hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
17108f80d9976671704207b0f343135d3f08816f
34,227
py
Python
src/cachew/__init__.py
karlicoss/cachew
49d349f5c32ae25d6f5a36279c8f0c5090242da2
[ "MIT" ]
177
2019-08-20T18:42:12.000Z
2022-02-24T11:47:07.000Z
src/cachew/__init__.py
karlicoss/cachew
49d349f5c32ae25d6f5a36279c8f0c5090242da2
[ "MIT" ]
11
2020-01-05T13:33:26.000Z
2021-07-06T14:52:19.000Z
src/cachew/__init__.py
karlicoss/cachew
49d349f5c32ae25d6f5a36279c8f0c5090242da2
[ "MIT" ]
4
2020-01-09T13:03:19.000Z
2022-02-13T02:03:23.000Z
from pkg_resources import get_distribution, DistributionNotFound try: # Change here if project is renamed and does not equal the package name dist_name = __name__ __version__ = get_distribution(dist_name).version except DistributionNotFound: __version__ = 'unknown' finally: del get_distribution, DistributionNotFound __author__ = "Dima Gerasimov" __copyright__ = "Dima Gerasimov" __license__ = "mit" import functools import logging from itertools import chain, islice import inspect from datetime import datetime, date import stat import tempfile from pathlib import Path import time import sqlite3 import sys import typing from typing import (Any, Callable, Iterator, List, NamedTuple, Optional, Tuple, Type, Union, TypeVar, Generic, Sequence, Iterable, Set, cast) import dataclasses import warnings import appdirs # type: ignore[import] import sqlalchemy # type: ignore[import] from sqlalchemy import Column, Table, event if sys.version_info[1] < 7: from .compat import fromisoformat else: fromisoformat = datetime.fromisoformat from .compat import fix_sqlalchemy_StatementError_str try: fix_sqlalchemy_StatementError_str() except Exception as e: # todo warn or something?? pass # in case of changes in the way cachew stores data, this should be changed to discard old caches CACHEW_VERSION: str = __version__ PathIsh = Union[Path, str] ''' Global settings, you can override them after importing cachew ''' class settings: ''' Toggle to disable caching ''' ENABLE: bool = True DEFAULT_CACHEW_DIR: PathIsh = Path(appdirs.user_cache_dir('cachew')) ''' Set to true if you want to fail early. Otherwise falls back to non-cached version ''' THROW_ON_ERROR: bool = False def get_logger() -> logging.Logger: return logging.getLogger('cachew') class IsoDateTime(sqlalchemy.TypeDecorator): # in theory could use something more effecient? e.g. blob for encoded datetime and tz? # but practically, the difference seems to be pretty small, so perhaps fine for now impl = sqlalchemy.String @property def python_type(self): return datetime def process_literal_param(self, value, dialect): raise NotImplementedError() # make pylint happy def process_bind_param(self, value: Optional[datetime], dialect) -> Optional[str]: if value is None: return None # ok, it's a bit hacky... attempt to preserve pytz infromation iso = value.isoformat() tz = getattr(value, 'tzinfo', None) if tz is None: return iso try: import pytz # type: ignore except ImportError: self.warn_pytz() return iso else: if isinstance(tz, pytz.BaseTzInfo): return iso + ' ' + tz.zone else: return iso def process_result_value(self, value: Optional[str], dialect) -> Optional[datetime]: if value is None: return None spl = value.split(' ') dt = fromisoformat(spl[0]) if len(spl) <= 1: return dt zone = spl[1] # else attempt to decypher pytz tzinfo try: import pytz # type: ignore except ImportError: self.warn_pytz() return dt else: tz = pytz.timezone(zone) return dt.astimezone(tz) def warn_pytz(self) -> None: warnings.warn('install pytz for better timezone support while serializing with cachew') # a bit hacky, but works... class IsoDate(IsoDateTime): impl = sqlalchemy.String @property def python_type(self): return date def process_literal_param(self, value, dialect): raise NotImplementedError() # make pylint happy def process_result_value(self, value: Optional[str], dialect) -> Optional[date]: # type: ignore res = super().process_result_value(value, dialect) if res is None: return None return res.date() import json from typing import Dict class Json(sqlalchemy.TypeDecorator): impl = sqlalchemy.String @property def python_type(self): return Dict def process_literal_param(self, value, dialect): raise NotImplementedError() # make pylint happy def process_bind_param(self, value: Optional[Dict], dialect) -> Optional[str]: if value is None: return None return json.dumps(value) def process_result_value(self, value: Optional[str], dialect) -> Optional[datetime]: if value is None: return None return json.loads(value) jtypes = (int, float, bool, type(None)) class ExceptionAdapter(sqlalchemy.TypeDecorator): ''' Enables support for caching Exceptions. Exception is treated as JSON and serialized. It's useful for defensive error handling, in case of cachew in particular for preserving error state. I elaborate on it here: [mypy-driven error handling](https://beepb00p.xyz/mypy-error-handling.html#kiss). ''' impl = Json @property def python_type(self): return Exception def process_literal_param(self, value, dialect): raise NotImplementedError() # make pylint happy def process_bind_param(self, value: Optional[Exception], dialect) -> Optional[List[Any]]: if value is None: return None sargs: List[Any] = [] for a in value.args: if any(isinstance(a, t) for t in jtypes): sargs.append(a) elif isinstance(a, date): sargs.append(a.isoformat()) else: sargs.append(str(a)) return sargs def process_result_value(self, value: Optional[str], dialect) -> Optional[Exception]: if value is None: return None # sadly, can't do much to convert back from the strings? Unless I serialize the type info as well? return Exception(*value) PRIMITIVES = { str : sqlalchemy.String, int : sqlalchemy.Integer, float : sqlalchemy.Float, bool : sqlalchemy.Boolean, datetime : IsoDateTime, date : IsoDate, dict : Json, list : Json, Exception: ExceptionAdapter, } Types = Union[ Type[str], Type[int], Type[float], Type[bool], Type[datetime], Type[date], Type[dict], Type[list], Type[Exception], Type[NamedTuple], ] Values = Union[ str, int, float, bool, datetime, date, dict, list, Exception, NamedTuple, ] # TODO assert all PRIMITIVES are also in Types/Values? def is_primitive(cls: Type) -> bool: """ >>> from typing import Dict, Any >>> is_primitive(int) True >>> is_primitive(set) False >>> is_primitive(dict) True """ return cls in PRIMITIVES # https://stackoverflow.com/a/2166841/706389 def is_dataclassish(t: Type) -> bool: """ >>> is_dataclassish(int) False >>> is_dataclassish(tuple) False >>> from typing import NamedTuple >>> class N(NamedTuple): ... field: int >>> is_dataclassish(N) True >>> from dataclasses import dataclass >>> @dataclass ... class D: ... field: str >>> is_dataclassish(D) True """ if dataclasses.is_dataclass(t): return True b = t.__bases__ if len(b) != 1 or b[0] != tuple: return False f = getattr(t, '_fields', None) if not isinstance(f, tuple): return False # pylint: disable=unidiomatic-typecheck return all(type(n) == str for n in f) class CachewException(RuntimeError): pass def get_union_args(cls) -> Optional[Tuple[Type]]: if getattr(cls, '__origin__', None) != Union: return None args = cls.__args__ args = [e for e in args if e != type(None)] assert len(args) > 0 return args def is_union(cls): return get_union_args(cls) is not None def strip_optional(cls) -> Tuple[Type, bool]: """ >>> from typing import Optional, NamedTuple >>> strip_optional(Optional[int]) (<class 'int'>, True) >>> class X(NamedTuple): ... x: int >>> strip_optional(X) (<class 'cachew.X'>, False) """ is_opt: bool = False args = get_union_args(cls) if args is not None and len(args) == 1: cls = args[0] # meh is_opt = True return (cls, is_opt) def strip_generic(tp): """ >>> strip_generic(List[int]) <class 'list'> >>> strip_generic(str) <class 'str'> """ if sys.version_info[1] < 7: # pylint: disable=no-member if isinstance(tp, typing.GenericMeta): return tp.__extra__ # type: ignore else: GA = getattr(typing, '_GenericAlias') # ugh, can't make both mypy and pylint happy here? if isinstance(tp, GA): return tp.__origin__ return tp # release mode friendly assert def kassert(x: bool) -> None: if x is False: raise AssertionError NT = TypeVar('NT') # sadly, bound=NamedTuple is not working yet in mypy # https://github.com/python/mypy/issues/685 class NTBinder(NamedTuple): """ >>> class Job(NamedTuple): ... company: str ... title: Optional[str] >>> class Person(NamedTuple): ... name: str ... age: int ... job: Optional[Job] NTBinder is a helper class for inteacting with sqlite database. Hierarchy is flattened: >>> binder = NTBinder.make(Person) >>> [(c.name, type(c.type)) for c in binder.columns] ... # doctest: +NORMALIZE_WHITESPACE [('name', <class 'sqlalchemy.sql.sqltypes.String'>), ('age', <class 'sqlalchemy.sql.sqltypes.Integer'>), ('_job_is_null', <class 'sqlalchemy.sql.sqltypes.Boolean'>), ('job_company', <class 'sqlalchemy.sql.sqltypes.String'>), ('job_title', <class 'sqlalchemy.sql.sqltypes.String'>)] >>> person = Person(name='alan', age=40, job=None) to_row converts object to a sql-friendly tuple. job=None, so we end up with True in _job_is_null field >>> tuple(binder.to_row(person)) ('alan', 40, True, None, None) from_row does reverse conversion >>> binder.from_row(('alan', 40, True, None, None)) Person(name='alan', age=40, job=None) >>> binder.from_row(('ann', 25, True, None, None, 'extra')) Traceback (most recent call last): ... cachew.CachewException: unconsumed items in iterator ['extra'] """ name : Optional[str] # None means toplevel type_ : Types span : int # not sure if span should include optional col? primitive: bool optional : bool union : Optional[Type] # helper, which isn't None if type is Union fields : Sequence[Any] # mypy can't handle cyclic definition at this point :( @staticmethod def make(tp: Type, name: Optional[str]=None) -> 'NTBinder': tp, optional = strip_optional(tp) union: Optional[Type] fields: Tuple[Any, ...] primitive: bool union_args = get_union_args(tp) if union_args is not None: CachewUnion = NamedTuple('_CachewUnionRepr', [ # type: ignore[misc] (x.__name__, Optional[x]) for x in union_args ]) union = CachewUnion primitive = False fields = (NTBinder.make(tp=CachewUnion, name='_cachew_union_repr'),) span = 1 else: union = None tp = strip_generic(tp) primitive = is_primitive(tp) if primitive: if name is None: name = '_cachew_primitive' # meh. presumably, top level if primitive: fields = () span = 1 else: annotations = getattr(tp, '__annotations__', None) if annotations is None: raise CachewException(f"{tp}: doesn't look like a supported type to cache. See https://github.com/karlicoss/cachew#features for the list of supported types.") fields = tuple(NTBinder.make(tp=ann, name=fname) for fname, ann in annotations.items()) span = sum(f.span for f in fields) + (1 if optional else 0) return NTBinder( name=name, type_=tp, span=span, primitive=primitive, optional=optional, union=union, fields=fields, ) @property def columns(self) -> List[Column]: return list(self.iter_columns()) # TODO not necessarily namedtuple? could be primitive type def to_row(self, obj: NT) -> Tuple[Optional[Values], ...]: return tuple(self._to_row(obj)) def from_row(self, row: Iterable[Any]) -> NT: riter = iter(row) res = self._from_row(riter) remaining = list(islice(riter, 0, 1)) if len(remaining) != 0: raise CachewException(f'unconsumed items in iterator {remaining}') assert res is not None # nosec # help mypy; top level will not be None return res def _to_row(self, obj) -> Iterator[Optional[Values]]: if self.primitive: yield obj elif self.union is not None: CachewUnion = self.union (uf,) = self.fields # TODO assert only one of them matches?? union = CachewUnion(**{ f.name: obj if isinstance(obj, f.type_) else None for f in uf.fields }) yield from uf._to_row(union) else: if self.optional: is_none = obj is None yield is_none else: is_none = False; kassert(obj is not None) # TODO hmm, that last assert is not very symmetric... if is_none: for _ in range(self.span - 1): yield None else: yield from chain.from_iterable( f._to_row(getattr(obj, f.name)) for f in self.fields ) def _from_row(self, row_iter): if self.primitive: return next(row_iter) elif self.union is not None: CachewUnion = self.union (uf,) = self.fields # TODO assert only one of them is not None? union_params = [ r for r in uf._from_row(row_iter) if r is not None ] kassert(len(union_params) == 1); return union_params[0] else: if self.optional: is_none = next(row_iter) else: is_none = False if is_none: for _ in range(self.span - 1): x = next(row_iter); kassert(x is None) # huh. assert is kinda opposite of producing value return None else: return self.type_(*( f._from_row(row_iter) for f in self.fields )) # TODO not sure if we want to allow optionals on top level? def iter_columns(self) -> Iterator[Column]: used_names: Set[str] = set() def col(name: str, tp) -> Column: while name in used_names: name = '_' + name used_names.add(name) return Column(name, tp) if self.primitive: if self.name is None: raise AssertionError yield col(self.name, PRIMITIVES[self.type_]) else: prefix = '' if self.name is None else self.name + '_' if self.optional: yield col(f'_{prefix}is_null', sqlalchemy.Boolean) for f in self.fields: for c in f.iter_columns(): yield col(f'{prefix}{c.name}', c.type) def __str__(self): lines = [' ' * level + str(x.name) + ('?' if x.optional else '') + f' <span {x.span}>' for level, x in self.flatten()] return '\n'.join(lines) def __repr__(self): return str(self) def flatten(self, level=0): yield (level, self) for f in self.fields: yield from f.flatten(level=level + 1) # TODO better name to represent what it means? SourceHash = str class DbHelper: def __init__(self, db_path: Path, cls: Type) -> None: self.engine = sqlalchemy.create_engine(f'sqlite:///{db_path}', connect_args={'timeout': 0}) # NOTE: timeout is necessary so we don't lose time waiting during recursive calls # by default, it's several seconds? you'd see 'test_recursive' test performance degrade @event.listens_for(self.engine, 'connect') def set_sqlite_pragma(dbapi_connection, connection_record): # without wal, concurrent reading/writing is not gonna work # ugh. that's odd, how are we supposed to set WAL if the very fact of setting wal might lock the db? while True: try: dbapi_connection.execute('PRAGMA journal_mode=WAL') break except sqlite3.OperationalError as oe: if 'database is locked' not in str(oe): # ugh, pretty annoying that exception doesn't include database path for some reason raise CachewException(f'Error while setting WAL on {db_path}') from oe time.sleep(0.1) self.connection = self.engine.connect() """ Erm... this is pretty confusing. https://docs.sqlalchemy.org/en/13/dialects/sqlite.html#transaction-isolation-level Somehow without this thing sqlalchemy logs BEGIN (implicit) instead of BEGIN TRANSACTION which actually works in sqlite... Judging by sqlalchemy/dialects/sqlite/base.py, looks like some sort of python sqlite driver problem?? test_transaction should check this behaviour """ @event.listens_for(self.connection, 'begin') # pylint: disable=unused-variable def do_begin(conn): # NOTE there is also BEGIN CONCURRENT in newer versions of sqlite. could use it later? conn.execute('BEGIN DEFERRED') self.meta = sqlalchemy.MetaData(self.connection) self.table_hash = Table('hash', self.meta, Column('value', sqlalchemy.String)) self.binder = NTBinder.make(tp=cls) self.table_data = Table('table', self.meta, *self.binder.columns) # TODO FIXME database/tables need to be created atomically? def __enter__(self): return self def __exit__(self, *args): self.connection.close() HashFunction = Callable[..., SourceHash] def default_hash(*args, **kwargs) -> SourceHash: # TODO eh, demand hash? it's not safe either... ugh # can lead to werid consequences otherwise.. return str(args + tuple(sorted(kwargs.items()))) # good enough?? # TODO give it as an example in docs def mtime_hash(path: Path, *args, **kwargs) -> SourceHash: mt = path.stat().st_mtime return default_hash(f'{path}.{mt}', *args, **kwargs) Failure = str # pylint: disable=too-many-return-statements def infer_type(func) -> Union[Failure, Type[Any]]: """ >>> from typing import Collection, NamedTuple >>> class Person(NamedTuple): ... name: str ... age: int >>> def person_provider() -> Collection[Person]: ... return [] >>> infer_type(person_provider) <class 'cachew.Person'> >>> from typing import Sequence >>> def int_provider() -> Sequence[int]: ... return (1, 2, 3) >>> infer_type(int_provider) <class 'int'> >> from typing import Iterator, Union >>> def union_provider() -> Iterator[Union[str, int]]: ... yield 1 ... yield 'aaa' >>> infer_type(union_provider) typing.Union[str, int] """ rtype = getattr(func, '__annotations__', {}).get('return', None) if rtype is None: return f"no return type annotation on {func}" def bail(reason): return f"can't infer type from {rtype}: " + reason # need to get erased type, otherwise subclass check would fail if not hasattr(rtype, '__origin__'): return bail("expected __origin__") if not issubclass(rtype.__origin__, Iterable): return bail("not subclassing Iterable") args = getattr(rtype, '__args__', None) if args is None: return bail("has no __args__") if len(args) != 1: return bail(f"wrong number of __args__: {args}") arg = args[0] if is_primitive(arg): return arg if is_union(arg): return arg # meh? if not is_dataclassish(arg): return bail(f"{arg} is not NamedTuple/dataclass") return arg # https://stackoverflow.com/questions/653368/how-to-create-a-python-decorator-that-can-be-used-either-with-or-without-paramet def doublewrap(f): @functools.wraps(f) def new_dec(*args, **kwargs): if len(args) == 1 and len(kwargs) == 0 and callable(args[0]): # actual decorated function return f(args[0]) else: # decorator arguments return lambda realf: f(realf, *args, **kwargs) return new_dec PathProvider = Union[PathIsh, Callable[..., PathIsh]] def cachew_error(e: Exception) -> None: if settings.THROW_ON_ERROR: raise e else: logger = get_logger() # todo add func name? logger.error("cachew: error while setting up cache, falling back to non-cached version") logger.exception(e) use_default_path = cast(Path, object()) @doublewrap # pylint: disable=too-many-arguments def cachew( func=None, cache_path: Optional[PathProvider]=use_default_path, force_file: bool=False, cls=None, depends_on: HashFunction=default_hash, logger=None, chunk_by=100, # NOTE: allowed values for chunk_by depend on the system. # some systems (to be more specific, sqlite builds), it might be too large and cause issues # ideally this would be more defensive/autodetected, maybe with a warning? # you can use 'test_many' to experiment # - too small values (e.g. 10) are slower than 100 (presumably, too many sql statements) # - too large values (e.g. 10K) are slightly slower as well (not sure why?) **kwargs, ): r""" Database-backed cache decorator. TODO more description? # TODO use this doc in readme? :param cache_path: if not set, `cachew.settings.DEFAULT_CACHEW_DIR` will be used. :param force_file: if set to True, assume `cache_path` is a regular file (instead of a directory) :param cls: if not set, cachew will attempt to infer it from return type annotation. See :func:`infer_type` and :func:`cachew.tests.test_cachew.test_return_type_inference`. :param depends_on: hash function to determine whether the underlying . Can potentially benefit from the use of side effects (e.g. file modification time). TODO link to test? :param logger: custom logger, if not specified will use logger named `cachew`. See :func:`get_logger`. :return: iterator over original or cached items Usage example: >>> from typing import NamedTuple, Iterator >>> class Link(NamedTuple): ... url : str ... text: str ... >>> @cachew ... def extract_links(archive_path: str) -> Iterator[Link]: ... for i in range(5): ... # simulate slow IO ... # this function runs for five seconds for the purpose of demonstration, but realistically it might take hours ... import time; time.sleep(1) ... yield Link(url=f'http://link{i}.org', text=f'text {i}') ... >>> list(extract_links(archive_path='wikipedia_20190830.zip')) # that would take about 5 seconds on first run [Link(url='http://link0.org', text='text 0'), Link(url='http://link1.org', text='text 1'), Link(url='http://link2.org', text='text 2'), Link(url='http://link3.org', text='text 3'), Link(url='http://link4.org', text='text 4')] >>> from timeit import Timer >>> res = Timer(lambda: list(extract_links(archive_path='wikipedia_20190830.zip'))).timeit(number=1) ... # second run is cached, so should take less time >>> print(f"call took {int(res)} seconds") call took 0 seconds >>> res = Timer(lambda: list(extract_links(archive_path='wikipedia_20200101.zip'))).timeit(number=1) ... # now file has changed, so the cache will be discarded >>> print(f"call took {int(res)} seconds") call took 5 seconds """ if logger is None: logger = get_logger() hashf = kwargs.get('hashf', None) if hashf is not None: warnings.warn("'hashf' is deprecated. Please use 'depends_on' instead") depends_on = hashf cn = cname(func) # todo not very nice that ENABLE check is scattered across two places if not settings.ENABLE or cache_path is None: logger.info('[%s]: cache explicitly disabled (settings.ENABLE is False or cache_path is None)', cn) return func if cache_path is use_default_path: cache_path = settings.DEFAULT_CACHEW_DIR logger.info('[%s]: no cache_path specified, using the default %s', cn, cache_path) # TODO fuzz infer_type, should never crash? inferred = infer_type(func) if isinstance(inferred, Failure): msg = f"failed to infer cache type: {inferred}. See https://github.com/karlicoss/cachew#features for the list of supported types." if cls is None: ex = CachewException(msg) cachew_error(ex) return func else: # it's ok, assuming user knows better logger.debug(msg) else: if cls is None: logger.debug('[%s] using inferred type %s', cn, inferred) cls = inferred else: if cls != inferred: logger.warning("inferred type %s mismatches specified type %s", inferred, cls) # TODO not sure if should be more serious error... ctx = Context( func =func, cache_path=cache_path, force_file=force_file, cls =cls, depends_on=depends_on, logger =logger, chunk_by =chunk_by, ) # hack to avoid extra stack frame (see test_recursive, test_deep-recursive) @functools.wraps(func) def binder(*args, **kwargs): kwargs['_cachew_context'] = ctx return cachew_wrapper(*args, **kwargs) return binder def cname(func: Callable) -> str: # some functions don't have __module__ mod = getattr(func, '__module__', None) or '' return f'{mod}:{func.__qualname__}' class Context(NamedTuple): func : Callable cache_path: PathProvider force_file: bool cls : Type depends_on: HashFunction logger : logging.Logger chunk_by : int def composite_hash(self, *args, **kwargs) -> SourceHash: fsig = inspect.signature(self.func) # defaults wouldn't be passed in kwargs, but they can be an implicit dependency (especially inbetween program runs) defaults = { k: v.default for k, v in fsig.parameters.items() if v.default is not inspect.Parameter.empty } # but only pass default if the user wants it in the hash function? hsig = inspect.signature(self.depends_on) defaults = { k: v for k, v in defaults.items() if k in hsig.parameters or 'kwargs' in hsig.parameters } kwargs = {**defaults, **kwargs} binder = NTBinder.make(tp=self.cls) schema = str(binder.columns) # TODO not super nice, but works fine for now return f'cachew: {CACHEW_VERSION}, schema: {schema}, dependencies: {self.depends_on(*args, **kwargs)}' def cachew_wrapper( *args, _cachew_context: Context, **kwargs, ): C = _cachew_context func = C.func cache_path = C.cache_path force_file = C.force_file cls = C.cls depend_on = C.depends_on logger = C.logger chunk_by = C.chunk_by cn = cname(func) if not settings.ENABLE: logger.info('[%s]: cache explicitly disabled (settings.ENABLE is False)', cn) yield from func(*args, **kwargs) return early_exit = False # WARNING: annoyingly huge try/catch ahead... # but it lets us save a function call, hence a stack frame # see test_recursive and test_deep_recursive try: dbp: Path if callable(cache_path): pp = cache_path(*args, **kwargs) # type: ignore if pp is None: logger.info('[%s]: cache explicitly disabled (cache_path is None)', cn) yield from func(*args, **kwargs) return else: dbp = Path(pp) else: dbp = Path(cache_path) dbp.parent.mkdir(parents=True, exist_ok=True) # need to be atomic here try: # note: stat follows symlinks (which is what we want) st = dbp.stat() except FileNotFoundError: # doesn't exist. then it's controlled by force_file if force_file: dbp = dbp else: dbp.mkdir(parents=True, exist_ok=True) dbp = dbp / cn else: # already exists, so just use cname if it's a dir if stat.S_ISDIR(st.st_mode): dbp = dbp / cn logger.debug('using %s for db cache', dbp) h = C.composite_hash(*args, **kwargs); kassert(h is not None) # just in case logger.debug('new hash: %s', h) with DbHelper(dbp, cls) as db, \ db.connection.begin(): # NOTE: defferred transaction conn = db.connection binder = db.binder values_table = db.table_data # first, try to do as much as possible read-only, benefiting from deferred transaction try: # not sure if there is a better way... prev_hashes = conn.execute(db.table_hash.select()).fetchall() except sqlalchemy.exc.OperationalError as e: # meh. not sure if this is a good way to handle this.. if 'no such table: hash' in str(e): prev_hashes = [] else: raise e kassert(len(prev_hashes) <= 1) # shouldn't happen prev_hash: Optional[SourceHash] if len(prev_hashes) == 0: prev_hash = None else: prev_hash = prev_hashes[0][0] # returns a tuple... logger.debug('old hash: %s', prev_hash) if h == prev_hash: logger.debug('hash matched: loading from cache') rows = conn.execute(values_table.select()) for row in rows: yield binder.from_row(row) return logger.debug('hash mismatch: computing data and writing to db') # NOTE on recursive calls # somewhat magically, they should work as expected with no extra database inserts? # the top level call 'wins' the write transaction and once it's gathered all data, will write it # the 'intermediate' level calls fail to get it and will pass data through # the cached 'bottom' level is read only and will be yielded withotu a write transaction try: # first write statement will upgrade transaction to write transaction which might fail due to concurrency # see https://www.sqlite.org/lang_transaction.html # note I guess, because of 'checkfirst', only the last create is actually guaranteed to upgrade the transaction to write one # drop and create to incorporate schema changes db.table_hash.create(conn, checkfirst=True) values_table.drop(conn, checkfirst=True) values_table.create(conn) except sqlalchemy.exc.OperationalError as e: if e.code == 'e3q8': # database is locked; someone else must be have won the write lock # not much we can do here # NOTE: important to close early, otherwise we might hold onto too many file descriptors during yielding # see test_deep_recursive conn.close() yield from func(*args, **kwargs) return else: raise e # at this point we're guaranteed to have an exclusive write transaction datas = func(*args, **kwargs) chunk: List[Any] = [] def flush(): nonlocal chunk if len(chunk) > 0: # pylint: disable=no-value-for-parameter conn.execute(values_table.insert().values(chunk)) chunk = [] for d in datas: try: yield d except GeneratorExit: early_exit = True return chunk.append(binder.to_row(d)) if len(chunk) >= chunk_by: flush() flush() # TODO insert and replace instead? # pylint: disable=no-value-for-parameter conn.execute(db.table_hash.delete()) # pylint: disable=no-value-for-parameter conn.execute(db.table_hash.insert().values([{'value': h}])) except Exception as e: # sigh... see test_early_exit_shutdown... if early_exit and 'Cannot operate on a closed database' in str(e): return # todo hmm, kinda annoying that it tries calling the function twice? # but gonna require some sophisticated cooperation with the cached wrapper otherwise cachew_error(e) yield from func(*args, **kwargs) __all__ = ['cachew', 'CachewException', 'SourceHash', 'HashFunction', 'get_logger', 'NTBinder']
33.359649
229
0.599381
bd530f2a6b0312a06d5c95a19dfe8e1bffcb31ba
4,314
py
Python
glow/core/wrap/concurrency.py
arquolo/glow
c4c63e36551cd1eec2e34129dbc0f06c788099de
[ "MIT" ]
null
null
null
glow/core/wrap/concurrency.py
arquolo/glow
c4c63e36551cd1eec2e34129dbc0f06c788099de
[ "MIT" ]
null
null
null
glow/core/wrap/concurrency.py
arquolo/glow
c4c63e36551cd1eec2e34129dbc0f06c788099de
[ "MIT" ]
null
null
null
__all__ = ['stream_batched', 'call_once', 'threadlocal', 'shared_call'] import functools import threading import time from collections.abc import Callable, Sequence from concurrent.futures import Future from contextlib import ExitStack from queue import Empty, SimpleQueue from threading import Thread from typing import Any, TypeVar, cast from weakref import WeakValueDictionary _T = TypeVar('_T') _F = TypeVar('_F', bound=Callable) _ZeroArgsF = TypeVar('_ZeroArgsF', bound=Callable[[], Any]) def threadlocal(fn: Callable[..., _T], *args: object, **kwargs: object) -> Callable[[], _T]: """Thread-local singleton factory, mimics `functools.partial`""" local_ = threading.local() def wrapper() -> _T: try: return local_.obj except AttributeError: local_.obj = fn(*args, **kwargs) return local_.obj return wrapper class _DeferredStack(ExitStack): """ ExitStack that allows deferring. When return value of callback function should be accessible, use this. """ def defer(self, fn: Callable[..., _T], *args, **kwargs) -> Future[_T]: future: Future[_T] = Future() def apply(future: Future[_T]) -> None: try: result = fn(*args, **kwargs) except BaseException as exc: # noqa: PIE786 future.set_exception(exc) else: future.set_result(result) self.callback(apply, future) return future def call_once(fn: _ZeroArgsF) -> _ZeroArgsF: """Makes `fn()` callable a singleton""" lock = threading.RLock() def wrapper(): with _DeferredStack() as stack, lock: if fn._future is None: # This way setting future is protected, but fn() is not fn._future = stack.defer(fn) return fn._future.result() fn._future = None # type: ignore return cast(_ZeroArgsF, functools.update_wrapper(wrapper, fn)) def shared_call(fn: _F) -> _F: """Merges concurrent calls to `fn` with the same `args` to single one""" lock = threading.RLock() futures: WeakValueDictionary[str, Future] = WeakValueDictionary() def wrapper(*args, **kwargs): key = f'{fn}{args}{kwargs}' with _DeferredStack() as stack, lock: try: future = futures[key] except KeyError: futures[key] = future = stack.defer(fn, *args, **kwargs) return future.result() return cast(_F, functools.update_wrapper(wrapper, fn)) def _batch_apply(func: Callable, args: Sequence, futures: Sequence[Future]): try: results = func(args) assert len(args) == len(results) except BaseException as exc: # noqa: PIE786 for fut in futures: fut.set_exception(exc) else: for fut, res in zip(futures, results): fut.set_result(res) def stream_batched(func=None, *, batch_size, latency=0.1, timeout=20.): """ Delays start of computation up to `latency` seconds in order to fill batch to batch_size items and send it at once to target function. `timeout` specifies timeout to wait results from worker. Simplified version of https://github.com/ShannonAI/service-streamer """ if func is None: return functools.partial( stream_batched, batch_size=batch_size, latency=latency, timeout=timeout) assert callable(func) buf = SimpleQueue() def _fetch_batch(): end_time = time.monotonic() + latency for _ in range(batch_size): try: yield buf.get(timeout=end_time - time.monotonic()) except (Empty, ValueError): # ValueError on negative timeout return def _serve_forever(): while True: if batch := [*_fetch_batch()]: _batch_apply(func, *zip(*batch)) else: time.sleep(0.001) def wrapper(batch): futures = [Future() for _ in batch] for item, fut in zip(batch, futures): buf.put((item, fut)) return [f.result(timeout=timeout) for f in futures] Thread(target=_serve_forever, daemon=True).start() return functools.update_wrapper(wrapper, func)
30.167832
76
0.613584
c48039ec1f9239f30efaa83dfd2e4e178c253158
3,666
py
Python
huaweicloud-sdk-ocr/huaweicloudsdkocr/v1/model/recognize_flight_itinerary_request.py
wuchen-huawei/huaweicloud-sdk-python-v3
3683d703f4320edb2b8516f36f16d485cff08fc2
[ "Apache-2.0" ]
1
2021-11-03T07:54:50.000Z
2021-11-03T07:54:50.000Z
huaweicloud-sdk-ocr/huaweicloudsdkocr/v1/model/recognize_flight_itinerary_request.py
wuchen-huawei/huaweicloud-sdk-python-v3
3683d703f4320edb2b8516f36f16d485cff08fc2
[ "Apache-2.0" ]
null
null
null
huaweicloud-sdk-ocr/huaweicloudsdkocr/v1/model/recognize_flight_itinerary_request.py
wuchen-huawei/huaweicloud-sdk-python-v3
3683d703f4320edb2b8516f36f16d485cff08fc2
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 import pprint import re import six class RecognizeFlightItineraryRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'project_id': 'str', 'body': 'FlightItineraryRequestBody' } attribute_map = { 'project_id': 'project_id', 'body': 'body' } def __init__(self, project_id=None, body=None): """RecognizeFlightItineraryRequest - a model defined in huaweicloud sdk""" self._project_id = None self._body = None self.discriminator = None self.project_id = project_id if body is not None: self.body = body @property def project_id(self): """Gets the project_id of this RecognizeFlightItineraryRequest. 项目ID,您可以从[获取项目ID](https://support.huaweicloud.com/api-ocr/ocr_03_0130.html)中获取。 :return: The project_id of this RecognizeFlightItineraryRequest. :rtype: str """ return self._project_id @project_id.setter def project_id(self, project_id): """Sets the project_id of this RecognizeFlightItineraryRequest. 项目ID,您可以从[获取项目ID](https://support.huaweicloud.com/api-ocr/ocr_03_0130.html)中获取。 :param project_id: The project_id of this RecognizeFlightItineraryRequest. :type: str """ self._project_id = project_id @property def body(self): """Gets the body of this RecognizeFlightItineraryRequest. :return: The body of this RecognizeFlightItineraryRequest. :rtype: FlightItineraryRequestBody """ return self._body @body.setter def body(self, body): """Sets the body of this RecognizeFlightItineraryRequest. :param body: The body of this RecognizeFlightItineraryRequest. :type: FlightItineraryRequestBody """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RecognizeFlightItineraryRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
27.155556
87
0.574741
cffdf6602d27715086ed526881c0421338842249
462
py
Python
example/python/pipelines/convert/save_vocab_from_dict.py
SidaZh/EET
6414faa734abfdb666556304ca3df5b7f5e54c38
[ "Apache-2.0" ]
null
null
null
example/python/pipelines/convert/save_vocab_from_dict.py
SidaZh/EET
6414faa734abfdb666556304ca3df5b7f5e54c38
[ "Apache-2.0" ]
null
null
null
example/python/pipelines/convert/save_vocab_from_dict.py
SidaZh/EET
6414faa734abfdb666556304ca3df5b7f5e54c38
[ "Apache-2.0" ]
null
null
null
save_file = open("../../resource/vocab.txt","w") dict_file = open('../../resource/dict.txt', 'r') pre_file = open('./Special_Symbols.txt', 'r') contents=pre_file.readlines() #读取全部行 for content in contents: #显示一行 save_file.write(content) save_file.write('\n') pre_file.close() contents=dict_file.readlines() #读取全部行 for content in contents: #显示一行 save_file.write(content.split(' ')[0] + '\n') dict_file.close() save_file.close()
28.875
49
0.658009
c7623a9e5a4d37fad4d933fe46938a8553cb616e
521
py
Python
Emailer/main/migrations/0009_alter_receiver_email.py
Pavel-Petkov03/Emailer
8f2b73e82136374e3f8b86537740ae0a2244c03d
[ "MIT" ]
null
null
null
Emailer/main/migrations/0009_alter_receiver_email.py
Pavel-Petkov03/Emailer
8f2b73e82136374e3f8b86537740ae0a2244c03d
[ "MIT" ]
8
2022-02-20T03:17:56.000Z
2022-03-29T17:20:14.000Z
Emailer/main/migrations/0009_alter_receiver_email.py
Pavel-Petkov03/Emailer
8f2b73e82136374e3f8b86537740ae0a2244c03d
[ "MIT" ]
null
null
null
# Generated by Django 4.0.2 on 2022-04-08 20:39 import Emailer.authentication.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0008_alter_receiver_preferences'), ] operations = [ migrations.AlterField( model_name='receiver', name='email', field=models.EmailField(max_length=254, validators=[Emailer.authentication.validators.is_gmail_validator]), ), ]
26.05
120
0.642994
cf61ceaefe5a3a9c04e58c67d56431c6c3554a68
15,020
py
Python
applications/app2/languages/ar.py
udaay7446/uday_python
2c8adf1652004582482c9ffed2d5d73c70da5819
[ "BSD-3-Clause" ]
null
null
null
applications/app2/languages/ar.py
udaay7446/uday_python
2c8adf1652004582482c9ffed2d5d73c70da5819
[ "BSD-3-Clause" ]
null
null
null
applications/app2/languages/ar.py
udaay7446/uday_python
2c8adf1652004582482c9ffed2d5d73c70da5819
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- { '!langcode!': 'ar', '!langname!': 'Arabic', '"update" is an optional expression like "field1=\'newvalue\'". You cannot update or delete the results of a JOIN': '"update" is an optional expression like "field1=\'newvalue\'". You cannot update or delete the results of a JOIN', '%s %%(shop)': '%s %%(shop)', '%s %%(shop[0])': '%s %%(shop[0])', '%s %%{quark[0]}': '%s %%{quark[0]}', '%s %%{row} deleted': '%s %%{row} deleted', '%s %%{row} updated': '%s %%{row} updated', '%s %%{shop[0]}': '%s %%{shop[0]}', '%s %%{shop}': '%s %%{shop}', '%s selected': '%s selected', '%Y-%m-%d': '%Y-%m-%d', '%Y-%m-%d %H:%M:%S': '%Y-%m-%d %H:%M:%S', '(**%.0d MB**)': '(**%.0d MB**)', '**%(items)s** %%{item(items)}, **%(bytes)s** %%{byte(bytes)}': '**%(items)s** %%{item(items)}, **%(bytes)s** %%{byte(bytes)}', '**%(items)s** items, **%(bytes)s** %%{byte(bytes)}': '**%(items)s** items, **%(bytes)s** %%{byte(bytes)}', '**not available** (requires the Python [[guppy http://pypi.python.org/pypi/guppy/ popup]] library)': '**not available** (requires the Python [[guppy http://pypi.python.org/pypi/guppy/ popup]] library)', '?': '?', '@markmin\x01(**%.0d MB**)': '(**%.0d MB**)', '@markmin\x01**%(items)s** %%{item(items)}, **%(bytes)s** %%{byte(bytes)}': '**%(items)s** %%{item(items)}, **%(bytes)s** %%{byte(bytes)}', '@markmin\x01**%(items)s** items, **%(bytes)s** %%{byte(bytes)}': '**%(items)s** items, **%(bytes)s** %%{byte(bytes)}', '@markmin\x01**Hello World**': '**مرحباً بالعالم**', '@markmin\x01**not available** (requires the Python [[guppy http://pypi.python.org/pypi/guppy/ popup]] library)': '**not available** (requires the Python [[guppy http://pypi.python.org/pypi/guppy/ popup]] library)', '@markmin\x01``**not available**``:red (requires the Python [[guppy http://pypi.python.org/pypi/guppy/ popup]] library)': '``**not available**``:red (requires the Python [[guppy http://pypi.python.org/pypi/guppy/ popup]] library)', '@markmin\x01An error occured, please [[reload %s]] the page': 'An error occured, please [[reload %s]] the page', '@markmin\x01Cache contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.': 'Cache contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.', '@markmin\x01DISK contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.': 'DISK contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.', '@markmin\x01Hit Ratio: **%(ratio)s%%** (**%(hits)s** %%{hit(hits)} and **%(misses)s** %%{miss(misses)})': 'Hit Ratio: **%(ratio)s%%** (**%(hits)s** %%{hit(hits)} and **%(misses)s** %%{miss(misses)})', '@markmin\x01Number of entries: **%s**': 'Number of entries: **%s**', '@markmin\x01RAM contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.': 'RAM contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.', '``**not available**``:red (requires the Python [[guppy http://pypi.python.org/pypi/guppy/ popup]] library)': '``**not available**``:red (requires the Python [[guppy http://pypi.python.org/pypi/guppy/ popup]] library)', 'A new password was emailed to you': 'A new password was emailed to you', 'About': 'نبذة', 'Access Control': 'متحكمات الوصول', 'admin': 'admin', 'Administrative Interface': 'واجهة التحكم', 'Ajax Recipes': 'وصفات أجاكس', 'An error occured, please [[reload %s]] the page': 'An error occured, please [[reload %s]] the page', 'API Example': 'API Example', 'appadmin is disabled because insecure channel': 'appadmin is disabled because insecure channel', 'Apply changes': 'Apply changes', 'Are you sure you want to delete this object?': 'هل أنت متأكد بحذف هذا الكائن ؟', 'Authentication code': 'Authentication code', 'Available Databases and Tables': 'Available Databases and Tables', 'Buy this book': 'أشتري هذا الكتاب', "Buy web2py's book": "Buy web2py's book", 'cache': 'cache', 'Cache': 'Cache', 'Cache Cleared': 'Cache Cleared', 'Cache contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.': 'Cache contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.', 'Cache Keys': 'Cache Keys', 'Cannot be empty': 'لا يمكن بأن يكون خالي', 'Change Password': 'Change Password', 'Change password': 'Change password', 'Check to delete': 'أختر للحذف', 'Clear CACHE?': 'Clear CACHE?', 'Clear DISK': 'Clear DISK', 'Clear RAM': 'Clear RAM', 'Click on the link %(link)s to reset your password': 'Click on the link %(link)s to reset your password', 'Client IP': 'IP المستخدم', 'Community': 'المجتمع', 'Components and Plugins': 'العناصر والإضافات', 'Config.ini': 'Config.ini', 'Controller': 'متحكم', 'Copyright': 'الحقوق', 'Created By': 'أنشئ بواسطة', 'Created On': 'أنشئ في', 'Current request': 'Current request', 'Current response': 'Current response', 'Current session': 'Current session', 'customize me!': 'التخصيص', 'data uploaded': 'data uploaded', 'Database': 'قاعدة البيانات', 'Database %s select': 'Database %s select', 'Database Administration (appadmin)': 'Database Administration (appadmin)', 'db': 'db', 'DB Model': 'نموذج قاعدة البيانات', 'Delete:': 'Delete:', 'Demo': 'تجربة', 'Deployment Recipes': 'الوصفات المنشورة', 'Description': 'الوصف', 'design': 'design', 'Design': 'Design', 'DISK': 'DISK', 'Disk Cache Keys': 'Disk Cache Keys', 'Disk Cleared': 'Disk Cleared', 'DISK contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.': 'DISK contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.', 'Documentation': 'المستندات', "Don't know what to do?": 'لا تعلم ماذا ستفعل ؟', 'done!': 'done!', 'Download': 'تحميل', 'E-mail': 'البريد الإلكتروني', 'Edit current record': 'Edit current record', 'Email and SMS': 'البريد الإلكتروني والرسالة النصية', 'Email sent': 'Email sent', 'Email verification': 'Email verification', 'Email verified': 'Email verified', 'enter an integer between %(min)g and %(max)g': 'أدخل عدد صحيح بين %(min)g و %(man)g', 'enter date and time as %(format)s': 'أدخل التاريخ والوقت كالنمط %(format)', 'Errors': 'الأخطاء', 'export as csv file': 'export as csv file', 'FAQ': 'الأسئلة الشائعة', 'First name': 'الأسم الأول', 'Forms and Validators': 'الإستمارات والمدققات', 'Free Applications': 'تطبيقات مجانية', 'Function disabled': 'Function disabled', 'Graph Model': 'Graph Model', 'Grid Example': 'Grid Example', 'Group %(group_id)s created': 'المجموعة %(group_id)s قد أنشئت', 'Group %(group_id)s deleted': 'Group %(group_id)s deleted', 'Group ID': 'هوية المجموعة', 'Group uniquely assigned to user %(id)s': 'المجموعة مخصصة للمستخدم %(id)s', 'Groups': 'مجموعات', 'Hello World': 'مرحباً بالعالم', 'Hello World ## comment': ' مرحباً بالعالم', 'Hello World## comment': 'مرحباً بالعالم', 'Helping web2py': 'Helping web2py', 'Hit Ratio: **%(ratio)s%%** (**%(hits)s** %%{hit(hits)} and **%(misses)s** %%{miss(misses)})': 'Hit Ratio: **%(ratio)s%%** (**%(hits)s** %%{hit(hits)} and **%(misses)s** %%{miss(misses)})', 'Home': 'الرئيسية', 'How did you get here?': 'كيف أستطعت الوصول إلى هنا ؟', 'import': 'import', 'Import/Export': 'Import/Export', 'Incorrect code. {0} more attempt(s) remaining.': 'Incorrect code. {0} more attempt(s) remaining.', 'Insufficient privileges': 'Insufficient privileges', 'Internal State': 'Internal State', 'Introduction': 'مقدمة', 'Invalid email': 'بريد إلكتروني غير صالح', 'Invalid key': 'Invalid key', 'Invalid login': 'Invalid login', 'Invalid password': 'Invalid password', 'Invalid Query': 'Invalid Query', 'invalid request': 'invalid request', 'Invalid reset password': 'Invalid reset password', 'Invalid user': 'Invalid user', 'Invalid username': 'Invalid username', 'Invitation to join %(site)s': 'Invitation to join %(site)s', 'Is Active': 'نشط', 'Key': 'Key', 'Key verified': 'Key verified', 'Last name': 'أسم العائلة', 'Layout': 'النسق', 'Layout Plugins': 'نسّق الإضافات', 'Layouts': 'لأنساق', 'Live Chat': 'المحادثة الحيّة', 'Log In': 'Log In', 'Logged in': 'تم تسجيل الدخول', 'Logged out': 'تم تسجيل الخروج', 'Login': 'تسجيل الدخول', 'Login disabled by administrator': 'Login disabled by administrator', 'Logout': 'تسجيل الخروج', 'Lost Password': 'فقدت كلمة المرور', 'Lost password?': 'هل فقدت كلمة المرور ؟', 'Manage %(action)s': 'Manage %(action)s', 'Manage Access Control': 'Manage Access Control', 'Manage Cache': 'Manage Cache', 'Memberships': 'Memberships', 'Menu Model': 'قالب القوائم', 'Modified By': 'عًدلت بواسطة', 'Modified On': 'عُدلت في', 'My Sites': 'موقعي', 'Name': 'الأسم', 'New password': 'New password', 'New Record': 'New Record', 'new record inserted': 'new record inserted', 'next %s rows': 'next %s rows', 'No databases in this application': 'No databases in this application', 'Number of entries: **%s**': 'Number of entries: **%s**', 'Object or table name': 'أسم الكائن أو الجدول', 'Old password': 'Old password', 'Online book': 'Online book', 'Online examples': 'أمثلة على الأنترنت', 'or import from csv file': 'or import from csv file', 'Origin': 'أصل', 'Other Plugins': 'إضافات أخرى', 'Other Recipes': 'وصفات أخرى', 'Overview': 'نظرة عامة', 'Password': 'كلمة المرور', 'Password changed': 'Password changed', "Password fields don't match": 'حقول كلمة المرور لا تتطابق', 'Password reset': 'Password reset', 'Password retrieve': 'Password retrieve', 'Permission': 'Permission', 'Permissions': 'Permissions', 'please input your password again': 'الرجاء إعادة إدخال كلمة المرور', 'Plugins': 'الإضافات', 'Powered by': 'مدعوم بواسطة', 'Preface': 'المدخل', 'previous %s rows': 'previous %s rows', 'Profile': 'الملف الشخصي', 'Profile updated': 'Profile updated', 'pygraphviz library not found': 'pygraphviz library not found', 'Python': 'بايثون', 'Query:': 'Query:', 'Quick Examples': 'أمثلة سريعة', 'RAM': 'RAM', 'RAM Cache Keys': 'RAM Cache Keys', 'Ram Cleared': 'Ram Cleared', 'RAM contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.': 'RAM contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.', 'Recipes': 'وصفات', 'Record': 'Record', 'Record %(id)s created': 'Record %(id)s created', 'Record %(id)s deleted': 'Record %(id)s deleted', 'Record %(id)s read': 'Record %(id)s read', 'Record %(id)s updated': 'Record %(id)s updated', 'Record Created': 'Record Created', 'Record Deleted': 'Record Deleted', 'record does not exist': 'record does not exist', 'Record ID': 'هوية السجل ', 'Record id': 'Record id', 'Record Updated': 'Record Updated', 'Register': 'التسجيل', 'Registration identifier': 'مُعرف التسجيل', 'Registration is pending approval': 'Registration is pending approval', 'Registration key': 'رمز التسجيل', 'Registration needs verification': 'Registration needs verification', 'Registration successful': 'تم التسجيل بنجاح', 'Remember me (for 30 days)': 'تذكرني ( إلى 30 يوم)', 'Request reset password': 'Request reset password', 'Reset Password key': 'إعادة ظبط مفتاح كلمة المرور', 'Role': 'دور', 'Roles': 'Roles', 'Rows in Table': 'Rows in Table', 'Rows selected': 'Rows selected', 'Save model as...': 'Save model as...', 'Semantic': 'دليل لفظي', 'Services': 'خدمات', 'Sign Up': 'Sign Up', 'Sign up': 'Sign up', 'Size of cache:': 'Size of cache:', 'state': 'state', 'Statistics': 'Statistics', 'Stylesheet': 'أسلوب النمط', 'submit': 'submit', 'Submit': 'Submit', 'Support': 'الدعم', 'Table': 'Table', 'The "query" is a condition like "db.table1.field1==\'value\'". Something like "db.table1.field1==db.table2.field2" results in a SQL JOIN.': 'The "query" is a condition like "db.table1.field1==\'value\'". Something like "db.table1.field1==db.table2.field2" results in a SQL JOIN.', 'The Core': 'النواة', 'The output of the file is a dictionary that was rendered by the view %s': 'نتاج هذا الملف هو قاموس قًدم بواسطة العارض %s', 'The Views': 'المشاهدات', 'This App': 'هذا التطبيق', 'This code was emailed to you and is required for login.': 'This code was emailed to you and is required for login.', 'This email already has an account': 'This email already has an account', 'Time in Cache (h:m:s)': 'Time in Cache (h:m:s)', 'Timestamp': 'البصمة الزمنية', 'Traceback': 'Traceback', 'Twitter': 'تويتر', 'Two-step Login Authentication Code': 'Two-step Login Authentication Code', 'unable to parse csv file': 'unable to parse csv file', 'Unable to send email': 'Unable to send email', 'Update:': 'Update:', 'Use (...)&(...) for AND, (...)|(...) for OR, and ~(...) for NOT to build more complex queries.': 'Use (...)&(...) for AND, (...)|(...) for OR, and ~(...) for NOT to build more complex queries.', 'User': 'User', 'User %(id)s is impersonating %(other_id)s': 'User %(id)s is impersonating %(other_id)s', 'User %(id)s Logged-in': 'المستخدم %(id)s قد سجل دخوله', 'User %(id)s Logged-out': 'المستخدم %(id)s قد سجل خروجه', 'User %(id)s Password changed': 'User %(id)s Password changed', 'User %(id)s Password reset': 'User %(id)s Password reset', 'User %(id)s Password retrieved': 'User %(id)s Password retrieved', 'User %(id)s Profile updated': 'User %(id)s Profile updated', 'User %(id)s Registered': 'المستخدم %(id)s مسجل', 'User %(id)s Username retrieved': 'User %(id)s Username retrieved', 'User %(id)s Verification email sent': 'User %(id)s Verification email sent', 'User %(id)s verified registration key': 'User %(id)s verified registration key', 'User ID': 'هوية المستخدم', 'Username': 'Username', 'Username already taken': 'Username already taken', 'Username retrieve': 'Username retrieve', 'Users': 'Users', 'value already in database or empty': 'القيمة موجودة مسبقاً أو فارغة', 'Verify Password': 'تأكيد كلمة المرور', 'Videos': 'الفيديوهات', 'View': 'العرض', 'Welcome': 'مرحباً', 'Welcome %(username)s! Click on the link %(link)s to verify your email': 'Welcome %(username)s! Click on the link %(link)s to verify your email', 'Welcome to web2py!': 'مرحباً بكم في ويب2 باي !', 'Which called the function %s located in the file %s': 'الدالة المسماة %s موجودة في ملف %s', 'Wiki Example': 'Wiki Example', 'Working...': 'Working...', 'You are successfully running web2py': 'أستطعت تثبيت web2py بنجاح !', 'You can modify this application and adapt it to your needs': 'تستطيع تعديل هذا التطبيق لما يناسب إحتياجك', 'You have been invited to join %(site)s, click %(link)s to complete the process': 'You have been invited to join %(site)s, click %(link)s to complete the process', 'You visited the url %s': ' ملقد زرت الرابط %s', 'Your password is: %(password)s': 'Your password is: %(password)s', 'Your temporary login code is {0}': 'Your temporary login code is {0}', 'Your username is: %(username)s': 'Your username is: %(username)s', 'Your username was emailed to you': 'Your username was emailed to you', }
51.61512
281
0.654128
ddd0889901c97ae271e4ac063acc90cc02f4611f
7,023
py
Python
kymatio/backend/torch_backend.py
GReguig/kymatio
e0fc10057f5f8bb947068bc40afff8d3d3729052
[ "BSD-3-Clause" ]
516
2018-11-18T06:11:16.000Z
2022-03-21T22:35:06.000Z
kymatio/backend/torch_backend.py
GReguig/kymatio
e0fc10057f5f8bb947068bc40afff8d3d3729052
[ "BSD-3-Clause" ]
558
2018-11-19T22:21:12.000Z
2022-03-28T14:59:15.000Z
kymatio/backend/torch_backend.py
GReguig/kymatio
e0fc10057f5f8bb947068bc40afff8d3d3729052
[ "BSD-3-Clause" ]
119
2018-11-18T06:05:39.000Z
2022-03-26T06:59:37.000Z
from torch.autograd import Function import torch BACKEND_NAME = 'torch' def input_checks(x): if x is None: raise TypeError('The input should be not empty.') if not x.is_contiguous(): raise RuntimeError('The input must be contiguous.') def _is_complex(x): return x.shape[-1] == 2 def _is_real(x): return x.shape[-1] == 1 class ModulusStable(Function): """Stable complex modulus This class implements a modulus transform for complex numbers which is stable with respect to very small inputs (z close to 0), avoiding returning nans in all cases. Usage ----- modulus = ModulusStable.apply # apply inherited from Function x_mod = modulus(x) Parameters --------- x : tensor The complex tensor (i.e., whose last dimension is two) whose modulus we want to compute. Returns ------- output : tensor A tensor of same size as the input tensor, except for the last dimension, which is removed. This tensor is differentiable with respect to the input in a stable fashion (so gradent of the modulus at zero is zero). """ @staticmethod def forward(ctx, x): """Forward pass of the modulus. This is a static method which does not require an instantiation of the class. Arguments --------- ctx : context object Collected during the forward pass. These are automatically added by PyTorch and should not be touched. They are then used for the backward pass. x : tensor The complex tensor whose modulus is to be computed. Returns ------- output : tensor This contains the modulus computed along the last axis, with that axis removed. """ ctx.p = 2 ctx.dim = -1 ctx.keepdim = False output = (x[...,0] * x[...,0] + x[...,1] * x[...,1]).sqrt() ctx.save_for_backward(x, output) return output @staticmethod def backward(ctx, grad_output): """Backward pass of the modulus This is a static method which does not require an instantiation of the class. Arguments --------- ctx : context object Collected during the forward pass. These are automatically added by PyTorch and should not be touched. They are then used for the backward pass. grad_output : tensor The gradient with respect to the output tensor computed at the forward pass. Returns ------- grad_input : tensor The gradient with respect to the input. """ x, output = ctx.saved_tensors if ctx.dim is not None and ctx.keepdim is False and x.dim() != 1: grad_output = grad_output.unsqueeze(ctx.dim) output = output.unsqueeze(ctx.dim) grad_input = x.mul(grad_output).div(output) # Special case at 0 where we return a subgradient containing 0 grad_input.masked_fill_(output == 0, 0) return grad_input # shortcut for ModulusStable.apply modulus = ModulusStable.apply class Modulus(): """This class implements a modulus transform for complex numbers. Usage ----- modulus = Modulus() x_mod = modulus(x) Parameters --------- x : tensor Complex torch tensor. Returns ------- output : tensor A tensor with the same dimensions as x, such that output[..., 0] contains the complex modulus of x, while output[..., 1] = 0. """ def __call__(self, x): type_checks(x) norm = torch.zeros_like(x) norm[..., 0] = modulus(x) return norm def type_checks(x): if not _is_complex(x): raise TypeError('The input should be complex (i.e. last dimension is 2).') if not x.is_contiguous(): raise RuntimeError('Tensors must be contiguous.') def cdgmm(A, B, inplace=False): """Complex pointwise multiplication. Complex pointwise multiplication between (batched) tensor A and tensor B. Parameters ---------- A : tensor A is a complex tensor of size (B, C, M, N, 2). B : tensor B is a complex tensor of size (M, N, 2) or real tensor of (M, N, 1). inplace : boolean, optional If set to True, all the operations are performed in place. Raises ------ RuntimeError In the event that the filter B is not a 3-tensor with a last dimension of size 1 or 2, or A and B are not compatible for multiplication. TypeError In the event that A is not complex, or B does not have a final dimension of 1 or 2, or A and B are not of the same dtype, or if A and B are not on the same device. Returns ------- C : tensor Output tensor of size (B, C, M, N, 2) such that: C[b, c, m, n, :] = A[b, c, m, n, :] * B[m, n, :]. """ if not _is_real(B): type_checks(B) else: if not B.is_contiguous(): raise RuntimeError('Tensors must be contiguous.') type_checks(A) if A.shape[-len(B.shape):-1] != B.shape[:-1]: raise RuntimeError('The filters are not compatible for multiplication.') if A.dtype is not B.dtype: raise TypeError('Input and filter must be of the same dtype.') if B.device.type == 'cuda': if A.device.type == 'cuda': if A.device.index != B.device.index: raise TypeError('Input and filter must be on the same GPU.') else: raise TypeError('Input must be on GPU.') if B.device.type == 'cpu': if A.device.type == 'cuda': raise TypeError('Input must be on CPU.') if _is_real(B): if inplace: return A.mul_(B) else: return A * B else: C = A.new(A.shape) A_r = A[..., 0].view(-1, B.nelement() // 2) A_i = A[..., 1].view(-1, B.nelement() // 2) B_r = B[..., 0].view(-1).unsqueeze(0).expand_as(A_r) B_i = B[..., 1].view(-1).unsqueeze(0).expand_as(A_i) C[..., 0].view(-1, B.nelement() // 2)[:] = A_r * B_r - A_i * B_i C[..., 1].view(-1, B.nelement() // 2)[:] = A_r * B_i + A_i * B_r return C if not inplace else A.copy_(C) def concatenate(arrays, dim): return torch.stack(arrays, dim=dim) def real(x): """Real part of complex tensor Takes the real part of a complex tensor, where the last axis corresponds to the real and imaginary parts. Parameters ---------- x : tensor A complex tensor (that is, whose last dimension is equal to 2). Returns ------- x_real : tensor The tensor x[..., 0] which is interpreted as the real part of x. """ return x[..., 0]
28.54878
82
0.569415
38ea223a0ad4adb15de02f0c71ec07de02f5868d
2,238
py
Python
src/main/resources/docs/tests/B304.py
paulopontesm/codacy-bandit
38a1637717652efbc865badd43f336398881680b
[ "Apache-2.0" ]
6
2016-08-31T07:55:40.000Z
2020-01-20T08:32:50.000Z
src/main/resources/docs/tests/B304.py
Acidburn0zzz/codacy-bandit
92b65ec73b89a915127e1b29a4fcc8e2a7b64943
[ "Apache-2.0" ]
20
2017-06-23T11:58:11.000Z
2022-03-07T02:17:43.000Z
src/main/resources/docs/tests/B304.py
Acidburn0zzz/codacy-bandit
92b65ec73b89a915127e1b29a4fcc8e2a7b64943
[ "Apache-2.0" ]
15
2016-10-07T13:38:57.000Z
2021-02-14T21:54:25.000Z
##Patterns: B304 from Crypto.Cipher import ARC2 from Crypto.Cipher import ARC4 from Crypto.Cipher import Blowfish from Crypto.Cipher import DES from Crypto.Cipher import XOR from Crypto.Hash import SHA from Crypto import Random from Crypto.Util import Counter from cryptography.hazmat.primitives.ciphers import Cipher from cryptography.hazmat.primitives.ciphers import algorithms from cryptography.hazmat.primitives.ciphers import modes from cryptography.hazmat.backends import default_backend from struct import pack import socket key = b'Sixteen byte key' iv = Random.new().read(ARC2.block_size) ##Warn: B304 cipher = ARC2.new(key, ARC2.MODE_CFB, iv) msg = iv + cipher.encrypt(b'Attack at dawn') key = b'Very long and confidential key' nonce = Random.new().read(16) tempkey = SHA.new(key+nonce).digest() ##Warn: B304 cipher = ARC4.new(tempkey) msg = nonce + cipher.encrypt(b'Open the pod bay doors, HAL') bs = Blowfish.block_size key = b'An arbitrarily long key' iv = Random.new().read(bs) ##Warn: B304 cipher = Blowfish.new(key, Blowfish.MODE_CBC, iv) plaintext = b'docendo discimus ' plen = bs - divmod(len(plaintext),bs)[1] padding = [plen]*plen padding = pack('b'*plen, *padding) msg = iv + cipher.encrypt(plaintext + padding) key = b'-8B key-' nonce = Random.new().read(DES.block_size/2) ctr = Counter.new(DES.block_size*8/2, prefix=nonce) ##Warn: B304 cipher = DES.new(key, DES.MODE_CTR, counter=ctr) plaintext = b'We are no longer the knights who say ni!' msg = nonce + cipher.encrypt(plaintext) key = b'Super secret key' ##Warn: B304 cipher = XOR.new(key) plaintext = b'Encrypt me' msg = cipher.encrypt(plaintext) ##Warn: B304 cipher = Cipher(algorithms.ARC4(key), mode=None, backend=default_backend()) encryptor = cipher.encryptor() ct = encryptor.update(b"a secret message") ##Warn: B304 cipher = Cipher(algorithms.Blowfish(key), mode=None, backend=default_backend()) encryptor = cipher.encryptor() ct = encryptor.update(b"a secret message") ##Warn: B304 cipher = Cipher(algorithms.IDEA(key), mode=None, backend=default_backend()) encryptor = cipher.encryptor() ct = encryptor.update(b"a secret message") s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('0.0.0.0', 31137)) s.bind(('192.168.0.1', 8080))
30.243243
79
0.74933
32367af1812a8bb8f33893d90cbedf35aed58692
2,950
py
Python
tests/test_sim_procedure.py
fmagin/angr
c41563b0f82a3d031c3aa482ebe2973c87ec4adb
[ "BSD-2-Clause" ]
null
null
null
tests/test_sim_procedure.py
fmagin/angr
c41563b0f82a3d031c3aa482ebe2973c87ec4adb
[ "BSD-2-Clause" ]
null
null
null
tests/test_sim_procedure.py
fmagin/angr
c41563b0f82a3d031c3aa482ebe2973c87ec4adb
[ "BSD-2-Clause" ]
null
null
null
import os import angr import claripy import nose from angr.codenode import BlockNode, HookNode, SyscallNode BIN_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..', 'binaries') def test_ret_float(): p = angr.load_shellcode(b'X', arch='i386') class F1(angr.SimProcedure): def run(self): return 12.5 p.hook(0x1000, F1(cc=p.factory.cc(func_ty=angr.sim_type.parse_file('float (x)();')[0]['x']))) p.hook(0x2000, F1(cc=p.factory.cc(func_ty=angr.sim_type.parse_file('double (x)();')[0]['x']))) s = p.factory.call_state(addr=0x1000, ret_addr=0) succ = s.step() nose.tools.assert_equal(len(succ.successors), 1) s2 = succ.flat_successors[0] nose.tools.assert_false(s2.regs.st0.symbolic) nose.tools.assert_equal(s2.solver.eval(s2.regs.st0.get_bytes(4, 4).raw_to_fp()), 12.5) s = p.factory.call_state(addr=0x2000, ret_addr=0) succ = s.step() nose.tools.assert_equal(len(succ.successors), 1) s2 = succ.flat_successors[0] nose.tools.assert_false(s2.regs.st0.symbolic) nose.tools.assert_equal(s2.solver.eval(s2.regs.st0.raw_to_fp()), 12.5) def test_syscall_and_simprocedure(): bin_path = os.path.join(BIN_PATH, 'tests', 'cgc', 'CADET_00002') proj = angr.Project(bin_path, auto_load_libs=False) cfg = proj.analyses.CFGFast(normalize=True) # check syscall node = cfg.get_any_node(proj.loader.kernel_object.mapped_base + 1) func = proj.kb.functions[node.addr] nose.tools.assert_true(node.is_simprocedure) nose.tools.assert_true(node.is_syscall) nose.tools.assert_false(node.to_codenode().is_hook) nose.tools.assert_false(proj.is_hooked(node.addr)) nose.tools.assert_true(func.is_syscall) nose.tools.assert_true(func.is_simprocedure) nose.tools.assert_equal(type(proj.factory.snippet(node.addr)), SyscallNode) # check normal functions node = cfg.get_any_node(0x80480a0) func = proj.kb.functions[node.addr] nose.tools.assert_false(node.is_simprocedure) nose.tools.assert_false(node.is_syscall) nose.tools.assert_false(proj.is_hooked(node.addr)) nose.tools.assert_false(func.is_syscall) nose.tools.assert_false(func.is_simprocedure) nose.tools.assert_equal(type(proj.factory.snippet(node.addr)), BlockNode) # check hooked functions proj.hook(0x80480a0, angr.SIM_PROCEDURES['libc']['puts']()) cfg = proj.analyses.CFGFast(normalize=True)# rebuild cfg to updated nodes node = cfg.get_any_node(0x80480a0) func = proj.kb.functions[node.addr] nose.tools.assert_true(node.is_simprocedure) nose.tools.assert_false(node.is_syscall) nose.tools.assert_true(proj.is_hooked(node.addr)) nose.tools.assert_false(func.is_syscall) nose.tools.assert_true(func.is_simprocedure) nose.tools.assert_equal(type(proj.factory.snippet(node.addr)), HookNode) if __name__ == '__main__': test_ret_float() test_syscall_and_simprocedure()
37.820513
98
0.721695
561e6ae194a39c24e67b338515d18648565ef77a
3,450
py
Python
tests/test_cairo.py
evanblank3/ethpm-types
129bb7d95e93ca7bd135908d62474e9af131e1df
[ "Apache-2.0" ]
null
null
null
tests/test_cairo.py
evanblank3/ethpm-types
129bb7d95e93ca7bd135908d62474e9af131e1df
[ "Apache-2.0" ]
9
2022-01-28T22:38:49.000Z
2022-03-31T21:29:15.000Z
tests/test_cairo.py
evanblank3/ethpm-types
129bb7d95e93ca7bd135908d62474e9af131e1df
[ "Apache-2.0" ]
1
2022-01-05T22:33:08.000Z
2022-01-05T22:33:08.000Z
from ethpm_types import ContractType CAIRO_ABI = [ { "type": "struct", "name": "MyStruct", "members": [ {"name": "foo", "type": "felt", "offset": 0}, {"name": "bar", "type": "felt", "offset": 1}, ], "size": 2, }, {"type": "event", "name": "Upgraded", "inputs": [], "anonymous": False}, { "type": "constructor", "stateMutability": "nonpayable", "inputs": [{"name": "implementation_address", "type": "felt"}], }, { "type": "function", "name": "compare_arrays", "stateMutability": "nonpayable", "inputs": [ {"name": "a_len", "type": "felt"}, {"name": "a", "type": "felt*"}, {"name": "b_len", "type": "felt"}, {"name": "b", "type": "felt*"}, ], "outputs": [], }, { "type": "function", "name": "increase_balance", "stateMutability": "nonpayable", "inputs": [{"name": "amount", "type": "felt"}], "outputs": [], }, { "type": "function", "name": "get_balance", "stateMutability": "view", "inputs": [], "outputs": [{"name": "res", "type": "felt"}], }, { "type": "function", "name": "sum_points", "stateMutability": "view", "inputs": [{"name": "points", "type": "(Point, Point)"}], "outputs": [{"name": "res", "type": "Point"}], }, { "type": "function", "name": "__default__", "stateMutability": "nonpayable", "inputs": [ {"name": "selector", "type": "felt"}, {"name": "calldata_size", "type": "felt"}, {"name": "calldata", "type": "felt*"}, ], "outputs": [{"name": "retdata_size", "type": "felt"}, {"name": "retdata", "type": "felt*"}], }, { "inputs": [ {"name": "selector", "type": "felt"}, {"name": "calldata_size", "type": "felt"}, {"name": "calldata", "type": "felt*"}, ], "name": "__l1_default__", "outputs": [], "type": "l1_handler", }, ] def test_cairo_abi(): contract_type = ContractType.parse_obj({"abi": CAIRO_ABI}) abi = contract_type.abi # Verify struct struct = abi[0] raw_struct = struct.dict() assert struct.type == raw_struct["type"] == "struct" assert struct.size == raw_struct["size"] == 2 struct_member_0 = struct.members[0] raw_struct_member_0 = struct_member_0.dict() struct_member_1 = struct.members[1] raw_struct_member_1 = struct_member_1.dict() assert struct_member_0.name == raw_struct_member_0["name"] == "foo" assert struct_member_0.offset == raw_struct_member_0["offset"] == 0 assert struct_member_1.name == raw_struct_member_1["name"] == "bar" assert struct_member_1.offset == raw_struct_member_1["offset"] == 1 # Verify event event = abi[1] event_raw = event.dict() assert event.name == event_raw["name"] == "Upgraded" # Verify constructor constructor = abi[2] constructor_raw = constructor.dict() assert constructor.type == constructor_raw["type"] == "constructor" # Verify L1 handler l1_handler = abi[-1] l1_handler_raw = l1_handler.dict() assert l1_handler.type == l1_handler_raw["type"] == "l1_handler" assert l1_handler.name == l1_handler_raw["name"] == "__l1_default__"
31.363636
100
0.518551
c390688e9872884fd42b9d94b174373b2101ee02
1,865
py
Python
hangman.py
Coskntkk/Hangman-Game
46876f19c989fac2b713d35fe33005db24951d95
[ "MIT" ]
null
null
null
hangman.py
Coskntkk/Hangman-Game
46876f19c989fac2b713d35fe33005db24951d95
[ "MIT" ]
null
null
null
hangman.py
Coskntkk/Hangman-Game
46876f19c989fac2b713d35fe33005db24951d95
[ "MIT" ]
1
2021-03-08T00:46:02.000Z
2021-03-08T00:46:02.000Z
from random import choice # read word list from words.txt def readFile(file_name): wordList = [] with open(file_name, 'r', encoding='utf8') as myFile: for row in myFile: data=row.rstrip('\n') wordList.append(data) return wordList # to find given letter in the map and return map back to main def findCharacter(word,letter,map): for i in range(len(word)): if word[i] == letter: map[i] = letter return map def main(): usedLetters = list() fileName = "words.txt" wordList = readFile(fileName) word = choice(wordList).lower() wordLen = len(word) # conflicts in team if wordLen < 5: lives = 5 else: lives = wordLen map = list([]) for _ in range(wordLen): map.append('_') mapStr = ' '.join(map) print(mapStr) while (mapStr[0::2] != word) and lives > 0: letter = input("give me a letter: ").lower() if len(letter) != 1: print("LETTER PLEASE") continue while letter in usedLetters: print("this letter has already used.") letter = input("give me another letter:") usedLetters.append(letter) # compare the before and after versions of maps map1 = list(map) map = findCharacter(word,letter,map) map2 = list(map) if(map1 == map2): lives -=1 print("WRONG GUESS!") print("{} lives left.".format(lives)) mapStr = ' '.join(map) print(mapStr) print("........................................................") # end of while # end of the game.. if lives > 0: print("you won!!!unlem1!") else: print("you have no more lives") print("the word was.." , word) main()
25.547945
73
0.52118
6e4e1904f57a3c92fb4945d01753bd19c0611cb1
3,598
py
Python
python/tvm/relax/op/base.py
psrivas2/relax
4329af78eb1dc4c4ff8a61d3bf39aa4034e9cb2a
[ "Apache-2.0" ]
90
2021-11-30T11:58:10.000Z
2022-03-31T02:24:04.000Z
python/tvm/relax/op/base.py
psrivas2/relax
4329af78eb1dc4c4ff8a61d3bf39aa4034e9cb2a
[ "Apache-2.0" ]
64
2021-11-22T23:58:23.000Z
2022-03-31T03:19:22.000Z
python/tvm/relax/op/base.py
psrivas2/relax
4329af78eb1dc4c4ff8a61d3bf39aa4034e9cb2a
[ "Apache-2.0" ]
27
2021-12-09T22:39:27.000Z
2022-03-24T23:21:48.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations """The base Relax operators.""" from typing import Union, List, Optional from tvm.runtime.object import Object from . import _ffi_api from ..expr import Expr, ShapeExpr, Tuple, Call from ..ty import DynTensorType, TupleType from ...ir import Array def call_tir( func: Expr, args: Union[Tuple, List[Expr]], shape: Union[Tuple, ShapeExpr, List[int]], dtype: Union[str, List[str]], tir_vars: Optional[ShapeExpr] = None, ) -> Call: """ Call a destination-passing-style function and return the output. Parameters ---------- func : Expr The destination-passing-style function, can be ExternFunc or PrimFunc. args : Union[Tuple, List[Expr]] The input arguments. shape: Union[Tuple, ShapeExpr, List[int]] The output shape. Tuple(ShapeExpr) if multiple outputs, ShapeExpr if single output. dtype: Union[str, List[str]] The output dtype. List[str] if multiple outputs, str if single output. tir_vars : ShapeExpr, optional ShapeExpr representing a tuple of integers to unpack when calling func. Is null if not used Returns ------- ret: Call A call node for the call_tir operator. """ if isinstance(shape, (list, tuple, Array)): shape = ShapeExpr(shape) if isinstance(args, (list, tuple)): args = Tuple(args) if isinstance(dtype, str): output_type = DynTensorType(len(shape), dtype) elif isinstance(dtype, (list, tuple)): if len(shape) != len(dtype): raise ValueError("The number of output_shape and output_dtype of call_tir mismatch") output_type = TupleType([DynTensorType(len(x), y) for x, y in zip(shape, dtype)]) else: raise TypeError("Not supported dtype for call_tir: " + str(type(dtype))) return _ffi_api.call_tir(func, args, shape, output_type, tir_vars) def make_closure( func: Expr, args: Union[Tuple, List[Expr]], ) -> Object: """ Create a closure with free variables and return the closure. Parameters ---------- func : Expr The closure, can be ExternFunc or PrimFunc. args : Union[Tuple, List[Expr]] The input arguments. Returns ------- ret: Object The VMClosure. """ if isinstance(args, (list, tuple)): args = Tuple(args) return _ffi_api.make_closure(func, args) def invoke_closure( closure: Expr, args: Union[Tuple, List[Expr]], ) -> Object: """ Invoke a closure. Parameters ---------- closure : Expr The VMClosure object. args : Union[Tuple, List[Expr]] The input arguments. Returns ------- ret: Object The result. """ if isinstance(args, (list, tuple)): args = Tuple(args) return _ffi_api.invoke_closure(closure, args)
27.465649
99
0.659255
9c4bb5e842b11791f01ed35469b0f53b7d68715f
2,679
py
Python
metrics.py
elitonfilho/segsr
74ee5a4794f0894cffbb08f696f601b7d914513c
[ "MIT" ]
null
null
null
metrics.py
elitonfilho/segsr
74ee5a4794f0894cffbb08f696f601b7d914513c
[ "MIT" ]
null
null
null
metrics.py
elitonfilho/segsr
74ee5a4794f0894cffbb08f696f601b7d914513c
[ "MIT" ]
null
null
null
import math import numpy as np from PIL import Image import cv2 def calculate_psnr(img1, img2): # img1 and img2 have range [0, 255] img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) mse = np.mean((img1 - img2)**2) if mse == 0: return float('inf') return 20 * math.log10(255.0 / math.sqrt(mse)) def ssim(img1, img2): C1 = (0.01 * 255)**2 C2 = (0.03 * 255)**2 img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) kernel = cv2.getGaussianKernel(11, 1.5) window = np.outer(kernel, kernel.transpose()) mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] mu1_sq = mu1**2 mu2_sq = mu2**2 mu1_mu2 = mu1 * mu2 sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) return ssim_map.mean() def calculate_ssim(img1, img2): '''calculate SSIM the same outputs as MATLAB's img1, img2: [0, 255] ''' if not img1.shape == img2.shape: raise ValueError('Input images must have the same dimensions.') if img1.ndim == 2: return ssim(img1, img2) elif img1.ndim == 3: if img1.shape[2] == 3: ssims = [] for i in range(3): ssims.append(ssim(img1, img2)) return np.array(ssims).mean() elif img1.shape[2] == 1: return ssim(np.squeeze(img1), np.squeeze(img2)) else: raise ValueError('Wrong input image dimensions.') if __name__ == "__main__": # img1 = Image.open('data/HR/2953-3-SO_0_HR.png').resize((256,256), resample=Image.BICUBIC) # img1 = np.array(img1) # img2 = Image.open('1e-2.png').resize((256,256), resample=Image.BICUBIC) img2 = Image.open('lr.png') img2 = np.array(img2) imgHR = Image.open('data/HR/2953-3-SO_0_HR.png') # w, h = imgHR.size # imgHR = imgHR.resize((4*w, 4*h), resample=Image.BICUBIC) imgHR = np.array(imgHR) # 1: Com seg, 2: Sem Seg # print('1 e 2', calculate_psnr(img1, img2)) print('1 e HR', calculate_psnr(img2, imgHR)) # print('2 e HR', calculate_psnr(img2, imgHR)) # print('1 e 2', calculate_ssim(img1, img2)) print('1 e HR', calculate_ssim(img2, imgHR)) # print('2 e HR', calculate_ssim(img2, imgHR))
35.72
96
0.564016
e18e97e79c4a2450e3bc06f3bd224b40036c94d0
14,747
py
Python
tensorflow_quantum/python/differentiators/gradient_test.py
dlyongemallo/tensorflow-quantum
22cf3058ae5bfb4f0ca7ed70cb691bd7be650e61
[ "Apache-2.0" ]
1
2020-09-25T14:01:24.000Z
2020-09-25T14:01:24.000Z
tensorflow_quantum/python/differentiators/gradient_test.py
dlyongemallo/tensorflow-quantum
22cf3058ae5bfb4f0ca7ed70cb691bd7be650e61
[ "Apache-2.0" ]
1
2022-02-10T02:16:17.000Z
2022-02-10T02:16:17.000Z
tensorflow_quantum/python/differentiators/gradient_test.py
dlyongemallo/tensorflow-quantum
22cf3058ae5bfb4f0ca7ed70cb691bd7be650e61
[ "Apache-2.0" ]
1
2020-08-03T20:20:26.000Z
2020-08-03T20:20:26.000Z
# Copyright 2020 The TensorFlow Quantum Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Testing for gradient calculation consistency in TFQ.""" import copy import numpy as np import sympy import tensorflow as tf from absl.testing import parameterized import cirq from tensorflow_quantum.python import util from tensorflow_quantum.python.differentiators import linear_combination from tensorflow_quantum.python.differentiators import parameter_shift from tensorflow_quantum.python.differentiators import stochastic_differentiator from tensorflow_quantum.core.ops import circuit_execution_ops, batch_util DIFFS = [ linear_combination.ForwardDifference(grid_spacing=0.0001), linear_combination.ForwardDifference(error_order=2, grid_spacing=0.0001), linear_combination.CentralDifference(grid_spacing=0.0001), linear_combination.CentralDifference(error_order=4, grid_spacing=0.0001), parameter_shift.ParameterShift(), ] STOCHASTIC_DIFFS = [ stochastic_differentiator.SGDifferentiator(stochastic_coordinate=False, stochastic_generator=False, stochastic_cost=False), stochastic_differentiator.SGDifferentiator(stochastic_coordinate=True, stochastic_generator=False, stochastic_cost=False), stochastic_differentiator.SGDifferentiator(stochastic_coordinate=False, stochastic_generator=True, stochastic_cost=False), stochastic_differentiator.SGDifferentiator(stochastic_coordinate=True, stochastic_generator=True, stochastic_cost=False), ] OPS = [ circuit_execution_ops.get_expectation_op(cirq.sim.Simulator()), # WF circuit_execution_ops.get_expectation_op( cirq.DensityMatrixSimulator()), # DM circuit_execution_ops.get_expectation_op() # C++ ] def _cirq_simple_finite_difference(circuit_batch, resolvers, symbol_names, op_batch, grid_spacing=0.0001): """A simple finite difference code that calculates the gradient of a batch of circuits using cirq.""" simulator = cirq.sim.Simulator() init_vals = batch_util.batch_calculate_expectation(circuit_batch, resolvers, op_batch, simulator) grad_circuits = [] grad_resolvers = [] grad_pauli_sums = [] for this_program, this_pauli_sums, this_resolver in \ zip(circuit_batch, op_batch, resolvers): for symbol in symbol_names: perturbed_resolver = copy.deepcopy(this_resolver) perturbed_resolver.param_dict[symbol] += grid_spacing grad_circuits.append(this_program) grad_pauli_sums.append(this_pauli_sums) grad_resolvers.append(perturbed_resolver) # shape: [n_programs * len(symbol_names), n_pauli_sums] results = np.array( batch_util.batch_calculate_expectation(circuits=grad_circuits, param_resolvers=grad_resolvers, ops=grad_pauli_sums, simulator=simulator)) # shape: [n_pauli_sums, n_programs, len(symbol_names)] gradient_generator = results.transpose().reshape( (len(op_batch[0]), len(circuit_batch), len(symbol_names))) # shape: [n_pauli_sums, n_programs, len(symbol_names)] forward_pass_vals = np.transpose( np.vstack([np.expand_dims(init_vals, axis=0)] * len(symbol_names)), (2, 1, 0)) return np.sum(1 / grid_spacing * (gradient_generator - forward_pass_vals), axis=0) class GradientCorrectnessTest(tf.test.TestCase, parameterized.TestCase): """Test correctness of the differentiators to reference cirq algorithm.""" @parameterized.parameters( list( util.kwargs_cartesian_product( **{ 'differentiator': DIFFS + STOCHASTIC_DIFFS, 'op': OPS, 'stochastic_cost': [False, True] }))) def test_backprop(self, differentiator, op, stochastic_cost): """Test that gradients are correctly backpropagated through a quantum circuit via comparison to analytical results. """ # hack to add stoachastic cost. TODO (jaeyoo): remove this hack. differentiator.stochastic_cost = stochastic_cost differentiator.refresh() op = differentiator.generate_differentiable_op(analytic_op=op) def exact_grad(theta): new_theta = 2 * np.pi * theta return -2 * np.pi * np.sin(new_theta) * np.exp(np.cos(new_theta)) bit = cirq.GridQubit(0, 0) circuits = util.convert_to_tensor( [cirq.Circuit(cirq.X(bit)**sympy.Symbol('rx')) for _ in range(2)]) pstring = util.convert_to_tensor([[ cirq.PauliSum.from_pauli_strings([cirq.PauliString({bit: cirq.Z})]) ] for _ in circuits]) base_rot_angles = tf.constant([[0.25], [0.125]]) with tf.GradientTape() as g: g.watch(base_rot_angles) input_angles = 2 * base_rot_angles exp_res = tf.exp(op(circuits, ['rx'], input_angles, pstring)) grad = g.gradient(exp_res, base_rot_angles) exact = [[exact_grad(0.25)], [exact_grad(0.125)]] # will this be too tight? time will tell. self.assertAllClose(exact, grad.numpy(), rtol=0.01, atol=0.01) @parameterized.parameters( list( util.kwargs_cartesian_product( **{ 'differentiator': DIFFS, 'op': OPS, 'n_qubits': [5], 'n_programs': [3], 'n_ops': [3], 'symbol_names': [['a', 'b']] }))) def test_gradients_vs_cirq_finite_difference(self, differentiator, op, n_qubits, n_programs, n_ops, symbol_names): """Compare TFQ differentiators to fine-grained noiseless cirq finite differencing. DISCLAIMER : the consistency of STOCHASTIC_DIFFS is hard to be checked. Its expectation value should be checked, but it takes long time because SGDifferentiator is not optimized. Until optimized, the consistency will be performed in benchmarks/scripts/differentiators:convergence_test TODO(jaeyoo) : move convergence_test here once SGDifferentiator is optimized. """ differentiator.refresh() op = differentiator.generate_differentiable_op(analytic_op=op) qubits = cirq.GridQubit.rect(1, n_qubits) circuit_batch, resolver_batch = \ util.random_symbol_circuit_resolver_batch( cirq.GridQubit.rect(1, n_qubits), symbol_names, n_programs) psums = [ util.random_pauli_sums(qubits, 1, n_ops) for _ in circuit_batch ] symbol_values_array = np.array( [[resolver[symbol] for symbol in symbol_names] for resolver in resolver_batch], dtype=np.float32) # calculate tfq gradient symbol_values_tensor = tf.convert_to_tensor(symbol_values_array) programs = util.convert_to_tensor(circuit_batch) ops = util.convert_to_tensor(psums) with tf.GradientTape() as g: g.watch(symbol_values_tensor) expectations = op(programs, symbol_names, symbol_values_tensor, ops) tfq_grads = g.gradient(expectations, symbol_values_tensor) # calculate gradients in cirq using a very simple forward differencing # scheme cirq_grads = _cirq_simple_finite_difference(circuit_batch, resolver_batch, symbol_names, psums) # will this be too tight? time will tell. self.assertAllClose(cirq_grads, tfq_grads, rtol=1e-2, atol=1e-2) @parameterized.parameters( list( util.kwargs_cartesian_product( **{ 'differentiator': DIFFS + STOCHASTIC_DIFFS, 'op': OPS, 'stochastic_cost': [False, True] }))) def test_analytic_value_with_simple_circuit(self, differentiator, op, stochastic_cost): """Test the value of differentiator with simple circuit. Since there are only one symbol, one gate and one op, there is only one samling result, STOCHATIC_DIFFS shows the same result with that of deterministic differentiators.""" # Get an expectation op, with this differentiator attached. differentiator.refresh() differentiator.stochastic_cost = stochastic_cost op = differentiator.generate_differentiable_op(analytic_op=op) qubit = cirq.GridQubit(0, 0) circuit = util.convert_to_tensor( [cirq.Circuit(cirq.X(qubit)**sympy.Symbol('alpha'))]) psums = util.convert_to_tensor([[cirq.Z(qubit)]]) symbol_values_array = np.array([[0.123]], dtype=np.float32) # Calculate tfq gradient. symbol_values_tensor = tf.convert_to_tensor(symbol_values_array) with tf.GradientTape() as g: g.watch(symbol_values_tensor) expectations = op(circuit, ['alpha'], symbol_values_tensor, psums) grads = g.gradient(expectations, symbol_values_tensor) ground_truth_grads = np.array([[-1.1839752]]) self.assertAllClose(ground_truth_grads, grads, rtol=1e-2, atol=1e-2) class StochasticDifferentiatorCorrectnessTest(tf.test.TestCase, parameterized.TestCase): """Test correctness of the stochastic differentiators to reference cirq algorithm. DISCLAIMER: this test allows for a larger margin of error and as long as convergence is happening then it passes""" # TODO(zaqqwerty): only this test was failing after adding cirq.I # support, so it is disabled pending diagnosis @parameterized.parameters( list( util.kwargs_cartesian_product( **{ 'differentiator': STOCHASTIC_DIFFS, 'op': OPS, 'n_qubits': [5], 'n_programs': [3], 'n_ops': [3], 'symbol_names': [['a', 'b']], 'stochastic_cost_eps': [(False, 5e-1), (True, 7e-1)], }))) def gradients_vs_cirq_finite_difference(self, differentiator, op, n_qubits, n_programs, n_ops, symbol_names, stochastic_cost_eps): """Compare TFQ differentiators to fine-grained noiseless cirq finite differencing with a larger margin of error.""" # TODO (jaeyoo): cleanup this hacky wordkaround so variable # assignment doesn't need to take place like this. differentiator.stochastic_cost, eps = stochastic_cost_eps differentiator.refresh() op = differentiator.generate_differentiable_op(analytic_op=op) qubits = cirq.GridQubit.rect(1, n_qubits) circuit_batch, resolver_batch = \ util.random_symbol_circuit_resolver_batch( cirq.GridQubit.rect(1, n_qubits), symbol_names, n_programs) psums = [ util.random_pauli_sums(qubits, 1, n_ops) for _ in circuit_batch ] symbol_values_array = np.array( [[resolver[symbol] for symbol in symbol_names] for resolver in resolver_batch], dtype=np.float32) # calculate tfq gradient symbol_values_tensor = tf.convert_to_tensor(symbol_values_array) programs = util.convert_to_tensor(circuit_batch) ops = util.convert_to_tensor(psums) # calculate gradients in cirq using a very simple forward differencing # scheme cirq_grads = _cirq_simple_finite_difference(circuit_batch, resolver_batch, symbol_names, psums) def _get_gradient(): with tf.GradientTape() as g: g.watch(symbol_values_tensor) expectations = op(programs, symbol_names, symbol_values_tensor, ops) return g.gradient(expectations, symbol_values_tensor) def _abs_diff(grad, mask): return np.sum(np.abs(grad - cirq_grads * mask)) def _get_nonzero_mask(grad): return (grad.numpy() != 0.0).astype(np.float32) # Get the non-zero mask because a few initial gradients have not sampled # zero values. tfq_grads_1 = _get_gradient() mask_1 = _get_nonzero_mask(tfq_grads_1) if not np.allclose(tfq_grads_1, cirq_grads * mask_1, atol=eps): tfq_grads_2 = 0.5 * (tfq_grads_1 + _get_gradient()) mask_2 = _get_nonzero_mask(tfq_grads_2) # Check if the 2nd error becomes smaller that 1st one. if not _abs_diff(tfq_grads_1, mask_1) > _abs_diff( tfq_grads_2, mask_2): cnt = 2 tfq_grads = (cnt * tfq_grads_2 + _get_gradient()) / (cnt + 1) while (cnt < 10 and not np.allclose(cirq_grads, tfq_grads, atol=eps)): cnt += 1 tfq_grads = (cnt * tfq_grads + _get_gradient()) / (cnt + 1) self.assertAllClose(cirq_grads, tfq_grads, atol=eps) if __name__ == '__main__': tf.test.main()
44.418675
80
0.605004
d00db8408e17563988be0779872e006b18097475
460
py
Python
data/scripts/templates/object/static/structure/naboo/shared_wall_naboo_theed_style_1.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/static/structure/naboo/shared_wall_naboo_theed_style_1.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/static/structure/naboo/shared_wall_naboo_theed_style_1.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Static() result.template = "object/static/structure/naboo/shared_wall_naboo_theed_style_1.iff" result.attribute_template_id = -1 result.stfName("obj_n","unknown_object") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
27.058824
86
0.732609
3a1dc568e9964dfab166f2834652a89752cd23d9
17,083
py
Python
datacube_ows/styles/colormap.py
FlexiGroBots-H2020/datacube-ows
8e3e1343582c00ae46b498247ac98d8e98bd000f
[ "Apache-2.0" ]
4
2017-11-02T04:22:30.000Z
2018-05-01T14:16:23.000Z
datacube_ows/styles/colormap.py
FlexiGroBots-H2020/datacube-ows
8e3e1343582c00ae46b498247ac98d8e98bd000f
[ "Apache-2.0" ]
33
2018-05-23T01:32:06.000Z
2018-11-05T01:07:09.000Z
datacube_ows/styles/colormap.py
FlexiGroBots-H2020/datacube-ows
8e3e1343582c00ae46b498247ac98d8e98bd000f
[ "Apache-2.0" ]
7
2017-10-09T00:09:44.000Z
2018-07-27T00:41:19.000Z
# This file is part of datacube-ows, part of the Open Data Cube project. # See https://opendatacube.org for more information. # # Copyright (c) 2017-2021 OWS Contributors # SPDX-License-Identifier: Apache-2.0 import io import logging from datetime import datetime from typing import Callable, List, MutableMapping, Optional, Union, cast import numpy import xarray from colour import Color from datacube.utils.masking import make_mask from matplotlib import patches as mpatches from matplotlib import pyplot as plt from xarray import DataArray, Dataset from datacube_ows.config_utils import (CFG_DICT, AbstractMaskRule, ConfigException, OWSMetadataConfig) from datacube_ows.styles.base import StyleDefBase _LOG = logging.getLogger(__name__) class AbstractValueMapRule(AbstractMaskRule): """ A Value Map Rule. Construct a ValueMap rule-set with ValueMapRule.value_map_from_config """ def __init__(self, style_def: "ColorMapStyleDef", band: str, cfg: CFG_DICT) -> None: """ Construct a Value Map Rule :param style_def: The owning ColorMapStyleDef object :param band: The name of the flag-band the rules apply to :param cfg: The rule specification """ self.style = style_def super().__init__(band, cfg, mapper=style_def.local_band) cfg = cast(CFG_DICT, self._raw_cfg) self.title = cast(str, cfg["title"]) self.abstract = cast(str, cfg.get("abstract")) if self.title and self.abstract: self.label: Optional[str] = f"{self.title} - {self.abstract}" elif self.title: self.label = self.title elif self.abstract: self.label = self.abstract else: self.label = None self.parse_color(cfg) @property def context(self) -> str: return f"style {self.style.name} in layer {self.style.product.name} valuemap rule" def parse_color(self, cfg: CFG_DICT): self.color_str = cast(str, cfg["color"]) self.rgb = Color(self.color_str) if cfg.get("mask"): self.alpha = 0.0 else: self.alpha = float(cast(Union[float, int, str], cfg.get("alpha", 1.0))) @classmethod def value_map_from_config(cls, style_or_mdh: Union["ColorMapStyleDef", "ColorMapStyleDef.MultiDateHandler"], cfg: CFG_DICT ) -> MutableMapping[str, List["AbstractValueMapRule"]]: """ Create a multi-date value map rule set from a config specification :param style: The parent style definition object :param cfg: The specification for the multi-date value map. :return: A value map ruleset dictionary. """ if isinstance(style_or_mdh, ColorMapStyleDef): typ = ValueMapRule else: mdh = cast(ColorMapStyleDef.MultiDateHandler, style_or_mdh) if mdh.aggregator: style_or_mdh = mdh.style typ = ValueMapRule else: if mdh.min_count != mdh.max_count: raise ConfigException( "MultiDate value map only supported on multi-date handlers with min_count and max_count equal.") typ = MultiDateValueMapRule vmap: MutableMapping[str, List["AbstractValueMapRule"]] = {} for band_name, rules in cfg.items(): band_rules = [typ(style_or_mdh, band_name, rule) for rule in cast(List[CFG_DICT], rules)] vmap[band_name] = band_rules return vmap class ValueMapRule(AbstractValueMapRule): """ A Value Map Rule. Construct a ValueMap rule-set with ValueMapRule.value_map_from_config """ def __init__(self, style_cfg: "ColorMapStyleDef", band: str, cfg: CFG_DICT) -> None: """ Construct a Multi-date Value Map Rule :param mdh: The owning ColorMapStyleDef object :param band: The name of the flag-band the rules apply to :param cfg: The rule specification """ super().__init__(style_def=style_cfg, band=band, cfg=cfg) class MultiDateValueMapRule(AbstractValueMapRule): """ A Multi-Date Value Map Rule. Construct a Multi-Date ValueMap rule-set with MultiDateValueMapRule.value_map_from_config """ def __init__(self, mdh: "ColorMapStyleDef.MultiDateHandler", band: str, cfg: CFG_DICT) -> None: """ Construct a Multi-date Value Map Rule :param mdh: The owning ColorMapStyleDef object :param band: The name of the flag-band the rules apply to :param cfg: The rule specification """ self.mdh = mdh self.invert: List[bool] = [] self.flags: Optional[List[CFG_DICT]] = [] self.or_flags: Optional[List[bool]] = [] self.values: Optional[List[List[int]]] = [] super().__init__(style_def=mdh.style, band=band, cfg=cfg) def parse_rule_spec(self, cfg: CFG_DICT): if "invert" in cfg: self.invert = [bool(b) for b in cfg["invert"]] else: self.invert = [False] * self.mdh.max_count if len(self.invert) != self.mdh.max_count: raise ConfigException(f"Invert entry has wrong number of rule sets for date count") if "flags" in cfg: date_flags = cast(CFG_DICT, cfg["flags"]) if len(date_flags) != self.mdh.max_count: raise ConfigException(f"Flags entry has wrong number of rule sets for date count") for flags in date_flags: or_flag: bool = False if "or" in flags and "and" in flags: raise ConfigException(f"MultiDateValueMap rule in {self.mdh.style.name} of layer {self.mdh.style.product.name} combines 'and' and 'or' rules") elif "or" in flags: or_flag = True flags = cast(CFG_DICT, flags["or"]) elif "and" in flags: flags = cast(CFG_DICT, flags["and"]) self.flags.append(flags) self.or_flags.append(or_flag) else: self.flags = None self.or_flags = None if "values" in cfg: self.values = cast(List[List[int]], list(cfg["values"])) else: self.values = None if not self.flags and not self.values: raise ConfigException(f"Multi-Date Value map rule in {self.context} must have a non-empty 'flags' or 'values' section.") if self.flags and self.values: raise ConfigException(f"Multi-Date Value map rule in {self.context} has both a 'flags' and a 'values' section - choose one.") def create_mask(self, data: DataArray) -> DataArray: """ Create a mask from raw flag band data. :param data: Multi-date Raw flag data, assumed to be for this rule's flag band. :return: A boolean dateless DataArray, True where the data matches this rule """ date_slices = (data.sel(time=dt) for dt in data.coords["time"].values) mask: Optional[DataArray] = None if self.values: for d_slice, vals, invert in zip(date_slices, self.values, self.invert): d_mask: Optional[DataArray] = None if len(vals) == 0: d_mask = d_slice == d_slice else: for v in cast(List[int], vals): vmask = d_slice == v if d_mask is None: d_mask = vmask else: d_mask |= vmask if d_mask is not None and invert: d_mask = ~d_mask # pylint: disable=invalid-unary-operand-type if mask is None: mask = d_mask else: mask &= d_mask else: for d_slice, flags, or_flags, invert in zip(date_slices, self.flags, self.or_flags, self.invert): d_mask: Optional[DataArray] = None if not flags: d_mask = d_slice == d_slice elif or_flags: for f in cast(CFG_DICT, flags).items(): f = {f[0]: f[1]} if d_mask is None: d_mask = make_mask(d_slice, **f) else: d_mask |= make_mask(d_slice, **f) else: d_mask = make_mask(d_slice, **cast(CFG_DICT, flags)) if invert: d_mask = ~d_mask # pylint: disable=invalid-unary-operand-type if mask is None: mask = d_mask else: mask &= d_mask return mask def convert_to_uint8(fval): scaled = int(fval * 255.0 + 0.5) clipped = min(max(scaled, 0), 255) return clipped def apply_value_map(value_map: MutableMapping[str, List[AbstractValueMapRule]], data: Dataset, band_mapper: Callable[[str], str]) -> Dataset: imgdata = Dataset(coords={k: v for k, v in data.coords.items() if k != "time"}) shape = list(imgdata.dims.values()) for channel in ("red", "green", "blue", "alpha"): c = numpy.full(shape, 0, dtype="uint8") imgdata[channel] = DataArray(c, coords=imgdata.coords) for cfg_band, rules in value_map.items(): # Run through each item band = band_mapper(cfg_band) bdata = cast(DataArray, data[band]) if bdata.dtype.kind == 'f': # Convert back to int for bitmasking bdata = ColorMapStyleDef.reint(bdata) for rule in reversed(rules): mask = rule.create_mask(bdata) if mask.data.any(): for channel in ("red", "green", "blue", "alpha"): if channel == "alpha": val = convert_to_uint8(rule.alpha) else: val = convert_to_uint8(getattr(rule.rgb, channel)) imgdata[channel] = xarray.where(mask, val, imgdata[channel]) return imgdata class PatchTemplate: def __init__(self, idx: int, rule: AbstractValueMapRule) -> None: self.idx = idx self.colour = rule.rgb.hex_l self.label = rule.label class ColorMapLegendBase(StyleDefBase.Legend, OWSMetadataConfig): METADATA_ABSTRACT: bool = False METADATA_VALUE_RULES: bool = True def __init__(self, style_or_mdh: Union["StyleDefBase", "StyleDefBase.Legend"], cfg: CFG_DICT) -> None: super().__init__(style_or_mdh, cfg) raw_cfg = cast(CFG_DICT, self._raw_cfg) self.ncols = int(raw_cfg.get("ncols", 1)) if self.ncols < 1: raise ConfigException("ncols must be a positive integer") self.patches: List[PatchTemplate] = [] def register_value_map(self, value_map: MutableMapping[str, List["AbstractValueMapRule"]]) -> None: for band in value_map.keys(): for idx, rule in reversed(list(enumerate(value_map[band]))): # only include values that are not transparent (and that have a non-blank title or abstract) if rule.alpha > 0.001 and rule.label: self.patches.append(PatchTemplate(idx, rule)) self.parse_metadata(self._raw_cfg) def render(self, bytesio: io.BytesIO) -> None: patches = [ mpatches.Patch(color=pt.colour, label=self.patch_label(pt.idx)) for pt in self.patches ] plt.rcdefaults() if self.mpl_rcparams: plt.rcParams.update(self.mpl_rcparams) plt.figure(figsize=(self.width, self.height)) plt.axis('off') if self.title: plt.legend(handles=patches, loc='center', ncol=self.ncols, frameon=False, title=self.title) else: plt.legend(handles=patches, loc='center', ncol=self.ncols, frameon=False) plt.savefig(bytesio, format='png') def patch_label(self, idx: int): return self.read_local_metadata(f"rule_{idx}") # For MetadataConfig @property def default_title(self) -> Optional[str]: return "" class ColorMapStyleDef(StyleDefBase): """ Style subclass for value-map styles """ auto_legend = True def __init__(self, product: "datacube_ows.ows_configuration.OWSNamedLayer", style_cfg: CFG_DICT, stand_alone: bool = False, user_defined: bool = False) -> None: """" Constructor - refer to StyleDefBase """ super().__init__(product, style_cfg, stand_alone=stand_alone, user_defined=user_defined) style_cfg = cast(CFG_DICT, self._raw_cfg) self.value_map = AbstractValueMapRule.value_map_from_config(self, cast(CFG_DICT, style_cfg["value_map"])) self.legend_cfg.register_value_map(self.value_map) for mdh in self.multi_date_handlers: mdh.legend_cfg.register_value_map(mdh.value_map) for band in self.value_map.keys(): self.raw_needed_bands.add(band) @staticmethod def reint(data: DataArray) -> DataArray: """ Convert a data-array to int. :param data: input data (potentially non-integer) :return: same data cast to integer """ inted = data.astype("int") if hasattr(data, "attrs"): attrs = data.attrs inted.attrs = attrs return inted @staticmethod def create_colordata(data: DataArray, rgb: Color, alpha: float, mask: DataArray) -> Dataset: """Colour a mask with a given colour/alpha""" target = Dataset(coords=data.coords) colors = ["red", "green", "blue", "alpha"] for color in colors: val = alpha if color == "alpha" else getattr(rgb, color) c = numpy.full(data.shape, val) target[color] = DataArray(c, dims=data.dims, coords=data.coords) # pyre-ignore[6] masked = target.where(mask).where(numpy.isfinite(data)) # remask return masked def transform_single_date_data(self, data: Dataset) -> Dataset: """ Apply style to raw data to make an RGBA image xarray (single time slice only) :param data: Raw data, all bands. :return: RGBA uint8 xarray """ # pylint: disable=too-many-locals, too-many-branches # extent mask data per band to preseve nodata _LOG.debug("transform begin %s", datetime.now()) # if extent_mask is not None: # for band in data.data_vars: # try: # data[band] = data[band].where(extent_mask, other=data[band].attrs['nodata']) # except AttributeError: # data[band] = data[band].where(extent_mask) return apply_value_map(self.value_map, data, self.product.band_idx.band) class Legend(ColorMapLegendBase): pass class MultiDateHandler(StyleDefBase.MultiDateHandler): auto_legend = True non_animate_requires_aggregator = False def __init__(self, style: "ColorMapStyleDef", cfg: CFG_DICT) -> None: """ First stage initialisation :param style: The parent style object :param cfg: The multidate handler configuration """ super().__init__(style, cfg) self._value_map: Optional[MutableMapping[str, AbstractValueMapRule]] = None if self.animate: if "value_map" in self._raw_cfg: raise ConfigException("Multidate value maps not supported for animation handlers") else: self._value_map = AbstractValueMapRule.value_map_from_config(self, cast(CFG_DICT, self._raw_cfg["value_map"])) @property def value_map(self): if self._value_map is None: self._value_map = self.style.value_map return self._value_map def transform_data(self, data: "xarray.Dataset") -> "xarray.Dataset": """ Apply image transformation :param data: Raw data :return: RGBA image xarray. May have a time dimension """ if self.aggregator is None: return apply_value_map(self.value_map, data, self.style.product.band_idx.band) else: agg = self.aggregator(data) return apply_value_map(self.value_map, agg, self.style.product.band_idx.band) class Legend(ColorMapLegendBase): pass # Register ColorMapStyleDef as a style subclass. StyleDefBase.register_subclass(ColorMapStyleDef, "value_map")
39.543981
162
0.584733
1d128c5247002692c94e8ec909209b34e8347a2a
597
py
Python
models/__init__.py
PistonY/ModelZoo.pytorch
eb4cc16bfbb6bdf1c021f5f6faba7fbfc8c04612
[ "MIT" ]
41
2019-11-13T02:09:47.000Z
2022-02-20T11:31:18.000Z
models/__init__.py
PistonY/ModelZoo.pytorch
eb4cc16bfbb6bdf1c021f5f6faba7fbfc8c04612
[ "MIT" ]
5
2020-09-22T10:47:22.000Z
2021-05-11T10:10:37.000Z
models/__init__.py
PistonY/ModelZoo.pytorch
eb4cc16bfbb6bdf1c021f5f6faba7fbfc8c04612
[ "MIT" ]
5
2020-07-07T13:27:04.000Z
2021-06-09T03:21:27.000Z
# -*- coding: utf-8 -*- # @Author : DevinYang(pistonyang@gmail.com) from .oct_resnet_re import * from .resnet import * from .fairnet import * from .mobilenet import * from .proxyless_nas import * from .efficientnet import * from .evo_norm import * from .resnest import * from .regnet import * from .ghostnet import * from .lamdba_net import * from torchvision.models.alexnet import * from torchvision.models.densenet import * from torchvision.models.googlenet import * from torchvision.models.inception import * from torchvision.models.shufflenetv2 import * from torchvision.models.vgg import *
28.428571
45
0.773869
b322d454002e8672ff18f237ed6d1dd5392a3d0b
5,005
py
Python
homeassistant/components/tahoma/__init__.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
1
2017-05-30T22:21:05.000Z
2017-05-30T22:21:05.000Z
homeassistant/components/tahoma/__init__.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
51
2020-10-14T01:19:07.000Z
2022-03-31T06:02:48.000Z
homeassistant/components/tahoma/__init__.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
1
2021-08-16T02:53:15.000Z
2021-08-16T02:53:15.000Z
"""Support for Tahoma devices.""" from collections import defaultdict import logging from requests.exceptions import RequestException from tahoma_api import Action, TahomaApi import voluptuous as vol from homeassistant.const import CONF_EXCLUDE, CONF_PASSWORD, CONF_USERNAME from homeassistant.helpers import config_validation as cv, discovery from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) DOMAIN = "tahoma" TAHOMA_ID_FORMAT = "{}_{}" CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_EXCLUDE, default=[]): vol.All( cv.ensure_list, [cv.string] ), } ) }, extra=vol.ALLOW_EXTRA, ) PLATFORMS = ["binary_sensor", "cover", "lock", "scene", "sensor", "switch"] TAHOMA_TYPES = { "io:AwningValanceIOComponent": "cover", "io:ExteriorVenetianBlindIOComponent": "cover", "io:DiscreteGarageOpenerIOComponent": "cover", "io:DiscreteGarageOpenerWithPartialPositionIOComponent": "cover", "io:HorizontalAwningIOComponent": "cover", "io:GarageOpenerIOComponent": "cover", "io:LightIOSystemSensor": "sensor", "io:OnOffIOComponent": "switch", "io:OnOffLightIOComponent": "switch", "io:RollerShutterGenericIOComponent": "cover", "io:RollerShutterUnoIOComponent": "cover", "io:RollerShutterVeluxIOComponent": "cover", "io:RollerShutterWithLowSpeedManagementIOComponent": "cover", "io:SomfyBasicContactIOSystemSensor": "sensor", "io:SomfyContactIOSystemSensor": "sensor", "io:TemperatureIOSystemSensor": "sensor", "io:VerticalExteriorAwningIOComponent": "cover", "io:VerticalInteriorBlindVeluxIOComponent": "cover", "io:WindowOpenerVeluxIOComponent": "cover", "opendoors:OpenDoorsSmartLockComponent": "lock", "rtds:RTDSContactSensor": "sensor", "rtds:RTDSMotionSensor": "sensor", "rtds:RTDSSmokeSensor": "smoke", "rts:BlindRTSComponent": "cover", "rts:CurtainRTSComponent": "cover", "rts:DualCurtainRTSComponent": "cover", "rts:ExteriorVenetianBlindRTSComponent": "cover", "rts:GarageDoor4TRTSComponent": "switch", "rts:LightRTSComponent": "switch", "rts:RollerShutterRTSComponent": "cover", "rts:OnOffRTSComponent": "switch", "rts:VenetianBlindRTSComponent": "cover", "somfythermostat:SomfyThermostatTemperatureSensor": "sensor", "somfythermostat:SomfyThermostatHumiditySensor": "sensor", "zwave:OnOffLightZWaveComponent": "switch", } def setup(hass, config): """Set up Tahoma integration.""" conf = config[DOMAIN] username = conf.get(CONF_USERNAME) password = conf.get(CONF_PASSWORD) exclude = conf.get(CONF_EXCLUDE) try: api = TahomaApi(username, password) except RequestException: _LOGGER.exception("Error when trying to log in to the Tahoma API") return False try: api.get_setup() devices = api.get_devices() scenes = api.get_action_groups() except RequestException: _LOGGER.exception("Error when getting devices from the Tahoma API") return False hass.data[DOMAIN] = {"controller": api, "devices": defaultdict(list), "scenes": []} for device in devices: _device = api.get_device(device) if all(ext not in _device.type for ext in exclude): device_type = map_tahoma_device(_device) if device_type is None: _LOGGER.warning( "Unsupported type %s for Tahoma device %s", _device.type, _device.label, ) continue hass.data[DOMAIN]["devices"][device_type].append(_device) for scene in scenes: hass.data[DOMAIN]["scenes"].append(scene) for platform in PLATFORMS: discovery.load_platform(hass, platform, DOMAIN, {}, config) return True def map_tahoma_device(tahoma_device): """Map Tahoma device types to Home Assistant platforms.""" return TAHOMA_TYPES.get(tahoma_device.type) class TahomaDevice(Entity): """Representation of a Tahoma device entity.""" def __init__(self, tahoma_device, controller): """Initialize the device.""" self.tahoma_device = tahoma_device self.controller = controller self._name = self.tahoma_device.label @property def name(self): """Return the name of the device.""" return self._name @property def device_state_attributes(self): """Return the state attributes of the device.""" return {"tahoma_device_id": self.tahoma_device.url} def apply_action(self, cmd_name, *args): """Apply Action to Device.""" action = Action(self.tahoma_device.url) action.add_command(cmd_name, *args) self.controller.apply_actions("HomeAssistant", [action])
33.366667
87
0.668531
ed1133dfcc828c717240d84d1ca1c8e6c2baf1e3
15,704
py
Python
pylr/parser.py
NPRA/PyLR
063f308c81fe3d0b765c6459d7ea609b50d2d503
[ "Apache-2.0" ]
7
2015-02-15T06:11:37.000Z
2019-10-07T12:29:20.000Z
pylr/parser.py
NPRA/PyLR
063f308c81fe3d0b765c6459d7ea609b50d2d503
[ "Apache-2.0" ]
1
2018-03-08T16:35:41.000Z
2019-08-19T10:48:19.000Z
pylr/parser.py
NPRA/PyLR
063f308c81fe3d0b765c6459d7ea609b50d2d503
[ "Apache-2.0" ]
12
2016-05-21T09:55:44.000Z
2020-12-15T03:42:28.000Z
# -*- coding: utf-8 -*- ''' Location parser .. moduleauthor:: David Marteau <david.marteau@mappy.com> ''' from collections import namedtuple from bitstring import BitStream from .utils import lazyproperty from .constants import (LATEST_BINARY_VERSION, BINARY_VERSION_2, MIN_BYTES_LINE_LOCATION, MIN_BYTES_POINT_LOCATION, MIN_BYTES_CLOSED_LINE_LOCATION, MIN_BYTES_POLYGON, RELATIVE_COORD_SIZE, IS_POINT, HAS_ATTRIBUTES, GEOCOORD_SIZE, POINT_ALONG_LINE_SIZE, POINT_WITH_ACCESS_SIZE, POINT_OFFSET_SIZE, AREA_CODE_CIRCLE, AREA_CODE_RECTANGLE, AREA_CODE_POLYGON, RECTANGLE_SIZE, LARGE_RECTANGLE_SIZE, GRID_SIZE, LARGE_GRID_SIZE, LRP_SIZE, CIRCLE_BASE_SIZE, LocationType) class BinaryParseError(Exception): pass class BinaryVersionError(BinaryParseError): pass class InvalidDataSizeError(BinaryParseError): pass # The Constant RFU (Reserved for Future Use) RFU_BITS = 'uint:1' # number of bits used for attributes flag ATTR_FLAG_BITS = 'uint:1' # number of bits used for point flag POINT_FLAG_BITS = 'uint:1' # number of bits used for version VERSION_BITS = 'uint:3' AREA_FLAG_BIT0 = 'uint:1' AREA_FLAG_BIT1 = 'uint:1' HEADER_BITS = (RFU_BITS, ATTR_FLAG_BITS, POINT_FLAG_BITS, AREA_FLAG_BIT1, POINT_FLAG_BITS, VERSION_BITS) _BinaryHeader = namedtuple('_BinaryHeader', ('arf', 'af', 'pf', 'ver')) class _RawBinaryData(object): """ Hold a location reference description as a bit stream.""" MIN_VERSION = BINARY_VERSION_2 MAX_VERSION = LATEST_BINARY_VERSION def __init__(self, data, base64=False): """ Constructor. :param string data: Binaray data :param bool base64: True if data is coded in base64 """ if base64: data = data.decode("base64") #: raw data size self._sz = len(data) #: bit stream used to read data self._bs = BitStream(bytes=data) def getbits(self, *bits): """ Read the given numbers of bits. :param tuple bits: Tuple of number of bits to read :returns: Tuple of bit fields :rtype: tuple """ return tuple(self._bs.read(v) for v in bits) def get_position(self): """ Returns position in the bit stream. :returns: Position in the bit stream :rtype: int """ return self._bs.pos @property def num_bytes(self): """ Size of the decoded data. :returns: Size of the decoded data. :rtype: int """ return self._sz @property def version(self): """ Return binary version of the data :returns: Binary version of the data. :rtype: int """ return self.header.ver @lazyproperty def header(self): """ Parse header (once) location type :returns: Header data :rtype: _BinaryHeader """ # Validate data size if self._sz < min(MIN_BYTES_LINE_LOCATION, MIN_BYTES_POINT_LOCATION, MIN_BYTES_CLOSED_LINE_LOCATION): raise InvalidDataSizeError("not enough bytes in data") _, arf1, pf, arf0, af, ver = self.getbits(*HEADER_BITS) arf = 2 * arf1 + arf0 return _BinaryHeader(arf, af, pf, ver) @lazyproperty def location_type(self): """ Parse location type (once) :returns: Location type :rtype: LocationType """ header = self.header # Check version if not self.MIN_VERSION <= header.ver <= self.MAX_VERSION: raise BinaryVersionError("Invalid binary version {}".format(header.ver)) is_point = (header.pf == IS_POINT) has_attributes = (header.af == HAS_ATTRIBUTES) area_code = header.arf is_area = ((area_code == 0 and not is_point and not has_attributes) or area_code > 0) total_bytes = self._sz loc_type = LocationType.UNKNOWN if not is_point and not is_area and has_attributes: loc_type = LocationType.LINE_LOCATION elif is_point and not is_area: if not has_attributes: if total_bytes == GEOCOORD_SIZE: loc_type = LocationType.GEO_COORDINATES else: raise InvalidDataSizeError("Invalid byte size") else: if total_bytes == POINT_ALONG_LINE_SIZE or total_bytes == (POINT_ALONG_LINE_SIZE + POINT_OFFSET_SIZE): loc_type = LocationType.POINT_ALONG_LINE elif total_bytes == POINT_WITH_ACCESS_SIZE or total_bytes == (POINT_WITH_ACCESS_SIZE + POINT_OFFSET_SIZE): loc_type = LocationType.POI_WITH_ACCESS_POINT else: raise InvalidDataSizeError("Invalid byte size") elif is_area and not is_point and has_attributes: if total_bytes >= MIN_BYTES_CLOSED_LINE_LOCATION: loc_type = LocationType.CLOSED_LINE else: raise InvalidDataSizeError("Invalid byte size") else: if area_code == AREA_CODE_CIRCLE: loc_type = LocationType.CIRCLE elif area_code == AREA_CODE_RECTANGLE: # includes case AREA_CODE_GRID if total_bytes == RECTANGLE_SIZE or total_bytes == LARGE_RECTANGLE_SIZE: loc_type = LocationType.RECTANGLE elif total_bytes == GRID_SIZE or total_bytes == LARGE_GRID_SIZE: loc_type = LocationType.GRID else: raise InvalidDataSizeError("Invalid byte size") elif area_code == AREA_CODE_POLYGON: if not has_attributes and total_bytes >= MIN_BYTES_POLYGON: loc_type = LocationType.POLYGON else: raise InvalidDataSizeError("Invalid byte size") else: raise BinaryParseError('Invalid header') return loc_type def init_binary_parsing(data, base64=False): """ Create an instance of _RawBinaryData The returned object can be passed to 'parse_binary' :param string data: string describing the location :param bool base64: True if encoded in base 64 :returns: Parsable data structure :rtype: _RawBinaryData """ return _RawBinaryData(data, base64) def parse_binary(data, base64=False): """ Parse binary data. Input is original data or an object returned by init_binary_parsing(...) :param data: string (encoded or not) describing the location :param bool base64: True if encoded in base 64 :returns: Object describing the parsed location, or an error object """ if not isinstance(data, _RawBinaryData): data = _RawBinaryData(data, base64) # Get header loc_type = data.location_type if loc_type == LocationType.LINE_LOCATION: return parse_line(data) elif loc_type == LocationType.POINT_ALONG_LINE: return parse_point_along_line(data) elif loc_type == LocationType.GEO_COORDINATES: return parse_geo_coordinates(data) elif loc_type == LocationType.POI_WITH_ACCESS_POINT: return parse_poi_with_access_point(data) elif loc_type == LocationType.RECTANGLE: return parse_rectangle(data) elif loc_type == LocationType.CLOSED_LINE: return parse_closed_line(data) elif loc_type == LocationType.CIRCLE: return parse_circle(data) elif loc_type == LocationType.GRID: return parse_grid(data) elif loc_type == LocationType.POLYGON: return parse_polygon(data) else: return BinaryParseError("Invalid location type") # ---------------- # Location parsers # ---------------- HEAD_FIELDS = ('version', 'type') from .binary import (_parse_first_lrp, _parse_intermediate_lrp, _parse_last_line_lrp, _parse_last_closed_line_attrs, _parse_offset, _parse_relative_coordinates, _parse_absolute_coordinates, _parse_radius, _parse_grid_dimensions) # LINE_LOCATION LineLocation = namedtuple('LineLocation', HEAD_FIELDS+('flrp', 'llrp', 'points', 'poffs', 'noffs')) """ Line Location type """ def parse_line(rb): """ Parse line location :param _RawBinaryData rb: Binary data describing the location :returns: Line location :rtype: LineLocation """ assert rb.location_type == LocationType.LINE_LOCATION # number of intermediates points num_intermediates = (rb.num_bytes - MIN_BYTES_LINE_LOCATION) / LRP_SIZE flrp = _parse_first_lrp(rb) points = [] rel = flrp for _ in range(num_intermediates): ilrp = _parse_intermediate_lrp(rb, rel) points.append(ilrp) rel = ilrp llrp, pofff, nofff = _parse_last_line_lrp(rb, rel) poffs = _parse_offset(rb) if pofff else 0 noffs = _parse_offset(rb) if nofff else 0 return LineLocation(rb.version, rb.location_type, flrp, llrp, points, poffs, noffs) # POINT_ALONG_LINE PointAlongLineLocation = namedtuple('PointAlongLineLocation', HEAD_FIELDS+('flrp', 'llrp', 'poffs')) """ Point along location type """ def parse_point_along_line(rb): """ Parse point along line location :param _RawBinaryData rb: Binary data describing the location :returns: Point along line location :rtype: PointAlongLineLocation """ assert rb.location_type == LocationType.POINT_ALONG_LINE flrp = _parse_first_lrp(rb) llrp, pofff, _ = _parse_last_line_lrp(rb, flrp) poffs = _parse_offset(rb) if pofff else 0 return PointAlongLineLocation(rb.version, rb.location_type, flrp, llrp, poffs) # GEO_COORDINATES GeoCoordinateLocation = namedtuple('GeoCoordinateLocation', HEAD_FIELDS+('coords',)) """ Coordinate location type """ def parse_geo_coordinates(rb): """ Parse geo coordinates location :param _RawBinaryData rb: Binary data describing the location :returns: Geographic coordinates location :rtype: GeoCoordinateLocation """ assert rb.location_type == LocationType.GEO_COORDINATES coords = _parse_absolute_coordinates(rb) return GeoCoordinateLocation(rb.version, rb.location_type, coords) # POI_WITH_ACCESS_POINT PoiWithAccessPointLocation = namedtuple('PoiWithAccessPointLocation', HEAD_FIELDS+( 'flrp', 'llrp', 'poffs', 'coords')) """ Poi with access location type """ def parse_poi_with_access_point(rb): """ Parse POI with access point :param _RawBinaryData rb: Binary data describing the location :returns: POI with access point location :rtype: PoiWithAccessPointLocation """ assert rb.location_type == LocationType.POI_WITH_ACCESS_POINT flrp = _parse_first_lrp(rb) llrp, pofff, _ = _parse_last_line_lrp(rb, flrp) poffs = _parse_offset(rb) if pofff else 0 coords = _parse_relative_coordinates(rb, flrp.coords) return PoiWithAccessPointLocation(rb.version, rb.location_type, flrp, llrp, poffs, coords) # CIRCLE CircleLocation = namedtuple('CircleLocation', HEAD_FIELDS+('coords', 'radius')) """ Circle Location type """ def parse_circle(rb): """ Parse circle location :param _RawBinaryData rb: Binary data describing the location :returns: Circle location :rtype: CircleLocation """ assert rb.location_type == LocationType.CIRCLE radius_size = rb.num_bytes - CIRCLE_BASE_SIZE coords = _parse_absolute_coordinates(rb) radius = _parse_radius(rb, radius_size) return CircleLocation(rb.version, rb.location_type, coords, radius) # RECTANGLE BBox = namedtuple('BBox', ('minx', 'miny', 'maxx', 'maxy')) RectangleLocation = namedtuple('RectangleLocation', HEAD_FIELDS+('bbox',)) """ Rectangle Location type """ def parse_rectangle(rb): """ Parse rectangle location :param _RawBinaryData rb: Binary data describing the location :returns: Rectangle location :rtype: RectangleLocation """ assert rb.location_type == LocationType.RECTANGLE bl = _parse_absolute_coordinates(rb) if rb.num_bytes == LARGE_RECTANGLE_SIZE: tr = _parse_absolute_coordinates(rb) else: tr = _parse_relative_coordinates(rb, bl) bbox = BBox(bl.lon, bl.lat, tr.lon, tr.lat) return RectangleLocation(rb.version, rb.location_type, bbox) # GRID GridLocation = namedtuple('GridLocation', HEAD_FIELDS+('bbox', 'cols', 'rows')) """ Grid Location type """ def parse_grid(rb): """ Parse grid location :param _RawBinaryData rb: Binary data describing the location :returns: Grid location :rtype: GridLocation """ assert rb.location_type == LocationType.GRID bl = _parse_absolute_coordinates(rb) if rb.num_bytes == LARGE_GRID_SIZE: tr = _parse_absolute_coordinates(rb) else: tr = _parse_relative_coordinates(rb, bl) bbox = BBox(bl.lon, bl.lat, tr.lon, tr.lat) cols, rows = _parse_grid_dimensions(rb) return GridLocation(rb.version, rb.location_type, bbox, cols, rows) # CLOSED LINE ClosedLineLocation = namedtuple('ClosedLineLocation', HEAD_FIELDS+('flrp', 'points', 'frc', 'fow', 'bear')) def parse_closed_line(rb): """ Parse closed line location :param _RawBinaryData rb: Binary data describing the location :returns: Closed line location :rtype: ClosedLineLocation """ assert rb.location_type == LocationType.CLOSED_LINE # number of intermediates points num_intermediates = (rb.num_bytes - MIN_BYTES_CLOSED_LINE_LOCATION) / LRP_SIZE flrp = _parse_first_lrp(rb) points = [] rel = flrp for _ in range(num_intermediates): ilrp = _parse_intermediate_lrp(rb, rel) points.append(ilrp) rel = ilrp frc, fow, bear = _parse_last_closed_line_attrs(rb) return ClosedLineLocation(rb.version, rb.location_type, flrp, points, frc, fow, bear) # CLOSED LINE PolygonLocation = namedtuple('PolygonLocation', HEAD_FIELDS+('points',)) def parse_polygon(rb): """ Parse polygon location :param _RawBinaryData rb: Binary data describing the location :returns: Polygon location :rtype: PolygonLocation """ assert rb.location_type == LocationType.POLYGON # number of points # MIN_BYTES_POLYGON include first point and 2 relatives points num_intermediates = 2 + (rb.num_bytes - MIN_BYTES_POLYGON) / RELATIVE_COORD_SIZE points = [] rel = _parse_absolute_coordinates(rb) points.append(rel) for _ in range(num_intermediates): ilrp = _parse_relative_coordinates(rb, rel) points.append(ilrp) rel = ilrp return PolygonLocation(rb.version, rb.location_type, points)
30.974359
122
0.628884
e3cc0185664cb8f16eb0487687628879a801c77c
21,028
py
Python
xfel/merging/application/phil/phil.py
TiankunZhou/cctbx_project
373f302f00c12d7239f8e37e3165e62bc1d852cc
[ "BSD-3-Clause-LBNL" ]
null
null
null
xfel/merging/application/phil/phil.py
TiankunZhou/cctbx_project
373f302f00c12d7239f8e37e3165e62bc1d852cc
[ "BSD-3-Clause-LBNL" ]
1
2020-05-26T17:46:17.000Z
2020-05-26T17:55:19.000Z
xfel/merging/application/phil/phil.py
TiankunZhou/cctbx_project
373f302f00c12d7239f8e37e3165e62bc1d852cc
[ "BSD-3-Clause-LBNL" ]
1
2022-02-08T10:11:07.000Z
2022-02-08T10:11:07.000Z
from __future__ import absolute_import, division, print_function from iotbx.phil import parse help_message = ''' Redesign script for merging xfel data ''' dispatch_phil = """ dispatch { step_list = None .type = strings .help = List of steps to use. None means use the full set of steps to merge. } """ input_phil = """ input { keep_imagesets = False .type = bool .help = If True, keep imagesets attached to experiments path = None .type = str .multiple = True .help = paths are validated as a glob, directory or file. .help = however, validation is delayed until data are assigned to parallel ranks. .help = integrated experiments (.expt) and reflection tables (.refl) must both be .help = present as matching files. Only one need be explicitly specified. reflections_suffix = _integrated.refl .type = str .help = Find file names with this suffix for reflections experiments_suffix = _integrated.expt .type = str .help = Find file names with this suffix for experiments parallel_file_load { method = *uniform node_memory .type = choice .help = uniform: distribute input experiments/reflections files uniformly over all available ranks .help = node_memory: distribute input experiments/reflections files over the nodes such that the node memory limit is not exceeded. .help = Within each node distribute the input files uniformly over all ranks of that node. node_memory { architecture = "Cori KNL" .type = str .help = node architecture name. Currently not used. limit = 90.0 .type = float .help = node memory limit, GB. On Cori KNL each node has 96 GB of memory, but we use 6 GB as a cushion, so the default value is 90 GB. pickle_to_memory = 3.5 .type = float .help = an empirical coefficient to convert pickle file size to anticipated run-time process memory required to load a file of that size } ranks_per_node = 68 .type = int .help = number of MPI ranks per node balance = *global per_node .type = choice .multiple = False .help = Balance the input file load by distributing experiments uniformly over all available ranks (global) or over the ranks on each node (per_node) .help = The idea behind the "per_node" method is that it doesn't require MPI communications across nodes. But if the input file load varies strongly .help = between the nodes, "global" is a much better option. balance_mpi_alltoall_slices = 1 .type = int .expert_level = 2 .help = memory reduction factor for MPI alltoall. .help = Use mpi_alltoall_slices > 1, when available RAM is insufficient for doing MPI alltoall on all data at once. .help = The data will then be split into mpi_alltoall_slices parts and, correspondingly, alltoall will be performed in mpi_alltoall_slices iterations. reset_experiment_id_column = False .type = bool .expert_level = 3 } } mp { method = *mpi .type = choice .help = Muliprocessing method (only mpi at present) } """ tdata_phil = """ tdata{ output_path = None .type = path .help = If output_path is not None, the tdata worker writes out a list of unit cells to a file. .help = Generally speaking the program should then stop. The tdata worker is not active by default, so it is necessary to have .help = the following phil configuration: dispatch.step_list=input,tdata. .help = The output_path assumes the *.tdata filename extension will be appended. .help = More information about using this option is given in the source code, xfel/merging/application/tdata/README.md } """ filter_phil = """ filter .help = The filter section defines criteria to accept or reject whole experiments .help = or to modify the entire experiment by a reindexing operator .help = refer to the select section for filtering of individual reflections { algorithm = n_obs a_list reindex resolution unit_cell report .type = choice .multiple = True n_obs { min = 15 .type = int .help = Minimum number of observations for subsequent processing } a_list .help = a_list is a text file containing a list of acceptable experiments .help = for example, those not misindexed, wrong type, or otherwise rejected as determined separately .help = suggested use, string matching, can include timestamp matching, directory name, etc { file = None .type = path .multiple = True operation = *select deselect .type = choice .multiple = True .help = supposedly have same number of files and operations. Different lists can be provided for select and deselect } reindex { data_reindex_op = h,k,l .type = str .help = Reindex, e.g. to change C-axis of an orthorhombic cell to align Bravais lattice from indexing with actual space group reverse_lookup = None .type = str .help = filename, pickle format, generated by the cxi.brehm_diederichs program. Contains a .help = (key,value) dictionary where key is the filename of the integrated data pickle file (supplied .help = with the data phil parameter and value is the h,k,l reindexing operator that resolves the .help = indexing ambiguity. sampling_number_of_lattices = 1000 .type = int .help = Number of lattices to be gathered from all ranks to run the brehm-diederichs procedure } resolution { d_min = None .type = float .help = Reject the experiment unless some reflections extend beyond this resolution limit model_or_image = model image .type = choice .help = Calculate resolution either using the scaling model unit cell or from the image itself } unit_cell .help = Various algorithms to restrict unit cell and space group { algorithm = range *value cluster .type = choice value .help = Discard lattices that are not close to the given target. .help = If the target is left as Auto, use the scaling model .help = (derived from either PDB file cryst1 record or MTZ header) { target_unit_cell = Auto .type = unit_cell relative_length_tolerance = 0.1 .type = float .help = Fractional change in unit cell dimensions allowed (versus target cell). absolute_angle_tolerance = 2. .type = float target_space_group = Auto .type = space_group } cluster .help = CLUSTER implies an implementation (standalone program or fork?) where all the .help = unit cells are brought together prior to any postrefinement or merging, .help = and analyzed in a global sense to identify the isoforms. .help = the output of this program could potentially form the a_list for a subsequent .help = run where the pre-selected events are postrefined and merged. { algorithm = rodgriguez_laio dbscan *covariance .type = choice covariance .help = Read a pickle file containing the previously determined clusters, .help = represented by estimated covariance models for unit cell parameters. { file = None .type = path component = 0 .type = int(value_min=0) mahalanobis = 4.0 .type = float(value_min=0) .help = Is essentially the standard deviation cutoff. Given that the unit cells .help = are estimated to be distributed by a multivariate Gaussian, this is the .help = maximum deviation (in sigmas) from the central value that is allowable for the .help = unit cell to be considered part of the cluster. } isoform = None .type=str .help = unknown at present. if there is more than one cluster, such as in PSII, .help = perhaps the program should write separate a_lists. .help = Alternatively identify a particular isoform to carry forward for merging. } } outlier { min_corr = 0.1 .type = float .help = Correlation cutoff for rejecting individual experiments by comparing observed intensities to the model. .help = This filter is not applied if scaling.model==None. No experiments are rejected with min_corr=-1. .help = This either keeps or rejects the whole experiment. assmann_diederichs {} } } """ modify_phil = """ modify .help = The MODIFY section defines operations on the integrated intensities { algorithm = *polarization .type = choice .multiple = True } """ select_phil = """ select .help = The select section accepts or rejects specified reflections .help = refer to the filter section for filtering of whole experiments { algorithm = panel cspad_sensor significance_filter .type = choice .multiple = True cspad_sensor { number = None .type = int(value_min=0, value_max=31) .multiple = True .help = Index in the range(32) specifying sensor on the CSPAD to deselect from merging, for the purpose .help = of testing whether an individual sensor is poorly calibrated. operation = *deselect select .type = choice .multiple = True } significance_filter .help = If listed as an algorithm, apply a sigma cutoff (on unmerged data) to limit .help = the resolution from each diffraction pattern. .help = Implement an alternative filter for fuller-kapton geometry { n_bins = 12 .type = int (value_min=2) .help = Initial target number of resolution bins for sigma cutoff calculation min_ct = 10 .type = int .help = Decrease number of resolution bins to require mean bin population >= min_ct max_ct = 50 .type = int .help = Increase number of resolution bins to require mean bin population <= max_ct sigma = 0.5 .type = float .help = Remove highest resolution bins such that all accepted bins have <I/sigma> >= sigma } } """ scaling_phil = """ scaling { model = None .type = str .help = PDB filename containing atomic coordinates & isomorphous cryst1 record .help = or MTZ filename from a previous cycle. If MTZ, specify mtz.mtz_column_F. unit_cell = None .type = unit_cell .help = Unit cell to be used during scaling and merging. Used if model is not provided .help = (e.g. mark1). space_group = None .type = space_group .help = Space group to be used during scaling and merging. Used if model is not provided .help = (e.g. mark1). model_reindex_op = h,k,l .type = str .help = Kludge for cases with an indexing ambiguity, need to be able to adjust scaling model resolution_scalar = 0.969 .type = float .help = Accommodates a few more miller indices at the high resolution limit to account for .help = unit cell variation in the sample. merging.d_min is multiplied by resolution_scalar .help = when computing which reflections are within the resolution limit. mtz { mtz_column_F = fobs .type = str .help = scaling reference column name containing reference structure factors. Can be .help = intensities or amplitudes minimum_common_hkls = -1 .type = int .help = minimum required number of common hkls between mtz reference and data .help = used to validate mtz-based model. No validation with -1. } pdb { include_bulk_solvent = True .type = bool .help = Whether to simulate bulk solvent k_sol = 0.35 .type = float .help = If model is taken from coordinates, use k_sol for the bulk solvent scale factor .help = default is approximate mean value in PDB (according to Pavel) b_sol = 46.00 .type = float .help = If model is taken from coordinates, use b_sol for bulk solvent B-factor .help = default is approximate mean value in PDB (according to Pavel) } algorithm = *mark0 mark1 .type = choice .help = "mark0: original per-image scaling by reference to isomorphous PDB model" .help = "mark1: no scaling, just averaging (i.e. Monte Carlo algorithm). Individual image scale factors are set to 1." } """ postrefinement_phil = """ postrefinement { enable = False .type = bool .help = enable the preliminary postrefinement algorithm (monochromatic) .expert_level = 3 algorithm = *rs rs2 rs_hybrid eta_deff .type = choice .help = rs only, eta_deff protocol 7 .expert_level = 3 rs { fix = thetax thetay *RS G BFACTOR .type = choice(multi=True) .help = Which parameters to fix during postrefinement } rs2 .help = Reimplement postrefinement with the following (Oct 2016): .help = Refinement engine now work on analytical derivatives instead of finite differences .help = Better convergence using "traditional convergence test" {} rs_hybrid .help = More aggressive postrefinement with the following (Oct 2016): .help = One round of 'rs2' using LBFGS minimizer as above to refine G,B,rotx,roty .help = Gentle weighting rather than unit weighting for the postrefinement target .help = Second round of LevMar adding an Rs refinement parameter .help = Option of weighting the merged terms by partiality { partiality_threshold = 0.2 .type = float ( value_min = 0.01 ) .help = throw out observations below this value. Hard coded as 0.2 for rs2, allow value for hybrid .help = must enforce minimum positive value because partiality appears in the denominator } target_weighting = *unit variance gentle extreme .type = choice .help = weights for the residuals in the postrefinement target (for rs2 or rs_hybrid) .help = Unit: each residual weighted by 1.0 .help = Variance: weighted by 1/sigma**2. Doesn't seem right, constructive feedback invited .help = Gentle: weighted by |I|/sigma**2. Seems like best option .help = Extreme: weighted by (I/sigma)**2. Also seems right, but severely downweights weak refl merge_weighting = *variance .type = choice .help = assumed that individual reflections are weighted by the counting variance merge_partiality_exponent = 0 .type = float .help = additionally weight each measurement by partiality**exp when merging .help = 0 is no weighting, 1 is partiality weighting, 2 is weighting by partiality-squared lineshape = *lorentzian gaussian .type = choice .help = Soft sphere RLP modeled with Lorentzian radial profile as in prime .help = or Gaussian radial profile. (for rs2 or rs_hybrid) show_trumpet_plot = False .type = bool .help = each-image trumpet plot showing before-after plot. Spot color warmth indicates I/sigma .help = Spot radius for lower plot reflects partiality. Only implemented for rs_hybrid } """ merging_phil = """ merging { minimum_multiplicity = 2 .type = int(value_min=2) .help = If defined, merged structure factors not produced for the Miller indices below this threshold. error { model = ha14 ev11 errors_from_sample_residuals .type = choice .multiple = False .help = ha14, formerly sdfac_auto, apply sdfac to each-image data assuming negative .help = intensities are normally distributed noise .help = errors_from_sample_residuals, use the distribution of intensities in a given miller index .help = to compute the error for each merged reflection ev11 .help = formerly sdfac_refine, correct merged sigmas refining sdfac, sdb and sdadd as Evans 2011. { random_seed = None .help = Random seed. May be int or None. Only used for the simplex minimizer .type = int .expert_level = 1 minimizer = *lbfgs LevMar .type = choice .help = Which minimizer to use while refining the Sdfac terms refine_propagated_errors = False .type = bool .help = If True then during sdfac refinement, also \ refine the estimated error used for error propagation. show_finite_differences = False .type = bool .help = If True and minimizer is lbfgs, show the finite vs. analytical differences plot_refinement_steps = False .type = bool .help = If True, plot refinement steps during refinement. } } plot_single_index_histograms = False .type = bool set_average_unit_cell = True .type = bool .help = Output file adopts the unit cell of the data rather than of the reference model. .help = How is it determined? Not a simple average, use a cluster-driven method for .help = deriving the best unit cell value. d_min = None .type = float .help = limiting resolution for scaling and merging d_max = None .type = float .help = limiting resolution for scaling and merging. Implementation currently affects only the CCiso cal merge_anomalous = False .type = bool .help = Merge anomalous contributors } """ output_phil = """ output { prefix = iobs .type = str .help = Prefix for all output file names title = None .type = str .help = Title for run - will appear in MTZ file header output_dir = . .type = str .help = output file directory tmp_dir = None .type = str .help = temporary file directory do_timing = False .type = bool .help = When True, calculate and log elapsed time for execution steps log_level = 1 .type = int .help = determines how much information to log. Level 0 means: log all, while a non-zero level reduces the logging amount. save_experiments_and_reflections = False .type = bool .help = If True, dump the final set of experiments and reflections from the last worker } """ statistics_phil = """ statistics { n_bins = 10 .type = int(value_min=1) .help = Number of resolution bins in statistics table cc1_2 { hash_filenames = False .type = bool .help = For CC1/2, instead of using odd/even filenames to split images into two sets, .help = hash the filename using md5 and split the images using odd/even hashes. } cciso { mtz_file = None .type = str .help = for Riso/ CCiso, the reference structure factors, must have data type F .help = a fake file is written out to this file name if model is None mtz_column_F = fobs .type = str .help = for Riso/ CCiso, the column name containing reference structure factors } predictions_to_edge { apply = False .type = bool .help = If True and key 'indices_to_edge' not found in integration pickles, predictions .help = will be made to the edge of the detector based on current unit cell, orientation, .help = and mosaicity. image = None .type = path .help = Path to an example image from which to extract active areas and pixel size. detector_phil = None .type = path .help = Path to the detector version phil file used to generate the selected data. } report_ML = True .type = bool .help = Report statistics on per-frame attributes modeled by max-likelihood fit (expert only). } """ group_phil = """ parallel { a2a = 1 .type = int .expert_level = 2 .help = memory reduction factor for MPI alltoall. .help = Use a2a > 1, when available RAM is insufficient for doing MPI alltoall on all data at once. .help = The data will be split into a2a parts and, correspondingly, alltoall will be performed in a2a iterations. } """ master_phil = dispatch_phil + input_phil + tdata_phil + filter_phil + modify_phil + \ select_phil + scaling_phil + postrefinement_phil + merging_phil + \ output_phil + statistics_phil + group_phil phil_scope = parse(master_phil) class Script(object): '''A class for running the script.''' def __init__(self): # The script usage import libtbx.load_env self.usage = "usage: %s [options] [param.phil] " % libtbx.env.dispatcher_name self.parser = None def initialize(self): '''Initialise the script.''' from dials.util.options import OptionParser # Create the parser self.parser = OptionParser( usage=self.usage, phil=phil_scope, epilog=help_message) self.parser.add_option( '--plots', action='store_true', default=False, dest='show_plots', help='Show some plots.') # Parse the command line. quick_parse is required for MPI compatibility params, options = self.parser.parse_args(show_diff_phil=True,quick_parse=True) self.params = params self.options = options def validate(self): from xfel.merging.application.validation.application import application application(self.params) def modify(self, experiments, reflections): return experiments, reflections #nop def run(self): print('''Initializing and validating phil...''') self.initialize() self.validate() # do other stuff return if __name__ == '__main__': script = Script() result = script.run() print ("OK")
38.442413
156
0.687464
900e1e2e1d6e2765ccc894ebea17d630a61be6d0
8,120
py
Python
reinforce_baselines.py
DaehanKim/attention-learn-to-route
9ce4fa9a3a136768f92adf3d1e7d62620442f1b7
[ "MIT" ]
null
null
null
reinforce_baselines.py
DaehanKim/attention-learn-to-route
9ce4fa9a3a136768f92adf3d1e7d62620442f1b7
[ "MIT" ]
null
null
null
reinforce_baselines.py
DaehanKim/attention-learn-to-route
9ce4fa9a3a136768f92adf3d1e7d62620442f1b7
[ "MIT" ]
null
null
null
import torch import torch.nn.functional as F from torch.utils.data import Dataset from scipy.stats import ttest_rel import copy from train import rollout, get_inner_model class Baseline(object): def wrap_dataset(self, dataset): return dataset def unwrap_batch(self, batch): return batch, None def eval(self, x, c): raise NotImplementedError("Override this method") def get_learnable_parameters(self): return [] def epoch_callback(self, model, epoch): pass def state_dict(self): return {} def load_state_dict(self, state_dict): pass class WarmupBaseline(Baseline): def __init__(self, baseline, n_epochs=1, warmup_exp_beta=0.8, ): super(Baseline, self).__init__() self.baseline = baseline assert n_epochs > 0, "n_epochs to warmup must be positive" self.warmup_baseline = ExponentialBaseline(warmup_exp_beta) self.alpha = 0 self.n_epochs = n_epochs def wrap_dataset(self, dataset): if self.alpha > 0: return self.baseline.wrap_dataset(dataset) return self.warmup_baseline.wrap_dataset(dataset) def unwrap_batch(self, batch): if self.alpha > 0: return self.baseline.unwrap_batch(batch) return self.warmup_baseline.unwrap_batch(batch) def eval(self, x, c): if self.alpha == 1: return self.baseline.eval(x, c) if self.alpha == 0: return self.warmup_baseline.eval(x, c) v, l = self.baseline.eval(x, c) vw, lw = self.warmup_baseline.eval(x, c) # Return convex combination of baseline and of loss return self.alpha * v + (1 - self.alpha) * vw, self.alpha * l + (1 - self.alpha * lw) def epoch_callback(self, model, epoch): # Need to call epoch callback of inner model (also after first epoch if we have not used it) self.baseline.epoch_callback(model, epoch) self.alpha = (epoch + 1) / float(self.n_epochs) if epoch < self.n_epochs: print("Set warmup alpha = {}".format(self.alpha)) def state_dict(self): # Checkpointing within warmup stage makes no sense, only save inner baseline return self.baseline.state_dict() def load_state_dict(self, state_dict): # Checkpointing within warmup stage makes no sense, only load inner baseline self.baseline.load_state_dict(state_dict) class NoBaseline(Baseline): def eval(self, x, c): return 0, 0 # No baseline, no loss class ExponentialBaseline(Baseline): def __init__(self, beta): super(Baseline, self).__init__() self.beta = beta self.v = None def eval(self, x, c): if self.v is None: v = c.mean() else: v = self.beta * self.v + (1. - self.beta) * c.mean() self.v = v.detach() # Detach since we never want to backprop return self.v, 0 # No loss def state_dict(self): return { 'v': self.v } def load_state_dict(self, state_dict): self.v = state_dict['v'] class CriticBaseline(Baseline): def __init__(self, critic): super(Baseline, self).__init__() self.critic = critic def eval(self, x, c): v = self.critic(x) # Detach v since actor should not backprop through baseline, only for loss return v.detach(), F.mse_loss(v, c.detach()) def get_learnable_parameters(self): return list(self.critic.parameters()) def epoch_callback(self, model, epoch): pass def state_dict(self): return { 'critic': self.critic.state_dict() } def load_state_dict(self, state_dict): critic_state_dict = state_dict.get('critic', {}) if not isinstance(critic_state_dict, dict): # backwards compatibility critic_state_dict = critic_state_dict.state_dict() self.critic.load_state_dict({**self.critic.state_dict(), **critic_state_dict}) class RolloutBaseline(Baseline): def __init__(self, model, problem, opts, epoch=0): super(Baseline, self).__init__() self.problem = problem self.opts = opts self._update_model(model, epoch) def _update_model(self, model, epoch, dataset=None): self.model = copy.deepcopy(model) # Always generate baseline dataset when updating model to prevent overfitting to the baseline dataset if dataset is not None: if len(dataset) != self.opts.val_size: print("Warning: not using saved baseline dataset since val_size does not match") dataset = None elif (dataset[0] if self.problem.NAME == 'tsp' else dataset[0]['loc']).size(0) != self.opts.graph_size: print("Warning: not using saved baseline dataset since graph_size does not match") dataset = None if dataset is None: self.dataset = self.problem.make_dataset( size=self.opts.question_num, num_samples=self.opts.val_size) else: self.dataset = dataset print("Evaluating baseline model on evaluation dataset") self.bl_vals = rollout(self.model, self.dataset, self.opts).cpu().numpy() self.mean = self.bl_vals.mean() self.epoch = epoch def wrap_dataset(self, dataset): print("Evaluating baseline on dataset...") # Need to convert baseline to 2D to prevent converting to double, see # https://discuss.pytorch.org/t/dataloader-gives-double-instead-of-float/717/3 return BaselineDataset(dataset, rollout(self.model, dataset, self.opts).view(-1, 1)) def unwrap_batch(self, batch): return batch['data'], batch['baseline'].view(-1) # Flatten result to undo wrapping as 2D def eval(self, x, c): # Use volatile mode for efficient inference (single batch so we do not use rollout function) with torch.no_grad(): _, _, v, _ = self.model(x) # There is no loss return v, 0 def epoch_callback(self, model, epoch): """ Challenges the current baseline with the model and replaces the baseline model if it is improved. :param model: The model to challenge the baseline by :param epoch: The current epoch """ print("Evaluating candidate model on evaluation dataset") candidate_vals = rollout(model, self.dataset, self.opts).cpu().numpy() candidate_mean = candidate_vals.mean() print("Epoch {} candidate mean {}, baseline epoch {} mean {}, difference {}".format( epoch, candidate_mean, self.epoch, self.mean, candidate_mean - self.mean)) if candidate_mean - self.mean < 0: # Calc p value t, p = ttest_rel(candidate_vals, self.bl_vals) p_val = p / 2 # one-sided assert t < 0, "T-statistic should be negative" print("p-value: {}".format(p_val)) if p_val < self.opts.bl_alpha: print('Update baseline') self._update_model(model, epoch) def state_dict(self): return { 'model': self.model, 'dataset': self.dataset, 'epoch': self.epoch } def load_state_dict(self, state_dict): # We make it such that it works whether model was saved as data parallel or not load_model = copy.deepcopy(self.model) get_inner_model(load_model).load_state_dict(get_inner_model(state_dict['model']).state_dict()) self._update_model(load_model, state_dict['epoch'], state_dict['dataset']) class BaselineDataset(Dataset): def __init__(self, dataset=None, baseline=None): super(BaselineDataset, self).__init__() self.dataset = dataset self.baseline = baseline assert (len(self.dataset) == len(self.baseline)) def __getitem__(self, item): return { 'data': self.dataset[item], 'baseline': self.baseline[item] } def __len__(self): return len(self.dataset)
32.874494
115
0.626355
3a53ce562b53befac9d849b4672272b230c1ce52
1,702
py
Python
check_weight.py
jeongjuns/Control_yolact
dad800dcc1aa0b02445e302256b4508b7688880c
[ "MIT" ]
null
null
null
check_weight.py
jeongjuns/Control_yolact
dad800dcc1aa0b02445e302256b4508b7688880c
[ "MIT" ]
null
null
null
check_weight.py
jeongjuns/Control_yolact
dad800dcc1aa0b02445e302256b4508b7688880c
[ "MIT" ]
null
null
null
import torch, torchvision import torch.nn as nn import torch.nn.functional as F from torchvision.models.resnet import Bottleneck import numpy as np from itertools import product from math import sqrt from typing import List from collections import defaultdict from data.config import cfg, mask_type from layers import Detect from layers.interpolate import InterpolateModule from backbone import construct_backbone import torch.backends.cudnn as cudnn from utils import timer from utils.functions import MovingAverage, make_net import argparse import datetime import os from torch.autograd import Variable from torchvision import datasets, transforms parser = argparse.ArgumentParser(description='Prune Yolact') parser.add_argument('--path', default='weights/', help='Directory for load weight.') args = parser.parse_args() torch.cuda.current_device() use_jit = torch.cuda.device_count() <= 1 if not use_jit: print('Multiple GPUs detected! Turning off JIT.') ScriptModuleWrapper = torch.jit.ScriptModule if use_jit else nn.Module script_method_wrapper = torch.jit.script_method if use_jit else lambda fn, _rcn=None: fn path = args.path print('path :', path) print(torch.cuda.is_available()) class Prune(nn.Module): def __init__(self): super().__init__() def load_weights(self, path): '''Loads weights from a compressed save file.''' total=0 state_dict = torch.load(path) name = [] for key in list(state_dict.keys()): print(key,'\t\t',state_dict[key].shape) pruning = Prune() pruning.load_weights(path) print('Pruning Proccess finished')
27.015873
89
0.720917
837ec818d9a80cb92448390cda728b2d45999869
1,525
py
Python
bbb-exporter/settings.py
icts-ca/bigbluebutton-exporter
f3d73639c002b27a09973681c1c9d560086b7bd8
[ "MIT" ]
1
2020-05-26T19:19:17.000Z
2020-05-26T19:19:17.000Z
bbb-exporter/settings.py
man10to/bigbluebutton-exporter
56a9fdf5390b63a9b82e5b3098f897fc3be29fd2
[ "MIT" ]
null
null
null
bbb-exporter/settings.py
man10to/bigbluebutton-exporter
56a9fdf5390b63a9b82e5b3098f897fc3be29fd2
[ "MIT" ]
1
2021-05-07T06:48:52.000Z
2021-05-07T06:48:52.000Z
import os import api_lib from helpers import validate_api_base_url, validate_buckets MAJOR = 0 MINOR = 4 BUGFIX = 0 INFO = "" VERSION = "{}.{}.{}".format(MAJOR, MINOR, BUGFIX) if INFO: VERSION += "-" + INFO debug_env = os.getenv("DEBUG", "false") DEBUG = True if debug_env.lower() == "true" else False API_BASE_URL = validate_api_base_url(os.environ["API_BASE_URL"]) # SSH into server and run: `$ bbb-conf --secret` to get secret API_SECRET = os.environ["API_SECRET"] API_CLIENT = api_lib.Client(API_BASE_URL, API_SECRET) ROOM_PARTICIPANTS_CUSTOM_BUCKETS = validate_buckets(os.getenv("ROOM_PARTICIPANTS_CUSTOM_BUCKETS", default="")) ROOM_LISTENERS_CUSTOM_BUCKETS = validate_buckets(os.getenv("ROOM_LISTENERS_CUSTOM_BUCKETS", default="")) ROOM_VOICE_PARTICIPANTS_CUSTOM_BUCKETS = validate_buckets(os.getenv("ROOM_VOICE_PARTICIPANTS_CUSTOM_BUCKETS", default="")) ROOM_VIDEO_PARTICIPANTS_CUSTOM_BUCKETS = validate_buckets(os.getenv("ROOM_VIDEO_PARTICIPANTS_CUSTOM_BUCKETS", default="")) PORT = int(os.getenv("PORT", 9688)) BIND_IP = os.getenv("BIND_IP", "0.0.0.0") RECORDINGS_METRICS_ENABLE = False if os.getenv("RECORDINGS_METRICS", "true").lower() == "false" else True RECORDINGS_METRICS_READ_FROM_DISK = False if os.getenv("RECORDINGS_METRICS_READ_FROM_DISK", "false").lower() == "false" else True recordings_metrics_base_dir = "/var/bigbluebutton" # Global (gasp.) variable flag that is used to mark if communicating with BigBlueButton's API is possible. # Used to set the `bbb_api_up` metric. _api_up = False
39.102564
129
0.772459
8dc86e14e6ff2c69f607a84e5037ce8a6727cf1b
212
py
Python
rafiki/model/__init__.py
Yirui-Wang/rafiki
22a58d592e6aa49f41ad895c94f099a30dc2023b
[ "Apache-2.0" ]
1
2018-12-19T13:14:34.000Z
2018-12-19T13:14:34.000Z
rafiki/model/__init__.py
Yirui-Wang/rafiki
22a58d592e6aa49f41ad895c94f099a30dc2023b
[ "Apache-2.0" ]
null
null
null
rafiki/model/__init__.py
Yirui-Wang/rafiki
22a58d592e6aa49f41ad895c94f099a30dc2023b
[ "Apache-2.0" ]
null
null
null
from .model import BaseModel, test_model_class, load_model_class, \ parse_model_install_command, InvalidModelClassException, InvalidModelParamsException, \ ModelUtils from .log import ModelLogUtilsLogger
42.4
91
0.839623
5569100dea9e3e64d5696807912b32ce853dec37
12,029
py
Python
src/gdata/sample_util.py
morrison12/gdata-python-client
d11a5f0b333f6ec5e519d96b131c5100c9518feb
[ "Apache-2.0" ]
null
null
null
src/gdata/sample_util.py
morrison12/gdata-python-client
d11a5f0b333f6ec5e519d96b131c5100c9518feb
[ "Apache-2.0" ]
null
null
null
src/gdata/sample_util.py
morrison12/gdata-python-client
d11a5f0b333f6ec5e519d96b131c5100c9518feb
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright (C) 2009 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides utility functions used with command line samples.""" # This module is used for version 2 of the Google Data APIs. import sys import getpass import urllib.request, urllib.parse, urllib.error import gdata.gauth __author__ = 'j.s@google.com (Jeff Scudder)' CLIENT_LOGIN = 1 AUTHSUB = 2 OAUTH = 3 OAUTH2 = 4 HMAC = 1 RSA = 2 class SettingsUtil(object): """Gather's user preferences from flags or command prompts. An instance of this object stores the choices made by the user. At some point it might be useful to save the user's preferences so that they do not need to always set flags or answer preference prompts. """ def __init__(self, prefs=None): self.prefs = prefs or {} def get_param(self, name, prompt='', secret=False, ask=True, reuse=False): # First, check in this objects stored preferences. if name in self.prefs: return self.prefs[name] # Second, check for a command line parameter. value = None for i in range(len(sys.argv)): if sys.argv[i].startswith('--%s=' % name): value = sys.argv[i].split('=')[1] elif sys.argv[i] == '--%s' % name: value = sys.argv[i + 1] # Third, if it was not on the command line, ask the user to input the # value. if value is None and ask: prompt = '%s: ' % prompt if secret: value = getpass.getpass(prompt) else: value = input(prompt) # If we want to save the preference for reuse in future requests, add it # to this object's prefs. if value is not None and reuse: self.prefs[name] = value return value def authorize_client(self, client, auth_type=None, service=None, source=None, scopes=None, oauth_type=None, consumer_key=None, consumer_secret=None): """Uses command line arguments, or prompts user for token values.""" if 'client_auth_token' in self.prefs: return if auth_type is None: auth_type = int(self.get_param( 'auth_type', 'Please choose the authorization mechanism you want' ' to use.\n' '1. [deprecated] to use your email address and password (ClientLogin)\n' '2. [deprecated] to use a web browser to visit an auth web page (AuthSub)\n' '3. [deprecated] if you have registed to use OAuth\n' '4. if you have registed to use OAuth 2.0\n', reuse=True)) # Get the scopes for the services we want to access. if auth_type == AUTHSUB or auth_type == OAUTH or auth_type == OAUTH2: if scopes is None: scopes = self.get_param( 'scopes', 'Enter the URL prefixes (scopes) for the resources you ' 'would like to access.\nFor multiple scope URLs, place a comma ' 'between each URL.\n' 'Example: http://www.google.com/calendar/feeds/,' 'http://www.google.com/m8/feeds/\n', reuse=True).split(',') elif isinstance(scopes, str): scopes = scopes.split(',') if auth_type == CLIENT_LOGIN: email = self.get_param('email', 'Please enter your username', reuse=False) password = self.get_param('password', 'Password', True, reuse=False) if service is None: service = self.get_param( 'service', 'What is the name of the service you wish to access?' '\n(See list:' ' http://code.google.com/apis/gdata/faq.html#clientlogin)', reuse=True) if source is None: source = self.get_param('source', ask=False, reuse=True) client.client_login(email, password, source=source, service=service) elif auth_type == AUTHSUB: auth_sub_token = self.get_param('auth_sub_token', ask=False, reuse=True) session_token = self.get_param('session_token', ask=False, reuse=True) private_key = None auth_url = None single_use_token = None rsa_private_key = self.get_param( 'rsa_private_key', 'If you want to use secure mode AuthSub, please provide the\n' ' location of your RSA private key which corresponds to the\n' ' certificate you have uploaded for your domain. If you do not\n' ' have an RSA key, simply press enter', reuse=True) if rsa_private_key: try: private_key_file = open(rsa_private_key, 'rb') private_key = private_key_file.read() private_key_file.close() except IOError: print('Unable to read private key from file') if private_key is not None: if client.auth_token is None: if session_token: client.auth_token = gdata.gauth.SecureAuthSubToken( session_token, private_key, scopes) self.prefs['client_auth_token'] = gdata.gauth.token_to_blob( client.auth_token) return elif auth_sub_token: client.auth_token = gdata.gauth.SecureAuthSubToken( auth_sub_token, private_key, scopes) client.upgrade_token() self.prefs['client_auth_token'] = gdata.gauth.token_to_blob( client.auth_token) return auth_url = gdata.gauth.generate_auth_sub_url( 'http://gauthmachine.appspot.com/authsub', scopes, True) print('with a private key, get ready for this URL', auth_url) else: if client.auth_token is None: if session_token: client.auth_token = gdata.gauth.AuthSubToken(session_token, scopes) self.prefs['client_auth_token'] = gdata.gauth.token_to_blob( client.auth_token) return elif auth_sub_token: client.auth_token = gdata.gauth.AuthSubToken(auth_sub_token, scopes) client.upgrade_token() self.prefs['client_auth_token'] = gdata.gauth.token_to_blob( client.auth_token) return auth_url = gdata.gauth.generate_auth_sub_url( 'http://gauthmachine.appspot.com/authsub', scopes) print('Visit the following URL in your browser to authorize this app:') print(str(auth_url)) print('After agreeing to authorize the app, copy the token value from') print(' the URL. Example: "www.google.com/?token=ab12" token value is') print(' ab12') token_value = input('Please enter the token value: ') if private_key is not None: single_use_token = gdata.gauth.SecureAuthSubToken( token_value, private_key, scopes) else: single_use_token = gdata.gauth.AuthSubToken(token_value, scopes) client.auth_token = single_use_token client.upgrade_token() elif auth_type == OAUTH: if oauth_type is None: oauth_type = int(self.get_param( 'oauth_type', 'Please choose the authorization mechanism you want' ' to use.\n' '1. use an HMAC signature using your consumer key and secret\n' '2. use RSA with your private key to sign requests\n', reuse=True)) consumer_key = self.get_param( 'consumer_key', 'Please enter your OAuth conumer key ' 'which identifies your app', reuse=True) if oauth_type == HMAC: consumer_secret = self.get_param( 'consumer_secret', 'Please enter your OAuth conumer secret ' 'which you share with the OAuth provider', True, reuse=False) # Swap out this code once the client supports requesting an oauth # token. # Get a request token. request_token = client.get_oauth_token( scopes, 'http://gauthmachine.appspot.com/oauth', consumer_key, consumer_secret=consumer_secret) elif oauth_type == RSA: rsa_private_key = self.get_param( 'rsa_private_key', 'Please provide the location of your RSA private key which\n' ' corresponds to the certificate you have uploaded for your' ' domain.', reuse=True) try: private_key_file = open(rsa_private_key, 'rb') private_key = private_key_file.read() private_key_file.close() except IOError: print('Unable to read private key from file') request_token = client.get_oauth_token( scopes, 'http://gauthmachine.appspot.com/oauth', consumer_key, rsa_private_key=private_key) else: print('Invalid OAuth signature type') return None # Authorize the request token in the browser. print('Visit the following URL in your browser to authorize this app:') print(str(request_token.generate_authorization_url())) print('After agreeing to authorize the app, copy URL from the browser\'s') print(' address bar.') url = input('Please enter the url: ') gdata.gauth.authorize_request_token(request_token, url) # Exchange for an access token. client.auth_token = client.get_access_token(request_token) elif auth_type == OAUTH2: oauth_type = HMAC client_id = self.get_param( 'client_id', 'Please enter your OAuth 2.0 Client ID ' 'which identifies your app', reuse=True) if oauth_type == HMAC: client_secret = self.get_param( 'client_secret', 'Please enter your OAuth 2.0 Client secret ' 'which you share with the OAuth provider', True, reuse=False) # Create a request token. request_token = gdata.gauth.OAuth2Token( client_id = client_id, client_secret = client_secret, scope = " ".join(scopes), # http://stackoverflow.com/a/8451199/198219 user_agent = 'GdataPythonClientExample') else: print('Invalid OAuth signature type') return None # Authorize the request token in the browser. print('\nVisit the following URL in your browser '\ 'to authorize this app:\n\n{0}\n'.format( str(request_token.generate_authorize_url()))) code = input('What is the verification code? ').strip() request_token.get_access_token(code) client.auth_token = request_token else: print('Invalid authorization type.') return None if client.auth_token: self.prefs['client_auth_token'] = gdata.gauth.token_to_blob( client.auth_token) def get_param(name, prompt='', secret=False, ask=True): settings = SettingsUtil() return settings.get_param(name=name, prompt=prompt, secret=secret, ask=ask) def authorize_client(client, auth_type=None, service=None, source=None, scopes=None, oauth_type=None, consumer_key=None, consumer_secret=None): """Uses command line arguments, or prompts user for token values.""" settings = SettingsUtil() return settings.authorize_client(client=client, auth_type=auth_type, service=service, source=source, scopes=scopes, oauth_type=oauth_type, consumer_key=consumer_key, consumer_secret=consumer_secret) def print_options(): """Displays usage information, available command line params.""" # TODO: fill in the usage description for authorizing the client. print('')
39.831126
86
0.632388
01a9c875c36dbb33509a8197f73fbad745f7987f
2,977
py
Python
gaetk2/views/backup.py
mdornseif/appengine-toolkit2
47ee6bf99b8e461ee64eae75bf24fb462d99b0ab
[ "MIT" ]
1
2018-08-16T16:15:30.000Z
2018-08-16T16:15:30.000Z
gaetk2/views/backup.py
mdornseif/appengine-toolkit2
47ee6bf99b8e461ee64eae75bf24fb462d99b0ab
[ "MIT" ]
3
2018-08-14T09:52:11.000Z
2021-12-13T19:54:07.000Z
gaetk2/views/backup.py
mdornseif/appengine-toolkit2
47ee6bf99b8e461ee64eae75bf24fb462d99b0ab
[ "MIT" ]
1
2018-09-28T05:55:27.000Z
2018-09-28T05:55:27.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ backup.py - Trigger scheduled Backups via Cron. See :ref:`backupreplication` for further Information. See https://cloud.google.com/appengine/articles/scheduled_backups also https://cloud.google.com/datastore/docs/schedule-export Created by Christian Klein on 2017-02-17. Copyright (c) 2017, 2018 HUDORA. MIT Licensed. """ from __future__ import absolute_import from __future__ import unicode_literals import datetime import logging from google.appengine.api import taskqueue from google.appengine.api.app_identity import get_application_id from google.appengine.api.app_identity import get_default_gcs_bucket_name from google.appengine.ext.db.metadata import Kind from gaetk2.config import gaetkconfig from gaetk2.handlers import DefaultHandler logger = logging.getLogger(__name__) # TODO: this woll stop to work https://cloud.google.com/appengine/docs/deprecations/datastore-admin-backups # needs to be replaced with https://cloud.google.com/datastore/docs/schedule-export # Something like # curl \ # -H "Authorization: Bearer $(gcloud auth print-access-token)" \ # -H "Content-Type: application/json" \ # https://datastore.googleapis.com/v1/projects/${PROJECT_ID}:export \ # -d '{ # "outputUrlPrefix": "gs://'${BUCKET}'", # "entityFilter": { # "kinds": ["KIND1", "KIND2", …], # "namespaceIds": ["NAMESPACE1", "NAMESPACE2", …], # }, # }' # # https://cloud.google.com/datastore/docs/export-import-entities # # Scopes: # https://www.googleapis.com/auth/datastore or # https://www.googleapis.com/auth/cloud-platform class BackupHandler(DefaultHandler): """Handler to start scheduled backups.""" def get(self): """To be called by cron and only by cron.""" # if 'X-AppEngine-Cron' not in self.request.headers: # raise HTTP403_Forbidden('Scheduled backups must be started via cron') if not gaetkconfig.BACKUP_BUCKET: bucket = get_default_gcs_bucket_name() else: bucket = gaetkconfig.BACKUP_BUCKET today = datetime.date.today() kinds = [kind for kind in _get_all_datastore_kinds()] # if kind not in config.BACKUP_BLACKLIST] bucketname = '/'.join( [bucket, get_application_id(), today.strftime('%Y-%m-%d')] ) bucketname = bucketname.lstrip('/') params = { 'name': 'ds', 'gs_bucket_name': bucketname, 'filesystem': 'gs', 'queue': gaetkconfig.BACKUP_QUEUE, 'kind': kinds, } logger.info('backup to %r %r', bucketname, params) taskqueue.add( url='/_ah/datastore_admin/backup.create', method='POST', target='ah-builtin-python-bundle', params=params, ) self.return_text('OK') def _get_all_datastore_kinds(): for kind in Kind.all(): if not kind.kind_name.startswith('_'): yield kind.kind_name
31.010417
107
0.668122
145cf8059ae363602529f873bb1f041108962451
2,414
py
Python
sync_clusters.py
mvxxx/cluster_utils
84fc4dcd78768eb5f8058d05f5e82192c0ce77a5
[ "MIT" ]
null
null
null
sync_clusters.py
mvxxx/cluster_utils
84fc4dcd78768eb5f8058d05f5e82192c0ce77a5
[ "MIT" ]
null
null
null
sync_clusters.py
mvxxx/cluster_utils
84fc4dcd78768eb5f8058d05f5e82192c0ce77a5
[ "MIT" ]
null
null
null
import argparse import json from uuid import uuid4 import shutil import os from utils.communication import exec_on_rem_workspace _USERNAME_REMOTE = 'username@remote' _TREE_ROOT = 'tree_root' def sync_clusters(target_cluster: str, local_path: str, exclude_cmd: str): target_cluster_host = cfg['clusters'][target_cluster][_USERNAME_REMOTE] target_tree_root = cfg['clusters'][target_cluster][_TREE_ROOT] sync_paths = cfg['sync_paths'] for sync_path in sync_paths: # rsync from local to remote exec_on_rem_workspace(target_cluster_host, target_tree_root, [f'mkdir -p {sync_path}']) os.system(f'rsync -vuar {os.path.join(local_path, sync_path)}/* {target_cluster_host}:{os.path.join(target_tree_root, sync_path)} {exclude_cmd}') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '-c', '--config', help='Path to clusters config file', required=True, type=str) parser.add_argument( '-s', '--source-cluster', help='Name of cluster which is synced', required=True, type=str) parser.add_argument( '-t', '--target-cluster', action='append', help='Names of clusters to be synced', required=True) args = parser.parse_args() config_path = args.config source_cluster = args.source_cluster target_clusters = args.target_cluster with open(config_path, 'r') as cfg_f: content = cfg_f.read() cfg = json.loads(content) src_cluster_host = cfg['clusters'][source_cluster][_USERNAME_REMOTE] src_tree_root = cfg['clusters'][source_cluster][_TREE_ROOT] local_path = cfg['local'][_TREE_ROOT] ignore_paths = cfg['ignore'] exclude_cmd = ' '.join([f'--exclude *{ignore_path}*' for ignore_path in ignore_paths]) if not os.path.exists(local_path): print("Local path doesn't exists, recreating it") os.makedirs(local_path, exist_ok=True) # rsync from remote to local for sync_path in cfg['sync_paths']: os.makedirs(os.path.join(local_path, sync_path), exist_ok=True) os.system(f'rsync -vuar {src_cluster_host}:{os.path.join(src_tree_root, sync_path)}/* {os.path.join(local_path, sync_path)} {exclude_cmd}') for target in target_clusters: try: sync_clusters(target, local_path, exclude_cmd) except Exception as e: print(f'Failed syncing to {target} due to exception: {str(e)}')
39.57377
153
0.699254
eabb799e00d489d65c491c9c376f9b9ff167f9c0
313
py
Python
designs/config/docs.py
ahmadRagheb/designs
7aa567ddc78d3c73167b0b92ced2ceb5e8db0cdb
[ "MIT" ]
null
null
null
designs/config/docs.py
ahmadRagheb/designs
7aa567ddc78d3c73167b0b92ced2ceb5e8db0cdb
[ "MIT" ]
null
null
null
designs/config/docs.py
ahmadRagheb/designs
7aa567ddc78d3c73167b0b92ced2ceb5e8db0cdb
[ "MIT" ]
null
null
null
""" Configuration for docs """ # source_link = "https://github.com/[org_name]/designs" # docs_base_url = "https://[org_name].github.io/designs" # headline = "App that does everything" # sub_heading = "Yes, you got that right the first time, everything" def get_context(context): context.brand_html = "Designs"
26.083333
68
0.722045
b8bcd878acb9cb9415e841b609833a97498d8829
7,346
py
Python
lost/modes/office_gui.py
carstenfuchs/LoST
7a88057808b4973d1b182d0efd7e145dbd898cd1
[ "MIT" ]
null
null
null
lost/modes/office_gui.py
carstenfuchs/LoST
7a88057808b4973d1b182d0efd7e145dbd898cd1
[ "MIT" ]
null
null
null
lost/modes/office_gui.py
carstenfuchs/LoST
7a88057808b4973d1b182d0efd7e145dbd898cd1
[ "MIT" ]
null
null
null
from babel.dates import format_datetime from datetime import datetime from tkinter import * # from tkinter import ttk from lost.modes.office_terminal import State from lost.widgets import adjust_wraplength, cp, fp, DisplayServerReplyFrame, PauseButtonsRow, SystemPanelFrame, TitleBar, TouchButton, WaitForServerFrame class RootWindow(Tk): def __init__(self, terminal, main_con, *args, **kwargs): super().__init__(*args, **kwargs) self.terminal = terminal self.main_con = main_con self.title("LoST - Lori Stempeluhr Terminal") # The native resolution of the official Raspberry Pi Touch Display # (https://www.raspberrypi.com/products/raspberry-pi-touch-display/) # is 800 x 480 pixels. Still, let's pick something smaller as the # default size so that dragging the window with the mouse is easier. self.geometry("640x384") self.attributes("-fullscreen", True) if True: # if localconfig.DEBUG: success_reply = { 'ma': "Konrad Zuse (lokales erzeugtes Beispiel)", 'now': "not used at this time", 'feedback': { 'anfang': "8:00", 'ende': None, 'pause': None, 'pause_error': "Eine Netzwerkübertragung hat nicht stattgefunden.", 'result': None, }, } messages_reply = { 'messages': [ "Dies ist ein Beispiel für eine Rückmeldung vom Lori-Server vom " \ "Typ „messages“. Dazu wurde eine auf dem Terminal vorbereitete " \ "Antwort eingestellt, eine echte Netzwerkübertragung hat nicht stattgefunden.", ], } errors_reply = { 'errors': [ "Dies ist ein Beispiel für eine Meldung vom Typ „errors“. " "Sie kann lokal vom Terminal oder vom Lori-Server ausgehen. " "Dazu wurde eine auf dem Terminal vorbereitete Antwort eingestellt, " "eine echte Netzwerkübertragung hat nicht stattgefunden.", ], 'detail_info': "optionale Detailangaben, z.B. Timeout, unbekanntes Terminal o.ä.", } self.bind('<Escape>', lambda x: self.destroy() if self.terminal.state == State.WELCOME else self.terminal.set_state(State.WELCOME)) self.bind('<F1>', lambda x: self.terminal.set_state(State.WELCOME)) self.bind('<F5>', lambda x: self.terminal.on_server_reply_received(success_reply)) self.bind('<F6>', lambda x: self.terminal.on_server_reply_received(messages_reply)) self.bind('<F7>', lambda x: self.terminal.on_server_reply_received(errors_reply)) self.bind('<F8>', lambda x: self.terminal.on_server_reply_received({})) self.bind('<F9>', lambda x: self.main_con.simulate_smartcard_input('Sonderkarte: Verbindungstest')) self.bind('<F11>', lambda x: self.attributes("-fullscreen", not self.attributes("-fullscreen"))) self.bind('<F12>', lambda x: self.terminal.set_state_system_panel()) self.frame_Welcome = WelcomeFrame(self) self.frame_WaitForServer = WaitForServerFrame(self) self.frame_DisplayServerReply = DisplayServerReplyFrame(self) self.frame_SystemPanel = SystemPanelFrame(self) self.active_frame = None self.bind('<Configure>', self.on_resize) self.drive_main_connector() self.drive_terminal_clock() def on_resize(self, event): if event.widget == self: # print(event) fp.resize(event.height) def drive_main_connector(self): """ Forward clock tick events to the main connector. In a Tkinter program, GUI functions like this are the natural place to receive timer events. As these events are also needed elsewhere (in non-GUI code), we pass them to the main connector that will further distribute them. """ self.main_con.on_clock_tick() self.after(100, self.drive_main_connector) def drive_terminal_clock(self): if self.terminal is not None: self.terminal.on_clock_tick() self.after(500, self.drive_terminal_clock) def update_to_model(self, terminal): next_frame = self.frame_Welcome if terminal.state == State.WAIT_FOR_SERVER_REPLY: next_frame = self.frame_WaitForServer elif terminal.state == State.DISPLAY_SERVER_REPLY: next_frame = self.frame_DisplayServerReply elif terminal.state == State.SYSTEM_PANEL: next_frame = self.frame_SystemPanel if hasattr(next_frame, "update_to_model"): next_frame.update_to_model(terminal) if self.active_frame == next_frame: return if self.active_frame is not None: self.active_frame.pack_forget() self.active_frame = next_frame self.active_frame.pack(side=TOP, fill=BOTH, expand=True) class WelcomeFrame(Frame): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs, background=cp.get_bg_col()) self.rowconfigure(0, weight=0) # title bar self.rowconfigure(1, weight=1) # vertical space self.rowconfigure(2, weight=1) # HH:MM self.rowconfigure(3, weight=1) # day, month self.rowconfigure(4, weight=1) # vertical space self.rowconfigure(5, weight=1) # pause label self.rowconfigure(6, weight=1) # pause buttons self.rowconfigure(7, weight=1) # vertical space # Have the grid span the full width of the frame # (instead of only the minimal width to enclose its children). self.columnconfigure(0, weight=1) title_bar = TitleBar(self, show_clock=False) title_bar.grid(row=0, column=0, sticky="NESW") self.time_label = Label(self, text="", foreground='white', background=cp.get_bg_col(), font=fp.get_font(250)) self.time_label.grid(row=2, column=0, sticky="NESW") self.date_label = Label(self, text="", anchor='n', foreground='#666666', background=cp.get_bg_col(), font=fp.get_font(120)) self.date_label.grid(row=3, column=0, sticky="NESW") self.pause_label = Label(self, text="Pause", foreground='#3380E6', background=cp.get_bg_col(), font=fp.get_font(120)) self.pause_label.grid(row=5, column=0, sticky="NESW") self.pause_buttons = PauseButtonsRow(self) self.pause_buttons.grid(row=6, column=0, sticky="NESW") self.update_clock() def update_clock(self): now = datetime.now() # https://stackoverflow.com/questions/985505/locale-date-formatting-in-python self.time_label.config(text=format_datetime(now, 'HH:mm', locale='de_DE')) self.date_label.config(text=format_datetime(now, 'EEEE, d. MMMM', locale='de_DE')) # Mittwoch, 5. August self.after(1000, self.update_clock) def update_to_model(self, terminal): p_str = "Pause" if terminal.pause is not None: p_str += f" {terminal.pause // 60}:{terminal.pause % 60:02}" self.pause_label.config(text=p_str) self.pause_buttons.update_to_model(terminal)
43.211765
153
0.633678
86aab671e0bff8603bff554a2086fb86d2d4c283
10,727
py
Python
sdk/python/pulumi_azure_native/consumption/v20181001/budget_by_resource_group_name.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/consumption/v20181001/budget_by_resource_group_name.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/consumption/v20181001/budget_by_resource_group_name.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['BudgetByResourceGroupName'] class BudgetByResourceGroupName(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, amount: Optional[pulumi.Input[float]] = None, budget_name: Optional[pulumi.Input[str]] = None, category: Optional[pulumi.Input[Union[str, 'CategoryType']]] = None, e_tag: Optional[pulumi.Input[str]] = None, filters: Optional[pulumi.Input[pulumi.InputType['FiltersArgs']]] = None, notifications: Optional[pulumi.Input[Mapping[str, pulumi.Input[pulumi.InputType['NotificationArgs']]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, time_grain: Optional[pulumi.Input[Union[str, 'TimeGrainType']]] = None, time_period: Optional[pulumi.Input[pulumi.InputType['BudgetTimePeriodArgs']]] = None, __props__=None, __name__=None, __opts__=None): """ A budget resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[float] amount: The total amount of cost to track with the budget :param pulumi.Input[str] budget_name: Budget Name. :param pulumi.Input[Union[str, 'CategoryType']] category: The category of the budget, whether the budget tracks cost or usage. :param pulumi.Input[str] e_tag: eTag of the resource. To handle concurrent update scenario, this field will be used to determine whether the user is updating the latest version or not. :param pulumi.Input[pulumi.InputType['FiltersArgs']] filters: May be used to filter budgets by resource group, resource, or meter. :param pulumi.Input[Mapping[str, pulumi.Input[pulumi.InputType['NotificationArgs']]]] notifications: Dictionary of notifications associated with the budget. Budget can have up to five notifications. :param pulumi.Input[str] resource_group_name: Azure Resource Group Name. :param pulumi.Input[Union[str, 'TimeGrainType']] time_grain: The time covered by a budget. Tracking of the amount will be reset based on the time grain. :param pulumi.Input[pulumi.InputType['BudgetTimePeriodArgs']] time_period: Has start and end date of the budget. The start date must be first of the month and should be less than the end date. Budget start date must be on or after June 1, 2017. Future start date should not be more than three months. Past start date should be selected within the timegrain period. There are no restrictions on the end date. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if amount is None and not opts.urn: raise TypeError("Missing required property 'amount'") __props__['amount'] = amount __props__['budget_name'] = budget_name if category is None and not opts.urn: raise TypeError("Missing required property 'category'") __props__['category'] = category __props__['e_tag'] = e_tag __props__['filters'] = filters __props__['notifications'] = notifications if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name if time_grain is None and not opts.urn: raise TypeError("Missing required property 'time_grain'") __props__['time_grain'] = time_grain if time_period is None and not opts.urn: raise TypeError("Missing required property 'time_period'") __props__['time_period'] = time_period __props__['current_spend'] = None __props__['name'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:consumption/v20181001:BudgetByResourceGroupName"), pulumi.Alias(type_="azure-native:consumption:BudgetByResourceGroupName"), pulumi.Alias(type_="azure-nextgen:consumption:BudgetByResourceGroupName"), pulumi.Alias(type_="azure-native:consumption/latest:BudgetByResourceGroupName"), pulumi.Alias(type_="azure-nextgen:consumption/latest:BudgetByResourceGroupName"), pulumi.Alias(type_="azure-native:consumption/v20180131:BudgetByResourceGroupName"), pulumi.Alias(type_="azure-nextgen:consumption/v20180131:BudgetByResourceGroupName"), pulumi.Alias(type_="azure-native:consumption/v20180331:BudgetByResourceGroupName"), pulumi.Alias(type_="azure-nextgen:consumption/v20180331:BudgetByResourceGroupName"), pulumi.Alias(type_="azure-native:consumption/v20180630:BudgetByResourceGroupName"), pulumi.Alias(type_="azure-nextgen:consumption/v20180630:BudgetByResourceGroupName"), pulumi.Alias(type_="azure-native:consumption/v20180831:BudgetByResourceGroupName"), pulumi.Alias(type_="azure-nextgen:consumption/v20180831:BudgetByResourceGroupName")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(BudgetByResourceGroupName, __self__).__init__( 'azure-native:consumption/v20181001:BudgetByResourceGroupName', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'BudgetByResourceGroupName': """ Get an existing BudgetByResourceGroupName resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["amount"] = None __props__["category"] = None __props__["current_spend"] = None __props__["e_tag"] = None __props__["filters"] = None __props__["name"] = None __props__["notifications"] = None __props__["time_grain"] = None __props__["time_period"] = None __props__["type"] = None return BudgetByResourceGroupName(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def amount(self) -> pulumi.Output[float]: """ The total amount of cost to track with the budget """ return pulumi.get(self, "amount") @property @pulumi.getter def category(self) -> pulumi.Output[str]: """ The category of the budget, whether the budget tracks cost or usage. """ return pulumi.get(self, "category") @property @pulumi.getter(name="currentSpend") def current_spend(self) -> pulumi.Output['outputs.CurrentSpendResponse']: """ The current amount of cost which is being tracked for a budget. """ return pulumi.get(self, "current_spend") @property @pulumi.getter(name="eTag") def e_tag(self) -> pulumi.Output[Optional[str]]: """ eTag of the resource. To handle concurrent update scenario, this field will be used to determine whether the user is updating the latest version or not. """ return pulumi.get(self, "e_tag") @property @pulumi.getter def filters(self) -> pulumi.Output[Optional['outputs.FiltersResponse']]: """ May be used to filter budgets by resource group, resource, or meter. """ return pulumi.get(self, "filters") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter def notifications(self) -> pulumi.Output[Optional[Mapping[str, 'outputs.NotificationResponse']]]: """ Dictionary of notifications associated with the budget. Budget can have up to five notifications. """ return pulumi.get(self, "notifications") @property @pulumi.getter(name="timeGrain") def time_grain(self) -> pulumi.Output[str]: """ The time covered by a budget. Tracking of the amount will be reset based on the time grain. """ return pulumi.get(self, "time_grain") @property @pulumi.getter(name="timePeriod") def time_period(self) -> pulumi.Output['outputs.BudgetTimePeriodResponse']: """ Has start and end date of the budget. The start date must be first of the month and should be less than the end date. Budget start date must be on or after June 1, 2017. Future start date should not be more than three months. Past start date should be selected within the timegrain period. There are no restrictions on the end date. """ return pulumi.get(self, "time_period") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
51.325359
1,126
0.671856
965029dc8c9fb652f674bf01136879ca51b92682
3,419
py
Python
karbor-1.3.0/karbor/services/protection/flows/protect.py
scottwedge/OpenStack-Stein
7077d1f602031dace92916f14e36b124f474de15
[ "Apache-2.0" ]
1
2021-05-23T01:48:25.000Z
2021-05-23T01:48:25.000Z
karbor-1.3.0/karbor/services/protection/flows/protect.py
scottwedge/OpenStack-Stein
7077d1f602031dace92916f14e36b124f474de15
[ "Apache-2.0" ]
5
2019-08-14T06:46:03.000Z
2021-12-13T20:01:25.000Z
karbor-1.3.0/karbor/services/protection/flows/protect.py
scottwedge/OpenStack-Stein
7077d1f602031dace92916f14e36b124f474de15
[ "Apache-2.0" ]
2
2020-03-15T01:24:15.000Z
2020-07-22T20:34:26.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from karbor.common import constants from karbor.resource import Resource from karbor.services.protection.flows import utils from karbor.services.protection import resource_flow from oslo_log import log as logging from oslo_utils import timeutils from taskflow import task LOG = logging.getLogger(__name__) class InitiateProtectTask(task.Task): def execute(self, context, checkpoint, operation_log, *args, **kwargs): LOG.debug("Initiate protect checkpoint_id: %s", checkpoint.id) checkpoint.status = constants.CHECKPOINT_STATUS_PROTECTING checkpoint.commit() update_fields = {"status": checkpoint.status} utils.update_operation_log(context, operation_log, update_fields) def revert(self, context, checkpoint, operation_log, *args, **kwargs): LOG.debug("Failed to protect checkpoint_id: %s", checkpoint.id) checkpoint.status = constants.CHECKPOINT_STATUS_ERROR checkpoint.commit() update_fields = { "status": checkpoint.status, "ended_at": timeutils.utcnow() } utils.update_operation_log(context, operation_log, update_fields) class CompleteProtectTask(task.Task): def execute(self, context, checkpoint, operation_log): LOG.debug("Complete protect checkpoint_id: %s", checkpoint.id) checkpoint.status = constants.CHECKPOINT_STATUS_AVAILABLE checkpoint.commit() update_fields = { "status": checkpoint.status, "ended_at": timeutils.utcnow() } utils.update_operation_log(context, operation_log, update_fields) def get_flow(context, protectable_registry, workflow_engine, plan, provider, checkpoint): resources = set(Resource(**item) for item in plan.get("resources")) resource_graph = protectable_registry.build_graph(context, resources) checkpoint.resource_graph = resource_graph checkpoint.commit() operation_log = utils.create_operation_log(context, checkpoint) flow_name = "Protect_" + plan.get('id') protection_flow = workflow_engine.build_flow(flow_name, 'linear') plugins = provider.load_plugins() parameters = plan.get('parameters') resources_task_flow = resource_flow.build_resource_flow( operation_type=constants.OPERATION_PROTECT, context=context, workflow_engine=workflow_engine, resource_graph=resource_graph, plugins=plugins, parameters=parameters, ) workflow_engine.add_tasks( protection_flow, InitiateProtectTask(), resources_task_flow, CompleteProtectTask(), ) flow_engine = workflow_engine.get_engine(protection_flow, store={ 'context': context, 'checkpoint': checkpoint, 'operation_log': operation_log }) return flow_engine
38.852273
76
0.708102
91c350495f90aeb093d65ec853f11a5a85bf1598
3,195
py
Python
tests/flows/test_saml-saml.py
mrkday/SATOSA
43fd13273d7633b1d496d9c9aaef97c472ebd448
[ "Apache-2.0" ]
92
2017-11-08T08:01:27.000Z
2022-03-14T09:44:09.000Z
tests/flows/test_saml-saml.py
mrkday/SATOSA
43fd13273d7633b1d496d9c9aaef97c472ebd448
[ "Apache-2.0" ]
155
2017-10-31T15:11:06.000Z
2022-03-11T16:59:23.000Z
tests/flows/test_saml-saml.py
mrkday/SATOSA
43fd13273d7633b1d496d9c9aaef97c472ebd448
[ "Apache-2.0" ]
73
2017-11-05T13:53:40.000Z
2022-03-23T15:34:00.000Z
from urllib.parse import parse_qsl, urlparse, urlencode from saml2 import BINDING_HTTP_REDIRECT from saml2.config import SPConfig, IdPConfig from werkzeug.test import Client from werkzeug.wrappers import Response from satosa.metadata_creation.saml_metadata import create_entity_descriptors from satosa.proxy_server import make_app from satosa.satosa_config import SATOSAConfig from tests.users import USERS from tests.util import FakeSP, FakeIdP class TestSAMLToSAML: def run_test(self, satosa_config_dict, sp_conf, idp_conf, saml_backend_config, frontend_config): subject_id = "testuser1" # proxy config satosa_config_dict["FRONTEND_MODULES"] = [frontend_config] satosa_config_dict["BACKEND_MODULES"] = [saml_backend_config] satosa_config_dict["INTERNAL_ATTRIBUTES"]["attributes"] = {attr_name: {"saml": [attr_name]} for attr_name in USERS[subject_id]} frontend_metadata, backend_metadata = create_entity_descriptors(SATOSAConfig(satosa_config_dict)) # application test_client = Client(make_app(SATOSAConfig(satosa_config_dict)), Response) # config test SP frontend_metadata_str = str(frontend_metadata[frontend_config["name"]][0]) sp_conf["metadata"]["inline"].append(frontend_metadata_str) fakesp = FakeSP(SPConfig().load(sp_conf)) # create auth req destination, req_args = fakesp.make_auth_req(frontend_metadata[frontend_config["name"]][0].entity_id) auth_req = urlparse(destination).path + "?" + urlencode(req_args) # make auth req to proxy proxied_auth_req = test_client.get(auth_req) assert proxied_auth_req.status == "303 See Other" # config test IdP backend_metadata_str = str(backend_metadata[saml_backend_config["name"]][0]) idp_conf["metadata"]["inline"].append(backend_metadata_str) fakeidp = FakeIdP(USERS, config=IdPConfig().load(idp_conf)) # create auth resp req_params = dict(parse_qsl(urlparse(proxied_auth_req.data.decode("utf-8")).query)) url, authn_resp = fakeidp.handle_auth_req( req_params["SAMLRequest"], req_params["RelayState"], BINDING_HTTP_REDIRECT, subject_id, response_binding=BINDING_HTTP_REDIRECT) # make auth resp to proxy authn_resp_req = urlparse(url).path + "?" + urlencode(authn_resp) authn_resp = test_client.get(authn_resp_req) assert authn_resp.status == "303 See Other" # verify auth resp from proxy resp_dict = dict(parse_qsl(urlparse(authn_resp.data.decode("utf-8")).query)) auth_resp = fakesp.parse_authn_request_response(resp_dict["SAMLResponse"], BINDING_HTTP_REDIRECT) assert auth_resp.ava == USERS[subject_id] def test_full_flow(self, satosa_config_dict, sp_conf, idp_conf, saml_backend_config, saml_frontend_config, saml_mirror_frontend_config): for conf in [saml_frontend_config, saml_mirror_frontend_config]: self.run_test(satosa_config_dict, sp_conf, idp_conf, saml_backend_config, conf)
46.304348
116
0.703599
36afcae81724dc2fa68893bcb232e5af68f295d3
2,109
py
Python
backend/apps/dapps/validators.py
grinay/smartz
44ca50ebcac26d5776b90b4fc96c63edfe804dfe
[ "Apache-2.0" ]
null
null
null
backend/apps/dapps/validators.py
grinay/smartz
44ca50ebcac26d5776b90b4fc96c63edfe804dfe
[ "Apache-2.0" ]
null
null
null
backend/apps/dapps/validators.py
grinay/smartz
44ca50ebcac26d5776b90b4fc96c63edfe804dfe
[ "Apache-2.0" ]
1
2018-10-23T15:04:52.000Z
2018-10-23T15:04:52.000Z
from django.core.exceptions import ValidationError from smartz.json_schema import is_conforms2schema_part, load_schema, is_conforms2schema def validate_function_args(value): schema = { "$schema": "http://json-schema.org/draft-04/schema#", "title": "Function argument", "type": "array", "items": { "type": "object", "additionalProperties": False, "properties": { "title": {"type": "string"}, "description": {"type": "string"}, "value": {"type": "string"} } } } if not is_conforms2schema(value, schema): raise ValidationError("Incorrect function arguments") def validate_tx_info(value): schema = { "$schema": "http://json-schema.org/draft-04/schema#", "title": "Transaction additional info", "type": "object", "additionalProperties": False, "properties": { "ethereum": { "description": "Ethereum tx properties", "type": "object", "additionalProperties": False, "properties": { "gas_price": {"type": "number"}, "gas_limit": {"type": "number"}, "gas_used": {"type": "number"}, "block": {"type": "number"}, "block_hash": {"type": "string"}, } }, "eos": { "description": "Eos tx properties", "type": "object", "additionalProperties": False, "properties": { } } } } if not is_conforms2schema(value, schema): raise ValidationError("Incorrect transaction additional info") def validate_log_data(value): schema = { "$schema": "http://json-schema.org/draft-04/schema#", "title": "Transaction additional info", "type": "object" } if not is_conforms2schema(value, schema): raise ValidationError("Incorrect transaction additional info")
31.014706
87
0.512091
5f00205518f8b24ec1fe48be103d509ecc19d8e9
5,964
py
Python
lib/galaxy/openid/providers.py
rikeshi/galaxy
c536a877e4a9b3d12aa0d00fd4d5e705109a0d0a
[ "CC-BY-3.0" ]
4
2015-05-12T20:36:41.000Z
2017-06-26T15:34:02.000Z
lib/galaxy/openid/providers.py
rikeshi/galaxy
c536a877e4a9b3d12aa0d00fd4d5e705109a0d0a
[ "CC-BY-3.0" ]
52
2015-03-16T14:02:14.000Z
2021-12-24T09:50:23.000Z
lib/galaxy/openid/providers.py
rikeshi/galaxy
c536a877e4a9b3d12aa0d00fd4d5e705109a0d0a
[ "CC-BY-3.0" ]
1
2016-03-21T12:54:06.000Z
2016-03-21T12:54:06.000Z
""" Contains OpenID provider functionality """ import logging import os from collections import OrderedDict from galaxy.util import parse_xml, string_as_bool log = logging.getLogger(__name__) NO_PROVIDER_ID = 'None' RESERVED_PROVIDER_IDS = [NO_PROVIDER_ID] class OpenIDProvider: '''An OpenID Provider object.''' @classmethod def from_file(cls, filename): return cls.from_elem(parse_xml(filename).getroot()) @classmethod def from_elem(cls, xml_root): provider_elem = xml_root provider_id = provider_elem.get('id', None) provider_name = provider_elem.get('name', provider_id) op_endpoint_url = provider_elem.find('op_endpoint_url') if op_endpoint_url is not None: op_endpoint_url = op_endpoint_url.text never_associate_with_user = string_as_bool(provider_elem.get('never_associate_with_user', 'False')) assert (provider_id and provider_name and op_endpoint_url), Exception("OpenID Provider improperly configured") assert provider_id not in RESERVED_PROVIDER_IDS, Exception('Specified OpenID Provider uses a reserved id: %s' % (provider_id)) sreg_required = [] sreg_optional = [] use_for = {} store_user_preference = {} use_default_sreg = True for elem in provider_elem.findall('sreg'): use_default_sreg = False for field_elem in elem.findall('field'): sreg_name = field_elem.get('name') assert sreg_name, Exception('A name is required for a sreg element') if string_as_bool(field_elem.get('required')): sreg_required.append(sreg_name) else: sreg_optional.append(sreg_name) for use_elem in field_elem.findall('use_for'): use_for[use_elem.get('name')] = sreg_name for store_user_preference_elem in field_elem.findall('store_user_preference'): store_user_preference[store_user_preference_elem.get('name')] = sreg_name if use_default_sreg: sreg_required = None sreg_optional = None use_for = None return cls(provider_id, provider_name, op_endpoint_url, sreg_required=sreg_required, sreg_optional=sreg_optional, use_for=use_for, store_user_preference=store_user_preference, never_associate_with_user=never_associate_with_user) def __init__(self, id, name, op_endpoint_url, sreg_required=None, sreg_optional=None, use_for=None, store_user_preference=None, never_associate_with_user=None): '''When sreg options are not specified, defaults are used.''' self.id = id self.name = name self.op_endpoint_url = op_endpoint_url if sreg_optional is None: self.sreg_optional = ['nickname', 'email'] else: self.sreg_optional = sreg_optional if sreg_required: self.sreg_required = sreg_required else: self.sreg_required = [] if use_for is not None: self.use_for = use_for else: self.use_for = {} if 'nickname' in (self.sreg_optional + self.sreg_required): self.use_for['username'] = 'nickname' if 'email' in (self.sreg_optional + self.sreg_required): self.use_for['email'] = 'email' if store_user_preference: self.store_user_preference = store_user_preference else: self.store_user_preference = {} if never_associate_with_user: self.never_associate_with_user = True else: self.never_associate_with_user = False def post_authentication(self, trans, openid_manager, info): sreg_attributes = openid_manager.get_sreg(info) for store_pref_name, store_pref_value_name in self.store_user_preference.items(): if store_pref_value_name in (self.sreg_optional + self.sreg_required): trans.user.preferences[store_pref_name] = sreg_attributes.get(store_pref_value_name) else: raise Exception('Only sreg is currently supported.') trans.sa_session.add(trans.user) trans.sa_session.flush() def has_post_authentication_actions(self): return bool(self.store_user_preference) class OpenIDProviders: '''Collection of OpenID Providers''' NO_PROVIDER_ID = NO_PROVIDER_ID @classmethod def from_file(cls, filename): try: return cls.from_elem(parse_xml(filename).getroot()) except Exception as e: log.error('Failed to load OpenID Providers: %s' % (e)) return cls() @classmethod def from_elem(cls, xml_root): oid_elem = xml_root providers = OrderedDict() for elem in oid_elem.findall('provider'): try: provider = OpenIDProvider.from_file(os.path.join('lib/galaxy/openid', elem.get('file'))) providers[provider.id] = provider log.debug(f'Loaded OpenID provider: {provider.name} ({provider.id})') except Exception as e: log.error('Failed to add OpenID provider: %s' % (e)) return cls(providers) def __init__(self, providers=None): if providers: self.providers = providers else: self.providers = OrderedDict() self._banned_identifiers = [provider.op_endpoint_url for provider in self.providers.values() if provider.never_associate_with_user] def __iter__(self): yield from self.providers.values() def get(self, name, default=None): if name in self.providers: return self.providers[name] else: return default def new_provider_from_identifier(self, identifier): return OpenIDProvider(None, identifier, identifier, never_associate_with_user=identifier in self._banned_identifiers)
40.849315
236
0.654091
ade49b8116e4b3381701fe51cba248aafc3bb7ef
6,979
py
Python
homeassistant/components/media_player/volumio.py
adolfoeliazat/voidhomecontrol
6d733253811c553912e46e24debec818b28b0688
[ "Apache-2.0" ]
1
2021-08-06T09:54:39.000Z
2021-08-06T09:54:39.000Z
homeassistant/components/media_player/volumio.py
adolfoeliazat/voidhomecontrol
6d733253811c553912e46e24debec818b28b0688
[ "Apache-2.0" ]
null
null
null
homeassistant/components/media_player/volumio.py
adolfoeliazat/voidhomecontrol
6d733253811c553912e46e24debec818b28b0688
[ "Apache-2.0" ]
1
2020-11-04T07:34:41.000Z
2020-11-04T07:34:41.000Z
""" Volumio Platform. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/media_player.volumio/ """ import logging import asyncio import aiohttp import voluptuous as vol from homeassistant.components.media_player import ( SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PREVIOUS_TRACK, SUPPORT_SEEK, SUPPORT_PLAY_MEDIA, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_SET, SUPPORT_STOP, SUPPORT_PLAY, MediaPlayerDevice, PLATFORM_SCHEMA, MEDIA_TYPE_MUSIC) from homeassistant.const import ( STATE_PLAYING, STATE_PAUSED, STATE_IDLE, CONF_HOST, CONF_PORT, CONF_NAME) import homeassistant.helpers.config_validation as cv from homeassistant.helpers.aiohttp_client import async_get_clientsession _CONFIGURING = {} _LOGGER = logging.getLogger(__name__) DEFAULT_HOST = 'localhost' DEFAULT_NAME = 'Volumio' DEFAULT_PORT = 3000 TIMEOUT = 10 SUPPORT_VOLUMIO = SUPPORT_PAUSE | SUPPORT_VOLUME_SET | SUPPORT_VOLUME_MUTE | \ SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK | SUPPORT_SEEK | \ SUPPORT_PLAY_MEDIA | SUPPORT_STOP | SUPPORT_PLAY PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Optional(CONF_HOST, default=DEFAULT_HOST): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, }) @asyncio.coroutine def async_setup_platform(hass, config, async_add_devices, discovery_info=None): """Set up the Volumio platform.""" host = config.get(CONF_HOST) port = config.get(CONF_PORT) name = config.get(CONF_NAME) async_add_devices([Volumio(name, host, port, hass)]) class Volumio(MediaPlayerDevice): """Volumio Player Object.""" def __init__(self, name, host, port, hass): """Initialize the media player.""" self.host = host self.port = port self.hass = hass self._url = '{}:{}'.format(host, str(port)) self._name = name self._state = {} self.async_update() self._lastvol = self._state.get('volume', 0) @asyncio.coroutine def send_volumio_msg(self, method, params=None): """Send message.""" url = "http://{}:{}/api/v1/{}/".format(self.host, self.port, method) _LOGGER.debug("URL: %s params: %s", url, params) try: websession = async_get_clientsession(self.hass) response = yield from websession.get(url, params=params) if response.status == 200: data = yield from response.json() else: _LOGGER.error( "Query failed, response code: %s Full message: %s", response.status, response) return False except (asyncio.TimeoutError, aiohttp.ClientError) as error: _LOGGER.error("Failed communicating with Volumio: %s", type(error)) return False try: return data except AttributeError: _LOGGER.error("Received invalid response: %s", data) return False @asyncio.coroutine def async_update(self): """Update state.""" resp = yield from self.send_volumio_msg('getState') if resp is False: return self._state = resp.copy() @property def media_content_type(self): """Content type of current playing media.""" return MEDIA_TYPE_MUSIC @property def state(self): """Return the state of the device.""" status = self._state.get('status', None) if status == 'pause': return STATE_PAUSED elif status == 'play': return STATE_PLAYING else: return STATE_IDLE @property def media_title(self): """Title of current playing media.""" return self._state.get('title', None) @property def media_artist(self): """Artist of current playing media (Music track only).""" return self._state.get('artist', None) @property def media_album_name(self): """Artist of current playing media (Music track only).""" return self._state.get('album', None) @property def media_image_url(self): """Image url of current playing media.""" url = self._state.get('albumart', None) if url is None: return if str(url[0:2]).lower() == 'ht': mediaurl = url else: mediaurl = "http://{}:{}{}".format(self.host, self.port, url) return mediaurl @property def media_seek_position(self): """Time in seconds of current seek position.""" return self._state.get('seek', None) @property def media_duration(self): """Time in seconds of current song duration.""" return self._state.get('duration', None) @property def volume_level(self): """Volume level of the media player (0..1).""" volume = self._state.get('volume', None) if volume is not None: volume = volume / 100 return volume @property def is_volume_muted(self): """Boolean if volume is currently muted.""" return self._state.get('mute', None) @property def name(self): """Return the name of the device.""" return self._name @property def supported_features(self): """Flag of media commands that are supported.""" return SUPPORT_VOLUMIO def async_media_next_track(self): """Send media_next command to media player.""" return self.send_volumio_msg('commands', params={'cmd': 'next'}) def async_media_previous_track(self): """Send media_previous command to media player.""" return self.send_volumio_msg('commands', params={'cmd': 'prev'}) def async_media_play(self): """Send media_play command to media player.""" return self.send_volumio_msg('commands', params={'cmd': 'play'}) def async_media_pause(self): """Send media_pause command to media player.""" if self._state['trackType'] == 'webradio': return self.send_volumio_msg('commands', params={'cmd': 'stop'}) return self.send_volumio_msg('commands', params={'cmd': 'pause'}) def async_set_volume_level(self, volume): """Send volume_up command to media player.""" return self.send_volumio_msg( 'commands', params={'cmd': 'volume', 'volume': int(volume * 100)}) def async_mute_volume(self, mute): """Send mute command to media player.""" mutecmd = 'mute' if mute else 'unmute' if mute: # mute is implemenhted as 0 volume, do save last volume level self._lastvol = self._state['volume'] return self.send_volumio_msg( 'commands', params={'cmd': 'volume', 'volume': mutecmd}) else: return self.send_volumio_msg( 'commands', params={'cmd': 'volume', 'volume': self._lastvol})
32.765258
79
0.631036
a9ab7b1982b1e938678d3ac601ff21b9bda16125
3,683
py
Python
app.py
aikagari/tornado_test
5d5e218df56e46711106cffd2886bdfcabfd8046
[ "MIT" ]
null
null
null
app.py
aikagari/tornado_test
5d5e218df56e46711106cffd2886bdfcabfd8046
[ "MIT" ]
null
null
null
app.py
aikagari/tornado_test
5d5e218df56e46711106cffd2886bdfcabfd8046
[ "MIT" ]
null
null
null
import asyncio from tornado import websocket, web, ioloop import aioredis import os import time status_source_dict = {'\x01': 'IDLE', '\x02': 'ACTIVE', '\x03': 'RECHARGE'} connections = [] last_msg = {} class BaseSocket(websocket.WebSocketHandler): async def open(self): connections.append(self) self.conn = await self.setup_redis() def on_message(self, message): pass def on_close(self): connections.remove(self) def check_origin(self): return True async def setup_redis(self): redis_url = os.environ.get('REDIS_HOST', 'localhost') conn = await aioredis.create_redis(f'redis://{redis_url}') return conn class ListenerApp(BaseSocket): def on_message(self, message): msg_to_resp = self.parse_message(message) self.write_message(msg_to_resp) def parse_message(self, message): msg_to_resp = '' try: message_list = [chr(int(x, 16)) for x in message.split(' ')] header = message_list[0] assert header == '\x01' num_message = ' '.join(str(ord(i)) for i in message_list[1:3]) id_source = ''.join(str(ord(i)) for i in message_list[3:11]) status_source = message_list[11] assert status_source in status_source_dict numfields = ord(message_list[12]) message_data = {} for i in range(0, numfields): key_seq = l[12*i:12*i+8] value_seq =l[12*i+8:12*i+12] key_data = ''.join(str(ord(i)) for i in key_seq) value_data = ''.join(str(ord(i)) for i in value_seq) message_data[key_data] = value_data message_to_check = message[:-1] get_xor_hash(message_to_check) assert xor_data == message[-1] msg_result = '\r\n'.join("{} | {}".format(item[0], item[1]) for item in message_data.items()) last_msg[id_source] = {'time': int(round(time.time() * 1000)), 'num_message': num_message, 'status_source': status_source} self.conn.publish('messages', msg_result) num_to_resp = ' '.join(message_list[1:3]) msg_to_resp = f'\x11 {num_to_resp}' except Exception: msg_to_resp = '\x12 \x00 \x00' xor_hash_resp = get_xor_hash(msg_to_resp) return f'{msg_to_resp} {xor_hash_resp}' class ResponseApp(BaseSocket): async def open(self): await super().open() channel = await self.conn.subscribe('messages') self.channel = channel[0] current_time = int(round(time.time() * 1000)) for key, value in last_msg.items(): last_time = current_time - value['time'] str_to_response = f"[{key}] {value['num_message']} | {status_source_dict[value['status_source']]} | {last_time}\r\n" await self.write_message(str_to_response) asyncio.ensure_future(self.consumer()) async def consumer(self): while await self.channel.wait_message(): message = await self.channel.get(encoding='utf-8') for connection in connections: await connection.write_message(message) def get_xor_hash(message): xor_data = 0 for item in message: xor_data ^= ord(item) return hash(xor_data) if __name__ == '__main__': app_response = web.Application([ (r'/', ResponseApp) ]) app_listener = web.Application([ (r'/', ListenerApp) ]) app_listener.listen(8888) app_response.listen(8889) loop = ioloop.IOLoop.current() loop.start()
32.883929
134
0.594624
01c7f8220b79bd0c492602fc4c7f8f5cb494f650
9,772
py
Python
timml/util.py
raoulcollenteur/timml
1d393e73c03e62b836678d156dec19bd38d64b2e
[ "MIT" ]
null
null
null
timml/util.py
raoulcollenteur/timml
1d393e73c03e62b836678d156dec19bd38d64b2e
[ "MIT" ]
null
null
null
timml/util.py
raoulcollenteur/timml
1d393e73c03e62b836678d156dec19bd38d64b2e
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from .trace import timtracelines, timtraceline plt.rcParams['contour.negative_linestyle'] = 'solid' class PlotTim: def plot(self, win=None, newfig=True, figsize=None, orientation='hor', topfigfrac=0.8): """Plot layout Parameters ---------- win : list or tuple [x1, x2, y1, y2] """ if newfig: plt.figure(figsize=figsize) ax1 = None ax2 = None if orientation == 'both': ax1 = plt.axes([0.125, 0.18 + (1 - topfigfrac) * 0.7, (0.9 - 0.125), topfigfrac * 0.7]) ax2 = plt.axes([0.125, 0.11, (0.9 - 0.125), (1 - topfigfrac) * 0.7], sharex=ax1) elif orientation[:3] == 'hor': ax1 = plt.subplot() elif orientation[:3] == 'ver': ax2 = plt.subplot() else: if orientation == 'both': fig = plt.gcf() ax1 = fig.axes[0] ax2 = fig.axes[1] elif orientation[:3] == 'hor': fig = plt.gcf() ax1 = fig.axes[0] ax2 = None elif orientation[:3] == 'ver': fig = plt.gcf() ax1 = None ax2 = fig.axes[0] if ax1 is not None: plt.sca(ax1) for e in self.elementlist: e.plot() if orientation[:3] == 'hor': plt.axis('scaled') elif orientation == 'both': plt.axis('equal') # cannot be 'scaled' when sharing axes if win is not None: plt.axis(win) if ax2 is not None: plt.sca(ax2) for i in range(self.aq.nlayers): if self.aq.ltype[i] == 'l': plt.axhspan(ymin=self.aq.z[i + 1], ymax=self.aq.z[i], color=[0.8, 0.8, 0.8]) for i in range(1, self.aq.nlayers): if self.aq.ltype[i] == 'a' and self.aq.ltype[i - 1] == 'a': plt.axhspan(ymin=self.aq.z[i], ymax=self.aq.z[i], color=[0.8, 0.8, 0.8]) def contour(self, win, ngr=20, layers=0, levels=20, layout=True, labels=True, decimals=0, color=None, newfig=True, figsize=None, legend=True): """Contour plot Parameters ---------- win : list or tuple [x1, x2, y1, y2] ngr : scalar, tuple or list if scalar: number of grid points in x and y direction if tuple or list: nx, ny, number of grid points in x and y direction layers : integer, list or array layers for which grid is returned levels : integer or array (default 20) levels that are contoured layout : boolean (default True) plot layout of elements labels : boolean (default True) print labels along contours decimals : integer (default 0) number of decimals of labels along contours color : str or list of strings color of contour lines newfig : boolean (default True) create new figure figsize : tuple of 2 values (default is mpl default) size of figure legend : list or boolean (default True) add legend to figure if list of strings: use strings as names in legend """ x1, x2, y1, y2 = win if np.isscalar(ngr): nx = ny = ngr else: nx, ny = ngr layers = np.atleast_1d(layers) xg = np.linspace(x1, x2, nx) yg = np.linspace(y1, y2, ny) h = self.headgrid(xg, yg, layers) if newfig: plt.figure(figsize=figsize) # color if color is None: c = plt.rcParams['axes.prop_cycle'].by_key()['color'] elif type(color) is str: c = len(layers) * [color] elif type(color) is list: c = color if len(c) < len(layers): n = np.ceil(self.aq.naq / len(c)) c = n * c # contour cscollectionlist = [] for i in range(len(layers)): cs = plt.contour(xg, yg, h[i], levels, colors=c[i]) cscollectionlist.append(cs.collections[0]) if labels: fmt = '%1.' + str(decimals) + 'f' plt.clabel(cs, fmt=fmt) if type(legend) is list: plt.legend(cscollectionlist, legend) elif legend: legendlist = ['layer ' + str(i) for i in layers] plt.legend(cscollectionlist, legendlist) plt.axis('scaled') if layout: self.plot(win=[x1, x2, y1, y2], newfig=False) #plt.show() def vcontour(self, win, n, levels, labels=False, decimals=0, color=None, vinterp=True, nudge=1e-6, newfig=True, figsize=None, layout=True): """Vertical contour """ x1, x2, y1, y2 = win h = self.headalongline(np.linspace(x1 + nudge, x2 - nudge, n), np.linspace(y1 + nudge, y2 - nudge, n)) L = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) xg = np.linspace(0, L, n) if vinterp: zg = 0.5 * (self.aq.zaqbot + self.aq.zaqtop) zg = np.hstack((self.aq.zaqtop[0], zg, self.aq.zaqbot[-1])) h = np.vstack((h[0], h, h[-1])) else: zg = np.empty(2 * self.aq.naq) for i in range(self.aq.naq): zg[2 * i] = self.aq.zaqtop[i] zg[2 * i + 1] = self.aq.zaqbot[i] h = np.repeat(h, 2, 0) if newfig: plt.figure(figsize=figsize) cs = plt.contour(xg, zg, h, levels, colors=color) if labels: fmt = '%1.' + str(decimals) + 'f' plt.clabel(cs, fmt=fmt) if layout: self.plot(win=[x1, x2, y1, y2], orientation='ver', newfig=False) def tracelines(self, xstart, ystart, zstart, hstepmax, vstepfrac=0.2, tmax=1e12, nstepmax=100, silent='.', color=None, orientation='hor', win=[-1e30, 1e30, -1e30, 1e30], newfig=False, figsize=None): """Draw trace lines """ if color is None: c = plt.rcParams['axes.prop_cycle'].by_key()['color'] elif type(color) is str: c = self.aq.naq * [color] elif type(color) is list: c = color if len(c) < self.aq.naq: n = int(np.ceil(self.aq.naq / len(c))) c = n * c fig = plt.gcf() assert len(fig.axes) > 0, 'Error: Need to specify axes in figure before invoking tracelines' ax1 = None ax2 = None if orientation == 'both': ax1 = fig.axes[0] ax2 = fig.axes[1] elif orientation[:3] == 'hor': ax1 = fig.axes[0] elif orientation[:3] == 'ver': ax2 = fig.axes[1] xyztlist = [] for i in range(len(xstart)): xyzt, layerlist = timtraceline(self, xstart[i], ystart[i], zstart[i], hstepmax=hstepmax, vstepfrac=vstepfrac, tmax=tmax, nstepmax=nstepmax, silent=silent, win=win, returnlayers=True) if silent == '.': print('.', end='', flush=True) if ax1 is not None: #plt.axes(ax1) color = [c[self.aq.layernumber[i]] if self.aq.ltype[i] == 'a' else 'k' for i in layerlist] points = np.array([xyzt[:,0], xyzt[:,1]]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) lc = LineCollection(segments, colors=color) ax1.add_collection(lc) #ax1.plot(xyzt[:, 0], xyzt[:, 1], color=color) if ax2 is not None: color = [c[self.aq.layernumber[i]] if self.aq.ltype[i] == 'a' else 'k' for i in layerlist] points = np.array([xyzt[:,0], xyzt[:,2]]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) lc = LineCollection(segments, colors=color) ax2.add_collection(lc) ax2.set_ylim(self.aq.z[-1], self.aq.z[0]) def vcontoursf1D(self, x1, x2, nx, levels, labels=False, decimals=0, color=None, nudge=1e-6, newfig=True, figsize=None, layout=True, ax=None): """ Vertical contour for 1D model """ naq = self.aq.naq xflow = np.linspace(x1 + nudge, x2 - nudge, nx) Qx = np.empty((naq, nx)) for i in range(nx): Qx[:, i], Qydump = self.disvec(xflow[i], 0) zflow = np.empty(2 * naq) for i in range(self.aq.naq): zflow[2 * i] = self.aq.zaqtop[i] zflow[2 * i + 1] = self.aq.zaqbot[i] Qx = Qx[::-1] # set upside down Qxgrid = np.empty((2 * naq, nx)) Qxgrid[0] = 0 for i in range(naq - 1): Qxgrid[2 * i + 1] = Qxgrid[2 * i] - Qx[i] Qxgrid[2 * i + 2] = Qxgrid[2 * i + 1] Qxgrid[-1] = Qxgrid[-2] - Qx[-1] Qxgrid = Qxgrid[::-1] # index 0 at top if newfig: fig, ax = plt.subplots(1, 1, figsize=figsize) else: ax=ax cs = ax.contour(xflow, zflow, Qxgrid, levels, colors=color) if labels: fmt = '%1.' + str(decimals) + 'f' plt.clabel(cs, fmt=fmt) #if layout: # self.plot(win=[x1, x2, y1, y2], orientation='ver', newfig=False)
40.04918
106
0.486901
fbc3abfb2de8de62fde84c96b35e81332de95df5
137
py
Python
Utils/Utils.py
dgod1028/SBass_Project
cdfd13a6876ef54621c3486ac89ad3bd50f23158
[ "MIT" ]
null
null
null
Utils/Utils.py
dgod1028/SBass_Project
cdfd13a6876ef54621c3486ac89ad3bd50f23158
[ "MIT" ]
null
null
null
Utils/Utils.py
dgod1028/SBass_Project
cdfd13a6876ef54621c3486ac89ad3bd50f23158
[ "MIT" ]
null
null
null
import pickle def load_object( p): return pickle.load(open(p, "rb")) def save_object( obj, p): pickle.dump(obj, open(p, "wb"))
17.125
37
0.642336
79abf4a0ac2acf21bc4fb786c4af4638105db35a
3,171
py
Python
models_modified.py
atul2099/squad
7901894c0db3aad097a0f61279dff96b142c1b01
[ "MIT" ]
null
null
null
models_modified.py
atul2099/squad
7901894c0db3aad097a0f61279dff96b142c1b01
[ "MIT" ]
null
null
null
models_modified.py
atul2099/squad
7901894c0db3aad097a0f61279dff96b142c1b01
[ "MIT" ]
null
null
null
"""Top-level model classes. Author: Chris Chute (chute@stanford.edu) """ import layers_modified as layers import torch import torch.nn as nn class BiDAF(nn.Module): """Baseline BiDAF model for SQuAD. Based on the paper: "Bidirectional Attention Flow for Machine Comprehension" by Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, Hannaneh Hajishirzi (https://arxiv.org/abs/1611.01603). Follows a high-level structure commonly found in SQuAD models: - Embedding layer: Embed word indices to get word vectors. - Encoder layer: Encode the embedded sequence. - Attention layer: Apply an attention mechanism to the encoded sequence. - Model encoder layer: Encode the sequence again. - Output layer: Simple layer (e.g., fc + softmax) to get final outputs. Args: word_vectors (torch.Tensor): Pre-trained word vectors. hidden_size (int): Number of features in the hidden state at each layer. drop_prob (float): Dropout probability. """ def __init__(self, word_vectors, char_vectors, hidden_size, drop_prob=0., char_channel_size=100, char_channel_width=4): super(BiDAF, self).__init__() self.emb = layers.Embedding(word_vectors=word_vectors, char_vectors=char_vectors, hidden_size=hidden_size, char_channel_size=char_channel_size, char_channel_width=char_channel_width, drop_prob=drop_prob) self.enc = layers.RNNEncoder(input_size=hidden_size, hidden_size=hidden_size, num_layers=1, drop_prob=drop_prob) self.att = layers.BiDAFAttention(hidden_size=2 * hidden_size, drop_prob=drop_prob) self.mod = layers.RNNEncoder(input_size=8 * hidden_size, hidden_size=hidden_size, num_layers=2, drop_prob=drop_prob) self.out = layers.BiDAFOutput(hidden_size=hidden_size, drop_prob=drop_prob) def forward(self, cw_idxs, cc_idxs, qw_idxs, qc_idxs): c_mask = torch.zeros_like(cw_idxs) != cw_idxs q_mask = torch.zeros_like(qw_idxs) != qw_idxs c_len, q_len = c_mask.sum(-1), q_mask.sum(-1) c_emb = self.emb(cw_idxs, cc_idxs) # (batch_size, c_len, hidden_size) q_emb = self.emb(qw_idxs, qc_idxs) # (batch_size, q_len, hidden_size) c_enc = self.enc(c_emb, c_len) # (batch_size, c_len, 2 * hidden_size) q_enc = self.enc(q_emb, q_len) # (batch_size, q_len, 2 * hidden_size) att = self.att(c_enc, q_enc, c_mask, q_mask) # (batch_size, c_len, 8 * hidden_size) mod = self.mod(att, c_len) # (batch_size, c_len, 2 * hidden_size) out = self.out(att, mod, c_mask) # 2 tensors, each (batch_size, c_len) return out
41.723684
123
0.583097
5bdbfabb1867fb7ba328d7dd199b9ffa2be94092
13,897
py
Python
subwabbit/base.py
Venousek/subwabbit
fc04616a51e7d13982f6d462de2c0b17150231fb
[ "BSD-3-Clause" ]
12
2019-06-03T04:10:50.000Z
2021-10-01T18:24:23.000Z
subwabbit/base.py
Venousek/subwabbit
fc04616a51e7d13982f6d462de2c0b17150231fb
[ "BSD-3-Clause" ]
3
2019-10-17T17:57:03.000Z
2021-10-02T07:48:55.000Z
subwabbit/base.py
Venousek/subwabbit
fc04616a51e7d13982f6d462de2c0b17150231fb
[ "BSD-3-Clause" ]
7
2019-09-06T19:15:16.000Z
2021-10-01T18:24:24.000Z
from abc import ABC, abstractmethod from typing import Dict, List, Tuple, Iterable, Any, Optional, Union class VowpalWabbitError(Exception): pass class VowpalWabbitBaseFormatter(ABC): """ Formatter translates structured information about context and items to Vowpal Wabbit's input format: https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Input-format It also can implement reverse translation, from Vowpal Wabbits feature names into human readable feature names. """ @abstractmethod def format_common_features(self, common_features: Any, debug_info: Any = None) -> str: """ Return part of VW line with features that are common for one call of predict/train. This method will run just once per one call of :class:`subwabbit.base.VowpalWabbitBaseModel`'s `predict()` or `train()` method. :param common_features: Features common for all items :param debug_info: Optional dict that can be filled by information useful for debugging :return: Part of line that is common for each item in one call. Returned string has to start with '|' symbol. """ raise NotImplementedError() @abstractmethod def format_item_features(self, common_features: Any, item_features: Any, debug_info: Any = None) -> str: """ Return part of VW line with features specific to each item. This method will run for each item per one call of :class:`subwabbit.base.VowpalWabbitBaseModel`'s `predict()` or `train()` method. .. note:: It is a good idea to cache results of this method. :param common_features: Features common for all items :param item_features: Features for item :param debug_info: Optional dict that can be filled by information useful for debugging :return: Part of line that is specific for item. Depends on whether namespaces are used or not in ``format_common_features`` method: - namespaces are used: returned string has to start with ``'|NAMESPACE_NAME'`` where `NAMESPACE_NAME` is the name of some namespace - namespaces are not used: returned string should not contain '|' symbol """ raise NotImplementedError() # pylint: disable=too-many-arguments,no-self-use def get_formatted_example(self, common_line_part: str, item_line_part: str, label: Optional[float] = None, weight: Optional[float] = None, debug_info: Optional[Dict[Any, Any]] = None): # pylint: disable=unused-argument """ Compose valid VW line from its common and item-dependent parts. :param common_line_part: Part of line that is common for each item in one call. :param item_line_part: Part of line specific for each item :param label: Label of this row :param weight: Optional weight of row :param debug_info: Optional dict that can be filled by information useful for debugging :return: One VW line in input format: https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Input-format """ if label is not None: return ' '.join(( str(label), str(weight) if weight is not None else '', common_line_part, item_line_part )) return ' '.join((common_line_part, item_line_part)) def get_human_readable_explanation(self, explanation_string: str, feature_translator: Any = None) -> List[Dict]: """ Transform explanation string into more readable form. Every feature used for prediction is translated into this structure: .. code-block:: python { # For each feature used in higher interaction there is a 2-tuple 'names': [('Human readable namespace name 1', 'Human readable feature name 1'), ...], 'original_feature_name': 'c^c8*f^f102' # feature name how vowpal sees it, 'hashindex': 123, # Vowpal's internal hash of feature name 'value': 0.123, # value for feature in input line 'weight': -0.534, # weight learned by VW for this feature 'potential': value * weight, 'relative_potential': abs(potential) / sum_of_abs_potentials_for_all_features } :param explanation_string: Explanation string from :func:`~VowpalWabbitBaseModel.explain_vw_line` :param feature_translator: Any object that can help you with translation of feature names into human readable form, for example some database connection. See :func:`~VowpalWabbitBaseFormatter.parse_element` :return: List of dicts, sorted by contribution to final score """ parsed_features = [] potential_sum = 0.0 for feature in [f.split(':') for f in explanation_string.split('\t')]: feature_name = feature[0] hash_index = feature[1] value = float(feature[2]) weight = float(feature[3].split('@')[0]) # quadratic and higher level interactions have multiple features for one weight feature_name_parts = feature_name.split('*') parsed_feature_name_parts = [self.parse_element(el, feature_translator) for el in feature_name_parts] parsed_features.append({ 'names': parsed_feature_name_parts, 'original_feature_name': feature_name, 'hashindex': int(hash_index), 'value': value, 'weight': weight, 'potential': value * weight }) potential_sum += abs(value * weight) if potential_sum == 0: # can happen in case all features are unknown potential_sum = 1 for parsed_feature in parsed_features: parsed_feature['relative_potential'] = abs(parsed_feature['potential'] / potential_sum) # type: ignore return list(sorted(parsed_features, key=lambda f: f['relative_potential'], reverse=True)) # pylint: disable=invalid-name def get_human_readable_explanation_html(self, explanation_string: str, feature_translator: Any = None, max_rows: Optional[int] = None): """ Visualize importance of features in Jupyter notebook. :param explanation_string: Explanation string from :func:`~VowpalWabbitBaseModel.explain_vw_line` :param feature_translator: Any object that can help you with translation, e.g. some database connection. :param max_rows: Maximum number of most important features. None return all used features. :return: `IPython.core.display.HTML` """ try: from IPython.core.display import HTML except ImportError: raise ImportError('Please install IPython to use this method') explanation = self.get_human_readable_explanation(explanation_string, feature_translator) rows = [] for row_number, feature in enumerate(explanation): if max_rows is not None and (row_number + 1) > max_rows: break feature_name = '' for name in feature['names']: if feature_name: feature_name += ''' <span style="color: grey; margin-left: 10px; margin-right: 10px;">IN COMBINATION WITH</span> ''' feature_name += name[0] feature_name += ': <i>{}</i>'.format(name[1]) rows.append( ''' <tr> <td> <div style="display: block; width: 100px; border: solid 1px; -webkit-border-radius: 5px; -moz-border-radius: 5px; border-radius: 5px;"> <div style="display: block; width: {width}%; height: 20px; background-color: {color}; overflow: hidden;"></div> </div> </td> <td>{potential:.4f}</td> <td> {feature_value:.4f} </td> <td> {feature_weight:.4f} </td> <td> {feature_name} </td> </tr> '''.format( width=feature['relative_potential'] * 100, color='green' if feature['potential'] > 0 else 'red', potential=feature['potential'], feature_value=feature['value'], feature_weight=feature['weight'], feature_name=feature_name ) ) return HTML(''' <table> <thead> <tr> <th>Relative potential</th> <th>Potential</th> <th>Value</th> <th>Weight</th> <th>Feature name</th> </tr> </thead> <tbody> ''' + ''.join(rows) + ''' </tbody> </table>''') # pylint: disable=unused-argument,no-self-use def parse_element(self, element: str, feature_translator: Any = None) -> Tuple[str, str]: """ This method is supposed to translate namespace name and feature name to human readable form. For example, element can be "a_item_id^i123" and result can be ('Item ID', 'News of the day: ID of item is 123') :param element: namespace name and feature name, e.g. a_item_id^i123 :param feature_translator: Any object that can help you with translation, e.g. some database connection :return: tuple(human understandable namespace name, human understandable feature name) """ splitted = element.split('^') if len(splitted) == 1: return '', splitted[0] return splitted[0], splitted[1] class VowpalWabbitDummyFormatter(VowpalWabbitBaseFormatter): """ Formatter that assumes that either common features and item features are already formatted VW input format strings. """ def format_common_features(self, common_features: str, debug_info: Optional[Dict[Any, Any]] = None) -> str: return common_features def format_item_features(self, common_features: Any, item_features: str, debug_info: Optional[Dict[Any, Any]] = None) -> str: return item_features class VowpalWabbitBaseModel(ABC): """ Declaration of Vowpal Wabbit model interface. """ def __init__(self, formatter: VowpalWabbitBaseFormatter): self.formatter = formatter super().__init__() # pylint: disable=too-many-arguments @abstractmethod def predict( self, common_features: Any, items_features: Iterable[Any], timeout: Optional[float] = None, debug_info: Any = None, metrics: Optional[Dict] = None, detailed_metrics: Optional[Dict] = None ) -> Iterable[Union[float,str]]: """ Transforms iterable with item features to iterator of predictions. :param common_features: Features common for all items :param items_features: Iterable with features for each item :param timeout: Optionally specify how much time in seconds is desired for computing predictions. In case timeout is passed, returned iterator can has less items that items features iterable. :param debug_info: Some object that can be filled by information useful for debugging. :param metrics: Optional dict that is populated with some metrics that are good to monitor. :param detailed_metrics: Optional dict with more detailed (and more time consuming) metrics that are good for debugging and profiling. :return: Iterable with predictions for each item from ``items_features`` """ raise NotImplementedError() # pylint: disable=too-many-arguments @abstractmethod def train( self, common_features: Any, items_features: Iterable[Any], labels: Iterable[float], weights: Iterable[Optional[float]], debug_info: Any = None ) -> None: """ Transform features, label and weight into VW line format and send it to Vowpal. :param common_features: Features common for all items :param items_features: Iterable with features for each item :param labels: Iterable with same length as items features with label for each item :param weights: Iterable with same length as items features with optional weight for each item :param debug_info: Some object that can be filled by information useful for debugging """ raise NotImplementedError() @abstractmethod def explain_vw_line(self, vw_line: str, link_function: bool = False): """ Uses VW audit mode to inspect weights used for prediction. Audit mode has to be turned on by passing ``audit_mode=True`` to constructor. :param vw_line: String in VW line format :param link_function: If your model use link function, pass True :return: (raw prediction without use of link function, explanation string) """ raise NotImplementedError()
45.415033
120
0.593941
16c92621e4747e30ba53fb4c1306c488f52ef2ef
1,290
py
Python
textGen.py
JackToaster/Reassuring-Parable-Generator
50a86793dfe81337c457a2ee373cfeb71af98c4a
[ "MIT" ]
47
2017-06-12T03:51:15.000Z
2021-06-15T04:59:55.000Z
textGen.py
bigDonJuan/Reassuring-Parable-Generator
50a86793dfe81337c457a2ee373cfeb71af98c4a
[ "MIT" ]
2
2017-07-11T18:56:06.000Z
2017-07-26T02:44:39.000Z
textGen.py
bigDonJuan/Reassuring-Parable-Generator
50a86793dfe81337c457a2ee373cfeb71af98c4a
[ "MIT" ]
5
2017-06-12T07:17:40.000Z
2021-03-14T00:11:50.000Z
import time from config import config def fixFormat(input_string): return input_string #evaluate and replace a string def evaluatePhrase(inputString, config): if inputString.find('{') == -1: return inputString else: index1 = inputString.find('{') index2 = inputString.find('}') key = inputString[index1 + 1:index2] #if the key is !, it's a subject if key == '!': phrase = config.get_subject() else: phrase = config.get_phrase(key) inputString = inputString[:index1] + phrase + inputString[index2 + 1:] inputString = fixFormat(inputString) return evaluatePhrase(inputString, config) #generate a phrase def gen_phrase(config): output_string = config.get_phrase('starter') return evaluatePhrase(output_string, config) filename = input("Enter config filename to use for text generation:") loaded_config = config(filename) number_of_outputs = int(input('Enter number of strings to generate:')) current_time = time.time() for i in range(0,number_of_outputs): loaded_config.create_subjects() print(gen_phrase(loaded_config)) time_dif = time.time() - current_time print('Generated ' + str(number_of_outputs) + ' strings in ' + str(time_dif) + " seconds.")
29.318182
91
0.68062
c63b4459240ef0c1227f2dbef865bd2309e344cb
1,606
py
Python
workspacePrior/ParsedTwitterScripts/AddRetweetsBotCSV.py
sai6kiran/TwitterBotFarms
cf6bfddda9fac1e27477186fd4f4b086ac711781
[ "MIT" ]
null
null
null
workspacePrior/ParsedTwitterScripts/AddRetweetsBotCSV.py
sai6kiran/TwitterBotFarms
cf6bfddda9fac1e27477186fd4f4b086ac711781
[ "MIT" ]
null
null
null
workspacePrior/ParsedTwitterScripts/AddRetweetsBotCSV.py
sai6kiran/TwitterBotFarms
cf6bfddda9fac1e27477186fd4f4b086ac711781
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import csv import pandas as pd import time import pdb #Debugger Library #Load main csv file into a pandas datframe. The dataframe is essentially an array containing sub dataframes. The sub dataframes contain 2000 tweets [rows] each. This is done using "chunksize" = 2000. df = pd.read_csv("/root/.encrypted/.pythonSai/ira_tweets_csv_hashed.csv", sep=",", header=None, usecols=[0,1,18,19,20], chunksize=2000, skiprows=1, names=["tweetid","userid","is_retweet","retweet_userid","retweet_tweetid"]) #Create a new dataframe that will only contain the tweets [rows] that were retweets from main file. Each tweet [row] has the originator tweet tweet id, originator tweet userid, its tweet tweet id, its tweet userid, and isretweet, that is a boolean [True, False] of whether the tweet was a retweet. df_lst = pd.DataFrame(columns=["tweetid","userid","is_retweet","retweet_userid","retweet_tweetid"]) pd.set_option('display.max_columns', 100) #Iterating through each sub dataframe inside main dataframe. for df_ in df: #pdb.set_trace() #To start debugger #Log start time of parsing a sub dataframe of 2000 tweets. t0 = time.time() #Map all tweets that were retweets to new dataframe. df_lst = df_.loc[df_["is_retweet"].map(lambda x: x==True)]["retweet_userid"].map(lambda x: oba.append(x)) #Write the new dataframe to a csv file. df_lst.to_csv('my_parsed.csv', mode='a', header=False) #Log end time of parsing the sub dataframe of 2000 tweets. t1 = time.time() #print total time completed to run iteration. print(t1-t0)
51.806452
298
0.729141
ca31d138d1d8a59348afc47059befc8b1266f420
9,247
py
Python
tests/pytests/test_issues.py
bhagathsagar/RediSearch
6baec33dc4cc594947c074768991bcf353fe07db
[ "MIT", "Ruby", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
tests/pytests/test_issues.py
bhagathsagar/RediSearch
6baec33dc4cc594947c074768991bcf353fe07db
[ "MIT", "Ruby", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
tests/pytests/test_issues.py
bhagathsagar/RediSearch
6baec33dc4cc594947c074768991bcf353fe07db
[ "MIT", "Ruby", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
from common import getConnectionByEnv, waitForIndex, sortedResults, toSortedFlatList def test_1282(env): env.expect('FT.CREATE idx ON HASH SCHEMA txt1 TEXT').equal('OK') env.expect('FT.ADD idx doc1 1.0 FIELDS txt1 foo').equal('OK') # optional search for new word would crash server env.expect('FT.SEARCH idx', '~foo').equal([1L, 'doc1', ['txt1', 'foo']]) env.expect('FT.SEARCH idx', '~bar ~foo').equal([1L, 'doc1', ['txt1', 'foo']]) def test_1304(env): env.expect('FT.CREATE idx SCHEMA txt1 TEXT').equal('OK') env.expect('FT.EXPLAIN idx -20*').equal('PREFIX{-20*}\n') env.expect('FT.EXPLAIN idx -\\20*').equal('NOT{\n PREFIX{20*}\n}\n') def test_1414(env): env.skipOnCluster() env.expect('FT.CREATE idx SCHEMA txt1 TEXT').equal('OK') env.expect('ft.add idx doc 1 fields foo hello bar world').ok() env.expect('ft.search idx * limit 0 1234567').error().contains('LIMIT exceeds maximum of 1000000') env.expect('FT.CONFIG set MAXSEARCHRESULTS -1').equal('OK') env.expect('ft.search idx * limit 0 1234567').equal([1L, 'doc', ['foo', 'hello', 'bar', 'world']]) def test_1502(env): conn = getConnectionByEnv(env) conn.execute_command('HSET', 'a', 'bar', 'hello') env.expect('FT.CREATE idx1 SKIPINITIALSCAN SCHEMA foo TEXT').ok() env.expect('FT.CREATE idx2 SKIPINITIALSCAN SCHEMA foo TEXT').ok() env.expect('ft.search idx1 *').equal([0L]) env.expect('ft.search idx2 *').equal([0L]) env.expect('FT.ALTER idx1 SKIPINITIALSCAN SCHEMA ADD bar TEXT').ok() env.expect('FT.ALTER idx2 SCHEMA ADD bar TEXT').ok() waitForIndex(env, 'idx2') env.expect('ft.search idx1 *').equal([0L]) env.expect('ft.search idx2 *').equal([1L, 'a', ['bar', 'hello']]) def test_1601(env): conn = getConnectionByEnv(env) conn.execute_command('FT.CREATE', 'idx:movie', 'SCHEMA', 'title', 'TEXT') conn.execute_command('HSET', 'movie:1', 'title', 'Star Wars: Episode I - The Phantom Menace') conn.execute_command('HSET', 'movie:2', 'title', 'Star Wars: Episodes II - Attack of the Clones') conn.execute_command('HSET', 'movie:3', 'title', 'Star Wars: Episode III - Revenge of the Sith') res = env.cmd('ft.search idx:movie @title:(episode) withscores nocontent') env.assertEqual(res[0], 3L) def testMultiSortby(env): conn = getConnectionByEnv(env) conn.execute_command('FT.CREATE', 'idx', 'SCHEMA', 't1', 'TEXT', 'SORTABLE', 't2', 'TEXT', 'SORTABLE', 't3', 'TEXT', 'SORTABLE') conn.execute_command('FT.ADD', 'idx', '1', '1', 'FIELDS', 't1', 'foo', 't2', 'bar', 't3', 'baz') conn.execute_command('FT.ADD', 'idx', '2', '1', 'FIELDS', 't1', 'bar', 't2', 'foo', 't3', 'baz') sortby_t1 = [2L, '2', '1'] sortby_t2 = [2L, '1', '2'] env.expect('ft.search idx foo nocontent sortby t1 asc').equal(sortby_t1) env.expect('ft.search idx foo nocontent sortby t2 asc').equal(sortby_t2) env.expect('ft.search idx foo nocontent sortby t1 sortby t3').error()\ .contains('Multiple SORTBY steps are not allowed. Sort multiple fields in a single step') #TODO: allow multiple sortby steps #env.expect('ft.search idx foo nocontent sortby t1 sortby t3').equal(sortby_t1) #env.expect('ft.search idx foo nocontent sortby t2 sortby t3').equal(sortby_t2) def test_1667(env): conn = getConnectionByEnv(env) conn.execute_command('FT.CREATE', 'idx', 'SCHEMA', 'tag', 'TAG', 'text', 'TEXT') env.expect('ft.search idx @tag:{a}').equal([0L]) env.expect('ft.search idx @tag:{b}').equal([0L]) conn.execute_command('HSET', 'doc', 'tag', 'a,b') conn.execute_command('HSET', 'doc1', 'tag', 'abc') # test single stopword env.expect('ft.search idx @tag:{a}').equal([1L, 'doc', ['tag', 'a,b']]) env.expect('ft.search idx @tag:{b}').equal([1L, 'doc', ['tag', 'a,b']]) env.expect('ft.search idx @tag:{c}').equal([0L]) # test stopword in list env.expect('ft.search idx @tag:{a|c}').equal([1L, 'doc', ['tag', 'a,b']]) env.expect('ft.search idx @tag:{c|a}').equal([1L, 'doc', ['tag', 'a,b']]) env.expect('ft.search idx @tag:{c|a|c}').equal([1L, 'doc', ['tag', 'a,b']]) # test stopword with prefix env.expect('ft.search idx @tag:{ab*}').equal([1L, 'doc1', ['tag', 'abc']]) env.expect('ft.search idx @tag:{abc*}').equal([1L, 'doc1', ['tag', 'abc']]) # ensure regular text field conn.execute_command('HSET', 'doc_a', 'text', 'a') conn.execute_command('HSET', 'doc_b', 'text', 'b') env.expect('ft.search idx a').equal([0L]) env.expect('ft.search idx b').equal([1L, 'doc_b', ['text', 'b']]) def test_MOD_865(env): conn = getConnectionByEnv(env) args_list = ['FT.CREATE', 'idx', 'SCHEMA'] for i in range(1025): args_list.extend([i, 'NUMERIC', 'SORTABLE']) env.expect(*args_list).error().contains('Schema is limited to 1024 fields') env.expect('FT.DROPINDEX', 'idx') args_list = ['FT.CREATE', 'idx', 'SCHEMA'] for i in range(129): args_list.extend([i, 'TEXT']) env.expect(*args_list).error().contains('Schema is limited to 128 TEXT fields') env.expect('FT.DROPINDEX', 'idx') args_list = ['FT.CREATE', 'idx', 'SCHEMA'] for i in range(2): args_list.extend(['txt', 'TEXT']) env.expect(*args_list).error().contains('Duplicate field in schema - txt') env.expect('FT.DROPINDEX', 'idx') def test_issue1826(env): # Stopword query is case sensitive. conn = getConnectionByEnv(env) conn.execute_command('FT.CREATE', 'idx', 'SCHEMA', 't', 'TEXT') conn.execute_command('HSET', 'doc', 't', 'boy with glasses') env.expect('FT.SEARCH', 'idx', 'boy with glasses').equal([1L, 'doc', ['t', 'boy with glasses']]) env.expect('FT.SEARCH', 'idx', 'boy With glasses').equal([1L, 'doc', ['t', 'boy with glasses']]) def test_issue1834(env): # Stopword query is case sensitive. conn = getConnectionByEnv(env) conn.execute_command('FT.CREATE', 'idx', 'SCHEMA', 't', 'TEXT') conn.execute_command('HSET', 'doc', 't', 'hell hello') env.expect('FT.SEARCH', 'idx', 'hell|hello', 'HIGHLIGHT').equal([1L, 'doc', ['t', '<b>hell</b> <b>hello</b>']]) def test_issue1880(env): # order of iterator in intersect is optimized by function env.skipOnCluster() conn = getConnectionByEnv(env) env.cmd('FT.CONFIG', 'SET', '_PRINT_PROFILE_CLOCK', 'false') conn.execute_command('FT.CREATE', 'idx', 'SCHEMA', 't', 'TEXT') conn.execute_command('HSET', 'doc1', 't', 'hello world') conn.execute_command('HSET', 'doc2', 't', 'hello') excepted_res = ['Type', 'INTERSECT', 'Counter', 1L, 'Child iterators', ['Type', 'TEXT', 'Term', 'world', 'Counter', 1L, 'Size', 1L], ['Type', 'TEXT', 'Term', 'hello', 'Counter', 1L, 'Size', 2L]] res1 = env.cmd('FT.PROFILE', 'idx', 'SEARCH', 'QUERY', 'hello world') res2 = env.cmd('FT.PROFILE', 'idx', 'SEARCH', 'QUERY', 'world hello') # both queries return `world` iterator before `hello` env.assertEqual(res1[1][3][1], excepted_res) env.assertEqual(res2[1][3][1], excepted_res) # test with a term which does not exist excepted_res = ['Type', 'INTERSECT', 'Counter', 0L, 'Child iterators', None, ['Type', 'TEXT', 'Term', 'world', 'Counter', 0L, 'Size', 1L], ['Type', 'TEXT', 'Term', 'hello', 'Counter', 0L, 'Size', 2L]] res3 = env.cmd('FT.PROFILE', 'idx', 'SEARCH', 'QUERY', 'hello new world') env.assertEqual(res3[1][3][1], excepted_res) def test_issue1932(env): conn = getConnectionByEnv(env) conn.execute_command('FT.CREATE', 'idx', 'SCHEMA', 't', 'TEXT') env.expect('FT.AGGREGATE', 'idx', '*', 'LIMIT', '100000000000000000', '100000000000', 'SORTBY', '1', '@t').error() \ .contains('OFFSET exceeds maximum of 1000000') def test_issue1988(env): conn = getConnectionByEnv(env) conn.execute_command('FT.CREATE', 'idx', 'SCHEMA', 't', 'TEXT') conn.execute_command('HSET', 'doc1', 't', 'foo') env.expect('FT.SEARCH', 'idx', 'foo').equal([1L, 'doc1', ['t', 'foo']]) env.expect('FT.SEARCH', 'idx', 'foo', 'WITHSCORES').equal([1L, 'doc1', '1', ['t', 'foo']]) env.expect('FT.SEARCH', 'idx', 'foo', 'SORTBY' , 't').equal([1L, 'doc1', ['t', 'foo']]) env.expect('FT.SEARCH', 'idx', 'foo', 'WITHSCORES', 'SORTBY' , 't').equal([1L, 'doc1', '1', ['t', 'foo']]) def test_MOD1266(env): # Test parsing failure conn = getConnectionByEnv(env) conn.execute_command('FT.CREATE', 'idx', 'SCHEMA', 'n1', 'NUMERIC', 'SORTABLE', 'n2', 'NUMERIC', 'SORTABLE') conn.execute_command('HSET', 'doc1', 'n1', '1', 'n2', '1') conn.execute_command('HSET', 'doc2', 'n1', '2', 'n2', '2') conn.execute_command('HSET', 'doc2', 'n1', 'foo', 'n2', '-999') conn.execute_command('HSET', 'doc3', 'n1', '3', 'n2', '3') env.expect('FT.SEARCH', 'idx', '*', 'sortby', 'n2', 'DESC', 'RETURN', '1', 'n2') \ .equal([2L, 'doc3', ['n2', '3'], 'doc1', ['n2', '1']]) # Test fetching failure. An object cannot be indexed conn.execute_command('FT.CREATE', 'jsonidx', 'ON', 'JSON', 'SCHEMA', '$.t', 'TEXT') conn.execute_command('JSON.SET', '1', '$', r'{"t":"Redis"}') env.expect('FT.SEARCH', 'jsonidx', '*').equal([1L, '1', ['$', '{"t":"Redis"}']]) env.expect('FT.SEARCH', 'jsonidx', 'redis').equal([1L, '1', ['$', '{"t":"Redis"}']]) conn.execute_command('JSON.SET', '1', '$.t', r'{"inner_t":"Redis"}') env.expect('FT.SEARCH', 'jsonidx', '*').equal([0L])
48.161458
130
0.622364
14fc46c8980b1dbc95155fe5277b9f23aed5bd3c
6,304
py
Python
acs_test_suites/OTC/libs/testlib/base/base_step.py
wangji1/test-framework-and-suites-for-android
59564f826f205fe7fab64f45b88b1a6dde6900af
[ "Apache-2.0" ]
8
2018-09-14T01:34:01.000Z
2021-07-01T02:00:23.000Z
acs_test_suites/OTC/libs/testlib/base/base_step.py
wangji1/test-framework-and-suites-for-android
59564f826f205fe7fab64f45b88b1a6dde6900af
[ "Apache-2.0" ]
3
2019-09-10T11:39:50.000Z
2019-10-10T08:26:22.000Z
acs_test_suites/OTC/libs/testlib/base/base_step.py
wangji1/test-framework-and-suites-for-android
59564f826f205fe7fab64f45b88b1a6dde6900af
[ "Apache-2.0" ]
9
2018-10-11T15:14:03.000Z
2021-02-17T11:37:20.000Z
#!/usr/bin/env python """ Copyright (C) 2018 Intel Corporation ? Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at ? http://www.apache.org/licenses/LICENSE-2.0 ? Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ? SPDX-License-Identifier: Apache-2.0 """ import os import sys from testlib.base.base_utils import Resolution, BlockingError, FailedError, TimeoutError from testlib.utils import logger # Resolution, BlockingError, FailedError are moved to testlib.base.base_util.py for maintenance class step(object): """ Generic class for a test step Should be extended by each test step Members: blocking -- step is blocking or not. Defaults to True critical -- test step importance. Defaults to True if True Test will stop at this step passm -- message printed to STDOUT if step is Passed errorm -- message printed to STDOUT in case of error step_data -- used to pass data to next steps will be returned by execute_step method resolution -- one of PASS, FAILED, BLOCKED, TIMEOUT verbose -- verbose mode for script issues investigation. Defaults to False """ blocking = False critical = True step_data = None resolution = None verbose = False logger = None with_flush = False def __init__(self, debug_info=True, **kwargs): super(step, self).__init__() self.passm = self.__class__.__name__ + " - [PASSED]" self.errorm = self.__class__.__name__ + " - [FAILED]" self.debug_info = debug_info if "blocking" in kwargs: self.blocking = kwargs['blocking'] if "critical" in kwargs: self.critical = kwargs['critical'] if "print_error" in kwargs: self.errorm = self.errorm + " -> " + kwargs['print_error'] if "print_pass" in kwargs: self.passm = kwargs['print_pass'] if "verbose" in kwargs: self.verbose = kwargs['verbose'] if "with_flush" in kwargs: self.with_flush = kwargs['with_flush'] if "logger" in kwargs: self.logger = kwargs['logger'] else: if "LOG_PATH" in os.environ: self.testlib_log_path = os.environ["LOG_PATH"] else: import testlib self.testlib_log_path = os.path.dirname(testlib.__file__) + "/logs/" self.logger = logger.testlib_log(log_path=self.testlib_log_path, log_name="testlib_default") def __call__(self, **kwargs): """will execute step""" return self.execute_step() def execute_step(self): """ method to be called for each step check is optional """ try: self.do() self.check() except TimeoutError, e: self.resolution = Resolution.TIMEOUT raise e except Exception: if self.debug_info: self.log_error_info() raise return self.step_data def do(self): """must overwrite this method to implement an action""" raise NotImplementedError('Must implement "do" method for each step') def check(self): """ it does the verification defined in check_condition on verification failure --> - if blocking it will raise a BlockingError - if failed it will: - raise a FailedError for critical steps - print an error message for non critical steps """ check_result = self.check_condition() if check_result is not None: if check_result: self.resolution = Resolution.PASS if self.logger: self.logger.info(self.passm) else: print self.passm else: if self.blocking: self.resolution = Resolution.BLOCKED if self.logger: self.logger.error(self.errorm) raise BlockingError(self.errorm) else: self.resolution = Resolution.FAIL if self.critical: if self.logger: self.logger.error(self.errorm) raise FailedError(self.errorm) else: if self.debug_info: self.log_error_info() if self.logger: self.logger.error(self.errorm) else: print self.errorm if self.with_flush: sys.stdout.flush() else: self.resolution = Resolution.PASS self.passm = "[ Unchecked ] " + self.passm if self.logger: self.logger.info(self.passm) else: print self.passm def log_error_info(self): """ Overwrite this method to save test artifacts in case of failed tests. """ return None def check_condition(self): """ overwrite this method to return test step specific verification should return True or False if not overwritten check will not be performed """ return None def set_passm(self, pass_string): """ Helps you customize pass message Example: step.set_passm("OK") """ self.passm = self.__class__.__name__ + " {0} - [PASSED]".format(pass_string) def set_errorm(self, particular_string, error_string): """ Helps you customize error message Example: step.set_errorm("OK", "Pressing OK button failed") """ self.errorm = self.__class__.__name__ + " {0} - [FAILED] -> {1}".format(particular_string, error_string)
34.637363
112
0.577253
48436779d8b00b815c6ec79abd982f3b01a3dc18
17,797
py
Python
marconi/queues/storage/base.py
andrew-vant/marconi
9afe7ba27efe597cca8baac77fd0aa387c75001a
[ "Apache-2.0" ]
null
null
null
marconi/queues/storage/base.py
andrew-vant/marconi
9afe7ba27efe597cca8baac77fd0aa387c75001a
[ "Apache-2.0" ]
null
null
null
marconi/queues/storage/base.py
andrew-vant/marconi
9afe7ba27efe597cca8baac77fd0aa387c75001a
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2013 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements the DriverBase abstract class for Marconi storage drivers.""" import abc import six DEFAULT_QUEUES_PER_PAGE = 10 DEFAULT_MESSAGES_PER_PAGE = 10 DEFAULT_SHARDS_PER_PAGE = 10 DEFAULT_MESSAGES_PER_CLAIM = 10 @six.add_metaclass(abc.ABCMeta) class DriverBase(object): """Base class for both data and control plane drivers :param conf: Configuration containing options for this driver. :type conf: `oslo.config.ConfigOpts` :param cache: Cache instance to use for reducing latency for certain lookups. :type cache: `marconi.common.cache.backends.BaseCache` """ def __init__(self, conf, cache): self.conf = conf self.cache = cache @six.add_metaclass(abc.ABCMeta) class DataDriverBase(DriverBase): """Interface definition for storage drivers. Data plane storage drivers are responsible for implementing the core functionality of the system. Connection information and driver-specific options are loaded from the config file or the shard catalog. :param conf: Configuration containing options for this driver. :type conf: `oslo.config.ConfigOpts` :param cache: Cache instance to use for reducing latency for certain lookups. :type cache: `marconi.common.cache.backends.BaseCache` """ def __init__(self, conf, cache): super(DataDriverBase, self).__init__(conf, cache) @abc.abstractmethod def is_alive(self): """Check whether the storage is ready.""" raise NotImplementedError @abc.abstractproperty def queue_controller(self): """Returns the driver's queue controller.""" raise NotImplementedError @abc.abstractproperty def message_controller(self): """Returns the driver's message controller.""" raise NotImplementedError @abc.abstractproperty def claim_controller(self): """Returns the driver's claim controller.""" raise NotImplementedError @six.add_metaclass(abc.ABCMeta) class ControlDriverBase(DriverBase): """Interface definition for control plane storage drivers. Storage drivers that work at the control plane layer allow one to modify aspects of the functionality of the system. This is ideal for administrative purposes. Allows access to the shard registry through a catalogue and a shard controller. :param conf: Configuration containing options for this driver. :type conf: `oslo.config.ConfigOpts` :param cache: Cache instance to use for reducing latency for certain lookups. :type cache: `marconi.common.cache.backends.BaseCache` """ @abc.abstractproperty def catalogue_controller(self): """Returns the driver's catalogue controller.""" raise NotImplementedError @abc.abstractproperty def shards_controller(self): """Returns storage's shard management controller.""" raise NotImplementedError class ControllerBase(object): """Top-level class for controllers. :param driver: Instance of the driver instantiating this controller. """ def __init__(self, driver): self.driver = driver @six.add_metaclass(abc.ABCMeta) class Queue(ControllerBase): """This class is responsible for managing queues. Queue operations include CRUD, monitoring, etc. Storage driver implementations of this class should be capable of handling high workloads and huge numbers of queues. """ @abc.abstractmethod def list(self, project=None, marker=None, limit=DEFAULT_QUEUES_PER_PAGE, detailed=False): """Base method for listing queues. :param project: Project id :param marker: The last queue name :param limit: (Default 10) Max number of queues to return :param detailed: Whether metadata is included :returns: An iterator giving a sequence of queues and the marker of the next page. """ raise NotImplementedError @abc.abstractmethod def get_metadata(self, name, project=None): """Base method for queue metadata retrieval. :param name: The queue name :param project: Project id :returns: Dictionary containing queue metadata :raises: DoesNotExist """ raise NotImplementedError @abc.abstractmethod def create(self, name, project=None): """Base method for queue creation. :param name: The queue name :param project: Project id :returns: True if a queue was created and False if it was updated. """ raise NotImplementedError @abc.abstractmethod def exists(self, name, project=None): """Base method for testing queue existence. :param name: The queue name :param project: Project id :returns: True if a queue exists and False if it does not. """ raise NotImplementedError @abc.abstractmethod def set_metadata(self, name, metadata, project=None): """Base method for updating a queue metadata. :param name: The queue name :param metadata: Queue metadata as a dict :param project: Project id :raises: DoesNotExist """ raise NotImplementedError @abc.abstractmethod def delete(self, name, project=None): """Base method for deleting a queue. :param name: The queue name :param project: Project id """ raise NotImplementedError @abc.abstractmethod def stats(self, name, project=None): """Base method for queue stats. :param name: The queue name :param project: Project id :returns: Dictionary with the queue stats """ raise NotImplementedError @six.add_metaclass(abc.ABCMeta) class Message(ControllerBase): """This class is responsible for managing message CRUD.""" @abc.abstractmethod def list(self, queue, project=None, marker=None, limit=DEFAULT_MESSAGES_PER_PAGE, echo=False, client_uuid=None, include_claimed=False): """Base method for listing messages. :param queue: Name of the queue to get the message from. :param project: Project id :param marker: Tail identifier :param limit: (Default 10) Max number of messages to return. :type limit: Maybe int :param echo: (Default False) Boolean expressing whether or not this client should receive its own messages. :param client_uuid: A UUID object. Required when echo=False. :param include_claimed: omit claimed messages from listing? :type include_claimed: bool :returns: An iterator giving a sequence of messages and the marker of the next page. """ raise NotImplementedError @abc.abstractmethod def first(self, queue, project=None, sort=1): """Get first message in the queue (including claimed). :param queue: Name of the queue to list :param sort: (Default 1) Sort order for the listing. Pass 1 for ascending (oldest message first), or -1 for descending (newest message first). :returns: First message in the queue, or None if the queue is empty """ raise NotImplementedError @abc.abstractmethod def get(self, queue, message_id, project=None): """Base method for getting a message. :param queue: Name of the queue to get the message from. :param project: Project id :param message_id: Message ID :returns: Dictionary containing message data :raises: DoesNotExist """ raise NotImplementedError @abc.abstractmethod def bulk_get(self, queue, message_ids, project=None): """Base method for getting multiple messages. :param queue: Name of the queue to get the message from. :param project: Project id :param message_ids: A sequence of message IDs. :returns: An iterable, yielding dicts containing message details """ raise NotImplementedError @abc.abstractmethod def post(self, queue, messages, client_uuid, project=None): """Base method for posting one or more messages. Implementations of this method should guarantee and preserve the order, in the returned list, of incoming messages. :param queue: Name of the queue to post message to. :param messages: Messages to post to queue, an iterable yielding 1 or more elements. An empty iterable results in undefined behavior. :param client_uuid: A UUID object. :param project: Project id :returns: List of message ids """ raise NotImplementedError @abc.abstractmethod def delete(self, queue, message_id, project=None, claim=None): """Base method for deleting a single message. :param queue: Name of the queue to post message to. :param message_id: Message to be deleted :param project: Project id :param claim: Claim this message belongs to. When specified, claim must be valid and message_id must belong to it. """ raise NotImplementedError @abc.abstractmethod def bulk_delete(self, queue, message_ids, project=None): """Base method for deleting multiple messages. :param queue: Name of the queue to post message to. :param message_ids: A sequence of message IDs to be deleted. :param project: Project id """ raise NotImplementedError @six.add_metaclass(abc.ABCMeta) class Claim(ControllerBase): @abc.abstractmethod def get(self, queue, claim_id, project=None): """Base method for getting a claim. :param queue: Name of the queue this claim belongs to. :param claim_id: The claim id :param project: Project id :returns: (Claim's metadata, claimed messages) :raises: DoesNotExist """ raise NotImplementedError @abc.abstractmethod def create(self, queue, metadata, project=None, limit=DEFAULT_MESSAGES_PER_CLAIM): """Base method for creating a claim. :param queue: Name of the queue this claim belongs to. :param metadata: Claim's parameters to be stored. :param project: Project id :param limit: (Default 10) Max number of messages to claim. :returns: (Claim ID, claimed messages) """ raise NotImplementedError @abc.abstractmethod def update(self, queue, claim_id, metadata, project=None): """Base method for updating a claim. :param queue: Name of the queue this claim belongs to. :param claim_id: Claim to be updated :param metadata: Claim's parameters to be updated. :param project: Project id """ raise NotImplementedError @abc.abstractmethod def delete(self, queue, claim_id, project=None): """Base method for deleting a claim. :param queue: Name of the queue this claim belongs to. :param claim_id: Claim to be deleted :param project: Project id """ raise NotImplementedError @six.add_metaclass(abc.ABCMeta) class ShardsBase(ControllerBase): """A controller for managing shards.""" @abc.abstractmethod def list(self, marker=None, limit=DEFAULT_SHARDS_PER_PAGE, detailed=False): """Lists all registered shards. :param marker: used to determine which shard to start with :type marker: six.text_type :param limit: (Default 10) Max number of results to return :type limit: int :param detailed: whether to include options :type detailed: bool :returns: A list of shards - name, weight, uri :rtype: [{}] """ raise NotImplementedError @abc.abstractmethod def create(self, name, weight, uri, options=None): """Registers a shard entry. :param name: The name of this shard :type name: six.text_type :param weight: the likelihood that this shard will be used :type weight: int :param uri: A URI that can be used by a storage client (e.g., pymongo) to access this shard. :type uri: six.text_type :param options: Options used to configure this shard :type options: dict """ raise NotImplementedError @abc.abstractmethod def get(self, name, detailed=False): """Returns a single shard entry. :param name: The name of this shard :type name: six.text_type :param detailed: Should the options data be included? :type detailed: bool :returns: weight, uri, and options for this shard :rtype: {} :raises: ShardDoesNotExist if not found """ raise NotImplementedError @abc.abstractmethod def exists(self, name): """Returns a single shard entry. :param name: The name of this shard :type name: six.text_type :returns: True if the shard exists :rtype: bool """ raise NotImplementedError @abc.abstractmethod def delete(self, name): """Removes a shard entry. :param name: The name of this shard :type name: six.text_type :rtype: None """ raise NotImplementedError @abc.abstractmethod def update(self, name, **kwargs): """Updates the weight, uris, and/or options of this shard :param name: Name of the shard :type name: text :param kwargs: one of: `uri`, `weight`, `options` :type kwargs: dict :raises: ShardDoesNotExist """ raise NotImplementedError @abc.abstractmethod def drop_all(self): """Deletes all shards from storage.""" raise NotImplementedError @six.add_metaclass(abc.ABCMeta) class CatalogueBase(ControllerBase): """A controller for managing the catalogue. The catalogue is responsible for maintaining a mapping between project.queue entries to their shard. """ @abc.abstractmethod def list(self, project): """Returns a list of queue entries from the catalogue associated with this project. :param project: The project to use when filtering through queue entries. :type project: six.text_type :returns: [{'project': ..., 'queue': ..., 'shard': ...},] :rtype: [dict] """ raise NotImplementedError @abc.abstractmethod def get(self, project, queue): """Returns the shard identifier for the queue registered under this project. :param project: Namespace to search for the given queue :type project: six.text_type :param queue: The name of the queue to search for :type queue: six.text_type :returns: {'shard': ...} :rtype: dict :raises: QueueNotMapped """ raise NotImplementedError @abc.abstractmethod def exists(self, project, queue): """Determines whether the given queue exists under project. :param project: Namespace to check. :type project: six.text_type :param queue: str - Particular queue to check for :type queue: six.text_type :return: True if the queue exists under this project :rtype: bool """ @abc.abstractmethod def insert(self, project, queue, shard): """Creates a new catalogue entry, or updates it if it already existed. :param project: str - Namespace to insert the given queue into :type project: six.text_type :param queue: str - The name of the queue to insert :type queue: six.text_type :param shard: shard identifier to associate this queue with :type shard: six.text_type """ raise NotImplementedError @abc.abstractmethod def delete(self, project, queue): """Removes this entry from the catalogue. :param project: The namespace to search for this queue :type project: six.text_type :param queue: The queue name to remove :type queue: six.text_type """ raise NotImplementedError @abc.abstractmethod def update(self, project, queue, shards=None): """Updates the shard identifier for this queue :param project: Namespace to search :type project: six.text_type :param queue: The name of the queue :type queue: six.text_type :param shards: The name of the shard where this project/queue lives. :type shards: six.text_type :raises: QueueNotMapped """ raise NotImplementedError @abc.abstractmethod def drop_all(self): """Drops all catalogue entries from storage.""" raise NotImplementedError
31.222807
78
0.643704
1a09aaa9e9d157b76bb9c97209f91769a6afb1db
1,759
py
Python
wlanpi_commands/speedtest.py
nigelbowden/wlanpi-chat-bot
cedab0e83d6e33d47f66c1a3be202564f95ac408
[ "MIT" ]
null
null
null
wlanpi_commands/speedtest.py
nigelbowden/wlanpi-chat-bot
cedab0e83d6e33d47f66c1a3be202564f95ac408
[ "MIT" ]
null
null
null
wlanpi_commands/speedtest.py
nigelbowden/wlanpi-chat-bot
cedab0e83d6e33d47f66c1a3be202564f95ac408
[ "MIT" ]
null
null
null
from .command import Command import os import subprocess from utils.emojis import graph, hour_glass class Speedtest(Command): def __init__(self, telegram_object, conf_obj): super().__init__(telegram_object, conf_obj) self.command_name = "speedtest" def run(self, args_list): # send status msg chat_id = self.telegram_object.chat_id self.telegram_object.send_msg("{} Running speedtest...please wait {}".format(graph(), hour_glass()), chat_id) # perform speedtest speedtest_info = [] speedtest_cmd = "speedtest | egrep -w \"Testing from|Download|Upload\" | sed -r 's/Testing from.*?\(/My IP: /g; s/\)\.\.\.//g; s/Download/D/g; s/Upload/U/g; s/bit\/s/bps/g'" try: speedtest_output = subprocess.check_output(speedtest_cmd, shell=True).decode().strip() speedtest_info = speedtest_output.split('\n') except subprocess.CalledProcessError as exc: output = exc.output.decode() error = ["Err: Speedtest error", output] print(error) return False if len(speedtest_info) == 0: speedtest_info.append("No output sorry") return self._render(speedtest_info) def help(self): """ Return the help page for this command """ short_msg = "Run an Ookla speedtest from probe." long_msg = """Speedtest: This command runs a spedtest to the Ookla speedtest service from the probe. It provides the upload and download speed from the probe to the Internet. (This test requires your probe to have Internet access)""" if self.display_mode == "compact": return short_msg else: return long_msg
34.490196
181
0.630472
88edd213aca8b71e3060d9d6dd952f7b197bfab3
3,500
py
Python
src/zsl/application/modules/web/web_context_module.py
AtteqCom/zsl
0d418ef957c9780263b1031dbc59482cd974bc04
[ "MIT" ]
2
2017-05-17T08:08:52.000Z
2019-03-25T00:24:51.000Z
src/zsl/application/modules/web/web_context_module.py
AtteqCom/zsl
0d418ef957c9780263b1031dbc59482cd974bc04
[ "MIT" ]
100
2017-01-11T13:43:11.000Z
2022-02-10T09:27:18.000Z
src/zsl/application/modules/web/web_context_module.py
AtteqCom/zsl
0d418ef957c9780263b1031dbc59482cd974bc04
[ "MIT" ]
1
2017-05-10T10:27:01.000Z
2017-05-10T10:27:01.000Z
from __future__ import absolute_import, division, print_function, unicode_literals from builtins import * import logging from typing import Any import click from injector import Binder, provides, singleton from zsl import Config, Zsl, inject from zsl.application.initialization_context import InitializationContext from zsl.application.modules.cli_module import ZslCli from zsl.application.modules.context_module import DefaultContextModule, default_initializers from zsl.application.modules.web.cors import CORS_CONFIGURATION_NAME, CORSConfiguration from zsl.interface.web.performers.task import create_task_mapping from zsl.utils.injection_helper import simple_bind class WebInitializer(object): """Initialize the web application.""" @staticmethod def initialize(): """ Import in this form is necessary so that we avoid the unwanted behavior and immediate initialization of the application objects. This makes the initialization procedure run in the time when it is necessary and has every required resources. """ from zsl.interface.web.performers.default import create_not_found_mapping from zsl.interface.web.performers.resource import create_resource_mapping create_not_found_mapping() create_resource_mapping() #: Initializers used in unit web applications web_initializers = default_initializers + (WebInitializer,) class WebCli(object): @inject(zsl_cli=ZslCli) def __init__(self, zsl_cli): # type: (ZslCli) -> None @zsl_cli.cli.group(help='Web related tasks.') def web(): pass @web.command(help="Run web server and serve the application") @click.option('--host', '-h', help="host to bind to", default='127.0.0.1') @click.option('--port', '-p', help="port to bind to", default=5000) @inject(web_handler=WebHandler) def run(web_handler, host, port): # type: (WebHandler, str, int)->None web_handler.run_web(host=host, port=port) self._web = web @property def web(self): return self._web class WebHandler(object): @inject(flask=Zsl) def run_web(self, flask, host='127.0.0.1', port=5000, **options): # type: (Zsl, str, int, **Any)->None """Alias for Flask.run""" return flask.run( host=flask.config.get('FLASK_HOST', host), port=flask.config.get('FLASK_PORT', port), debug=flask.config.get('DEBUG', False), **options ) class WebContextModule(DefaultContextModule): """Adds web application context to current configuration.""" def _create_context(self): logging.getLogger(__name__).debug("Creating web context.") return InitializationContext(initializers=web_initializers) @provides(interface=WebCli, scope=singleton) def provide_web_cli(self): return WebCli() @provides(interface=WebHandler, scope=singleton) def provide_web_handler(self): return WebHandler() @provides(interface=CORSConfiguration, scope=singleton) @inject(config=Config) def provide_cors_configuration(self, config): # type: (Config)->CORSConfiguration return config.get(CORS_CONFIGURATION_NAME, CORSConfiguration()) def configure(self, binder): # type: (Binder) -> None super(WebContextModule, self).configure(binder) simple_bind(binder, WebCli, singleton) create_task_mapping()
33.980583
119
0.697143
fd5981b17d5f559e447a63bf1ddade523794b2db
5,077
py
Python
geosnap/tests/test_clusters.py
WawNun/geosnap
9838498b89d42c94fef73ee2983dd385dab17345
[ "BSD-3-Clause" ]
14
2018-09-19T22:34:44.000Z
2019-04-03T17:18:22.000Z
geosnap/tests/test_clusters.py
WawNun/geosnap
9838498b89d42c94fef73ee2983dd385dab17345
[ "BSD-3-Clause" ]
55
2018-10-01T18:31:25.000Z
2019-04-08T16:23:46.000Z
geosnap/tests/test_clusters.py
WawNun/geosnap
9838498b89d42c94fef73ee2983dd385dab17345
[ "BSD-3-Clause" ]
5
2018-10-02T21:41:46.000Z
2019-01-25T02:59:16.000Z
from geosnap import Community import numpy as np from geosnap import DataStore from numpy.testing import assert_array_equal, assert_array_almost_equal reno = Community.from_census(msa_fips="39900", datastore=DataStore()) columns = [ "median_household_income", "p_poverty_rate", "p_unemployment_rate", ] # Aspatial Clusters def test_gm(): r = reno.cluster(columns=columns, method="gaussian_mixture", best_model=True) assert len(r.gdf.gaussian_mixture.unique()) >= 5 def test_ward(): r = reno.cluster(columns=columns, method="ward") assert len(r.gdf.ward.unique()) == 7 def test_spectral(): r = reno.cluster(columns=columns, method="spectral") assert len(r.gdf.spectral.unique()) == 7 def test_kmeans(): r = reno.cluster(columns=columns, method="kmeans") assert len(r.gdf.kmeans.unique()) == 7 def test_aff_prop(): r = reno.cluster( columns=columns, method="affinity_propagation", cluster_kwargs=dict(preference=-100), ) assert len(r.gdf.affinity_propagation.unique()) == 3 def test_hdbscan(): r = reno.cluster(columns=columns, method="hdbscan") assert len(r.gdf.hdbscan.unique()) >= 4 def test_ward_pooling_unique(): r = reno.cluster( columns=columns, method="ward", pooling="unique", model_colname="ward_unique" ) labels = r.gdf.ward_unique.dropna().astype(str).values assert_array_equal( labels, np.array(['5', '2', '5', '0', '0', '0', '0', '4', '4', '5', '4', '2', '0', '0', '1', '5', '2', '5', '2', '0', '0', '1', '1', '0', '2', '1', '1', '1', '0', '1', '1', '5', '5', '1', '4', '3', '3', '1', '1', '4', '1', '5', '0', '0', '4', '4', '2', '4', '0', '0', '2', '1', '0', '0', '5', '0', '1', '1', '0', '1', '0', '3', '1', '1', '5', '4', '0', '5', '0', '0', '0', '0', '1', '2', '2', '1', '0', '0', '1', '0', '4', '1', '4', '4', '4', '4', '0', '2', '1', '2', '4', '4', '4', '4', '1', '0', '4', '0', '5', '5', '5', '2', '2', '0', '2', '5', '0', '1', '1', '0', '4', '1', '0', '5', '0', '5', '5', '1', '4', '5', '0', '3', '2', '5', '1', '3', '4', '4', '1', '1', '0', '0', '2', '1', '4', '4', '3', '4', '4', '1', '2', '2', '1', '3', '4', '1', '0', '0', '1', '0', '1', '4', '4', '2', '4', '3', '5', '0', '4', '3', '5', '0', '1', '1', '1', '1', '5', '0', '1', '1', '0', '0', '5', '1', '0', '1', '1', '2', '5', '1', '4', '4', '3', '1', '3', '0', '0', '1', '3', '1', '2', '0', '0', '2', '2', '1', '4', '2', '2', '2', '4', '5', '0', '1', '1', '1', '3', '0', '1', '0', '0', '4', '3', '0', '0', '0', '4', '0', '4', '3', '1', '0', '4', '0', '3'], dtype=object) ) # Spatial Clusters def test_spenc(): r = reno.regionalize(columns=columns, method="spenc") assert len(r.gdf.spenc.unique()) >= 6 def test_maxp_count(): r = reno.regionalize( columns=columns, method="max_p", region_kwargs=dict(initial=10) ) assert len(r.gdf.max_p.unique()) >= 8 def test_maxp_thresh(): r = reno.regionalize( columns=columns, method="max_p", region_kwargs=dict(initial=10), threshold_variable="n_total_pop", threshold=10000, ) assert len(r.gdf.max_p.unique()) >= 8 def test_ward_spatial(): r = reno.regionalize(columns=columns, method="ward_spatial", n_clusters=7) assert len(r.gdf.ward_spatial.unique()) == 8 def test_skater(): r = reno.regionalize(columns=columns, method="skater", n_clusters=10) assert len(r.gdf.skater.unique()) == 11 def test_azp(): r = reno.regionalize(columns=columns, method="azp", n_clusters=7) assert len(r.gdf.azp.unique()) == 8 # Test seeding def test_seed(): # Ward is deterministic np.random.seed(12345) r = reno.cluster(columns=columns, method="ward") card = r.gdf.groupby("ward").count()["geoid"].values np.testing.assert_array_equal(card, [27, 83, 19, 51, 38, 7]) def test_random_state(): # no seeds reno = Community.from_census(msa_fips="39900", datastore=DataStore()) r1 = reno.cluster(columns=columns, method="kmeans", n_clusters=5) r2 = reno.cluster(columns=columns, method="kmeans", n_clusters=5) card1 = r1.gdf.groupby("kmeans").count()["geoid"].values card1.sort() card2 = r2.gdf.groupby("kmeans").count()["geoid"].values card2.sort() # test that the cardinalities are different np.testing.assert_raises( AssertionError, np.testing.assert_array_equal, card1, card2 ) # seeds reno = Community.from_census(msa_fips="39900", datastore=DataStore()) seed = 10 r1 = reno.cluster(columns=columns, method="kmeans", n_clusters=5, random_state=seed) r2 = reno.cluster(columns=columns, method="kmeans", n_clusters=5, random_state=seed) card1 = r1.gdf.groupby("kmeans").count()["geoid"].values card1.sort() card2 = r2.gdf.groupby("kmeans").count()["geoid"].values card2.sort() # test that the cardinalities are identical np.testing.assert_array_equal(card1, card2)
30.584337
88
0.553673
5a1c1de93f29ecbb1fd93c684fcf1cef51cfa52e
15,215
py
Python
private/templates/CRMT/controllers.py
arnavsharma93/eden
2e559a277c4144ba4f4cdcd108460d025923671d
[ "MIT" ]
null
null
null
private/templates/CRMT/controllers.py
arnavsharma93/eden
2e559a277c4144ba4f4cdcd108460d025923671d
[ "MIT" ]
null
null
null
private/templates/CRMT/controllers.py
arnavsharma93/eden
2e559a277c4144ba4f4cdcd108460d025923671d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from os import path from urllib import urlencode try: import json # try stdlib (Python 2.6) except ImportError: try: import simplejson as json # try external module except: import gluon.contrib.simplejson as json # fallback to pure-Python module from gluon import current, URL from gluon.html import * #from gluon.storage import Storage from s3.s3filter import S3FilterForm, S3FilterString, S3OptionsFilter from s3.s3resource import S3FieldSelector, S3URLQuery from s3.s3summary import S3Summary from s3.s3utils import s3_auth_user_represent_name, S3CustomController THEME = "CRMT" # ============================================================================= class index(S3CustomController): """ Custom Home Page """ def __call__(self): T = current.T db = current.db s3db = current.s3db request = current.request response = current.response s3 = response.s3 output = {} output["title"] = response.title = current.deployment_settings.get_system_name() # Map auth = current.auth is_logged_in = auth.is_logged_in() callback = None if is_logged_in: # Show the User's Coalition's Polygon org_group_id = auth.user.org_group_id if org_group_id: # Lookup Coalition Name table = s3db.org_group row = db(table.id == org_group_id).select(table.name, limitby=(0, 1) ).first() if row: callback = '''S3.gis.show_map(); var layer,layers=S3.gis.maps.default_map.layers; for(var i=0,len=layers.length;i<len;i++){ layer=layers[i]; if(layer.name=='%s'){layer.setVisibility(true)}}''' % row.name if not callback: # Show all Coalition Polygons callback = '''S3.gis.show_map(); var layer,layers=S3.gis.maps.default_map.layers; for(var i=0,len=layers.length;i<len;i++){ layer=layers[i]; if(layer.name=='All Coalitions'){layer.setVisibility(true)}} ''' gis = current.gis config = gis.get_config() config.zoom = 8 map = gis.show_map(width=770, height=295, callback=callback, catalogue_layers=True, collapsed=True, save=False, ) output["map"] = map # Description of available data from s3db.cms import S3CMS for item in response.menu: item["cms"] = S3CMS.resource_content(module = item["c"], resource = item["f"]) # Site Activity Log resource = s3db.resource("s3_audit") resource.add_filter(S3FieldSelector("~.method") != "delete") orderby = "s3_audit.timestmp desc" list_fields = ["id", "method", "user_id", "tablename", "record_id", ] #current.deployment_settings.ui.customize_s3_audit() db.s3_audit.user_id.represent = s3_auth_user_represent_name list_id = "log" datalist, numrows, ids = resource.datalist(fields=list_fields, start=None, limit=4, list_id=list_id, orderby=orderby, layout=s3.render_log) # Placeholder filter_form = DIV(_class="filter_form") if numrows == 0: # Empty table or just no match? from s3.s3crud import S3CRUD table = resource.table if "deleted" in table: available_records = db(table.deleted != True) else: available_records = db(table._id > 0) if available_records.select(table._id, limitby=(0, 1)).first(): msg = DIV(S3CRUD.crud_string(resource.tablename, "msg_no_match"), _class="empty") else: msg = DIV(S3CRUD.crud_string(resource.tablename, "msg_list_empty"), _class="empty") data = msg else: # Render the list ajaxurl = URL(c="default", f="audit", args="datalist_f.dl") popup_url = URL(c="default", f="audit", args="datalist.popup") dl = datalist.html(ajaxurl=ajaxurl, pagesize=4, popup_url=popup_url, popup_title=T("Updates"), ) data = dl if is_logged_in and org_group_id: # Add a Filter filter_widgets = [S3OptionsFilter("user_id$org_group_id", label = "", # Can't just use "" as this is then omitted from rendering options = {"*": T("All"), org_group_id: T("My Community"), }, multiple = False, ), ] filter_submit_url = URL(c="default", f="index") filter_ajax_url = URL(c="default", f="audit", args=["filter.options"]) filter_form = S3FilterForm(filter_widgets, filter_manager = False, formstyle = filter_formstyle, clear = False, submit = True, ajax = True, url = filter_submit_url, ajaxurl = filter_ajax_url, _class = "filter-form", _id = "%s-filter-form" % list_id ) filter_form = filter_form.html(resource, request.get_vars, target=list_id, ) output["updates"] = data output["filter_form"] = filter_form # Add JavaScript appname = request.application debug = s3.debug scripts_append = s3.scripts.append if debug: # Infinite Scroll doesn't make sense here, but currently required by dataLists.js scripts_append("/%s/static/scripts/jquery.infinitescroll.js" % appname) scripts_append("/%s/static/scripts/jquery.viewport.js" % appname) scripts_append("/%s/static/scripts/S3/s3.dataLists.js" % appname) else: scripts_append("/%s/static/scripts/S3/s3.dataLists.min.js" % appname) self._view(THEME, "index.html") return output # ============================================================================= def filter_formstyle(row_id, label, widget, comment, hidden=False): """ Custom Formstyle for FilterForm @param row_id: HTML id for the row @param label: the label @param widget: the form widget @param comment: the comment @param hidden: whether the row should initially be hidden or not """ if hidden: _class = "advanced hide" else: _class= "" if label: return DIV(label, widget, _id=row_id, _class=_class) else: return DIV(widget, _id=row_id, _class=_class) # ============================================================================= class filters(S3CustomController): """ Custom controller to manage saved filters """ def __call__(self): """ Main entry point """ # Authorization (user must be logged in) auth = current.auth permissions = auth.permission if not auth.user: permissions.fail() fmt = permissions.format if current.request.env.request_method == "POST" and fmt != "dl": return self.update() pe_id = auth.user.pe_id s3 = current.response.s3 # Filter f = S3FieldSelector("pe_id") == pe_id s3.filter = f # List Fields current.s3db.configure("pr_filter", list_fields = ["title", "resource", "url", "query"], list_layout = self.render_filter, orderby = "resource") # Page length s3.dl_pagelength = 10 # Data list current.request.args = ["datalist.%s" % fmt] output = current.rest_controller("pr", "filter", list_ajaxurl = URL(f="index", args="filters.dl")) # Title and view T = current.T if fmt != "dl": output["title"] = T("Saved Filters") self._view(THEME, "filters.html") # Script for inline-editing of filter title options = {"cssclass": "jeditable-input", "tooltip": str(T("Click to edit"))} script = '''$('.jeditable').editable('%s',%s)''' % \ (URL(args="filters"), json.dumps(options)) s3.jquery_ready.append(script) return output # ------------------------------------------------------------------------- @classmethod def render_filter(cls, list_id, item_id, resource, rfields, record): """ Custom dataList item renderer for 'Saved Filters' @param list_id: the HTML ID of the list @param item_id: the HTML ID of the item @param resource: the S3Resource to render @param rfields: the S3ResourceFields to render @param record: the record as dict """ record_id = record["pr_filter.id"] item_class = "thumbnail" raw = record._row resource_name = raw["pr_filter.resource"] resource = current.s3db.resource(resource_name) T = current.T # Resource title crud_strings = current.response.s3.crud_strings.get(resource.tablename) if crud_strings: resource_name = crud_strings.title_list else: resource_name = string.capwords(resource.name, "_") # Filter title title = record["pr_filter.title"] # Filter Query and Summary URLs fstring = S3FilterString(resource, raw["pr_filter.query"]) query = fstring.represent() links = cls.summary_urls(resource, raw["pr_filter.url"], fstring.get_vars) actions = [] if links: if "map" in links: actions.append(A(I(" ", _class="icon icon-globe"), _title=T("Open Map"), _href=links["map"])) if "table" in links: actions.append(A(I(" ", _class="icon icon-list"), _title=T("Open Table"), _href=links["table"])) if "chart" in links: actions.append(A(I(" ", _class="icon icon-list"), _title=T("Open Chart"), _href=links["chart"])) # Render the item item = DIV(DIV(DIV(actions, _class="action-bar fleft"), SPAN(T("%(resource)s Filter") % \ dict(resource=resource_name), _class="card-title"), DIV(A(I(" ", _class="icon icon-remove-sign"), _title=T("Delete this Filter"), _class="dl-item-delete"), _class="edit-bar fright"), _class="card-header"), DIV(DIV(H5(title, _id="filter-title-%s" % record_id, _class="media-heading jeditable"), DIV(query), _class="media-body"), _class="media"), _class=item_class, _id=item_id) return item # ------------------------------------------------------------------------- def update(self): """ Simple ajax method to update a saved filter title """ post_vars = current.request.post_vars record_id = post_vars["id"].rsplit("-", 1)[-1] new_title = post_vars["value"] if new_title: ftable = current.s3db.pr_filter success = current.db(ftable.id==record_id) \ .update(title=new_title) else: success = False if success: return new_title else: raise HTTP(400) # ------------------------------------------------------------------------- @staticmethod def summary_urls(resource, url, filters): """ Construct the summary tabs URLs for a saved filter. @param resource: the S3Resource @param url: the filter page URL @param filters: the filter GET vars """ links = {} if not url: return links get_vars = S3URLQuery.parse_url(url) get_vars.pop("t", None) get_vars.pop("w", None) get_vars.update(filters) list_vars = [] for (k, v) in get_vars.items(): if v is None: continue values = v if type(v) is list else [v] for value in values: if value is not None: list_vars.append((k, value)) base_url = url.split("?", 1)[0] summary_config = S3Summary._get_config(resource) tab_idx = 0 for section in summary_config: if section.get("common"): continue section_id = section["name"] tab_vars = list_vars + [("t", str(tab_idx))] links[section["name"]] = "%s?%s" % (base_url, urlencode(tab_vars)) tab_idx += 1 return links # END =========================================================================
37.383292
108
0.455012
5a888c40b74a3b4e893bb69ea1069e0f5cec5f25
2,084
py
Python
src/raiden_libs/contract_info.py
karlb/raiden-services
6f77784395b15ffb612b47bd4c88268cdff01da2
[ "MIT" ]
null
null
null
src/raiden_libs/contract_info.py
karlb/raiden-services
6f77784395b15ffb612b47bd4c88268cdff01da2
[ "MIT" ]
null
null
null
src/raiden_libs/contract_info.py
karlb/raiden-services
6f77784395b15ffb612b47bd4c88268cdff01da2
[ "MIT" ]
null
null
null
import sys from typing import Dict, List, Tuple import structlog from eth_utils import decode_hex from raiden.utils.typing import Address, BlockNumber, ChainID from raiden_contracts.contract_manager import ( ContractManager, contracts_precompiled_path, get_contracts_deployment_info, ) log = structlog.get_logger(__name__) CONTRACT_MANAGER = ContractManager(contracts_precompiled_path()) def get_contract_addresses_and_start_block( chain_id: ChainID, contracts: List[str], address_overwrites: Dict[str, Address], contracts_version: str = None, ) -> Tuple[Dict[str, Address], BlockNumber]: """ Returns contract addresses and start query block for a given chain and contracts version. The default contracts can be overwritten by the additional parameters. Args: chain_id: The chain id to look for deployed contracts. contracts: The list of contracts which should be considered address_overwrites: Dict of addresses which should be used instead of the ones in the requested deployment. contracts_version: The version of the contracts to use. Returns: A dictionary with the contract addresses and start block for the given information """ contract_data = get_contracts_deployment_info(chain_id=chain_id, version=contracts_version) if not contract_data: log.error( "No deployed contracts were found at the default registry", contracts_version=contracts_version, ) sys.exit(1) # Get deployed addresses for those contracts which have no overwrites addresses = { c: address_overwrites.get(c, Address(decode_hex(contract_data["contracts"][c]["address"]))) for c in contracts } # Set start block to zero if any contract addresses are overwritten if any(address_overwrites.values()): start_block = BlockNumber(0) else: start_block = BlockNumber( max(0, min(contract_data["contracts"][c]["block_number"] for c in contracts)) ) return addresses, start_block
34.733333
99
0.721209
1fd6fd94690cc893e6df64d26e6776ddc66866b1
5,451
py
Python
selectable/base.py
zeehio/django-selectable
40c44559320a98229091b56c034e145eb77e24af
[ "BSD-2-Clause" ]
null
null
null
selectable/base.py
zeehio/django-selectable
40c44559320a98229091b56c034e145eb77e24af
[ "BSD-2-Clause" ]
null
null
null
selectable/base.py
zeehio/django-selectable
40c44559320a98229091b56c034e145eb77e24af
[ "BSD-2-Clause" ]
null
null
null
"Base classes for lookup creation." from __future__ import unicode_literals import json import operator import re from functools import reduce from django.conf import settings from django.core.paginator import Paginator, InvalidPage, EmptyPage from django.core.urlresolvers import reverse from django.core.serializers.json import DjangoJSONEncoder from django.http import HttpResponse from django.db.models import Q from django.utils.encoding import smart_text from django.utils.html import conditional_escape from django.utils.translation import ugettext as _ from selectable.forms import BaseLookupForm __all__ = ( 'LookupBase', 'ModelLookup', ) class JsonResponse(HttpResponse): "HttpResponse subclass for returning JSON data." def __init__(self, *args, **kwargs): kwargs['content_type'] = 'application/json' super(JsonResponse, self).__init__(*args, **kwargs) class LookupBase(object): "Base class for all django-selectable lookups." form = BaseLookupForm response = JsonResponse def _name(cls): app_name = cls.__module__.split('.')[-2].lower() class_name = cls.__name__.lower() name = '%s-%s' % (app_name, class_name) return name name = classmethod(_name) def _url(cls): return reverse('selectable-lookup', args=[cls.name()]) url = classmethod(_url) def get_query(self, request, term): return [] def get_item_label(self, item): return smart_text(item) def get_item_id(self, item): return smart_text(item) def get_item_value(self, item): return smart_text(item) def get_item(self, value): return value def create_item(self, value): raise NotImplemented() def format_item(self, item): "Construct result dictionary for the match item." result = { 'id': self.get_item_id(item), 'value': self.get_item_value(item), 'label': self.get_item_label(item), } for key in settings.SELECTABLE_ESCAPED_KEYS: if key in result: result[key] = conditional_escape(result[key]) return result def paginate_results(self, results, options): "Return a django.core.paginator.Page of results." limit = options.get('limit', settings.SELECTABLE_MAX_LIMIT) paginator = Paginator(results, limit) page = options.get('page', 1) try: results = paginator.page(page) except (EmptyPage, InvalidPage): results = paginator.page(paginator.num_pages) return results def results(self, request): "Match results to given term and return the serialized HttpResponse." results = {} form = self.form(request.GET) if form.is_valid(): options = form.cleaned_data term = options.get('term', '') raw_data = self.get_query(request, term) results = self.format_results(raw_data, options) content = self.serialize_results(results) return self.response(content) def format_results(self, raw_data, options): ''' Returns a python structure that later gets serialized. raw_data full list of objects matching the search term options a dictionary of the given options ''' page_data = self.paginate_results(raw_data, options) results = {} meta = options.copy() meta['more'] = _('Show more results') if page_data and page_data.has_next(): meta['next_page'] = page_data.next_page_number() if page_data and page_data.has_previous(): meta['prev_page'] = page_data.previous_page_number() results['data'] = [self.format_item(item) for item in page_data.object_list] results['meta'] = meta return results def serialize_results(self, results): "Returns serialized results for sending via http." return json.dumps(results, cls=DjangoJSONEncoder, ensure_ascii=False) class ModelLookup(LookupBase): "Lookup class for easily defining lookups based on Django models." model = None filters = {} search_fields = () def get_query(self, request, term): qs = self.get_queryset() if term: search_filters = [] if self.search_fields: for field in self.search_fields: search_filters.append(Q(**{field: term})) qs = qs.filter(reduce(operator.or_, search_filters)) return qs def get_queryset(self): try: qs = self.model._default_manager.get_queryset() except AttributeError: # Django <= 1.5. qs = self.model._default_manager.get_query_set() if self.filters: qs = qs.filter(**self.filters) return qs def get_item_id(self, item): return item.pk def get_item(self, value): item = None if value: try: item = self.get_queryset().get(pk=value) except (ValueError, self.model.DoesNotExist): item = None return item def create_item(self, value): data = {} if self.search_fields: field_name = re.sub(r'__\w+$', '', self.search_fields[0]) if field_name: data = {field_name: value} return self.model(**data)
30.971591
84
0.629242
7e5a23d85e5f844ea598e7a01274c0dc95b781aa
293
py
Python
domain/model/remote_account/remote_account.py
agiledragon/transfer-money-python
a8f7520c37f75e098623e58e269d3fccf11cb205
[ "MIT" ]
5
2019-08-07T05:53:39.000Z
2021-11-18T07:02:02.000Z
domain/model/remote_account/remote_account.py
agiledragon/transfer-money-python
a8f7520c37f75e098623e58e269d3fccf11cb205
[ "MIT" ]
null
null
null
domain/model/remote_account/remote_account.py
agiledragon/transfer-money-python
a8f7520c37f75e098623e58e269d3fccf11cb205
[ "MIT" ]
5
2019-08-07T05:53:53.000Z
2020-05-18T16:45:54.000Z
from domain.model.base.aggregate_root import AggregateRoot from domain.model.comm_role.account_info import AccountInfo class RemoteAccount(AggregateRoot): def __init__(self, account_id): AggregateRoot.__init__(self, account_id) self.account_info = AccountInfo(account_id)
36.625
59
0.795222
4aeac305a6f98a219baa617d4da0a5583920d685
1,803
py
Python
hiector/ssrdd/utils/box/bbox_np.py
sentinel-hub/hiector
95102c1fcfa63d127a389262e9d569e3aa3495cc
[ "MIT" ]
3
2022-03-15T11:19:27.000Z
2022-03-24T15:59:49.000Z
hiector/ssrdd/utils/box/bbox_np.py
sentinel-hub/hiector
95102c1fcfa63d127a389262e9d569e3aa3495cc
[ "MIT" ]
null
null
null
hiector/ssrdd/utils/box/bbox_np.py
sentinel-hub/hiector
95102c1fcfa63d127a389262e9d569e3aa3495cc
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # File : bbox_np.py # Author : Kai Ao # Email : capino627@163.com # Date : 2020/12/12 11:08 # # This file is part of Rotation-Decoupled Detector. # https://github.com/Capino512/pytorch-rotation-decoupled-detector # Distributed under MIT License. import numpy as np def bbox_switch(bbox, in_type, out_type): # 'xyxy', 'xywh' if in_type == "xyxy" and out_type == "xywh": bbox = np.concatenate([(bbox[..., 0:2] + bbox[..., 2:4]) / 2, bbox[..., 2:4] - bbox[..., 0:2]], axis=-1) elif in_type == "xywh" and out_type == "xyxy": bbox = np.concatenate([bbox[..., 0:2] - bbox[..., 2:4] / 2, bbox[..., 0:2] + bbox[..., 2:4] / 2], axis=-1) return bbox def xywha2xy4(xywha): # a represents the angle(degree), clockwise, a=0 along the X axis x, y, w, h, a = xywha corner = np.array([[-w / 2, -h / 2], [w / 2, -h / 2], [w / 2, h / 2], [-w / 2, h / 2]]) a = np.deg2rad(a) transform = np.array([[np.cos(a), -np.sin(a)], [np.sin(a), np.cos(a)]]) return transform.dot(corner.T).T + [x, y] def xy42xywha(xy4, flag=0): # bbox(4x2) represents a rectangle # flag=0, 0 <= a < 180 # flag=1, 0 <= a < 180, w >= h # flag=2, -45 <= a < 45 x, y = np.mean(xy4, axis=0) diff01 = xy4[0] - xy4[1] diff03 = xy4[0] - xy4[3] w = np.sqrt(np.square(diff01).sum()) h = np.sqrt(np.square(diff03).sum()) if w >= h: a = np.rad2deg(np.arctan2(diff01[1], diff01[0])) else: a = np.rad2deg(np.arctan2(diff03[1], diff03[0])) + 90 if flag > 0: if w < h: w, h = h, w a += 90 a = (a % 180 + 180) % 180 if flag > 1: if 45 <= a < 135: w, h = h, w a -= 90 elif a >= 135: a -= 180 return np.stack([x, y, w, h, a])
32.781818
114
0.511925
852bd277c89bf5d8ea47e58b3428828d7ae66c42
2,561
py
Python
utilities/writer.py
Nniy/lark
09a9ee45006ebf07ad8abe6f03384cac7f407cc1
[ "Apache-2.0" ]
1
2018-11-11T23:05:34.000Z
2018-11-11T23:05:34.000Z
utilities/writer.py
Nniy/lark
09a9ee45006ebf07ad8abe6f03384cac7f407cc1
[ "Apache-2.0" ]
null
null
null
utilities/writer.py
Nniy/lark
09a9ee45006ebf07ad8abe6f03384cac7f407cc1
[ "Apache-2.0" ]
null
null
null
import os.path import pretty_midi as pm import numpy as np import matplotlib.pyplot as plt import h5py np.set_printoptions(threshold=np.nan) def save_midi(piano_roll, filename): midi_output = pm.PrettyMIDI() guitar = pm.Instrument(program=25) bass = pm.Instrument(program=33) string = pm.Instrument(program=41) instruments = [guitar, bass, string] for i in range(piano_roll.shape[0]): for j in range(piano_roll.shape[1]): if piano_roll[i][j] < 0.8: piano_roll[i][j] = 0 else: piano_roll[i][j] = 1 piano_roll = np.array(np.hsplit(piano_roll, 3), dtype=np.int8) # print(piano_roll[0]) # plt.imshow(piano_roll[0], cmap='gray') # plt.show() for i, track in enumerate(piano_roll): tick = 0 while tick < track.shape[0]: if for t, tick in enumerate(track): for k, key in enumerate(tick): if key == 1: key_hold = 1 start_time = t end_time = start_time + key_hold while t + key_hold < track.shape[0]: print(t + key_hold) if track[t + key_hold][key] == 1: key_hold += 1 end_time += 1 else: break # zero_interval = 0 # while (t + key_hold) < track.shape[0]: # if track[t + key_hold][key] == 1: # track[t + key_hold][key] = 0 # key_hold += 1 # end_time += 1 # elif track[t + key_hold][key] == 0 and zero_interval < 50 and end_time > 2: # key_hold += 1 # end_time += 1 # zero_interval += 1 # else: # break note = pm.Note(velocity=100, pitch=k, start=start_time, end=end_time) instruments[i].notes.append(note) midi_output.instruments.append(instruments[i]) midi_output.write(filename) hf = h5py.File('../data/test_data.h5', 'r') piano_roll_samples = np.array(hf.get('test')) hf.close() for p in range(piano_roll_samples.shape[0]): save_midi(piano_roll_samples[p], '../midi%d.mid' % p)
33.697368
101
0.4631
a8ba74364bc2649f230de77ac57da9bb46893cf7
13,025
py
Python
tools/clusterfuzz/v8_foozzie_test.py
EXHades/v8
5fe0aa3bc79c0a9d3ad546b79211f07105f09585
[ "BSD-3-Clause" ]
20,995
2015-01-01T05:12:40.000Z
2022-03-31T21:39:18.000Z
tools/clusterfuzz/v8_foozzie_test.py
Andrea-MariaDB-2/v8
a0f0ebd7a876e8cb2210115adbfcffe900e99540
[ "BSD-3-Clause" ]
333
2020-07-15T17:06:05.000Z
2021-03-15T12:13:09.000Z
tools/clusterfuzz/v8_foozzie_test.py
Andrea-MariaDB-2/v8
a0f0ebd7a876e8cb2210115adbfcffe900e99540
[ "BSD-3-Clause" ]
4,523
2015-01-01T15:12:34.000Z
2022-03-28T06:23:41.000Z
#!/usr/bin/env python # Copyright 2016 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import random import subprocess import sys import unittest import v8_commands import v8_foozzie import v8_fuzz_config import v8_suppressions try: basestring except NameError: basestring = str PYTHON3 = sys.version_info >= (3, 0) BASE_DIR = os.path.dirname(os.path.abspath(__file__)) FOOZZIE = os.path.join(BASE_DIR, 'v8_foozzie.py') TEST_DATA = os.path.join(BASE_DIR, 'testdata') KNOWN_BUILDS = [ 'd8', 'clang_x86/d8', 'clang_x86_v8_arm/d8', 'clang_x64_v8_arm64/d8', 'clang_x64_pointer_compression/d8', ] class ConfigTest(unittest.TestCase): def testExperiments(self): """Test integrity of probabilities and configs.""" CONFIGS = v8_foozzie.CONFIGS EXPERIMENTS = v8_fuzz_config.FOOZZIE_EXPERIMENTS FLAGS = v8_fuzz_config.ADDITIONAL_FLAGS # Probabilities add up to 100%. first_is_int = lambda x: type(x[0]) == int assert all(map(first_is_int, EXPERIMENTS)) assert sum(x[0] for x in EXPERIMENTS) == 100 # Configs used in experiments are defined. assert all(map(lambda x: x[1] in CONFIGS, EXPERIMENTS)) assert all(map(lambda x: x[2] in CONFIGS, EXPERIMENTS)) # The last config item points to a known build configuration. assert all(map(lambda x: x[3] in KNOWN_BUILDS, EXPERIMENTS)) # All flags have a probability. first_is_float = lambda x: type(x[0]) == float assert all(map(first_is_float, FLAGS)) first_between_0_and_1 = lambda x: x[0] > 0 and x[0] < 1 assert all(map(first_between_0_and_1, FLAGS)) # Test consistent flags. second_is_string = lambda x: isinstance(x[1], basestring) assert all(map(second_is_string, FLAGS)) # We allow spaces to separate more flags. We don't allow spaces in the flag # value. is_flag = lambda x: x.startswith('--') all_parts_are_flags = lambda x: all(map(is_flag, x[1].split())) assert all(map(all_parts_are_flags, FLAGS)) def testConfig(self): """Smoke test how to choose experiments.""" config = v8_fuzz_config.Config('foo', random.Random(42)) experiments = [ [25, 'ignition', 'jitless', 'd8'], [75, 'ignition', 'ignition', 'clang_x86/d8'], ] flags = [ [0.1, '--flag'], [0.3, '--baz'], [0.3, '--foo --bar'], ] self.assertEqual( [ '--first-config=ignition', '--second-config=jitless', '--second-d8=d8', '--second-config-extra-flags=--baz', '--second-config-extra-flags=--foo', '--second-config-extra-flags=--bar', ], config.choose_foozzie_flags(experiments, flags), ) self.assertEqual( [ '--first-config=ignition', '--second-config=jitless', '--second-d8=d8', ], config.choose_foozzie_flags(experiments, flags), ) class UnitTest(unittest.TestCase): def testCluster(self): crash_test_example_path = 'CrashTests/path/to/file.js' self.assertEqual( v8_foozzie.ORIGINAL_SOURCE_DEFAULT, v8_foozzie.cluster_failures('')) self.assertEqual( v8_foozzie.ORIGINAL_SOURCE_CRASHTESTS, v8_foozzie.cluster_failures(crash_test_example_path)) self.assertEqual( '_o_O_', v8_foozzie.cluster_failures( crash_test_example_path, known_failures={crash_test_example_path: '_o_O_'})) self.assertEqual( '980', v8_foozzie.cluster_failures('v8/test/mjsunit/apply.js')) def testDiff(self): def diff_fun(one, two, skip=False): suppress = v8_suppressions.get_suppression(skip) return suppress.diff_lines(one.splitlines(), two.splitlines()) one = '' two = '' diff = None, None self.assertEqual(diff, diff_fun(one, two)) one = 'a \n b\nc();' two = 'a \n b\nc();' diff = None, None self.assertEqual(diff, diff_fun(one, two)) # Ignore line before caret and caret position. one = """ undefined weird stuff ^ somefile.js: TypeError: suppressed message undefined """ two = """ undefined other weird stuff ^ somefile.js: TypeError: suppressed message undefined """ diff = None, None self.assertEqual(diff, diff_fun(one, two)) one = """ Still equal Extra line """ two = """ Still equal """ diff = '- Extra line', None self.assertEqual(diff, diff_fun(one, two)) one = """ Still equal """ two = """ Still equal Extra line """ diff = '+ Extra line', None self.assertEqual(diff, diff_fun(one, two)) one = """ undefined somefile.js: TypeError: undefined is not a constructor """ two = """ undefined otherfile.js: TypeError: undefined is not a constructor """ diff = """- somefile.js: TypeError: undefined is not a constructor + otherfile.js: TypeError: undefined is not a constructor""", None self.assertEqual(diff, diff_fun(one, two)) # Test that skipping suppressions works. one = """ v8-foozzie source: foo weird stuff ^ """ two = """ v8-foozzie source: foo other weird stuff ^ """ self.assertEqual((None, 'foo'), diff_fun(one, two)) diff = ('- ^\n+ ^', 'foo') self.assertEqual(diff, diff_fun(one, two, skip=True)) def testOutputCapping(self): def output(stdout, is_crash): exit_code = -1 if is_crash else 0 return v8_commands.Output(exit_code=exit_code, stdout=stdout, pid=0) def check(stdout1, stdout2, is_crash1, is_crash2, capped_lines1, capped_lines2): output1 = output(stdout1, is_crash1) output2 = output(stdout2, is_crash2) self.assertEqual( (capped_lines1, capped_lines2), v8_suppressions.get_output_capped(output1, output2)) # No capping, already equal. check('1\n2', '1\n2', True, True, '1\n2', '1\n2') # No crash, no capping. check('1\n2', '1\n2\n3', False, False, '1\n2', '1\n2\n3') check('1\n2\n3', '1\n2', False, False, '1\n2\n3', '1\n2') # Cap smallest if all runs crash. check('1\n2', '1\n2\n3', True, True, '1\n2', '1\n2') check('1\n2\n3', '1\n2', True, True, '1\n2', '1\n2') check('1\n2', '1\n23', True, True, '1\n2', '1\n2') check('1\n23', '1\n2', True, True, '1\n2', '1\n2') # Cap the non-crashy run. check('1\n2\n3', '1\n2', False, True, '1\n2', '1\n2') check('1\n2', '1\n2\n3', True, False, '1\n2', '1\n2') check('1\n23', '1\n2', False, True, '1\n2', '1\n2') check('1\n2', '1\n23', True, False, '1\n2', '1\n2') # The crashy run has more output. check('1\n2\n3', '1\n2', True, False, '1\n2\n3', '1\n2') check('1\n2', '1\n2\n3', False, True, '1\n2', '1\n2\n3') check('1\n23', '1\n2', True, False, '1\n23', '1\n2') check('1\n2', '1\n23', False, True, '1\n2', '1\n23') # Keep output difference when capping. check('1\n2', '3\n4\n5', True, True, '1\n2', '3\n4') check('1\n2\n3', '4\n5', True, True, '1\n2', '4\n5') check('12', '345', True, True, '12', '34') check('123', '45', True, True, '12', '45') def cut_verbose_output(stdout, n_comp): # This removes the first lines containing d8 commands of `n_comp` comparison # runs. return '\n'.join(stdout.split('\n')[n_comp * 2:]) def run_foozzie(second_d8_dir, *extra_flags, **kwargs): second_config = 'ignition_turbo' if 'second_config' in kwargs: second_config = 'jitless' kwargs = {} if PYTHON3: kwargs['text'] = True return subprocess.check_output([ sys.executable, FOOZZIE, '--random-seed', '12345', '--first-d8', os.path.join(TEST_DATA, 'baseline', 'd8.py'), '--second-d8', os.path.join(TEST_DATA, second_d8_dir, 'd8.py'), '--first-config', 'ignition', '--second-config', second_config, os.path.join(TEST_DATA, 'fuzz-123.js'), ] + list(extra_flags), **kwargs) class SystemTest(unittest.TestCase): """This tests the whole correctness-fuzzing harness with fake build artifacts. Overview of fakes: baseline: Example foozzie output including a syntax error. build1: Difference to baseline is a stack trace difference expected to be suppressed. build2: Difference to baseline is a non-suppressed output difference causing the script to fail. build3: As build1 but with an architecture difference as well. """ def testSyntaxErrorDiffPass(self): stdout = run_foozzie('build1', '--skip-smoke-tests') self.assertEqual('# V8 correctness - pass\n', cut_verbose_output(stdout, 3)) # Default comparison includes suppressions. self.assertIn('v8_suppressions.js', stdout) # Default comparison doesn't include any specific mock files. self.assertNotIn('v8_mock_archs.js', stdout) self.assertNotIn('v8_mock_webassembly.js', stdout) def testDifferentOutputFail(self): with open(os.path.join(TEST_DATA, 'failure_output.txt')) as f: expected_output = f.read() with self.assertRaises(subprocess.CalledProcessError) as ctx: run_foozzie('build2', '--skip-smoke-tests', '--first-config-extra-flags=--flag1', '--first-config-extra-flags=--flag2=0', '--second-config-extra-flags=--flag3') e = ctx.exception self.assertEqual(v8_foozzie.RETURN_FAIL, e.returncode) self.assertEqual(expected_output, cut_verbose_output(e.output, 2)) def testSmokeTest(self): with open(os.path.join(TEST_DATA, 'smoke_test_output.txt')) as f: expected_output = f.read() with self.assertRaises(subprocess.CalledProcessError) as ctx: run_foozzie('build2') e = ctx.exception self.assertEqual(v8_foozzie.RETURN_FAIL, e.returncode) self.assertEqual(expected_output, e.output) def testDifferentArch(self): """Test that the architecture-specific mocks are passed to both runs when we use executables with different architectures. """ # Build 3 simulates x86, while the baseline is x64. stdout = run_foozzie('build3', '--skip-smoke-tests') lines = stdout.split('\n') # TODO(machenbach): Don't depend on the command-lines being printed in # particular lines. self.assertIn('v8_mock_archs.js', lines[1]) self.assertIn('v8_mock_archs.js', lines[3]) def testDifferentArchFailFirst(self): """Test that we re-test against x64. This tests the path that also fails on x64 and then reports the error as x64. """ with open(os.path.join(TEST_DATA, 'failure_output_arch.txt')) as f: expected_output = f.read() # Build 3 simulates x86 and produces a difference on --bad-flag, but # the baseline build shows the same difference when --bad-flag is passed. with self.assertRaises(subprocess.CalledProcessError) as ctx: run_foozzie('build3', '--skip-smoke-tests', '--second-config-extra-flags=--bad-flag') e = ctx.exception self.assertEqual(v8_foozzie.RETURN_FAIL, e.returncode) self.assertEqual(expected_output, cut_verbose_output(e.output, 3)) def testDifferentArchFailSecond(self): """As above, but we test the path that only fails in the second (ia32) run and not with x64 and then reports the error as ia32. """ with open(os.path.join(TEST_DATA, 'failure_output_second.txt')) as f: expected_output = f.read() # Build 3 simulates x86 and produces a difference on --very-bad-flag, # which the baseline build doesn't. with self.assertRaises(subprocess.CalledProcessError) as ctx: run_foozzie('build3', '--skip-smoke-tests', '--second-config-extra-flags=--very-bad-flag') e = ctx.exception self.assertEqual(v8_foozzie.RETURN_FAIL, e.returncode) self.assertEqual(expected_output, cut_verbose_output(e.output, 3)) def testJitless(self): """Test that webassembly is mocked out when comparing with jitless.""" stdout = run_foozzie( 'build1', '--skip-smoke-tests', second_config='jitless') lines = stdout.split('\n') # TODO(machenbach): Don't depend on the command-lines being printed in # particular lines. self.assertIn('v8_mock_webassembly.js', lines[1]) self.assertIn('v8_mock_webassembly.js', lines[3]) def testSkipSuppressions(self): """Test that the suppressions file is not passed when skipping suppressions. """ # Compare baseline with baseline. This passes as there is no difference. stdout = run_foozzie( 'baseline', '--skip-smoke-tests', '--skip-suppressions') self.assertNotIn('v8_suppressions.js', stdout) # Compare with a build that usually suppresses a difference. Now we fail # since we skip suppressions. with self.assertRaises(subprocess.CalledProcessError) as ctx: run_foozzie( 'build1', '--skip-smoke-tests', '--skip-suppressions') e = ctx.exception self.assertEqual(v8_foozzie.RETURN_FAIL, e.returncode) self.assertNotIn('v8_suppressions.js', e.output) if __name__ == '__main__': unittest.main()
34.640957
79
0.655125
959c74a05efc151fb41ded6466bcb7c4002dc3f9
1,669
py
Python
Funky Sentence Gen/Funky Sentence Generator.py
Software-Cat/Python-Mini-Projects
3e8a150758eddfc2b21a5e8c665fd6eca850e55d
[ "MIT" ]
null
null
null
Funky Sentence Gen/Funky Sentence Generator.py
Software-Cat/Python-Mini-Projects
3e8a150758eddfc2b21a5e8c665fd6eca850e55d
[ "MIT" ]
null
null
null
Funky Sentence Gen/Funky Sentence Generator.py
Software-Cat/Python-Mini-Projects
3e8a150758eddfc2b21a5e8c665fd6eca850e55d
[ "MIT" ]
null
null
null
import random adjectives = ["abandoned", "baffled", "cringy", "dazzling", "eccentric", "fancy", "generous", "happy", "ill", "jocose", "kind", "lazy", "magical", "naked", "obstinate", "patriotic", "queasy", "raging", "savage", "talented", "unlucky", "vegetarian", "white", "xenophobic", "yawning", "zippy"] executerNouns = ["apple", "banana", "cat", "dog", "elephatnt", "flamingo", "giraffe", "hippo", "iguana", "jellyfish", "kangaroo", "ladybug", "mammoth", "numbat", "octopus", "panda", "quail", "rabbit", "snake", "teacher", "umpire", "vocalist", "whale", "xylophone", "yoga instructor", "zoologist"] adverbs = ["accidentally", "beneficially", "chaotically", "doubtfully", "efficiently", "fearfullly", "gently", "hypocritically", "impulsively", "jealously", "keenly", "loudly", "mysteriously", "naively", "obediently", "passionately", "quietly", "rationally", "sadly", "telepathically", "uncontrollably", "viciously", "wildly", "xenophobically", "youthfully", "zealously"] verbs = ["ate", "bent", "cleaned", "danced", "educated", "fabricated", "grew", "hacked", "immobilized", "jumbled", "kicked"] genders = ["his", "hers"] subjectNouns = ["aquarium", "bandana", "cabbage"] prepositions = ["with", "without", "in front of", "behind", "next to", "under", "over"] objects = ["aeroplane", "broom"] print("The " + random.choice(adjectives) + " " + random.choice(executerNouns) + " " + random.choice(adverbs) + " " + random.choice(verbs) + " " + random.choice(genders) + " " + random.choice(subjectNouns) + " " + random.choice(prepositions) + " a/an " + random.choice(objects) + ".")
75.863636
166
0.615339
98f9e6e2736f68e5ba5898d7aba94a096b0231eb
1,471
py
Python
bloggitt/core/urls.py
SubhradeepSS/Bloggitt
fb9131765519e55a19164b2637ad9d4821dbac5e
[ "MIT" ]
33
2020-11-22T11:25:11.000Z
2022-01-06T20:05:14.000Z
bloggitt/core/urls.py
SubhradeepSS/Bloggitt
fb9131765519e55a19164b2637ad9d4821dbac5e
[ "MIT" ]
72
2020-11-22T20:31:00.000Z
2021-08-16T00:47:17.000Z
bloggitt/core/urls.py
SubhradeepSS/Bloggitt
fb9131765519e55a19164b2637ad9d4821dbac5e
[ "MIT" ]
39
2020-11-22T17:57:06.000Z
2021-05-31T05:13:26.000Z
from . import views from django.urls import path from .views import PostLikeToggle , PostLikeAPIToggle,ProfileUpdateView,ProfileView,PostUpdateView urlpatterns = [ path('login/', views.loginUser, name='login'), path('signup/', views.signup, name='signup'), path('logout/', views.logoutUser, name='logout'), path('favorites/', views.favorites, name='favorites'), path('', views.postlist, name='home'), path('blog/create', views.PostCreateView.as_view(), name='create_blog'), path('post/like/<slug:slug>/', PostLikeToggle.as_view(), name='like-toggle'), path('api/like/<slug:slug>/', PostLikeAPIToggle.as_view(), name='like-api-toggle'), path('detail/<slug:slug>/', views.postdetail, name='post_detail'), path('detail/<slug:slug>/Favourites', views.Favorites, name='Favorites'), path('detail/<slug:slug>/update/', PostUpdateView.as_view(), name='post-update'), path('fetch', views.fetch, name="fetch"), path('profile-update/', ProfileUpdateView.as_view(), name='profile-update'), path('profile/', ProfileView.as_view(), name='profile'), path('about/',views.about,name='about'), path('search/',views.search,name='search'), path('tags/<slug:slug>/', views.posts_by_tag, name='posts_by_tag'), ] from django.conf import settings from django.conf.urls.static import static if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
50.724138
98
0.687288
3e54c328cb59e4a6c5c0c47007d72bbd0e99b973
15,659
py
Python
tests/test_overlap.py
opendatacube/odc-geo
4f9004720d899dff4bf0b208e4fe602790d055d7
[ "Apache-2.0" ]
5
2021-12-22T01:32:24.000Z
2022-03-10T07:50:34.000Z
tests/test_overlap.py
opendatacube/odc-geo
4f9004720d899dff4bf0b208e4fe602790d055d7
[ "Apache-2.0" ]
29
2022-01-11T08:48:23.000Z
2022-03-29T09:03:42.000Z
tests/test_overlap.py
opendatacube/odc-geo
4f9004720d899dff4bf0b208e4fe602790d055d7
[ "Apache-2.0" ]
2
2022-01-26T23:20:34.000Z
2022-03-21T16:54:00.000Z
# This file is part of the Open Data Cube, see https://opendatacube.org for more information # # Copyright (c) 2015-2020 ODC Contributors # SPDX-License-Identifier: Apache-2.0 import math from random import uniform import numpy as np import pytest from affine import Affine from odc.geo import CRS, geom, resyx_, wh_, xy_ from odc.geo.geobox import GeoBox, scaled_down_geobox from odc.geo.gridspec import GridSpec from odc.geo.math import affine_from_pts, decompose_rws, is_affine_st, stack_xy from odc.geo.overlap import ( LinearPointTransform, ReprojectInfo, _can_paste, compute_axis_overlap, compute_output_geobox, compute_reproject_roi, get_scale_at_point, native_pix_transform, ) from odc.geo.roi import ( roi_is_empty, roi_normalise, roi_shape, scaled_down_roi, scaled_up_roi, ) from odc.geo.testutils import AlbersGS, epsg3577, epsg3857, epsg4326, mkA def diff_affine(A: Affine, B: Affine) -> float: return math.sqrt(sum((a - b) ** 2 for a, b in zip(A, B))) def test_affine_checks(): assert is_affine_st(mkA(scale=(1, 2), translation=(3, -10))) is True assert is_affine_st(mkA(scale=(1, -2), translation=(-3, -10))) is True assert is_affine_st(mkA(rot=0.1)) is False assert is_affine_st(mkA(shear=0.4)) is False def test_affine_rsw(): def run_test(a, scale, shear=0, translation=(0, 0), tol=1e-8): A = mkA(a, scale=scale, shear=shear, translation=translation) R, W, S = decompose_rws(A) assert diff_affine(A, R * W * S) < tol assert diff_affine(S, mkA(0, scale)) < tol assert diff_affine(R, mkA(a, translation=translation)) < tol for a in (0, 12, 45, 33, 67, 89, 90, 120, 170): run_test(a, (1, 1)) run_test(a, (0.5, 2)) run_test(-a, (0.5, 2)) run_test(a, (1, 2)) run_test(-a, (1, 2)) run_test(a, (2, -1)) run_test(-a, (2, -1)) run_test(0, (3, 4), 10) run_test(-33, (3, -1), 10, translation=(100, -333)) def test_fit(): def run_test(A, n, tol=1e-5): X = [xy_(uniform(0, 1), uniform(0, 1)) for _ in range(n)] Y = [xy_(A * pt.xy) for pt in X] A_ = affine_from_pts(X, Y) assert diff_affine(A, A_) < tol A = mkA(13, scale=(3, 4), shear=3, translation=(100, -3000)) run_test(A, 3) run_test(A, 10) run_test(mkA(), 3) run_test(mkA(), 10) def test_scale_at_point(): def mk_transform(sx, sy): A = mkA(37, scale=(sx, sy), translation=(2127, 93891)) return LinearPointTransform(A) tol = 1e-4 pt = xy_(0, 0) for sx, sy in [(3, 4), (0.4, 0.333)]: tr = mk_transform(sx, sy) sx_, sy_ = get_scale_at_point(pt, tr).xy assert abs(sx - sx_) < tol assert abs(sy - sy_) < tol sx_, sy_ = get_scale_at_point(pt, tr, 0.1).xy assert abs(sx - sx_) < tol assert abs(sy - sy_) < tol def test_pix_transform(): pt = tuple( int(x / 10) * 10 for x in geom.point(145, -35, epsg4326).to_crs(epsg3577).coords[0] ) A = mkA(scale=(20, -20), translation=pt) src = GeoBox((512, 1024), A, epsg3577) dst = GeoBox.from_geopolygon(src.geographic_extent, resyx_(0.0001, -0.0001)) tr = native_pix_transform(src, dst) pts_src = [xy_(0, 0), xy_(10, 20), xy_(300, 200)] pts_dst = tr(pts_src) pts_src_ = tr.back(pts_dst) np.testing.assert_almost_equal(stack_xy(pts_src), stack_xy(pts_src_)) assert tr.linear is None assert repr(tr).startswith("GbxPointTransform(") # check identity transform tr = native_pix_transform(src, src) pts_src = [xy_(0, 0), xy_(10, 20), xy_(300, 200)] pts_dst = tr(pts_src) pts_src_ = tr.back(pts_dst) np.testing.assert_almost_equal(stack_xy(pts_src), stack_xy(pts_src_)) np.testing.assert_almost_equal(stack_xy(pts_src), stack_xy(pts_dst)) assert tr.linear is not None assert tr.back.linear is not None assert tr.back.back is tr assert repr(tr).startswith("LinearPointTransform(") # check scale only change tr = native_pix_transform(src, scaled_down_geobox(src, 2)) pts_dst = tr(pts_src) pts_src_ = tr.back(pts_dst) assert tr.linear is not None assert tr.back.linear is not None assert tr.back.back is tr np.testing.assert_almost_equal( stack_xy(pts_dst), [(pt.x / 2, pt.y / 2) for pt in pts_src] ) np.testing.assert_almost_equal(stack_xy(pts_src), stack_xy(pts_src_)) def test_compute_reproject_roi(): src = AlbersGS.tile_geobox((15, -40)) dst = GeoBox.from_geopolygon( src.extent.to_crs(epsg3857).buffer(10), resolution=src.resolution ) rr = compute_reproject_roi(src, dst) assert rr.roi_src == np.s_[0 : src.height, 0 : src.width] assert 0 < rr.scale < 1 assert rr.transform.linear is None assert rr.transform.back is not None assert rr.transform.back.linear is None # check pure translation case roi_ = np.s_[113:-100, 33:-10] rr = compute_reproject_roi(src, src[roi_]) assert rr.roi_src == roi_normalise(roi_, src.shape) assert rr.scale == 1 rr = compute_reproject_roi(src, src[roi_], padding=0, align=0) assert rr.roi_src == roi_normalise(roi_, src.shape) assert rr.scale == 1 # check pure translation case roi_ = np.s_[113:-100, 33:-10] rr = compute_reproject_roi(src, src[roi_], align=256) assert rr.roi_src == np.s_[0 : src.height, 0 : src.width] assert rr.scale == 1 roi_ = np.s_[113:-100, 33:-10] rr = compute_reproject_roi(src, src[roi_]) assert rr.scale == 1 assert roi_shape(rr.roi_src) == roi_shape(rr.roi_dst) assert roi_shape(rr.roi_dst) == src[roi_].shape # check pasteable zoom_out dst = src.zoom_out(2) rr = compute_reproject_roi(src, dst) assert rr.paste_ok is True assert rr.read_shrink == 2 assert roi_shape(rr.roi_src) == src.shape assert roi_shape(rr.roi_dst) == dst.shape # check non-pasteable zoom_out dst = src[1:, :].zoom_out(2) rr = compute_reproject_roi(src, dst) assert rr.paste_ok is False assert rr.read_shrink == 2 def test_compute_reproject_roi_paste(): src = GeoBox( wh_(1000, 2000), mkA(scale=(10, -10), translation=(10 * 123, -10 * 230)), epsg3857, ) def _check(src: GeoBox, dst: GeoBox, rr: ReprojectInfo): assert rr.read_shrink >= 1 if roi_is_empty(rr.roi_src): assert roi_is_empty(rr.roi_dst) return if rr.paste_ok: if rr.read_shrink == 1: assert roi_shape(rr.roi_src) == roi_shape(rr.roi_dst) assert src[rr.roi_src].shape == dst[rr.roi_dst].shape else: # roi source must align to read scale # => round-triping roi to overview and back should not change roi assert ( scaled_up_roi( scaled_down_roi(rr.roi_src, rr.read_shrink), rr.read_shrink ) == rr.roi_src ) src_ = src[rr.roi_src].zoom_out(rr.read_shrink) assert src_.shape == dst[rr.roi_dst].shape if rr.read_shrink == 1: assert rr.scale <= 1.1 else: assert rr.scale >= rr.read_shrink if src.crs == dst.crs: _src = src[rr.roi_src].extent _dst = dst[rr.roi_dst].extent else: _src = src[rr.roi_src].geographic_extent _dst = dst[rr.roi_dst].geographic_extent assert _src.intersection(_dst).area > 0 def _yes(src: GeoBox, dst: GeoBox, **kw): rr = compute_reproject_roi(src, dst, **kw) assert rr.paste_ok is True _check(src, dst, rr) def _no_(src: GeoBox, dst: GeoBox, **kw): rr = compute_reproject_roi(src, dst, **kw) assert rr.paste_ok is False _check(src, dst, rr) t_ = Affine.translation s_ = Affine.scale # plain pixel aligned translation _yes(src, src) _yes(src, src[10:, 29:]) _yes(src[10:, 29:], src) # subpixel translation below threshhold _no_(src, src * t_(0.3, 0.3)) _yes(src, src * t_(0.3, 0.3), ttol=0.5) _no_(src, src * t_(0.0, 0.1)) _yes(src, src * t_(0.0, 0.1), ttol=0.15) _no_(src, src * t_(-0.1, 0.0)) _yes(src, src * t_(-0.1, 0.0), ttol=0.15) # tiny scale deviations _no_(src, src[20:, :30] * s_(1.003, 1.003)) _yes(src, src[20:, :30] * s_(1.003, 1.003), stol=0.01) # integer shrink _no_(src, src.zoom_out(2.3)) _yes(src, src.zoom_out(2)) _yes(src, src.zoom_out(3)) _yes(src, src.zoom_out(2 + 1e-5)) # rounding issues should not matter _no_(src.zoom_out(3), src) _no_(src.zoom_out(2), src) # integer shrink but with sub-pixel translation after shrinking _yes(src, src[4:, 8:].zoom_out(4)) _no_(src, src[2:, 8:].zoom_out(4)) _no_(src, src[8:, 3:].zoom_out(4)) _yes(src, src[8:, 3:].zoom_out(4), ttol=0.5) def test_compute_reproject_roi_issue647(): """In some scenarios non-overlapping geoboxes will result in non-empty `roi_dst` even though `roi_src` is empty. Test this case separately. """ src = GeoBox( (10980, 10980), Affine(10, 0, 300000, 0, -10, 5900020), CRS("epsg:32756") ) dst = GeoBox((976, 976), Affine(10, 0, 1730240, 0, -10, -4170240), CRS("EPSG:3577")) assert src.extent.overlaps(dst.extent.to_crs(src.crs)) is False rr = compute_reproject_roi(src, dst) assert roi_is_empty(rr.roi_src) assert roi_is_empty(rr.roi_dst) def test_compute_reproject_roi_issue1047(): """`compute_reproject_roi(geobox, geobox[roi])` sometimes returns `src_roi != roi`, when `geobox` has (1) tiny pixels and (2) oddly sized `alignment`. Test this issue is resolved. """ geobox = GeoBox( (3000, 3000), Affine( 0.00027778, 0.0, 148.72673054908861, 0.0, -0.00027778, -34.98825802556622 ), "EPSG:4326", ) src_roi = np.s_[2800:2810, 10:30] rr = compute_reproject_roi(geobox, geobox[src_roi]) assert rr.paste_ok is True assert rr.roi_src == src_roi assert rr.roi_dst == np.s_[0:10, 0:20] def test_compute_reproject_roi_overhang(): """ Images with global coverage in epsg:4326 often have slightly wrong georegistration that causes image boundaries to reach outside of the [-180, -90, 180, 90] bounding box. Reproject roi introduces clipping to deal with that issue. """ tol = 1e-3 src_geobox = GeoBox.from_bbox( (-180 - tol, -90 - tol, 180 + tol, 90 + tol), epsg4326, shape=wh_(2000, 1000), tight=True, ) assert src_geobox.shape.wh == (2000, 1000) assert src_geobox.extent.boundingbox[0] < -180 assert src_geobox.extent.boundingbox[1] < -90 assert src_geobox.extent.boundingbox[2] > +180 assert src_geobox.extent.boundingbox[3] > +90 dst_geobox = GridSpec.web_tiles(0)[0, 0] rr = compute_reproject_roi(src_geobox, dst_geobox) assert rr.paste_ok is False assert dst_geobox[rr.roi_dst] == dst_geobox def test_axis_overlap(): s_ = np.s_ # Source overlaps destination fully # # S: |<--------------->| # D: |<----->| assert compute_axis_overlap(100, 20, 1, 10) == s_[10:30, 0:20] assert compute_axis_overlap(100, 20, 2, 10) == s_[10:50, 0:20] assert compute_axis_overlap(100, 20, 0.25, 10) == s_[10:15, 0:20] assert compute_axis_overlap(100, 20, -1, 80) == s_[60:80, 0:20] assert compute_axis_overlap(100, 20, -0.5, 50) == s_[40:50, 0:20] assert compute_axis_overlap(100, 20, -2, 90) == s_[50:90, 0:20] # Destination overlaps source fully # # S: |<-------->| # D: |<----------------->| assert compute_axis_overlap(10, 100, 1, -10) == s_[0:10, 10:20] assert compute_axis_overlap(10, 100, 2, -10) == s_[0:10, 5:10] assert compute_axis_overlap(10, 100, 0.5, -10) == s_[0:10, 20:40] assert compute_axis_overlap(10, 100, -1, 11) == s_[0:10, 1:11] # Partial overlaps # # S: |<----------->| # D: |<----------->| assert compute_axis_overlap(10, 10, 1, 3) == s_[3:10, 0:7] assert compute_axis_overlap(10, 15, 1, 3) == s_[3:10, 0:7] # S: |<----------->| # D: |<----------->| assert compute_axis_overlap(10, 10, 1, -5) == s_[0:5, 5:10] assert compute_axis_overlap(50, 10, 1, -5) == s_[0:5, 5:10] # No overlaps # S: |<--->| # D: |<--->| assert compute_axis_overlap(10, 10, 1, 11) == s_[10:10, 0:0] assert compute_axis_overlap(10, 40, 1, 11) == s_[10:10, 0:0] # S: |<--->| # D: |<--->| assert compute_axis_overlap(10, 10, 1, -11) == s_[0:0, 10:10] assert compute_axis_overlap(40, 10, 1, -11) == s_[0:0, 10:10] def test_can_paste(): assert _can_paste(mkA(translation=(10, -20))) == (True, None) assert _can_paste(mkA(scale=(10, 10))) == (True, None) assert _can_paste(mkA(scale=(-10, 10), translation=(0, -4 * 10))) == (True, None) assert _can_paste(mkA(shear=0.3)) == (False, "has rotation or shear") assert _can_paste(mkA(rot=30)) == (False, "has rotation or shear") assert _can_paste(mkA(scale=(-11.1, 11.1))) == (False, "non-integer scale") assert _can_paste(mkA(scale=(0.5, 0.5))) == (False, "non-integer scale") assert _can_paste(mkA(scale=(2, 3))) == (False, "sx!=sy, probably") assert _can_paste(mkA(scale=(-10, 10), translation=(0, -4))) == ( False, "sub-pixel translation", ) assert _can_paste(mkA(scale=(-10, 10), translation=(-4, 10))) == ( False, "sub-pixel translation", ) assert _can_paste(mkA(translation=(0, 0.4))) == (False, "sub-pixel translation") assert _can_paste(mkA(translation=(0.4, 0))) == (False, "sub-pixel translation") def test_compute_output_geobox(): # sentinel2 over Gibraltar strait src = GeoBox.from_bbox( [199980, 3890220, 309780, 4000020], "EPSG:32630", resolution=10 ) # just copy resolution since both in meters dst = compute_output_geobox(src, "epsg:6933") assert dst.crs.units == src.crs.units assert dst.crs == "epsg:6933" assert dst.resolution == src.resolution assert dst.geographic_extent.contains(src.geographic_extent) assert compute_output_geobox(src, "epsg:6933") == src.to_crs("epsg:6933") assert compute_output_geobox( src, "epsg:6933", resolution="auto" ) == compute_output_geobox(src, "epsg:6933", resolution="same") # force estimation of new resolution dst = compute_output_geobox(src, "epsg:6933", resolution="fit") assert dst.crs == "epsg:6933" assert dst.resolution != src.resolution assert dst.resolution.x == -dst.resolution.y assert dst.geographic_extent.contains(src.geographic_extent) # check conversion to lon/lat dst = compute_output_geobox(src, "epsg:4326") assert dst.crs == "epsg:4326" assert dst.resolution != src.resolution assert dst.resolution.x == -dst.resolution.y assert dst.geographic_extent.contains(src.geographic_extent) npix_change = (src.shape[0] * src.shape[1]) / (dst.shape[0] * dst.shape[1]) assert 0.8 < npix_change < 1.1 # go back from 4326 _src = dst dst = compute_output_geobox(_src, src.crs) npix_change = (_src.shape[0] * _src.shape[1]) / (dst.shape[0] * dst.shape[1]) assert 0.8 < npix_change < 1.1 assert dst.geographic_extent.contains(_src.geographic_extent) # test bad input with pytest.raises(ValueError): _ = compute_output_geobox(src, "epsg:6933", resolution="bad-one")
32.154004
92
0.618494
f7e0bdf4dd0c4a996fd33c5a8938691ee792308f
397
py
Python
pcts_users/asgi.py
fga-eps-mds/2021.1-PCTs-Users
627114bfe10e943a30dda0c54f4d57ba927d6cc1
[ "MIT" ]
null
null
null
pcts_users/asgi.py
fga-eps-mds/2021.1-PCTs-Users
627114bfe10e943a30dda0c54f4d57ba927d6cc1
[ "MIT" ]
9
2021-09-04T14:30:51.000Z
2021-11-07T21:46:38.000Z
pcts_users/asgi.py
fga-eps-mds/2021.1-PCTs-Users
627114bfe10e943a30dda0c54f4d57ba927d6cc1
[ "MIT" ]
null
null
null
""" ASGI config for pcts_users project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'pcts_users.settings') application = get_asgi_application()
23.352941
78
0.788413
703954ba1d64e684839af55e869a1aaab4162322
432
py
Python
Ex019.py
devwill77/Python
585d6197ab561c9c8813fa87682b3ff4f141319e
[ "MIT" ]
null
null
null
Ex019.py
devwill77/Python
585d6197ab561c9c8813fa87682b3ff4f141319e
[ "MIT" ]
null
null
null
Ex019.py
devwill77/Python
585d6197ab561c9c8813fa87682b3ff4f141319e
[ "MIT" ]
null
null
null
''' - DESAFIO 019 - Um professor quer sortear um dos seus quatro alunos para apagar o quadro. Faça um programa que ajude ele , lendo o nome deles e escrevendo o nome do escolhido. ''' from random import choice a1 = str(input('Aluno 1: ')) a2 = str(input('Aluno 2: ')) a3 = str(input('Aluno 3: ')) a4 = str(input('Aluno 4: ')) lista = [a1, a2, a3, a4] escolhido = choice(lista) print('O escolhido foi {}'.format(escolhido))
18.782609
85
0.668981
a7e0211905005a1d1d2975f1b8296e8ebbf0892c
65,161
py
Python
anchorecli/cli/utils.py
tehlingchu/anchore-cli
b0df36337f443749991a49263227c1d40989debb
[ "Apache-2.0" ]
110
2017-09-14T02:15:15.000Z
2022-03-30T20:14:21.000Z
anchorecli/cli/utils.py
tehlingchu/anchore-cli
b0df36337f443749991a49263227c1d40989debb
[ "Apache-2.0" ]
115
2017-09-22T12:15:30.000Z
2022-01-17T12:31:21.000Z
anchorecli/cli/utils.py
tehlingchu/anchore-cli
b0df36337f443749991a49263227c1d40989debb
[ "Apache-2.0" ]
56
2017-09-22T11:26:25.000Z
2022-03-03T14:14:58.000Z
import os import re import sys import copy import json import yaml import logging import dateutil.parser import textwrap import base64 try: from urllib.parse import quote_plus, unquote_plus except ImportError: from urllib import quote_plus, unquote_plus from prettytable import PrettyTable, PLAIN_COLUMNS, ALL from collections import OrderedDict import anchorecli.clients.apiexternal _logger = logging.getLogger(__name__) def setup_config(cli_opts): ret = { "config": None, "user": None, "pass": None, "url": "http://localhost:8228/v1", "hub-url": "https://hub.anchore.io/", "api-version": None, "ssl_verify": True, "jsonmode": False, "debug": False, "as_account": None, } settings = {} # load environment if present for e in [ "ANCHORE_CLI_USER", "ANCHORE_CLI_PASS", "ANCHORE_CLI_URL", "ANCHORE_CLI_HUB_URL", "ANCHORE_CLI_API_VERSION", "ANCHORE_CLI_SSL_VERIFY", "ANCHORE_CLI_JSON", "ANCHORE_CLI_DEBUG", "ANCHORE_CLI_ACCOUNT", "ANCHORE_CLI_CONFIG", ]: if e in os.environ: settings[e] = os.environ[e] # load up credentials file if present try: if "ANCHORE_CLI_CONFIG" in settings: credential_file = settings["ANCHORE_CLI_CONFIG"] else: home = os.path.expanduser("~") credential_file = os.path.join(home, ".anchore", "credentials.yaml") if os.path.exists(credential_file): ydata = {} with open(credential_file, "r") as FH: try: ydata = yaml.safe_load(FH) except Exception as err: raise Exception("YAML load failed: " + str(err)) if ydata: try: if type(ydata) != type(dict()): raise Exception("invalid credentials file format") default_creds = ydata.get("default", {}) for e in [ "ANCHORE_CLI_USER", "ANCHORE_CLI_PASS", "ANCHORE_CLI_URL", "ANCHORE_CLI_HUB_URL", "ANCHORE_CLI_API_VERSION", "ANCHORE_CLI_SSL_VERIFY", ]: if e in default_creds: settings[e] = default_creds[e] except Exception as err: raise Exception( "credentials file exists and has data, but cannot parse: " + str(err) ) except Exception as err: raise Exception( "error while processing credentials file, please check format and read permissions - exception: " + str(err) ) # load cmdline options if cli_opts["config"]: settings["ANCHORE_CLI_CONFIG"] = cli_opts["config"] if cli_opts["u"]: settings["ANCHORE_CLI_USER"] = cli_opts["u"] if cli_opts["p"]: settings["ANCHORE_CLI_PASS"] = cli_opts["p"] if cli_opts["url"]: settings["ANCHORE_CLI_URL"] = cli_opts["url"] if cli_opts["hub-url"]: settings["ANCHORE_CLI_HUB_URL"] = cli_opts["hub-url"] if cli_opts["api-version"]: settings["ANCHORE_CLI_API_VERSION"] = cli_opts["api-version"] if cli_opts["insecure"]: settings["ANCHORE_CLI_SSL_VERIFY"] = "n" if cli_opts["json"]: settings["ANCHORE_CLI_JSON"] = "y" if cli_opts["debug"]: settings["ANCHORE_CLI_DEBUG"] = "y" if cli_opts.get("as_account") is not None: settings["ANCHORE_CLI_ACCOUNT"] = cli_opts["as_account"] if "ANCHORE_CLI_CONFIG" in settings: ret["config"] = settings["ANCHORE_CLI_CONFIG"] if "ANCHORE_CLI_USER" in settings: ret["user"] = settings["ANCHORE_CLI_USER"] if "ANCHORE_CLI_PASS" in settings: ret["pass"] = settings["ANCHORE_CLI_PASS"] if "ANCHORE_CLI_URL" in settings: ret["url"] = settings["ANCHORE_CLI_URL"] if "ANCHORE_CLI_HUB_URL" in settings: ret["hub-url"] = settings["ANCHORE_CLI_HUB_URL"] if "ANCHORE_CLI_API_VERSION" in settings: ret["api-version"] = settings["ANCHORE_CLI_API_VERSION"] if "ANCHORE_CLI_SSL_VERIFY" in settings: if settings["ANCHORE_CLI_SSL_VERIFY"].lower() == "n": ret["ssl_verify"] = False if "ANCHORE_CLI_JSON" in settings: if settings["ANCHORE_CLI_JSON"].lower() == "y": ret["jsonmode"] = True if "ANCHORE_CLI_DEBUG" in settings: if settings["ANCHORE_CLI_DEBUG"].lower() == "y": ret["debug"] = True if "ANCHORE_CLI_ACCOUNT" in settings: ret["as_account"] = settings["ANCHORE_CLI_ACCOUNT"] return ret def doexit(ecode): if not os.environ.get("ANCHORE_CLI_NO_FDS_CLEANUP"): try: sys.stdout.close() except Exception: pass try: sys.stderr.close() except Exception: pass sys.exit(ecode) def group_list_of_dicts(indict, bykey): ret = [] gdict = {} for el in indict: elkey = el[bykey] if elkey not in gdict: gdict[elkey] = [] gdict[elkey].append(el) for k in list(gdict.keys()): for el in gdict[k]: ret.append(el) return ret def format_error_output(config, op, params, payload): try: errdata = json.loads(str(payload)) except ValueError: errdata = {"message": str(payload)} if config["jsonmode"]: return json.dumps(errdata, indent=4, sort_keys=True) obuf = "" outdict = OrderedDict() if "message" in errdata: outdict["Error"] = str(errdata["message"]) if "httpcode" in errdata: outdict["HTTP Code"] = str(errdata["httpcode"]) if "detail" in errdata and errdata["detail"]: outdict["Detail"] = str(errdata["detail"]) for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" if not obuf: obuf = str(payload) hint = create_hint(outdict.get("Detail")) if hint: obuf = obuf + hint # operation-specific output postfixes if op in ["account_delete"]: if "Invalid account state change requested" in errdata.get("message", ""): obuf = ( obuf + "\nNOTE: accounts must be disabled (anchore-cli account disable <account>) in order to be deleted\n" ) return obuf def create_hint(error_message): """ Apply some heuristics to determine if the message is a validation failure complaining about missing keys, if so, attempt to extract what may be the missing key, and craft a message that indicates how that might look inside a JSON object. :returns: multiline string on success, ``None`` on failure. """ # when validation fails, the message already has something we can depend on # skip processing otherwise try: if "is a required property" not in error_message: return except TypeError: return pattern = re.compile(r"'(?P<key>.*?)'") search = re.search(pattern, error_message) if not search: return parsed = search.groupdict() key = parsed.get("key") if key: msg = ( 'Hint: The "{key}" key is not present in the JSON file, make sure it exists:\n\n' " {{\n" ' "{key}": <value>\n' " ...\n" " }}\n" ) return msg.format(key=key) def plain_column_table(header, align="l"): table = PrettyTable(header) table.set_style(PLAIN_COLUMNS) table.align = align return table def format_output(config, op, params, payload): if config["jsonmode"]: try: ret = json.dumps(payload, indent=4, sort_keys=True) # XXX catch json exception explicitly here except Exception: ret = json.dumps({"payload": str(payload)}, indent=4, sort_keys=True) return ret ret = "" try: if op == "image_list": if params["show_all"]: filtered_records = payload else: # this creates a filtered list w only the latest image records of any found tags latest_tag_details = {} latest_records = {} for image_record in payload: for image_detail in image_record["image_detail"]: fulltag = image_detail["fulltag"] tagts = dateutil.parser.parse(image_detail["created_at"]) if fulltag not in latest_tag_details: latest_tag_details[fulltag] = image_detail latest_records[fulltag] = image_record else: lasttagts = dateutil.parser.parse( latest_tag_details[fulltag]["created_at"] ) if tagts >= lasttagts: latest_tag_details[fulltag] = image_detail latest_records[fulltag] = image_record filtered_records = list(latest_records.values()) if params["full"]: header = ["Full Tag", "Image Digest", "Analysis Status", "Image ID"] else: header = ["Full Tag", "Image Digest", "Analysis Status"] t = plain_column_table(header) add_rows = [] for image_record in filtered_records: for image_detail_record in image_record["image_detail"]: image_detail = copy.deepcopy(image_detail_record) imageId = fulltag = "None" imageId = image_detail.pop("imageId", "None") fulltag = ( image_detail.pop("registry", "None") + "/" + image_detail.pop("repo", "None") + ":" + image_detail.pop("tag", "None") ) if params["full"]: row = [ fulltag, image_record["imageDigest"], image_record["analysis_status"], imageId, ] else: row = [ fulltag, image_record["imageDigest"], image_record["analysis_status"], ] if row not in add_rows: add_rows.append(row) for row in add_rows: t.add_row(row) ret = t.get_string(sortby="Full Tag") elif op == "image_vuln": ret = format_vulnerabilities(payload, params) elif op in ["image_content", "image_metadata"]: obuf = "" if "query_type" not in params or not params["query_type"]: outdict = OrderedDict() for t in payload: outdict[t] = "available" for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" obuf = obuf + "\n" else: if params["query_type"] == "os": header = ["Package", "Version", "Licenses"] t = plain_column_table(header) for el in payload["content"]: licenses = el.get("licenses", [el.get("license")]) row = [el["package"], el["version"], " ".join(licenses)] t.add_row(row) obuf = obuf + t.get_string(sortby="Package") elif params["query_type"] == "files": header = ["Filename", "Size"] t = plain_column_table(header) for el in payload["content"]: row = [el["filename"], el["size"]] t.add_row(row) obuf = obuf + t.get_string(sortby="Size", reversesort=True) elif params["query_type"] in ["npm", "gem", "python"]: header = ["Package", "Version", "Location"] t = plain_column_table(header) for el in payload["content"]: row = [el["package"], el["version"], el["location"]] t.add_row(row) obuf = obuf + t.get_string(sortby="Package") elif params["query_type"] in ["java"]: header = [ "Package", "Specification-Version", "Implementation-Version", "Location", ] t = plain_column_table(header) for el in payload["content"]: row = [ el["package"], el["specification-version"], el["implementation-version"], el["location"], ] t.add_row(row) obuf = obuf + t.get_string(sortby="Package") elif params["query_type"] in [ "manifest", "dockerfile", "docker_history", ]: if op == "image_content": obuf = format_content_query(payload) else: # Metadata Query. Note: The design of this whole method is bad, just doing the change in place # to reduce changes for now, but should refactor this thing later obuf = format_metadata_query(payload) elif params["query_type"] in ["malware"]: obuf = format_malware_scans(payload, params) else: try: if payload["content"]: el = payload["content"][0] if ( el.get("package", None) and el.get("version", None) and el.get("location", None) ): header = ["Package", "Version", "Location"] t = plain_column_table(header) for el in payload["content"]: row = [el["package"], el["version"], el["location"]] t.add_row(row) obuf = obuf + t.get_string(sortby="Package") else: header = list(el.keys()) t = PrettyTable(header) t.set_style(PLAIN_COLUMNS) t.align = "l" for el in payload["content"]: row = [] for k in header: row.append(el[k]) t.add_row(row) obuf = obuf + t.get_string() except Exception as err: raise Exception( "could not parse content result - exception: " + str(err) ) ret = obuf elif op in ["image_add", "image_get", "image_import"]: obuf = "" for image_record in payload: outdict = OrderedDict() outdict["Image Digest"] = str(image_record["imageDigest"]) if image_record.get("parentDigest", None): outdict["Parent Digest"] = str(image_record["parentDigest"]) outdict["Analysis Status"] = str(image_record["analysis_status"]) outdict["Image Type"] = str(image_record["image_type"]) outdict["Analyzed At"] = str(image_record["analyzed_at"]) image_detail = copy.deepcopy(image_record["image_detail"][0]) imageId = image_detail.pop("imageId", "None") outdict["Image ID"] = str(imageId) if "image_content" in image_record and image_record["image_content"]: image_content = image_record["image_content"] if "metadata" in image_content and image_content["metadata"]: image_content_metadata = image_content["metadata"] outdict["Dockerfile Mode"] = str( image_content_metadata["dockerfile_mode"] ) outdict["Distro"] = str(image_content_metadata["distro"]) outdict["Distro Version"] = str( image_content_metadata["distro_version"] ) outdict["Size"] = str(image_content_metadata["image_size"]) outdict["Architecture"] = str(image_content_metadata["arch"]) outdict["Layer Count"] = str( image_content_metadata["layer_count"] ) if "annotations" in image_record and image_record["annotations"]: outdict["Annotations"] = ", ".join( [ str(x) + "=" + str(y) for x, y in list(image_record["annotations"].items()) ] ) for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" obuf = obuf + "\n" for image_detail_record in image_record["image_detail"]: image_detail = copy.deepcopy(image_detail_record) outdict = OrderedDict() outdict["Full Tag"] = str(image_detail.pop("fulltag", "None")) outdict["Tag Detected At"] = str( image_detail.pop("tag_detected_at", "None") ) for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" obuf = obuf + "\n" ret = obuf elif op in ["registry_add", "registry_get", "registry_update"]: obuf = "" for registry_record in payload: outdict = OrderedDict() outdict["Registry"] = str(registry_record["registry"]) outdict["Name"] = str(registry_record.get("registry_name", "N/A")) outdict["User"] = str(registry_record["registry_user"]) outdict["Type"] = str(registry_record["registry_type"]) outdict["Verify TLS"] = str(registry_record["registry_verify"]) outdict["Created"] = str(registry_record["created_at"]) outdict["Updated"] = str(registry_record["last_updated"]) for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" obuf = obuf + "\n" ret = obuf elif op == "registry_list": header = ["Registry", "Name", "Type", "User"] t = plain_column_table(header) for registry_record in payload: row = [ registry_record["registry"], registry_record.get("registry_name", "N/A"), registry_record["registry_type"], registry_record["registry_user"], ] t.add_row(row) ret = t.get_string(sortby="Registry") elif op in ["subscription_list", "subscription_get"]: header = ["Tag", "Subscription Type", "Active"] if params.get("full", ""): header += ["Subscription ID"] if op == "subscription_get": header += ["User ID"] t = plain_column_table(header) for subscription_record in payload: row = [ subscription_record["subscription_key"], subscription_record["subscription_type"], str(subscription_record["active"]), ] if params.get("full", ""): row.append(subscription_record.get("subscription_id", "")) if op == "subscription_get": row += [subscription_record.get("userId")] t.add_row(row) ret = t.get_string(sortby="Tag") elif op == "repo_list": header = ["Repository", "Watched", "TagCount"] t = plain_column_table(header) for subscription_record in payload: try: sval = json.loads(subscription_record["subscription_value"]) tagcount = str(sval["tagcount"]) except Exception: tagcount = "N/A" row = [ subscription_record["subscription_key"], str(subscription_record["active"]), str(tagcount), ] t.add_row(row) ret = t.get_string(sortby="Repository") elif op in ["repo_get", "repo_watch", "repo_unwatch", "repo_add"]: header = ["Repository", "Watched", "TagCount"] t = PrettyTable(header) t.set_style(PLAIN_COLUMNS) t.align = "l" for subscription_record in payload: sval = json.loads(subscription_record["subscription_value"]) tagcount = str(sval.get("tagcount", "N/A")) row = [ subscription_record["subscription_key"], str(subscription_record["active"]), tagcount, ] t.add_row(row) if params.get("dry_run", ""): ret = "DRY RUN: Repository not added\n\n" ret += t.get_string(sortby="Repository") elif op in ["policy_add", "policy_get"]: if "detail" in params and params["detail"]: try: ret = json.dumps( payload[0]["policybundle"], indent=4, sort_keys=True ) except Exception: ret = json.dumps(payload, indent=4, sort_keys=True) else: obuf = "" if op == "policy_add": payload = [payload] else: pass for policy_record in payload: outdict = OrderedDict() outdict["Policy ID"] = str(policy_record["policyId"]) outdict["Active"] = str(policy_record["active"]) outdict["Source"] = str(policy_record["policy_source"]) outdict["Created"] = str(policy_record["created_at"]) outdict["Updated"] = str(policy_record["last_updated"]) for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" obuf = obuf + "\n" ret = obuf elif op == "policy_list": header = ["Policy ID", "Active", "Created", "Updated"] t = plain_column_table(header) for policy_record in payload: row = [ policy_record["policyId"], str(policy_record["active"]), policy_record["created_at"], policy_record["last_updated"], ] t.add_row(row) ret = t.get_string(sortby="Active", reversesort=True) elif op == "policy_hub_list": header = ["Name", "Description"] t = plain_column_table(header) for record in payload["content"]: if record.get("type", None) == "bundle": row = [ textwrap.fill(record["name"], width=40), textwrap.fill(record["description"], width=60), ] t.add_row(row) ret = t.get_string(sortby="Name", reversesort=True) elif op == "policy_hub_get": obuf = "" outdict = OrderedDict() outdict["Policy Bundle ID"] = str(payload["id"]) outdict["Name"] = str(payload["name"]) outdict["Description"] = str( payload.get("description", payload.get("comment", "N/A")) ) for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" obuf = obuf + "\n" id_to_name = {} for record in payload["policies"]: outdict = OrderedDict() outdict["Policy Name"] = record["name"] # outdict['Policy ID'] = record['id'] outdict["Policy Description"] = str( record.get("description", record.get("comment", "N/A")) ) id_to_name[record["id"]] = record["name"] for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" obuf = obuf + "\n" for record in payload["whitelists"]: outdict = OrderedDict() outdict["Whitelist Name"] = record["name"] # outdict['Whitelist ID'] = record['id'] outdict["Whitelist Description"] = str( record.get("description", record.get("comment", "N/A")) ) id_to_name[record["id"]] = record["name"] for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" obuf = obuf + "\n" for record in payload["mappings"]: outdict = OrderedDict() outdict["Mapping Name"] = record["name"] outdict["Mapping Rule"] = "{}/{}:{}".format( record["registry"], record["repository"], record["image"]["value"] ) pids = [] pid = record.get("policy_id", None) if pid: pids.append(pid) pids = [str(id_to_name[x]) for x in pids + record.get("policy_ids", [])] outdict["Mapping Policies"] = ",".join(pids) wids = [str(id_to_name[x]) for x in record.get("whitelist_ids", [])] outdict["Mapping Whitelists"] = ",".join(wids) for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" obuf = obuf + "\n" ret = obuf # ret = json.dumps(payload, indent=4, sort_keys=True) elif op == "evaluate_check": obuf = "" for eval_record in payload: outdict = OrderedDict() for imageDigest in list(eval_record.keys()): for fulltag in eval_record[imageDigest]: if not eval_record[imageDigest][fulltag]: outdict["Image Digest"] = str(imageDigest) outdict["Full Tag"] = str(fulltag) outdict["Status"] = "no_eval_available" for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" obuf = obuf + "\n" else: for evaldata in eval_record[imageDigest][fulltag]: outdict["Image Digest"] = str(imageDigest) outdict["Full Tag"] = str(fulltag) if "detail" in params and params["detail"]: evaldetail = evaldata["detail"] outdict["Image ID"] = str( evaldetail["result"]["image_id"] ) outdict["Status"] = str(evaldata["status"]) outdict["Last Eval"] = str(evaldata["last_evaluation"]) outdict["Policy ID"] = str(evaldata["policyId"]) t = None if "detail" in params and params["detail"]: evaldetail = evaldata["detail"] imageId = evaldetail["result"]["image_id"] try: outdict["Final Action"] = str( evaldetail["result"]["final_action"] ) outdict["Final Action Reason"] = str( evaldetail["result"]["final_action_reason"] ) except: pass evalresults = evaldetail["result"]["result"][ imageId ]["result"] header = ["Gate", "Trigger", "Detail", "Status"] t = plain_column_table(header) for row in evalresults["rows"]: if "full" in params and params["full"]: detailrow = row[5] else: detailrow = row[5] status_detail = row[6] try: if row[7]: eval_whitelist_detail = row[7] status_detail = ( "whitelisted(" + eval_whitelist_detail[ "whitelist_name" ] + ")" ) except: status_detail = row[6] newrow = [ row[3], row[4], detailrow, status_detail, ] t.add_row(newrow) for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" if t: obuf = obuf + "\n" obuf = obuf + t.get_string() + "\n" ret = obuf elif op == "policy_activate": try: ret = "Success: " + str(params["policyId"]) + " activated" except Exception: ret = "Success" elif op == "system_status": out_list = [] db_version = code_version = None for service_record in payload.get("service_states", []): if service_record.get("status", None): service_status = "up" else: service_status = "down ({})".format( service_record.get("status_message", "Status Unknown") ) out_list.append( "Service {} ({}, {}): {}".format( service_record.get("servicename", "ServiceName Unknown"), service_record.get("hostid", "HostID Unknown"), service_record.get("base_url", "Base URL Unknown"), str(service_status), ) ) # This is a fallback mechanism to get the db & code versions from a non-api service # (should there be no healthy api service available) if not db_version: db_version = service_record.get("service_detail", {}).get( "db_version", None ) if not code_version: code_version = service_record.get("service_detail", {}).get( "version", None ) # Set the code & db versions with the details from the first discovered API service that is up if ( service_record.get("servicename", "") == "apiext" and service_status == "up" ): service_detail = service_record.get("service_detail", {}) code_version = service_detail.get("version", None) db_version = service_detail.get("db_version", None) output_buffer = "\n".join(out_list) output_buffer += "\n\nEngine DB Version: {}\n".format( db_version or "Not Found" ) output_buffer += "Engine Code Version: {}".format( code_version or "Not Found" ) ret = output_buffer elif op == "event_delete": if payload is not None and isinstance(payload, list): ret = ( "Deleted {} events".format(len(payload)) if payload else "No matching events found" ) else: ret = "Success" elif op in ["describe_gates"]: ret = _format_gates(payload, all=params.get("all", False)) elif op in ["describe_gate_triggers"]: ret = _format_triggers( payload, params.get("gate", "").lower(), all=params.get("all", False) ) elif op in ["describe_gate_trigger_params"]: ret = _format_trigger_params( payload, params.get("gate", "").lower(), params.get("trigger", "").lower(), all=params.get("all", False), ) elif op in ["system_describe_error_codes"]: header = ["Error Code", "Description"] t = plain_column_table(header) for el in payload: error_name = el.get("name", "N/A") error_description = textwrap.fill( el.get("description", "N/A"), width=60 ) t.add_row([error_name, error_description]) ret = t.get_string(sortby="Error Code") + "\n" elif op in ["system_feeds_list"]: header = ["Feed", "Group", "LastSync", "RecordCount"] t = plain_column_table(header) for el in payload: feed = el.get("name", "N/A") feed_enabled = el.get("enabled", True) if not feed_enabled: feed = "{}(disabled)".format(feed) for gel in el["groups"]: group_enabled = gel.get("enabled", True) last_sync = gel.get("last_sync", None) if not last_sync: if feed_enabled and group_enabled: last_sync = "pending" else: last_sync = "-" gname = gel.get("name", "N/A") if not group_enabled: gname = "{}(disabled)".format(gname) t.add_row([feed, gname, last_sync, gel.get("record_count", "N/A")]) ret = t.get_string(sortby="Feed") + "\n" elif op in ["system_feed_groups"]: header = ["Group", "LastSync", "RecordCount"] t = PrettyTable(header) t.set_style(PLAIN_COLUMNS) t.align = "l" for gel in payload: last_sync = gel.get("last_sync", None) if not last_sync: last_sync = "pending" gname = gel.get("name", "N/A") if not gel.get("enabled", True): gname = "{}(disabled)".format(gname) t.add_row([gname, last_sync, gel.get("record_count", "N/A")]) ret = t.get_string(sortby="Group") + "\n" elif op in ["system_feeds_flush"]: ret = "Success" if type(payload) == list: header = ["Feed", "Group", "Status", "Records Updated", "Sync Duration"] t = plain_column_table(header) for feed in payload: for group in feed.get("groups"): row = [ feed["feed"], group["group"], group["status"], group["updated_record_count"], "{:.2f}s".format(group["total_time_seconds"]), ] t.add_row(row) ret = t.get_string(sortby="Feed") elif op == "event_list": header = ["Timestamp", "Level", "Event", "Resource", "ID"] t = plain_column_table(header) for event_res in payload["results"]: event = event_res["event"] row = [ event["timestamp"], event["level"], event["type"], event["resource"].get("id"), event_res["generated_uuid"], ] t.add_row(row) ret = t.get_string() elif op == "event_list_full": header = [ "Timestamp", "Level", "Event", "ResourceType", "Resource", "Service", "Host", "ID", ] t = plain_column_table(header) for event_res in payload["results"]: event = event_res["event"] row = [ event["timestamp"], event["level"], event["type"], event["resource"].get("type"), event["resource"].get("id"), event["source"]["servicename"], event["source"]["hostid"], event_res["generated_uuid"], ] t.add_row(row) ret = t.get_string() elif op == "event_get": ret = yaml.safe_dump(payload["event"], default_flow_style=False) elif op == "query_images_by_vulnerability": header = [ "Full Tag", "Severity", "Package", "Package Type", "Namespace", "Digest", ] t = plain_column_table(header) for record in payload.get("images", []): for tag_record in record.get("image", {}).get("tag_history", []): for package_record in record.get("vulnerable_packages", []): row = [ tag_record.get("fulltag", "N/A"), package_record.get("severity", "N/A"), "{}-{}".format( package_record.get("name"), package_record.get("version"), ), package_record.get("type"), package_record.get("namespace", "N/A"), record.get("image", {}).get("imageDigest", "N/A"), ] t.add_row(row) ret = t.get_string() elif op == "query_images_by_package": header = ["Full Tag", "Package", "Package Type", "Digest"] t = plain_column_table(header) for record in payload.get("images", []): for tag_record in record.get("image", {}).get("tag_history", []): for package_record in record.get("packages", []): row = [ tag_record.get("fulltag", "N/A"), "{}-{}".format( package_record.get("name"), package_record.get("version"), ), package_record.get("type"), record.get("image", {}).get("imageDigest", "N/A"), ] t.add_row(row) ret = t.get_string() elif op == "account_whoami": outdict = OrderedDict() outdict["Username"] = str(payload.get("user", {}).get("username", "N/A")) outdict["AccountName"] = str(payload.get("account", {}).get("name", "N/A")) outdict["AccountEmail"] = str( payload.get("account", {}).get("email", "N/A") ) outdict["AccountType"] = str(payload.get("account", {}).get("type", "N/A")) obuf = "" for k in list(outdict.keys()): obuf = obuf + k + ": " + outdict[k] + "\n" obuf = obuf + "\n" ret = obuf elif op in ["account_add", "account_get"]: outdict = OrderedDict() outdict["Name"] = str(payload.get("name", "N/A")) outdict["Email"] = str(payload.get("email", "N/A")) outdict["Type"] = str(payload.get("type", "N/A")) outdict["State"] = str(payload.get("state", "N/A")) outdict["Created"] = str(payload.get("created_at", "N/A")) obuf = "" for k in list(outdict.keys()): obuf = obuf + "{}: {}\n".format(k, outdict[k]) obuf = obuf + "\n" ret = obuf elif op in ["account_list"]: header = ["Name", "Email", "Type", "State", "Created"] t = plain_column_table(header) for record in payload: row = [ str(record.get("name", "N/A")), str(record.get("email", "N/A")), str(record.get("type", "N/A")), str(record.get("state", "N/A")), str(record.get("created_at", "N/A")), ] t.add_row(row) ret = t.get_string(sortby="Created") + "\n" elif op in ["user_add", "user_get"]: outdict = OrderedDict() outdict["Name"] = str(payload.get("username", "N/A")) outdict["Type"] = str(payload.get("type", "N/A")) outdict["Source"] = str(payload.get("source", "N/A")) outdict["Created"] = str(payload.get("created_at", "N/A")) obuf = "" for k in list(outdict.keys()): obuf = obuf + "{}: {}\n".format(k, outdict[k]) obuf = obuf + "\n" ret = obuf elif op in ["user_list"]: header = ["Name", "Type", "Source", "Created"] t = plain_column_table(header) for record in payload: row = [ str(record.get("username", "N/A")), str(record.get("type", "N/A")), str(record.get("source", "N/A")), str(record.get("created_at", "N/A")), ] t.add_row(row) ret = t.get_string(sortby="Created") + "\n" elif op in ["user_setpassword"]: ret = "Password (re)set success" elif ( op in ["delete_system_service"] or re.match(".*_delete$", op) or re.match(".*_activate$", op) or re.match(".*_deactivate$", op) or re.match(".*_enable$", op) or re.match(".*_disable$", op) ): # NOTE this should always be the last in the if/elif conditional ret = "Success" elif op in ["analysis_archive_list", "archived_analysis"]: header = [ "Digest", "Tags", "Analyzed At", "Archived At", "Status", "Archive Size Bytes", ] t = plain_column_table(header) for record in payload: row = [ str(record["imageDigest"]), str( ",".join( [x["pullstring"] for x in record.get("image_detail", [])] ) ), str(record["analyzed_at"]), str(record["created_at"]), str(record["status"]), str(record["archive_size_bytes"]), ] t.add_row(row) ret = t.get_string(sortby="Archived At", reversesort=True) + "\n" elif op in ["archive_analysis"]: header = ["Image Digest", "Archive Status", "Details"] t = plain_column_table(header) for record in payload: row = [ str(record["digest"]), str(record["status"]), str(record["detail"]), ] t.add_row(row) ret = t.get_string(sortby="Archive Status") + "\n" elif op in ["transition_rules"]: header = [ "Rule Id", "Global", "Transition", "Analysis Age (Days)", "Tag Versions Newer", "Registry", "Repository", "Tag", "Max Images", "Registry Exclude", "Repo Exclude", "Tag Exclude", "Exclude Exp Days", "Last Updated", ] t = plain_column_table(header) if type(payload) != list: payload = [payload] for record in payload: row = [ str(record["rule_id"]), str(record["system_global"]), str(record["transition"]), str(record["analysis_age_days"]), str(record["tag_versions_newer"]), str(record["selector"]["registry"]), str(record["selector"]["repository"]), str(record["selector"]["tag"]), str(record["max_images_per_account"]), str(record["exclude"]["selector"]["registry"]), str(record["exclude"]["selector"]["repository"]), str(record["exclude"]["selector"]["tag"]), str(record["exclude"]["expiration_days"]), str(record["last_updated"]), ] t.add_row(row) ret = t.get_string(sortby="Last Updated", reversesort=True) + "\n" elif op in ["transition_rule_history"]: header = ["Rule Id", "Image Digest", "Transition", "Transition Date"] t = plain_column_table(header) for record in payload: row = [ str(record["rule_id"]), str(record["imageDigest"]), str(record["transition"]), str(record["created_at"]), ] t.add_row(row) ret = t.get_string(sortby="Transition Date", reversesort=True) + "\n" elif op in ["list_corrections"]: header = ["ID", "Match", "Replace", "Created At", "Description"] t = plain_column_table(header) for record in payload: row = [ str(record["uuid"]), str(record["match"]), str(record["replace"]), str(record["created_at"]), str(record["description"]), ] t.add_row(row) ret = t.get_string(sortby="Created At", reversesort=True) + "\n" elif op in ["get_correction"]: ret = ( "UUID: %s\nMatch: %s\nReplace: %s\nCreated At: %s\nDescription: %s\n" % ( str(payload["uuid"]), str(payload["match"]), str(payload["replace"]), str(payload["created_at"]), str(payload["description"]), ) ) elif ( op in [ "delete_system_service", "test_webhook", "add_correction", "delete_correction", ] or re.match(".*_delete$", op) or re.match(".*_activate$", op) or re.match(".*_deactivate$", op) or re.match(".*_enable$", op) or re.match(".*_disable$", op) ): # NOTE this should always be the last in the if/elif conditional ret = "Success" else: raise Exception("no output handler for this operation ({})".format(op)) except Exception as err: print( "WARNING: failed to format output (returning raw output) - exception: " + str(err) ) try: ret = json.dumps(payload, indent=4, sort_keys=True) # XXX catch json errors here except Exception: ret = str(payload) return ret def format_malware_scans(payload, params): """ Example response: { "content": [ { "enabled": true, "findings": [ { "path": "/elf_payload1", "signature": "Unix.Trojan.MSShellcode-40" } ], "metadata": { "db_version": { "bytecode": "331", "daily": "25890", "main": "59" } }, "scanner": "clamav" } ], "content_type": "malware", "imageDigest": "sha256:0eb874fcad5414762a2ca5b2496db5291aad7d3b737700d05e45af43bad3ce4d" } :param payload: :param params: :return: """ obuf = "" # Handle error if "query_type" not in params or not params["query_type"]: # payload will be a list with what is available as a query for the # given image for query in payload: obuf += "%s: available\n" % query return obuf + "\n" if params["query_type"] in ["malware"]: header = ["Scanner", "Matched Signature", "Path"] t = plain_column_table(header) for el in payload["content"]: scanner = el.get("scanner") for row in [ [scanner, x.get("signature", "unknown"), x.get("path", "unknown")] for x in el.get("findings", {}) ]: t.add_row(row) obuf = obuf + t.get_string(sortby="Path") return obuf def format_vulnerabilities(payload, params): obuf = "" if "query_type" not in params or not params["query_type"]: # payload will be a list with what is available as a query for the # given image for query in payload: obuf += "%s: available\n" % query return obuf + "\n" if params["query_type"] in ["os", "non-os", "all"]: header = [ "Vulnerability ID", "Package", "Severity", "Fix", "CVE Refs", "Vulnerability URL", "Type", "Feed Group", "Package Path", ] t = plain_column_table(header) for el in payload["vulnerabilities"]: nvd_data = el.get("nvd_data") cve_ids = [] for nvd_record in nvd_data: _id = nvd_record.get("id") if _id: cve_ids.append(_id) row = [ el["vuln"], el["package"], el["severity"], el["fix"], ",".join(cve_ids), el["url"], el["package_type"], el["feed_group"], el["package_path"], ] t.add_row(row) obuf = obuf + t.get_string(sortby="Severity") return obuf def format_content_query(payload): content = payload.get("content", "") if not content: return "" if isinstance(content, list): # In some situations the `content` key can be a list, not a string content = "".join(content) try: return base64.b64decode(content).decode("utf-8") except Exception: # This broad exception catching is warranted here because there are all # sort of warts we would need to catch with utf-8 decoding and # b64decode. The actual exception is not that relevant here return "" def format_metadata_query(payload): ret = "" if not payload: return ret image_digest = payload.get("imageDigest", "") if image_digest: ret += "Image Digest: {}\n".format(image_digest) metadata = payload.get("metadata", "") if metadata: try: ret += "Metadata: {}\n".format(base64.b64decode(metadata).decode("utf-8")) except Exception: _logger.warning("Failed to base64 decode Metadata") pass metadata_type = payload.get("metadata_type", "") if metadata_type: ret += "Metadata Type: {}\n".format(metadata_type) return ret def string_splitter(input_str, max_length=40): """ Returns a string that is the input string but with \n inserted every max_length chars :param input_str: :param max_length: int num of chars between \n :return: string """ chunks = [] chunk = "" pieces = input_str.split(" ") for piece in pieces: if len(chunk) + len(piece) < max_length: chunk = " ".join([chunk, piece]) else: chunks.append(chunk) chunk = piece chunks.append(chunk) return "\n".join(chunks).strip() def _format_gates(payload, all=False): if not all: header = ["Gate", "Description"] else: header = ["Gate", "Description", "State", "Superceded By"] t = PrettyTable(header, hrules=ALL) t.align = "l" if payload: for gate in payload: desc = string_splitter(gate.get("description", ""), 60) if all: t.add_row( [ gate["name"].lower(), desc, gate.get("state", ""), gate.get("superceded_by", ""), ] ) elif gate.get("state") in [None, "active"]: t.add_row([gate["name"].lower(), desc]) return t.get_string(sortby="Gate", print_empty=True) else: return "No policy spec to parse" def _format_triggers(payload, gate, all=False): if not all: header = ["Trigger", "Description", "Parameters"] else: header = ["Trigger", "Description", "Parameters", "State", "Superceded By"] t = PrettyTable(header, hrules=ALL) t.align = "l" if payload: for gate in [x for x in payload if x["name"].lower() == gate]: for trigger_entry in gate.get("triggers", []): desc = string_splitter(trigger_entry.get("description", "")) param_str = string_splitter( ", ".join( [x["name"].lower() for x in trigger_entry.get("parameters", [])] ), max_length=20, ) if all: t.add_row( [ trigger_entry["name"].lower(), desc, param_str, trigger_entry.get("state", ""), trigger_entry.get("superceded_by", ""), ] ) elif trigger_entry.get("state") in [None, "active"]: t.add_row([trigger_entry["name"].lower(), desc, param_str]) return t.get_string(sortby="Trigger", print_empty=True) else: return "No policy spec to parse" def _format_trigger_params(payload, gate, trigger, all=False): if all: header = [ "Parameter", "Description", "Required", "Example", "State", "Supereceded By", ] else: header = ["Parameter", "Description", "Required", "Example"] t = PrettyTable(header, hrules=ALL) t.align = "l" if payload: for gate in [x for x in payload if x["name"].lower() == gate]: for trigger_entry in [ x for x in gate.get("triggers", []) if x["name"].lower() == trigger ]: for p in trigger_entry.get("parameters", []): desc = string_splitter(p.get("description", "")) if all: t.add_row( [ p["name"].lower(), desc, p.get("required", True), p.get("example", ""), p.get("state", ""), p.get("superceded_by", ""), ] ) elif p.get("state") in [None, "active"]: t.add_row( [ p["name"].lower(), desc, p.get("required", True), p.get("example", ""), ] ) return t.get_string(sortby="Parameter", print_empty=True) else: return "No policy spec to parse" def get_eval_ecode(evaldata, imageDigest): # 0 aid tag 0 status ret = 2 try: fulltag = list(evaldata[0][imageDigest].keys())[0] status = evaldata[0][imageDigest][fulltag][0]["status"].lower() if status == "pass": ret = 0 elif status == "fail": ret = 1 else: raise Exception("got unknown eval status result: " + str(status)) except Exception: ret = 2 return ret def get_ecode(response): ecode = 2 try: httpcode = response["httpcode"] _logger.debug("fetched httpcode from response: %s", str(httpcode)) if httpcode in range(200, 299): ecode = 0 elif httpcode in [401, 500]: ecode = 2 else: ecode = 1 except Exception: pass return ecode def check_access(config): # test the endpoint try: rc = anchorecli.clients.apiexternal.get_base_routes(config) if not rc["success"]: raise Exception(json.dumps(rc["error"], sort_keys=True)) except Exception as err: if config["debug"]: raise Exception( "could not access anchore service (user=" + str(config["user"]) + " url=" + str(config["url"]) + "): " + str(err) ) else: raise Exception( "could not access anchore service (user=" + str(config["user"]) + " url=" + str(config["url"]) + ")" ) return True def discover_inputimage_format(config, input_string): itype = None if re.match("(sha256|local):[0-9a-fA-F]{64}", input_string): itype = "imageDigest" elif re.match("[0-9a-fA-F]{64}", input_string): itype = "imageid" else: itype = "tag" return itype def discover_inputimage(config, input_string): patt = re.match("(.*@|^)(sha256:.*)", input_string) if patt: urldigest = quote_plus(patt.group(2)) return ("digest", input_string, urldigest) try: digest = unquote_plus(str(input_string)) patt = re.match("(.*@|^)(sha256:.*)", digest) if patt: return ("imageDigest", input_string, input_string) patt = re.match("(.*@|^)(local:.*)", digest) if patt: return ("imageDigest", input_string, input_string) except Exception: pass urldigest = None ret_type = "tag" try: ret = anchorecli.clients.apiexternal.get_image(config, tag=input_string) if ret["success"]: urldigest = ret["payload"][0]["imageDigest"] try: image_record = ret["payload"][0] for image_detail in image_record["image_detail"]: if input_string == image_detail["imageId"]: ret_type = "imageid" break except Exception: pass else: pass except Exception: urldigest = None return ret_type, input_string, urldigest def parse_dockerimage_string(instr): host = None port = None repo = None tag = None registry = None repotag = None fulltag = None fulldigest = None digest = None imageId = None if re.match("^sha256:.*", instr): registry = "docker.io" digest = instr elif len(instr) == 64 and not re.findall("[^0-9a-fA-F]+", instr): imageId = instr else: # get the host/port patt = re.match("(.*?)/(.*)", instr) if patt: a = patt.group(1) remain = patt.group(2) patt = re.match("(.*?):(.*)", a) if patt: host = patt.group(1) port = patt.group(2) elif a == "docker.io": host = "docker.io" port = None elif a in ["localhost", "localhost.localdomain", "localbuild"]: host = a port = None else: patt = re.match(".*\..*", a) if patt: host = a else: host = "docker.io" remain = instr port = None else: host = "docker.io" port = None remain = instr # get the repo/tag patt = re.match("(.*)@(.*)", remain) if patt: repo = patt.group(1) digest = patt.group(2) else: patt = re.match("(.*):(.*)", remain) if patt: repo = patt.group(1) tag = patt.group(2) else: repo = remain tag = "latest" if not tag: tag = "latest" if port: registry = ":".join([host, port]) else: registry = host if digest: repotag = "@".join([repo, digest]) else: repotag = ":".join([repo, tag]) fulltag = "/".join([registry, repotag]) if not digest: digest = None else: fulldigest = registry + "/" + repo + "@" + digest tag = None fulltag = None repotag = None ret = {} ret["host"] = host ret["port"] = port ret["repo"] = repo ret["tag"] = tag ret["registry"] = registry ret["repotag"] = repotag ret["fulltag"] = fulltag ret["digest"] = digest ret["fulldigest"] = fulldigest ret["imageId"] = imageId if ret["fulldigest"]: ret["pullstring"] = ret["fulldigest"] elif ret["fulltag"]: ret["pullstring"] = ret["fulltag"] else: ret["pullstring"] = None return ret
37.578431
118
0.449517
85baf3a534d283793d04761bbe1c93ea3351fcd4
13,516
py
Python
tflearn/models/generator.py
AnshulBasia/tflearn
e6f1aa8c19f90cfb2d4b0b03133c434ee1dba376
[ "MIT" ]
1
2017-05-12T07:26:14.000Z
2017-05-12T07:26:14.000Z
tflearn/models/generator.py
mathematiguy/tflearn
095cf976f4a79ef5da8a970fec7ab533707c6c59
[ "MIT" ]
null
null
null
tflearn/models/generator.py
mathematiguy/tflearn
095cf976f4a79ef5da8a970fec7ab533707c6c59
[ "MIT" ]
1
2018-12-25T07:18:57.000Z
2018-12-25T07:18:57.000Z
from __future__ import division, print_function, absolute_import import sys import numpy as np import tensorflow as tf from ..helpers.trainer import Trainer, evaluate as eval from ..helpers.evaluator import Evaluator from ..utils import feed_dict_builder, is_none class SequenceGenerator(object): """ Sequence Generator Model. A deep neural network model for generating sequences. Arguments: network: `Tensor`. Neural network to be used. dictionary: `dict`. A dictionary associating each sample with a key ( usually integers). For example: {'a': 0, 'b': 1, 'c': 2, ...}. seq_maxlen: `int`. The maximum length of a sequence. tensorboard_verbose: `int`. Summary verbose level, it accepts different levels of tensorboard logs: ```python 0 - Loss, Accuracy (Best Speed). 1 - Loss, Accuracy, Gradients. 2 - Loss, Accuracy, Gradients, Weights. 3 - Loss, Accuracy, Gradients, Weights, Activations, Sparsity. (Best visualization) ``` tensorboard_dir: `str`. Directory to store tensorboard logs. Default: "/tmp/tflearn_logs/" checkpoint_path: `str`. Path to store model checkpoints. If None, no model checkpoint will be saved. Default: None. max_checkpoints: `int` or None. Maximum amount of checkpoints. If None, no limit. Default: None. session: `Session`. A session for running ops. If None, a new one will be created. Note: When providing a session, variables must have been initialized already, otherwise an error will be raised. Attributes: trainer: `Trainer`. Handle model training. predictor: `Predictor`. Handle model prediction. session: `Session`. The current model session. """ def __init__(self, network, dictionary=None, seq_maxlen=25, clip_gradients=0.0, tensorboard_verbose=0, tensorboard_dir="/tmp/tflearn_logs/", checkpoint_path=None, max_checkpoints=None, session=None): assert isinstance(network, tf.Tensor), "'network' arg is not a Tensor!" self.net = network self.train_ops = tf.get_collection(tf.GraphKeys.TRAIN_OPS) self.trainer = Trainer(self.train_ops, clip_gradients=clip_gradients, tensorboard_dir=tensorboard_dir, tensorboard_verbose=tensorboard_verbose, checkpoint_path=checkpoint_path, max_checkpoints=max_checkpoints, session=session) self.session = self.trainer.session self.inputs = tf.get_collection(tf.GraphKeys.INPUTS) self.targets = tf.get_collection(tf.GraphKeys.TARGETS) self.predictor = Evaluator([self.net], session=self.session) self.dic = dictionary self.rev_dic = reverse_dictionary(dictionary) self.seq_maxlen = seq_maxlen def fit(self, X_inputs, Y_targets, n_epoch=10, validation_set=None, show_metric=False, batch_size=None, shuffle=None, snapshot_epoch=True, snapshot_step=None, excl_trainops=None, run_id=None): """ Fit. Train model, feeding X_inputs and Y_targets to the network. NOTE: When not feeding dicts, data assignations is made by input/estimator layers creation order (For example, the second input layer created will be feeded by the second value of X_inputs list). Examples: ```python model.fit(X, Y) # Single input and output model.fit({'input1': X}, {'output1': Y}) # Single input and output model.fit([X1, X2], Y) # Mutliple inputs, Single output # validate with X_val and [Y1_val, Y2_val] model.fit(X, [Y1, Y2], validation_set=(X_val, [Y1_val, Y2_val])) # 10% of training data used for validation model.fit(X, Y, validation_set=0.1) ``` Arguments: X_inputs: array, `list` of array (if multiple inputs) or `dict` (with inputs layer name as keys). Data to feed to train model. Y_targets: array, `list` of array (if multiple inputs) or `dict` (with estimators layer name as keys). Targets (Labels) to feed to train model. Usually set as the next element of a sequence, i.e. for x[0] => y[0] = x[1]. n_epoch: `int`. Number of epoch to run. Default: None. validation_set: `tuple`. Represents data used for validation. `tuple` holds data and targets (provided as same type as X_inputs and Y_targets). Additionally, it also accepts `float` (<1) to performs a data split over training data. show_metric: `bool`. Display or not accuracy at every step. batch_size: `int` or None. If `int`, overrides all network estimators 'batch_size' by this value. shuffle: `bool` or None. If `bool`, overrides all network estimators 'shuffle' by this value. snapshot_epoch: `bool`. If True, it will snapshot model at the end of every epoch. (Snapshot a model will evaluate this model on validation set, as well as create a checkpoint if 'checkpoint_path' specified). snapshot_step: `int` or None. If `int`, it will snapshot model every 'snapshot_step' steps. excl_trainops: `list` of `TrainOp`. A list of train ops to exclude from training process (TrainOps can be retrieve through `tf.get_collection_ref(tf.GraphKeys.TRAIN_OPS)`). run_id: `str`. Give a name for this run. (Useful for Tensorboard). """ if batch_size: for train_op in self.train_ops: train_op.batch_size = batch_size valX, valY = None, None if validation_set: if isinstance(validation_set, float): valX = validation_set valY = validation_set else: valX = validation_set[0] valY = validation_set[1] # For simplicity we build sync dict synchronously but # Trainer support asynchronous feed dict allocation feed_dict = feed_dict_builder(X_inputs, Y_targets, self.inputs, self.targets) feed_dicts = [feed_dict for i in self.train_ops] val_feed_dicts = None if not (is_none(valX) or is_none(valY)): if isinstance(valX, float): val_feed_dicts = valX else: val_feed_dict = feed_dict_builder(valX, valY, self.inputs, self.targets) val_feed_dicts = [val_feed_dict for i in self.train_ops] # Retrieve data preprocesing and augmentation dprep_dict, daug_dict = {}, {} dprep_collection = tf.get_collection(tf.GraphKeys.DATA_PREP) daug_collection = tf.get_collection(tf.GraphKeys.DATA_AUG) for i in range(len(self.inputs)): if dprep_collection[i] is not None: dprep_dict[self.inputs[i]] = dprep_collection[i] if daug_collection[i] is not None: daug_dict[self.inputs[i]] = daug_collection[i] self.trainer.fit(feed_dicts, val_feed_dicts=val_feed_dicts, n_epoch=n_epoch, show_metric=show_metric, snapshot_step=snapshot_step, snapshot_epoch=snapshot_epoch, shuffle_all=shuffle, dprep_dict=dprep_dict, daug_dict=daug_dict, excl_trainops=excl_trainops, run_id=run_id) self.predictor = Evaluator([self.net], session=self.trainer.session) def _predict(self, X): feed_dict = feed_dict_builder(X, None, self.inputs, None) return self.predictor.predict(feed_dict) def generate(self, seq_length, temperature=0.5, seq_seed=None, display=False): """ Generate. Generate a sequence. Temperature is controlling the novelty of the created sequence, a temperature near 0 will looks like samples used for training, while the higher the temperature, the more novelty. For optimal results, it is suggested to set sequence seed as some random sequence samples from training dataset. Arguments: seq_length: `int`. The generated sequence length. temperature: `float`. Novelty rate. seq_seed: `sequence`. A sequence used as a seed to generate a new sequence. Suggested to be a sequence from data used for training. display: `bool`. If True, print sequence as it is generated. Returns: The generated sequence. """ generated = seq_seed[:] sequence = seq_seed[:] whole_sequence = seq_seed[:] if display: sys.stdout.write(str(generated)) for i in range(seq_length): x = np.zeros((1, self.seq_maxlen, len(self.dic))) for t, char in enumerate(sequence): x[0, t, self.dic[char]] = 1. preds = self._predict(x)[0] next_index = _sample(preds, temperature) next_char = self.rev_dic[next_index] try: #Python 2 unicode_or_str = [str, unicode] except: #Python 3 unicode_or_str = [str] if type(sequence) in unicode_or_str: generated += next_char sequence = sequence[1:] + next_char whole_sequence += next_char else: generated.append(next_char) sequence = sequence[1:] sequence.append(next_char) whole_sequence.append(next_char) if display: sys.stdout.write(str(next_char)) sys.stdout.flush() if display: print() return whole_sequence def save(self, model_file): """ Save. Save model weights. Arguments: model_file: `str`. Model path. """ self.trainer.save(model_file) def load(self, model_file, **optargs): """ Load. Restore model weights. Arguments: model_file: `str`. Model path. optargs: optional extra arguments for trainer.restore (see helpers/trainer.py) These optional arguments may be used to limit the scope of variables restored, and to control whether a new session is created for the restored variables. """ self.trainer.restore(model_file, **optargs) self.session = self.trainer.session self.predictor = Evaluator([self.net], session=self.session, model=None) for d in tf.get_collection(tf.GraphKeys.DATA_PREP): if d: d.restore_params(self.session) def get_weights(self, weight_tensor): """ Get weights. Get a variable weights. Examples: sgen = SequenceGenerator(...) w = sgen.get_weights(denselayer.W) -- get a dense layer weights Arguments: weight_tensor: `tf.Tensor`. A Variable. Returns: `np.array`. The provided variable weights. """ return weight_tensor.eval(self.trainer.session) def set_weights(self, tensor, weights): """ Set Weights. Assign a tensor variable a given value. Arguments: tensor: `Tensor`. The tensor variable to assign value. weights: The value to be assigned. """ op = tf.assign(tensor, weights) self.trainer.session.run(op) def evaluate(self, X, Y, batch_size=128): """ Evaluate. Evaluate model on given samples. Arguments: X: array, `list` of array (if multiple inputs) or `dict` (with inputs layer name as keys). Data to feed to train model. Y: array, `list` of array (if multiple inputs) or `dict` (with estimators layer name as keys). Targets (Labels) to feed to train model. Usually set as the next element of a sequence, i.e. for x[0] => y[0] = x[1]. batch_size: `int`. The batch size. Default: 128. Returns: The metric score. """ feed_dict = feed_dict_builder(X, Y, self.inputs, self.targets) return eval(self.trainer.session, self.net, feed_dict, batch_size) def reverse_dictionary(dic): # Build reverse dict rev_dic = {} for key in dic: rev_dic[dic[key]] = key return rev_dic def _sample(a, temperature=1.0): # helper function to sample an index from a probability array a = np.log(a) / temperature a = np.exp(a) / np.sum(np.exp(a)) return np.argmax(np.random.multinomial(1, a, 1))
39.752941
90
0.580423
a6ce11cbc3c2ea782fc3581c0d2c70d18a0d1f30
2,078
py
Python
ip_generators.py
G4LD0R/spoofDos
c7302fb18aca6196f87c13d38b8f6559c5c4ef89
[ "MIT" ]
null
null
null
ip_generators.py
G4LD0R/spoofDos
c7302fb18aca6196f87c13d38b8f6559c5c4ef89
[ "MIT" ]
null
null
null
ip_generators.py
G4LD0R/spoofDos
c7302fb18aca6196f87c13d38b8f6559c5c4ef89
[ "MIT" ]
null
null
null
#!/usr/bin/python3 #-*- coding: utf-8 -*- #ip_generators.py from bs4 import BeautifulSoup import requests import random import socket import os, sys import re class generator: def __cinit__(self): self.data=None #Generate to random ip addresses according to given sample ip address def random_ip(self, ipaddress="192.168.1.7", netmask="255.0.0.0"): try: a,b,c,d = ipaddress.split(".") k = str(random.randint(0, 255)) l = str(random.randint(0, 255)) m = str(random.randint(0, 255)) if netmask == "255.255.255.0": ip_address = "{0}.{1}.{2}.{3}".format(a, b, c, k) elif netmask == "255.255.0.0": ip_address = "{0}.{1}.{2}.{3}".format(a, b, k, l) elif netmask == "255.0.0.0": ip_address = "{0}.{1}.{2}.{3}".format(a, k, l, m) else: ip_address = False return ip_address except: return False #Return the own ip address def own_ip(self): try: hostname = socket.gethostname() ip_address = socket.gethostbyname(hostname) return ip_address except: return False #Read the Ip addresses from wordlist path def read_from_wordlist(self, path): ip_list = [] if os.path.exists(path): with open(path, "r") as wordlist: dataCaptured = wordlist.readlines() for row in dataCaptured: try: a, b = row.split("\n") ip_list.append(a) except: pass ip_address = random.choice(ip_list) return ip_address else: return False # Fetch Actual Ip Addresses From Free Proxy Portals def fetch_actual_ips(self): try: proxy_list = ["https://www.us-proxy.org/", "https://www.sslproxies.org/", "https://free-proxy-list.net/"] code = -1 while code != 200: url = random.choice(proxy_list) response = requests.get(url) code = response.status_code soup = BeautifulSoup(response.content,"lxml") ipList = [] trs = soup.find("table", attrs={"id":"proxylisttable"}).find("tbody").find_all("tr") for tr in trs: ip = tr.find("td").text ipList.append(ip) return ipList except: return False
21.42268
108
0.630414
c92811fe253586cdc3b5ec07843671845bb1a6c7
1,277
py
Python
Proper/proper/examples/talbot.py
RupertDodkins/medis
bdb1f00fb93506da2a1f251bc6780e70e97a16c5
[ "MIT" ]
1
2021-06-25T17:35:56.000Z
2021-06-25T17:35:56.000Z
Proper/proper/examples/talbot.py
RupertDodkins/medis
bdb1f00fb93506da2a1f251bc6780e70e97a16c5
[ "MIT" ]
null
null
null
Proper/proper/examples/talbot.py
RupertDodkins/medis
bdb1f00fb93506da2a1f251bc6780e70e97a16c5
[ "MIT" ]
2
2018-12-08T15:05:13.000Z
2019-08-08T17:28:24.000Z
# Copyright 2016, 2017 California Institute of Technology # Users must agree to abide by the restrictions listed in the # file "LegalStuff.txt" in the PROPER library directory. # # PROPER developed at Jet Propulsion Laboratory/California Inst. Technology # Original IDL version by John Krist # Python translation by Navtej Saini, with Luis Marchen and Nikta Amiri import proper import numpy as np def talbot(wavelength, gridsize, PASSVALUE = {'period': 0., 'diam': 0., 'dist': 0.}): talbot_length = 2. * PASSVALUE['period']**2 / wavelength wfo = proper.prop_begin(PASSVALUE['diam'], wavelength, gridsize) # create 1-D grating pattern m = 0.2 x = (np.arange(gridsize, dtype = np.float64) - gridsize/2) \ * proper.prop_get_sampling(wfo) grating = 0.5 * (1 + m * np.cos(2*np.pi*x/PASSVALUE['period'])) # create 2-D amplitude grating pattern grating = np.dot(grating.reshape(gridsize,1), np.ones([1,gridsize], dtype = np.float64)) proper.prop_multiply(wfo, grating) proper.prop_define_entrance(wfo) proper.prop_propagate(wfo, PASSVALUE['dist'], TO_PLANE = True) (wfo, sampling) = proper.prop_end(wfo, NOABS = True) return (wfo, sampling)
32.74359
92
0.661707
79db95ba61c2e66c512d1f44e65dba6d1d783045
7,590
py
Python
desdeo_tools/interaction/validators.py
aswinmurali-io/desdeo-tools
86d4792ded3383f43658832d7f5dca69f236d61b
[ "MIT" ]
1
2021-04-26T13:59:19.000Z
2021-04-26T13:59:19.000Z
desdeo_tools/interaction/validators.py
aswinmurali-io/desdeo-tools
86d4792ded3383f43658832d7f5dca69f236d61b
[ "MIT" ]
13
2020-05-11T13:05:22.000Z
2022-03-12T01:02:01.000Z
desdeo_tools/interaction/validators.py
aswinmurali-io/desdeo-tools
86d4792ded3383f43658832d7f5dca69f236d61b
[ "MIT" ]
9
2019-11-05T14:30:26.000Z
2021-08-28T11:57:43.000Z
import pandas as pd import numpy as np class ValidationError(Exception): """Raised when an error related to the validation is encountered. """ def validate_ref_point_with_ideal_and_nadir( dimensions_data: pd.DataFrame, reference_point: pd.DataFrame ): validate_ref_point_dimensions(dimensions_data, reference_point) validate_ref_point_data_type(reference_point) validate_ref_point_with_ideal(dimensions_data, reference_point) validate_with_ref_point_nadir(dimensions_data, reference_point) def validate_ref_point_with_ideal( dimensions_data: pd.DataFrame, reference_point: pd.DataFrame ): validate_ref_point_dimensions(dimensions_data, reference_point) ideal_fitness = dimensions_data.loc["ideal"] * dimensions_data.loc["minimize"] ref_point_fitness = reference_point * dimensions_data.loc["minimize"] if not (ideal_fitness <= ref_point_fitness).all(axis=None): problematic_columns = ideal_fitness.index[ (ideal_fitness > ref_point_fitness).values.tolist()[0] ].values msg = ( f"Reference point should be worse than or equal to the ideal point\n" f"The following columns have problematic values: {problematic_columns}" ) raise ValidationError(msg) def validate_with_ref_point_nadir( dimensions_data: pd.DataFrame, reference_point: pd.DataFrame ): validate_ref_point_dimensions(dimensions_data, reference_point) nadir_fitness = dimensions_data.loc["nadir"] * dimensions_data.loc["minimize"] ref_point_fitness = reference_point * dimensions_data.loc["minimize"] if not (ref_point_fitness <= nadir_fitness).all(axis=None): problematic_columns = nadir_fitness.index[ (nadir_fitness < ref_point_fitness).values.tolist()[0] ].values msg = ( f"Reference point should be better than or equal to the nadir point\n" f"The following columns have problematic values: {problematic_columns}" ) raise ValidationError(msg) def validate_ref_point_dimensions( dimensions_data: pd.DataFrame, reference_point: pd.DataFrame ): if not dimensions_data.shape[1] == reference_point.shape[1]: msg = ( f"There is a mismatch in the number of columns of the dataframes.\n" f"Columns in dimensions data: {dimensions_data.columns}\n" f"Columns in the reference point provided: {reference_point.columns}" ) raise ValidationError(msg) if not all(dimensions_data.columns == reference_point.columns): msg = ( f"There is a mismatch in the column names of the dataframes.\n" f"Columns in dimensions data: {dimensions_data.columns}\n" f"Columns in the reference point provided: {reference_point.columns}" ) raise ValidationError(msg) def validate_ref_point_data_type(reference_point: pd.DataFrame): for dtype in reference_point.dtypes: if not pd.api.types.is_numeric_dtype(dtype): msg = ( f"Type of data in reference point dataframe should be numeric.\n" f"Provided datatype: {dtype}" ) raise ValidationError(msg) def validate_specified_solutions(indices: np.ndarray, n_solutions: int) -> None: """Validate the Decision maker's choice of preferred/non-preferred solutions. Args: indices (np.ndarray): Index/indices of preferred solutions specified by the Decision maker. n_solutions (int): Number of solutions in total. Returns: Raises: ValidationError: In case the preference is invalid. """ if indices.shape[0] < 1: raise ValidationError("Please specify at least one (non-)preferred solution.") if not isinstance(indices, (np.ndarray, list)): raise ValidationError("Please specify index/indices of (non-)preferred solutions in a list, even if there is only " "one.") if not all(0 <= i <= (n_solutions - 1) for i in indices): msg = "indices of (non-)preferred solutions should be between 0 and {}. Current indices are {}." \ .format(n_solutions - 1, indices) raise ValidationError(msg) def validate_bounds(dimensions_data: pd.DataFrame, bounds: np.ndarray, n_objectives: int) -> None: """Validate the Decision maker's desired lower and upper bounds for objective values. Args: dimensions_data (pd.DataFrame): DataFrame including information whether an objective is minimized or maximized, for each objective. In addition, includes ideal and nadir vectors. bounds (np.ndarray): Desired lower and upper bounds for each objective. n_objectives (int): Number of objectives in problem. Returns: Raises: ValidationError: In case desired bounds are invalid. """ if not isinstance(bounds, np.ndarray): msg = "Please specify bounds as a numpy array. Current type: {}.".format(type(bounds)) raise ValidationError(msg) if len(bounds) != n_objectives: msg = "Length of 'bounds' ({}) must be the same as number of objectives ({}).".format(len(bounds), n_objectives) raise ValidationError(msg) if not all(isinstance(b, (np.ndarray, list)) for b in bounds): print(type(bounds[0])) msg = "Please give bounds for each objective in a list." raise ValidationError(msg) if any(len(b) != 2 for b in bounds): msg = "Length of each item of 'bounds' must 2, containing the lower and upper bound for an objective." raise ValidationError(msg) if any(b[0] > b[1] for b in bounds): msg = "Lower bound cannot be greater than upper bound. Please specify lower bound first, then upper bound." raise ValidationError(msg) # check that bounds are within ideal and nadir points for each objective for i, b in enumerate(bounds): if dimensions_data.loc['minimize'].values.tolist()[i] == 1: # minimized objectives if dimensions_data.loc['ideal'].values.tolist()[i] is not None: if b[0] < dimensions_data.loc['ideal'].values.tolist()[i]: msg = "Lower bound cannot be lower than ideal value for objective. Ideal vector: {}." \ .format(dimensions_data.loc['ideal'].values.tolist()) raise ValidationError(msg) if dimensions_data.loc['nadir'].values.tolist()[i] is not None: if b[1] > dimensions_data.loc['nadir'].values.tolist()[i]: msg = "Upper bound cannot be higher than nadir value for objective. Nadir vector: {}." \ .format(dimensions_data.loc['nadir'].values.tolist()) raise ValidationError(msg) else: # maximized objectives: if dimensions_data.loc['ideal'].values.tolist()[i] is not None: if b[1] > dimensions_data.loc['ideal'].values.tolist()[i]: msg = "Upper bound cannot be higher than ideal value for objective. Ideal vector: {}." \ .format(dimensions_data.loc['ideal'].values.tolist()) raise ValidationError(msg) if dimensions_data.loc['nadir'].values.tolist()[i] is not None: if b[0] < dimensions_data.loc['nadir'].values.tolist()[i]: msg = "Lower bound cannot be lower than nadir value for objective. Nadir vector: {}." \ .format(dimensions_data.loc['nadir'].values.tolist()) raise ValidationError(msg)
46.564417
123
0.66166
40253dbb09ff601dee43edf16be33a3d5289bf8c
511
py
Python
bbs/migrations/0006_userprofile_friends.py
luo1fly/s10day12bbs
ae927f0f3d9f5a09863e06bf894ac53cac83a61f
[ "Apache-2.0" ]
null
null
null
bbs/migrations/0006_userprofile_friends.py
luo1fly/s10day12bbs
ae927f0f3d9f5a09863e06bf894ac53cac83a61f
[ "Apache-2.0" ]
null
null
null
bbs/migrations/0006_userprofile_friends.py
luo1fly/s10day12bbs
ae927f0f3d9f5a09863e06bf894ac53cac83a61f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.8 on 2016-08-04 06:30 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bbs', '0005_auto_20160804_0405'), ] operations = [ migrations.AddField( model_name='userprofile', name='friends', field=models.ManyToManyField(blank=1, related_name='_userprofile_friends_+', to='bbs.UserProfile'), ), ]
24.333333
111
0.637965
373b0547bc90a6e757715731adfb8c34c6b31bc4
175
py
Python
Chapter02/musicterminal/pytify/auth/authorization.py
ariwells2001/Python-Programming-Blueprints
23981ab304e65bcc24560393c75fd5ee85c96ce5
[ "MIT" ]
72
2017-12-19T09:19:40.000Z
2021-11-08T13:13:34.000Z
Chapter02/musicterminal/pytify/auth/authorization.py
ariwells2001/Python-Programming-Blueprints
23981ab304e65bcc24560393c75fd5ee85c96ce5
[ "MIT" ]
20
2018-03-21T01:15:27.000Z
2021-09-08T00:59:40.000Z
Chapter02/musicterminal/pytify/auth/authorization.py
ariwells2001/Python-Programming-Blueprints
23981ab304e65bcc24560393c75fd5ee85c96ce5
[ "MIT" ]
53
2017-12-19T09:19:42.000Z
2022-03-06T02:21:10.000Z
from collections import namedtuple Authorization = namedtuple('Authorization', [ 'access_token', 'token_type', 'expires_in', 'scope', 'refresh_token', ])
17.5
45
0.668571
54895cac576ba3204649cfc456309d2fd8787518
2,139
py
Python
setup.py
raghavven/molssi_bestpractices_2021
e43bd7e269ed0f75f44107736bc5111fd5e21aaf
[ "BSD-3-Clause" ]
null
null
null
setup.py
raghavven/molssi_bestpractices_2021
e43bd7e269ed0f75f44107736bc5111fd5e21aaf
[ "BSD-3-Clause" ]
null
null
null
setup.py
raghavven/molssi_bestpractices_2021
e43bd7e269ed0f75f44107736bc5111fd5e21aaf
[ "BSD-3-Clause" ]
null
null
null
""" molecool Visualization """ import sys from setuptools import setup, find_packages import versioneer short_description = __doc__.split("\n") # from https://github.com/pytest-dev/pytest-runner#conditional-requirement needs_pytest = {'pytest', 'test', 'ptr'}.intersection(sys.argv) pytest_runner = ['pytest-runner'] if needs_pytest else [] try: with open("README.md", "r") as handle: long_description = handle.read() except: long_description = "\n".join(short_description[2:]) setup( # Self-descriptive entries which should always be present name='molecool', author='Raghav', author_email='raghav011986@gmail.com', description=short_description[0], long_description=long_description, long_description_content_type="text/markdown", version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), license='BSD-3-Clause', # Which Python importable modules should be included when your package is installed # Handled automatically by setuptools. Use 'exclude' to prevent some specific # subpackage(s) from being added, if needed packages=find_packages(), # Optional include package data to ship with your package # Customize MANIFEST.in if the general case does not suit your needs # Comment out this line to prevent the files from being packaged with your software include_package_data=True, # Allows `setup.py test` to work correctly with pytest setup_requires=[] + pytest_runner, # Additional entries you may want simply uncomment the lines you want and fill in the data # url='http://www.my_package.com', # Website # install_requires=[], # Required packages, pulls from pip if needed; do not use for Conda deployment # platforms=['Linux', # 'Mac OS-X', # 'Unix', # 'Windows'], # Valid platforms your code works on, adjust to your flavor # python_requires=">=3.5", # Python version restrictions # Manual control if final package is compressible or not, set False to prevent the .egg from being made # zip_safe=False, )
35.65
118
0.69799
45f5a2edaf4165fd8feac8e72c172a520bfa0b33
384
py
Python
01.py
Shourov1702040/hpylearners_Python
aa13010318995af8088a60bff321950ce60c2a9b
[ "MIT" ]
7
2021-10-02T06:46:35.000Z
2022-02-11T01:13:28.000Z
01.py
Mohadeb-Kumar/hpylearners_Python
5f2d2b0a14a357a0a2538196586f34e721ee097f
[ "MIT" ]
null
null
null
01.py
Mohadeb-Kumar/hpylearners_Python
5f2d2b0a14a357a0a2538196586f34e721ee097f
[ "MIT" ]
6
2021-05-11T20:06:23.000Z
2022-02-14T23:31:14.000Z
# Python program to display the Fibonacci sequence def recur_fibo(n): if n <= 1: return n else: return(recur_fibo(n-1) + recur_fibo(n-2)) nterms = 10 # check if the number of terms is valid if nterms <= 0: print("Plese enter a positive integer") else: print("Fibonacci sequence:") for i in range(nterms): print(recur_fibo(i))
20.210526
51
0.619792
d8d365543e6c683b47f2e8ae1e88a320b32c85e5
18,037
py
Python
pyspeckit/spectrum/measurements.py
glangsto/pyspeckit
346b24fb828d1d33c7891cdde7609723e51af34c
[ "MIT" ]
null
null
null
pyspeckit/spectrum/measurements.py
glangsto/pyspeckit
346b24fb828d1d33c7891cdde7609723e51af34c
[ "MIT" ]
1
2021-05-14T19:17:41.000Z
2021-05-14T19:17:41.000Z
pyspeckit/spectrum/measurements.py
glangsto/pyspeckit
346b24fb828d1d33c7891cdde7609723e51af34c
[ "MIT" ]
1
2018-10-02T15:11:17.000Z
2018-10-02T15:11:17.000Z
from __future__ import print_function import numpy as np from astropy.extern.six.moves import xrange import itertools from . import cosmology from collections import OrderedDict """ To test: import spectrum spec = spectrum.Spectrum('sample_sdss.txt') spec.plotter(xmin = 6400, xmax = 6800) spec.specfit(guesses = [20, 6718.29, 5, 100, 6564.614, 20, 50, 6585.27, 20, 20, 6732.67, 5, 50, 6549.86, 5]) spec.measure() """ cm_per_mpc = 3.08568e+24 class Measurements(object): def __init__(self, Spectrum, z=None, d=None, fluxnorm=None, miscline=None, misctol=10., ignore=None, derive=True, debug=False, restframe=False, ptol=2, sort=False): """ This can be called after a fit is run. It will inherit the specfit object and derive as much as it can from modelpars. Just do: spec.measure(z, xunits, fluxnorm) Notes: If z (redshift) or d (distance) are present, we can compute integrated line luminosities rather than just fluxes. Provide distance in cm. Only works with Gaussians. To generalize: 1. make sure we manipulate modelpars correctly, i.e. read in entries corresponding to wavelength/frequency/whatever correctly. Parameters ---------- z: float or None redshift d: float or None distance in cm (used for luminosities) fluxnorm: bool Normalize the fluxes? miscline: dictionary miscline = [{'name': H_alpha', 'wavelength': 6565}] misctol: tolerance (in Angstroms) for identifying an unmatched line to the line(s) we specify in miscline dictionary. sort: bool Sort the entries in order of observed wavelength (or velocity or frequency) """ self.debug = debug self.restframe = restframe # Inherit specfit object self.specfit = Spectrum.specfit self.speclines = Spectrum.speclines # Bit of a hack - help identifying unmatched lines self.miscline = miscline self.misctol = misctol # Flux units in case we are interested in line luminosities or just having real flux units if fluxnorm is not None: self.fluxnorm = fluxnorm else: self.fluxnorm = 1 # This is where we'll keep our results self.lines = OrderedDict() # Read in observed wavelengths tmp1 = np.reshape(self.specfit.modelpars, (int(len(self.specfit.modelpars) / 3), 3)) tmp2 = np.reshape(self.specfit.modelerrs, (int(len(self.specfit.modelerrs) / 3), 3)) if ignore is not None: tmp1 = np.delete(tmp1, ignore, 0) tmp2 = np.delete(tmp2, ignore, 0) # each tmp1 contains amplitude,wavelength,width # (Assumes gaussians) wavelengths = tmp1[:,1] # sort by wavelength if sort: order = np.argsort(wavelengths) self.obspos = wavelengths[order] else: order = np.arange(wavelengths.size) self.obspos = wavelengths self.Nlines = wavelengths.size # Read in modelpars and modelerrs, re-organize so they are 2D arrays sorted by ascending wavelength self.modelpars = np.zeros_like(tmp1) self.modelerrs = np.zeros_like(tmp2) for i, element in enumerate(order): self.modelpars[i] = tmp1[element] self.modelerrs[i] = tmp2[element] # Read in appropriate list of reference wavelengths/frequencies/whatever self.reflines = self.speclines.optical.get_optical_lines() self.refpos = self.reflines['xarr'] self.refname = self.reflines['name'] # Redshift reference lines if restframe = True if self.restframe and z is not None: self.refpos *= (1.0 + z) # If distance or redshift has been provided, we can compute luminosities from fluxes if d is not None: self.d = d else: self.d = None if z is not None: self.cosmology = cosmology.Cosmology() self.d = self.cosmology.LuminosityDistance(z) * cm_per_mpc self.unmatched = self.identify_by_position(ptol=ptol) #if np.sum(unmatched) >= 2: # self.identify_by_spacing(unmatched) if derive: self.derive() def identify_by_position(self, ptol): """ Match observed lines to nearest reference line. Don't use spacing at all. ptol = tolerance (in angstroms) to accept positional match """ if not hasattr(self, 'lines'): self.lines = OrderedDict() # Fill lines dictionary unmatched = np.zeros_like(self.obspos) for i, pos in enumerate(self.obspos): # Check miscline directory for match matched = False if self.miscline is not None: for line in self.miscline: if abs(pos - line['wavelength']) > ptol: continue matched = True name = line['name'] break if not matched: diff = np.abs(pos - self.refpos) loc = np.argmin(diff) if diff[loc] <= ptol: matched = True name = self.refname[loc] if name in self.lines.keys(): name += '_1' num = int(name[-1]) while name in self.lines.keys(): num += 1 name = '%s_%i' % (self.refname[loc], num) if matched: self.lines[name] = {} self.lines[name]['modelpars'] = list(self.modelpars[i]) self.lines[name]['modelerrs'] = list(self.modelerrs[i]) else: name = 'unknown_1' num = 1 while name in self.lines.keys(): num += 1 name = 'unknown_%i' % num self.lines[name] = {} self.lines[name]['modelpars'] = list(self.modelpars[i]) self.lines[name]['modelerrs'] = list(self.modelerrs[i]) unmatched[i] = 1 return unmatched def identify_by_spacing(self): """ Determine identity of lines in self.modelpars. Fill entries of self.lines dictionary. Note: This method will be infinitely slow for more than 10 or so lines. """ if self.unmatched is None: self.unmatched = np.ones_like(self.obspos) # Remove lines that were already identified obspos = self.obspos[self.unmatched == 1] # Spacing between observed lines (odiff) and reference lines (rdiff) self.odiff = np.abs(np.diff(obspos)) self.rdiff = np.abs(np.diff(self.refpos)) # Don't try to identify lines with separations smaller than the smallest # separation in our reference library self.rdmin = 0.99 * min(self.rdiff) # If lines have multiple components (i.e. spacing much closer than ref lines), # delete them from ID list. if np.any(self.odiff) < self.rdmin: where = np.ravel(np.argwhere(self.odiff < self.rdmin)) odiff = np.delete(self.odiff, where) multi = True else: where = 0 odiff = self.odiff multi = False refpos = self.refpos refname = self.refname # Don't include elements of reference array that are far away from the observed lines (speeds things up) condition = (refpos >= 0.99 * min(self.obspos)) & (refpos <= 1.01 * max(self.obspos)) refpos = refpos[condition] refname = refname[condition] if len(refpos) == 0: print('WARNING: No reference lines in this wavelength regime.') elif len(refpos) < self.Nlines: print('WARNING: More observed lines than reference lines in this band.') # Construct all possible (N-element) combos of reference lines combos = itertools.combinations(refpos, min(self.Nlines, len(refpos))) # List to keep track of line identification. Each entry is (cost, (line1, line2, line3,...)) self.IDresults = [] for i, combo in enumerate(combos): rdiff = np.diff(combo) if len(odiff) == len(rdiff): result = (np.sum(np.abs(odiff - rdiff)), combo) self.IDresults.append(result) else: # If more/less observed lines than reference lines, try excluding observed lines one at a time if len(odiff) > len(rdiff): subcombos = itertools.combinations(odiff, len(rdiff)) for subcombo in subcombos: result = (np.sum(np.abs(subcombo - rdiff)), combo) self.IDresults.append(result) else: subcombos = itertools.combinations(rdiff, len(odiff)) for subcombo in subcombos: result = (np.sum(np.abs(odiff - subcombo)), combo) self.IDresults.append(result) # Pick best solution best = np.argmin(zip(*self.IDresults)[0]) # Location of best solution ALLloc = [] # x-values of best fit lines in reference dictionary # Determine indices of matched reference lines for element in self.IDresults[best][1]: ALLloc.append(np.argmin(np.abs(refpos - element))) # Fill lines dictionary for i, element in enumerate(ALLloc): line = refname[element] self.lines[line] = {} loc = np.argmin(np.abs(self.obspos - refpos[element])) self.lines[line]['modelpars'] = list(self.modelpars[loc]) self.lines[line]['modelerrs'] = list(self.modelerrs[loc]) # Track down odd lines (i.e. broad components of lines already identified) # This won't yet work for lines that are truly unidentified if len(ALLloc) < self.Nlines: # Figure out which modelpars/errs that belong to lines that were already identified mpars = self.modelpars.copy() merrs = self.modelerrs.copy() for line in self.lines: wavelengths = zip(*mpars)[1] i = np.argmin(np.abs(zip(*mpars)[1] - self.lines[line]['modelpars'][1])) mpars = np.delete(mpars, i, 0) merrs = np.delete(merrs, i, 0) # Loop over unmatched modelpars/errs, find name of unmatched line, extend corresponding dict entry if self.miscline is None: for i, x in enumerate(zip(*mpars)[1]): self.lines['unknown%i' % i] = {} self.lines['unknown%i' % i]['modelpars'] = mpars[i] self.lines['unknown%i' % i]['modelerrs'] = merrs[i] # If we've know a-priori which lines the unmatched lines are likely to be, use that information else: print(self.miscline) for i, miscline in enumerate(self.miscline): for j, x in enumerate(zip(*mpars)[1]): if abs(x - miscline['wavelength']) < self.misctol: name = miscline['name'] else: name = 'unknown%i' % j self.lines[name] = {} self.lines[name]['modelpars'] = mpars[j] self.lines[name]['modelerrs'] = merrs[j] self.separate() def derive(self): """ Calculate luminosity and FWHM for all spectral lines. """ for line in self.lines.keys(): if self.debug: print("Computing parameters for line %s" % line) self.lines[line]['fwhm'] = self.compute_fwhm(self.lines[line]['modelpars']) self.lines[line]['flux'] = self.compute_flux(self.lines[line]['modelpars']) self.lines[line]['amp'] = self.compute_amplitude(self.lines[line]['modelpars']) self.lines[line]['pos'] = self.lines[line]['modelpars'][1] if self.d is not None: self.lines[line]['lum'] = self.compute_luminosity(self.lines[line]['modelpars']) def separate(self): """ For multicomponent lines, separate into broad and narrow components (assume only one of components is narrow). """ for key in self.lines.keys(): modpars = self.lines[key]['modelpars'] moderrs = self.lines[key]['modelerrs'] if len(modpars) > 3: modpars2d = np.reshape(modpars, (len(modpars) / 3, 3)) moderrs2d = np.reshape(moderrs, (len(moderrs) / 3, 3)) sigma = zip(*modpars2d)[2] minsigma = min(np.abs(sigma)) i_narrow = list(np.abs(sigma)).index(minsigma) else: continue self.lines["{0}_N".format(key)] = {} self.lines["{0}_N".format(key)]['modelpars'] = [] self.lines["{0}_N".format(key)]['modelerrs'] = [] self.lines["{0}_B".format(key)] = {} self.lines["{0}_B".format(key)]['modelpars'] = [] self.lines["{0}_B".format(key)]['modelerrs'] = [] for i, arr in enumerate(modpars2d): if i == i_narrow: self.lines["{0}_N".format(key)]['modelpars'] = arr self.lines["{0}_N".format(key)]['modelerrs'] = moderrs2d[i] else: self.lines["{0}_B".format(key)]['modelpars'].extend(arr) self.lines["{0}_B".format(key)]['modelerrs'].extend(moderrs2d[i]) def compute_flux(self, pars): """ Calculate integrated flux of emission line. Works for multi-component fits too. Unnormalized. """ flux = 0 niter = (len(pars) / 3) assert niter == int(niter) for i in xrange(int(niter)): flux += np.sqrt(2. * np.pi) * pars[3 * i] * abs(pars[2 + 3 * i]) return flux * self.fluxnorm def compute_amplitude(self, pars): """ Calculate amplitude of emission line. Should be easy - add multiple components if they exist. Currently assumes multiple components have the same centroid. """ amp = 0 niter = (len(pars) / 3) for i in xrange(int(niter)): amp += pars[3 * i] return amp * self.fluxnorm def compute_luminosity(self, pars): """ Determine luminosity of line (need distance and flux units). """ lum = 0 niter = (len(pars) / 3) for i in xrange(int(niter)): lum += self.compute_flux(pars) * 4. * np.pi * self.d**2 return lum def compute_fwhm(self, pars): """ Determine full-width at half maximum for multi-component fit numerically, or analytically if line has only a single component. Uses bisection technique for the former with absolute tolerance of 1e-4. """ if len(pars) == 3: return 2. * np.sqrt(2. * np.log(2.)) * abs(pars[2]) else: atol = 1e-4 niter = (len(pars) / 3) pars2d = np.reshape(pars, (int(niter), 3)) start = zip(*pars2d)[1][0] # start at central wavelength of first component # If the centroids are exactly the same for all components, we know the peak, and peak position if np.allclose(zip(*pars2d)[1], atol): fmax = np.sum(zip(*pars2d)[0]) # Otherwise, we have to figure out where the multicomponent peak is else: f = lambda x: self.specfit.fitter.slope(x) xfmax = self.bisection(f, start) fmax = self.specfit.fitter.n_modelfunc(pars)(np.array([xfmax, xfmax]))[0] hmax = 0.5 * fmax # current height relative to half max - we want to minimize this function. Could be asymmetric. f = lambda x: self.specfit.fitter.n_modelfunc(pars)(np.array([x])) - hmax xhmax1 = self.bisection(f, start) xhmax2 = self.bisection(f, start + (start - xhmax1)) return abs(xhmax2 - xhmax1) def bisection(self, f, x_guess): """ Find root of function using bisection method. Absolute tolerance of 1e-4 is being used. """ x1, x2 = self.bracket_root(f, x_guess) # Narrow bracketed range with bisection until tolerance is met while abs(x2 - x1) > 1e-4: midpt = np.mean([x1, x2]) fmid = f(midpt) if np.sign(fmid) < 0: x1 = midpt else: x2 = midpt if fmid == 0.0: break return x2 def bracket_root(self, f, x_guess, atol = 1e-4): """ Bracket root by finding points where function goes from positive to negative. """ f1 = f(x_guess) f2 = f(x_guess + 1) df = f2 - f1 # Determine whether increasing or decreasing x_guess will lead us to zero if (f1 > 0 and df < 0) or (f1 < 0 and df > 0): sign = 1 else: sign = -1 # Find root bracketing points xpre = x_guess xnow = x_guess + sign fpre = f1 fnow = f(xnow) while (np.sign(fnow) == np.sign(fpre)): xpre = xnow xnow += sign * 0.1 fpre = f(xpre) fnow = f(xnow) x1 = min(xnow, xpre) x2 = max(xnow, xpre) if not np.all([np.sign(fpre), np.sign(fnow)]): x1 -= 1e-4 x2 += 1e-4 return x1, x2 def to_tex(self): """ Write out fit results to tex format. """ pass
36.961066
118
0.550202
6169c77d05545f1f532003d1f71c2b3e32d7c56d
1,145
py
Python
polkadot_prometheus_exporter/_utils.py
w3f-community/polkadot-prometheus-exporter
b1ee5608572533a27a2aa6d9523a84a05249073c
[ "Apache-2.0" ]
8
2019-06-10T08:38:56.000Z
2021-04-16T17:52:54.000Z
polkadot_prometheus_exporter/_utils.py
w3f-community/polkadot-prometheus-exporter
b1ee5608572533a27a2aa6d9523a84a05249073c
[ "Apache-2.0" ]
null
null
null
polkadot_prometheus_exporter/_utils.py
w3f-community/polkadot-prometheus-exporter
b1ee5608572533a27a2aa6d9523a84a05249073c
[ "Apache-2.0" ]
1
2021-03-03T18:23:38.000Z
2021-03-03T18:23:38.000Z
# Copyright (C) 2019 MixBytes, LLC # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND (express or implied). from abc import ABC, abstractmethod from time import time class PeriodicTask(ABC): """ Utility class which runs _perform() at most every period_seconds. """ def __init__(self, period_seconds): self.period_seconds = period_seconds self.__last_invocation_time = None @abstractmethod def _perform(self): raise NotImplementedError() def run(self): now = time() if self.__last_invocation_time is not None and self.__last_invocation_time + self.period_seconds > now: return self.__last_invocation_time = now self._perform() def check(condition, error_msg=None): if not condition: raise (RuntimeError() if error_msg is None else RuntimeError(error_msg))
28.625
111
0.704803
400eb450484d415ed23eea86cc637a288cf7cd62
230
py
Python
polymetis/polymetis/python/torchcontrol/utils/__init__.py
ali-senguel/fairo
1ec5d8ecbdfc782de63a92aad9bf8534110ce762
[ "MIT" ]
669
2020-11-21T01:20:20.000Z
2021-09-13T13:25:16.000Z
polymetis/polymetis/python/torchcontrol/utils/__init__.py
ali-senguel/fairo
1ec5d8ecbdfc782de63a92aad9bf8534110ce762
[ "MIT" ]
324
2020-12-07T18:20:34.000Z
2021-09-14T17:17:18.000Z
polymetis/polymetis/python/torchcontrol/utils/__init__.py
ali-senguel/fairo
1ec5d8ecbdfc782de63a92aad9bf8534110ce762
[ "MIT" ]
56
2021-01-04T19:57:40.000Z
2021-09-13T21:20:08.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .tensor_utils import * from .time_utils import *
32.857143
65
0.765217
d75c2df82fdb86d324a6ad0f066d09e8f491cbd9
1,509
py
Python
tpdatasrc/co8infra/scr/Spell192 - Gentle Repose.py
edoipi/TemplePlus
f0e552289822fea908f16daa379fa568b1bd286d
[ "MIT" ]
69
2015-05-05T14:09:25.000Z
2022-02-15T06:13:04.000Z
tpdatasrc/co8infra/scr/Spell192 - Gentle Repose.py
edoipi/TemplePlus
f0e552289822fea908f16daa379fa568b1bd286d
[ "MIT" ]
457
2015-05-01T22:07:45.000Z
2022-03-31T02:19:10.000Z
tpdatasrc/co8infra/scr/Spell192 - Gentle Repose.py
edoipi/TemplePlus
f0e552289822fea908f16daa379fa568b1bd286d
[ "MIT" ]
25
2016-02-04T21:19:53.000Z
2021-11-15T23:14:51.000Z
from toee import * def OnBeginSpellCast( spell ): print "Gentle Repose OnBeginSpellCast" print "spell.target_list=", spell.target_list print "spell.caster=", spell.caster, " caster.level= ", spell.caster_level game.particles( "sp-necromancy-conjure", spell.caster ) def OnSpellEffect( spell ): print "Gentle Repose OnSpellEffect" target = spell.target_list[0] if not target.obj.is_friendly( spell.caster ): if not target.obj.saving_throw_spell( spell.dc, D20_Save_Will, D20STD_F_NONE, spell.caster, spell.id ): # saving throw unsuccessful target.obj.float_mesfile_line( 'mes\\spell.mes', 30002 ) game.particles( 'sp-Inflict Light Wounds', target.obj ) target.obj.float_mesfile_line( 'mes\\spell.mes', 192 ) x = target.obj.obj_get_int(obj_f_critter_flags2) x = x | 64 target.obj.obj_set_int(obj_f_critter_flags2, x) game.global_vars[900] = target.obj.obj_get_int(obj_f_critter_flags2) else: # saving throw successful target.obj.float_mesfile_line( 'mes\\spell.mes', 30001 ) game.particles( 'Fizzle', target.obj ) else: game.particles( 'sp-Inflict Light Wounds', target.obj ) target.obj.float_mesfile_line( 'mes\\spell.mes', 192 ) x = target.obj.obj_get_int(obj_f_critter_flags2) x = x | 64 target.obj.obj_set_int(obj_f_critter_flags2, x) spell.target_list.remove_target( target.obj ) spell.spell_end( spell.id ) def OnBeginRound( spell ): print "Gentle Repose OnBeginRound" def OnEndSpellCast( spell ): print "Gentle Repose OnEndSpellCast"
32.106383
105
0.743539
d0d7a67d80a981d4a1937e5c8ed4c1243eb68765
40,245
py
Python
ansible/roles/lib_openshift_3.2/library/oc_serviceaccount.py
rhdedgar/openshift-tools
3c077d905688c3d4477bbd4ca48977b705f7e779
[ "Apache-2.0" ]
null
null
null
ansible/roles/lib_openshift_3.2/library/oc_serviceaccount.py
rhdedgar/openshift-tools
3c077d905688c3d4477bbd4ca48977b705f7e779
[ "Apache-2.0" ]
3
2016-12-01T23:01:36.000Z
2016-12-02T00:16:48.000Z
ansible/roles/lib_openshift_3.2/library/oc_serviceaccount.py
rhdedgar/openshift-tools
3c077d905688c3d4477bbd4ca48977b705f7e779
[ "Apache-2.0" ]
1
2018-01-30T05:44:59.000Z
2018-01-30T05:44:59.000Z
#!/usr/bin/env python # pylint: disable=too-many-lines # ___ ___ _ _ ___ ___ _ _____ ___ ___ # / __| __| \| | __| _ \ /_\_ _| __| \ # | (_ | _|| .` | _|| / / _ \| | | _|| |) | # \___|___|_|\_|___|_|_\/_/_\_\_|_|___|___/_ _____ # | \ / _ \ | \| |/ _ \_ _| | __| \_ _|_ _| # | |) | (_) | | .` | (_) || | | _|| |) | | | | # |___/ \___/ |_|\_|\___/ |_| |___|___/___| |_| ''' OpenShiftCLI class that wraps the oc commands in a subprocess ''' # pylint: disable=too-many-lines import atexit import json import os import re import shutil import subprocess import ruamel.yaml as yaml #import yaml # ## This is here because of a bug that causes yaml ## to incorrectly handle timezone info on timestamps #def timestamp_constructor(_, node): # '''return timestamps as strings''' # return str(node.value) #yaml.add_constructor(u'tag:yaml.org,2002:timestamp', timestamp_constructor) class OpenShiftCLIError(Exception): '''Exception class for openshiftcli''' pass # pylint: disable=too-few-public-methods class OpenShiftCLI(object): ''' Class to wrap the command line tools ''' def __init__(self, namespace, kubeconfig='/etc/origin/master/admin.kubeconfig', verbose=False, all_namespaces=False): ''' Constructor for OpenshiftCLI ''' self.namespace = namespace self.verbose = verbose self.kubeconfig = kubeconfig self.all_namespaces = all_namespaces # Pylint allows only 5 arguments to be passed. # pylint: disable=too-many-arguments def _replace_content(self, resource, rname, content, force=False, sep='.'): ''' replace the current object with the content ''' res = self._get(resource, rname) if not res['results']: return res fname = '/tmp/%s' % rname yed = Yedit(fname, res['results'][0], separator=sep) changes = [] for key, value in content.items(): changes.append(yed.put(key, value)) if any([change[0] for change in changes]): yed.write() atexit.register(Utils.cleanup, [fname]) return self._replace(fname, force) return {'returncode': 0, 'updated': False} def _replace(self, fname, force=False): '''return all pods ''' cmd = ['-n', self.namespace, 'replace', '-f', fname] if force: cmd.append('--force') return self.openshift_cmd(cmd) def _create_from_content(self, rname, content): '''return all pods ''' fname = '/tmp/%s' % rname yed = Yedit(fname, content=content) yed.write() atexit.register(Utils.cleanup, [fname]) return self._create(fname) def _create(self, fname): '''return all pods ''' return self.openshift_cmd(['create', '-f', fname, '-n', self.namespace]) def _delete(self, resource, rname, selector=None): '''return all pods ''' cmd = ['delete', resource, rname, '-n', self.namespace] if selector: cmd.append('--selector=%s' % selector) return self.openshift_cmd(cmd) def _process(self, template_name, create=False, params=None, template_data=None): '''return all pods ''' cmd = ['process', '-n', self.namespace] if template_data: cmd.extend(['-f', '-']) else: cmd.append(template_name) if params: param_str = ["%s=%s" % (key, value) for key, value in params.items()] cmd.append('-v') cmd.extend(param_str) results = self.openshift_cmd(cmd, output=True, input_data=template_data) if results['returncode'] != 0 or not create: return results fname = '/tmp/%s' % template_name yed = Yedit(fname, results['results']) yed.write() atexit.register(Utils.cleanup, [fname]) return self.openshift_cmd(['-n', self.namespace, 'create', '-f', fname]) def _get(self, resource, rname=None, selector=None): '''return a resource by name ''' cmd = ['get', resource] if selector: cmd.append('--selector=%s' % selector) if self.all_namespaces: cmd.extend(['--all-namespaces']) elif self.namespace: cmd.extend(['-n', self.namespace]) cmd.extend(['-o', 'json']) if rname: cmd.append(rname) rval = self.openshift_cmd(cmd, output=True) # Ensure results are retuned in an array if rval.has_key('items'): rval['results'] = rval['items'] elif not isinstance(rval['results'], list): rval['results'] = [rval['results']] return rval def _schedulable(self, node=None, selector=None, schedulable=True): ''' perform oadm manage-node scheduable ''' cmd = ['manage-node'] if node: cmd.extend(node) else: cmd.append('--selector=%s' % selector) cmd.append('--schedulable=%s' % schedulable) return self.openshift_cmd(cmd, oadm=True, output=True, output_type='raw') def _list_pods(self, node=None, selector=None, pod_selector=None): ''' perform oadm manage-node evacuate ''' cmd = ['manage-node'] if node: cmd.extend(node) else: cmd.append('--selector=%s' % selector) if pod_selector: cmd.append('--pod-selector=%s' % pod_selector) cmd.extend(['--list-pods', '-o', 'json']) return self.openshift_cmd(cmd, oadm=True, output=True, output_type='raw') #pylint: disable=too-many-arguments def _evacuate(self, node=None, selector=None, pod_selector=None, dry_run=False, grace_period=None, force=False): ''' perform oadm manage-node evacuate ''' cmd = ['manage-node'] if node: cmd.extend(node) else: cmd.append('--selector=%s' % selector) if dry_run: cmd.append('--dry-run') if pod_selector: cmd.append('--pod-selector=%s' % pod_selector) if grace_period: cmd.append('--grace-period=%s' % int(grace_period)) if force: cmd.append('--force') cmd.append('--evacuate') return self.openshift_cmd(cmd, oadm=True, output=True, output_type='raw') def _import_image(self, url=None, name=None, tag=None): ''' perform image import ''' cmd = ['import-image'] image = '{0}'.format(name) if tag: image += ':{0}'.format(tag) cmd.append(image) if url: cmd.append('--from={0}/{1}'.format(url, image)) cmd.append('-n{0}'.format(self.namespace)) cmd.append('--confirm') return self.openshift_cmd(cmd) #pylint: disable=too-many-arguments def openshift_cmd(self, cmd, oadm=False, output=False, output_type='json', input_data=None): '''Base command for oc ''' cmds = [] if oadm: cmds = ['/usr/bin/oadm'] else: cmds = ['/usr/bin/oc'] cmds.extend(cmd) rval = {} results = '' err = None if self.verbose: print ' '.join(cmds) proc = subprocess.Popen(cmds, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env={'KUBECONFIG': self.kubeconfig}) stdout, stderr = proc.communicate(input_data) rval = {"returncode": proc.returncode, "results": results, "cmd": ' '.join(cmds), } if proc.returncode == 0: if output: if output_type == 'json': try: rval['results'] = json.loads(stdout) except ValueError as err: if "No JSON object could be decoded" in err.message: err = err.message elif output_type == 'raw': rval['results'] = stdout if self.verbose: print stdout print stderr if err: rval.update({"err": err, "stderr": stderr, "stdout": stdout, "cmd": cmds }) else: rval.update({"stderr": stderr, "stdout": stdout, "results": {}, }) return rval class Utils(object): ''' utilities for openshiftcli modules ''' @staticmethod def create_file(rname, data, ftype='yaml'): ''' create a file in tmp with name and contents''' path = os.path.join('/tmp', rname) with open(path, 'w') as fds: if ftype == 'yaml': fds.write(yaml.dump(data, Dumper=yaml.RoundTripDumper)) elif ftype == 'json': fds.write(json.dumps(data)) else: fds.write(data) # Register cleanup when module is done atexit.register(Utils.cleanup, [path]) return path @staticmethod def create_files_from_contents(content, content_type=None): '''Turn an array of dict: filename, content into a files array''' if not isinstance(content, list): content = [content] files = [] for item in content: path = Utils.create_file(item['path'], item['data'], ftype=content_type) files.append({'name': os.path.basename(path), 'path': path}) return files @staticmethod def cleanup(files): '''Clean up on exit ''' for sfile in files: if os.path.exists(sfile): if os.path.isdir(sfile): shutil.rmtree(sfile) elif os.path.isfile(sfile): os.remove(sfile) @staticmethod def exists(results, _name): ''' Check to see if the results include the name ''' if not results: return False if Utils.find_result(results, _name): return True return False @staticmethod def find_result(results, _name): ''' Find the specified result by name''' rval = None for result in results: if result.has_key('metadata') and result['metadata']['name'] == _name: rval = result break return rval @staticmethod def get_resource_file(sfile, sfile_type='yaml'): ''' return the service file ''' contents = None with open(sfile) as sfd: contents = sfd.read() if sfile_type == 'yaml': contents = yaml.load(contents, yaml.RoundTripLoader) elif sfile_type == 'json': contents = json.loads(contents) return contents # Disabling too-many-branches. This is a yaml dictionary comparison function # pylint: disable=too-many-branches,too-many-return-statements,too-many-statements @staticmethod def check_def_equal(user_def, result_def, skip_keys=None, debug=False): ''' Given a user defined definition, compare it with the results given back by our query. ''' # Currently these values are autogenerated and we do not need to check them skip = ['metadata', 'status'] if skip_keys: skip.extend(skip_keys) for key, value in result_def.items(): if key in skip: continue # Both are lists if isinstance(value, list): if not user_def.has_key(key): if debug: print 'User data does not have key [%s]' % key print 'User data: %s' % user_def return False if not isinstance(user_def[key], list): if debug: print 'user_def[key] is not a list key=[%s] user_def[key]=%s' % (key, user_def[key]) return False if len(user_def[key]) != len(value): if debug: print "List lengths are not equal." print "key=[%s]: user_def[%s] != value[%s]" % (key, len(user_def[key]), len(value)) print "user_def: %s" % user_def[key] print "value: %s" % value return False for values in zip(user_def[key], value): if isinstance(values[0], dict) and isinstance(values[1], dict): if debug: print 'sending list - list' print type(values[0]) print type(values[1]) result = Utils.check_def_equal(values[0], values[1], skip_keys=skip_keys, debug=debug) if not result: print 'list compare returned false' return False elif value != user_def[key]: if debug: print 'value should be identical' print value print user_def[key] return False # recurse on a dictionary elif isinstance(value, dict): if not user_def.has_key(key): if debug: print "user_def does not have key [%s]" % key return False if not isinstance(user_def[key], dict): if debug: print "dict returned false: not instance of dict" return False # before passing ensure keys match api_values = set(value.keys()) - set(skip) user_values = set(user_def[key].keys()) - set(skip) if api_values != user_values: if debug: print "keys are not equal in dict" print api_values print user_values return False result = Utils.check_def_equal(user_def[key], value, skip_keys=skip_keys, debug=debug) if not result: if debug: print "dict returned false" print result return False # Verify each key, value pair is the same else: if not user_def.has_key(key) or value != user_def[key]: if debug: print "value not equal; user_def does not have key" print key print value if user_def.has_key(key): print user_def[key] return False if debug: print 'returning true' return True class OpenShiftCLIConfig(object): '''Generic Config''' def __init__(self, rname, namespace, kubeconfig, options): self.kubeconfig = kubeconfig self.name = rname self.namespace = namespace self._options = options @property def config_options(self): ''' return config options ''' return self._options def to_option_list(self): '''return all options as a string''' return self.stringify() def stringify(self): ''' return the options hash as cli params in a string ''' rval = [] for key, data in self.config_options.items(): if data['include'] \ and (data['value'] or isinstance(data['value'], int)): rval.append('--%s=%s' % (key.replace('_', '-'), data['value'])) return rval class YeditException(Exception): ''' Exception class for Yedit ''' pass class Yedit(object): ''' Class to modify yaml files ''' re_valid_key = r"(((\[-?\d+\])|([0-9a-zA-Z%s/_-]+)).?)+$" re_key = r"(?:\[(-?\d+)\])|([0-9a-zA-Z%s/_-]+)" com_sep = set(['.', '#', '|', ':']) # pylint: disable=too-many-arguments def __init__(self, filename=None, content=None, content_type='yaml', separator='.', backup=False): self.content = content self._separator = separator self.filename = filename self.__yaml_dict = content self.content_type = content_type self.backup = backup self.load(content_type=self.content_type) if self.__yaml_dict == None: self.__yaml_dict = {} @property def separator(self): ''' getter method for yaml_dict ''' return self._separator @separator.setter def separator(self): ''' getter method for yaml_dict ''' return self._separator @property def yaml_dict(self): ''' getter method for yaml_dict ''' return self.__yaml_dict @yaml_dict.setter def yaml_dict(self, value): ''' setter method for yaml_dict ''' self.__yaml_dict = value @staticmethod def parse_key(key, sep='.'): '''parse the key allowing the appropriate separator''' common_separators = list(Yedit.com_sep - set([sep])) return re.findall(Yedit.re_key % ''.join(common_separators), key) @staticmethod def valid_key(key, sep='.'): '''validate the incoming key''' common_separators = list(Yedit.com_sep - set([sep])) if not re.match(Yedit.re_valid_key % ''.join(common_separators), key): return False return True @staticmethod def remove_entry(data, key, sep='.'): ''' remove data at location key ''' if key == '' and isinstance(data, dict): data.clear() return True elif key == '' and isinstance(data, list): del data[:] return True if not (key and Yedit.valid_key(key, sep)) and isinstance(data, (list, dict)): return None key_indexes = Yedit.parse_key(key, sep) for arr_ind, dict_key in key_indexes[:-1]: if dict_key and isinstance(data, dict): data = data.get(dict_key, None) elif arr_ind and isinstance(data, list) and int(arr_ind) <= len(data) - 1: data = data[int(arr_ind)] else: return None # process last index for remove # expected list entry if key_indexes[-1][0]: if isinstance(data, list) and int(key_indexes[-1][0]) <= len(data) - 1: del data[int(key_indexes[-1][0])] return True # expected dict entry elif key_indexes[-1][1]: if isinstance(data, dict): del data[key_indexes[-1][1]] return True @staticmethod def add_entry(data, key, item=None, sep='.'): ''' Get an item from a dictionary with key notation a.b.c d = {'a': {'b': 'c'}}} key = a#b return c ''' if key == '': pass elif not (key and Yedit.valid_key(key, sep)) and isinstance(data, (list, dict)): return None key_indexes = Yedit.parse_key(key, sep) for arr_ind, dict_key in key_indexes[:-1]: if dict_key: if isinstance(data, dict) and data.has_key(dict_key) and data[dict_key]: data = data[dict_key] continue elif data and not isinstance(data, dict): raise YeditException("Unexpected item type found while going through key " + "path: {} (at key: {})".format(key, dict_key)) data[dict_key] = {} data = data[dict_key] elif arr_ind and isinstance(data, list) and int(arr_ind) <= len(data) - 1: data = data[int(arr_ind)] else: raise YeditException("Unexpected item type found while going through key path: {}".format(key)) if key == '': data = item # process last index for add # expected list entry elif key_indexes[-1][0] and isinstance(data, list) and int(key_indexes[-1][0]) <= len(data) - 1: data[int(key_indexes[-1][0])] = item # expected dict entry elif key_indexes[-1][1] and isinstance(data, dict): data[key_indexes[-1][1]] = item # didn't add/update to an existing list, nor add/update key to a dict # so we must have been provided some syntax like a.b.c[<int>] = "data" for a # non-existent array else: raise YeditException("Error adding data to object at path: {}".format(key)) return data @staticmethod def get_entry(data, key, sep='.'): ''' Get an item from a dictionary with key notation a.b.c d = {'a': {'b': 'c'}}} key = a.b return c ''' if key == '': pass elif not (key and Yedit.valid_key(key, sep)) and isinstance(data, (list, dict)): return None key_indexes = Yedit.parse_key(key, sep) for arr_ind, dict_key in key_indexes: if dict_key and isinstance(data, dict): data = data.get(dict_key, None) elif arr_ind and isinstance(data, list) and int(arr_ind) <= len(data) - 1: data = data[int(arr_ind)] else: return None return data def write(self): ''' write to file ''' if not self.filename: raise YeditException('Please specify a filename.') if self.backup and self.file_exists(): shutil.copy(self.filename, self.filename + '.orig') tmp_filename = self.filename + '.yedit' try: with open(tmp_filename, 'w') as yfd: # pylint: disable=no-member,maybe-no-member if hasattr(self.yaml_dict, 'fa'): self.yaml_dict.fa.set_block_style() yfd.write(yaml.dump(self.yaml_dict, Dumper=yaml.RoundTripDumper)) except Exception as err: raise YeditException(err.message) os.rename(tmp_filename, self.filename) return (True, self.yaml_dict) def read(self): ''' read from file ''' # check if it exists if self.filename == None or not self.file_exists(): return None contents = None with open(self.filename) as yfd: contents = yfd.read() return contents def file_exists(self): ''' return whether file exists ''' if os.path.exists(self.filename): return True return False def load(self, content_type='yaml'): ''' return yaml file ''' contents = self.read() if not contents and not self.content: return None if self.content: if isinstance(self.content, dict): self.yaml_dict = self.content return self.yaml_dict elif isinstance(self.content, str): contents = self.content # check if it is yaml try: if content_type == 'yaml' and contents: self.yaml_dict = yaml.load(contents, yaml.RoundTripLoader) # pylint: disable=no-member,maybe-no-member if hasattr(self.yaml_dict, 'fa'): self.yaml_dict.fa.set_block_style() elif content_type == 'json' and contents: self.yaml_dict = json.loads(contents) except yaml.YAMLError as err: # Error loading yaml or json raise YeditException('Problem with loading yaml file. %s' % err) return self.yaml_dict def get(self, key): ''' get a specified key''' try: entry = Yedit.get_entry(self.yaml_dict, key, self.separator) except KeyError as _: entry = None return entry def pop(self, path, key_or_item): ''' remove a key, value pair from a dict or an item for a list''' try: entry = Yedit.get_entry(self.yaml_dict, path, self.separator) except KeyError as _: entry = None if entry == None: return (False, self.yaml_dict) if isinstance(entry, dict): # pylint: disable=no-member,maybe-no-member if entry.has_key(key_or_item): entry.pop(key_or_item) return (True, self.yaml_dict) return (False, self.yaml_dict) elif isinstance(entry, list): # pylint: disable=no-member,maybe-no-member ind = None try: ind = entry.index(key_or_item) except ValueError: return (False, self.yaml_dict) entry.pop(ind) return (True, self.yaml_dict) return (False, self.yaml_dict) def delete(self, path): ''' remove path from a dict''' try: entry = Yedit.get_entry(self.yaml_dict, path, self.separator) except KeyError as _: entry = None if entry == None: return (False, self.yaml_dict) result = Yedit.remove_entry(self.yaml_dict, path, self.separator) if not result: return (False, self.yaml_dict) return (True, self.yaml_dict) def exists(self, path, value): ''' check if value exists at path''' try: entry = Yedit.get_entry(self.yaml_dict, path, self.separator) except KeyError as _: entry = None if isinstance(entry, list): if value in entry: return True return False elif isinstance(entry, dict): if isinstance(value, dict): rval = False for key, val in value.items(): if entry[key] != val: rval = False break else: rval = True return rval return value in entry return entry == value def append(self, path, value): '''append value to a list''' try: entry = Yedit.get_entry(self.yaml_dict, path, self.separator) except KeyError as _: entry = None if entry is None: self.put(path, []) entry = Yedit.get_entry(self.yaml_dict, path, self.separator) if not isinstance(entry, list): return (False, self.yaml_dict) # pylint: disable=no-member,maybe-no-member entry.append(value) return (True, self.yaml_dict) # pylint: disable=too-many-arguments def update(self, path, value, index=None, curr_value=None): ''' put path, value into a dict ''' try: entry = Yedit.get_entry(self.yaml_dict, path, self.separator) except KeyError as _: entry = None if isinstance(entry, dict): # pylint: disable=no-member,maybe-no-member if not isinstance(value, dict): raise YeditException('Cannot replace key, value entry in dict with non-dict type.' \ ' value=[%s] [%s]' % (value, type(value))) entry.update(value) return (True, self.yaml_dict) elif isinstance(entry, list): # pylint: disable=no-member,maybe-no-member ind = None if curr_value: try: ind = entry.index(curr_value) except ValueError: return (False, self.yaml_dict) elif index != None: ind = index if ind != None and entry[ind] != value: entry[ind] = value return (True, self.yaml_dict) # see if it exists in the list try: ind = entry.index(value) except ValueError: # doesn't exist, append it entry.append(value) return (True, self.yaml_dict) #already exists, return if ind != None: return (False, self.yaml_dict) return (False, self.yaml_dict) def put(self, path, value): ''' put path, value into a dict ''' try: entry = Yedit.get_entry(self.yaml_dict, path, self.separator) except KeyError as _: entry = None if entry == value: return (False, self.yaml_dict) # deepcopy didn't work tmp_copy = yaml.load(yaml.round_trip_dump(self.yaml_dict, default_flow_style=False), yaml.RoundTripLoader) # pylint: disable=no-member if hasattr(self.yaml_dict, 'fa'): tmp_copy.fa.set_block_style() result = Yedit.add_entry(tmp_copy, path, value, self.separator) if not result: return (False, self.yaml_dict) self.yaml_dict = tmp_copy return (True, self.yaml_dict) def create(self, path, value): ''' create a yaml file ''' if not self.file_exists(): # deepcopy didn't work tmp_copy = yaml.load(yaml.round_trip_dump(self.yaml_dict, default_flow_style=False), yaml.RoundTripLoader) # pylint: disable=no-member if hasattr(self.yaml_dict, 'fa'): tmp_copy.fa.set_block_style() result = Yedit.add_entry(tmp_copy, path, value, self.separator) if result: self.yaml_dict = tmp_copy return (True, self.yaml_dict) return (False, self.yaml_dict) class ServiceAccountConfig(object): '''Service account config class This class stores the options and returns a default service account ''' # pylint: disable=too-many-arguments def __init__(self, sname, namespace, kubeconfig, secrets=None, image_pull_secrets=None): self.name = sname self.kubeconfig = kubeconfig self.namespace = namespace self.secrets = secrets or [] self.image_pull_secrets = image_pull_secrets or [] self.data = {} self.create_dict() def create_dict(self): ''' return a properly structured volume ''' self.data['apiVersion'] = 'v1' self.data['kind'] = 'ServiceAccount' self.data['metadata'] = {} self.data['metadata']['name'] = self.name self.data['metadata']['namespace'] = self.namespace self.data['secrets'] = [] if self.secrets: for sec in self.secrets: self.data['secrets'].append({"name": sec}) self.data['imagePullSecrets'] = [] if self.image_pull_secrets: for sec in self.image_pull_secrets: self.data['imagePullSecrets'].append({"name": sec}) # pylint: disable=too-many-public-methods class ServiceAccount(Yedit): ''' Class to wrap the oc command line tools ''' image_pull_secrets_path = "imagePullSecrets" secrets_path = "secrets" def __init__(self, content): '''ServiceAccount constructor''' super(ServiceAccount, self).__init__(content=content) self._secrets = None self._image_pull_secrets = None @property def image_pull_secrets(self): ''' property for image_pull_secrets ''' if self._image_pull_secrets == None: self._image_pull_secrets = self.get(ServiceAccount.image_pull_secrets_path) or [] return self._image_pull_secrets @image_pull_secrets.setter def image_pull_secrets(self, secrets): ''' property for secrets ''' self._image_pull_secrets = secrets @property def secrets(self): ''' property for secrets ''' print "Getting secrets property" if not self._secrets: self._secrets = self.get(ServiceAccount.secrets_path) or [] return self._secrets @secrets.setter def secrets(self, secrets): ''' property for secrets ''' self._secrets = secrets def delete_secret(self, inc_secret): ''' remove a secret ''' remove_idx = None for idx, sec in enumerate(self.secrets): if sec['name'] == inc_secret: remove_idx = idx break if remove_idx: del self.secrets[remove_idx] return True return False def delete_image_pull_secret(self, inc_secret): ''' remove a image_pull_secret ''' remove_idx = None for idx, sec in enumerate(self.image_pull_secrets): if sec['name'] == inc_secret: remove_idx = idx break if remove_idx: del self.image_pull_secrets[remove_idx] return True return False def find_secret(self, inc_secret): '''find secret''' for secret in self.secrets: if secret['name'] == inc_secret: return secret return None def find_image_pull_secret(self, inc_secret): '''find secret''' for secret in self.image_pull_secrets: if secret['name'] == inc_secret: return secret return None def add_secret(self, inc_secret): '''add secret''' if self.secrets: self.secrets.append({"name": inc_secret}) else: self.put(ServiceAccount.secrets_path, [{"name": inc_secret}]) def add_image_pull_secret(self, inc_secret): '''add image_pull_secret''' if self.image_pull_secrets: self.image_pull_secrets.append({"name": inc_secret}) else: self.put(ServiceAccount.image_pull_secrets_path, [{"name": inc_secret}]) # pylint: disable=too-many-instance-attributes class OCServiceAccount(OpenShiftCLI): ''' Class to wrap the oc command line tools ''' kind = 'sa' # pylint allows 5 # pylint: disable=too-many-arguments def __init__(self, config, verbose=False): ''' Constructor for OCVolume ''' super(OCServiceAccount, self).__init__(config.namespace, config.kubeconfig) self.config = config self.namespace = config.namespace self._service_account = None @property def service_account(self): ''' property function service''' if not self._service_account: self.get() return self._service_account @service_account.setter def service_account(self, data): ''' setter function for yedit var ''' self._service_account = data def exists(self): ''' return whether a volume exists ''' if self.service_account: return True return False def get(self): '''return volume information ''' result = self._get(self.kind, self.config.name) if result['returncode'] == 0: self.service_account = ServiceAccount(content=result['results'][0]) elif '\"%s\" not found' % self.config.name in result['stderr']: result['returncode'] = 0 result['results'] = [{}] return result def delete(self): '''delete the object''' return self._delete(self.kind, self.config.name) def create(self): '''create the object''' return self._create_from_content(self.config.name, self.config.data) def update(self): '''update the object''' # need to update the tls information and the service name for secret in self.config.secrets: result = self.service_account.find_secret(secret) if not result: self.service_account.add_secret(secret) for secret in self.config.image_pull_secrets: result = self.service_account.find_image_pull_secret(secret) if not result: self.service_account.add_image_pull_secret(secret) return self._replace_content(self.kind, self.config.name, self.config.data) def needs_update(self): ''' verify an update is needed ''' # since creating an service account generates secrets and imagepullsecrets # check_def_equal will not work # Instead, verify all secrets passed are in the list for secret in self.config.secrets: result = self.service_account.find_secret(secret) if not result: return True for secret in self.config.image_pull_secrets: result = self.service_account.find_image_pull_secret(secret) if not result: return True return False def main(): ''' ansible oc module for route ''' module = AnsibleModule( argument_spec=dict( kubeconfig=dict(default='/etc/origin/master/admin.kubeconfig', type='str'), state=dict(default='present', type='str', choices=['present', 'absent', 'list']), debug=dict(default=False, type='bool'), name=dict(default=None, required=True, type='str'), namespace=dict(default=None, required=True, type='str'), secrets=dict(default=None, type='list'), image_pull_secrets=dict(default=None, type='list'), ), supports_check_mode=True, ) rconfig = ServiceAccountConfig(module.params['name'], module.params['namespace'], module.params['kubeconfig'], module.params['secrets'], module.params['image_pull_secrets'], ) oc_sa = OCServiceAccount(rconfig, verbose=module.params['debug']) state = module.params['state'] api_rval = oc_sa.get() ##### # Get ##### if state == 'list': module.exit_json(changed=False, results=api_rval['results'], state="list") ######## # Delete ######## if state == 'absent': if oc_sa.exists(): if module.check_mode: module.exit_json(changed=False, msg='Would have performed a delete.') api_rval = oc_sa.delete() module.exit_json(changed=True, results=api_rval, state="absent") module.exit_json(changed=False, state="absent") if state == 'present': ######## # Create ######## if not oc_sa.exists(): if module.check_mode: module.exit_json(changed=False, msg='Would have performed a create.') # Create it here api_rval = oc_sa.create() if api_rval['returncode'] != 0: module.fail_json(msg=api_rval) # return the created object api_rval = oc_sa.get() if api_rval['returncode'] != 0: module.fail_json(msg=api_rval) module.exit_json(changed=True, results=api_rval, state="present") ######## # Update ######## if oc_sa.needs_update(): api_rval = oc_sa.update() if api_rval['returncode'] != 0: module.fail_json(msg=api_rval) # return the created object api_rval = oc_sa.get() if api_rval['returncode'] != 0: module.fail_json(msg=api_rval) module.exit_json(changed=True, results=api_rval, state="present") module.exit_json(changed=False, results=api_rval, state="present") module.exit_json(failed=True, changed=False, results='Unknown state passed. %s' % state, state="unknown") # pylint: disable=redefined-builtin, unused-wildcard-import, wildcard-import, locally-disabled # import module snippets. This are required from ansible.module_utils.basic import * main()
32.960688
118
0.543422
db9c0e81e8be7893916f9a25f4259ff582cf47ba
1,725
py
Python
hashes/enigma_machine.py
sourcery-ai-bot/Python
f1444aca73068e0c55f60ec63b12c53b402e54dd
[ "MIT" ]
null
null
null
hashes/enigma_machine.py
sourcery-ai-bot/Python
f1444aca73068e0c55f60ec63b12c53b402e54dd
[ "MIT" ]
null
null
null
hashes/enigma_machine.py
sourcery-ai-bot/Python
f1444aca73068e0c55f60ec63b12c53b402e54dd
[ "MIT" ]
null
null
null
alphabets = [chr(i) for i in range(32, 126)] gear_one = [i for i in range(len(alphabets))] gear_two = [i for i in range(len(alphabets))] gear_three = [i for i in range(len(alphabets))] reflector = [i for i in reversed(range(len(alphabets)))] code = [] gear_one_pos = gear_two_pos = gear_three_pos = 0 def rotator(): global gear_one_pos global gear_two_pos global gear_three_pos i = gear_one[0] gear_one.append(i) del gear_one[0] gear_one_pos += 1 if gear_one_pos % int(len(alphabets)) == 0: i = gear_two[0] gear_two.append(i) del gear_two[0] gear_two_pos += 1 if gear_two_pos % int(len(alphabets)) == 0: i = gear_three[0] gear_three.append(i) del gear_three[0] gear_three_pos += 1 def engine(input_character): target = alphabets.index(input_character) target = gear_one[target] target = gear_two[target] target = gear_three[target] target = reflector[target] target = gear_three.index(target) target = gear_two.index(target) target = gear_one.index(target) code.append(alphabets[target]) rotator() if __name__ == "__main__": decode = input("Type your message:\n") decode = list(decode) while True: try: token = int(input("Please set token:(must be only digits)\n")) break except Exception as error: print(error) for _ in range(token): rotator() for i in decode: engine(i) print("\n" + "".join(code)) print( f"\nYour Token is {token} please write it down.\nIf you want to decode " f"this message again you should input same digits as token!" )
28.278689
80
0.615652
fc97eefbe4c3977895035b4f16235ebc3369fe71
3,953
py
Python
awacs/dms.py
michael-k/awacs
ed3dc822d268f10b0cd83feb90fd279277e54ed4
[ "BSD-2-Clause" ]
358
2015-01-01T05:11:05.000Z
2022-03-20T14:11:39.000Z
awacs/dms.py
cloudtools/awacs
f66550a812073f4e3ebd545279a5a1e6856cf39d
[ "BSD-2-Clause" ]
171
2015-01-17T00:32:48.000Z
2022-03-28T02:02:57.000Z
awacs/dms.py
michael-k/awacs
ed3dc822d268f10b0cd83feb90fd279277e54ed4
[ "BSD-2-Clause" ]
100
2015-01-04T16:34:34.000Z
2022-02-21T06:17:17.000Z
# Copyright (c) 2012-2021, Mark Peek <mark@peek.org> # All rights reserved. # # See LICENSE file for full license. from .aws import Action as BaseAction from .aws import BaseARN service_name = "AWS Database Migration Service" prefix = "dms" class Action(BaseAction): def __init__(self, action: str = None) -> None: super().__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource: str = "", region: str = "", account: str = "") -> None: super().__init__( service=prefix, resource=resource, region=region, account=account ) AddTagsToResource = Action("AddTagsToResource") ApplyPendingMaintenanceAction = Action("ApplyPendingMaintenanceAction") CancelReplicationTaskAssessmentRun = Action("CancelReplicationTaskAssessmentRun") CreateEndpoint = Action("CreateEndpoint") CreateEventSubscription = Action("CreateEventSubscription") CreateReplicationInstance = Action("CreateReplicationInstance") CreateReplicationSubnetGroup = Action("CreateReplicationSubnetGroup") CreateReplicationTask = Action("CreateReplicationTask") DeleteCertificate = Action("DeleteCertificate") DeleteConnection = Action("DeleteConnection") DeleteEndpoint = Action("DeleteEndpoint") DeleteEventSubscription = Action("DeleteEventSubscription") DeleteReplicationInstance = Action("DeleteReplicationInstance") DeleteReplicationSubnetGroup = Action("DeleteReplicationSubnetGroup") DeleteReplicationTask = Action("DeleteReplicationTask") DeleteReplicationTaskAssessmentRun = Action("DeleteReplicationTaskAssessmentRun") DescribeAccountAttributes = Action("DescribeAccountAttributes") DescribeApplicableIndividualAssessments = Action( "DescribeApplicableIndividualAssessments" ) DescribeCertificates = Action("DescribeCertificates") DescribeConnections = Action("DescribeConnections") DescribeEndpointSettings = Action("DescribeEndpointSettings") DescribeEndpointTypes = Action("DescribeEndpointTypes") DescribeEndpoints = Action("DescribeEndpoints") DescribeEventCategories = Action("DescribeEventCategories") DescribeEventSubscriptions = Action("DescribeEventSubscriptions") DescribeEvents = Action("DescribeEvents") DescribeOrderableReplicationInstances = Action("DescribeOrderableReplicationInstances") DescribeRefreshSchemasStatus = Action("DescribeRefreshSchemasStatus") DescribeReplicationInstanceTaskLogs = Action("DescribeReplicationInstanceTaskLogs") DescribeReplicationInstances = Action("DescribeReplicationInstances") DescribeReplicationSubnetGroups = Action("DescribeReplicationSubnetGroups") DescribeReplicationTaskAssessmentResults = Action( "DescribeReplicationTaskAssessmentResults" ) DescribeReplicationTaskAssessmentRuns = Action("DescribeReplicationTaskAssessmentRuns") DescribeReplicationTaskIndividualAssessments = Action( "DescribeReplicationTaskIndividualAssessments" ) DescribeReplicationTasks = Action("DescribeReplicationTasks") DescribeSchemas = Action("DescribeSchemas") DescribeTableStatistics = Action("DescribeTableStatistics") ImportCertificate = Action("ImportCertificate") ListTagsForResource = Action("ListTagsForResource") ModifyEndpoint = Action("ModifyEndpoint") ModifyEventSubscription = Action("ModifyEventSubscription") ModifyReplicationInstance = Action("ModifyReplicationInstance") ModifyReplicationSubnetGroup = Action("ModifyReplicationSubnetGroup") ModifyReplicationTask = Action("ModifyReplicationTask") MoveReplicationTask = Action("MoveReplicationTask") RebootReplicationInstance = Action("RebootReplicationInstance") RefreshSchemas = Action("RefreshSchemas") ReloadTables = Action("ReloadTables") RemoveTagsFromResource = Action("RemoveTagsFromResource") StartReplicationTask = Action("StartReplicationTask") StartReplicationTaskAssessment = Action("StartReplicationTaskAssessment") StartReplicationTaskAssessmentRun = Action("StartReplicationTaskAssessmentRun") StopReplicationTask = Action("StopReplicationTask") TestConnection = Action("TestConnection")
46.505882
88
0.835568
42825043ccd94812fab101d89114fc62554fbf22
13,660
py
Python
coherence/backends/lolcats_storage.py
crass/coherence
d1cf150f5fa4a4bd75c7ec682ef2a2783ccf50ca
[ "MIT" ]
null
null
null
coherence/backends/lolcats_storage.py
crass/coherence
d1cf150f5fa4a4bd75c7ec682ef2a2783ccf50ca
[ "MIT" ]
null
null
null
coherence/backends/lolcats_storage.py
crass/coherence
d1cf150f5fa4a4bd75c7ec682ef2a2783ccf50ca
[ "MIT" ]
1
2019-09-18T05:33:39.000Z
2019-09-18T05:33:39.000Z
# -*- coding: utf-8 -*- # Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2008, Benjamin Kampmann <ben.kampmann@googlemail.com> """ This is a Media Backend that allows you to access the cool and cute pictures from lolcats.com. This is mainly meant as a Sample Media Backend to learn how to write a Media Backend. So. You are still reading which allows me to assume that you want to learn how to write a Media Backend for Coherence. NICE :) . Once again: This is a SIMPLE Media Backend. It does not contain any big requests, searches or even transcoding. The only thing we want to do in this simple example, is to fetch a rss link on startup, parse it, save it and restart the process one hour later again. Well, on top of this, we also want to provide these informations as a Media Server in the UPnP/DLNA Network of course ;) . Wow. You are still reading. You must be really interested. Then let's go. """ ########## NOTE: # Please don't complain about the coding style of this document - I know. It is # just this way to make it easier to document and to understand. ########## The imports # The entry point for each kind of Backend is a 'BackendStore'. The BackendStore # is the instance that does everything Usually. In this Example it can be # understood as the 'Server', the object retrieving and serving the data. from coherence.backend import BackendStore # The data itself is stored in BackendItems. They are also the first things we # are going to create. from coherence.backend import BackendItem # To make the data 'renderable' we need to define the DIDLite-Class of the Media # we are providing. For that we have a bunch of helpers that we also want to # import from coherence.upnp.core import DIDLLite # Coherence relies on the Twisted backend. I hope you are familar with the # concept of deferreds. If not please read: # http://twistedmatrix.com/projects/core/documentation/howto/async.html # # It is a basic concept that you need to understand to understand the following # code. But why am I talking about it? Oh, right, because we use a http-client # based on the twisted.web.client module to do our requests. from coherence.upnp.core.utils import getPage # And we also import the reactor, that allows us to specify an action to happen # later from twisted.internet import reactor # And to parse the RSS-Data (which is XML), we use the coherence helper from coherence.extern.et import parse_xml ########## The models # After the download and parsing of the data is done, we want to save it. In # this case, we want to fetch the images and store their URL and the title of # the image. That is the LolcatsImage class: class LolcatsImage(BackendItem): # We inherit from BackendItem as it already contains a lot of helper methods # and implementations. For this simple example, we only have to fill the # item with data. def __init__(self, parent_id, id, title, url): self.parentid = parent_id # used to be able to 'go back' self.update_id = 0 self.id = id # each item has its own and unique id self.location = url # the url of the picture self.name = title # the title of the picture. Inside # coherence this is called 'name' # Item.item is a special thing. This is used to explain the client what # kind of data this is. For e.g. A VideoItem or a MusicTrack. In our # case, we have an image. self.item = DIDLLite.ImageItem(id, parent_id, self.name) # each Item.item has to have one or more Resource objects # these hold detailed information about the media data # and can represent variants of it (different sizes, transcoded formats) res = DIDLLite.Resource(self.location, 'http-get:*:image/jpeg:*') res.size = None #FIXME: we should have a size here # and a resolution entry would be nice too self.item.res.append(res) class LolcatsContainer(BackendItem): # The LolcatsContainer will hold the reference to all our LolcatsImages. This # kind of BackenedItem is a bit different from the normal BackendItem, # because it has 'children' (the lolcatsimages). Because of that we have # some more stuff to do in here. def __init__(self, parent_id, id): # the ids as above self.parent_id = parent_id self.id = id # we never have a different name anyway self.name = 'LOLCats' # but we need to set it to a certain mimetype to explain it, that we # contain 'children'. self.mimetype = 'directory' # As we are updating our data periodically, we increase this value so # that our clients can check easier if something has changed since their # last request. self.update_id = 0 # that is where we hold the children self.children = [] # and we need to give a DIDLLite again. This time we want to be # understood as 'Container'. self.item = DIDLLite.Container(id, parent_id, self.name) self.item.childCount = None # will be set as soon as we have images def get_children(self, start=0, end=0): # This is the only important implementation thing: we have to return our # list of children if end != 0: return self.children[start:end] return self.children[start:] # there is nothing special in here # FIXME: move it to a base BackendContainer class def get_child_count(self): return len(self.children) def get_item(self): return self.item def get_name(self): return self.name def get_id(self): return self.id ########## The server # As already said before the implementation of the server is done in an # inheritance of a BackendStore. This is where the real code happens (usually). # In our case this would be: downloading the page, parsing the content, saving # it in the models and returning them on request. class LolcatsStore(BackendStore): # this *must* be set. Because the (most used) MediaServer Coherence also # allows other kind of Backends (like remote lights). implements = ['MediaServer'] # this is only for this implementation: the http link to the lolcats rss # feed that we want to read and parse: rss_url = "http://feeds.feedburner.com/ICanHasCheezburger?format=xml" # as we are going to build a (very small) tree with the items, we need to # define the first (the root) item: ROOT_ID = 0 def __init__(self, server, *args, **kwargs): # first we inizialize our heritage BackendStore.__init__(self,server,**kwargs) # When a Backend is initialized, the configuration is given as keyword # arguments to the initialization. We receive it here as a dicitonary # and allow some values to be set: # the name of the MediaServer as it appears in the network self.name = kwargs.get('name', 'Lolcats') # timeout between updates in hours: self.refresh = int(kwargs.get('refresh', 1)) * (60 *60) # the UPnP device that's hosting that backend, that's already done # in the BackendStore.__init__, just left here the sake of completeness self.server = server # internally used to have a new id for each item self.next_id = 1000 # we store the last update from the rss feed so that we know if we have # to parse again, or not: self.last_updated = None # initialize our lolcats container (no parent, this is the root) self.container = LolcatsContainer(None, self.ROOT_ID) # but as we also have to return them on 'get_by_id', we have our local # store of images per id: self.images = {} # we tell that if an XBox sends a request for images we'll # map the WMC id of that request to our local one self.wmc_mapping = {'16': 0} # and trigger an update of the data dfr = self.update_data() # So, even though the initialize is kind of done, Coherence does not yet # announce our Media Server. # Coherence does wait for signal send by us that we are ready now. # And we don't want that to happen as long as we don't have succeeded # in fetching some first data, so we delay this signaling after the update is done: dfr.addCallback(self.init_completed) dfr.addCallback(self.queue_update) def get_by_id(self, id): print "asked for", id, type(id) # what ever we are asked for, we want to return the container only if isinstance(id, basestring): id = id.split('@',1) id = id[0] if int(id) == self.ROOT_ID: return self.container return self.images.get(int(id), None) def upnp_init(self): # after the signal was triggered, this method is called by coherence and # from now on self.server is existing and we can do # the necessary setup here # that allows us to specify our server options in more detail. # here we define what kind of media content we do provide # mostly needed to make some naughty DLNA devices behave # will probably move into Coherence internals one day self.server.connection_manager_server.set_variable( \ 0, 'SourceProtocolInfo', ['http-get:*:image/jpeg:DLNA.ORG_PN=JPEG_TN;DLNA.ORG_OP=01;DLNA.ORG_FLAGS=00f00000000000000000000000000000', 'http-get:*:image/jpeg:DLNA.ORG_PN=JPEG_SM;DLNA.ORG_OP=01;DLNA.ORG_FLAGS=00f00000000000000000000000000000', 'http-get:*:image/jpeg:DLNA.ORG_PN=JPEG_MED;DLNA.ORG_OP=01;DLNA.ORG_FLAGS=00f00000000000000000000000000000', 'http-get:*:image/jpeg:DLNA.ORG_PN=JPEG_LRG;DLNA.ORG_OP=01;DLNA.ORG_FLAGS=00f00000000000000000000000000000', 'http-get:*:image/jpeg:*']) # and as it was done after we fetched the data the first time # we want to take care about the server wide updates as well self._update_container() def _update_container(self, result=None): # we need to inform Coherence about these changes # again this is something that will probably move # into Coherence internals one day if self.server: self.server.content_directory_server.set_variable(0, 'SystemUpdateID', self.update_id) value = (self.ROOT_ID,self.container.update_id) self.server.content_directory_server.set_variable(0, 'ContainerUpdateIDs', value) return result def update_loop(self): # in the loop we want to call update_data dfr = self.update_data() # aftert it was done we want to take care about updating # the container dfr.addCallback(self._update_container) # in ANY case queue an update of the data dfr.addBoth(self.queue_update) def update_data(self): # trigger an update of the data # fetch the rss dfr = getPage(self.rss_url) # push it through our xml parser dfr.addCallback(parse_xml) # then parse the data into our models dfr.addCallback(self.parse_data) return dfr def parse_data(self, xml_data): # So. xml_data is a cElementTree Element now. We can read our data from # it now. # each xml has a root element root = xml_data.getroot() # from there, we look for the newest update and compare it with the one # we have saved. If they are the same, we don't need to go on: pub_date = root.find('./channel/lastBuildDate').text if pub_date == self.last_updated: return # not the case, set this as the last update and continue self.last_updated = pub_date # and reset the childrens list of the container and the local storage self.container.children = [] self.images = {} # Attention, as this is an example, this code is meant to be as simple # as possible and not as efficient as possible. IMHO the following code # pretty much sucks, because it is totally blocking (even though we have # 'only' 20 elements) # we go through our entries and do something specific to the # lolcats-rss-feed to fetch the data out of it url_item = './{http://search.yahoo.com/mrss/}content' for item in root.findall('./channel/item'): title = item.find('./title').text try: url = item.findall(url_item)[1].get('url', None) except IndexError: continue if url is None: continue image = LolcatsImage(self.ROOT_ID, self.next_id, title, url) self.container.children.append(image) self.images[self.next_id] = image # increase the next_id entry every time self.next_id += 1 # and increase the container update id and the system update id # so that the clients can refresh with the new data self.container.update_id += 1 self.update_id += 1 def queue_update(self, error_or_failure): # We use the reactor to queue another updating of our data print error_or_failure reactor.callLater(self.refresh, self.update_loop)
39.94152
146
0.658199
91bb65fbfc70390417fc8db21c253c4b9f4a0765
821
py
Python
client/verta/verta/_swagger/_public/artifactstore/model/ArtifactstoreStoreArtifactWithStreamResponse.py
stefan-petrov-toptal/modeldb
a8a9b9da6ed964c91351230b2f0d2703c75794de
[ "Apache-2.0" ]
835
2017-02-08T20:14:24.000Z
2020-03-12T17:37:49.000Z
client/verta/verta/_swagger/_public/artifactstore/model/ArtifactstoreStoreArtifactWithStreamResponse.py
stefan-petrov-toptal/modeldb
a8a9b9da6ed964c91351230b2f0d2703c75794de
[ "Apache-2.0" ]
651
2019-04-18T12:55:07.000Z
2022-03-31T23:45:09.000Z
client/verta/verta/_swagger/_public/artifactstore/model/ArtifactstoreStoreArtifactWithStreamResponse.py
stefan-petrov-toptal/modeldb
a8a9b9da6ed964c91351230b2f0d2703c75794de
[ "Apache-2.0" ]
170
2017-02-13T14:49:22.000Z
2020-02-19T17:59:12.000Z
# THIS FILE IS AUTO-GENERATED. DO NOT EDIT from verta._swagger.base_type import BaseType class ArtifactstoreStoreArtifactWithStreamResponse(BaseType): def __init__(self, cloud_file_key=None, cloud_file_path=None): required = { "cloud_file_key": False, "cloud_file_path": False, } self.cloud_file_key = cloud_file_key self.cloud_file_path = cloud_file_path for k, v in required.items(): if self[k] is None and v: raise ValueError('attribute {} is required'.format(k)) @staticmethod def from_json(d): tmp = d.get('cloud_file_key', None) if tmp is not None: d['cloud_file_key'] = tmp tmp = d.get('cloud_file_path', None) if tmp is not None: d['cloud_file_path'] = tmp return ArtifactstoreStoreArtifactWithStreamResponse(**d)
27.366667
64
0.686967
0ff6e7bb30fc0f6021605e9cb3d2bc5aae0259d6
7,604
py
Python
python-real-time-application/feature_extractor.py
italogsfernandes/emg-moviments-classifier
7a58f162fa6c5bc1a2906c539dac3e0210115522
[ "MIT" ]
2
2018-12-16T16:48:17.000Z
2019-02-09T15:03:30.000Z
python-real-time-application/feature_extractor.py
italogsfernandes/emg-moviments-classifier
7a58f162fa6c5bc1a2906c539dac3e0210115522
[ "MIT" ]
3
2018-05-16T20:12:15.000Z
2018-05-16T20:12:57.000Z
python-real-time-application/feature_extractor.py
italogsfernandes/emg-moviments-classifier
7a58f162fa6c5bc1a2906c539dac3e0210115522
[ "MIT" ]
1
2019-01-17T15:23:33.000Z
2019-01-17T15:23:33.000Z
# codded as pressas por @italogsfernandes 13 de dezembro as 5:53 da manhã # escutando: # The Spinners - The Rubberband Man, # The staple singers - Chica Boom # None of us are free - Solomon Burke # Logo depois de uma playlist de Sweatting bullets # Detailled Description: # RMS: # sqrt(mean(square(vetor))) # ZC: # a = [ 1, 2, 1, 1, -3, -4, 7, 8, 9, 10, -2, 1, -3, 5, 6, 7,-10] # sign() = [ 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1] # diff() = [ 0, 0, 0, -2, 0, 2, 0, 0, 0, -2, 2, -2, 2, 0, 0, -2] # where() = (array([ 3, 5, 9, 10, 11, 12, 15]),) # where()[0].shape[0] = 7 # The number of zero crossing should be 7, but because sign() # returns 0 if 0 is passed, 1 for positive, and -1 for negative values, # diff() will count the transition containing zero twice. # # SSC: # It uses diff to derivate the signal and obtain the slope # So it verifies how many times the slope has changed from a positive # number to a negative one. # Try uncommenting the next lines and verify: # ttt = np.linspace(0,1,1000) # xxx = np.sin(2*np.pi*10*ttt) + 0.8*np.sin(2*np.pi*15*ttt) + 0.2*np.sin(2*np.pi*1*ttt) # # ssc_ = np.diff(np.sign(np.diff(xxx))) # ssc_ = np.append(ssc_, [0,0]) # plt.plot(ttt,xxx) # plt.plot(ttt,ssc_) # ssc_ = np.where(ssc_)[0].shape[0] import numpy as np # handling numerical data import pandas as pd def get_features(input_array, features_list = ['RMS', 'ZC', 'MAV', 'VAR', 'WL', 'SSC'], output_obj = {}): """Get all the features listed in the features list Features list made using as reference: Nazmi N, Abdul Rahman MA, Yamamoto S-I, Ahmad SA, Zamzuri H, Mazlan SA. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions. Postolache OA, Casson A, Mukhopadhyay S, eds. Sensors (Basel, Switzerland). 2016;16(8):1304. doi:10.3390/s16081304. Parameters ---------- input_array : type Description of parameter `input_array`. features_list : list Available features: * 'RMS' : Root Mean Square * 'ZC' : Zero Crossing * 'MAV' : Mean Absolute Value * 'VAR' : Variance * 'WL' : Wave Length * 'SSC' : Slope Signal Change Default value setted to all available features output_obj : type of object to be returned suggestion -> you can utilze pandas dataFrame for improve performance in some cases Returns ------- dict dict with an key for each feature (in lowercase) """ features_list = [f.lower() for f in features_list] if 'rms' in features_list: output_obj['rms'] = get_rms(input_array) if 'zc' in features_list: output_obj['zc'] = get_zc(input_array) if 'mav' in features_list: output_obj['mav'] = get_mav(input_array) if 'var' in features_list: output_obj['var'] = get_var(input_array) if 'wl' in features_list: output_obj['wl'] = get_wl(input_array) if 'ssc' in features_list: output_obj['ssc'] = get_ssc(input_array) return output_obj def get_features_DataFrame(input_array, features_list = ['RMS', 'ZC', 'MAV', 'VAR', 'WL', 'SSC']): """Get all the features listed in the features list Features list made using as reference: Nazmi N, Abdul Rahman MA, Yamamoto S-I, Ahmad SA, Zamzuri H, Mazlan SA. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions. Postolache OA, Casson A, Mukhopadhyay S, eds. Sensors (Basel, Switzerland). 2016;16(8):1304. doi:10.3390/s16081304. Parameters ---------- input_array : type Description of parameter `input_array`. features_list : list Available features: * 'RMS' : Root Mean Square * 'ZC' : Zero Crossing * 'MAV' : Mean Absolute Value * 'VAR' : Variance * 'WL' : Wave Length * 'SSC' : Slope Signal Change Default value setted to all available features output_obj : type of object to be returned suggestion -> you can utilze pandas dataFrame for improve performance in some cases Returns ------- dict dict with an key for each feature (in lowercase) """ features_list = [f.lower() for f in features_list] output_obj = pd.DataFrame(columns=features_list) if 'rms' in features_list: output_obj['rms'] = get_rms(input_array) if 'zc' in features_list: output_obj['zc'] = get_zc(input_array) if 'mav' in features_list: output_obj['mav'] = get_mav(input_array) if 'var' in features_list: output_obj['var'] = get_var(input_array) if 'wl' in features_list: output_obj['wl'] = get_wl(input_array) if 'ssc' in features_list: output_obj['ssc'] = get_ssc(input_array) return output_obj def get_rms(input_array): """Root Mean Square (RMS) Parameters ---------- input_array : numpy type array One-dimentional numpy array May work with multi-dimentional arrays, but this wasn't tested Returns ------- numpy float64 number The result of this operation in the input array. """ return np.sqrt(np.mean(np.square( input_array))) def get_zc(input_array): """Zero Crossing (ZC) Parameters ---------- input_array : numpy type array One-dimentional numpy array May work with multi-dimentional arrays, but this wasn't tested Returns ------- numpy float64 number The result of this operation in the input array. """ s3= np.sign( input_array) s3[s3==0] = -1 # replace zeros with -1 return (np.where(np.diff(s3)))[0].shape[0] def get_mav(input_array): """Mean Absolute Value (MAV) Parameters ---------- input_array : numpy type array One-dimentional numpy array May work with multi-dimentional arrays, but this wasn't tested Returns ------- numpy float64 number The result of this operation in the input array. """ return np.mean(np.abs( input_array)) def get_var(input_array): """Variance (VAR) Parameters ---------- input_array : numpy type array One-dimentional numpy array May work with multi-dimentional arrays, but this wasn't tested Returns ------- numpy float64 number The result of this operation in the input array. """ return np.var( input_array) def get_wl(input_array): """Wave Lenght (WL) Parameters ---------- input_array : numpy type array One-dimentional numpy array May work with multi-dimentional arrays, but this wasn't tested Returns ------- numpy float64 number The result of this operation in the input array. """ return np.sum(np.abs(np.diff( input_array))) def get_ssc(input_array): """Signal Slop Changes (SSC) Parameters ---------- input_array : numpy type array One-dimentional numpy array May work with multi-dimentional arrays, but this wasn't tested Returns ------- numpy float64 number The result of this operation in the input array. """ return np.where(np.diff(np.sign(np.diff( input_array))))[0].shape[0]
29.937008
95
0.600605
c34cefc0ae9538174866b5c17604ba2b30139f05
4,568
py
Python
hb/build/build.py
openharmony-sig-ci/build_lite
833511a697ab640c444055c279822e16b6cbde5f
[ "Apache-2.0" ]
null
null
null
hb/build/build.py
openharmony-sig-ci/build_lite
833511a697ab640c444055c279822e16b6cbde5f
[ "Apache-2.0" ]
null
null
null
hb/build/build.py
openharmony-sig-ci/build_lite
833511a697ab640c444055c279822e16b6cbde5f
[ "Apache-2.0" ]
1
2021-09-13T11:57:24.000Z
2021-09-13T11:57:24.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2020 Huawei Device Co., Ltd. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import defaultdict from hb.build.build_process import Build from hb.set.set import set_product from hb.common.utils import get_current_time from hb.common.utils import OHOSException def add_options(parser): parser.add_argument('component', help='name of the component', nargs='*', default=None) parser.add_argument('-b', '--build_type', help='release or debug version', nargs=1, default=['debug']) parser.add_argument('-c', '--compiler', help='specify compiler', nargs=1, default=['clang']) parser.add_argument('-t', '--test', help='compile test suit', nargs='*') parser.add_argument('--dmverity', help='Enable dmverity', action="store_true") parser.add_argument('--tee', help='Enable tee', action="store_true") parser.add_argument('-p', '--product', help='build a specified product ' 'with {product_name}@{company}, eg: camera@huawei', nargs=1, default=[]) parser.add_argument('-f', '--full', help='full code compilation', action='store_true') parser.add_argument('-n', '--ndk', help='compile ndk', action='store_true') parser.add_argument('-T', '--target', help='Compile single target', nargs='*', default=[]) parser.add_argument('-v', '--verbose', help='show all command lines while building', action='store_true') parser.add_argument('-shs', '--sign_haps_by_server', help='sign haps by server', action='store_true') parser.add_argument('--patch', help='apply product patch before compiling', action='store_true') parser.add_argument('--gn-args', nargs=1, default='', help='specifies gn build arguments, ' 'eg: --gn-args="foo="bar" enable=true blah=7"') def exec_command(args): if len(args.product): product, company = args.product[0].split('@') set_product(product_name=product, company=company) build = Build(args.component) cmd_args = defaultdict(list) build.register_args('ohos_build_type', args.build_type[0]) # Get the compilation time in timestamp and human readable format build.register_args('ohos_build_time', get_current_time(type='timestamp')) build.register_args('ohos_build_datetime', get_current_time(type='datetime')) if args.test is not None: build.test = args.test if args.dmverity: build.register_args('enable_ohos_security_dmverity', 'true', quota=False) build.config.fs_attr.add('dmverity_enable') if args.tee: build.register_args('tee_enable', 'true', quota=False) build.config.fs_attr.add('tee_enable') if args.ndk: build.register_args('ohos_build_ndk', 'true', quota=False) if hasattr(args, 'target') and len(args.target): build.register_args('ohos_build_target', args.target) if hasattr(args, 'verbose') and args.verbose: cmd_args['gn'].append('-v') cmd_args['ninja'].append('-v') if hasattr(args, 'ninja'): return build.build(args.full, ninja=args.ninja) if args.sign_haps_by_server: build.register_args('ohos_sign_haps_by_server', 'true', quota=False) if len(args.gn_args): for gn_arg in args.gn_args[0].split(' '): try: variable, value = gn_arg.split('=') build.register_args(variable, value) except ValueError: raise OHOSException(f'Invalid gn args: {gn_arg}') return build.build(args.full, patch=args.patch, cmd_args=cmd_args)
40.070175
79
0.610333
ccddcdfbf9225f776f44934ac11a429110c00f58
467
py
Python
backend/api/models/icbc_upload_date.py
kuanfan99/zeva
57b506a108fe57438506569d5503c90c52216b2f
[ "Apache-2.0" ]
3
2020-03-25T03:06:20.000Z
2021-01-20T23:36:03.000Z
backend/api/models/icbc_upload_date.py
kuanfan99/zeva
57b506a108fe57438506569d5503c90c52216b2f
[ "Apache-2.0" ]
740
2019-12-16T15:53:39.000Z
2022-03-26T08:25:10.000Z
backend/api/models/icbc_upload_date.py
kuanfan99/zeva
57b506a108fe57438506569d5503c90c52216b2f
[ "Apache-2.0" ]
11
2019-11-28T20:39:15.000Z
2022-01-31T17:53:31.000Z
from django.db import models from auditable.models import Auditable class IcbcUploadDate(Auditable): upload_date = models.DateField( blank=False, db_comment="the date the icbc data is current to", null=False, auto_now=False) class Meta: db_table = 'icbc_upload_date' db_table_comment = "contains a record for each time that the icbc file is \ uploaded, with the date current to as specified by the user"
29.1875
79
0.691649
cce9ca9cf6bdcc43e18b16cd370236fc3b15c484
5,250
py
Python
moldynquick/namd.py
akey7/moldynquick
1cfe78f331a47ff6a31226dc8f3cf8f30bc694c4
[ "MIT" ]
null
null
null
moldynquick/namd.py
akey7/moldynquick
1cfe78f331a47ff6a31226dc8f3cf8f30bc694c4
[ "MIT" ]
8
2020-04-01T03:25:28.000Z
2020-04-21T23:14:34.000Z
moldynquick/namd.py
akey7/moldynquick
1cfe78f331a47ff6a31226dc8f3cf8f30bc694c4
[ "MIT" ]
null
null
null
""" This module extracts data from NAMD formatted files """ from typing import List, Dict, Any import pandas as pd import MDAnalysis as mda from MDAnalysis.analysis import align, rms import numpy as np class NAMDLog: """ This class extracts data from a NAMD log file. """ def __init__(self, log_filename: str): """ This creates the instance attributes needed to parse the log file. Parameters ---------- log_filename: str The name of the logfile to extract. """ self.log_filename = log_filename def extract_energies_wide(self) -> pd.DataFrame: """ This extracts the energies from the log file and returns a dataframe that has those energies in it. Returns ------- pd.DataFrame A dataframe of the energies in wid (pivoted) format. """ wide: List[Dict[str, Any]] = [] with open(self.log_filename, "r") as file: for line in file.readlines(): if line.startswith("ENERGY:"): values = [m for m in [l.strip() for l in line.split(" ")][1:] if len(m) > 0] timestep = int(values[0]) wide_row = { "timestep": timestep, "bond [kcal/mol]": float(values[1]), "angle [kcal/mol]": float(values[2]), "dihedral [kcal/mol]": float(values[3]), "improper [kcal/mol]": float(values[4]), "electrostatic [kcal/mol]": float(values[5]), "VDW [kcal/mol]": float(values[6]) } wide.append(wide_row) df: pd.DataFrame = pd.DataFrame(wide) return df def extract_energies_tall(self) -> pd.DataFrame: """ Extracts the narrow format of the schema to a Pandas dataframe. Yes this does cause the log file to be read twice. But fixing that will need to wait until another version. Returns ------- pd.DataFrame The dataframe that contains the rows in tall format. """ tall: List[Dict[str, Any]] = [] wide: pd.DataFrame = self.extract_energies_wide() for _, wide_row in wide.iterrows(): timestep: int = wide_row["timestep"] for key, value in wide_row.items(): if key != "timestep": tall_row = { "timestep": timestep, "measurement": key, "value": value } tall.append(tall_row) df: pd.DataFrame = pd.DataFrame(tall) return df def extract_temperatures(self) -> pd.DataFrame: """ Extracts the temperatures Returns ------- pd.DataFrame The temperatures. """ rows: List[Dict[str, Any]] = [] with open(self.log_filename, "r") as file: for line in file.readlines(): if line.startswith("ENERGY:"): values = [m for m in [l.strip() for l in line.split(" ")][1:] if len(m) > 0] timestep = int(values[0]) row = { "timestep": timestep, "temp [K]": float(values[11]), "tempavg [K]": float(values[14]) } rows.append(row) df = pd.DataFrame(rows) return df class NAMDTrajectory: """ This extracts trajectory information from the .dcd log file. """ def __init__(self, psf_filename: str, dcd_filename: str): """ Instantiates with the right filenames to extract trajectory information Parameters ---------- psf_filename: str The filename to the PSF file. dcd_filename: str The trajectory DCD file. """ self.psf_filename = psf_filename self.dcd_filename = dcd_filename def rmsd_from_first_frame(self, selected_atoms: str = "(protein) and name C CA N") -> pd.DataFrame: """ This calculates the RMSD for every frame from the first frame. Parameters ---------- selected_atoms: str The selection string to use for the atoms being aligned in the trajectory. Defaults to alpha carbons. Returns ------- pd.DataFrame Dataframe with the columns of frame and RMSD [Å] """ mobile = mda.Universe(self.psf_filename, self.dcd_filename) ref = mda.Universe(self.psf_filename, self.dcd_filename) # These two lines appear to have no effect, but in reality # they set the positions in the trajectory. mobile.trajectory[-1] ref.trajectory[0] mobile_ca = mobile.select_atoms(selected_atoms) ref_ca = ref.select_atoms(selected_atoms) aligner = align.AlignTraj(mobile, ref, select=selected_atoms, in_memory=True).run() df = pd.DataFrame(data={"frame": np.arange(len(aligner.rmsd)), "RMSD [Å]": aligner.rmsd}) return df
31.437126
103
0.532
3e1974a913d437c7d8b3fda1354ab5d72f763074
40,277
py
Python
auth-api/src/auth_api/services/org.py
mengdong19/sbc-auth
66fbd94a79d6de18102d3db29743ffeab89ea161
[ "Apache-2.0" ]
null
null
null
auth-api/src/auth_api/services/org.py
mengdong19/sbc-auth
66fbd94a79d6de18102d3db29743ffeab89ea161
[ "Apache-2.0" ]
null
null
null
auth-api/src/auth_api/services/org.py
mengdong19/sbc-auth
66fbd94a79d6de18102d3db29743ffeab89ea161
[ "Apache-2.0" ]
1
2019-07-25T18:20:41.000Z
2019-07-25T18:20:41.000Z
# Copyright © 2019 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Service for managing Organization data.""" import json from datetime import datetime from typing import Dict, Tuple from flask import current_app from jinja2 import Environment, FileSystemLoader from sbc_common_components.tracing.service_tracing import ServiceTracing # noqa: I001 from auth_api import status as http_status from auth_api.exceptions import BusinessException, CustomException from auth_api.exceptions.errors import Error from auth_api.models import AccountLoginOptions as AccountLoginOptionsModel from auth_api.models import Affiliation as AffiliationModel from auth_api.models import Contact as ContactModel from auth_api.models import ContactLink as ContactLinkModel from auth_api.models import Membership as MembershipModel from auth_api.models import Org as OrgModel from auth_api.models import User as UserModel from auth_api.models.affidavit import Affidavit as AffidavitModel from auth_api.schemas import ContactSchema, OrgSchema, InvitationSchema from auth_api.utils.enums import ( AccessType, ChangeType, LoginSource, OrgStatus, OrgType, PaymentMethod, Status, PaymentAccountStatus, TaskRelationshipType, TaskType, TaskStatus) from auth_api.utils.roles import ADMIN, VALID_STATUSES, Role, STAFF, EXCLUDED_FIELDS from auth_api.utils.util import camelback2snake from .affidavit import Affidavit as AffidavitService from .authorization import check_auth from .contact import Contact as ContactService from .keycloak import KeycloakService from .notification import send_email from .products import Product as ProductService from .rest_service import RestService from .task import Task as TaskService ENV = Environment(loader=FileSystemLoader('.'), autoescape=True) class Org: # pylint: disable=too-many-public-methods """Manages all aspects of Org data. This service manages creating, updating, and retrieving Org data via the Org model. """ def __init__(self, model): """Return an Org Service.""" self._model = model @ServiceTracing.disable_tracing def as_dict(self): """Return the internal Org model as a dictionary. None fields are not included. """ org_schema = OrgSchema() obj = org_schema.dump(self._model, many=False) return obj @staticmethod def create_org(org_info: dict, user_id, # pylint: disable=too-many-locals, too-many-statements, too-many-branches token_info: Dict = None, bearer_token: str = None, origin_url: str = None): """Create a new organization.""" current_app.logger.debug('<create_org ') # bcol is treated like an access type as well;so its outside the scheme bcol_credential = org_info.pop('bcOnlineCredential', None) mailing_address = org_info.pop('mailingAddress', None) payment_info = org_info.pop('paymentInfo', {}) selected_payment_method = payment_info.get('paymentMethod', None) org_type = org_info.get('typeCode', OrgType.BASIC.value) branch_name = org_info.get('branchName', None) # If the account is created using BCOL credential, verify its valid bc online account if bcol_credential: bcol_response = Org.get_bcol_details(bcol_credential, bearer_token).json() Org._map_response_to_org(bcol_response, org_info) is_staff_admin = token_info and Role.STAFF_CREATE_ACCOUNTS.value in token_info.get('realm_access').get('roles') is_bceid_user = token_info and token_info.get('loginSource', None) == LoginSource.BCEID.value Org.validate_account_limit(is_staff_admin, user_id) access_type = Org.validate_access_type(is_bceid_user, is_staff_admin, org_info) # Always check duplicated name for all type of account. Org.raise_error_if_duplicate_name(org_info['name'], branch_name) # set premium for GOVM accounts..TODO remove if not needed this logic if access_type == AccessType.GOVM.value: org_type = OrgType.PREMIUM.value org_info.update({'typeCode': OrgType.PREMIUM.value}) org = OrgModel.create_from_dict(camelback2snake(org_info)) org.access_type = access_type # If the account is anonymous or govm set the billable value as False else True org.billable = access_type not in [AccessType.ANONYMOUS.value, AccessType.GOVM.value] # Set the status based on access type # Check if the user is APPROVED else set the org status to PENDING # Send an email to staff to remind review the pending account if access_type in (AccessType.EXTRA_PROVINCIAL.value, AccessType.REGULAR_BCEID.value) \ and not AffidavitModel.find_approved_by_user_id(user_id=user_id): Org._handle_bceid_status_and_notification(org, origin_url, token_info) if access_type == AccessType.GOVM.value: org.status_code = OrgStatus.PENDING_INVITE_ACCEPT.value # If mailing address is provided, save it if mailing_address: Org.add_contact_to_org(mailing_address, org) # create the membership record for this user if its not created by staff and access_type is anonymous Org.create_membership(access_type, is_staff_admin, org, user_id) # dir search doesnt need default products if access_type not in (AccessType.ANONYMOUS.value,): ProductService.create_default_product_subscriptions(org, is_new_transaction=False) payment_method = Org._validate_and_get_payment_method(selected_payment_method, OrgType[org_type], access_type=access_type) user_name = '' if payment_method == PaymentMethod.PAD.value: # to get the pad accepted date user: UserModel = UserModel.find_by_jwt_token(token=token_info) user_name = user.username Org._create_payment_settings(org, payment_info, payment_method, mailing_address, user_name, True) # TODO do we have to check anything like this below? # if payment_account_status == PaymentAccountStatus.FAILED: # raise BusinessException(Error.ACCOUNT_CREATION_FAILED_IN_PAY, None) org.commit() current_app.logger.info(f'<created_org org_id:{org.id}') return Org(org) @staticmethod def _handle_bceid_status_and_notification(org, origin_url, token_info): org.status_code = OrgStatus.PENDING_STAFF_REVIEW.value user = UserModel.find_by_jwt_token(token=token_info) Org.send_staff_review_account_reminder(user, org.id, origin_url) # create a staff review task for this account task_info = {'name': org.name, 'relationshipId': org.id, 'relatedTo': user.id, 'dateSubmitted': datetime.today(), 'relationshipType': TaskRelationshipType.ORG.value, 'type': TaskType.PENDING_STAFF_REVIEW.value, 'status': TaskStatus.OPEN.value } TaskService.create_task(task_info, do_commit=False) @staticmethod def _validate_and_get_payment_method(selected_payment_type: str, org_type: OrgType, access_type=None) -> str: # TODO whats a better place for this org_payment_method_mapping = { OrgType.BASIC: ( PaymentMethod.CREDIT_CARD.value, PaymentMethod.DIRECT_PAY.value, PaymentMethod.ONLINE_BANKING.value), OrgType.PREMIUM: ( PaymentMethod.CREDIT_CARD.value, PaymentMethod.DIRECT_PAY.value, PaymentMethod.PAD.value, PaymentMethod.BCOL.value) } if access_type == AccessType.GOVM.value: payment_type = PaymentMethod.EJV.value elif selected_payment_type: valid_types = org_payment_method_mapping.get(org_type, []) if selected_payment_type in valid_types: payment_type = selected_payment_type else: raise BusinessException(Error.INVALID_INPUT, None) else: payment_type = PaymentMethod.BCOL.value if \ org_type == OrgType.PREMIUM else Org._get_default_payment_method_for_creditcard() return payment_type @staticmethod def create_membership(access_type, is_staff_admin, org, user_id): """Create membership account.""" if not is_staff_admin and access_type != AccessType.ANONYMOUS.value: membership = MembershipModel(org_id=org.id, user_id=user_id, membership_type_code='ADMIN', membership_type_status=Status.ACTIVE.value) membership.add_to_session() # Add the user to account_holders group KeycloakService.join_account_holders_group() @staticmethod def validate_account_limit(is_staff_admin, user_id): """Validate account limit.""" if not is_staff_admin: # staff can create any number of orgs count = OrgModel.get_count_of_org_created_by_user_id(user_id) if count >= current_app.config.get('MAX_NUMBER_OF_ORGS'): raise BusinessException(Error.MAX_NUMBER_OF_ORGS_LIMIT, None) @staticmethod def validate_access_type(is_bceid_user, is_staff_admin, org_info): """Validate and return access type.""" access_type: str = org_info.get('accessType', None) if access_type: if is_staff_admin and not access_type: raise BusinessException(Error.ACCCESS_TYPE_MANDATORY, None) if not is_staff_admin and access_type in AccessType.ANONYMOUS.value: raise BusinessException(Error.USER_CANT_CREATE_ANONYMOUS_ORG, None) if not is_staff_admin and access_type in AccessType.GOVM.value: raise BusinessException(Error.USER_CANT_CREATE_GOVM_ORG, None) if not is_bceid_user and access_type in (AccessType.EXTRA_PROVINCIAL.value, AccessType.REGULAR_BCEID.value): raise BusinessException(Error.USER_CANT_CREATE_EXTRA_PROVINCIAL_ORG, None) if is_bceid_user and access_type not in (AccessType.EXTRA_PROVINCIAL.value, AccessType.REGULAR_BCEID.value): raise BusinessException(Error.USER_CANT_CREATE_REGULAR_ORG, None) else: # If access type is not provided, add default value based on user if is_staff_admin: pass elif is_bceid_user: access_type = AccessType.EXTRA_PROVINCIAL.value else: access_type = AccessType.REGULAR.value return access_type @staticmethod def raise_error_if_duplicate_name(name, branch_name=None): """Raise error if there is duplicate org name already.""" existing_similar__org = OrgModel.find_similar_org_by_name(name, branch_name=branch_name) if existing_similar__org is not None: raise BusinessException(Error.DATA_CONFLICT, None) @staticmethod def _create_payment_settings(org_model: OrgModel, payment_info: dict, # pylint: disable=too-many-arguments payment_method: str, mailing_address=None, username: str = None, is_new_org: bool = True) -> PaymentAccountStatus: """Add payment settings for the org.""" pay_url = current_app.config.get('PAY_API_URL') org_name_for_pay = f'{org_model.name}-{org_model.branch_name}' if org_model.branch_name else org_model.name pay_request = { 'accountId': org_model.id, # pay needs the most unique idenitfier.So combine name and branch name 'accountName': org_name_for_pay, 'paymentInfo': { 'methodOfPayment': payment_method, 'billable': org_model.billable } } if mailing_address: pay_request['contactInfo'] = mailing_address if org_model.bcol_account_id: pay_request['bcolAccountNumber'] = org_model.bcol_account_id pay_request['bcolUserId'] = org_model.bcol_user_id if (revenue_account := payment_info.get('revenueAccount')) is not None: pay_request['paymentInfo']['revenueAccount'] = revenue_account if payment_method == PaymentMethod.PAD.value: # PAD has bank related details pay_request['paymentInfo']['bankTransitNumber'] = payment_info.get('bankTransitNumber', None) pay_request['paymentInfo']['bankInstitutionNumber'] = payment_info.get('bankInstitutionNumber', None) pay_request['paymentInfo']['bankAccountNumber'] = payment_info.get('bankAccountNumber', None) pay_request['padTosAcceptedBy'] = username # invoke pay-api token = RestService.get_service_account_token() if is_new_org: response = RestService.post(endpoint=f'{pay_url}/accounts', data=pay_request, token=token, raise_for_status=True) else: response = RestService.put(endpoint=f'{pay_url}/accounts/{org_model.id}', data=pay_request, token=token, raise_for_status=True) if response == http_status.HTTP_200_OK: payment_account_status = PaymentAccountStatus.CREATED elif response == http_status.HTTP_202_ACCEPTED: payment_account_status = PaymentAccountStatus.PENDING else: payment_account_status = PaymentAccountStatus.FAILED return payment_account_status @staticmethod def _get_default_payment_method_for_creditcard(): return PaymentMethod.DIRECT_PAY.value if current_app.config.get( 'DIRECT_PAY_ENABLED') else PaymentMethod.CREDIT_CARD.value @staticmethod def get_bcol_details(bcol_credential: Dict, bearer_token: str = None, org_id=None): """Retrieve and validate BC Online credentials.""" bcol_response = None if bcol_credential: bcol_response = RestService.post(endpoint=current_app.config.get('BCOL_API_URL') + '/profiles', data=bcol_credential, token=bearer_token, raise_for_status=False) if bcol_response.status_code != http_status.HTTP_200_OK: error = json.loads(bcol_response.text) raise BusinessException(CustomException(error['detail'], bcol_response.status_code), None) bcol_account_number = bcol_response.json().get('accountNumber') if Org.bcol_account_link_check(bcol_account_number, org_id): raise BusinessException(Error.BCOL_ACCOUNT_ALREADY_LINKED, None) return bcol_response def change_org_ype(self, org_info, action=None, bearer_token: str = None): """Update the passed organization with the new info. if Upgrade: //TODO .Missing RULES 1.do bcol verification 2.attach mailing 3.change the org with bcol org name If downgrade: //TODO .Missing RULES 1.remove contact 2.deactivate payment settings 3.add new payment settings for cc 4.change the org with user passed org name """ if self._model.access_type == AccessType.ANONYMOUS.value: raise BusinessException(Error.INVALID_INPUT, None) bcol_credential = org_info.pop('bcOnlineCredential', None) mailing_address = org_info.pop('mailingAddress', None) current_app.logger.debug('<update_org ', action) if action == ChangeType.DOWNGRADE.value: if org_info.get('typeCode') != OrgType.BASIC.value: raise BusinessException(Error.INVALID_INPUT, None) # if they have not changed the name , they can claim the name. Dont check duplicate..or else check duplicate if org_info.get('name') != self._model.name: Org.raise_error_if_duplicate_name(org_info['name']) # remove the bcol payment details from payment table org_info['bcol_account_id'] = '' org_info['bcol_user_id'] = '' org_info['bcol_account_name'] = '' payment_type = Org._get_default_payment_method_for_creditcard() # TODO Add the pay-api call here Org.__delete_contact(self._model) if action == ChangeType.UPGRADE.value: if org_info.get('typeCode') != OrgType.PREMIUM.value or bcol_credential is None: raise BusinessException(Error.INVALID_INPUT, None) bcol_response = Org.get_bcol_details(bcol_credential, bearer_token, self._model.id).json() Org._map_response_to_org(bcol_response, org_info) payment_type = PaymentMethod.BCOL.value # If mailing address is provided, save it if mailing_address: self.add_contact_to_org(mailing_address, self._model) self._model.update_org_from_dict(camelback2snake(org_info), exclude=('status_code')) # TODO pass username instead of blanks Org._create_payment_settings(self._model, {}, payment_type, mailing_address, '', False) return self @staticmethod def _map_response_to_org(bcol_response, org_info): org_info.update({ 'bcol_account_id': bcol_response.get('accountNumber'), 'bcol_user_id': bcol_response.get('userId'), 'bcol_account_name': bcol_response.get('orgName') }) # New org who linked to BCOL account will use BCOL account name as default name # Existing account keep their account name to avoid payment info change. if not org_info.get('name'): org_info.update({'name': bcol_response.get('orgName')}) @staticmethod def add_contact_to_org(mailing_address, org): """Update the passed organization with the mailing address.""" contact = ContactModel(**camelback2snake(mailing_address)) contact = contact.add_to_session() contact_link = ContactLinkModel() contact_link.contact = contact contact_link.org = org contact_link.add_to_session() def update_org(self, org_info, token_info: Dict = None, # pylint: disable=too-many-locals bearer_token: str = None): """Update the passed organization with the new info.""" current_app.logger.debug('<update_org ') has_org_updates: bool = False # update the org table if this variable is set true has_status_changing: bool = False org_model: OrgModel = self._model # to enforce necessary details for govm account creation is_govm_account = org_model.access_type == AccessType.GOVM.value is_govm_account_creation = \ is_govm_account and org_model.status_code == OrgStatus.PENDING_INVITE_ACCEPT.value # govm name is not being updated now is_name_getting_updated = 'name' in org_info and not is_govm_account if is_name_getting_updated: existing_similar__org = OrgModel.find_similar_org_by_name(org_info['name'], self._model.id) if existing_similar__org is not None: raise BusinessException(Error.DATA_CONFLICT, None) has_org_updates = True # If the account is created using BCOL credential, verify its valid bc online account # If it's a valid account disable the current one and add a new one if bcol_credential := org_info.pop('bcOnlineCredential', None): bcol_response = Org.get_bcol_details(bcol_credential, bearer_token, self._model.id).json() Org._map_response_to_org(bcol_response, org_info) has_org_updates = True product_subscriptions = org_info.pop('productSubscriptions', None) mailing_address = org_info.pop('mailingAddress', None) payment_info = org_info.pop('paymentInfo', {}) if is_govm_account_creation and (mailing_address is None or payment_info.get('revenueAccount') is None): raise BusinessException(Error.GOVM_ACCOUNT_DATA_MISSING, None) if is_govm_account_creation: has_org_updates = True org_info['statusCode'] = OrgStatus.PENDING_STAFF_REVIEW.value has_status_changing = True if product_subscriptions is not None: subscription_data = {'subscriptions': product_subscriptions} ProductService.create_product_subscription(self._model.id, subscription_data=subscription_data, skip_auth=True, token_info=token_info) # Update mailing address Or create new one if mailing_address: contacts = self._model.contacts if len(contacts) > 0: contact = self._model.contacts[0].contact contact.update_from_dict(**camelback2snake(mailing_address)) contact.save() else: Org.add_contact_to_org(mailing_address, self._model) if has_org_updates: excluded = ('type_code',) if has_status_changing else EXCLUDED_FIELDS self._model.update_org_from_dict(camelback2snake(org_info), exclude=excluded) if payment_info: selected_payment_method = payment_info.get('paymentMethod', None) payment_type = Org._validate_and_get_payment_method(selected_payment_method, OrgType[self._model.type_code], self._model.access_type) user: UserModel = UserModel.find_by_jwt_token(token=token_info) # TODO when updating the bank info , dont pass user.username as tos updated by..handle this Org._create_payment_settings(self._model, payment_info, payment_type, mailing_address, user.username, False) current_app.logger.debug('>update_org ') return self @staticmethod def delete_org(org_id, token_info: Dict = None, ): """Soft-Deletes an Org. It should not be deletable if there are members or business associated with the org """ # Check authorization for the user current_app.logger.debug('<org Inactivated') check_auth(token_info, one_of_roles=(ADMIN, STAFF), org_id=org_id) org: OrgModel = OrgModel.find_by_org_id(org_id) if not org: raise BusinessException(Error.DATA_NOT_FOUND, None) count_members = len([member for member in org.members if member.status in VALID_STATUSES]) if count_members > 1 or len(org.affiliated_entities) >= 1: raise BusinessException(Error.ORG_CANNOT_BE_DISSOLVED, None) org.status_code = OrgStatus.INACTIVE.value org.save() # Don't remove account if it's staff who deactivate org. is_staff_admin = token_info and Role.STAFF_CREATE_ACCOUNTS.value in token_info.get('realm_access').get('roles') if not is_staff_admin: # Remove user from thr group if the user doesn't have any other orgs membership user = UserModel.find_by_jwt_token(token=token_info) if len(MembershipModel.find_orgs_for_user(user.id)) == 0: KeycloakService.remove_from_account_holders_group(user.keycloak_guid) current_app.logger.debug('org Inactivated>') def get_payment_info(self): """Return the Payment Details for an org by calling Pay API.""" pay_url = current_app.config.get('PAY_API_URL') # invoke pay-api token = RestService.get_service_account_token() response = RestService.get(endpoint=f'{pay_url}/accounts/{self._model.id}', token=token, retry_on_failure=True) return response.json() @staticmethod def find_by_org_id(org_id, token_info: Dict = None, allowed_roles: Tuple = None): """Find and return an existing organization with the provided id.""" if org_id is None: return None org_model = OrgModel.find_by_org_id(org_id) if not org_model: return None # Check authorization for the user check_auth(token_info, one_of_roles=allowed_roles, org_id=org_id) return Org(org_model) @staticmethod def find_by_org_name(org_name): """Find and return an existing organization with the provided name.""" if org_name is None: return None org_model = OrgModel.find_by_org_name(org_name) if not org_model: return None orgs = {'orgs': []} for org in org_model: orgs['orgs'].append(Org(org).as_dict()) return orgs @staticmethod def get_login_options_for_org(org_id, token_info: Dict = None, allowed_roles: Tuple = None): """Get the payment settings for the given org.""" current_app.logger.debug('get_login_options(>') org = OrgModel.find_by_org_id(org_id) if org is None: raise BusinessException(Error.DATA_NOT_FOUND, None) # Check authorization for the user check_auth(token_info, one_of_roles=allowed_roles, org_id=org_id) return AccountLoginOptionsModel.find_active_by_org_id(org_id) @staticmethod def add_login_option(org_id, login_source, token_info: Dict = None): """Create a new contact for this org.""" # check for existing contact (only one contact per org for now) current_app.logger.debug('>add_login_option') org = OrgModel.find_by_org_id(org_id) if org is None: raise BusinessException(Error.DATA_NOT_FOUND, None) check_auth(token_info, one_of_roles=ADMIN, org_id=org_id) login_option = AccountLoginOptionsModel(login_source=login_source, org_id=org_id) login_option.save() return login_option @staticmethod def update_login_option(org_id, login_source, token_info: Dict = None): """Create a new contact for this org.""" # check for existing contact (only one contact per org for now) current_app.logger.debug('>update_login_option') org = OrgModel.find_by_org_id(org_id) if org is None: raise BusinessException(Error.DATA_NOT_FOUND, None) check_auth(token_info, one_of_roles=ADMIN, org_id=org_id) existing_login_option = AccountLoginOptionsModel.find_active_by_org_id(org_id) if existing_login_option is not None: existing_login_option.is_active = False existing_login_option.add_to_session() login_option = AccountLoginOptionsModel(login_source=login_source, org_id=org_id) login_option.save() return login_option @staticmethod def get_contacts(org_id): """Get the contacts for the given org.""" current_app.logger.debug('get_contacts>') org = OrgModel.find_by_org_id(org_id) if org is None: raise BusinessException(Error.DATA_NOT_FOUND, None) collection = [] for contact_link in org.contacts: collection.append(ContactService(contact_link.contact).as_dict()) return {'contacts': collection} @staticmethod def add_contact(org_id, contact_info): """Create a new contact for this org.""" # check for existing contact (only one contact per org for now) current_app.logger.debug('>add_contact') org = OrgModel.find_by_org_id(org_id) if org is None: raise BusinessException(Error.DATA_NOT_FOUND, None) contact_link = ContactLinkModel.find_by_org_id(org_id) if contact_link is not None: raise BusinessException(Error.DATA_ALREADY_EXISTS, None) contact = ContactModel(**camelback2snake(contact_info)) contact = contact.flush() contact_link = ContactLinkModel() contact_link.contact = contact contact_link.org = org contact_link.save() current_app.logger.debug('<add_contact') return ContactService(contact) @staticmethod def update_contact(org_id, contact_info): """Update the existing contact for this org.""" current_app.logger.debug('>update_contact ') org = OrgModel.find_by_org_id(org_id) if org is None: raise BusinessException(Error.DATA_NOT_FOUND, None) # find the contact link for this org contact_link = ContactLinkModel.find_by_org_id(org_id) if contact_link is None or contact_link.contact is None: raise BusinessException(Error.DATA_NOT_FOUND, None) contact = contact_link.contact contact.update_from_dict(**camelback2snake(contact_info)) contact.save() current_app.logger.debug('<update_contact ') # return the updated contact return ContactService(contact) @staticmethod def delete_contact(org_id): """Delete the contact for this org.""" current_app.logger.debug('>delete_contact ') org = OrgModel.find_by_org_id(org_id) if not org or not org.contacts: raise BusinessException(Error.DATA_NOT_FOUND, None) deleted_contact = Org.__delete_contact(org) current_app.logger.debug('<delete_contact ') return ContactService(deleted_contact) @staticmethod def __delete_contact(org): # unlink the org from its contact contact_link = ContactLinkModel.find_by_org_id(org.id) if contact_link: del contact_link.org contact_link.commit() # clean up any orphaned contacts and links if not contact_link.has_links(): contact = contact_link.contact contact_link.delete() contact.delete() return contact return None def get_owner_count(self): """Get the number of owners for the specified org.""" return len([x for x in self._model.members if x.membership_type_code == ADMIN]) @staticmethod def get_orgs(user_id, valid_statuses=VALID_STATUSES): """Return the orgs associated with this user.""" return MembershipModel.find_orgs_for_user(user_id, valid_statuses) @staticmethod def search_orgs(**kwargs): # pylint: disable=too-many-locals """Search for orgs based on input parameters.""" orgs = {'orgs': []} if kwargs.get('business_identifier', None): affiliation: AffiliationModel = AffiliationModel. \ find_affiliations_by_business_identifier(kwargs.get('business_identifier')) if affiliation: orgs['orgs'].append(Org(OrgModel.find_by_org_id(affiliation.org_id)).as_dict()) else: include_invitations: bool = False page: int = int(kwargs.get('page')) limit: int = int(kwargs.get('limit')) statuses: str = kwargs.get('statuses', None) name: str = kwargs.get('name', None) # https://github.com/bcgov/entity/issues/4786 access_type, is_staff_admin = Org.refine_access_type(kwargs.get('access_type', None), kwargs.get('token', None)) search_args = (access_type, name, statuses, kwargs.get('bcol_account_id', None), page, limit) if statuses and OrgStatus.PENDING_ACTIVATION.value in statuses: # only staff admin can see director search accounts # https://github.com/bcgov/entity/issues/4786 if not is_staff_admin: raise BusinessException(Error.INVALID_USER_CREDENTIALS, None) org_models, total = OrgModel.search_pending_activation_orgs(name) include_invitations = True else: org_models, total = OrgModel.search_org(*search_args) for org in org_models: org_dict = Org(org).as_dict() org_dict['contacts'] = [] org_dict['invitations'] = [] if org.contacts: org_dict['contacts'].append( ContactSchema(exclude=('links',)).dump(org.contacts[0].contact, many=False)) if include_invitations and org.invitations: org_dict['invitations'].append( InvitationSchema(exclude=('membership',)).dump(org.invitations[0].invitation, many=False)) orgs['orgs'].append(org_dict) orgs['total'] = total orgs['page'] = page orgs['limit'] = limit return orgs @staticmethod def refine_access_type(access_type_str, token_info): """Find Access Type.""" roles = token_info.get('realm_access').get('roles') is_staff_admin = token_info and (Role.STAFF_CREATE_ACCOUNTS.value in roles or Role.STAFF_MANAGE_ACCOUNTS.value in roles) access_type = [] if not access_type_str else access_type_str.split(',') if not is_staff_admin: if len(access_type) < 1: # pass everything except DIRECTOR SEARCH access_type = [item.value for item in AccessType if item != AccessType.ANONYMOUS] else: access_type.remove(AccessType.ANONYMOUS.value) return access_type, is_staff_admin @staticmethod def bcol_account_link_check(bcol_account_id, org_id=None): """Validate the BCOL id is linked or not. If already linked, return True.""" if current_app.config.get('BCOL_ACCOUNT_LINK_CHECK'): org = OrgModel.find_by_bcol_id(bcol_account_id) if org and org.id != org_id: # check if already taken up by different org return True return False @staticmethod def change_org_status(org_id: int, status_code, suspension_reason_code, token_info: Dict = None): """Update the status of the org. Used now for suspending/activate account. 1) check access .only staff can do it now 2) check org status/eligiblity 3) suspend it """ current_app.logger.debug('<change_org_status ') org_model: OrgModel = OrgModel.find_by_org_id(org_id) user: UserModel = UserModel.find_by_jwt_token(token=token_info) current_app.logger.debug('<setting org status to ') org_model.status_code = status_code org_model.decision_made_by = user.username # not sure if a new field is needed for this. if status_code == OrgStatus.SUSPENDED.value: org_model.suspended_on = datetime.today() org_model.suspension_reason_code = suspension_reason_code org_model.save() current_app.logger.debug('change_org_status>') return Org(org_model) @staticmethod def approve_or_reject(org_id: int, is_approved: bool, token_info: Dict, origin_url: str = None): """Mark the affidavit as approved or rejected.""" current_app.logger.debug('<find_affidavit_by_org_id ') # Get the org and check what's the current status org: OrgModel = OrgModel.find_by_org_id(org_id) # Current User user: UserModel = UserModel.find_by_jwt_token(token=token_info) # If status is PENDING_STAFF_REVIEW handle affidavit approve process, else raise error if org.status_code == OrgStatus.PENDING_STAFF_REVIEW.value: AffidavitService.approve_or_reject(org_id, is_approved, user) else: raise BusinessException(Error.INVALID_INPUT, None) if is_approved: org.status_code = OrgStatus.ACTIVE.value else: org.status_code = OrgStatus.REJECTED.value org.decision_made_by = user.username org.decision_made_on = datetime.now() # TODO Publish to activity stream org.save() # Find admin email address admin_email = ContactLinkModel.find_by_user_id(org.members[0].user.id).contact.email Org.send_approved_rejected_notification(admin_email, org.name, org.status_code, origin_url) current_app.logger.debug('>find_affidavit_by_org_id ') return Org(org) @staticmethod def send_staff_review_account_reminder(user, org_id, origin_url): """Send staff review account reminder notification.""" current_app.logger.debug('<send_staff_review_account_reminder') subject = '[BC Registries and Online Services] An out of province account needs to be approved.' sender = current_app.config.get('MAIL_FROM_ID') recipient = current_app.config.get('STAFF_ADMIN_EMAIL') template = ENV.get_template('email_templates/staff_review_account_email.html') context_path = f'review-account/{org_id}' app_url = '{}/{}'.format(origin_url, current_app.config.get('AUTH_WEB_TOKEN_CONFIRM_PATH')) review_url = '{}/{}'.format(app_url, context_path) logo_url = f'{app_url}/{current_app.config.get("REGISTRIES_LOGO_IMAGE_NAME")}' try: sent_response = send_email(subject, sender, recipient, template.render(url=review_url, user=user, logo_url=logo_url)) current_app.logger.debug('<send_staff_review_account_reminder') if not sent_response: current_app.logger.error('<send_staff_review_account_reminder failed') raise BusinessException(Error.FAILED_NOTIFICATION, None) except: # noqa=B901 current_app.logger.error('<send_staff_review_account_reminder failed') raise BusinessException(Error.FAILED_NOTIFICATION, None) @staticmethod def send_approved_rejected_notification(receipt_admin_email, org_name, org_status: OrgStatus, origin_url): """Send Approved/Rejected notification to the user.""" current_app.logger.debug('<send_approved_rejected_notification') sender = current_app.config.get('MAIL_FROM_ID') if org_status == OrgStatus.ACTIVE.value: template = ENV.get_template('email_templates/nonbcsc_org_approved_notification_email.html') subject = '[BC Registries and Online Services] APPROVED Business Registry Account' elif org_status == OrgStatus.REJECTED.value: template = ENV.get_template('email_templates/nonbcsc_org_rejected_notification_email.html') subject = '[BC Registries and Online Services] YOUR ACTION REQUIRED: ' \ 'Business Registry Account cannot be approved' else: return # dont send mail for any other status change app_url = '{}/{}'.format(origin_url, current_app.config.get('AUTH_WEB_TOKEN_CONFIRM_PATH')) logo_url = f'{app_url}/{current_app.config.get("REGISTRIES_LOGO_IMAGE_NAME")}' params = {'org_name': org_name} try: sent_response = send_email(subject, sender, receipt_admin_email, template.render(url=app_url, params=params, org_name=org_name, logo_url=logo_url)) current_app.logger.debug('<send_approved_rejected_notification') if not sent_response: current_app.logger.error('<send_approved_rejected_notification failed') raise BusinessException(Error.FAILED_NOTIFICATION, None) except: # noqa=B901 current_app.logger.error('<send_approved_rejected_notification failed') raise BusinessException(Error.FAILED_NOTIFICATION, None)
46.563006
120
0.66708
2c18a86fc7c2e479b6b9e067dd868cbd770aa1fc
9,985
py
Python
app/geobox/lib/context.py
omniscale/gbi-client
c8af68ede195150b2aca0516ac8e030fe4ba1f6d
[ "Apache-2.0" ]
2
2018-10-24T06:32:42.000Z
2021-01-20T02:25:05.000Z
app/geobox/lib/context.py
omniscale/gbi-client
c8af68ede195150b2aca0516ac8e030fe4ba1f6d
[ "Apache-2.0" ]
null
null
null
app/geobox/lib/context.py
omniscale/gbi-client
c8af68ede195150b2aca0516ac8e030fe4ba1f6d
[ "Apache-2.0" ]
17
2018-10-24T06:32:45.000Z
2022-02-09T13:10:54.000Z
# This file is part of the GBI project. # Copyright (C) 2012 Omniscale GmbH & Co. KG <http://omniscale.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from shapely.geometry import asShape import requests import datetime from geobox import model from geobox.lib.couchdb import CouchDB from werkzeug.exceptions import NotFound class ContextError(Exception): pass class Context(object): def __init__(self, doc): self.doc = doc def wmts_sources(self): for lyr in self.doc.get('wmts_sources', []): yield lyr def wms_sources(self): for lyr in self.doc.get('wms_sources', []): yield lyr def wfs_sources(self): for lyr in self.doc.get('wfs_sources', []): yield lyr def logging_server(self): return self.doc.get('logging', {}).get('url') def update_coverage_url(self): return self.doc.get('update_coverage', {}).get('url') def couchdb_sources(self): return self.doc.get('couchdb_sources', []) def has_couchdb_sources(self): return len(self.couchdb_sources()) > 0 def user(self): return self.doc.get('user', {}) def prefix(self): return self.doc.get('portal', {}).get('prefix').lower() def version(self): return self.doc.get('version') def parcel_search_url(self): return self.doc.get('parcel_search_url') class ContextModelUpdater(object): """ Update the internal source/layer models from a new context. """ def __init__(self, session, version): self.session = session self.version = version def sources_from_context(self, context): prefix = context.doc.get('portal', {}).get('prefix').lower() for source in context.wmts_sources(): yield self.source_for_conf(source, prefix, source_type='wmts') for source in context.wms_sources(): yield self.source_for_conf(source, prefix, source_type='wms') def source_for_conf(self, layer, prefix, source_type): query = self.session.query(model.ExternalWMTSSource).filter_by(name=layer['name']) query = query.filter_by(source_type=source_type) if prefix: query = query.filter_by(prefix=prefix) source = query.all() if source: source = source[0] else: source = model.ExternalWMTSSource() source.name = layer['name'] source.prefix = prefix source.title = layer['title'] source.url = layer['url'] source.is_protected = layer.get('is_protected') source.is_public = layer.get('is_public') if source_type == 'wmts' and self.version == '0.1': source.url = source.url + layer['layer'] + '/GoogleMapsCompatible-{TileMatrix}-{TileCol}-{TileRow}/tile' if not source.is_protected: source.username = layer.get('username') source.password = layer.get('password') source.format = layer['format'] source.is_overlay = layer['overlay'] source.background_layer = layer.get('is_background_layer', False) source.max_tiles = layer.get('max_tiles') if source_type == 'wms': source.srs = layer['srs'] source.layer = layer['layer'] assert source_type in ('wmts', 'wms') source.source_type = source_type if 'view_restriction' in layer: source.view_coverage = self.coverage_from_restriction(layer['view_restriction']) source.view_level_start = layer['view_restriction'].get('zoom_level_start') source.view_level_end = layer['view_restriction'].get('zoom_level_end') else: source.view_coverage = None source.view_level_start = None source.view_level_end = None source.download_coverage = None source.download_level_start = layer['download_restriction'].get('zoom_level_start') source.download_level_end = layer['download_restriction'].get('zoom_level_end') source.active = True return source def coverage_from_restriction(self, restriction): geom = asShape(restriction['geometry']) if geom.type not in ('Polygon', 'MultiPolygon'): raise ContextError('unsupported geometry type %s' % geom.type) return json.dumps(restriction['geometry']) class AuthenticationError(Exception): pass def wfs_source_for_conf(session, layer, prefix): query = session.query(model.ExternalWFSSource).filter_by(name=layer['name']) if prefix: query = query.filter_by(prefix=prefix) source = query.all() if source: source = source[0] else: source = model.ExternalWFSSource() source.prefix = prefix source.id = layer['id'] source.name = layer['name'] source.layer = layer['layer'] source.host = layer['host'] source.url = layer['url'] source.srs = layer['srs'] source.geometry_field = layer['geometry_field'] source.feature_ns = layer['feature_ns'] source.typename = layer['typename'] source.search_property = layer.get('search_property') source.is_protected = layer.get('is_protected') if not source.is_protected: source.username = layer.get('username') source.password = layer.get('password') source.active = True return source def load_context_document(gbi_server, db_session, user, password): try: result = requests.get(gbi_server.url, auth=(user, password)) except requests.exceptions.ConnectionError: raise NotFound() if result.status_code in (401, 403): raise AuthenticationError() context_doc = result.json() context = Context(context_doc) gbi_server.context = context gbi_server.logging_url = context.logging_server() gbi_server.update_coverage_url = context.update_coverage_url() gbi_server.prefix = context.prefix() gbi_server.home_server = context.has_couchdb_sources() gbi_server.last_update = datetime.datetime.now() if user is not None and user != '': gbi_server.username = user db_session.commit() def test_context_document(url, user=None, password=None): auth = (user, password) auth = None if None in auth else auth try: result = requests.get(url, auth=(user, password)) except requests.exceptions.ConnectionError: raise NotFound() if result.status_code in (401, 403): raise AuthenticationError() # check if we can load context document try: context_doc = result.json() Context(context_doc) except (ValueError, ContextError): raise ContextError() return True def update_raster_sources(gbi_server, db_session): updater = ContextModelUpdater(db_session, gbi_server.context.version()) for source in updater.sources_from_context(gbi_server.context): source.gbi_server = gbi_server db_session.add(source) def update_wfs_sources(gbi_server, db_session): for source in gbi_server.context.wfs_sources(): wfs_source = wfs_source_for_conf(db_session, source, gbi_server.prefix) wfs_source.gbi_server = gbi_server db_session.add(wfs_source) def update_parcel_search_source(gbi_server, db_session): parcel_search_url = gbi_server.context.parcel_search_url() if gbi_server.parcel_search_source: # existing source if parcel_search_url: gbi_server.parcel_search_source.url = parcel_search_url gbi_server.parcel_search_source.active = True else: gbi_server.parcel_search_source.active = False else: if parcel_search_url: parcel_search_source = model.ParcelSearchSource( url=parcel_search_url, active=True, gbi_server=gbi_server ) db_session.add(parcel_search_source) def update_couchdb_sources(gbi_server, app_state): couchdb_port = app_state.config.get_int('couchdb', 'port') couchdb = CouchDB('http://127.0.0.1:%d' % couchdb_port, '_replicator') couchdb_sources = gbi_server.context.couchdb_sources() for couchdb_source in couchdb_sources: replicate_database(couchdb, couchdb_source, app_state, gbi_server.prefix) def source_couchdb_url(couchdb_source): dburl = couchdb_source['url'] + '/' + couchdb_source['dbname'] if 'username' in couchdb_source: schema, dburl = dburl.split('://') dburl = '%s://%s:%s@%s' % ( schema, couchdb_source['username'], couchdb_source['password'], dburl, ) return dburl def replicate_database(couchdb, couchdb_source, app_state, prefix=None): dbname_user = couchdb_source['dbname_user'] if prefix is not None: dbname_user = '%s_%s' % (prefix, dbname_user) dburl = source_couchdb_url(couchdb_source) couch_url = 'http://127.0.0.1:%d' % app_state.config.get_int( 'couchdb', 'port') target_couchdb = CouchDB(couch_url, dbname_user) target_couchdb.init_db() couchdb.replication( repl_id=couchdb_source['dbname'], source=dburl, target=dbname_user, continuous=True, ) if couchdb_source['writable']: couchdb.replication( repl_id=couchdb_source['dbname'] + '_push', source=dbname_user, target=dburl, continuous=True, )
32.313916
116
0.658988
ae4e65b50588649a40260a74e43166822822e6ad
4,398
py
Python
src/lr-mnist.py
kah109xq/MalteHBy
f7761c1c8ed31a2501612302bc1fd80ca14b2d22
[ "MIT" ]
1
2021-02-07T17:44:11.000Z
2021-02-07T17:44:11.000Z
src/lr-mnist.py
MalteHB/visual_analytics_cds
e1f569e41260eecd8b460c43ee5d27952cd0fd7c
[ "MIT" ]
null
null
null
src/lr-mnist.py
MalteHB/visual_analytics_cds
e1f569e41260eecd8b460c43ee5d27952cd0fd7c
[ "MIT" ]
null
null
null
import argparse from utils.utils import fetch_mnist import numpy as np # Import sklearn from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression def main(args): print("Initiating some awesome logistic regression classification!") # Importing arguments from the arguments parser random_state = args.rs test_size = args.ts scaling = args.s minmax = args.mm lr_mnist = LogisticRegressionMNIST() X_train, X_test, y_train, y_test = lr_mnist.split_and_preprocess_data(random_state=random_state, test_size=test_size, scaling=scaling, minmax=minmax) clf_model = lr_mnist.train(X_train, X_test, y_train, y_test) lr_mnist.print_eval_metrics(clf_model, X_test, y_test) print("DONE! Have a nice day. :-)") class LogisticRegressionMNIST: def __init__(self): self.X, self.y = fetch_mnist() def split_and_preprocess_data(self, random_state=1, test_size=0.2, scaling=False, minmax=True): """Splits the data into a train/test-split Args: random_state (int, optional): The random state. Defaults to 9. train_size (int, optional): Size of the training data. Defaults to 7500. test_size (int, optional): Size of the test data. Defaults to 2500. Returns: X_train, X_test, y_train, y_test: Train/test-split of the data. """ self.X = np.array(self.X) self.y = np.array(self.y) if scaling: X_norm = self.X / 255.0 elif minmax: X_norm = (self.X - self.X.min()) / (self.X.max() - self.X.min()) else: X_norm = self.X X_train, X_test, y_train, y_test = train_test_split(X_norm, self.y, random_state=random_state, test_size=test_size) return X_train, X_test, y_train, y_test def train(self, X_train, y_train): """Trains a the model. Args: X_train (np.array): Training images. y_train (np.array): Training labels Returns: sklearn.model: Logistic Regression model """ clf_model = LogisticRegression(penalty='none', tol=0.1, solver='saga', multi_class='multinomial').fit(X_train, y_train) return clf_model def print_eval_metrics(self, clf_model, X_test, y_test): """Prints the evaluation metrics to the terminal. Args: clf_model (sklearnModel): Logistic Regression model X_test (np.array): Test images. y_test (np.array): Test labels. """ y_pred = clf_model.predict(X_test) cm = metrics.classification_report(y_test, y_pred) print(cm) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--rs', metavar="Random State", type=int, help='Random State of the logistic regression model.', required=False, default=1) parser.add_argument('--ts', metavar="Test Size", type=int, help='The test size of the test data.', required=False, default=2500) parser.add_argument('--s', metavar="Scaling", type=bool, help='Whether to scale the data of not to.', required=False, default=False) parser.add_argument('--mm', metavar="MinMax", type=bool, help='Whether to MinMax normalize the data of not to.', required=False, default=True) main(parser.parse_args())
29.516779
100
0.510687
c0acacf94130e4c154fb991f218261717dac2497
7,420
py
Python
tests/test_regression.py
ogrisel/viztracer
4815724081b0dcb6416775962c9eb4638dc577be
[ "Apache-2.0" ]
null
null
null
tests/test_regression.py
ogrisel/viztracer
4815724081b0dcb6416775962c9eb4638dc577be
[ "Apache-2.0" ]
null
null
null
tests/test_regression.py
ogrisel/viztracer
4815724081b0dcb6416775962c9eb4638dc577be
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 # For details: https://github.com/gaogaotiantian/viztracer/blob/master/NOTICE.txt import multiprocessing import os import subprocess import sys import tempfile import time import viztracer from viztracer import VizTracer, ignore_function from .cmdline_tmpl import CmdlineTmpl from .base_tmpl import BaseTmpl class TestIssue1(BaseTmpl): def test_datetime(self): tracer = viztracer.VizTracer() tracer.start() from datetime import timedelta timedelta(hours=5) tracer.stop() tracer.parse() tracer.save(output_file="tmp.json") tracer = viztracer.VizTracer() tracer.start() from datetime import timedelta timedelta(hours=5) tracer.stop() tracer.parse() tracer.save(output_file="tmp.json") os.remove("tmp.json") class TestStackOptimization(BaseTmpl): # There's an order issue in tracefunc to skip the FEE log # If the stack is empty(stack_top is NULL), and we entered # into an ignored function, ignore_stack_depth will increment. # However, when its corresponding exit comes, ignore_stack_depth # won't be decrement because the function is skipped when # stack is empty and it's a return function def test_instant(self): def s(): return 0 tracer = VizTracer() tracer.start() # This is a library function which will be ignored, but # this could trick the system into a ignoring status tracer.add_instant('name = {"a": 1}') s() s() s() tracer.stop() entries = tracer.parse() tracer.save() self.assertEqual(entries, 4) class TestSegFaultRegression(BaseTmpl): # Without parsing, cleanup of C function had caused segfault def test_cleanup(self): tracer = VizTracer() tracer.start() _ = len([1, 2, 3]) _ = sum([2, 3, 4]) try: raise Exception("lol") except Exception: pass tracer.stop() tracer.cleanup() class TestFunctionArg(BaseTmpl): def test_functionarg(self): def f(n): tracer.add_func_args("input", n) if n < 2: return 1 return f(n - 1) + f(n - 2) tracer = VizTracer() tracer.start() f(5) tracer.stop() tracer.parse() inputs = set() for d in tracer.data["traceEvents"]: if d["ph"] == "X": inputs.add(d["args"]["input"]) self.assertEqual(inputs, set([0, 1, 2, 3, 4, 5])) issue21_code = """ import argparse parser = argparse.ArgumentParser() parser.add_argument("--script_option", action="store_true") parser.add_argument("-o", action="store_true") options = parser.parse_args() print(options) if not options.script_option: exit(1) """ class TestIssue21(CmdlineTmpl): # viztracer --run my_script --script_option # is not parsed correctly because the program gets confused # about --script_option def test_issue21(self): self.template(["viztracer", "--include_files", "/", "--run", "cmdline_test.py", "--script_option"], script=issue21_code) self.template(["viztracer", "--include_files", "/", "--", "cmdline_test.py", "--script_option"], script=issue21_code) self.template(["viztracer", "cmdline_test.py", "--script_option"], script=issue21_code) self.template(["viztracer", "--run", "cmdline_test.py", "-o", "--script_option"], script=issue21_code) self.template(["viztracer", "--", "cmdline_test.py", "-o", "--script_option"], script=issue21_code) self.template(["viztracer", "--run"], script=issue21_code, success=False, expected_output_file=None) self.template(["viztracer", "--"], script=issue21_code, success=False, expected_output_file=None) term_code = """ import time a = [] a.append(1) for i in range(10): time.sleep(1) """ class TestTermCaught(CmdlineTmpl): def test_term(self): if sys.platform == "win32": return self.build_script(term_code) cmd = ["viztracer", "-o", "term.json", "cmdline_test.py"] if os.getenv("COVERAGE_RUN"): cmd = ["coverage", "run", "--parallel-mode", "--pylib", "-m"] + cmd p = subprocess.Popen(cmd) time.sleep(1.5) p.terminate() p.wait(timeout=10) self.assertFileExists("term.json", 10) self.cleanup(output_file="term.json") class TestIssue42(BaseTmpl): def test_issue42(self): @ignore_function def f(): lst = [] lst.append(1) tracer = VizTracer() tracer.start() f() tracer.stop() tracer.parse() self.assertEventNumber(tracer.data, 0) issue47_code = """ import sys import gc class C: def __init__(self): self.data = bytearray() def change(self): b = memoryview(self.data).tobytes() self.data += b"123123" del self.data[:1] c = C() c.change() """ class TestIssue47(CmdlineTmpl): def test_issue47(self): self.template(["viztracer", "cmdline_test.py", "-o", "result.json"], script=issue47_code, expected_output_file="result.json", expected_entries=7) class TestIssue58(CmdlineTmpl): def test_issue58(self): if multiprocessing.get_start_method() == "fork": self.template(["viztracer", "--log_multiprocess", "-m", "tests.modules.issue58"], expected_output_file="result.json") class TestIssue83(CmdlineTmpl): def test_issue83(self): self.template(["viztracer", "--quiet", "-m", "tests.modules.issue83"], expected_stdout="__main__") issue119_code = """ import os import sys import tempfile os.chdir(sys.argv[1]) """ class TestIssue119(CmdlineTmpl): def test_issue119(self): with tempfile.TemporaryDirectory() as name: filepath = os.path.join(name, "result.json") cwd = os.getcwd() os.chdir(name) with tempfile.TemporaryDirectory() as script_dir: try: self.template( ["viztracer", "-o", "result.json", "cmdline_test.py", script_dir], script=issue119_code, expected_output_file=filepath ) finally: os.chdir(cwd) issue121_code = """ import atexit def fib(n): if n <= 2: return 1 return fib(n - 1) + fib(n - 2) atexit.register(fib, 6) """ class TestIssue121(CmdlineTmpl): def test_issue119(self): self.template( ["viztracer", "cmdline_test.py"], script=issue121_code, expected_entries=18 ) issue141_code = """ import multiprocessing as mp from concurrent.futures import ProcessPoolExecutor import time def my_function(*args): time.sleep(0.5) if __name__ == '__main__': e = ProcessPoolExecutor(max_workers=3) e.map(my_function, range(1)) """ class TestIssue141(CmdlineTmpl): def test_issue141(self): self.template( ["viztracer", "cmdline_test.py"], script=issue141_code, )
27.179487
110
0.5969
46bc8661df8cc14506220a61bef680975b106f21
388
py
Python
apps/brew/management/commands/ingredients/style.py
martync/zython
e008bbb33e212f0856e85b8594003402e0a635c0
[ "Beerware" ]
null
null
null
apps/brew/management/commands/ingredients/style.py
martync/zython
e008bbb33e212f0856e85b8594003402e0a635c0
[ "Beerware" ]
5
2020-06-05T21:26:16.000Z
2022-01-13T01:21:27.000Z
apps/brew/management/commands/ingredients/style.py
martync/zython
e008bbb33e212f0856e85b8594003402e0a635c0
[ "Beerware" ]
null
null
null
from django.conf import settings from brew.models import BeerStyle from brew.helpers import xml_import from brew.beer_xml import STYLE_FIELDS def do_import(): xml_file = "%sapps/brew/fixtures/Style.xml" % settings.ROOT_PROJECT model_class = BeerStyle parent_loop = "STYLES" item_loop = "STYLE" xml_import(xml_file, model_class, parent_loop, item_loop, STYLE_FIELDS)
29.846154
75
0.770619
18538acaddea2930045c5afa0b134e385ffcd14d
1,779
py
Python
TraFlow/utils/loger.py
Herding/SeeST
6a0a9fea2e0abe91bc30785f769eefb1ccba07b3
[ "MIT" ]
null
null
null
TraFlow/utils/loger.py
Herding/SeeST
6a0a9fea2e0abe91bc30785f769eefb1ccba07b3
[ "MIT" ]
null
null
null
TraFlow/utils/loger.py
Herding/SeeST
6a0a9fea2e0abe91bc30785f769eefb1ccba07b3
[ "MIT" ]
null
null
null
"""日志相关操作 """ import logging # https://www.cnblogs.com/qianyuliang/p/7234217.html LEVER = { 'DEBUG': logging.DEBUG, 'INFO': logging.INFO, 'WARNING': logging.WARNING, 'ERROR': logging.ERROR, 'CRITICAL': logging.CRITICAL } class Loger(): """日志管理 Attributes: _loger: 生成可管理日志的对象 """ def __init__(self, model_name, log_path, lever='INFO', fmt="%(asctime)s - %(name)s - %(levelname)s - %(message)s", datafmt="%Y/%m/%d %H:%M" ): """初始化,包括 日志存放位置,日志输出的格式,日志设置的等级 """ file_name = log_path + model_name + '.txt' fmter = logging.Formatter(fmt=fmt, datefmt=datafmt) sh = logging.FileHandler(filename=file_name) sh.setLevel(LEVER[lever]) sh.setFormatter(fmter) console = logging.StreamHandler() console.setLevel(LEVER[lever]) console.setFormatter(fmter) self._loger = logging.getLogger(model_name) self._loger.setLevel(LEVER[lever]) self._loger.addHandler(sh) self._loger.addHandler(console) @property def loger(self): return self._loger def add_info(self, information, lever): if lever == 'DEBUG': self._loger.debug(information) elif lever == 'INFO': self._loger.info(information) elif lever == 'WARNING': self._loger.warning(information) elif lever == 'ERROR': self._loger.error(information) elif lever == 'CRITICAL': self._loger.critical(information) else: raise ValueError(f'{lever} is not defined in [DEBUG, INFO, WARNING, ERROR, CRITICAL]')
26.954545
98
0.555368
ba3b2a49b109f1892d3b47eb767aaca6c47bb2cb
7,680
py
Python
nova/tests/unit/virt/libvirt/fake_imagebackend.py
cloud-zuiwanyuan/nova
0b59a2d9dc22e4fb172810019dba5ece09bb4526
[ "Apache-2.0" ]
null
null
null
nova/tests/unit/virt/libvirt/fake_imagebackend.py
cloud-zuiwanyuan/nova
0b59a2d9dc22e4fb172810019dba5ece09bb4526
[ "Apache-2.0" ]
1
2016-04-04T18:41:59.000Z
2016-04-04T18:41:59.000Z
nova/tests/unit/virt/libvirt/fake_imagebackend.py
cloud-zuiwanyuan/nova
0b59a2d9dc22e4fb172810019dba5ece09bb4526
[ "Apache-2.0" ]
2
2015-12-04T23:51:46.000Z
2016-06-07T20:01:59.000Z
# Copyright 2012 Grid Dynamics # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import fixtures import functools import mock import os import six from nova.virt.libvirt import config from nova.virt.libvirt import imagebackend from nova.virt.libvirt import utils as libvirt_utils class ImageBackendFixture(fixtures.Fixture): def __init__(self, got_files=None, imported_files=None, exists=None): """This fixture mocks imagebackend.Backend.backend, which is the only entry point to libvirt.imagebackend from libvirt.driver. :param got_files: A list of {'filename': path, 'size': size} for every file which was created. :param imported_files: A list of (local_filename, remote_filename) for every invocation of import_file(). :param exists: An optional lambda which takes the disk name as an argument, and returns True if the disk exists, False otherwise. """ self.got_files = got_files self.imported_files = imported_files self.disks = collections.defaultdict(self._mock_disk) """A dict of name -> Mock image object. This is a defaultdict, so tests may access it directly before a disk has been created.""" self._exists = exists def setUp(self): super(ImageBackendFixture, self).setUp() self.useFixture(fixtures.MonkeyPatch( 'nova.virt.libvirt.imagebackend.Backend.backend', self._mock_backend)) @property def created_disks(self): """disks, filtered to contain only disks which were actually created by calling a relevant method. """ # A disk was created iff either cache() or import_file() was called. return {name: disk for name, disk in six.iteritems(self.disks) if any([disk.cache.called, disk.import_file.called])} def _mock_disk(self): # This is the generator passed to the disks defaultdict. It returns # a mocked Image object, but note that the returned object has not # yet been 'constructed'. We don't know at this stage what arguments # will be passed to the constructor, so we don't know, eg, its type # or path. # # The reason for this 2 phase construction is to allow tests to # manipulate mocks for disks before they have been created. eg a # test can do the following before executing the method under test: # # disks['disk'].cache.side_effect = ImageNotFound... # # When the 'constructor' (image_init in _mock_backend) later runs, # it will return the same object we created here, and when the # caller calls cache() it will raise the requested exception. disk = mock.create_autospec(imagebackend.Image) # NOTE(mdbooth): fake_cache and fake_import_file are for compatiblity # with existing tests which test got_files and imported_files. They # should be removed when they have no remaining users. disk.cache.side_effect = self._fake_cache disk.import_file.side_effect = self._fake_import_file # NOTE(mdbooth): test_virt_drivers assumes libvirt_info has functional # output disk.libvirt_info.side_effect = \ functools.partial(self._fake_libvirt_info, disk) return disk def _mock_backend(self, backend_self, image_type=None): # This method mocks Backend.backend, which returns a subclass of Image # (it returns a class, not an instance). This mocked method doesn't # return a class; it returns a function which returns a Mock. IOW, # instead of the getting a QCow2, the caller gets image_init, # so instead of: # # QCow2(instance, disk_name='disk') # # the caller effectively does: # # image_init(instance, disk_name='disk') # # Therefore image_init() must have the same signature as an Image # subclass constructor, and return a mocked Image object. # # The returned mocked Image object has the following additional # properties which are useful for testing: # # * Calls with the same disk_name return the same object from # self.disks. This means tests can assert on multiple calls for # the same disk without worrying about whether they were also on # the same object. # # * Mocked objects have an additional image_type attribute set to # the image_type originally passed to Backend.backend() during # their construction. Tests can use this to assert that disks were # created of the expected type. def image_init(instance=None, disk_name=None, path=None): # There's nothing special about this path except that it's # predictable and unique for (instance, disk). if path is None: path = os.path.join( libvirt_utils.get_instance_path(instance), disk_name) else: disk_name = os.path.basename(path) disk = self.disks[disk_name] # Used directly by callers. These would have been set if called # the real constructor. setattr(disk, 'path', path) setattr(disk, 'is_block_dev', False) # Used by tests. Note that image_init is a closure over image_type. setattr(disk, 'image_type', image_type) # Used by tests to manipulate which disks exist. if self._exists is not None: # We don't just cache the return value here because the # caller may want, eg, a test where the disk initially does not # exist and later exists. disk.exists.side_effect = lambda: self._exists(disk_name) else: disk.exists.return_value = True return disk return image_init def _fake_cache(self, fetch_func, filename, size=None, *args, **kwargs): # For legacy tests which use got_files if self.got_files is not None: self.got_files.append({'filename': filename, 'size': size}) def _fake_import_file(self, instance, local_filename, remote_filename): # For legacy tests which use imported_files if self.imported_files is not None: self.imported_files.append((local_filename, remote_filename)) def _fake_libvirt_info(self, mock_disk, disk_bus, disk_dev, device_type, cache_mode, extra_specs, hypervisor_version): # For tests in test_virt_drivers which expect libvirt_info to be # functional info = config.LibvirtConfigGuestDisk() info.source_type = 'file' info.source_device = device_type info.target_bus = disk_bus info.target_dev = disk_dev info.driver_cache = cache_mode info.driver_format = 'raw' info.source_path = mock_disk.path return info
42.197802
79
0.649479
621e1201cc22d3d2426938ede9040621af195228
426
py
Python
env/Lib/site-packages/plotly/validators/choroplethmapbox/_showscale.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
11,750
2015-10-12T07:03:39.000Z
2022-03-31T20:43:15.000Z
venv/Lib/site-packages/plotly/validators/choroplethmapbox/_showscale.py
wakisalvador/constructed-misdirection
74779e9ec640a11bc08d5d1967c85ac4fa44ea5e
[ "Unlicense" ]
2,951
2015-10-12T00:41:25.000Z
2022-03-31T22:19:26.000Z
venv/Lib/site-packages/plotly/validators/choroplethmapbox/_showscale.py
wakisalvador/constructed-misdirection
74779e9ec640a11bc08d5d1967c85ac4fa44ea5e
[ "Unlicense" ]
2,623
2015-10-15T14:40:27.000Z
2022-03-28T16:05:50.000Z
import _plotly_utils.basevalidators class ShowscaleValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name="showscale", parent_name="choroplethmapbox", **kwargs ): super(ShowscaleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), **kwargs )
30.428571
79
0.664319
c70131190d386bb470e376512237454dc57ad9b4
739
py
Python
events/api/urls.py
dynamicguy/treeio
4f674898cff2331711639a9b5f6812c874a2cb25
[ "MIT" ]
2
2019-02-22T16:02:19.000Z
2019-02-23T19:27:34.000Z
events/api/urls.py
dewmal/treeio
6299fbe7826800d576f7ab68b4c1996b7194540f
[ "MIT" ]
null
null
null
events/api/urls.py
dewmal/treeio
6299fbe7826800d576f7ab68b4c1996b7194540f
[ "MIT" ]
1
2019-02-03T03:54:06.000Z
2019-02-03T03:54:06.000Z
# encoding: utf-8 # Copyright 2011 Tree.io Limited # This file is part of Treeio. # License www.tree.io/license #-*- coding: utf-8 -*- import handlers from django.conf.urls.defaults import * from treeio.core.api.auth import auth_engine from treeio.core.api.doc import documentation_view from treeio.core.api.resource import CsrfExemptResource ad = { 'authentication': auth_engine } #events resources eventResource = CsrfExemptResource(handler = handlers.EventHandler, **ad) urlpatterns = patterns('', #Events url(r'^doc$', documentation_view, kwargs={'module': handlers}, name="api_events_doc"), url(r'^events$', eventResource, name="api_events"), url(r'^event/(?P<object_ptr>\d+)', eventResource, name="api_events"), )
27.37037
90
0.737483
81f14fd292ee4ff20b53492f12715ee5b681c8b5
308
py
Python
xchainpy/xchainpy_thorchain/xchainpy_thorchain/cosmos/message.py
SLjavad/xchainpy-lib
e79b1fd341adaf9267964f3368500dd48de60917
[ "MIT" ]
8
2021-02-16T23:14:14.000Z
2022-03-22T09:35:58.000Z
xchainpy/xchainpy_thorchain/xchainpy_thorchain/cosmos/message.py
SLjavad/xchainpy-lib
e79b1fd341adaf9267964f3368500dd48de60917
[ "MIT" ]
12
2021-04-06T19:31:46.000Z
2022-03-22T14:34:13.000Z
xchainpy/xchainpy_thorchain/xchainpy_thorchain/cosmos/message.py
SLjavad/xchainpy-lib
e79b1fd341adaf9267964f3368500dd48de60917
[ "MIT" ]
10
2021-03-04T05:45:31.000Z
2022-03-31T14:44:01.000Z
from typing import List from .models.MsgCoin import MsgCoin from .models.MsgNativeTx import MsgNativeTx def msg_native_tx_from_json(coins : List[MsgCoin] , memo : str , signer : str) -> MsgNativeTx : # return MsgNativeTx(coins , memo , frombech32(signer)) return MsgNativeTx(coins , memo , signer)
34.222222
95
0.75
ed17df3bebf6688c1bbef92e9ecacebd3a38d332
6,412
py
Python
collection/collect2.py
aytimothy/3804ict-fandoms-connect
412e320030d62753ccffbaa82e71468e7b98d0ae
[ "MIT" ]
null
null
null
collection/collect2.py
aytimothy/3804ict-fandoms-connect
412e320030d62753ccffbaa82e71468e7b98d0ae
[ "MIT" ]
null
null
null
collection/collect2.py
aytimothy/3804ict-fandoms-connect
412e320030d62753ccffbaa82e71468e7b98d0ae
[ "MIT" ]
null
null
null
# Import Configuration Variables (See config.py) from config import * # Import Libraries import datetime import mysql.connector import praw from praw.models import MoreComments import pytz import time import traceback import sys ''' Basics of what it does: 1. Read existing data and work out who to start with. 2. Download all his comments and submissions, store on the server. 3. In all his submissions, create a list of users who have interacted (commented) on it. 4. Do Step 3, but for the submission each comment the user has made. 5. Go back to Step 1, but going through all the users in the list in Step 3. ''' def output(string, end="\n"): logfile = open("collect.log", "a") print(str(string), end = end) logfile.write(str(string) + end) logfile.close() reddit = praw.Reddit(client_id = reddit_appid, client_secret = reddit_secret, user_agent = "PRAW 6.3.1") if reddit is None: output("Could not connect to Reddit >:( \nAborting!") sys.exit(0) output("Successfully connected to Reddit.") db_id = 0 db_conn = mysql.connector.connect(host = mysql_address, user = mysql_username[db_id], passwd = mysql_password, database = mysql_dbname[db_id]) if (db_conn is None): output("Could not connect to the database >:( \nAborting!") sys.exit(0) db_cursor = db_conn.cursor() output("Successfully connected to database.") def storecompleteduser(username): completedfile = open("completed.txt", "a") completedfile.write(username + "\n") completedfile.close() def readcompletedusers(): completedfile = open("completed.txt", "r") completed_users = [completeduser.rstrip() for completeduser in completedfile.readlines()] return completed_users def readuserqueue(): queuefile = open("queue.txt", "r") queued_users = [queueduser.rstrip() for queueduser in queuefile.readlines()] return queued_users def store_comment(comment): global processed_comments, db_conn, db_cursor id = comment.id parent = comment.parent_id[3:] submission = comment.link_id[3:] score = comment.score author = comment.author if author is None: author = "[Deleted]" else: author = author.name timestamp = datetime.datetime.fromtimestamp(comment.created_utc).isoformat() body = comment.body store_comment_query = "INSERT INTO `Comments` (`ID`, `Parent`, `Submission`, `Score`, `Author`, `Timestamp`, `Body`) VALUES ('" + id + "', '" + parent + "', '" + submission + "', '" + str( score) + "', '" + author + "', '" + str(timestamp) + "', '" + body.replace("\"", "\\\"").replace("'", "\\'") + "')" try: db_cursor.execute(store_comment_query) except: db_conn.rollback() return False db_conn.commit() processed_comments += 1 return True def store_submission(submission): global db_conn, db_cursor id = submission.id subreddit = submission.subreddit.display_name istext = submission.is_self istext_num = 0 if istext is True: istext_num = 1 title = submission.title iscrosspost = False iscrosspost_num = 0 if iscrosspost is True: iscrosspost_num = 1 source = "" link = submission.url body = submission.selftext score = submission.score author = submission.author if author is None: author = "[Deleted]" else: author = author.name timestamp = datetime.datetime.fromtimestamp(comment.created_utc).isoformat() store_comment_query = "INSERT INTO `Submissions` (`ID`, `Subreddit`, `IsText`, `Title`, `IsCrosspost`, `Source`, `Link`, `Body`, `Score`, `Author`, `Timestamp`, `Processed`) VALUES ('" + id + "', '" + subreddit + "', '" + str( istext_num) + "', '" + title + "', '" + str( iscrosspost_num) + "', '" + source + "', '" + link + "', '" + body + "', '" + str( score) + "', '" + author + "', '" + str(timestamp) + "', 0)" try: db_cursor.execute(store_comment_query) except: db_conn.rollback() return False db_conn.commit() return True def process_submission(submission): global processed_submissions store_submission(submission) processed_submissions += 1 start_time = time.time() processed_comments = 0 processed_submissions = 0 stored_comments = 0 stored_submissions = 0 submission_queue = [] # ----------------------------------- # Actual Script # ----------------------------------- completed_users = readcompletedusers() user_queue = readuserqueue() userqueue_processed = 0 while len(user_queue) > 0 and userqueue_processed <= userqueue_maxprocessed: try: userqueue_processed += 1 username = user_queue.pop(0) redditor = reddit.redditor(username) if (redditor is None): output("Error: Could not find /u/" + username) continue output("Processing /u/" + username + "...") redditor_comments = redditor.comments.new() redditor_submissions = redditor.submissions.new() for comment in redditor_comments: if store_comment(comment): stored_comments += 1 processed_comments += 1 if store_submission(comment.submission): stored_submissions += 1 processed_submissions += 1 output("Processed " + str(processed_comments) + " comment(s) and " + str( processed_submissions) + " submission(s) after " + str(time.time() - start_time) + "...") output("Stored " + str(stored_comments) + " comment(s) and " + str( stored_submissions) + " submission(s) after " + str(time.time() - start_time) + "...") for submission in redditor_submissions: if store_submission(submission): stored_submissions += 1 processed_submissions += 1 output("Processed " + str(processed_comments) + " comment(s) and " + str( processed_submissions) + " submission(s) after " + str(time.time() - start_time) + "...") output("Stored " + str(stored_comments) + " comment(s) and " + str( stored_submissions) + " submission(s) after " + str(time.time() - start_time) + "...") storecompleteduser(username) except Exception as e: output(e) output(traceback.format_exc()) continue
36.022472
230
0.627417
76c6d8e74fd7165ce56b262fab9e33b085f80965
2,365
py
Python
solvebio/contrib/dash/tests/utils.py
PolinaBevad/solvebio-python
f6c736baa01b5a868a385cb0baf8f9dc2007cec3
[ "MIT" ]
14
2015-01-07T15:31:00.000Z
2021-11-02T10:03:28.000Z
solvebio/contrib/dash/tests/utils.py
PolinaBevad/solvebio-python
f6c736baa01b5a868a385cb0baf8f9dc2007cec3
[ "MIT" ]
200
2015-01-26T17:12:21.000Z
2022-01-14T08:59:30.000Z
solvebio/contrib/dash/tests/utils.py
PolinaBevad/solvebio-python
f6c736baa01b5a868a385cb0baf8f9dc2007cec3
[ "MIT" ]
9
2015-02-18T22:49:28.000Z
2020-09-01T17:48:35.000Z
import time TIMEOUT = 20 # Seconds def clean_history(driver, domains): temp = driver.get_location() for domain in domains: driver.open(domain) driver.delete_all_visible_cookies() driver.open(temp) def invincible(func): def wrap(): try: return func() except: pass return wrap def switch_windows(driver): new_window_handle = None while not new_window_handle: for handle in driver.window_handles: if handle != driver.current_window_handle: new_window_handle = handle break driver.switch_to.window(new_window_handle) return new_window_handle class WaitForTimeout(Exception): """This should only be raised inside the `wait_for` function.""" pass def wait_for(condition_function, get_message=lambda: '', *args, **kwargs): """ Waits for condition_function to return True or raises WaitForTimeout. :param (function) condition_function: Should return True on success. :param args: Optional args to pass to condition_function. :param kwargs: Optional kwargs to pass to condition_function. if `timeout` is in kwargs, it will be used to override TIMEOUT :raises: WaitForTimeout If condition_function doesn't return True in time. Usage: def get_element(selector): # some code to get some element or return a `False`-y value. selector = '.js-plotly-plot' try: wait_for(get_element, selector) except WaitForTimeout: self.fail('element never appeared...') plot = get_element(selector) # we know it exists. """ def wrapped_condition_function(): """We wrap this to alter the call base on the closure.""" if args and kwargs: return condition_function(*args, **kwargs) if args: return condition_function(*args) if kwargs: return condition_function(**kwargs) return condition_function() if 'timeout' in kwargs: timeout = kwargs['timeout'] del kwargs['timeout'] else: timeout = TIMEOUT start_time = time.time() while time.time() < start_time + timeout: if wrapped_condition_function(): return True time.sleep(0.5) raise WaitForTimeout(get_message())
29.197531
78
0.640592
d99ba822561f5aeffc6903b0a7a381c266526d24
867
py
Python
setup.py
drizzi-novalabs/avatar2
503e94c61224e1c1619c97f544a205fd51e57afb
[ "Apache-2.0" ]
null
null
null
setup.py
drizzi-novalabs/avatar2
503e94c61224e1c1619c97f544a205fd51e57afb
[ "Apache-2.0" ]
null
null
null
setup.py
drizzi-novalabs/avatar2
503e94c61224e1c1619c97f544a205fd51e57afb
[ "Apache-2.0" ]
null
null
null
from setuptools import setup from sys import version_info setup( name='avatar2', version='1.2.2', packages=['avatar2', 'avatar2/archs', 'avatar2/targets', 'avatar2/protocols', 'avatar2/peripherals', 'avatar2/plugins', 'avatar2/plugins/arm', 'avatar2/installer' ], install_requires=[ 'pygdbmi>=0.7.3.1', 'intervaltree', 'posix_ipc>=1.0.0', 'capstone>=3.0.4', 'keystone-engine', 'parse', 'configparser', 'npyscreen', 'enum34', 'unicorn', 'pylink', ], url='https://github.com/avatartwo/avatar2', description='A Dynamic Multi-Target Orchestration Framework', maintainer='Marius Muench', maintainer_email='marius.muench@eurecom.fr' )
24.771429
65
0.534025
37488a8e4993edd72d3c72e28e63b69986c5cf7c
39,398
py
Python
pandas/core/groupby/ops.py
Digres45/pandas
3aa2f3556a42371cf0fe0f102ab33226b0a5b7ab
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/core/groupby/ops.py
Digres45/pandas
3aa2f3556a42371cf0fe0f102ab33226b0a5b7ab
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/core/groupby/ops.py
Digres45/pandas
3aa2f3556a42371cf0fe0f102ab33226b0a5b7ab
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
""" Provide classes to perform the groupby aggregate operations. These are not exposed to the user and provide implementations of the grouping operations, primarily in cython. These classes (BaseGrouper and BinGrouper) are contained *in* the SeriesGroupBy and DataFrameGroupBy objects. """ from __future__ import annotations import collections import functools from typing import ( Generic, Hashable, Iterator, Sequence, final, overload, ) import numpy as np from pandas._libs import ( NaT, lib, ) import pandas._libs.groupby as libgroupby import pandas._libs.reduction as libreduction from pandas._typing import ( ArrayLike, DtypeObj, F, FrameOrSeries, Shape, npt, ) from pandas.errors import AbstractMethodError from pandas.util._decorators import cache_readonly from pandas.core.dtypes.cast import ( maybe_cast_pointwise_result, maybe_downcast_to_dtype, ) from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_platform_int, is_1d_only_ea_obj, is_bool_dtype, is_categorical_dtype, is_complex_dtype, is_datetime64_any_dtype, is_float_dtype, is_integer_dtype, is_numeric_dtype, is_sparse, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.missing import ( isna, maybe_fill, ) from pandas.core.arrays import ( DatetimeArray, ExtensionArray, PeriodArray, TimedeltaArray, ) from pandas.core.arrays.boolean import BooleanDtype from pandas.core.arrays.floating import ( Float64Dtype, FloatingDtype, ) from pandas.core.arrays.integer import ( Int64Dtype, _IntegerDtype, ) from pandas.core.arrays.masked import ( BaseMaskedArray, BaseMaskedDtype, ) import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.groupby import grouper from pandas.core.indexes.api import ( CategoricalIndex, Index, MultiIndex, ensure_index, ) from pandas.core.series import Series from pandas.core.sorting import ( compress_group_index, decons_obs_group_ids, get_flattened_list, get_group_index, get_group_index_sorter, get_indexer_dict, ) class WrappedCythonOp: """ Dispatch logic for functions defined in _libs.groupby """ # Functions for which we do _not_ attempt to cast the cython result # back to the original dtype. cast_blocklist = frozenset(["rank", "count", "size", "idxmin", "idxmax"]) def __init__(self, kind: str, how: str): self.kind = kind self.how = how _CYTHON_FUNCTIONS = { "aggregate": { "add": "group_add", "prod": "group_prod", "min": "group_min", "max": "group_max", "mean": "group_mean", "median": "group_median", "var": "group_var", "first": "group_nth", "last": "group_last", "ohlc": "group_ohlc", }, "transform": { "cumprod": "group_cumprod", "cumsum": "group_cumsum", "cummin": "group_cummin", "cummax": "group_cummax", "rank": "group_rank", }, } _MASKED_CYTHON_FUNCTIONS = {"cummin", "cummax"} _cython_arity = {"ohlc": 4} # OHLC # Note: we make this a classmethod and pass kind+how so that caching # works at the class level and not the instance level @classmethod @functools.lru_cache(maxsize=None) def _get_cython_function( cls, kind: str, how: str, dtype: np.dtype, is_numeric: bool ): dtype_str = dtype.name ftype = cls._CYTHON_FUNCTIONS[kind][how] # see if there is a fused-type version of function # only valid for numeric f = getattr(libgroupby, ftype) if is_numeric: return f # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Literal['object']") elif dtype == object: # type: ignore[comparison-overlap] if "object" not in f.__signatures__: # raise NotImplementedError here rather than TypeError later raise NotImplementedError( f"function is not implemented for this dtype: " f"[how->{how},dtype->{dtype_str}]" ) return f def get_cython_func_and_vals(self, values: np.ndarray, is_numeric: bool): """ Find the appropriate cython function, casting if necessary. Parameters ---------- values : np.ndarray is_numeric : bool Returns ------- func : callable values : np.ndarray """ how = self.how kind = self.kind if how in ["median", "cumprod"]: # these two only have float64 implementations if is_numeric: values = ensure_float64(values) else: raise NotImplementedError( f"function is not implemented for this dtype: " f"[how->{how},dtype->{values.dtype.name}]" ) func = getattr(libgroupby, f"group_{how}_float64") return func, values func = self._get_cython_function(kind, how, values.dtype, is_numeric) if values.dtype.kind in ["i", "u"]: if how in ["add", "var", "prod", "mean", "ohlc"]: # result may still include NaN, so we have to cast values = ensure_float64(values) return func, values def _disallow_invalid_ops(self, dtype: DtypeObj, is_numeric: bool = False): """ Check if we can do this operation with our cython functions. Raises ------ NotImplementedError This is either not a valid function for this dtype, or valid but not implemented in cython. """ how = self.how if is_numeric: # never an invalid op for those dtypes, so return early as fastpath return if is_categorical_dtype(dtype): # NotImplementedError for methods that can fall back to a # non-cython implementation. if how in ["add", "prod", "cumsum", "cumprod"]: raise TypeError(f"{dtype} type does not support {how} operations") raise NotImplementedError(f"{dtype} dtype not supported") elif is_sparse(dtype): # categoricals are only 1d, so we # are not setup for dim transforming raise NotImplementedError(f"{dtype} dtype not supported") elif is_datetime64_any_dtype(dtype): # we raise NotImplemented if this is an invalid operation # entirely, e.g. adding datetimes if how in ["add", "prod", "cumsum", "cumprod"]: raise TypeError(f"datetime64 type does not support {how} operations") elif is_timedelta64_dtype(dtype): if how in ["prod", "cumprod"]: raise TypeError(f"timedelta64 type does not support {how} operations") def _get_output_shape(self, ngroups: int, values: np.ndarray) -> Shape: how = self.how kind = self.kind arity = self._cython_arity.get(how, 1) out_shape: Shape if how == "ohlc": out_shape = (ngroups, 4) elif arity > 1: raise NotImplementedError( "arity of more than 1 is not supported for the 'how' argument" ) elif kind == "transform": out_shape = values.shape else: out_shape = (ngroups,) + values.shape[1:] return out_shape def get_out_dtype(self, dtype: np.dtype) -> np.dtype: how = self.how if how == "rank": out_dtype = "float64" else: if is_numeric_dtype(dtype): out_dtype = f"{dtype.kind}{dtype.itemsize}" else: out_dtype = "object" return np.dtype(out_dtype) @overload def _get_result_dtype(self, dtype: np.dtype) -> np.dtype: ... # pragma: no cover @overload def _get_result_dtype(self, dtype: ExtensionDtype) -> ExtensionDtype: ... # pragma: no cover def _get_result_dtype(self, dtype: DtypeObj) -> DtypeObj: """ Get the desired dtype of a result based on the input dtype and how it was computed. Parameters ---------- dtype : np.dtype or ExtensionDtype Input dtype. Returns ------- np.dtype or ExtensionDtype The desired dtype of the result. """ how = self.how if how in ["add", "cumsum", "sum", "prod"]: if dtype == np.dtype(bool): return np.dtype(np.int64) elif isinstance(dtype, (BooleanDtype, _IntegerDtype)): return Int64Dtype() elif how in ["mean", "median", "var"]: if isinstance(dtype, (BooleanDtype, _IntegerDtype)): return Float64Dtype() elif is_float_dtype(dtype): return dtype elif is_numeric_dtype(dtype): return np.dtype(np.float64) return dtype def uses_mask(self) -> bool: return self.how in self._MASKED_CYTHON_FUNCTIONS @final def _ea_wrap_cython_operation( self, values: ExtensionArray, min_count: int, ngroups: int, comp_ids: np.ndarray, **kwargs, ) -> ArrayLike: """ If we have an ExtensionArray, unwrap, call _cython_operation, and re-wrap if appropriate. """ # TODO: general case implementation overridable by EAs. if isinstance(values, BaseMaskedArray) and self.uses_mask(): return self._masked_ea_wrap_cython_operation( values, min_count=min_count, ngroups=ngroups, comp_ids=comp_ids, **kwargs, ) if isinstance(values, (DatetimeArray, PeriodArray, TimedeltaArray)): # All of the functions implemented here are ordinal, so we can # operate on the tz-naive equivalents npvalues = values._ndarray.view("M8[ns]") elif isinstance(values.dtype, (BooleanDtype, _IntegerDtype)): # IntegerArray or BooleanArray npvalues = values.to_numpy("float64", na_value=np.nan) elif isinstance(values.dtype, FloatingDtype): # FloatingArray npvalues = values.to_numpy(values.dtype.numpy_dtype, na_value=np.nan) else: raise NotImplementedError( f"function is not implemented for this dtype: {values.dtype}" ) res_values = self._cython_op_ndim_compat( npvalues, min_count=min_count, ngroups=ngroups, comp_ids=comp_ids, mask=None, **kwargs, ) if self.how in ["rank"]: # i.e. how in WrappedCythonOp.cast_blocklist, since # other cast_blocklist methods dont go through cython_operation return res_values return self._reconstruct_ea_result(values, res_values) def _reconstruct_ea_result(self, values, res_values): """ Construct an ExtensionArray result from an ndarray result. """ # TODO: allow EAs to override this logic if isinstance(values.dtype, (BooleanDtype, _IntegerDtype, FloatingDtype)): dtype = self._get_result_dtype(values.dtype) cls = dtype.construct_array_type() return cls._from_sequence(res_values, dtype=dtype) elif needs_i8_conversion(values.dtype): i8values = res_values.view("i8") return type(values)(i8values, dtype=values.dtype) raise NotImplementedError @final def _masked_ea_wrap_cython_operation( self, values: BaseMaskedArray, min_count: int, ngroups: int, comp_ids: np.ndarray, **kwargs, ) -> BaseMaskedArray: """ Equivalent of `_ea_wrap_cython_operation`, but optimized for masked EA's and cython algorithms which accept a mask. """ orig_values = values # Copy to ensure input and result masks don't end up shared mask = values._mask.copy() arr = values._data res_values = self._cython_op_ndim_compat( arr, min_count=min_count, ngroups=ngroups, comp_ids=comp_ids, mask=mask, **kwargs, ) dtype = self._get_result_dtype(orig_values.dtype) assert isinstance(dtype, BaseMaskedDtype) cls = dtype.construct_array_type() return cls(res_values.astype(dtype.type, copy=False), mask) @final def _cython_op_ndim_compat( self, values: np.ndarray, *, min_count: int, ngroups: int, comp_ids: np.ndarray, mask: np.ndarray | None, **kwargs, ) -> np.ndarray: if values.ndim == 1: # expand to 2d, dispatch, then squeeze if appropriate values2d = values[None, :] if mask is not None: mask = mask[None, :] res = self._call_cython_op( values2d, min_count=min_count, ngroups=ngroups, comp_ids=comp_ids, mask=mask, **kwargs, ) if res.shape[0] == 1: return res[0] # otherwise we have OHLC return res.T return self._call_cython_op( values, min_count=min_count, ngroups=ngroups, comp_ids=comp_ids, mask=mask, **kwargs, ) @final def _call_cython_op( self, values: np.ndarray, # np.ndarray[ndim=2] *, min_count: int, ngroups: int, comp_ids: np.ndarray, mask: np.ndarray | None, **kwargs, ) -> np.ndarray: # np.ndarray[ndim=2] orig_values = values dtype = values.dtype is_numeric = is_numeric_dtype(dtype) is_datetimelike = needs_i8_conversion(dtype) if is_datetimelike: values = values.view("int64") is_numeric = True elif is_bool_dtype(dtype): values = values.astype("int64") elif is_integer_dtype(dtype): # e.g. uint8 -> uint64, int16 -> int64 dtype_str = dtype.kind + "8" values = values.astype(dtype_str, copy=False) elif is_numeric: if not is_complex_dtype(dtype): values = ensure_float64(values) values = values.T if mask is not None: mask = mask.T out_shape = self._get_output_shape(ngroups, values) func, values = self.get_cython_func_and_vals(values, is_numeric) out_dtype = self.get_out_dtype(values.dtype) result = maybe_fill(np.empty(out_shape, dtype=out_dtype)) if self.kind == "aggregate": counts = np.zeros(ngroups, dtype=np.int64) if self.how in ["min", "max"]: func( result, counts, values, comp_ids, min_count, is_datetimelike=is_datetimelike, ) else: func(result, counts, values, comp_ids, min_count) else: # TODO: min_count if self.uses_mask(): func( result, values, comp_ids, ngroups, is_datetimelike, mask=mask, **kwargs, ) else: func(result, values, comp_ids, ngroups, is_datetimelike, **kwargs) if self.kind == "aggregate": # i.e. counts is defined. Locations where count<min_count # need to have the result set to np.nan, which may require casting, # see GH#40767 if is_integer_dtype(result.dtype) and not is_datetimelike: cutoff = max(1, min_count) empty_groups = counts < cutoff if empty_groups.any(): # Note: this conversion could be lossy, see GH#40767 result = result.astype("float64") result[empty_groups] = np.nan result = result.T if self.how not in self.cast_blocklist: # e.g. if we are int64 and need to restore to datetime64/timedelta64 # "rank" is the only member of cast_blocklist we get here res_dtype = self._get_result_dtype(orig_values.dtype) op_result = maybe_downcast_to_dtype(result, res_dtype) else: op_result = result # error: Incompatible return value type (got "Union[ExtensionArray, ndarray]", # expected "ndarray") return op_result # type: ignore[return-value] @final def cython_operation( self, *, values: ArrayLike, axis: int, min_count: int = -1, comp_ids: np.ndarray, ngroups: int, **kwargs, ) -> ArrayLike: """ Call our cython function, with appropriate pre- and post- processing. """ if values.ndim > 2: raise NotImplementedError("number of dimensions is currently limited to 2") elif values.ndim == 2: assert axis == 1, axis elif not is_1d_only_ea_obj(values): # Note: it is *not* the case that axis is always 0 for 1-dim values, # as we can have 1D ExtensionArrays that we need to treat as 2D assert axis == 0 dtype = values.dtype is_numeric = is_numeric_dtype(dtype) # can we do this operation with our cython functions # if not raise NotImplementedError self._disallow_invalid_ops(dtype, is_numeric) if not isinstance(values, np.ndarray): # i.e. ExtensionArray return self._ea_wrap_cython_operation( values, min_count=min_count, ngroups=ngroups, comp_ids=comp_ids, **kwargs, ) return self._cython_op_ndim_compat( values, min_count=min_count, ngroups=ngroups, comp_ids=comp_ids, mask=None, **kwargs, ) class BaseGrouper: """ This is an internal Grouper class, which actually holds the generated groups Parameters ---------- axis : Index groupings : Sequence[Grouping] all the grouping instances to handle in this grouper for example for grouper list to groupby, need to pass the list sort : bool, default True whether this grouper will give sorted result or not group_keys : bool, default True mutated : bool, default False indexer : np.ndarray[np.intp], optional the indexer created by Grouper some groupers (TimeGrouper) will sort its axis and its group_info is also sorted, so need the indexer to reorder """ axis: Index def __init__( self, axis: Index, groupings: Sequence[grouper.Grouping], sort: bool = True, group_keys: bool = True, mutated: bool = False, indexer: npt.NDArray[np.intp] | None = None, dropna: bool = True, ): assert isinstance(axis, Index), axis self.axis = axis self._groupings: list[grouper.Grouping] = list(groupings) self._sort = sort self.group_keys = group_keys self.mutated = mutated self.indexer = indexer self.dropna = dropna @property def groupings(self) -> list[grouper.Grouping]: return self._groupings @property def shape(self) -> Shape: return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self) -> int: return len(self.groupings) def get_iterator( self, data: FrameOrSeries, axis: int = 0 ) -> Iterator[tuple[Hashable, FrameOrSeries]]: """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._get_splitter(data, axis=axis) keys = self._get_group_keys() for key, group in zip(keys, splitter): yield key, group.__finalize__(data, method="groupby") @final def _get_splitter(self, data: FrameOrSeries, axis: int = 0) -> DataSplitter: """ Returns ------- Generator yielding subsetted objects __finalize__ has not been called for the subsetted objects returned. """ ids, _, ngroups = self.group_info return get_splitter(data, ids, ngroups, axis=axis) def _get_grouper(self): """ We are a grouper as part of another's groupings. We have a specific method of grouping, so cannot convert to a Index for our grouper. """ return self.groupings[0].grouping_vector @final def _get_group_keys(self): if len(self.groupings) == 1: return self.levels[0] else: ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting return get_flattened_list(ids, ngroups, self.levels, self.codes) @final def apply(self, f: F, data: FrameOrSeries, axis: int = 0): mutated = self.mutated splitter = self._get_splitter(data, axis=axis) group_keys = self._get_group_keys() result_values = [] # This calls DataSplitter.__iter__ zipped = zip(group_keys, splitter) for key, group in zipped: object.__setattr__(group, "name", key) # group might be modified group_axes = group.axes res = f(group) if not _is_indexed_like(res, group_axes, axis): mutated = True result_values.append(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """dict {group name -> group indices}""" if len(self.groupings) == 1 and isinstance(self.result_index, CategoricalIndex): # This shows unused categories in indices GH#38642 return self.groupings[0].indices codes_list = [ping.codes for ping in self.groupings] keys = [ping.group_index for ping in self.groupings] return get_indexer_dict(codes_list, keys) @property def codes(self) -> list[np.ndarray]: return [ping.codes for ping in self.groupings] @property def levels(self) -> list[Index]: return [ping.group_index for ping in self.groupings] @property def names(self) -> list[Hashable]: return [ping.name for ping in self.groupings] @final def size(self) -> Series: """ Compute group sizes. """ ids, _, ngroups = self.group_info if ngroups: out = np.bincount(ids[ids != -1], minlength=ngroups) else: out = [] return Series(out, index=self.result_index, dtype="int64") @cache_readonly def groups(self) -> dict[Hashable, np.ndarray]: """dict {group name -> group labels}""" if len(self.groupings) == 1: return self.groupings[0].groups else: to_groupby = zip(*(ping.grouping_vector for ping in self.groupings)) index = Index(to_groupby) return self.axis.groupby(index) @final @cache_readonly def is_monotonic(self) -> bool: # return if my group orderings are monotonic return Index(self.group_info[0]).is_monotonic @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._get_compressed_codes() ngroups = len(obs_group_ids) comp_ids = ensure_platform_int(comp_ids) return comp_ids, obs_group_ids, ngroups @final @cache_readonly def codes_info(self) -> np.ndarray: # return the codes of items in original grouped axis ids, _, _ = self.group_info if self.indexer is not None: sorter = np.lexsort((ids, self.indexer)) ids = ids[sorter] return ids @final def _get_compressed_codes(self) -> tuple[np.ndarray, np.ndarray]: if len(self.groupings) > 1: group_index = get_group_index(self.codes, self.shape, sort=True, xnull=True) return compress_group_index(group_index, sort=self._sort) ping = self.groupings[0] return ping.codes, np.arange(len(ping.group_index)) @final @cache_readonly def ngroups(self) -> int: return len(self.result_index) @property def reconstructed_codes(self) -> list[np.ndarray]: codes = self.codes ids, obs_ids, _ = self.group_info return decons_obs_group_ids(ids, obs_ids, self.shape, codes, xnull=True) @cache_readonly def result_arraylike(self) -> ArrayLike: """ Analogous to result_index, but returning an ndarray/ExtensionArray allowing us to retain ExtensionDtypes not supported by Index. """ # TODO: once Index supports arbitrary EAs, this can be removed in favor # of result_index if len(self.groupings) == 1: return self.groupings[0].group_arraylike # result_index is MultiIndex return self.result_index._values @cache_readonly def result_index(self) -> Index: if len(self.groupings) == 1: return self.groupings[0].result_index.rename(self.names[0]) codes = self.reconstructed_codes levels = [ping.result_index for ping in self.groupings] return MultiIndex( levels=levels, codes=codes, verify_integrity=False, names=self.names ) @final def get_group_levels(self) -> list[ArrayLike]: # Note: only called from _insert_inaxis_grouper_inplace, which # is only called for BaseGrouper, never for BinGrouper if len(self.groupings) == 1: return [self.groupings[0].group_arraylike] name_list = [] for ping, codes in zip(self.groupings, self.reconstructed_codes): codes = ensure_platform_int(codes) levels = ping.group_arraylike.take(codes) name_list.append(levels) return name_list # ------------------------------------------------------------ # Aggregation functions @final def _cython_operation( self, kind: str, values, how: str, axis: int, min_count: int = -1, **kwargs, ) -> ArrayLike: """ Returns the values of a cython operation. """ assert kind in ["transform", "aggregate"] cy_op = WrappedCythonOp(kind=kind, how=how) ids, _, _ = self.group_info ngroups = self.ngroups return cy_op.cython_operation( values=values, axis=axis, min_count=min_count, comp_ids=ids, ngroups=ngroups, **kwargs, ) @final def agg_series( self, obj: Series, func: F, preserve_dtype: bool = False ) -> ArrayLike: """ Parameters ---------- obj : Series func : function taking a Series and returning a scalar-like preserve_dtype : bool Whether the aggregation is known to be dtype-preserving. Returns ------- np.ndarray or ExtensionArray """ # test_groupby_empty_with_category gets here with self.ngroups == 0 # and len(obj) > 0 if len(obj) == 0: # SeriesGrouper would raise if we were to call _aggregate_series_fast result = self._aggregate_series_pure_python(obj, func) elif not isinstance(obj._values, np.ndarray): # _aggregate_series_fast would raise TypeError when # calling libreduction.Slider # In the datetime64tz case it would incorrectly cast to tz-naive # TODO: can we get a performant workaround for EAs backed by ndarray? result = self._aggregate_series_pure_python(obj, func) # we can preserve a little bit more aggressively with EA dtype # because maybe_cast_pointwise_result will do a try/except # with _from_sequence. NB we are assuming here that _from_sequence # is sufficiently strict that it casts appropriately. preserve_dtype = True elif obj.index._has_complex_internals: # Preempt TypeError in _aggregate_series_fast result = self._aggregate_series_pure_python(obj, func) elif isinstance(self, BinGrouper): # Not yet able to remove the BaseGrouper aggregate_series_fast, # as test_crosstab.test_categorical breaks without it result = self._aggregate_series_pure_python(obj, func) else: result = self._aggregate_series_fast(obj, func) npvalues = lib.maybe_convert_objects(result, try_float=False) if preserve_dtype: out = maybe_cast_pointwise_result(npvalues, obj.dtype, numeric_only=True) else: out = npvalues return out def _aggregate_series_fast(self, obj: Series, func: F) -> npt.NDArray[np.object_]: # At this point we have already checked that # - obj.index is not a MultiIndex # - obj is backed by an ndarray, not ExtensionArray # - len(obj) > 0 func = com.is_builtin_func(func) ids, _, ngroups = self.group_info # avoids object / Series creation overhead indexer = get_group_index_sorter(ids, ngroups) obj = obj.take(indexer) ids = ids.take(indexer) sgrouper = libreduction.SeriesGrouper(obj, func, ids, ngroups) result, _ = sgrouper.get_result() return result @final def _aggregate_series_pure_python( self, obj: Series, func: F ) -> npt.NDArray[np.object_]: ids, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = np.empty(ngroups, dtype="O") initialized = False # equiv: splitter = self._get_splitter(obj, axis=0) splitter = get_splitter(obj, ids, ngroups, axis=0) for i, group in enumerate(splitter): # Each step of this loop corresponds to # libreduction._BaseGrouper._apply_to_group res = func(group) res = libreduction.extract_result(res) if not initialized: # We only do this validation on the first iteration libreduction.check_result_array(res, group.dtype) initialized = True counts[i] = group.shape[0] result[i] = res return result class BinGrouper(BaseGrouper): """ This is an internal Grouper class Parameters ---------- bins : the split index of binlabels to group the item of axis binlabels : the label list mutated : bool, default False indexer : np.ndarray[np.intp] Examples -------- bins: [2, 4, 6, 8, 10] binlabels: DatetimeIndex(['2005-01-01', '2005-01-03', '2005-01-05', '2005-01-07', '2005-01-09'], dtype='datetime64[ns]', freq='2D') the group_info, which contains the label of each item in grouped axis, the index of label in label list, group number, is (array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]), array([0, 1, 2, 3, 4]), 5) means that, the grouped axis has 10 items, can be grouped into 5 labels, the first and second items belong to the first label, the third and forth items belong to the second label, and so on """ bins: np.ndarray # np.ndarray[np.int64] binlabels: Index mutated: bool def __init__( self, bins, binlabels, mutated: bool = False, indexer=None, ): self.bins = ensure_int64(bins) self.binlabels = ensure_index(binlabels) self.mutated = mutated self.indexer = indexer # These lengths must match, otherwise we could call agg_series # with empty self.bins, which would raise in libreduction. assert len(self.binlabels) == len(self.bins) @cache_readonly def groups(self): """dict {group name -> group labels}""" # this is mainly for compat # GH 3881 result = { key: value for key, value in zip(self.binlabels, self.bins) if key is not NaT } return result @property def nkeys(self) -> int: # still matches len(self.groupings), but we can hard-code return 1 def _get_grouper(self): """ We are a grouper as part of another's groupings. We have a specific method of grouping, so cannot convert to a Index for our grouper. """ return self def get_iterator(self, data: FrameOrSeries, axis: int = 0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if axis == 0: slicer = lambda start, edge: data.iloc[start:edge] else: slicer = lambda start, edge: data.iloc[:, start:edge] length = len(data.axes[axis]) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not NaT: yield label, slicer(start, edge) start = edge if start < length: yield self.binlabels[-1], slicer(start, None) @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def group_info(self): ngroups = self.ngroups obs_group_ids = np.arange(ngroups, dtype=np.int64) rep = np.diff(np.r_[0, self.bins]) rep = ensure_platform_int(rep) if ngroups == len(self.bins): comp_ids = np.repeat(np.arange(ngroups), rep) else: comp_ids = np.repeat(np.r_[-1, np.arange(ngroups)], rep) return ( ensure_platform_int(comp_ids), obs_group_ids, ngroups, ) @cache_readonly def reconstructed_codes(self) -> list[np.ndarray]: # get unique result indices, and prepend 0 as groupby starts from the first return [np.r_[0, np.flatnonzero(self.bins[1:] != self.bins[:-1]) + 1]] @cache_readonly def result_index(self): if len(self.binlabels) != 0 and isna(self.binlabels[0]): return self.binlabels[1:] return self.binlabels @property def levels(self) -> list[Index]: return [self.binlabels] @property def names(self) -> list[Hashable]: return [self.binlabels.name] @property def groupings(self) -> list[grouper.Grouping]: lev = self.binlabels ping = grouper.Grouping(lev, lev, in_axis=False, level=None) return [ping] def _aggregate_series_fast(self, obj: Series, func: F) -> np.ndarray: # -> np.ndarray[object] raise NotImplementedError( "This should not be reached; use _aggregate_series_pure_python" ) def _is_indexed_like(obj, axes, axis: int) -> bool: if isinstance(obj, Series): if len(axes) > 1: return False return obj.axes[axis].equals(axes[axis]) elif isinstance(obj, DataFrame): return obj.axes[axis].equals(axes[axis]) return False # ---------------------------------------------------------------------- # Splitting / application class DataSplitter(Generic[FrameOrSeries]): def __init__( self, data: FrameOrSeries, labels: npt.NDArray[np.intp], ngroups: int, axis: int = 0, ): self.data = data self.labels = ensure_platform_int(labels) # _should_ already be np.intp self.ngroups = ngroups self.axis = axis assert isinstance(axis, int), axis @cache_readonly def slabels(self) -> npt.NDArray[np.intp]: # Sorted labels return self.labels.take(self._sort_idx) @cache_readonly def _sort_idx(self) -> npt.NDArray[np.intp]: # Counting sort indexer return get_group_index_sorter(self.labels, self.ngroups) def __iter__(self): sdata = self.sorted_data if self.ngroups == 0: # we are inside a generator, rather than raise StopIteration # we merely return signal the end return starts, ends = lib.generate_slices(self.slabels, self.ngroups) for start, end in zip(starts, ends): yield self._chop(sdata, slice(start, end)) @cache_readonly def sorted_data(self) -> FrameOrSeries: return self.data.take(self._sort_idx, axis=self.axis) def _chop(self, sdata, slice_obj: slice) -> NDFrame: raise AbstractMethodError(self) class SeriesSplitter(DataSplitter): def _chop(self, sdata: Series, slice_obj: slice) -> Series: # fastpath equivalent to `sdata.iloc[slice_obj]` mgr = sdata._mgr.get_slice(slice_obj) # __finalize__ not called here, must be applied by caller if applicable # fastpath equivalent to: # `return sdata._constructor(mgr, name=sdata.name, fastpath=True)` obj = type(sdata)._from_mgr(mgr) object.__setattr__(obj, "_flags", sdata._flags) object.__setattr__(obj, "_name", sdata._name) return obj class FrameSplitter(DataSplitter): def _chop(self, sdata: DataFrame, slice_obj: slice) -> DataFrame: # Fastpath equivalent to: # if self.axis == 0: # return sdata.iloc[slice_obj] # else: # return sdata.iloc[:, slice_obj] mgr = sdata._mgr.get_slice(slice_obj, axis=1 - self.axis) # __finalize__ not called here, must be applied by caller if applicable # fastpath equivalent to `return sdata._constructor(mgr)` obj = type(sdata)._from_mgr(mgr) object.__setattr__(obj, "_flags", sdata._flags) return obj def get_splitter( data: FrameOrSeries, labels: np.ndarray, ngroups: int, axis: int = 0 ) -> DataSplitter: if isinstance(data, Series): klass: type[DataSplitter] = SeriesSplitter else: # i.e. DataFrame klass = FrameSplitter return klass(data, labels, ngroups, axis)
31.2187
88
0.588532
fbceb01f7ef2b0c2b67ffdf02f48066e8e078922
7,055
py
Python
sdg/schemas/SchemaInputBase.py
Defra-Data-Science-Centre-of-Excellence/sdg-build
716a7597e5cb7de248915b21fa1a9e4a5cd1e0e0
[ "MIT" ]
7
2019-02-25T03:50:17.000Z
2022-03-31T12:58:42.000Z
sdg/schemas/SchemaInputBase.py
Defra-Data-Science-Centre-of-Excellence/sdg-build
716a7597e5cb7de248915b21fa1a9e4a5cd1e0e0
[ "MIT" ]
185
2019-01-14T15:35:53.000Z
2022-03-28T19:16:37.000Z
sdg/schemas/SchemaInputBase.py
Defra-Data-Science-Centre-of-Excellence/sdg-build
716a7597e5cb7de248915b21fa1a9e4a5cd1e0e0
[ "MIT" ]
18
2019-01-14T11:20:05.000Z
2022-02-08T14:10:17.000Z
# -*- coding: utf-8 -*- import os import json import jsonschema from sdg import check_csv from sdg.Loggable import Loggable class SchemaInputBase(Loggable): """A base class for importing a schema, querying it, and validating with it. This class assumes imported schema (self.schema) are valid JSON Schema.""" def __init__(self, schema_path='', logging=None, scope=None, request_params=None, meta_suffix=None): """Create a new SchemaBase object Parameters ---------- schema_path : string A path to the schema file to input scope : string An optional 'scope' to apply to all metadata fields meta_suffix : string A suffix to add to each metadata key. Useful when using the same schema for both global and national metadata, for example. request_params : dict or None Optional dict of parameters to be passed to remote file fetches. Corresponds to the options passed to a urllib.request.Request. @see https://docs.python.org/3/library/urllib.request.html#urllib.request.Request """ Loggable.__init__(self, logging=logging) self.schema_path = schema_path self.scope = scope self.meta_suffix = meta_suffix self.request_params = request_params self.field_order = [] self.schema = None self.load_schema() self.load_validator() def load_schema(self): """Load the schema. This should be overridden by a subclass.""" raise NotImplementedError def load_validator(self): """Load the validator for this schema.""" try: validator_class = jsonschema.validators.validator_for(self.schema) validator_class.check_schema(self.schema) self.validator = validator_class(self.schema) except Exception as e: print(e) def validate(self, indicator): """Validate the data and/or metadata for an Indicator object. Parameters ---------- indicator : Indicator The instance of Indicator to validate Returns ------- boolean True if validation passes, False otherwise """ status = True if indicator.has_meta(): try: self.validator.validate(indicator.meta) except: status = False print('Validation errors for indicator ' + indicator.inid) for error in self.validator.iter_errors(indicator.meta): ignore = ['properties', 'type'] things = [] for thing in error.schema_path: if thing not in ignore: things.append(str(thing)) things = '/'.join(things) error_title = error.schema['title'] if 'title' in error.schema else '...' print('- ' + error_title + ' (' + things + '): ' + error.message) if indicator.has_data(): df = indicator.data inid = indicator.inid # Apply these checks on the dataframe. These are common issues that # can happen with CSVs, but are important regardless of the source. status = status & check_csv.check_headers(df, inid) status = status & check_csv.check_data_types(df, inid) status = status & check_csv.check_leading_whitespace(df, inid) status = status & check_csv.check_trailing_whitespace(df, inid) status = status & check_csv.check_empty_rows(df, inid) return status def get(self, field, default=None, must_exist=False): """Fetch a field from the schema by key. Parameters ---------- field : string The name of a field to get default : string or None A default value if the field is not present must_exist : boolean If True, an exception will be raised if the field is not present Return ------ mixed or None The value of the field if present, otherwise None """ f = self.schema['properties'].get(field, default) if must_exist and f is None: raise ValueError(field + " doesn't exist in schema") return f def get_values(self, field): """Get the allowed values for a select or multiselect field. Parameters ---------- field : string The name of a field to get allowed values for Returns ------- list List of allowed values """ options = self.get_allowed_options(field) return [x['enum'][0] for x in options] def get_allowed_options(self, field): """Return a list of allowed options for a field from the schema. Parameters ---------- field : string The name of a field to get allowed options for Returns ------- list List of allowed options (dicts) """ field = self.get(field) # In JSON Schema the options are in "anyOf", which can be in 2 places. if 'anyOf' in field: return field['anyOf'] elif 'items' in field and 'anyOf' in field['items']: return field['items']['anyOf'] return [] def get_value_translation(self, field): """Get a map of values to 'translation_key' for schema field options. Parameters ---------- field : string The name of a field to get a value translation map for Returns ------- Dict Dict of allowed values to translation keys for a particular field """ options = self.get_allowed_options(field) if len(options) == 0: raise ValueError(field + " field does not have options element") return {x['enum'][0]: x['translation_key'] for x in options} def add_item_to_field_order(self, field): """Add a field to the list, in case an output needs a field order. Parameters ---------- field : string The name of a field to add to the list """ self.field_order.append(field) def get_field_order(self): """Get the list of fields in the preserved order. Returns ------- list A list of field names in a particular order """ return self.field_order if len(self.field_order) > 0 else self.schema['properties'].keys() def alter_key(self, key): """Make any changes to a key before adding it to the schema. Parameters ---------- key : string The key to alter Returns ------- string The altered key """ if self.meta_suffix is not None: key = key + self.meta_suffix return key
30.673913
98
0.568816
8b39ed9e4cfe4d86b1e16224e4e55b1820c54173
888
py
Python
bookchook/forms.py
tombasche/BookChook
2b1b28c0156754da75e100e2f4ba9ada7b8be31d
[ "MIT" ]
7
2017-12-12T08:33:05.000Z
2019-07-29T14:14:53.000Z
bookchook/forms.py
tombasche/BookChook
2b1b28c0156754da75e100e2f4ba9ada7b8be31d
[ "MIT" ]
20
2016-10-16T03:43:15.000Z
2018-10-29T00:14:23.000Z
bookchook/forms.py
tombasche/BookChook
2b1b28c0156754da75e100e2f4ba9ada7b8be31d
[ "MIT" ]
1
2018-10-23T04:06:59.000Z
2018-10-23T04:06:59.000Z
from django import forms from django.contrib.auth.models import User from .models import Book, Series from taggit.forms import * class BookForm(forms.ModelForm): class Meta: model = Book fields = ('name', 'author', 'number', 'series', 'location', 'comment') widgets = { 'series' : forms.Select(attrs={"onChange":'displaySeriesNumber()', 'onLoad': 'displaySeriesNumber()', 'id': 'series-dropdown'}), 'number' : forms.NumberInput(attrs={"class": "series-number"}) } class BookTagsForm(forms.Form): tags = forms.CharField() class SeriesForm(forms.ModelForm): class Meta: model = Series fields = ('name',) class UserForm(forms.ModelForm): class Meta: model = User fields = ('username', 'email', 'password') widgets = { 'password': forms.PasswordInput() }
28.645161
140
0.61036
1f1337f7df33adfddbde2a50c6ac19e05b1e95a6
16,027
py
Python
rb/cluster.py
commonlims/rb
e9ab7769760d05f1c9bbd2c983f94a22f52aa225
[ "Apache-2.0" ]
null
null
null
rb/cluster.py
commonlims/rb
e9ab7769760d05f1c9bbd2c983f94a22f52aa225
[ "Apache-2.0" ]
null
null
null
rb/cluster.py
commonlims/rb
e9ab7769760d05f1c9bbd2c983f94a22f52aa225
[ "Apache-2.0" ]
null
null
null
from redis.client import Script from redis.connection import ConnectionPool, UnixDomainSocketConnection try: from redis.connection import SSLConnection except ImportError: SSLConnection = None import functools from hashlib import sha1 from threading import Lock from rb.router import PartitionRouter from rb.clients import RoutingClient, LocalClient import sys if sys.version_info > (3,): long = int class HostInfo(object): def __init__(self, host_id, host, port, unix_socket_path=None, db=0, password=None, ssl=False, ssl_options=None): self.host_id = host_id self.host = host self.unix_socket_path = unix_socket_path self.port = port self.db = db self.password = password self.ssl = ssl self.ssl_options = ssl_options def __eq__(self, other): if self.__class__ is not other.__class__: return NotImplemented return self.host_id == other.host_id def __ne__(self, other): rv = self.__eq__(other) if rv is NotImplemented: return NotImplemented return not rv def __hash__(self): return self.host_id def __repr__(self): return '<%s %s>' % ( self.__class__.__name__, ' '.join('%s=%r' % x for x in sorted(self.__dict__.items())), ) def _iter_hosts(iterable): if isinstance(iterable, dict): iterable = iterable.items() if sys.version_info > (3,) else iterable.iteritems() for item in iterable: if isinstance(item, tuple): host_id, cfg = item cfg = dict(cfg) cfg['host_id'] = host_id else: cfg = item yield cfg class Cluster(object): """The cluster is the core object behind rb. It holds the connection pools to the individual nodes and can be shared for the duration of the application in a central location. Basic example of a cluster over four redis instances with the default router:: cluster = Cluster(hosts={ 0: {'port': 6379}, 1: {'port': 6380}, 2: {'port': 6381}, 3: {'port': 6382}, }, host_defaults={ 'host': '127.0.0.1', }) `hosts` is a dictionary of hosts which maps the number host IDs to configuration parameters. The parameters correspond to the signature of the :meth:`add_host` function. The defaults for these parameters are pulled from `host_defaults`. To override the pool class the `pool_cls` and `pool_options` parameters can be used. The same applies to `router_cls` and `router_options` for the router. The pool options are useful for setting socket timeouts and similar parameters. """ def __init__(self, hosts, host_defaults=None, pool_cls=None, pool_options=None, router_cls=None, router_options=None): if pool_cls is None: pool_cls = ConnectionPool if router_cls is None: router_cls = PartitionRouter self._lock = Lock() self.pool_cls = pool_cls self.pool_options = pool_options self.router_cls = router_cls self.router_options = router_options self._pools = {} self._router = None self.hosts = {} self._hosts_age = 0 self.host_defaults = host_defaults or {} for host_config in _iter_hosts(hosts): if self.host_defaults: for k, v in six.iteritems(self.host_defaults): host_config.setdefault(k, v) self.add_host(**host_config) def add_host(self, host_id=None, host='localhost', port=6379, unix_socket_path=None, db=0, password=None, ssl=False, ssl_options=None): """Adds a new host to the cluster. This is only really useful for unittests as normally hosts are added through the constructor and changes after the cluster has been used for the first time are unlikely to make sense. """ if host_id is None: raise RuntimeError('Host ID is required') elif not isinstance(host_id, (int, long)): raise ValueError('The host ID has to be an integer') host_id = int(host_id) with self._lock: if host_id in self.hosts: raise TypeError('Two hosts share the same host id (%r)' % (host_id,)) self.hosts[host_id] = HostInfo(host_id=host_id, host=host, port=port, db=db, unix_socket_path=unix_socket_path, password=password, ssl=ssl, ssl_options=ssl_options) self._hosts_age += 1 def remove_host(self, host_id): """Removes a host from the client. This only really useful for unittests. """ with self._lock: rv = self._hosts.pop(host_id, None) is not None pool = self._pools.pop(host_id, None) if pool is not None: pool.disconnect() self._hosts_age += 1 return rv def disconnect_pools(self): """Disconnects all connections from the internal pools.""" with self._lock: for pool in self._pools.values(): pool.disconnect() self._pools.clear() def get_router(self): """Returns the router for the cluster. If the cluster reconfigures the router will be recreated. Usually you do not need to interface with the router yourself as the cluster's routing client does that automatically. This returns an instance of :class:`BaseRouter`. """ cached_router = self._router ref_age = self._hosts_age if cached_router is not None: router, router_age = cached_router if router_age == ref_age: return router with self._lock: router = self.router_cls(self, **(self.router_options or {})) self._router = (router, ref_age) return router def get_pool_for_host(self, host_id): """Returns the connection pool for the given host. This connection pool is used by the redis clients to make sure that it does not have to reconnect constantly. If you want to use a custom redis client you can pass this in as connection pool manually. """ if isinstance(host_id, HostInfo): host_info = host_id host_id = host_info.host_id else: host_info = self.hosts.get(host_id) if host_info is None: raise LookupError('Host %r does not exist' % (host_id,)) rv = self._pools.get(host_id) if rv is not None: return rv with self._lock: rv = self._pools.get(host_id) if rv is None: opts = dict(self.pool_options or ()) opts['db'] = host_info.db opts['password'] = host_info.password if host_info.unix_socket_path is not None: opts['path'] = host_info.unix_socket_path opts['connection_class'] = UnixDomainSocketConnection if host_info.ssl: raise TypeError('SSL is not supported for unix ' 'domain sockets.') else: opts['host'] = host_info.host opts['port'] = host_info.port if host_info.ssl: if SSLConnection is None: raise TypeError('This version of py-redis does ' 'not support SSL connections.') opts['connection_class'] = SSLConnection opts.update(('ssl_' + k, v) for k, v in (host_info.ssl_options or {}).items()) rv = self.pool_cls(**opts) self._pools[host_id] = rv return rv def get_local_client(self, host_id): """Returns a localized client for a specific host ID. This client works like a regular Python redis client and returns results immediately. """ return LocalClient( connection_pool=self.get_pool_for_host(host_id)) def get_local_client_for_key(self, key): """Similar to :meth:`get_local_client_for_key` but returns the client based on what the router says the key destination is. """ return self.get_local_client(self.get_router().get_host_for_key(key)) def get_routing_client(self, auto_batch=True): """Returns a routing client. This client is able to automatically route the requests to the individual hosts. It's thread safe and can be used similar to the host local client but it will refused to execute commands that cannot be directly routed to an individual node. The default behavior for the routing client is to attempt to batch eligible commands into batch versions thereof. For instance multiple `GET` commands routed to the same node can end up merged into an `MGET` command. This behavior can be disabled by setting `auto_batch` to `False`. This can be useful for debugging because `MONITOR` will more accurately reflect the commands issued in code. See :class:`RoutingClient` for more information. """ return RoutingClient(self, auto_batch=auto_batch) def map(self, timeout=None, max_concurrency=64, auto_batch=True): """Shortcut context manager for getting a routing client, beginning a map operation and joining over the result. `max_concurrency` defines how many outstanding parallel queries can exist before an implicit join takes place. In the context manager the client available is a :class:`MappingClient`. Example usage:: results = {} with cluster.map() as client: for key in keys_to_fetch: results[key] = client.get(key) for key, promise in results.iteritems(): print '%s => %s' % (key, promise.value) """ return self.get_routing_client(auto_batch).map( timeout=timeout, max_concurrency=max_concurrency) def fanout(self, hosts=None, timeout=None, max_concurrency=64, auto_batch=True): """Shortcut context manager for getting a routing client, beginning a fanout operation and joining over the result. In the context manager the client available is a :class:`FanoutClient`. Example usage:: with cluster.fanout(hosts='all') as client: client.flushdb() """ return self.get_routing_client(auto_batch).fanout( hosts=hosts, timeout=timeout, max_concurrency=max_concurrency) def all(self, timeout=None, max_concurrency=64, auto_batch=True): """Fanout to all hosts. Works otherwise exactly like :meth:`fanout`. Example:: with cluster.all() as client: client.flushdb() """ return self.fanout('all', timeout=timeout, max_concurrency=max_concurrency, auto_batch=auto_batch) def execute_commands(self, mapping, *args, **kwargs): """Concurrently executes a sequence of commands on a Redis cluster that are associated with a routing key, returning a new mapping where values are a list of results that correspond to the command in the same position. For example:: >>> cluster.execute_commands({ ... 'foo': [ ... ('PING',), ... ('TIME',), ... ], ... 'bar': [ ... ('CLIENT', 'GETNAME'), ... ], ... }) {'bar': [<Promise None>], 'foo': [<Promise True>, <Promise (1454446079, 418404)>]} Commands that are instances of :class:`redis.client.Script` will first be checked for their existence on the target nodes then loaded on the targets before executing and can be interleaved with other commands:: >>> from redis.client import Script >>> TestScript = Script(None, 'return {KEYS, ARGV}') >>> cluster.execute_commands({ ... 'foo': [ ... (TestScript, ('key:1', 'key:2'), range(0, 3)), ... ], ... 'bar': [ ... (TestScript, ('key:3', 'key:4'), range(3, 6)), ... ], ... }) {'bar': [<Promise [['key:3', 'key:4'], ['3', '4', '5']]>], 'foo': [<Promise [['key:1', 'key:2'], ['0', '1', '2']]>]} Internally, :class:`FanoutClient` is used for issuing commands. """ def is_script_command(command): return isinstance(command[0], Script) def check_script_load_result(script, result): if script.sha != result: raise AssertionError( 'Hash mismatch loading {!r}: expected {!r}, got {!r}'.format( script, script.sha, result, ) ) # Run through all the commands and check to see if there are any # scripts, and whether or not they have been loaded onto the target # hosts. exists = {} with self.fanout(*args, **kwargs) as client: for key, commands in list(mapping.items()): targeted = client.target_key(key) for command in filter(is_script_command, commands): script = command[0] # Set the script hash if it hasn't already been set. if not script.sha: script.sha = sha1(script.script).hexdigest() # Check if the script has been loaded on each host that it # will be executed on. for host in targeted._target_hosts: if script not in exists.setdefault(host, {}): exists[host][script] = targeted.execute_command('SCRIPT EXISTS', script.sha) # Execute the pending commands, loading scripts onto servers where they # do not already exist. results = {} with self.fanout(*args, **kwargs) as client: for key, commands in list(mapping.items()): results[key] = [] targeted = client.target_key(key) for command in commands: # If this command is a script, we need to check and see if # it needs to be loaded before execution. if is_script_command(command): script = command[0] for host in targeted._target_hosts: if script in exists[host]: result = exists[host].pop(script) if not result.value[0]: targeted.execute_command('SCRIPT LOAD', script.script).done( on_success=functools.partial(check_script_load_result, script) ) keys, arguments = command[1:] parameters = list(keys) + list(arguments) results[key].append(targeted.execute_command('EVALSHA', script.sha, len(keys), *parameters)) else: results[key].append(targeted.execute_command(*command)) return results
40.370277
116
0.564173
ac87290eec352e4f3b5b73f3da2d2d0d66946331
6,875
py
Python
tests/test_http.py
polyfemos/atavism
d5c7cbb2d861ac800bbf19f7a1504cf966f0deef
[ "Unlicense" ]
null
null
null
tests/test_http.py
polyfemos/atavism
d5c7cbb2d861ac800bbf19f7a1504cf966f0deef
[ "Unlicense" ]
null
null
null
tests/test_http.py
polyfemos/atavism
d5c7cbb2d861ac800bbf19f7a1504cf966f0deef
[ "Unlicense" ]
1
2022-02-01T10:26:45.000Z
2022-02-01T10:26:45.000Z
import os import unittest from atavism.http11.client import HttpClient from atavism.http11.content import Content, FileContent from atavism.http11.headers import Headers from atavism.http11.objects import HttpRequest class TestHeaders(unittest.TestCase): def test_001_creation(self): hb = Headers() self.assertEqual(len(hb), 0) self.assertEqual(len(hb.headers), 0) self.assertFalse(hb.finished) def test_002_input(self): input = [ [ (b'GET / HTTP/1.1\r\n', 16, False), (b'Host: 192.168.1', 15, False), (b'.1\r\n\r\n', 6, True), ], [ (b'GET / HTTP/1.1\r\n', 16, False), (b'Host: 192.168.1', 15, False), (b'.1\r\n', 4, False), (b'\r\nHello World', 2, True) ] ] for inp_set in input: hb = Headers() for inp in inp_set: self.assertEqual(hb.read_content(inp[0]), inp[1], "read_content('{}') should have returned {}".format(inp[0], inp[1])) self.assertEqual(hb.finished, inp[2]) self.assertEqual(len(hb), 33) self.assertEqual(hb.status_line, 'GET / HTTP/1.1') self.assertEqual(len(hb.headers), 1) def test_003_output(self): hb = Headers() hb.add_header('Host', '127.0.0.1') self.assertEqual(len(hb.headers), 1) self.assertIn("Host: 127.0.0.1\r\n\r\n", str(hb)) hb.add_headers({'User-Agent': 'Test/0.1', 'Accept-Encoding': 'identity'}) self.assertEqual(len(hb.headers), 4) hdr_str = str(hb) self.assertEqual(len(hdr_str.split("\r\n")), 6) self.assertIn("Accept-Encoding: identity\r\n", hdr_str) class TestContent(unittest.TestCase): def test_001_creation(self): ct = Content() self.assertFalse(ct.finished) self.assertIsNone(ct.content_type) self.assertIsNone(ct.content_length) ct2 = Content(content_length=12, content_type='text/plain') self.assertFalse(ct2.finished) self.assertEqual(ct2.content_length, 12) def test_002(self): cases = [ ([b'Hello World!'], 12, 'text/plain', 'Hello World!'), ([b'{"origin"', b': "127.0.0.1"}'], 23, 'application/json', {'origin': '127.0.0.1'}), ] for c in cases: ct = Content(data=c[0][0], content_length=c[1], content_type=c[2]) self.assertEqual(ct.finished, True if len(c[0]) == 1 else False) self.assertEqual(len(ct), len(c[0][0])) for n in range(1, len(c[0])): ct.read_content(c[0][n]) self.assertTrue(ct.finished) self.assertEqual(ct.decoded_content(), c[3]) def test_003(self): ct = Content(data=b'012345678901234567890') self.assertEqual(len(ct), 21) self.assertEqual(ct[0:2], b'01') class TestFileContent(unittest.TestCase): def test_001(self): fc = FileContent('tests/test_http.py') self.assertEqual(len(fc), os.path.getsize('tests/test_http.py')) self.assertEqual(fc[0:10], b'import os\n') def test_002(self): fn = 'tests/hello_world.txt' if os.path.exists(fn): os.unlink(fn) fc = FileContent(fn) self.assertEqual(len(fc), 0) fc.add_content(b'Hello World!') self.assertEqual(len(fc), 12) fc.write() self.assertTrue(os.path.exists(fn)) self.assertEqual(os.path.getsize(fn), 12) class HttpbinTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.http = HttpClient('httpbin.org') def test_001_ip(self): self.assertTrue(self.http.verify()) self.assertIsNotNone(self.http.simple_request('/ip')) def test_002_headers(self): self.http.user_agent = 'Test/0.1' hdrs = self.http.simple_request('/headers') self.assertIsInstance(hdrs, dict) self.assertIn('headers', hdrs) self.assertIn('User-Agent', hdrs['headers']) self.assertEqual(hdrs['headers']['User-Agent'], 'Test/0.1') def test_003_post(self): resp = self.http.post_data('/post', {'a': 1, 'b': 2}) self.assertEqual(resp.code, 200) self.assertEqual(resp.get('content-type'), 'application/json') json_data = resp.decoded_content() self.assertIn('data', json_data) self.assertEqual(json_data['form'], {'a': '1', 'b': '2'}) self.assertEqual(json_data['headers']['Content-Length'], '7') self.assertIn('files', json_data) def test_004_stream(self): lines = self.http.request('/stream/10') self.assertEqual(lines.code, 200) self.assertEqual(len(lines.decoded_content().split(b'\n')), 11) def test_005_gzip(self): gzip = self.http.request('/gzip') data = gzip.decoded_content() self.assertEqual(type(data), dict) self.assertIn('gzipped', data) self.assertTrue(data["gzipped"]) self.assertNotEqual(gzip._content.content_length, len(gzip._content)) def test_006_deflate(self): obj = self.http.request('/deflate') data = obj.decoded_content() self.assertEqual(type(data), dict) self.assertIn('deflated', data) self.assertTrue(data["deflated"]) self.assertNotEqual(obj._content.content_length, len(obj._content)) def test_007_drip(self): resp = self.http.request('/drip', {'numbytes': 1500,'duration': 5, 'code': 200}) self.assertEqual(resp.code, 200) self.assertEqual(len(resp), 1500) class RangeRequestTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.http = HttpClient('www.lysator.liu.se') def test_001(self): # http://www.lysator.liu.se/pinball/expo/ req = HttpRequest(path='/pinball/expo/') req.add_range(0, 61) resp = self.http.send_request(req) self.assertEqual(resp.code, 206) self.assertEqual(len(resp), 62) self.assertEqual(resp.decoded_content(), '''<html> <head> <base="http://www.lysator.liu.se/pinball/expo/">''') def test_002(self): # http://www.lysator.liu.se/pinball/expo/ req = HttpRequest(method='GET', path='/pinball/expo/') req.add_range(0, 61) req.add_range(end=-10) resp = self.http.send_request(req) self.assertEqual(resp.code, 206) parts = resp.decoded_content() self.assertEqual(len(parts), 2) self.assertIn('Content-Type', parts[0]) self.assertIn('Content-Range', parts[0]) self.assertEqual(parts[0]['content'], '''<html> <head> <base="http://www.lysator.liu.se/pinball/expo/">''') self.assertEqual(parts[1]['content'], '''> </html>''')
35.807292
101
0.588509