.VisualizationTagAssociation, "tagged_visualizations") tag_mapping(model.HistoryDatasetCollectionTagAssociation, "tagged_history_dataset_collections") tag_mapping(model.LibraryDatasetCollectionTagAssociation, "tagged_library_dataset_collections") tag_mapping(model.ToolTagAssociation, "tagged_tools") # Annotation tables. def annotation_mapping(annotation_class, **kwds): kwds = dict((key, relation(value)) for key, value in kwds.items()) simple_mapping(annotation_class, **dict(user=relation(model.User), **kwds)) annotation_mapping(model.HistoryAnnotationAssociation, history=model.History) annotation_mapping(model.HistoryDatasetAssociationAnnotationAssociation, hda=model.HistoryDatasetAssociation) annotation_mapping(model.StoredWorkflowAnnotationAssociation, stored_workflow=model.StoredWorkflow) annotation_mapping(model.WorkflowStepAnnotationAssociation, workflow_step=model.WorkflowStep) annotation_mapping(model.PageAnnotationAssociation, page=model.Page) annotation_mapping(model.VisualizationAnnotationAssociation, visualization=model.Visualization) annotation_mapping(model.HistoryDatasetCollectionAssociationAnnotationAssociation, history_dataset_collection=model.HistoryDatasetCollectionAssociation) annotation_mapping(model.LibraryDatasetCollectionAnnotationAssociation, library_dataset_collection=model.LibraryDatasetCollectionAssociation) # Rating tables. def rating_mapping(rating_class, **kwds): kwds = dict((key, relation(value)) for key, value in kwds.items()) simple_mapping(rating_class, **dict(user=relation(model.User), **kwds)) rating_mapping(model.HistoryRatingAssociation, history=model.History) rating_mapping(model.HistoryDatasetAssociationRatingAssociation, hda=model.HistoryDatasetAssociation) rating_mapping(model.StoredWorkflowRatingAssociation, stored_workflow=model.StoredWorkflow) rating_mapping(model.PageRatingAssociation, page=model.Page) rating_mapping(model.VisualizationRatingAssociation, visualizaiton=model.Visualization) rating_mapping(model.HistoryDatasetCollectionRatingAssociation, history_dataset_collection=model.HistoryDatasetCollectionAssociation) rating_mapping(model.LibraryDatasetCollectionRatingAssociation, libary_dataset_collection=model.LibraryDatasetCollectionAssociation) # Data Manager tables mapper(model.DataManagerHistoryAssociation, model.DataManagerHistoryAssociation.table, properties=dict( history=relation(model.History), user=relation(model.User, backref='data_manager_histories') )) mapper(model.DataManagerJobAssociation, model.DataManagerJobAssociation.table, properties=dict( job=relation(model.Job, backref=backref('data_manager_association', uselist=False), uselist=False) )) # User tables. mapper(model.UserPreference, model.UserPreference.table, properties={}) mapper(model.UserAction, model.UserAction.table, properties=dict( # user=relation( model.User.mapper ) user=relation(model.User) )) mapper(model.APIKeys, model.APIKeys.table, properties={}) # model.HistoryDatasetAssociation.mapper.add_property( "creating_job_associations", # relation( model.JobToOutputDatasetAssociation ) ) # model.LibraryDatasetDatasetAssociation.mapper.add_property( "creating_job_associations", # relation( model.JobToOutputLibraryDatasetAssociation ) ) class_mapper(model.HistoryDatasetAssociation).add_property( "creating_job_associations", relation(model.JobToOutputDatasetAssociation)) class_mapper(model.LibraryDatasetDatasetAssociation).add_property( "creating_job_associations", relation(model.JobToOutputLibraryDatasetAssociation)) class_mapper(model.HistoryDatasetCollectionAssociation).add_property( "creating_job_associations", relation(model.JobToOutputDatasetCollectionAssociation)) # Helper methods. def db_next_hid(self, n=1): """ db_next_hid( self ) Override __next_hid to generate from the database in a concurrency safe way. Loads the next history ID from the DB and returns it. It also saves the future next_id into the DB. :rtype: int :returns: the next history id """ session = object_session(self) table = self.table trans = session.begin() try: if "postgres" not in session.bind.dialect.name: next_hid = select([table.c.hid_counter], table.c.id == model.cached_id(self)).with_for_update().scalar() table.update(table.c.id == self.id).execute(hid_counter=(next_hid + n)) else: stmt = table.update().where(table.c.id == model.cached_id(self)).values(hid_counter=(table.c.hid_counter + n)).returning(table.c.hid_counter) next_hid = session.execute(stmt).scalar() - n trans.commit() return next_hid except Exception: trans.rollback() raise model.History._next_hid = db_next_hid def _workflow_invocation_update(self): session = object_session(self) table = self.table now_val = now() stmt = table.update().values(update_time=now_val).where(and_(table.c.id == self.id, table.c.update_time < now_val)) session.execute(stmt) model.WorkflowInvocation.update = _workflow_invocation_update def init(file_path, url, engine_options=None, create_tables=False, map_install_models=False, database_query_profiling_proxy=False, object_store=None, trace_logger=None, use_pbkdf2=True, slow_query_log_threshold=0, thread_local_log=None, log_query_counts=False): """Connect mappings to the database""" if engine_options is None: engine_options = {} # Connect dataset to the file path model.Dataset.file_path = file_path # Connect dataset to object store model.Dataset.object_store = object_store # Use PBKDF2 password hashing? model.User.use_pbkdf2 = use_pbkdf2 # Load the appropriate db module engine = build_engine(url, engine_options, database_query_profiling_proxy, trace_logger, slow_query_log_threshold, thread_local_log=thread_local_log, log_query_counts=log_query_counts) # Connect the metadata to the database. metadata.bind = engine model_modules = [model] if map_install_models: import galaxy.model.tool_shed_install.mapping # noqa: F401 from galaxy.model import tool_shed_install galaxy.model.tool_shed_install.mapping.init(url=url, engine_options=engine_options, create_tables=create_tables) model_modules.append(tool_shed_install) result = ModelMapping(model_modules, engine=engine) # Create tables if needed if create_tables: metadata.create_all() # metadata.engine.commit() result.create_tables = create_tables # load local galaxy security policy result.security_agent = GalaxyRBACAgent(result) result.thread_local_log = thread_local_log return result
48.473464
188
0.732136
2692985671d579b373859ef43680428b22258561
4,764
py
Python
migrations/versions/264fa39c91e2_breaking_column_size_increase.py
LambArchie/Competition-Manager
7da4c8625f0bd0c1b002b4f2aef72529e1ede4c6
[ "MIT" ]
null
null
null
migrations/versions/264fa39c91e2_breaking_column_size_increase.py
LambArchie/Competition-Manager
7da4c8625f0bd0c1b002b4f2aef72529e1ede4c6
[ "MIT" ]
1
2021-06-14T14:48:06.000Z
2021-06-14T15:42:40.000Z
migrations/versions/264fa39c91e2_breaking_column_size_increase.py
LambArchie/Competition-Manager
7da4c8625f0bd0c1b002b4f2aef72529e1ede4c6
[ "MIT" ]
null
null
null
"""breaking - column size increase Revision ID: 264fa39c91e2 Revises: Create Date: 2020-01-27 18:15:23.530134 """ from alembic import op import sqlalchemy as sa #manually added below from app.database.uuid import GUID sa.GUID = GUID # revision identifiers, used by Alembic. revision = '264fa39c91e2' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('competition', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=64), nullable=True), sa.Column('body', sa.String(length=1024), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('user', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=64), nullable=True), sa.Column('email', sa.String(length=128), nullable=True), sa.Column('name', sa.String(length=64), nullable=True), sa.Column('organisation', sa.String(length=64), nullable=True), sa.Column('password_hash', sa.String(length=128), nullable=True), sa.Column('last_seen', sa.DateTime(), nullable=True), sa.Column('avatar', sa.String(length=70), nullable=True), sa.Column('admin', sa.Boolean(), nullable=True), sa.Column('reviewer', sa.Boolean(), nullable=True), sa.Column('token', sa.String(length=32), nullable=True), sa.Column('token_expiration', sa.DateTime(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_user_email'), 'user', ['email'], unique=True) op.create_index(op.f('ix_user_token'), 'user', ['token'], unique=True) op.create_index(op.f('ix_user_username'), 'user', ['username'], unique=True) op.create_table('category', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=64), nullable=True), sa.Column('body', sa.String(length=1024), nullable=True), sa.Column('comp_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['comp_id'], ['competition.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('submission', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=64), nullable=True), sa.Column('body', sa.String(length=32768), nullable=True), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('comp_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['comp_id'], ['competition.id'], ), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_submission_timestamp'), 'submission', ['timestamp'], unique=False) op.create_table('category_submission_assoc', sa.Column('categories', sa.Integer(), nullable=True), sa.Column('submissions', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['categories'], ['category.id'], ), sa.ForeignKeyConstraint(['submissions'], ['submission.id'], ) ) op.create_table('submission_uploads', sa.Column('uuid', sa.GUID(), nullable=False), sa.Column('id', sa.Integer(), nullable=True), sa.Column('filename', sa.String(length=64), nullable=True), sa.Column('submission_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['submission_id'], ['submission.id'], ), sa.PrimaryKeyConstraint('uuid') ) op.create_table('votes', sa.Column('id', sa.Integer(), nullable=False), sa.Column('comp_id', sa.Integer(), nullable=True), sa.Column('cat_id', sa.Integer(), nullable=True), sa.Column('submission_id', sa.Integer(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('score', sa.Integer(), nullable=True), sa.Column('comments', sa.String(length=8192), nullable=True), sa.ForeignKeyConstraint(['cat_id'], ['category.id'], ), sa.ForeignKeyConstraint(['comp_id'], ['competition.id'], ), sa.ForeignKeyConstraint(['submission_id'], ['submission.id'], ), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('votes') op.drop_table('submission_uploads') op.drop_table('category_submission_assoc') op.drop_index(op.f('ix_submission_timestamp'), table_name='submission') op.drop_table('submission') op.drop_table('category') op.drop_index(op.f('ix_user_username'), table_name='user') op.drop_index(op.f('ix_user_token'), table_name='user') op.drop_index(op.f('ix_user_email'), table_name='user') op.drop_table('user') op.drop_table('competition') # ### end Alembic commands ###
42.535714
95
0.674013
63dd643fab0d8ceee80796f662e1e8b04089aadc
24,715
py
Python
ambari-server/src/test/python/TestMpacks.py
hortonworks/ambari-perf
71305effa9ac00e2e9adb36e6a66a13c9105a811
[ "Apache-2.0", "MIT" ]
1
2021-05-06T06:24:04.000Z
2021-05-06T06:24:04.000Z
ambari-server/src/test/python/TestMpacks.py
gcxtx/ambari
133d9c4661b21182482c25f96c3f0bf0a9740a9f
[ "Apache-2.0" ]
null
null
null
ambari-server/src/test/python/TestMpacks.py
gcxtx/ambari
133d9c4661b21182482c25f96c3f0bf0a9740a9f
[ "Apache-2.0" ]
3
2017-10-31T11:42:31.000Z
2021-04-26T07:17:53.000Z
''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import os from mock.mock import patch, MagicMock, call from ambari_commons.exceptions import FatalException from ambari_server.setupMpacks import install_mpack, upgrade_mpack, replay_mpack_logs, purge_stacks_and_mpacks, \ STACK_DEFINITIONS_RESOURCE_NAME, SERVICE_DEFINITIONS_RESOURCE_NAME, MPACKS_RESOURCE_NAME from unittest import TestCase from ambari_server.serverConfiguration import STACK_LOCATION_KEY, COMMON_SERVICES_PATH_PROPERTY, MPACKS_STAGING_PATH_PROPERTY with patch.object(os, "geteuid", new=MagicMock(return_value=0)): from resource_management.core import sudo reload(sudo) def get_configs(): test_directory = os.path.dirname(os.path.abspath(__file__)) mpacks_directory = os.path.join(test_directory, "mpacks") configs = { STACK_LOCATION_KEY : "/var/lib/ambari-server/resources/stacks", COMMON_SERVICES_PATH_PROPERTY : "/var/lib/ambari-server/resources/common-services", MPACKS_STAGING_PATH_PROPERTY : mpacks_directory } return configs configs = get_configs() class TestMpacks(TestCase): def test_install_mpack_with_no_mpack_path(self): options = self._create_empty_options_mock() fail = False try: install_mpack(options) except FatalException as e: self.assertEquals("Management pack not specified!", e.reason) fail = True self.assertTrue(fail) @patch("ambari_server.setupMpacks.download_mpack") def test_install_mpack_with_invalid_mpack_path(self, download_mpack_mock): options = self._create_empty_options_mock() options.mpack_path = "/invalid_path/mpack.tar.gz" download_mpack_mock.return_value = None fail = False try: install_mpack(options) except FatalException as e: self.assertEquals("Management pack could not be downloaded!", e.reason) fail = True self.assertTrue(fail) @patch("os.path.exists") @patch("ambari_server.setupMpacks.get_ambari_properties") def test_purge_stacks_and_mpacks(self, get_ambari_version_mock, os_path_exists_mock): options = self._create_empty_options_mock() get_ambari_version_mock.return_value = configs stacks_directory = configs[STACK_LOCATION_KEY] common_services_directory = configs[COMMON_SERVICES_PATH_PROPERTY] mpacks_directory = configs[MPACKS_STAGING_PATH_PROPERTY] os_path_exists_mock.return_value = False purge_stacks_and_mpacks(None) os_path_exists_calls = [] os_path_exists_mock.assert_has_calls(os_path_exists_calls) purge_stacks_and_mpacks(options.purge_list.split(",")) os_path_exists_calls = [ call(stacks_directory), call(mpacks_directory) ] os_path_exists_mock.assert_has_calls(os_path_exists_calls) options.purge_list = ",".join([STACK_DEFINITIONS_RESOURCE_NAME, SERVICE_DEFINITIONS_RESOURCE_NAME, MPACKS_RESOURCE_NAME]) purge_stacks_and_mpacks(options.purge_list.split(",")) os_path_exists_calls = [ call(stacks_directory), call(common_services_directory), call(mpacks_directory) ] os_path_exists_mock.assert_has_calls(os_path_exists_calls) options.purge_list = ",".join([STACK_DEFINITIONS_RESOURCE_NAME, SERVICE_DEFINITIONS_RESOURCE_NAME, MPACKS_RESOURCE_NAME]) options.replay_mode = True purge_stacks_and_mpacks(options.purge_list.split(",")) os_path_exists_calls = [ call(stacks_directory), call(common_services_directory) ] os_path_exists_mock.assert_has_calls(os_path_exists_calls) @patch("os.path.exists") @patch("ambari_server.setupMpacks.extract_archive") @patch("ambari_server.setupMpacks.get_archive_root_dir") @patch("ambari_server.setupMpacks.download_mpack") def test_install_mpack_with_malformed_mpack(self, download_mpack_mock, get_archive_root_dir_mock, extract_archive_mock, os_path_exists_mock): options = self._create_empty_options_mock() options.mpack_path = "/path/to/mpack.tar.gz" download_mpack_mock.return_value = "/tmp/mpack.tar.gz" os_path_exists_mock.return_value = True get_archive_root_dir_mock.return_value = None fail = False try: install_mpack(options) except FatalException as e: self.assertEquals("Malformed management pack. Root directory missing!", e.reason) fail = True self.assertTrue(fail) get_archive_root_dir_mock.return_value = "mpack" os_path_exists_mock.side_effect = [True, False, False] extract_archive_mock.return_value = None fail = False try: install_mpack(options) except FatalException as e: self.assertEquals("Malformed management pack. Failed to expand management pack!", e.reason) fail = True self.assertTrue(fail) get_archive_root_dir_mock.return_value = "mpack" os_path_exists_mock.side_effect = [True, False, True, False] extract_archive_mock.return_value = None fail = False try: install_mpack(options) except FatalException as e: self.assertEquals("Malformed management pack {0}. Metadata file missing!".format(options.mpack_path), e.reason) fail = True self.assertTrue(fail) @patch("os.path.exists") @patch("shutil.move") @patch("os.mkdir") @patch("ambari_server.setupMpacks.create_symlink") @patch("ambari_server.setupMpacks.get_ambari_version") @patch("ambari_server.setupMpacks.get_ambari_properties") @patch("ambari_server.setupMpacks.add_replay_log") @patch("ambari_server.setupMpacks.purge_stacks_and_mpacks") @patch("ambari_server.setupMpacks.expand_mpack") @patch("ambari_server.setupMpacks.download_mpack") def test_install_stack_mpack(self, download_mpack_mock, expand_mpack_mock, purge_stacks_and_mpacks_mock, add_replay_log_mock, get_ambari_properties_mock, get_ambari_version_mock, create_symlink_mock, os_mkdir_mock, shutil_move_mock, os_path_exists_mock): options = self._create_empty_options_mock() options.mpack_path = "/path/to/mystack.tar.gz" options.purge = True download_mpack_mock.return_value = "/tmp/mystack.tar.gz" expand_mpack_mock.return_value = "mpacks/mystack-ambari-mpack-1.0.0.0" get_ambari_version_mock.return_value = "2.4.0.0" """ os_path_exists_calls = [call('/tmp/mystack.tar.gz'), call('mpacks/mystack-ambari-mpack-1.0.0.0/mpack.json'), call('/var/lib/ambari-server/resources/stacks'), call('/var/lib/ambari-server/resources/common-services'), call(mpacks_directory), call(mpacks_directory + '/cache'), call(mpacks_directory + '/mystack-ambari-mpack-1.0.0.0'), call('/var/lib/ambari-server/resources/common-services/SERVICEA'), call('/var/lib/ambari-server/resources/common-services/SERVICEB'), call('/var/lib/ambari-server/resources/stacks/MYSTACK'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/1.0'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/1.0/services'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/1.1'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/1.1/services'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/2.0'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/2.0/services')] """ os_path_exists_mock.side_effect = [True, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False] get_ambari_properties_mock.return_value = configs shutil_move_mock.return_value = True install_mpack(options) stacks_directory = configs[STACK_LOCATION_KEY] common_services_directory = configs[COMMON_SERVICES_PATH_PROPERTY] mpacks_directory = configs[MPACKS_STAGING_PATH_PROPERTY] mpacks_staging_directory = os.path.join(mpacks_directory, "mystack-ambari-mpack-1.0.0.0") os_mkdir_calls = [ call(stacks_directory), call(common_services_directory), call(mpacks_directory), call(mpacks_directory + '/cache'), call(os.path.join(common_services_directory, "SERVICEA")), call(os.path.join(common_services_directory, "SERVICEB")), call(os.path.join(stacks_directory, "MYSTACK")), call(os.path.join(stacks_directory, "MYSTACK/1.0")), call(os.path.join(stacks_directory, "MYSTACK/1.0/services")), call(os.path.join(stacks_directory, "MYSTACK/1.1")), call(os.path.join(stacks_directory, "MYSTACK/1.1/services")), call(os.path.join(stacks_directory, "MYSTACK/2.0")), call(os.path.join(stacks_directory, "MYSTACK/2.0/services")) ] create_symlink_calls = [ call(os.path.join(mpacks_staging_directory, "common-services/SERVICEA"), os.path.join(common_services_directory, "SERVICEA"), "1.0", None), call(os.path.join(mpacks_staging_directory, "common-services/SERVICEA"), os.path.join(common_services_directory, "SERVICEA"), "2.0", None), call(os.path.join(mpacks_staging_directory, "common-services/SERVICEB"), os.path.join(common_services_directory, "SERVICEB"), "1.0.0", None), call(os.path.join(mpacks_staging_directory, "common-services/SERVICEB"), os.path.join(common_services_directory, "SERVICEB"), "2.0.0", None), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/1.0"), os.path.join(stacks_directory, "MYSTACK/1.0"), "metainfo.xml", None), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/1.0/services"), os.path.join(stacks_directory, "MYSTACK/1.0/services"), "SERVICEA", None), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/1.1"), os.path.join(stacks_directory, "MYSTACK/1.1"), "metainfo.xml", None), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/1.1/services"), os.path.join(stacks_directory, "MYSTACK/1.1/services"), "SERVICEA", None), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/2.0"), os.path.join(stacks_directory, "MYSTACK/2.0"), "metainfo.xml", None), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/2.0/services"), os.path.join(stacks_directory, "MYSTACK/2.0/services"), "SERVICEA", None), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/2.0/services"), os.path.join(stacks_directory, "MYSTACK/2.0/services"), "SERVICEB", None) ] self.assertTrue(purge_stacks_and_mpacks_mock.called) os_mkdir_mock.assert_has_calls(os_mkdir_calls) create_symlink_mock.assert_has_calls(create_symlink_calls) self.assertTrue(add_replay_log_mock.called) @patch("os.path.exists") @patch("os.path.isdir") @patch("os.symlink") @patch("shutil.move") @patch("os.mkdir") @patch("ambari_server.setupMpacks.create_symlink") @patch("ambari_server.setupMpacks.get_ambari_version") @patch("ambari_server.setupMpacks.get_ambari_properties") @patch("ambari_server.setupMpacks.add_replay_log") @patch("ambari_server.setupMpacks.purge_stacks_and_mpacks") @patch("ambari_server.setupMpacks.expand_mpack") @patch("ambari_server.setupMpacks.download_mpack") def test_install_addon_service_mpack(self, download_mpack_mock, expand_mpack_mock, purge_stacks_and_mpacks_mock, add_replay_log_mock, get_ambari_properties_mock, get_ambari_version_mock, create_symlink_mock, os_mkdir_mock, shutil_move_mock,os_symlink_mock, os_path_isdir_mock, os_path_exists_mock): options = self._create_empty_options_mock() options.mpack_path = "/path/to/myservice.tar.gz" options.purge = False download_mpack_mock.return_value = "/tmp/myservice.tar.gz" expand_mpack_mock.return_value = "mpacks/myservice-ambari-mpack-1.0.0.0" get_ambari_version_mock.return_value = "2.4.0.0" """ os_path_exists_calls = [call('/tmp/myservice.tar.gz'), call('mpacks/myservice-ambari-mpack-1.0.0.0/mpack.json'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/1.0'), call('/var/lib/ambari-server/resources/stacks'), call('/var/lib/ambari-server/resources/common-services'), call(mpacks_directory), call(mpacks_directory + '/cache'), call(mpacks_directory + '/myservice-ambari-mpack-1.0.0.0'), call('/var/lib/ambari-server/resources/common-services/MYSERVICE'), call('/var/lib/ambari-server/resources/stacks/MYSTACK'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/1.0'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/1.0/services'), call('/var/lib/ambari-server/resources/stacks/MYSTACK'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/2.0'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/2.0/services')] """ os_path_exists_mock.side_effect = [True, True, True, True, True, True, True, False, False, True, True, True, True, True, True] get_ambari_properties_mock.return_value = configs shutil_move_mock.return_value = True os_path_isdir_mock.return_value = True install_mpack(options) stacks_directory = configs[STACK_LOCATION_KEY] common_services_directory = configs[COMMON_SERVICES_PATH_PROPERTY] mpacks_directory = configs[MPACKS_STAGING_PATH_PROPERTY] mpacks_staging_directory = os.path.join(mpacks_directory, "myservice-ambari-mpack-1.0.0.0") os_mkdir_calls = [ call(os.path.join(common_services_directory, "MYSERVICE")) ] os_symlink_calls = [ call(os.path.join(mpacks_staging_directory, "common-services/MYSERVICE/1.0.0"), os.path.join(common_services_directory, "MYSERVICE/1.0.0")), call(os.path.join(mpacks_staging_directory, "custom-services/MYSERVICE/1.0.0"), os.path.join(stacks_directory, "MYSTACK/1.0/services/MYSERVICE")), call(os.path.join(mpacks_staging_directory, "custom-services/MYSERVICE/2.0.0"), os.path.join(stacks_directory, "MYSTACK/2.0/services/MYSERVICE")) ] self.assertFalse(purge_stacks_and_mpacks_mock.called) os_mkdir_mock.assert_has_calls(os_mkdir_calls) os_symlink_mock.assert_has_calls(os_symlink_calls) self.assertTrue(add_replay_log_mock.called) @patch("os.path.exists") @patch("shutil.move") @patch("os.mkdir") @patch("ambari_server.setupMpacks.create_symlink") @patch("ambari_server.setupMpacks.get_ambari_version") @patch("ambari_server.setupMpacks.get_ambari_properties") @patch("ambari_server.setupMpacks.add_replay_log") @patch("ambari_server.setupMpacks.uninstall_mpack") @patch("ambari_server.setupMpacks.purge_stacks_and_mpacks") @patch("ambari_server.setupMpacks.expand_mpack") @patch("ambari_server.setupMpacks.download_mpack") def test_upgrade_stack_mpack(self, download_mpack_mock, expand_mpack_mock, purge_stacks_and_mpacks_mock, uninstall_mpack_mock, add_replay_log_mock, get_ambari_properties_mock, get_ambari_version_mock, create_symlink_mock, os_mkdir_mock, shutil_move_mock, os_path_exists_mock): options = self._create_empty_options_mock() options.mpack_path = "/path/to/mystack-1.0.0.1.tar.gz" download_mpack_mock.return_value = "/tmp/mystack-1.0.0.1.tar.gz" expand_mpack_mock.return_value = "mpacks/mystack-ambari-mpack-1.0.0.1" get_ambari_version_mock.return_value = "2.4.0.0" """ os_path_exists_calls = [call('/tmp/mystack-1.0.0.1.tar.gz'), call('mpacks/mystack-ambari-mpack-1.0.0.1/mpack.json'), call('/var/lib/ambari-server/resources/stacks'), call('/var/lib/ambari-server/resources/common-services'), call(mpacks_directory), call(mpacks_directory + '/cache'), call(mpacks_directory + '/mystack-ambari-mpack-1.0.0.1'), call('/var/lib/ambari-server/resources/common-services/SERVICEA'), call('/var/lib/ambari-server/resources/common-services/SERVICEB'), call('/var/lib/ambari-server/resources/common-services/SERVICEC'), call('/var/lib/ambari-server/resources/stacks/MYSTACK'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/1.0'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/1.0/services'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/1.1'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/1.1/services'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/2.0'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/2.0/services')] call('/var/lib/ambari-server/resources/stacks/MYSTACK/3.0'), call('/var/lib/ambari-server/resources/stacks/MYSTACK/3.0/services'), call(mpacks_directory), call(mpacks_directory + '/myservice-ambari-mpack-1.0.0.0/mpack.json'), call(mpacks_directory + '/mystack-ambari-mpack-1.0.0.0/mpack.json'), call(mpacks_directory + '/mystack-ambari-mpack-1.0.0.1/mpack.json')] """ os_path_exists_mock.side_effect = [True, True, True, True, True, True, False, True, True, False, True, True, True, True, True, True, True, False, False, True, True, True, True] get_ambari_properties_mock.return_value = configs shutil_move_mock.return_value = True upgrade_mpack(options) stacks_directory = configs[STACK_LOCATION_KEY] common_services_directory = configs[COMMON_SERVICES_PATH_PROPERTY] mpacks_directory = configs[MPACKS_STAGING_PATH_PROPERTY] mpacks_staging_directory = os.path.join(mpacks_directory, "mystack-ambari-mpack-1.0.0.1") os_mkdir_calls = [ call(os.path.join(common_services_directory, "SERVICEC")), call(os.path.join(stacks_directory, "MYSTACK/3.0")), call(os.path.join(stacks_directory, "MYSTACK/3.0/services")) ] create_symlink_calls = [ call(os.path.join(mpacks_staging_directory, "common-services/SERVICEA"), os.path.join(common_services_directory, "SERVICEA"), "1.0", True), call(os.path.join(mpacks_staging_directory, "common-services/SERVICEA"), os.path.join(common_services_directory, "SERVICEA"), "2.0", True), call(os.path.join(mpacks_staging_directory, "common-services/SERVICEB"), os.path.join(common_services_directory, "SERVICEB"), "1.0.0", True), call(os.path.join(mpacks_staging_directory, "common-services/SERVICEB"), os.path.join(common_services_directory, "SERVICEB"), "2.0.0", True), call(os.path.join(mpacks_staging_directory, "common-services/SERVICEC"), os.path.join(common_services_directory, "SERVICEC"), "1.0.0", True), call(os.path.join(mpacks_staging_directory, "common-services/SERVICEC"), os.path.join(common_services_directory, "SERVICEC"), "2.0.0", True), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/1.0"), os.path.join(stacks_directory, "MYSTACK/1.0"), "metainfo.xml", True), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/1.0/services"), os.path.join(stacks_directory, "MYSTACK/1.0/services"), "SERVICEA", True), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/1.1"), os.path.join(stacks_directory, "MYSTACK/1.1"), "metainfo.xml", True), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/1.1/services"), os.path.join(stacks_directory, "MYSTACK/1.1/services"), "SERVICEA", True), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/2.0"), os.path.join(stacks_directory, "MYSTACK/2.0"), "metainfo.xml", True), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/2.0/services"), os.path.join(stacks_directory, "MYSTACK/2.0/services"), "SERVICEA", True), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/2.0/services"), os.path.join(stacks_directory, "MYSTACK/2.0/services"), "SERVICEB", True), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/3.0"), os.path.join(stacks_directory, "MYSTACK/3.0"), "metainfo.xml", True), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/3.0/services"), os.path.join(stacks_directory, "MYSTACK/3.0/services"), "SERVICEA", True), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/3.0/services"), os.path.join(stacks_directory, "MYSTACK/3.0/services"), "SERVICEB", True), call(os.path.join(mpacks_staging_directory, "stacks/MYSTACK/3.0/services"), os.path.join(stacks_directory, "MYSTACK/3.0/services"), "SERVICEC", True) ] self.assertFalse(purge_stacks_and_mpacks_mock.called) os_mkdir_mock.assert_has_calls(os_mkdir_calls) create_symlink_mock.assert_has_calls(create_symlink_calls) uninstall_mpack_mock.assert_has_calls([call("mystack-ambari-mpack", "1.0.0.0")]) self.assertTrue(add_replay_log_mock.called) @patch("os.path.exists") @patch("ambari_server.setupMpacks.get_replay_log_file") @patch("ambari_server.setupMpacks.upgrade_mpack") @patch("ambari_server.setupMpacks.install_mpack") def test_replay_mpack_logs(self, install_mpack_mock, upgrade_mpack_mock, get_replay_log_file_mock, os_path_exists_mock): test_directory = os.path.dirname(os.path.abspath(__file__)) resources_directory = os.path.join(test_directory, os.pardir, "resources") get_replay_log_file_mock.return_value = os.path.join(resources_directory, "mpacks_replay.log") os_path_exists_mock.return_value = True replay_mpack_logs() install_replay_options = { 'purge' : True, 'mpack_command' : 'install-mpack', 'mpack_path': '/var/lib/ambari-server/resources/mpacks/cache/hdp-1.0.0.0.tar.gz', 'force': False, 'verbose': True } upgrade_replay_options = { 'purge' : False, 'mpack_command' : 'upgrade-mpack', 'mpack_path': '/var/lib/ambari-server/resources/mpacks/cache/hdp-1.0.0.1.tar.gz', 'force': True, 'verbose': True } install_mpack_mock.assert_has_calls([call(install_replay_options, replay_mode=True)]) upgrade_mpack_mock.assert_has_calls([call(upgrade_replay_options, replay_mode=True)]) def _create_empty_options_mock(self): options = MagicMock() options.mpack_path = None options.purge = None options.purge_list = ",".join([STACK_DEFINITIONS_RESOURCE_NAME, MPACKS_RESOURCE_NAME]) options.force = None options.verbose = None options.replay_mode = False return options
50.438776
143
0.677564
415595ea9d2e259a932ac79ada97a99dcff2b755
11,011
py
Python
rally/plugins/openstack/context/keystone/users.py
mail2nsrajesh/rally
d8995226fe75c573d6d64c7ade8a4ceca0758366
[ "Apache-2.0" ]
null
null
null
rally/plugins/openstack/context/keystone/users.py
mail2nsrajesh/rally
d8995226fe75c573d6d64c7ade8a4ceca0758366
[ "Apache-2.0" ]
null
null
null
rally/plugins/openstack/context/keystone/users.py
mail2nsrajesh/rally
d8995226fe75c573d6d64c7ade8a4ceca0758366
[ "Apache-2.0" ]
null
null
null
# Copyright 2014: Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import uuid from oslo_config import cfg from rally.common import broker from rally.common.i18n import _ from rally.common import logging from rally.common import utils as rutils from rally import consts from rally import exceptions from rally import osclients from rally.plugins.openstack import credential from rally.plugins.openstack.services.identity import identity from rally.plugins.openstack.wrappers import network from rally.task import context from rally.task import validation from rally.common import opts opts.register() LOG = logging.getLogger(__name__) CONF = cfg.CONF RESOURCE_MANAGEMENT_WORKERS_DESCR = ("The number of concurrent threads to use " "for serving users context.") PROJECT_DOMAIN_DESCR = "ID of domain in which projects will be created." USER_DOMAIN_DESCR = "ID of domain in which users will be created." @validation.add("required_platform", platform="openstack", admin=True) @context.configure(name="users", namespace="openstack", order=100) class UserGenerator(context.Context): """Context class for generating temporary users/tenants for benchmarks.""" CONFIG_SCHEMA = { "type": "object", "$schema": consts.JSON_SCHEMA, "properties": { "tenants": { "type": "integer", "minimum": 1, "description": "The number of tenants to create." }, "users_per_tenant": { "type": "integer", "minimum": 1, "description": "The number of users to create per one tenant." }, "resource_management_workers": { "type": "integer", "minimum": 1, "description": RESOURCE_MANAGEMENT_WORKERS_DESCR, }, "project_domain": { "type": "string", "description": PROJECT_DOMAIN_DESCR }, "user_domain": { "type": "string", "description": USER_DOMAIN_DESCR }, "user_choice_method": { "enum": ["random", "round_robin"], "description": "The mode of balancing usage of users between " "scenario iterations." }, }, "additionalProperties": False } DEFAULT_CONFIG = { "tenants": 1, "users_per_tenant": 1, "resource_management_workers": cfg.CONF.users_context.resource_management_workers, "user_choice_method": "random", } def __init__(self, context): self.credential = context["admin"]["credential"] project_domain = (self.credential.project_domain_name or cfg.CONF.users_context.project_domain) user_domain = (self.credential.user_domain_name or cfg.CONF.users_context.user_domain) self.DEFAULT_CONFIG["project_domain"] = project_domain self.DEFAULT_CONFIG["user_domain"] = user_domain super(UserGenerator, self).__init__(context) def _remove_default_security_group(self): """Delete default security group for tenants.""" clients = osclients.Clients(self.credential) if consts.Service.NEUTRON not in clients.services().values(): return use_sg, msg = network.wrap(clients, self).supports_extension( "security-group") if not use_sg: LOG.debug("Security group context is disabled: %s" % msg) return for user, tenant_id in rutils.iterate_per_tenants( self.context["users"]): with logging.ExceptionLogger( LOG, _("Unable to delete default security group")): uclients = osclients.Clients(user["credential"]) security_groups = uclients.neutron().list_security_groups() default = [sg for sg in security_groups["security_groups"] if sg["name"] == "default"] if default: clients.neutron().delete_security_group(default[0]["id"]) def _create_tenants(self): threads = self.config["resource_management_workers"] tenants = collections.deque() def publish(queue): for i in range(self.config["tenants"]): args = (self.config["project_domain"], self.task["uuid"], i) queue.append(args) def consume(cache, args): domain, task_id, i = args if "client" not in cache: clients = osclients.Clients(self.credential) cache["client"] = identity.Identity( clients, name_generator=self.generate_random_name) tenant = cache["client"].create_project(domain_name=domain) tenant_dict = {"id": tenant.id, "name": tenant.name, "users": []} tenants.append(tenant_dict) # NOTE(msdubov): consume() will fill the tenants list in the closure. broker.run(publish, consume, threads) tenants_dict = {} for t in tenants: tenants_dict[t["id"]] = t return tenants_dict def _create_users(self): # NOTE(msdubov): This should be called after _create_tenants(). threads = self.config["resource_management_workers"] users_per_tenant = self.config["users_per_tenant"] default_role = cfg.CONF.users_context.keystone_default_role users = collections.deque() def publish(queue): for tenant_id in self.context["tenants"]: for user_id in range(users_per_tenant): username = self.generate_random_name() password = str(uuid.uuid4()) args = (username, password, self.config["project_domain"], self.config["user_domain"], tenant_id) queue.append(args) def consume(cache, args): username, password, project_dom, user_dom, tenant_id = args if "client" not in cache: clients = osclients.Clients(self.credential) cache["client"] = identity.Identity( clients, name_generator=self.generate_random_name) client = cache["client"] user = client.create_user(username, password=password, project_id=tenant_id, domain_name=user_dom, default_role=default_role) user_credential = credential.OpenStackCredential( auth_url=self.credential.auth_url, username=user.name, password=password, tenant_name=self.context["tenants"][tenant_id]["name"], permission=consts.EndpointPermission.USER, project_domain_name=project_dom, user_domain_name=user_dom, endpoint_type=self.credential.endpoint_type, https_insecure=self.credential.https_insecure, https_cacert=self.credential.https_cacert, region_name=self.credential.region_name, profiler_hmac_key=self.credential.profiler_hmac_key) users.append({"id": user.id, "credential": user_credential, "tenant_id": tenant_id}) # NOTE(msdubov): consume() will fill the users list in the closure. broker.run(publish, consume, threads) return list(users) def _get_consumer_for_deletion(self, func_name): def consume(cache, resource_id): if "client" not in cache: clients = osclients.Clients(self.credential) cache["client"] = identity.Identity(clients) getattr(cache["client"], func_name)(resource_id) return consume def _delete_tenants(self): threads = self.config["resource_management_workers"] def publish(queue): for tenant_id in self.context["tenants"]: queue.append(tenant_id) broker.run(publish, self._get_consumer_for_deletion("delete_project"), threads) self.context["tenants"] = {} def _delete_users(self): threads = self.config["resource_management_workers"] def publish(queue): for user in self.context["users"]: queue.append(user["id"]) broker.run(publish, self._get_consumer_for_deletion("delete_user"), threads) self.context["users"] = [] @logging.log_task_wrapper(LOG.info, _("Enter context: `users`")) def setup(self): """Create tenants and users, using the broker pattern.""" super(UserGenerator, self).setup() self.context["users"] = [] self.context["tenants"] = {} self.context["user_choice_method"] = self.config["user_choice_method"] threads = self.config["resource_management_workers"] LOG.debug("Creating %(tenants)d tenants using %(threads)s threads" % {"tenants": self.config["tenants"], "threads": threads}) self.context["tenants"] = self._create_tenants() if len(self.context["tenants"]) < self.config["tenants"]: raise exceptions.ContextSetupFailure( ctx_name=self.get_name(), msg=_("Failed to create the requested number of tenants.")) users_num = self.config["users_per_tenant"] * self.config["tenants"] LOG.debug("Creating %(users)d users using %(threads)s threads" % {"users": users_num, "threads": threads}) self.context["users"] = self._create_users() for user in self.context["users"]: self.context["tenants"][user["tenant_id"]]["users"].append(user) if len(self.context["users"]) < users_num: raise exceptions.ContextSetupFailure( ctx_name=self.get_name(), msg=_("Failed to create the requested number of users.")) @logging.log_task_wrapper(LOG.info, _("Exit context: `users`")) def cleanup(self): """Delete tenants and users, using the broker pattern.""" self._remove_default_security_group() self._delete_users() self._delete_tenants()
39.894928
79
0.602398
08efa4d3894d298a4647e9c159af690241f59809
4,436
py
Python
predict.py
madtomy/udacity_image_classifier
e5f6fa54ebe8f405b99905a12c29588e9aaf4d1d
[ "MIT" ]
null
null
null
predict.py
madtomy/udacity_image_classifier
e5f6fa54ebe8f405b99905a12c29588e9aaf4d1d
[ "MIT" ]
null
null
null
predict.py
madtomy/udacity_image_classifier
e5f6fa54ebe8f405b99905a12c29588e9aaf4d1d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 ''' usage: python predict.py /path/to/image checkpoint Options: - Return most likely classes: python predict.py input checkpoint --top_k 3 - Use a mapping of categories to names: python predict.py input checkpoint --category_names cat_to_name.json - Use GPU for inference: python predict.py input checkpoint --gpu ''' import argparse import numpy as np import torch from PIL import Image import json class Predict_class : @staticmethod def process_image(img_path): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' img = Image.open(img_path) width,height = img.size aspect_ratio = width / height if aspect_ratio > 1 : img = img.resize((round(aspect_ratio*256),256)) else: img = img.resize((256,round(256/aspect_ratio))) #Crop width, height =img.size n_width = 224 n_height = 224 top = (height - n_height)/2 right = (width + n_width)/2 bottom = (height + n_height) / 2 left = (width - n_width)/2 img = img.crop((round(left),round(top),round(right),round(bottom))) #convert channels, normalize, rorder dimmensions np_img = np.array(img) /225 np_img = (np_img - np.array([0.485,0.456,0.406])/np.array([0.229,0.224,0.225])) np_img = np_img.transpose((2,0,1)) return np_img @staticmethod def predict(np_image, model,gpu,topk=5): ''' Predict the class (or classes) of an image using a trained deep learning model.''' device = torch.device("cuda:0" if gpu else "cpu") model.to(device) model.eval() with torch.no_grad(): imgs = torch.from_numpy(np_image) imgs = imgs.unsqueeze(0) imgs = imgs.type(torch.FloatTensor) imgs = imgs.to(device) out = model.forward(imgs) ps = torch.exp(out) pbs, inds = torch.topk(ps,topk) pbs = [float(pb) for pb in pbs[0]] inv_map = {val:key for key, val in model.class_to_idx.items()} clss = [inv_map[int(idx)] for idx in inds[0]] return pbs, clss # Get the command line input parser = argparse.ArgumentParser() parser.add_argument('image_path', action='store', default = 'flowers/test/1/image_06743.jpg', help='Path to image, e.g., "flowers/test/1/image_06743.jpg"') parser.add_argument('checkpoint', action='store', default = '.', help='Directory of saved checkpoints, e.g., "assets"') # Return top KK most likely classes parser.add_argument('--top_k', action='store', default = 5, dest='top_k', help='Return top KK most likely classes, e.g., 5') # Use a mapping of categories to real names parser.add_argument('--category_names', action='store', default = 'cat_to_name.json', dest='category_names', help='File name of the mapping of flower categories to real names, e.g., "cat_to_name.json"') # Use GPU for inference parser.add_argument('--gpu', action='store_true', default=False, dest='gpu', help='Use GPU for inference, set a switch to true') parse_results = parser.parse_args() image_path = parse_results.image_path checkpoint = parse_results.checkpoint top_k = int(parse_results.top_k) category_names = parse_results.category_names gpu = parse_results.gpu # Label mapping with open(category_names, 'r') as f: cat_to_name = json.load(f) # Load the checkpoint filepath = checkpoint + '/checkpoint.pth' checkpoint = torch.load(filepath, map_location='cpu') model = checkpoint["model"] model.load_state_dict(checkpoint['state_dict']) #Create an object of class predict pred_obj = Predict_class() # Image preprocessing np_image = pred_obj.process_image(image_path) # Predict class and probabilities print(f"Predicting top {top_k} most likely flower names from image {image_path}.") probs, classes = pred_obj.predict(np_image, model,gpu, top_k ) classes_name = [cat_to_name[class_i] for class_i in classes] print("\nFlower name (probability): ") print("*********") for i in range(len(probs)): print(f"{classes_name[i]} ({round(probs[i], 3)})") print("")
34.123077
113
0.626465
fd3afbdc6f2c5b3ea514b48e0cda0e1b0c831abc
4,716
py
Python
recipes/Python/577840_Josephus_problem/recipe-577840.py
tdiprima/code
61a74f5f93da087d27c70b2efe779ac6bd2a3b4f
[ "MIT" ]
2,023
2017-07-29T09:34:46.000Z
2022-03-24T08:00:45.000Z
recipes/Python/577840_Josephus_problem/recipe-577840.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
32
2017-09-02T17:20:08.000Z
2022-02-11T17:49:37.000Z
recipes/Python/577840_Josephus_problem/recipe-577840.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
780
2017-07-28T19:23:28.000Z
2022-03-25T20:39:41.000Z
#!/usr/bin/env python #let's speak about cladiators and the survivor (Josephus) import sys from math import log CLDTRS_NUMBER = 0 last2first = lambda L : L[-1::] + L[0:len(L) -1] def wholives(n): ## ---We search Within lowest-highest power of 2 that n Gladiators resides--- ## wholives Function assumes that we have assigned each Gladiator a number in ascending order ## (in a way that Gladiators are ordered as they --have,need or must -- to. The numbers just follow their order) ## wholives is a FAST FUNCTION WITH CONSTANT TIME COMPLEXITY ## We calculate the log2 of the number of Gladiators if it is integer then we subtract one from the number raised in ## powers of 2 then we subtract the number of Gladiators from the base power and finally we subtract it from the number of ## Gladiators. If it the log2 is not integer we take the next exponent (successor) as Base ## The key here is that at every increment of exponent of power of 2 (minus 1) we can calculate all the previous Gladiators down to ## the previous exponent( minus 1) just by subtracting the nearest higher power of 2 (minus 1) and from Gladiators n and then ## subtracting the result from the Gladiators n itself. ## in order to select efficiently the correct nearest higher exponent we simply calculate the log2 of n Gladiators ## if it is integer we are in (we can use it as our Base exponent) ## it it is not then it means we need to take the next higher exponent for our Base exponent ## we are not interesting into any result of log2 of n Gladiators that is not integer since the subtractions ## between the limits of the lower power and higher power can give us the result #there are two base cases # if there are two Gladiators the first survives because he has the Sword # if there is only one Gladiator ..he is already the Survivor... if n == 1: return 1 if n == 2: return 1 LogN = log(n,2) if not LogN.is_integer(): BaseExpo = int(LogN) + 1 BasePower = int(pow(2,BaseExpo)) - 1 Sub = BasePower - n Res = n - Sub return Res else: #Here we need to restart counting #eg 7 lives 7 (2^3 -1) ,15 lives 15 (2^4 -1) ,31 lives 31 (2^5 -1) ,63 lives 63 (2^6 -1)\ # 127 lives 127 (2^7 -1 ) so we can just return 1 to restart at 8 , 16 , 32, 64, 128 respectively # and so on and so forth... #BaseExpo = int(LogN) #BasePower = int(pow(2,BaseExpo)) - 1 #Sub = BasePower - n #Res = n - Sub #return Res return 1 def isNotEven(x): if not x % 2: return False else: return True def PrepareCladiators(NUMBER): cladiators = tuple(xrange(1,NUMBER + 1)) return cladiators def Survivor(cladiators): if len(cladiators) < 2: raise Exception ,"\n\n***** Cladiators must be at least 2!!! ***** \n" ## ## ## print"\nCeasar says:\n\tLET THE DEATH MATCH BEGIN!!!\ ## \n\nThey started kiling each other... \nEach one kills the next one\ ## \nand passes the Sword to the next one alive.. \ ## \nthere are all",len(cladiators)," still alive and here they are \n" ,cladiators FirstClads = len(cladiators) Clads = cladiators deathcycle =0 while len(Clads) > 1 : if isNotEven(len(Clads)): deathcycle += 1 Clads = Clads[::2] Clads = last2first(Clads) ## ## print "\n",len(Clads), "left alive after the",deathcycle,"death cycle and "\ ## ,FirstClads - len(Clads)," have died till know" ## print "\nThese are the live ones\n",Clads ## else: deathcycle += 1 Clads = Clads[::2] ## ## print "\n",len(Clads), "left alive after the",deathcycle,"death cycle and "\ ## ,FirstClads - len(Clads)," have died till know" ## if len(Clads) > 1 : ## print "\nThese are the live ones\n",Clads ## else : ## print "\n**** The last Survivor **** \nis:\n***\n\tCladiator",Clads[0]\ ## ,"\n\n*********************************" return Clads[0] if __name__ == "__main__": try : CLDTRS_NUMBER = int(sys.argv[1]) ## print "\n\t**** Welcome to the Deadly Arena Survivor ****\n" ## print "\n",CLDTRS_NUMBER," Cladiators will fight and \n",CLDTRS_NUMBER -1 ," Cladiators are going to die ...\n" ## print "\tONLY ONE SHALL SURVIVE...\n" ## print "\tBUT who???\n" ## print " ohhh , HERE THEY ARE .. \n" cladiators = PrepareCladiators(CLDTRS_NUMBER) ## print cladiators, "\n\n!!! HAIL Ceasar !!! \nthey say loudly..." print CLDTRS_NUMBER,Survivor(cladiators) except (IndexError ,ValueError ): print "Please place one integer value as arguement\n"
34.933333
131
0.635708
77c59fcc078ed2cfe6b19594c4cd25ee46ba3d04
8,701
py
Python
vizexec.py
sunaga-lab/vizexec
28a42e4e994c57db7fbc458af2b260899cdf7cdc
[ "MIT" ]
null
null
null
vizexec.py
sunaga-lab/vizexec
28a42e4e994c57db7fbc458af2b260899cdf7cdc
[ "MIT" ]
null
null
null
vizexec.py
sunaga-lab/vizexec
28a42e4e994c57db7fbc458af2b260899cdf7cdc
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys sys.path.append("./lib") try: import pygtk pygtk.require("2.8") except: pass try: import gtk import gtk.glade import cairo import pango import time except: sys.exit(1) import threading import gobject from seqdata import SequenceData from vizexec_server import * WINDOW_TITLE = "VizEXEC" class VizexecGUI: def __init__(self): self.seqdata = None self.current_thread_group_id_max = 0 self.UpdateInterval = 10 self.seqdata_lock = threading.RLock() self.mouse_dragging = False self.builder = gtk.Builder() self.builder.add_from_file("data/vizexec_ui.glade") self.builder.connect_signals(self) self.import_control("window") self.import_control("AboutDialog") self.import_control("drawing_scroll") self.import_control("drawing_area") self.import_control("FileChooserDialog") self.import_control("DlgSaveFile") self.import_control("TbfInfo") self.import_control("TvwInfo") self.import_control("DlgRunServer") self.import_control("EntPortNum") self.window.show() self.hadjust = gtk.Adjustment() self.adjustment_default_setup(self.hadjust) self.hadjust.connect("value-changed", self.hadjust_value_changed) self.vadjust = gtk.Adjustment() self.adjustment_default_setup(self.vadjust) self.vadjust.connect("value-changed", self.vadjust_value_changed) self.drawing_scroll.set_hadjustment(self.hadjust) self.drawing_scroll.set_vadjustment(self.vadjust) self.back_buffer = None self.update_back_buffer() self.EntPortNum.set_text("5112") self.new_data() self.fit_figure_size() self.updated = False gobject.timeout_add(self.UpdateInterval, self.update_timeout) flt = gtk.FileFilter() flt.set_name("ログファイル") flt.add_pattern("*.log") self.FileChooserDialog.add_filter(flt) self.DlgSaveFile.add_filter(flt) flt = gtk.FileFilter() flt.set_name("すべてのファイル") flt.add_pattern("*") self.FileChooserDialog.add_filter(flt) self.DlgSaveFile.add_filter(flt) pangoFont = pango.FontDescription("monospace 9") self.TvwInfo.modify_font(pangoFont) def new_thread_group_id(self): self.current_thread_group_id_max += 1 return "g" + str(self.current_thread_group_id_max) def update_back_buffer(self): alloc = self.drawing_area.get_allocation() if (self.back_buffer and self.back_buffer.get_width() == alloc.width and self.back_buffer.get_height() == alloc.height): return self.back_buffer = cairo.ImageSurface(cairo.FORMAT_RGB24, alloc.width, alloc.height) def fit_figure_size(self): is_max = self.vadjust.get_value() >= (self.vadjust.get_upper() - self.vadjust.get_page_size() - 32) alloc = self.drawing_area.get_allocation() if self.seqdata.get_width() > alloc.width: self.hadjust.set_upper(self.seqdata.get_width() + 60) self.hadjust.set_page_size(alloc.width) if self.seqdata.get_height() > alloc.height: self.vadjust.set_upper(self.seqdata.get_height() + 60) self.vadjust.set_page_size(alloc.height) if is_max: self.vadjust.set_value(self.vadjust.get_upper() - self.vadjust.get_page_size()) def adjustment_default_setup(self, adj): adj.set_lower(0) adj.set_upper(0) adj.set_page_size(100) adj.set_step_increment(10) def import_control(self, name): setattr(self, name, self.builder.get_object(name)) def btn_clicked(self, w): print "Btn Clicked." def window_hide(self, widget): gtk.main_quit() def hadjust_value_changed(self, w): self.redraw() def vadjust_value_changed(self, w): self.redraw() def drawing_area_expose_event_cb(self, w, e): self.redraw() def update_timeout(self): time.sleep(0.001) if self.updated: self.redraw() self.updated = False gobject.timeout_add(self.UpdateInterval, self.update_timeout) def redraw(self, check_first = False): with self.seqdata_lock: self.update_back_buffer() self.fit_figure_size() offset_x = self.hadjust.get_value() offset_y = self.vadjust.get_value() alloc = self.drawing_area.get_allocation() w,h = alloc.width, alloc.height ctx = cairo.Context(self.back_buffer) drawarea_ctx = self.drawing_area.window.cairo_create() # ctx = self.drawing_area.window.cairo_create() ctx.set_source_rgb(1.0,1.0,1.0) ctx.rectangle(0,0, w,h) ctx.fill() if check_first: self.seqdata.draw(ctx, offset_x, offset_y, w, h, True) self.seqdata.draw(ctx, offset_x, offset_y, w, h) drawarea_ctx.set_source_surface(self.back_buffer, 0, 0) drawarea_ctx.paint() def new_data(self): self.seqdata = SequenceData() self.redraw() def open_new(self, filename): self.new_data() self.open_append(filename) self.window.set_title(WINDOW_TITLE + " - File " + filename) def open_append(self, filename): read_thread = ReadThread(filename, self) read_thread.start() def file_choose(self): resp = self.FileChooserDialog.run() self.FileChooserDialog.hide() if resp == 1: return "open", self.FileChooserDialog.get_filename() elif resp == 2: return "append", self.FileChooserDialog.get_filename() else: return "cancel", "" def MniOpen_activate_cb(self, e): mode, fn = self.file_choose() if mode == "open": self.open_new(fn) elif mode == "append": self.open_append(fn) def MniOpenAppend_activate_cb(self, e): fn = self.file_choose() if fn: self.open_new(fn) def MniExit_activate_cb(self, e): gtk.main_quit() def MniAbout_activate_cb(self, e): self.AboutDialog.run() self.AboutDialog.hide() def drawing_area_button_press_event_cb(self, e, data): self.mouse_dragging = True self.mouse_dragging_start = ( self.hadjust.get_value() + data.x, self.vadjust.get_value() + data.y ) self.seqdata.selected_object = None self.seqdata.selected_pos = (data.x,data.y) self.redraw(True) self.seqdata.selected_pos = None if self.seqdata.selected_object: obj = self.seqdata.selected_object if hasattr(obj, "get_info_text"): self.TbfInfo.set_text(obj.get_info_text()) else: self.TbfInfo.set_text(str(obj)) def drawing_area_button_release_event_cb(self, e, data): if self.mouse_dragging: self.hadjust.set_value(self.mouse_dragging_start[0] - data.x) self.vadjust.set_value(self.mouse_dragging_start[1] - data.y) self.mouse_dragging = False def drawing_area_motion_notify_event_cb(self, e, data): if self.mouse_dragging: self.hadjust.set_value(self.mouse_dragging_start[0] - data.x) self.vadjust.set_value(self.mouse_dragging_start[1] - data.y) def open_server(self, portnum): server_thread = TCPServerThread(portnum, self) server_thread.start() self.window.set_title(WINDOW_TITLE + " - Server *:" + str(portnum)) def MniRunServer_activate_cb(self, e): resp = self.DlgRunServer.run() self.DlgRunServer.hide() if resp == 1: self.new_data() portnum = int(self.EntPortNum.get_text()) self.open_server(portnum) else: return def MniSaveAs_activate_cb(self, e): resp = self.DlgSaveFile.run() self.DlgSaveFile.hide() if resp == 1: with self.seqdata_lock: self.seqdata.save_log_to(self.DlgSaveFile.get_filename()) if __name__ == "__main__": mainwindow = VizexecGUI() if len(sys.argv) >= 2: if sys.argv[1] == "-s": mainwindow.open_server(int(sys.argv[2])) else: mainwindow.open_new(sys.argv[1]) gtk.main()
30.423077
107
0.614642
d7ef796154d28cb9ddc57192a47b804055bdc0d8
2,524
py
Python
modules/ckanext-ytp_request/ckanext/ytp_request/plugin.py
vrk-kpa/opendata-ckan
8936e2d9e700b9e5534fe2a51eedc2d1ede8c10b
[ "MIT" ]
null
null
null
modules/ckanext-ytp_request/ckanext/ytp_request/plugin.py
vrk-kpa/opendata-ckan
8936e2d9e700b9e5534fe2a51eedc2d1ede8c10b
[ "MIT" ]
10
2021-12-02T10:33:42.000Z
2022-03-31T11:00:54.000Z
modules/ckanext-ytp_request/ckanext/ytp_request/plugin.py
vrk-kpa/opendata-ckan
8936e2d9e700b9e5534fe2a51eedc2d1ede8c10b
[ "MIT" ]
null
null
null
import ckan.plugins as plugins from ckan.plugins import implements, toolkit from ckan.lib.plugins import DefaultTranslation import logging from .cli import get_commands from . import views log = logging.getLogger(__name__) class YtpRequestPlugin(plugins.SingletonPlugin, DefaultTranslation): implements(plugins.IConfigurer, inherit=True) implements(plugins.IActions, inherit=True) implements(plugins.IAuthFunctions, inherit=True) implements(plugins.ITranslation) implements(plugins.IClick) implements(plugins.IBlueprint) # IConfigurer # def update_config(self, config): toolkit.add_template_directory(config, 'templates') toolkit.add_resource('public', 'request_js') # IActions def get_actions(self): from ckanext.ytp_request.logic.action import get, create, update, delete return { "member_request_create": create.member_request_create, "member_request_cancel": delete.member_request_cancel, "member_request_reject": update.member_request_reject, "member_request_approve": update.member_request_approve, "member_request_membership_cancel": delete.member_request_membership_cancel, "member_requests_list": get.member_requests_list, "member_requests_mylist": get.member_requests_mylist, "get_available_roles": get.get_available_roles, "member_request_show": get.member_request, "organization_list_without_memberships": get.organization_list_without_memberships } # IAuthFunctions def get_auth_functions(self): from ckanext.ytp_request.logic.auth import get, create, update, delete return { "member_request_create": create.member_request_create, "member_request_cancel": delete.member_request_cancel, "member_request_reject": update.member_request_reject, "member_request_approve": update.member_request_approve, "member_request_membership_cancel": delete.member_request_membership_cancel, "member_requests_list": get.member_requests_list, "member_requests_mylist": get.member_requests_mylist, "member_request_show": get.member_request, "organization_list_without_memberships": get.organization_list_without_memberships } # IClick def get_commands(self): return get_commands() # IBlueprint def get_blueprint(self): return views.get_blueprint()
39.4375
94
0.723455
559f37de5d1fde48d6145be440ad39dda379cbe2
1,912
py
Python
lib/surface/dataproc/jobs/__init__.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
lib/surface/dataproc/jobs/__init__.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
lib/surface/dataproc/jobs/__init__.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The command group for cloud dataproc jobs.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.calliope import actions from googlecloudsdk.calliope import base from googlecloudsdk.core import properties @base.ReleaseTracks(base.ReleaseTrack.ALPHA, base.ReleaseTrack.BETA, base.ReleaseTrack.GA) class Jobs(base.Group): """Submit and manage Google Cloud Dataproc jobs. Submit and manage Google Cloud Dataproc jobs. ## EXAMPLES To learn about the types of jobs that can be submitted, run: $ {command} submit To view the output of a job as it runs, run: $ {command} wait job_id To cancel an active job, run: $ {command} kill job_id To view the details of a job, run: $ {command} describe job_id To see the list of all jobs, run: $ {command} list To delete the record of an inactive job, run: $ {command} delete job_id """ @classmethod def Args(cls, parser): region_prop = properties.VALUES.dataproc.region parser.add_argument( '--region', help=region_prop.help_text, # Don't set default, because it would override users' property setting. action=actions.StoreProperty(region_prop))
27.710145
79
0.722803
3b298de25be6cd3c6824911febc5bdfce7404105
15,543
py
Python
montreal_forced_aligner/trainers/sat.py
potipot/Montreal-Forced-Aligner
6d665e9c63a4e3c795d27ec3bb8d9d1a5604bb91
[ "MIT" ]
2
2021-06-10T10:18:44.000Z
2022-01-26T07:08:54.000Z
montreal_forced_aligner/trainers/sat.py
potipot/Montreal-Forced-Aligner
6d665e9c63a4e3c795d27ec3bb8d9d1a5604bb91
[ "MIT" ]
null
null
null
montreal_forced_aligner/trainers/sat.py
potipot/Montreal-Forced-Aligner
6d665e9c63a4e3c795d27ec3bb8d9d1a5604bb91
[ "MIT" ]
null
null
null
import os from tqdm import tqdm import subprocess import shutil import time from ..multiprocessing import (align, compile_train_graphs, acc_stats, tree_stats, convert_alignments, calc_fmllr, compute_alignment_improvement) from ..helper import thirdparty_binary, make_path_safe, log_kaldi_errors, parse_logs from ..exceptions import KaldiProcessingError from .triphone import TriphoneTrainer class SatTrainer(TriphoneTrainer): """ Configuration class for speaker adapted training (SAT) Attributes ---------- fmllr_update_type : str Type of fMLLR estimation, defaults to ``'full'`` fmllr_iterations : list List of iterations to perform fMLLR estimation silence_weight : float Weight on silence in fMLLR estimation """ def __init__(self, default_feature_config): super(SatTrainer, self).__init__(default_feature_config) self.fmllr_update_type = 'full' self.fmllr_iterations = [] max_fmllr_iter = int(self.num_iterations/2) - 1 for i in range(1, max_fmllr_iter): if i < max_fmllr_iter / 2 and i % 2 == 0: self.fmllr_iterations.append(i) self.fmllr_iterations.append(max_fmllr_iter) self.silence_weight = 0.0 self.feature_config.fmllr = True def compute_calculated_properties(self): super(SatTrainer, self).compute_calculated_properties() self.fmllr_iterations = [] max_fmllr_iter = int(self.num_iterations / 2) - 1 for i in range(1, max_fmllr_iter): if i < max_fmllr_iter / 2 and i % 2 == 0: self.fmllr_iterations.append(i) self.fmllr_iterations.append(max_fmllr_iter) @property def train_type(self): return 'sat' def train(self, call_back=None): done_path = os.path.join(self.train_directory, 'done') dirty_path = os.path.join(self.train_directory, 'dirty') if os.path.exists(done_path): self.logger.info('{} training already done, skipping initialization.'.format(self.identifier)) return begin = time.time() num_gauss = self.initial_gaussians if call_back == print: iters = tqdm(range(1, self.num_iterations)) else: iters = range(1, self.num_iterations) sil_phones = self.dictionary.silence_csl try: for i in iters: model_path = os.path.join(self.train_directory, '{}.mdl'.format(i)) occs_path = os.path.join(self.train_directory, '{}.occs'.format(i + 1)) next_model_path = os.path.join(self.train_directory, '{}.mdl'.format(i + 1)) if os.path.exists(next_model_path): continue if i in self.realignment_iterations: align(i, self.train_directory, self.data_directory, self.dictionary.optional_silence_csl, self.corpus.num_jobs, self) if self.debug: compute_alignment_improvement(i, self, self.train_directory, self.corpus.num_jobs) if i in self.fmllr_iterations: calc_fmllr(self.train_directory, self.data_directory, sil_phones, self.corpus.num_jobs, self, initial=False, iteration=i) acc_stats(i, self.train_directory, self.data_directory, self.corpus.num_jobs, self) log_path = os.path.join(self.log_directory, 'update.{}.log'.format(i)) with open(log_path, 'w') as log_file: acc_files = [os.path.join(self.train_directory, '{}.{}.acc'.format(i, x)) for x in range(self.corpus.num_jobs)] est_proc = subprocess.Popen([thirdparty_binary('gmm-est'), '--write-occs=' + occs_path, '--mix-up=' + str(num_gauss), '--power=' + str(self.power), model_path, "{} - {}|".format(thirdparty_binary('gmm-sum-accs'), ' '.join(map(make_path_safe, acc_files))), next_model_path], stderr=log_file) est_proc.communicate() parse_logs(self.log_directory) if not os.path.exists(next_model_path): raise(Exception('There was an error training in iteration {}, please check the logs.'.format(i))) if not self.debug: for f in acc_files: os.remove(f) self.parse_log_directory(self.log_directory, i, self.corpus.num_jobs, call_back) if i < self.final_gaussian_iteration: num_gauss += self.gaussian_increment shutil.copy(os.path.join(self.train_directory, '{}.mdl'.format(self.num_iterations)), os.path.join(self.train_directory, 'final.mdl')) shutil.copy(os.path.join(self.train_directory, '{}.occs'.format(self.num_iterations)), os.path.join(self.train_directory, 'final.occs')) if not self.debug: for i in range(1, self.num_iterations): model_path = os.path.join(self.train_directory, '{}.mdl'.format(i)) try: os.remove(model_path) except FileNotFoundError: pass try: os.remove(os.path.join(self.train_directory, '{}.occs'.format(i))) except FileNotFoundError: pass except Exception as e: with open(dirty_path, 'w'): pass if isinstance(e, KaldiProcessingError): log_kaldi_errors(e.error_logs, self.logger) raise with open(done_path, 'w'): pass self.logger.info('Training complete!') self.logger.debug('Training took {} seconds'.format(time.time() - begin)) def align(self, subset, call_back=None): dirty_path = os.path.join(self.align_directory, 'dirty') if os.path.exists(dirty_path): # if there was an error, let's redo from scratch shutil.rmtree(self.align_directory) done_path = os.path.join(self.align_directory, 'done') if not os.path.exists(done_path): message = 'Generating alignments using {} models'.format(self.identifier) if subset: message += ' using {} utterances...'.format(subset) else: message += ' for the whole corpus...' self.logger.info(message) begin = time.time() self.logger.debug('Using {} as the feature name'.format(self.feature_file_base_name)) if subset is None: align_data_directory = self.corpus.split_directory() else: align_data_directory = self.corpus.subset_directory(subset, self.feature_config) try: log_dir = os.path.join(self.align_directory, 'log') os.makedirs(log_dir, exist_ok=True) shutil.copy(os.path.join(self.train_directory, 'tree'), self.align_directory) shutil.copyfile(os.path.join(self.train_directory, 'final.mdl'), os.path.join(self.align_directory, 'final.mdl')) if os.path.exists(os.path.join(self.train_directory, 'lda.mat')): shutil.copyfile(os.path.join(self.train_directory, 'lda.mat'), os.path.join(self.align_directory, 'lda.mat')) shutil.copyfile(os.path.join(self.train_directory, 'final.occs'), os.path.join(self.align_directory, 'final.occs')) compile_train_graphs(self.align_directory, self.dictionary.output_directory, align_data_directory, self.corpus.num_jobs, self) if align_data_directory == self.data_directory and os.path.exists(os.path.join(self.train_directory, 'trans.0')): for i in range(self.corpus.num_jobs): shutil.copy(os.path.join(self.train_directory, 'trans.{}'.format(i)), os.path.join(self.align_directory, 'trans.{}'.format(i))) align('final', self.align_directory, align_data_directory, self.dictionary.optional_silence_csl, self.corpus.num_jobs, self, self.align_directory) if not os.path.exists(os.path.join(self.align_directory, 'trans.0')): calc_fmllr(self.align_directory, align_data_directory, self.dictionary.optional_silence_csl, self.corpus.num_jobs, self, initial=True, iteration='final') align('final', self.align_directory, align_data_directory, self.dictionary.optional_silence_csl, self.corpus.num_jobs, self, self.align_directory) self.save(os.path.join(self.align_directory, 'acoustic_model.zip')) except Exception as e: with open(dirty_path, 'w'): pass if isinstance(e, KaldiProcessingError): log_kaldi_errors(e.error_logs, self.logger) raise with open(done_path, 'w'): pass self.logger.debug('Alignment took {} seconds'.format(time.time() - begin)) else: self.logger.info('Alignments using {} models already done'.format(self.identifier)) if self.debug: self.export_textgrids() def init_training(self, identifier, temporary_directory, corpus, dictionary, previous_trainer): self.feature_config.fmllr = False self._setup_for_init(identifier, temporary_directory, corpus, dictionary) done_path = os.path.join(self.train_directory, 'done') dirty_path = os.path.join(self.train_directory, 'dirty') if os.path.exists(done_path): self.logger.info('{} training already done, skipping initialization.'.format(self.identifier)) return begin = time.time() if os.path.exists(os.path.join(self.train_directory, '1.mdl')): return self.feature_config.fmllr = True self.logger.info('Initializing speaker-adapted triphone training...') align_directory = previous_trainer.align_directory context_opts = [] ci_phones = self.dictionary.silence_csl try: if os.path.exists(os.path.join(align_directory, 'lda.mat')): shutil.copyfile(os.path.join(align_directory, 'lda.mat'), os.path.join(self.train_directory, 'lda.mat')) tree_stats(self.train_directory, align_directory, self.data_directory, ci_phones, self.corpus.num_jobs, self) log_path = os.path.join(self.log_directory, 'questions.log') tree_path = os.path.join(self.train_directory, 'tree') treeacc_path = os.path.join(self.train_directory, 'treeacc') sets_int_path = os.path.join(self.dictionary.phones_dir, 'sets.int') roots_int_path = os.path.join(self.dictionary.phones_dir, 'roots.int') extra_question_int_path = os.path.join(self.dictionary.phones_dir, 'extra_questions.int') topo_path = os.path.join(self.dictionary.output_directory, 'topo') questions_path = os.path.join(self.train_directory, 'questions.int') questions_qst_path = os.path.join(self.train_directory, 'questions.qst') with open(log_path, 'w') as log_file: subprocess.call([thirdparty_binary('cluster-phones')] + context_opts + [treeacc_path, sets_int_path, questions_path], stderr=log_file) with open(extra_question_int_path, 'r') as in_file, \ open(questions_path, 'a') as out_file: for line in in_file: out_file.write(line) log_path = os.path.join(self.log_directory, 'compile_questions.log') with open(log_path, 'w') as log_file: subprocess.call([thirdparty_binary('compile-questions')] + context_opts + [topo_path, questions_path, questions_qst_path], stderr=log_file) log_path = os.path.join(self.log_directory, 'build_tree.log') with open(log_path, 'w') as log_file: subprocess.call([thirdparty_binary('build-tree')] + context_opts + ['--verbose=1', '--max-leaves={}'.format(self.initial_gaussians), '--cluster-thresh={}'.format(self.cluster_threshold), treeacc_path, roots_int_path, questions_qst_path, topo_path, tree_path], stderr=log_file) log_path = os.path.join(self.log_directory, 'init_model.log') occs_path = os.path.join(self.train_directory, '0.occs') mdl_path = os.path.join(self.train_directory, '0.mdl') with open(log_path, 'w') as log_file: subprocess.call([thirdparty_binary('gmm-init-model'), '--write-occs=' + occs_path, tree_path, treeacc_path, topo_path, mdl_path], stderr=log_file) log_path = os.path.join(self.log_directory, 'mixup.log') with open(log_path, 'w') as log_file: subprocess.call([thirdparty_binary('gmm-mixup'), '--mix-up={}'.format(self.initial_gaussians), mdl_path, occs_path, mdl_path], stderr=log_file) os.remove(treeacc_path) compile_train_graphs(self.train_directory, self.dictionary.output_directory, self.data_directory, self.corpus.num_jobs, self) os.rename(occs_path, os.path.join(self.train_directory, '1.occs')) os.rename(mdl_path, os.path.join(self.train_directory, '1.mdl')) convert_alignments(self.train_directory, align_directory, self.corpus.num_jobs, self) if os.path.exists(os.path.join(align_directory, 'trans.0')): for i in range(self.corpus.num_jobs): shutil.copy(os.path.join(align_directory, 'trans.{}'.format(i)), os.path.join(self.train_directory, 'trans.{}'.format(i))) else: calc_fmllr(self.train_directory, self.data_directory, self.dictionary.silence_csl, self.corpus.num_jobs, self, initial=True) parse_logs(self.log_directory) except Exception as e: with open(dirty_path, 'w'): pass if isinstance(e, KaldiProcessingError): log_kaldi_errors(e.error_logs, self.logger) raise self.logger.info('Initialization complete!') self.logger.debug('Initialization took {} seconds'.format(time.time() - begin))
53.782007
129
0.576594
a5839b33a7578761cb685995cf7d55209ca5e925
2,038
py
Python
backend/app/app/api/v1/endpoints/upload.py
benlau6/fastapi-fullstack
68a46d576310a1c846315228c1251f36ea23f056
[ "MIT" ]
1
2022-01-29T07:53:35.000Z
2022-01-29T07:53:35.000Z
backend/app/app/api/v1/endpoints/upload.py
benlau6/fastapi-fullstack
68a46d576310a1c846315228c1251f36ea23f056
[ "MIT" ]
null
null
null
backend/app/app/api/v1/endpoints/upload.py
benlau6/fastapi-fullstack
68a46d576310a1c846315228c1251f36ea23f056
[ "MIT" ]
null
null
null
from typing import List import os import shutil import asyncio from fastapi import APIRouter, Depends, File, UploadFile, BackgroundTasks from app import schemas from app.core import config from app.api import deps from app.api.deps import Permission router = APIRouter() def write_file_to_local( form: schemas.UploadForm, file: UploadFile, settings: config.Settings ) -> None: file_dir = f"{settings.FILE_ROOT_PATH}/{form.base_dir}" file_path = f"{file_dir}/{file.filename}" if not os.path.exists(file_dir): os.makedirs(file_dir) with open(file_path, "wb") as buffer: shutil.copyfileobj(file.file, buffer) @router.post( "/files", dependencies=[Depends(deps.verify_content_length)], response_model=schemas.UploadRecords, ) async def upload_files( files: List[UploadFile] = File(...), form: schemas.UploadForm = Permission("submit", schemas.UploadForm.as_form), current_user: schemas.UserInDB = Depends(deps.get_current_active_user), settings: config.Settings = Depends(deps.get_settings), *, background_tasks: BackgroundTasks, ) -> schemas.UploadRecords: async def copy_file(file: UploadFile) -> schemas.UploadRecord: background_tasks.add_task(write_file_to_local, form, file, settings) record = schemas.UploadRecord( filename=file.filename, # file_size=file.file.tell(), # its not working, needa read all to return actual size, but it slow down the processing, which now put to background file_content_type=file.content_type, owner=current_user["email"], ) return record record_list = await asyncio.gather(*map(copy_file, files)) records = schemas.UploadRecords(records=record_list) return records @router.get("/info", response_model=schemas.UserFromDB) async def get_info( current_user: schemas.UserInDB = Depends(deps.get_current_active_user), ) -> schemas.UserInDB: return current_user
32.870968
160
0.699706
dca201fbda1ac1f5b0f6a7510a6fd8d49e0dc5fd
6,171
py
Python
torchvision/prototype/models/segmentation/deeplabv3.py
husthyc/vision
e95e54386a603c8e9d3142b7f0c0dd43d86db479
[ "BSD-3-Clause" ]
2
2021-04-01T17:19:21.000Z
2021-04-01T18:04:08.000Z
torchvision/prototype/models/segmentation/deeplabv3.py
husthyc/vision
e95e54386a603c8e9d3142b7f0c0dd43d86db479
[ "BSD-3-Clause" ]
null
null
null
torchvision/prototype/models/segmentation/deeplabv3.py
husthyc/vision
e95e54386a603c8e9d3142b7f0c0dd43d86db479
[ "BSD-3-Clause" ]
null
null
null
import warnings from functools import partial from typing import Any, Optional from torchvision.prototype.transforms import VocEval from torchvision.transforms.functional import InterpolationMode from ....models.segmentation.deeplabv3 import DeepLabV3, _deeplabv3_mobilenetv3, _deeplabv3_resnet from .._api import Weights, WeightEntry from .._meta import _VOC_CATEGORIES from ..mobilenetv3 import MobileNetV3LargeWeights, mobilenet_v3_large from ..resnet import resnet50, resnet101 from ..resnet import ResNet50Weights, ResNet101Weights __all__ = [ "DeepLabV3", "DeepLabV3ResNet50Weights", "DeepLabV3ResNet101Weights", "DeepLabV3MobileNetV3LargeWeights", "deeplabv3_mobilenet_v3_large", "deeplabv3_resnet50", "deeplabv3_resnet101", ] _COMMON_META = { "categories": _VOC_CATEGORIES, "interpolation": InterpolationMode.BILINEAR, } class DeepLabV3ResNet50Weights(Weights): CocoWithVocLabels_RefV1 = WeightEntry( url="https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth", transforms=partial(VocEval, resize_size=520), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet50", "mIoU": 66.4, "acc": 92.4, }, ) class DeepLabV3ResNet101Weights(Weights): CocoWithVocLabels_RefV1 = WeightEntry( url="https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth", transforms=partial(VocEval, resize_size=520), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet101", "mIoU": 67.4, "acc": 92.4, }, ) class DeepLabV3MobileNetV3LargeWeights(Weights): CocoWithVocLabels_RefV1 = WeightEntry( url="https://download.pytorch.org/models/deeplabv3_mobilenet_v3_large-fc3c493d.pth", transforms=partial(VocEval, resize_size=520), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_mobilenet_v3_large", "mIoU": 60.3, "acc": 91.2, }, ) def deeplabv3_resnet50( weights: Optional[DeepLabV3ResNet50Weights] = None, weights_backbone: Optional[ResNet50Weights] = None, progress: bool = True, num_classes: int = 21, aux_loss: Optional[bool] = None, **kwargs: Any, ) -> DeepLabV3: if "pretrained" in kwargs: warnings.warn("The parameter pretrained is deprecated, please use weights instead.") weights = DeepLabV3ResNet50Weights.CocoWithVocLabels_RefV1 if kwargs.pop("pretrained") else None weights = DeepLabV3ResNet50Weights.verify(weights) if "pretrained_backbone" in kwargs: warnings.warn("The parameter pretrained_backbone is deprecated, please use weights_backbone instead.") weights_backbone = ResNet50Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained_backbone") else None weights_backbone = ResNet50Weights.verify(weights_backbone) if weights is not None: weights_backbone = None aux_loss = True num_classes = len(weights.meta["categories"]) backbone = resnet50(weights=weights_backbone, replace_stride_with_dilation=[False, True, True]) model = _deeplabv3_resnet(backbone, num_classes, aux_loss) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress)) return model def deeplabv3_resnet101( weights: Optional[DeepLabV3ResNet101Weights] = None, weights_backbone: Optional[ResNet101Weights] = None, progress: bool = True, num_classes: int = 21, aux_loss: Optional[bool] = None, **kwargs: Any, ) -> DeepLabV3: if "pretrained" in kwargs: warnings.warn("The parameter pretrained is deprecated, please use weights instead.") weights = DeepLabV3ResNet101Weights.CocoWithVocLabels_RefV1 if kwargs.pop("pretrained") else None weights = DeepLabV3ResNet101Weights.verify(weights) if "pretrained_backbone" in kwargs: warnings.warn("The parameter pretrained_backbone is deprecated, please use weights_backbone instead.") weights_backbone = ResNet101Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained_backbone") else None weights_backbone = ResNet101Weights.verify(weights_backbone) if weights is not None: weights_backbone = None aux_loss = True num_classes = len(weights.meta["categories"]) backbone = resnet101(weights=weights_backbone, replace_stride_with_dilation=[False, True, True]) model = _deeplabv3_resnet(backbone, num_classes, aux_loss) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress)) return model def deeplabv3_mobilenet_v3_large( weights: Optional[DeepLabV3MobileNetV3LargeWeights] = None, weights_backbone: Optional[MobileNetV3LargeWeights] = None, progress: bool = True, num_classes: int = 21, aux_loss: Optional[bool] = None, **kwargs: Any, ) -> DeepLabV3: if "pretrained" in kwargs: warnings.warn("The parameter pretrained is deprecated, please use weights instead.") weights = DeepLabV3MobileNetV3LargeWeights.CocoWithVocLabels_RefV1 if kwargs.pop("pretrained") else None weights = DeepLabV3MobileNetV3LargeWeights.verify(weights) if "pretrained_backbone" in kwargs: warnings.warn("The parameter pretrained_backbone is deprecated, please use weights_backbone instead.") weights_backbone = MobileNetV3LargeWeights.ImageNet1K_RefV1 if kwargs.pop("pretrained_backbone") else None weights_backbone = MobileNetV3LargeWeights.verify(weights_backbone) if weights is not None: weights_backbone = None aux_loss = True num_classes = len(weights.meta["categories"]) backbone = mobilenet_v3_large(weights=weights_backbone, dilated=True) model = _deeplabv3_mobilenetv3(backbone, num_classes, aux_loss) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress)) return model
37.174699
121
0.725004
d9528f691c0ee177631b72c4f703b761cc7ca7ca
291
py
Python
Neighbours/forms.py
YVONNEANYANGO/Neighbour_Hood
ccda87b188f5921748b4719369409a769defd8e7
[ "MIT" ]
null
null
null
Neighbours/forms.py
YVONNEANYANGO/Neighbour_Hood
ccda87b188f5921748b4719369409a769defd8e7
[ "MIT" ]
null
null
null
Neighbours/forms.py
YVONNEANYANGO/Neighbour_Hood
ccda87b188f5921748b4719369409a769defd8e7
[ "MIT" ]
null
null
null
from django import forms from .models import Neighbourhood, Profile ,Business class ProfileForm(forms.ModelForm): class Meta: model= Profile exclude = ['user'] class NewHoodForm(forms.ModelForm): class Meta: model = Neighbourhood exclude = ['user']
22.384615
52
0.670103
d45239f1f64511639ef7bd52a6ff72bde26d1267
13,385
py
Python
routing/routing_algorithm.py
graham-riches/multi-agent-pathing
f862da8eb9b4f6dec706bd28af5e6f39eaf3835d
[ "MIT" ]
null
null
null
routing/routing_algorithm.py
graham-riches/multi-agent-pathing
f862da8eb9b4f6dec706bd28af5e6f39eaf3835d
[ "MIT" ]
null
null
null
routing/routing_algorithm.py
graham-riches/multi-agent-pathing
f862da8eb9b4f6dec706bd28af5e6f39eaf3835d
[ "MIT" ]
2
2020-09-11T23:33:58.000Z
2022-01-14T08:09:21.000Z
""" @file routing_algorithm.py @brief abstract base class for various routing algorithms @author Graham Riches @details Abstract base class for a routing algorithm. This lets the routing manager accept any time of routing algorithm as long as it supplies specific methods. """ from abc import ABC, abstractmethod from core.arena import Arena from core.agent import * from routing.status import RoutingStatus from routing.biased_grid import BiasedGrid class Node(ABC): @abstractmethod def __init__(self, location: tuple, parent=None) -> None: """ Initialize a single routing node object :param location: a (X, Y) location tuple for the node :param parent: another Node object that is the parent of the current nodes for pathing """ self.location = location self.parent = parent class SingleAgentAlgorithm(ABC): @abstractmethod def __init__(self, arena: Arena, agents: list, biased_grid: BiasedGrid) -> None: """ Initialize a routing algorithm with the Arena and a list of agents. This finds an "optimal" path to a goal for a single agent using whatever means the child class chooses. :param arena: the arena for the simulation :param agents: the list of all simulation agents :param biased_grid: 2D array of preferred routing directions for each grid location """ self.arena = arena self.agents = agents self.biased_grid = biased_grid self.node_path = list() # contains all the nodes that are part of a target route self.path = list() # contains a list of agent tasks to create the route @abstractmethod def route(self, agent: Agent, target: tuple) -> RoutingStatus: """ Abstract routing method that any algorithm can implement to do a custom route from start to target. :param agent: agent to route :param target: ending location tuple (x,y) :return: RoutingStatus enumeration """ pass @abstractmethod def reset(self) -> None: """ Reset the routing algorithm to clear any internal state variables :return: """ pass def create_path(self) -> RoutingStatus: """ Traverses a list of nodes that compose the path's node_path and constructs a list of agent tasks required to travel the path :return: """ if len(self.node_path) == 0: return RoutingStatus.INVALID_PATH while len(self.node_path) > 1: # initialize the first path and direction task_start_node = self.node_path.pop(0) last_node = self.node_path[0] if last_node.location[0] == task_start_node.location[0]: task_direction = AgentCoordinates.Y elif last_node.location[1] == task_start_node.location[1]: task_direction = AgentCoordinates.X else: return RoutingStatus.INVALID_PATH # traverse the nodes until we see a turn nodes = list(self.node_path) pop_count = 0 for next_node in nodes: if task_direction == AgentCoordinates.Y: if next_node.location[0] != last_node.location[0]: break else: last_node = next_node else: if next_node.location[1] != last_node.location[1]: break else: last_node = next_node pop_count += 1 # pop everything up until the turn (current last index - 1) while pop_count > 1: self.node_path.pop(0) pop_count -= 1 # create the task and add it to the path list if task_direction == AgentCoordinates.X: move_distance = last_node.location[0] - task_start_node.location[0] else: move_distance = last_node.location[1] - task_start_node.location[1] self.path.append(AgentTask(AgentTasks.MOVE, [task_direction, move_distance])) return RoutingStatus.SUCCESS class MultiAgentAlgorithm(ABC): @abstractmethod def __init__(self, arena: Arena, agents: list, algorithm: SingleAgentAlgorithm) -> None: """ Creates a multi-agent routing algorithm. This manages routing a group of agents towards a goal. Note: this is an abstract base class that is meant to be inherited by new routing algorithm classes. This provides a lot of useful features that can be used by a child algorithm that has more specific requirement. The virtual methods that the child MUST implement are the route, and run_time_step methods. :param arena: arena object :param agents: lists of agents :param algorithm: the single agent routing algorithm to use """ self.arena = arena # the arena object self.agents = agents # list of agents self.routing_algorithm = algorithm # single agent routing algorithm self.initialized = False # initializer for the simulation self.active_agents = [False for agent in self.agents] self.agent_tasks = [list() for agent in self.agents] # empty task list for each agent self.agent_reserved_squares = [list() for agent in self.agents] # empty reserved squares lists self.agent_goals = [list() for agent in self.agents] # goal locations list for each agent self.agent_callbacks = {AgentEvent.TASK_COMPLETED: self.agent_move_completed_callback} self.agent_routing_state = [None for agent in self.agents] self.agent_max_distance = [1000 for agent in self.agents] @abstractmethod def run_time_step(self) -> None: """ abstract method to run a simulation time step. This method will contain the multi-agent management algorithm that manages each simulation time step. This is where you can modify the run-time behaviour of your algorithm. :return: None """ pass @abstractmethod def route(self, agent_id: int, target: tuple) -> None: """ Run the routing algorithm to route an agent to a specific location :param agent_id: the agent id :param target: (x, y) tuple of the target location :return: None """ pass @abstractmethod def is_locked(self) -> bool: """ checks if all agents cannot route because they have moved to block themselves. This is an abstract method that must be implemented by child classes :return: boolean """ pass def initialize(self) -> None: """ Initialize the simulation :param agent_id: the agent id :return: """ for agent_id, agent in enumerate(self.agents): goals = self.agent_goals[agent_id] if goals is not None and len(goals) > 0: first_goal = goals[0] self.route(agent_id, first_goal) self.initialized = True def is_simulation_complete(self) -> bool: """ Returns true if all agents have successfully reached their target locations and have no remaining tasks in their queue :return: boolean """ for idx, agent in enumerate(self.agents): if not self.is_agent_at_goal(idx) or not self.agent_goals_completed(idx): return False return True def agent_goals_completed(self, agent_id: int) -> bool: """ check if an agent has completed all of its goal routed :param agent_id: the agent ID :return: true if the agent has completed all goal routes """ pending_goals = self.agent_goals[agent_id] # current list of remaining goals if len(pending_goals) > 1: return False else: return True def is_agent_at_goal(self, agent_id: int) -> bool: """ check if an agent has reached its current goal location :param agent_id: the id of the agent :return: boolean """ agent = self.agents[agent_id] location = (agent.location.X, agent.location.Y) current_goal = self.agent_goals[agent_id][0] if location != current_goal: return False else: return True def update_agent_goal(self, agent_id: int) -> None: """ Update an agents current goal by popping the the last completed goal from the agents goal list :param agent_id: the agent id :return: None """ pending_goals = self.agent_goals[agent_id] # current list of remaining goals if len(pending_goals) > 1: self.agent_goals[agent_id] = pending_goals[1:] def add_agent_goal(self, agent_id: int, location: tuple) -> None: """ set the goal location for an agent. The algorithm will continually route to here until 'Done' :param agent_id: the id of the agent :param location: the target/goal location :return: None """ self.agent_goals[agent_id].append(location) def add_agent_task(self, agent_id: int, task: AgentTask) -> None: """ add a new task to an agents task list :param agent_id: the Id of the agent to append the task to :param task: the AgentTask object :return: None """ # add routing blockages for move tasks if task.task_id == AgentTasks.MOVE: self.reserve_squares_for_routing(agent_id, task) self.agent_tasks[agent_id].append(task) def start_new_task(self, agent_id: int) -> None: """ start a new agent task from it's queue :param agent_id: the agents id :return: None """ if len(self.agent_tasks[agent_id]) > 0: new_task = self.agent_tasks[agent_id].pop(0) self.agents[agent_id].start_task(new_task) self.active_agents[agent_id] = True def signal_agent_event(self, agent_id: int, event: AgentEvent) -> None: """ signal to the routing manager that something of interest has happened :param agent_id: the ID of the agent that is signalling :param event: the event type :return: None """ # call the callback associated with the event type self.agent_callbacks[event](agent_id) def agent_move_completed_callback(self, agent_id: int) -> None: """ callback function for when an agent completes a move. :param agent_id: the agents ID :return: None """ # clear any blockages self.clear_last_task_blockage(agent_id) # set the agent to not active self.active_agents[agent_id] = False def clear_last_task_blockage(self, agent_id: int) -> None: """ callback to call when an agent task has completed. This will clear the routing blocks from the last task :param agent_id: the id of the agent :return: """ # clear any previous routing blockages reserved_squares = self.agent_reserved_squares[agent_id] if len(reserved_squares) > 0: squares = reserved_squares.pop(0) self.arena.clear_blockage(squares['x'], squares['y']) def reserve_squares_for_routing(self, agent_id: int, task: AgentTask) -> tuple: """ Reserve grid squares for routing an agent. Note: if the agents task list depth is greater than 0, the reserved squares will start from the endpoint of the last task in the task list. :param agent_id: the agent id of the agent being routed :param task: the task containing the route details :return: """ agent = self.agents[agent_id] x = int(agent.location.X) y = int(agent.location.Y) # calculate the routing squares based on the queued tasks for queued_task in self.agent_tasks[agent_id]: if queued_task.task_id == AgentTasks.MOVE: direction = queued_task.args[0] distance = queued_task.args[1] if direction == AgentCoordinates.X: x += distance else: y += distance task_args = task.args if abs(task.args[1]) < 1: return None, None sign = np.sign(task_args[1]) if task_args[0] == AgentCoordinates.X: x_start = x + 1 if sign > 0 else x - 1 x_target = int(x_start + task_args[1]) tiles = list(range(int(x_start), int(x_target), int(sign))) x_tiles = tiles y_tiles = [y] else: y_start = y + 1 if sign > 0 else y - 1 y_target = int(y_start + task_args[1]) tiles = list(range(int(y_start), int(y_target), int(sign))) x_tiles = [x] y_tiles = tiles self.arena.set_reserved(x_tiles, y_tiles) self.agent_reserved_squares[agent_id].append({'x': x_tiles, 'y': y_tiles}) # set the last square as an agent target square self.arena.set_agent_target(x_tiles[-1], y_tiles[-1]) return x_tiles, y_tiles
39.718101
118
0.61681
168692b371ed0e65f80c7d49e394bcb0f4a7ccbf
3,639
py
Python
recipe_scrapers/__init__.py
timandrews335/recipe-scrapers
6e2af0838596bc51a9c2f041f6b7acc113ecdeff
[ "MIT" ]
null
null
null
recipe_scrapers/__init__.py
timandrews335/recipe-scrapers
6e2af0838596bc51a9c2f041f6b7acc113ecdeff
[ "MIT" ]
null
null
null
recipe_scrapers/__init__.py
timandrews335/recipe-scrapers
6e2af0838596bc51a9c2f041f6b7acc113ecdeff
[ "MIT" ]
null
null
null
import re from .allrecipes import AllRecipes from .allrecipesbr import AllRecipesBr from .bbcfood import BBCFood from .bbcgoodfood import BBCGoodFood from .bonappetit import BonAppetit from .closetcooking import ClosetCooking from .cookstr import Cookstr from .epicurious import Epicurious from .finedininglovers import FineDiningLovers from .foodnetwork import FoodNetwork from .foodrepublic import FoodRepublic from .giallozafferano import GialloZafferano from .hellofresh import HelloFresh from .hundredandonecookbooks import HundredAndOneCookbooks from .inspiralized import Inspiralized from .jamieoliver import JamieOliver from .mybakingaddiction import MyBakingAddiction from .nihhealthyeating import NIHHealthyEating from .paninihappy import PaniniHappy from .realsimple import RealSimple from .simplyrecipes import SimplyRecipes from .steamykitchen import SteamyKitchen from .tastesoflizzyt import TastesOfLizzyT from .tastykitchen import TastyKitchen from .thehappyfoodie import TheHappyFoodie from .thepioneerwoman import ThePioneerWoman from .thevintagemixer import TheVintageMixer from .tudogostoso import TudoGostoso from .twopeasandtheirpod import TwoPeasAndTheirPod from .whatsgabycooking import WhatsGabyCooking from .yummly import Yummly from .geniuskitchen import GeniusKitchen SCRAPERS = { AllRecipes.host(): AllRecipes, AllRecipesBr.host(): AllRecipesBr, BBCFood.host(): BBCFood, BBCFood.host(domain='co.uk'): BBCFood, BBCGoodFood.host(): BBCGoodFood, BonAppetit.host(): BonAppetit, ClosetCooking.host(): ClosetCooking, Cookstr.host(): Cookstr, Epicurious.host(): Epicurious, FineDiningLovers.host(): FineDiningLovers, FoodNetwork.host(): FoodNetwork, FoodRepublic.host(): FoodRepublic, GialloZafferano.host(): GialloZafferano, HelloFresh.host(): HelloFresh, HelloFresh.host(domain='co.uk'): HelloFresh, HundredAndOneCookbooks.host(): HundredAndOneCookbooks, Inspiralized.host(): Inspiralized, JamieOliver.host(): JamieOliver, MyBakingAddiction.host(): MyBakingAddiction, NIHHealthyEating.host(): NIHHealthyEating, PaniniHappy.host(): PaniniHappy, RealSimple.host(): RealSimple, SimplyRecipes.host(): SimplyRecipes, SteamyKitchen.host(): SteamyKitchen, TastesOfLizzyT.host(): TastesOfLizzyT, TastyKitchen.host(): TastyKitchen, TheHappyFoodie.host(): TheHappyFoodie, ThePioneerWoman.host(): ThePioneerWoman, TheVintageMixer.host(): TheVintageMixer, TudoGostoso.host(): TudoGostoso, TwoPeasAndTheirPod.host(): TwoPeasAndTheirPod, WhatsGabyCooking.host(): WhatsGabyCooking, Yummly.host(): Yummly, GeniusKitchen.host(): GeniusKitchen, } def url_path_to_dict(path): pattern = (r'^' r'((?P<schema>.+?)://)?' r'((?P<user>.+?)(:(?P<password>.*?))?@)?' r'(?P<host>.*?)' r'(:(?P<port>\d+?))?' r'(?P<path>/.*?)?' r'(?P<query>[?].*?)?' r'$' ) regex = re.compile(pattern) matches = regex.match(path) url_dict = matches.groupdict() if matches is not None else None return url_dict class WebsiteNotImplementedError(NotImplementedError): '''Error for when the website is not supported by this library.''' pass def scrape_me(url_path): host_name = url_path_to_dict(url_path.replace('://www.', '://'))['host'] try: scraper = SCRAPERS[host_name] except KeyError: raise WebsiteNotImplementedError( "Website ({}) is not supported".format(host_name)) return scraper(url_path) __all__ = ['scrape_me']
33.385321
76
0.725474
451cbc2b843b0a407900e916df4a331663d72e99
1,149
py
Python
spinup/examples/pytorch/sac_goal.py
jesbu1/spinningup
fd54d9e06febc7ff5696a63d1e84e2c16d38e486
[ "MIT" ]
null
null
null
spinup/examples/pytorch/sac_goal.py
jesbu1/spinningup
fd54d9e06febc7ff5696a63d1e84e2c16d38e486
[ "MIT" ]
null
null
null
spinup/examples/pytorch/sac_goal.py
jesbu1/spinningup
fd54d9e06febc7ff5696a63d1e84e2c16d38e486
[ "MIT" ]
null
null
null
from spinup.utils.run_utils import ExperimentGrid from spinup import sac_pytorch import torch import gym if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--cpu', type=int, default=4) parser.add_argument('--num_runs', type=int, default=1) args = parser.parse_args() eg = ExperimentGrid(name='sac-goal') eg.add('env_name', 'SawyerPush-v0', '', True) eg.add('seed', [10*i for i in range(args.num_runs)]) eg.add('epochs', 300) eg.add('steps_per_epoch', 10 * 150) eg.add('lr', [3e-4, 1e-3]) eg.add('start_steps', 1000) eg.add('ac_kwargs:hidden_sizes', [(400,400)], 'hid') eg.add('ac_kwargs:activation', [torch.nn.ReLU], '') eg.run(sac_pytorch, num_cpu=args.cpu) #from metaworld.benchmarks import MT10 # #env_fn = lambda : MTEnv(MT10.get_train_tasks()) # #ac_kwargs = dict(hidden_sizes=[400,400], activation=torch.nn.ReLU) # #logger_kwargs = dict(output_dir='~/spinup/data/', exp_name='SAC_MT10') # #sac_pytorch(env_fn=env_fn, ac_kwargs=ac_kwargs, steps_per_epoch=128 * 10, epochs=1000, start_steps=1000, lr=3e-4, logger_kwargs=logger_kwargs)
35.90625
143
0.697998
7f2eb85a4cd114343cbb29c7ac440fdd16451e3d
319
py
Python
ex050 # soma de inteiros pares for range .py
jbmarcos/Python-Curso-em-video-Mundo-1-2-3-
a5bd705b2437c281f8f7ac02dc7ff54a09a37046
[ "MIT" ]
null
null
null
ex050 # soma de inteiros pares for range .py
jbmarcos/Python-Curso-em-video-Mundo-1-2-3-
a5bd705b2437c281f8f7ac02dc7ff54a09a37046
[ "MIT" ]
null
null
null
ex050 # soma de inteiros pares for range .py
jbmarcos/Python-Curso-em-video-Mundo-1-2-3-
a5bd705b2437c281f8f7ac02dc7ff54a09a37046
[ "MIT" ]
null
null
null
#soma de inteiros pares for range soma = 0 cont = 0 print(' ') for c in range(1, 7): num = int(input('Digite o {} valor. '.format(c))) if num % 2 == 0: soma = soma + num #soma +=1 cont = cont + 1 #cont += 1 print(' ') print('Você infotmou {} números PARES e a SOMA foi {}'.format(cont, soma))
26.583333
74
0.561129
c76c93bf2fb3a866c0727dbd5f19d444277f25d8
60,816
py
Python
semi_final/pytorch_toy/nezha_pytorch/helper/modeling.py
YihaoChan/2021-Tianchi-GAIIC-Track1-Rank-3
a79a8ae4bc0f8b2662f71df4caaa7fa382735f9f
[ "Apache-2.0" ]
22
2021-06-04T13:01:08.000Z
2022-02-18T13:19:46.000Z
semi_final/pytorch_toy/nezha_pytorch/helper/modeling.py
YihaoChan/2021-Tianchi-GAIIC-Track1-Rank-3
a79a8ae4bc0f8b2662f71df4caaa7fa382735f9f
[ "Apache-2.0" ]
null
null
null
semi_final/pytorch_toy/nezha_pytorch/helper/modeling.py
YihaoChan/2021-Tianchi-GAIIC-Track1-Rank-3
a79a8ae4bc0f8b2662f71df4caaa7fa382735f9f
[ "Apache-2.0" ]
2
2021-06-06T09:41:08.000Z
2021-06-09T01:05:10.000Z
import math import os import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from helper.configuration import NeZhaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.modeling_utils import PreTrainedModel, prune_linear_layer from transformers.models.bert.modeling_bert import ( BertOutput, BertPooler, BertSelfOutput, BertIntermediate, BertOnlyMLMHead, BertOnlyNSPHead, BertPreTrainingHeads, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING, ) logger = logging.getLogger(__name__) _CONFIG_FOR_DOC = "NeZhaConfig" _TOKENIZER_FOR_DOC = "NeZhaTokenizer" NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST = [] NEZHA_PRETRAINED_MODEL_ARCHIVE_MAP = {} def load_tf_weights_in_nezha(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: # logger.info("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "lamb_m", "lamb_v", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step", "good_steps", "loss_scale", 'bad_steps'] for n in name ): logger.info("Skipping {}".format("/".join(name))) continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info("Skipping {}".format("/".join(name))) continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model class NeZhaEmbeddings(nn.Module): """ Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super().__init__() self.use_relative_position = config.use_relative_position self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids=None, token_type_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def relative_position_encoding(depth, max_length=512, max_relative_position=127): vocab_size = max_relative_position * 2 + 1 range_vec = torch.arange(max_length) range_mat = range_vec.repeat(max_length).view(max_length, max_length) distance_mat = range_mat - torch.t(range_mat) distance_mat_clipped = torch.clamp(distance_mat, -max_relative_position, max_relative_position) final_mat = distance_mat_clipped + max_relative_position embeddings_table = torch.zeros(vocab_size, depth) position = torch.arange(0, vocab_size, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, depth, 2).float() * (-math.log(10000.0) / depth)) embeddings_table[:, 0::2] = torch.sin(position * div_term) embeddings_table[:, 1::2] = torch.cos(position * div_term) embeddings_table = embeddings_table.unsqueeze(0).transpose(0, 1).squeeze(1) flat_relative_positions_matrix = final_mat.view(-1) one_hot_relative_positions_matrix = torch.nn.functional.one_hot(flat_relative_positions_matrix, num_classes=vocab_size).float() positions_encoding = torch.matmul(one_hot_relative_positions_matrix, embeddings_table) my_shape = list(final_mat.size()) my_shape.append(depth) positions_encoding = positions_encoding.view(my_shape) return positions_encoding class NeZhaSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.relative_positions_encoding = relative_position_encoding(max_length=config.max_position_embeddings, depth=self.attention_head_size, max_relative_position=config.max_relative_position) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. if encoder_hidden_states is not None: mixed_key_layer = self.key(encoder_hidden_states) mixed_value_layer = self.value(encoder_hidden_states) attention_mask = encoder_attention_mask else: mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) batch_size, num_attention_heads, from_seq_length, to_seq_length = attention_scores.size() relations_keys = self.relative_positions_encoding[:to_seq_length, :to_seq_length, :].to(hidden_states.device) query_layer_t = query_layer.permute(2, 0, 1, 3) query_layer_r = query_layer_t.contiguous().view(from_seq_length, batch_size * num_attention_heads, self.attention_head_size) key_position_scores = torch.matmul(query_layer_r, relations_keys.permute(0, 2, 1)) key_position_scores_r = key_position_scores.view(from_seq_length, batch_size, num_attention_heads, from_seq_length) key_position_scores_r_t = key_position_scores_r.permute(1, 2, 0, 3) attention_scores = attention_scores + key_position_scores_r_t attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) relations_values = self.relative_positions_encoding[:to_seq_length, :to_seq_length, :].to(hidden_states.device) attention_probs_t = attention_probs.permute(2, 0, 1, 3) attentions_probs_r = attention_probs_t.contiguous().view(from_seq_length, batch_size * num_attention_heads, to_seq_length) value_position_scores = torch.matmul(attentions_probs_r, relations_values) value_position_scores_r = value_position_scores.view(from_seq_length, batch_size, num_attention_heads, self.attention_head_size) value_position_scores_r_t = value_position_scores_r.permute(1, 2, 0, 3) context_layer = context_layer + value_position_scores_r_t context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,) return outputs class NeZhaAttention(nn.Module): def __init__(self, config): super().__init__() self.self = NeZhaSelfAttention(config) self.output = BertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) heads = set(heads) - self.pruned_heads # Convert to set and remove already pruned heads for head in heads: # Compute how many pruned heads are before the head and move the index accordingly head = head - sum(1 if h < head else 0 for h in self.pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index = torch.arange(len(mask))[mask].long() # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class NeZhaLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = NeZhaAttention(config) self.is_decoder = config.is_decoder if self.is_decoder: self.crossattention = NeZhaAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, ): self_attention_outputs = self.attention(hidden_states, attention_mask, head_mask) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.is_decoder and encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) outputs = (layer_output,) + outputs return outputs class NeZhaEncoder(nn.Module): def __init__(self, config): super().__init__() self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = nn.ModuleList([NeZhaLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, ): all_hidden_states = () all_attentions = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask ) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # last-layer hidden state, (all hidden states), (all attentions) class NeZhaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = NeZhaConfig pretrained_model_archive_map = NEZHA_PRETRAINED_MODEL_ARCHIVE_MAP load_tf_weights = load_tf_weights_in_nezha base_model_prefix = "bert" def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, ) class NeZhaModel(NeZhaPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration set to :obj:`True`; an :obj:`encoder_hidden_states` is expected as an input to the forward pass. .. _`Attention is all you need`: https://arxiv.org/abs/1706.03762 """ def __init__(self, config): super().__init__(config) self.config = config self.embeddings = NeZhaEmbeddings(config) self.encoder = NeZhaEncoder(config) self.pooler = BertPooler(config) self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, position_ids=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, ): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pre-training. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import BertModel, BertTokenizer import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, input_shape, self.device ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) outputs = (sequence_output, pooled_output,) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions) @add_start_docstrings( """Bert Model with two heads on top as done during the pre-training: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BERT_START_DOCSTRING, ) class NeZhaForPreTraining(NeZhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = NeZhaModel(config) self.cls = BertPreTrainingHeads(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, position_ids=None, inputs_embeds=None, labels=None, next_sentence_label=None, ): r""" masked_lm_labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`, defaults to :obj:`None`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`, defaults to :obj:`None`): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``. ``0`` indicates sequence B is a continuation of sequence A, ``1`` indicates sequence B is a random sequence. Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import BertTokenizer, BertForPreTraining import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForPreTraining.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) prediction_scores, seq_relationship_scores = outputs[:2] """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) # add hidden states and attention if they are here outputs = (prediction_scores, seq_relationship_score,) + outputs[2:] if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss outputs = (total_loss,) + outputs return outputs # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions) @add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING) class NeZhaForMaskedLM(NeZhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = NeZhaModel(config) self.cls = BertOnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, position_ids=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, ): r""" masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: masked_lm_loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Masked language modeling loss. ltr_lm_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`lm_labels` is provided): Next token prediction loss. prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import BertTokenizer, BertForMaskedLM import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForMaskedLM.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids, masked_lm_labels=input_ids) loss, prediction_scores = outputs[:2] """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here # Although this may seem awkward, BertForMaskedLM supports two scenarios: # 1. If a tensor that contains the indices of masked labels is provided, # the cross-entropy is the MLM cross-entropy that measures the likelihood # of predictions for masked words. # 2. If `lm_labels` is provided we are in a causal scenario where we # try to predict the next token for each input in the decoder. masked_lm_labels = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) outputs = (masked_lm_loss,) + outputs return outputs # (ltr_lm_loss), (masked_lm_loss), prediction_scores, (hidden_states), (attentions) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # if model is does not use a causal mask then add a dummy token if self.config.is_decoder is False: assert self.config.pad_token_id is not None, "The PAD token should be defined for generation" attention_mask = torch.cat( [attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1 ) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """Bert Model with a `next sentence prediction (classification)` head on top. """, BERT_START_DOCSTRING, ) class NeZhaForNextSentencePrediction(NeZhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = NeZhaModel(config) self.cls = BertOnlyNSPHead(config) self.init_weights() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, position_ids=None, inputs_embeds=None, next_sentence_label=None, ): r""" next_sentence_label (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) Indices should be in ``[0, 1]``. ``0`` indicates sequence B is a continuation of sequence A, ``1`` indicates sequence B is a random sequence. Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`next_sentence_label` is provided): Next sequence prediction (classification) loss. seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import BertTokenizer, BertForNextSentencePrediction import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) seq_relationship_scores = outputs[0] """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) pooled_output = outputs[1] seq_relationship_score = self.cls(pooled_output) outputs = (seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here if next_sentence_label is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) outputs = (next_sentence_loss,) + outputs return outputs # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions) @add_start_docstrings( """Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, ) class NeZhaForSequenceClassification(NeZhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = NeZhaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): Classification (or regression if config.num_labels==1) loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import BertTokenizer, BertForSequenceClassification import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, logits = outputs[:2] """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions) @add_start_docstrings( """Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BERT_START_DOCSTRING, ) class NeZhaForMultipleChoice(NeZhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = NeZhaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, position_ids=None, inputs_embeds=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided): Classification loss. classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): `num_choices` is the second dimension of the input tensors. (see `input_ids` above). Classification scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import BertTokenizer, BertForMultipleChoice import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForMultipleChoice.from_pretrained('bert-base-uncased') choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] input_ids = torch.tensor([tokenizer.encode(s, add_special_tokens=True) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices labels = torch.tensor(1).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, classification_scores = outputs[:2] """ num_choices = input_ids.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) outputs = (loss,) + outputs return outputs # (loss), reshaped_logits, (hidden_states), (attentions) @add_start_docstrings( """Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BERT_START_DOCSTRING, ) class NeZhaForTokenClassification(NeZhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = NeZhaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, position_ids=None, inputs_embeds=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) : Classification loss. scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`) Classification scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import BertTokenizer, BertForTokenClassification import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForTokenClassification.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, scores = outputs[:2] """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), scores, (hidden_states), (attentions) @add_start_docstrings( """Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BERT_START_DOCSTRING, ) class NeZhaForQuestionAnswering(NeZhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = NeZhaModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, inputs_embeds=None, position_ids=None, start_positions=None, end_positions=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): Span-start scores (before SoftMax). end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): Span-end scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import BertTokenizer, BertForQuestionAnswering import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad') question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" encoding = tokenizer.encode_plus(question, text) input_ids, token_type_ids = encoding["input_ids"], encoding["token_type_ids"] start_scores, end_scores = model(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids])) all_tokens = tokenizer.convert_ids_to_tokens(input_ids) answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]) assert answer == "a nice puppet" """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) outputs = (start_logits, end_logits,) + outputs[2:] if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 outputs = (total_loss,) + outputs return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
51.714286
150
0.650503
41927d1f834b9286e58b80acaf8a1e35e98071db
7,788
py
Python
radiopadre/settings_manager.py
ratt-ru/radiopadre
3bf934eba69144d9707777a57da0e827625517a3
[ "MIT" ]
9
2019-08-08T12:32:20.000Z
2021-07-06T17:50:35.000Z
radiopadre/settings_manager.py
ratt-ru/radiopadre
3bf934eba69144d9707777a57da0e827625517a3
[ "MIT" ]
70
2019-03-26T12:42:23.000Z
2022-02-14T13:45:03.000Z
radiopadre/settings_manager.py
ratt-ru/radiopadre
3bf934eba69144d9707777a57da0e827625517a3
[ "MIT" ]
null
null
null
from collections import OrderedDict from contextlib import contextmanager _BASE = OrderedDict class DocString(str): """Class used to identify documentation strings""" pass class Section(_BASE): def __init__(self, name, doc=""): super(Section, self).__init__() self._name = name self._docstring = doc self._docs = {} def __getattribute__(self, name): if name[0] != "_" and name in self: return self[name] return _BASE.__getattribute__(self, name) def __setattr__(self, key, value): if key[0] == "_": return _BASE.__setattr__(self, key, value) if type(value) is tuple and len(value) == 2 and type(value[1]) is DocString: _BASE.__getattribute__(self, '_docs')[key] = value[1] value = value[0] self[key] = value def get(self, default=None, **kw): if not kw: raise RuntimeError("Section.get() must be called with at least one keyword argument") retval = [] for key, value in kw.items(): if value is None: value = _BASE.get(self, key) if value is None: value = default retval.append(value) if len(retval) == 1: retval = retval[0] return retval @contextmanager def __call__(self, **kw): prev_values = { key:self[key] for key in kw.keys() if key in self } new_values = set(kw.keys()) - set(self.keys()) self.update(**kw) yield self.update(**prev_values) for key in new_values: del self[key] def __repr__(self): txt = "" for key, value in self.items(): txt += "{}.{} = {}\n".format(self._name, key, repr(value)) return txt def _repr_table(self, data, styles, prefix=""): styles["description"] = "padding-left: 32px" styles[len(data)] = "border: 0px; border-bottom: 1px double; border-top: 1px double; background-color: #f2f2f2" styles[len(data), "name"] = styles[len(data), "description"] = "text-align: center" data.append(("<B>{}{}</B>".format(prefix, self._name), '', "{}".format(self._docstring))) for key, value in self.items(): styles[len(data)] = "background-color: white" data.append(("{}{}.{}".format(prefix, self._name, key), repr(value), self._docs.get(key, ''))) def _repr_html_(self): from radiopadre import render data = [] styles = {} self._repr_table(data, styles) styles["TABLE"] = "width: 100%" return render.render_table(data, ("name", "value", "description"), html={"name","description"}, styles=styles, header=False, numbering=False) def show(self): from IPython.display import display,HTML return display(HTML(self._repr_html_())) class SettingsManager(object): def __init__(self, name="settings"): self._name = name self._sections = OrderedDict() def add_section(self, name, doc=""): self._sections[name] = Section(name, doc) setattr(self, name, self._sections[name]) return self._sections[name] def __repr__(self): txt = "" for sec_name, section in self._sections.items(): if isinstance(section, Section): for key, value in section.items(): txt += "{}.{}.{} = {}\n".format(self._name, sec_name, key, repr(value)) return txt def _repr_html_(self): from radiopadre import render data = [] styles = {} for sec_name, section in self._sections.items(): if isinstance(section, Section): section._repr_table(data, styles, self._name+".") return render.render_table(data, ("name", "value", "description"), html=set(["name","description"]), styles=styles, header=False, numbering=False) def show(self): from IPython.display import display,HTML return display(HTML(self._repr_html_())) class RadiopadreSettingsManager(SettingsManager): def __init__(self, name="settings"): SettingsManager.__init__(self, name=name) D = DocString gen = self.add_section("gen", "general radiopadre settings") # generic settings gen.twocolumn_list_width = 40, D("file lists will default to dual-column if all names are within this length") gen.timeformat = "%H:%M:%S %b %d", D("time format") gen.collapsible = True, D("enable collapsible displays by default") gen.ncpu = 0, D("number of CPU cores to use, 0 to detect automatically ") gen.max_ncpu = 32, D("max number of CPU cores to use (when detecting automatically)") files = self.add_section("files", "file settings") # generic settings # files.include = "*.jpg *.png *.fits *.txt *.log", D("filename patterns to include in the listings. If None, all files will be included") files.include = None, D("filename patterns to include in the listings. If None, all files will be included") files.exclude = None, D("patterns to explicitly exclude from the listings") files.include_dir = None, D("subdirectory patterns to include in the listings. If None, all subdirectories will be included") files.exclude_dir = None, D("subdirectory patterns to explicitly exclude from the listings") files.include_empty = False, D("if True, empty subdirectories will also be included.") files.show_hidden = False, D("if True, hidden files and subdirectories will also be included.") display = self.add_section("display", "display settings, should be set up auto-magically") # generic settings display.cell_width = 800, D("width of Jupyter cell output, in pixels") display.window_width = 1024, D("width of browser window") display.window_height = 768, D("height of browser window") display.auto_reset = True, D("auto-reset when the browser window is resized") plot = self.add_section("plot", "settings for rendering of plots") # globally fix a plot width (in inches) plot.width = None, D("fix a display plot width (in inches)") plot.screen_dpi = 80, D("plot DPI") thumb = self.add_section("thumb", "settings for rendering of thumbnails") thumb.mincol = 2, D("minimum number of columns to display in thumbnail view") thumb.maxcol = 4, D("maximum number of columns to display in thumbnail view") thumb.width = 0, D("default thumbnail width, 0 to set automatically") thumb.collapsed = None, D("if not None, makes thumbnail display collapsible") fits = self.add_section("fits", "settings for rendering of FITS files") fits.colormap = 'cubehelix', D("default FITS colormap") fits.scale = 'linear', D("default FITS scaling") fits.vmin = None, D("lower clip value") fits.vmax = None, D("upper clip value") fits.max_js9_slice = 2048, D("size of active segment for JS9 display of large images") fits.js9_preview_size = 1024, D("size of preview image for JS9 display of large images") text = self.add_section("text", "settings for rendering of text files") text.head = 10, D("default number of lines to show from head of file") text.tail = 10, D("default number of lines to show from tail of file") text.fs = 0.8, D("font size for text display") html = self.add_section("html", "settings for rendering of HTML thumbnails") html.width = 1920, D("default width of HTML canvas") html.height = 1024, D("default height of HTML canvas")
42.097297
151
0.61492
f8b1ae5d016446b762be2b796ba761a2f148edbb
2,331
py
Python
tvm/dmlc-core/tracker/dmlc_tracker/local.py
hj424/heterocl
e51b8f7f65ae6ad55c0c2426ab7192c3d8f6702b
[ "Apache-2.0" ]
236
2019-05-19T01:48:11.000Z
2022-03-31T09:03:54.000Z
tvm/dmlc-core/tracker/dmlc_tracker/local.py
hj424/heterocl
e51b8f7f65ae6ad55c0c2426ab7192c3d8f6702b
[ "Apache-2.0" ]
248
2019-05-17T19:18:36.000Z
2022-03-30T21:25:47.000Z
tvm/dmlc-core/tracker/dmlc_tracker/local.py
hj424/heterocl
e51b8f7f65ae6ad55c0c2426ab7192c3d8f6702b
[ "Apache-2.0" ]
85
2019-05-17T20:09:27.000Z
2022-02-28T20:19:00.000Z
"""Submission job for local jobs.""" # pylint: disable=invalid-name from __future__ import absolute_import import sys import os import subprocess import logging from threading import Thread from . import tracker def exec_cmd(cmd, role, taskid, pass_env): """Execute the command line command.""" if cmd[0].find('/') == -1 and os.path.exists(cmd[0]) and os.name != 'nt': cmd[0] = './' + cmd[0] cmd = ' '.join(cmd) env = os.environ.copy() for k, v in pass_env.items(): env[k] = str(v) env['DMLC_TASK_ID'] = str(taskid) env['DMLC_ROLE'] = role env['DMLC_JOB_CLUSTER'] = 'local' num_retry = 0 if 'DMLC_NUM_ATTEMPT' in env: num_retry = env['DMLC_NUM_ATTEMPT'] while True: if os.name == 'nt': ret = subprocess.call(cmd, shell=True, env=env) else: ret = subprocess.call(cmd, shell=True, executable='bash', env=env) if ret == 0: logging.debug('Thread %d exit with 0', taskid) return else: num_retry -= 1 if num_retry >= 0: continue if os.name == 'nt': sys.exit(-1) else: raise RuntimeError('Get nonzero return code=%d' % ret) def submit(args): """Submit function of local jobs.""" def mthread_submit(nworker, nserver, envs): """ customized submit script, that submit nslave jobs, each must contain args as parameter note this can be a lambda function containing additional parameters in input Parameters ---------- nworker: number of slave process to start up nserver: number of server nodes to start up envs: enviroment variables to be added to the starting programs """ procs = {} for i in range(nworker + nserver): if i < nworker: role = 'worker' else: role = 'server' procs[i] = Thread(target=exec_cmd, args=(args.command, role, i, envs)) procs[i].setDaemon(True) procs[i].start() # call submit, with nslave, the commands to run each job and submit function tracker.submit(args.num_workers, args.num_servers, fun_submit=mthread_submit, pscmd=(' '.join(args.command)))
31.931507
94
0.577006
886e586deb4f9465644a1f94cad3bc984aecab2e
468
py
Python
patient/forms.py
ShawonBarman/Blood-and-Platelet-Management-System
0a1d4be41d42eca69dd8f8f3ed6ba7b15bcf5fc1
[ "MIT" ]
null
null
null
patient/forms.py
ShawonBarman/Blood-and-Platelet-Management-System
0a1d4be41d42eca69dd8f8f3ed6ba7b15bcf5fc1
[ "MIT" ]
null
null
null
patient/forms.py
ShawonBarman/Blood-and-Platelet-Management-System
0a1d4be41d42eca69dd8f8f3ed6ba7b15bcf5fc1
[ "MIT" ]
null
null
null
from django import forms from django.contrib.auth.models import User from . import models class PatientUserForm(forms.ModelForm): class Meta: model=User fields=['first_name','last_name','username','password'] widgets = { 'password': forms.PasswordInput() } class PatientForm(forms.ModelForm): class Meta: model=models.Patient fields=['age','bloodgroup','disease','address','mobile','profile_pic']
26
78
0.655983
3746b9498a2c270a0261af3d9a717c6c4bc38b9c
4,371
py
Python
RefNAAP.py
jiangweiyao/RefNAAP
b3ad097443233e191d6a211bdbd851583f1ba6ae
[ "Apache-1.1" ]
2
2021-01-07T23:25:48.000Z
2021-04-27T23:05:49.000Z
RefNAAP.py
jiangweiyao/RefNAAP
b3ad097443233e191d6a211bdbd851583f1ba6ae
[ "Apache-1.1" ]
null
null
null
RefNAAP.py
jiangweiyao/RefNAAP
b3ad097443233e191d6a211bdbd851583f1ba6ae
[ "Apache-1.1" ]
null
null
null
#!/usr/bin/env python import sys import os import glob import re from datetime import date from gooey import Gooey, GooeyParser import subprocess from pathlib import Path @Gooey(program_name='RefNAAP', default_size=(720, 900), progress_regex=r"^progress: (?P<current>\d+)/(?P<total>\d+)$", progress_expr="current / total * 100") def main(): local_path = os.path.dirname(os.path.realpath(__file__)) #print(local_path) data_path = f"{local_path}" scaffold_helper = f"{local_path}/scaffold_cutter.R" gapfixer_helper = f"{local_path}/gapfixer.R" now = date.today() home = str(Path.home()) cli = GooeyParser(description="Reference Based Nanopore Amplicon Analysis Pipeline") required_args = cli.add_argument_group("Input Output Location", gooey_options={'columns': 1, 'show_border': True}) required_args.add_argument('--InputFolder', help="Folder containing barcoded fastq", required=True, widget='DirChooser') required_args.add_argument('--OutputFolder', help="Output Folder", required=False, default=f"{home}/refnaap_results/output_{now}", widget='DirChooser') required_args.add_argument('--RefFile', help="Reference File ", required=False, default=f'{local_path}/Americas2.fasta', widget='FileChooser') parser = cli.add_argument_group("Optional Arguments", gooey_options={'columns': 2, 'show_border': True}) parser.add_argument('--TopN', help="The top N reference sequences with the most depth are analyzed.", type=int, required=False, default=1) parser.add_argument('--MinCov', help="Amplicon regions need a minimum of this average coverage number", type=int, required=False, default=1) parser.add_argument('--Left', help="Bases to trim from left side of read", type=int, required=False, default=25) parser.add_argument('--Right', help="Bases to trim from right side of read", type=int, required=False, default=25) parser.add_argument('--Size', help="Filter reads less than this length", type=int, required=False, default=50) parser.add_argument('--threads', help="Number of threads. More is faster if your computer supports it", type=int, required=False, default=4) parser.add_argument('--verbose', help = "Keep Intermediate Files", required=False, widget='BlockCheckbox', action='store_true', gooey_options={ 'checkbox_label': "Yes" }) parser.add_argument('--model', help="Basecall Model", required=False, type=str, default='r10_min_high_g303') args = cli.parse_args() #Run fastqc and multiqc on all the fastq/fastq.gz files in the folder subprocess.check_output(['python', local_path+'/fastqc_multiqc.py', '-i', args.InputFolder, '-o', args.OutputFolder+'/multiqc']) subprocess.check_output(['cp', args.OutputFolder+'/multiqc/multiqc_report.html', args.OutputFolder+'/multiqc_report.html']) #Interate over all the fastq/fastq.gz files files = sorted([f for f in glob.glob(args.InputFolder+"/**", recursive = True) if re.search(r'(.*)\.((fastq|fq)(|\.gz))$', f)]) print(files) OutputFolder = os.path.expanduser(args.OutputFolder) for i in range(0, len(files)): filec = files[i] base = os.path.splitext(os.path.basename(filec))[0] base = os.path.splitext(base)[0] print(base) filec2 = args.OutputFolder+'/'+"filtered/"+base+"_filtered.fastq" #Trim and filter the reads subprocess.check_output(['python', local_path+'/seqtk_sizefilter_trim.py', '-i', filec, '-o', filec2, '-l', str(args.Left), '-r', str(args.Right), '-s', str(args.Size)]) #Get assembly subprocess.check_output(['python', local_path+'/refnaap_cli_helper.py', '-i', filec2, '-o', args.OutputFolder+'/assembly/'+base+"_assembly/", '-r', args.RefFile, '-t', str(args.threads), '--TopN', str(args.TopN), '--MinCov', str(args.MinCov)]) subprocess.check_output(['cp', args.OutputFolder+'/assembly/'+base+"_assembly/final_scaffold.fasta", args.OutputFolder+"/"+base+"_final_scaffold.fasta"]) print("progress: {}/{}".format(i+1, len(files))) if not args.verbose: subprocess.check_output(['rm', '-rf', args.OutputFolder+'/assembly']) subprocess.check_output(['rm', '-rf', args.OutputFolder+'/filtered']) subprocess.check_output(['rm', '-rf', args.OutputFolder+'/multiqc']) if __name__ == "__main__": sys.exit(main())
52.662651
251
0.692061
6d7c609c93822756c1a17a4bbdd10ea89ed97943
2,191
py
Python
vkwave/bots/core/dispatching/filters/base.py
tdakkota/vkwave
8d8f55a541f51ee76be398e0a646131697d3ba17
[ "MIT" ]
null
null
null
vkwave/bots/core/dispatching/filters/base.py
tdakkota/vkwave
8d8f55a541f51ee76be398e0a646131697d3ba17
[ "MIT" ]
null
null
null
vkwave/bots/core/dispatching/filters/base.py
tdakkota/vkwave
8d8f55a541f51ee76be398e0a646131697d3ba17
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from typing import Awaitable, Callable, NewType from vkwave.bots.core.dispatching.events.base import BaseEvent FilterResult = NewType("FilterResult", bool) class BaseFilter(ABC): @abstractmethod async def check(self, event: BaseEvent) -> FilterResult: ... def __and__(self, other: "BaseFilter") -> "AndFilter": return AndFilter(self, other) def __not__(self) -> "NotFilter": return NotFilter(self) def __or__(self, other: "BaseFilter") -> "OrFilter": return OrFilter(self, other) # sfilter: some filter class NotFilter(BaseFilter): def __init__(self, sfilter: BaseFilter): self.func = sfilter async def check(self, event: BaseEvent) -> FilterResult: res = await self.func.check(event) return FilterResult(not res) class AndFilter(BaseFilter): def __init__(self, *sfilters: BaseFilter): self.funcs = sfilters async def check(self, event: BaseEvent) -> FilterResult: for func in self.funcs: res = await func.check(event) if not res: return FilterResult(False) return FilterResult(True) class OrFilter(BaseFilter): def __init__(self, *sfilters: BaseFilter): self.funcs = sfilters async def check(self, event: BaseEvent) -> FilterResult: res: bool = True for func in self.funcs: if await func.check(event): res = True break else: res = False break return FilterResult(res) class SyncFuncFilter(BaseFilter): """It accepts lambda and sync functions.""" def __init__(self, func: Callable[[BaseEvent], bool]): self.func = func async def check(self, event: BaseEvent) -> FilterResult: return FilterResult(self.func(event)) class AsyncFuncFilter(BaseFilter): """It accepts any callables that return awaitables.""" def __init__(self, func: Callable[[BaseEvent], Awaitable[bool]]): self.func = func async def check(self, event: BaseEvent) -> FilterResult: return FilterResult(await self.func(event))
26.39759
69
0.639434
3b5a7096d7c86eb935e426d817f69396afa11d31
24,346
py
Python
atomixtest/entropy.py
atomix/atomix-test
519b70846c806b6b3e25151f0268fa1f1e53f8d8
[ "Apache-2.0" ]
6
2018-02-24T00:04:30.000Z
2020-07-02T07:27:08.000Z
atomixtest/entropy.py
atomix/atomix-test
519b70846c806b6b3e25151f0268fa1f1e53f8d8
[ "Apache-2.0" ]
2
2020-02-07T22:12:43.000Z
2020-02-09T11:12:17.000Z
atomixtest/entropy.py
atomix/atomix-test
519b70846c806b6b3e25151f0268fa1f1e53f8d8
[ "Apache-2.0" ]
null
null
null
import json import random import sys import time import uuid from abc import ABCMeta, abstractmethod from atomix import AtomixClient from collections import OrderedDict from threading import Thread, Lock from cluster import Cluster from logging import logger def _generate_test_name(): """Generates a unique test name.""" return "entropy-test-" + str(uuid.uuid4()) def run( name=None, nodes=3, configs=(), version='latest', dry_run=False, processes=8, scale=1000, prime=0, ops=1, run_time=60, functions=(), function_delay=(15, 30) ): """Runs the entropy test.""" if name is None: name = _generate_test_name() # Initialize the test cluster. cluster = _init_test_cluster(name, nodes, configs, version, dry_run) # Create a history object with which to track history history = History() controller = Controller(cluster, functions, function_delay, history) nodes = cluster.nodes() primer = Primer(name, scale, history, cluster, prime) if ops < processes: processes = [Process(i+1, name, scale, history, 1 if i < ops else 0, run_time, nodes[i % len(nodes)]) for i in range(processes)] else: processes = [Process(i+1, name, scale, history, ops / processes, run_time, nodes[i % len(nodes)]) for i in range(processes)] # Start the test. _start_test(primer, controller, processes) # Run the controller and processes until complete. _block_until_complete(controller, processes) # Shuts down the test cluster. _teardown_test_cluster(cluster, history) class DryCluster(object): def __init__(self, name, version, nodes): self.name = name self._nodes = [DryNode(name + str(i+1), name + str(i+1), self, version, True) for i in range(nodes)] def nodes(self): return self._nodes def __getattr__(self, name): try: return super(DryCluster, self).__getattr__(name) except AttributeError: return lambda *args, **kwargs: None class DryNode(object): def __init__(self, name, ip, cluster, version, bootstrap): self.name = name self.ip = ip self.version = version self.bootstrap = bootstrap self.http_port = 5678 self.tcp_port = 5679 self.cluster = cluster self.client = DryClient(port=self.http_port) def __getattr__(self, name): try: return super(DryNode, self).__getattr__(name) except AttributeError: try: return getattr(self.client, name) except AttributeError: return lambda *args, **kwargs: None def __str__(self): return self.name class DryClient(AtomixClient): """Atomix test client.""" def __init__(self, host='127.0.0.1', port=5678): super(DryClient, self).__init__(host, port) def get(self, path, headers=None, *args, **kwargs): logger.debug('GET {}'.format(path.format(*args, **kwargs))) def post(self, path, data=None, headers=None, *args, **kwargs): logger.debug('POST {}'.format(path.format(*args, **kwargs))) def put(self, path, data=None, headers=None, *args, **kwargs): logger.debug('PUT {}'.format(path.format(*args, **kwargs))) def delete(self, path, headers=None, *args, **kwargs): logger.debug('DELETE {}'.format(path.format(*args, **kwargs))) def _init_test_cluster(name, nodes=3, configs=(), version='latest', dry_run=False): """Initializes a test cluster.""" if dry_run: return DryCluster(name, version, nodes) cluster = Cluster(name) cluster.setup(*configs, nodes=nodes, version=version, trace=True) return cluster def _teardown_test_cluster(cluster, history): """Shuts down the test cluster.""" if history.count('fail') > 0: cluster.shutdown() else: cluster.teardown() def _start_test(primer, controller, processes): """Starts the test threads.""" primer.run() for process in processes: process.start() controller.start() def _block_until_complete(controller, processes): """Runs the given controller and processes until complete.""" while True: # If any process is still running, sleep and then continue to the next iteration of the loop. if len([process for process in processes if process.is_running()]) == 0: # Once all processes have completed, stop the controller. controller.stop() # Wait for the controller thread to complete to ensure partitions are healed and crashed nodes are recovered. if not controller.is_running(): break # If we haven't broken out of the loop by now, sleep and then check again. time.sleep(1) class History(object): """Records and logs the history of operations. This object directly mimics the format expected by the Knossos linearizability checker. Events are logged in edn format, and str(history) will return the full history in edn format. """ def __init__(self): self.entries = [] def record(self, entry): """Records an entry in the history.""" self.entries.append(entry) message = '[{}] {} {} ({})'.format(entry.process, entry.action, entry.operation, ', '.join([str(value) for value in entry.values])) if entry.action == 'invoke': logger.warn(message) elif entry.action == 'ok': logger.debug(message) elif entry.action == 'fail': logger.error(message) elif entry.action == 'function': logger.info(message) def count(self, action): """Returns the number of entries for the given action.""" return len([entry for entry in self.entries if entry.action == action]) def __str__(self): return json.dumps([entry.format() for entry in self.entries]) class HistoryEntry(object): """History entry.""" __metaclass__ = ABCMeta def format(self): return OrderedDict([ ('process', self.process), ('type', self.action), ('function', self.operation), ('value', list(self.values)) ]) def __str__(self): return json.dumps(self.format()) class ProcessEntry(HistoryEntry): """Process entry.""" def __init__(self, process, action, operation, *values): self.process = process self.action = action self.operation = operation self.values = values class ControllerEntry(HistoryEntry): """Controller history entry.""" def __init__(self, event, message): self.process = 'controller' self.action = 'function' self.operation = event self.values = (message,) self.event = event self.message = message class Runnable(object): """Base class for managing the lifecycle of a threaded test process.""" __metaclass__ = ABCMeta def __init__(self): self.thread = None self.running = False def start(self): """Starts the runnable thread.""" self.thread = Thread(target=self.run) self.thread.daemon = True self.running = True self.thread.start() @abstractmethod def run(self): """Runs the thread. This method should be overridden by implementors.""" def is_running(self): """Returns a boolean indicating whether the runnable is running.""" return self.running or self.thread.is_alive() def stop(self): """Stops the runnable thread. Calling this method will not immediately stop the thread. Instead, a flag will be set, and the run() method is expected to exit according to the 'running' flag. Use 'is_running()' to determine whether the thread is stopped and has exited. """ self.running = False class Operator(Runnable): """Base class for runnables that operate on the cluster state.""" CHARS = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' VALUES = [''.join([CHARS[random.randint(0, len(CHARS)-1)] for _ in range(1024)]) for _ in range(1000)] def __init__(self, id, name, scale, history): super(Operator, self).__init__() self.id = id self.name = name self._keys = [str(uuid.uuid4()) for _ in range(scale)] self.history = history self.operations = tuple() def _run(self): """Runs a random operation.""" try: return random.choice(self.operations)() except: pass def _random_node(self): """Returns a random node on which to perform an operation.""" return random.choice(self.cluster.nodes()) def _random_key(self): """Returns a random key to get or set.""" return random.choice(self._keys) def _random_value(self): """Returns the next random value to set.""" return random.choice(self.VALUES) def _log(self, action, operation, *values): """Logs an operation.""" self.history.record(ProcessEntry(self.id, action, operation, *values)) def _invoke(self, operation, *values): """Logs an operation invocation event in the process history.""" self._log('invoke', operation, *values) def _ok(self, operation, *values): """Logs an operation success event in the process history.""" self._log('ok', operation, *values) return True def _fail(self, operation, *values): """Logs an operation failure event in the process history.""" self._log('fail', operation, *values) return True def _function(self, operation, *values): """Logs an operation function event in the process history and stops the process.""" self._log('function', operation, *values) self.stop() return False class Primer(Operator): def __init__(self, name, scale, history, cluster, prime=0): super(Primer, self).__init__('primer', name, scale, history) self.cluster = cluster self.prime = prime self._lock = Lock() self._count = 0 def _invoke(self, operation, *values): """Logs an operation invocation event in the process history.""" def _ok(self, operation, *values): """Logs an operation success event in the process history.""" return True def _fail(self, operation, *values): """Logs an operation failure event in the process history.""" return True def run(self): """Runs the primer.""" self._function('prime', self.prime) if self.prime == 0: return threads = [] for _ in range(32): thread = Thread(target=self._run) thread.setDaemon(True) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() def _run(self): """Runs a thread.""" while True: self._lock.acquire() try: count = self._count + 1 if count <= self.prime: self._count = count else: return finally: self._lock.release() key, value = self._random_key(), self._random_value() self._random_node().map(self.name).put(key, value) class Process(Operator): """Test runner for a single process. A process simulates operations from a single actor in the cluster. When the process is started, it will begin performing random read, write, or cas operations, sleeping for random intervals between operations. Each operation performed by the process will be logged in the History object provided to the constructor. The process runs for a predefined number of operations or until an operation fails with an unknown error (e.g. a timeout). """ def __init__(self, id, name, scale, history, ops, run_time, node): super(Process, self).__init__(id, name, scale, history) self.run_time = run_time self.node = node self.operations = (self.read, self.write, self.delete) self.start_time = None self.ops = ops self._op = 0 self._remaining = 1.0 def run(self): """Runs the process.""" if self.ops > 0: self.start_time = time.time() while True: self._wait() self._run() self._check_stop() if not self.running: break def _check_stop(self): """Checks whether the run time has completed.""" if time.time() - self.start_time > self.run_time: self.stop() def _wait(self): """Blocks for a uniform random delay according to the process configuration.""" self._op += 1 if self._op < self.ops: sleep = random.uniform(0, self._remaining / 2) self._remaining -= sleep time.sleep(sleep) else: sleep = self._remaining self._op = 0 self._remaining = 1.0 time.sleep(sleep) def read(self): """Executes a read operation.""" key = self._random_key() self._invoke('read', key) try: return self._ok('read', key, self.node.map(self.name).get(key)) except: return self._fail('read', key) def write(self): """Executes a write operation.""" key, value = self._random_key(), self._random_value() self._invoke('write', key, value) try: self.node.map(self.name).put(key, value) return self._ok('write', key, value) except: return self._fail('write', key, value) def delete(self): """Executes a delete operation.""" key = self._random_key() self._invoke('delete', key) try: self.node.map(self.name).remove(key) return self._ok('delete', key) except: return self._fail('delete', key) class Controller(Runnable): """Cluster controller. The controller periodically disrupts the cluster using a random disruptor function to e.g. partition the network, crash a node, or slow communication within the network. The disruptor guarantees that only one disruptor function will run at any given time and the previous disruptor will be healed prior to the next disruptor beginning. The disruptor sleeps for a uniform random interval between disruptor functions. """ def __init__(self, cluster, functions, function_delay, history): super(Controller, self).__init__() self.cluster = cluster self.function_delay = function_delay self.history = history self.functions = [] for func in functions: try: self.functions.append((getattr(self, func[0]), func[1], func[2])) except AttributeError: print "Unknown entropy function %s" % (func[0],) sys.exit(1) def run(self): """Runs the controller until stopped.""" if len(self.functions) > 0: while self.running: self._run() def _run(self): """Runs a random function.""" function, delay, args = random.choice(self.functions) self._wait(*delay) if self.running: function(**dict(args)) def _wait(self, start=None, end=None): """Waits for a uniform random delay.""" if start is None: time.sleep(random.uniform(self.function_delay[0], self.function_delay[1])) elif end is None: time.sleep(start) else: time.sleep(random.uniform(start, end)) def _random_node(self): """Returns a random node on which to perform an operation.""" return random.choice(self.cluster.nodes()) def _log(self, event, message): """Logs an event in the function history.""" self.history.record(ControllerEntry(event, message)) def _enter(self, function): """Logs a start event in the function history.""" self._log('enter', function) def _exit(self, function): """Logs a stop event in the function history.""" self._log('exit', function) def _partition(self, node1, node2): """Partitions node1 from node2.""" node1.partition(node2) def _isolate(self, node): """Isolates the given node from all other nodes.""" for peer in self.cluster.nodes(): if node.name != peer.name: self._partition(node, peer) def _partition_halves(self): """Partitions the cluster into two halves.""" nodes = self.cluster.nodes() for i in range(len(nodes)): for j in range(len(nodes)): if i != j and i % 2 == 0 and j % 2 == 1: nodes[i].partition(nodes[j]) nodes[j].partition(nodes[i]) def _partition_bridge(self, node): """Partitions the cluster with the given node as a bridge between two halves.""" nodes = self.cluster.nodes() for i in range(len(nodes)): for j in range(len(nodes)): if i != j and nodes[i].name != node.name and nodes[j].name != node.name and i % 2 == 0 and j % 2 == 1: nodes[i].partition(nodes[j]) nodes[j].partition(nodes[i]) def _heal(self, node1=None, node2=None): """Heals a partition between two nodes or between all nodes if the given nodes are None.""" if node1 is not None and node2 is not None: node1.heal(node2) node2.heal(node1) elif node1 is not None: for node2 in self.cluster.nodes(): if node1.name != node2.name: node1.heal(node2) else: for node1 in self.cluster.nodes(): for node2 in self.cluster.nodes(): if node1.name != node2.name: node1.heal(node2) def _crash(self, node): """Crashes the given node.""" node.kill() def _recover(self, node): """Recovers the given node from a crash.""" node.recover() def _delay(self, node=None, latency=100): """Delays communication from all nodes or from the given node if specified.""" if node is not None: node.delay(latency=latency) else: for node in self.cluster.nodes(): node.delay(latency=latency) def _restore(self, node=None): """Restores communication on all nodes or on the given node if specified.""" if node is not None: node.restore() else: for node in self.cluster.nodes(): node.restore() def _shutdown(self): """Shuts down the entire cluster.""" self.cluster.shutdown() def _startup(self): """Starts up the entire cluster.""" self.cluster.startup() def _stress_cpu(self, node=None, processes=1): if node is not None: node.stress(cpu=processes) else: for node in self.cluster.nodes(): node.stress(cpu=processes) def _stress_io(self, node=None, processes=1): if node is not None: node.stress(io=processes) else: for node in self.cluster.nodes(): node.stress(io=processes) def _stress_memory(self, node=None, processes=1): if node is not None: node.stress(memory=processes) else: for node in self.cluster.nodes(): node.stress(memory=processes) def _destress(self, node=None): if node is not None: node.destress() else: for node in self.cluster.nodes(): node.destress() def partition_random(self): """Partitions two random nodes from each other.""" node1 = self._random_node() node2 = node1 while node2 == node1: node2 = self._random_node() self._enter("Cut off %s->%s" % (node1, node2)) self._partition(node1, node2) self._wait() self._heal(node1, node2) self._exit("Fully connected") def isolate_random(self, start=15, end=30): """Isolates a random node from all other nodes.""" node = self._random_node() self._enter("Isolate %s" % (node,)) self._isolate(node) self._wait(start, end) self._heal(node) self._exit("Fully connected") def partition_halves(self, start=15, end=30): """Partitions the cluster into two halves.""" self._enter("Partitioning network into two halves") self._partition_halves() self._wait(start, end) self._heal() self._exit("Fully connected") def partition_bridge(self, start=15, end=30): """Partitions the cluster into two halves with a bridge between them.""" node = self._random_node() self._enter("Partitioning network with bridge %s" % (node,)) self._partition_bridge(node) self._wait(start, end) self._heal() self._exit("Fully connected") def crash_random(self, start=15, end=30): """Crashes a random node.""" node = self._random_node() self._enter("Crashing %s" % (node,)) self._crash(node) self._wait(start, end) self._recover(node) self._exit("Recovered %s" % (node,)) def delay(self, latency=100, start=15, end=30): """Delays messages on all nodes.""" self._enter("Delay communication on all nodes") self._delay(latency=latency) self._wait(start, end) self._restore() self._exit("Communication restored") def delay_random(self, latency=100, start=15, end=30): """Delays communication on a random node.""" node = self._random_node() self._enter("Delay communication on %s" % (node,)) self._delay(node, latency=latency) self._wait(start, end) self._restore(node) self._exit("Communication restored on %s" % (node,)) def restart(self): """Restarts the entire cluster.""" self._enter("Restarting cluster") self._shutdown() self._wait() self._startup() self._exit("Cluster restarted") def stress_cpu(self, processes=1, start=15, end=30): self._enter("Increase CPU usage on all nodes") self._stress_cpu(processes=processes) self._wait(start, end) self._destress() self._exit("CPU usage reduced on all nodes") def stress_io(self, processes=1, start=15, end=30): self._enter("Increase I/O on all nodes") self._stress_io(processes=processes) self._wait(start, end) self._destress() self._exit("I/O reduced on all nodes") def stress_memory(self, processes=1, start=15, end=30): self._enter("Increase memory usage on all nodes") self._stress_memory(processes=processes) self._wait(start, end) self._destress() self._exit("Memory usage reduced on all nodes") def stress_cpu_random(self, processes=1, start=15, end=30): node = self._random_node() self._enter("Increase CPU usage on %s" % (node,)) self._stress_cpu(node, processes) self._wait(start, end) self._destress(node) self._exit("CPU usage reduced on %s" % (node,)) def stress_io_random(self, processes=1, start=15, end=30): node = self._random_node() self._enter("Increase I/O on %s" % (node,)) self._stress_io(node, processes) self._wait(start, end) self._destress(node) self._exit("I/O reduced on %s" % (node,)) def stress_memory_random(self, processes=1, start=15, end=30): node = self._random_node() self._enter("Increase memory usage on %s" % (node,)) self._stress_memory(node, processes) self._wait(start, end) self._destress(node) self._exit("Memory usage reduced on %s" % (node,))
33.673582
139
0.599811
0b55efb902cabb2d9bd31ce6e1b66f8f63ffbd8b
7,390
py
Python
pychron/envisage/tasks/advanced_editor_area_pane.py
ASUPychron/pychron
dfe551bdeb4ff8b8ba5cdea0edab336025e8cc76
[ "Apache-2.0" ]
31
2016-03-07T02:38:17.000Z
2022-02-14T18:23:43.000Z
pychron/envisage/tasks/advanced_editor_area_pane.py
ASUPychron/pychron
dfe551bdeb4ff8b8ba5cdea0edab336025e8cc76
[ "Apache-2.0" ]
1,626
2015-01-07T04:52:35.000Z
2022-03-25T19:15:59.000Z
pychron/envisage/tasks/advanced_editor_area_pane.py
UIllinoisHALPychron/pychron
f21b79f4592a9fb9dc9a4cb2e4e943a3885ededc
[ "Apache-2.0" ]
26
2015-05-23T00:10:06.000Z
2022-03-07T16:51:57.000Z
# =============================================================================== # Copyright 2014 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from __future__ import absolute_import from functools import cmp_to_key from pyface import confirmation_dialog from pyface.constant import NO from pyface.qt import QtGui from pyface.tasks.advanced_editor_area_pane import AdvancedEditorAreaPane from pyface.ui.qt4.tasks.advanced_editor_area_pane import EditorAreaWidget from pyface.ui.qt4.tasks.editor_area_pane import EditorAreaDropFilter # ============= standard library imports ======================== import sys from pyface.qt import QtCore from pyface.qt.QtGui import QAction, QCursor from six.moves import range # ============= local library imports ========================== # class myEditorWidget(EditorWidget): # def __init__(self, editor, parent=None): # super(EditorWidget, self).__init__(parent) # self.editor = editor # self.editor.create(self) # self.setAllowedAreas(QtCore.Qt.LeftDockWidgetArea) # self.setFeatures(QtGui.QDockWidget.NoDockWidgetFeatures) # self.setWidget(editor.control) # self.update_title() # # # Update the minimum size. # contents_minsize = editor.control.minimumSize() # style = self.style() # contents_minsize.setHeight(contents_minsize.height() # + style.pixelMetric(style.PM_DockWidgetHandleExtent)) # self.setMinimumSize(contents_minsize) # # self.dockLocationChanged.connect(self.update_title_bar) # self.visibilityChanged.connect(self.update_title_bar) # # # print self.setTitleBarWidget() # # print self.titleBarWidget() # def update_title_bar(self): # if self not in self.parent()._tear_widgets: # tabbed = self.parent().tabifiedDockWidgets(self) # self.set_title_bar(not tabbed) # current = self.titleBarWidget() # current.setTabsClosable(False) class myEditorAreaWidget(EditorAreaWidget): def contextMenuEvent(self, event): epos = event.pos() if epos.y() > 25: return menu = QtGui.QMenu(self) for name, func in ( ("Close", "close_action"), ("Close All", "close_all_action"), ("Close Others", "close_others_action"), ): act = QAction(name, self) act.triggered.connect(getattr(self, func)) menu.addAction(act) menu.exec_(event.globalPos()) def close_action(self): current = self._get_closest_editor() if current: current.editor.close() def get_dock_widgets_ordered(self, visible_only=False): """Gets all dock widgets in left-to-right, top-to-bottom order.""" def cmp(a, b): return (a > b) - (a < b) def compare(one, two): y = cmp(one.pos().y(), two.pos().y()) return cmp(one.pos().x(), two.pos().x()) if y == 0 else y children = [] for child in self.children(): if ( child.isWidgetType() and child.isVisible() and ( (isinstance(child, QtGui.QTabBar) and not visible_only) or ( isinstance(child, QtGui.QDockWidget) and (visible_only or not self.tabifiedDockWidgets(child)) ) ) ): children.append(child) children = sorted(children, key=cmp_to_key(compare)) # children.sort(cmp=compare) widgets = [] for child in children: if isinstance(child, QtGui.QTabBar): widgets.extend(self.get_dock_widgets_for_bar(child)) else: widgets.append(child) return widgets def close_all_action(self): for di in self.get_dock_widgets(): di.editor.close() def close_others_action(self): current = self._get_closest_editor() if current: for di in self.get_dock_widgets(): if di != current: di.editor.close() def _get_closest_editor(self): pos = QCursor.pos() key = lambda w: QtGui.QVector2D(pos - w.pos()).lengthSquared() all_widgets = self.get_dock_widgets() if all_widgets: return min(all_widgets, key=key) class myAdvancedEditorAreaPane(AdvancedEditorAreaPane): # def add_editor(self, editor): # """ Adds an editor to the pane. # """ # editor.editor_area = self # editor_widget = EditorWidget(editor, self.control) # self.control.add_editor_widget(editor_widget) # self.editors.append(editor) def create(self, parent): """Create and set the toolkit-specific control that represents the pane. """ self.control = control = myEditorAreaWidget(self, parent) self._filter = EditorAreaDropFilter(self) self.control.installEventFilter(self._filter) # Add shortcuts for scrolling through tabs. if sys.platform == "darwin": next_seq = "Ctrl+}" prev_seq = "Ctrl+{" else: next_seq = "Ctrl+PgDown" prev_seq = "Ctrl+PgUp" shortcut = QtGui.QShortcut(QtGui.QKeySequence(next_seq), self.control) shortcut.activated.connect(self._next_tab) shortcut = QtGui.QShortcut(QtGui.QKeySequence(prev_seq), self.control) shortcut.activated.connect(self._previous_tab) # Add shortcuts for switching to a specific tab. mod = "Ctrl+" if sys.platform == "darwin" else "Alt+" mapper = QtCore.QSignalMapper(self.control) mapper.mapped.connect(self._activate_tab) for i in range(1, 10): sequence = QtGui.QKeySequence(mod + str(i)) shortcut = QtGui.QShortcut(sequence, self.control) shortcut.activated.connect(mapper.map) mapper.setMapping(shortcut, i - 1) def remove_editor(self, editor): """Removes an editor from the pane.""" editor_widget = editor.control.parent() if editor.dirty: ret = confirmation_dialog.confirm( editor_widget, 'Unsaved changes to "{}". ' "Do you want to continue".format(editor.name), ) if ret == NO: return self.editors.remove(editor) self.control.remove_editor_widget(editor_widget) editor.editor_area = None if not self.editors: self.active_editor = None # ============= EOF =============================================
35.873786
81
0.591204
12c6320e6a8d6e9e7eea116936a0c7daad92468e
5,067
py
Python
venv/lib/python3.6/site-packages/ansible_collections/community/aws/plugins/modules/ec2_customer_gateway_info.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/community/aws/plugins/modules/ec2_customer_gateway_info.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/community/aws/plugins/modules/ec2_customer_gateway_info.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
#!/usr/bin/python # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = r''' --- module: ec2_customer_gateway_info version_added: 1.0.0 short_description: Gather information about customer gateways in AWS description: - Gather information about customer gateways in AWS. - This module was called C(ec2_customer_gateway_facts) before Ansible 2.9. The usage did not change. requirements: [ boto3 ] author: Madhura Naniwadekar (@Madhura-CSI) options: filters: description: - A dict of filters to apply. Each dict item consists of a filter key and a filter value. See U(https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeCustomerGateways.html) for possible filters. type: dict customer_gateway_ids: description: - Get details of a specific customer gateways using customer gateway ID/IDs. This value should be provided as a list. type: list elements: str extends_documentation_fragment: - amazon.aws.aws - amazon.aws.ec2 ''' EXAMPLES = r''' # # Note: These examples do not set authentication details, see the AWS Guide for details. - name: Gather information about all customer gateways community.aws.ec2_customer_gateway_info: - name: Gather information about a filtered list of customer gateways, based on tags community.aws.ec2_customer_gateway_info: region: ap-southeast-2 filters: "tag:Name": test-customer-gateway "tag:AltName": test-customer-gateway-alt register: cust_gw_info - name: Gather information about a specific customer gateway by specifying customer gateway ID community.aws.ec2_customer_gateway_info: region: ap-southeast-2 customer_gateway_ids: - 'cgw-48841a09' - 'cgw-fec021ce' register: cust_gw_info ''' RETURN = r''' customer_gateways: description: List of one or more customer gateways. returned: always type: list sample: [ { "bgp_asn": "65000", "customer_gateway_id": "cgw-fec844ce", "customer_gateway_name": "test-customer-gw", "ip_address": "110.112.113.120", "state": "available", "tags": [ { "key": "Name", "value": "test-customer-gw" } ], "type": "ipsec.1" } ] ''' import json try: from botocore.exceptions import ClientError, BotoCoreError except ImportError: pass # caught by AnsibleAWSModule from ansible_collections.amazon.aws.plugins.module_utils.core import AnsibleAWSModule from ansible_collections.amazon.aws.plugins.module_utils.ec2 import (ansible_dict_to_boto3_filter_list, boto3_tag_list_to_ansible_dict, camel_dict_to_snake_dict, ) def date_handler(obj): return obj.isoformat() if hasattr(obj, 'isoformat') else obj def list_customer_gateways(connection, module): params = dict() params['Filters'] = ansible_dict_to_boto3_filter_list(module.params.get('filters')) params['CustomerGatewayIds'] = module.params.get('customer_gateway_ids') try: result = json.loads(json.dumps(connection.describe_customer_gateways(**params), default=date_handler)) except (ClientError, BotoCoreError) as e: module.fail_json_aws(e, msg="Could not describe customer gateways") snaked_customer_gateways = [camel_dict_to_snake_dict(gateway) for gateway in result['CustomerGateways']] if snaked_customer_gateways: for customer_gateway in snaked_customer_gateways: customer_gateway['tags'] = boto3_tag_list_to_ansible_dict(customer_gateway.get('tags', [])) customer_gateway_name = customer_gateway['tags'].get('Name') if customer_gateway_name: customer_gateway['customer_gateway_name'] = customer_gateway_name module.exit_json(changed=False, customer_gateways=snaked_customer_gateways) def main(): argument_spec = dict( customer_gateway_ids=dict(default=[], type='list', elements='str'), filters=dict(default={}, type='dict') ) module = AnsibleAWSModule(argument_spec=argument_spec, mutually_exclusive=[['customer_gateway_ids', 'filters']], supports_check_mode=True) if module._module._name == 'ec2_customer_gateway_facts': module._module.deprecate("The 'ec2_customer_gateway_facts' module has been renamed to 'ec2_customer_gateway_info'", date='2021-12-01', collection_name='community.aws') connection = module.client('ec2') list_customer_gateways(connection, module) if __name__ == '__main__': main()
36.192857
125
0.663114
e8e9fc41d74a6a42ee7952716b1b064100009433
1,017
py
Python
django_react_paypal/contrib/sites/migrations/0003_set_site_domain_and_name.py
justdjango/django_react_paypal
d3aa6a16ff0bf08d30ce79204a37d8bb7b806bd5
[ "MIT" ]
11
2021-08-15T17:56:16.000Z
2022-02-08T19:48:58.000Z
django_react_paypal/contrib/sites/migrations/0003_set_site_domain_and_name.py
justdjango/django_react_paypal
d3aa6a16ff0bf08d30ce79204a37d8bb7b806bd5
[ "MIT" ]
null
null
null
django_react_paypal/contrib/sites/migrations/0003_set_site_domain_and_name.py
justdjango/django_react_paypal
d3aa6a16ff0bf08d30ce79204a37d8bb7b806bd5
[ "MIT" ]
1
2022-01-26T13:35:33.000Z
2022-01-26T13:35:33.000Z
""" To understand why this file is here, please read: http://cookiecutter-django.readthedocs.io/en/latest/faq.html#why-is-there-a-django-contrib-sites-directory-in-cookiecutter-django """ from django.conf import settings from django.db import migrations def update_site_forward(apps, schema_editor): """Set site domain and name.""" Site = apps.get_model("sites", "Site") Site.objects.update_or_create( id=settings.SITE_ID, defaults={ "domain": "example.com", "name": "Django React PayPal", }, ) def update_site_backward(apps, schema_editor): """Revert site domain and name to default.""" Site = apps.get_model("sites", "Site") Site.objects.update_or_create( id=settings.SITE_ID, defaults={"domain": "example.com", "name": "example.com"} ) class Migration(migrations.Migration): dependencies = [("sites", "0002_alter_domain_unique")] operations = [migrations.RunPython(update_site_forward, update_site_backward)]
29.057143
129
0.687316
164f09a787532e70f38fa12435ae6cfa7df204dd
803
py
Python
ballast/compat.py
justincsmith/ballast
083b2fa649321f85ab6d5ff686c2d61917a91b7e
[ "Apache-2.0" ]
1
2017-08-18T19:46:23.000Z
2017-08-18T19:46:23.000Z
ballast/compat.py
justincsmith/ballast
083b2fa649321f85ab6d5ff686c2d61917a91b7e
[ "Apache-2.0" ]
2
2017-08-18T20:00:36.000Z
2017-08-18T20:49:19.000Z
ballast/compat.py
justincsmith/ballast
083b2fa649321f85ab6d5ff686c2d61917a91b7e
[ "Apache-2.0" ]
3
2017-08-18T19:48:50.000Z
2021-03-22T07:20:08.000Z
import sys PY3 = sys.version_info[0] == 3 PY2 = sys.version_info[0] == 2 PY26 = sys.version_info[0:2] == (2, 6) PY27 = sys.version_info[0:2] == (2, 7) PYPY = hasattr(sys, 'pypy_translation_info') if PY3: from queue import Queue def cmp(x, y): """ cmp(x, y) -> integer Return negative if x<y, zero if x==y, positive if x>y. """ return (x > y) - (x < y) unicode = str basestring = str unichr = chr xrange = range else: import __builtin__ from Queue import Queue cmp = __builtin__.cmp unicode = __builtin__.unicode basestring = __builtin__.basestring unichr = __builtin__.unichr xrange = __builtin__.xrange __all__ = [ 'Queue', 'cmp', 'unicode', 'basestring', 'unichr', 'xrange' ]
18.25
62
0.585305
3d913d2bf152c97cb39720448ba90cde2acebb7f
1,063
py
Python
questions/maximum-depth-of-n-ary-tree/Solution.py
marcus-aurelianus/leetcode-solutions
8b43e72fe1f51c84abc3e89b181ca51f09dc7ca6
[ "MIT" ]
141
2017-12-12T21:45:53.000Z
2022-03-25T07:03:39.000Z
questions/maximum-depth-of-n-ary-tree/Solution.py
marcus-aurelianus/leetcode-solutions
8b43e72fe1f51c84abc3e89b181ca51f09dc7ca6
[ "MIT" ]
32
2015-10-05T14:09:52.000Z
2021-05-30T10:28:41.000Z
questions/maximum-depth-of-n-ary-tree/Solution.py
marcus-aurelianus/leetcode-solutions
8b43e72fe1f51c84abc3e89b181ca51f09dc7ca6
[ "MIT" ]
56
2015-09-30T05:23:28.000Z
2022-03-08T07:57:11.000Z
""" Given a n-ary tree, find its maximum depth. The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node. Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).   Example 1: Input: root = [1,null,3,2,4,null,5,6] Output: 3 Example 2: Input: root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14] Output: 5   Constraints: The depth of the n-ary tree is less than or equal to 1000. The total number of nodes is between [0, 104]. """ """ # Definition for a Node. class Node(object): def __init__(self, val, children): self.val = val self.children = children """ class Solution(object): def maxDepth(self, root): """ :type root: Node :rtype: int """ if root is None: return 0 ml = 0 for ch in root.children: ml = max(ml, self.maxDepth(ch)) return ml + 1
22.617021
146
0.636877
5abe0102e6c9712dde8e93d2d93b39493e3d84ae
1,365
py
Python
uninas/training/devices/cpu.py
cogsys-tuebingen/uninas
06729b9cf517ec416fb798ae387c5bd9c3a278ac
[ "MIT" ]
18
2020-11-22T16:03:08.000Z
2022-03-15T12:11:46.000Z
uninas/training/devices/cpu.py
cogsys-tuebingen/uninas
06729b9cf517ec416fb798ae387c5bd9c3a278ac
[ "MIT" ]
2
2022-01-04T08:10:17.000Z
2022-01-05T08:13:14.000Z
uninas/training/devices/cpu.py
cogsys-tuebingen/uninas
06729b9cf517ec416fb798ae387c5bd9c3a278ac
[ "MIT" ]
6
2021-03-08T07:08:52.000Z
2022-02-24T12:00:43.000Z
import torch.nn as nn from uninas.training.devices.abstract import AbstractDevicesManager, AbstractDeviceMover, TensorOrList from uninas.register import Register class CpuDeviceMover(AbstractDeviceMover): """ handle data flow to cpu (mostly do nothing) """ @property def name(self) -> str: return '%s()' % self.__class__.__name__ def empty_cache(self): """ empty the cache """ pass def _synchronize(self, indices: [int]): """ make sure all operations are complete """ pass def get_usage_dict(self, log_all=False) -> dict: """ return a dict that logs the usage of the device(s) """ return {} def move_module(self, module: nn.Module) -> nn.Module: """ move module to the assigned devices """ assert self.get_num_devices() == 1 return module def _move(self, t: TensorOrList) -> TensorOrList: """ move (nested) tensors to the assigned devices """ return t @Register.devices_manager() class CpuDevicesManager(AbstractDevicesManager): """ manage allocation/de-allocation of one CPU device """ _mover_cls = CpuDeviceMover def __init__(self, seed: int, is_deterministic: bool, num_devices: int): assert num_devices == 1 super().__init__(seed, is_deterministic, num_devices)
27.857143
102
0.648352
3089ea75c2433a9ae83245a9365a2c03cb7966f0
16,501
py
Python
molsysmt/item/mdanalysis_Universe/get.py
uibcdf/MolModMTs
4f6b6f671a9fa3e73008d1e9c48686d5f20a6573
[ "MIT" ]
null
null
null
molsysmt/item/mdanalysis_Universe/get.py
uibcdf/MolModMTs
4f6b6f671a9fa3e73008d1e9c48686d5f20a6573
[ "MIT" ]
null
null
null
molsysmt/item/mdanalysis_Universe/get.py
uibcdf/MolModMTs
4f6b6f671a9fa3e73008d1e9c48686d5f20a6573
[ "MIT" ]
null
null
null
####################################################################################### ########### THE FOLLOWING LINES NEED TO BE CUSTOMIZED FOR EVERY CLASS ################ ####################################################################################### from molsysmt._private.execfile import execfile from molsysmt._private.exceptions import NotWithThisFormError as _NotWithThisFormError from molsysmt._private.exceptions import NotImplementedMethodError as _NotImplementedMethodError from molsysmt._private.digestion import digest_item as _digest_item from molsysmt._private.digestion import digest_indices as _digest_indices from molsysmt._private.digestion import digest_structure_indices as _digest_structure_indices from molsysmt import puw as _puw import numpy as _np from networkx import Graph as _Graph _form='mdanalysis.Universe' ## From atom def get_atom_id_from_atom(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_atom_name_from_atom(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_atom_type_from_atom(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_group_index_from_atom(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_component_index_from_atom(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_chain_index_from_atom(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_molecule_index_from_atom(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_entity_index_from_atom(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_inner_bonded_atoms_from_atom(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_n_inner_bonds_from_atom(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_coordinates_from_atom(item, indices='all', structure_indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) structure_indices = _digest_structure_indices(structure_indices) coordinates= _puw.quantity(item.trajectory * 0.1, unit='nm') if indices is not 'all': coordinates = coordinates[:, atom_indices, :] if structure_indices is not 'all': coordinates = coordinates[structure_indices,:,:] return coordinates ## From group def get_group_id_from_group(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_group_name_from_group(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_group_type_from_group(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() ## From component def get_component_id_from_component(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_component_name_from_component(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_component_type_from_component(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() ## From molecule def get_molecule_id_from_molecule(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_molecule_name_from_molecule(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_molecule_type_from_molecule(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() ## From chain def get_chain_id_from_chain(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_chain_name_from_chain(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_chain_type_from_chain(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() ## From entity def get_entity_id_from_entity(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_entity_name_from_entity(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_entity_type_from_entity(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() ## From system def get_n_atoms_from_system(item, check=True): if check: _digest_item(item, _form) raise _NotImplementedMethodError() def get_n_groups_from_system(item, check=True): if check: _digest_item(item, _form) raise _NotImplementedMethodError() def get_n_components_from_system(item, check=True): if check: _digest_item(item, _form) raise _NotImplementedMethodError() def get_n_chains_from_system(item, check=True): if check: _digest_item(item, _form) raise _NotImplementedMethodError() def get_n_molecules_from_system(item, check=True): if check: _digest_item(item, _form) raise _NotImplementedMethodError() def get_n_entities_from_system(item, check=True): if check: _digest_item(item, _form) raise _NotImplementedMethodError() def get_n_bonds_from_system(item, check=True): if check: _digest_item(item, _form) raise _NotImplementedMethodError() def get_box_from_system(item, structure_indices='all', check=True): if check: _digest_item(item, _form) structure_indices = _digest_structure_indices(structure_indices) output = np.array([frame.triclinic_dimensions for frame in item.trajectory])*0.1 output = _puw.quantity(output, unit='nm') if structure_indices is not 'all': output=output[structure_indices,:,:] return output def get_time_from_system(item, structure_indices='all', check=True): if check: _digest_item(item, _form) structure_indices = _digest_structure_indices(structure_indices) output = np.array([frame.time for frame in item.trajectory]) output = _puw.quantity(output, unit='ps') if structure_indices is not 'all': output = output[structure_indices] return output def get_step_from_system(item, structure_indices='all', check=True): if check: _digest_item(item, _form) structure_indices = _digest_structure_indices(structure_indices) return None def get_n_structures_from_system(item, check=True): if check: _digest_item(item, _form) output=item.trajectory.n_structures return output def get_bonded_atoms_from_system(item, check=True): if check: _digest_item(item, _form) raise _NotImplementedMethodError() ## From bond def get_bond_order_from_bond(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_bond_type_from_bond(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() def get_atom_index_from_bond(item, indices='all', check=True): if check: _digest_item(item, _form) indices = _digest_indices(indices) raise _NotImplementedMethodError() ####################################################################################### ######### DO NOT TOUCH THE FOLLOWING LINES, JUST INCLUDE THEM AS THEY ARE ############# ####################################################################################### from os import path this_folder = path.dirname(path.abspath(__file__)) common_get = path.join(this_folder, '../../_private/common_get.py') execfile(common_get, globals(), locals()) del(path, this_folder, common_get) ####################################################################################### ############## REMOVE COMMON GET METHODS NOT DEFINED FOR THIS FORM #################### ####################################################################################### del( # From atom #get_atom_index_from_atom, #get_group_id_from_atom, #get_group_name_from_atom, #get_group_type_from_atom, #get_component_id_from_atom, #get_component_name_from_atom, #get_component_type_from_atom, #get_chain_id_from_atom, #get_chain_name_from_atom, #get_chain_type_from_atom, #get_molecule_id_from_atom, #get_molecule_name_from_atom, #get_molecule_type_from_atom, #get_entity_id_from_atom, #get_entity_name_from_atom, #get_entity_type_from_atom, #get_n_atoms_from_atom, #get_n_groups_from_atom, #get_n_components_from_atom, #get_n_molecules_from_atom, #get_n_chains_from_atom, #get_n_entities_from_atom, #get_bonded_atoms_from_atom, #get_bond_index_from_atom, #get_n_bonds_from_atom, #get_inner_bond_index_from_atom, # From group #get_atom_index_from_group, #get_atom_id_from_group, #get_atom_name_from_group, #get_atom_type_from_group, #get_group_index_from_group, #get_component_index_from_group, #get_component_id_from_group, #get_component_name_from_group, #get_component_type_from_group, #get_chain_index_from_group, #get_chain_id_from_group, #get_chain_name_from_group, #get_chain_type_from_group, #get_molecule_index_from_group, #get_molecule_id_from_group, #get_molecule_name_from_group, #get_molecule_type_from_group, #get_entity_index_from_group, #get_entity_id_from_group, #get_entity_name_from_group, #get_entity_type_from_group, #get_n_atoms_from_group, #get_n_groups_from_group, #get_n_components_from_group, #get_n_molecules_from_group, #get_n_chains_from_group, #get_n_entities_from_group, # From component #get_atom_index_from_component, #get_atom_id_from_component, #get_atom_name_from_component, #get_atom_type_from_component, #get_group_index_from_component, #get_group_id_from_component, #get_group_name_from_component, #get_group_type_from_component, #get_component_index_from_component, #get_chain_index_from_component, #get_chain_id_from_component, #get_chain_name_from_component, #get_chain_type_from_component, #get_molecule_index_from_component, #get_molecule_id_from_component, #get_molecule_name_from_component, #get_molecule_type_from_component, #get_entity_index_from_component, #get_entity_id_from_component, #get_entity_name_from_component, #get_entity_type_from_component, #get_n_atoms_from_component, #get_n_groups_from_component, #get_n_components_from_component, #get_n_molecules_from_component, #get_n_chains_from_component, #get_n_entities_from_component, # From molecule #get_atom_index_from_molecule, #get_atom_id_from_molecule, #get_atom_name_from_molecule, #get_atom_type_from_molecule, #get_group_index_from_molecule, #get_group_id_from_molecule, #get_group_name_from_molecule, #get_group_type_from_molecule, #get_component_index_from_molecule, #get_component_id_from_molecule, #get_component_name_from_molecule, #get_component_type_from_molecule, #get_chain_index_from_molecule, #get_chain_id_from_molecule, #get_chain_name_from_molecule, #get_chain_type_from_molecule, #get_molecule_index_from_molecule, #get_entity_index_from_molecule, #get_entity_id_from_molecule, #get_entity_name_from_molecule, #get_entity_type_from_molecule, #get_n_atoms_from_molecule, #get_n_groups_from_molecule, #get_n_components_from_molecule, #get_n_molecules_from_molecule, #get_n_chains_from_molecule, #get_n_entities_from_molecule, # From chain #get_atom_index_from_chain, #get_atom_id_from_chain, #get_atom_name_from_chain, #get_atom_type_from_chain, #get_group_index_from_chain, #get_group_id_from_chain, #get_group_name_from_chain, #get_group_type_from_chain, #get_component_index_from_chain, #get_component_id_from_chain, #get_component_name_from_chain, #get_component_type_from_chain, #get_chain_index_from_chain, #get_molecule_index_from_chain, #get_molecule_id_from_chain, #get_molecule_name_from_chain, #get_molecule_type_from_chain, #get_entity_index_from_chain, #get_entity_id_from_chain, #get_entity_name_from_chain, #get_entity_type_from_chain, #get_n_atoms_from_chain, #get_n_groups_from_chain, #get_n_components_from_chain, #get_n_molecules_from_chain, #get_n_chains_from_chain, #get_n_entities_from_chain, # From entity #get_atom_index_from_entity, #get_atom_id_from_entity, #get_atom_name_from_entity, #get_atom_type_from_entity, #get_group_index_from_entity, #get_group_id_from_entity, #get_group_name_from_entity, #get_group_type_from_entity, #get_component_index_from_entity, #get_component_id_from_entity, #get_component_name_from_entity, #get_component_type_from_entity, #get_chain_index_from_entity, #get_chain_id_from_entity, #get_chain_name_from_entity, #get_chain_type_from_entity, #get_molecule_index_from_entity, #get_molecule_id_from_entity, #get_molecule_name_from_entity, #get_molecule_type_from_entity, #get_entity_index_from_entity, #get_n_atoms_from_entity, #get_n_groups_from_entity, #get_n_components_from_entity, #get_n_molecules_from_entity, #get_n_chains_from_entity, #get_n_entities_from_entity, # From system #get_n_aminoacids_from_system, #get_n_nucleotides_from_system, #get_n_ions_from_system, #get_n_waters_from_system, #get_n_cosolutes_from_system, #get_n_small_molecules_from_system, #get_n_peptides_from_system, #get_n_proteins_from_system, #get_n_dnas_from_system, #get_n_rnas_from_system, #get_n_lipids_from_system, #get_coordinates_from_system, #get_box_shape_from_system, #get_box_lengths_from_system, #get_box_angles_from_system, #get_box_volume_from_system, #get_bonded_atoms_from_system, #get_bond_index_from_system, #get_inner_bonded_atoms_from_system, #get_inner_bond_index_from_system, # From bond #get_bond_index_from_bond, #get_n_bonds_from_bond )
26.06793
96
0.71729
a0998dc5f7a91135ec1ae8a72eabdc04d57ba796
1,247
py
Python
test/functional_requirements/array/MOUNT_ARRAY_CHECKING_UNIQUE_ID.py
so931/poseidonos
2aa82f26bfbd0d0aee21cd0574779a655634f08c
[ "BSD-3-Clause" ]
1
2022-02-07T23:30:50.000Z
2022-02-07T23:30:50.000Z
test/functional_requirements/array/MOUNT_ARRAY_CHECKING_UNIQUE_ID.py
so931/poseidonos
2aa82f26bfbd0d0aee21cd0574779a655634f08c
[ "BSD-3-Clause" ]
null
null
null
test/functional_requirements/array/MOUNT_ARRAY_CHECKING_UNIQUE_ID.py
so931/poseidonos
2aa82f26bfbd0d0aee21cd0574779a655634f08c
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 import subprocess import os import sys sys.path.append("../") sys.path.append("../../system/lib/") import json_parser import pos import cli import api import json import CREATE_ARRAY_BASIC import SCAN_DEV_BASIC SPARE = CREATE_ARRAY_BASIC.SPARE ANY_DATA = CREATE_ARRAY_BASIC.ANY_DATA ANY_OTHER_DATA = CREATE_ARRAY_BASIC.ANY_OTHER_DATA ARRAYNAME = CREATE_ARRAY_BASIC.ARRAYNAME def execute(): CREATE_ARRAY_BASIC.execute() result = cli.array_info(ARRAYNAME) pos.exit_pos() SCAN_DEV_BASIC.execute() result_npor = cli.array_info(ARRAYNAME) uniqueId = json.loads(result)['Response']['result']['data']['unique_id'] print("uniqueId Before NPOR : " + str(uniqueId)) uniqueId_npor = json.loads(result_npor)['Response']['result']['data']['unique_id'] print("uniqueId After NPOR : " + str(uniqueId_npor)) if uniqueId == uniqueId_npor: out = json_parser.make_result_code(0) else: out = json_parser.make_result_code(-1) return out if __name__ == "__main__": if len(sys.argv) >= 2: pos.set_addr(sys.argv[1]) api.clear_result(__file__) out = execute() ret = api.set_result_by_code_eq(out, 0, __file__) pos.flush_and_kill_pos() exit(ret)
25.44898
86
0.708901
ddd15cc21e0ceaefe571a53807967826258b044f
1,194
py
Python
Osori_rpg/models.py
bees1114/Osori_level_meter
6af9b06e91fc4935be75e8293879e2bf881beefe
[ "MIT" ]
1
2017-11-04T21:27:59.000Z
2017-11-04T21:27:59.000Z
Osori_rpg/models.py
bees1114/Osori_level_meter
6af9b06e91fc4935be75e8293879e2bf881beefe
[ "MIT" ]
null
null
null
Osori_rpg/models.py
bees1114/Osori_level_meter
6af9b06e91fc4935be75e8293879e2bf881beefe
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import User from django.dispatch import receiver from django.db.models.signals import post_save class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) git_commit = models.IntegerField(default=0) room_visit = models.IntegerField(default=0) event_visit = models.IntegerField(default=0) contribution = models.IntegerField(default=0) login_counter = models.IntegerField(default=0) level = models.IntegerField(default=0) exp = models.IntegerField(default=0) @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_user_profile(sender, instance, **kwargs): instance.profile.save() class ExpRequest(models.Model): ExpOptions = ( ('Room_Visit', 'Room_Visit'), ('Event_Visit', 'Event_Visit'), ('Contribution', 'Contribution'), ) owner = models.ForeignKey(User, on_delete=models.CASCADE) options = models.CharField(max_length=100, choices=ExpOptions) spec = models.TextField()
32.27027
66
0.731993
f27981341390e2b00603b256ee86b2292c27c961
3,825
py
Python
script/inception_score.py
gargrohin/optimistic_GAN_training
b9215e052e830941ec023cb37d44424680eb9570
[ "MIT" ]
null
null
null
script/inception_score.py
gargrohin/optimistic_GAN_training
b9215e052e830941ec023cb37d44424680eb9570
[ "MIT" ]
null
null
null
script/inception_score.py
gargrohin/optimistic_GAN_training
b9215e052e830941ec023cb37d44424680eb9570
[ "MIT" ]
null
null
null
# From https://github.com/openai/improved-gan/blob/master/inception_score/model.py # Code derived from tensorflow/tensorflow/models/image/imagenet/classify_image.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import sys import tarfile import numpy as np from six.moves import urllib import tensorflow as tf import glob import scipy.misc import math import sys from tqdm import tqdm, trange MODEL_DIR = '/tmp/imagenet' DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' softmax = None # Call this function with list of images. Each of elements should be a # numpy array with values ranging from 0 to 255. def get_inception_score(images, splits=10): assert(type(images) == list) assert(type(images[0]) == np.ndarray) assert(len(images[0].shape) == 3) print(images[0].shape) assert(np.max(images[0]) > 10) assert(np.min(images[0]) >= 0.0) inps = [] for img in images: img = img.astype(np.float32) inps.append(np.expand_dims(img, 0)) bs = 100 with tf.Session() as sess: preds, pools = [], [] n_batches = int(math.ceil(float(len(inps)) / float(bs))) print("n_batches :", n_batches) for i in trange(n_batches): inp = inps[(i * bs):min((i + 1) * bs, len(inps))] inp = np.concatenate(inp, 0) pred, pool = sess.run([softmax, pool3], {'InputTensor:0': inp}) preds.append(pred) pools.append(pool) preds = np.concatenate(preds, 0) scores = [] for i in range(splits): part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :] kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) kl = np.mean(np.sum(kl, 1)) scores.append(np.exp(kl)) return np.mean(scores), np.std(scores), np.squeeze(np.concatenate(pools, 0)) # This function is called automatically. # Init inception def _init_inception(): global softmax, pool3 if not os.path.exists(MODEL_DIR): os.makedirs(MODEL_DIR) filename = DATA_URL.split('/')[-1] filepath = os.path.join(MODEL_DIR, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % ( filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR) with tf.gfile.FastGFile(os.path.join( MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) input_tensor = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='InputTensor') _ = tf.import_graph_def(graph_def, name='', input_map={'ExpandDims:0':input_tensor}) # _ = tf.import_graph_def(graph_def, name='') # Works with an arbitrary minibatch size. with tf.Session() as sess: pool3 = sess.graph.get_tensor_by_name('pool_3:0') ops = pool3.graph.get_operations() for op_idx, op in enumerate(ops): for o in op.outputs: shape = o.get_shape() shape = [s.value for s in shape] new_shape = [] for j, s in enumerate(shape): if s == 1 and j == 0: new_shape.append(None) else: new_shape.append(s) o.set_shape(tf.TensorShape(new_shape)) w = sess.graph.get_operation_by_name("softmax/logits/MatMul").inputs[1] logits = tf.matmul(tf.squeeze(pool3, [1,2]), w) softmax = tf.nn.softmax(logits) if softmax is None: _init_inception()
36.084906
90
0.659869
d9cea492e6176c150dbd15acd7f1f960319d35a5
776
py
Python
web/twitch_webhook/views.py
samuelfirst/nemoobot
b74ad66d4f2052eaba14e4b79e20c3da274b5909
[ "MIT" ]
1
2021-01-30T09:19:37.000Z
2021-01-30T09:19:37.000Z
web/twitch_webhook/views.py
samuelfirst/nemoobot
b74ad66d4f2052eaba14e4b79e20c3da274b5909
[ "MIT" ]
2
2020-12-21T20:57:19.000Z
2021-01-26T08:08:09.000Z
web/twitch_webhook/views.py
samuelfirst/nemoobot
b74ad66d4f2052eaba14e4b79e20c3da274b5909
[ "MIT" ]
1
2020-12-22T07:42:42.000Z
2020-12-22T07:42:42.000Z
import json from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt from .tasks import save_subscription_model from .utils import is_request_verified, process_event @csrf_exempt def follows_webhook(request, twitch_user_id): if is_request_verified(request): data = json.loads(request.body.decode('utf-8')) token = data.get('challenge') if token: subscription_data = data.get('subscription') save_subscription_model.apply_async((subscription_data, twitch_user_id)) return HttpResponse(token, content_type="text/plain", status=200) process_event(data.get('event'), 'new_follow') return HttpResponse(status=200) else: return HttpResponse(status=403)
33.73913
84
0.721649
b07d6663202d8525e3de395ea68e8d3a567cdf29
5,323
py
Python
lib/gen_charts.py
mehmetcanbudak/StrategyCheck
40b6ace71e0f8b428cd5db5c7516569f255484fa
[ "MIT" ]
1
2021-05-09T21:48:04.000Z
2021-05-09T21:48:04.000Z
lib/gen_charts.py
mehmetcanbudak/StrategyCheck
40b6ace71e0f8b428cd5db5c7516569f255484fa
[ "MIT" ]
null
null
null
lib/gen_charts.py
mehmetcanbudak/StrategyCheck
40b6ace71e0f8b428cd5db5c7516569f255484fa
[ "MIT" ]
1
2021-05-09T21:48:37.000Z
2021-05-09T21:48:37.000Z
from plotly.subplots import make_subplots import plotly.graph_objs as go import pandas as pd import lib.strategy as strategy import lib.indicators as indicators import os import json from peakdetect import peakdetect with open("lib/settings.json", "r") as settings_json: settings = json.load(settings_json) exchange_settings = settings["ExchangeSettings"] indicator_settings = settings["IndicatorSettings"] strategy_settings = settings["StrategySettings"] class Chart: def __init__(self, name): self.name = name try: self.df = pd.read_csv(f'output/candle_data/{name}_{exchange_settings["Days_to_look_back"]}days_{exchange_settings["Candle_Interval"]}_ta.csv') except FileNotFoundError: return self.long_index = [] self.short_index = [] if strategy_settings["check_peaks"]: indicator_peaks = peakdetect( self.df[strategy_settings["Peak_Indicator"]], lookahead=strategy_settings["Peak_Lookahead"]) self.long_index = [peak[0] for peak in indicator_peaks[1]] self.short_index = [peak[0] for peak in indicator_peaks[0]] else: self.long_index = strategy.go_long(self.df) self.short_index = strategy.go_short(self.df) # set up the whole graph indicators_total = max(indicator_settings["Add_Indicators"][item]['Row'] for item in indicator_settings["Add_Indicators"]) self.figure = make_subplots( rows=indicators_total, cols=1, row_width=[1 / indicators_total] * indicators_total ) # candlestick graph of asset self.figure.append_trace( go.Candlestick( x=self.df['date'], name='price', open=self.df['open'], high=self.df['high'], low=self.df['low'], close=self.df['close'] ), row=1, col=1 ) # set date as index for graphs self.date_long = [self.df['date'][i] for i in self.long_index] self.date_short = [self.df['date'][i] for i in self.short_index] self.add_signal_to_graph('close') # add every indicator to graph (see settings.json) for indicator in indicator_settings["Add_Indicators"]: self.add_indicator_to_graph(indicator) if indicator_settings["Add_Indicators"][indicator]['Add_Signal']: self.add_signal_to_graph(indicator) # generate html file size = 1500 self.figure.update_layout( title=self.name, xaxis_rangeslider_visible=False, autosize=False, width=size * 1.5, height=size ) if not os.path.exists('output/charts'): os.makedirs('output/charts') self.figure.write_html(f'output/charts/{self.name}.html') print(f'generated chart for {name}') ''' This method adds an indicator (see conf.py) to the graph plot_type: scatter/bar ''' def add_indicator_to_graph(self, name): if indicator_settings["Add_Indicators"][name]['Plot_Type'] == 'scatter': self.figure.append_trace( go.Scatter( x=self.df['date'], y=self.df[name], name=name, line=dict(color=indicator_settings["Add_Indicators"][name]['Color']) ), row=indicator_settings["Add_Indicators"][name]['Row'], col=1 ) elif indicator_settings["Add_Indicators"][name]['Plot_Type'] == 'bar': self.figure.append_trace( go.Bar( x=self.df['date'], y=self.df[name], name=name, marker=dict(color=indicator_settings["Add_Indicators"][name]['Color']) ), row=indicator_settings["Add_Indicators"][name]['Row'], col=1 ) ''' This method sets green and red markers within the graph of the associated indicator ''' def add_signal_to_graph(self, name): indicator_long_filter = [self.df[name].tolist()[i] for i in self.long_index] indicator_short_filter = [self.df[name].tolist()[i] for i in self.short_index] # Long Signals self.figure.append_trace( go.Scatter( x=self.date_long, y=indicator_long_filter, name="Buy Signals", marker=dict(color="lime", size=12, opacity=0.5), mode="markers" ), row=indicator_settings["Add_Indicators"][name]['Row'] if name not in ['high', 'low', 'close', 'open'] else 1, col=1 ) # Short Signals self.figure.append_trace( go.Scatter( x=self.date_short, y=indicator_short_filter, name="Sell Signals", marker=dict(color="rgb(255, 36, 0)", size=12, opacity=0.5), mode="markers" ), row=indicator_settings["Add_Indicators"][name]['Row'] if name not in ['high', 'low', 'close', 'open'] else 1, col=1 )
36.458904
154
0.566222
ce97290d6724fdec009c06dd44fdc7747857c2ad
301
py
Python
seiketsu/users/serializers.py
tychota/seiketsu
2b5280365b9de44cd84ac65ed74981b30be5cc76
[ "MIT" ]
null
null
null
seiketsu/users/serializers.py
tychota/seiketsu
2b5280365b9de44cd84ac65ed74981b30be5cc76
[ "MIT" ]
null
null
null
seiketsu/users/serializers.py
tychota/seiketsu
2b5280365b9de44cd84ac65ed74981b30be5cc76
[ "MIT" ]
null
null
null
from .models import User from rest_framework.serializers import ModelSerializer class UserSerializer(ModelSerializer): class Meta: model = User fields = [ 'id', 'first_name', 'last_name', 'username', 'email', ]
20.066667
54
0.538206
b6c4617732b5b52793c26a91c723b32c8d552f42
6,262
py
Python
cogs/general.py
clugraphy/Python-Discord-Bot-Template
948bbdc3a7488a0257d5ec7f61f43cc8a70db6d8
[ "Apache-2.0" ]
null
null
null
cogs/general.py
clugraphy/Python-Discord-Bot-Template
948bbdc3a7488a0257d5ec7f61f43cc8a70db6d8
[ "Apache-2.0" ]
null
null
null
cogs/general.py
clugraphy/Python-Discord-Bot-Template
948bbdc3a7488a0257d5ec7f61f43cc8a70db6d8
[ "Apache-2.0" ]
null
null
null
import os, sys, discord, platform, random, aiohttp, json from discord.ext import commands if not os.path.isfile("config.py"): sys.exit("'config.py' not found! Please add it and try again.") else: import config class general(commands.Cog, name="general"): def __init__(self, bot): self.bot = bot @commands.command(name="info", aliases=["botinfo"]) async def info(self, context): """ Get some useful (or not) information about the bot. """ embed = discord.Embed( description="cLu designer Bot for HTF Fund", color=config.success ) embed.set_author( name="HTF Bot Information" ) embed.add_field( name="Owner:", value="cLuGraphy#7516", inline=True ) embed.add_field( name="Python Version:", value=f"{platform.python_version()}", inline=True ) embed.add_field( name="Prefix:", value=f"{config.BOT_PREFIX}", inline=False ) embed.set_footer( text=f"Requested by {context.message.author}" ) await context.send(embed=embed) @commands.command(name="serverinfo") async def serverinfo(self, context): """ Get some useful (or not) information about the server. """ server = context.message.guild roles = [x.name for x in server.roles] role_length = len(roles) if role_length > 50: roles = roles[:50] roles.append(f">>>> Displaying[50/{len(roles)}] Roles") roles = ", ".join(roles) channels = len(server.channels) time = str(server.created_at) time = time.split(" ") time = time[0] embed = discord.Embed( title="**Server Name:**", description=f"{server}", color=config.success ) embed.set_thumbnail( url=server.icon_url ) embed.add_field( name="Owner", value=f"{server.owner}\n{server.owner.id}" ) embed.add_field( name="Server ID", value=server.id ) embed.add_field( name="Member Count", value=server.member_count ) embed.add_field( name="Text/Voice Channels", value=f"{channels}" ) embed.add_field( name=f"Roles ({role_length})", value=roles ) embed.set_footer( text=f"Created at: {time}" ) await context.send(embed=embed) @commands.command(name="ping") async def ping(self, context): """ Check if the bot is alive. """ embed = discord.Embed( color=config.success ) embed.add_field( name="Pong!", value=":ping_pong:", inline=True ) embed.set_footer( text=f"Pong request by {context.message.author}" ) await context.send(embed=embed) @commands.command(name="invite") async def invite(self, context): """ Get the invite link of the bot to be able to invite it. """ await context.send("I sent you a private message!") await context.author.send(f"Invite me by clicking here: https://discordapp.com/oauth2/authorize?&client_id={config.APPLICATION_ID}&scope=bot&permissions=8") @commands.command(name="server") async def server(self, context): """ Get the invite link of the discord server of the bot for some support. """ await context.send("I sent you a private message!") await context.author.send("Join my discord server by clicking here: https://discord.gg/HzJ3Gfr") @commands.command(name="poll") async def poll(self, context, *args): """ Create a poll where members can vote. """ poll_title = " ".join(args) embed = discord.Embed( title="A new poll has been created!", description=f"{poll_title}", color=config.success ) embed.set_footer( text=f"Poll created by: {context.message.author} • React to vote!" ) embed_message = await context.send(embed=embed) await embed_message.add_reaction("👍") await embed_message.add_reaction("👎") await embed_message.add_reaction("🤷") @commands.command(name="8ball") async def eight_ball(self, context, *args): """ Ask any question to the bot. """ answers = ['It is certain.', 'It is decidedly so.', 'You may rely on it.', 'Without a doubt.', 'Yes - definitely.', 'As I see, yes.', 'Most likely.', 'Outlook good.', 'Yes.', 'Signs point to yes.', 'Reply hazy, try again.', 'Ask again later.', 'Better not tell you now.', 'Cannot predict now.', 'Concentrate and ask again later.', 'Don\'t count on it.', 'My reply is no.', 'My sources say no.', 'Outlook not so good.', 'Very doubtful.'] embed = discord.Embed( title="**My Answer:**", description=f"{answers[random.randint(0, len(answers))]}", color=config.success ) embed.set_footer( text=f"Question asked by: {context.message.author}" ) await context.send(embed=embed) @commands.command(name="bitcoin") async def bitcoin(self, context): """ Get the current price of bitcoin. """ url = "https://api.coindesk.com/v1/bpi/currentprice/BTC.json" # Async HTTP request async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() response = json.loads(response) embed = discord.Embed( title=":information_source: Info", description=f"Bitcoin price is: ${response['bpi']['USD']['rate']}", color=config.success ) await context.send(embed=embed) def setup(bot): bot.add_cog(general(bot))
32.957895
164
0.548706
c645911992ee0e35007cb42706109c7232dfc912
3,173
py
Python
tests/test_filter.py
jina-ai/pqlite
2ce1ec2283b381f5153ea60141a6bb474bbf0f0c
[ "Apache-2.0" ]
45
2021-12-10T07:39:39.000Z
2022-02-20T22:58:28.000Z
tests/test_filter.py
jina-ai/pqlite
2ce1ec2283b381f5153ea60141a6bb474bbf0f0c
[ "Apache-2.0" ]
30
2021-12-10T07:46:28.000Z
2022-02-18T09:27:48.000Z
tests/test_filter.py
jina-ai/annlite
e4e706e313ba5cbfb7083a5dea9e75b8d2813394
[ "Apache-2.0" ]
null
null
null
import pytest from annlite.filter import Filter def test_empty_filter(): f = Filter() where_clause, parameters = f.parse_where_clause() assert where_clause == '' assert parameters == () def test_simple_filter(): f = Filter({'brand': {'$lt': 1}}) where_clause, parameters = f.parse_where_clause() assert where_clause == '(brand < ?)' assert parameters == (1,) def test_logic_operator(): f = Filter({'$and': {'brand': {'$lt': 1}, 'price': {'$gte': 50}}}) where_clause, parameters = f.parse_where_clause() assert where_clause == '(brand < ?) AND (price >= ?)' assert parameters == (1, 50) f = Filter({'brand': {'$lt': 1}, 'price': {'$gte': 50}}) where_clause, parameters = f.parse_where_clause() assert where_clause == '(brand < ?) AND (price >= ?)' assert parameters == (1, 50) f = Filter({'$or': {'brand': {'$lt': 1}, 'price': {'$gte': 50}}}) where_clause, parameters = f.parse_where_clause() assert where_clause == '(brand < ?) OR (price >= ?)' assert parameters == (1, 50) def test_membership_operator(): f = Filter({'$and': {'brand': {'$in': ['Nike', 'Gucci']}, 'price': {'$gte': 50}}}) where_clause, parameters = f.parse_where_clause() assert where_clause == '(brand IN(?, ?)) AND (price >= ?)' assert parameters == ('Nike', 'Gucci', 50) f = Filter({'$or': {'brand': {'$nin': ['Nike', 'Gucci']}, 'price': {'$gte': 50}}}) where_clause, parameters = f.parse_where_clause() assert where_clause == '(brand NOT IN(?, ?)) OR (price >= ?)' assert parameters == ('Nike', 'Gucci', 50) def test_cases(): express = { '$and': { 'price': {'$gte': 0, '$lte': 54}, 'rating': {'$gte': 1}, 'year': {'$gte': 2007, '$lte': 2010}, } } f = Filter(express) where_clause, parameters = f.parse_where_clause() assert ( where_clause == '(price >= ?) AND (price <= ?) AND (rating >= ?) AND (year >= ?) AND (year <= ?)' ) assert parameters == (0, 54, 1, 2007, 2010) express = { '$and': { 'price': {'$or': [{'price': {'$gte': 0}}, {'price': {'$lte': 54}}]}, 'rating': {'$gte': 1}, 'year': {'$gte': 2007, '$lte': 2010}, } } f = Filter(express) where_clause, parameters = f.parse_where_clause() assert ( where_clause == '((price >= ?) OR (price <= ?)) AND (rating >= ?) AND (year >= ?) AND (year <= ?)' ) assert parameters == (0, 54, 1, 2007, 2010) express = { '$and': { '$or': [{'price': {'$gte': 0}}, {'price': {'$lte': 54}}], 'rating': {'$gte': 1}, 'year': {'$gte': 2007, '$lte': 2010}, } } f = Filter(express) where_clause, parameters = f.parse_where_clause() assert ( where_clause == '((price >= ?) OR (price <= ?)) AND (rating >= ?) AND (year >= ?) AND (year <= ?)' ) assert parameters == (0, 54, 1, 2007, 2010) def test_error_filter(): f = Filter({'$may': {'brand': {'$lt': 1}, 'price': {'$gte': 50}}}) with pytest.raises(ValueError): f.parse_where_clause()
31.107843
93
0.512764
862d42a5ef8fe116180e4850d683ce06075f924e
3,410
gyp
Python
cloud9_root/src/build/stp.gyp
DanielGuoVT/symsc
95b705bd1f4d2863d79866c84fc7ee90aba743cb
[ "Apache-2.0" ]
3
2019-02-12T04:14:39.000Z
2020-11-05T08:46:20.000Z
cloud9_root/src/build/stp.gyp
DanielGuoVT/symsc
95b705bd1f4d2863d79866c84fc7ee90aba743cb
[ "Apache-2.0" ]
null
null
null
cloud9_root/src/build/stp.gyp
DanielGuoVT/symsc
95b705bd1f4d2863d79866c84fc7ee90aba743cb
[ "Apache-2.0" ]
null
null
null
# # Cloud9 Parallel Symbolic Execution Engine # # Copyright (c) 2012, Dependable Systems Laboratory, EPFL # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Dependable Systems Laboratory, EPFL nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE DEPENDABLE SYSTEMS LABORATORY, EPFL BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # All contributors are listed in CLOUD9-AUTHORS file. # { 'variables': { 'stp_path': '../third_party/stp', 'stp_src': '../third_party/stp/src', 'valid_extensions': [ '-name', '*.h', '-o', '-name', '*.hpp', '-o', '-name', '*.cpp', '-o', '-name', '*.c', ], 'lex_tool': 'flex', 'yacc_tool': 'bison -d -y --debug -v', }, # variables 'target_defaults': { 'cflags': [ '-O3', '-fomit-frame-pointer', '-Wno-deprecated', ], 'defines': [ 'NDEBUG', # Required by MiniSAT '__STDC_LIMIT_MACROS', '__STDC_FORMAT_MACROS', 'EXT_HASH_MAP', ], }, # target_defaults 'targets': [ { 'target_name': 'libast', 'type': 'static_library', 'sources': [ '<!@(find <(stp_src)/AST -maxdepth 1 <(valid_extensions))', '<!@(find <(stp_src)/STPManager -maxdepth 1 <(valid_extensions))', '<!@(find <(stp_src)/absrefine_counterexample -maxdepth 1 <@(valid_extensions))', '<!@(find <(stp_src)/AST/NodeFactory -maxdepth 1 <(valid_extensions))', '<!@(find <(stp_src)/c_interface -maxdepth 1 <(valid_extensions))', #'<!@(find <(stp_src)/cpp_interface -maxdepth 1 <(valid_extensions))', '<!@(find <(stp_src)/to-sat <(valid_extensions))', ], }, { 'target_name': 'libstpmgr', 'type': 'static_library', 'sources': [ ], }, { 'target_name': 'libprinter', 'type': 'static_library', 'sources': [ '<!@(find <(stp_src)/printer -maxdepth 1 <(valid_extensions))', ], }, { 'target_name': 'libabstractionrefinement', 'type': 'static_library', 'sources': [ ], }, ], # targets }
35.520833
92
0.642229
0c4b1d23814d78f66c5f5ba696c9114399d1d94d
1,336
py
Python
system/rules.py
aaaimx/COVID19-Detection
7fd3864a4ed258c8232d5e0edf5db9fe1fadd674
[ "MIT" ]
2
2020-03-24T07:53:55.000Z
2020-03-24T14:41:17.000Z
system/rules.py
aaaimx/COVID19-Detection
7fd3864a4ed258c8232d5e0edf5db9fe1fadd674
[ "MIT" ]
18
2020-03-24T04:36:17.000Z
2021-08-23T20:40:32.000Z
system/rules.py
aaaimx/COVID19-Detection
7fd3864a4ed258c8232d5e0edf5db9fe1fadd674
[ "MIT" ]
2
2020-03-24T07:54:00.000Z
2020-10-27T09:14:01.000Z
import numpy as np import skfuzzy as fuzz from skfuzzy import control as ctrl from antecedents import Fi, DC, Mi, Fa, CN, Es, DG, DR, Ri from consequents import Co, Al, Re, In # ------------------------------------- # Inference rules # ------------------------------------- rule1 = ctrl.Rule(antecedent=(Fi['No'] & DG['No']), consequent=(Co['PP'], Al['MP'], Re['PP'], In['PP'])) rule2 = ctrl.Rule(antecedent=(Fi['No'] & DG['Leve']), consequent=(Co['PP'], Re['MP'], In['PP'])) rule3 = ctrl.Rule(antecedent=(Fi['Alta'] & DC['~No'] & Mi['~No'] & Fa['~No'] & DR['No']), consequent=Re['MP']) rule4 = ctrl.Rule(antecedent=(Fi['Alta'] & DR['~No']), consequent=(Co['MP'], Al['PP'], Re['PP'])) rule5 = ctrl.Rule(antecedent=(Fi['Leve'] & DR['~No']), consequent=Co['Pr']) rule6 = ctrl.Rule(antecedent=(Fi['Leve'] & CN['~No'] & Es['~No'] & DG['~No'] & DR['No'] & Ri['~No']), consequent=Re['MP']) rule7 = ctrl.Rule(antecedent=(Fi['~No'] & DC['~No'] & Mi['~No'] & Fa['~No'] & DR['~No']), consequent=In['MP']) rule8 = ctrl.Rule(antecedent=(Fi['Leve'] & DR['No']), consequent=(Re['Pr'], In['Po'])) rule9 = ctrl.Rule(antecedent=(Fi['Alta'] & DC['~No'] & Mi['~No'] & Fa['~No'] & DR['~No']), consequent=(Co['MP'], Al['PP'], Re['PP'], In['PP'])) rule10 = ctrl.Rule(antecedent=(Fi['No'] & DG['Severo']), consequent=(Co['PP'], Al['PP'], Re['MP'], In['PP']))
70.315789
143
0.541168
4c221c72d1813b56ba362c840df7348fce4e4dcc
10,937
py
Python
macbethLookTransfer.py
hellothisistim/macbethLookTransfer
bcf4e25cd1a7586ebd3641a452135e8b2872de3a
[ "Unlicense" ]
null
null
null
macbethLookTransfer.py
hellothisistim/macbethLookTransfer
bcf4e25cd1a7586ebd3641a452135e8b2872de3a
[ "Unlicense" ]
null
null
null
macbethLookTransfer.py
hellothisistim/macbethLookTransfer
bcf4e25cd1a7586ebd3641a452135e8b2872de3a
[ "Unlicense" ]
null
null
null
import numpy as np from scipy.misc import imread, imsave import matplotlib.pyplot as plt from colormath.color_conversions import convert_color from colormath.color_objects import sRGBColor, XYZColor from pprint import pprint import math from copy import deepcopy macbeth_patch_names = ["Dark skin", "Light skin", "Blue sky", "Foliage", "Blue flower", "Bluish green", "Orange", "Purplish blue", "Moderate red", "Purple", "Yellow green", "Orange yellow", "Blue", "Green", "Red", "Yellow", "Magenta", "Cyan", "White", "Neutral 8", "Neutral 6.5", "Neutral 5", "Neutral 3.5", "Black"] def import_pointcloud(source_file='', dest_file=''): source_image = imread(source_file) dest_image = imread(dest_file) cloud = [] # assuming the wedge images contain 7 exposure steps source_levels = np.hsplit(source_image, 8) dest_levels = np.hsplit(dest_image, 8) for level_num in range(len(source_levels)): source_level = source_levels[level_num] dest_level = dest_levels[level_num] pixel_number = 0 for row_number in range(len(source_level)): source_row = source_level[row_number] dest_row = dest_level[row_number] for column_number in range(len(source_row)): source_pixel = source_row[column_number] dest_pixel = dest_row[column_number] source_r = source_pixel[0] source_g = source_pixel[1] source_b = source_pixel[2] dest_r = dest_pixel[0] dest_g = dest_pixel[1] dest_b = dest_pixel[2] source_srgb = sRGBColor(source_r, source_g, source_b, is_upscaled=True) dest_srgb = sRGBColor(dest_r, dest_g, dest_b, is_upscaled=True) source_xyz = convert_color(source_srgb, XYZColor) dest_xyz = convert_color(dest_srgb, XYZColor) cloud.append({'level': level_num, 'color name': macbeth_patch_names[pixel_number], 'source color': source_xyz, 'dest color': dest_xyz }) pixel_number += 1 return cloud def filter_pointcloud(pointcloud, levels=[], color_names=[]): filtered_cloud_levels = [] if levels != []: for point in pointcloud: if point['level'] in levels: filtered_cloud_levels.append(point) else: filtered_cloud_levels = pointcloud filtered_cloud_colors = [] if color_names != []: for point in filtered_cloud_levels: if point['color name'] in color_names: filtered_cloud_colors.append(point) else: filtered_cloud_colors = filtered_cloud_levels return filtered_cloud_colors def filter_duplicate_source_points_dumb(pointcloud): filtered_cloud = [] for i, point in enumerate(pointcloud): other_points = [x for j,x in enumerate(pointcloud) if j != i] duplicate = False for other_point in other_points: if point['source color'].get_value_tuple() == other_point['source color'].get_value_tuple(): duplicate = True if not duplicate: filtered_cloud.append(point) return filtered_cloud def pointcloud_contains_source_duplicates(pointcloud): for i, point in enumerate(pointcloud): other_points = [x for j,x in enumerate(pointcloud) if j != i] for other_point in other_points: if point['source color'].get_value_tuple() == other_point['source color'].get_value_tuple(): return True return False def filter_duplicate_source_points_per_level(pointcloud): # Removes the entire level if there are duplicate source colors in the level. filtered_cloud = [] levels = [] for point in pointcloud: if point['level'] not in levels: levels.append(point['level']) for i, level in enumerate(levels): these_points = filter_pointcloud(pointcloud, levels=[i]) if not pointcloud_contains_source_duplicates(these_points): for point in these_points: filtered_cloud.append(point) else: # print 'dropping level', i pass return filtered_cloud def filter_duplicate_source_points_smart(pointcloud): filtered_cloud = filter_duplicate_source_points_per_level(pointcloud) filtered_cloud = filter_duplicate_source_points_dumb(filtered_cloud) return filtered_cloud def filter_duplicate_source_points(pointcloud): return filter_duplicate_source_points_smart(pointcloud) def distance(one_color, other_color): # Colors are colormath.color_objects. one_x, one_y, one_z = one_color.get_value_tuple() other_x, other_y, other_z = other_color.get_value_tuple() dist = math.sqrt(pow((one_x - other_x), 2) + pow((one_y - other_y), 2) + pow((one_z - other_z), 2)) return dist def closest(cloud, color, mode='source color'): # cloud is the pointcloud list, color is colormath.color_objects # mode is either "source color" or "dest color" smallest_distance_so_far = 10000 for point in cloud: d = distance(color, point[mode]) if d < smallest_distance_so_far: smallest_distance_so_far = d closest = point return closest def octant_split(pointcloud, color): # Divide the pointcloud into octants around the given color, # which is an instance from colormath.color_objects # Do not return empty octants. labeled_points = [] color_tuple = color.get_value_tuple() for point in pointcloud: labeled_point = {'point': point} point_tuple = point['source color'].get_value_tuple() if point_tuple[0] >= color_tuple[0]: labeled_point['x_dir'] = '+' else: labeled_point['x_dir'] = '-' if point_tuple[1] >= color_tuple[1]: labeled_point['y_dir'] = '+' else: labeled_point['y_dir'] = '-' if point_tuple[2] >= color_tuple[2]: labeled_point['z_dir'] = '+' else: labeled_point['z_dir'] = '-' labeled_points.append(labeled_point) octants = [('+', '+', '+'), ('-', '+', '+'), ('-', '-', '+'), ('+', '-', '+'), ('+', '+', '-'), ('-', '+', '-'), ('-', '-', '-'), ('+', '-', '-'), ] split_octants = [] for octant in octants: split_octants.append([labeled_point['point'] for labeled_point in labeled_points if (labeled_point['x_dir'], labeled_point['y_dir'], labeled_point['z_dir']) == octant]) # remove empty octants out = tuple( [octant for octant in split_octants if octant != []] ) return out def closest_in_each_octant(pointcloud, color): octants = octant_split(pointcloud, color) out = [closest(i, color) for i in octants] return tuple(out) def weighted_dest_color(pointcloud, color): nearest_points = closest_in_each_octant(pointcloud, color) total_weight = 0 total_vector = (0, 0, 0) for point in nearest_points: d = distance(color, point['source color']) if d == 0: return point['source color'] else: total_weight += (1 / d) for i, point in enumerate(nearest_points): # calculate vector from source color to destination color source = point['source color'].get_value_tuple() dest = point['dest color'].get_value_tuple() vector = np.subtract(dest, source) # weight vector and normalize weight = (1 / distance(color, point['source color'])) / total_weight # print 'distance:', distance(color, point['source color']), 'inverted:', 1/distance(color, point['source color']), 'weight:', weight # print vector weighted_vector = [ n * weight for n in vector] # print weighted_vector total_vector = np.add(total_vector, weighted_vector) # print total_vector dest_color = np.add(color.get_value_tuple(), total_vector) typ = type(color) return typ(dest_color[0], dest_color[1], dest_color[2], observer=color.observer, illuminant=color.illuminant) def image_to_dest(pointcloud, image, dither_error=True): dest_image = np.zeros(image.shape, dtype="uint8") error_collection = np.zeros(image.shape) for row_number in range(len(image)): # print 'row:', row_number for column_number in range(len(image[0])): raw_rgb = image[row_number][column_number] srgb = sRGBColor(raw_rgb[0], raw_rgb[1], raw_rgb[2], is_upscaled=True) xyz = convert_color(srgb, XYZColor) dest_xyz = weighted_dest_color(pointcloud, xyz) dest_srgb = convert_color(dest_xyz, sRGBColor) if dither_error: r,g,b = np.add(dest_srgb.get_value_tuple(), error_collection[row_number][column_number]) else: r,g,b = dest_srgb.get_value_tuple() # print 'xxx', dest_srgb, r, g, b # print dest_srgb.get_value_tuple() # print error_collection[row_number][column_number] upscaled_srgb = sRGBColor(r, g, b).get_upscaled_value_tuple() dest_image[row_number][column_number] = upscaled_srgb if dither_error: rounded_srgb = sRGBColor(upscaled_srgb[0], upscaled_srgb[1], upscaled_srgb[2], is_upscaled=True) rounding_error = np.subtract(dest_srgb.get_value_tuple(), rounded_srgb.get_value_tuple()) # do Floyd-Steinberg dither # over try: error_collection[row_number][column_number + 1] += rounding_error * 7 / 16 except IndexError: pass # It's the end of the line, don't worry about it. # down and back try: error_collection[row_number + 1][column_number - 1] += rounding_error * 3 / 16 except IndexError: pass # down try: error_collection[row_number + 1][column_number] += rounding_error * 5 / 16 except IndexError: pass # down and over try: error_collection[row_number + 1][column_number + 1] += rounding_error * 1 / 16 except IndexError: pass dest_image[row_number][column_number] = upscaled_srgb # print dest_image[row_number][column_number], raw_rgb, upscaled_srgb # print "error collection:\n", error_collection return dest_image if __name__ == "__main__": import checks checks.run() cloud = import_pointcloud(source_file = "./img/wedge_dslr.tif", dest_file = "./img/wedge_instax.tif") # cloud = import_pointcloud(source_file = "./img/wedge_dslr.tif", # dest_file = "./img/wedge_dslr.tif") selected_colors = ['Red', 'Green', 'Blue', 'Cyan', 'Magenta', 'Yellow', 'Neutral 5'] # selected_colors = ["White", "Neutral 8", "Neutral 6.5", "Neutral 5", "Neutral 3.5", "Black"] # selected_colors = macbeth_patch_names selected_cloud = filter_pointcloud(cloud, color_names=selected_colors) dedup = filter_duplicate_source_points(selected_cloud) source_image = imread("./img/lego.jpg") dest_image = image_to_dest(dedup, source_image, dither_error=True) cloud = import_pointcloud(source_file = "./img/wedge_dslr.tif", dest_file = "./img/wedge_instax-tweaked2.tif") dedup = filter_duplicate_source_points(cloud) dest_two = image_to_dest(dedup, source_image, dither_error=True) # imsave("./out.jpg", dest_image) plt.figure(1) plt.subplot(221) plt.imshow(source_image, interpolation='nearest') plt.title('original') plt.subplot(222) plt.imshow(dest_image, interpolation='nearest') plt.title('wedge-instax') plt.subplot(223) plt.imshow(dest_two, interpolation='nearest') plt.title('wedge-instax-tweaked2') plt.subplot(224) cloud = import_pointcloud(source_file = "./img/wedge_dslr.tif", dest_file = "./img/wedge_dslr.tif") dedup = filter_duplicate_source_points(cloud) dest_two = image_to_dest(dedup, source_image, dither_error=True) plt.imshow(dest_two, interpolation='nearest') plt.title('wedge_dslr') plt.show()
35.054487
170
0.715918
ee5e567eaedebe80df7df39e83d8e795870f83b1
955
py
Python
robotathome/log.py
goyoambrosio/RobotAtHome_API
91864b4cf06202656def6b66ac348708337a9d52
[ "MIT" ]
1
2021-02-21T09:31:25.000Z
2021-02-21T09:31:25.000Z
robotathome/log.py
goyoambrosio/RobotAtHome_API
91864b4cf06202656def6b66ac348708337a9d52
[ "MIT" ]
null
null
null
robotathome/log.py
goyoambrosio/RobotAtHome_API
91864b4cf06202656def6b66ac348708337a9d52
[ "MIT" ]
null
null
null
""" Logger related functions for robotathome package This script requires that `loguru` be installed within the Python environment you are running this script in. Install with: conda install -c conda-forge loguru pip install loguru """ import sys # import loguru from loguru import logger logger.disable("robotathome") def enable_logger(sink=sys.stderr, level="WARNING"): """ Enable the logging of messages. Configure the ``logger`` variable imported from ``loguru``. Args: sink (file): An opened file pointer, or stream handler. Default to standard error. level (str): The log level to use. Possible values are TRACE, DEBUG, INFO, WARNING, ERROR, CRITICAL. Default to WARNING. (*) Extracted from aria2p project """ logger.remove() logger.configure(handlers=[{"sink": sink, "level": level}]) logger.enable("robotathome")
24.487179
76
0.657592
b77daf21ef08950ba54f46383457d6fa71ae0a44
1,050
py
Python
aalh_iit_buildings_008/cleanup-description-pipes.py
johndewees/iitmigration
4dadfbecda719d6e7d60af076a231aedec3c862f
[ "Unlicense" ]
null
null
null
aalh_iit_buildings_008/cleanup-description-pipes.py
johndewees/iitmigration
4dadfbecda719d6e7d60af076a231aedec3c862f
[ "Unlicense" ]
null
null
null
aalh_iit_buildings_008/cleanup-description-pipes.py
johndewees/iitmigration
4dadfbecda719d6e7d60af076a231aedec3c862f
[ "Unlicense" ]
null
null
null
from openpyxl import load_workbook filename = 'aalh_iit_buildings_008.xlsx' wb = load_workbook(filename) ws = wb['Metadata Template'] minimumcol = 8 maximumcol = 8 minimumrow = 7 maximumrow = 517 iterationrow = 7 targetcol = 13 titlecol = 2 desccol = 8 for row in ws.iter_rows(min_row=minimumrow, min_col=minimumcol, max_row=maximumrow, max_col=maximumcol): testvar = ws.cell(row=iterationrow, column=desccol).value for cell in row: if testvar.endswith('|'): desc = testvar[:-1] desc = desc.strip() ws.cell(row=iterationrow, column=desccol).value = desc print(iterationrow,'PIPE FOUND END') elif testvar.find(': |') != -1: desc2 = testvar.replace(': |',':') ws.cell(row=iterationrow, column=desccol).value = desc2 print(iterationrow,'PIPE FOUND START') else: continue iterationrow = iterationrow + 1 print('***FINISHED SEARCHING FOR PIPES***') wb.save("aalh_iit_buildings_008.xlsx")
31.818182
105
0.631429
58803a32e192a4a0aa973566899362e5752ea404
779
py
Python
av-s14/empresa_4/q2/Mapper.py
felipelssilva/fudamento-de-big-data
74ab67c29a28367f78b44da537ba6020381766b2
[ "MIT" ]
null
null
null
av-s14/empresa_4/q2/Mapper.py
felipelssilva/fudamento-de-big-data
74ab67c29a28367f78b44da537ba6020381766b2
[ "MIT" ]
null
null
null
av-s14/empresa_4/q2/Mapper.py
felipelssilva/fudamento-de-big-data
74ab67c29a28367f78b44da537ba6020381766b2
[ "MIT" ]
null
null
null
#!/usr/bin/env python import sys import re COMPANY = "@Empresa4" BADWORDS = ['worst', 'bad', 'never', 'horrible', 'terrible'] def findbadwords(tweet): for bad in BADWORDS: if len(re.findall(bad, tweet)) > 0: return True else: return False def isquestion(tweet): if tweet.find("?") >= 0: return True else: return False def isforcompany(tweet): if tweet.find(COMPANY) >= 0: return True else: return False for line in sys.stdin: fields = line.split(';') id_tweet = fields[0] id_autor = fields[1] data_criacao = fields[2] tweet = fields[3] if isforcompany(tweet) and not(isquestion(tweet)) and not(findbadwords(tweet)): print '%s\t%s' % (id_autor, 1)
20.5
83
0.590501
0841b65f699e6d7524db465f7d9cca8746ca43f5
14,258
py
Python
shapefit/deform/src/deformation/preproc.py
alexeybokhovkin/CAD-Deform
462fc6c97d91cc579f9e5551ed983cc10ecb9976
[ "MIT" ]
78
2020-03-12T12:09:44.000Z
2022-02-28T12:19:47.000Z
shapefit/deform/src/deformation/preproc.py
alexeybokhovkin/CAD-Deform
462fc6c97d91cc579f9e5551ed983cc10ecb9976
[ "MIT" ]
3
2021-01-19T14:40:38.000Z
2021-09-28T12:56:23.000Z
shapefit/deform/src/deformation/preproc.py
alexeybokhovkin/CAD-Deform
462fc6c97d91cc579f9e5551ed983cc10ecb9976
[ "MIT" ]
8
2021-01-20T06:16:28.000Z
2022-01-14T05:27:14.000Z
import numpy as np import trimesh from trimesh.grouping import clusters from .utils import filter_edges_by_parts def compute_bitriangles(mesh_unique_faces, mesh_unique_edges): bitriangles = {} for face in mesh_unique_faces: edge_1 = tuple(sorted([face[0], face[1]])) if edge_1 not in bitriangles: bitriangles[edge_1] = {face[0], face[1], face[2]} else: bitriangles[edge_1].add(face[2]) edge_2 = tuple(sorted([face[1], face[2]])) if edge_2 not in bitriangles: bitriangles[edge_2] = {face[0], face[1], face[2]} else: bitriangles[edge_2].add(face[0]) edge_3 = tuple(sorted([face[0], face[2]])) if edge_3 not in bitriangles: bitriangles[edge_3] = {face[0], face[1], face[2]} else: bitriangles[edge_3].add(face[1]) bitriangles_aligned = np.empty((len(mesh_unique_edges), 4), dtype=int) for j, edge in enumerate(mesh_unique_edges): bitriangle = [*sorted(edge)] bitriangle += [x for x in list(bitriangles[tuple(sorted(edge))]) if x not in bitriangle] bitriangles_aligned[j] = bitriangle return bitriangles_aligned def level_merger(data_object, partnet_map, part_levels, global_part_ids, level='map_0k_8'): data_object_merged = data_object.copy() partnet_map_merged = partnet_map.copy() object_part_ids = global_part_ids[global_part_ids['object_id'] == data_object_merged['object_id']] part_to_global_id = {} for index, row in object_part_ids.iterrows(): part_to_global_id[index] = row['part_dir_name'] global_id_to_merge = {} for global_id in part_to_global_id.keys(): global_id_to_merge[global_id] = part_levels.iloc[global_id][level] part_name_to_merge = {} for global_id in global_id_to_merge.keys(): if global_id_to_merge[global_id] not in part_name_to_merge: part_name_to_merge[global_id_to_merge[global_id]] = [] part_name_to_merge[global_id_to_merge[global_id]] += [part_to_global_id[global_id]] new_parts_list = list(part_name_to_merge.values()) new_parts_dict = {} old_parts_to_new = {} for i, new_part in enumerate(new_parts_list): new_part_points = [] old_parts = [] for old_part in new_part: old_parts += [old_part] if old_part in data_object_merged['parts_vertices_p2p']: new_part_points += [data_object_merged['parts_vertices_p2p'][old_part]] if len(new_part_points) > 0: new_part_points = np.vstack(new_part_points) new_parts_dict['merged-new-{}'.format(i)] = new_part_points for old_part in old_parts: old_parts_to_new[old_part] = 'merged-new-{}'.format(i) data_object_merged['parts_vertices_p2p'] = new_parts_dict for key in partnet_map_merged: old_part = partnet_map_merged[key][0].split('.')[0] partnet_map_merged[key] = (old_parts_to_new[old_part] + '.obj', partnet_map_merged[key][1], partnet_map_merged[key][2]) return data_object_merged, partnet_map_merged def find_sharp_edges(mesh, data_object, sharp_edges, partnet_map): part_sharp_edges_ids = None if data_object['shapenet_id'] in sharp_edges: if data_object['object_id'] in sharp_edges[data_object['shapenet_id']]: sharp_edges_for_mesh = sharp_edges[data_object['shapenet_id']][data_object['object_id']] non_conflict_edges, conflict_edges = filter_edges_by_parts(sharp_edges_for_mesh, partnet_map) unique_edges_to_vertices = {i: list(x) for i, x in enumerate(mesh.edges_unique)} vertices_to_unique_edges = {tuple(unique_edges_to_vertices[i]): i for i in unique_edges_to_vertices} part_sharp_edges_ids = [] for part_id in non_conflict_edges: part_edges = non_conflict_edges[part_id] edges_ids = [] for edge in part_edges: try: if tuple(edge) in vertices_to_unique_edges: edges_ids += [vertices_to_unique_edges[tuple(edge)]] else: edges_ids += [vertices_to_unique_edges[tuple(edge[::-1])]] except: continue part_sharp_edges_ids += [edges_ids] return part_sharp_edges_ids def split_vertices_by_parts(part_names, partnet_map): parts_idx = [[] for _ in range(len(part_names))] for k in partnet_map: for i, part in enumerate(part_names): if partnet_map[k][0] == part: parts_idx[i] += [k] return parts_idx def transform_voxels_to_origin(data_object, all_parts, transform, parts_idx): voxel_centers_p2p = [] surface_samples_p2p = [] for i, part in enumerate(all_parts): part_samples_ids = parts_idx[i] surface_samples_p2p += [part_samples_ids] points = data_object['parts_vertices_p2p'][part.split('.')[0]] points = np.hstack([points, np.ones(len(points))[:, None]]) points = (points @ np.linalg.inv(transform).T)[:, :3] voxel_centers_p2p += [points] return voxel_centers_p2p, surface_samples_p2p def filter_voxels_by_clustering(voxel_centers): voxel_centers_new = [] for points in voxel_centers: if len(points) > 0: if len(points) != 1: groups = clusters(points, 0.1) else: groups = np.array([[0]]) groups_lens = [len(group) for group in groups] if len(groups_lens) == 0: voxel_centers_new += [[]] else: max_group_id = np.argmax(groups_lens) new_group = groups[max_group_id] voxel_centers_new += [points[new_group]] else: voxel_centers_new += [[]] return voxel_centers_new def neighboring_scene_voxel_parts(voxel_centers): neighboring_voxel_centers_ids = [] for i, points_i in enumerate(voxel_centers): for j, points_j in enumerate(voxel_centers): if j > i and len(points_i) > 0 and len(points_j) > 0: min_dist = np.min(np.sum((points_i[None, ...] - points_j[:, None, :]) ** 2, axis=2)) if min_dist < 0.05: neighboring_voxel_centers_ids += [(i, j)] return neighboring_voxel_centers_ids def filter_scene_voxel_parts_with_obb(voxel_centers, neighboring_voxel_centers_ids): point_clouds = [] for i, points in enumerate(voxel_centers): if len(points) > 0: point_clouds += [trimesh.points.PointCloud(points)] else: point_clouds += [[]] neighbors_to_merge = [] for neighbors in neighboring_voxel_centers_ids: try: if point_clouds[neighbors[0]] != [] and point_clouds[neighbors[1]] != []: bbox_1 = point_clouds[neighbors[0]].bounding_box_oriented bbox_2 = point_clouds[neighbors[1]].bounding_box_oriented point_cloud_merge = trimesh.points.PointCloud(np.vstack([voxel_centers[neighbors[0]], voxel_centers[neighbors[1]]])) bbox_merge = point_cloud_merge.bounding_box_oriented volume_1 = bbox_1.volume volume_2 = bbox_2.volume volume_merge = bbox_merge.volume max_volume = max(volume_1, volume_2) if volume_merge / max_volume < 1.3: if volume_1 > volume_2: major = neighbors[0] minor = neighbors[1] else: major = neighbors[1] minor = neighbors[0] neighbors_to_merge += [(major, minor)] except: continue for neighbors in neighbors_to_merge: if len(voxel_centers[neighbors[1]]) > 0 and len(voxel_centers[neighbors[0]]) > 0: voxel_centers[neighbors[0]] = np.vstack([voxel_centers[neighbors[0]], voxel_centers[neighbors[1]]]) voxel_centers[neighbors[1]] = [] return voxel_centers def find_corresondences_with_obb(voxel_centers, mesh, parts_idx, make_bbox_transform=False): bbox_transforms = [] bboxes_vertices = [] bboxes_voxels = [] if make_bbox_transform: for i, points in enumerate(voxel_centers): try: vertices = mesh.vertices[parts_idx[i]] if len(points) != 0: bbox_vertices = trimesh.points.PointCloud(vertices).bounding_box_oriented bbox_voxels = trimesh.points.PointCloud(points).bounding_box_oriented bboxes_vertices += [bbox_vertices.vertices] bboxes_voxels += [bbox_voxels.vertices] vertices_box_vicinities = [[i] for i in range(len(bbox_vertices.vertices))] noncorrect_edges = [] for facet in bbox_vertices.facets: face_1 = bbox_vertices.faces[facet[0]] face_2 = bbox_vertices.faces[facet[1]] intersection = list(set(face_1).intersection(set(face_2))) noncorrect_edges += [intersection] noncorrect_edges = np.sort(np.array(noncorrect_edges), axis=1) noncorrect_edges = [tuple(x) for x in noncorrect_edges] all_edges = np.sort(bbox_vertices.edges_unique, axis=1) all_edges = [tuple(x) for x in all_edges] correct_edges = [x for x in all_edges if x not in noncorrect_edges] for edge in correct_edges: vertices_box_vicinities[edge[0]] += [edge[1]] vertices_box_vicinities[edge[1]] += [edge[0]] anchor_vertices_vicinity = vertices_box_vicinities[0] voxels_box_vicinities = [[i] for i in range(len(bbox_voxels.vertices))] noncorrect_edges = [] for facet in bbox_voxels.facets: face_1 = bbox_voxels.faces[facet[0]] face_2 = bbox_voxels.faces[facet[1]] intersection = list(set(face_1).intersection(set(face_2))) noncorrect_edges += [intersection] noncorrect_edges = np.sort(np.array(noncorrect_edges), axis=1) noncorrect_edges = [tuple(x) for x in noncorrect_edges] all_edges = np.sort(bbox_voxels.edges_unique, axis=1) all_edges = [tuple(x) for x in all_edges] correct_edges = [x for x in all_edges if x not in noncorrect_edges] for edge in correct_edges: voxels_box_vicinities[edge[0]] += [edge[1]] voxels_box_vicinities[edge[1]] += [edge[0]] voxels_full_vicinities = [] for vicinity in voxels_box_vicinities: three_other_vertices = vicinity[1:] voxels_full_vicinities += [vicinity] voxels_full_vicinities += [ [vicinity[0], three_other_vertices[1], three_other_vertices[2], three_other_vertices[0]]] voxels_full_vicinities += [ [vicinity[0], three_other_vertices[2], three_other_vertices[0], three_other_vertices[1]]] best_dist = 100 vertices_target = np.array(bbox_vertices.vertices[anchor_vertices_vicinity]) vertices_target = np.hstack([vertices_target, np.ones(len(vertices_target))[:, None]]) for vicinity in voxels_full_vicinities: voxels_source = np.array(bbox_voxels.vertices[vicinity]) voxels_source = np.hstack([voxels_source, np.ones(len(voxels_source))[:, None]]) transform = np.linalg.inv(voxels_source) @ vertices_target if transform[0, 0] > 0 and transform[1, 1] > 0 and transform[2, 2] > 0: dist = np.sum((transform[:3, :3] - np.eye(3)) ** 2) if dist < best_dist: best_dist = dist if best_dist < 0: # choose transform here or np.eye(4) bbox_transforms += [transform] else: bbox_transforms += [np.eye(4)] else: bbox_transforms += [np.eye(4)] except: bbox_transforms += [np.eye(4)] else: bbox_transforms = [np.eye(4) for _ in voxel_centers] min_init_dists = [] min_transformed_dists = [] mesh_vertices_nn = [] voxel_centers_nn = [] parts_vertices = [] parts_voxels = [] parts_voxels_transformed = [] for i, points in enumerate(voxel_centers): if len(points) != 0: vertices = mesh.vertices[parts_idx[i]] parts_vertices += [vertices] voxels = np.hstack([points, np.ones(len(points))[:, None]]) parts_voxels += [voxels[:, :3]] voxels_transformed = (voxels @ bbox_transforms[i])[:, :3] parts_voxels_transformed += [voxels_transformed] vertices_idx = [] for j, point in enumerate(voxels_transformed): dists = np.sum((vertices - point) ** 2, axis=1) min_vertex_id = np.argmin(dists) min_init_dist = np.sum((mesh.vertices[parts_idx[i]][min_vertex_id] - voxels[j][:3]) ** 2) if min_init_dist < 0.01: min_init_dists += [min_init_dist] min_transformed_dists += [min(dists)] vertices_idx += [parts_idx[i][min_vertex_id]] voxel_centers_nn += [voxels[j][:3]] mesh_vertices_nn += vertices_idx return voxel_centers_nn, mesh_vertices_nn
47.211921
117
0.580797
1e9a61587116f4d44f94c6f0093fe33e3b533c3a
9,367
py
Python
SALib/util/__init__.py
LRY0111/SensitivityAnalysis-python
b48607fafb818f6d90490cd71dfc6f9f39f65d95
[ "Apache-2.0" ]
null
null
null
SALib/util/__init__.py
LRY0111/SensitivityAnalysis-python
b48607fafb818f6d90490cd71dfc6f9f39f65d95
[ "Apache-2.0" ]
null
null
null
SALib/util/__init__.py
LRY0111/SensitivityAnalysis-python
b48607fafb818f6d90490cd71dfc6f9f39f65d95
[ "Apache-2.0" ]
2
2019-09-22T05:30:21.000Z
2021-12-02T03:15:31.000Z
"""A set of utility functions """ from collections import OrderedDict import csv from warnings import warn import numpy as np import scipy as sp __all__ = ["scale_samples", "read_param_file"] def scale_samples(params, bounds): '''Rescale samples in 0-to-1 range to arbitrary bounds Arguments --------- bounds : list list of lists of dimensions `num_params`-by-2 params : numpy.ndarray numpy array of dimensions `num_params`-by-:math:`N`, where :math:`N` is the number of samples ''' # Check bounds are legal (upper bound is greater than lower bound) b = np.array(bounds) lower_bounds = b[:, 0] upper_bounds = b[:, 1] if np.any(lower_bounds >= upper_bounds): raise ValueError("Bounds are not legal") # This scales the samples in-place, by using the optional output # argument for the numpy ufunctions # The calculation is equivalent to: # sample * (upper_bound - lower_bound) + lower_bound np.add(np.multiply(params, (upper_bounds - lower_bounds), out=params), lower_bounds, out=params) def unscale_samples(params, bounds): """Rescale samples from arbitrary bounds back to [0,1] range Arguments --------- bounds : list list of lists of dimensions num_params-by-2 params : numpy.ndarray numpy array of dimensions num_params-by-N, where N is the number of samples """ # Check bounds are legal (upper bound is greater than lower bound) b = np.array(bounds) lower_bounds = b[:, 0] upper_bounds = b[:, 1] if np.any(lower_bounds >= upper_bounds): raise ValueError("Bounds are not legal") # This scales the samples in-place, by using the optional output # argument for the numpy ufunctions # The calculation is equivalent to: # (sample - lower_bound) / (upper_bound - lower_bound) np.divide(np.subtract(params, lower_bounds, out=params), np.subtract(upper_bounds, lower_bounds), out=params) def nonuniform_scale_samples(params, bounds, dists): """Rescale samples in 0-to-1 range to other distributions Arguments --------- problem : dict problem definition including bounds params : numpy.ndarray numpy array of dimensions num_params-by-N, where N is the number of samples dists : list list of distributions, one for each parameter unif: uniform with lower and upper bounds triang: triangular with width (scale) and location of peak location of peak is in percentage of width lower bound assumed to be zero norm: normal distribution with mean and standard deviation lognorm: lognormal with ln-space mean and standard deviation """ b = np.array(bounds) # initializing matrix for converted values conv_params = np.zeros_like(params) # loop over the parameters for i in range(conv_params.shape[1]): # setting first and second arguments for distributions b1 = b[i][0] b2 = b[i][1] if dists[i] == 'triang': # checking for correct parameters if b1 <= 0 or b2 <= 0 or b2 >= 1: raise ValueError('''Triangular distribution: Scale must be greater than zero; peak on interval [0,1]''') else: conv_params[:, i] = sp.stats.triang.ppf( params[:, i], c=b2, scale=b1, loc=0) elif dists[i] == 'unif': if b1 >= b2: raise ValueError('''Uniform distribution: lower bound must be less than upper bound''') else: conv_params[:, i] = params[:, i] * (b2 - b1) + b1 elif dists[i] == 'norm': if b2 <= 0: raise ValueError('''Normal distribution: stdev must be > 0''') else: conv_params[:, i] = sp.stats.norm.ppf( params[:, i], loc=b1, scale=b2) # lognormal distribution (ln-space, not base-10) # paramters are ln-space mean and standard deviation elif dists[i] == 'lognorm': # checking for valid parameters if b2 <= 0: raise ValueError( '''Lognormal distribution: stdev must be > 0''') else: conv_params[:, i] = np.exp( sp.stats.norm.ppf(params[:, i], loc=b1, scale=b2)) else: valid_dists = ['unif', 'triang', 'norm', 'lognorm'] raise ValueError('Distributions: choose one of %s' % ", ".join(valid_dists)) return conv_params def read_param_file(filename, delimiter=None): """Unpacks a parameter file into a dictionary Reads a parameter file of format:: Param1,0,1,Group1,dist1 Param2,0,1,Group2,dist2 Param3,0,1,Group3,dist3 (Group and Dist columns are optional) Returns a dictionary containing: - names - the names of the parameters - bounds - a list of lists of lower and upper bounds - num_vars - a scalar indicating the number of variables (the length of names) - groups - a list of group names (strings) for each variable - dists - a list of distributions for the problem, None if not specified or all uniform Arguments --------- filename : str The path to the parameter file delimiter : str, default=None The delimiter used in the file to distinguish between columns """ names = [] bounds = [] groups = [] dists = [] num_vars = 0 fieldnames = ['name', 'lower_bound', 'upper_bound', 'group', 'dist'] with open(filename, 'rU') as csvfile: dialect = csv.Sniffer().sniff(csvfile.read(1024), delimiters=delimiter) csvfile.seek(0) reader = csv.DictReader( csvfile, fieldnames=fieldnames, dialect=dialect) for row in reader: if row['name'].strip().startswith('#'): pass else: num_vars += 1 names.append(row['name']) bounds.append( [float(row['lower_bound']), float(row['upper_bound'])]) # If the fourth column does not contain a group name, use # the parameter name if row['group'] is None: groups.append(row['name']) elif row['group'] is 'NA': groups.append(row['name']) else: groups.append(row['group']) # If the fifth column does not contain a distribution # use uniform if row['dist'] is None: dists.append('unif') else: dists.append(row['dist']) if groups == names: groups = None elif len(set(groups)) == 1: raise ValueError('''Only one group defined, results will not be meaningful''') # setting dists to none if all are uniform # because non-uniform scaling is not needed if all([d == 'unif' for d in dists]): dists = None return {'names': names, 'bounds': bounds, 'num_vars': num_vars, 'groups': groups, 'dists': dists} def compute_groups_matrix(groups): """Generate matrix which notes factor membership of groups Computes a k-by-g matrix which notes factor membership of groups where: k is the number of variables (factors) g is the number of groups Also returns a g-length list of unique group_names whose positions correspond to the order of groups in the k-by-g matrix Arguments --------- groups : list Group names corresponding to each variable Returns ------- tuple containing group matrix assigning parameters to groups and a list of unique group names """ if not groups: return None num_vars = len(groups) # Get a unique set of the group names unique_group_names = list(OrderedDict.fromkeys(groups)) number_of_groups = len(unique_group_names) indices = dict([(x, i) for (i, x) in enumerate(unique_group_names)]) output = np.zeros((num_vars, number_of_groups), dtype=np.int) for parameter_row, group_membership in enumerate(groups): group_index = indices[group_membership] output[parameter_row, group_index] = 1 return np.matrix(output), unique_group_names def requires_gurobipy(_has_gurobi): ''' Decorator function which takes a boolean _has_gurobi as an argument. Use decorate any functions which require gurobi. Raises an import error at runtime if gurobi is not present. Note that all runtime errors should be avoided in the working code, using brute force options as preference. ''' def _outer_wrapper(wrapped_function): def _wrapper(*args, **kwargs): if _has_gurobi: result = wrapped_function(*args, **kwargs) else: warn("Gurobi not available", ImportWarning) result = None return result return _wrapper return _outer_wrapper
33.09894
79
0.590584
841e5179b17e52301d46950c988598e67b7b7deb
230
py
Python
src/learners/__init__.py
TonghanWang/NDQ
575f2e243bac1a567c072dbea8e093aaa4959511
[ "Apache-2.0" ]
63
2020-02-23T09:37:15.000Z
2022-01-17T01:30:50.000Z
src/learners/__init__.py
fringsoo/NDQ
e243ba917e331065e82c6634cb1d756873747be5
[ "Apache-2.0" ]
14
2020-04-20T02:20:11.000Z
2022-03-12T00:16:33.000Z
src/learners/__init__.py
mig-zh/NDQ
5720e3e8b529724e8d96a9a24c73bca24a11e7f9
[ "Apache-2.0" ]
16
2020-03-12T02:57:52.000Z
2021-11-27T13:07:08.000Z
from .q_learner import QLearner from .coma_learner import COMALearner from .categorical_q_learner import CateQLearner REGISTRY = { "q_learner": QLearner, "coma_learner": COMALearner, "cate_q_learner": CateQLearner }
20.909091
47
0.769565
81fe9d3f36c58da40b1047d9eca64f0414d1dd62
1,117
py
Python
gitir_downloader/main.py
yankeexe/git.ir_downloader
7607ac2a92656625e94f754707e2b7a86fc40c75
[ "MIT" ]
4
2020-04-14T11:22:33.000Z
2020-09-17T07:20:15.000Z
gitir_downloader/main.py
yankeexe/git.ir_downloader
7607ac2a92656625e94f754707e2b7a86fc40c75
[ "MIT" ]
1
2020-04-14T16:22:34.000Z
2020-04-14T16:22:34.000Z
gitir_downloader/main.py
yankeexe/git.ir_downloader
7607ac2a92656625e94f754707e2b7a86fc40c75
[ "MIT" ]
1
2020-04-14T14:35:33.000Z
2020-04-14T14:35:33.000Z
import os import sys import argparse from gitir_downloader.parser import parse_url from gitir_downloader.downloader import download_files ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) def init_argparse(): """ Initialize argparse module for commandline argument parsing. """ parser = argparse.ArgumentParser( description="Download video files from git.ir links.", epilog="Enjoy the program :)", ) parser.add_argument("link", type=str, help="git.ir URL") parser.add_argument( "-n", "--name", help="Folder name to store the downloaded files" ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def start(): """ entry-point for the app """ try: args: argparse.Namespace = init_argparse() folder_title, LINKS = parse_url(args) download_files(folder_title, LINKS, args) except KeyboardInterrupt: print("Stopped Downloading!" + " \N{cross mark}") try: sys.exit(0) except SystemExit: os._exit(os.EX_OK)
23.765957
72
0.638317
8c9469b0558c593650fe0192ebd23e40e6bcf455
584
py
Python
setup.py
AustinRochford/webmc3
d0ba393a2c3c158d66984c895c99584f44ff1f33
[ "Apache-2.0" ]
46
2017-12-26T20:11:30.000Z
2021-09-10T11:03:20.000Z
setup.py
AustinRochford/webmc3
d0ba393a2c3c158d66984c895c99584f44ff1f33
[ "Apache-2.0" ]
5
2017-12-29T13:28:44.000Z
2018-01-07T00:51:32.000Z
setup.py
AustinRochford/webmc3
d0ba393a2c3c158d66984c895c99584f44ff1f33
[ "Apache-2.0" ]
8
2018-01-05T17:27:44.000Z
2021-07-27T10:08:04.000Z
#!/usr/bin/env python from os.path import realpath, dirname, join from setuptools import setup, find_packages import versioneer DISTNAME = 'webmc3' AUTHOR = 'Austin Rochford' AUTHOR_EMAIL = 'austin.rochford@gmail.com' VERSION = '0.1' PROJECT_ROOT = dirname(realpath(__file__)) REQUIREMENTS_FILE = join(PROJECT_ROOT, 'requirements.txt') with open(REQUIREMENTS_FILE) as reqfile: install_reqs = reqfile.read().splitlines() if __name__ == "__main__": setup(name=DISTNAME, version=VERSION, packages=find_packages(), install_requires=install_reqs)
26.545455
58
0.734589
e037925961f2bfc8b8906fa81c2d7908ea590a62
64,561
py
Python
tensorflow/python/client/session.py
elielhojman/tensorflow
163aae337c875efce2518c3cd0fecb61968fe408
[ "Apache-2.0" ]
5
2017-08-28T11:27:19.000Z
2021-08-03T17:40:00.000Z
tensorflow/python/client/session.py
elielhojman/tensorflow
163aae337c875efce2518c3cd0fecb61968fe408
[ "Apache-2.0" ]
1
2020-11-25T21:29:56.000Z
2021-06-11T05:31:49.000Z
tensorflow/python/client/session.py
elielhojman/tensorflow
163aae337c875efce2518c3cd0fecb61968fe408
[ "Apache-2.0" ]
4
2019-11-11T13:46:27.000Z
2020-03-14T05:36:53.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A client interface for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import re import threading import warnings import numpy as np from tensorflow.core.protobuf import config_pb2 from tensorflow.python import pywrap_tensorflow as tf_session from tensorflow.python.framework import device from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import session_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export class SessionInterface(object): """Base class for implementations of TensorFlow client sessions.""" @property def graph(self): """The underlying TensorFlow graph, to be used in building Operations.""" raise NotImplementedError('graph') @property def sess_str(self): """The TensorFlow process to which this session will connect.""" raise NotImplementedError('sess_str') def run(self, fetches, feed_dict=None, options=None, run_metadata=None): """Runs operations in the session. See `BaseSession.run()` for details.""" raise NotImplementedError('run') def partial_run_setup(self, fetches, feeds=None): """Sets up the feeds and fetches for partial runs in the session.""" raise NotImplementedError('partial_run_setup') def partial_run(self, handle, fetches, feed_dict=None): """Continues the execution with additional feeds and fetches.""" raise NotImplementedError('partial_run') def _get_indexed_slices_value_from_fetches(fetched_vals): return ops.IndexedSlicesValue(fetched_vals[0], fetched_vals[1], fetched_vals[2] if len(fetched_vals) == 3 else None) def _get_feeds_for_indexed_slices(feed, feed_val): return list( zip([feed.values, feed.indices] if feed.dense_shape is None else [feed.values, feed.indices, feed.dense_shape], feed_val)) # List of extensions supported to convert run arguments into actual fetches and # feeds. # # Each element in the list is a tuple of (Type, fetch_fn, feed_fn1, feed_fn2), # where the function signatures are: # fetch_fn : Type -> (list of Tensors, # lambda: list of fetched np.ndarray -> TypeVal) # feed_fn1 : Type, TypeVal -> list of (Tensor, value) # feed_fn2 : Type -> list of Tensors # # `fetch_fn` describes how to expand fetch into its # component Tensors and how to contract the fetched results back into # a single return value. # # Each feed function describes how to unpack a single fed value and map it to # feeds of one or more tensors and their corresponding values: `feed_fn1` is # used to feed a run, `feed_fn2` to set up a partial run. # # TODO(touts): We could reimplement these as specialized _FeedMapper # implementations after we refactor the feed handling code to use them. # # Eventually, this registration could be opened up to support custom Tensor # expansions. # pylint: disable=g-long-lambda _REGISTERED_EXPANSIONS = [ # SparseTensors are fetched as SparseTensorValues. They can be fed # SparseTensorValues or normal tuples. (sparse_tensor.SparseTensor, lambda fetch: ( [fetch.indices, fetch.values, fetch.dense_shape], lambda fetched_vals: sparse_tensor.SparseTensorValue(*fetched_vals)), lambda feed, feed_val: list(zip( [feed.indices, feed.values, feed.dense_shape], feed_val)), lambda feed: [feed.indices, feed.values, feed.dense_shape]), # IndexedSlices are fetched as IndexedSlicesValues. They can be fed # IndexedSlicesValues or normal tuples. (ops.IndexedSlices, lambda fetch: ( [fetch.values, fetch.indices] if fetch.dense_shape is None else [fetch.values, fetch.indices, fetch.dense_shape], _get_indexed_slices_value_from_fetches), _get_feeds_for_indexed_slices, lambda feed: [feed.values, feed.indices] if feed.dense_shape is None else [feed.values, feed.indices, feed.dense_shape]), # The default catches all other types and performs no expansions. (object, lambda fetch: ([fetch], lambda fetched_vals: fetched_vals[0]), lambda feed, feed_val: [(feed, feed_val)], lambda feed: [feed])] # pylint: enable=g-long-lambda def _convert_to_numpy_obj(numpy_dtype, obj): """Explicitly convert obj based on numpy type except for string type.""" return numpy_dtype(obj) if numpy_dtype is not object else str(obj) def register_session_run_conversion_functions( tensor_type, fetch_function, feed_function=None, feed_function_for_partial_run=None): """Register fetch and feed conversion functions for `tf.Session.run()`. This function registers a triple of conversion functions for fetching and/or feeding values of user-defined types in a call to tf.Session.run(). An example ```python class SquaredTensor(object): def __init__(self, tensor): self.sq = tf.square(tensor) #you can define conversion functions as follows: fetch_function = lambda squared_tensor:([squared_tensor.sq], lambda val: val[0]) feed_function = lambda feed, feed_val: [(feed.sq, feed_val)] feed_function_for_partial_run = lambda feed: [feed.sq] #then after invoking this register function, you can use as follows: session.run(squared_tensor1, feed_dict = {squared_tensor2 : some_numpy_array}) ``` Args: tensor_type: The type for which you want to register a conversion function. fetch_function: A callable that takes an object of type `tensor_type` and returns a tuple, where the first element is a list of `tf.Tensor` objects, and the second element is a callable that takes a list of ndarrays and returns an object of some value type that corresponds to `tensor_type`. fetch_function describes how to expand fetch into its component Tensors and how to contract the fetched results back into a single return value. feed_function: A callable that takes feed_key and feed_value as input, and returns a list of tuples (feed_tensor, feed_val), feed_key must have type `tensor_type`, and feed_tensor must have type `tf.Tensor`. Each feed function describes how to unpack a single fed value and map it to feeds of one or more tensors and their corresponding values. feed_function_for_partial_run: A callable for specifying tensor values to feed when setting up a partial run, which takes a `tensor_type` type object as input, and returns a list of Tensors. """ for conversion_function in _REGISTERED_EXPANSIONS: if issubclass(conversion_function[0], tensor_type): raise ValueError('%s has already been registered so ignore it.', tensor_type) return _REGISTERED_EXPANSIONS.insert(0, (tensor_type, fetch_function, feed_function, feed_function_for_partial_run)) class _FetchMapper(object): """Definition of the interface provided by fetch mappers. Fetch mappers are utility classes used by the _FetchHandler to handle arbitrary structures for the `fetch` argument to `Session.run()`. The `fetch` argument can be of various shapes: single tensor or op, list of fetches, tuple of fetches, namedtuple of fetches, or dict of fetches. The structures can be arbitrarily nested. The low level run() API only wants a list of tensor or op names. The various `_FetchMapper` subclasses below take care of handling the different shapes: uniquifying the fetches, and constructing results with the original shape. """ def unique_fetches(self): """Return the list of unique tensors or ops needed by this fetch mapper. Returns: A list of tensors or ops. """ raise NotImplementedError('Must be implemented by subclasses') def build_results(self, values): """Build results that match the original shape of the fetch. Args: values: List of values returned by run(). The values correspond exactly to the list tensors or ops returned by unique_fetches(). Returns: A struct of the same shape as the original fetch object handled by this fetch mapper. In the returned struct, the original fetches are replaced by their fetched values. """ raise NotImplementedError('Must be implemented by subclasses') @staticmethod def for_fetch(fetch): """Creates fetch mapper that handles the structure of `fetch`. The default graph must be the one from which we want to fetch values when this function is called. Args: fetch: An arbitrary fetch structure: singleton, list, tuple, namedtuple, or dict. Returns: An instance of a subclass of `_FetchMapper` that handles the shape. """ if fetch is None: raise TypeError('Fetch argument %r has invalid type %r' % (fetch, type(fetch))) elif isinstance(fetch, (list, tuple)): # NOTE(touts): This is also the code path for namedtuples. return _ListFetchMapper(fetch) elif isinstance(fetch, dict): return _DictFetchMapper(fetch) else: # Look for a handler in the registered expansions. for tensor_type, fetch_fn, _, _ in _REGISTERED_EXPANSIONS: if isinstance(fetch, tensor_type): fetches, contraction_fn = fetch_fn(fetch) return _ElementFetchMapper(fetches, contraction_fn) # Did not find anything. raise TypeError('Fetch argument %r has invalid type %r' % (fetch, type(fetch))) class _ElementFetchMapper(_FetchMapper): """Fetch mapper for singleton tensors and ops.""" def __init__(self, fetches, contraction_fn): """Creates an _ElementFetchMapper. This is the fetch mapper used for leaves in the fetch struct. Because of the expansions mechanism, a leaf can actually fetch more than one tensor. Also note that the fetches here can be just strings (tensor or op names) or any other object that the graph knows how to convert to a tensor, such as a Variable. So we have to run each fetch through `as_graph_element()` to get the corresponding tensor or op. Args: fetches: List of objects, as returned by a fetch_fn defined in _REGISTERED_EXPANSIONS. contraction_fn: Callable as returned by a fetch_fn. """ self._unique_fetches = [] for fetch in fetches: try: self._unique_fetches.append(ops.get_default_graph().as_graph_element( fetch, allow_tensor=True, allow_operation=True)) except TypeError as e: raise TypeError('Fetch argument %r has invalid type %r, ' 'must be a string or Tensor. (%s)' % (fetch, type(fetch), str(e))) except ValueError as e: raise ValueError('Fetch argument %r cannot be interpreted as a ' 'Tensor. (%s)' % (fetch, str(e))) except KeyError as e: raise ValueError('Fetch argument %r cannot be interpreted as a ' 'Tensor. (%s)' % (fetch, str(e))) self._contraction_fn = contraction_fn def unique_fetches(self): return self._unique_fetches def build_results(self, values): if not values: # 'Operation' case return None else: return self._contraction_fn(values) def _uniquify_fetches(fetch_mappers): """Uniquifies fetches from a list of fetch_mappers. This is a utility function used by _ListFetchMapper and _DictFetchMapper. It gathers all the unique fetches from a list of mappers and builds a list containing all of them but without duplicates (unique_fetches). It also returns a 2-D list of integers (values_indices) indicating at which index in unique_fetches the fetches of the mappers are located. This list is as follows: values_indices[mapper_index][mapper_fetch_index] = unique_fetches_index Args: fetch_mappers: list of fetch mappers. Returns: A list of fetches. A 2-D list of integers. """ unique_fetches = [] value_indices = [] seen_fetches = {} for m in fetch_mappers: m_value_indices = [] for f in m.unique_fetches(): j = seen_fetches.get(f) if j is None: j = len(seen_fetches) seen_fetches[f] = j unique_fetches.append(f) m_value_indices.append(j) value_indices.append(m_value_indices) return unique_fetches, value_indices class _ListFetchMapper(_FetchMapper): """Fetch mapper for lists, tuples, and namedtuples.""" def __init__(self, fetches): """Creates a _ListFetchMapper. Args: fetches: List, tuple, or namedtuple of fetches. """ self._fetch_type = type(fetches) self._mappers = [_FetchMapper.for_fetch(fetch) for fetch in fetches] self._unique_fetches, self._value_indices = _uniquify_fetches(self._mappers) def unique_fetches(self): return self._unique_fetches def build_results(self, values): # Create the list of results for each mapper. results = [] for m, vi in zip(self._mappers, self._value_indices): results.append(m.build_results([values[j] for j in vi])) # Return a value of the original type of the fetches. if issubclass(self._fetch_type, list): return results elif self._fetch_type == tuple: return tuple(results) else: # This is the code path for namedtuple. return self._fetch_type(*results) class _DictFetchMapper(_FetchMapper): """Fetch mapper for dicts.""" def __init__(self, fetches): """Creates a _DictFetchMapper. Args: fetches: Dict of fetches. """ self._fetch_type = type(fetches) self._keys = fetches.keys() self._mappers = [ _FetchMapper.for_fetch(fetch) for fetch in fetches.values() ] self._unique_fetches, self._value_indices = _uniquify_fetches(self._mappers) def unique_fetches(self): return self._unique_fetches def build_results(self, values): results = self._fetch_type() for k, m, vi in zip(self._keys, self._mappers, self._value_indices): results[k] = m.build_results([values[j] for j in vi]) return results class _FetchHandler(object): """Handler for structured fetches. Given a graph, a user-provided structure for fetches, and a feed dict, this class takes care of generating a list of tensor names to fetch and op names to run for a low level `run()` call. Given the results of the low level run call, this class can also rebuild a result structure matching the user-provided structure for fetches, but containing the corresponding results. """ # TODO(touts): Make this class also take care of destructuring the feed # dict instead of doing it in the callers. def __init__(self, graph, fetches, feeds, feed_handles=None): """Creates a fetch handler. Args: graph: Graph of the fetches. Used to check for fetchability and to convert all fetches to tensors or ops as needed. fetches: An arbitrary fetch structure: singleton, list, tuple, namedtuple, or dict. feeds: A feed dict where keys are Tensors. feed_handles: A dict from feed Tensors to TensorHandle objects used as direct feeds. """ with graph.as_default(): self._fetch_mapper = _FetchMapper.for_fetch(fetches) self._fetches = [] self._targets = [] self._feeds = feeds self._feed_handles = feed_handles or {} self._ops = [] self._fetch_handles = {} for fetch in self._fetch_mapper.unique_fetches(): if isinstance(fetch, ops.Operation): self._assert_fetchable(graph, fetch) self._targets.append(fetch) self._ops.append(True) else: self._assert_fetchable(graph, fetch.op) self._fetches.append(fetch) self._ops.append(False) # Remember the fetch if it is for a tensor handle. if (isinstance(fetch, ops.Tensor) and (fetch.op.type == 'GetSessionHandle' or fetch.op.type == 'GetSessionHandleV2')): self._fetch_handles[fetch] = fetch.op.inputs[0].dtype self._final_fetches = [x for x in self._fetches if x not in feeds] def _assert_fetchable(self, graph, op): if not graph.is_fetchable(op): raise ValueError( 'Operation %r has been marked as not fetchable.' % op.name) def fetches(self): """Return the unique names of tensors to fetch. Returns: A list of strings. """ return self._final_fetches def targets(self): """Return the unique names of ops to run. Returns: A list of strings. """ return self._targets def build_results(self, session, tensor_values): """Build results matching the original fetch shape. `tensor_values` must be a list of the same length as the one returned by `fetches()`, and holding the requested fetch values. This method builds a struct with the same shape as the original `fetches` passed to the constructor, in which the fetches are replaced by their fetched value. Args: session: The enclosing session. Used for tensor handles. tensor_values: List of values matching the list returned by fetches(). Returns: A structure of the same shape as the original `fetches` argument but containing tensors or None (for fetched ops). """ full_values = [] assert len(self._final_fetches) == len(tensor_values) i = 0 j = 0 for is_op in self._ops: if is_op: full_values.append(None) else: # If the fetch was in the feeds, use the fed value, otherwise # use the returned value. if self._fetches[i] in self._feed_handles: # A fetch had a corresponding direct TensorHandle feed. Call eval() # to obtain the Tensor value from the TensorHandle. value = self._feed_handles[self._fetches[i]].eval() else: value = self._feeds.get(self._fetches[i]) if value is None: value = tensor_values[j] j += 1 dtype = self._fetch_handles.get(self._fetches[i]) if dtype: full_values.append(session_ops.TensorHandle(value, dtype, session)) else: full_values.append(value) i += 1 assert j == len(tensor_values) return self._fetch_mapper.build_results(full_values) def _name_list(tensor_list): """Utility function for transitioning to the new session API. Args: tensor_list: a list of `Tensor`s. Returns: A list of each `Tensor`s name (as byte arrays). """ return [compat.as_bytes(t.name) for t in tensor_list] class _DeviceAttributes(object): """Struct-like object describing a device's attributes. Each device has 3 key properties: - name: the fully-qualified TensorFlow path to the device. For example: /job:worker/replica:0/task:3/device:CPU:0 - device_type: the type of the device (e.g. CPU, GPU, TPU, etc.) - memory_limit_bytes: the maximum amount of memory available on the device (in bytes). """ def __init__(self, name, device_type, memory_limit_bytes): self._name = device.canonical_name(name) self._device_type = device_type self._memory_limit_bytes = memory_limit_bytes @property def name(self): return self._name @property def device_type(self): return self._device_type @property def memory_limit_bytes(self): return self._memory_limit_bytes def __repr__(self): return '_DeviceAttributes(%s, %s, %d)' % ( self.name, self.device_type, self.memory_limit_bytes, ) class BaseSession(SessionInterface): """A class for interacting with a TensorFlow computation. The BaseSession enables incremental graph building with inline execution of Operations and evaluation of Tensors. """ def __init__(self, target='', graph=None, config=None): """Constructs a new TensorFlow session. Args: target: (Optional) The TensorFlow execution engine to connect to. graph: (Optional) The graph to be used. If this argument is None, the default graph will be used. config: (Optional) ConfigProto proto used to configure the session. Raises: tf.errors.OpError: Or one of its subclasses if an error occurs while creating the TensorFlow session. TypeError: If one of the arguments has the wrong type. """ if graph is None: self._graph = ops.get_default_graph() else: if not isinstance(graph, ops.Graph): raise TypeError('graph must be a tf.Graph, but got %s' % type(graph)) self._graph = graph self._opened = False self._closed = False self._current_version = 0 self._extend_lock = threading.Lock() if target is not None: try: self._target = compat.as_bytes(target) except TypeError: raise TypeError('target must be a string, but got %s' % type(target)) else: self._target = None self._delete_lock = threading.Lock() self._dead_handles = [] if config is not None: if not isinstance(config, config_pb2.ConfigProto): raise TypeError( 'config must be a tf.ConfigProto, but got %s' % type(config)) self._config = config self._add_shapes = config.graph_options.infer_shapes else: self._config = None self._add_shapes = False self._session = None opts = tf_session.TF_NewSessionOptions(target=self._target, config=config) try: # pylint: disable=protected-access self._session = tf_session.TF_NewSession(self._graph._c_graph, opts) # pylint: enable=protected-access finally: tf_session.TF_DeleteSessionOptions(opts) def list_devices(self): """Lists available devices in this session. ```python devices = sess.list_devices() for d in devices: print(d.name) ``` Each element in the list has the following properties: - `name`: A string with the full name of the device. ex: `/job:worker/replica:0/task:3/device:CPU:0` - `device_type`: The type of the device (e.g. `CPU`, `GPU`, `TPU`.) - `memory_limit`: The maximum amount of memory available on the device. Note: depending on the device, it is possible the usable memory could be substantially less. Raises: tf.errors.OpError: If it encounters an error (e.g. session is in an invalid state, or network errors occur). Returns: A list of devices in the session. """ raw_device_list = tf_session.TF_SessionListDevices(self._session) device_list = [] size = tf_session.TF_DeviceListCount(raw_device_list) for i in range(size): name = tf_session.TF_DeviceListName(raw_device_list, i) device_type = tf_session.TF_DeviceListType(raw_device_list, i) memory = tf_session.TF_DeviceListMemoryBytes(raw_device_list, i) device_list.append(_DeviceAttributes(name, device_type, memory)) tf_session.TF_DeleteDeviceList(raw_device_list) return device_list def close(self): """Closes this session. Calling this method frees all resources associated with the session. Raises: tf.errors.OpError: Or one of its subclasses if an error occurs while closing the TensorFlow session. """ if self._session and not self._closed: self._closed = True tf_session.TF_CloseSession(self._session) def __del__(self): # cleanly ignore all exceptions try: self.close() except Exception: # pylint: disable=broad-except pass if self._session is not None: try: tf_session.TF_DeleteSession(self._session) except AttributeError: # At shutdown, `c_api_util` or `tf_session` may have been garbage # collected, causing the above method calls to fail. In this case, # silently leak since the program is about to terminate anyway. pass self._session = None @property def graph(self): """The graph that was launched in this session.""" return self._graph @property def graph_def(self): """A serializable version of the underlying TensorFlow graph. Returns: A graph_pb2.GraphDef proto containing nodes for all of the Operations in the underlying TensorFlow graph. """ return self._graph.as_graph_def(add_shapes=self._add_shapes) @property def sess_str(self): return self._target def as_default(self): """Returns a context manager that makes this object the default session. Use with the `with` keyword to specify that calls to @{tf.Operation.run} or @{tf.Tensor.eval} should be executed in this session. ```python c = tf.constant(..) sess = tf.Session() with sess.as_default(): assert tf.get_default_session() is sess print(c.eval()) ``` To get the current default session, use @{tf.get_default_session}. *N.B.* The `as_default` context manager *does not* close the session when you exit the context, and you must close the session explicitly. ```python c = tf.constant(...) sess = tf.Session() with sess.as_default(): print(c.eval()) # ... with sess.as_default(): print(c.eval()) sess.close() ``` Alternatively, you can use `with tf.Session():` to create a session that is automatically closed on exiting the context, including when an uncaught exception is raised. *N.B.* The default session is a property of the current thread. If you create a new thread, and wish to use the default session in that thread, you must explicitly add a `with sess.as_default():` in that thread's function. *N.B.* Entering a `with sess.as_default():` block does not affect the current default graph. If you are using multiple graphs, and `sess.graph` is different from the value of @{tf.get_default_graph}, you must explicitly enter a `with sess.graph.as_default():` block to make `sess.graph` the default graph. Returns: A context manager using this session as the default session. """ return ops.default_session(self) def run(self, fetches, feed_dict=None, options=None, run_metadata=None): """Runs operations and evaluates tensors in `fetches`. This method runs one "step" of TensorFlow computation, by running the necessary graph fragment to execute every `Operation` and evaluate every `Tensor` in `fetches`, substituting the values in `feed_dict` for the corresponding input values. The `fetches` argument may be a single graph element, or an arbitrarily nested list, tuple, namedtuple, dict, or OrderedDict containing graph elements at its leaves. A graph element can be one of the following types: * An @{tf.Operation}. The corresponding fetched value will be `None`. * A @{tf.Tensor}. The corresponding fetched value will be a numpy ndarray containing the value of that tensor. * A @{tf.SparseTensor}. The corresponding fetched value will be a @{tf.SparseTensorValue} containing the value of that sparse tensor. * A `get_tensor_handle` op. The corresponding fetched value will be a numpy ndarray containing the handle of that tensor. * A `string` which is the name of a tensor or operation in the graph. The value returned by `run()` has the same shape as the `fetches` argument, where the leaves are replaced by the corresponding values returned by TensorFlow. Example: ```python a = tf.constant([10, 20]) b = tf.constant([1.0, 2.0]) # 'fetches' can be a singleton v = session.run(a) # v is the numpy array [10, 20] # 'fetches' can be a list. v = session.run([a, b]) # v is a Python list with 2 numpy arrays: the 1-D array [10, 20] and the # 1-D array [1.0, 2.0] # 'fetches' can be arbitrary lists, tuples, namedtuple, dicts: MyData = collections.namedtuple('MyData', ['a', 'b']) v = session.run({'k1': MyData(a, b), 'k2': [b, a]}) # v is a dict with # v['k1'] is a MyData namedtuple with 'a' (the numpy array [10, 20]) and # 'b' (the numpy array [1.0, 2.0]) # v['k2'] is a list with the numpy array [1.0, 2.0] and the numpy array # [10, 20]. ``` The optional `feed_dict` argument allows the caller to override the value of tensors in the graph. Each key in `feed_dict` can be one of the following types: * If the key is a @{tf.Tensor}, the value may be a Python scalar, string, list, or numpy ndarray that can be converted to the same `dtype` as that tensor. Additionally, if the key is a @{tf.placeholder}, the shape of the value will be checked for compatibility with the placeholder. * If the key is a @{tf.SparseTensor}, the value should be a @{tf.SparseTensorValue}. * If the key is a nested tuple of `Tensor`s or `SparseTensor`s, the value should be a nested tuple with the same structure that maps to their corresponding values as above. Each value in `feed_dict` must be convertible to a numpy array of the dtype of the corresponding key. The optional `options` argument expects a [`RunOptions`] proto. The options allow controlling the behavior of this particular step (e.g. turning tracing on). The optional `run_metadata` argument expects a [`RunMetadata`] proto. When appropriate, the non-Tensor output of this step will be collected there. For example, when users turn on tracing in `options`, the profiled info will be collected into this argument and passed back. Args: fetches: A single graph element, a list of graph elements, or a dictionary whose values are graph elements or lists of graph elements (described above). feed_dict: A dictionary that maps graph elements to values (described above). options: A [`RunOptions`] protocol buffer run_metadata: A [`RunMetadata`] protocol buffer Returns: Either a single value if `fetches` is a single graph element, or a list of values if `fetches` is a list, or a dictionary with the same keys as `fetches` if that is a dictionary (described above). Order in which `fetches` operations are evaluated inside the call is undefined. Raises: RuntimeError: If this `Session` is in an invalid state (e.g. has been closed). TypeError: If `fetches` or `feed_dict` keys are of an inappropriate type. ValueError: If `fetches` or `feed_dict` keys are invalid or refer to a `Tensor` that doesn't exist. """ options_ptr = tf_session.TF_NewBufferFromString( compat.as_bytes(options.SerializeToString())) if options else None run_metadata_ptr = tf_session.TF_NewBuffer() if run_metadata else None try: result = self._run(None, fetches, feed_dict, options_ptr, run_metadata_ptr) if run_metadata: proto_data = tf_session.TF_GetBuffer(run_metadata_ptr) run_metadata.ParseFromString(compat.as_bytes(proto_data)) finally: if run_metadata_ptr: tf_session.TF_DeleteBuffer(run_metadata_ptr) if options: tf_session.TF_DeleteBuffer(options_ptr) return result def partial_run(self, handle, fetches, feed_dict=None): """Continues the execution with more feeds and fetches. This is EXPERIMENTAL and subject to change. To use partial execution, a user first calls `partial_run_setup()` and then a sequence of `partial_run()`. `partial_run_setup` specifies the list of feeds and fetches that will be used in the subsequent `partial_run` calls. The optional `feed_dict` argument allows the caller to override the value of tensors in the graph. See run() for more information. Below is a simple example: ```python a = array_ops.placeholder(dtypes.float32, shape=[]) b = array_ops.placeholder(dtypes.float32, shape=[]) c = array_ops.placeholder(dtypes.float32, shape=[]) r1 = math_ops.add(a, b) r2 = math_ops.multiply(r1, c) h = sess.partial_run_setup([r1, r2], [a, b, c]) res = sess.partial_run(h, r1, feed_dict={a: 1, b: 2}) res = sess.partial_run(h, r2, feed_dict={c: res}) ``` Args: handle: A handle for a sequence of partial runs. fetches: A single graph element, a list of graph elements, or a dictionary whose values are graph elements or lists of graph elements (see documentation for `run`). feed_dict: A dictionary that maps graph elements to values (described above). Returns: Either a single value if `fetches` is a single graph element, or a list of values if `fetches` is a list, or a dictionary with the same keys as `fetches` if that is a dictionary (see documentation for `run`). Raises: tf.errors.OpError: Or one of its subclasses on error. """ # TODO(touts): Support feeding and fetching the same tensor. return self._run(handle, fetches, feed_dict, None, None) def partial_run_setup(self, fetches, feeds=None): """Sets up a graph with feeds and fetches for partial run. This is EXPERIMENTAL and subject to change. Note that contrary to `run`, `feeds` only specifies the graph elements. The tensors will be supplied by the subsequent `partial_run` calls. Args: fetches: A single graph element, or a list of graph elements. feeds: A single graph element, or a list of graph elements. Returns: A handle for partial run. Raises: RuntimeError: If this `Session` is in an invalid state (e.g. has been closed). TypeError: If `fetches` or `feed_dict` keys are of an inappropriate type. tf.errors.OpError: Or one of its subclasses if a TensorFlow error happens. """ def _feed_fn(feed): for tensor_type, _, _, feed_fn in _REGISTERED_EXPANSIONS: if isinstance(feed, tensor_type): return feed_fn(feed) raise TypeError('Feed argument %r has invalid type %r' % (feed, type(feed))) # Check session. if self._closed: raise RuntimeError('Attempted to use a closed Session.') if self.graph.version == 0: raise RuntimeError('The Session graph is empty. Add operations to the ' 'graph before calling run().') if feeds is None: feeds = [] # Create request. feed_list = [] # Validate and process feed_list. is_list_feed = isinstance(feeds, (list, tuple)) if not is_list_feed: feeds = [feeds] for feed in feeds: for subfeed in _feed_fn(feed): try: subfeed_t = self.graph.as_graph_element( subfeed, allow_tensor=True, allow_operation=False) # pylint: disable=protected-access feed_list.append(subfeed_t._as_tf_output()) # pylint: enable=protected-access except Exception as e: e.message = ('Cannot interpret feed_list key as Tensor: ' + e.message) e.args = (e.message,) raise e # Validate and process fetches. # TODO(touts): Support feeding and fetching the same tensor. fetch_handler = _FetchHandler(self._graph, fetches, {}) # Set up a graph with feeds and fetches for partial run. def _setup_fn(session, feed_list, fetch_list, target_list): self._extend_graph() return tf_session.TF_SessionPRunSetup_wrapper( session, feed_list, fetch_list, target_list) # pylint: disable=protected-access final_fetches = [t._as_tf_output() for t in fetch_handler.fetches()] final_targets = [op._c_op for op in fetch_handler.targets()] # pylint: enable=protected-access return self._do_call(_setup_fn, self._session, feed_list, final_fetches, final_targets) def _run(self, handle, fetches, feed_dict, options, run_metadata): """Perform either run or partial_run, depending the presence of `handle`.""" def _feed_fn(feed, feed_val): for tensor_type, _, feed_fn, _ in _REGISTERED_EXPANSIONS: if isinstance(feed, tensor_type): return feed_fn(feed, feed_val) raise TypeError('Feed argument %r has invalid type %r' % (feed, type(feed))) # Check session. if self._closed: raise RuntimeError('Attempted to use a closed Session.') if self.graph.version == 0: raise RuntimeError('The Session graph is empty. Add operations to the ' 'graph before calling run().') # Create request. feed_dict_tensor = {} feed_map = {} # Validate and process feed_dict. feed_handles = {} if feed_dict: feed_dict = nest.flatten_dict_items(feed_dict) for feed, feed_val in feed_dict.items(): for subfeed, subfeed_val in _feed_fn(feed, feed_val): try: subfeed_t = self.graph.as_graph_element( subfeed, allow_tensor=True, allow_operation=False) except Exception as e: raise TypeError( 'Cannot interpret feed_dict key as Tensor: ' + e.args[0]) if isinstance(subfeed_val, ops.Tensor): raise TypeError('The value of a feed cannot be a tf.Tensor object. ' 'Acceptable feed values include Python scalars, ' 'strings, lists, numpy ndarrays, or TensorHandles.' 'For reference, the tensor object was ' + str(feed_val) + ' which was passed to the ' 'feed with key ' + str(feed) + '.') subfeed_dtype = subfeed_t.dtype.as_numpy_dtype if isinstance(subfeed_val, int) and _convert_to_numpy_obj( subfeed_dtype, subfeed_val) != subfeed_val: raise TypeError( 'Type of feed value ' + str(subfeed_val) + ' with type ' + str( type(subfeed_val)) + ' is not compatible with Tensor type ' + str(subfeed_dtype) + '. Try explicitly setting the type of the feed tensor' ' to a larger type (e.g. int64).') is_tensor_handle_feed = isinstance(subfeed_val, session_ops.TensorHandle) if is_tensor_handle_feed: np_val = subfeed_val.to_numpy_array() feed_handles[subfeed_t] = subfeed_val else: np_val = np.asarray(subfeed_val, dtype=subfeed_dtype) if (not is_tensor_handle_feed and not subfeed_t.get_shape().is_compatible_with(np_val.shape)): raise ValueError('Cannot feed value of shape %r for Tensor %r, ' 'which has shape %r' % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape()))) if not self.graph.is_feedable(subfeed_t): raise ValueError('Tensor %s may not be fed.' % subfeed_t) feed_dict_tensor[subfeed_t] = np_val feed_map[compat.as_bytes(subfeed_t.name)] = (subfeed_t, subfeed_val) # Create a fetch handler to take care of the structure of fetches. fetch_handler = _FetchHandler( self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles) # Run request and get response. # We need to keep the returned movers alive for the following _do_run(). # These movers are no longer needed when _do_run() completes, and # are deleted when `movers` goes out of scope when this _run() ends. # TODO(yuanbyu, keveman): Revisit whether we should just treat feeding # of a handle from a different device as an error. _ = self._update_with_movers(feed_dict_tensor, feed_map) final_fetches = fetch_handler.fetches() final_targets = fetch_handler.targets() # We only want to really perform the run if fetches or targets are provided, # or if the call is a partial run that specifies feeds. if final_fetches or final_targets or (handle and feed_dict_tensor): results = self._do_run(handle, final_targets, final_fetches, feed_dict_tensor, options, run_metadata) else: results = [] return fetch_handler.build_results(self, results) def make_callable(self, fetches, feed_list=None, accept_options=False): """Returns a Python callable that runs a particular step. The returned callable will take `len(feed_list)` arguments whose types must be compatible feed values for the respective elements of `feed_list`. For example, if element `i` of `feed_list` is a `tf.Tensor`, the `i`th argument to the returned callable must be a numpy ndarray (or something convertible to an ndarray) with matching element type and shape. See @{tf.Session.run} for details of the allowable feed key and value types. The returned callable will have the same return type as `tf.Session.run(fetches, ...)`. For example, if `fetches` is a `tf.Tensor`, the callable will return a numpy ndarray; if `fetches` is a `tf.Operation`, it will return `None`. Args: fetches: A value or list of values to fetch. See @{tf.Session.run} for details of the allowable fetch types. feed_list: (Optional.) A list of `feed_dict` keys. See @{tf.Session.run} for details of the allowable feed key types. accept_options: (Optional.) Iff `True`, the returned `Callable` will be able to accept @{tf.RunOptions} and @{tf.RunMetadata} as optional keyword arguments `options` and `run_metadata`, respectively, with the same syntax and semantics as @{tf.Session.run}, which is useful for certain use cases (profiling and debugging) but will result in measurable slowdown of the `Callable`'s performance. Default: `False`. Returns: A function that when called will execute the step defined by `feed_list` and `fetches` in this session. Raises: TypeError: If `fetches` or `feed_list` cannot be interpreted as arguments to @{tf.Session.run}. """ if feed_list is not None: if not isinstance(feed_list, (list, tuple)): raise TypeError('`feed_list` must be a list or tuple.') # Delegate any non-empty feed lists to the existing `run()` logic. # TODO(mrry): Refactor the feed handling logic from # `Session._run()` so that we can convert the feeds to a list of # strings here. def _generic_run(*feed_args, **kwargs): feed_dict = { feed: feed_val for feed, feed_val in zip(feed_list, feed_args) } return self.run(fetches, feed_dict=feed_dict, **kwargs) return _generic_run # Ensure any changes to the graph are reflected in the runtime. # Note that we don't need to do this on subsequent calls to the # returned object, because the arguments to `fetches` must already be # in the graph. self._extend_graph() # Create a fetch handler to take care of the structure of fetches. fetch_handler = _FetchHandler(self._graph, fetches, {}) # pylint: disable=protected-access fetch_list = [t._as_tf_output() for t in fetch_handler.fetches()] target_list = [op._c_op for op in fetch_handler.targets()] # pylint: enable=protected-access def _callable_template_with_options_and_metadata(fetch_list, target_list, fetch_handler, options=None, run_metadata=None): """Template callable that accepts RunOptions and RunMetadata.""" options_ptr = tf_session.TF_NewBufferFromString( compat.as_bytes(options.SerializeToString())) if options else None run_metadata_ptr = tf_session.TF_NewBuffer() if run_metadata else None try: results = self._call_tf_sessionrun( options_ptr, {}, fetch_list, target_list, run_metadata_ptr) if fetch_handler: results = fetch_handler.build_results(self, results) else: results = results[0] if results else None if run_metadata: proto_data = tf_session.TF_GetBuffer(run_metadata_ptr) run_metadata.ParseFromString(compat.as_bytes(proto_data)) finally: if run_metadata_ptr: tf_session.TF_DeleteBuffer(run_metadata_ptr) if options: tf_session.TF_DeleteBuffer(options_ptr) return results if accept_options: return functools.partial(_callable_template_with_options_and_metadata, fetch_list, target_list, fetch_handler) elif isinstance(fetches, ops.Operation): # Special case for fetching a single operation, because the # function will have no return value. assert not fetch_list assert len(target_list) == 1 def _single_operation_run(): self._call_tf_sessionrun(None, {}, [], target_list, None) return _single_operation_run elif isinstance(fetches, ops.Tensor): # Special case for fetching a single tensor, because the # function can return the result of `TF_Run()` directly. assert len(fetch_list) == 1 assert not target_list def _single_tensor_run(): results = self._call_tf_sessionrun(None, {}, fetch_list, [], None) return results[0] return _single_tensor_run else: # In all other cases, we must use `fetch_handler` to build the # results for us. def _fetch_handler_run(): results = self._call_tf_sessionrun( None, {}, fetch_list, target_list, None) return fetch_handler.build_results(self, results) return _fetch_handler_run # Captures the name of a node in an error status. _NODEDEF_NAME_RE = re.compile(r'\[\[Node: ([^ ]*?) =') def _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata): """Runs a step based on the given fetches and feeds. Args: handle: a handle for partial_run. None if this is just a call to run(). target_list: A list of operations to be run, but not fetched. fetch_list: A list of tensors to be fetched. feed_dict: A dictionary that maps tensors to numpy ndarrays. options: A (pointer to a) [`RunOptions`] protocol buffer, or None run_metadata: A (pointer to a) [`RunMetadata`] protocol buffer, or None Returns: A list of numpy ndarrays, corresponding to the elements of `fetch_list`. If the ith element of `fetch_list` contains the name of an operation, the first Tensor output of that operation will be returned for that element. Raises: tf.errors.OpError: Or one of its subclasses on error. """ # pylint: disable=protected-access feeds = dict((t._as_tf_output(), v) for t, v in feed_dict.items()) fetches = [t._as_tf_output() for t in fetch_list] targets = [op._c_op for op in target_list] # pylint: enable=protected-access def _run_fn(feed_dict, fetch_list, target_list, options, run_metadata): # Ensure any changes to the graph are reflected in the runtime. self._extend_graph() return self._call_tf_sessionrun( options, feed_dict, fetch_list, target_list, run_metadata) def _prun_fn(handle, feed_dict, fetch_list): if target_list: raise RuntimeError('partial_run() requires empty target_list.') return self._call_tf_sessionprun(handle, feed_dict, fetch_list) if handle is None: return self._do_call(_run_fn, feeds, fetches, targets, options, run_metadata) else: return self._do_call(_prun_fn, handle, feeds, fetches) def _do_call(self, fn, *args): try: return fn(*args) except errors.OpError as e: message = compat.as_text(e.message) m = BaseSession._NODEDEF_NAME_RE.search(message) node_def = None op = None if m is not None: node_name = m.group(1) try: op = self._graph.get_operation_by_name(node_name) node_def = op.node_def except KeyError: pass raise type(e)(node_def, op, message) def _extend_graph(self): with self._graph._session_run_lock(): # pylint: disable=protected-access tf_session.ExtendSession(self._session) # The threshold to run garbage collection to delete dead tensors. _DEAD_HANDLES_THRESHOLD = 10 def _register_dead_handle(self, handle): # Register a dead handle in the session. Delete the dead tensors when # the number of dead tensors exceeds certain threshold. tensors_to_delete = None with self._delete_lock: self._dead_handles.append(handle) if len(self._dead_handles) == BaseSession._DEAD_HANDLES_THRESHOLD: tensors_to_delete = self._dead_handles self._dead_handles = [] # Delete the dead tensors. if tensors_to_delete: feeds = {} fetches = [] for deleter_key, tensor_handle in enumerate(tensors_to_delete): holder, deleter = session_ops._get_handle_deleter( self.graph, deleter_key, tensor_handle) feeds[holder] = tensor_handle fetches.append(deleter) self.run(fetches, feed_dict=feeds) def _update_with_movers(self, feed_dict, feed_map): # If a tensor handle that is fed to a device incompatible placeholder, # we move the tensor to the right device, generate a new tensor handle, # and update `feed_dict` to use the new handle. handle_movers = [] for feed_name, val in feed_map.items(): mover = session_ops._get_handle_mover(self.graph, *val) if mover: handle_movers.append((feed_name, val[1], mover)) # Transfer a tensor to the right device if needed. if not handle_movers: return [] else: feeds = {} fetches = [] for _, handle, mover in handle_movers: feeds[mover[0]] = handle fetches.append(mover[1]) handles = self.run(fetches, feed_dict=feeds) for handle_mover, handle in zip(handle_movers, handles): np_val = np.array(handle.handle, dtype=np.object) feed_name = handle_mover[0] feed_tensor = feed_map[feed_name][0] feed_dict[feed_tensor] = np_val return handles def _call_tf_sessionrun(self, options, feed_dict, fetch_list, target_list, run_metadata): return tf_session.TF_SessionRun_wrapper( self._session, options, feed_dict, fetch_list, target_list, run_metadata) def _call_tf_sessionprun(self, handle, feed_dict, fetch_list): return tf_session.TF_SessionPRun_wrapper( self._session, handle, feed_dict, fetch_list) # pylint: disable=protected-access class _Callable(object): """Experimental wrapper for the C++ `Session::MakeCallable()` API.""" def __init__(self, session, callable_options): self._session = session self._handle = None options_ptr = tf_session.TF_NewBufferFromString( compat.as_bytes(callable_options.SerializeToString())) try: with errors.raise_exception_on_not_ok_status() as status: self._handle = tf_session.TF_SessionMakeCallable( session._session, options_ptr, status) finally: tf_session.TF_DeleteBuffer(options_ptr) def __call__(self, *args, **kwargs): # TODO(b/74355905): Support argument and return value nested structures, # and tensor-like objects such as SparseTensors. run_metadata = kwargs.get('run_metadata', None) try: run_metadata_ptr = tf_session.TF_NewBuffer() if run_metadata else None # TODO(mrry): Switch to raising an exception from the SWIG wrapper. with errors.raise_exception_on_not_ok_status() as status: ret = tf_session.TF_SessionRunCallable( self._session._session, self._handle, args, status, run_metadata_ptr) if run_metadata: proto_data = tf_session.TF_GetBuffer(run_metadata_ptr) run_metadata.ParseFromString(compat.as_bytes(proto_data)) finally: if run_metadata_ptr: tf_session.TF_DeleteBuffer(run_metadata_ptr) return ret def __del__(self): # NOTE(mrry): It is possible that `self._session.__del__()` could be # called before this destructor, in which case `self._session._session` # will be `None`. if self._handle is not None and self._session._session is not None: with errors.raise_exception_on_not_ok_status() as status: tf_session.TF_SessionReleaseCallable( self._session._session, self._handle, status) # pylint: enable=protected-access # TODO(b/74355905): Reimplement `Session.make_callable()` using this method # where possible. def _make_callable_from_options(self, callable_options): """Returns a handle to a "callable" with the given options. Args: callable_options: A `CallableOptions` protocol buffer message describing the computation that will be performed by the callable. Returns: A handle to the new callable. """ self._extend_graph() return BaseSession._Callable(self, callable_options) @tf_export('Session') class Session(BaseSession): """A class for running TensorFlow operations. A `Session` object encapsulates the environment in which `Operation` objects are executed, and `Tensor` objects are evaluated. For example: ```python # Build a graph. a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session. sess = tf.Session() # Evaluate the tensor `c`. print(sess.run(c)) ``` A session may own resources, such as @{tf.Variable}, @{tf.QueueBase}, and @{tf.ReaderBase}. It is important to release these resources when they are no longer required. To do this, either invoke the @{tf.Session.close} method on the session, or use the session as a context manager. The following two examples are equivalent: ```python # Using the `close()` method. sess = tf.Session() sess.run(...) sess.close() # Using the context manager. with tf.Session() as sess: sess.run(...) ``` The [`ConfigProto`](https://www.tensorflow.org/code/tensorflow/core/protobuf/config.proto) protocol buffer exposes various configuration options for a session. For example, to create a session that uses soft constraints for device placement, and log the resulting placement decisions, create a session as follows: ```python # Launch the graph in a session that allows soft device placement and # logs the placement decisions. sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) ``` """ def __init__(self, target='', graph=None, config=None): """Creates a new TensorFlow session. If no `graph` argument is specified when constructing the session, the default graph will be launched in the session. If you are using more than one graph (created with `tf.Graph()` in the same process, you will have to use different sessions for each graph, but each graph can be used in multiple sessions. In this case, it is often clearer to pass the graph to be launched explicitly to the session constructor. Args: target: (Optional.) The execution engine to connect to. Defaults to using an in-process engine. See @{$distributed$Distributed TensorFlow} for more examples. graph: (Optional.) The `Graph` to be launched (described above). config: (Optional.) A [`ConfigProto`](https://www.tensorflow.org/code/tensorflow/core/protobuf/config.proto) protocol buffer with configuration options for the session. """ super(Session, self).__init__(target, graph, config=config) # NOTE(mrry): Create these on first `__enter__` to avoid a reference cycle. self._default_graph_context_manager = None self._default_session_context_manager = None def __enter__(self): if self._default_graph_context_manager is None: self._default_graph_context_manager = self.graph.as_default() else: raise RuntimeError('Session context managers are not re-entrant. ' 'Use `Session.as_default()` if you want to enter ' 'a session multiple times.') if self._default_session_context_manager is None: self._default_session_context_manager = self.as_default() self._default_graph_context_manager.__enter__() return self._default_session_context_manager.__enter__() def __exit__(self, exec_type, exec_value, exec_tb): if exec_type is errors.OpError: logging.error('Session closing due to OpError: %s', (exec_value,)) try: self._default_session_context_manager.__exit__(exec_type, exec_value, exec_tb) except RuntimeError as error: if error == exec_value: # NOTE(skyewm): for some reason, in Python3, # _default_session_context_manager.__exit__ will re-raise the "not # re-entrant" exception raised in __enter__ above (note that if we're # here, we're in the outer session context manager, since __exit__ is # not called when __enter__ raises an exception). We still want to # continue cleaning up this context manager before the exception is # further propagated, so we ignore it here (note that it'll continue # being propagated after this method completes). pass else: raise self._default_graph_context_manager.__exit__(exec_type, exec_value, exec_tb) self._default_session_context_manager = None self._default_graph_context_manager = None self.close() @staticmethod def reset(target, containers=None, config=None): """Resets resource containers on `target`, and close all connected sessions. A resource container is distributed across all workers in the same cluster as `target`. When a resource container on `target` is reset, resources associated with that container will be cleared. In particular, all Variables in the container will become undefined: they lose their values and shapes. NOTE: (i) reset() is currently only implemented for distributed sessions. (ii) Any sessions on the master named by `target` will be closed. If no resource containers are provided, all containers are reset. Args: target: The execution engine to connect to. containers: A list of resource container name strings, or `None` if all of all the containers are to be reset. config: (Optional.) Protocol buffer with configuration options. Raises: tf.errors.OpError: Or one of its subclasses if an error occurs while resetting containers. """ if target is not None: target = compat.as_bytes(target) if containers is not None: containers = [compat.as_bytes(c) for c in containers] else: containers = [] tf_session.TF_Reset(target, containers, config) @tf_export('InteractiveSession') class InteractiveSession(BaseSession): """A TensorFlow `Session` for use in interactive contexts, such as a shell. The only difference with a regular `Session` is that an `InteractiveSession` installs itself as the default session on construction. The methods @{tf.Tensor.eval} and @{tf.Operation.run} will use that session to run ops. This is convenient in interactive shells and [IPython notebooks](http://ipython.org), as it avoids having to pass an explicit `Session` object to run ops. For example: ```python sess = tf.InteractiveSession() a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # We can just use 'c.eval()' without passing 'sess' print(c.eval()) sess.close() ``` Note that a regular session installs itself as the default session when it is created in a `with` statement. The common usage in non-interactive programs is to follow that pattern: ```python a = tf.constant(5.0) b = tf.constant(6.0) c = a * b with tf.Session(): # We can also use 'c.eval()' here. print(c.eval()) ``` """ _count_lock = threading.Lock() _active_session_count = 0 # GUARDED_BY(_count_lock) def __init__(self, target='', graph=None, config=None): """Creates a new interactive TensorFlow session. If no `graph` argument is specified when constructing the session, the default graph will be launched in the session. If you are using more than one graph (created with `tf.Graph()` in the same process, you will have to use different sessions for each graph, but each graph can be used in multiple sessions. In this case, it is often clearer to pass the graph to be launched explicitly to the session constructor. Args: target: (Optional.) The execution engine to connect to. Defaults to using an in-process engine. graph: (Optional.) The `Graph` to be launched (described above). config: (Optional) `ConfigProto` proto used to configure the session. """ if not config: # If config is not provided, choose some reasonable defaults for # interactive use: # # - Grow GPU memory as needed at the cost of fragmentation. gpu_options = config_pb2.GPUOptions(allow_growth=True) config = config_pb2.ConfigProto(gpu_options=gpu_options) # Interactive sessions always place pruned graphs. config.graph_options.place_pruned_graph = True super(InteractiveSession, self).__init__(target, graph, config) with InteractiveSession._count_lock: if InteractiveSession._active_session_count > 0: warnings.warn('An interactive session is already active. This can ' 'cause out-of-memory errors in some cases. You must ' 'explicitly call `InteractiveSession.close()` to release ' 'resources held by the other session(s).') InteractiveSession._active_session_count += 1 # NOTE(mrry): We do not use `Session._closed` here because it has unhelpful # semantics (in particular, it is not set to true if `Session.close()` is # called on a session that has not been "opened" by running a step) and we # cannot change those semantics without breaking existing code. self._explicitly_closed = False self._default_session = self.as_default() self._default_session.enforce_nesting = False self._default_session.__enter__() self._explicit_graph = graph if self._explicit_graph is not None: self._default_graph = graph.as_default() self._default_graph.enforce_nesting = False self._default_graph.__enter__() def close(self): """Closes an `InteractiveSession`.""" super(InteractiveSession, self).close() with InteractiveSession._count_lock: if not self._explicitly_closed: InteractiveSession._active_session_count -= 1 self._explicitly_closed = True else: return if self._explicit_graph is not None: self._default_graph.__exit__(None, None, None) self._default_graph = None self._default_session.__exit__(None, None, None) self._default_session = None
38.452055
94
0.677762
212dc8fe31941309235b2ba969471e708c6aa345
2,904
py
Python
pyatv/protocols/mrp/protobuf/GetKeyboardSessionMessage_pb2.py
Jacobs4/pyatv
52956adf3b79198be52cc03649f3ddeee19f9e6c
[ "MIT" ]
532
2017-02-01T19:23:28.000Z
2022-03-29T09:57:39.000Z
pyatv/protocols/mrp/protobuf/GetKeyboardSessionMessage_pb2.py
Jacobs4/pyatv
52956adf3b79198be52cc03649f3ddeee19f9e6c
[ "MIT" ]
1,639
2017-02-01T19:22:04.000Z
2022-03-31T17:26:40.000Z
pyatv/protocols/mrp/protobuf/GetKeyboardSessionMessage_pb2.py
bdraco/pyatv
9541d21e6101c60866d832626be97bf962774cd5
[ "MIT" ]
102
2017-02-02T01:42:13.000Z
2022-02-26T08:49:34.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: pyatv/protocols/mrp/protobuf/GetKeyboardSessionMessage.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from pyatv.protocols.mrp.protobuf import ProtocolMessage_pb2 as pyatv_dot_protocols_dot_mrp_dot_protobuf_dot_ProtocolMessage__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='pyatv/protocols/mrp/protobuf/GetKeyboardSessionMessage.proto', package='', syntax='proto2', serialized_options=None, create_key=_descriptor._internal_create_key, serialized_pb=b'\n<pyatv/protocols/mrp/protobuf/GetKeyboardSessionMessage.proto\x1a\x32pyatv/protocols/mrp/protobuf/ProtocolMessage.proto\"\x1b\n\x19GetKeyboardSessionMessage:3\n\x19getKeyboardSessionMessage\x12\x10.ProtocolMessage\x18\x1d \x01(\t' , dependencies=[pyatv_dot_protocols_dot_mrp_dot_protobuf_dot_ProtocolMessage__pb2.DESCRIPTOR,]) GETKEYBOARDSESSIONMESSAGE_FIELD_NUMBER = 29 getKeyboardSessionMessage = _descriptor.FieldDescriptor( name='getKeyboardSessionMessage', full_name='getKeyboardSessionMessage', index=0, number=29, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) _GETKEYBOARDSESSIONMESSAGE = _descriptor.Descriptor( name='GetKeyboardSessionMessage', full_name='GetKeyboardSessionMessage', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=116, serialized_end=143, ) DESCRIPTOR.message_types_by_name['GetKeyboardSessionMessage'] = _GETKEYBOARDSESSIONMESSAGE DESCRIPTOR.extensions_by_name['getKeyboardSessionMessage'] = getKeyboardSessionMessage _sym_db.RegisterFileDescriptor(DESCRIPTOR) GetKeyboardSessionMessage = _reflection.GeneratedProtocolMessageType('GetKeyboardSessionMessage', (_message.Message,), { 'DESCRIPTOR' : _GETKEYBOARDSESSIONMESSAGE, '__module__' : 'pyatv.protocols.mrp.protobuf.GetKeyboardSessionMessage_pb2' # @@protoc_insertion_point(class_scope:GetKeyboardSessionMessage) }) _sym_db.RegisterMessage(GetKeyboardSessionMessage) pyatv_dot_protocols_dot_mrp_dot_protobuf_dot_ProtocolMessage__pb2.ProtocolMessage.RegisterExtension(getKeyboardSessionMessage) # @@protoc_insertion_point(module_scope)
38.210526
250
0.82438
41305db6f9b7bf26ab3766202f793b59557aeeaf
2,703
py
Python
app/model/types.py
don4apaev/anfisa
2e4bdd83c584c0000f037413ccc1f9067c07fa70
[ "Apache-2.0" ]
null
null
null
app/model/types.py
don4apaev/anfisa
2e4bdd83c584c0000f037413ccc1f9067c07fa70
[ "Apache-2.0" ]
null
null
null
app/model/types.py
don4apaev/anfisa
2e4bdd83c584c0000f037413ccc1f9067c07fa70
[ "Apache-2.0" ]
null
null
null
import numbers #=============================================== class Types: sTypes = [None, "null", "list", "dict", "empty", "link", "string", "int", "numeric"] # and "undef", "json" @staticmethod def _detectValTypes(value): if value is None: return [1] elif isinstance(value, list): return [2] elif isinstance(value, dict): return [3] elif isinstance(value, basestring): if not value: return [4, 5, 6] elif value.startswith("http"): if value.startswith("https:") or value.startswith("http:"): return [5, 6] return [6] elif isinstance(value, int): return [7, 8] elif isinstance(value, numbers.Number): return [8] # convert everything another to string return [6] @classmethod def typeIdx(cls, value): return cls.sTypes.index(value) @classmethod def detectValTypes(cls, value): kind_idxs = cls._detectValTypes(value) ret = set() if kind_idxs: for idx in kind_idxs: if cls.sTypes[idx]: ret.add(cls.sTypes[idx]) return ret @classmethod def filterTypeKind(cls, kinds): for kind in kinds: if kind in cls.sTypes: return kind return None #=============================================== class TypeCounter: def __init__(self, req_type = None): self.mCounts = [0] * 9 self.mReqType = Types.typeIdx(req_type) def regValue(self, value): cnt0 = self.mCounts[1] + self.mCounts[self.mReqType] self.mCounts[0] += 1 for idx in Types._detectValTypes(value): self.mCounts[idx] += 1 return (self.mCounts[1] + self.mCounts[self.mReqType]) != cnt0 def _checkType(self, idx, with_optional): cnt = self.mCounts[idx] if with_optional: cnt += self.mCounts[1] if cnt == self.mCounts[0]: return Types.sTypes[idx] def detect(self, with_optional = True): if self.mCounts[0] == 0: return "undef" if self.mReqType > 0: ret = self._checkType(self.mReqType, with_optional) if ret: return ret for idx in range(2, 9): ret = self._checkType(idx, with_optional) if ret: return ret return "json" def empty(self): return self.mCounts[0] == self.mCounts[1] def getTotalCount(self): return self.mCounts[0] def getEmptyCount(self): return self.mCounts[1]
28.755319
75
0.519793
4d90cc8399899e4c777a067a101953b4f5ed5875
38,739
py
Python
stars/ProjectMaker.py
lhcramer-GISforks/stars
3c7532a6ea9cd0af7c21f009d603d80cbd69278a
[ "BSD-2-Clause" ]
9
2015-06-15T14:25:08.000Z
2021-04-01T22:57:48.000Z
stars/ProjectMaker.py
lhcramer-GISforks/stars
3c7532a6ea9cd0af7c21f009d603d80cbd69278a
[ "BSD-2-Clause" ]
8
2015-08-12T23:59:53.000Z
2021-06-13T00:33:37.000Z
stars/ProjectMaker.py
lhcramer-GISforks/stars
3c7532a6ea9cd0af7c21f009d603d80cbd69278a
[ "BSD-2-Clause" ]
15
2016-02-08T05:03:44.000Z
2021-05-17T21:07:00.000Z
""" Standalone Utility for conversion of ArcView files to STARS project. ---------------------------------------------------------------------- AUTHOR(S): Mark V. Janikas janikas@users.sourceforge.net Sergio J. Rey sjrey@users.sourceforge.net ---------------------------------------------------------------------- """ from guimixin import * from guimaker import * import os import sys import string from math import * import sdialogue as sd #from Common import Options from ProjectWorker import * from DataViewer import MixedDataTable import Matcher as MATCH import Tkinter as tk class SProjectMaker(GuiMixin, GuiMaker): # or GuiMakerFrameMenu """Application level GUI Wrapper""" def start(self): self.hellos = 0 self.master.title("SPM: STARS Project Maker") self.master.iconname("SPM") h = self.winfo_screenheight() self.screenHeight = h w = self.winfo_screenwidth() self.screenWidth = w if w > 1280: w = 1280 windowWidth = w/2. windowHeight = h/2. x0 = int((w - windowWidth) / 2.) y0 = int((h - windowHeight) / 2.) geom = "%dx%d+%d+%d"%(windowWidth,windowHeight,0,0) print geom self.master.geometry(geom) self.root = self.master self.project = None self.starsProjectOn = 0 self.projectedCoordsOn = 0 self.menuBar = [ ('File', 0, [ ('Create New STARS Project',0,self.createNewSTARSProject), ('Open STARS Project',0,self.openSTARSProject), 'separator', ('Save STARS Project',0,self.saveProject), ('Save As STARS Project',2,self.saveAsProject), ('Write Cross-Section Names',0,self.writeCSO), #('Write Project Files',2,self.writeProjectFiles), 'separator', ('Exit', 1, self.quit) ] ), ('Data',0, [ ('Variable',0, [ ('Convert',0, [ ('Base Data to CS',0,self.convertCSVariables), ('Base Data to CSTS',0,self.convertCSTSVariable), ('Base Data to CSTS (Batch)',0,self.convertCSTSVariableBatch), ('Cross-Section to Panel',0,self.cs2Panel), ('Panel to Cross-Section',0,self.panel2CS) ] ), ('Merge',0, [ ('CS Data',0,self.readCSV_CS), ('TS Data',0,self.readCSV_TS), ('CSTS Data',0,self.readCSV_CSTS) ] ), ('Join',0, [ ('CS Data',0,self.joinCS), ('CSTS Data',0,self.joinCSTS) ] ), ] ), 'separator', ('Matrix',0, [ ('Import GAL Binary',0,self.importGalBinary), ('Create GAL Binary from Shapefile',0,self.createGalAppend), #('Import GAL Valued',0,self.importGalValued), #('Import Full',0,self.importFullMatrix) ] ), ] ), ('Tables',0, [ ('Specific Variable(s)',0,self.variableSpecificTable), ('CS Variables',0,self.variableCSTable), ('TS Variables',0,self.variableTSTable), ('CSTS Variables',0,self.variableCSTSTable), ('CS and CSTS Variables',0,self.variableCS_CSTSTable), ('Base Data Variables',0,self.baseVariableTable) ] ), ('Plot',0, [('Plot Map',0,self.doMaps)])] def createNewSTARSProject(self): """ Creates a new STARS project. Callback. """ d = sd.SDialogue('Create New STARS Project') values='ArcView', 'CSV' txt="Choose the type of file you want to use as your base data.\n" rbutton = sd.RadioButtons(d, label='Base Data', values=values, align='LEFT', title='Types', helpText=txt) d.draw() if d.status: type = d.results[0] if type == 0: fileType = "*.dbf" else: fileType = "*.csv" FILE_TYPES=[("Files",fileType)] baseFileName = askopenfilename(filetypes=FILE_TYPES, title="Choose Base Data File.") if baseFileName: self.prj = 0 type = baseFileName.split(".")[-1] if type == "dbf": arc = 1 self.report("Base data generated from an ArcView Project") else: arc = 0 self.report("Base data generated from a Comma Delimited File") self.proj = ProjectMaker(baseFileName,arc=arc) d = sd.SDialogue('Create STARS Project Name') txt = """Choose a name for the STARS project you want to create.""" sd.UserEntry(d,label="Project Prefix", align="LEFT", title="",helpText=txt) d.draw() if d.status: self.proj.changeProjPrefix(d.results[0]) self.baseVariableTable() d = sd.SDialogue('Choose Time Series Type') values='Decadal', 'Annual', 'Quarterly', 'Monthly', 'Irregular' txt="Choose the type of file you want to use as your base data.\n" rbutton = sd.RadioButtons(d, label='Time-Series', values=values, align='LEFT', title='Types', helpText=txt) d.draw() if d.status: type = d.results[0] self.evalTimeInfo(values[type]) self.createIdsAndNames() if arc == 1: self.createGal() self.starsProjectOn = 1 def openSTARSProject(self): """ Open an Existing STARS Project. Callback. """ fileName = askopenfilename(filetypes=[('Project Files',"*.prj")], title="Open STARS project.") if fileName: self.prj = 1 self.proj = ProjectMaker(fileName,prj=1) print self.proj.stars.catalogue() timeType = self.proj.stars.timeFreq start = self.proj.stars.timeInfo[1] end = self.proj.stars.timeInfo[2] within = ['MONTHLY', 'QUARTERLY'] if timeType in within: s = start.split("/") startYear = s[-1] startSub = s[0] e = end.split("/") endYear = e[-1] endSub = e[0] if timeType == "MONTHLY": self.proj.createMonthly(startM, startYear, endM, endYear) varNames = self.proj.stars.getVariableNames() d = {} for var in varNames: v = self.proj.stars.dataBase.getVariable(var) type = v.varType self.starsProjectOn = 1 self.projectedCoordsOn = 1 self.report(self.proj.projectSummary()) def writeCSO(self): try: self.proj.writeCSO() except: self.report("""Could not export region names. Perhaps they have not been identified yet.""") def evalTimeInfo(self,type): tDict = {'Decadal':self.createDECADAL, 'Annual':self.createANNUAL, 'Quarterly':self.createQUARTERLY, 'Monthly':self.createMONTHLY, 'Irregular':self.createIRREGULAR} tDict[type]() def createDECADAL(self): d = sd.SDialogue('Decadal Time-Series Dialogue') txt = "Choose the start year for your project." sd.UserEntry(d,label="Start Year", align="LEFT", title="",helpText=txt) txt = "Choose the end year for your project." sd.UserEntry(d,label="End Year", align="LEFT", title="",helpText=txt) d.draw() if d.status: start = d.results[0] end = d.results[1] self.proj.createDecadal(start, end) self.report(self.proj.timeSummary) def createANNUAL(self): d = sd.SDialogue('Annual Time-Series Dialogue') txt = "Choose the start year for your project." sd.UserEntry(d,label="Start Year", align="LEFT", title="",helpText=txt) txt = "Choose the end year for your project." sd.UserEntry(d,label="End Year", align="LEFT", title="",helpText=txt) d.draw() if d.status: start = d.results[0] end = d.results[1] self.proj.createAnnual(start, end) self.report(self.proj.timeSummary) def createQUARTERLY(self): d = sd.SDialogue('Quarterly Time-Series Dialogue') txt = "Choose the starting quarter for your project." quarters = range(1,5) entries = ['Start Quarter'] sd.MultiEntry(d,quarters, entries, title='', helpText=txt) txt = "Choose the start year for your project." sd.UserEntry(d,label="Start Year", align="LEFT", title="",helpText=txt) txt = "Choose the ending quarter for your project." entries = ['End Quarter'] sd.MultiEntry(d,quarters, entries, title='', helpText=txt) txt = "Choose the end year for your project." sd.UserEntry(d,label="End Year", align="LEFT", title="",helpText=txt) d.draw() if d.status: startQ = int(d.results[0]['Start Quarter']) startYear = int(d.results[1]) endQ = int(d.results[2]['End Quarter']) endYear = int(d.results[3]) self.proj.createQuarterly(startQ, startYear, endQ, endYear) self.report(self.proj.timeSummary) def createMONTHLY(self): d = sd.SDialogue('Monthly Time-Series Dialogue') txt = "Choose the starting month for your project." months = range(1,13) entries = ['Start Month'] sd.MultiEntry(d,months, entries, title='', helpText=txt) txt = "Choose the start year for your project." sd.UserEntry(d,label="Start Year", align="LEFT", title="",helpText=txt) txt = "Choose the ending month for your project." entries = ['End Month'] sd.MultiEntry(d,months, entries, title='', helpText=txt) txt = "Choose the end year for your project." sd.UserEntry(d,label="End Year", align="LEFT", title="",helpText=txt) d.draw() if d.status: startM = int(d.results[0]['Start Month']) startYear = int(d.results[1]) endM = int(d.results[2]['End Month']) endYear = int(d.results[3]) self.proj.createMonthly(startM, startYear, endM, endYear) self.report(self.proj.timeSummary) def createIRREGULAR(self): d = sd.SDialogue('Irregular Time-Series Dialogue') txt = "Choose the number of time periods (Integer)" sd.UserEntry(d,label="Number of Time Periods (t)", align="LEFT", title="",helpText=txt) d.draw() if d.status: t = int(d.results[0]) self.proj.createIrregular(t) self.report(self.proj.timeSummary) def createIdsAndNames(self): d = sd.SDialogue('Create Region Names and Ids') txt = """You must identify names for the regions in your project. *** All the options in this dialogue are optional. If you leave them blank, your regions will be identified by the integers associated with the number of rows in the input .dbf or .csv file. 1. Use the Unique Field to identify unique labels that match the number of cross-sections in your study. Examples would include NUTS or FIPS codes. 2. If there are no Fields that can be used to determine the uniqueness of each cross-section you may combine the values from two fields to create region ids. The Join Field term will be combined with the Unique Field to create a "more unique" identifier. 3. Use the Optional Name Field if you have identified regions with either the Unique or Joined method, but you want the names of the regions to be determined by this field. 4. The user can select the type of delimiter used join field entries. The default delimiter is an underscore: field1_field2 """ varNames = self.proj.getDBFVariableNames() varNames.sort() entries = ['Unique Field', 'Join Field', 'Optional Name Field', 'Delimiter'] sd.MultiEntry(d,varNames, entries, title='Optional Arguments', helpText=txt) d.draw() if d.status: nameField = d.results[0]['Unique Field'] if nameField: nameField = self.proj.getDBFVariable(nameField) else: nameField = [] joinField = d.results[0]['Join Field'] if joinField: joinField = self.proj.getDBFVariable(joinField) else: joinField = [] finalField = d.results[0]['Optional Name Field'] if finalField: finalField = self.proj.getDBFVariable(finalField) else: finalField = [] delimiter = d.results[0]['Delimiter'] if delimiter: pass else: delimiter = "_" self.proj.createNamesAndIDs(var1=nameField, var2=joinField, var3=finalField, delim=delimiter) self.report(self.proj.variableSummary()) def createGalAppend(self): if self.proj.arc == 1: self.createGal() else: self.report("""You must be using an arcview type project for this option.""") def createGal(self): d = sd.SDialogue('Create Contiguity Matrices') txt="""Rook contiguity is based on shared edges, while Queen contiguity is based on shared vertices between pairs of polygons.""" types = "Rook", "Queen" sd.CheckButtons(d, title='Criterion', label='Criterion', values=types, helpText=txt) d.draw() if d.status: criterion = d.results[0] mats = [] matNames = [] self.master.update() if criterion[0][1]: # rook text="Creating Rook Based Contiguity Weights" rd=sd.Warning(self.master,text=text) if self.proj.aggOn == 1: mats.append(self.proj.makeGalWeightsAgg()) else: mats.append(self.proj.makeGalWeights()) matNames.append('rook') rd.destroy() if criterion[1][1]: # queen txt="Creating Queen Based Contiguity Weights." qd=sd.Warning(self.master,txt) if self.proj.aggOn == 1: mats.append(self.proj.makeGalWeightsAgg(2)) else: mats.append(self.proj.makeGalWeights(2)) matNames.append('queen') qd.destroy() for name,stringOut in zip(matNames,mats): print 'writing GAL file(s)' nameOut = self.proj.projPrefix+"_"+name+".gal" nameOut = os.path.join(self.proj.projectDir,nameOut) fo=open(nameOut,'w') fo.write(stringOut) fo.close() self.proj.matrices[nameOut]='gal' print 'done writing GAL files(s)' def convertCSVariables(self): d = sd.SDialogue('Convert Initial Field(s) to STARS Cross-Sectional Variables(s)') varNames = self.proj.getDBFVariableNames() varNames.sort() txt="""Select one or more initial variables to convert into pure cross-sectional STARS variables.""" sd.DualListBoxes(d,varNames,title='Fields', helpText=txt) entries = ['Aggregation Method'] txt = """If the same cross-sectional unit has more than one value associated with it, ProjectMaker will have to combine the values in some way. You have the following options: Sum: will sum up any values associated with the same cross-section. Max: will take the maximum value of any values associated with the same cross-section. Min: will take the minimum value of any values associated with the same cross-section. Average: will average the values associated with the same cross-section. String: will essentially use the value of the last instance for each cross-section. Furthermore the value is a string. Use this for categorical data. ***The default method is "Average".""" types = ['Sum', 'Max', 'Min', 'Average', 'String'] sd.MultiEntry(d,types, entries, title='Optional Arguments', helpText=txt) d.draw() if d.status: varList = d.results[0] cohesion = d.results[1]['Aggregation Method'] if cohesion: pass else: cohesion = 'Average' createVars = [ self.proj.convertArcViewVariable(cohesion,var,[var]) for var in varList ] self.report(self.proj.variableSummary()) def convertCSTSVariable(self): d = sd.SDialogue('Convert Initial Fields to a STARS Panel Variables') varNames = self.proj.getDBFVariableNames() varNames.sort() txt="""Select the fields in time order to be create a panel variable.""" time = str(self.proj.t) tRemind = "Choose t = " + time + " fields" sd.DualListBoxes(d,varNames,title=tRemind, helpText=txt) txt = "Choose a name for your STARS Panel variable." sd.UserEntry(d,label="Choose Panel Variable Name", align="LEFT", title="",helpText=txt) entries = ['Aggregation Method'] txt = """If the same cross-sectional unit has more than one value associated with it, ProjectMaker will have to combine the values in some way. You have the following options: Sum: will sum up any values associated with the same cross-section. Max: will take the maximum value of any values associated with the same cross-section. Min: will take the minimum value of any values associated with the same cross-section. Average: will average the values associated with the same cross-section. String: will essentially use the value of the last instance for each cross-section. Furthermore the value is a string. Use this for categorical data. ***The default method is "Average".""" types = ['Sum', 'Max', 'Min', 'Average', 'String'] sd.MultiEntry(d,types, entries, title='Optional Arguments', helpText=txt) d.draw() if d.status: varList = d.results[0] varName = d.results[1] cohesion = d.results[2]['Aggregation Method'] if cohesion: pass else: cohesion = 'Average' createVar = self.proj.convertArcViewVariable(cohesion,varName,varList) self.report(self.proj.variableSummary()) def convertCSTSVariableBatch(self): d = sd.SDialogue('Convert Initial Fields to a STARS Panel Variables') varNames = self.proj.getDBFVariableNames() batch = MATCH.batchSplit(varNames) varNames = batch['strings'] varNames.sort() timeInfo = batch['ints'] timeInfo.sort() txt="""Select the fields to create panel variables via the batch method.""" time = str(self.proj.t) add = """Remember that field must have " + time + " time periods associated with it.""" txt = txt + "\n" + add title = "Choose fields for batch CSTS creation" sd.DualListBoxes(d,varNames,title=title, helpText=txt) txt = """Choose a variable associated with the first time period in your study, and an additional oone for the year time period. You may also type this in manuallly.""" timeStuff = ['Start Period for Batch', 'End Period for Batch'] sd.MultiEntry(d,timeInfo, timeStuff, title='Time Period Arguments', helpText=txt) txt="""Provide the time period increment: I.e. Annual: 1 BiAnnual: 2 Decadal: 10 """ sd.UserEntry(d,label="Integer Value", align="LEFT", title="User Defined Time Increment",helpText=txt) entries = ['Aggregation Method'] txt = """If the same cross-sectional unit has more than one value associated with it, ProjectMaker will have to combine the values in some way. You have the following options: Sum: will sum up any values associated with the same cross-section. Max: will take the maximum value of any values associated with the same cross-section. Min: will take the minimum value of any values associated with the same cross-section. Average: will average the values associated with the same cross-section. String: will essentially use the value of the last instance for each cross-section. Furthermore the value is a string. Use this for categorical data. ***The default method is "Average".""" types = ['Sum', 'Max', 'Min', 'Average', 'String'] sd.MultiEntry(d,types, entries, title='Optional Arguments', helpText=txt) d.draw() if d.status: vars = MATCH.Matcher('vars',d.results[0]) varList = vars.unique start = int( d.results[1]['Start Period for Batch'] ) end = int( d.results[1]['End Period for Batch'] ) step = int( d.results[2] ) cohesion = d.results[3]['Aggregation Method'] if cohesion: pass else: cohesion = 'Average' for var in varList: try: newVar = [ var+str(i) for i in range(start,end+step,step) ] createVar = self.proj.convertArcViewVariable(cohesion,var,newVar) except: beg = "Could not create new variable for " + var + "." end = "\nPerhaps the the time series does not match." self.report(beg+end) self.report(self.proj.variableSummary()) def cs2Panel(self): d = sd.SDialogue('Convert Existing CS Variables to a CSTS Variable') varNames = self.proj.getCSVariableNames() varNames.sort() time = str(self.proj.t) txt="""Select the CS variables in temporal order. Make sure that you have the same number of CS vars as time periods""" tRemind = "Choose t = " + time + " CS Variables" sd.DualListBoxes(d,varNames,title=tRemind, helpText=txt) txt = "Choose a name for your STARS Panel variable." sd.UserEntry(d,label="Choose Panel Variable Name", align="LEFT", title="",helpText=txt) title='Would you like to delete the original CS Variables?' values = ['No', 'Yes'] txt = """If you select Yes, then the original CS variables will be erased. ***The default is No""" sd.RadioButtons(d, values=values, title=title,helpText=txt) d.draw() if d.status: varList = d.results[0] panelName = d.results[1] delete = d.results[2] if len(varList) == self.proj.t: self.proj.cs2Panel(varList,panelName,delete=delete) self.report(self.proj.variableSummary()) else: s = """ERROR: The number of CS Variables you provided do not match the number of time periods in your project.""" self.report(s) def panel2CS(self): d = sd.SDialogue('Convert Existing Panel Variable to CS Variables') varNames = self.proj.getCSTSVariableNames() varNames.sort() txt="""Choose the name of the Panel variable(s) that you would like to decompose by time periods into seperate cross-sectional variables. You may choose more than one at a time""" sd.DualListBoxes(d,varNames,title='Panel Variables', helpText=txt) title='Would you like to delete the original Panel Variables?' values = ['No', 'Yes'] txt = """If you select Yes, then the original Panel variables will be erased. ***The default is No""" sd.RadioButtons(d, values=values, title=title,helpText=txt) d.draw() if d.status: varList = d.results[0] delete = d.results[1] for var in varList: self.proj.panel2CS(var,delete=delete) self.report(self.proj.variableSummary()) def variableSpecificTable(self): d = sd.SDialogue('View Specific Variable(s)') txt = """Choose the name(s) of the CS and CSTS variable(s) you want to view in tabular format.""" cvars = self.proj.getCSVariableNames() cstvars = self.proj.getCSTSVariableNames() varNames = cvars + cstvars sd.DualListBoxes(d,varNames,title="CS and CSTS Variables", helpText=txt) tsVars = self.proj.getTSVariableNames() txt = """Choose the name(s) of the TS variable(s) you want to view in tabular format.""" sd.DualListBoxes(d,tsVars,title="TS Variables", helpText=txt) d.draw() if d.status: csVars = d.results[0] try: tab = self.proj.createTableList(csVars) names = tab[0] vals = tab[1] top = Toplevel(self.root) table = MixedDataTable(top,vals, name="STARS Variables (CS, CSTS)", columnLabels = names) except: print "No CS or CSTS Variables identified" tsVars = d.results[1] try: tab = self.proj.createTableList(tsVars) names = tab[0] vals = tab[1] top = Toplevel(self.root) table = MixedDataTable(top,vals, name="STARS Variables (TS)", columnLabels = names) except: print "No TS Variables identified" def variableCSTable(self): vars = self.proj.getCSVariableNames() tab = self.proj.createTableList(vars) names = tab[0] vals = tab[1] top = Toplevel(self.root) table = MixedDataTable(top,vals, name="STARS Variables (CS)", columnLabels = names) def variableCSTSTable(self): vars = self.proj.getCSTSVariableNames() tab = self.proj.createTableList(vars) names = tab[0] vals = tab[1] top = Toplevel(self.root) table = MixedDataTable(top,vals, name="STARS Variables (CSTS)", columnLabels = names) def variableTSTable(self): vars = self.proj.getTSVariableNames() tab = self.proj.createTableList(vars) names = tab[0] vals = tab[1] top = Toplevel(self.root) table = MixedDataTable(top,vals, name="STARS Variables (TS)", columnLabels = names) def variableCS_CSTSTable(self): cvars = self.proj.getCSVariableNames() cstvars = self.proj.getCSTSVariableNames() vars = cvars + cstvars tab = self.proj.createTableList(vars) names = tab[0] vals = tab[1] top = Toplevel(self.root) table = MixedDataTable(top,vals, name="STARS Variables (CS and CSTS)", columnLabels = names) def baseVariableTable(self,sample=1): baseData = self.proj.createInitialTable(sample=sample) top = Toplevel(self.root) table = MixedDataTable(top,baseData,name="Base Data", columnLabels=self.proj.initial.keys()) def readCSV_CS(self): FILE_TYPES=[("Files","*.csv")] fileName = askopenfilename(filetypes=FILE_TYPES, title="MERGE Additional CS Data.") if fileName: self.proj.readCSV_CS(fileName) self.report(self.proj.variableSummary()) def readCSV_TS(self): FILE_TYPES=[("Files","*.csv")] fileName = askopenfilename(filetypes=FILE_TYPES, title="MERGE Additional TS Data.") if fileName: self.proj.readCSV_TS(fileName) self.report(self.proj.variableSummary()) def readCSV_CSTS(self): FILE_TYPES=[("Files","*.csv")] fileName = askopenfilename(filetypes=FILE_TYPES, title="MERGE Additional CSTS Data.") if fileName: self.proj.readCSV_CSTS(fileName) self.report(self.proj.variableSummary()) def joinCS(self): FILE_TYPES=[("Files","*.csv")] fileName = askopenfilename(filetypes=FILE_TYPES, title="JOIN Additional CS Data.") if fileName: self.proj.readJoinCSV(fileName) d = sd.SDialogue('Join Data Dialogue') txt = """Identify the existing cross-sectional field in the project to serve as the master in the matching process. """ varNames = self.proj.getCSVariableNames() varNames.sort() entries = ['Field'] sd.MultiEntry(d,varNames, entries, title='Identify Master Field', helpText=txt) txt = """Identify the field in your new data that will serve as the slave in the matching process. """ varNames = self.proj.data2Join.names varNames.sort() entries = ['Field'] sd.MultiEntry(d,varNames, entries, title='Identify Slave Field', helpText=txt) d.draw() if d.status: master = d.results[0]['Field'] slave = d.results[1]['Field'] self.proj.joinCS(master,slave) self.report(self.proj.variableSummary()) def joinCSTS(self): FILE_TYPES=[("Files","*.csv")] fileName = askopenfilename(filetypes=FILE_TYPES, title="JOIN Additional CSTS Data.") if fileName: self.proj.readJoinCSV(fileName) d = sd.SDialogue('Join Data Dialogue') txt = """Identify the existing cross-sectional field in the project to serve as the master in the matching process. """ varNames = self.proj.getCSVariableNames() varNames.sort() entries = ['Field'] sd.MultiEntry(d,varNames, entries, title='Identify Master Field', helpText=txt) txt = """Identify the field in your new data that will serve as the slave in the matching process. """ varNames = self.proj.data2Join.names varNames.sort() entries = ['Field'] sd.MultiEntry(d,varNames, entries, title='Identify Slave Field', helpText=txt) d.draw() if d.status: master = d.results[0]['Field'] slave = d.results[1]['Field'] self.proj.joinCSTS(master,slave) self.report(self.proj.variableSummary()) def importGalBinary(self): FILE_TYPES=[("Files","*.gal")] fileName = askopenfilename(filetypes=FILE_TYPES, title="Import Binary Gal File.") if fileName: self.proj.importMatrix(fileName,'gal') def importGalValued(self): FILE_TYPES=[("Files","*.spv")] fileName = askopenfilename(filetypes=FILE_TYPES, title="Import Sparse Valued Gal File.") if fileName: self.proj.importMatrix(fileName,'spv') def importFullMatrix(self): FILE_TYPES=[("Files","*.fmt")] fileName = askopenfilename(filetypes=FILE_TYPES, title="Import Full Matrix File.") if fileName: self.proj.importMatrix(fileName,'fmt') def saveAsProject(self): """ Saves STARS project under a new name. Callback. Stub XXX. """ if self.saveCheck(): fileName = asksaveasfilename(filetypes=[("STARS Projects","*.prj")], title="Save STARS Project Name", initialdir=self.proj.projectDir, initialfile=self.proj.projPrefix) if fileName: self.proj.setProjectFiles(fileName) self.writeProjectFiles() def saveProject(self): """ Saves STARS project under current name. Callback. Stub XXX. """ if self.saveCheck(): self.writeProjectFiles() def openProject(self): """ Opens an exisiting STARS Project. Callback. Stub XXX. """ starsFile = askopenfilename(filetypes=[("STARS Projects","*.prj")]) if starsFile: print starsFile self.starsFile = starsFile def plot(self): """ Plots the current ArcView Shapefile scaled for STARS Map. Callback. """ self.avproject.draw() self.projectedCoordsOn = 1 def summarize(self): """ Reports on current ArcView Project. Callback. """ try: self.avproject.summary() except: print 'No ArcView Project Open' def writeProjectFiles(self): """Wrapper to write all files necessary for a STARS Project.""" #if self.saveCheck(): self.proj.writePRJ() if self.prj != 1: if self.proj.arc == 1: self.proj.writeGIS(self.projected) self.proj.writeCSO() self.proj.writeDHT(delimiter=" ") self.proj.writeDAT(delimiter=" ") print "Finished creating project!" self.report("Finished creating project!") def doMaps(self): # XXX maybe wrap alternative projected maps in a dictionary so that the # final selection of a projection does not require another projection # of the coordinates. i.e., if the user firsts looks at mercator, then # uprojected, then albers, the last map is albers. but, if the user # wants their project to use none or mercator, they would need to # reproject it at this point. for now this is in self.projectedMaps if self.proj.prj == 1: self.report("Your GIS File has already been created!") else: if self.proj.arc == 1: d = sd.SDialogue('Map Views') values=('None', 'Mercator', 'Albers', 'Transverse Mercator', 'Cylindrical Equidistant') txt="Select Map Projection (or none for unprojected)\n" rbutton = sd.RadioButtons(d, label='Projection', values=values, align='LEFT', title='Projections', helpText=txt) d.draw() if d.status: type = d.results[0] projections = {1:Projection.MercatorProj, 2:Projection.AlbersEqualAreaProj, 3:Projection.TransverseMercatorProj, 4:Projection.CylindricalEquidistantProj, 0:"None"} self.proj.createMap(self.proj.shapeFileName, projections[type]) top = Toplevel(self.root) self.projected=Projection.MapView(top, self.proj.map) self.projected.plot() top.title(self.proj.map.projectionName) self.proj.projectedMaps[self.proj.map.projectionName] = self.proj.map self.projectedCoordsOn = 1 else: self.report("No Shapefile declared for this project") def writeGAL(self): print 'writing GAL' iGal = ReadGisFile(self.filePrefix+".gis") mGal = gis2Contiguity(iGal[0], iGal[1], iGal[2]) gKeys = mGal.keys() gKeys.sort() fgal = open(self.filePrefix+".gal", "w") fgal.write("%s\n"%(len(gKeys))) for i in gKeys: fgal.write("%s %s\n"%(i, mGal[i][0])) try: neighs = [ str(i) for i in mGal[i][1] ] neighs = (" ").join(neighs) print neighs fgal.write("%s\n"%(neighs)) except: fgal.write("%s\n"%("")) print 'attention: island' fgal.close() def saveCheck(self): """Wraps all the checks necessary to write a project file""" flag = 1 flag *= self.starsProjectOn if self.proj.arc == 1: flag *= self.projectedCoordsOn if not self.starsProjectOn: print 'No Stars Project Defined.' if self.proj.arc == 1: if not self.projectedCoordsOn: print 'Please plot shapefile before saving project.' return flag def notDone(self): self.report("This method is not done yet!") if __name__ == '__main__': from Tkinter import * v = SProjectMaker() v.mainloop()
41.744612
130
0.54178
1e00b81a482e34ade0a2cad9f58f6970179e850d
2,131
py
Python
examples/chart_gauge.py
eddiechapman/XlsxWriter
c636117ab30e64e4b7b824c9105595c42887c2c9
[ "BSD-2-Clause-FreeBSD" ]
2,766
2015-01-02T17:36:42.000Z
2022-03-31T09:23:30.000Z
examples/chart_gauge.py
xiaolanmeng86/XlsxWriter
6c3ea23a410e8216eab8f5751e5544ffb444b3da
[ "BSD-2-Clause-FreeBSD" ]
683
2015-01-03T09:55:02.000Z
2022-03-31T07:18:15.000Z
examples/chart_gauge.py
xiaolanmeng86/XlsxWriter
6c3ea23a410e8216eab8f5751e5544ffb444b3da
[ "BSD-2-Clause-FreeBSD" ]
636
2015-01-05T01:57:08.000Z
2022-03-25T18:42:41.000Z
####################################################################### # # An example of creating a Gauge Chart in Excel with Python and XlsxWriter. # # A Gauge Chart isn't a native chart type in Excel. It is constructed by # combining a doughnut chart and a pie chart and by using some non-filled # elements. This example follows the following online example of how to create # a Gauge Chart in Excel: https://www.excel-easy.com/examples/gauge-chart.html # # Copyright 2013-2021, John McNamara, jmcnamara@cpan.org # import xlsxwriter workbook = xlsxwriter.Workbook('chart_gauge.xlsx') worksheet = workbook.add_worksheet() chart_doughnut = workbook.add_chart({'type': 'doughnut'}) chart_pie = workbook.add_chart({'type': 'pie'}) # Add some data for the Doughnut and Pie charts. This is set up so the # gauge goes from 0-100. It is initially set at 75%. worksheet.write_column('H2', ['Donut', 25, 50, 25, 100]) worksheet.write_column('I2', ['Pie', 75, 1, '=200-I4-I3']) # Configure the doughnut chart as the background for the gauge. chart_doughnut.add_series({ 'name': '=Sheet1!$H$2', 'values': '=Sheet1!$H$3:$H$6', 'points': [ {'fill': {'color': 'green'}}, {'fill': {'color': 'yellow'}}, {'fill': {'color': 'red'}}, {'fill': {'none': True}}], }) # Rotate chart so the gauge parts are above the horizontal. chart_doughnut.set_rotation(270) # Turn off the chart legend. chart_doughnut.set_legend({'none': True}) # Turn off the chart fill and border. chart_doughnut.set_chartarea({ 'border': {'none': True}, 'fill': {'none': True}, }) # Configure the pie chart as the needle for the gauge. chart_pie.add_series({ 'name': '=Sheet1!$I$2', 'values': '=Sheet1!$I$3:$I$6', 'points': [ {'fill': {'none': True}}, {'fill': {'color': 'black'}}, {'fill': {'none': True}}], }) # Rotate the pie chart/needle to align with the doughnut/gauge. chart_pie.set_rotation(270) # Combine the pie and doughnut charts. chart_doughnut.combine(chart_pie) # Insert the chart into the worksheet. worksheet.insert_chart('A1', chart_doughnut) workbook.close()
31.338235
78
0.650868
3e1d2e84764fbe87cd8611b72b83c7b1f71eef6f
1,523
py
Python
voc_annotation.py
Mr-Yao-Pupil/efficientdet-pytorch
f04189b5baf50b98a124dd76dee55a840cf17719
[ "MIT" ]
null
null
null
voc_annotation.py
Mr-Yao-Pupil/efficientdet-pytorch
f04189b5baf50b98a124dd76dee55a840cf17719
[ "MIT" ]
null
null
null
voc_annotation.py
Mr-Yao-Pupil/efficientdet-pytorch
f04189b5baf50b98a124dd76dee55a840cf17719
[ "MIT" ]
null
null
null
import xml.etree.ElementTree as ET from os import getcwd sets = [('2007', 'train'), ('2007', 'val'), ('2007', 'test')] classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] def convert_annotation(year, image_id, list_file): in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml' % (year, image_id)) tree = ET.parse(in_file) root = tree.getroot() for obj in root.iter('object'): difficult = 0 if obj.find('difficult') != None: difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult) == 1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (int(xmlbox.find('xmin').text), int(xmlbox.find('ymin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymax').text)) list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id)) wd = getcwd() for year, image_set in sets: image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt' % (year, image_set)).read().strip().split() list_file = open('%s_%s.txt' % (year, image_set), 'w') for image_id in image_ids: list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg' % (wd, year, image_id)) convert_annotation(year, image_id, list_file) list_file.write('\n') list_file.close()
38.075
119
0.594879
8952b8f73e36cef3d831e414d33299a4fc8f8289
90
py
Python
help_api/apps.py
Pravesh-Jamgade/projectSOS
e9d1021c1a4a38e5750242b329b6bc725a446299
[ "MIT" ]
null
null
null
help_api/apps.py
Pravesh-Jamgade/projectSOS
e9d1021c1a4a38e5750242b329b6bc725a446299
[ "MIT" ]
null
null
null
help_api/apps.py
Pravesh-Jamgade/projectSOS
e9d1021c1a4a38e5750242b329b6bc725a446299
[ "MIT" ]
null
null
null
from django.apps import AppConfig class HelpApiConfig(AppConfig): name = 'help_api'
15
33
0.755556
0a3a1eefd0bda0121ff45a42e939ba540316035c
2,201
py
Python
menu_structure.py
adwuard/OP1_File_Organizer
0da6d297734a0f7905fc23ea424256456b2b2b45
[ "MIT" ]
27
2019-03-30T22:21:50.000Z
2019-08-22T04:51:13.000Z
menu_structure.py
adwuard/OP_Manager
0da6d297734a0f7905fc23ea424256456b2b2b45
[ "MIT" ]
4
2019-10-29T22:55:53.000Z
2022-03-11T23:44:48.000Z
menu_structure.py
adwuard/OP_Manager
0da6d297734a0f7905fc23ea424256456b2b2b45
[ "MIT" ]
8
2019-04-14T05:35:30.000Z
2019-07-17T16:10:09.000Z
WifiTransfer = [ ["Wifi Transfer", -1], ["SSH Transfer", "Check_IP"], ["Wifi Server", "Server IP"] # "Connect", -1 ] MIDI = [ ["MIDI", -1], ["USB MIDI IN Test", "MIDI_In_Test"], ["USB MIDI OUT Test", "MIDI_Out_Test"] ] op1fun = [ ["OP1.FUN", -1], ["Packs", "OP1FUN_BrowsePacks"], ["Download All Packs", "OP1FUN_DownloadAllPacks"] ] Utilities = [ ["Utilities", -1], ["Check Storage", "checkStorage"], ["MIDI Host", "MIDI_Host"], ["op1.fun", op1fun], ["SSH Transfer", "Check_IP"], ["Eject", "act_ESC_Eject"], # ["Power Off System", "act_POWER_OFF"], ] # PresetPage = [ # ["Manage Presets", -1], # ["Freeze State", "act_Freeze_State"], # ["Upload From Local", "act_Upload_Preset_From_Local"], # ["Del All User Data", "act_DANG_Delete_ALL_From_OP_1"] # ] OP_1_Patches_Folder = [ ["OP-1 Patches", -1], ["Synth", "OP-1 Synth Patches"], # Start Browser ["Drum", "OP-1 Drum Patches"] # Start Browser ] Local_Patches = [ ["Local Patches", -1], ["Synth", "UploadSynthPatches"], # Start Browser ["Drum", "UploadDrumPatches"] # Start Browser ] OP_1_Patches = [ ["OP-1", -1], ["Synth", "OP1_Synth_Patches"], # Start Browser ["Drum", "OP1_Drum_Patches"] # Start Browser ] PatchesPage = [ ["Patches", -1], ["Backup", "act_5_Backup_All_Patches"], ["Manage Local", Local_Patches], ["Manage OP-1", OP_1_Patches] ] BackupPage = [ ["Backup", -1], ["Tracks + Album", "act_Backup_Project_From_OP_1"], ["Tracks", "act_Load_Project_From_Local_only_tracks"] ] ProjectsPage = [ ["Projects", -1], ["Backup", BackupPage], ["Manage Local", "act_Load_Project_From_Local"] ] OP1 = [ ["OP-1", -1], ["Projects", ProjectsPage], ["Patches", PatchesPage] ] OPZ = [ ["OP-Z", -1], ["Freeze State", "act_Freeze_State_OPZ"], ["Recall State", "act_Recall_State_To_OPZ"], ["Manage OP-Z", "OPZ_Patches"] # ["Local Projects", "act_Load_Project_From_Local"] ] MainPage = [ ["Main Menu", -1], ["OP-1", OP1], ["OP-Z", OPZ], # ["Wifi Transfer", WifiTransfer], ["Utilities", Utilities], ["Eject", "act_ESC_Eject"] ]
23.168421
60
0.582917
7737fba2d658ddeb81fa82d499103d2c03050b85
112
py
Python
code/src/nuvla/api/__init__.py
nuvla/python-api
7b530aa049eee8c8cd654c27d749d46bf0d19e87
[ "Apache-2.0" ]
4
2019-04-27T10:35:44.000Z
2019-05-05T13:04:28.000Z
code/src/nuvla/api/__init__.py
nuvla/python-library
421abe6f583e1ce6a48670131faefe16b7e0bc12
[ "Apache-2.0" ]
21
2019-02-22T07:30:41.000Z
2022-03-30T13:27:55.000Z
code/src/nuvla/api/__init__.py
nuvla/python-library
421abe6f583e1ce6a48670131faefe16b7e0bc12
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from .api import Api, NuvlaError, ConnectionError, NuvlaResourceOperationNotAvailable
22.4
85
0.758929
859d71041dd2e21f82f014c80bdf37d0de20106a
702
py
Python
String/Leetcode 5. Longest Palindromic Substring.py
kaizhengny/LeetCode
67d64536ab80f4966699fe7460d165f2a98d6a82
[ "MIT" ]
31
2020-06-23T00:40:04.000Z
2022-01-08T11:06:24.000Z
String/Leetcode 5. Longest Palindromic Substring.py
kaizhengny/LeetCode
67d64536ab80f4966699fe7460d165f2a98d6a82
[ "MIT" ]
null
null
null
String/Leetcode 5. Longest Palindromic Substring.py
kaizhengny/LeetCode
67d64536ab80f4966699fe7460d165f2a98d6a82
[ "MIT" ]
7
2020-04-30T08:46:03.000Z
2021-08-28T16:25:54.000Z
class Solution: def longestPalindrome(self, s: str) -> str: n = len(s) dp = [[0]* n for _ in range(n)] max_len = 0 res = '' for i in range(len(s)): dp[i][i] = 1 max_len = 1 res = s[i] for i in range(len(s)-1): if s[i] == s[i+1]: dp[i][i+1] = 1 max_len = 2 res = s[i:i+2] for j in range(len(s)): for i in range(j): if s[i] == s[j] and dp[i+1][j-1]: dp[i][j] = 1 if j-i+1 > max_len: max_len = j-i+1 res = s[i:j+1] return res
30.521739
49
0.339031
37d05277c3ba2f39c7d599d40c96b956808e7675
102
py
Python
Codeforces/270/gen.py
Mindjolt2406/Competitive-Programming
d000d98bf7005ee4fb809bcea2f110e4c4793b80
[ "MIT" ]
2
2018-12-11T14:37:24.000Z
2022-01-23T18:11:54.000Z
Codeforces/270/gen.py
Mindjolt2406/Competitive-Programming
d000d98bf7005ee4fb809bcea2f110e4c4793b80
[ "MIT" ]
null
null
null
Codeforces/270/gen.py
Mindjolt2406/Competitive-Programming
d000d98bf7005ee4fb809bcea2f110e4c4793b80
[ "MIT" ]
null
null
null
from random import * print 5 for i in range(5): for j in range(5): print randint(1,1000), print ""
20.4
43
0.666667
976ca63872052807fa892bcc3cc0c4ff9f61c3af
88
py
Python
examples/django/1_drf_base_managed_postges/example_app/urls.py
e-kor/yappa
1ea3c4e6a5ffb7a3fbd02d810a62f73a13b9d649
[ "MIT" ]
41
2021-07-15T14:54:16.000Z
2022-03-26T10:59:40.000Z
examples/django/1_drf_base_managed_postges/example_app/urls.py
e-kor/yappa
1ea3c4e6a5ffb7a3fbd02d810a62f73a13b9d649
[ "MIT" ]
29
2021-08-04T08:04:26.000Z
2021-08-19T09:50:30.000Z
examples/django/1_drf_base_managed_postges/example_app/urls.py
e-kor/yappa
1ea3c4e6a5ffb7a3fbd02d810a62f73a13b9d649
[ "MIT" ]
3
2021-07-23T14:56:40.000Z
2022-03-24T16:09:55.000Z
from django.urls import path from .views import root urlpatterns = [path("", root), ]
14.666667
32
0.704545
eb65dda0a839148b12883c22d5bf4946eef87495
2,042
py
Python
@test/bench.py
tenko/kdtree
c3bcb9be24615d39b9216ddd85381e981e9f2946
[ "BSD-2-Clause" ]
5
2016-01-19T03:49:16.000Z
2022-01-07T05:33:12.000Z
@test/bench.py
tenko/kdtree
c3bcb9be24615d39b9216ddd85381e981e9f2946
[ "BSD-2-Clause" ]
null
null
null
@test/bench.py
tenko/kdtree
c3bcb9be24615d39b9216ddd85381e981e9f2946
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from random import randint, seed from timeit import Timer import numpy as np def asciitable(rows): # From : https://gist.github.com/lonetwin/4721748 # - figure out column widths widths = [len(max(columns, key=len)) for columns in zip(*rows)] def separator(): print('-+-'.join( '-' * width for width in widths )) separator() # - print the header header, data = rows[0], rows[1:] print( ' | '.join(format(title, "%ds" % width) for width, title in zip(widths, header)) ) separator() # - print the data for row in data: print( " | ".join(format(cdata, "%ds" % width) for width, cdata in zip(widths, row)) ) separator() DATA = None if __name__ == '__main__': seed(42) HEADING = ('Test', 'cKDTree', 'KDTree', 'Ratio') rows = [HEADING] SETUP_CKDTREE = """ from __main__ import DATA from scipy.spatial import cKDTree kdtree1 = cKDTree(DATA, leafsize=10) import numpy as np pnt = np.array((.5,.5,.5)) """ SETUP_KDTREE = """ from __main__ import DATA import numpy as np from kdtree import KDTree, KNNResultSet pnt = np.array((.5,.5,.5)) kdtree2 = KDTree(DATA, maxLeafSize = 10) kdtree2.build() res2 = KNNResultSet(10) """ M = 10 def run(name, ckdtree_stmt, kdtree_stmt): a = Timer(ckdtree_stmt, setup = SETUP_CKDTREE).timeit(number = M) b = Timer(kdtree_stmt, setup = SETUP_KDTREE).timeit(number = M) ratio = a / b rows.append((name, "%g" % a, "%g" % b, "%.1f" % ratio)) for N in (1000, 10000, 100000): DATA = pnts = np.random.rand(N,3) run('Initialize', 'cKDTree(DATA, leafsize=10)', 'tree=KDTree(DATA, maxLeafSize = 10); tree.build()') run('Nearest', 'kdtree1.query(pnt, k=10)', 'kdtree2.findNeighbors(res2, pnt)') print(" DATA SIZE %d" % N) asciitable(rows) print("\n") rows.clear() rows.append(HEADING)
26.519481
108
0.573457
6eb601973fc5bc3cbd97fba937f845de8e87ee43
118
py
Python
.history/config_20210927032431.py
GraceOswal/pitch-perfect
d781c6e0f55c11f2a5e5dceb952f6b2de3c47c3b
[ "MIT" ]
null
null
null
.history/config_20210927032431.py
GraceOswal/pitch-perfect
d781c6e0f55c11f2a5e5dceb952f6b2de3c47c3b
[ "MIT" ]
null
null
null
.history/config_20210927032431.py
GraceOswal/pitch-perfect
d781c6e0f55c11f2a5e5dceb952f6b2de3c47c3b
[ "MIT" ]
null
null
null
import os from dotenv import load_dotenv as ld ld() class Config: debug = True SECRET_KEY = OS.ENVIRON.GET
11.8
36
0.70339
7a72aa69f9b6acd63a91dc48c0e22425a5a7aaf6
494
py
Python
scripts/ui-banner.py
subutai-io/launcher
d8397995e18200b12d60781ed485af04f70bff03
[ "Apache-2.0" ]
1
2017-10-31T18:55:36.000Z
2017-10-31T18:55:36.000Z
scripts/ui-banner.py
subutai-attic/launcher
d8397995e18200b12d60781ed485af04f70bff03
[ "Apache-2.0" ]
199
2016-07-28T07:30:48.000Z
2017-10-14T06:15:40.000Z
scripts/ui-banner.py
subutai-io/launcher
d8397995e18200b12d60781ed485af04f70bff03
[ "Apache-2.0" ]
1
2021-03-27T10:08:26.000Z
2021-03-27T10:08:26.000Z
import subutai from time import sleep def subutaistart(): subutai.download("launcher-ad-1.png") while !subutai.isDownloadComplete() == 1: sleep(0.05) subutai.download("launcher-ad-2.png") while !subutai.isDownloadComplete() == 1: sleep(0.05) subutai.download("launcher-ad-3.png") while !subutai.isDownloadComplete() == 1: sleep(0.05) subutai.download("launcher-ad-4.png") while !subutai.isDownloadComplete() == 1: sleep(0.05)
24.7
45
0.645749
c897804072b7b02dc3f109f6073e83d325985bc7
31,267
py
Python
root/trip_ids_at_stops_merge_in_muni_perday_v3.py
transitanalystisarel/TransitAnalystIsrael
341de9272b352c18333ff136a00de0b97cd82216
[ "MIT" ]
null
null
null
root/trip_ids_at_stops_merge_in_muni_perday_v3.py
transitanalystisarel/TransitAnalystIsrael
341de9272b352c18333ff136a00de0b97cd82216
[ "MIT" ]
null
null
null
root/trip_ids_at_stops_merge_in_muni_perday_v3.py
transitanalystisarel/TransitAnalystIsrael
341de9272b352c18333ff136a00de0b97cd82216
[ "MIT" ]
3
2019-05-08T04:36:03.000Z
2020-11-23T19:46:52.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # collect a set of trip_id s at all stops in a GTFS file over the selected week of the service period starting at serviceweekstartdate # filter stops in munis based on input txt file - stopsinmuni_post_edit # merge sets of trips at stops in each muni to count trips per hour and per day # # inputs: # parent_path = 'C:\\transitanalyst\\gtfs\\' # pathout = 'C:\\transitanalyst\\processed\\' # sserviceweekstartdate = '20181021' # gtfsdate = '20181021' # gtfsdir = 'israel'+gtfsdate # stopsinmuni_post_edit = 'stopsinmuni_post_edit'+'_'+servicedate+'.txt' # # outputs: # output txtfileout4 of munis with tpd per line (agency_id+route_short_name) in muni - 'muni_w_tpd_per_line'+'_'+servicedate+'.txt' # output txtfileout3 of munis with trips per hour in day summed over one week -'munis_w_tph_summed_over_week'+'_'+sserviceweekstartdate+'_'+gtfsdate+'.txt' # output jsfileout of munis with tpd per line (agency_id+route_short_name) in muni - 'muni_w_tpd_per_line_'+sserviceweekstartdate+'.js' # print('----------------- collect a set of trip_id s at all stops --------------------------') print('output txt file of stops with trip_id s') from datetime import date from datetime import timedelta import time import copy import json import csv print("Local current time :", time.asctime( time.localtime(time.time()) )) # # input: parent_path = 'C:\\transitanalyst\\gtfs\\' pathout = 'C:\\transitanalyst\\processed\\' sserviceweekstartdate = '20181021' # recommend to use gtfsdate (expect gtfs files to be most accurate for first week in service range) gtfsdate = '20181021' gtfsdir = 'israel'+gtfsdate servicedate = sserviceweekstartdate stopsinmuni_post_edit = 'stopsinmuni_post_edit'+'_'+servicedate+'.txt' # output: txtfileout4 = 'muni_w_tpd_per_line'+'_'+servicedate+'.txt' #txtfileout1 = 'stops_w_trip_ids'+'_'+sserviceweekstartdate+'_'+gtfsdate+'.txt' # commented out - generates very big file #txtfileout2 = 'stops_w_tph_summed_over_week'+'_'+sserviceweekstartdate+'_'+gtfsdate+'.txt' # stops with trips per hour in day summed over one week txtfileout3 = 'munis_w_tph_summed_over_week'+'_'+sserviceweekstartdate+'_'+gtfsdate+'.txt' # munis with trips per hour in day summed over one week jsfileout = 'muni_w_tpd_per_line_'+sserviceweekstartdate+'.js' #parent_path = 'C:\\transitanalyst\\processed\\' # small files for test #gtfsdir = 'israel20180106-binyamina_station' # small files for test gtfspathin = parent_path / gtfsdir gtfspath = gtfspathin gtfspathout = pathout processedpathin = pathout DAYSTOCOUNT = 7 daysofservicetocount = DAYSTOCOUNT - DAYSTOCOUNT/7 MAX_STOPS_COUNT = 50000 MAX_STOP_TIMES_COUNT = 25000000 MAX_TRIPS_COUNT = 900000 MAX_SHAPES_COUNT = 10000000 MAX_ROUTES_COUNT = 15000 MAX_AGENCY_COUNT = 100 MAX_CALENDAR_COUNT = 250000 # # scan lines in calendar to compute start and end service dates and to fill calendar_dict with calendar lines keyed on service_id # maxfilelinecount = MAX_CALENDAR_COUNT gtfsfile = 'calendar.txt' inid = 'service_id' calendar_dict = {} slinelist=[] print(gtfspath / gtfsfile) filein = open(gtfspath / gtfsfile, 'r', encoding="utf8") sline = filein.readline() slinelist=sline[:-1].split(",") print(slinelist) keylist = slinelist inid_index = keylist.index(inid) service_id_i = keylist.index('service_id') sunday_i = keylist.index('sunday') monday_i = keylist.index('monday') tuesday_i = keylist.index('tuesday') wednesday_i = keylist.index('wednesday') thursday_i = keylist.index('thursday') friday_i = keylist.index('friday') saturday_i = keylist.index('saturday') start_date_i = keylist.index('start_date') end_date_i = keylist.index('end_date') calendar_dict = {keylist[inid_index]:slinelist} dayofweek=[monday_i, tuesday_i, wednesday_i, thursday_i, friday_i, saturday_i, sunday_i] #print calendar_dict # scan lines in calendar count = 0 sstartservicedate = '25250101' sendservicedate = '15150101' sline = filein.readline() while ((count < maxfilelinecount) and (sline != '')): slinelist=sline[:-1].split(",") #print slinelist in_id = slinelist[inid_index] # print in_id calendar_dict[slinelist[inid_index]] = slinelist sstartservicedate = min(sstartservicedate, slinelist[start_date_i]) sendservicedate = max(sendservicedate, slinelist[end_date_i]) #print calendarline_dict #print calendar_dict #print '------------------' count += 1 sline = filein.readline() print('------------------') #print calendar_dict print(sstartservicedate, sendservicedate) filein.close() # # print int(sstartservicedate[0:4]),int(sstartservicedate[4:6]),int(sstartservicedate[6:8]) # from str to date format startservicedate = date(int(sstartservicedate[0:4]),int(sstartservicedate[4:6]),int(sstartservicedate[6:8])) endservicedate = date(int(sendservicedate[0:4]),int(sendservicedate[4:6]),int(sendservicedate[6:8])) serviceweekstartdate = date(int(sserviceweekstartdate[0:4]),int(sserviceweekstartdate[4:6]),int(sserviceweekstartdate[6:8])) print('startservicedate, endservicedate, serviceweekstartdate ', startservicedate, endservicedate, serviceweekstartdate) # # create trips per hour list with hours from 0-30 (for times after midnight) and count of 0, for tripsperhour # use as template for trips per hour lists per stop # dateinservicerange = lambda d: d >= startservicedate and d <= endservicedate # print timedelta(days=1) serviceweekenddate = serviceweekstartdate + timedelta(days=DAYSTOCOUNT-1) print('serviceweekstartdate, serviceweekenddate ', serviceweekstartdate, serviceweekenddate) if dateinservicerange(serviceweekstartdate) and dateinservicerange(serviceweekenddate) : print('serviceweek selected is in service range') else : print('error*********************serviceweek selected is NOT in service range: ' , serviceweekstartdate, serviceweekenddate, startservicedate, endservicedate) exit() print('startservicedate, endservicedate ', startservicedate, endservicedate) startservicedate = serviceweekstartdate endservicedate = serviceweekenddate print('startservicedate, endservicedate ', startservicedate, endservicedate) tripsperhourlist = [] for houratstop in range (31): tripsperhourlist.append(0) print('----tripsperhourlist----') print(tripsperhourlist) # # scan stops.txt to create a stops dict keyed on stop_id that includes lat lon, an empty dict of trip_id s and times at stop for this stop and a # trips per hour at stop list # also calculate min and max lat lon# maxfilelinecount = MAX_STOPS_COUNT gtfsfile = 'stops.txt' inid = 'stop_id' stops_dict = {} tripsperstop_dict = {} # dict of trip_id s and times at stop for this stop slinelist=[] print(gtfspath / gtfsfile) filein = open(gtfspath / gtfsfile, 'r', encoding="utf8") sline = filein.readline() slinelist=sline[:-1].split(",") # print slinelist keylist = slinelist inid_index = keylist.index(inid) stop_id_i = keylist.index('stop_id') stop_lat_i = keylist.index('stop_lat') stop_lon_i = keylist.index('stop_lon') stop_desc_i = keylist.index('stop_desc') #stops_dict = {keylist[inid_index]:[slinelist[slinelist[stop_lat_i], slinelist[stop_lon_i], copy.deepcopy(tripsperstop_dict), copy.deepcopy(tripsperhourlist), 0]} #print stops_dict # scan gtfsfile count = 0 minlat = '90.000000' minlon = '90.000000' maxlat = '00.000000' maxlon = '00.000000' sline = filein.readline() while ((count < maxfilelinecount) and (sline != '')): slinelist=sline[:-1].split(",") #print slinelist in_id = slinelist[inid_index] # print in_id stops_dict[slinelist[inid_index]] = [slinelist[stop_lat_i], slinelist[stop_lon_i], copy.deepcopy(tripsperstop_dict), copy.deepcopy(tripsperhourlist), 0] minlat = min(minlat, slinelist[stop_lat_i]) maxlat = max(maxlat, slinelist[stop_lat_i]) minlon = min(minlon, slinelist[stop_lon_i]) maxlon = max(maxlon, slinelist[stop_lon_i]) count += 1 sline = filein.readline() print('------------------') print(in_id, stops_dict[in_id]) #last one #for stop_id, stopsdictlist in stops_dict.iteritems(): #print stop_id, stopsdictlist[:2], list(stopsdictlist[2]) print('------------------') print('minlat, minlon : ', minlat, minlon) print('maxlat, maxlon : ', maxlat, maxlon) print('stop lines scanned ', count) filein.close() # # scan stop_times.txt to populate trip_id dict per stop in the stops dict # maxtimeatstop = '00:00:00' maxfilelinecount = MAX_STOP_TIMES_COUNT gtfspath = gtfspathin gtfsfile = 'stop_times.txt' slinelist=[] print(gtfspath / gtfsfile) filein = open(gtfspath / gtfsfile, 'r', encoding="utf8") sline = filein.readline() slinelist=sline[:-1].split(",") # print slinelist keylist = slinelist stop_id_i = keylist.index('stop_id') # index in stop_times slinelist. trip_id_i = keylist.index('trip_id') # index in stop_times slinelist. departure_time_i = keylist.index('departure_time') # index in stop_times slinelist. trip_dict_i = 2; # index in stops_dict. changed from 2 when stop_desc added. changed back to 2 when desc removed # scan gtfsfile count = 0 stopscount = 0 sline = filein.readline() while ((count < maxfilelinecount) and (sline != '')): slinelist=sline[:-1].split(",") #print slinelist stop_id = slinelist[stop_id_i] #print stop_id trip_id = slinelist[trip_id_i] departure_time = slinelist[departure_time_i] if stop_id in stops_dict: #print stop_id, trip_id, stops_dict[stop_id], stops_dict[stop_id][trip_dict_i] if trip_id in stops_dict[stop_id][trip_dict_i]: # trip at stop more than once... yes it does happen stops_dict[stop_id][trip_dict_i][trip_id].append(departure_time) #print 'trips at stop more than once - ', stop_id, len(stops_dict[stop_id][trip_dict_i]), len(stops_dict[stop_id][trip_dict_i][trip_id]) else : # trip at stop first time stops_dict[stop_id][trip_dict_i][trip_id] = [departure_time] #print 'trip at stop first time ********************** ', stop_id, stops_dict[stop_id][trip_dict_i] stopscount += 1 else : print('************* error ** stop_id not found in stops_dict ', stop_id) count += 1 maxtimeatstop = max(maxtimeatstop, departure_time) sline = filein.readline() print('------------------') #print stops_dict #for stop_id in stops_dict: # print stop_id, len(stops_dict[stop_id][trip_dict_i]) # for trip_id in stops_dict[stop_id][trip_dict_i]: # print '>>>', trip_id, len(stops_dict[stop_id][trip_dict_i][trip_id]) # if len(stops_dict[stop_id][trip_dict_i][trip_id]) > 1 : print '>>>>>>>>>>>>>>>>>>>>>>>>>>' #print 'last stops_dict entry updated: ', stops_dict[stop_id] print('stop_times lines scanned ', count) print('stops found in dict ', stopscount) print('maxlat, maxlon', maxlat, maxlon) print('maxtimeatstop : ', maxtimeatstop) filein.close() # # scan routes.txt to create a routes dict keyed on route_id that includes a route_short_name, and agency_id # maxfilelinecount = MAX_ROUTES_COUNT gtfsfile = 'routes.txt' inid = 'route_id' routes_dict = {} slinelist=[] print(gtfspath / gtfsfile) filein = open(gtfspath / gtfsfile, 'r', encoding="utf8") sline = filein.readline() slinelist=sline[:-1].split(",") print(slinelist) keylist = slinelist inid_index = keylist.index(inid) route_id_i = keylist.index('route_id') agency_id_i = keylist.index('agency_id') route_short_name_i = keylist.index('route_short_name') route_long_name_i = keylist.index('route_long_name') route_desc_i = keylist.index('route_desc') route_type_i = keylist.index('route_type') #routes_dict = {keylist[inid_index]:[slinelist[agency_id_i], slinelist[route_short_name_i]]} #print routes_dict # scan gtfsfile count = 0 sline = filein.readline() while ((count < maxfilelinecount) and (sline != '')): slinelist=sline[:-1].split(",") #print slinelist in_id = slinelist[inid_index] # print in_id routes_dict[slinelist[inid_index]] = [slinelist[agency_id_i], slinelist[route_short_name_i]] count += 1 sline = filein.readline() print('------------------') #print routes_dict print('last routes_dict entry entered: ', slinelist[inid_index], routes_dict[slinelist[inid_index]]) print('------------------') print('route lines scanned ', count) filein.close() # # scan trips.txt to create trips dict keyed on trip_id and includes service_id and route_id and number of times the trip runs during the analyzed service week # maxfilelinecount = MAX_TRIPS_COUNT gtfspath = gtfspathin gtfsfile = 'trips.txt' inid = 'trip_id' trips_dict = {} # trip_id: [service_id, route_id, xinweek, xpdlist, agency_id, route_short_name] slinelist=[] print(gtfspath / gtfsfile) filein = open(gtfspath / gtfsfile, 'r', encoding="utf8") sline = filein.readline() slinelist=sline[:-1].split(",") # print slinelist keylist = slinelist inid_index = keylist.index(inid) trip_id_i = keylist.index('trip_id') service_id_i = keylist.index('service_id') route_id_i = keylist.index('route_id') #trips_dict = {keylist[inid_index]:[slinelist[service_id_i], slinelist[route_id_i]]} #print trips_dict # scan gtfsfile count = 0 count_trip_ids_in_week = 0 sline = filein.readline() while ((count < maxfilelinecount) and (sline != '')): slinelist=sline[:-1].split(",") #print slinelist in_id = slinelist[inid_index] # trip_id # print in_id xinweek = 0 xpdlist = [0,0,0,0,0,0,0] service_id = slinelist[service_id_i] route_id = slinelist[route_id_i] agency_id = routes_dict[route_id][0] route_short_name = routes_dict[route_id][1] calslinelist = calendar_dict[service_id] # use service_id from trips_dict to look up calendar line list sstartcalendardate = calslinelist[start_date_i] # string sendcalendardate = calslinelist[end_date_i] # string startcalendardate = date(int(sstartcalendardate[0:4]),int(sstartcalendardate[4:6]),int(sstartcalendardate[6:8])) # start date for trip service endcalendardate = date(int(sendcalendardate[0:4]),int(sendcalendardate[4:6]),int(sendcalendardate[6:8])) # end date for trip service #print startcalendardate, endcalendardate, ' start and end date for trip service' #print startservicedate, endservicedate, ' start and end date for all service' for ordcalendardate in range(max(startcalendardate.toordinal(),startservicedate.toordinal()),min(endcalendardate.toordinal(),endservicedate.toordinal())+1): calendardate = date.fromordinal(ordcalendardate) calendardayofweek = calendardate.weekday() #print calendardate, calendardayofweek, dayofweek[calendardayofweek], calslinelist[dayofweek[calendardayofweek]] tripcountforday = int(calslinelist[dayofweek[calendardayofweek]]) #print tripcountforday, calslinelist if tripcountforday > 0 : xinweek += tripcountforday xpdlist[(calendardate-startservicedate).days] += tripcountforday # add to trip count for that service day trips_dict[in_id] = [slinelist[service_id_i], slinelist[route_id_i], xinweek, xpdlist, agency_id, route_short_name] if xinweek > 0 : count_trip_ids_in_week +=1 count += 1 sline = filein.readline() print('------------------') #print trips_dict print('trips lines scanned ', count) print('trip ids in week ', count_trip_ids_in_week) filein.close() ''' # # scan agency.txt to create agency dict keyed on agency_id and includes agency name # maxfilelinecount = MAX_AGENCY_COUNT gtfspath = gtfspathin gtfsfile = 'agency.txt' inid = 'agency_id' agency_dict = {} slinelist=[] print gtfspath+gtfsfile filein = open(gtfspath / gtfsfile, 'r', encoding="utf8") sline = filein.readline() slinelist=sline[:-1].split(",") # print slinelist keylist = slinelist inid_index = keylist.index(inid) agency_id_i = keylist.index('agency_id') agency_name_i = keylist.index('agency_name') # scan gtfsfile count = 0 sline = filein.readline() while ((count < maxfilelinecount) and (sline != '')): slinelist=sline[:-1].split(",") #print slinelist in_id = slinelist[inid_index] # print in_id agency_dict[in_id] = slinelist[agency_name_i] count += 1 sline = filein.readline() print '------------------' #print agency_dict print 'agency lines scanned ', count filein.close() ''' # # scan stops dict to populate trips per hour by looking up the each trip_id in the set in the trip dict # to get the service_id to look up the service days in the calendar dict # also update the total count # print('scan stops dict to populate trips per hour') count = 0 tripcount = 0 maxtphanystop = 0 maxtpwanystop = 0 deltatimehist = [] for i in range(121) : deltatimehist.append(0) for stop_id, [stop_lat, stop_lon, tripsatstop_dict, tphlist, totaltpwatstop] in stops_dict.items(): #print count, stop_id, stop_lat, stop_lon , len(tripsatstop_dict), tphlist, totaltpwatstop count += 1 for trip_id, timeatstoplist in tripsatstop_dict.items(): tripcount +=1 service_id = trips_dict[trip_id][0] slinelist = calendar_dict[service_id] # use service_id from trips_dict to look up calendar line list sstartcalendardate = slinelist[start_date_i] # string sendcalendardate = slinelist[end_date_i] # string startcalendardate = date(int(sstartcalendardate[0:4]),int(sstartcalendardate[4:6]),int(sstartcalendardate[6:8])) # start date for trip service endcalendardate = date(int(sendcalendardate[0:4]),int(sendcalendardate[4:6]),int(sendcalendardate[6:8])) # end date for trip service #print startcalendardate, endcalendardate, ' start and end date for trip service' #print startservicedate, endservicedate, ' start and end date for all service' route_id = trips_dict[trip_id][1] agency_id = routes_dict[route_id][0] route_short_name = routes_dict[route_id][1] #agency_name = agency_dict[agency_id] #line_name = agency_name+' - '+route_short_name # bigger file line_name = agency_id+'-'+route_short_name # smaller geojson file, but need to lookup agency name in client app for display #print count, tripcount, stop_id, trip_id, service_id, tpdlist[:2], totaltpwatstop #print 'route_id, line_name: ',route_id, line_name for ordcalendardate in range(max(startcalendardate.toordinal(),startservicedate.toordinal()),min(endcalendardate.toordinal(),endservicedate.toordinal())+1): calendardate = date.fromordinal(ordcalendardate) calendardayofweek = calendardate.weekday() #print calendardate, calendardayofweek, slinelist[dayofweek[calendardayofweek]] tripcountforday = int(slinelist[dayofweek[calendardayofweek]]) #print tripcountforday if tripcountforday > 0 : maxtimetripatstop = 0 mintimetripatstop = 30*60 for timeatstop in timeatstoplist : hour_i = int(timeatstop[0:2]) #print timeatstop, timeatstop[0:2], hour_i tphlist[hour_i] += tripcountforday # add to trip count for that day at the hour inttimeatstop = 60*int(timeatstop[0:2]) + int(timeatstop[3:5]) maxtimetripatstop = max(maxtimetripatstop, inttimeatstop) mintimetripatstop = min(mintimetripatstop, inttimeatstop) deltatimetripatstop = maxtimetripatstop - mintimetripatstop if deltatimetripatstop < 120 : deltatimehist[deltatimetripatstop] +=1 else : deltatimehist[120] +=1 if deltatimetripatstop > 100 : print('stop_id, trip_id, mintimetripatstop, maxtimetripatstop, deltatimetripatstop : ', stop_id, trip_id, mintimetripatstop, maxtimetripatstop, deltatimetripatstop) #print count, stop_id, stops_dict[stop_id][3] totaltpwatstop = 0 for tph in stops_dict[stop_id][3] : totaltpwatstop += tph maxtphanystop = max(maxtphanystop, tph) #print count, stop_id, totaltpwatstop stops_dict[stop_id][4] = totaltpwatstop maxtpwanystop = max(maxtpwanystop, totaltpwatstop) print('stop count ', count) #print 'last stops_dict entry : ', stops_dict[stop_id] print('maxtpwanystop ', maxtpwanystop) print('maxtphanystop ', maxtphanystop) print(deltatimehist) # # >>> load txt file of stopsinmuni post edit # print('>>> load txt file of stopsinmuni post edit') txtfilein = stopsinmuni_post_edit stopsinmuni = {} with open(processedpathin / txtfilein, newline='', encoding="utf8") as f: reader = csv.reader(f) header = next(reader) # ['muni_id', 'stop_id'] print(header) for row in reader: #print row muni_id = row[0] stop_id = row[1] # add to list, do not remove muni from list of stopsinmuni if muni_id in stopsinmuni : stopsinmuni[muni_id].append(stop_id) else : stopsinmuni[muni_id] = [stop_id] print(stopsinmuni[muni_id]) # last one print('stopsinmuni loaded. muni count ', len(stopsinmuni)) # # to create tripsinmuni_dict # for each muni and stop in muni location # merge the tripsatstop_dict from all stops in muni to create mergedtripsinmuni_dict # municount = 0 tripsinmuni_dict = {} # muni_id: mergedtripsinmuni_dict # for each muni # get in stop list to use as filter for muni_id, stopsinlist in stopsinmuni.items(): print(municount, muni_id) municount +=1 # for stops w tpd per line in muni mergedtripsinmuni_dict = {} # trip_id: [timeinmuni1, timeinmuni2, timeinmuni3...] stopinmunicount = 0 for stop_id in stopsinlist : [stop_lat, stop_lon, tripsatstop_dict, tphlist, totaltpwatstop] = stops_dict[stop_id] stopinmunicount +=1 # merge the tripsatstop_dict from all stops in muni to create mergedtripsinmuni_dict for trip_id, timeatstoplist in tripsatstop_dict.items() : if trips_dict[trip_id][2] > 0 : # xinweek > 0 then add first or merge otherwise don't add to dict at all if trip_id not in mergedtripsinmuni_dict: # not in merged dict then add it mergedtripsinmuni_dict[trip_id] = timeatstoplist else: # already in merged dict then append timeatstoplist mergedtripsinmuni_dict[trip_id].extend(timeatstoplist) tripsinmuni_dict[muni_id] = mergedtripsinmuni_dict print('muni_id, len(mergedtripsinmuni_dict) : ', muni_id, len(mergedtripsinmuni_dict)) #print muni_id, mergedtripsinmuni_dict # last one print('municount, stopinmunicount, ', municount, stopinmunicount) # # create tripswxinweekandminmaxtimesinmuni_dict by converting the list of times per trip in muni to # a list of min and max time for trip in muni and add also times per week that the trip is used # tripswxinweekandminmaxtimesinmuni_dict = {} # muni_id: tripswxinweekandminmaxtimes_dict for muni_id, mergedtripsinmuni_dict in tripsinmuni_dict.items() : tripswxinweekandminmaxtimes_dict ={} # trip_id: [xinweek, mintimetripatstop, maxtimetripatstop, deltatimetripatstop, agency_id] for trip_id, timeatstoplist in mergedtripsinmuni_dict.items() : maxtimetripatstop = 0 mintimetripatstop = 30*60 for timeatstop in timeatstoplist : inttimeatstop = 60*int(timeatstop[0:2]) + int(timeatstop[3:5]) maxtimetripatstop = max(maxtimetripatstop, inttimeatstop) mintimetripatstop = min(mintimetripatstop, inttimeatstop) deltatimetripatstop = maxtimetripatstop - mintimetripatstop tripswxinweekandminmaxtimes_dict[trip_id] = [trips_dict[trip_id][2], mintimetripatstop, maxtimetripatstop, deltatimetripatstop, trips_dict[trip_id][4]] tripswxinweekandminmaxtimesinmuni_dict[muni_id] = tripswxinweekandminmaxtimes_dict print('muni_id, len(tripswxinweekandminmaxtimes_dict) : ', muni_id, len(tripswxinweekandminmaxtimes_dict)) #print muni_id, tripswxinweekandminmaxtimes_dict # last one # # create tripswxpdandlineinmuni_dict by looking up xpd and line in trips_dict for trip in muni and add also times per week that the trip is used # tripswxpdandlineinmuni_dict = {} # muni_id: tripswxpdandline_dict for muni_id, mergedtripsinmuni_dict in tripsinmuni_dict.items() : tripswxpdandline_dict ={} # trip_id: [xinweek, xpdlist, agency_id, route_short_name] for trip_id, timeatstoplist in mergedtripsinmuni_dict.items() : tripswxpdandline_dict[trip_id] = [trips_dict[trip_id][2], copy.deepcopy(trips_dict[trip_id][3]), trips_dict[trip_id][4], trips_dict[trip_id][5]] tripswxpdandlineinmuni_dict[muni_id] = tripswxpdandline_dict print('muni_id, len(tripswxpdandline_dict) : ', muni_id, len(tripswxpdandline_dict)) #print muni_id, tripswxpdandline_dict # last one # # create tpdperlineinmuni_dict by collecting perline tpd dict for each trip in muni # tpdperlineinmuni_dict = {} # muni_id: tpdperline_dict for muni_id, tripswxpdandline_dict in tripswxpdandlineinmuni_dict.items() : tpdperline_dict = {} # line_name_i: [tpw, tpdlist] for trip_id, [xinweek, xpdlist, agency_id, route_short_name] in tripswxpdandline_dict.items() : #if xpdlist[0] > 1 : print '>>>>> ' ,muni_id, trip_id, [xinweek, xpdlist, agency_id, route_short_name] #line_name = agency_dict[agency_id]+'-'+route_short_name line_name_i = agency_id+'-'+route_short_name # smaller geojson file, but need to lookup agency name in client app for display if line_name_i in tpdperline_dict : # if line name already in dict then merge tpdperline_dict[line_name_i][0] += xinweek for i in range(len(xpdlist)) : tpdperline_dict[line_name_i][1][i] += xpdlist[i] else : # if line_name_i new then set to this trip values tpdperline_dict[line_name_i] = [xinweek, copy.deepcopy(xpdlist)] tpdperlineinmuni_dict[muni_id] = tpdperline_dict print('muni_id, len(tpdperline_dict) : ', muni_id, len(tpdperline_dict)) print(muni_id) # last one for line_name_i, [tpw, tpdlist] in tpdperline_dict.items() : print(tpw, tpdlist) # last one # # output to txt file # # # output txtfileout3 of munis with trips per hour in day summed over one week -'munis_w_tph_summed_over_week'+'_'+sserviceweekstartdate+'_'+gtfsdate+'.txt' # fileout = open(gtfspathout+txtfileout3, 'w', encoding="utf8") # save results in file postsline = 'muni_id,tph00,tph01,tph02,tph03,tph04,tph05,tph06,tph07,tph08,tph09,tph10,tph11,tph12,tph13,tph14,tph15,tph16,tph17,tph18,tph19,tph20,tph21,tph22,tph23\n' fileout.write(postsline) for muni_id, tripswxinweekandminmaxtimes_dict in tripswxinweekandminmaxtimesinmuni_dict.items() : tphlist24 = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] tpwinmuni = 0 count1x = 0 for trip_id, [xinweek, mintimetripatstop, maxtimetripatstop, deltatimetripatstop, agency_id] in tripswxinweekandminmaxtimes_dict.items() : tpwinmuni += xinweek * 1 count1x +=1 hour_i = int(mintimetripatstop/60)%24 tphlist24[hour_i] +=xinweek print(muni_id, tphlist24, tpwinmuni, count1x) stph24 = '' for i in range(24) : stph24 +=','+str(tphlist24[i]) postsline = muni_id+stph24+'\n' fileout.write(postsline) fileout.close() print(gtfspathout+txtfileout3) ''' # # output txtfileout1 of stops with trip_id s -'stops_w_trip_ids'+'_'+sserviceweekstartdate+'_'+gtfsdate+'.txt' # fileout = open(gtfspathout+txtfileout1, 'w', encoding="utf8") # save results in file postsline = 'stop_id,trip_id\n' fileout.write(postsline) for stop_id, [stop_lat, stop_lon, tripsatstop_dict, tphlist, totaltpwatstop] in stops_dict.iteritems(): for trip_id in tripsatstop_dict : if trips_dict[trip_id][2] > 0 : # if trip_id is used in service week analyzed then add to file postsline = stop_id+','+trip_id+'\n' fileout.write(postsline) fileout.close() print gtfspathout+txtfileout1 # # output txtfileout2 of stops with trips per hour in day summed over one week -'stops_w_tph_summed_over_week'+'_'+sserviceweekstartdate+'_'+gtfsdate+'.txt' # fileout = open(gtfspathout+txtfileout2, 'w', encoding="utf8") # save results in file postsline = 'stop_id,tph00,tph01,tph02,tph03,tph04,tph05,tph06,tph07,tph08,tph09,tph10,tph11,tph12,tph13,tph14,tph15,tph16,tph17,tph18,tph19,tph20,tph21,tph22,tph23\n' fileout.write(postsline) for stop_id, [stop_lat, stop_lon, tripsatstop_dict, tphlist, totaltpwatstop] in stops_dict.iteritems(): stphlist = '' for i in range(7) : stphlist += ','+str(tphlist[i]+tphlist[i+24]) for i in range(7,24) : stphlist += ','+str(tphlist[i]) postsline = stop_id+stphlist+'\n' fileout.write(postsline) fileout.close() print gtfspathout+txtfileout2 ''' # # create munisforoutput_dict # find day with max tpd and compute tpw # include in outputdict the tpdperline detail of the day with max tpd # munisforoutput_dict[muni_id] = [tpwinmuni, maxdaytpdinmuni, averagetpdinmuni, maxdaytpdperline_dict] # count = 0 munisforoutput_dict = {} for muni_id, tpdperline_dict in tpdperlineinmuni_dict.items(): tpwinmuni = 0 maxdaytpdinmuni = 0 averagetpdinmuni = 0 maxdaytpdperline_dict = {} tpdinmunilist = [0,0,0,0,0,0,0] maxday_i = 0 for line_name_i, [tpw, tpdlist] in tpdperline_dict.items() : tpwinmuni += tpw for i in range(len(tpdlist)) : tpdinmunilist[i] += tpdlist[i] for i in range(len(tpdinmunilist)) : if tpdinmunilist[i] > tpdinmunilist[maxday_i] : maxday_i = i maxdaytpdinmuni = tpdinmunilist[maxday_i] averagetpdinmuni = tpwinmuni/daysofservicetocount for line_name_i, [tpw, tpdlist] in tpdperline_dict.items() : maxdaytpdperline_dict[line_name_i] = tpdlist[maxday_i] munisforoutput_dict[muni_id] = [tpwinmuni, maxdaytpdinmuni, averagetpdinmuni, maxdaytpdperline_dict] #print count, muni_id count +=1 print('munisforoutput_dict created , len: ', len(munisforoutput_dict), count) print(muni_id, munisforoutput_dict[muni_id]) # print last one # # output js file of munis with max and average trips per day and tpd per line (agency_id, route short name) -'munis_w_tpd_per_line'+'_'+sserviceweekstartdate+'.js' # munisforoutput_dict[muni_id] = [tpwinmuni, maxdaytpdinmuni, averagetpdinmuni, maxdaytpdperline_dict] # ''' def getJSON(s_id): return { "type": "Feature", "geometry": { "type": "Point", "coordinates": [] }, "properties": { "muni_id": s_id, "total_tpd": munisforoutput_dict[s_id][1], "tpdperline_dict": munisforoutput_dict[s_id][3], # no sort in py, sort in js during display "tpwinmuni": munisforoutput_dict[s_id][0] } } # saveGeoJSON print ("Generating GeoJSON export.") geoj = { "type": "FeatureCollection", "features": [getJSON(muni_id) for muni_id in munisforoutput_dict] } print ("Saving file: ", gtfspathout /jsfileout, " ...") nf = open(gtfspathout+jsfileout, "w", encoding="utf8") jsonstr = json.dumps(geoj, separators=(',',':')) # smaller file for download outstr = jsonstr.replace('}},', '}},\n') nf.write('var munisWtpdperline =\n') nf.write(outstr) nf.close() print ("Saved file: " + jsfileout) ''' def getJSON(m_id): return { m_id: { "tpwinmuni": munisforoutput_dict[m_id][0], "maxday_muni_tpd": munisforoutput_dict[m_id][1], "average_muni_tpd": munisforoutput_dict[m_id][2], "tpdperline_dict": munisforoutput_dict[m_id][3] # no sort in py, sort in js during display } } # saveGeoJSON print ("Generating JSON export.") json_list = [getJSON(muni_id) for muni_id in munisforoutput_dict] print(("Saving file: ", gtfspathout /jsfileout, " ...")) nf = open(gtfspathout+jsfileout, "w", encoding="utf8") jsonstr = json.dumps(json_list, separators=(',',':')) # smaller file for download outstr = jsonstr.replace('}},{', '},\n').replace('[{', '{').replace('}]', '}') nf.write('var munisWtpdperline =\n') nf.write(outstr) nf.close() print(("Saved file: " + jsfileout)) # # output txt file with tpd per line (agency_id+route_short_name) in muni - 'muni_w_tpd_per_line'+'_'+servicedate+'.txt' # fileout = open(gtfspathout+txtfileout4, 'w', encoding="utf8") # open file to save results postsline = 'muni_id,tpwinmuni,total_tpd,line_name_i,maxdaylinetpd\n' fileout.write(postsline) for muni_id, [tpwinmuni, maxdaytpdinmuni, averagetpdinmuni, maxdaytpdperline_dict] in munisforoutput_dict.items(): for line_name_i, maxdaylinetpd in sorted(iter(maxdaytpdperline_dict.items()), reverse=True, key=lambda k_v:(k_v[1])): postsline = muni_id+','+str(tpwinmuni)+','+str(maxdaytpdinmuni)+','+line_name_i+','+str(maxdaylinetpd)+'\n' fileout.write(postsline) fileout.close() print(gtfspathout+txtfileout4) print("Local current time :", time.asctime( time.localtime(time.time()) ))
42.772914
199
0.753254
b73d18886ad1da6bc89a367ca3040dc45d70275f
5,647
py
Python
django_jobvite/tests/test_syncing.py
Mozilla-GitHub-Standards/217dddf3a535a0407c3079dc3f9b7598fe49ea00dd496c094fc0fcc3fd99900d
4d3ca66b8de2e4a43e4dc4d88376f73d7768dc15
[ "BSD-3-Clause" ]
4
2015-06-18T10:20:32.000Z
2018-01-31T01:23:51.000Z
django_jobvite/tests/test_syncing.py
Mozilla-GitHub-Standards/217dddf3a535a0407c3079dc3f9b7598fe49ea00dd496c094fc0fcc3fd99900d
4d3ca66b8de2e4a43e4dc4d88376f73d7768dc15
[ "BSD-3-Clause" ]
6
2015-05-13T11:02:47.000Z
2019-03-28T03:43:23.000Z
django_jobvite/tests/test_syncing.py
Mozilla-GitHub-Standards/217dddf3a535a0407c3079dc3f9b7598fe49ea00dd496c094fc0fcc3fd99900d
4d3ca66b8de2e4a43e4dc4d88376f73d7768dc15
[ "BSD-3-Clause" ]
6
2015-02-24T19:35:54.000Z
2019-03-28T03:43:23.000Z
from mock import Mock import test_utils from django_jobvite.management.commands import syncjobvite from django_jobvite.models import Category, Position one_position = """<result> <job> <id>oWqcfdsa</id> <title>Software Engineer</title> <requisitionid>1229</requisitionid> <category>Engineering</category> <jobtype>Full-Time</jobtype> <location>Mountain View, CA</location> <date>2/21/2011</date> <detail-url>http://example.com/job</detail-url> <apply-url>http://example.com/job</apply-url> <description>I am a job<![CDATA[<br><script>alert('I am bad');</script>]]></description> <briefdescription>...</briefdescription> </job> </result>""" two_positions = """<result> <job> <id>oWqcfdsa</id> <title>Software Engineer</title> <requisitionid>1229</requisitionid> <category>Engineering</category> <jobtype>Full-Time</jobtype> <location>Mountain View, CA</location> <date>2/21/2011</date> <detail-url>http://example.com/job</detail-url> <apply-url>http://example.com/job</apply-url> <description>I am job</description> <briefdescription>...</briefdescription> </job> <job> <id>fcOwxed</id> <title>Software Engineer</title> <requisitionid>1229</requisitionid> <category>Engineering</category> <jobtype>Full-Time</jobtype> <location>Mountain View, CA</location> <date>2/21/2011</date> <detail-url>http://example.com/job</detail-url> <apply-url>http://example.com/job</apply-url> <description>I am job</description> <briefdescription>...</briefdescription> </job> </result>""" updated = """<result> <job> <id>oWqcfdsa</id> <title>Software Developer</title> <requisitionid>1229</requisitionid> <category>Engineering</category> <jobtype>Full-Time</jobtype> <location>Mountain View, CA</location> <date>2/21/2011</date> <detail-url>http://example.com/job</detail-url> <apply-url>http://example.com/job</apply-url> <description>I am job</description> <briefdescription>...</briefdescription> </job> <job> <id>fcOwxed</id> <title>Software Developer</title> <requisitionid>1229</requisitionid> <category>Engineering</category> <jobtype>Full-Time</jobtype> <location>Mountain View, CA</location> <date>2/21/2011</date> <detail-url>http://example.com/job</detail-url> <apply-url>http://example.com/job</apply-url> <description>I am job</description> <briefdescription>...</briefdescription> </job> </result>""" empty = """<result></result>""" missing_field = """<result> <job> <id>oWqcfdsa</id> <title>Software Developer</title> <requisitionid>1229</requisitionid> <category>Engineering</category> <jobtype>Full-Time</jobtype> <location>Mountain View, CA</location> <date>2/21/2011</date> <detail-url>http://example.com/job</detail-url> <apply-url>http://example.com/job</apply-url> <description>I am job</description> <briefdescription>...</briefdescription> </job> <job> <id>fcOwxed</id> <title>Software Developer</title> <requisitionid>1229</requisitionid> <category>Engineering</category> <jobtype>Full-Time</jobtype> <location>Mountain View, CA</location> <date>2/21/2011</date> <detail-url>http://example.com/job</detail-url> <apply-url>http://example.com/job</apply-url> <description>I am job</description> <briefdescription>...</briefdescription> <location_x0020_filter>All</location_x0020_filter> </job> </result>""" class SyncTests(test_utils.TestCase): def setUp(self): mocked_xml_func = Mock() mocked_xml_func.return_value = one_position self.command = syncjobvite.Command() self.command._get_jobvite_xml = mocked_xml_func def _assert_count(self, xml, expected): """ Run the sync with the provided xml and assert that the expected number of ``Position`` models exist afterwards. """ self.command._get_jobvite_xml.return_value = xml self.command.handle() assert Position.objects.count() == expected def test_adding_new(self): """Test that adding one position works.""" assert Position.objects.count() == 0 self._assert_count(one_position, 1) def test_description_safe(self): """Test that bad tags are stripped.""" self.command.handle() assert Position.objects.all()[0].description == "I am a job<br>alert('I am bad');" def test_empty_xml(self): """Test that handling an empty xml doc does not delete db records.""" self._assert_count(one_position, 1) self._assert_count(empty, 1) def test_removing(self): """Test that removing one position works.""" self._assert_count(two_positions, 2) self._assert_count(one_position, 1) def test_empty_category(self): """Test that a category with no positions is removed.""" assert not Category.objects.exists() def test_updating(self): """Test that updating fields in existing positions works.""" self._assert_count(two_positions, 2) positions = Position.objects.all() for position in positions: assert position.title == 'Software Engineer' self._assert_count(updated, 2) positions = Position.objects.all() for position in positions: assert position.title == 'Software Developer' def test_missing_field(self): """Fields missing from the XML doc should be empty.""" self.command._get_jobvite_xml.return_value = missing_field self.command.handle() assert Position.objects.get(job_id='oWqcfdsa').location_filter == '' assert Position.objects.get(job_id='fcOwxed').location_filter == 'All'
33.023392
90
0.687268
7d5b7aae3d49a35db3b973b20ee9142a560ec483
1,561
py
Python
google/ads/googleads/v6/errors/types/campaign_draft_error.py
wxxlouisa/google-ads-python
f24137966f6bfcb765a9b1fae79f2d23041825fe
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v6/errors/types/campaign_draft_error.py
wxxlouisa/google-ads-python
f24137966f6bfcb765a9b1fae79f2d23041825fe
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v6/errors/types/campaign_draft_error.py
wxxlouisa/google-ads-python
f24137966f6bfcb765a9b1fae79f2d23041825fe
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.ads.googleads.v6.errors", marshal="google.ads.googleads.v6", manifest={"CampaignDraftErrorEnum",}, ) class CampaignDraftErrorEnum(proto.Message): r"""Container for enum describing possible campaign draft errors.""" class CampaignDraftError(proto.Enum): r"""Enum describing possible campaign draft errors.""" UNSPECIFIED = 0 UNKNOWN = 1 DUPLICATE_DRAFT_NAME = 2 INVALID_STATUS_TRANSITION_FROM_REMOVED = 3 INVALID_STATUS_TRANSITION_FROM_PROMOTED = 4 INVALID_STATUS_TRANSITION_FROM_PROMOTE_FAILED = 5 CUSTOMER_CANNOT_CREATE_DRAFT = 6 CAMPAIGN_CANNOT_CREATE_DRAFT = 7 INVALID_DRAFT_CHANGE = 8 INVALID_STATUS_TRANSITION = 9 MAX_NUMBER_OF_DRAFTS_PER_CAMPAIGN_REACHED = 10 LIST_ERRORS_FOR_PROMOTED_DRAFT_ONLY = 11 __all__ = tuple(sorted(__protobuf__.manifest))
32.520833
74
0.72902
1199dabc789c231a2f9aee8a6d12074851ca047d
1,835
py
Python
judge/decorators.py
shan18/Online-Judge
b03e1df9eaa91957b635b6527f4abf5509495b56
[ "MIT" ]
1
2020-07-26T20:54:53.000Z
2020-07-26T20:54:53.000Z
judge/decorators.py
shan18/Online-Judge
b03e1df9eaa91957b635b6527f4abf5509495b56
[ "MIT" ]
null
null
null
judge/decorators.py
shan18/Online-Judge
b03e1df9eaa91957b635b6527f4abf5509495b56
[ "MIT" ]
null
null
null
try: from functools import wraps except ImportError: from django.utils.functional import wraps # Python 2.4 fallback. from django.utils.decorators import available_attrs from django.contrib import messages from django.contrib.auth import REDIRECT_FIELD_NAME from django.contrib.auth.decorators import login_required default_message = "You must Log In first!" def user_passes_test(test_func, message=default_message): """ Decorator for views that checks that the user passes the given test, setting a message in case of no success. The test should be a callable that takes the user object and returns True if the user passes. """ def decorator(view_func): @wraps(view_func, assigned=available_attrs(view_func)) def _wrapped_view(request, *args, **kwargs): if not test_func(request.user): messages.success(request, message) return view_func(request, *args, **kwargs) return _wrapped_view return decorator def login_required_message(function=None, message=default_message): """ Decorator for views that checks that the user is logged in, redirecting to the log-in page if necessary. """ actual_decorator = user_passes_test( lambda u: u.is_authenticated, message=message, ) if function: return actual_decorator(function) return actual_decorator def login_required_messsage_and_redirect(function=None, redirect_field_name=REDIRECT_FIELD_NAME, login_url=None, message=default_message): if function: return login_required_message( login_required(function, redirect_field_name, login_url), message ) return lambda deferred_function: login_required_message_and_redirect(deferred_function, redirect_field_name, login_url, message)
35.288462
138
0.73297
950f3e194fadae8a27d7553a4bbbdca1e818a930
5,400
py
Python
Project2Final/FaceRecognition/preprocess.py
201019-UiPath/Jewlz-TheBoyz-PlaylistAutomation-P2
72a866ef671740786d68ddb658fe19b9a553b0c9
[ "MIT" ]
null
null
null
Project2Final/FaceRecognition/preprocess.py
201019-UiPath/Jewlz-TheBoyz-PlaylistAutomation-P2
72a866ef671740786d68ddb658fe19b9a553b0c9
[ "MIT" ]
null
null
null
Project2Final/FaceRecognition/preprocess.py
201019-UiPath/Jewlz-TheBoyz-PlaylistAutomation-P2
72a866ef671740786d68ddb658fe19b9a553b0c9
[ "MIT" ]
2
2020-11-22T22:34:28.000Z
2020-11-22T22:51:51.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function from scipy import misc import os import tensorflow as tf import numpy as np import facenet import detect_face class preprocesses: def __init__(self, input_datadir, output_datadir): self.input_datadir = input_datadir self.output_datadir = output_datadir def collect_data(self): output_dir = os.path.expanduser('~/OneDrive/Desktop/IdentificationModule/pre_img') npy_dir = '~/OneDrive/Desktop/IdentificationModule/npy' if not os.path.exists(output_dir): os.makedirs(output_dir) dataset = facenet.get_dataset('~/OneDrive/Desktop/IdentificationModule/train_img') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, os.path.expanduser(npy_dir)) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor margin = 44 image_size = 182 # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') print("Image: %s" % image_path) if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = facenet.to_rgb(img) print('to_rgb data dimension: ', img.ndim) img = img[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] print('No of Detected Face: %d' % nrof_faces) if nrof_faces > 0: det = bounding_boxes[:, 0:4] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) index = np.argmax( bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering det = det[index, :] det = np.squeeze(det) bb_temp = np.zeros(4, dtype=np.int32) bb_temp[0] = det[0] bb_temp[1] = det[1] bb_temp[2] = det[2] bb_temp[3] = det[3] cropped_temp = img[bb_temp[1]:bb_temp[3], bb_temp[0]:bb_temp[2], :] scaled_temp = misc.imresize(cropped_temp, (image_size, image_size), interp='bilinear') nrof_successfully_aligned += 1 misc.imsave(output_filename, scaled_temp) text_file.write('%s %d %d %d %d\n' % ( output_filename, bb_temp[0], bb_temp[1], bb_temp[2], bb_temp[3])) else: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) return (nrof_images_total,nrof_successfully_aligned)
51.923077
124
0.485741
b2b48a9046ac10edc4829deb0bd683ee02c539a3
3,300
py
Python
src/robot/parsing/lexer/tokens.py
JasperCraeghs/robotframework
856afa6ed2a16e39194b14bce138aa2044e0b0b6
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/robot/parsing/lexer/tokens.py
JasperCraeghs/robotframework
856afa6ed2a16e39194b14bce138aa2044e0b0b6
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/robot/parsing/lexer/tokens.py
JasperCraeghs/robotframework
856afa6ed2a16e39194b14bce138aa2044e0b0b6
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2008-2015 Nokia Networks # Copyright 2016- Robot Framework Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from robot.utils import py2to3 @py2to3 class Token(object): SETTING_HEADER = 'SETTING_HEADER' VARIABLE_HEADER = 'VARIABLE_HEADER' TESTCASE_HEADER = 'TESTCASE_HEADER' KEYWORD_HEADER = 'KEYWORD_HEADER' COMMENT_HEADER = 'COMMENT_HEADER' DOCUMENTATION = 'DOCUMENTATION' SUITE_SETUP = 'SUITE_SETUP' SUITE_TEARDOWN = 'SUITE_TEARDOWN' METADATA = 'METADATA' TEST_SETUP = 'TEST_SETUP' TEST_TEARDOWN = 'TEST_TEARDOWN' TEST_TEMPLATE = 'TEST_TEMPLATE' TEST_TIMEOUT = 'TEST_TIMEOUT' FORCE_TAGS = 'FORCE_TAGS' DEFAULT_TAGS = 'DEFAULT_TAGS' LIBRARY = 'LIBRARY' RESOURCE = 'RESOURCE' VARIABLES = 'VARIABLES' SETUP = 'SETUP' TEARDOWN = 'TEARDOWN' TEMPLATE = 'TEMPLATE' TIMEOUT = 'TIMEOUT' TAGS = 'TAGS' ARGUMENTS = 'ARGUMENTS' RETURN = 'RETURN' VARIABLE = 'VARIABLE' ARGUMENT = 'ARGUMENT' NAME = 'NAME' ASSIGN = 'ASSIGN' KEYWORD = 'KEYWORD' FOR = 'FOR' FOR_SEPARATOR = 'FOR_SEPARATOR' OLD_FOR_INDENT = 'OLD_FOR_INDENT' END = 'END' SEPARATOR = 'SEPARATOR' EOL = 'EOL' COMMENT = 'COMMENT' CONTINUATION = 'CONTINUATION' IGNORE = 'IGNORE' EOS = 'EOS' ERROR = 'ERROR' DATA = 'DATA' NON_DATA_TOKENS = ( SEPARATOR, COMMENT, CONTINUATION, IGNORE, EOL, EOS ) SETTING_TOKENS = ( DOCUMENTATION, SUITE_SETUP, SUITE_TEARDOWN, METADATA, TEST_SETUP, TEST_TEARDOWN, TEST_TEMPLATE, TEST_TIMEOUT, FORCE_TAGS, DEFAULT_TAGS, LIBRARY, RESOURCE, VARIABLES, SETUP, TEARDOWN, TEMPLATE, TIMEOUT, TAGS, ARGUMENTS, RETURN ) HEADER_TOKENS = ( SETTING_HEADER, VARIABLE_HEADER, TESTCASE_HEADER, KEYWORD_HEADER ) __slots__ = ['type', 'value', 'lineno', 'columnno', 'error'] def __init__(self, type, value='', lineno=-1, columnno=-1): self.type = type self.value = value self.lineno = lineno self.columnno = columnno self.error = None def __unicode__(self): return self.value def __repr__(self): return 'Token(%s, %r, %s, %s)' % (self.type, self.value, self.lineno, self.columnno) class EOS(Token): __slots__ = [] def __init__(self, lineno=-1, columnno=-1): Token.__init__(self, Token.EOS, '', lineno, columnno) @classmethod def from_token(cls, token): return EOS(token.lineno, token.columnno + len(token.value))
25.384615
75
0.615152
2673f6fbaac2197895b7dd049352bf7fe6deb04d
990
py
Python
src/logger.py
jruberg/Pyty
db7da06a696e170e2e6b7f4b16f59715154bd628
[ "MIT" ]
2
2017-07-18T22:20:17.000Z
2022-02-17T14:07:05.000Z
src/logger.py
jruberg/Pyty
db7da06a696e170e2e6b7f4b16f59715154bd628
[ "MIT" ]
null
null
null
src/logger.py
jruberg/Pyty
db7da06a696e170e2e6b7f4b16f59715154bd628
[ "MIT" ]
null
null
null
import math import logging from settings import LOG_LEVEL, LOG_DIR, LOGFILE, FILE_DEBUG logging.basicConfig(level=LOG_LEVEL, filename=LOG_DIR+LOGFILE, format='%(asctime)s: %(message)s', datefmt='%a, %d %b %Y %H:%M:%S') _MARGIN = len('%s, %s %s %s %s:%s:%s: ' % ('Thu', '24', 'Mar', '2011', '17', '09', '37')) class Logger: nl = "\n" + (" " * _MARGIN) def __init__(self): self.in_debug_file = False def enter_debug_file(self): self.in_debug_file = True def exit_debug_file(self): self.in_debug_file = False def debug(self, s, cond=True): if FILE_DEBUG and self.in_debug_file and cond: logging.debug(s.replace('\n', Logger.nl)) def announce_file(filename): gen_width = 40 - len(filename) lwidth = int(math.ceil(gen_width / 2.0)) rwidth = int(math.floor(gen_width / 2.0)) logging.debug("="*lwidth + " RUNNING " + filename.upper() + " " + "="*rwidth)
29.117647
81
0.586869
55a6ccd0c518982201f57d17dec48cd90ac29c19
5,322
py
Python
datageneration/generate_config.py
atoaiari/surreal
3f8d0d2a837e07511add210c7f62d1f8ee7f0f0d
[ "MIT-CMU", "OLDAP-2.2.1" ]
null
null
null
datageneration/generate_config.py
atoaiari/surreal
3f8d0d2a837e07511add210c7f62d1f8ee7f0f0d
[ "MIT-CMU", "OLDAP-2.2.1" ]
null
null
null
datageneration/generate_config.py
atoaiari/surreal
3f8d0d2a837e07511add210c7f62d1f8ee7f0f0d
[ "MIT-CMU", "OLDAP-2.2.1" ]
null
null
null
import json import argparse import sys import configs.config as config import os import numpy as np import random from datetime import datetime from utils.utils import * def main(): parser = argparse.ArgumentParser(description="Generate synth dataset images for disentanglement.") parser.add_argument("--frames", type=int, help="frames to use from the sequence", default=2) parser.add_argument("--gender", type=int, help="-1: both, 0: female, 1: male", default=-1) parser.add_argument("--backgrounds", type=int, help="number of backgrounds", default=10) parser.add_argument("--orientations", type=int, choices=[4, 8, 16], default=4, help="number of orientation classes") parser.add_argument("--shapes", type=int, default=4, help="number of shapes") parser.add_argument("--textures", type=int, default=8, help="number of textures") parser.add_argument("--reset", action="store_true", help="reset the generation config file, even if it already exists") parser.add_argument("path", help="basic config path") args = parser.parse_args() configuration_dict = {} params = config.load_file(args.path, "SYNTH_DATA") if not os.path.isfile(os.path.join(params["output_path"], "generation_config.json")) or args.reset: seed_number = 11 random.seed(seed_number) np.random.seed(seed_number) configuration_dict.update(params) configuration_dict["created"] = datetime.now().strftime("%d-%m-%Y-%H-%M") configuration_dict["factors"] = {"frames_per_sequence": args.frames} # backgrounds bg_names = os.path.join(params["bg_path"], 'train_img.txt') nh_txt_paths = [] with open(bg_names) as f: for line in f: nh_txt_paths.append(os.path.join(params["bg_path"], line[:-1])) # backgrounds = np.random.choice(nh_txt_paths[:-1], args.backgrounds, replace=False) backgrounds = nh_txt_paths[:args.backgrounds] configuration_dict["factors"]["backgrounds"] = backgrounds # gender genders = {0: 'female', 1: 'male'} # set gender. if args.gender == -1: gender = [genders.get(g) for g in genders] else: gender = genders.get(args.gender) configuration_dict["factors"]["gender"] = gender # orientations configuration_dict["factors"]["orientations"] = list(np.arange(0, 360, (360/args.orientations))) # clothing/textures assert args.textures % 2 == 0 textures = [] for igndr, gndr in enumerate(gender): with open(os.path.join(params["smpl_data_folder"], 'textures', '%s_%s.txt' % (gndr, 'train'))) as f: txt_paths = f.read().splitlines() # if using only one source of clothing if params["clothing_option"] == 'nongrey': clothing_txt_paths = [k for k in txt_paths if 'nongrey' in k] elif params["clothing_option"] == 'grey': clothing_txt_paths = [k for k in txt_paths if 'nongrey' not in k] textures.extend(np.random.choice(clothing_txt_paths, size=int(args.textures / 2), replace=False)) configuration_dict["factors"]["textures"] = textures # shapes (extracted only from female model) ndofs = 10 gndr = "female" smpl_data = np.load(os.path.join(params["smpl_data_folder"], params["smpl_data_filename"])) fshapes = smpl_data['%sshapes' % gndr][:, :ndofs] nb_fshapes = len(fshapes) fshapes = fshapes[:int(nb_fshapes*0.8)] # train split shapes_idx = np.random.choice(np.arange(len(fshapes)), size=args.shapes, replace=False) shapes = fshapes[shapes_idx] configuration_dict["factors"]["shapes"] = shapes # light configuration_dict["sh_coeffs"] = .7 * (2 * np.random.rand(9) - 1) configuration_dict["sh_coeffs"][0] = .5 + .9 * np.random.rand() # Ambient light (first coeff) needs a minimum is ambient. Rest is uniformly distributed, higher means brighter. configuration_dict["sh_coeffs"][1] = -.7 * np.random.rand() # camera distance # configuration_dict["camera_distance"] = np.random.normal(8.0, 1) configuration_dict["camera_distance"] = 7.2 # fixed not random if args.reset and os.path.exists(params["output_path"]) and params["output_path"] != "" and params["output_path"] != "/": os.system(f"rm -rf {params['output_path']}") os.makedirs(params["output_path"], exist_ok=True) folders = ["info", "images", "logs", "dataset"] for folder in folders: os.makedirs(os.path.join(params["output_path"], folder), exist_ok=True) configuration_dict[f"{folder}_path"] = str(os.path.join(params["output_path"], folder)) with open(os.path.join(params["output_path"], "generation_config.json"), "w", encoding="utf-8") as f: json.dump(configuration_dict, f, ensure_ascii=False, indent=4, cls=NumpyEncoder) print("Generated a new configuration file!") else: print("Configuration file already exists!") if __name__ == "__main__": main()
46.278261
184
0.623826
4cb85dad7a525d60e695768345c733a9df4ccf69
460
py
Python
pjsip/tests/pjsua/scripts-pesq/200_codec_g722.py
tomorrow-rain/pjsip
776e032c4ee2672cd42b8c665021b1310181d126
[ "MIT" ]
null
null
null
pjsip/tests/pjsua/scripts-pesq/200_codec_g722.py
tomorrow-rain/pjsip
776e032c4ee2672cd42b8c665021b1310181d126
[ "MIT" ]
null
null
null
pjsip/tests/pjsua/scripts-pesq/200_codec_g722.py
tomorrow-rain/pjsip
776e032c4ee2672cd42b8c665021b1310181d126
[ "MIT" ]
null
null
null
# $Id$ # from inc_cfg import * ADD_PARAM = "" if (HAS_SND_DEV == 0): ADD_PARAM += "--null-audio" # Call with G722 codec test_param = TestParam( "PESQ codec G722", [ InstanceParam("UA1", ADD_PARAM + " --max-calls=1 --add-codec g722 --clock-rate 16000 --play-file wavs/input.16.wav"), InstanceParam("UA2", "--null-audio --max-calls=1 --add-codec g722 --clock-rate 16000 --rec-file wavs/tmp.16.wav --auto-answer 200") ] ) pesq_threshold = 3.7
23
135
0.65
20abfa850822153e9cfa769054ad5205f89010c6
7,111
py
Python
test/unit/test_gcs_util.py
csdev/snowflake-connector-python
db054fd4490ac006ef633ed12d852bb09941068e
[ "Apache-2.0" ]
null
null
null
test/unit/test_gcs_util.py
csdev/snowflake-connector-python
db054fd4490ac006ef633ed12d852bb09941068e
[ "Apache-2.0" ]
14
2021-01-26T06:53:10.000Z
2022-03-14T11:16:54.000Z
test/unit/test_gcs_util.py
csdev/snowflake-connector-python
db054fd4490ac006ef633ed12d852bb09941068e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2012-2021 Snowflake Computing Inc. All right reserved. # import logging import mock import pytest from snowflake.connector.constants import ResultStatus from ..randomize import random_string pytestmark = pytest.mark.gcp try: from snowflake.connector.gcs_util import SnowflakeGCSUtil # NOQA except ImportError: SnowflakeGCSUtil = None # We need these for our OldDriver tests. We run most up to date tests with the oldest supported driver version try: from snowflake.connector.vendored import requests # NOQA vendored_request = True except ImportError: # pragma: no cover import requests vendored_request = False def test_create_client(caplog): """Creates a GCSUtil with an access token.""" caplog.set_level(logging.DEBUG, 'snowflake.connector') client = SnowflakeGCSUtil.create_client({'creds': {'GCS_ACCESS_TOKEN': 'fake_token'}}) assert client is not None assert client == 'fake_token' @pytest.mark.xfail(reason='Newer version support access token. This test is obsoleted') def test_native_download_access_token(caplog): """Tests that GCS access token error is correctly logged when downloading.""" caplog.set_level(logging.DEBUG, 'snowflake.connector') meta = {} SnowflakeGCSUtil._native_download_file(meta, None, 99) assert meta['result_status'] == ResultStatus.ERROR assert (('snowflake.connector.gcs_util', logging.ERROR, "GCS download operation with an access token is " "currently unsupported") in caplog.record_tuples) @pytest.mark.xfail(reason='Newer version support access token. This test is obsoleted') def test_native_upload_access_token(caplog): """Tests that GCS access token error is correctly logged when uploading.""" caplog.set_level(logging.DEBUG, 'snowflake.connector') meta = {} SnowflakeGCSUtil.upload_file(None, meta, None, 99) assert meta['result_status'] == ResultStatus.ERROR assert (('snowflake.connector.gcs_util', logging.ERROR, "GCS upload operation with an access token is " "currently unsupported") in caplog.record_tuples) @pytest.mark.parametrize('errno', [403, 408, 429, 500, 503]) def test_upload_retry_errors(errno, tmpdir): """Tests whether retryable errors are handled correctly when upploading.""" f_name = str(tmpdir.join('some_file.txt')) resp = requests.Response() resp.status_code = errno meta = {'presigned_url': ['some_url'], 'sha256_digest': 'asd'} with open(f_name, 'w') as f: f.write(random_string(15)) with mock.patch('snowflake.connector.vendored.requests.put' if vendored_request else 'requests.put', side_effect=requests.exceptions.HTTPError(response=resp)): SnowflakeGCSUtil.upload_file(f_name, meta, None, 99) assert isinstance(meta['last_error'], requests.exceptions.HTTPError) assert meta['result_status'] == ResultStatus.NEED_RETRY def test_upload_uncaught_exception(tmpdir): """Tests whether non-retryable errors are handled correctly when uploading.""" f_name = str(tmpdir.join('some_file.txt')) resp = requests.Response() resp.status_code = 501 meta = {'presigned_url': ['some_url'], 'sha256_digest': 'asd'} with open(f_name, 'w') as f: f.write(random_string(15)) with mock.patch('snowflake.connector.vendored.requests.put' if vendored_request else 'requests.put', side_effect=requests.exceptions.HTTPError(response=resp)): with pytest.raises(requests.exceptions.HTTPError): SnowflakeGCSUtil.upload_file(f_name, meta, None, 99) @pytest.mark.parametrize('errno', [403, 408, 429, 500, 503]) def test_download_retry_errors(errno, tmpdir): """Tests whether retryable errors are handled correctly when downloading.""" resp = requests.Response() resp.status_code = errno meta = {'presigned_url': ['some_url'], 'sha256_digest': 'asd'} with mock.patch('snowflake.connector.vendored.requests.get' if vendored_request else 'requests.get', side_effect=requests.exceptions.HTTPError(response=resp)): SnowflakeGCSUtil._native_download_file(meta, str(tmpdir), 99) assert isinstance(meta['last_error'], requests.exceptions.HTTPError) assert meta['result_status'] == ResultStatus.NEED_RETRY def test_download_uncaught_exception(tmpdir): """Tests whether non-retryable errors are handled correctly when downloading.""" resp = requests.Response() resp.status_code = 501 meta = {'presigned_url': ['some_url'], 'sha256_digest': 'asd'} with mock.patch('snowflake.connector.vendored.requests.get' if vendored_request else 'requests.get', side_effect=requests.exceptions.HTTPError(response=resp)): with pytest.raises(requests.exceptions.HTTPError): SnowflakeGCSUtil._native_download_file(meta, str(tmpdir), 99) def test_upload_put_timeout(tmpdir, caplog): """Tests whether timeout error is handled correctly when uploading.""" caplog.set_level(logging.DEBUG, 'snowflake.connector') f_name = str(tmpdir.join('some_file.txt')) resp = requests.Response() meta = {'presigned_url': ['some_url'], 'sha256_digest': 'asd'} with open(f_name, 'w') as f: f.write(random_string(15)) with mock.patch('snowflake.connector.vendored.requests.put' if vendored_request else 'requests.put', side_effect=requests.exceptions.Timeout(response=resp)): SnowflakeGCSUtil.upload_file(f_name, meta, None, 99) assert isinstance(meta['last_error'], requests.exceptions.Timeout) assert meta['result_status'] == ResultStatus.NEED_RETRY assert all([log in caplog.record_tuples for log in [ ('snowflake.connector.gcs_util', logging.DEBUG, 'GCS file upload Timeout Error: ') ]]) def test_upload_get_timeout(tmpdir, caplog): """Tests whether timeout error is handled correctly when downloading.""" caplog.set_level(logging.DEBUG, 'snowflake.connector') resp = requests.Response() meta = {'presigned_url': ['some_url'], 'sha256_digest': 'asd'} with mock.patch('snowflake.connector.vendored.requests.get' if vendored_request else 'requests.get', side_effect=requests.exceptions.Timeout(response=resp)): SnowflakeGCSUtil._native_download_file(meta, str(tmpdir), 99) assert isinstance(meta['last_error'], requests.exceptions.Timeout) assert meta['result_status'] == ResultStatus.NEED_RETRY assert ('snowflake.connector.gcs_util', logging.DEBUG, 'GCS file download Timeout Error: ') in caplog.record_tuples def test_get_file_header_none_with_presigned_url(): """Tests whether default file handle created by get_file_header is as expected.""" file_header = SnowflakeGCSUtil.get_file_header({"presigned_url": "www.example.com"}, 'file') assert file_header.digest is None assert file_header.content_length is None assert file_header.encryption_metadata is None
46.477124
119
0.714105
2ee21f996d50186850b416c595518a39f7ecd18b
1,455
py
Python
widgets/SingleChoiceDialog.py
iubica/wx-portfolio
12101986db72bcaffd9b744d514d6f9f651ad5a1
[ "MIT" ]
3
2018-03-19T07:57:10.000Z
2021-07-05T08:55:14.000Z
widgets/SingleChoiceDialog.py
iubica/wx-portfolio
12101986db72bcaffd9b744d514d6f9f651ad5a1
[ "MIT" ]
6
2020-03-24T15:40:18.000Z
2021-12-13T19:46:09.000Z
widgets/SingleChoiceDialog.py
iubica/wx-portfolio
12101986db72bcaffd9b744d514d6f9f651ad5a1
[ "MIT" ]
4
2018-03-29T21:59:55.000Z
2019-12-16T14:56:38.000Z
#!/usr/bin/env python import wx #--------------------------------------------------------------------------- class TestPanel(wx.Panel): def __init__(self, parent, log): self.log = log wx.Panel.__init__(self, parent, -1) b = wx.Button(self, -1, "Create and Show a SingleChoiceDialog", (50,50)) self.Bind(wx.EVT_BUTTON, self.OnButton, b) def OnButton(self, evt): dlg = wx.SingleChoiceDialog( self, 'Test Single Choice', 'The Caption', ['zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight'], wx.CHOICEDLG_STYLE ) if dlg.ShowModal() == wx.ID_OK: self.log.WriteText('You selected: %s\n' % dlg.GetStringSelection()) dlg.Destroy() #--------------------------------------------------------------------------- def runTest(frame, nb, log): win = TestPanel(nb, log) return win #--------------------------------------------------------------------------- overview = """\ This class represents a dialog that shows a list of strings, and allows the user to select one. Double-clicking on a list item is equivalent to single-clicking and then pressing OK. As with all dialogs, be sure to retrieve the information you need BEFORE you destroy the dialog. """ if __name__ == '__main__': import sys,os import run run.main(['', os.path.basename(sys.argv[0])] + sys.argv[1:])
25.526316
89
0.512027
2b102dd13ee5bdf15f767521be3108d70fc60464
1,200
py
Python
spider1/migrations/0001_initial.py
EricMbuthia/SeleniumDjangoWebscraping
27954bcf02b895b3c1001f5924433d6aaf3f195e
[ "MIT" ]
null
null
null
spider1/migrations/0001_initial.py
EricMbuthia/SeleniumDjangoWebscraping
27954bcf02b895b3c1001f5924433d6aaf3f195e
[ "MIT" ]
null
null
null
spider1/migrations/0001_initial.py
EricMbuthia/SeleniumDjangoWebscraping
27954bcf02b895b3c1001f5924433d6aaf3f195e
[ "MIT" ]
null
null
null
# Generated by Django 3.2.4 on 2021-10-30 06:13 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='ScrapeRecordsInventory', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('rec_date', models.CharField(max_length=30)), ], ), migrations.CreateModel( name='ScrapeRecords', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('owners_name', models.CharField(max_length=100)), ('property_value_current_year', models.CharField(max_length=100)), ('property_value_next_year', models.CharField(max_length=100)), ('tax_value', models.CharField(max_length=100)), ('record_ref', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='spider1.scraperecordsinventory')), ], ), ]
35.294118
132
0.608333
d07436e1d8b047ce720afac7dec09d9b23a6d0ab
19,747
py
Python
ravendb/documents/operations/batch.py
ravendb/RavenDB-Python-Client
6286b459b501e755fe8e8591a48acf8616605ccd
[ "MIT" ]
8
2016-10-08T17:45:44.000Z
2018-05-29T12:16:43.000Z
ravendb/documents/operations/batch.py
ravendb/RavenDB-Python-Client
6286b459b501e755fe8e8591a48acf8616605ccd
[ "MIT" ]
5
2017-02-12T15:50:53.000Z
2017-09-18T12:25:01.000Z
ravendb/documents/operations/batch.py
ravendb/RavenDB-Python-Client
6286b459b501e755fe8e8591a48acf8616605ccd
[ "MIT" ]
8
2016-07-03T07:59:12.000Z
2017-09-18T11:22:23.000Z
from copy import deepcopy from typing import Union, List, Dict, TYPE_CHECKING, Optional from ravendb import constants from ravendb.documents.commands.batches import SingleNodeBatchCommand, ClusterWideBatchCommand, CommandType from ravendb.documents.operations.patch import PatchStatus from ravendb.documents.session.event_args import AfterSaveChangesEventArgs from ravendb.documents.session.misc import TransactionMode from ravendb.documents.session.document_info import DocumentInfo from ravendb.exceptions.raven_exceptions import ClientVersionMismatchException from ravendb.json.result import BatchCommandResult from ravendb.tools.utils import CaseInsensitiveDict if TYPE_CHECKING: from ravendb.documents.session.in_memory_document_session_operations import InMemoryDocumentSessionOperations class BatchOperation: def __init__(self, session: "InMemoryDocumentSessionOperations"): self.__session = session self.__entities: List[object] = [] self.__session_commands_count: Union[None, int] = None self.__all_commands_count: Union[None, int] = None self.__on_successful_request: Union[ None, "InMemoryDocumentSessionOperations.SaveChangesData.ActionsToRunOnSuccess" ] = None self.__modifications: Union[None, Dict[str, DocumentInfo]] = None def create_request(self) -> Union[None, SingleNodeBatchCommand]: result = self.__session.prepare_for_save_changes() self.__on_successful_request = result.on_success self.__session_commands_count = len(result.session_commands) result.session_commands.extend(result.deferred_commands) self.__session.validate_cluster_transaction(result) self.__all_commands_count = len(result.session_commands) if self.__all_commands_count == 0: return None self.__session.increment_requests_count() self.__entities = result.entities if self.__session.transaction_mode == TransactionMode.CLUSTER_WIDE: return ClusterWideBatchCommand( self.__session.conventions, result.session_commands, result.options, self.__session.disable_atomic_document_writes_in_cluster_wide_transaction, ) return SingleNodeBatchCommand(self.__session.conventions, result.session_commands, result.options) def set_result(self, result: BatchCommandResult) -> None: def get_command_type(obj_node: dict) -> CommandType: c_type = obj_node.get("Type") if not c_type: return CommandType.NONE type_as_str = str(c_type) command_type = CommandType.parse_csharp_value(type_as_str) return command_type if result.results is None: self.__throw_on_null_result() return self.__on_successful_request.clear_session_state_after_successful_save_changes() if self.__session.transaction_mode == TransactionMode.CLUSTER_WIDE: if result.transaction_index <= 0: raise ClientVersionMismatchException( "Cluster transaction was send to a node that is not supporting " "it. So it was executed ONLY on the requested node on " + self.__session.request_executor.url ) for i in range(self.__session_commands_count): batch_result = result.results[i] if batch_result is None: continue command_type = get_command_type(batch_result) if command_type == CommandType.PUT: self.__handle_put(i, batch_result, False) elif command_type == CommandType.FORCE_REVISION_CREATION: self.__handle_force_revision_creation(batch_result) elif command_type == CommandType.DELETE: self.__handle_delete(batch_result) elif command_type == CommandType.COMPARE_EXCHANGE_PUT: self.__handle_compare_exchange_put(batch_result) elif command_type == CommandType.COMPARE_EXCHANGE_DELETE: self.__handle_compare_exchange_delete(batch_result) else: raise ValueError(f"Command {command_type} is not supported") for i in range(self.__session_commands_count, self.__all_commands_count): batch_result = result.results[i] if batch_result is None: continue command_type = get_command_type(batch_result) if command_type == CommandType.PUT: self.__handle_put(i, batch_result, False) elif command_type == CommandType.DELETE: self.__handle_delete(batch_result) elif command_type == CommandType.PATCH: self.__handle_patch(batch_result) elif command_type == CommandType.ATTACHMENT_PUT: self.__handle_attachment_put(batch_result) elif command_type == CommandType.ATTACHMENT_DELETE: self.__handle_attachment_delete(batch_result) elif command_type == CommandType.ATTACHMENT_MOVE: self.__handle_attachment_move(batch_result) elif command_type == CommandType.ATTACHMENT_COPY: self.__handle_attachment_copy(batch_result) elif ( command_type == CommandType.COMPARE_EXCHANGE_PUT or CommandType.COMPARE_EXCHANGE_DELETE or CommandType.FORCE_REVISION_CREATION ): pass elif command_type == CommandType.COUNTERS: self.__handle_counters(batch_result) elif command_type == CommandType.TIME_SERIES_COPY or command_type == CommandType.BATCH_PATCH: break else: raise ValueError(f"Command {command_type} is not supported") self.__finalize_result() def __finalize_result(self): if not self.__modifications: return for key, document_info in self.__modifications.items(): self.__apply_metadata_modifications(key, document_info) def __apply_metadata_modifications(self, key: str, document_info: DocumentInfo): document_info.metadata_instance = None document_info.metadata = deepcopy(document_info.metadata) document_info.metadata[constants.Documents.Metadata.CHANGE_VECTOR] = document_info.change_vector document_copy = deepcopy(document_info.document) document_copy[constants.Documents.Metadata.KEY] = document_info.metadata document_info.document = document_copy def __get_or_add_modifications( self, key: str, document_info: DocumentInfo, apply_modifications: bool ) -> DocumentInfo: if not self.__modifications: self.__modifications = CaseInsensitiveDict() modified_document_info = self.__modifications.get(key) if modified_document_info is not None: if apply_modifications: self.__apply_metadata_modifications(key, modified_document_info) else: self.__modifications[key] = modified_document_info = document_info return modified_document_info def __handle_compare_exchange_put(self, batch_result: dict) -> None: self.__handle_compare_exchange_internal(CommandType.COMPARE_EXCHANGE_PUT, batch_result) def __handle_compare_exchange_delete(self, batch_result: dict) -> None: self.__handle_compare_exchange_internal(CommandType.COMPARE_EXCHANGE_DELETE, batch_result) def __handle_compare_exchange_internal(self, command_type: CommandType, batch_result: dict) -> None: key: str = batch_result.get("Key") if not key: self.__throw_missing_field(command_type, "Key") index: int = batch_result.get("Index") if not index: self.__throw_missing_field(command_type, "Index") cluster_session = self.__session.cluster_session cluster_session.update_state(key, index) def __handle_patch(self, batch_result: dict) -> None: patch_status = batch_result.get("PatchStatus") if not patch_status: self.__throw_missing_field(CommandType.PATCH, "PatchStatus") status = PatchStatus(patch_status) if status == PatchStatus.CREATED or PatchStatus.PATCHED: document = batch_result.get("ModifiedDocument") if not document: return key = self.__get_string_field(batch_result, CommandType.PUT, "Id") session_document_info = self.__session.documents_by_id.get(key) if session_document_info == None: return document_info = self.__get_or_add_modifications(key, session_document_info, True) change_vector = self.__get_string_field(batch_result, CommandType.PATCH, "ChangeVector") last_modified = self.__get_string_field(batch_result, CommandType.PATCH, "LastModified") document_info.change_vector = change_vector document_info.metadata[constants.Documents.Metadata.KEY] = key document_info.metadata[constants.Documents.Metadata.CHANGE_VECTOR] = change_vector document_info.metadata[constants.Documents.Metadata.LAST_MODIFIED] = last_modified document_info.document = document self.__apply_metadata_modifications(key, document_info) if document_info.entity is not None: self.__session.entity_to_json.populate_entity(document_info.entity, key, document_info.document) self.__session.__on_after_save_changes(self.__session, document_info.key, document_info.entity) def __handle_delete(self, batch_result: dict) -> None: self.__handle_delete_internal(batch_result, CommandType.DELETE) def __handle_delete_internal(self, batch_result: dict, command_type: CommandType): key = self.__get_string_field(batch_result, command_type, "Id") document_info = self.__session.documents_by_id.get(key) if document_info is None: return self.__session.documents_by_id.pop(key, None) if document_info.entity is not None: self.__session.documents_by_entity.pop(document_info.entity, None) self.__session.deleted_entities.discard(document_info.entity) def __handle_force_revision_creation(self, batch_result: dict) -> None: if not self.__get_boolean_field(batch_result, CommandType.FORCE_REVISION_CREATION, "RevisionCreated"): # no forced revision was created...nothing to update return key = self.__get_string_field( batch_result, CommandType.FORCE_REVISION_CREATION, constants.Documents.Metadata.KEY ) change_vector = self.__get_string_field( batch_result, CommandType.FORCE_REVISION_CREATION, constants.Documents.Metadata.CHANGE_VECTOR ) document_info = self.__session.documents_by_id.get(key) if not document_info: return document_info.change_vector = change_vector self.__handle_metadata_modifications(document_info, batch_result, key, change_vector) self.__session.__on_after_save_changes(self.__session, document_info.key, document_info.entity) def __handle_put(self, index: int, batch_result: dict, is_deferred: bool) -> None: entity = None document_info = None if not is_deferred: entity = self.__entities[index] document_info = self.__session.documents_by_entity.get(entity) if document_info is None: return key = self.__get_string_field(batch_result, CommandType.PUT, constants.Documents.Metadata.ID) change_vector = self.__get_string_field( batch_result, CommandType.PUT, constants.Documents.Metadata.CHANGE_VECTOR ) if is_deferred: session_document_info = self.__session.documents_by_id.get(key) if session_document_info is None: return document_info = self.__get_or_add_modifications(key, session_document_info, True) entity = document_info.entity self.__handle_metadata_modifications(document_info, batch_result, key, change_vector) self.__session.documents_by_id.update({document_info.key: document_info}) if entity: self.__session.generate_entity_id_on_the_client.try_set_identity(entity, key) self.__session.after_save_changes_invoke( AfterSaveChangesEventArgs(self.__session, document_info.key, document_info.entity) ) def __handle_metadata_modifications( self, document_info: DocumentInfo, batch_result: dict, key: str, change_vector: str ) -> None: for property_name, value in batch_result.items(): if "Type" == property_name: continue document_info.metadata[property_name] = value document_info.key = key document_info.change_vector = change_vector self.__apply_metadata_modifications(key, document_info) def __handle_counters(self, batch_result: dict) -> None: doc_id = self.__get_string_field(batch_result, CommandType.COUNTERS, "Id") counters_detail: dict = batch_result.get("CountersDetail") if counters_detail is None: self.__throw_missing_field(CommandType.COUNTERS, "CountersDetail") counters = counters_detail.get("Counters") if counters is None: self.__throw_missing_field(CommandType.COUNTERS, "Counters") cache = self.__session.counters_by_doc_id[doc_id] if cache is None: cache = [False, CaseInsensitiveDict()] self.__session.counters_by_doc_id[doc_id] = cache change_vector = self.__get_string_field(batch_result, CommandType.COUNTERS, "DocumentChangeVector", False) if change_vector is not None: document_info = self.__session.documents_by_id.get(doc_id) if document_info is not None: document_info.change_vector = change_vector for counter in counters: counter: dict name = counter.get("CounterName") value = counter.get("TotalValue") if not name and not value: cache[1][name] = value def __handle_attachment_put(self, batch_result: dict) -> None: self.__handle_attachment_put_internal( batch_result, CommandType.ATTACHMENT_PUT, "Id", "Name", "DocumentChangeVector" ) def __handle_attachment_copy(self, batch_result: dict) -> None: self.__handle_attachment_put_internal( batch_result, CommandType.ATTACHMENT_COPY, "Id", "Name", "DocumentChangeVector" ) def __handle_attachment_move(self, batch_result: dict) -> None: self.__handle_attachment_delete_internal( batch_result, CommandType.ATTACHMENT_MOVE, "Id", "Name", "DocumentChangeVector" ) self.__handle_attachment_put_internal( batch_result, CommandType.ATTACHMENT_MOVE, "DestinationId", "DestinationName", "DocumentChangeVector" ) def __handle_attachment_delete(self, batch_result: dict) -> None: self.__handle_attachment_delete_internal( batch_result, CommandType.ATTACHMENT_DELETE, constants.Documents.Metadata.ID, "Name", "DocumentChangeVector" ) def __handle_attachment_delete_internal( self, batch_result: dict, command_type: CommandType, id_field_name: str, attachment_name_field_name: str, document_change_vector_field_name: str, ) -> None: key = self.__get_string_field(batch_result, command_type, id_field_name) session_document_info = self.__session.documents_by_id.get_value(key) if session_document_info is None: return document_info = self.__get_or_add_modifications(key, session_document_info, True) document_change_vector = self.__get_string_field( batch_result, command_type, document_change_vector_field_name, False ) if document_change_vector: document_info.change_vector = document_change_vector attachments_json = document_info.metadata.get(constants.Documents.Metadata.ATTACHMENTS) if not attachments_json: return name = self.__get_string_field(batch_result, command_type, attachment_name_field_name) attachments = [] document_info.metadata[constants.Documents.Metadata.ATTACHMENTS] = attachments for attachment in attachments_json: attachment_name = self.__get_string_field(attachment, command_type, "Name") if attachment_name == name: continue attachments.append(attachment) def __handle_attachment_put_internal( self, batch_result: dict, command_type: CommandType, id_field_name: str, attachment_name_field_name: str, document_change_vector_field_name: str, ) -> None: key = self.__get_string_field(batch_result, command_type, id_field_name) session_document_info = self.__session.documents_by_id.get_value(key) if session_document_info is None: return document_info = self.__get_or_add_modifications(key, session_document_info, False) document_change_vector = self.__get_string_field( batch_result, command_type, document_change_vector_field_name, False ) if document_change_vector: document_info.change_vector = document_change_vector attachments = document_info.metadata.get(constants.Documents.Metadata.ATTACHMENTS) if attachments is None: attachments = [] document_info.metadata[constants.Documents.Metadata.ATTACHMENTS] = attachments dynamic_node = { "ChangeVector": self.__get_string_field(batch_result, command_type, "ChangeVector"), "ContentType": self.__get_string_field(batch_result, command_type, "ContentType"), "Hash": self.__get_string_field(batch_result, command_type, "Hash"), "Name": self.__get_string_field(batch_result, command_type, "Name"), "Size": self.__get_string_field(batch_result, command_type, "Size"), } attachments.append(dynamic_node) def __get_string_field( self, json: dict, command_type: CommandType, field_name: str, throw_on_missing: Optional[bool] = True ) -> str: json_node = json.get(field_name, None) if throw_on_missing and json_node is None: self.__throw_missing_field(command_type, field_name) return str(json_node) def __get_int_field(self, json: dict, command_type: CommandType, field_name: str) -> int: json_node = json.get(field_name) if (not json_node) or not isinstance(json_node, int): self.__throw_missing_field(command_type, field_name) return json_node def __get_boolean_field(self, json: dict, command_type: CommandType, field_name: str) -> bool: json_node = json.get(field_name) if (not json_node) or not isinstance(json_node, bool): self.__throw_missing_field(command_type, field_name) return json_node def __throw_on_null_result(self) -> None: raise ValueError( "Reveived empty response from the server. This is not supposed to happend and is likely a bug." ) def __throw_missing_field(self, c_type: CommandType, field_name: str) -> None: raise ValueError(f"{c_type} response is invalid. Field '{field_name}' is missing.")
43.688053
120
0.690788
da8efb39c36d1f13e3d2c6888f891bab0a5f34c2
337
py
Python
crownstone_uart/topics/UartTopics.py
RicArch97/crownstone-lib-python-uart
c0aaf1415936e5e622aa6395fdac4f88ebcf82bf
[ "MIT" ]
null
null
null
crownstone_uart/topics/UartTopics.py
RicArch97/crownstone-lib-python-uart
c0aaf1415936e5e622aa6395fdac4f88ebcf82bf
[ "MIT" ]
null
null
null
crownstone_uart/topics/UartTopics.py
RicArch97/crownstone-lib-python-uart
c0aaf1415936e5e622aa6395fdac4f88ebcf82bf
[ "MIT" ]
null
null
null
class UartTopics: newDataAvailable = "UART_newDataAvailable" uartMessage = "UART_Message" # data is dictionary: {"string": str, "data": [uint8, uint8, ...] } hello = "UART_hello" # Data is: UartCrownstoneHelloPacket log = "UART_log" # Data is UartLogPacket logArray = "UART_logArray" # Data is UartLogArrayPacket
30.636364
100
0.697329