hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
32390574078c22a929abd1f5d6de9e9a77027363
19,445
py
Python
src/framework/vm2vmLib.py
securedataplane/mts
9ffe415ce586600e558e7a2855348c9cd1651f49
[ "MIT" ]
1
2022-03-10T13:00:25.000Z
2022-03-10T13:00:25.000Z
src/framework/vm2vmLib.py
securedataplane/mts
9ffe415ce586600e558e7a2855348c9cd1651f49
[ "MIT" ]
1
2019-07-23T08:49:09.000Z
2019-07-23T08:49:09.000Z
src/framework/vm2vmLib.py
securedataplane/mts
9ffe415ce586600e558e7a2855348c9cd1651f49
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Fri Nov 9 10:30:56 2018 @author: saad """ import expLib as exp from datetime import datetime ############################################################################### DpdkMem="1024,0" #Destination MAC (needed for Flow Rules) outDestMac="00:00:00:00:30:56" # RAM value used for Tenant- and OvS VMs VmRam="4G" #Cpu Cores for Tenant VMs TenantVmCores= 2 # Total number of cpu cores totalCpuCores=16 #message InitMessage="The scenario is getting prepared ..." ############################################################################### # SR-IOV Scenarios ############################################################################### def vm2vm_SRIOV_OneOvs(cnx_server, isDPDK, nbrCores): cpuArray= exp.cpuAllocation(1, nbrCores, True, True, 4, TenantVmCores, totalCpuCores) exp.HOST_CPU=cpuArray["hostCpu"] OvsCpu= cpuArray["ovsCpu"] DpdkCpu=cpuArray["ovsDpdk"] cpuDpdkPorts= cpuArray["cpuDpdkPorts"] TenantVMsCpuArray= cpuArray["TenantVMsCpuArray"] OvsVMsCpuArray= cpuArray["OvsVMsCpuArray"] exp.NicConfig=["1","10"] exp.NicType= "mlx" exp.isSRIOV= True exp.Server_cnx= cnx_server exp.pf_index=0 exp.pfs=[] exp.vfs=[] exp.scsName= "vm2vm_SRIOV_OneOvs"+"_IsDPDK="+str(isDPDK) logTimeStamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") exp.EmailNotify(InitMessage, "is beeing prepared", logTimeStamp) exp.Logs("", logTimeStamp) if isDPDK: exp.IsDPDK= True exp.OVS_PATH= exp.dpdk_path else: exp.IsDPDK= False exp.OVS_PATH= exp.nodpdk_path #----------------------------------------# exp.PhyPorts= [ ("enp3s0f0", "10"), ("enp3s0f1", "10") ] exp.InitialConfig() port_1_Vfs=exp.pfs[0][2] port_2_Vfs=exp.pfs[1][2] exp.MyVfs= [ (port_1_Vfs[0], "0", "off", "vswitch-vm"), (port_2_Vfs[0], "0", "off", "vswitch-vm"), (port_1_Vfs[1], "10", "off", "vswitch-vm"), (port_2_Vfs[1], "10", "off", "vswitch-vm"), (port_1_Vfs[2], "10", "off", "tenant-green-1"), (port_2_Vfs[2], "10", "off", "tenant-green-1"), (port_1_Vfs[3], "20", "off", "vswitch-vm"), (port_2_Vfs[3], "20", "off", "vswitch-vm"), (port_1_Vfs[4], "20", "off", "tenant-green-2"), (port_2_Vfs[4], "20", "off", "tenant-green-2"), (port_1_Vfs[6], "30", "off", "vswitch-vm"), (port_2_Vfs[6], "30", "off", "vswitch-vm"), (port_1_Vfs[7], "30", "off", "tenant-green-3"), (port_2_Vfs[7], "30", "off", "tenant-green-3"), (port_1_Vfs[8], "40", "off", "vswitch-vm"), (port_2_Vfs[8], "40", "off", "vswitch-vm"), (port_1_Vfs[9], "40", "off", "tenant-green-4"), (port_2_Vfs[9], "40", "off", "tenant-green-4") ] exp.usedVms=[ ("vswitch-vm", OvsVMsCpuArray[0], VmRam), ("tenant-green-1", TenantVMsCpuArray[0], VmRam), ("tenant-green-2", TenantVMsCpuArray[1], VmRam), ("tenant-green-3", TenantVMsCpuArray[2], VmRam), ("tenant-green-4", TenantVMsCpuArray[3], VmRam)] if isDPDK: #----------------- OVS-VM_1------------------ OvsVmPorts1= [ (port_1_Vfs[0], True, cpuDpdkPorts), (port_2_Vfs[0], True, cpuDpdkPorts), (port_1_Vfs[1], True, cpuDpdkPorts), (port_2_Vfs[1], True, cpuDpdkPorts), (port_1_Vfs[3], True, cpuDpdkPorts), (port_2_Vfs[3], True, cpuDpdkPorts), (port_1_Vfs[6], True, cpuDpdkPorts), (port_2_Vfs[6], True, cpuDpdkPorts), (port_1_Vfs[8], True, cpuDpdkPorts), (port_2_Vfs[8], True, cpuDpdkPorts)] else: #----------------- OVS-VM_1------------------ OvsVmPorts1= [ (port_1_Vfs[0], False), (port_2_Vfs[0], False), (port_1_Vfs[1], False), (port_2_Vfs[1], False), (port_1_Vfs[3], False), (port_2_Vfs[3], False), (port_1_Vfs[6], False), (port_2_Vfs[6], False), (port_1_Vfs[8], False), (port_2_Vfs[8], False)] msg= exp.GetScenarioSummary([OvsVmPorts1], OvsCpu, DpdkCpu, DpdkMem) exp.EmailNotify(msg, "is beeing prepared", logTimeStamp) exp.Logs(msg, logTimeStamp) #----------------------------------------# exp.Vfsconfig() if isDPDK: exp.ConfigOVS("vswitch-vm", "br0", OvsVmPorts1, OvsCpu, DpdkMem, DpdkCpu) else: exp.ConfigOVS("vswitch-vm", "br0", OvsVmPorts1, OvsCpu) ''' OVS Flow Rules for OVS-VM-1: ''' ################################# Tenant_1 ############################## #Flow Rules (1) #--------------------------------------------------------- match="in_port="+exp.VfsMatch[port_1_Vfs[0]]+",ip,nw_dst=10.0.0.2" action="mod_dl_dst:"+exp.GetMacByVf(port_1_Vfs[2])+","+exp.VfsMatch[port_1_Vfs[1]] exp.addFlowRule("vswitch-vm" , exp.OVS_PATH, "br0", match, action) #Flow Rules (2) #--------------------------------------------------------- match="in_port="+exp.VfsMatch[port_2_Vfs[1]] action="mod_dl_dst:"+exp.GetMacByVf(port_1_Vfs[4])+","+exp.VfsMatch[port_1_Vfs[3]] exp.addFlowRule("vswitch-vm" , exp.OVS_PATH, "br0", match, action) #Flow Rules (3) #--------------------------------------------------------- match="in_port="+exp.VfsMatch[port_2_Vfs[3]] action="mod_dl_dst:"+outDestMac+","+exp.VfsMatch[port_2_Vfs[0]] exp.addFlowRule("vswitch-vm" , exp.OVS_PATH, "br0", match, action) ################################# Tenant_2 ############################## #Flow Rules (1) #--------------------------------------------------------- match="in_port="+exp.VfsMatch[port_1_Vfs[0]]+",ip,nw_dst=10.0.0.4" action="mod_dl_dst:"+exp.GetMacByVf(port_1_Vfs[7])+","+exp.VfsMatch[port_1_Vfs[6]] exp.addFlowRule("vswitch-vm" , exp.OVS_PATH, "br0", match, action) #Flow Rules (2) #--------------------------------------------------------- match="in_port="+exp.VfsMatch[port_2_Vfs[6]] action="mod_dl_dst:"+exp.GetMacByVf(port_1_Vfs[9])+","+exp.VfsMatch[port_1_Vfs[8]] exp.addFlowRule("vswitch-vm" , exp.OVS_PATH, "br0", match, action) #Flow Rules (3) #--------------------------------------------------------- match="in_port="+exp.VfsMatch[port_2_Vfs[8]] action="mod_dl_dst:"+outDestMac+","+exp.VfsMatch[port_2_Vfs[0]] exp.addFlowRule("vswitch-vm" , exp.OVS_PATH, "br0", match, action) #show Flow rules of br0 exp.showFlowRules("vswitch-vm", exp.OVS_PATH,"br0") exp.startL2Frwd(1) exp.EmailNotify(msg, "is ready", logTimeStamp) return True ############################################################################### def vm2vm_SRIOV_TwoOvs(cnx_server, isDPDK, nbrCores, isIsolated): cpuArray= exp.cpuAllocation(2, nbrCores, isIsolated, True, 4,TenantVmCores, totalCpuCores) exp.HOST_CPU=cpuArray["hostCpu"]; OvsCpu= cpuArray["ovsCpu"]; DpdkCpu=cpuArray["ovsDpdk"]; cpuDpdkPorts= cpuArray["cpuDpdkPorts"]; TenantVMsCpuArray= cpuArray["TenantVMsCpuArray"]; OvsVMsCpuArray= cpuArray["OvsVMsCpuArray"]; exp.NicConfig=["1","10"] exp.NicType= "mlx" exp.isSRIOV= True exp.Server_cnx= cnx_server exp.pf_index=0 exp.pfs=[] exp.vfs=[] exp.scsName= "vm2vm_SRIOV_TwoOvs"+"_IsDPDK="+str(isDPDK)+"_IsIsolated="+str(isIsolated) logTimeStamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") exp.EmailNotify(InitMessage, "is beeing prepared", logTimeStamp) exp.Logs("", logTimeStamp) if isDPDK: exp.IsDPDK= True exp.OVS_PATH= exp.dpdk_path else: exp.IsDPDK= False exp.OVS_PATH= exp.nodpdk_path #----------------------------------------# exp.PhyPorts= [ ("enp3s0f0", "10"), ("enp3s0f1", "10") ] exp.InitialConfig() port_1_Vfs=exp.pfs[0][2] port_2_Vfs=exp.pfs[1][2] exp.MyVfs= [ (port_1_Vfs[0], "0", "off", "vswitch-vm"), (port_2_Vfs[0], "0", "off", "vswitch-vm"), (port_1_Vfs[1], "10", "off", "vswitch-vm"), (port_2_Vfs[1], "10", "off", "vswitch-vm"), (port_1_Vfs[2], "10", "off", "tenant-green-1"), (port_2_Vfs[2], "10", "off", "tenant-green-1"), (port_1_Vfs[3], "20", "off", "vswitch-vm"), (port_2_Vfs[3], "20", "off", "vswitch-vm"), (port_1_Vfs[4], "20", "off", "tenant-green-2"), (port_2_Vfs[4], "20", "off", "tenant-green-2"), (port_1_Vfs[5], "0", "off", "vswitch-vm-2"), (port_2_Vfs[5], "0", "off", "vswitch-vm-2"), (port_1_Vfs[6], "30", "off", "vswitch-vm-2"), (port_2_Vfs[6], "30", "off", "vswitch-vm-2"), (port_1_Vfs[7], "30", "off", "tenant-green-3"), (port_2_Vfs[7], "30", "off", "tenant-green-3"), (port_1_Vfs[8], "40", "off", "vswitch-vm-2"), (port_2_Vfs[8], "40", "off", "vswitch-vm-2"), (port_1_Vfs[9], "40", "off", "tenant-green-4"), (port_2_Vfs[9], "40", "off", "tenant-green-4") ] exp.usedVms=[ ("vswitch-vm", OvsVMsCpuArray[0], VmRam), ("tenant-green-1", TenantVMsCpuArray[0], VmRam), ("tenant-green-2", TenantVMsCpuArray[1], VmRam), ("vswitch-vm-2", OvsVMsCpuArray[1], VmRam), ("tenant-green-3", TenantVMsCpuArray[2], VmRam), ("tenant-green-4", TenantVMsCpuArray[3], VmRam)] if isDPDK: #----------------- OVS-VM_1------------------ OvsVmPorts1= [ (port_1_Vfs[0], True, cpuDpdkPorts), (port_2_Vfs[0], True, cpuDpdkPorts), (port_1_Vfs[1], True, cpuDpdkPorts), (port_2_Vfs[1], True, cpuDpdkPorts), (port_1_Vfs[3], True, cpuDpdkPorts), (port_2_Vfs[3], True, cpuDpdkPorts)] #----------------- OVS-VM_2------------------ OvsVmPorts2= [ (port_1_Vfs[5], True, cpuDpdkPorts), (port_2_Vfs[5], True, cpuDpdkPorts), (port_1_Vfs[6], True, cpuDpdkPorts), (port_2_Vfs[6], True, cpuDpdkPorts), (port_1_Vfs[8], True, cpuDpdkPorts), (port_2_Vfs[8], True, cpuDpdkPorts)] else: #----------------- OVS-VM_1------------------ OvsVmPorts1= [ (port_1_Vfs[0], False), (port_2_Vfs[0], False), (port_1_Vfs[1], False), (port_2_Vfs[1], False), (port_1_Vfs[3], False), (port_2_Vfs[3], False)] #----------------- OVS-VM_2------------------ OvsVmPorts2= [ (port_1_Vfs[5], False), (port_2_Vfs[5], False), (port_1_Vfs[6], False), (port_2_Vfs[6], False), (port_1_Vfs[8], False), (port_2_Vfs[8], False)] msg= exp.GetScenarioSummary([OvsVmPorts1, OvsVmPorts2], OvsCpu, DpdkCpu, DpdkMem, isIsolated) exp.EmailNotify(msg, "is beeing prepared", logTimeStamp) exp.Logs(msg, logTimeStamp) #----------------------------------------# exp.Vfsconfig() if isDPDK: exp.ConfigOVS("vswitch-vm", "br0", OvsVmPorts1, OvsCpu, DpdkMem, DpdkCpu) exp.ConfigOVS("vswitch-vm-2", "br0", OvsVmPorts2, OvsCpu, DpdkMem, DpdkCpu) else: exp.ConfigOVS("vswitch-vm", "br0", OvsVmPorts1, OvsCpu) exp.ConfigOVS("vswitch-vm-2", "br0", OvsVmPorts2, OvsCpu) ''' OVS Flow Rules for OVS-VM-1: ''' #Flow Rules (1) #--------------------------------------------------------- match="in_port="+exp.VfsMatch[port_1_Vfs[0]]+",ip,nw_dst=10.0.0.2" action="mod_dl_dst:"+exp.GetMacByVf(port_1_Vfs[2])+","+exp.VfsMatch[port_1_Vfs[1]] exp.addFlowRule("vswitch-vm" , exp.OVS_PATH, "br0", match, action) #Flow Rules (2) #--------------------------------------------------------- match="in_port="+exp.VfsMatch[port_2_Vfs[1]] action="mod_dl_dst:"+exp.GetMacByVf(port_1_Vfs[4])+","+exp.VfsMatch[port_1_Vfs[3]] exp.addFlowRule("vswitch-vm" , exp.OVS_PATH, "br0", match, action) #Flow Rules (3) #--------------------------------------------------------- match="in_port="+exp.VfsMatch[port_2_Vfs[3]] action="mod_dl_dst:"+outDestMac+","+exp.VfsMatch[port_2_Vfs[0]] exp.addFlowRule("vswitch-vm" , exp.OVS_PATH, "br0", match, action) #show Flow rules of br0 exp.showFlowRules("vswitch-vm", exp.OVS_PATH,"br0") ''' OVS Flow Rules for OVS-VM-2: ''' #Flow Rules (1) #--------------------------------------------------------- match="in_port="+exp.VfsMatch[port_1_Vfs[5]]+",ip,nw_dst=10.0.0.4" action="mod_dl_dst:"+exp.GetMacByVf(port_1_Vfs[7])+","+exp.VfsMatch[port_1_Vfs[6]] exp.addFlowRule("vswitch-vm-2" , exp.OVS_PATH, "br0", match, action) #Flow Rules (2) #--------------------------------------------------------- match="in_port="+exp.VfsMatch[port_2_Vfs[6]] action="mod_dl_dst:"+exp.GetMacByVf(port_1_Vfs[9])+","+exp.VfsMatch[port_1_Vfs[8]] exp.addFlowRule("vswitch-vm-2" , exp.OVS_PATH, "br0", match, action) #Flow Rules (3) #--------------------------------------------------------- match="in_port="+exp.VfsMatch[port_2_Vfs[8]] action="mod_dl_dst:"+outDestMac+","+exp.VfsMatch[port_2_Vfs[5]] exp.addFlowRule("vswitch-vm-2" , exp.OVS_PATH, "br0", match, action) #show Flow rules of br0 exp.showFlowRules("vswitch-vm-2", exp.OVS_PATH,"br0") exp.startL2Frwd(2) exp.EmailNotify(msg, "is ready", logTimeStamp) return True ############################################################################### # Baseline ############################################################################### def vm2vm_Baseline(cnx_server, isDPDK, nbrCores): cpuArray= exp.cpuAllocation(1, nbrCores, True, False, 4, TenantVmCores, totalCpuCores) exp.HOST_CPU=cpuArray["hostCpu"] OvsCpu= cpuArray["ovsCpu"] DpdkCpu=cpuArray["ovsDpdk"] cpuDpdkPorts= cpuArray["cpuDpdkPorts"] TenantVMsCpuArray= cpuArray["TenantVMsCpuArray"] exp.NicType= "mlx" exp.isSRIOV= False exp.Server_cnx= cnx_server exp.scsName= "vm2vm_Baseline"+"_IsDPDK="+str(isDPDK) logTimeStamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") if isDPDK: exp.IsDPDK= True exp.OVS_PATH= exp.dpdk_path else: exp.IsDPDK= False exp.OVS_PATH= exp.nodpdk_path # ----------------------------------------# exp.VirtualPorts = [ ("1", "br0", "tenant-green-1"), ("2", "br0", "tenant-green-1"), ("4", "br0", "tenant-green-2"), ("5", "br0", "tenant-green-2"), ("7", "br0", "tenant-green-3"), ("8", "br0", "tenant-green-3"), ("10", "br0", "tenant-green-4"), ("11", "br0", "tenant-green-4") ] exp.usedVms = [ ("tenant-green-1", TenantVMsCpuArray[0], VmRam), ("tenant-green-2", TenantVMsCpuArray[1], VmRam), ("tenant-green-3", TenantVMsCpuArray[2], VmRam), ("tenant-green-4", TenantVMsCpuArray[3], VmRam)] if isDPDK: exp.PhyPorts= [ ("enp3s0f0", "br0", True, cpuDpdkPorts), ("enp3s0f1", "br0", True, cpuDpdkPorts)] else: exp.PhyPorts= [ ("enp3s0f0", "br0"), ("enp3s0f1", "br0")] msg= exp.GetScenarioSummary([], OvsCpu, DpdkCpu, DpdkMem) exp.EmailNotify(msg, "is beeing prepared", logTimeStamp) exp.Logs(msg, logTimeStamp) # ----------------------------------------# exp.InitialConfig(isDPDK) if isDPDK: exp.ConfigOVS(exp.Server_cnx, "br0", " ", OvsCpu, DpdkMem, DpdkCpu) else: exp.ConfigOVS(exp.Server_cnx, "br0", " ", OvsCpu) exp.VirPortConfig() ''' OVS Flow Rules T1 --> T2: ''' # Flow Rules (1) # --------------------------------------------------------- match = "in_port=enp3s0f0,ip,nw_dst=10.0.0.2" action = "vnet1" exp.addFlowRule(exp.Server_cnx, exp.OVS_PATH, "br0", match, action) # Flow Rules (2) # --------------------------------------------------------- match = "in_port=vnet2" action = "vnet4" exp.addFlowRule(exp.Server_cnx, exp.OVS_PATH, "br0", match, action) # Flow Rules (3) # --------------------------------------------------------- match = "in_port=vnet5" action = "enp3s0f1" exp.addFlowRule(exp.Server_cnx, exp.OVS_PATH, "br0", match, action) ''' OVS Flow Rules T3 --> T4: ''' # Flow Rules (1) # --------------------------------------------------------- match = "in_port=enp3s0f0,ip,nw_dst=10.0.0.4" action = "vnet7" exp.addFlowRule(exp.Server_cnx, exp.OVS_PATH, "br0", match, action) # Flow Rules (2) # --------------------------------------------------------- match = "in_port=vnet8" action = "vnet10" exp.addFlowRule(exp.Server_cnx, exp.OVS_PATH, "br0", match, action) # Flow Rules (3) # --------------------------------------------------------- match = "in_port=vnet11" action = "enp3s0f1" exp.addFlowRule(exp.Server_cnx, exp.OVS_PATH, "br0", match, action) # show Flow rules of br0 exp.showFlowRules(exp.Server_cnx, exp.OVS_PATH, "br0") # exp.startL2Frwd(nbrOvs=1 ,nicType="e1000", tenantCount=4, vswitchMode="Baseline_4Tenants") exp.SetBridging("tenant-green-1", exp.VirPortsMatch["1"], exp.VirPortsMatch["2"]) exp.SetBridging("tenant-green-2", exp.VirPortsMatch["4"], exp.VirPortsMatch["5"]) exp.SetBridging("tenant-green-3", exp.VirPortsMatch["7"], exp.VirPortsMatch["8"]) exp.SetBridging("tenant-green-4", exp.VirPortsMatch["10"], exp.VirPortsMatch["11"]) exp.EmailNotify(msg, "is ready", logTimeStamp) return True ##############################################################################
36.619586
98
0.475546
4d5733dc21b2dd7bb8e9d525da478e5b9cfa9d15
1,166
py
Python
filterconfig.py
bpmbank/xiaohuangji-new
3eafcbdbf4379eee3064bd6cbb1c7807d8d54b2d
[ "MIT" ]
311
2015-01-15T10:09:41.000Z
2022-02-25T04:32:52.000Z
filterconfig.py
larusx/xiaohuangji-new
bae882487416483af0ef94206a232d93f843d85d
[ "MIT" ]
5
2015-11-07T12:50:53.000Z
2017-12-06T07:25:54.000Z
filterconfig.py
larusx/xiaohuangji-new
bae882487416483af0ef94206a232d93f843d85d
[ "MIT" ]
129
2015-06-26T02:30:46.000Z
2021-09-11T05:58:48.000Z
#-*-coding:utf-8-*- """ Copyright (c) 2012 Qijiang Fan <fqj1994@gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the 'Software'), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from filter import * rules_question = [] rules_answer = []
37.612903
70
0.786449
8814ce443df24387952f3781612a4cacebe6c241
31,668
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_12_01/models/_paged_models.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
1
2021-06-02T08:01:35.000Z
2021-06-02T08:01:35.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_12_01/models/_paged_models.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
226
2019-07-24T07:57:21.000Z
2019-10-15T01:07:24.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_12_01/models/_paged_models.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
1
2019-06-17T22:18:23.000Z
2019-06-17T22:18:23.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.paging import Paged class ApplicationGatewayPaged(Paged): """ A paging container for iterating over a list of :class:`ApplicationGateway <azure.mgmt.network.v2018_12_01.models.ApplicationGateway>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ApplicationGateway]'} } def __init__(self, *args, **kwargs): super(ApplicationGatewayPaged, self).__init__(*args, **kwargs) class ApplicationGatewaySslPredefinedPolicyPaged(Paged): """ A paging container for iterating over a list of :class:`ApplicationGatewaySslPredefinedPolicy <azure.mgmt.network.v2018_12_01.models.ApplicationGatewaySslPredefinedPolicy>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ApplicationGatewaySslPredefinedPolicy]'} } def __init__(self, *args, **kwargs): super(ApplicationGatewaySslPredefinedPolicyPaged, self).__init__(*args, **kwargs) class ApplicationSecurityGroupPaged(Paged): """ A paging container for iterating over a list of :class:`ApplicationSecurityGroup <azure.mgmt.network.v2018_12_01.models.ApplicationSecurityGroup>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ApplicationSecurityGroup]'} } def __init__(self, *args, **kwargs): super(ApplicationSecurityGroupPaged, self).__init__(*args, **kwargs) class AvailableDelegationPaged(Paged): """ A paging container for iterating over a list of :class:`AvailableDelegation <azure.mgmt.network.v2018_12_01.models.AvailableDelegation>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[AvailableDelegation]'} } def __init__(self, *args, **kwargs): super(AvailableDelegationPaged, self).__init__(*args, **kwargs) class AzureFirewallPaged(Paged): """ A paging container for iterating over a list of :class:`AzureFirewall <azure.mgmt.network.v2018_12_01.models.AzureFirewall>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[AzureFirewall]'} } def __init__(self, *args, **kwargs): super(AzureFirewallPaged, self).__init__(*args, **kwargs) class AzureFirewallFqdnTagPaged(Paged): """ A paging container for iterating over a list of :class:`AzureFirewallFqdnTag <azure.mgmt.network.v2018_12_01.models.AzureFirewallFqdnTag>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[AzureFirewallFqdnTag]'} } def __init__(self, *args, **kwargs): super(AzureFirewallFqdnTagPaged, self).__init__(*args, **kwargs) class DdosProtectionPlanPaged(Paged): """ A paging container for iterating over a list of :class:`DdosProtectionPlan <azure.mgmt.network.v2018_12_01.models.DdosProtectionPlan>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[DdosProtectionPlan]'} } def __init__(self, *args, **kwargs): super(DdosProtectionPlanPaged, self).__init__(*args, **kwargs) class EndpointServiceResultPaged(Paged): """ A paging container for iterating over a list of :class:`EndpointServiceResult <azure.mgmt.network.v2018_12_01.models.EndpointServiceResult>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[EndpointServiceResult]'} } def __init__(self, *args, **kwargs): super(EndpointServiceResultPaged, self).__init__(*args, **kwargs) class ExpressRouteCircuitAuthorizationPaged(Paged): """ A paging container for iterating over a list of :class:`ExpressRouteCircuitAuthorization <azure.mgmt.network.v2018_12_01.models.ExpressRouteCircuitAuthorization>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ExpressRouteCircuitAuthorization]'} } def __init__(self, *args, **kwargs): super(ExpressRouteCircuitAuthorizationPaged, self).__init__(*args, **kwargs) class ExpressRouteCircuitPeeringPaged(Paged): """ A paging container for iterating over a list of :class:`ExpressRouteCircuitPeering <azure.mgmt.network.v2018_12_01.models.ExpressRouteCircuitPeering>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ExpressRouteCircuitPeering]'} } def __init__(self, *args, **kwargs): super(ExpressRouteCircuitPeeringPaged, self).__init__(*args, **kwargs) class ExpressRouteCircuitConnectionPaged(Paged): """ A paging container for iterating over a list of :class:`ExpressRouteCircuitConnection <azure.mgmt.network.v2018_12_01.models.ExpressRouteCircuitConnection>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ExpressRouteCircuitConnection]'} } def __init__(self, *args, **kwargs): super(ExpressRouteCircuitConnectionPaged, self).__init__(*args, **kwargs) class PeerExpressRouteCircuitConnectionPaged(Paged): """ A paging container for iterating over a list of :class:`PeerExpressRouteCircuitConnection <azure.mgmt.network.v2018_12_01.models.PeerExpressRouteCircuitConnection>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[PeerExpressRouteCircuitConnection]'} } def __init__(self, *args, **kwargs): super(PeerExpressRouteCircuitConnectionPaged, self).__init__(*args, **kwargs) class ExpressRouteCircuitPaged(Paged): """ A paging container for iterating over a list of :class:`ExpressRouteCircuit <azure.mgmt.network.v2018_12_01.models.ExpressRouteCircuit>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ExpressRouteCircuit]'} } def __init__(self, *args, **kwargs): super(ExpressRouteCircuitPaged, self).__init__(*args, **kwargs) class ExpressRouteServiceProviderPaged(Paged): """ A paging container for iterating over a list of :class:`ExpressRouteServiceProvider <azure.mgmt.network.v2018_12_01.models.ExpressRouteServiceProvider>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ExpressRouteServiceProvider]'} } def __init__(self, *args, **kwargs): super(ExpressRouteServiceProviderPaged, self).__init__(*args, **kwargs) class ExpressRouteCrossConnectionPaged(Paged): """ A paging container for iterating over a list of :class:`ExpressRouteCrossConnection <azure.mgmt.network.v2018_12_01.models.ExpressRouteCrossConnection>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ExpressRouteCrossConnection]'} } def __init__(self, *args, **kwargs): super(ExpressRouteCrossConnectionPaged, self).__init__(*args, **kwargs) class ExpressRouteCrossConnectionPeeringPaged(Paged): """ A paging container for iterating over a list of :class:`ExpressRouteCrossConnectionPeering <azure.mgmt.network.v2018_12_01.models.ExpressRouteCrossConnectionPeering>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ExpressRouteCrossConnectionPeering]'} } def __init__(self, *args, **kwargs): super(ExpressRouteCrossConnectionPeeringPaged, self).__init__(*args, **kwargs) class ExpressRoutePortsLocationPaged(Paged): """ A paging container for iterating over a list of :class:`ExpressRoutePortsLocation <azure.mgmt.network.v2018_12_01.models.ExpressRoutePortsLocation>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ExpressRoutePortsLocation]'} } def __init__(self, *args, **kwargs): super(ExpressRoutePortsLocationPaged, self).__init__(*args, **kwargs) class ExpressRoutePortPaged(Paged): """ A paging container for iterating over a list of :class:`ExpressRoutePort <azure.mgmt.network.v2018_12_01.models.ExpressRoutePort>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ExpressRoutePort]'} } def __init__(self, *args, **kwargs): super(ExpressRoutePortPaged, self).__init__(*args, **kwargs) class ExpressRouteLinkPaged(Paged): """ A paging container for iterating over a list of :class:`ExpressRouteLink <azure.mgmt.network.v2018_12_01.models.ExpressRouteLink>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ExpressRouteLink]'} } def __init__(self, *args, **kwargs): super(ExpressRouteLinkPaged, self).__init__(*args, **kwargs) class InterfaceEndpointPaged(Paged): """ A paging container for iterating over a list of :class:`InterfaceEndpoint <azure.mgmt.network.v2018_12_01.models.InterfaceEndpoint>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[InterfaceEndpoint]'} } def __init__(self, *args, **kwargs): super(InterfaceEndpointPaged, self).__init__(*args, **kwargs) class LoadBalancerPaged(Paged): """ A paging container for iterating over a list of :class:`LoadBalancer <azure.mgmt.network.v2018_12_01.models.LoadBalancer>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[LoadBalancer]'} } def __init__(self, *args, **kwargs): super(LoadBalancerPaged, self).__init__(*args, **kwargs) class BackendAddressPoolPaged(Paged): """ A paging container for iterating over a list of :class:`BackendAddressPool <azure.mgmt.network.v2018_12_01.models.BackendAddressPool>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[BackendAddressPool]'} } def __init__(self, *args, **kwargs): super(BackendAddressPoolPaged, self).__init__(*args, **kwargs) class FrontendIPConfigurationPaged(Paged): """ A paging container for iterating over a list of :class:`FrontendIPConfiguration <azure.mgmt.network.v2018_12_01.models.FrontendIPConfiguration>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[FrontendIPConfiguration]'} } def __init__(self, *args, **kwargs): super(FrontendIPConfigurationPaged, self).__init__(*args, **kwargs) class InboundNatRulePaged(Paged): """ A paging container for iterating over a list of :class:`InboundNatRule <azure.mgmt.network.v2018_12_01.models.InboundNatRule>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[InboundNatRule]'} } def __init__(self, *args, **kwargs): super(InboundNatRulePaged, self).__init__(*args, **kwargs) class LoadBalancingRulePaged(Paged): """ A paging container for iterating over a list of :class:`LoadBalancingRule <azure.mgmt.network.v2018_12_01.models.LoadBalancingRule>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[LoadBalancingRule]'} } def __init__(self, *args, **kwargs): super(LoadBalancingRulePaged, self).__init__(*args, **kwargs) class OutboundRulePaged(Paged): """ A paging container for iterating over a list of :class:`OutboundRule <azure.mgmt.network.v2018_12_01.models.OutboundRule>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[OutboundRule]'} } def __init__(self, *args, **kwargs): super(OutboundRulePaged, self).__init__(*args, **kwargs) class NetworkInterfacePaged(Paged): """ A paging container for iterating over a list of :class:`NetworkInterface <azure.mgmt.network.v2018_12_01.models.NetworkInterface>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[NetworkInterface]'} } def __init__(self, *args, **kwargs): super(NetworkInterfacePaged, self).__init__(*args, **kwargs) class ProbePaged(Paged): """ A paging container for iterating over a list of :class:`Probe <azure.mgmt.network.v2018_12_01.models.Probe>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Probe]'} } def __init__(self, *args, **kwargs): super(ProbePaged, self).__init__(*args, **kwargs) class NetworkInterfaceIPConfigurationPaged(Paged): """ A paging container for iterating over a list of :class:`NetworkInterfaceIPConfiguration <azure.mgmt.network.v2018_12_01.models.NetworkInterfaceIPConfiguration>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[NetworkInterfaceIPConfiguration]'} } def __init__(self, *args, **kwargs): super(NetworkInterfaceIPConfigurationPaged, self).__init__(*args, **kwargs) class NetworkInterfaceTapConfigurationPaged(Paged): """ A paging container for iterating over a list of :class:`NetworkInterfaceTapConfiguration <azure.mgmt.network.v2018_12_01.models.NetworkInterfaceTapConfiguration>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[NetworkInterfaceTapConfiguration]'} } def __init__(self, *args, **kwargs): super(NetworkInterfaceTapConfigurationPaged, self).__init__(*args, **kwargs) class NetworkProfilePaged(Paged): """ A paging container for iterating over a list of :class:`NetworkProfile <azure.mgmt.network.v2018_12_01.models.NetworkProfile>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[NetworkProfile]'} } def __init__(self, *args, **kwargs): super(NetworkProfilePaged, self).__init__(*args, **kwargs) class NetworkSecurityGroupPaged(Paged): """ A paging container for iterating over a list of :class:`NetworkSecurityGroup <azure.mgmt.network.v2018_12_01.models.NetworkSecurityGroup>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[NetworkSecurityGroup]'} } def __init__(self, *args, **kwargs): super(NetworkSecurityGroupPaged, self).__init__(*args, **kwargs) class SecurityRulePaged(Paged): """ A paging container for iterating over a list of :class:`SecurityRule <azure.mgmt.network.v2018_12_01.models.SecurityRule>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[SecurityRule]'} } def __init__(self, *args, **kwargs): super(SecurityRulePaged, self).__init__(*args, **kwargs) class NetworkWatcherPaged(Paged): """ A paging container for iterating over a list of :class:`NetworkWatcher <azure.mgmt.network.v2018_12_01.models.NetworkWatcher>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[NetworkWatcher]'} } def __init__(self, *args, **kwargs): super(NetworkWatcherPaged, self).__init__(*args, **kwargs) class PacketCaptureResultPaged(Paged): """ A paging container for iterating over a list of :class:`PacketCaptureResult <azure.mgmt.network.v2018_12_01.models.PacketCaptureResult>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[PacketCaptureResult]'} } def __init__(self, *args, **kwargs): super(PacketCaptureResultPaged, self).__init__(*args, **kwargs) class ConnectionMonitorResultPaged(Paged): """ A paging container for iterating over a list of :class:`ConnectionMonitorResult <azure.mgmt.network.v2018_12_01.models.ConnectionMonitorResult>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ConnectionMonitorResult]'} } def __init__(self, *args, **kwargs): super(ConnectionMonitorResultPaged, self).__init__(*args, **kwargs) class OperationPaged(Paged): """ A paging container for iterating over a list of :class:`Operation <azure.mgmt.network.v2018_12_01.models.Operation>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Operation]'} } def __init__(self, *args, **kwargs): super(OperationPaged, self).__init__(*args, **kwargs) class PublicIPAddressPaged(Paged): """ A paging container for iterating over a list of :class:`PublicIPAddress <azure.mgmt.network.v2018_12_01.models.PublicIPAddress>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[PublicIPAddress]'} } def __init__(self, *args, **kwargs): super(PublicIPAddressPaged, self).__init__(*args, **kwargs) class PublicIPPrefixPaged(Paged): """ A paging container for iterating over a list of :class:`PublicIPPrefix <azure.mgmt.network.v2018_12_01.models.PublicIPPrefix>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[PublicIPPrefix]'} } def __init__(self, *args, **kwargs): super(PublicIPPrefixPaged, self).__init__(*args, **kwargs) class RouteFilterPaged(Paged): """ A paging container for iterating over a list of :class:`RouteFilter <azure.mgmt.network.v2018_12_01.models.RouteFilter>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[RouteFilter]'} } def __init__(self, *args, **kwargs): super(RouteFilterPaged, self).__init__(*args, **kwargs) class RouteFilterRulePaged(Paged): """ A paging container for iterating over a list of :class:`RouteFilterRule <azure.mgmt.network.v2018_12_01.models.RouteFilterRule>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[RouteFilterRule]'} } def __init__(self, *args, **kwargs): super(RouteFilterRulePaged, self).__init__(*args, **kwargs) class RouteTablePaged(Paged): """ A paging container for iterating over a list of :class:`RouteTable <azure.mgmt.network.v2018_12_01.models.RouteTable>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[RouteTable]'} } def __init__(self, *args, **kwargs): super(RouteTablePaged, self).__init__(*args, **kwargs) class RoutePaged(Paged): """ A paging container for iterating over a list of :class:`Route <azure.mgmt.network.v2018_12_01.models.Route>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Route]'} } def __init__(self, *args, **kwargs): super(RoutePaged, self).__init__(*args, **kwargs) class BgpServiceCommunityPaged(Paged): """ A paging container for iterating over a list of :class:`BgpServiceCommunity <azure.mgmt.network.v2018_12_01.models.BgpServiceCommunity>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[BgpServiceCommunity]'} } def __init__(self, *args, **kwargs): super(BgpServiceCommunityPaged, self).__init__(*args, **kwargs) class ServiceEndpointPolicyPaged(Paged): """ A paging container for iterating over a list of :class:`ServiceEndpointPolicy <azure.mgmt.network.v2018_12_01.models.ServiceEndpointPolicy>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ServiceEndpointPolicy]'} } def __init__(self, *args, **kwargs): super(ServiceEndpointPolicyPaged, self).__init__(*args, **kwargs) class ServiceEndpointPolicyDefinitionPaged(Paged): """ A paging container for iterating over a list of :class:`ServiceEndpointPolicyDefinition <azure.mgmt.network.v2018_12_01.models.ServiceEndpointPolicyDefinition>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ServiceEndpointPolicyDefinition]'} } def __init__(self, *args, **kwargs): super(ServiceEndpointPolicyDefinitionPaged, self).__init__(*args, **kwargs) class UsagePaged(Paged): """ A paging container for iterating over a list of :class:`Usage <azure.mgmt.network.v2018_12_01.models.Usage>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Usage]'} } def __init__(self, *args, **kwargs): super(UsagePaged, self).__init__(*args, **kwargs) class VirtualNetworkPaged(Paged): """ A paging container for iterating over a list of :class:`VirtualNetwork <azure.mgmt.network.v2018_12_01.models.VirtualNetwork>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VirtualNetwork]'} } def __init__(self, *args, **kwargs): super(VirtualNetworkPaged, self).__init__(*args, **kwargs) class VirtualNetworkUsagePaged(Paged): """ A paging container for iterating over a list of :class:`VirtualNetworkUsage <azure.mgmt.network.v2018_12_01.models.VirtualNetworkUsage>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VirtualNetworkUsage]'} } def __init__(self, *args, **kwargs): super(VirtualNetworkUsagePaged, self).__init__(*args, **kwargs) class SubnetPaged(Paged): """ A paging container for iterating over a list of :class:`Subnet <azure.mgmt.network.v2018_12_01.models.Subnet>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Subnet]'} } def __init__(self, *args, **kwargs): super(SubnetPaged, self).__init__(*args, **kwargs) class VirtualNetworkPeeringPaged(Paged): """ A paging container for iterating over a list of :class:`VirtualNetworkPeering <azure.mgmt.network.v2018_12_01.models.VirtualNetworkPeering>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VirtualNetworkPeering]'} } def __init__(self, *args, **kwargs): super(VirtualNetworkPeeringPaged, self).__init__(*args, **kwargs) class VirtualNetworkGatewayPaged(Paged): """ A paging container for iterating over a list of :class:`VirtualNetworkGateway <azure.mgmt.network.v2018_12_01.models.VirtualNetworkGateway>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VirtualNetworkGateway]'} } def __init__(self, *args, **kwargs): super(VirtualNetworkGatewayPaged, self).__init__(*args, **kwargs) class VirtualNetworkGatewayConnectionListEntityPaged(Paged): """ A paging container for iterating over a list of :class:`VirtualNetworkGatewayConnectionListEntity <azure.mgmt.network.v2018_12_01.models.VirtualNetworkGatewayConnectionListEntity>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VirtualNetworkGatewayConnectionListEntity]'} } def __init__(self, *args, **kwargs): super(VirtualNetworkGatewayConnectionListEntityPaged, self).__init__(*args, **kwargs) class VirtualNetworkGatewayConnectionPaged(Paged): """ A paging container for iterating over a list of :class:`VirtualNetworkGatewayConnection <azure.mgmt.network.v2018_12_01.models.VirtualNetworkGatewayConnection>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VirtualNetworkGatewayConnection]'} } def __init__(self, *args, **kwargs): super(VirtualNetworkGatewayConnectionPaged, self).__init__(*args, **kwargs) class LocalNetworkGatewayPaged(Paged): """ A paging container for iterating over a list of :class:`LocalNetworkGateway <azure.mgmt.network.v2018_12_01.models.LocalNetworkGateway>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[LocalNetworkGateway]'} } def __init__(self, *args, **kwargs): super(LocalNetworkGatewayPaged, self).__init__(*args, **kwargs) class VirtualNetworkTapPaged(Paged): """ A paging container for iterating over a list of :class:`VirtualNetworkTap <azure.mgmt.network.v2018_12_01.models.VirtualNetworkTap>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VirtualNetworkTap]'} } def __init__(self, *args, **kwargs): super(VirtualNetworkTapPaged, self).__init__(*args, **kwargs) class VirtualWANPaged(Paged): """ A paging container for iterating over a list of :class:`VirtualWAN <azure.mgmt.network.v2018_12_01.models.VirtualWAN>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VirtualWAN]'} } def __init__(self, *args, **kwargs): super(VirtualWANPaged, self).__init__(*args, **kwargs) class VpnSitePaged(Paged): """ A paging container for iterating over a list of :class:`VpnSite <azure.mgmt.network.v2018_12_01.models.VpnSite>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VpnSite]'} } def __init__(self, *args, **kwargs): super(VpnSitePaged, self).__init__(*args, **kwargs) class VirtualHubPaged(Paged): """ A paging container for iterating over a list of :class:`VirtualHub <azure.mgmt.network.v2018_12_01.models.VirtualHub>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VirtualHub]'} } def __init__(self, *args, **kwargs): super(VirtualHubPaged, self).__init__(*args, **kwargs) class HubVirtualNetworkConnectionPaged(Paged): """ A paging container for iterating over a list of :class:`HubVirtualNetworkConnection <azure.mgmt.network.v2018_12_01.models.HubVirtualNetworkConnection>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[HubVirtualNetworkConnection]'} } def __init__(self, *args, **kwargs): super(HubVirtualNetworkConnectionPaged, self).__init__(*args, **kwargs) class VpnGatewayPaged(Paged): """ A paging container for iterating over a list of :class:`VpnGateway <azure.mgmt.network.v2018_12_01.models.VpnGateway>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VpnGateway]'} } def __init__(self, *args, **kwargs): super(VpnGatewayPaged, self).__init__(*args, **kwargs) class VpnConnectionPaged(Paged): """ A paging container for iterating over a list of :class:`VpnConnection <azure.mgmt.network.v2018_12_01.models.VpnConnection>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VpnConnection]'} } def __init__(self, *args, **kwargs): super(VpnConnectionPaged, self).__init__(*args, **kwargs) class P2SVpnServerConfigurationPaged(Paged): """ A paging container for iterating over a list of :class:`P2SVpnServerConfiguration <azure.mgmt.network.v2018_12_01.models.P2SVpnServerConfiguration>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[P2SVpnServerConfiguration]'} } def __init__(self, *args, **kwargs): super(P2SVpnServerConfigurationPaged, self).__init__(*args, **kwargs) class P2SVpnGatewayPaged(Paged): """ A paging container for iterating over a list of :class:`P2SVpnGateway <azure.mgmt.network.v2018_12_01.models.P2SVpnGateway>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[P2SVpnGateway]'} } def __init__(self, *args, **kwargs): super(P2SVpnGatewayPaged, self).__init__(*args, **kwargs) class WebApplicationFirewallPolicyPaged(Paged): """ A paging container for iterating over a list of :class:`WebApplicationFirewallPolicy <azure.mgmt.network.v2018_12_01.models.WebApplicationFirewallPolicy>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[WebApplicationFirewallPolicy]'} } def __init__(self, *args, **kwargs): super(WebApplicationFirewallPolicyPaged, self).__init__(*args, **kwargs)
36.823256
191
0.655962
b100138aefddba8738737c3b970841dcbba9b6a1
74
py
Python
Lib/site-packages/amf/Util/Body.py
raychorn/svn_Python-2.5.1
425005b1b489ba44ec0bb989e077297e8953d9be
[ "PSF-2.0" ]
null
null
null
Lib/site-packages/amf/Util/Body.py
raychorn/svn_Python-2.5.1
425005b1b489ba44ec0bb989e077297e8953d9be
[ "PSF-2.0" ]
null
null
null
Lib/site-packages/amf/Util/Body.py
raychorn/svn_Python-2.5.1
425005b1b489ba44ec0bb989e077297e8953d9be
[ "PSF-2.0" ]
null
null
null
class Body: target = "" value = "" response = "" type = ""
14.8
17
0.432432
f9b144fa493902408cf2e346393a2e2b19decfc2
542
py
Python
abyssal_market/settings/local.template.py
kimnnmadsen/eve-abyssal-market
1e07498b98be9282b969badff51d55258c72e7ed
[ "MIT" ]
13
2018-08-23T14:27:22.000Z
2020-12-07T12:35:38.000Z
abyssal_market/settings/local.template.py
kimnnmadsen/eve-abyssal-market
1e07498b98be9282b969badff51d55258c72e7ed
[ "MIT" ]
25
2018-10-09T14:37:33.000Z
2020-05-15T20:21:48.000Z
abyssal_market/settings/local.template.py
kimnnmadsen/eve-abyssal-market
1e07498b98be9282b969badff51d55258c72e7ed
[ "MIT" ]
4
2021-08-12T05:34:05.000Z
2022-01-06T05:28:36.000Z
# flake8: noqa import os from .base import * # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'dev' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } ESI_SWAGGER_JSON = "https://esi.tech.ccp.is/latest/swagger.json?datasource=tranquility" ESI_CALLBACK = "" ESI_CLIENT_ID = "" ESI_SECRET_KEY = "" ESI_USER_AGENT = ""
20.074074
87
0.684502
899d070414c57c1ac862f2ada05f62a0230ef8e3
2,704
py
Python
parlai/agents/drqa/config.py
zl930216/ParlAI
abf0ad6d1779af0f8ce0b5aed00d2bab71416684
[ "MIT" ]
1
2021-03-03T12:22:38.000Z
2021-03-03T12:22:38.000Z
parlai/agents/drqa/config.py
zl930216/ParlAI
abf0ad6d1779af0f8ce0b5aed00d2bab71416684
[ "MIT" ]
3
2021-09-08T03:20:02.000Z
2022-03-12T00:58:14.000Z
parlai/agents/drqa/config.py
zl930216/ParlAI
abf0ad6d1779af0f8ce0b5aed00d2bab71416684
[ "MIT" ]
1
2020-09-05T20:25:13.000Z
2020-09-05T20:25:13.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from parlai.core.build_data import modelzoo_path from parlai.utils.io import PathManager def set_defaults(opt): init_model = None # check first for 'init_model' for loading model from file if opt.get('init_model') and PathManager.exists(opt['init_model']): init_model = opt['init_model'] # next check for 'model_file', this would override init_model if opt.get('model_file') and PathManager.exists(opt['model_file']): init_model = opt['model_file'] if init_model is None: # Embeddings options opt['embedding_file'] = modelzoo_path( opt.get('datapath'), opt['embedding_file'] ) if opt.get('embedding_file'): if not PathManager.exists(opt['embedding_file']): raise IOError('No such file: %s' % opt['embedding_file']) with PathManager.open(opt['embedding_file']) as f: dim = len(f.readline().strip().split(' ')) - 1 if dim == 1: # first line was a dud dim = len(f.readline().strip().split(' ')) - 1 opt['embedding_dim'] = dim elif not opt.get('embedding_dim'): raise RuntimeError( ('Either embedding_file or embedding_dim ' 'needs to be specified.') ) # Make sure tune_partial and fix_embeddings are consistent if opt['tune_partial'] > 0 and opt['fix_embeddings']: print('Setting fix_embeddings to False as tune_partial > 0.') opt['fix_embeddings'] = False # Make sure fix_embeddings and embedding_file are consistent if opt['fix_embeddings'] and not opt.get('embedding_file'): print('Setting fix_embeddings to False as embeddings are random.') opt['fix_embeddings'] = False def override_args(opt, override_opt): # Major model args are reset to the values in override_opt. # Non-architecture args (like dropout) are kept. args = set( [ 'embedding_file', 'embedding_dim', 'hidden_size', 'doc_layers', 'question_layers', 'rnn_type', 'optimizer', 'concat_rnn_layers', 'question_merge', 'use_qemb', 'use_in_question', 'use_tf', 'vocab_size', 'num_features', 'use_time', ] ) for k, v in override_opt.items(): if k in args: opt[k] = v
36.540541
84
0.587278
4d0d5be2e081928b3f2fc7551a8b3e215b2dac67
6,665
py
Python
PhysicsTools/HeppyCore/python/statistics/tree.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
PhysicsTools/HeppyCore/python/statistics/tree.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
PhysicsTools/HeppyCore/python/statistics/tree.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import numpy from ROOT import TTree import ROOT class Tree(object): def __init__(self, name, title, defaultFloatType="D", defaultIntType="I"): self.vars = {} self.vecvars = {} self.tree = TTree(name, title) self.defaults = {} self.vecdefaults = {} self.defaultFloatType = defaultFloatType self.defaultIntType = defaultIntType self.fillers = {} def setDefaultFloatType(self, defaultFloatType): self.defaultFloatType = defaultFloatType def setDefaultIntType(self, defaultIntType): self.defaultIntType = defaultIntType def copyStructure(self, tree): for branch in tree.GetListOfBranches(): name = branch.GetName() typeName = branch.GetListOfLeaves()[0].GetTypeName() type = float if typeName == 'Int_t': type = int self.var(name, type) def branch_(self, selfmap, varName, type, len, postfix="", storageType="default", title=None): """Backend function used to create scalar and vector branches. Users should call "var" and "vector", not this function directly.""" if storageType == "default": storageType = self.defaultIntType if type is int else self.defaultFloatType if type is float : if storageType == "F": selfmap[varName]=numpy.zeros(len,numpy.float32) self.tree.Branch(varName,selfmap[varName],varName+postfix+'/F') elif storageType == "D": selfmap[varName]=numpy.zeros(len,numpy.float64) self.tree.Branch(varName,selfmap[varName],varName+postfix+'/D') else: raise RuntimeError('Unknown storage type %s for branch %s' % (storageType, varName)) elif type is int: dtypes = { "i" : numpy.uint32, "s" : numpy.uint16, "b" : numpy.uint8, "l" : numpy.uint64, "I" : numpy.int32, "S" : numpy.int16, "B" : numpy.int8, "L" : numpy.int64, } if storageType not in dtypes: raise RuntimeError('Unknown storage type %s for branch %s' % (storageType, varName)) selfmap[varName]=numpy.zeros(len,dtypes[storageType]) self.tree.Branch(varName,selfmap[varName],varName+postfix+'/'+storageType) else: raise RuntimeError('Unknown type %s for branch %s' % (type, varName)) if title: self.tree.GetBranch(varName).SetTitle(title) def var(self, varName,type=float, default=-99, title=None, storageType="default", filler=None ): if type in [int, float]: self.branch_(self.vars, varName, type, 1, title=title, storageType=storageType) self.defaults[varName] = default elif __builtins__['type'](type) == str: # create a value, looking up the type from ROOT and calling the default constructor self.vars[varName] = getattr(ROOT,type)() if type in [ "TLorentzVector" ]: # custom streamer classes self.tree.Branch(varName+".", type, self.vars[varName], 8000,-1) else: self.tree.Branch(varName+".", type, self.vars[varName]) if filler is None: raise RuntimeError("Error: when brancing with an object, filler should be set to a function that takes as argument an object instance and a value, and set the instance to the value (as otherwise python assignment of objects changes the address as well)") self.fillers[varName] = filler else: raise RuntimeError('Unknown type %s for branch %s: it is not int, float or a string' % (type, varName)) self.defaults[varName] = default def vector(self, varName, lenvar, maxlen=None, type=float, default=-99, title=None, storageType="default", filler=None ): """either lenvar is a string, and maxlen an int (variable size array), or lenvar is an int and maxlen is not specified (fixed array)""" if type in [int, float]: if __builtins__['type'](lenvar) == int: # need the __builtins__ since 'type' is a variable here :-/ self.branch_(self.vecvars, varName, type, lenvar, postfix="[%d]" % lenvar, title=title, storageType=storageType) else: if maxlen == None: RuntimeError, 'You must specify a maxlen if making a dynamic array'; self.branch_(self.vecvars, varName, type, maxlen, postfix="[%s]" % lenvar, title=title, storageType=storageType) elif __builtins__['type'](type) == str: self.vecvars[varName] = ROOT.TClonesArray(type,(lenvar if __builtins__['type'](lenvar) == int else maxlen)) if type in [ "TLorentzVector" ]: # custom streamer classes self.tree.Branch(varName+".", self.vecvars[varName], 32000, -1) else: self.tree.Branch(varName+".", self.vecvars[varName]) if filler is None: raise RuntimeError("Error: when brancing with an object, filler should be set to a function that takes as argument an object instance and a value, and set the instance to the value (as otherwise python assignment of objects changes the address as well)") self.fillers[varName] = filler self.vecdefaults[varName] = default def reset(self): for name,value in self.vars.items(): if name in self.fillers: self.fillers[name](value, self.defaults[name]) else: value[0]=self.defaults[name] for name,value in self.vecvars.items(): if isinstance(value, numpy.ndarray): value.fill(self.vecdefaults[name]) else: if isinstance(value, ROOT.TObject) and value.ClassName() == "TClonesArray": value.ExpandCreateFast(0) def fill(self, varName, value ): if isinstance(self.vars[varName], numpy.ndarray): self.vars[varName][0]=value else: self.fillers[varName](self.vars[varName],value) def vfill(self, varName, values ): a = self.vecvars[varName] if isinstance(a, numpy.ndarray): for (i,v) in enumerate(values): a[i]=v else: if isinstance(a, ROOT.TObject) and a.ClassName() == "TClonesArray": a.ExpandCreateFast(len(values)) fillit = self.fillers[varName] for (i,v) in enumerate(values): fillit(a[i],v)
50.112782
270
0.593548
1cc9fac68b4d69ceb5ad2bb7cabb66cb74507105
1,189
py
Python
src/old/QtableEnemy.py
Blackdevil132/machineLearning
de048bb1473994052f8ed1afb11a15b7833b506d
[ "MIT" ]
1
2019-05-04T07:28:19.000Z
2019-05-04T07:28:19.000Z
src/old/QtableEnemy.py
Blackdevil132/machineLearning
de048bb1473994052f8ed1afb11a15b7833b506d
[ "MIT" ]
3
2019-04-29T09:20:11.000Z
2019-04-29T09:23:22.000Z
src/old/QtableEnemy.py
Blackdevil132/machineLearning
de048bb1473994052f8ed1afb11a15b7833b506d
[ "MIT" ]
null
null
null
import numpy as np from src.qrl.Qtable import Qtable # Qtable for 2-dim storing class QtableEnemy(Qtable): def __init__(self, action_space, observation_space_1, observation_space_2): Qtable.__init__(self) self.action_space = action_space self.observation_space = (observation_space_1, observation_space_2) self.table = [{j: np.zeros(action_space) for j in range(observation_space_2)} for i in range(observation_space_1)] for i in range(self.observation_space[0]): self.table[i][255] = np.zeros(action_space) def get(self, state, action=None): if action is None: return self.table[state[0]][state[1]][:] return self.table[state[0]][state[1]][action] def update(self, state, action, newValue): self.table[state[0]][state[1]][action] = newValue def show(self): for dim1 in range(self.observation_space[0]): print("%i " % dim1, end='') for key in self.table[dim1].keys(): print("\t%i: " % key, end='') for action in self.table[dim1][key]: print("\t%.3f, " % action, end='') print()
36.030303
122
0.607233
8667f9b304d57627c0fd801338b5bb68d7d4f426
21,872
py
Python
qa/rpc-tests/replace-by-fee.py
Plorark/KORE
35685f0a1ce898e883ba4c80e0c6de3c3535767d
[ "MIT" ]
null
null
null
qa/rpc-tests/replace-by-fee.py
Plorark/KORE
35685f0a1ce898e883ba4c80e0c6de3c3535767d
[ "MIT" ]
null
null
null
qa/rpc-tests/replace-by-fee.py
Plorark/KORE
35685f0a1ce898e883ba4c80e0c6de3c3535767d
[ "MIT" ]
1
2018-04-16T17:11:15.000Z
2018-04-16T17:11:15.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Kore Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test replace by fee code # from test_framework.test_framework import KoreTestFramework from test_framework.util import * from test_framework.script import * from test_framework.mininode import * MAX_REPLACEMENT_LIMIT = 100 def txToHex(tx): return bytes_to_hex_str(tx.serialize()) def make_utxo(node, amount, confirmed=True, scriptPubKey=CScript([1])): """Create a txout with a given amount and scriptPubKey Mines coins as needed. confirmed - txouts created will be confirmed in the blockchain; unconfirmed otherwise. """ fee = 1*COIN while node.getbalance() < satoshi_round((amount + fee)/COIN): node.generate(100) #print (node.getbalance(), amount, fee) new_addr = node.getnewaddress() #print new_addr txid = node.sendtoaddress(new_addr, satoshi_round((amount+fee)/COIN)) tx1 = node.getrawtransaction(txid, 1) txid = int(txid, 16) i = None for i, txout in enumerate(tx1['vout']): #print i, txout['scriptPubKey']['addresses'] if txout['scriptPubKey']['addresses'] == [new_addr]: #print i break assert i is not None tx2 = CTransaction() tx2.vin = [CTxIn(COutPoint(txid, i))] tx2.vout = [CTxOut(amount, scriptPubKey)] tx2.rehash() signed_tx = node.signrawtransaction(txToHex(tx2)) txid = node.sendrawtransaction(signed_tx['hex'], True) # If requested, ensure txouts are confirmed. if confirmed: mempool_size = len(node.getrawmempool()) while mempool_size > 0: node.generate(1) new_size = len(node.getrawmempool()) # Error out if we have something stuck in the mempool, as this # would likely be a bug. assert(new_size < mempool_size) mempool_size = new_size return COutPoint(int(txid, 16), 0) class ReplaceByFeeTest(KoreTestFramework): def setup_network(self): self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, ["-maxorphantx=1000", "-debug", "-relaypriority=0", "-whitelist=127.0.0.1", "-limitancestorcount=50", "-limitancestorsize=101", "-limitdescendantcount=200", "-limitdescendantsize=101" ])) self.is_network_split = False def run_test(self): make_utxo(self.nodes[0], 1*COIN) print("Running test simple doublespend...") self.test_simple_doublespend() print("Running test doublespend chain...") self.test_doublespend_chain() print("Running test doublespend tree...") self.test_doublespend_tree() print("Running test replacement feeperkb...") self.test_replacement_feeperkb() print("Running test spends of conflicting outputs...") self.test_spends_of_conflicting_outputs() print("Running test new unconfirmed inputs...") self.test_new_unconfirmed_inputs() print("Running test too many replacements...") self.test_too_many_replacements() print("Running test opt-in...") self.test_opt_in() print("Running test prioritised transactions...") self.test_prioritised_transactions() print("Passed\n") def test_simple_doublespend(self): """Simple doublespend""" tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Should fail because we haven't changed the fee tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(1*COIN, CScript([b'b']))] tx1b_hex = txToHex(tx1b) try: tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) # insufficient fee else: assert(False) # Extra 0.1 BTC fee tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.9*COIN), CScript([b'b']))] tx1b_hex = txToHex(tx1b) tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) mempool = self.nodes[0].getrawmempool() assert (tx1a_txid not in mempool) assert (tx1b_txid in mempool) assert_equal(tx1b_hex, self.nodes[0].getrawtransaction(tx1b_txid)) def test_doublespend_chain(self): """Doublespend of a long chain""" initial_nValue = 50*COIN tx0_outpoint = make_utxo(self.nodes[0], initial_nValue) prevout = tx0_outpoint remaining_value = initial_nValue chain_txids = [] while remaining_value > 10*COIN: remaining_value -= 1*COIN tx = CTransaction() tx.vin = [CTxIn(prevout, nSequence=0)] tx.vout = [CTxOut(remaining_value, CScript([1]))] tx_hex = txToHex(tx) txid = self.nodes[0].sendrawtransaction(tx_hex, True) chain_txids.append(txid) prevout = COutPoint(int(txid, 16), 0) # Whether the double-spend is allowed is evaluated by including all # child fees - 40 BTC - so this attempt is rejected. dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - 30*COIN, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) try: self.nodes[0].sendrawtransaction(dbl_tx_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) # insufficient fee else: assert(False) # transaction mistakenly accepted! # Accepted with sufficient fee dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(1*COIN, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) self.nodes[0].sendrawtransaction(dbl_tx_hex, True) mempool = self.nodes[0].getrawmempool() for doublespent_txid in chain_txids: assert(doublespent_txid not in mempool) def test_doublespend_tree(self): """Doublespend of a big tree of transactions""" initial_nValue = 50*COIN tx0_outpoint = make_utxo(self.nodes[0], initial_nValue) def branch(prevout, initial_value, max_txs, tree_width=5, fee=0.0001*COIN, _total_txs=None): if _total_txs is None: _total_txs = [0] if _total_txs[0] >= max_txs: return txout_value = (initial_value - fee) // tree_width if txout_value < fee: return vout = [CTxOut(txout_value, CScript([i+1])) for i in range(tree_width)] tx = CTransaction() tx.vin = [CTxIn(prevout, nSequence=0)] tx.vout = vout tx_hex = txToHex(tx) assert(len(tx.serialize()) < 100000) txid = self.nodes[0].sendrawtransaction(tx_hex, True) yield tx _total_txs[0] += 1 txid = int(txid, 16) for i, txout in enumerate(tx.vout): for x in branch(COutPoint(txid, i), txout_value, max_txs, tree_width=tree_width, fee=fee, _total_txs=_total_txs): yield x fee = int(0.0001*COIN) n = MAX_REPLACEMENT_LIMIT tree_txs = list(branch(tx0_outpoint, initial_nValue, n, fee=fee)) assert_equal(len(tree_txs), n) # Attempt double-spend, will fail because too little fee paid dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - fee*n, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) try: self.nodes[0].sendrawtransaction(dbl_tx_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) # insufficient fee else: assert(False) # 1 BTC fee is enough dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - fee*n - 1*COIN, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) self.nodes[0].sendrawtransaction(dbl_tx_hex, True) mempool = self.nodes[0].getrawmempool() for tx in tree_txs: tx.rehash() assert (tx.hash not in mempool) # Try again, but with more total transactions than the "max txs # double-spent at once" anti-DoS limit. for n in (MAX_REPLACEMENT_LIMIT+1, MAX_REPLACEMENT_LIMIT*2): fee = int(0.0001*COIN) tx0_outpoint = make_utxo(self.nodes[0], initial_nValue) tree_txs = list(branch(tx0_outpoint, initial_nValue, n, fee=fee)) assert_equal(len(tree_txs), n) dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - 2*fee*n, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) try: self.nodes[0].sendrawtransaction(dbl_tx_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) assert_equal("too many potential replacements" in exp.error['message'], True) else: assert(False) for tx in tree_txs: tx.rehash() self.nodes[0].getrawtransaction(tx.hash) def test_replacement_feeperkb(self): """Replacement requires fee-per-KB to be higher""" tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Higher fee, but the fee per KB is much lower, so the replacement is # rejected. tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*999000]))] tx1b_hex = txToHex(tx1b) try: tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) # insufficient fee else: assert(False) def test_spends_of_conflicting_outputs(self): """Replacements that spend conflicting tx outputs are rejected""" utxo1 = make_utxo(self.nodes[0], int(1.2*COIN)) utxo2 = make_utxo(self.nodes[0], 3*COIN) tx1a = CTransaction() tx1a.vin = [CTxIn(utxo1, nSequence=0)] tx1a.vout = [CTxOut(int(1.1*COIN), CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) tx1a_txid = int(tx1a_txid, 16) # Direct spend an output of the transaction we're replacing. tx2 = CTransaction() tx2.vin = [CTxIn(utxo1, nSequence=0), CTxIn(utxo2, nSequence=0)] tx2.vin.append(CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)) tx2.vout = tx1a.vout tx2_hex = txToHex(tx2) try: tx2_txid = self.nodes[0].sendrawtransaction(tx2_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) # Spend tx1a's output to test the indirect case. tx1b = CTransaction() tx1b.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)] tx1b.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1b_hex = txToHex(tx1b) tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) tx1b_txid = int(tx1b_txid, 16) tx2 = CTransaction() tx2.vin = [CTxIn(utxo1, nSequence=0), CTxIn(utxo2, nSequence=0), CTxIn(COutPoint(tx1b_txid, 0))] tx2.vout = tx1a.vout tx2_hex = txToHex(tx2) try: tx2_txid = self.nodes[0].sendrawtransaction(tx2_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) def test_new_unconfirmed_inputs(self): """Replacements that add new unconfirmed inputs are rejected""" confirmed_utxo = make_utxo(self.nodes[0], int(1.1*COIN)) unconfirmed_utxo = make_utxo(self.nodes[0], int(0.1*COIN), False) tx1 = CTransaction() tx1.vin = [CTxIn(confirmed_utxo)] tx1.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1_hex = txToHex(tx1) tx1_txid = self.nodes[0].sendrawtransaction(tx1_hex, True) tx2 = CTransaction() tx2.vin = [CTxIn(confirmed_utxo), CTxIn(unconfirmed_utxo)] tx2.vout = tx1.vout tx2_hex = txToHex(tx2) try: tx2_txid = self.nodes[0].sendrawtransaction(tx2_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) def test_too_many_replacements(self): """Replacements that evict too many transactions are rejected""" # Try directly replacing more than MAX_REPLACEMENT_LIMIT # transactions # Start by creating a single transaction with many outputs initial_nValue = 10*COIN utxo = make_utxo(self.nodes[0], initial_nValue) fee = int(0.0001*COIN) split_value = int((initial_nValue-fee)/(MAX_REPLACEMENT_LIMIT+1)) actual_fee = initial_nValue - split_value*(MAX_REPLACEMENT_LIMIT+1) outputs = [] for i in range(MAX_REPLACEMENT_LIMIT+1): outputs.append(CTxOut(split_value, CScript([1]))) splitting_tx = CTransaction() splitting_tx.vin = [CTxIn(utxo, nSequence=0)] splitting_tx.vout = outputs splitting_tx_hex = txToHex(splitting_tx) txid = self.nodes[0].sendrawtransaction(splitting_tx_hex, True) txid = int(txid, 16) # Now spend each of those outputs individually for i in range(MAX_REPLACEMENT_LIMIT+1): tx_i = CTransaction() tx_i.vin = [CTxIn(COutPoint(txid, i), nSequence=0)] tx_i.vout = [CTxOut(split_value-fee, CScript([b'a']))] tx_i_hex = txToHex(tx_i) self.nodes[0].sendrawtransaction(tx_i_hex, True) # Now create doublespend of the whole lot; should fail. # Need a big enough fee to cover all spending transactions and have # a higher fee rate double_spend_value = (split_value-100*fee)*(MAX_REPLACEMENT_LIMIT+1) inputs = [] for i in range(MAX_REPLACEMENT_LIMIT+1): inputs.append(CTxIn(COutPoint(txid, i), nSequence=0)) double_tx = CTransaction() double_tx.vin = inputs double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))] double_tx_hex = txToHex(double_tx) try: self.nodes[0].sendrawtransaction(double_tx_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) assert_equal("too many potential replacements" in exp.error['message'], True) else: assert(False) # If we remove an input, it should pass double_tx = CTransaction() double_tx.vin = inputs[0:-1] double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))] double_tx_hex = txToHex(double_tx) self.nodes[0].sendrawtransaction(double_tx_hex, True) def test_opt_in(self): """ Replacing should only work if orig tx opted in """ tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) # Create a non-opting in transaction tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0xffffffff)] tx1a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Shouldn't be able to double-spend tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.9*COIN), CScript([b'b']))] tx1b_hex = txToHex(tx1b) try: tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: print(tx1b_txid) assert(False) tx1_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) # Create a different non-opting in transaction tx2a = CTransaction() tx2a.vin = [CTxIn(tx1_outpoint, nSequence=0xfffffffe)] tx2a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx2a_hex = txToHex(tx2a) tx2a_txid = self.nodes[0].sendrawtransaction(tx2a_hex, True) # Still shouldn't be able to double-spend tx2b = CTransaction() tx2b.vin = [CTxIn(tx1_outpoint, nSequence=0)] tx2b.vout = [CTxOut(int(0.9*COIN), CScript([b'b']))] tx2b_hex = txToHex(tx2b) try: tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) # Now create a new transaction that spends from tx1a and tx2a # opt-in on one of the inputs # Transaction should be replaceable on either input tx1a_txid = int(tx1a_txid, 16) tx2a_txid = int(tx2a_txid, 16) tx3a = CTransaction() tx3a.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0xffffffff), CTxIn(COutPoint(tx2a_txid, 0), nSequence=0xfffffffd)] tx3a.vout = [CTxOut(int(0.9*COIN), CScript([b'c'])), CTxOut(int(0.9*COIN), CScript([b'd']))] tx3a_hex = txToHex(tx3a) self.nodes[0].sendrawtransaction(tx3a_hex, True) tx3b = CTransaction() tx3b.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)] tx3b.vout = [CTxOut(int(0.5*COIN), CScript([b'e']))] tx3b_hex = txToHex(tx3b) tx3c = CTransaction() tx3c.vin = [CTxIn(COutPoint(tx2a_txid, 0), nSequence=0)] tx3c.vout = [CTxOut(int(0.5*COIN), CScript([b'f']))] tx3c_hex = txToHex(tx3c) self.nodes[0].sendrawtransaction(tx3b_hex, True) # If tx3b was accepted, tx3c won't look like a replacement, # but make sure it is accepted anyway self.nodes[0].sendrawtransaction(tx3c_hex, True) def test_prioritised_transactions(self): # Ensure that fee deltas used via prioritisetransaction are # correctly used by replacement logic # 1. Check that feeperkb uses modified fees tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Higher fee, but the actual fee per KB is much lower. tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*740000]))] tx1b_hex = txToHex(tx1b) # Verify tx1b cannot replace tx1a. try: tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) # Use prioritisetransaction to set tx1a's fee to 0. self.nodes[0].prioritisetransaction(tx1a_txid, 0, int(-0.1*COIN)) # Now tx1b should be able to replace tx1a tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) assert(tx1b_txid in self.nodes[0].getrawmempool()) # 2. Check that absolute fee checks use modified fee. tx1_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx2a = CTransaction() tx2a.vin = [CTxIn(tx1_outpoint, nSequence=0)] tx2a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx2a_hex = txToHex(tx2a) tx2a_txid = self.nodes[0].sendrawtransaction(tx2a_hex, True) # Lower fee, but we'll prioritise it tx2b = CTransaction() tx2b.vin = [CTxIn(tx1_outpoint, nSequence=0)] tx2b.vout = [CTxOut(int(1.01*COIN), CScript([b'a']))] tx2b.rehash() tx2b_hex = txToHex(tx2b) # Verify tx2b cannot replace tx2a. try: tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) # Now prioritise tx2b to have a higher modified fee self.nodes[0].prioritisetransaction(tx2b.hash, 0, int(0.1*COIN)) # tx2b should now be accepted tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, True) assert(tx2b_txid in self.nodes[0].getrawmempool()) if __name__ == '__main__': ReplaceByFeeTest().main()
37.324232
105
0.600951
bbe3ef9331a19b1f71353c011f5d3db2ff57a4a6
904
py
Python
test/test_potrace.py
beesandbombs/coldtype
d02c7dd36bf1576fa37dc8c50d5c1a6e47b1c5ea
[ "Apache-2.0" ]
1
2021-04-04T15:25:06.000Z
2021-04-04T15:25:06.000Z
test/test_potrace.py
beesandbombs/coldtype
d02c7dd36bf1576fa37dc8c50d5c1a6e47b1c5ea
[ "Apache-2.0" ]
null
null
null
test/test_potrace.py
beesandbombs/coldtype
d02c7dd36bf1576fa37dc8c50d5c1a6e47b1c5ea
[ "Apache-2.0" ]
null
null
null
from coldtype import * import coldtype.filtering as fl import skia co = Font.Cacheable("assets/ColdtypeObviously-VF.ttf") @animation(bg=bw(0), storyboard=[0], timeline=Timeline(30)) def render(f): raw = (StyledString("COLD", Style(co, 700, wdth=0.5, tu=-155*f.a.progress(f.i).e, r=1, ro=1, rotate=10)) .pens() .align(f.a.r) .f(1)) letter = (raw .copy() .precompose(f.a.r) .attr(skp=dict( ImageFilter=skia.BlurImageFilter.Make(10, 10), ColorFilter=skia.LumaColorFilter.Make() )) .precompose(f.a.r) .attr(skp=dict( ColorFilter=fl.compose( fl.as_filter(fl.contrast_cut(250, 3)), fl.fill(bw(1)), )))) return [ (letter.copy() .potrace(f.a.r, ["-O", 1]) .f(Gradient.Vertical(f.a.r, hsl(0.5), hsl(0.7))))]
30.133333
84
0.530973
06999b312202850f61a989a61ef33197bce7f733
560
py
Python
src/models/user.py
ramasubbaiya/flask-api-starter-kit
3f00769f349908ffa5ccc7acb332d70e1f2c6f6f
[ "MIT" ]
393
2016-11-21T10:52:01.000Z
2022-03-28T13:37:27.000Z
src/models/user.py
trenchmortar/flask-api-starter-kit
4a9bcbb37c4e81aacf2aef2df4ed28e8662e6d07
[ "MIT" ]
10
2019-09-04T03:43:35.000Z
2019-09-11T06:35:22.000Z
src/models/user.py
trenchmortar/flask-api-starter-kit
4a9bcbb37c4e81aacf2aef2df4ed28e8662e6d07
[ "MIT" ]
127
2017-04-20T11:33:00.000Z
2022-03-28T06:28:44.000Z
""" Define the User model """ from . import db from .abc import BaseModel, MetaBaseModel class User(db.Model, BaseModel, metaclass=MetaBaseModel): """ The User model """ __tablename__ = "user" first_name = db.Column(db.String(300), primary_key=True) last_name = db.Column(db.String(300), primary_key=True) age = db.Column(db.Integer, nullable=True) def __init__(self, first_name, last_name, age=None): """ Create a new User """ self.first_name = first_name self.last_name = last_name self.age = age
25.454545
60
0.6625
620c5515d62a7d90d4b6d68bc6c02f9b3a4d6ae2
416
py
Python
scripts/dev/metrics-filter.py
braveheart12/insolar-31-08-19
0e58bb01fa38faee3205d0bdedc6a3cfb82d778f
[ "Apache-2.0" ]
null
null
null
scripts/dev/metrics-filter.py
braveheart12/insolar-31-08-19
0e58bb01fa38faee3205d0bdedc6a3cfb82d778f
[ "Apache-2.0" ]
null
null
null
scripts/dev/metrics-filter.py
braveheart12/insolar-31-08-19
0e58bb01fa38faee3205d0bdedc6a3cfb82d778f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import csv import sys seen = {} with open(sys.argv[1], 'r') if len(sys.argv) > 1 else sys.stdin as f: csv_in = csv.DictReader(f) csv_out = csv.DictWriter(sys.stdout, fieldnames=csv_in.fieldnames) csv_out.writeheader() for row in csv_in: if seen.get(row['name']): continue # print(row) seen[row['name']] = True csv_out.writerow(row)
26
70
0.612981
ccce59e754c87bca2370b61ad3a565b76db9e241
8,144
py
Python
tests/components/test_ffmpeg.py
lupin-de-mid/home-assistant
35f6dbc9dc0fb12d1d04837acbf09dabb325f4fe
[ "Apache-2.0" ]
1
2021-01-02T14:13:46.000Z
2021-01-02T14:13:46.000Z
tests/components/test_ffmpeg.py
lupin-de-mid/home-assistant
35f6dbc9dc0fb12d1d04837acbf09dabb325f4fe
[ "Apache-2.0" ]
null
null
null
tests/components/test_ffmpeg.py
lupin-de-mid/home-assistant
35f6dbc9dc0fb12d1d04837acbf09dabb325f4fe
[ "Apache-2.0" ]
null
null
null
"""The tests for Home Assistant ffmpeg.""" import asyncio from unittest.mock import patch, MagicMock import homeassistant.components.ffmpeg as ffmpeg from homeassistant.bootstrap import setup_component from homeassistant.util.async import ( run_callback_threadsafe, run_coroutine_threadsafe) from tests.common import ( get_test_home_assistant, assert_setup_component, mock_coro) class MockFFmpegDev(ffmpeg.FFmpegBase): """FFmpeg device mock.""" def __init__(self, initial_state=True, entity_id='test.ffmpeg_device'): """Initialize mock.""" super().__init__(initial_state) self.entity_id = entity_id self.ffmpeg = MagicMock self.called_stop = False self.called_start = False self.called_restart = False @asyncio.coroutine def async_start_ffmpeg(self): """Mock start.""" self.called_start = True @asyncio.coroutine def async_stop_ffmpeg(self): """Mock stop.""" self.called_stop = True @asyncio.coroutine def async_restart_ffmpeg(self): """Mock restart.""" self.called_restart = True class TestFFmpegSetup(object): """Test class for ffmpeg.""" def setup_method(self): """Setup things to be run when tests are started.""" self.hass = get_test_home_assistant() def teardown_method(self): """Stop everything that was started.""" self.hass.stop() def test_setup_component(self): """Setup ffmpeg component.""" with assert_setup_component(2): setup_component(self.hass, ffmpeg.DOMAIN, {ffmpeg.DOMAIN: {}}) assert self.hass.data[ffmpeg.DATA_FFMPEG].binary == 'ffmpeg' def test_setup_component_test_service(self): """Setup ffmpeg component test services.""" with assert_setup_component(2): setup_component(self.hass, ffmpeg.DOMAIN, {ffmpeg.DOMAIN: {}}) assert self.hass.services.has_service(ffmpeg.DOMAIN, 'start') assert self.hass.services.has_service(ffmpeg.DOMAIN, 'stop') assert self.hass.services.has_service(ffmpeg.DOMAIN, 'restart') def test_setup_component_test_register(self): """Setup ffmpeg component test register.""" with assert_setup_component(2): setup_component(self.hass, ffmpeg.DOMAIN, {ffmpeg.DOMAIN: {}}) self.hass.bus.async_listen_once = MagicMock() ffmpeg_dev = MockFFmpegDev() manager = self.hass.data[ffmpeg.DATA_FFMPEG] run_callback_threadsafe( self.hass.loop, manager.async_register_device, ffmpeg_dev).result() assert self.hass.bus.async_listen_once.called assert self.hass.bus.async_listen_once.call_count == 2 assert len(manager.entities) == 1 assert manager.entities[0] == ffmpeg_dev def test_setup_component_test_register_no_startup(self): """Setup ffmpeg component test register without startup.""" with assert_setup_component(2): setup_component(self.hass, ffmpeg.DOMAIN, {ffmpeg.DOMAIN: {}}) self.hass.bus.async_listen_once = MagicMock() ffmpeg_dev = MockFFmpegDev(False) manager = self.hass.data[ffmpeg.DATA_FFMPEG] run_callback_threadsafe( self.hass.loop, manager.async_register_device, ffmpeg_dev).result() assert self.hass.bus.async_listen_once.called assert self.hass.bus.async_listen_once.call_count == 1 assert len(manager.entities) == 1 assert manager.entities[0] == ffmpeg_dev def test_setup_component_test_servcie_start(self): """Setup ffmpeg component test service start.""" with assert_setup_component(2): setup_component(self.hass, ffmpeg.DOMAIN, {ffmpeg.DOMAIN: {}}) ffmpeg_dev = MockFFmpegDev(False) manager = self.hass.data[ffmpeg.DATA_FFMPEG] run_callback_threadsafe( self.hass.loop, manager.async_register_device, ffmpeg_dev).result() ffmpeg.start(self.hass) self.hass.block_till_done() assert ffmpeg_dev.called_start def test_setup_component_test_servcie_stop(self): """Setup ffmpeg component test service stop.""" with assert_setup_component(2): setup_component(self.hass, ffmpeg.DOMAIN, {ffmpeg.DOMAIN: {}}) ffmpeg_dev = MockFFmpegDev(False) manager = self.hass.data[ffmpeg.DATA_FFMPEG] run_callback_threadsafe( self.hass.loop, manager.async_register_device, ffmpeg_dev).result() ffmpeg.stop(self.hass) self.hass.block_till_done() assert ffmpeg_dev.called_stop def test_setup_component_test_servcie_restart(self): """Setup ffmpeg component test service restart.""" with assert_setup_component(2): setup_component(self.hass, ffmpeg.DOMAIN, {ffmpeg.DOMAIN: {}}) ffmpeg_dev = MockFFmpegDev(False) manager = self.hass.data[ffmpeg.DATA_FFMPEG] run_callback_threadsafe( self.hass.loop, manager.async_register_device, ffmpeg_dev).result() ffmpeg.restart(self.hass) self.hass.block_till_done() assert ffmpeg_dev.called_restart def test_setup_component_test_servcie_start_with_entity(self): """Setup ffmpeg component test service start.""" with assert_setup_component(2): setup_component(self.hass, ffmpeg.DOMAIN, {ffmpeg.DOMAIN: {}}) ffmpeg_dev = MockFFmpegDev(False) manager = self.hass.data[ffmpeg.DATA_FFMPEG] run_callback_threadsafe( self.hass.loop, manager.async_register_device, ffmpeg_dev).result() ffmpeg.start(self.hass, 'test.ffmpeg_device') self.hass.block_till_done() assert ffmpeg_dev.called_start def test_setup_component_test_run_test_false(self): """Setup ffmpeg component test run_test false.""" with assert_setup_component(2): setup_component(self.hass, ffmpeg.DOMAIN, {ffmpeg.DOMAIN: { 'run_test': False, }}) manager = self.hass.data[ffmpeg.DATA_FFMPEG] assert run_coroutine_threadsafe( manager.async_run_test("blabalblabla"), self.hass.loop).result() assert len(manager._cache) == 0 @patch('haffmpeg.Test.run_test', return_value=mock_coro(return_value=True)()) def test_setup_component_test_run_test(self, mock_test): """Setup ffmpeg component test run_test.""" with assert_setup_component(2): setup_component(self.hass, ffmpeg.DOMAIN, {ffmpeg.DOMAIN: {}}) manager = self.hass.data[ffmpeg.DATA_FFMPEG] assert run_coroutine_threadsafe( manager.async_run_test("blabalblabla"), self.hass.loop).result() assert mock_test.called assert mock_test.call_count == 1 assert len(manager._cache) == 1 assert manager._cache['blabalblabla'] assert run_coroutine_threadsafe( manager.async_run_test("blabalblabla"), self.hass.loop).result() assert mock_test.called assert mock_test.call_count == 1 assert len(manager._cache) == 1 assert manager._cache['blabalblabla'] @patch('haffmpeg.Test.run_test', return_value=mock_coro(return_value=False)()) def test_setup_component_test_run_test_test_fail(self, mock_test): """Setup ffmpeg component test run_test.""" with assert_setup_component(2): setup_component(self.hass, ffmpeg.DOMAIN, {ffmpeg.DOMAIN: {}}) manager = self.hass.data[ffmpeg.DATA_FFMPEG] assert not run_coroutine_threadsafe( manager.async_run_test("blabalblabla"), self.hass.loop).result() assert mock_test.called assert mock_test.call_count == 1 assert len(manager._cache) == 1 assert not manager._cache['blabalblabla'] assert not run_coroutine_threadsafe( manager.async_run_test("blabalblabla"), self.hass.loop).result() assert mock_test.called assert mock_test.call_count == 1 assert len(manager._cache) == 1 assert not manager._cache['blabalblabla']
35.719298
79
0.673379
ab2ef97b07f0789be246f2d714f662a7feec8881
141,571
py
Python
scipy/stats/tests/test_distributions.py
idan-david/scipy
2cc09f55687eef3343442387b6beec701ca79fd6
[ "FSFAP" ]
null
null
null
scipy/stats/tests/test_distributions.py
idan-david/scipy
2cc09f55687eef3343442387b6beec701ca79fd6
[ "FSFAP" ]
null
null
null
scipy/stats/tests/test_distributions.py
idan-david/scipy
2cc09f55687eef3343442387b6beec701ca79fd6
[ "FSFAP" ]
null
null
null
""" Test functions for stats module """ from __future__ import division, print_function, absolute_import import warnings import re import sys import pickle import os from numpy.testing import (assert_equal, assert_array_equal, assert_almost_equal, assert_array_almost_equal, assert_allclose, assert_, assert_warns) import pytest from pytest import raises as assert_raises from scipy._lib._numpy_compat import suppress_warnings import numpy import numpy as np from numpy import typecodes, array from numpy.lib.recfunctions import rec_append_fields from scipy import special from scipy.integrate import IntegrationWarning import scipy.stats as stats from scipy.stats._distn_infrastructure import argsreduce import scipy.stats.distributions from scipy.special import xlogy from .test_continuous_basic import distcont # python -OO strips docstrings DOCSTRINGS_STRIPPED = sys.flags.optimize > 1 # Generate test cases to test cdf and distribution consistency. # Note that this list does not include all distributions. dists = ['uniform', 'norm', 'lognorm', 'expon', 'beta', 'powerlaw', 'bradford', 'burr', 'fisk', 'cauchy', 'halfcauchy', 'foldcauchy', 'gamma', 'gengamma', 'loggamma', 'alpha', 'anglit', 'arcsine', 'betaprime', 'dgamma', 'moyal', 'exponnorm', 'exponweib', 'exponpow', 'frechet_l', 'frechet_r', 'gilbrat', 'f', 'ncf', 'chi2', 'chi', 'nakagami', 'genpareto', 'genextreme', 'genhalflogistic', 'pareto', 'lomax', 'halfnorm', 'halflogistic', 'fatiguelife', 'foldnorm', 'ncx2', 't', 'nct', 'weibull_min', 'weibull_max', 'dweibull', 'maxwell', 'rayleigh', 'genlogistic', 'logistic', 'gumbel_l', 'gumbel_r', 'gompertz', 'hypsecant', 'laplace', 'reciprocal', 'trapz', 'triang', 'tukeylambda', 'vonmises', 'vonmises_line', 'pearson3', 'gennorm', 'halfgennorm', 'rice', 'kappa4', 'kappa3', 'truncnorm', 'argus', 'crystalball'] def _assert_hasattr(a, b, msg=None): if msg is None: msg = '%s does not have attribute %s' % (a, b) assert_(hasattr(a, b), msg=msg) def test_api_regression(): # https://github.com/scipy/scipy/issues/3802 _assert_hasattr(scipy.stats.distributions, 'f_gen') # check function for test generator def check_distribution(dist, args, alpha): with suppress_warnings() as sup: # frechet_l and frechet_r are deprecated, so all their # methods generate DeprecationWarnings. sup.filter(category=DeprecationWarning, message=".*frechet_") D, pval = stats.kstest(dist, '', args=args, N=1000) if (pval < alpha): D, pval = stats.kstest(dist, '', args=args, N=1000) assert_(pval > alpha, msg="D = {}; pval = {}; alpha = {}; args = {}".format( D, pval, alpha, args)) def cases_test_all_distributions(): np.random.seed(1234) for dist in dists: distfunc = getattr(stats, dist) nargs = distfunc.numargs alpha = 0.01 if dist == 'fatiguelife': alpha = 0.001 if dist == 'trapz': args = tuple(np.sort(np.random.random(nargs))) elif dist == 'triang': args = tuple(np.random.random(nargs)) elif dist == 'reciprocal' or dist == 'truncnorm': vals = np.random.random(nargs) vals[1] = vals[0] + 1.0 args = tuple(vals) elif dist == 'vonmises': yield dist, (10,), alpha yield dist, (101,), alpha args = tuple(1.0 + np.random.random(nargs)) else: args = tuple(1.0 + np.random.random(nargs)) yield dist, args, alpha @pytest.mark.parametrize('dist,args,alpha', cases_test_all_distributions()) def test_all_distributions(dist, args, alpha): check_distribution(dist, args, alpha) def check_vonmises_pdf_periodic(k, l, s, x): vm = stats.vonmises(k, loc=l, scale=s) assert_almost_equal(vm.pdf(x), vm.pdf(x % (2*numpy.pi*s))) def check_vonmises_cdf_periodic(k, l, s, x): vm = stats.vonmises(k, loc=l, scale=s) assert_almost_equal(vm.cdf(x) % 1, vm.cdf(x % (2*numpy.pi*s)) % 1) def test_vonmises_pdf_periodic(): for k in [0.1, 1, 101]: for x in [0, 1, numpy.pi, 10, 100]: check_vonmises_pdf_periodic(k, 0, 1, x) check_vonmises_pdf_periodic(k, 1, 1, x) check_vonmises_pdf_periodic(k, 0, 10, x) check_vonmises_cdf_periodic(k, 0, 1, x) check_vonmises_cdf_periodic(k, 1, 1, x) check_vonmises_cdf_periodic(k, 0, 10, x) def test_vonmises_line_support(): assert_equal(stats.vonmises_line.a, -np.pi) assert_equal(stats.vonmises_line.b, np.pi) def test_vonmises_numerical(): vm = stats.vonmises(800) assert_almost_equal(vm.cdf(0), 0.5) @pytest.mark.parametrize('dist', ['alpha', 'betaprime', 'burr', 'burr12', 'fatiguelife', 'invgamma', 'invgauss', 'invweibull', 'johnsonsb', 'levy', 'levy_l', 'lognorm', 'gilbrat', 'powerlognorm', 'rayleigh', 'wald']) def test_support(dist): """gh-6235""" dct = dict(distcont) args = dct[dist] dist = getattr(stats, dist) assert_almost_equal(dist.pdf(dist.a, *args), 0) assert_equal(dist.logpdf(dist.a, *args), -np.inf) assert_almost_equal(dist.pdf(dist.b, *args), 0) assert_equal(dist.logpdf(dist.b, *args), -np.inf) @pytest.mark.parametrize('dist,args,alpha', cases_test_all_distributions()) def test_retrieving_support(dist, args, alpha): """""" dist = getattr(stats, dist) loc, scale = 1, 2 supp = dist.support(*args) supp_loc_scale = dist.support(*args, loc=loc, scale=scale) assert_almost_equal(np.array(supp)*scale + loc, np.array(supp_loc_scale)) class TestRandInt(object): def setup_method(self): np.random.seed(1234) def test_rvs(self): vals = stats.randint.rvs(5, 30, size=100) assert_(numpy.all(vals < 30) & numpy.all(vals >= 5)) assert_(len(vals) == 100) vals = stats.randint.rvs(5, 30, size=(2, 50)) assert_(numpy.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.randint.rvs(15, 46) assert_((val >= 15) & (val < 46)) assert_(isinstance(val, numpy.ScalarType), msg=repr(type(val))) val = stats.randint(15, 46).rvs(3) assert_(val.dtype.char in typecodes['AllInteger']) def test_pdf(self): k = numpy.r_[0:36] out = numpy.where((k >= 5) & (k < 30), 1.0/(30-5), 0) vals = stats.randint.pmf(k, 5, 30) assert_array_almost_equal(vals, out) def test_cdf(self): x = np.linspace(0,36,100) k = numpy.floor(x) out = numpy.select([k >= 30, k >= 5], [1.0, (k-5.0+1)/(30-5.0)], 0) vals = stats.randint.cdf(x, 5, 30) assert_array_almost_equal(vals, out, decimal=12) class TestBinom(object): def setup_method(self): np.random.seed(1234) def test_rvs(self): vals = stats.binom.rvs(10, 0.75, size=(2, 50)) assert_(numpy.all(vals >= 0) & numpy.all(vals <= 10)) assert_(numpy.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.binom.rvs(10, 0.75) assert_(isinstance(val, int)) val = stats.binom(10, 0.75).rvs(3) assert_(isinstance(val, numpy.ndarray)) assert_(val.dtype.char in typecodes['AllInteger']) def test_pmf(self): # regression test for Ticket #1842 vals1 = stats.binom.pmf(100, 100, 1) vals2 = stats.binom.pmf(0, 100, 0) assert_allclose(vals1, 1.0, rtol=1e-15, atol=0) assert_allclose(vals2, 1.0, rtol=1e-15, atol=0) def test_entropy(self): # Basic entropy tests. b = stats.binom(2, 0.5) expected_p = np.array([0.25, 0.5, 0.25]) expected_h = -sum(xlogy(expected_p, expected_p)) h = b.entropy() assert_allclose(h, expected_h) b = stats.binom(2, 0.0) h = b.entropy() assert_equal(h, 0.0) b = stats.binom(2, 1.0) h = b.entropy() assert_equal(h, 0.0) def test_warns_p0(self): # no spurious warnigns are generated for p=0; gh-3817 with warnings.catch_warnings(): warnings.simplefilter("error", RuntimeWarning) assert_equal(stats.binom(n=2, p=0).mean(), 0) assert_equal(stats.binom(n=2, p=0).std(), 0) class TestBernoulli(object): def setup_method(self): np.random.seed(1234) def test_rvs(self): vals = stats.bernoulli.rvs(0.75, size=(2, 50)) assert_(numpy.all(vals >= 0) & numpy.all(vals <= 1)) assert_(numpy.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.bernoulli.rvs(0.75) assert_(isinstance(val, int)) val = stats.bernoulli(0.75).rvs(3) assert_(isinstance(val, numpy.ndarray)) assert_(val.dtype.char in typecodes['AllInteger']) def test_entropy(self): # Simple tests of entropy. b = stats.bernoulli(0.25) expected_h = -0.25*np.log(0.25) - 0.75*np.log(0.75) h = b.entropy() assert_allclose(h, expected_h) b = stats.bernoulli(0.0) h = b.entropy() assert_equal(h, 0.0) b = stats.bernoulli(1.0) h = b.entropy() assert_equal(h, 0.0) class TestBradford(object): # gh-6216 def test_cdf_ppf(self): c = 0.1 x = np.logspace(-20, -4) q = stats.bradford.cdf(x, c) xx = stats.bradford.ppf(q, c) assert_allclose(x, xx) class TestNBinom(object): def setup_method(self): np.random.seed(1234) def test_rvs(self): vals = stats.nbinom.rvs(10, 0.75, size=(2, 50)) assert_(numpy.all(vals >= 0)) assert_(numpy.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.nbinom.rvs(10, 0.75) assert_(isinstance(val, int)) val = stats.nbinom(10, 0.75).rvs(3) assert_(isinstance(val, numpy.ndarray)) assert_(val.dtype.char in typecodes['AllInteger']) def test_pmf(self): # regression test for ticket 1779 assert_allclose(np.exp(stats.nbinom.logpmf(700, 721, 0.52)), stats.nbinom.pmf(700, 721, 0.52)) # logpmf(0,1,1) shouldn't return nan (regression test for gh-4029) val = scipy.stats.nbinom.logpmf(0, 1, 1) assert_equal(val, 0) class TestNormInvGauss(object): def setup_method(self): np.random.seed(1234) def test_cdf_R(self): # test pdf and cdf vals against R # require("GeneralizedHyperbolic") # x_test <- c(-7, -5, 0, 8, 15) # r_cdf <- GeneralizedHyperbolic::pnig(x_test, mu = 0, a = 1, b = 0.5) # r_pdf <- GeneralizedHyperbolic::dnig(x_test, mu = 0, a = 1, b = 0.5) r_cdf = np.array([8.034920282e-07, 2.512671945e-05, 3.186661051e-01, 9.988650664e-01, 9.999848769e-01]) x_test = np.array([-7, -5, 0, 8, 15]) vals_cdf = stats.norminvgauss.cdf(x_test, a=1, b=0.5) assert_allclose(vals_cdf, r_cdf, atol=1e-9) def test_pdf_R(self): # values from R as defined in test_cdf_R r_pdf = np.array([1.359600783e-06, 4.413878805e-05, 4.555014266e-01, 7.450485342e-04, 8.917889931e-06]) x_test = np.array([-7, -5, 0, 8, 15]) vals_pdf = stats.norminvgauss.pdf(x_test, a=1, b=0.5) assert_allclose(vals_pdf, r_pdf, atol=1e-9) def test_stats(self): a, b = 1, 0.5 gamma = np.sqrt(a**2 - b**2) v_stats = (b / gamma, a**2 / gamma**3, 3.0 * b / (a * np.sqrt(gamma)), 3.0 * (1 + 4 * b**2 / a**2) / gamma) assert_equal(v_stats, stats.norminvgauss.stats(a, b, moments='mvsk')) def test_ppf(self): a, b = 1, 0.5 x_test = np.array([0.001, 0.5, 0.999]) vals = stats.norminvgauss.ppf(x_test, a, b) assert_allclose(x_test, stats.norminvgauss.cdf(vals, a, b)) class TestGeom(object): def setup_method(self): np.random.seed(1234) def test_rvs(self): vals = stats.geom.rvs(0.75, size=(2, 50)) assert_(numpy.all(vals >= 0)) assert_(numpy.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.geom.rvs(0.75) assert_(isinstance(val, int)) val = stats.geom(0.75).rvs(3) assert_(isinstance(val, numpy.ndarray)) assert_(val.dtype.char in typecodes['AllInteger']) def test_pmf(self): vals = stats.geom.pmf([1, 2, 3], 0.5) assert_array_almost_equal(vals, [0.5, 0.25, 0.125]) def test_logpmf(self): # regression test for ticket 1793 vals1 = np.log(stats.geom.pmf([1, 2, 3], 0.5)) vals2 = stats.geom.logpmf([1, 2, 3], 0.5) assert_allclose(vals1, vals2, rtol=1e-15, atol=0) # regression test for gh-4028 val = stats.geom.logpmf(1, 1) assert_equal(val, 0.0) def test_cdf_sf(self): vals = stats.geom.cdf([1, 2, 3], 0.5) vals_sf = stats.geom.sf([1, 2, 3], 0.5) expected = array([0.5, 0.75, 0.875]) assert_array_almost_equal(vals, expected) assert_array_almost_equal(vals_sf, 1-expected) def test_logcdf_logsf(self): vals = stats.geom.logcdf([1, 2, 3], 0.5) vals_sf = stats.geom.logsf([1, 2, 3], 0.5) expected = array([0.5, 0.75, 0.875]) assert_array_almost_equal(vals, np.log(expected)) assert_array_almost_equal(vals_sf, np.log1p(-expected)) def test_ppf(self): vals = stats.geom.ppf([0.5, 0.75, 0.875], 0.5) expected = array([1.0, 2.0, 3.0]) assert_array_almost_equal(vals, expected) def test_ppf_underflow(self): # this should not underflow assert_allclose(stats.geom.ppf(1e-20, 1e-20), 1.0, atol=1e-14) class TestPlanck(object): def setup_method(self): np.random.seed(1234) def test_sf(self): vals = stats.planck.sf([1, 2, 3], 5.) expected = array([4.5399929762484854e-05, 3.0590232050182579e-07, 2.0611536224385579e-09]) assert_array_almost_equal(vals, expected) def test_logsf(self): vals = stats.planck.logsf([1000., 2000., 3000.], 1000.) expected = array([-1001000., -2001000., -3001000.]) assert_array_almost_equal(vals, expected) class TestGennorm(object): def test_laplace(self): # test against Laplace (special case for beta=1) points = [1, 2, 3] pdf1 = stats.gennorm.pdf(points, 1) pdf2 = stats.laplace.pdf(points) assert_almost_equal(pdf1, pdf2) def test_norm(self): # test against normal (special case for beta=2) points = [1, 2, 3] pdf1 = stats.gennorm.pdf(points, 2) pdf2 = stats.norm.pdf(points, scale=2**-.5) assert_almost_equal(pdf1, pdf2) class TestHalfgennorm(object): def test_expon(self): # test against exponential (special case for beta=1) points = [1, 2, 3] pdf1 = stats.halfgennorm.pdf(points, 1) pdf2 = stats.expon.pdf(points) assert_almost_equal(pdf1, pdf2) def test_halfnorm(self): # test against half normal (special case for beta=2) points = [1, 2, 3] pdf1 = stats.halfgennorm.pdf(points, 2) pdf2 = stats.halfnorm.pdf(points, scale=2**-.5) assert_almost_equal(pdf1, pdf2) def test_gennorm(self): # test against generalized normal points = [1, 2, 3] pdf1 = stats.halfgennorm.pdf(points, .497324) pdf2 = stats.gennorm.pdf(points, .497324) assert_almost_equal(pdf1, 2*pdf2) class TestTruncnorm(object): def setup_method(self): np.random.seed(1234) def test_ppf_ticket1131(self): vals = stats.truncnorm.ppf([-0.5, 0, 1e-4, 0.5, 1-1e-4, 1, 2], -1., 1., loc=[3]*7, scale=2) expected = np.array([np.nan, 1, 1.00056419, 3, 4.99943581, 5, np.nan]) assert_array_almost_equal(vals, expected) def test_isf_ticket1131(self): vals = stats.truncnorm.isf([-0.5, 0, 1e-4, 0.5, 1-1e-4, 1, 2], -1., 1., loc=[3]*7, scale=2) expected = np.array([np.nan, 5, 4.99943581, 3, 1.00056419, 1, np.nan]) assert_array_almost_equal(vals, expected) def test_gh_2477_small_values(self): # Check a case that worked in the original issue. low, high = -11, -10 x = stats.truncnorm.rvs(low, high, 0, 1, size=10) assert_(low < x.min() < x.max() < high) # Check a case that failed in the original issue. low, high = 10, 11 x = stats.truncnorm.rvs(low, high, 0, 1, size=10) assert_(low < x.min() < x.max() < high) def test_moments(self): m, v, s, k = stats.truncnorm.stats(-30, 30, moments='mvsk') assert_almost_equal(m, 0) assert_almost_equal(v, 1) assert_almost_equal(s, 0.0) assert_almost_equal(k, 0.0) @pytest.mark.xfail(reason="truncnorm rvs is know to fail at extreme tails") def test_gh_2477_large_values(self): # Check a case that fails because of extreme tailness. low, high = 100, 101 with np.errstate(divide='ignore'): x = stats.truncnorm.rvs(low, high, 0, 1, size=10) assert_(low < x.min() < x.max() < high) def test_gh_1489_trac_962_rvs(self): # Check the original example. low, high = 10, 15 x = stats.truncnorm.rvs(low, high, 0, 1, size=10) assert_(low < x.min() < x.max() < high) class TestHypergeom(object): def setup_method(self): np.random.seed(1234) def test_rvs(self): vals = stats.hypergeom.rvs(20, 10, 3, size=(2, 50)) assert_(numpy.all(vals >= 0) & numpy.all(vals <= 3)) assert_(numpy.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.hypergeom.rvs(20, 3, 10) assert_(isinstance(val, int)) val = stats.hypergeom(20, 3, 10).rvs(3) assert_(isinstance(val, numpy.ndarray)) assert_(val.dtype.char in typecodes['AllInteger']) def test_precision(self): # comparison number from mpmath M = 2500 n = 50 N = 500 tot = M good = n hgpmf = stats.hypergeom.pmf(2, tot, good, N) assert_almost_equal(hgpmf, 0.0010114963068932233, 11) def test_args(self): # test correct output for corner cases of arguments # see gh-2325 assert_almost_equal(stats.hypergeom.pmf(0, 2, 1, 0), 1.0, 11) assert_almost_equal(stats.hypergeom.pmf(1, 2, 1, 0), 0.0, 11) assert_almost_equal(stats.hypergeom.pmf(0, 2, 0, 2), 1.0, 11) assert_almost_equal(stats.hypergeom.pmf(1, 2, 1, 0), 0.0, 11) def test_cdf_above_one(self): # for some values of parameters, hypergeom cdf was >1, see gh-2238 assert_(0 <= stats.hypergeom.cdf(30, 13397950, 4363, 12390) <= 1.0) def test_precision2(self): # Test hypergeom precision for large numbers. See #1218. # Results compared with those from R. oranges = 9.9e4 pears = 1.1e5 fruits_eaten = np.array([3, 3.8, 3.9, 4, 4.1, 4.2, 5]) * 1e4 quantile = 2e4 res = [stats.hypergeom.sf(quantile, oranges + pears, oranges, eaten) for eaten in fruits_eaten] expected = np.array([0, 1.904153e-114, 2.752693e-66, 4.931217e-32, 8.265601e-11, 0.1237904, 1]) assert_allclose(res, expected, atol=0, rtol=5e-7) # Test with array_like first argument quantiles = [1.9e4, 2e4, 2.1e4, 2.15e4] res2 = stats.hypergeom.sf(quantiles, oranges + pears, oranges, 4.2e4) expected2 = [1, 0.1237904, 6.511452e-34, 3.277667e-69] assert_allclose(res2, expected2, atol=0, rtol=5e-7) def test_entropy(self): # Simple tests of entropy. hg = stats.hypergeom(4, 1, 1) h = hg.entropy() expected_p = np.array([0.75, 0.25]) expected_h = -np.sum(xlogy(expected_p, expected_p)) assert_allclose(h, expected_h) hg = stats.hypergeom(1, 1, 1) h = hg.entropy() assert_equal(h, 0.0) def test_logsf(self): # Test logsf for very large numbers. See issue #4982 # Results compare with those from R (v3.2.0): # phyper(k, n, M-n, N, lower.tail=FALSE, log.p=TRUE) # -2239.771 k = 1e4 M = 1e7 n = 1e6 N = 5e4 result = stats.hypergeom.logsf(k, M, n, N) exspected = -2239.771 # From R assert_almost_equal(result, exspected, decimal=3) class TestLoggamma(object): def test_stats(self): # The following precomputed values are from the table in section 2.2 # of "A Statistical Study of Log-Gamma Distribution", by Ping Shing # Chan (thesis, McMaster University, 1993). table = np.array([ # c, mean, var, skew, exc. kurt. 0.5, -1.9635, 4.9348, -1.5351, 4.0000, 1.0, -0.5772, 1.6449, -1.1395, 2.4000, 12.0, 2.4427, 0.0869, -0.2946, 0.1735, ]).reshape(-1, 5) for c, mean, var, skew, kurt in table: computed = stats.loggamma.stats(c, moments='msvk') assert_array_almost_equal(computed, [mean, var, skew, kurt], decimal=4) class TestLogistic(object): # gh-6226 def test_cdf_ppf(self): x = np.linspace(-20, 20) y = stats.logistic.cdf(x) xx = stats.logistic.ppf(y) assert_allclose(x, xx) def test_sf_isf(self): x = np.linspace(-20, 20) y = stats.logistic.sf(x) xx = stats.logistic.isf(y) assert_allclose(x, xx) def test_extreme_values(self): # p is chosen so that 1 - (1 - p) == p in double precision p = 9.992007221626409e-16 desired = 34.53957599234088 assert_allclose(stats.logistic.ppf(1 - p), desired) assert_allclose(stats.logistic.isf(p), desired) class TestLogser(object): def setup_method(self): np.random.seed(1234) def test_rvs(self): vals = stats.logser.rvs(0.75, size=(2, 50)) assert_(numpy.all(vals >= 1)) assert_(numpy.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.logser.rvs(0.75) assert_(isinstance(val, int)) val = stats.logser(0.75).rvs(3) assert_(isinstance(val, numpy.ndarray)) assert_(val.dtype.char in typecodes['AllInteger']) def test_pmf_small_p(self): m = stats.logser.pmf(4, 1e-20) # The expected value was computed using mpmath: # >>> import mpmath # >>> mpmath.mp.dps = 64 # >>> k = 4 # >>> p = mpmath.mpf('1e-20') # >>> float(-(p**k)/k/mpmath.log(1-p)) # 2.5e-61 # It is also clear from noticing that for very small p, # log(1-p) is approximately -p, and the formula becomes # p**(k-1) / k assert_allclose(m, 2.5e-61) def test_mean_small_p(self): m = stats.logser.mean(1e-8) # The expected mean was computed using mpmath: # >>> import mpmath # >>> mpmath.dps = 60 # >>> p = mpmath.mpf('1e-8') # >>> float(-p / ((1 - p)*mpmath.log(1 - p))) # 1.000000005 assert_allclose(m, 1.000000005) class TestPareto(object): def test_stats(self): # Check the stats() method with some simple values. Also check # that the calculations do not trigger RuntimeWarnings. with warnings.catch_warnings(): warnings.simplefilter("error", RuntimeWarning) m, v, s, k = stats.pareto.stats(0.5, moments='mvsk') assert_equal(m, np.inf) assert_equal(v, np.inf) assert_equal(s, np.nan) assert_equal(k, np.nan) m, v, s, k = stats.pareto.stats(1.0, moments='mvsk') assert_equal(m, np.inf) assert_equal(v, np.inf) assert_equal(s, np.nan) assert_equal(k, np.nan) m, v, s, k = stats.pareto.stats(1.5, moments='mvsk') assert_equal(m, 3.0) assert_equal(v, np.inf) assert_equal(s, np.nan) assert_equal(k, np.nan) m, v, s, k = stats.pareto.stats(2.0, moments='mvsk') assert_equal(m, 2.0) assert_equal(v, np.inf) assert_equal(s, np.nan) assert_equal(k, np.nan) m, v, s, k = stats.pareto.stats(2.5, moments='mvsk') assert_allclose(m, 2.5 / 1.5) assert_allclose(v, 2.5 / (1.5*1.5*0.5)) assert_equal(s, np.nan) assert_equal(k, np.nan) m, v, s, k = stats.pareto.stats(3.0, moments='mvsk') assert_allclose(m, 1.5) assert_allclose(v, 0.75) assert_equal(s, np.nan) assert_equal(k, np.nan) m, v, s, k = stats.pareto.stats(3.5, moments='mvsk') assert_allclose(m, 3.5 / 2.5) assert_allclose(v, 3.5 / (2.5*2.5*1.5)) assert_allclose(s, (2*4.5/0.5)*np.sqrt(1.5/3.5)) assert_equal(k, np.nan) m, v, s, k = stats.pareto.stats(4.0, moments='mvsk') assert_allclose(m, 4.0 / 3.0) assert_allclose(v, 4.0 / 18.0) assert_allclose(s, 2*(1+4.0)/(4.0-3) * np.sqrt((4.0-2)/4.0)) assert_equal(k, np.nan) m, v, s, k = stats.pareto.stats(4.5, moments='mvsk') assert_allclose(m, 4.5 / 3.5) assert_allclose(v, 4.5 / (3.5*3.5*2.5)) assert_allclose(s, (2*5.5/1.5) * np.sqrt(2.5/4.5)) assert_allclose(k, 6*(4.5**3 + 4.5**2 - 6*4.5 - 2)/(4.5*1.5*0.5)) def test_sf(self): x = 1e9 b = 2 scale = 1.5 p = stats.pareto.sf(x, b, loc=0, scale=scale) expected = (scale/x)**b # 2.25e-18 assert_allclose(p, expected) class TestGenpareto(object): def test_ab(self): # c >= 0: a, b = [0, inf] for c in [1., 0.]: c = np.asarray(c) stats.genpareto._argcheck(c) # ugh a, b = stats.genpareto._get_support(c) assert_equal(a, 0.) assert_(np.isposinf(b)) # c < 0: a=0, b=1/|c| c = np.asarray(-2.) stats.genpareto._argcheck(c) assert_allclose(stats.genpareto._get_support(c), [0., 0.5]) def test_c0(self): # with c=0, genpareto reduces to the exponential distribution rv = stats.genpareto(c=0.) x = np.linspace(0, 10., 30) assert_allclose(rv.pdf(x), stats.expon.pdf(x)) assert_allclose(rv.cdf(x), stats.expon.cdf(x)) assert_allclose(rv.sf(x), stats.expon.sf(x)) q = np.linspace(0., 1., 10) assert_allclose(rv.ppf(q), stats.expon.ppf(q)) def test_cm1(self): # with c=-1, genpareto reduces to the uniform distr on [0, 1] rv = stats.genpareto(c=-1.) x = np.linspace(0, 10., 30) assert_allclose(rv.pdf(x), stats.uniform.pdf(x)) assert_allclose(rv.cdf(x), stats.uniform.cdf(x)) assert_allclose(rv.sf(x), stats.uniform.sf(x)) q = np.linspace(0., 1., 10) assert_allclose(rv.ppf(q), stats.uniform.ppf(q)) # logpdf(1., c=-1) should be zero assert_allclose(rv.logpdf(1), 0) def test_x_inf(self): # make sure x=inf is handled gracefully rv = stats.genpareto(c=0.1) assert_allclose([rv.pdf(np.inf), rv.cdf(np.inf)], [0., 1.]) assert_(np.isneginf(rv.logpdf(np.inf))) rv = stats.genpareto(c=0.) assert_allclose([rv.pdf(np.inf), rv.cdf(np.inf)], [0., 1.]) assert_(np.isneginf(rv.logpdf(np.inf))) rv = stats.genpareto(c=-1.) assert_allclose([rv.pdf(np.inf), rv.cdf(np.inf)], [0., 1.]) assert_(np.isneginf(rv.logpdf(np.inf))) def test_c_continuity(self): # pdf is continuous at c=0, -1 x = np.linspace(0, 10, 30) for c in [0, -1]: pdf0 = stats.genpareto.pdf(x, c) for dc in [1e-14, -1e-14]: pdfc = stats.genpareto.pdf(x, c + dc) assert_allclose(pdf0, pdfc, atol=1e-12) cdf0 = stats.genpareto.cdf(x, c) for dc in [1e-14, 1e-14]: cdfc = stats.genpareto.cdf(x, c + dc) assert_allclose(cdf0, cdfc, atol=1e-12) def test_c_continuity_ppf(self): q = np.r_[np.logspace(1e-12, 0.01, base=0.1), np.linspace(0.01, 1, 30, endpoint=False), 1. - np.logspace(1e-12, 0.01, base=0.1)] for c in [0., -1.]: ppf0 = stats.genpareto.ppf(q, c) for dc in [1e-14, -1e-14]: ppfc = stats.genpareto.ppf(q, c + dc) assert_allclose(ppf0, ppfc, atol=1e-12) def test_c_continuity_isf(self): q = np.r_[np.logspace(1e-12, 0.01, base=0.1), np.linspace(0.01, 1, 30, endpoint=False), 1. - np.logspace(1e-12, 0.01, base=0.1)] for c in [0., -1.]: isf0 = stats.genpareto.isf(q, c) for dc in [1e-14, -1e-14]: isfc = stats.genpareto.isf(q, c + dc) assert_allclose(isf0, isfc, atol=1e-12) def test_cdf_ppf_roundtrip(self): # this should pass with machine precision. hat tip @pbrod q = np.r_[np.logspace(1e-12, 0.01, base=0.1), np.linspace(0.01, 1, 30, endpoint=False), 1. - np.logspace(1e-12, 0.01, base=0.1)] for c in [1e-8, -1e-18, 1e-15, -1e-15]: assert_allclose(stats.genpareto.cdf(stats.genpareto.ppf(q, c), c), q, atol=1e-15) def test_logsf(self): logp = stats.genpareto.logsf(1e10, .01, 0, 1) assert_allclose(logp, -1842.0680753952365) class TestPearson3(object): def setup_method(self): np.random.seed(1234) def test_rvs(self): vals = stats.pearson3.rvs(0.1, size=(2, 50)) assert_(numpy.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllFloat']) val = stats.pearson3.rvs(0.5) assert_(isinstance(val, float)) val = stats.pearson3(0.5).rvs(3) assert_(isinstance(val, numpy.ndarray)) assert_(val.dtype.char in typecodes['AllFloat']) assert_(len(val) == 3) def test_pdf(self): vals = stats.pearson3.pdf(2, [0.0, 0.1, 0.2]) assert_allclose(vals, np.array([0.05399097, 0.05555481, 0.05670246]), atol=1e-6) vals = stats.pearson3.pdf(-3, 0.1) assert_allclose(vals, np.array([0.00313791]), atol=1e-6) vals = stats.pearson3.pdf([-3, -2, -1, 0, 1], 0.1) assert_allclose(vals, np.array([0.00313791, 0.05192304, 0.25028092, 0.39885918, 0.23413173]), atol=1e-6) def test_cdf(self): vals = stats.pearson3.cdf(2, [0.0, 0.1, 0.2]) assert_allclose(vals, np.array([0.97724987, 0.97462004, 0.97213626]), atol=1e-6) vals = stats.pearson3.cdf(-3, 0.1) assert_allclose(vals, [0.00082256], atol=1e-6) vals = stats.pearson3.cdf([-3, -2, -1, 0, 1], 0.1) assert_allclose(vals, [8.22563821e-04, 1.99860448e-02, 1.58550710e-01, 5.06649130e-01, 8.41442111e-01], atol=1e-6) class TestKappa4(object): def test_cdf_genpareto(self): # h = 1 and k != 0 is generalized Pareto x = [0.0, 0.1, 0.2, 0.5] h = 1.0 for k in [-1.9, -1.0, -0.5, -0.2, -0.1, 0.1, 0.2, 0.5, 1.0, 1.9]: vals = stats.kappa4.cdf(x, h, k) # shape parameter is opposite what is expected vals_comp = stats.genpareto.cdf(x, -k) assert_allclose(vals, vals_comp) def test_cdf_genextreme(self): # h = 0 and k != 0 is generalized extreme value x = np.linspace(-5, 5, 10) h = 0.0 k = np.linspace(-3, 3, 10) vals = stats.kappa4.cdf(x, h, k) vals_comp = stats.genextreme.cdf(x, k) assert_allclose(vals, vals_comp) def test_cdf_expon(self): # h = 1 and k = 0 is exponential x = np.linspace(0, 10, 10) h = 1.0 k = 0.0 vals = stats.kappa4.cdf(x, h, k) vals_comp = stats.expon.cdf(x) assert_allclose(vals, vals_comp) def test_cdf_gumbel_r(self): # h = 0 and k = 0 is gumbel_r x = np.linspace(-5, 5, 10) h = 0.0 k = 0.0 vals = stats.kappa4.cdf(x, h, k) vals_comp = stats.gumbel_r.cdf(x) assert_allclose(vals, vals_comp) def test_cdf_logistic(self): # h = -1 and k = 0 is logistic x = np.linspace(-5, 5, 10) h = -1.0 k = 0.0 vals = stats.kappa4.cdf(x, h, k) vals_comp = stats.logistic.cdf(x) assert_allclose(vals, vals_comp) def test_cdf_uniform(self): # h = 1 and k = 1 is uniform x = np.linspace(-5, 5, 10) h = 1.0 k = 1.0 vals = stats.kappa4.cdf(x, h, k) vals_comp = stats.uniform.cdf(x) assert_allclose(vals, vals_comp) def test_integers_ctor(self): # regression test for gh-7416: _argcheck fails for integer h and k # in numpy 1.12 stats.kappa4(1, 2) class TestPoisson(object): def setup_method(self): np.random.seed(1234) def test_pmf_basic(self): # Basic case ln2 = np.log(2) vals = stats.poisson.pmf([0, 1, 2], ln2) expected = [0.5, ln2/2, ln2**2/4] assert_allclose(vals, expected) def test_mu0(self): # Edge case: mu=0 vals = stats.poisson.pmf([0, 1, 2], 0) expected = [1, 0, 0] assert_array_equal(vals, expected) interval = stats.poisson.interval(0.95, 0) assert_equal(interval, (0, 0)) def test_rvs(self): vals = stats.poisson.rvs(0.5, size=(2, 50)) assert_(numpy.all(vals >= 0)) assert_(numpy.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.poisson.rvs(0.5) assert_(isinstance(val, int)) val = stats.poisson(0.5).rvs(3) assert_(isinstance(val, numpy.ndarray)) assert_(val.dtype.char in typecodes['AllInteger']) def test_stats(self): mu = 16.0 result = stats.poisson.stats(mu, moments='mvsk') assert_allclose(result, [mu, mu, np.sqrt(1.0/mu), 1.0/mu]) mu = np.array([0.0, 1.0, 2.0]) result = stats.poisson.stats(mu, moments='mvsk') expected = (mu, mu, [np.inf, 1, 1/np.sqrt(2)], [np.inf, 1, 0.5]) assert_allclose(result, expected) class TestZipf(object): def setup_method(self): np.random.seed(1234) def test_rvs(self): vals = stats.zipf.rvs(1.5, size=(2, 50)) assert_(numpy.all(vals >= 1)) assert_(numpy.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.zipf.rvs(1.5) assert_(isinstance(val, int)) val = stats.zipf(1.5).rvs(3) assert_(isinstance(val, numpy.ndarray)) assert_(val.dtype.char in typecodes['AllInteger']) def test_moments(self): # n-th moment is finite iff a > n + 1 m, v = stats.zipf.stats(a=2.8) assert_(np.isfinite(m)) assert_equal(v, np.inf) s, k = stats.zipf.stats(a=4.8, moments='sk') assert_(not np.isfinite([s, k]).all()) class TestDLaplace(object): def setup_method(self): np.random.seed(1234) def test_rvs(self): vals = stats.dlaplace.rvs(1.5, size=(2, 50)) assert_(numpy.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.dlaplace.rvs(1.5) assert_(isinstance(val, int)) val = stats.dlaplace(1.5).rvs(3) assert_(isinstance(val, numpy.ndarray)) assert_(val.dtype.char in typecodes['AllInteger']) assert_(stats.dlaplace.rvs(0.8) is not None) def test_stats(self): # compare the explicit formulas w/ direct summation using pmf a = 1. dl = stats.dlaplace(a) m, v, s, k = dl.stats('mvsk') N = 37 xx = np.arange(-N, N+1) pp = dl.pmf(xx) m2, m4 = np.sum(pp*xx**2), np.sum(pp*xx**4) assert_equal((m, s), (0, 0)) assert_allclose((v, k), (m2, m4/m2**2 - 3.), atol=1e-14, rtol=1e-8) def test_stats2(self): a = np.log(2.) dl = stats.dlaplace(a) m, v, s, k = dl.stats('mvsk') assert_equal((m, s), (0., 0.)) assert_allclose((v, k), (4., 3.25)) class TestInvGamma(object): def test_invgamma_inf_gh_1866(self): # invgamma's moments are only finite for a>n # specific numbers checked w/ boost 1.54 with warnings.catch_warnings(): warnings.simplefilter('error', RuntimeWarning) mvsk = stats.invgamma.stats(a=19.31, moments='mvsk') expected = [0.05461496450, 0.0001723162534, 1.020362676, 2.055616582] assert_allclose(mvsk, expected) a = [1.1, 3.1, 5.6] mvsk = stats.invgamma.stats(a=a, moments='mvsk') expected = ([10., 0.476190476, 0.2173913043], # mmm [np.inf, 0.2061430632, 0.01312749422], # vvv [np.nan, 41.95235392, 2.919025532], # sss [np.nan, np.nan, 24.51923076]) # kkk for x, y in zip(mvsk, expected): assert_almost_equal(x, y) def test_cdf_ppf(self): # gh-6245 x = np.logspace(-2.6, 0) y = stats.invgamma.cdf(x, 1) xx = stats.invgamma.ppf(y, 1) assert_allclose(x, xx) def test_sf_isf(self): # gh-6245 if sys.maxsize > 2**32: x = np.logspace(2, 100) else: # Invgamme roundtrip on 32-bit systems has relative accuracy # ~1e-15 until x=1e+15, and becomes inf above x=1e+18 x = np.logspace(2, 18) y = stats.invgamma.sf(x, 1) xx = stats.invgamma.isf(y, 1) assert_allclose(x, xx, rtol=1.0) class TestF(object): def test_f_moments(self): # n-th moment of F distributions is only finite for n < dfd / 2 m, v, s, k = stats.f.stats(11, 6.5, moments='mvsk') assert_(np.isfinite(m)) assert_(np.isfinite(v)) assert_(np.isfinite(s)) assert_(not np.isfinite(k)) def test_moments_warnings(self): # no warnings should be generated for dfd = 2, 4, 6, 8 (div by zero) with warnings.catch_warnings(): warnings.simplefilter('error', RuntimeWarning) stats.f.stats(dfn=[11]*4, dfd=[2, 4, 6, 8], moments='mvsk') @pytest.mark.xfail(reason='f stats does not properly broadcast') def test_stats_broadcast(self): # stats do not fully broadcast just yet mv = stats.f.stats(dfn=11, dfd=[11, 12]) def test_rvgeneric_std(): # Regression test for #1191 assert_array_almost_equal(stats.t.std([5, 6]), [1.29099445, 1.22474487]) def test_moments_t(): # regression test for #8786 assert_equal(stats.t.stats(df=1, moments='mvsk'), (np.inf, np.nan, np.nan, np.nan)) assert_equal(stats.t.stats(df=1.01, moments='mvsk'), (0.0, np.inf, np.nan, np.nan)) assert_equal(stats.t.stats(df=2, moments='mvsk'), (0.0, np.inf, np.nan, np.nan)) assert_equal(stats.t.stats(df=2.01, moments='mvsk'), (0.0, 2.01/(2.01-2.0), np.nan, np.inf)) assert_equal(stats.t.stats(df=3, moments='sk'), (np.nan, np.inf)) assert_equal(stats.t.stats(df=3.01, moments='sk'), (0.0, np.inf)) assert_equal(stats.t.stats(df=4, moments='sk'), (0.0, np.inf)) assert_equal(stats.t.stats(df=4.01, moments='sk'), (0.0, 6.0/(4.01 - 4.0))) class TestRvDiscrete(object): def setup_method(self): np.random.seed(1234) def test_rvs(self): states = [-1, 0, 1, 2, 3, 4] probability = [0.0, 0.3, 0.4, 0.0, 0.3, 0.0] samples = 1000 r = stats.rv_discrete(name='sample', values=(states, probability)) x = r.rvs(size=samples) assert_(isinstance(x, numpy.ndarray)) for s, p in zip(states, probability): assert_(abs(sum(x == s)/float(samples) - p) < 0.05) x = r.rvs() assert_(isinstance(x, int)) def test_entropy(self): # Basic tests of entropy. pvals = np.array([0.25, 0.45, 0.3]) p = stats.rv_discrete(values=([0, 1, 2], pvals)) expected_h = -sum(xlogy(pvals, pvals)) h = p.entropy() assert_allclose(h, expected_h) p = stats.rv_discrete(values=([0, 1, 2], [1.0, 0, 0])) h = p.entropy() assert_equal(h, 0.0) def test_pmf(self): xk = [1, 2, 4] pk = [0.5, 0.3, 0.2] rv = stats.rv_discrete(values=(xk, pk)) x = [[1., 4.], [3., 2]] assert_allclose(rv.pmf(x), [[0.5, 0.2], [0., 0.3]], atol=1e-14) def test_cdf(self): xk = [1, 2, 4] pk = [0.5, 0.3, 0.2] rv = stats.rv_discrete(values=(xk, pk)) x_values = [-2, 1., 1.1, 1.5, 2.0, 3.0, 4, 5] expected = [0, 0.5, 0.5, 0.5, 0.8, 0.8, 1, 1] assert_allclose(rv.cdf(x_values), expected, atol=1e-14) # also check scalar arguments assert_allclose([rv.cdf(xx) for xx in x_values], expected, atol=1e-14) def test_ppf(self): xk = [1, 2, 4] pk = [0.5, 0.3, 0.2] rv = stats.rv_discrete(values=(xk, pk)) q_values = [0.1, 0.5, 0.6, 0.8, 0.9, 1.] expected = [1, 1, 2, 2, 4, 4] assert_allclose(rv.ppf(q_values), expected, atol=1e-14) # also check scalar arguments assert_allclose([rv.ppf(q) for q in q_values], expected, atol=1e-14) def test_cdf_ppf_next(self): # copied and special cased from test_discrete_basic vals = ([1, 2, 4, 7, 8], [0.1, 0.2, 0.3, 0.3, 0.1]) rv = stats.rv_discrete(values=vals) assert_array_equal(rv.ppf(rv.cdf(rv.xk[:-1]) + 1e-8), rv.xk[1:]) def test_expect(self): xk = [1, 2, 4, 6, 7, 11] pk = [0.1, 0.2, 0.2, 0.2, 0.2, 0.1] rv = stats.rv_discrete(values=(xk, pk)) assert_allclose(rv.expect(), np.sum(rv.xk * rv.pk), atol=1e-14) def test_multidimension(self): xk = np.arange(12).reshape((3, 4)) pk = np.array([[0.1, 0.1, 0.15, 0.05], [0.1, 0.1, 0.05, 0.05], [0.1, 0.1, 0.05, 0.05]]) rv = stats.rv_discrete(values=(xk, pk)) assert_allclose(rv.expect(), np.sum(rv.xk * rv.pk), atol=1e-14) def test_bad_input(self): xk = [1, 2, 3] pk = [0.5, 0.5] assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk))) pk = [1, 2, 3] assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk))) xk = [1, 2, 3] pk = [0.5, 1.2, -0.7] assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk))) xk = [1, 2, 3, 4, 5] pk = [0.3, 0.3, 0.3, 0.3, -0.2] assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk))) def test_shape_rv_sample(self): # tests added for gh-9565 # mismatch of 2d inputs xk, pk = np.arange(4).reshape((2, 2)), np.ones((2, 3)) / 6 assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk))) # same number of elements, but shapes not compatible xk, pk = np.arange(6).reshape((3, 2)), np.ones((2, 3)) / 6 assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk))) # same shapes => no error xk, pk = np.arange(6).reshape((3, 2)), np.ones((3, 2)) / 6 assert_equal(stats.rv_discrete(values=(xk, pk)).pmf(0), 1/6) class TestSkewNorm(object): def setup_method(self): np.random.seed(1234) def test_normal(self): # When the skewness is 0 the distribution is normal x = np.linspace(-5, 5, 100) assert_array_almost_equal(stats.skewnorm.pdf(x, a=0), stats.norm.pdf(x)) def test_rvs(self): shape = (3, 4, 5) x = stats.skewnorm.rvs(a=0.75, size=shape) assert_equal(shape, x.shape) x = stats.skewnorm.rvs(a=-3, size=shape) assert_equal(shape, x.shape) def test_moments(self): X = stats.skewnorm.rvs(a=4, size=int(1e6), loc=5, scale=2) expected = [np.mean(X), np.var(X), stats.skew(X), stats.kurtosis(X)] computed = stats.skewnorm.stats(a=4, loc=5, scale=2, moments='mvsk') assert_array_almost_equal(computed, expected, decimal=2) X = stats.skewnorm.rvs(a=-4, size=int(1e6), loc=5, scale=2) expected = [np.mean(X), np.var(X), stats.skew(X), stats.kurtosis(X)] computed = stats.skewnorm.stats(a=-4, loc=5, scale=2, moments='mvsk') assert_array_almost_equal(computed, expected, decimal=2) def test_cdf_large_x(self): # Regression test for gh-7746. # The x values are large enough that the closest 64 bit floating # point representation of the exact CDF is 1.0. p = stats.skewnorm.cdf([10, 20, 30], -1) assert_allclose(p, np.ones(3), rtol=1e-14) p = stats.skewnorm.cdf(25, 2.5) assert_allclose(p, 1.0, rtol=1e-14) def test_cdf_sf_small_values(self): # Triples are [x, a, cdf(x, a)]. These values were computed # using CDF[SkewNormDistribution[0, 1, a], x] in Wolfram Alpha. cdfvals = [ [-8, 1, 3.870035046664392611e-31], [-4, 2, 8.1298399188811398e-21], [-2, 5, 1.55326826787106273e-26], [-9, -1, 2.257176811907681295e-19], [-10, -4, 1.523970604832105213e-23], ] for x, a, cdfval in cdfvals: p = stats.skewnorm.cdf(x, a) assert_allclose(p, cdfval, rtol=1e-8) # For the skew normal distribution, sf(-x, -a) = cdf(x, a). p = stats.skewnorm.sf(-x, -a) assert_allclose(p, cdfval, rtol=1e-8) class TestExpon(object): def test_zero(self): assert_equal(stats.expon.pdf(0), 1) def test_tail(self): # Regression test for ticket 807 assert_equal(stats.expon.cdf(1e-18), 1e-18) assert_equal(stats.expon.isf(stats.expon.sf(40)), 40) class TestExponNorm(object): def test_moments(self): # Some moment test cases based on non-loc/scaled formula def get_moms(lam, sig, mu): # See wikipedia for these formulae # where it is listed as an exponentially modified gaussian opK2 = 1.0 + 1 / (lam*sig)**2 exp_skew = 2 / (lam * sig)**3 * opK2**(-1.5) exp_kurt = 6.0 * (1 + (lam * sig)**2)**(-2) return [mu + 1/lam, sig*sig + 1.0/(lam*lam), exp_skew, exp_kurt] mu, sig, lam = 0, 1, 1 K = 1.0 / (lam * sig) sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk') assert_almost_equal(sts, get_moms(lam, sig, mu)) mu, sig, lam = -3, 2, 0.1 K = 1.0 / (lam * sig) sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk') assert_almost_equal(sts, get_moms(lam, sig, mu)) mu, sig, lam = 0, 3, 1 K = 1.0 / (lam * sig) sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk') assert_almost_equal(sts, get_moms(lam, sig, mu)) mu, sig, lam = -5, 11, 3.5 K = 1.0 / (lam * sig) sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk') assert_almost_equal(sts, get_moms(lam, sig, mu)) def test_extremes_x(self): # Test for extreme values against overflows assert_almost_equal(stats.exponnorm.pdf(-900, 1), 0.0) assert_almost_equal(stats.exponnorm.pdf(+900, 1), 0.0) assert_almost_equal(stats.exponnorm.pdf(1, 0.01), 0.0) assert_almost_equal(stats.exponnorm.pdf(-900, 0.01), 0.0) assert_almost_equal(stats.exponnorm.pdf(+900, 0.01), 0.0) class TestGenExpon(object): def test_pdf_unity_area(self): from scipy.integrate import simps # PDF should integrate to one p = stats.genexpon.pdf(numpy.arange(0, 10, 0.01), 0.5, 0.5, 2.0) assert_almost_equal(simps(p, dx=0.01), 1, 1) def test_cdf_bounds(self): # CDF should always be positive cdf = stats.genexpon.cdf(numpy.arange(0, 10, 0.01), 0.5, 0.5, 2.0) assert_(numpy.all((0 <= cdf) & (cdf <= 1))) class TestExponpow(object): def test_tail(self): assert_almost_equal(stats.exponpow.cdf(1e-10, 2.), 1e-20) assert_almost_equal(stats.exponpow.isf(stats.exponpow.sf(5, .8), .8), 5) class TestSkellam(object): def test_pmf(self): # comparison to R k = numpy.arange(-10, 15) mu1, mu2 = 10, 5 skpmfR = numpy.array( [4.2254582961926893e-005, 1.1404838449648488e-004, 2.8979625801752660e-004, 6.9177078182101231e-004, 1.5480716105844708e-003, 3.2412274963433889e-003, 6.3373707175123292e-003, 1.1552351566696643e-002, 1.9606152375042644e-002, 3.0947164083410337e-002, 4.5401737566767360e-002, 6.1894328166820688e-002, 7.8424609500170578e-002, 9.2418812533573133e-002, 1.0139793148019728e-001, 1.0371927988298846e-001, 9.9076583077406091e-002, 8.8546660073089561e-002, 7.4187842052486810e-002, 5.8392772862200251e-002, 4.3268692953013159e-002, 3.0248159818374226e-002, 1.9991434305603021e-002, 1.2516877303301180e-002, 7.4389876226229707e-003]) assert_almost_equal(stats.skellam.pmf(k, mu1, mu2), skpmfR, decimal=15) def test_cdf(self): # comparison to R, only 5 decimals k = numpy.arange(-10, 15) mu1, mu2 = 10, 5 skcdfR = numpy.array( [6.4061475386192104e-005, 1.7810985988267694e-004, 4.6790611790020336e-004, 1.1596768997212152e-003, 2.7077485103056847e-003, 5.9489760066490718e-003, 1.2286346724161398e-002, 2.3838698290858034e-002, 4.3444850665900668e-002, 7.4392014749310995e-002, 1.1979375231607835e-001, 1.8168808048289900e-001, 2.6011268998306952e-001, 3.5253150251664261e-001, 4.5392943399683988e-001, 5.5764871387982828e-001, 6.5672529695723436e-001, 7.4527195703032389e-001, 8.1945979908281064e-001, 8.7785257194501087e-001, 9.2112126489802404e-001, 9.5136942471639818e-001, 9.7136085902200120e-001, 9.8387773632530240e-001, 9.9131672394792536e-001]) assert_almost_equal(stats.skellam.cdf(k, mu1, mu2), skcdfR, decimal=5) class TestLognorm(object): def test_pdf(self): # Regression test for Ticket #1471: avoid nan with 0/0 situation # Also make sure there are no warnings at x=0, cf gh-5202 with warnings.catch_warnings(): warnings.simplefilter('error', RuntimeWarning) pdf = stats.lognorm.pdf([0, 0.5, 1], 1) assert_array_almost_equal(pdf, [0.0, 0.62749608, 0.39894228]) def test_logcdf(self): # Regression test for gh-5940: sf et al would underflow too early x2, mu, sigma = 201.68, 195, 0.149 assert_allclose(stats.lognorm.sf(x2-mu, s=sigma), stats.norm.sf(np.log(x2-mu)/sigma)) assert_allclose(stats.lognorm.logsf(x2-mu, s=sigma), stats.norm.logsf(np.log(x2-mu)/sigma)) class TestBeta(object): def test_logpdf(self): # Regression test for Ticket #1326: avoid nan with 0*log(0) situation logpdf = stats.beta.logpdf(0, 1, 0.5) assert_almost_equal(logpdf, -0.69314718056) logpdf = stats.beta.logpdf(0, 0.5, 1) assert_almost_equal(logpdf, np.inf) def test_logpdf_ticket_1866(self): alpha, beta = 267, 1472 x = np.array([0.2, 0.5, 0.6]) b = stats.beta(alpha, beta) assert_allclose(b.logpdf(x).sum(), -1201.699061824062) assert_allclose(b.pdf(x), np.exp(b.logpdf(x))) class TestBetaPrime(object): def test_logpdf(self): alpha, beta = 267, 1472 x = np.array([0.2, 0.5, 0.6]) b = stats.betaprime(alpha, beta) assert_(np.isfinite(b.logpdf(x)).all()) assert_allclose(b.pdf(x), np.exp(b.logpdf(x))) def test_cdf(self): # regression test for gh-4030: Implementation of # scipy.stats.betaprime.cdf() x = stats.betaprime.cdf(0, 0.2, 0.3) assert_equal(x, 0.0) alpha, beta = 267, 1472 x = np.array([0.2, 0.5, 0.6]) cdfs = stats.betaprime.cdf(x, alpha, beta) assert_(np.isfinite(cdfs).all()) # check the new cdf implementation vs generic one: gen_cdf = stats.rv_continuous._cdf_single cdfs_g = [gen_cdf(stats.betaprime, val, alpha, beta) for val in x] assert_allclose(cdfs, cdfs_g, atol=0, rtol=2e-12) class TestGamma(object): def test_pdf(self): # a few test cases to compare with R pdf = stats.gamma.pdf(90, 394, scale=1./5) assert_almost_equal(pdf, 0.002312341) pdf = stats.gamma.pdf(3, 10, scale=1./5) assert_almost_equal(pdf, 0.1620358) def test_logpdf(self): # Regression test for Ticket #1326: cornercase avoid nan with 0*log(0) # situation logpdf = stats.gamma.logpdf(0, 1) assert_almost_equal(logpdf, 0) class TestChi2(object): # regression tests after precision improvements, ticket:1041, not verified def test_precision(self): assert_almost_equal(stats.chi2.pdf(1000, 1000), 8.919133934753128e-003, decimal=14) assert_almost_equal(stats.chi2.pdf(100, 100), 0.028162503162596778, decimal=14) def test_ppf(self): # Expected values computed with mpmath. df = 4.8 x = stats.chi2.ppf(2e-47, df) assert_allclose(x, 1.098472479575179840604902808e-19, rtol=1e-10) x = stats.chi2.ppf(0.5, df) assert_allclose(x, 4.15231407598589358660093156, rtol=1e-10) df = 13 x = stats.chi2.ppf(2e-77, df) assert_allclose(x, 1.0106330688195199050507943e-11, rtol=1e-10) x = stats.chi2.ppf(0.1, df) assert_allclose(x, 7.041504580095461859307179763, rtol=1e-10) class TestGumbelL(object): # gh-6228 def test_cdf_ppf(self): x = np.linspace(-100, -4) y = stats.gumbel_l.cdf(x) xx = stats.gumbel_l.ppf(y) assert_allclose(x, xx) def test_logcdf_logsf(self): x = np.linspace(-100, -4) y = stats.gumbel_l.logcdf(x) z = stats.gumbel_l.logsf(x) u = np.exp(y) v = -special.expm1(z) assert_allclose(u, v) def test_sf_isf(self): x = np.linspace(-20, 5) y = stats.gumbel_l.sf(x) xx = stats.gumbel_l.isf(y) assert_allclose(x, xx) class TestLevyStable(object): def test_fit(self): # construct data to have percentiles that match # example in McCulloch 1986. x = [-.05413,-.05413, 0.,0.,0.,0., .00533,.00533,.00533,.00533,.00533, .03354,.03354,.03354,.03354,.03354, .05309,.05309,.05309,.05309,.05309] alpha1, beta1, loc1, scale1 = stats.levy_stable._fitstart(x) assert_allclose(alpha1, 1.48, rtol=0, atol=0.01) assert_almost_equal(beta1, -.22, 2) assert_almost_equal(scale1, 0.01717, 4) assert_almost_equal(loc1, 0.00233, 2) # to 2 dps due to rounding error in McCulloch86 # cover alpha=2 scenario x2 = x + [.05309,.05309,.05309,.05309,.05309] alpha2, beta2, loc2, scale2 = stats.levy_stable._fitstart(x2) assert_equal(alpha2, 2) assert_equal(beta2, -1) assert_almost_equal(scale2, .02503, 4) assert_almost_equal(loc2, .03354, 4) @pytest.mark.slow def test_pdf_nolan_samples(self): """ Test pdf values against Nolan's stablec.exe output see - http://fs2.american.edu/jpnolan/www/stable/stable.html There's a known limitation of Nolan's executable for alpha < 0.2. Repeat following with beta = -1, -.5, 0, .5 and 1 stablec.exe << 1 # pdf 1 # Nolan S equivalent to S0 in scipy .25,2,.25 # alpha -1,-1,0 # beta -10,10,1 # x 1,0 # gamma, delta 2 # output file """ data = np.load(os.path.abspath(os.path.join(os.path.dirname(__file__), 'data/stable-pdf-sample-data.npy'))) data = np.core.records.fromarrays(data.T, names='x,p,alpha,beta') # support numpy 1.8.2 for travis npisin = np.isin if hasattr(np, "isin") else np.in1d tests = [ # best selects ['best', None, 8, None], # quadrature is accurate for most alpha except 0.25; perhaps limitation of Nolan stablec? # we reduce size of x to speed up computation as numerical integration slow. ['quadrature', None, 8, lambda r: (r['alpha'] > 0.25) & (npisin(r['x'], [-10,-5,0,5,10]))], # zolatarev is accurate except at alpha==1, beta != 0 ['zolotarev', None, 8, lambda r: r['alpha'] != 1], ['zolotarev', None, 8, lambda r: (r['alpha'] == 1) & (r['beta'] == 0)], ['zolotarev', None, 1, lambda r: (r['alpha'] == 1) & (r['beta'] != 0)], # fft accuracy reduces as alpha decreases, fails at low values of alpha and x=0 ['fft', 0, 4, lambda r: r['alpha'] > 1], ['fft', 0, 3, lambda r: (r['alpha'] < 1) & (r['alpha'] > 0.25)], ['fft', 0, 1, lambda r: (r['alpha'] == 0.25) & (r['x'] != 0)], # not useful here ] for ix, (default_method, fft_min_points, decimal_places, filter_func) in enumerate(tests): stats.levy_stable.pdf_default_method = default_method stats.levy_stable.pdf_fft_min_points_threshold = fft_min_points subdata = data[filter_func(data)] if filter_func is not None else data with suppress_warnings() as sup: sup.record(RuntimeWarning, "Density calculation unstable for alpha=1 and beta!=0.*") sup.record(RuntimeWarning, "Density calculations experimental for FFT method.*") p = stats.levy_stable.pdf(subdata['x'], subdata['alpha'], subdata['beta'], scale=1, loc=0) subdata2 = rec_append_fields(subdata, 'calc', p) failures = subdata2[(np.abs(p-subdata['p']) >= 1.5*10.**(-decimal_places)) | np.isnan(p)] assert_almost_equal(p, subdata['p'], decimal_places, "pdf test %s failed with method '%s'\n%s" % (ix, default_method, failures), verbose=False) @pytest.mark.slow def test_cdf_nolan_samples(self): """ Test cdf values against Nolan's stablec.exe output see - http://fs2.american.edu/jpnolan/www/stable/stable.html There's a known limitation of Nolan's executable for alpha < 0.2. Repeat following with beta = -1, -.5, 0, .5 and 1 stablec.exe << 2 # cdf 1 # Nolan S equivalent to S0 in scipy .25,2,.25 # alpha -1,-1,0 # beta -10,10,1 # x 1,0 # gamma, delta 2 # output file """ data = np.load(os.path.abspath(os.path.join(os.path.dirname(__file__), 'data/stable-cdf-sample-data.npy'))) data = np.core.records.fromarrays(data.T, names='x,p,alpha,beta') tests = [ # zolatarev is accurate for all values ['zolotarev', None, 8, None], # fft accuracy poor, very poor alpha < 1 ['fft', 0, 2, lambda r: r['alpha'] > 1], ] for ix, (default_method, fft_min_points, decimal_places, filter_func) in enumerate(tests): stats.levy_stable.pdf_default_method = default_method stats.levy_stable.pdf_fft_min_points_threshold = fft_min_points subdata = data[filter_func(data)] if filter_func is not None else data with suppress_warnings() as sup: sup.record(RuntimeWarning, 'FFT method is considered ' + 'experimental for cumulative distribution ' + 'function evaluations.*') p = stats.levy_stable.cdf(subdata['x'], subdata['alpha'], subdata['beta'], scale=1, loc=0) subdata2 = rec_append_fields(subdata, 'calc', p) failures = subdata2[(np.abs(p-subdata['p']) >= 1.5*10.**(-decimal_places)) | np.isnan(p)] assert_almost_equal(p, subdata['p'], decimal_places, "cdf test %s failed with method '%s'\n%s" % (ix, default_method, failures), verbose=False) def test_pdf_alpha_equals_one_beta_non_zero(self): """ sample points extracted from Tables and Graphs of Stable Probability Density Functions - Donald R Holt - 1973 - p 187. """ xs = np.array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4]) density = np.array([.3183, .3096, .2925, .2622, .1591, .1587, .1599, .1635, .0637, .0729, .0812, .0955, .0318, .0390, .0458, .0586, .0187, .0236, .0285, .0384]) betas = np.array([0, .25, .5, 1, 0, .25, .5, 1, 0, .25, .5, 1, 0, .25, .5, 1, 0, .25, .5, 1]) tests = [ ['quadrature', None, 4], #['fft', 0, 4], ['zolotarev', None, 1], ] with np.errstate(all='ignore'), suppress_warnings() as sup: sup.filter(category=RuntimeWarning, message="Density calculation unstable.*") for default_method, fft_min_points, decimal_places in tests: stats.levy_stable.pdf_default_method = default_method stats.levy_stable.pdf_fft_min_points_threshold = fft_min_points #stats.levy_stable.fft_grid_spacing = 0.0001 pdf = stats.levy_stable.pdf(xs, 1, betas, scale=1, loc=0) assert_almost_equal(pdf, density, decimal_places, default_method) def test_stats(self): param_sets = [ [(1.48,-.22, 0, 1), (0,np.inf,np.NaN,np.NaN)], [(2,.9, 10, 1.5), (10,4.5,0,0)] ] for args, exp_stats in param_sets: calc_stats = stats.levy_stable.stats(args[0], args[1], loc=args[2], scale=args[3], moments='mvsk') assert_almost_equal(calc_stats, exp_stats) class TestArrayArgument(object): # test for ticket:992 def setup_method(self): np.random.seed(1234) def test_noexception(self): rvs = stats.norm.rvs(loc=(np.arange(5)), scale=np.ones(5), size=(10, 5)) assert_equal(rvs.shape, (10, 5)) class TestDocstring(object): def test_docstrings(self): # See ticket #761 if stats.rayleigh.__doc__ is not None: assert_("rayleigh" in stats.rayleigh.__doc__.lower()) if stats.bernoulli.__doc__ is not None: assert_("bernoulli" in stats.bernoulli.__doc__.lower()) def test_no_name_arg(self): # If name is not given, construction shouldn't fail. See #1508. stats.rv_continuous() stats.rv_discrete() class TestEntropy(object): def test_entropy_positive(self): # See ticket #497 pk = [0.5, 0.2, 0.3] qk = [0.1, 0.25, 0.65] eself = stats.entropy(pk, pk) edouble = stats.entropy(pk, qk) assert_(0.0 == eself) assert_(edouble >= 0.0) def test_entropy_base(self): pk = np.ones(16, float) S = stats.entropy(pk, base=2.) assert_(abs(S - 4.) < 1.e-5) qk = np.ones(16, float) qk[:8] = 2. S = stats.entropy(pk, qk) S2 = stats.entropy(pk, qk, base=2.) assert_(abs(S/S2 - np.log(2.)) < 1.e-5) def test_entropy_zero(self): # Test for PR-479 assert_almost_equal(stats.entropy([0, 1, 2]), 0.63651416829481278, decimal=12) def test_entropy_2d(self): pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]] qk = [[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]] assert_array_almost_equal(stats.entropy(pk, qk), [0.1933259, 0.18609809]) def test_entropy_2d_zero(self): pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]] qk = [[0.0, 0.1], [0.3, 0.6], [0.5, 0.3]] assert_array_almost_equal(stats.entropy(pk, qk), [np.inf, 0.18609809]) pk[0][0] = 0.0 assert_array_almost_equal(stats.entropy(pk, qk), [0.17403988, 0.18609809]) def TestArgsreduce(): a = array([1, 3, 2, 1, 2, 3, 3]) b, c = argsreduce(a > 1, a, 2) assert_array_equal(b, [3, 2, 2, 3, 3]) assert_array_equal(c, [2, 2, 2, 2, 2]) b, c = argsreduce(2 > 1, a, 2) assert_array_equal(b, a[0]) assert_array_equal(c, [2]) b, c = argsreduce(a > 0, a, 2) assert_array_equal(b, a) assert_array_equal(c, [2] * numpy.size(a)) class TestFitMethod(object): skip = ['ncf'] def setup_method(self): np.random.seed(1234) @pytest.mark.slow @pytest.mark.parametrize('dist,args,alpha', cases_test_all_distributions()) def test_fit(self, dist, args, alpha): if dist in self.skip: pytest.skip("%s fit known to fail" % dist) distfunc = getattr(stats, dist) with np.errstate(all='ignore'), suppress_warnings() as sup: sup.filter(category=DeprecationWarning, message=".*frechet_") res = distfunc.rvs(*args, **{'size': 200}) vals = distfunc.fit(res) vals2 = distfunc.fit(res, optimizer='powell') # Only check the length of the return # FIXME: should check the actual results to see if we are 'close' # to what was created --- but what is 'close' enough assert_(len(vals) == 2+len(args)) assert_(len(vals2) == 2+len(args)) @pytest.mark.slow @pytest.mark.parametrize('dist,args,alpha', cases_test_all_distributions()) def test_fix_fit(self, dist, args, alpha): # Not sure why 'ncf', and 'beta' are failing # frechet has different len(args) than distfunc.numargs if dist in self.skip + ['frechet']: pytest.skip("%s fit known to fail" % dist) distfunc = getattr(stats, dist) with np.errstate(all='ignore'), suppress_warnings() as sup: sup.filter(category=DeprecationWarning, message=".*frechet_") res = distfunc.rvs(*args, **{'size': 200}) vals = distfunc.fit(res, floc=0) vals2 = distfunc.fit(res, fscale=1) assert_(len(vals) == 2+len(args)) assert_(vals[-2] == 0) assert_(vals2[-1] == 1) assert_(len(vals2) == 2+len(args)) if len(args) > 0: vals3 = distfunc.fit(res, f0=args[0]) assert_(len(vals3) == 2+len(args)) assert_(vals3[0] == args[0]) if len(args) > 1: vals4 = distfunc.fit(res, f1=args[1]) assert_(len(vals4) == 2+len(args)) assert_(vals4[1] == args[1]) if len(args) > 2: vals5 = distfunc.fit(res, f2=args[2]) assert_(len(vals5) == 2+len(args)) assert_(vals5[2] == args[2]) def test_fix_fit_2args_lognorm(self): # Regression test for #1551. np.random.seed(12345) with np.errstate(all='ignore'): x = stats.lognorm.rvs(0.25, 0., 20.0, size=20) expected_shape = np.sqrt(((np.log(x) - np.log(20))**2).mean()) assert_allclose(np.array(stats.lognorm.fit(x, floc=0, fscale=20)), [expected_shape, 0, 20], atol=1e-8) def test_fix_fit_norm(self): x = np.arange(1, 6) loc, scale = stats.norm.fit(x) assert_almost_equal(loc, 3) assert_almost_equal(scale, np.sqrt(2)) loc, scale = stats.norm.fit(x, floc=2) assert_equal(loc, 2) assert_equal(scale, np.sqrt(3)) loc, scale = stats.norm.fit(x, fscale=2) assert_almost_equal(loc, 3) assert_equal(scale, 2) def test_fix_fit_gamma(self): x = np.arange(1, 6) meanlog = np.log(x).mean() # A basic test of gamma.fit with floc=0. floc = 0 a, loc, scale = stats.gamma.fit(x, floc=floc) s = np.log(x.mean()) - meanlog assert_almost_equal(np.log(a) - special.digamma(a), s, decimal=5) assert_equal(loc, floc) assert_almost_equal(scale, x.mean()/a, decimal=8) # Regression tests for gh-2514. # The problem was that if `floc=0` was given, any other fixed # parameters were ignored. f0 = 1 floc = 0 a, loc, scale = stats.gamma.fit(x, f0=f0, floc=floc) assert_equal(a, f0) assert_equal(loc, floc) assert_almost_equal(scale, x.mean()/a, decimal=8) f0 = 2 floc = 0 a, loc, scale = stats.gamma.fit(x, f0=f0, floc=floc) assert_equal(a, f0) assert_equal(loc, floc) assert_almost_equal(scale, x.mean()/a, decimal=8) # loc and scale fixed. floc = 0 fscale = 2 a, loc, scale = stats.gamma.fit(x, floc=floc, fscale=fscale) assert_equal(loc, floc) assert_equal(scale, fscale) c = meanlog - np.log(fscale) assert_almost_equal(special.digamma(a), c) def test_fix_fit_beta(self): # Test beta.fit when both floc and fscale are given. def mlefunc(a, b, x): # Zeros of this function are critical points of # the maximum likelihood function. n = len(x) s1 = np.log(x).sum() s2 = np.log(1-x).sum() psiab = special.psi(a + b) func = [s1 - n * (-psiab + special.psi(a)), s2 - n * (-psiab + special.psi(b))] return func # Basic test with floc and fscale given. x = np.array([0.125, 0.25, 0.5]) a, b, loc, scale = stats.beta.fit(x, floc=0, fscale=1) assert_equal(loc, 0) assert_equal(scale, 1) assert_allclose(mlefunc(a, b, x), [0, 0], atol=1e-6) # Basic test with f0, floc and fscale given. # This is also a regression test for gh-2514. x = np.array([0.125, 0.25, 0.5]) a, b, loc, scale = stats.beta.fit(x, f0=2, floc=0, fscale=1) assert_equal(a, 2) assert_equal(loc, 0) assert_equal(scale, 1) da, db = mlefunc(a, b, x) assert_allclose(db, 0, atol=1e-5) # Same floc and fscale values as above, but reverse the data # and fix b (f1). x2 = 1 - x a2, b2, loc2, scale2 = stats.beta.fit(x2, f1=2, floc=0, fscale=1) assert_equal(b2, 2) assert_equal(loc2, 0) assert_equal(scale2, 1) da, db = mlefunc(a2, b2, x2) assert_allclose(da, 0, atol=1e-5) # a2 of this test should equal b from above. assert_almost_equal(a2, b) # Check for detection of data out of bounds when floc and fscale # are given. assert_raises(ValueError, stats.beta.fit, x, floc=0.5, fscale=1) y = np.array([0, .5, 1]) assert_raises(ValueError, stats.beta.fit, y, floc=0, fscale=1) assert_raises(ValueError, stats.beta.fit, y, floc=0, fscale=1, f0=2) assert_raises(ValueError, stats.beta.fit, y, floc=0, fscale=1, f1=2) # Check that attempting to fix all the parameters raises a ValueError. assert_raises(ValueError, stats.beta.fit, y, f0=0, f1=1, floc=2, fscale=3) def test_expon_fit(self): x = np.array([2, 2, 4, 4, 4, 4, 4, 8]) loc, scale = stats.expon.fit(x) assert_equal(loc, 2) # x.min() assert_equal(scale, 2) # x.mean() - x.min() loc, scale = stats.expon.fit(x, fscale=3) assert_equal(loc, 2) # x.min() assert_equal(scale, 3) # fscale loc, scale = stats.expon.fit(x, floc=0) assert_equal(loc, 0) # floc assert_equal(scale, 4) # x.mean() - loc def test_lognorm_fit(self): x = np.array([1.5, 3, 10, 15, 23, 59]) lnxm1 = np.log(x - 1) shape, loc, scale = stats.lognorm.fit(x, floc=1) assert_allclose(shape, lnxm1.std(), rtol=1e-12) assert_equal(loc, 1) assert_allclose(scale, np.exp(lnxm1.mean()), rtol=1e-12) shape, loc, scale = stats.lognorm.fit(x, floc=1, fscale=6) assert_allclose(shape, np.sqrt(((lnxm1 - np.log(6))**2).mean()), rtol=1e-12) assert_equal(loc, 1) assert_equal(scale, 6) shape, loc, scale = stats.lognorm.fit(x, floc=1, fix_s=0.75) assert_equal(shape, 0.75) assert_equal(loc, 1) assert_allclose(scale, np.exp(lnxm1.mean()), rtol=1e-12) def test_uniform_fit(self): x = np.array([1.0, 1.1, 1.2, 9.0]) loc, scale = stats.uniform.fit(x) assert_equal(loc, x.min()) assert_equal(scale, x.ptp()) loc, scale = stats.uniform.fit(x, floc=0) assert_equal(loc, 0) assert_equal(scale, x.max()) loc, scale = stats.uniform.fit(x, fscale=10) assert_equal(loc, 0) assert_equal(scale, 10) assert_raises(ValueError, stats.uniform.fit, x, floc=2.0) assert_raises(ValueError, stats.uniform.fit, x, fscale=5.0) def test_fshapes(self): # take a beta distribution, with shapes='a, b', and make sure that # fa is equivalent to f0, and fb is equivalent to f1 a, b = 3., 4. x = stats.beta.rvs(a, b, size=100, random_state=1234) res_1 = stats.beta.fit(x, f0=3.) res_2 = stats.beta.fit(x, fa=3.) assert_allclose(res_1, res_2, atol=1e-12, rtol=1e-12) res_2 = stats.beta.fit(x, fix_a=3.) assert_allclose(res_1, res_2, atol=1e-12, rtol=1e-12) res_3 = stats.beta.fit(x, f1=4.) res_4 = stats.beta.fit(x, fb=4.) assert_allclose(res_3, res_4, atol=1e-12, rtol=1e-12) res_4 = stats.beta.fit(x, fix_b=4.) assert_allclose(res_3, res_4, atol=1e-12, rtol=1e-12) # cannot specify both positional and named args at the same time assert_raises(ValueError, stats.beta.fit, x, fa=1, f0=2) # check that attempting to fix all parameters raises a ValueError assert_raises(ValueError, stats.beta.fit, x, fa=0, f1=1, floc=2, fscale=3) # check that specifying floc, fscale and fshapes works for # beta and gamma which override the generic fit method res_5 = stats.beta.fit(x, fa=3., floc=0, fscale=1) aa, bb, ll, ss = res_5 assert_equal([aa, ll, ss], [3., 0, 1]) # gamma distribution a = 3. data = stats.gamma.rvs(a, size=100) aa, ll, ss = stats.gamma.fit(data, fa=a) assert_equal(aa, a) def test_extra_params(self): # unknown parameters should raise rather than be silently ignored dist = stats.exponnorm data = dist.rvs(K=2, size=100) dct = dict(enikibeniki=-101) assert_raises(TypeError, dist.fit, data, **dct) class TestFrozen(object): def setup_method(self): np.random.seed(1234) # Test that a frozen distribution gives the same results as the original # object. # # Only tested for the normal distribution (with loc and scale specified) # and for the gamma distribution (with a shape parameter specified). def test_norm(self): dist = stats.norm frozen = stats.norm(loc=10.0, scale=3.0) result_f = frozen.pdf(20.0) result = dist.pdf(20.0, loc=10.0, scale=3.0) assert_equal(result_f, result) result_f = frozen.cdf(20.0) result = dist.cdf(20.0, loc=10.0, scale=3.0) assert_equal(result_f, result) result_f = frozen.ppf(0.25) result = dist.ppf(0.25, loc=10.0, scale=3.0) assert_equal(result_f, result) result_f = frozen.isf(0.25) result = dist.isf(0.25, loc=10.0, scale=3.0) assert_equal(result_f, result) result_f = frozen.sf(10.0) result = dist.sf(10.0, loc=10.0, scale=3.0) assert_equal(result_f, result) result_f = frozen.median() result = dist.median(loc=10.0, scale=3.0) assert_equal(result_f, result) result_f = frozen.mean() result = dist.mean(loc=10.0, scale=3.0) assert_equal(result_f, result) result_f = frozen.var() result = dist.var(loc=10.0, scale=3.0) assert_equal(result_f, result) result_f = frozen.std() result = dist.std(loc=10.0, scale=3.0) assert_equal(result_f, result) result_f = frozen.entropy() result = dist.entropy(loc=10.0, scale=3.0) assert_equal(result_f, result) result_f = frozen.moment(2) result = dist.moment(2, loc=10.0, scale=3.0) assert_equal(result_f, result) assert_equal(frozen.a, dist.a) assert_equal(frozen.b, dist.b) def test_gamma(self): a = 2.0 dist = stats.gamma frozen = stats.gamma(a) result_f = frozen.pdf(20.0) result = dist.pdf(20.0, a) assert_equal(result_f, result) result_f = frozen.cdf(20.0) result = dist.cdf(20.0, a) assert_equal(result_f, result) result_f = frozen.ppf(0.25) result = dist.ppf(0.25, a) assert_equal(result_f, result) result_f = frozen.isf(0.25) result = dist.isf(0.25, a) assert_equal(result_f, result) result_f = frozen.sf(10.0) result = dist.sf(10.0, a) assert_equal(result_f, result) result_f = frozen.median() result = dist.median(a) assert_equal(result_f, result) result_f = frozen.mean() result = dist.mean(a) assert_equal(result_f, result) result_f = frozen.var() result = dist.var(a) assert_equal(result_f, result) result_f = frozen.std() result = dist.std(a) assert_equal(result_f, result) result_f = frozen.entropy() result = dist.entropy(a) assert_equal(result_f, result) result_f = frozen.moment(2) result = dist.moment(2, a) assert_equal(result_f, result) assert_equal(frozen.a, frozen.dist.a) assert_equal(frozen.b, frozen.dist.b) def test_regression_ticket_1293(self): # Create a frozen distribution. frozen = stats.lognorm(1) # Call one of its methods that does not take any keyword arguments. m1 = frozen.moment(2) # Now call a method that takes a keyword argument. frozen.stats(moments='mvsk') # Call moment(2) again. # After calling stats(), the following was raising an exception. # So this test passes if the following does not raise an exception. m2 = frozen.moment(2) # The following should also be true, of course. But it is not # the focus of this test. assert_equal(m1, m2) def test_ab(self): # test that the support of a frozen distribution # (i) remains frozen even if it changes for the original one # (ii) is actually correct if the shape parameters are such that # the values of [a, b] are not the default [0, inf] # take a genpareto as an example where the support # depends on the value of the shape parameter: # for c > 0: a, b = 0, inf # for c < 0: a, b = 0, -1/c c = -0.1 rv = stats.genpareto(c=c) a, b = rv.dist._get_support(c) assert_equal([a, b], [0., 10.]) c = 0.1 stats.genpareto.pdf(0, c=c) assert_equal(rv.dist._get_support(c), [0, np.inf]) rv1 = stats.genpareto(c=0.1) assert_(rv1.dist is not rv.dist) def test_rv_frozen_in_namespace(self): # Regression test for gh-3522 assert_(hasattr(stats.distributions, 'rv_frozen')) def test_random_state(self): # only check that the random_state attribute exists, frozen = stats.norm() assert_(hasattr(frozen, 'random_state')) # ... that it can be set, frozen.random_state = 42 assert_equal(frozen.random_state.get_state(), np.random.RandomState(42).get_state()) # ... and that .rvs method accepts it as an argument rndm = np.random.RandomState(1234) frozen.rvs(size=8, random_state=rndm) def test_pickling(self): # test that a frozen instance pickles and unpickles # (this method is a clone of common_tests.check_pickling) beta = stats.beta(2.3098496451481823, 0.62687954300963677) poiss = stats.poisson(3.) sample = stats.rv_discrete(values=([0, 1, 2, 3], [0.1, 0.2, 0.3, 0.4])) for distfn in [beta, poiss, sample]: distfn.random_state = 1234 distfn.rvs(size=8) s = pickle.dumps(distfn) r0 = distfn.rvs(size=8) unpickled = pickle.loads(s) r1 = unpickled.rvs(size=8) assert_equal(r0, r1) # also smoke test some methods medians = [distfn.ppf(0.5), unpickled.ppf(0.5)] assert_equal(medians[0], medians[1]) assert_equal(distfn.cdf(medians[0]), unpickled.cdf(medians[1])) def test_expect(self): # smoke test the expect method of the frozen distribution # only take a gamma w/loc and scale and poisson with loc specified def func(x): return x gm = stats.gamma(a=2, loc=3, scale=4) gm_val = gm.expect(func, lb=1, ub=2, conditional=True) gamma_val = stats.gamma.expect(func, args=(2,), loc=3, scale=4, lb=1, ub=2, conditional=True) assert_allclose(gm_val, gamma_val) p = stats.poisson(3, loc=4) p_val = p.expect(func) poisson_val = stats.poisson.expect(func, args=(3,), loc=4) assert_allclose(p_val, poisson_val) class TestExpect(object): # Test for expect method. # # Uses normal distribution and beta distribution for finite bounds, and # hypergeom for discrete distribution with finite support def test_norm(self): v = stats.norm.expect(lambda x: (x-5)*(x-5), loc=5, scale=2) assert_almost_equal(v, 4, decimal=14) m = stats.norm.expect(lambda x: (x), loc=5, scale=2) assert_almost_equal(m, 5, decimal=14) lb = stats.norm.ppf(0.05, loc=5, scale=2) ub = stats.norm.ppf(0.95, loc=5, scale=2) prob90 = stats.norm.expect(lambda x: 1, loc=5, scale=2, lb=lb, ub=ub) assert_almost_equal(prob90, 0.9, decimal=14) prob90c = stats.norm.expect(lambda x: 1, loc=5, scale=2, lb=lb, ub=ub, conditional=True) assert_almost_equal(prob90c, 1., decimal=14) def test_beta(self): # case with finite support interval v = stats.beta.expect(lambda x: (x-19/3.)*(x-19/3.), args=(10, 5), loc=5, scale=2) assert_almost_equal(v, 1./18., decimal=13) m = stats.beta.expect(lambda x: x, args=(10, 5), loc=5., scale=2.) assert_almost_equal(m, 19/3., decimal=13) ub = stats.beta.ppf(0.95, 10, 10, loc=5, scale=2) lb = stats.beta.ppf(0.05, 10, 10, loc=5, scale=2) prob90 = stats.beta.expect(lambda x: 1., args=(10, 10), loc=5., scale=2., lb=lb, ub=ub, conditional=False) assert_almost_equal(prob90, 0.9, decimal=13) prob90c = stats.beta.expect(lambda x: 1, args=(10, 10), loc=5, scale=2, lb=lb, ub=ub, conditional=True) assert_almost_equal(prob90c, 1., decimal=13) def test_hypergeom(self): # test case with finite bounds # without specifying bounds m_true, v_true = stats.hypergeom.stats(20, 10, 8, loc=5.) m = stats.hypergeom.expect(lambda x: x, args=(20, 10, 8), loc=5.) assert_almost_equal(m, m_true, decimal=13) v = stats.hypergeom.expect(lambda x: (x-9.)**2, args=(20, 10, 8), loc=5.) assert_almost_equal(v, v_true, decimal=14) # with bounds, bounds equal to shifted support v_bounds = stats.hypergeom.expect(lambda x: (x-9.)**2, args=(20, 10, 8), loc=5., lb=5, ub=13) assert_almost_equal(v_bounds, v_true, decimal=14) # drop boundary points prob_true = 1-stats.hypergeom.pmf([5, 13], 20, 10, 8, loc=5).sum() prob_bounds = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8), loc=5., lb=6, ub=12) assert_almost_equal(prob_bounds, prob_true, decimal=13) # conditional prob_bc = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8), loc=5., lb=6, ub=12, conditional=True) assert_almost_equal(prob_bc, 1, decimal=14) # check simple integral prob_b = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8), lb=0, ub=8) assert_almost_equal(prob_b, 1, decimal=13) def test_poisson(self): # poisson, use lower bound only prob_bounds = stats.poisson.expect(lambda x: 1, args=(2,), lb=3, conditional=False) prob_b_true = 1-stats.poisson.cdf(2, 2) assert_almost_equal(prob_bounds, prob_b_true, decimal=14) prob_lb = stats.poisson.expect(lambda x: 1, args=(2,), lb=2, conditional=True) assert_almost_equal(prob_lb, 1, decimal=14) def test_genhalflogistic(self): # genhalflogistic, changes upper bound of support in _argcheck # regression test for gh-2622 halflog = stats.genhalflogistic # check consistency when calling expect twice with the same input res1 = halflog.expect(args=(1.5,)) halflog.expect(args=(0.5,)) res2 = halflog.expect(args=(1.5,)) assert_almost_equal(res1, res2, decimal=14) def test_rice_overflow(self): # rice.pdf(999, 0.74) was inf since special.i0 silentyly overflows # check that using i0e fixes it assert_(np.isfinite(stats.rice.pdf(999, 0.74))) assert_(np.isfinite(stats.rice.expect(lambda x: 1, args=(0.74,)))) assert_(np.isfinite(stats.rice.expect(lambda x: 2, args=(0.74,)))) assert_(np.isfinite(stats.rice.expect(lambda x: 3, args=(0.74,)))) def test_logser(self): # test a discrete distribution with infinite support and loc p, loc = 0.3, 3 res_0 = stats.logser.expect(lambda k: k, args=(p,)) # check against the correct answer (sum of a geom series) assert_allclose(res_0, p / (p - 1.) / np.log(1. - p), atol=1e-15) # now check it with `loc` res_l = stats.logser.expect(lambda k: k, args=(p,), loc=loc) assert_allclose(res_l, res_0 + loc, atol=1e-15) def test_skellam(self): # Use a discrete distribution w/ bi-infinite support. Compute two first # moments and compare to known values (cf skellam.stats) p1, p2 = 18, 22 m1 = stats.skellam.expect(lambda x: x, args=(p1, p2)) m2 = stats.skellam.expect(lambda x: x**2, args=(p1, p2)) assert_allclose(m1, p1 - p2, atol=1e-12) assert_allclose(m2 - m1**2, p1 + p2, atol=1e-12) def test_randint(self): # Use a discrete distribution w/ parameter-dependent support, which # is larger than the default chunksize lo, hi = 0, 113 res = stats.randint.expect(lambda x: x, (lo, hi)) assert_allclose(res, sum(_ for _ in range(lo, hi)) / (hi - lo), atol=1e-15) def test_zipf(self): # Test that there is no infinite loop even if the sum diverges assert_warns(RuntimeWarning, stats.zipf.expect, lambda x: x**2, (2,)) def test_discrete_kwds(self): # check that discrete expect accepts keywords to control the summation n0 = stats.poisson.expect(lambda x: 1, args=(2,)) n1 = stats.poisson.expect(lambda x: 1, args=(2,), maxcount=1001, chunksize=32, tolerance=1e-8) assert_almost_equal(n0, n1, decimal=14) def test_moment(self): # test the .moment() method: compute a higher moment and compare to # a known value def poiss_moment5(mu): return mu**5 + 10*mu**4 + 25*mu**3 + 15*mu**2 + mu for mu in [5, 7]: m5 = stats.poisson.moment(5, mu) assert_allclose(m5, poiss_moment5(mu), rtol=1e-10) class TestNct(object): def test_nc_parameter(self): # Parameter values c<=0 were not enabled (gh-2402). # For negative values c and for c=0 results of rv.cdf(0) below were nan rv = stats.nct(5, 0) assert_equal(rv.cdf(0), 0.5) rv = stats.nct(5, -1) assert_almost_equal(rv.cdf(0), 0.841344746069, decimal=10) def test_broadcasting(self): res = stats.nct.pdf(5, np.arange(4, 7)[:, None], np.linspace(0.1, 1, 4)) expected = array([[0.00321886, 0.00557466, 0.00918418, 0.01442997], [0.00217142, 0.00395366, 0.00683888, 0.01126276], [0.00153078, 0.00291093, 0.00525206, 0.00900815]]) assert_allclose(res, expected, rtol=1e-5) def test_variance_gh_issue_2401(self): # Computation of the variance of a non-central t-distribution resulted # in a TypeError: ufunc 'isinf' not supported for the input types, # and the inputs could not be safely coerced to any supported types # according to the casting rule 'safe' rv = stats.nct(4, 0) assert_equal(rv.var(), 2.0) def test_nct_inf_moments(self): # n-th moment of nct only exists for df > n m, v, s, k = stats.nct.stats(df=1.9, nc=0.3, moments='mvsk') assert_(np.isfinite(m)) assert_equal([v, s, k], [np.inf, np.nan, np.nan]) m, v, s, k = stats.nct.stats(df=3.1, nc=0.3, moments='mvsk') assert_(np.isfinite([m, v, s]).all()) assert_equal(k, np.nan) class TestRice(object): def test_rice_zero_b(self): # rice distribution should work with b=0, cf gh-2164 x = [0.2, 1., 5.] assert_(np.isfinite(stats.rice.pdf(x, b=0.)).all()) assert_(np.isfinite(stats.rice.logpdf(x, b=0.)).all()) assert_(np.isfinite(stats.rice.cdf(x, b=0.)).all()) assert_(np.isfinite(stats.rice.logcdf(x, b=0.)).all()) q = [0.1, 0.1, 0.5, 0.9] assert_(np.isfinite(stats.rice.ppf(q, b=0.)).all()) mvsk = stats.rice.stats(0, moments='mvsk') assert_(np.isfinite(mvsk).all()) # furthermore, pdf is continuous as b\to 0 # rice.pdf(x, b\to 0) = x exp(-x^2/2) + O(b^2) # see e.g. Abramovich & Stegun 9.6.7 & 9.6.10 b = 1e-8 assert_allclose(stats.rice.pdf(x, 0), stats.rice.pdf(x, b), atol=b, rtol=0) def test_rice_rvs(self): rvs = stats.rice.rvs assert_equal(rvs(b=3.).size, 1) assert_equal(rvs(b=3., size=(3, 5)).shape, (3, 5)) class TestErlang(object): def setup_method(self): np.random.seed(1234) def test_erlang_runtimewarning(self): # erlang should generate a RuntimeWarning if a non-integer # shape parameter is used. with warnings.catch_warnings(): warnings.simplefilter("error", RuntimeWarning) # The non-integer shape parameter 1.3 should trigger a # RuntimeWarning assert_raises(RuntimeWarning, stats.erlang.rvs, 1.3, loc=0, scale=1, size=4) # Calling the fit method with `f0` set to an integer should # *not* trigger a RuntimeWarning. It should return the same # values as gamma.fit(...). data = [0.5, 1.0, 2.0, 4.0] result_erlang = stats.erlang.fit(data, f0=1) result_gamma = stats.gamma.fit(data, f0=1) assert_allclose(result_erlang, result_gamma, rtol=1e-3) class TestRayleigh(object): # gh-6227 def test_logpdf(self): y = stats.rayleigh.logpdf(50) assert_allclose(y, -1246.0879769945718) def test_logsf(self): y = stats.rayleigh.logsf(50) assert_allclose(y, -1250) class TestExponWeib(object): def test_pdf_logpdf(self): # Regression test for gh-3508. x = 0.1 a = 1.0 c = 100.0 p = stats.exponweib.pdf(x, a, c) logp = stats.exponweib.logpdf(x, a, c) # Expected values were computed with mpmath. assert_allclose([p, logp], [1.0000000000000054e-97, -223.35075402042244]) def test_a_is_1(self): # For issue gh-3508. # Check that when a=1, the pdf and logpdf methods of exponweib are the # same as those of weibull_min. x = np.logspace(-4, -1, 4) a = 1 c = 100 p = stats.exponweib.pdf(x, a, c) expected = stats.weibull_min.pdf(x, c) assert_allclose(p, expected) logp = stats.exponweib.logpdf(x, a, c) expected = stats.weibull_min.logpdf(x, c) assert_allclose(logp, expected) def test_a_is_1_c_is_1(self): # When a = 1 and c = 1, the distribution is exponential. x = np.logspace(-8, 1, 10) a = 1 c = 1 p = stats.exponweib.pdf(x, a, c) expected = stats.expon.pdf(x) assert_allclose(p, expected) logp = stats.exponweib.logpdf(x, a, c) expected = stats.expon.logpdf(x) assert_allclose(logp, expected) class TestWeibull(object): def test_logpdf(self): # gh-6217 y = stats.weibull_min.logpdf(0, 1) assert_equal(y, 0) def test_with_maxima_distrib(self): # Tests for weibull_min and weibull_max. # The expected values were computed using the symbolic algebra # program 'maxima' with the package 'distrib', which has # 'pdf_weibull' and 'cdf_weibull'. The mapping between the # scipy and maxima functions is as follows: # ----------------------------------------------------------------- # scipy maxima # --------------------------------- ------------------------------ # weibull_min.pdf(x, a, scale=b) pdf_weibull(x, a, b) # weibull_min.logpdf(x, a, scale=b) log(pdf_weibull(x, a, b)) # weibull_min.cdf(x, a, scale=b) cdf_weibull(x, a, b) # weibull_min.logcdf(x, a, scale=b) log(cdf_weibull(x, a, b)) # weibull_min.sf(x, a, scale=b) 1 - cdf_weibull(x, a, b) # weibull_min.logsf(x, a, scale=b) log(1 - cdf_weibull(x, a, b)) # # weibull_max.pdf(x, a, scale=b) pdf_weibull(-x, a, b) # weibull_max.logpdf(x, a, scale=b) log(pdf_weibull(-x, a, b)) # weibull_max.cdf(x, a, scale=b) 1 - cdf_weibull(-x, a, b) # weibull_max.logcdf(x, a, scale=b) log(1 - cdf_weibull(-x, a, b)) # weibull_max.sf(x, a, scale=b) cdf_weibull(-x, a, b) # weibull_max.logsf(x, a, scale=b) log(cdf_weibull(-x, a, b)) # ----------------------------------------------------------------- x = 1.5 a = 2.0 b = 3.0 # weibull_min p = stats.weibull_min.pdf(x, a, scale=b) assert_allclose(p, np.exp(-0.25)/3) lp = stats.weibull_min.logpdf(x, a, scale=b) assert_allclose(lp, -0.25 - np.log(3)) c = stats.weibull_min.cdf(x, a, scale=b) assert_allclose(c, -special.expm1(-0.25)) lc = stats.weibull_min.logcdf(x, a, scale=b) assert_allclose(lc, np.log(-special.expm1(-0.25))) s = stats.weibull_min.sf(x, a, scale=b) assert_allclose(s, np.exp(-0.25)) ls = stats.weibull_min.logsf(x, a, scale=b) assert_allclose(ls, -0.25) # Also test using a large value x, for which computing the survival # function using the CDF would result in 0. s = stats.weibull_min.sf(30, 2, scale=3) assert_allclose(s, np.exp(-100)) ls = stats.weibull_min.logsf(30, 2, scale=3) assert_allclose(ls, -100) # weibull_max x = -1.5 p = stats.weibull_max.pdf(x, a, scale=b) assert_allclose(p, np.exp(-0.25)/3) lp = stats.weibull_max.logpdf(x, a, scale=b) assert_allclose(lp, -0.25 - np.log(3)) c = stats.weibull_max.cdf(x, a, scale=b) assert_allclose(c, np.exp(-0.25)) lc = stats.weibull_max.logcdf(x, a, scale=b) assert_allclose(lc, -0.25) s = stats.weibull_max.sf(x, a, scale=b) assert_allclose(s, -special.expm1(-0.25)) ls = stats.weibull_max.logsf(x, a, scale=b) assert_allclose(ls, np.log(-special.expm1(-0.25))) # Also test using a value of x close to 0, for which computing the # survival function using the CDF would result in 0. s = stats.weibull_max.sf(-1e-9, 2, scale=3) assert_allclose(s, -special.expm1(-1/9000000000000000000)) ls = stats.weibull_max.logsf(-1e-9, 2, scale=3) assert_allclose(ls, np.log(-special.expm1(-1/9000000000000000000))) class TestRdist(object): @pytest.mark.slow def test_rdist_cdf_gh1285(self): # check workaround in rdist._cdf for issue gh-1285. distfn = stats.rdist values = [0.001, 0.5, 0.999] assert_almost_equal(distfn.cdf(distfn.ppf(values, 541.0), 541.0), values, decimal=5) class TestTrapz(object): def test_reduces_to_triang(self): modes = [0, 0.3, 0.5, 1] for mode in modes: x = [0, mode, 1] assert_almost_equal(stats.trapz.pdf(x, mode, mode), stats.triang.pdf(x, mode)) assert_almost_equal(stats.trapz.cdf(x, mode, mode), stats.triang.cdf(x, mode)) def test_reduces_to_uniform(self): x = np.linspace(0, 1, 10) assert_almost_equal(stats.trapz.pdf(x, 0, 1), stats.uniform.pdf(x)) assert_almost_equal(stats.trapz.cdf(x, 0, 1), stats.uniform.cdf(x)) def test_cases(self): # edge cases assert_almost_equal(stats.trapz.pdf(0, 0, 0), 2) assert_almost_equal(stats.trapz.pdf(1, 1, 1), 2) assert_almost_equal(stats.trapz.pdf(0.5, 0, 0.8), 1.11111111111111111) assert_almost_equal(stats.trapz.pdf(0.5, 0.2, 1.0), 1.11111111111111111) # straightforward case assert_almost_equal(stats.trapz.pdf(0.1, 0.2, 0.8), 0.625) assert_almost_equal(stats.trapz.pdf(0.5, 0.2, 0.8), 1.25) assert_almost_equal(stats.trapz.pdf(0.9, 0.2, 0.8), 0.625) assert_almost_equal(stats.trapz.cdf(0.1, 0.2, 0.8), 0.03125) assert_almost_equal(stats.trapz.cdf(0.2, 0.2, 0.8), 0.125) assert_almost_equal(stats.trapz.cdf(0.5, 0.2, 0.8), 0.5) assert_almost_equal(stats.trapz.cdf(0.9, 0.2, 0.8), 0.96875) assert_almost_equal(stats.trapz.cdf(1.0, 0.2, 0.8), 1.0) def test_trapz_vect(self): # test that array-valued shapes and arguments are handled c = np.array([0.1, 0.2, 0.3]) d = np.array([0.5, 0.6])[:, None] x = np.array([0.15, 0.25, 0.9]) v = stats.trapz.pdf(x, c, d) cc, dd, xx = np.broadcast_arrays(c, d, x) res = np.empty(xx.size, dtype=xx.dtype) ind = np.arange(xx.size) for i, x1, c1, d1 in zip(ind, xx.ravel(), cc.ravel(), dd.ravel()): res[i] = stats.trapz.pdf(x1, c1, d1) assert_allclose(v, res.reshape(v.shape), atol=1e-15) class TestTriang(object): def test_edge_cases(self): with np.errstate(all='raise'): assert_equal(stats.triang.pdf(0, 0), 2.) assert_equal(stats.triang.pdf(0.5, 0), 1.) assert_equal(stats.triang.pdf(1, 0), 0.) assert_equal(stats.triang.pdf(0, 1), 0) assert_equal(stats.triang.pdf(0.5, 1), 1.) assert_equal(stats.triang.pdf(1, 1), 2) assert_equal(stats.triang.cdf(0., 0.), 0.) assert_equal(stats.triang.cdf(0.5, 0.), 0.75) assert_equal(stats.triang.cdf(1.0, 0.), 1.0) assert_equal(stats.triang.cdf(0., 1.), 0.) assert_equal(stats.triang.cdf(0.5, 1.), 0.25) assert_equal(stats.triang.cdf(1., 1.), 1) def test_540_567(): # test for nan returned in tickets 540, 567 assert_almost_equal(stats.norm.cdf(-1.7624320982), 0.03899815971089126, decimal=10, err_msg='test_540_567') assert_almost_equal(stats.norm.cdf(-1.7624320983), 0.038998159702449846, decimal=10, err_msg='test_540_567') assert_almost_equal(stats.norm.cdf(1.38629436112, loc=0.950273420309, scale=0.204423758009), 0.98353464004309321, decimal=10, err_msg='test_540_567') def test_regression_ticket_1316(): # The following was raising an exception, because _construct_default_doc() # did not handle the default keyword extradoc=None. See ticket #1316. g = stats._continuous_distns.gamma_gen(name='gamma') def test_regression_ticket_1326(): # adjust to avoid nan with 0*log(0) assert_almost_equal(stats.chi2.pdf(0.0, 2), 0.5, 14) def test_regression_tukey_lambda(): # Make sure that Tukey-Lambda distribution correctly handles # non-positive lambdas. x = np.linspace(-5.0, 5.0, 101) olderr = np.seterr(divide='ignore') try: for lam in [0.0, -1.0, -2.0, np.array([[-1.0], [0.0], [-2.0]])]: p = stats.tukeylambda.pdf(x, lam) assert_((p != 0.0).all()) assert_(~np.isnan(p).all()) lam = np.array([[-1.0], [0.0], [2.0]]) p = stats.tukeylambda.pdf(x, lam) finally: np.seterr(**olderr) assert_(~np.isnan(p).all()) assert_((p[0] != 0.0).all()) assert_((p[1] != 0.0).all()) assert_((p[2] != 0.0).any()) assert_((p[2] == 0.0).any()) @pytest.mark.skipif(DOCSTRINGS_STRIPPED, reason="docstrings stripped") def test_regression_ticket_1421(): assert_('pdf(x, mu, loc=0, scale=1)' not in stats.poisson.__doc__) assert_('pmf(x,' in stats.poisson.__doc__) def test_nan_arguments_gh_issue_1362(): with np.errstate(invalid='ignore'): assert_(np.isnan(stats.t.logcdf(1, np.nan))) assert_(np.isnan(stats.t.cdf(1, np.nan))) assert_(np.isnan(stats.t.logsf(1, np.nan))) assert_(np.isnan(stats.t.sf(1, np.nan))) assert_(np.isnan(stats.t.pdf(1, np.nan))) assert_(np.isnan(stats.t.logpdf(1, np.nan))) assert_(np.isnan(stats.t.ppf(1, np.nan))) assert_(np.isnan(stats.t.isf(1, np.nan))) assert_(np.isnan(stats.bernoulli.logcdf(np.nan, 0.5))) assert_(np.isnan(stats.bernoulli.cdf(np.nan, 0.5))) assert_(np.isnan(stats.bernoulli.logsf(np.nan, 0.5))) assert_(np.isnan(stats.bernoulli.sf(np.nan, 0.5))) assert_(np.isnan(stats.bernoulli.pmf(np.nan, 0.5))) assert_(np.isnan(stats.bernoulli.logpmf(np.nan, 0.5))) assert_(np.isnan(stats.bernoulli.ppf(np.nan, 0.5))) assert_(np.isnan(stats.bernoulli.isf(np.nan, 0.5))) def test_frozen_fit_ticket_1536(): np.random.seed(5678) true = np.array([0.25, 0., 0.5]) x = stats.lognorm.rvs(true[0], true[1], true[2], size=100) olderr = np.seterr(divide='ignore') try: params = np.array(stats.lognorm.fit(x, floc=0.)) finally: np.seterr(**olderr) assert_almost_equal(params, true, decimal=2) params = np.array(stats.lognorm.fit(x, fscale=0.5, loc=0)) assert_almost_equal(params, true, decimal=2) params = np.array(stats.lognorm.fit(x, f0=0.25, loc=0)) assert_almost_equal(params, true, decimal=2) params = np.array(stats.lognorm.fit(x, f0=0.25, floc=0)) assert_almost_equal(params, true, decimal=2) np.random.seed(5678) loc = 1 floc = 0.9 x = stats.norm.rvs(loc, 2., size=100) params = np.array(stats.norm.fit(x, floc=floc)) expected = np.array([floc, np.sqrt(((x-floc)**2).mean())]) assert_almost_equal(params, expected, decimal=4) def test_regression_ticket_1530(): # Check the starting value works for Cauchy distribution fit. np.random.seed(654321) rvs = stats.cauchy.rvs(size=100) params = stats.cauchy.fit(rvs) expected = (0.045, 1.142) assert_almost_equal(params, expected, decimal=1) def test_gh_pr_4806(): # Check starting values for Cauchy distribution fit. np.random.seed(1234) x = np.random.randn(42) for offset in 10000.0, 1222333444.0: loc, scale = stats.cauchy.fit(x + offset) assert_allclose(loc, offset, atol=1.0) assert_allclose(scale, 0.6, atol=1.0) def test_tukeylambda_stats_ticket_1545(): # Some test for the variance and kurtosis of the Tukey Lambda distr. # See test_tukeylamdba_stats.py for more tests. mv = stats.tukeylambda.stats(0, moments='mvsk') # Known exact values: expected = [0, np.pi**2/3, 0, 1.2] assert_almost_equal(mv, expected, decimal=10) mv = stats.tukeylambda.stats(3.13, moments='mvsk') # 'expected' computed with mpmath. expected = [0, 0.0269220858861465102, 0, -0.898062386219224104] assert_almost_equal(mv, expected, decimal=10) mv = stats.tukeylambda.stats(0.14, moments='mvsk') # 'expected' computed with mpmath. expected = [0, 2.11029702221450250, 0, -0.02708377353223019456] assert_almost_equal(mv, expected, decimal=10) def test_poisson_logpmf_ticket_1436(): assert_(np.isfinite(stats.poisson.logpmf(1500, 200))) def test_powerlaw_stats(): """Test the powerlaw stats function. This unit test is also a regression test for ticket 1548. The exact values are: mean: mu = a / (a + 1) variance: sigma**2 = a / ((a + 2) * (a + 1) ** 2) skewness: One formula (see https://en.wikipedia.org/wiki/Skewness) is gamma_1 = (E[X**3] - 3*mu*E[X**2] + 2*mu**3) / sigma**3 A short calculation shows that E[X**k] is a / (a + k), so gamma_1 can be implemented as n = a/(a+3) - 3*(a/(a+1))*a/(a+2) + 2*(a/(a+1))**3 d = sqrt(a/((a+2)*(a+1)**2)) ** 3 gamma_1 = n/d Either by simplifying, or by a direct calculation of mu_3 / sigma**3, one gets the more concise formula: gamma_1 = -2.0 * ((a - 1) / (a + 3)) * sqrt((a + 2) / a) kurtosis: (See https://en.wikipedia.org/wiki/Kurtosis) The excess kurtosis is gamma_2 = mu_4 / sigma**4 - 3 A bit of calculus and algebra (sympy helps) shows that mu_4 = 3*a*(3*a**2 - a + 2) / ((a+1)**4 * (a+2) * (a+3) * (a+4)) so gamma_2 = 3*(3*a**2 - a + 2) * (a+2) / (a*(a+3)*(a+4)) - 3 which can be rearranged to gamma_2 = 6 * (a**3 - a**2 - 6*a + 2) / (a*(a+3)*(a+4)) """ cases = [(1.0, (0.5, 1./12, 0.0, -1.2)), (2.0, (2./3, 2./36, -0.56568542494924734, -0.6))] for a, exact_mvsk in cases: mvsk = stats.powerlaw.stats(a, moments="mvsk") assert_array_almost_equal(mvsk, exact_mvsk) def test_powerlaw_edge(): # Regression test for gh-3986. p = stats.powerlaw.logpdf(0, 1) assert_equal(p, 0.0) def test_exponpow_edge(): # Regression test for gh-3982. p = stats.exponpow.logpdf(0, 1) assert_equal(p, 0.0) # Check pdf and logpdf at x = 0 for other values of b. p = stats.exponpow.pdf(0, [0.25, 1.0, 1.5]) assert_equal(p, [np.inf, 1.0, 0.0]) p = stats.exponpow.logpdf(0, [0.25, 1.0, 1.5]) assert_equal(p, [np.inf, 0.0, -np.inf]) def test_gengamma_edge(): # Regression test for gh-3985. p = stats.gengamma.pdf(0, 1, 1) assert_equal(p, 1.0) # Regression tests for gh-4724. p = stats.gengamma._munp(-2, 200, 1.) assert_almost_equal(p, 1./199/198) p = stats.gengamma._munp(-2, 10, 1.) assert_almost_equal(p, 1./9/8) def test_ksone_fit_freeze(): # Regression test for ticket #1638. d = np.array( [-0.18879233, 0.15734249, 0.18695107, 0.27908787, -0.248649, -0.2171497, 0.12233512, 0.15126419, 0.03119282, 0.4365294, 0.08930393, -0.23509903, 0.28231224, -0.09974875, -0.25196048, 0.11102028, 0.1427649, 0.10176452, 0.18754054, 0.25826724, 0.05988819, 0.0531668, 0.21906056, 0.32106729, 0.2117662, 0.10886442, 0.09375789, 0.24583286, -0.22968366, -0.07842391, -0.31195432, -0.21271196, 0.1114243, -0.13293002, 0.01331725, -0.04330977, -0.09485776, -0.28434547, 0.22245721, -0.18518199, -0.10943985, -0.35243174, 0.06897665, -0.03553363, -0.0701746, -0.06037974, 0.37670779, -0.21684405]) try: olderr = np.seterr(invalid='ignore') with suppress_warnings() as sup: sup.filter(IntegrationWarning, "The maximum number of subdivisions .50. has been " "achieved.") sup.filter(RuntimeWarning, "floating point number truncated to an integer") stats.ksone.fit(d) finally: np.seterr(**olderr) def test_norm_logcdf(): # Test precision of the logcdf of the normal distribution. # This precision was enhanced in ticket 1614. x = -np.asarray(list(range(0, 120, 4))) # Values from R expected = [-0.69314718, -10.36010149, -35.01343716, -75.41067300, -131.69539607, -203.91715537, -292.09872100, -396.25241451, -516.38564863, -652.50322759, -804.60844201, -972.70364403, -1156.79057310, -1356.87055173, -1572.94460885, -1805.01356068, -2053.07806561, -2317.13866238, -2597.19579746, -2893.24984493, -3205.30112136, -3533.34989701, -3877.39640444, -4237.44084522, -4613.48339520, -5005.52420869, -5413.56342187, -5837.60115548, -6277.63751711, -6733.67260303] assert_allclose(stats.norm().logcdf(x), expected, atol=1e-8) # also test the complex-valued code path assert_allclose(stats.norm().logcdf(x + 1e-14j).real, expected, atol=1e-8) # test the accuracy: d(logcdf)/dx = pdf / cdf \equiv exp(logpdf - logcdf) deriv = (stats.norm.logcdf(x + 1e-10j)/1e-10).imag deriv_expected = np.exp(stats.norm.logpdf(x) - stats.norm.logcdf(x)) assert_allclose(deriv, deriv_expected, atol=1e-10) def test_levy_cdf_ppf(): # Test levy.cdf, including small arguments. x = np.array([1000, 1.0, 0.5, 0.1, 0.01, 0.001]) # Expected values were calculated separately with mpmath. # E.g. # >>> mpmath.mp.dps = 100 # >>> x = mpmath.mp.mpf('0.01') # >>> cdf = mpmath.erfc(mpmath.sqrt(1/(2*x))) expected = np.array([0.9747728793699604, 0.3173105078629141, 0.1572992070502851, 0.0015654022580025495, 1.523970604832105e-23, 1.795832784800726e-219]) y = stats.levy.cdf(x) assert_allclose(y, expected, rtol=1e-10) # ppf(expected) should get us back to x. xx = stats.levy.ppf(expected) assert_allclose(xx, x, rtol=1e-13) def test_hypergeom_interval_1802(): # these two had endless loops assert_equal(stats.hypergeom.interval(.95, 187601, 43192, 757), (152.0, 197.0)) assert_equal(stats.hypergeom.interval(.945, 187601, 43192, 757), (152.0, 197.0)) # this was working also before assert_equal(stats.hypergeom.interval(.94, 187601, 43192, 757), (153.0, 196.0)) # degenerate case .a == .b assert_equal(stats.hypergeom.ppf(0.02, 100, 100, 8), 8) assert_equal(stats.hypergeom.ppf(1, 100, 100, 8), 8) def test_distribution_too_many_args(): np.random.seed(1234) # Check that a TypeError is raised when too many args are given to a method # Regression test for ticket 1815. x = np.linspace(0.1, 0.7, num=5) assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, loc=1.0) assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, 4, loc=1.0) assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, 4, 5) assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, loc=1.0, scale=0.5) assert_raises(TypeError, stats.gamma.rvs, 2., 3, loc=1.0, scale=0.5) assert_raises(TypeError, stats.gamma.cdf, x, 2., 3, loc=1.0, scale=0.5) assert_raises(TypeError, stats.gamma.ppf, x, 2., 3, loc=1.0, scale=0.5) assert_raises(TypeError, stats.gamma.stats, 2., 3, loc=1.0, scale=0.5) assert_raises(TypeError, stats.gamma.entropy, 2., 3, loc=1.0, scale=0.5) assert_raises(TypeError, stats.gamma.fit, x, 2., 3, loc=1.0, scale=0.5) # These should not give errors stats.gamma.pdf(x, 2, 3) # loc=3 stats.gamma.pdf(x, 2, 3, 4) # loc=3, scale=4 stats.gamma.stats(2., 3) stats.gamma.stats(2., 3, 4) stats.gamma.stats(2., 3, 4, 'mv') stats.gamma.rvs(2., 3, 4, 5) stats.gamma.fit(stats.gamma.rvs(2., size=7), 2.) # Also for a discrete distribution stats.geom.pmf(x, 2, loc=3) # no error, loc=3 assert_raises(TypeError, stats.geom.pmf, x, 2, 3, 4) assert_raises(TypeError, stats.geom.pmf, x, 2, 3, loc=4) # And for distributions with 0, 2 and 3 args respectively assert_raises(TypeError, stats.expon.pdf, x, 3, loc=1.0) assert_raises(TypeError, stats.exponweib.pdf, x, 3, 4, 5, loc=1.0) assert_raises(TypeError, stats.exponweib.pdf, x, 3, 4, 5, 0.1, 0.1) assert_raises(TypeError, stats.ncf.pdf, x, 3, 4, 5, 6, loc=1.0) assert_raises(TypeError, stats.ncf.pdf, x, 3, 4, 5, 6, 1.0, scale=0.5) stats.ncf.pdf(x, 3, 4, 5, 6, 1.0) # 3 args, plus loc/scale def test_ncx2_tails_ticket_955(): # Trac #955 -- check that the cdf computed by special functions # matches the integrated pdf a = stats.ncx2.cdf(np.arange(20, 25, 0.2), 2, 1.07458615e+02) b = stats.ncx2._cdfvec(np.arange(20, 25, 0.2), 2, 1.07458615e+02) assert_allclose(a, b, rtol=1e-3, atol=0) def test_ncx2_tails_pdf(): # ncx2.pdf does not return nans in extreme tails(example from gh-1577) # NB: this is to check that nan_to_num is not needed in ncx2.pdf with suppress_warnings() as sup: sup.filter(RuntimeWarning, "divide by zero encountered in log") assert_equal(stats.ncx2.pdf(1, np.arange(340, 350), 2), 0) logval = stats.ncx2.logpdf(1, np.arange(340, 350), 2) assert_(np.isneginf(logval).all()) def test_foldnorm_zero(): # Parameter value c=0 was not enabled, see gh-2399. rv = stats.foldnorm(0, scale=1) assert_equal(rv.cdf(0), 0) # rv.cdf(0) previously resulted in: nan def test_stats_shapes_argcheck(): # stats method was failing for vector shapes if some of the values # were outside of the allowed range, see gh-2678 mv3 = stats.invgamma.stats([0.0, 0.5, 1.0], 1, 0.5) # 0 is not a legal `a` mv2 = stats.invgamma.stats([0.5, 1.0], 1, 0.5) mv2_augmented = tuple(np.r_[np.nan, _] for _ in mv2) assert_equal(mv2_augmented, mv3) # -1 is not a legal shape parameter mv3 = stats.lognorm.stats([2, 2.4, -1]) mv2 = stats.lognorm.stats([2, 2.4]) mv2_augmented = tuple(np.r_[_, np.nan] for _ in mv2) assert_equal(mv2_augmented, mv3) # FIXME: this is only a quick-and-dirty test of a quick-and-dirty bugfix. # stats method with multiple shape parameters is not properly vectorized # anyway, so some distributions may or may not fail. # Test subclassing distributions w/ explicit shapes class _distr_gen(stats.rv_continuous): def _pdf(self, x, a): return 42 class _distr2_gen(stats.rv_continuous): def _cdf(self, x, a): return 42 * a + x class _distr3_gen(stats.rv_continuous): def _pdf(self, x, a, b): return a + b def _cdf(self, x, a): # Different # of shape params from _pdf, to be able to check that # inspection catches the inconsistency.""" return 42 * a + x class _distr6_gen(stats.rv_continuous): # Two shape parameters (both _pdf and _cdf defined, consistent shapes.) def _pdf(self, x, a, b): return a*x + b def _cdf(self, x, a, b): return 42 * a + x class TestSubclassingExplicitShapes(object): # Construct a distribution w/ explicit shapes parameter and test it. def test_correct_shapes(self): dummy_distr = _distr_gen(name='dummy', shapes='a') assert_equal(dummy_distr.pdf(1, a=1), 42) def test_wrong_shapes_1(self): dummy_distr = _distr_gen(name='dummy', shapes='A') assert_raises(TypeError, dummy_distr.pdf, 1, **dict(a=1)) def test_wrong_shapes_2(self): dummy_distr = _distr_gen(name='dummy', shapes='a, b, c') dct = dict(a=1, b=2, c=3) assert_raises(TypeError, dummy_distr.pdf, 1, **dct) def test_shapes_string(self): # shapes must be a string dct = dict(name='dummy', shapes=42) assert_raises(TypeError, _distr_gen, **dct) def test_shapes_identifiers_1(self): # shapes must be a comma-separated list of valid python identifiers dct = dict(name='dummy', shapes='(!)') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_identifiers_2(self): dct = dict(name='dummy', shapes='4chan') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_identifiers_3(self): dct = dict(name='dummy', shapes='m(fti)') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_identifiers_nodefaults(self): dct = dict(name='dummy', shapes='a=2') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_args(self): dct = dict(name='dummy', shapes='*args') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_kwargs(self): dct = dict(name='dummy', shapes='**kwargs') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_keywords(self): # python keywords cannot be used for shape parameters dct = dict(name='dummy', shapes='a, b, c, lambda') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_signature(self): # test explicit shapes which agree w/ the signature of _pdf class _dist_gen(stats.rv_continuous): def _pdf(self, x, a): return stats.norm._pdf(x) * a dist = _dist_gen(shapes='a') assert_equal(dist.pdf(0.5, a=2), stats.norm.pdf(0.5)*2) def test_shapes_signature_inconsistent(self): # test explicit shapes which do not agree w/ the signature of _pdf class _dist_gen(stats.rv_continuous): def _pdf(self, x, a): return stats.norm._pdf(x) * a dist = _dist_gen(shapes='a, b') assert_raises(TypeError, dist.pdf, 0.5, **dict(a=1, b=2)) def test_star_args(self): # test _pdf with only starargs # NB: **kwargs of pdf will never reach _pdf class _dist_gen(stats.rv_continuous): def _pdf(self, x, *args): extra_kwarg = args[0] return stats.norm._pdf(x) * extra_kwarg dist = _dist_gen(shapes='extra_kwarg') assert_equal(dist.pdf(0.5, extra_kwarg=33), stats.norm.pdf(0.5)*33) assert_equal(dist.pdf(0.5, 33), stats.norm.pdf(0.5)*33) assert_raises(TypeError, dist.pdf, 0.5, **dict(xxx=33)) def test_star_args_2(self): # test _pdf with named & starargs # NB: **kwargs of pdf will never reach _pdf class _dist_gen(stats.rv_continuous): def _pdf(self, x, offset, *args): extra_kwarg = args[0] return stats.norm._pdf(x) * extra_kwarg + offset dist = _dist_gen(shapes='offset, extra_kwarg') assert_equal(dist.pdf(0.5, offset=111, extra_kwarg=33), stats.norm.pdf(0.5)*33 + 111) assert_equal(dist.pdf(0.5, 111, 33), stats.norm.pdf(0.5)*33 + 111) def test_extra_kwarg(self): # **kwargs to _pdf are ignored. # this is a limitation of the framework (_pdf(x, *goodargs)) class _distr_gen(stats.rv_continuous): def _pdf(self, x, *args, **kwargs): # _pdf should handle *args, **kwargs itself. Here "handling" # is ignoring *args and looking for ``extra_kwarg`` and using # that. extra_kwarg = kwargs.pop('extra_kwarg', 1) return stats.norm._pdf(x) * extra_kwarg dist = _distr_gen(shapes='extra_kwarg') assert_equal(dist.pdf(1, extra_kwarg=3), stats.norm.pdf(1)) def shapes_empty_string(self): # shapes='' is equivalent to shapes=None class _dist_gen(stats.rv_continuous): def _pdf(self, x): return stats.norm.pdf(x) dist = _dist_gen(shapes='') assert_equal(dist.pdf(0.5), stats.norm.pdf(0.5)) class TestSubclassingNoShapes(object): # Construct a distribution w/o explicit shapes parameter and test it. def test_only__pdf(self): dummy_distr = _distr_gen(name='dummy') assert_equal(dummy_distr.pdf(1, a=1), 42) def test_only__cdf(self): # _pdf is determined from _cdf by taking numerical derivative dummy_distr = _distr2_gen(name='dummy') assert_almost_equal(dummy_distr.pdf(1, a=1), 1) @pytest.mark.skipif(DOCSTRINGS_STRIPPED, reason="docstring stripped") def test_signature_inspection(self): # check that _pdf signature inspection works correctly, and is used in # the class docstring dummy_distr = _distr_gen(name='dummy') assert_equal(dummy_distr.numargs, 1) assert_equal(dummy_distr.shapes, 'a') res = re.findall(r'logpdf\(x, a, loc=0, scale=1\)', dummy_distr.__doc__) assert_(len(res) == 1) @pytest.mark.skipif(DOCSTRINGS_STRIPPED, reason="docstring stripped") def test_signature_inspection_2args(self): # same for 2 shape params and both _pdf and _cdf defined dummy_distr = _distr6_gen(name='dummy') assert_equal(dummy_distr.numargs, 2) assert_equal(dummy_distr.shapes, 'a, b') res = re.findall(r'logpdf\(x, a, b, loc=0, scale=1\)', dummy_distr.__doc__) assert_(len(res) == 1) def test_signature_inspection_2args_incorrect_shapes(self): # both _pdf and _cdf defined, but shapes are inconsistent: raises assert_raises(TypeError, _distr3_gen, name='dummy') def test_defaults_raise(self): # default arguments should raise class _dist_gen(stats.rv_continuous): def _pdf(self, x, a=42): return 42 assert_raises(TypeError, _dist_gen, **dict(name='dummy')) def test_starargs_raise(self): # without explicit shapes, *args are not allowed class _dist_gen(stats.rv_continuous): def _pdf(self, x, a, *args): return 42 assert_raises(TypeError, _dist_gen, **dict(name='dummy')) def test_kwargs_raise(self): # without explicit shapes, **kwargs are not allowed class _dist_gen(stats.rv_continuous): def _pdf(self, x, a, **kwargs): return 42 assert_raises(TypeError, _dist_gen, **dict(name='dummy')) @pytest.mark.skipif(DOCSTRINGS_STRIPPED, reason="docstring stripped") def test_docstrings(): badones = [r',\s*,', r'\(\s*,', r'^\s*:'] for distname in stats.__all__: dist = getattr(stats, distname) if isinstance(dist, (stats.rv_discrete, stats.rv_continuous)): for regex in badones: assert_(re.search(regex, dist.__doc__) is None) def test_infinite_input(): assert_almost_equal(stats.skellam.sf(np.inf, 10, 11), 0) assert_almost_equal(stats.ncx2._cdf(np.inf, 8, 0.1), 1) def test_lomax_accuracy(): # regression test for gh-4033 p = stats.lomax.ppf(stats.lomax.cdf(1e-100, 1), 1) assert_allclose(p, 1e-100) def test_gompertz_accuracy(): # Regression test for gh-4031 p = stats.gompertz.ppf(stats.gompertz.cdf(1e-100, 1), 1) assert_allclose(p, 1e-100) def test_truncexpon_accuracy(): # regression test for gh-4035 p = stats.truncexpon.ppf(stats.truncexpon.cdf(1e-100, 1), 1) assert_allclose(p, 1e-100) def test_rayleigh_accuracy(): # regression test for gh-4034 p = stats.rayleigh.isf(stats.rayleigh.sf(9, 1), 1) assert_almost_equal(p, 9.0, decimal=15) def test_genextreme_give_no_warnings(): """regression test for gh-6219""" with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") p = stats.genextreme.cdf(.5, 0) p = stats.genextreme.pdf(.5, 0) p = stats.genextreme.ppf(.5, 0) p = stats.genextreme.logpdf(-np.inf, 0.0) number_of_warnings_thrown = len(w) assert_equal(number_of_warnings_thrown, 0) def test_genextreme_entropy(): # regression test for gh-5181 euler_gamma = 0.5772156649015329 h = stats.genextreme.entropy(-1.0) assert_allclose(h, 2*euler_gamma + 1, rtol=1e-14) h = stats.genextreme.entropy(0) assert_allclose(h, euler_gamma + 1, rtol=1e-14) h = stats.genextreme.entropy(1.0) assert_equal(h, 1) h = stats.genextreme.entropy(-2.0, scale=10) assert_allclose(h, euler_gamma*3 + np.log(10) + 1, rtol=1e-14) h = stats.genextreme.entropy(10) assert_allclose(h, -9*euler_gamma + 1, rtol=1e-14) h = stats.genextreme.entropy(-10) assert_allclose(h, 11*euler_gamma + 1, rtol=1e-14) def test_genextreme_sf_isf(): # Expected values were computed using mpmath: # # import mpmath # # def mp_genextreme_sf(x, xi, mu=0, sigma=1): # # Formula from wikipedia, which has a sign convention for xi that # # is the opposite of scipy's shape parameter. # if xi != 0: # t = mpmath.power(1 + ((x - mu)/sigma)*xi, -1/xi) # else: # t = mpmath.exp(-(x - mu)/sigma) # return 1 - mpmath.exp(-t) # # >>> mpmath.mp.dps = 1000 # >>> s = mp_genextreme_sf(mpmath.mp.mpf("1e8"), mpmath.mp.mpf("0.125")) # >>> float(s) # 1.6777205262585625e-57 # >>> s = mp_genextreme_sf(mpmath.mp.mpf("7.98"), mpmath.mp.mpf("-0.125")) # >>> float(s) # 1.52587890625e-21 # >>> s = mp_genextreme_sf(mpmath.mp.mpf("7.98"), mpmath.mp.mpf("0")) # >>> float(s) # 0.00034218086528426593 x = 1e8 s = stats.genextreme.sf(x, -0.125) assert_allclose(s, 1.6777205262585625e-57) x2 = stats.genextreme.isf(s, -0.125) assert_allclose(x2, x) x = 7.98 s = stats.genextreme.sf(x, 0.125) assert_allclose(s, 1.52587890625e-21) x2 = stats.genextreme.isf(s, 0.125) assert_allclose(x2, x) x = 7.98 s = stats.genextreme.sf(x, 0) assert_allclose(s, 0.00034218086528426593) x2 = stats.genextreme.isf(s, 0) assert_allclose(x2, x) def test_burr12_ppf_small_arg(): prob = 1e-16 quantile = stats.burr12.ppf(prob, 2, 3) # The expected quantile was computed using mpmath: # >>> import mpmath # >>> mpmath.mp.dps = 100 # >>> prob = mpmath.mpf('1e-16') # >>> c = mpmath.mpf(2) # >>> d = mpmath.mpf(3) # >>> float(((1-prob)**(-1/d) - 1)**(1/c)) # 5.7735026918962575e-09 assert_allclose(quantile, 5.7735026918962575e-09) def test_crystalball_function(): """ All values are calculated using the independent implementation of the ROOT framework (see https://root.cern.ch/). Corresponding ROOT code is given in the comments. """ X = np.linspace(-5.0, 5.0, 21)[:-1] # for(float x = -5.0; x < 5.0; x+=0.5) # std::cout << ROOT::Math::crystalball_pdf(x, 1.0, 2.0, 1.0) << ", "; calculated = stats.crystalball.pdf(X, beta=1.0, m=2.0) expected = np.array([0.0202867, 0.0241428, 0.0292128, 0.0360652, 0.045645, 0.059618, 0.0811467, 0.116851, 0.18258, 0.265652, 0.301023, 0.265652, 0.18258, 0.097728, 0.0407391, 0.013226, 0.00334407, 0.000658486, 0.000100982, 1.20606e-05]) assert_allclose(expected, calculated, rtol=0.001) # for(float x = -5.0; x < 5.0; x+=0.5) # std::cout << ROOT::Math::crystalball_pdf(x, 2.0, 3.0, 1.0) << ", "; calculated = stats.crystalball.pdf(X, beta=2.0, m=3.0) expected = np.array([0.0019648, 0.00279754, 0.00417592, 0.00663121, 0.0114587, 0.0223803, 0.0530497, 0.12726, 0.237752, 0.345928, 0.391987, 0.345928, 0.237752, 0.12726, 0.0530497, 0.0172227, 0.00435458, 0.000857469, 0.000131497, 1.57051e-05]) assert_allclose(expected, calculated, rtol=0.001) # for(float x = -5.0; x < 5.0; x+=0.5) { # std::cout << ROOT::Math::crystalball_pdf(x, 2.0, 3.0, 2.0, 0.5); # std::cout << ", "; # } calculated = stats.crystalball.pdf(X, beta=2.0, m=3.0, loc=0.5, scale=2.0) expected = np.array([0.00785921, 0.0111902, 0.0167037, 0.0265249, 0.0423866, 0.0636298, 0.0897324, 0.118876, 0.147944, 0.172964, 0.189964, 0.195994, 0.189964, 0.172964, 0.147944, 0.118876, 0.0897324, 0.0636298, 0.0423866, 0.0265249]) assert_allclose(expected, calculated, rtol=0.001) # for(float x = -5.0; x < 5.0; x+=0.5) # std::cout << ROOT::Math::crystalball_cdf(x, 1.0, 2.0, 1.0) << ", "; calculated = stats.crystalball.cdf(X, beta=1.0, m=2.0) expected = np.array([0.12172, 0.132785, 0.146064, 0.162293, 0.18258, 0.208663, 0.24344, 0.292128, 0.36516, 0.478254, 0.622723, 0.767192, 0.880286, 0.94959, 0.982834, 0.995314, 0.998981, 0.999824, 0.999976, 0.999997]) assert_allclose(expected, calculated, rtol=0.001) # for(float x = -5.0; x < 5.0; x+=0.5) # std::cout << ROOT::Math::crystalball_cdf(x, 2.0, 3.0, 1.0) << ", "; calculated = stats.crystalball.cdf(X, beta=2.0, m=3.0) expected = np.array([0.00442081, 0.00559509, 0.00730787, 0.00994682, 0.0143234, 0.0223803, 0.0397873, 0.0830763, 0.173323, 0.320592, 0.508717, 0.696841, 0.844111, 0.934357, 0.977646, 0.993899, 0.998674, 0.999771, 0.999969, 0.999997]) assert_allclose(expected, calculated, rtol=0.001) # for(float x = -5.0; x < 5.0; x+=0.5) { # std::cout << ROOT::Math::crystalball_cdf(x, 2.0, 3.0, 2.0, 0.5); # std::cout << ", "; # } calculated = stats.crystalball.cdf(X, beta=2.0, m=3.0, loc=0.5, scale=2.0) expected = np.array([0.0176832, 0.0223803, 0.0292315, 0.0397873, 0.0567945, 0.0830763, 0.121242, 0.173323, 0.24011, 0.320592, 0.411731, 0.508717, 0.605702, 0.696841, 0.777324, 0.844111, 0.896192, 0.934357, 0.960639, 0.977646]) assert_allclose(expected, calculated, rtol=0.001) def test_crystalball_function_moments(): """ All values are calculated using the pdf formula and the integrate function of Mathematica """ # The Last two (alpha, n) pairs test the special case n == alpha**2 beta = np.array([2.0, 1.0, 3.0, 2.0, 3.0]) m = np.array([3.0, 3.0, 2.0, 4.0, 9.0]) # The distribution should be correctly normalised expected_0th_moment = np.array([1.0, 1.0, 1.0, 1.0, 1.0]) calculated_0th_moment = stats.crystalball._munp(0, beta, m) assert_allclose(expected_0th_moment, calculated_0th_moment, rtol=0.001) # calculated using wolframalpha.com # e.g. for beta = 2 and m = 3 we calculate the norm like this: # integrate exp(-x^2/2) from -2 to infinity + # integrate (3/2)^3*exp(-2^2/2)*(3/2-2-x)^(-3) from -infinity to -2 norm = np.array([2.5511, 3.01873, 2.51065, 2.53983, 2.507410455]) a = np.array([-0.21992, -3.03265, np.inf, -0.135335, -0.003174]) expected_1th_moment = a / norm calculated_1th_moment = stats.crystalball._munp(1, beta, m) assert_allclose(expected_1th_moment, calculated_1th_moment, rtol=0.001) a = np.array([np.inf, np.inf, np.inf, 3.2616, 2.519908]) expected_2th_moment = a / norm calculated_2th_moment = stats.crystalball._munp(2, beta, m) assert_allclose(expected_2th_moment, calculated_2th_moment, rtol=0.001) a = np.array([np.inf, np.inf, np.inf, np.inf, -0.0577668]) expected_3th_moment = a / norm calculated_3th_moment = stats.crystalball._munp(3, beta, m) assert_allclose(expected_3th_moment, calculated_3th_moment, rtol=0.001) a = np.array([np.inf, np.inf, np.inf, np.inf, 7.78468]) expected_4th_moment = a / norm calculated_4th_moment = stats.crystalball._munp(4, beta, m) assert_allclose(expected_4th_moment, calculated_4th_moment, rtol=0.001) a = np.array([np.inf, np.inf, np.inf, np.inf, -1.31086]) expected_5th_moment = a / norm calculated_5th_moment = stats.crystalball._munp(5, beta, m) assert_allclose(expected_5th_moment, calculated_5th_moment, rtol=0.001) def test_argus_function(): # There is no usable reference implementation. # (RootFit implementation returns unreasonable results which are not # normalized correctly.) # Instead we do some tests if the distribution behaves as expected for # different shapes and scales. for i in range(1, 10): for j in range(1, 10): assert_equal(stats.argus.pdf(i + 0.001, chi=j, scale=i), 0.0) assert_(stats.argus.pdf(i - 0.001, chi=j, scale=i) > 0.0) assert_equal(stats.argus.pdf(-0.001, chi=j, scale=i), 0.0) assert_(stats.argus.pdf(+0.001, chi=j, scale=i) > 0.0) for i in range(1, 10): assert_equal(stats.argus.cdf(1.0, chi=i), 1.0) assert_equal(stats.argus.cdf(1.0, chi=i), 1.0 - stats.argus.sf(1.0, chi=i)) class TestHistogram(object): def setup_method(self): np.random.seed(1234) # We have 8 bins # [1,2), [2,3), [3,4), [4,5), [5,6), [6,7), [7,8), [8,9) # But actually np.histogram will put the last 9 also in the [8,9) bin! # Therefore there is a slight difference below for the last bin, from # what you might have expected. histogram = np.histogram([1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 9], bins=8) self.template = stats.rv_histogram(histogram) data = stats.norm.rvs(loc=1.0, scale=2.5, size=10000, random_state=123) norm_histogram = np.histogram(data, bins=50) self.norm_template = stats.rv_histogram(norm_histogram) def test_pdf(self): values = np.array([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]) pdf_values = np.asarray([0.0/25.0, 0.0/25.0, 1.0/25.0, 1.0/25.0, 2.0/25.0, 2.0/25.0, 3.0/25.0, 3.0/25.0, 4.0/25.0, 4.0/25.0, 5.0/25.0, 5.0/25.0, 4.0/25.0, 4.0/25.0, 3.0/25.0, 3.0/25.0, 3.0/25.0, 3.0/25.0, 0.0/25.0, 0.0/25.0]) assert_allclose(self.template.pdf(values), pdf_values) # Test explicitly the corner cases: # As stated above the pdf in the bin [8,9) is greater than # one would naively expect because np.histogram putted the 9 # into the [8,9) bin. assert_almost_equal(self.template.pdf(8.0), 3.0/25.0) assert_almost_equal(self.template.pdf(8.5), 3.0/25.0) # 9 is outside our defined bins [8,9) hence the pdf is already 0 # for a continuous distribution this is fine, because a single value # does not have a finite probability! assert_almost_equal(self.template.pdf(9.0), 0.0/25.0) assert_almost_equal(self.template.pdf(10.0), 0.0/25.0) x = np.linspace(-2, 2, 10) assert_allclose(self.norm_template.pdf(x), stats.norm.pdf(x, loc=1.0, scale=2.5), rtol=0.1) def test_cdf_ppf(self): values = np.array([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]) cdf_values = np.asarray([0.0/25.0, 0.0/25.0, 0.0/25.0, 0.5/25.0, 1.0/25.0, 2.0/25.0, 3.0/25.0, 4.5/25.0, 6.0/25.0, 8.0/25.0, 10.0/25.0, 12.5/25.0, 15.0/25.0, 17.0/25.0, 19.0/25.0, 20.5/25.0, 22.0/25.0, 23.5/25.0, 25.0/25.0, 25.0/25.0]) assert_allclose(self.template.cdf(values), cdf_values) # First three and last two values in cdf_value are not unique assert_allclose(self.template.ppf(cdf_values[2:-1]), values[2:-1]) # Test of cdf and ppf are inverse functions x = np.linspace(1.0, 9.0, 100) assert_allclose(self.template.ppf(self.template.cdf(x)), x) x = np.linspace(0.0, 1.0, 100) assert_allclose(self.template.cdf(self.template.ppf(x)), x) x = np.linspace(-2, 2, 10) assert_allclose(self.norm_template.cdf(x), stats.norm.cdf(x, loc=1.0, scale=2.5), rtol=0.1) def test_rvs(self): N = 10000 sample = self.template.rvs(size=N, random_state=123) assert_equal(np.sum(sample < 1.0), 0.0) assert_allclose(np.sum(sample <= 2.0), 1.0/25.0 * N, rtol=0.2) assert_allclose(np.sum(sample <= 2.5), 2.0/25.0 * N, rtol=0.2) assert_allclose(np.sum(sample <= 3.0), 3.0/25.0 * N, rtol=0.1) assert_allclose(np.sum(sample <= 3.5), 4.5/25.0 * N, rtol=0.1) assert_allclose(np.sum(sample <= 4.0), 6.0/25.0 * N, rtol=0.1) assert_allclose(np.sum(sample <= 4.5), 8.0/25.0 * N, rtol=0.1) assert_allclose(np.sum(sample <= 5.0), 10.0/25.0 * N, rtol=0.05) assert_allclose(np.sum(sample <= 5.5), 12.5/25.0 * N, rtol=0.05) assert_allclose(np.sum(sample <= 6.0), 15.0/25.0 * N, rtol=0.05) assert_allclose(np.sum(sample <= 6.5), 17.0/25.0 * N, rtol=0.05) assert_allclose(np.sum(sample <= 7.0), 19.0/25.0 * N, rtol=0.05) assert_allclose(np.sum(sample <= 7.5), 20.5/25.0 * N, rtol=0.05) assert_allclose(np.sum(sample <= 8.0), 22.0/25.0 * N, rtol=0.05) assert_allclose(np.sum(sample <= 8.5), 23.5/25.0 * N, rtol=0.05) assert_allclose(np.sum(sample <= 9.0), 25.0/25.0 * N, rtol=0.05) assert_allclose(np.sum(sample <= 9.0), 25.0/25.0 * N, rtol=0.05) assert_equal(np.sum(sample > 9.0), 0.0) def test_munp(self): for n in range(4): assert_allclose(self.norm_template._munp(n), stats.norm._munp(n, 1.0, 2.5), rtol=0.05) def test_entropy(self): assert_allclose(self.norm_template.entropy(), stats.norm.entropy(loc=1.0, scale=2.5), rtol=0.05)
38.190181
159
0.577936
934bb9f336f3d858730e70dc41abaff2c7239800
3,075
py
Python
saleor/dashboard/customer/urls.py
glosoftgroup/KahawaHardware
893e94246583addf41c3bb0d58d2ce6bcd233c4f
[ "BSD-3-Clause" ]
null
null
null
saleor/dashboard/customer/urls.py
glosoftgroup/KahawaHardware
893e94246583addf41c3bb0d58d2ce6bcd233c4f
[ "BSD-3-Clause" ]
null
null
null
saleor/dashboard/customer/urls.py
glosoftgroup/KahawaHardware
893e94246583addf41c3bb0d58d2ce6bcd233c4f
[ "BSD-3-Clause" ]
null
null
null
from django.conf.urls import url from django.contrib.auth.decorators import login_required, permission_required from . import views, sales from django.conf import settings from django.conf.urls.static import static urlpatterns = [ url(r'^$', permission_required('customer.view_customer', login_url='account_login') (views.users), name='customers'), url(r'^add/$', permission_required('customer.add_customer', login_url='account_login') (views.user_add), name='customer-add'), url(r'^customer_process/$', views.user_process, name='customer_process'), url(r'^d/(?P<pk>[0-9]+)/$', views.user_detail, name='customer-detail'), url(r'^sd/(?P<pk>[0-9]+)/$', views.sales_detail, name='customer-sales-detail'), url(r'^cst/pdf/detail/(?P<pk>[0-9]+)/$', sales.sales_detail, name='cust-pdf-sale-detail'), url(r'^std/(?P<pk>[0-9]+)/(?P<ck>[0-9]+)/$', views.sales_items_detail, name='customer-sales-items-detail'), url(r'^delete/(?P<pk>[0-9]+)/$', permission_required('customer.delete_customer', login_url='account_login') (views.user_delete), name='customer-delete'), url(r'^edit/(?P<pk>[0-9]+)/$', permission_required('customer.change_customer', login_url='account_login') (views.user_edit), name='customer-edit'), url(r'^user_update(?P<pk>[0-9]+)/$', views.user_update, name='customer-update'), url(r'^customer/paginate/$', views.customer_pagination, name='customer-paginate'), url(r'^customer/search/$', views.customer_search, name='customer-search'), url( r'^customer/sales/paginate/customer-sales-detail$', sales.sales_paginate, name = 'customer_sales_paginate'), url( r'^customer/sales/search/$', sales.sales_search, name = 'customer_sales_search'), url(r'^customer/sales/list/pdf/$', sales.sales_list_pdf, name='customers_sales_list_pdf'), url( r'^customer/canbe/creditable/$', views.is_creditable, name = 'is_creditable'), # reports urls url(r'^reports/$', permission_required('customer.view_customer', login_url='not_found') (views.customer_report), name='customer_report_list'), url(r'^report/paginate/$', views.report_pagination, name='customer-report-paginate'), url(r'^report/search/$', views.report_search, name='customer-report-search'), url(r'^reports/loyalty-points/pdf/$', views.costomer_loyalty_points_pdf, name='costomer_loyalty_points_pdf'), # credit urls url(r'^credit-list/$', permission_required('customer.view_customer', login_url='not_found') (views.credit_report), name='customer_credit_list'), url(r'^credit/paginate/$', views.credit_pagination, name='customer-credit-paginate'), url(r'^credit/search/$', views.credit_search, name='customer-credit-search'), ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
60.294118
121
0.673496
87d4150936e92f8319e89907fe39a028cc3a377f
5,253
py
Python
app.py
TurconiAndrea/water-footprint-reducer-rs
1f1b734bc2037bf4ac2dcef75db85438403d8a42
[ "MIT" ]
null
null
null
app.py
TurconiAndrea/water-footprint-reducer-rs
1f1b734bc2037bf4ac2dcef75db85438403d8a42
[ "MIT" ]
null
null
null
app.py
TurconiAndrea/water-footprint-reducer-rs
1f1b734bc2037bf4ac2dcef75db85438403d8a42
[ "MIT" ]
null
null
null
""" Module containing the Streamlit app to explore the project. """ import pandas as pd import streamlit as st from cb_recommender import CBRecommender from cf_recommender import CFRecommender from configuration import load_configuration content_bases_algo = "Content Based" collaborative_filtering_algo = "Collaborative filtering" class App: """ Class that represents the app of the recommender system. It provides a Streamlit app to run on local browser and the possibility to configure the system with the two different algorithm and the water footprint filter. """ def __init__(self): """ Constructor method for the class. It loads the paths for the orders and the recipes datasets """ config = load_configuration() self.path_orders = config["path_orders"] self.path_recipes = config["path_recipes"] @st.cache def load_recipes(self): """ Load the recipes dataset from the default folder. :return: a dataframe containing the recipes. """ return pd.read_pickle(self.path_recipes) @st.cache def load_orders(self): """ Load the orders from the default folder. :return: a dataframe containing the orders and ratings. """ return pd.read_pickle(self.path_orders) def generate_user_orders(self, user_id, orders, recipes): """ Return the user orders ratings merged with the recipes water footprint information. :param user_id: the id of the user. :param orders: the dataframe containing orders. :param recipes: the dataframe containing recipes. :return: a dataframe with user orders ratings and recipe water footprint information. """ user_orders = orders.query(f"user_id == {user_id}") return pd.merge(user_orders, recipes, on=["id"])[ ["name", "rating", "wf", "category"] ] def get_recipe_recommendations( self, user_id, n_recommendations, filter_wf, algo_type ): """ Get recipe recommendations for provided user using one of the two algorithm and the water footprint filter. :param user_id: the id of the user to recommend recipes. :param n_recommendations: the number of recommendations. :param filter_wf: the information about the activation of water footprint filter or not. :param algo_type: the type of the recommendation algorithm. :return: a dataframe containing user recommendations. """ wf_recommenders = { content_bases_algo: CBRecommender( n_recommendations=n_recommendations, disable_filter_wf=not filter_wf ), collaborative_filtering_algo: CFRecommender( n_recommendations=n_recommendations, disable_filter_wf=not filter_wf ), } wf_recommender = wf_recommenders[algo_type] return wf_recommender.get_user_recommendations(user_id) def build_app(self): """ Build the app with Streamlit package. App provides some configuration like the id of the user to recommend recipes, the possibility to choose between a content based or a collaborative filtering algorithm and the possibility to activate or deactivate the water footprint filter. :return: None. """ recipes = self.load_recipes() orders = self.load_orders() st.markdown("# Recommender System for reducing Water footprint ") st.sidebar.write("### Configure the system") user_id = st.sidebar.selectbox( "Select a user", orders["user_id"].unique(), index=0 ) algo_type = st.sidebar.selectbox( "Select the algorithm for recommendation", [content_bases_algo, collaborative_filtering_algo], index=0, ) n_recommendations = st.sidebar.slider( "Select number of recommendations", min_value=1, max_value=20, value=10, step=1, ) st.sidebar.markdown("***") st.sidebar.write( "Water Footprint filter is activate by default, check the option to change" ) filter_wf = st.sidebar.checkbox( "Deactivate the Water Footprint filter", value=True ) st.markdown("### User rating for recipes") st.dataframe(self.generate_user_orders(user_id, orders, recipes)) if st.button("Recommend recipes!"): with st.spinner(text="Generating recommendations"): st.markdown("### Recommendations for user to lower the Water Footprint") recommendations = self.get_recipe_recommendations( user_id, n_recommendations, filter_wf, algo_type )[["name", "wf", "category"]].reset_index(drop=True) st.write( "Total Water footprint of recommendations:", round(recommendations["wf"].sum(), 2), ) st.dataframe(recommendations) if __name__ == "__main__": app = App() app.build_app()
34.788079
88
0.630687
847f543ebca4de6c36de9ee22fd8dc07f36454e2
61,871
py
Python
pandas/core/internals/managers.py
rebecca-palmer/pandas
7c94949dc89c62cae1bc647acd87266d6c3a0468
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2020-01-21T17:05:14.000Z
2020-01-21T17:05:14.000Z
pandas/core/internals/managers.py
rebecca-palmer/pandas
7c94949dc89c62cae1bc647acd87266d6c3a0468
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/core/internals/managers.py
rebecca-palmer/pandas
7c94949dc89c62cae1bc647acd87266d6c3a0468
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2021-01-19T09:48:37.000Z
2021-01-19T09:48:37.000Z
from collections import defaultdict from functools import partial import itertools import operator import re from typing import List, Optional, Sequence, Tuple, Union import numpy as np from pandas._libs import Timedelta, Timestamp, internals as libinternals, lib from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.cast import ( find_common_type, infer_dtype_from_scalar, maybe_convert_objects, maybe_promote, ) from pandas.core.dtypes.common import ( _NS_DTYPE, is_datetimelike_v_numeric, is_extension_array_dtype, is_list_like, is_numeric_v_string_like, is_scalar, is_sparse, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.generic import ABCExtensionArray, ABCSeries from pandas.core.dtypes.missing import isna import pandas.core.algorithms as algos from pandas.core.base import PandasObject from pandas.core.indexers import maybe_convert_indices from pandas.core.indexes.api import Index, MultiIndex, ensure_index from pandas.core.internals.blocks import ( Block, CategoricalBlock, DatetimeTZBlock, ExtensionBlock, ObjectValuesExtensionBlock, _extend_blocks, _merge_blocks, _safe_reshape, get_block_type, make_block, ) from pandas.core.internals.concat import ( # all for concatenate_block_managers combine_concat_plans, concatenate_join_units, get_mgr_concatenation_plan, is_uniform_join_units, ) from pandas.io.formats.printing import pprint_thing # TODO: flexible with index=None and/or items=None class BlockManager(PandasObject): """ Core internal data structure to implement DataFrame, Series, etc. Manage a bunch of labeled 2D mixed-type ndarrays. Essentially it's a lightweight blocked set of labeled data to be manipulated by the DataFrame public API class Attributes ---------- shape ndim axes values items Methods ------- set_axis(axis, new_labels) copy(deep=True) get_dtype_counts get_dtypes apply(func, axes, block_filter_fn) get_bool_data get_numeric_data get_slice(slice_like, axis) get(label) iget(loc) take(indexer, axis) reindex_axis(new_labels, axis) reindex_indexer(new_labels, indexer, axis) delete(label) insert(loc, label, value) set(label, value) Parameters ---------- Notes ----- This is *not* a public API class """ __slots__ = [ "axes", "blocks", "_ndim", "_shape", "_known_consolidated", "_is_consolidated", "_blknos", "_blklocs", ] def __init__( self, blocks: Sequence[Block], axes: Sequence[Index], do_integrity_check: bool = True, ): self.axes = [ensure_index(ax) for ax in axes] self.blocks: Tuple[Block, ...] = tuple(blocks) for block in blocks: if self.ndim != block.ndim: raise AssertionError( f"Number of Block dimensions ({block.ndim}) must equal " f"number of axes ({self.ndim})" ) if do_integrity_check: self._verify_integrity() self._consolidate_check() self._rebuild_blknos_and_blklocs() def make_empty(self, axes=None): """ return an empty BlockManager with the items axis of len 0 """ if axes is None: axes = [ensure_index([])] + [ensure_index(a) for a in self.axes[1:]] # preserve dtype if possible if self.ndim == 1: blocks = np.array([], dtype=self.array_dtype) else: blocks = [] return type(self)(blocks, axes) def __nonzero__(self): return True # Python3 compat __bool__ = __nonzero__ @property def shape(self): return tuple(len(ax) for ax in self.axes) @property def ndim(self) -> int: return len(self.axes) def set_axis(self, axis, new_labels): new_labels = ensure_index(new_labels) old_len = len(self.axes[axis]) new_len = len(new_labels) if new_len != old_len: raise ValueError( f"Length mismatch: Expected axis has {old_len} elements, new " f"values have {new_len} elements" ) self.axes[axis] = new_labels def rename_axis(self, mapper, axis, copy=True, level=None): """ Rename one of axes. Parameters ---------- mapper : unary callable axis : int copy : boolean, default True level : int, default None """ obj = self.copy(deep=copy) obj.set_axis(axis, _transform_index(self.axes[axis], mapper, level)) return obj @property def _is_single_block(self): if self.ndim == 1: return True if len(self.blocks) != 1: return False blk = self.blocks[0] return blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice == slice( 0, len(self), 1 ) def _rebuild_blknos_and_blklocs(self): """ Update mgr._blknos / mgr._blklocs. """ new_blknos = np.empty(self.shape[0], dtype=np.int64) new_blklocs = np.empty(self.shape[0], dtype=np.int64) new_blknos.fill(-1) new_blklocs.fill(-1) for blkno, blk in enumerate(self.blocks): rl = blk.mgr_locs new_blknos[rl.indexer] = blkno new_blklocs[rl.indexer] = np.arange(len(rl)) if (new_blknos == -1).any(): raise AssertionError("Gaps in blk ref_locs") self._blknos = new_blknos self._blklocs = new_blklocs @property def items(self): return self.axes[0] def _get_counts(self, f): """ return a dict of the counts of the function in BlockManager """ self._consolidate_inplace() counts = dict() for b in self.blocks: v = f(b) counts[v] = counts.get(v, 0) + b.shape[0] return counts def get_dtype_counts(self): return self._get_counts(lambda b: b.dtype.name) def get_dtypes(self): dtypes = np.array([blk.dtype for blk in self.blocks]) return algos.take_1d(dtypes, self._blknos, allow_fill=False) def __getstate__(self): block_values = [b.values for b in self.blocks] block_items = [self.items[b.mgr_locs.indexer] for b in self.blocks] axes_array = list(self.axes) extra_state = { "0.14.1": { "axes": axes_array, "blocks": [ dict(values=b.values, mgr_locs=b.mgr_locs.indexer) for b in self.blocks ], } } # First three elements of the state are to maintain forward # compatibility with 0.13.1. return axes_array, block_values, block_items, extra_state def __setstate__(self, state): def unpickle_block(values, mgr_locs): return make_block(values, placement=mgr_locs) if isinstance(state, tuple) and len(state) >= 4 and "0.14.1" in state[3]: state = state[3]["0.14.1"] self.axes = [ensure_index(ax) for ax in state["axes"]] self.blocks = tuple( unpickle_block(b["values"], b["mgr_locs"]) for b in state["blocks"] ) else: raise NotImplementedError("pre-0.14.1 pickles are no longer supported") self._post_setstate() def _post_setstate(self): self._is_consolidated = False self._known_consolidated = False self._rebuild_blknos_and_blklocs() def __len__(self) -> int: return len(self.items) def __repr__(self) -> str: output = type(self).__name__ for i, ax in enumerate(self.axes): if i == 0: output += f"\nItems: {ax}" else: output += f"\nAxis {i}: {ax}" for block in self.blocks: output += f"\n{pprint_thing(block)}" return output def _verify_integrity(self): mgr_shape = self.shape tot_items = sum(len(x.mgr_locs) for x in self.blocks) for block in self.blocks: if block._verify_integrity and block.shape[1:] != mgr_shape[1:]: construction_error(tot_items, block.shape[1:], self.axes) if len(self.items) != tot_items: raise AssertionError( "Number of manager items must equal union of " f"block items\n# manager items: {len(self.items)}, # " f"tot_items: {tot_items}" ) def reduce(self, func, *args, **kwargs): # If 2D, we assume that we're operating column-wise if self.ndim == 1: # we'll be returning a scalar blk = self.blocks[0] return func(blk.values, *args, **kwargs) res = {} for blk in self.blocks: bres = func(blk.values, *args, **kwargs) if np.ndim(bres) == 0: # EA assert blk.shape[0] == 1 new_res = zip(blk.mgr_locs.as_array, [bres]) else: assert bres.ndim == 1, bres.shape assert blk.shape[0] == len(bres), (blk.shape, bres.shape, args, kwargs) new_res = zip(blk.mgr_locs.as_array, bres) nr = dict(new_res) assert not any(key in res for key in nr) res.update(nr) return res def apply(self, f, filter=None, **kwargs): """ Iterate over the blocks, collect and create a new BlockManager. Parameters ---------- f : str or callable Name of the Block method to apply. filter : list, if supplied, only call the block if the filter is in the block Returns ------- BlockManager """ result_blocks = [] # filter kwarg is used in replace-* family of methods if filter is not None: filter_locs = set(self.items.get_indexer_for(filter)) if len(filter_locs) == len(self.items): # All items are included, as if there were no filtering filter = None else: kwargs["filter"] = filter_locs self._consolidate_inplace() if f == "where": align_copy = True if kwargs.get("align", True): align_keys = ["other", "cond"] else: align_keys = ["cond"] elif f == "putmask": align_copy = False if kwargs.get("align", True): align_keys = ["new", "mask"] else: align_keys = ["mask"] elif f == "fillna": # fillna internally does putmask, maybe it's better to do this # at mgr, not block level? align_copy = False align_keys = ["value"] else: align_keys = [] # TODO(EA): may interfere with ExtensionBlock.setitem for blocks # with a .values attribute. aligned_args = { k: kwargs[k] for k in align_keys if not isinstance(kwargs[k], ABCExtensionArray) and hasattr(kwargs[k], "values") } for b in self.blocks: if filter is not None: if not b.mgr_locs.isin(filter_locs).any(): result_blocks.append(b) continue if aligned_args: b_items = self.items[b.mgr_locs.indexer] for k, obj in aligned_args.items(): axis = obj._info_axis_number kwargs[k] = obj.reindex(b_items, axis=axis, copy=align_copy) if callable(f): applied = b.apply(f, **kwargs) else: applied = getattr(b, f)(**kwargs) result_blocks = _extend_blocks(applied, result_blocks) if len(result_blocks) == 0: return self.make_empty(self.axes) bm = type(self)(result_blocks, self.axes, do_integrity_check=False) return bm def quantile( self, axis=0, consolidate=True, transposed=False, interpolation="linear", qs=None, numeric_only=None, ): """ Iterate over blocks applying quantile reduction. This routine is intended for reduction type operations and will do inference on the generated blocks. Parameters ---------- axis: reduction axis, default 0 consolidate: boolean, default True. Join together blocks having same dtype transposed: boolean, default False we are holding transposed data interpolation : type of interpolation, default 'linear' qs : a scalar or list of the quantiles to be computed numeric_only : ignored Returns ------- Block Manager (new object) """ # Series dispatches to DataFrame for quantile, which allows us to # simplify some of the code here and in the blocks assert self.ndim >= 2 if consolidate: self._consolidate_inplace() def get_axe(block, qs, axes): # Because Series dispatches to DataFrame, we will always have # block.ndim == 2 from pandas import Float64Index if is_list_like(qs): ax = Float64Index(qs) else: ax = axes[0] return ax axes, blocks = [], [] for b in self.blocks: block = b.quantile(axis=axis, qs=qs, interpolation=interpolation) axe = get_axe(b, qs, axes=self.axes) axes.append(axe) blocks.append(block) # note that some DatetimeTZ, Categorical are always ndim==1 ndim = {b.ndim for b in blocks} assert 0 not in ndim, ndim if 2 in ndim: new_axes = list(self.axes) # multiple blocks that are reduced if len(blocks) > 1: new_axes[1] = axes[0] # reset the placement to the original for b, sb in zip(blocks, self.blocks): b.mgr_locs = sb.mgr_locs else: new_axes[axis] = Index(np.concatenate([ax.values for ax in axes])) if transposed: new_axes = new_axes[::-1] blocks = [ b.make_block(b.values.T, placement=np.arange(b.shape[1])) for b in blocks ] return type(self)(blocks, new_axes) # single block, i.e. ndim == {1} values = concat_compat([b.values for b in blocks]) # compute the orderings of our original data if len(self.blocks) > 1: indexer = np.empty(len(self.axes[0]), dtype=np.intp) i = 0 for b in self.blocks: for j in b.mgr_locs: indexer[j] = i i = i + 1 values = values.take(indexer) return SingleBlockManager( [make_block(values, ndim=1, placement=np.arange(len(values)))], axes[0] ) def isna(self, func): return self.apply("apply", func=func) def where(self, **kwargs): return self.apply("where", **kwargs) def setitem(self, **kwargs): return self.apply("setitem", **kwargs) def putmask(self, **kwargs): return self.apply("putmask", **kwargs) def diff(self, **kwargs): return self.apply("diff", **kwargs) def interpolate(self, **kwargs): return self.apply("interpolate", **kwargs) def shift(self, **kwargs): return self.apply("shift", **kwargs) def fillna(self, **kwargs): return self.apply("fillna", **kwargs) def downcast(self, **kwargs): return self.apply("downcast", **kwargs) def astype(self, dtype, copy: bool = False, errors: str = "raise"): return self.apply("astype", dtype=dtype, copy=copy, errors=errors) def convert(self, **kwargs): return self.apply("convert", **kwargs) def replace(self, value, **kwargs): assert np.ndim(value) == 0, value return self.apply("replace", value=value, **kwargs) def replace_list(self, src_list, dest_list, inplace=False, regex=False): """ do a list replace """ inplace = validate_bool_kwarg(inplace, "inplace") # figure out our mask a-priori to avoid repeated replacements values = self.as_array() def comp(s, regex=False): """ Generate a bool array by perform an equality check, or perform an element-wise regular expression matching """ if isna(s): return isna(values) if isinstance(s, (Timedelta, Timestamp)) and getattr(s, "tz", None) is None: return _compare_or_regex_search( maybe_convert_objects(values), s.asm8, regex ) return _compare_or_regex_search(values, s, regex) masks = [comp(s, regex) for i, s in enumerate(src_list)] result_blocks = [] src_len = len(src_list) - 1 for blk in self.blocks: # its possible to get multiple result blocks here # replace ALWAYS will return a list rb = [blk if inplace else blk.copy()] for i, (s, d) in enumerate(zip(src_list, dest_list)): # TODO: assert/validate that `d` is always a scalar? new_rb = [] for b in rb: m = masks[i][b.mgr_locs.indexer] convert = i == src_len result = b._replace_coerce( mask=m, to_replace=s, value=d, inplace=inplace, convert=convert, regex=regex, ) if m.any() or convert: new_rb = _extend_blocks(result, new_rb) else: new_rb.append(b) rb = new_rb result_blocks.extend(rb) bm = type(self)(result_blocks, self.axes) bm._consolidate_inplace() return bm def is_consolidated(self): """ Return True if more than one block with the same dtype """ if not self._known_consolidated: self._consolidate_check() return self._is_consolidated def _consolidate_check(self): ftypes = [blk.ftype for blk in self.blocks] self._is_consolidated = len(ftypes) == len(set(ftypes)) self._known_consolidated = True @property def is_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return len(self.blocks) > 1 @property def is_numeric_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return all(block.is_numeric for block in self.blocks) @property def any_extension_types(self): """Whether any of the blocks in this manager are extension blocks""" return any(block.is_extension for block in self.blocks) @property def is_view(self): """ return a boolean if we are a single block and are a view """ if len(self.blocks) == 1: return self.blocks[0].is_view # It is technically possible to figure out which blocks are views # e.g. [ b.values.base is not None for b in self.blocks ] # but then we have the case of possibly some blocks being a view # and some blocks not. setting in theory is possible on the non-view # blocks w/o causing a SettingWithCopy raise/warn. But this is a bit # complicated return False def get_bool_data(self, copy=False): """ Parameters ---------- copy : boolean, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_bool], copy) def get_numeric_data(self, copy=False): """ Parameters ---------- copy : boolean, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_numeric], copy) def combine(self, blocks, copy=True): """ return a new manager with the blocks """ if len(blocks) == 0: return self.make_empty() # FIXME: optimization potential indexer = np.sort(np.concatenate([b.mgr_locs.as_array for b in blocks])) inv_indexer = lib.get_reverse_indexer(indexer, self.shape[0]) new_blocks = [] for b in blocks: b = b.copy(deep=copy) b.mgr_locs = algos.take_1d( inv_indexer, b.mgr_locs.as_array, axis=0, allow_fill=False ) new_blocks.append(b) axes = list(self.axes) axes[0] = self.items.take(indexer) return type(self)(new_blocks, axes, do_integrity_check=False) def get_slice(self, slobj: slice, axis: int = 0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(slobj) else: _slicer = [slice(None)] * (axis + 1) _slicer[axis] = slobj slicer = tuple(_slicer) new_blocks = [blk.getitem_block(slicer) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axes[axis][slobj] bm = type(self)(new_blocks, new_axes, do_integrity_check=False) bm._consolidate_inplace() return bm def __contains__(self, item) -> bool: return item in self.items @property def nblocks(self) -> int: return len(self.blocks) def copy(self, deep=True): """ Make deep or shallow copy of BlockManager Parameters ---------- deep : bool or string, default True If False, return shallow copy (do not copy data) If 'all', copy data and a deep copy of the index Returns ------- BlockManager """ # this preserves the notion of view copying of axes if deep: # hit in e.g. tests.io.json.test_pandas def copy_func(ax): if deep == "all": return ax.copy(deep=True) else: return ax.view() new_axes = [copy_func(ax) for ax in self.axes] else: new_axes = list(self.axes) res = self.apply("copy", deep=deep) res.axes = new_axes return res def as_array(self, transpose: bool = False) -> np.ndarray: """ Convert the blockmanager data into an numpy array. Parameters ---------- transpose : boolean, default False If True, transpose the return array Returns ------- arr : ndarray """ if len(self.blocks) == 0: arr = np.empty(self.shape, dtype=float) return arr.transpose() if transpose else arr mgr = self if self._is_single_block and mgr.blocks[0].is_datetimetz: # TODO(Block.get_values): Make DatetimeTZBlock.get_values # always be object dtype. Some callers seem to want the # DatetimeArray (previously DTI) arr = mgr.blocks[0].get_values(dtype=object) elif self._is_single_block or not self.is_mixed_type: arr = np.asarray(mgr.blocks[0].get_values()) else: arr = mgr._interleave() return arr.transpose() if transpose else arr def _interleave(self): """ Return ndarray from blocks with specified item order Items must be contained in the blocks """ dtype = _interleaved_dtype(self.blocks) # TODO: https://github.com/pandas-dev/pandas/issues/22791 # Give EAs some input on what happens here. Sparse needs this. if is_sparse(dtype): dtype = dtype.subtype elif is_extension_array_dtype(dtype): dtype = "object" result = np.empty(self.shape, dtype=dtype) itemmask = np.zeros(self.shape[0]) for blk in self.blocks: rl = blk.mgr_locs result[rl.indexer] = blk.get_values(dtype) itemmask[rl.indexer] = 1 if not itemmask.all(): raise AssertionError("Some items were not contained in blocks") return result def to_dict(self, copy=True): """ Return a dict of str(dtype) -> BlockManager Parameters ---------- copy : boolean, default True Returns ------- values : a dict of dtype -> BlockManager Notes ----- This consolidates based on str(dtype) """ self._consolidate_inplace() bd = {} for b in self.blocks: bd.setdefault(str(b.dtype), []).append(b) return {dtype: self.combine(blocks, copy=copy) for dtype, blocks in bd.items()} def fast_xs(self, loc): """ get a cross sectional for a given location in the items ; handle dups return the result, is *could* be a view in the case of a single block """ if len(self.blocks) == 1: return self.blocks[0].iget((slice(None), loc)) items = self.items # non-unique (GH4726) if not items.is_unique: result = self._interleave() if self.ndim == 2: result = result.T return result[loc] # unique dtype = _interleaved_dtype(self.blocks) n = len(items) if is_extension_array_dtype(dtype): # we'll eventually construct an ExtensionArray. result = np.empty(n, dtype=object) else: result = np.empty(n, dtype=dtype) for blk in self.blocks: # Such assignment may incorrectly coerce NaT to None # result[blk.mgr_locs] = blk._slice((slice(None), loc)) for i, rl in enumerate(blk.mgr_locs): result[rl] = blk.iget((i, loc)) if is_extension_array_dtype(dtype): result = dtype.construct_array_type()._from_sequence(result, dtype=dtype) return result def consolidate(self): """ Join together blocks having same dtype Returns ------- y : BlockManager """ if self.is_consolidated(): return self bm = type(self)(self.blocks, self.axes) bm._is_consolidated = False bm._consolidate_inplace() return bm def _consolidate_inplace(self): if not self.is_consolidated(): self.blocks = tuple(_consolidate(self.blocks)) self._is_consolidated = True self._known_consolidated = True self._rebuild_blknos_and_blklocs() def get(self, item): """ Return values for selected item (ndarray or BlockManager). """ if self.items.is_unique: if not isna(item): loc = self.items.get_loc(item) else: indexer = np.arange(len(self.items))[isna(self.items)] # allow a single nan location indexer if not is_scalar(indexer): if len(indexer) == 1: loc = indexer.item() else: raise ValueError("cannot label index with a null key") return self.iget(loc) else: if isna(item): raise TypeError("cannot label index with a null key") indexer = self.items.get_indexer_for([item]) return self.reindex_indexer( new_axis=self.items[indexer], indexer=indexer, axis=0, allow_dups=True ) def iget(self, i): """ Return the data as a SingleBlockManager if possible Otherwise return as a ndarray """ block = self.blocks[self._blknos[i]] values = block.iget(self._blklocs[i]) # shortcut for select a single-dim from a 2-dim BM return SingleBlockManager( [ block.make_block_same_class( values, placement=slice(0, len(values)), ndim=1 ) ], self.axes[1], ) def delete(self, item): """ Delete selected item (items if non-unique) in-place. """ indexer = self.items.get_loc(item) is_deleted = np.zeros(self.shape[0], dtype=np.bool_) is_deleted[indexer] = True ref_loc_offset = -is_deleted.cumsum() is_blk_deleted = [False] * len(self.blocks) if isinstance(indexer, int): affected_start = indexer else: affected_start = is_deleted.nonzero()[0][0] for blkno, _ in _fast_count_smallints(self._blknos[affected_start:]): blk = self.blocks[blkno] bml = blk.mgr_locs blk_del = is_deleted[bml.indexer].nonzero()[0] if len(blk_del) == len(bml): is_blk_deleted[blkno] = True continue elif len(blk_del) != 0: blk.delete(blk_del) bml = blk.mgr_locs blk.mgr_locs = bml.add(ref_loc_offset[bml.indexer]) # FIXME: use Index.delete as soon as it uses fastpath=True self.axes[0] = self.items[~is_deleted] self.blocks = tuple( b for blkno, b in enumerate(self.blocks) if not is_blk_deleted[blkno] ) self._shape = None self._rebuild_blknos_and_blklocs() def set(self, item, value): """ Set new item in-place. Does not consolidate. Adds new Block if not contained in the current set of items """ # FIXME: refactor, clearly separate broadcasting & zip-like assignment # can prob also fix the various if tests for sparse/categorical value_is_extension_type = is_extension_array_dtype(value) # categorical/sparse/datetimetz if value_is_extension_type: def value_getitem(placement): return value else: if value.ndim == self.ndim - 1: value = _safe_reshape(value, (1,) + value.shape) def value_getitem(placement): return value else: def value_getitem(placement): return value[placement.indexer] if value.shape[1:] != self.shape[1:]: raise AssertionError( "Shape of new values must be compatible with manager shape" ) try: loc = self.items.get_loc(item) except KeyError: # This item wasn't present, just insert at end self.insert(len(self.items), item, value) return if isinstance(loc, int): loc = [loc] blknos = self._blknos[loc] blklocs = self._blklocs[loc].copy() unfit_mgr_locs = [] unfit_val_locs = [] removed_blknos = [] for blkno, val_locs in libinternals.get_blkno_placements(blknos, group=True): blk = self.blocks[blkno] blk_locs = blklocs[val_locs.indexer] if blk.should_store(value): blk.set(blk_locs, value_getitem(val_locs)) else: unfit_mgr_locs.append(blk.mgr_locs.as_array[blk_locs]) unfit_val_locs.append(val_locs) # If all block items are unfit, schedule the block for removal. if len(val_locs) == len(blk.mgr_locs): removed_blknos.append(blkno) else: self._blklocs[blk.mgr_locs.indexer] = -1 blk.delete(blk_locs) self._blklocs[blk.mgr_locs.indexer] = np.arange(len(blk)) if len(removed_blknos): # Remove blocks & update blknos accordingly is_deleted = np.zeros(self.nblocks, dtype=np.bool_) is_deleted[removed_blknos] = True new_blknos = np.empty(self.nblocks, dtype=np.int64) new_blknos.fill(-1) new_blknos[~is_deleted] = np.arange(self.nblocks - len(removed_blknos)) self._blknos = algos.take_1d( new_blknos, self._blknos, axis=0, allow_fill=False ) self.blocks = tuple( blk for i, blk in enumerate(self.blocks) if i not in set(removed_blknos) ) if unfit_val_locs: unfit_mgr_locs = np.concatenate(unfit_mgr_locs) unfit_count = len(unfit_mgr_locs) new_blocks = [] if value_is_extension_type: # This code (ab-)uses the fact that sparse blocks contain only # one item. new_blocks.extend( make_block( values=value.copy(), ndim=self.ndim, placement=slice(mgr_loc, mgr_loc + 1), ) for mgr_loc in unfit_mgr_locs ) self._blknos[unfit_mgr_locs] = np.arange(unfit_count) + len(self.blocks) self._blklocs[unfit_mgr_locs] = 0 else: # unfit_val_locs contains BlockPlacement objects unfit_val_items = unfit_val_locs[0].append(unfit_val_locs[1:]) new_blocks.append( make_block( values=value_getitem(unfit_val_items), ndim=self.ndim, placement=unfit_mgr_locs, ) ) self._blknos[unfit_mgr_locs] = len(self.blocks) self._blklocs[unfit_mgr_locs] = np.arange(unfit_count) self.blocks += tuple(new_blocks) # Newly created block's dtype may already be present. self._known_consolidated = False def insert(self, loc: int, item, value, allow_duplicates: bool = False): """ Insert item at selected position. Parameters ---------- loc : int item : hashable value : array_like allow_duplicates: bool If False, trying to insert non-unique item will raise """ if not allow_duplicates and item in self.items: # Should this be a different kind of error?? raise ValueError(f"cannot insert {item}, already exists") if not isinstance(loc, int): raise TypeError("loc must be int") # insert to the axis; this could possibly raise a TypeError new_axis = self.items.insert(loc, item) block = make_block(values=value, ndim=self.ndim, placement=slice(loc, loc + 1)) for blkno, count in _fast_count_smallints(self._blknos[loc:]): blk = self.blocks[blkno] if count == len(blk.mgr_locs): blk.mgr_locs = blk.mgr_locs.add(1) else: new_mgr_locs = blk.mgr_locs.as_array.copy() new_mgr_locs[new_mgr_locs >= loc] += 1 blk.mgr_locs = new_mgr_locs if loc == self._blklocs.shape[0]: # np.append is a lot faster, let's use it if we can. self._blklocs = np.append(self._blklocs, 0) self._blknos = np.append(self._blknos, len(self.blocks)) else: self._blklocs = np.insert(self._blklocs, loc, 0) self._blknos = np.insert(self._blknos, loc, len(self.blocks)) self.axes[0] = new_axis self.blocks += (block,) self._shape = None self._known_consolidated = False if len(self.blocks) > 100: self._consolidate_inplace() def reindex_axis( self, new_index, axis, method=None, limit=None, fill_value=None, copy=True ): """ Conform block manager to new index. """ new_index = ensure_index(new_index) new_index, indexer = self.axes[axis].reindex( new_index, method=method, limit=limit ) return self.reindex_indexer( new_index, indexer, axis=axis, fill_value=fill_value, copy=copy ) def reindex_indexer( self, new_axis, indexer, axis, fill_value=None, allow_dups=False, copy=True ): """ Parameters ---------- new_axis : Index indexer : ndarray of int64 or None axis : int fill_value : object allow_dups : bool pandas-indexer with -1's only. """ if indexer is None: if new_axis is self.axes[axis] and not copy: return self result = self.copy(deep=copy) result.axes = list(self.axes) result.axes[axis] = new_axis return result self._consolidate_inplace() # some axes don't allow reindexing with dups if not allow_dups: self.axes[axis]._can_reindex(indexer) if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(indexer, fill_tuple=(fill_value,)) else: new_blocks = [ blk.take_nd( indexer, axis=axis, fill_tuple=( fill_value if fill_value is not None else blk.fill_value, ), ) for blk in self.blocks ] new_axes = list(self.axes) new_axes[axis] = new_axis return type(self)(new_blocks, new_axes) def _slice_take_blocks_ax0(self, slice_or_indexer, fill_tuple=None): """ Slice/take blocks along axis=0. Overloaded for SingleBlock Returns ------- new_blocks : list of Block """ allow_fill = fill_tuple is not None sl_type, slobj, sllen = _preprocess_slice_or_indexer( slice_or_indexer, self.shape[0], allow_fill=allow_fill ) if self._is_single_block: blk = self.blocks[0] if sl_type in ("slice", "mask"): return [blk.getitem_block(slobj, new_mgr_locs=slice(0, sllen))] elif not allow_fill or self.ndim == 1: if allow_fill and fill_tuple[0] is None: _, fill_value = maybe_promote(blk.dtype) fill_tuple = (fill_value,) return [ blk.take_nd( slobj, axis=0, new_mgr_locs=slice(0, sllen), fill_tuple=fill_tuple, ) ] if sl_type in ("slice", "mask"): blknos = self._blknos[slobj] blklocs = self._blklocs[slobj] else: blknos = algos.take_1d( self._blknos, slobj, fill_value=-1, allow_fill=allow_fill ) blklocs = algos.take_1d( self._blklocs, slobj, fill_value=-1, allow_fill=allow_fill ) # When filling blknos, make sure blknos is updated before appending to # blocks list, that way new blkno is exactly len(blocks). # # FIXME: mgr_groupby_blknos must return mgr_locs in ascending order, # pytables serialization will break otherwise. blocks = [] for blkno, mgr_locs in libinternals.get_blkno_placements(blknos, group=True): if blkno == -1: # If we've got here, fill_tuple was not None. fill_value = fill_tuple[0] blocks.append( self._make_na_block(placement=mgr_locs, fill_value=fill_value) ) else: blk = self.blocks[blkno] # Otherwise, slicing along items axis is necessary. if not blk._can_consolidate: # A non-consolidatable block, it's easy, because there's # only one item and each mgr loc is a copy of that single # item. for mgr_loc in mgr_locs: newblk = blk.copy(deep=False) newblk.mgr_locs = slice(mgr_loc, mgr_loc + 1) blocks.append(newblk) else: blocks.append( blk.take_nd( blklocs[mgr_locs.indexer], axis=0, new_mgr_locs=mgr_locs, fill_tuple=None, ) ) return blocks def _make_na_block(self, placement, fill_value=None): # TODO: infer dtypes other than float64 from fill_value if fill_value is None: fill_value = np.nan block_shape = list(self.shape) block_shape[0] = len(placement) dtype, fill_value = infer_dtype_from_scalar(fill_value) block_values = np.empty(block_shape, dtype=dtype) block_values.fill(fill_value) return make_block(block_values, placement=placement) def take(self, indexer, axis=1, verify=True, convert=True): """ Take items along any axis. """ self._consolidate_inplace() indexer = ( np.arange(indexer.start, indexer.stop, indexer.step, dtype="int64") if isinstance(indexer, slice) else np.asanyarray(indexer, dtype="int64") ) n = self.shape[axis] if convert: indexer = maybe_convert_indices(indexer, n) if verify: if ((indexer == -1) | (indexer >= n)).any(): raise Exception("Indices must be nonzero and less than the axis length") new_labels = self.axes[axis].take(indexer) return self.reindex_indexer( new_axis=new_labels, indexer=indexer, axis=axis, allow_dups=True ) def equals(self, other): self_axes, other_axes = self.axes, other.axes if len(self_axes) != len(other_axes): return False if not all(ax1.equals(ax2) for ax1, ax2 in zip(self_axes, other_axes)): return False self._consolidate_inplace() other._consolidate_inplace() if len(self.blocks) != len(other.blocks): return False # canonicalize block order, using a tuple combining the mgr_locs # then type name because there might be unconsolidated # blocks (say, Categorical) which can only be distinguished by # the iteration order def canonicalize(block): return (block.mgr_locs.as_array.tolist(), block.dtype.name) self_blocks = sorted(self.blocks, key=canonicalize) other_blocks = sorted(other.blocks, key=canonicalize) return all( block.equals(oblock) for block, oblock in zip(self_blocks, other_blocks) ) def unstack(self, unstacker_func, fill_value): """Return a blockmanager with all blocks unstacked. Parameters ---------- unstacker_func : callable A (partially-applied) ``pd.core.reshape._Unstacker`` class. fill_value : Any fill_value for newly introduced missing values. Returns ------- unstacked : BlockManager """ n_rows = self.shape[-1] dummy = unstacker_func(np.empty((0, 0)), value_columns=self.items) new_columns = dummy.get_new_columns() new_index = dummy.get_new_index() new_blocks = [] columns_mask = [] for blk in self.blocks: blocks, mask = blk._unstack( partial(unstacker_func, value_columns=self.items[blk.mgr_locs.indexer]), new_columns, n_rows, fill_value, ) new_blocks.extend(blocks) columns_mask.extend(mask) new_columns = new_columns[columns_mask] bm = BlockManager(new_blocks, [new_columns, new_index]) return bm class SingleBlockManager(BlockManager): """ manage a single block with """ ndim = 1 _is_consolidated = True _known_consolidated = True __slots__ = () def __init__( self, block: Block, axis: Union[Index, List[Index]], do_integrity_check: bool = False, fastpath: bool = False, ): if isinstance(axis, list): if len(axis) != 1: raise ValueError( "cannot create SingleBlockManager with more than 1 axis" ) axis = axis[0] # passed from constructor, single block, single axis if fastpath: self.axes = [axis] if isinstance(block, list): # empty block if len(block) == 0: block = [np.array([])] elif len(block) != 1: raise ValueError( "Cannot create SingleBlockManager with more than 1 block" ) block = block[0] else: self.axes = [ensure_index(axis)] # create the block here if isinstance(block, list): # provide consolidation to the interleaved_dtype if len(block) > 1: dtype = _interleaved_dtype(block) block = [b.astype(dtype) for b in block] block = _consolidate(block) if len(block) != 1: raise ValueError( "Cannot create SingleBlockManager with more than 1 block" ) block = block[0] if not isinstance(block, Block): block = make_block(block, placement=slice(0, len(axis)), ndim=1) self.blocks = tuple([block]) def _post_setstate(self): pass @property def _block(self): return self.blocks[0] @property def _values(self): return self._block.values @property def _blknos(self): """ compat with BlockManager """ return None @property def _blklocs(self): """ compat with BlockManager """ return None def get_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") return type(self)(self._block._slice(slobj), self.index[slobj], fastpath=True) @property def index(self): return self.axes[0] @property def dtype(self): return self._block.dtype @property def array_dtype(self): return self._block.array_dtype def get_dtype_counts(self): return {self.dtype.name: 1} def get_dtypes(self): return np.array([self._block.dtype]) def external_values(self): """The array that Series.values returns""" return self._block.external_values() def internal_values(self): """The array that Series._values returns""" return self._block.internal_values() def get_values(self): """ return a dense type view """ return np.array(self._block.to_dense(), copy=False) @property def _can_hold_na(self): return self._block._can_hold_na def is_consolidated(self): return True def _consolidate_check(self): pass def _consolidate_inplace(self): pass def delete(self, item): """ Delete single item from SingleBlockManager. Ensures that self.blocks doesn't become empty. """ loc = self.items.get_loc(item) self._block.delete(loc) self.axes[0] = self.axes[0].delete(loc) def fast_xs(self, loc): """ fast path for getting a cross-section return a view of the data """ return self._block.values[loc] def concat(self, to_concat, new_axis): """ Concatenate a list of SingleBlockManagers into a single SingleBlockManager. Used for pd.concat of Series objects with axis=0. Parameters ---------- to_concat : list of SingleBlockManagers new_axis : Index of the result Returns ------- SingleBlockManager """ non_empties = [x for x in to_concat if len(x) > 0] # check if all series are of the same block type: if len(non_empties) > 0: blocks = [obj.blocks[0] for obj in non_empties] if len({b.dtype for b in blocks}) == 1: new_block = blocks[0].concat_same_type(blocks) else: values = [x.values for x in blocks] values = concat_compat(values) new_block = make_block(values, placement=slice(0, len(values), 1)) else: values = [x._block.values for x in to_concat] values = concat_compat(values) new_block = make_block(values, placement=slice(0, len(values), 1)) mgr = SingleBlockManager(new_block, new_axis) return mgr # -------------------------------------------------------------------- # Constructor Helpers def create_block_manager_from_blocks(blocks, axes): try: if len(blocks) == 1 and not isinstance(blocks[0], Block): # if blocks[0] is of length 0, return empty blocks if not len(blocks[0]): blocks = [] else: # It's OK if a single block is passed as values, its placement # is basically "all items", but if there're many, don't bother # converting, it's an error anyway. blocks = [ make_block(values=blocks[0], placement=slice(0, len(axes[0]))) ] mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except ValueError as e: blocks = [getattr(b, "values", b) for b in blocks] tot_items = sum(b.shape[0] for b in blocks) construction_error(tot_items, blocks[0].shape[1:], axes, e) def create_block_manager_from_arrays(arrays, names, axes): try: blocks = form_blocks(arrays, names, axes) mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except ValueError as e: construction_error(len(arrays), arrays[0].shape, axes, e) def construction_error(tot_items, block_shape, axes, e=None): """ raise a helpful message about our construction """ passed = tuple(map(int, [tot_items] + list(block_shape))) # Correcting the user facing error message during dataframe construction if len(passed) <= 2: passed = passed[::-1] implied = tuple(len(ax) for ax in axes) # Correcting the user facing error message during dataframe construction if len(implied) <= 2: implied = implied[::-1] if passed == implied and e is not None: raise e if block_shape[0] == 0: raise ValueError("Empty data passed with indices specified.") raise ValueError(f"Shape of passed values is {passed}, indices imply {implied}") # ----------------------------------------------------------------------- def form_blocks(arrays, names, axes): # put "leftover" items in float bucket, where else? # generalize? items_dict = defaultdict(list) extra_locs = [] names_idx = ensure_index(names) if names_idx.equals(axes[0]): names_indexer = np.arange(len(names_idx)) else: assert names_idx.intersection(axes[0]).is_unique names_indexer = names_idx.get_indexer_for(axes[0]) for i, name_idx in enumerate(names_indexer): if name_idx == -1: extra_locs.append(i) continue k = names[name_idx] v = arrays[name_idx] block_type = get_block_type(v) items_dict[block_type.__name__].append((i, k, v)) blocks = [] if len(items_dict["FloatBlock"]): float_blocks = _multi_blockify(items_dict["FloatBlock"]) blocks.extend(float_blocks) if len(items_dict["ComplexBlock"]): complex_blocks = _multi_blockify(items_dict["ComplexBlock"]) blocks.extend(complex_blocks) if len(items_dict["TimeDeltaBlock"]): timedelta_blocks = _multi_blockify(items_dict["TimeDeltaBlock"]) blocks.extend(timedelta_blocks) if len(items_dict["IntBlock"]): int_blocks = _multi_blockify(items_dict["IntBlock"]) blocks.extend(int_blocks) if len(items_dict["DatetimeBlock"]): datetime_blocks = _simple_blockify(items_dict["DatetimeBlock"], _NS_DTYPE) blocks.extend(datetime_blocks) if len(items_dict["DatetimeTZBlock"]): dttz_blocks = [ make_block(array, klass=DatetimeTZBlock, placement=[i]) for i, _, array in items_dict["DatetimeTZBlock"] ] blocks.extend(dttz_blocks) if len(items_dict["BoolBlock"]): bool_blocks = _simple_blockify(items_dict["BoolBlock"], np.bool_) blocks.extend(bool_blocks) if len(items_dict["ObjectBlock"]) > 0: object_blocks = _simple_blockify(items_dict["ObjectBlock"], np.object_) blocks.extend(object_blocks) if len(items_dict["CategoricalBlock"]) > 0: cat_blocks = [ make_block(array, klass=CategoricalBlock, placement=[i]) for i, _, array in items_dict["CategoricalBlock"] ] blocks.extend(cat_blocks) if len(items_dict["ExtensionBlock"]): external_blocks = [ make_block(array, klass=ExtensionBlock, placement=[i]) for i, _, array in items_dict["ExtensionBlock"] ] blocks.extend(external_blocks) if len(items_dict["ObjectValuesExtensionBlock"]): external_blocks = [ make_block(array, klass=ObjectValuesExtensionBlock, placement=[i]) for i, _, array in items_dict["ObjectValuesExtensionBlock"] ] blocks.extend(external_blocks) if len(extra_locs): shape = (len(extra_locs),) + tuple(len(x) for x in axes[1:]) # empty items -> dtype object block_values = np.empty(shape, dtype=object) block_values.fill(np.nan) na_block = make_block(block_values, placement=extra_locs) blocks.append(na_block) return blocks def _simple_blockify(tuples, dtype): """ return a single array of a block that has a single dtype; if dtype is not None, coerce to this dtype """ values, placement = _stack_arrays(tuples, dtype) # TODO: CHECK DTYPE? if dtype is not None and values.dtype != dtype: # pragma: no cover values = values.astype(dtype) block = make_block(values, placement=placement) return [block] def _multi_blockify(tuples, dtype=None): """ return an array of blocks that potentially have different dtypes """ # group by dtype grouper = itertools.groupby(tuples, lambda x: x[2].dtype) new_blocks = [] for dtype, tup_block in grouper: values, placement = _stack_arrays(list(tup_block), dtype) block = make_block(values, placement=placement) new_blocks.append(block) return new_blocks def _stack_arrays(tuples, dtype): # fml def _asarray_compat(x): if isinstance(x, ABCSeries): return x._values else: return np.asarray(x) def _shape_compat(x): if isinstance(x, ABCSeries): return (len(x),) else: return x.shape placement, names, arrays = zip(*tuples) first = arrays[0] shape = (len(arrays),) + _shape_compat(first) stacked = np.empty(shape, dtype=dtype) for i, arr in enumerate(arrays): stacked[i] = _asarray_compat(arr) return stacked, placement def _interleaved_dtype( blocks: List[Block], ) -> Optional[Union[np.dtype, ExtensionDtype]]: """Find the common dtype for `blocks`. Parameters ---------- blocks : List[Block] Returns ------- dtype : Optional[Union[np.dtype, ExtensionDtype]] None is returned when `blocks` is empty. """ if not len(blocks): return None return find_common_type([b.dtype for b in blocks]) def _consolidate(blocks): """ Merge blocks having same dtype, exclude non-consolidating blocks """ # sort by _can_consolidate, dtype gkey = lambda x: x._consolidate_key grouper = itertools.groupby(sorted(blocks, key=gkey), gkey) new_blocks = [] for (_can_consolidate, dtype), group_blocks in grouper: merged_blocks = _merge_blocks( list(group_blocks), dtype=dtype, _can_consolidate=_can_consolidate ) new_blocks = _extend_blocks(merged_blocks, new_blocks) return new_blocks def _compare_or_regex_search(a, b, regex=False): """ Compare two array_like inputs of the same shape or two scalar values Calls operator.eq or re.search, depending on regex argument. If regex is True, perform an element-wise regex matching. Parameters ---------- a : array_like or scalar b : array_like or scalar regex : bool, default False Returns ------- mask : array_like of bool """ if not regex: op = lambda x: operator.eq(x, b) else: op = np.vectorize( lambda x: bool(re.search(b, x)) if isinstance(x, str) else False ) is_a_array = isinstance(a, np.ndarray) is_b_array = isinstance(b, np.ndarray) if is_datetimelike_v_numeric(a, b) or is_numeric_v_string_like(a, b): # GH#29553 avoid deprecation warnings from numpy result = False else: result = op(a) if is_scalar(result) and (is_a_array or is_b_array): type_names = [type(a).__name__, type(b).__name__] if is_a_array: type_names[0] = f"ndarray(dtype={a.dtype})" if is_b_array: type_names[1] = f"ndarray(dtype={b.dtype})" raise TypeError( f"Cannot compare types {repr(type_names[0])} and {repr(type_names[1])}" ) return result def _transform_index(index, func, level=None): """ Apply function to all values found in index. This includes transforming multiindex entries separately. Only apply function to one level of the MultiIndex if level is specified. """ if isinstance(index, MultiIndex): if level is not None: items = [ tuple(func(y) if i == level else y for i, y in enumerate(x)) for x in index ] else: items = [tuple(func(y) for y in x) for x in index] return MultiIndex.from_tuples(items, names=index.names) else: items = [func(x) for x in index] return Index(items, name=index.name, tupleize_cols=False) def _fast_count_smallints(arr): """Faster version of set(arr) for sequences of small numbers.""" counts = np.bincount(arr.astype(np.int_)) nz = counts.nonzero()[0] return np.c_[nz, counts[nz]] def _preprocess_slice_or_indexer(slice_or_indexer, length, allow_fill): if isinstance(slice_or_indexer, slice): return ( "slice", slice_or_indexer, libinternals.slice_len(slice_or_indexer, length), ) elif ( isinstance(slice_or_indexer, np.ndarray) and slice_or_indexer.dtype == np.bool_ ): return "mask", slice_or_indexer, slice_or_indexer.sum() else: indexer = np.asanyarray(slice_or_indexer, dtype=np.int64) if not allow_fill: indexer = maybe_convert_indices(indexer, length) return "fancy", indexer, len(indexer) def concatenate_block_managers(mgrs_indexers, axes, concat_axis, copy): """ Concatenate block managers into one. Parameters ---------- mgrs_indexers : list of (BlockManager, {axis: indexer,...}) tuples axes : list of Index concat_axis : int copy : bool """ concat_plans = [ get_mgr_concatenation_plan(mgr, indexers) for mgr, indexers in mgrs_indexers ] concat_plan = combine_concat_plans(concat_plans, concat_axis) blocks = [] for placement, join_units in concat_plan: if len(join_units) == 1 and not join_units[0].indexers: b = join_units[0].block values = b.values if copy: values = values.copy() else: values = values.view() b = b.make_block_same_class(values, placement=placement) elif is_uniform_join_units(join_units): b = join_units[0].block.concat_same_type( [ju.block for ju in join_units], placement=placement ) else: b = make_block( concatenate_join_units(join_units, concat_axis, copy=copy), placement=placement, ) blocks.append(b) return BlockManager(blocks, axes)
30.997495
88
0.568699
0ace1099b0c9dcc1f6b98d9e7dd7eedbe75b8af9
3,021
py
Python
wikipedia_for_humans/util.py
JarbasAl/wikipedia_for_humans
b5a4c308e9c83d650d3593d39eba13d21a433a97
[ "MIT" ]
39
2020-04-11T22:06:39.000Z
2020-05-16T11:22:16.000Z
wikipedia_for_humans/util.py
JarbasAl/wikipedia_for_humans
b5a4c308e9c83d650d3593d39eba13d21a433a97
[ "MIT" ]
1
2021-02-09T20:13:36.000Z
2021-02-25T22:47:17.000Z
wikipedia_for_humans/util.py
JarbasAl/wikipedia_for_humans
b5a4c308e9c83d650d3593d39eba13d21a433a97
[ "MIT" ]
4
2020-08-11T17:12:16.000Z
2021-10-08T04:03:19.000Z
from difflib import SequenceMatcher import re from inflection import singularize as _singularize_en from quebra_frases import sentence_tokenize, flatten def singularize(word, lang="en"): if lang.startswith("en"): return _singularize_en(word) return word.rstrip("s") def split_sentences(text, new_lines=False): if new_lines: return text.split("\n") return flatten([sentence_tokenize(t) for t in text.split("\n")]) def fuzzy_match(x, against): """Perform a 'fuzzy' comparison between two strings. Returns: float: match percentage -- 1.0 for perfect match, down to 0.0 for no match at all. """ return SequenceMatcher(None, x, against).ratio() def match_one(query, choices): """ Find best match from a list or dictionary given an input Arguments: query: string to test choices: list or dictionary of choices Returns: tuple with best match, score """ if isinstance(choices, dict): _choices = list(choices.keys()) elif isinstance(choices, list): _choices = choices else: raise ValueError('a list or dict of choices must be provided') best = (_choices[0], fuzzy_match(query, _choices[0])) for c in _choices[1:]: score = fuzzy_match(query, c) if score > best[1]: best = (c, score) if isinstance(choices, dict): return (choices[best[0]], best[1]) else: return best def remove_parentheses(answer): # remove [xx] (xx) {xx} answer = re.sub(r'\[[^)]*\]', '', answer) answer = re.sub(r'\([^)]*\)', '', answer) answer = re.sub(r'\{[^)]*\}', '', answer) answer = answer.replace("(", "").replace(")", "") \ .replace("[", "").replace("]", "").replace("{", "") \ .replace("}", "").strip() # remove extra spaces words = [w for w in answer.split(" ") if w.strip()] answer = " ".join(words) if not answer: return None return answer def summarize(answer): if not answer: return None return normalize(split_sentences(answer)[0]) def normalize(answer): if not answer: return None return remove_parentheses(answer) if __name__ == "__main__": s = "hello. He said" for s in split_sentences(s): print(s) s = "hello . He said" for s in split_sentences(s): print(s) # no splitting s = "hello.com" for s in split_sentences(s): print(s) s = "A.E:I.O.U" for s in split_sentences(s): print(s) # ambiguous, but will split s = "hello.He said" for s in split_sentences(s): print(s) # ambiguous, no split s = "hello. he said" # could be "Jones Jr. thinks ..." for s in split_sentences(s): print(s) s = "hello.he said" # could be "www.hello.com" for s in split_sentences(s): print(s) s = "hello . he said" # TODO maybe split this one? for s in split_sentences(s): print(s)
26.043103
70
0.588878
ed3a447d0e5ac15886a0bf3c2289032d1ef83e66
7,666
py
Python
curequests/cuhttp.py
guyskk/curequests
731e1996ebd57aec4bd36e728a5a0f7edb83933e
[ "MIT" ]
262
2017-10-29T13:48:23.000Z
2022-02-22T08:11:32.000Z
curequests/cuhttp.py
guyskk/curequests
731e1996ebd57aec4bd36e728a5a0f7edb83933e
[ "MIT" ]
41
2017-10-29T17:15:02.000Z
2020-04-01T11:11:01.000Z
curequests/cuhttp.py
guyskk/curequests
731e1996ebd57aec4bd36e728a5a0f7edb83933e
[ "MIT" ]
9
2017-10-30T08:42:33.000Z
2020-06-15T03:24:13.000Z
import zlib from collections import namedtuple import httptools from curio import timeout_after, TaskTimeout from curio.io import StreamBase from requests.structures import CaseInsensitiveDict from requests import ReadTimeout as ReadTimeoutError from urllib3.response import GzipDecoder as GzipDecoderBase from urllib3.response import DeflateDecoder as DeflateDecoderBase from urllib3.exceptions import DecodeError class ProtocolError(httptools.HttpParserError): """ProtocolError""" class _Decoder: def decompress(self, *args, **kwargs): try: return super().decompress(*args, **kwargs) except zlib.error as ex: msg = 'failed to decode response with {}'.format( type(self).__name__) raise DecodeError(msg) from ex class GzipDecoder(_Decoder, GzipDecoderBase): """GzipDecoder""" class DeflateDecoder(_Decoder, DeflateDecoderBase): """DeflateDecoder""" Response = namedtuple('Response', [ 'status', 'reason', 'version', 'keep_alive', 'headers', 'stream', ]) MAX_BUFFER_SIZE = 64 * 1024 DEFAULT_BUFFER_SIZE = 4 * 1024 class ResponseStream(StreamBase): """Response stream as file object""" def __init__(self, sock, gen, buffer_size_setter): super().__init__(sock) self._gen = gen self._set_buffer_size = buffer_size_setter async def _read(self, maxbytes=-1): maxbytes = maxbytes if maxbytes > 0 else MAX_BUFFER_SIZE self._set_buffer_size(maxbytes) try: return await self._gen.__anext__() except StopAsyncIteration: return b'' class ResponseParser: """ Attrs: version status reason keep_alive headers body_stream started headers_completed completed """ def __init__(self, sock, *, buffer_size=DEFAULT_BUFFER_SIZE, timeout=None): self._sock = sock self._parser = httptools.HttpResponseParser(self) # options self.buffer_size = buffer_size self.timeout = timeout # primary attrs self.version = None self.status = None self.reason = b'' self.headers = [] # temp attrs self.current_buffer_size = self.buffer_size self.header_name = b'' self.body_chunks = [] # state self.started = False self.headers_completed = False self.completed = False # ========= httptools callbacks ======== def on_message_begin(self): self.started = True def on_status(self, status: bytes): self.reason += status def on_header(self, name: bytes, value: bytes or None): self.header_name += name if value is not None: self.headers.append((self.header_name.decode(), value.decode())) self.header_name = b'' def on_headers_complete(self): self.version = self._parser.get_http_version() self.status = self._parser.get_status_code() self.reason = self.reason.decode() self.keep_alive = self._parser.should_keep_alive() self.headers = CaseInsensitiveDict(self.headers) self.headers_completed = True def on_body(self, body: bytes): # Implement Note: a `feed_data` can cause multi `on_body` when data # is large, eg: len(data) > 8192, so we should store `body` in a list self.body_chunks.append(body) def on_message_complete(self): self.completed = True # ========= end httptools callbacks ======== async def recv(self): if not self.timeout or self.timeout <= 0: return await self._sock.recv(self.current_buffer_size) else: try: return await timeout_after( self.timeout, self._sock.recv(self.current_buffer_size) ) except TaskTimeout as ex: raise ReadTimeoutError(str(ex)) from None def _set_current_buffer_size(self, buffer_size): self.current_buffer_size = buffer_size def _get_decoder(self): mode = self.headers.get('Content-Encoding', '').lower() if mode == 'gzip': return GzipDecoder() elif mode == 'deflate': return DeflateDecoder() return None async def parse(self): while not self.headers_completed: data = await self.recv() self._parser.feed_data(data) if not data: break if not self.headers_completed: raise ProtocolError('incomplete response headers') body_stream = self.body_stream() decoder = self._get_decoder() if decoder: body_stream = _decompress(body_stream, decoder) def stream(chunk_size=DEFAULT_BUFFER_SIZE): self._set_current_buffer_size(chunk_size) return body_stream environ = dict( version=self.version, status=self.status, reason=self.reason, keep_alive=self.keep_alive, headers=self.headers, stream=stream, ) return Response(**environ) async def body_stream(self): while self.body_chunks: yield self.body_chunks.pop(0) while not self.completed: data = await self.recv() # feed data even when data is empty, so parser will completed self._parser.feed_data(data) while self.body_chunks: yield self.body_chunks.pop(0) if not data: break if not self.completed: raise ProtocolError('incomplete response body') class RequestSerializer: def __init__(self, path, method='GET', *, version='HTTP/1.1', headers=None, body=b'', body_stream=None): self.path = path self.method = method self.version = version if headers is None: self.headers = {} else: self.headers = headers self.body = body if body is not None else b'' self.body_stream = body_stream def _format_headers(self): headers = [f'{self.method} {self.path} {self.version}'] for k, v in self.headers.items(): headers.append(f'{k}: {v}') return '\r\n'.join(headers).encode() + b'\r\n\r\n' def _format_chunk(self, chunk): return format(len(chunk), 'X').encode() + b'\r\n' + chunk + b'\r\n' def _is_chunked(self): return self.headers.get('Transfer-Encoding', '').lower() == 'chunked' async def __aiter__(self): if self.body_stream is None: # one-off request if self.method in {'POST', 'PUT', 'PATCH'}: self.headers['Content-Length'] = len(self.body) yield self._format_headers() if self.body: yield self.body else: # stream request if self._is_chunked(): yield self._format_headers() async for chunk in self.body_stream: yield self._format_chunk(chunk) yield b'0\r\n\r\n' else: if 'Content-Length' not in self.headers: raise ValueError('Content-Length not set') yield self._format_headers() async for chunk in self.body_stream: yield chunk async def _decompress(body_stream, decoder): async for chunk in body_stream: yield decoder.decompress(chunk) buf = decoder.decompress(b'') yield buf + decoder.flush()
30.181102
79
0.59653
42aad51994083de1541e03763974ae0196f307b8
635
py
Python
setup.py
Mrucznik/django-workers
938fb7ff804532c2b1b6e965e162f28db2c4094a
[ "MIT" ]
null
null
null
setup.py
Mrucznik/django-workers
938fb7ff804532c2b1b6e965e162f28db2c4094a
[ "MIT" ]
null
null
null
setup.py
Mrucznik/django-workers
938fb7ff804532c2b1b6e965e162f28db2c4094a
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="django-workers", version="0.1.3", author="Gavin Vickery", author_email="gavin@geekforbrains.com", description="Simple background tasks for Django", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/Mrucznik/django-workers", packages=setuptools.find_packages(), classifiers=( "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ), )
28.863636
53
0.674016
b4ac3afb4636e883081df208c755e55b31271b61
5,925
py
Python
online.py
AMshoka/Local-Client-Server-Search-engine
4357e42757cc46fbe078ca2fee7eadd693431add
[ "MIT" ]
null
null
null
online.py
AMshoka/Local-Client-Server-Search-engine
4357e42757cc46fbe078ca2fee7eadd693431add
[ "MIT" ]
null
null
null
online.py
AMshoka/Local-Client-Server-Search-engine
4357e42757cc46fbe078ca2fee7eadd693431add
[ "MIT" ]
null
null
null
from difflib import get_close_matches import ast import io import math import numpy as np import json class QueryNotFoundException(Exception): pass def get_result(index_body, index_title, data,q): # with io.open("index_title.txt", "r", encoding="utf-8") as f: # text = f.read() # index_title = ast.literal_eval(text) lb = index_body.keys() lt = index_title.keys() dic = list(lb) + list(lt) dic = list(dict.fromkeys(dic)) sc = {} lq = q.split(" ") res_body = [] res_title = [] word = '' body_intersect = [] final_result_body = [] # title_intersect = [] final_result_title = [] if len(lq) > 1: for w in lq: pl_body = index_body.get(w) pl_title = index_title.get(w) if pl_body != None: for i in pl_body: res_body.append(i[0]) if pl_title != None: for j in pl_title: res_title.append(j[0]) if pl_body == None and pl_title == None: return 0,get_close_matches(w, dic, 5, 0.6) body_intersect = list(set([x for x in res_body if res_body.count(x) > 1])) title_intersect = list(set([x for x in res_body if res_body.count(x) > 1])) score_body = {} score_title = {} for i in body_intersect: sum_body = 0 for w in lq: pl_body = index_body.get(w) if pl_body != None: for j in pl_body: if j[0] == i: tf = j[1] sum_body += tf * np.log10(10782 / len(pl_body)) score_body.update({i: sum_body}) for i in title_intersect: sum_title = 0 for w in lq: pl_title = index_title.get(w) # print(pl_title) if pl_title != None: for j in pl_title: if j[0] == i: tf = j[1] sum_title += tf * np.log10(10782 / len(pl_title)) score_title.update({i: sum_title}) final_list = body_intersect + title_intersect final_score = {} final_sum = 0 for i in final_list: if i in body_intersect and i in title_intersect: final_sum = score_body.get(i) + 47 * score_title.get(i) if i in body_intersect and i not in title_intersect: final_sum = score_body.get(i) if i not in body_intersect and i in title_intersect: final_sum = 47 * score_title.get(i) final_score.update({i: final_sum}) # sort = sorted(final_score.values()) # sort = list(dict.fromkeys(sort)) # print(sort) # print('*****************************') # if sort.reverse() != None: sigle = {k: v for k, v in sorted(final_score.items(), key=lambda item: item[1])} sort = list(sigle.keys()) f_result = [] # sort = list(dict.fromkeys(sort)) counter = 0 for i in reversed(sort): result = data.get(str(i)) result[0] = '{}...'.format(result[0][1:200]) f_result.append(result) counter += 1 if counter == 20 or counter == len(sort): break # print(i) # print(data.get(str(i))) return 1, f_result else: w = lq[0] sum_body = 0 sum_title = 0 pl_body = index_body.get(w) pl_title = index_title.get(w) if pl_body != None: for i in pl_body: res_body.append(i[0]) if pl_title != None: for j in pl_title: res_title.append(j[0]) if pl_body == None and pl_title == None: return 0,get_close_matches(w, dic, 5, 0.6) score_body = {} score_title = {} for i in res_body: sum_body = 0 pl_body = index_body.get(w) if pl_body != None: for j in pl_body: if j[0] == i: tf = j[1] sum_body = tf * np.log10(10782 / len(pl_body)) score_body.update({i: sum_body}) for i in res_title: sum_title = 0 pl_title = index_title.get(w) if pl_title != None: for j in pl_title: if j[0] == i: tf = j[1] sum_title = tf * np.log10(10782 / len(pl_title)) score_title.update({i: sum_title}) final_list = res_body + res_title final_score = {} final_sum = 0 for i in final_list: if i in res_body and i in res_title: final_sum = score_body.get(i) + 47 * score_title.get(i) if i in res_body and i not in res_title: final_sum = score_body.get(i) if i not in res_body and i in res_title: final_sum = 47 * score_title.get(i) final_score.update({i: final_sum}) # print(final_score) sigle = {k: v for k, v in sorted(final_score.items(), key=lambda item: item[1])} si = list(sigle.keys()) f_result = [] # si = list(dict.fromkeys(si)) counter = 0 for i in reversed(si): result = data.get(str(i)) result[0] = '{}...'.format(result[0][1:200]) f_result.append(result) counter += 1 if counter == 20 or counter == len(si): break return 1,f_result # for i in reversed(si): # print(data.get(str(i))) # print(i)
35.692771
89
0.474599
8e27ffcda4bd6499803344cfbb2439cc7fe2f9b3
1,704
py
Python
test/base.py
schlosser/flask-seed
0c0dbca87391692087a0a4ab280635f493e8998b
[ "MIT" ]
4
2017-01-13T13:28:48.000Z
2019-05-10T16:54:12.000Z
test/base.py
schlosser/flask-seed
0c0dbca87391692087a0a4ab280635f493e8998b
[ "MIT" ]
null
null
null
test/base.py
schlosser/flask-seed
0c0dbca87391692087a0a4ab280635f493e8998b
[ "MIT" ]
1
2018-03-06T20:20:10.000Z
2018-03-06T20:20:10.000Z
""" .. module:: base :synopsis: This defines common functionality in our test suite, in the base class :class:`TestingTemplate`, which should be inherited by all test suite classes. .. moduleauthor:: Dan Schlosser <dan@dan@schlosser.io> """ import unittest import mongoengine from app import create_app class TestingTemplate(unittest.TestCase): def setUp(self): # noqa """Before every test, make some an example user.""" from app.models import User user = User(name='Test User', email="testuser@test.com") user.save() def tearDown(self): # noqa """After every test, delete users created in :func:`setUp`.""" from app.models import User User.drop_collection() @classmethod def setUpClass(cls): # noqa """Sets up a test database before each set of tests.""" cls.app = create_app( MONGODB_SETTINGS={'DB': 'testing'}, TESTING=True, CSRF_ENABLED=False, WTF_CSRF_ENABLED=False ) def request(self, path, method='GET', role='admin', *args, **kwargs): """Make an http request with the given role's gplus_id in the session and a User with the given role in the database. """ with self.app.test_client() as c: kwargs['method'] = method kwargs['path'] = path return c.open(*args, **kwargs) def test_create_test_app(self): """Assert that we are in a proper testing environment.""" self.assertTrue(self.app.config['TESTING']) self.assertFalse(self.app.config['CSRF_ENABLED']) self.assertEqual(mongoengine.connection.get_db().name, 'testing')
32.769231
79
0.626761
6d2cbe99c7d5e1d60be75f46ad89d493ecabcdd2
89
py
Python
contrib/bitflip_env/rlgraph/environments/custom/openai/envs/__init__.py
RLGraph/RLGraph
428fc136a9a075f29a397495b4226a491a287be2
[ "Apache-2.0" ]
290
2018-07-29T15:30:57.000Z
2022-03-19T02:46:53.000Z
contrib/bitflip_env/rlgraph/environments/custom/openai/envs/__init__.py
RLGraph/RLGraph
428fc136a9a075f29a397495b4226a491a287be2
[ "Apache-2.0" ]
76
2018-10-19T08:42:01.000Z
2020-05-03T08:34:21.000Z
contrib/bitflip_env/rlgraph/environments/custom/openai/envs/__init__.py
RLGraph/RLGraph
428fc136a9a075f29a397495b4226a491a287be2
[ "Apache-2.0" ]
41
2018-10-30T07:05:05.000Z
2022-03-01T08:28:24.000Z
from contrib.bitflip_env.rlgraph.environments.custom.openai.envs.bit_flip import BitFlip
44.5
88
0.876404
0cde9826eeb22f5bd958c43a548d45d05a9b1e51
605
py
Python
tests/test_change_title_to_str.py
igormorgado/litcorpt
669c1852d42231f563fe0cdcf315f4fd66cf719b
[ "MIT" ]
null
null
null
tests/test_change_title_to_str.py
igormorgado/litcorpt
669c1852d42231f563fe0cdcf315f4fd66cf719b
[ "MIT" ]
null
null
null
tests/test_change_title_to_str.py
igormorgado/litcorpt
669c1852d42231f563fe0cdcf315f4fd66cf719b
[ "MIT" ]
null
null
null
#!/usr/bin/env python """An example in how to change a field in model. Not for regular use""" import litcorpt def main(): """Program entrypoint""" corpus_db = litcorpt.corpus_load() booksdir = litcorpt.utils.book_dir(litcorpt.utils.get_corpus_datapath()) for document in iter(corpus_db): document['title'] = document['title'][0] book = litcorpt.model.Book(**document) bookdir = booksdir / book.index print(f'Writting to {bookdir}') litcorpt.book_write(book, bookdir) if __name__ == '__main__': print("This code should not be ran. Skipping.")
31.842105
76
0.667769
06e5fcb9b65e8b7b94cb6f78d36ed428b9f15dd9
10,765
py
Python
perses/analysis/load_simulations.py
hannahbrucemacdonald/perses
6b43d200501e587b352dce5aaefef38e4145048b
[ "MIT" ]
null
null
null
perses/analysis/load_simulations.py
hannahbrucemacdonald/perses
6b43d200501e587b352dce5aaefef38e4145048b
[ "MIT" ]
null
null
null
perses/analysis/load_simulations.py
hannahbrucemacdonald/perses
6b43d200501e587b352dce5aaefef38e4145048b
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt import sys from openeye import oechem, oegraphsim import logging _logger = logging.getLogger("analysis") class Molecule(object): def __init__(self, i, string): from perses.utils.openeye import smiles_to_oemol self.line = string details = string.split(';') self.index = i self.smiles, self.name, self.exp, self.experr, self.calc, self.calcerr = details[1:7] self.mol = smiles_to_oemol(self.smiles) self.exp = kcal_to_kt(float(self.exp)) self.experr = kcal_to_kt(float(self.experr)) self.calc = kcal_to_kt(float(self.calc)) self.calcerr = kcal_to_kt(float(self.calcerr)) self.mw = self.calculate_molecular_weight() self.ha = self.heavy_atom_count() self.simtype = None def calculate_molecular_weight(self): """ Calculates the molecular weight of an oemol Parameters ---------- Returns ------- float, molecular weight of molecule """ return oechem.OECalculateMolecularWeight(self.mol) def heavy_atom_count(self): """ Counts the number of heavy atoms in an oemol Parameters ---------- Returns ------- int, number of heavy atoms in molecule """ return oechem.OECount(self.mol, oechem.OEIsHeavy()) class Simulation(object): def __init__(self,A,B): self.ligA = A self.ligB = B self.directory = f'lig{self.ligA}to{self.ligB}' self.vacdg = None self.vacddg = None self.soldg = None self.solddg = None self.comdg = None self.comddg = None self.vacdg_history = [] self.soldg_history = [] self.comdg_history = [] self.vacddg_history = [] self.solddg_history = [] self.comddg_history = [] self.vacdg_history_es = [] self.soldg_history_es = [] self.comdg_history_es = [] self.vacddg_history_es = [] self.solddg_history_es = [] self.comddg_history_es = [] self.count = 0 self.load_data() if self.vacdg is not None and self.soldg is not None: self.hydrationdg = self.vacdg - self.soldg self.hydrationddg = (self.vacddg + self.solddg)**0.5 self.hydrationdg_es = self.vacf_ij[0,-1] - self.solf_ij[0,-1] self.hydrationddg_es = (self.vacdf_ij[0,-1] + self.soldf_ij[0,-1])**0.5 else: print('Both vacuum and solvent legs need to be run for hydration free energies') if self.comdg is not None and self.soldg is not None: self.bindingdg = self.soldg - self.comdg self.bindingddg = (self.comddg + self.solddg)**0.5 self.bindingdg_es = self.solf_ij[0,-1] - self.comf_ij[0,-1] self.bindingddg_es = (self.soldf_ij[0,-1] + self.comdf_ij[0,-1])**0.5 else: print('Both solvent and complex legs need to be run for binding free energies') def load_data(self): """ Calculate relative free energy details from the simulation by performing MBAR on the vacuum and solvent legs of the simualtion. Parameters ---------- Returns ------- None """ from pymbar import timeseries from pymbar import MBAR from perses.analysis import utils import os from openmmtools.multistate import MultiStateReporter, MultiStateSamplerAnalyzer # find the output files output = [x for x in os.listdir(self.directory) if x[-3:] == '.nc' and 'checkpoint' not in x] for out in output: if 'vacuum' in out: vacuum_reporter = MultiStateReporter(f'{self.directory}/{out}') vacuum_analyzer = MultiStateSamplerAnalyzer(vacuum_reporter) f_ij, df_ij = vacuum_analyzer.get_free_energy() self.vacdg = f_ij[1, -2] self.vacddg = df_ij[1, -2] ** 2 self.vacf_ij = f_ij self.vacdf_ij = df_ij elif'solvent' in out: solvent_reporter = MultiStateReporter(f'{self.directory}/{out}') solvent_analyzer = MultiStateSamplerAnalyzer(solvent_reporter) f_ij, df_ij = solvent_analyzer.get_free_energy() self.soldg = f_ij[1, -2] self.solddg = df_ij[1, -2] ** 2 self.solf_ij = f_ij self.soldf_ij = df_ij elif 'complex' in out: complex_reporter = MultiStateReporter(f'{self.directory}/{out}') complex_analyzer = MultiStateSamplerAnalyzer(complex_reporter) f_ij, df_ij = complex_analyzer.get_free_energy() self.comdg = f_ij[1, -2] self.comddg = df_ij[1, -2] ** 2 self.comf_ij = f_ij self.comdf_ij = df_ij return def historic_fes(self,stepsize=100): from pymbar import timeseries from pymbar import MBAR from perses.analysis import utils import os from openmmtools.multistate import MultiStateReporter, MultiStateSamplerAnalyzer # find the output files output = [x for x in os.listdir(self.directory) if x[-3:] == '.nc' and 'checkpoint' not in x] for out in output: if 'vacuum' in out: vacuum_reporter = MultiStateReporter(f'{self.directory}/{out}') ncfile = utils.open_netcdf(f'{self.directory}/{out}') n_iterations = ncfile.variables['last_iteration'][0] for step in range(stepsize, n_iterations, stepsize): vacuum_analyzer = MultiStateSamplerAnalyzer(vacuum_reporter,max_n_iterations=step) f_ij, df_ij = vacuum_analyzer.get_free_energy() self.vacdg_history.append(f_ij[1, -2]) self.vacddg_history.append(df_ij[1,-2]) self.vacdg_history_es.append(f_ij[0, -1]) self.vacddg_history_es.append(df_ij[0,-1]) if 'solvent' in out: solvent_reporter = MultiStateReporter(f'{self.directory}/{out}') ncfile = utils.open_netcdf(f'{self.directory}/{out}') n_iterations = ncfile.variables['last_iteration'][0] for step in range(stepsize, n_iterations, stepsize): solvent_analyzer = MultiStateSamplerAnalyzer(solvent_reporter,max_n_iterations=step) f_ij, df_ij = solvent_analyzer.get_free_energy() self.soldg_history.append(f_ij[1, -2]) self.solddg_history.append(df_ij[1,-2]) self.soldg_history_es.append(f_ij[0, -1]) self.solddg_history_es.append(df_ij[0,-1]) if 'complex' in out: complex_reporter = MultiStateReporter(f'{self.directory}/{out}') ncfile = utils.open_netcdf(f'{self.directory}/{out}') n_iterations = ncfile.variables['last_iteration'][0] for step in range(stepsize, n_iterations, stepsize): complex_analyzer = MultiStateSamplerAnalyzer(complex_reporter,max_n_iterations=step) f_ij, df_ij = complex_analyzer.get_free_energy() self.comdg_history.append(f_ij[1, -2]) self.comddg_history.append(df_ij[1,-2]) self.comdg_history_es.append(f_ij[0, -1]) self.comddg_history_es.append(df_ij[0,-1]) return def sample_history(self,method='binding'): vac = self.vacdg_history[self.count] sol = self.soldg_history[self.count] com = self.comdg_history[self.count] vacvar = self.vacddg_history[self.count] solvar = self.solddg_history[self.count] comvar = self.comddg_history[self.count] self.count += 1 if method == 'binding': return sol - com , (solvar**2 + comvar**2)**0.5 elif method == 'hydration': return vac - sol , (solvar**2 + vacvar**2)**0.5 else: print('method not recognised, choose binding or hydration') def reset_history(self): self.count = 0 def kcal_to_kt(x): """ This should be deleted and just use the simtk units protocol :param x: float, energy in kcal :return: float, energy in kT """ # TODO remove this return x*1.688 def get_experimental(molecules, i,j): """ Determine experimental relative free energy from two experimntal absolute results Parameters ---------- molecules : list list of load_simulation.molecule objects i : int index of first molecule j : int index of second molecule Returns ------- tuple relative free energy and associated error """ moli = molecules[i] molj = molecules[j] ddG = moli.exp - molj.exp ddG_err = moli.experr - molj.experr return (ddG, ddG_err) def load_experimental(exp_file): """ Load details from a freesolv database.txt-like file Parameters ---------- exp_file : str path to text file Returns ------- list list of load_simulation.molecule objects, contained in the textfile """ molecules = [] with open(exp_file) as f: for i, line in enumerate(f): molecules.append(molecule(i, line)) return molecules def run(molecules,simtype='sams',offline_freq=10): """Load the simulation data for a set of molecules, for both forward and backward simulations Parameters ---------- molecules : list list of load_simulation.molecule objects, of which to find simulation data for simtype : type Description of parameter `simtype`. offline_freq : type Description of parameter `offline_freq`. Returns ------- type Description of returned object. """ import itertools import os n_ligands = len(molecules) all_simulations = [] for a, b in itertools.combinations(range(0, n_ligands), 2): path = f'lig{a}to{b}' if os.path.isdir(path) == True: sim = simulation(a, b) all_simulations.append(sim) else: print(f'Output directory lig{a}to{b} doesnt exist') # now run the opposite direction path = f'lig{b}to{a}' if os.path.isdir(path) == True: sim = simulation(b, a) all_simulations.append(sim) else: print(f'Output directory lig{b}to{a} doesnt exist') return all_simulations if __name__ == '__main__': run(sys.argv[1])
34.614148
139
0.591547
b245a1128751ee40095502cf5b592f17c7b861d1
25,424
py
Python
tests/serialization/test_dag_serialization.py
harishmk/airflow
5abce471e0690c6b8d06ca25685b0845c5fd270f
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
2
2019-01-14T16:39:27.000Z
2019-01-24T21:53:13.000Z
tests/serialization/test_dag_serialization.py
harishmk/airflow
5abce471e0690c6b8d06ca25685b0845c5fd270f
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
3
2018-10-05T18:00:01.000Z
2019-03-27T22:17:44.000Z
tests/serialization/test_dag_serialization.py
harishmk/airflow
5abce471e0690c6b8d06ca25685b0845c5fd270f
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
2
2018-09-26T19:37:33.000Z
2019-03-01T21:28:04.000Z
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unit tests for stringified DAGs.""" import multiprocessing import unittest from datetime import datetime, timedelta from unittest import mock from dateutil.relativedelta import FR, relativedelta from parameterized import parameterized from airflow import example_dags from airflow.contrib import example_dags as contrib_example_dags from airflow.gcp import example_dags as gcp_example_dags from airflow.hooks.base_hook import BaseHook from airflow.models import DAG, Connection, DagBag, TaskInstance from airflow.models.baseoperator import BaseOperator from airflow.operators.bash_operator import BashOperator from airflow.operators.subdag_operator import SubDagOperator from airflow.serialization.json_schema import load_dag_schema_dict from airflow.serialization.serialized_objects import SerializedBaseOperator, SerializedDAG from tests.test_utils.mock_operators import CustomOperator, CustomOpLink, GoogleLink serialized_simple_dag_ground_truth = { "__version": 1, "dag": { "default_args": { "__type": "dict", "__var": { "depends_on_past": False, "retries": 1, "retry_delay": { "__type": "timedelta", "__var": 300.0 } } }, "start_date": 1564617600.0, "is_paused_upon_creation": False, "_dag_id": "simple_dag", "fileloc": None, "tasks": [ { "task_id": "simple_task", "owner": "airflow", "retries": 1, "retry_delay": 300.0, "_downstream_task_ids": [], "_inlets": [], "_outlets": [], "ui_color": "#fff", "ui_fgcolor": "#000", "template_fields": [], "_task_type": "BaseOperator", "_task_module": "airflow.models.baseoperator", }, { "task_id": "custom_task", "retries": 1, "retry_delay": 300.0, "_downstream_task_ids": [], "_inlets": [], "_outlets": [], "_operator_extra_links": [{"tests.test_utils.mock_operators.CustomOpLink": {}}], "ui_color": "#fff", "ui_fgcolor": "#000", "template_fields": [], "_task_type": "CustomOperator", "_task_module": "tests.test_utils.mock_operators", }, ], "timezone": "UTC", }, } def make_example_dags(module): """Loads DAGs from a module for test.""" dagbag = DagBag(module.__path__[0]) return dagbag.dags def make_simple_dag(): """Make very simple DAG to verify serialization result.""" dag = DAG( dag_id='simple_dag', default_args={ "retries": 1, "retry_delay": timedelta(minutes=5), "depends_on_past": False, }, start_date=datetime(2019, 8, 1), is_paused_upon_creation=False, ) BaseOperator(task_id='simple_task', dag=dag, owner='airflow') CustomOperator(task_id='custom_task', dag=dag) return {'simple_dag': dag} def make_user_defined_macro_filter_dag(): """ Make DAGs with user defined macros and filters using locally defined methods. For Webserver, we do not include ``user_defined_macros`` & ``user_defined_filters``. The examples here test: (1) functions can be successfully displayed on UI; (2) templates with function macros have been rendered before serialization. """ def compute_next_execution_date(dag, execution_date): return dag.following_schedule(execution_date) default_args = { 'start_date': datetime(2019, 7, 10) } dag = DAG( 'user_defined_macro_filter_dag', default_args=default_args, user_defined_macros={ 'next_execution_date': compute_next_execution_date, }, user_defined_filters={ 'hello': lambda name: 'Hello %s' % name }, catchup=False ) BashOperator( task_id='echo', bash_command='echo "{{ next_execution_date(dag, execution_date) }}"', dag=dag, ) return {dag.dag_id: dag} def collect_dags(): """Collects DAGs to test.""" dags = {} dags.update(make_simple_dag()) dags.update(make_user_defined_macro_filter_dag()) dags.update(make_example_dags(example_dags)) dags.update(make_example_dags(contrib_example_dags)) dags.update(make_example_dags(gcp_example_dags)) # Filter subdags as they are stored in same row in Serialized Dag table dags = {dag_id: dag for dag_id, dag in dags.items() if not dag.is_subdag} return dags def serialize_subprocess(queue): """Validate pickle in a subprocess.""" dags = collect_dags() for dag in dags.values(): queue.put(SerializedDAG.to_json(dag)) queue.put(None) class TestStringifiedDAGs(unittest.TestCase): """Unit tests for stringified DAGs.""" def setUp(self): super().setUp() BaseHook.get_connection = mock.Mock( return_value=Connection( extra=('{' '"project_id": "mock", ' '"location": "mock", ' '"instance": "mock", ' '"database_type": "postgres", ' '"use_proxy": "False", ' '"use_ssl": "False"' '}'))) self.maxDiff = None # pylint: disable=invalid-name def test_serialization(self): """Serialization and deserialization should work for every DAG and Operator.""" dags = collect_dags() serialized_dags = {} for _, v in dags.items(): dag = SerializedDAG.to_dict(v) SerializedDAG.validate_schema(dag) serialized_dags[v.dag_id] = dag # Compares with the ground truth of JSON string. self.validate_serialized_dag( serialized_dags['simple_dag'], serialized_simple_dag_ground_truth) def validate_serialized_dag(self, json_dag, ground_truth_dag): """Verify serialized DAGs match the ground truth.""" self.assertTrue( json_dag['dag']['fileloc'].split('/')[-1] == 'test_dag_serialization.py') json_dag['dag']['fileloc'] = None def sorted_serialized_dag(dag_dict: dict): """ Sorts the "tasks" list in the serialised dag python dictionary This is needed as the order of tasks should not matter but assertEqual would fail if the order of tasks list changes in dag dictionary """ dag_dict["dag"]["tasks"] = sorted(dag_dict["dag"]["tasks"], key=lambda x: sorted(x.keys())) return dag_dict self.assertEqual(sorted_serialized_dag(ground_truth_dag), sorted_serialized_dag(json_dag)) def test_deserialization(self): """A serialized DAG can be deserialized in another process.""" queue = multiprocessing.Queue() proc = multiprocessing.Process( target=serialize_subprocess, args=(queue,)) proc.daemon = True proc.start() stringified_dags = {} while True: v = queue.get() if v is None: break dag = SerializedDAG.from_json(v) self.assertTrue(isinstance(dag, DAG)) stringified_dags[dag.dag_id] = dag dags = collect_dags() self.assertTrue(set(stringified_dags.keys()) == set(dags.keys())) # Verify deserialized DAGs. for dag_id in stringified_dags: self.validate_deserialized_dag(stringified_dags[dag_id], dags[dag_id]) example_skip_dag = stringified_dags['example_skip_dag'] skip_operator_1_task = example_skip_dag.task_dict['skip_operator_1'] self.validate_deserialized_task( skip_operator_1_task, 'DummySkipOperator', '#e8b7e4', '#000') # Verify that the DAG object has 'full_filepath' attribute # and is equal to fileloc self.assertTrue(hasattr(example_skip_dag, 'full_filepath')) self.assertEqual(example_skip_dag.full_filepath, example_skip_dag.fileloc) example_subdag_operator = stringified_dags['example_subdag_operator'] section_1_task = example_subdag_operator.task_dict['section-1'] self.validate_deserialized_task( section_1_task, SubDagOperator.__name__, SubDagOperator.ui_color, SubDagOperator.ui_fgcolor ) def validate_deserialized_dag(self, serialized_dag, dag): """ Verify that all example DAGs work with DAG Serialization by checking fields between Serialized Dags & non-Serialized Dags """ fields_to_check = [ "task_ids", "params", "fileloc", "max_active_runs", "concurrency", "is_paused_upon_creation", "doc_md", "safe_dag_id", "is_subdag", "catchup", "description", "start_date", "end_date", "parent_dag", "template_searchpath" ] # fields_to_check = dag.get_serialized_fields() for field in fields_to_check: self.assertEqual(getattr(serialized_dag, field), getattr(dag, field)) def validate_deserialized_task(self, task, task_type, ui_color, ui_fgcolor): """Verify non-airflow operators are casted to BaseOperator.""" self.assertTrue(isinstance(task, SerializedBaseOperator)) # Verify the original operator class is recorded for UI. self.assertTrue(task.task_type == task_type) self.assertTrue(task.ui_color == ui_color) self.assertTrue(task.ui_fgcolor == ui_fgcolor) # Check that for Deserialised task, task.subdag is None for all other Operators # except for the SubDagOperator where task.subdag is an instance of DAG object if task.task_type == "SubDagOperator": self.assertIsNotNone(task.subdag) self.assertTrue(isinstance(task.subdag, DAG)) else: self.assertIsNone(task.subdag) self.assertEqual({}, task.params) self.assertEqual({}, task.executor_config) @parameterized.expand([ (datetime(2019, 8, 1), None, datetime(2019, 8, 1)), (datetime(2019, 8, 1), datetime(2019, 8, 2), datetime(2019, 8, 2)), (datetime(2019, 8, 1), datetime(2019, 7, 30), datetime(2019, 8, 1)), ]) def test_deserialization_start_date(self, dag_start_date, task_start_date, expected_task_start_date): dag = DAG(dag_id='simple_dag', start_date=dag_start_date) BaseOperator(task_id='simple_task', dag=dag, start_date=task_start_date) serialized_dag = SerializedDAG.to_dict(dag) if not task_start_date or dag_start_date >= task_start_date: # If dag.start_date > task.start_date -> task.start_date=dag.start_date # because of the logic in dag.add_task() self.assertNotIn("start_date", serialized_dag["dag"]["tasks"][0]) else: self.assertIn("start_date", serialized_dag["dag"]["tasks"][0]) dag = SerializedDAG.from_dict(serialized_dag) simple_task = dag.task_dict["simple_task"] self.assertEqual(simple_task.start_date, expected_task_start_date) @parameterized.expand([ (datetime(2019, 8, 1), None, datetime(2019, 8, 1)), (datetime(2019, 8, 1), datetime(2019, 8, 2), datetime(2019, 8, 1)), (datetime(2019, 8, 1), datetime(2019, 7, 30), datetime(2019, 7, 30)), ]) def test_deserialization_end_date(self, dag_end_date, task_end_date, expected_task_end_date): dag = DAG(dag_id='simple_dag', start_date=datetime(2019, 8, 1), end_date=dag_end_date) BaseOperator(task_id='simple_task', dag=dag, end_date=task_end_date) serialized_dag = SerializedDAG.to_dict(dag) if not task_end_date or dag_end_date <= task_end_date: # If dag.end_date < task.end_date -> task.end_date=dag.end_date # because of the logic in dag.add_task() self.assertNotIn("end_date", serialized_dag["dag"]["tasks"][0]) else: self.assertIn("end_date", serialized_dag["dag"]["tasks"][0]) dag = SerializedDAG.from_dict(serialized_dag) simple_task = dag.task_dict["simple_task"] self.assertEqual(simple_task.end_date, expected_task_end_date) @parameterized.expand([ (None, None), ("@weekly", "@weekly"), ({"__type": "timedelta", "__var": 86400.0}, timedelta(days=1)), ]) def test_deserialization_schedule_interval(self, serialized_schedule_interval, expected): serialized = { "__version": 1, "dag": { "default_args": {"__type": "dict", "__var": {}}, "_dag_id": "simple_dag", "fileloc": __file__, "tasks": [], "timezone": "UTC", "schedule_interval": serialized_schedule_interval, }, } SerializedDAG.validate_schema(serialized) dag = SerializedDAG.from_dict(serialized) self.assertEqual(dag.schedule_interval, expected) @parameterized.expand([ (relativedelta(days=-1), {"__type": "relativedelta", "__var": {"days": -1}}), (relativedelta(month=1, days=-1), {"__type": "relativedelta", "__var": {"month": 1, "days": -1}}), # Every friday (relativedelta(weekday=FR), {"__type": "relativedelta", "__var": {"weekday": [4]}}), # Every second friday (relativedelta(weekday=FR(2)), {"__type": "relativedelta", "__var": {"weekday": [4, 2]}}) ]) def test_roundtrip_relativedelta(self, val, expected): serialized = SerializedDAG._serialize(val) self.assertDictEqual(serialized, expected) round_tripped = SerializedDAG._deserialize(serialized) self.assertEqual(val, round_tripped) @parameterized.expand([ (None, {}), ({"param_1": "value_1"}, {"param_1": "value_1"}), ]) def test_dag_params_roundtrip(self, val, expected_val): """ Test that params work both on Serialized DAGs & Tasks """ dag = DAG(dag_id='simple_dag', params=val) BaseOperator(task_id='simple_task', dag=dag, start_date=datetime(2019, 8, 1)) serialized_dag = SerializedDAG.to_dict(dag) if val: self.assertIn("params", serialized_dag["dag"]) else: self.assertNotIn("params", serialized_dag["dag"]) deserialized_dag = SerializedDAG.from_dict(serialized_dag) deserialized_simple_task = deserialized_dag.task_dict["simple_task"] self.assertEqual(expected_val, deserialized_dag.params) self.assertEqual(expected_val, deserialized_simple_task.params) @parameterized.expand([ (None, {}), ({"param_1": "value_1"}, {"param_1": "value_1"}), ]) def test_task_params_roundtrip(self, val, expected_val): """ Test that params work both on Serialized DAGs & Tasks """ dag = DAG(dag_id='simple_dag') BaseOperator(task_id='simple_task', dag=dag, params=val, start_date=datetime(2019, 8, 1)) serialized_dag = SerializedDAG.to_dict(dag) if val: self.assertIn("params", serialized_dag["dag"]["tasks"][0]) else: self.assertNotIn("params", serialized_dag["dag"]["tasks"][0]) deserialized_dag = SerializedDAG.from_dict(serialized_dag) deserialized_simple_task = deserialized_dag.task_dict["simple_task"] self.assertEqual(expected_val, deserialized_simple_task.params) def test_extra_serialized_field_and_operator_links(self): """ Assert extra field exists & OperatorLinks defined in Plugins and inbuilt Operator Links. This tests also depends on GoogleLink() registered as a plugin in tests/plugins/test_plugin.py The function tests that if extra operator links are registered in plugin in ``operator_extra_links`` and the same is also defined in the Operator in ``BaseOperator.operator_extra_links``, it has the correct extra link. """ test_date = datetime(2019, 8, 1) dag = DAG(dag_id='simple_dag', start_date=test_date) CustomOperator(task_id='simple_task', dag=dag, bash_command="true") serialized_dag = SerializedDAG.to_dict(dag) self.assertIn("bash_command", serialized_dag["dag"]["tasks"][0]) dag = SerializedDAG.from_dict(serialized_dag) simple_task = dag.task_dict["simple_task"] self.assertEqual(getattr(simple_task, "bash_command"), "true") ######################################################### # Verify Operator Links work with Serialized Operator ######################################################### # Check Serialized version of operator link only contains the inbuilt Op Link self.assertEqual( serialized_dag["dag"]["tasks"][0]["_operator_extra_links"], [{'tests.test_utils.mock_operators.CustomOpLink': {}}] ) # Test all the extra_links are set self.assertCountEqual(simple_task.extra_links, ['Google Custom', 'airflow', 'github', 'google']) ti = TaskInstance(task=simple_task, execution_date=test_date) ti.xcom_push('search_query', "dummy_value_1") # Test Deserialized inbuilt link custom_inbuilt_link = simple_task.get_extra_links(test_date, CustomOpLink.name) self.assertEqual('http://google.com/custom_base_link?search=dummy_value_1', custom_inbuilt_link) # Test Deserialized link registered via Airflow Plugin google_link_from_plugin = simple_task.get_extra_links(test_date, GoogleLink.name) self.assertEqual("https://www.google.com", google_link_from_plugin) def test_extra_serialized_field_and_multiple_operator_links(self): """ Assert extra field exists & OperatorLinks defined in Plugins and inbuilt Operator Links. This tests also depends on GoogleLink() registered as a plugin in tests/plugins/test_plugin.py The function tests that if extra operator links are registered in plugin in ``operator_extra_links`` and the same is also defined in the Operator in ``BaseOperator.operator_extra_links``, it has the correct extra link. """ test_date = datetime(2019, 8, 1) dag = DAG(dag_id='simple_dag', start_date=test_date) CustomOperator(task_id='simple_task', dag=dag, bash_command=["echo", "true"]) serialized_dag = SerializedDAG.to_dict(dag) self.assertIn("bash_command", serialized_dag["dag"]["tasks"][0]) dag = SerializedDAG.from_dict(serialized_dag) simple_task = dag.task_dict["simple_task"] self.assertEqual(getattr(simple_task, "bash_command"), ["echo", "true"]) ######################################################### # Verify Operator Links work with Serialized Operator ######################################################### # Check Serialized version of operator link only contains the inbuilt Op Link self.assertEqual( serialized_dag["dag"]["tasks"][0]["_operator_extra_links"], [ {'tests.test_utils.mock_operators.CustomBaseIndexOpLink': {'index': 0}}, {'tests.test_utils.mock_operators.CustomBaseIndexOpLink': {'index': 1}}, ] ) # Test all the extra_links are set self.assertCountEqual(simple_task.extra_links, [ 'BigQuery Console #1', 'BigQuery Console #2', 'airflow', 'github', 'google']) ti = TaskInstance(task=simple_task, execution_date=test_date) ti.xcom_push('search_query', ["dummy_value_1", "dummy_value_2"]) # Test Deserialized inbuilt link #1 custom_inbuilt_link = simple_task.get_extra_links(test_date, "BigQuery Console #1") self.assertEqual('https://console.cloud.google.com/bigquery?j=dummy_value_1', custom_inbuilt_link) # Test Deserialized inbuilt link #2 custom_inbuilt_link = simple_task.get_extra_links(test_date, "BigQuery Console #2") self.assertEqual('https://console.cloud.google.com/bigquery?j=dummy_value_2', custom_inbuilt_link) # Test Deserialized link registered via Airflow Plugin google_link_from_plugin = simple_task.get_extra_links(test_date, GoogleLink.name) self.assertEqual("https://www.google.com", google_link_from_plugin) def test_dag_serialized_fields_with_schema(self): """ Additional Properties are disabled on DAGs. This test verifies that all the keys in DAG.get_serialized_fields are listed in Schema definition. """ dag_schema: dict = load_dag_schema_dict()["definitions"]["dag"]["properties"] # The parameters we add manually in Serialization needs to be ignored ignored_keys: set = {"is_subdag", "tasks"} dag_params: set = set(dag_schema.keys()) - ignored_keys self.assertEqual(set(DAG.get_serialized_fields()), dag_params) def test_no_new_fields_added_to_base_operator(self): """ This test verifies that there are no new fields added to BaseOperator. And reminds that tests should be added for it. """ base_operator = BaseOperator(task_id="10") fields = base_operator.__dict__ self.assertEqual({'_dag': None, '_downstream_task_ids': set(), '_inlets': [], '_log': base_operator.log, '_outlets': [], '_upstream_task_ids': set(), 'depends_on_past': False, 'do_xcom_push': True, 'email': None, 'email_on_failure': True, 'email_on_retry': True, 'end_date': None, 'execution_timeout': None, 'executor_config': {}, 'inlets': [], 'max_retry_delay': None, 'on_execute_callback': None, 'on_failure_callback': None, 'on_retry_callback': None, 'on_success_callback': None, 'outlets': [], 'owner': 'airflow', 'params': {}, 'pool': 'default_pool', 'priority_weight': 1, 'queue': 'default', 'resources': None, 'retries': 0, 'retry_delay': timedelta(0, 300), 'retry_exponential_backoff': False, 'run_as_user': None, 'sla': None, 'start_date': None, 'subdag': None, 'task_concurrency': None, 'task_id': '10', 'trigger_rule': 'all_success', 'wait_for_downstream': False, 'weight_rule': 'downstream'}, fields, """ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ACTION NEEDED! PLEASE READ THIS CAREFULLY AND CORRECT TESTS CAREFULLY Some fields were added to the BaseOperator! Please add them to the list above and make sure that you add support for DAG serialization - you should add the field to `airflow/serialization/schema.json` - they should have correct type defined there. Note that we do not support versioning yet so you should only add optional fields to BaseOperator. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! """ ) if __name__ == '__main__': unittest.main()
41.678689
106
0.599158
240edd3679b8559ce96b35d822b8b68a3f89e2f7
8,756
py
Python
gui/pages/groups.py
arbeitsgruppe-digitale-altnordistik/Sammlung-Toole
502d6128e55622b760c245b03d973574f0adab4c
[ "MIT" ]
null
null
null
gui/pages/groups.py
arbeitsgruppe-digitale-altnordistik/Sammlung-Toole
502d6128e55622b760c245b03d973574f0adab4c
[ "MIT" ]
36
2021-08-29T20:04:31.000Z
2022-03-19T12:10:47.000Z
gui/pages/groups.py
arbeitsgruppe-digitale-altnordistik/Sammlung-Toole
502d6128e55622b760c245b03d973574f0adab4c
[ "MIT" ]
null
null
null
from logging import Logger from typing import Set from uuid import UUID import streamlit as st from util import utils from util.datahandler import DataHandler from util.groups import Group, GroupType from util.stateHandler import StateHandler, Step from util.utils import SearchOptions @st.experimental_singleton # type: ignore def get_log() -> Logger: return utils.get_logger(__name__) log: Logger = get_log() def browse_groups(state: StateHandler) -> None: """Page: Browse Groups This page of the streamlit app allows browsing the different groups stored in the data handler. Args: state (StateHandler): The StateHandler object orchestrating the current session state. """ handler: DataHandler = state.data_handler groups = handler.groups log.debug(f"Browsing Groups: {groups}") st.title("Groups") if state.steps.browseGroups == Step.Browse_Groups.Browse: # Manuscript Groups st.header("Manuscript Groups") mss = [(b.name, f"{len(b.items)} Manuscripts", b.date.strftime('%c')) for a, b in groups.manuscript_groups.items()] st.table(mss) if len(mss) >= 2 and st.button("Combine existing groups to a new group", key="btn_combine_mss"): state.steps.browseGroups = Step.Browse_Groups.Combine_MSS st.experimental_rerun() # Text Groups st.header("Text Groups") txt = [(b.name, f"{len(b.items)} Texts", b.date.strftime('%c')) for a, b in groups.text_groups.items()] st.table(txt) if len(txt) >= 2 and st.button("Combine existing groups to a new group", key="btn_combine_txt"): state.steps.browseGroups = Step.Browse_Groups.Combine_TXT st.experimental_rerun() # Person Groups st.header("People Groups") ppl = [(b.name, f"{len(b.items)} People", b.date.strftime('%c')) for a, b in groups.person_groups.items()] st.table(ppl) if len(ppl) >= 2 and st.button("Combine existing groups to a new group", key="btn_combine_ppl"): state.steps.browseGroups = Step.Browse_Groups.Combine_PPL st.experimental_rerun() elif state.steps.browseGroups == Step.Browse_Groups.Combine_MSS: __combine_mss_groups(state) elif state.steps.browseGroups == Step.Browse_Groups.Combine_TXT: __combine_txt_groups(state) elif state.steps.browseGroups == Step.Browse_Groups.Combine_PPL: __combine_ppl_groups(state) def __combine_mss_groups(state: StateHandler) -> None: """Page for combining Manuscript groups""" groups = state.data_handler.groups.manuscript_groups st.header("Combine Manuscript Groups") if st.button("Back to Overview"): state.steps.browseGroups = Step.Browse_Groups.Browse st.experimental_rerun() st.write("---") modes = { 'OR (union - pick items that appear in at least one selected group)': SearchOptions.CONTAINS_ONE, 'AND (intersection - pick items that appear in all selected groups)': SearchOptions.CONTAINS_ALL, } mode_selection = st.radio('Combination mode', modes.keys()) mode = modes[mode_selection] st.write("---") st.write("Select the groups you want to combine.") selections: Set[UUID] = set() for i, g in enumerate(groups.values()): if st.checkbox(f"{i}: Group name: '{g.name}'", key=str(g.group_id)): selections.add(g.group_id) st.write("---") if len(selections) > 1: selected_groups = [groups[s] for s in selections] sets = [g.items for g in selected_groups] if mode == SearchOptions.CONTAINS_ONE: res = set.union(*sets) else: res = set.intersection(*sets) if not res: st.write("No Manuscripts fitting the criteria. (Maybe consider using OR instead of AND for combination logic.)") else: st.write(f"The combination contains {len(res)} Manuscripts.") previous_queries = ['(' + prev.name.removeprefix("Search results for <").removesuffix(">") + ')' for prev in selected_groups] new_query = f" {mode.value} ".join(previous_queries) new_name = f'Search results for <{new_query}>' name = st.text_input(label="Select a group name", value=new_name) if st.button("Save Combined Group"): new_group = Group(GroupType.ManuscriptGroup, name=name, items=res) state.data_handler.groups.set(new_group) state.steps.browseGroups = Step.Browse_Groups.Browse st.experimental_rerun() def __combine_txt_groups(state: StateHandler) -> None: """Page for combining Text groups""" groups = state.data_handler.groups.text_groups st.header("Combine Text Groups") if st.button("Back to Overview"): state.steps.browseGroups = Step.Browse_Groups.Browse st.experimental_rerun() st.write("---") modes = { 'OR (union - pick items that appear in at least one selected group)': SearchOptions.CONTAINS_ONE, 'AND (intersection - pick items that appear in all selected groups)': SearchOptions.CONTAINS_ALL, } mode_selection = st.radio('Combination mode', modes.keys()) mode = modes[mode_selection] st.write("---") st.write("Select the groups you want to combine.") selections: Set[UUID] = set() for i, g in enumerate(groups.values()): if st.checkbox(f"{i}: Group name: '{g.name}'", key=str(g.group_id)): selections.add(g.group_id) st.write("---") if len(selections) > 1: selected_groups = [groups[s] for s in selections] sets = [g.items for g in selected_groups] if mode == SearchOptions.CONTAINS_ONE: res = set.union(*sets) else: res = set.intersection(*sets) if not res: st.write("No Texts fitting the criteria. (Maybe consider using OR instead of AND for combination logic.)") else: st.write(f"The combination contains {len(res)} Texts.") previous_queries = ['(' + prev.name.removeprefix("Search results for <").removesuffix(">") + ')' for prev in selected_groups] new_query = f" {mode.value} ".join(previous_queries) new_name = f'Search results for <{new_query}>' name = st.text_input(label="Select a group name", value=new_name) if st.button("Save Combined Group"): new_group = Group(GroupType.TextGroup, name=name, items=res) state.data_handler.groups.set(new_group) state.steps.browseGroups = Step.Browse_Groups.Browse st.experimental_rerun() def __combine_ppl_groups(state: StateHandler) -> None: """Page for combining Person groups""" groups = state.data_handler.groups.person_groups st.header("Combine Person Groups") if st.button("Back to Overview"): state.steps.browseGroups = Step.Browse_Groups.Browse st.experimental_rerun() st.write("---") modes = { 'OR (union - pick items that appear in at least one selected group)': SearchOptions.CONTAINS_ONE, 'AND (intersection - pick items that appear in all selected groups)': SearchOptions.CONTAINS_ALL, } mode_selection = st.radio('Combination mode', modes.keys()) mode = modes[mode_selection] st.write("---") st.write("Select the groups you want to combine.") selections: Set[UUID] = set() for i, g in enumerate(groups.values()): if st.checkbox(f"{i}: Group name: '{g.name}'", key=str(g.group_id)): selections.add(g.group_id) st.write("---") if len(selections) > 1: selected_groups = [groups[s] for s in selections] sets = [g.items for g in selected_groups] if mode == SearchOptions.CONTAINS_ONE: res = set.union(*sets) else: res = set.intersection(*sets) if not res: st.write("No person fitting the criteria. (Maybe consider using OR instead of AND for combination logic.)") else: st.write(f"The combination contains {len(res)} people.") previous_queries = ['(' + prev.name.removeprefix("Search results for <").removesuffix(">") + ')' for prev in selected_groups] new_query = f" {mode.value} ".join(previous_queries) new_name = f'Search results for <{new_query}>' name = st.text_input(label="Select a group name", value=new_name) if st.button("Save Combined Group"): new_group = Group(GroupType.PersonGroup, name=name, items=res) state.data_handler.groups.set(new_group) state.steps.browseGroups = Step.Browse_Groups.Browse st.experimental_rerun()
46.328042
137
0.644244
e1fe991ff28a270649df59b91c5432a74aac3ccd
10,718
py
Python
test/python/basicaer/test_qasm_simulator.py
ajavadia/qiskit-sdk-py
a59e8e6be1793197e19998c1f7dcfc45e6f2f3af
[ "Apache-2.0" ]
11
2019-06-27T09:53:29.000Z
2021-03-02T04:40:30.000Z
test/python/basicaer/test_qasm_simulator.py
ajavadia/qiskit-sdk-py
a59e8e6be1793197e19998c1f7dcfc45e6f2f3af
[ "Apache-2.0" ]
12
2018-09-21T12:02:18.000Z
2018-09-25T09:14:59.000Z
test/python/basicaer/test_qasm_simulator.py
ajavadia/qiskit-sdk-py
a59e8e6be1793197e19998c1f7dcfc45e6f2f3af
[ "Apache-2.0" ]
4
2019-08-05T15:35:33.000Z
2020-09-18T18:55:02.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test QASM simulator.""" import unittest import io from logging import StreamHandler, getLogger import sys import numpy as np from qiskit import execute from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister from qiskit.compiler import transpile, assemble from qiskit.providers.basicaer import QasmSimulatorPy from qiskit.test import Path from qiskit.test import providers class StreamHandlerRaiseException(StreamHandler): """Handler class that will raise an exception on formatting errors.""" def handleError(self, record): raise sys.exc_info() class TestBasicAerQasmSimulator(providers.BackendTestCase): """Test the Basic qasm_simulator.""" backend_cls = QasmSimulatorPy def setUp(self): super().setUp() self.seed = 88 qasm_filename = self._get_resource_path('example.qasm', Path.QASMS) transpiled_circuit = QuantumCircuit.from_qasm_file(qasm_filename) transpiled_circuit.name = 'test' transpiled_circuit = transpile(transpiled_circuit, backend=self.backend) self.qobj = assemble(transpiled_circuit, shots=1000, seed_simulator=self.seed) logger = getLogger() self.addCleanup(logger.setLevel, logger.level) logger.setLevel('DEBUG') self.log_output = io.StringIO() logger.addHandler(StreamHandlerRaiseException(self.log_output)) def assertExecuteLog(self, log_msg): """ Runs execute and check for logs containing specified message""" shots = 100 qr = QuantumRegister(2, 'qr') cr = ClassicalRegister(4, 'cr') circuit = QuantumCircuit(qr, cr) execute( circuit, backend=self.backend, shots=shots, seed_simulator=self.seed) self.log_output.seek(0) # Filter unrelated log lines output_lines = self.log_output.readlines() execute_log_lines = [x for x in output_lines if log_msg in x] self.assertTrue(len(execute_log_lines) > 0) def test_submission_log_time(self): """Check Total Job Submission Time is logged""" self.assertExecuteLog('Total Job Submission Time') def test_qasm_simulator_single_shot(self): """Test single shot run.""" shots = 1 self.qobj.config.shots = shots result = self.backend.run(self.qobj).result() self.assertEqual(result.success, True) def test_measure_sampler_repeated_qubits(self): """Test measure sampler if qubits measured more than once.""" shots = 100 qr = QuantumRegister(2, 'qr') cr = ClassicalRegister(4, 'cr') circuit = QuantumCircuit(qr, cr) circuit.x(qr[1]) circuit.measure(qr[0], cr[0]) circuit.measure(qr[1], cr[1]) circuit.measure(qr[1], cr[2]) circuit.measure(qr[0], cr[3]) target = {'0110': shots} job = execute( circuit, backend=self.backend, shots=shots, seed_simulator=self.seed) result = job.result() counts = result.get_counts(0) self.assertEqual(counts, target) def test_measure_sampler_single_qubit(self): """Test measure sampler if single-qubit is measured.""" shots = 100 num_qubits = 5 qr = QuantumRegister(num_qubits, 'qr') cr = ClassicalRegister(1, 'cr') for qubit in range(num_qubits): circuit = QuantumCircuit(qr, cr) circuit.x(qr[qubit]) circuit.measure(qr[qubit], cr[0]) target = {'1': shots} job = execute( circuit, backend=self.backend, shots=shots, seed_simulator=self.seed) result = job.result() counts = result.get_counts(0) self.assertEqual(counts, target) def test_measure_sampler_partial_qubit(self): """Test measure sampler if single-qubit is measured.""" shots = 100 num_qubits = 5 qr = QuantumRegister(num_qubits, 'qr') cr = ClassicalRegister(4, 'cr') circuit = QuantumCircuit(qr, cr) circuit.x(qr[3]) circuit.x(qr[1]) circuit.barrier(qr) circuit.measure(qr[3], cr[1]) circuit.barrier(qr) circuit.measure(qr[1], cr[0]) circuit.barrier(qr) circuit.measure(qr[0], cr[2]) circuit.barrier(qr) circuit.measure(qr[3], cr[3]) target = {'1011': shots} job = execute( circuit, backend=self.backend, shots=shots, seed_simulator=self.seed) result = job.result() counts = result.get_counts(0) self.assertEqual(counts, target) def test_qasm_simulator(self): """Test data counts output for single circuit run against reference.""" result = self.backend.run(self.qobj).result() shots = 1024 threshold = 0.04 * shots counts = result.get_counts('test') target = {'100 100': shots / 8, '011 011': shots / 8, '101 101': shots / 8, '111 111': shots / 8, '000 000': shots / 8, '010 010': shots / 8, '110 110': shots / 8, '001 001': shots / 8} self.assertDictAlmostEqual(counts, target, threshold) def test_if_statement(self): """Test if statements.""" shots = 100 qr = QuantumRegister(3, 'qr') cr = ClassicalRegister(3, 'cr') circuit_if_true = QuantumCircuit(qr, cr) circuit_if_true.x(qr[0]) circuit_if_true.x(qr[1]) circuit_if_true.measure(qr[0], cr[0]) circuit_if_true.measure(qr[1], cr[1]) circuit_if_true.x(qr[2]).c_if(cr, 0x3) circuit_if_true.measure(qr[0], cr[0]) circuit_if_true.measure(qr[1], cr[1]) circuit_if_true.measure(qr[2], cr[2]) circuit_if_false = QuantumCircuit(qr, cr) circuit_if_false.x(qr[0]) circuit_if_false.measure(qr[0], cr[0]) circuit_if_false.measure(qr[1], cr[1]) circuit_if_false.x(qr[2]).c_if(cr, 0x3) circuit_if_false.measure(qr[0], cr[0]) circuit_if_false.measure(qr[1], cr[1]) circuit_if_false.measure(qr[2], cr[2]) job = execute([circuit_if_true, circuit_if_false], backend=self.backend, shots=shots, seed_simulator=self.seed) result = job.result() counts_if_true = result.get_counts(circuit_if_true) counts_if_false = result.get_counts(circuit_if_false) self.assertEqual(counts_if_true, {'111': 100}) self.assertEqual(counts_if_false, {'001': 100}) def test_teleport(self): """Test teleportation as in tutorials""" self.log.info('test_teleport') pi = np.pi shots = 2000 qr = QuantumRegister(3, 'qr') cr0 = ClassicalRegister(1, 'cr0') cr1 = ClassicalRegister(1, 'cr1') cr2 = ClassicalRegister(1, 'cr2') circuit = QuantumCircuit(qr, cr0, cr1, cr2, name='teleport') circuit.h(qr[1]) circuit.cx(qr[1], qr[2]) circuit.ry(pi / 4, qr[0]) circuit.cx(qr[0], qr[1]) circuit.h(qr[0]) circuit.barrier(qr) circuit.measure(qr[0], cr0[0]) circuit.measure(qr[1], cr1[0]) circuit.z(qr[2]).c_if(cr0, 1) circuit.x(qr[2]).c_if(cr1, 1) circuit.measure(qr[2], cr2[0]) job = execute(circuit, backend=self.backend, shots=shots, seed_simulator=self.seed) results = job.result() data = results.get_counts('teleport') alice = { '00': data['0 0 0'] + data['1 0 0'], '01': data['0 1 0'] + data['1 1 0'], '10': data['0 0 1'] + data['1 0 1'], '11': data['0 1 1'] + data['1 1 1'] } bob = { '0': data['0 0 0'] + data['0 1 0'] + data['0 0 1'] + data['0 1 1'], '1': data['1 0 0'] + data['1 1 0'] + data['1 0 1'] + data['1 1 1'] } self.log.info('test_teleport: circuit:') self.log.info(circuit.qasm()) self.log.info('test_teleport: data %s', data) self.log.info('test_teleport: alice %s', alice) self.log.info('test_teleport: bob %s', bob) alice_ratio = 1 / np.tan(pi / 8) ** 2 bob_ratio = bob['0'] / float(bob['1']) error = abs(alice_ratio - bob_ratio) / alice_ratio self.log.info('test_teleport: relative error = %s', error) self.assertLess(error, 0.05) def test_memory(self): """Test memory.""" qr = QuantumRegister(4, 'qr') cr0 = ClassicalRegister(2, 'cr0') cr1 = ClassicalRegister(2, 'cr1') circ = QuantumCircuit(qr, cr0, cr1) circ.h(qr[0]) circ.cx(qr[0], qr[1]) circ.x(qr[3]) circ.measure(qr[0], cr0[0]) circ.measure(qr[1], cr0[1]) circ.measure(qr[2], cr1[0]) circ.measure(qr[3], cr1[1]) shots = 50 job = execute(circ, backend=self.backend, shots=shots, memory=True) result = job.result() memory = result.get_memory() self.assertEqual(len(memory), shots) for mem in memory: self.assertIn(mem, ['10 00', '10 11']) def test_unitary(self): """Test unitary gate instruction""" max_qubits = 4 x_mat = np.array([[0, 1], [1, 0]]) # Test 1 to max_qubits for random n-qubit unitary gate for i in range(max_qubits): num_qubits = i + 1 # Apply X gate to all qubits multi_x = x_mat for _ in range(i): multi_x = np.kron(multi_x, x_mat) # Target counts shots = 100 target_counts = {num_qubits * '1': shots} # Test circuit qr = QuantumRegister(num_qubits, 'qr') cr = ClassicalRegister(num_qubits, 'cr') circuit = QuantumCircuit(qr, cr) circuit.unitary(multi_x, qr) circuit.measure(qr, cr) job = execute(circuit, self.backend, shots=shots) result = job.result() counts = result.get_counts(0) self.assertEqual(counts, target_counts) if __name__ == '__main__': unittest.main()
36.332203
91
0.590129
27541d5dd28ce2eceb129aa064776106744db92d
1,428
py
Python
Pygame/Game/study/game1.py
danghohuuphuc/Code_Python
4aee488bc0c4a7bf2c110bbfad3c8fd48b31a070
[ "Apache-2.0" ]
null
null
null
Pygame/Game/study/game1.py
danghohuuphuc/Code_Python
4aee488bc0c4a7bf2c110bbfad3c8fd48b31a070
[ "Apache-2.0" ]
null
null
null
Pygame/Game/study/game1.py
danghohuuphuc/Code_Python
4aee488bc0c4a7bf2c110bbfad3c8fd48b31a070
[ "Apache-2.0" ]
null
null
null
# import library from dis import dis import re import pygame, sys from pygame.locals import * # Khởi tạo pygame.init() # Khởi tạo khung hình game DISPLAYSURF = pygame.display.set_mode((500, 400), 0, 32) # Thay đổi caption pygame.display.set_caption("game 1") # Thay đổi icon khung game icongame1 = pygame.image.load("pikachu.png") pygame.display.set_icon(icongame1) # cài đặt màu săc black = (0, 0, 0) white = (255, 255, 255) red = (255, 0, 0) green = (0, 255, 0) blue = (0, 0, 255) # draw on the surface object DISPLAYSURF.fill(white) # Vẽ hình năm cạnh pygame.draw.polygon(DISPLAYSURF, green, ((146, 0), (291, 106), (236, 277), (56, 277), (0, 106))) # Vẽ đường thẳng pygame.draw.line(DISPLAYSURF, blue, (60, 60), (120,60) ,10) pygame.draw.line(DISPLAYSURF, blue, (120, 60), (60, 120), 10) pygame.draw.line(DISPLAYSURF, blue, (60, 120), (120, 120), 10) # Vẽ hình tròn pygame.draw.circle(DISPLAYSURF, blue, (300, 50), 20, 0) # Vẽ hình elcip pygame.draw.ellipse(DISPLAYSURF, red, (300, 250, 40, 80), 5) # Vẽ Hình chữ nhật pygame.draw.rect(DISPLAYSURF, red, (200, 150, 100, 50)) pixObj = pygame.PixelArray(DISPLAYSURF) pixObj[480][380] = black pixObj[482][382] = black pixObj[484][384] = black pixObj[486][386] = black pixObj[488][388] = black del pixObj while True: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() # update data pygame.display.update()
23.032258
63
0.671569
2d798582c9aae66597138a9e7145af104df235eb
8,410
py
Python
asynchronous_qiwi/call/P2P.py
LexLuthorReal/asynchronous_qiwi
5847a8d4008493656e973e5283888a4e57234962
[ "MIT" ]
3
2021-05-20T02:36:30.000Z
2021-11-28T16:00:15.000Z
asynchronous_qiwi/call/P2P.py
LexLuthorReal/asynchronous_qiwi
5847a8d4008493656e973e5283888a4e57234962
[ "MIT" ]
null
null
null
asynchronous_qiwi/call/P2P.py
LexLuthorReal/asynchronous_qiwi
5847a8d4008493656e973e5283888a4e57234962
[ "MIT" ]
1
2021-11-28T16:00:20.000Z
2021-11-28T16:00:20.000Z
from typing import Optional, Dict, Set, List, Any from ..data_types.QIWIP2P import ( PaySourcesTypes ) from .API.QIWIP2P import ( CreateInvoiceAPI, CheckInvoiceAPI, RejectInvoiceAPI, RefundInvoiceAPI, RefundStatusAPI ) from .ADDONS.QIWIP2P import ( PublicFormGenerator ) from ..models.QIWIP2P import ( Invoice, RefundData ) class P2P: def __init__(self, public_key: str, secret_key: str) -> None: """ :param public_key: The public key (PUBLIC_KEY) is used for invoicing through the form. :param secret_key: Your requests are authorized with the API secret key (SECRET_KEY). """ self.public_key = public_key self.secret_key = secret_key async def generate_form(self, bill_id: Optional[str] = None, amount: Optional[float] = None, phone_customer: Optional[str] = None, email_customer: Optional[str] = None, account_customer: Optional[str] = None, comment: Optional[str] = None, custom_fields: Optional[Dict[str, Any]] = None, theme_code: Optional[str] = None, pay_sources_filter: Optional[List[Set[PaySourcesTypes]]] = None, lifetime: Optional[int] = None, success_url: Optional[str] = None) -> str: """ Upon opening the form, the customer is automatically billed. Account parameters are passed in clear text in the link. :param bill_id: unique id. :param amount: billed amount, round down to 2 decimal places :param phone_customer: customer phone number (in international format). :param email_customer: customer email. :param account_customer: customer ID on your system. :param comment: invoice comment. :param custom_fields: if use custom_fields (pay_sources_filter, theme_code) will be ignored. :param theme_code: customize your form personalization in (p2p.qiwi.com). :param pay_sources_filter: when you open the form, only the specified translation methods will be displayed. :param lifetime: the period until which the invoice will be available for payment (days). :param success_url: URL to redirect to your site in case of successful translation. :return: generated url for send to customer. """ url = await PublicFormGenerator.generate_form(public_key=self.public_key, bill_id=bill_id, amount=amount, phone_customer=phone_customer, email_customer=email_customer, account_customer=account_customer, comment=comment, custom_fields=custom_fields, theme_code=theme_code, pay_sources_filter=pay_sources_filter, lifetime=lifetime, success_url=success_url) return url async def new_invoice(self, bill_id: str, amount: float, invoice_currency: str, lifetime: int = 1, comment: Optional[str] = None, phone_customer: Optional[str] = None, email_customer: Optional[str] = None, account_customer: Optional[str] = None, custom_fields: Optional[Dict[str, Any]] = None, theme_code: Optional[str] = None, pay_sources_filter: Optional[List[Set[PaySourcesTypes]]] = None) -> Invoice: """ :param bill_id: unique id. :param amount: data on the amount of the bill. :param invoice_currency: the currency of the invoice amount (RUB, KZT...). :param lifetime: the period until which the invoice will be available for payment (days). :param comment: invoice comment. :param phone_customer: customer phone number (in international format). :param email_customer: customer email. :param account_customer: customer ID on your system. :param custom_fields: if use custom_fields (pay_sources_filter, theme_code) will be ignored. :param theme_code: customize your form personalization in (p2p.qiwi.com). :param pay_sources_filter: when you open the form, only the specified translation methods will be displayed. :return: Invoice model with details new invoice. """ response_data = await CreateInvoiceAPI.new_invoice(secret_key=self.secret_key, bill_id=bill_id, amount=amount, invoice_currency=invoice_currency, lifetime=lifetime, comment=comment, phone_customer=phone_customer, email_customer=email_customer, account_customer=account_customer, theme_code=theme_code, pay_sources_filter=pay_sources_filter, custom_fields=custom_fields) return Invoice(**response_data) async def check_invoice(self, bill_id: str) -> Invoice: """ The method allows you to check the status of the transfer on the account. :param bill_id: unique invoice identifier, specified when issuing. :return: Invoice model with details invoice. """ response_data = await CheckInvoiceAPI.check_invoice(secret_key=self.secret_key, bill_id=bill_id) return Invoice(**response_data) async def reject_invoice(self, bill_id: str) -> Invoice: """ The method allows you to cancel an account that has not been transferred. :param bill_id: unique invoice identifier, specified when issuing. :return: Invoice model with details invoice. """ response_data = await RejectInvoiceAPI.reject_invoice(secret_key=self.secret_key, bill_id=bill_id) return Invoice(**response_data) async def refund_invoice(self, bill_id: str, refund_id: str, amount: float, return_currency: str) -> RefundData: """ The method allows you to return funds. :param bill_id: unique invoice identifier, specified when issuing. :param refund_id: unique identifier of the refund in the merchant's system. :param amount: refund amount. :param return_currency: return currency (RUB, KZT...). :return: RefundData model with details. """ response_data = await RefundInvoiceAPI.refund_invoice(secret_key=self.secret_key, bill_id=bill_id, refund_id=refund_id, amount=amount, return_currency=return_currency) return RefundData(**response_data) async def refund_status(self, bill_id: str, refund_id: str) -> RefundData: """ The method allows you to check return status. :param bill_id: unique invoice identifier, specified when issuing. :param refund_id: unique identifier of the refund in the merchant's system. :return: RefundData model with details. """ response_data = await RefundStatusAPI.refund_status(secret_key=self.secret_key, bill_id=bill_id, refund_id=refund_id) return RefundData(**response_data)
58.811189
116
0.551605
a3a1617b650def583bebf056cb29979e0b210eb5
3,103
py
Python
sdk/applicationinsights/azure-mgmt-applicationinsights/azure/mgmt/applicationinsights/aio/_configuration.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/applicationinsights/azure-mgmt-applicationinsights/azure/mgmt/applicationinsights/aio/_configuration.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/applicationinsights/azure-mgmt-applicationinsights/azure/mgmt/applicationinsights/aio/_configuration.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from typing import Any from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMHttpLoggingPolicy from .._version import VERSION class ApplicationInsightsManagementClientConfiguration(Configuration): """Configuration for ApplicationInsightsManagementClient. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The ID of the target subscription. :type subscription_id: str """ def __init__( self, credential, # type: "AsyncTokenCredential" subscription_id, # type: str **kwargs # type: Any ) -> None: if credential is None: raise ValueError("Parameter 'credential' must not be None.") if subscription_id is None: raise ValueError("Parameter 'subscription_id' must not be None.") super(ApplicationInsightsManagementClientConfiguration, self).__init__(**kwargs) self.credential = credential self.subscription_id = subscription_id self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default']) kwargs.setdefault('sdk_moniker', 'azure-mgmt-applicationinsights/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs: Any ) -> None: self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.AsyncRetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.AsyncRedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy') if self.credential and not self.authentication_policy: self.authentication_policy = policies.AsyncBearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
47.738462
134
0.696423
676aaea8d94d16202d51ba9ee969f20cb22dc552
5,846
py
Python
quantumclient/tests/unit/test_cli20_port.py
danwent/python-quantumclient
d16e00a056bbe7ba576c4b7195180bfc383bbfad
[ "Apache-2.0" ]
1
2017-06-02T22:33:11.000Z
2017-06-02T22:33:11.000Z
quantumclient/tests/unit/test_cli20_port.py
danwent/python-quantumclient
d16e00a056bbe7ba576c4b7195180bfc383bbfad
[ "Apache-2.0" ]
null
null
null
quantumclient/tests/unit/test_cli20_port.py
danwent/python-quantumclient
d16e00a056bbe7ba576c4b7195180bfc383bbfad
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 OpenStack LLC. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # vim: tabstop=4 shiftwidth=4 softtabstop=4 import sys from quantumclient.tests.unit.test_cli20 import CLITestV20Base from quantumclient.tests.unit.test_cli20 import MyApp from quantumclient.quantum.v2_0.port import CreatePort from quantumclient.quantum.v2_0.port import ListPort from quantumclient.quantum.v2_0.port import UpdatePort from quantumclient.quantum.v2_0.port import ShowPort from quantumclient.quantum.v2_0.port import DeletePort class CLITestV20Port(CLITestV20Base): def test_create_port(self): """Create port: netid.""" resource = 'port' cmd = CreatePort(MyApp(sys.stdout), None) name = 'myname' myid = 'myid' netid = 'netid' args = [netid] position_names = ['network_id'] position_values = [] position_values.extend([netid]) _str = self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values) def test_create_port_full(self): """Create port: --mac_address mac --device_id deviceid netid.""" resource = 'port' cmd = CreatePort(MyApp(sys.stdout), None) name = 'myname' myid = 'myid' netid = 'netid' args = ['--mac_address', 'mac', '--device_id', 'deviceid', netid] position_names = ['network_id', 'mac_address', 'device_id'] position_values = [netid, 'mac', 'deviceid'] _str = self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values) def test_create_port_tenant(self): """Create port: --tenant_id tenantid netid.""" resource = 'port' cmd = CreatePort(MyApp(sys.stdout), None) name = 'myname' myid = 'myid' netid = 'netid' args = ['--tenant_id', 'tenantid', netid, ] position_names = ['network_id'] position_values = [] position_values.extend([netid]) _str = self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values, tenant_id='tenantid') def test_create_port_tags(self): """Create port: netid mac_address device_id --tags a b.""" resource = 'port' cmd = CreatePort(MyApp(sys.stdout), None) name = 'myname' myid = 'myid' netid = 'netid' args = [netid, '--tags', 'a', 'b'] position_names = ['network_id'] position_values = [] position_values.extend([netid]) _str = self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values, tags=['a', 'b']) def test_list_ports(self): """List ports: -D.""" resources = "ports" cmd = ListPort(MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, True) def test_list_ports_tags(self): """List ports: -- --tags a b.""" resources = "ports" cmd = ListPort(MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, tags=['a', 'b']) def test_list_ports_detail_tags(self): """List ports: -D -- --tags a b.""" resources = "ports" cmd = ListPort(MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, detail=True, tags=['a', 'b']) def test_list_ports_fields(self): """List ports: --fields a --fields b -- --fields c d.""" resources = "ports" cmd = ListPort(MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, fields_1=['a', 'b'], fields_2=['c', 'd']) def test_update_port(self): """Update port: myid --name myname --tags a b.""" resource = 'port' cmd = UpdatePort(MyApp(sys.stdout), None) self._test_update_resource(resource, cmd, 'myid', ['myid', '--name', 'myname', '--tags', 'a', 'b'], {'name': 'myname', 'tags': ['a', 'b'], } ) def test_show_port(self): """Show port: --fields id --fields name myid.""" resource = 'port' cmd = ShowPort(MyApp(sys.stdout), None) args = ['--fields', 'id', '--fields', 'name', self.test_id] self._test_show_resource(resource, cmd, self.test_id, args, ['id', 'name']) def test_show_port_by_name(self): """Show port: --fields id --fields name myname.""" resource = 'port' cmd = ShowPort(MyApp(sys.stdout), None) myname = 'myname' args = ['--fields', 'id', '--fields', 'name', myname] self._test_show_resource_by_name(resource, cmd, myname, args, ['id', 'name']) def test_delete_port(self): """Delete port: myid.""" resource = 'port' cmd = DeletePort(MyApp(sys.stdout), None) myid = 'myid' args = [myid] self._test_delete_resource(resource, cmd, myid, args)
39.768707
79
0.572186
76d4396ad21efd874f4f073fc56ae2c0bf961b3e
29,252
py
Python
core/plugins/openstack/__init__.py
aserdean/hotsos
a0f17a7ee2f08a4da0a269d478dec7ebb8f12493
[ "Apache-2.0" ]
null
null
null
core/plugins/openstack/__init__.py
aserdean/hotsos
a0f17a7ee2f08a4da0a269d478dec7ebb8f12493
[ "Apache-2.0" ]
null
null
null
core/plugins/openstack/__init__.py
aserdean/hotsos
a0f17a7ee2f08a4da0a269d478dec7ebb8f12493
[ "Apache-2.0" ]
null
null
null
import os import re from core.issues import ( issue_types, issue_utils, ) from core import ( checks, constants, host_helpers, plugintools, ) from core.ycheck.events import YEventCheckerBase from core.checks import DPKGVersionCompare from core.log import log from core.cli_helpers import CmdBase, CLIHelper from core.plugins.openstack.exceptions import ( EXCEPTIONS_COMMON, BARBICAN_EXCEPTIONS, CASTELLAN_EXCEPTIONS, CINDER_EXCEPTIONS, KEYSTONE_EXCEPTIONS, MANILA_EXCEPTIONS, PLACEMENT_EXCEPTIONS, PYTHON_LIBVIRT_EXCEPTIONS, NOVA_EXCEPTIONS, NEUTRON_EXCEPTIONS, OCTAVIA_EXCEPTIONS, OVSDBAPP_EXCEPTIONS, ) from core.plugins.kernel import ( KernelConfig, SystemdConfig, ) from core.plugins.system import ( NUMAInfo, SystemBase, ) APT_SOURCE_PATH = os.path.join(constants.DATA_ROOT, 'etc/apt/sources.list.d') NEUTRON_HA_PATH = 'var/lib/neutron/ha_confs' # Plugin config opts from global AGENT_ERROR_KEY_BY_TIME = \ constants.bool_str(os.environ.get('AGENT_ERROR_KEY_BY_TIME', 'False')) OST_REL_INFO = { 'barbican-common': { 'yoga': '1:14.0.0', 'xena': '1:13.0.0', 'wallaby': '1:12.0.0', 'victoria': '1:11.0.0', 'ussuri': '1:10.0.0', 'train': '1:9.0.0', 'stein': '1:8.0.0', 'rocky': '1:7.0.0', 'queens': '1:6.0.0'}, 'cinder-common': { 'yoga': '2:20.0.0', 'xena': '2:19.0.0', 'wallaby': '2:18.0.0', 'victoria': '2:17.0.0', 'ussuri': '2:16.0.0', 'train': '2:15.0.0', 'stein': '2:14.0.0', 'rocky': '2:13.0.0', 'queens': '2:12.0.0'}, 'designate-common': { 'yoga': '1:14.0.0', 'xena': '1:13.0.0', 'wallaby': '1:12.0.0', 'victoria': '1:11.0.0', 'ussuri': '1:10.0.0', 'train': '1:9.0.0', 'stein': '1:8.0.0', 'rocky': '1:7.0.0', 'queens': '1:6.0.0'}, 'glance-common': { 'yoga': '2:24.0.0', 'xena': '2:23.0.0', 'wallaby': '2:22.0.0', 'victoria': '2:21.0.0', 'ussuri': '2:20.0.0', 'train': '2:19.0.0', 'stein': '2:18.0.0', 'rocky': '2:17.0.0', 'queens': '2:16.0.0'}, 'heat-common': { 'yoga': '1:18.0.0', 'xena': '1:17.0.0', 'wallaby': '1:16.0.0', 'victoria': '1:15.0.0', 'ussuri': '1:14.0.0', 'train': '1:13.0.0', 'stein': '1:12.0.0', 'rocky': '1:11.0.0', 'queens': '1:10.0.0'}, 'keystone': { 'yoga': '2:21.0.0', 'xena': '2:20.0.0', 'wallaby': '2:19.0.0', 'victoria': '2:18.0.0', 'ussuri': '2:17.0.0', 'train': '2:16.0.0', 'stein': '2:15.0.0', 'rocky': '2:14.0.0', 'queens': '2:13.0.0', 'pike': '2:12.0.0', 'ocata': '2:11.0.0'}, 'nova-common': { 'yoga': '3:25.0.0', 'xena': '3:24.0.0', 'wallaby': '3:23.0.0', 'victoria': '2:22.0.0', 'ussuri': '2:21.0.0', 'train': '2:20.0.0', 'stein': '2:19.0.0', 'rocky': '2:18.0.0', 'queens': '2:17.0.0', 'pike': '2:16.0.0', 'ocata': '2:15.0.0', 'newton': '2:14.0.0', 'mitaka': '2:13.0.0', 'liberty': '2:12.0.0', 'kilo': '1:2015.1.0', 'juno': '1:2014.2.0', 'icehouse': '1:2014.1.0'}, 'neutron-common': { 'yoga': '2:20.0.0', 'xena': '2:19.0.0', 'wallaby': '2:18.0.0', 'victoria': '2:17.0.0', 'ussuri': '2:16.0.0', 'train': '2:15.0.0', 'stein': '2:14.0.0', 'rocky': '2:13.0.0', 'queens': '2:12.0.0', 'pike': '2:11.0.0', 'ocata': '2:10.0.0', 'newton': '2:9.0.0', 'mitaka': '2:8.0.0', 'liberty': '2:7.0.0', 'kilo': '1:2015.1.0', 'juno': '1:2014.2.0', 'icehouse': '1:2014.1.0'}, 'octavia-common': { 'yoga': '10.0.0', 'xena': '9.0.0', 'wallaby': '8.0.0', 'victoria': '7.0.0', 'ussuri': '6.0.0', 'train': '5.0.0', 'stein': '4.0.0', 'rocky': '3.0.0'} } OST_EXCEPTIONS = {'barbican': BARBICAN_EXCEPTIONS + CASTELLAN_EXCEPTIONS, 'cinder': CINDER_EXCEPTIONS + CASTELLAN_EXCEPTIONS, 'keystone': KEYSTONE_EXCEPTIONS, 'manila': MANILA_EXCEPTIONS, 'neutron': NEUTRON_EXCEPTIONS + OVSDBAPP_EXCEPTIONS, 'nova': NOVA_EXCEPTIONS + PYTHON_LIBVIRT_EXCEPTIONS, 'octavia': OCTAVIA_EXCEPTIONS, 'placement': PLACEMENT_EXCEPTIONS, } class OpenstackConfig(checks.SectionalConfigBase): pass class OSTProject(object): SVC_VALID_SUFFIX = r'[0-9a-zA-Z-_]*' PY_CLIENT_PREFIX = r"python3?-{}\S*" def __init__(self, name, config=None, daemon_names=None, apt_core_alt=None, systemd_masked_services=None, log_path_overrides=None): """ @param name: name of this project @param config: dict of config files keyed by a label used to identify them. All projects should have a config file labelled 'main'. @param daemon_names: list of daemon names of processes run by this project. @param apt_core_alt: optional list of apt packages (regex) that are used by this project where the name of the project is not the same as the name used for its packages. @param systemd_masked_services: optional list of services that are expected to be masked in systemd e.g. if they are actually being run by apache. """ self.name = name self.packages_core = [name] if apt_core_alt: self.packages_core.append(apt_core_alt) client = self.PY_CLIENT_PREFIX.format(apt_core_alt) else: client = self.PY_CLIENT_PREFIX.format(name) self.config = {} if config: for label, path in config.items(): path = os.path.join(constants.DATA_ROOT, 'etc', name, path) self.config[label] = OpenstackConfig(path) self.systemd_masked_services = systemd_masked_services or [] self.packages_core.append(client) self.service_expr = '{}{}'.format(name, self.SVC_VALID_SUFFIX) self.daemon_names = daemon_names or [] self.logs_path = os.path.join('var/log', name) self.log_path_overrides = log_path_overrides or {} self.exceptions = EXCEPTIONS_COMMON + OST_EXCEPTIONS.get(name, []) @property def log_paths(self): """ Returns tuples of daemon name, log path for each agent/daemon. """ proj_manage = "{}-manage".format(self.name) yield proj_manage, os.path.join('var/log', self.name, "{}.log".format(proj_manage)) for daemon in self.daemon_names: path = os.path.join('var/log', self.name, "{}.log".format(daemon)) yield daemon, self.log_path_overrides.get(daemon, path) class OSTProjectCatalog(object): # Services that are not actually openstack projects but are used by them OST_SERVICES_DEPS = [r'apache2', 'dnsmasq', 'ganesha.nfsd', 'haproxy', r"keepalived{}".format(OSTProject.SVC_VALID_SUFFIX), 'mysqld', r"vault{}".format(OSTProject.SVC_VALID_SUFFIX), r'qemu-system-\S+', 'radvd', ] # Set of packages that any project can depend on APT_DEPS_COMMON = ['conntrack', 'dnsmasq', 'haproxy', 'keepalived', 'libvirt-daemon', 'libvirt-bin', r'mysql-?\S+', 'pacemaker', 'corosync', 'nfs--ganesha', r'python3?-oslo[.-]', 'qemu-kvm', 'radvd', ] def __init__(self): self._projects = {} self.add('aodh', config={'main': 'aodh.conf'}, systemd_masked_services=['aodh-api']), self.add('barbican', daemon_names=['barbican-api', 'barbican-worker'], config={'main': 'barbican.conf'}, systemd_masked_services=['barbican-api']), self.add('ceilometer', config={'main': 'ceilometer.conf'}, systemd_masked_services=['ceilometer-api']), self.add('cinder', daemon_names=['cinder-scheduler', 'cinder-volume'], config={'main': 'cinder.conf'}), self.add('designate', daemon_names=['designate-agent', 'designate-api', 'designate-central', 'designate-mdns', 'designate-producer', 'designate-sink', 'designate-worker'], config={'main': 'designate.conf'}), self.add('glance', daemon_names=['glance-api'], config={'main': 'glance-api.conf'}), self.add('gnocchi', config={'main': 'gnocchi.conf'}, systemd_masked_services=['gnocchi-api']), self.add('heat', daemon_names=['heat-engine', 'heat-api', 'heat-api-cfn'], config={'main': 'heat.conf'}), self.add('horizon', apt_core_alt='openstack-dashboard'), self.add('keystone', daemon_names=['keystone'], config={'main': 'keystone.conf'}, systemd_masked_services=['keystone']), self.add('neutron', daemon_names=['neutron-openvswitch-agent', 'neutron-dhcp-agent', 'neutron-l3-agent', 'neutron-server', 'neutron-sriov-agent'], config={'main': 'neutron.conf', 'openvswitch-agent': 'plugins/ml2/openvswitch_agent.ini', 'l3-agent': 'l3_agent.ini', 'dhcp-agent': 'dhcp_agent.ini'}, systemd_masked_services=['nova-api-metadata']), self.add('nova', daemon_names=['nova-compute', 'nova-scheduler', 'nova-conductor', 'nova-api-os-compute', 'nova-api-wsgi', 'nova-api-metadata', 'nova-placement'], config={'main': 'nova.conf'}, # See LP bug 1957760 for reason why neutron-server is added. systemd_masked_services=['nova-api-os-compute', 'neutron-server'], log_path_overrides={'nova-api-os-compute': 'var/log/apache2/nova-*.log'}), self.add('manila', daemon_names=['manila-api', 'manila-scheduler', 'manila-data', 'manila-share'], config={'main': 'manila.conf'}, systemd_masked_services=['manila-api']), self.add('masakari', config={'main': 'masakari.conf'}, systemd_masked_services=['masakari']), self.add('octavia', daemon_names=['octavia-api', 'octavia-worker', 'octavia-health-manager', 'octavia-housekeeping', 'octavia-driver-agent'], config={'main': 'octavia.conf'}, systemd_masked_services=['octavia-api']), self.add('placement', config={'main': 'placement.conf'}, systemd_masked_services=['placement'], log_path_overrides={'placement': 'var/log/apache2/*error.log'}), self.add('swift', config={'main': 'swift-proxy.conf', 'proxy': 'swift-proxy.conf'}), def __getitem__(self, name): return self._projects[name] def __getattr__(self, name): return self._projects[name] @property def all(self): return self._projects @property def service_exprs(self): # Expressions used to match openstack systemd services for each project return [p.service_expr for p in self.all.values()] + \ self.OST_SERVICES_DEPS @property def default_masked_services(self): """ Returns a list of services that are expected to be marked as masked in systemd. """ masked = [] for p in self.all.values(): masked += p.systemd_masked_services return masked def add(self, name, *args, **kwargs): self._projects[name] = OSTProject(name, *args, **kwargs) @property def packages_core(self): # Set of packages we consider to be core for openstack core = [] for p in self.all.values(): core += p.packages_core return core @property def package_dependencies(self): return self.APT_DEPS_COMMON class NovaInstance(object): def __init__(self, uuid, name): self.uuid = uuid self.name = name self.ports = [] self.memory_mbytes = None def add_port(self, port): self.ports.append(port) class NeutronRouter(object): def __init__(self, uuid, ha_state): self.uuid = uuid self.ha_state = ha_state self.vr_id = None class NeutronHAInfo(object): def __init__(self): self._routers = [] self._get_neutron_ha_info() self.vr_id = None def _get_neutron_ha_info(self): if not os.path.exists(self.state_path): return for entry in os.listdir(self.state_path): entry = os.path.join(self.state_path, entry) if not os.path.isdir(entry): # if its not a directory then it is probably not a live router # so we ignore it. continue state_path = os.path.join(entry, 'state') if not os.path.exists(state_path): continue with open(state_path) as fd: uuid = os.path.basename(entry) state = fd.read().strip() router = NeutronRouter(uuid, state) keepalived_conf_path = os.path.join(entry, 'keepalived.conf') if os.path.isfile(keepalived_conf_path): with open(keepalived_conf_path) as fd: for line in fd: expr = r'.+ virtual_router_id (\d+)' ret = re.compile(expr).search(line) if ret: router.vr_id = ret.group(1) self._routers.append(router) def find_router_with_vr_id(self, id): for r in self.ha_routers: if r.vr_id == id: return r @property def state_path(self): return os.path.join(constants.DATA_ROOT, NEUTRON_HA_PATH) @property def ha_routers(self): return self._routers class OSTServiceBase(object): def __init__(self, name, *args, **kwargs): super().__init__(*args, **kwargs) self.nethelp = host_helpers.HostNetworkingHelper() self.project = OSTProjectCatalog()[name] @property def installed(self): """ Return True if the openstack service is installed. """ core_pkgs = self.project.packages_core return bool(checks.APTPackageChecksBase(core_pkgs=core_pkgs).core) class OctaviaBase(OSTServiceBase): OCTAVIA_HM_PORT_NAME = 'o-hm0' def __init__(self, *args, **kwargs): super().__init__('octavia', *args, **kwargs) @property def bind_interfaces(self): """ Fetch interface o-hm0 used by Openstack Octavia. Returned dict is keyed by config key used to identify interface. """ interfaces = {} port = self.nethelp.get_interface_with_name(self.OCTAVIA_HM_PORT_NAME) if port: interfaces.update({self.OCTAVIA_HM_PORT_NAME: port}) return interfaces @property def hm_port_has_address(self): port = self.bind_interfaces.get(self.OCTAVIA_HM_PORT_NAME) if port is None or not port.addresses: return False return True @property def hm_port_healthy(self): port = self.bind_interfaces.get(self.OCTAVIA_HM_PORT_NAME) if port is None: return True for counters in port.stats.values(): total = sum(counters.values()) if not total: continue pcent = int(100 / float(total) * float(counters.get('dropped', 0))) if pcent > 1: return False pcent = int(100 / float(total) * float(counters.get('errors', 0))) if pcent > 1: return False return True class NovaBase(OSTServiceBase): def __init__(self, *args, **kwargs): super().__init__('nova', *args, **kwargs) self._instances = None self.nova_config = self.project.config['main'] @property def instances(self): if self._instances is not None: return self._instances instances = {} for line in CLIHelper().ps(): ret = re.compile('.+product=OpenStack Nova.+').match(line) if ret: name = None uuid = None expr = r'.+uuid\s+([a-z0-9\-]+)[\s,]+.+' ret = re.compile(expr).match(ret[0]) if ret: uuid = ret[1] expr = r'.+\s+-name\s+guest=(instance-\w+)[,]*.*\s+.+' ret = re.compile(expr).match(ret[0]) if ret: name = ret[1] if not all([name, uuid]): continue guest = NovaInstance(uuid, name) ret = re.compile(r'mac=([a-z0-9:]+)').findall(line) if ret: for mac in ret: # convert libvirt to local/native mac = 'fe' + mac[2:] _port = self.nethelp.get_interface_with_hwaddr(mac) if _port: guest.add_port(_port) ret = re.compile(r'.+\s-m\s+(\d+)').search(line) if ret: guest.memory_mbytes = int(ret.group(1)) instances[uuid] = guest if not instances: return {} self._instances = instances return self._instances def get_nova_config_port(self, cfg_key): """ Fetch interface used by Openstack Nova config. Returns NetworkPort. """ addr = self.nova_config.get(cfg_key) if not addr: return return self.nethelp.get_interface_with_addr(addr) @property def my_ip_port(self): # NOTE: my_ip can be an address or fqdn, we currently only support # searching by address. return self.get_nova_config_port('my_ip') @property def live_migration_inbound_addr_port(self): return self.get_nova_config_port('live_migration_inbound_addr') @property def bind_interfaces(self): """ Fetch interfaces used by Openstack Nova. Returned dict is keyed by config key used to identify interface. """ interfaces = {} if self.my_ip_port: interfaces['my_ip'] = self.my_ip_port if self.live_migration_inbound_addr_port: port = self.live_migration_inbound_addr_port interfaces['live_migration_inbound_addr'] = port return interfaces class NovaCPUPinning(NovaBase): def __init__(self): super().__init__() self.numa = NUMAInfo() self.systemd = SystemdConfig() self.kernel = KernelConfig() self.nova_cfg = OpenstackConfig(os.path.join(constants.DATA_ROOT, 'etc/nova/nova.conf')) self.isolcpus = set(self.kernel.get('isolcpus', expand_to_list=True) or []) self.cpuaffinity = set(self.systemd.get('CPUAffinity', expand_to_list=True) or []) @property def cpu_dedicated_set(self): key = 'cpu_dedicated_set' return self.nova_cfg.get(key, expand_to_list=True) or [] @property def cpu_shared_set(self): key = 'cpu_shared_set' return self.nova_cfg.get(key, expand_to_list=True) or [] @property def vcpu_pin_set(self): key = 'vcpu_pin_set' return self.nova_cfg.get(key, expand_to_list=True) or [] @property def cpu_dedicated_set_name(self): """ If the vcpu_pin_set option has a value, we use that option as the name. """ if self.vcpu_pin_set: return 'vcpu_pin_set' return 'cpu_dedicated_set' @property def cpu_dedicated_set_intersection_isolcpus(self): if self.vcpu_pin_set: pinset = set(self.vcpu_pin_set) else: pinset = set(self.cpu_dedicated_set) return list(pinset.intersection(self.isolcpus)) @property def cpu_dedicated_set_intersection_cpuaffinity(self): if self.vcpu_pin_set: pinset = set(self.vcpu_pin_set) else: pinset = set(self.cpu_dedicated_set) return list(pinset.intersection(self.cpuaffinity)) @property def cpu_shared_set_intersection_isolcpus(self): return list(set(self.cpu_shared_set).intersection(self.isolcpus)) @property def cpuaffinity_intersection_isolcpus(self): return list(self.cpuaffinity.intersection(self.isolcpus)) @property def cpu_shared_set_intersection_cpu_dedicated_set(self): if self.vcpu_pin_set: pinset = set(self.vcpu_pin_set) else: pinset = set(self.cpu_dedicated_set) return list(set(self.cpu_shared_set).intersection(pinset)) @property def num_unpinned_cpus(self): num_cpus = SystemBase().num_cpus total_isolated = len(self.isolcpus.union(self.cpuaffinity)) return num_cpus - total_isolated @property def unpinned_cpus_pcent(self): num_cpus = SystemBase().num_cpus return int((float(100) / num_cpus) * self.num_unpinned_cpus) @property def nova_pinning_from_multi_numa_nodes(self): if self.vcpu_pin_set: pinset = set(self.vcpu_pin_set) else: pinset = set(self.cpu_dedicated_set) node_count = 0 for node in self.numa.nodes: node_cores = set(self.numa.cores(node)) if pinset.intersection(node_cores): node_count += 1 return node_count > 1 class NeutronBase(OSTServiceBase): def __init__(self, *args, **kwargs): super().__init__('neutron', *args, **kwargs) self.neutron_ovs_config = self.project.config['openvswitch-agent'] @property def bind_interfaces(self): """ Fetch interfaces used by Openstack Neutron. Returned dict is keyed by config key used to identify interface. """ local_ip = self.neutron_ovs_config.get('local_ip') interfaces = {} if not any([local_ip]): return interfaces if local_ip: port = self.nethelp.get_interface_with_addr(local_ip) # NOTE: local_ip can be an address or fqdn, we currently only # support searching by address. if port: interfaces.update({'local_ip': port}) return interfaces class OpenstackBase(object): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.ost_projects = OSTProjectCatalog() other_pkgs = self.ost_projects.package_dependencies self.apt_check = checks.APTPackageChecksBase( core_pkgs=self.ost_projects.packages_core, other_pkgs=other_pkgs) self.nova = NovaBase() self.neutron = NeutronBase() self.octavia = OctaviaBase() @property def apt_packages_all(self): return self.apt_check.all @property def bind_interfaces(self): """ Fetch interfaces used by Openstack services and return dict. """ interfaces = {} ifaces = self.nova.bind_interfaces if ifaces: interfaces.update(ifaces) ifaces = self.neutron.bind_interfaces if ifaces: interfaces.update(ifaces) ifaces = self.octavia.bind_interfaces if ifaces: interfaces.update(ifaces) return interfaces @property def release_name(self): relname = None relnames = set() for pkg in OST_REL_INFO: if pkg in self.apt_check.core: # Since the versions we match against will always match our # version - 1 we use last known lt as current version. v_lt = None r_lt = None pkg_ver = DPKGVersionCompare(self.apt_check.core[pkg]) for rel, ver in OST_REL_INFO[pkg].items(): if pkg_ver > ver: if v_lt is None: v_lt = ver r_lt = rel elif ver > DPKGVersionCompare(v_lt): v_lt = ver r_lt = rel if r_lt: relnames.add(r_lt) log.debug("release name(s) found: %s", ','.join(relnames)) if relnames: relnames = sorted(list(relnames)) if len(relnames) > 1: relnames msg = ("openstack packages from mixed releases found - {}". format(relnames)) issue = issue_types.OpenstackWarning(msg) issue_utils.add_issue(issue) relname = relnames[0] if relname: return relname relname = 'unknown' # fallback to uca version if exists if not os.path.exists(APT_SOURCE_PATH): return relname release_info = {} for source in os.listdir(APT_SOURCE_PATH): apt_path = os.path.join(APT_SOURCE_PATH, source) for line in CmdBase.safe_readlines(apt_path): rexpr = r'deb .+ubuntu-cloud.+ [a-z]+-([a-z]+)/([a-z]+) .+' ret = re.compile(rexpr).match(line) if ret: if 'uca' not in release_info: release_info['uca'] = set() if ret[1] != 'updates': release_info['uca'].add("{}-{}".format(ret[2], ret[1])) else: release_info['uca'].add(ret[2]) if release_info.get('uca'): return sorted(release_info['uca'], reverse=True)[0] return relname class OpenstackChecksBase(OpenstackBase, plugintools.PluginPartBase): @property def openstack_installed(self): if self.apt_check.core: return True return False @property def plugin_runnable(self): return self.openstack_installed class OpenstackEventChecksBase(OpenstackChecksBase, YEventCheckerBase): def __call__(self): ret = self.run_checks() if ret: self._output.update(ret) class OpenstackServiceChecksBase(OpenstackChecksBase, checks.ServiceChecksBase): def __init__(self): service_exprs = OSTProjectCatalog().service_exprs super().__init__(service_exprs=service_exprs, hint_range=(0, 3)) @property def unexpected_masked_services(self): masked = set(self.masked_services) if not masked: return [] expected_masked = self.ost_projects.default_masked_services return list(masked.difference(expected_masked)) @property def unexpected_masked_services_str(self): masked = self.unexpected_masked_services if not masked: return '' return '.'.join(self.unexpected_masked_services) class OpenstackPackageChecksBase(OpenstackChecksBase): pass class OpenstackDockerImageChecksBase(OpenstackChecksBase, checks.DockerImageChecksBase): def __init__(self): self.ost_projects = OSTProjectCatalog() super().__init__(core_pkgs=self.ost_projects.packages_core, other_pkgs=self.ost_projects.package_dependencies)
32.793722
79
0.538527
dc0d300cdaea724c3e28548250e520e1f7643933
847
py
Python
samples/client/petstore/python-experimental/test/test_grandparent_animal.py
MalcolmScoffable/openapi-generator
73605a0c0e0c825286c95123c63678ba75b44d5c
[ "Apache-2.0" ]
4
2020-07-24T07:02:57.000Z
2022-01-08T17:37:38.000Z
samples/client/petstore/python-experimental/test/test_grandparent_animal.py
MalcolmScoffable/openapi-generator
73605a0c0e0c825286c95123c63678ba75b44d5c
[ "Apache-2.0" ]
7
2021-05-12T00:00:20.000Z
2022-02-27T11:23:35.000Z
samples/client/petstore/python-experimental/test/test_grandparent_animal.py
MalcolmScoffable/openapi-generator
73605a0c0e0c825286c95123c63678ba75b44d5c
[ "Apache-2.0" ]
2
2020-04-24T15:18:41.000Z
2021-12-07T09:39:40.000Z
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import petstore_api class TestGrandparentAnimal(unittest.TestCase): """GrandparentAnimal unit test stubs""" def setUp(self): pass def tearDown(self): pass def testGrandparentAnimal(self): """Test GrandparentAnimal""" # FIXME: construct object with mandatory attributes with example values # model = petstore_api.GrandparentAnimal() # noqa: E501 pass if __name__ == '__main__': unittest.main()
22.289474
174
0.689492
7bb0f62a4e51c3dd425f20a004921ad663758f62
3,216
py
Python
pvanalytics/quality/outliers.py
kanderso-nrel/pvanalytics
27ea3fdddaf0e885cce8b56438256b7e51e9bdea
[ "MIT", "BSD-3-Clause" ]
1
2022-01-04T14:26:06.000Z
2022-01-04T14:26:06.000Z
pvanalytics/quality/outliers.py
kanderso-nrel/pvanalytics
27ea3fdddaf0e885cce8b56438256b7e51e9bdea
[ "MIT", "BSD-3-Clause" ]
null
null
null
pvanalytics/quality/outliers.py
kanderso-nrel/pvanalytics
27ea3fdddaf0e885cce8b56438256b7e51e9bdea
[ "MIT", "BSD-3-Clause" ]
1
2021-02-22T23:12:25.000Z
2021-02-22T23:12:25.000Z
"""Functions for identifying and labeling outliers.""" import pandas as pd from scipy import stats from statsmodels import robust def tukey(data, k=1.5): r"""Identify outliers based on the interquartile range. A value `x` is considered an outlier if it does *not* satisfy the following condition .. math:: Q_1 - k(Q_3 - Q_1) \le x \le Q_3 + k(Q_3 - Q_1) where :math:`Q_1` is the value of the first quartile and :math:`Q_3` is the value of the third quartile. Parameters ---------- data : Series The data in which to find outliers. k : float, default 1.5 Multiplier of the interquartile range. A larger value will be more permissive of values that are far from the median. Returns ------- Series A series of booleans with True for each value that is an outlier. """ first_quartile = data.quantile(0.25) third_quartile = data.quantile(0.75) iqr = third_quartile - first_quartile return ((data < (first_quartile - k*iqr)) | (data > (third_quartile + k*iqr))) def zscore(data, zmax=1.5): """Identify outliers using the z-score. Points with z-score greater than `zmax` are considered as outliers. Parameters ---------- data : Series A series of numeric values in which to find outliers. zmax : float Upper limit of the absolute values of the z-score. Returns ------- Series A series of booleans with True for each value that is an outlier. """ return pd.Series((abs(stats.zscore(data)) > zmax), index=data.index) def hampel(data, window=5, max_deviation=3.0, scale=None): r"""Identify outliers by the Hampel identifier. The Hampel identifier is computed according to [1]_. Parameters ---------- data : Series The data in which to find outliers. window : int or offset, default 5 The size of the rolling window used to compute the Hampel identifier. max_deviation : float, default 3.0 Any value with a Hampel identifier > `max_deviation` standard deviations from the median is considered an outlier. scale : float, optional Scale factor used to estimate the standard deviation as :math:`MAD / scale`. If `scale=None` (default), then the scale factor is taken to be ``scipy.stats.norm.ppf(3/4.)`` (approx. 0.6745), and :math:`MAD / scale` approximates the standard deviation of Gaussian distributed data. Returns ------- Series True for each value that is an outlier according to its Hampel identifier. References ---------- .. [1] Pearson, R.K., Neuvo, Y., Astola, J. et al. Generalized Hampel Filters. EURASIP J. Adv. Signal Process. 2016, 87 (2016). https://doi.org/10.1186/s13634-016-0383-6 """ median = data.rolling(window=window, center=True).median() deviation = abs(data - median) kwargs = {} if scale is not None: kwargs = {'c': scale} mad = data.rolling(window=window, center=True).apply( robust.scale.mad, kwargs=kwargs ) return deviation > max_deviation * mad
29.777778
78
0.631841
2f571d7eecc6dfdf9c91c9e0445283f07f2619cf
35,903
py
Python
Lib/site-packages/mypy/plugin.py
edupyter/EDUPYTER38
396183cea72987506f1ef647c0272a2577c56218
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/mypy/plugin.py
edupyter/EDUPYTER38
396183cea72987506f1ef647c0272a2577c56218
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/mypy/plugin.py
edupyter/EDUPYTER38
396183cea72987506f1ef647c0272a2577c56218
[ "bzip2-1.0.6" ]
null
null
null
"""Plugin system for extending mypy. At large scale the plugin system works as following: * Plugins are collected from the corresponding mypy config file option (either via paths to Python files, or installed Python modules) and imported using importlib. * Every module should get an entry point function (called 'plugin' by default, but may be overridden in the config file) that should accept a single string argument that is a full mypy version (includes git commit hash for dev versions) and return a subclass of mypy.plugins.Plugin. * All plugin class constructors should match the signature of mypy.plugin.Plugin (i.e. should accept an mypy.options.Options object), and *must* call super().__init__(). * At several steps during semantic analysis and type checking mypy calls special `get_xxx` methods on user plugins with a single string argument that is a fully qualified name (full name) of a relevant definition (see mypy.plugin.Plugin method docstrings for details). * The plugins are called in the order they are passed in the config option. Every plugin must decide whether to act on a given full name. The first plugin that returns non-None object will be used. * The above decision should be made using the limited common API specified by mypy.plugin.CommonPluginApi. * The callback returned by the plugin will be called with a larger context that includes relevant current state (e.g. a default return type, or a default attribute type) and a wider relevant API provider (e.g. SemanticAnalyzerPluginInterface or CheckerPluginInterface). * The result of this is used for further processing. See various `XxxContext` named tuples for details about which information is given to each hook. Plugin developers should ensure that their plugins work well in incremental and daemon modes. In particular, plugins should not hold global state, and should always call add_plugin_dependency() in plugin hooks called during semantic analysis. See the method docstring for more details. There is no dedicated cache storage for plugins, but plugins can store per-TypeInfo data in a special .metadata attribute that is serialized to the mypy caches between incremental runs. To avoid collisions between plugins, they are encouraged to store their state under a dedicated key coinciding with plugin name in the metadata dictionary. Every value stored there must be JSON-serializable. ## Notes about the semantic analyzer Mypy 0.710 introduced a new semantic analyzer that changed how plugins are expected to work in several notable ways (from mypy 0.730 the old semantic analyzer is no longer available): 1. The order of processing AST nodes in modules is different. The old semantic analyzer processed modules in textual order, one module at a time. The new semantic analyzer first processes the module top levels, including bodies of any top-level classes and classes nested within classes. ("Top-level" here means "not nested within a function/method".) Functions and methods are processed only after module top levels have been finished. If there is an import cycle, all module top levels in the cycle are processed before processing any functions or methods. Each unit of processing (a module top level or a function/method) is called a *target*. This also means that function signatures in the same module have not been analyzed yet when analyzing the module top level. If you need access to a function signature, you'll need to explicitly analyze the signature first using `anal_type()`. 2. Each target can be processed multiple times. This may happen if some forward references are not ready yet, for example. This means that semantic analyzer related plugin hooks can be called multiple times for the same full name. These plugin methods must thus be idempotent. 3. The `anal_type` API function returns None if some part of the type is not available yet. If this happens, the current target being analyzed will be *deferred*, which means that it will be processed again soon, in the hope that additional dependencies will be available. This may happen if there are forward references to types or inter-module references to types within an import cycle. Note that if there is a circular definition, mypy may decide to stop processing to avoid an infinite number of iterations. When this happens, `anal_type` will generate an error and return an `AnyType` type object during the final iteration (instead of None). 4. There is a new API method `defer()`. This can be used to explicitly request the current target to be reprocessed one more time. You don't need this to call this if `anal_type` returns None, however. 5. There is a new API property `final_iteration`, which is true once mypy detected no progress during the previous iteration or if the maximum semantic analysis iteration count has been reached. You must never defer during the final iteration, as it will cause a crash. 6. The `node` attribute of SymbolTableNode objects may contain a reference to a PlaceholderNode object. This object means that this definition has not been fully processed yet. If you encounter a PlaceholderNode, you should defer unless it's the final iteration. If it's the final iteration, you should generate an error message. It usually means that there's a cyclic definition that cannot be resolved by mypy. PlaceholderNodes can only refer to references inside an import cycle. If you are looking up things from another module, such as the builtins, that is outside the current module or import cycle, you can safely assume that you won't receive a placeholder. When testing your plugin, you should have a test case that forces a module top level to be processed multiple times. The easiest way to do this is to include a forward reference to a class in a top-level annotation. Example: c: C # Forward reference causes second analysis pass class C: pass Note that a forward reference in a function signature won't trigger another pass, since all functions are processed only after the top level has been fully analyzed. You can use `api.options.new_semantic_analyzer` to check whether the new semantic analyzer is enabled (it's always true in mypy 0.730 and later). """ from abc import abstractmethod from typing import Any, Callable, List, Tuple, Optional, NamedTuple, TypeVar, Dict, Union from mypy_extensions import trait, mypyc_attr from mypy.nodes import ( Expression, Context, ClassDef, SymbolTableNode, MypyFile, CallExpr, ArgKind, TypeInfo ) from mypy.tvar_scope import TypeVarLikeScope from mypy.types import ( Type, Instance, CallableType, TypeList, UnboundType, ProperType, FunctionLike ) from mypy.messages import MessageBuilder from mypy.options import Options from mypy.lookup import lookup_fully_qualified from mypy.errorcodes import ErrorCode from mypy.message_registry import ErrorMessage @trait class TypeAnalyzerPluginInterface: """Interface for accessing semantic analyzer functionality in plugins. Methods docstrings contain only basic info. Look for corresponding implementation docstrings in typeanal.py for more details. """ # An options object. Note: these are the cloned options for the current file. # This might be different from Plugin.options (that contains default/global options) # if there are per-file options in the config. This applies to all other interfaces # in this file. options: Options @abstractmethod def fail(self, msg: str, ctx: Context, *, code: Optional[ErrorCode] = None) -> None: """Emit an error message at given location.""" raise NotImplementedError @abstractmethod def named_type(self, name: str, args: List[Type]) -> Instance: """Construct an instance of a builtin type with given name.""" raise NotImplementedError @abstractmethod def analyze_type(self, typ: Type) -> Type: """Analyze an unbound type using the default mypy logic.""" raise NotImplementedError @abstractmethod def analyze_callable_args(self, arglist: TypeList) -> Optional[Tuple[List[Type], List[ArgKind], List[Optional[str]]]]: """Find types, kinds, and names of arguments from extended callable syntax.""" raise NotImplementedError # A context for a hook that semantically analyzes an unbound type. class AnalyzeTypeContext(NamedTuple): type: UnboundType # Type to analyze context: Context # Relevant location context (e.g. for error messages) api: TypeAnalyzerPluginInterface @mypyc_attr(allow_interpreted_subclasses=True) class CommonPluginApi: """ A common plugin API (shared between semantic analysis and type checking phases) that all plugin hooks get independently of the context. """ # Global mypy options. # Per-file options can be only accessed on various # XxxPluginInterface classes. options: Options @abstractmethod def lookup_fully_qualified(self, fullname: str) -> Optional[SymbolTableNode]: """Lookup a symbol by its full name (including module). This lookup function available for all plugins. Return None if a name is not found. This function doesn't support lookup from current scope. Use SemanticAnalyzerPluginInterface.lookup_qualified() for this.""" raise NotImplementedError @trait class CheckerPluginInterface: """Interface for accessing type checker functionality in plugins. Methods docstrings contain only basic info. Look for corresponding implementation docstrings in checker.py for more details. """ msg: MessageBuilder options: Options path: str # Type context for type inference @property @abstractmethod def type_context(self) -> List[Optional[Type]]: """Return the type context of the plugin""" raise NotImplementedError @abstractmethod def fail(self, msg: Union[str, ErrorMessage], ctx: Context, *, code: Optional[ErrorCode] = None) -> None: """Emit an error message at given location.""" raise NotImplementedError @abstractmethod def named_generic_type(self, name: str, args: List[Type]) -> Instance: """Construct an instance of a builtin type with given type arguments.""" raise NotImplementedError @trait class SemanticAnalyzerPluginInterface: """Interface for accessing semantic analyzer functionality in plugins. Methods docstrings contain only basic info. Look for corresponding implementation docstrings in semanal.py for more details. # TODO: clean-up lookup functions. """ modules: Dict[str, MypyFile] # Options for current file. options: Options cur_mod_id: str msg: MessageBuilder @abstractmethod def named_type(self, fullname: str, args: Optional[List[Type]] = None) -> Instance: """Construct an instance of a builtin type with given type arguments.""" raise NotImplementedError @abstractmethod def builtin_type(self, fully_qualified_name: str) -> Instance: """Legacy function -- use named_type() instead.""" # NOTE: Do not delete this since many plugins may still use it. raise NotImplementedError @abstractmethod def named_type_or_none(self, fullname: str, args: Optional[List[Type]] = None) -> Optional[Instance]: """Construct an instance of a type with given type arguments. Return None if a type could not be constructed for the qualified type name. This is possible when the qualified name includes a module name and the module has not been imported. """ raise NotImplementedError @abstractmethod def basic_new_typeinfo(self, name: str, basetype_or_fallback: Instance, line: int) -> TypeInfo: raise NotImplementedError @abstractmethod def parse_bool(self, expr: Expression) -> Optional[bool]: """Parse True/False literals.""" raise NotImplementedError @abstractmethod def fail(self, msg: str, ctx: Context, serious: bool = False, *, blocker: bool = False, code: Optional[ErrorCode] = None) -> None: """Emit an error message at given location.""" raise NotImplementedError @abstractmethod def anal_type(self, t: Type, *, tvar_scope: Optional[TypeVarLikeScope] = None, allow_tuple_literal: bool = False, allow_unbound_tvars: bool = False, report_invalid_types: bool = True, third_pass: bool = False) -> Optional[Type]: """Analyze an unbound type. Return None if some part of the type is not ready yet. In this case the current target being analyzed will be deferred and analyzed again. """ raise NotImplementedError @abstractmethod def class_type(self, self_type: Type) -> Type: """Generate type of first argument of class methods from type of self.""" raise NotImplementedError @abstractmethod def lookup_fully_qualified(self, name: str) -> SymbolTableNode: """Lookup a symbol by its fully qualified name. Raise an error if not found. """ raise NotImplementedError @abstractmethod def lookup_fully_qualified_or_none(self, name: str) -> Optional[SymbolTableNode]: """Lookup a symbol by its fully qualified name. Return None if not found. """ raise NotImplementedError @abstractmethod def lookup_qualified(self, name: str, ctx: Context, suppress_errors: bool = False) -> Optional[SymbolTableNode]: """Lookup symbol using a name in current scope. This follows Python local->non-local->global->builtins rules. """ raise NotImplementedError @abstractmethod def add_plugin_dependency(self, trigger: str, target: Optional[str] = None) -> None: """Specify semantic dependencies for generated methods/variables. If the symbol with full name given by trigger is found to be stale by mypy, then the body of node with full name given by target will be re-checked. By default, this is the node that is currently analyzed. For example, the dataclass plugin adds a generated __init__ method with a signature that depends on types of attributes in ancestor classes. If any attribute in an ancestor class gets stale (modified), we need to reprocess the subclasses (and thus regenerate __init__ methods). This is used by fine-grained incremental mode (mypy daemon). See mypy/server/deps.py for more details. """ raise NotImplementedError @abstractmethod def add_symbol_table_node(self, name: str, stnode: SymbolTableNode) -> Any: """Add node to global symbol table (or to nearest class if there is one).""" raise NotImplementedError @abstractmethod def qualified_name(self, n: str) -> str: """Make qualified name using current module and enclosing class (if any).""" raise NotImplementedError @abstractmethod def defer(self) -> None: """Call this to defer the processing of the current node. This will request an additional iteration of semantic analysis. """ raise NotImplementedError @property @abstractmethod def final_iteration(self) -> bool: """Is this the final iteration of semantic analysis?""" raise NotImplementedError @property @abstractmethod def is_stub_file(self) -> bool: raise NotImplementedError # A context for querying for configuration data about a module for # cache invalidation purposes. class ReportConfigContext(NamedTuple): id: str # Module name path: str # Module file path is_check: bool # Is this invocation for checking whether the config matches # A context for a function signature hook that infers a better signature for a # function. Note that argument types aren't available yet. If you need them, # you have to use a method hook instead. class FunctionSigContext(NamedTuple): args: List[List[Expression]] # Actual expressions for each formal argument default_signature: CallableType # Original signature of the method context: Context # Relevant location context (e.g. for error messages) api: CheckerPluginInterface # A context for a function hook that infers the return type of a function with # a special signature. # # A no-op callback would just return the inferred return type, but a useful # callback at least sometimes can infer a more precise type. class FunctionContext(NamedTuple): arg_types: List[List[Type]] # List of actual caller types for each formal argument arg_kinds: List[List[ArgKind]] # Ditto for argument kinds, see nodes.ARG_* constants # Names of formal parameters from the callee definition, # these will be sufficient in most cases. callee_arg_names: List[Optional[str]] # Names of actual arguments in the call expression. For example, # in a situation like this: # def func(**kwargs) -> None: # pass # func(kw1=1, kw2=2) # callee_arg_names will be ['kwargs'] and arg_names will be [['kw1', 'kw2']]. arg_names: List[List[Optional[str]]] default_return_type: Type # Return type inferred from signature args: List[List[Expression]] # Actual expressions for each formal argument context: Context # Relevant location context (e.g. for error messages) api: CheckerPluginInterface # A context for a method signature hook that infers a better signature for a # method. Note that argument types aren't available yet. If you need them, # you have to use a method hook instead. # TODO: document ProperType in the plugin changelog/update issue. class MethodSigContext(NamedTuple): type: ProperType # Base object type for method call args: List[List[Expression]] # Actual expressions for each formal argument default_signature: CallableType # Original signature of the method context: Context # Relevant location context (e.g. for error messages) api: CheckerPluginInterface # A context for a method hook that infers the return type of a method with a # special signature. # # This is very similar to FunctionContext (only differences are documented). class MethodContext(NamedTuple): type: ProperType # Base object type for method call arg_types: List[List[Type]] # List of actual caller types for each formal argument # see FunctionContext for details about names and kinds arg_kinds: List[List[ArgKind]] callee_arg_names: List[Optional[str]] arg_names: List[List[Optional[str]]] default_return_type: Type # Return type inferred by mypy args: List[List[Expression]] # Lists of actual expressions for every formal argument context: Context api: CheckerPluginInterface # A context for an attribute type hook that infers the type of an attribute. class AttributeContext(NamedTuple): type: ProperType # Type of object with attribute default_attr_type: Type # Original attribute type context: Context # Relevant location context (e.g. for error messages) api: CheckerPluginInterface # A context for a class hook that modifies the class definition. class ClassDefContext(NamedTuple): cls: ClassDef # The class definition reason: Expression # The expression being applied (decorator, metaclass, base class) api: SemanticAnalyzerPluginInterface # A context for dynamic class definitions like # Base = declarative_base() class DynamicClassDefContext(NamedTuple): call: CallExpr # The r.h.s. of dynamic class definition name: str # The name this class is being assigned to api: SemanticAnalyzerPluginInterface @mypyc_attr(allow_interpreted_subclasses=True) class Plugin(CommonPluginApi): """Base class of all type checker plugins. This defines a no-op plugin. Subclasses can override some methods to provide some actual functionality. All get_ methods are treated as pure functions (you should assume that results might be cached). A plugin should return None from a get_ method to give way to other plugins. Look at the comments of various *Context objects for additional information on various hooks. """ def __init__(self, options: Options) -> None: self.options = options self.python_version = options.python_version # This can't be set in __init__ because it is executed too soon in build.py. # Therefore, build.py *must* set it later before graph processing starts # by calling set_modules(). self._modules: Optional[Dict[str, MypyFile]] = None def set_modules(self, modules: Dict[str, MypyFile]) -> None: self._modules = modules def lookup_fully_qualified(self, fullname: str) -> Optional[SymbolTableNode]: assert self._modules is not None return lookup_fully_qualified(fullname, self._modules) def report_config_data(self, ctx: ReportConfigContext) -> Any: """Get representation of configuration data for a module. The data must be encodable as JSON and will be stored in the cache metadata for the module. A mismatch between the cached values and the returned will result in that module's cache being invalidated and the module being rechecked. This can be called twice for each module, once after loading the cache to check if it is valid and once while writing new cache information. If is_check in the context is true, then the return of this call will be checked against the cached version. Otherwise the call is being made to determine what to put in the cache. This can be used to allow consulting extra cache files in certain complex situations. This can be used to incorporate external configuration information that might require changes to typechecking. """ return None def get_additional_deps(self, file: MypyFile) -> List[Tuple[int, str, int]]: """Customize dependencies for a module. This hook allows adding in new dependencies for a module. It is called after parsing a file but before analysis. This can be useful if a library has dependencies that are dynamic based on configuration information, for example. Returns a list of (priority, module name, line number) tuples. The line number can be -1 when there is not a known real line number. Priorities are defined in mypy.build (but maybe shouldn't be). 10 is a good choice for priority. """ return [] def get_type_analyze_hook(self, fullname: str ) -> Optional[Callable[[AnalyzeTypeContext], Type]]: """Customize behaviour of the type analyzer for given full names. This method is called during the semantic analysis pass whenever mypy sees an unbound type. For example, while analysing this code: from lib import Special, Other var: Special def func(x: Other[int]) -> None: ... this method will be called with 'lib.Special', and then with 'lib.Other'. The callback returned by plugin must return an analyzed type, i.e. an instance of `mypy.types.Type`. """ return None def get_function_signature_hook(self, fullname: str ) -> Optional[Callable[[FunctionSigContext], FunctionLike]]: """Adjust the signature of a function. This method is called before type checking a function call. Plugin may infer a better type for the function. from lib import Class, do_stuff do_stuff(42) Class() This method will be called with 'lib.do_stuff' and then with 'lib.Class'. """ return None def get_function_hook(self, fullname: str ) -> Optional[Callable[[FunctionContext], Type]]: """Adjust the return type of a function call. This method is called after type checking a call. Plugin may adjust the return type inferred by mypy, and/or emit some error messages. Note, this hook is also called for class instantiation calls, so that in this example: from lib import Class, do_stuff do_stuff(42) Class() This method will be called with 'lib.do_stuff' and then with 'lib.Class'. """ return None def get_method_signature_hook(self, fullname: str ) -> Optional[Callable[[MethodSigContext], FunctionLike]]: """Adjust the signature of a method. This method is called before type checking a method call. Plugin may infer a better type for the method. The hook is also called for special Python dunder methods except __init__ and __new__ (use get_function_hook to customize class instantiation). This function is called with the method full name using the class where it was _defined_. For example, in this code: from lib import Special class Base: def method(self, arg: Any) -> Any: ... class Derived(Base): ... var: Derived var.method(42) x: Special y = x[0] this method is called with '__main__.Base.method', and then with 'lib.Special.__getitem__'. """ return None def get_method_hook(self, fullname: str ) -> Optional[Callable[[MethodContext], Type]]: """Adjust return type of a method call. This is the same as get_function_hook(), but is called with the method full name (again, using the class where the method is defined). """ return None def get_attribute_hook(self, fullname: str ) -> Optional[Callable[[AttributeContext], Type]]: """Adjust type of an instance attribute. This method is called with attribute full name using the class of the instance where the attribute was defined (or Var.info.fullname for generated attributes). For classes without __getattr__ or __getattribute__, this hook is only called for names of fields/properties (but not methods) that exist in the instance MRO. For classes that implement __getattr__ or __getattribute__, this hook is called for all fields/properties, including nonexistent ones (but still not methods). For example: class Base: x: Any def __getattr__(self, attr: str) -> Any: ... class Derived(Base): ... var: Derived var.x var.y get_attribute_hook is called with '__main__.Base.x' and '__main__.Base.y'. However, if we had not implemented __getattr__ on Base, you would only get the callback for 'var.x'; 'var.y' would produce an error without calling the hook. """ return None def get_class_attribute_hook(self, fullname: str ) -> Optional[Callable[[AttributeContext], Type]]: """ Adjust type of a class attribute. This method is called with attribute full name using the class where the attribute was defined (or Var.info.fullname for generated attributes). For example: class Cls: x: Any Cls.x get_class_attribute_hook is called with '__main__.Cls.x' as fullname. """ return None def get_class_decorator_hook(self, fullname: str ) -> Optional[Callable[[ClassDefContext], None]]: """Update class definition for given class decorators. The plugin can modify a TypeInfo _in place_ (for example add some generated methods to the symbol table). This hook is called after the class body was semantically analyzed, but *there may still be placeholders* (typically caused by forward references). NOTE: Usually get_class_decorator_hook_2 is the better option, since it guarantees that there are no placeholders. The hook is called with full names of all class decorators. The hook can be called multiple times per class, so it must be idempotent. """ return None def get_class_decorator_hook_2(self, fullname: str ) -> Optional[Callable[[ClassDefContext], bool]]: """Update class definition for given class decorators. Similar to get_class_decorator_hook, but this runs in a later pass when placeholders have been resolved. The hook can return False if some base class hasn't been processed yet using class hooks. It causes all class hooks (that are run in this same pass) to be invoked another time for the file(s) currently being processed. The hook can be called multiple times per class, so it must be idempotent. """ return None def get_metaclass_hook(self, fullname: str ) -> Optional[Callable[[ClassDefContext], None]]: """Update class definition for given declared metaclasses. Same as get_class_decorator_hook() but for metaclasses. Note: this hook will be only called for explicit metaclasses, not for inherited ones. TODO: probably it should also be called on inherited metaclasses. """ return None def get_base_class_hook(self, fullname: str ) -> Optional[Callable[[ClassDefContext], None]]: """Update class definition for given base classes. Same as get_class_decorator_hook() but for base classes. Base classes don't need to refer to TypeInfos, if a base class refers to a variable with Any type, this hook will still be called. """ return None def get_customize_class_mro_hook(self, fullname: str ) -> Optional[Callable[[ClassDefContext], None]]: """Customize MRO for given classes. The plugin can modify the class MRO _in place_. This method is called with the class full name before its body was semantically analyzed. """ return None def get_dynamic_class_hook(self, fullname: str ) -> Optional[Callable[[DynamicClassDefContext], None]]: """Semantically analyze a dynamic class definition. This plugin hook allows one to semantically analyze dynamic class definitions like: from lib import dynamic_class X = dynamic_class('X', []) For such definition, this hook will be called with 'lib.dynamic_class'. The plugin should create the corresponding TypeInfo, and place it into a relevant symbol table, e.g. using ctx.api.add_symbol_table_node(). """ return None T = TypeVar('T') class ChainedPlugin(Plugin): """A plugin that represents a sequence of chained plugins. Each lookup method returns the hook for the first plugin that reports a match. This class should not be subclassed -- use Plugin as the base class for all plugins. """ # TODO: Support caching of lookup results (through a LRU cache, for example). def __init__(self, options: Options, plugins: List[Plugin]) -> None: """Initialize chained plugin. Assume that the child plugins aren't mutated (results may be cached). """ super().__init__(options) self._plugins = plugins def set_modules(self, modules: Dict[str, MypyFile]) -> None: for plugin in self._plugins: plugin.set_modules(modules) def report_config_data(self, ctx: ReportConfigContext) -> Any: config_data = [plugin.report_config_data(ctx) for plugin in self._plugins] return config_data if any(x is not None for x in config_data) else None def get_additional_deps(self, file: MypyFile) -> List[Tuple[int, str, int]]: deps = [] for plugin in self._plugins: deps.extend(plugin.get_additional_deps(file)) return deps def get_type_analyze_hook(self, fullname: str ) -> Optional[Callable[[AnalyzeTypeContext], Type]]: return self._find_hook(lambda plugin: plugin.get_type_analyze_hook(fullname)) def get_function_signature_hook(self, fullname: str ) -> Optional[Callable[[FunctionSigContext], FunctionLike]]: return self._find_hook(lambda plugin: plugin.get_function_signature_hook(fullname)) def get_function_hook(self, fullname: str ) -> Optional[Callable[[FunctionContext], Type]]: return self._find_hook(lambda plugin: plugin.get_function_hook(fullname)) def get_method_signature_hook(self, fullname: str ) -> Optional[Callable[[MethodSigContext], FunctionLike]]: return self._find_hook(lambda plugin: plugin.get_method_signature_hook(fullname)) def get_method_hook(self, fullname: str ) -> Optional[Callable[[MethodContext], Type]]: return self._find_hook(lambda plugin: plugin.get_method_hook(fullname)) def get_attribute_hook(self, fullname: str ) -> Optional[Callable[[AttributeContext], Type]]: return self._find_hook(lambda plugin: plugin.get_attribute_hook(fullname)) def get_class_attribute_hook(self, fullname: str ) -> Optional[Callable[[AttributeContext], Type]]: return self._find_hook(lambda plugin: plugin.get_class_attribute_hook(fullname)) def get_class_decorator_hook(self, fullname: str ) -> Optional[Callable[[ClassDefContext], None]]: return self._find_hook(lambda plugin: plugin.get_class_decorator_hook(fullname)) def get_class_decorator_hook_2(self, fullname: str ) -> Optional[Callable[[ClassDefContext], bool]]: return self._find_hook(lambda plugin: plugin.get_class_decorator_hook_2(fullname)) def get_metaclass_hook(self, fullname: str ) -> Optional[Callable[[ClassDefContext], None]]: return self._find_hook(lambda plugin: plugin.get_metaclass_hook(fullname)) def get_base_class_hook(self, fullname: str ) -> Optional[Callable[[ClassDefContext], None]]: return self._find_hook(lambda plugin: plugin.get_base_class_hook(fullname)) def get_customize_class_mro_hook(self, fullname: str ) -> Optional[Callable[[ClassDefContext], None]]: return self._find_hook(lambda plugin: plugin.get_customize_class_mro_hook(fullname)) def get_dynamic_class_hook(self, fullname: str ) -> Optional[Callable[[DynamicClassDefContext], None]]: return self._find_hook(lambda plugin: plugin.get_dynamic_class_hook(fullname)) def _find_hook(self, lookup: Callable[[Plugin], T]) -> Optional[T]: for plugin in self._plugins: hook = lookup(plugin) if hook: return hook return None
41.362903
99
0.687463
0a38f96a395a7887fea46451cf005cb8e5ff8f70
583
py
Python
app/controllers/Unidade_medida_controller.py
amandapersampa/FastFrango
23a69d80576f6cef754e9d3acacf9908a4da30cd
[ "MIT" ]
null
null
null
app/controllers/Unidade_medida_controller.py
amandapersampa/FastFrango
23a69d80576f6cef754e9d3acacf9908a4da30cd
[ "MIT" ]
null
null
null
app/controllers/Unidade_medida_controller.py
amandapersampa/FastFrango
23a69d80576f6cef754e9d3acacf9908a4da30cd
[ "MIT" ]
null
null
null
from app import app from app.dao.Unidade_medida_dao import Unidade_medida_dao from app.service.Unidade_medida_service import Unidade_medida_service from flask import jsonify import json service = Unidade_medida_service() @app.route("/unidadeMedida") def salva_unidade_medida(): unidade = Unidade_medida_dao("M") return jsonify(service.salvar(unidade)) @app.route("/unidadeMedida/list") def findAll_unidade(): return jsonify(service.findAll()) @app.route("/unidadeMedida/<id>") def findById_unidade(id): service.findById(id) return 'ok'
25.347826
70
0.746141
6c312a3cecfbf5d985cf3096e2a306e4d2d3c059
1,253
py
Python
benchmarks/asv_bench/benchmarks/import.py
chineking/mars
660098c65bcb389c6bbebc26b2502a9b3af43cf9
[ "Apache-2.0" ]
null
null
null
benchmarks/asv_bench/benchmarks/import.py
chineking/mars
660098c65bcb389c6bbebc26b2502a9b3af43cf9
[ "Apache-2.0" ]
null
null
null
benchmarks/asv_bench/benchmarks/import.py
chineking/mars
660098c65bcb389c6bbebc26b2502a9b3af43cf9
[ "Apache-2.0" ]
null
null
null
# Copyright 1999-2022 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess import sys # make sure necessary pyc files generated import mars.dataframe as md import mars.tensor as mt del md, mt class ImportPackageSuite: """ Benchmark that times performance of chunk graph builder """ def time_import_mars(self): proc = subprocess.Popen([sys.executable, "-c", "import mars"]) proc.wait(120) def time_import_mars_tensor(self): proc = subprocess.Popen([sys.executable, "-c", "import mars.tensor"]) proc.wait(120) def time_import_mars_dataframe(self): proc = subprocess.Popen([sys.executable, "-c", "import mars.dataframe"]) proc.wait(120)
30.560976
80
0.71668
b47e0baed684bba42a5130c1ba862fdcde0b72db
545
py
Python
src/detect_related_url/css_selectors.py
myuunews/myuunews-bot
44b00fd24fa51ce7b5145947490851d86379a44d
[ "MIT" ]
6
2019-06-15T07:05:32.000Z
2019-09-29T08:08:09.000Z
src/detect_related_url/css_selectors.py
myuunews/myuunews-bot
44b00fd24fa51ce7b5145947490851d86379a44d
[ "MIT" ]
5
2019-06-30T19:09:39.000Z
2019-12-11T07:12:13.000Z
src/detect_related_url/css_selectors.py
myuunews/myuunews-bot
44b00fd24fa51ce7b5145947490851d86379a44d
[ "MIT" ]
3
2019-06-15T07:28:07.000Z
2019-09-09T16:24:22.000Z
# -*- coding: utf-8 -*- import re from typing import Dict, List, Optional class Selectors: def __init__(self, selectors: Dict[str, str], ignored_urls: List[str]): self._selectors = selectors self._ignored_urls = ignored_urls def get_selector(self, url: str) -> Optional[str]: for u in self._ignored_urls: if re.match(u, url): return None for reg, selector in self._selectors.items(): if re.match(reg, url): return selector return 'body'
27.25
75
0.59633
363c05d2a4fa3d1a752c4b6458f4ac8dfe7a6085
19,443
py
Python
SCons/Tool/ninja/__init__.py
bquistorff/scons
271b7dde7a937cf38d4cf8d25c0958a83e891b62
[ "MIT" ]
2
2021-11-08T02:51:47.000Z
2021-11-08T09:40:47.000Z
SCons/Tool/ninja/__init__.py
bquistorff/scons
271b7dde7a937cf38d4cf8d25c0958a83e891b62
[ "MIT" ]
null
null
null
SCons/Tool/ninja/__init__.py
bquistorff/scons
271b7dde7a937cf38d4cf8d25c0958a83e891b62
[ "MIT" ]
null
null
null
# MIT License # # Copyright 2020 MongoDB Inc. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # """Generate build.ninja files from SCons aliases.""" import importlib import os import subprocess import sys import SCons import SCons.Tool.ninja.Globals from SCons.Script import GetOption from .Globals import NINJA_RULES, NINJA_POOLS, NINJA_CUSTOM_HANDLERS from .Methods import register_custom_handler, register_custom_rule_mapping, register_custom_rule, register_custom_pool, \ set_build_node_callback, get_generic_shell_command, CheckNinjaCompdbExpand, get_command, \ gen_get_response_file_command from .Overrides import ninja_hack_linkcom, ninja_hack_arcom, NinjaNoResponseFiles, ninja_always_serial, AlwaysExecAction from .Utils import ninja_add_command_line_options, \ ninja_noop, ninja_print_conf_log, ninja_csig, ninja_contents, ninja_stat, ninja_whereis try: import ninja NINJA_BINARY = ninja.__file__ except ImportError: NINJA_BINARY = False else: from .NinjaState import NinjaState NINJA_STATE = None def ninja_builder(env, target, source): """Generate a build.ninja for source.""" if not isinstance(source, list): source = [source] if not isinstance(target, list): target = [target] # We have no COMSTR equivalent so print that we're generating # here. print("Generating:", str(target[0])) generated_build_ninja = target[0].get_abspath() NINJA_STATE.generate() if env["PLATFORM"] == "win32": # TODO: Is this necessary as you set env variable in the ninja build file per target? # this is not great, its doesn't consider specific # node environments, which means on linux the build could # behave differently, because on linux you can set the environment # per command in the ninja file. This is only needed if # running ninja directly from a command line that hasn't # had the environment setup (vcvarsall.bat) with open('run_ninja_env.bat', 'w') as f: for key in env['ENV']: f.write('set {}={}\n'.format(key, env['ENV'][key])) f.write('{} -f {} %*\n'.format(NINJA_STATE.ninja_bin_path, generated_build_ninja)) cmd = ['run_ninja_env.bat'] else: cmd = [NINJA_STATE.ninja_bin_path, '-f', generated_build_ninja] if not env.get("NINJA_DISABLE_AUTO_RUN"): print("Executing:", str(' '.join(cmd))) # execute the ninja build at the end of SCons, trying to # reproduce the output like a ninja build would def execute_ninja(): proc = subprocess.Popen(cmd, stderr=sys.stderr, stdout=subprocess.PIPE, universal_newlines=True, env=os.environ if env["PLATFORM"] == "win32" else env['ENV'] ) for stdout_line in iter(proc.stdout.readline, ""): yield stdout_line proc.stdout.close() return_code = proc.wait() if return_code: raise subprocess.CalledProcessError(return_code, 'ninja') erase_previous = False for output in execute_ninja(): output = output.strip() if erase_previous: sys.stdout.write('\x1b[2K') # erase previous line sys.stdout.write("\r") else: sys.stdout.write(os.linesep) sys.stdout.write(output) sys.stdout.flush() # this will only erase ninjas [#/#] lines # leaving warnings and other output, seems a bit # prone to failure with such a simple check erase_previous = output.startswith('[') def exists(env): """Enable if called.""" if 'ninja' not in GetOption('experimental'): return False # This variable disables the tool when storing the SCons command in the # generated ninja file to ensure that the ninja tool is not loaded when # SCons should do actual work as a subprocess of a ninja build. The ninja # tool is very invasive into the internals of SCons and so should never be # enabled when SCons needs to build a target. if env.get("__NINJA_NO", "0") == "1": return False # pypi ninja module detection done at top of file during import ninja. if NINJA_BINARY: return NINJA_BINARY else: raise SCons.Warnings.SConsWarning("Failed to import ninja, attempt normal SCons build.") def ninja_emitter(target, source, env): """ fix up the source/targets """ ninja_file = env.File(env.subst("$NINJA_FILE_NAME")) ninja_file.attributes.ninja_file = True # Someone called env.Ninja('my_targetname.ninja') if not target and len(source) == 1: target = source # Default target name is $NINJA_PREFIX.$NINJA.SUFFIX if not target: target = [ninja_file, ] # No source should have been passed. Drop it. if source: source = [] return target, source def generate(env): """Generate the NINJA builders.""" global NINJA_STATE if 'ninja' not in GetOption('experimental'): return if not SCons.Tool.ninja.Globals.ninja_builder_initialized: SCons.Tool.ninja.Globals.ninja_builder_initialized = True ninja_add_command_line_options() if not NINJA_BINARY: raise SCons.Warnings.SConsWarning("Failed to import ninja, attempt normal SCons build.") env["NINJA_DISABLE_AUTO_RUN"] = env.get("NINJA_DISABLE_AUTO_RUN", GetOption('disable_execute_ninja')) env["NINJA_FILE_NAME"] = env.get("NINJA_FILE_NAME", "build.ninja") # Add the Ninja builder. always_exec_ninja_action = AlwaysExecAction(ninja_builder, {}) ninja_builder_obj = SCons.Builder.Builder(action=always_exec_ninja_action, emitter=ninja_emitter) env.Append(BUILDERS={"Ninja": ninja_builder_obj}) env["NINJA_ALIAS_NAME"] = env.get("NINJA_ALIAS_NAME", "generate-ninja") env['NINJA_DIR'] = env.get("NINJA_DIR", env.Dir(".ninja").path) # here we allow multiple environments to construct rules and builds # into the same ninja file if NINJA_STATE is None: ninja_file = env.Ninja() env.AlwaysBuild(ninja_file) env.Alias("$NINJA_ALIAS_NAME", ninja_file) else: if str(NINJA_STATE.ninja_file) != env["NINJA_FILE_NAME"]: SCons.Warnings.SConsWarning("Generating multiple ninja files not supported, set ninja file name before tool initialization.") ninja_file = [NINJA_STATE.ninja_file] def ninja_generate_deps(env): """Return a list of SConscripts TODO: Should we also include files loaded from site_scons/*** or even all loaded modules? https://stackoverflow.com/questions/4858100/how-to-list-imported-modules TODO: Do we want this to be Nodes? """ return sorted([str(s) for s in SCons.Node.SConscriptNodes]) env['_NINJA_REGENERATE_DEPS_FUNC'] = ninja_generate_deps env['NINJA_REGENERATE_DEPS'] = env.get('NINJA_REGENERATE_DEPS', '${_NINJA_REGENERATE_DEPS_FUNC(__env__)}') # This adds the required flags such that the generated compile # commands will create depfiles as appropriate in the Ninja file. if env["PLATFORM"] == "win32": env.Append(CCFLAGS=["/showIncludes"]) else: env.Append(CCFLAGS=["-MMD", "-MF", "${TARGET}.d"]) env.AddMethod(CheckNinjaCompdbExpand, "CheckNinjaCompdbExpand") # Provide a way for custom rule authors to easily access command # generation. env.AddMethod(get_generic_shell_command, "NinjaGetGenericShellCommand") env.AddMethod(get_command, "NinjaGetCommand") env.AddMethod(gen_get_response_file_command, "NinjaGenResponseFileProvider") env.AddMethod(set_build_node_callback, "NinjaSetBuildNodeCallback") # Provides a way for users to handle custom FunctionActions they # want to translate to Ninja. env[NINJA_CUSTOM_HANDLERS] = {} env.AddMethod(register_custom_handler, "NinjaRegisterFunctionHandler") # Provides a mechanism for inject custom Ninja rules which can # then be mapped using NinjaRuleMapping. env[NINJA_RULES] = {} env.AddMethod(register_custom_rule, "NinjaRule") # Provides a mechanism for inject custom Ninja pools which can # be used by providing the NINJA_POOL="name" as an # OverrideEnvironment variable in a builder call. env[NINJA_POOLS] = {} env.AddMethod(register_custom_pool, "NinjaPool") # Add the ability to register custom NinjaRuleMappings for Command # builders. We don't store this dictionary in the env to prevent # accidental deletion of the CC/XXCOM mappings. You can still # overwrite them if you really want to but you have to explicit # about it this way. The reason is that if they were accidentally # deleted you would get a very subtly incorrect Ninja file and # might not catch it. env.AddMethod(register_custom_rule_mapping, "NinjaRuleMapping") # on windows we need to change the link action ninja_hack_linkcom(env) # Normally in SCons actions for the Program and *Library builders # will return "${*COM}" as their pre-subst'd command line. However # if a user in a SConscript overwrites those values via key access # like env["LINKCOM"] = "$( $ICERUN $)" + env["LINKCOM"] then # those actions no longer return the "bracketted" string and # instead return something that looks more expanded. So to # continue working even if a user has done this we map both the # "bracketted" and semi-expanded versions. def robust_rule_mapping(var, rule, tool): provider = gen_get_response_file_command(env, rule, tool) env.NinjaRuleMapping("${" + var + "}", provider) env.NinjaRuleMapping(env.get(var, None), provider) robust_rule_mapping("CCCOM", "CC", "$CC") robust_rule_mapping("SHCCCOM", "CC", "$CC") robust_rule_mapping("CXXCOM", "CXX", "$CXX") robust_rule_mapping("SHCXXCOM", "CXX", "$CXX") robust_rule_mapping("LINKCOM", "LINK", "$LINK") robust_rule_mapping("SHLINKCOM", "LINK", "$SHLINK") robust_rule_mapping("ARCOM", "AR", "$AR") # Make SCons node walk faster by preventing unnecessary work env.Decider("timestamp-match") # Used to determine if a build generates a source file. Ninja # requires that all generated sources are added as order_only # dependencies to any builds that *might* use them. # TODO: switch to using SCons to help determine this (Github Issue #3624) env["NINJA_GENERATED_SOURCE_SUFFIXES"] = [".h", ".hpp"] # Force ARCOM so use 's' flag on ar instead of separately running ranlib ninja_hack_arcom(env) if GetOption('disable_ninja'): return env SCons.Warnings.SConsWarning("Initializing ninja tool... this feature is experimental. SCons internals and all environments will be affected.") # This is the point of no return, anything after this comment # makes changes to SCons that are irreversible and incompatible # with a normal SCons build. We return early if __NINJA_NO=1 has # been given on the command line (i.e. by us in the generated # ninja file) here to prevent these modifications from happening # when we want SCons to do work. Everything before this was # necessary to setup the builder and other functions so that the # tool can be unconditionally used in the users's SCons files. if not exists(env): return # Set a known variable that other tools can query so they can # behave correctly during ninja generation. env["GENERATING_NINJA"] = True # These methods are no-op'd because they do not work during ninja # generation, expected to do no work, or simply fail. All of which # are slow in SCons. So we overwrite them with no logic. SCons.Node.FS.File.make_ready = ninja_noop SCons.Node.FS.File.prepare = ninja_noop SCons.Node.FS.File.push_to_cache = ninja_noop SCons.Executor.Executor.prepare = ninja_noop SCons.Taskmaster.Task.prepare = ninja_noop SCons.Node.FS.File.built = ninja_noop SCons.Node.Node.visited = ninja_noop # We make lstat a no-op because it is only used for SONAME # symlinks which we're not producing. SCons.Node.FS.LocalFS.lstat = ninja_noop # This is a slow method that isn't memoized. We make it a noop # since during our generation we will never use the results of # this or change the results. SCons.Node.FS.is_up_to_date = ninja_noop # We overwrite stat and WhereIs with eternally memoized # implementations. See the docstring of ninja_stat and # ninja_whereis for detailed explanations. SCons.Node.FS.LocalFS.stat = ninja_stat SCons.Util.WhereIs = ninja_whereis # Monkey patch get_csig and get_contents for some classes. It # slows down the build significantly and we don't need contents or # content signatures calculated when generating a ninja file since # we're not doing any SCons caching or building. SCons.Executor.Executor.get_contents = ninja_contents( SCons.Executor.Executor.get_contents ) SCons.Node.Alias.Alias.get_contents = ninja_contents( SCons.Node.Alias.Alias.get_contents ) SCons.Node.FS.File.get_contents = ninja_contents(SCons.Node.FS.File.get_contents) SCons.Node.FS.File.get_csig = ninja_csig(SCons.Node.FS.File.get_csig) SCons.Node.FS.Dir.get_csig = ninja_csig(SCons.Node.FS.Dir.get_csig) SCons.Node.Alias.Alias.get_csig = ninja_csig(SCons.Node.Alias.Alias.get_csig) # Ignore CHANGED_SOURCES and CHANGED_TARGETS. We don't want those # to have effect in a generation pass because the generator # shouldn't generate differently depending on the current local # state. Without this, when generating on Windows, if you already # had a foo.obj, you would omit foo.cpp from the response file. Do the same for UNCHANGED. SCons.Executor.Executor._get_changed_sources = SCons.Executor.Executor._get_sources SCons.Executor.Executor._get_changed_targets = SCons.Executor.Executor._get_targets SCons.Executor.Executor._get_unchanged_sources = SCons.Executor.Executor._get_sources SCons.Executor.Executor._get_unchanged_targets = SCons.Executor.Executor._get_targets # Replace false action messages with nothing. env["PRINT_CMD_LINE_FUNC"] = ninja_print_conf_log # This reduces unnecessary subst_list calls to add the compiler to # the implicit dependencies of targets. Since we encode full paths # in our generated commands we do not need these slow subst calls # as executing the command will fail if the file is not found # where we expect it. env["IMPLICIT_COMMAND_DEPENDENCIES"] = False # This makes SCons more aggressively cache MD5 signatures in the # SConsign file. # TODO: WPD shouldn't this be set to 0? env.SetOption("max_drift", 1) # The Serial job class is SIGNIFICANTLY (almost twice as) faster # than the Parallel job class for generating Ninja files. So we # monkey the Jobs constructor to only use the Serial Job class. SCons.Job.Jobs.__init__ = ninja_always_serial ninja_syntax = importlib.import_module(".ninja_syntax", package='ninja') if NINJA_STATE is None: NINJA_STATE = NinjaState(env, ninja_file[0], ninja_syntax.Writer) # TODO: this is hacking into scons, preferable if there were a less intrusive way # We will subvert the normal builder execute to make sure all the ninja file is dependent # on all targets generated from any builders SCons_Builder_BuilderBase__execute = SCons.Builder.BuilderBase._execute def NinjaBuilderExecute(self, env, target, source, overwarn={}, executor_kw={}): # this ensures all environments in which a builder executes from will # not create list actions for linking on windows ninja_hack_linkcom(env) targets = SCons_Builder_BuilderBase__execute(self, env, target, source, overwarn=overwarn, executor_kw=executor_kw) if not SCons.Util.is_List(target): target = [target] for target in targets: if target.check_attributes('ninja_file') is None and not target.is_conftest(): env.Depends(ninja_file, targets) return targets SCons.Builder.BuilderBase._execute = NinjaBuilderExecute # Here we monkey patch the Task.execute method to not do a bunch of # unnecessary work. If a build is a regular builder (i.e not a conftest and # not our own Ninja builder) then we add it to the NINJA_STATE. Otherwise we # build it like normal. This skips all of the caching work that this method # would normally do since we aren't pulling any of these targets from the # cache. # # In the future we may be able to use this to actually cache the build.ninja # file once we have the upstream support for referencing SConscripts as File # nodes. def ninja_execute(self): target = self.targets[0] if target.get_env().get('NINJA_SKIP'): return if target.check_attributes('ninja_file') is None: NINJA_STATE.add_build(target) else: target.build() SCons.Taskmaster.Task.execute = ninja_execute # Make needs_execute always return true instead of determining out of # date-ness. SCons.Script.Main.BuildTask.needs_execute = lambda x: True # We will eventually need to overwrite TempFileMunge to make it # handle persistent tempfiles or get an upstreamed change to add # some configurability to it's behavior in regards to tempfiles. # # Set all three environment variables that Python's # tempfile.mkstemp looks at as it behaves differently on different # platforms and versions of Python. # build_dir = env.subst("$NINJA_DIR") # if build_dir == "": # build_dir = "." # os.environ["TMPDIR"] = env.Dir("{}/.response_files".format(build_dir)).get_abspath() # os.environ["TEMP"] = os.environ["TMPDIR"] # os.environ["TMP"] = os.environ["TMPDIR"] # if not os.path.isdir(os.environ["TMPDIR"]): # env.Execute(SCons.Defaults.Mkdir(os.environ["TMPDIR"])) env['TEMPFILEDIR'] = "$NINJA_DIR/.response_files" env["TEMPFILE"] = NinjaNoResponseFiles
43.015487
146
0.698915
b77f20e34fdc1d2904d297bb66a0886626e3e694
6,957
py
Python
tests/test_context.py
escamez/slackviews
0d5ea936c546a071eb6167cf9a8a8cf2fdaf922b
[ "MIT" ]
2
2021-08-20T14:51:03.000Z
2021-08-23T17:57:35.000Z
tests/test_context.py
escamez/slackviews
0d5ea936c546a071eb6167cf9a8a8cf2fdaf922b
[ "MIT" ]
2
2020-09-23T18:40:35.000Z
2021-12-14T09:46:31.000Z
tests/test_context.py
escamez/slackviews
0d5ea936c546a071eb6167cf9a8a8cf2fdaf922b
[ "MIT" ]
null
null
null
""" Class with nosetests for Context AbstractBlock in slack_view library """ from nose.tools import raises from slackviews.view import Context, Image, MarkDown __author__ = 'Agustin Escamez' __email__ = 'aech22@gmail.com' class TestContext: def setup(self): self.expected_block_id = 'any block id' self.expected_image_alt_text = 'any alt text' self.expected_image_url = 'any url' self.expected_image_serialized = Image.Builder().alt_text(self.expected_image_alt_text) \ .image_url(self.expected_image_url).build().serialize() self.context_instance_required = Context.Builder().element().Image().alt_text(self.expected_image_alt_text) \ .image_url(self.expected_image_url).up().build() self.context_instance_all = Context.Builder().block_id_(self.expected_block_id).element() \ .Image().alt_text(self.expected_image_alt_text).image_url(self.expected_image_url).up().build() self.expected_serialized_dict = {'type': 'context', 'block_id': self.expected_block_id, 'elements': [{'type': 'image', 'alt_text': self.expected_image_alt_text, 'image_url': self.expected_image_url}]} self.expected_serialized_json = f'{{"type": "context", "block_id": "{self.expected_block_id}", ' \ f'"elements": [{{"type": "image", ' \ f'"alt_text": "{self.expected_image_alt_text}", ' \ f'"image_url": "{self.expected_image_url}"}}]}}' def teardown(self): Context.__all_slots__ = None def test_should_context_builder_provide_a_valid_instance_with_required_values(self): # GIVEN expected_slots = ['_elements'] expected_all_slots = ['_block_id'] expected_all_slots.extend(expected_slots) # WHEN instance = self.context_instance_required # THEN assert isinstance(instance, Context) assert hasattr(instance, '__all_slots__') assert hasattr(instance, '__slots__') for att in expected_slots: assert att in getattr(instance, '__slots__') for att in expected_all_slots: assert att in getattr(instance, '__all_slots__') assert isinstance(getattr(instance, '_elements'), list) assert not hasattr(instance, '_block_id') _image = getattr(instance, '_elements')[0] assert isinstance(_image, Image) assert getattr(_image, '_alt_text') == self.expected_image_alt_text assert getattr(_image, '_image_url') == self.expected_image_url assert _image.serialize() == self.expected_image_serialized def test_should_context_builder_provide_a_valid_instance_with_all_values(self): # GIVEN instance = self.context_instance_all # THEN assert isinstance(getattr(instance, '_elements'), list) _image = getattr(instance, '_elements')[0] assert isinstance(_image, Image) assert getattr(_image, '_alt_text') == self.expected_image_alt_text assert getattr(_image, '_image_url') == self.expected_image_url assert _image.serialize() == self.expected_image_serialized assert getattr(instance, '_block_id') == self.expected_block_id @raises(AttributeError) def test_should_context_serialize_raise_assertionerror_if_missing_required_fields(self): # WHEN Context.Builder().block_id_('any').build().serialize() def test_should_context_builder_provide_correct_element_type(self): # GIVEN isinstance_with_image = Context.Builder().element().Image().alt_text('any').image_url('any').up().build() isinstance_with_text = Context.Builder().element().Text().text('any').up().build() # THEN assert isinstance(getattr(isinstance_with_image, '_elements'), list) assert isinstance(getattr(isinstance_with_image, '_elements')[0], Image) assert isinstance(getattr(isinstance_with_text, '_elements'), list) assert isinstance(getattr(isinstance_with_text, '_elements')[0], MarkDown) @raises(AssertionError) def test_should_context_builder_raise_assertionerror_if_elements_is_not_a_list(self): # GIVEN _context = Context.Builder().build() setattr(_context, '_elements', object()) # WHEN _context.serialize() @raises(AssertionError) def test_should_context_builder_raise_assertionerror_if_element_is_not_an_allowed_element(self): # GIVEN _context = Context.Builder().build() setattr(_context, '_elements', [object()]) # WHEN _context.serialize() @raises(AssertionError) def test_should_context_serialize_raise_assertionerror_if_more_than_6_elements_are_provided(self): # GIVEN _context = Context.Builder().build() setattr(_context, '_elements', [object() for i in range(6)]) # WHEN _context.serialize() @raises(AttributeError) def test_should_actions_element_raise_attributeerror_if_trying_to_add_another_element_when_max_is_reached(self): # GIVEN _builder = Context.Builder() for i in range(5): _builder.element().Image().image_url(f'url_{i}').alt_text(f'alt_text_{i}') # WHEN _builder.element().Image().image_url('url_6').alt_text('alt_text_6') def test_should_context_serialize_provide_correct_dict_and_json_data(self): # GIVEN instance = self.context_instance_all # WHEN serialized_dict = instance.serialize() serialized_json = instance.serialize(as_json=True) # THEN assert serialized_dict == self.expected_serialized_dict assert serialized_json == self.expected_serialized_json def test_should_context_deserialize_provide_correct_instances_from_dict_and_json(self): # GIVEN serialized_dict = self.expected_serialized_dict serialized_json = self.expected_serialized_json # WHEN instance_from_dict = Context.deserialize(serialized_dict) instance_from_json = Context.deserialize(serialized_json, from_json=True) # THEN assert isinstance(instance_from_dict, Context) assert isinstance(instance_from_json, Context) for instance in (instance_from_dict, instance_from_json): assert isinstance(getattr(instance, '_elements'), list) _image = getattr(instance, '_elements')[0] assert isinstance(_image, Image) assert getattr(_image, '_alt_text') == self.expected_image_alt_text assert getattr(_image, '_image_url') == self.expected_image_url assert _image.serialize() == self.expected_image_serialized assert getattr(instance, '_block_id') == self.expected_block_id
39.305085
117
0.672416
755ea7c04d7ac5b29052ad7ae61e5f6f2cd3b5ae
382
py
Python
tests/core_tests/test_scheduler.py
GaloisInc/csaf
553013fe507f77169ca303366c48176d44396b6a
[ "BSD-3-Clause" ]
6
2021-08-17T23:31:13.000Z
2022-02-19T22:23:15.000Z
tests/core_tests/test_scheduler.py
GaloisInc/csaf
553013fe507f77169ca303366c48176d44396b6a
[ "BSD-3-Clause" ]
29
2021-08-24T17:32:39.000Z
2022-02-28T16:28:35.000Z
tests/core_tests/test_scheduler.py
GaloisInc/csaf
553013fe507f77169ca303366c48176d44396b6a
[ "BSD-3-Clause" ]
3
2021-09-15T14:20:30.000Z
2021-12-06T22:03:26.000Z
from csaf.core.scheduler import Scheduler from csaf_f16.components import F16PlantComponent, F16GcasComponent def test_scheduler(): a = F16PlantComponent() b = F16GcasComponent() a.check() b.check() s = Scheduler({"a": a, "b": b}, ["a", "b"]) assert len(s.get_schedule_tspan([1.0-1/30.0, 1.0])) == 1 assert len(s.get_schedule_tspan([0.0, 1e-08])) == 2
29.384615
67
0.651832
6f88456ee1031860d893bbf1dfcf4ff1dc450c63
6,728
py
Python
gennghttpxfun.py
codebytere/nghttp2
fa7a916ef3b6e518d7a65e6256a9ebab1bab83ce
[ "MIT" ]
null
null
null
gennghttpxfun.py
codebytere/nghttp2
fa7a916ef3b6e518d7a65e6256a9ebab1bab83ce
[ "MIT" ]
null
null
null
gennghttpxfun.py
codebytere/nghttp2
fa7a916ef3b6e518d7a65e6256a9ebab1bab83ce
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from gentokenlookup import gentokenlookup OPTIONS = [ "private-key-file", "private-key-passwd-file", "certificate-file", "dh-param-file", "subcert", "backend", "frontend", "workers", "http2-max-concurrent-streams", "log-level", "daemon", "http2-proxy", "http2-bridge", "client-proxy", "add-x-forwarded-for", "strip-incoming-x-forwarded-for", "no-via", "frontend-http2-read-timeout", "frontend-read-timeout", "frontend-write-timeout", "backend-read-timeout", "backend-write-timeout", "stream-read-timeout", "stream-write-timeout", "accesslog-file", "accesslog-syslog", "accesslog-format", "errorlog-file", "errorlog-syslog", "backend-keep-alive-timeout", "frontend-http2-window-bits", "backend-http2-window-bits", "frontend-http2-connection-window-bits", "backend-http2-connection-window-bits", "frontend-no-tls", "backend-no-tls", "backend-tls-sni-field", "pid-file", "user", "syslog-facility", "backlog", "ciphers", "client", "insecure", "cacert", "backend-ipv4", "backend-ipv6", "backend-http-proxy-uri", "read-rate", "read-burst", "write-rate", "write-burst", "worker-read-rate", "worker-read-burst", "worker-write-rate", "worker-write-burst", "npn-list", "tls-proto-list", "verify-client", "verify-client-cacert", "client-private-key-file", "client-cert-file", "frontend-http2-dump-request-header", "frontend-http2-dump-response-header", "http2-no-cookie-crumbling", "frontend-frame-debug", "padding", "altsvc", "add-request-header", "add-response-header", "worker-frontend-connections", "no-location-rewrite", "no-host-rewrite", "backend-http1-connections-per-host", "backend-http1-connections-per-frontend", "listener-disable-timeout", "tls-ticket-key-file", "rlimit-nofile", "backend-request-buffer", "backend-response-buffer", "no-server-push", "backend-http2-connections-per-worker", "fetch-ocsp-response-file", "ocsp-update-interval", "no-ocsp", "include", "tls-ticket-key-cipher", "host-rewrite", "tls-session-cache-memcached", "tls-session-cache-memcached-tls", "tls-ticket-key-memcached", "tls-ticket-key-memcached-interval", "tls-ticket-key-memcached-max-retry", "tls-ticket-key-memcached-max-fail", "mruby-file", "accept-proxy-protocol", "conf", "fastopen", "tls-dyn-rec-warmup-threshold", "tls-dyn-rec-idle-timeout", "add-forwarded", "strip-incoming-forwarded", "forwarded-by", "forwarded-for", "response-header-field-buffer", "max-response-header-fields", "request-header-field-buffer", "max-request-header-fields", "header-field-buffer", "max-header-fields", "no-http2-cipher-block-list", "no-http2-cipher-black-list", "backend-http1-tls", "tls-session-cache-memcached-cert-file", "tls-session-cache-memcached-private-key-file", "tls-session-cache-memcached-address-family", "tls-ticket-key-memcached-tls", "tls-ticket-key-memcached-cert-file", "tls-ticket-key-memcached-private-key-file", "tls-ticket-key-memcached-address-family", "backend-address-family", "frontend-http2-max-concurrent-streams", "backend-http2-max-concurrent-streams", "backend-connections-per-frontend", "backend-tls", "backend-connections-per-host", "error-page", "no-kqueue", "frontend-http2-settings-timeout", "backend-http2-settings-timeout", "api-max-request-body", "backend-max-backoff", "server-name", "no-server-rewrite", "frontend-http2-optimize-write-buffer-size", "frontend-http2-optimize-window-size", "frontend-http2-window-size", "frontend-http2-connection-window-size", "backend-http2-window-size", "backend-http2-connection-window-size", "frontend-http2-encoder-dynamic-table-size", "frontend-http2-decoder-dynamic-table-size", "backend-http2-encoder-dynamic-table-size", "backend-http2-decoder-dynamic-table-size", "ecdh-curves", "tls-sct-dir", "backend-connect-timeout", "dns-cache-timeout", "dns-lookup-timeout", "dns-max-try", "frontend-keep-alive-timeout", "psk-secrets", "client-psk-secrets", "client-no-http2-cipher-block-list", "client-no-http2-cipher-black-list", "client-ciphers", "accesslog-write-early", "tls-min-proto-version", "tls-max-proto-version", "redirect-https-port", "frontend-max-requests", "single-thread", "single-process", "no-add-x-forwarded-proto", "no-strip-incoming-x-forwarded-proto", "ocsp-startup", "no-verify-ocsp", "verify-client-tolerate-expired", "ignore-per-pattern-mruby-error", "tls-no-postpone-early-data", "tls-max-early-data", "tls13-ciphers", "tls13-client-ciphers", "no-strip-incoming-early-data", "quic-bpf-program-file", "no-quic-bpf", "http2-altsvc", "frontend-http3-read-timeout", "frontend-quic-idle-timeout", "frontend-quic-debug-log", "frontend-http3-window-size", "frontend-http3-connection-window-size", "frontend-http3-max-window-size", "frontend-http3-max-connection-window-size", "frontend-http3-max-concurrent-streams", "frontend-quic-early-data", "frontend-quic-qlog-dir", "frontend-quic-require-token", "frontend-quic-congestion-controller", "frontend-quic-server-id", "frontend-quic-secret-file", "rlimit-memlock", "max-worker-processes", "worker-process-grace-shutdown-period", "frontend-quic-initial-rtt", ] LOGVARS = [ "remote_addr", "time_local", "time_iso8601", "request", "status", "body_bytes_sent", "remote_port", "server_port", "request_time", "pid", "alpn", "ssl_cipher", "ssl_protocol", "ssl_session_id", "ssl_session_reused", "tls_cipher", "tls_protocol", "tls_session_id", "tls_session_reused", "tls_sni", "tls_client_fingerprint_sha256", "tls_client_fingerprint_sha1", "tls_client_subject_name", "tls_client_issuer_name", "tls_client_serial", "backend_host", "backend_port", "method", "path", "path_without_query", "protocol_version", ] if __name__ == '__main__': gentokenlookup(OPTIONS, 'SHRPX_OPTID_', value_type='char', comp_fun='util::strieq_l') gentokenlookup(LOGVARS, 'LogFragmentType::', value_type='char', comp_fun='util::strieq_l', return_type='LogFragmentType', fail_value='LogFragmentType::NONE')
28.033333
161
0.646849
602460c6d694b93979d2cb88251f2d49bdb84f5c
2,623
py
Python
tests/test_core.py
TieWei/molecule
67372aa5db84b1a14f6d75bb60b05aa54244f57f
[ "MIT" ]
1
2016-05-18T19:05:25.000Z
2016-05-18T19:05:25.000Z
tests/test_core.py
TieWei/molecule
67372aa5db84b1a14f6d75bb60b05aa54244f57f
[ "MIT" ]
null
null
null
tests/test_core.py
TieWei/molecule
67372aa5db84b1a14f6d75bb60b05aa54244f57f
[ "MIT" ]
null
null
null
# Copyright (c) 2015 Cisco Systems # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import testtools from molecule.core import Molecule class TestCore(testtools.TestCase): def setUp(self): super(TestCore, self).setUp() self._molecule = Molecule(None) def test_parse_provisioning_output_failure_00(self): failed_output = """ PLAY RECAP ******************************************************************** vagrant-01-ubuntu : ok=36 changed=29 unreachable=0 failed=0 """ res, changed_tasks = self._molecule._parse_provisioning_output(failed_output) self.assertFalse(res) def test_parse_provisioning_output_failure_01(self): failed_output = """ PLAY RECAP ******************************************************************** NI: cisco.common | Non idempotent task for testing common-01-rhel-7 : ok=18 changed=14 unreachable=0 failed=0 """ res, changed_tasks = self._molecule._parse_provisioning_output(failed_output) self.assertFalse(res) self.assertEqual(1, len(changed_tasks)) def test_parse_provisioning_output_success_00(self): success_output = """ PLAY RECAP ******************************************************************** vagrant-01-ubuntu : ok=36 changed=0 unreachable=0 failed=0 """ res, changed_tasks = self._molecule._parse_provisioning_output(success_output) self.assertTrue(res) self.assertEqual([], changed_tasks)
41.634921
87
0.645444
c179562d3b2e090ed6e9336c785a3de62d24ea7b
11,581
py
Python
tests/unit/test_solvers/test_processed_symbolic_variable.py
NunoEdgarGFlowHub/PyBaMM
4e4e1ab8c488b0c0a6efdb9934c5ac59e947a190
[ "BSD-3-Clause" ]
1
2021-03-06T15:10:34.000Z
2021-03-06T15:10:34.000Z
tests/unit/test_solvers/test_processed_symbolic_variable.py
NunoEdgarGFlowHub/PyBaMM
4e4e1ab8c488b0c0a6efdb9934c5ac59e947a190
[ "BSD-3-Clause" ]
null
null
null
tests/unit/test_solvers/test_processed_symbolic_variable.py
NunoEdgarGFlowHub/PyBaMM
4e4e1ab8c488b0c0a6efdb9934c5ac59e947a190
[ "BSD-3-Clause" ]
null
null
null
# # Tests for the Processed Variable class # import pybamm import casadi import numpy as np import unittest import tests class TestProcessedSymbolicVariable(unittest.TestCase): def test_processed_variable_0D(self): # without inputs y = pybamm.StateVector(slice(0, 1)) var = 2 * y var.mesh = None t_sol = np.linspace(0, 1) y_sol = np.array([np.linspace(0, 5)]) solution = pybamm.Solution(t_sol, y_sol) processed_var = pybamm.ProcessedSymbolicVariable(var, solution) np.testing.assert_array_equal(processed_var.value(), 2 * y_sol) # No sensitivity as variable is not symbolic with self.assertRaisesRegex(ValueError, "Variable is not symbolic"): processed_var.sensitivity() def test_processed_variable_0D_with_inputs(self): # with symbolic inputs y = pybamm.StateVector(slice(0, 1)) p = pybamm.InputParameter("p") q = pybamm.InputParameter("q") var = p * y + q var.mesh = None t_sol = np.linspace(0, 1) y_sol = np.array([np.linspace(0, 5)]) solution = pybamm.Solution(t_sol, y_sol) solution.inputs = {"p": casadi.MX.sym("p"), "q": casadi.MX.sym("q")} processed_var = pybamm.ProcessedSymbolicVariable(var, solution) np.testing.assert_array_equal( processed_var.value({"p": 3, "q": 4}).full(), 3 * y_sol + 4 ) np.testing.assert_array_equal( processed_var.sensitivity({"p": 3, "q": 4}).full(), np.c_[y_sol.T, np.ones_like(y_sol).T], ) # via value_and_sensitivity val, sens = processed_var.value_and_sensitivity({"p": 3, "q": 4}) np.testing.assert_array_equal(val.full(), 3 * y_sol + 4) np.testing.assert_array_equal( sens.full(), np.c_[y_sol.T, np.ones_like(y_sol).T] ) # Test bad inputs with self.assertRaisesRegex(TypeError, "inputs should be 'dict'"): processed_var.value(1) with self.assertRaisesRegex(KeyError, "Inconsistent input keys"): processed_var.value({"not p": 3}) def test_processed_variable_0D_some_inputs(self): # with some symbolic inputs and some non-symbolic inputs y = pybamm.StateVector(slice(0, 1)) p = pybamm.InputParameter("p") q = pybamm.InputParameter("q") var = p * y - q var.mesh = None t_sol = np.linspace(0, 1) y_sol = np.array([np.linspace(0, 5)]) solution = pybamm.Solution(t_sol, y_sol) solution.inputs = {"p": casadi.MX.sym("p"), "q": 2} processed_var = pybamm.ProcessedSymbolicVariable(var, solution) np.testing.assert_array_equal( processed_var.value({"p": 3}).full(), 3 * y_sol - 2 ) np.testing.assert_array_equal( processed_var.sensitivity({"p": 3}).full(), y_sol.T ) def test_processed_variable_1D(self): var = pybamm.Variable("var", domain=["negative electrode", "separator"]) x = pybamm.SpatialVariable("x", domain=["negative electrode", "separator"]) eqn = var + x # On nodes disc = tests.get_discretisation_for_testing() disc.set_variable_slices([var]) x_sol = disc.process_symbol(x).entries[:, 0] eqn_sol = disc.process_symbol(eqn) # With scalar t_sol t_sol = [0] y_sol = np.ones_like(x_sol)[:, np.newaxis] * 5 sol = pybamm.Solution(t_sol, y_sol) processed_eqn = pybamm.ProcessedSymbolicVariable(eqn_sol, sol) np.testing.assert_array_equal( processed_eqn.value(), y_sol + x_sol[:, np.newaxis] ) # With vector t_sol t_sol = np.linspace(0, 1) y_sol = np.ones_like(x_sol)[:, np.newaxis] * np.linspace(0, 5) sol = pybamm.Solution(t_sol, y_sol) processed_eqn = pybamm.ProcessedSymbolicVariable(eqn_sol, sol) np.testing.assert_array_equal( processed_eqn.value(), (y_sol + x_sol[:, np.newaxis]).T.reshape(-1, 1) ) def test_processed_variable_1D_with_scalar_inputs(self): var = pybamm.Variable("var", domain=["negative electrode", "separator"]) x = pybamm.SpatialVariable("x", domain=["negative electrode", "separator"]) p = pybamm.InputParameter("p") q = pybamm.InputParameter("q") eqn = var * p + 2 * q # On nodes disc = tests.get_discretisation_for_testing() disc.set_variable_slices([var]) x_sol = disc.process_symbol(x).entries[:, 0] eqn_sol = disc.process_symbol(eqn) # Scalar t t_sol = [0] y_sol = np.ones_like(x_sol)[:, np.newaxis] * 5 sol = pybamm.Solution(t_sol, y_sol) sol.inputs = {"p": casadi.MX.sym("p"), "q": casadi.MX.sym("q")} processed_eqn = pybamm.ProcessedSymbolicVariable(eqn_sol, sol) # Test values np.testing.assert_array_equal( processed_eqn.value({"p": 27, "q": -42}), 27 * y_sol - 84, ) # Test sensitivities np.testing.assert_array_equal( processed_eqn.sensitivity({"p": 27, "q": -84}), np.c_[y_sol, 2 * np.ones_like(y_sol)], ) ################################################################################ # Vector t t_sol = np.linspace(0, 1) y_sol = np.ones_like(x_sol)[:, np.newaxis] * np.linspace(0, 5) sol = pybamm.Solution(t_sol, y_sol) sol.inputs = {"p": casadi.MX.sym("p"), "q": casadi.MX.sym("q")} processed_eqn = pybamm.ProcessedSymbolicVariable(eqn_sol, sol) # Test values np.testing.assert_array_equal( processed_eqn.value({"p": 27, "q": -42}), (27 * y_sol - 84).T.reshape(-1, 1), ) # Test sensitivities np.testing.assert_array_equal( processed_eqn.sensitivity({"p": 27, "q": -42}), np.c_[y_sol.T.flatten(), 2 * np.ones_like(y_sol.T.flatten())], ) def test_processed_variable_1D_with_vector_inputs(self): var = pybamm.Variable("var", domain=["negative electrode", "separator"]) x = pybamm.SpatialVariable("x", domain=["negative electrode", "separator"]) p = pybamm.InputParameter("p", domain=["negative electrode", "separator"]) p.set_expected_size(65) q = pybamm.InputParameter("q") eqn = (var * p) ** 2 + 2 * q # On nodes disc = tests.get_discretisation_for_testing() disc.set_variable_slices([var]) x_sol = disc.process_symbol(x).entries[:, 0] n = x_sol.size eqn_sol = disc.process_symbol(eqn) # Scalar t t_sol = [0] y_sol = np.ones_like(x_sol)[:, np.newaxis] * 5 sol = pybamm.Solution(t_sol, y_sol) sol.inputs = {"p": casadi.MX.sym("p", n), "q": casadi.MX.sym("q")} processed_eqn = pybamm.ProcessedSymbolicVariable(eqn_sol, sol) # Test values - constant p np.testing.assert_array_equal( processed_eqn.value({"p": 27 * np.ones(n), "q": -42}), (27 * y_sol) ** 2 - 84, ) # Test values - varying p p = np.linspace(0, 1, n) np.testing.assert_array_equal( processed_eqn.value({"p": p, "q": 3}), (p[:, np.newaxis] * y_sol) ** 2 + 6, ) # Test sensitivities - constant p np.testing.assert_array_equal( processed_eqn.sensitivity({"p": 2 * np.ones(n), "q": -84}), np.c_[100 * np.eye(y_sol.size), 2 * np.ones(n)], ) # Test sensitivities - varying p # d/dy((py)**2) = (2*p*y) * y np.testing.assert_array_equal( processed_eqn.sensitivity({"p": p, "q": -84}), np.c_[ np.diag((2 * p[:, np.newaxis] * y_sol ** 2).flatten()), 2 * np.ones(n) ], ) # Bad shape with self.assertRaisesRegex( ValueError, "Wrong shape for input 'p': expected 65, actual 5" ): processed_eqn.value({"p": casadi.MX.sym("p", 5), "q": 1}) def test_1D_different_domains(self): # Negative electrode domain var = pybamm.Variable("var", domain=["negative electrode"]) x = pybamm.SpatialVariable("x", domain=["negative electrode"]) disc = tests.get_discretisation_for_testing() disc.set_variable_slices([var]) x_sol = disc.process_symbol(x).entries[:, 0] var_sol = disc.process_symbol(var) t_sol = [0] y_sol = np.ones_like(x_sol)[:, np.newaxis] * 5 sol = pybamm.Solution(t_sol, y_sol) pybamm.ProcessedSymbolicVariable(var_sol, sol) # Particle domain var = pybamm.Variable("var", domain=["negative particle"]) r = pybamm.SpatialVariable("r", domain=["negative particle"]) disc = tests.get_discretisation_for_testing() disc.set_variable_slices([var]) r_sol = disc.process_symbol(r).entries[:, 0] var_sol = disc.process_symbol(var) t_sol = [0] y_sol = np.ones_like(r_sol)[:, np.newaxis] * 5 sol = pybamm.Solution(t_sol, y_sol) pybamm.ProcessedSymbolicVariable(var_sol, sol) # Current collector domain var = pybamm.Variable("var", domain=["current collector"]) z = pybamm.SpatialVariable("z", domain=["current collector"]) disc = tests.get_1p1d_discretisation_for_testing() disc.set_variable_slices([var]) z_sol = disc.process_symbol(z).entries[:, 0] var_sol = disc.process_symbol(var) t_sol = [0] y_sol = np.ones_like(z_sol)[:, np.newaxis] * 5 sol = pybamm.Solution(t_sol, y_sol) pybamm.ProcessedSymbolicVariable(var_sol, sol) # Other domain var = pybamm.Variable("var", domain=["line"]) x = pybamm.SpatialVariable("x", domain=["line"]) geometry = pybamm.Geometry( {"line": {x: {"min": pybamm.Scalar(0), "max": pybamm.Scalar(1)}}} ) submesh_types = {"line": pybamm.MeshGenerator(pybamm.Uniform1DSubMesh)} var_pts = {x: 10} mesh = pybamm.Mesh(geometry, submesh_types, var_pts) disc = pybamm.Discretisation(mesh, {"line": pybamm.FiniteVolume()}) disc.set_variable_slices([var]) x_sol = disc.process_symbol(x).entries[:, 0] var_sol = disc.process_symbol(var) t_sol = [0] y_sol = np.ones_like(x_sol)[:, np.newaxis] * 5 sol = pybamm.Solution(t_sol, y_sol) pybamm.ProcessedSymbolicVariable(var_sol, sol) # 2D fails var = pybamm.Variable( "var", domain=["negative particle"], auxiliary_domains={"secondary": "negative electrode"}, ) r = pybamm.SpatialVariable( "r", domain=["negative particle"], auxiliary_domains={"secondary": "negative electrode"}, ) disc = tests.get_p2d_discretisation_for_testing() disc.set_variable_slices([var]) r_sol = disc.process_symbol(r).entries[:, 0] var_sol = disc.process_symbol(var) t_sol = [0] y_sol = np.ones_like(r_sol)[:, np.newaxis] * 5 sol = pybamm.Solution(t_sol, y_sol) with self.assertRaisesRegex(NotImplementedError, "Shape not recognized"): pybamm.ProcessedSymbolicVariable(var_sol, sol) if __name__ == "__main__": print("Add -v for more debug output") import sys if "-v" in sys.argv: debug = True pybamm.settings.debug_mode = True unittest.main()
37
88
0.585269
c5f4e03338e4640524b6b8f26e26647c280f6315
561,555
py
Python
tests/examples/minlplib/portfol_robust100_09.py
ouyang-w-19/decogo
52546480e49776251d4d27856e18a46f40c824a1
[ "MIT" ]
2
2021-07-03T13:19:10.000Z
2022-02-06T10:48:13.000Z
tests/examples/minlplib/portfol_robust100_09.py
ouyang-w-19/decogo
52546480e49776251d4d27856e18a46f40c824a1
[ "MIT" ]
1
2021-07-04T14:52:14.000Z
2021-07-15T10:17:11.000Z
tests/examples/minlplib/portfol_robust100_09.py
ouyang-w-19/decogo
52546480e49776251d4d27856e18a46f40c824a1
[ "MIT" ]
null
null
null
# MINLP written by GAMS Convert at 04/21/18 13:53:49 # # Equation counts # Total E G L N X C B # 307 203 0 104 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 404 303 101 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 20908 20707 201 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.x2 = Var(within=Reals,bounds=(None,None),initialize=0) m.x3 = Var(within=Reals,bounds=(None,None),initialize=0) m.x4 = Var(within=Reals,bounds=(None,None),initialize=0) m.x5 = Var(within=Reals,bounds=(None,None),initialize=0) m.x6 = Var(within=Reals,bounds=(None,None),initialize=0) m.x7 = Var(within=Reals,bounds=(None,None),initialize=0) m.x8 = Var(within=Reals,bounds=(None,None),initialize=0) m.x9 = Var(within=Reals,bounds=(None,None),initialize=0) m.x10 = Var(within=Reals,bounds=(None,None),initialize=0) m.x11 = Var(within=Reals,bounds=(None,None),initialize=0) m.x12 = Var(within=Reals,bounds=(None,None),initialize=0) m.x13 = Var(within=Reals,bounds=(None,None),initialize=0) m.x14 = Var(within=Reals,bounds=(None,None),initialize=0) m.x15 = Var(within=Reals,bounds=(None,None),initialize=0) m.x16 = Var(within=Reals,bounds=(None,None),initialize=0) m.x17 = Var(within=Reals,bounds=(None,None),initialize=0) m.x18 = Var(within=Reals,bounds=(None,None),initialize=0) m.x19 = Var(within=Reals,bounds=(None,None),initialize=0) m.x20 = Var(within=Reals,bounds=(None,None),initialize=0) m.x21 = Var(within=Reals,bounds=(None,None),initialize=0) m.x22 = Var(within=Reals,bounds=(None,None),initialize=0) m.x23 = Var(within=Reals,bounds=(None,None),initialize=0) m.x24 = Var(within=Reals,bounds=(None,None),initialize=0) m.x25 = Var(within=Reals,bounds=(None,None),initialize=0) m.x26 = Var(within=Reals,bounds=(None,None),initialize=0) m.x27 = Var(within=Reals,bounds=(None,None),initialize=0) m.x28 = Var(within=Reals,bounds=(None,None),initialize=0) m.x29 = Var(within=Reals,bounds=(None,None),initialize=0) m.x30 = Var(within=Reals,bounds=(None,None),initialize=0) m.x31 = Var(within=Reals,bounds=(None,None),initialize=0) m.x32 = Var(within=Reals,bounds=(None,None),initialize=0) m.x33 = Var(within=Reals,bounds=(None,None),initialize=0) m.x34 = Var(within=Reals,bounds=(None,None),initialize=0) m.x35 = Var(within=Reals,bounds=(None,None),initialize=0) m.x36 = Var(within=Reals,bounds=(None,None),initialize=0) m.x37 = Var(within=Reals,bounds=(None,None),initialize=0) m.x38 = Var(within=Reals,bounds=(None,None),initialize=0) m.x39 = Var(within=Reals,bounds=(None,None),initialize=0) m.x40 = Var(within=Reals,bounds=(None,None),initialize=0) m.x41 = Var(within=Reals,bounds=(None,None),initialize=0) m.x42 = Var(within=Reals,bounds=(None,None),initialize=0) m.x43 = Var(within=Reals,bounds=(None,None),initialize=0) m.x44 = Var(within=Reals,bounds=(None,None),initialize=0) m.x45 = Var(within=Reals,bounds=(None,None),initialize=0) m.x46 = Var(within=Reals,bounds=(None,None),initialize=0) m.x47 = Var(within=Reals,bounds=(None,None),initialize=0) m.x48 = Var(within=Reals,bounds=(None,None),initialize=0) m.x49 = Var(within=Reals,bounds=(None,None),initialize=0) m.x50 = Var(within=Reals,bounds=(None,None),initialize=0) m.x51 = Var(within=Reals,bounds=(None,None),initialize=0) m.x52 = Var(within=Reals,bounds=(None,None),initialize=0) m.x53 = Var(within=Reals,bounds=(None,None),initialize=0) m.x54 = Var(within=Reals,bounds=(None,None),initialize=0) m.x55 = Var(within=Reals,bounds=(None,None),initialize=0) m.x56 = Var(within=Reals,bounds=(None,None),initialize=0) m.x57 = Var(within=Reals,bounds=(None,None),initialize=0) m.x58 = Var(within=Reals,bounds=(None,None),initialize=0) m.x59 = Var(within=Reals,bounds=(None,None),initialize=0) m.x60 = Var(within=Reals,bounds=(None,None),initialize=0) m.x61 = Var(within=Reals,bounds=(None,None),initialize=0) m.x62 = Var(within=Reals,bounds=(None,None),initialize=0) m.x63 = Var(within=Reals,bounds=(None,None),initialize=0) m.x64 = Var(within=Reals,bounds=(None,None),initialize=0) m.x65 = Var(within=Reals,bounds=(None,None),initialize=0) m.x66 = Var(within=Reals,bounds=(None,None),initialize=0) m.x67 = Var(within=Reals,bounds=(None,None),initialize=0) m.x68 = Var(within=Reals,bounds=(None,None),initialize=0) m.x69 = Var(within=Reals,bounds=(None,None),initialize=0) m.x70 = Var(within=Reals,bounds=(None,None),initialize=0) m.x71 = Var(within=Reals,bounds=(None,None),initialize=0) m.x72 = Var(within=Reals,bounds=(None,None),initialize=0) m.x73 = Var(within=Reals,bounds=(None,None),initialize=0) m.x74 = Var(within=Reals,bounds=(None,None),initialize=0) m.x75 = Var(within=Reals,bounds=(None,None),initialize=0) m.x76 = Var(within=Reals,bounds=(None,None),initialize=0) m.x77 = Var(within=Reals,bounds=(None,None),initialize=0) m.x78 = Var(within=Reals,bounds=(None,None),initialize=0) m.x79 = Var(within=Reals,bounds=(None,None),initialize=0) m.x80 = Var(within=Reals,bounds=(None,None),initialize=0) m.x81 = Var(within=Reals,bounds=(None,None),initialize=0) m.x82 = Var(within=Reals,bounds=(None,None),initialize=0) m.x83 = Var(within=Reals,bounds=(None,None),initialize=0) m.x84 = Var(within=Reals,bounds=(None,None),initialize=0) m.x85 = Var(within=Reals,bounds=(None,None),initialize=0) m.x86 = Var(within=Reals,bounds=(None,None),initialize=0) m.x87 = Var(within=Reals,bounds=(None,None),initialize=0) m.x88 = Var(within=Reals,bounds=(None,None),initialize=0) m.x89 = Var(within=Reals,bounds=(None,None),initialize=0) m.x90 = Var(within=Reals,bounds=(None,None),initialize=0) m.x91 = Var(within=Reals,bounds=(None,None),initialize=0) m.x92 = Var(within=Reals,bounds=(None,None),initialize=0) m.x93 = Var(within=Reals,bounds=(None,None),initialize=0) m.x94 = Var(within=Reals,bounds=(None,None),initialize=0) m.x95 = Var(within=Reals,bounds=(None,None),initialize=0) m.x96 = Var(within=Reals,bounds=(None,None),initialize=0) m.x97 = Var(within=Reals,bounds=(None,None),initialize=0) m.x98 = Var(within=Reals,bounds=(None,None),initialize=0) m.x99 = Var(within=Reals,bounds=(None,None),initialize=0) m.x100 = Var(within=Reals,bounds=(None,None),initialize=0) m.x101 = Var(within=Reals,bounds=(None,None),initialize=0) m.x102 = Var(within=Reals,bounds=(None,None),initialize=0) m.x103 = Var(within=Reals,bounds=(None,None),initialize=0) m.x104 = Var(within=Reals,bounds=(None,None),initialize=0) m.x105 = Var(within=Reals,bounds=(None,None),initialize=0) m.x106 = Var(within=Reals,bounds=(None,None),initialize=0) m.x107 = Var(within=Reals,bounds=(None,None),initialize=0) m.x108 = Var(within=Reals,bounds=(None,None),initialize=0) m.x109 = Var(within=Reals,bounds=(None,None),initialize=0) m.x110 = Var(within=Reals,bounds=(None,None),initialize=0) m.x111 = Var(within=Reals,bounds=(None,None),initialize=0) m.x112 = Var(within=Reals,bounds=(None,None),initialize=0) m.x113 = Var(within=Reals,bounds=(None,None),initialize=0) m.x114 = Var(within=Reals,bounds=(None,None),initialize=0) m.x115 = Var(within=Reals,bounds=(None,None),initialize=0) m.x116 = Var(within=Reals,bounds=(None,None),initialize=0) m.x117 = Var(within=Reals,bounds=(None,None),initialize=0) m.x118 = Var(within=Reals,bounds=(None,None),initialize=0) m.x119 = Var(within=Reals,bounds=(None,None),initialize=0) m.x120 = Var(within=Reals,bounds=(None,None),initialize=0) m.x121 = Var(within=Reals,bounds=(None,None),initialize=0) m.x122 = Var(within=Reals,bounds=(None,None),initialize=0) m.x123 = Var(within=Reals,bounds=(None,None),initialize=0) m.x124 = Var(within=Reals,bounds=(None,None),initialize=0) m.x125 = Var(within=Reals,bounds=(None,None),initialize=0) m.x126 = Var(within=Reals,bounds=(None,None),initialize=0) m.x127 = Var(within=Reals,bounds=(None,None),initialize=0) m.x128 = Var(within=Reals,bounds=(None,None),initialize=0) m.x129 = Var(within=Reals,bounds=(None,None),initialize=0) m.x130 = Var(within=Reals,bounds=(None,None),initialize=0) m.x131 = Var(within=Reals,bounds=(None,None),initialize=0) m.x132 = Var(within=Reals,bounds=(None,None),initialize=0) m.x133 = Var(within=Reals,bounds=(None,None),initialize=0) m.x134 = Var(within=Reals,bounds=(None,None),initialize=0) m.x135 = Var(within=Reals,bounds=(None,None),initialize=0) m.x136 = Var(within=Reals,bounds=(None,None),initialize=0) m.x137 = Var(within=Reals,bounds=(None,None),initialize=0) m.x138 = Var(within=Reals,bounds=(None,None),initialize=0) m.x139 = Var(within=Reals,bounds=(None,None),initialize=0) m.x140 = Var(within=Reals,bounds=(None,None),initialize=0) m.x141 = Var(within=Reals,bounds=(None,None),initialize=0) m.x142 = Var(within=Reals,bounds=(None,None),initialize=0) m.x143 = Var(within=Reals,bounds=(None,None),initialize=0) m.x144 = Var(within=Reals,bounds=(None,None),initialize=0) m.x145 = Var(within=Reals,bounds=(None,None),initialize=0) m.x146 = Var(within=Reals,bounds=(None,None),initialize=0) m.x147 = Var(within=Reals,bounds=(None,None),initialize=0) m.x148 = Var(within=Reals,bounds=(None,None),initialize=0) m.x149 = Var(within=Reals,bounds=(None,None),initialize=0) m.x150 = Var(within=Reals,bounds=(None,None),initialize=0) m.x151 = Var(within=Reals,bounds=(None,None),initialize=0) m.x152 = Var(within=Reals,bounds=(None,None),initialize=0) m.x153 = Var(within=Reals,bounds=(None,None),initialize=0) m.x154 = Var(within=Reals,bounds=(None,None),initialize=0) m.x155 = Var(within=Reals,bounds=(None,None),initialize=0) m.x156 = Var(within=Reals,bounds=(None,None),initialize=0) m.x157 = Var(within=Reals,bounds=(None,None),initialize=0) m.x158 = Var(within=Reals,bounds=(None,None),initialize=0) m.x159 = Var(within=Reals,bounds=(None,None),initialize=0) m.x160 = Var(within=Reals,bounds=(None,None),initialize=0) m.x161 = Var(within=Reals,bounds=(None,None),initialize=0) m.x162 = Var(within=Reals,bounds=(None,None),initialize=0) m.x163 = Var(within=Reals,bounds=(None,None),initialize=0) m.x164 = Var(within=Reals,bounds=(None,None),initialize=0) m.x165 = Var(within=Reals,bounds=(None,None),initialize=0) m.x166 = Var(within=Reals,bounds=(None,None),initialize=0) m.x167 = Var(within=Reals,bounds=(None,None),initialize=0) m.x168 = Var(within=Reals,bounds=(None,None),initialize=0) m.x169 = Var(within=Reals,bounds=(None,None),initialize=0) m.x170 = Var(within=Reals,bounds=(None,None),initialize=0) m.x171 = Var(within=Reals,bounds=(None,None),initialize=0) m.x172 = Var(within=Reals,bounds=(None,None),initialize=0) m.x173 = Var(within=Reals,bounds=(None,None),initialize=0) m.x174 = Var(within=Reals,bounds=(None,None),initialize=0) m.x175 = Var(within=Reals,bounds=(None,None),initialize=0) m.x176 = Var(within=Reals,bounds=(None,None),initialize=0) m.x177 = Var(within=Reals,bounds=(None,None),initialize=0) m.x178 = Var(within=Reals,bounds=(None,None),initialize=0) m.x179 = Var(within=Reals,bounds=(None,None),initialize=0) m.x180 = Var(within=Reals,bounds=(None,None),initialize=0) m.x181 = Var(within=Reals,bounds=(None,None),initialize=0) m.x182 = Var(within=Reals,bounds=(None,None),initialize=0) m.x183 = Var(within=Reals,bounds=(None,None),initialize=0) m.x184 = Var(within=Reals,bounds=(None,None),initialize=0) m.x185 = Var(within=Reals,bounds=(None,None),initialize=0) m.x186 = Var(within=Reals,bounds=(None,None),initialize=0) m.x187 = Var(within=Reals,bounds=(None,None),initialize=0) m.x188 = Var(within=Reals,bounds=(None,None),initialize=0) m.x189 = Var(within=Reals,bounds=(None,None),initialize=0) m.x190 = Var(within=Reals,bounds=(None,None),initialize=0) m.x191 = Var(within=Reals,bounds=(None,None),initialize=0) m.x192 = Var(within=Reals,bounds=(None,None),initialize=0) m.x193 = Var(within=Reals,bounds=(None,None),initialize=0) m.x194 = Var(within=Reals,bounds=(None,None),initialize=0) m.x195 = Var(within=Reals,bounds=(None,None),initialize=0) m.x196 = Var(within=Reals,bounds=(None,None),initialize=0) m.x197 = Var(within=Reals,bounds=(None,None),initialize=0) m.x198 = Var(within=Reals,bounds=(None,None),initialize=0) m.x199 = Var(within=Reals,bounds=(None,None),initialize=0) m.x200 = Var(within=Reals,bounds=(None,None),initialize=0) m.x201 = Var(within=Reals,bounds=(None,None),initialize=0) m.x202 = Var(within=Reals,bounds=(0,None),initialize=0) m.x203 = Var(within=Reals,bounds=(0,1),initialize=0) m.x204 = Var(within=Reals,bounds=(0,1),initialize=0) m.x205 = Var(within=Reals,bounds=(0,1),initialize=0) m.x206 = Var(within=Reals,bounds=(0,1),initialize=0) m.x207 = Var(within=Reals,bounds=(0,1),initialize=0) m.x208 = Var(within=Reals,bounds=(0,1),initialize=0) m.x209 = Var(within=Reals,bounds=(0,1),initialize=0) m.x210 = Var(within=Reals,bounds=(0,1),initialize=0) m.x211 = Var(within=Reals,bounds=(0,1),initialize=0) m.x212 = Var(within=Reals,bounds=(0,1),initialize=0) m.x213 = Var(within=Reals,bounds=(0,1),initialize=0) m.x214 = Var(within=Reals,bounds=(0,1),initialize=0) m.x215 = Var(within=Reals,bounds=(0,1),initialize=0) m.x216 = Var(within=Reals,bounds=(0,1),initialize=0) m.x217 = Var(within=Reals,bounds=(0,1),initialize=0) m.x218 = Var(within=Reals,bounds=(0,1),initialize=0) m.x219 = Var(within=Reals,bounds=(0,1),initialize=0) m.x220 = Var(within=Reals,bounds=(0,1),initialize=0) m.x221 = Var(within=Reals,bounds=(0,1),initialize=0) m.x222 = Var(within=Reals,bounds=(0,1),initialize=0) m.x223 = Var(within=Reals,bounds=(0,1),initialize=0) m.x224 = Var(within=Reals,bounds=(0,1),initialize=0) m.x225 = Var(within=Reals,bounds=(0,1),initialize=0) m.x226 = Var(within=Reals,bounds=(0,1),initialize=0) m.x227 = Var(within=Reals,bounds=(0,1),initialize=0) m.x228 = Var(within=Reals,bounds=(0,1),initialize=0) m.x229 = Var(within=Reals,bounds=(0,1),initialize=0) m.x230 = Var(within=Reals,bounds=(0,1),initialize=0) m.x231 = Var(within=Reals,bounds=(0,1),initialize=0) m.x232 = Var(within=Reals,bounds=(0,1),initialize=0) m.x233 = Var(within=Reals,bounds=(0,1),initialize=0) m.x234 = Var(within=Reals,bounds=(0,1),initialize=0) m.x235 = Var(within=Reals,bounds=(0,1),initialize=0) m.x236 = Var(within=Reals,bounds=(0,1),initialize=0) m.x237 = Var(within=Reals,bounds=(0,1),initialize=0) m.x238 = Var(within=Reals,bounds=(0,1),initialize=0) m.x239 = Var(within=Reals,bounds=(0,1),initialize=0) m.x240 = Var(within=Reals,bounds=(0,1),initialize=0) m.x241 = Var(within=Reals,bounds=(0,1),initialize=0) m.x242 = Var(within=Reals,bounds=(0,1),initialize=0) m.x243 = Var(within=Reals,bounds=(0,1),initialize=0) m.x244 = Var(within=Reals,bounds=(0,1),initialize=0) m.x245 = Var(within=Reals,bounds=(0,1),initialize=0) m.x246 = Var(within=Reals,bounds=(0,1),initialize=0) m.x247 = Var(within=Reals,bounds=(0,1),initialize=0) m.x248 = Var(within=Reals,bounds=(0,1),initialize=0) m.x249 = Var(within=Reals,bounds=(0,1),initialize=0) m.x250 = Var(within=Reals,bounds=(0,1),initialize=0) m.x251 = Var(within=Reals,bounds=(0,1),initialize=0) m.x252 = Var(within=Reals,bounds=(0,1),initialize=0) m.x253 = Var(within=Reals,bounds=(0,1),initialize=0) m.x254 = Var(within=Reals,bounds=(0,1),initialize=0) m.x255 = Var(within=Reals,bounds=(0,1),initialize=0) m.x256 = Var(within=Reals,bounds=(0,1),initialize=0) m.x257 = Var(within=Reals,bounds=(0,1),initialize=0) m.x258 = Var(within=Reals,bounds=(0,1),initialize=0) m.x259 = Var(within=Reals,bounds=(0,1),initialize=0) m.x260 = Var(within=Reals,bounds=(0,1),initialize=0) m.x261 = Var(within=Reals,bounds=(0,1),initialize=0) m.x262 = Var(within=Reals,bounds=(0,1),initialize=0) m.x263 = Var(within=Reals,bounds=(0,1),initialize=0) m.x264 = Var(within=Reals,bounds=(0,1),initialize=0) m.x265 = Var(within=Reals,bounds=(0,1),initialize=0) m.x266 = Var(within=Reals,bounds=(0,1),initialize=0) m.x267 = Var(within=Reals,bounds=(0,1),initialize=0) m.x268 = Var(within=Reals,bounds=(0,1),initialize=0) m.x269 = Var(within=Reals,bounds=(0,1),initialize=0) m.x270 = Var(within=Reals,bounds=(0,1),initialize=0) m.x271 = Var(within=Reals,bounds=(0,1),initialize=0) m.x272 = Var(within=Reals,bounds=(0,1),initialize=0) m.x273 = Var(within=Reals,bounds=(0,1),initialize=0) m.x274 = Var(within=Reals,bounds=(0,1),initialize=0) m.x275 = Var(within=Reals,bounds=(0,1),initialize=0) m.x276 = Var(within=Reals,bounds=(0,1),initialize=0) m.x277 = Var(within=Reals,bounds=(0,1),initialize=0) m.x278 = Var(within=Reals,bounds=(0,1),initialize=0) m.x279 = Var(within=Reals,bounds=(0,1),initialize=0) m.x280 = Var(within=Reals,bounds=(0,1),initialize=0) m.x281 = Var(within=Reals,bounds=(0,1),initialize=0) m.x282 = Var(within=Reals,bounds=(0,1),initialize=0) m.x283 = Var(within=Reals,bounds=(0,1),initialize=0) m.x284 = Var(within=Reals,bounds=(0,1),initialize=0) m.x285 = Var(within=Reals,bounds=(0,1),initialize=0) m.x286 = Var(within=Reals,bounds=(0,1),initialize=0) m.x287 = Var(within=Reals,bounds=(0,1),initialize=0) m.x288 = Var(within=Reals,bounds=(0,1),initialize=0) m.x289 = Var(within=Reals,bounds=(0,1),initialize=0) m.x290 = Var(within=Reals,bounds=(0,1),initialize=0) m.x291 = Var(within=Reals,bounds=(0,1),initialize=0) m.x292 = Var(within=Reals,bounds=(0,1),initialize=0) m.x293 = Var(within=Reals,bounds=(0,1),initialize=0) m.x294 = Var(within=Reals,bounds=(0,1),initialize=0) m.x295 = Var(within=Reals,bounds=(0,1),initialize=0) m.x296 = Var(within=Reals,bounds=(0,1),initialize=0) m.x297 = Var(within=Reals,bounds=(0,1),initialize=0) m.x298 = Var(within=Reals,bounds=(0,1),initialize=0) m.x299 = Var(within=Reals,bounds=(0,1),initialize=0) m.x300 = Var(within=Reals,bounds=(0,1),initialize=0) m.x301 = Var(within=Reals,bounds=(0,1),initialize=0) m.x302 = Var(within=Reals,bounds=(0,1),initialize=0) m.x303 = Var(within=Reals,bounds=(0,1),initialize=0) m.b304 = Var(within=Binary,bounds=(0,1),initialize=0) m.b305 = Var(within=Binary,bounds=(0,1),initialize=0) m.b306 = Var(within=Binary,bounds=(0,1),initialize=0) m.b307 = Var(within=Binary,bounds=(0,1),initialize=0) m.b308 = Var(within=Binary,bounds=(0,1),initialize=0) m.b309 = Var(within=Binary,bounds=(0,1),initialize=0) m.b310 = Var(within=Binary,bounds=(0,1),initialize=0) m.b311 = Var(within=Binary,bounds=(0,1),initialize=0) m.b312 = Var(within=Binary,bounds=(0,1),initialize=0) m.b313 = Var(within=Binary,bounds=(0,1),initialize=0) m.b314 = Var(within=Binary,bounds=(0,1),initialize=0) m.b315 = Var(within=Binary,bounds=(0,1),initialize=0) m.b316 = Var(within=Binary,bounds=(0,1),initialize=0) m.b317 = Var(within=Binary,bounds=(0,1),initialize=0) m.b318 = Var(within=Binary,bounds=(0,1),initialize=0) m.b319 = Var(within=Binary,bounds=(0,1),initialize=0) m.b320 = Var(within=Binary,bounds=(0,1),initialize=0) m.b321 = Var(within=Binary,bounds=(0,1),initialize=0) m.b322 = Var(within=Binary,bounds=(0,1),initialize=0) m.b323 = Var(within=Binary,bounds=(0,1),initialize=0) m.b324 = Var(within=Binary,bounds=(0,1),initialize=0) m.b325 = Var(within=Binary,bounds=(0,1),initialize=0) m.b326 = Var(within=Binary,bounds=(0,1),initialize=0) m.b327 = Var(within=Binary,bounds=(0,1),initialize=0) m.b328 = Var(within=Binary,bounds=(0,1),initialize=0) m.b329 = Var(within=Binary,bounds=(0,1),initialize=0) m.b330 = Var(within=Binary,bounds=(0,1),initialize=0) m.b331 = Var(within=Binary,bounds=(0,1),initialize=0) m.b332 = Var(within=Binary,bounds=(0,1),initialize=0) m.b333 = Var(within=Binary,bounds=(0,1),initialize=0) m.b334 = Var(within=Binary,bounds=(0,1),initialize=0) m.b335 = Var(within=Binary,bounds=(0,1),initialize=0) m.b336 = Var(within=Binary,bounds=(0,1),initialize=0) m.b337 = Var(within=Binary,bounds=(0,1),initialize=0) m.b338 = Var(within=Binary,bounds=(0,1),initialize=0) m.b339 = Var(within=Binary,bounds=(0,1),initialize=0) m.b340 = Var(within=Binary,bounds=(0,1),initialize=0) m.b341 = Var(within=Binary,bounds=(0,1),initialize=0) m.b342 = Var(within=Binary,bounds=(0,1),initialize=0) m.b343 = Var(within=Binary,bounds=(0,1),initialize=0) m.b344 = Var(within=Binary,bounds=(0,1),initialize=0) m.b345 = Var(within=Binary,bounds=(0,1),initialize=0) m.b346 = Var(within=Binary,bounds=(0,1),initialize=0) m.b347 = Var(within=Binary,bounds=(0,1),initialize=0) m.b348 = Var(within=Binary,bounds=(0,1),initialize=0) m.b349 = Var(within=Binary,bounds=(0,1),initialize=0) m.b350 = Var(within=Binary,bounds=(0,1),initialize=0) m.b351 = Var(within=Binary,bounds=(0,1),initialize=0) m.b352 = Var(within=Binary,bounds=(0,1),initialize=0) m.b353 = Var(within=Binary,bounds=(0,1),initialize=0) m.b354 = Var(within=Binary,bounds=(0,1),initialize=0) m.b355 = Var(within=Binary,bounds=(0,1),initialize=0) m.b356 = Var(within=Binary,bounds=(0,1),initialize=0) m.b357 = Var(within=Binary,bounds=(0,1),initialize=0) m.b358 = Var(within=Binary,bounds=(0,1),initialize=0) m.b359 = Var(within=Binary,bounds=(0,1),initialize=0) m.b360 = Var(within=Binary,bounds=(0,1),initialize=0) m.b361 = Var(within=Binary,bounds=(0,1),initialize=0) m.b362 = Var(within=Binary,bounds=(0,1),initialize=0) m.b363 = Var(within=Binary,bounds=(0,1),initialize=0) m.b364 = Var(within=Binary,bounds=(0,1),initialize=0) m.b365 = Var(within=Binary,bounds=(0,1),initialize=0) m.b366 = Var(within=Binary,bounds=(0,1),initialize=0) m.b367 = Var(within=Binary,bounds=(0,1),initialize=0) m.b368 = Var(within=Binary,bounds=(0,1),initialize=0) m.b369 = Var(within=Binary,bounds=(0,1),initialize=0) m.b370 = Var(within=Binary,bounds=(0,1),initialize=0) m.b371 = Var(within=Binary,bounds=(0,1),initialize=0) m.b372 = Var(within=Binary,bounds=(0,1),initialize=0) m.b373 = Var(within=Binary,bounds=(0,1),initialize=0) m.b374 = Var(within=Binary,bounds=(0,1),initialize=0) m.b375 = Var(within=Binary,bounds=(0,1),initialize=0) m.b376 = Var(within=Binary,bounds=(0,1),initialize=0) m.b377 = Var(within=Binary,bounds=(0,1),initialize=0) m.b378 = Var(within=Binary,bounds=(0,1),initialize=0) m.b379 = Var(within=Binary,bounds=(0,1),initialize=0) m.b380 = Var(within=Binary,bounds=(0,1),initialize=0) m.b381 = Var(within=Binary,bounds=(0,1),initialize=0) m.b382 = Var(within=Binary,bounds=(0,1),initialize=0) m.b383 = Var(within=Binary,bounds=(0,1),initialize=0) m.b384 = Var(within=Binary,bounds=(0,1),initialize=0) m.b385 = Var(within=Binary,bounds=(0,1),initialize=0) m.b386 = Var(within=Binary,bounds=(0,1),initialize=0) m.b387 = Var(within=Binary,bounds=(0,1),initialize=0) m.b388 = Var(within=Binary,bounds=(0,1),initialize=0) m.b389 = Var(within=Binary,bounds=(0,1),initialize=0) m.b390 = Var(within=Binary,bounds=(0,1),initialize=0) m.b391 = Var(within=Binary,bounds=(0,1),initialize=0) m.b392 = Var(within=Binary,bounds=(0,1),initialize=0) m.b393 = Var(within=Binary,bounds=(0,1),initialize=0) m.b394 = Var(within=Binary,bounds=(0,1),initialize=0) m.b395 = Var(within=Binary,bounds=(0,1),initialize=0) m.b396 = Var(within=Binary,bounds=(0,1),initialize=0) m.b397 = Var(within=Binary,bounds=(0,1),initialize=0) m.b398 = Var(within=Binary,bounds=(0,1),initialize=0) m.b399 = Var(within=Binary,bounds=(0,1),initialize=0) m.b400 = Var(within=Binary,bounds=(0,1),initialize=0) m.b401 = Var(within=Binary,bounds=(0,1),initialize=0) m.b402 = Var(within=Binary,bounds=(0,1),initialize=0) m.b403 = Var(within=Binary,bounds=(0,1),initialize=0) m.b404 = Var(within=Binary,bounds=(0,1),initialize=0) m.obj = Objective(expr= - m.x203, sense=minimize) m.c2 = Constraint(expr=m.x2*m.x2 + m.x3*m.x3 + m.x4*m.x4 + m.x5*m.x5 + m.x6*m.x6 + m.x7*m.x7 + m.x8*m.x8 + m.x9*m.x9 + m.x10*m.x10 + m.x11*m.x11 + m.x12*m.x12 + m.x13*m.x13 + m.x14*m.x14 + m.x15*m.x15 + m.x16*m.x16 + m.x17*m.x17 + m.x18*m.x18 + m.x19*m.x19 + m.x20*m.x20 + m.x21*m.x21 + m.x22*m.x22 + m.x23* m.x23 + m.x24*m.x24 + m.x25*m.x25 + m.x26*m.x26 + m.x27*m.x27 + m.x28*m.x28 + m.x29*m.x29 + m.x30 *m.x30 + m.x31*m.x31 + m.x32*m.x32 + m.x33*m.x33 + m.x34*m.x34 + m.x35*m.x35 + m.x36*m.x36 + m.x37*m.x37 + m.x38*m.x38 + m.x39*m.x39 + m.x40*m.x40 + m.x41*m.x41 + m.x42*m.x42 + m.x43*m.x43 + m.x44*m.x44 + m.x45*m.x45 + m.x46*m.x46 + m.x47*m.x47 + m.x48*m.x48 + m.x49*m.x49 + m.x50* m.x50 + m.x51*m.x51 + m.x52*m.x52 + m.x53*m.x53 + m.x54*m.x54 + m.x55*m.x55 + m.x56*m.x56 + m.x57 *m.x57 + m.x58*m.x58 + m.x59*m.x59 + m.x60*m.x60 + m.x61*m.x61 + m.x62*m.x62 + m.x63*m.x63 + m.x64*m.x64 + m.x65*m.x65 + m.x66*m.x66 + m.x67*m.x67 + m.x68*m.x68 + m.x69*m.x69 + m.x70*m.x70 + m.x71*m.x71 + m.x72*m.x72 + m.x73*m.x73 + m.x74*m.x74 + m.x75*m.x75 + m.x76*m.x76 + m.x77* m.x77 + m.x78*m.x78 + m.x79*m.x79 + m.x80*m.x80 + m.x81*m.x81 + m.x82*m.x82 + m.x83*m.x83 + m.x84 *m.x84 + m.x85*m.x85 + m.x86*m.x86 + m.x87*m.x87 + m.x88*m.x88 + m.x89*m.x89 + m.x90*m.x90 + m.x91*m.x91 + m.x92*m.x92 + m.x93*m.x93 + m.x94*m.x94 + m.x95*m.x95 + m.x96*m.x96 + m.x97*m.x97 + m.x98*m.x98 + m.x99*m.x99 + m.x100*m.x100 + m.x101*m.x101 <= 0.04) m.c3 = Constraint(expr=m.x102*m.x102 + m.x103*m.x103 + m.x104*m.x104 + m.x105*m.x105 + m.x106*m.x106 + m.x107*m.x107 + m.x108*m.x108 + m.x109*m.x109 + m.x110*m.x110 + m.x111*m.x111 + m.x112*m.x112 + m.x113*m.x113 + m.x114*m.x114 + m.x115*m.x115 + m.x116*m.x116 + m.x117*m.x117 + m.x118*m.x118 + m.x119*m.x119 + m.x120*m.x120 + m.x121*m.x121 + m.x122*m.x122 + m.x123*m.x123 + m.x124*m.x124 + m.x125*m.x125 + m.x126*m.x126 + m.x127*m.x127 + m.x128*m.x128 + m.x129*m.x129 + m.x130*m.x130 + m.x131*m.x131 + m.x132*m.x132 + m.x133*m.x133 + m.x134*m.x134 + m.x135*m.x135 + m.x136*m.x136 + m.x137*m.x137 + m.x138*m.x138 + m.x139*m.x139 + m.x140*m.x140 + m.x141*m.x141 + m.x142*m.x142 + m.x143*m.x143 + m.x144*m.x144 + m.x145*m.x145 + m.x146*m.x146 + m.x147*m.x147 + m.x148*m.x148 + m.x149*m.x149 + m.x150*m.x150 + m.x151*m.x151 + m.x152*m.x152 + m.x153*m.x153 + m.x154*m.x154 + m.x155*m.x155 + m.x156*m.x156 + m.x157*m.x157 + m.x158*m.x158 + m.x159*m.x159 + m.x160*m.x160 + m.x161*m.x161 + m.x162*m.x162 + m.x163*m.x163 + m.x164*m.x164 + m.x165*m.x165 + m.x166*m.x166 + m.x167*m.x167 + m.x168*m.x168 + m.x169*m.x169 + m.x170*m.x170 + m.x171*m.x171 + m.x172*m.x172 + m.x173*m.x173 + m.x174*m.x174 + m.x175*m.x175 + m.x176*m.x176 + m.x177*m.x177 + m.x178*m.x178 + m.x179*m.x179 + m.x180*m.x180 + m.x181*m.x181 + m.x182*m.x182 + m.x183*m.x183 + m.x184*m.x184 + m.x185*m.x185 + m.x186*m.x186 + m.x187*m.x187 + m.x188*m.x188 + m.x189*m.x189 + m.x190*m.x190 + m.x191*m.x191 + m.x192*m.x192 + m.x193*m.x193 + m.x194*m.x194 + m.x195*m.x195 + m.x196*m.x196 + m.x197*m.x197 + m.x198*m.x198 + m.x199*m.x199 + m.x200*m.x200 + m.x201*m.x201 - m.x202*m.x202 <= 0) m.c4 = Constraint(expr= m.x204 - m.b304 <= 0) m.c5 = Constraint(expr= m.x205 - m.b305 <= 0) m.c6 = Constraint(expr= m.x206 - m.b306 <= 0) m.c7 = Constraint(expr= m.x207 - m.b307 <= 0) m.c8 = Constraint(expr= m.x208 - m.b308 <= 0) m.c9 = Constraint(expr= m.x209 - m.b309 <= 0) m.c10 = Constraint(expr= m.x210 - m.b310 <= 0) m.c11 = Constraint(expr= m.x211 - m.b311 <= 0) m.c12 = Constraint(expr= m.x212 - m.b312 <= 0) m.c13 = Constraint(expr= m.x213 - m.b313 <= 0) m.c14 = Constraint(expr= m.x214 - m.b314 <= 0) m.c15 = Constraint(expr= m.x215 - m.b315 <= 0) m.c16 = Constraint(expr= m.x216 - m.b316 <= 0) m.c17 = Constraint(expr= m.x217 - m.b317 <= 0) m.c18 = Constraint(expr= m.x218 - m.b318 <= 0) m.c19 = Constraint(expr= m.x219 - m.b319 <= 0) m.c20 = Constraint(expr= m.x220 - m.b320 <= 0) m.c21 = Constraint(expr= m.x221 - m.b321 <= 0) m.c22 = Constraint(expr= m.x222 - m.b322 <= 0) m.c23 = Constraint(expr= m.x223 - m.b323 <= 0) m.c24 = Constraint(expr= m.x224 - m.b324 <= 0) m.c25 = Constraint(expr= m.x225 - m.b325 <= 0) m.c26 = Constraint(expr= m.x226 - m.b326 <= 0) m.c27 = Constraint(expr= m.x227 - m.b327 <= 0) m.c28 = Constraint(expr= m.x228 - m.b328 <= 0) m.c29 = Constraint(expr= m.x229 - m.b329 <= 0) m.c30 = Constraint(expr= m.x230 - m.b330 <= 0) m.c31 = Constraint(expr= m.x231 - m.b331 <= 0) m.c32 = Constraint(expr= m.x232 - m.b332 <= 0) m.c33 = Constraint(expr= m.x233 - m.b333 <= 0) m.c34 = Constraint(expr= m.x234 - m.b334 <= 0) m.c35 = Constraint(expr= m.x235 - m.b335 <= 0) m.c36 = Constraint(expr= m.x236 - m.b336 <= 0) m.c37 = Constraint(expr= m.x237 - m.b337 <= 0) m.c38 = Constraint(expr= m.x238 - m.b338 <= 0) m.c39 = Constraint(expr= m.x239 - m.b339 <= 0) m.c40 = Constraint(expr= m.x240 - m.b340 <= 0) m.c41 = Constraint(expr= m.x241 - m.b341 <= 0) m.c42 = Constraint(expr= m.x242 - m.b342 <= 0) m.c43 = Constraint(expr= m.x243 - m.b343 <= 0) m.c44 = Constraint(expr= m.x244 - m.b344 <= 0) m.c45 = Constraint(expr= m.x245 - m.b345 <= 0) m.c46 = Constraint(expr= m.x246 - m.b346 <= 0) m.c47 = Constraint(expr= m.x247 - m.b347 <= 0) m.c48 = Constraint(expr= m.x248 - m.b348 <= 0) m.c49 = Constraint(expr= m.x249 - m.b349 <= 0) m.c50 = Constraint(expr= m.x250 - m.b350 <= 0) m.c51 = Constraint(expr= m.x251 - m.b351 <= 0) m.c52 = Constraint(expr= m.x252 - m.b352 <= 0) m.c53 = Constraint(expr= m.x253 - m.b353 <= 0) m.c54 = Constraint(expr= m.x254 - m.b354 <= 0) m.c55 = Constraint(expr= m.x255 - m.b355 <= 0) m.c56 = Constraint(expr= m.x256 - m.b356 <= 0) m.c57 = Constraint(expr= m.x257 - m.b357 <= 0) m.c58 = Constraint(expr= m.x258 - m.b358 <= 0) m.c59 = Constraint(expr= m.x259 - m.b359 <= 0) m.c60 = Constraint(expr= m.x260 - m.b360 <= 0) m.c61 = Constraint(expr= m.x261 - m.b361 <= 0) m.c62 = Constraint(expr= m.x262 - m.b362 <= 0) m.c63 = Constraint(expr= m.x263 - m.b363 <= 0) m.c64 = Constraint(expr= m.x264 - m.b364 <= 0) m.c65 = Constraint(expr= m.x265 - m.b365 <= 0) m.c66 = Constraint(expr= m.x266 - m.b366 <= 0) m.c67 = Constraint(expr= m.x267 - m.b367 <= 0) m.c68 = Constraint(expr= m.x268 - m.b368 <= 0) m.c69 = Constraint(expr= m.x269 - m.b369 <= 0) m.c70 = Constraint(expr= m.x270 - m.b370 <= 0) m.c71 = Constraint(expr= m.x271 - m.b371 <= 0) m.c72 = Constraint(expr= m.x272 - m.b372 <= 0) m.c73 = Constraint(expr= m.x273 - m.b373 <= 0) m.c74 = Constraint(expr= m.x274 - m.b374 <= 0) m.c75 = Constraint(expr= m.x275 - m.b375 <= 0) m.c76 = Constraint(expr= m.x276 - m.b376 <= 0) m.c77 = Constraint(expr= m.x277 - m.b377 <= 0) m.c78 = Constraint(expr= m.x278 - m.b378 <= 0) m.c79 = Constraint(expr= m.x279 - m.b379 <= 0) m.c80 = Constraint(expr= m.x280 - m.b380 <= 0) m.c81 = Constraint(expr= m.x281 - m.b381 <= 0) m.c82 = Constraint(expr= m.x282 - m.b382 <= 0) m.c83 = Constraint(expr= m.x283 - m.b383 <= 0) m.c84 = Constraint(expr= m.x284 - m.b384 <= 0) m.c85 = Constraint(expr= m.x285 - m.b385 <= 0) m.c86 = Constraint(expr= m.x286 - m.b386 <= 0) m.c87 = Constraint(expr= m.x287 - m.b387 <= 0) m.c88 = Constraint(expr= m.x288 - m.b388 <= 0) m.c89 = Constraint(expr= m.x289 - m.b389 <= 0) m.c90 = Constraint(expr= m.x290 - m.b390 <= 0) m.c91 = Constraint(expr= m.x291 - m.b391 <= 0) m.c92 = Constraint(expr= m.x292 - m.b392 <= 0) m.c93 = Constraint(expr= m.x293 - m.b393 <= 0) m.c94 = Constraint(expr= m.x294 - m.b394 <= 0) m.c95 = Constraint(expr= m.x295 - m.b395 <= 0) m.c96 = Constraint(expr= m.x296 - m.b396 <= 0) m.c97 = Constraint(expr= m.x297 - m.b397 <= 0) m.c98 = Constraint(expr= m.x298 - m.b398 <= 0) m.c99 = Constraint(expr= m.x299 - m.b399 <= 0) m.c100 = Constraint(expr= m.x300 - m.b400 <= 0) m.c101 = Constraint(expr= m.x301 - m.b401 <= 0) m.c102 = Constraint(expr= m.x302 - m.b402 <= 0) m.c103 = Constraint(expr= m.x303 - m.b403 <= 0) m.c104 = Constraint(expr= m.x203 - m.b404 <= 0) m.c105 = Constraint(expr= m.x204 + m.x205 + m.x206 + m.x207 + m.x208 + m.x209 + m.x210 + m.x211 + m.x212 + m.x213 + m.x214 + m.x215 + m.x216 + m.x217 + m.x218 + m.x219 + m.x220 + m.x221 + m.x222 + m.x223 + m.x224 + m.x225 + m.x226 + m.x227 + m.x228 + m.x229 + m.x230 + m.x231 + m.x232 + m.x233 + m.x234 + m.x235 + m.x236 + m.x237 + m.x238 + m.x239 + m.x240 + m.x241 + m.x242 + m.x243 + m.x244 + m.x245 + m.x246 + m.x247 + m.x248 + m.x249 + m.x250 + m.x251 + m.x252 + m.x253 + m.x254 + m.x255 + m.x256 + m.x257 + m.x258 + m.x259 + m.x260 + m.x261 + m.x262 + m.x263 + m.x264 + m.x265 + m.x266 + m.x267 + m.x268 + m.x269 + m.x270 + m.x271 + m.x272 + m.x273 + m.x274 + m.x275 + m.x276 + m.x277 + m.x278 + m.x279 + m.x280 + m.x281 + m.x282 + m.x283 + m.x284 + m.x285 + m.x286 + m.x287 + m.x288 + m.x289 + m.x290 + m.x291 + m.x292 + m.x293 + m.x294 + m.x295 + m.x296 + m.x297 + m.x298 + m.x299 + m.x300 + m.x301 + m.x302 + m.x303 == 1) m.c106 = Constraint(expr= m.b304 + m.b305 + m.b306 + m.b307 + m.b308 + m.b309 + m.b310 + m.b311 + m.b312 + m.b313 + m.b314 + m.b315 + m.b316 + m.b317 + m.b318 + m.b319 + m.b320 + m.b321 + m.b322 + m.b323 + m.b324 + m.b325 + m.b326 + m.b327 + m.b328 + m.b329 + m.b330 + m.b331 + m.b332 + m.b333 + m.b334 + m.b335 + m.b336 + m.b337 + m.b338 + m.b339 + m.b340 + m.b341 + m.b342 + m.b343 + m.b344 + m.b345 + m.b346 + m.b347 + m.b348 + m.b349 + m.b350 + m.b351 + m.b352 + m.b353 + m.b354 + m.b355 + m.b356 + m.b357 + m.b358 + m.b359 + m.b360 + m.b361 + m.b362 + m.b363 + m.b364 + m.b365 + m.b366 + m.b367 + m.b368 + m.b369 + m.b370 + m.b371 + m.b372 + m.b373 + m.b374 + m.b375 + m.b376 + m.b377 + m.b378 + m.b379 + m.b380 + m.b381 + m.b382 + m.b383 + m.b384 + m.b385 + m.b386 + m.b387 + m.b388 + m.b389 + m.b390 + m.b391 + m.b392 + m.b393 + m.b394 + m.b395 + m.b396 + m.b397 + m.b398 + m.b399 + m.b400 + m.b401 + m.b402 + m.b403 + m.b404 <= 11) m.c107 = Constraint(expr= - m.x2 + 0.390247*m.x204 + 0.0355075*m.x205 + 0.0103892*m.x206 + 0.00949873*m.x207 + 0.00890974*m.x208 - 0.0048198*m.x209 - 0.0151061*m.x210 - 0.0180772*m.x211 - 0.0547008*m.x212 - 0.00579598*m.x213 - 0.0181858*m.x214 - 0.00449728*m.x215 - 0.00308424*m.x216 + 0.0187901*m.x217 - 0.0184553*m.x218 + 0.0279672*m.x219 + 0.0347489*m.x220 + 0.0439735*m.x221 - 0.0186044*m.x222 + 0.000382935*m.x223 + 0.01102*m.x224 - 0.000128201*m.x225 + 0.0136055*m.x226 - 0.00847303*m.x227 + 0.00772976*m.x228 - 0.0295372*m.x229 - 0.00761416*m.x230 - 4.24721E-5*m.x231 - 0.00459597*m.x232 + 0.00232022*m.x233 + 0.0509778*m.x234 - 0.0156482*m.x235 + 0.0162671*m.x236 - 0.0132302*m.x237 + 0.0250776*m.x238 - 0.0120527*m.x239 + 0.0138503*m.x240 + 0.0174032*m.x241 + 0.0141194*m.x242 + 0.0227987*m.x243 + 0.0193746*m.x244 + 0.0242182*m.x245 + 0.0115852*m.x246 - 0.00162455*m.x247 + 0.0485595*m.x248 + 0.00207472*m.x249 + 0.00660381*m.x250 + 0.0335273*m.x251 - 0.00253464*m.x252 + 0.0243471*m.x253 - 4.32941E-5*m.x254 + 0.0163137*m.x255 - 0.000494175*m.x256 + 0.0164977*m.x257 + 0.00852804*m.x258 + 0.0112867*m.x259 + 0.0247222*m.x260 - 0.0163525*m.x261 + 0.00503011*m.x262 + 0.0521947*m.x263 - 0.00318536*m.x264 + 0.0012286*m.x265 - 0.0157072*m.x266 - 0.0502192*m.x267 - 0.00188018*m.x268 + 0.00421152*m.x269 + 0.0127643*m.x270 + 0.0174037*m.x271 - 0.0100234*m.x272 - 0.00217682*m.x273 + 0.00605866*m.x274 + 0.0167264*m.x275 - 0.00986916*m.x276 + 0.000264178*m.x277 + 0.000443677*m.x278 + 0.0156931*m.x279 - 0.00276268*m.x280 + 0.0162342*m.x281 - 0.00713742*m.x282 + 0.0535351*m.x283 + 0.00652548*m.x284 - 0.0124237*m.x285 + 0.0284349*m.x286 - 0.0130366*m.x287 + 0.00243309*m.x288 + 0.00484607*m.x289 + 0.0192039*m.x290 - 0.0085911*m.x291 - 0.0062031*m.x292 + 0.00268854*m.x293 + 0.00374751*m.x294 + 0.0123958*m.x295 - 0.00281911*m.x296 + 0.0022118*m.x297 + 0.0167955*m.x298 - 0.0279332*m.x299 + 0.0227079*m.x300 + 0.00975774*m.x301 + 0.000116986*m.x302 + 0.00508413*m.x303 == 0) m.c108 = Constraint(expr= - m.x3 + 0.0355075*m.x204 + 0.375363*m.x205 + 0.116457*m.x206 + 0.00752357*m.x207 + 0.0293686*m.x208 + 0.0522029*m.x209 + 0.0199263*m.x210 - 0.00639786*m.x211 + 0.0476511*m.x212 + 0.0308355*m.x213 + 0.0507195*m.x214 - 0.00222776*m.x215 - 0.00469082*m.x216 + 0.0220067*m.x217 + 0.0249277*m.x218 + 0.0260539*m.x219 + 0.0301066*m.x220 + 0.0272172*m.x221 + 0.051374*m.x222 + 0.0518153*m.x223 + 0.0043452*m.x224 + 0.066289*m.x225 + 0.000519585*m.x226 - 0.00046168*m.x227 + 0.00154905*m.x228 + 0.0654627*m.x229 + 0.0180154*m.x230 + 0.00649144*m.x231 + 0.147396*m.x232 + 0.0126159*m.x233 + 0.0114801*m.x234 + 0.00607166*m.x235 + 0.0404381*m.x236 - 0.00899911*m.x237 - 0.00165809*m.x238 + 0.0142276*m.x239 + 0.0344086*m.x240 + 0.0192482*m.x241 + 0.0223002*m.x242 + 0.012791*m.x243 + 0.0190131*m.x244 + 6.63459E-5*m.x245 - 0.0244053*m.x246 + 0.0151994*m.x247 + 0.0842548*m.x248 - 0.00547032*m.x249 + 0.00366432*m.x250 - 0.00269275*m.x251 + 0.0064107*m.x252 + 0.0159232*m.x253 + 0.0109604*m.x254 + 0.0557033*m.x255 + 0.00892139*m.x256 - 0.00637132*m.x257 + 0.028098*m.x258 + 0.0142655*m.x259 + 0.0264826*m.x260 - 0.0200925*m.x261 + 0.00429221*m.x262 + 0.0268675*m.x263 - 0.00173957*m.x264 + 0.00182754*m.x265 + 0.0102239*m.x266 - 0.0136152*m.x267 + 0.0458865*m.x268 + 0.0178109*m.x269 + 0.0122813*m.x270 + 0.0104665*m.x271 - 0.0209121*m.x272 + 0.00754928*m.x273 + 0.00403463*m.x274 + 0.0479268*m.x275 - 0.0117451*m.x276 + 0.028956*m.x277 + 0.0186632*m.x278 + 0.0181645*m.x279 + 0.00696511*m.x280 - 0.00758658*m.x281 - 0.00157434*m.x282 + 0.0257631*m.x283 + 0.0226078*m.x284 + 0.0117173*m.x285 + 0.022134*m.x286 + 0.00875918*m.x287 + 0.0213683*m.x288 + 0.0223469*m.x289 + 0.0139068*m.x290 + 0.0353495*m.x291 + 0.00675913*m.x292 + 0.00676616*m.x293 - 0.0169577*m.x294 + 0.00339621*m.x295 + 0.0150229*m.x296 - 0.0133134*m.x297 + 0.0134182*m.x298 + 0.0889001*m.x299 + 0.0286671*m.x300 + 0.0390347*m.x301 + 0.00733705*m.x302 + 0.0374277*m.x303 == 0) m.c109 = Constraint(expr= - m.x4 + 0.0103892*m.x204 + 0.116457*m.x205 + 0.494358*m.x206 + 0.00213378*m.x207 + 0.0204691*m.x208 + 0.000419125*m.x209 - 0.0151413*m.x210 + 0.00865542*m.x211 - 0.0218289*m.x212 + 0.127486*m.x213 + 0.011904*m.x214 + 0.00842993*m.x215 + 0.00424642*m.x216 + 0.0288695*m.x217 + 0.0119527*m.x218 - 0.00454489*m.x219 + 0.0070179*m.x220 - 0.0155243*m.x221 + 0.00154022*m.x222 + 0.0125708*m.x223 + 0.0104609*m.x224 + 0.145949*m.x225 - 0.0019853*m.x226 - 0.00879835*m.x227 - 0.0114691*m.x228 + 0.183686*m.x229 + 0.0420925*m.x230 + 0.0250886*m.x231 + 0.138133*m.x232 + 0.0278877*m.x233 + 0.0545798*m.x234 - 0.0090554*m.x235 + 0.138583*m.x236 + 0.0150959*m.x237 + 0.0162039*m.x238 + 0.0213625*m.x239 + 0.0200764*m.x240 - 0.00431381*m.x241 - 0.00842299*m.x242 - 0.00117286*m.x243 + 0.00911691*m.x244 - 0.00746052*m.x245 - 0.011358*m.x246 - 0.00410314*m.x247 + 0.00010559*m.x248 - 0.0124818*m.x249 + 0.0222942*m.x250 + 0.0641257*m.x251 - 0.00250627*m.x252 + 0.00990617*m.x253 + 0.0106624*m.x254 - 0.00120817*m.x255 - 0.0113822*m.x256 + 0.0115937*m.x257 - 0.0206532*m.x258 + 0.0357135*m.x259 - 0.00418977*m.x260 + 0.030475*m.x261 - 0.0301452*m.x262 + 0.0467552*m.x263 + 0.0103264*m.x264 - 0.0157278*m.x265 + 0.0167359*m.x266 + 0.00653818*m.x267 + 0.0409725*m.x268 + 0.0331419*m.x269 + 0.0180349*m.x270 + 0.0284386*m.x271 - 0.00694428*m.x272 + 0.00602621*m.x273 + 0.0281091*m.x274 + 0.0213196*m.x275 - 0.0306486*m.x276 + 0.019325*m.x277 - 0.00667034*m.x278 + 0.000467446*m.x279 + 0.0201785*m.x280 - 0.000464311*m.x281 - 0.0236607*m.x282 + 0.0310239*m.x283 + 0.042261*m.x284 + 0.0185462*m.x285 - 0.0122475*m.x286 + 0.0280865*m.x287 + 0.0121116*m.x288 + 0.00361683*m.x289 + 0.0180183*m.x290 + 0.0226601*m.x291 + 0.0329849*m.x292 + 0.00576928*m.x293 - 0.00470462*m.x294 - 0.0153482*m.x295 + 0.0172118*m.x296 - 0.0344168*m.x297 - 0.0408698*m.x298 + 0.0755415*m.x299 + 0.0219066*m.x300 + 0.00157357*m.x301 + 0.0412011*m.x302 + 0.0159705*m.x303 == 0) m.c110 = Constraint(expr= - m.x5 + 0.00949873*m.x204 + 0.00752357*m.x205 + 0.00213378*m.x206 + 0.202976*m.x207 + 0.0236145*m.x208 + 0.0117362*m.x209 + 0.0102009*m.x210 - 0.00649661*m.x211 + 0.000116182*m.x212 + 0.0232567*m.x213 + 0.0234073*m.x214 + 0.0470343*m.x215 + 0.0216397*m.x216 - 0.0206614*m.x217 + 0.0146671*m.x218 + 0.0165581*m.x219 + 0.0400276*m.x220 + 0.020625*m.x221 + 0.0170646*m.x222 + 0.0110715*m.x223 + 0.00747915*m.x224 - 0.00773408*m.x225 + 0.0277694*m.x226 + 0.00589594*m.x227 + 0.00860339*m.x228 - 0.0245255*m.x229 - 0.0103474*m.x230 + 0.0274283*m.x231 + 0.0223035*m.x232 + 0.0237512*m.x233 + 0.0068636*m.x234 + 0.0216305*m.x235 - 0.00303771*m.x236 + 0.0013176*m.x237 + 0.0157544*m.x238 + 0.0168579*m.x239 + 0.0319483*m.x240 + 0.0489611*m.x241 + 0.0165915*m.x242 + 0.0104514*m.x243 + 0.0116238*m.x244 + 0.0187021*m.x245 + 0.0150923*m.x246 + 0.00865558*m.x247 + 0.0274023*m.x248 + 0.00371704*m.x249 + 0.0278823*m.x250 + 0.0276611*m.x251 + 0.0335727*m.x252 + 0.0350956*m.x253 + 0.00379579*m.x254 + 0.0146599*m.x255 + 0.0202259*m.x256 + 0.00222715*m.x257 - 0.018228*m.x258 + 0.0386991*m.x259 + 0.0209281*m.x260 + 0.0219851*m.x261 - 0.0106357*m.x262 + 0.0312148*m.x263 + 0.0168165*m.x264 + 0.0159145*m.x265 - 0.00939875*m.x266 + 0.0209841*m.x267 + 0.0190617*m.x268 + 0.0158536*m.x269 + 0.0246904*m.x270 + 0.00427924*m.x271 - 0.00467471*m.x272 + 0.0177642*m.x273 + 0.00659994*m.x274 + 0.0149564*m.x275 + 0.0372578*m.x276 + 0.00639167*m.x277 + 0.0113589*m.x278 + 0.0136237*m.x279 + 0.00548526*m.x280 + 0.00938667*m.x281 - 0.0040516*m.x282 + 0.0204574*m.x283 + 0.00726938*m.x284 + 0.0138296*m.x285 + 0.00730263*m.x286 + 0.00429398*m.x287 + 0.0216644*m.x288 + 0.0233018*m.x289 + 0.0328639*m.x290 + 0.0305972*m.x291 - 0.00415707*m.x292 + 0.00964148*m.x293 + 0.000244902*m.x294 + 0.0374478*m.x295 + 0.020036*m.x296 + 0.00411236*m.x297 + 0.0103469*m.x298 - 0.012054*m.x299 + 0.0183139*m.x300 - 0.0288293*m.x301 + 0.00250478*m.x302 + 0.0130454*m.x303 == 0) m.c111 = Constraint(expr= - m.x6 + 0.00890974*m.x204 + 0.0293686*m.x205 + 0.0204691*m.x206 + 0.0236145*m.x207 + 0.132744*m.x208 + 0.00939955*m.x209 + 0.0118432*m.x210 + 0.000995566*m.x211 + 0.00478682*m.x212 + 0.0257712*m.x213 + 0.00349815*m.x214 + 0.0165971*m.x215 + 0.0322053*m.x216 + 0.0281818*m.x217 + 0.0245199*m.x218 + 0.0118447*m.x219 + 0.0200262*m.x220 - 0.0135716*m.x221 + 0.0171357*m.x222 + 0.0064231*m.x223 + 0.0108965*m.x224 + 0.0493937*m.x225 + 0.0194761*m.x226 + 0.00935395*m.x227 + 0.00691311*m.x228 + 0.00811154*m.x229 + 0.0217094*m.x230 + 0.00509551*m.x231 + 0.0102365*m.x232 + 0.0598964*m.x233 + 0.000151401*m.x234 + 0.0314895*m.x235 + 0.0222037*m.x236 + 0.0226771*m.x237 + 0.0271938*m.x238 + 0.0166563*m.x239 + 0.0185838*m.x240 + 0.0240307*m.x241 - 0.00254427*m.x242 + 0.0207655*m.x243 + 0.0197923*m.x244 + 0.0613911*m.x245 + 0.0110642*m.x246 + 0.0207267*m.x247 + 0.0169542*m.x248 - 0.0027153*m.x249 + 0.0227537*m.x250 + 0.0245375*m.x251 + 0.0220219*m.x252 + 0.0142215*m.x253 + 0.0212008*m.x254 + 0.0295561*m.x255 + 0.00841613*m.x256 + 0.00832278*m.x257 + 0.00806585*m.x258 + 0.0196795*m.x259 + 0.0144357*m.x260 - 0.00152624*m.x261 - 0.00636291*m.x262 + 0.00719514*m.x263 + 0.0109626*m.x264 + 0.00565965*m.x265 + 0.0101803*m.x266 - 0.0016346*m.x267 + 0.0277761*m.x268 + 0.0225116*m.x269 - 0.00484509*m.x270 + 0.0047708*m.x271 + 0.00518488*m.x272 + 0.0126256*m.x273 - 0.00994378*m.x274 + 0.00270935*m.x275 - 0.00761522*m.x276 + 0.00740387*m.x277 + 0.038373*m.x278 + 0.0330416*m.x279 + 0.00915683*m.x280 + 0.0338859*m.x281 + 0.0110433*m.x282 + 0.00100659*m.x283 + 0.038867*m.x284 + 0.00624966*m.x285 + 0.00420064*m.x286 + 0.0301859*m.x287 + 0.0339489*m.x288 + 0.00230194*m.x289 + 0.0201638*m.x290 + 0.0148104*m.x291 + 0.0193621*m.x292 + 0.00948047*m.x293 + 0.0107385*m.x294 + 0.00287505*m.x295 + 0.0130434*m.x296 - 0.00176429*m.x297 + 0.036063*m.x298 + 0.0123589*m.x299 + 0.0190362*m.x300 - 0.01883*m.x301 + 0.0156576*m.x302 + 0.0265264*m.x303 == 0) m.c112 = Constraint(expr= - m.x7 - 0.0048198*m.x204 + 0.0522029*m.x205 + 0.000419125*m.x206 + 0.0117362*m.x207 + 0.00939955*m.x208 + 1.26577*m.x209 + 0.00746215*m.x210 + 0.00917556*m.x211 + 0.0186178*m.x212 - 0.00694419*m.x213 + 0.0194384*m.x214 + 0.0120403*m.x215 + 0.0375406*m.x216 + 0.031075*m.x217 - 0.00168578*m.x218 + 0.0459517*m.x219 + 0.0104064*m.x220 - 0.000580239*m.x221 - 0.0192679*m.x222 + 0.00573205*m.x223 - 0.00590063*m.x224 + 0.00118752*m.x225 + 0.0146083*m.x226 + 0.00976886*m.x227 + 0.0122717*m.x228 + 0.015996*m.x229 + 0.0262883*m.x230 + 0.0364425*m.x231 + 0.0587967*m.x232 + 0.00678878*m.x233 + 0.0132248*m.x234 + 0.0117136*m.x235 - 0.00958286*m.x236 + 0.059318*m.x237 + 0.0162948*m.x238 + 0.0161974*m.x239 + 0.00634078*m.x240 + 0.0120533*m.x241 + 0.000742111*m.x242 + 0.0218172*m.x243 - 0.00438877*m.x244 + 0.0402544*m.x245 - 0.00602825*m.x246 + 0.0189494*m.x247 + 0.00789539*m.x248 + 0.0132198*m.x249 + 0.0131179*m.x250 + 0.0350419*m.x251 + 0.00782381*m.x252 - 0.00238836*m.x253 + 0.0282466*m.x254 - 0.0144879*m.x255 + 0.0254505*m.x256 + 0.00288051*m.x257 - 0.00244405*m.x258 + 0.0133542*m.x259 + 0.0320697*m.x260 - 0.0217595*m.x261 + 0.0127581*m.x262 + 0.0200628*m.x263 + 0.0123119*m.x264 + 0.0263411*m.x265 + 0.00564516*m.x266 - 0.0172992*m.x267 + 0.0342875*m.x268 + 0.0155064*m.x269 - 0.00477146*m.x270 + 0.00415194*m.x271 + 0.00797725*m.x272 + 0.0134081*m.x273 + 0.0355325*m.x274 + 0.00240413*m.x275 + 0.0160415*m.x276 - 0.030207*m.x277 + 0.00296297*m.x278 + 0.0130072*m.x279 + 0.00450281*m.x280 + 0.0121371*m.x281 - 0.0231401*m.x282 - 0.0106726*m.x283 + 0.0230093*m.x284 + 0.0220687*m.x285 + 0.0720504*m.x286 + 0.0235846*m.x287 + 0.0134857*m.x288 + 0.00278062*m.x289 - 0.00858219*m.x290 + 0.0238012*m.x291 + 0.0088678*m.x292 - 3.17943E-5*m.x293 + 0.0181268*m.x294 + 0.00782932*m.x295 + 0.00311794*m.x296 - 0.032215*m.x297 + 0.00207316*m.x298 + 0.0352617*m.x299 + 0.0157662*m.x300 + 0.243511*m.x301 + 0.006698*m.x302 + 0.0576747*m.x303 == 0) m.c113 = Constraint(expr= - m.x8 - 0.0151061*m.x204 + 0.0199263*m.x205 - 0.0151413*m.x206 + 0.0102009*m.x207 + 0.0118432*m.x208 + 0.00746215*m.x209 + 0.136805*m.x210 - 0.00716314*m.x211 + 0.0329462*m.x212 - 0.00444303*m.x213 + 0.0147918*m.x214 + 0.00156164*m.x215 + 0.0314898*m.x216 - 0.00261112*m.x217 + 0.0315032*m.x218 + 0.0119617*m.x219 + 0.00286605*m.x220 + 0.0229931*m.x221 - 0.0297937*m.x222 - 0.00124776*m.x223 + 0.00819446*m.x224 + 0.0115835*m.x225 - 0.00151625*m.x226 - 0.0108978*m.x227 + 0.00119563*m.x228 + 0.00380145*m.x229 + 0.01388*m.x230 + 0.018817*m.x231 + 0.00271468*m.x232 + 0.0130573*m.x233 - 0.00937181*m.x234 + 0.0135407*m.x235 - 0.00205201*m.x236 + 0.0110361*m.x237 - 0.00849477*m.x238 + 0.00439244*m.x239 + 0.0127402*m.x240 + 0.0166285*m.x241 + 0.0264399*m.x242 + 0.0100685*m.x243 + 0.00274108*m.x244 + 0.00935881*m.x245 + 0.0225873*m.x246 + 0.00733761*m.x247 + 0.0201234*m.x248 + 0.00199539*m.x249 + 0.00883369*m.x250 - 0.00334111*m.x251 + 0.00675904*m.x252 + 0.0174474*m.x253 + 0.000986276*m.x254 + 0.00773796*m.x255 + 0.0122267*m.x256 + 0.0155811*m.x257 + 0.00782426*m.x258 + 0.03853*m.x259 + 0.0225766*m.x260 + 0.0150547*m.x261 - 0.00416059*m.x262 + 0.00755277*m.x263 - 0.0018521*m.x264 - 0.0101745*m.x265 - 0.00307772*m.x266 - 0.00815475*m.x267 + 0.0229656*m.x268 - 0.00130048*m.x269 + 0.00871877*m.x270 - 0.0045347*m.x271 - 0.0157399*m.x272 + 0.00177914*m.x273 + 0.0272626*m.x274 + 0.0117028*m.x275 + 0.00138295*m.x276 + 0.0185095*m.x277 + 0.0171304*m.x278 + 0.0122791*m.x279 + 0.00233108*m.x280 + 0.0306379*m.x281 + 0.0152496*m.x282 + 0.00760112*m.x283 + 0.0227379*m.x284 + 0.0315858*m.x285 + 0.0060507*m.x286 + 0.0179103*m.x287 + 0.00721099*m.x288 + 0.00164949*m.x289 - 0.0109996*m.x290 + 0.0589001*m.x291 + 0.00615122*m.x292 - 0.00717082*m.x293 + 0.0112392*m.x294 + 0.000610349*m.x295 + 0.0116254*m.x296 - 0.0224759*m.x297 + 0.00642488*m.x298 + 0.00803335*m.x299 + 0.0180457*m.x300 + 0.0047812*m.x301 + 0.00731383*m.x302 + 0.0122221*m.x303 == 0) m.c114 = Constraint(expr= - m.x9 - 0.0180772*m.x204 - 0.00639786*m.x205 + 0.00865542*m.x206 - 0.00649661*m.x207 + 0.000995566*m.x208 + 0.00917556*m.x209 - 0.00716314*m.x210 + 0.285403*m.x211 + 0.0092214*m.x212 + 0.00968176*m.x213 - 0.0117263*m.x214 + 0.00488845*m.x215 + 0.00932434*m.x216 - 0.0022426*m.x217 + 0.00079052*m.x218 - 0.010629*m.x219 + 0.00272852*m.x220 - 0.00128164*m.x221 + 0.0092976*m.x222 + 0.00897629*m.x223 - 0.0051429*m.x224 + 0.0194189*m.x225 + 0.00807556*m.x226 + 0.014474*m.x227 - 0.00996885*m.x228 + 0.0499867*m.x229 - 0.0180156*m.x230 + 0.0369786*m.x231 - 0.0326873*m.x232 - 0.00929421*m.x233 + 0.00932232*m.x234 - 0.00128122*m.x235 + 0.0044504*m.x236 + 0.0154868*m.x237 - 0.00246393*m.x238 - 0.00850907*m.x239 + 0.010305*m.x240 - 0.0107958*m.x241 + 0.0184062*m.x242 - 0.000823765*m.x243 + 0.0132777*m.x244 + 0.00103676*m.x245 - 0.00519952*m.x246 + 0.00505829*m.x247 - 0.003359*m.x248 + 0.00172548*m.x249 - 0.00798884*m.x250 - 0.00523044*m.x251 - 0.0106746*m.x252 + 0.00991922*m.x253 + 0.00762574*m.x254 - 0.0266695*m.x255 + 0.00886183*m.x256 + 0.0170693*m.x257 - 0.0010862*m.x258 + 0.0164155*m.x259 - 0.00380167*m.x260 + 0.0200358*m.x261 - 0.0132264*m.x262 - 0.0108891*m.x263 + 0.020785*m.x264 + 0.0086092*m.x265 - 0.00880776*m.x266 - 0.0195389*m.x267 + 0.00208113*m.x268 - 0.00273464*m.x269 - 0.000357808*m.x270 + 0.0647172*m.x271 - 0.0015303*m.x272 + 0.0129634*m.x273 - 0.000139358*m.x274 - 0.0044266*m.x275 + 0.0294097*m.x276 - 0.00500434*m.x277 + 0.0311579*m.x278 + 0.0494097*m.x279 + 0.00288612*m.x280 + 0.0105617*m.x281 + 0.00135164*m.x282 + 0.00925665*m.x283 + 0.00141295*m.x284 - 0.00247117*m.x285 - 0.0255331*m.x286 + 0.0200897*m.x287 + 0.022993*m.x288 - 0.000549013*m.x289 - 0.00068661*m.x290 - 0.00420057*m.x291 + 0.00921205*m.x292 + 0.000865255*m.x293 + 0.00517365*m.x294 + 0.0240808*m.x295 + 0.00215238*m.x296 + 0.0141697*m.x297 + 0.00516594*m.x298 + 0.00216393*m.x299 + 0.0179954*m.x300 - 0.00675247*m.x301 + 0.00119681*m.x302 - 0.00205582*m.x303 == 0) m.c115 = Constraint(expr= - m.x10 - 0.0547008*m.x204 + 0.0476511*m.x205 - 0.0218289*m.x206 + 0.000116182*m.x207 + 0.00478682*m.x208 + 0.0186178*m.x209 + 0.0329462*m.x210 + 0.0092214*m.x211 + 1.16965*m.x212 - 0.0339345*m.x213 + 0.000805966*m.x214 - 0.00862632*m.x215 + 0.00387244*m.x216 + 0.0122928*m.x217 + 0.0567976*m.x218 - 0.00262157*m.x219 - 0.00869213*m.x220 + 0.00994931*m.x221 + 0.00711671*m.x222 + 0.0652085*m.x223 + 0.0122233*m.x224 - 0.0152003*m.x225 + 0.0251098*m.x226 + 0.00797425*m.x227 + 0.00371891*m.x228 - 0.00148049*m.x229 + 0.0193177*m.x230 + 0.050764*m.x231 - 0.0288765*m.x232 - 0.000566519*m.x233 - 0.00504625*m.x234 - 0.0193402*m.x235 - 0.012241*m.x236 + 0.0162554*m.x237 - 0.0167425*m.x238 + 0.00537524*m.x239 - 0.00325532*m.x240 + 0.0143804*m.x241 + 0.0540646*m.x242 + 0.00225673*m.x243 + 0.0124663*m.x244 - 0.00398651*m.x245 + 0.0396497*m.x246 - 0.00309397*m.x247 + 0.0671213*m.x248 + 0.0105468*m.x249 + 0.0076658*m.x250 + 0.046947*m.x251 + 0.000222582*m.x252 - 0.0116779*m.x253 - 0.00988969*m.x254 + 0.0132613*m.x255 - 0.00967266*m.x256 + 0.0167367*m.x257 + 0.000760504*m.x258 - 0.0145817*m.x259 + 0.00627821*m.x260 + 0.00589982*m.x261 + 0.0158731*m.x262 - 0.00692226*m.x263 + 0.018374*m.x264 + 0.00783315*m.x265 - 0.00318606*m.x266 + 0.0253862*m.x267 - 0.00670214*m.x268 + 0.01518*m.x269 + 0.0331725*m.x270 - 0.0229361*m.x271 - 0.0365251*m.x272 + 0.0190496*m.x273 + 0.00542296*m.x274 + 0.00513392*m.x275 - 0.00866694*m.x276 + 0.066741*m.x277 + 0.0166803*m.x278 + 0.0021271*m.x279 + 0.00823225*m.x280 + 0.00857754*m.x281 + 0.0313512*m.x282 + 0.00130029*m.x283 - 0.0150965*m.x284 + 0.0772805*m.x285 + 0.0392036*m.x286 + 0.0404836*m.x287 + 0.0233051*m.x288 + 0.00145357*m.x289 + 0.0353783*m.x290 + 0.0245361*m.x291 + 0.00939562*m.x292 + 0.0167069*m.x293 - 0.0177537*m.x294 + 0.00699783*m.x295 - 0.0148329*m.x296 + 0.178873*m.x297 + 0.00483769*m.x298 + 0.0402204*m.x299 + 0.111526*m.x300 - 0.00193246*m.x301 + 0.0326706*m.x302 - 0.00767129*m.x303 == 0) m.c116 = Constraint(expr= - m.x11 - 0.00579598*m.x204 + 0.0308355*m.x205 + 0.127486*m.x206 + 0.0232567*m.x207 + 0.0257712*m.x208 - 0.00694419*m.x209 - 0.00444303*m.x210 + 0.00968176*m.x211 - 0.0339345*m.x212 + 0.41127*m.x213 + 0.00717303*m.x214 - 0.00672795*m.x215 - 0.00365582*m.x216 - 0.0113386*m.x217 - 0.00101702*m.x218 - 0.00403718*m.x219 + 0.0075895*m.x220 + 0.0372281*m.x221 - 0.0191596*m.x222 - 0.00586128*m.x223 + 0.0131072*m.x224 + 0.176793*m.x225 + 0.032372*m.x226 - 0.0206317*m.x227 + 0.0116962*m.x228 + 0.0856918*m.x229 + 0.0056902*m.x230 + 0.00180131*m.x231 + 0.0296162*m.x232 + 0.0209429*m.x233 - 0.00927325*m.x234 + 0.0316756*m.x235 + 0.155782*m.x236 + 0.0111882*m.x237 + 0.0301704*m.x238 + 0.00605787*m.x239 + 0.00922974*m.x240 + 0.00186503*m.x241 - 0.0204732*m.x242 - 0.00336318*m.x243 + 0.0130752*m.x244 + 0.0383614*m.x245 - 0.0030681*m.x246 + 0.00188592*m.x247 + 0.0305494*m.x248 - 0.00910821*m.x249 + 0.0135289*m.x250 + 0.103912*m.x251 + 0.0135404*m.x252 + 0.00765973*m.x253 + 0.005395*m.x254 - 0.0102711*m.x255 + 0.000261336*m.x256 + 0.00274854*m.x257 + 0.0082671*m.x258 + 0.0215893*m.x259 - 0.0026586*m.x260 + 0.0389273*m.x261 + 0.00679229*m.x262 + 0.0607996*m.x263 + 0.0264003*m.x264 + 0.00577287*m.x265 + 0.00499131*m.x266 - 0.00587637*m.x267 + 0.0419289*m.x268 + 0.00163644*m.x269 + 0.00084169*m.x270 + 0.00995171*m.x271 + 0.00125486*m.x272 + 0.000587184*m.x273 + 0.00290832*m.x274 + 0.0203179*m.x275 - 0.017854*m.x276 + 0.00702231*m.x277 + 0.000393591*m.x278 + 0.0103674*m.x279 + 0.00633375*m.x280 + 0.0194224*m.x281 - 0.00963904*m.x282 + 0.0241569*m.x283 + 0.0143008*m.x284 + 0.0127084*m.x285 + 0.0167294*m.x286 + 0.0346049*m.x287 + 0.0161423*m.x288 + 0.00486934*m.x289 - 1.9656E-5*m.x290 - 0.0192722*m.x291 + 0.0190744*m.x292 - 0.00901601*m.x293 - 0.00394108*m.x294 + 0.00072213*m.x295 + 0.0287036*m.x296 - 0.00879298*m.x297 - 0.00130419*m.x298 + 0.0144463*m.x299 + 0.0227*m.x300 + 0.00430831*m.x301 + 0.00196198*m.x302 + 0.006199*m.x303 == 0) m.c117 = Constraint(expr= - m.x12 - 0.0181858*m.x204 + 0.0507195*m.x205 + 0.011904*m.x206 + 0.0234073*m.x207 + 0.00349815*m.x208 + 0.0194384*m.x209 + 0.0147918*m.x210 - 0.0117263*m.x211 + 0.000805966*m.x212 + 0.00717303*m.x213 + 0.219047*m.x214 + 0.023456*m.x215 + 0.00195478*m.x216 + 0.0148068*m.x217 + 0.0380638*m.x218 + 0.00700216*m.x219 + 0.0101168*m.x220 + 0.0569711*m.x221 - 0.00537336*m.x222 - 0.00676864*m.x223 - 0.000233965*m.x224 - 0.0053146*m.x225 + 0.0128605*m.x226 + 0.00379938*m.x227 + 0.0202337*m.x228 + 0.0295931*m.x229 + 0.00286184*m.x230 + 0.0124339*m.x231 + 0.031981*m.x232 + 0.0177141*m.x233 + 0.0133593*m.x234 + 0.0484803*m.x235 - 0.00479808*m.x236 + 0.04212*m.x237 + 0.0157963*m.x238 + 0.00983178*m.x239 + 0.0208788*m.x240 + 0.0260342*m.x241 + 0.00898847*m.x242 + 0.0194251*m.x243 + 0.0124203*m.x244 + 0.00730049*m.x245 + 0.0250217*m.x246 - 0.00862089*m.x247 - 0.0336638*m.x248 - 0.00677995*m.x249 + 0.00625335*m.x250 + 0.0263146*m.x251 + 0.00182442*m.x252 + 0.0180868*m.x253 + 0.0139184*m.x254 + 0.0593808*m.x255 + 0.000709314*m.x256 + 0.00766591*m.x257 + 0.0182084*m.x258 + 0.0215114*m.x259 + 0.0402573*m.x260 + 0.00451804*m.x261 + 0.00173858*m.x262 + 0.0011291*m.x263 + 0.0213333*m.x264 + 0.00782635*m.x265 + 0.031041*m.x266 + 0.0122097*m.x267 + 0.00799351*m.x268 - 0.00702948*m.x269 + 0.00472328*m.x270 + 0.0103154*m.x271 + 0.0289129*m.x272 + 0.00688368*m.x273 + 0.0161368*m.x274 + 0.0517634*m.x275 + 0.000715776*m.x276 + 0.0272845*m.x277 + 0.0154336*m.x278 - 0.00822959*m.x279 + 0.000626594*m.x280 + 0.000631494*m.x281 + 0.00874438*m.x282 + 0.00365132*m.x283 - 0.0056711*m.x284 + 0.0203348*m.x285 + 0.0341872*m.x286 + 0.0102937*m.x287 + 0.0151637*m.x288 + 0.0152717*m.x289 + 0.011193*m.x290 + 0.0112057*m.x291 + 0.00953528*m.x292 + 0.000108253*m.x293 + 0.00372088*m.x294 + 0.00788742*m.x295 + 0.035638*m.x296 - 0.0118438*m.x297 - 0.00955396*m.x298 + 0.0411535*m.x299 - 0.00808243*m.x300 - 0.0197548*m.x301 - 0.00408574*m.x302 + 0.0233977*m.x303 == 0) m.c118 = Constraint(expr= - m.x13 - 0.00449728*m.x204 - 0.00222776*m.x205 + 0.00842993*m.x206 + 0.0470343*m.x207 + 0.0165971*m.x208 + 0.0120403*m.x209 + 0.00156164*m.x210 + 0.00488845*m.x211 - 0.00862632*m.x212 - 0.00672795*m.x213 + 0.023456*m.x214 + 0.278517*m.x215 + 0.0184356*m.x216 + 0.0109592*m.x217 + 0.0153153*m.x218 - 0.0145985*m.x219 + 0.0120963*m.x220 + 0.0333257*m.x221 - 0.0138778*m.x222 + 0.0268692*m.x223 + 0.00636244*m.x224 - 0.0359516*m.x225 - 0.00319962*m.x226 - 0.00863008*m.x227 + 0.0341934*m.x228 - 0.0214998*m.x229 - 0.00165983*m.x230 + 0.011631*m.x231 - 0.00843246*m.x232 + 0.0122534*m.x233 + 0.0201667*m.x234 + 0.0115615*m.x235 - 0.0151645*m.x236 + 0.00572447*m.x237 - 0.000867997*m.x238 + 0.0114198*m.x239 + 0.0218247*m.x240 + 0.0164584*m.x241 + 0.0324793*m.x242 + 0.0165224*m.x243 - 0.0110707*m.x244 + 0.0108339*m.x245 + 0.00496455*m.x246 + 0.0121501*m.x247 - 0.010913*m.x248 + 0.0136767*m.x249 + 0.0116898*m.x250 + 0.0382384*m.x251 + 0.0131966*m.x252 + 0.0177887*m.x253 + 0.00125449*m.x254 + 0.0146264*m.x255 + 0.0570949*m.x256 + 0.00451784*m.x257 - 0.0264793*m.x258 + 0.00837984*m.x259 + 0.0137972*m.x260 + 0.0176927*m.x261 - 0.00573209*m.x262 + 0.00992262*m.x263 + 0.00917944*m.x264 - 0.00185404*m.x265 + 0.00351722*m.x266 - 0.0165471*m.x267 - 0.0113949*m.x268 + 0.00780787*m.x269 - 0.00223059*m.x270 + 0.0206811*m.x271 + 0.0521517*m.x272 - 0.00351079*m.x273 + 0.0212677*m.x274 + 0.00680778*m.x275 + 0.0365571*m.x276 + 0.0121352*m.x277 + 0.0025257*m.x278 + 0.0148074*m.x279 + 0.00353214*m.x280 + 0.0168133*m.x281 + 0.0119195*m.x282 - 0.012089*m.x283 - 0.00915576*m.x284 + 0.0251125*m.x285 + 0.00612187*m.x286 + 0.0024002*m.x287 + 0.00206781*m.x288 - 0.000360419*m.x289 + 0.00210401*m.x290 + 0.000459202*m.x291 - 0.00600004*m.x292 - 0.0113285*m.x293 - 0.00379879*m.x294 + 0.015416*m.x295 + 0.0100832*m.x296 - 0.0115254*m.x297 + 0.0489927*m.x298 + 0.00172935*m.x299 - 0.00821597*m.x300 - 0.0062146*m.x301 - 0.014221*m.x302 + 0.0110839*m.x303 == 0) m.c119 = Constraint(expr= - m.x14 - 0.00308424*m.x204 - 0.00469082*m.x205 + 0.00424642*m.x206 + 0.0216397*m.x207 + 0.0322053*m.x208 + 0.0375406*m.x209 + 0.0314898*m.x210 + 0.00932434*m.x211 + 0.00387244*m.x212 - 0.00365582*m.x213 + 0.00195478*m.x214 + 0.0184356*m.x215 + 0.221716*m.x216 + 0.00722185*m.x217 + 0.00354749*m.x218 + 0.0146274*m.x219 + 0.0180021*m.x220 + 0.0288875*m.x221 + 0.0125621*m.x222 + 0.0182642*m.x223 + 0.00895779*m.x224 + 0.00895103*m.x225 - 0.00232932*m.x226 + 0.00177054*m.x227 + 0.0136257*m.x228 + 0.0032049*m.x229 + 0.00927708*m.x230 + 0.0260767*m.x231 - 0.0166592*m.x232 + 0.0328492*m.x233 + 0.0117288*m.x234 + 0.0189044*m.x235 - 0.0303469*m.x236 - 0.00624871*m.x237 - 0.00552184*m.x238 + 0.0151253*m.x239 + 0.00196396*m.x240 + 0.0283164*m.x241 - 7.36214E-5*m.x242 + 0.0154669*m.x243 + 0.0335265*m.x244 + 0.0247389*m.x245 + 0.000832224*m.x246 + 0.0166299*m.x247 + 0.0470539*m.x248 + 0.0108543*m.x249 + 0.0041831*m.x250 + 0.00544939*m.x251 + 0.00847808*m.x252 + 0.0136335*m.x253 + 0.0285916*m.x254 + 0.00654495*m.x255 + 0.01696*m.x256 + 0.09051*m.x257 - 0.00361466*m.x258 + 0.0141785*m.x259 + 0.0210091*m.x260 + 0.0471372*m.x261 - 0.0173444*m.x262 + 0.0395081*m.x263 + 0.0341682*m.x264 + 0.0266136*m.x265 + 0.00530461*m.x266 - 0.00299125*m.x267 + 0.00534225*m.x268 - 0.00371224*m.x269 + 0.0103986*m.x270 + 0.0396039*m.x271 - 0.00150631*m.x272 + 0.0236174*m.x273 + 0.0233436*m.x274 + 0.0324887*m.x275 + 0.0227743*m.x276 + 0.0134993*m.x277 + 0.0313448*m.x278 + 0.043333*m.x279 - 0.00386439*m.x280 + 0.108963*m.x281 - 0.00524662*m.x282 - 0.00652429*m.x283 - 0.00988714*m.x284 + 0.04316*m.x285 + 0.0469731*m.x286 + 0.00266624*m.x287 + 0.00890446*m.x288 + 0.0106296*m.x289 + 0.00867089*m.x290 + 0.0341752*m.x291 + 0.00683051*m.x292 + 0.00335904*m.x293 + 0.0162828*m.x294 + 0.0256177*m.x295 + 0.021417*m.x296 - 0.00659726*m.x297 + 0.031985*m.x298 + 0.0158572*m.x299 + 0.0232882*m.x300 + 0.00712137*m.x301 + 0.00355863*m.x302 + 0.00654047*m.x303 == 0) m.c120 = Constraint(expr= - m.x15 + 0.0187901*m.x204 + 0.0220067*m.x205 + 0.0288695*m.x206 - 0.0206614*m.x207 + 0.0281818*m.x208 + 0.031075*m.x209 - 0.00261112*m.x210 - 0.0022426*m.x211 + 0.0122928*m.x212 - 0.0113386*m.x213 + 0.0148068*m.x214 + 0.0109592*m.x215 + 0.00722185*m.x216 + 0.348093*m.x217 + 0.0484952*m.x218 + 0.0195361*m.x219 + 0.024247*m.x220 + 0.0280244*m.x221 + 0.052103*m.x222 - 0.0075162*m.x223 - 0.0117391*m.x224 + 0.0581007*m.x225 + 0.00789376*m.x226 + 0.0404865*m.x227 + 0.0065787*m.x228 + 0.0280359*m.x229 + 0.0284398*m.x230 + 0.0143595*m.x231 - 0.00772267*m.x232 + 0.0146342*m.x233 + 0.00596413*m.x234 + 0.000301534*m.x235 + 0.0135036*m.x236 + 0.0145204*m.x237 + 0.0624288*m.x238 + 0.0136456*m.x239 + 0.0353273*m.x240 + 0.016403*m.x241 + 0.0178385*m.x242 + 0.0349872*m.x243 + 0.0452332*m.x244 + 0.0258405*m.x245 + 0.0200869*m.x246 - 0.00370708*m.x247 + 0.0445913*m.x248 + 0.0145696*m.x249 + 0.0102428*m.x250 + 0.0541929*m.x251 + 0.0222686*m.x252 + 0.0200759*m.x253 + 0.0227414*m.x254 + 0.0206173*m.x255 - 0.0067449*m.x256 + 0.0455555*m.x257 - 0.0220985*m.x258 + 0.00916835*m.x259 + 0.022344*m.x260 + 0.00900194*m.x261 + 0.00271829*m.x262 - 0.0153606*m.x263 + 0.0224616*m.x264 + 0.0145659*m.x265 + 0.00845039*m.x266 - 0.01842*m.x267 + 0.0230371*m.x268 + 0.00761157*m.x269 + 0.00153703*m.x270 + 0.0263619*m.x271 + 0.0097183*m.x272 + 0.0242111*m.x273 + 0.00779182*m.x274 + 0.0138659*m.x275 + 0.029875*m.x276 + 0.012011*m.x277 + 0.0334484*m.x278 + 0.0141205*m.x279 + 0.00456199*m.x280 + 0.041893*m.x281 - 0.0231716*m.x282 + 0.0374086*m.x283 + 0.0313221*m.x284 - 0.00981712*m.x285 + 0.0545587*m.x286 + 0.0268496*m.x287 - 0.00176973*m.x288 + 0.0262312*m.x289 + 0.00164063*m.x290 + 0.0339984*m.x291 - 0.00434935*m.x292 + 0.00655352*m.x293 + 0.0190876*m.x294 + 0.0274041*m.x295 + 0.020182*m.x296 - 0.0260426*m.x297 + 0.0584498*m.x298 + 0.0466449*m.x299 + 0.0330244*m.x300 + 0.0380016*m.x301 + 0.00172257*m.x302 + 0.00682218*m.x303 == 0) m.c121 = Constraint(expr= - m.x16 - 0.0184553*m.x204 + 0.0249277*m.x205 + 0.0119527*m.x206 + 0.0146671*m.x207 + 0.0245199*m.x208 - 0.00168578*m.x209 + 0.0315032*m.x210 + 0.00079052*m.x211 + 0.0567976*m.x212 - 0.00101702*m.x213 + 0.0380638*m.x214 + 0.0153153*m.x215 + 0.00354749*m.x216 + 0.0484952*m.x217 + 0.216571*m.x218 + 0.0214552*m.x219 + 0.035258*m.x220 + 0.00117393*m.x221 + 9.22617E-5*m.x222 - 0.00187826*m.x223 + 0.0118118*m.x224 + 0.0252557*m.x225 + 0.00017817*m.x226 - 0.0141893*m.x227 + 0.0154338*m.x228 + 0.0334612*m.x229 + 0.00975344*m.x230 - 0.00119135*m.x231 + 0.0146337*m.x232 + 0.0371631*m.x233 + 0.0038431*m.x234 + 0.0207029*m.x235 + 0.0204577*m.x236 - 0.0031074*m.x237 + 0.0124183*m.x238 + 0.0240257*m.x239 + 0.0441096*m.x240 + 0.0260726*m.x241 + 0.00779136*m.x242 + 0.0194382*m.x243 + 0.0369654*m.x244 + 0.0154674*m.x245 + 0.0140488*m.x246 + 0.0130156*m.x247 + 0.0104316*m.x248 + 0.0109843*m.x249 + 0.00892909*m.x250 + 0.0139724*m.x251 + 0.0324222*m.x252 + 0.0258001*m.x253 + 0.00536497*m.x254 - 0.0164481*m.x255 + 0.00992241*m.x256 + 0.0214377*m.x257 + 0.0122468*m.x258 + 0.0297611*m.x259 + 0.0176119*m.x260 + 0.0115796*m.x261 - 0.00309314*m.x262 - 0.0165173*m.x263 + 0.0275152*m.x264 + 0.0464477*m.x265 + 0.00779052*m.x266 - 0.0226061*m.x267 + 0.0267434*m.x268 + 0.0145246*m.x269 + 0.00693016*m.x270 + 0.0360689*m.x271 + 0.0138448*m.x272 + 0.00553718*m.x273 + 0.0203622*m.x274 + 0.00802954*m.x275 + 0.0162258*m.x276 + 0.0205116*m.x277 + 0.0115061*m.x278 + 0.0101866*m.x279 + 0.0261645*m.x280 + 0.0332655*m.x281 + 0.00110939*m.x282 + 0.0260692*m.x283 + 0.0012738*m.x284 + 0.0253402*m.x285 + 0.0115293*m.x286 + 0.0157477*m.x287 + 0.0136669*m.x288 + 0.0102152*m.x289 + 0.0101419*m.x290 + 0.0131187*m.x291 + 0.0171011*m.x292 + 0.0259854*m.x293 + 0.00869282*m.x294 + 0.00673672*m.x295 + 0.0316891*m.x296 - 0.0156915*m.x297 + 0.0357759*m.x298 + 0.0174851*m.x299 - 0.0063521*m.x300 - 0.0081262*m.x301 + 0.00733927*m.x302 + 0.00484072*m.x303 == 0) m.c122 = Constraint(expr= - m.x17 + 0.0279672*m.x204 + 0.0260539*m.x205 - 0.00454489*m.x206 + 0.0165581*m.x207 + 0.0118447*m.x208 + 0.0459517*m.x209 + 0.0119617*m.x210 - 0.010629*m.x211 - 0.00262157*m.x212 - 0.00403718*m.x213 + 0.00700216*m.x214 - 0.0145985*m.x215 + 0.0146274*m.x216 + 0.0195361*m.x217 + 0.0214552*m.x218 + 0.106718*m.x219 + 0.0174672*m.x220 + 0.0069313*m.x221 + 0.00351107*m.x222 - 0.000894463*m.x223 - 0.00136425*m.x224 + 0.0125858*m.x225 + 0.0161206*m.x226 + 0.00886365*m.x227 + 0.00490282*m.x228 + 0.00283525*m.x229 + 0.00573587*m.x230 + 0.00932407*m.x231 + 0.0232678*m.x232 + 0.0251057*m.x233 - 0.0131257*m.x234 + 0.00951519*m.x235 + 0.00418042*m.x236 + 0.010377*m.x237 + 0.00594827*m.x238 + 0.00260571*m.x239 + 0.00945499*m.x240 + 0.026132*m.x241 + 0.0145947*m.x242 + 0.0107139*m.x243 + 0.0263189*m.x244 + 0.00760102*m.x245 + 0.0184787*m.x246 + 0.010862*m.x247 + 0.0233605*m.x248 + 0.0254292*m.x249 + 0.026309*m.x250 + 0.00373059*m.x251 + 0.0226732*m.x252 + 0.0151062*m.x253 + 0.00878227*m.x254 - 0.00659662*m.x255 + 0.00760297*m.x256 + 0.0166459*m.x257 + 0.00111556*m.x258 + 0.0024162*m.x259 + 0.00726513*m.x260 + 0.032302*m.x261 - 0.000321415*m.x262 - 0.0027376*m.x263 + 0.0190897*m.x264 + 0.0346448*m.x265 + 0.0276531*m.x266 + 0.000561195*m.x267 + 0.00605195*m.x268 + 0.0080424*m.x269 + 0.0117333*m.x270 + 0.00873924*m.x271 + 0.0161705*m.x272 + 0.0227344*m.x273 + 0.0198156*m.x274 + 0.0138875*m.x275 + 0.00149722*m.x276 + 0.0217898*m.x277 + 0.0236162*m.x278 + 0.00886369*m.x279 + 0.0104275*m.x280 + 0.0249922*m.x281 + 0.00802207*m.x282 + 0.00986454*m.x283 + 0.00924082*m.x284 + 0.00416101*m.x285 + 0.0228286*m.x286 + 0.0243826*m.x287 + 0.0181062*m.x288 + 0.0141347*m.x289 + 0.0161554*m.x290 + 0.0142843*m.x291 + 0.000969021*m.x292 + 0.0204454*m.x293 + 0.0180185*m.x294 + 0.00550125*m.x295 + 0.0173229*m.x296 - 0.0118909*m.x297 + 0.00154333*m.x298 + 0.00648827*m.x299 - 0.00193745*m.x300 + 0.000983654*m.x301 + 0.0114558*m.x302 + 0.00327572*m.x303 == 0) m.c123 = Constraint(expr= - m.x18 + 0.0347489*m.x204 + 0.0301066*m.x205 + 0.0070179*m.x206 + 0.0400276*m.x207 + 0.0200262*m.x208 + 0.0104064*m.x209 + 0.00286605*m.x210 + 0.00272852*m.x211 - 0.00869213*m.x212 + 0.0075895*m.x213 + 0.0101168*m.x214 + 0.0120963*m.x215 + 0.0180021*m.x216 + 0.024247*m.x217 + 0.035258*m.x218 + 0.0174672*m.x219 + 0.211469*m.x220 + 0.0152764*m.x221 + 0.0236756*m.x222 + 0.0253815*m.x223 + 0.00488868*m.x224 + 0.0163435*m.x225 + 0.0224046*m.x226 + 0.0114776*m.x227 + 0.0147622*m.x228 + 0.0168803*m.x229 - 0.0149916*m.x230 - 0.0110861*m.x231 + 0.00928934*m.x232 + 0.00769503*m.x233 - 0.0267594*m.x234 + 0.0083944*m.x235 + 0.0302366*m.x236 + 0.0261893*m.x237 + 0.013525*m.x238 + 0.0268434*m.x239 + 0.0296532*m.x240 + 0.0116391*m.x241 + 0.00872571*m.x242 - 0.00545266*m.x243 + 0.0451888*m.x244 + 0.0174024*m.x245 + 0.0137917*m.x246 + 0.00619143*m.x247 + 0.0353105*m.x248 + 0.0137663*m.x249 + 0.0126568*m.x250 + 0.0131167*m.x251 + 0.0279086*m.x252 + 0.0187117*m.x253 + 0.0144307*m.x254 + 0.00896247*m.x255 + 0.0230109*m.x256 + 0.0380049*m.x257 + 0.00594814*m.x258 + 0.00156841*m.x259 + 0.0291383*m.x260 + 0.0197841*m.x261 - 0.00560644*m.x262 - 0.00570369*m.x263 + 0.0191435*m.x264 + 0.0154717*m.x265 + 0.0101111*m.x266 - 0.00546503*m.x267 + 0.0144737*m.x268 + 0.0137256*m.x269 + 0.0283908*m.x270 + 0.0212112*m.x271 + 0.00924645*m.x272 + 0.038139*m.x273 + 0.00987474*m.x274 + 0.0137739*m.x275 + 0.00346188*m.x276 + 0.018383*m.x277 + 0.0232466*m.x278 - 0.0111152*m.x279 - 0.000844745*m.x280 + 0.0332627*m.x281 + 0.0282131*m.x282 + 0.0233102*m.x283 - 0.00179937*m.x284 + 0.0144628*m.x285 + 0.0198321*m.x286 + 0.0080643*m.x287 + 0.0113165*m.x288 + 0.0316648*m.x289 + 0.0143745*m.x290 + 0.0116517*m.x291 + 0.00972696*m.x292 + 0.0132094*m.x293 + 0.0214788*m.x294 + 0.0108732*m.x295 + 0.0316462*m.x296 - 0.0102103*m.x297 + 0.0284578*m.x298 + 0.0136054*m.x299 + 0.0283516*m.x300 - 0.0101858*m.x301 + 0.00777919*m.x302 + 0.00012158*m.x303 == 0) m.c124 = Constraint(expr= - m.x19 + 0.0439735*m.x204 + 0.0272172*m.x205 - 0.0155243*m.x206 + 0.020625*m.x207 - 0.0135716*m.x208 - 0.000580239*m.x209 + 0.0229931*m.x210 - 0.00128164*m.x211 + 0.00994931*m.x212 + 0.0372281*m.x213 + 0.0569711*m.x214 + 0.0333257*m.x215 + 0.0288875*m.x216 + 0.0280244*m.x217 + 0.00117393*m.x218 + 0.0069313*m.x219 + 0.0152764*m.x220 + 0.512899*m.x221 - 0.00554612*m.x222 + 0.0206016*m.x223 - 0.00982187*m.x224 + 0.00363825*m.x225 + 0.0232675*m.x226 - 0.000296286*m.x227 + 0.0476329*m.x228 - 0.0197181*m.x229 + 0.0069109*m.x230 - 0.0189482*m.x231 + 0.0041263*m.x232 - 0.00884186*m.x233 + 0.000265289*m.x234 + 0.0138006*m.x235 - 0.00190656*m.x236 + 0.0186477*m.x237 + 0.0209328*m.x238 - 0.0139724*m.x239 + 0.0376045*m.x240 + 0.0437592*m.x241 - 0.0223754*m.x242 + 0.0155505*m.x243 + 0.0318492*m.x244 + 0.00625964*m.x245 - 0.0212932*m.x246 + 0.00845798*m.x247 + 0.0602333*m.x248 + 0.0215291*m.x249 + 0.000524806*m.x250 + 0.0502056*m.x251 + 0.0135373*m.x252 + 0.00412087*m.x253 - 0.00913314*m.x254 + 0.020479*m.x255 - 0.00154837*m.x256 + 0.0140183*m.x257 - 0.0157061*m.x258 + 0.0426323*m.x259 + 0.00626505*m.x260 + 0.00147777*m.x261 + 0.0174915*m.x262 - 0.0106458*m.x263 - 0.0268525*m.x264 - 0.00592304*m.x265 + 0.0265062*m.x266 - 0.0314803*m.x267 - 0.00113399*m.x268 - 0.00330446*m.x269 + 0.0280983*m.x270 - 0.000715512*m.x271 + 0.0345476*m.x272 + 0.0640862*m.x273 + 0.159324*m.x274 + 0.019995*m.x275 - 0.0150306*m.x276 + 0.0129312*m.x277 - 0.00349278*m.x278 + 0.0610504*m.x279 + 0.00292058*m.x280 + 0.0234664*m.x281 - 0.0113617*m.x282 + 0.0361401*m.x283 - 0.0108246*m.x284 + 0.0156378*m.x285 + 0.00137389*m.x286 - 0.0271238*m.x287 + 0.00450122*m.x288 + 0.0194887*m.x289 + 0.00448489*m.x290 + 0.0154255*m.x291 - 0.00811765*m.x292 - 0.00385197*m.x293 - 0.00894921*m.x294 + 0.0124411*m.x295 + 0.0222568*m.x296 + 0.05196*m.x297 + 0.000359792*m.x298 + 0.0473451*m.x299 + 0.00195216*m.x300 - 0.0137668*m.x301 + 0.000840073*m.x302 + 0.0227501*m.x303 == 0) m.c125 = Constraint(expr= - m.x20 - 0.0186044*m.x204 + 0.051374*m.x205 + 0.00154022*m.x206 + 0.0170646*m.x207 + 0.0171357*m.x208 - 0.0192679*m.x209 - 0.0297937*m.x210 + 0.0092976*m.x211 + 0.00711671*m.x212 - 0.0191596*m.x213 - 0.00537336*m.x214 - 0.0138778*m.x215 + 0.0125621*m.x216 + 0.052103*m.x217 + 9.22617E-5*m.x218 + 0.00351107*m.x219 + 0.0236756*m.x220 - 0.00554612*m.x221 + 1.47621*m.x222 - 0.00667053*m.x223 + 0.00548936*m.x224 + 0.0134229*m.x225 - 0.00565979*m.x226 + 0.087054*m.x227 + 0.0466708*m.x228 - 0.021498*m.x229 + 0.0145096*m.x230 + 0.0191174*m.x231 + 0.0170116*m.x232 + 0.0266201*m.x233 - 0.00457471*m.x234 + 0.0324415*m.x235 - 0.0197364*m.x236 + 0.00358424*m.x237 - 0.0174047*m.x238 + 0.00859465*m.x239 + 0.00102085*m.x240 + 0.0207629*m.x241 + 0.00953252*m.x242 + 0.0229029*m.x243 + 0.0149903*m.x244 + 0.0290781*m.x245 - 0.00449927*m.x246 + 0.0196626*m.x247 + 0.0720207*m.x248 + 0.00312965*m.x249 + 0.0116736*m.x250 + 0.0683894*m.x251 + 0.021574*m.x252 - 0.00484013*m.x253 + 0.000594358*m.x254 - 0.0094595*m.x255 - 0.0318332*m.x256 + 0.0316379*m.x257 + 0.0193443*m.x258 + 0.00259346*m.x259 + 0.019997*m.x260 - 0.00264326*m.x261 - 0.0162587*m.x262 - 0.00236544*m.x263 - 0.00879978*m.x264 - 0.0199739*m.x265 - 0.039269*m.x266 - 0.0186926*m.x267 + 0.0490725*m.x268 + 0.031858*m.x269 - 0.00221523*m.x270 + 0.0134724*m.x271 - 0.0102334*m.x272 + 0.0063437*m.x273 - 0.00607453*m.x274 + 0.0718984*m.x275 + 0.00984006*m.x276 - 0.00865423*m.x277 + 0.0190688*m.x278 + 0.0249469*m.x279 + 0.00809967*m.x280 - 0.00269958*m.x281 - 0.0108567*m.x282 - 0.0246729*m.x283 + 0.030261*m.x284 - 0.0172947*m.x285 - 0.013192*m.x286 + 0.0111854*m.x287 + 0.0114597*m.x288 + 0.0126843*m.x289 + 0.00210006*m.x290 + 0.0549659*m.x291 + 0.00908995*m.x292 - 0.00445561*m.x293 - 0.0035093*m.x294 + 0.0111934*m.x295 - 0.00595445*m.x296 + 0.00346376*m.x297 + 0.00938963*m.x298 + 0.0125983*m.x299 + 0.0159186*m.x300 - 0.0256068*m.x301 + 0.00097566*m.x302 - 0.00691953*m.x303 == 0) m.c126 = Constraint(expr= - m.x21 + 0.000382935*m.x204 + 0.0518153*m.x205 + 0.0125708*m.x206 + 0.0110715*m.x207 + 0.0064231*m.x208 + 0.00573205*m.x209 - 0.00124776*m.x210 + 0.00897629*m.x211 + 0.0652085*m.x212 - 0.00586128*m.x213 - 0.00676864*m.x214 + 0.0268692*m.x215 + 0.0182642*m.x216 - 0.0075162*m.x217 - 0.00187826*m.x218 - 0.000894463*m.x219 + 0.0253815*m.x220 + 0.0206016*m.x221 - 0.00667053*m.x222 + 0.502424*m.x223 + 0.0229683*m.x224 + 0.0184159*m.x225 + 0.0119588*m.x226 + 0.0106382*m.x227 - 0.000494992*m.x228 + 0.0131696*m.x229 + 0.000986151*m.x230 + 0.0141038*m.x231 + 0.0294696*m.x232 + 0.0216055*m.x233 - 0.0119672*m.x234 + 0.00167869*m.x235 + 0.0241149*m.x236 + 0.0114238*m.x237 - 0.00749631*m.x238 + 0.0126919*m.x239 - 0.0182367*m.x240 + 0.00394727*m.x241 + 0.0421514*m.x242 + 0.00995652*m.x243 + 0.0111831*m.x244 + 0.0348799*m.x245 - 0.0140575*m.x246 + 0.00499481*m.x247 + 0.0422832*m.x248 - 9.41833E-5*m.x249 - 0.00625035*m.x250 + 0.0135275*m.x251 - 0.00389379*m.x252 + 0.0225012*m.x253 + 0.0108096*m.x254 + 0.0515904*m.x255 - 0.00645678*m.x256 - 0.0190381*m.x257 + 0.0138196*m.x258 - 0.0199045*m.x259 + 0.0230939*m.x260 + 0.0013091*m.x261 - 0.0175093*m.x262 + 0.0241302*m.x263 + 0.0125103*m.x264 + 0.0245635*m.x265 + 0.0207647*m.x266 - 0.0191503*m.x267 - 0.0052634*m.x268 + 0.00488365*m.x269 + 0.0136006*m.x270 - 0.00533096*m.x271 - 0.00725643*m.x272 + 0.0124666*m.x273 + 0.0367354*m.x274 + 0.0182457*m.x275 + 0.00576651*m.x276 + 0.0355746*m.x277 + 0.023712*m.x278 + 0.000684461*m.x279 - 0.00203509*m.x280 - 0.0114577*m.x281 - 0.0115916*m.x282 - 0.00776726*m.x283 - 0.010001*m.x284 + 0.000111057*m.x285 + 0.02061*m.x286 + 0.0103997*m.x287 + 0.000675373*m.x288 + 0.0130083*m.x289 + 0.00539703*m.x290 + 0.0194179*m.x291 - 0.0052549*m.x292 - 0.00625738*m.x293 - 2.9997E-5*m.x294 + 0.0241985*m.x295 - 0.00345471*m.x296 + 0.0232975*m.x297 - 0.00383232*m.x298 - 0.000654628*m.x299 + 0.00357173*m.x300 + 0.0350406*m.x301 + 0.00821698*m.x302 + 0.0156317*m.x303 == 0) m.c127 = Constraint(expr= - m.x22 + 0.01102*m.x204 + 0.0043452*m.x205 + 0.0104609*m.x206 + 0.00747915*m.x207 + 0.0108965*m.x208 - 0.00590063*m.x209 + 0.00819446*m.x210 - 0.0051429*m.x211 + 0.0122233*m.x212 + 0.0131072*m.x213 - 0.000233965*m.x214 + 0.00636244*m.x215 + 0.00895779*m.x216 - 0.0117391*m.x217 + 0.0118118*m.x218 - 0.00136425*m.x219 + 0.00488868*m.x220 - 0.00982187*m.x221 + 0.00548936*m.x222 + 0.0229683*m.x223 + 0.168624*m.x224 - 0.000890521*m.x225 + 0.0138206*m.x226 - 0.00374671*m.x227 + 0.0124036*m.x228 + 0.00691469*m.x229 - 0.00519726*m.x230 - 0.00149288*m.x231 - 0.000893904*m.x232 - 0.000827347*m.x233 - 0.00369803*m.x234 + 0.0131454*m.x235 + 0.00773376*m.x236 - 0.00297895*m.x237 + 0.0232383*m.x238 + 0.0229491*m.x239 - 0.00223419*m.x240 + 0.0203215*m.x241 + 0.00433463*m.x242 + 0.0171077*m.x243 - 0.0105983*m.x244 - 0.00372187*m.x245 - 0.00472458*m.x246 - 0.00195653*m.x247 + 0.000456614*m.x248 + 0.00971748*m.x249 + 0.0122344*m.x250 - 0.023887*m.x251 + 0.000162502*m.x252 + 0.00181967*m.x253 + 0.0068839*m.x254 + 0.00288958*m.x255 + 0.0206887*m.x256 + 0.00659477*m.x257 - 0.00192784*m.x258 + 0.00381282*m.x259 + 0.0130988*m.x260 + 0.0115547*m.x261 + 0.0146067*m.x262 + 0.0110104*m.x263 + 0.0023853*m.x264 + 0.00213944*m.x265 + 0.0115639*m.x266 - 0.00246673*m.x267 + 0.0109023*m.x268 + 0.00914522*m.x269 + 0.0180464*m.x270 - 0.00139956*m.x271 + 0.0063742*m.x272 - 0.0221093*m.x273 + 0.00993636*m.x274 + 0.0146925*m.x275 - 0.00160584*m.x276 - 0.00519309*m.x277 - 0.0141018*m.x278 + 0.0151075*m.x279 - 0.00436786*m.x280 + 0.00467861*m.x281 + 0.0232455*m.x282 - 0.00329331*m.x283 - 0.000366056*m.x284 + 0.0126412*m.x285 + 0.00320192*m.x286 - 0.0135153*m.x287 + 0.00126179*m.x288 + 0.00970953*m.x289 - 0.00278401*m.x290 - 0.0110477*m.x291 + 0.0147706*m.x292 + 0.00705238*m.x293 - 0.001978*m.x294 + 0.00955359*m.x295 + 0.0206419*m.x296 - 0.0195786*m.x297 + 0.0321854*m.x298 + 0.00830393*m.x299 + 0.0105133*m.x300 - 0.0266952*m.x301 + 0.00665696*m.x302 - 0.00571234*m.x303 == 0) m.c128 = Constraint(expr= - m.x23 - 0.000128201*m.x204 + 0.066289*m.x205 + 0.145949*m.x206 - 0.00773408*m.x207 + 0.0493937*m.x208 + 0.00118752*m.x209 + 0.0115835*m.x210 + 0.0194189*m.x211 - 0.0152003*m.x212 + 0.176793*m.x213 - 0.0053146*m.x214 - 0.0359516*m.x215 + 0.00895103*m.x216 + 0.0581007*m.x217 + 0.0252557*m.x218 + 0.0125858*m.x219 + 0.0163435*m.x220 + 0.00363825*m.x221 + 0.0134229*m.x222 + 0.0184159*m.x223 - 0.000890521*m.x224 + 0.417419*m.x225 - 0.00289826*m.x226 + 0.00185106*m.x227 - 0.00344161*m.x228 + 0.130367*m.x229 + 0.0228265*m.x230 + 0.0129488*m.x231 + 0.0412975*m.x232 + 0.0394092*m.x233 - 0.000460529*m.x234 + 0.0162175*m.x235 + 0.15033*m.x236 + 0.0103632*m.x237 + 0.0116646*m.x238 + 0.00710012*m.x239 + 0.0212804*m.x240 + 0.00852316*m.x241 - 0.0215388*m.x242 + 0.0180919*m.x243 + 0.0532482*m.x244 + 0.0406322*m.x245 - 0.0196231*m.x246 - 0.00111486*m.x247 + 0.086076*m.x248 + 0.00650857*m.x249 + 0.00551656*m.x250 + 0.0234501*m.x251 - 0.00551305*m.x252 + 0.00168255*m.x253 - 0.0062463*m.x254 + 0.00302148*m.x255 + 0.00339277*m.x256 + 0.00760958*m.x257 - 0.00714421*m.x258 + 0.020719*m.x259 + 0.013493*m.x260 + 0.00400814*m.x261 - 0.00800908*m.x262 + 0.0239775*m.x263 + 0.0023628*m.x264 + 0.041102*m.x265 + 0.0213565*m.x266 - 0.0313508*m.x267 + 0.0464899*m.x268 + 0.0119209*m.x269 - 0.00311277*m.x270 + 0.0170407*m.x271 + 0.00635872*m.x272 + 0.054717*m.x273 - 0.0107438*m.x274 + 0.00163408*m.x275 - 0.0203875*m.x276 - 0.00266029*m.x277 + 0.0137259*m.x278 + 0.0378261*m.x279 + 0.0152157*m.x280 + 0.0169622*m.x281 - 0.00218688*m.x282 + 0.0252382*m.x283 + 0.0510044*m.x284 + 0.0140353*m.x285 + 0.00976413*m.x286 + 0.0121898*m.x287 + 0.00257907*m.x288 + 0.00858432*m.x289 - 0.00136755*m.x290 + 0.031019*m.x291 + 0.0172111*m.x292 + 0.00272478*m.x293 - 0.000689796*m.x294 - 0.0132155*m.x295 - 0.0122813*m.x296 - 0.0179837*m.x297 - 0.0115174*m.x298 + 0.0545863*m.x299 + 0.0401891*m.x300 + 0.0297056*m.x301 + 0.00722685*m.x302 + 0.0243685*m.x303 == 0) m.c129 = Constraint(expr= - m.x24 + 0.0136055*m.x204 + 0.000519585*m.x205 - 0.0019853*m.x206 + 0.0277694*m.x207 + 0.0194761*m.x208 + 0.0146083*m.x209 - 0.00151625*m.x210 + 0.00807556*m.x211 + 0.0251098*m.x212 + 0.032372*m.x213 + 0.0128605*m.x214 - 0.00319962*m.x215 - 0.00232932*m.x216 + 0.00789376*m.x217 + 0.00017817*m.x218 + 0.0161206*m.x219 + 0.0224046*m.x220 + 0.0232675*m.x221 - 0.00565979*m.x222 + 0.0119588*m.x223 + 0.0138206*m.x224 - 0.00289826*m.x225 + 0.169013*m.x226 + 0.0220253*m.x227 + 0.0240871*m.x228 - 0.00322614*m.x229 + 0.0123559*m.x230 - 0.00108112*m.x231 + 0.00851439*m.x232 + 0.00888525*m.x233 + 0.0104685*m.x234 + 0.0294179*m.x235 + 0.00544491*m.x236 + 0.0403128*m.x237 + 0.019178*m.x238 + 0.0110456*m.x239 + 0.0039145*m.x240 + 0.0223593*m.x241 + 0.0170012*m.x242 + 0.0208848*m.x243 + 0.00735012*m.x244 + 0.038773*m.x245 + 0.0242748*m.x246 + 0.0111032*m.x247 - 0.00263182*m.x248 + 0.0168949*m.x249 + 0.0118048*m.x250 + 0.0540289*m.x251 + 0.0155506*m.x252 + 0.0101127*m.x253 + 0.0135526*m.x254 + 0.00456304*m.x255 + 0.00172033*m.x256 + 0.00174846*m.x257 + 0.0155517*m.x258 + 0.00739069*m.x259 + 0.0279297*m.x260 + 0.0501498*m.x261 + 0.00507925*m.x262 + 0.018196*m.x263 + 0.011861*m.x264 + 0.016458*m.x265 + 0.0113615*m.x266 - 0.00261119*m.x267 + 0.0194988*m.x268 + 0.0159019*m.x269 + 0.0101301*m.x270 + 0.00719955*m.x271 + 0.00758332*m.x272 + 0.00284196*m.x273 - 0.00558828*m.x274 + 0.0130101*m.x275 + 0.00531061*m.x276 + 0.0106016*m.x277 + 0.0218053*m.x278 + 0.0181907*m.x279 + 0.00963458*m.x280 + 0.00597376*m.x281 + 0.00648587*m.x282 + 0.0276238*m.x283 + 0.0170493*m.x284 + 0.00242329*m.x285 - 0.0146684*m.x286 + 0.0212922*m.x287 + 0.0327354*m.x288 + 0.0202473*m.x289 + 0.0242836*m.x290 + 0.00470611*m.x291 + 0.0256701*m.x292 + 0.0286405*m.x293 + 0.00175624*m.x294 + 0.00904265*m.x295 + 0.0101954*m.x296 + 0.00334169*m.x297 + 0.0120672*m.x298 - 0.00247613*m.x299 + 0.00811643*m.x300 + 0.00451179*m.x301 + 0.0116179*m.x302 + 0.0132863*m.x303 == 0) m.c130 = Constraint(expr= - m.x25 - 0.00847303*m.x204 - 0.00046168*m.x205 - 0.00879835*m.x206 + 0.00589594*m.x207 + 0.00935395*m.x208 + 0.00976886*m.x209 - 0.0108978*m.x210 + 0.014474*m.x211 + 0.00797425*m.x212 - 0.0206317*m.x213 + 0.00379938*m.x214 - 0.00863008*m.x215 + 0.00177054*m.x216 + 0.0404865*m.x217 - 0.0141893*m.x218 + 0.00886365*m.x219 + 0.0114776*m.x220 - 0.000296286*m.x221 + 0.087054*m.x222 + 0.0106382*m.x223 - 0.00374671*m.x224 + 0.00185106*m.x225 + 0.0220253*m.x226 + 0.205934*m.x227 + 0.0290006*m.x228 - 0.00265519*m.x229 - 0.00469608*m.x230 + 0.0117576*m.x231 - 0.00041031*m.x232 + 0.0142087*m.x233 + 0.00223982*m.x234 + 0.00329632*m.x235 + 0.00133736*m.x236 + 0.012366*m.x237 + 0.018724*m.x238 + 0.0082014*m.x239 + 0.0129307*m.x240 + 0.0126422*m.x241 + 0.0488014*m.x242 + 0.0119438*m.x243 + 0.0120642*m.x244 + 0.0054971*m.x245 + 0.0104361*m.x246 + 0.00451121*m.x247 - 0.0148276*m.x248 + 0.00531801*m.x249 + 0.00527699*m.x250 + 0.00749425*m.x251 + 0.00218243*m.x252 + 0.00995275*m.x253 + 0.0138831*m.x254 + 0.0179012*m.x255 + 0.00828721*m.x256 + 0.00342253*m.x257 + 0.0144765*m.x258 + 0.030732*m.x259 + 0.0159408*m.x260 + 0.00458005*m.x261 - 0.0105654*m.x262 - 0.0022915*m.x263 + 0.0289602*m.x264 + 0.0145756*m.x265 + 4.79134E-5*m.x266 - 0.00267369*m.x267 + 0.00284388*m.x268 + 0.00640165*m.x269 + 0.00361398*m.x270 + 0.0012624*m.x271 + 0.000823775*m.x272 - 0.00175507*m.x273 + 0.00806781*m.x274 - 0.00744934*m.x275 + 0.00473186*m.x276 + 0.0148345*m.x277 + 0.0291503*m.x278 + 0.0126589*m.x279 + 0.00774713*m.x280 - 0.00678133*m.x281 - 0.000483346*m.x282 + 0.00185776*m.x283 + 0.0211536*m.x284 - 0.00255587*m.x285 - 0.00832251*m.x286 + 0.00243227*m.x287 + 0.000359588*m.x288 + 0.0204891*m.x289 + 0.0292669*m.x290 + 0.0163439*m.x291 - 0.00379038*m.x292 - 0.00181686*m.x293 + 0.0125924*m.x294 + 0.0294016*m.x295 + 0.014454*m.x296 + 0.00907196*m.x297 - 0.0155799*m.x298 - 0.000311276*m.x299 + 0.0367786*m.x300 - 0.0255962*m.x301 + 0.0136226*m.x302 + 0.0209203*m.x303 == 0) m.c131 = Constraint(expr= - m.x26 + 0.00772976*m.x204 + 0.00154905*m.x205 - 0.0114691*m.x206 + 0.00860339*m.x207 + 0.00691311*m.x208 + 0.0122717*m.x209 + 0.00119563*m.x210 - 0.00996885*m.x211 + 0.00371891*m.x212 + 0.0116962*m.x213 + 0.0202337*m.x214 + 0.0341934*m.x215 + 0.0136257*m.x216 + 0.0065787*m.x217 + 0.0154338*m.x218 + 0.00490282*m.x219 + 0.0147622*m.x220 + 0.0476329*m.x221 + 0.0466708*m.x222 - 0.000494992*m.x223 + 0.0124036*m.x224 - 0.00344161*m.x225 + 0.0240871*m.x226 + 0.0290006*m.x227 + 0.165225*m.x228 - 0.00824969*m.x229 - 0.00255141*m.x230 + 0.0167987*m.x231 + 0.0266266*m.x232 + 0.00715524*m.x233 + 0.0182101*m.x234 + 0.0126245*m.x235 - 0.0157858*m.x236 + 0.0116227*m.x237 + 0.00350129*m.x238 - 0.00059745*m.x239 + 0.0252965*m.x240 + 0.0251092*m.x241 - 0.00438159*m.x242 + 0.00928707*m.x243 + 0.013037*m.x244 - 0.00212582*m.x245 - 0.00808877*m.x246 + 0.00365229*m.x247 + 0.00411288*m.x248 + 0.00931093*m.x249 + 0.0122374*m.x250 + 0.022339*m.x251 + 0.0160754*m.x252 + 0.00927056*m.x253 - 0.00153332*m.x254 - 0.00274677*m.x255 + 0.011526*m.x256 + 9.44861E-5*m.x257 + 0.0205903*m.x258 + 0.0219997*m.x259 + 0.0126357*m.x260 + 0.0335534*m.x261 + 0.009157*m.x262 + 0.0103454*m.x263 + 0.00485118*m.x264 + 0.0191232*m.x265 + 0.0224758*m.x266 + 0.00227773*m.x267 + 0.00710476*m.x268 + 0.00283558*m.x269 - 0.00150208*m.x270 + 0.0113113*m.x271 + 0.0160374*m.x272 + 0.0206604*m.x273 + 0.0321612*m.x274 + 0.0164707*m.x275 - 0.00467826*m.x276 + 0.0091414*m.x277 + 0.019493*m.x278 - 0.00130846*m.x279 + 0.00402512*m.x280 + 0.0148477*m.x281 + 0.00831527*m.x282 - 0.00269199*m.x283 - 0.00146575*m.x284 + 0.00519983*m.x285 + 0.00563734*m.x286 - 0.0022015*m.x287 + 0.0164738*m.x288 + 0.0095043*m.x289 + 0.0194659*m.x290 + 0.00940805*m.x291 - 0.00459271*m.x292 + 0.00697339*m.x293 - 0.00111199*m.x294 - 0.0171837*m.x295 + 0.00427236*m.x296 - 0.0133342*m.x297 + 0.0159789*m.x298 + 0.0137361*m.x299 + 0.00616904*m.x300 - 0.0154329*m.x301 + 0.000498937*m.x302 + 0.0264262*m.x303 == 0) m.c132 = Constraint(expr= - m.x27 - 0.0295372*m.x204 + 0.0654627*m.x205 + 0.183686*m.x206 - 0.0245255*m.x207 + 0.00811154*m.x208 + 0.015996*m.x209 + 0.00380145*m.x210 + 0.0499867*m.x211 - 0.00148049*m.x212 + 0.0856918*m.x213 + 0.0295931*m.x214 - 0.0214998*m.x215 + 0.0032049*m.x216 + 0.0280359*m.x217 + 0.0334612*m.x218 + 0.00283525*m.x219 + 0.0168803*m.x220 - 0.0197181*m.x221 - 0.021498*m.x222 + 0.0131696*m.x223 + 0.00691469*m.x224 + 0.130367*m.x225 - 0.00322614*m.x226 - 0.00265519*m.x227 - 0.00824969*m.x228 + 0.298039*m.x229 + 0.0146416*m.x230 - 0.0165239*m.x231 + 0.0375322*m.x232 + 0.00943115*m.x233 + 0.0238879*m.x234 + 0.00785478*m.x235 + 0.0940611*m.x236 + 0.0163858*m.x237 - 0.0339757*m.x238 + 0.00813864*m.x239 + 0.0259598*m.x240 + 0.00820718*m.x241 - 0.00872187*m.x242 - 0.000343349*m.x243 + 0.0493071*m.x244 + 0.0191453*m.x245 + 0.000222699*m.x246 - 0.00906245*m.x247 + 0.0126082*m.x248 - 0.0137446*m.x249 - 0.00568651*m.x250 - 0.00050512*m.x251 + 0.00295003*m.x252 + 0.0130362*m.x253 - 0.0100498*m.x254 + 0.0373415*m.x255 + 0.00554618*m.x256 + 0.0074701*m.x257 - 0.00778581*m.x258 + 0.0251306*m.x259 - 0.00245187*m.x260 - 0.00390438*m.x261 - 0.0316484*m.x262 + 0.0136876*m.x263 - 0.000726206*m.x264 + 0.0163476*m.x265 + 0.00918681*m.x266 - 0.0125721*m.x267 + 0.0319031*m.x268 + 0.0180154*m.x269 - 0.00293849*m.x270 + 0.0370056*m.x271 - 0.0102022*m.x272 + 0.0059304*m.x273 + 0.00317033*m.x274 - 0.00173148*m.x275 - 0.00926362*m.x276 - 0.0118778*m.x277 - 0.0065822*m.x278 + 0.00460217*m.x279 + 0.0200371*m.x280 + 0.0155593*m.x281 - 0.0144053*m.x282 - 0.0110697*m.x283 + 0.0217421*m.x284 + 0.0203773*m.x285 + 0.00705351*m.x286 + 0.0171599*m.x287 - 0.001325*m.x288 + 0.00618414*m.x289 - 0.010655*m.x290 + 0.0287315*m.x291 + 0.0267179*m.x292 - 0.0133302*m.x293 - 0.00269826*m.x294 - 0.0321221*m.x295 + 0.0256948*m.x296 - 0.0250774*m.x297 - 0.00835702*m.x298 + 0.0620713*m.x299 + 0.0267618*m.x300 + 0.00732044*m.x301 + 0.0133219*m.x302 + 0.0208839*m.x303 == 0) m.c133 = Constraint(expr= - m.x28 - 0.00761416*m.x204 + 0.0180154*m.x205 + 0.0420925*m.x206 - 0.0103474*m.x207 + 0.0217094*m.x208 + 0.0262883*m.x209 + 0.01388*m.x210 - 0.0180156*m.x211 + 0.0193177*m.x212 + 0.0056902*m.x213 + 0.00286184*m.x214 - 0.00165983*m.x215 + 0.00927708*m.x216 + 0.0284398*m.x217 + 0.00975344*m.x218 + 0.00573587*m.x219 - 0.0149916*m.x220 + 0.0069109*m.x221 + 0.0145096*m.x222 + 0.000986151*m.x223 - 0.00519726*m.x224 + 0.0228265*m.x225 + 0.0123559*m.x226 - 0.00469608*m.x227 - 0.00255141*m.x228 + 0.0146416*m.x229 + 0.181643*m.x230 + 0.00593554*m.x231 + 0.0123054*m.x232 + 0.0131968*m.x233 + 0.00359959*m.x234 + 0.0208179*m.x235 + 0.00164146*m.x236 + 0.0220766*m.x237 + 0.0271537*m.x238 + 0.00684948*m.x239 + 0.00794658*m.x240 + 0.00864852*m.x241 - 0.00387113*m.x242 + 0.00676815*m.x243 + 0.0107582*m.x244 + 0.0282272*m.x245 + 0.00730286*m.x246 - 0.0033586*m.x247 + 0.0351761*m.x248 + 0.00249494*m.x249 + 0.0142173*m.x250 - 0.00543891*m.x251 - 0.00806152*m.x252 + 0.00341299*m.x253 - 0.00785713*m.x254 + 0.00317892*m.x255 + 0.0107528*m.x256 - 0.00906739*m.x257 + 0.00425862*m.x258 + 0.00867625*m.x259 - 0.0023455*m.x260 + 0.00967889*m.x261 + 0.00396363*m.x262 + 0.0431392*m.x263 + 0.0248388*m.x264 + 0.0208145*m.x265 - 0.0164721*m.x266 - 0.0223038*m.x267 + 0.0536968*m.x268 + 0.0222226*m.x269 - 0.00759212*m.x270 - 0.0161031*m.x271 - 0.00658237*m.x272 + 0.000576553*m.x273 + 0.00804996*m.x274 - 0.00609273*m.x275 + 0.00484259*m.x276 + 0.0142463*m.x277 + 0.00113796*m.x278 + 0.0109937*m.x279 + 0.0229961*m.x280 + 0.0124417*m.x281 + 0.0367225*m.x282 - 0.0100286*m.x283 + 0.0358544*m.x284 + 0.00154206*m.x285 - 0.00258881*m.x286 + 0.0316383*m.x287 + 0.0170355*m.x288 + 0.000376344*m.x289 + 0.0139374*m.x290 + 0.0275472*m.x291 + 0.0215472*m.x292 + 0.00487961*m.x293 + 0.00165055*m.x294 - 0.00879465*m.x295 - 0.00601501*m.x296 - 0.0151708*m.x297 + 0.0709325*m.x298 + 0.0366289*m.x299 + 0.000218956*m.x300 + 0.0460118*m.x301 + 0.0341929*m.x302 - 0.00140343*m.x303 == 0) m.c134 = Constraint(expr= - m.x29 - 4.24721E-5*m.x204 + 0.00649144*m.x205 + 0.0250886*m.x206 + 0.0274283*m.x207 + 0.00509551*m.x208 + 0.0364425*m.x209 + 0.018817*m.x210 + 0.0369786*m.x211 + 0.050764*m.x212 + 0.00180131*m.x213 + 0.0124339*m.x214 + 0.011631*m.x215 + 0.0260767*m.x216 + 0.0143595*m.x217 - 0.00119135*m.x218 + 0.00932407*m.x219 - 0.0110861*m.x220 - 0.0189482*m.x221 + 0.0191174*m.x222 + 0.0141038*m.x223 - 0.00149288*m.x224 + 0.0129488*m.x225 - 0.00108112*m.x226 + 0.0117576*m.x227 + 0.0167987*m.x228 - 0.0165239*m.x229 + 0.00593554*m.x230 + 0.260779*m.x231 - 0.0113531*m.x232 + 0.018462*m.x233 + 0.0575173*m.x234 + 0.0068875*m.x235 + 0.00143503*m.x236 + 0.00410057*m.x237 + 0.00810772*m.x238 + 0.0103469*m.x239 + 0.0289389*m.x240 + 0.0184668*m.x241 + 0.0107871*m.x242 + 0.00920594*m.x243 + 0.0213098*m.x244 - 0.00379119*m.x245 + 0.0175626*m.x246 + 0.00298817*m.x247 + 0.0054897*m.x248 + 0.00838146*m.x249 + 0.00738842*m.x250 + 0.0443024*m.x251 - 0.00363873*m.x252 - 0.0276809*m.x253 + 0.00664334*m.x254 + 0.00813124*m.x255 + 0.00525742*m.x256 + 0.015111*m.x257 + 0.0266351*m.x258 + 0.0408723*m.x259 - 0.000700731*m.x260 + 0.00840972*m.x261 + 0.00252738*m.x262 + 0.0676544*m.x263 + 0.01361*m.x264 + 0.010551*m.x265 - 0.00205468*m.x266 - 0.00837042*m.x267 + 0.0198054*m.x268 + 0.0122407*m.x269 + 0.00412582*m.x270 + 0.0114679*m.x271 + 0.0149085*m.x272 + 0.00320993*m.x273 + 0.00437204*m.x274 + 0.0185225*m.x275 + 0.00426479*m.x276 - 0.0182268*m.x277 + 0.0156633*m.x278 - 0.0108916*m.x279 + 0.0130582*m.x280 + 0.00465652*m.x281 - 0.000979902*m.x282 + 0.0258383*m.x283 + 0.045075*m.x284 + 0.0236369*m.x285 + 0.0486461*m.x286 + 0.0157696*m.x287 + 0.0196175*m.x288 + 0.00775608*m.x289 + 0.00139924*m.x290 + 0.000402288*m.x291 - 0.000836245*m.x292 + 0.00367641*m.x293 - 0.0247945*m.x294 + 0.00750897*m.x295 + 0.00220324*m.x296 + 0.00583633*m.x297 + 0.00119846*m.x298 - 0.0223825*m.x299 + 0.030938*m.x300 + 0.0193729*m.x301 + 0.0100684*m.x302 + 0.00790278*m.x303 == 0) m.c135 = Constraint(expr= - m.x30 - 0.00459597*m.x204 + 0.147396*m.x205 + 0.138133*m.x206 + 0.0223035*m.x207 + 0.0102365*m.x208 + 0.0587967*m.x209 + 0.00271468*m.x210 - 0.0326873*m.x211 - 0.0288765*m.x212 + 0.0296162*m.x213 + 0.031981*m.x214 - 0.00843246*m.x215 - 0.0166592*m.x216 - 0.00772267*m.x217 + 0.0146337*m.x218 + 0.0232678*m.x219 + 0.00928934*m.x220 + 0.0041263*m.x221 + 0.0170116*m.x222 + 0.0294696*m.x223 - 0.000893904*m.x224 + 0.0412975*m.x225 + 0.00851439*m.x226 - 0.00041031*m.x227 + 0.0266266*m.x228 + 0.0375322*m.x229 + 0.0123054*m.x230 - 0.0113531*m.x231 + 0.480672*m.x232 + 0.000623588*m.x233 + 0.0310361*m.x234 - 0.011947*m.x235 + 0.0559217*m.x236 - 6.19624E-5*m.x237 - 0.0111159*m.x238 + 0.00214151*m.x239 - 0.00311936*m.x240 + 0.0198678*m.x241 - 0.0274884*m.x242 - 0.00536695*m.x243 - 0.00621657*m.x244 + 0.00759718*m.x245 - 0.0114733*m.x246 + 0.00536671*m.x247 + 0.00229741*m.x248 - 0.000669481*m.x249 + 0.0101225*m.x250 + 0.00629643*m.x251 + 0.00338529*m.x252 + 0.00481268*m.x253 + 0.00636725*m.x254 + 0.0177429*m.x255 - 0.00438567*m.x256 - 0.00680131*m.x257 + 0.0104672*m.x258 - 0.00397893*m.x259 - 0.00363432*m.x260 + 0.0101807*m.x261 - 0.0100285*m.x262 + 0.0068697*m.x263 + 0.0418921*m.x264 - 0.00534991*m.x265 - 0.0119127*m.x266 - 0.00152064*m.x267 + 0.0221966*m.x268 + 0.0135936*m.x269 + 0.0218822*m.x270 - 0.0103847*m.x271 + 0.0192043*m.x272 + 0.00830569*m.x273 - 0.00295904*m.x274 - 0.0141201*m.x275 + 0.000576517*m.x276 + 0.0218241*m.x277 + 0.0288367*m.x278 + 0.00589724*m.x279 + 0.00723834*m.x280 - 0.0101934*m.x281 + 0.0299367*m.x282 - 0.00142157*m.x283 + 0.0157699*m.x284 - 0.00224841*m.x285 - 0.000196592*m.x286 - 0.00344939*m.x287 + 0.00552353*m.x288 - 0.00394771*m.x289 + 0.0357841*m.x290 + 0.00160462*m.x291 + 0.0130927*m.x292 + 0.00657462*m.x293 + 0.0120928*m.x294 + 0.00756116*m.x295 + 0.00893784*m.x296 - 0.00747816*m.x297 + 0.00341049*m.x298 + 0.104347*m.x299 + 0.0194493*m.x300 - 0.00520844*m.x301 + 0.00369624*m.x302 + 0.0310417*m.x303 == 0) m.c136 = Constraint(expr= - m.x31 + 0.00232022*m.x204 + 0.0126159*m.x205 + 0.0278877*m.x206 + 0.0237512*m.x207 + 0.0598964*m.x208 + 0.00678878*m.x209 + 0.0130573*m.x210 - 0.00929421*m.x211 - 0.000566519*m.x212 + 0.0209429*m.x213 + 0.0177141*m.x214 + 0.0122534*m.x215 + 0.0328492*m.x216 + 0.0146342*m.x217 + 0.0371631*m.x218 + 0.0251057*m.x219 + 0.00769503*m.x220 - 0.00884186*m.x221 + 0.0266201*m.x222 + 0.0216055*m.x223 - 0.000827347*m.x224 + 0.0394092*m.x225 + 0.00888525*m.x226 + 0.0142087*m.x227 + 0.00715524*m.x228 + 0.00943115*m.x229 + 0.0131968*m.x230 + 0.018462*m.x231 + 0.000623588*m.x232 + 0.137262*m.x233 - 0.000370023*m.x234 + 0.0232111*m.x235 + 0.0166258*m.x236 + 0.0140534*m.x237 + 0.0279772*m.x238 + 0.0139362*m.x239 + 0.0114782*m.x240 + 0.0271294*m.x241 + 0.0231833*m.x242 + 0.0144716*m.x243 + 0.00178633*m.x244 + 0.0573692*m.x245 + 0.0552261*m.x246 + 0.0161599*m.x247 + 0.00526805*m.x248 + 0.00015225*m.x249 + 0.0278298*m.x250 + 0.0489272*m.x251 + 0.0300688*m.x252 + 0.0188471*m.x253 + 0.00180223*m.x254 + 0.0269342*m.x255 + 0.0137397*m.x256 + 0.00116831*m.x257 + 0.00270328*m.x258 + 0.0137686*m.x259 + 0.017504*m.x260 + 0.0185947*m.x261 - 0.0233244*m.x262 + 0.00418422*m.x263 + 0.0090785*m.x264 + 0.00995839*m.x265 + 0.0128665*m.x266 + 0.00262393*m.x267 + 0.0238425*m.x268 + 0.0205163*m.x269 + 0.000443199*m.x270 + 0.0116392*m.x271 + 0.0183888*m.x272 + 0.0157507*m.x273 + 0.011888*m.x274 + 0.0342241*m.x275 + 0.00771843*m.x276 + 0.021456*m.x277 + 0.0151258*m.x278 + 0.0375829*m.x279 + 0.0243902*m.x280 + 0.0306235*m.x281 + 0.0131912*m.x282 - 0.00933997*m.x283 + 0.0198755*m.x284 + 0.0218691*m.x285 + 0.01283*m.x286 + 0.0304352*m.x287 + 0.0336786*m.x288 + 0.00419472*m.x289 + 0.0326227*m.x290 + 0.0179917*m.x291 + 0.00648866*m.x292 + 0.00140866*m.x293 + 0.00503874*m.x294 + 0.010448*m.x295 + 0.0187694*m.x296 - 0.0111273*m.x297 + 0.013655*m.x298 + 0.0137759*m.x299 + 0.0225411*m.x300 - 0.0033488*m.x301 + 0.031476*m.x302 + 0.0123762*m.x303 == 0) m.c137 = Constraint(expr= - m.x32 + 0.0509778*m.x204 + 0.0114801*m.x205 + 0.0545798*m.x206 + 0.0068636*m.x207 + 0.000151401*m.x208 + 0.0132248*m.x209 - 0.00937181*m.x210 + 0.00932232*m.x211 - 0.00504625*m.x212 - 0.00927325*m.x213 + 0.0133593*m.x214 + 0.0201667*m.x215 + 0.0117288*m.x216 + 0.00596413*m.x217 + 0.0038431*m.x218 - 0.0131257*m.x219 - 0.0267594*m.x220 + 0.000265289*m.x221 - 0.00457471*m.x222 - 0.0119672*m.x223 - 0.00369803*m.x224 - 0.000460529*m.x225 + 0.0104685*m.x226 + 0.00223982*m.x227 + 0.0182101*m.x228 + 0.0238879*m.x229 + 0.00359959*m.x230 + 0.0575173*m.x231 + 0.0310361*m.x232 - 0.000370023*m.x233 + 0.533349*m.x234 + 0.0257786*m.x235 - 0.00098694*m.x236 + 0.0558495*m.x237 + 0.0276478*m.x238 - 0.00168632*m.x239 + 0.0152586*m.x240 + 0.00483299*m.x241 + 0.047323*m.x242 + 0.0195771*m.x243 - 0.000954098*m.x244 - 0.00045278*m.x245 - 0.00389567*m.x246 - 0.0062901*m.x247 + 0.0361137*m.x248 + 0.00188213*m.x249 + 0.0105383*m.x250 + 0.0312435*m.x251 + 0.00612172*m.x252 + 0.02564*m.x253 - 0.00360195*m.x254 + 0.0141086*m.x255 + 0.0367283*m.x256 + 0.00320485*m.x257 - 0.0033721*m.x258 + 0.0182858*m.x259 - 0.0042177*m.x260 - 0.00092753*m.x261 + 0.00894155*m.x262 + 0.0454908*m.x263 + 0.0349551*m.x264 + 0.0343384*m.x265 + 0.00879992*m.x266 - 0.00543751*m.x267 + 0.04327*m.x268 + 0.0141045*m.x269 - 0.00442873*m.x270 + 0.0329931*m.x271 + 0.00515876*m.x272 - 0.0196528*m.x273 - 0.0113905*m.x274 + 0.0445692*m.x275 + 0.00858179*m.x276 + 0.00833241*m.x277 - 0.00293272*m.x278 + 0.00601459*m.x279 + 0.00788825*m.x280 + 0.00317889*m.x281 - 0.00540247*m.x282 + 0.016911*m.x283 + 0.0317363*m.x284 + 0.00773321*m.x285 + 0.016704*m.x286 - 0.0141682*m.x287 + 0.0109291*m.x288 + 0.00776229*m.x289 - 0.0170139*m.x290 - 0.00984516*m.x291 + 0.00481705*m.x292 - 0.0055852*m.x293 - 0.00360636*m.x294 - 0.000266747*m.x295 + 0.00272322*m.x296 - 0.0135944*m.x297 - 0.0102535*m.x298 + 0.0378678*m.x299 - 0.0155415*m.x300 + 0.00593378*m.x301 + 0.012364*m.x302 + 0.0241458*m.x303 == 0) m.c138 = Constraint(expr= - m.x33 - 0.0156482*m.x204 + 0.00607166*m.x205 - 0.0090554*m.x206 + 0.0216305*m.x207 + 0.0314895*m.x208 + 0.0117136*m.x209 + 0.0135407*m.x210 - 0.00128122*m.x211 - 0.0193402*m.x212 + 0.0316756*m.x213 + 0.0484803*m.x214 + 0.0115615*m.x215 + 0.0189044*m.x216 + 0.000301534*m.x217 + 0.0207029*m.x218 + 0.00951519*m.x219 + 0.0083944*m.x220 + 0.0138006*m.x221 + 0.0324415*m.x222 + 0.00167869*m.x223 + 0.0131454*m.x224 + 0.0162175*m.x225 + 0.0294179*m.x226 + 0.00329632*m.x227 + 0.0126245*m.x228 + 0.00785478*m.x229 + 0.0208179*m.x230 + 0.0068875*m.x231 - 0.011947*m.x232 + 0.0232111*m.x233 + 0.0257786*m.x234 + 0.257028*m.x235 + 0.0147429*m.x236 + 0.00827753*m.x237 + 0.0183637*m.x238 + 0.0108656*m.x239 + 0.0158994*m.x240 + 0.0222541*m.x241 + 0.0149035*m.x242 + 0.00955212*m.x243 + 0.0478221*m.x244 + 0.0176484*m.x245 + 0.00428146*m.x246 + 0.0067698*m.x247 + 0.00746688*m.x248 + 0.0224318*m.x249 + 0.00853378*m.x250 + 0.00553395*m.x251 + 0.0306636*m.x252 + 0.0264708*m.x253 + 0.0366567*m.x254 - 0.00105083*m.x255 + 0.00408317*m.x256 - 0.0130126*m.x257 + 0.00691299*m.x258 + 0.0230993*m.x259 + 0.0192279*m.x260 + 0.0119446*m.x261 + 0.0224351*m.x262 + 0.022391*m.x263 + 0.0160624*m.x264 - 0.00427316*m.x265 + 0.00900964*m.x266 - 0.00432735*m.x267 + 0.0397561*m.x268 + 0.00466481*m.x269 + 0.0123178*m.x270 + 0.0294165*m.x271 + 0.00210584*m.x272 + 0.0156664*m.x273 + 0.0141543*m.x274 + 0.00715561*m.x275 + 0.0136809*m.x276 + 0.000970616*m.x277 + 0.0221044*m.x278 + 0.0127205*m.x279 + 0.0153277*m.x280 + 0.0189992*m.x281 + 0.0023179*m.x282 + 0.0192297*m.x283 + 0.0186293*m.x284 + 0.0497975*m.x285 + 0.00488326*m.x286 + 0.0420958*m.x287 + 0.0926409*m.x288 - 0.000832904*m.x289 + 0.00842344*m.x290 + 0.0178015*m.x291 - 0.00668788*m.x292 + 0.00142361*m.x293 + 0.0199408*m.x294 + 0.030029*m.x295 - 0.000706121*m.x296 + 0.0120762*m.x297 + 0.0417235*m.x298 + 0.0169276*m.x299 + 0.0024374*m.x300 - 0.0096037*m.x301 + 0.00722129*m.x302 + 0.018823*m.x303 == 0) m.c139 = Constraint(expr= - m.x34 + 0.0162671*m.x204 + 0.0404381*m.x205 + 0.138583*m.x206 - 0.00303771*m.x207 + 0.0222037*m.x208 - 0.00958286*m.x209 - 0.00205201*m.x210 + 0.0044504*m.x211 - 0.012241*m.x212 + 0.155782*m.x213 - 0.00479808*m.x214 - 0.0151645*m.x215 - 0.0303469*m.x216 + 0.0135036*m.x217 + 0.0204577*m.x218 + 0.00418042*m.x219 + 0.0302366*m.x220 - 0.00190656*m.x221 - 0.0197364*m.x222 + 0.0241149*m.x223 + 0.00773376*m.x224 + 0.15033*m.x225 + 0.00544491*m.x226 + 0.00133736*m.x227 - 0.0157858*m.x228 + 0.0940611*m.x229 + 0.00164146*m.x230 + 0.00143503*m.x231 + 0.0559217*m.x232 + 0.0166258*m.x233 - 0.00098694*m.x234 + 0.0147429*m.x235 + 0.333103*m.x236 + 0.00824671*m.x237 + 0.0501698*m.x238 + 0.000271976*m.x239 + 0.0187592*m.x240 + 0.013158*m.x241 - 0.00871004*m.x242 + 0.00801758*m.x243 + 0.0116152*m.x244 + 0.030594*m.x245 + 0.0215083*m.x246 - 0.000673256*m.x247 - 0.00492434*m.x248 - 0.00146448*m.x249 + 0.00882459*m.x250 + 0.0565808*m.x251 - 0.00265594*m.x252 - 0.0131072*m.x253 - 0.0185973*m.x254 + 0.00879757*m.x255 - 0.00320472*m.x256 - 0.0046504*m.x257 - 0.0112877*m.x258 + 0.0388425*m.x259 - 0.00375455*m.x260 + 1.76484E-5*m.x261 + 0.0261447*m.x262 + 0.0421239*m.x263 - 0.00545796*m.x264 + 0.0164325*m.x265 + 0.00365749*m.x266 - 0.0388477*m.x267 + 0.0381643*m.x268 + 0.0228523*m.x269 + 0.012621*m.x270 + 0.032511*m.x271 + 0.0106022*m.x272 + 0.0149868*m.x273 - 0.00272959*m.x274 - 0.0084707*m.x275 - 0.016164*m.x276 + 0.0222678*m.x277 - 0.0154847*m.x278 + 0.00339709*m.x279 + 0.0202853*m.x280 - 0.0276747*m.x281 + 0.00131595*m.x282 - 0.0112676*m.x283 + 0.0194651*m.x284 - 0.000432208*m.x285 + 0.00548514*m.x286 + 0.0171493*m.x287 + 0.0191037*m.x288 + 0.00214285*m.x289 + 0.0066923*m.x290 - 0.0250217*m.x291 + 0.0258152*m.x292 - 0.00246468*m.x293 + 0.0138925*m.x294 + 0.00427117*m.x295 + 0.0100517*m.x296 - 0.0267599*m.x297 - 0.00630875*m.x298 + 0.00112457*m.x299 + 0.0190696*m.x300 + 0.0196793*m.x301 + 0.0119806*m.x302 + 0.0371377*m.x303 == 0) m.c140 = Constraint(expr= - m.x35 - 0.0132302*m.x204 - 0.00899911*m.x205 + 0.0150959*m.x206 + 0.0013176*m.x207 + 0.0226771*m.x208 + 0.059318*m.x209 + 0.0110361*m.x210 + 0.0154868*m.x211 + 0.0162554*m.x212 + 0.0111882*m.x213 + 0.04212*m.x214 + 0.00572447*m.x215 - 0.00624871*m.x216 + 0.0145204*m.x217 - 0.0031074*m.x218 + 0.010377*m.x219 + 0.0261893*m.x220 + 0.0186477*m.x221 + 0.00358424*m.x222 + 0.0114238*m.x223 - 0.00297895*m.x224 + 0.0103632*m.x225 + 0.0403128*m.x226 + 0.012366*m.x227 + 0.0116227*m.x228 + 0.0163858*m.x229 + 0.0220766*m.x230 + 0.00410057*m.x231 - 6.19624E-5*m.x232 + 0.0140534*m.x233 + 0.0558495*m.x234 + 0.00827753*m.x235 + 0.00824671*m.x236 + 0.391729*m.x237 + 0.0264733*m.x238 + 0.0134141*m.x239 - 0.00225583*m.x240 + 0.0317362*m.x241 - 0.00594899*m.x242 + 0.0316434*m.x243 + 0.00798554*m.x244 + 0.020323*m.x245 + 0.00080856*m.x246 + 0.0158673*m.x247 + 0.0139875*m.x248 + 0.00964636*m.x249 + 0.0135777*m.x250 + 0.0103222*m.x251 + 0.00664455*m.x252 + 0.0426453*m.x253 + 0.014965*m.x254 - 0.0255534*m.x255 + 0.0104359*m.x256 + 0.0058258*m.x257 + 0.0144468*m.x258 + 0.012515*m.x259 + 0.00320118*m.x260 - 0.000227592*m.x261 + 0.0223779*m.x262 + 0.00773196*m.x263 + 0.00267723*m.x264 - 0.00201299*m.x265 + 0.0224861*m.x266 - 0.0272888*m.x267 + 0.0102053*m.x268 + 0.00464414*m.x269 + 0.0165262*m.x270 + 0.0099305*m.x271 + 0.000867918*m.x272 + 0.00439394*m.x273 + 0.0178982*m.x274 + 0.0495734*m.x275 + 0.00617492*m.x276 + 0.0124231*m.x277 + 0.0252473*m.x278 + 0.058582*m.x279 + 0.00629356*m.x280 - 0.001499*m.x281 + 0.0143475*m.x282 - 0.00386864*m.x283 + 0.00970643*m.x284 + 0.0171804*m.x285 - 0.0153224*m.x286 + 0.00145169*m.x287 + 0.0165018*m.x288 + 0.0080802*m.x289 + 0.0297617*m.x290 + 0.00416104*m.x291 + 0.00696121*m.x292 - 0.00477706*m.x293 + 0.024389*m.x294 + 0.0151776*m.x295 - 0.00263518*m.x296 - 0.0223564*m.x297 + 0.00104505*m.x298 + 0.0433625*m.x299 + 0.00802342*m.x300 + 0.0485713*m.x301 + 0.0032333*m.x302 + 0.0332113*m.x303 == 0) m.c141 = Constraint(expr= - m.x36 + 0.0250776*m.x204 - 0.00165809*m.x205 + 0.0162039*m.x206 + 0.0157544*m.x207 + 0.0271938*m.x208 + 0.0162948*m.x209 - 0.00849477*m.x210 - 0.00246393*m.x211 - 0.0167425*m.x212 + 0.0301704*m.x213 + 0.0157963*m.x214 - 0.000867997*m.x215 - 0.00552184*m.x216 + 0.0624288*m.x217 + 0.0124183*m.x218 + 0.00594827*m.x219 + 0.013525*m.x220 + 0.0209328*m.x221 - 0.0174047*m.x222 - 0.00749631*m.x223 + 0.0232383*m.x224 + 0.0116646*m.x225 + 0.019178*m.x226 + 0.018724*m.x227 + 0.00350129*m.x228 - 0.0339757*m.x229 + 0.0271537*m.x230 + 0.00810772*m.x231 - 0.0111159*m.x232 + 0.0279772*m.x233 + 0.0276478*m.x234 + 0.0183637*m.x235 + 0.0501698*m.x236 + 0.0264733*m.x237 + 0.352371*m.x238 + 0.0267802*m.x239 + 0.00740748*m.x240 + 0.0210208*m.x241 + 0.0371907*m.x242 + 0.0185657*m.x243 + 0.00134719*m.x244 + 0.0357548*m.x245 + 0.000503105*m.x246 - 0.00504028*m.x247 + 0.0628923*m.x248 + 0.0158934*m.x249 + 0.0095123*m.x250 + 0.00894769*m.x251 + 0.0126674*m.x252 - 0.00759544*m.x253 + 0.000920465*m.x254 + 0.0125861*m.x255 - 0.00390865*m.x256 + 0.00253837*m.x257 + 0.0021617*m.x258 + 0.00289448*m.x259 + 0.00470079*m.x260 - 0.000123939*m.x261 - 0.00572274*m.x262 + 0.00812701*m.x263 - 0.00120612*m.x264 + 0.0192903*m.x265 + 0.0176128*m.x266 - 0.0403434*m.x267 + 0.00674116*m.x268 + 0.00290841*m.x269 + 0.0214671*m.x270 + 0.00882407*m.x271 + 0.00182329*m.x272 + 0.0121867*m.x273 - 0.00471575*m.x274 + 0.0180724*m.x275 + 0.0215306*m.x276 + 0.020355*m.x277 + 0.0180883*m.x278 + 0.0462503*m.x279 + 0.0139857*m.x280 + 0.00783656*m.x281 - 0.010913*m.x282 - 0.0111746*m.x283 - 0.0212839*m.x284 + 0.0109154*m.x285 - 0.00737614*m.x286 + 0.00226631*m.x287 + 0.0273084*m.x288 + 0.0165011*m.x289 + 0.0353459*m.x290 + 0.00602501*m.x291 + 0.00280658*m.x292 + 0.0141143*m.x293 - 0.0138066*m.x294 + 0.00103245*m.x295 + 0.0131295*m.x296 - 0.00507596*m.x297 + 0.037088*m.x298 - 0.0155039*m.x299 + 0.0401269*m.x300 - 0.00474519*m.x301 + 0.0102928*m.x302 + 0.0227151*m.x303 == 0) m.c142 = Constraint(expr= - m.x37 - 0.0120527*m.x204 + 0.0142276*m.x205 + 0.0213625*m.x206 + 0.0168579*m.x207 + 0.0166563*m.x208 + 0.0161974*m.x209 + 0.00439244*m.x210 - 0.00850907*m.x211 + 0.00537524*m.x212 + 0.00605787*m.x213 + 0.00983178*m.x214 + 0.0114198*m.x215 + 0.0151253*m.x216 + 0.0136456*m.x217 + 0.0240257*m.x218 + 0.00260571*m.x219 + 0.0268434*m.x220 - 0.0139724*m.x221 + 0.00859465*m.x222 + 0.0126919*m.x223 + 0.0229491*m.x224 + 0.00710012*m.x225 + 0.0110456*m.x226 + 0.0082014*m.x227 - 0.00059745*m.x228 + 0.00813864*m.x229 + 0.00684948*m.x230 + 0.0103469*m.x231 + 0.00214151*m.x232 + 0.0139362*m.x233 - 0.00168632*m.x234 + 0.0108656*m.x235 + 0.000271976*m.x236 + 0.0134141*m.x237 + 0.0267802*m.x238 + 0.175181*m.x239 - 0.00486027*m.x240 + 0.0103664*m.x241 - 0.000849903*m.x242 + 0.0119433*m.x243 + 0.0210135*m.x244 + 0.0143453*m.x245 - 0.00292769*m.x246 + 0.014697*m.x247 + 0.0159248*m.x248 + 0.0267699*m.x249 + 0.0109654*m.x250 + 0.0152969*m.x251 - 0.00705335*m.x252 + 0.0069801*m.x253 - 0.00905371*m.x254 + 0.0143571*m.x255 + 0.0151841*m.x256 + 0.0144667*m.x257 + 0.00865979*m.x258 + 0.00669218*m.x259 + 0.0128782*m.x260 - 0.00508847*m.x261 - 0.0146124*m.x262 + 0.0225587*m.x263 + 0.00526915*m.x264 + 0.0180621*m.x265 - 0.00562995*m.x266 + 0.00935786*m.x267 + 0.0359849*m.x268 + 0.00335704*m.x269 - 0.00719511*m.x270 + 0.017117*m.x271 + 0.00398062*m.x272 + 0.0225777*m.x273 + 0.00892359*m.x274 + 0.0452262*m.x275 - 0.00767906*m.x276 + 0.00992303*m.x277 - 0.0114508*m.x278 + 0.0197029*m.x279 + 0.00438907*m.x280 + 0.0231162*m.x281 - 0.000788038*m.x282 + 0.0115195*m.x283 + 0.0165997*m.x284 + 0.00247635*m.x285 + 0.00203383*m.x286 + 0.0149245*m.x287 + 0.00360648*m.x288 - 0.00766884*m.x289 + 0.0174822*m.x290 + 0.0127497*m.x291 + 0.000594747*m.x292 + 0.0173728*m.x293 - 0.012529*m.x294 - 0.00810868*m.x295 + 0.0296006*m.x296 - 0.0055076*m.x297 - 0.000573198*m.x298 + 0.018767*m.x299 + 0.011041*m.x300 - 0.0114838*m.x301 + 0.00268364*m.x302 + 0.0211458*m.x303 == 0) m.c143 = Constraint(expr= - m.x38 + 0.0138503*m.x204 + 0.0344086*m.x205 + 0.0200764*m.x206 + 0.0319483*m.x207 + 0.0185838*m.x208 + 0.00634078*m.x209 + 0.0127402*m.x210 + 0.010305*m.x211 - 0.00325532*m.x212 + 0.00922974*m.x213 + 0.0208788*m.x214 + 0.0218247*m.x215 + 0.00196396*m.x216 + 0.0353273*m.x217 + 0.0441096*m.x218 + 0.00945499*m.x219 + 0.0296532*m.x220 + 0.0376045*m.x221 + 0.00102085*m.x222 - 0.0182367*m.x223 - 0.00223419*m.x224 + 0.0212804*m.x225 + 0.0039145*m.x226 + 0.0129307*m.x227 + 0.0252965*m.x228 + 0.0259598*m.x229 + 0.00794658*m.x230 + 0.0289389*m.x231 - 0.00311936*m.x232 + 0.0114782*m.x233 + 0.0152586*m.x234 + 0.0158994*m.x235 + 0.0187592*m.x236 - 0.00225583*m.x237 + 0.00740748*m.x238 - 0.00486027*m.x239 + 0.157789*m.x240 + 0.0262122*m.x241 + 0.00601169*m.x242 + 0.0119122*m.x243 + 0.0335948*m.x244 + 0.0206336*m.x245 - 0.00897797*m.x246 - 0.0109459*m.x247 + 0.0170251*m.x248 + 0.00864687*m.x249 + 0.00178605*m.x250 + 0.0216947*m.x251 + 0.0089316*m.x252 + 0.0141917*m.x253 + 0.0171861*m.x254 + 0.0129119*m.x255 + 0.0235719*m.x256 + 0.0176837*m.x257 + 0.00165906*m.x258 + 0.0824428*m.x259 + 0.0133704*m.x260 + 0.0137969*m.x261 + 0.00197565*m.x262 + 0.0284788*m.x263 + 0.0192414*m.x264 + 0.0212005*m.x265 + 0.0139235*m.x266 - 0.0180328*m.x267 + 0.0362249*m.x268 + 0.0194911*m.x269 - 0.00221392*m.x270 + 0.0224423*m.x271 + 0.00992082*m.x272 + 0.0236908*m.x273 + 0.0163609*m.x274 + 0.0173916*m.x275 + 0.0271333*m.x276 + 0.0101687*m.x277 + 0.0167448*m.x278 + 0.0145376*m.x279 + 0.0123315*m.x280 + 0.0119314*m.x281 + 0.0158911*m.x282 + 0.0101661*m.x283 + 0.0257734*m.x284 + 0.0177688*m.x285 + 0.0138653*m.x286 - 0.00986807*m.x287 + 0.0188003*m.x288 + 0.0172113*m.x289 + 0.0182402*m.x290 + 0.0285576*m.x291 - 0.00228211*m.x292 + 0.00194986*m.x293 + 0.00780586*m.x294 + 0.0298143*m.x295 + 0.0316103*m.x296 - 0.0168264*m.x297 + 0.00133433*m.x298 + 0.0320353*m.x299 + 0.0433973*m.x300 - 0.0108392*m.x301 + 0.00751702*m.x302 - 0.00144612*m.x303 == 0) m.c144 = Constraint(expr= - m.x39 + 0.0174032*m.x204 + 0.0192482*m.x205 - 0.00431381*m.x206 + 0.0489611*m.x207 + 0.0240307*m.x208 + 0.0120533*m.x209 + 0.0166285*m.x210 - 0.0107958*m.x211 + 0.0143804*m.x212 + 0.00186503*m.x213 + 0.0260342*m.x214 + 0.0164584*m.x215 + 0.0283164*m.x216 + 0.016403*m.x217 + 0.0260726*m.x218 + 0.026132*m.x219 + 0.0116391*m.x220 + 0.0437592*m.x221 + 0.0207629*m.x222 + 0.00394727*m.x223 + 0.0203215*m.x224 + 0.00852316*m.x225 + 0.0223593*m.x226 + 0.0126422*m.x227 + 0.0251092*m.x228 + 0.00820718*m.x229 + 0.00864852*m.x230 + 0.0184668*m.x231 + 0.0198678*m.x232 + 0.0271294*m.x233 + 0.00483299*m.x234 + 0.0222541*m.x235 + 0.013158*m.x236 + 0.0317362*m.x237 + 0.0210208*m.x238 + 0.0103664*m.x239 + 0.0262122*m.x240 + 0.126617*m.x241 + 0.00918889*m.x242 + 0.00789765*m.x243 + 0.0134287*m.x244 + 0.0335529*m.x245 + 0.00544385*m.x246 + 0.0105749*m.x247 - 0.00422865*m.x248 + 0.0165157*m.x249 + 0.0153668*m.x250 + 0.000861128*m.x251 + 0.0256051*m.x252 + 0.0422426*m.x253 - 0.000803595*m.x254 + 0.00351671*m.x255 + 0.0145538*m.x256 + 0.0131903*m.x257 + 0.00498598*m.x258 + 0.0347475*m.x259 + 0.0244545*m.x260 + 0.0126796*m.x261 + 0.018523*m.x262 + 0.00388717*m.x263 + 0.020429*m.x264 + 0.0233626*m.x265 + 0.00698084*m.x266 + 0.00155564*m.x267 + 0.00767128*m.x268 + 0.0118559*m.x269 + 0.0189483*m.x270 + 0.0125617*m.x271 + 0.0165632*m.x272 + 0.0205214*m.x273 + 0.0195565*m.x274 + 0.000493166*m.x275 + 0.0113544*m.x276 + 0.0130662*m.x277 + 0.0237854*m.x278 + 0.0180646*m.x279 + 0.00659785*m.x280 + 0.019254*m.x281 + 0.0146391*m.x282 + 0.0146836*m.x283 + 0.0134395*m.x284 + 0.0310356*m.x285 + 0.00956021*m.x286 + 0.00391649*m.x287 + 0.037188*m.x288 + 0.0264564*m.x289 + 0.011678*m.x290 + 0.0335903*m.x291 + 0.0133091*m.x292 + 0.0154967*m.x293 + 0.000594082*m.x294 + 0.0384969*m.x295 + 0.0132003*m.x296 - 0.00324796*m.x297 + 0.0198875*m.x298 + 0.00123223*m.x299 + 0.0178267*m.x300 - 0.00475543*m.x301 + 0.0129675*m.x302 + 0.00875978*m.x303 == 0) m.c145 = Constraint(expr= - m.x40 + 0.0141194*m.x204 + 0.0223002*m.x205 - 0.00842299*m.x206 + 0.0165915*m.x207 - 0.00254427*m.x208 + 0.000742111*m.x209 + 0.0264399*m.x210 + 0.0184062*m.x211 + 0.0540646*m.x212 - 0.0204732*m.x213 + 0.00898847*m.x214 + 0.0324793*m.x215 - 7.36214E-5*m.x216 + 0.0178385*m.x217 + 0.00779136*m.x218 + 0.0145947*m.x219 + 0.00872571*m.x220 - 0.0223754*m.x221 + 0.00953252*m.x222 + 0.0421514*m.x223 + 0.00433463*m.x224 - 0.0215388*m.x225 + 0.0170012*m.x226 + 0.0488014*m.x227 - 0.00438159*m.x228 - 0.00872187*m.x229 - 0.00387113*m.x230 + 0.0107871*m.x231 - 0.0274884*m.x232 + 0.0231833*m.x233 + 0.047323*m.x234 + 0.0149035*m.x235 - 0.00871004*m.x236 - 0.00594899*m.x237 + 0.0371907*m.x238 - 0.000849903*m.x239 + 0.00601169*m.x240 + 0.00918889*m.x241 + 0.335076*m.x242 + 0.0124578*m.x243 + 0.0212803*m.x244 + 0.00373452*m.x245 + 0.0252208*m.x246 - 0.0070303*m.x247 + 0.0675517*m.x248 - 0.0217225*m.x249 + 0.00424885*m.x250 + 0.00522672*m.x251 + 0.0111003*m.x252 + 0.0034425*m.x253 - 0.0131086*m.x254 + 0.0891112*m.x255 + 0.0358926*m.x256 + 0.0274205*m.x257 + 0.00568814*m.x258 - 0.00209651*m.x259 + 0.00931511*m.x260 - 0.00153738*m.x261 - 0.0039206*m.x262 + 0.0154733*m.x263 + 0.034914*m.x264 + 0.0149224*m.x265 + 0.0117364*m.x266 + 0.00189931*m.x267 - 0.000952693*m.x268 + 0.00134611*m.x269 - 0.000237938*m.x270 + 0.0043024*m.x271 - 0.0220684*m.x272 - 0.0319066*m.x273 + 0.00870017*m.x274 + 0.0205621*m.x275 + 0.006158*m.x276 - 0.00856733*m.x277 + 0.0207092*m.x278 + 0.0123219*m.x279 + 0.00161026*m.x280 + 0.0140309*m.x281 + 0.0311598*m.x282 + 0.0145619*m.x283 + 0.0141748*m.x284 + 0.00619315*m.x285 - 0.00370778*m.x286 + 0.00148966*m.x287 - 0.00287831*m.x288 + 0.00458259*m.x289 + 0.0137472*m.x290 + 0.0189174*m.x291 - 0.00318997*m.x292 - 0.0127847*m.x293 + 0.00325109*m.x294 + 0.0175238*m.x295 + 0.0105851*m.x296 + 0.0218937*m.x297 + 0.0120314*m.x298 + 0.0247783*m.x299 + 0.0295261*m.x300 - 0.0120001*m.x301 + 0.00121728*m.x302 - 0.00249785*m.x303 == 0) m.c146 = Constraint(expr= - m.x41 + 0.0227987*m.x204 + 0.012791*m.x205 - 0.00117286*m.x206 + 0.0104514*m.x207 + 0.0207655*m.x208 + 0.0218172*m.x209 + 0.0100685*m.x210 - 0.000823765*m.x211 + 0.00225673*m.x212 - 0.00336318*m.x213 + 0.0194251*m.x214 + 0.0165224*m.x215 + 0.0154669*m.x216 + 0.0349872*m.x217 + 0.0194382*m.x218 + 0.0107139*m.x219 - 0.00545266*m.x220 + 0.0155505*m.x221 + 0.0229029*m.x222 + 0.00995652*m.x223 + 0.0171077*m.x224 + 0.0180919*m.x225 + 0.0208848*m.x226 + 0.0119438*m.x227 + 0.00928707*m.x228 - 0.000343349*m.x229 + 0.00676815*m.x230 + 0.00920594*m.x231 - 0.00536695*m.x232 + 0.0144716*m.x233 + 0.0195771*m.x234 + 0.00955212*m.x235 + 0.00801758*m.x236 + 0.0316434*m.x237 + 0.0185657*m.x238 + 0.0119433*m.x239 + 0.0119122*m.x240 + 0.00789765*m.x241 + 0.0124578*m.x242 + 0.109635*m.x243 + 0.0153443*m.x244 + 0.0259479*m.x245 - 0.00169431*m.x246 + 0.0128324*m.x247 + 0.0130568*m.x248 + 0.00834641*m.x249 + 0.0233526*m.x250 + 0.00754003*m.x251 + 0.00962683*m.x252 + 0.0131857*m.x253 - 0.00149067*m.x254 + 0.000467774*m.x255 + 0.0104228*m.x256 + 0.00959745*m.x257 + 0.0216421*m.x258 + 0.0118242*m.x259 + 0.0207329*m.x260 + 0.0150648*m.x261 - 0.00613654*m.x262 + 0.0074099*m.x263 + 0.0159826*m.x264 + 0.0065965*m.x265 + 0.0154181*m.x266 + 0.00135221*m.x267 + 0.00855652*m.x268 + 0.0195004*m.x269 + 0.013074*m.x270 + 0.0246559*m.x271 + 0.00174793*m.x272 - 0.00079277*m.x273 + 0.00677241*m.x274 + 0.017246*m.x275 + 0.0147256*m.x276 + 0.0179741*m.x277 + 0.0247003*m.x278 + 0.0450965*m.x279 + 0.0172805*m.x280 + 0.0209097*m.x281 + 0.011441*m.x282 + 0.0219237*m.x283 + 0.00710912*m.x284 + 8.9584E-5*m.x285 + 0.00608136*m.x286 + 0.0200781*m.x287 + 0.0170146*m.x288 + 0.0215022*m.x289 + 0.00958774*m.x290 + 0.0218437*m.x291 + 0.0058466*m.x292 + 0.0163626*m.x293 + 0.00109195*m.x294 + 0.016576*m.x295 + 0.0121524*m.x296 + 0.0114468*m.x297 + 0.0229932*m.x298 + 0.0274591*m.x299 + 0.0170962*m.x300 - 0.0143186*m.x301 + 0.00875979*m.x302 + 0.00792635*m.x303 == 0) m.c147 = Constraint(expr= - m.x42 + 0.0193746*m.x204 + 0.0190131*m.x205 + 0.00911691*m.x206 + 0.0116238*m.x207 + 0.0197923*m.x208 - 0.00438877*m.x209 + 0.00274108*m.x210 + 0.0132777*m.x211 + 0.0124663*m.x212 + 0.0130752*m.x213 + 0.0124203*m.x214 - 0.0110707*m.x215 + 0.0335265*m.x216 + 0.0452332*m.x217 + 0.0369654*m.x218 + 0.0263189*m.x219 + 0.0451888*m.x220 + 0.0318492*m.x221 + 0.0149903*m.x222 + 0.0111831*m.x223 - 0.0105983*m.x224 + 0.0532482*m.x225 + 0.00735012*m.x226 + 0.0120642*m.x227 + 0.013037*m.x228 + 0.0493071*m.x229 + 0.0107582*m.x230 + 0.0213098*m.x231 - 0.00621657*m.x232 + 0.00178633*m.x233 - 0.000954098*m.x234 + 0.0478221*m.x235 + 0.0116152*m.x236 + 0.00798554*m.x237 + 0.00134719*m.x238 + 0.0210135*m.x239 + 0.0335948*m.x240 + 0.0134287*m.x241 + 0.0212803*m.x242 + 0.0153443*m.x243 + 0.472248*m.x244 + 0.00685165*m.x245 + 0.0126097*m.x246 - 0.00520594*m.x247 + 0.0641494*m.x248 - 0.00275487*m.x249 + 0.009426*m.x250 + 0.0377236*m.x251 + 0.0273291*m.x252 + 0.0239811*m.x253 + 0.00578221*m.x254 + 0.0121199*m.x255 - 0.00778263*m.x256 + 0.0206125*m.x257 - 0.00233532*m.x258 + 0.037583*m.x259 + 0.0180524*m.x260 + 0.0438692*m.x261 + 0.0261745*m.x262 - 0.0114466*m.x263 + 0.019726*m.x264 + 0.0217904*m.x265 - 0.0131236*m.x266 + 0.00012462*m.x267 + 0.0111129*m.x268 - 0.00456618*m.x269 + 0.00494008*m.x270 + 0.0375735*m.x271 - 0.0151984*m.x272 + 0.112574*m.x273 + 0.0185572*m.x274 + 0.0762045*m.x275 - 0.00779475*m.x276 + 0.0295755*m.x277 + 0.00943287*m.x278 + 0.0286273*m.x279 + 0.00989437*m.x280 + 0.0238402*m.x281 + 0.00383314*m.x282 - 0.00120741*m.x283 - 0.000663857*m.x284 + 0.00556998*m.x285 - 0.00367056*m.x286 + 0.0290197*m.x287 + 0.0308391*m.x288 + 0.0431137*m.x289 + 0.012869*m.x290 - 0.040724*m.x291 + 0.0241297*m.x292 + 0.00261203*m.x293 + 0.0174076*m.x294 + 0.0155538*m.x295 + 0.0118422*m.x296 + 0.0140178*m.x297 + 0.0167384*m.x298 + 0.0447304*m.x299 + 0.0519824*m.x300 + 0.00580577*m.x301 + 0.012385*m.x302 + 0.0180453*m.x303 == 0) m.c148 = Constraint(expr= - m.x43 + 0.0242182*m.x204 + 6.63459E-5*m.x205 - 0.00746052*m.x206 + 0.0187021*m.x207 + 0.0613911*m.x208 + 0.0402544*m.x209 + 0.00935881*m.x210 + 0.00103676*m.x211 - 0.00398651*m.x212 + 0.0383614*m.x213 + 0.00730049*m.x214 + 0.0108339*m.x215 + 0.0247389*m.x216 + 0.0258405*m.x217 + 0.0154674*m.x218 + 0.00760102*m.x219 + 0.0174024*m.x220 + 0.00625964*m.x221 + 0.0290781*m.x222 + 0.0348799*m.x223 - 0.00372187*m.x224 + 0.0406322*m.x225 + 0.038773*m.x226 + 0.0054971*m.x227 - 0.00212582*m.x228 + 0.0191453*m.x229 + 0.0282272*m.x230 - 0.00379119*m.x231 + 0.00759718*m.x232 + 0.0573692*m.x233 - 0.00045278*m.x234 + 0.0176484*m.x235 + 0.030594*m.x236 + 0.020323*m.x237 + 0.0357548*m.x238 + 0.0143453*m.x239 + 0.0206336*m.x240 + 0.0335529*m.x241 + 0.00373452*m.x242 + 0.0259479*m.x243 + 0.00685165*m.x244 + 0.173324*m.x245 + 0.00435369*m.x246 + 0.0112326*m.x247 + 0.0300354*m.x248 + 0.00838204*m.x249 + 0.0230848*m.x250 + 0.011347*m.x251 + 0.021257*m.x252 + 0.0308057*m.x253 + 0.00779234*m.x254 + 0.0336911*m.x255 + 0.0131565*m.x256 + 0.0127459*m.x257 + 0.00581905*m.x258 + 0.0246255*m.x259 + 0.0224446*m.x260 - 0.0172843*m.x261 - 0.00143913*m.x262 + 0.0179142*m.x263 + 0.00496924*m.x264 + 0.012034*m.x265 - 0.00248961*m.x266 - 0.00825333*m.x267 + 0.02346*m.x268 + 0.02262*m.x269 + 0.00735435*m.x270 + 0.00373612*m.x271 + 0.0174021*m.x272 - 0.0101958*m.x273 - 0.0047133*m.x274 - 0.00607984*m.x275 + 0.00938905*m.x276 + 0.00171904*m.x277 + 0.0195252*m.x278 + 0.0383478*m.x279 + 0.0224169*m.x280 + 0.0385198*m.x281 + 0.0274691*m.x282 - 0.0267822*m.x283 + 0.0309656*m.x284 + 0.0175453*m.x285 + 0.0338365*m.x286 + 0.0150021*m.x287 + 0.0486356*m.x288 + 0.0180063*m.x289 + 0.0225774*m.x290 + 0.0434221*m.x291 + 0.0276431*m.x292 + 0.0182416*m.x293 + 0.00868526*m.x294 + 0.013908*m.x295 + 0.0117221*m.x296 - 0.00373821*m.x297 + 0.0089429*m.x298 + 0.0223685*m.x299 + 0.00186956*m.x300 - 0.000502651*m.x301 + 0.0174325*m.x302 + 0.0334254*m.x303 == 0) m.c149 = Constraint(expr= - m.x44 + 0.0115852*m.x204 - 0.0244053*m.x205 - 0.011358*m.x206 + 0.0150923*m.x207 + 0.0110642*m.x208 - 0.00602825*m.x209 + 0.0225873*m.x210 - 0.00519952*m.x211 + 0.0396497*m.x212 - 0.0030681*m.x213 + 0.0250217*m.x214 + 0.00496455*m.x215 + 0.000832224*m.x216 + 0.0200869*m.x217 + 0.0140488*m.x218 + 0.0184787*m.x219 + 0.0137917*m.x220 - 0.0212932*m.x221 - 0.00449927*m.x222 - 0.0140575*m.x223 - 0.00472458*m.x224 - 0.0196231*m.x225 + 0.0242748*m.x226 + 0.0104361*m.x227 - 0.00808877*m.x228 + 0.000222699*m.x229 + 0.00730286*m.x230 + 0.0175626*m.x231 - 0.0114733*m.x232 + 0.0552261*m.x233 - 0.00389567*m.x234 + 0.00428146*m.x235 + 0.0215083*m.x236 + 0.00080856*m.x237 + 0.000503105*m.x238 - 0.00292769*m.x239 - 0.00897797*m.x240 + 0.00544385*m.x241 + 0.0252208*m.x242 - 0.00169431*m.x243 + 0.0126097*m.x244 + 0.00435369*m.x245 + 0.285352*m.x246 - 0.0138679*m.x247 + 0.0182951*m.x248 + 0.018868*m.x249 + 0.0248387*m.x250 + 0.0906352*m.x251 + 0.00713202*m.x252 - 0.0104213*m.x253 + 0.0108641*m.x254 - 0.0111579*m.x255 - 0.010758*m.x256 + 0.0162983*m.x257 + 0.00775024*m.x258 + 0.00853849*m.x259 - 0.00130433*m.x260 + 0.00312367*m.x261 - 0.0160088*m.x262 + 0.0308548*m.x263 + 0.0187432*m.x264 - 0.00426161*m.x265 - 0.00773906*m.x266 + 0.00306814*m.x267 + 0.0128287*m.x268 + 0.00522194*m.x269 + 0.00258635*m.x270 + 0.0129953*m.x271 + 0.000800136*m.x272 - 0.0165869*m.x273 + 0.0101507*m.x274 + 0.0607045*m.x275 - 0.00928056*m.x276 + 0.00206923*m.x277 - 0.0163855*m.x278 + 0.0271648*m.x279 - 0.00245982*m.x280 + 0.01456*m.x281 + 0.00939606*m.x282 + 0.0298789*m.x283 - 0.00119943*m.x284 - 0.0044664*m.x285 + 0.000712121*m.x286 + 0.00470761*m.x287 + 0.0134195*m.x288 + 0.0369595*m.x289 - 0.0210138*m.x290 - 0.00303618*m.x291 + 0.00239232*m.x292 + 0.000321826*m.x293 + 0.0159286*m.x294 - 0.000456654*m.x295 + 0.0140437*m.x296 - 0.0133161*m.x297 + 0.00274327*m.x298 + 0.0088079*m.x299 - 0.0199075*m.x300 + 0.0201943*m.x301 + 0.0380042*m.x302 - 0.00589524*m.x303 == 0) m.c150 = Constraint(expr= - m.x45 - 0.00162455*m.x204 + 0.0151994*m.x205 - 0.00410314*m.x206 + 0.00865558*m.x207 + 0.0207267*m.x208 + 0.0189494*m.x209 + 0.00733761*m.x210 + 0.00505829*m.x211 - 0.00309397*m.x212 + 0.00188592*m.x213 - 0.00862089*m.x214 + 0.0121501*m.x215 + 0.0166299*m.x216 - 0.00370708*m.x217 + 0.0130156*m.x218 + 0.010862*m.x219 + 0.00619143*m.x220 + 0.00845798*m.x221 + 0.0196626*m.x222 + 0.00499481*m.x223 - 0.00195653*m.x224 - 0.00111486*m.x225 + 0.0111032*m.x226 + 0.00451121*m.x227 + 0.00365229*m.x228 - 0.00906245*m.x229 - 0.0033586*m.x230 + 0.00298817*m.x231 + 0.00536671*m.x232 + 0.0161599*m.x233 - 0.0062901*m.x234 + 0.0067698*m.x235 - 0.000673256*m.x236 + 0.0158673*m.x237 - 0.00504028*m.x238 + 0.014697*m.x239 - 0.0109459*m.x240 + 0.0105749*m.x241 - 0.0070303*m.x242 + 0.0128324*m.x243 - 0.00520594*m.x244 + 0.0112326*m.x245 - 0.0138679*m.x246 + 0.117019*m.x247 + 0.00990186*m.x248 + 0.030525*m.x249 + 0.00866848*m.x250 + 0.00667345*m.x251 + 0.00996622*m.x252 + 0.00563546*m.x253 + 0.0238284*m.x254 - 0.00200986*m.x255 + 0.00469393*m.x256 + 0.00134527*m.x257 + 0.00374232*m.x258 + 0.00559832*m.x259 - 0.00188392*m.x260 + 9.17403E-5*m.x261 + 0.00219407*m.x262 + 0.00878374*m.x263 + 0.00816234*m.x264 + 0.0139761*m.x265 + 0.00238266*m.x266 - 0.00331267*m.x267 + 0.0130905*m.x268 - 0.00761858*m.x269 + 0.00239066*m.x270 + 0.00767196*m.x271 + 0.0121103*m.x272 - 0.00250388*m.x273 + 0.00747713*m.x274 - 0.012371*m.x275 + 0.000659729*m.x276 + 0.0140481*m.x277 + 0.0187041*m.x278 + 0.0306678*m.x279 + 0.00641255*m.x280 + 0.0134395*m.x281 - 0.00179731*m.x282 - 0.00385651*m.x283 + 0.0131706*m.x284 + 0.0115633*m.x285 - 0.00481073*m.x286 - 0.000228971*m.x287 + 0.0126522*m.x288 + 0.0105163*m.x289 + 0.013309*m.x290 + 0.0161332*m.x291 + 0.0153765*m.x292 + 0.0172788*m.x293 + 0.00454689*m.x294 - 0.00408178*m.x295 + 0.0106112*m.x296 - 0.00745302*m.x297 + 0.0138402*m.x298 - 0.00206706*m.x299 - 0.00104385*m.x300 - 0.0111014*m.x301 + 0.00860025*m.x302 + 0.0108073*m.x303 == 0) m.c151 = Constraint(expr= - m.x46 + 0.0485595*m.x204 + 0.0842548*m.x205 + 0.00010559*m.x206 + 0.0274023*m.x207 + 0.0169542*m.x208 + 0.00789539*m.x209 + 0.0201234*m.x210 - 0.003359*m.x211 + 0.0671213*m.x212 + 0.0305494*m.x213 - 0.0336638*m.x214 - 0.010913*m.x215 + 0.0470539*m.x216 + 0.0445913*m.x217 + 0.0104316*m.x218 + 0.0233605*m.x219 + 0.0353105*m.x220 + 0.0602333*m.x221 + 0.0720207*m.x222 + 0.0422832*m.x223 + 0.000456614*m.x224 + 0.086076*m.x225 - 0.00263182*m.x226 - 0.0148276*m.x227 + 0.00411288*m.x228 + 0.0126082*m.x229 + 0.0351761*m.x230 + 0.0054897*m.x231 + 0.00229741*m.x232 + 0.00526805*m.x233 + 0.0361137*m.x234 + 0.00746688*m.x235 - 0.00492434*m.x236 + 0.0139875*m.x237 + 0.0628923*m.x238 + 0.0159248*m.x239 + 0.0170251*m.x240 - 0.00422865*m.x241 + 0.0675517*m.x242 + 0.0130568*m.x243 + 0.0641494*m.x244 + 0.0300354*m.x245 + 0.0182951*m.x246 + 0.00990186*m.x247 + 1.28381*m.x248 + 0.0231821*m.x249 + 0.018721*m.x250 + 0.157526*m.x251 + 0.0256558*m.x252 + 0.00662398*m.x253 + 0.00571637*m.x254 + 0.0314978*m.x255 + 0.0144722*m.x256 + 0.0343682*m.x257 + 0.0244461*m.x258 + 0.0119362*m.x259 + 0.00907288*m.x260 - 0.04778*m.x261 - 0.0108826*m.x262 + 0.00420738*m.x263 + 0.0658392*m.x264 - 0.00210493*m.x265 - 0.00489265*m.x266 - 0.0339851*m.x267 + 0.0142713*m.x268 + 0.00850407*m.x269 - 0.00279322*m.x270 + 0.00139531*m.x271 + 0.00256477*m.x272 + 0.0206991*m.x273 + 0.0167627*m.x274 + 0.11148*m.x275 - 0.0305247*m.x276 - 0.00481113*m.x277 + 0.0231293*m.x278 + 0.0252067*m.x279 + 0.00522157*m.x280 + 0.0559574*m.x281 + 0.0289862*m.x282 + 0.00382741*m.x283 - 0.00408493*m.x284 + 0.028825*m.x285 + 0.043114*m.x286 + 0.0366449*m.x287 - 0.00847171*m.x288 + 0.0235286*m.x289 - 0.0234656*m.x290 + 0.00121975*m.x291 + 0.00617827*m.x292 + 0.0181113*m.x293 - 0.0146448*m.x294 - 0.0232215*m.x295 + 0.00688969*m.x296 + 0.0659066*m.x297 + 0.0163443*m.x298 + 0.0491497*m.x299 + 0.0230853*m.x300 + 0.0414341*m.x301 + 0.0105274*m.x302 + 0.00672014*m.x303 == 0) m.c152 = Constraint(expr= - m.x47 + 0.00207472*m.x204 - 0.00547032*m.x205 - 0.0124818*m.x206 + 0.00371704*m.x207 - 0.0027153*m.x208 + 0.0132198*m.x209 + 0.00199539*m.x210 + 0.00172548*m.x211 + 0.0105468*m.x212 - 0.00910821*m.x213 - 0.00677995*m.x214 + 0.0136767*m.x215 + 0.0108543*m.x216 + 0.0145696*m.x217 + 0.0109843*m.x218 + 0.0254292*m.x219 + 0.0137663*m.x220 + 0.0215291*m.x221 + 0.00312965*m.x222 - 9.41833E-5*m.x223 + 0.00971748*m.x224 + 0.00650857*m.x225 + 0.0168949*m.x226 + 0.00531801*m.x227 + 0.00931093*m.x228 - 0.0137446*m.x229 + 0.00249494*m.x230 + 0.00838146*m.x231 - 0.000669481*m.x232 + 0.00015225*m.x233 + 0.00188213*m.x234 + 0.0224318*m.x235 - 0.00146448*m.x236 + 0.00964636*m.x237 + 0.0158934*m.x238 + 0.0267699*m.x239 + 0.00864687*m.x240 + 0.0165157*m.x241 - 0.0217225*m.x242 + 0.00834641*m.x243 - 0.00275487*m.x244 + 0.00838204*m.x245 + 0.018868*m.x246 + 0.030525*m.x247 + 0.0231821*m.x248 + 0.110238*m.x249 + 0.0123825*m.x250 - 0.0024984*m.x251 + 0.008478*m.x252 + 0.000741326*m.x253 + 0.0216772*m.x254 + 0.0180178*m.x255 - 0.00109436*m.x256 + 0.00665208*m.x257 + 0.0151547*m.x258 + 0.00745197*m.x259 + 0.01615*m.x260 + 0.00117437*m.x261 - 0.00321902*m.x262 + 0.00508728*m.x263 + 0.00978353*m.x264 + 0.0167338*m.x265 - 0.000552346*m.x266 - 0.0124862*m.x267 + 0.0092919*m.x268 - 0.000986526*m.x269 + 0.004509*m.x270 + 0.00222268*m.x271 + 0.00595866*m.x272 - 0.00295638*m.x273 + 0.0123014*m.x274 + 0.0116924*m.x275 + 0.00495294*m.x276 + 0.00276646*m.x277 - 0.00266202*m.x278 + 0.0232357*m.x279 + 0.00346212*m.x280 + 0.0255284*m.x281 + 0.00412958*m.x282 + 0.0240524*m.x283 + 0.0102107*m.x284 + 0.0153982*m.x285 - 0.00470666*m.x286 + 0.0022653*m.x287 + 0.0126439*m.x288 + 0.00223458*m.x289 + 0.000876921*m.x290 + 0.0255993*m.x291 + 0.000761757*m.x292 + 0.0226772*m.x293 - 0.00239856*m.x294 - 0.000303141*m.x295 + 0.00819898*m.x296 - 0.0155281*m.x297 + 0.01631*m.x298 + 0.0130047*m.x299 + 0.007868*m.x300 + 0.0172829*m.x301 + 0.00542659*m.x302 + 0.00997388*m.x303 == 0) m.c153 = Constraint(expr= - m.x48 + 0.00660381*m.x204 + 0.00366432*m.x205 + 0.0222942*m.x206 + 0.0278823*m.x207 + 0.0227537*m.x208 + 0.0131179*m.x209 + 0.00883369*m.x210 - 0.00798884*m.x211 + 0.0076658*m.x212 + 0.0135289*m.x213 + 0.00625335*m.x214 + 0.0116898*m.x215 + 0.0041831*m.x216 + 0.0102428*m.x217 + 0.00892909*m.x218 + 0.026309*m.x219 + 0.0126568*m.x220 + 0.000524806*m.x221 + 0.0116736*m.x222 - 0.00625035*m.x223 + 0.0122344*m.x224 + 0.00551656*m.x225 + 0.0118048*m.x226 + 0.00527699*m.x227 + 0.0122374*m.x228 - 0.00568651*m.x229 + 0.0142173*m.x230 + 0.00738842*m.x231 + 0.0101225*m.x232 + 0.0278298*m.x233 + 0.0105383*m.x234 + 0.00853378*m.x235 + 0.00882459*m.x236 + 0.0135777*m.x237 + 0.0095123*m.x238 + 0.0109654*m.x239 + 0.00178605*m.x240 + 0.0153668*m.x241 + 0.00424885*m.x242 + 0.0233526*m.x243 + 0.009426*m.x244 + 0.0230848*m.x245 + 0.0248387*m.x246 + 0.00866848*m.x247 + 0.018721*m.x248 + 0.0123825*m.x249 + 0.125525*m.x250 + 0.0182178*m.x251 + 0.0177715*m.x252 + 0.0265062*m.x253 + 0.00964961*m.x254 + 0.023352*m.x255 + 0.000843914*m.x256 + 0.0110552*m.x257 + 0.00964941*m.x258 + 0.00680548*m.x259 + 0.00742778*m.x260 + 9.53631E-5*m.x261 - 0.00253774*m.x262 + 0.0180458*m.x263 + 0.0185083*m.x264 + 0.0187542*m.x265 - 0.00848668*m.x266 - 0.0111347*m.x267 + 0.029197*m.x268 + 0.0134837*m.x269 + 0.0134453*m.x270 + 0.0159389*m.x271 - 0.00298889*m.x272 - 0.0125802*m.x273 + 0.0123928*m.x274 + 0.0197059*m.x275 + 0.00699246*m.x276 + 0.00608218*m.x277 + 0.0205119*m.x278 + 0.0201426*m.x279 + 0.00467559*m.x280 + 0.00848245*m.x281 + 0.00560285*m.x282 - 0.000758449*m.x283 + 0.0116371*m.x284 + 0.0124272*m.x285 + 0.0162343*m.x286 - 0.00172543*m.x287 + 0.0211089*m.x288 + 0.00648963*m.x289 - 0.00342056*m.x290 + 0.0183674*m.x291 + 0.00194382*m.x292 + 0.0120585*m.x293 + 0.004607*m.x294 + 0.017139*m.x295 + 0.0200535*m.x296 - 0.0108609*m.x297 + 0.0112311*m.x298 - 0.000464008*m.x299 + 0.00372516*m.x300 + 0.00268954*m.x301 + 0.0166562*m.x302 + 0.00639193*m.x303 == 0) m.c154 = Constraint(expr= - m.x49 + 0.0335273*m.x204 - 0.00269275*m.x205 + 0.0641257*m.x206 + 0.0276611*m.x207 + 0.0245375*m.x208 + 0.0350419*m.x209 - 0.00334111*m.x210 - 0.00523044*m.x211 + 0.046947*m.x212 + 0.103912*m.x213 + 0.0263146*m.x214 + 0.0382384*m.x215 + 0.00544939*m.x216 + 0.0541929*m.x217 + 0.0139724*m.x218 + 0.00373059*m.x219 + 0.0131167*m.x220 + 0.0502056*m.x221 + 0.0683894*m.x222 + 0.0135275*m.x223 - 0.023887*m.x224 + 0.0234501*m.x225 + 0.0540289*m.x226 + 0.00749425*m.x227 + 0.022339*m.x228 - 0.00050512*m.x229 - 0.00543891*m.x230 + 0.0443024*m.x231 + 0.00629643*m.x232 + 0.0489272*m.x233 + 0.0312435*m.x234 + 0.00553395*m.x235 + 0.0565808*m.x236 + 0.0103222*m.x237 + 0.00894769*m.x238 + 0.0152969*m.x239 + 0.0216947*m.x240 + 0.000861128*m.x241 + 0.00522672*m.x242 + 0.00754003*m.x243 + 0.0377236*m.x244 + 0.011347*m.x245 + 0.0906352*m.x246 + 0.00667345*m.x247 + 0.157526*m.x248 - 0.0024984*m.x249 + 0.0182178*m.x250 + 0.819119*m.x251 - 0.0220075*m.x252 - 0.000377244*m.x253 + 0.00274662*m.x254 - 0.00112164*m.x255 - 0.0111344*m.x256 + 0.0327084*m.x257 - 0.0151267*m.x258 + 0.0557771*m.x259 - 0.00515185*m.x260 - 0.0101051*m.x261 + 0.00981918*m.x262 + 0.117196*m.x263 + 0.00665526*m.x264 - 0.0175406*m.x265 - 0.00134639*m.x266 - 0.039556*m.x267 - 0.00784993*m.x268 + 0.0249045*m.x269 - 0.00128867*m.x270 - 0.00261452*m.x271 + 0.039282*m.x272 + 0.0509997*m.x273 + 0.0344311*m.x274 + 0.0814204*m.x275 - 0.00170809*m.x276 + 0.0125969*m.x277 + 0.0302619*m.x278 + 0.0349979*m.x279 + 0.0190191*m.x280 + 0.0154082*m.x281 - 0.0261893*m.x282 + 0.0528557*m.x283 + 0.0243695*m.x284 - 0.000197615*m.x285 + 0.0624011*m.x286 + 0.0338724*m.x287 - 0.0090107*m.x288 + 0.00951148*m.x289 + 0.0107168*m.x290 + 0.0178279*m.x291 + 0.00290669*m.x292 - 0.011085*m.x293 - 0.020525*m.x294 - 0.0111643*m.x295 - 0.00203641*m.x296 + 0.00376918*m.x297 + 0.0118935*m.x298 + 0.0159972*m.x299 + 0.00701074*m.x300 + 0.0129573*m.x301 + 0.00101054*m.x302 - 0.00326076*m.x303 == 0) m.c155 = Constraint(expr= - m.x50 - 0.00253464*m.x204 + 0.0064107*m.x205 - 0.00250627*m.x206 + 0.0335727*m.x207 + 0.0220219*m.x208 + 0.00782381*m.x209 + 0.00675904*m.x210 - 0.0106746*m.x211 + 0.000222582*m.x212 + 0.0135404*m.x213 + 0.00182442*m.x214 + 0.0131966*m.x215 + 0.00847808*m.x216 + 0.0222686*m.x217 + 0.0324222*m.x218 + 0.0226732*m.x219 + 0.0279086*m.x220 + 0.0135373*m.x221 + 0.021574*m.x222 - 0.00389379*m.x223 + 0.000162502*m.x224 - 0.00551305*m.x225 + 0.0155506*m.x226 + 0.00218243*m.x227 + 0.0160754*m.x228 + 0.00295003*m.x229 - 0.00806152*m.x230 - 0.00363873*m.x231 + 0.00338529*m.x232 + 0.0300688*m.x233 + 0.00612172*m.x234 + 0.0306636*m.x235 - 0.00265594*m.x236 + 0.00664455*m.x237 + 0.0126674*m.x238 - 0.00705335*m.x239 + 0.0089316*m.x240 + 0.0256051*m.x241 + 0.0111003*m.x242 + 0.00962683*m.x243 + 0.0273291*m.x244 + 0.021257*m.x245 + 0.00713202*m.x246 + 0.00996622*m.x247 + 0.0256558*m.x248 + 0.008478*m.x249 + 0.0177715*m.x250 - 0.0220075*m.x251 + 0.114335*m.x252 + 0.0512161*m.x253 + 0.0197406*m.x254 + 0.0196807*m.x255 + 0.00493219*m.x256 + 0.00452567*m.x257 + 0.000714771*m.x258 + 0.00310895*m.x259 + 0.0185615*m.x260 + 0.0258631*m.x261 + 0.00933346*m.x262 - 0.0221839*m.x263 + 0.0236734*m.x264 + 0.0176283*m.x265 + 0.00446979*m.x266 - 0.0128737*m.x267 - 0.00682462*m.x268 + 0.00523125*m.x269 + 0.0213069*m.x270 + 0.0081431*m.x271 + 0.00415461*m.x272 + 0.0073977*m.x273 + 0.00728529*m.x274 + 0.0247762*m.x275 + 0.0153231*m.x276 + 0.00286752*m.x277 + 0.0201839*m.x278 + 0.00924621*m.x279 + 0.0108718*m.x280 + 0.0181957*m.x281 + 0.0030579*m.x282 + 0.0149032*m.x283 + 0.00765193*m.x284 + 0.00635221*m.x285 + 0.0123886*m.x286 + 0.000661634*m.x287 + 0.0359152*m.x288 + 0.0121599*m.x289 + 0.00929105*m.x290 + 0.0129496*m.x291 + 0.000165876*m.x292 + 0.0104514*m.x293 + 0.0177858*m.x294 + 0.0273403*m.x295 + 0.00347406*m.x296 + 0.00897938*m.x297 + 0.0131703*m.x298 + 0.0238145*m.x299 + 0.0112134*m.x300 - 0.00463261*m.x301 + 0.00520514*m.x302 - 0.00135479*m.x303 == 0) m.c156 = Constraint(expr= - m.x51 + 0.0243471*m.x204 + 0.0159232*m.x205 + 0.00990617*m.x206 + 0.0350956*m.x207 + 0.0142215*m.x208 - 0.00238836*m.x209 + 0.0174474*m.x210 + 0.00991922*m.x211 - 0.0116779*m.x212 + 0.00765973*m.x213 + 0.0180868*m.x214 + 0.0177887*m.x215 + 0.0136335*m.x216 + 0.0200759*m.x217 + 0.0258001*m.x218 + 0.0151062*m.x219 + 0.0187117*m.x220 + 0.00412087*m.x221 - 0.00484013*m.x222 + 0.0225012*m.x223 + 0.00181967*m.x224 + 0.00168255*m.x225 + 0.0101127*m.x226 + 0.00995275*m.x227 + 0.00927056*m.x228 + 0.0130362*m.x229 + 0.00341299*m.x230 - 0.0276809*m.x231 + 0.00481268*m.x232 + 0.0188471*m.x233 + 0.02564*m.x234 + 0.0264708*m.x235 - 0.0131072*m.x236 + 0.0426453*m.x237 - 0.00759544*m.x238 + 0.0069801*m.x239 + 0.0141917*m.x240 + 0.0422426*m.x241 + 0.0034425*m.x242 + 0.0131857*m.x243 + 0.0239811*m.x244 + 0.0308057*m.x245 - 0.0104213*m.x246 + 0.00563546*m.x247 + 0.00662398*m.x248 + 0.000741326*m.x249 + 0.0265062*m.x250 - 0.000377244*m.x251 + 0.0512161*m.x252 + 0.196086*m.x253 - 0.00348555*m.x254 + 0.0225156*m.x255 + 0.00631849*m.x256 + 0.00655318*m.x257 + 0.0189254*m.x258 + 0.0128203*m.x259 + 0.0120199*m.x260 + 0.0197559*m.x261 + 0.0196814*m.x262 + 0.00428319*m.x263 + 0.0202022*m.x264 + 0.0291275*m.x265 + 0.0180013*m.x266 - 0.00816153*m.x267 - 0.0005624*m.x268 + 0.0104426*m.x269 + 0.030677*m.x270 + 0.00414094*m.x271 + 0.0226546*m.x272 + 0.0125649*m.x273 + 0.0031934*m.x274 + 0.0170294*m.x275 + 0.0194417*m.x276 + 0.0221671*m.x277 + 0.00907431*m.x278 + 0.0259533*m.x279 + 0.00674077*m.x280 + 0.0203818*m.x281 + 0.0079052*m.x282 + 0.02471*m.x283 + 0.0263439*m.x284 + 0.0177662*m.x285 + 0.0459437*m.x286 + 0.031036*m.x287 + 0.0396615*m.x288 + 0.0169315*m.x289 + 0.0265097*m.x290 + 0.00746963*m.x291 + 0.014075*m.x292 + 0.000392536*m.x293 + 0.02246*m.x294 + 0.0196935*m.x295 + 0.0203211*m.x296 + 0.00142186*m.x297 + 0.00797244*m.x298 + 0.0303016*m.x299 + 0.0163988*m.x300 - 0.0103262*m.x301 + 0.0138437*m.x302 + 0.00766798*m.x303 == 0) m.c157 = Constraint(expr= - m.x52 - 4.32941E-5*m.x204 + 0.0109604*m.x205 + 0.0106624*m.x206 + 0.00379579*m.x207 + 0.0212008*m.x208 + 0.0282466*m.x209 + 0.000986276*m.x210 + 0.00762574*m.x211 - 0.00988969*m.x212 + 0.005395*m.x213 + 0.0139184*m.x214 + 0.00125449*m.x215 + 0.0285916*m.x216 + 0.0227414*m.x217 + 0.00536497*m.x218 + 0.00878227*m.x219 + 0.0144307*m.x220 - 0.00913314*m.x221 + 0.000594358*m.x222 + 0.0108096*m.x223 + 0.0068839*m.x224 - 0.0062463*m.x225 + 0.0135526*m.x226 + 0.0138831*m.x227 - 0.00153332*m.x228 - 0.0100498*m.x229 - 0.00785713*m.x230 + 0.00664334*m.x231 + 0.00636725*m.x232 + 0.00180223*m.x233 - 0.00360195*m.x234 + 0.0366567*m.x235 - 0.0185973*m.x236 + 0.014965*m.x237 + 0.000920465*m.x238 - 0.00905371*m.x239 + 0.0171861*m.x240 - 0.000803595*m.x241 - 0.0131086*m.x242 - 0.00149067*m.x243 + 0.00578221*m.x244 + 0.00779234*m.x245 + 0.0108641*m.x246 + 0.0238284*m.x247 + 0.00571637*m.x248 + 0.0216772*m.x249 + 0.00964961*m.x250 + 0.00274662*m.x251 + 0.0197406*m.x252 - 0.00348555*m.x253 + 0.135419*m.x254 + 0.0148808*m.x255 - 0.00521642*m.x256 + 0.00301132*m.x257 + 0.0059386*m.x258 + 0.000656537*m.x259 - 5.81815E-5*m.x260 + 0.00610465*m.x261 + 0.00544527*m.x262 + 0.0153454*m.x263 + 0.0292089*m.x264 + 0.0160595*m.x265 - 0.00416091*m.x266 - 0.0114877*m.x267 - 0.00518739*m.x268 + 0.00285023*m.x269 - 0.00263203*m.x270 + 0.00784535*m.x271 + 0.00552304*m.x272 - 0.00966017*m.x273 + 0.00209512*m.x274 - 0.00647057*m.x275 + 0.0011822*m.x276 + 0.0120375*m.x277 - 0.00082898*m.x278 + 0.00474529*m.x279 + 0.00506484*m.x280 + 0.0257774*m.x281 - 0.00377692*m.x282 + 0.00714516*m.x283 + 0.0077099*m.x284 + 0.0105595*m.x285 + 0.0161573*m.x286 + 0.00452026*m.x287 + 0.00366557*m.x288 + 0.0131458*m.x289 - 0.00873615*m.x290 + 0.0046782*m.x291 + 0.00459631*m.x292 + 0.0212014*m.x293 + 0.0117374*m.x294 + 0.0229518*m.x295 + 0.00232247*m.x296 - 0.0141535*m.x297 + 0.00517337*m.x298 + 0.0102284*m.x299 + 0.016647*m.x300 + 0.00970317*m.x301 + 0.0100764*m.x302 + 0.00923673*m.x303 == 0) m.c158 = Constraint(expr= - m.x53 + 0.0163137*m.x204 + 0.0557033*m.x205 - 0.00120817*m.x206 + 0.0146599*m.x207 + 0.0295561*m.x208 - 0.0144879*m.x209 + 0.00773796*m.x210 - 0.0266695*m.x211 + 0.0132613*m.x212 - 0.0102711*m.x213 + 0.0593808*m.x214 + 0.0146264*m.x215 + 0.00654495*m.x216 + 0.0206173*m.x217 - 0.0164481*m.x218 - 0.00659662*m.x219 + 0.00896247*m.x220 + 0.020479*m.x221 - 0.0094595*m.x222 + 0.0515904*m.x223 + 0.00288958*m.x224 + 0.00302148*m.x225 + 0.00456304*m.x226 + 0.0179012*m.x227 - 0.00274677*m.x228 + 0.0373415*m.x229 + 0.00317892*m.x230 + 0.00813124*m.x231 + 0.0177429*m.x232 + 0.0269342*m.x233 + 0.0141086*m.x234 - 0.00105083*m.x235 + 0.00879757*m.x236 - 0.0255534*m.x237 + 0.0125861*m.x238 + 0.0143571*m.x239 + 0.0129119*m.x240 + 0.00351671*m.x241 + 0.0891112*m.x242 + 0.000467774*m.x243 + 0.0121199*m.x244 + 0.0336911*m.x245 - 0.0111579*m.x246 - 0.00200986*m.x247 + 0.0314978*m.x248 + 0.0180178*m.x249 + 0.023352*m.x250 - 0.00112164*m.x251 + 0.0196807*m.x252 + 0.0225156*m.x253 + 0.0148808*m.x254 + 0.570686*m.x255 - 0.0118855*m.x256 - 0.014196*m.x257 + 0.011069*m.x258 + 0.0175376*m.x259 + 0.0238431*m.x260 - 0.0397472*m.x261 - 0.0442114*m.x262 + 0.0518827*m.x263 + 0.0161886*m.x264 + 0.00172998*m.x265 - 0.0149321*m.x266 - 0.00526354*m.x267 + 0.0191389*m.x268 - 0.000438258*m.x269 - 0.00523691*m.x270 - 0.00972975*m.x271 - 0.0150659*m.x272 - 0.0484007*m.x273 + 0.0154489*m.x274 + 0.0227933*m.x275 + 0.00649497*m.x276 + 0.0365298*m.x277 + 0.00147956*m.x278 - 0.0171972*m.x279 + 0.0090494*m.x280 + 0.00449672*m.x281 + 0.000262274*m.x282 - 0.00945913*m.x283 + 0.0453251*m.x284 - 0.000808541*m.x285 + 0.0226841*m.x286 + 0.0177547*m.x287 + 0.0128398*m.x288 + 0.0231386*m.x289 - 0.0113699*m.x290 + 0.0889439*m.x291 + 0.0105083*m.x292 + 0.00390748*m.x293 + 0.00684597*m.x294 + 0.0131893*m.x295 - 0.0139354*m.x296 - 0.0247692*m.x297 + 0.0243459*m.x298 + 0.0752523*m.x299 - 0.00276693*m.x300 - 0.00836392*m.x301 + 0.0169651*m.x302 + 0.0207104*m.x303 == 0) m.c159 = Constraint(expr= - m.x54 - 0.000494175*m.x204 + 0.00892139*m.x205 - 0.0113822*m.x206 + 0.0202259*m.x207 + 0.00841613*m.x208 + 0.0254505*m.x209 + 0.0122267*m.x210 + 0.00886183*m.x211 - 0.00967266*m.x212 + 0.000261336*m.x213 + 0.000709314*m.x214 + 0.0570949*m.x215 + 0.01696*m.x216 - 0.0067449*m.x217 + 0.00992241*m.x218 + 0.00760297*m.x219 + 0.0230109*m.x220 - 0.00154837*m.x221 - 0.0318332*m.x222 - 0.00645678*m.x223 + 0.0206887*m.x224 + 0.00339277*m.x225 + 0.00172033*m.x226 + 0.00828721*m.x227 + 0.011526*m.x228 + 0.00554618*m.x229 + 0.0107528*m.x230 + 0.00525742*m.x231 - 0.00438567*m.x232 + 0.0137397*m.x233 + 0.0367283*m.x234 + 0.00408317*m.x235 - 0.00320472*m.x236 + 0.0104359*m.x237 - 0.00390865*m.x238 + 0.0151841*m.x239 + 0.0235719*m.x240 + 0.0145538*m.x241 + 0.0358926*m.x242 + 0.0104228*m.x243 - 0.00778263*m.x244 + 0.0131565*m.x245 - 0.010758*m.x246 + 0.00469393*m.x247 + 0.0144722*m.x248 - 0.00109436*m.x249 + 0.000843914*m.x250 - 0.0111344*m.x251 + 0.00493219*m.x252 + 0.00631849*m.x253 - 0.00521642*m.x254 - 0.0118855*m.x255 + 0.226022*m.x256 + 0.0134414*m.x257 + 0.0132028*m.x258 + 0.0182593*m.x259 + 0.00378479*m.x260 + 0.00402915*m.x261 + 0.00220607*m.x262 + 0.0103192*m.x263 + 0.0152444*m.x264 + 0.0220514*m.x265 + 0.0445908*m.x266 - 0.00977257*m.x267 + 0.00947946*m.x268 + 0.0081976*m.x269 + 0.00899719*m.x270 + 0.0216871*m.x271 + 0.0232*m.x272 + 0.0135089*m.x273 + 0.0147635*m.x274 - 0.0169658*m.x275 + 0.00689011*m.x276 + 0.00530597*m.x277 + 0.000210327*m.x278 - 0.00222996*m.x279 + 0.00353714*m.x280 + 0.0260232*m.x281 - 0.0188128*m.x282 - 0.00162038*m.x283 - 0.00901467*m.x284 + 0.031558*m.x285 + 0.0131334*m.x286 + 0.010006*m.x287 - 0.00713827*m.x288 + 0.00638031*m.x289 + 0.0140088*m.x290 + 0.0192336*m.x291 + 0.00082309*m.x292 + 0.00967333*m.x293 + 0.000291585*m.x294 + 0.0165254*m.x295 + 0.00824013*m.x296 - 0.00561804*m.x297 + 0.0192153*m.x298 - 0.00817059*m.x299 + 0.0078892*m.x300 + 0.00463932*m.x301 - 0.00593801*m.x302 + 0.00325836*m.x303 == 0) m.c160 = Constraint(expr= - m.x55 + 0.0164977*m.x204 - 0.00637132*m.x205 + 0.0115937*m.x206 + 0.00222715*m.x207 + 0.00832278*m.x208 + 0.00288051*m.x209 + 0.0155811*m.x210 + 0.0170693*m.x211 + 0.0167367*m.x212 + 0.00274854*m.x213 + 0.00766591*m.x214 + 0.00451784*m.x215 + 0.09051*m.x216 + 0.0455555*m.x217 + 0.0214377*m.x218 + 0.0166459*m.x219 + 0.0380049*m.x220 + 0.0140183*m.x221 + 0.0316379*m.x222 - 0.0190381*m.x223 + 0.00659477*m.x224 + 0.00760958*m.x225 + 0.00174846*m.x226 + 0.00342253*m.x227 + 9.44861E-5*m.x228 + 0.0074701*m.x229 - 0.00906739*m.x230 + 0.015111*m.x231 - 0.00680131*m.x232 + 0.00116831*m.x233 + 0.00320485*m.x234 - 0.0130126*m.x235 - 0.0046504*m.x236 + 0.0058258*m.x237 + 0.00253837*m.x238 + 0.0144667*m.x239 + 0.0176837*m.x240 + 0.0131903*m.x241 + 0.0274205*m.x242 + 0.00959745*m.x243 + 0.0206125*m.x244 + 0.0127459*m.x245 + 0.0162983*m.x246 + 0.00134527*m.x247 + 0.0343682*m.x248 + 0.00665208*m.x249 + 0.0110552*m.x250 + 0.0327084*m.x251 + 0.00452567*m.x252 + 0.00655318*m.x253 + 0.00301132*m.x254 - 0.014196*m.x255 + 0.0134414*m.x256 + 0.438941*m.x257 + 0.011138*m.x258 + 0.0267434*m.x259 + 0.0153667*m.x260 - 0.0139925*m.x261 + 0.00410561*m.x262 + 0.0255464*m.x263 + 0.0476449*m.x264 + 0.0288895*m.x265 + 0.00855635*m.x266 - 0.0298097*m.x267 - 0.0193235*m.x268 - 0.00212818*m.x269 + 0.0152037*m.x270 + 0.0243197*m.x271 + 0.0286571*m.x272 + 0.0238634*m.x273 + 0.00835242*m.x274 - 0.0044184*m.x275 + 0.0108029*m.x276 + 0.00721874*m.x277 + 0.0240962*m.x278 + 0.0333277*m.x279 - 0.00435648*m.x280 + 0.0866383*m.x281 + 0.00354499*m.x282 + 0.00280407*m.x283 - 0.0171587*m.x284 + 0.0167951*m.x285 + 0.0217323*m.x286 + 0.0074812*m.x287 - 0.0200391*m.x288 + 0.00634167*m.x289 - 0.00043216*m.x290 - 0.000981924*m.x291 + 0.0100724*m.x292 + 0.00947697*m.x293 + 0.0122578*m.x294 + 0.0215961*m.x295 + 0.0101139*m.x296 + 0.00689054*m.x297 + 0.0214997*m.x298 - 0.00197476*m.x299 + 0.0136175*m.x300 + 0.0236766*m.x301 + 0.00337669*m.x302 + 0.0035861*m.x303 == 0) m.c161 = Constraint(expr= - m.x56 + 0.00852804*m.x204 + 0.028098*m.x205 - 0.0206532*m.x206 - 0.018228*m.x207 + 0.00806585*m.x208 - 0.00244405*m.x209 + 0.00782426*m.x210 - 0.0010862*m.x211 + 0.000760504*m.x212 + 0.0082671*m.x213 + 0.0182084*m.x214 - 0.0264793*m.x215 - 0.00361466*m.x216 - 0.0220985*m.x217 + 0.0122468*m.x218 + 0.00111556*m.x219 + 0.00594814*m.x220 - 0.0157061*m.x221 + 0.0193443*m.x222 + 0.0138196*m.x223 - 0.00192784*m.x224 - 0.00714421*m.x225 + 0.0155517*m.x226 + 0.0144765*m.x227 + 0.0205903*m.x228 - 0.00778581*m.x229 + 0.00425862*m.x230 + 0.0266351*m.x231 + 0.0104672*m.x232 + 0.00270328*m.x233 - 0.0033721*m.x234 + 0.00691299*m.x235 - 0.0112877*m.x236 + 0.0144468*m.x237 + 0.0021617*m.x238 + 0.00865979*m.x239 + 0.00165906*m.x240 + 0.00498598*m.x241 + 0.00568814*m.x242 + 0.0216421*m.x243 - 0.00233532*m.x244 + 0.00581905*m.x245 + 0.00775024*m.x246 + 0.00374232*m.x247 + 0.0244461*m.x248 + 0.0151547*m.x249 + 0.00964941*m.x250 - 0.0151267*m.x251 + 0.000714771*m.x252 + 0.0189254*m.x253 + 0.0059386*m.x254 + 0.011069*m.x255 + 0.0132028*m.x256 + 0.011138*m.x257 + 0.196677*m.x258 - 0.0016753*m.x259 + 0.0210475*m.x260 + 0.0394424*m.x261 - 0.0137174*m.x262 + 0.0251559*m.x263 + 0.004979*m.x264 + 0.0286546*m.x265 + 0.00245343*m.x266 - 0.0029273*m.x267 - 0.00576086*m.x268 + 0.0142978*m.x269 + 0.000630997*m.x270 + 0.00317061*m.x271 - 0.0123761*m.x272 + 0.021312*m.x273 + 0.00566315*m.x274 + 0.0328952*m.x275 - 0.00795682*m.x276 + 0.00577634*m.x277 + 0.00671703*m.x278 + 0.0141594*m.x279 + 0.0189637*m.x280 - 0.0099332*m.x281 + 0.0100466*m.x282 + 0.00647759*m.x283 + 0.0250933*m.x284 - 0.000881292*m.x285 + 0.0263854*m.x286 + 0.0134424*m.x287 + 0.00802506*m.x288 + 0.00331125*m.x289 + 0.00732372*m.x290 + 0.00825968*m.x291 + 0.0142932*m.x292 + 0.00984404*m.x293 - 0.00774969*m.x294 - 0.00584549*m.x295 - 0.00254807*m.x296 - 0.00996077*m.x297 - 0.00480671*m.x298 + 0.017175*m.x299 + 0.00103887*m.x300 - 2.46303E-5*m.x301 + 0.00495815*m.x302 + 0.0225131*m.x303 == 0) m.c162 = Constraint(expr= - m.x57 + 0.0112867*m.x204 + 0.0142655*m.x205 + 0.0357135*m.x206 + 0.0386991*m.x207 + 0.0196795*m.x208 + 0.0133542*m.x209 + 0.03853*m.x210 + 0.0164155*m.x211 - 0.0145817*m.x212 + 0.0215893*m.x213 + 0.0215114*m.x214 + 0.00837984*m.x215 + 0.0141785*m.x216 + 0.00916835*m.x217 + 0.0297611*m.x218 + 0.0024162*m.x219 + 0.00156841*m.x220 + 0.0426323*m.x221 + 0.00259346*m.x222 - 0.0199045*m.x223 + 0.00381282*m.x224 + 0.020719*m.x225 + 0.00739069*m.x226 + 0.030732*m.x227 + 0.0219997*m.x228 + 0.0251306*m.x229 + 0.00867625*m.x230 + 0.0408723*m.x231 - 0.00397893*m.x232 + 0.0137686*m.x233 + 0.0182858*m.x234 + 0.0230993*m.x235 + 0.0388425*m.x236 + 0.012515*m.x237 + 0.00289448*m.x238 + 0.00669218*m.x239 + 0.0824428*m.x240 + 0.0347475*m.x241 - 0.00209651*m.x242 + 0.0118242*m.x243 + 0.037583*m.x244 + 0.0246255*m.x245 + 0.00853849*m.x246 + 0.00559832*m.x247 + 0.0119362*m.x248 + 0.00745197*m.x249 + 0.00680548*m.x250 + 0.0557771*m.x251 + 0.00310895*m.x252 + 0.0128203*m.x253 + 0.000656537*m.x254 + 0.0175376*m.x255 + 0.0182593*m.x256 + 0.0267434*m.x257 - 0.0016753*m.x258 + 0.181831*m.x259 + 0.0178859*m.x260 + 0.00593901*m.x261 + 0.0130043*m.x262 + 0.0296284*m.x263 + 0.0122646*m.x264 + 0.00897029*m.x265 + 0.0101287*m.x266 - 0.0230152*m.x267 + 0.0212254*m.x268 + 0.0151995*m.x269 + 0.00961517*m.x270 + 0.0216584*m.x271 + 0.00890793*m.x272 + 0.0156085*m.x273 + 0.0179047*m.x274 + 0.0195461*m.x275 + 0.0202055*m.x276 + 0.00312413*m.x277 - 0.0085337*m.x278 + 0.00691393*m.x279 + 0.019103*m.x280 + 0.0121945*m.x281 - 0.01046*m.x282 + 7.7416E-5*m.x283 + 0.0195852*m.x284 + 0.0203511*m.x285 + 0.00683799*m.x286 + 0.0150426*m.x287 + 0.0201186*m.x288 + 0.0161444*m.x289 + 0.0127031*m.x290 + 0.0366677*m.x291 + 0.00820119*m.x292 - 0.00665374*m.x293 + 0.00551264*m.x294 + 0.0332128*m.x295 + 0.000520073*m.x296 - 0.00757188*m.x297 + 0.00641418*m.x298 + 0.00692204*m.x299 + 0.0175234*m.x300 - 0.0128168*m.x301 + 0.0164063*m.x302 + 0.00875325*m.x303 == 0) m.c163 = Constraint(expr= - m.x58 + 0.0247222*m.x204 + 0.0264826*m.x205 - 0.00418977*m.x206 + 0.0209281*m.x207 + 0.0144357*m.x208 + 0.0320697*m.x209 + 0.0225766*m.x210 - 0.00380167*m.x211 + 0.00627821*m.x212 - 0.0026586*m.x213 + 0.0402573*m.x214 + 0.0137972*m.x215 + 0.0210091*m.x216 + 0.022344*m.x217 + 0.0176119*m.x218 + 0.00726513*m.x219 + 0.0291383*m.x220 + 0.00626505*m.x221 + 0.019997*m.x222 + 0.0230939*m.x223 + 0.0130988*m.x224 + 0.013493*m.x225 + 0.0279297*m.x226 + 0.0159408*m.x227 + 0.0126357*m.x228 - 0.00245187*m.x229 - 0.0023455*m.x230 - 0.000700731*m.x231 - 0.00363432*m.x232 + 0.017504*m.x233 - 0.0042177*m.x234 + 0.0192279*m.x235 - 0.00375455*m.x236 + 0.00320118*m.x237 + 0.00470079*m.x238 + 0.0128782*m.x239 + 0.0133704*m.x240 + 0.0244545*m.x241 + 0.00931511*m.x242 + 0.0207329*m.x243 + 0.0180524*m.x244 + 0.0224446*m.x245 - 0.00130433*m.x246 - 0.00188392*m.x247 + 0.00907288*m.x248 + 0.01615*m.x249 + 0.00742778*m.x250 - 0.00515185*m.x251 + 0.0185615*m.x252 + 0.0120199*m.x253 - 5.81815E-5*m.x254 + 0.0238431*m.x255 + 0.00378479*m.x256 + 0.0153667*m.x257 + 0.0210475*m.x258 + 0.0178859*m.x259 + 0.139562*m.x260 - 0.00364834*m.x261 + 0.0199487*m.x262 - 0.00167911*m.x263 + 0.00860407*m.x264 - 0.0128582*m.x265 + 0.0245223*m.x266 - 0.00469692*m.x267 + 0.00503291*m.x268 + 0.00889461*m.x269 + 0.0140235*m.x270 + 0.0150737*m.x271 - 0.0008781*m.x272 - 0.00187174*m.x273 + 0.00524362*m.x274 + 0.0238296*m.x275 - 0.00255331*m.x276 + 0.0228347*m.x277 + 0.00908482*m.x278 - 0.000852062*m.x279 + 0.00890703*m.x280 + 0.0294183*m.x281 + 0.0037155*m.x282 + 0.0369425*m.x283 + 0.0014252*m.x284 + 0.00588108*m.x285 + 0.0145498*m.x286 + 0.0146631*m.x287 + 0.0173147*m.x288 + 0.0134929*m.x289 + 0.013611*m.x290 + 0.0214669*m.x291 + 0.00624642*m.x292 + 0.00454738*m.x293 + 0.00717722*m.x294 + 0.0127629*m.x295 + 0.019358*m.x296 + 0.0375824*m.x297 + 0.0198104*m.x298 + 0.0133092*m.x299 + 0.0195271*m.x300 - 0.00823347*m.x301 - 0.00820594*m.x302 + 0.00813384*m.x303 == 0) m.c164 = Constraint(expr= - m.x59 - 0.0163525*m.x204 - 0.0200925*m.x205 + 0.030475*m.x206 + 0.0219851*m.x207 - 0.00152624*m.x208 - 0.0217595*m.x209 + 0.0150547*m.x210 + 0.0200358*m.x211 + 0.00589982*m.x212 + 0.0389273*m.x213 + 0.00451804*m.x214 + 0.0176927*m.x215 + 0.0471372*m.x216 + 0.00900194*m.x217 + 0.0115796*m.x218 + 0.032302*m.x219 + 0.0197841*m.x220 + 0.00147777*m.x221 - 0.00264326*m.x222 + 0.0013091*m.x223 + 0.0115547*m.x224 + 0.00400814*m.x225 + 0.0501498*m.x226 + 0.00458005*m.x227 + 0.0335534*m.x228 - 0.00390438*m.x229 + 0.00967889*m.x230 + 0.00840972*m.x231 + 0.0101807*m.x232 + 0.0185947*m.x233 - 0.00092753*m.x234 + 0.0119446*m.x235 + 1.76484E-5*m.x236 - 0.000227592*m.x237 - 0.000123939*m.x238 - 0.00508847*m.x239 + 0.0137969*m.x240 + 0.0126796*m.x241 - 0.00153738*m.x242 + 0.0150648*m.x243 + 0.0438692*m.x244 - 0.0172843*m.x245 + 0.00312367*m.x246 + 9.17403E-5*m.x247 - 0.04778*m.x248 + 0.00117437*m.x249 + 9.53631E-5*m.x250 - 0.0101051*m.x251 + 0.0258631*m.x252 + 0.0197559*m.x253 + 0.00610465*m.x254 - 0.0397472*m.x255 + 0.00402915*m.x256 - 0.0139925*m.x257 + 0.0394424*m.x258 + 0.00593901*m.x259 - 0.00364834*m.x260 + 0.527736*m.x261 + 0.00582179*m.x262 + 0.0197223*m.x263 + 0.00508856*m.x264 + 0.0419625*m.x265 - 0.0133944*m.x266 - 0.0152728*m.x267 + 0.0208192*m.x268 + 0.0106285*m.x269 + 0.00455505*m.x270 + 0.0138845*m.x271 - 0.0100251*m.x272 + 0.00188325*m.x273 + 0.00744129*m.x274 + 0.00536604*m.x275 - 0.00136449*m.x276 + 0.00692329*m.x277 + 0.0109078*m.x278 - 0.00236473*m.x279 + 0.00505126*m.x280 + 0.0181113*m.x281 - 0.0184427*m.x282 - 0.00067668*m.x283 - 0.000180812*m.x284 + 0.020629*m.x285 - 0.00579727*m.x286 + 0.00633518*m.x287 - 0.0124431*m.x288 + 0.0253269*m.x289 + 0.0201735*m.x290 + 0.017492*m.x291 + 0.0200526*m.x292 + 0.00522364*m.x293 + 0.0101262*m.x294 + 0.033537*m.x295 + 0.0302725*m.x296 + 0.00311747*m.x297 + 0.00113182*m.x298 + 0.0359219*m.x299 + 0.000595551*m.x300 + 4.13827E-5*m.x301 + 0.0152464*m.x302 - 0.0111606*m.x303 == 0) m.c165 = Constraint(expr= - m.x60 + 0.00503011*m.x204 + 0.00429221*m.x205 - 0.0301452*m.x206 - 0.0106357*m.x207 - 0.00636291*m.x208 + 0.0127581*m.x209 - 0.00416059*m.x210 - 0.0132264*m.x211 + 0.0158731*m.x212 + 0.00679229*m.x213 + 0.00173858*m.x214 - 0.00573209*m.x215 - 0.0173444*m.x216 + 0.00271829*m.x217 - 0.00309314*m.x218 - 0.000321415*m.x219 - 0.00560644*m.x220 + 0.0174915*m.x221 - 0.0162587*m.x222 - 0.0175093*m.x223 + 0.0146067*m.x224 - 0.00800908*m.x225 + 0.00507925*m.x226 - 0.0105654*m.x227 + 0.009157*m.x228 - 0.0316484*m.x229 + 0.00396363*m.x230 + 0.00252738*m.x231 - 0.0100285*m.x232 - 0.0233244*m.x233 + 0.00894155*m.x234 + 0.0224351*m.x235 + 0.0261447*m.x236 + 0.0223779*m.x237 - 0.00572274*m.x238 - 0.0146124*m.x239 + 0.00197565*m.x240 + 0.018523*m.x241 - 0.0039206*m.x242 - 0.00613654*m.x243 + 0.0261745*m.x244 - 0.00143913*m.x245 - 0.0160088*m.x246 + 0.00219407*m.x247 - 0.0108826*m.x248 - 0.00321902*m.x249 - 0.00253774*m.x250 + 0.00981918*m.x251 + 0.00933346*m.x252 + 0.0196814*m.x253 + 0.00544527*m.x254 - 0.0442114*m.x255 + 0.00220607*m.x256 + 0.00410561*m.x257 - 0.0137174*m.x258 + 0.0130043*m.x259 + 0.0199487*m.x260 + 0.00582179*m.x261 + 0.970548*m.x262 - 0.015973*m.x263 - 0.0127695*m.x264 + 0.0162455*m.x265 - 0.0208167*m.x266 + 0.96806*m.x267 + 0.00562029*m.x268 - 0.00794541*m.x269 + 0.000339474*m.x270 + 0.0011182*m.x271 + 0.00857265*m.x272 + 0.0126079*m.x273 - 0.018004*m.x274 - 0.0118023*m.x275 - 0.0147362*m.x276 - 0.00499549*m.x277 - 0.0143351*m.x278 + 0.0135402*m.x279 + 0.000304222*m.x280 - 0.0196864*m.x281 + 0.0158055*m.x282 - 0.0123673*m.x283 + 0.0093129*m.x284 + 0.0180884*m.x285 - 0.0022627*m.x286 - 0.0178424*m.x287 + 0.0201311*m.x288 + 0.0127648*m.x289 + 0.024251*m.x290 + 0.0212452*m.x291 + 0.0241234*m.x292 + 0.0195278*m.x293 - 0.00432386*m.x294 - 0.00115008*m.x295 - 0.00414181*m.x296 - 0.0293668*m.x297 - 0.00629538*m.x298 - 0.0228968*m.x299 + 0.00307471*m.x300 + 0.0204793*m.x301 + 0.00683967*m.x302 - 0.0105449*m.x303 == 0) m.c166 = Constraint(expr= - m.x61 + 0.0521947*m.x204 + 0.0268675*m.x205 + 0.0467552*m.x206 + 0.0312148*m.x207 + 0.00719514*m.x208 + 0.0200628*m.x209 + 0.00755277*m.x210 - 0.0108891*m.x211 - 0.00692226*m.x212 + 0.0607996*m.x213 + 0.0011291*m.x214 + 0.00992262*m.x215 + 0.0395081*m.x216 - 0.0153606*m.x217 - 0.0165173*m.x218 - 0.0027376*m.x219 - 0.00570369*m.x220 - 0.0106458*m.x221 - 0.00236544*m.x222 + 0.0241302*m.x223 + 0.0110104*m.x224 + 0.0239775*m.x225 + 0.018196*m.x226 - 0.0022915*m.x227 + 0.0103454*m.x228 + 0.0136876*m.x229 + 0.0431392*m.x230 + 0.0676544*m.x231 + 0.0068697*m.x232 + 0.00418422*m.x233 + 0.0454908*m.x234 + 0.022391*m.x235 + 0.0421239*m.x236 + 0.00773196*m.x237 + 0.00812701*m.x238 + 0.0225587*m.x239 + 0.0284788*m.x240 + 0.00388717*m.x241 + 0.0154733*m.x242 + 0.0074099*m.x243 - 0.0114466*m.x244 + 0.0179142*m.x245 + 0.0308548*m.x246 + 0.00878374*m.x247 + 0.00420738*m.x248 + 0.00508728*m.x249 + 0.0180458*m.x250 + 0.117196*m.x251 - 0.0221839*m.x252 + 0.00428319*m.x253 + 0.0153454*m.x254 + 0.0518827*m.x255 + 0.0103192*m.x256 + 0.0255464*m.x257 + 0.0251559*m.x258 + 0.0296284*m.x259 - 0.00167911*m.x260 + 0.0197223*m.x261 - 0.015973*m.x262 + 0.336744*m.x263 + 0.0252049*m.x264 - 0.000715187*m.x265 - 0.0105093*m.x266 - 0.00396636*m.x267 + 0.020192*m.x268 + 0.0240284*m.x269 + 0.00646055*m.x270 + 0.0240529*m.x271 - 0.0104475*m.x272 - 0.0100576*m.x273 + 0.00619413*m.x274 + 0.0152866*m.x275 + 0.0172916*m.x276 - 0.0067214*m.x277 + 0.00669297*m.x278 + 0.013914*m.x279 + 0.0234397*m.x280 + 0.0236703*m.x281 + 0.0307119*m.x282 + 0.0135874*m.x283 + 0.0408449*m.x284 + 0.00693809*m.x285 + 0.0213571*m.x286 + 0.0130973*m.x287 + 0.0121195*m.x288 + 0.0119547*m.x289 + 0.00901592*m.x290 + 0.0227243*m.x291 + 0.00169162*m.x292 - 0.00631568*m.x293 - 0.014748*m.x294 + 0.0202061*m.x295 + 0.00890168*m.x296 - 0.0256392*m.x297 + 0.046066*m.x298 - 0.0109849*m.x299 + 0.00658164*m.x300 + 0.0362579*m.x301 + 0.00917306*m.x302 + 0.0146768*m.x303 == 0) m.c167 = Constraint(expr= - m.x62 - 0.00318536*m.x204 - 0.00173957*m.x205 + 0.0103264*m.x206 + 0.0168165*m.x207 + 0.0109626*m.x208 + 0.0123119*m.x209 - 0.0018521*m.x210 + 0.020785*m.x211 + 0.018374*m.x212 + 0.0264003*m.x213 + 0.0213333*m.x214 + 0.00917944*m.x215 + 0.0341682*m.x216 + 0.0224616*m.x217 + 0.0275152*m.x218 + 0.0190897*m.x219 + 0.0191435*m.x220 - 0.0268525*m.x221 - 0.00879978*m.x222 + 0.0125103*m.x223 + 0.0023853*m.x224 + 0.0023628*m.x225 + 0.011861*m.x226 + 0.0289602*m.x227 + 0.00485118*m.x228 - 0.000726206*m.x229 + 0.0248388*m.x230 + 0.01361*m.x231 + 0.0418921*m.x232 + 0.0090785*m.x233 + 0.0349551*m.x234 + 0.0160624*m.x235 - 0.00545796*m.x236 + 0.00267723*m.x237 - 0.00120612*m.x238 + 0.00526915*m.x239 + 0.0192414*m.x240 + 0.020429*m.x241 + 0.034914*m.x242 + 0.0159826*m.x243 + 0.019726*m.x244 + 0.00496924*m.x245 + 0.0187432*m.x246 + 0.00816234*m.x247 + 0.0658392*m.x248 + 0.00978353*m.x249 + 0.0185083*m.x250 + 0.00665526*m.x251 + 0.0236734*m.x252 + 0.0202022*m.x253 + 0.0292089*m.x254 + 0.0161886*m.x255 + 0.0152444*m.x256 + 0.0476449*m.x257 + 0.004979*m.x258 + 0.0122646*m.x259 + 0.00860407*m.x260 + 0.00508856*m.x261 - 0.0127695*m.x262 + 0.0252049*m.x263 + 0.384602*m.x264 + 0.0253864*m.x265 + 0.0160924*m.x266 - 0.0390907*m.x267 + 0.00154115*m.x268 + 0.00142817*m.x269 + 0.00464688*m.x270 + 0.0433953*m.x271 - 0.0108651*m.x272 + 0.0208448*m.x273 - 0.00749905*m.x274 + 0.0181994*m.x275 + 0.0583548*m.x276 + 0.057555*m.x277 + 0.0268228*m.x278 - 0.00819768*m.x279 - 0.00195137*m.x280 + 0.0198979*m.x281 + 0.216012*m.x282 + 0.00795018*m.x283 + 0.00230105*m.x284 + 0.0194778*m.x285 + 0.00852926*m.x286 + 0.0180986*m.x287 + 0.0217749*m.x288 + 0.00366775*m.x289 - 0.00447213*m.x290 + 0.0267458*m.x291 + 0.0216534*m.x292 + 0.0107144*m.x293 + 0.0142204*m.x294 + 0.0660462*m.x295 - 0.0111379*m.x296 - 0.0165798*m.x297 + 0.0260859*m.x298 + 0.0220738*m.x299 + 0.0291965*m.x300 - 0.00087998*m.x301 + 0.00952427*m.x302 + 0.00243344*m.x303 == 0) m.c168 = Constraint(expr= - m.x63 + 0.0012286*m.x204 + 0.00182754*m.x205 - 0.0157278*m.x206 + 0.0159145*m.x207 + 0.00565965*m.x208 + 0.0263411*m.x209 - 0.0101745*m.x210 + 0.0086092*m.x211 + 0.00783315*m.x212 + 0.00577287*m.x213 + 0.00782635*m.x214 - 0.00185404*m.x215 + 0.0266136*m.x216 + 0.0145659*m.x217 + 0.0464477*m.x218 + 0.0346448*m.x219 + 0.0154717*m.x220 - 0.00592304*m.x221 - 0.0199739*m.x222 + 0.0245635*m.x223 + 0.00213944*m.x224 + 0.041102*m.x225 + 0.016458*m.x226 + 0.0145756*m.x227 + 0.0191232*m.x228 + 0.0163476*m.x229 + 0.0208145*m.x230 + 0.010551*m.x231 - 0.00534991*m.x232 + 0.00995839*m.x233 + 0.0343384*m.x234 - 0.00427316*m.x235 + 0.0164325*m.x236 - 0.00201299*m.x237 + 0.0192903*m.x238 + 0.0180621*m.x239 + 0.0212005*m.x240 + 0.0233626*m.x241 + 0.0149224*m.x242 + 0.0065965*m.x243 + 0.0217904*m.x244 + 0.012034*m.x245 - 0.00426161*m.x246 + 0.0139761*m.x247 - 0.00210493*m.x248 + 0.0167338*m.x249 + 0.0187542*m.x250 - 0.0175406*m.x251 + 0.0176283*m.x252 + 0.0291275*m.x253 + 0.0160595*m.x254 + 0.00172998*m.x255 + 0.0220514*m.x256 + 0.0288895*m.x257 + 0.0286546*m.x258 + 0.00897029*m.x259 - 0.0128582*m.x260 + 0.0419625*m.x261 + 0.0162455*m.x262 - 0.000715187*m.x263 + 0.0253864*m.x264 + 0.270277*m.x265 + 0.0160166*m.x266 + 0.0135735*m.x267 + 0.00161591*m.x268 + 0.0132148*m.x269 + 0.00836484*m.x270 + 0.0194914*m.x271 + 0.00987742*m.x272 - 0.0115779*m.x273 - 0.000442365*m.x274 + 0.0365121*m.x275 + 0.0226464*m.x276 + 0.0143164*m.x277 + 0.00841295*m.x278 + 0.00921905*m.x279 + 0.00349776*m.x280 + 0.0226748*m.x281 - 0.00159181*m.x282 + 0.00683403*m.x283 + 0.000980679*m.x284 + 0.00186047*m.x285 + 0.0167378*m.x286 - 0.0130487*m.x287 + 0.00624026*m.x288 + 0.0174197*m.x289 + 0.0230098*m.x290 + 9.8143E-5*m.x291 - 0.00953022*m.x292 + 0.0169729*m.x293 + 0.0174156*m.x294 + 0.0182632*m.x295 + 0.00110738*m.x296 - 0.00610696*m.x297 + 0.0117812*m.x298 + 0.0127772*m.x299 + 0.0162*m.x300 - 0.0368529*m.x301 + 0.0012669*m.x302 + 0.000788331*m.x303 == 0) m.c169 = Constraint(expr= - m.x64 - 0.0157072*m.x204 + 0.0102239*m.x205 + 0.0167359*m.x206 - 0.00939875*m.x207 + 0.0101803*m.x208 + 0.00564516*m.x209 - 0.00307772*m.x210 - 0.00880776*m.x211 - 0.00318606*m.x212 + 0.00499131*m.x213 + 0.031041*m.x214 + 0.00351722*m.x215 + 0.00530461*m.x216 + 0.00845039*m.x217 + 0.00779052*m.x218 + 0.0276531*m.x219 + 0.0101111*m.x220 + 0.0265062*m.x221 - 0.039269*m.x222 + 0.0207647*m.x223 + 0.0115639*m.x224 + 0.0213565*m.x225 + 0.0113615*m.x226 + 4.79134E-5*m.x227 + 0.0224758*m.x228 + 0.00918681*m.x229 - 0.0164721*m.x230 - 0.00205468*m.x231 - 0.0119127*m.x232 + 0.0128665*m.x233 + 0.00879992*m.x234 + 0.00900964*m.x235 + 0.00365749*m.x236 + 0.0224861*m.x237 + 0.0176128*m.x238 - 0.00562995*m.x239 + 0.0139235*m.x240 + 0.00698084*m.x241 + 0.0117364*m.x242 + 0.0154181*m.x243 - 0.0131236*m.x244 - 0.00248961*m.x245 - 0.00773906*m.x246 + 0.00238266*m.x247 - 0.00489265*m.x248 - 0.000552346*m.x249 - 0.00848668*m.x250 - 0.00134639*m.x251 + 0.00446979*m.x252 + 0.0180013*m.x253 - 0.00416091*m.x254 - 0.0149321*m.x255 + 0.0445908*m.x256 + 0.00855635*m.x257 + 0.00245343*m.x258 + 0.0101287*m.x259 + 0.0245223*m.x260 - 0.0133944*m.x261 - 0.0208167*m.x262 - 0.0105093*m.x263 + 0.0160924*m.x264 + 0.0160166*m.x265 + 0.383003*m.x266 - 0.00100771*m.x267 - 0.0063251*m.x268 + 0.00048997*m.x269 + 0.0187309*m.x270 + 0.0152904*m.x271 + 0.0500151*m.x272 - 0.00998242*m.x273 - 0.000518247*m.x274 - 0.00949741*m.x275 - 0.00246233*m.x276 + 0.0237049*m.x277 - 0.00277129*m.x278 - 0.0145486*m.x279 - 0.0063327*m.x280 + 0.00429669*m.x281 + 0.0119178*m.x282 - 0.0166029*m.x283 - 0.00474646*m.x284 - 0.00414121*m.x285 - 0.011543*m.x286 + 0.00920493*m.x287 + 0.0194176*m.x288 + 0.00717868*m.x289 - 0.0100831*m.x290 - 0.00430908*m.x291 + 0.0313277*m.x292 + 0.00449822*m.x293 - 0.00307272*m.x294 + 0.00735778*m.x295 + 0.015328*m.x296 - 0.00549157*m.x297 + 0.0169898*m.x298 + 0.0267541*m.x299 - 0.019998*m.x300 - 0.00561625*m.x301 - 0.010356*m.x302 + 0.0111971*m.x303 == 0) m.c170 = Constraint(expr= - m.x65 - 0.0502192*m.x204 - 0.0136152*m.x205 + 0.00653818*m.x206 + 0.0209841*m.x207 - 0.0016346*m.x208 - 0.0172992*m.x209 - 0.00815475*m.x210 - 0.0195389*m.x211 + 0.0253862*m.x212 - 0.00587637*m.x213 + 0.0122097*m.x214 - 0.0165471*m.x215 - 0.00299125*m.x216 - 0.01842*m.x217 - 0.0226061*m.x218 + 0.000561195*m.x219 - 0.00546503*m.x220 - 0.0314803*m.x221 - 0.0186926*m.x222 - 0.0191503*m.x223 - 0.00246673*m.x224 - 0.0313508*m.x225 - 0.00261119*m.x226 - 0.00267369*m.x227 + 0.00227773*m.x228 - 0.0125721*m.x229 - 0.0223038*m.x230 - 0.00837042*m.x231 - 0.00152064*m.x232 + 0.00262393*m.x233 - 0.00543751*m.x234 - 0.00432735*m.x235 - 0.0388477*m.x236 - 0.0272888*m.x237 - 0.0403434*m.x238 + 0.00935786*m.x239 - 0.0180328*m.x240 + 0.00155564*m.x241 + 0.00189931*m.x242 + 0.00135221*m.x243 + 0.00012462*m.x244 - 0.00825333*m.x245 + 0.00306814*m.x246 - 0.00331267*m.x247 - 0.0339851*m.x248 - 0.0124862*m.x249 - 0.0111347*m.x250 - 0.039556*m.x251 - 0.0128737*m.x252 - 0.00816153*m.x253 - 0.0114877*m.x254 - 0.00526354*m.x255 - 0.00977257*m.x256 - 0.0298097*m.x257 - 0.0029273*m.x258 - 0.0230152*m.x259 - 0.00469692*m.x260 - 0.0152728*m.x261 + 0.96806*m.x262 - 0.00396636*m.x263 - 0.0390907*m.x264 + 0.0135735*m.x265 - 0.00100771*m.x266 + 1.66947*m.x267 + 0.00495846*m.x268 + 0.000382122*m.x269 + 0.00474442*m.x270 - 0.0198*m.x271 - 0.00114484*m.x272 + 0.0441795*m.x273 - 0.00598213*m.x274 - 0.00477587*m.x275 - 0.025348*m.x276 - 0.0195708*m.x277 - 0.00168274*m.x278 - 0.0318426*m.x279 - 0.00658838*m.x280 - 0.0168533*m.x281 - 0.0154167*m.x282 - 0.018515*m.x283 + 0.00103058*m.x284 - 0.0178181*m.x285 - 0.0183739*m.x286 - 0.0131486*m.x287 + 0.000857968*m.x288 + 0.0083299*m.x289 - 0.000461334*m.x290 + 0.0704456*m.x291 + 0.00562888*m.x292 + 0.0251025*m.x293 + 0.00344892*m.x294 - 0.0224606*m.x295 + 0.00833154*m.x296 - 0.0234811*m.x297 - 0.0262964*m.x298 - 0.0175235*m.x299 + 0.0205719*m.x300 - 0.0402272*m.x301 - 0.00924209*m.x302 + 0.0228584*m.x303 == 0) m.c171 = Constraint(expr= - m.x66 - 0.00188018*m.x204 + 0.0458865*m.x205 + 0.0409725*m.x206 + 0.0190617*m.x207 + 0.0277761*m.x208 + 0.0342875*m.x209 + 0.0229656*m.x210 + 0.00208113*m.x211 - 0.00670214*m.x212 + 0.0419289*m.x213 + 0.00799351*m.x214 - 0.0113949*m.x215 + 0.00534225*m.x216 + 0.0230371*m.x217 + 0.0267434*m.x218 + 0.00605195*m.x219 + 0.0144737*m.x220 - 0.00113399*m.x221 + 0.0490725*m.x222 - 0.0052634*m.x223 + 0.0109023*m.x224 + 0.0464899*m.x225 + 0.0194988*m.x226 + 0.00284388*m.x227 + 0.00710476*m.x228 + 0.0319031*m.x229 + 0.0536968*m.x230 + 0.0198054*m.x231 + 0.0221966*m.x232 + 0.0238425*m.x233 + 0.04327*m.x234 + 0.0397561*m.x235 + 0.0381643*m.x236 + 0.0102053*m.x237 + 0.00674116*m.x238 + 0.0359849*m.x239 + 0.0362249*m.x240 + 0.00767128*m.x241 - 0.000952693*m.x242 + 0.00855652*m.x243 + 0.0111129*m.x244 + 0.02346*m.x245 + 0.0128287*m.x246 + 0.0130905*m.x247 + 0.0142713*m.x248 + 0.0092919*m.x249 + 0.029197*m.x250 - 0.00784993*m.x251 - 0.00682462*m.x252 - 0.0005624*m.x253 - 0.00518739*m.x254 + 0.0191389*m.x255 + 0.00947946*m.x256 - 0.0193235*m.x257 - 0.00576086*m.x258 + 0.0212254*m.x259 + 0.00503291*m.x260 + 0.0208192*m.x261 + 0.00562029*m.x262 + 0.020192*m.x263 + 0.00154115*m.x264 + 0.00161591*m.x265 - 0.0063251*m.x266 + 0.00495846*m.x267 + 0.228481*m.x268 + 0.0490214*m.x269 + 0.0126939*m.x270 + 0.0286928*m.x271 + 0.00630082*m.x272 - 0.0070283*m.x273 + 0.0105371*m.x274 + 0.0142667*m.x275 + 0.00283098*m.x276 + 0.0181153*m.x277 + 0.00272646*m.x278 + 0.00912054*m.x279 + 0.0236631*m.x280 + 0.012122*m.x281 + 0.00657829*m.x282 - 0.0121548*m.x283 + 0.0355309*m.x284 + 0.00535639*m.x285 - 0.0102352*m.x286 + 0.0343148*m.x287 + 0.0161535*m.x288 + 0.0145892*m.x289 + 0.00586937*m.x290 + 0.0392681*m.x291 + 0.0321897*m.x292 + 0.00459229*m.x293 - 0.00116349*m.x294 + 0.00533042*m.x295 + 0.0083884*m.x296 - 0.00154795*m.x297 + 0.00327212*m.x298 + 0.0425838*m.x299 + 0.0191781*m.x300 + 0.00444886*m.x301 + 0.0219505*m.x302 + 0.0116164*m.x303 == 0) m.c172 = Constraint(expr= - m.x67 + 0.00421152*m.x204 + 0.0178109*m.x205 + 0.0331419*m.x206 + 0.0158536*m.x207 + 0.0225116*m.x208 + 0.0155064*m.x209 - 0.00130048*m.x210 - 0.00273464*m.x211 + 0.01518*m.x212 + 0.00163644*m.x213 - 0.00702948*m.x214 + 0.00780787*m.x215 - 0.00371224*m.x216 + 0.00761157*m.x217 + 0.0145246*m.x218 + 0.0080424*m.x219 + 0.0137256*m.x220 - 0.00330446*m.x221 + 0.031858*m.x222 + 0.00488365*m.x223 + 0.00914522*m.x224 + 0.0119209*m.x225 + 0.0159019*m.x226 + 0.00640165*m.x227 + 0.00283558*m.x228 + 0.0180154*m.x229 + 0.0222226*m.x230 + 0.0122407*m.x231 + 0.0135936*m.x232 + 0.0205163*m.x233 + 0.0141045*m.x234 + 0.00466481*m.x235 + 0.0228523*m.x236 + 0.00464414*m.x237 + 0.00290841*m.x238 + 0.00335704*m.x239 + 0.0194911*m.x240 + 0.0118559*m.x241 + 0.00134611*m.x242 + 0.0195004*m.x243 - 0.00456618*m.x244 + 0.02262*m.x245 + 0.00522194*m.x246 - 0.00761858*m.x247 + 0.00850407*m.x248 - 0.000986526*m.x249 + 0.0134837*m.x250 + 0.0249045*m.x251 + 0.00523125*m.x252 + 0.0104426*m.x253 + 0.00285023*m.x254 - 0.000438258*m.x255 + 0.0081976*m.x256 - 0.00212818*m.x257 + 0.0142978*m.x258 + 0.0151995*m.x259 + 0.00889461*m.x260 + 0.0106285*m.x261 - 0.00794541*m.x262 + 0.0240284*m.x263 + 0.00142817*m.x264 + 0.0132148*m.x265 + 0.00048997*m.x266 + 0.000382122*m.x267 + 0.0490214*m.x268 + 0.100974*m.x269 + 0.0128903*m.x270 + 0.00548068*m.x271 + 0.0199531*m.x272 + 0.0127807*m.x273 - 0.0025092*m.x274 + 0.0133094*m.x275 + 0.0060945*m.x276 - 0.00787035*m.x277 + 0.00700317*m.x278 + 0.010213*m.x279 + 0.0358489*m.x280 + 0.0181724*m.x281 + 0.00656133*m.x282 + 0.00426715*m.x283 + 0.0279955*m.x284 + 0.0107345*m.x285 - 0.00277805*m.x286 + 0.0184565*m.x287 + 0.00461119*m.x288 + 0.0123007*m.x289 + 0.00724424*m.x290 + 0.0184584*m.x291 + 0.0225319*m.x292 - 0.00115612*m.x293 + 0.000984092*m.x294 + 0.000260201*m.x295 - 0.00178894*m.x296 + 0.00486873*m.x297 + 0.01*m.x298 + 0.00629557*m.x299 + 0.0103958*m.x300 + 0.0109707*m.x301 + 0.0344609*m.x302 + 0.00845491*m.x303 == 0) m.c173 = Constraint(expr= - m.x68 + 0.0127643*m.x204 + 0.0122813*m.x205 + 0.0180349*m.x206 + 0.0246904*m.x207 - 0.00484509*m.x208 - 0.00477146*m.x209 + 0.00871877*m.x210 - 0.000357808*m.x211 + 0.0331725*m.x212 + 0.00084169*m.x213 + 0.00472328*m.x214 - 0.00223059*m.x215 + 0.0103986*m.x216 + 0.00153703*m.x217 + 0.00693016*m.x218 + 0.0117333*m.x219 + 0.0283908*m.x220 + 0.0280983*m.x221 - 0.00221523*m.x222 + 0.0136006*m.x223 + 0.0180464*m.x224 - 0.00311277*m.x225 + 0.0101301*m.x226 + 0.00361398*m.x227 - 0.00150208*m.x228 - 0.00293849*m.x229 - 0.00759212*m.x230 + 0.00412582*m.x231 + 0.0218822*m.x232 + 0.000443199*m.x233 - 0.00442873*m.x234 + 0.0123178*m.x235 + 0.012621*m.x236 + 0.0165262*m.x237 + 0.0214671*m.x238 - 0.00719511*m.x239 - 0.00221392*m.x240 + 0.0189483*m.x241 - 0.000237938*m.x242 + 0.013074*m.x243 + 0.00494008*m.x244 + 0.00735435*m.x245 + 0.00258635*m.x246 + 0.00239066*m.x247 - 0.00279322*m.x248 + 0.004509*m.x249 + 0.0134453*m.x250 - 0.00128867*m.x251 + 0.0213069*m.x252 + 0.030677*m.x253 - 0.00263203*m.x254 - 0.00523691*m.x255 + 0.00899719*m.x256 + 0.0152037*m.x257 + 0.000630997*m.x258 + 0.00961517*m.x259 + 0.0140235*m.x260 + 0.00455505*m.x261 + 0.000339474*m.x262 + 0.00646055*m.x263 + 0.00464688*m.x264 + 0.00836484*m.x265 + 0.0187309*m.x266 + 0.00474442*m.x267 + 0.0126939*m.x268 + 0.0128903*m.x269 + 0.114142*m.x270 + 0.00309128*m.x271 + 0.0100597*m.x272 + 0.0162104*m.x273 + 0.00865013*m.x274 + 0.00955259*m.x275 - 0.00981226*m.x276 + 0.0203602*m.x277 + 0.0117019*m.x278 - 0.00029594*m.x279 + 0.00560833*m.x280 + 0.00249681*m.x281 + 0.0204625*m.x282 - 0.0104074*m.x283 - 0.00117293*m.x284 + 0.0119469*m.x285 + 0.0145851*m.x286 + 0.010394*m.x287 + 0.00513963*m.x288 + 0.0107918*m.x289 + 0.0130978*m.x290 + 0.00470305*m.x291 + 0.0108874*m.x292 + 0.0151819*m.x293 + 0.0195643*m.x294 + 0.0289658*m.x295 + 0.000514941*m.x296 - 0.00429564*m.x297 + 0.0195899*m.x298 - 0.00999522*m.x299 + 0.00608684*m.x300 - 0.0133354*m.x301 + 0.00371045*m.x302 - 0.00737205*m.x303 == 0) m.c174 = Constraint(expr= - m.x69 + 0.0174037*m.x204 + 0.0104665*m.x205 + 0.0284386*m.x206 + 0.00427924*m.x207 + 0.0047708*m.x208 + 0.00415194*m.x209 - 0.0045347*m.x210 + 0.0647172*m.x211 - 0.0229361*m.x212 + 0.00995171*m.x213 + 0.0103154*m.x214 + 0.0206811*m.x215 + 0.0396039*m.x216 + 0.0263619*m.x217 + 0.0360689*m.x218 + 0.00873924*m.x219 + 0.0212112*m.x220 - 0.000715512*m.x221 + 0.0134724*m.x222 - 0.00533096*m.x223 - 0.00139956*m.x224 + 0.0170407*m.x225 + 0.00719955*m.x226 + 0.0012624*m.x227 + 0.0113113*m.x228 + 0.0370056*m.x229 - 0.0161031*m.x230 + 0.0114679*m.x231 - 0.0103847*m.x232 + 0.0116392*m.x233 + 0.0329931*m.x234 + 0.0294165*m.x235 + 0.032511*m.x236 + 0.0099305*m.x237 + 0.00882407*m.x238 + 0.017117*m.x239 + 0.0224423*m.x240 + 0.0125617*m.x241 + 0.0043024*m.x242 + 0.0246559*m.x243 + 0.0375735*m.x244 + 0.00373612*m.x245 + 0.0129953*m.x246 + 0.00767196*m.x247 + 0.00139531*m.x248 + 0.00222268*m.x249 + 0.0159389*m.x250 - 0.00261452*m.x251 + 0.0081431*m.x252 + 0.00414094*m.x253 + 0.00784535*m.x254 - 0.00972975*m.x255 + 0.0216871*m.x256 + 0.0243197*m.x257 + 0.00317061*m.x258 + 0.0216584*m.x259 + 0.0150737*m.x260 + 0.0138845*m.x261 + 0.0011182*m.x262 + 0.0240529*m.x263 + 0.0433953*m.x264 + 0.0194914*m.x265 + 0.0152904*m.x266 - 0.0198*m.x267 + 0.0286928*m.x268 + 0.00548068*m.x269 + 0.00309128*m.x270 + 0.217144*m.x271 + 0.000766422*m.x272 + 0.0266859*m.x273 - 0.00234615*m.x274 + 0.0268143*m.x275 + 0.0340288*m.x276 + 0.0271041*m.x277 + 0.026112*m.x278 + 0.00239456*m.x279 + 0.00576057*m.x280 + 0.0326962*m.x281 + 0.0163689*m.x282 - 0.00776661*m.x283 + 0.00451059*m.x284 + 0.00792609*m.x285 + 0.00416542*m.x286 - 0.0019629*m.x287 + 0.0236126*m.x288 + 0.0137167*m.x289 + 0.0121892*m.x290 + 0.000632641*m.x291 + 0.00328551*m.x292 - 0.00509853*m.x293 + 0.0148681*m.x294 + 0.0201209*m.x295 + 0.023585*m.x296 - 0.00188899*m.x297 - 0.0117063*m.x298 + 0.0273148*m.x299 + 0.0284999*m.x300 - 0.00353962*m.x301 + 0.00538445*m.x302 - 0.00465145*m.x303 == 0) m.c175 = Constraint(expr= - m.x70 - 0.0100234*m.x204 - 0.0209121*m.x205 - 0.00694428*m.x206 - 0.00467471*m.x207 + 0.00518488*m.x208 + 0.00797725*m.x209 - 0.0157399*m.x210 - 0.0015303*m.x211 - 0.0365251*m.x212 + 0.00125486*m.x213 + 0.0289129*m.x214 + 0.0521517*m.x215 - 0.00150631*m.x216 + 0.0097183*m.x217 + 0.0138448*m.x218 + 0.0161705*m.x219 + 0.00924645*m.x220 + 0.0345476*m.x221 - 0.0102334*m.x222 - 0.00725643*m.x223 + 0.0063742*m.x224 + 0.00635872*m.x225 + 0.00758332*m.x226 + 0.000823775*m.x227 + 0.0160374*m.x228 - 0.0102022*m.x229 - 0.00658237*m.x230 + 0.0149085*m.x231 + 0.0192043*m.x232 + 0.0183888*m.x233 + 0.00515876*m.x234 + 0.00210584*m.x235 + 0.0106022*m.x236 + 0.000867918*m.x237 + 0.00182329*m.x238 + 0.00398062*m.x239 + 0.00992082*m.x240 + 0.0165632*m.x241 - 0.0220684*m.x242 + 0.00174793*m.x243 - 0.0151984*m.x244 + 0.0174021*m.x245 + 0.000800136*m.x246 + 0.0121103*m.x247 + 0.00256477*m.x248 + 0.00595866*m.x249 - 0.00298889*m.x250 + 0.039282*m.x251 + 0.00415461*m.x252 + 0.0226546*m.x253 + 0.00552304*m.x254 - 0.0150659*m.x255 + 0.0232*m.x256 + 0.0286571*m.x257 - 0.0123761*m.x258 + 0.00890793*m.x259 - 0.0008781*m.x260 - 0.0100251*m.x261 + 0.00857265*m.x262 - 0.0104475*m.x263 - 0.0108651*m.x264 + 0.00987742*m.x265 + 0.0500151*m.x266 - 0.00114484*m.x267 + 0.00630082*m.x268 + 0.0199531*m.x269 + 0.0100597*m.x270 + 0.000766422*m.x271 + 0.158054*m.x272 + 0.00336053*m.x273 + 0.0289311*m.x274 + 0.00013573*m.x275 + 0.00721954*m.x276 - 0.00673825*m.x277 + 0.0133065*m.x278 + 0.0477885*m.x279 + 0.0279617*m.x280 - 0.00676451*m.x281 + 0.0244657*m.x282 + 0.011568*m.x283 - 0.00233863*m.x284 + 0.0116962*m.x285 + 0.013257*m.x286 - 0.000584023*m.x287 - 0.00369328*m.x288 + 0.0104073*m.x289 - 0.00391704*m.x290 - 0.0303804*m.x291 + 0.00348223*m.x292 - 0.00324749*m.x293 + 0.00746468*m.x294 - 0.00652909*m.x295 + 0.00590442*m.x296 - 0.0198962*m.x297 + 0.015777*m.x298 + 0.0320781*m.x299 - 0.00215074*m.x300 + 0.010315*m.x301 + 0.0111624*m.x302 + 0.0154715*m.x303 == 0) m.c176 = Constraint(expr= - m.x71 - 0.00217682*m.x204 + 0.00754928*m.x205 + 0.00602621*m.x206 + 0.0177642*m.x207 + 0.0126256*m.x208 + 0.0134081*m.x209 + 0.00177914*m.x210 + 0.0129634*m.x211 + 0.0190496*m.x212 + 0.000587184*m.x213 + 0.00688368*m.x214 - 0.00351079*m.x215 + 0.0236174*m.x216 + 0.0242111*m.x217 + 0.00553718*m.x218 + 0.0227344*m.x219 + 0.038139*m.x220 + 0.0640862*m.x221 + 0.0063437*m.x222 + 0.0124666*m.x223 - 0.0221093*m.x224 + 0.054717*m.x225 + 0.00284196*m.x226 - 0.00175507*m.x227 + 0.0206604*m.x228 + 0.0059304*m.x229 + 0.000576553*m.x230 + 0.00320993*m.x231 + 0.00830569*m.x232 + 0.0157507*m.x233 - 0.0196528*m.x234 + 0.0156664*m.x235 + 0.0149868*m.x236 + 0.00439394*m.x237 + 0.0121867*m.x238 + 0.0225777*m.x239 + 0.0236908*m.x240 + 0.0205214*m.x241 - 0.0319066*m.x242 - 0.00079277*m.x243 + 0.112574*m.x244 - 0.0101958*m.x245 - 0.0165869*m.x246 - 0.00250388*m.x247 + 0.0206991*m.x248 - 0.00295638*m.x249 - 0.0125802*m.x250 + 0.0509997*m.x251 + 0.0073977*m.x252 + 0.0125649*m.x253 - 0.00966017*m.x254 - 0.0484007*m.x255 + 0.0135089*m.x256 + 0.0238634*m.x257 + 0.021312*m.x258 + 0.0156085*m.x259 - 0.00187174*m.x260 + 0.00188325*m.x261 + 0.0126079*m.x262 - 0.0100576*m.x263 + 0.0208448*m.x264 - 0.0115779*m.x265 - 0.00998242*m.x266 + 0.0441795*m.x267 - 0.0070283*m.x268 + 0.0127807*m.x269 + 0.0162104*m.x270 + 0.0266859*m.x271 + 0.00336053*m.x272 + 0.315581*m.x273 + 0.0438235*m.x274 + 0.0578188*m.x275 + 0.0280953*m.x276 + 0.0335154*m.x277 + 0.0472914*m.x278 + 0.0379*m.x279 + 0.0060603*m.x280 + 0.01743*m.x281 + 0.00347436*m.x282 + 0.0134516*m.x283 - 0.0215081*m.x284 - 0.00588027*m.x285 + 0.023436*m.x286 + 0.0518973*m.x287 + 0.00558955*m.x288 + 0.0276924*m.x289 + 0.0289396*m.x290 - 0.00526134*m.x291 + 0.012689*m.x292 + 0.0135528*m.x293 + 0.0136874*m.x294 - 0.000426475*m.x295 + 0.020855*m.x296 - 0.00692332*m.x297 + 0.00700229*m.x298 + 0.016756*m.x299 + 0.0360264*m.x300 - 0.0259344*m.x301 + 0.00953552*m.x302 + 0.0189209*m.x303 == 0) m.c177 = Constraint(expr= - m.x72 + 0.00605866*m.x204 + 0.00403463*m.x205 + 0.0281091*m.x206 + 0.00659994*m.x207 - 0.00994378*m.x208 + 0.0355325*m.x209 + 0.0272626*m.x210 - 0.000139358*m.x211 + 0.00542296*m.x212 + 0.00290832*m.x213 + 0.0161368*m.x214 + 0.0212677*m.x215 + 0.0233436*m.x216 + 0.00779182*m.x217 + 0.0203622*m.x218 + 0.0198156*m.x219 + 0.00987474*m.x220 + 0.159324*m.x221 - 0.00607453*m.x222 + 0.0367354*m.x223 + 0.00993636*m.x224 - 0.0107438*m.x225 - 0.00558828*m.x226 + 0.00806781*m.x227 + 0.0321612*m.x228 + 0.00317033*m.x229 + 0.00804996*m.x230 + 0.00437204*m.x231 - 0.00295904*m.x232 + 0.011888*m.x233 - 0.0113905*m.x234 + 0.0141543*m.x235 - 0.00272959*m.x236 + 0.0178982*m.x237 - 0.00471575*m.x238 + 0.00892359*m.x239 + 0.0163609*m.x240 + 0.0195565*m.x241 + 0.00870017*m.x242 + 0.00677241*m.x243 + 0.0185572*m.x244 - 0.0047133*m.x245 + 0.0101507*m.x246 + 0.00747713*m.x247 + 0.0167627*m.x248 + 0.0123014*m.x249 + 0.0123928*m.x250 + 0.0344311*m.x251 + 0.00728529*m.x252 + 0.0031934*m.x253 + 0.00209512*m.x254 + 0.0154489*m.x255 + 0.0147635*m.x256 + 0.00835242*m.x257 + 0.00566315*m.x258 + 0.0179047*m.x259 + 0.00524362*m.x260 + 0.00744129*m.x261 - 0.018004*m.x262 + 0.00619413*m.x263 - 0.00749905*m.x264 - 0.000442365*m.x265 - 0.000518247*m.x266 - 0.00598213*m.x267 + 0.0105371*m.x268 - 0.0025092*m.x269 + 0.00865013*m.x270 - 0.00234615*m.x271 + 0.0289311*m.x272 + 0.0438235*m.x273 + 0.242658*m.x274 + 0.0306035*m.x275 + 0.0117336*m.x276 + 0.0118774*m.x277 + 0.0838189*m.x278 + 0.0481403*m.x279 + 0.0110032*m.x280 + 0.014917*m.x281 - 0.00591529*m.x282 + 0.0063929*m.x283 + 0.00775199*m.x284 + 0.015887*m.x285 + 0.00276734*m.x286 + 0.00368135*m.x287 + 0.00957517*m.x288 + 0.00642966*m.x289 - 0.0216798*m.x290 + 0.0227594*m.x291 + 0.00163182*m.x292 + 0.000148116*m.x293 - 0.00314438*m.x294 + 0.00826237*m.x295 + 0.0225842*m.x296 - 0.0145782*m.x297 - 0.00503236*m.x298 + 0.0195997*m.x299 + 0.00361997*m.x300 + 0.000208782*m.x301 + 0.0145316*m.x302 + 0.0365771*m.x303 == 0) m.c178 = Constraint(expr= - m.x73 + 0.0167264*m.x204 + 0.0479268*m.x205 + 0.0213196*m.x206 + 0.0149564*m.x207 + 0.00270935*m.x208 + 0.00240413*m.x209 + 0.0117028*m.x210 - 0.0044266*m.x211 + 0.00513392*m.x212 + 0.0203179*m.x213 + 0.0517634*m.x214 + 0.00680778*m.x215 + 0.0324887*m.x216 + 0.0138659*m.x217 + 0.00802954*m.x218 + 0.0138875*m.x219 + 0.0137739*m.x220 + 0.019995*m.x221 + 0.0718984*m.x222 + 0.0182457*m.x223 + 0.0146925*m.x224 + 0.00163408*m.x225 + 0.0130101*m.x226 - 0.00744934*m.x227 + 0.0164707*m.x228 - 0.00173148*m.x229 - 0.00609273*m.x230 + 0.0185225*m.x231 - 0.0141201*m.x232 + 0.0342241*m.x233 + 0.0445692*m.x234 + 0.00715561*m.x235 - 0.0084707*m.x236 + 0.0495734*m.x237 + 0.0180724*m.x238 + 0.0452262*m.x239 + 0.0173916*m.x240 + 0.000493166*m.x241 + 0.0205621*m.x242 + 0.017246*m.x243 + 0.0762045*m.x244 - 0.00607984*m.x245 + 0.0607045*m.x246 - 0.012371*m.x247 + 0.11148*m.x248 + 0.0116924*m.x249 + 0.0197059*m.x250 + 0.0814204*m.x251 + 0.0247762*m.x252 + 0.0170294*m.x253 - 0.00647057*m.x254 + 0.0227933*m.x255 - 0.0169658*m.x256 - 0.0044184*m.x257 + 0.0328952*m.x258 + 0.0195461*m.x259 + 0.0238296*m.x260 + 0.00536604*m.x261 - 0.0118023*m.x262 + 0.0152866*m.x263 + 0.0181994*m.x264 + 0.0365121*m.x265 - 0.00949741*m.x266 - 0.00477587*m.x267 + 0.0142667*m.x268 + 0.0133094*m.x269 + 0.00955259*m.x270 + 0.0268143*m.x271 + 0.00013573*m.x272 + 0.0578188*m.x273 + 0.0306035*m.x274 + 0.389075*m.x275 + 0.0225065*m.x276 + 0.0131023*m.x277 + 0.021475*m.x278 + 0.078762*m.x279 + 0.00606592*m.x280 + 0.051157*m.x281 + 0.0256278*m.x282 + 0.0370739*m.x283 + 0.0151235*m.x284 - 0.0209294*m.x285 + 0.04185*m.x286 + 0.025252*m.x287 + 0.0207561*m.x288 + 0.0442676*m.x289 + 0.0205286*m.x290 + 0.00300826*m.x291 + 0.00755881*m.x292 + 0.0070906*m.x293 + 0.0162991*m.x294 - 0.0210064*m.x295 + 0.0190915*m.x296 - 0.0125323*m.x297 + 0.0147594*m.x298 + 0.0449847*m.x299 + 0.0390785*m.x300 - 0.0172229*m.x301 + 0.0289407*m.x302 + 0.00458626*m.x303 == 0) m.c179 = Constraint(expr= - m.x74 - 0.00986916*m.x204 - 0.0117451*m.x205 - 0.0306486*m.x206 + 0.0372578*m.x207 - 0.00761522*m.x208 + 0.0160415*m.x209 + 0.00138295*m.x210 + 0.0294097*m.x211 - 0.00866694*m.x212 - 0.017854*m.x213 + 0.000715776*m.x214 + 0.0365571*m.x215 + 0.0227743*m.x216 + 0.029875*m.x217 + 0.0162258*m.x218 + 0.00149722*m.x219 + 0.00346188*m.x220 - 0.0150306*m.x221 + 0.00984006*m.x222 + 0.00576651*m.x223 - 0.00160584*m.x224 - 0.0203875*m.x225 + 0.00531061*m.x226 + 0.00473186*m.x227 - 0.00467826*m.x228 - 0.00926362*m.x229 + 0.00484259*m.x230 + 0.00426479*m.x231 + 0.000576517*m.x232 + 0.00771843*m.x233 + 0.00858179*m.x234 + 0.0136809*m.x235 - 0.016164*m.x236 + 0.00617492*m.x237 + 0.0215306*m.x238 - 0.00767906*m.x239 + 0.0271333*m.x240 + 0.0113544*m.x241 + 0.006158*m.x242 + 0.0147256*m.x243 - 0.00779475*m.x244 + 0.00938905*m.x245 - 0.00928056*m.x246 + 0.000659729*m.x247 - 0.0305247*m.x248 + 0.00495294*m.x249 + 0.00699246*m.x250 - 0.00170809*m.x251 + 0.0153231*m.x252 + 0.0194417*m.x253 + 0.0011822*m.x254 + 0.00649497*m.x255 + 0.00689011*m.x256 + 0.0108029*m.x257 - 0.00795682*m.x258 + 0.0202055*m.x259 - 0.00255331*m.x260 - 0.00136449*m.x261 - 0.0147362*m.x262 + 0.0172916*m.x263 + 0.0583548*m.x264 + 0.0226464*m.x265 - 0.00246233*m.x266 - 0.025348*m.x267 + 0.00283098*m.x268 + 0.0060945*m.x269 - 0.00981226*m.x270 + 0.0340288*m.x271 + 0.00721954*m.x272 + 0.0280953*m.x273 + 0.0117336*m.x274 + 0.0225065*m.x275 + 0.255333*m.x276 + 0.0165252*m.x277 + 0.00800624*m.x278 - 0.00955165*m.x279 + 0.00466426*m.x280 + 0.0454029*m.x281 + 0.00660178*m.x282 + 0.0186443*m.x283 - 0.0237599*m.x284 + 0.0194091*m.x285 + 0.00341598*m.x286 + 0.0168686*m.x287 + 0.0161268*m.x288 + 0.0227145*m.x289 + 0.00389974*m.x290 + 0.0230822*m.x291 - 0.0103966*m.x292 - 0.00167457*m.x293 + 0.0127897*m.x294 + 0.0629866*m.x295 + 0.00369913*m.x296 + 0.0201848*m.x297 - 0.00505562*m.x298 - 0.0107799*m.x299 + 0.0045*m.x300 + 0.0173545*m.x301 + 0.000465444*m.x302 + 0.00702905*m.x303 == 0) m.c180 = Constraint(expr= - m.x75 + 0.000264178*m.x204 + 0.028956*m.x205 + 0.019325*m.x206 + 0.00639167*m.x207 + 0.00740387*m.x208 - 0.030207*m.x209 + 0.0185095*m.x210 - 0.00500434*m.x211 + 0.066741*m.x212 + 0.00702231*m.x213 + 0.0272845*m.x214 + 0.0121352*m.x215 + 0.0134993*m.x216 + 0.012011*m.x217 + 0.0205116*m.x218 + 0.0217898*m.x219 + 0.018383*m.x220 + 0.0129312*m.x221 - 0.00865423*m.x222 + 0.0355746*m.x223 - 0.00519309*m.x224 - 0.00266029*m.x225 + 0.0106016*m.x226 + 0.0148345*m.x227 + 0.0091414*m.x228 - 0.0118778*m.x229 + 0.0142463*m.x230 - 0.0182268*m.x231 + 0.0218241*m.x232 + 0.021456*m.x233 + 0.00833241*m.x234 + 0.000970616*m.x235 + 0.0222678*m.x236 + 0.0124231*m.x237 + 0.020355*m.x238 + 0.00992303*m.x239 + 0.0101687*m.x240 + 0.0130662*m.x241 - 0.00856733*m.x242 + 0.0179741*m.x243 + 0.0295755*m.x244 + 0.00171904*m.x245 + 0.00206923*m.x246 + 0.0140481*m.x247 - 0.00481113*m.x248 + 0.00276646*m.x249 + 0.00608218*m.x250 + 0.0125969*m.x251 + 0.00286752*m.x252 + 0.0221671*m.x253 + 0.0120375*m.x254 + 0.0365298*m.x255 + 0.00530597*m.x256 + 0.00721874*m.x257 + 0.00577634*m.x258 + 0.00312413*m.x259 + 0.0228347*m.x260 + 0.00692329*m.x261 - 0.00499549*m.x262 - 0.0067214*m.x263 + 0.057555*m.x264 + 0.0143164*m.x265 + 0.0237049*m.x266 - 0.0195708*m.x267 + 0.0181153*m.x268 - 0.00787035*m.x269 + 0.0203602*m.x270 + 0.0271041*m.x271 - 0.00673825*m.x272 + 0.0335154*m.x273 + 0.0118774*m.x274 + 0.0131023*m.x275 + 0.0165252*m.x276 + 0.209637*m.x277 + 0.0164161*m.x278 + 0.00796604*m.x279 + 0.0134275*m.x280 + 0.00599906*m.x281 + 0.00283067*m.x282 + 0.021476*m.x283 + 0.00126553*m.x284 + 0.0109005*m.x285 - 0.00987739*m.x286 + 0.0246303*m.x287 + 0.0392551*m.x288 + 0.0197251*m.x289 + 0.00960328*m.x290 - 0.000262221*m.x291 + 0.0117935*m.x292 - 0.00608545*m.x293 + 0.00565714*m.x294 + 0.014422*m.x295 + 0.00362916*m.x296 + 0.0108815*m.x297 + 0.00215519*m.x298 + 0.015215*m.x299 + 0.017746*m.x300 + 0.00771442*m.x301 + 0.00826654*m.x302 - 0.0216509*m.x303 == 0) m.c181 = Constraint(expr= - m.x76 + 0.000443677*m.x204 + 0.0186632*m.x205 - 0.00667034*m.x206 + 0.0113589*m.x207 + 0.038373*m.x208 + 0.00296297*m.x209 + 0.0171304*m.x210 + 0.0311579*m.x211 + 0.0166803*m.x212 + 0.000393591*m.x213 + 0.0154336*m.x214 + 0.0025257*m.x215 + 0.0313448*m.x216 + 0.0334484*m.x217 + 0.0115061*m.x218 + 0.0236162*m.x219 + 0.0232466*m.x220 - 0.00349278*m.x221 + 0.0190688*m.x222 + 0.023712*m.x223 - 0.0141018*m.x224 + 0.0137259*m.x225 + 0.0218053*m.x226 + 0.0291503*m.x227 + 0.019493*m.x228 - 0.0065822*m.x229 + 0.00113796*m.x230 + 0.0156633*m.x231 + 0.0288367*m.x232 + 0.0151258*m.x233 - 0.00293272*m.x234 + 0.0221044*m.x235 - 0.0154847*m.x236 + 0.0252473*m.x237 + 0.0180883*m.x238 - 0.0114508*m.x239 + 0.0167448*m.x240 + 0.0237854*m.x241 + 0.0207092*m.x242 + 0.0247003*m.x243 + 0.00943287*m.x244 + 0.0195252*m.x245 - 0.0163855*m.x246 + 0.0187041*m.x247 + 0.0231293*m.x248 - 0.00266202*m.x249 + 0.0205119*m.x250 + 0.0302619*m.x251 + 0.0201839*m.x252 + 0.00907431*m.x253 - 0.00082898*m.x254 + 0.00147956*m.x255 + 0.000210327*m.x256 + 0.0240962*m.x257 + 0.00671703*m.x258 - 0.0085337*m.x259 + 0.00908482*m.x260 + 0.0109078*m.x261 - 0.0143351*m.x262 + 0.00669297*m.x263 + 0.0268228*m.x264 + 0.00841295*m.x265 - 0.00277129*m.x266 - 0.00168274*m.x267 + 0.00272646*m.x268 + 0.00700317*m.x269 + 0.0117019*m.x270 + 0.026112*m.x271 + 0.0133065*m.x272 + 0.0472914*m.x273 + 0.0838189*m.x274 + 0.021475*m.x275 + 0.00800624*m.x276 + 0.0164161*m.x277 + 0.404015*m.x278 + 0.105549*m.x279 - 0.00776237*m.x280 + 0.027323*m.x281 + 0.0127166*m.x282 + 0.0106842*m.x283 + 0.067325*m.x284 - 0.00516528*m.x285 + 0.0247823*m.x286 + 0.016336*m.x287 + 0.0334571*m.x288 + 0.00051236*m.x289 + 0.0131673*m.x290 + 0.0237505*m.x291 + 0.0259753*m.x292 + 0.00232003*m.x293 + 0.00642914*m.x294 - 0.000406401*m.x295 + 0.0185527*m.x296 + 0.0077666*m.x297 + 0.012311*m.x298 + 0.0214616*m.x299 + 0.0298427*m.x300 - 0.00757473*m.x301 + 0.00326998*m.x302 + 0.0195985*m.x303 == 0) m.c182 = Constraint(expr= - m.x77 + 0.0156931*m.x204 + 0.0181645*m.x205 + 0.000467446*m.x206 + 0.0136237*m.x207 + 0.0330416*m.x208 + 0.0130072*m.x209 + 0.0122791*m.x210 + 0.0494097*m.x211 + 0.0021271*m.x212 + 0.0103674*m.x213 - 0.00822959*m.x214 + 0.0148074*m.x215 + 0.043333*m.x216 + 0.0141205*m.x217 + 0.0101866*m.x218 + 0.00886369*m.x219 - 0.0111152*m.x220 + 0.0610504*m.x221 + 0.0249469*m.x222 + 0.000684461*m.x223 + 0.0151075*m.x224 + 0.0378261*m.x225 + 0.0181907*m.x226 + 0.0126589*m.x227 - 0.00130846*m.x228 + 0.00460217*m.x229 + 0.0109937*m.x230 - 0.0108916*m.x231 + 0.00589724*m.x232 + 0.0375829*m.x233 + 0.00601459*m.x234 + 0.0127205*m.x235 + 0.00339709*m.x236 + 0.058582*m.x237 + 0.0462503*m.x238 + 0.0197029*m.x239 + 0.0145376*m.x240 + 0.0180646*m.x241 + 0.0123219*m.x242 + 0.0450965*m.x243 + 0.0286273*m.x244 + 0.0383478*m.x245 + 0.0271648*m.x246 + 0.0306678*m.x247 + 0.0252067*m.x248 + 0.0232357*m.x249 + 0.0201426*m.x250 + 0.0349979*m.x251 + 0.00924621*m.x252 + 0.0259533*m.x253 + 0.00474529*m.x254 - 0.0171972*m.x255 - 0.00222996*m.x256 + 0.0333277*m.x257 + 0.0141594*m.x258 + 0.00691393*m.x259 - 0.000852062*m.x260 - 0.00236473*m.x261 + 0.0135402*m.x262 + 0.013914*m.x263 - 0.00819768*m.x264 + 0.00921905*m.x265 - 0.0145486*m.x266 - 0.0318426*m.x267 + 0.00912054*m.x268 + 0.010213*m.x269 - 0.00029594*m.x270 + 0.00239456*m.x271 + 0.0477885*m.x272 + 0.0379*m.x273 + 0.0481403*m.x274 + 0.078762*m.x275 - 0.00955165*m.x276 + 0.00796604*m.x277 + 0.105549*m.x278 + 0.645704*m.x279 + 0.0154494*m.x280 + 0.0227354*m.x281 - 0.0112145*m.x282 + 0.0439815*m.x283 + 0.038462*m.x284 + 0.00338593*m.x285 + 0.00658251*m.x286 + 0.0538772*m.x287 + 0.00948208*m.x288 + 0.0231576*m.x289 + 0.0128597*m.x290 + 0.00999317*m.x291 + 0.0274468*m.x292 + 0.00337803*m.x293 + 0.0146469*m.x294 + 0.00469697*m.x295 + 0.02019*m.x296 - 0.012203*m.x297 + 0.00574997*m.x298 + 0.0450781*m.x299 + 0.103864*m.x300 - 0.0301521*m.x301 + 0.0209427*m.x302 + 0.016127*m.x303 == 0) m.c183 = Constraint(expr= - m.x78 - 0.00276268*m.x204 + 0.00696511*m.x205 + 0.0201785*m.x206 + 0.00548526*m.x207 + 0.00915683*m.x208 + 0.00450281*m.x209 + 0.00233108*m.x210 + 0.00288612*m.x211 + 0.00823225*m.x212 + 0.00633375*m.x213 + 0.000626594*m.x214 + 0.00353214*m.x215 - 0.00386439*m.x216 + 0.00456199*m.x217 + 0.0261645*m.x218 + 0.0104275*m.x219 - 0.000844745*m.x220 + 0.00292058*m.x221 + 0.00809967*m.x222 - 0.00203509*m.x223 - 0.00436786*m.x224 + 0.0152157*m.x225 + 0.00963458*m.x226 + 0.00774713*m.x227 + 0.00402512*m.x228 + 0.0200371*m.x229 + 0.0229961*m.x230 + 0.0130582*m.x231 + 0.00723834*m.x232 + 0.0243902*m.x233 + 0.00788825*m.x234 + 0.0153277*m.x235 + 0.0202853*m.x236 + 0.00629356*m.x237 + 0.0139857*m.x238 + 0.00438907*m.x239 + 0.0123315*m.x240 + 0.00659785*m.x241 + 0.00161026*m.x242 + 0.0172805*m.x243 + 0.00989437*m.x244 + 0.0224169*m.x245 - 0.00245982*m.x246 + 0.00641255*m.x247 + 0.00522157*m.x248 + 0.00346212*m.x249 + 0.00467559*m.x250 + 0.0190191*m.x251 + 0.0108718*m.x252 + 0.00674077*m.x253 + 0.00506484*m.x254 + 0.0090494*m.x255 + 0.00353714*m.x256 - 0.00435648*m.x257 + 0.0189637*m.x258 + 0.019103*m.x259 + 0.00890703*m.x260 + 0.00505126*m.x261 + 0.000304222*m.x262 + 0.0234397*m.x263 - 0.00195137*m.x264 + 0.00349776*m.x265 - 0.0063327*m.x266 - 0.00658838*m.x267 + 0.0236631*m.x268 + 0.0358489*m.x269 + 0.00560833*m.x270 + 0.00576057*m.x271 + 0.0279617*m.x272 + 0.0060603*m.x273 + 0.0110032*m.x274 + 0.00606592*m.x275 + 0.00466426*m.x276 + 0.0134275*m.x277 - 0.00776237*m.x278 + 0.0154494*m.x279 + 0.121704*m.x280 + 0.0135097*m.x281 + 0.0148263*m.x282 + 0.0124017*m.x283 + 0.0386958*m.x284 + 0.0135365*m.x285 - 0.00737633*m.x286 + 0.0145869*m.x287 + 0.0136899*m.x288 + 0.00757632*m.x289 - 0.00174931*m.x290 + 0.0242284*m.x291 + 0.0223464*m.x292 + 0.00218928*m.x293 - 0.00234487*m.x294 + 0.0106011*m.x295 + 0.00596788*m.x296 + 0.0140801*m.x297 + 0.0111286*m.x298 + 0.0108432*m.x299 + 0.014432*m.x300 + 0.0196268*m.x301 + 0.0388318*m.x302 + 0.0139537*m.x303 == 0) m.c184 = Constraint(expr= - m.x79 + 0.0162342*m.x204 - 0.00758658*m.x205 - 0.000464311*m.x206 + 0.00938667*m.x207 + 0.0338859*m.x208 + 0.0121371*m.x209 + 0.0306379*m.x210 + 0.0105617*m.x211 + 0.00857754*m.x212 + 0.0194224*m.x213 + 0.000631494*m.x214 + 0.0168133*m.x215 + 0.108963*m.x216 + 0.041893*m.x217 + 0.0332655*m.x218 + 0.0249922*m.x219 + 0.0332627*m.x220 + 0.0234664*m.x221 - 0.00269958*m.x222 - 0.0114577*m.x223 + 0.00467861*m.x224 + 0.0169622*m.x225 + 0.00597376*m.x226 - 0.00678133*m.x227 + 0.0148477*m.x228 + 0.0155593*m.x229 + 0.0124417*m.x230 + 0.00465652*m.x231 - 0.0101934*m.x232 + 0.0306235*m.x233 + 0.00317889*m.x234 + 0.0189992*m.x235 - 0.0276747*m.x236 - 0.001499*m.x237 + 0.00783656*m.x238 + 0.0231162*m.x239 + 0.0119314*m.x240 + 0.019254*m.x241 + 0.0140309*m.x242 + 0.0209097*m.x243 + 0.0238402*m.x244 + 0.0385198*m.x245 + 0.01456*m.x246 + 0.0134395*m.x247 + 0.0559574*m.x248 + 0.0255284*m.x249 + 0.00848245*m.x250 + 0.0154082*m.x251 + 0.0181957*m.x252 + 0.0203818*m.x253 + 0.0257774*m.x254 + 0.00449672*m.x255 + 0.0260232*m.x256 + 0.0866383*m.x257 - 0.0099332*m.x258 + 0.0121945*m.x259 + 0.0294183*m.x260 + 0.0181113*m.x261 - 0.0196864*m.x262 + 0.0236703*m.x263 + 0.0198979*m.x264 + 0.0226748*m.x265 + 0.00429669*m.x266 - 0.0168533*m.x267 + 0.012122*m.x268 + 0.0181724*m.x269 + 0.00249681*m.x270 + 0.0326962*m.x271 - 0.00676451*m.x272 + 0.01743*m.x273 + 0.014917*m.x274 + 0.051157*m.x275 + 0.0454029*m.x276 + 0.00599906*m.x277 + 0.027323*m.x278 + 0.0227354*m.x279 + 0.0135097*m.x280 + 0.232936*m.x281 - 0.0146937*m.x282 - 0.00711861*m.x283 + 0.00900977*m.x284 + 0.0110451*m.x285 + 0.0316906*m.x286 + 0.0294815*m.x287 + 0.0109427*m.x288 + 0.00947868*m.x289 - 0.00284713*m.x290 + 0.0481938*m.x291 - 0.00283589*m.x292 + 0.016211*m.x293 + 0.0174578*m.x294 + 0.0438875*m.x295 + 0.0271732*m.x296 - 0.00264823*m.x297 + 0.0161145*m.x298 + 0.00509121*m.x299 + 0.0367902*m.x300 - 0.0132156*m.x301 + 0.0177839*m.x302 + 0.0109642*m.x303 == 0) m.c185 = Constraint(expr= - m.x80 - 0.00713742*m.x204 - 0.00157434*m.x205 - 0.0236607*m.x206 - 0.0040516*m.x207 + 0.0110433*m.x208 - 0.0231401*m.x209 + 0.0152496*m.x210 + 0.00135164*m.x211 + 0.0313512*m.x212 - 0.00963904*m.x213 + 0.00874438*m.x214 + 0.0119195*m.x215 - 0.00524662*m.x216 - 0.0231716*m.x217 + 0.00110939*m.x218 + 0.00802207*m.x219 + 0.0282131*m.x220 - 0.0113617*m.x221 - 0.0108567*m.x222 - 0.0115916*m.x223 + 0.0232455*m.x224 - 0.00218688*m.x225 + 0.00648587*m.x226 - 0.000483346*m.x227 + 0.00831527*m.x228 - 0.0144053*m.x229 + 0.0367225*m.x230 - 0.000979902*m.x231 + 0.0299367*m.x232 + 0.0131912*m.x233 - 0.00540247*m.x234 + 0.0023179*m.x235 + 0.00131595*m.x236 + 0.0143475*m.x237 - 0.010913*m.x238 - 0.000788038*m.x239 + 0.0158911*m.x240 + 0.0146391*m.x241 + 0.0311598*m.x242 + 0.011441*m.x243 + 0.00383314*m.x244 + 0.0274691*m.x245 + 0.00939606*m.x246 - 0.00179731*m.x247 + 0.0289862*m.x248 + 0.00412958*m.x249 + 0.00560285*m.x250 - 0.0261893*m.x251 + 0.0030579*m.x252 + 0.0079052*m.x253 - 0.00377692*m.x254 + 0.000262274*m.x255 - 0.0188128*m.x256 + 0.00354499*m.x257 + 0.0100466*m.x258 - 0.01046*m.x259 + 0.0037155*m.x260 - 0.0184427*m.x261 + 0.0158055*m.x262 + 0.0307119*m.x263 + 0.216012*m.x264 - 0.00159181*m.x265 + 0.0119178*m.x266 - 0.0154167*m.x267 + 0.00657829*m.x268 + 0.00656133*m.x269 + 0.0204625*m.x270 + 0.0163689*m.x271 + 0.0244657*m.x272 + 0.00347436*m.x273 - 0.00591529*m.x274 + 0.0256278*m.x275 + 0.00660178*m.x276 + 0.00283067*m.x277 + 0.0127166*m.x278 - 0.0112145*m.x279 + 0.0148263*m.x280 - 0.0146937*m.x281 + 0.76645*m.x282 + 0.0192994*m.x283 + 0.0105875*m.x284 + 0.0314009*m.x285 + 0.00634296*m.x286 - 0.00196191*m.x287 + 0.0014521*m.x288 + 0.0144924*m.x289 - 0.00756629*m.x290 - 0.0110851*m.x291 + 0.0361459*m.x292 - 0.00085728*m.x293 + 0.0474245*m.x294 - 0.0216252*m.x295 - 0.0305481*m.x296 + 0.00800911*m.x297 - 0.00833087*m.x298 - 0.0224481*m.x299 + 0.026356*m.x300 + 0.020753*m.x301 + 0.0316754*m.x302 + 0.00176788*m.x303 == 0) m.c186 = Constraint(expr= - m.x81 + 0.0535351*m.x204 + 0.0257631*m.x205 + 0.0310239*m.x206 + 0.0204574*m.x207 + 0.00100659*m.x208 - 0.0106726*m.x209 + 0.00760112*m.x210 + 0.00925665*m.x211 + 0.00130029*m.x212 + 0.0241569*m.x213 + 0.00365132*m.x214 - 0.012089*m.x215 - 0.00652429*m.x216 + 0.0374086*m.x217 + 0.0260692*m.x218 + 0.00986454*m.x219 + 0.0233102*m.x220 + 0.0361401*m.x221 - 0.0246729*m.x222 - 0.00776726*m.x223 - 0.00329331*m.x224 + 0.0252382*m.x225 + 0.0276238*m.x226 + 0.00185776*m.x227 - 0.00269199*m.x228 - 0.0110697*m.x229 - 0.0100286*m.x230 + 0.0258383*m.x231 - 0.00142157*m.x232 - 0.00933997*m.x233 + 0.016911*m.x234 + 0.0192297*m.x235 - 0.0112676*m.x236 - 0.00386864*m.x237 - 0.0111746*m.x238 + 0.0115195*m.x239 + 0.0101661*m.x240 + 0.0146836*m.x241 + 0.0145619*m.x242 + 0.0219237*m.x243 - 0.00120741*m.x244 - 0.0267822*m.x245 + 0.0298789*m.x246 - 0.00385651*m.x247 + 0.00382741*m.x248 + 0.0240524*m.x249 - 0.000758449*m.x250 + 0.0528557*m.x251 + 0.0149032*m.x252 + 0.02471*m.x253 + 0.00714516*m.x254 - 0.00945913*m.x255 - 0.00162038*m.x256 + 0.00280407*m.x257 + 0.00647759*m.x258 + 7.7416E-5*m.x259 + 0.0369425*m.x260 - 0.00067668*m.x261 - 0.0123673*m.x262 + 0.0135874*m.x263 + 0.00795018*m.x264 + 0.00683403*m.x265 - 0.0166029*m.x266 - 0.018515*m.x267 - 0.0121548*m.x268 + 0.00426715*m.x269 - 0.0104074*m.x270 - 0.00776661*m.x271 + 0.011568*m.x272 + 0.0134516*m.x273 + 0.0063929*m.x274 + 0.0370739*m.x275 + 0.0186443*m.x276 + 0.021476*m.x277 + 0.0106842*m.x278 + 0.0439815*m.x279 + 0.0124017*m.x280 - 0.00711861*m.x281 + 0.0192994*m.x282 + 0.486602*m.x283 - 0.00624267*m.x284 + 0.00303554*m.x285 - 0.0133479*m.x286 + 0.0125386*m.x287 + 0.0115422*m.x288 + 0.0239015*m.x289 + 0.0451897*m.x290 - 0.0310249*m.x291 + 0.00587297*m.x292 - 0.0136089*m.x293 - 0.000516624*m.x294 + 0.0009259*m.x295 + 0.0175048*m.x296 + 0.0373561*m.x297 - 0.0112765*m.x298 + 0.0051311*m.x299 + 0.014489*m.x300 - 0.00457749*m.x301 + 0.00838465*m.x302 - 0.0161154*m.x303 == 0) m.c187 = Constraint(expr= - m.x82 + 0.00652548*m.x204 + 0.0226078*m.x205 + 0.042261*m.x206 + 0.00726938*m.x207 + 0.038867*m.x208 + 0.0230093*m.x209 + 0.0227379*m.x210 + 0.00141295*m.x211 - 0.0150965*m.x212 + 0.0143008*m.x213 - 0.0056711*m.x214 - 0.00915576*m.x215 - 0.00988714*m.x216 + 0.0313221*m.x217 + 0.0012738*m.x218 + 0.00924082*m.x219 - 0.00179937*m.x220 - 0.0108246*m.x221 + 0.030261*m.x222 - 0.010001*m.x223 - 0.000366056*m.x224 + 0.0510044*m.x225 + 0.0170493*m.x226 + 0.0211536*m.x227 - 0.00146575*m.x228 + 0.0217421*m.x229 + 0.0358544*m.x230 + 0.045075*m.x231 + 0.0157699*m.x232 + 0.0198755*m.x233 + 0.0317363*m.x234 + 0.0186293*m.x235 + 0.0194651*m.x236 + 0.00970643*m.x237 - 0.0212839*m.x238 + 0.0165997*m.x239 + 0.0257734*m.x240 + 0.0134395*m.x241 + 0.0141748*m.x242 + 0.00710912*m.x243 - 0.000663857*m.x244 + 0.0309656*m.x245 - 0.00119943*m.x246 + 0.0131706*m.x247 - 0.00408493*m.x248 + 0.0102107*m.x249 + 0.0116371*m.x250 + 0.0243695*m.x251 + 0.00765193*m.x252 + 0.0263439*m.x253 + 0.0077099*m.x254 + 0.0453251*m.x255 - 0.00901467*m.x256 - 0.0171587*m.x257 + 0.0250933*m.x258 + 0.0195852*m.x259 + 0.0014252*m.x260 - 0.000180812*m.x261 + 0.0093129*m.x262 + 0.0408449*m.x263 + 0.00230105*m.x264 + 0.000980679*m.x265 - 0.00474646*m.x266 + 0.00103058*m.x267 + 0.0355309*m.x268 + 0.0279955*m.x269 - 0.00117293*m.x270 + 0.00451059*m.x271 - 0.00233863*m.x272 - 0.0215081*m.x273 + 0.00775199*m.x274 + 0.0151235*m.x275 - 0.0237599*m.x276 + 0.00126553*m.x277 + 0.067325*m.x278 + 0.038462*m.x279 + 0.0386958*m.x280 + 0.00900977*m.x281 + 0.0105875*m.x282 - 0.00624267*m.x283 + 0.206832*m.x284 + 0.0147473*m.x285 + 0.00363982*m.x286 + 0.0393242*m.x287 + 0.0257997*m.x288 - 0.00620466*m.x289 + 0.00412578*m.x290 + 0.0127761*m.x291 + 0.0351101*m.x292 - 0.00463556*m.x293 + 0.00349789*m.x294 - 0.00754138*m.x295 - 0.00336606*m.x296 - 0.0216041*m.x297 + 0.0121631*m.x298 + 0.0125615*m.x299 + 0.012455*m.x300 + 0.018402*m.x301 + 0.0384063*m.x302 + 0.0175444*m.x303 == 0) m.c188 = Constraint(expr= - m.x83 - 0.0124237*m.x204 + 0.0117173*m.x205 + 0.0185462*m.x206 + 0.0138296*m.x207 + 0.00624966*m.x208 + 0.0220687*m.x209 + 0.0315858*m.x210 - 0.00247117*m.x211 + 0.0772805*m.x212 + 0.0127084*m.x213 + 0.0203348*m.x214 + 0.0251125*m.x215 + 0.04316*m.x216 - 0.00981712*m.x217 + 0.0253402*m.x218 + 0.00416101*m.x219 + 0.0144628*m.x220 + 0.0156378*m.x221 - 0.0172947*m.x222 + 0.000111057*m.x223 + 0.0126412*m.x224 + 0.0140353*m.x225 + 0.00242329*m.x226 - 0.00255587*m.x227 + 0.00519983*m.x228 + 0.0203773*m.x229 + 0.00154206*m.x230 + 0.0236369*m.x231 - 0.00224841*m.x232 + 0.0218691*m.x233 + 0.00773321*m.x234 + 0.0497975*m.x235 - 0.000432208*m.x236 + 0.0171804*m.x237 + 0.0109154*m.x238 + 0.00247635*m.x239 + 0.0177688*m.x240 + 0.0310356*m.x241 + 0.00619315*m.x242 + 8.9584E-5*m.x243 + 0.00556998*m.x244 + 0.0175453*m.x245 - 0.0044664*m.x246 + 0.0115633*m.x247 + 0.028825*m.x248 + 0.0153982*m.x249 + 0.0124272*m.x250 - 0.000197615*m.x251 + 0.00635221*m.x252 + 0.0177662*m.x253 + 0.0105595*m.x254 - 0.000808541*m.x255 + 0.031558*m.x256 + 0.0167951*m.x257 - 0.000881292*m.x258 + 0.0203511*m.x259 + 0.00588108*m.x260 + 0.020629*m.x261 + 0.0180884*m.x262 + 0.00693809*m.x263 + 0.0194778*m.x264 + 0.00186047*m.x265 - 0.00414121*m.x266 - 0.0178181*m.x267 + 0.00535639*m.x268 + 0.0107345*m.x269 + 0.0119469*m.x270 + 0.00792609*m.x271 + 0.0116962*m.x272 - 0.00588027*m.x273 + 0.015887*m.x274 - 0.0209294*m.x275 + 0.0194091*m.x276 + 0.0109005*m.x277 - 0.00516528*m.x278 + 0.00338593*m.x279 + 0.0135365*m.x280 + 0.0110451*m.x281 + 0.0314009*m.x282 + 0.00303554*m.x283 + 0.0147473*m.x284 + 0.140821*m.x285 + 0.015425*m.x286 + 0.0110252*m.x287 + 0.0172034*m.x288 + 0.00430198*m.x289 - 0.00771995*m.x290 + 0.0307627*m.x291 + 0.0181157*m.x292 - 0.00258019*m.x293 - 0.00682747*m.x294 + 0.0206012*m.x295 + 0.00945896*m.x296 + 0.0244376*m.x297 + 0.0327088*m.x298 + 0.0159115*m.x299 + 0.0166712*m.x300 + 0.0072935*m.x301 + 0.00573711*m.x302 + 0.0260562*m.x303 == 0) m.c189 = Constraint(expr= - m.x84 + 0.0284349*m.x204 + 0.022134*m.x205 - 0.0122475*m.x206 + 0.00730263*m.x207 + 0.00420064*m.x208 + 0.0720504*m.x209 + 0.0060507*m.x210 - 0.0255331*m.x211 + 0.0392036*m.x212 + 0.0167294*m.x213 + 0.0341872*m.x214 + 0.00612187*m.x215 + 0.0469731*m.x216 + 0.0545587*m.x217 + 0.0115293*m.x218 + 0.0228286*m.x219 + 0.0198321*m.x220 + 0.00137389*m.x221 - 0.013192*m.x222 + 0.02061*m.x223 + 0.00320192*m.x224 + 0.00976413*m.x225 - 0.0146684*m.x226 - 0.00832251*m.x227 + 0.00563734*m.x228 + 0.00705351*m.x229 - 0.00258881*m.x230 + 0.0486461*m.x231 - 0.000196592*m.x232 + 0.01283*m.x233 + 0.016704*m.x234 + 0.00488326*m.x235 + 0.00548514*m.x236 - 0.0153224*m.x237 - 0.00737614*m.x238 + 0.00203383*m.x239 + 0.0138653*m.x240 + 0.00956021*m.x241 - 0.00370778*m.x242 + 0.00608136*m.x243 - 0.00367056*m.x244 + 0.0338365*m.x245 + 0.000712121*m.x246 - 0.00481073*m.x247 + 0.043114*m.x248 - 0.00470666*m.x249 + 0.0162343*m.x250 + 0.0624011*m.x251 + 0.0123886*m.x252 + 0.0459437*m.x253 + 0.0161573*m.x254 + 0.0226841*m.x255 + 0.0131334*m.x256 + 0.0217323*m.x257 + 0.0263854*m.x258 + 0.00683799*m.x259 + 0.0145498*m.x260 - 0.00579727*m.x261 - 0.0022627*m.x262 + 0.0213571*m.x263 + 0.00852926*m.x264 + 0.0167378*m.x265 - 0.011543*m.x266 - 0.0183739*m.x267 - 0.0102352*m.x268 - 0.00277805*m.x269 + 0.0145851*m.x270 + 0.00416542*m.x271 + 0.013257*m.x272 + 0.023436*m.x273 + 0.00276734*m.x274 + 0.04185*m.x275 + 0.00341598*m.x276 - 0.00987739*m.x277 + 0.0247823*m.x278 + 0.00658251*m.x279 - 0.00737633*m.x280 + 0.0316906*m.x281 + 0.00634296*m.x282 - 0.0133479*m.x283 + 0.00363982*m.x284 + 0.015425*m.x285 + 0.325214*m.x286 + 0.00356847*m.x287 + 0.00352398*m.x288 + 0.00433638*m.x289 - 0.000835345*m.x290 + 0.0177836*m.x291 + 0.00188467*m.x292 + 0.0090193*m.x293 - 0.000926932*m.x294 + 0.0189143*m.x295 + 0.0239269*m.x296 + 0.0214766*m.x297 + 0.0299348*m.x298 + 0.0657669*m.x299 + 0.00914343*m.x300 + 0.00979692*m.x301 + 0.00280778*m.x302 + 0.00369429*m.x303 == 0) m.c190 = Constraint(expr= - m.x85 - 0.0130366*m.x204 + 0.00875918*m.x205 + 0.0280865*m.x206 + 0.00429398*m.x207 + 0.0301859*m.x208 + 0.0235846*m.x209 + 0.0179103*m.x210 + 0.0200897*m.x211 + 0.0404836*m.x212 + 0.0346049*m.x213 + 0.0102937*m.x214 + 0.0024002*m.x215 + 0.00266624*m.x216 + 0.0268496*m.x217 + 0.0157477*m.x218 + 0.0243826*m.x219 + 0.0080643*m.x220 - 0.0271238*m.x221 + 0.0111854*m.x222 + 0.0103997*m.x223 - 0.0135153*m.x224 + 0.0121898*m.x225 + 0.0212922*m.x226 + 0.00243227*m.x227 - 0.0022015*m.x228 + 0.0171599*m.x229 + 0.0316383*m.x230 + 0.0157696*m.x231 - 0.00344939*m.x232 + 0.0304352*m.x233 - 0.0141682*m.x234 + 0.0420958*m.x235 + 0.0171493*m.x236 + 0.00145169*m.x237 + 0.00226631*m.x238 + 0.0149245*m.x239 - 0.00986807*m.x240 + 0.00391649*m.x241 + 0.00148966*m.x242 + 0.0200781*m.x243 + 0.0290197*m.x244 + 0.0150021*m.x245 + 0.00470761*m.x246 - 0.000228971*m.x247 + 0.0366449*m.x248 + 0.0022653*m.x249 - 0.00172543*m.x250 + 0.0338724*m.x251 + 0.000661634*m.x252 + 0.031036*m.x253 + 0.00452026*m.x254 + 0.0177547*m.x255 + 0.010006*m.x256 + 0.0074812*m.x257 + 0.0134424*m.x258 + 0.0150426*m.x259 + 0.0146631*m.x260 + 0.00633518*m.x261 - 0.0178424*m.x262 + 0.0130973*m.x263 + 0.0180986*m.x264 - 0.0130487*m.x265 + 0.00920493*m.x266 - 0.0131486*m.x267 + 0.0343148*m.x268 + 0.0184565*m.x269 + 0.010394*m.x270 - 0.0019629*m.x271 - 0.000584023*m.x272 + 0.0518973*m.x273 + 0.00368135*m.x274 + 0.025252*m.x275 + 0.0168686*m.x276 + 0.0246303*m.x277 + 0.016336*m.x278 + 0.0538772*m.x279 + 0.0145869*m.x280 + 0.0294815*m.x281 - 0.00196191*m.x282 + 0.0125386*m.x283 + 0.0393242*m.x284 + 0.0110252*m.x285 + 0.00356847*m.x286 + 0.253501*m.x287 + 0.0278664*m.x288 + 0.0165516*m.x289 + 0.0153948*m.x290 + 0.0222877*m.x291 + 0.0232654*m.x292 + 0.00990806*m.x293 + 0.00288787*m.x294 + 0.00781374*m.x295 - 0.000230336*m.x296 + 0.0165132*m.x297 + 0.0382825*m.x298 - 0.016509*m.x299 + 0.0189584*m.x300 - 0.00704493*m.x301 + 0.0230199*m.x302 + 0.0134259*m.x303 == 0) m.c191 = Constraint(expr= - m.x86 + 0.00243309*m.x204 + 0.0213683*m.x205 + 0.0121116*m.x206 + 0.0216644*m.x207 + 0.0339489*m.x208 + 0.0134857*m.x209 + 0.00721099*m.x210 + 0.022993*m.x211 + 0.0233051*m.x212 + 0.0161423*m.x213 + 0.0151637*m.x214 + 0.00206781*m.x215 + 0.00890446*m.x216 - 0.00176973*m.x217 + 0.0136669*m.x218 + 0.0181062*m.x219 + 0.0113165*m.x220 + 0.00450122*m.x221 + 0.0114597*m.x222 + 0.000675373*m.x223 + 0.00126179*m.x224 + 0.00257907*m.x225 + 0.0327354*m.x226 + 0.000359588*m.x227 + 0.0164738*m.x228 - 0.001325*m.x229 + 0.0170355*m.x230 + 0.0196175*m.x231 + 0.00552353*m.x232 + 0.0336786*m.x233 + 0.0109291*m.x234 + 0.0926409*m.x235 + 0.0191037*m.x236 + 0.0165018*m.x237 + 0.0273084*m.x238 + 0.00360648*m.x239 + 0.0188003*m.x240 + 0.037188*m.x241 - 0.00287831*m.x242 + 0.0170146*m.x243 + 0.0308391*m.x244 + 0.0486356*m.x245 + 0.0134195*m.x246 + 0.0126522*m.x247 - 0.00847171*m.x248 + 0.0126439*m.x249 + 0.0211089*m.x250 - 0.0090107*m.x251 + 0.0359152*m.x252 + 0.0396615*m.x253 + 0.00366557*m.x254 + 0.0128398*m.x255 - 0.00713827*m.x256 - 0.0200391*m.x257 + 0.00802506*m.x258 + 0.0201186*m.x259 + 0.0173147*m.x260 - 0.0124431*m.x261 + 0.0201311*m.x262 + 0.0121195*m.x263 + 0.0217749*m.x264 + 0.00624026*m.x265 + 0.0194176*m.x266 + 0.000857968*m.x267 + 0.0161535*m.x268 + 0.00461119*m.x269 + 0.00513963*m.x270 + 0.0236126*m.x271 - 0.00369328*m.x272 + 0.00558955*m.x273 + 0.00957517*m.x274 + 0.0207561*m.x275 + 0.0161268*m.x276 + 0.0392551*m.x277 + 0.0334571*m.x278 + 0.00948208*m.x279 + 0.0136899*m.x280 + 0.0109427*m.x281 + 0.0014521*m.x282 + 0.0115422*m.x283 + 0.0257997*m.x284 + 0.0172034*m.x285 + 0.00352398*m.x286 + 0.0278664*m.x287 + 0.168708*m.x288 + 0.016409*m.x289 + 0.0246084*m.x290 + 0.0175327*m.x291 + 0.0132707*m.x292 + 0.00899692*m.x293 + 0.00791625*m.x294 + 0.0177061*m.x295 + 0.00207808*m.x296 + 0.0251146*m.x297 + 0.0184837*m.x298 + 0.00390491*m.x299 + 0.0146561*m.x300 - 0.0140423*m.x301 + 0.0118626*m.x302 - 0.00284169*m.x303 == 0) m.c192 = Constraint(expr= - m.x87 + 0.00484607*m.x204 + 0.0223469*m.x205 + 0.00361683*m.x206 + 0.0233018*m.x207 + 0.00230194*m.x208 + 0.00278062*m.x209 + 0.00164949*m.x210 - 0.000549013*m.x211 + 0.00145357*m.x212 + 0.00486934*m.x213 + 0.0152717*m.x214 - 0.000360419*m.x215 + 0.0106296*m.x216 + 0.0262312*m.x217 + 0.0102152*m.x218 + 0.0141347*m.x219 + 0.0316648*m.x220 + 0.0194887*m.x221 + 0.0126843*m.x222 + 0.0130083*m.x223 + 0.00970953*m.x224 + 0.00858432*m.x225 + 0.0202473*m.x226 + 0.0204891*m.x227 + 0.0095043*m.x228 + 0.00618414*m.x229 + 0.000376344*m.x230 + 0.00775608*m.x231 - 0.00394771*m.x232 + 0.00419472*m.x233 + 0.00776229*m.x234 - 0.000832904*m.x235 + 0.00214285*m.x236 + 0.0080802*m.x237 + 0.0165011*m.x238 - 0.00766884*m.x239 + 0.0172113*m.x240 + 0.0264564*m.x241 + 0.00458259*m.x242 + 0.0215022*m.x243 + 0.0431137*m.x244 + 0.0180063*m.x245 + 0.0369595*m.x246 + 0.0105163*m.x247 + 0.0235286*m.x248 + 0.00223458*m.x249 + 0.00648963*m.x250 + 0.00951148*m.x251 + 0.0121599*m.x252 + 0.0169315*m.x253 + 0.0131458*m.x254 + 0.0231386*m.x255 + 0.00638031*m.x256 + 0.00634167*m.x257 + 0.00331125*m.x258 + 0.0161444*m.x259 + 0.0134929*m.x260 + 0.0253269*m.x261 + 0.0127648*m.x262 + 0.0119547*m.x263 + 0.00366775*m.x264 + 0.0174197*m.x265 + 0.00717868*m.x266 + 0.0083299*m.x267 + 0.0145892*m.x268 + 0.0123007*m.x269 + 0.0107918*m.x270 + 0.0137167*m.x271 + 0.0104073*m.x272 + 0.0276924*m.x273 + 0.00642966*m.x274 + 0.0442676*m.x275 + 0.0227145*m.x276 + 0.0197251*m.x277 + 0.00051236*m.x278 + 0.0231576*m.x279 + 0.00757632*m.x280 + 0.00947868*m.x281 + 0.0144924*m.x282 + 0.0239015*m.x283 - 0.00620466*m.x284 + 0.00430198*m.x285 + 0.00433638*m.x286 + 0.0165516*m.x287 + 0.016409*m.x288 + 0.118695*m.x289 - 0.000353137*m.x290 + 0.00614138*m.x291 + 0.00393938*m.x292 + 0.010258*m.x293 + 0.00833436*m.x294 + 0.0155411*m.x295 + 0.00633652*m.x296 - 0.0129386*m.x297 + 0.000524607*m.x298 + 0.00156656*m.x299 + 0.0195551*m.x300 + 0.0106125*m.x301 + 0.0178558*m.x302 + 0.00553876*m.x303 == 0) m.c193 = Constraint(expr= - m.x88 + 0.0192039*m.x204 + 0.0139068*m.x205 + 0.0180183*m.x206 + 0.0328639*m.x207 + 0.0201638*m.x208 - 0.00858219*m.x209 - 0.0109996*m.x210 - 0.00068661*m.x211 + 0.0353783*m.x212 - 1.9656E-5*m.x213 + 0.011193*m.x214 + 0.00210401*m.x215 + 0.00867089*m.x216 + 0.00164063*m.x217 + 0.0101419*m.x218 + 0.0161554*m.x219 + 0.0143745*m.x220 + 0.00448489*m.x221 + 0.00210006*m.x222 + 0.00539703*m.x223 - 0.00278401*m.x224 - 0.00136755*m.x225 + 0.0242836*m.x226 + 0.0292669*m.x227 + 0.0194659*m.x228 - 0.010655*m.x229 + 0.0139374*m.x230 + 0.00139924*m.x231 + 0.0357841*m.x232 + 0.0326227*m.x233 - 0.0170139*m.x234 + 0.00842344*m.x235 + 0.0066923*m.x236 + 0.0297617*m.x237 + 0.0353459*m.x238 + 0.0174822*m.x239 + 0.0182402*m.x240 + 0.011678*m.x241 + 0.0137472*m.x242 + 0.00958774*m.x243 + 0.012869*m.x244 + 0.0225774*m.x245 - 0.0210138*m.x246 + 0.013309*m.x247 - 0.0234656*m.x248 + 0.000876921*m.x249 - 0.00342056*m.x250 + 0.0107168*m.x251 + 0.00929105*m.x252 + 0.0265097*m.x253 - 0.00873615*m.x254 - 0.0113699*m.x255 + 0.0140088*m.x256 - 0.00043216*m.x257 + 0.00732372*m.x258 + 0.0127031*m.x259 + 0.013611*m.x260 + 0.0201735*m.x261 + 0.024251*m.x262 + 0.00901592*m.x263 - 0.00447213*m.x264 + 0.0230098*m.x265 - 0.0100831*m.x266 - 0.000461334*m.x267 + 0.00586937*m.x268 + 0.00724424*m.x269 + 0.0130978*m.x270 + 0.0121892*m.x271 - 0.00391704*m.x272 + 0.0289396*m.x273 - 0.0216798*m.x274 + 0.0205286*m.x275 + 0.00389974*m.x276 + 0.00960328*m.x277 + 0.0131673*m.x278 + 0.0128597*m.x279 - 0.00174931*m.x280 - 0.00284713*m.x281 - 0.00756629*m.x282 + 0.0451897*m.x283 + 0.00412578*m.x284 - 0.00771995*m.x285 - 0.000835345*m.x286 + 0.0153948*m.x287 + 0.0246084*m.x288 - 0.000353137*m.x289 + 0.210429*m.x290 - 0.0117993*m.x291 - 0.0050296*m.x292 + 0.00496234*m.x293 + 0.0147187*m.x294 - 0.00638346*m.x295 + 0.0218038*m.x296 - 0.0149617*m.x297 - 0.0174471*m.x298 - 0.0103608*m.x299 + 0.00170449*m.x300 - 0.00509478*m.x301 - 0.002207*m.x302 - 0.0131227*m.x303 == 0) m.c194 = Constraint(expr= - m.x89 - 0.0085911*m.x204 + 0.0353495*m.x205 + 0.0226601*m.x206 + 0.0305972*m.x207 + 0.0148104*m.x208 + 0.0238012*m.x209 + 0.0589001*m.x210 - 0.00420057*m.x211 + 0.0245361*m.x212 - 0.0192722*m.x213 + 0.0112057*m.x214 + 0.000459202*m.x215 + 0.0341752*m.x216 + 0.0339984*m.x217 + 0.0131187*m.x218 + 0.0142843*m.x219 + 0.0116517*m.x220 + 0.0154255*m.x221 + 0.0549659*m.x222 + 0.0194179*m.x223 - 0.0110477*m.x224 + 0.031019*m.x225 + 0.00470611*m.x226 + 0.0163439*m.x227 + 0.00940805*m.x228 + 0.0287315*m.x229 + 0.0275472*m.x230 + 0.000402288*m.x231 + 0.00160462*m.x232 + 0.0179917*m.x233 - 0.00984516*m.x234 + 0.0178015*m.x235 - 0.0250217*m.x236 + 0.00416104*m.x237 + 0.00602501*m.x238 + 0.0127497*m.x239 + 0.0285576*m.x240 + 0.0335903*m.x241 + 0.0189174*m.x242 + 0.0218437*m.x243 - 0.040724*m.x244 + 0.0434221*m.x245 - 0.00303618*m.x246 + 0.0161332*m.x247 + 0.00121975*m.x248 + 0.0255993*m.x249 + 0.0183674*m.x250 + 0.0178279*m.x251 + 0.0129496*m.x252 + 0.00746963*m.x253 + 0.0046782*m.x254 + 0.0889439*m.x255 + 0.0192336*m.x256 - 0.000981924*m.x257 + 0.00825968*m.x258 + 0.0366677*m.x259 + 0.0214669*m.x260 + 0.017492*m.x261 + 0.0212452*m.x262 + 0.0227243*m.x263 + 0.0267458*m.x264 + 9.8143E-5*m.x265 - 0.00430908*m.x266 + 0.0704456*m.x267 + 0.0392681*m.x268 + 0.0184584*m.x269 + 0.00470305*m.x270 + 0.000632641*m.x271 - 0.0303804*m.x272 - 0.00526134*m.x273 + 0.0227594*m.x274 + 0.00300826*m.x275 + 0.0230822*m.x276 - 0.000262221*m.x277 + 0.0237505*m.x278 + 0.00999317*m.x279 + 0.0242284*m.x280 + 0.0481938*m.x281 - 0.0110851*m.x282 - 0.0310249*m.x283 + 0.0127761*m.x284 + 0.0307627*m.x285 + 0.0177836*m.x286 + 0.0222877*m.x287 + 0.0175327*m.x288 + 0.00614138*m.x289 - 0.0117993*m.x290 + 0.264474*m.x291 + 0.00357945*m.x292 + 0.0191207*m.x293 + 0.00389068*m.x294 + 0.0126524*m.x295 + 0.0128723*m.x296 - 0.00897073*m.x297 + 0.013333*m.x298 + 0.0517181*m.x299 + 0.0246646*m.x300 - 0.0307355*m.x301 + 0.00730538*m.x302 + 0.0341094*m.x303 == 0) m.c195 = Constraint(expr= - m.x90 - 0.0062031*m.x204 + 0.00675913*m.x205 + 0.0329849*m.x206 - 0.00415707*m.x207 + 0.0193621*m.x208 + 0.0088678*m.x209 + 0.00615122*m.x210 + 0.00921205*m.x211 + 0.00939562*m.x212 + 0.0190744*m.x213 + 0.00953528*m.x214 - 0.00600004*m.x215 + 0.00683051*m.x216 - 0.00434935*m.x217 + 0.0171011*m.x218 + 0.000969021*m.x219 + 0.00972696*m.x220 - 0.00811765*m.x221 + 0.00908995*m.x222 - 0.0052549*m.x223 + 0.0147706*m.x224 + 0.0172111*m.x225 + 0.0256701*m.x226 - 0.00379038*m.x227 - 0.00459271*m.x228 + 0.0267179*m.x229 + 0.0215472*m.x230 - 0.000836245*m.x231 + 0.0130927*m.x232 + 0.00648866*m.x233 + 0.00481705*m.x234 - 0.00668788*m.x235 + 0.0258152*m.x236 + 0.00696121*m.x237 + 0.00280658*m.x238 + 0.000594747*m.x239 - 0.00228211*m.x240 + 0.0133091*m.x241 - 0.00318997*m.x242 + 0.0058466*m.x243 + 0.0241297*m.x244 + 0.0276431*m.x245 + 0.00239232*m.x246 + 0.0153765*m.x247 + 0.00617827*m.x248 + 0.000761757*m.x249 + 0.00194382*m.x250 + 0.00290669*m.x251 + 0.000165876*m.x252 + 0.014075*m.x253 + 0.00459631*m.x254 + 0.0105083*m.x255 + 0.00082309*m.x256 + 0.0100724*m.x257 + 0.0142932*m.x258 + 0.00820119*m.x259 + 0.00624642*m.x260 + 0.0200526*m.x261 + 0.0241234*m.x262 + 0.00169162*m.x263 + 0.0216534*m.x264 - 0.00953022*m.x265 + 0.0313277*m.x266 + 0.00562888*m.x267 + 0.0321897*m.x268 + 0.0225319*m.x269 + 0.0108874*m.x270 + 0.00328551*m.x271 + 0.00348223*m.x272 + 0.012689*m.x273 + 0.00163182*m.x274 + 0.00755881*m.x275 - 0.0103966*m.x276 + 0.0117935*m.x277 + 0.0259753*m.x278 + 0.0274468*m.x279 + 0.0223464*m.x280 - 0.00283589*m.x281 + 0.0361459*m.x282 + 0.00587297*m.x283 + 0.0351101*m.x284 + 0.0181157*m.x285 + 0.00188467*m.x286 + 0.0232654*m.x287 + 0.0132707*m.x288 + 0.00393938*m.x289 - 0.0050296*m.x290 + 0.00357945*m.x291 + 0.129639*m.x292 + 0.00974484*m.x293 - 0.00732373*m.x294 + 0.000942944*m.x295 + 0.0036973*m.x296 - 0.00875675*m.x297 + 0.0111863*m.x298 + 0.02613*m.x299 + 0.000479972*m.x300 - 0.0143007*m.x301 + 0.0294992*m.x302 + 0.00229934*m.x303 == 0) m.c196 = Constraint(expr= - m.x91 + 0.00268854*m.x204 + 0.00676616*m.x205 + 0.00576928*m.x206 + 0.00964148*m.x207 + 0.00948047*m.x208 - 3.17943E-5*m.x209 - 0.00717082*m.x210 + 0.000865255*m.x211 + 0.0167069*m.x212 - 0.00901601*m.x213 + 0.000108253*m.x214 - 0.0113285*m.x215 + 0.00335904*m.x216 + 0.00655352*m.x217 + 0.0259854*m.x218 + 0.0204454*m.x219 + 0.0132094*m.x220 - 0.00385197*m.x221 - 0.00445561*m.x222 - 0.00625738*m.x223 + 0.00705238*m.x224 + 0.00272478*m.x225 + 0.0286405*m.x226 - 0.00181686*m.x227 + 0.00697339*m.x228 - 0.0133302*m.x229 + 0.00487961*m.x230 + 0.00367641*m.x231 + 0.00657462*m.x232 + 0.00140866*m.x233 - 0.0055852*m.x234 + 0.00142361*m.x235 - 0.00246468*m.x236 - 0.00477706*m.x237 + 0.0141143*m.x238 + 0.0173728*m.x239 + 0.00194986*m.x240 + 0.0154967*m.x241 - 0.0127847*m.x242 + 0.0163626*m.x243 + 0.00261203*m.x244 + 0.0182416*m.x245 + 0.000321826*m.x246 + 0.0172788*m.x247 + 0.0181113*m.x248 + 0.0226772*m.x249 + 0.0120585*m.x250 - 0.011085*m.x251 + 0.0104514*m.x252 + 0.000392536*m.x253 + 0.0212014*m.x254 + 0.00390748*m.x255 + 0.00967333*m.x256 + 0.00947697*m.x257 + 0.00984404*m.x258 - 0.00665374*m.x259 + 0.00454738*m.x260 + 0.00522364*m.x261 + 0.0195278*m.x262 - 0.00631568*m.x263 + 0.0107144*m.x264 + 0.0169729*m.x265 + 0.00449822*m.x266 + 0.0251025*m.x267 + 0.00459229*m.x268 - 0.00115612*m.x269 + 0.0151819*m.x270 - 0.00509853*m.x271 - 0.00324749*m.x272 + 0.0135528*m.x273 + 0.000148116*m.x274 + 0.0070906*m.x275 - 0.00167457*m.x276 - 0.00608545*m.x277 + 0.00232003*m.x278 + 0.00337803*m.x279 + 0.00218928*m.x280 + 0.016211*m.x281 - 0.00085728*m.x282 - 0.0136089*m.x283 - 0.00463556*m.x284 - 0.00258019*m.x285 + 0.0090193*m.x286 + 0.00990806*m.x287 + 0.00899692*m.x288 + 0.010258*m.x289 + 0.00496234*m.x290 + 0.0191207*m.x291 + 0.00974484*m.x292 + 0.0989508*m.x293 + 0.00117698*m.x294 + 0.0186877*m.x295 + 0.0151336*m.x296 - 0.00798193*m.x297 + 0.0111385*m.x298 + 0.00565412*m.x299 - 0.00243878*m.x300 - 0.00072217*m.x301 + 0.00459902*m.x302 + 0.0100122*m.x303 == 0) m.c197 = Constraint(expr= - m.x92 + 0.00374751*m.x204 - 0.0169577*m.x205 - 0.00470462*m.x206 + 0.000244902*m.x207 + 0.0107385*m.x208 + 0.0181268*m.x209 + 0.0112392*m.x210 + 0.00517365*m.x211 - 0.0177537*m.x212 - 0.00394108*m.x213 + 0.00372088*m.x214 - 0.00379879*m.x215 + 0.0162828*m.x216 + 0.0190876*m.x217 + 0.00869282*m.x218 + 0.0180185*m.x219 + 0.0214788*m.x220 - 0.00894921*m.x221 - 0.0035093*m.x222 - 2.9997E-5*m.x223 - 0.001978*m.x224 - 0.000689796*m.x225 + 0.00175624*m.x226 + 0.0125924*m.x227 - 0.00111199*m.x228 - 0.00269826*m.x229 + 0.00165055*m.x230 - 0.0247945*m.x231 + 0.0120928*m.x232 + 0.00503874*m.x233 - 0.00360636*m.x234 + 0.0199408*m.x235 + 0.0138925*m.x236 + 0.024389*m.x237 - 0.0138066*m.x238 - 0.012529*m.x239 + 0.00780586*m.x240 + 0.000594082*m.x241 + 0.00325109*m.x242 + 0.00109195*m.x243 + 0.0174076*m.x244 + 0.00868526*m.x245 + 0.0159286*m.x246 + 0.00454689*m.x247 - 0.0146448*m.x248 - 0.00239856*m.x249 + 0.004607*m.x250 - 0.020525*m.x251 + 0.0177858*m.x252 + 0.02246*m.x253 + 0.0117374*m.x254 + 0.00684597*m.x255 + 0.000291585*m.x256 + 0.0122578*m.x257 - 0.00774969*m.x258 + 0.00551264*m.x259 + 0.00717722*m.x260 + 0.0101262*m.x261 - 0.00432386*m.x262 - 0.014748*m.x263 + 0.0142204*m.x264 + 0.0174156*m.x265 - 0.00307272*m.x266 + 0.00344892*m.x267 - 0.00116349*m.x268 + 0.000984092*m.x269 + 0.0195643*m.x270 + 0.0148681*m.x271 + 0.00746468*m.x272 + 0.0136874*m.x273 - 0.00314438*m.x274 + 0.0162991*m.x275 + 0.0127897*m.x276 + 0.00565714*m.x277 + 0.00642914*m.x278 + 0.0146469*m.x279 - 0.00234487*m.x280 + 0.0174578*m.x281 + 0.0474245*m.x282 - 0.000516624*m.x283 + 0.00349789*m.x284 - 0.00682747*m.x285 - 0.000926932*m.x286 + 0.00288787*m.x287 + 0.00791625*m.x288 + 0.00833436*m.x289 + 0.0147187*m.x290 + 0.00389068*m.x291 - 0.00732373*m.x292 + 0.00117698*m.x293 + 0.124044*m.x294 - 0.00410261*m.x295 + 0.00179877*m.x296 - 0.0030439*m.x297 + 0.0192348*m.x298 + 0.0127468*m.x299 + 0.0208105*m.x300 + 0.0177241*m.x301 + 0.00171535*m.x302 - 0.0084253*m.x303 == 0) m.c198 = Constraint(expr= - m.x93 + 0.0123958*m.x204 + 0.00339621*m.x205 - 0.0153482*m.x206 + 0.0374478*m.x207 + 0.00287505*m.x208 + 0.00782932*m.x209 + 0.000610349*m.x210 + 0.0240808*m.x211 + 0.00699783*m.x212 + 0.00072213*m.x213 + 0.00788742*m.x214 + 0.015416*m.x215 + 0.0256177*m.x216 + 0.0274041*m.x217 + 0.00673672*m.x218 + 0.00550125*m.x219 + 0.0108732*m.x220 + 0.0124411*m.x221 + 0.0111934*m.x222 + 0.0241985*m.x223 + 0.00955359*m.x224 - 0.0132155*m.x225 + 0.00904265*m.x226 + 0.0294016*m.x227 - 0.0171837*m.x228 - 0.0321221*m.x229 - 0.00879465*m.x230 + 0.00750897*m.x231 + 0.00756116*m.x232 + 0.010448*m.x233 - 0.000266747*m.x234 + 0.030029*m.x235 + 0.00427117*m.x236 + 0.0151776*m.x237 + 0.00103245*m.x238 - 0.00810868*m.x239 + 0.0298143*m.x240 + 0.0384969*m.x241 + 0.0175238*m.x242 + 0.016576*m.x243 + 0.0155538*m.x244 + 0.013908*m.x245 - 0.000456654*m.x246 - 0.00408178*m.x247 - 0.0232215*m.x248 - 0.000303141*m.x249 + 0.017139*m.x250 - 0.0111643*m.x251 + 0.0273403*m.x252 + 0.0196935*m.x253 + 0.0229518*m.x254 + 0.0131893*m.x255 + 0.0165254*m.x256 + 0.0215961*m.x257 - 0.00584549*m.x258 + 0.0332128*m.x259 + 0.0127629*m.x260 + 0.033537*m.x261 - 0.00115008*m.x262 + 0.0202061*m.x263 + 0.0660462*m.x264 + 0.0182632*m.x265 + 0.00735778*m.x266 - 0.0224606*m.x267 + 0.00533042*m.x268 + 0.000260201*m.x269 + 0.0289658*m.x270 + 0.0201209*m.x271 - 0.00652909*m.x272 - 0.000426475*m.x273 + 0.00826237*m.x274 - 0.0210064*m.x275 + 0.0629866*m.x276 + 0.014422*m.x277 - 0.000406401*m.x278 + 0.00469697*m.x279 + 0.0106011*m.x280 + 0.0438875*m.x281 - 0.0216252*m.x282 + 0.0009259*m.x283 - 0.00754138*m.x284 + 0.0206012*m.x285 + 0.0189143*m.x286 + 0.00781374*m.x287 + 0.0177061*m.x288 + 0.0155411*m.x289 - 0.00638346*m.x290 + 0.0126524*m.x291 + 0.000942944*m.x292 + 0.0186877*m.x293 - 0.00410261*m.x294 + 0.211508*m.x295 - 0.00562326*m.x296 + 0.00136296*m.x297 - 0.00331104*m.x298 + 0.0156995*m.x299 + 0.028973*m.x300 - 0.0137125*m.x301 - 0.00137032*m.x302 + 0.00956384*m.x303 == 0) m.c199 = Constraint(expr= - m.x94 - 0.00281911*m.x204 + 0.0150229*m.x205 + 0.0172118*m.x206 + 0.020036*m.x207 + 0.0130434*m.x208 + 0.00311794*m.x209 + 0.0116254*m.x210 + 0.00215238*m.x211 - 0.0148329*m.x212 + 0.0287036*m.x213 + 0.035638*m.x214 + 0.0100832*m.x215 + 0.021417*m.x216 + 0.020182*m.x217 + 0.0316891*m.x218 + 0.0173229*m.x219 + 0.0316462*m.x220 + 0.0222568*m.x221 - 0.00595445*m.x222 - 0.00345471*m.x223 + 0.0206419*m.x224 - 0.0122813*m.x225 + 0.0101954*m.x226 + 0.014454*m.x227 + 0.00427236*m.x228 + 0.0256948*m.x229 - 0.00601501*m.x230 + 0.00220324*m.x231 + 0.00893784*m.x232 + 0.0187694*m.x233 + 0.00272322*m.x234 - 0.000706121*m.x235 + 0.0100517*m.x236 - 0.00263518*m.x237 + 0.0131295*m.x238 + 0.0296006*m.x239 + 0.0316103*m.x240 + 0.0132003*m.x241 + 0.0105851*m.x242 + 0.0121524*m.x243 + 0.0118422*m.x244 + 0.0117221*m.x245 + 0.0140437*m.x246 + 0.0106112*m.x247 + 0.00688969*m.x248 + 0.00819898*m.x249 + 0.0200535*m.x250 - 0.00203641*m.x251 + 0.00347406*m.x252 + 0.0203211*m.x253 + 0.00232247*m.x254 - 0.0139354*m.x255 + 0.00824013*m.x256 + 0.0101139*m.x257 - 0.00254807*m.x258 + 0.000520073*m.x259 + 0.019358*m.x260 + 0.0302725*m.x261 - 0.00414181*m.x262 + 0.00890168*m.x263 - 0.0111379*m.x264 + 0.00110738*m.x265 + 0.015328*m.x266 + 0.00833154*m.x267 + 0.0083884*m.x268 - 0.00178894*m.x269 + 0.000514941*m.x270 + 0.023585*m.x271 + 0.00590442*m.x272 + 0.020855*m.x273 + 0.0225842*m.x274 + 0.0190915*m.x275 + 0.00369913*m.x276 + 0.00362916*m.x277 + 0.0185527*m.x278 + 0.02019*m.x279 + 0.00596788*m.x280 + 0.0271732*m.x281 - 0.0305481*m.x282 + 0.0175048*m.x283 - 0.00336606*m.x284 + 0.00945896*m.x285 + 0.0239269*m.x286 - 0.000230336*m.x287 + 0.00207808*m.x288 + 0.00633652*m.x289 + 0.0218038*m.x290 + 0.0128723*m.x291 + 0.0036973*m.x292 + 0.0151336*m.x293 + 0.00179877*m.x294 - 0.00562326*m.x295 + 0.155072*m.x296 + 0.0153515*m.x297 + 0.00102254*m.x298 + 0.0159403*m.x299 + 0.00179188*m.x300 - 0.0137303*m.x301 + 0.00491891*m.x302 + 0.00903696*m.x303 == 0) m.c200 = Constraint(expr= - m.x95 + 0.0022118*m.x204 - 0.0133134*m.x205 - 0.0344168*m.x206 + 0.00411236*m.x207 - 0.00176429*m.x208 - 0.032215*m.x209 - 0.0224759*m.x210 + 0.0141697*m.x211 + 0.178873*m.x212 - 0.00879298*m.x213 - 0.0118438*m.x214 - 0.0115254*m.x215 - 0.00659726*m.x216 - 0.0260426*m.x217 - 0.0156915*m.x218 - 0.0118909*m.x219 - 0.0102103*m.x220 + 0.05196*m.x221 + 0.00346376*m.x222 + 0.0232975*m.x223 - 0.0195786*m.x224 - 0.0179837*m.x225 + 0.00334169*m.x226 + 0.00907196*m.x227 - 0.0133342*m.x228 - 0.0250774*m.x229 - 0.0151708*m.x230 + 0.00583633*m.x231 - 0.00747816*m.x232 - 0.0111273*m.x233 - 0.0135944*m.x234 + 0.0120762*m.x235 - 0.0267599*m.x236 - 0.0223564*m.x237 - 0.00507596*m.x238 - 0.0055076*m.x239 - 0.0168264*m.x240 - 0.00324796*m.x241 + 0.0218937*m.x242 + 0.0114468*m.x243 + 0.0140178*m.x244 - 0.00373821*m.x245 - 0.0133161*m.x246 - 0.00745302*m.x247 + 0.0659066*m.x248 - 0.0155281*m.x249 - 0.0108609*m.x250 + 0.00376918*m.x251 + 0.00897938*m.x252 + 0.00142186*m.x253 - 0.0141535*m.x254 - 0.0247692*m.x255 - 0.00561804*m.x256 + 0.00689054*m.x257 - 0.00996077*m.x258 - 0.00757188*m.x259 + 0.0375824*m.x260 + 0.00311747*m.x261 - 0.0293668*m.x262 - 0.0256392*m.x263 - 0.0165798*m.x264 - 0.00610696*m.x265 - 0.00549157*m.x266 - 0.0234811*m.x267 - 0.00154795*m.x268 + 0.00486873*m.x269 - 0.00429564*m.x270 - 0.00188899*m.x271 - 0.0198962*m.x272 - 0.00692332*m.x273 - 0.0145782*m.x274 - 0.0125323*m.x275 + 0.0201848*m.x276 + 0.0108815*m.x277 + 0.0077666*m.x278 - 0.012203*m.x279 + 0.0140801*m.x280 - 0.00264823*m.x281 + 0.00800911*m.x282 + 0.0373561*m.x283 - 0.0216041*m.x284 + 0.0244376*m.x285 + 0.0214766*m.x286 + 0.0165132*m.x287 + 0.0251146*m.x288 - 0.0129386*m.x289 - 0.0149617*m.x290 - 0.00897073*m.x291 - 0.00875675*m.x292 - 0.00798193*m.x293 - 0.0030439*m.x294 + 0.00136296*m.x295 + 0.0153515*m.x296 + 1.0439*m.x297 - 0.00146374*m.x298 + 0.00154313*m.x299 - 0.00279411*m.x300 - 0.0164048*m.x301 - 0.00262205*m.x302 - 0.000527897*m.x303 == 0) m.c201 = Constraint(expr= - m.x96 + 0.0167955*m.x204 + 0.0134182*m.x205 - 0.0408698*m.x206 + 0.0103469*m.x207 + 0.036063*m.x208 + 0.00207316*m.x209 + 0.00642488*m.x210 + 0.00516594*m.x211 + 0.00483769*m.x212 - 0.00130419*m.x213 - 0.00955396*m.x214 + 0.0489927*m.x215 + 0.031985*m.x216 + 0.0584498*m.x217 + 0.0357759*m.x218 + 0.00154333*m.x219 + 0.0284578*m.x220 + 0.000359792*m.x221 + 0.00938963*m.x222 - 0.00383232*m.x223 + 0.0321854*m.x224 - 0.0115174*m.x225 + 0.0120672*m.x226 - 0.0155799*m.x227 + 0.0159789*m.x228 - 0.00835702*m.x229 + 0.0709325*m.x230 + 0.00119846*m.x231 + 0.00341049*m.x232 + 0.013655*m.x233 - 0.0102535*m.x234 + 0.0417235*m.x235 - 0.00630875*m.x236 + 0.00104505*m.x237 + 0.037088*m.x238 - 0.000573198*m.x239 + 0.00133433*m.x240 + 0.0198875*m.x241 + 0.0120314*m.x242 + 0.0229932*m.x243 + 0.0167384*m.x244 + 0.0089429*m.x245 + 0.00274327*m.x246 + 0.0138402*m.x247 + 0.0163443*m.x248 + 0.01631*m.x249 + 0.0112311*m.x250 + 0.0118935*m.x251 + 0.0131703*m.x252 + 0.00797244*m.x253 + 0.00517337*m.x254 + 0.0243459*m.x255 + 0.0192153*m.x256 + 0.0214997*m.x257 - 0.00480671*m.x258 + 0.00641418*m.x259 + 0.0198104*m.x260 + 0.00113182*m.x261 - 0.00629538*m.x262 + 0.046066*m.x263 + 0.0260859*m.x264 + 0.0117812*m.x265 + 0.0169898*m.x266 - 0.0262964*m.x267 + 0.00327212*m.x268 + 0.01*m.x269 + 0.0195899*m.x270 - 0.0117063*m.x271 + 0.015777*m.x272 + 0.00700229*m.x273 - 0.00503236*m.x274 + 0.0147594*m.x275 - 0.00505562*m.x276 + 0.00215519*m.x277 + 0.012311*m.x278 + 0.00574997*m.x279 + 0.0111286*m.x280 + 0.0161145*m.x281 - 0.00833087*m.x282 - 0.0112765*m.x283 + 0.0121631*m.x284 + 0.0327088*m.x285 + 0.0299348*m.x286 + 0.0382825*m.x287 + 0.0184837*m.x288 + 0.000524607*m.x289 - 0.0174471*m.x290 + 0.013333*m.x291 + 0.0111863*m.x292 + 0.0111385*m.x293 + 0.0192348*m.x294 - 0.00331104*m.x295 + 0.00102254*m.x296 - 0.00146374*m.x297 + 0.791704*m.x298 - 0.0277421*m.x299 + 0.0494004*m.x300 - 0.0111381*m.x301 + 0.0155984*m.x302 - 0.000109889*m.x303 == 0) m.c202 = Constraint(expr= - m.x97 - 0.0279332*m.x204 + 0.0889001*m.x205 + 0.0755415*m.x206 - 0.012054*m.x207 + 0.0123589*m.x208 + 0.0352617*m.x209 + 0.00803335*m.x210 + 0.00216393*m.x211 + 0.0402204*m.x212 + 0.0144463*m.x213 + 0.0411535*m.x214 + 0.00172935*m.x215 + 0.0158572*m.x216 + 0.0466449*m.x217 + 0.0174851*m.x218 + 0.00648827*m.x219 + 0.0136054*m.x220 + 0.0473451*m.x221 + 0.0125983*m.x222 - 0.000654628*m.x223 + 0.00830393*m.x224 + 0.0545863*m.x225 - 0.00247613*m.x226 - 0.000311276*m.x227 + 0.0137361*m.x228 + 0.0620713*m.x229 + 0.0366289*m.x230 - 0.0223825*m.x231 + 0.104347*m.x232 + 0.0137759*m.x233 + 0.0378678*m.x234 + 0.0169276*m.x235 + 0.00112457*m.x236 + 0.0433625*m.x237 - 0.0155039*m.x238 + 0.018767*m.x239 + 0.0320353*m.x240 + 0.00123223*m.x241 + 0.0247783*m.x242 + 0.0274591*m.x243 + 0.0447304*m.x244 + 0.0223685*m.x245 + 0.0088079*m.x246 - 0.00206706*m.x247 + 0.0491497*m.x248 + 0.0130047*m.x249 - 0.000464008*m.x250 + 0.0159972*m.x251 + 0.0238145*m.x252 + 0.0303016*m.x253 + 0.0102284*m.x254 + 0.0752523*m.x255 - 0.00817059*m.x256 - 0.00197476*m.x257 + 0.017175*m.x258 + 0.00692204*m.x259 + 0.0133092*m.x260 + 0.0359219*m.x261 - 0.0228968*m.x262 - 0.0109849*m.x263 + 0.0220738*m.x264 + 0.0127772*m.x265 + 0.0267541*m.x266 - 0.0175235*m.x267 + 0.0425838*m.x268 + 0.00629557*m.x269 - 0.00999522*m.x270 + 0.0273148*m.x271 + 0.0320781*m.x272 + 0.016756*m.x273 + 0.0195997*m.x274 + 0.0449847*m.x275 - 0.0107799*m.x276 + 0.015215*m.x277 + 0.0214616*m.x278 + 0.0450781*m.x279 + 0.0108432*m.x280 + 0.00509121*m.x281 - 0.0224481*m.x282 + 0.0051311*m.x283 + 0.0125615*m.x284 + 0.0159115*m.x285 + 0.0657669*m.x286 - 0.016509*m.x287 + 0.00390491*m.x288 + 0.00156656*m.x289 - 0.0103608*m.x290 + 0.0517181*m.x291 + 0.02613*m.x292 + 0.00565412*m.x293 + 0.0127468*m.x294 + 0.0156995*m.x295 + 0.0159403*m.x296 + 0.00154313*m.x297 - 0.0277421*m.x298 + 0.506744*m.x299 + 0.0310222*m.x300 - 0.00663623*m.x301 + 0.0161424*m.x302 + 0.00659053*m.x303 == 0) m.c203 = Constraint(expr= - m.x98 + 0.0227079*m.x204 + 0.0286671*m.x205 + 0.0219066*m.x206 + 0.0183139*m.x207 + 0.0190362*m.x208 + 0.0157662*m.x209 + 0.0180457*m.x210 + 0.0179954*m.x211 + 0.111526*m.x212 + 0.0227*m.x213 - 0.00808243*m.x214 - 0.00821597*m.x215 + 0.0232882*m.x216 + 0.0330244*m.x217 - 0.0063521*m.x218 - 0.00193745*m.x219 + 0.0283516*m.x220 + 0.00195216*m.x221 + 0.0159186*m.x222 + 0.00357173*m.x223 + 0.0105133*m.x224 + 0.0401891*m.x225 + 0.00811643*m.x226 + 0.0367786*m.x227 + 0.00616904*m.x228 + 0.0267618*m.x229 + 0.000218956*m.x230 + 0.030938*m.x231 + 0.0194493*m.x232 + 0.0225411*m.x233 - 0.0155415*m.x234 + 0.0024374*m.x235 + 0.0190696*m.x236 + 0.00802342*m.x237 + 0.0401269*m.x238 + 0.011041*m.x239 + 0.0433973*m.x240 + 0.0178267*m.x241 + 0.0295261*m.x242 + 0.0170962*m.x243 + 0.0519824*m.x244 + 0.00186956*m.x245 - 0.0199075*m.x246 - 0.00104385*m.x247 + 0.0230853*m.x248 + 0.007868*m.x249 + 0.00372516*m.x250 + 0.00701074*m.x251 + 0.0112134*m.x252 + 0.0163988*m.x253 + 0.016647*m.x254 - 0.00276693*m.x255 + 0.0078892*m.x256 + 0.0136175*m.x257 + 0.00103887*m.x258 + 0.0175234*m.x259 + 0.0195271*m.x260 + 0.000595551*m.x261 + 0.00307471*m.x262 + 0.00658164*m.x263 + 0.0291965*m.x264 + 0.0162*m.x265 - 0.019998*m.x266 + 0.0205719*m.x267 + 0.0191781*m.x268 + 0.0103958*m.x269 + 0.00608684*m.x270 + 0.0284999*m.x271 - 0.00215074*m.x272 + 0.0360264*m.x273 + 0.00361997*m.x274 + 0.0390785*m.x275 + 0.0045*m.x276 + 0.017746*m.x277 + 0.0298427*m.x278 + 0.103864*m.x279 + 0.014432*m.x280 + 0.0367902*m.x281 + 0.026356*m.x282 + 0.014489*m.x283 + 0.012455*m.x284 + 0.0166712*m.x285 + 0.00914343*m.x286 + 0.0189584*m.x287 + 0.0146561*m.x288 + 0.0195551*m.x289 + 0.00170449*m.x290 + 0.0246646*m.x291 + 0.000479972*m.x292 - 0.00243878*m.x293 + 0.0208105*m.x294 + 0.028973*m.x295 + 0.00179188*m.x296 - 0.00279411*m.x297 + 0.0494004*m.x298 + 0.0310222*m.x299 + 0.320585*m.x300 - 0.00421853*m.x301 + 0.00758314*m.x302 + 0.0183194*m.x303 == 0) m.c204 = Constraint(expr= - m.x99 + 0.00975774*m.x204 + 0.0390347*m.x205 + 0.00157357*m.x206 - 0.0288293*m.x207 - 0.01883*m.x208 + 0.243511*m.x209 + 0.0047812*m.x210 - 0.00675247*m.x211 - 0.00193246*m.x212 + 0.00430831*m.x213 - 0.0197548*m.x214 - 0.0062146*m.x215 + 0.00712137*m.x216 + 0.0380016*m.x217 - 0.0081262*m.x218 + 0.000983654*m.x219 - 0.0101858*m.x220 - 0.0137668*m.x221 - 0.0256068*m.x222 + 0.0350406*m.x223 - 0.0266952*m.x224 + 0.0297056*m.x225 + 0.00451179*m.x226 - 0.0255962*m.x227 - 0.0154329*m.x228 + 0.00732044*m.x229 + 0.0460118*m.x230 + 0.0193729*m.x231 - 0.00520844*m.x232 - 0.0033488*m.x233 + 0.00593378*m.x234 - 0.0096037*m.x235 + 0.0196793*m.x236 + 0.0485713*m.x237 - 0.00474519*m.x238 - 0.0114838*m.x239 - 0.0108392*m.x240 - 0.00475543*m.x241 - 0.0120001*m.x242 - 0.0143186*m.x243 + 0.00580577*m.x244 - 0.000502651*m.x245 + 0.0201943*m.x246 - 0.0111014*m.x247 + 0.0414341*m.x248 + 0.0172829*m.x249 + 0.00268954*m.x250 + 0.0129573*m.x251 - 0.00463261*m.x252 - 0.0103262*m.x253 + 0.00970317*m.x254 - 0.00836392*m.x255 + 0.00463932*m.x256 + 0.0236766*m.x257 - 2.46303E-5*m.x258 - 0.0128168*m.x259 - 0.00823347*m.x260 + 4.13827E-5*m.x261 + 0.0204793*m.x262 + 0.0362579*m.x263 - 0.00087998*m.x264 - 0.0368529*m.x265 - 0.00561625*m.x266 - 0.0402272*m.x267 + 0.00444886*m.x268 + 0.0109707*m.x269 - 0.0133354*m.x270 - 0.00353962*m.x271 + 0.010315*m.x272 - 0.0259344*m.x273 + 0.000208782*m.x274 - 0.0172229*m.x275 + 0.0173545*m.x276 + 0.00771442*m.x277 - 0.00757473*m.x278 - 0.0301521*m.x279 + 0.0196268*m.x280 - 0.0132156*m.x281 + 0.020753*m.x282 - 0.00457749*m.x283 + 0.018402*m.x284 + 0.0072935*m.x285 + 0.00979692*m.x286 - 0.00704493*m.x287 - 0.0140423*m.x288 + 0.0106125*m.x289 - 0.00509478*m.x290 - 0.0307355*m.x291 - 0.0143007*m.x292 - 0.00072217*m.x293 + 0.0177241*m.x294 - 0.0137125*m.x295 - 0.0137303*m.x296 - 0.0164048*m.x297 - 0.0111381*m.x298 - 0.00663623*m.x299 - 0.00421853*m.x300 + 0.579298*m.x301 + 0.0162035*m.x302 + 0.0219849*m.x303 == 0) m.c205 = Constraint(expr= - m.x100 + 0.000116986*m.x204 + 0.00733705*m.x205 + 0.0412011*m.x206 + 0.00250478*m.x207 + 0.0156576*m.x208 + 0.006698*m.x209 + 0.00731383*m.x210 + 0.00119681*m.x211 + 0.0326706*m.x212 + 0.00196198*m.x213 - 0.00408574*m.x214 - 0.014221*m.x215 + 0.00355863*m.x216 + 0.00172257*m.x217 + 0.00733927*m.x218 + 0.0114558*m.x219 + 0.00777919*m.x220 + 0.000840073*m.x221 + 0.00097566*m.x222 + 0.00821698*m.x223 + 0.00665696*m.x224 + 0.00722685*m.x225 + 0.0116179*m.x226 + 0.0136226*m.x227 + 0.000498937*m.x228 + 0.0133219*m.x229 + 0.0341929*m.x230 + 0.0100684*m.x231 + 0.00369624*m.x232 + 0.031476*m.x233 + 0.012364*m.x234 + 0.00722129*m.x235 + 0.0119806*m.x236 + 0.0032333*m.x237 + 0.0102928*m.x238 + 0.00268364*m.x239 + 0.00751702*m.x240 + 0.0129675*m.x241 + 0.00121728*m.x242 + 0.00875979*m.x243 + 0.012385*m.x244 + 0.0174325*m.x245 + 0.0380042*m.x246 + 0.00860025*m.x247 + 0.0105274*m.x248 + 0.00542659*m.x249 + 0.0166562*m.x250 + 0.00101054*m.x251 + 0.00520514*m.x252 + 0.0138437*m.x253 + 0.0100764*m.x254 + 0.0169651*m.x255 - 0.00593801*m.x256 + 0.00337669*m.x257 + 0.00495815*m.x258 + 0.0164063*m.x259 - 0.00820594*m.x260 + 0.0152464*m.x261 + 0.00683967*m.x262 + 0.00917306*m.x263 + 0.00952427*m.x264 + 0.0012669*m.x265 - 0.010356*m.x266 - 0.00924209*m.x267 + 0.0219505*m.x268 + 0.0344609*m.x269 + 0.00371045*m.x270 + 0.00538445*m.x271 + 0.0111624*m.x272 + 0.00953552*m.x273 + 0.0145316*m.x274 + 0.0289407*m.x275 + 0.000465444*m.x276 + 0.00826654*m.x277 + 0.00326998*m.x278 + 0.0209427*m.x279 + 0.0388318*m.x280 + 0.0177839*m.x281 + 0.0316754*m.x282 + 0.00838465*m.x283 + 0.0384063*m.x284 + 0.00573711*m.x285 + 0.00280778*m.x286 + 0.0230199*m.x287 + 0.0118626*m.x288 + 0.0178558*m.x289 - 0.002207*m.x290 + 0.00730538*m.x291 + 0.0294992*m.x292 + 0.00459902*m.x293 + 0.00171535*m.x294 - 0.00137032*m.x295 + 0.00491891*m.x296 - 0.00262205*m.x297 + 0.0155984*m.x298 + 0.0161424*m.x299 + 0.00758314*m.x300 + 0.0162035*m.x301 + 0.0858551*m.x302 - 0.00939134*m.x303 == 0) m.c206 = Constraint(expr= - m.x101 + 0.00508413*m.x204 + 0.0374277*m.x205 + 0.0159705*m.x206 + 0.0130454*m.x207 + 0.0265264*m.x208 + 0.0576747*m.x209 + 0.0122221*m.x210 - 0.00205582*m.x211 - 0.00767129*m.x212 + 0.006199*m.x213 + 0.0233977*m.x214 + 0.0110839*m.x215 + 0.00654047*m.x216 + 0.00682218*m.x217 + 0.00484072*m.x218 + 0.00327572*m.x219 + 0.00012158*m.x220 + 0.0227501*m.x221 - 0.00691953*m.x222 + 0.0156317*m.x223 - 0.00571234*m.x224 + 0.0243685*m.x225 + 0.0132863*m.x226 + 0.0209203*m.x227 + 0.0264262*m.x228 + 0.0208839*m.x229 - 0.00140343*m.x230 + 0.00790278*m.x231 + 0.0310417*m.x232 + 0.0123762*m.x233 + 0.0241458*m.x234 + 0.018823*m.x235 + 0.0371377*m.x236 + 0.0332113*m.x237 + 0.0227151*m.x238 + 0.0211458*m.x239 - 0.00144612*m.x240 + 0.00875978*m.x241 - 0.00249785*m.x242 + 0.00792635*m.x243 + 0.0180453*m.x244 + 0.0334254*m.x245 - 0.00589524*m.x246 + 0.0108073*m.x247 + 0.00672014*m.x248 + 0.00997388*m.x249 + 0.00639193*m.x250 - 0.00326076*m.x251 - 0.00135479*m.x252 + 0.00766798*m.x253 + 0.00923673*m.x254 + 0.0207104*m.x255 + 0.00325836*m.x256 + 0.0035861*m.x257 + 0.0225131*m.x258 + 0.00875325*m.x259 + 0.00813384*m.x260 - 0.0111606*m.x261 - 0.0105449*m.x262 + 0.0146768*m.x263 + 0.00243344*m.x264 + 0.000788331*m.x265 + 0.0111971*m.x266 + 0.0228584*m.x267 + 0.0116164*m.x268 + 0.00845491*m.x269 - 0.00737205*m.x270 - 0.00465145*m.x271 + 0.0154715*m.x272 + 0.0189209*m.x273 + 0.0365771*m.x274 + 0.00458626*m.x275 + 0.00702905*m.x276 - 0.0216509*m.x277 + 0.0195985*m.x278 + 0.016127*m.x279 + 0.0139537*m.x280 + 0.0109642*m.x281 + 0.00176788*m.x282 - 0.0161154*m.x283 + 0.0175444*m.x284 + 0.0260562*m.x285 + 0.00369429*m.x286 + 0.0134259*m.x287 - 0.00284169*m.x288 + 0.00553876*m.x289 - 0.0131227*m.x290 + 0.0341094*m.x291 + 0.00229934*m.x292 + 0.0100122*m.x293 - 0.0084253*m.x294 + 0.00956384*m.x295 + 0.00903696*m.x296 - 0.000527897*m.x297 - 0.000109889*m.x298 + 0.00659053*m.x299 + 0.0183194*m.x300 + 0.0219849*m.x301 - 0.00939134*m.x302 + 0.203443*m.x303 == 0) m.c207 = Constraint(expr= - m.x102 + 0.101389*m.x204 + 0.00922513*m.x205 + 0.0026992*m.x206 + 0.00246784*m.x207 + 0.00231482*m.x208 - 0.00125222*m.x209 - 0.00392467*m.x210 - 0.0046966*m.x211 - 0.0142117*m.x212 - 0.00150584*m.x213 - 0.00472481*m.x214 - 0.00116843*m.x215 - 0.00080131*m.x216 + 0.0048818*m.x217 - 0.00479483*m.x218 + 0.00726609*m.x219 + 0.00902802*m.x220 + 0.0114247*m.x221 - 0.00483357*m.x222 + 9.94895E-5*m.x223 + 0.00286308*m.x224 - 3.33076E-5*m.x225 + 0.00353482*m.x226 - 0.00220136*m.x227 + 0.00200825*m.x228 - 0.00767398*m.x229 - 0.00197822*m.x230 - 1.10346E-5*m.x231 - 0.00119407*m.x232 + 0.000602811*m.x233 + 0.0132444*m.x234 - 0.00406553*m.x235 + 0.00422631*m.x236 - 0.00343731*m.x237 + 0.00651535*m.x238 - 0.00313138*m.x239 + 0.00359841*m.x240 + 0.00452148*m.x241 + 0.00366834*m.x242 + 0.00592328*m.x243 + 0.00503367*m.x244 + 0.00629207*m.x245 + 0.00300993*m.x246 - 0.00042207*m.x247 + 0.0126161*m.x248 + 0.000539029*m.x249 + 0.00171572*m.x250 + 0.00871066*m.x251 - 0.000658519*m.x252 + 0.00632557*m.x253 - 1.12481E-5*m.x254 + 0.00423842*m.x255 - 0.000128391*m.x256 + 0.00428623*m.x257 + 0.00221565*m.x258 + 0.00293236*m.x259 + 0.00642301*m.x260 - 0.00424851*m.x261 + 0.00130686*m.x262 + 0.0135606*m.x263 - 0.000827581*m.x264 + 0.000319199*m.x265 - 0.00408084*m.x266 - 0.0130473*m.x267 - 0.000488486*m.x268 + 0.00109418*m.x269 + 0.00331627*m.x270 + 0.0045216*m.x271 - 0.00260415*m.x272 - 0.000565556*m.x273 + 0.00157409*m.x274 + 0.00434565*m.x275 - 0.00256408*m.x276 + 6.86355E-5*m.x277 + 0.000115271*m.x278 + 0.00407719*m.x279 - 0.000717764*m.x280 + 0.00421776*m.x281 - 0.00185436*m.x282 + 0.0139088*m.x283 + 0.00169537*m.x284 - 0.00322776*m.x285 + 0.00738761*m.x286 - 0.00338701*m.x287 + 0.000632136*m.x288 + 0.00125905*m.x289 + 0.00498931*m.x290 - 0.00223203*m.x291 - 0.00161161*m.x292 + 0.000698504*m.x293 + 0.000973632*m.x294 + 0.00322052*m.x295 - 0.000732426*m.x296 + 0.000574642*m.x297 + 0.0043636*m.x298 - 0.00725725*m.x299 + 0.00589969*m.x300 + 0.00253513*m.x301 + 3.03939E-5*m.x302 + 0.0013209*m.x303 == 0) m.c208 = Constraint(expr= - m.x103 + 0.00922513*m.x204 + 0.0975221*m.x205 + 0.0302565*m.x206 + 0.00195468*m.x207 + 0.00763018*m.x208 + 0.0135627*m.x209 + 0.005177*m.x210 - 0.00166221*m.x211 + 0.0123801*m.x212 + 0.00801131*m.x213 + 0.0131773*m.x214 - 0.000578789*m.x215 - 0.00121871*m.x216 + 0.00571751*m.x217 + 0.00647641*m.x218 + 0.006769*m.x219 + 0.00782192*m.x220 + 0.00707125*m.x221 + 0.0133473*m.x222 + 0.013462*m.x223 + 0.00112892*m.x224 + 0.0172224*m.x225 + 0.000134992*m.x226 - 0.000119948*m.x227 + 0.000402454*m.x228 + 0.0170077*m.x229 + 0.00468054*m.x230 + 0.00168652*m.x231 + 0.0382947*m.x232 + 0.0032777*m.x233 + 0.00298262*m.x234 + 0.00157746*m.x235 + 0.0105061*m.x236 - 0.00233804*m.x237 - 0.000430784*m.x238 + 0.00369645*m.x239 + 0.00893962*m.x240 + 0.00500082*m.x241 + 0.00579376*m.x242 + 0.0033232*m.x243 + 0.00493974*m.x244 + 1.72372E-5*m.x245 - 0.00634068*m.x246 + 0.00394893*m.x247 + 0.02189*m.x248 - 0.00142123*m.x249 + 0.000952018*m.x250 - 0.000699597*m.x251 + 0.00166555*m.x252 + 0.00413697*m.x253 + 0.0028476*m.x254 + 0.0144721*m.x255 + 0.00231785*m.x256 - 0.00165532*m.x257 + 0.00730008*m.x258 + 0.00370628*m.x259 + 0.00688037*m.x260 - 0.00522018*m.x261 + 0.00111515*m.x262 + 0.00698037*m.x263 - 0.000451953*m.x264 + 0.000474809*m.x265 + 0.00265625*m.x266 - 0.00353732*m.x267 + 0.0119217*m.x268 + 0.00462742*m.x269 + 0.00319077*m.x270 + 0.00271929*m.x271 - 0.00543312*m.x272 + 0.00196136*m.x273 + 0.00104823*m.x274 + 0.0124518*m.x275 - 0.00305148*m.x276 + 0.00752299*m.x277 + 0.00484884*m.x278 + 0.00471928*m.x279 + 0.00180959*m.x280 - 0.00197105*m.x281 - 0.000409026*m.x282 + 0.00669345*m.x283 + 0.00587367*m.x284 + 0.00304423*m.x285 + 0.00575059*m.x286 + 0.0022757*m.x287 + 0.00555164*m.x288 + 0.00580589*m.x289 + 0.00361309*m.x290 + 0.00918406*m.x291 + 0.00175607*m.x292 + 0.0017579*m.x293 - 0.00440575*m.x294 + 0.000882362*m.x295 + 0.00390306*m.x296 - 0.00345893*m.x297 + 0.00348614*m.x298 + 0.0230969*m.x299 + 0.00744792*m.x300 + 0.0101415*m.x301 + 0.00190622*m.x302 + 0.00972401*m.x303 == 0) m.c209 = Constraint(expr= - m.x104 + 0.0026992*m.x204 + 0.0302565*m.x205 + 0.128438*m.x206 + 0.000554371*m.x207 + 0.00531804*m.x208 + 0.000108892*m.x209 - 0.00393381*m.x210 + 0.00224874*m.x211 - 0.00567132*m.x212 + 0.0331219*m.x213 + 0.00309274*m.x214 + 0.00219016*m.x215 + 0.00110325*m.x216 + 0.00750053*m.x217 + 0.0031054*m.x218 - 0.0011808*m.x219 + 0.0018233*m.x220 - 0.00403332*m.x221 + 0.000400161*m.x222 + 0.00326599*m.x223 + 0.00271781*m.x224 + 0.0379186*m.x225 - 0.000515796*m.x226 - 0.00228588*m.x227 - 0.00297975*m.x228 + 0.0477231*m.x229 + 0.010936*m.x230 + 0.0065182*m.x231 + 0.0358881*m.x232 + 0.00724543*m.x233 + 0.0141802*m.x234 - 0.00235266*m.x235 + 0.0360049*m.x236 + 0.00392202*m.x237 + 0.0042099*m.x238 + 0.00555015*m.x239 + 0.00521599*m.x240 - 0.00112076*m.x241 - 0.00218836*m.x242 - 0.000304719*m.x243 + 0.00236864*m.x244 - 0.0019383*m.x245 - 0.00295089*m.x246 - 0.00106603*m.x247 + 2.7433E-5*m.x248 - 0.00324286*m.x249 + 0.0057922*m.x250 + 0.0166603*m.x251 - 0.000651147*m.x252 + 0.0025737*m.x253 + 0.00277017*m.x254 - 0.000313893*m.x255 - 0.00295718*m.x256 + 0.00301212*m.x257 - 0.00536586*m.x258 + 0.00927864*m.x259 - 0.00108853*m.x260 + 0.00791765*m.x261 - 0.00783196*m.x262 + 0.0121474*m.x263 + 0.00268288*m.x264 - 0.0040862*m.x265 + 0.00434811*m.x266 + 0.00169867*m.x267 + 0.010645*m.x268 + 0.00861052*m.x269 + 0.00468559*m.x270 + 0.00738855*m.x271 - 0.00180418*m.x272 + 0.00156566*m.x273 + 0.00730297*m.x274 + 0.00553899*m.x275 - 0.00796275*m.x276 + 0.00502078*m.x277 - 0.001733*m.x278 + 0.000121446*m.x279 + 0.00524254*m.x280 - 0.000120631*m.x281 - 0.00614724*m.x282 + 0.00806025*m.x283 + 0.0109797*m.x284 + 0.00481845*m.x285 - 0.003182*m.x286 + 0.00729708*m.x287 + 0.00314668*m.x288 + 0.00093968*m.x289 + 0.0046813*m.x290 + 0.00588727*m.x291 + 0.00856972*m.x292 + 0.0014989*m.x293 - 0.0012223*m.x294 - 0.00398758*m.x295 + 0.00447174*m.x296 - 0.00894175*m.x297 - 0.0106183*m.x298 + 0.0196262*m.x299 + 0.00569151*m.x300 + 0.000408826*m.x301 + 0.0107044*m.x302 + 0.00414926*m.x303 == 0) m.c210 = Constraint(expr= - m.x105 + 0.00246784*m.x204 + 0.00195468*m.x205 + 0.000554371*m.x206 + 0.0527346*m.x207 + 0.00613524*m.x208 + 0.00304915*m.x209 + 0.00265026*m.x210 - 0.00168787*m.x211 + 3.0185E-5*m.x212 + 0.00604227*m.x213 + 0.00608141*m.x214 + 0.0122199*m.x215 + 0.00562216*m.x216 - 0.005368*m.x217 + 0.00381063*m.x218 + 0.00430191*m.x219 + 0.0103995*m.x220 + 0.00535853*m.x221 + 0.00443352*m.x222 + 0.00287646*m.x223 + 0.00194314*m.x224 - 0.00200937*m.x225 + 0.00721471*m.x226 + 0.00153181*m.x227 + 0.00223523*m.x228 - 0.00637192*m.x229 - 0.00268833*m.x230 + 0.00712607*m.x231 + 0.00579462*m.x232 + 0.00617075*m.x233 + 0.00178322*m.x234 + 0.00561978*m.x235 - 0.000789221*m.x236 + 0.000342323*m.x237 + 0.00409312*m.x238 + 0.0043798*m.x239 + 0.00830042*m.x240 + 0.0127205*m.x241 + 0.00431059*m.x242 + 0.00271535*m.x243 + 0.00301995*m.x244 + 0.00485894*m.x245 + 0.0039211*m.x246 + 0.00224879*m.x247 + 0.00711934*m.x248 + 0.000965714*m.x249 + 0.00724404*m.x250 + 0.00718655*m.x251 + 0.00872243*m.x252 + 0.00911811*m.x253 + 0.000986175*m.x254 + 0.00380874*m.x255 + 0.00525484*m.x256 + 0.00057863*m.x257 - 0.00473576*m.x258 + 0.0100543*m.x259 + 0.00543729*m.x260 + 0.00571189*m.x261 - 0.00276324*m.x262 + 0.00810983*m.x263 + 0.00436906*m.x264 + 0.00413471*m.x265 - 0.00244187*m.x266 + 0.00545183*m.x267 + 0.00495238*m.x268 + 0.00411888*m.x269 + 0.00641475*m.x270 + 0.00111178*m.x271 - 0.00121453*m.x272 + 0.00461528*m.x273 + 0.00171472*m.x274 + 0.00388579*m.x275 + 0.00967986*m.x276 + 0.0016606*m.x277 + 0.00295113*m.x278 + 0.00353955*m.x279 + 0.00142511*m.x280 + 0.00243873*m.x281 - 0.00105264*m.x282 + 0.00531498*m.x283 + 0.00188864*m.x284 + 0.00359302*m.x285 + 0.00189728*m.x286 + 0.00111561*m.x287 + 0.00562859*m.x288 + 0.00605398*m.x289 + 0.00853829*m.x290 + 0.00794939*m.x291 - 0.00108004*m.x292 + 0.00250493*m.x293 + 6.36275E-5*m.x294 + 0.00972923*m.x295 + 0.0052055*m.x296 + 0.00106842*m.x297 + 0.00268821*m.x298 - 0.00313171*m.x299 + 0.0047581*m.x300 - 0.00749006*m.x301 + 0.00065076*m.x302 + 0.0033893*m.x303 == 0) m.c211 = Constraint(expr= - m.x106 + 0.00231482*m.x204 + 0.00763018*m.x205 + 0.00531804*m.x206 + 0.00613524*m.x207 + 0.0344878*m.x208 + 0.00244207*m.x209 + 0.00307695*m.x210 + 0.000258656*m.x211 + 0.00124365*m.x212 + 0.00669557*m.x213 + 0.000908845*m.x214 + 0.00431206*m.x215 + 0.00836718*m.x216 + 0.00732185*m.x217 + 0.00637045*m.x218 + 0.00307733*m.x219 + 0.00520295*m.x220 - 0.00352601*m.x221 + 0.00445198*m.x222 + 0.00166877*m.x223 + 0.00283099*m.x224 + 0.0128329*m.x225 + 0.00506005*m.x226 + 0.00243023*m.x227 + 0.00179608*m.x228 + 0.00210744*m.x229 + 0.00564026*m.x230 + 0.00132385*m.x231 + 0.00265952*m.x232 + 0.0155615*m.x233 + 3.93351E-5*m.x234 + 0.00818121*m.x235 + 0.00576868*m.x236 + 0.00589168*m.x237 + 0.00706516*m.x238 + 0.00432744*m.x239 + 0.0048282*m.x240 + 0.00624337*m.x241 - 0.00066102*m.x242 + 0.00539504*m.x243 + 0.0051422*m.x244 + 0.0159499*m.x245 + 0.00287456*m.x246 + 0.00538495*m.x247 + 0.00440483*m.x248 - 0.000705455*m.x249 + 0.00591159*m.x250 + 0.00637504*m.x251 + 0.00572145*m.x252 + 0.00369485*m.x253 + 0.00550813*m.x254 + 0.00767889*m.x255 + 0.00218657*m.x256 + 0.00216232*m.x257 + 0.00209557*m.x258 + 0.00511289*m.x259 + 0.00375052*m.x260 - 0.000396528*m.x261 - 0.00165313*m.x262 + 0.00186935*m.x263 + 0.00284817*m.x264 + 0.00147042*m.x265 + 0.00264492*m.x266 - 0.000424681*m.x267 + 0.00721645*m.x268 + 0.00584868*m.x269 - 0.00125879*m.x270 + 0.00123949*m.x271 + 0.00134707*m.x272 + 0.00328024*m.x273 - 0.00258347*m.x274 + 0.000703909*m.x275 - 0.00197849*m.x276 + 0.00192358*m.x277 + 0.00996959*m.x278 + 0.00858445*m.x279 + 0.00237901*m.x280 + 0.00880383*m.x281 + 0.00286914*m.x282 + 0.00026152*m.x283 + 0.010098*m.x284 + 0.00162371*m.x285 + 0.00109136*m.x286 + 0.00784252*m.x287 + 0.00882019*m.x288 + 0.000598062*m.x289 + 0.0052387*m.x290 + 0.00384785*m.x291 + 0.00503042*m.x292 + 0.0024631*m.x293 + 0.00278995*m.x294 + 0.00074696*m.x295 + 0.00338877*m.x296 - 0.000458376*m.x297 + 0.00936944*m.x298 + 0.00321093*m.x299 + 0.00494576*m.x300 - 0.00489219*m.x301 + 0.00406797*m.x302 + 0.00689176*m.x303 == 0) m.c212 = Constraint(expr= - m.x107 - 0.00125222*m.x204 + 0.0135627*m.x205 + 0.000108892*m.x206 + 0.00304915*m.x207 + 0.00244207*m.x208 + 0.328857*m.x209 + 0.00193872*m.x210 + 0.00238388*m.x211 + 0.00483704*m.x212 - 0.00180415*m.x213 + 0.00505025*m.x214 + 0.00312816*m.x215 + 0.00975333*m.x216 + 0.00807353*m.x217 - 0.00043798*m.x218 + 0.0119386*m.x219 + 0.00270366*m.x220 - 0.000150751*m.x221 - 0.00500595*m.x222 + 0.00148923*m.x223 - 0.00153303*m.x224 + 0.000308528*m.x225 + 0.00379536*m.x226 + 0.00253802*m.x227 + 0.00318827*m.x228 + 0.00415587*m.x229 + 0.0068299*m.x230 + 0.00946803*m.x231 + 0.0152758*m.x232 + 0.00176378*m.x233 + 0.0034359*m.x234 + 0.00304328*m.x235 - 0.0024897*m.x236 + 0.0154113*m.x237 + 0.00423352*m.x238 + 0.00420821*m.x239 + 0.00164738*m.x240 + 0.00313153*m.x241 + 0.000192806*m.x242 + 0.00566827*m.x243 - 0.00114024*m.x244 + 0.0104584*m.x245 - 0.00156619*m.x246 + 0.00492319*m.x247 + 0.00205128*m.x248 + 0.0034346*m.x249 + 0.00340814*m.x250 + 0.00910415*m.x251 + 0.00203269*m.x252 - 0.000620515*m.x253 + 0.00733867*m.x254 - 0.00376408*m.x255 + 0.00661222*m.x256 + 0.000748379*m.x257 - 0.000634982*m.x258 + 0.00346952*m.x259 + 0.00833195*m.x260 - 0.00565329*m.x261 + 0.00331464*m.x262 + 0.00521247*m.x263 + 0.00319873*m.x264 + 0.00684361*m.x265 + 0.00146666*m.x266 - 0.00449445*m.x267 + 0.00890815*m.x268 + 0.00402867*m.x269 - 0.00123966*m.x270 + 0.00107871*m.x271 + 0.00207255*m.x272 + 0.00348354*m.x273 + 0.00923163*m.x274 + 0.000624611*m.x275 + 0.00416771*m.x276 - 0.00784802*m.x277 + 0.000769801*m.x278 + 0.00337936*m.x279 + 0.00116986*m.x280 + 0.00315331*m.x281 - 0.00601197*m.x282 - 0.00277281*m.x283 + 0.00597799*m.x284 + 0.00573361*m.x285 + 0.0187193*m.x286 + 0.00612747*m.x287 + 0.00350368*m.x288 + 0.000722427*m.x289 - 0.00222972*m.x290 + 0.00618374*m.x291 + 0.00230392*m.x292 - 8.26039E-6*m.x293 + 0.00470948*m.x294 + 0.00203412*m.x295 + 0.000810064*m.x296 - 0.00836969*m.x297 + 0.000538622*m.x298 + 0.00916125*m.x299 + 0.00409619*m.x300 + 0.0632661*m.x301 + 0.00174019*m.x302 + 0.0149843*m.x303 == 0) m.c213 = Constraint(expr= - m.x108 - 0.00392467*m.x204 + 0.005177*m.x205 - 0.00393381*m.x206 + 0.00265026*m.x207 + 0.00307695*m.x208 + 0.00193872*m.x209 + 0.0355431*m.x210 - 0.00186104*m.x211 + 0.00855968*m.x212 - 0.00115433*m.x213 + 0.00384303*m.x214 + 0.000405725*m.x215 + 0.0081813*m.x216 - 0.000678388*m.x217 + 0.00818477*m.x218 + 0.00310775*m.x219 + 0.000744621*m.x220 + 0.00597378*m.x221 - 0.00774064*m.x222 - 0.000324177*m.x223 + 0.00212898*m.x224 + 0.00300949*m.x225 - 0.000393934*m.x226 - 0.00283134*m.x227 + 0.000310634*m.x228 + 0.000987645*m.x229 + 0.00360613*m.x230 + 0.0048888*m.x231 + 0.000705294*m.x232 + 0.0033924*m.x233 - 0.00243487*m.x234 + 0.00351798*m.x235 - 0.000533129*m.x236 + 0.00286727*m.x237 - 0.002207*m.x238 + 0.00114119*m.x239 + 0.00331*m.x240 + 0.00432021*m.x241 + 0.0068693*m.x242 + 0.00261587*m.x243 + 0.000712154*m.x244 + 0.00243149*m.x245 + 0.00586835*m.x246 + 0.00190637*m.x247 + 0.00522821*m.x248 + 0.000518417*m.x249 + 0.00229506*m.x250 - 0.000868046*m.x251 + 0.00175605*m.x252 + 0.00453298*m.x253 + 0.000256242*m.x254 + 0.00201038*m.x255 + 0.00317659*m.x256 + 0.00404808*m.x257 + 0.0020328*m.x258 + 0.0100104*m.x259 + 0.00586558*m.x260 + 0.00391134*m.x261 - 0.00108095*m.x262 + 0.00196227*m.x263 - 0.00048119*m.x264 - 0.00264342*m.x265 - 0.000799614*m.x266 - 0.00211867*m.x267 + 0.00596663*m.x268 - 0.000337876*m.x269 + 0.0022652*m.x270 - 0.00117815*m.x271 - 0.00408935*m.x272 + 0.000462235*m.x273 + 0.00708304*m.x274 + 0.00304047*m.x275 + 0.0003593*m.x276 + 0.00480892*m.x277 + 0.00445062*m.x278 + 0.00319021*m.x279 + 0.000605631*m.x280 + 0.00795997*m.x281 + 0.00396196*m.x282 + 0.00197483*m.x283 + 0.00590748*m.x284 + 0.00820622*m.x285 + 0.00157202*m.x286 + 0.00465324*m.x287 + 0.00187347*m.x288 + 0.000428549*m.x289 - 0.00285777*m.x290 + 0.0153027*m.x291 + 0.00159813*m.x292 - 0.00186303*m.x293 + 0.00292004*m.x294 + 0.000158573*m.x295 + 0.00302037*m.x296 - 0.00583942*m.x297 + 0.00166923*m.x298 + 0.00208712*m.x299 + 0.00468842*m.x300 + 0.00124219*m.x301 + 0.00190019*m.x302 + 0.00317539*m.x303 == 0) m.c214 = Constraint(expr= - m.x109 - 0.0046966*m.x204 - 0.00166221*m.x205 + 0.00224874*m.x206 - 0.00168787*m.x207 + 0.000258656*m.x208 + 0.00238388*m.x209 - 0.00186104*m.x210 + 0.0741498*m.x211 + 0.00239579*m.x212 + 0.0025154*m.x213 - 0.00304658*m.x214 + 0.00127006*m.x215 + 0.00242253*m.x216 - 0.000582646*m.x217 + 0.000205383*m.x218 - 0.0027615*m.x219 + 0.000708891*m.x220 - 0.000332979*m.x221 + 0.00241559*m.x222 + 0.00233211*m.x223 - 0.00133617*m.x224 + 0.00504517*m.x225 + 0.00209809*m.x226 + 0.00376046*m.x227 - 0.00258998*m.x228 + 0.0129869*m.x229 - 0.00468059*m.x230 + 0.00960732*m.x231 - 0.0084924*m.x232 - 0.00241471*m.x233 + 0.00242201*m.x234 - 0.00033287*m.x235 + 0.00115625*m.x236 + 0.00402359*m.x237 - 0.000640147*m.x238 - 0.00221072*m.x239 + 0.00267732*m.x240 - 0.00280484*m.x241 + 0.00478207*m.x242 - 0.00021402*m.x243 + 0.00344966*m.x244 + 0.000269359*m.x245 - 0.00135088*m.x246 + 0.00131418*m.x247 - 0.000872693*m.x248 + 0.000448292*m.x249 - 0.00207556*m.x250 - 0.00135891*m.x251 - 0.00277333*m.x252 + 0.00257709*m.x253 + 0.00198123*m.x254 - 0.00692894*m.x255 + 0.00230237*m.x256 + 0.00443474*m.x257 - 0.000282204*m.x258 + 0.00426487*m.x259 - 0.000987702*m.x260 + 0.00520545*m.x261 - 0.00343631*m.x262 - 0.00282907*m.x263 + 0.00540009*m.x264 + 0.00223674*m.x265 - 0.00228832*m.x266 - 0.00507634*m.x267 + 0.000540695*m.x268 - 0.000710481*m.x269 - 9.29613E-5*m.x270 + 0.016814*m.x271 - 0.000397583*m.x272 + 0.00336798*m.x273 - 3.62062E-5*m.x274 - 0.00115006*m.x275 + 0.00764087*m.x276 - 0.00130017*m.x277 + 0.00809507*m.x278 + 0.012837*m.x279 + 0.000749837*m.x280 + 0.00274401*m.x281 + 0.000351167*m.x282 + 0.00240495*m.x283 + 0.000367094*m.x284 - 0.000642028*m.x285 - 0.0066337*m.x286 + 0.00521946*m.x287 + 0.00597375*m.x288 - 0.000142638*m.x289 - 0.000178386*m.x290 - 0.00109134*m.x291 + 0.00239336*m.x292 + 0.0002248*m.x293 + 0.00134415*m.x294 + 0.00625637*m.x295 + 0.000559204*m.x296 + 0.00368139*m.x297 + 0.00134215*m.x298 + 0.000562204*m.x299 + 0.00467534*m.x300 - 0.00175434*m.x301 + 0.000310939*m.x302 - 0.000534117*m.x303 == 0) m.c215 = Constraint(expr= - m.x110 - 0.0142117*m.x204 + 0.0123801*m.x205 - 0.00567132*m.x206 + 3.0185E-5*m.x207 + 0.00124365*m.x208 + 0.00483704*m.x209 + 0.00855968*m.x210 + 0.00239579*m.x211 + 0.303885*m.x212 - 0.00881645*m.x213 + 0.000209396*m.x214 - 0.00224118*m.x215 + 0.00100609*m.x216 + 0.00319377*m.x217 + 0.0147564*m.x218 - 0.000681104*m.x219 - 0.00225828*m.x220 + 0.00258491*m.x221 + 0.00184898*m.x222 + 0.0169417*m.x223 + 0.0031757*m.x224 - 0.00394915*m.x225 + 0.00652373*m.x226 + 0.00207177*m.x227 + 0.000966201*m.x228 - 0.000384643*m.x229 + 0.00501887*m.x230 + 0.0131889*m.x231 - 0.00750233*m.x232 - 0.000147186*m.x233 - 0.00131105*m.x234 - 0.00502474*m.x235 - 0.0031803*m.x236 + 0.00422327*m.x237 - 0.00434983*m.x238 + 0.00139653*m.x239 - 0.000845758*m.x240 + 0.00373613*m.x241 + 0.0140464*m.x242 + 0.000586315*m.x243 + 0.00323884*m.x244 - 0.00103573*m.x245 + 0.0103013*m.x246 - 0.000803836*m.x247 + 0.0174386*m.x248 + 0.00274013*m.x249 + 0.00199163*m.x250 + 0.0121972*m.x251 + 5.78285E-5*m.x252 - 0.003034*m.x253 - 0.00256942*m.x254 + 0.00344538*m.x255 - 0.00251303*m.x256 + 0.00434833*m.x257 + 0.000197585*m.x258 - 0.00378844*m.x259 + 0.00163113*m.x260 + 0.00153282*m.x261 + 0.00412394*m.x262 - 0.00179846*m.x263 + 0.00477371*m.x264 + 0.00203511*m.x265 - 0.000827761*m.x266 + 0.00659553*m.x267 - 0.00174127*m.x268 + 0.00394387*m.x269 + 0.00861848*m.x270 - 0.00595897*m.x271 - 0.0094895*m.x272 + 0.00494924*m.x273 + 0.00140893*m.x274 + 0.00133383*m.x275 - 0.00225174*m.x276 + 0.0173398*m.x277 + 0.00433366*m.x278 + 0.000552636*m.x279 + 0.0021388*m.x280 + 0.00222851*m.x281 + 0.00814529*m.x282 + 0.000337824*m.x283 - 0.00392219*m.x284 + 0.0200781*m.x285 + 0.0101854*m.x286 + 0.010518*m.x287 + 0.00605484*m.x288 + 0.000377649*m.x289 + 0.00919154*m.x290 + 0.00637465*m.x291 + 0.00244105*m.x292 + 0.00434059*m.x293 - 0.00461254*m.x294 + 0.00181809*m.x295 - 0.0038537*m.x296 + 0.0464725*m.x297 + 0.00125687*m.x298 + 0.0104496*m.x299 + 0.0289754*m.x300 - 0.000502067*m.x301 + 0.00848806*m.x302 - 0.00199306*m.x303 == 0) m.c216 = Constraint(expr= - m.x111 - 0.00150584*m.x204 + 0.00801131*m.x205 + 0.0331219*m.x206 + 0.00604227*m.x207 + 0.00669557*m.x208 - 0.00180415*m.x209 - 0.00115433*m.x210 + 0.0025154*m.x211 - 0.00881645*m.x212 + 0.106851*m.x213 + 0.00186361*m.x214 - 0.00174797*m.x215 - 0.000949809*m.x216 - 0.00294584*m.x217 - 0.000264229*m.x218 - 0.00104889*m.x219 + 0.00197181*m.x220 + 0.00967216*m.x221 - 0.00497782*m.x222 - 0.0015228*m.x223 + 0.00340534*m.x224 + 0.0459321*m.x225 + 0.00841049*m.x226 - 0.00536028*m.x227 + 0.00303875*m.x228 + 0.0222634*m.x229 + 0.00147836*m.x230 + 0.000467993*m.x231 + 0.00769452*m.x232 + 0.00544112*m.x233 - 0.00240926*m.x234 + 0.00822957*m.x235 + 0.0404735*m.x236 + 0.00290678*m.x237 + 0.00783851*m.x238 + 0.00157388*m.x239 + 0.00239796*m.x240 + 0.00048455*m.x241 - 0.00531909*m.x242 - 0.000873781*m.x243 + 0.00339704*m.x244 + 0.00996659*m.x245 - 0.000797116*m.x246 + 0.000489977*m.x247 + 0.00793697*m.x248 - 0.00236638*m.x249 + 0.00351492*m.x250 + 0.0269972*m.x251 + 0.0035179*m.x252 + 0.00199006*m.x253 + 0.00140166*m.x254 - 0.00266851*m.x255 + 6.78972E-5*m.x256 + 0.000714092*m.x257 + 0.00214786*m.x258 + 0.00560907*m.x259 - 0.000690724*m.x260 + 0.0101136*m.x261 + 0.00176469*m.x262 + 0.0157962*m.x263 + 0.00685899*m.x264 + 0.00149984*m.x265 + 0.00129678*m.x266 - 0.00152672*m.x267 + 0.0108934*m.x268 + 0.000425159*m.x269 + 0.000218677*m.x270 + 0.00258553*m.x271 + 0.000326023*m.x272 + 0.000152555*m.x273 + 0.000755605*m.x274 + 0.00527875*m.x275 - 0.00463861*m.x276 + 0.00182445*m.x277 + 0.000102258*m.x278 + 0.00269352*m.x279 + 0.00164556*m.x280 + 0.00504609*m.x281 - 0.0025043*m.x282 + 0.00627615*m.x283 + 0.00371545*m.x284 + 0.00330175*m.x285 + 0.00434643*m.x286 + 0.00899061*m.x287 + 0.00419388*m.x288 + 0.00126509*m.x289 - 5.10678E-6*m.x290 - 0.00500706*m.x291 + 0.00495567*m.x292 - 0.00234243*m.x293 - 0.00102392*m.x294 + 0.000187615*m.x295 + 0.00745742*m.x296 - 0.00228448*m.x297 - 0.000338838*m.x298 + 0.00375325*m.x299 + 0.00589763*m.x300 + 0.00111933*m.x301 + 0.000509737*m.x302 + 0.00161055*m.x303 == 0) m.c217 = Constraint(expr= - m.x112 - 0.00472481*m.x204 + 0.0131773*m.x205 + 0.00309274*m.x206 + 0.00608141*m.x207 + 0.000908845*m.x208 + 0.00505025*m.x209 + 0.00384303*m.x210 - 0.00304658*m.x211 + 0.000209396*m.x212 + 0.00186361*m.x213 + 0.0569102*m.x214 + 0.00609405*m.x215 + 0.000507867*m.x216 + 0.00384693*m.x217 + 0.00988926*m.x218 + 0.00181921*m.x219 + 0.00262843*m.x220 + 0.0148015*m.x221 - 0.00139604*m.x222 - 0.00175854*m.x223 - 6.07859E-5*m.x224 - 0.00138077*m.x225 + 0.00334125*m.x226 + 0.000987108*m.x227 + 0.00525686*m.x228 + 0.00768851*m.x229 + 0.000743528*m.x230 + 0.00323042*m.x231 + 0.00830891*m.x232 + 0.00460225*m.x233 + 0.00347085*m.x234 + 0.0125956*m.x235 - 0.00124658*m.x236 + 0.0109431*m.x237 + 0.00410401*m.x238 + 0.00255437*m.x239 + 0.00542448*m.x240 + 0.00676388*m.x241 + 0.00233527*m.x242 + 0.00504678*m.x243 + 0.00322689*m.x244 + 0.00189672*m.x245 + 0.00650083*m.x246 - 0.00223977*m.x247 - 0.00874611*m.x248 - 0.00176148*m.x249 + 0.00162467*m.x250 + 0.00683673*m.x251 + 0.000473999*m.x252 + 0.00469908*m.x253 + 0.00361612*m.x254 + 0.0154276*m.x255 + 0.000184285*m.x256 + 0.00199166*m.x257 + 0.00473067*m.x258 + 0.00558883*m.x259 + 0.0104591*m.x260 + 0.00117382*m.x261 + 0.000451696*m.x262 + 0.00029335*m.x263 + 0.00554255*m.x264 + 0.00203335*m.x265 + 0.00806469*m.x266 + 0.00317218*m.x267 + 0.00207678*m.x268 - 0.00182631*m.x269 + 0.00122714*m.x270 + 0.00268003*m.x271 + 0.0075118*m.x272 + 0.00178843*m.x273 + 0.00419246*m.x274 + 0.0134485*m.x275 + 0.000185964*m.x276 + 0.00708873*m.x277 + 0.00400977*m.x278 - 0.00213811*m.x279 + 0.000162794*m.x280 + 0.000164067*m.x281 + 0.00227186*m.x282 + 0.00094864*m.x283 - 0.00147339*m.x284 + 0.00528313*m.x285 + 0.0088821*m.x286 + 0.00267439*m.x287 + 0.00393964*m.x288 + 0.00396771*m.x289 + 0.00290804*m.x290 + 0.00291132*m.x291 + 0.00247734*m.x292 + 2.81248E-5*m.x293 + 0.000966712*m.x294 + 0.00204921*m.x295 + 0.00925901*m.x296 - 0.00307712*m.x297 - 0.00248219*m.x298 + 0.010692*m.x299 - 0.00209988*m.x300 - 0.00513244*m.x301 - 0.00106151*m.x302 + 0.00607889*m.x303 == 0) m.c218 = Constraint(expr= - m.x113 - 0.00116843*m.x204 - 0.000578789*m.x205 + 0.00219016*m.x206 + 0.0122199*m.x207 + 0.00431206*m.x208 + 0.00312816*m.x209 + 0.000405725*m.x210 + 0.00127006*m.x211 - 0.00224118*m.x212 - 0.00174797*m.x213 + 0.00609405*m.x214 + 0.0723609*m.x215 + 0.00478971*m.x216 + 0.00284727*m.x217 + 0.00397902*m.x218 - 0.00379281*m.x219 + 0.0031427*m.x220 + 0.00865827*m.x221 - 0.00360555*m.x222 + 0.00698081*m.x223 + 0.00165301*m.x224 - 0.0093405*m.x225 - 0.000831286*m.x226 - 0.00224216*m.x227 + 0.0088837*m.x228 - 0.00558582*m.x229 - 0.000431237*m.x230 + 0.00302183*m.x231 - 0.00219082*m.x232 + 0.00318353*m.x233 + 0.00523947*m.x234 + 0.00300376*m.x235 - 0.00393984*m.x236 + 0.00148726*m.x237 - 0.000225512*m.x238 + 0.00296695*m.x239 + 0.00567021*m.x240 + 0.00427603*m.x241 + 0.00843837*m.x242 + 0.00429264*m.x243 - 0.00287625*m.x244 + 0.00281472*m.x245 + 0.00128983*m.x246 + 0.0031567*m.x247 - 0.00283528*m.x248 + 0.00355332*m.x249 + 0.00303711*m.x250 + 0.00993462*m.x251 + 0.00342858*m.x252 + 0.00462163*m.x253 + 0.000325927*m.x254 + 0.00380006*m.x255 + 0.0148337*m.x256 + 0.00117377*m.x257 - 0.00687953*m.x258 + 0.00217715*m.x259 + 0.00358463*m.x260 + 0.0045967*m.x261 - 0.00148924*m.x262 + 0.00257797*m.x263 + 0.00238489*m.x264 - 0.000481693*m.x265 + 0.0009138*m.x266 - 0.00429905*m.x267 - 0.00296047*m.x268 + 0.00202854*m.x269 - 0.000579525*m.x270 + 0.00537311*m.x271 + 0.0135494*m.x272 - 0.00091213*m.x273 + 0.00552551*m.x274 + 0.00176871*m.x275 + 0.00949781*m.x276 + 0.00315281*m.x277 + 0.000656197*m.x278 + 0.00384708*m.x279 + 0.000917677*m.x280 + 0.00436823*m.x281 + 0.00309677*m.x282 - 0.00314082*m.x283 - 0.00237874*m.x284 + 0.00652441*m.x285 + 0.00159051*m.x286 + 0.00062359*m.x287 + 0.000537233*m.x288 - 9.36397E-5*m.x289 + 0.000546637*m.x290 + 0.000119304*m.x291 - 0.00155886*m.x292 - 0.00294322*m.x293 - 0.000986956*m.x294 + 0.0040052*m.x295 + 0.00261969*m.x296 - 0.00299439*m.x297 + 0.0127287*m.x298 + 0.000449299*m.x299 - 0.00213457*m.x300 - 0.0016146*m.x301 - 0.00369472*m.x302 + 0.00287968*m.x303 == 0) m.c219 = Constraint(expr= - m.x114 - 0.00080131*m.x204 - 0.00121871*m.x205 + 0.00110325*m.x206 + 0.00562216*m.x207 + 0.00836718*m.x208 + 0.00975333*m.x209 + 0.0081813*m.x210 + 0.00242253*m.x211 + 0.00100609*m.x212 - 0.000949809*m.x213 + 0.000507867*m.x214 + 0.00478971*m.x215 + 0.0576035*m.x216 + 0.00187629*m.x217 + 0.000921665*m.x218 + 0.0038003*m.x219 + 0.00467709*m.x220 + 0.00750521*m.x221 + 0.00326373*m.x222 + 0.00474518*m.x223 + 0.0023273*m.x224 + 0.00232554*m.x225 - 0.000605176*m.x226 + 0.000459999*m.x227 + 0.00354005*m.x228 + 0.000832659*m.x229 + 0.00241026*m.x230 + 0.00677493*m.x231 - 0.0043282*m.x232 + 0.00853448*m.x233 + 0.00304723*m.x234 + 0.00491152*m.x235 - 0.00788435*m.x236 - 0.00162346*m.x237 - 0.00143462*m.x238 + 0.00392967*m.x239 + 0.000510251*m.x240 + 0.00735682*m.x241 - 1.91274E-5*m.x242 + 0.00401842*m.x243 + 0.00871044*m.x244 + 0.00642735*m.x245 + 0.000216218*m.x246 + 0.00432057*m.x247 + 0.012225*m.x248 + 0.00282004*m.x249 + 0.0010868*m.x250 + 0.00141579*m.x251 + 0.00220267*m.x252 + 0.00354208*m.x253 + 0.00742831*m.x254 + 0.00170043*m.x255 + 0.00440633*m.x256 + 0.0235152*m.x257 - 0.000939116*m.x258 + 0.00368368*m.x259 + 0.00545833*m.x260 + 0.0122466*m.x261 - 0.0045062*m.x262 + 0.0102645*m.x263 + 0.00887716*m.x264 + 0.00691443*m.x265 + 0.00137818*m.x266 - 0.000777149*m.x267 + 0.00138796*m.x268 - 0.000964469*m.x269 + 0.00270163*m.x270 + 0.0102894*m.x271 - 0.000391351*m.x272 + 0.00613597*m.x273 + 0.00606486*m.x274 + 0.00844082*m.x275 + 0.00591694*m.x276 + 0.00350723*m.x277 + 0.00814361*m.x278 + 0.0112582*m.x279 - 0.001004*m.x280 + 0.0283095*m.x281 - 0.00136311*m.x282 - 0.00169506*m.x283 - 0.00256875*m.x284 + 0.0112133*m.x285 + 0.012204*m.x286 + 0.000692709*m.x287 + 0.00231345*m.x288 + 0.00276166*m.x289 + 0.00225276*m.x290 + 0.00887897*m.x291 + 0.00177462*m.x292 + 0.000872704*m.x293 + 0.0042304*m.x294 + 0.00665568*m.x295 + 0.00556431*m.x296 - 0.00171402*m.x297 + 0.00830996*m.x298 + 0.00411981*m.x299 + 0.00605045*m.x300 + 0.00185019*m.x301 + 0.000924558*m.x302 + 0.00169926*m.x303 == 0) m.c220 = Constraint(expr= - m.x115 + 0.0048818*m.x204 + 0.00571751*m.x205 + 0.00750053*m.x206 - 0.005368*m.x207 + 0.00732185*m.x208 + 0.00807353*m.x209 - 0.000678388*m.x210 - 0.000582646*m.x211 + 0.00319377*m.x212 - 0.00294584*m.x213 + 0.00384693*m.x214 + 0.00284727*m.x215 + 0.00187629*m.x216 + 0.0904371*m.x217 + 0.0125994*m.x218 + 0.00507562*m.x219 + 0.00629955*m.x220 + 0.00728095*m.x221 + 0.0135368*m.x222 - 0.00195276*m.x223 - 0.00304991*m.x224 + 0.015095*m.x225 + 0.00205086*m.x226 + 0.0105187*m.x227 + 0.0017092*m.x228 + 0.00728394*m.x229 + 0.00738888*m.x230 + 0.00373072*m.x231 - 0.00200641*m.x232 + 0.00380207*m.x233 + 0.00154953*m.x234 + 7.83409E-5*m.x235 + 0.00350834*m.x236 + 0.00377252*m.x237 + 0.0162195*m.x238 + 0.00354522*m.x239 + 0.0091783*m.x240 + 0.00426163*m.x241 + 0.00463458*m.x242 + 0.00908995*m.x243 + 0.0117519*m.x244 + 0.00671356*m.x245 + 0.00521873*m.x246 - 0.000963126*m.x247 + 0.0115852*m.x248 + 0.00378529*m.x249 + 0.00266115*m.x250 + 0.0140797*m.x251 + 0.00578554*m.x252 + 0.00521587*m.x253 + 0.00590839*m.x254 + 0.00535654*m.x255 - 0.00175238*m.x256 + 0.0118357*m.x257 - 0.00574135*m.x258 + 0.00238201*m.x259 + 0.00580515*m.x260 + 0.00233877*m.x261 + 0.000706233*m.x262 - 0.0039908*m.x263 + 0.00583571*m.x264 + 0.00378434*m.x265 + 0.00219548*m.x266 - 0.00478566*m.x267 + 0.0059852*m.x268 + 0.00197755*m.x269 + 0.000399331*m.x270 + 0.00684901*m.x271 + 0.00252489*m.x272 + 0.00629022*m.x273 + 0.00202437*m.x274 + 0.00360247*m.x275 + 0.00776175*m.x276 + 0.00312055*m.x277 + 0.00869015*m.x278 + 0.0036686*m.x279 + 0.00118524*m.x280 + 0.0108841*m.x281 - 0.00602015*m.x282 + 0.00971903*m.x283 + 0.00813772*m.x284 - 0.00255056*m.x285 + 0.0141748*m.x286 + 0.00697572*m.x287 - 0.000459789*m.x288 + 0.00681506*m.x289 + 0.000426248*m.x290 + 0.00883306*m.x291 - 0.00113*m.x292 + 0.00170265*m.x293 + 0.00495909*m.x294 + 0.00711981*m.x295 + 0.00524342*m.x296 - 0.00676607*m.x297 + 0.0151857*m.x298 + 0.0121187*m.x299 + 0.00858*m.x300 + 0.00987312*m.x301 + 0.000447536*m.x302 + 0.00177245*m.x303 == 0) m.c221 = Constraint(expr= - m.x116 - 0.00479483*m.x204 + 0.00647641*m.x205 + 0.0031054*m.x206 + 0.00381063*m.x207 + 0.00637045*m.x208 - 0.00043798*m.x209 + 0.00818477*m.x210 + 0.000205383*m.x211 + 0.0147564*m.x212 - 0.000264229*m.x213 + 0.00988926*m.x214 + 0.00397902*m.x215 + 0.000921665*m.x216 + 0.0125994*m.x217 + 0.0562668*m.x218 + 0.00557422*m.x219 + 0.00916029*m.x220 + 0.000304997*m.x221 + 2.39703E-5*m.x222 - 0.000487986*m.x223 + 0.00306879*m.x224 + 0.00656162*m.x225 + 4.629E-5*m.x226 - 0.00368649*m.x227 + 0.00400982*m.x228 + 0.00869348*m.x229 + 0.00253402*m.x230 - 0.000309521*m.x231 + 0.00380195*m.x232 + 0.00965526*m.x233 + 0.000998466*m.x234 + 0.00537877*m.x235 + 0.00531506*m.x236 - 0.000807326*m.x237 + 0.00322637*m.x238 + 0.00624206*m.x239 + 0.01146*m.x240 + 0.00677387*m.x241 + 0.00202426*m.x242 + 0.0050502*m.x243 + 0.00960388*m.x244 + 0.00401854*m.x245 + 0.00364998*m.x246 + 0.00338155*m.x247 + 0.0027102*m.x248 + 0.00285381*m.x249 + 0.00231984*m.x250 + 0.00363014*m.x251 + 0.00842352*m.x252 + 0.00670307*m.x253 + 0.00139386*m.x254 - 0.00427335*m.x255 + 0.00257792*m.x256 + 0.00556967*m.x257 + 0.00318181*m.x258 + 0.00773217*m.x259 + 0.00457572*m.x260 + 0.00300847*m.x261 - 0.000803621*m.x262 - 0.00429132*m.x263 + 0.00714866*m.x264 + 0.0120675*m.x265 + 0.00202404*m.x266 - 0.00587325*m.x267 + 0.00694813*m.x268 + 0.00377359*m.x269 + 0.00180051*m.x270 + 0.00937097*m.x271 + 0.00359699*m.x272 + 0.0014386*m.x273 + 0.00529025*m.x274 + 0.00208614*m.x275 + 0.00421559*m.x276 + 0.00532908*m.x277 + 0.00298937*m.x278 + 0.00264656*m.x279 + 0.00679774*m.x280 + 0.00864262*m.x281 + 0.000288227*m.x282 + 0.00677297*m.x283 + 0.000330943*m.x284 + 0.00658359*m.x285 + 0.0029954*m.x286 + 0.00409136*m.x287 + 0.00355076*m.x288 + 0.00265398*m.x289 + 0.00263496*m.x290 + 0.00340833*m.x291 + 0.00444299*m.x292 + 0.0067512*m.x293 + 0.00225846*m.x294 + 0.00175025*m.x295 + 0.00823308*m.x296 - 0.00407677*m.x297 + 0.00929486*m.x298 + 0.00454276*m.x299 - 0.00165032*m.x300 - 0.00211125*m.x301 + 0.0019068*m.x302 + 0.00125766*m.x303 == 0) m.c222 = Constraint(expr= - m.x117 + 0.00726609*m.x204 + 0.006769*m.x205 - 0.0011808*m.x206 + 0.00430191*m.x207 + 0.00307733*m.x208 + 0.0119386*m.x209 + 0.00310775*m.x210 - 0.0027615*m.x211 - 0.000681104*m.x212 - 0.00104889*m.x213 + 0.00181921*m.x214 - 0.00379281*m.x215 + 0.0038003*m.x216 + 0.00507562*m.x217 + 0.00557422*m.x218 + 0.0277262*m.x219 + 0.00453811*m.x220 + 0.00180081*m.x221 + 0.000912203*m.x222 - 0.000232388*m.x223 - 0.000354441*m.x224 + 0.00326988*m.x225 + 0.00418825*m.x226 + 0.00230284*m.x227 + 0.00127379*m.x228 + 0.000736619*m.x229 + 0.00149022*m.x230 + 0.00242247*m.x231 + 0.00604515*m.x232 + 0.00652264*m.x233 - 0.00341015*m.x234 + 0.00247212*m.x235 + 0.00108611*m.x236 + 0.00269604*m.x237 + 0.00154541*m.x238 + 0.000676983*m.x239 + 0.00245648*m.x240 + 0.0067893*m.x241 + 0.00379181*m.x242 + 0.00278355*m.x243 + 0.00683784*m.x244 + 0.0019748*m.x245 + 0.00480092*m.x246 + 0.00282204*m.x247 + 0.00606924*m.x248 + 0.0066067*m.x249 + 0.00683528*m.x250 + 0.000969236*m.x251 + 0.00589067*m.x252 + 0.0039247*m.x253 + 0.0022817*m.x254 - 0.00171385*m.x255 + 0.00197531*m.x256 + 0.00432474*m.x257 + 0.000289832*m.x258 + 0.000627748*m.x259 + 0.00188754*m.x260 + 0.0083923*m.x261 - 8.3506E-5*m.x262 - 0.00071125*m.x263 + 0.00495966*m.x264 + 0.00900098*m.x265 + 0.0071845*m.x266 + 0.000145803*m.x267 + 0.00157234*m.x268 + 0.00208948*m.x269 + 0.0030484*m.x270 + 0.00227052*m.x271 + 0.00420122*m.x272 + 0.00590657*m.x273 + 0.00514824*m.x274 + 0.00360809*m.x275 + 0.000388988*m.x276 + 0.00566117*m.x277 + 0.00613568*m.x278 + 0.00230286*m.x279 + 0.00270915*m.x280 + 0.00649316*m.x281 + 0.0020842*m.x282 + 0.00256288*m.x283 + 0.00240084*m.x284 + 0.00108106*m.x285 + 0.00593105*m.x286 + 0.00633478*m.x287 + 0.00470412*m.x288 + 0.0036723*m.x289 + 0.00419729*m.x290 + 0.00371118*m.x291 + 0.000251759*m.x292 + 0.00531186*m.x293 + 0.00468134*m.x294 + 0.00142927*m.x295 + 0.00450063*m.x296 - 0.00308935*m.x297 + 0.000400969*m.x298 + 0.0016857*m.x299 - 0.000503363*m.x300 + 0.000255561*m.x301 + 0.00297631*m.x302 + 0.000851058*m.x303 == 0) m.c223 = Constraint(expr= - m.x118 + 0.00902802*m.x204 + 0.00782192*m.x205 + 0.0018233*m.x206 + 0.0103995*m.x207 + 0.00520295*m.x208 + 0.00270366*m.x209 + 0.000744621*m.x210 + 0.000708891*m.x211 - 0.00225828*m.x212 + 0.00197181*m.x213 + 0.00262843*m.x214 + 0.0031427*m.x215 + 0.00467709*m.x216 + 0.00629955*m.x217 + 0.00916029*m.x218 + 0.00453811*m.x219 + 0.0549413*m.x220 + 0.00396892*m.x221 + 0.0061511*m.x222 + 0.0065943*m.x223 + 0.00127012*m.x224 + 0.00424617*m.x225 + 0.00582089*m.x226 + 0.00298198*m.x227 + 0.00383534*m.x228 + 0.00438562*m.x229 - 0.00389494*m.x230 - 0.00288026*m.x231 + 0.00241344*m.x232 + 0.00199923*m.x233 - 0.0069523*m.x234 + 0.00218093*m.x235 + 0.00785569*m.x236 + 0.00680418*m.x237 + 0.00351389*m.x238 + 0.00697412*m.x239 + 0.00770413*m.x240 + 0.00302394*m.x241 + 0.00226701*m.x242 - 0.00141664*m.x243 + 0.0117404*m.x244 + 0.00452128*m.x245 + 0.00358318*m.x246 + 0.00160858*m.x247 + 0.00917394*m.x248 + 0.0035766*m.x249 + 0.00328833*m.x250 + 0.00340781*m.x251 + 0.00725086*m.x252 + 0.00486144*m.x253 + 0.0037492*m.x254 + 0.00232852*m.x255 + 0.00597841*m.x256 + 0.00987396*m.x257 + 0.00154537*m.x258 + 0.000407484*m.x259 + 0.00757036*m.x260 + 0.00514005*m.x261 - 0.00145659*m.x262 - 0.00148186*m.x263 + 0.00497362*m.x264 + 0.00401966*m.x265 + 0.00262695*m.x266 - 0.00141986*m.x267 + 0.00376038*m.x268 + 0.00356601*m.x269 + 0.00737614*m.x270 + 0.00551084*m.x271 + 0.0024023*m.x272 + 0.00990879*m.x273 + 0.00256553*m.x274 + 0.00357857*m.x275 + 0.000899423*m.x276 + 0.00477605*m.x277 + 0.00603965*m.x278 - 0.00288781*m.x279 - 0.000219471*m.x280 + 0.00864189*m.x281 + 0.00732999*m.x282 + 0.00605617*m.x283 - 0.000467489*m.x284 + 0.00375754*m.x285 + 0.00515253*m.x286 + 0.00209517*m.x287 + 0.00294012*m.x288 + 0.00822675*m.x289 + 0.00373459*m.x290 + 0.0030272*m.x291 + 0.00252714*m.x292 + 0.00343189*m.x293 + 0.00558036*m.x294 + 0.00282494*m.x295 + 0.00822193*m.x296 - 0.0026527*m.x297 + 0.00739356*m.x298 + 0.00353478*m.x299 + 0.00736597*m.x300 - 0.00264635*m.x301 + 0.00202109*m.x302 + 3.15874E-5*m.x303 == 0) m.c224 = Constraint(expr= - m.x119 + 0.0114247*m.x204 + 0.00707125*m.x205 - 0.00403332*m.x206 + 0.00535853*m.x207 - 0.00352601*m.x208 - 0.000150751*m.x209 + 0.00597378*m.x210 - 0.000332979*m.x211 + 0.00258491*m.x212 + 0.00967216*m.x213 + 0.0148015*m.x214 + 0.00865827*m.x215 + 0.00750521*m.x216 + 0.00728095*m.x217 + 0.000304997*m.x218 + 0.00180081*m.x219 + 0.00396892*m.x220 + 0.133255*m.x221 - 0.00144092*m.x222 + 0.00535246*m.x223 - 0.0025518*m.x224 + 0.000945245*m.x225 + 0.00604507*m.x226 - 7.69773E-5*m.x227 + 0.0123754*m.x228 - 0.00512292*m.x229 + 0.0017955*m.x230 - 0.00492288*m.x231 + 0.00107204*m.x232 - 0.00229718*m.x233 + 6.89241E-5*m.x234 + 0.00358549*m.x235 - 0.00049534*m.x236 + 0.00484482*m.x237 + 0.00543851*m.x238 - 0.00363013*m.x239 + 0.00976994*m.x240 + 0.011369*m.x241 - 0.00581329*m.x242 + 0.00404015*m.x243 + 0.00827466*m.x244 + 0.0016263*m.x245 - 0.00553215*m.x246 + 0.00219745*m.x247 + 0.0156491*m.x248 + 0.00559342*m.x249 + 0.000136349*m.x250 + 0.0130438*m.x251 + 0.00351709*m.x252 + 0.00107063*m.x253 - 0.00237286*m.x254 + 0.0053206*m.x255 - 0.000402279*m.x256 + 0.00364206*m.x257 - 0.00408056*m.x258 + 0.0110762*m.x259 + 0.00162771*m.x260 + 0.000383935*m.x261 + 0.00454443*m.x262 - 0.00276585*m.x263 - 0.00697647*m.x264 - 0.00153885*m.x265 + 0.00688652*m.x266 - 0.00817883*m.x267 - 0.000294619*m.x268 - 0.000858525*m.x269 + 0.00730014*m.x270 - 0.000185895*m.x271 + 0.00897574*m.x272 + 0.0166501*m.x273 + 0.0413935*m.x274 + 0.00519486*m.x275 - 0.00390506*m.x276 + 0.00335963*m.x277 - 0.000907451*m.x278 + 0.0158614*m.x279 + 0.000758788*m.x280 + 0.00609675*m.x281 - 0.00295186*m.x282 + 0.00938947*m.x283 - 0.00281231*m.x284 + 0.00406283*m.x285 + 0.000356947*m.x286 - 0.00704698*m.x287 + 0.00116945*m.x288 + 0.00506331*m.x289 + 0.00116521*m.x290 + 0.00400767*m.x291 - 0.00210903*m.x292 - 0.00100077*m.x293 - 0.00232507*m.x294 + 0.0032323*m.x295 + 0.00578248*m.x296 + 0.0134996*m.x297 + 9.34767E-5*m.x298 + 0.0123006*m.x299 + 0.000507185*m.x300 - 0.00357673*m.x301 + 0.000218257*m.x302 + 0.00591064*m.x303 == 0) m.c225 = Constraint(expr= - m.x120 - 0.00483357*m.x204 + 0.0133473*m.x205 + 0.000400161*m.x206 + 0.00443352*m.x207 + 0.00445198*m.x208 - 0.00500595*m.x209 - 0.00774064*m.x210 + 0.00241559*m.x211 + 0.00184898*m.x212 - 0.00497782*m.x213 - 0.00139604*m.x214 - 0.00360555*m.x215 + 0.00326373*m.x216 + 0.0135368*m.x217 + 2.39703E-5*m.x218 + 0.000912203*m.x219 + 0.0061511*m.x220 - 0.00144092*m.x221 + 0.383529*m.x222 - 0.00173305*m.x223 + 0.00142618*m.x224 + 0.00348738*m.x225 - 0.00147046*m.x226 + 0.0226173*m.x227 + 0.0121254*m.x228 - 0.00558535*m.x229 + 0.00376971*m.x230 + 0.00496685*m.x231 + 0.00441973*m.x232 + 0.0069161*m.x233 - 0.00118855*m.x234 + 0.00842854*m.x235 - 0.00512765*m.x236 + 0.000931212*m.x237 - 0.00452187*m.x238 + 0.00223296*m.x239 + 0.000265224*m.x240 + 0.00539435*m.x241 + 0.00247662*m.x242 + 0.00595035*m.x243 + 0.00389459*m.x244 + 0.00755471*m.x245 - 0.00116895*m.x246 + 0.00510849*m.x247 + 0.0187115*m.x248 + 0.000813106*m.x249 + 0.0030329*m.x250 + 0.0177681*m.x251 + 0.0056051*m.x252 - 0.0012575*m.x253 + 0.000154419*m.x254 - 0.00245765*m.x255 - 0.00827052*m.x256 + 0.00821977*m.x257 + 0.00502581*m.x258 + 0.0006738*m.x259 + 0.00519536*m.x260 - 0.00068674*m.x261 - 0.00422415*m.x262 - 0.000614559*m.x263 - 0.00228625*m.x264 - 0.00518938*m.x265 - 0.0102024*m.x266 - 0.00485647*m.x267 + 0.0127494*m.x268 + 0.00827695*m.x269 - 0.000575534*m.x270 + 0.00350023*m.x271 - 0.00265872*m.x272 + 0.00164814*m.x273 - 0.00157821*m.x274 + 0.0186797*m.x275 + 0.00255652*m.x276 - 0.00224843*m.x277 + 0.00495422*m.x278 + 0.00648139*m.x279 + 0.00210436*m.x280 - 0.000701372*m.x281 - 0.00282066*m.x282 - 0.0064102*m.x283 + 0.00786204*m.x284 - 0.00449328*m.x285 - 0.00342739*m.x286 + 0.00290604*m.x287 + 0.00297731*m.x288 + 0.00329549*m.x289 + 0.000545613*m.x290 + 0.0142805*m.x291 + 0.00236164*m.x292 - 0.0011576*m.x293 - 0.000911744*m.x294 + 0.00290814*m.x295 - 0.00154701*m.x296 + 0.000899911*m.x297 + 0.0024395*m.x298 + 0.00327313*m.x299 + 0.00413577*m.x300 - 0.00665285*m.x301 + 0.000253484*m.x302 - 0.00179775*m.x303 == 0) m.c226 = Constraint(expr= - m.x121 + 9.94895E-5*m.x204 + 0.013462*m.x205 + 0.00326599*m.x206 + 0.00287646*m.x207 + 0.00166877*m.x208 + 0.00148923*m.x209 - 0.000324177*m.x210 + 0.00233211*m.x211 + 0.0169417*m.x212 - 0.0015228*m.x213 - 0.00175854*m.x214 + 0.00698081*m.x215 + 0.00474518*m.x216 - 0.00195276*m.x217 - 0.000487986*m.x218 - 0.000232388*m.x219 + 0.0065943*m.x220 + 0.00535246*m.x221 - 0.00173305*m.x222 + 0.130534*m.x223 + 0.00596734*m.x224 + 0.00478458*m.x225 + 0.00310698*m.x226 + 0.00276388*m.x227 - 0.000128603*m.x228 + 0.00342157*m.x229 + 0.00025621*m.x230 + 0.00366426*m.x231 + 0.00765642*m.x232 + 0.00561328*m.x233 - 0.00310918*m.x234 + 0.000436137*m.x235 + 0.00626525*m.x236 + 0.00296798*m.x237 - 0.0019476*m.x238 + 0.00329745*m.x239 - 0.00473803*m.x240 + 0.00102553*m.x241 + 0.0109513*m.x242 + 0.00258678*m.x243 + 0.00290544*m.x244 + 0.00906206*m.x245 - 0.00365224*m.x246 + 0.00129769*m.x247 + 0.0109855*m.x248 - 2.44696E-5*m.x249 - 0.00162389*m.x250 + 0.00351454*m.x251 - 0.00101164*m.x252 + 0.00584599*m.x253 + 0.00280841*m.x254 + 0.0134036*m.x255 - 0.00167752*m.x256 - 0.00494624*m.x257 + 0.00359045*m.x258 - 0.00517133*m.x259 + 0.00599997*m.x260 + 0.000340114*m.x261 - 0.00454905*m.x262 + 0.00626921*m.x263 + 0.00325028*m.x264 + 0.00638179*m.x265 + 0.00539482*m.x266 - 0.0049754*m.x267 - 0.00136747*m.x268 + 0.00126881*m.x269 + 0.00353355*m.x270 - 0.00138502*m.x271 - 0.00188528*m.x272 + 0.00323891*m.x273 + 0.00954413*m.x274 + 0.00474038*m.x275 + 0.00149818*m.x276 + 0.00924254*m.x277 + 0.00616055*m.x278 + 0.000177828*m.x279 - 0.000528732*m.x280 - 0.00297681*m.x281 - 0.0030116*m.x282 - 0.00201799*m.x283 - 0.00259834*m.x284 + 2.88534E-5*m.x285 + 0.00535464*m.x286 + 0.00270192*m.x287 + 0.000175467*m.x288 + 0.00337965*m.x289 + 0.00140219*m.x290 + 0.00504492*m.x291 - 0.00136526*m.x292 - 0.00162571*m.x293 - 7.79346E-6*m.x294 + 0.00628695*m.x295 - 0.000897559*m.x296 + 0.00605286*m.x297 - 0.000995666*m.x298 - 0.000170077*m.x299 + 0.000927962*m.x300 + 0.00910382*m.x301 + 0.00213483*m.x302 + 0.00406122*m.x303 == 0) m.c227 = Constraint(expr= - m.x122 + 0.00286308*m.x204 + 0.00112892*m.x205 + 0.00271781*m.x206 + 0.00194314*m.x207 + 0.00283099*m.x208 - 0.00153303*m.x209 + 0.00212898*m.x210 - 0.00133617*m.x211 + 0.0031757*m.x212 + 0.00340534*m.x213 - 6.07859E-5*m.x214 + 0.00165301*m.x215 + 0.0023273*m.x216 - 0.00304991*m.x217 + 0.00306879*m.x218 - 0.000354441*m.x219 + 0.00127012*m.x220 - 0.0025518*m.x221 + 0.00142618*m.x222 + 0.00596734*m.x223 + 0.0438098*m.x224 - 0.000231364*m.x225 + 0.00359071*m.x226 - 0.000973423*m.x227 + 0.00322256*m.x228 + 0.00179649*m.x229 - 0.00135029*m.x230 - 0.000387863*m.x231 - 0.000232243*m.x232 - 0.000214951*m.x233 - 0.000960776*m.x234 + 0.00341529*m.x235 + 0.00200929*m.x236 - 0.000773953*m.x237 + 0.00603748*m.x238 + 0.00596236*m.x239 - 0.00058046*m.x240 + 0.00527967*m.x241 + 0.00112617*m.x242 + 0.00444472*m.x243 - 0.00275351*m.x244 - 0.000966969*m.x245 - 0.00122748*m.x246 - 0.000508322*m.x247 + 0.000118632*m.x248 + 0.00252467*m.x249 + 0.00317859*m.x250 - 0.00620603*m.x251 + 4.22193E-5*m.x252 + 0.000472764*m.x253 + 0.00178849*m.x254 + 0.000750734*m.x255 + 0.00537508*m.x256 + 0.00171337*m.x257 - 0.000500867*m.x258 + 0.000990598*m.x259 + 0.00340317*m.x260 + 0.00300201*m.x261 + 0.00379494*m.x262 + 0.00286059*m.x263 + 0.000619718*m.x264 + 0.000555843*m.x265 + 0.0030044*m.x266 - 0.000640874*m.x267 + 0.0028325*m.x268 + 0.002376*m.x269 + 0.00468858*m.x270 - 0.000363617*m.x271 + 0.00165607*m.x272 - 0.00574416*m.x273 + 0.00258154*m.x274 + 0.00381723*m.x275 - 0.000417211*m.x276 - 0.0013492*m.x277 - 0.00366376*m.x278 + 0.00392505*m.x279 - 0.0011348*m.x280 + 0.00121554*m.x281 + 0.00603936*m.x282 - 0.000855626*m.x283 - 9.51042E-5*m.x284 + 0.00328428*m.x285 + 0.000831883*m.x286 - 0.00351138*m.x287 + 0.000327824*m.x288 + 0.00252261*m.x289 - 0.000723307*m.x290 - 0.00287027*m.x291 + 0.00383752*m.x292 + 0.00183226*m.x293 - 0.000513898*m.x294 + 0.00248209*m.x295 + 0.00536292*m.x296 - 0.00508668*m.x297 + 0.00836202*m.x298 + 0.00215742*m.x299 + 0.00273144*m.x300 - 0.00693562*m.x301 + 0.00172953*m.x302 - 0.00148411*m.x303 == 0) m.c228 = Constraint(expr= - m.x123 - 3.33076E-5*m.x204 + 0.0172224*m.x205 + 0.0379186*m.x206 - 0.00200937*m.x207 + 0.0128329*m.x208 + 0.000308528*m.x209 + 0.00300949*m.x210 + 0.00504517*m.x211 - 0.00394915*m.x212 + 0.0459321*m.x213 - 0.00138077*m.x214 - 0.0093405*m.x215 + 0.00232554*m.x216 + 0.015095*m.x217 + 0.00656162*m.x218 + 0.00326988*m.x219 + 0.00424617*m.x220 + 0.000945245*m.x221 + 0.00348738*m.x222 + 0.00478458*m.x223 - 0.000231364*m.x224 + 0.108449*m.x225 - 0.00075299*m.x226 + 0.000480919*m.x227 - 0.000894157*m.x228 + 0.0338703*m.x229 + 0.00593049*m.x230 + 0.0033642*m.x231 + 0.0107294*m.x232 + 0.0102388*m.x233 - 0.000119649*m.x234 + 0.00421343*m.x235 + 0.0390568*m.x236 + 0.00269243*m.x237 + 0.00303055*m.x238 + 0.00184466*m.x239 + 0.00552881*m.x240 + 0.00221438*m.x241 - 0.00559594*m.x242 + 0.0047004*m.x243 + 0.0138343*m.x244 + 0.0105566*m.x245 - 0.00509823*m.x246 - 0.00028965*m.x247 + 0.0223632*m.x248 + 0.00169098*m.x249 + 0.00143324*m.x250 + 0.0060925*m.x251 - 0.00143233*m.x252 + 0.00043714*m.x253 - 0.00162284*m.x254 + 0.000785002*m.x255 + 0.000881467*m.x256 + 0.00197703*m.x257 - 0.00185612*m.x258 + 0.00538296*m.x259 + 0.00350559*m.x260 + 0.00104134*m.x261 - 0.00208082*m.x262 + 0.00622953*m.x263 + 0.000613874*m.x264 + 0.0106786*m.x265 + 0.00554857*m.x266 - 0.00814519*m.x267 + 0.0120784*m.x268 + 0.00309714*m.x269 - 0.000808721*m.x270 + 0.00442729*m.x271 + 0.00165204*m.x272 + 0.0142159*m.x273 - 0.00279132*m.x274 + 0.000424545*m.x275 - 0.00529683*m.x276 - 0.000691165*m.x277 + 0.0035661*m.x278 + 0.00982752*m.x279 + 0.00395315*m.x280 + 0.00440691*m.x281 - 0.000568168*m.x282 + 0.00655708*m.x283 + 0.0132513*m.x284 + 0.00364648*m.x285 + 0.0025368*m.x286 + 0.003167*m.x287 + 0.000670063*m.x288 + 0.00223027*m.x289 - 0.0003553*m.x290 + 0.00805896*m.x291 + 0.00447158*m.x292 + 0.000707919*m.x293 - 0.000179214*m.x294 - 0.00343349*m.x295 - 0.00319077*m.x296 - 0.00467229*m.x297 - 0.00299231*m.x298 + 0.0141819*m.x299 + 0.0104414*m.x300 + 0.00771774*m.x301 + 0.00187759*m.x302 + 0.00633113*m.x303 == 0) m.c229 = Constraint(expr= - m.x124 + 0.00353482*m.x204 + 0.000134992*m.x205 - 0.000515796*m.x206 + 0.00721471*m.x207 + 0.00506005*m.x208 + 0.00379536*m.x209 - 0.000393934*m.x210 + 0.00209809*m.x211 + 0.00652373*m.x212 + 0.00841049*m.x213 + 0.00334125*m.x214 - 0.000831286*m.x215 - 0.000605176*m.x216 + 0.00205086*m.x217 + 4.629E-5*m.x218 + 0.00418825*m.x219 + 0.00582089*m.x220 + 0.00604507*m.x221 - 0.00147046*m.x222 + 0.00310698*m.x223 + 0.00359071*m.x224 - 0.00075299*m.x225 + 0.0439109*m.x226 + 0.00572233*m.x227 + 0.006258*m.x228 - 0.000838175*m.x229 + 0.00321015*m.x230 - 0.000280882*m.x231 + 0.0022121*m.x232 + 0.00230846*m.x233 + 0.0027198*m.x234 + 0.00764299*m.x235 + 0.00141463*m.x236 + 0.0104736*m.x237 + 0.00498259*m.x238 + 0.00286973*m.x239 + 0.00101702*m.x240 + 0.00580911*m.x241 + 0.00441704*m.x242 + 0.00542603*m.x243 + 0.00190962*m.x244 + 0.0100735*m.x245 + 0.00630679*m.x246 + 0.00288469*m.x247 - 0.000683767*m.x248 + 0.00438943*m.x249 + 0.00306698*m.x250 + 0.0140371*m.x251 + 0.00404018*m.x252 + 0.00262736*m.x253 + 0.00352108*m.x254 + 0.00118551*m.x255 + 0.000446955*m.x256 + 0.000454264*m.x257 + 0.00404046*m.x258 + 0.00192016*m.x259 + 0.00725634*m.x260 + 0.0130293*m.x261 + 0.00131963*m.x262 + 0.00472747*m.x263 + 0.00308159*m.x264 + 0.0042759*m.x265 + 0.00295181*m.x266 - 0.000678406*m.x267 + 0.00506594*m.x268 + 0.00413143*m.x269 + 0.00263189*m.x270 + 0.0018705*m.x271 + 0.0019702*m.x272 + 0.000738364*m.x273 - 0.00145188*m.x274 + 0.00338012*m.x275 + 0.00137974*m.x276 + 0.00275438*m.x277 + 0.0056652*m.x278 + 0.00472609*m.x279 + 0.00250314*m.x280 + 0.00155203*m.x281 + 0.00168508*m.x282 + 0.00717688*m.x283 + 0.00442955*m.x284 + 0.000629589*m.x285 - 0.00381097*m.x286 + 0.00553188*m.x287 + 0.00850491*m.x288 + 0.0052604*m.x289 + 0.00630907*m.x290 + 0.00122268*m.x291 + 0.00666929*m.x292 + 0.00744101*m.x293 + 0.000456284*m.x294 + 0.00234935*m.x295 + 0.00264885*m.x296 + 0.000868196*m.x297 + 0.00313515*m.x298 - 0.000643318*m.x299 + 0.00210871*m.x300 + 0.0011722*m.x301 + 0.00301842*m.x302 + 0.00345188*m.x303 == 0) m.c230 = Constraint(expr= - m.x125 - 0.00220136*m.x204 - 0.000119948*m.x205 - 0.00228588*m.x206 + 0.00153181*m.x207 + 0.00243023*m.x208 + 0.00253802*m.x209 - 0.00283134*m.x210 + 0.00376046*m.x211 + 0.00207177*m.x212 - 0.00536028*m.x213 + 0.000987108*m.x214 - 0.00224216*m.x215 + 0.000459999*m.x216 + 0.0105187*m.x217 - 0.00368649*m.x218 + 0.00230284*m.x219 + 0.00298198*m.x220 - 7.69773E-5*m.x221 + 0.0226173*m.x222 + 0.00276388*m.x223 - 0.000973423*m.x224 + 0.000480919*m.x225 + 0.00572233*m.x226 + 0.0535032*m.x227 + 0.00753458*m.x228 - 0.000689838*m.x229 - 0.00122008*m.x230 + 0.00305472*m.x231 - 0.000106602*m.x232 + 0.00369153*m.x233 + 0.000581923*m.x234 + 0.000856409*m.x235 + 0.000347455*m.x236 + 0.00321278*m.x237 + 0.00486463*m.x238 + 0.00213079*m.x239 + 0.00335949*m.x240 + 0.00328455*m.x241 + 0.012679*m.x242 + 0.0031031*m.x243 + 0.00313438*m.x244 + 0.00142819*m.x245 + 0.00271139*m.x246 + 0.00117205*m.x247 - 0.00385233*m.x248 + 0.00138166*m.x249 + 0.001371*m.x250 + 0.00194706*m.x251 + 0.000567011*m.x252 + 0.0025858*m.x253 + 0.00360694*m.x254 + 0.00465088*m.x255 + 0.00215308*m.x256 + 0.000889199*m.x257 + 0.00376111*m.x258 + 0.00798442*m.x259 + 0.00414154*m.x260 + 0.00118993*m.x261 - 0.00274497*m.x262 - 0.000595349*m.x263 + 0.00752408*m.x264 + 0.00378686*m.x265 + 1.24483E-5*m.x266 - 0.000694644*m.x267 + 0.000738861*m.x268 + 0.0016632*m.x269 + 0.00093894*m.x270 + 0.00032798*m.x271 + 0.000214023*m.x272 - 0.000455981*m.x273 + 0.00209608*m.x274 - 0.00193539*m.x275 + 0.00122937*m.x276 + 0.00385412*m.x277 + 0.00757348*m.x278 + 0.00328889*m.x279 + 0.00201276*m.x280 - 0.00176184*m.x281 - 0.000125577*m.x282 + 0.000482661*m.x283 + 0.00549587*m.x284 - 0.000664034*m.x285 - 0.00216225*m.x286 + 0.000631923*m.x287 + 9.34236E-5*m.x288 + 0.00532323*m.x289 + 0.00760376*m.x290 + 0.00424627*m.x291 - 0.000984769*m.x292 - 0.000472034*m.x293 + 0.0032716*m.x294 + 0.00763876*m.x295 + 0.00375527*m.x296 + 0.00235696*m.x297 - 0.00404778*m.x298 - 8.08719E-5*m.x299 + 0.00955537*m.x300 - 0.00665009*m.x301 + 0.00353927*m.x302 + 0.00543525*m.x303 == 0) m.c231 = Constraint(expr= - m.x126 + 0.00200825*m.x204 + 0.000402454*m.x205 - 0.00297975*m.x206 + 0.00223523*m.x207 + 0.00179608*m.x208 + 0.00318827*m.x209 + 0.000310634*m.x210 - 0.00258998*m.x211 + 0.000966201*m.x212 + 0.00303875*m.x213 + 0.00525686*m.x214 + 0.0088837*m.x215 + 0.00354005*m.x216 + 0.0017092*m.x217 + 0.00400982*m.x218 + 0.00127379*m.x219 + 0.00383534*m.x220 + 0.0123754*m.x221 + 0.0121254*m.x222 - 0.000128603*m.x223 + 0.00322256*m.x224 - 0.000894157*m.x225 + 0.006258*m.x226 + 0.00753458*m.x227 + 0.0429268*m.x228 - 0.00214333*m.x229 - 0.000662876*m.x230 + 0.00436442*m.x231 + 0.00691779*m.x232 + 0.00185899*m.x233 + 0.00473111*m.x234 + 0.00327993*m.x235 - 0.00410127*m.x236 + 0.00301966*m.x237 + 0.000909662*m.x238 - 0.000155222*m.x239 + 0.00657222*m.x240 + 0.00652355*m.x241 - 0.00113837*m.x242 + 0.00241285*m.x243 + 0.00338711*m.x244 - 0.000552305*m.x245 - 0.00210153*m.x246 + 0.000948894*m.x247 + 0.00106856*m.x248 + 0.00241905*m.x249 + 0.00317936*m.x250 + 0.00580385*m.x251 + 0.00417651*m.x252 + 0.00240856*m.x253 - 0.000398367*m.x254 - 0.000713633*m.x255 + 0.00299454*m.x256 + 2.45482E-5*m.x257 + 0.00534951*m.x258 + 0.00571568*m.x259 + 0.00328284*m.x260 + 0.00871742*m.x261 + 0.00237906*m.x262 + 0.00268782*m.x263 + 0.00126037*m.x264 + 0.00496836*m.x265 + 0.00583939*m.x266 + 0.000591772*m.x267 + 0.00184587*m.x268 + 0.000736705*m.x269 - 0.000390252*m.x270 + 0.00293877*m.x271 + 0.00416663*m.x272 + 0.00536772*m.x273 + 0.00835572*m.x274 + 0.00427922*m.x275 - 0.00121545*m.x276 + 0.002375*m.x277 + 0.00506443*m.x278 - 0.000339949*m.x279 + 0.00104576*m.x280 + 0.00385754*m.x281 + 0.00216037*m.x282 - 0.000699399*m.x283 - 0.000380813*m.x284 + 0.00135096*m.x285 + 0.00146462*m.x286 - 0.000571967*m.x287 + 0.00428001*m.x288 + 0.00246929*m.x289 + 0.00505738*m.x290 + 0.00244428*m.x291 - 0.00119322*m.x292 + 0.00181174*m.x293 - 0.000288904*m.x294 - 0.00446445*m.x295 + 0.00110999*m.x296 - 0.00346431*m.x297 + 0.00415143*m.x298 + 0.00356873*m.x299 + 0.00160276*m.x300 - 0.00400958*m.x301 + 0.000129628*m.x302 + 0.00686574*m.x303 == 0) m.c232 = Constraint(expr= - m.x127 - 0.00767398*m.x204 + 0.0170077*m.x205 + 0.0477231*m.x206 - 0.00637192*m.x207 + 0.00210744*m.x208 + 0.00415587*m.x209 + 0.000987645*m.x210 + 0.0129869*m.x211 - 0.000384643*m.x212 + 0.0222634*m.x213 + 0.00768851*m.x214 - 0.00558582*m.x215 + 0.000832659*m.x216 + 0.00728394*m.x217 + 0.00869348*m.x218 + 0.000736619*m.x219 + 0.00438562*m.x220 - 0.00512292*m.x221 - 0.00558535*m.x222 + 0.00342157*m.x223 + 0.00179649*m.x224 + 0.0338703*m.x225 - 0.000838175*m.x226 - 0.000689838*m.x227 - 0.00214333*m.x228 + 0.0774329*m.x229 + 0.00380399*m.x230 - 0.00429303*m.x231 + 0.00975116*m.x232 + 0.00245028*m.x233 + 0.00620626*m.x234 + 0.00204073*m.x235 + 0.0244378*m.x236 + 0.00425715*m.x237 - 0.00882714*m.x238 + 0.00211448*m.x239 + 0.00674457*m.x240 + 0.00213229*m.x241 - 0.00226601*m.x242 - 8.92046E-5*m.x243 + 0.0128103*m.x244 + 0.00497409*m.x245 + 5.78589E-5*m.x246 - 0.00235449*m.x247 + 0.00327571*m.x248 - 0.00357096*m.x249 - 0.0014774*m.x250 - 0.000131234*m.x251 + 0.00076644*m.x252 + 0.0033869*m.x253 - 0.00261102*m.x254 + 0.00970161*m.x255 + 0.00144094*m.x256 + 0.00194079*m.x257 - 0.00202281*m.x258 + 0.00652913*m.x259 - 0.000637013*m.x260 - 0.00101439*m.x261 - 0.0082225*m.x262 + 0.00355615*m.x263 - 0.000188674*m.x264 + 0.00424723*m.x265 + 0.0023868*m.x266 - 0.00326633*m.x267 + 0.00828866*m.x268 + 0.00468054*m.x269 - 0.000763441*m.x270 + 0.00961433*m.x271 - 0.00265062*m.x272 + 0.00154076*m.x273 + 0.000823677*m.x274 - 0.000449853*m.x275 - 0.00240676*m.x276 - 0.00308594*m.x277 - 0.00171011*m.x278 + 0.00119568*m.x279 + 0.00520579*m.x280 + 0.00404244*m.x281 - 0.00374261*m.x282 - 0.002876*m.x283 + 0.00564875*m.x284 + 0.00529419*m.x285 + 0.00183255*m.x286 + 0.00445827*m.x287 - 0.000344244*m.x288 + 0.00160669*m.x289 - 0.00276824*m.x290 + 0.00746466*m.x291 + 0.00694152*m.x292 - 0.00346329*m.x293 - 0.000701028*m.x294 - 0.00834557*m.x295 + 0.00667569*m.x296 - 0.00651531*m.x297 - 0.00217122*m.x298 + 0.0161266*m.x299 + 0.00695292*m.x300 + 0.00190191*m.x301 + 0.00346113*m.x302 + 0.00542579*m.x303 == 0) m.c233 = Constraint(expr= - m.x128 - 0.00197822*m.x204 + 0.00468054*m.x205 + 0.010936*m.x206 - 0.00268833*m.x207 + 0.00564026*m.x208 + 0.0068299*m.x209 + 0.00360613*m.x210 - 0.00468059*m.x211 + 0.00501887*m.x212 + 0.00147836*m.x213 + 0.000743528*m.x214 - 0.000431237*m.x215 + 0.00241026*m.x216 + 0.00738888*m.x217 + 0.00253402*m.x218 + 0.00149022*m.x219 - 0.00389494*m.x220 + 0.0017955*m.x221 + 0.00376971*m.x222 + 0.00025621*m.x223 - 0.00135029*m.x224 + 0.00593049*m.x225 + 0.00321015*m.x226 - 0.00122008*m.x227 - 0.000662876*m.x228 + 0.00380399*m.x229 + 0.0471923*m.x230 + 0.0015421*m.x231 + 0.00319704*m.x232 + 0.00342862*m.x233 + 0.000935202*m.x234 + 0.00540865*m.x235 + 0.000426465*m.x236 + 0.00573566*m.x237 + 0.00705473*m.x238 + 0.00177955*m.x239 + 0.00206458*m.x240 + 0.00224695*m.x241 - 0.00100575*m.x242 + 0.00175842*m.x243 + 0.00279507*m.x244 + 0.00733365*m.x245 + 0.00189734*m.x246 - 0.00087259*m.x247 + 0.00913902*m.x248 + 0.000648204*m.x249 + 0.00369376*m.x250 - 0.00141307*m.x251 - 0.00209444*m.x252 + 0.000886721*m.x253 - 0.00204134*m.x254 + 0.000825909*m.x255 + 0.00279365*m.x256 - 0.00235578*m.x257 + 0.00110642*m.x258 + 0.00225416*m.x259 - 0.000609378*m.x260 + 0.00251465*m.x261 + 0.00102978*m.x262 + 0.0112079*m.x263 + 0.00645332*m.x264 + 0.00540775*m.x265 - 0.00427958*m.x266 - 0.0057947*m.x267 + 0.0139508*m.x268 + 0.00577359*m.x269 - 0.00197249*m.x270 - 0.0041837*m.x271 - 0.00171015*m.x272 + 0.000149793*m.x273 + 0.00209144*m.x274 - 0.00158294*m.x275 + 0.00125814*m.x276 + 0.00370129*m.x277 + 0.00029565*m.x278 + 0.00285626*m.x279 + 0.00597457*m.x280 + 0.00323244*m.x281 + 0.00954078*m.x282 - 0.00260552*m.x283 + 0.00931525*m.x284 + 0.000400638*m.x285 - 0.000672593*m.x286 + 0.00821988*m.x287 + 0.00442595*m.x288 + 9.7777E-5*m.x289 + 0.00362104*m.x290 + 0.00715697*m.x291 + 0.00559812*m.x292 + 0.00126776*m.x293 + 0.000428826*m.x294 - 0.00228492*m.x295 - 0.00156275*m.x296 - 0.0039415*m.x297 + 0.0184288*m.x298 + 0.00951648*m.x299 + 5.68864E-5*m.x300 + 0.0119542*m.x301 + 0.00888358*m.x302 - 0.000364621*m.x303 == 0) m.c234 = Constraint(expr= - m.x129 - 1.10346E-5*m.x204 + 0.00168652*m.x205 + 0.0065182*m.x206 + 0.00712607*m.x207 + 0.00132385*m.x208 + 0.00946803*m.x209 + 0.0048888*m.x210 + 0.00960732*m.x211 + 0.0131889*m.x212 + 0.000467993*m.x213 + 0.00323042*m.x214 + 0.00302183*m.x215 + 0.00677493*m.x216 + 0.00373072*m.x217 - 0.000309521*m.x218 + 0.00242247*m.x219 - 0.00288026*m.x220 - 0.00492288*m.x221 + 0.00496685*m.x222 + 0.00366426*m.x223 - 0.000387863*m.x224 + 0.0033642*m.x225 - 0.000280882*m.x226 + 0.00305472*m.x227 + 0.00436442*m.x228 - 0.00429303*m.x229 + 0.0015421*m.x230 + 0.0677524*m.x231 - 0.00294961*m.x232 + 0.00479656*m.x233 + 0.0149434*m.x234 + 0.00178942*m.x235 + 0.000372831*m.x236 + 0.00106536*m.x237 + 0.00210645*m.x238 + 0.00268821*m.x239 + 0.00751856*m.x240 + 0.00479783*m.x241 + 0.00280258*m.x242 + 0.00239177*m.x243 + 0.00553645*m.x244 - 0.00098498*m.x245 + 0.00456291*m.x246 + 0.00077635*m.x247 + 0.00142627*m.x248 + 0.00217757*m.x249 + 0.00191957*m.x250 + 0.0115101*m.x251 - 0.000945371*m.x252 - 0.0071917*m.x253 + 0.00172599*m.x254 + 0.00211256*m.x255 + 0.00136592*m.x256 + 0.00392595*m.x257 + 0.00691999*m.x258 + 0.0106189*m.x259 - 0.000182055*m.x260 + 0.00218491*m.x261 + 0.000656633*m.x262 + 0.0175771*m.x263 + 0.00353599*m.x264 + 0.00274124*m.x265 - 0.000533821*m.x266 - 0.0021747*m.x267 + 0.00514558*m.x268 + 0.00318024*m.x269 + 0.00107192*m.x270 + 0.00297944*m.x271 + 0.00387335*m.x272 + 0.000833965*m.x273 + 0.00113589*m.x274 + 0.00481228*m.x275 + 0.00110802*m.x276 - 0.00473546*m.x277 + 0.00406944*m.x278 - 0.00282972*m.x279 + 0.00339262*m.x280 + 0.0012098*m.x281 - 0.000254586*m.x282 + 0.00671298*m.x283 + 0.0117108*m.x284 + 0.00614105*m.x285 + 0.0126386*m.x286 + 0.00409707*m.x287 + 0.00509678*m.x288 + 0.00201509*m.x289 + 0.000363534*m.x290 + 0.000104518*m.x291 - 0.000217263*m.x292 + 0.000955159*m.x293 - 0.0064418*m.x294 + 0.00195089*m.x295 + 0.000572419*m.x296 + 0.00151632*m.x297 + 0.000311369*m.x298 - 0.00581513*m.x299 + 0.00803792*m.x300 + 0.00503323*m.x301 + 0.00261585*m.x302 + 0.0020532*m.x303 == 0) m.c235 = Constraint(expr= - m.x130 - 0.00119407*m.x204 + 0.0382947*m.x205 + 0.0358881*m.x206 + 0.00579462*m.x207 + 0.00265952*m.x208 + 0.0152758*m.x209 + 0.000705294*m.x210 - 0.0084924*m.x211 - 0.00750233*m.x212 + 0.00769452*m.x213 + 0.00830891*m.x214 - 0.00219082*m.x215 - 0.0043282*m.x216 - 0.00200641*m.x217 + 0.00380195*m.x218 + 0.00604515*m.x219 + 0.00241344*m.x220 + 0.00107204*m.x221 + 0.00441973*m.x222 + 0.00765642*m.x223 - 0.000232243*m.x224 + 0.0107294*m.x225 + 0.0022121*m.x226 - 0.000106602*m.x227 + 0.00691779*m.x228 + 0.00975116*m.x229 + 0.00319704*m.x230 - 0.00294961*m.x231 + 0.124882*m.x232 + 0.000162013*m.x233 + 0.00806342*m.x234 - 0.00310391*m.x235 + 0.0145289*m.x236 - 1.60983E-5*m.x237 - 0.002888*m.x238 + 0.00055638*m.x239 - 0.000810434*m.x240 + 0.0051618*m.x241 - 0.00714171*m.x242 - 0.00139437*m.x243 - 0.00161511*m.x244 + 0.00197381*m.x245 - 0.00298086*m.x246 + 0.00139431*m.x247 + 0.000596885*m.x248 - 0.000173936*m.x249 + 0.00262989*m.x250 + 0.00163586*m.x251 + 0.000879524*m.x252 + 0.00125037*m.x253 + 0.00165426*m.x254 + 0.00460974*m.x255 - 0.00113943*m.x256 - 0.00176703*m.x257 + 0.00271945*m.x258 - 0.00103376*m.x259 - 0.000944225*m.x260 + 0.00264501*m.x261 - 0.00260547*m.x262 + 0.0017848*m.x263 + 0.0108839*m.x264 - 0.00138995*m.x265 - 0.00309501*m.x266 - 0.000395075*m.x267 + 0.00576686*m.x268 + 0.00353172*m.x269 + 0.00568516*m.x270 - 0.00269802*m.x271 + 0.00498942*m.x272 + 0.00215788*m.x273 - 0.000768782*m.x274 - 0.00366851*m.x275 + 0.000149784*m.x276 + 0.00567007*m.x277 + 0.00749201*m.x278 + 0.00153215*m.x279 + 0.00188058*m.x280 - 0.00264831*m.x281 + 0.00777778*m.x282 - 0.000369335*m.x283 + 0.00409714*m.x284 - 0.000584153*m.x285 - 5.10761E-5*m.x286 - 0.000896178*m.x287 + 0.00143506*m.x288 - 0.00102564*m.x289 + 0.00929697*m.x290 + 0.000416892*m.x291 + 0.00340158*m.x292 + 0.00170814*m.x293 + 0.00314179*m.x294 + 0.00196445*m.x295 + 0.00232212*m.x296 - 0.00194288*m.x297 + 0.000886071*m.x298 + 0.0271101*m.x299 + 0.00505307*m.x300 - 0.00135319*m.x301 + 0.000960311*m.x302 + 0.00806487*m.x303 == 0) m.c236 = Constraint(expr= - m.x131 + 0.000602811*m.x204 + 0.0032777*m.x205 + 0.00724543*m.x206 + 0.00617075*m.x207 + 0.0155615*m.x208 + 0.00176378*m.x209 + 0.0033924*m.x210 - 0.00241471*m.x211 - 0.000147186*m.x212 + 0.00544112*m.x213 + 0.00460225*m.x214 + 0.00318353*m.x215 + 0.00853448*m.x216 + 0.00380207*m.x217 + 0.00965526*m.x218 + 0.00652264*m.x219 + 0.00199923*m.x220 - 0.00229718*m.x221 + 0.0069161*m.x222 + 0.00561328*m.x223 - 0.000214951*m.x224 + 0.0102388*m.x225 + 0.00230846*m.x226 + 0.00369153*m.x227 + 0.00185899*m.x228 + 0.00245028*m.x229 + 0.00342862*m.x230 + 0.00479656*m.x231 + 0.000162013*m.x232 + 0.0356618*m.x233 - 9.61349E-5*m.x234 + 0.00603043*m.x235 + 0.00431951*m.x236 + 0.00365119*m.x237 + 0.00726868*m.x238 + 0.00362074*m.x239 + 0.00298213*m.x240 + 0.00704842*m.x241 + 0.00602321*m.x242 + 0.00375983*m.x243 + 0.000464103*m.x244 + 0.014905*m.x245 + 0.0143482*m.x246 + 0.00419847*m.x247 + 0.00136868*m.x248 + 3.95557E-5*m.x249 + 0.0072304*m.x250 + 0.0127117*m.x251 + 0.00781209*m.x252 + 0.00489662*m.x253 + 0.000468232*m.x254 + 0.00699772*m.x255 + 0.00356967*m.x256 + 0.000303537*m.x257 + 0.000702332*m.x258 + 0.00357718*m.x259 + 0.00454768*m.x260 + 0.00483103*m.x261 - 0.00605986*m.x262 + 0.00108709*m.x263 + 0.00235866*m.x264 + 0.00258727*m.x265 + 0.00334281*m.x266 + 0.000681716*m.x267 + 0.00619447*m.x268 + 0.00533029*m.x269 + 0.000115147*m.x270 + 0.00302395*m.x271 + 0.00477754*m.x272 + 0.00409215*m.x273 + 0.0030886*m.x274 + 0.00889169*m.x275 + 0.00200531*m.x276 + 0.00557444*m.x277 + 0.00392979*m.x278 + 0.00976432*m.x279 + 0.00633676*m.x280 + 0.00795621*m.x281 + 0.00342719*m.x282 - 0.0024266*m.x283 + 0.00516382*m.x284 + 0.00568177*m.x285 + 0.00333333*m.x286 + 0.00790729*m.x287 + 0.00874995*m.x288 + 0.00108982*m.x289 + 0.00847563*m.x290 + 0.00467438*m.x291 + 0.0016858*m.x292 + 0.000365981*m.x293 + 0.0013091*m.x294 + 0.00271448*m.x295 + 0.00487642*m.x296 - 0.00289096*m.x297 + 0.00354767*m.x298 + 0.00357909*m.x299 + 0.00585634*m.x300 - 0.000870044*m.x301 + 0.00817771*m.x302 + 0.00321544*m.x303 == 0) m.c237 = Constraint(expr= - m.x132 + 0.0132444*m.x204 + 0.00298262*m.x205 + 0.0141802*m.x206 + 0.00178322*m.x207 + 3.93351E-5*m.x208 + 0.0034359*m.x209 - 0.00243487*m.x210 + 0.00242201*m.x211 - 0.00131105*m.x212 - 0.00240926*m.x213 + 0.00347085*m.x214 + 0.00523947*m.x215 + 0.00304723*m.x216 + 0.00154953*m.x217 + 0.000998466*m.x218 - 0.00341015*m.x219 - 0.0069523*m.x220 + 6.89241E-5*m.x221 - 0.00118855*m.x222 - 0.00310918*m.x223 - 0.000960776*m.x224 - 0.000119649*m.x225 + 0.0027198*m.x226 + 0.000581923*m.x227 + 0.00473111*m.x228 + 0.00620626*m.x229 + 0.000935202*m.x230 + 0.0149434*m.x231 + 0.00806342*m.x232 - 9.61349E-5*m.x233 + 0.138568*m.x234 + 0.00669748*m.x235 - 0.000256415*m.x236 + 0.0145101*m.x237 + 0.00718311*m.x238 - 0.000438119*m.x239 + 0.00396431*m.x240 + 0.00125565*m.x241 + 0.0122949*m.x242 + 0.00508627*m.x243 - 0.000247882*m.x244 - 0.000117636*m.x245 - 0.00101212*m.x246 - 0.00163422*m.x247 + 0.00938261*m.x248 + 0.00048899*m.x249 + 0.00273794*m.x250 + 0.0081173*m.x251 + 0.00159047*m.x252 + 0.00666147*m.x253 - 0.000935815*m.x254 + 0.00366551*m.x255 + 0.00954228*m.x256 + 0.000832645*m.x257 - 0.000876097*m.x258 + 0.0047508*m.x259 - 0.00109579*m.x260 - 0.000240979*m.x261 + 0.00232308*m.x262 + 0.0118189*m.x263 + 0.00908161*m.x264 + 0.00892137*m.x265 + 0.00228629*m.x266 - 0.00141271*m.x267 + 0.0112419*m.x268 + 0.00366445*m.x269 - 0.00115062*m.x270 + 0.00857186*m.x271 + 0.00134029*m.x272 - 0.00510595*m.x273 - 0.00295933*m.x274 + 0.0115794*m.x275 + 0.00222961*m.x276 + 0.00216482*m.x277 - 0.000761944*m.x278 + 0.00156264*m.x279 + 0.00204943*m.x280 + 0.000825899*m.x281 - 0.0014036*m.x282 + 0.00439362*m.x283 + 0.00824533*m.x284 + 0.00200915*m.x285 + 0.00433982*m.x286 - 0.00368101*m.x287 + 0.00283946*m.x288 + 0.0020167*m.x289 - 0.00442035*m.x290 - 0.00255785*m.x291 + 0.00125151*m.x292 - 0.00145108*m.x293 - 0.000936959*m.x294 - 6.93028E-5*m.x295 + 0.000707514*m.x296 - 0.00353193*m.x297 - 0.00266393*m.x298 + 0.00983835*m.x299 - 0.0040378*m.x300 + 0.00154164*m.x301 + 0.00321227*m.x302 + 0.00627327*m.x303 == 0) m.c238 = Constraint(expr= - m.x133 - 0.00406553*m.x204 + 0.00157746*m.x205 - 0.00235266*m.x206 + 0.00561978*m.x207 + 0.00818121*m.x208 + 0.00304328*m.x209 + 0.00351798*m.x210 - 0.00033287*m.x211 - 0.00502474*m.x212 + 0.00822957*m.x213 + 0.0125956*m.x214 + 0.00300376*m.x215 + 0.00491152*m.x216 + 7.83409E-5*m.x217 + 0.00537877*m.x218 + 0.00247212*m.x219 + 0.00218093*m.x220 + 0.00358549*m.x221 + 0.00842854*m.x222 + 0.000436137*m.x223 + 0.00341529*m.x224 + 0.00421343*m.x225 + 0.00764299*m.x226 + 0.000856409*m.x227 + 0.00327993*m.x228 + 0.00204073*m.x229 + 0.00540865*m.x230 + 0.00178942*m.x231 - 0.00310391*m.x232 + 0.00603043*m.x233 + 0.00669748*m.x234 + 0.0667779*m.x235 + 0.00383032*m.x236 + 0.00215057*m.x237 + 0.00477102*m.x238 + 0.00282296*m.x239 + 0.00413078*m.x240 + 0.00578179*m.x241 + 0.00387204*m.x242 + 0.00248171*m.x243 + 0.0124245*m.x244 + 0.00458518*m.x245 + 0.00111236*m.x246 + 0.00175884*m.x247 + 0.00193995*m.x248 + 0.00582795*m.x249 + 0.00221714*m.x250 + 0.00143776*m.x251 + 0.00796665*m.x252 + 0.00687732*m.x253 + 0.00952368*m.x254 - 0.000273013*m.x255 + 0.00106084*m.x256 - 0.00338076*m.x257 + 0.00179605*m.x258 + 0.00600138*m.x259 + 0.00499556*m.x260 + 0.00310331*m.x261 + 0.0058288*m.x262 + 0.00581735*m.x263 + 0.00417314*m.x264 - 0.0011102*m.x265 + 0.00234077*m.x266 - 0.00112428*m.x267 + 0.0103289*m.x268 + 0.00121195*m.x269 + 0.00320026*m.x270 + 0.00764263*m.x271 + 0.000547113*m.x272 + 0.00407025*m.x273 + 0.0036774*m.x274 + 0.00185908*m.x275 + 0.0035544*m.x276 + 0.000252173*m.x277 + 0.0057429*m.x278 + 0.00330489*m.x279 + 0.00398224*m.x280 + 0.00493613*m.x281 + 0.000602209*m.x282 + 0.00499603*m.x283 + 0.00484005*m.x284 + 0.0129378*m.x285 + 0.00126871*m.x286 + 0.0109368*m.x287 + 0.0240688*m.x288 - 0.000216395*m.x289 + 0.00218847*m.x290 + 0.00462496*m.x291 - 0.00173756*m.x292 + 0.000369864*m.x293 + 0.00518077*m.x294 + 0.00780177*m.x295 - 0.000183456*m.x296 + 0.00313748*m.x297 + 0.0108401*m.x298 + 0.00439792*m.x299 + 0.000633255*m.x300 - 0.00249511*m.x301 + 0.00187615*m.x302 + 0.00489037*m.x303 == 0) m.c239 = Constraint(expr= - m.x134 + 0.00422631*m.x204 + 0.0105061*m.x205 + 0.0360049*m.x206 - 0.000789221*m.x207 + 0.00576868*m.x208 - 0.0024897*m.x209 - 0.000533129*m.x210 + 0.00115625*m.x211 - 0.0031803*m.x212 + 0.0404735*m.x213 - 0.00124658*m.x214 - 0.00393984*m.x215 - 0.00788435*m.x216 + 0.00350834*m.x217 + 0.00531506*m.x218 + 0.00108611*m.x219 + 0.00785569*m.x220 - 0.00049534*m.x221 - 0.00512765*m.x222 + 0.00626525*m.x223 + 0.00200929*m.x224 + 0.0390568*m.x225 + 0.00141463*m.x226 + 0.000347455*m.x227 - 0.00410127*m.x228 + 0.0244378*m.x229 + 0.000426465*m.x230 + 0.000372831*m.x231 + 0.0145289*m.x232 + 0.00431951*m.x233 - 0.000256415*m.x234 + 0.00383032*m.x235 + 0.0865427*m.x236 + 0.00214256*m.x237 + 0.0130345*m.x238 + 7.06613E-5*m.x239 + 0.00487378*m.x240 + 0.00341855*m.x241 - 0.00226294*m.x242 + 0.00208303*m.x243 + 0.00301773*m.x244 + 0.00794854*m.x245 + 0.00558802*m.x246 - 0.000174917*m.x247 - 0.00127938*m.x248 - 0.000380482*m.x249 + 0.0022927*m.x250 + 0.0147001*m.x251 - 0.000690034*m.x252 - 0.00340535*m.x253 - 0.00483173*m.x254 + 0.00228568*m.x255 - 0.00083261*m.x256 - 0.00120821*m.x257 - 0.00293263*m.x258 + 0.0100916*m.x259 - 0.000975461*m.x260 + 4.58518E-6*m.x261 + 0.00679259*m.x262 + 0.0109441*m.x263 - 0.00141802*m.x264 + 0.00426929*m.x265 + 0.000950245*m.x266 - 0.0100929*m.x267 + 0.00991537*m.x268 + 0.00593721*m.x269 + 0.00327904*m.x270 + 0.0084466*m.x271 + 0.00275452*m.x272 + 0.00389367*m.x273 - 0.000709167*m.x274 - 0.00220075*m.x275 - 0.00419952*m.x276 + 0.00578535*m.x277 - 0.00402305*m.x278 + 0.000882589*m.x279 + 0.00527028*m.x280 - 0.00719009*m.x281 + 0.000341894*m.x282 - 0.00292742*m.x283 + 0.00505718*m.x284 - 0.000112291*m.x285 + 0.00142508*m.x286 + 0.00445551*m.x287 + 0.00496328*m.x288 + 0.000556729*m.x289 + 0.00173871*m.x290 - 0.00650082*m.x291 + 0.00670699*m.x292 - 0.000640342*m.x293 + 0.00360938*m.x294 + 0.00110968*m.x295 + 0.00261151*m.x296 - 0.00695241*m.x297 - 0.00163906*m.x298 + 0.000292171*m.x299 + 0.00495442*m.x300 + 0.00511283*m.x301 + 0.00311265*m.x302 + 0.00964866*m.x303 == 0) m.c240 = Constraint(expr= - m.x135 - 0.00343731*m.x204 - 0.00233804*m.x205 + 0.00392202*m.x206 + 0.000342323*m.x207 + 0.00589168*m.x208 + 0.0154113*m.x209 + 0.00286727*m.x210 + 0.00402359*m.x211 + 0.00422327*m.x212 + 0.00290678*m.x213 + 0.0109431*m.x214 + 0.00148726*m.x215 - 0.00162346*m.x216 + 0.00377252*m.x217 - 0.000807326*m.x218 + 0.00269604*m.x219 + 0.00680418*m.x220 + 0.00484482*m.x221 + 0.000931212*m.x222 + 0.00296798*m.x223 - 0.000773953*m.x224 + 0.00269243*m.x225 + 0.0104736*m.x226 + 0.00321278*m.x227 + 0.00301966*m.x228 + 0.00425715*m.x229 + 0.00573566*m.x230 + 0.00106536*m.x231 - 1.60983E-5*m.x232 + 0.00365119*m.x233 + 0.0145101*m.x234 + 0.00215057*m.x235 + 0.00214256*m.x236 + 0.101774*m.x237 + 0.00687798*m.x238 + 0.00348508*m.x239 - 0.000586083*m.x240 + 0.00824532*m.x241 - 0.00154559*m.x242 + 0.00822121*m.x243 + 0.0020747*m.x244 + 0.00528007*m.x245 + 0.00021007*m.x246 + 0.00412244*m.x247 + 0.00363406*m.x248 + 0.0025062*m.x249 + 0.00352758*m.x250 + 0.00268179*m.x251 + 0.0017263*m.x252 + 0.0110796*m.x253 + 0.00388802*m.x254 - 0.00663898*m.x255 + 0.00271133*m.x256 + 0.00151359*m.x257 + 0.00375338*m.x258 + 0.00325149*m.x259 + 0.00083169*m.x260 - 5.91301E-5*m.x261 + 0.00581394*m.x262 + 0.00200882*m.x263 + 0.000695564*m.x264 - 0.00052299*m.x265 + 0.00584205*m.x266 - 0.00708984*m.x267 + 0.00265142*m.x268 + 0.00120658*m.x269 + 0.00429363*m.x270 + 0.00258002*m.x271 + 0.000225492*m.x272 + 0.00114158*m.x273 + 0.00465008*m.x274 + 0.0128796*m.x275 + 0.00160429*m.x276 + 0.00322761*m.x277 + 0.00655944*m.x278 + 0.0152201*m.x279 + 0.00163512*m.x280 - 0.000389451*m.x281 + 0.0037276*m.x282 - 0.0010051*m.x283 + 0.0025218*m.x284 + 0.0044636*m.x285 - 0.00398086*m.x286 + 0.00037716*m.x287 + 0.00428731*m.x288 + 0.0020993*m.x289 + 0.00773233*m.x290 + 0.00108107*m.x291 + 0.00180858*m.x292 - 0.00124112*m.x293 + 0.00633646*m.x294 + 0.00394326*m.x295 - 0.00068464*m.x296 - 0.00580836*m.x297 + 0.000271513*m.x298 + 0.0112659*m.x299 + 0.00208455*m.x300 + 0.0126192*m.x301 + 0.000840037*m.x302 + 0.00862854*m.x303 == 0) m.c241 = Constraint(expr= - m.x136 + 0.00651535*m.x204 - 0.000430784*m.x205 + 0.0042099*m.x206 + 0.00409312*m.x207 + 0.00706516*m.x208 + 0.00423352*m.x209 - 0.002207*m.x210 - 0.000640147*m.x211 - 0.00434983*m.x212 + 0.00783851*m.x213 + 0.00410401*m.x214 - 0.000225512*m.x215 - 0.00143462*m.x216 + 0.0162195*m.x217 + 0.00322637*m.x218 + 0.00154541*m.x219 + 0.00351389*m.x220 + 0.00543851*m.x221 - 0.00452187*m.x222 - 0.0019476*m.x223 + 0.00603748*m.x224 + 0.00303055*m.x225 + 0.00498259*m.x226 + 0.00486463*m.x227 + 0.000909662*m.x228 - 0.00882714*m.x229 + 0.00705473*m.x230 + 0.00210645*m.x231 - 0.002888*m.x232 + 0.00726868*m.x233 + 0.00718311*m.x234 + 0.00477102*m.x235 + 0.0130345*m.x236 + 0.00687798*m.x237 + 0.0915486*m.x238 + 0.0069577*m.x239 + 0.00192452*m.x240 + 0.00546136*m.x241 + 0.00966242*m.x242 + 0.0048235*m.x243 + 0.000350009*m.x244 + 0.00928938*m.x245 + 0.000130711*m.x246 - 0.0013095*m.x247 + 0.0163399*m.x248 + 0.00412922*m.x249 + 0.00247137*m.x250 + 0.00232468*m.x251 + 0.00329108*m.x252 - 0.00197335*m.x253 + 0.000239144*m.x254 + 0.00326997*m.x255 - 0.0010155*m.x256 + 0.000659488*m.x257 + 0.000561626*m.x258 + 0.000752009*m.x259 + 0.0012213*m.x260 - 3.22002E-5*m.x261 - 0.00148681*m.x262 + 0.00211146*m.x263 - 0.000313358*m.x264 + 0.00501177*m.x265 + 0.00457594*m.x266 - 0.0104815*m.x267 + 0.0017514*m.x268 + 0.000755628*m.x269 + 0.00557733*m.x270 + 0.00229256*m.x271 + 0.000473704*m.x272 + 0.0031662*m.x273 - 0.00122519*m.x274 + 0.00469534*m.x275 + 0.00559382*m.x276 + 0.00528838*m.x277 + 0.00469948*m.x278 + 0.0120162*m.x279 + 0.00363359*m.x280 + 0.002036*m.x281 - 0.00283527*m.x282 - 0.00290324*m.x283 - 0.00552971*m.x284 + 0.0028359*m.x285 - 0.00191638*m.x286 + 0.000588805*m.x287 + 0.00709492*m.x288 + 0.00428712*m.x289 + 0.00918313*m.x290 + 0.00156534*m.x291 + 0.00072917*m.x292 + 0.00366701*m.x293 - 0.00358706*m.x294 + 0.000268238*m.x295 + 0.00341113*m.x296 - 0.00131877*m.x297 + 0.00963574*m.x298 - 0.00402802*m.x299 + 0.0104253*m.x300 - 0.00123284*m.x301 + 0.00267415*m.x302 + 0.00590155*m.x303 == 0) m.c242 = Constraint(expr= - m.x137 - 0.00313138*m.x204 + 0.00369645*m.x205 + 0.00555015*m.x206 + 0.0043798*m.x207 + 0.00432744*m.x208 + 0.00420821*m.x209 + 0.00114119*m.x210 - 0.00221072*m.x211 + 0.00139653*m.x212 + 0.00157388*m.x213 + 0.00255437*m.x214 + 0.00296695*m.x215 + 0.00392967*m.x216 + 0.00354522*m.x217 + 0.00624206*m.x218 + 0.000676983*m.x219 + 0.00697412*m.x220 - 0.00363013*m.x221 + 0.00223296*m.x222 + 0.00329745*m.x223 + 0.00596236*m.x224 + 0.00184466*m.x225 + 0.00286973*m.x226 + 0.00213079*m.x227 - 0.000155222*m.x228 + 0.00211448*m.x229 + 0.00177955*m.x230 + 0.00268821*m.x231 + 0.00055638*m.x232 + 0.00362074*m.x233 - 0.000438119*m.x234 + 0.00282296*m.x235 + 7.06613E-5*m.x236 + 0.00348508*m.x237 + 0.0069577*m.x238 + 0.0455133*m.x239 - 0.00126273*m.x240 + 0.00269327*m.x241 - 0.000220811*m.x242 + 0.00310296*m.x243 + 0.00545946*m.x244 + 0.00372702*m.x245 - 0.000760636*m.x246 + 0.00381839*m.x247 + 0.00413739*m.x248 + 0.00695501*m.x249 + 0.0028489*m.x250 + 0.00397424*m.x251 - 0.00183251*m.x252 + 0.00181348*m.x253 - 0.00235222*m.x254 + 0.00373008*m.x255 + 0.00394493*m.x256 + 0.00375855*m.x257 + 0.00224988*m.x258 + 0.00173868*m.x259 + 0.00334586*m.x260 - 0.00132202*m.x261 - 0.00379641*m.x262 + 0.00586093*m.x263 + 0.00136897*m.x264 + 0.00469266*m.x265 - 0.0014627*m.x266 + 0.00243124*m.x267 + 0.00934914*m.x268 + 0.000872186*m.x269 - 0.00186934*m.x270 + 0.00444714*m.x271 + 0.00103419*m.x272 + 0.00586585*m.x273 + 0.00231842*m.x274 + 0.0117501*m.x275 - 0.00199508*m.x276 + 0.00257808*m.x277 - 0.002975*m.x278 + 0.00511897*m.x279 + 0.00114031*m.x280 + 0.00600576*m.x281 - 0.000204738*m.x282 + 0.00299286*m.x283 + 0.00431272*m.x284 + 0.000643374*m.x285 + 0.000528405*m.x286 + 0.0038775*m.x287 + 0.000936991*m.x288 - 0.00199242*m.x289 + 0.004542*m.x290 + 0.00331247*m.x291 + 0.00015452*m.x292 + 0.00451357*m.x293 - 0.00325512*m.x294 - 0.0021067*m.x295 + 0.00769045*m.x296 - 0.00143092*m.x297 - 0.000148921*m.x298 + 0.0048758*m.x299 + 0.00286852*m.x300 - 0.00298357*m.x301 + 0.000697231*m.x302 + 0.00549383*m.x303 == 0) m.c243 = Constraint(expr= - m.x138 + 0.00359841*m.x204 + 0.00893962*m.x205 + 0.00521599*m.x206 + 0.00830042*m.x207 + 0.0048282*m.x208 + 0.00164738*m.x209 + 0.00331*m.x210 + 0.00267732*m.x211 - 0.000845758*m.x212 + 0.00239796*m.x213 + 0.00542448*m.x214 + 0.00567021*m.x215 + 0.000510251*m.x216 + 0.0091783*m.x217 + 0.01146*m.x218 + 0.00245648*m.x219 + 0.00770413*m.x220 + 0.00976994*m.x221 + 0.000265224*m.x222 - 0.00473803*m.x223 - 0.00058046*m.x224 + 0.00552881*m.x225 + 0.00101702*m.x226 + 0.00335949*m.x227 + 0.00657222*m.x228 + 0.00674457*m.x229 + 0.00206458*m.x230 + 0.00751856*m.x231 - 0.000810434*m.x232 + 0.00298213*m.x233 + 0.00396431*m.x234 + 0.00413078*m.x235 + 0.00487378*m.x236 - 0.000586083*m.x237 + 0.00192452*m.x238 - 0.00126273*m.x239 + 0.0409948*m.x240 + 0.00681013*m.x241 + 0.00156188*m.x242 + 0.00309487*m.x243 + 0.00872817*m.x244 + 0.00536076*m.x245 - 0.00233255*m.x246 - 0.00284383*m.x247 + 0.00442326*m.x248 + 0.00224652*m.x249 + 0.000464028*m.x250 + 0.00563646*m.x251 + 0.0023205*m.x252 + 0.00368711*m.x253 + 0.00446507*m.x254 + 0.00335461*m.x255 + 0.00612415*m.x256 + 0.00459437*m.x257 + 0.000431036*m.x258 + 0.0214193*m.x259 + 0.00347374*m.x260 + 0.00358454*m.x261 + 0.000513289*m.x262 + 0.00739902*m.x263 + 0.00499907*m.x264 + 0.00550805*m.x265 + 0.00361742*m.x266 - 0.00468506*m.x267 + 0.00941149*m.x268 + 0.00506394*m.x269 - 0.000575193*m.x270 + 0.00583068*m.x271 + 0.00257751*m.x272 + 0.00615504*m.x273 + 0.00425069*m.x274 + 0.00451846*m.x275 + 0.00704945*m.x276 + 0.00264191*m.x277 + 0.00435042*m.x278 + 0.00377697*m.x279 + 0.00320382*m.x280 + 0.00309988*m.x281 + 0.00412862*m.x282 + 0.00264123*m.x283 + 0.00669612*m.x284 + 0.00461646*m.x285 + 0.0036023*m.x286 - 0.0025638*m.x287 + 0.00488446*m.x288 + 0.00447164*m.x289 + 0.00473894*m.x290 + 0.00741949*m.x291 - 0.00059291*m.x292 + 0.000506587*m.x293 + 0.00202802*m.x294 + 0.00774598*m.x295 + 0.0082126*m.x296 - 0.00437163*m.x297 + 0.00034667*m.x298 + 0.00832302*m.x299 + 0.0112749*m.x300 - 0.00281611*m.x301 + 0.00195298*m.x302 - 0.000375713*m.x303 == 0) m.c244 = Constraint(expr= - m.x139 + 0.00452148*m.x204 + 0.00500082*m.x205 - 0.00112076*m.x206 + 0.0127205*m.x207 + 0.00624337*m.x208 + 0.00313153*m.x209 + 0.00432021*m.x210 - 0.00280484*m.x211 + 0.00373613*m.x212 + 0.00048455*m.x213 + 0.00676388*m.x214 + 0.00427603*m.x215 + 0.00735682*m.x216 + 0.00426163*m.x217 + 0.00677387*m.x218 + 0.0067893*m.x219 + 0.00302394*m.x220 + 0.011369*m.x221 + 0.00539435*m.x222 + 0.00102553*m.x223 + 0.00527967*m.x224 + 0.00221438*m.x225 + 0.00580911*m.x226 + 0.00328455*m.x227 + 0.00652355*m.x228 + 0.00213229*m.x229 + 0.00224695*m.x230 + 0.00479783*m.x231 + 0.0051618*m.x232 + 0.00704842*m.x233 + 0.00125565*m.x234 + 0.00578179*m.x235 + 0.00341855*m.x236 + 0.00824532*m.x237 + 0.00546136*m.x238 + 0.00269327*m.x239 + 0.00681013*m.x240 + 0.032896*m.x241 + 0.00238734*m.x242 + 0.00205187*m.x243 + 0.00348887*m.x244 + 0.00871729*m.x245 + 0.00141435*m.x246 + 0.00274745*m.x247 - 0.00109864*m.x248 + 0.0042909*m.x249 + 0.0039924*m.x250 + 0.000223728*m.x251 + 0.00665241*m.x252 + 0.0109749*m.x253 - 0.00020878*m.x254 + 0.000913669*m.x255 + 0.0037812*m.x256 + 0.00342695*m.x257 + 0.0012954*m.x258 + 0.00902766*m.x259 + 0.00635346*m.x260 + 0.00329425*m.x261 + 0.00481242*m.x262 + 0.00100992*m.x263 + 0.00530761*m.x264 + 0.00606979*m.x265 + 0.00181367*m.x266 + 0.000404166*m.x267 + 0.00199306*m.x268 + 0.00308026*m.x269 + 0.00492292*m.x270 + 0.00326363*m.x271 + 0.00430324*m.x272 + 0.00533161*m.x273 + 0.00508092*m.x274 + 0.000128128*m.x275 + 0.00294995*m.x276 + 0.0033947*m.x277 + 0.00617964*m.x278 + 0.00469332*m.x279 + 0.00171417*m.x280 + 0.00500233*m.x281 + 0.00380334*m.x282 + 0.00381492*m.x283 + 0.00349169*m.x284 + 0.00806328*m.x285 + 0.00248382*m.x286 + 0.00101753*m.x287 + 0.00966172*m.x288 + 0.00687358*m.x289 + 0.00303402*m.x290 + 0.008727*m.x291 + 0.00345779*m.x292 + 0.00402615*m.x293 + 0.000154347*m.x294 + 0.0100018*m.x295 + 0.00342953*m.x296 - 0.000843844*m.x297 + 0.00516692*m.x298 + 0.000320143*m.x299 + 0.00463152*m.x300 - 0.0012355*m.x301 + 0.00336904*m.x302 + 0.00227586*m.x303 == 0) m.c245 = Constraint(expr= - m.x140 + 0.00366834*m.x204 + 0.00579376*m.x205 - 0.00218836*m.x206 + 0.00431059*m.x207 - 0.00066102*m.x208 + 0.000192806*m.x209 + 0.0068693*m.x210 + 0.00478207*m.x211 + 0.0140464*m.x212 - 0.00531909*m.x213 + 0.00233527*m.x214 + 0.00843837*m.x215 - 1.91274E-5*m.x216 + 0.00463458*m.x217 + 0.00202426*m.x218 + 0.00379181*m.x219 + 0.00226701*m.x220 - 0.00581329*m.x221 + 0.00247662*m.x222 + 0.0109513*m.x223 + 0.00112617*m.x224 - 0.00559594*m.x225 + 0.00441704*m.x226 + 0.012679*m.x227 - 0.00113837*m.x228 - 0.00226601*m.x229 - 0.00100575*m.x230 + 0.00280258*m.x231 - 0.00714171*m.x232 + 0.00602321*m.x233 + 0.0122949*m.x234 + 0.00387204*m.x235 - 0.00226294*m.x236 - 0.00154559*m.x237 + 0.00966242*m.x238 - 0.000220811*m.x239 + 0.00156188*m.x240 + 0.00238734*m.x241 + 0.0870554*m.x242 + 0.00323664*m.x243 + 0.00552878*m.x244 + 0.000970258*m.x245 + 0.00655255*m.x246 - 0.00182652*m.x247 + 0.0175505*m.x248 - 0.00564367*m.x249 + 0.00110388*m.x250 + 0.00135794*m.x251 + 0.00288393*m.x252 + 0.000894389*m.x253 - 0.00340572*m.x254 + 0.0231518*m.x255 + 0.00932518*m.x256 + 0.00712405*m.x257 + 0.00147782*m.x258 - 0.000544689*m.x259 + 0.00242014*m.x260 - 0.000399422*m.x261 - 0.0010186*m.x262 + 0.00402009*m.x263 + 0.00907092*m.x264 + 0.00387696*m.x265 + 0.00304921*m.x266 + 0.000493456*m.x267 - 0.000247517*m.x268 + 0.000349729*m.x269 - 6.1818E-5*m.x270 + 0.0011178*m.x271 - 0.00573353*m.x272 - 0.00828959*m.x273 + 0.00226037*m.x274 + 0.00534219*m.x275 + 0.00159989*m.x276 - 0.00222586*m.x277 + 0.0053804*m.x278 + 0.00320131*m.x279 + 0.000418358*m.x280 + 0.00364534*m.x281 + 0.00809556*m.x282 + 0.00378329*m.x283 + 0.00368273*m.x284 + 0.00160903*m.x285 - 0.000963309*m.x286 + 0.000387026*m.x287 - 0.000747807*m.x288 + 0.00119059*m.x289 + 0.00357163*m.x290 + 0.0049149*m.x291 - 0.000828779*m.x292 - 0.00332156*m.x293 + 0.000844659*m.x294 + 0.00455282*m.x295 + 0.0027501*m.x296 + 0.00568815*m.x297 + 0.00312586*m.x298 + 0.00643759*m.x299 + 0.0076711*m.x300 - 0.00311771*m.x301 + 0.000316259*m.x302 - 0.000648959*m.x303 == 0) m.c246 = Constraint(expr= - m.x141 + 0.00592328*m.x204 + 0.0033232*m.x205 - 0.000304719*m.x206 + 0.00271535*m.x207 + 0.00539504*m.x208 + 0.00566827*m.x209 + 0.00261587*m.x210 - 0.00021402*m.x211 + 0.000586315*m.x212 - 0.000873781*m.x213 + 0.00504678*m.x214 + 0.00429264*m.x215 + 0.00401842*m.x216 + 0.00908995*m.x217 + 0.0050502*m.x218 + 0.00278355*m.x219 - 0.00141664*m.x220 + 0.00404015*m.x221 + 0.00595035*m.x222 + 0.00258678*m.x223 + 0.00444472*m.x224 + 0.0047004*m.x225 + 0.00542603*m.x226 + 0.0031031*m.x227 + 0.00241285*m.x228 - 8.92046E-5*m.x229 + 0.00175842*m.x230 + 0.00239177*m.x231 - 0.00139437*m.x232 + 0.00375983*m.x233 + 0.00508627*m.x234 + 0.00248171*m.x235 + 0.00208303*m.x236 + 0.00822121*m.x237 + 0.0048235*m.x238 + 0.00310296*m.x239 + 0.00309487*m.x240 + 0.00205187*m.x241 + 0.00323664*m.x242 + 0.0284839*m.x243 + 0.00398656*m.x244 + 0.00674147*m.x245 - 0.000440194*m.x246 + 0.00333395*m.x247 + 0.00339227*m.x248 + 0.00216846*m.x249 + 0.0060672*m.x250 + 0.00195896*m.x251 + 0.00250112*m.x252 + 0.00342576*m.x253 - 0.000387287*m.x254 + 0.000121531*m.x255 + 0.00270791*m.x256 + 0.00249349*m.x257 + 0.00562279*m.x258 + 0.00307201*m.x259 + 0.00538657*m.x260 + 0.00391396*m.x261 - 0.00159432*m.x262 + 0.00192515*m.x263 + 0.0041524*m.x264 + 0.00171382*m.x265 + 0.00400573*m.x266 + 0.000351314*m.x267 + 0.00222305*m.x268 + 0.00506636*m.x269 + 0.00339671*m.x270 + 0.00640579*m.x271 + 0.000454124*m.x272 - 0.000205968*m.x273 + 0.00175952*m.x274 + 0.00448064*m.x275 + 0.00382583*m.x276 + 0.00466981*m.x277 + 0.00641732*m.x278 + 0.0117164*m.x279 + 0.0044896*m.x280 + 0.00543249*m.x281 + 0.00297247*m.x282 + 0.00569595*m.x283 + 0.001847*m.x284 + 2.32746E-5*m.x285 + 0.00157998*m.x286 + 0.00521645*m.x287 + 0.00442051*m.x288 + 0.00558644*m.x289 + 0.00249097*m.x290 + 0.00567517*m.x291 + 0.00151899*m.x292 + 0.00425113*m.x293 + 0.000283697*m.x294 + 0.00430656*m.x295 + 0.00315729*m.x296 + 0.00297396*m.x297 + 0.00597381*m.x298 + 0.00713407*m.x299 + 0.00444173*m.x300 - 0.00372007*m.x301 + 0.00227586*m.x302 + 0.00205933*m.x303 == 0) m.c247 = Constraint(expr= - m.x142 + 0.00503367*m.x204 + 0.00493974*m.x205 + 0.00236864*m.x206 + 0.00301995*m.x207 + 0.0051422*m.x208 - 0.00114024*m.x209 + 0.000712154*m.x210 + 0.00344966*m.x211 + 0.00323884*m.x212 + 0.00339704*m.x213 + 0.00322689*m.x214 - 0.00287625*m.x215 + 0.00871044*m.x216 + 0.0117519*m.x217 + 0.00960388*m.x218 + 0.00683784*m.x219 + 0.0117404*m.x220 + 0.00827466*m.x221 + 0.00389459*m.x222 + 0.00290544*m.x223 - 0.00275351*m.x224 + 0.0138343*m.x225 + 0.00190962*m.x226 + 0.00313438*m.x227 + 0.00338711*m.x228 + 0.0128103*m.x229 + 0.00279507*m.x230 + 0.00553645*m.x231 - 0.00161511*m.x232 + 0.000464103*m.x233 - 0.000247882*m.x234 + 0.0124245*m.x235 + 0.00301773*m.x236 + 0.0020747*m.x237 + 0.000350009*m.x238 + 0.00545946*m.x239 + 0.00872817*m.x240 + 0.00348887*m.x241 + 0.00552878*m.x242 + 0.00398656*m.x243 + 0.122694*m.x244 + 0.00178011*m.x245 + 0.00327609*m.x246 - 0.00135254*m.x247 + 0.0166665*m.x248 - 0.000715736*m.x249 + 0.00244895*m.x250 + 0.00980088*m.x251 + 0.00710031*m.x252 + 0.00623048*m.x253 + 0.00150226*m.x254 + 0.00314883*m.x255 - 0.00202199*m.x256 + 0.00535529*m.x257 - 0.000606735*m.x258 + 0.00976436*m.x259 + 0.00469016*m.x260 + 0.0113975*m.x261 + 0.00680033*m.x262 - 0.00297392*m.x263 + 0.00512496*m.x264 + 0.00566131*m.x265 - 0.00340962*m.x266 + 3.23772E-5*m.x267 + 0.00288722*m.x268 - 0.00118633*m.x269 + 0.00128347*m.x270 + 0.00976189*m.x271 - 0.00394866*m.x272 + 0.0292476*m.x273 + 0.00482129*m.x274 + 0.0197985*m.x275 - 0.00202513*m.x276 + 0.00768395*m.x277 + 0.00245073*m.x278 + 0.0074376*m.x279 + 0.00257063*m.x280 + 0.00619385*m.x281 + 0.000995878*m.x282 - 0.000313695*m.x283 - 0.000172475*m.x284 + 0.00144712*m.x285 - 0.000953639*m.x286 + 0.00753955*m.x287 + 0.00801224*m.x288 + 0.0112013*m.x289 + 0.00334346*m.x290 - 0.0105804*m.x291 + 0.00626909*m.x292 + 0.000678624*m.x293 + 0.00452262*m.x294 + 0.00404098*m.x295 + 0.00307669*m.x296 + 0.00364193*m.x297 + 0.00434876*m.x298 + 0.0116213*m.x299 + 0.0135054*m.x300 + 0.00150838*m.x301 + 0.00321772*m.x302 + 0.00468832*m.x303 == 0) m.c248 = Constraint(expr= - m.x143 + 0.00629207*m.x204 + 1.72372E-5*m.x205 - 0.0019383*m.x206 + 0.00485894*m.x207 + 0.0159499*m.x208 + 0.0104584*m.x209 + 0.00243149*m.x210 + 0.000269359*m.x211 - 0.00103573*m.x212 + 0.00996659*m.x213 + 0.00189672*m.x214 + 0.00281472*m.x215 + 0.00642735*m.x216 + 0.00671356*m.x217 + 0.00401854*m.x218 + 0.0019748*m.x219 + 0.00452128*m.x220 + 0.0016263*m.x221 + 0.00755471*m.x222 + 0.00906206*m.x223 - 0.000966969*m.x224 + 0.0105566*m.x225 + 0.0100735*m.x226 + 0.00142819*m.x227 - 0.000552305*m.x228 + 0.00497409*m.x229 + 0.00733365*m.x230 - 0.00098498*m.x231 + 0.00197381*m.x232 + 0.014905*m.x233 - 0.000117636*m.x234 + 0.00458518*m.x235 + 0.00794854*m.x236 + 0.00528007*m.x237 + 0.00928938*m.x238 + 0.00372702*m.x239 + 0.00536076*m.x240 + 0.00871729*m.x241 + 0.000970258*m.x242 + 0.00674147*m.x243 + 0.00178011*m.x244 + 0.045031*m.x245 + 0.00113112*m.x246 + 0.00291832*m.x247 + 0.00780343*m.x248 + 0.00217772*m.x249 + 0.0059976*m.x250 + 0.00294803*m.x251 + 0.00552272*m.x252 + 0.00800356*m.x253 + 0.00202451*m.x254 + 0.00875321*m.x255 + 0.00341817*m.x256 + 0.00331148*m.x257 + 0.00151183*m.x258 + 0.0063979*m.x259 + 0.00583129*m.x260 - 0.00449059*m.x261 - 0.000373896*m.x262 + 0.00465423*m.x263 + 0.00129105*m.x264 + 0.00312652*m.x265 - 0.000646819*m.x266 - 0.00214428*m.x267 + 0.00609509*m.x268 + 0.00587685*m.x269 + 0.00191072*m.x270 + 0.000970672*m.x271 + 0.0045212*m.x272 - 0.00264895*m.x273 - 0.00122455*m.x274 - 0.00157959*m.x275 + 0.00243935*m.x276 + 0.000446619*m.x277 + 0.00507279*m.x278 + 0.00996305*m.x279 + 0.00582409*m.x280 + 0.0100077*m.x281 + 0.00713668*m.x282 - 0.00695821*m.x283 + 0.00804511*m.x284 + 0.0045584*m.x285 + 0.00879099*m.x286 + 0.00389765*m.x287 + 0.0126359*m.x288 + 0.00467816*m.x289 + 0.00586578*m.x290 + 0.0112814*m.x291 + 0.00718189*m.x292 + 0.00473931*m.x293 + 0.0022565*m.x294 + 0.00361341*m.x295 + 0.00304548*m.x296 - 0.000971214*m.x297 + 0.00232343*m.x298 + 0.0058115*m.x299 + 0.000485725*m.x300 - 0.000130592*m.x301 + 0.0045291*m.x302 + 0.00868416*m.x303 == 0) m.c249 = Constraint(expr= - m.x144 + 0.00300993*m.x204 - 0.00634068*m.x205 - 0.00295089*m.x206 + 0.0039211*m.x207 + 0.00287456*m.x208 - 0.00156619*m.x209 + 0.00586835*m.x210 - 0.00135088*m.x211 + 0.0103013*m.x212 - 0.000797116*m.x213 + 0.00650083*m.x214 + 0.00128983*m.x215 + 0.000216218*m.x216 + 0.00521873*m.x217 + 0.00364998*m.x218 + 0.00480092*m.x219 + 0.00358318*m.x220 - 0.00553215*m.x221 - 0.00116895*m.x222 - 0.00365224*m.x223 - 0.00122748*m.x224 - 0.00509823*m.x225 + 0.00630679*m.x226 + 0.00271139*m.x227 - 0.00210153*m.x228 + 5.78589E-5*m.x229 + 0.00189734*m.x230 + 0.00456291*m.x231 - 0.00298086*m.x232 + 0.0143482*m.x233 - 0.00101212*m.x234 + 0.00111236*m.x235 + 0.00558802*m.x236 + 0.00021007*m.x237 + 0.000130711*m.x238 - 0.000760636*m.x239 - 0.00233255*m.x240 + 0.00141435*m.x241 + 0.00655255*m.x242 - 0.000440194*m.x243 + 0.00327609*m.x244 + 0.00113112*m.x245 + 0.0741366*m.x246 - 0.00360297*m.x247 + 0.00475321*m.x248 + 0.00490204*m.x249 + 0.00645328*m.x250 + 0.0235477*m.x251 + 0.00185295*m.x252 - 0.00270753*m.x253 + 0.00282259*m.x254 - 0.0028989*m.x255 - 0.00279501*m.x256 + 0.00423442*m.x257 + 0.00201357*m.x258 + 0.00221836*m.x259 - 0.000338874*m.x260 + 0.000811554*m.x261 - 0.00415921*m.x262 + 0.0080163*m.x263 + 0.00486963*m.x264 - 0.0011072*m.x265 - 0.00201067*m.x266 + 0.000797127*m.x267 + 0.00333299*m.x268 + 0.0013567*m.x269 + 0.000671953*m.x270 + 0.00337629*m.x271 + 0.000207882*m.x272 - 0.00430941*m.x273 + 0.00263722*m.x274 + 0.0157715*m.x275 - 0.00241116*m.x276 + 0.000537603*m.x277 - 0.00425708*m.x278 + 0.00705762*m.x279 - 0.000639079*m.x280 + 0.00378279*m.x281 + 0.00244117*m.x282 + 0.00776276*m.x283 - 0.000311621*m.x284 - 0.0011604*m.x285 + 0.000185014*m.x286 + 0.00122307*m.x287 + 0.0034865*m.x288 + 0.00960237*m.x289 - 0.00545954*m.x290 - 0.000788822*m.x291 + 0.000621542*m.x292 + 8.36128E-5*m.x293 + 0.00413836*m.x294 - 0.000118642*m.x295 + 0.00364867*m.x296 - 0.00345963*m.x297 + 0.000712721*m.x298 + 0.00228836*m.x299 - 0.00517211*m.x300 + 0.00524662*m.x301 + 0.00987378*m.x302 - 0.00153163*m.x303 == 0) m.c250 = Constraint(expr= - m.x145 - 0.00042207*m.x204 + 0.00394893*m.x205 - 0.00106603*m.x206 + 0.00224879*m.x207 + 0.00538495*m.x208 + 0.00492319*m.x209 + 0.00190637*m.x210 + 0.00131418*m.x211 - 0.000803836*m.x212 + 0.000489977*m.x213 - 0.00223977*m.x214 + 0.0031567*m.x215 + 0.00432057*m.x216 - 0.000963126*m.x217 + 0.00338155*m.x218 + 0.00282204*m.x219 + 0.00160858*m.x220 + 0.00219745*m.x221 + 0.00510849*m.x222 + 0.00129769*m.x223 - 0.000508322*m.x224 - 0.00028965*m.x225 + 0.00288469*m.x226 + 0.00117205*m.x227 + 0.000948894*m.x228 - 0.00235449*m.x229 - 0.00087259*m.x230 + 0.00077635*m.x231 + 0.00139431*m.x232 + 0.00419847*m.x233 - 0.00163422*m.x234 + 0.00175884*m.x235 - 0.000174917*m.x236 + 0.00412244*m.x237 - 0.0013095*m.x238 + 0.00381839*m.x239 - 0.00284383*m.x240 + 0.00274745*m.x241 - 0.00182652*m.x242 + 0.00333395*m.x243 - 0.00135254*m.x244 + 0.00291832*m.x245 - 0.00360297*m.x246 + 0.0304025*m.x247 + 0.00257258*m.x248 + 0.00793062*m.x249 + 0.00225214*m.x250 + 0.00173381*m.x251 + 0.0025893*m.x252 + 0.00146414*m.x253 + 0.00619079*m.x254 - 0.000522178*m.x255 + 0.00121952*m.x256 + 0.000349511*m.x257 + 0.000972283*m.x258 + 0.00145449*m.x259 - 0.000489457*m.x260 + 2.38348E-5*m.x261 + 0.000570035*m.x262 + 0.00228208*m.x263 + 0.00212064*m.x264 + 0.00363109*m.x265 + 0.000619034*m.x266 - 0.000860656*m.x267 + 0.00340102*m.x268 - 0.00197937*m.x269 + 0.000621111*m.x270 + 0.00199323*m.x271 + 0.00314636*m.x272 - 0.000650527*m.x273 + 0.00194261*m.x274 - 0.00321407*m.x275 + 0.000171403*m.x276 + 0.00364979*m.x277 + 0.00485946*m.x278 + 0.00796772*m.x279 + 0.00166603*m.x280 + 0.00349167*m.x281 - 0.000466954*m.x282 - 0.00100195*m.x283 + 0.00342181*m.x284 + 0.00300422*m.x285 - 0.00124986*m.x286 - 5.94885E-5*m.x287 + 0.00328713*m.x288 + 0.00273221*m.x289 + 0.00345779*m.x290 + 0.00419154*m.x291 + 0.00399493*m.x292 + 0.00448916*m.x293 + 0.00118132*m.x294 - 0.00106048*m.x295 + 0.00275687*m.x296 - 0.00193635*m.x297 + 0.0035958*m.x298 - 0.000537039*m.x299 - 0.000271199*m.x300 - 0.00288422*m.x301 + 0.00223441*m.x302 + 0.00280782*m.x303 == 0) m.c251 = Constraint(expr= - m.x146 + 0.0126161*m.x204 + 0.02189*m.x205 + 2.7433E-5*m.x206 + 0.00711934*m.x207 + 0.00440483*m.x208 + 0.00205128*m.x209 + 0.00522821*m.x210 - 0.000872693*m.x211 + 0.0174386*m.x212 + 0.00793697*m.x213 - 0.00874611*m.x214 - 0.00283528*m.x215 + 0.012225*m.x216 + 0.0115852*m.x217 + 0.0027102*m.x218 + 0.00606924*m.x219 + 0.00917394*m.x220 + 0.0156491*m.x221 + 0.0187115*m.x222 + 0.0109855*m.x223 + 0.000118632*m.x224 + 0.0223632*m.x225 - 0.000683767*m.x226 - 0.00385233*m.x227 + 0.00106856*m.x228 + 0.00327571*m.x229 + 0.00913902*m.x230 + 0.00142627*m.x231 + 0.000596885*m.x232 + 0.00136868*m.x233 + 0.00938261*m.x234 + 0.00193995*m.x235 - 0.00127938*m.x236 + 0.00363406*m.x237 + 0.0163399*m.x238 + 0.00413739*m.x239 + 0.00442326*m.x240 - 0.00109864*m.x241 + 0.0175505*m.x242 + 0.00339227*m.x243 + 0.0166665*m.x244 + 0.00780343*m.x245 + 0.00475321*m.x246 + 0.00257258*m.x247 + 0.333543*m.x248 + 0.00602288*m.x249 + 0.00486385*m.x250 + 0.0409265*m.x251 + 0.00666557*m.x252 + 0.00172096*m.x253 + 0.00148516*m.x254 + 0.00818338*m.x255 + 0.00375999*m.x256 + 0.00892913*m.x257 + 0.00635127*m.x258 + 0.00310111*m.x259 + 0.0023572*m.x260 - 0.0124136*m.x261 - 0.00282737*m.x262 + 0.00109311*m.x263 + 0.0171055*m.x264 - 0.000546877*m.x265 - 0.00127115*m.x266 - 0.00882959*m.x267 + 0.00370779*m.x268 + 0.00220942*m.x269 - 0.0007257*m.x270 + 0.000362512*m.x271 + 0.000666346*m.x272 + 0.00537778*m.x273 + 0.00435506*m.x274 + 0.0289633*m.x275 - 0.00793056*m.x276 - 0.00124997*m.x277 + 0.00600917*m.x278 + 0.00654889*m.x279 + 0.0013566*m.x280 + 0.0145382*m.x281 + 0.00753084*m.x282 + 0.000994392*m.x283 - 0.0010613*m.x284 + 0.00748896*m.x285 + 0.0112013*m.x286 + 0.00952063*m.x287 - 0.00220101*m.x288 + 0.00611291*m.x289 - 0.00609654*m.x290 + 0.000316901*m.x291 + 0.00160516*m.x292 + 0.00470546*m.x293 - 0.00380484*m.x294 - 0.00603313*m.x295 + 0.00178999*m.x296 + 0.017123*m.x297 + 0.00424638*m.x298 + 0.0127695*m.x299 + 0.00599775*m.x300 + 0.0107649*m.x301 + 0.00273511*m.x302 + 0.00174594*m.x303 == 0) m.c252 = Constraint(expr= - m.x147 + 0.000539029*m.x204 - 0.00142123*m.x205 - 0.00324286*m.x206 + 0.000965714*m.x207 - 0.000705455*m.x208 + 0.0034346*m.x209 + 0.000518417*m.x210 + 0.000448292*m.x211 + 0.00274013*m.x212 - 0.00236638*m.x213 - 0.00176148*m.x214 + 0.00355332*m.x215 + 0.00282004*m.x216 + 0.00378529*m.x217 + 0.00285381*m.x218 + 0.0066067*m.x219 + 0.0035766*m.x220 + 0.00559342*m.x221 + 0.000813106*m.x222 - 2.44696E-5*m.x223 + 0.00252467*m.x224 + 0.00169098*m.x225 + 0.00438943*m.x226 + 0.00138166*m.x227 + 0.00241905*m.x228 - 0.00357096*m.x229 + 0.000648204*m.x230 + 0.00217757*m.x231 - 0.000173936*m.x232 + 3.95557E-5*m.x233 + 0.00048899*m.x234 + 0.00582795*m.x235 - 0.000380482*m.x236 + 0.0025062*m.x237 + 0.00412922*m.x238 + 0.00695501*m.x239 + 0.00224652*m.x240 + 0.0042909*m.x241 - 0.00564367*m.x242 + 0.00216846*m.x243 - 0.000715736*m.x244 + 0.00217772*m.x245 + 0.00490204*m.x246 + 0.00793062*m.x247 + 0.00602288*m.x248 + 0.0286408*m.x249 + 0.00321708*m.x250 - 0.000649104*m.x251 + 0.00220265*m.x252 + 0.000192602*m.x253 + 0.0056319*m.x254 + 0.00468117*m.x255 - 0.000284323*m.x256 + 0.00172826*m.x257 + 0.00393731*m.x258 + 0.00193608*m.x259 + 0.00419589*m.x260 + 0.000305111*m.x261 - 0.000836327*m.x262 + 0.00132171*m.x263 + 0.00254184*m.x264 + 0.00434758*m.x265 - 0.000143504*m.x266 - 0.00324401*m.x267 + 0.00241411*m.x268 - 0.000256307*m.x269 + 0.00117147*m.x270 + 0.000577468*m.x271 + 0.00154811*m.x272 - 0.000768089*m.x273 + 0.00319599*m.x274 + 0.00303778*m.x275 + 0.00128681*m.x276 + 0.000718747*m.x277 - 0.000691613*m.x278 + 0.0060368*m.x279 + 0.000899485*m.x280 + 0.00663248*m.x281 + 0.0010729*m.x282 + 0.006249*m.x283 + 0.00265281*m.x284 + 0.00400057*m.x285 - 0.00122283*m.x286 + 0.000588542*m.x287 + 0.00328499*m.x288 + 0.000580561*m.x289 + 0.000227831*m.x290 + 0.0066509*m.x291 + 0.00019791*m.x292 + 0.00589171*m.x293 - 0.000623163*m.x294 - 7.87584E-5*m.x295 + 0.00213016*m.x296 - 0.00403433*m.x297 + 0.00423746*m.x298 + 0.00337871*m.x299 + 0.00204417*m.x300 + 0.00449024*m.x301 + 0.00140987*m.x302 + 0.00259129*m.x303 == 0) m.c253 = Constraint(expr= - m.x148 + 0.00171572*m.x204 + 0.000952018*m.x205 + 0.0057922*m.x206 + 0.00724404*m.x207 + 0.00591159*m.x208 + 0.00340814*m.x209 + 0.00229506*m.x210 - 0.00207556*m.x211 + 0.00199163*m.x212 + 0.00351492*m.x213 + 0.00162467*m.x214 + 0.00303711*m.x215 + 0.0010868*m.x216 + 0.00266115*m.x217 + 0.00231984*m.x218 + 0.00683528*m.x219 + 0.00328833*m.x220 + 0.000136349*m.x221 + 0.0030329*m.x222 - 0.00162389*m.x223 + 0.00317859*m.x224 + 0.00143324*m.x225 + 0.00306698*m.x226 + 0.001371*m.x227 + 0.00317936*m.x228 - 0.0014774*m.x229 + 0.00369376*m.x230 + 0.00191957*m.x231 + 0.00262989*m.x232 + 0.0072304*m.x233 + 0.00273794*m.x234 + 0.00221714*m.x235 + 0.0022927*m.x236 + 0.00352758*m.x237 + 0.00247137*m.x238 + 0.0028489*m.x239 + 0.000464028*m.x240 + 0.0039924*m.x241 + 0.00110388*m.x242 + 0.0060672*m.x243 + 0.00244895*m.x244 + 0.0059976*m.x245 + 0.00645328*m.x246 + 0.00225214*m.x247 + 0.00486385*m.x248 + 0.00321708*m.x249 + 0.0326124*m.x250 + 0.00473313*m.x251 + 0.00461718*m.x252 + 0.0068865*m.x253 + 0.00250704*m.x254 + 0.00606702*m.x255 + 0.000219255*m.x256 + 0.00287223*m.x257 + 0.00250699*m.x258 + 0.00176811*m.x259 + 0.00192979*m.x260 + 2.4776E-5*m.x261 - 0.000659325*m.x262 + 0.00468844*m.x263 + 0.00480861*m.x264 + 0.00487248*m.x265 - 0.00220491*m.x266 - 0.00289289*m.x267 + 0.00758561*m.x268 + 0.00350318*m.x269 + 0.0034932*m.x270 + 0.00414106*m.x271 - 0.000776536*m.x272 - 0.00326844*m.x273 + 0.00321975*m.x274 + 0.00511975*m.x275 + 0.0018167*m.x276 + 0.0015802*m.x277 + 0.00532914*m.x278 + 0.0052332*m.x279 + 0.00121475*m.x280 + 0.00220381*m.x281 + 0.00145566*m.x282 - 0.000197051*m.x283 + 0.00302341*m.x284 + 0.00322867*m.x285 + 0.0042178*m.x286 - 0.00044828*m.x287 + 0.00548425*m.x288 + 0.00168605*m.x289 - 0.000888688*m.x290 + 0.004772*m.x291 + 0.000505019*m.x292 + 0.00313289*m.x293 + 0.00119693*m.x294 + 0.00445284*m.x295 + 0.00521004*m.x296 - 0.00282173*m.x297 + 0.00291792*m.x298 - 0.000120553*m.x299 + 0.000967824*m.x300 + 0.000698762*m.x301 + 0.00432741*m.x302 + 0.00166067*m.x303 == 0) m.c254 = Constraint(expr= - m.x149 + 0.00871066*m.x204 - 0.000699597*m.x205 + 0.0166603*m.x206 + 0.00718655*m.x207 + 0.00637504*m.x208 + 0.00910415*m.x209 - 0.000868046*m.x210 - 0.00135891*m.x211 + 0.0121972*m.x212 + 0.0269972*m.x213 + 0.00683673*m.x214 + 0.00993462*m.x215 + 0.00141579*m.x216 + 0.0140797*m.x217 + 0.00363014*m.x218 + 0.000969236*m.x219 + 0.00340781*m.x220 + 0.0130438*m.x221 + 0.0177681*m.x222 + 0.00351454*m.x223 - 0.00620603*m.x224 + 0.0060925*m.x225 + 0.0140371*m.x226 + 0.00194706*m.x227 + 0.00580385*m.x228 - 0.000131234*m.x229 - 0.00141307*m.x230 + 0.0115101*m.x231 + 0.00163586*m.x232 + 0.0127117*m.x233 + 0.0081173*m.x234 + 0.00143776*m.x235 + 0.0147001*m.x236 + 0.00268179*m.x237 + 0.00232468*m.x238 + 0.00397424*m.x239 + 0.00563646*m.x240 + 0.000223728*m.x241 + 0.00135794*m.x242 + 0.00195896*m.x243 + 0.00980088*m.x244 + 0.00294803*m.x245 + 0.0235477*m.x246 + 0.00173381*m.x247 + 0.0409265*m.x248 - 0.000649104*m.x249 + 0.00473313*m.x250 + 0.212813*m.x251 - 0.00571772*m.x252 - 9.80108E-5*m.x253 + 0.000713594*m.x254 - 0.000291411*m.x255 - 0.0028928*m.x256 + 0.00849788*m.x257 - 0.00393003*m.x258 + 0.0144913*m.x259 - 0.00133849*m.x260 - 0.00262538*m.x261 + 0.0025511*m.x262 + 0.0304485*m.x263 + 0.00172909*m.x264 - 0.00455718*m.x265 - 0.000349801*m.x266 - 0.010277*m.x267 - 0.00203947*m.x268 + 0.00647039*m.x269 - 0.000334806*m.x270 - 0.000679271*m.x271 + 0.0102058*m.x272 + 0.0132501*m.x273 + 0.00894547*m.x274 + 0.0211536*m.x275 - 0.000443774*m.x276 + 0.00327277*m.x277 + 0.00786226*m.x278 + 0.00909273*m.x279 + 0.0049413*m.x280 + 0.00400317*m.x281 - 0.00680418*m.x282 + 0.0137323*m.x283 + 0.00633139*m.x284 - 5.13418E-5*m.x285 + 0.0162123*m.x286 + 0.00880031*m.x287 - 0.00234105*m.x288 + 0.00247115*m.x289 + 0.00278431*m.x290 + 0.00463181*m.x291 + 0.00075518*m.x292 - 0.00287996*m.x293 - 0.00533256*m.x294 - 0.00290057*m.x295 - 0.000529075*m.x296 + 0.000979263*m.x297 + 0.00309003*m.x298 + 0.00415618*m.x299 + 0.00182144*m.x300 + 0.00336642*m.x301 + 0.000262547*m.x302 - 0.000847169*m.x303 == 0) m.c255 = Constraint(expr= - m.x150 - 0.000658519*m.x204 + 0.00166555*m.x205 - 0.000651147*m.x206 + 0.00872243*m.x207 + 0.00572145*m.x208 + 0.00203269*m.x209 + 0.00175605*m.x210 - 0.00277333*m.x211 + 5.78285E-5*m.x212 + 0.0035179*m.x213 + 0.000473999*m.x214 + 0.00342858*m.x215 + 0.00220267*m.x216 + 0.00578554*m.x217 + 0.00842352*m.x218 + 0.00589067*m.x219 + 0.00725086*m.x220 + 0.00351709*m.x221 + 0.0056051*m.x222 - 0.00101164*m.x223 + 4.22193E-5*m.x224 - 0.00143233*m.x225 + 0.00404018*m.x226 + 0.000567011*m.x227 + 0.00417651*m.x228 + 0.00076644*m.x229 - 0.00209444*m.x230 - 0.000945371*m.x231 + 0.000879524*m.x232 + 0.00781209*m.x233 + 0.00159047*m.x234 + 0.00796665*m.x235 - 0.000690034*m.x236 + 0.0017263*m.x237 + 0.00329108*m.x238 - 0.00183251*m.x239 + 0.0023205*m.x240 + 0.00665241*m.x241 + 0.00288393*m.x242 + 0.00250112*m.x243 + 0.00710031*m.x244 + 0.00552272*m.x245 + 0.00185295*m.x246 + 0.0025893*m.x247 + 0.00666557*m.x248 + 0.00220265*m.x249 + 0.00461718*m.x250 - 0.00571772*m.x251 + 0.0297052*m.x252 + 0.0133063*m.x253 + 0.00512875*m.x254 + 0.00511319*m.x255 + 0.00128142*m.x256 + 0.0011758*m.x257 + 0.000185703*m.x258 + 0.000807728*m.x259 + 0.00482243*m.x260 + 0.00671943*m.x261 + 0.0024249*m.x262 - 0.00576356*m.x263 + 0.00615053*m.x264 + 0.00457997*m.x265 + 0.00116129*m.x266 - 0.00334468*m.x267 - 0.00177309*m.x268 + 0.00135912*m.x269 + 0.0055357*m.x270 + 0.00211564*m.x271 + 0.0010794*m.x272 + 0.00192198*m.x273 + 0.00189277*m.x274 + 0.00643706*m.x275 + 0.00398105*m.x276 + 0.000745003*m.x277 + 0.00524394*m.x278 + 0.00240223*m.x279 + 0.00282459*m.x280 + 0.00472739*m.x281 + 0.000794467*m.x282 + 0.00387197*m.x283 + 0.00198803*m.x284 + 0.00165035*m.x285 + 0.00321866*m.x286 + 0.000171898*m.x287 + 0.00933104*m.x288 + 0.00315924*m.x289 + 0.00241389*m.x290 + 0.00336441*m.x291 + 4.30958E-5*m.x292 + 0.00271535*m.x293 + 0.00462087*m.x294 + 0.00710323*m.x295 + 0.000902586*m.x296 + 0.00233291*m.x297 + 0.00342174*m.x298 + 0.00618718*m.x299 + 0.00291333*m.x300 - 0.00120359*m.x301 + 0.00135234*m.x302 - 0.000351985*m.x303 == 0) m.c256 = Constraint(expr= - m.x151 + 0.00632557*m.x204 + 0.00413697*m.x205 + 0.0025737*m.x206 + 0.00911811*m.x207 + 0.00369485*m.x208 - 0.000620515*m.x209 + 0.00453298*m.x210 + 0.00257709*m.x211 - 0.003034*m.x212 + 0.00199006*m.x213 + 0.00469908*m.x214 + 0.00462163*m.x215 + 0.00354208*m.x216 + 0.00521587*m.x217 + 0.00670307*m.x218 + 0.0039247*m.x219 + 0.00486144*m.x220 + 0.00107063*m.x221 - 0.0012575*m.x222 + 0.00584599*m.x223 + 0.000472764*m.x224 + 0.00043714*m.x225 + 0.00262736*m.x226 + 0.0025858*m.x227 + 0.00240856*m.x228 + 0.0033869*m.x229 + 0.000886721*m.x230 - 0.0071917*m.x231 + 0.00125037*m.x232 + 0.00489662*m.x233 + 0.00666147*m.x234 + 0.00687732*m.x235 - 0.00340535*m.x236 + 0.0110796*m.x237 - 0.00197335*m.x238 + 0.00181348*m.x239 + 0.00368711*m.x240 + 0.0109749*m.x241 + 0.000894389*m.x242 + 0.00342576*m.x243 + 0.00623048*m.x244 + 0.00800356*m.x245 - 0.00270753*m.x246 + 0.00146414*m.x247 + 0.00172096*m.x248 + 0.000192602*m.x249 + 0.0068865*m.x250 - 9.80108E-5*m.x251 + 0.0133063*m.x252 + 0.0509447*m.x253 - 0.000905573*m.x254 + 0.00584973*m.x255 + 0.00164159*m.x256 + 0.00170257*m.x257 + 0.00491697*m.x258 + 0.00333082*m.x259 + 0.00312286*m.x260 + 0.00513272*m.x261 + 0.00511337*m.x262 + 0.00111281*m.x263 + 0.00524869*m.x264 + 0.00756756*m.x265 + 0.00467689*m.x266 - 0.00212043*m.x267 - 0.000146116*m.x268 + 0.00271306*m.x269 + 0.00797013*m.x270 + 0.00107585*m.x271 + 0.00588583*m.x272 + 0.00326447*m.x273 + 0.000829669*m.x274 + 0.00442436*m.x275 + 0.00505109*m.x276 + 0.00575919*m.x277 + 0.00235758*m.x278 + 0.00674287*m.x279 + 0.0017513*m.x280 + 0.00529534*m.x281 + 0.00205383*m.x282 + 0.00641984*m.x283 + 0.00684435*m.x284 + 0.00461578*m.x285 + 0.0119365*m.x286 + 0.00806339*m.x287 + 0.0103044*m.x288 + 0.00439893*m.x289 + 0.00688742*m.x290 + 0.00194067*m.x291 + 0.00365679*m.x292 + 0.000101984*m.x293 + 0.00583528*m.x294 + 0.00511653*m.x295 + 0.00527957*m.x296 + 0.00036941*m.x297 + 0.0020713*m.x298 + 0.00787258*m.x299 + 0.00426053*m.x300 - 0.00268282*m.x301 + 0.0035967*m.x302 + 0.0019922*m.x303 == 0) m.c257 = Constraint(expr= - m.x152 - 1.12481E-5*m.x204 + 0.0028476*m.x205 + 0.00277017*m.x206 + 0.000986175*m.x207 + 0.00550813*m.x208 + 0.00733867*m.x209 + 0.000256242*m.x210 + 0.00198123*m.x211 - 0.00256942*m.x212 + 0.00140166*m.x213 + 0.00361612*m.x214 + 0.000325927*m.x215 + 0.00742831*m.x216 + 0.00590839*m.x217 + 0.00139386*m.x218 + 0.0022817*m.x219 + 0.0037492*m.x220 - 0.00237286*m.x221 + 0.000154419*m.x222 + 0.00280841*m.x223 + 0.00178849*m.x224 - 0.00162284*m.x225 + 0.00352108*m.x226 + 0.00360694*m.x227 - 0.000398367*m.x228 - 0.00261102*m.x229 - 0.00204134*m.x230 + 0.00172599*m.x231 + 0.00165426*m.x232 + 0.000468232*m.x233 - 0.000935815*m.x234 + 0.00952368*m.x235 - 0.00483173*m.x236 + 0.00388802*m.x237 + 0.000239144*m.x238 - 0.00235222*m.x239 + 0.00446507*m.x240 - 0.00020878*m.x241 - 0.00340572*m.x242 - 0.000387287*m.x243 + 0.00150226*m.x244 + 0.00202451*m.x245 + 0.00282259*m.x246 + 0.00619079*m.x247 + 0.00148516*m.x248 + 0.0056319*m.x249 + 0.00250704*m.x250 + 0.000713594*m.x251 + 0.00512875*m.x252 - 0.000905573*m.x253 + 0.035183*m.x254 + 0.00386613*m.x255 - 0.00135527*m.x256 + 0.000782363*m.x257 + 0.00154289*m.x258 + 0.000170573*m.x259 - 1.5116E-5*m.x260 + 0.00158604*m.x261 + 0.00141472*m.x262 + 0.00398684*m.x263 + 0.00758869*m.x264 + 0.00417238*m.x265 - 0.00108104*m.x266 - 0.00298459*m.x267 - 0.00134772*m.x268 + 0.000740512*m.x269 - 0.000683822*m.x270 + 0.00203828*m.x271 + 0.00143493*m.x272 - 0.00250979*m.x273 + 0.000544328*m.x274 - 0.0016811*m.x275 + 0.000307144*m.x276 + 0.00312743*m.x277 - 0.000215375*m.x278 + 0.00123286*m.x279 + 0.00131588*m.x280 + 0.00669716*m.x281 - 0.000981274*m.x282 + 0.00185637*m.x283 + 0.00200309*m.x284 + 0.00274343*m.x285 + 0.00419778*m.x286 + 0.0011744*m.x287 + 0.000952343*m.x288 + 0.00341538*m.x289 - 0.00226972*m.x290 + 0.00121543*m.x291 + 0.00119416*m.x292 + 0.00550828*m.x293 + 0.00304948*m.x294 + 0.00596306*m.x295 + 0.000603395*m.x296 - 0.00367719*m.x297 + 0.00134408*m.x298 + 0.00265743*m.x299 + 0.00432502*m.x300 + 0.00252096*m.x301 + 0.00261792*m.x302 + 0.00239977*m.x303 == 0) m.c258 = Constraint(expr= - m.x153 + 0.00423842*m.x204 + 0.0144721*m.x205 - 0.000313893*m.x206 + 0.00380874*m.x207 + 0.00767889*m.x208 - 0.00376408*m.x209 + 0.00201038*m.x210 - 0.00692894*m.x211 + 0.00344538*m.x212 - 0.00266851*m.x213 + 0.0154276*m.x214 + 0.00380006*m.x215 + 0.00170043*m.x216 + 0.00535654*m.x217 - 0.00427335*m.x218 - 0.00171385*m.x219 + 0.00232852*m.x220 + 0.0053206*m.x221 - 0.00245765*m.x222 + 0.0134036*m.x223 + 0.000750734*m.x224 + 0.000785002*m.x225 + 0.00118551*m.x226 + 0.00465088*m.x227 - 0.000713633*m.x228 + 0.00970161*m.x229 + 0.000825909*m.x230 + 0.00211256*m.x231 + 0.00460974*m.x232 + 0.00699772*m.x233 + 0.00366551*m.x234 - 0.000273013*m.x235 + 0.00228568*m.x236 - 0.00663898*m.x237 + 0.00326997*m.x238 + 0.00373008*m.x239 + 0.00335461*m.x240 + 0.000913669*m.x241 + 0.0231518*m.x242 + 0.000121531*m.x243 + 0.00314883*m.x244 + 0.00875321*m.x245 - 0.0028989*m.x246 - 0.000522178*m.x247 + 0.00818338*m.x248 + 0.00468117*m.x249 + 0.00606702*m.x250 - 0.000291411*m.x251 + 0.00511319*m.x252 + 0.00584973*m.x253 + 0.00386613*m.x254 + 0.148268*m.x255 - 0.00308793*m.x256 - 0.00368823*m.x257 + 0.00287582*m.x258 + 0.00455641*m.x259 + 0.00619463*m.x260 - 0.0103266*m.x261 - 0.0114865*m.x262 + 0.0134795*m.x263 + 0.00420593*m.x264 + 0.000449462*m.x265 - 0.00387947*m.x266 - 0.00136751*m.x267 + 0.00497244*m.x268 - 0.000113863*m.x269 - 0.00136059*m.x270 - 0.00252786*m.x271 - 0.00391423*m.x272 - 0.0125749*m.x273 + 0.00401374*m.x274 + 0.00592187*m.x275 + 0.00168744*m.x276 + 0.00949071*m.x277 + 0.000384402*m.x278 - 0.00446796*m.x279 + 0.0023511*m.x280 + 0.00116828*m.x281 + 6.81408E-5*m.x282 - 0.00245755*m.x283 + 0.0117758*m.x284 - 0.000210065*m.x285 + 0.0058935*m.x286 + 0.00461282*m.x287 + 0.00333587*m.x288 + 0.00601159*m.x289 - 0.00295399*m.x290 + 0.0231083*m.x291 + 0.00273013*m.x292 + 0.00101519*m.x293 + 0.00177864*m.x294 + 0.00342669*m.x295 - 0.00362052*m.x296 - 0.00643522*m.x297 + 0.00632524*m.x298 + 0.0195511*m.x299 - 0.00071887*m.x300 - 0.00217301*m.x301 + 0.00440766*m.x302 + 0.00538072*m.x303 == 0) m.c259 = Constraint(expr= - m.x154 - 0.000128391*m.x204 + 0.00231785*m.x205 - 0.00295718*m.x206 + 0.00525484*m.x207 + 0.00218657*m.x208 + 0.00661222*m.x209 + 0.00317659*m.x210 + 0.00230237*m.x211 - 0.00251303*m.x212 + 6.78972E-5*m.x213 + 0.000184285*m.x214 + 0.0148337*m.x215 + 0.00440633*m.x216 - 0.00175238*m.x217 + 0.00257792*m.x218 + 0.00197531*m.x219 + 0.00597841*m.x220 - 0.000402279*m.x221 - 0.00827052*m.x222 - 0.00167752*m.x223 + 0.00537508*m.x224 + 0.000881467*m.x225 + 0.000446955*m.x226 + 0.00215308*m.x227 + 0.00299454*m.x228 + 0.00144094*m.x229 + 0.00279365*m.x230 + 0.00136592*m.x231 - 0.00113943*m.x232 + 0.00356967*m.x233 + 0.00954228*m.x234 + 0.00106084*m.x235 - 0.00083261*m.x236 + 0.00271133*m.x237 - 0.0010155*m.x238 + 0.00394493*m.x239 + 0.00612415*m.x240 + 0.0037812*m.x241 + 0.00932518*m.x242 + 0.00270791*m.x243 - 0.00202199*m.x244 + 0.00341817*m.x245 - 0.00279501*m.x246 + 0.00121952*m.x247 + 0.00375999*m.x248 - 0.000284323*m.x249 + 0.000219255*m.x250 - 0.0028928*m.x251 + 0.00128142*m.x252 + 0.00164159*m.x253 - 0.00135527*m.x254 - 0.00308793*m.x255 + 0.0587222*m.x256 + 0.00349217*m.x257 + 0.00343019*m.x258 + 0.00474389*m.x259 + 0.000983317*m.x260 + 0.00104681*m.x261 + 0.000573155*m.x262 + 0.002681*m.x263 + 0.00396062*m.x264 + 0.00572913*m.x265 + 0.011585*m.x266 - 0.00253899*m.x267 + 0.00246284*m.x268 + 0.0021298*m.x269 + 0.00233754*m.x270 + 0.00563448*m.x271 + 0.00602755*m.x272 + 0.00350973*m.x273 + 0.00383568*m.x274 - 0.00440784*m.x275 + 0.0017901*m.x276 + 0.00137853*m.x277 + 5.46446E-5*m.x278 - 0.000579361*m.x279 + 0.000918975*m.x280 + 0.00676102*m.x281 - 0.00488771*m.x282 - 0.000420988*m.x283 - 0.00234208*m.x284 + 0.00819901*m.x285 + 0.00341215*m.x286 + 0.00259963*m.x287 - 0.00185458*m.x288 + 0.00165765*m.x289 + 0.0036396*m.x290 + 0.00499705*m.x291 + 0.000213845*m.x292 + 0.00251321*m.x293 + 7.57559E-5*m.x294 + 0.00429343*m.x295 + 0.00214085*m.x296 - 0.00145961*m.x297 + 0.00499227*m.x298 - 0.00212278*m.x299 + 0.00204967*m.x300 + 0.00120533*m.x301 - 0.00154274*m.x302 + 0.000846548*m.x303 == 0) m.c260 = Constraint(expr= - m.x155 + 0.00428623*m.x204 - 0.00165532*m.x205 + 0.00301212*m.x206 + 0.00057863*m.x207 + 0.00216232*m.x208 + 0.000748379*m.x209 + 0.00404808*m.x210 + 0.00443474*m.x211 + 0.00434833*m.x212 + 0.000714092*m.x213 + 0.00199166*m.x214 + 0.00117377*m.x215 + 0.0235152*m.x216 + 0.0118357*m.x217 + 0.00556967*m.x218 + 0.00432474*m.x219 + 0.00987396*m.x220 + 0.00364206*m.x221 + 0.00821977*m.x222 - 0.00494624*m.x223 + 0.00171337*m.x224 + 0.00197703*m.x225 + 0.000454264*m.x226 + 0.000889199*m.x227 + 2.45482E-5*m.x228 + 0.00194079*m.x229 - 0.00235578*m.x230 + 0.00392595*m.x231 - 0.00176703*m.x232 + 0.000303537*m.x233 + 0.000832645*m.x234 - 0.00338076*m.x235 - 0.00120821*m.x236 + 0.00151359*m.x237 + 0.000659488*m.x238 + 0.00375855*m.x239 + 0.00459437*m.x240 + 0.00342695*m.x241 + 0.00712405*m.x242 + 0.00249349*m.x243 + 0.00535529*m.x244 + 0.00331148*m.x245 + 0.00423442*m.x246 + 0.000349511*m.x247 + 0.00892913*m.x248 + 0.00172826*m.x249 + 0.00287223*m.x250 + 0.00849788*m.x251 + 0.0011758*m.x252 + 0.00170257*m.x253 + 0.000782363*m.x254 - 0.00368823*m.x255 + 0.00349217*m.x256 + 0.11404*m.x257 + 0.00289374*m.x258 + 0.00694813*m.x259 + 0.00399238*m.x260 - 0.00363536*m.x261 + 0.00106667*m.x262 + 0.00663715*m.x263 + 0.0123785*m.x264 + 0.0075057*m.x265 + 0.00222301*m.x266 - 0.0077448*m.x267 - 0.00502038*m.x268 - 0.000552918*m.x269 + 0.00395004*m.x270 + 0.00631844*m.x271 + 0.00744533*m.x272 + 0.00619991*m.x273 + 0.00217002*m.x274 - 0.00114793*m.x275 + 0.00280667*m.x276 + 0.00187548*m.x277 + 0.00626037*m.x278 + 0.00865879*m.x279 - 0.00113185*m.x280 + 0.0225093*m.x281 + 0.000921016*m.x282 + 0.000728519*m.x283 - 0.00445797*m.x284 + 0.00436349*m.x285 + 0.00564621*m.x286 + 0.00194367*m.x287 - 0.0052063*m.x288 + 0.00164762*m.x289 - 0.000112278*m.x290 - 0.000255111*m.x291 + 0.00261688*m.x292 + 0.00246219*m.x293 + 0.00318467*m.x294 + 0.00561083*m.x295 + 0.00262766*m.x296 + 0.00179022*m.x297 + 0.00558577*m.x298 - 0.000513059*m.x299 + 0.00353794*m.x300 + 0.00615137*m.x301 + 0.000877291*m.x302 + 0.000931697*m.x303 == 0) m.c261 = Constraint(expr= - m.x156 + 0.00221565*m.x204 + 0.00730008*m.x205 - 0.00536586*m.x206 - 0.00473576*m.x207 + 0.00209557*m.x208 - 0.000634982*m.x209 + 0.0020328*m.x210 - 0.000282204*m.x211 + 0.000197585*m.x212 + 0.00214786*m.x213 + 0.00473067*m.x214 - 0.00687953*m.x215 - 0.000939116*m.x216 - 0.00574135*m.x217 + 0.00318181*m.x218 + 0.000289832*m.x219 + 0.00154537*m.x220 - 0.00408056*m.x221 + 0.00502581*m.x222 + 0.00359045*m.x223 - 0.000500867*m.x224 - 0.00185612*m.x225 + 0.00404046*m.x226 + 0.00376111*m.x227 + 0.00534951*m.x228 - 0.00202281*m.x229 + 0.00110642*m.x230 + 0.00691999*m.x231 + 0.00271945*m.x232 + 0.000702332*m.x233 - 0.000876097*m.x234 + 0.00179605*m.x235 - 0.00293263*m.x236 + 0.00375338*m.x237 + 0.000561626*m.x238 + 0.00224988*m.x239 + 0.000431036*m.x240 + 0.0012954*m.x241 + 0.00147782*m.x242 + 0.00562279*m.x243 - 0.000606735*m.x244 + 0.00151183*m.x245 + 0.00201357*m.x246 + 0.000972283*m.x247 + 0.00635127*m.x248 + 0.00393731*m.x249 + 0.00250699*m.x250 - 0.00393003*m.x251 + 0.000185703*m.x252 + 0.00491697*m.x253 + 0.00154289*m.x254 + 0.00287582*m.x255 + 0.00343019*m.x256 + 0.00289374*m.x257 + 0.0510981*m.x258 - 0.000435255*m.x259 + 0.00546829*m.x260 + 0.0102474*m.x261 - 0.00356388*m.x262 + 0.0065357*m.x263 + 0.00129358*m.x264 + 0.00744467*m.x265 + 0.00063742*m.x266 - 0.000760534*m.x267 - 0.00149672*m.x268 + 0.00371467*m.x269 + 0.000163938*m.x270 + 0.00082375*m.x271 - 0.00321542*m.x272 + 0.00553702*m.x273 + 0.00147133*m.x274 + 0.00854643*m.x275 - 0.00206724*m.x276 + 0.00150074*m.x277 + 0.00174514*m.x278 + 0.00367872*m.x279 + 0.00492691*m.x280 - 0.00258072*m.x281 + 0.00261019*m.x282 + 0.00168293*m.x283 + 0.00651943*m.x284 - 0.000228966*m.x285 + 0.00685513*m.x286 + 0.00349243*m.x287 + 0.00208497*m.x288 + 0.000860289*m.x289 + 0.00190276*m.x290 + 0.00214593*m.x291 + 0.00371348*m.x292 + 0.00255756*m.x293 - 0.00201343*m.x294 - 0.0015187*m.x295 - 0.000662009*m.x296 - 0.00258788*m.x297 - 0.00124882*m.x298 + 0.00446219*m.x299 + 0.000269906*m.x300 - 6.39913E-6*m.x301 + 0.00128816*m.x302 + 0.00584908*m.x303 == 0) m.c262 = Constraint(expr= - m.x157 + 0.00293236*m.x204 + 0.00370628*m.x205 + 0.00927864*m.x206 + 0.0100543*m.x207 + 0.00511289*m.x208 + 0.00346952*m.x209 + 0.0100104*m.x210 + 0.00426487*m.x211 - 0.00378844*m.x212 + 0.00560907*m.x213 + 0.00558883*m.x214 + 0.00217715*m.x215 + 0.00368368*m.x216 + 0.00238201*m.x217 + 0.00773217*m.x218 + 0.000627748*m.x219 + 0.000407484*m.x220 + 0.0110762*m.x221 + 0.0006738*m.x222 - 0.00517133*m.x223 + 0.000990598*m.x224 + 0.00538296*m.x225 + 0.00192016*m.x226 + 0.00798442*m.x227 + 0.00571568*m.x228 + 0.00652913*m.x229 + 0.00225416*m.x230 + 0.0106189*m.x231 - 0.00103376*m.x232 + 0.00357718*m.x233 + 0.0047508*m.x234 + 0.00600138*m.x235 + 0.0100916*m.x236 + 0.00325149*m.x237 + 0.000752009*m.x238 + 0.00173868*m.x239 + 0.0214193*m.x240 + 0.00902766*m.x241 - 0.000544689*m.x242 + 0.00307201*m.x243 + 0.00976436*m.x244 + 0.0063979*m.x245 + 0.00221836*m.x246 + 0.00145449*m.x247 + 0.00310111*m.x248 + 0.00193608*m.x249 + 0.00176811*m.x250 + 0.0144913*m.x251 + 0.000807728*m.x252 + 0.00333082*m.x253 + 0.000170573*m.x254 + 0.00455641*m.x255 + 0.00474389*m.x256 + 0.00694813*m.x257 - 0.000435255*m.x258 + 0.0472411*m.x259 + 0.00464689*m.x260 + 0.001543*m.x261 + 0.00337863*m.x262 + 0.00769769*m.x263 + 0.00318644*m.x264 + 0.00233055*m.x265 + 0.00263152*m.x266 - 0.00597953*m.x267 + 0.00551452*m.x268 + 0.00394894*m.x269 + 0.0024981*m.x270 + 0.00562702*m.x271 + 0.00231435*m.x272 + 0.00405522*m.x273 + 0.00465177*m.x274 + 0.00507821*m.x275 + 0.00524954*m.x276 + 0.000811673*m.x277 - 0.00221712*m.x278 + 0.00179629*m.x279 + 0.0049631*m.x280 + 0.00316822*m.x281 - 0.00271758*m.x282 + 2.01133E-5*m.x283 + 0.00508838*m.x284 + 0.00528738*m.x285 + 0.00177656*m.x286 + 0.00390817*m.x287 + 0.00522697*m.x288 + 0.00419445*m.x289 + 0.00330037*m.x290 + 0.00952656*m.x291 + 0.00213073*m.x292 - 0.00172869*m.x293 + 0.00143223*m.x294 + 0.00862894*m.x295 + 0.000135119*m.x296 - 0.00196723*m.x297 + 0.00166645*m.x298 + 0.0017984*m.x299 + 0.00455272*m.x300 - 0.0033299*m.x301 + 0.00426249*m.x302 + 0.00227416*m.x303 == 0) m.c263 = Constraint(expr= - m.x158 + 0.00642301*m.x204 + 0.00688037*m.x205 - 0.00108853*m.x206 + 0.00543729*m.x207 + 0.00375052*m.x208 + 0.00833195*m.x209 + 0.00586558*m.x210 - 0.000987702*m.x211 + 0.00163113*m.x212 - 0.000690724*m.x213 + 0.0104591*m.x214 + 0.00358463*m.x215 + 0.00545833*m.x216 + 0.00580515*m.x217 + 0.00457572*m.x218 + 0.00188754*m.x219 + 0.00757036*m.x220 + 0.00162771*m.x221 + 0.00519536*m.x222 + 0.00599997*m.x223 + 0.00340317*m.x224 + 0.00350559*m.x225 + 0.00725634*m.x226 + 0.00414154*m.x227 + 0.00328284*m.x228 - 0.000637013*m.x229 - 0.000609378*m.x230 - 0.000182055*m.x231 - 0.000944225*m.x232 + 0.00454768*m.x233 - 0.00109579*m.x234 + 0.00499556*m.x235 - 0.000975461*m.x236 + 0.00083169*m.x237 + 0.0012213*m.x238 + 0.00334586*m.x239 + 0.00347374*m.x240 + 0.00635346*m.x241 + 0.00242014*m.x242 + 0.00538657*m.x243 + 0.00469016*m.x244 + 0.00583129*m.x245 - 0.000338874*m.x246 - 0.000489457*m.x247 + 0.0023572*m.x248 + 0.00419589*m.x249 + 0.00192979*m.x250 - 0.00133849*m.x251 + 0.00482243*m.x252 + 0.00312286*m.x253 - 1.5116E-5*m.x254 + 0.00619463*m.x255 + 0.000983317*m.x256 + 0.00399238*m.x257 + 0.00546829*m.x258 + 0.00464689*m.x259 + 0.0362593*m.x260 - 0.000947867*m.x261 + 0.00518283*m.x262 - 0.000436247*m.x263 + 0.0022354*m.x264 - 0.00334067*m.x265 + 0.00637109*m.x266 - 0.0012203*m.x267 + 0.00130759*m.x268 + 0.00231089*m.x269 + 0.00364342*m.x270 + 0.00391626*m.x271 - 0.000228137*m.x272 - 0.000486291*m.x273 + 0.00136233*m.x274 + 0.00619112*m.x275 - 0.000663369*m.x276 + 0.00593263*m.x277 + 0.00236031*m.x278 - 0.000221372*m.x279 + 0.00231411*m.x280 + 0.00764311*m.x281 + 0.000965316*m.x282 + 0.00959794*m.x283 + 0.000370277*m.x284 + 0.00152795*m.x285 + 0.00378016*m.x286 + 0.00380959*m.x287 + 0.00449849*m.x288 + 0.00350555*m.x289 + 0.00353625*m.x290 + 0.00557726*m.x291 + 0.00162287*m.x292 + 0.00118145*m.x293 + 0.0018647*m.x294 + 0.00331591*m.x295 + 0.00502936*m.x296 + 0.00976419*m.x297 + 0.00514689*m.x298 + 0.00345782*m.x299 + 0.00507329*m.x300 - 0.00213912*m.x301 - 0.00213196*m.x302 + 0.00211323*m.x303 == 0) m.c264 = Constraint(expr= - m.x159 - 0.00424851*m.x204 - 0.00522018*m.x205 + 0.00791765*m.x206 + 0.00571189*m.x207 - 0.000396528*m.x208 - 0.00565329*m.x209 + 0.00391134*m.x210 + 0.00520545*m.x211 + 0.00153282*m.x212 + 0.0101136*m.x213 + 0.00117382*m.x214 + 0.0045967*m.x215 + 0.0122466*m.x216 + 0.00233877*m.x217 + 0.00300847*m.x218 + 0.0083923*m.x219 + 0.00514005*m.x220 + 0.000383935*m.x221 - 0.00068674*m.x222 + 0.000340114*m.x223 + 0.00300201*m.x224 + 0.00104134*m.x225 + 0.0130293*m.x226 + 0.00118993*m.x227 + 0.00871742*m.x228 - 0.00101439*m.x229 + 0.00251465*m.x230 + 0.00218491*m.x231 + 0.00264501*m.x232 + 0.00483103*m.x233 - 0.000240979*m.x234 + 0.00310331*m.x235 + 4.58518E-6*m.x236 - 5.91301E-5*m.x237 - 3.22002E-5*m.x238 - 0.00132202*m.x239 + 0.00358454*m.x240 + 0.00329425*m.x241 - 0.000399422*m.x242 + 0.00391396*m.x243 + 0.0113975*m.x244 - 0.00449059*m.x245 + 0.000811554*m.x246 + 2.38348E-5*m.x247 - 0.0124136*m.x248 + 0.000305111*m.x249 + 2.4776E-5*m.x250 - 0.00262538*m.x251 + 0.00671943*m.x252 + 0.00513272*m.x253 + 0.00158604*m.x254 - 0.0103266*m.x255 + 0.00104681*m.x256 - 0.00363536*m.x257 + 0.0102474*m.x258 + 0.001543*m.x259 - 0.000947867*m.x260 + 0.13711*m.x261 + 0.00151254*m.x262 + 0.00512402*m.x263 + 0.00132205*m.x264 + 0.0109022*m.x265 - 0.00347997*m.x266 - 0.00396798*m.x267 + 0.00540898*m.x268 + 0.00276138*m.x269 + 0.00118344*m.x270 + 0.00360731*m.x271 - 0.00260459*m.x272 + 0.000489283*m.x273 + 0.0019333*m.x274 + 0.00139414*m.x275 - 0.000354506*m.x276 + 0.00179872*m.x277 + 0.00283392*m.x278 - 0.000614375*m.x279 + 0.00131236*m.x280 + 0.00470546*m.x281 - 0.00479156*m.x282 - 0.000175807*m.x283 - 4.69764E-5*m.x284 + 0.00535958*m.x285 - 0.00150618*m.x286 + 0.00164593*m.x287 - 0.00323282*m.x288 + 0.00658013*m.x289 + 0.00524124*m.x290 + 0.00454456*m.x291 + 0.00520983*m.x292 + 0.00135714*m.x293 + 0.00263088*m.x294 + 0.00871316*m.x295 + 0.00786502*m.x296 + 0.000809943*m.x297 + 0.000294055*m.x298 + 0.0093328*m.x299 + 0.000154729*m.x300 + 1.07515E-5*m.x301 + 0.00396114*m.x302 - 0.00289961*m.x303 == 0) m.c265 = Constraint(expr= - m.x160 + 0.00130686*m.x204 + 0.00111515*m.x205 - 0.00783196*m.x206 - 0.00276324*m.x207 - 0.00165313*m.x208 + 0.00331464*m.x209 - 0.00108095*m.x210 - 0.00343631*m.x211 + 0.00412394*m.x212 + 0.00176469*m.x213 + 0.000451696*m.x214 - 0.00148924*m.x215 - 0.0045062*m.x216 + 0.000706233*m.x217 - 0.000803621*m.x218 - 8.3506E-5*m.x219 - 0.00145659*m.x220 + 0.00454443*m.x221 - 0.00422415*m.x222 - 0.00454905*m.x223 + 0.00379494*m.x224 - 0.00208082*m.x225 + 0.00131963*m.x226 - 0.00274497*m.x227 + 0.00237906*m.x228 - 0.0082225*m.x229 + 0.00102978*m.x230 + 0.000656633*m.x231 - 0.00260547*m.x232 - 0.00605986*m.x233 + 0.00232308*m.x234 + 0.0058288*m.x235 + 0.00679259*m.x236 + 0.00581394*m.x237 - 0.00148681*m.x238 - 0.00379641*m.x239 + 0.000513289*m.x240 + 0.00481242*m.x241 - 0.0010186*m.x242 - 0.00159432*m.x243 + 0.00680033*m.x244 - 0.000373896*m.x245 - 0.00415921*m.x246 + 0.000570035*m.x247 - 0.00282737*m.x248 - 0.000836327*m.x249 - 0.000659325*m.x250 + 0.0025511*m.x251 + 0.0024249*m.x252 + 0.00511337*m.x253 + 0.00141472*m.x254 - 0.0114865*m.x255 + 0.000573155*m.x256 + 0.00106667*m.x257 - 0.00356388*m.x258 + 0.00337863*m.x259 + 0.00518283*m.x260 + 0.00151254*m.x261 + 0.252156*m.x262 - 0.00414992*m.x263 - 0.00331763*m.x264 + 0.00422071*m.x265 - 0.00540834*m.x266 + 0.251509*m.x267 + 0.00146019*m.x268 - 0.00206428*m.x269 + 8.81979E-5*m.x270 + 0.000290516*m.x271 + 0.00222724*m.x272 + 0.00327562*m.x273 - 0.00467757*m.x274 - 0.00306634*m.x275 - 0.00382859*m.x276 - 0.00129787*m.x277 - 0.00372436*m.x278 + 0.00351785*m.x279 + 7.90391E-5*m.x280 - 0.00511468*m.x281 + 0.00410639*m.x282 - 0.00321313*m.x283 + 0.00241956*m.x284 + 0.00469951*m.x285 - 0.000587868*m.x286 - 0.0046356*m.x287 + 0.00523023*m.x288 + 0.0033164*m.x289 + 0.00630061*m.x290 + 0.00551966*m.x291 + 0.00626743*m.x292 + 0.00507348*m.x293 - 0.00112337*m.x294 - 0.0002988*m.x295 - 0.00107607*m.x296 - 0.00762971*m.x297 - 0.00163559*m.x298 - 0.00594877*m.x299 + 0.000798834*m.x300 + 0.00532067*m.x301 + 0.001777*m.x302 - 0.00273965*m.x303 == 0) m.c266 = Constraint(expr= - m.x161 + 0.0135606*m.x204 + 0.00698037*m.x205 + 0.0121474*m.x206 + 0.00810983*m.x207 + 0.00186935*m.x208 + 0.00521247*m.x209 + 0.00196227*m.x210 - 0.00282907*m.x211 - 0.00179846*m.x212 + 0.0157962*m.x213 + 0.00029335*m.x214 + 0.00257797*m.x215 + 0.0102645*m.x216 - 0.0039908*m.x217 - 0.00429132*m.x218 - 0.00071125*m.x219 - 0.00148186*m.x220 - 0.00276585*m.x221 - 0.000614559*m.x222 + 0.00626921*m.x223 + 0.00286059*m.x224 + 0.00622953*m.x225 + 0.00472747*m.x226 - 0.000595349*m.x227 + 0.00268782*m.x228 + 0.00355615*m.x229 + 0.0112079*m.x230 + 0.0175771*m.x231 + 0.0017848*m.x232 + 0.00108709*m.x233 + 0.0118189*m.x234 + 0.00581735*m.x235 + 0.0109441*m.x236 + 0.00200882*m.x237 + 0.00211146*m.x238 + 0.00586093*m.x239 + 0.00739902*m.x240 + 0.00100992*m.x241 + 0.00402009*m.x242 + 0.00192515*m.x243 - 0.00297392*m.x244 + 0.00465423*m.x245 + 0.0080163*m.x246 + 0.00228208*m.x247 + 0.00109311*m.x248 + 0.00132171*m.x249 + 0.00468844*m.x250 + 0.0304485*m.x251 - 0.00576356*m.x252 + 0.00111281*m.x253 + 0.00398684*m.x254 + 0.0134795*m.x255 + 0.002681*m.x256 + 0.00663715*m.x257 + 0.0065357*m.x258 + 0.00769769*m.x259 - 0.000436247*m.x260 + 0.00512402*m.x261 - 0.00414992*m.x262 + 0.0874887*m.x263 + 0.00654843*m.x264 - 0.000185811*m.x265 - 0.00273039*m.x266 - 0.00103049*m.x267 + 0.00524602*m.x268 + 0.00624277*m.x269 + 0.0016785*m.x270 + 0.00624913*m.x271 - 0.00271435*m.x272 - 0.00261305*m.x273 + 0.00160928*m.x274 + 0.00397158*m.x275 + 0.00449248*m.x276 - 0.00174627*m.x277 + 0.00173888*m.x278 + 0.00361497*m.x279 + 0.00608981*m.x280 + 0.00614973*m.x281 + 0.00797918*m.x282 + 0.00353012*m.x283 + 0.0106118*m.x284 + 0.00180257*m.x285 + 0.00554875*m.x286 + 0.00340277*m.x287 + 0.00314873*m.x288 + 0.00310593*m.x289 + 0.00234241*m.x290 + 0.00590393*m.x291 + 0.000439495*m.x292 - 0.00164086*m.x293 - 0.00383165*m.x294 + 0.0052497*m.x295 + 0.00231272*m.x296 - 0.00666127*m.x297 + 0.0119683*m.x298 - 0.00285395*m.x299 + 0.00170996*m.x300 + 0.00942007*m.x301 + 0.00238323*m.x302 + 0.00381314*m.x303 == 0) m.c267 = Constraint(expr= - m.x162 - 0.000827581*m.x204 - 0.000451953*m.x205 + 0.00268288*m.x206 + 0.00436906*m.x207 + 0.00284817*m.x208 + 0.00319873*m.x209 - 0.00048119*m.x210 + 0.00540009*m.x211 + 0.00477371*m.x212 + 0.00685899*m.x213 + 0.00554255*m.x214 + 0.00238489*m.x215 + 0.00887716*m.x216 + 0.00583571*m.x217 + 0.00714866*m.x218 + 0.00495966*m.x219 + 0.00497362*m.x220 - 0.00697647*m.x221 - 0.00228625*m.x222 + 0.00325028*m.x223 + 0.000619718*m.x224 + 0.000613874*m.x225 + 0.00308159*m.x226 + 0.00752408*m.x227 + 0.00126037*m.x228 - 0.000188674*m.x229 + 0.00645332*m.x230 + 0.00353599*m.x231 + 0.0108839*m.x232 + 0.00235866*m.x233 + 0.00908161*m.x234 + 0.00417314*m.x235 - 0.00141802*m.x236 + 0.000695564*m.x237 - 0.000313358*m.x238 + 0.00136897*m.x239 + 0.00499907*m.x240 + 0.00530761*m.x241 + 0.00907092*m.x242 + 0.0041524*m.x243 + 0.00512496*m.x244 + 0.00129105*m.x245 + 0.00486963*m.x246 + 0.00212064*m.x247 + 0.0171055*m.x248 + 0.00254184*m.x249 + 0.00480861*m.x250 + 0.00172909*m.x251 + 0.00615053*m.x252 + 0.00524869*m.x253 + 0.00758869*m.x254 + 0.00420593*m.x255 + 0.00396062*m.x256 + 0.0123785*m.x257 + 0.00129358*m.x258 + 0.00318644*m.x259 + 0.0022354*m.x260 + 0.00132205*m.x261 - 0.00331763*m.x262 + 0.00654843*m.x263 + 0.0999224*m.x264 + 0.00659559*m.x265 + 0.00418092*m.x266 - 0.0101561*m.x267 + 0.000400403*m.x268 + 0.00037105*m.x269 + 0.00120729*m.x270 + 0.0112744*m.x271 - 0.00282282*m.x272 + 0.00541563*m.x273 - 0.00194831*m.x274 + 0.00472835*m.x275 + 0.015161*m.x276 + 0.0149532*m.x277 + 0.00696878*m.x278 - 0.00212982*m.x279 - 0.000506982*m.x280 + 0.00516964*m.x281 + 0.0561216*m.x282 + 0.00206552*m.x283 + 0.00059783*m.x284 + 0.00506047*m.x285 + 0.00221597*m.x286 + 0.00470215*m.x287 + 0.00565729*m.x288 + 0.000952909*m.x289 - 0.00116189*m.x290 + 0.00694876*m.x291 + 0.00562572*m.x292 + 0.00278368*m.x293 + 0.00369458*m.x294 + 0.0171593*m.x295 - 0.00289371*m.x296 - 0.00430756*m.x297 + 0.00677732*m.x298 + 0.00573494*m.x299 + 0.00758548*m.x300 - 0.000228625*m.x301 + 0.00247448*m.x302 + 0.000632226*m.x303 == 0) m.c268 = Constraint(expr= - m.x163 + 0.000319199*m.x204 + 0.000474809*m.x205 - 0.0040862*m.x206 + 0.00413471*m.x207 + 0.00147042*m.x208 + 0.00684361*m.x209 - 0.00264342*m.x210 + 0.00223674*m.x211 + 0.00203511*m.x212 + 0.00149984*m.x213 + 0.00203335*m.x214 - 0.000481693*m.x215 + 0.00691443*m.x216 + 0.00378434*m.x217 + 0.0120675*m.x218 + 0.00900098*m.x219 + 0.00401966*m.x220 - 0.00153885*m.x221 - 0.00518938*m.x222 + 0.00638179*m.x223 + 0.000555843*m.x224 + 0.0106786*m.x225 + 0.0042759*m.x226 + 0.00378686*m.x227 + 0.00496836*m.x228 + 0.00424723*m.x229 + 0.00540775*m.x230 + 0.00274124*m.x231 - 0.00138995*m.x232 + 0.00258727*m.x233 + 0.00892137*m.x234 - 0.0011102*m.x235 + 0.00426929*m.x236 - 0.00052299*m.x237 + 0.00501177*m.x238 + 0.00469266*m.x239 + 0.00550805*m.x240 + 0.00606979*m.x241 + 0.00387696*m.x242 + 0.00171382*m.x243 + 0.00566131*m.x244 + 0.00312652*m.x245 - 0.0011072*m.x246 + 0.00363109*m.x247 - 0.000546877*m.x248 + 0.00434758*m.x249 + 0.00487248*m.x250 - 0.00455718*m.x251 + 0.00457997*m.x252 + 0.00756756*m.x253 + 0.00417238*m.x254 + 0.000449462*m.x255 + 0.00572913*m.x256 + 0.0075057*m.x257 + 0.00744467*m.x258 + 0.00233055*m.x259 - 0.00334067*m.x260 + 0.0109022*m.x261 + 0.00422071*m.x262 - 0.000185811*m.x263 + 0.00659559*m.x264 + 0.07022*m.x265 + 0.00416125*m.x266 + 0.00352651*m.x267 + 0.000419826*m.x268 + 0.00343332*m.x269 + 0.00217325*m.x270 + 0.00506401*m.x271 + 0.00256623*m.x272 - 0.00300804*m.x273 - 0.00011493*m.x274 + 0.00948613*m.x275 + 0.00588371*m.x276 + 0.00371951*m.x277 + 0.00218575*m.x278 + 0.00239518*m.x279 + 0.000908744*m.x280 + 0.00589109*m.x281 - 0.000413564*m.x282 + 0.00177553*m.x283 + 0.000254788*m.x284 + 0.000483366*m.x285 + 0.00434862*m.x286 - 0.00339015*m.x287 + 0.00162127*m.x288 + 0.00452576*m.x289 + 0.00597812*m.x290 + 2.54983E-5*m.x291 - 0.00247603*m.x292 + 0.0044097*m.x293 + 0.00452471*m.x294 + 0.00474492*m.x295 + 0.000287705*m.x296 - 0.00158663*m.x297 + 0.00306085*m.x298 + 0.00331961*m.x299 + 0.00420889*m.x300 - 0.00957465*m.x301 + 0.000329151*m.x302 + 0.000204814*m.x303 == 0) m.c269 = Constraint(expr= - m.x164 - 0.00408084*m.x204 + 0.00265625*m.x205 + 0.00434811*m.x206 - 0.00244187*m.x207 + 0.00264492*m.x208 + 0.00146666*m.x209 - 0.000799614*m.x210 - 0.00228832*m.x211 - 0.000827761*m.x212 + 0.00129678*m.x213 + 0.00806469*m.x214 + 0.0009138*m.x215 + 0.00137818*m.x216 + 0.00219548*m.x217 + 0.00202404*m.x218 + 0.0071845*m.x219 + 0.00262695*m.x220 + 0.00688652*m.x221 - 0.0102024*m.x222 + 0.00539482*m.x223 + 0.0030044*m.x224 + 0.00554857*m.x225 + 0.00295181*m.x226 + 1.24483E-5*m.x227 + 0.00583939*m.x228 + 0.0023868*m.x229 - 0.00427958*m.x230 - 0.000533821*m.x231 - 0.00309501*m.x232 + 0.00334281*m.x233 + 0.00228629*m.x234 + 0.00234077*m.x235 + 0.000950245*m.x236 + 0.00584205*m.x237 + 0.00457594*m.x238 - 0.0014627*m.x239 + 0.00361742*m.x240 + 0.00181367*m.x241 + 0.00304921*m.x242 + 0.00400573*m.x243 - 0.00340962*m.x244 - 0.000646819*m.x245 - 0.00201067*m.x246 + 0.000619034*m.x247 - 0.00127115*m.x248 - 0.000143504*m.x249 - 0.00220491*m.x250 - 0.000349801*m.x251 + 0.00116129*m.x252 + 0.00467689*m.x253 - 0.00108104*m.x254 - 0.00387947*m.x255 + 0.011585*m.x256 + 0.00222301*m.x257 + 0.00063742*m.x258 + 0.00263152*m.x259 + 0.00637109*m.x260 - 0.00347997*m.x261 - 0.00540834*m.x262 - 0.00273039*m.x263 + 0.00418092*m.x264 + 0.00416125*m.x265 + 0.0995071*m.x266 - 0.00026181*m.x267 - 0.00164331*m.x268 + 0.000127298*m.x269 + 0.00486644*m.x270 + 0.00397255*m.x271 + 0.0129943*m.x272 - 0.00259351*m.x273 - 0.000134645*m.x274 - 0.0024675*m.x275 - 0.000639732*m.x276 + 0.0061587*m.x277 - 0.000720003*m.x278 - 0.00377983*m.x279 - 0.00164528*m.x280 + 0.00111631*m.x281 + 0.00309633*m.x282 - 0.00431355*m.x283 - 0.00123317*m.x284 - 0.00107592*m.x285 - 0.00299895*m.x286 + 0.00239151*m.x287 + 0.00504485*m.x288 + 0.00186508*m.x289 - 0.00261967*m.x290 - 0.00111953*m.x291 + 0.00813916*m.x292 + 0.00116867*m.x293 - 0.000798317*m.x294 + 0.00191161*m.x295 + 0.00398234*m.x296 - 0.00142675*m.x297 + 0.00441408*m.x298 + 0.00695092*m.x299 - 0.00519564*m.x300 - 0.00145915*m.x301 - 0.00269056*m.x302 + 0.0029091*m.x303 == 0) m.c270 = Constraint(expr= - m.x165 - 0.0130473*m.x204 - 0.00353732*m.x205 + 0.00169867*m.x206 + 0.00545183*m.x207 - 0.000424681*m.x208 - 0.00449445*m.x209 - 0.00211867*m.x210 - 0.00507634*m.x211 + 0.00659553*m.x212 - 0.00152672*m.x213 + 0.00317218*m.x214 - 0.00429905*m.x215 - 0.000777149*m.x216 - 0.00478566*m.x217 - 0.00587325*m.x218 + 0.000145803*m.x219 - 0.00141986*m.x220 - 0.00817883*m.x221 - 0.00485647*m.x222 - 0.0049754*m.x223 - 0.000640874*m.x224 - 0.00814519*m.x225 - 0.000678406*m.x226 - 0.000694644*m.x227 + 0.000591772*m.x228 - 0.00326633*m.x229 - 0.0057947*m.x230 - 0.0021747*m.x231 - 0.000395075*m.x232 + 0.000681716*m.x233 - 0.00141271*m.x234 - 0.00112428*m.x235 - 0.0100929*m.x236 - 0.00708984*m.x237 - 0.0104815*m.x238 + 0.00243124*m.x239 - 0.00468506*m.x240 + 0.000404166*m.x241 + 0.000493456*m.x242 + 0.000351314*m.x243 + 3.23772E-5*m.x244 - 0.00214428*m.x245 + 0.000797127*m.x246 - 0.000860656*m.x247 - 0.00882959*m.x248 - 0.00324401*m.x249 - 0.00289289*m.x250 - 0.010277*m.x251 - 0.00334468*m.x252 - 0.00212043*m.x253 - 0.00298459*m.x254 - 0.00136751*m.x255 - 0.00253899*m.x256 - 0.0077448*m.x257 - 0.000760534*m.x258 - 0.00597953*m.x259 - 0.0012203*m.x260 - 0.00396798*m.x261 + 0.251509*m.x262 - 0.00103049*m.x263 - 0.0101561*m.x264 + 0.00352651*m.x265 - 0.00026181*m.x266 + 0.433741*m.x267 + 0.00128825*m.x268 + 9.92783E-5*m.x269 + 0.00123264*m.x270 - 0.0051442*m.x271 - 0.000297438*m.x272 + 0.0114782*m.x273 - 0.0015542*m.x274 - 0.00124081*m.x275 - 0.00658561*m.x276 - 0.00508464*m.x277 - 0.000437189*m.x278 - 0.00827295*m.x279 - 0.00171171*m.x280 - 0.00437862*m.x281 - 0.00400538*m.x282 - 0.00481033*m.x283 + 0.000267753*m.x284 - 0.00462929*m.x285 - 0.00477368*m.x286 - 0.0034161*m.x287 + 0.000222907*m.x288 + 0.00216417*m.x289 - 0.000119858*m.x290 + 0.0183023*m.x291 + 0.00146243*m.x292 + 0.00652183*m.x293 + 0.000896056*m.x294 - 0.00583543*m.x295 + 0.0021646*m.x296 - 0.00610058*m.x297 - 0.006832*m.x298 - 0.00455273*m.x299 + 0.00534474*m.x300 - 0.0104513*m.x301 - 0.00240116*m.x302 + 0.00593878*m.x303 == 0) m.c271 = Constraint(expr= - m.x166 - 0.000488486*m.x204 + 0.0119217*m.x205 + 0.010645*m.x206 + 0.00495238*m.x207 + 0.00721645*m.x208 + 0.00890815*m.x209 + 0.00596663*m.x210 + 0.000540695*m.x211 - 0.00174127*m.x212 + 0.0108934*m.x213 + 0.00207678*m.x214 - 0.00296047*m.x215 + 0.00138796*m.x216 + 0.0059852*m.x217 + 0.00694813*m.x218 + 0.00157234*m.x219 + 0.00376038*m.x220 - 0.000294619*m.x221 + 0.0127494*m.x222 - 0.00136747*m.x223 + 0.0028325*m.x224 + 0.0120784*m.x225 + 0.00506594*m.x226 + 0.000738861*m.x227 + 0.00184587*m.x228 + 0.00828866*m.x229 + 0.0139508*m.x230 + 0.00514558*m.x231 + 0.00576686*m.x232 + 0.00619447*m.x233 + 0.0112419*m.x234 + 0.0103289*m.x235 + 0.00991537*m.x236 + 0.00265142*m.x237 + 0.0017514*m.x238 + 0.00934914*m.x239 + 0.00941149*m.x240 + 0.00199306*m.x241 - 0.000247517*m.x242 + 0.00222305*m.x243 + 0.00288722*m.x244 + 0.00609509*m.x245 + 0.00333299*m.x246 + 0.00340102*m.x247 + 0.00370779*m.x248 + 0.00241411*m.x249 + 0.00758561*m.x250 - 0.00203947*m.x251 - 0.00177309*m.x252 - 0.000146116*m.x253 - 0.00134772*m.x254 + 0.00497244*m.x255 + 0.00246284*m.x256 - 0.00502038*m.x257 - 0.00149672*m.x258 + 0.00551452*m.x259 + 0.00130759*m.x260 + 0.00540898*m.x261 + 0.00146019*m.x262 + 0.00524602*m.x263 + 0.000400403*m.x264 + 0.000419826*m.x265 - 0.00164331*m.x266 + 0.00128825*m.x267 + 0.0593612*m.x268 + 0.0127361*m.x269 + 0.00329798*m.x270 + 0.00745462*m.x271 + 0.001637*m.x272 - 0.00182601*m.x273 + 0.00273762*m.x274 + 0.00370659*m.x275 + 0.00073551*m.x276 + 0.00470649*m.x277 + 0.000708354*m.x278 + 0.00236959*m.x279 + 0.00614785*m.x280 + 0.00314938*m.x281 + 0.00170909*m.x282 - 0.0031579*m.x283 + 0.0092312*m.x284 + 0.00139163*m.x285 - 0.00265918*m.x286 + 0.00891526*m.x287 + 0.0041968*m.x288 + 0.00379037*m.x289 + 0.00152491*m.x290 + 0.0102022*m.x291 + 0.00836314*m.x292 + 0.00119311*m.x293 - 0.000302283*m.x294 + 0.00138488*m.x295 + 0.00217937*m.x296 - 0.000402168*m.x297 + 0.000850121*m.x298 + 0.0110636*m.x299 + 0.00498262*m.x300 + 0.00115585*m.x301 + 0.00570291*m.x302 + 0.00301803*m.x303 == 0) m.c272 = Constraint(expr= - m.x167 + 0.00109418*m.x204 + 0.00462742*m.x205 + 0.00861052*m.x206 + 0.00411888*m.x207 + 0.00584868*m.x208 + 0.00402867*m.x209 - 0.000337876*m.x210 - 0.000710481*m.x211 + 0.00394387*m.x212 + 0.000425159*m.x213 - 0.00182631*m.x214 + 0.00202854*m.x215 - 0.000964469*m.x216 + 0.00197755*m.x217 + 0.00377359*m.x218 + 0.00208948*m.x219 + 0.00356601*m.x220 - 0.000858525*m.x221 + 0.00827695*m.x222 + 0.00126881*m.x223 + 0.002376*m.x224 + 0.00309714*m.x225 + 0.00413143*m.x226 + 0.0016632*m.x227 + 0.000736705*m.x228 + 0.00468054*m.x229 + 0.00577359*m.x230 + 0.00318024*m.x231 + 0.00353172*m.x232 + 0.00533029*m.x233 + 0.00366445*m.x234 + 0.00121195*m.x235 + 0.00593721*m.x236 + 0.00120658*m.x237 + 0.000755628*m.x238 + 0.000872186*m.x239 + 0.00506394*m.x240 + 0.00308026*m.x241 + 0.000349729*m.x242 + 0.00506636*m.x243 - 0.00118633*m.x244 + 0.00587685*m.x245 + 0.0013567*m.x246 - 0.00197937*m.x247 + 0.00220942*m.x248 - 0.000256307*m.x249 + 0.00350318*m.x250 + 0.00647039*m.x251 + 0.00135912*m.x252 + 0.00271306*m.x253 + 0.000740512*m.x254 - 0.000113863*m.x255 + 0.0021298*m.x256 - 0.000552918*m.x257 + 0.00371467*m.x258 + 0.00394894*m.x259 + 0.00231089*m.x260 + 0.00276138*m.x261 - 0.00206428*m.x262 + 0.00624277*m.x263 + 0.00037105*m.x264 + 0.00343332*m.x265 + 0.000127298*m.x266 + 9.92783E-5*m.x267 + 0.0127361*m.x268 + 0.0262339*m.x269 + 0.003349*m.x270 + 0.00142392*m.x271 + 0.00518398*m.x272 + 0.00332053*m.x273 - 0.000651909*m.x274 + 0.00345787*m.x275 + 0.0015834*m.x276 - 0.00204478*m.x277 + 0.00181948*m.x278 + 0.0026534*m.x279 + 0.00931383*m.x280 + 0.00472133*m.x281 + 0.00170468*m.x282 + 0.00110864*m.x283 + 0.00727345*m.x284 + 0.00278892*m.x285 - 0.000721759*m.x286 + 0.00479513*m.x287 + 0.00119802*m.x288 + 0.00319581*m.x289 + 0.00188211*m.x290 + 0.00479563*m.x291 + 0.00585396*m.x292 - 0.000300368*m.x293 + 0.000255675*m.x294 + 6.76023E-5*m.x295 - 0.000464781*m.x296 + 0.00126493*m.x297 + 0.00259808*m.x298 + 0.00163564*m.x299 + 0.00270092*m.x300 + 0.00285028*m.x301 + 0.00895321*m.x302 + 0.00219665*m.x303 == 0) m.c273 = Constraint(expr= - m.x168 + 0.00331627*m.x204 + 0.00319077*m.x205 + 0.00468559*m.x206 + 0.00641475*m.x207 - 0.00125879*m.x208 - 0.00123966*m.x209 + 0.0022652*m.x210 - 9.29613E-5*m.x211 + 0.00861848*m.x212 + 0.000218677*m.x213 + 0.00122714*m.x214 - 0.000579525*m.x215 + 0.00270163*m.x216 + 0.000399331*m.x217 + 0.00180051*m.x218 + 0.0030484*m.x219 + 0.00737614*m.x220 + 0.00730014*m.x221 - 0.000575534*m.x222 + 0.00353355*m.x223 + 0.00468858*m.x224 - 0.000808721*m.x225 + 0.00263189*m.x226 + 0.00093894*m.x227 - 0.000390252*m.x228 - 0.000763441*m.x229 - 0.00197249*m.x230 + 0.00107192*m.x231 + 0.00568516*m.x232 + 0.000115147*m.x233 - 0.00115062*m.x234 + 0.00320026*m.x235 + 0.00327904*m.x236 + 0.00429363*m.x237 + 0.00557733*m.x238 - 0.00186934*m.x239 - 0.000575193*m.x240 + 0.00492292*m.x241 - 6.1818E-5*m.x242 + 0.00339671*m.x243 + 0.00128347*m.x244 + 0.00191072*m.x245 + 0.000671953*m.x246 + 0.000621111*m.x247 - 0.0007257*m.x248 + 0.00117147*m.x249 + 0.0034932*m.x250 - 0.000334806*m.x251 + 0.0055357*m.x252 + 0.00797013*m.x253 - 0.000683822*m.x254 - 0.00136059*m.x255 + 0.00233754*m.x256 + 0.00395004*m.x257 + 0.000163938*m.x258 + 0.0024981*m.x259 + 0.00364342*m.x260 + 0.00118344*m.x261 + 8.81979E-5*m.x262 + 0.0016785*m.x263 + 0.00120729*m.x264 + 0.00217325*m.x265 + 0.00486644*m.x266 + 0.00123264*m.x267 + 0.00329798*m.x268 + 0.003349*m.x269 + 0.0296551*m.x270 + 0.000803138*m.x271 + 0.00261358*m.x272 + 0.00421158*m.x273 + 0.00224737*m.x274 + 0.00248184*m.x275 - 0.0025493*m.x276 + 0.00528975*m.x277 + 0.00304023*m.x278 - 7.68874E-5*m.x279 + 0.00145709*m.x280 + 0.000648689*m.x281 + 0.00531632*m.x282 - 0.00270393*m.x283 - 0.000304736*m.x284 + 0.00310389*m.x285 + 0.00378933*m.x286 + 0.00270045*m.x287 + 0.00133532*m.x288 + 0.00280379*m.x289 + 0.00340292*m.x290 + 0.00122189*m.x291 + 0.00282862*m.x292 + 0.00394438*m.x293 + 0.00508295*m.x294 + 0.00752552*m.x295 + 0.000133786*m.x296 - 0.00111604*m.x297 + 0.00508961*m.x298 - 0.00259683*m.x299 + 0.00158141*m.x300 - 0.00346463*m.x301 + 0.000964003*m.x302 - 0.00191532*m.x303 == 0) m.c274 = Constraint(expr= - m.x169 + 0.0045216*m.x204 + 0.00271929*m.x205 + 0.00738855*m.x206 + 0.00111178*m.x207 + 0.00123949*m.x208 + 0.00107871*m.x209 - 0.00117815*m.x210 + 0.016814*m.x211 - 0.00595897*m.x212 + 0.00258553*m.x213 + 0.00268003*m.x214 + 0.00537311*m.x215 + 0.0102894*m.x216 + 0.00684901*m.x217 + 0.00937097*m.x218 + 0.00227052*m.x219 + 0.00551084*m.x220 - 0.000185895*m.x221 + 0.00350023*m.x222 - 0.00138502*m.x223 - 0.000363617*m.x224 + 0.00442729*m.x225 + 0.0018705*m.x226 + 0.00032798*m.x227 + 0.00293877*m.x228 + 0.00961433*m.x229 - 0.0041837*m.x230 + 0.00297944*m.x231 - 0.00269802*m.x232 + 0.00302395*m.x233 + 0.00857186*m.x234 + 0.00764263*m.x235 + 0.0084466*m.x236 + 0.00258002*m.x237 + 0.00229256*m.x238 + 0.00444714*m.x239 + 0.00583068*m.x240 + 0.00326363*m.x241 + 0.0011178*m.x242 + 0.00640579*m.x243 + 0.00976189*m.x244 + 0.000970672*m.x245 + 0.00337629*m.x246 + 0.00199323*m.x247 + 0.000362512*m.x248 + 0.000577468*m.x249 + 0.00414106*m.x250 - 0.000679271*m.x251 + 0.00211564*m.x252 + 0.00107585*m.x253 + 0.00203828*m.x254 - 0.00252786*m.x255 + 0.00563448*m.x256 + 0.00631844*m.x257 + 0.00082375*m.x258 + 0.00562702*m.x259 + 0.00391626*m.x260 + 0.00360731*m.x261 + 0.000290516*m.x262 + 0.00624913*m.x263 + 0.0112744*m.x264 + 0.00506401*m.x265 + 0.00397255*m.x266 - 0.0051442*m.x267 + 0.00745462*m.x268 + 0.00142392*m.x269 + 0.000803138*m.x270 + 0.0564156*m.x271 + 0.000199122*m.x272 + 0.0069332*m.x273 - 0.000609549*m.x274 + 0.00696655*m.x275 + 0.00884095*m.x276 + 0.00704184*m.x277 + 0.00678411*m.x278 + 0.000622126*m.x279 + 0.00149664*m.x280 + 0.00849473*m.x281 + 0.00425277*m.x282 - 0.00201782*m.x283 + 0.00117189*m.x284 + 0.00205926*m.x285 + 0.00108221*m.x286 - 0.000509977*m.x287 + 0.00613474*m.x288 + 0.0035637*m.x289 + 0.00316685*m.x290 + 0.000164365*m.x291 + 0.000853601*m.x292 - 0.00132464*m.x293 + 0.00386284*m.x294 + 0.00522755*m.x295 + 0.00612756*m.x296 - 0.000490773*m.x297 - 0.00304139*m.x298 + 0.00709659*m.x299 + 0.00740449*m.x300 - 0.000919619*m.x301 + 0.00139892*m.x302 - 0.00120848*m.x303 == 0) m.c275 = Constraint(expr= - m.x170 - 0.00260415*m.x204 - 0.00543312*m.x205 - 0.00180418*m.x206 - 0.00121453*m.x207 + 0.00134707*m.x208 + 0.00207255*m.x209 - 0.00408935*m.x210 - 0.000397583*m.x211 - 0.0094895*m.x212 + 0.000326023*m.x213 + 0.0075118*m.x214 + 0.0135494*m.x215 - 0.000391351*m.x216 + 0.00252489*m.x217 + 0.00359699*m.x218 + 0.00420122*m.x219 + 0.0024023*m.x220 + 0.00897574*m.x221 - 0.00265872*m.x222 - 0.00188528*m.x223 + 0.00165607*m.x224 + 0.00165204*m.x225 + 0.0019702*m.x226 + 0.000214023*m.x227 + 0.00416663*m.x228 - 0.00265062*m.x229 - 0.00171015*m.x230 + 0.00387335*m.x231 + 0.00498942*m.x232 + 0.00477754*m.x233 + 0.00134029*m.x234 + 0.000547113*m.x235 + 0.00275452*m.x236 + 0.000225492*m.x237 + 0.000473704*m.x238 + 0.00103419*m.x239 + 0.00257751*m.x240 + 0.00430324*m.x241 - 0.00573353*m.x242 + 0.000454124*m.x243 - 0.00394866*m.x244 + 0.0045212*m.x245 + 0.000207882*m.x246 + 0.00314636*m.x247 + 0.000666346*m.x248 + 0.00154811*m.x249 - 0.000776536*m.x250 + 0.0102058*m.x251 + 0.0010794*m.x252 + 0.00588583*m.x253 + 0.00143493*m.x254 - 0.00391423*m.x255 + 0.00602755*m.x256 + 0.00744533*m.x257 - 0.00321542*m.x258 + 0.00231435*m.x259 - 0.000228137*m.x260 - 0.00260459*m.x261 + 0.00222724*m.x262 - 0.00271435*m.x263 - 0.00282282*m.x264 + 0.00256623*m.x265 + 0.0129943*m.x266 - 0.000297438*m.x267 + 0.001637*m.x268 + 0.00518398*m.x269 + 0.00261358*m.x270 + 0.000199122*m.x271 + 0.0410637*m.x272 + 0.000873092*m.x273 + 0.00751651*m.x274 + 3.52637E-5*m.x275 + 0.00187569*m.x276 - 0.00175065*m.x277 + 0.00345714*m.x278 + 0.0124158*m.x279 + 0.00726466*m.x280 - 0.00175747*m.x281 + 0.00635637*m.x282 + 0.00300545*m.x283 - 0.000607595*m.x284 + 0.00303877*m.x285 + 0.00344426*m.x286 - 0.000151734*m.x287 - 0.000959542*m.x288 + 0.0027039*m.x289 - 0.00101768*m.x290 - 0.00789306*m.x291 + 0.000904711*m.x292 - 0.000843722*m.x293 + 0.00193938*m.x294 - 0.00169631*m.x295 + 0.00153401*m.x296 - 0.0051692*m.x297 + 0.004099*m.x298 + 0.00833415*m.x299 - 0.000558778*m.x300 + 0.00267992*m.x301 + 0.00290008*m.x302 + 0.00401961*m.x303 == 0) m.c276 = Constraint(expr= - m.x171 - 0.000565556*m.x204 + 0.00196136*m.x205 + 0.00156566*m.x206 + 0.00461528*m.x207 + 0.00328024*m.x208 + 0.00348354*m.x209 + 0.000462235*m.x210 + 0.00336798*m.x211 + 0.00494924*m.x212 + 0.000152555*m.x213 + 0.00178843*m.x214 - 0.00091213*m.x215 + 0.00613597*m.x216 + 0.00629022*m.x217 + 0.0014386*m.x218 + 0.00590657*m.x219 + 0.00990879*m.x220 + 0.0166501*m.x221 + 0.00164814*m.x222 + 0.00323891*m.x223 - 0.00574416*m.x224 + 0.0142159*m.x225 + 0.000738364*m.x226 - 0.000455981*m.x227 + 0.00536772*m.x228 + 0.00154076*m.x229 + 0.000149793*m.x230 + 0.000833965*m.x231 + 0.00215788*m.x232 + 0.00409215*m.x233 - 0.00510595*m.x234 + 0.00407025*m.x235 + 0.00389367*m.x236 + 0.00114158*m.x237 + 0.0031662*m.x238 + 0.00586585*m.x239 + 0.00615504*m.x240 + 0.00533161*m.x241 - 0.00828959*m.x242 - 0.000205968*m.x243 + 0.0292476*m.x244 - 0.00264895*m.x245 - 0.00430941*m.x246 - 0.000650527*m.x247 + 0.00537778*m.x248 - 0.000768089*m.x249 - 0.00326844*m.x250 + 0.0132501*m.x251 + 0.00192198*m.x252 + 0.00326447*m.x253 - 0.00250979*m.x254 - 0.0125749*m.x255 + 0.00350973*m.x256 + 0.00619991*m.x257 + 0.00553702*m.x258 + 0.00405522*m.x259 - 0.000486291*m.x260 + 0.000489283*m.x261 + 0.00327562*m.x262 - 0.00261305*m.x263 + 0.00541563*m.x264 - 0.00300804*m.x265 - 0.00259351*m.x266 + 0.0114782*m.x267 - 0.00182601*m.x268 + 0.00332053*m.x269 + 0.00421158*m.x270 + 0.0069332*m.x271 + 0.000873092*m.x272 + 0.0819903*m.x273 + 0.0113857*m.x274 + 0.0150218*m.x275 + 0.00729937*m.x276 + 0.00870756*m.x277 + 0.0122867*m.x278 + 0.00984671*m.x279 + 0.00157451*m.x280 + 0.00452844*m.x281 + 0.000902665*m.x282 + 0.00349484*m.x283 - 0.00558798*m.x284 - 0.00152774*m.x285 + 0.00608886*m.x286 + 0.0134833*m.x287 + 0.00145221*m.x288 + 0.0071947*m.x289 + 0.00751873*m.x290 - 0.00136694*m.x291 + 0.0032967*m.x292 + 0.00352111*m.x293 + 0.00355609*m.x294 - 0.000110801*m.x295 + 0.00541829*m.x296 - 0.00179873*m.x297 + 0.00181925*m.x298 + 0.00435334*m.x299 + 0.00935992*m.x300 - 0.00673796*m.x301 + 0.0024774*m.x302 + 0.00491578*m.x303 == 0) m.c277 = Constraint(expr= - m.x172 + 0.00157409*m.x204 + 0.00104823*m.x205 + 0.00730297*m.x206 + 0.00171472*m.x207 - 0.00258347*m.x208 + 0.00923163*m.x209 + 0.00708304*m.x210 - 3.62062E-5*m.x211 + 0.00140893*m.x212 + 0.000755605*m.x213 + 0.00419246*m.x214 + 0.00552551*m.x215 + 0.00606486*m.x216 + 0.00202437*m.x217 + 0.00529025*m.x218 + 0.00514824*m.x219 + 0.00256553*m.x220 + 0.0413935*m.x221 - 0.00157821*m.x222 + 0.00954413*m.x223 + 0.00258154*m.x224 - 0.00279132*m.x225 - 0.00145188*m.x226 + 0.00209608*m.x227 + 0.00835572*m.x228 + 0.000823677*m.x229 + 0.00209144*m.x230 + 0.00113589*m.x231 - 0.000768782*m.x232 + 0.0030886*m.x233 - 0.00295933*m.x234 + 0.0036774*m.x235 - 0.000709167*m.x236 + 0.00465008*m.x237 - 0.00122519*m.x238 + 0.00231842*m.x239 + 0.00425069*m.x240 + 0.00508092*m.x241 + 0.00226037*m.x242 + 0.00175952*m.x243 + 0.00482129*m.x244 - 0.00122455*m.x245 + 0.00263722*m.x246 + 0.00194261*m.x247 + 0.00435506*m.x248 + 0.00319599*m.x249 + 0.00321975*m.x250 + 0.00894547*m.x251 + 0.00189277*m.x252 + 0.000829669*m.x253 + 0.000544328*m.x254 + 0.00401374*m.x255 + 0.00383568*m.x256 + 0.00217002*m.x257 + 0.00147133*m.x258 + 0.00465177*m.x259 + 0.00136233*m.x260 + 0.0019333*m.x261 - 0.00467757*m.x262 + 0.00160928*m.x263 - 0.00194831*m.x264 - 0.00011493*m.x265 - 0.000134645*m.x266 - 0.0015542*m.x267 + 0.00273762*m.x268 - 0.000651909*m.x269 + 0.00224737*m.x270 - 0.000609549*m.x271 + 0.00751651*m.x272 + 0.0113857*m.x273 + 0.0630445*m.x274 + 0.00795102*m.x275 + 0.00304849*m.x276 + 0.00308585*m.x277 + 0.0217768*m.x278 + 0.0125072*m.x279 + 0.00285872*m.x280 + 0.00387554*m.x281 - 0.00153684*m.x282 + 0.00166093*m.x283 + 0.00201403*m.x284 + 0.00412755*m.x285 + 0.000718975*m.x286 + 0.000956443*m.x287 + 0.0024877*m.x288 + 0.00167048*m.x289 - 0.00563257*m.x290 + 0.00591306*m.x291 + 0.00042396*m.x292 + 3.84816E-5*m.x293 - 0.000816933*m.x294 + 0.00214663*m.x295 + 0.00586755*m.x296 - 0.00378753*m.x297 - 0.00130744*m.x298 + 0.00509215*m.x299 + 0.000940496*m.x300 + 5.42431E-5*m.x301 + 0.00377541*m.x302 + 0.00950302*m.x303 == 0) m.c278 = Constraint(expr= - m.x173 + 0.00434565*m.x204 + 0.0124518*m.x205 + 0.00553899*m.x206 + 0.00388579*m.x207 + 0.000703909*m.x208 + 0.000624611*m.x209 + 0.00304047*m.x210 - 0.00115006*m.x211 + 0.00133383*m.x212 + 0.00527875*m.x213 + 0.0134485*m.x214 + 0.00176871*m.x215 + 0.00844082*m.x216 + 0.00360247*m.x217 + 0.00208614*m.x218 + 0.00360809*m.x219 + 0.00357857*m.x220 + 0.00519486*m.x221 + 0.0186797*m.x222 + 0.00474038*m.x223 + 0.00381723*m.x224 + 0.000424545*m.x225 + 0.00338012*m.x226 - 0.00193539*m.x227 + 0.00427922*m.x228 - 0.000449853*m.x229 - 0.00158294*m.x230 + 0.00481228*m.x231 - 0.00366851*m.x232 + 0.00889169*m.x233 + 0.0115794*m.x234 + 0.00185908*m.x235 - 0.00220075*m.x236 + 0.0128796*m.x237 + 0.00469534*m.x238 + 0.0117501*m.x239 + 0.00451846*m.x240 + 0.000128128*m.x241 + 0.00534219*m.x242 + 0.00448064*m.x243 + 0.0197985*m.x244 - 0.00157959*m.x245 + 0.0157715*m.x246 - 0.00321407*m.x247 + 0.0289633*m.x248 + 0.00303778*m.x249 + 0.00511975*m.x250 + 0.0211536*m.x251 + 0.00643706*m.x252 + 0.00442436*m.x253 - 0.0016811*m.x254 + 0.00592187*m.x255 - 0.00440784*m.x256 - 0.00114793*m.x257 + 0.00854643*m.x258 + 0.00507821*m.x259 + 0.00619112*m.x260 + 0.00139414*m.x261 - 0.00306634*m.x262 + 0.00397158*m.x263 + 0.00472835*m.x264 + 0.00948613*m.x265 - 0.0024675*m.x266 - 0.00124081*m.x267 + 0.00370659*m.x268 + 0.00345787*m.x269 + 0.00248184*m.x270 + 0.00696655*m.x271 + 3.52637E-5*m.x272 + 0.0150218*m.x273 + 0.00795102*m.x274 + 0.101085*m.x275 + 0.00584736*m.x276 + 0.00340406*m.x277 + 0.00557937*m.x278 + 0.020463*m.x279 + 0.00157597*m.x280 + 0.013291*m.x281 + 0.00665831*m.x282 + 0.00963207*m.x283 + 0.00392921*m.x284 - 0.00543762*m.x285 + 0.010873*m.x286 + 0.00656066*m.x287 + 0.00539259*m.x288 + 0.0115011*m.x289 + 0.00533348*m.x290 + 0.000781568*m.x291 + 0.00196384*m.x292 + 0.00184219*m.x293 + 0.00423463*m.x294 - 0.00545762*m.x295 + 0.00496011*m.x296 - 0.00325598*m.x297 + 0.00383461*m.x298 + 0.0116874*m.x299 + 0.0101529*m.x300 - 0.00447465*m.x301 + 0.00751902*m.x302 + 0.00119155*m.x303 == 0) m.c279 = Constraint(expr= - m.x174 - 0.00256408*m.x204 - 0.00305148*m.x205 - 0.00796275*m.x206 + 0.00967986*m.x207 - 0.00197849*m.x208 + 0.00416771*m.x209 + 0.0003593*m.x210 + 0.00764087*m.x211 - 0.00225174*m.x212 - 0.00463861*m.x213 + 0.000185964*m.x214 + 0.00949781*m.x215 + 0.00591694*m.x216 + 0.00776175*m.x217 + 0.00421559*m.x218 + 0.000388988*m.x219 + 0.000899423*m.x220 - 0.00390506*m.x221 + 0.00255652*m.x222 + 0.00149818*m.x223 - 0.000417211*m.x224 - 0.00529683*m.x225 + 0.00137974*m.x226 + 0.00122937*m.x227 - 0.00121545*m.x228 - 0.00240676*m.x229 + 0.00125814*m.x230 + 0.00110802*m.x231 + 0.000149784*m.x232 + 0.00200531*m.x233 + 0.00222961*m.x234 + 0.0035544*m.x235 - 0.00419952*m.x236 + 0.00160429*m.x237 + 0.00559382*m.x238 - 0.00199508*m.x239 + 0.00704945*m.x240 + 0.00294995*m.x241 + 0.00159989*m.x242 + 0.00382583*m.x243 - 0.00202513*m.x244 + 0.00243935*m.x245 - 0.00241116*m.x246 + 0.000171403*m.x247 - 0.00793056*m.x248 + 0.00128681*m.x249 + 0.0018167*m.x250 - 0.000443774*m.x251 + 0.00398105*m.x252 + 0.00505109*m.x253 + 0.000307144*m.x254 + 0.00168744*m.x255 + 0.0017901*m.x256 + 0.00280667*m.x257 - 0.00206724*m.x258 + 0.00524954*m.x259 - 0.000663369*m.x260 - 0.000354506*m.x261 - 0.00382859*m.x262 + 0.00449248*m.x263 + 0.015161*m.x264 + 0.00588371*m.x265 - 0.000639732*m.x266 - 0.00658561*m.x267 + 0.00073551*m.x268 + 0.0015834*m.x269 - 0.0025493*m.x270 + 0.00884095*m.x271 + 0.00187569*m.x272 + 0.00729937*m.x273 + 0.00304849*m.x274 + 0.00584736*m.x275 + 0.0663374*m.x276 + 0.00429338*m.x277 + 0.00208008*m.x278 - 0.00248159*m.x279 + 0.00121181*m.x280 + 0.011796*m.x281 + 0.00171519*m.x282 + 0.00484394*m.x283 - 0.006173*m.x284 + 0.00504263*m.x285 + 0.000887498*m.x286 + 0.00438259*m.x287 + 0.00418985*m.x288 + 0.00590139*m.x289 + 0.00101318*m.x290 + 0.00599692*m.x291 - 0.00270112*m.x292 - 0.000435065*m.x293 + 0.00332285*m.x294 + 0.0163644*m.x295 + 0.000961062*m.x296 + 0.00524417*m.x297 - 0.00131349*m.x298 - 0.00280069*m.x299 + 0.00116913*m.x300 + 0.00450883*m.x301 + 0.000120926*m.x302 + 0.0018262*m.x303 == 0) m.c280 = Constraint(expr= - m.x175 + 6.86355E-5*m.x204 + 0.00752299*m.x205 + 0.00502078*m.x206 + 0.0016606*m.x207 + 0.00192358*m.x208 - 0.00784802*m.x209 + 0.00480892*m.x210 - 0.00130017*m.x211 + 0.0173398*m.x212 + 0.00182445*m.x213 + 0.00708873*m.x214 + 0.00315281*m.x215 + 0.00350723*m.x216 + 0.00312055*m.x217 + 0.00532908*m.x218 + 0.00566117*m.x219 + 0.00477605*m.x220 + 0.00335963*m.x221 - 0.00224843*m.x222 + 0.00924254*m.x223 - 0.0013492*m.x224 - 0.000691165*m.x225 + 0.00275438*m.x226 + 0.00385412*m.x227 + 0.002375*m.x228 - 0.00308594*m.x229 + 0.00370129*m.x230 - 0.00473546*m.x231 + 0.00567007*m.x232 + 0.00557444*m.x233 + 0.00216482*m.x234 + 0.000252173*m.x235 + 0.00578535*m.x236 + 0.00322761*m.x237 + 0.00528838*m.x238 + 0.00257808*m.x239 + 0.00264191*m.x240 + 0.0033947*m.x241 - 0.00222586*m.x242 + 0.00466981*m.x243 + 0.00768395*m.x244 + 0.000446619*m.x245 + 0.000537603*m.x246 + 0.00364979*m.x247 - 0.00124997*m.x248 + 0.000718747*m.x249 + 0.0015802*m.x250 + 0.00327277*m.x251 + 0.000745003*m.x252 + 0.00575919*m.x253 + 0.00312743*m.x254 + 0.00949071*m.x255 + 0.00137853*m.x256 + 0.00187548*m.x257 + 0.00150074*m.x258 + 0.000811673*m.x259 + 0.00593263*m.x260 + 0.00179872*m.x261 - 0.00129787*m.x262 - 0.00174627*m.x263 + 0.0149532*m.x264 + 0.00371951*m.x265 + 0.0061587*m.x266 - 0.00508464*m.x267 + 0.00470649*m.x268 - 0.00204478*m.x269 + 0.00528975*m.x270 + 0.00704184*m.x271 - 0.00175065*m.x272 + 0.00870756*m.x273 + 0.00308585*m.x274 + 0.00340406*m.x275 + 0.00429338*m.x276 + 0.0544652*m.x277 + 0.00426504*m.x278 + 0.00206964*m.x279 + 0.00348858*m.x280 + 0.0015586*m.x281 + 0.000735431*m.x282 + 0.00557963*m.x283 + 0.000328794*m.x284 + 0.00283205*m.x285 - 0.00256622*m.x286 + 0.00639915*m.x287 + 0.0101988*m.x288 + 0.00512473*m.x289 + 0.002495*m.x290 - 6.81269E-5*m.x291 + 0.00306404*m.x292 - 0.00158105*m.x293 + 0.00146977*m.x294 + 0.00374693*m.x295 + 0.000942883*m.x296 + 0.00282709*m.x297 + 0.000559935*m.x298 + 0.00395298*m.x299 + 0.00461055*m.x300 + 0.00200426*m.x301 + 0.00214771*m.x302 - 0.00562506*m.x303 == 0) m.c281 = Constraint(expr= - m.x176 + 0.000115271*m.x204 + 0.00484884*m.x205 - 0.001733*m.x206 + 0.00295113*m.x207 + 0.00996959*m.x208 + 0.000769801*m.x209 + 0.00445062*m.x210 + 0.00809507*m.x211 + 0.00433366*m.x212 + 0.000102258*m.x213 + 0.00400977*m.x214 + 0.000656197*m.x215 + 0.00814361*m.x216 + 0.00869015*m.x217 + 0.00298937*m.x218 + 0.00613568*m.x219 + 0.00603965*m.x220 - 0.000907451*m.x221 + 0.00495422*m.x222 + 0.00616055*m.x223 - 0.00366376*m.x224 + 0.0035661*m.x225 + 0.0056652*m.x226 + 0.00757348*m.x227 + 0.00506443*m.x228 - 0.00171011*m.x229 + 0.00029565*m.x230 + 0.00406944*m.x231 + 0.00749201*m.x232 + 0.00392979*m.x233 - 0.000761944*m.x234 + 0.0057429*m.x235 - 0.00402305*m.x236 + 0.00655944*m.x237 + 0.00469948*m.x238 - 0.002975*m.x239 + 0.00435042*m.x240 + 0.00617964*m.x241 + 0.0053804*m.x242 + 0.00641732*m.x243 + 0.00245073*m.x244 + 0.00507279*m.x245 - 0.00425708*m.x246 + 0.00485946*m.x247 + 0.00600917*m.x248 - 0.000691613*m.x249 + 0.00532914*m.x250 + 0.00786226*m.x251 + 0.00524394*m.x252 + 0.00235758*m.x253 - 0.000215375*m.x254 + 0.000384402*m.x255 + 5.46446E-5*m.x256 + 0.00626037*m.x257 + 0.00174514*m.x258 - 0.00221712*m.x259 + 0.00236031*m.x260 + 0.00283392*m.x261 - 0.00372436*m.x262 + 0.00173888*m.x263 + 0.00696878*m.x264 + 0.00218575*m.x265 - 0.000720003*m.x266 - 0.000437189*m.x267 + 0.000708354*m.x268 + 0.00181948*m.x269 + 0.00304023*m.x270 + 0.00678411*m.x271 + 0.00345714*m.x272 + 0.0122867*m.x273 + 0.0217768*m.x274 + 0.00557937*m.x275 + 0.00208008*m.x276 + 0.00426504*m.x277 + 0.104966*m.x278 + 0.0274224*m.x279 - 0.00201672*m.x280 + 0.00709871*m.x281 + 0.00330387*m.x282 + 0.00277583*m.x283 + 0.0174915*m.x284 - 0.00134198*m.x285 + 0.00643863*m.x286 + 0.00424422*m.x287 + 0.0086924*m.x288 + 0.000133115*m.x289 + 0.00342096*m.x290 + 0.00617057*m.x291 + 0.00674858*m.x292 + 0.00060276*m.x293 + 0.00167034*m.x294 - 0.000105586*m.x295 + 0.00482014*m.x296 + 0.00201782*m.x297 + 0.00319848*m.x298 + 0.00557589*m.x299 + 0.00775337*m.x300 - 0.00196797*m.x301 + 0.000849566*m.x302 + 0.00509184*m.x303 == 0) m.c282 = Constraint(expr= - m.x177 + 0.00407719*m.x204 + 0.00471928*m.x205 + 0.000121446*m.x206 + 0.00353955*m.x207 + 0.00858445*m.x208 + 0.00337936*m.x209 + 0.00319021*m.x210 + 0.012837*m.x211 + 0.000552636*m.x212 + 0.00269352*m.x213 - 0.00213811*m.x214 + 0.00384708*m.x215 + 0.0112582*m.x216 + 0.0036686*m.x217 + 0.00264656*m.x218 + 0.00230286*m.x219 - 0.00288781*m.x220 + 0.0158614*m.x221 + 0.00648139*m.x222 + 0.000177828*m.x223 + 0.00392505*m.x224 + 0.00982752*m.x225 + 0.00472609*m.x226 + 0.00328889*m.x227 - 0.000339949*m.x228 + 0.00119568*m.x229 + 0.00285626*m.x230 - 0.00282972*m.x231 + 0.00153215*m.x232 + 0.00976432*m.x233 + 0.00156264*m.x234 + 0.00330489*m.x235 + 0.000882589*m.x236 + 0.0152201*m.x237 + 0.0120162*m.x238 + 0.00511897*m.x239 + 0.00377697*m.x240 + 0.00469332*m.x241 + 0.00320131*m.x242 + 0.0117164*m.x243 + 0.0074376*m.x244 + 0.00996305*m.x245 + 0.00705762*m.x246 + 0.00796772*m.x247 + 0.00654889*m.x248 + 0.0060368*m.x249 + 0.0052332*m.x250 + 0.00909273*m.x251 + 0.00240223*m.x252 + 0.00674287*m.x253 + 0.00123286*m.x254 - 0.00446796*m.x255 - 0.000579361*m.x256 + 0.00865879*m.x257 + 0.00367872*m.x258 + 0.00179629*m.x259 - 0.000221372*m.x260 - 0.000614375*m.x261 + 0.00351785*m.x262 + 0.00361497*m.x263 - 0.00212982*m.x264 + 0.00239518*m.x265 - 0.00377983*m.x266 - 0.00827295*m.x267 + 0.00236959*m.x268 + 0.0026534*m.x269 - 7.68874E-5*m.x270 + 0.000622126*m.x271 + 0.0124158*m.x272 + 0.00984671*m.x273 + 0.0125072*m.x274 + 0.020463*m.x275 - 0.00248159*m.x276 + 0.00206964*m.x277 + 0.0274224*m.x278 + 0.167759*m.x279 + 0.00401387*m.x280 + 0.00590684*m.x281 - 0.00291362*m.x282 + 0.0114267*m.x283 + 0.00999273*m.x284 + 0.000879691*m.x285 + 0.00171019*m.x286 + 0.0139977*m.x287 + 0.00246352*m.x288 + 0.00601652*m.x289 + 0.00334106*m.x290 + 0.0025963*m.x291 + 0.00713089*m.x292 + 0.000877639*m.x293 + 0.00380538*m.x294 + 0.00122031*m.x295 + 0.00524552*m.x296 - 0.00317043*m.x297 + 0.00149389*m.x298 + 0.0117116*m.x299 + 0.0269848*m.x300 - 0.00783374*m.x301 + 0.00544106*m.x302 + 0.00418992*m.x303 == 0) m.c283 = Constraint(expr= - m.x178 - 0.000717764*m.x204 + 0.00180959*m.x205 + 0.00524254*m.x206 + 0.00142511*m.x207 + 0.00237901*m.x208 + 0.00116986*m.x209 + 0.000605631*m.x210 + 0.000749837*m.x211 + 0.0021388*m.x212 + 0.00164556*m.x213 + 0.000162794*m.x214 + 0.000917677*m.x215 - 0.001004*m.x216 + 0.00118524*m.x217 + 0.00679774*m.x218 + 0.00270915*m.x219 - 0.000219471*m.x220 + 0.000758788*m.x221 + 0.00210436*m.x222 - 0.000528732*m.x223 - 0.0011348*m.x224 + 0.00395315*m.x225 + 0.00250314*m.x226 + 0.00201276*m.x227 + 0.00104576*m.x228 + 0.00520579*m.x229 + 0.00597457*m.x230 + 0.00339262*m.x231 + 0.00188058*m.x232 + 0.00633676*m.x233 + 0.00204943*m.x234 + 0.00398224*m.x235 + 0.00527028*m.x236 + 0.00163512*m.x237 + 0.00363359*m.x238 + 0.00114031*m.x239 + 0.00320382*m.x240 + 0.00171417*m.x241 + 0.000418358*m.x242 + 0.0044896*m.x243 + 0.00257063*m.x244 + 0.00582409*m.x245 - 0.000639079*m.x246 + 0.00166603*m.x247 + 0.0013566*m.x248 + 0.000899485*m.x249 + 0.00121475*m.x250 + 0.0049413*m.x251 + 0.00282459*m.x252 + 0.0017513*m.x253 + 0.00131588*m.x254 + 0.0023511*m.x255 + 0.000918975*m.x256 - 0.00113185*m.x257 + 0.00492691*m.x258 + 0.0049631*m.x259 + 0.00231411*m.x260 + 0.00131236*m.x261 + 7.90391E-5*m.x262 + 0.00608981*m.x263 - 0.000506982*m.x264 + 0.000908744*m.x265 - 0.00164528*m.x266 - 0.00171171*m.x267 + 0.00614785*m.x268 + 0.00931383*m.x269 + 0.00145709*m.x270 + 0.00149664*m.x271 + 0.00726466*m.x272 + 0.00157451*m.x273 + 0.00285872*m.x274 + 0.00157597*m.x275 + 0.00121181*m.x276 + 0.00348858*m.x277 - 0.00201672*m.x278 + 0.00401387*m.x279 + 0.0316196*m.x280 + 0.00350992*m.x281 + 0.00385198*m.x282 + 0.00322206*m.x283 + 0.0100535*m.x284 + 0.00351688*m.x285 - 0.00191643*m.x286 + 0.00378979*m.x287 + 0.00355674*m.x288 + 0.00196838*m.x289 - 0.000454484*m.x290 + 0.00629473*m.x291 + 0.00580576*m.x292 + 0.000568793*m.x293 - 0.000609214*m.x294 + 0.00275425*m.x295 + 0.0015505*m.x296 + 0.00365812*m.x297 + 0.00289131*m.x298 + 0.00281716*m.x299 + 0.00374955*m.x300 + 0.0050992*m.x301 + 0.0100888*m.x302 + 0.00362527*m.x303 == 0) m.c284 = Constraint(expr= - m.x179 + 0.00421776*m.x204 - 0.00197105*m.x205 - 0.000120631*m.x206 + 0.00243873*m.x207 + 0.00880383*m.x208 + 0.00315331*m.x209 + 0.00795997*m.x210 + 0.00274401*m.x211 + 0.00222851*m.x212 + 0.00504609*m.x213 + 0.000164067*m.x214 + 0.00436823*m.x215 + 0.0283095*m.x216 + 0.0108841*m.x217 + 0.00864262*m.x218 + 0.00649316*m.x219 + 0.00864189*m.x220 + 0.00609675*m.x221 - 0.000701372*m.x222 - 0.00297681*m.x223 + 0.00121554*m.x224 + 0.00440691*m.x225 + 0.00155203*m.x226 - 0.00176184*m.x227 + 0.00385754*m.x228 + 0.00404244*m.x229 + 0.00323244*m.x230 + 0.0012098*m.x231 - 0.00264831*m.x232 + 0.00795621*m.x233 + 0.000825899*m.x234 + 0.00493613*m.x235 - 0.00719009*m.x236 - 0.000389451*m.x237 + 0.002036*m.x238 + 0.00600576*m.x239 + 0.00309988*m.x240 + 0.00500233*m.x241 + 0.00364534*m.x242 + 0.00543249*m.x243 + 0.00619385*m.x244 + 0.0100077*m.x245 + 0.00378279*m.x246 + 0.00349167*m.x247 + 0.0145382*m.x248 + 0.00663248*m.x249 + 0.00220381*m.x250 + 0.00400317*m.x251 + 0.00472739*m.x252 + 0.00529534*m.x253 + 0.00669716*m.x254 + 0.00116828*m.x255 + 0.00676102*m.x256 + 0.0225093*m.x257 - 0.00258072*m.x258 + 0.00316822*m.x259 + 0.00764311*m.x260 + 0.00470546*m.x261 - 0.00511468*m.x262 + 0.00614973*m.x263 + 0.00516964*m.x264 + 0.00589109*m.x265 + 0.00111631*m.x266 - 0.00437862*m.x267 + 0.00314938*m.x268 + 0.00472133*m.x269 + 0.000648689*m.x270 + 0.00849473*m.x271 - 0.00175747*m.x272 + 0.00452844*m.x273 + 0.00387554*m.x274 + 0.013291*m.x275 + 0.011796*m.x276 + 0.0015586*m.x277 + 0.00709871*m.x278 + 0.00590684*m.x279 + 0.00350992*m.x280 + 0.0605186*m.x281 - 0.00381753*m.x282 - 0.00184947*m.x283 + 0.00234081*m.x284 + 0.0028696*m.x285 + 0.00823346*m.x286 + 0.00765951*m.x287 + 0.00284298*m.x288 + 0.00246263*m.x289 - 0.000739706*m.x290 + 0.0125211*m.x291 - 0.000736787*m.x292 + 0.00421174*m.x293 + 0.00453567*m.x294 + 0.0114023*m.x295 + 0.00705981*m.x296 - 0.000688029*m.x297 + 0.00418666*m.x298 + 0.00132274*m.x299 + 0.00955838*m.x300 - 0.00343351*m.x301 + 0.00462039*m.x302 + 0.00284859*m.x303 == 0) m.c285 = Constraint(expr= - m.x180 - 0.00185436*m.x204 - 0.000409026*m.x205 - 0.00614724*m.x206 - 0.00105264*m.x207 + 0.00286914*m.x208 - 0.00601197*m.x209 + 0.00396196*m.x210 + 0.000351167*m.x211 + 0.00814529*m.x212 - 0.0025043*m.x213 + 0.00227186*m.x214 + 0.00309677*m.x215 - 0.00136311*m.x216 - 0.00602015*m.x217 + 0.000288227*m.x218 + 0.0020842*m.x219 + 0.00732999*m.x220 - 0.00295186*m.x221 - 0.00282066*m.x222 - 0.0030116*m.x223 + 0.00603936*m.x224 - 0.000568168*m.x225 + 0.00168508*m.x226 - 0.000125577*m.x227 + 0.00216037*m.x228 - 0.00374261*m.x229 + 0.00954078*m.x230 - 0.000254586*m.x231 + 0.00777778*m.x232 + 0.00342719*m.x233 - 0.0014036*m.x234 + 0.000602209*m.x235 + 0.000341894*m.x236 + 0.0037276*m.x237 - 0.00283527*m.x238 - 0.000204738*m.x239 + 0.00412862*m.x240 + 0.00380334*m.x241 + 0.00809556*m.x242 + 0.00297247*m.x243 + 0.000995878*m.x244 + 0.00713668*m.x245 + 0.00244117*m.x246 - 0.000466954*m.x247 + 0.00753084*m.x248 + 0.0010729*m.x249 + 0.00145566*m.x250 - 0.00680418*m.x251 + 0.000794467*m.x252 + 0.00205383*m.x253 - 0.000981274*m.x254 + 6.81408E-5*m.x255 - 0.00488771*m.x256 + 0.000921016*m.x257 + 0.00261019*m.x258 - 0.00271758*m.x259 + 0.000965316*m.x260 - 0.00479156*m.x261 + 0.00410639*m.x262 + 0.00797918*m.x263 + 0.0561216*m.x264 - 0.000413564*m.x265 + 0.00309633*m.x266 - 0.00400538*m.x267 + 0.00170909*m.x268 + 0.00170468*m.x269 + 0.00531632*m.x270 + 0.00425277*m.x271 + 0.00635637*m.x272 + 0.000902665*m.x273 - 0.00153684*m.x274 + 0.00665831*m.x275 + 0.00171519*m.x276 + 0.000735431*m.x277 + 0.00330387*m.x278 - 0.00291362*m.x279 + 0.00385198*m.x280 - 0.00381753*m.x281 + 0.19913*m.x282 + 0.00501413*m.x283 + 0.00275071*m.x284 + 0.00815821*m.x285 + 0.00164795*m.x286 - 0.00050972*m.x287 + 0.000377268*m.x288 + 0.00376524*m.x289 - 0.00196578*m.x290 - 0.00288*m.x291 + 0.00939099*m.x292 - 0.000222728*m.x293 + 0.0123212*m.x294 - 0.0056184*m.x295 - 0.00793664*m.x296 + 0.00208083*m.x297 - 0.00216442*m.x298 - 0.0058322*m.x299 + 0.00684748*m.x300 + 0.00539178*m.x301 + 0.00822951*m.x302 + 0.000459309*m.x303 == 0) m.c286 = Constraint(expr= - m.x181 + 0.0139088*m.x204 + 0.00669345*m.x205 + 0.00806025*m.x206 + 0.00531498*m.x207 + 0.00026152*m.x208 - 0.00277281*m.x209 + 0.00197483*m.x210 + 0.00240495*m.x211 + 0.000337824*m.x212 + 0.00627615*m.x213 + 0.00094864*m.x214 - 0.00314082*m.x215 - 0.00169506*m.x216 + 0.00971903*m.x217 + 0.00677297*m.x218 + 0.00256288*m.x219 + 0.00605617*m.x220 + 0.00938947*m.x221 - 0.0064102*m.x222 - 0.00201799*m.x223 - 0.000855626*m.x224 + 0.00655708*m.x225 + 0.00717688*m.x226 + 0.000482661*m.x227 - 0.000699399*m.x228 - 0.002876*m.x229 - 0.00260552*m.x230 + 0.00671298*m.x231 - 0.000369335*m.x232 - 0.0024266*m.x233 + 0.00439362*m.x234 + 0.00499603*m.x235 - 0.00292742*m.x236 - 0.0010051*m.x237 - 0.00290324*m.x238 + 0.00299286*m.x239 + 0.00264123*m.x240 + 0.00381492*m.x241 + 0.00378329*m.x242 + 0.00569595*m.x243 - 0.000313695*m.x244 - 0.00695821*m.x245 + 0.00776276*m.x246 - 0.00100195*m.x247 + 0.000994392*m.x248 + 0.006249*m.x249 - 0.000197051*m.x250 + 0.0137323*m.x251 + 0.00387197*m.x252 + 0.00641984*m.x253 + 0.00185637*m.x254 - 0.00245755*m.x255 - 0.000420988*m.x256 + 0.000728519*m.x257 + 0.00168293*m.x258 + 2.01133E-5*m.x259 + 0.00959794*m.x260 - 0.000175807*m.x261 - 0.00321313*m.x262 + 0.00353012*m.x263 + 0.00206552*m.x264 + 0.00177553*m.x265 - 0.00431355*m.x266 - 0.00481033*m.x267 - 0.0031579*m.x268 + 0.00110864*m.x269 - 0.00270393*m.x270 - 0.00201782*m.x271 + 0.00300545*m.x272 + 0.00349484*m.x273 + 0.00166093*m.x274 + 0.00963207*m.x275 + 0.00484394*m.x276 + 0.00557963*m.x277 + 0.00277583*m.x278 + 0.0114267*m.x279 + 0.00322206*m.x280 - 0.00184947*m.x281 + 0.00501413*m.x282 + 0.126423*m.x283 - 0.00162189*m.x284 + 0.000788655*m.x285 - 0.00346789*m.x286 + 0.00325763*m.x287 + 0.00299874*m.x288 + 0.00620979*m.x289 + 0.0117406*m.x290 - 0.00806051*m.x291 + 0.00152584*m.x292 - 0.00353569*m.x293 - 0.000134223*m.x294 + 0.000240556*m.x295 + 0.00454787*m.x296 + 0.00970541*m.x297 - 0.00292971*m.x298 + 0.0013331*m.x299 + 0.00376435*m.x300 - 0.00118927*m.x301 + 0.0021784*m.x302 - 0.00418691*m.x303 == 0) m.c287 = Constraint(expr= - m.x182 + 0.00169537*m.x204 + 0.00587367*m.x205 + 0.0109797*m.x206 + 0.00188864*m.x207 + 0.010098*m.x208 + 0.00597799*m.x209 + 0.00590748*m.x210 + 0.000367094*m.x211 - 0.00392219*m.x212 + 0.00371545*m.x213 - 0.00147339*m.x214 - 0.00237874*m.x215 - 0.00256875*m.x216 + 0.00813772*m.x217 + 0.000330943*m.x218 + 0.00240084*m.x219 - 0.000467489*m.x220 - 0.00281231*m.x221 + 0.00786204*m.x222 - 0.00259834*m.x223 - 9.51042E-5*m.x224 + 0.0132513*m.x225 + 0.00442955*m.x226 + 0.00549587*m.x227 - 0.000380813*m.x228 + 0.00564875*m.x229 + 0.00931525*m.x230 + 0.0117108*m.x231 + 0.00409714*m.x232 + 0.00516382*m.x233 + 0.00824533*m.x234 + 0.00484005*m.x235 + 0.00505718*m.x236 + 0.0025218*m.x237 - 0.00552971*m.x238 + 0.00431272*m.x239 + 0.00669612*m.x240 + 0.00349169*m.x241 + 0.00368273*m.x242 + 0.001847*m.x243 - 0.000172475*m.x244 + 0.00804511*m.x245 - 0.000311621*m.x246 + 0.00342181*m.x247 - 0.0010613*m.x248 + 0.00265281*m.x249 + 0.00302341*m.x250 + 0.00633139*m.x251 + 0.00198803*m.x252 + 0.00684435*m.x253 + 0.00200309*m.x254 + 0.0117758*m.x255 - 0.00234208*m.x256 - 0.00445797*m.x257 + 0.00651943*m.x258 + 0.00508838*m.x259 + 0.000370277*m.x260 - 4.69764E-5*m.x261 + 0.00241956*m.x262 + 0.0106118*m.x263 + 0.00059783*m.x264 + 0.000254788*m.x265 - 0.00123317*m.x266 + 0.000267753*m.x267 + 0.0092312*m.x268 + 0.00727345*m.x269 - 0.000304736*m.x270 + 0.00117189*m.x271 - 0.000607595*m.x272 - 0.00558798*m.x273 + 0.00201403*m.x274 + 0.00392921*m.x275 - 0.006173*m.x276 + 0.000328794*m.x277 + 0.0174915*m.x278 + 0.00999273*m.x279 + 0.0100535*m.x280 + 0.00234081*m.x281 + 0.00275071*m.x282 - 0.00162189*m.x283 + 0.0537365*m.x284 + 0.00383147*m.x285 + 0.000945652*m.x286 + 0.0102167*m.x287 + 0.00670296*m.x288 - 0.00161202*m.x289 + 0.00107191*m.x290 + 0.00331932*m.x291 + 0.00912186*m.x292 - 0.00120435*m.x293 + 0.00090878*m.x294 - 0.00195931*m.x295 - 0.000874528*m.x296 - 0.00561291*m.x297 + 0.00316007*m.x298 + 0.00326358*m.x299 + 0.0032359*m.x300 + 0.00478097*m.x301 + 0.00997826*m.x302 + 0.00455818*m.x303 == 0) m.c288 = Constraint(expr= - m.x183 - 0.00322776*m.x204 + 0.00304423*m.x205 + 0.00481845*m.x206 + 0.00359302*m.x207 + 0.00162371*m.x208 + 0.00573361*m.x209 + 0.00820622*m.x210 - 0.000642028*m.x211 + 0.0200781*m.x212 + 0.00330175*m.x213 + 0.00528313*m.x214 + 0.00652441*m.x215 + 0.0112133*m.x216 - 0.00255056*m.x217 + 0.00658359*m.x218 + 0.00108106*m.x219 + 0.00375754*m.x220 + 0.00406283*m.x221 - 0.00449328*m.x222 + 2.88534E-5*m.x223 + 0.00328428*m.x224 + 0.00364648*m.x225 + 0.000629589*m.x226 - 0.000664034*m.x227 + 0.00135096*m.x228 + 0.00529419*m.x229 + 0.000400638*m.x230 + 0.00614105*m.x231 - 0.000584153*m.x232 + 0.00568177*m.x233 + 0.00200915*m.x234 + 0.0129378*m.x235 - 0.000112291*m.x236 + 0.0044636*m.x237 + 0.0028359*m.x238 + 0.000643374*m.x239 + 0.00461646*m.x240 + 0.00806328*m.x241 + 0.00160903*m.x242 + 2.32746E-5*m.x243 + 0.00144712*m.x244 + 0.0045584*m.x245 - 0.0011604*m.x246 + 0.00300422*m.x247 + 0.00748896*m.x248 + 0.00400057*m.x249 + 0.00322867*m.x250 - 5.13418E-5*m.x251 + 0.00165035*m.x252 + 0.00461578*m.x253 + 0.00274343*m.x254 - 0.000210065*m.x255 + 0.00819901*m.x256 + 0.00436349*m.x257 - 0.000228966*m.x258 + 0.00528738*m.x259 + 0.00152795*m.x260 + 0.00535958*m.x261 + 0.00469951*m.x262 + 0.00180257*m.x263 + 0.00506047*m.x264 + 0.000483366*m.x265 - 0.00107592*m.x266 - 0.00462929*m.x267 + 0.00139163*m.x268 + 0.00278892*m.x269 + 0.00310389*m.x270 + 0.00205926*m.x271 + 0.00303877*m.x272 - 0.00152774*m.x273 + 0.00412755*m.x274 - 0.00543762*m.x275 + 0.00504263*m.x276 + 0.00283205*m.x277 - 0.00134198*m.x278 + 0.000879691*m.x279 + 0.00351688*m.x280 + 0.0028696*m.x281 + 0.00815821*m.x282 + 0.000788655*m.x283 + 0.00383147*m.x284 + 0.0365864*m.x285 + 0.00400753*m.x286 + 0.00286442*m.x287 + 0.00446958*m.x288 + 0.00111769*m.x289 - 0.0020057*m.x290 + 0.00799239*m.x291 + 0.00470659*m.x292 - 0.000670353*m.x293 - 0.00177383*m.x294 + 0.00535235*m.x295 + 0.00245751*m.x296 + 0.00634908*m.x297 + 0.00849798*m.x298 + 0.00413392*m.x299 + 0.00433132*m.x300 + 0.00189491*m.x301 + 0.00149054*m.x302 + 0.0067696*m.x303 == 0) m.c289 = Constraint(expr= - m.x184 + 0.00738761*m.x204 + 0.00575059*m.x205 - 0.003182*m.x206 + 0.00189728*m.x207 + 0.00109136*m.x208 + 0.0187193*m.x209 + 0.00157202*m.x210 - 0.0066337*m.x211 + 0.0101854*m.x212 + 0.00434643*m.x213 + 0.0088821*m.x214 + 0.00159051*m.x215 + 0.012204*m.x216 + 0.0141748*m.x217 + 0.0029954*m.x218 + 0.00593105*m.x219 + 0.00515253*m.x220 + 0.000356947*m.x221 - 0.00342739*m.x222 + 0.00535464*m.x223 + 0.000831883*m.x224 + 0.0025368*m.x225 - 0.00381097*m.x226 - 0.00216225*m.x227 + 0.00146462*m.x228 + 0.00183255*m.x229 - 0.000672593*m.x230 + 0.0126386*m.x231 - 5.10761E-5*m.x232 + 0.00333333*m.x233 + 0.00433982*m.x234 + 0.00126871*m.x235 + 0.00142508*m.x236 - 0.00398086*m.x237 - 0.00191638*m.x238 + 0.000528405*m.x239 + 0.0036023*m.x240 + 0.00248382*m.x241 - 0.000963309*m.x242 + 0.00157998*m.x243 - 0.000953639*m.x244 + 0.00879099*m.x245 + 0.000185014*m.x246 - 0.00124986*m.x247 + 0.0112013*m.x248 - 0.00122283*m.x249 + 0.0042178*m.x250 + 0.0162123*m.x251 + 0.00321866*m.x252 + 0.0119365*m.x253 + 0.00419778*m.x254 + 0.0058935*m.x255 + 0.00341215*m.x256 + 0.00564621*m.x257 + 0.00685513*m.x258 + 0.00177656*m.x259 + 0.00378016*m.x260 - 0.00150618*m.x261 - 0.000587868*m.x262 + 0.00554875*m.x263 + 0.00221597*m.x264 + 0.00434862*m.x265 - 0.00299895*m.x266 - 0.00477368*m.x267 - 0.00265918*m.x268 - 0.000721759*m.x269 + 0.00378933*m.x270 + 0.00108221*m.x271 + 0.00344426*m.x272 + 0.00608886*m.x273 + 0.000718975*m.x274 + 0.010873*m.x275 + 0.000887498*m.x276 - 0.00256622*m.x277 + 0.00643863*m.x278 + 0.00171019*m.x279 - 0.00191643*m.x280 + 0.00823346*m.x281 + 0.00164795*m.x282 - 0.00346789*m.x283 + 0.000945652*m.x284 + 0.00400753*m.x285 + 0.084493*m.x286 + 0.000927117*m.x287 + 0.000915556*m.x288 + 0.00112663*m.x289 - 0.000217029*m.x290 + 0.00462032*m.x291 + 0.000489651*m.x292 + 0.00234328*m.x293 - 0.000240824*m.x294 + 0.00491409*m.x295 + 0.00621639*m.x296 + 0.00557977*m.x297 + 0.00777728*m.x298 + 0.0170867*m.x299 + 0.00237553*m.x300 + 0.00254531*m.x301 + 0.000729482*m.x302 + 0.000959806*m.x303 == 0) m.c290 = Constraint(expr= - m.x185 - 0.00338701*m.x204 + 0.0022757*m.x205 + 0.00729708*m.x206 + 0.00111561*m.x207 + 0.00784252*m.x208 + 0.00612747*m.x209 + 0.00465324*m.x210 + 0.00521946*m.x211 + 0.010518*m.x212 + 0.00899061*m.x213 + 0.00267439*m.x214 + 0.00062359*m.x215 + 0.000692709*m.x216 + 0.00697572*m.x217 + 0.00409136*m.x218 + 0.00633478*m.x219 + 0.00209517*m.x220 - 0.00704698*m.x221 + 0.00290604*m.x222 + 0.00270192*m.x223 - 0.00351138*m.x224 + 0.003167*m.x225 + 0.00553188*m.x226 + 0.000631923*m.x227 - 0.000571967*m.x228 + 0.00445827*m.x229 + 0.00821988*m.x230 + 0.00409707*m.x231 - 0.000896178*m.x232 + 0.00790729*m.x233 - 0.00368101*m.x234 + 0.0109368*m.x235 + 0.00445551*m.x236 + 0.00037716*m.x237 + 0.000588805*m.x238 + 0.0038775*m.x239 - 0.0025638*m.x240 + 0.00101753*m.x241 + 0.000387026*m.x242 + 0.00521645*m.x243 + 0.00753955*m.x244 + 0.00389765*m.x245 + 0.00122307*m.x246 - 5.94885E-5*m.x247 + 0.00952063*m.x248 + 0.000588542*m.x249 - 0.00044828*m.x250 + 0.00880031*m.x251 + 0.000171898*m.x252 + 0.00806339*m.x253 + 0.0011744*m.x254 + 0.00461282*m.x255 + 0.00259963*m.x256 + 0.00194367*m.x257 + 0.00349243*m.x258 + 0.00390817*m.x259 + 0.00380959*m.x260 + 0.00164593*m.x261 - 0.0046356*m.x262 + 0.00340277*m.x263 + 0.00470215*m.x264 - 0.00339015*m.x265 + 0.00239151*m.x266 - 0.0034161*m.x267 + 0.00891526*m.x268 + 0.00479513*m.x269 + 0.00270045*m.x270 - 0.000509977*m.x271 - 0.000151734*m.x272 + 0.0134833*m.x273 + 0.000956443*m.x274 + 0.00656066*m.x275 + 0.00438259*m.x276 + 0.00639915*m.x277 + 0.00424422*m.x278 + 0.0139977*m.x279 + 0.00378979*m.x280 + 0.00765951*m.x281 - 0.00050972*m.x282 + 0.00325763*m.x283 + 0.0102167*m.x284 + 0.00286442*m.x285 + 0.000927117*m.x286 + 0.0658614*m.x287 + 0.0072399*m.x288 + 0.00430023*m.x289 + 0.00399968*m.x290 + 0.00579051*m.x291 + 0.00604453*m.x292 + 0.00257419*m.x293 + 0.000750291*m.x294 + 0.00203007*m.x295 - 5.98431E-5*m.x296 + 0.00429026*m.x297 + 0.00994608*m.x298 - 0.00428917*m.x299 + 0.00492553*m.x300 - 0.00183033*m.x301 + 0.00598074*m.x302 + 0.00348814*m.x303 == 0) m.c291 = Constraint(expr= - m.x186 + 0.000632136*m.x204 + 0.00555164*m.x205 + 0.00314668*m.x206 + 0.00562859*m.x207 + 0.00882019*m.x208 + 0.00350368*m.x209 + 0.00187347*m.x210 + 0.00597375*m.x211 + 0.00605484*m.x212 + 0.00419388*m.x213 + 0.00393964*m.x214 + 0.000537233*m.x215 + 0.00231345*m.x216 - 0.000459789*m.x217 + 0.00355076*m.x218 + 0.00470412*m.x219 + 0.00294012*m.x220 + 0.00116945*m.x221 + 0.00297731*m.x222 + 0.000175467*m.x223 + 0.000327824*m.x224 + 0.000670063*m.x225 + 0.00850491*m.x226 + 9.34236E-5*m.x227 + 0.00428001*m.x228 - 0.000344244*m.x229 + 0.00442595*m.x230 + 0.00509678*m.x231 + 0.00143506*m.x232 + 0.00874995*m.x233 + 0.00283946*m.x234 + 0.0240688*m.x235 + 0.00496328*m.x236 + 0.00428731*m.x237 + 0.00709492*m.x238 + 0.000936991*m.x239 + 0.00488446*m.x240 + 0.00966172*m.x241 - 0.000747807*m.x242 + 0.00442051*m.x243 + 0.00801224*m.x244 + 0.0126359*m.x245 + 0.0034865*m.x246 + 0.00328713*m.x247 - 0.00220101*m.x248 + 0.00328499*m.x249 + 0.00548425*m.x250 - 0.00234105*m.x251 + 0.00933104*m.x252 + 0.0103044*m.x253 + 0.000952343*m.x254 + 0.00333587*m.x255 - 0.00185458*m.x256 - 0.0052063*m.x257 + 0.00208497*m.x258 + 0.00522697*m.x259 + 0.00449849*m.x260 - 0.00323282*m.x261 + 0.00523023*m.x262 + 0.00314873*m.x263 + 0.00565729*m.x264 + 0.00162127*m.x265 + 0.00504485*m.x266 + 0.000222907*m.x267 + 0.0041968*m.x268 + 0.00119802*m.x269 + 0.00133532*m.x270 + 0.00613474*m.x271 - 0.000959542*m.x272 + 0.00145221*m.x273 + 0.0024877*m.x274 + 0.00539259*m.x275 + 0.00418985*m.x276 + 0.0101988*m.x277 + 0.0086924*m.x278 + 0.00246352*m.x279 + 0.00355674*m.x280 + 0.00284298*m.x281 + 0.000377268*m.x282 + 0.00299874*m.x283 + 0.00670296*m.x284 + 0.00446958*m.x285 + 0.000915556*m.x286 + 0.0072399*m.x287 + 0.0438316*m.x288 + 0.00426318*m.x289 + 0.00639346*m.x290 + 0.00455512*m.x291 + 0.00344782*m.x292 + 0.00233747*m.x293 + 0.0020567*m.x294 + 0.00460018*m.x295 + 0.0005399*m.x296 + 0.00652496*m.x297 + 0.00480221*m.x298 + 0.00101452*m.x299 + 0.00380777*m.x300 - 0.00364829*m.x301 + 0.003082*m.x302 - 0.000738294*m.x303 == 0) m.c292 = Constraint(expr= - m.x187 + 0.00125905*m.x204 + 0.00580589*m.x205 + 0.00093968*m.x206 + 0.00605398*m.x207 + 0.000598062*m.x208 + 0.000722427*m.x209 + 0.000428549*m.x210 - 0.000142638*m.x211 + 0.000377649*m.x212 + 0.00126509*m.x213 + 0.00396771*m.x214 - 9.36397E-5*m.x215 + 0.00276166*m.x216 + 0.00681506*m.x217 + 0.00265398*m.x218 + 0.0036723*m.x219 + 0.00822675*m.x220 + 0.00506331*m.x221 + 0.00329549*m.x222 + 0.00337965*m.x223 + 0.00252261*m.x224 + 0.00223027*m.x225 + 0.0052604*m.x226 + 0.00532323*m.x227 + 0.00246929*m.x228 + 0.00160669*m.x229 + 9.7777E-5*m.x230 + 0.00201509*m.x231 - 0.00102564*m.x232 + 0.00108982*m.x233 + 0.0020167*m.x234 - 0.000216395*m.x235 + 0.000556729*m.x236 + 0.0020993*m.x237 + 0.00428712*m.x238 - 0.00199242*m.x239 + 0.00447164*m.x240 + 0.00687358*m.x241 + 0.00119059*m.x242 + 0.00558644*m.x243 + 0.0112013*m.x244 + 0.00467816*m.x245 + 0.00960237*m.x246 + 0.00273221*m.x247 + 0.00611291*m.x248 + 0.000580561*m.x249 + 0.00168605*m.x250 + 0.00247115*m.x251 + 0.00315924*m.x252 + 0.00439893*m.x253 + 0.00341538*m.x254 + 0.00601159*m.x255 + 0.00165765*m.x256 + 0.00164762*m.x257 + 0.000860289*m.x258 + 0.00419445*m.x259 + 0.00350555*m.x260 + 0.00658013*m.x261 + 0.0033164*m.x262 + 0.00310593*m.x263 + 0.000952909*m.x264 + 0.00452576*m.x265 + 0.00186508*m.x266 + 0.00216417*m.x267 + 0.00379037*m.x268 + 0.00319581*m.x269 + 0.00280379*m.x270 + 0.0035637*m.x271 + 0.0027039*m.x272 + 0.0071947*m.x273 + 0.00167048*m.x274 + 0.0115011*m.x275 + 0.00590139*m.x276 + 0.00512473*m.x277 + 0.000133115*m.x278 + 0.00601652*m.x279 + 0.00196838*m.x280 + 0.00246263*m.x281 + 0.00376524*m.x282 + 0.00620979*m.x283 - 0.00161202*m.x284 + 0.00111769*m.x285 + 0.00112663*m.x286 + 0.00430023*m.x287 + 0.00426318*m.x288 + 0.0308378*m.x289 - 9.17476E-5*m.x290 + 0.00159558*m.x291 + 0.00102348*m.x292 + 0.00266511*m.x293 + 0.00216533*m.x294 + 0.00403771*m.x295 + 0.00164628*m.x296 - 0.00336155*m.x297 + 0.000136297*m.x298 + 0.000407005*m.x299 + 0.00508056*m.x300 + 0.0027572*m.x301 + 0.00463908*m.x302 + 0.00143901*m.x303 == 0) m.c293 = Constraint(expr= - m.x188 + 0.00498931*m.x204 + 0.00361309*m.x205 + 0.0046813*m.x206 + 0.00853829*m.x207 + 0.0052387*m.x208 - 0.00222972*m.x209 - 0.00285777*m.x210 - 0.000178386*m.x211 + 0.00919154*m.x212 - 5.10678E-6*m.x213 + 0.00290804*m.x214 + 0.000546637*m.x215 + 0.00225276*m.x216 + 0.000426248*m.x217 + 0.00263496*m.x218 + 0.00419729*m.x219 + 0.00373459*m.x220 + 0.00116521*m.x221 + 0.000545613*m.x222 + 0.00140219*m.x223 - 0.000723307*m.x224 - 0.0003553*m.x225 + 0.00630907*m.x226 + 0.00760376*m.x227 + 0.00505738*m.x228 - 0.00276824*m.x229 + 0.00362104*m.x230 + 0.000363534*m.x231 + 0.00929697*m.x232 + 0.00847563*m.x233 - 0.00442035*m.x234 + 0.00218847*m.x235 + 0.00173871*m.x236 + 0.00773233*m.x237 + 0.00918313*m.x238 + 0.004542*m.x239 + 0.00473894*m.x240 + 0.00303402*m.x241 + 0.00357163*m.x242 + 0.00249097*m.x243 + 0.00334346*m.x244 + 0.00586578*m.x245 - 0.00545954*m.x246 + 0.00345779*m.x247 - 0.00609654*m.x248 + 0.000227831*m.x249 - 0.000888688*m.x250 + 0.00278431*m.x251 + 0.00241389*m.x252 + 0.00688742*m.x253 - 0.00226972*m.x254 - 0.00295399*m.x255 + 0.0036396*m.x256 - 0.000112278*m.x257 + 0.00190276*m.x258 + 0.00330037*m.x259 + 0.00353625*m.x260 + 0.00524124*m.x261 + 0.00630061*m.x262 + 0.00234241*m.x263 - 0.00116189*m.x264 + 0.00597812*m.x265 - 0.00261967*m.x266 - 0.000119858*m.x267 + 0.00152491*m.x268 + 0.00188211*m.x269 + 0.00340292*m.x270 + 0.00316685*m.x271 - 0.00101768*m.x272 + 0.00751873*m.x273 - 0.00563257*m.x274 + 0.00533348*m.x275 + 0.00101318*m.x276 + 0.002495*m.x277 + 0.00342096*m.x278 + 0.00334106*m.x279 - 0.000454484*m.x280 - 0.000739706*m.x281 - 0.00196578*m.x282 + 0.0117406*m.x283 + 0.00107191*m.x284 - 0.0020057*m.x285 - 0.000217029*m.x286 + 0.00399968*m.x287 + 0.00639346*m.x288 - 9.17476E-5*m.x289 + 0.0546709*m.x290 - 0.00306556*m.x291 - 0.00130673*m.x292 + 0.00128925*m.x293 + 0.00382404*m.x294 - 0.00165847*m.x295 + 0.0056648*m.x296 - 0.00388715*m.x297 - 0.00453289*m.x298 - 0.00269182*m.x299 + 0.000442839*m.x300 - 0.00132366*m.x301 - 0.000573397*m.x302 - 0.00340939*m.x303 == 0) m.c294 = Constraint(expr= - m.x189 - 0.00223203*m.x204 + 0.00918406*m.x205 + 0.00588727*m.x206 + 0.00794939*m.x207 + 0.00384785*m.x208 + 0.00618374*m.x209 + 0.0153027*m.x210 - 0.00109134*m.x211 + 0.00637465*m.x212 - 0.00500706*m.x213 + 0.00291132*m.x214 + 0.000119304*m.x215 + 0.00887897*m.x216 + 0.00883306*m.x217 + 0.00340833*m.x218 + 0.00371118*m.x219 + 0.0030272*m.x220 + 0.00400767*m.x221 + 0.0142805*m.x222 + 0.00504492*m.x223 - 0.00287027*m.x224 + 0.00805896*m.x225 + 0.00122268*m.x226 + 0.00424627*m.x227 + 0.00244428*m.x228 + 0.00746466*m.x229 + 0.00715697*m.x230 + 0.000104518*m.x231 + 0.000416892*m.x232 + 0.00467438*m.x233 - 0.00255785*m.x234 + 0.00462496*m.x235 - 0.00650082*m.x236 + 0.00108107*m.x237 + 0.00156534*m.x238 + 0.00331247*m.x239 + 0.00741949*m.x240 + 0.008727*m.x241 + 0.0049149*m.x242 + 0.00567517*m.x243 - 0.0105804*m.x244 + 0.0112814*m.x245 - 0.000788822*m.x246 + 0.00419154*m.x247 + 0.000316901*m.x248 + 0.0066509*m.x249 + 0.004772*m.x250 + 0.00463181*m.x251 + 0.00336441*m.x252 + 0.00194067*m.x253 + 0.00121543*m.x254 + 0.0231083*m.x255 + 0.00499705*m.x256 - 0.000255111*m.x257 + 0.00214593*m.x258 + 0.00952656*m.x259 + 0.00557726*m.x260 + 0.00454456*m.x261 + 0.00551966*m.x262 + 0.00590393*m.x263 + 0.00694876*m.x264 + 2.54983E-5*m.x265 - 0.00111953*m.x266 + 0.0183023*m.x267 + 0.0102022*m.x268 + 0.00479563*m.x269 + 0.00122189*m.x270 + 0.000164365*m.x271 - 0.00789306*m.x272 - 0.00136694*m.x273 + 0.00591306*m.x274 + 0.000781568*m.x275 + 0.00599692*m.x276 - 6.81269E-5*m.x277 + 0.00617057*m.x278 + 0.0025963*m.x279 + 0.00629473*m.x280 + 0.0125211*m.x281 - 0.00288*m.x282 - 0.00806051*m.x283 + 0.00331932*m.x284 + 0.00799239*m.x285 + 0.00462032*m.x286 + 0.00579051*m.x287 + 0.00455512*m.x288 + 0.00159558*m.x289 - 0.00306556*m.x290 + 0.0687124*m.x291 + 0.00092997*m.x292 + 0.00496772*m.x293 + 0.00101083*m.x294 + 0.0032872*m.x295 + 0.00334433*m.x296 - 0.00233066*m.x297 + 0.00346403*m.x298 + 0.0134367*m.x299 + 0.00640805*m.x300 - 0.00798533*m.x301 + 0.00189799*m.x302 + 0.00886188*m.x303 == 0) m.c295 = Constraint(expr= - m.x190 - 0.00161161*m.x204 + 0.00175607*m.x205 + 0.00856972*m.x206 - 0.00108004*m.x207 + 0.00503042*m.x208 + 0.00230392*m.x209 + 0.00159813*m.x210 + 0.00239336*m.x211 + 0.00244105*m.x212 + 0.00495567*m.x213 + 0.00247734*m.x214 - 0.00155886*m.x215 + 0.00177462*m.x216 - 0.00113*m.x217 + 0.00444299*m.x218 + 0.000251759*m.x219 + 0.00252714*m.x220 - 0.00210903*m.x221 + 0.00236164*m.x222 - 0.00136526*m.x223 + 0.00383752*m.x224 + 0.00447158*m.x225 + 0.00666929*m.x226 - 0.000984769*m.x227 - 0.00119322*m.x228 + 0.00694152*m.x229 + 0.00559812*m.x230 - 0.000217263*m.x231 + 0.00340158*m.x232 + 0.0016858*m.x233 + 0.00125151*m.x234 - 0.00173756*m.x235 + 0.00670699*m.x236 + 0.00180858*m.x237 + 0.00072917*m.x238 + 0.00015452*m.x239 - 0.00059291*m.x240 + 0.00345779*m.x241 - 0.000828779*m.x242 + 0.00151899*m.x243 + 0.00626909*m.x244 + 0.00718189*m.x245 + 0.000621542*m.x246 + 0.00399493*m.x247 + 0.00160516*m.x248 + 0.00019791*m.x249 + 0.000505019*m.x250 + 0.00075518*m.x251 + 4.30958E-5*m.x252 + 0.00365679*m.x253 + 0.00119416*m.x254 + 0.00273013*m.x255 + 0.000213845*m.x256 + 0.00261688*m.x257 + 0.00371348*m.x258 + 0.00213073*m.x259 + 0.00162287*m.x260 + 0.00520983*m.x261 + 0.00626743*m.x262 + 0.000439495*m.x263 + 0.00562572*m.x264 - 0.00247603*m.x265 + 0.00813916*m.x266 + 0.00146243*m.x267 + 0.00836314*m.x268 + 0.00585396*m.x269 + 0.00282862*m.x270 + 0.000853601*m.x271 + 0.000904711*m.x272 + 0.0032967*m.x273 + 0.00042396*m.x274 + 0.00196384*m.x275 - 0.00270112*m.x276 + 0.00306404*m.x277 + 0.00674858*m.x278 + 0.00713089*m.x279 + 0.00580576*m.x280 - 0.000736787*m.x281 + 0.00939099*m.x282 + 0.00152584*m.x283 + 0.00912186*m.x284 + 0.00470659*m.x285 + 0.000489651*m.x286 + 0.00604453*m.x287 + 0.00344782*m.x288 + 0.00102348*m.x289 - 0.00130673*m.x290 + 0.00092997*m.x291 + 0.0336811*m.x292 + 0.00253178*m.x293 - 0.00190276*m.x294 + 0.000244984*m.x295 + 0.000960586*m.x296 - 0.00227507*m.x297 + 0.0029063*m.x298 + 0.00678876*m.x299 + 0.0001247*m.x300 - 0.00371543*m.x301 + 0.00766411*m.x302 + 0.000597387*m.x303 == 0) m.c296 = Constraint(expr= - m.x191 + 0.000698504*m.x204 + 0.0017579*m.x205 + 0.0014989*m.x206 + 0.00250493*m.x207 + 0.0024631*m.x208 - 8.26039E-6*m.x209 - 0.00186303*m.x210 + 0.0002248*m.x211 + 0.00434059*m.x212 - 0.00234243*m.x213 + 2.81248E-5*m.x214 - 0.00294322*m.x215 + 0.000872704*m.x216 + 0.00170265*m.x217 + 0.0067512*m.x218 + 0.00531186*m.x219 + 0.00343189*m.x220 - 0.00100077*m.x221 - 0.0011576*m.x222 - 0.00162571*m.x223 + 0.00183226*m.x224 + 0.000707919*m.x225 + 0.00744101*m.x226 - 0.000472034*m.x227 + 0.00181174*m.x228 - 0.00346329*m.x229 + 0.00126776*m.x230 + 0.000955159*m.x231 + 0.00170814*m.x232 + 0.000365981*m.x233 - 0.00145108*m.x234 + 0.000369864*m.x235 - 0.000640342*m.x236 - 0.00124112*m.x237 + 0.00366701*m.x238 + 0.00451357*m.x239 + 0.000506587*m.x240 + 0.00402615*m.x241 - 0.00332156*m.x242 + 0.00425113*m.x243 + 0.000678624*m.x244 + 0.00473931*m.x245 + 8.36128E-5*m.x246 + 0.00448916*m.x247 + 0.00470546*m.x248 + 0.00589171*m.x249 + 0.00313289*m.x250 - 0.00287996*m.x251 + 0.00271535*m.x252 + 0.000101984*m.x253 + 0.00550828*m.x254 + 0.00101519*m.x255 + 0.00251321*m.x256 + 0.00246219*m.x257 + 0.00255756*m.x258 - 0.00172869*m.x259 + 0.00118145*m.x260 + 0.00135714*m.x261 + 0.00507348*m.x262 - 0.00164086*m.x263 + 0.00278368*m.x264 + 0.0044097*m.x265 + 0.00116867*m.x266 + 0.00652183*m.x267 + 0.00119311*m.x268 - 0.000300368*m.x269 + 0.00394438*m.x270 - 0.00132464*m.x271 - 0.000843722*m.x272 + 0.00352111*m.x273 + 3.84816E-5*m.x274 + 0.00184219*m.x275 - 0.000435065*m.x276 - 0.00158105*m.x277 + 0.00060276*m.x278 + 0.000877639*m.x279 + 0.000568793*m.x280 + 0.00421174*m.x281 - 0.000222728*m.x282 - 0.00353569*m.x283 - 0.00120435*m.x284 - 0.000670353*m.x285 + 0.00234328*m.x286 + 0.00257419*m.x287 + 0.00233747*m.x288 + 0.00266511*m.x289 + 0.00128925*m.x290 + 0.00496772*m.x291 + 0.00253178*m.x292 + 0.0257082*m.x293 + 0.000305788*m.x294 + 0.00485521*m.x295 + 0.00393184*m.x296 - 0.00207377*m.x297 + 0.00289386*m.x298 + 0.00146898*m.x299 - 0.000633614*m.x300 - 0.000187625*m.x301 + 0.00119486*m.x302 + 0.00260126*m.x303 == 0) m.c297 = Constraint(expr= - m.x192 + 0.000973632*m.x204 - 0.00440575*m.x205 - 0.0012223*m.x206 + 6.36275E-5*m.x207 + 0.00278995*m.x208 + 0.00470948*m.x209 + 0.00292004*m.x210 + 0.00134415*m.x211 - 0.00461254*m.x212 - 0.00102392*m.x213 + 0.000966712*m.x214 - 0.000986956*m.x215 + 0.0042304*m.x216 + 0.00495909*m.x217 + 0.00225846*m.x218 + 0.00468134*m.x219 + 0.00558036*m.x220 - 0.00232507*m.x221 - 0.000911744*m.x222 - 7.79346E-6*m.x223 - 0.000513898*m.x224 - 0.000179214*m.x225 + 0.000456284*m.x226 + 0.0032716*m.x227 - 0.000288904*m.x228 - 0.000701028*m.x229 + 0.000428826*m.x230 - 0.0064418*m.x231 + 0.00314179*m.x232 + 0.0013091*m.x233 - 0.000936959*m.x234 + 0.00518077*m.x235 + 0.00360938*m.x236 + 0.00633646*m.x237 - 0.00358706*m.x238 - 0.00325512*m.x239 + 0.00202802*m.x240 + 0.000154347*m.x241 + 0.000844659*m.x242 + 0.000283697*m.x243 + 0.00452262*m.x244 + 0.0022565*m.x245 + 0.00413836*m.x246 + 0.00118132*m.x247 - 0.00380484*m.x248 - 0.000623163*m.x249 + 0.00119693*m.x250 - 0.00533256*m.x251 + 0.00462087*m.x252 + 0.00583528*m.x253 + 0.00304948*m.x254 + 0.00177864*m.x255 + 7.57559E-5*m.x256 + 0.00318467*m.x257 - 0.00201343*m.x258 + 0.00143223*m.x259 + 0.0018647*m.x260 + 0.00263088*m.x261 - 0.00112337*m.x262 - 0.00383165*m.x263 + 0.00369458*m.x264 + 0.00452471*m.x265 - 0.000798317*m.x266 + 0.000896056*m.x267 - 0.000302283*m.x268 + 0.000255675*m.x269 + 0.00508295*m.x270 + 0.00386284*m.x271 + 0.00193938*m.x272 + 0.00355609*m.x273 - 0.000816933*m.x274 + 0.00423463*m.x275 + 0.00332285*m.x276 + 0.00146977*m.x277 + 0.00167034*m.x278 + 0.00380538*m.x279 - 0.000609214*m.x280 + 0.00453567*m.x281 + 0.0123212*m.x282 - 0.000134223*m.x283 + 0.00090878*m.x284 - 0.00177383*m.x285 - 0.000240824*m.x286 + 0.000750291*m.x287 + 0.0020567*m.x288 + 0.00216533*m.x289 + 0.00382404*m.x290 + 0.00101083*m.x291 - 0.00190276*m.x292 + 0.000305788*m.x293 + 0.0322277*m.x294 - 0.00106589*m.x295 + 0.000467335*m.x296 - 0.000790828*m.x297 + 0.00499735*m.x298 + 0.00331171*m.x299 + 0.00540673*m.x300 + 0.00460485*m.x301 + 0.000445662*m.x302 - 0.00218896*m.x303 == 0) m.c298 = Constraint(expr= - m.x193 + 0.00322052*m.x204 + 0.000882362*m.x205 - 0.00398758*m.x206 + 0.00972923*m.x207 + 0.00074696*m.x208 + 0.00203412*m.x209 + 0.000158573*m.x210 + 0.00625637*m.x211 + 0.00181809*m.x212 + 0.000187615*m.x213 + 0.00204921*m.x214 + 0.0040052*m.x215 + 0.00665568*m.x216 + 0.00711981*m.x217 + 0.00175025*m.x218 + 0.00142927*m.x219 + 0.00282494*m.x220 + 0.0032323*m.x221 + 0.00290814*m.x222 + 0.00628695*m.x223 + 0.00248209*m.x224 - 0.00343349*m.x225 + 0.00234935*m.x226 + 0.00763876*m.x227 - 0.00446445*m.x228 - 0.00834557*m.x229 - 0.00228492*m.x230 + 0.00195089*m.x231 + 0.00196445*m.x232 + 0.00271448*m.x233 - 6.93028E-5*m.x234 + 0.00780177*m.x235 + 0.00110968*m.x236 + 0.00394326*m.x237 + 0.000268238*m.x238 - 0.0021067*m.x239 + 0.00774598*m.x240 + 0.0100018*m.x241 + 0.00455282*m.x242 + 0.00430656*m.x243 + 0.00404098*m.x244 + 0.00361341*m.x245 - 0.000118642*m.x246 - 0.00106048*m.x247 - 0.00603313*m.x248 - 7.87584E-5*m.x249 + 0.00445284*m.x250 - 0.00290057*m.x251 + 0.00710323*m.x252 + 0.00511653*m.x253 + 0.00596306*m.x254 + 0.00342669*m.x255 + 0.00429343*m.x256 + 0.00561083*m.x257 - 0.0015187*m.x258 + 0.00862894*m.x259 + 0.00331591*m.x260 + 0.00871316*m.x261 - 0.0002988*m.x262 + 0.0052497*m.x263 + 0.0171593*m.x264 + 0.00474492*m.x265 + 0.00191161*m.x266 - 0.00583543*m.x267 + 0.00138488*m.x268 + 6.76023E-5*m.x269 + 0.00752552*m.x270 + 0.00522755*m.x271 - 0.00169631*m.x272 - 0.000110801*m.x273 + 0.00214663*m.x274 - 0.00545762*m.x275 + 0.0163644*m.x276 + 0.00374693*m.x277 - 0.000105586*m.x278 + 0.00122031*m.x279 + 0.00275425*m.x280 + 0.0114023*m.x281 - 0.0056184*m.x282 + 0.000240556*m.x283 - 0.00195931*m.x284 + 0.00535235*m.x285 + 0.00491409*m.x286 + 0.00203007*m.x287 + 0.00460018*m.x288 + 0.00403771*m.x289 - 0.00165847*m.x290 + 0.0032872*m.x291 + 0.000244984*m.x292 + 0.00485521*m.x293 - 0.00106589*m.x294 + 0.0549514*m.x295 - 0.00146097*m.x296 + 0.000354106*m.x297 - 0.000860234*m.x298 + 0.00407885*m.x299 + 0.00752741*m.x300 - 0.00356262*m.x301 - 0.000356019*m.x302 + 0.00248476*m.x303 == 0) m.c299 = Constraint(expr= - m.x194 - 0.000732426*m.x204 + 0.00390306*m.x205 + 0.00447174*m.x206 + 0.0052055*m.x207 + 0.00338877*m.x208 + 0.000810064*m.x209 + 0.00302037*m.x210 + 0.000559204*m.x211 - 0.0038537*m.x212 + 0.00745742*m.x213 + 0.00925901*m.x214 + 0.00261969*m.x215 + 0.00556431*m.x216 + 0.00524342*m.x217 + 0.00823308*m.x218 + 0.00450063*m.x219 + 0.00822193*m.x220 + 0.00578248*m.x221 - 0.00154701*m.x222 - 0.000897559*m.x223 + 0.00536292*m.x224 - 0.00319077*m.x225 + 0.00264885*m.x226 + 0.00375527*m.x227 + 0.00110999*m.x228 + 0.00667569*m.x229 - 0.00156275*m.x230 + 0.000572419*m.x231 + 0.00232212*m.x232 + 0.00487642*m.x233 + 0.000707514*m.x234 - 0.000183456*m.x235 + 0.00261151*m.x236 - 0.00068464*m.x237 + 0.00341113*m.x238 + 0.00769045*m.x239 + 0.0082126*m.x240 + 0.00342953*m.x241 + 0.0027501*m.x242 + 0.00315729*m.x243 + 0.00307669*m.x244 + 0.00304548*m.x245 + 0.00364867*m.x246 + 0.00275687*m.x247 + 0.00178999*m.x248 + 0.00213016*m.x249 + 0.00521004*m.x250 - 0.000529075*m.x251 + 0.000902586*m.x252 + 0.00527957*m.x253 + 0.000603395*m.x254 - 0.00362052*m.x255 + 0.00214085*m.x256 + 0.00262766*m.x257 - 0.000662009*m.x258 + 0.000135119*m.x259 + 0.00502936*m.x260 + 0.00786502*m.x261 - 0.00107607*m.x262 + 0.00231272*m.x263 - 0.00289371*m.x264 + 0.000287705*m.x265 + 0.00398234*m.x266 + 0.0021646*m.x267 + 0.00217937*m.x268 - 0.000464781*m.x269 + 0.000133786*m.x270 + 0.00612756*m.x271 + 0.00153401*m.x272 + 0.00541829*m.x273 + 0.00586755*m.x274 + 0.00496011*m.x275 + 0.000961062*m.x276 + 0.000942883*m.x277 + 0.00482014*m.x278 + 0.00524552*m.x279 + 0.0015505*m.x280 + 0.00705981*m.x281 - 0.00793664*m.x282 + 0.00454787*m.x283 - 0.000874528*m.x284 + 0.00245751*m.x285 + 0.00621639*m.x286 - 5.98431E-5*m.x287 + 0.0005399*m.x288 + 0.00164628*m.x289 + 0.0056648*m.x290 + 0.00334433*m.x291 + 0.000960586*m.x292 + 0.00393184*m.x293 + 0.000467335*m.x294 - 0.00146097*m.x295 + 0.0402889*m.x296 + 0.00398843*m.x297 + 0.000265664*m.x298 + 0.00414142*m.x299 + 0.000465545*m.x300 - 0.00356724*m.x301 + 0.00127797*m.x302 + 0.00234787*m.x303 == 0) m.c300 = Constraint(expr= - m.x195 + 0.000574642*m.x204 - 0.00345893*m.x205 - 0.00894175*m.x206 + 0.00106842*m.x207 - 0.000458376*m.x208 - 0.00836969*m.x209 - 0.00583942*m.x210 + 0.00368139*m.x211 + 0.0464725*m.x212 - 0.00228448*m.x213 - 0.00307712*m.x214 - 0.00299439*m.x215 - 0.00171402*m.x216 - 0.00676607*m.x217 - 0.00407677*m.x218 - 0.00308935*m.x219 - 0.0026527*m.x220 + 0.0134996*m.x221 + 0.000899911*m.x222 + 0.00605286*m.x223 - 0.00508668*m.x224 - 0.00467229*m.x225 + 0.000868196*m.x226 + 0.00235696*m.x227 - 0.00346431*m.x228 - 0.00651531*m.x229 - 0.0039415*m.x230 + 0.00151632*m.x231 - 0.00194288*m.x232 - 0.00289096*m.x233 - 0.00353193*m.x234 + 0.00313748*m.x235 - 0.00695241*m.x236 - 0.00580836*m.x237 - 0.00131877*m.x238 - 0.00143092*m.x239 - 0.00437163*m.x240 - 0.000843844*m.x241 + 0.00568815*m.x242 + 0.00297396*m.x243 + 0.00364193*m.x244 - 0.000971214*m.x245 - 0.00345963*m.x246 - 0.00193635*m.x247 + 0.017123*m.x248 - 0.00403433*m.x249 - 0.00282173*m.x250 + 0.000979263*m.x251 + 0.00233291*m.x252 + 0.00036941*m.x253 - 0.00367719*m.x254 - 0.00643522*m.x255 - 0.00145961*m.x256 + 0.00179022*m.x257 - 0.00258788*m.x258 - 0.00196723*m.x259 + 0.00976419*m.x260 + 0.000809943*m.x261 - 0.00762971*m.x262 - 0.00666127*m.x263 - 0.00430756*m.x264 - 0.00158663*m.x265 - 0.00142675*m.x266 - 0.00610058*m.x267 - 0.000402168*m.x268 + 0.00126493*m.x269 - 0.00111604*m.x270 - 0.000490773*m.x271 - 0.0051692*m.x272 - 0.00179873*m.x273 - 0.00378753*m.x274 - 0.00325598*m.x275 + 0.00524417*m.x276 + 0.00282709*m.x277 + 0.00201782*m.x278 - 0.00317043*m.x279 + 0.00365812*m.x280 - 0.000688029*m.x281 + 0.00208083*m.x282 + 0.00970541*m.x283 - 0.00561291*m.x284 + 0.00634908*m.x285 + 0.00557977*m.x286 + 0.00429026*m.x287 + 0.00652496*m.x288 - 0.00336155*m.x289 - 0.00388715*m.x290 - 0.00233066*m.x291 - 0.00227507*m.x292 - 0.00207377*m.x293 - 0.000790828*m.x294 + 0.000354106*m.x295 + 0.00398843*m.x296 + 0.271212*m.x297 - 0.00038029*m.x298 + 0.000400916*m.x299 - 0.00072593*m.x300 - 0.00426209*m.x301 - 0.000681229*m.x302 - 0.000137152*m.x303 == 0) m.c301 = Constraint(expr= - m.x196 + 0.0043636*m.x204 + 0.00348614*m.x205 - 0.0106183*m.x206 + 0.00268821*m.x207 + 0.00936944*m.x208 + 0.000538622*m.x209 + 0.00166923*m.x210 + 0.00134215*m.x211 + 0.00125687*m.x212 - 0.000338838*m.x213 - 0.00248219*m.x214 + 0.0127287*m.x215 + 0.00830996*m.x216 + 0.0151857*m.x217 + 0.00929486*m.x218 + 0.000400969*m.x219 + 0.00739356*m.x220 + 9.34767E-5*m.x221 + 0.0024395*m.x222 - 0.000995666*m.x223 + 0.00836202*m.x224 - 0.00299231*m.x225 + 0.00313515*m.x226 - 0.00404778*m.x227 + 0.00415143*m.x228 - 0.00217122*m.x229 + 0.0184288*m.x230 + 0.000311369*m.x231 + 0.000886071*m.x232 + 0.00354767*m.x233 - 0.00266393*m.x234 + 0.0108401*m.x235 - 0.00163906*m.x236 + 0.000271513*m.x237 + 0.00963574*m.x238 - 0.000148921*m.x239 + 0.00034667*m.x240 + 0.00516692*m.x241 + 0.00312586*m.x242 + 0.00597381*m.x243 + 0.00434876*m.x244 + 0.00232343*m.x245 + 0.000712721*m.x246 + 0.0035958*m.x247 + 0.00424638*m.x248 + 0.00423746*m.x249 + 0.00291792*m.x250 + 0.00309003*m.x251 + 0.00342174*m.x252 + 0.0020713*m.x253 + 0.00134408*m.x254 + 0.00632524*m.x255 + 0.00499227*m.x256 + 0.00558577*m.x257 - 0.00124882*m.x258 + 0.00166645*m.x259 + 0.00514689*m.x260 + 0.000294055*m.x261 - 0.00163559*m.x262 + 0.0119683*m.x263 + 0.00677732*m.x264 + 0.00306085*m.x265 + 0.00441408*m.x266 - 0.006832*m.x267 + 0.000850121*m.x268 + 0.00259808*m.x269 + 0.00508961*m.x270 - 0.00304139*m.x271 + 0.004099*m.x272 + 0.00181925*m.x273 - 0.00130744*m.x274 + 0.00383461*m.x275 - 0.00131349*m.x276 + 0.000559935*m.x277 + 0.00319848*m.x278 + 0.00149389*m.x279 + 0.00289131*m.x280 + 0.00418666*m.x281 - 0.00216442*m.x282 - 0.00292971*m.x283 + 0.00316007*m.x284 + 0.00849798*m.x285 + 0.00777728*m.x286 + 0.00994608*m.x287 + 0.00480221*m.x288 + 0.000136297*m.x289 - 0.00453289*m.x290 + 0.00346403*m.x291 + 0.0029063*m.x292 + 0.00289386*m.x293 + 0.00499735*m.x294 - 0.000860234*m.x295 + 0.000265664*m.x296 - 0.00038029*m.x297 + 0.205691*m.x298 - 0.0072076*m.x299 + 0.0128346*m.x300 - 0.00289376*m.x301 + 0.00405259*m.x302 - 2.85501E-5*m.x303 == 0) m.c302 = Constraint(expr= - m.x197 - 0.00725725*m.x204 + 0.0230969*m.x205 + 0.0196262*m.x206 - 0.00313171*m.x207 + 0.00321093*m.x208 + 0.00916125*m.x209 + 0.00208712*m.x210 + 0.000562204*m.x211 + 0.0104496*m.x212 + 0.00375325*m.x213 + 0.010692*m.x214 + 0.000449299*m.x215 + 0.00411981*m.x216 + 0.0121187*m.x217 + 0.00454276*m.x218 + 0.0016857*m.x219 + 0.00353478*m.x220 + 0.0123006*m.x221 + 0.00327313*m.x222 - 0.000170077*m.x223 + 0.00215742*m.x224 + 0.0141819*m.x225 - 0.000643318*m.x226 - 8.08719E-5*m.x227 + 0.00356873*m.x228 + 0.0161266*m.x229 + 0.00951648*m.x230 - 0.00581513*m.x231 + 0.0271101*m.x232 + 0.00357909*m.x233 + 0.00983835*m.x234 + 0.00439792*m.x235 + 0.000292171*m.x236 + 0.0112659*m.x237 - 0.00402802*m.x238 + 0.0048758*m.x239 + 0.00832302*m.x240 + 0.000320143*m.x241 + 0.00643759*m.x242 + 0.00713407*m.x243 + 0.0116213*m.x244 + 0.0058115*m.x245 + 0.00228836*m.x246 - 0.000537039*m.x247 + 0.0127695*m.x248 + 0.00337871*m.x249 - 0.000120553*m.x250 + 0.00415618*m.x251 + 0.00618718*m.x252 + 0.00787258*m.x253 + 0.00265743*m.x254 + 0.0195511*m.x255 - 0.00212278*m.x256 - 0.000513059*m.x257 + 0.00446219*m.x258 + 0.0017984*m.x259 + 0.00345782*m.x260 + 0.0093328*m.x261 - 0.00594877*m.x262 - 0.00285395*m.x263 + 0.00573494*m.x264 + 0.00331961*m.x265 + 0.00695092*m.x266 - 0.00455273*m.x267 + 0.0110636*m.x268 + 0.00163564*m.x269 - 0.00259683*m.x270 + 0.00709659*m.x271 + 0.00833415*m.x272 + 0.00435334*m.x273 + 0.00509215*m.x274 + 0.0116874*m.x275 - 0.00280069*m.x276 + 0.00395298*m.x277 + 0.00557589*m.x278 + 0.0117116*m.x279 + 0.00281716*m.x280 + 0.00132274*m.x281 - 0.0058322*m.x282 + 0.0013331*m.x283 + 0.00326358*m.x284 + 0.00413392*m.x285 + 0.0170867*m.x286 - 0.00428917*m.x287 + 0.00101452*m.x288 + 0.000407005*m.x289 - 0.00269182*m.x290 + 0.0134367*m.x291 + 0.00678876*m.x292 + 0.00146898*m.x293 + 0.00331171*m.x294 + 0.00407885*m.x295 + 0.00414142*m.x296 + 0.000400916*m.x297 - 0.0072076*m.x298 + 0.131656*m.x299 + 0.00805979*m.x300 - 0.00172414*m.x301 + 0.00419392*m.x302 + 0.00171227*m.x303 == 0) m.c303 = Constraint(expr= - m.x198 + 0.00589969*m.x204 + 0.00744792*m.x205 + 0.00569151*m.x206 + 0.0047581*m.x207 + 0.00494576*m.x208 + 0.00409619*m.x209 + 0.00468842*m.x210 + 0.00467534*m.x211 + 0.0289754*m.x212 + 0.00589763*m.x213 - 0.00209988*m.x214 - 0.00213457*m.x215 + 0.00605045*m.x216 + 0.00858*m.x217 - 0.00165032*m.x218 - 0.000503363*m.x219 + 0.00736597*m.x220 + 0.000507185*m.x221 + 0.00413577*m.x222 + 0.000927962*m.x223 + 0.00273144*m.x224 + 0.0104414*m.x225 + 0.00210871*m.x226 + 0.00955537*m.x227 + 0.00160276*m.x228 + 0.00695292*m.x229 + 5.68864E-5*m.x230 + 0.00803792*m.x231 + 0.00505307*m.x232 + 0.00585634*m.x233 - 0.0040378*m.x234 + 0.000633255*m.x235 + 0.00495442*m.x236 + 0.00208455*m.x237 + 0.0104253*m.x238 + 0.00286852*m.x239 + 0.0112749*m.x240 + 0.00463152*m.x241 + 0.0076711*m.x242 + 0.00444173*m.x243 + 0.0135054*m.x244 + 0.000485725*m.x245 - 0.00517211*m.x246 - 0.000271199*m.x247 + 0.00599775*m.x248 + 0.00204417*m.x249 + 0.000967824*m.x250 + 0.00182144*m.x251 + 0.00291333*m.x252 + 0.00426053*m.x253 + 0.00432502*m.x254 - 0.00071887*m.x255 + 0.00204967*m.x256 + 0.00353794*m.x257 + 0.000269906*m.x258 + 0.00455272*m.x259 + 0.00507329*m.x260 + 0.000154729*m.x261 + 0.000798834*m.x262 + 0.00170996*m.x263 + 0.00758548*m.x264 + 0.00420889*m.x265 - 0.00519564*m.x266 + 0.00534474*m.x267 + 0.00498262*m.x268 + 0.00270092*m.x269 + 0.00158141*m.x270 + 0.00740449*m.x271 - 0.000558778*m.x272 + 0.00935992*m.x273 + 0.000940496*m.x274 + 0.0101529*m.x275 + 0.00116913*m.x276 + 0.00461055*m.x277 + 0.00775337*m.x278 + 0.0269848*m.x279 + 0.00374955*m.x280 + 0.00955838*m.x281 + 0.00684748*m.x282 + 0.00376435*m.x283 + 0.0032359*m.x284 + 0.00433132*m.x285 + 0.00237553*m.x286 + 0.00492553*m.x287 + 0.00380777*m.x288 + 0.00508056*m.x289 + 0.000442839*m.x290 + 0.00640805*m.x291 + 0.0001247*m.x292 - 0.000633614*m.x293 + 0.00540673*m.x294 + 0.00752741*m.x295 + 0.000465545*m.x296 - 0.00072593*m.x297 + 0.0128346*m.x298 + 0.00805979*m.x299 + 0.0832903*m.x300 - 0.00109601*m.x301 + 0.00197016*m.x302 + 0.00475952*m.x303 == 0) m.c304 = Constraint(expr= - m.x199 + 0.00253513*m.x204 + 0.0101415*m.x205 + 0.000408826*m.x206 - 0.00749006*m.x207 - 0.00489219*m.x208 + 0.0632661*m.x209 + 0.00124219*m.x210 - 0.00175434*m.x211 - 0.000502067*m.x212 + 0.00111933*m.x213 - 0.00513244*m.x214 - 0.0016146*m.x215 + 0.00185019*m.x216 + 0.00987312*m.x217 - 0.00211125*m.x218 + 0.000255561*m.x219 - 0.00264635*m.x220 - 0.00357673*m.x221 - 0.00665285*m.x222 + 0.00910382*m.x223 - 0.00693562*m.x224 + 0.00771774*m.x225 + 0.0011722*m.x226 - 0.00665009*m.x227 - 0.00400958*m.x228 + 0.00190191*m.x229 + 0.0119542*m.x230 + 0.00503323*m.x231 - 0.00135319*m.x232 - 0.000870044*m.x233 + 0.00154164*m.x234 - 0.00249511*m.x235 + 0.00511283*m.x236 + 0.0126192*m.x237 - 0.00123284*m.x238 - 0.00298357*m.x239 - 0.00281611*m.x240 - 0.0012355*m.x241 - 0.00311771*m.x242 - 0.00372007*m.x243 + 0.00150838*m.x244 - 0.000130592*m.x245 + 0.00524662*m.x246 - 0.00288422*m.x247 + 0.0107649*m.x248 + 0.00449024*m.x249 + 0.000698762*m.x250 + 0.00336642*m.x251 - 0.00120359*m.x252 - 0.00268282*m.x253 + 0.00252096*m.x254 - 0.00217301*m.x255 + 0.00120533*m.x256 + 0.00615137*m.x257 - 6.39913E-6*m.x258 - 0.0033299*m.x259 - 0.00213912*m.x260 + 1.07515E-5*m.x261 + 0.00532067*m.x262 + 0.00942007*m.x263 - 0.000228625*m.x264 - 0.00957465*m.x265 - 0.00145915*m.x266 - 0.0104513*m.x267 + 0.00115585*m.x268 + 0.00285028*m.x269 - 0.00346463*m.x270 - 0.000919619*m.x271 + 0.00267992*m.x272 - 0.00673796*m.x273 + 5.42431E-5*m.x274 - 0.00447465*m.x275 + 0.00450883*m.x276 + 0.00200426*m.x277 - 0.00196797*m.x278 - 0.00783374*m.x279 + 0.0050992*m.x280 - 0.00343351*m.x281 + 0.00539178*m.x282 - 0.00118927*m.x283 + 0.00478097*m.x284 + 0.00189491*m.x285 + 0.00254531*m.x286 - 0.00183033*m.x287 - 0.00364829*m.x288 + 0.0027572*m.x289 - 0.00132366*m.x290 - 0.00798533*m.x291 - 0.00371543*m.x292 - 0.000187625*m.x293 + 0.00460485*m.x294 - 0.00356262*m.x295 - 0.00356724*m.x296 - 0.00426209*m.x297 - 0.00289376*m.x298 - 0.00172414*m.x299 - 0.00109601*m.x300 + 0.150506*m.x301 + 0.0042098*m.x302 + 0.00571185*m.x303 == 0) m.c305 = Constraint(expr= - m.x200 + 3.03939E-5*m.x204 + 0.00190622*m.x205 + 0.0107044*m.x206 + 0.00065076*m.x207 + 0.00406797*m.x208 + 0.00174019*m.x209 + 0.00190019*m.x210 + 0.000310939*m.x211 + 0.00848806*m.x212 + 0.000509737*m.x213 - 0.00106151*m.x214 - 0.00369472*m.x215 + 0.000924558*m.x216 + 0.000447536*m.x217 + 0.0019068*m.x218 + 0.00297631*m.x219 + 0.00202109*m.x220 + 0.000218257*m.x221 + 0.000253484*m.x222 + 0.00213483*m.x223 + 0.00172953*m.x224 + 0.00187759*m.x225 + 0.00301842*m.x226 + 0.00353927*m.x227 + 0.000129628*m.x228 + 0.00346113*m.x229 + 0.00888358*m.x230 + 0.00261585*m.x231 + 0.000960311*m.x232 + 0.00817771*m.x233 + 0.00321227*m.x234 + 0.00187615*m.x235 + 0.00311265*m.x236 + 0.000840037*m.x237 + 0.00267415*m.x238 + 0.000697231*m.x239 + 0.00195298*m.x240 + 0.00336904*m.x241 + 0.000316259*m.x242 + 0.00227586*m.x243 + 0.00321772*m.x244 + 0.0045291*m.x245 + 0.00987378*m.x246 + 0.00223441*m.x247 + 0.00273511*m.x248 + 0.00140987*m.x249 + 0.00432741*m.x250 + 0.000262547*m.x251 + 0.00135234*m.x252 + 0.0035967*m.x253 + 0.00261792*m.x254 + 0.00440766*m.x255 - 0.00154274*m.x256 + 0.000877291*m.x257 + 0.00128816*m.x258 + 0.00426249*m.x259 - 0.00213196*m.x260 + 0.00396114*m.x261 + 0.001777*m.x262 + 0.00238323*m.x263 + 0.00247448*m.x264 + 0.000329151*m.x265 - 0.00269056*m.x266 - 0.00240116*m.x267 + 0.00570291*m.x268 + 0.00895321*m.x269 + 0.000964003*m.x270 + 0.00139892*m.x271 + 0.00290008*m.x272 + 0.0024774*m.x273 + 0.00377541*m.x274 + 0.00751902*m.x275 + 0.000120926*m.x276 + 0.00214771*m.x277 + 0.000849566*m.x278 + 0.00544106*m.x279 + 0.0100888*m.x280 + 0.00462039*m.x281 + 0.00822951*m.x282 + 0.0021784*m.x283 + 0.00997826*m.x284 + 0.00149054*m.x285 + 0.000729482*m.x286 + 0.00598074*m.x287 + 0.003082*m.x288 + 0.00463908*m.x289 - 0.000573397*m.x290 + 0.00189799*m.x291 + 0.00766411*m.x292 + 0.00119486*m.x293 + 0.000445662*m.x294 - 0.000356019*m.x295 + 0.00127797*m.x296 - 0.000681229*m.x297 + 0.00405259*m.x298 + 0.00419392*m.x299 + 0.00197016*m.x300 + 0.0042098*m.x301 + 0.0223058*m.x302 - 0.00243994*m.x303 == 0) m.c306 = Constraint(expr= - m.x201 + 0.0013209*m.x204 + 0.00972401*m.x205 + 0.00414926*m.x206 + 0.0033893*m.x207 + 0.00689176*m.x208 + 0.0149843*m.x209 + 0.00317539*m.x210 - 0.000534117*m.x211 - 0.00199306*m.x212 + 0.00161055*m.x213 + 0.00607889*m.x214 + 0.00287968*m.x215 + 0.00169926*m.x216 + 0.00177245*m.x217 + 0.00125766*m.x218 + 0.000851058*m.x219 + 3.15874E-5*m.x220 + 0.00591064*m.x221 - 0.00179775*m.x222 + 0.00406122*m.x223 - 0.00148411*m.x224 + 0.00633113*m.x225 + 0.00345188*m.x226 + 0.00543525*m.x227 + 0.00686574*m.x228 + 0.00542579*m.x229 - 0.000364621*m.x230 + 0.0020532*m.x231 + 0.00806487*m.x232 + 0.00321544*m.x233 + 0.00627327*m.x234 + 0.00489037*m.x235 + 0.00964866*m.x236 + 0.00862854*m.x237 + 0.00590155*m.x238 + 0.00549383*m.x239 - 0.000375713*m.x240 + 0.00227586*m.x241 - 0.000648959*m.x242 + 0.00205933*m.x243 + 0.00468832*m.x244 + 0.00868416*m.x245 - 0.00153163*m.x246 + 0.00280782*m.x247 + 0.00174594*m.x248 + 0.00259129*m.x249 + 0.00166067*m.x250 - 0.000847169*m.x251 - 0.000351985*m.x252 + 0.0019922*m.x253 + 0.00239977*m.x254 + 0.00538072*m.x255 + 0.000846548*m.x256 + 0.000931697*m.x257 + 0.00584908*m.x258 + 0.00227416*m.x259 + 0.00211323*m.x260 - 0.00289961*m.x261 - 0.00273965*m.x262 + 0.00381314*m.x263 + 0.000632226*m.x264 + 0.000204814*m.x265 + 0.0029091*m.x266 + 0.00593878*m.x267 + 0.00301803*m.x268 + 0.00219665*m.x269 - 0.00191532*m.x270 - 0.00120848*m.x271 + 0.00401961*m.x272 + 0.00491578*m.x273 + 0.00950302*m.x274 + 0.00119155*m.x275 + 0.0018262*m.x276 - 0.00562506*m.x277 + 0.00509184*m.x278 + 0.00418992*m.x279 + 0.00362527*m.x280 + 0.00284859*m.x281 + 0.000459309*m.x282 - 0.00418691*m.x283 + 0.00455818*m.x284 + 0.0067696*m.x285 + 0.000959806*m.x286 + 0.00348814*m.x287 - 0.000738294*m.x288 + 0.00143901*m.x289 - 0.00340939*m.x290 + 0.00886188*m.x291 + 0.000597387*m.x292 + 0.00260126*m.x293 - 0.00218896*m.x294 + 0.00248476*m.x295 + 0.00234787*m.x296 - 0.000137152*m.x297 - 2.85501E-5*m.x298 + 0.00171227*m.x299 + 0.00475952*m.x300 + 0.00571185*m.x301 - 0.00243994*m.x302 + 0.0528559*m.x303 == 0) m.c307 = Constraint(expr= - m.x202 - m.x203 + 0.0538941*m.x204 + 0.0734706*m.x205 + 0.171372*m.x206 + 0.0665048*m.x207 + 0.0566217*m.x208 + 0.162419*m.x209 + 0.0368724*m.x210 + 0.0475631*m.x211 + 0.135883*m.x212 + 0.106437*m.x213 + 0.0256378*m.x214 + 0.0541634*m.x215 + 0.0773545*m.x216 + 0.12584*m.x217 + 0.0623269*m.x218 + 0.0292815*m.x219 + 0.0415958*m.x220 + 0.0801839*m.x221 + 0.176756*m.x222 + 0.136693*m.x223 + 0.0279462*m.x224 + 0.106356*m.x225 + 0.00643121*m.x226 + 0.042286*m.x227 + 0.0524719*m.x228 + 0.0798624*m.x229 + 0.00388665*m.x230 + 0.0205903*m.x231 + 0.128252*m.x232 + 0.0598638*m.x233 + 0.0948967*m.x234 + 0.0460416*m.x235 + 0.0637387*m.x236 + 0.105905*m.x237 + 0.0791172*m.x238 + 0.063726*m.x239 + 0.122605*m.x240 + 0.039237*m.x241 + 0.103167*m.x242 + 0.00839736*m.x243 + 0.05064*m.x244 + 0.093967*m.x245 + 0.0495039*m.x246 + 0.039884*m.x247 + 0.399937*m.x248 + 0.0402434*m.x249 + 0.00851723*m.x250 + 0.282509*m.x251 + 0.0521298*m.x252 + 0.0384659*m.x253 + 0.0268375*m.x254 + 0.114978*m.x255 + 0.0658077*m.x256 + 0.0856842*m.x257 + 0.0423549*m.x258 + 0.135346*m.x259 - 0.00660692*m.x260 + 0.105791*m.x261 + 0.165275*m.x262 + 0.0962619*m.x263 + 0.0966325*m.x264 + 0.0339335*m.x265 + 0.12267*m.x266 + 0.281523*m.x267 + 0.0499404*m.x268 + 0.00535998*m.x269 + 0.0413132*m.x270 + 0.0896855*m.x271 + 0.0283013*m.x272 + 0.0723241*m.x273 + 0.0414486*m.x274 + 0.142596*m.x275 + 0.0601345*m.x276 + 0.0135436*m.x277 + 0.0965978*m.x278 + 0.136929*m.x279 + 0.0110311*m.x280 + 0.102568*m.x281 + 0.0695206*m.x282 + 0.167012*m.x283 + 0.0373343*m.x284 + 0.037078*m.x285 + 0.0946916*m.x286 + 0.0181341*m.x287 + 0.0170914*m.x288 + 0.032172*m.x289 + 0.0900157*m.x290 + 0.0887704*m.x291 + 0.021463*m.x292 + 0.0142077*m.x293 + 0.00787829*m.x294 + 0.0669671*m.x295 + 0.0176756*m.x296 + 0.131904*m.x297 + 0.142251*m.x298 + 0.190895*m.x299 + 0.0913653*m.x300 + 0.119809*m.x301 - 0.00773506*m.x302 + 0.0479071*m.x303 == 0)
96.107308
120
0.537507
b9129792f8b6e792ba2e421edb63a9165f50120a
405
py
Python
env/Lib/site-packages/plotly/validators/ohlc/_customdata.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
11,750
2015-10-12T07:03:39.000Z
2022-03-31T20:43:15.000Z
venv/Lib/site-packages/plotly/validators/ohlc/_customdata.py
wakisalvador/constructed-misdirection
74779e9ec640a11bc08d5d1967c85ac4fa44ea5e
[ "Unlicense" ]
2,951
2015-10-12T00:41:25.000Z
2022-03-31T22:19:26.000Z
venv/Lib/site-packages/plotly/validators/ohlc/_customdata.py
wakisalvador/constructed-misdirection
74779e9ec640a11bc08d5d1967c85ac4fa44ea5e
[ "Unlicense" ]
2,623
2015-10-15T14:40:27.000Z
2022-03-28T16:05:50.000Z
import _plotly_utils.basevalidators class CustomdataValidator(_plotly_utils.basevalidators.DataArrayValidator): def __init__(self, plotly_name="customdata", parent_name="ohlc", **kwargs): super(CustomdataValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), **kwargs )
33.75
79
0.681481
3539c821615db7989a55f7d4a55ad58e25a6612d
6,199
py
Python
models/DeformableConvNets/faster_rcnn/config/config.py
RamsteinWR/PneumoniaRSNA1
08bdba51292307a78ef711c6be4a63faea240ddf
[ "MIT" ]
null
null
null
models/DeformableConvNets/faster_rcnn/config/config.py
RamsteinWR/PneumoniaRSNA1
08bdba51292307a78ef711c6be4a63faea240ddf
[ "MIT" ]
null
null
null
models/DeformableConvNets/faster_rcnn/config/config.py
RamsteinWR/PneumoniaRSNA1
08bdba51292307a78ef711c6be4a63faea240ddf
[ "MIT" ]
null
null
null
# -------------------------------------------------------- # Deformable Convolutional Networks # Copyright (c) 2017 Microsoft # Licensed under The MIT License [see LICENSE for details] # Modified by Yuwen Xiong, Bin Xiao # -------------------------------------------------------- # Based on: # MX-RCNN # Copyright (c) 2016 by Contributors # Licence under The Apache 2.0 License # https://github.com/ijkguo/mx-rcnn/ # -------------------------------------------------------- import numpy as np import yaml from easydict import EasyDict as edict config = edict() config.MXNET_VERSION = '' config.output_path = '' config.symbol = '' config.gpus = '' config.CLASS_AGNOSTIC = True config.SCALES = [(600, 1000)] # first is scale (the shorter side); second is max size # default training config.default = edict() config.default.frequent = 20 config.default.kvstore = 'device' # network related params config.network = edict() config.network.pretrained = '' config.network.pretrained_epoch = 0 config.network.PIXEL_MEANS = np.array([0, 0, 0]) config.network.IMAGE_STRIDE = 0 config.network.RPN_FEAT_STRIDE = 16 config.network.RCNN_FEAT_STRIDE = 16 config.network.FIXED_PARAMS = ['gamma', 'beta'] config.network.FIXED_PARAMS_SHARED = ['gamma', 'beta'] config.network.ANCHOR_SCALES = (8, 16, 32) config.network.ANCHOR_RATIOS = (0.5, 1, 2) config.network.NUM_ANCHORS = len(config.network.ANCHOR_SCALES) * len(config.network.ANCHOR_RATIOS) # dataset related params config.dataset = edict() config.dataset.dataset = 'PascalVOC' config.dataset.image_set = '2007_trainval' config.dataset.test_image_set = '2007_test' config.dataset.root_path = './data' config.dataset.dataset_path = './data/VOCdevkit' config.dataset.NUM_CLASSES = 21 config.TRAIN = edict() config.TRAIN.lr = 0 config.TRAIN.lr_step = '' config.TRAIN.lr_factor = 0.1 config.TRAIN.warmup = False config.TRAIN.warmup_lr = 0 config.TRAIN.warmup_step = 0 config.TRAIN.momentum = 0.9 config.TRAIN.wd = 0.0005 config.TRAIN.begin_epoch = 0 config.TRAIN.end_epoch = 0 config.TRAIN.model_prefix = '' config.TRAIN.ALTERNATE = edict() config.TRAIN.ALTERNATE.RPN_BATCH_IMAGES = 0 config.TRAIN.ALTERNATE.RCNN_BATCH_IMAGES = 0 config.TRAIN.ALTERNATE.rpn1_lr = 0 config.TRAIN.ALTERNATE.rpn1_lr_step = '' # recommend '2' config.TRAIN.ALTERNATE.rpn1_epoch = 0 # recommend 3 config.TRAIN.ALTERNATE.rfcn1_lr = 0 config.TRAIN.ALTERNATE.rfcn1_lr_step = '' # recommend '5' config.TRAIN.ALTERNATE.rfcn1_epoch = 0 # recommend 8 config.TRAIN.ALTERNATE.rpn2_lr = 0 config.TRAIN.ALTERNATE.rpn2_lr_step = '' # recommend '2' config.TRAIN.ALTERNATE.rpn2_epoch = 0 # recommend 3 config.TRAIN.ALTERNATE.rfcn2_lr = 0 config.TRAIN.ALTERNATE.rfcn2_lr_step = '' # recommend '5' config.TRAIN.ALTERNATE.rfcn2_epoch = 0 # recommend 8 # optional config.TRAIN.ALTERNATE.rpn3_lr = 0 config.TRAIN.ALTERNATE.rpn3_lr_step = '' # recommend '2' config.TRAIN.ALTERNATE.rpn3_epoch = 0 # recommend 3 # whether resume training config.TRAIN.RESUME = False # whether flip image config.TRAIN.FLIP = True # whether shuffle image config.TRAIN.SHUFFLE = True # whether use OHEM config.TRAIN.ENABLE_OHEM = False # size of images for each device, 2 for rcnn, 1 for rpn and e2e config.TRAIN.BATCH_IMAGES = 2 # e2e changes behavior of anchor loader and metric config.TRAIN.END2END = False # group images with similar aspect ratio config.TRAIN.ASPECT_GROUPING = True # R-CNN # rcnn rois batch size config.TRAIN.BATCH_ROIS = 128 config.TRAIN.BATCH_ROIS_OHEM = 128 # rcnn rois sampling params config.TRAIN.FG_FRACTION = 0.25 config.TRAIN.FG_THRESH = 0.5 config.TRAIN.BG_THRESH_HI = 0.5 config.TRAIN.BG_THRESH_LO = 0.0 # rcnn bounding box regression params config.TRAIN.BBOX_REGRESSION_THRESH = 0.5 config.TRAIN.BBOX_WEIGHTS = np.array([1.0, 1.0, 1.0, 1.0]) # RPN anchor loader # rpn anchors batch size config.TRAIN.RPN_BATCH_SIZE = 256 # rpn anchors sampling params config.TRAIN.RPN_FG_FRACTION = 0.5 config.TRAIN.RPN_POSITIVE_OVERLAP = 0.7 config.TRAIN.RPN_NEGATIVE_OVERLAP = 0.3 config.TRAIN.RPN_CLOBBER_POSITIVES = False # rpn bounding box regression params config.TRAIN.RPN_BBOX_WEIGHTS = (1.0, 1.0, 1.0, 1.0) config.TRAIN.RPN_POSITIVE_WEIGHT = -1.0 # used for end2end training # RPN proposal config.TRAIN.CXX_PROPOSAL = True config.TRAIN.RPN_NMS_THRESH = 0.7 config.TRAIN.RPN_PRE_NMS_TOP_N = 12000 config.TRAIN.RPN_POST_NMS_TOP_N = 2000 config.TRAIN.RPN_MIN_SIZE = config.network.RPN_FEAT_STRIDE # approximate bounding box regression config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED = False config.TRAIN.BBOX_MEANS = (0.0, 0.0, 0.0, 0.0) config.TRAIN.BBOX_STDS = (0.1, 0.1, 0.2, 0.2) config.TEST = edict() # R-CNN testing # use rpn to generate proposal config.TEST.HAS_RPN = False # size of images for each device config.TEST.BATCH_IMAGES = 1 # RPN proposal config.TEST.CXX_PROPOSAL = True config.TEST.RPN_NMS_THRESH = 0.7 config.TEST.RPN_PRE_NMS_TOP_N = 6000 config.TEST.RPN_POST_NMS_TOP_N = 300 config.TEST.RPN_MIN_SIZE = config.network.RPN_FEAT_STRIDE # RPN generate proposal config.TEST.PROPOSAL_NMS_THRESH = 0.7 config.TEST.PROPOSAL_PRE_NMS_TOP_N = 20000 config.TEST.PROPOSAL_POST_NMS_TOP_N = 2000 config.TEST.PROPOSAL_MIN_SIZE = config.network.RPN_FEAT_STRIDE # RCNN nms config.TEST.NMS = 0.3 config.TEST.max_per_image = 300 # Test Model Epoch config.TEST.test_epoch = 0 def update_config(config_file): exp_config = None with open(config_file) as f: exp_config = edict(yaml.load(f)) for k, v in exp_config.items(): if k in config: if isinstance(v, dict): if k == 'TRAIN': if 'BBOX_WEIGHTS' in v: v['BBOX_WEIGHTS'] = np.array(v['BBOX_WEIGHTS']) elif k == 'network': if 'PIXEL_MEANS' in v: v['PIXEL_MEANS'] = np.array(v['PIXEL_MEANS']) for vk, vv in v.items(): config[k][vk] = vv else: if k == 'SCALES': config[k][0] = (tuple(v)) else: config[k] = v else: raise ValueError("key must exist in config.py")
32.119171
98
0.695273
d22220a8ca808e765159f350ab44dceaabe632d4
352
py
Python
reviewboard/scmtools/evolutions/repository_hosting_accounts.py
pombredanne/reviewboard
15f1d7236ec7a5cb4778ebfeb8b45d13a46ac71d
[ "MIT" ]
null
null
null
reviewboard/scmtools/evolutions/repository_hosting_accounts.py
pombredanne/reviewboard
15f1d7236ec7a5cb4778ebfeb8b45d13a46ac71d
[ "MIT" ]
null
null
null
reviewboard/scmtools/evolutions/repository_hosting_accounts.py
pombredanne/reviewboard
15f1d7236ec7a5cb4778ebfeb8b45d13a46ac71d
[ "MIT" ]
null
null
null
from django_evolution.mutations import AddField from django.db import models from djblets.db.fields import JSONField MUTATIONS = [ AddField('Repository', 'extra_data', JSONField, null=True), AddField('Repository', 'hosting_account', models.ForeignKey, null=True, related_model='hostingsvcs.HostingServiceAccount') ]
29.333333
63
0.730114
e8b77eb6f3d90662212133d3e1b8f2a2bf5a4503
3,500
py
Python
freefeeds/migrations/0001_initial.py
ilvar/mokumdon
8f63a68708e33c6fe3579471716e3f31ec58fec4
[ "MIT" ]
null
null
null
freefeeds/migrations/0001_initial.py
ilvar/mokumdon
8f63a68708e33c6fe3579471716e3f31ec58fec4
[ "MIT" ]
null
null
null
freefeeds/migrations/0001_initial.py
ilvar/mokumdon
8f63a68708e33c6fe3579471716e3f31ec58fec4
[ "MIT" ]
null
null
null
# Generated by Django 3.0 on 2019-12-14 20:57 from django.db import migrations, models import django.db.models.deletion import freefeeds.models class Migration(migrations.Migration): initial = True dependencies = [] operations = [ migrations.CreateModel( name="User", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("feed_id", models.CharField(db_index=True, max_length=100)), ("username", models.CharField(max_length=100)), ("screen_name", models.CharField(max_length=100)), ("avatar_url", models.URLField()), ("created_at", models.DateTimeField()), ("updated_at", models.DateTimeField()), ], bases=(models.Model, freefeeds.models.FfToMdConvertorMixin), ), migrations.CreateModel( name="Post", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("feed_id", models.CharField(db_index=True, max_length=100)), ("body", models.TextField()), ("comment_likes", models.IntegerField()), ("comments_disabled", models.BooleanField()), ("created_at", models.DateTimeField()), ("updated_at", models.DateTimeField()), ( "parent", models.ForeignKey( null=True, on_delete=django.db.models.deletion.CASCADE, to="freefeeds.Post", ), ), ( "user", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="freefeeds.User" ), ), ], bases=(models.Model, freefeeds.models.FfToMdConvertorMixin), ), migrations.CreateModel( name="Attachment", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("feed_id", models.CharField(db_index=True, max_length=100)), ("media_type", models.CharField(max_length=100)), ("url", models.CharField(max_length=256)), ("thumbnail_url", models.CharField(max_length=256)), ("width", models.IntegerField(null=True)), ("height", models.IntegerField(null=True)), ( "post", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="freefeeds.Post" ), ), ], bases=(models.Model, freefeeds.models.FfToMdConvertorMixin), ), ]
35.353535
88
0.433429
fe285403bacb511cb2bef6599fdcc9e7bae58833
29,379
py
Python
sphinx/builders/_epub_base.py
zhsj/sphinx
169297d0b76bf0b503033dadeb14f9a2b735e422
[ "BSD-2-Clause" ]
1
2021-06-17T13:38:42.000Z
2021-06-17T13:38:42.000Z
sphinx/builders/_epub_base.py
zhsj/sphinx
169297d0b76bf0b503033dadeb14f9a2b735e422
[ "BSD-2-Clause" ]
null
null
null
sphinx/builders/_epub_base.py
zhsj/sphinx
169297d0b76bf0b503033dadeb14f9a2b735e422
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ sphinx.builders._epub_base ~~~~~~~~~~~~~~~~~~~~~~~~~~ Base class of epub2/epub3 builders. :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import os import re from collections import namedtuple from os import path from zipfile import ZIP_DEFLATED, ZIP_STORED, ZipFile from docutils import nodes from docutils.utils import smartquotes from sphinx import addnodes from sphinx.builders.html import BuildInfo, StandaloneHTMLBuilder from sphinx.locale import __ from sphinx.util import logging from sphinx.util import status_iterator from sphinx.util.fileutil import copy_asset_file from sphinx.util.i18n import format_date from sphinx.util.osutil import ensuredir, copyfile try: from PIL import Image except ImportError: try: import Image except ImportError: Image = None if False: # For type annotation from typing import Any, Dict, List, Tuple # NOQA from sphinx.application import Sphinx # NOQA logger = logging.getLogger(__name__) # (Fragment) templates from which the metainfo files content.opf and # toc.ncx are created. # This template section also defines strings that are embedded in the html # output but that may be customized by (re-)setting module attributes, # e.g. from conf.py. COVERPAGE_NAME = u'epub-cover.xhtml' TOCTREE_TEMPLATE = u'toctree-l%d' LINK_TARGET_TEMPLATE = u' [%(uri)s]' FOOTNOTE_LABEL_TEMPLATE = u'#%d' FOOTNOTES_RUBRIC_NAME = u'Footnotes' CSS_LINK_TARGET_CLASS = u'link-target' # XXX These strings should be localized according to epub_language GUIDE_TITLES = { 'toc': u'Table of Contents', 'cover': u'Cover' } MEDIA_TYPES = { '.xhtml': 'application/xhtml+xml', '.css': 'text/css', '.png': 'image/png', '.gif': 'image/gif', '.svg': 'image/svg+xml', '.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.otf': 'application/x-font-otf', '.ttf': 'application/x-font-ttf', '.woff': 'application/font-woff', } # type: Dict[unicode, unicode] VECTOR_GRAPHICS_EXTENSIONS = ('.svg',) # Regular expression to match colons only in local fragment identifiers. # If the URI contains a colon before the #, # it is an external link that should not change. REFURI_RE = re.compile("([^#:]*#)(.*)") ManifestItem = namedtuple('ManifestItem', ['href', 'id', 'media_type']) Spine = namedtuple('Spine', ['idref', 'linear']) Guide = namedtuple('Guide', ['type', 'title', 'uri']) NavPoint = namedtuple('NavPoint', ['navpoint', 'playorder', 'text', 'refuri', 'children']) def sphinx_smarty_pants(t, language='en'): # type: (unicode, str) -> unicode t = t.replace('&quot;', '"') t = smartquotes.educateDashesOldSchool(t) t = smartquotes.educateQuotes(t, language) t = t.replace('"', '&quot;') return t ssp = sphinx_smarty_pants # The epub publisher class EpubBuilder(StandaloneHTMLBuilder): """ Builder that outputs epub files. It creates the metainfo files container.opf, toc.ncx, mimetype, and META-INF/container.xml. Afterwards, all necessary files are zipped to an epub file. """ # don't copy the reST source copysource = False supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg'] supported_remote_images = False # don't add links add_permalinks = False # don't use # as current path. ePub check reject it. allow_sharp_as_current_path = False # don't add sidebar etc. embedded = True # disable download role download_support = False # dont' create links to original images from images html_scaled_image_link = False # don't generate search index or include search page search = False # use html5 translator by default default_html5_translator = True coverpage_name = COVERPAGE_NAME toctree_template = TOCTREE_TEMPLATE link_target_template = LINK_TARGET_TEMPLATE css_link_target_class = CSS_LINK_TARGET_CLASS guide_titles = GUIDE_TITLES media_types = MEDIA_TYPES refuri_re = REFURI_RE template_dir = "" doctype = "" def init(self): # type: () -> None StandaloneHTMLBuilder.init(self) # the output files for epub must be .html only self.out_suffix = '.xhtml' self.link_suffix = '.xhtml' self.playorder = 0 self.tocid = 0 self.id_cache = {} # type: Dict[unicode, unicode] self.use_index = self.get_builder_config('use_index', 'epub') def create_build_info(self): # type: () -> BuildInfo return BuildInfo(self.config, self.tags, ['html', 'epub']) def get_theme_config(self): # type: () -> Tuple[unicode, Dict] return self.config.epub_theme, self.config.epub_theme_options # generic support functions def make_id(self, name): # type: (unicode) -> unicode # id_cache is intentionally mutable """Return a unique id for name.""" id = self.id_cache.get(name) if not id: id = 'epub-%d' % self.env.new_serialno('epub') self.id_cache[name] = id return id def esc(self, name): # type: (unicode) -> unicode """Replace all characters not allowed in text an attribute values.""" # Like cgi.escape, but also replace apostrophe name = name.replace('&', '&amp;') name = name.replace('<', '&lt;') name = name.replace('>', '&gt;') name = name.replace('"', '&quot;') name = name.replace('\'', '&#39;') return name def get_refnodes(self, doctree, result): # type: (nodes.Node, List[Dict[unicode, Any]]) -> List[Dict[unicode, Any]] """Collect section titles, their depth in the toc and the refuri.""" # XXX: is there a better way than checking the attribute # toctree-l[1-8] on the parent node? if isinstance(doctree, nodes.reference) and 'refuri' in doctree: refuri = doctree['refuri'] if refuri.startswith('http://') or refuri.startswith('https://') \ or refuri.startswith('irc:') or refuri.startswith('mailto:'): return result classes = doctree.parent.attributes['classes'] for level in range(8, 0, -1): # or range(1, 8)? if (self.toctree_template % level) in classes: result.append({ 'level': level, 'refuri': self.esc(refuri), 'text': ssp(self.esc(doctree.astext())) }) break else: for elem in doctree.children: result = self.get_refnodes(elem, result) return result def get_toc(self): # type: () -> None """Get the total table of contents, containing the master_doc and pre and post files not managed by sphinx. """ doctree = self.env.get_and_resolve_doctree(self.config.master_doc, self, prune_toctrees=False, includehidden=True) self.refnodes = self.get_refnodes(doctree, []) master_dir = path.dirname(self.config.master_doc) if master_dir: master_dir += '/' # XXX or os.sep? for item in self.refnodes: item['refuri'] = master_dir + item['refuri'] self.toc_add_files(self.refnodes) def toc_add_files(self, refnodes): # type: (List[nodes.Node]) -> None """Add the master_doc, pre and post files to a list of refnodes. """ refnodes.insert(0, { 'level': 1, 'refuri': self.esc(self.config.master_doc + self.out_suffix), 'text': ssp(self.esc( self.env.titles[self.config.master_doc].astext())) }) for file, text in reversed(self.config.epub_pre_files): refnodes.insert(0, { 'level': 1, 'refuri': self.esc(file), 'text': ssp(self.esc(text)) }) for file, text in self.config.epub_post_files: refnodes.append({ 'level': 1, 'refuri': self.esc(file), 'text': ssp(self.esc(text)) }) def fix_fragment(self, prefix, fragment): # type: (unicode, unicode) -> unicode """Return a href/id attribute with colons replaced by hyphens.""" return prefix + fragment.replace(':', '-') def fix_ids(self, tree): # type: (nodes.Node) -> None """Replace colons with hyphens in href and id attributes. Some readers crash because they interpret the part as a transport protocol specification. """ for node in tree.traverse(nodes.reference): if 'refuri' in node: m = self.refuri_re.match(node['refuri']) if m: node['refuri'] = self.fix_fragment(m.group(1), m.group(2)) if 'refid' in node: node['refid'] = self.fix_fragment('', node['refid']) for node in tree.traverse(addnodes.desc_signature): ids = node.attributes['ids'] newids = [] for id in ids: newids.append(self.fix_fragment('', id)) node.attributes['ids'] = newids def add_visible_links(self, tree, show_urls='inline'): # type: (nodes.Node, unicode) -> None """Add visible link targets for external links""" def make_footnote_ref(doc, label): # type: (nodes.Node, unicode) -> nodes.footnote_reference """Create a footnote_reference node with children""" footnote_ref = nodes.footnote_reference('[#]_') footnote_ref.append(nodes.Text(label)) doc.note_autofootnote_ref(footnote_ref) return footnote_ref def make_footnote(doc, label, uri): # type: (nodes.Node, unicode, unicode) -> nodes.footnote """Create a footnote node with children""" footnote = nodes.footnote(uri) para = nodes.paragraph() para.append(nodes.Text(uri)) footnote.append(para) footnote.insert(0, nodes.label('', label)) doc.note_autofootnote(footnote) return footnote def footnote_spot(tree): # type: (nodes.Node) -> Tuple[nodes.Node, int] """Find or create a spot to place footnotes. The function returns the tuple (parent, index).""" # The code uses the following heuristic: # a) place them after the last existing footnote # b) place them after an (empty) Footnotes rubric # c) create an empty Footnotes rubric at the end of the document fns = tree.traverse(nodes.footnote) if fns: fn = fns[-1] return fn.parent, fn.parent.index(fn) + 1 for node in tree.traverse(nodes.rubric): if len(node.children) == 1 and \ node.children[0].astext() == FOOTNOTES_RUBRIC_NAME: return node.parent, node.parent.index(node) + 1 doc = tree.traverse(nodes.document)[0] rub = nodes.rubric() rub.append(nodes.Text(FOOTNOTES_RUBRIC_NAME)) doc.append(rub) return doc, doc.index(rub) + 1 if show_urls == 'no': return if show_urls == 'footnote': doc = tree.traverse(nodes.document)[0] fn_spot, fn_idx = footnote_spot(tree) nr = 1 for node in tree.traverse(nodes.reference): uri = node.get('refuri', '') if (uri.startswith('http:') or uri.startswith('https:') or uri.startswith('ftp:')) and uri not in node.astext(): idx = node.parent.index(node) + 1 if show_urls == 'inline': uri = self.link_target_template % {'uri': uri} link = nodes.inline(uri, uri) link['classes'].append(self.css_link_target_class) node.parent.insert(idx, link) elif show_urls == 'footnote': label = FOOTNOTE_LABEL_TEMPLATE % nr nr += 1 footnote_ref = make_footnote_ref(doc, label) node.parent.insert(idx, footnote_ref) footnote = make_footnote(doc, label, uri) fn_spot.insert(fn_idx, footnote) footnote_ref['refid'] = footnote['ids'][0] footnote.add_backref(footnote_ref['ids'][0]) fn_idx += 1 def write_doc(self, docname, doctree): # type: (unicode, nodes.Node) -> None """Write one document file. This method is overwritten in order to fix fragment identifiers and to add visible external links. """ self.fix_ids(doctree) self.add_visible_links(doctree, self.config.epub_show_urls) StandaloneHTMLBuilder.write_doc(self, docname, doctree) def fix_genindex(self, tree): # type: (nodes.Node) -> None """Fix href attributes for genindex pages.""" # XXX: modifies tree inline # Logic modeled from themes/basic/genindex.html for key, columns in tree: for entryname, (links, subitems, key_) in columns: for (i, (ismain, link)) in enumerate(links): m = self.refuri_re.match(link) if m: links[i] = (ismain, self.fix_fragment(m.group(1), m.group(2))) for subentryname, subentrylinks in subitems: for (i, (ismain, link)) in enumerate(subentrylinks): m = self.refuri_re.match(link) if m: subentrylinks[i] = (ismain, self.fix_fragment(m.group(1), m.group(2))) def is_vector_graphics(self, filename): # type: (unicode) -> bool """Does the filename extension indicate a vector graphic format?""" ext = path.splitext(filename)[-1] return ext in VECTOR_GRAPHICS_EXTENSIONS def copy_image_files_pil(self): # type: () -> None """Copy images using the PIL. The method tries to read and write the files with the PIL, converting the format and resizing the image if necessary/possible. """ ensuredir(path.join(self.outdir, self.imagedir)) for src in status_iterator(self.images, 'copying images... ', "brown", len(self.images), self.app.verbosity): dest = self.images[src] try: img = Image.open(path.join(self.srcdir, src)) except IOError: if not self.is_vector_graphics(src): logger.warning(__('cannot read image file %r: copying it instead'), path.join(self.srcdir, src)) try: copyfile(path.join(self.srcdir, src), path.join(self.outdir, self.imagedir, dest)) except (IOError, OSError) as err: logger.warning(__('cannot copy image file %r: %s'), path.join(self.srcdir, src), err) continue if self.config.epub_fix_images: if img.mode in ('P',): # See PIL documentation for Image.convert() img = img.convert() if self.config.epub_max_image_width > 0: (width, height) = img.size nw = self.config.epub_max_image_width if width > nw: nh = (height * nw) / width img = img.resize((nw, nh), Image.BICUBIC) try: img.save(path.join(self.outdir, self.imagedir, dest)) except (IOError, OSError) as err: logger.warning(__('cannot write image file %r: %s'), path.join(self.srcdir, src), err) def copy_image_files(self): # type: () -> None """Copy image files to destination directory. This overwritten method can use the PIL to convert image files. """ if self.images: if self.config.epub_fix_images or self.config.epub_max_image_width: if not Image: logger.warning(__('PIL not found - copying image files')) super(EpubBuilder, self).copy_image_files() else: self.copy_image_files_pil() else: super(EpubBuilder, self).copy_image_files() def copy_download_files(self): # type: () -> None pass def handle_page(self, pagename, addctx, templatename='page.html', outfilename=None, event_arg=None): # type: (unicode, Dict, unicode, unicode, Any) -> None """Create a rendered page. This method is overwritten for genindex pages in order to fix href link attributes. """ if pagename.startswith('genindex') and 'genindexentries' in addctx: if not self.use_index: return self.fix_genindex(addctx['genindexentries']) addctx['doctype'] = self.doctype StandaloneHTMLBuilder.handle_page(self, pagename, addctx, templatename, outfilename, event_arg) def build_mimetype(self, outdir, outname): # type: (unicode, unicode) -> None """Write the metainfo file mimetype.""" logger.info(__('writing %s file...'), outname) copy_asset_file(path.join(self.template_dir, 'mimetype'), path.join(outdir, outname)) def build_container(self, outdir, outname): # type: (unicode, unicode) -> None """Write the metainfo file META-INF/container.xml.""" logger.info(__('writing %s file...'), outname) filename = path.join(outdir, outname) ensuredir(path.dirname(filename)) copy_asset_file(path.join(self.template_dir, 'container.xml'), filename) def content_metadata(self): # type: () -> Dict[unicode, Any] """Create a dictionary with all metadata for the content.opf file properly escaped. """ metadata = {} # type: Dict[unicode, Any] metadata['title'] = self.esc(self.config.epub_title) metadata['author'] = self.esc(self.config.epub_author) metadata['uid'] = self.esc(self.config.epub_uid) metadata['lang'] = self.esc(self.config.epub_language) metadata['publisher'] = self.esc(self.config.epub_publisher) metadata['copyright'] = self.esc(self.config.epub_copyright) metadata['scheme'] = self.esc(self.config.epub_scheme) metadata['id'] = self.esc(self.config.epub_identifier) metadata['date'] = self.esc(format_date("%Y-%m-%d")) metadata['manifest_items'] = [] metadata['spines'] = [] metadata['guides'] = [] return metadata def build_content(self, outdir, outname): # type: (unicode, unicode) -> None """Write the metainfo file content.opf It contains bibliographic data, a file list and the spine (the reading order). """ logger.info(__('writing %s file...'), outname) metadata = self.content_metadata() # files if not outdir.endswith(os.sep): outdir += os.sep olen = len(outdir) self.files = [] # type: List[unicode] self.ignored_files = ['.buildinfo', 'mimetype', 'content.opf', 'toc.ncx', 'META-INF/container.xml', 'Thumbs.db', 'ehthumbs.db', '.DS_Store', 'nav.xhtml', self.config.epub_basename + '.epub'] + \ self.config.epub_exclude_files if not self.use_index: self.ignored_files.append('genindex' + self.out_suffix) for root, dirs, files in os.walk(outdir): dirs.sort() for fn in sorted(files): filename = path.join(root, fn)[olen:] if filename in self.ignored_files: continue ext = path.splitext(filename)[-1] if ext not in self.media_types: # we always have JS and potentially OpenSearch files, don't # always warn about them if ext not in ('.js', '.xml'): logger.warning(__('unknown mimetype for %s, ignoring'), filename, type='epub', subtype='unknown_project_files') continue filename = filename.replace(os.sep, '/') item = ManifestItem(self.esc(filename), self.esc(self.make_id(filename)), self.esc(self.media_types[ext])) metadata['manifest_items'].append(item) self.files.append(filename) # spine spinefiles = set() for refnode in self.refnodes: if '#' in refnode['refuri']: continue if refnode['refuri'] in self.ignored_files: continue spine = Spine(self.esc(self.make_id(refnode['refuri'])), True) metadata['spines'].append(spine) spinefiles.add(refnode['refuri']) for info in self.domain_indices: spine = Spine(self.esc(self.make_id(info[0] + self.out_suffix)), True) metadata['spines'].append(spine) spinefiles.add(info[0] + self.out_suffix) if self.use_index: spine = Spine(self.esc(self.make_id('genindex' + self.out_suffix)), True) metadata['spines'].append(spine) spinefiles.add('genindex' + self.out_suffix) # add auto generated files for name in self.files: if name not in spinefiles and name.endswith(self.out_suffix): spine = Spine(self.esc(self.make_id(name)), False) metadata['spines'].append(spine) # add the optional cover html_tmpl = None if self.config.epub_cover: image, html_tmpl = self.config.epub_cover image = image.replace(os.sep, '/') metadata['cover'] = self.esc(self.make_id(image)) if html_tmpl: spine = Spine(self.esc(self.make_id(self.coverpage_name)), True) metadata['spines'].insert(0, spine) if self.coverpage_name not in self.files: ext = path.splitext(self.coverpage_name)[-1] self.files.append(self.coverpage_name) item = ManifestItem(self.esc(self.coverpage_name), self.esc(self.make_id(self.coverpage_name)), self.esc(self.media_types[ext])) metadata['manifest_items'].append(item) ctx = {'image': self.esc(image), 'title': self.config.project} self.handle_page( path.splitext(self.coverpage_name)[0], ctx, html_tmpl) spinefiles.add(self.coverpage_name) auto_add_cover = True auto_add_toc = True if self.config.epub_guide: for type, uri, title in self.config.epub_guide: file = uri.split('#')[0] if file not in self.files: self.files.append(file) if type == 'cover': auto_add_cover = False if type == 'toc': auto_add_toc = False metadata['guides'].append(Guide(self.esc(type), self.esc(title), self.esc(uri))) if auto_add_cover and html_tmpl: metadata['guides'].append(Guide('cover', self.guide_titles['cover'], self.esc(self.coverpage_name))) if auto_add_toc and self.refnodes: metadata['guides'].append(Guide('toc', self.guide_titles['toc'], self.esc(self.refnodes[0]['refuri']))) # write the project file copy_asset_file(path.join(self.template_dir, 'content.opf_t'), path.join(outdir, outname), metadata) def new_navpoint(self, node, level, incr=True): # type: (nodes.Node, int, bool) -> NavPoint """Create a new entry in the toc from the node at given level.""" # XXX Modifies the node if incr: self.playorder += 1 self.tocid += 1 return NavPoint(self.esc('navPoint%d' % self.tocid), self.playorder, node['text'], node['refuri'], []) def build_navpoints(self, nodes): # type: (nodes.Node) -> List[NavPoint] """Create the toc navigation structure. Subelements of a node are nested inside the navpoint. For nested nodes the parent node is reinserted in the subnav. """ navstack = [] # type: List[NavPoint] navstack.append(NavPoint('dummy', '', '', '', [])) level = 0 lastnode = None for node in nodes: if not node['text']: continue file = node['refuri'].split('#')[0] if file in self.ignored_files: continue if node['level'] > self.config.epub_tocdepth: continue if node['level'] == level: navpoint = self.new_navpoint(node, level) navstack.pop() navstack[-1].children.append(navpoint) navstack.append(navpoint) elif node['level'] == level + 1: level += 1 if lastnode and self.config.epub_tocdup: # Insert starting point in subtoc with same playOrder navstack[-1].children.append(self.new_navpoint(lastnode, level, False)) navpoint = self.new_navpoint(node, level) navstack[-1].children.append(navpoint) navstack.append(navpoint) elif node['level'] < level: while node['level'] < len(navstack): navstack.pop() level = node['level'] navpoint = self.new_navpoint(node, level) navstack[-1].children.append(navpoint) navstack.append(navpoint) else: raise lastnode = node return navstack[0].children def toc_metadata(self, level, navpoints): # type: (int, List[NavPoint]) -> Dict[unicode, Any] """Create a dictionary with all metadata for the toc.ncx file properly escaped. """ metadata = {} # type: Dict[unicode, Any] metadata['uid'] = self.config.epub_uid metadata['title'] = self.esc(self.config.epub_title) metadata['level'] = level metadata['navpoints'] = navpoints return metadata def build_toc(self, outdir, outname): # type: (unicode, unicode) -> None """Write the metainfo file toc.ncx.""" logger.info(__('writing %s file...'), outname) if self.config.epub_tocscope == 'default': doctree = self.env.get_and_resolve_doctree(self.config.master_doc, self, prune_toctrees=False, includehidden=False) refnodes = self.get_refnodes(doctree, []) self.toc_add_files(refnodes) else: # 'includehidden' refnodes = self.refnodes navpoints = self.build_navpoints(refnodes) level = max(item['level'] for item in self.refnodes) level = min(level, self.config.epub_tocdepth) copy_asset_file(path.join(self.template_dir, 'toc.ncx_t'), path.join(outdir, outname), self.toc_metadata(level, navpoints)) def build_epub(self, outdir, outname): # type: (unicode, unicode) -> None """Write the epub file. It is a zip file with the mimetype file stored uncompressed as the first entry. """ logger.info(__('writing %s file...'), outname) epub_filename = path.join(outdir, outname) with ZipFile(epub_filename, 'w', ZIP_DEFLATED) as epub: epub.write(path.join(outdir, 'mimetype'), 'mimetype', ZIP_STORED) for filename in [u'META-INF/container.xml', u'content.opf', u'toc.ncx']: epub.write(path.join(outdir, filename), filename, ZIP_DEFLATED) for filename in self.files: epub.write(path.join(outdir, filename), filename, ZIP_DEFLATED)
40.974895
91
0.558596
7f3f0d62002859c20f63abe9e2ad36c7d7fcf360
21,019
py
Python
pysnmp/SNMP553S-MGMT-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/SNMP553S-MGMT-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/SNMP553S-MGMT-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module SNMP553S-MGMT-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/SNMP553S-MGMT-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 21:00:38 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, SingleValueConstraint, ValueSizeConstraint, ValueRangeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "SingleValueConstraint", "ValueSizeConstraint", "ValueRangeConstraint", "ConstraintsUnion") dsx1, = mibBuilder.importSymbols("GDCDSX1-MIB", "dsx1") SCinstance, = mibBuilder.importSymbols("GDCMACRO-MIB", "SCinstance") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") Integer32, NotificationType, Bits, IpAddress, MibIdentifier, MibScalar, MibTable, MibTableRow, MibTableColumn, Unsigned32, ModuleIdentity, ObjectIdentity, Gauge32, Counter32, Counter64, TimeTicks, iso = mibBuilder.importSymbols("SNMPv2-SMI", "Integer32", "NotificationType", "Bits", "IpAddress", "MibIdentifier", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Unsigned32", "ModuleIdentity", "ObjectIdentity", "Gauge32", "Counter32", "Counter64", "TimeTicks", "iso") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") snmp553s = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3)) snmp553sc = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 4)) snmp553sAlarmData = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1)) snmp553sNoResponseAlm = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 1)) snmp553sDiagRxErrAlm = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 2)) snmp553sPowerUpAlm = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 3)) snmp553sNvRamCorrupt = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 4)) snmp553sUnitFailure = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 5)) snmp553sMbiLock = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 6)) snmp553sLocalPwrFail = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 7)) snmp553sTimingLoss = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 8)) snmp553sStatusChange = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 9)) snmp553sUnsoTest = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 10)) snmp553sLossOfSignal = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 11)) snmp553sLossOfFrame = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 12)) snmp553sAis = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 13)) snmp553sReceivedYellow = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 14)) snmp553sUnavailSignalState = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 15)) snmp553sExcessiveZeros = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 16)) snmp553sLowAverageDensity = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 17)) snmp553sControlledSlips = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 18)) snmp553sBipolarViolations = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 19)) snmp553sCrcErrors = MibIdentifier((1, 3, 6, 1, 4, 1, 498, 6, 3, 1, 20)) snmp553sMIBversion = MibScalar((1, 3, 6, 1, 4, 1, 498, 6, 3, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(5, 5)).setFixedLength(5)).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sMIBversion.setStatus('mandatory') snmp553sMaintenanceTable = MibTable((1, 3, 6, 1, 4, 1, 498, 6, 3, 3), ) if mibBuilder.loadTexts: snmp553sMaintenanceTable.setStatus('mandatory') snmp553sMaintenanceEntry = MibTableRow((1, 3, 6, 1, 4, 1, 498, 6, 3, 3, 1), ).setIndexNames((0, "SNMP553S-MGMT-MIB", "snmp553sMaintenanceIndex")) if mibBuilder.loadTexts: snmp553sMaintenanceEntry.setStatus('mandatory') snmp553sMaintenanceIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 3, 1, 1), SCinstance()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sMaintenanceIndex.setStatus('mandatory') snmp553sCascadePresent = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 3, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("notPresent", 1), ("present", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sCascadePresent.setStatus('mandatory') snmp553sExtModemPresent = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 3, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("notPresent", 1), ("present", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sExtModemPresent.setStatus('mandatory') snmp553sUnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 3, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("master", 1), ("remote", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sUnitType.setStatus('mandatory') snmp553sManagementSource = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 3, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("modemSnmp", 1), ("secondaryChannel", 2), ("fdl", 3), ("daisyChain", 4), ("bus485", 5), ("localSnmp", 6)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sManagementSource.setStatus('mandatory') snmp553sProductType = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 3, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8))).clone(namedValues=NamedValues(("snmp553sd1ifp", 1), ("snmp553sd3ifp", 2), ("snmp553scifp", 3), ("nms553d1", 4), ("nms553d1ifp", 5), ("nms553d3ifp", 6), ("nms553c", 7), ("nms553cifp", 8)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sProductType.setStatus('mandatory') snmp553sLedStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 3, 1, 7), OctetString().subtype(subtypeSpec=ValueSizeConstraint(3, 3)).setFixedLength(3)).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sLedStatus.setStatus('mandatory') snmp553sUnitSerialNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 3, 1, 8), OctetString().subtype(subtypeSpec=ValueSizeConstraint(16, 16)).setFixedLength(16)).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sUnitSerialNumber.setStatus('mandatory') snmp553sSaveAllConfig = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 3, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("normal", 1), ("saveConfig", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sSaveAllConfig.setStatus('mandatory') snmp553sUnitConfigTable = MibTable((1, 3, 6, 1, 4, 1, 498, 6, 3, 4), ) if mibBuilder.loadTexts: snmp553sUnitConfigTable.setStatus('mandatory') snmp553sUnitConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 498, 6, 3, 4, 1), ).setIndexNames((0, "SNMP553S-MGMT-MIB", "snmp553sUnitConfigIndex")) if mibBuilder.loadTexts: snmp553sUnitConfigEntry.setStatus('mandatory') snmp553sUnitConfigIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 4, 1, 1), SCinstance()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sUnitConfigIndex.setStatus('mandatory') snmp553sSaveCsuConfig = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 4, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("normal", 1), ("saveConfig", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sSaveCsuConfig.setStatus('mandatory') snmp553sShelfCommander = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 4, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disabled", 1), ("enabled", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sShelfCommander.setStatus('mandatory') snmp553sForceFakeMaster = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 4, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enabled", 1), ("disabled", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sForceFakeMaster.setStatus('mandatory') snmp553sDaisyChainBps = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 4, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("none", 1), ("bps75", 2), ("bps9600", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sDaisyChainBps.setStatus('mandatory') snmp553sChannelConfigTable = MibTable((1, 3, 6, 1, 4, 1, 498, 6, 3, 5), ) if mibBuilder.loadTexts: snmp553sChannelConfigTable.setStatus('mandatory') snmp553sChannelConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 498, 6, 3, 5, 1), ).setIndexNames((0, "SNMP553S-MGMT-MIB", "snmp553sChannelConfigIndex")) if mibBuilder.loadTexts: snmp553sChannelConfigEntry.setStatus('mandatory') snmp553sChannelConfigIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 5, 1, 1), SCinstance()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sChannelConfigIndex.setStatus('mandatory') snmp553sDCCCompatibilityMode = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 5, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("nms553", 1), ("nms510", 2), ("other", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sDCCCompatibilityMode.setStatus('mandatory') snmp553sSaveDsuConfig = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 5, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("normal", 1), ("saveConfig", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sSaveDsuConfig.setStatus('mandatory') snmp553sDiagTable = MibTable((1, 3, 6, 1, 4, 1, 498, 6, 3, 6), ) if mibBuilder.loadTexts: snmp553sDiagTable.setStatus('mandatory') snmp553sDiagEntry = MibTableRow((1, 3, 6, 1, 4, 1, 498, 6, 3, 6, 1), ).setIndexNames((0, "SNMP553S-MGMT-MIB", "snmp553sDiagIndex")) if mibBuilder.loadTexts: snmp553sDiagEntry.setStatus('mandatory') snmp553sDiagIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 6, 1, 1), SCinstance()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sDiagIndex.setStatus('mandatory') snmp553sDiagTestDuration = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 6, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16))).clone(namedValues=NamedValues(("noLimit", 1), ("testTime1Min", 2), ("testTime2Mins", 3), ("testTime3Mins", 4), ("testTime4Mins", 5), ("testTime5Mins", 6), ("testTime6Mins", 7), ("testTime7Mins", 8), ("testTime8Mins", 9), ("testTime9Mins", 10), ("testTime10Mins", 11), ("testTime15Mins", 12), ("testTime20Mins", 13), ("testTime25Mins", 14), ("testTime30Mins", 15), ("testTime30Secs", 16)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sDiagTestDuration.setStatus('mandatory') snmp553sDiagProgPattern = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 6, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sDiagProgPattern.setStatus('mandatory') snmp553sAlarmHistoryTable = MibTable((1, 3, 6, 1, 4, 1, 498, 6, 3, 7), ) if mibBuilder.loadTexts: snmp553sAlarmHistoryTable.setStatus('mandatory') snmp553sAlarmHistoryEntry = MibTableRow((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1), ).setIndexNames((0, "SNMP553S-MGMT-MIB", "snmp553sAlarmHistoryIndex"), (0, "SNMP553S-MGMT-MIB", "snmp553sAlarmHistoryIdentifier")) if mibBuilder.loadTexts: snmp553sAlarmHistoryEntry.setStatus('mandatory') snmp553sAlarmHistoryIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 1), SCinstance()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmHistoryIndex.setStatus('mandatory') snmp553sAlarmHistoryIdentifier = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 2), ObjectIdentifier()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmHistoryIdentifier.setStatus('mandatory') snmp553sAlarmCount = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmCount.setStatus('mandatory') snmp553sAlarmFirstOccurrenceHours = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmFirstOccurrenceHours.setStatus('mandatory') snmp553sAlarmFirstOccurrenceMinutes = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmFirstOccurrenceMinutes.setStatus('mandatory') snmp553sAlarmFirstOccurrenceSeconds = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 6), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmFirstOccurrenceSeconds.setStatus('mandatory') snmp553sAlarmFirstOccurrenceMonth = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 7), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmFirstOccurrenceMonth.setStatus('mandatory') snmp553sAlarmFirstOccurrenceDay = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 8), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmFirstOccurrenceDay.setStatus('mandatory') snmp553sAlarmFirstOccurrenceYear = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 9), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmFirstOccurrenceYear.setStatus('mandatory') snmp553sAlarmLastOccurrenceHours = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 10), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmLastOccurrenceHours.setStatus('mandatory') snmp553sAlarmLastOccurrenceMinutes = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 11), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmLastOccurrenceMinutes.setStatus('mandatory') snmp553sAlarmLastOccurrenceSeconds = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 12), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmLastOccurrenceSeconds.setStatus('mandatory') snmp553sAlarmLastOccurrenceMonth = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 13), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmLastOccurrenceMonth.setStatus('mandatory') snmp553sAlarmLastOccurrenceDay = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 14), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmLastOccurrenceDay.setStatus('mandatory') snmp553sAlarmLastOccurrenceYear = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 7, 1, 15), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmLastOccurrenceYear.setStatus('mandatory') snmp553sAlarmMaintenanceTable = MibTable((1, 3, 6, 1, 4, 1, 498, 6, 3, 8), ) if mibBuilder.loadTexts: snmp553sAlarmMaintenanceTable.setStatus('mandatory') snmp553sAlarmMaintenanceEntry = MibTableRow((1, 3, 6, 1, 4, 1, 498, 6, 3, 8, 1), ).setIndexNames((0, "SNMP553S-MGMT-MIB", "snmp553sAlarmMaintenanceIndex")) if mibBuilder.loadTexts: snmp553sAlarmMaintenanceEntry.setStatus('mandatory') snmp553sAlarmMaintenanceIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 8, 1, 1), SCinstance()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sAlarmMaintenanceIndex.setStatus('mandatory') snmp553sClearAlarmHistory = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 8, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("clear", 1), ("norm", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sClearAlarmHistory.setStatus('mandatory') snmp553sRTCHours = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 8, 1, 3), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sRTCHours.setStatus('mandatory') snmp553sRTCMinutes = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 8, 1, 4), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sRTCMinutes.setStatus('mandatory') snmp553sRTCSeconds = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 8, 1, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sRTCSeconds.setStatus('mandatory') snmp553sRTCMonth = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 8, 1, 6), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sRTCMonth.setStatus('mandatory') snmp553sRTCDay = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 8, 1, 7), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sRTCDay.setStatus('mandatory') snmp553sRTCYear = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 8, 1, 8), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: snmp553sRTCYear.setStatus('mandatory') snmp553sTimeOfLastAlarmClear = MibTableColumn((1, 3, 6, 1, 4, 1, 498, 6, 3, 8, 1, 9), OctetString().subtype(subtypeSpec=ValueSizeConstraint(6, 6)).setFixedLength(6)).setMaxAccess("readonly") if mibBuilder.loadTexts: snmp553sTimeOfLastAlarmClear.setStatus('mandatory') mibBuilder.exportSymbols("SNMP553S-MGMT-MIB", snmp553sLossOfSignal=snmp553sLossOfSignal, snmp553sAlarmLastOccurrenceHours=snmp553sAlarmLastOccurrenceHours, snmp553sAis=snmp553sAis, snmp553sSaveAllConfig=snmp553sSaveAllConfig, snmp553sDiagRxErrAlm=snmp553sDiagRxErrAlm, snmp553sAlarmFirstOccurrenceHours=snmp553sAlarmFirstOccurrenceHours, snmp553sDiagTestDuration=snmp553sDiagTestDuration, snmp553sAlarmCount=snmp553sAlarmCount, snmp553sDiagEntry=snmp553sDiagEntry, snmp553sManagementSource=snmp553sManagementSource, snmp553sUnitConfigIndex=snmp553sUnitConfigIndex, snmp553sCrcErrors=snmp553sCrcErrors, snmp553sMaintenanceEntry=snmp553sMaintenanceEntry, snmp553sAlarmHistoryIndex=snmp553sAlarmHistoryIndex, snmp553sMaintenanceIndex=snmp553sMaintenanceIndex, snmp553sDiagTable=snmp553sDiagTable, snmp553sAlarmFirstOccurrenceYear=snmp553sAlarmFirstOccurrenceYear, snmp553sRTCMinutes=snmp553sRTCMinutes, snmp553sMIBversion=snmp553sMIBversion, snmp553sAlarmLastOccurrenceDay=snmp553sAlarmLastOccurrenceDay, snmp553sClearAlarmHistory=snmp553sClearAlarmHistory, snmp553sMbiLock=snmp553sMbiLock, snmp553sChannelConfigEntry=snmp553sChannelConfigEntry, snmp553s=snmp553s, snmp553sChannelConfigIndex=snmp553sChannelConfigIndex, snmp553sAlarmMaintenanceIndex=snmp553sAlarmMaintenanceIndex, snmp553sForceFakeMaster=snmp553sForceFakeMaster, snmp553sUnitType=snmp553sUnitType, snmp553sAlarmFirstOccurrenceDay=snmp553sAlarmFirstOccurrenceDay, snmp553sTimingLoss=snmp553sTimingLoss, snmp553sAlarmFirstOccurrenceMinutes=snmp553sAlarmFirstOccurrenceMinutes, snmp553sSaveDsuConfig=snmp553sSaveDsuConfig, snmp553sUnitConfigTable=snmp553sUnitConfigTable, snmp553sAlarmData=snmp553sAlarmData, snmp553sNoResponseAlm=snmp553sNoResponseAlm, snmp553sLedStatus=snmp553sLedStatus, snmp553sAlarmFirstOccurrenceSeconds=snmp553sAlarmFirstOccurrenceSeconds, snmp553sUnsoTest=snmp553sUnsoTest, snmp553sUnavailSignalState=snmp553sUnavailSignalState, snmp553sAlarmMaintenanceEntry=snmp553sAlarmMaintenanceEntry, snmp553sShelfCommander=snmp553sShelfCommander, snmp553sAlarmLastOccurrenceYear=snmp553sAlarmLastOccurrenceYear, snmp553sMaintenanceTable=snmp553sMaintenanceTable, snmp553sAlarmLastOccurrenceSeconds=snmp553sAlarmLastOccurrenceSeconds, snmp553sLowAverageDensity=snmp553sLowAverageDensity, snmp553sAlarmHistoryEntry=snmp553sAlarmHistoryEntry, snmp553sUnitFailure=snmp553sUnitFailure, snmp553sDiagProgPattern=snmp553sDiagProgPattern, snmp553sc=snmp553sc, snmp553sStatusChange=snmp553sStatusChange, snmp553sChannelConfigTable=snmp553sChannelConfigTable, snmp553sRTCYear=snmp553sRTCYear, snmp553sReceivedYellow=snmp553sReceivedYellow, snmp553sAlarmHistoryTable=snmp553sAlarmHistoryTable, snmp553sBipolarViolations=snmp553sBipolarViolations, snmp553sCascadePresent=snmp553sCascadePresent, snmp553sAlarmLastOccurrenceMinutes=snmp553sAlarmLastOccurrenceMinutes, snmp553sDCCCompatibilityMode=snmp553sDCCCompatibilityMode, snmp553sLossOfFrame=snmp553sLossOfFrame, snmp553sPowerUpAlm=snmp553sPowerUpAlm, snmp553sRTCMonth=snmp553sRTCMonth, snmp553sRTCDay=snmp553sRTCDay, snmp553sNvRamCorrupt=snmp553sNvRamCorrupt, snmp553sRTCHours=snmp553sRTCHours, snmp553sSaveCsuConfig=snmp553sSaveCsuConfig, snmp553sRTCSeconds=snmp553sRTCSeconds, snmp553sAlarmHistoryIdentifier=snmp553sAlarmHistoryIdentifier, snmp553sAlarmLastOccurrenceMonth=snmp553sAlarmLastOccurrenceMonth, snmp553sTimeOfLastAlarmClear=snmp553sTimeOfLastAlarmClear, snmp553sExcessiveZeros=snmp553sExcessiveZeros, snmp553sProductType=snmp553sProductType, snmp553sControlledSlips=snmp553sControlledSlips, snmp553sUnitConfigEntry=snmp553sUnitConfigEntry, snmp553sAlarmMaintenanceTable=snmp553sAlarmMaintenanceTable, snmp553sLocalPwrFail=snmp553sLocalPwrFail, snmp553sDiagIndex=snmp553sDiagIndex, snmp553sUnitSerialNumber=snmp553sUnitSerialNumber, snmp553sDaisyChainBps=snmp553sDaisyChainBps, snmp553sAlarmFirstOccurrenceMonth=snmp553sAlarmFirstOccurrenceMonth, snmp553sExtModemPresent=snmp553sExtModemPresent)
136.487013
3,925
0.77468
688e4c4b3845532ba72c323b82b7f6e03e5691e2
5,764
py
Python
sendSMSSkillLambda/package/ask_sdk_model/events/skillevents/permission_accepted_request.py
shneydor/aws-alexa-lambda-workshop
0fa6b7067b04fc85c46b9ce1c2cc04554ed5baf4
[ "Apache-2.0" ]
null
null
null
sendSMSSkillLambda/package/ask_sdk_model/events/skillevents/permission_accepted_request.py
shneydor/aws-alexa-lambda-workshop
0fa6b7067b04fc85c46b9ce1c2cc04554ed5baf4
[ "Apache-2.0" ]
null
null
null
sendSMSSkillLambda/package/ask_sdk_model/events/skillevents/permission_accepted_request.py
shneydor/aws-alexa-lambda-workshop
0fa6b7067b04fc85c46b9ce1c2cc04554ed5baf4
[ "Apache-2.0" ]
1
2019-10-11T17:15:20.000Z
2019-10-11T17:15:20.000Z
# coding: utf-8 # # Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum from ask_sdk_model.request import Request if typing.TYPE_CHECKING: from typing import Dict, List, Optional, Union from datetime import datetime from ask_sdk_model.events.skillevents.permission_body import PermissionBody class PermissionAcceptedRequest(Request): """ :param request_id: Represents the unique identifier for the specific request. :type request_id: (optional) str :param timestamp: Provides the date and time when Alexa sent the request as an ISO 8601 formatted string. Used to verify the request when hosting your skill as a web service. :type timestamp: (optional) datetime :param locale: A string indicating the user’s locale. For example: en-US. This value is only provided with certain request types. :type locale: (optional) str :param body: :type body: (optional) ask_sdk_model.events.skillevents.permission_body.PermissionBody :param event_creation_time: :type event_creation_time: (optional) datetime :param event_publishing_time: :type event_publishing_time: (optional) datetime """ deserialized_types = { 'object_type': 'str', 'request_id': 'str', 'timestamp': 'datetime', 'locale': 'str', 'body': 'ask_sdk_model.events.skillevents.permission_body.PermissionBody', 'event_creation_time': 'datetime', 'event_publishing_time': 'datetime' } # type: Dict attribute_map = { 'object_type': 'type', 'request_id': 'requestId', 'timestamp': 'timestamp', 'locale': 'locale', 'body': 'body', 'event_creation_time': 'eventCreationTime', 'event_publishing_time': 'eventPublishingTime' } # type: Dict def __init__(self, request_id=None, timestamp=None, locale=None, body=None, event_creation_time=None, event_publishing_time=None): # type: (Optional[str], Optional[datetime], Optional[str], Optional[PermissionBody], Optional[datetime], Optional[datetime]) -> None """ :param request_id: Represents the unique identifier for the specific request. :type request_id: (optional) str :param timestamp: Provides the date and time when Alexa sent the request as an ISO 8601 formatted string. Used to verify the request when hosting your skill as a web service. :type timestamp: (optional) datetime :param locale: A string indicating the user’s locale. For example: en-US. This value is only provided with certain request types. :type locale: (optional) str :param body: :type body: (optional) ask_sdk_model.events.skillevents.permission_body.PermissionBody :param event_creation_time: :type event_creation_time: (optional) datetime :param event_publishing_time: :type event_publishing_time: (optional) datetime """ self.__discriminator_value = "AlexaSkillEvent.SkillPermissionAccepted" # type: str self.object_type = self.__discriminator_value super(PermissionAcceptedRequest, self).__init__(object_type=self.__discriminator_value, request_id=request_id, timestamp=timestamp, locale=locale) self.body = body self.event_creation_time = event_creation_time self.event_publishing_time = event_publishing_time def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} # type: Dict for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, PermissionAcceptedRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
40.027778
182
0.646773
87a8999de9c5738e1817ba8a8a3b93dcffcd8dee
9,838
py
Python
wandb/run-20210411_184444-3qt4iwcn/files/code/main.py
ccoltong1215/simple-lenet5-torch-mnist
3eaa25160525f89dd6b9fe1db5de26a2bfda2fea
[ "MIT" ]
null
null
null
wandb/run-20210411_184444-3qt4iwcn/files/code/main.py
ccoltong1215/simple-lenet5-torch-mnist
3eaa25160525f89dd6b9fe1db5de26a2bfda2fea
[ "MIT" ]
5
2021-09-08T03:09:50.000Z
2022-03-12T00:56:43.000Z
wandb/run-20210411_184444-3qt4iwcn/files/code/main.py
ccoltong1215/simple-lenet5-torch-mnist
3eaa25160525f89dd6b9fe1db5de26a2bfda2fea
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from dataset import Dataset from model import LeNet5, CustomMLP import numpy as np import matplotlib.pyplot as plt import wandb def train(model, trn_loader, device, criterion, optimizer,epoch,modelname): """ Train function Args: model: network trn_loader: torch.utils.data.DataLoader instance for training device: device for computing, cpu or gpu criterion: cost function optimizer: optimization method, refer to torch.optim Returns: trn_loss: average loss value acc: accuracy """ model.to(device) trn_loss, acc = [], [] for m in range(epoch): train_loss = 0 trainacc = 0 for i, (images, labels) in enumerate(trn_loader): images = images.to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) train_loss += loss temp_acc = torch.mean(torch.eq(torch.argmax(outputs, dim=1), labels).to(dtype=torch.float64)) trainacc += temp_acc optimizer.zero_grad() loss.backward() optimizer.step() if (i) % 1000 == 0: print("\r {} Step [{}] Loss: {:.4f} acc: {:.4f}\nlabel".format(modelname,i, loss.item(), temp_acc),labels,"\n output", torch.argmax(outputs, dim=1)) trainacc = trainacc / trn_loader.__len__() train_loss = train_loss / (trn_loader.__len__()) #10은 batchsize, 원래는 argument로 받아와서 사용가능 print("{} training {} epoch Loss: {:.4f} acc: {:.4f}".format(modelname,m, train_loss, trainacc)) trn_loss.append(train_loss.item()) acc.append(trainacc.item()) epochlist = range(epoch) data = [[x, y] for (x, y) in zip( epochlist,acc)] data2 = [[x, y] for (x, y) in zip(epochlist, trn_loss)] table = wandb.Table(data=data, columns=[ "epoch","{}Acc".format(modelname)]) table2 = wandb.Table(data=data2, columns=["epoch", "{}loss".format(modelname)]) wandb.log({"{}Acc".format(modelname): wandb.plot.line(table, "epoch", "{}Acc".format(modelname),title= "{}Acc graph".format(modelname))}) wandb.log({"{}loss".format(modelname): wandb.plot.line(table2, "epoch", "{}loss".format(modelname),title="{}loss graph".format(modelname))}) trn_loss = np.array(trn_loss) acc=np.array(acc) dummy_input = torch.randn(1,1,28,28,device=device) input_names = ["input_0"] output_names = ["output_0"] dummy_output = model(dummy_input) torch.onnx.export(model, dummy_input, "{}.onnx".format(modelname), verbose=True, input_names=input_names,output_names=output_names) return trn_loss, acc def test(model, tst_loader, device, criterion,modelname): """ Test function Args: model: network tst_loader: torch.utils.data.DataLoader instance for testing device: device for computing, cpu or gpu criterion: cost function Returns: tst_loss: average loss value acc: accuracy """ model.to(device) tst_loss, acc = [],[] test_loss=0 test_acc=0 with torch.no_grad(): # 미분 안함, for i, (images, labels) in enumerate(tst_loader): images = images.to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) test_loss += loss temp_acc = torch.mean(torch.eq(torch.argmax(outputs, dim=1), labels).to(dtype=torch.float64)) test_acc += temp_acc if (i) % 100 == 0: print(" Step [{}] Loss: {:.4f} acc: {:.4f}".format(i, loss.item(), temp_acc)) print("label", labels) print("output", torch.argmax(outputs, dim=1)) tst_loss.append(loss.item()) acc.append(temp_acc.item()) test_acc = test_acc/tst_loader.__len__() test_loss = test_loss / (tst_loader.__len__()) print("TEST Step [{}] Loss: {:.4f} acc: {:.4f}".format(tst_loader.__len__(), test_loss, test_acc)) tst_loss=np.array(tst_loss).astype(float) acc=np.array(acc).astype(float) wandb.log({"{}Acc_test".format(modelname): test_acc, "{}loss_test".format(modelname): test_loss}) return tst_loss, acc # import some packages you need here def main(): """ Main function Here, you should instantiate 1) Dataset objects for training and test datasets 2) DataLoaders for training and testing 3) model 4) optimizer: SGD with initial learning rate 0.01 and momentum 0.9 5) cost function: use torch.nn.CrossEntropyLoss """ wandb.init(project="simple_MNIST_report", config={ }) roottrain='data/train' roottest ='data/test' epoch = 100 # declare pipeline trainloader = DataLoader(dataset=Dataset(root=roottrain), ################################################# batch_size=10, shuffle=True) testloader = DataLoader(dataset=Dataset(root=roottest), ################################################ batch_size=10, shuffle=False) device = torch.device("cuda:0") #declare model and opt and loss LeNet5_model = LeNet5() criterionLeNet = torch.nn.CrossEntropyLoss() optimizerLeNet = torch.optim.SGD(LeNet5_model.parameters(), lr=0.001, momentum=0.9) LeNet5_regulized_model = LeNet5() criterionLeNet_regulized = torch.nn.CrossEntropyLoss() optimizerLeNet_regulized = torch.optim.SGD(LeNet5_regulized_model.parameters(), lr=0.001, momentum=0.9) CustomMLP_model = CustomMLP() criterionCustomMLP = torch.nn.CrossEntropyLoss() optimizerCustomMLP = torch.optim.SGD(CustomMLP_model.parameters(), lr=0.001, momentum=0.9) wandb.watch( LeNet5_model ) wandb.watch( CustomMLP_model ) #################################################################################### #start training lenet5trnloss, lenet5trnacc = train(model=LeNet5_model, trn_loader=trainloader, device=device, criterion=criterionLeNet, optimizer=optimizerLeNet,epoch=epoch,modelname="lenet") lenet5tstloss, lenet5tstacc = test(model=LeNet5_model, tst_loader=testloader, device=device, criterion=criterionLeNet,modelname="lenet") lenet5_regulizedtrnloss, lenet5_regulizedtrnacc = train(model=LeNet5_regulized_model, trn_loader=trainloader, device=device, criterion=criterionLeNet_regulized, optimizer=optimizerLeNet_regulized,epoch=epoch,modelname="lenet_regulized") lenet5_regulizedtstloss, lenet5_regulizedtstacc = test(model=LeNet5_regulized_model, tst_loader=testloader, device=device, criterion=criterionLeNet_regulized,modelname="lenet_regulized") CustomMLPtrnloss, CustomMLPtrnacc = train(model=CustomMLP_model, trn_loader=trainloader, device=device, criterion=criterionCustomMLP, optimizer=optimizerCustomMLP,epoch=epoch,modelname="custom") CustomMLPtstloss, CustomMLPtstacc = test(model=CustomMLP_model, tst_loader=testloader, device=device, criterion=criterionCustomMLP,modelname="custom") fig= plt.figure() lossplt=fig.add_subplot(1, 2, 1) plt.plot(range(epoch), lenet5trnloss, color='g', label='LeNet5 train loss') plt.plot(range(epoch), lenet5_regulizedtrnloss,color='r' ,label='LeNet5_regulized train loss' ) plt.plot(range(epoch), CustomMLPtrnloss,color='b',label='Custom MLP train loss') plt.legend(loc='upper right',bbox_to_anchor=(1.0, 1.0)) plt.xlabel('epoch (x100)') plt.ylabel('loss') plt.title('Loss') accplt=fig.add_subplot(1, 2, 2) plt.plot(range(epoch), lenet5trnacc,color='g' ,label='LeNet5 train accuracy' ) plt.plot(range(epoch), lenet5_regulizedtrnacc, color='r', label='LeNet5_regulized train loss') plt.plot(range(epoch), CustomMLPtrnacc,color='b',label='Custom MLP train accuracy') plt.legend(loc='upper right', bbox_to_anchor=(1.0, 1.0)) plt.xlabel('epoch (x100)') plt.ylabel('acc') plt.title('Accuracy') # # lenetplt=fig.add_subplot(2, 2, 3) # plt.plot(range(int((trainloader.__len__())/100)), lenet5trnloss,color='g',label='train loss' ) # plt.plot(range(int((testloader .__len__())/100)), lenet5tstloss,color='r',label='test loss' ) # plt.plot(range(int((trainloader.__len__())/100)), lenet5trnacc,color='b' ,label='train accuracy') # plt.plot(range(int((testloader .__len__())/100)), lenet5tstacc,color='m' ,label='test accuracy' ) # plt.legend(loc='upper right', bbox_to_anchor=(1.0, 1.0)) # plt.xlabel('epoch (x100)') # plt.title('Loss and Accuracy of LeNet5') # # # # customplt=fig.add_subplot(2, 2, 4) # # plt.plot(range(int((trainloader.__len__())/100)), CustomMLPtrnloss,color='g',label='train loss' ) # # plt.plot(range(int((testloader .__len__())/100)), CustomMLPtstloss,color='r',label='test loss' ) # # plt.plot(range(int((trainloader.__len__())/100)), CustomMLPtrnacc,color='b' ,label='train accuracy') # # plt.plot(range(int((testloader .__len__())/100)), CustomMLPtstacc,color='m' ,label='test accuracy' ) # # plt.legend(loc='upper right', bbox_to_anchor=(1.0, 1.0)) # # plt.xlabel('epoch (x100)') # # plt.title('Loss and Accuracy of Custom MLP') plt.show() plt.savefig('/fig.png') if __name__ == '__main__': main() ### MNIST WEB app with python - Flask http://hanwifi.iptime.org:9000/ ### 19512062 young il han ### ccoltong1215@seoultech.ac.kr ### https://github.com/ccoltong1215/simple-lenet5-torch-mnist
41.86383
190
0.634275
2890c794bad8c5f8e6a540e5f6c96aad6fd0c504
18,162
py
Python
tests/collection.py
IvanMalison/invoke
322718d7f38ce04fc2bde947ba67ab4002f669b6
[ "BSD-2-Clause" ]
null
null
null
tests/collection.py
IvanMalison/invoke
322718d7f38ce04fc2bde947ba67ab4002f669b6
[ "BSD-2-Clause" ]
null
null
null
tests/collection.py
IvanMalison/invoke
322718d7f38ce04fc2bde947ba67ab4002f669b6
[ "BSD-2-Clause" ]
1
2021-02-17T12:08:40.000Z
2021-02-17T12:08:40.000Z
import operator from spec import Spec, eq_, ok_, raises, assert_raises from invoke.collection import Collection from invoke.tasks import task, Task from invoke.vendor import six from invoke.vendor.six.moves import reduce from _util import load, support_path @task def _mytask(ctx): six.print_("woo!") def _func(ctx): pass class Collection_(Spec): class init: "__init__" def can_accept_task_varargs(self): "can accept tasks as *args" @task def task1(ctx): pass @task def task2(ctx): pass c = Collection(task1, task2) assert 'task1' in c assert 'task2' in c def can_accept_collections_as_varargs_too(self): sub = Collection('sub') ns = Collection(sub) eq_(ns.collections['sub'], sub) def kwargs_act_as_name_args_for_given_objects(self): sub = Collection() @task def task1(ctx): pass ns = Collection(loltask=task1, notsub=sub) eq_(ns['loltask'], task1) eq_(ns.collections['notsub'], sub) def initial_string_arg_acts_as_name(self): sub = Collection('sub') ns = Collection(sub) eq_(ns.collections['sub'], sub) def initial_string_arg_meshes_with_varargs_and_kwargs(self): @task def task1(ctx): pass @task def task2(ctx): pass sub = Collection('sub') ns = Collection('root', task1, sub, sometask=task2) for x, y in ( (ns.name, 'root'), (ns['task1'], task1), (ns.collections['sub'], sub), (ns['sometask'], task2), ): eq_(x, y) def accepts_load_path_kwarg(self): eq_(Collection().loaded_from, None) eq_(Collection(loaded_from='a/path').loaded_from, 'a/path') class useful_special_methods: def _meh(self): @task def task1(ctx): pass @task def task2(ctx): pass return Collection('meh', task1=task1, task2=task2) def setup(self): self.c = self._meh() def repr_(self): "__repr__" eq_(repr(self.c), "<Collection 'meh': task1, task2>") def equality_should_be_useful(self): eq_(self.c, self._meh()) class from_module: def setup(self): self.c = Collection.from_module(load('integration')) class parameters: def setup(self): self.mod = load('integration') self.fm = Collection.from_module def name_override(self): eq_(self.fm(self.mod).name, 'integration') eq_( self.fm(self.mod, name='not-integration').name, 'not-integration' ) def inline_configuration(self): # No configuration given, none gotten eq_(self.fm(self.mod).configuration(), {}) # Config kwarg given is reflected when config obtained eq_( self.fm(self.mod, config={'foo': 'bar'}).configuration(), {'foo': 'bar'} ) def name_and_config_simultaneously(self): # Test w/ posargs to enforce ordering, just for safety. c = self.fm(self.mod, 'the name', {'the': 'config'}) eq_(c.name, 'the name') eq_(c.configuration(), {'the': 'config'}) def adds_tasks(self): assert 'print_foo' in self.c def derives_collection_name_from_module_name(self): eq_(self.c.name, 'integration') def submodule_names_are_stripped_to_last_chunk(self): with support_path(): from package import module c = Collection.from_module(module) eq_(module.__name__, 'package.module') eq_(c.name, 'module') assert 'mytask' in c # Sanity def honors_explicit_collections(self): coll = Collection.from_module(load('explicit_root')) assert 'top_level' in coll.tasks assert 'sub' in coll.collections # The real key test assert 'sub_task' not in coll.tasks def allows_tasks_with_explicit_names_to_override_bound_name(self): coll = Collection.from_module(load('subcollection_task_name')) assert 'explicit_name' in coll.tasks # not 'implicit_name' def returns_unique_Collection_objects_for_same_input_module(self): # Ignoring self.c for now, just in case it changes later. # First, a module with no root NS mod = load('integration') c1 = Collection.from_module(mod) c2 = Collection.from_module(mod) assert c1 is not c2 # Now one *with* a root NS (which was previously buggy) mod2 = load('explicit_root') c3 = Collection.from_module(mod2) c4 = Collection.from_module(mod2) assert c3 is not c4 class explicit_root_ns: def setup(self): mod = load('explicit_root') mod.ns.configure({ 'key': 'builtin', 'otherkey': 'yup', 'subconfig': {'mykey': 'myvalue'} }) mod.ns.name = 'builtin_name' self.unchanged = Collection.from_module(mod) self.changed = Collection.from_module( mod, name='override_name', config={ 'key': 'override', 'subconfig': {'myotherkey': 'myothervalue'} } ) def inline_config_with_root_namespaces_overrides_builtin(self): eq_(self.unchanged.configuration()['key'], 'builtin') eq_(self.changed.configuration()['key'], 'override') def inline_config_overrides_via_merge_not_replacement(self): ok_('otherkey' in self.changed.configuration()) def config_override_merges_recursively(self): eq_( self.changed.configuration()['subconfig']['mykey'], 'myvalue' ) def inline_name_overrides_root_namespace_object_name(self): eq_(self.unchanged.name, 'builtin_name') eq_(self.changed.name, 'override_name') def root_namespace_object_name_overrides_module_name(self): # Duplicates part of previous test for explicitness' sake. # I.e. proves that the name doesn't end up 'explicit_root'. eq_(self.unchanged.name, 'builtin_name') class add_task: def setup(self): self.c = Collection() def associates_given_callable_with_given_name(self): self.c.add_task(_mytask, 'foo') eq_(self.c['foo'], _mytask) def uses_function_name_as_implicit_name(self): self.c.add_task(_mytask) assert '_mytask' in self.c def prefers_name_kwarg_over_task_name_attr(self): self.c.add_task(Task(_func, name='notfunc'), name='yesfunc') assert 'yesfunc' in self.c assert 'notfunc' not in self.c def prefers_task_name_attr_over_function_name(self): self.c.add_task(Task(_func, name='notfunc')) assert 'notfunc' in self.c assert '_func' not in self.c @raises(ValueError) def raises_ValueError_if_no_name_found(self): # Can't use a lambda here as they are technically real functions. class Callable(object): def __call__(self): pass self.c.add_task(Task(Callable())) @raises(ValueError) def raises_ValueError_on_multiple_defaults(self): t1 = Task(_func, default=True) t2 = Task(_func, default=True) self.c.add_task(t1, 'foo') self.c.add_task(t2, 'bar') @raises(ValueError) def raises_ValueError_if_task_added_mirrors_subcollection_name(self): self.c.add_collection(Collection('sub')) self.c.add_task(_mytask, 'sub') def allows_specifying_task_defaultness(self): self.c.add_task(_mytask, default=True) eq_(self.c.default, '_mytask') def specifying_default_False_overrides_task_setting(self): @task(default=True) def its_me(ctx): pass self.c.add_task(its_me, default=False) eq_(self.c.default, None) class add_collection: def setup(self): self.c = Collection() def adds_collection_as_subcollection_of_self(self): c2 = Collection('foo') self.c.add_collection(c2) assert 'foo' in self.c.collections def can_take_module_objects(self): self.c.add_collection(load('integration')) assert 'integration' in self.c.collections @raises(ValueError) def raises_ValueError_if_collection_without_name(self): # Aka non-root collections must either have an explicit name given # via kwarg, have a name attribute set, or be a module with # __name__ defined. root = Collection() sub = Collection() root.add_collection(sub) @raises(ValueError) def raises_ValueError_if_collection_named_same_as_task(self): self.c.add_task(_mytask, 'sub') self.c.add_collection(Collection('sub')) class getitem: "__getitem__" def setup(self): self.c = Collection() def finds_own_tasks_by_name(self): # TODO: duplicates an add_task test above, fix? self.c.add_task(_mytask, 'foo') eq_(self.c['foo'], _mytask) def finds_subcollection_tasks_by_dotted_name(self): sub = Collection('sub') sub.add_task(_mytask) self.c.add_collection(sub) eq_(self.c['sub._mytask'], _mytask) def honors_aliases_in_own_tasks(self): t = Task(_func, aliases=['bar']) self.c.add_task(t, 'foo') eq_(self.c['bar'], t) def honors_subcollection_task_aliases(self): self.c.add_collection(load('decorator')) assert 'decorator.bar' in self.c def honors_own_default_task_with_no_args(self): t = Task(_func, default=True) self.c.add_task(t) eq_(self.c[''], t) def honors_subcollection_default_tasks_on_subcollection_name(self): sub = Collection.from_module(load('decorator')) self.c.add_collection(sub) # Sanity assert self.c['decorator.biz'] is sub['biz'] # Real test assert self.c['decorator'] is self.c['decorator.biz'] @raises(ValueError) def raises_ValueError_for_no_name_and_no_default(self): self.c[''] @raises(ValueError) def ValueError_for_empty_subcol_task_name_and_no_default(self): self.c.add_collection(Collection('whatever')) self.c['whatever'] class to_contexts: def setup(self): @task def mytask(ctx, text, boolean=False, number=5): six.print_(text) @task(aliases=['mytask27']) def mytask2(ctx): pass @task(aliases=['othertask'], default=True) def subtask(ctx): pass sub = Collection('sub', subtask) self.c = Collection(mytask, mytask2, sub) self.contexts = self.c.to_contexts() alias_tups = [list(x.aliases) for x in self.contexts] self.aliases = reduce(operator.add, alias_tups, []) # Focus on 'mytask' as it has the more interesting sig self.context = [x for x in self.contexts if x.name == 'mytask'][0] def returns_iterable_of_Contexts_corresponding_to_tasks(self): eq_(self.context.name, 'mytask') eq_(len(self.contexts), 3) def allows_flaglike_access_via_flags(self): assert '--text' in self.context.flags def positional_arglist_preserves_order_given(self): @task(positional=('second', 'first')) def mytask(ctx, first, second, third): pass c = Collection() c.add_task(mytask) ctx = c.to_contexts()[0] eq_(ctx.positional_args, [ctx.args['second'], ctx.args['first']]) def exposes_namespaced_task_names(self): assert 'sub.subtask' in [x.name for x in self.contexts] def exposes_namespaced_task_aliases(self): assert 'sub.othertask' in self.aliases def exposes_subcollection_default_tasks(self): assert 'sub' in self.aliases def exposes_aliases(self): assert 'mytask27' in self.aliases class task_names: def setup(self): self.c = Collection.from_module(load('explicit_root')) def returns_all_task_names_including_subtasks(self): eq_( set(self.c.task_names.keys()), set(['top_level', 'sub.sub_task']) ) def includes_aliases_and_defaults_as_values(self): names = self.c.task_names eq_(names['top_level'], ['othertop']) eq_(names['sub.sub_task'], ['sub.othersub', 'sub']) class configuration: "Configuration methods" def setup(self): self.root = Collection() self.task = Task(_func, name='task') def basic_set_and_get(self): self.root.configure({'foo': 'bar'}) eq_(self.root.configuration(), {'foo': 'bar'}) def configure_performs_merging(self): self.root.configure({'foo': 'bar'}) eq_(self.root.configuration()['foo'], 'bar') self.root.configure({'biz': 'baz'}) eq_(set(self.root.configuration().keys()), set(['foo', 'biz'])) def configure_merging_is_recursive_for_nested_dicts(self): self.root.configure({'foo': 'bar', 'biz': {'baz': 'boz'}}) self.root.configure({'biz': {'otherbaz': 'otherboz'}}) c = self.root.configuration() eq_(c['biz']['baz'], 'boz') eq_(c['biz']['otherbaz'], 'otherboz') def configure_allows_overwriting(self): self.root.configure({'foo': 'one'}) eq_(self.root.configuration()['foo'], 'one') self.root.configure({'foo': 'two'}) eq_(self.root.configuration()['foo'], 'two') def call_returns_dict(self): eq_(self.root.configuration(), {}) self.root.configure({'foo': 'bar'}) eq_(self.root.configuration(), {'foo': 'bar'}) def access_merges_from_subcollections(self): inner = Collection('inner', self.task) inner.configure({'foo': 'bar'}) self.root.configure({'biz': 'baz'}) # With no inner collection eq_(set(self.root.configuration().keys()), set(['biz'])) # With inner collection self.root.add_collection(inner) eq_( set(self.root.configuration('inner.task').keys()), set(['foo', 'biz']) ) def parents_overwrite_children_in_path(self): inner = Collection('inner', self.task) inner.configure({'foo': 'inner'}) self.root.add_collection(inner) # Before updating root collection's config, reflects inner eq_(self.root.configuration('inner.task')['foo'], 'inner') self.root.configure({'foo': 'outer'}) # After, reflects outer (since that now overrides) eq_(self.root.configuration('inner.task')['foo'], 'outer') def sibling_subcollections_ignored(self): inner = Collection('inner', self.task) inner.configure({'foo': 'hi there'}) inner2 = Collection('inner2', Task(_func, name='task2')) inner2.configure({'foo': 'nope'}) root = Collection(inner, inner2) eq_(root.configuration('inner.task')['foo'], 'hi there') eq_(root.configuration('inner2.task2')['foo'], 'nope') def subcollection_paths_may_be_dotted(self): leaf = Collection('leaf', self.task) leaf.configure({'key': 'leaf-value'}) middle = Collection('middle', leaf) root = Collection('root', middle) eq_(root.configuration('middle.leaf.task'), {'key': 'leaf-value'}) def invalid_subcollection_paths_result_in_KeyError(self): # Straight up invalid assert_raises(KeyError, Collection('meh').configuration, 'nope.task' ) # Exists but wrong level (should be 'root.task', not just # 'task') inner = Collection('inner', self.task) assert_raises(KeyError, Collection('root', inner).configuration, 'task') def keys_dont_have_to_exist_in_full_path(self): # Kinda duplicates earlier stuff; meh # Key only stored on leaf leaf = Collection('leaf', self.task) leaf.configure({'key': 'leaf-value'}) middle = Collection('middle', leaf) root = Collection('root', middle) eq_(root.configuration('middle.leaf.task'), {'key': 'leaf-value'}) # Key stored on mid + leaf but not root middle.configure({'key': 'whoa'}) eq_(root.configuration('middle.leaf.task'), {'key': 'whoa'})
36.989817
78
0.557483
d4dba390e797c7f415cfe225c68975bd26a32df3
14,549
py
Python
rastervision/protos/label_source_pb2.py
AirbusAerial/raster-vision
cfa7826169392e497fb57a540eb952fc6cee3a98
[ "Apache-2.0" ]
2
2019-04-17T13:04:23.000Z
2020-10-04T10:28:27.000Z
rastervision/protos/label_source_pb2.py
Yochengliu/raster-vision
f5badc387df86ce02d84e0e274a08026dbf65bd6
[ "Apache-2.0" ]
null
null
null
rastervision/protos/label_source_pb2.py
Yochengliu/raster-vision
f5badc387df86ce02d84e0e274a08026dbf65bd6
[ "Apache-2.0" ]
null
null
null
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: rastervision/protos/label_source.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from rastervision.protos import raster_source_pb2 as rastervision_dot_protos_dot_raster__source__pb2 from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 from rastervision.protos import class_item_pb2 as rastervision_dot_protos_dot_class__item__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='rastervision/protos/label_source.proto', package='rv.protos', syntax='proto2', serialized_pb=_b('\n&rastervision/protos/label_source.proto\x12\trv.protos\x1a\'rastervision/protos/raster_source.proto\x1a\x1cgoogle/protobuf/struct.proto\x1a$rastervision/protos/class_item.proto\"\xb1\x06\n\x11LabelSourceConfig\x12\x13\n\x0bsource_type\x18\x01 \x02(\t\x12\x64\n\x1fobject_detection_geojson_source\x18\x02 \x01(\x0b\x32\x39.rv.protos.LabelSourceConfig.ObjectDetectionGeoJSONSourceH\x00\x12j\n\"chip_classification_geojson_source\x18\x03 \x01(\x0b\x32<.rv.protos.LabelSourceConfig.ChipClassificationGeoJSONSourceH\x00\x12l\n#semantic_segmentation_raster_source\x18\x04 \x01(\x0b\x32=.rv.protos.LabelSourceConfig.SemanticSegmentationRasterSourceH\x00\x12\x30\n\rcustom_config\x18\x05 \x01(\x0b\x32\x17.google.protobuf.StructH\x00\x1a+\n\x1cObjectDetectionGeoJSONSource\x12\x0b\n\x03uri\x18\x01 \x02(\t\x1a\xcd\x01\n\x1f\x43hipClassificationGeoJSONSource\x12\x0b\n\x03uri\x18\x01 \x02(\t\x12\x12\n\nioa_thresh\x18\x02 \x01(\x02\x12\"\n\x1ause_intersection_over_cell\x18\x03 \x01(\x08\x12\x19\n\x11pick_min_class_id\x18\x04 \x01(\x08\x12\x1b\n\x13\x62\x61\x63kground_class_id\x18\x05 \x01(\x05\x12\x11\n\tcell_size\x18\x06 \x01(\x05\x12\x1a\n\x0binfer_cells\x18\x07 \x01(\x08:\x05\x66\x61lse\x1a\x80\x01\n SemanticSegmentationRasterSource\x12-\n\x06source\x18\x01 \x02(\x0b\x32\x1d.rv.protos.RasterSourceConfig\x12-\n\x0frgb_class_items\x18\x02 \x03(\x0b\x32\x14.rv.protos.ClassItemB\x15\n\x13label_source_config') , dependencies=[rastervision_dot_protos_dot_raster__source__pb2.DESCRIPTOR,google_dot_protobuf_dot_struct__pb2.DESCRIPTOR,rastervision_dot_protos_dot_class__item__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _LABELSOURCECONFIG_OBJECTDETECTIONGEOJSONSOURCE = _descriptor.Descriptor( name='ObjectDetectionGeoJSONSource', full_name='rv.protos.LabelSourceConfig.ObjectDetectionGeoJSONSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='uri', full_name='rv.protos.LabelSourceConfig.ObjectDetectionGeoJSONSource.uri', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=575, serialized_end=618, ) _LABELSOURCECONFIG_CHIPCLASSIFICATIONGEOJSONSOURCE = _descriptor.Descriptor( name='ChipClassificationGeoJSONSource', full_name='rv.protos.LabelSourceConfig.ChipClassificationGeoJSONSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='uri', full_name='rv.protos.LabelSourceConfig.ChipClassificationGeoJSONSource.uri', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ioa_thresh', full_name='rv.protos.LabelSourceConfig.ChipClassificationGeoJSONSource.ioa_thresh', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_intersection_over_cell', full_name='rv.protos.LabelSourceConfig.ChipClassificationGeoJSONSource.use_intersection_over_cell', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pick_min_class_id', full_name='rv.protos.LabelSourceConfig.ChipClassificationGeoJSONSource.pick_min_class_id', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='background_class_id', full_name='rv.protos.LabelSourceConfig.ChipClassificationGeoJSONSource.background_class_id', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='cell_size', full_name='rv.protos.LabelSourceConfig.ChipClassificationGeoJSONSource.cell_size', index=5, number=6, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='infer_cells', full_name='rv.protos.LabelSourceConfig.ChipClassificationGeoJSONSource.infer_cells', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=621, serialized_end=826, ) _LABELSOURCECONFIG_SEMANTICSEGMENTATIONRASTERSOURCE = _descriptor.Descriptor( name='SemanticSegmentationRasterSource', full_name='rv.protos.LabelSourceConfig.SemanticSegmentationRasterSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='rv.protos.LabelSourceConfig.SemanticSegmentationRasterSource.source', index=0, number=1, type=11, cpp_type=10, label=2, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rgb_class_items', full_name='rv.protos.LabelSourceConfig.SemanticSegmentationRasterSource.rgb_class_items', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=829, serialized_end=957, ) _LABELSOURCECONFIG = _descriptor.Descriptor( name='LabelSourceConfig', full_name='rv.protos.LabelSourceConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source_type', full_name='rv.protos.LabelSourceConfig.source_type', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='object_detection_geojson_source', full_name='rv.protos.LabelSourceConfig.object_detection_geojson_source', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='chip_classification_geojson_source', full_name='rv.protos.LabelSourceConfig.chip_classification_geojson_source', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='semantic_segmentation_raster_source', full_name='rv.protos.LabelSourceConfig.semantic_segmentation_raster_source', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='custom_config', full_name='rv.protos.LabelSourceConfig.custom_config', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_LABELSOURCECONFIG_OBJECTDETECTIONGEOJSONSOURCE, _LABELSOURCECONFIG_CHIPCLASSIFICATIONGEOJSONSOURCE, _LABELSOURCECONFIG_SEMANTICSEGMENTATIONRASTERSOURCE, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='label_source_config', full_name='rv.protos.LabelSourceConfig.label_source_config', index=0, containing_type=None, fields=[]), ], serialized_start=163, serialized_end=980, ) _LABELSOURCECONFIG_OBJECTDETECTIONGEOJSONSOURCE.containing_type = _LABELSOURCECONFIG _LABELSOURCECONFIG_CHIPCLASSIFICATIONGEOJSONSOURCE.containing_type = _LABELSOURCECONFIG _LABELSOURCECONFIG_SEMANTICSEGMENTATIONRASTERSOURCE.fields_by_name['source'].message_type = rastervision_dot_protos_dot_raster__source__pb2._RASTERSOURCECONFIG _LABELSOURCECONFIG_SEMANTICSEGMENTATIONRASTERSOURCE.fields_by_name['rgb_class_items'].message_type = rastervision_dot_protos_dot_class__item__pb2._CLASSITEM _LABELSOURCECONFIG_SEMANTICSEGMENTATIONRASTERSOURCE.containing_type = _LABELSOURCECONFIG _LABELSOURCECONFIG.fields_by_name['object_detection_geojson_source'].message_type = _LABELSOURCECONFIG_OBJECTDETECTIONGEOJSONSOURCE _LABELSOURCECONFIG.fields_by_name['chip_classification_geojson_source'].message_type = _LABELSOURCECONFIG_CHIPCLASSIFICATIONGEOJSONSOURCE _LABELSOURCECONFIG.fields_by_name['semantic_segmentation_raster_source'].message_type = _LABELSOURCECONFIG_SEMANTICSEGMENTATIONRASTERSOURCE _LABELSOURCECONFIG.fields_by_name['custom_config'].message_type = google_dot_protobuf_dot_struct__pb2._STRUCT _LABELSOURCECONFIG.oneofs_by_name['label_source_config'].fields.append( _LABELSOURCECONFIG.fields_by_name['object_detection_geojson_source']) _LABELSOURCECONFIG.fields_by_name['object_detection_geojson_source'].containing_oneof = _LABELSOURCECONFIG.oneofs_by_name['label_source_config'] _LABELSOURCECONFIG.oneofs_by_name['label_source_config'].fields.append( _LABELSOURCECONFIG.fields_by_name['chip_classification_geojson_source']) _LABELSOURCECONFIG.fields_by_name['chip_classification_geojson_source'].containing_oneof = _LABELSOURCECONFIG.oneofs_by_name['label_source_config'] _LABELSOURCECONFIG.oneofs_by_name['label_source_config'].fields.append( _LABELSOURCECONFIG.fields_by_name['semantic_segmentation_raster_source']) _LABELSOURCECONFIG.fields_by_name['semantic_segmentation_raster_source'].containing_oneof = _LABELSOURCECONFIG.oneofs_by_name['label_source_config'] _LABELSOURCECONFIG.oneofs_by_name['label_source_config'].fields.append( _LABELSOURCECONFIG.fields_by_name['custom_config']) _LABELSOURCECONFIG.fields_by_name['custom_config'].containing_oneof = _LABELSOURCECONFIG.oneofs_by_name['label_source_config'] DESCRIPTOR.message_types_by_name['LabelSourceConfig'] = _LABELSOURCECONFIG LabelSourceConfig = _reflection.GeneratedProtocolMessageType('LabelSourceConfig', (_message.Message,), dict( ObjectDetectionGeoJSONSource = _reflection.GeneratedProtocolMessageType('ObjectDetectionGeoJSONSource', (_message.Message,), dict( DESCRIPTOR = _LABELSOURCECONFIG_OBJECTDETECTIONGEOJSONSOURCE, __module__ = 'rastervision.protos.label_source_pb2' # @@protoc_insertion_point(class_scope:rv.protos.LabelSourceConfig.ObjectDetectionGeoJSONSource) )) , ChipClassificationGeoJSONSource = _reflection.GeneratedProtocolMessageType('ChipClassificationGeoJSONSource', (_message.Message,), dict( DESCRIPTOR = _LABELSOURCECONFIG_CHIPCLASSIFICATIONGEOJSONSOURCE, __module__ = 'rastervision.protos.label_source_pb2' # @@protoc_insertion_point(class_scope:rv.protos.LabelSourceConfig.ChipClassificationGeoJSONSource) )) , SemanticSegmentationRasterSource = _reflection.GeneratedProtocolMessageType('SemanticSegmentationRasterSource', (_message.Message,), dict( DESCRIPTOR = _LABELSOURCECONFIG_SEMANTICSEGMENTATIONRASTERSOURCE, __module__ = 'rastervision.protos.label_source_pb2' # @@protoc_insertion_point(class_scope:rv.protos.LabelSourceConfig.SemanticSegmentationRasterSource) )) , DESCRIPTOR = _LABELSOURCECONFIG, __module__ = 'rastervision.protos.label_source_pb2' # @@protoc_insertion_point(class_scope:rv.protos.LabelSourceConfig) )) _sym_db.RegisterMessage(LabelSourceConfig) _sym_db.RegisterMessage(LabelSourceConfig.ObjectDetectionGeoJSONSource) _sym_db.RegisterMessage(LabelSourceConfig.ChipClassificationGeoJSONSource) _sym_db.RegisterMessage(LabelSourceConfig.SemanticSegmentationRasterSource) # @@protoc_insertion_point(module_scope)
50.342561
1,430
0.797374
fe8ee41f200ccefb5af350b34fe49885e69e0f7e
56
py
Python
keycloak_api_client/exceptions.py
masterplandev/python-keycloak-api-client
60406dace35a4c9b2a0fd149823c09fd993d5b8b
[ "MIT" ]
1
2021-07-16T11:40:03.000Z
2021-07-16T11:40:03.000Z
keycloak_api_client/exceptions.py
masterplandev/python-keycloak-api-client
60406dace35a4c9b2a0fd149823c09fd993d5b8b
[ "MIT" ]
2
2021-07-29T14:42:15.000Z
2021-11-25T16:35:39.000Z
keycloak_api_client/exceptions.py
masterplandev/python-keycloak-api-client
60406dace35a4c9b2a0fd149823c09fd993d5b8b
[ "MIT" ]
null
null
null
class KeycloakApiClientException(Exception): pass
11.2
44
0.785714
7e81022bce5e8a5f29f569464336a5addd759631
6,175
py
Python
data/prepare_data.py
huitangtang/DisClusterDA
55268343623a119d058e07f92714f96bdb806463
[ "MIT" ]
4
2020-09-02T14:51:24.000Z
2021-12-26T18:59:04.000Z
data/prepare_data.py
huitangtang/DisClusterDA
55268343623a119d058e07f92714f96bdb806463
[ "MIT" ]
1
2022-03-15T15:27:17.000Z
2022-03-15T15:27:17.000Z
data/prepare_data.py
huitangtang/DisClusterDA
55268343623a119d058e07f92714f96bdb806463
[ "MIT" ]
null
null
null
import os import shutil #import sys #sys.path.append("..") import torch import torchvision.transforms as transforms import torchvision.datasets as datasets import torch.nn.functional as F from utils.folder import ImageFolder import numpy as np import cv2 def generate_dataloader(args): # data loading traindir = os.path.join(args.data_path_source, args.src) traindir_t = os.path.join(args.data_path_target_tr, args.tar_tr) valdir = os.path.join(args.data_path_target_te, args.tar_te) classes = os.listdir(traindir) classes.sort() ins_num_for_each_cls_src = torch.cuda.FloatTensor(args.num_classes) for i,c in enumerate(classes): ins_num_for_each_cls_src[i] = len(os.listdir(os.path.join(traindir, c))) if not os.path.isdir(traindir): raise ValueError ('The required data path does not exist!') if args.no_da: # transformation on the training data during training data_transform_train = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # transformation on the duplicated data during training data_transform_train_dup = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Lambda(lambda x: _random_affine_augmentation(x)), transforms.Lambda(lambda x: _gaussian_blur(x, sigma=args.sigma)), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # transformation on the grayscale data during training data_transform_train_gray = transforms.Compose([ transforms.Grayscale(3), transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # transformation on the test data during test data_transform_test = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) else: # transformation on the training data during training data_transform_train = transforms.Compose([ transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # transformation on the duplicated data during training data_transform_train_dup = transforms.Compose([ transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Lambda(lambda x: _random_affine_augmentation(x)), transforms.Lambda(lambda x: _gaussian_blur(x, sigma=args.sigma)), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # transformation on the grayscale data during training data_transform_train_gray = transforms.Compose([ transforms.Grayscale(3), transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # transformation on the test data during test data_transform_test = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) source_train_dataset = ImageFolder(root=traindir, transform=data_transform_train) source_test_dataset = datasets.ImageFolder(root=traindir, transform=data_transform_test) if args.aug_tar_agree and (not args.gray_tar_agree): target_train_dataset = ImageFolder(root=traindir_t, transform=data_transform_train, transform_aug=data_transform_train_dup) elif args.gray_tar_agree and (not args.aug_tar_agree): target_train_dataset = ImageFolder(root=traindir_t, transform=data_transform_train, transform_gray=data_transform_train_gray) elif args.aug_tar_agree and args.gray_tar_agree: target_train_dataset = ImageFolder(root=traindir_t, transform=data_transform_train, transform_aug=data_transform_train_dup, transform_gray=data_transform_train_gray) else: target_train_dataset = ImageFolder(root=traindir_t, transform=data_transform_train) target_test_dataset = ImageFolder(root=valdir, transform=data_transform_test) source_train_loader = torch.utils.data.DataLoader( source_train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, sampler=None, drop_last=True ) source_test_loader = torch.utils.data.DataLoader( source_test_dataset, batch_size=63, shuffle=False, num_workers=args.workers, pin_memory=True ) target_train_loader = torch.utils.data.DataLoader( target_train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, sampler=None, drop_last=True ) target_test_loader = torch.utils.data.DataLoader( target_test_dataset, batch_size=63, shuffle=False, num_workers=args.workers, pin_memory=True ) return source_train_loader, target_train_loader, target_test_loader, source_test_loader def _random_affine_augmentation(x): M = np.float32([[1 + np.random.normal(0.0, 0.1), np.random.normal(0.0, 0.1), 0], [np.random.normal(0.0, 0.1), 1 + np.random.normal(0.0, 0.1), 0]]) rows, cols = x.shape[1:3] dst = cv2.warpAffine(np.transpose(x.numpy(), [1, 2, 0]), M, (cols,rows)) dst = np.transpose(dst, [2, 0, 1]) return torch.from_numpy(dst) def _gaussian_blur(x, sigma=0.1): ksize = int(sigma + 0.5) * 8 + 1 dst = cv2.GaussianBlur(x.numpy(), (ksize, ksize), sigma) return torch.from_numpy(dst)
44.42446
173
0.682429
fbbf428102feb1d0b3a75d3457afb77bb90616ba
4,872
py
Python
detail_test.py
hukish/P_Locker
451c00185e6cdd91f607fa4460a05dd8e2d6fd68
[ "MIT" ]
null
null
null
detail_test.py
hukish/P_Locker
451c00185e6cdd91f607fa4460a05dd8e2d6fd68
[ "MIT" ]
null
null
null
detail_test.py
hukish/P_Locker
451c00185e6cdd91f607fa4460a05dd8e2d6fd68
[ "MIT" ]
null
null
null
import unittest # Importing the unittest module import pyperclip from detail import Detail # Importing the detail class class TestDetail(unittest.TestCase): # import pyperclip ''' Test class that defines test cases for the detail class behaviours. Args: unittest.TestCase: TestCase class that helps in creating test cases ''' # Items up here ....... def setUp(self): ''' Set up method to run before each test cases. ''' self.new_detail = Detail( "xyz", "xyz", "2222222222", "xyz@user.com") # create detail object def test_init(self): ''' test_init test case to test if the object is initialized properly ''' self.assertEqual(self.new_detail.user_name, "xyz") self.assertEqual(self.new_detail.user_name, "xyz") self.assertEqual(self.new_detail.account_password, "2222222222") self.assertEqual(self.new_detail.email, "xyz@user.com") def test_save_detail(self): ''' test_save_detail test case to test if the detail object is saved into the detail list ''' self.new_detail.save_detail() # saving the new detail self.assertEqual(len(Detail.detail_list), 1) # def test_sum(): # assert sum([1, 2, 3]) == 6, "Should be 6" # # test_sum() # print("Everything passed") # def test_save_multiple_detail(self): # ''' # test_save_multiple_detail to check if we can save multiple detail # objects to our detail_list # ''' # self.new_detail.save_detail() # test_detail = Detail( # "Test", "user", "2222222222", "xyz@user.com") # new detail # test_detail.save_detail() # self.assertEqual(len(Detail.detail_list), 2) # Items up here... # def test_save_multiple_detail(self): # ''' # test_save_multiple_detail to check if we can save multiple detail # objects to our detail_list # ''' # self.new_detail.save_detail() # test_detail = Detail( # "Test", "user", "2222222222", "xyz@user.com") # new detail # test_detail.save_detail() # self.assertEqual(len(Detail.detail_list), 2) # setup and class creation up HERE def tearDown(self): """ tearDown method that does clean up after each test case has runs """ Detail.detail_list = [] # Other test cases HERE def test_save_multiple_detail(self): """ test_save_multiple_detail to check if we can save multiple detail objects """ self.new_detail.save_detail() test_detail = Detail("Test", "user", "2222222222", "xyz@user.com") # new detail_list test_detail.save_detail() self.assertEqual(len(Detail.detail_list), 2) # More tests above def test_delete_detail(self): ''' test_delete_detail to test if we can remove a detail from our detail list ''' self.new_detail.save_detail() test_detail = Detail( "Test", "user", "22222222222", "xyz@user.com") # new detail test_detail.save_detail() self.new_detail.delete_detail() # Deleting a detail object self.assertEqual(len(Detail.detail_list), 1) def test_find_detail_by_password(self): ''' test to check if we can find a detail by account password and display information ''' self.new_detail.save_detail() test_detail = Detail("Test", "user", "2222222222", "xyz@user.com") # new detail test_detail.save_detail() found_detail = Detail.find_by_password("2222222222") self.assertEqual(found_detail.email, test_detail.email) def test_detail_exists(self): ''' test to check if we can return a Boolean if we cannot find the detail. ''' self.new_detail.save_detail() test_detail = Detail("Test", "user", "2222222222", "xyz@user.com") # new detail test_detail.save_detail() detail_exists = Detail.detail_exist("2222222222") self.assertTrue(detail_exists) def test_display_all_details(self): ''' method that returns a list of all details saved ''' self.assertEqual(Detail.display_details(), Detail.detail_list) def test_copy_email(self): ''' Test to confirm that we are copying the email address from a found detail ''' self.new_detail.save_detail() Detail.copy_email("2222222222") self.assertEqual(self.new_detail.email, pyperclip.paste()) if __name__ == '__main__': unittest.main()
31.843137
89
0.597906
c958511c4228e9eb382572223b35fca7b6ad7770
1,730
py
Python
planning_and_simulation_modules/Tjulia/checks/JuliaOutputChecker.py
Planheat/Planheat-Tool
9764fcb86d3898b232c4cc333dab75ebe41cd421
[ "MIT" ]
2
2020-04-07T03:43:33.000Z
2021-03-23T13:17:42.000Z
planning_and_simulation_modules/Tjulia/checks/JuliaOutputChecker.py
Planheat/Planheat-Tool
9764fcb86d3898b232c4cc333dab75ebe41cd421
[ "MIT" ]
1
2020-07-20T09:56:13.000Z
2020-07-22T10:26:06.000Z
planning_and_simulation_modules/Tjulia/checks/JuliaOutputChecker.py
Planheat/Planheat-Tool
9764fcb86d3898b232c4cc333dab75ebe41cd421
[ "MIT" ]
1
2020-07-20T09:40:15.000Z
2020-07-20T09:40:15.000Z
import os import os.path from .JuliaErrorVisualizer import JuliaErrorVisualizer class JuliaOutputChecker: def __init__(self, dr): self.work_directory = dr self.file_starts_string = "Result_" self.file_ends_string = ".csv" self.h8760 = 8760 self.report = {} self.REPORT_ERROR_NOT_FLOAT = "CAN'T_CONVERT_TO_FLOAT" self.REPORT_ERROR_NOT_A_NUMBER = "CONTENT IS Nan" def check(self): if not os.path.isdir(self.work_directory): return for f in os.listdir(self.work_directory): file = os.path.join(self.work_directory, f) if os.path.isfile(file): if str(f).startswith(self.file_starts_string) and str(f).endswith(self.file_ends_string): with open(file, "r") as fr: for i in range(self.h8760): line = fr.readline() try: line = float(line) except: self.add_to_report(f, self.REPORT_ERROR_NOT_FLOAT) break if not line == line: self.add_to_report(f, self.REPORT_ERROR_NOT_A_NUMBER) break def visualize(self): julia_error_visualizer = JuliaErrorVisualizer(self.report) julia_error_visualizer.visualize() def add_to_report(self, file, error): self.report[str(file)] = error def clear_report(self): self.report = {} def get_report(self): return self.report def set_folder(self, folder): self.work_directory = folder
32.037037
105
0.547977
80d7333a07ab6cbc513d92e5bca4f131285935d4
55,646
py
Python
tests/test_datasets/test_dataset_functions.py
hp2500/openml-python
62cc534cd18e6e011a88a83816fec95a90399a9b
[ "BSD-3-Clause" ]
1
2019-09-02T00:28:26.000Z
2019-09-02T00:28:26.000Z
tests/test_datasets/test_dataset_functions.py
hp2500/openml-python
62cc534cd18e6e011a88a83816fec95a90399a9b
[ "BSD-3-Clause" ]
null
null
null
tests/test_datasets/test_dataset_functions.py
hp2500/openml-python
62cc534cd18e6e011a88a83816fec95a90399a9b
[ "BSD-3-Clause" ]
1
2019-09-02T00:29:32.000Z
2019-09-02T00:29:32.000Z
import os import random from itertools import product from unittest import mock import arff import pytest import numpy as np import pandas as pd import scipy.sparse from oslo_concurrency import lockutils import openml from openml import OpenMLDataset from openml.exceptions import OpenMLCacheException, OpenMLHashException, \ OpenMLPrivateDatasetError from openml.testing import TestBase from openml.utils import _tag_entity, _create_cache_directory_for_id from openml.datasets.functions import (create_dataset, attributes_arff_from_df, _get_cached_dataset, _get_cached_dataset_features, _get_cached_dataset_qualities, _get_cached_datasets, _get_dataset_arff, _get_dataset_description, _get_dataset_features, _get_dataset_qualities, _get_online_dataset_arff, _get_online_dataset_format, DATASETS_CACHE_DIR_NAME) class TestOpenMLDataset(TestBase): _multiprocess_can_split_ = True def setUp(self): super(TestOpenMLDataset, self).setUp() def tearDown(self): self._remove_pickle_files() super(TestOpenMLDataset, self).tearDown() def _remove_pickle_files(self): self.lock_path = os.path.join(openml.config.get_cache_directory(), 'locks') for did in ['-1', '2']: with lockutils.external_lock( name='datasets.functions.get_dataset:%s' % did, lock_path=self.lock_path, ): pickle_path = os.path.join(openml.config.get_cache_directory(), 'datasets', did, 'dataset.pkl.py3') try: os.remove(pickle_path) except (OSError, FileNotFoundError): # Replaced a bare except. Not sure why either of these would be acceptable. pass def _get_empty_param_for_dataset(self): return { 'name': None, 'description': None, 'creator': None, 'contributor': None, 'collection_date': None, 'language': None, 'licence': None, 'default_target_attribute': None, 'row_id_attribute': None, 'ignore_attribute': None, 'citation': None, 'attributes': None, 'data': None } def test__list_cached_datasets(self): openml.config.cache_directory = self.static_cache_dir cached_datasets = openml.datasets.functions._list_cached_datasets() self.assertIsInstance(cached_datasets, list) self.assertEqual(len(cached_datasets), 2) self.assertIsInstance(cached_datasets[0], int) @mock.patch('openml.datasets.functions._list_cached_datasets') def test__get_cached_datasets(self, _list_cached_datasets_mock): openml.config.cache_directory = self.static_cache_dir _list_cached_datasets_mock.return_value = [-1, 2] datasets = _get_cached_datasets() self.assertIsInstance(datasets, dict) self.assertEqual(len(datasets), 2) self.assertIsInstance(list(datasets.values())[0], OpenMLDataset) def test__get_cached_dataset(self, ): openml.config.cache_directory = self.static_cache_dir dataset = _get_cached_dataset(2) features = _get_cached_dataset_features(2) qualities = _get_cached_dataset_qualities(2) self.assertIsInstance(dataset, OpenMLDataset) self.assertTrue(len(dataset.features) > 0) self.assertTrue(len(dataset.features) == len(features['oml:feature'])) self.assertTrue(len(dataset.qualities) == len(qualities)) def test_get_cached_dataset_description(self): openml.config.cache_directory = self.static_cache_dir description = openml.datasets.functions._get_cached_dataset_description(2) self.assertIsInstance(description, dict) def test_get_cached_dataset_description_not_cached(self): openml.config.cache_directory = self.static_cache_dir self.assertRaisesRegex(OpenMLCacheException, "Dataset description for dataset id 3 not cached", openml.datasets.functions._get_cached_dataset_description, dataset_id=3) def test_get_cached_dataset_arff(self): openml.config.cache_directory = self.static_cache_dir description = openml.datasets.functions._get_cached_dataset_arff(dataset_id=2) self.assertIsInstance(description, str) def test_get_cached_dataset_arff_not_cached(self): openml.config.cache_directory = self.static_cache_dir self.assertRaisesRegex(OpenMLCacheException, "ARFF file for dataset id 3 not cached", openml.datasets.functions._get_cached_dataset_arff, dataset_id=3) def _check_dataset(self, dataset): self.assertEqual(type(dataset), dict) self.assertGreaterEqual(len(dataset), 2) self.assertIn('did', dataset) self.assertIsInstance(dataset['did'], int) self.assertIn('status', dataset) self.assertIsInstance(dataset['status'], str) self.assertIn(dataset['status'], ['in_preparation', 'active', 'deactivated']) def _check_datasets(self, datasets): for did in datasets: self._check_dataset(datasets[did]) def test_tag_untag_dataset(self): tag = 'test_tag_%d' % random.randint(1, 1000000) all_tags = _tag_entity('data', 1, tag) self.assertTrue(tag in all_tags) all_tags = _tag_entity('data', 1, tag, untag=True) self.assertTrue(tag not in all_tags) def test_list_datasets(self): # We can only perform a smoke test here because we test on dynamic # data from the internet... datasets = openml.datasets.list_datasets() # 1087 as the number of datasets on openml.org self.assertGreaterEqual(len(datasets), 100) self._check_datasets(datasets) def test_list_datasets_output_format(self): datasets = openml.datasets.list_datasets(output_format='dataframe') self.assertIsInstance(datasets, pd.DataFrame) self.assertGreaterEqual(len(datasets), 100) def test_list_datasets_by_tag(self): datasets = openml.datasets.list_datasets(tag='study_14') self.assertGreaterEqual(len(datasets), 100) self._check_datasets(datasets) def test_list_datasets_by_size(self): datasets = openml.datasets.list_datasets(size=10050) self.assertGreaterEqual(len(datasets), 120) self._check_datasets(datasets) def test_list_datasets_by_number_instances(self): datasets = openml.datasets.list_datasets(number_instances="5..100") self.assertGreaterEqual(len(datasets), 4) self._check_datasets(datasets) def test_list_datasets_by_number_features(self): datasets = openml.datasets.list_datasets(number_features="50..100") self.assertGreaterEqual(len(datasets), 8) self._check_datasets(datasets) def test_list_datasets_by_number_classes(self): datasets = openml.datasets.list_datasets(number_classes="5") self.assertGreaterEqual(len(datasets), 3) self._check_datasets(datasets) def test_list_datasets_by_number_missing_values(self): datasets = openml.datasets.list_datasets(number_missing_values="5..100") self.assertGreaterEqual(len(datasets), 5) self._check_datasets(datasets) def test_list_datasets_combined_filters(self): datasets = openml.datasets.list_datasets(tag='study_14', number_instances="100..1000", number_missing_values="800..1000") self.assertGreaterEqual(len(datasets), 1) self._check_datasets(datasets) def test_list_datasets_paginate(self): size = 10 max = 100 for i in range(0, max, size): datasets = openml.datasets.list_datasets(offset=i, size=size) self.assertEqual(size, len(datasets)) self._check_datasets(datasets) def test_list_datasets_empty(self): datasets = openml.datasets.list_datasets(tag='NoOneWouldUseThisTagAnyway') if len(datasets) > 0: raise ValueError('UnitTest Outdated, tag was already used (please remove)') self.assertIsInstance(datasets, dict) def test_check_datasets_active(self): # Have to test on live because there is no deactivated dataset on the test server. openml.config.server = self.production_server active = openml.datasets.check_datasets_active([2, 17]) self.assertTrue(active[2]) self.assertFalse(active[17]) self.assertRaisesRegex( ValueError, 'Could not find dataset 79 in OpenML dataset list.', openml.datasets.check_datasets_active, [79], ) openml.config.server = self.test_server def _datasets_retrieved_successfully(self, dids, metadata_only=True): """ Checks that all files for the given dids have been downloaded. This includes: - description - qualities - features - absence of data arff if metadata_only, else it must be present too. """ for did in dids: self.assertTrue(os.path.exists(os.path.join( openml.config.get_cache_directory(), "datasets", str(did), "description.xml"))) self.assertTrue(os.path.exists(os.path.join( openml.config.get_cache_directory(), "datasets", str(did), "qualities.xml"))) self.assertTrue(os.path.exists(os.path.join( openml.config.get_cache_directory(), "datasets", str(did), "features.xml"))) data_assert = self.assertFalse if metadata_only else self.assertTrue data_assert(os.path.exists(os.path.join( openml.config.get_cache_directory(), "datasets", str(did), "dataset.arff"))) def test__name_to_id_with_deactivated(self): """ Check that an activated dataset is returned if an earlier deactivated one exists. """ openml.config.server = self.production_server # /d/1 was deactivated self.assertEqual(openml.datasets.functions._name_to_id('anneal'), 2) openml.config.server = self.test_server def test__name_to_id_with_multiple_active(self): """ With multiple active datasets, retrieve the least recent active. """ openml.config.server = self.production_server self.assertEqual(openml.datasets.functions._name_to_id('iris'), 61) def test__name_to_id_with_version(self): """ With multiple active datasets, retrieve the least recent active. """ openml.config.server = self.production_server self.assertEqual(openml.datasets.functions._name_to_id('iris', version=3), 969) def test__name_to_id_with_multiple_active_error(self): """ With multiple active datasets, retrieve the least recent active. """ self.assertRaisesRegex( ValueError, "Multiple active datasets exist with name iris", openml.datasets.functions._name_to_id, dataset_name='iris', error_if_multiple=True ) def test__name_to_id_name_does_not_exist(self): """ With multiple active datasets, retrieve the least recent active. """ self.assertRaisesRegex( RuntimeError, "No active datasets exist with name does_not_exist", openml.datasets.functions._name_to_id, dataset_name='does_not_exist' ) def test__name_to_id_version_does_not_exist(self): """ With multiple active datasets, retrieve the least recent active. """ self.assertRaisesRegex( RuntimeError, "No active datasets exist with name iris and version 100000", openml.datasets.functions._name_to_id, dataset_name='iris', version=100000 ) def test_get_datasets_by_name(self): # did 1 and 2 on the test server: dids = ['anneal', 'kr-vs-kp'] datasets = openml.datasets.get_datasets(dids, download_data=False) self.assertEqual(len(datasets), 2) self._datasets_retrieved_successfully([1, 2]) def test_get_datasets_by_mixed(self): # did 1 and 2 on the test server: dids = ['anneal', 2] datasets = openml.datasets.get_datasets(dids, download_data=False) self.assertEqual(len(datasets), 2) self._datasets_retrieved_successfully([1, 2]) def test_get_datasets(self): dids = [1, 2] datasets = openml.datasets.get_datasets(dids) self.assertEqual(len(datasets), 2) self._datasets_retrieved_successfully([1, 2], metadata_only=False) def test_get_datasets_lazy(self): dids = [1, 2] datasets = openml.datasets.get_datasets(dids, download_data=False) self.assertEqual(len(datasets), 2) self._datasets_retrieved_successfully([1, 2], metadata_only=True) datasets[0].get_data() datasets[1].get_data() self._datasets_retrieved_successfully([1, 2], metadata_only=False) def test_get_dataset_by_name(self): dataset = openml.datasets.get_dataset('anneal') self.assertEqual(type(dataset), OpenMLDataset) self.assertEqual(dataset.dataset_id, 1) self._datasets_retrieved_successfully([1], metadata_only=False) self.assertGreater(len(dataset.features), 1) self.assertGreater(len(dataset.qualities), 4) # Issue324 Properly handle private datasets when trying to access them openml.config.server = self.production_server self.assertRaises(OpenMLPrivateDatasetError, openml.datasets.get_dataset, 45) def test_get_dataset(self): # This is the only non-lazy load to ensure default behaviour works. dataset = openml.datasets.get_dataset(1) self.assertEqual(type(dataset), OpenMLDataset) self.assertEqual(dataset.name, 'anneal') self._datasets_retrieved_successfully([1], metadata_only=False) self.assertGreater(len(dataset.features), 1) self.assertGreater(len(dataset.qualities), 4) # Issue324 Properly handle private datasets when trying to access them openml.config.server = self.production_server self.assertRaises(OpenMLPrivateDatasetError, openml.datasets.get_dataset, 45) def test_get_dataset_lazy(self): dataset = openml.datasets.get_dataset(1, download_data=False) self.assertEqual(type(dataset), OpenMLDataset) self.assertEqual(dataset.name, 'anneal') self._datasets_retrieved_successfully([1], metadata_only=True) self.assertGreater(len(dataset.features), 1) self.assertGreater(len(dataset.qualities), 4) dataset.get_data() self._datasets_retrieved_successfully([1], metadata_only=False) # Issue324 Properly handle private datasets when trying to access them openml.config.server = self.production_server self.assertRaises(OpenMLPrivateDatasetError, openml.datasets.get_dataset, 45, False) def test_get_dataset_lazy_all_functions(self): """ Test that all expected functionality is available without downloading the dataset. """ dataset = openml.datasets.get_dataset(1, download_data=False) # We only tests functions as general integrity is tested by test_get_dataset_lazy def ensure_absence_of_real_data(): self.assertFalse(os.path.exists(os.path.join( openml.config.get_cache_directory(), "datasets", "1", "dataset.arff"))) tag = 'test_lazy_tag_%d' % random.randint(1, 1000000) dataset.push_tag(tag) ensure_absence_of_real_data() dataset.remove_tag(tag) ensure_absence_of_real_data() nominal_indices = dataset.get_features_by_type('nominal') correct = [0, 1, 2, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38] self.assertEqual(nominal_indices, correct) ensure_absence_of_real_data() classes = dataset.retrieve_class_labels() self.assertEqual(classes, ['1', '2', '3', '4', '5', 'U']) ensure_absence_of_real_data() def test_get_dataset_sparse(self): dataset = openml.datasets.get_dataset(102, download_data=False) X, *_ = dataset.get_data(dataset_format='array') self.assertIsInstance(X, scipy.sparse.csr_matrix) def test_download_rowid(self): # Smoke test which checks that the dataset has the row-id set correctly did = 44 dataset = openml.datasets.get_dataset(did, download_data=False) self.assertEqual(dataset.row_id_attribute, 'Counter') def test__get_dataset_description(self): description = _get_dataset_description(self.workdir, 2) self.assertIsInstance(description, dict) description_xml_path = os.path.join(self.workdir, 'description.xml') self.assertTrue(os.path.exists(description_xml_path)) def test__getarff_path_dataset_arff(self): openml.config.cache_directory = self.static_cache_dir description = openml.datasets.functions._get_cached_dataset_description(2) arff_path = _get_dataset_arff(description, cache_directory=self.workdir) self.assertIsInstance(arff_path, str) self.assertTrue(os.path.exists(arff_path)) def test__getarff_md5_issue(self): description = { 'oml:id': 5, 'oml:md5_checksum': 'abc', 'oml:url': 'https://www.openml.org/data/download/61', } self.assertRaisesRegex( OpenMLHashException, 'Checksum ad484452702105cbf3d30f8deaba39a9 of downloaded file ' 'is unequal to the expected checksum abc. ' 'Raised when downloading dataset 5.', _get_dataset_arff, description, ) def test__get_dataset_features(self): features = _get_dataset_features(self.workdir, 2) self.assertIsInstance(features, dict) features_xml_path = os.path.join(self.workdir, 'features.xml') self.assertTrue(os.path.exists(features_xml_path)) def test__get_dataset_qualities(self): # Only a smoke check qualities = _get_dataset_qualities(self.workdir, 2) self.assertIsInstance(qualities, list) def test_deletion_of_cache_dir(self): # Simple removal did_cache_dir = _create_cache_directory_for_id( DATASETS_CACHE_DIR_NAME, 1, ) self.assertTrue(os.path.exists(did_cache_dir)) openml.utils._remove_cache_dir_for_id( DATASETS_CACHE_DIR_NAME, did_cache_dir, ) self.assertFalse(os.path.exists(did_cache_dir)) # Use _get_dataset_arff to load the description, trigger an exception in the # test target and have a slightly higher coverage @mock.patch('openml.datasets.functions._get_dataset_arff') def test_deletion_of_cache_dir_faulty_download(self, patch): patch.side_effect = Exception('Boom!') self.assertRaisesRegex(Exception, 'Boom!', openml.datasets.get_dataset, dataset_id=1) datasets_cache_dir = os.path.join( self.workdir, 'org', 'openml', 'test', 'datasets' ) self.assertEqual(len(os.listdir(datasets_cache_dir)), 0) def test_publish_dataset(self): # lazy loading not possible as we need the arff-file. openml.datasets.get_dataset(3) file_path = os.path.join(openml.config.get_cache_directory(), "datasets", "3", "dataset.arff") dataset = OpenMLDataset( "anneal", "test", data_format="arff", version=1, licence="public", default_target_attribute="class", data_file=file_path, ) dataset.publish() TestBase._mark_entity_for_removal('data', dataset.dataset_id) TestBase.logger.info("collected from {}: {}".format(__file__.split('/')[-1], dataset.dataset_id)) self.assertIsInstance(dataset.dataset_id, int) def test__retrieve_class_labels(self): openml.config.cache_directory = self.static_cache_dir labels = openml.datasets.get_dataset(2, download_data=False).retrieve_class_labels() self.assertEqual(labels, ['1', '2', '3', '4', '5', 'U']) labels = openml.datasets.get_dataset(2, download_data=False).retrieve_class_labels( target_name='product-type') self.assertEqual(labels, ['C', 'H', 'G']) def test_upload_dataset_with_url(self): dataset = OpenMLDataset( "%s-UploadTestWithURL" % self._get_sentinel(), "test", data_format="arff", version=1, url="https://www.openml.org/data/download/61/dataset_61_iris.arff", ) dataset.publish() TestBase._mark_entity_for_removal('data', dataset.dataset_id) TestBase.logger.info("collected from {}: {}".format(__file__.split('/')[-1], dataset.dataset_id)) self.assertIsInstance(dataset.dataset_id, int) def test_data_status(self): dataset = OpenMLDataset( "%s-UploadTestWithURL" % self._get_sentinel(), "test", "ARFF", version=1, url="https://www.openml.org/data/download/61/dataset_61_iris.arff") dataset.publish() TestBase._mark_entity_for_removal('data', dataset.dataset_id) TestBase.logger.info("collected from {}: {}".format(__file__.split('/')[-1], dataset.dataset_id)) did = dataset.dataset_id # admin key for test server (only adminds can activate datasets. # all users can deactivate their own datasets) openml.config.apikey = 'd488d8afd93b32331cf6ea9d7003d4c3' openml.datasets.status_update(did, 'active') # need to use listing fn, as this is immune to cache result = openml.datasets.list_datasets(data_id=did, status='all') self.assertEqual(len(result), 1) self.assertEqual(result[did]['status'], 'active') openml.datasets.status_update(did, 'deactivated') # need to use listing fn, as this is immune to cache result = openml.datasets.list_datasets(data_id=did, status='all') self.assertEqual(len(result), 1) self.assertEqual(result[did]['status'], 'deactivated') openml.datasets.status_update(did, 'active') # need to use listing fn, as this is immune to cache result = openml.datasets.list_datasets(data_id=did, status='all') self.assertEqual(len(result), 1) self.assertEqual(result[did]['status'], 'active') with self.assertRaises(ValueError): openml.datasets.status_update(did, 'in_preparation') # need to use listing fn, as this is immune to cache result = openml.datasets.list_datasets(data_id=did, status='all') self.assertEqual(len(result), 1) self.assertEqual(result[did]['status'], 'active') def test_attributes_arff_from_df(self): # DataFrame case df = pd.DataFrame( [[1, 1.0, 'xxx', 'A', True], [2, 2.0, 'yyy', 'B', False]], columns=['integer', 'floating', 'string', 'category', 'boolean'] ) df['category'] = df['category'].astype('category') attributes = attributes_arff_from_df(df) self.assertEqual(attributes, [('integer', 'INTEGER'), ('floating', 'REAL'), ('string', 'STRING'), ('category', ['A', 'B']), ('boolean', ['True', 'False'])]) # SparseDataFrame case df = pd.SparseDataFrame([[1, 1.0], [2, 2.0], [0, 0]], columns=['integer', 'floating'], default_fill_value=0) df['integer'] = df['integer'].astype(np.int64) attributes = attributes_arff_from_df(df) self.assertEqual(attributes, [('integer', 'INTEGER'), ('floating', 'REAL')]) def test_attributes_arff_from_df_mixed_dtype_categories(self): # liac-arff imposed categorical attributes to be of sting dtype. We # raise an error if this is not the case. df = pd.DataFrame([[1], ['2'], [3.]]) df[0] = df[0].astype('category') err_msg = "The column '0' of the dataframe is of 'category' dtype." with pytest.raises(ValueError, match=err_msg): attributes_arff_from_df(df) def test_attributes_arff_from_df_unknown_dtype(self): # check that an error is raised when the dtype is not supptagorted by # liac-arff data = [ [[1], ['2'], [3.]], [pd.Timestamp('2012-05-01'), pd.Timestamp('2012-05-02')], ] dtype = [ 'mixed-integer', 'datetime64' ] for arr, dt in zip(data, dtype): df = pd.DataFrame(arr) err_msg = ("The dtype '{}' of the column '0' is not currently " "supported by liac-arff".format(dt)) with pytest.raises(ValueError, match=err_msg): attributes_arff_from_df(df) def test_create_dataset_numpy(self): data = np.array( [ [1, 2, 3], [1.2, 2.5, 3.8], [2, 5, 8], [0, 1, 0] ] ).T attributes = [('col_{}'.format(i), 'REAL') for i in range(data.shape[1])] dataset = create_dataset( name='%s-NumPy_testing_dataset' % self._get_sentinel(), description='Synthetic dataset created from a NumPy array', creator='OpenML tester', contributor=None, collection_date='01-01-2018', language='English', licence='MIT', default_target_attribute='col_{}'.format(data.shape[1] - 1), row_id_attribute=None, ignore_attribute=None, citation='None', attributes=attributes, data=data, version_label='test', original_data_url='http://openml.github.io/openml-python', paper_url='http://openml.github.io/openml-python' ) upload_did = dataset.publish() TestBase._mark_entity_for_removal('data', upload_did) TestBase.logger.info("collected from {}: {}".format(__file__.split('/')[-1], upload_did)) self.assertEqual( _get_online_dataset_arff(upload_did), dataset._dataset, "Uploaded arff does not match original one" ) self.assertEqual( _get_online_dataset_format(upload_did), 'arff', "Wrong format for dataset" ) def test_create_dataset_list(self): data = [ ['a', 'sunny', 85.0, 85.0, 'FALSE', 'no'], ['b', 'sunny', 80.0, 90.0, 'TRUE', 'no'], ['c', 'overcast', 83.0, 86.0, 'FALSE', 'yes'], ['d', 'rainy', 70.0, 96.0, 'FALSE', 'yes'], ['e', 'rainy', 68.0, 80.0, 'FALSE', 'yes'], ['f', 'rainy', 65.0, 70.0, 'TRUE', 'no'], ['g', 'overcast', 64.0, 65.0, 'TRUE', 'yes'], ['h', 'sunny', 72.0, 95.0, 'FALSE', 'no'], ['i', 'sunny', 69.0, 70.0, 'FALSE', 'yes'], ['j', 'rainy', 75.0, 80.0, 'FALSE', 'yes'], ['k', 'sunny', 75.0, 70.0, 'TRUE', 'yes'], ['l', 'overcast', 72.0, 90.0, 'TRUE', 'yes'], ['m', 'overcast', 81.0, 75.0, 'FALSE', 'yes'], ['n', 'rainy', 71.0, 91.0, 'TRUE', 'no'], ] attributes = [ ('rnd_str', 'STRING'), ('outlook', ['sunny', 'overcast', 'rainy']), ('temperature', 'REAL'), ('humidity', 'REAL'), ('windy', ['TRUE', 'FALSE']), ('play', ['yes', 'no']), ] dataset = create_dataset( name="%s-ModifiedWeather" % self._get_sentinel(), description=( 'Testing dataset upload when the data is a list of lists' ), creator='OpenML test', contributor=None, collection_date='21-09-2018', language='English', licence='MIT', default_target_attribute='play', row_id_attribute=None, ignore_attribute=None, citation='None', attributes=attributes, data=data, version_label='test', original_data_url='http://openml.github.io/openml-python', paper_url='http://openml.github.io/openml-python' ) upload_did = dataset.publish() TestBase._mark_entity_for_removal('data', upload_did) TestBase.logger.info("collected from {}: {}".format(__file__.split('/')[-1], upload_did)) self.assertEqual( _get_online_dataset_arff(upload_did), dataset._dataset, "Uploaded ARFF does not match original one" ) self.assertEqual( _get_online_dataset_format(upload_did), 'arff', "Wrong format for dataset" ) def test_create_dataset_sparse(self): # test the scipy.sparse.coo_matrix sparse_data = scipy.sparse.coo_matrix(( [0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ([0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 2, 0, 1]) )) column_names = [ ('input1', 'REAL'), ('input2', 'REAL'), ('y', 'REAL'), ] xor_dataset = create_dataset( name="%s-XOR" % self._get_sentinel(), description='Dataset representing the XOR operation', creator=None, contributor=None, collection_date=None, language='English', licence=None, default_target_attribute='y', row_id_attribute=None, ignore_attribute=None, citation=None, attributes=column_names, data=sparse_data, version_label='test', ) upload_did = xor_dataset.publish() TestBase._mark_entity_for_removal('data', upload_did) TestBase.logger.info("collected from {}: {}".format(__file__.split('/')[-1], upload_did)) self.assertEqual( _get_online_dataset_arff(upload_did), xor_dataset._dataset, "Uploaded ARFF does not match original one" ) self.assertEqual( _get_online_dataset_format(upload_did), 'sparse_arff', "Wrong format for dataset" ) # test the list of dicts sparse representation sparse_data = [ {0: 0.0}, {1: 1.0, 2: 1.0}, {0: 1.0, 2: 1.0}, {0: 1.0, 1: 1.0} ] xor_dataset = create_dataset( name="%s-XOR" % self._get_sentinel(), description='Dataset representing the XOR operation', creator=None, contributor=None, collection_date=None, language='English', licence=None, default_target_attribute='y', row_id_attribute=None, ignore_attribute=None, citation=None, attributes=column_names, data=sparse_data, version_label='test', ) upload_did = xor_dataset.publish() TestBase._mark_entity_for_removal('data', upload_did) TestBase.logger.info("collected from {}: {}".format(__file__.split('/')[-1], upload_did)) self.assertEqual( _get_online_dataset_arff(upload_did), xor_dataset._dataset, "Uploaded ARFF does not match original one" ) self.assertEqual( _get_online_dataset_format(upload_did), 'sparse_arff', "Wrong format for dataset" ) def test_create_invalid_dataset(self): data = [ 'sunny', 'overcast', 'overcast', 'rainy', 'rainy', 'rainy', 'overcast', 'sunny', 'sunny', 'rainy', 'sunny', 'overcast', 'overcast', 'rainy', ] param = self._get_empty_param_for_dataset() param['data'] = data self.assertRaises( ValueError, create_dataset, **param ) param['data'] = data[0] self.assertRaises( ValueError, create_dataset, **param ) def test_get_online_dataset_arff(self): dataset_id = 100 # Australian # lazy loading not used as arff file is checked. dataset = openml.datasets.get_dataset(dataset_id) decoder = arff.ArffDecoder() # check if the arff from the dataset is # the same as the arff from _get_arff function d_format = (dataset.format).lower() self.assertEqual( dataset._get_arff(d_format), decoder.decode( _get_online_dataset_arff(dataset_id), encode_nominal=True, return_type=arff.DENSE if d_format == 'arff' else arff.COO ), "ARFF files are not equal" ) def test_get_online_dataset_format(self): # Phoneme dataset dataset_id = 77 dataset = openml.datasets.get_dataset(dataset_id, download_data=False) self.assertEqual( (dataset.format).lower(), _get_online_dataset_format(dataset_id), "The format of the ARFF files is different" ) def test_create_dataset_pandas(self): data = [ ['a', 'sunny', 85.0, 85.0, 'FALSE', 'no'], ['b', 'sunny', 80.0, 90.0, 'TRUE', 'no'], ['c', 'overcast', 83.0, 86.0, 'FALSE', 'yes'], ['d', 'rainy', 70.0, 96.0, 'FALSE', 'yes'], ['e', 'rainy', 68.0, 80.0, 'FALSE', 'yes'] ] column_names = ['rnd_str', 'outlook', 'temperature', 'humidity', 'windy', 'play'] df = pd.DataFrame(data, columns=column_names) # enforce the type of each column df['outlook'] = df['outlook'].astype('category') df['windy'] = df['windy'].astype('bool') df['play'] = df['play'].astype('category') # meta-information name = '%s-pandas_testing_dataset' % self._get_sentinel() description = 'Synthetic dataset created from a Pandas DataFrame' creator = 'OpenML tester' collection_date = '01-01-2018' language = 'English' licence = 'MIT' default_target_attribute = 'play' citation = 'None' original_data_url = 'http://openml.github.io/openml-python' paper_url = 'http://openml.github.io/openml-python' dataset = openml.datasets.functions.create_dataset( name=name, description=description, creator=creator, contributor=None, collection_date=collection_date, language=language, licence=licence, default_target_attribute=default_target_attribute, row_id_attribute=None, ignore_attribute=None, citation=citation, attributes='auto', data=df, version_label='test', original_data_url=original_data_url, paper_url=paper_url ) upload_did = dataset.publish() TestBase._mark_entity_for_removal('data', upload_did) TestBase.logger.info("collected from {}: {}".format(__file__.split('/')[-1], upload_did)) self.assertEqual( _get_online_dataset_arff(upload_did), dataset._dataset, "Uploaded ARFF does not match original one" ) # Check that SparseDataFrame are supported properly sparse_data = scipy.sparse.coo_matrix(( [0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ([0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 2, 0, 1]) )) column_names = ['input1', 'input2', 'y'] df = pd.SparseDataFrame(sparse_data, columns=column_names) # meta-information description = 'Synthetic dataset created from a Pandas SparseDataFrame' dataset = openml.datasets.functions.create_dataset( name=name, description=description, creator=creator, contributor=None, collection_date=collection_date, language=language, licence=licence, default_target_attribute=default_target_attribute, row_id_attribute=None, ignore_attribute=None, citation=citation, attributes='auto', data=df, version_label='test', original_data_url=original_data_url, paper_url=paper_url ) upload_did = dataset.publish() TestBase._mark_entity_for_removal('data', upload_did) TestBase.logger.info("collected from {}: {}".format(__file__.split('/')[-1], upload_did)) self.assertEqual( _get_online_dataset_arff(upload_did), dataset._dataset, "Uploaded ARFF does not match original one" ) self.assertEqual( _get_online_dataset_format(upload_did), 'sparse_arff', "Wrong format for dataset" ) # Check that we can overwrite the attributes data = [['a'], ['b'], ['c'], ['d'], ['e']] column_names = ['rnd_str'] df = pd.DataFrame(data, columns=column_names) df['rnd_str'] = df['rnd_str'].astype('category') attributes = {'rnd_str': ['a', 'b', 'c', 'd', 'e', 'f', 'g']} dataset = openml.datasets.functions.create_dataset( name=name, description=description, creator=creator, contributor=None, collection_date=collection_date, language=language, licence=licence, default_target_attribute=default_target_attribute, row_id_attribute=None, ignore_attribute=None, citation=citation, attributes=attributes, data=df, version_label='test', original_data_url=original_data_url, paper_url=paper_url ) upload_did = dataset.publish() TestBase._mark_entity_for_removal('data', upload_did) TestBase.logger.info("collected from {}: {}".format(__file__.split('/')[-1], upload_did)) downloaded_data = _get_online_dataset_arff(upload_did) self.assertEqual( downloaded_data, dataset._dataset, "Uploaded ARFF does not match original one" ) self.assertTrue( '@ATTRIBUTE rnd_str {a, b, c, d, e, f, g}' in downloaded_data) def test_ignore_attributes_dataset(self): data = [ ['a', 'sunny', 85.0, 85.0, 'FALSE', 'no'], ['b', 'sunny', 80.0, 90.0, 'TRUE', 'no'], ['c', 'overcast', 83.0, 86.0, 'FALSE', 'yes'], ['d', 'rainy', 70.0, 96.0, 'FALSE', 'yes'], ['e', 'rainy', 68.0, 80.0, 'FALSE', 'yes'] ] column_names = ['rnd_str', 'outlook', 'temperature', 'humidity', 'windy', 'play'] df = pd.DataFrame(data, columns=column_names) # enforce the type of each column df['outlook'] = df['outlook'].astype('category') df['windy'] = df['windy'].astype('bool') df['play'] = df['play'].astype('category') # meta-information name = '%s-pandas_testing_dataset' % self._get_sentinel() description = 'Synthetic dataset created from a Pandas DataFrame' creator = 'OpenML tester' collection_date = '01-01-2018' language = 'English' licence = 'MIT' default_target_attribute = 'play' citation = 'None' original_data_url = 'http://openml.github.io/openml-python' paper_url = 'http://openml.github.io/openml-python' # we use the create_dataset function which call the OpenMLDataset # constructor # pass a string to ignore_attribute dataset = openml.datasets.functions.create_dataset( name=name, description=description, creator=creator, contributor=None, collection_date=collection_date, language=language, licence=licence, default_target_attribute=default_target_attribute, row_id_attribute=None, ignore_attribute='outlook', citation=citation, attributes='auto', data=df, version_label='test', original_data_url=original_data_url, paper_url=paper_url ) self.assertEqual(dataset.ignore_attribute, ['outlook']) # pass a list to ignore_attribute ignore_attribute = ['outlook', 'windy'] dataset = openml.datasets.functions.create_dataset( name=name, description=description, creator=creator, contributor=None, collection_date=collection_date, language=language, licence=licence, default_target_attribute=default_target_attribute, row_id_attribute=None, ignore_attribute=ignore_attribute, citation=citation, attributes='auto', data=df, version_label='test', original_data_url=original_data_url, paper_url=paper_url ) self.assertEqual(dataset.ignore_attribute, ignore_attribute) # raise an error if unknown type err_msg = 'Wrong data type for ignore_attribute. Should be list.' with pytest.raises(ValueError, match=err_msg): openml.datasets.functions.create_dataset( name=name, description=description, creator=creator, contributor=None, collection_date=collection_date, language=language, licence=licence, default_target_attribute=default_target_attribute, row_id_attribute=None, ignore_attribute=tuple(['outlook', 'windy']), citation=citation, attributes='auto', data=df, version_label='test', original_data_url=original_data_url, paper_url=paper_url ) def test___publish_fetch_ignore_attribute(self): """(Part 1) Test to upload and retrieve dataset and check ignore_attributes DEPENDS on test_publish_fetch_ignore_attribute() to be executed after this This test is split into two parts: 1) test___publish_fetch_ignore_attribute() This will be executed earlier, owing to alphabetical sorting. This test creates and publish() a dataset and checks for a valid ID. 2) test_publish_fetch_ignore_attribute() This will be executed after test___publish_fetch_ignore_attribute(), owing to alphabetical sorting. The time gap is to allow the server more time time to compute data qualities. The dataset ID obtained previously is used to fetch the dataset. The retrieved dataset is checked for valid ignore_attributes. """ # the returned fixt data = [ ['a', 'sunny', 85.0, 85.0, 'FALSE', 'no'], ['b', 'sunny', 80.0, 90.0, 'TRUE', 'no'], ['c', 'overcast', 83.0, 86.0, 'FALSE', 'yes'], ['d', 'rainy', 70.0, 96.0, 'FALSE', 'yes'], ['e', 'rainy', 68.0, 80.0, 'FALSE', 'yes'] ] column_names = ['rnd_str', 'outlook', 'temperature', 'humidity', 'windy', 'play'] df = pd.DataFrame(data, columns=column_names) # enforce the type of each column df['outlook'] = df['outlook'].astype('category') df['windy'] = df['windy'].astype('bool') df['play'] = df['play'].astype('category') # meta-information name = '%s-pandas_testing_dataset' % self._get_sentinel() description = 'Synthetic dataset created from a Pandas DataFrame' creator = 'OpenML tester' collection_date = '01-01-2018' language = 'English' licence = 'MIT' default_target_attribute = 'play' citation = 'None' original_data_url = 'http://openml.github.io/openml-python' paper_url = 'http://openml.github.io/openml-python' # pass a list to ignore_attribute ignore_attribute = ['outlook', 'windy'] dataset = openml.datasets.functions.create_dataset( name=name, description=description, creator=creator, contributor=None, collection_date=collection_date, language=language, licence=licence, default_target_attribute=default_target_attribute, row_id_attribute=None, ignore_attribute=ignore_attribute, citation=citation, attributes='auto', data=df, version_label='test', original_data_url=original_data_url, paper_url=paper_url ) # publish dataset upload_did = dataset.publish() TestBase._mark_entity_for_removal('data', upload_did) TestBase.logger.info("collected from {}: {}".format(__file__.split('/')[-1], upload_did)) # test if publish was successful self.assertIsInstance(upload_did, int) # variables to carry forward for test_publish_fetch_ignore_attribute() self.__class__.test_publish_fetch_ignore_attribute_did = upload_did self.__class__.test_publish_fetch_ignore_attribute_list = ignore_attribute def test_publish_fetch_ignore_attribute(self): """(Part 2) Test to upload and retrieve dataset and check ignore_attributes DEPENDS on test___publish_fetch_ignore_attribute() to be executed first This will be executed after test___publish_fetch_ignore_attribute(), owing to alphabetical sorting. The time gap is to allow the server more time time to compute data qualities. The dataset ID obtained previously is used to fetch the dataset. The retrieved dataset is checked for valid ignore_attributes. """ # Retrieving variables from test___publish_fetch_ignore_attribute() upload_did = self.__class__.test_publish_fetch_ignore_attribute_did ignore_attribute = self.__class__.test_publish_fetch_ignore_attribute_list trials = 1 timeout_limit = 200 dataset = None # fetching from server # loop till timeout or fetch not successful while True: if trials > timeout_limit: break try: dataset = openml.datasets.get_dataset(upload_did) break except Exception as e: # returned code 273: Dataset not processed yet # returned code 362: No qualities found print("Trial {}/{}: ".format(trials, timeout_limit)) print("\tFailed to fetch dataset:{} with '{}'.".format(upload_did, str(e))) trials += 1 continue if dataset is None: raise ValueError("TIMEOUT: Failed to fetch uploaded dataset - {}".format(upload_did)) self.assertEqual(dataset.ignore_attribute, ignore_attribute) def test_create_dataset_row_id_attribute_error(self): # meta-information name = '%s-pandas_testing_dataset' % self._get_sentinel() description = 'Synthetic dataset created from a Pandas DataFrame' creator = 'OpenML tester' collection_date = '01-01-2018' language = 'English' licence = 'MIT' default_target_attribute = 'target' citation = 'None' original_data_url = 'http://openml.github.io/openml-python' paper_url = 'http://openml.github.io/openml-python' # Check that the index name is well inferred. data = [['a', 1, 0], ['b', 2, 1], ['c', 3, 0], ['d', 4, 1], ['e', 5, 0]] column_names = ['rnd_str', 'integer', 'target'] df = pd.DataFrame(data, columns=column_names) # affecting row_id_attribute to an unknown column should raise an error err_msg = ("should be one of the data attribute.") with pytest.raises(ValueError, match=err_msg): openml.datasets.functions.create_dataset( name=name, description=description, creator=creator, contributor=None, collection_date=collection_date, language=language, licence=licence, default_target_attribute=default_target_attribute, ignore_attribute=None, citation=citation, attributes='auto', data=df, row_id_attribute='unknown_row_id', version_label='test', original_data_url=original_data_url, paper_url=paper_url ) def test_create_dataset_row_id_attribute_inference(self): # meta-information name = '%s-pandas_testing_dataset' % self._get_sentinel() description = 'Synthetic dataset created from a Pandas DataFrame' creator = 'OpenML tester' collection_date = '01-01-2018' language = 'English' licence = 'MIT' default_target_attribute = 'target' citation = 'None' original_data_url = 'http://openml.github.io/openml-python' paper_url = 'http://openml.github.io/openml-python' # Check that the index name is well inferred. data = [['a', 1, 0], ['b', 2, 1], ['c', 3, 0], ['d', 4, 1], ['e', 5, 0]] column_names = ['rnd_str', 'integer', 'target'] df = pd.DataFrame(data, columns=column_names) row_id_attr = [None, 'integer'] df_index_name = [None, 'index_name'] expected_row_id = [None, 'index_name', 'integer', 'integer'] for output_row_id, (row_id, index_name) in zip(expected_row_id, product(row_id_attr, df_index_name)): df.index.name = index_name dataset = openml.datasets.functions.create_dataset( name=name, description=description, creator=creator, contributor=None, collection_date=collection_date, language=language, licence=licence, default_target_attribute=default_target_attribute, ignore_attribute=None, citation=citation, attributes='auto', data=df, row_id_attribute=row_id, version_label='test', original_data_url=original_data_url, paper_url=paper_url ) self.assertEqual(dataset.row_id_attribute, output_row_id) upload_did = dataset.publish() TestBase._mark_entity_for_removal('data', upload_did) TestBase.logger.info("collected from {}: {}".format(__file__.split('/')[-1], upload_did)) arff_dataset = arff.loads(_get_online_dataset_arff(upload_did)) arff_data = np.array(arff_dataset['data'], dtype=object) # if we set the name of the index then the index will be added to # the data expected_shape = (5, 3) if index_name is None else (5, 4) self.assertEqual(arff_data.shape, expected_shape) def test_create_dataset_attributes_auto_without_df(self): # attributes cannot be inferred without passing a dataframe data = np.array([[1, 2, 3], [1.2, 2.5, 3.8], [2, 5, 8], [0, 1, 0]]).T attributes = 'auto' name = 'NumPy_testing_dataset' description = 'Synthetic dataset created from a NumPy array' creator = 'OpenML tester' collection_date = '01-01-2018' language = 'English' licence = 'MIT' default_target_attribute = 'col_{}'.format(data.shape[1] - 1) citation = 'None' original_data_url = 'http://openml.github.io/openml-python' paper_url = 'http://openml.github.io/openml-python' err_msg = "Automatically inferring attributes requires a pandas" with pytest.raises(ValueError, match=err_msg): openml.datasets.functions.create_dataset( name=name, description=description, creator=creator, contributor=None, collection_date=collection_date, language=language, licence=licence, default_target_attribute=default_target_attribute, row_id_attribute=None, ignore_attribute=None, citation=citation, attributes=attributes, data=data, version_label='test', original_data_url=original_data_url, paper_url=paper_url ) def test_list_qualities(self): qualities = openml.datasets.list_qualities() self.assertEqual(isinstance(qualities, list), True) self.assertEqual(all([isinstance(q, str) for q in qualities]), True)
41.495899
98
0.587679
2e5948cf2a3e73516a0d9f3ee5b658d39ba324ec
9,753
py
Python
CarlaWorld.py
yeshas1994/carla-dataset-runner
c781b9d2b5cd748d062f775b65a86b5d569c8e64
[ "MIT" ]
null
null
null
CarlaWorld.py
yeshas1994/carla-dataset-runner
c781b9d2b5cd748d062f775b65a86b5d569c8e64
[ "MIT" ]
null
null
null
CarlaWorld.py
yeshas1994/carla-dataset-runner
c781b9d2b5cd748d062f775b65a86b5d569c8e64
[ "MIT" ]
null
null
null
import sys import os import settings sys.path.append(settings.CARLA_EGG_PATH) import carla import random import time import numpy as np from spawn_npc import NPCClass from client_bounding_boxes import ClientSideBoundingBoxes from set_synchronous_mode import CarlaSyncMode from bb_filter import apply_filters_to_3d_bb from WeatherSelector import WeatherSelector class CarlaWorld: def __init__(self, HDF5_file): self.HDF5_file = HDF5_file # Carla initialization client = carla.Client('localhost', 2000) client.set_timeout(20.0) #self.world = client.load_world('Town01') self.world = client.get_world() print('Successfully connected to CARLA') self.blueprint_library = self.world.get_blueprint_library() # Sensors stuff self.camera_x_location = 1.0 self.camera_y_location = 0.0 self.camera_z_location = 2.0 self.sensors_list = [] # Weather stuff self.weather_options = WeatherSelector().get_weather_options() # List with weather options # Recording stuff self.total_recorded_frames = 0 self.first_time_simulating = True def set_weather(self, weather_option): # Changing weather https://carla.readthedocs.io/en/stable/carla_settings/ # Weather_option is one item from the list self.weather_options, which contains a list with the parameters weather = carla.WeatherParameters(*weather_option) self.world.set_weather(weather) def remove_npcs(self): print('Destroying actors...') self.NPC.remove_npcs() print('Done destroying actors.') def spawn_npcs(self, number_of_vehicles, number_of_walkers): self.NPC = NPCClass() self.vehicles_list, _ = self.NPC.create_npcs(number_of_vehicles, number_of_walkers) # added by yeshas def put_segmentation_sensor(self, vehicle, sensor_width=640, sensor_height=480, fov=110): bp = self.blueprint_library.find('sensor.camera.semantic_segmentation') bp.set_attribute('image_size_x', f'{sensor_width}') bp.set_attribute('image_size_y', f'{sensor_height}') bp.set_attribute('fov', f'{fov}') spawn_point = carla.Transform(carla.Location(x=self.camera_x_location, z=self.camera_z_location)) self.seg_camera = self.world.spawn_actor(bp, spawn_point, attach_to=vehicle) self.sensors_list.append(self.seg_camera) return self.seg_camera def put_rgb_sensor(self, vehicle, sensor_width=640, sensor_height=480, fov=110): # https://carla.readthedocs.io/en/latest/cameras_and_sensors/ bp = self.blueprint_library.find('sensor.camera.rgb') # bp.set_attribute('enable_postprocess_effects', 'True') # https://carla.readthedocs.io/en/latest/bp_library/ bp.set_attribute('image_size_x', f'{sensor_width}') bp.set_attribute('image_size_y', f'{sensor_height}') bp.set_attribute('fov', f'{fov}') # Adjust sensor relative position to the vehicle spawn_point = carla.Transform(carla.Location(x=self.camera_x_location, z=self.camera_z_location)) self.rgb_camera = self.world.spawn_actor(bp, spawn_point, attach_to=vehicle) self.rgb_camera.blur_amount = 0.0 self.rgb_camera.motion_blur_intensity = 0 self.rgb_camera.motion_max_distortion = 0 # Camera calibration calibration = np.identity(3) calibration[0, 2] = sensor_width / 2.0 calibration[1, 2] = sensor_height / 2.0 calibration[0, 0] = calibration[1, 1] = sensor_width / (2.0 * np.tan(fov * np.pi / 360.0)) self.rgb_camera.calibration = calibration # Parameter K of the camera self.sensors_list.append(self.rgb_camera) return self.rgb_camera def put_depth_sensor(self, vehicle, sensor_width=640, sensor_height=480, fov=110): # https://carla.readthedocs.io/en/latest/cameras_and_sensors/ bp = self.blueprint_library.find('sensor.camera.depth') bp.set_attribute('image_size_x', f'{sensor_width}') bp.set_attribute('image_size_y', f'{sensor_height}') bp.set_attribute('fov', f'{fov}') # Adjust sensor relative position to the vehicle spawn_point = carla.Transform(carla.Location(x=self.camera_x_location, z=self.camera_z_location)) self.depth_camera = self.world.spawn_actor(bp, spawn_point, attach_to=vehicle) self.sensors_list.append(self.depth_camera) return self.depth_camera def process_depth_data(self, data, sensor_width, sensor_height): """ normalized = (R + G * 256 + B * 256 * 256) / (256 * 256 * 256 - 1) in_meters = 1000 * normalized """ data = np.array(data.raw_data) data = data.reshape((sensor_height, sensor_width, 4)) data = data.astype(np.float32) # Apply (R + G * 256 + B * 256 * 256) / (256 * 256 * 256 - 1). normalized_depth = np.dot(data[:, :, :3], [65536.0, 256.0, 1.0]) normalized_depth /= 16777215.0 # (256.0 * 256.0 * 256.0 - 1.0) depth_meters = normalized_depth * 1000 return depth_meters def get_bb_data(self): vehicles_on_world = self.world.get_actors().filter('vehicle.*') walkers_on_world = self.world.get_actors().filter('walker.*') bounding_boxes_vehicles = ClientSideBoundingBoxes.get_bounding_boxes(vehicles_on_world, self.rgb_camera) bounding_boxes_walkers = ClientSideBoundingBoxes.get_bounding_boxes(walkers_on_world, self.rgb_camera) return [bounding_boxes_vehicles, bounding_boxes_walkers] def process_rgb_img(self, img, sensor_width, sensor_height): img = np.array(img.raw_data) img = img.reshape((sensor_height, sensor_width, 4)) img = img[:, :, :3] # taking out opacity channel return img # bb = self.get_bb_data() # return img, bb def process_seg_img(self, img, sensor_width, sensor_height): img = np.array(img.raw_data) img = img.reshape((sensor_height, sensor_width, 4)) img = img[:, :, 2] return img def remove_sensors(self): for sensor in self.sensors_list: sensor.destroy() self.sensors_list = [] def begin_data_acquisition(self, sensor_width, sensor_height, fov, frames_to_record_one_ego=1, timestamps=[], egos_to_run=10): # Changes the ego vehicle to be put the sensor current_ego_recorded_frames = 0 # These vehicles are not considered because the cameras get occluded without changing their absolute position ego_vehicle = random.choice([x for x in self.world.get_actors().filter("vehicle.*") if x.type_id not in ['vehicle.audi.tt', 'vehicle.carlamotors.carlacola', 'vehicle.volkswagen.t2']]) self.put_rgb_sensor(ego_vehicle, sensor_width, sensor_height, fov) # self.put_depth_sensor(ego_vehicle, sensor_width, sensor_height, fov) self.put_segmentation_sensor(ego_vehicle, sensor_width, sensor_height, fov) # Begin applying the sync mode with CarlaSyncMode(self.world, self.rgb_camera, self.seg_camera, fps=30) as sync_mode: # Skip initial frames where the car is being put on the ambient if self.first_time_simulating: for _ in range(30): sync_mode.tick_no_data() while True: if current_ego_recorded_frames == frames_to_record_one_ego: print('\n') self.remove_sensors() return timestamps # Advance the simulation and wait for the data # Skip every nth frame for data recording, so that one frame is not that similar to another wait_frame_ticks = 0 while wait_frame_ticks < 5: sync_mode.tick_no_data() wait_frame_ticks += 1 # _, rgb_data, depth_data = sync_mode.tick(timeout=2.0) # If needed, self.frame can be obtained too _, rgb_data, seg_data = sync_mode.tick(timeout=2.0) # Processing raw data # rgb_array, bounding_box = self.process_rgb_img(rgb_data, sensor_width, sensor_height) rgb_array = self.process_rgb_img(rgb_data, sensor_width, sensor_height) seg_array = self.process_seg_img(seg_data, sensor_width, sensor_height) ego_speed = ego_vehicle.get_velocity() ego_speed = np.array([ego_speed.x, ego_speed.y, ego_speed.z]) ego_acc = ego_vehicle.get_acceleration() ego_acc = np.array([ego_acc.x, ego_acc.y, ego_acc.z]) ego_angular = ego_vehicle.get_angular_velocity() ego_angular = np.array([ego_angular.x, ego_angular.y, ego_angular.z]) ego_control = ego_vehicle.get_control() ego_control = np.array([ego_control.throttle, ego_control.steer, ego_control.brake]) # bounding_box = apply_filters_to_3d_bb(bounding_box, depth_array, sensor_width, sensor_height) timestamp = round(time.time() * 1000.0) # Saving into opened HDF5 dataset file self.HDF5_file.record_data(rgb_array, seg_array, ego_speed, ego_acc, ego_angular, ego_control, timestamp) current_ego_recorded_frames += 1 self.total_recorded_frames += 1 timestamps.append(timestamp) sys.stdout.write("\r") sys.stdout.write('Frame {0}/{1}'.format( self.total_recorded_frames, frames_to_record_one_ego*egos_to_run*len(self.weather_options))) sys.stdout.flush()
48.522388
130
0.660412
b399eca8d4001215d3ae161f4bbdad8582d0fb0e
2,141
py
Python
src/foremast/utils/deep_chain_map.py
gitter-badger/foremast
33530438ba5893a1d5cf822a63e03d7ab49dfcd7
[ "Apache-2.0" ]
null
null
null
src/foremast/utils/deep_chain_map.py
gitter-badger/foremast
33530438ba5893a1d5cf822a63e03d7ab49dfcd7
[ "Apache-2.0" ]
null
null
null
src/foremast/utils/deep_chain_map.py
gitter-badger/foremast
33530438ba5893a1d5cf822a63e03d7ab49dfcd7
[ "Apache-2.0" ]
null
null
null
# Foremast - Pipeline Tooling # # Copyright 2016 Gogo, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ChainMap modification to handle nested dict objects.""" import collections class DeepChainMap(collections.ChainMap): """Deep lookups for collections.ChainMap objects. When there are nested dicts, the first found, second level dict is returned instead of overlaying alternative second level dicts. >>> first = {'key1': {'key1_1': 'first_one'}} >>> second = {'key1': {'key1_1': 'second_one', 'key1_2': 'second_two'}} >>> collections.ChainMap(first, second)['key1'] {'key1_1': 'first_one'} >>> collections.ChainMap(second, first)['key1'] {'key1_1': 'second_one', 'key1_2': 'second_two'} # Deep lookup will flatten every level. >>> DeepChainMap(first, second)['key1'] {'key1_1': 'first_one', 'key1_2': 'second_two'} >>> DeepChainMap(second, first)['key1'] {'key1_1': 'second_one', 'key1_2': 'second_two'} """ def __getitem__(self, key): """Recursively retrieve value for _key_ in dict. Args: key (str): dict key to get all items for """ for mapping in self.maps: try: value = mapping[key] if isinstance(value, dict): return dict(DeepChainMap(*list(mapping.get(key, {}) for mapping in self.maps))) else: return value except KeyError: pass return self.__missing__(key)
36.288136
79
0.607193
7495a42a6f9dd430051cc291f3e6a20122fb0961
8,390
py
Python
kakao/request.py
minionsong/korea-covid-19-remaining-vaccine-macro
154ac0f1b5ba4bcc3f270255b38ed270a54febad
[ "MIT" ]
null
null
null
kakao/request.py
minionsong/korea-covid-19-remaining-vaccine-macro
154ac0f1b5ba4bcc3f270255b38ed270a54febad
[ "MIT" ]
null
null
null
kakao/request.py
minionsong/korea-covid-19-remaining-vaccine-macro
154ac0f1b5ba4bcc3f270255b38ed270a54febad
[ "MIT" ]
null
null
null
import json import re import time from datetime import datetime import requests import urllib3 from kakao.common import close, count_json_response urllib3.disable_warnings() header_map = { "Accept": "application/json, text/plain, */*", "Content-Type": "application/json;charset=utf-8", "Origin": "https://vaccine-map.kakao.com", "Accept-Language": "en-us", "User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 14_7 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/15E148 KAKAOTALK 9.4.2", "Referer": "https://vaccine-map.kakao.com/", "Accept-Encoding": "gzip, deflate", "Connection": "Keep-Alive", "Keep-Alive": "timeout=5, max=1000" } headers_vaccine = { "Accept": "application/json, text/plain, */*", "Content-Type": "application/json;charset=utf-8", "Origin": "https://vaccine.kakao.com", "Accept-Language": "en-us", "User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 14_7 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/15E148 KAKAOTALK 9.4.2", "Referer": "https://vaccine.kakao.com/", "Accept-Encoding": "gzip, deflate", "Connection": "Keep-Alive", "Keep-Alive": "timeout=5, max=1000" } # pylint: disable=too-many-locals,too-many-statements,too-many-branches,too-many-arguments def find_vaccine(cookie, search_time, vaccine_type, top_x, top_y, bottom_x, bottom_y, only_left): url = 'https://vaccine-map.kakao.com/api/v3/vaccine/left_count_by_coords' data = {"bottomRight": {"x": bottom_x, "y": bottom_y}, "onlyLeft": only_left, "order": "count", "topLeft": {"x": top_x, "y": top_y}} done = False found = None while not done: try: time.sleep(search_time) response = requests.post(url, data=json.dumps(data), headers=header_map, verify=False, timeout=5) try: json_data = json.loads(response.text) for x in json_data.get("organizations"): if x.get('status') == "AVAILABLE" or x.get('leftCounts') != 0: found = x organization_code = x.get('orgCode') check_organization_url = f'https://vaccine.kakao.com/api/v3/org/org_code/{organization_code}' check_organization_response = requests.get(check_organization_url, headers=headers_vaccine, cookies=cookie, verify=False) check_organization_data = json.loads(check_organization_response.text).get("lefts") log_str = x.get('orgName') + "\t" for y in check_organization_data: log_str = log_str + "\t/ " + y.get('vaccineName') + "(" + str(y.get('leftCount')) + ")" if y.get('leftCount') != 0 and\ (y.get('vaccineCode') == 'VEN00013' or y.get('vaccineCode') == 'VEN00014'): print(f"{y.get('vaccineName')} 백신을 {y.get('leftCount')}개 발견했습니다.") done = True break print(log_str) if not done: # pretty_print(json_data) print("Searched organizations # : " + str(count_json_response(json_data))) print(datetime.now()) except json.decoder.JSONDecodeError as decodeerror: print("JSONDecodeError : ", decodeerror) print("JSON string : ", response.text) close() except requests.exceptions.Timeout as timeouterror: print("Timeout Error : ", timeouterror) except requests.exceptions.SSLError as sslerror: print("SSL Error : ", sslerror) close() except requests.exceptions.ConnectionError as connectionerror: print("Connection Error : ", connectionerror) # See psf/requests#5430 to know why this is necessary. if not re.search('Read timed out', str(connectionerror), re.IGNORECASE): close() except requests.exceptions.HTTPError as httperror: print("Http Error : ", httperror) close() except requests.exceptions.RequestException as error: print("AnyException : ", error) close() if found is None: find_vaccine(cookie, search_time, vaccine_type, top_x, top_y, bottom_x, bottom_y, only_left) return None print(f"{found.get('orgName')} 에서 백신을 {found.get('leftCounts')}개 발견했습니다.") print(f"주소는 : {found.get('address')} 입니다.") organization_code = found.get('orgCode') # 실제 백신 남은수량 확인 vaccine_found_code = None # if vaccine_type == "ANY": # ANY 백신 선택 # check_organization_url = f'https://vaccine.kakao.com/api/v3/org/org_code/{organization_code}' # check_organization_response = requests.get(check_organization_url, headers=headers_vaccine, cookies=cookie, verify=False) # check_organization_data = json.loads(check_organization_response.text).get("lefts") # for x in check_organization_data: # if x.get('leftCount') != 0: # print(f"{x.get('vaccineName')} 백신을 {x.get('leftCount')}개 발견했습니다.") # vaccine_found_code = x.get('vaccineCode') # break # else: # print(f"{x.get('vaccineName')} 백신이 없습니다.") # # else: vaccine_found_code = vaccine_type print(f"{vaccine_found_code} 으로 예약을 시도합니다.") if vaccine_found_code and try_reservation(organization_code, vaccine_found_code, cookie): return None else: find_vaccine(cookie, search_time, vaccine_type, top_x, top_y, bottom_x, bottom_y, only_left) return None def try_reservation(organization_code, vaccine_type, jar): reservation_url = 'https://vaccine.kakao.com/api/v2/reservation' data = {"from": "List", "vaccineCode": vaccine_type, "orgCode": organization_code, "distance": None} response = requests.post(reservation_url, data=json.dumps(data), headers=headers_vaccine, cookies=jar, verify=False) response_json = json.loads(response.text) for key in response_json: value = response_json[key] if key != 'code': continue if key == 'code' and value == "NO_VACANCY": print("잔여백신 접종 신청이 선착순 마감되었습니다.") elif key == 'code' and value == "TIMEOUT": print("TIMEOUT, 예약을 재시도합니다.") retry_reservation(organization_code, vaccine_type, jar) elif key == 'code' and value == "SUCCESS": print("백신접종신청 성공!!!") organization_code_success = response_json.get("organization") print( f"병원이름: {organization_code_success.get('orgName')}\t" + f"전화번호: {organization_code_success.get('phoneNumber')}\t" + f"주소: {organization_code_success.get('address')}") close(success=True) else: print("ERROR. 아래 메시지를 보고, 예약이 신청된 병원 또는 1339에 예약이 되었는지 확인해보세요.") print(response.text) close() def retry_reservation(organization_code, vaccine_type, jar): reservation_url = 'https://vaccine.kakao.com/api/v2/reservation/retry' data = {"from": "List", "vaccineCode": vaccine_type, "orgCode": organization_code, "distance": None} response = requests.post(reservation_url, data=json.dumps(data), headers=headers_vaccine, cookies=jar, verify=False) response_json = json.loads(response.text) for key in response_json: value = response_json[key] if key != 'code': continue if key == 'code' and value == "NO_VACANCY": print("잔여백신 접종 신청이 선착순 마감되었습니다.") elif key == 'code' and value == "SUCCESS": print("백신접종신청 성공!!!") organization_code_success = response_json.get("organization") print( f"병원이름: {organization_code_success.get('orgName')}\t" + f"전화번호: {organization_code_success.get('phoneNumber')}\t" + f"주소: {organization_code_success.get('address')}") close(success=True) else: print("ERROR. 아래 메시지를 보고, 예약이 신청된 병원 또는 1339에 예약이 되었는지 확인해보세요.") print(response.text) close()
44.391534
146
0.59559
983298d7530b47d9b5187a87123587b291df2704
789
py
Python
main.py
akshay-1612/Twitter_Bot
aa527d28252a77a6ca47a9dc4c29d13d3723bae6
[ "MIT" ]
null
null
null
main.py
akshay-1612/Twitter_Bot
aa527d28252a77a6ca47a9dc4c29d13d3723bae6
[ "MIT" ]
null
null
null
main.py
akshay-1612/Twitter_Bot
aa527d28252a77a6ca47a9dc4c29d13d3723bae6
[ "MIT" ]
2
2021-01-20T06:09:59.000Z
2021-10-06T04:13:05.000Z
import tweepy import time api_key = '' api_key_secreat = '' access_token = '' access_token_secreat ='' auth = tweepy.OAuthHandler(api_key,api_key_secreat) auth.set_access_token(access_token,access_token_secreat) api = tweepy.API(auth,wait_on_rate_limit=True,wait_on_rate_limit_notify=True) user = api.me() #search =["#python","#ML","#Data Science","#AI"] # search tag search = "#python" numTweets = 500 #rate limit for tweet in tweepy.Cursor(api.search,search,lang="en").items(numTweets): try: print('Tweet liked') tweet.favorite() print('tweet retweeted') tweet.retweet() time.sleep(60*10) #sleep for 10 minutes except tweepy.TweepError as e: print(e.reason) except StopAsyncIteration: break
19.243902
77
0.674271
c3ddc761b71e57f7d84a44d606d052327407f56b
761
py
Python
step13_secret_manager/Python/example01_rotate_secret_with_lambda/lambda/index.py
fullstackwebdev/full-stack-serverless-cdk
798c98300b89cfb5eac6004cd348fa60d05f813b
[ "MIT" ]
192
2020-11-01T17:45:01.000Z
2022-03-16T08:14:58.000Z
step13_secret_manager/Python/example01_rotate_secret_with_lambda/lambda/index.py
fullstackwebdev/full-stack-serverless-cdk
798c98300b89cfb5eac6004cd348fa60d05f813b
[ "MIT" ]
16
2020-11-26T19:15:49.000Z
2020-12-27T00:26:21.000Z
step13_secret_manager/Python/example01_rotate_secret_with_lambda/lambda/index.py
fullstackwebdev/full-stack-serverless-cdk
798c98300b89cfb5eac6004cd348fa60d05f813b
[ "MIT" ]
101
2020-11-02T08:03:05.000Z
2022-03-29T00:55:40.000Z
from __future__ import print_function import os import json import boto3 import secrets secretsManager = boto3.client('secretsmanager', region_name= os.environ['REGION']) secretName = os.environ['SECRET_NAME'] keyInSecret = os.environ['KEY_IN_SECRET_NAME'] def handler(event, context): print(event) session = boto3.session.Session() client = session.client( service_name='secretsmanager', region_name= os.environ['REGION'], ) if event['Step'] == 'createSecret': client.put_secret_value( SecretId= secretName, SecretString= json.dumps({ keyInSecret : json.dumps(secrets.token_hex(64)) }), VersionStages=['AWSCURRENT'] )
26.241379
82
0.634691
93e0491304c58836491adaf2eefe355f62d8e62e
2,304
py
Python
PyBank/main-bank.py
gocurry1/python_challenge
15717fec6b179ea0a40725fc6d859f995f87c9a2
[ "MIT" ]
null
null
null
PyBank/main-bank.py
gocurry1/python_challenge
15717fec6b179ea0a40725fc6d859f995f87c9a2
[ "MIT" ]
null
null
null
PyBank/main-bank.py
gocurry1/python_challenge
15717fec6b179ea0a40725fc6d859f995f87c9a2
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[1]: import os import csv total_months = 0 net_amount = 0 monthly_change = [] month_count = [] greatest_increase = 0 greatest_increase_month = 0 greatest_decrease = 0 greatest_decrease_month = 0 csvpath = os.path.join('.', 'Resources', 'budget_data.csv') with open(csvpath, newline='') as csvfile: csvreader = csv.reader(csvfile, delimiter=',') csv_header = next(csvreader) row = next(csvreader) previous_row = int(row[1]) total_months += 1 net_amount += int(row[1]) greatest_increase = int(row[1]) greatest_increase_month = row[0] for row in csvreader: total_months += 1 net_amount += int(row[1]) revenue_change = int(row[1]) - previous_row monthly_change.append(revenue_change) previous_row = int(row[1]) month_count.append(row[0]) if int(row[1]) > greatest_increase: greatest_increase = int(row[1]) greatest_increase_month = row[0] if int(row[1]) < greatest_decrease: greatest_decrease = int(row[1]) greatest_decrease_month = row[0] average_change = sum(monthly_change)/ len(monthly_change) highest = max(monthly_change) lowest = min(monthly_change) print(f"Financial Analysis") print(f"---------------------------") print(f"Total Months: {total_months}") print(f"Total: ${net_amount}") print(f"Average Change: ${average_change:.2f}") print(f"Greatest Increase in Profits:, {greatest_increase_month}, (${highest})") print(f"Greatest Decrease in Profits:, {greatest_decrease_month}, (${lowest})") output_file = os.path.join('.', 'analysis', 'pybank_financial_analysis.text') with open(output_file, 'w',) as txtfile: txtfile.write(f"Financial Analysis\n") txtfile.write(f"---------------------------\n") txtfile.write(f"Total Months: {total_months}\n") txtfile.write(f"Total: ${net_amount}\n") txtfile.write(f"Average Change: ${average_change}\n") txtfile.write(f"Greatest Increase in Profits:, {greatest_increase_month}, (${highest})\n") txtfile.write(f"Greatest Decrease in Profits:, {greatest_decrease_month}, (${lowest})\n") # In[ ]:
24.252632
94
0.624132
40cdfc331000d9f7ddf122ce575146e3abf699ba
6,148
py
Python
dsmr_parser/clients/protocol.py
mjkl-gh/dsmr_parser
63338fbf06fe96444c814b224f6aaca3d78f4581
[ "MIT" ]
null
null
null
dsmr_parser/clients/protocol.py
mjkl-gh/dsmr_parser
63338fbf06fe96444c814b224f6aaca3d78f4581
[ "MIT" ]
null
null
null
dsmr_parser/clients/protocol.py
mjkl-gh/dsmr_parser
63338fbf06fe96444c814b224f6aaca3d78f4581
[ "MIT" ]
null
null
null
"""Asyncio protocol implementation for handling telegrams.""" from functools import partial import asyncio import logging from serial_asyncio import create_serial_connection from dsmr_parser import telegram_specifications from dsmr_parser.clients.telegram_buffer import TelegramBuffer from dsmr_parser.exceptions import ParseError, InvalidChecksumError from dsmr_parser.parsers import TelegramParser from dsmr_parser.clients.settings import SERIAL_SETTINGS_V2_2, \ SERIAL_SETTINGS_V4, SERIAL_SETTINGS_V5 def create_dsmr_protocol(dsmr_version, telegram_callback, loop=None, **kwargs): """Creates a DSMR asyncio protocol.""" protocol = _create_dsmr_protocol(dsmr_version, telegram_callback, DSMRProtocol, loop, **kwargs) return protocol def _create_dsmr_protocol(dsmr_version, telegram_callback, protocol, loop=None, **kwargs): """Creates a DSMR asyncio protocol.""" if dsmr_version == '2.2': specification = telegram_specifications.V2_2 serial_settings = SERIAL_SETTINGS_V2_2 elif dsmr_version == '4': specification = telegram_specifications.V4 serial_settings = SERIAL_SETTINGS_V4 elif dsmr_version == '4+': specification = telegram_specifications.V5 serial_settings = SERIAL_SETTINGS_V4 elif dsmr_version == '5': specification = telegram_specifications.V5 serial_settings = SERIAL_SETTINGS_V5 elif dsmr_version == '5B': specification = telegram_specifications.BELGIUM_FLUVIUS serial_settings = SERIAL_SETTINGS_V5 elif dsmr_version == "5L": specification = telegram_specifications.LUXEMBOURG_SMARTY serial_settings = SERIAL_SETTINGS_V5 elif dsmr_version == "5S": specification = telegram_specifications.SWEDEN serial_settings = SERIAL_SETTINGS_V5 elif dsmr_version == "Q3D": specification = telegram_specifications.Q3D serial_settings = SERIAL_SETTINGS_V5 else: raise NotImplementedError("No telegram parser found for version: %s", dsmr_version) protocol = partial(protocol, loop, TelegramParser(specification), telegram_callback=telegram_callback, **kwargs) return protocol, serial_settings def create_dsmr_reader(port, dsmr_version, telegram_callback, loop=None): """Creates a DSMR asyncio protocol coroutine using serial port.""" protocol, serial_settings = create_dsmr_protocol( dsmr_version, telegram_callback, loop=None) serial_settings['url'] = port conn = create_serial_connection(loop, protocol, **serial_settings) return conn def create_tcp_dsmr_reader(host, port, dsmr_version, telegram_callback, loop=None, keep_alive_interval=None): """Creates a DSMR asyncio protocol coroutine using TCP connection.""" if not loop: loop = asyncio.get_event_loop() protocol, _ = create_dsmr_protocol( dsmr_version, telegram_callback, loop=loop, keep_alive_interval=keep_alive_interval) conn = loop.create_connection(protocol, host, port) return conn class DSMRProtocol(asyncio.Protocol): """Assemble and handle incoming data into complete DSM telegrams.""" transport = None telegram_callback = None def __init__(self, loop, telegram_parser, telegram_callback=None, keep_alive_interval=None): """Initialize class.""" self.loop = loop self.log = logging.getLogger(__name__) self.telegram_parser = telegram_parser # callback to call on complete telegram self.telegram_callback = telegram_callback # buffer to keep incomplete incoming data self.telegram_buffer = TelegramBuffer() # keep a lock until the connection is closed self._closed = asyncio.Event() self._keep_alive_interval = keep_alive_interval self._active = True def connection_made(self, transport): """Just logging for now.""" self.transport = transport self.log.debug('connected') self._active = False if self.loop and self._keep_alive_interval: self.loop.call_later(self._keep_alive_interval, self.keep_alive) def data_received(self, data): """Add incoming data to buffer.""" # accept latin-1 (8-bit) on the line, to allow for non-ascii transport or padding data = data.decode("latin1") self._active = True self.log.debug('received data: %s', data) self.telegram_buffer.append(data) for telegram in self.telegram_buffer.get_all(): # ensure actual telegram is ascii (7-bit) only (ISO 646:1991 IRV required in section 5.5 of IEC 62056-21) telegram = telegram.encode("latin1").decode("ascii") self.handle_telegram(telegram) def keep_alive(self): if self._active: self.log.debug('keep-alive checked') self._active = False if self.loop: self.loop.call_later(self._keep_alive_interval, self.keep_alive) else: self.log.warning('keep-alive check failed') if self.transport: self.transport.close() def connection_lost(self, exc): """Stop when connection is lost.""" if exc: self.log.exception('disconnected due to exception', exc_info=exc) else: self.log.info('disconnected because of close/abort.') self._closed.set() def handle_telegram(self, telegram): """Send off parsed telegram to handling callback.""" self.log.debug('got telegram: %s', telegram) try: parsed_telegram = self.telegram_parser.parse(telegram) except InvalidChecksumError as e: self.log.warning(str(e)) except ParseError: self.log.exception("failed to parse telegram") else: self.telegram_callback(parsed_telegram) async def wait_closed(self): """Wait until connection is closed.""" await self._closed.wait()
37.950617
117
0.675992
6e38d1e07486bbd81e80de1f3b3d8a5d30c05618
5,376
py
Python
nipyapi/registry/models/extension_repo_artifact.py
Jimvin/nipyapi
826beac376d4321bd2d69491f09086474c7e7bfb
[ "Apache-2.0" ]
199
2017-08-24T12:19:41.000Z
2022-03-20T14:50:17.000Z
nipyapi/registry/models/extension_repo_artifact.py
Jimvin/nipyapi
826beac376d4321bd2d69491f09086474c7e7bfb
[ "Apache-2.0" ]
275
2017-08-28T21:21:49.000Z
2022-03-29T17:57:26.000Z
nipyapi/registry/models/extension_repo_artifact.py
Jimvin/nipyapi
826beac376d4321bd2d69491f09086474c7e7bfb
[ "Apache-2.0" ]
73
2017-09-07T10:13:56.000Z
2022-02-28T10:37:21.000Z
# coding: utf-8 """ Apache NiFi Registry REST API The REST API provides an interface to a registry with operations for saving, versioning, reading NiFi flows and components. OpenAPI spec version: 1.15.0 Contact: dev@nifi.apache.org Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class ExtensionRepoArtifact(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'link': 'JaxbLink', 'bucket_name': 'str', 'group_id': 'str', 'artifact_id': 'str' } attribute_map = { 'link': 'link', 'bucket_name': 'bucketName', 'group_id': 'groupId', 'artifact_id': 'artifactId' } def __init__(self, link=None, bucket_name=None, group_id=None, artifact_id=None): """ ExtensionRepoArtifact - a model defined in Swagger """ self._link = None self._bucket_name = None self._group_id = None self._artifact_id = None if link is not None: self.link = link if bucket_name is not None: self.bucket_name = bucket_name if group_id is not None: self.group_id = group_id if artifact_id is not None: self.artifact_id = artifact_id @property def link(self): """ Gets the link of this ExtensionRepoArtifact. An WebLink to this entity. :return: The link of this ExtensionRepoArtifact. :rtype: JaxbLink """ return self._link @link.setter def link(self, link): """ Sets the link of this ExtensionRepoArtifact. An WebLink to this entity. :param link: The link of this ExtensionRepoArtifact. :type: JaxbLink """ self._link = link @property def bucket_name(self): """ Gets the bucket_name of this ExtensionRepoArtifact. The bucket name :return: The bucket_name of this ExtensionRepoArtifact. :rtype: str """ return self._bucket_name @bucket_name.setter def bucket_name(self, bucket_name): """ Sets the bucket_name of this ExtensionRepoArtifact. The bucket name :param bucket_name: The bucket_name of this ExtensionRepoArtifact. :type: str """ self._bucket_name = bucket_name @property def group_id(self): """ Gets the group_id of this ExtensionRepoArtifact. The group id :return: The group_id of this ExtensionRepoArtifact. :rtype: str """ return self._group_id @group_id.setter def group_id(self, group_id): """ Sets the group_id of this ExtensionRepoArtifact. The group id :param group_id: The group_id of this ExtensionRepoArtifact. :type: str """ self._group_id = group_id @property def artifact_id(self): """ Gets the artifact_id of this ExtensionRepoArtifact. The artifact id :return: The artifact_id of this ExtensionRepoArtifact. :rtype: str """ return self._artifact_id @artifact_id.setter def artifact_id(self, artifact_id): """ Sets the artifact_id of this ExtensionRepoArtifact. The artifact id :param artifact_id: The artifact_id of this ExtensionRepoArtifact. :type: str """ self._artifact_id = artifact_id def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, ExtensionRepoArtifact): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
25.6
127
0.567894
10bde5119dead7aef2e791df1241d226f176e8cd
49
py
Python
tests/__init__.py
ahmed-shariff/acm-dl-hci-searcher-
0c2b683d0440fe6240e2a660ccc1c92461180f1e
[ "MIT" ]
null
null
null
tests/__init__.py
ahmed-shariff/acm-dl-hci-searcher-
0c2b683d0440fe6240e2a660ccc1c92461180f1e
[ "MIT" ]
null
null
null
tests/__init__.py
ahmed-shariff/acm-dl-hci-searcher-
0c2b683d0440fe6240e2a660ccc1c92461180f1e
[ "MIT" ]
null
null
null
"""Unit test package for acm_dl_hci_searcher."""
24.5
48
0.755102
2a8c2657da3340e273f57686ff8417e6dc429390
9,509
py
Python
romp/lib/maps_utils/centermap.py
iory/ROMP
d50bab681b5a60d15526fbeec1ed98cb020864b2
[ "MIT" ]
null
null
null
romp/lib/maps_utils/centermap.py
iory/ROMP
d50bab681b5a60d15526fbeec1ed98cb020864b2
[ "MIT" ]
null
null
null
romp/lib/maps_utils/centermap.py
iory/ROMP
d50bab681b5a60d15526fbeec1ed98cb020864b2
[ "MIT" ]
null
null
null
import torch import sys,os import numpy as np sys.path.append(os.path.abspath(__file__).replace('maps_utils/centermap.py','')) from config import args class CenterMap(object): def __init__(self,style='heatmap_adaptive_scale'): self.style=style self.size = args().centermap_size self.max_person = args().max_person self.shrink_scale = float(args().input_size//self.size) self.dims = 1 self.sigma = 1 self.conf_thresh= args().centermap_conf_thresh self.gk_group, self.pool_group = self.generate_kernels(args().kernel_sizes) if args().model_version>4: self.prepare_parsing() def prepare_parsing(self): self.coordmap_3d = get_3Dcoord_maps(size=self.size) self.maxpool3d = torch.nn.MaxPool3d(5, 1, (5-1)//2) def generate_kernels(self, kernel_size_list): gk_group, pool_group = {}, {} for kernel_size in set(kernel_size_list): x = np.arange(0, kernel_size, 1, float) y = x[:, np.newaxis] x0, y0 = (kernel_size-1)//2,(kernel_size-1)//2 gaussian_distribution = - ((x - x0) ** 2 + (y - y0) ** 2) / (2 * self.sigma ** 2) gk_group[kernel_size] = np.exp(gaussian_distribution) pool_group[kernel_size] = torch.nn.MaxPool2d(kernel_size, 1, (kernel_size-1)//2) return gk_group, pool_group def process_gt_CAM(self, center_normed): center_list = [] valid_mask = center_normed[:,:,0]>-1 valid_inds = torch.where(valid_mask) valid_batch_inds, valid_person_ids = valid_inds[0], valid_inds[1] center_gt = ((center_normed+1)/2*self.size).long() center_gt_valid = center_gt[valid_mask] return (valid_batch_inds, valid_person_ids, center_gt_valid) def generate_centermap(self, center_locs, **kwargs): return self.generate_centermap_heatmap_adaptive_scale(center_locs, **kwargs) def parse_centermap(self, center_map): return self.parse_centermap_heatmap_adaptive_scale_batch(center_map) def generate_centermap_heatmap_adaptive_scale(self, center_locs, bboxes_hw_norm, occluded_by_who=None,**kwargs): ''' center_locs is in the order of (y,x), corresponding to (w,h), while in the loading data, we have rectified it to the correct (x, y) order ''' radius_list = _calc_radius_(bboxes_hw_norm) if args().collision_aware_centermap and occluded_by_who is not None: # CAR : Collision-Aware Represenation for cur_idx, occluded_idx in enumerate(occluded_by_who): if occluded_idx>-1: dist_onmap = np.sqrt(((center_locs[occluded_idx]-center_locs[cur_idx])**2).sum()) + 1e-4 least_dist = (radius_list[occluded_idx]+radius_list[cur_idx]+1)/self.size*2 if dist_onmap<least_dist: offset = np.abs(((radius_list[occluded_idx]+radius_list[cur_idx]+1)/self.size*2-dist_onmap)/dist_onmap) \ * (center_locs[occluded_idx]-center_locs[cur_idx]+ 1e-4) * args().collision_factor center_locs[cur_idx] -= offset/2 center_locs[occluded_idx] += offset/2 # restrcit the range from -1 to 1 center_locs = np.clip(center_locs, -1, 1) center_locs[center_locs==-1] = -0.96 center_locs[center_locs==1] = 0.96 heatmap = self.generate_heatmap_adaptive_scale(center_locs, radius_list) heatmap = torch.from_numpy(heatmap) return heatmap def generate_heatmap_adaptive_scale(self,center_locs, radius_list,k=1): heatmap = np.zeros((1, self.size, self.size),dtype=np.float32) for center, radius in zip(center_locs,radius_list): diameter = 2 * radius + 1 gaussian = gaussian2D((diameter, diameter), sigma=float(diameter) / 6) x, y = int((center[0]+1)/2*self.size), int((center[1]+1)/2*self.size) if x < 0 or y < 0 or x >= self.size or y >= self.size: continue height, width = heatmap.shape[1:] left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) masked_heatmap = heatmap[0,y - top:y + bottom, x - left:x + right] masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right] if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) heatmap[0, y, x]=1 return heatmap def parse_centermap_heatmap_adaptive_scale(self, center_maps): center_map_nms = nms(center_maps, pool_func=self.pool_group[args().kernel_sizes[-1]])[0] h, w = center_map_nms.shape centermap = center_map_nms.view(-1) confidence, index = centermap.topk(self.max_person) x = index%w y = (index/float(w)).long() idx_topk = torch.stack((y,x),dim=1) centers_pred, conf_pred = idx_topk[confidence>self.conf_thresh], confidence[confidence>self.conf_thresh] return centers_pred, conf_pred def parse_centermap_heatmap_adaptive_scale_batch(self, center_maps): center_map_nms = nms(center_maps, pool_func=self.pool_group[args().kernel_sizes[-1]]) b, c, h, w = center_map_nms.shape K = self.max_person topk_scores, topk_inds = torch.topk(center_map_nms.reshape(b, c, -1), K) topk_inds = topk_inds % (h * w) topk_ys = (topk_inds // w).int().float() topk_xs = (topk_inds % w).int().float() # get all topk in in a batch topk_score, index = torch.topk(topk_scores.reshape(b, -1), K) # div by K because index is grouped by K(C x K shape) topk_clses = (index // K).int() topk_inds = gather_feature(topk_inds.view(b, -1, 1), index).reshape(b, K) topk_ys = gather_feature(topk_ys.reshape(b, -1, 1), index).reshape(b, K) topk_xs = gather_feature(topk_xs.reshape(b, -1, 1), index).reshape(b, K) mask = topk_score>self.conf_thresh batch_ids = torch.where(mask)[0] center_yxs = torch.stack([topk_ys[mask], topk_xs[mask]]).permute((1,0)) return batch_ids, topk_inds[mask], center_yxs, topk_score[mask] def nms(det, pool_func=None): maxm = pool_func(det) maxm = torch.eq(maxm, det).float() det = det * maxm return det def _calc_radius_(bboxes_hw_norm): radius_list = [] for bbox_norm in bboxes_hw_norm: # bbox_hw is the bbox_height/image_height bbox_hw_oncm = (bbox_norm+1)/2*args().centermap_size radius = int(gaussian_radius_scale(bbox_hw_oncm,minimum=2.)) radius_list.append(radius) return radius_list def gather_feature(fmap, index, mask=None, use_transform=False): if use_transform: # change a (N, C, H, W) tenor to (N, HxW, C) shape batch, channel = fmap.shape[:2] fmap = fmap.view(batch, channel, -1).permute((0, 2, 1)).contiguous() dim = fmap.size(-1) index = index.unsqueeze(len(index.shape)).expand(*index.shape, dim) fmap = fmap.gather(dim=1, index=index) if mask is not None: mask = mask.unsqueeze(2).expand_as(fmap) fmap = fmap[mask] fmap = fmap.reshape(-1, dim) return fmap def gaussian_radius_scale(det_size, min_overlap=0.3, k_low=1, k_range=7, minimum=2.): # min_overlap reduce the radius when multiple person gathered togather to avoid center ambiguous. height, width = det_size bbox_size = np.sqrt(height**2+width**2) radius = k_low + k_range * (bbox_size/(args().centermap_size*np.sqrt(2)))**2 return max(radius,minimum) def gaussian2D(shape, sigma=1): m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m+1,-n:n+1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h def process_center(center_gt, centermap): center_list = [] center_locs = torch.stack(torch.where(centermap[0]>0.25)).transpose(1,0) dists = [] for center in center_gt: dists.append(torch.norm(center_locs.float()-center[None].float(),dim=1)) dists = torch.stack(dists) assign_id = torch.argmin(dists,0) for center_id in range(len(center_gt)): center_list.append(center_locs[assign_id==center_id]) return center_list def print_matrix(matrix): for k in matrix: print_item = '' for i in k: print_item+='{:.2f} '.format(i) print(print_item) def test_centermaps(): batch_size = 2 CM = CenterMap() CM.size=16 center_locs = np.array([[0,0],[-0.3,-0.7]]) bboxes = [np.array([0.2,0.3]),np.array([0.5,0.4])] centermaps = [] for i in range(batch_size): centermaps.append(torch.from_numpy(CM.generate_centermap(center_locs,bboxes_hw_norm=bboxes))) centermaps = torch.stack(centermaps).cuda() print_matrix(centermaps[0,0]) print('__'*10) results = CM.parse_centermap_heatmap_adaptive_scale_batch(centermaps) print(results) #5CM.print_matrix(torch.nn.functional.softmax(centermap,1)[0]) for i in range(batch_size): result = CM.parse_centermap(centermaps[i]) print(result) center_list = process_center(result[0], centermaps[i]) print(center_list) if __name__ == '__main__': test_centermaps()
41.524017
148
0.637712
e44981d07c3ec290b13a182112575fa864d94fe7
6,576
py
Python
scripts/plot_hotfilm_stress_exp1.py
sustain-lab/asist-nsf-2018
2691bf7dc9d411e35db4e5a6c28d98f71730bee8
[ "MIT" ]
1
2018-10-09T22:18:16.000Z
2018-10-09T22:18:16.000Z
scripts/plot_hotfilm_stress_exp1.py
sustain-lab/asist-nsf-2018
2691bf7dc9d411e35db4e5a6c28d98f71730bee8
[ "MIT" ]
null
null
null
scripts/plot_hotfilm_stress_exp1.py
sustain-lab/asist-nsf-2018
2691bf7dc9d411e35db4e5a6c28d98f71730bee8
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ Processes raw hotfilm voltages to velocities. """ from asist_nsf_2018.experiments import experiments from asist_nsf_2018.process_level2 import clean_hotfilm_exp1 from asist.utility import binavg, limit_to_percentile_range, running_mean from asist.hotfilm import effective_velocity, hotfilm_velocity, read_hotfilm_from_netcdf from asist.pitot import read_pitot_from_netcdf from datetime import datetime, timedelta import numpy as np import os import matplotlib.pyplot as plt def hotfilm_velocity(veff1, veff2, k1=0.3, k2=0.3): """For a pair effective velocities from wire 1 and 2, calculates u and w components.""" un = np.sqrt((veff1**2 - k1**2 * veff2**2) / (1 - k1**2 * k2**2)) ut = np.sqrt((veff2**2 - k2**2 * veff1**2) / (1 - k1**2 * k2**2)) u = (ut + un) / np.sqrt(2.) w = (ut - un) / np.sqrt(2.) return u, w def smooth_ust(u, z): """Given input velocity u at height z, returns friction velocity of the smooth flow.""" z0 = 1e-3 kappa = 0.4 nu_air = 1.56e-5 for i in range(20): ust = kappa * u / np.log(z / z0) z0 = 0.132 * nu_air / ust return ust def rotate(u, w, th): """Rotates the vector (u, w) by angle th.""" ur = np.cos(th) * u + np.sin(th) * w wr = -np.sin(th) * u + np.cos(th) * w return ur, wr plt.rcParams.update({'font.size': 16}) # global font size setting np.warnings.filterwarnings('ignore') # ignore numpy warnings L2_DATA_PATH = os.environ['L2_DATA_PATH'] exp_name = 'asist-windonly-fresh' exp = experiments[exp_name] origin, hotfilm_seconds, fan, ch1, ch2 = read_hotfilm_from_netcdf(L2_DATA_PATH + '/hotfilm_' + exp_name + '.nc') origin, pitot_seconds, fan, u_pitot = read_pitot_from_netcdf(L2_DATA_PATH + '/pitot_' + exp_name + '.nc') ch1, ch2 = clean_hotfilm_exp1(exp, ch1, ch2, hotfilm_seconds) fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111) plt.plot(hotfilm_seconds, ch1, 'b-', lw=0.5, label='Channel 1') plt.plot(hotfilm_seconds, ch2, 'r-', lw=0.5, label='Channel 2') plt.legend(loc='upper left', fancybox=True, shadow=True) plt.grid(True) plt.xlabel('Time [s]') plt.ylabel('Hot film output [V]') plt.title('Raw hot film output [V], cleaned, ' + exp_name) plt.savefig('hotfilm_output_' + exp_name + '.png', dpi=100) plt.close(fig) # start and end time of fitting period t0 = exp.runs[1].start_time + timedelta(seconds=60) t1 = exp.runs[-2].end_time # start and end seconds of fitting period t0_seconds = (t0 - origin).total_seconds() t1_seconds = (t1 - origin).total_seconds() # start index of pitot and hotfilm time series n0 = np.argmin((pitot_seconds - t0_seconds)**2) n1 = np.argmin((pitot_seconds - t1_seconds)**2) pitot = u_pitot[n0-1:n1] # special case to handle dropped records in pressure files n0 = np.argmin((hotfilm_seconds - t0_seconds)**2) n1 = np.argmin((hotfilm_seconds - t1_seconds)**2) ch1_binavg = binavg(ch1[n0:n1], 100) ch2_binavg = binavg(ch2[n0:n1], 100) # 4-th order polynomial -- ordered highest to lowest degree p1 = np.polyfit(ch1_binavg, effective_velocity(pitot), 4) p2 = np.polyfit(ch2_binavg, effective_velocity(pitot), 4) # compute effective velocities veff1 = np.polyval(p1, ch1) veff2 = np.polyval(p2, ch2) fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111) plt.plot(ch1_binavg, effective_velocity(pitot), 'k.', ms=0.1) plt.plot(ch1, veff1, 'r.', ms=0.1) plt.grid(True) plt.xlabel('Input voltage [V]') plt.ylabel('Velocity [m/s]') plt.title('Polyfit of Ch1 -> pitot, ' + exp_name) plt.savefig('hotfilm_ch1_polyfit_' + exp_name + '.png', dpi=100) plt.close(fig) fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111) plt.plot(ch2_binavg, effective_velocity(pitot), 'k.', ms=0.1) plt.plot(ch2, veff2, 'r.', ms=0.1) plt.grid(True) plt.xlabel('Input voltage [V]') plt.ylabel('Velocity [m/s]') plt.title('Polyfit of Ch2 -> pitot, ' + exp_name) plt.savefig('hotfilm_ch2_polyfit_' + exp_name + '.png', dpi=100) plt.close(fig) veff1[veff1 < 0.2] = 0.2 veff2[veff2 < 0.2] = 0.2 u, w = hotfilm_velocity(veff1, veff2) fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111) plt.plot(hotfilm_seconds, u, 'b-', lw=0.1) plt.plot(hotfilm_seconds, w, 'r-', lw=0.1) plt.grid(True) plt.xlabel('Time [s]') plt.ylabel('Velocity [m/s]') plt.title('Hot film velocity, ' + exp_name) plt.savefig('hotfilm_velocity_' + exp_name + '.png', dpi=100) plt.close(fig) # averaging over full runs (5 minutes) U, W, uw = [], [], [] for run in exp.runs[1:-1]: t0 = run.start_time + timedelta(seconds=30) t1 = run.end_time - timedelta(seconds=30) t0_seconds = (t0 - origin).total_seconds() t1_seconds = (t1 - origin).total_seconds() mask = (hotfilm_seconds > t0_seconds) & (hotfilm_seconds < t1_seconds) um, wm = np.mean(u[mask]), np.mean(w[mask]) U.append(um) W.append(wm) th = np.arctan2(wm, um) up, wp = rotate(u[mask] - um, w[mask] - wm, th) uw.append(np.mean(up * wp)) U = np.array(U) W = np.array(W) uw = np.array(uw) ustc = smooth_ust(U, 0.31) uwc = ustc**2 # averaging over 60-s bins: U, W, uw = [], [], [] for run in exp.runs[1:-1]: t0 = run.start_time + timedelta(seconds=30) t1 = run.end_time - timedelta(seconds=30) t0_seconds = (t0 - origin).total_seconds() t1_seconds = (t1 - origin).total_seconds() binsize = 60. for tt in np.arange(t0_seconds, t1_seconds, binsize): start, stop = tt, tt + binsize mask = (hotfilm_seconds > start) & (hotfilm_seconds < stop) um, wm = np.mean(u[mask]), np.mean(w[mask]) U.append(um) W.append(wm) uw.append(np.mean((u[mask] - um) * (w[mask] - wm))) U = np.array(U) W = np.array(W) uw = np.array(uw) ust = np.sqrt(- uw) Cd = ust**2 / U**2 # u* vs U fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, xlim=(0, 35)) plt.plot(U, ust, 'k.', ms=12) plt.xlabel(r'$U_z$ [m/s]') plt.ylabel(r'$u^*$ [m/s]') plt.grid() plt.title(r'Hotfilm $u*$, fresh water') plt.savefig('ust_hotfilm_fresh.png', dpi=100) plt.close(fig) # u'w' vs U fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, xlim=(0, 35)) plt.plot(U, -uw, 'k.', ms=12) plt.xlabel(r'$U_z$ [m/s]') plt.ylabel(r"$\overline{u'w'}$ [m/s]") plt.grid() plt.title(r"Hotfilm $\overline{u'w'}$, fresh water") plt.savefig('uw_hotfilm_fresh.png', dpi=100) plt.close(fig) # Cd vs U fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, xlim=(0, 35), ylim=(0, 3e-3)) plt.plot(U, Cd, 'k.', ms=12) plt.xlabel(r'$U_z$ [m/s]') plt.ylabel(r"$C_D$") plt.grid() plt.title(r"Hotfilm $C_D$, fresh water") plt.savefig('cd_hotfilm_fresh.png', dpi=100) plt.close(fig)
32.078049
112
0.663321
a23f3f21958bd85503b67fb5a60a8d74bd5472b8
2,060
py
Python
src/scheduler/srt_scheduler.py
PatrickShaw/University-FIT2070-Assignment3
c45ed79ef35abb740b9591ef712a2d0eb1627592
[ "MIT" ]
2
2021-05-14T08:30:06.000Z
2021-05-14T08:30:08.000Z
src/scheduler/srt_scheduler.py
PatrickShaw/scheduling-simulator
c45ed79ef35abb740b9591ef712a2d0eb1627592
[ "MIT" ]
null
null
null
src/scheduler/srt_scheduler.py
PatrickShaw/scheduling-simulator
c45ed79ef35abb740b9591ef712a2d0eb1627592
[ "MIT" ]
null
null
null
from scheduler.fcfs_scheduler import FirstComeFirstServedScheduler from scheduler.process import Process class ShortestRemainingTimeScheduler(FirstComeFirstServedScheduler): """ A preemptive scheduler that executes whichever process is estimated to finish first. Note that the FCFS scheduler's increase_time(...) method is utilised for this scheduler since the preemption and shortest remaining times are calculated during the enqueuing of the process. """ def enqueue_process(self, process: Process): """ Enqueues a process for execution such that the queue remains ordered by the remaining time, starting from the shortest remaining time to the longest remaining time. :param process: The process to be enqueued by the scheduler """ self._on_process_enqueuing(process) if self._executing_process is not None: if self._executing_process.remaining_time > process.remaining_time: """ If the currently executing process is estimated to finish after the newly enqueued process, then preempt the process and push it back onto the start of the ready queue. Allow the new process to start executing (since it is estimated to finish first) """ self._ready_queue.appendleft(self._executing_process) self._executing_process = process return # Figure out where abouts this process belongs within the queue for p in range(len(self._ready_queue)-1, -1, -1): other_process = self._ready_queue[p] if other_process.remaining_time <= process.remaining_time: self._ready_queue.insert(p + 1, process) return """ At this point the process must belong at the start of the queue since we already checked if it was meant to be executing and we checked everywhere else along the queue. """ self._ready_queue.appendleft(process)
50.243902
118
0.674272
3d165cc5d512dcfb88319e529b19655783e6a0bb
5,928
py
Python
tourism_train.py
sanowar-raihan/nerf-meta
dbb97431b613acb3dfdc7075344c6e1fd1b6cf51
[ "MIT" ]
60
2021-05-10T20:06:10.000Z
2022-02-22T09:25:56.000Z
tourism_train.py
sanowar-raihan/nerf-meta
dbb97431b613acb3dfdc7075344c6e1fd1b6cf51
[ "MIT" ]
3
2021-05-21T02:21:47.000Z
2021-05-27T20:32:00.000Z
tourism_train.py
sanowar-raihan/nerf-meta
dbb97431b613acb3dfdc7075344c6e1fd1b6cf51
[ "MIT" ]
8
2021-05-14T01:43:34.000Z
2022-01-26T22:58:27.000Z
import argparse import json import copy import torch import torch.nn.functional as F from torch.utils.data import DataLoader from datasets.phototourism import build_tourism from models.nerf import build_nerf from models.rendering import get_rays_tourism, sample_points, volume_render def inner_loop(model, optim, img, rays_o, rays_d, bound, num_samples, raybatch_size, inner_steps): """ train the inner model for a specified number of iterations """ pixels = img.reshape(-1, 3) rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3) num_rays = rays_d.shape[0] for step in range(inner_steps): indices = torch.randint(num_rays, size=[raybatch_size]) raybatch_o, raybatch_d = rays_o[indices], rays_d[indices] pixelbatch = pixels[indices] t_vals, xyz = sample_points(raybatch_o, raybatch_d, bound[0], bound[1], num_samples, perturb=True) optim.zero_grad() rgbs, sigmas = model(xyz) colors = volume_render(rgbs, sigmas, t_vals) loss = F.mse_loss(colors, pixelbatch) loss.backward() optim.step() def train_meta(args, meta_model, meta_optim, data_loader, device): """ train the meta_model for one epoch using reptile meta learning https://arxiv.org/abs/1803.02999 """ for img, pose, kinv, bound in data_loader: img, pose, kinv, bound = img.to(device), pose.to(device), kinv.to(device), bound.to(device) img, pose, kinv, bound = img.squeeze(), pose.squeeze(), kinv.squeeze(), bound.squeeze() rays_o, rays_d = get_rays_tourism(img.shape[0], img.shape[1], kinv, pose) meta_optim.zero_grad() inner_model = copy.deepcopy(meta_model) inner_optim = torch.optim.SGD(inner_model.parameters(), args.inner_lr) inner_loop(inner_model, inner_optim, img, rays_o, rays_d, bound, args.num_samples, args.train_batchsize, args.inner_steps) with torch.no_grad(): for meta_param, inner_param in zip(meta_model.parameters(), inner_model.parameters()): meta_param.grad = meta_param - inner_param meta_optim.step() def report_result(model, img, rays_o, rays_d, bound, num_samples, raybatch_size): """ report synthesis result on heldout view """ pixels = img.reshape(-1, 3) rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3) t_vals, xyz = sample_points(rays_o, rays_d, bound[0], bound[1], num_samples, perturb=False) synth = [] num_rays = rays_d.shape[0] with torch.no_grad(): for i in range(0, num_rays, raybatch_size): rgbs_batch, sigmas_batch = model(xyz[i:i+raybatch_size]) color_batch = volume_render(rgbs_batch, sigmas_batch, t_vals[i:i+raybatch_size]) synth.append(color_batch) synth = torch.cat(synth, dim=0) error = F.mse_loss(synth, pixels) psnr = -10*torch.log10(error) return psnr def val_meta(args, model, val_loader, device): """ validate the meta trained model for phototourism """ meta_trained_state = model.state_dict() val_model = copy.deepcopy(model) val_psnrs = [] for img, pose, kinv, bound in val_loader: img, pose, kinv, bound = img.to(device), pose.to(device), kinv.to(device), bound.to(device) img, pose, kinv, bound = img.squeeze(), pose.squeeze(), kinv.squeeze(), bound.squeeze() rays_o, rays_d = get_rays_tourism(img.shape[0], img.shape[1], kinv, pose) # optimize on the left half, test on the right half left_width = img.shape[1]//2 right_width = img.shape[1] - left_width tto_img, test_img = torch.split(img, [left_width, right_width], dim=1) tto_rays_o, test_rays_o = torch.split(rays_o, [left_width, right_width], dim=1) tto_rays_d, test_rays_d = torch.split(rays_d, [left_width, right_width], dim=1) val_model.load_state_dict(meta_trained_state) val_optim = torch.optim.SGD(val_model.parameters(), args.inner_lr) inner_loop(val_model, val_optim, tto_img, tto_rays_o, tto_rays_d, bound, args.num_samples, args.train_batchsize, args.inner_steps) psnr = report_result(val_model, test_img, test_rays_o, test_rays_d, bound, args.num_samples, args.test_batchsize) val_psnrs.append(psnr) val_psnr = torch.stack(val_psnrs).mean() return val_psnr def main(): parser = argparse.ArgumentParser(description='phototourism with meta-learning') parser.add_argument('--config', type=str, required=True, help='config file for the scene') args = parser.parse_args() with open(args.config) as config: info = json.load(config) for key, value in info.items(): args.__dict__[key] = value device = torch.device("cuda" if torch.cuda.is_available() else "cpu") train_set = build_tourism(image_set="train", args=args) train_loader = DataLoader(train_set, batch_size=1, shuffle=True) val_set = build_tourism(image_set="val", args=args) val_loader = DataLoader(val_set, batch_size=1, shuffle=False) meta_model = build_nerf(args) meta_model.to(device) meta_optim = torch.optim.Adam(meta_model.parameters(), lr=args.meta_lr) for epoch in range(1, args.meta_epochs+1): train_meta(args, meta_model, meta_optim, train_loader, device) val_psnr = val_meta(args, meta_model, val_loader, device) print(f"Epoch: {epoch}, val psnr: {val_psnr:0.3f}") torch.save({ 'epoch': epoch, 'meta_model_state_dict': meta_model.state_dict(), 'meta_optim_state_dict': meta_optim.state_dict(), }, f'meta_epoch{epoch}.pth') if __name__ == '__main__': main()
38.245161
99
0.65081
ce7944f454fdfdfd0876dd9115c3e19165f61eae
1,120
py
Python
python_code_tips/misc/example1.py
zdh45222/2021MyDevNet
d9b739675e1550d488b42af74f70a283c8fc9554
[ "MIT" ]
156
2018-07-19T06:56:58.000Z
2022-03-20T19:30:57.000Z
python_code_tips/misc/example1.py
zdh45222/2021MyDevNet
d9b739675e1550d488b42af74f70a283c8fc9554
[ "MIT" ]
4
2021-04-07T23:22:30.000Z
2021-09-23T23:29:58.000Z
python_code_tips/misc/example1.py
zdh45222/2021MyDevNet
d9b739675e1550d488b42af74f70a283c8fc9554
[ "MIT" ]
130
2018-09-13T09:26:38.000Z
2022-03-20T19:34:48.000Z
#! /usr/bin/env python """Example Python script. Copyright (c) 2018 Cisco and/or its affiliates.""" import os def say_hello(name): """Function that will say hello to someone. """ # Print out a hello message to the name given print("Hello there {name}. It's great to see you.".format(name = name)) def script_details(): """Function that reports by printing to screen some details about the execution of the script.""" # Get the current directory and print it out. cur_dir = os.getcwd() print("Current directory is {}".format(cur_dir)) # Get the User ID and Group List for the User user_id = os.getuid() group_list = os.getgroups() # Print to screen print("The user id is {}".format(user_id)) print("The user is a member of the following groups:") print(",".join(str(g) for g in group_list)) if __name__ == "__main__": # If executed as a script, run this block. # Check Script details script_details() # List of names, and say hello to them names = ["Hank","Eric","Stuart","Bryan"] for name in names: say_hello(name)
26.046512
101
0.654464
2108ef1f85af5f5daf2c39855b2c64ed825311b7
3,773
py
Python
test/functional/p2p_dos_header_tree.py
TriCron/shirecoin
50ab7e5b7dc32350e4bcbe33ad728b3926212e5a
[ "MIT" ]
null
null
null
test/functional/p2p_dos_header_tree.py
TriCron/shirecoin
50ab7e5b7dc32350e4bcbe33ad728b3926212e5a
[ "MIT" ]
null
null
null
test/functional/p2p_dos_header_tree.py
TriCron/shirecoin
50ab7e5b7dc32350e4bcbe33ad728b3926212e5a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test that we reject low difficulty headers to prevent our block tree from filling up with useless bloat""" from test_framework.messages import ( CBlockHeader, FromHex, ) from test_framework.mininode import ( P2PInterface, msg_headers, ) from test_framework.test_framework import ShirecoinTestFramework import os class RejectLowDifficultyHeadersTest(ShirecoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.chain = 'testnet3' # Use testnet chain because it has an early checkpoint self.num_nodes = 2 def add_options(self, parser): parser.add_argument( '--datafile', default='data/blockheader_testnet3.hex', help='Test data file (default: %(default)s)', ) def run_test(self): self.log.info("Read headers data") self.headers_file_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), self.options.datafile) with open(self.headers_file_path, encoding='utf-8') as headers_data: h_lines = [l.strip() for l in headers_data.readlines()] # The headers data is taken from testnet3 for early blocks from genesis until the first checkpoint. There are # two headers with valid POW at height 1 and 2, forking off from genesis. They are indicated by the FORK_PREFIX. FORK_PREFIX = 'fork:' self.headers = [l for l in h_lines if not l.startswith(FORK_PREFIX)] self.headers_fork = [l[len(FORK_PREFIX):] for l in h_lines if l.startswith(FORK_PREFIX)] self.headers = [FromHex(CBlockHeader(), h) for h in self.headers] self.headers_fork = [FromHex(CBlockHeader(), h) for h in self.headers_fork] self.log.info("Feed all non-fork headers, including and up to the first checkpoint") self.nodes[0].add_p2p_connection(P2PInterface()) self.nodes[0].p2p.send_and_ping(msg_headers(self.headers)) assert { 'height': 546, 'hash': '000000002a936ca763904c3c35fce2f3556c559c0214345d31b1bcebf76acb70', 'branchlen': 546, 'status': 'headers-only', } in self.nodes[0].getchaintips() self.log.info("Feed all fork headers (fails due to checkpoint)") with self.nodes[0].assert_debug_log(['bad-fork-prior-to-checkpoint']): self.nodes[0].p2p.send_message(msg_headers(self.headers_fork)) self.nodes[0].p2p.wait_for_disconnect() self.log.info("Feed all fork headers (succeeds without checkpoint)") # On node 0 it succeeds because checkpoints are disabled self.restart_node(0, extra_args=['-nocheckpoints']) self.nodes[0].add_p2p_connection(P2PInterface()) self.nodes[0].p2p.send_and_ping(msg_headers(self.headers_fork)) assert { "height": 2, "hash": "00000000b0494bd6c3d5ff79c497cfce40831871cbf39b1bc28bd1dac817dc39", "branchlen": 2, "status": "headers-only", } in self.nodes[0].getchaintips() # On node 1 it succeeds because no checkpoint has been reached yet by a chain tip self.nodes[1].add_p2p_connection(P2PInterface()) self.nodes[1].p2p.send_and_ping(msg_headers(self.headers_fork)) assert { "height": 2, "hash": "00000000b0494bd6c3d5ff79c497cfce40831871cbf39b1bc28bd1dac817dc39", "branchlen": 2, "status": "headers-only", } in self.nodes[1].getchaintips() if __name__ == '__main__': RejectLowDifficultyHeadersTest().main()
42.875
120
0.672939
0d03e91654bd945f38e4da3900ecbacc5605fd5b
52
py
Python
chunkedimage/__init__.py
ambrosejcarr/chunkedimage
635ef44feeb28b8b9d4cdb895fc1a0dd37c22d1e
[ "MIT" ]
null
null
null
chunkedimage/__init__.py
ambrosejcarr/chunkedimage
635ef44feeb28b8b9d4cdb895fc1a0dd37c22d1e
[ "MIT" ]
null
null
null
chunkedimage/__init__.py
ambrosejcarr/chunkedimage
635ef44feeb28b8b9d4cdb895fc1a0dd37c22d1e
[ "MIT" ]
null
null
null
from .tile import Tile from .tileset import TileSet
17.333333
28
0.807692
ba9121902170bc605733e082c53fb2ac7366a9d0
131,645
py
Python
mne/viz/_3d.py
High-East/mne-python
5b45394a3a0c16097ceda56ee2500348b9b1827a
[ "BSD-3-Clause" ]
1
2021-11-15T06:11:51.000Z
2021-11-15T06:11:51.000Z
mne/viz/_3d.py
High-East/mne-python
5b45394a3a0c16097ceda56ee2500348b9b1827a
[ "BSD-3-Clause" ]
null
null
null
mne/viz/_3d.py
High-East/mne-python
5b45394a3a0c16097ceda56ee2500348b9b1827a
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Functions to make 3D plots with M/EEG data.""" # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Denis Engemann <denis.engemann@gmail.com> # Martin Luessi <mluessi@nmr.mgh.harvard.edu> # Eric Larson <larson.eric.d@gmail.com> # Mainak Jas <mainak@neuro.hut.fi> # Mark Wronkiewicz <wronk.mark@gmail.com> # # License: Simplified BSD import base64 from distutils.version import LooseVersion from io import BytesIO from itertools import cycle import os import os.path as op import warnings from collections.abc import Iterable from functools import partial import numpy as np from scipy import linalg, sparse from ..defaults import DEFAULTS from ..fixes import einsum, _crop_colorbar, _get_img_fdata from ..io import _loc_to_coil_trans from ..io.pick import pick_types, _picks_to_idx from ..io.constants import FIFF from ..io.meas_info import read_fiducials, create_info from ..source_space import (_ensure_src, _create_surf_spacing, _check_spacing, _read_mri_info) from ..surface import (get_meg_helmet_surf, read_surface, _DistanceQuery, transform_surface_to, _project_onto_surface, mesh_edges, _reorder_ccw, _complete_sphere_surf) from ..transforms import (_find_trans, apply_trans, rot_to_quat, combine_transforms, _get_trans, _ensure_trans, invert_transform, Transform, read_ras_mni_t, _print_coord_trans) from ..utils import (get_subjects_dir, logger, _check_subject, verbose, warn, has_nibabel, check_version, fill_doc, _pl, _ensure_int, _validate_type, _check_option) from .utils import (mne_analyze_colormap, _prepare_trellis, _get_color_list, plt_show, tight_layout, figure_nobar, _check_time_unit) from ..bem import (ConductorModel, _bem_find_surface, _surf_dict, _surf_name, read_bem_surfaces) verbose_dec = verbose FIDUCIAL_ORDER = (FIFF.FIFFV_POINT_LPA, FIFF.FIFFV_POINT_NASION, FIFF.FIFFV_POINT_RPA) # XXX: to unify with digitization def _fiducial_coords(points, coord_frame=None): """Generate 3x3 array of fiducial coordinates.""" points = points or [] # None -> list if coord_frame is not None: points = [p for p in points if p['coord_frame'] == coord_frame] points_ = {p['ident']: p for p in points if p['kind'] == FIFF.FIFFV_POINT_CARDINAL} if points_: return np.array([points_[i]['r'] for i in FIDUCIAL_ORDER]) else: # XXX eventually this should probably live in montage.py if coord_frame is None or coord_frame == FIFF.FIFFV_COORD_HEAD: # Try converting CTF HPI coils to fiducials out = np.empty((3, 3)) out.fill(np.nan) for p in points: if p['kind'] == FIFF.FIFFV_POINT_HPI: if np.isclose(p['r'][1:], 0, atol=1e-6).all(): out[0 if p['r'][0] < 0 else 2] = p['r'] elif np.isclose(p['r'][::2], 0, atol=1e-6).all(): out[1] = p['r'] if np.isfinite(out).all(): return out return np.array([]) def plot_head_positions(pos, mode='traces', cmap='viridis', direction='z', show=True, destination=None, info=None, color='k', axes=None): """Plot head positions. Parameters ---------- pos : ndarray, shape (n_pos, 10) | list of ndarray The head position data. Can also be a list to treat as a concatenation of runs. mode : str Can be 'traces' (default) to show position and quaternion traces, or 'field' to show the position as a vector field over time. The 'field' mode requires matplotlib 1.4+. cmap : colormap Colormap to use for the trace plot, default is "viridis". direction : str Can be any combination of "x", "y", or "z" (default: "z") to show directional axes in "field" mode. show : bool Show figure if True. Defaults to True. destination : str | array-like, shape (3,) | None The destination location for the head, assumed to be in head coordinates. See :func:`mne.preprocessing.maxwell_filter` for details. .. versionadded:: 0.16 info : instance of mne.Info | None Measurement information. If provided, will be used to show the destination position when ``destination is None``, and for showing the MEG sensors. .. versionadded:: 0.16 color : color object The color to use for lines in ``mode == 'traces'`` and quiver arrows in ``mode == 'field'``. .. versionadded:: 0.16 axes : array-like, shape (3, 2) The matplotlib axes to use. Only used for ``mode == 'traces'``. .. versionadded:: 0.16 Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ from ..chpi import head_pos_to_trans_rot_t from ..preprocessing.maxwell import _check_destination import matplotlib.pyplot as plt _check_option('mode', mode, ['traces', 'field']) dest_info = dict(dev_head_t=None) if info is None else info destination = _check_destination(destination, dest_info, head_frame=True) if destination is not None: destination = _ensure_trans(destination, 'head', 'meg') # probably inv destination = destination['trans'][:3].copy() destination[:, 3] *= 1000 if not isinstance(pos, (list, tuple)): pos = [pos] for ii, p in enumerate(pos): p = np.array(p, float) if p.ndim != 2 or p.shape[1] != 10: raise ValueError('pos (or each entry in pos if a list) must be ' 'dimension (N, 10), got %s' % (p.shape,)) if ii > 0: # concatenation p[:, 0] += pos[ii - 1][-1, 0] - p[0, 0] pos[ii] = p borders = np.cumsum([len(pp) for pp in pos]) pos = np.concatenate(pos, axis=0) trans, rot, t = head_pos_to_trans_rot_t(pos) # also ensures pos is okay # trans, rot, and t are for dev_head_t, but what we really want # is head_dev_t (i.e., where the head origin is in device coords) use_trans = einsum('ijk,ik->ij', rot[:, :3, :3].transpose([0, 2, 1]), -trans) * 1000 use_rot = rot.transpose([0, 2, 1]) use_quats = -pos[:, 1:4] # inverse (like doing rot.T) surf = rrs = lims = None if info is not None: meg_picks = pick_types(info, meg=True, ref_meg=False, exclude=()) if len(meg_picks) > 0: rrs = 1000 * np.array([info['chs'][pick]['loc'][:3] for pick in meg_picks], float) if mode == 'traces': lims = np.array((rrs.min(0), rrs.max(0))).T else: # mode == 'field' surf = get_meg_helmet_surf(info) transform_surface_to(surf, 'meg', info['dev_head_t'], copy=False) surf['rr'] *= 1000. helmet_color = (0.0, 0.0, 0.6) if mode == 'traces': if axes is None: axes = plt.subplots(3, 2, sharex=True)[1] else: axes = np.array(axes) if axes.shape != (3, 2): raise ValueError('axes must have shape (3, 2), got %s' % (axes.shape,)) fig = axes[0, 0].figure labels = ['xyz', ('$q_1$', '$q_2$', '$q_3$')] for ii, (quat, coord) in enumerate(zip(use_quats.T, use_trans.T)): axes[ii, 0].plot(t, coord, color, lw=1., zorder=3) axes[ii, 0].set(ylabel=labels[0][ii], xlim=t[[0, -1]]) axes[ii, 1].plot(t, quat, color, lw=1., zorder=3) axes[ii, 1].set(ylabel=labels[1][ii], xlim=t[[0, -1]]) for b in borders[:-1]: for jj in range(2): axes[ii, jj].axvline(t[b], color='r') for ii, title in enumerate(('Position (mm)', 'Rotation (quat)')): axes[0, ii].set(title=title) axes[-1, ii].set(xlabel='Time (s)') if rrs is not None: pos_bads = np.any([(use_trans[:, ii] <= lims[ii, 0]) | (use_trans[:, ii] >= lims[ii, 1]) for ii in range(3)], axis=0) for ii in range(3): oidx = list(range(ii)) + list(range(ii + 1, 3)) # knowing it will generally be spherical, we can approximate # how far away we are along the axis line by taking the # point to the left and right with the smallest distance from scipy.spatial.distance import cdist dists = cdist(rrs[:, oidx], use_trans[:, oidx]) left = rrs[:, [ii]] < use_trans[:, ii] left_dists_all = dists.copy() left_dists_all[~left] = np.inf # Don't show negative Z direction if ii != 2 and np.isfinite(left_dists_all).any(): idx = np.argmin(left_dists_all, axis=0) left_dists = rrs[idx, ii] bads = ~np.isfinite( left_dists_all[idx, np.arange(len(idx))]) | pos_bads left_dists[bads] = np.nan axes[ii, 0].plot(t, left_dists, color=helmet_color, ls='-', lw=0.5, zorder=2) else: axes[ii, 0].axhline(lims[ii][0], color=helmet_color, ls='-', lw=0.5, zorder=2) right_dists_all = dists right_dists_all[left] = np.inf if np.isfinite(right_dists_all).any(): idx = np.argmin(right_dists_all, axis=0) right_dists = rrs[idx, ii] bads = ~np.isfinite( right_dists_all[idx, np.arange(len(idx))]) | pos_bads right_dists[bads] = np.nan axes[ii, 0].plot(t, right_dists, color=helmet_color, ls='-', lw=0.5, zorder=2) else: axes[ii, 0].axhline(lims[ii][1], color=helmet_color, ls='-', lw=0.5, zorder=2) for ii in range(3): axes[ii, 1].set(ylim=[-1, 1]) if destination is not None: vals = np.array([destination[:, 3], rot_to_quat(destination[:, :3])]).T.ravel() for ax, val in zip(fig.axes, vals): ax.axhline(val, color='r', ls=':', zorder=2, lw=1.) else: # mode == 'field': from matplotlib.colors import Normalize from mpl_toolkits.mplot3d.art3d import Line3DCollection from mpl_toolkits.mplot3d import axes3d # noqa: F401, analysis:ignore fig, ax = plt.subplots(1, subplot_kw=dict(projection='3d')) # First plot the trajectory as a colormap: # http://matplotlib.org/examples/pylab_examples/multicolored_line.html pts = use_trans[:, np.newaxis] segments = np.concatenate([pts[:-1], pts[1:]], axis=1) norm = Normalize(t[0], t[-2]) lc = Line3DCollection(segments, cmap=cmap, norm=norm) lc.set_array(t[:-1]) ax.add_collection(lc) # now plot the head directions as a quiver dir_idx = dict(x=0, y=1, z=2) kwargs = dict(pivot='tail') for d, length in zip(direction, [5., 2.5, 1.]): use_dir = use_rot[:, :, dir_idx[d]] # draws stems, then heads array = np.concatenate((t, np.repeat(t, 2))) ax.quiver(use_trans[:, 0], use_trans[:, 1], use_trans[:, 2], use_dir[:, 0], use_dir[:, 1], use_dir[:, 2], norm=norm, cmap=cmap, array=array, length=length, **kwargs) if destination is not None: ax.quiver(destination[0, 3], destination[1, 3], destination[2, 3], destination[dir_idx[d], 0], destination[dir_idx[d], 1], destination[dir_idx[d], 2], color=color, length=length, **kwargs) mins = use_trans.min(0) maxs = use_trans.max(0) if surf is not None: ax.plot_trisurf(*surf['rr'].T, triangles=surf['tris'], color=helmet_color, alpha=0.1, shade=False) ax.scatter(*rrs.T, s=1, color=helmet_color) mins = np.minimum(mins, rrs.min(0)) maxs = np.maximum(maxs, rrs.max(0)) scale = (maxs - mins).max() / 2. xlim, ylim, zlim = (maxs + mins)[:, np.newaxis] / 2. + [-scale, scale] ax.set(xlabel='x', ylabel='y', zlabel='z', xlim=xlim, ylim=ylim, zlim=zlim) _set_aspect_equal(ax) ax.view_init(30, 45) tight_layout(fig=fig) plt_show(show) return fig def _set_aspect_equal(ax): # XXX recent MPL throws an error for 3D axis aspect setting, not much # we can do about it at this point try: ax.set_aspect('equal') except NotImplementedError: pass @verbose def plot_evoked_field(evoked, surf_maps, time=None, time_label='t = %0.0f ms', n_jobs=1, fig=None, verbose=None): """Plot MEG/EEG fields on head surface and helmet in 3D. Parameters ---------- evoked : instance of mne.Evoked The evoked object. surf_maps : list The surface mapping information obtained with make_field_map. time : float | None The time point at which the field map shall be displayed. If None, the average peak latency (across sensor types) is used. time_label : str How to print info about the time instant visualized. %(n_jobs)s fig : instance of mayavi.core.api.Scene | None If None (default), a new figure will be created, otherwise it will plot into the given figure. .. versionadded:: 0.20 %(verbose)s Returns ------- fig : instance of mayavi.mlab.Figure The mayavi figure. """ # Update the backend from .backends.renderer import _get_renderer types = [t for t in ['eeg', 'grad', 'mag'] if t in evoked] time_idx = None if time is None: time = np.mean([evoked.get_peak(ch_type=t)[1] for t in types]) del types if not evoked.times[0] <= time <= evoked.times[-1]: raise ValueError('`time` (%0.3f) must be inside `evoked.times`' % time) time_idx = np.argmin(np.abs(evoked.times - time)) # Plot them alphas = [1.0, 0.5] colors = [(0.6, 0.6, 0.6), (1.0, 1.0, 1.0)] colormap = mne_analyze_colormap(format='mayavi') colormap_lines = np.concatenate([np.tile([0., 0., 255., 255.], (127, 1)), np.tile([0., 0., 0., 255.], (2, 1)), np.tile([255., 0., 0., 255.], (127, 1))]) renderer = _get_renderer(fig, bgcolor=(0.0, 0.0, 0.0), size=(600, 600)) for ii, this_map in enumerate(surf_maps): surf = this_map['surf'] map_data = this_map['data'] map_type = this_map['kind'] map_ch_names = this_map['ch_names'] if map_type == 'eeg': pick = pick_types(evoked.info, meg=False, eeg=True) else: pick = pick_types(evoked.info, meg=True, eeg=False, ref_meg=False) ch_names = [evoked.ch_names[k] for k in pick] set_ch_names = set(ch_names) set_map_ch_names = set(map_ch_names) if set_ch_names != set_map_ch_names: message = ['Channels in map and data do not match.'] diff = set_map_ch_names - set_ch_names if len(diff): message += ['%s not in data file. ' % list(diff)] diff = set_ch_names - set_map_ch_names if len(diff): message += ['%s not in map file.' % list(diff)] raise RuntimeError(' '.join(message)) data = np.dot(map_data, evoked.data[pick, time_idx]) # Make a solid surface vlim = np.max(np.abs(data)) alpha = alphas[ii] renderer.surface(surface=surf, color=colors[ii], opacity=alpha) # Now show our field pattern renderer.surface(surface=surf, vmin=-vlim, vmax=vlim, scalars=data, colormap=colormap) # And the field lines on top renderer.contour(surface=surf, scalars=data, contours=21, vmin=-vlim, vmax=vlim, opacity=alpha, colormap=colormap_lines) if '%' in time_label: time_label %= (1e3 * evoked.times[time_idx]) renderer.text2d(x_window=0.01, y_window=0.01, text=time_label) renderer.set_camera(azimuth=10, elevation=60) renderer.show() return renderer.scene() def _plot_mri_contours(mri_fname, surf_fnames, orientation='coronal', slices=None, show=True, img_output=False): """Plot BEM contours on anatomical slices. Parameters ---------- mri_fname : str The name of the file containing anatomical data. surf_fnames : list of str The filenames for the BEM surfaces in the format ['inner_skull.surf', 'outer_skull.surf', 'outer_skin.surf']. orientation : str 'coronal' or 'transverse' or 'sagittal' slices : list of int Slice indices. show : bool Call pyplot.show() at the end. img_output : None | tuple If tuple (width and height), images will be produced instead of a single figure with many axes. This mode is designed to reduce the (substantial) overhead associated with making tens to hundreds of matplotlib axes, instead opting to re-use a single Axes instance. Returns ------- fig : instance of matplotlib.figure.Figure | list The figure. Will instead be a list of png images if img_output is a tuple. """ import matplotlib.pyplot as plt import nibabel as nib _check_option('orientation', orientation, ['coronal', 'axial', 'sagittal']) # Load the T1 data nim = nib.load(mri_fname) data = _get_img_fdata(nim) try: affine = nim.affine except AttributeError: # old nibabel affine = nim.get_affine() n_sag, n_axi, n_cor = data.shape orientation_name2axis = dict(sagittal=0, axial=1, coronal=2) orientation_axis = orientation_name2axis[orientation] if slices is None: n_slices = data.shape[orientation_axis] slices = np.linspace(0, n_slices, 12, endpoint=False).astype(np.int) # create of list of surfaces surfs = list() trans = linalg.inv(affine) # XXX : next line is a hack don't ask why trans[:3, -1] = [n_sag // 2, n_axi // 2, n_cor // 2] for surf_fname in surf_fnames: surf = read_surface(surf_fname, return_dict=True)[-1] # move back surface to MRI coordinate system surf['rr'] = nib.affines.apply_affine(trans, surf['rr']) surfs.append(surf) if img_output is None: fig, axs, _, _ = _prepare_trellis(len(slices), 4) else: fig, ax = plt.subplots(1, 1, figsize=(7.0, 7.0)) axs = [ax] * len(slices) fig_size = fig.get_size_inches() w, h = img_output[0], img_output[1] w2 = fig_size[0] fig.set_size_inches([(w2 / float(w)) * w, (w2 / float(w)) * h]) plt.close(fig) inds = dict(coronal=[0, 1, 2], axial=[2, 0, 1], sagittal=[2, 1, 0])[orientation] outs = [] for ax, sl in zip(axs, slices): # adjust the orientations for good view if orientation == 'coronal': dat = data[:, :, sl].transpose() elif orientation == 'axial': dat = data[:, sl, :] elif orientation == 'sagittal': dat = data[sl, :, :] # First plot the anatomical data if img_output is not None: ax.clear() ax.imshow(dat, cmap=plt.cm.gray) ax.axis('off') # and then plot the contours on top for surf in surfs: with warnings.catch_warnings(record=True): # no contours warnings.simplefilter('ignore') ax.tricontour(surf['rr'][:, inds[0]], surf['rr'][:, inds[1]], surf['tris'], surf['rr'][:, inds[2]], levels=[sl], colors='yellow', linewidths=2.0) if img_output is not None: ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim(0, img_output[1]) ax.set_ylim(img_output[0], 0) output = BytesIO() fig.savefig(output, bbox_inches='tight', pad_inches=0, format='png') outs.append(base64.b64encode(output.getvalue()).decode('ascii')) if show: plt.subplots_adjust(left=0., bottom=0., right=1., top=1., wspace=0., hspace=0.) plt_show(show) return fig if img_output is None else outs @verbose def plot_alignment(info=None, trans=None, subject=None, subjects_dir=None, surfaces='head', coord_frame='head', meg=None, eeg='original', fwd=None, dig=False, ecog=True, src=None, mri_fiducials=False, bem=None, seeg=True, fnirs=True, show_axes=False, fig=None, interaction='trackball', verbose=None): """Plot head, sensor, and source space alignment in 3D. Parameters ---------- info : dict | None The measurement info. If None (default), no sensor information will be shown. %(trans)s subject : str | None The subject name corresponding to FreeSurfer environment variable SUBJECT. Can be omitted if ``src`` is provided. %(subjects_dir)s surfaces : str | list Surfaces to plot. Supported values: * scalp: one of 'head', 'outer_skin' (alias for 'head'), 'head-dense', or 'seghead' (alias for 'head-dense') * skull: 'outer_skull', 'inner_skull', 'brain' (alias for 'inner_skull') * brain: one of 'pial', 'white', 'inflated', or 'brain' (alias for 'pial'). Defaults to 'head'. .. note:: For single layer BEMs it is recommended to use 'brain'. coord_frame : str Coordinate frame to use, 'head', 'meg', or 'mri'. meg : str | list | bool | None Can be "helmet", "sensors" or "ref" to show the MEG helmet, sensors or reference sensors respectively, or a combination like ``('helmet', 'sensors')`` (same as None, default). True translates to ``('helmet', 'sensors', 'ref')``. eeg : bool | str | list String options are: - "original" (default; equivalent to ``True``) Shows EEG sensors using their digitized locations (after transformation to the chosen ``coord_frame``) - "projected" The EEG locations projected onto the scalp, as is done in forward modeling Can also be a list of these options, or an empty list (``[]``, equivalent of ``False``). fwd : instance of Forward The forward solution. If present, the orientations of the dipoles present in the forward solution are displayed. dig : bool | 'fiducials' If True, plot the digitization points; 'fiducials' to plot fiducial points only. ecog : bool If True (default), show ECoG sensors. src : instance of SourceSpaces | None If not None, also plot the source space points. mri_fiducials : bool | str Plot MRI fiducials (default False). If ``True``, look for a file with the canonical name (``bem/{subject}-fiducials.fif``). If ``str`` it should provide the full path to the fiducials file. bem : list of dict | instance of ConductorModel | None Can be either the BEM surfaces (list of dict), a BEM solution or a sphere model. If None, we first try loading `'$SUBJECTS_DIR/$SUBJECT/bem/$SUBJECT-$SOURCE.fif'`, and then look for `'$SUBJECT*$SOURCE.fif'` in the same directory. For `'outer_skin'`, the subjects bem and bem/flash folders are searched. Defaults to None. seeg : bool If True (default), show sEEG electrodes. fnirs : str | list | bool | None Can be "channels" or "pairs" to show the fNIRS channel locations or line between source-detector pairs, or a combination like ``('pairs', 'channels')``. True translates to ``('pairs',)``. .. versionadded:: 0.20 show_axes : bool If True (default False), coordinate frame axis indicators will be shown: * head in pink. * MRI in gray (if ``trans is not None``). * MEG in blue (if MEG sensors are present). .. versionadded:: 0.16 fig : mayavi.mlab.Figure | None Mayavi Scene in which to plot the alignment. If ``None``, creates a new 600x600 pixel figure with black background. .. versionadded:: 0.16 interaction : str Can be "trackball" (default) or "terrain", i.e. a turntable-style camera. .. versionadded:: 0.16 %(verbose)s Returns ------- fig : instance of mayavi.mlab.Figure The mayavi figure. See Also -------- mne.viz.plot_bem Notes ----- This function serves the purpose of checking the validity of the many different steps of source reconstruction: - Transform matrix (keywords ``trans``, ``meg`` and ``mri_fiducials``), - BEM surfaces (keywords ``bem`` and ``surfaces``), - sphere conductor model (keywords ``bem`` and ``surfaces``) and - source space (keywords ``surfaces`` and ``src``). .. versionadded:: 0.15 """ from ..forward import _create_meg_coils, Forward # Update the backend from .backends.renderer import _get_renderer if eeg is False: eeg = list() elif eeg is True: eeg = 'original' if meg is None: meg = ('helmet', 'sensors') # only consider warning if the value is explicit warn_meg = False else: warn_meg = True if meg is True: meg = ('helmet', 'sensors', 'ref') elif meg is False: meg = list() elif isinstance(meg, str): meg = [meg] if isinstance(eeg, str): eeg = [eeg] if fnirs is True: fnirs = ['pairs'] elif fnirs is False: fnirs = list() elif isinstance(fnirs, str): fnirs = [fnirs] _check_option('interaction', interaction, ['trackball', 'terrain']) for kind, var in zip(('eeg', 'meg', 'fnirs'), (eeg, meg, fnirs)): if not isinstance(var, (list, tuple)) or \ not all(isinstance(x, str) for x in var): raise TypeError('%s must be list or tuple of str, got %s' % (kind, type(var))) for xi, x in enumerate(meg): _check_option('meg[%d]' % xi, x, ('helmet', 'sensors', 'ref')) for xi, x in enumerate(eeg): _check_option('eeg[%d]' % xi, x, ('original', 'projected')) for xi, x in enumerate(fnirs): _check_option('fnirs[%d]' % xi, x, ('channels', 'pairs')) info = create_info(1, 1000., 'misc') if info is None else info _validate_type(info, "info") if isinstance(surfaces, str): surfaces = [surfaces] surfaces = list(surfaces) for s in surfaces: _validate_type(s, "str", "all entries in surfaces") is_sphere = False if isinstance(bem, ConductorModel) and bem['is_sphere']: if len(bem['layers']) != 4 and len(surfaces) > 1: raise ValueError('The sphere conductor model must have three ' 'layers for plotting skull and head.') is_sphere = True _check_option('coord_frame', coord_frame, ['head', 'meg', 'mri']) if src is not None: src = _ensure_src(src) src_subject = src._subject subject = src_subject if subject is None else subject if src_subject is not None and subject != src_subject: raise ValueError('subject ("%s") did not match the subject name ' ' in src ("%s")' % (subject, src_subject)) src_rr = np.concatenate([s['rr'][s['inuse'].astype(bool)] for s in src]) src_nn = np.concatenate([s['nn'][s['inuse'].astype(bool)] for s in src]) else: src_rr = src_nn = np.empty((0, 3)) if fwd is not None: _validate_type(fwd, [Forward]) fwd_rr = fwd['source_rr'] if fwd['source_ori'] == FIFF.FIFFV_MNE_FIXED_ORI: fwd_nn = fwd['source_nn'].reshape(-1, 1, 3) else: fwd_nn = fwd['source_nn'].reshape(-1, 3, 3) ref_meg = 'ref' in meg meg_picks = pick_types(info, meg=True, ref_meg=ref_meg) eeg_picks = pick_types(info, meg=False, eeg=True, ref_meg=False) fnirs_picks = pick_types(info, meg=False, eeg=False, ref_meg=False, fnirs=True) other_bools = dict(ecog=ecog, seeg=seeg, fnirs=('channels' in fnirs)) del ecog, seeg other_keys = sorted(other_bools.keys()) other_picks = {key: pick_types(info, meg=False, ref_meg=False, **{key: True}) for key in other_keys} if trans == 'auto': # let's try to do this in MRI coordinates so they're easy to plot subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) trans = _find_trans(subject, subjects_dir) head_mri_t, _ = _get_trans(trans, 'head', 'mri') dev_head_t, _ = _get_trans(info['dev_head_t'], 'meg', 'head') del trans # Figure out our transformations if coord_frame == 'meg': head_trans = invert_transform(dev_head_t) meg_trans = Transform('meg', 'meg') mri_trans = invert_transform(combine_transforms( dev_head_t, head_mri_t, 'meg', 'mri')) elif coord_frame == 'mri': head_trans = head_mri_t meg_trans = combine_transforms(dev_head_t, head_mri_t, 'meg', 'mri') mri_trans = Transform('mri', 'mri') else: # coord_frame == 'head' head_trans = Transform('head', 'head') meg_trans = dev_head_t mri_trans = invert_transform(head_mri_t) # both the head and helmet will be in MRI coordinates after this surfs = dict() # Head: sphere_level = 4 head = False for s in surfaces: if s in ('head', 'outer_skin', 'head-dense', 'seghead'): if head: raise ValueError('Can only supply one head-like surface name') surfaces.pop(surfaces.index(s)) head = True head_surf = None # Try the BEM if applicable if s in ('head', 'outer_skin'): if bem is not None: head_missing = ( 'Could not find the surface for ' 'head in the provided BEM model, ' 'looking in the subject directory.') if isinstance(bem, ConductorModel): if is_sphere: head_surf = _complete_sphere_surf( bem, 3, sphere_level, complete=False) else: # BEM solution try: head_surf = _bem_find_surface( bem, FIFF.FIFFV_BEM_SURF_ID_HEAD) except RuntimeError: logger.info(head_missing) elif bem is not None: # list of dict for this_surf in bem: if this_surf['id'] == FIFF.FIFFV_BEM_SURF_ID_HEAD: head_surf = this_surf break else: logger.info(head_missing) if head_surf is None: if subject is None: raise ValueError('To plot the head surface, the BEM/sphere' ' model must contain a head surface ' 'or "subject" must be provided (got ' 'None)') subject_dir = op.join( get_subjects_dir(subjects_dir, raise_error=True), subject) if s in ('head-dense', 'seghead'): try_fnames = [ op.join(subject_dir, 'bem', '%s-head-dense.fif' % subject), op.join(subject_dir, 'surf', 'lh.seghead'), ] else: try_fnames = [ op.join(subject_dir, 'bem', 'outer_skin.surf'), op.join(subject_dir, 'bem', 'flash', 'outer_skin.surf'), op.join(subject_dir, 'bem', '%s-head.fif' % subject), ] for fname in try_fnames: if op.exists(fname): logger.info('Using %s for head surface.' % (op.basename(fname),)) if op.splitext(fname)[-1] == '.fif': head_surf = read_bem_surfaces(fname)[0] else: head_surf = read_surface( fname, return_dict=True)[2] head_surf['rr'] /= 1000. head_surf.update(coord_frame=FIFF.FIFFV_COORD_MRI) break else: raise IOError('No head surface found for subject ' '%s after trying:\n%s' % (subject, '\n'.join(try_fnames))) surfs['head'] = head_surf # Skull: skull = list() for name, id_ in (('outer_skull', FIFF.FIFFV_BEM_SURF_ID_SKULL), ('inner_skull', FIFF.FIFFV_BEM_SURF_ID_BRAIN)): if name in surfaces: surfaces.pop(surfaces.index(name)) if bem is None: fname = op.join( get_subjects_dir(subjects_dir, raise_error=True), subject, 'bem', name + '.surf') if not op.isfile(fname): raise ValueError('bem is None and the the %s file cannot ' 'be found:\n%s' % (name, fname)) surf = read_surface(fname, return_dict=True)[2] surf.update(coord_frame=FIFF.FIFFV_COORD_MRI, id=_surf_dict[name]) surf['rr'] /= 1000. skull.append(surf) elif isinstance(bem, ConductorModel): if is_sphere: if len(bem['layers']) != 4: raise ValueError('The sphere model must have three ' 'layers for plotting %s' % (name,)) this_idx = 1 if name == 'inner_skull' else 2 skull.append(_complete_sphere_surf( bem, this_idx, sphere_level)) skull[-1]['id'] = _surf_dict[name] else: skull.append(_bem_find_surface(bem, id_)) else: # BEM model for this_surf in bem: if this_surf['id'] == _surf_dict[name]: skull.append(this_surf) break else: raise ValueError('Could not find the surface for %s.' % name) if mri_fiducials: if mri_fiducials is True: subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) if subject is None: raise ValueError("Subject needs to be specified to " "automatically find the fiducials file.") mri_fiducials = op.join(subjects_dir, subject, 'bem', subject + '-fiducials.fif') if isinstance(mri_fiducials, str): mri_fiducials, cf = read_fiducials(mri_fiducials) if cf != FIFF.FIFFV_COORD_MRI: raise ValueError("Fiducials are not in MRI space") fid_loc = _fiducial_coords(mri_fiducials, FIFF.FIFFV_COORD_MRI) fid_loc = apply_trans(mri_trans, fid_loc) else: fid_loc = [] if 'helmet' in meg and len(meg_picks) > 0: surfs['helmet'] = get_meg_helmet_surf(info, head_mri_t) assert surfs['helmet']['coord_frame'] == FIFF.FIFFV_COORD_MRI # Brain: brain = np.intersect1d(surfaces, ['brain', 'pial', 'white', 'inflated']) if len(brain) > 1: raise ValueError('Only one brain surface can be plotted. ' 'Got %s.' % brain) elif len(brain) == 0: brain = False else: # exactly 1 brain = brain[0] surfaces.pop(surfaces.index(brain)) brain = 'pial' if brain == 'brain' else brain if is_sphere: if len(bem['layers']) > 0: surfs['lh'] = _complete_sphere_surf( bem, 0, sphere_level) # only plot 1 else: subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) for hemi in ['lh', 'rh']: fname = op.join(subjects_dir, subject, 'surf', '%s.%s' % (hemi, brain)) surfs[hemi] = read_surface(fname, return_dict=True)[2] surfs[hemi]['rr'] /= 1000. surfs[hemi].update(coord_frame=FIFF.FIFFV_COORD_MRI) brain = True # we've looked through all of them, raise if some remain if len(surfaces) > 0: raise ValueError('Unknown surface type%s: %s' % (_pl(surfaces), surfaces,)) skull_alpha = dict() skull_colors = dict() hemi_val = 0.5 if src is None or (brain and any(s['type'] == 'surf' for s in src)): hemi_val = 1. alphas = (4 - np.arange(len(skull) + 1)) * (0.5 / 4.) for idx, this_skull in enumerate(skull): if isinstance(this_skull, dict): skull_surf = this_skull this_skull = _surf_name[skull_surf['id']] elif is_sphere: # this_skull == str this_idx = 1 if this_skull == 'inner_skull' else 2 skull_surf = _complete_sphere_surf(bem, this_idx, sphere_level) else: # str skull_fname = op.join(subjects_dir, subject, 'bem', 'flash', '%s.surf' % this_skull) if not op.exists(skull_fname): skull_fname = op.join(subjects_dir, subject, 'bem', '%s.surf' % this_skull) if not op.exists(skull_fname): raise IOError('No skull surface %s found for subject %s.' % (this_skull, subject)) logger.info('Using %s for head surface.' % skull_fname) skull_surf = read_surface(skull_fname, return_dict=True)[2] skull_surf['rr'] /= 1000. skull_surf['coord_frame'] = FIFF.FIFFV_COORD_MRI skull_alpha[this_skull] = alphas[idx + 1] skull_colors[this_skull] = (0.95 - idx * 0.2, 0.85, 0.95 - idx * 0.2) surfs[this_skull] = skull_surf if src is None and brain is False and len(skull) == 0 and not show_axes: head_alpha = 1.0 else: head_alpha = alphas[0] for key in surfs.keys(): # Surfs can sometimes be in head coords (e.g., if coming from sphere) surfs[key] = transform_surface_to(surfs[key], coord_frame, [mri_trans, head_trans], copy=True) if src is not None: src_rr, src_nn = _update_coord_frame(src[0], src_rr, src_nn, mri_trans, head_trans) if fwd is not None: fwd_rr, fwd_nn = _update_coord_frame(fwd, fwd_rr, fwd_nn, mri_trans, head_trans) # determine points meg_rrs, meg_tris = list(), list() hpi_loc = list() ext_loc = list() car_loc = list() eeg_loc = list() eegp_loc = list() other_loc = {key: list() for key in other_keys} if len(eeg) > 0: eeg_loc = np.array([info['chs'][k]['loc'][:3] for k in eeg_picks]) if len(eeg_loc) > 0: eeg_loc = apply_trans(head_trans, eeg_loc) # XXX do projections here if necessary if 'projected' in eeg: eegp_loc, eegp_nn = _project_onto_surface( eeg_loc, surfs['head'], project_rrs=True, return_nn=True)[2:4] if 'original' not in eeg: eeg_loc = list() del eeg if 'sensors' in meg: coil_transs = [_loc_to_coil_trans(info['chs'][pick]['loc']) for pick in meg_picks] coils = _create_meg_coils([info['chs'][pick] for pick in meg_picks], acc='normal') offset = 0 for coil, coil_trans in zip(coils, coil_transs): rrs, tris = _sensor_shape(coil) rrs = apply_trans(coil_trans, rrs) meg_rrs.append(rrs) meg_tris.append(tris + offset) offset += len(meg_rrs[-1]) if len(meg_rrs) == 0: if warn_meg: warn('MEG sensors not found. Cannot plot MEG locations.') else: meg_rrs = apply_trans(meg_trans, np.concatenate(meg_rrs, axis=0)) meg_tris = np.concatenate(meg_tris, axis=0) del meg if dig: if dig == 'fiducials': hpi_loc = ext_loc = [] elif dig is not True: raise ValueError("dig needs to be True, False or 'fiducials', " "not %s" % repr(dig)) else: hpi_loc = np.array([ d['r'] for d in (info['dig'] or []) if (d['kind'] == FIFF.FIFFV_POINT_HPI and d['coord_frame'] == FIFF.FIFFV_COORD_HEAD)]) ext_loc = np.array([ d['r'] for d in (info['dig'] or []) if (d['kind'] == FIFF.FIFFV_POINT_EXTRA and d['coord_frame'] == FIFF.FIFFV_COORD_HEAD)]) car_loc = _fiducial_coords(info['dig'], FIFF.FIFFV_COORD_HEAD) # Transform from head coords if necessary if coord_frame == 'meg': for loc in (hpi_loc, ext_loc, car_loc): loc[:] = apply_trans(invert_transform(info['dev_head_t']), loc) elif coord_frame == 'mri': for loc in (hpi_loc, ext_loc, car_loc): loc[:] = apply_trans(head_mri_t, loc) if len(car_loc) == len(ext_loc) == len(hpi_loc) == 0: warn('Digitization points not found. Cannot plot digitization.') del dig for key, picks in other_picks.items(): if other_bools[key] and len(picks): other_loc[key] = np.array([info['chs'][pick]['loc'][:3] for pick in picks]) logger.info('Plotting %d %s location%s' % (len(other_loc[key]), key, _pl(other_loc[key]))) # initialize figure renderer = _get_renderer(fig, bgcolor=(0.5, 0.5, 0.5), size=(800, 800)) if interaction == 'terrain': renderer.set_interactive() # plot surfaces alphas = dict(head=head_alpha, helmet=0.25, lh=hemi_val, rh=hemi_val) alphas.update(skull_alpha) colors = dict(head=(0.6,) * 3, helmet=(0.0, 0.0, 0.6), lh=(0.5,) * 3, rh=(0.5,) * 3) colors.update(skull_colors) for key, surf in surfs.items(): renderer.surface(surface=surf, color=colors[key], opacity=alphas[key], backface_culling=(key != 'helmet')) if brain and 'lh' not in surfs: # one layer sphere assert bem['coord_frame'] == FIFF.FIFFV_COORD_HEAD center = bem['r0'].copy() center = apply_trans(head_trans, center) renderer.sphere(center, scale=0.01, color=colors['lh'], opacity=alphas['lh']) if show_axes: axes = [(head_trans, (0.9, 0.3, 0.3))] # always show head if not np.allclose(head_mri_t['trans'], np.eye(4)): # Show MRI axes.append((mri_trans, (0.6, 0.6, 0.6))) if len(meg_picks) > 0: # Show MEG axes.append((meg_trans, (0., 0.6, 0.6))) for ax in axes: x, y, z = np.tile(ax[0]['trans'][:3, 3], 3).reshape((3, 3)).T u, v, w = ax[0]['trans'][:3, :3] renderer.sphere(center=np.column_stack((x[0], y[0], z[0])), color=ax[1], scale=3e-3) renderer.quiver3d(x=x, y=y, z=z, u=u, v=v, w=w, mode='arrow', scale=2e-2, color=ax[1], scale_mode='scalar', resolution=20, scalars=[0.33, 0.66, 1.0]) # plot points defaults = DEFAULTS['coreg'] datas = [eeg_loc, hpi_loc, ext_loc] + list(other_loc[key] for key in other_keys) colors = [defaults['eeg_color'], defaults['hpi_color'], defaults['extra_color'] ] + [defaults[key + '_color'] for key in other_keys] alphas = [0.8, 0.5, 0.25] + [0.8] * len(other_keys) scales = [defaults['eeg_scale'], defaults['hpi_scale'], defaults['extra_scale'] ] + [defaults[key + '_scale'] for key in other_keys] assert len(datas) == len(colors) == len(alphas) == len(scales) for kind, loc in (('dig', car_loc), ('mri', fid_loc)): if len(loc) > 0: datas.extend(loc[:, np.newaxis]) colors.extend((defaults['lpa_color'], defaults['nasion_color'], defaults['rpa_color'])) alphas.extend(3 * (defaults[kind + '_fid_opacity'],)) scales.extend(3 * (defaults[kind + '_fid_scale'],)) for data, color, alpha, scale in zip(datas, colors, alphas, scales): if len(data) > 0: renderer.sphere(center=data, color=color, scale=scale, opacity=alpha, backface_culling=True) if len(eegp_loc) > 0: renderer.quiver3d( x=eegp_loc[:, 0], y=eegp_loc[:, 1], z=eegp_loc[:, 2], u=eegp_nn[:, 0], v=eegp_nn[:, 1], w=eegp_nn[:, 2], color=defaults['eegp_color'], mode='cylinder', scale=defaults['eegp_scale'], opacity=0.6, glyph_height=defaults['eegp_height'], glyph_center=(0., -defaults['eegp_height'], 0), glyph_resolution=20, backface_culling=True) if len(meg_rrs) > 0: color, alpha = (0., 0.25, 0.5), 0.25 surf = dict(rr=meg_rrs, tris=meg_tris) renderer.surface(surface=surf, color=color, opacity=alpha, backface_culling=True) if len(src_rr) > 0: renderer.quiver3d( x=src_rr[:, 0], y=src_rr[:, 1], z=src_rr[:, 2], u=src_nn[:, 0], v=src_nn[:, 1], w=src_nn[:, 2], color=(1., 1., 0.), mode='cylinder', scale=3e-3, opacity=0.75, glyph_height=0.25, glyph_center=(0., 0., 0.), glyph_resolution=20, backface_culling=True) if fwd is not None: red = (1.0, 0.0, 0.0) green = (0.0, 1.0, 0.0) blue = (0.0, 0.0, 1.0) for ori, color in zip(range(fwd_nn.shape[1]), (red, green, blue)): renderer.quiver3d(fwd_rr[:, 0], fwd_rr[:, 1], fwd_rr[:, 2], fwd_nn[:, ori, 0], fwd_nn[:, ori, 1], fwd_nn[:, ori, 2], color=color, mode='arrow', scale=1.5e-3) if 'pairs' in fnirs and len(fnirs_picks) > 0: fnirs_loc = np.array([info['chs'][k]['loc'][3:9] for k in fnirs_picks]) logger.info('Plotting %d fnirs pairs' % (fnirs_loc.shape[0])) renderer.tube(origin=fnirs_loc[:, :3], destination=fnirs_loc[:, 3:]) renderer.set_camera(azimuth=90, elevation=90, distance=0.6, focalpoint=(0., 0., 0.)) renderer.show() return renderer.scene() def _make_tris_fan(n_vert): """Make tris given a number of vertices of a circle-like obj.""" tris = np.zeros((n_vert - 2, 3), int) tris[:, 2] = np.arange(2, n_vert) tris[:, 1] = tris[:, 2] - 1 return tris def _sensor_shape(coil): """Get the sensor shape vertices.""" from scipy.spatial import ConvexHull id_ = coil['type'] & 0xFFFF pad = True # Square figure eight if id_ in (FIFF.FIFFV_COIL_NM_122, FIFF.FIFFV_COIL_VV_PLANAR_W, FIFF.FIFFV_COIL_VV_PLANAR_T1, FIFF.FIFFV_COIL_VV_PLANAR_T2, ): # wound by right hand rule such that +x side is "up" (+z) long_side = coil['size'] # length of long side (meters) offset = 0.0025 # offset of the center portion of planar grad coil rrs = np.array([ [offset, -long_side / 2.], [long_side / 2., -long_side / 2.], [long_side / 2., long_side / 2.], [offset, long_side / 2.], [-offset, -long_side / 2.], [-long_side / 2., -long_side / 2.], [-long_side / 2., long_side / 2.], [-offset, long_side / 2.]]) tris = np.concatenate((_make_tris_fan(4), _make_tris_fan(4)[:, ::-1] + 4), axis=0) # Square elif id_ in (FIFF.FIFFV_COIL_POINT_MAGNETOMETER, FIFF.FIFFV_COIL_VV_MAG_T1, FIFF.FIFFV_COIL_VV_MAG_T2, FIFF.FIFFV_COIL_VV_MAG_T3, FIFF.FIFFV_COIL_KIT_REF_MAG, ): # square magnetometer (potentially point-type) size = 0.001 if id_ == 2000 else (coil['size'] / 2.) rrs = np.array([[-1., 1.], [1., 1.], [1., -1.], [-1., -1.]]) * size tris = _make_tris_fan(4) # Circle elif id_ in (FIFF.FIFFV_COIL_MAGNES_MAG, FIFF.FIFFV_COIL_MAGNES_REF_MAG, FIFF.FIFFV_COIL_CTF_REF_MAG, FIFF.FIFFV_COIL_BABY_MAG, FIFF.FIFFV_COIL_BABY_REF_MAG, FIFF.FIFFV_COIL_ARTEMIS123_REF_MAG, ): n_pts = 15 # number of points for circle circle = np.exp(2j * np.pi * np.arange(n_pts) / float(n_pts)) circle = np.concatenate(([0.], circle)) circle *= coil['size'] / 2. # radius of coil rrs = np.array([circle.real, circle.imag]).T tris = _make_tris_fan(n_pts + 1) # Circle elif id_ in (FIFF.FIFFV_COIL_MAGNES_GRAD, FIFF.FIFFV_COIL_CTF_GRAD, FIFF.FIFFV_COIL_CTF_REF_GRAD, FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD, FIFF.FIFFV_COIL_MAGNES_REF_GRAD, FIFF.FIFFV_COIL_MAGNES_OFFDIAG_REF_GRAD, FIFF.FIFFV_COIL_KIT_GRAD, FIFF.FIFFV_COIL_BABY_GRAD, FIFF.FIFFV_COIL_ARTEMIS123_GRAD, FIFF.FIFFV_COIL_ARTEMIS123_REF_GRAD, ): # round coil 1st order (off-diagonal) gradiometer baseline = coil['base'] if id_ in (5004, 4005) else 0. n_pts = 16 # number of points for circle # This time, go all the way around circle to close it fully circle = np.exp(2j * np.pi * np.arange(-1, n_pts) / float(n_pts - 1)) circle[0] = 0 # center pt for triangulation circle *= coil['size'] / 2. rrs = np.array([ # first, second coil np.concatenate([circle.real + baseline / 2., circle.real - baseline / 2.]), np.concatenate([circle.imag, -circle.imag])]).T tris = np.concatenate([_make_tris_fan(n_pts + 1), _make_tris_fan(n_pts + 1) + n_pts + 1]) # 3D convex hull (will fail for 2D geometry, can extend later if needed) else: rrs = coil['rmag_orig'].copy() pad = False tris = _reorder_ccw(rrs, ConvexHull(rrs).simplices) # Go from (x,y) -> (x,y,z) if pad: rrs = np.pad(rrs, ((0, 0), (0, 1)), mode='constant') assert rrs.ndim == 2 and rrs.shape[1] == 3 return rrs, tris def _process_clim(clim, colormap, transparent, data=0., allow_pos_lims=True): """Convert colormap/clim options to dict. This fills in any "auto" entries properly such that round-trip calling gives the same results. """ # Based on type of limits specified, get cmap control points import matplotlib.pyplot as plt from matplotlib.colors import Colormap _validate_type(colormap, (str, Colormap), 'colormap') data = np.asarray(data) if isinstance(colormap, str): if colormap == 'auto': if clim == 'auto': if allow_pos_lims and (data < 0).any(): colormap = 'mne' else: colormap = 'hot' else: if 'lims' in clim: colormap = 'hot' else: # 'pos_lims' in clim colormap = 'mne' if colormap in ('mne', 'mne_analyze'): colormap = mne_analyze_colormap([0, 1, 2], format='matplotlib') else: colormap = plt.get_cmap(colormap) assert isinstance(colormap, Colormap) diverging_maps = ['PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic'] diverging_maps += [d + '_r' for d in diverging_maps] diverging_maps += ['mne', 'mne_analyze'] if clim == 'auto': # this is merely a heuristic! if allow_pos_lims and colormap.name in diverging_maps: key = 'pos_lims' else: key = 'lims' clim = {'kind': 'percent', key: [96, 97.5, 99.95]} if not isinstance(clim, dict): raise ValueError('"clim" must be "auto" or dict, got %s' % (clim,)) if ('lims' in clim) + ('pos_lims' in clim) != 1: raise ValueError('Exactly one of lims and pos_lims must be specified ' 'in clim, got %s' % (clim,)) if 'pos_lims' in clim and not allow_pos_lims: raise ValueError('Cannot use "pos_lims" for clim, use "lims" ' 'instead') diverging = 'pos_lims' in clim ctrl_pts = np.array(clim['pos_lims' if diverging else 'lims'], float) ctrl_pts = np.array(ctrl_pts, float) if ctrl_pts.shape != (3,): raise ValueError('clim has shape %s, it must be (3,)' % (ctrl_pts.shape,)) if (np.diff(ctrl_pts) < 0).any(): raise ValueError('colormap limits must be monotonically ' 'increasing, got %s' % (ctrl_pts,)) clim_kind = clim.get('kind', 'percent') _check_option("clim['kind']", clim_kind, ['value', 'values', 'percent']) if clim_kind == 'percent': perc_data = np.abs(data) if diverging else data ctrl_pts = np.percentile(perc_data, ctrl_pts) logger.info('Using control points %s' % (ctrl_pts,)) assert len(ctrl_pts) == 3 clim = dict(kind='value') clim['pos_lims' if diverging else 'lims'] = ctrl_pts mapdata = dict(clim=clim, colormap=colormap, transparent=transparent) return mapdata def _separate_map(mapdata): """Help plotters that cannot handle limit equality.""" diverging = 'pos_lims' in mapdata['clim'] key = 'pos_lims' if diverging else 'lims' ctrl_pts = np.array(mapdata['clim'][key]) assert ctrl_pts.shape == (3,) if len(set(ctrl_pts)) == 1: # three points match if ctrl_pts[0] == 0: # all are zero warn('All data were zero') ctrl_pts = np.arange(3, dtype=float) else: ctrl_pts *= [0., 0.5, 1] # all nonzero pts == max elif len(set(ctrl_pts)) == 2: # two points match # if points one and two are identical, add a tiny bit to the # control point two; if points two and three are identical, # subtract a tiny bit from point two. bump = 1e-5 if ctrl_pts[0] == ctrl_pts[1] else -1e-5 ctrl_pts[1] = ctrl_pts[0] + bump * (ctrl_pts[2] - ctrl_pts[0]) mapdata['clim'][key] = ctrl_pts def _linearize_map(mapdata): from matplotlib.colors import ListedColormap diverging = 'pos_lims' in mapdata['clim'] scale_pts = mapdata['clim']['pos_lims' if diverging else 'lims'] if diverging: lims = [-scale_pts[2], scale_pts[2]] ctrl_norm = np.concatenate([-scale_pts[::-1] / scale_pts[2], [0], scale_pts / scale_pts[2]]) / 2 + 0.5 linear_norm = [0, 0.25, 0.5, 0.5, 0.5, 0.75, 1] trans_norm = [1, 1, 0, 0, 0, 1, 1] else: lims = [scale_pts[0], scale_pts[2]] range_ = scale_pts[2] - scale_pts[0] mid = (scale_pts[1] - scale_pts[0]) / range_ if range_ > 0 else 0.5 ctrl_norm = [0, mid, 1] linear_norm = [0, 0.5, 1] trans_norm = [0, 1, 1] # do the piecewise linear transformation interp_to = np.linspace(0, 1, 256) colormap = np.array(mapdata['colormap']( np.interp(interp_to, ctrl_norm, linear_norm))) if mapdata['transparent']: colormap[:, 3] = np.interp(interp_to, ctrl_norm, trans_norm) lims = np.array([lims[0], np.mean(lims), lims[1]]) colormap = ListedColormap(colormap) return colormap, lims def _get_map_ticks(mapdata): diverging = 'pos_lims' in mapdata['clim'] ticks = mapdata['clim']['pos_lims' if diverging else 'lims'] delta = 1e-2 * (ticks[2] - ticks[0]) if ticks[1] <= ticks[0] + delta: # Only two worth showing ticks = ticks[::2] if ticks[1] <= ticks[0] + delta: # Actually only one ticks = ticks[::2] if diverging: idx = int(ticks[0] == 0) ticks = list(-np.array(ticks[idx:])[::-1]) + [0] + list(ticks[idx:]) return np.array(ticks) def _handle_time(time_label, time_unit, times): """Handle time label string and units.""" _validate_type(time_label, (None, str, 'callable'), 'time_label') if time_label == 'auto': if times is not None and len(times) > 1: if time_unit == 's': time_label = 'time=%0.3fs' elif time_unit == 'ms': time_label = 'time=%0.1fms' else: time_label = None # convert to callable if isinstance(time_label, str): time_label_fmt = time_label def time_label(x): try: return time_label_fmt % x except Exception: return time_label # in case it's static assert time_label is None or callable(time_label) if times is not None: _, times = _check_time_unit(time_unit, times) return time_label, times def _key_pressed_slider(event, params): """Handle key presses for time_viewer slider.""" step = 1 if event.key.startswith('ctrl'): step = 5 event.key = event.key.split('+')[-1] if event.key not in ['left', 'right']: return time_viewer = event.canvas.figure value = time_viewer.slider.val times = params['stc'].times if params['time_unit'] == 'ms': times = times * 1000. time_idx = np.argmin(np.abs(times - value)) if event.key == 'left': time_idx = np.max((0, time_idx - step)) elif event.key == 'right': time_idx = np.min((len(times) - 1, time_idx + step)) this_time = times[time_idx] time_viewer.slider.set_val(this_time) def _smooth_plot(this_time, params): """Smooth source estimate data and plot with mpl.""" from ..morph import _morph_buffer ax = params['ax'] stc = params['stc'] ax.clear() times = stc.times scaler = 1000. if params['time_unit'] == 'ms' else 1. if this_time is None: time_idx = 0 else: time_idx = np.argmin(np.abs(times - this_time / scaler)) if params['hemi_idx'] == 0: data = stc.data[:len(stc.vertices[0]), time_idx:time_idx + 1] else: data = stc.data[len(stc.vertices[0]):, time_idx:time_idx + 1] array_plot = _morph_buffer(data, params['vertices'], params['e'], params['smoothing_steps'], params['n_verts'], params['inuse'], params['maps']) range_ = params['scale_pts'][2] - params['scale_pts'][0] colors = (array_plot - params['scale_pts'][0]) / range_ faces = params['faces'] greymap = params['greymap'] cmap = params['cmap'] polyc = ax.plot_trisurf(*params['coords'].T, triangles=faces, antialiased=False, vmin=0, vmax=1) color_ave = np.mean(colors[faces], axis=1).flatten() curv_ave = np.mean(params['curv'][faces], axis=1).flatten() # matplotlib/matplotlib#11877 facecolors = polyc._facecolors3d colors = cmap(color_ave) # alpha blend colors[:, :3] *= colors[:, [3]] colors[:, :3] += greymap(curv_ave)[:, :3] * (1. - colors[:, [3]]) colors[:, 3] = 1. facecolors[:] = colors if params['time_label'] is not None: ax.set_title(params['time_label'](times[time_idx] * scaler,), color='w') _set_aspect_equal(ax) ax.axis('off') ax.set(xlim=[-80, 80], ylim=(-80, 80), zlim=[-80, 80]) ax.figure.canvas.draw() def _plot_mpl_stc(stc, subject=None, surface='inflated', hemi='lh', colormap='auto', time_label='auto', smoothing_steps=10, subjects_dir=None, views='lat', clim='auto', figure=None, initial_time=None, time_unit='s', background='black', spacing='oct6', time_viewer=False, colorbar=True, transparent=True): """Plot source estimate using mpl.""" import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.widgets import Slider import nibabel as nib from scipy import stats from ..morph import _get_subject_sphere_tris if hemi not in ['lh', 'rh']: raise ValueError("hemi must be 'lh' or 'rh' when using matplotlib. " "Got %s." % hemi) lh_kwargs = {'lat': {'elev': 0, 'azim': 180}, 'med': {'elev': 0, 'azim': 0}, 'ros': {'elev': 0, 'azim': 90}, 'cau': {'elev': 0, 'azim': -90}, 'dor': {'elev': 90, 'azim': -90}, 'ven': {'elev': -90, 'azim': -90}, 'fro': {'elev': 0, 'azim': 106.739}, 'par': {'elev': 30, 'azim': -120}} rh_kwargs = {'lat': {'elev': 0, 'azim': 0}, 'med': {'elev': 0, 'azim': 180}, 'ros': {'elev': 0, 'azim': 90}, 'cau': {'elev': 0, 'azim': -90}, 'dor': {'elev': 90, 'azim': -90}, 'ven': {'elev': -90, 'azim': -90}, 'fro': {'elev': 16.739, 'azim': 60}, 'par': {'elev': 30, 'azim': -60}} time_viewer = False if time_viewer == 'auto' else time_viewer kwargs = dict(lh=lh_kwargs, rh=rh_kwargs) _check_option('views', views, sorted(lh_kwargs.keys())) mapdata = _process_clim(clim, colormap, transparent, stc.data) _separate_map(mapdata) colormap, scale_pts = _linearize_map(mapdata) del transparent, mapdata time_label, times = _handle_time(time_label, time_unit, stc.times) fig = plt.figure(figsize=(6, 6)) if figure is None else figure ax = Axes3D(fig) hemi_idx = 0 if hemi == 'lh' else 1 surf = op.join(subjects_dir, subject, 'surf', '%s.%s' % (hemi, surface)) if spacing == 'all': coords, faces = nib.freesurfer.read_geometry(surf) inuse = slice(None) else: stype, sval, ico_surf, src_type_str = _check_spacing(spacing) surf = _create_surf_spacing(surf, hemi, subject, stype, ico_surf, subjects_dir) inuse = surf['vertno'] faces = surf['use_tris'] coords = surf['rr'][inuse] shape = faces.shape faces = stats.rankdata(faces, 'dense').reshape(shape) - 1 faces = np.round(faces).astype(int) # should really be int-like anyway del surf vertices = stc.vertices[hemi_idx] n_verts = len(vertices) tris = _get_subject_sphere_tris(subject, subjects_dir)[hemi_idx] e = mesh_edges(tris) e.data[e.data == 2] = 1 n_vertices = e.shape[0] maps = sparse.identity(n_vertices).tocsr() e = e + sparse.eye(n_vertices, n_vertices) cmap = cm.get_cmap(colormap) greymap = cm.get_cmap('Greys') curv = nib.freesurfer.read_morph_data( op.join(subjects_dir, subject, 'surf', '%s.curv' % hemi))[inuse] curv = np.clip(np.array(curv > 0, np.int), 0.33, 0.66) params = dict(ax=ax, stc=stc, coords=coords, faces=faces, hemi_idx=hemi_idx, vertices=vertices, e=e, smoothing_steps=smoothing_steps, n_verts=n_verts, inuse=inuse, maps=maps, cmap=cmap, curv=curv, scale_pts=scale_pts, greymap=greymap, time_label=time_label, time_unit=time_unit) _smooth_plot(initial_time, params) ax.view_init(**kwargs[hemi][views]) try: ax.set_facecolor(background) except AttributeError: ax.set_axis_bgcolor(background) if time_viewer: time_viewer = figure_nobar(figsize=(4.5, .25)) fig.time_viewer = time_viewer ax_time = plt.axes() if initial_time is None: initial_time = 0 slider = Slider(ax=ax_time, label='Time', valmin=times[0], valmax=times[-1], valinit=initial_time) time_viewer.slider = slider callback_slider = partial(_smooth_plot, params=params) slider.on_changed(callback_slider) callback_key = partial(_key_pressed_slider, params=params) time_viewer.canvas.mpl_connect('key_press_event', callback_key) time_viewer.subplots_adjust(left=0.12, bottom=0.05, right=0.75, top=0.95) fig.subplots_adjust(left=0., bottom=0., right=1., top=1.) # add colorbar from mpl_toolkits.axes_grid1.inset_locator import inset_axes sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(scale_pts[0], scale_pts[2])) cax = inset_axes(ax, width="80%", height="5%", loc=8, borderpad=3.) plt.setp(plt.getp(cax, 'xticklabels'), color='w') sm.set_array(np.linspace(scale_pts[0], scale_pts[2], 256)) if colorbar: cb = plt.colorbar(sm, cax=cax, orientation='horizontal') cb_yticks = plt.getp(cax, 'yticklabels') plt.setp(cb_yticks, color='w') cax.tick_params(labelsize=16) cb.patch.set_facecolor('0.5') cax.set(xlim=(scale_pts[0], scale_pts[2])) plt.show() return fig def link_brains(brains): """Plot multiple SourceEstimate objects with PyVista. Parameters ---------- brains : list, tuple or np.ndarray The collection of brains to plot. """ from .backends.renderer import _get_3d_backend if _get_3d_backend() != 'pyvista': raise NotImplementedError("Expected 3d backend is pyvista but" " {} was given.".format(_get_3d_backend())) from ._brain import _Brain, _TimeViewer, _LinkViewer if not isinstance(brains, Iterable): brains = [brains] if len(brains) == 0: raise ValueError("The collection of brains is empty.") for brain in brains: if isinstance(brain, _Brain): # check if the _TimeViewer wrapping is not already applied if not hasattr(brain, 'time_viewer') or brain.time_viewer is None: brain = _TimeViewer(brain) else: raise TypeError("Expected type is Brain but" " {} was given.".format(type(brain))) # link brains properties _LinkViewer(brains) @verbose def plot_source_estimates(stc, subject=None, surface='inflated', hemi='lh', colormap='auto', time_label='auto', smoothing_steps=10, transparent=True, alpha=1.0, time_viewer='auto', subjects_dir=None, figure=None, views='lat', colorbar=True, clim='auto', cortex="classic", size=800, background="black", foreground="white", initial_time=None, time_unit='s', backend='auto', spacing='oct6', title=None, show_traces='auto', verbose=None): """Plot SourceEstimate with PySurfer. By default this function uses :mod:`mayavi.mlab` to plot the source estimates. If Mayavi is not installed, the plotting is done with :mod:`matplotlib.pyplot` (much slower, decimated source space by default). Parameters ---------- stc : SourceEstimate The source estimates to plot. subject : str | None The subject name corresponding to FreeSurfer environment variable SUBJECT. If None stc.subject will be used. If that is None, the environment will be used. surface : str The type of surface (inflated, white etc.). hemi : str Hemisphere id (ie 'lh', 'rh', 'both', or 'split'). In the case of 'both', both hemispheres are shown in the same window. In the case of 'split' hemispheres are displayed side-by-side in different viewing panes. %(colormap)s The default ('auto') uses 'hot' for one-sided data and 'mne' for two-sided data. %(time_label)s smoothing_steps : int The amount of smoothing. %(transparent)s alpha : float Alpha value to apply globally to the overlay. Has no effect with mpl backend. time_viewer : bool | str Display time viewer GUI. Can also be 'auto', which will mean True for the PyVista backend and False otherwise. .. versionchanged:: 0.20.0 "auto" mode added. %(subjects_dir)s figure : instance of mayavi.core.api.Scene | instance of matplotlib.figure.Figure | list | int | None If None, a new figure will be created. If multiple views or a split view is requested, this must be a list of the appropriate length. If int is provided it will be used to identify the Mayavi figure by it's id or create a new figure with the given id. If an instance of matplotlib figure, mpl backend is used for plotting. views : str | list View to use. See `surfer.Brain`. Supported views: ['lat', 'med', 'ros', 'cau', 'dor' 'ven', 'fro', 'par']. Using multiple views is not supported for mpl backend. colorbar : bool If True, display colorbar on scene. %(clim)s cortex : str or tuple Specifies how binarized curvature values are rendered. Either the name of a preset PySurfer cortex colorscheme (one of 'classic', 'bone', 'low_contrast', or 'high_contrast'), or the name of mayavi colormap, or a tuple with values (colormap, min, max, reverse) to fully specify the curvature colors. Has no effect with mpl backend. size : float or tuple of float The size of the window, in pixels. can be one number to specify a square window, or the (width, height) of a rectangular window. Has no effect with mpl backend. background : matplotlib color Color of the background of the display window. foreground : matplotlib color Color of the foreground of the display window. Has no effect with mpl backend. initial_time : float | None The time to display on the plot initially. ``None`` to display the first time sample (default). time_unit : 's' | 'ms' Whether time is represented in seconds ("s", default) or milliseconds ("ms"). backend : 'auto' | 'mayavi' | 'matplotlib' Which backend to use. If ``'auto'`` (default), tries to plot with mayavi, but resorts to matplotlib if mayavi is not available. .. versionadded:: 0.15.0 spacing : str The spacing to use for the source space. Can be ``'ico#'`` for a recursively subdivided icosahedron, ``'oct#'`` for a recursively subdivided octahedron, or ``'all'`` for all points. In general, you can speed up the plotting by selecting a sparser source space. Has no effect with mayavi backend. Defaults to 'oct6'. .. versionadded:: 0.15.0 title : str | None Title for the figure. If None, the subject name will be used. .. versionadded:: 0.17.0 %(show_traces)s %(verbose)s Returns ------- figure : instance of surfer.Brain | matplotlib.figure.Figure An instance of :class:`surfer.Brain` from PySurfer or matplotlib figure. """ # noqa: E501 from .backends.renderer import _get_3d_backend, set_3d_backend # import here to avoid circular import problem from ..source_estimate import SourceEstimate _validate_type(stc, SourceEstimate, "stc", "Surface Source Estimate") subjects_dir = get_subjects_dir(subjects_dir=subjects_dir, raise_error=True) subject = _check_subject(stc.subject, subject, True) _check_option('backend', backend, ['auto', 'matplotlib', 'mayavi']) plot_mpl = backend == 'matplotlib' if not plot_mpl: try: set_3d_backend(_get_3d_backend()) except (ImportError, ModuleNotFoundError): if backend == 'auto': warn('No 3D backend found. Resorting to matplotlib 3d.') plot_mpl = True else: # 'mayavi' raise if plot_mpl: return _plot_mpl_stc(stc, subject=subject, surface=surface, hemi=hemi, colormap=colormap, time_label=time_label, smoothing_steps=smoothing_steps, subjects_dir=subjects_dir, views=views, clim=clim, figure=figure, initial_time=initial_time, time_unit=time_unit, background=background, spacing=spacing, time_viewer=time_viewer, colorbar=colorbar, transparent=transparent) if _get_3d_backend() == "mayavi": from surfer import Brain else: # PyVista from ._brain import _Brain as Brain _check_option('hemi', hemi, ['lh', 'rh', 'split', 'both']) time_label, times = _handle_time(time_label, time_unit, stc.times) # convert control points to locations in colormap mapdata = _process_clim(clim, colormap, transparent, stc.data) # XXX we should only need to do this for PySurfer/Mayavi, the PyVista # plotter should be smart enough to do this separation in the cmap-to-ctab # conversion. But this will need to be another refactoring that will # hopefully restore this line: # # if _get_3d_backend() == 'mayavi': _separate_map(mapdata) colormap = mapdata['colormap'] diverging = 'pos_lims' in mapdata['clim'] scale_pts = mapdata['clim']['pos_lims' if diverging else 'lims'] transparent = mapdata['transparent'] del mapdata if hemi in ['both', 'split']: hemis = ['lh', 'rh'] else: hemis = [hemi] if title is None: title = subject if len(hemis) > 1 else '%s - %s' % (subject, hemis[0]) kwargs = { "subject_id": subject, "hemi": hemi, "surf": surface, "title": title, "cortex": cortex, "size": size, "background": background, "foreground": foreground, "figure": figure, "subjects_dir": subjects_dir, "views": views } if _get_3d_backend() == "pyvista": kwargs["show"] = not time_viewer with warnings.catch_warnings(record=True): # traits warnings brain = Brain(**kwargs) center = 0. if diverging else None for hemi in hemis: hemi_idx = 0 if hemi == 'lh' else 1 data = getattr(stc, hemi + '_data') vertices = stc.vertices[hemi_idx] if len(data) > 0: if transparent is None: transparent = True kwargs = { "array": data, "colormap": colormap, "vertices": vertices, "smoothing_steps": smoothing_steps, "time": times, "time_label": time_label, "alpha": alpha, "hemi": hemi, "colorbar": colorbar, "initial_time": initial_time, "transparent": transparent, "center": center, "verbose": False } if _get_3d_backend() == "mayavi": kwargs["min"] = scale_pts[0] kwargs["mid"] = scale_pts[1] kwargs["max"] = scale_pts[2] else: # pyvista kwargs["fmin"] = scale_pts[0] kwargs["fmid"] = scale_pts[1] kwargs["fmax"] = scale_pts[2] kwargs["clim"] = clim with warnings.catch_warnings(record=True): # traits warnings brain.add_data(**kwargs) _check_time_viewer_compatibility(brain, time_viewer, show_traces) return brain def _check_time_viewer_compatibility(brain, time_viewer, show_traces): from .backends.renderer import _get_3d_backend using_mayavi = _get_3d_backend() == "mayavi" _check_option('time_viewer', time_viewer, (True, False, 'auto')) _check_option('show_traces', show_traces, (True, False, 'auto', 'separate')) if time_viewer == 'auto': time_viewer = not using_mayavi if show_traces == 'auto': show_traces = ( not using_mayavi and time_viewer and brain._times is not None and len(brain._times) > 1 and # XXX temporary hidden workaround for memory problems on CircleCI os.getenv('_MNE_BRAIN_TRACES_AUTO', 'true').lower() != 'false' ) if _get_3d_backend() == "mayavi" and all([time_viewer, show_traces]): raise NotImplementedError("Point picking is not available" " for the mayavi 3d backend.") if using_mayavi: if not check_version('surfer', '0.9'): raise RuntimeError('This function requires pysurfer version ' '>= 0.9') if time_viewer: if using_mayavi: from surfer import TimeViewer TimeViewer(brain) else: # PyVista from ._brain import _TimeViewer as TimeViewer TimeViewer(brain, show_traces=show_traces) def _glass_brain_crosshairs(params, x, y, z): for ax, a, b in ((params['ax_y'], x, z), (params['ax_x'], y, z), (params['ax_z'], x, y)): ax.axvline(a, color='0.75') ax.axhline(b, color='0.75') def _cut_coords_to_ijk(cut_coords, img): ijk = apply_trans(linalg.inv(img.affine), cut_coords) ijk = np.clip(np.round(ijk).astype(int), 0, np.array(img.shape[:3]) - 1) return ijk def _ijk_to_cut_coords(ijk, img): return apply_trans(img.affine, ijk) @verbose def plot_volume_source_estimates(stc, src, subject=None, subjects_dir=None, mode='stat_map', bg_img=None, colorbar=True, colormap='auto', clim='auto', transparent=None, show=True, initial_time=None, initial_pos=None, verbose=None): """Plot Nutmeg style volumetric source estimates using nilearn. Parameters ---------- stc : VectorSourceEstimate The vector source estimate to plot. src : instance of SourceSpaces | instance of SourceMorph The source space. Can also be a SourceMorph to morph the STC to a new subject (see Examples). .. versionchanged:: 0.18 Support for :class:`~nibabel.spatialimages.SpatialImage`. subject : str | None The subject name corresponding to FreeSurfer environment variable SUBJECT. If None stc.subject will be used. If that is None, the environment will be used. %(subjects_dir)s mode : str The plotting mode to use. Either 'stat_map' (default) or 'glass_brain'. For "glass_brain", activation absolute values are displayed after being transformed to a standard MNI brain. bg_img : instance of SpatialImage | None The background image used in the nilearn plotting function. If None, it is the T1.mgz file that is found in the subjects_dir. Not used in "glass brain" plotting. colorbar : bool, optional If True, display a colorbar on the right of the plots. %(colormap)s %(clim)s %(transparent)s show : bool Show figures if True. Defaults to True. initial_time : float | None The initial time to plot. Can be None (default) to use the time point with the maximal absolute value activation across all voxels or the ``initial_pos`` voxel (if ``initial_pos is None`` or not, respectively). .. versionadded:: 0.19 initial_pos : ndarray, shape (3,) | None The initial position to use (in m). Can be None (default) to use the voxel with the maximum absolute value activation across all time points or at ``initial_time`` (if ``initial_time is None`` or not, respectively). .. versionadded:: 0.19 %(verbose)s Returns ------- fig : instance of Figure The figure. Notes ----- Click on any of the anatomical slices to explore the time series. Clicking on any time point will bring up the corresponding anatomical map. The left and right arrow keys can be used to navigate in time. To move in time by larger steps, use shift+left and shift+right. In ``'glass_brain'`` mode, values are transformed to the standard MNI brain using the FreeSurfer Talairach transformation ``$SUBJECTS_DIR/$SUBJECT/mri/transforms/talairach.xfm``. .. versionadded:: 0.17 .. versionchanged:: 0.19 MRI volumes are automatically transformed to MNI space in ``'glass_brain'`` mode. Examples -------- Passing a :class:`mne.SourceMorph` as the ``src`` parameter can be useful for plotting in a different subject's space (here, a ``'sample'`` STC in ``'fsaverage'``'s space):: >>> morph = mne.compute_source_morph(src_sample, subject_to='fsaverage') # doctest: +SKIP >>> fig = stc_vol_sample.plot(morph) # doctest: +SKIP """ # noqa: E501 from matplotlib import pyplot as plt, colors from matplotlib.cbook import mplDeprecation import nibabel as nib from ..source_estimate import VolSourceEstimate from ..morph import SourceMorph if not check_version('nilearn', '0.4'): raise RuntimeError('This function requires nilearn >= 0.4') from nilearn.plotting import plot_stat_map, plot_glass_brain from nilearn.image import index_img _check_option('mode', mode, ('stat_map', 'glass_brain')) plot_func = dict(stat_map=plot_stat_map, glass_brain=plot_glass_brain)[mode] _validate_type(stc, VolSourceEstimate, 'stc') if isinstance(src, SourceMorph): img = src.apply(stc, 'nifti1', mri_resolution=False, mri_space=False) stc = src.apply(stc, mri_resolution=False, mri_space=False) kind, src_subject = 'morph.subject_to', src.subject_to else: src = _ensure_src(src, kind='volume', extra=' or SourceMorph') img = stc.as_volume(src, mri_resolution=False) kind, src_subject = 'src subject', src._subject del src _print_coord_trans(Transform('mri_voxel', 'ras', img.affine), prefix='Image affine ', units='mm', level='debug') subject = _check_subject(src_subject, subject, True, kind=kind) stc_ijk = np.array( np.unravel_index(stc.vertices[0], img.shape[:3], order='F')).T assert stc_ijk.shape == (len(stc.vertices[0]), 3) del kind # XXX this assumes zooms are uniform, should probably mult by zooms... dist_to_verts = _DistanceQuery(stc_ijk, allow_kdtree=True) def _cut_coords_to_idx(cut_coords, img): """Convert voxel coordinates to index in stc.data.""" ijk = _cut_coords_to_ijk(cut_coords, img) del cut_coords logger.debug(' Affine remapped cut coords to [%d, %d, %d] idx' % tuple(ijk)) dist, loc_idx = dist_to_verts.query(ijk[np.newaxis]) dist, loc_idx = dist[0], loc_idx[0] logger.debug(' Using vertex %d at a distance of %d voxels' % (stc.vertices[0][loc_idx], dist)) return loc_idx ax_name = dict(x='X (saggital)', y='Y (coronal)', z='Z (axial)') def _click_to_cut_coords(event, params): """Get voxel coordinates from mouse click.""" if event.inaxes is params['ax_x']: ax = 'x' x = params['ax_z'].lines[0].get_xdata()[0] y, z = event.xdata, event.ydata elif event.inaxes is params['ax_y']: ax = 'y' y = params['ax_x'].lines[0].get_xdata()[0] x, z = event.xdata, event.ydata elif event.inaxes is params['ax_z']: ax = 'z' x, y = event.xdata, event.ydata z = params['ax_x'].lines[1].get_ydata()[0] else: logger.debug(' Click outside axes') return None cut_coords = np.array((x, y, z)) logger.debug('') if params['mode'] == 'glass_brain': # find idx for MIP # Figure out what XYZ in world coordinates is in our voxel data codes = ''.join(nib.aff2axcodes(params['img_idx'].affine)) assert len(codes) == 3 # We don't care about directionality, just which is which dim codes = codes.replace('L', 'R').replace('P', 'A').replace('I', 'S') idx = codes.index(dict(x='R', y='A', z='S')[ax]) img_data = np.abs(_get_img_fdata(params['img_idx'])) ijk = _cut_coords_to_ijk(cut_coords, params['img_idx']) if idx == 0: ijk[0] = np.argmax(img_data[:, ijk[1], ijk[2]]) logger.debug(' MIP: i = %d idx' % (ijk[0],)) elif idx == 1: ijk[1] = np.argmax(img_data[ijk[0], :, ijk[2]]) logger.debug(' MIP: j = %d idx' % (ijk[1],)) else: ijk[2] = np.argmax(img_data[ijk[0], ijk[1], :]) logger.debug(' MIP: k = %d idx' % (ijk[2],)) cut_coords = _ijk_to_cut_coords(ijk, params['img_idx']) logger.debug(' Cut coords for %s: (%0.1f, %0.1f, %0.1f) mm' % ((ax_name[ax],) + tuple(cut_coords))) return cut_coords def _press(event, params): """Manage keypress on the plot.""" pos = params['lx'].get_xdata() idx = params['stc'].time_as_index(pos)[0] if event.key == 'left': idx = max(0, idx - 2) elif event.key == 'shift+left': idx = max(0, idx - 10) elif event.key == 'right': idx = min(params['stc'].shape[1] - 1, idx + 2) elif event.key == 'shift+right': idx = min(params['stc'].shape[1] - 1, idx + 10) _update_timeslice(idx, params) params['fig'].canvas.draw() def _update_timeslice(idx, params): params['lx'].set_xdata(idx / params['stc'].sfreq + params['stc'].tmin) ax_x, ax_y, ax_z = params['ax_x'], params['ax_y'], params['ax_z'] plot_map_callback = params['plot_func'] # Crosshairs are the first thing plotted in stat_map, and the last # in glass_brain idxs = [0, 0, 1] if mode == 'stat_map' else [-2, -2, -1] cut_coords = ( ax_y.lines[idxs[0]].get_xdata()[0], ax_x.lines[idxs[1]].get_xdata()[0], ax_x.lines[idxs[2]].get_ydata()[0]) ax_x.clear() ax_y.clear() ax_z.clear() params.update({'img_idx': index_img(img, idx)}) params.update({'title': 'Activation (t=%.3f s.)' % params['stc'].times[idx]}) plot_map_callback( params['img_idx'], title='', cut_coords=cut_coords) @verbose_dec def _onclick(event, params, verbose=None): """Manage clicks on the plot.""" ax_x, ax_y, ax_z = params['ax_x'], params['ax_y'], params['ax_z'] plot_map_callback = params['plot_func'] if event.inaxes is params['ax_time']: idx = params['stc'].time_as_index( event.xdata, use_rounding=True)[0] _update_timeslice(idx, params) cut_coords = _click_to_cut_coords(event, params) if cut_coords is None: return # not in any axes ax_x.clear() ax_y.clear() ax_z.clear() plot_map_callback(params['img_idx'], title='', cut_coords=cut_coords) loc_idx = _cut_coords_to_idx(cut_coords, params['img_idx']) ydata = stc.data[loc_idx] if loc_idx is not None: ax_time.lines[0].set_ydata(ydata) else: ax_time.lines[0].set_ydata(0.) params['fig'].canvas.draw() if mode == 'glass_brain': subject = _check_subject(stc.subject, subject, True) ras_mni_t = read_ras_mni_t(subject, subjects_dir) if not np.allclose(ras_mni_t['trans'], np.eye(4)): _print_coord_trans( ras_mni_t, prefix='Transforming subject ', units='mm') logger.info('') # To get from voxel coords to world coords (i.e., define affine) # we would apply img.affine, then also apply ras_mni_t, which # transforms from the subject's RAS to MNI RAS. So we left-multiply # these. img = nib.Nifti1Image( img.dataobj, np.dot(ras_mni_t['trans'], img.affine)) bg_img = None # not used else: # stat_map if bg_img is None: subject = _check_subject(stc.subject, subject, True) subjects_dir = get_subjects_dir(subjects_dir=subjects_dir, raise_error=True) t1_fname = op.join(subjects_dir, subject, 'mri', 'T1.mgz') bg_img = nib.load(t1_fname) if initial_time is None: time_sl = slice(0, None) else: initial_time = float(initial_time) logger.info('Fixing initial time: %s sec' % (initial_time,)) initial_time = np.argmin(np.abs(stc.times - initial_time)) time_sl = slice(initial_time, initial_time + 1) if initial_pos is None: # find max pos and (maybe) time loc_idx, time_idx = np.unravel_index( np.abs(stc.data[:, time_sl]).argmax(), stc.data[:, time_sl].shape) time_idx += time_sl.start else: # position specified initial_pos = np.array(initial_pos, float) if initial_pos.shape != (3,): raise ValueError('initial_pos must be float ndarray with shape ' '(3,), got shape %s' % (initial_pos.shape,)) initial_pos *= 1000 logger.info('Fixing initial position: %s mm' % (initial_pos.tolist(),)) loc_idx = _cut_coords_to_idx(initial_pos, img) if initial_time is not None: # time also specified time_idx = time_sl.start else: # find the max time_idx = np.argmax(np.abs(stc.data[loc_idx])) img_idx = index_img(img, time_idx) assert img_idx.shape == img.shape[:3] del initial_time, initial_pos ijk = stc_ijk[loc_idx] cut_coords = _ijk_to_cut_coords(ijk, img_idx) np.testing.assert_allclose(_cut_coords_to_ijk(cut_coords, img_idx), ijk) logger.info('Showing: t = %0.3f s, (%0.1f, %0.1f, %0.1f) mm, ' '[%d, %d, %d] vox, %d vertex' % ((stc.times[time_idx],) + tuple(cut_coords) + tuple(ijk) + (stc.vertices[0][loc_idx],))) del ijk # Plot initial figure fig, (axes, ax_time) = plt.subplots(2) axes.set(xticks=[], yticks=[]) marker = 'o' if len(stc.times) == 1 else None ydata = stc.data[loc_idx] ax_time.plot(stc.times, ydata, color='k', marker=marker) if len(stc.times) > 1: ax_time.set(xlim=stc.times[[0, -1]]) ax_time.set(xlabel='Time (s)', ylabel='Activation') lx = ax_time.axvline(stc.times[time_idx], color='g') fig.tight_layout() allow_pos_lims = (mode != 'glass_brain') mapdata = _process_clim(clim, colormap, transparent, stc.data, allow_pos_lims) _separate_map(mapdata) diverging = 'pos_lims' in mapdata['clim'] ticks = _get_map_ticks(mapdata) colormap, scale_pts = _linearize_map(mapdata) del mapdata ylim = [min((scale_pts[0], ydata.min())), max((scale_pts[-1], ydata.max()))] ylim = np.array(ylim) + np.array([-1, 1]) * 0.05 * np.diff(ylim)[0] dup_neg = False if stc.data.min() < 0: ax_time.axhline(0., color='0.5', ls='-', lw=0.5, zorder=2) dup_neg = not diverging # glass brain with signed data yticks = list(ticks) if dup_neg: yticks += [0] + list(-np.array(ticks)) yticks = np.unique(yticks) ax_time.set(yticks=yticks) ax_time.set(ylim=ylim) del yticks if not diverging: # set eq above iff one-sided # there is a bug in nilearn where this messes w/transparency # Need to double the colormap if (scale_pts < 0).any(): # XXX We should fix this, but it's hard to get nilearn to # use arbitrary bounds :( # Should get them to support non-mirrored colorbars, or # at least a proper `vmin` for one-sided things. # Hopefully this is a sufficiently rare use case! raise ValueError('Negative colormap limits for sequential ' 'control points clim["lims"] not supported ' 'currently, consider shifting or flipping the ' 'sign of your data for visualization purposes') # due to nilearn plotting weirdness, extend this to go # -scale_pts[2]->scale_pts[2] instead of scale_pts[0]->scale_pts[2] colormap = plt.get_cmap(colormap) colormap = colormap( np.interp(np.linspace(-1, 1, 256), scale_pts / scale_pts[2], [0, 0.5, 1])) colormap = colors.ListedColormap(colormap) vmax = scale_pts[-1] # black_bg = True is needed because of some matplotlib # peculiarity. See: https://stackoverflow.com/a/34730204 # Otherwise, event.inaxes does not work for ax_x and ax_z plot_kwargs = dict( threshold=None, axes=axes, resampling_interpolation='nearest', vmax=vmax, figure=fig, colorbar=colorbar, bg_img=bg_img, cmap=colormap, black_bg=True, symmetric_cbar=True) def plot_and_correct(*args, **kwargs): axes.clear() if params.get('fig_anat') is not None and plot_kwargs['colorbar']: params['fig_anat']._cbar.ax.clear() with warnings.catch_warnings(record=True): # nilearn bug; ax recreated warnings.simplefilter('ignore', mplDeprecation) params['fig_anat'] = partial( plot_func, **plot_kwargs)(*args, **kwargs) params['fig_anat']._cbar.outline.set_visible(False) for key in 'xyz': params.update({'ax_' + key: params['fig_anat'].axes[key].ax}) # Fix nilearn bug w/cbar background being white if plot_kwargs['colorbar']: params['fig_anat']._cbar.patch.set_facecolor('0.5') # adjust one-sided colorbars if not diverging: _crop_colorbar(params['fig_anat']._cbar, *scale_pts[[0, -1]]) params['fig_anat']._cbar.set_ticks(params['cbar_ticks']) if mode == 'glass_brain': _glass_brain_crosshairs(params, *kwargs['cut_coords']) params = dict(stc=stc, ax_time=ax_time, plot_func=plot_and_correct, img_idx=img_idx, fig=fig, lx=lx, mode=mode, cbar_ticks=ticks) plot_and_correct(stat_map_img=params['img_idx'], title='', cut_coords=cut_coords) if show: plt.show() fig.canvas.mpl_connect('button_press_event', partial(_onclick, params=params, verbose=verbose)) fig.canvas.mpl_connect('key_press_event', partial(_press, params=params)) return fig @verbose def plot_vector_source_estimates(stc, subject=None, hemi='lh', colormap='hot', time_label='auto', smoothing_steps=10, transparent=None, brain_alpha=0.4, overlay_alpha=None, vector_alpha=1.0, scale_factor=None, time_viewer='auto', subjects_dir=None, figure=None, views='lat', colorbar=True, clim='auto', cortex='classic', size=800, background='black', foreground='white', initial_time=None, time_unit='s', show_traces='auto', verbose=None): """Plot VectorSourceEstimate with PySurfer. A "glass brain" is drawn and all dipoles defined in the source estimate are shown using arrows, depicting the direction and magnitude of the current moment at the dipole. Additionally, an overlay is plotted on top of the cortex with the magnitude of the current. Parameters ---------- stc : VectorSourceEstimate The vector source estimate to plot. subject : str | None The subject name corresponding to FreeSurfer environment variable SUBJECT. If None stc.subject will be used. If that is None, the environment will be used. hemi : str, 'lh' | 'rh' | 'split' | 'both' The hemisphere to display. %(colormap)s This should be a sequential colormap. %(time_label)s smoothing_steps : int The amount of smoothing. %(transparent)s brain_alpha : float Alpha value to apply globally to the surface meshes. Defaults to 0.4. overlay_alpha : float Alpha value to apply globally to the overlay. Defaults to ``brain_alpha``. vector_alpha : float Alpha value to apply globally to the vector glyphs. Defaults to 1. scale_factor : float | None Scaling factor for the vector glyphs. By default, an attempt is made to automatically determine a sane value. time_viewer : bool | str Display time viewer GUI. Can be "auto", which is True for the PyVista backend and False otherwise. .. versionchanged:: 0.20 Added "auto" option and default. subjects_dir : str The path to the freesurfer subjects reconstructions. It corresponds to Freesurfer environment variable SUBJECTS_DIR. figure : instance of mayavi.core.api.Scene | list | int | None If None, a new figure will be created. If multiple views or a split view is requested, this must be a list of the appropriate length. If int is provided it will be used to identify the Mayavi figure by it's id or create a new figure with the given id. views : str | list View to use. See `surfer.Brain`. colorbar : bool If True, display colorbar on scene. %(clim_onesided)s cortex : str or tuple Specifies how binarized curvature values are rendered. either the name of a preset PySurfer cortex colorscheme (one of 'classic', 'bone', 'low_contrast', or 'high_contrast'), or the name of mayavi colormap, or a tuple with values (colormap, min, max, reverse) to fully specify the curvature colors. size : float or tuple of float The size of the window, in pixels. can be one number to specify a square window, or the (width, height) of a rectangular window. background : matplotlib color Color of the background of the display window. foreground : matplotlib color Color of the foreground of the display window. initial_time : float | None The time to display on the plot initially. ``None`` to display the first time sample (default). time_unit : 's' | 'ms' Whether time is represented in seconds ("s", default) or milliseconds ("ms"). %(show_traces)s %(verbose)s Returns ------- brain : surfer.Brain A instance of :class:`surfer.Brain` from PySurfer. Notes ----- .. versionadded:: 0.15 If the current magnitude overlay is not desired, set ``overlay_alpha=0`` and ``smoothing_steps=1``. """ from .backends.renderer import _get_3d_backend # Import here to avoid circular imports if _get_3d_backend() == "mayavi": from surfer import Brain from surfer import __version__ as surfer_version else: # PyVista from ._brain import _Brain as Brain from ..source_estimate import VectorSourceEstimate _validate_type(stc, VectorSourceEstimate, "stc", "Vector Source Estimate") subjects_dir = get_subjects_dir(subjects_dir=subjects_dir, raise_error=True) subject = _check_subject(stc.subject, subject, True) _check_option('hemi', hemi, ['lh', 'rh', 'split', 'both']) time_label, times = _handle_time(time_label, time_unit, stc.times) # convert control points to locations in colormap mapdata = _process_clim(clim, colormap, transparent, stc.data, allow_pos_lims=False) colormap = mapdata['colormap'] scale_pts = mapdata['clim']['lims'] # pos_lims not allowed transparent = mapdata['transparent'] del mapdata if hemi in ['both', 'split']: hemis = ['lh', 'rh'] else: hemis = [hemi] if overlay_alpha is None: overlay_alpha = brain_alpha if overlay_alpha == 0: smoothing_steps = 1 # Disable smoothing to save time. title = subject if len(hemis) > 1 else '%s - %s' % (subject, hemis[0]) with warnings.catch_warnings(record=True): # traits warnings brain = Brain(subject, hemi=hemi, surf='white', title=title, cortex=cortex, size=size, background=background, foreground=foreground, figure=figure, subjects_dir=subjects_dir, views=views, alpha=brain_alpha) if scale_factor is None: # Configure the glyphs scale directly width = np.mean([np.ptp(brain.geo[hemi].coords[:, 1]) for hemi in hemis if hemi in brain.geo]) scale_factor = 0.025 * width / scale_pts[-1] sd_kwargs = dict(transparent=transparent, verbose=False) for hemi in hemis: hemi_idx = 0 if hemi == 'lh' else 1 data = getattr(stc, hemi + '_data') vertices = stc.vertices[hemi_idx] if len(data) > 0: kwargs = { "array": data, "colormap": colormap, "vertices": vertices, "smoothing_steps": smoothing_steps, "time": times, "time_label": time_label, "alpha": overlay_alpha, "hemi": hemi, "colorbar": colorbar, "vector_alpha": vector_alpha, "scale_factor": scale_factor, "verbose": False, } if initial_time is not None: kwargs['initial_time'] = initial_time if _get_3d_backend() == "mayavi": if surfer_version >= LooseVersion('0.9'): kwargs["transparent"] = transparent kwargs["min"] = scale_pts[0] kwargs["mid"] = scale_pts[1] kwargs["max"] = scale_pts[2] else: kwargs["transparent"] = transparent kwargs["fmin"] = scale_pts[0] kwargs["fmid"] = scale_pts[1] kwargs["fmax"] = scale_pts[2] with warnings.catch_warnings(record=True): # traits warnings brain.add_data(**kwargs) brain.scale_data_colormap(fmin=scale_pts[0], fmid=scale_pts[1], fmax=scale_pts[2], **sd_kwargs) if _get_3d_backend() == "mayavi": for hemi in hemis: for b in brain._brain_list: for layer in b['brain'].data.values(): glyphs = layer['glyphs'] glyphs.glyph.glyph.scale_factor = scale_factor glyphs.glyph.glyph.clamping = False glyphs.glyph.glyph.range = (0., 1.) # depth peeling patch if brain_alpha < 1.0: for ff in brain._figures: for f in ff: if f.scene is not None: f.scene.renderer.use_depth_peeling = True else: if brain_alpha < 1.0: brain.enable_depth_peeling() _check_time_viewer_compatibility(brain, time_viewer, show_traces) return brain @verbose def plot_sparse_source_estimates(src, stcs, colors=None, linewidth=2, fontsize=18, bgcolor=(.05, 0, .1), opacity=0.2, brain_color=(0.7,) * 3, show=True, high_resolution=False, fig_name=None, fig_number=None, labels=None, modes=('cone', 'sphere'), scale_factors=(1, 0.6), verbose=None, **kwargs): """Plot source estimates obtained with sparse solver. Active dipoles are represented in a "Glass" brain. If the same source is active in multiple source estimates it is displayed with a sphere otherwise with a cone in 3D. Parameters ---------- src : dict The source space. stcs : instance of SourceEstimate or list of instances of SourceEstimate The source estimates (up to 3). colors : list List of colors. linewidth : int Line width in 2D plot. fontsize : int Font size. bgcolor : tuple of length 3 Background color in 3D. opacity : float in [0, 1] Opacity of brain mesh. brain_color : tuple of length 3 Brain color. show : bool Show figures if True. high_resolution : bool If True, plot on the original (non-downsampled) cortical mesh. fig_name : str Mayavi figure name. fig_number : int Matplotlib figure number. labels : ndarray or list of ndarray Labels to show sources in clusters. Sources with the same label and the waveforms within each cluster are presented in the same color. labels should be a list of ndarrays when stcs is a list ie. one label for each stc. modes : list Should be a list, with each entry being ``'cone'`` or ``'sphere'`` to specify how the dipoles should be shown. scale_factors : list List of floating point scale factors for the markers. %(verbose)s **kwargs : kwargs Keyword arguments to pass to mlab.triangular_mesh. Returns ------- surface : instance of mayavi.mlab.pipeline.surface The triangular mesh surface. """ import matplotlib.pyplot as plt from matplotlib.colors import ColorConverter # Update the backend from .backends.renderer import _get_renderer known_modes = ['cone', 'sphere'] if not isinstance(modes, (list, tuple)) or \ not all(mode in known_modes for mode in modes): raise ValueError('mode must be a list containing only ' '"cone" or "sphere"') if not isinstance(stcs, list): stcs = [stcs] if labels is not None and not isinstance(labels, list): labels = [labels] if colors is None: colors = _get_color_list() linestyles = ['-', '--', ':'] # Show 3D lh_points = src[0]['rr'] rh_points = src[1]['rr'] points = np.r_[lh_points, rh_points] lh_normals = src[0]['nn'] rh_normals = src[1]['nn'] normals = np.r_[lh_normals, rh_normals] if high_resolution: use_lh_faces = src[0]['tris'] use_rh_faces = src[1]['tris'] else: use_lh_faces = src[0]['use_tris'] use_rh_faces = src[1]['use_tris'] use_faces = np.r_[use_lh_faces, lh_points.shape[0] + use_rh_faces] points *= 170 vertnos = [np.r_[stc.lh_vertno, lh_points.shape[0] + stc.rh_vertno] for stc in stcs] unique_vertnos = np.unique(np.concatenate(vertnos).ravel()) color_converter = ColorConverter() renderer = _get_renderer(bgcolor=bgcolor, size=(600, 600), name=fig_name) surface = renderer.mesh(x=points[:, 0], y=points[:, 1], z=points[:, 2], triangles=use_faces, color=brain_color, opacity=opacity, backface_culling=True, shading=True, **kwargs) # Show time courses fig = plt.figure(fig_number) fig.clf() ax = fig.add_subplot(111) colors = cycle(colors) logger.info("Total number of active sources: %d" % len(unique_vertnos)) if labels is not None: colors = [next(colors) for _ in range(np.unique(np.concatenate(labels).ravel()).size)] for idx, v in enumerate(unique_vertnos): # get indices of stcs it belongs to ind = [k for k, vertno in enumerate(vertnos) if v in vertno] is_common = len(ind) > 1 if labels is None: c = next(colors) else: # if vertex is in different stcs than take label from first one c = colors[labels[ind[0]][vertnos[ind[0]] == v]] mode = modes[1] if is_common else modes[0] scale_factor = scale_factors[1] if is_common else scale_factors[0] if (isinstance(scale_factor, (np.ndarray, list, tuple)) and len(unique_vertnos) == len(scale_factor)): scale_factor = scale_factor[idx] x, y, z = points[v] nx, ny, nz = normals[v] renderer.quiver3d(x=x, y=y, z=z, u=nx, v=ny, w=nz, color=color_converter.to_rgb(c), mode=mode, scale=scale_factor) for k in ind: vertno = vertnos[k] mask = (vertno == v) assert np.sum(mask) == 1 linestyle = linestyles[k] ax.plot(1e3 * stcs[k].times, 1e9 * stcs[k].data[mask].ravel(), c=c, linewidth=linewidth, linestyle=linestyle) ax.set_xlabel('Time (ms)', fontsize=18) ax.set_ylabel('Source amplitude (nAm)', fontsize=18) if fig_name is not None: ax.set_title(fig_name) plt_show(show) renderer.show() return surface @verbose def plot_dipole_locations(dipoles, trans=None, subject=None, subjects_dir=None, mode='orthoview', coord_frame='mri', idx='gof', show_all=True, ax=None, block=False, show=True, scale=5e-3, color=None, highlight_color='r', fig=None, verbose=None, title=None): """Plot dipole locations. If mode is set to 'arrow' or 'sphere', only the location of the first time point of each dipole is shown else use the show_all parameter. The option mode='orthoview' was added in version 0.14. Parameters ---------- dipoles : list of instances of Dipole | Dipole The dipoles to plot. trans : dict | None The mri to head trans. Can be None with mode set to '3d'. subject : str | None The subject name corresponding to FreeSurfer environment variable SUBJECT. Can be None with mode set to '3d'. subjects_dir : None | str The path to the freesurfer subjects reconstructions. It corresponds to Freesurfer environment variable SUBJECTS_DIR. The default is None. mode : str Can be ``'arrow'``, ``'sphere'`` or ``'orthoview'``. .. versionadded:: 0.19.0 coord_frame : str Coordinate frame to use, 'head' or 'mri'. Defaults to 'mri'. .. versionadded:: 0.14.0 idx : int | 'gof' | 'amplitude' Index of the initially plotted dipole. Can also be 'gof' to plot the dipole with highest goodness of fit value or 'amplitude' to plot the dipole with the highest amplitude. The dipoles can also be browsed through using up/down arrow keys or mouse scroll. Defaults to 'gof'. Only used if mode equals 'orthoview'. .. versionadded:: 0.14.0 show_all : bool Whether to always plot all the dipoles. If ``True`` (default), the active dipole is plotted as a red dot and its location determines the shown MRI slices. The non-active dipoles are plotted as small blue dots. If ``False``, only the active dipole is plotted. Only used if ``mode='orthoview'``. .. versionadded:: 0.14.0 ax : instance of matplotlib Axes3D | None Axes to plot into. If None (default), axes will be created. Only used if mode equals 'orthoview'. .. versionadded:: 0.14.0 block : bool Whether to halt program execution until the figure is closed. Defaults to False. Only used if mode equals 'orthoview'. .. versionadded:: 0.14.0 show : bool Show figure if True. Defaults to True. Only used if mode equals 'orthoview'. scale : float The scale of the dipoles if ``mode`` is 'arrow' or 'sphere'. color : tuple The color of the dipoles. The default (None) will use ``'y'`` if mode is ``'orthoview'`` and ``show_all`` is True, else 'r'. .. versionchanged:: 0.19.0 Color is now passed in orthoview mode. highlight_color : color The highlight color. Only used in orthoview mode with ``show_all=True``. .. versionadded:: 0.19.0 fig : mayavi.mlab.Figure | None 3D Scene in which to plot the alignment. If ``None``, creates a new 600x600 pixel figure with black background. .. versionadded:: 0.19.0 %(verbose)s %(dipole_locs_fig_title)s .. versionadded:: 0.21.0 Returns ------- fig : instance of mayavi.mlab.Figure or matplotlib.figure.Figure The mayavi figure or matplotlib Figure. Notes ----- .. versionadded:: 0.9.0 """ if mode == 'orthoview': fig = _plot_dipole_mri_orthoview( dipoles, trans=trans, subject=subject, subjects_dir=subjects_dir, coord_frame=coord_frame, idx=idx, show_all=show_all, ax=ax, block=block, show=show, color=color, highlight_color=highlight_color, title=title) elif mode in ['arrow', 'sphere']: from .backends.renderer import _get_renderer color = (1., 0., 0.) if color is None else color renderer = _get_renderer(fig=fig, size=(600, 600)) pos = dipoles.pos ori = dipoles.ori if coord_frame != 'head': trans = _get_trans(trans, fro='head', to=coord_frame)[0] pos = apply_trans(trans, pos) ori = apply_trans(trans, ori) renderer.sphere(center=pos, color=color, scale=scale) if mode == 'arrow': x, y, z = pos.T u, v, w = ori.T renderer.quiver3d(x, y, z, u, v, w, scale=3 * scale, color=color, mode='arrow') fig = renderer.scene() else: raise ValueError('Mode must be "cone", "arrow" or orthoview", ' 'got %s.' % (mode,)) return fig def snapshot_brain_montage(fig, montage, hide_sensors=True): """Take a snapshot of a Mayavi Scene and project channels onto 2d coords. Note that this will take the raw values for 3d coordinates of each channel, without applying any transforms. If brain images are flipped up/dn upon using `imshow`, check your matplotlib backend as this behavior changes. Parameters ---------- fig : instance of ~mayavi.core.api.Scene The figure on which you've plotted electrodes using :func:`mne.viz.plot_alignment`. montage : instance of DigMontage or Info | dict The digital montage for the electrodes plotted in the scene. If `Info`, channel positions will be pulled from the `loc` field of `chs`. dict should have ch:xyz mappings. hide_sensors : bool Whether to remove the spheres in the scene before taking a snapshot. Returns ------- xy : array, shape (n_channels, 2) The 2d location of each channel on the image of the current scene view. im : array, shape (m, n, 3) The screenshot of the current scene view. """ from ..channels import DigMontage from .. import Info # Update the backend from .backends.renderer import _get_renderer if fig is None: raise ValueError('The figure must have a scene') if isinstance(montage, DigMontage): chs = montage._get_ch_pos() ch_names, xyz = zip(*[(ich, ixyz) for ich, ixyz in chs.items()]) elif isinstance(montage, Info): xyz = [ich['loc'][:3] for ich in montage['chs']] ch_names = [ich['ch_name'] for ich in montage['chs']] elif isinstance(montage, dict): if not all(len(ii) == 3 for ii in montage.values()): raise ValueError('All electrode positions must be length 3') ch_names, xyz = zip(*[(ich, ixyz) for ich, ixyz in montage.items()]) else: raise TypeError('montage must be an instance of `DigMontage`, `Info`,' ' or `dict`') # initialize figure renderer = _get_renderer(fig, show=True) xyz = np.vstack(xyz) proj = renderer.project(xyz=xyz, ch_names=ch_names) if hide_sensors is True: proj.visible(False) im = renderer.screenshot() proj.visible(True) return proj.xy, im @fill_doc def plot_sensors_connectivity(info, con, picks=None): """Visualize the sensor connectivity in 3D. Parameters ---------- info : dict | None The measurement info. con : array, shape (n_channels, n_channels) The computed connectivity measure(s). %(picks_good_data)s Indices of selected channels. Returns ------- fig : instance of mayavi.mlab.Figure The mayavi figure. """ _validate_type(info, "info") from .backends.renderer import _get_renderer renderer = _get_renderer(size=(600, 600), bgcolor=(0.5, 0.5, 0.5)) picks = _picks_to_idx(info, picks) if len(picks) != len(con): raise ValueError('The number of channels picked (%s) does not ' 'correspond the size of the connectivity data ' '(%s)' % (len(picks), len(con))) # Plot the sensor locations sens_loc = [info['chs'][k]['loc'][:3] for k in picks] sens_loc = np.array(sens_loc) renderer.sphere(np.c_[sens_loc[:, 0], sens_loc[:, 1], sens_loc[:, 2]], color=(1, 1, 1), opacity=1, scale=0.005) # Get the strongest connections n_con = 20 # show up to 20 connections min_dist = 0.05 # exclude sensors that are less than 5cm apart threshold = np.sort(con, axis=None)[-n_con] ii, jj = np.where(con >= threshold) # Remove close connections con_nodes = list() con_val = list() for i, j in zip(ii, jj): if linalg.norm(sens_loc[i] - sens_loc[j]) > min_dist: con_nodes.append((i, j)) con_val.append(con[i, j]) con_val = np.array(con_val) # Show the connections as tubes between sensors vmax = np.max(con_val) vmin = np.min(con_val) for val, nodes in zip(con_val, con_nodes): x1, y1, z1 = sens_loc[nodes[0]] x2, y2, z2 = sens_loc[nodes[1]] tube = renderer.tube(origin=np.c_[x1, y1, z1], destination=np.c_[x2, y2, z2], scalars=np.c_[val, val], vmin=vmin, vmax=vmax, reverse_lut=True) renderer.scalarbar(source=tube, title='Phase Lag Index (PLI)') # Add the sensor names for the connections shown nodes_shown = list(set([n[0] for n in con_nodes] + [n[1] for n in con_nodes])) for node in nodes_shown: x, y, z = sens_loc[node] renderer.text3d(x, y, z, text=info['ch_names'][picks[node]], scale=0.005, color=(0, 0, 0)) renderer.set_camera(azimuth=-88.7, elevation=40.8, distance=0.76, focalpoint=np.array([-3.9e-4, -8.5e-3, -1e-2])) renderer.show() return renderer.scene() def _plot_dipole_mri_orthoview(dipole, trans, subject, subjects_dir=None, coord_frame='head', idx='gof', show_all=True, ax=None, block=False, show=True, color=None, highlight_color='r', title=None): """Plot dipoles on top of MRI slices in 3-D.""" import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from .. import Dipole if not has_nibabel(): raise ImportError('This function requires nibabel.') _check_option('coord_frame', coord_frame, ['head', 'mri']) if not isinstance(dipole, Dipole): from ..dipole import _concatenate_dipoles dipole = _concatenate_dipoles(dipole) if idx == 'gof': idx = np.argmax(dipole.gof) elif idx == 'amplitude': idx = np.argmax(np.abs(dipole.amplitude)) else: idx = _ensure_int(idx, 'idx', 'an int or one of ["gof", "amplitude"]') vox, ori, pos, data = _get_dipole_loc( dipole, trans, subject, subjects_dir, coord_frame) dims = len(data) # Symmetric size assumed. dd = dims // 2 if ax is None: fig = plt.figure() ax = Axes3D(fig) else: _validate_type(ax, Axes3D, "ax", "Axes3D") fig = ax.get_figure() gridx, gridy = np.meshgrid(np.linspace(-dd, dd, dims), np.linspace(-dd, dd, dims), indexing='ij') params = {'ax': ax, 'data': data, 'idx': idx, 'dipole': dipole, 'vox': vox, 'gridx': gridx, 'gridy': gridy, 'ori': ori, 'coord_frame': coord_frame, 'show_all': show_all, 'pos': pos, 'color': color, 'highlight_color': highlight_color, 'title': title} _plot_dipole(**params) ax.view_init(elev=30, azim=-140) callback_func = partial(_dipole_changed, params=params) fig.canvas.mpl_connect('scroll_event', callback_func) fig.canvas.mpl_connect('key_press_event', callback_func) plt_show(show, block=block) return fig RAS_AFFINE = np.eye(4) RAS_AFFINE[:3, 3] = [-128] * 3 RAS_SHAPE = (256, 256, 256) def _get_dipole_loc(dipole, trans, subject, subjects_dir, coord_frame): """Get the dipole locations and orientations.""" import nibabel as nib from nibabel.processing import resample_from_to _check_option('coord_frame', coord_frame, ['head', 'mri']) subjects_dir = get_subjects_dir(subjects_dir=subjects_dir, raise_error=True) t1_fname = op.join(subjects_dir, subject, 'mri', 'T1.mgz') t1 = nib.load(t1_fname) # Do everything in mm here to make life slightly easier vox_ras_t, _, mri_ras_t, _, _ = _read_mri_info( t1_fname, units='mm') head_mri_t = _get_trans(trans, fro='head', to='mri')[0].copy() head_mri_t['trans'][:3, 3] *= 1000 # m→mm del trans pos = dipole.pos * 1e3 # m→mm ori = dipole.ori # Figure out how to always resample to an identity, 256x256x256 RAS: # # 1. Resample to head or MRI surface RAS (the conditional), but also # 2. Resample to what will work for the standard 1mm** RAS_AFFINE (resamp) # # We could do this with two resample_from_to calls, but it's cleaner, # faster, and we get fewer boundary artifacts if we do it in one shot. # So first olve usamp s.t. ``upsamp @ vox_ras_t == RAS_AFFINE``` (2): upsamp = np.linalg.solve(vox_ras_t['trans'].T, RAS_AFFINE.T).T # Now figure out how we would resample from RAS to head or MRI coords: if coord_frame == 'head': dest_ras_t = combine_transforms( head_mri_t, mri_ras_t, 'head', 'ras')['trans'] else: pos = apply_trans(head_mri_t, pos) ori = apply_trans(head_mri_t, dipole.ori, move=False) dest_ras_t = mri_ras_t['trans'] # The order here is wacky because we need `resample_from_to` to operate # in a reverse order affine = np.dot(np.dot(dest_ras_t, upsamp), vox_ras_t['trans']) t1 = resample_from_to(t1, (RAS_SHAPE, affine), order=0) # Now we could do: # # t1 = SpatialImage(t1.dataobj, RAS_AFFINE) # # And t1 would be in our destination (mri or head) space. But we don't # need to construct the image -- let's just get our voxel coords and data: vox = apply_trans(np.linalg.inv(RAS_AFFINE), pos) t1_data = _get_img_fdata(t1) return vox, ori, pos, t1_data def _plot_dipole(ax, data, vox, idx, dipole, gridx, gridy, ori, coord_frame, show_all, pos, color, highlight_color, title): """Plot dipoles.""" import matplotlib.pyplot as plt from matplotlib.colors import ColorConverter color_converter = ColorConverter() xidx, yidx, zidx = np.round(vox[idx]).astype(int) xslice = data[xidx] yslice = data[:, yidx] zslice = data[:, :, zidx] ori = ori[idx] if color is None: color = 'y' if show_all else 'r' color = np.array(color_converter.to_rgba(color)) highlight_color = np.array(color_converter.to_rgba(highlight_color)) if show_all: colors = np.repeat(color[np.newaxis], len(vox), axis=0) colors[idx] = highlight_color size = np.repeat(5, len(vox)) size[idx] = 20 visible = np.arange(len(vox)) else: colors = color size = 20 visible = idx offset = np.min(gridx) xyz = pos ax.scatter(xs=xyz[visible, 0], ys=xyz[visible, 1], zs=xyz[visible, 2], zorder=2, s=size, facecolor=colors) xx = np.linspace(offset, xyz[idx, 0], xidx) yy = np.linspace(offset, xyz[idx, 1], yidx) zz = np.linspace(offset, xyz[idx, 2], zidx) ax.plot(xx, np.repeat(xyz[idx, 1], len(xx)), zs=xyz[idx, 2], zorder=1, linestyle='-', color=highlight_color) ax.plot(np.repeat(xyz[idx, 0], len(yy)), yy, zs=xyz[idx, 2], zorder=1, linestyle='-', color=highlight_color) ax.plot(np.repeat(xyz[idx, 0], len(zz)), np.repeat(xyz[idx, 1], len(zz)), zs=zz, zorder=1, linestyle='-', color=highlight_color) ax.quiver(xyz[idx, 0], xyz[idx, 1], xyz[idx, 2], ori[0], ori[1], ori[2], length=50, color=highlight_color, pivot='tail') dims = np.array([(len(data) / -2.), (len(data) / 2.)]) ax.set(xlim=-dims, ylim=-dims, zlim=dims) # Plot slices. ax.contourf(xslice, gridx, gridy, offset=offset, zdir='x', cmap='gray', zorder=0, alpha=.5) ax.contourf(gridx, yslice, gridy, offset=offset, zdir='y', cmap='gray', zorder=0, alpha=.5) ax.contourf(gridx, gridy, zslice, offset=offset, zdir='z', cmap='gray', zorder=0, alpha=.5) # These are the only two options coord_frame_name = 'Head' if coord_frame == 'head' else 'MRI' if title is None: title = ('Dipole #%s / %s @ %.3fs, GOF: %.1f%%, %.1fnAm\n%s: ' % ( idx + 1, len(dipole.times), dipole.times[idx], dipole.gof[idx], dipole.amplitude[idx] * 1e9, coord_frame_name) + '(%0.1f, %0.1f, %0.1f) mm' % tuple(xyz[idx])) ax.get_figure().suptitle(title) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt.draw() def _dipole_changed(event, params): """Handle dipole plotter scroll/key event.""" if event.key is not None: if event.key == 'up': params['idx'] += 1 elif event.key == 'down': params['idx'] -= 1 else: # some other key return elif event.step > 0: # scroll event params['idx'] += 1 else: params['idx'] -= 1 params['idx'] = min(max(0, params['idx']), len(params['dipole'].pos) - 1) params['ax'].clear() _plot_dipole(**params) def _update_coord_frame(obj, rr, nn, mri_trans, head_trans): if obj['coord_frame'] == FIFF.FIFFV_COORD_MRI: rr = apply_trans(mri_trans, rr) nn = apply_trans(mri_trans, nn, move=False) elif obj['coord_frame'] == FIFF.FIFFV_COORD_HEAD: rr = apply_trans(head_trans, rr) nn = apply_trans(head_trans, nn, move=False) return rr, nn @fill_doc def plot_brain_colorbar(ax, clim, colormap='auto', transparent=True, orientation='vertical', label='Activation', bgcolor='0.5'): """Plot a colorbar that corresponds to a brain activation map. Parameters ---------- ax : instance of Axes The Axes to plot into. %(clim)s %(colormap)s %(transparent)s orientation : str Orientation of the colorbar, can be "vertical" or "horizontal". label : str The colorbar label. bgcolor : color The color behind the colorbar (for alpha blending). Returns ------- cbar : instance of ColorbarBase The colorbar. Notes ----- .. versionadded:: 0.19 """ from matplotlib.colorbar import ColorbarBase from matplotlib.colors import Normalize mapdata = _process_clim(clim, colormap, transparent) ticks = _get_map_ticks(mapdata) colormap, lims = _linearize_map(mapdata) del mapdata norm = Normalize(vmin=lims[0], vmax=lims[2]) cbar = ColorbarBase(ax, colormap, norm=norm, ticks=ticks, label=label, orientation=orientation) # make the colorbar background match the brain color cbar.patch.set(facecolor=bgcolor) # remove the colorbar frame except for the line containing the ticks cbar.outline.set_visible(False) cbar.ax.set_frame_on(True) for key in ('left', 'top', 'bottom' if orientation == 'vertical' else 'right'): ax.spines[key].set_visible(False) return cbar
40.90895
105
0.57333
bc204992002033aede1b719e8b519315cac7c322
200
py
Python
mongoenginetest/serializers.py
jonwhuang/diana-api
7872f0358d15312333bae42ffb3fd4bd9633297f
[ "MIT" ]
null
null
null
mongoenginetest/serializers.py
jonwhuang/diana-api
7872f0358d15312333bae42ffb3fd4bd9633297f
[ "MIT" ]
null
null
null
mongoenginetest/serializers.py
jonwhuang/diana-api
7872f0358d15312333bae42ffb3fd4bd9633297f
[ "MIT" ]
null
null
null
from rest_framework_mongoengine import serializers from mongoenginetest.models import Test class TestSerializer(serializers.DocumentSerializer): class Meta: model = Test fields = '__all__'
25
53
0.805
6eea670b8363788843cfd729ca9f02b6432ece8c
24,463
py
Python
statsmodels/discrete/tests/test_sandwich_cov.py
Aziiz1989/statsmodels
4c4a235f98aeba743517dd35b01da824594cb43c
[ "BSD-3-Clause" ]
null
null
null
statsmodels/discrete/tests/test_sandwich_cov.py
Aziiz1989/statsmodels
4c4a235f98aeba743517dd35b01da824594cb43c
[ "BSD-3-Clause" ]
null
null
null
statsmodels/discrete/tests/test_sandwich_cov.py
Aziiz1989/statsmodels
4c4a235f98aeba743517dd35b01da824594cb43c
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Dec 09 21:29:20 2013 Author: Josef Perktold """ import os import numpy as np import pandas as pd import statsmodels.discrete.discrete_model as smd from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod import families from statsmodels.genmod.families import links from statsmodels.regression.linear_model import OLS from statsmodels.base.covtype import get_robustcov_results import statsmodels.stats.sandwich_covariance as sw from statsmodels.tools.tools import add_constant from numpy.testing import assert_allclose, assert_equal, assert_ import statsmodels.tools._testing as smt # get data and results as module global for now, TODO: move to class from .results import results_count_robust_cluster as results_st cur_dir = os.path.dirname(os.path.abspath(__file__)) filepath = os.path.join(cur_dir, "results", "ships.csv") data_raw = pd.read_csv(filepath, index_col=False) data = data_raw.dropna() #mod = smd.Poisson.from_formula('accident ~ yr_con + op_75_79', data=dat) # Don't use formula for tests against Stata because intercept needs to be last endog = data['accident'] exog_data = data['yr_con op_75_79'.split()] exog = add_constant(exog_data, prepend=False) group = np.asarray(data['ship'], int) exposure = np.asarray(data['service']) # TODO get the test methods from regression/tests class CheckCountRobustMixin(object): def test_basic(self): res1 = self.res1 res2 = self.res2 if len(res1.params) == (len(res2.params) - 1): # Stata includes lnalpha in table for NegativeBinomial mask = np.ones(len(res2.params), np.bool_) mask[-2] = False res2_params = res2.params[mask] res2_bse = res2.bse[mask] else: res2_params = res2.params res2_bse = res2.bse assert_allclose(res1._results.params, res2_params, 1e-4) assert_allclose(self.bse_rob / self.corr_fact, res2_bse, 6e-5) @classmethod def get_robust_clu(cls): res1 = cls.res1 cov_clu = sw.cov_cluster(res1, group) cls.bse_rob = sw.se_cov(cov_clu) nobs, k_vars = res1.model.exog.shape k_params = len(res1.params) #n_groups = len(np.unique(group)) corr_fact = (nobs-1.) / float(nobs - k_params) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(corr_fact) def test_oth(self): res1 = self.res1 res2 = self.res2 assert_allclose(res1._results.llf, res2.ll, 1e-4) assert_allclose(res1._results.llnull, res2.ll_0, 1e-4) def test_ttest(self): smt.check_ttest_tvalues(self.res1) def test_waldtest(self): smt.check_ftest_pvalues(self.res1) class TestPoissonClu(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_clu mod = smd.Poisson(endog, exog) cls.res1 = mod.fit(disp=False) cls.get_robust_clu() class TestPoissonCluGeneric(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_clu mod = smd.Poisson(endog, exog) cls.res1 = res1 = mod.fit(disp=False) debug = False if debug: # for debugging cls.bse_nonrobust = cls.res1.bse.copy() cls.res1 = res1 = mod.fit(disp=False) cls.get_robust_clu() cls.res3 = cls.res1 cls.bse_rob3 = cls.bse_rob.copy() cls.res1 = res1 = mod.fit(disp=False) from statsmodels.base.covtype import get_robustcov_results #res_hc0_ = cls.res1.get_robustcov_results('HC1') get_robustcov_results(cls.res1._results, 'cluster', groups=group, use_correction=True, df_correction=True, #TODO has no effect use_t=False, #True, use_self=True) cls.bse_rob = cls.res1.bse nobs, k_vars = res1.model.exog.shape k_params = len(res1.params) #n_groups = len(np.unique(group)) corr_fact = (nobs-1.) / float(nobs - k_params) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(corr_fact) class TestPoissonHC1Generic(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_hc1 mod = smd.Poisson(endog, exog) cls.res1 = mod.fit(disp=False) from statsmodels.base.covtype import get_robustcov_results #res_hc0_ = cls.res1.get_robustcov_results('HC1') get_robustcov_results(cls.res1._results, 'HC1', use_self=True) cls.bse_rob = cls.res1.bse nobs, k_vars = mod.exog.shape corr_fact = (nobs) / float(nobs - 1.) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(1./corr_fact) # TODO: refactor xxxFit to full testing results class TestPoissonCluFit(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_clu mod = smd.Poisson(endog, exog) # scaling of cov_params_default to match Stata # TODO should the default be changed? nobs, k_params = mod.exog.shape sc_fact = (nobs-1.) / float(nobs - k_params) cls.res1 = mod.fit(disp=False, cov_type='cluster', cov_kwds=dict(groups=group, use_correction=True, scaling_factor=1. / sc_fact, df_correction=True), #TODO has no effect use_t=False, #True, ) # The model results, t_test, ... should also work without # normalized_cov_params, see #2209 # Note: we cannot set on the wrapper res1, we need res1._results cls.res1._results.normalized_cov_params = None cls.bse_rob = cls.res1.bse # backwards compatibility with inherited test methods cls.corr_fact = 1 def test_basic_inference(self): res1 = self.res1 res2 = self.res2 rtol = 1e-7 assert_allclose(res1.params, res2.params, rtol=1e-8) assert_allclose(res1.bse, res2.bse, rtol=rtol) assert_allclose(res1.tvalues, res2.tvalues, rtol=rtol, atol=1e-8) assert_allclose(res1.pvalues, res2.pvalues, rtol=rtol, atol=1e-20) ci = res2.params_table[:, 4:6] assert_allclose(res1.conf_int(), ci, rtol=5e-7, atol=1e-20) class TestPoissonHC1Fit(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_hc1 mod = smd.Poisson(endog, exog) cls.res1 = mod.fit(disp=False, cov_type='HC1') cls.bse_rob = cls.res1.bse nobs, k_vars = mod.exog.shape corr_fact = (nobs) / float(nobs - 1.) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(1./corr_fact) class TestPoissonHC1FitExposure(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_exposure_hc1 mod = smd.Poisson(endog, exog, exposure=exposure) cls.res1 = mod.fit(disp=False, cov_type='HC1') cls.bse_rob = cls.res1.bse nobs, k_vars = mod.exog.shape corr_fact = (nobs) / float(nobs - 1.) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(1./corr_fact) class TestPoissonCluExposure(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_exposure_clu #nonrobust mod = smd.Poisson(endog, exog, exposure=exposure) cls.res1 = mod.fit(disp=False) cls.get_robust_clu() class TestPoissonCluExposureGeneric(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_exposure_clu #nonrobust mod = smd.Poisson(endog, exog, exposure=exposure) cls.res1 = res1 = mod.fit(disp=False) from statsmodels.base.covtype import get_robustcov_results #res_hc0_ = cls.res1.get_robustcov_results('HC1') get_robustcov_results(cls.res1._results, 'cluster', groups=group, use_correction=True, df_correction=True, #TODO has no effect use_t=False, #True, use_self=True) cls.bse_rob = cls.res1.bse #sw.se_cov(cov_clu) nobs, k_vars = res1.model.exog.shape k_params = len(res1.params) #n_groups = len(np.unique(group)) corr_fact = (nobs-1.) / float(nobs - k_params) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(corr_fact) class TestGLMPoissonClu(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_clu mod = smd.Poisson(endog, exog) mod = GLM(endog, exog, family=families.Poisson()) cls.res1 = mod.fit() cls.get_robust_clu() class TestGLMPoissonCluGeneric(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_clu mod = GLM(endog, exog, family=families.Poisson()) cls.res1 = res1 = mod.fit() get_robustcov_results(cls.res1._results, 'cluster', groups=group, use_correction=True, df_correction=True, #TODO has no effect use_t=False, #True, use_self=True) cls.bse_rob = cls.res1.bse nobs, k_vars = res1.model.exog.shape k_params = len(res1.params) #n_groups = len(np.unique(group)) corr_fact = (nobs-1.) / float(nobs - k_params) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(corr_fact) class TestGLMPoissonHC1Generic(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_hc1 mod = GLM(endog, exog, family=families.Poisson()) cls.res1 = mod.fit() #res_hc0_ = cls.res1.get_robustcov_results('HC1') get_robustcov_results(cls.res1._results, 'HC1', use_self=True) cls.bse_rob = cls.res1.bse nobs, k_vars = mod.exog.shape corr_fact = (nobs) / float(nobs - 1.) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(1./corr_fact) # TODO: refactor xxxFit to full testing results class TestGLMPoissonCluFit(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_clu mod = GLM(endog, exog, family=families.Poisson()) cls.res1 = res1 = mod.fit(cov_type='cluster', cov_kwds=dict(groups=group, use_correction=True, df_correction=True), #TODO has no effect use_t=False, #True, ) # The model results, t_test, ... should also work without # normalized_cov_params, see #2209 # Note: we cannot set on the wrapper res1, we need res1._results cls.res1._results.normalized_cov_params = None cls.bse_rob = cls.res1.bse nobs, k_vars = mod.exog.shape k_params = len(cls.res1.params) #n_groups = len(np.unique(group)) corr_fact = (nobs-1.) / float(nobs - k_params) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(corr_fact) class TestGLMPoissonHC1Fit(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_poisson_hc1 mod = GLM(endog, exog, family=families.Poisson()) cls.res1 = mod.fit(cov_type='HC1') cls.bse_rob = cls.res1.bse nobs, k_vars = mod.exog.shape corr_fact = (nobs) / float(nobs - 1.) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(1./corr_fact) class TestNegbinClu(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_negbin_clu mod = smd.NegativeBinomial(endog, exog) cls.res1 = mod.fit(disp=False, gtol=1e-7) cls.get_robust_clu() class TestNegbinCluExposure(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_negbin_exposure_clu #nonrobust mod = smd.NegativeBinomial(endog, exog, exposure=exposure) cls.res1 = mod.fit(disp=False) cls.get_robust_clu() # mod_nbe = smd.NegativeBinomial(endog, exog, exposure=data['service']) # res_nbe = mod_nbe.fit() # mod_nb = smd.NegativeBinomial(endog, exog) # res_nb = mod_nb.fit() # # cov_clu_nb = sw.cov_cluster(res_nb, group) # k_params = k_vars + 1 # print sw.se_cov(cov_clu_nb / ((nobs-1.) / float(nobs - k_params))) # # wt = res_nb.wald_test(np.eye(len(res_nb.params))[1:3], cov_p=cov_clu_nb/((nobs-1.) / float(nobs - k_params))) # print wt # # print dir(results_st) class TestNegbinCluGeneric(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_negbin_clu mod = smd.NegativeBinomial(endog, exog) cls.res1 = res1 = mod.fit(disp=False, gtol=1e-7) get_robustcov_results(cls.res1._results, 'cluster', groups=group, use_correction=True, df_correction=True, #TODO has no effect use_t=False, #True, use_self=True) cls.bse_rob = cls.res1.bse nobs, k_vars = mod.exog.shape k_params = len(cls.res1.params) #n_groups = len(np.unique(group)) corr_fact = (nobs-1.) / float(nobs - k_params) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(corr_fact) class TestNegbinCluFit(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_negbin_clu mod = smd.NegativeBinomial(endog, exog) cls.res1 = res1 = mod.fit(disp=False, cov_type='cluster', cov_kwds=dict(groups=group, use_correction=True, df_correction=True), #TODO has no effect use_t=False, #True, gtol=1e-7) cls.bse_rob = cls.res1.bse nobs, k_vars = mod.exog.shape k_params = len(cls.res1.params) #n_groups = len(np.unique(group)) corr_fact = (nobs-1.) / float(nobs - k_params) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(corr_fact) class TestNegbinCluExposureFit(CheckCountRobustMixin): @classmethod def setup_class(cls): cls.res2 = results_st.results_negbin_exposure_clu #nonrobust mod = smd.NegativeBinomial(endog, exog, exposure=exposure) cls.res1 = res1 = mod.fit(disp=False, cov_type='cluster', cov_kwds=dict(groups=group, use_correction=True, df_correction=True), #TODO has no effect use_t=False, #True, ) cls.bse_rob = cls.res1.bse nobs, k_vars = mod.exog.shape k_params = len(cls.res1.params) #n_groups = len(np.unique(group)) corr_fact = (nobs-1.) / float(nobs - k_params) # for bse we need sqrt of correction factor cls.corr_fact = np.sqrt(corr_fact) class CheckDiscreteGLM(object): # compare GLM with other models, no verified reference results def test_basic(self): res1 = self.res1 res2 = self.res2 assert_equal(res1.cov_type, self.cov_type) assert_equal(res2.cov_type, self.cov_type) assert_allclose(res1.params, res2.params, rtol=1e-13) # bug TODO res1.scale missing ? in Gaussian/OLS assert_allclose(res1.bse, res2.bse, rtol=1e-13) # if not self.cov_type == 'nonrobust': # assert_allclose(res1.bse * res1.scale, res2.bse, rtol=1e-13) # else: # assert_allclose(res1.bse, res2.bse, rtol=1e-13) class TestGLMLogit(CheckDiscreteGLM): @classmethod def setup_class(cls): endog_bin = (endog > endog.mean()).astype(int) cls.cov_type = 'cluster' mod1 = GLM(endog_bin, exog, family=families.Binomial()) cls.res1 = mod1.fit(cov_type='cluster', cov_kwds=dict(groups=group)) mod1 = smd.Logit(endog_bin, exog) cls.res2 = mod1.fit(cov_type='cluster', cov_kwds=dict(groups=group)) class T_estGLMProbit(CheckDiscreteGLM): # invalid link. What's Probit as GLM? @classmethod def setup_class(cls): endog_bin = (endog > endog.mean()).astype(int) cls.cov_type = 'cluster' mod1 = GLM(endog_bin, exog, family=families.Gaussian(link=links.CDFLink())) cls.res1 = mod1.fit(cov_type='cluster', cov_kwds=dict(groups=group)) mod1 = smd.Probit(endog_bin, exog) cls.res2 = mod1.fit(cov_type='cluster', cov_kwds=dict(groups=group)) class TestGLMGaussNonRobust(CheckDiscreteGLM): @classmethod def setup_class(cls): cls.cov_type = 'nonrobust' mod1 = GLM(endog, exog, family=families.Gaussian()) cls.res1 = mod1.fit() mod2 = OLS(endog, exog) cls.res2 = mod2.fit() class TestGLMGaussClu(CheckDiscreteGLM): @classmethod def setup_class(cls): cls.cov_type = 'cluster' mod1 = GLM(endog, exog, family=families.Gaussian()) cls.res1 = mod1.fit(cov_type='cluster', cov_kwds=dict(groups=group)) mod2 = OLS(endog, exog) cls.res2 = mod2.fit(cov_type='cluster', cov_kwds=dict(groups=group)) class TestGLMGaussHC(CheckDiscreteGLM): @classmethod def setup_class(cls): cls.cov_type = 'HC0' mod1 = GLM(endog, exog, family=families.Gaussian()) cls.res1 = mod1.fit(cov_type='HC0') mod2 = OLS(endog, exog) cls.res2 = mod2.fit(cov_type='HC0') class TestGLMGaussHAC(CheckDiscreteGLM): @classmethod def setup_class(cls): cls.cov_type = 'HAC' kwds={'maxlags':2} mod1 = GLM(endog, exog, family=families.Gaussian()) cls.res1 = mod1.fit(cov_type='HAC', cov_kwds=kwds) mod2 = OLS(endog, exog) cls.res2 = mod2.fit(cov_type='HAC', cov_kwds=kwds) class TestGLMGaussHAC2(CheckDiscreteGLM): @classmethod def setup_class(cls): cls.cov_type = 'HAC' # check kernel specified as string kwds = {'kernel': 'bartlett', 'maxlags': 2} mod1 = GLM(endog, exog, family=families.Gaussian()) cls.res1 = mod1.fit(cov_type='HAC', cov_kwds=kwds) mod2 = OLS(endog, exog) kwds2 = {'maxlags': 2} cls.res2 = mod2.fit(cov_type='HAC', cov_kwds=kwds2) class TestGLMGaussHACUniform(CheckDiscreteGLM): @classmethod def setup_class(cls): cls.cov_type = 'HAC' kwds={'kernel':sw.weights_uniform, 'maxlags':2} mod1 = GLM(endog, exog, family=families.Gaussian()) cls.res1 = mod1.fit(cov_type='HAC', cov_kwds=kwds) mod2 = OLS(endog, exog) cls.res2 = mod2.fit(cov_type='HAC', cov_kwds=kwds) #for debugging cls.res3 = mod2.fit(cov_type='HAC', cov_kwds={'maxlags':2}) def test_cov_options(self): # check keyword `weights_func kwdsa = {'weights_func': sw.weights_uniform, 'maxlags': 2} res1a = self.res1.model.fit(cov_type='HAC', cov_kwds=kwdsa) res2a = self.res2.model.fit(cov_type='HAC', cov_kwds=kwdsa) assert_allclose(res1a.bse, self.res1.bse, rtol=1e-12) assert_allclose(res2a.bse, self.res2.bse, rtol=1e-12) # regression test for bse values bse = np.array([ 2.82203924, 4.60199596, 11.01275064]) assert_allclose(res1a.bse, bse, rtol=1e-6) assert_(res1a.cov_kwds['weights_func'] is sw.weights_uniform) kwdsb = {'kernel': sw.weights_bartlett, 'maxlags': 2} res1a = self.res1.model.fit(cov_type='HAC', cov_kwds=kwdsb) res2a = self.res2.model.fit(cov_type='HAC', cov_kwds=kwdsb) assert_allclose(res1a.bse, res2a.bse, rtol=1e-12) # regression test for bse values bse = np.array([ 2.502264, 3.697807, 9.193303]) assert_allclose(res1a.bse, bse, rtol=1e-6) class TestGLMGaussHACUniform2(TestGLMGaussHACUniform): @classmethod def setup_class(cls): cls.cov_type = 'HAC' kwds={'kernel': sw.weights_uniform, 'maxlags': 2} mod1 = GLM(endog, exog, family=families.Gaussian()) cls.res1 = mod1.fit(cov_type='HAC', cov_kwds=kwds) # check kernel as string mod2 = OLS(endog, exog) kwds2 = {'kernel': 'uniform', 'maxlags': 2} cls.res2 = mod2.fit(cov_type='HAC', cov_kwds=kwds) class TestGLMGaussHACPanel(CheckDiscreteGLM): @classmethod def setup_class(cls): cls.cov_type = 'hac-panel' # time index is just made up to have a test case time = np.tile(np.arange(7), 5)[:-1] mod1 = GLM(endog.copy(), exog.copy(), family=families.Gaussian()) kwds = dict(time=time, maxlags=2, kernel=sw.weights_uniform, use_correction='hac', df_correction=False) cls.res1 = mod1.fit(cov_type='hac-panel', cov_kwds=kwds) cls.res1b = mod1.fit(cov_type='nw-panel', cov_kwds=kwds) mod2 = OLS(endog, exog) cls.res2 = mod2.fit(cov_type='hac-panel', cov_kwds=kwds) def test_kwd(self): # test corrected keyword name assert_allclose(self.res1b.bse, self.res1.bse, rtol=1e-12) class TestGLMGaussHACPanelGroups(CheckDiscreteGLM): @classmethod def setup_class(cls): cls.cov_type = 'hac-panel' # time index is just made up to have a test case groups = np.repeat(np.arange(5), 7)[:-1] mod1 = GLM(endog.copy(), exog.copy(), family=families.Gaussian()) kwds = dict(groups=pd.Series(groups), # check for #3606 maxlags=2, kernel=sw.weights_uniform, use_correction='hac', df_correction=False) cls.res1 = mod1.fit(cov_type='hac-panel', cov_kwds=kwds) mod2 = OLS(endog, exog) cls.res2 = mod2.fit(cov_type='hac-panel', cov_kwds=kwds) class TestGLMGaussHACGroupsum(CheckDiscreteGLM): @classmethod def setup_class(cls): cls.cov_type = 'hac-groupsum' # time index is just made up to have a test case time = np.tile(np.arange(7), 5)[:-1] mod1 = GLM(endog, exog, family=families.Gaussian()) kwds = dict(time=pd.Series(time), # check for #3606 maxlags=2, use_correction='hac', df_correction=False) cls.res1 = mod1.fit(cov_type='hac-groupsum', cov_kwds=kwds) cls.res1b = mod1.fit(cov_type='nw-groupsum', cov_kwds=kwds) mod2 = OLS(endog, exog) cls.res2 = mod2.fit(cov_type='hac-groupsum', cov_kwds=kwds) def test_kwd(self): # test corrected keyword name assert_allclose(self.res1b.bse, self.res1.bse, rtol=1e-12) if __name__ == '__main__': tt = TestPoissonClu() tt.setup_class() tt.test_basic() tt = TestNegbinClu() tt.setup_class() tt.test_basic()
33.695592
118
0.601194
3dcd840b94e6994551f604c5a7877d66ec70141d
1,411
py
Python
mine/mine.py
Oyekunle-Mark/roaming-serpent
c9433234d42e4fc7ab2a36e6186a962e201ce1c1
[ "MIT" ]
null
null
null
mine/mine.py
Oyekunle-Mark/roaming-serpent
c9433234d42e4fc7ab2a36e6186a962e201ce1c1
[ "MIT" ]
null
null
null
mine/mine.py
Oyekunle-Mark/roaming-serpent
c9433234d42e4fc7ab2a36e6186a962e201ce1c1
[ "MIT" ]
null
null
null
import requests import time import hashlib from decouple import config TOKEN = config("TOKEN") auth = {"Authorization": "Token " + TOKEN} def get_last_proof(): res = requests.get( "https://lambda-treasure-hunt.herokuapp.com/api/bc/last_proof/", headers=auth ) return res.json() def mine(new_proof): res = requests.post( "https://lambda-treasure-hunt.herokuapp.com/api/bc/mine/", headers=auth, json={"proof": new_proof} ) print(res) return res.json() def valid_proof(last_proof, proof, difficulty): checksum = '0' * difficulty guess = f'{last_proof}{proof}'.encode() guess_hash = hashlib.sha256(guess).hexdigest() return guess_hash[:difficulty] == checksum last_proof_obj = get_last_proof() last_proof = last_proof_obj['proof'] diff = last_proof_obj['difficulty'] time.sleep(last_proof_obj['cooldown']) def proof_of_work(start_point): print("Mining new block") start_time = time.time() proof = int(start_point) while valid_proof(last_proof, proof, diff) is False: proof += 1 end_time = time.time() print( f'Block mined in {round(end_time-start_time, 2)}sec. Nonce: {str(proof)}') print("Mining with proof...") response = mine(proof) return response if __name__ == "__main__": while True: res = proof_of_work(0) time.sleep(res["cooldown"])
22.396825
82
0.656272
8cf6a05a9545562378220792b7a91ee31b2fc19d
4,431
py
Python
chatbot/mybot-basic.py
LiamFraney/foodbot
f7805e0bc4d72287321342486cec1092dbc0eb61
[ "MIT" ]
null
null
null
chatbot/mybot-basic.py
LiamFraney/foodbot
f7805e0bc4d72287321342486cec1092dbc0eb61
[ "MIT" ]
null
null
null
chatbot/mybot-basic.py
LiamFraney/foodbot
f7805e0bc4d72287321342486cec1092dbc0eb61
[ "MIT" ]
null
null
null
import spoonacular as sp import json, requests, os import aiml from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity from xml.etree import ElementTree as ET import tensorflow as tf from tensorflow.keras import models, backend, layers import urllib.request import numpy import cv2 kern = aiml.Kernel() kern.setTextEncoding(None) kern.bootstrap(learnFiles="chatbot/mybot-basic.xml") model = models.load_model("cnn/model.h5") APIkey = "13ffaf56553e48faab0c6ce7762f2e1c" spoon_api = sp.API(APIkey) print("Welcome to food bot") patterns = [] tree = ET.parse("chatbot/mybot-basic.xml") all_pattern = tree.findall("*/pattern") for pattern in all_pattern: if "*" not in pattern.text: patterns.append(pattern.text) classnames = [] with open("cnn/food41/meta/meta/classes.txt") as reader: for line in reader: classnames.append(line.strip()) def get_similar(phrase): corpus = list(patterns) corpus.append(phrase) vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform(corpus) similarity = list(cosine_similarity(tfidf_matrix, tfidf_matrix[-1]).flatten()[:-1]) if max(similarity) < 0.1: print("Sorry I do not understand") else: similar_index = similarity.index(max(similarity)) # print(max(similarity)) # print(patterns[similar_index]) handle_answer(kern.respond(patterns[similar_index])) def handle_answer(answer): if answer[0] == '#': params = answer[1:].split('$') cmd = int(params[0]) if cmd == 0: print(params[1]) return True elif cmd == 1: response = spoon_api.search_recipes_complex(params[1]) data = response.json() if data["results"]: recipe_id = data["results"][0]["id"] response = spoon_api.get_recipe_information(recipe_id) data = response.json() print(data["sourceUrl"]) else: print("There is no recipe for this") elif cmd == 2: response = spoon_api.get_a_random_food_joke() data = response.json() print(data["text"]) elif cmd == 3: response = spoon_api.get_random_food_trivia() data = response.json() print(data["text"]) elif cmd == 4: q = params[1] response = spoon_api.quick_answer("How much " + q) data = response.json() print(data["answer"]) elif cmd == 5: q = params[1] name = 0 for part in q.split(" "): if "jpg" in part or "png" in part: name = part if name == 0: return "Input is neither a valid file nor url" if os.path.exists(name): npImage = cv2.imread(name) else: try: filename = name.split("/")[-1] urllib.request.urlretrieve(name, filename) npImage = cv2.imread(filename) os.remove(filename) except Exception as e: print(e) return "Input is neither a valid file nor url" rows = 150 cols = 150 color_bands = 3 input_shape = (rows, cols, color_bands) scaledImage = cv2.resize(npImage, dsize=(rows, cols), interpolation=cv2.INTER_CUBIC) scaledImage = scaledImage/255 imageArray = scaledImage.reshape(1, rows, cols, color_bands) predictions = model.predict(imageArray) print(classnames[numpy.argmax(predictions)]) elif cmd == 99: get_similar(answer) else: print(answer) while True: #get user input try: userInput = input("> ") userInput = userInput.split("?")[0] except (KeyboardInterrupt, EOFError) as e: print("Bye!") break #pre-process user input and determine response agent (if needed) responseAgent = 'aiml' #activate selected response agent if responseAgent == 'aiml': answer = kern.respond(userInput) answer = answer.replace(" #99$", ".") if handle_answer(answer): break
31.425532
96
0.582938
12c98f78375b8a1d57d6593c328cfb6cfe9f7898
474
py
Python
shell/redirect.py
utep-cs-systems-courses/os-shell-Joshua-Zamora
e550935fae4ca1855706722736b380dbbfef6d61
[ "BSD-3-Clause" ]
null
null
null
shell/redirect.py
utep-cs-systems-courses/os-shell-Joshua-Zamora
e550935fae4ca1855706722736b380dbbfef6d61
[ "BSD-3-Clause" ]
null
null
null
shell/redirect.py
utep-cs-systems-courses/os-shell-Joshua-Zamora
e550935fae4ca1855706722736b380dbbfef6d61
[ "BSD-3-Clause" ]
null
null
null
import os import sys def redirect(arg, symbol): if symbol == '<' and arg.count("<") == 1: os.close(0) os.open(arg[arg.index(symbol) + 1], os.O_RDONLY) os.set_inheritable(0, True) elif symbol == '>' and arg.count(">") == 1: os.close(1) os.open(arg[arg.index(symbol) + 1], os.O_CREAT | os.O_WRONLY) os.set_inheritable(1, True) else: os.write(2, "redirect error, exiting...".encode()) sys.exit(1)
24.947368
69
0.552743
3aa2bb85ff3fe26e6d2fe6094d146588de9da827
2,588
py
Python
qiskit/providers/ibmq/credentials/__init__.py
mtreinish/qiskit-ibmq-provider
3ace23a40a9a049c08b140bf0a16c68ed5647f74
[ "Apache-2.0" ]
1
2020-07-14T20:09:52.000Z
2020-07-14T20:09:52.000Z
qiskit/providers/ibmq/credentials/__init__.py
mtreinish/qiskit-ibmq-provider
3ace23a40a9a049c08b140bf0a16c68ed5647f74
[ "Apache-2.0" ]
null
null
null
qiskit/providers/ibmq/credentials/__init__.py
mtreinish/qiskit-ibmq-provider
3ace23a40a9a049c08b140bf0a16c68ed5647f74
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Utilities for working with credentials for the IBMQ package.""" from collections import OrderedDict import logging from .credentials import Credentials from .exceptions import CredentialsError from .configrc import read_credentials_from_qiskitrc, store_credentials from .environ import read_credentials_from_environ from .qconfig import read_credentials_from_qconfig logger = logging.getLogger(__name__) def discover_credentials(qiskitrc_filename=None): """Automatically discover credentials for IBM Q. This method looks for credentials in the following locations, in order, and returning as soon as credentials are found:: 1. in the `Qconfig.py` file in the current working directory. 2. in the environment variables. 3. in the `qiskitrc` configuration file Args: qiskitrc_filename (str): location for the `qiskitrc` configuration file. If `None`, defaults to `{HOME}/.qiskitrc/qiskitrc`. Returns: dict: dictionary with the contents of the configuration file, with the form:: {credentials_unique_id: Credentials} """ credentials = OrderedDict() # dict[str:function] that defines the different locations for looking for # credentials, and their precedence order. readers = OrderedDict([ ('qconfig', (read_credentials_from_qconfig, {})), ('environment variables', (read_credentials_from_environ, {})), ('qiskitrc', (read_credentials_from_qiskitrc, {'filename': qiskitrc_filename})) ]) # Attempt to read the credentials from the different sources. for display_name, (reader_function, kwargs) in readers.items(): try: credentials = reader_function(**kwargs) logger.info('Using credentials from %s', display_name) if credentials: break except CredentialsError as ex: logger.warning( 'Automatic discovery of %s credentials failed: %s', display_name, str(ex)) return credentials
35.452055
77
0.696291
da7ac750647286e82468b2a3d27a38ace10538ca
4,810
py
Python
benchmarking/bridge/db.py
virtan/FAI-PEP
8641a54b2328c343ab0470f195a42da1021d1392
[ "Apache-2.0" ]
1
2019-08-09T07:50:21.000Z
2019-08-09T07:50:21.000Z
benchmarking/bridge/db.py
virtan/FAI-PEP
8641a54b2328c343ab0470f195a42da1021d1392
[ "Apache-2.0" ]
null
null
null
benchmarking/bridge/db.py
virtan/FAI-PEP
8641a54b2328c343ab0470f195a42da1021d1392
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python ############################################################################## # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import json from bridge.auth import Auth from utils.custom_logger import getLogger from utils.utilities import requestsJson NETWORK_TIMEOUT = 150 class DBDriver(object): def __init__(self, db, app_id, token, table, job_queue, is_test, benchmark_db_entry): self.table = table self.job_queue = job_queue auth = Auth(db, app_id, token, is_test) self.auth_params = auth.get_auth_params() assert benchmark_db_entry != "", "Database entry cannot be empty" self.benchmark_db_entry = benchmark_db_entry def submitBenchmarks(self, data, devices, identifier, user, hashes=None): json_data = json.dumps(data) params = { 'table': self.table, 'job_queue': self.job_queue, 'action': 'add', 'identifier': identifier, 'devices': devices, 'benchmarks': json_data, 'user': user, } if hashes: params['hashes'] = hashes self._requestData(params) def claimBenchmarks(self, server_id, devices, hashes=None): params = { 'table': self.table, 'job_queue': self.job_queue, 'action': 'claim', 'claimer': server_id, 'devices': devices, } if hashes: params['hashes'] = hashes result_json = self._requestData(params) return self._processBenchmarkResults(result_json['values']) def releaseBenchmarks(self, server_id, ids): params = { 'table': self.table, 'job_queue': self.job_queue, 'action': 'release', 'claimer': server_id, 'ids': ids, } self._requestData(params) def runBenchmarks(self, server_id, ids): params = { 'table': self.table, 'job_queue': self.job_queue, 'action': 'run', 'claimer': server_id, 'ids': ids, } self._requestData(params) def doneBenchmarks(self, id, status, result, log): params = { 'table': self.table, 'job_queue': self.job_queue, 'action': 'done', 'id': id, 'status': status, 'result': result, 'log': log, } self._requestData(params) def statusBenchmarks(self, identifier): params = { 'table': self.table, 'job_queue': self.job_queue, 'action': 'status', 'identifier': identifier, } request_json = self._requestData(params) return request_json["values"] def getBenchmarks(self, ids): params = { 'table': self.table, 'job_queue': self.job_queue, 'action': 'get', 'ids': ids, } request_json = self._requestData(params) return request_json["values"] def updateDevices(self, server_id, devices, reset): params = { 'table': self.table, 'job_queue': self.job_queue, 'action': 'update_devices', 'claimer': server_id, 'devices': devices, } if reset: params["reset"] = "true" self._requestData(params) def listDevices(self, job_queue): params = { 'table': self.table, 'job_queue': job_queue, 'action': 'list_devices', } result_json = self._requestData(params) return result_json["values"] def _requestData(self, params): params.update(self.auth_params) result_json = requestsJson(self.benchmark_db_entry, data=params, timeout=NETWORK_TIMEOUT) if "status" not in result_json or result_json['status'] != "success": getLogger().error( "DB post failed, params {}".format(json.dumps(params))) return { "status": "fail", "values": [], } else: return result_json def _processBenchmarkResults(self, result_json): for result in result_json: benchmarks = json.loads(result["benchmarks"]) result["benchmarks"] = benchmarks return result_json
31.032258
89
0.543451
ffedeeed0b866cc7ec953acea9737b88432086bd
59
py
Python
tda/__init__.py
imxly2/chinese_text_aug
141d6717292d93da5a1f964cb26150725cffd9d5
[ "MIT" ]
null
null
null
tda/__init__.py
imxly2/chinese_text_aug
141d6717292d93da5a1f964cb26150725cffd9d5
[ "MIT" ]
null
null
null
tda/__init__.py
imxly2/chinese_text_aug
141d6717292d93da5a1f964cb26150725cffd9d5
[ "MIT" ]
null
null
null
from .translate import back_translate from .eda import eda
19.666667
37
0.830508
d00d1926d5fdebe448777ecedfddce7b6cfa0e7a
98
py
Python
boxsdk/version.py
dtrodger/box-python-sdk
dba132e347e7b5a4a20feb148f316d0b145684a5
[ "Apache-2.0" ]
null
null
null
boxsdk/version.py
dtrodger/box-python-sdk
dba132e347e7b5a4a20feb148f316d0b145684a5
[ "Apache-2.0" ]
null
null
null
boxsdk/version.py
dtrodger/box-python-sdk
dba132e347e7b5a4a20feb148f316d0b145684a5
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 from __future__ import unicode_literals, absolute_import __version__ = '2.7.1'
14
56
0.765306
286f89c52c18a75bf8c8b3146148906d9ebd1a1e
3,284
py
Python
studio/gcloud_artifact_store.py
NunoEdgarGFlowHub/studio
42b221892a81535842ff25cbbcc434d6422a19e5
[ "Apache-2.0" ]
null
null
null
studio/gcloud_artifact_store.py
NunoEdgarGFlowHub/studio
42b221892a81535842ff25cbbcc434d6422a19e5
[ "Apache-2.0" ]
null
null
null
studio/gcloud_artifact_store.py
NunoEdgarGFlowHub/studio
42b221892a81535842ff25cbbcc434d6422a19e5
[ "Apache-2.0" ]
null
null
null
import time import calendar from .tartifact_store import TartifactStore from . import logs STORAGE_CLIENT_EXPIRATION = 3600 class GCloudArtifactStore(TartifactStore): def __init__(self, config, measure_timestamp_diff=False, compression=None, verbose=10): self.logger = logs.getLogger('GCloudArtifactStore') self.logger.setLevel(verbose) self.config = config self._client = None self._client_timestamp = None compression = compression if compression else config.get('compression') super(GCloudArtifactStore, self).__init__( measure_timestamp_diff, compression=compression) def _get_bucket_obj(self): while True: try: bucket = self.get_client().get_bucket(self.config['bucket']) break except BaseException as e: self.logger.exception(e) try: bucket = self.get_client().create_bucket( self.config['bucket']) break except BaseException as e: self.logger.exception(e) time.sleep(5) return bucket def get_client(self): if self._client is None or \ self._client_timestamp is None or \ time.time() - self._client_timestamp > STORAGE_CLIENT_EXPIRATION: from google.cloud import storage if 'credentials' in self.config.keys(): self._client = storage.Client \ .from_service_account_json(self.config['serviceAccount']) else: self._client = storage.Client() self._client_timestamp = time.time() return self._client def _upload_file(self, key, local_path): self._get_bucket_obj().blob(key).upload_from_filename(local_path) def _download_file(self, key, local_path, bucket=None): self._get_bucket_obj().get_blob(key).download_to_filename(local_path) def _delete_file(self, key): blob = self._get_bucket_obj().get_blob(key) if blob: blob.delete() def _get_file_url(self, key, method='GET'): expiration = int(time.time() + 100000) return self._get_bucket_obj().blob(key).generate_signed_url( expiration, method=method) def _get_file_timestamp(self, key): blob = self._get_bucket_obj().get_blob(key) if blob is None: return None time_updated = blob.updated if time_updated: timestamp = calendar.timegm(time_updated.timetuple()) return timestamp else: return None def grant_write(self, key, user): blob = self._get_bucket_obj().get_blob(key) if not blob: blob = self._get_bucket_obj().blob(key) blob.upload_from_string("dummy") acl = blob.acl if user: acl.user(user).grant_owner() else: acl.all().grant_owner() acl.save() def get_qualified_location(self, key): return 'gs://' + self.get_bucket() + '/' + key def get_bucket(self): return self._get_bucket_obj().name
29.854545
79
0.589525
d240071c8b335853274a9867fbd9ffff23324af4
8,144
py
Python
pdb2pqr/utilities.py
stefdoerr/pdb2pqr
c48a97a17f75d6c97a81bfb9e138ab165c563841
[ "BSD-3-Clause" ]
null
null
null
pdb2pqr/utilities.py
stefdoerr/pdb2pqr
c48a97a17f75d6c97a81bfb9e138ab165c563841
[ "BSD-3-Clause" ]
null
null
null
pdb2pqr/utilities.py
stefdoerr/pdb2pqr
c48a97a17f75d6c97a81bfb9e138ab165c563841
[ "BSD-3-Clause" ]
null
null
null
"""Utilities for the PDB2PQR software suite. .. todo: The functions in this module are great examples of why PDB2PQR needs :mod:`numpy`. More efforts should be made to subsitute with :mod:`numpy` data types and functions wherever possible throughout the code base. .. codeauthor:: Todd Dolinsky .. codeauthor:: Yong Huang .. codeauthor:: Nathan Baker """ import math import logging # from pathlib import Path import numpy as np from .config import SMALL_NUMBER, DIHEDRAL_WTF, CHARGE_ERROR _LOGGER = logging.getLogger(__name__) def noninteger_charge(charge, error_tol=CHARGE_ERROR) -> str: """Test whether a charge is an integer. :param float charge: value to test :param float error_tol: absolute error tolerance :returns: string with descripton of problem or empty string if no problem """ abs_error = abs(charge - round(charge)) if abs_error > abs(error_tol): return ( f"{charge} deviates by {abs_error} from integral, exceeding error " f"tolerance {error_tol}" ) return "" def sort_dict_by_value(inputdict): """Sort a dictionary by its values. :param inputdict: the dictionary to sort :type inputdict: dict :return: list of keys sorted by value :rtype: list """ items = sorted(inputdict.items(), key=lambda x: x[1], reverse=True) items = [v for v, k in items] return items def shortest_path(graph, start, end, path=[]): """Find the shortest path between two nodes. Uses recursion to find the shortest path from one node to another in an unweighted graph. Adapted from http://www.python.org/doc/essays/graphs.html :param graph: a mapping of the graph to analyze, of the form {0: [1,2], 1:[3,4], ...} . Each key has a list of edges. :type graph: dict :param start: the ID of the key to start the analysis from :type start: str :param end: the ID of the key to end the analysis :type end: str :param path: optional argument used during the recursive step to keep the current path up to that point :type path: list :return: list of the shortest path or ``None`` if start and end are not connected :rtype: list """ path = path + [start] if start == end: return path if start not in graph: return None shortest = None for node in graph[start]: if node not in path: newpath = shortest_path(graph, node, end, path) if newpath and (not shortest or len(newpath) < len(shortest)): shortest = newpath return shortest def analyze_connectivity(map_, key): """Analyze the connectivity of a given map using the key value. :param map: map to analyze :type map: dict :param key: key value :type key: str :return: list of connected values to the key :rtype: list """ clist = [] keys = [key] while keys: key = keys[0] if key not in clist: clist.append(key) if key in map_: for value in map_[key]: if value not in clist: keys.append(value) keys.pop(keys.index(key)) return clist def angle(coords1, coords2, coords3): """Get the angle between three coordinates. :param coords1: first coordinate set :type coords1: [float, float, float] :param coords2: second (vertex) coordinate set :type coords2: [float, float, float] :param coords3: third coordinate set :type coords3: [float, float, float] :return: angle between the atoms (in degrees) :rtype: float """ diff32 = np.array(coords3) - np.array(coords2) diff12 = np.array(coords1) - np.array(coords2) norm1 = normalize(diff32) norm2 = normalize(diff12) dotted = np.inner(norm1, norm2) if dotted > 1.0: # If normalized, this is due to rounding error dotted = 1.0 elif dotted < -1.0: dotted = -1.0 rad = np.absolute(np.arccos(dotted)) value = rad * 180.0 / np.pi if value > 180.0: value = 360.0 - value return value def distance(coords1, coords2): """Calculate the distance between two coordinates. :param coords1: coordinates of form [x,y,z] :type coords1: [float, float, float] :param coords2: coordinates of form [x,y,z] :type coords2: [float, float, float] :return: distance between the two coordinates :rtype: float """ coords1 = np.array(coords1) coords2 = np.array(coords2) return np.linalg.norm(coords1 - coords2) def add(coords1, coords2): """Add one 3-dimensional point to another. :param coords1: coordinates of form [x,y,z] :type coords1: [float, float, float] :param coords2: coordinates of form [x,y,z] :type coords2: [float, float, float] :return: list of coordinates equal to coords2 + coords1 :rtype: numpy.ndarray """ return np.array(coords1) + np.array(coords2) def subtract(coords1, coords2): """Suntract one 3-dimensional point from another. :param coords1: coordinates of form [x,y,z] :type coords1: [float, float, float] :param coords2: coordinates of form [x,y,z] :type coords2: [float, float, float] :return: list of coordinates equal to coords2 - coords1 :rtype: numpy.ndarray """ return np.array(coords1) - np.array(coords2) def cross(coords1, coords2): """Find the cross-product of one 3-dimensional point with another. :param coords1: coordinates of form [x,y,z] :type coords1: [float, float, float] :param coords2: coordinates of form [x,y,z] :type coords2: [float, float, float] :return: list of coordinates equal to coords2 cross coords1 :rtype: numpy.ndarray """ return np.cross(np.array(coords1), np.array(coords2)) def dot(coords1, coords2): """Find the dot-product of one 3-dimensional point with another. :param coords1: coordinates of form [x,y,z] :type coords1: [float, float, float] :param coords2: coordinates of form [x,y,z] :type coords2: [float, float, float] :return: list of coordinates equal to the inner product of coords2 with coords1 :rtype: numpy.ndarray """ return np.inner(np.array(coords1), np.array(coords2)) def normalize(coords): """Normalize a set of coordinates to unit vector. :param coords: coordinates of form [x,y,z] :type coords: [float, float, float] :return: normalized coordinates :rtype: numpy.ndarray """ return coords / np.linalg.norm(coords) def factorial(num): """Returns the factorial of the given number. :param num: number for which to compute factorial :type num: int :return: factorial of number :rtype: int """ if num <= 1: return 1 return num * factorial(num - 1) def dihedral(coords1, coords2, coords3, coords4): """Calculate the dihedral angle from four atoms' coordinates. :param coords1: one of four coordinates of form [x,y,z] :type coords1: [float, float, float] :param coords2: one of four coordinates of form [x,y,z] :type coords2: [float, float, float] :param coords3: one of four coordinates of form [x,y,z] :type coords3: [float, float, float] :param coords4: one of four coordinates of form [x,y,z] :type coords4: [float, float, float] :return: the angle (in degrees) :rtype: float """ diff43 = np.array(coords4) - np.array(coords3) diff32 = np.array(coords3) - np.array(coords2) diff12 = np.array(coords1) - np.array(coords2) c12_32 = np.cross(diff12, diff32) c12_32 = normalize(c12_32) c43_32 = np.cross(diff43, diff32) c43_32 = normalize(c43_32) scal = np.inner(c12_32, c43_32) if np.absolute(scal + 1.0) < SMALL_NUMBER: value = 180.0 elif np.absolute(scal - 1.0) < SMALL_NUMBER: value = 0.0 else: value = DIHEDRAL_WTF * math.acos(scal) chiral = np.inner(np.cross(c12_32, c43_32), diff32) if chiral < 0: value *= -1.0 return value
30.616541
79
0.63998
503506b0fb3d1ced4547ebf19a8d442e6ffe7304
51,610
py
Python
src/twisted/internet/base.py
nielsavonds/twisted
64506ce3bb578d708372237872aa6b8b90890cb6
[ "Unlicense", "MIT" ]
null
null
null
src/twisted/internet/base.py
nielsavonds/twisted
64506ce3bb578d708372237872aa6b8b90890cb6
[ "Unlicense", "MIT" ]
null
null
null
src/twisted/internet/base.py
nielsavonds/twisted
64506ce3bb578d708372237872aa6b8b90890cb6
[ "Unlicense", "MIT" ]
null
null
null
# -*- test-case-name: twisted.test.test_internet,twisted.internet.test.test_core -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Very basic functionality for a Reactor implementation. """ from abc import ABC, abstractmethod import builtins from heapq import heappush, heappop, heapify import socket # needed only for sync-dns import sys from traceback import format_stack from types import FrameType from typing import ( Any, AnyStr, Callable, Dict, List, Mapping, NewType, Optional, Sequence, Set, Tuple, TYPE_CHECKING, Union, cast, ) import warnings from zope.interface import implementer, classImplements from twisted.internet import fdesc, main, error, abstract, defer, threads from twisted.internet._resolver import ( ComplexResolverSimplifier as _ComplexResolverSimplifier, GAIResolver as _GAIResolver, SimpleResolverComplexifier as _SimpleResolverComplexifier, ) from twisted.internet.defer import Deferred, DeferredList from twisted.internet.interfaces import ( _ISupportsExitSignalCapturing, IAddress, IConnector, IDelayedCall, IHostnameResolver, IProtocol, IReactorCore, IReactorPluggableNameResolver, IReactorPluggableResolver, IReactorThreads, IReactorTime, IReadDescriptor, IResolverSimple, IWriteDescriptor, ) from twisted.internet.protocol import ClientFactory from twisted.python import log, reflect from twisted.python.failure import Failure from twisted.python.runtime import seconds as runtimeSeconds, platform if TYPE_CHECKING: from twisted.internet.tcp import Client # This import is for side-effects! Even if you don't see any code using it # in this module, don't delete it. from twisted.python import threadable if platform.supportsThreads(): from twisted.python.threadpool import ThreadPool else: ThreadPool = None # type: ignore[misc, assignment] @implementer(IDelayedCall) class DelayedCall: # enable .debug to record creator call stack, and it will be logged if # an exception occurs while the function is being run debug = False _repr: Optional[str] = None def __init__( self, time: float, func: Callable[..., Any], args: Sequence[object], kw: Dict[str, object], cancel: Callable[["DelayedCall"], None], reset: Callable[["DelayedCall"], None], seconds: Callable[[], float] = runtimeSeconds, ) -> None: """ @param time: Seconds from the epoch at which to call C{func}. @param func: The callable to call. @param args: The positional arguments to pass to the callable. @param kw: The keyword arguments to pass to the callable. @param cancel: A callable which will be called with this DelayedCall before cancellation. @param reset: A callable which will be called with this DelayedCall after changing this DelayedCall's scheduled execution time. The callable should adjust any necessary scheduling details to ensure this DelayedCall is invoked at the new appropriate time. @param seconds: If provided, a no-argument callable which will be used to determine the current time any time that information is needed. """ self.time, self.func, self.args, self.kw = time, func, args, kw self.resetter = reset self.canceller = cancel self.seconds = seconds self.cancelled = self.called = 0 self.delayed_time = 0.0 if self.debug: self.creator = format_stack()[:-2] def getTime(self) -> float: """ Return the time at which this call will fire @return: The number of seconds after the epoch at which this call is scheduled to be made. """ return self.time + self.delayed_time def cancel(self) -> None: """ Unschedule this call @raise AlreadyCancelled: Raised if this call has already been unscheduled. @raise AlreadyCalled: Raised if this call has already been made. """ if self.cancelled: raise error.AlreadyCancelled elif self.called: raise error.AlreadyCalled else: self.canceller(self) self.cancelled = 1 if self.debug: self._repr = repr(self) del self.func, self.args, self.kw def reset(self, secondsFromNow: float) -> None: """ Reschedule this call for a different time @param secondsFromNow: The number of seconds from the time of the C{reset} call at which this call will be scheduled. @raise AlreadyCancelled: Raised if this call has been cancelled. @raise AlreadyCalled: Raised if this call has already been made. """ if self.cancelled: raise error.AlreadyCancelled elif self.called: raise error.AlreadyCalled else: newTime = self.seconds() + secondsFromNow if newTime < self.time: self.delayed_time = 0.0 self.time = newTime self.resetter(self) else: self.delayed_time = newTime - self.time def delay(self, secondsLater: float) -> None: """ Reschedule this call for a later time @param secondsLater: The number of seconds after the originally scheduled time for which to reschedule this call. @raise AlreadyCancelled: Raised if this call has been cancelled. @raise AlreadyCalled: Raised if this call has already been made. """ if self.cancelled: raise error.AlreadyCancelled elif self.called: raise error.AlreadyCalled else: self.delayed_time += secondsLater if self.delayed_time < 0.0: self.activate_delay() self.resetter(self) def activate_delay(self) -> None: self.time += self.delayed_time self.delayed_time = 0.0 def active(self) -> bool: """Determine whether this call is still pending @return: True if this call has not yet been made or cancelled, False otherwise. """ return not (self.cancelled or self.called) def __le__(self, other: object) -> bool: """ Implement C{<=} operator between two L{DelayedCall} instances. Comparison is based on the C{time} attribute (unadjusted by the delayed time). """ if isinstance(other, DelayedCall): return self.time <= other.time else: return NotImplemented def __lt__(self, other: object) -> bool: """ Implement C{<} operator between two L{DelayedCall} instances. Comparison is based on the C{time} attribute (unadjusted by the delayed time). """ if isinstance(other, DelayedCall): return self.time < other.time else: return NotImplemented def __repr__(self) -> str: """ Implement C{repr()} for L{DelayedCall} instances. @returns: String containing details of the L{DelayedCall}. """ if self._repr is not None: return self._repr if hasattr(self, "func"): # This code should be replaced by a utility function in reflect; # see ticket #6066: if hasattr(self.func, "__qualname__"): func: Optional[str] = self.func.__qualname__ elif hasattr(self.func, "__name__"): func = self.func.func_name # type: ignore[attr-defined] if hasattr(self.func, "im_class"): func = self.func.im_class.__name__ + "." + func # type: ignore[attr-defined] else: func = reflect.safe_repr(self.func) else: func = None now = self.seconds() L = [ "<DelayedCall 0x%x [%ss] called=%s cancelled=%s" % (id(self), self.time - now, self.called, self.cancelled) ] if func is not None: L.extend((" ", func, "(")) if self.args: L.append(", ".join([reflect.safe_repr(e) for e in self.args])) if self.kw: L.append(", ") if self.kw: L.append( ", ".join( [ "{}={}".format(k, reflect.safe_repr(v)) for (k, v) in self.kw.items() ] ) ) L.append(")") if self.debug: L.append("\n\ntraceback at creation: \n\n%s" % (" ".join(self.creator))) L.append(">") return "".join(L) @implementer(IResolverSimple) class ThreadedResolver: """ L{ThreadedResolver} uses a reactor, a threadpool, and L{socket.gethostbyname} to perform name lookups without blocking the reactor thread. It also supports timeouts indepedently from whatever timeout logic L{socket.gethostbyname} might have. @ivar reactor: The reactor the threadpool of which will be used to call L{socket.gethostbyname} and the I/O thread of which the result will be delivered. """ def __init__(self, reactor: "ReactorBase") -> None: self.reactor = reactor self._runningQueries: Dict[ Deferred[str], Tuple[Deferred[str], IDelayedCall] ] = {} def _fail(self, name: str, err: str) -> Failure: lookupError = error.DNSLookupError(f"address {name!r} not found: {err}") return Failure(lookupError) def _cleanup(self, name: str, lookupDeferred: Deferred[str]) -> None: userDeferred, cancelCall = self._runningQueries[lookupDeferred] del self._runningQueries[lookupDeferred] userDeferred.errback(self._fail(name, "timeout error")) def _checkTimeout( self, result: str, name: str, lookupDeferred: Deferred[str] ) -> None: try: userDeferred, cancelCall = self._runningQueries[lookupDeferred] except KeyError: pass else: del self._runningQueries[lookupDeferred] cancelCall.cancel() if isinstance(result, Failure): userDeferred.errback(self._fail(name, result.getErrorMessage())) else: userDeferred.callback(result) def getHostByName( self, name: str, timeout: Sequence[int] = (1, 3, 11, 45) ) -> Deferred[str]: """ See L{twisted.internet.interfaces.IResolverSimple.getHostByName}. Note that the elements of C{timeout} are summed and the result is used as a timeout for the lookup. Any intermediate timeout or retry logic is left up to the platform via L{socket.gethostbyname}. """ if timeout: timeoutDelay = sum(timeout) else: timeoutDelay = 60 userDeferred = defer.Deferred() # type: Deferred[str] lookupDeferred = threads.deferToThreadPool( self.reactor, cast(IReactorThreads, self.reactor).getThreadPool(), socket.gethostbyname, name, ) cancelCall = cast(IReactorTime, self.reactor).callLater( timeoutDelay, self._cleanup, name, lookupDeferred ) self._runningQueries[lookupDeferred] = (userDeferred, cancelCall) lookupDeferred.addBoth(self._checkTimeout, name, lookupDeferred) return userDeferred @implementer(IResolverSimple) class BlockingResolver: def getHostByName( self, name: str, timeout: Sequence[int] = (1, 3, 11, 45) ) -> Deferred[str]: try: address = socket.gethostbyname(name) except OSError: msg = f"address {name!r} not found" err = error.DNSLookupError(msg) return defer.fail(err) else: return defer.succeed(address) _ThreePhaseEventTriggerCallable = Callable[..., Any] _ThreePhaseEventTrigger = Tuple[ _ThreePhaseEventTriggerCallable, Tuple[object, ...], Dict[str, object] ] _ThreePhaseEventTriggerHandle = NewType( "_ThreePhaseEventTriggerHandle", Tuple[str, _ThreePhaseEventTriggerCallable, Tuple[object, ...], Dict[str, object]], ) class _ThreePhaseEvent: """ Collection of callables (with arguments) which can be invoked as a group in a particular order. This provides the underlying implementation for the reactor's system event triggers. An instance of this class tracks triggers for all phases of a single type of event. @ivar before: A list of the before-phase triggers containing three-tuples of a callable, a tuple of positional arguments, and a dict of keyword arguments @ivar finishedBefore: A list of the before-phase triggers which have already been executed. This is only populated in the C{'BEFORE'} state. @ivar during: A list of the during-phase triggers containing three-tuples of a callable, a tuple of positional arguments, and a dict of keyword arguments @ivar after: A list of the after-phase triggers containing three-tuples of a callable, a tuple of positional arguments, and a dict of keyword arguments @ivar state: A string indicating what is currently going on with this object. One of C{'BASE'} (for when nothing in particular is happening; this is the initial value), C{'BEFORE'} (when the before-phase triggers are in the process of being executed). """ def __init__(self) -> None: self.before: List[_ThreePhaseEventTrigger] = [] self.during: List[_ThreePhaseEventTrigger] = [] self.after: List[_ThreePhaseEventTrigger] = [] self.state = "BASE" def addTrigger( self, phase: str, callable: _ThreePhaseEventTriggerCallable, *args: object, **kwargs: object, ) -> _ThreePhaseEventTriggerHandle: """ Add a trigger to the indicate phase. @param phase: One of C{'before'}, C{'during'}, or C{'after'}. @param callable: An object to be called when this event is triggered. @param args: Positional arguments to pass to C{callable}. @param kwargs: Keyword arguments to pass to C{callable}. @return: An opaque handle which may be passed to L{removeTrigger} to reverse the effects of calling this method. """ if phase not in ("before", "during", "after"): raise KeyError("invalid phase") getattr(self, phase).append((callable, args, kwargs)) return _ThreePhaseEventTriggerHandle((phase, callable, args, kwargs)) def removeTrigger(self, handle: _ThreePhaseEventTriggerHandle) -> None: """ Remove a previously added trigger callable. @param handle: An object previously returned by L{addTrigger}. The trigger added by that call will be removed. @raise ValueError: If the trigger associated with C{handle} has already been removed or if C{handle} is not a valid handle. """ getattr(self, "removeTrigger_" + self.state)(handle) def removeTrigger_BASE(self, handle: _ThreePhaseEventTriggerHandle) -> None: """ Just try to remove the trigger. @see: removeTrigger """ try: phase, callable, args, kwargs = handle except (TypeError, ValueError): raise ValueError("invalid trigger handle") else: if phase not in ("before", "during", "after"): raise KeyError("invalid phase") getattr(self, phase).remove((callable, args, kwargs)) def removeTrigger_BEFORE(self, handle: _ThreePhaseEventTriggerHandle) -> None: """ Remove the trigger if it has yet to be executed, otherwise emit a warning that in the future an exception will be raised when removing an already-executed trigger. @see: removeTrigger """ phase, callable, args, kwargs = handle if phase != "before": return self.removeTrigger_BASE(handle) if (callable, args, kwargs) in self.finishedBefore: warnings.warn( "Removing already-fired system event triggers will raise an " "exception in a future version of Twisted.", category=DeprecationWarning, stacklevel=3, ) else: self.removeTrigger_BASE(handle) def fireEvent(self) -> None: """ Call the triggers added to this event. """ self.state = "BEFORE" self.finishedBefore = [] beforeResults: List[Deferred[object]] = [] while self.before: callable, args, kwargs = self.before.pop(0) self.finishedBefore.append((callable, args, kwargs)) try: result = callable(*args, **kwargs) except BaseException: log.err() else: if isinstance(result, Deferred): beforeResults.append(result) DeferredList(beforeResults).addCallback(self._continueFiring) def _continueFiring(self, ignored: object) -> None: """ Call the during and after phase triggers for this event. """ self.state = "BASE" self.finishedBefore = [] for phase in self.during, self.after: while phase: callable, args, kwargs = phase.pop(0) try: callable(*args, **kwargs) except BaseException: log.err() @implementer(IReactorPluggableNameResolver, IReactorPluggableResolver) class PluggableResolverMixin: """ A mixin which implements the pluggable resolver reactor interfaces. @ivar resolver: The installed L{IResolverSimple}. @ivar _nameResolver: The installed L{IHostnameResolver}. """ resolver: IResolverSimple = BlockingResolver() _nameResolver: IHostnameResolver = _SimpleResolverComplexifier(resolver) # IReactorPluggableResolver def installResolver(self, resolver: IResolverSimple) -> IResolverSimple: """ See L{IReactorPluggableResolver}. @param resolver: see L{IReactorPluggableResolver}. @return: see L{IReactorPluggableResolver}. """ assert IResolverSimple.providedBy(resolver) oldResolver = self.resolver self.resolver = resolver self._nameResolver = _SimpleResolverComplexifier(resolver) return oldResolver # IReactorPluggableNameResolver def installNameResolver(self, resolver: IHostnameResolver) -> IHostnameResolver: """ See L{IReactorPluggableNameResolver}. @param resolver: See L{IReactorPluggableNameResolver}. @return: see L{IReactorPluggableNameResolver}. """ previousNameResolver = self._nameResolver self._nameResolver = resolver self.resolver = _ComplexResolverSimplifier(resolver) return previousNameResolver @property def nameResolver(self) -> IHostnameResolver: """ Implementation of read-only L{IReactorPluggableNameResolver.nameResolver}. """ return self._nameResolver _SystemEventID = NewType("_SystemEventID", Tuple[str, _ThreePhaseEventTriggerHandle]) _ThreadCall = Tuple[Callable[..., Any], Tuple[object, ...], Dict[str, object]] @implementer(IReactorCore, IReactorTime, _ISupportsExitSignalCapturing) class ReactorBase(PluggableResolverMixin): """ Default base class for Reactors. @ivar _stopped: A flag which is true between paired calls to C{reactor.run} and C{reactor.stop}. This should be replaced with an explicit state machine. @ivar _justStopped: A flag which is true between the time C{reactor.stop} is called and the time the shutdown system event is fired. This is used to determine whether that event should be fired after each iteration through the mainloop. This should be replaced with an explicit state machine. @ivar _started: A flag which is true from the time C{reactor.run} is called until the time C{reactor.run} returns. This is used to prevent calls to C{reactor.run} on a running reactor. This should be replaced with an explicit state machine. @ivar running: See L{IReactorCore.running} @ivar _registerAsIOThread: A flag controlling whether the reactor will register the thread it is running in as the I/O thread when it starts. If C{True}, registration will be done, otherwise it will not be. @ivar _exitSignal: See L{_ISupportsExitSignalCapturing._exitSignal} """ _registerAsIOThread = True _stopped = True installed = False usingThreads = False _exitSignal = None __name__ = "twisted.internet.reactor" def __init__(self) -> None: super().__init__() self.threadCallQueue: List[_ThreadCall] = [] self._eventTriggers: Dict[str, _ThreePhaseEvent] = {} self._pendingTimedCalls: List[DelayedCall] = [] self._newTimedCalls: List[DelayedCall] = [] self._cancellations = 0 self.running = False self._started = False self._justStopped = False self._startedBefore = False # reactor internal readers, e.g. the waker. # Using Any as the type here… unable to find a suitable defined interface self._internalReaders: Set[Any] = set() self.waker: Any = None # Arrange for the running attribute to change to True at the right time # and let a subclass possibly do other things at that time (eg install # signal handlers). self.addSystemEventTrigger("during", "startup", self._reallyStartRunning) self.addSystemEventTrigger("during", "shutdown", self.crash) self.addSystemEventTrigger("during", "shutdown", self.disconnectAll) if platform.supportsThreads(): self._initThreads() self.installWaker() # override in subclasses _lock = None def installWaker(self) -> None: raise NotImplementedError( reflect.qual(self.__class__) + " did not implement installWaker" ) def wakeUp(self) -> None: """ Wake up the event loop. """ if self.waker: self.waker.wakeUp() # if the waker isn't installed, the reactor isn't running, and # therefore doesn't need to be woken up def doIteration(self, delay: Optional[float]) -> None: """ Do one iteration over the readers and writers which have been added. """ raise NotImplementedError( reflect.qual(self.__class__) + " did not implement doIteration" ) def addReader(self, reader: IReadDescriptor) -> None: raise NotImplementedError( reflect.qual(self.__class__) + " did not implement addReader" ) def addWriter(self, writer: IWriteDescriptor) -> None: raise NotImplementedError( reflect.qual(self.__class__) + " did not implement addWriter" ) def removeReader(self, reader: IReadDescriptor) -> None: raise NotImplementedError( reflect.qual(self.__class__) + " did not implement removeReader" ) def removeWriter(self, writer: IWriteDescriptor) -> None: raise NotImplementedError( reflect.qual(self.__class__) + " did not implement removeWriter" ) def removeAll(self) -> List[Union[IReadDescriptor, IWriteDescriptor]]: raise NotImplementedError( reflect.qual(self.__class__) + " did not implement removeAll" ) def getReaders(self) -> List[IReadDescriptor]: raise NotImplementedError( reflect.qual(self.__class__) + " did not implement getReaders" ) def getWriters(self) -> List[IWriteDescriptor]: raise NotImplementedError( reflect.qual(self.__class__) + " did not implement getWriters" ) # IReactorCore def resolve( self, name: str, timeout: Sequence[int] = (1, 3, 11, 45) ) -> Deferred[str]: """ Return a Deferred that will resolve a hostname.""" if not name: # XXX - This is *less than* '::', and will screw up IPv6 servers return defer.succeed("0.0.0.0") if abstract.isIPAddress(name): return defer.succeed(name) return self.resolver.getHostByName(name, timeout) def stop(self) -> None: """ See twisted.internet.interfaces.IReactorCore.stop. """ if self._stopped: raise error.ReactorNotRunning("Can't stop reactor that isn't running.") self._stopped = True self._justStopped = True self._startedBefore = True def crash(self) -> None: """ See twisted.internet.interfaces.IReactorCore.crash. Reset reactor state tracking attributes and re-initialize certain state-transition helpers which were set up in C{__init__} but later destroyed (through use). """ self._started = False self.running = False self.addSystemEventTrigger("during", "startup", self._reallyStartRunning) def sigInt(self, number: int, frame: Optional[FrameType] = None) -> None: """ Handle a SIGINT interrupt. @param number: See handler specification in L{signal.signal} @param frame: See handler specification in L{signal.signal} """ log.msg("Received SIGINT, shutting down.") self.callFromThread(self.stop) self._exitSignal = number def sigBreak(self, number: int, frame: Optional[FrameType] = None) -> None: """ Handle a SIGBREAK interrupt. @param number: See handler specification in L{signal.signal} @param frame: See handler specification in L{signal.signal} """ log.msg("Received SIGBREAK, shutting down.") self.callFromThread(self.stop) self._exitSignal = number def sigTerm(self, number: int, frame: Optional[FrameType] = None) -> None: """ Handle a SIGTERM interrupt. @param number: See handler specification in L{signal.signal} @param frame: See handler specification in L{signal.signal} """ log.msg("Received SIGTERM, shutting down.") self.callFromThread(self.stop) self._exitSignal = number def disconnectAll(self) -> None: """Disconnect every reader, and writer in the system.""" selectables = self.removeAll() for reader in selectables: log.callWithLogger( reader, reader.connectionLost, Failure(main.CONNECTION_LOST) ) def iterate(self, delay: float = 0.0) -> None: """ See twisted.internet.interfaces.IReactorCore.iterate. """ self.runUntilCurrent() self.doIteration(delay) def fireSystemEvent(self, eventType: str) -> None: """ See twisted.internet.interfaces.IReactorCore.fireSystemEvent. """ event = self._eventTriggers.get(eventType) if event is not None: event.fireEvent() def addSystemEventTrigger( self, phase: str, eventType: str, callable: Callable[..., Any], *args: object, **kwargs: object, ) -> _SystemEventID: """ See twisted.internet.interfaces.IReactorCore.addSystemEventTrigger. """ assert builtins.callable(callable), f"{callable} is not callable" if eventType not in self._eventTriggers: self._eventTriggers[eventType] = _ThreePhaseEvent() return _SystemEventID( ( eventType, self._eventTriggers[eventType].addTrigger( phase, callable, *args, **kwargs ), ) ) def removeSystemEventTrigger(self, triggerID: _SystemEventID) -> None: """ See twisted.internet.interfaces.IReactorCore.removeSystemEventTrigger. """ eventType, handle = triggerID self._eventTriggers[eventType].removeTrigger(handle) def callWhenRunning( self, callable: Callable[..., Any], *args: object, **kwargs: object ) -> Optional[_SystemEventID]: """ See twisted.internet.interfaces.IReactorCore.callWhenRunning. """ if self.running: callable(*args, **kwargs) return None else: return self.addSystemEventTrigger( "after", "startup", callable, *args, **kwargs ) def startRunning(self) -> None: """ Method called when reactor starts: do some initialization and fire startup events. Don't call this directly, call reactor.run() instead: it should take care of calling this. This method is somewhat misnamed. The reactor will not necessarily be in the running state by the time this method returns. The only guarantee is that it will be on its way to the running state. """ if self._started: raise error.ReactorAlreadyRunning() if self._startedBefore: raise error.ReactorNotRestartable() self._started = True self._stopped = False if self._registerAsIOThread: threadable.registerAsIOThread() self.fireSystemEvent("startup") def _reallyStartRunning(self) -> None: """ Method called to transition to the running state. This should happen in the I{during startup} event trigger phase. """ self.running = True def run(self) -> None: # IReactorCore.run raise NotImplementedError() # IReactorTime seconds = staticmethod(runtimeSeconds) def callLater( self, delay: float, callable: Callable[..., Any], *args: object, **kw: object ) -> DelayedCall: """ See twisted.internet.interfaces.IReactorTime.callLater. """ assert builtins.callable(callable), f"{callable} is not callable" assert delay >= 0, f"{delay} is not greater than or equal to 0 seconds" delayedCall = DelayedCall( self.seconds() + delay, callable, args, kw, self._cancelCallLater, self._moveCallLaterSooner, seconds=self.seconds, ) self._newTimedCalls.append(delayedCall) return delayedCall def _moveCallLaterSooner(self, delayedCall: DelayedCall) -> None: # Linear time find: slow. heap = self._pendingTimedCalls try: pos = heap.index(delayedCall) # Move elt up the heap until it rests at the right place. elt = heap[pos] while pos != 0: parent = (pos - 1) // 2 if heap[parent] <= elt: break # move parent down heap[pos] = heap[parent] pos = parent heap[pos] = elt except ValueError: # element was not found in heap - oh well... pass def _cancelCallLater(self, delayedCall: DelayedCall) -> None: self._cancellations += 1 def getDelayedCalls(self) -> List[IDelayedCall]: """ Return all the outstanding delayed calls in the system. They are returned in no particular order. This method is not efficient -- it is really only meant for test cases. @return: A list of outstanding delayed calls. """ return [ x for x in (self._pendingTimedCalls + self._newTimedCalls) if not x.cancelled ] def _insertNewDelayedCalls(self) -> None: for call in self._newTimedCalls: if call.cancelled: self._cancellations -= 1 else: call.activate_delay() heappush(self._pendingTimedCalls, call) self._newTimedCalls = [] def timeout(self) -> Optional[float]: """ Determine the longest time the reactor may sleep (waiting on I/O notification, perhaps) before it must wake up to service a time-related event. @return: The maximum number of seconds the reactor may sleep. """ # insert new delayed calls to make sure to include them in timeout value self._insertNewDelayedCalls() if not self._pendingTimedCalls: return None delay = self._pendingTimedCalls[0].time - cast(float, self.seconds()) # Pick a somewhat arbitrary maximum possible value for the timeout. # This value is 2 ** 31 / 1000, which is the number of seconds which can # be represented as an integer number of milliseconds in a signed 32 bit # integer. This particular limit is imposed by the epoll_wait(3) # interface which accepts a timeout as a C "int" type and treats it as # representing a number of milliseconds. longest = 2147483 # Don't let the delay be in the past (negative) or exceed a plausible # maximum (platform-imposed) interval. return max(0, min(longest, delay)) def runUntilCurrent(self) -> None: """ Run all pending timed calls. """ if self.threadCallQueue: # Keep track of how many calls we actually make, as we're # making them, in case another call is added to the queue # while we're in this loop. count = 0 total = len(self.threadCallQueue) for (f, a, kw) in self.threadCallQueue: try: f(*a, **kw) except BaseException: log.err() count += 1 if count == total: break del self.threadCallQueue[:count] if self.threadCallQueue: self.wakeUp() # insert new delayed calls now self._insertNewDelayedCalls() now = self.seconds() while self._pendingTimedCalls and (self._pendingTimedCalls[0].time <= now): call = heappop(self._pendingTimedCalls) if call.cancelled: self._cancellations -= 1 continue if call.delayed_time > 0.0: call.activate_delay() heappush(self._pendingTimedCalls, call) continue try: call.called = 1 call.func(*call.args, **call.kw) except BaseException: log.deferr() if hasattr(call, "creator"): e = "\n" e += ( " C: previous exception occurred in " + "a DelayedCall created here:\n" ) e += " C:" e += "".join(call.creator).rstrip().replace("\n", "\n C:") e += "\n" log.msg(e) if ( self._cancellations > 50 and self._cancellations > len(self._pendingTimedCalls) >> 1 ): self._cancellations = 0 self._pendingTimedCalls = [ x for x in self._pendingTimedCalls if not x.cancelled ] heapify(self._pendingTimedCalls) if self._justStopped: self._justStopped = False self.fireSystemEvent("shutdown") # IReactorProcess def _checkProcessArgs( self, args: List[Union[bytes, str]], env: Optional[Mapping[AnyStr, AnyStr]] ) -> Union[ Tuple[List[bytes], Optional[Dict[bytes, bytes]]], Tuple[List[Union[bytes, str]], Optional[Mapping[AnyStr, AnyStr]]], ]: """ Check for valid arguments and environment to spawnProcess. @return: A two element tuple giving values to use when creating the process. The first element of the tuple is a C{list} of C{bytes} giving the values for argv of the child process. The second element of the tuple is either L{None} if C{env} was L{None} or a C{dict} mapping C{bytes} environment keys to C{bytes} environment values. """ # Any unicode string which Python would successfully implicitly # encode to a byte string would have worked before these explicit # checks were added. Anything which would have failed with a # UnicodeEncodeError during that implicit encoding step would have # raised an exception in the child process and that would have been # a pain in the butt to debug. # # So, we will explicitly attempt the same encoding which Python # would implicitly do later. If it fails, we will report an error # without ever spawning a child process. If it succeeds, we'll save # the result so that Python doesn't need to do it implicitly later. # # -exarkun # If any of the following environment variables: # - PYTHONUTF8 # - PYTHONIOENCODING # # are set before the Python interpreter runs, they will affect the # value of sys.stdout.encoding. # In certain cases, such as a Windows GUI Application which has no # console, sys.stdout is None. In this case, # just return the args and env unmodified. if not sys.stdout: return args, env # If a client application patches sys.stdout so that encoding is not # set properly, try to fall back to sys.__stdout__.encoding. defaultEncoding = sys.stdout.encoding or sys.__stdout__.encoding if not defaultEncoding: raise ValueError("sys.stdout does not have a valid encoding") # Common check function def argChecker(arg: Union[bytes, str]) -> Optional[bytes]: """ Return either L{bytes} or L{None}. If the given value is not allowable for some reason, L{None} is returned. Otherwise, a possibly different object which should be used in place of arg is returned. This forces unicode encoding to happen now, rather than implicitly later. """ if isinstance(arg, str): try: arg = arg.encode(defaultEncoding) except UnicodeEncodeError: return None if isinstance(arg, bytes) and b"\0" not in arg: return arg return None # Make a few tests to check input validity if not isinstance(args, (tuple, list)): raise TypeError("Arguments must be a tuple or list") outputArgs = [] for arg in args: _arg = argChecker(arg) if _arg is None: raise TypeError(f"Arguments contain a non-string value: {arg!r}") else: outputArgs.append(_arg) outputEnv = None if env is not None: outputEnv = {} for key, val in env.items(): _key = argChecker(key) if _key is None: raise TypeError( "Environment contains a " "non-string key: {!r}, using encoding: {}".format( key, sys.stdout.encoding ) ) _val = argChecker(val) if _val is None: raise TypeError( "Environment contains a " "non-string value: {!r}, using encoding {}".format( val, sys.stdout.encoding ) ) outputEnv[_key] = _val return outputArgs, outputEnv # IReactorThreads if platform.supportsThreads(): assert ThreadPool is not None threadpool = None # ID of the trigger starting the threadpool _threadpoolStartupID = None # ID of the trigger stopping the threadpool threadpoolShutdownID = None def _initThreads(self) -> None: self.installNameResolver(_GAIResolver(self, self.getThreadPool)) self.usingThreads = True def callFromThread( self, f: Callable[..., Any], *args: object, **kwargs: object ) -> None: """ See L{twisted.internet.interfaces.IReactorFromThreads.callFromThread}. """ assert callable(f), f"{f} is not callable" # lists are thread-safe in CPython, but not in Jython # this is probably a bug in Jython, but until fixed this code # won't work in Jython. self.threadCallQueue.append((f, args, kwargs)) self.wakeUp() def _initThreadPool(self) -> None: """ Create the threadpool accessible with callFromThread. """ self.threadpool = ThreadPool(0, 10, "twisted.internet.reactor") self._threadpoolStartupID = self.callWhenRunning(self.threadpool.start) self.threadpoolShutdownID = self.addSystemEventTrigger( "during", "shutdown", self._stopThreadPool ) def _uninstallHandler(self) -> None: pass def _stopThreadPool(self) -> None: """ Stop the reactor threadpool. This method is only valid if there is currently a threadpool (created by L{_initThreadPool}). It is not intended to be called directly; instead, it will be called by a shutdown trigger created in L{_initThreadPool}. """ triggers = [self._threadpoolStartupID, self.threadpoolShutdownID] for trigger in filter(None, triggers): try: self.removeSystemEventTrigger(trigger) except ValueError: pass self._threadpoolStartupID = None self.threadpoolShutdownID = None assert self.threadpool is not None self.threadpool.stop() self.threadpool = None def getThreadPool(self) -> ThreadPool: """ See L{twisted.internet.interfaces.IReactorThreads.getThreadPool}. """ if self.threadpool is None: self._initThreadPool() assert self.threadpool is not None return self.threadpool def callInThread( self, _callable: Callable[..., Any], *args: object, **kwargs: object ) -> None: """ See L{twisted.internet.interfaces.IReactorInThreads.callInThread}. """ self.getThreadPool().callInThread(_callable, *args, **kwargs) def suggestThreadPoolSize(self, size: int) -> None: """ See L{twisted.internet.interfaces.IReactorThreads.suggestThreadPoolSize}. """ self.getThreadPool().adjustPoolsize(maxthreads=size) else: # This is for signal handlers. def callFromThread( self, f: Callable[..., Any], *args: object, **kwargs: object ) -> None: assert callable(f), f"{f} is not callable" # See comment in the other callFromThread implementation. self.threadCallQueue.append((f, args, kwargs)) if platform.supportsThreads(): classImplements(ReactorBase, IReactorThreads) @implementer(IConnector) class BaseConnector(ABC): """ Basic implementation of L{IConnector}. State can be: "connecting", "connected", "disconnected" """ timeoutID = None factoryStarted = 0 def __init__( self, factory: ClientFactory, timeout: float, reactor: ReactorBase ) -> None: self.state = "disconnected" self.reactor = reactor self.factory = factory self.timeout = timeout def disconnect(self) -> None: """Disconnect whatever our state is.""" if self.state == "connecting": self.stopConnecting() elif self.state == "connected": assert self.transport is not None self.transport.loseConnection() @abstractmethod def _makeTransport(self) -> "Client": pass def connect(self) -> None: """Start connection to remote server.""" if self.state != "disconnected": raise RuntimeError("can't connect in this state") self.state = "connecting" if not self.factoryStarted: self.factory.doStart() self.factoryStarted = 1 self.transport: Optional[Client] = self._makeTransport() if self.timeout is not None: self.timeoutID = self.reactor.callLater( self.timeout, self.transport.failIfNotConnected, error.TimeoutError() ) self.factory.startedConnecting(self) def stopConnecting(self) -> None: """Stop attempting to connect.""" if self.state != "connecting": raise error.NotConnectingError("we're not trying to connect") assert self.transport is not None self.state = "disconnected" self.transport.failIfNotConnected(error.UserError()) del self.transport def cancelTimeout(self) -> None: if self.timeoutID is not None: try: self.timeoutID.cancel() except ValueError: pass del self.timeoutID def buildProtocol(self, addr: Tuple[str, int]) -> IProtocol: self.state = "connected" self.cancelTimeout() return self.factory.buildProtocol(addr) def connectionFailed(self, reason: Failure) -> None: self.cancelTimeout() self.transport = None self.state = "disconnected" self.factory.clientConnectionFailed(self, reason) if self.state == "disconnected": # factory hasn't called our connect() method self.factory.doStop() self.factoryStarted = 0 def connectionLost(self, reason: Failure) -> None: self.state = "disconnected" self.factory.clientConnectionLost(self, reason) if self.state == "disconnected": # factory hasn't called our connect() method self.factory.doStop() self.factoryStarted = 0 def getDestination(self) -> IAddress: raise NotImplementedError( reflect.qual(self.__class__) + " did not implement " "getDestination" ) def __repr__(self) -> str: return "<{} instance at 0x{:x} {} {}>".format( reflect.qual(self.__class__), id(self), self.state, self.getDestination(), ) class BasePort(abstract.FileDescriptor): """Basic implementation of a ListeningPort. Note: This does not actually implement IListeningPort. """ addressFamily: socket.AddressFamily = None # type: ignore[assignment] socketType: socket.SocketKind = None # type: ignore[assignment] def createInternetSocket(self) -> socket.socket: s = socket.socket(self.addressFamily, self.socketType) s.setblocking(False) fdesc._setCloseOnExec(s.fileno()) return s def doWrite(self) -> Optional[Failure]: """Raises a RuntimeError""" raise RuntimeError("doWrite called on a %s" % reflect.qual(self.__class__)) class _SignalReactorMixin: """ Private mixin to manage signals: it installs signal handlers at start time, and define run method. It can only be used mixed in with L{ReactorBase}, and has to be defined first in the inheritance (so that method resolution order finds startRunning first). @ivar _installSignalHandlers: A flag which indicates whether any signal handlers will be installed during startup. This includes handlers for SIGCHLD to monitor child processes, and SIGINT, SIGTERM, and SIGBREAK to stop the reactor. """ _installSignalHandlers = False def _handleSignals(self) -> None: """ Install the signal handlers for the Twisted event loop. """ try: import signal except ImportError: log.msg( "Warning: signal module unavailable -- " "not installing signal handlers." ) return reactorBaseSelf = cast(ReactorBase, self) if signal.getsignal(signal.SIGINT) == signal.default_int_handler: # only handle if there isn't already a handler, e.g. for Pdb. signal.signal(signal.SIGINT, reactorBaseSelf.sigInt) signal.signal(signal.SIGTERM, reactorBaseSelf.sigTerm) # Catch Ctrl-Break in windows SIGBREAK = getattr(signal, "SIGBREAK", None) if SIGBREAK is not None: signal.signal(SIGBREAK, reactorBaseSelf.sigBreak) def startRunning(self, installSignalHandlers: bool = True) -> None: """ Extend the base implementation in order to remember whether signal handlers should be installed later. @param installSignalHandlers: A flag which, if set, indicates that handlers for a number of (implementation-defined) signals should be installed during startup. """ self._installSignalHandlers = installSignalHandlers ReactorBase.startRunning(cast(ReactorBase, self)) def _reallyStartRunning(self) -> None: """ Extend the base implementation by also installing signal handlers, if C{self._installSignalHandlers} is true. """ ReactorBase._reallyStartRunning(cast(ReactorBase, self)) if self._installSignalHandlers: # Make sure this happens before after-startup events, since the # expectation of after-startup is that the reactor is fully # initialized. Don't do it right away for historical reasons # (perhaps some before-startup triggers don't want there to be a # custom SIGCHLD handler so that they can run child processes with # some blocking api). self._handleSignals() def run(self, installSignalHandlers: bool = True) -> None: self.startRunning(installSignalHandlers=installSignalHandlers) self.mainLoop() def mainLoop(self) -> None: reactorBaseSelf = cast(ReactorBase, self) while reactorBaseSelf._started: try: while reactorBaseSelf._started: # Advance simulation time in delayed event # processors. reactorBaseSelf.runUntilCurrent() t2 = reactorBaseSelf.timeout() t = reactorBaseSelf.running and t2 reactorBaseSelf.doIteration(t) except BaseException: log.msg("Unexpected error in main loop.") log.err() else: log.msg("Main loop terminated.") __all__: List[str] = []
35.716263
97
0.605464
0cdc16ae9a1af59912e9c98eb3671e10e3c5d211
9,975
py
Python
contrib/spendfrom/spendfrom.py
aitracoinofficial/AITRA
b047e796c2352a30a12139ef562f29efd4db7578
[ "MIT" ]
4
2020-12-11T15:34:15.000Z
2021-11-26T14:51:33.000Z
contrib/spendfrom/spendfrom.py
aitracoinofficial/AITRA
b047e796c2352a30a12139ef562f29efd4db7578
[ "MIT" ]
null
null
null
contrib/spendfrom/spendfrom.py
aitracoinofficial/AITRA
b047e796c2352a30a12139ef562f29efd4db7578
[ "MIT" ]
1
2020-10-28T18:10:38.000Z
2020-10-28T18:10:38.000Z
#!/usr/bin/env python # # Use the raw transactions API to spend AITRAs received on particular addresses, # and send any change back to that same address. # # Example usage: # spendfrom.py # Lists available funds # spendfrom.py --from=ADDRESS --to=ADDRESS --amount=11.00 # # Assumes it will talk to a aitrad or aitra-Qt running # on localhost. # # Depends on jsonrpc # from decimal import * import getpass import math import os import os.path import platform import sys import time from jsonrpc import ServiceProxy, json BASE_FEE=Decimal("0.001") def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def determine_db_dir(): """Return the default location of the aitra data directory""" if platform.system() == "Darwin": return os.path.expanduser("~/Library/Application Support/AITRA_Coin/") elif platform.system() == "Windows": return os.path.join(os.environ['APPDATA'], "AITRA_Coin") return os.path.expanduser("~/.aitra") def read_bitcoin_config(dbdir): """Read the aitra.conf file from dbdir, returns dictionary of settings""" from ConfigParser import SafeConfigParser class FakeSecHead(object): def __init__(self, fp): self.fp = fp self.sechead = '[all]\n' def readline(self): if self.sechead: try: return self.sechead finally: self.sechead = None else: s = self.fp.readline() if s.find('#') != -1: s = s[0:s.find('#')].strip() +"\n" return s config_parser = SafeConfigParser() config_parser.readfp(FakeSecHead(open(os.path.join(dbdir, "aitra.conf")))) return dict(config_parser.items("all")) def connect_JSON(config): """Connect to a aitra JSON-RPC server""" testnet = config.get('testnet', '0') testnet = (int(testnet) > 0) # 0/1 in config file, convert to True/False if not 'rpcport' in config: config['rpcport'] = 51475 if testnet else 2608 connect = "http://%s:%s@127.0.0.1:%s"%(config['rpcuser'], config['rpcpassword'], config['rpcport']) try: result = ServiceProxy(connect) # ServiceProxy is lazy-connect, so send an RPC command mostly to catch connection errors, # but also make sure the aitrad we're talking to is/isn't testnet: if result.getmininginfo()['testnet'] != testnet: sys.stderr.write("RPC server at "+connect+" testnet setting mismatch\n") sys.exit(1) return result except: sys.stderr.write("Error connecting to RPC server at "+connect+"\n") sys.exit(1) def unlock_wallet(aitrad): info = aitrad.getinfo() if 'unlocked_until' not in info: return True # wallet is not encrypted t = int(info['unlocked_until']) if t <= time.time(): try: passphrase = getpass.getpass("Wallet is locked; enter passphrase: ") aitrad.walletpassphrase(passphrase, 5) except: sys.stderr.write("Wrong passphrase\n") info = aitrad.getinfo() return int(info['unlocked_until']) > time.time() def list_available(aitrad): address_summary = dict() address_to_account = dict() for info in aitrad.listreceivedbyaddress(0): address_to_account[info["address"]] = info["account"] unspent = aitrad.listunspent(0) for output in unspent: # listunspent doesn't give addresses, so: rawtx = aitrad.getrawtransaction(output['txid'], 1) vout = rawtx["vout"][output['vout']] pk = vout["scriptPubKey"] # This code only deals with ordinary pay-to-aitra-address # or pay-to-script-hash outputs right now; anything exotic is ignored. if pk["type"] != "pubkeyhash" and pk["type"] != "scripthash": continue address = pk["addresses"][0] if address in address_summary: address_summary[address]["total"] += vout["value"] address_summary[address]["outputs"].append(output) else: address_summary[address] = { "total" : vout["value"], "outputs" : [output], "account" : address_to_account.get(address, "") } return address_summary def select_coins(needed, inputs): # Feel free to improve this, this is good enough for my simple needs: outputs = [] have = Decimal("0.0") n = 0 while have < needed and n < len(inputs): outputs.append({ "txid":inputs[n]["txid"], "vout":inputs[n]["vout"]}) have += inputs[n]["amount"] n += 1 return (outputs, have-needed) def create_tx(aitrad, fromaddresses, toaddress, amount, fee): all_coins = list_available(aitrad) total_available = Decimal("0.0") needed = amount+fee potential_inputs = [] for addr in fromaddresses: if addr not in all_coins: continue potential_inputs.extend(all_coins[addr]["outputs"]) total_available += all_coins[addr]["total"] if total_available < needed: sys.stderr.write("Error, only %f BTC available, need %f\n"%(total_available, needed)); sys.exit(1) # # Note: # Python's json/jsonrpc modules have inconsistent support for Decimal numbers. # Instead of wrestling with getting json.dumps() (used by jsonrpc) to encode # Decimals, I'm casting amounts to float before sending them to aitrad. # outputs = { toaddress : float(amount) } (inputs, change_amount) = select_coins(needed, potential_inputs) if change_amount > BASE_FEE: # don't bother with zero or tiny change change_address = fromaddresses[-1] if change_address in outputs: outputs[change_address] += float(change_amount) else: outputs[change_address] = float(change_amount) rawtx = aitrad.createrawtransaction(inputs, outputs) signed_rawtx = aitrad.signrawtransaction(rawtx) if not signed_rawtx["complete"]: sys.stderr.write("signrawtransaction failed\n") sys.exit(1) txdata = signed_rawtx["hex"] return txdata def compute_amount_in(aitrad, txinfo): result = Decimal("0.0") for vin in txinfo['vin']: in_info = aitrad.getrawtransaction(vin['txid'], 1) vout = in_info['vout'][vin['vout']] result = result + vout['value'] return result def compute_amount_out(txinfo): result = Decimal("0.0") for vout in txinfo['vout']: result = result + vout['value'] return result def sanity_test_fee(aitrad, txdata_hex, max_fee): class FeeError(RuntimeError): pass try: txinfo = aitrad.decoderawtransaction(txdata_hex) total_in = compute_amount_in(aitrad, txinfo) total_out = compute_amount_out(txinfo) if total_in-total_out > max_fee: raise FeeError("Rejecting transaction, unreasonable fee of "+str(total_in-total_out)) tx_size = len(txdata_hex)/2 kb = tx_size/1000 # integer division rounds down if kb > 1 and fee < BASE_FEE: raise FeeError("Rejecting no-fee transaction, larger than 1000 bytes") if total_in < 0.01 and fee < BASE_FEE: raise FeeError("Rejecting no-fee, tiny-amount transaction") # Exercise for the reader: compute transaction priority, and # warn if this is a very-low-priority transaction except FeeError as err: sys.stderr.write((str(err)+"\n")) sys.exit(1) def main(): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--from", dest="fromaddresses", default=None, help="addresses to get AITRAs from") parser.add_option("--to", dest="to", default=None, help="address to get send AITRAs to") parser.add_option("--amount", dest="amount", default=None, help="amount to send") parser.add_option("--fee", dest="fee", default="0.0", help="fee to include") parser.add_option("--datadir", dest="datadir", default=determine_db_dir(), help="location of aitra.conf file with RPC username/password (default: %default)") parser.add_option("--testnet", dest="testnet", default=False, action="store_true", help="Use the test network") parser.add_option("--dry_run", dest="dry_run", default=False, action="store_true", help="Don't broadcast the transaction, just create and print the transaction data") (options, args) = parser.parse_args() check_json_precision() config = read_bitcoin_config(options.datadir) if options.testnet: config['testnet'] = True aitrad = connect_JSON(config) if options.amount is None: address_summary = list_available(aitrad) for address,info in address_summary.iteritems(): n_transactions = len(info['outputs']) if n_transactions > 1: print("%s %.8f %s (%d transactions)"%(address, info['total'], info['account'], n_transactions)) else: print("%s %.8f %s"%(address, info['total'], info['account'])) else: fee = Decimal(options.fee) amount = Decimal(options.amount) while unlock_wallet(aitrad) == False: pass # Keep asking for passphrase until they get it right txdata = create_tx(aitrad, options.fromaddresses.split(","), options.to, amount, fee) sanity_test_fee(aitrad, txdata, amount*Decimal("0.01")) if options.dry_run: print(txdata) else: txid = aitrad.sendrawtransaction(txdata) print(txid) if __name__ == '__main__': main()
37.220149
111
0.630376
73430249b4ea605eeeab111db3cde0be50989f44
600
py
Python
nicos_virt_mlz/treff/setups/special/daemon.py
jkrueger1/nicos
5f4ce66c312dedd78995f9d91e8a6e3c891b262b
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
12
2019-11-06T15:40:36.000Z
2022-01-01T16:23:00.000Z
nicos_virt_mlz/treff/setups/special/daemon.py
jkrueger1/nicos
5f4ce66c312dedd78995f9d91e8a6e3c891b262b
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
91
2020-08-18T09:20:26.000Z
2022-02-01T11:07:14.000Z
nicos_virt_mlz/treff/setups/special/daemon.py
jkrueger1/nicos
5f4ce66c312dedd78995f9d91e8a6e3c891b262b
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
6
2020-01-11T10:52:30.000Z
2022-02-25T12:35:23.000Z
description = 'setup for the execution daemon' group = 'special' devices = dict( Auth = device('nicos.services.daemon.auth.list.Authenticator', # the hashing maybe 'md5' or 'sha1' hashing = 'md5', passwd = [('guest', '', 'guest'), ('user', 'd3bde5ce3e546626df42771c58986d4e', 'user'), ('admin', 'f3309476bdb36550aa8fb90ae748c9cc', 'admin'), ], ), Daemon = device('nicos.services.daemon.NicosDaemon', server = '', authenticators = ['Auth'], # and/or 'UserDB' loglevel = 'info', ), )
31.578947
73
0.551667
85dbeb03e27c793bd7832cf22412dcafed8236ae
9,715
py
Python
backend/flaskr/api_upload.py
TavonL/Question-Bank-Management-System
83116e347adb31b7294e70da7ec38b5d7e2d7cc1
[ "MIT" ]
null
null
null
backend/flaskr/api_upload.py
TavonL/Question-Bank-Management-System
83116e347adb31b7294e70da7ec38b5d7e2d7cc1
[ "MIT" ]
2
2020-12-04T17:52:38.000Z
2022-01-15T01:29:14.000Z
backend/flaskr/api_upload.py
TavonL/Question-Bank-Management-System
83116e347adb31b7294e70da7ec38b5d7e2d7cc1
[ "MIT" ]
null
null
null
import functools import json import os import re from flask import ( Blueprint, g, request, session, url_for, jsonify, make_response ) from flaskr.db import ( get_db, excute_select, excute_delete, excute_insert, excute_procedure, excute_update ) from python_script.md2word import ( convertFile, addHeader, createMdFile, deleteFiles ) from flaskr.uploader import Uploader bp = Blueprint('upload', __name__, url_prefix='/api/upload', static_folder='static') types = ['不限', '填空题', '单选题', '多选题', '应用题', '综合题'] # @bp.route('/', methods=('GET', )) # def Hello_World(): # return jsonify(app.static_folder) @bp.route('/Paper', methods=('POST', )) def upload_Paper(): # 上传试卷试题 code 0成功 -1不成功 data = request.get_data() data = json.loads(data) # return jsonify(1) paperForm = data["paperInfoForm"] questionsForm = data["questionsForm"] # 定义数据库连接 db = get_db() # 插入试卷 sql = "INSERT INTO paper(paper_subject, grade, paper_info, source)\ VALUES ({subject},{grade},'{info}',{source})".format( subject=paperForm["paper_subject"], grade=paperForm["paper_grade"], info=paperForm["paper_year"]+paperForm["paper_name"], source=paperForm["paper_source"] ) db_res = excute_insert(db, sql) if db_res == 'Error': return jsonify({"code" : -1}) # 查看试卷号 sql = "SELECT paper_no FROM paper WHERE paper_subject={subject} AND grade={grade} \ AND paper_info='{info}' AND source={source}".format( subject=paperForm["paper_subject"], grade=paperForm["paper_grade"], info=paperForm["paper_year"]+paperForm["paper_name"], source=paperForm["paper_source"] ) db_res = excute_select(db, sql) if db_res == (): return jsonify({"code" : -1}) paper_no = db_res[0][0] # return jsonify(paper_no) # 插入题目 code = 0 error_result = [] for i in range(0, len(questionsForm)): item = questionsForm[i] if item["question_type"] != 5: sql = "INSERT INTO question(paper_no, question_type, question_diff, \ question_content, question_answer, question_analy, know_no) \ VALUES ({paper},'{type}',{diff},'{content}','{answer}','{analy}',{know_no})".format( paper=paper_no, type=types[item["question_type"]], diff=item["question_diff"], content=item["question_content"], answer=item["question_answer"], analy=item["question_analy"], know_no=item["knowledge_point"] ) db_res = excute_insert(db, sql) # return jsonify(db_res) if db_res == 'Error': code = -1 error_result.append(i) else: sql = "INSERT INTO question(paper_no, question_type, question_diff, \ question_content, question_analy, know_no) \ VALUES ({paper},'{type}',{diff},'{content}','{analy}',{know_no})".format( paper=paper_no, type=types[item["question_type"]], diff=item["question_diff"], content=item["question_content"], analy=item["question_analy"], know_no=item["knowledge_point"] ) # return jsonify(sql) db_res = excute_insert(db, sql) # return jsonify(db_res) if db_res == 'Error': code = -1 error_result.append(i) # 查看刚插入的编号 sql = "SELECT question_no FROM question WHERE paper_no={paper} AND \ question_type='{type}' AND question_diff={diff} AND question_content='{content}' \ AND question_analy='{analy}' AND know_no={know_no}".format( paper=paper_no, type=types[item["question_type"]], diff=item["question_diff"], content=item["question_content"], analy=item["question_analy"], know_no=item["knowledge_point"] ) db_res = excute_select(db, sql) # return jsonify(db_res) if db_res == (): code = -1 else: super_question_no = db_res[0][0] # return jsonify(db_res[0][0]) for subitem in item["question_answer"]: # return jsonify(subitem) sql = "INSERT INTO little_question(little_question_type, \ little_question_content, little_question_answer, \ super_question_no) VALUES ('{type}','{content}','{answer}',\ {super_no})".format(type=types[subitem["question_type"]], content=subitem["question_content"], answer=subitem["question_answer"], super_no=super_question_no ) # return jsonify(sql) db_res = excute_insert(db, sql) if db_res == 'Error': code = -1 error_result.append(i) if code == 0: return jsonify({"code":0}) return jsonify({"code":-1, "error_result":error_result}) # @bp.route('/PaperInfo', methods=('POST', )) # def upload_PaperInfo(): # # 上传试卷信息 code -1 有同名试卷 code -2 该年级没有该科目或者该学校不存在 # data = request.get_data() # data = json.loads(data) # # return jsonify(1) # data = data["paperInfoForm"] # # return jsonify("1") # # 查有没有同名试卷 # db = get_db() # sql = "SELECT * FROM paper WHERE paper_subject={subject} AND grade={grade} \ # AND paper_info='{info}' AND source={source}".format( # subject=data["paper_subject"], grade=data["paper_grade"], # info=data["paper_year"]+data["paper_name"],source=data["paper_source"] # ) # db_res = excute_select(db, sql) # if db_res != (): # return jsonify({"code" : -1}) # # 插入,为了并发性考虑,我觉得最好创建触发器 # sql = "INSERT INTO paper(paper_subject, grade, paper_info, source)\ # VALUES ({subject},{grade},'{info}',{source})".format( # subject=data["paper_subject"], grade=data["paper_grade"], # info=data["paper_year"]+data["paper_name"],source=data["paper_source"] # ) # db_res = excute_insert(db, sql) # if db_res == 'Error': # return jsonify({"code" : -2}) # # 查看试卷号 # sql = "SELECT paper_no FROM paper WHERE paper_subject={subject} AND grade={grade} \ # AND paper_info='{info}' AND source={source}".format( # subject=data["paper_subject"], grade=data["paper_grade"], # info=data["paper_year"]+data["paper_name"],source=data["paper_source"] # ) # db_res = excute_select(db, sql) # if db_res != (): # db_res = db_res[0] # return jsonify({"code" : 0, "paper_no":db_res[0]}) # return jsonify({"code" : -3}) # @bp.route('/Question', methods=('POST', )) # def upload_Question(): # # 返回重复/错误 题号 # data = request.get_data() # data = json.loads(data) # # return jsonify(1) # db = get_db() # paper_no = data["paper_no"] # sql = "SELECT paper_no FROM paper INNER JOIN (SELECT source FROM paper \ # WHERE paper_no = {0}) AS T1 ON paper.source = T1.source".format(paper_no) # db_res = excute_select(db, sql) # db_res =[list(item) for item in list(db_res)] # paper_no = [] # for item in db_res: # for i in item: # paper_no.append(str(i)) # # return jsonify(paper_no) # paper_no = ", ".join(paper_no) # # return jsonify(paper_no) # data = data["questionsForm"] # db = get_db() # for i in range(0, len(data)): # tmp = data[i] # # 题目查重, 最好略过url 进行查重 # sql = "SELECT * FROM question WHERE " # return jsonify(1) # @cross_origin() @bp.route('/Fig', methods=('GET', 'POST', 'OPTIONS')) def upload_Fig(): mimetype = 'application/json' action = request.args.get('action') result = {} with open(os.path.join(bp.static_folder, 'ueditor', 'php', 'config.json'), encoding = 'utf-8') as fp: try: CONFIG = json.loads(re.sub(r'\/\*.*\*\/', '', fp.read())) except: CONFIG = {} if action == 'config': # 初始化时,返回配置文件给客户端 result = CONFIG elif action == 'uploadimage': fieldName = CONFIG.get('imageFieldName') config = { "pathFormat": CONFIG['imagePathFormat'], # 上传保存路径,可以自定义保存路径和文件名格式 "maxSize": CONFIG['imageMaxSize'], # 上传大小限制 "allowFiles": CONFIG['imageAllowFiles'] } if fieldName in request.files: field = request.files[fieldName] uploader = Uploader(field, config, bp.static_folder) result = uploader.getFileInfo() else: result['state'] = '上传接口出错' else: result['state'] = '请求地址出错' result = json.dumps(result) if 'callback' in request.args: callback = request.args.get('callback') if re.match(r'^[\w_]+$', callback): result = '%s(%s)' % (callback, result) mimetype = 'application/javascript' else: result = json.dumps({'state': 'callback参数不合法'}) res = make_response(result) print(res) res.mimetype = mimetype res.headers['Access-Control-Allow-Origin'] = '*' res.headers['Access-Control-Allow-Headers'] = 'X-Requested-With,X_Requested_With' return res @bp.route('/Schools', methods=('POST', )) def upload_Schools(): data = request.get_data() data = json.loads(data) code = 0 db = get_db() # sql = "SELECT school_no FROM school WHERE school_name={super} \ # ".format(super=data["parent_name"]) # db_res = db.excute_select() # if db_res == (): # return jsonify({"code":-1}) # super_no = db_res[0][0] if data["opt"] == "add": sql = "INSERT INTO school(school_name, school_nature, super_no) VALUES \ ('{name}', '{nature}', {super})".format( name=data["school_name"], nature=data["school_nature"], super=data["parent_no"] ) db_res = excute_insert(db, sql) elif data["opt"] == "del": sql = "DELETE FROM school WHERE school_name='{name}'".format( name=data["school_name"]) db_res = excute_delete(db, sql) if db_res == 'Error': code = -1 return jsonify({"code":code}) @bp.route('/KnowledgePoints', methods=('POST', )) def upload_KnowledgePoints(): data = request.get_data() data = json.loads(data) code = 0 db = get_db() # sql = "SELECT know_no FROM know WHERE know_name={super} \ # ".format(super=data["parent_name"]) # db_res = db.excute_select() # if db_res == (): # return jsonify({"code":-1}) # super_no = db_res[0][0] if data["opt"] == "add": sql = "INSERT INTO know(know_name, super_no) VALUES \ ('{name}', {super})".format( name=data["know_name"], super=data["parent_no"] ) db_res = excute_insert(db, sql) elif data["opt"] == "del": sql = "DELETE FROM know WHERE know_name='{name}'".format( name=data["know_name"]) db_res = excute_delete(db, sql) if db_res == 'Error': code = -1 return jsonify({"code":code})
32.491639
88
0.660319
49e942c2fe96e8d8001a933dd6f088836f593afe
5,645
py
Python
dev/local/vision/learner.py
vguerra/fastai_docs
95df902ef5cd08bcd58d5ca64bc8a6ea3f297531
[ "Apache-2.0" ]
null
null
null
dev/local/vision/learner.py
vguerra/fastai_docs
95df902ef5cd08bcd58d5ca64bc8a6ea3f297531
[ "Apache-2.0" ]
null
null
null
dev/local/vision/learner.py
vguerra/fastai_docs
95df902ef5cd08bcd58d5ca64bc8a6ea3f297531
[ "Apache-2.0" ]
null
null
null
#AUTOGENERATED! DO NOT EDIT! File to edit: dev/22_vision_learner.ipynb (unless otherwise specified). __all__ = ['has_pool_type', 'create_body', 'in_channels', 'num_features_model', 'create_head', 'create_cnn_model', 'model_meta', 'cnn_learner'] #Cell from ..torch_basics import * from ..test import * from ..core import * from ..layers import * from ..data.all import * from ..optimizer import * from ..learner import * from ..metrics import * from ..callback.all import * from .core import * from .augment import * from . import models #Cell def _is_pool_type(l): return re.search(r'Pool[123]d$', l.__class__.__name__) #Cell def has_pool_type(m): "Return `True` if `m` is a pooling layer or has one in its children" if _is_pool_type(m): return True for l in m.children(): if has_pool_type(l): return True return False #Cell def create_body(arch, pretrained=True, cut=None): "Cut off the body of a typically pretrained `arch` as determined by `cut`" model = arch(pretrained) #cut = ifnone(cut, cnn_config(arch)['cut']) if cut is None: ll = list(enumerate(model.children())) cut = next(i for i,o in reversed(ll) if has_pool_type(o)) if isinstance(cut, int): return nn.Sequential(*list(model.children())[:cut]) elif isinstance(cut, Callable): return cut(model) else: raise NamedError("cut must be either integer or a function") #Cell def in_channels(m): "Return the shape of the first weight layer in `m`." for l in flatten_model(m): if hasattr(l, 'weight'): return l.weight.shape[1] raise Exception('No weight layer') #Cell def num_features_model(m): "Return the number of output features for `m`." sz = 32 ch_in = in_channels(m) while True: #Trying for a few sizes in case the model requires a big input size. try: with hook_output(m) as hook: _ = m.eval()(one_param(m).new(1, ch_in, sz, sz).requires_grad_(False).uniform_(-1.,1.)) return hook.stored.shape[1] except Exception as e: sz *= 2 if sz > 2048: raise #Cell def create_head(nf, nc, lin_ftrs=None, ps=0.5, concat_pool=True, bn_final=False): "Model head that takes `nf` features, runs through `lin_ftrs`, and out `nc` classes." lin_ftrs = [nf, 512, nc] if lin_ftrs is None else [nf] + lin_ftrs + [nc] ps = L(ps) if len(ps) == 1: ps = [ps[0]/2] * (len(lin_ftrs)-2) + ps actns = [nn.ReLU(inplace=True)] * (len(lin_ftrs)-2) + [None] pool = AdaptiveConcatPool2d() if concat_pool else nn.AdaptiveAvgPool2d(1) layers = [pool, Flatten()] for ni,no,p,actn in zip(lin_ftrs[:-1], lin_ftrs[1:], ps, actns): layers += BnDropLin(ni, no, True, p, actn) if bn_final: layers.append(nn.BatchNorm1d(lin_ftrs[-1], momentum=0.01)) return nn.Sequential(*layers) #Cell def create_cnn_model(arch, nc, cut, pretrained=True, lin_ftrs=None, ps=0.5, custom_head=None, bn_final=False, concat_pool=True): "Create custom convnet architecture using `base_arch`" body = create_body(arch, pretrained, cut) if custom_head is None: nf = num_features_model(nn.Sequential(*body.children())) * (2 if concat_pool else 1) head = create_head(nf, nc, lin_ftrs, ps=ps, concat_pool=concat_pool, bn_final=bn_final) else: head = custom_head return nn.Sequential(body, head) #Cell def _default_split(m:nn.Module): return L(m[0], m[1]).mapped(trainable_params) def _resnet_split(m): return L(m[0][:6], m[0][6:], m[1]).mapped(trainable_params) def _squeezenet_split(m:nn.Module): return L(m[0][0][:5], m[0][0][5:], m[1]).mapped(trainable_params) def _densenet_split(m:nn.Module): return L(m[0][0][:7],m[0][0][7:], m[1]).mapped(trainable_params) def _vgg_split(m:nn.Module): return L(m[0][0][:22], m[0][0][22:], m[1]).mapped(trainable_params) def _alexnet_split(m:nn.Module): return L(m[0][0][:6], m[0][0][6:], m[1]).mapped(trainable_params) _default_meta = {'cut':None, 'split':_default_split} _resnet_meta = {'cut':-2, 'split':_resnet_split } _squeezenet_meta = {'cut':-1, 'split': _squeezenet_split} _densenet_meta = {'cut':-1, 'split':_densenet_split} _vgg_meta = {'cut':-2, 'split':_vgg_split} _alexnet_meta = {'cut':-2, 'split':_alexnet_split} #Cell model_meta = { models.resnet18 :{**_resnet_meta}, models.resnet34: {**_resnet_meta}, models.resnet50 :{**_resnet_meta}, models.resnet101:{**_resnet_meta}, models.resnet152:{**_resnet_meta}, models.squeezenet1_0:{**_squeezenet_meta}, models.squeezenet1_1:{**_squeezenet_meta}, models.densenet121:{**_densenet_meta}, models.densenet169:{**_densenet_meta}, models.densenet201:{**_densenet_meta}, models.densenet161:{**_densenet_meta}, models.vgg11_bn:{**_vgg_meta}, models.vgg13_bn:{**_vgg_meta}, models.vgg16_bn:{**_vgg_meta}, models.vgg19_bn:{**_vgg_meta}, models.alexnet:{**_alexnet_meta}} #Cell @delegates(Learner.__init__) def cnn_learner(dbunch, arch, cut=None, pretrained=True, lin_ftrs=None, ps=0.5, custom_head=None, splitter=trainable_params, bn_final=False, init=nn.init.kaiming_normal_, concat_pool=True, **kwargs): "Build convnet style learner." meta = model_meta.get(arch) model = create_cnn_model(arch, get_c(dbunch), ifnone(cut, meta['cut']), pretrained, lin_ftrs, ps=ps, custom_head=custom_head, bn_final=bn_final, concat_pool=concat_pool) learn = Learner(model, dbunch, splitter=ifnone(splitter, meta['split']), **kwargs) if pretrained: learn.freeze() if init: apply_init(model[1], init) return learn
43.423077
140
0.672099
4adece2bc1614bd527df674b2eb9059bd844cadb
1,215
py
Python
lib/surface/compute/sole_tenancy/node_templates/__init__.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
lib/surface/compute/sole_tenancy/node_templates/__init__.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
lib/surface/compute/sole_tenancy/node_templates/__init__.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Package for the sole tenant node templates CLI commands.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.calliope import base class SoleTenancyNodeTemplates(base.Group): """Read and manage Google Compute Engine sole-tenancy node templates. Node templates are used to create the nodes in node groups. Nodes are Compute Engine servers that are dedicated to your workload. Node templates define either the node type or the requirements for a node in terms of vCPU, memory, and localSSD. """
37.96875
76
0.772016
2704473b585c0ac0d3e41c954ce9be58dcca7cc0
141
py
Python
Exercicios/ex034.py
mauroalbuquerque/Python-CursoEmVideo
5a9fcbd878af49d7b8aa3f7d904b1f22e643edd8
[ "MIT" ]
null
null
null
Exercicios/ex034.py
mauroalbuquerque/Python-CursoEmVideo
5a9fcbd878af49d7b8aa3f7d904b1f22e643edd8
[ "MIT" ]
null
null
null
Exercicios/ex034.py
mauroalbuquerque/Python-CursoEmVideo
5a9fcbd878af49d7b8aa3f7d904b1f22e643edd8
[ "MIT" ]
null
null
null
salario = float(input('Qual é o seu salário: R$ ').strip()) aumento = (salario * 1.10 if salario > 1250 else salario * 1.15) print(aumento)
28.2
64
0.673759
462009eada33103417da568d9135ea499cbbbb65
7,548
py
Python
tests/test_blast/test_bioblast/test_bioblast.py
jvrana/pyblast
0f7ee7575e97470bfd05a2373d9c68247ec4ead0
[ "MIT" ]
null
null
null
tests/test_blast/test_bioblast/test_bioblast.py
jvrana/pyblast
0f7ee7575e97470bfd05a2373d9c68247ec4ead0
[ "MIT" ]
8
2017-10-19T22:02:05.000Z
2020-04-09T20:45:23.000Z
tests/test_blast/test_bioblast/test_bioblast.py
jvrana/pyblast
0f7ee7575e97470bfd05a2373d9c68247ec4ead0
[ "MIT" ]
null
null
null
import json from os.path import join import pytest from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from pyblast import BioBlast from pyblast.exceptions import PyBlastException from pyblast.utils import force_unique_record_ids from pyblast.utils import load_genbank_glob from pyblast.utils import make_linear def test_basic_run(): junk1 = "atgctatgctgatgctgctgtgctgatgctgatgtgtattgctgtatcgcgcgagttagc" junk2 = "g" * 30 frag = "aaacttcccaccccataccctattaccactgccaattacctagtggtttcatttactctaaacctgtgattcctctgaattattttcatttta" query = SeqRecord(seq=Seq(frag), annotations={"circular": False}) subject = SeqRecord(seq=Seq(junk1 + frag + junk2), annotations={"circular": False}) # print(type(query)) # print(type(subject)) blaster = BioBlast([subject], [query]) blaster.blastn() alignments = blaster.results print(alignments) def test_basic_run_reverse_complement(): junk1 = "atgctatgctgatgctgctgtgctgatgctgatgtgtattgctgtatcgcgcgagttagc" junk2 = "g" * 30 frag = "aaacttcccaccccataccctattaccactgccaattacctagtggtttcatttactctaaacctgtgattcctctgaattattttcatttta" query = SeqRecord( seq=Seq(frag), annotations={"circular": False} ).reverse_complement() subject = SeqRecord(seq=Seq(junk1 + frag + junk2), annotations={"circular": False}) make_linear([query]) # print(type(query)) # print(type(subject)) blaster = BioBlast([subject], [query]) blaster.blastn() alignments = blaster.results for a in alignments: print(json.dumps(a, indent=2)) assert a["subject"]["strand"] == -1 def test_run_bioblast_twice(): junk1 = "atgctatgctgatgctgctgtgctgatgctgatgtgtattgctgtatcgcgcgagttagc" junk2 = "g" * 30 frag = "aaacttcccaccccataccctattaccactgccaattacctagtggtttcatttactctaaacctgtgattcctctgaattattttcatttta" query = SeqRecord(seq=Seq(frag), annotations={"circular": False}) subject = SeqRecord(seq=Seq(junk1 + frag + junk2), annotations={"circular": False}) blaster = BioBlast([subject], [query]) blaster.blastn() blaster.blastn() alignments = blaster.results print(alignments) def test_perfect_match(): s = "aaacttcccaccccataccctattaccactgccaattacctagtggtttcatttactctaaacctgtgattcctctgaattattttcatttta" r1 = SeqRecord(seq=Seq(s), annotations={"topology": "linear"}) r2 = SeqRecord(seq=Seq(s), annotations={"topology": "linear"}) blaster = BioBlast([r1], [r2]) blaster.blastn() result = blaster.results[0] assert result["query"]["start"] == 1 assert result["query"]["end"] == len(s) assert result["subject"]["start"] == 1 assert result["subject"]["end"] == len(s) # def test_valid_results(new_bio_blast): # blast = new_bio_blast() # blast.blastn() # Validator.validate_blaster_results(blast) def test_short_blastn(new_primer_blast): blast = new_primer_blast() blast.blastn() assert blast.results def test_blast_with_circular(new_circular_bio_blast): blast = new_circular_bio_blast() blast.blastn() assert blast.results def test_raises_pyblast_when_not_unique(here): subjects = load_genbank_glob(join(here, "data/test_data/genbank/templates/*.gb")) queries = load_genbank_glob(join(here, "data/test_data/genbank/designs/*.gb")) print("n_queres: {}".format(len(queries))) print("n_subjects: {}".format(len(subjects))) with pytest.raises(PyBlastException): BioBlast(subjects, queries) def test_not_raise_pyblast_when_unique(here): subjects = load_genbank_glob(join(here, "data/test_data/genbank/templates/*.gb")) queries = load_genbank_glob(join(here, "data/test_data/genbank/designs/*.gb")) force_unique_record_ids(subjects + queries) print("n_queres: {}".format(len(queries))) BioBlast(subjects, queries) def test_multiquery_blast(here): subjects = load_genbank_glob( join(here, "data/test_data/genbank/templates/*.gb"), force_unique_ids=True ) queries = load_genbank_glob( join(here, "data/test_data/genbank/designs/*.gb"), force_unique_ids=True ) print("n_queres: {}".format(len(queries))) print("n_subjects: {}".format(len(subjects))) bioblast = BioBlast(subjects, queries) results = bioblast.blastn() recids = set() for res in results: recid = res["query"]["origin_record_id"] recids.add(recid) print("n_records: {}".format(len(results))) assert len(recids) == len(queries) def test_unnamed_queries_raises_duplicate_error(here): subjects = load_genbank_glob( join(here, "data/test_data/genbank/templates/*.gb"), force_unique_ids=True ) queries = [ SeqRecord(Seq(str(subjects[0][:1000].seq))), SeqRecord(Seq(str(subjects[1][:1000].seq))), # SeqRecord(Seq(str(subjects[1][:1000]))), ] make_linear(queries) with pytest.raises(PyBlastException): BioBlast(subjects, queries) def test_unnamed_queries(here): subjects = load_genbank_glob( join(here, "data/test_data/genbank/templates/*.gb"), force_unique_ids=True ) queries = [ SeqRecord(Seq(str(subjects[0][:1000].seq))), SeqRecord(Seq(str(subjects[1][:1000].seq))), # SeqRecord(Seq(str(subjects[1][:1000]))), ] force_unique_record_ids(make_linear(queries)) bioblast = BioBlast(subjects, queries) results = bioblast.blastn() recids = set() for res in results: recid = res["query"]["origin_record_id"] recids.add(recid) print("n_records: {}".format(len(results))) assert len(recids) == len(queries) def test_self_blast(here): subjects = load_genbank_glob( join(here, "data/test_data/genbank/templates/*.gb"), force_unique_ids=True ) queries = [ SeqRecord(Seq(str(subjects[0][:1000].seq))), # SeqRecord(Seq(str(subjects[1][:1000]))), ] force_unique_record_ids(make_linear(queries)) bioblast = BioBlast(queries, queries) results = bioblast.blastn() assert not results def test_with_flags(new_circular_bio_blast): blast = new_circular_bio_blast() blast.update_config({"ungapped": None}) blast.blastn() assert blast.results def test_ungapped(): frag = "GtctaaaggtgaagaattattcactggtgttgtcccaattttggttgaattagatggtgatgttaatggtcacaaattttctgtctccggtgaaggtgaaggtgatgctacttacggtaaattgaccttaaaatttatttgtactactggtaaattgccagttccatggccaaccttagtcactactttcggttatggtgttcaatgttttgcgagatacccagatcatatgaaacaacatgactttttcaagtctgccatgccagaaggttatgttcaagaaagaactatttttttcaaagatgacggtaactacaagaccagagctgaagtcaagtttgaaggtgataccttagttaatagaatcgaattaaaaggtattgattttaaagaagatggtaacattttaggtcacaaattggaatacaactataactctcacaatgtttacatcatggctgacaaacaaaagaatggtatcaaagttaacttcaaaattagacacaacattgaagatggttctgttcaattagctgaccattatcaacaaaatactccaattggtgatggtccagtcttgttaccagacaaccattacttatccactcaatctgccttatccaaagatccaaacgaaaagagagaccacatggtcttgttagaatttgttactgctgctggtattacccatggtatggatgaattgtacaaaTAGTGATACCGTCGACCTCGAGTCAattagttatgtcacgcttacattcacgccctccccccacatccgctctaaccgaaaaggaaggagttagacaacctgaagtctaggtccctatttatttttttatagttatgttagtattaagaacgttatttatatttcaaatttttcttt" query = SeqRecord(seq=Seq(frag), annotations={"circular": False}) subject = SeqRecord( seq=Seq(frag[:400] + "atgctatgctgatgctgctgtgctgat" + frag[400:]), annotations={"circular": False}, ) # print(type(query)) # print(type(subject)) blaster = BioBlast([subject], [query]) blaster.update_config({"ungapped": None}) blaster.blastn() alignments = blaster.results print(alignments)
35.772512
902
0.729597
dfa94cfff7c4d5fd16ce4da22a4bd240d6e8312d
96
py
Python
NN/layerversions/__init__.py
nayyarv/CodeANet
30c8d95fff96bdca72b49de551f38e33cd59a5f6
[ "MIT" ]
null
null
null
NN/layerversions/__init__.py
nayyarv/CodeANet
30c8d95fff96bdca72b49de551f38e33cd59a5f6
[ "MIT" ]
null
null
null
NN/layerversions/__init__.py
nayyarv/CodeANet
30c8d95fff96bdca72b49de551f38e33cd59a5f6
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "Varun Nayyar <nayyarv@gmail.com>"
24
47
0.645833
9ed5614d4d491d8416c421182bd15a17c3fa2114
2,642
py
Python
scripts/bnftp_client.py
dkuwahara/bncs.py
ca88ae244df4d39316d81d1e894c657e1a980a6e
[ "MIT" ]
1
2020-02-09T11:02:28.000Z
2020-02-09T11:02:28.000Z
scripts/bnftp_client.py
dkuwahara/bncs.py
ca88ae244df4d39316d81d1e894c657e1a980a6e
[ "MIT" ]
null
null
null
scripts/bnftp_client.py
dkuwahara/bncs.py
ca88ae244df4d39316d81d1e894c657e1a980a6e
[ "MIT" ]
null
null
null
from bnftp import BnftpClient import argparse from datetime import datetime import hashlib parser = argparse.ArgumentParser(description="Downloads a file from the Battle.net FTP service.") parser.add_argument("file", help="The name of the file to download.") parser.add_argument("--server", default="useast.battle.net", help="The hostname or IP of the BNFTP server.") parser.add_argument("--port", type=int, default=6112, help="The port on the server where BNFTP is listening.") parser.add_argument("--time", help="The expected filetime of the requested file.") parser.add_argument("--platform", default="IX86", help="The 4-character platform code identifying the system.") parser.add_argument("--product", default="D2DV", help="The 4-character game code associated with the file.") parser.add_argument("--banner", default=[0, 0], nargs=2, metavar=('ID', 'EXT'), help="The requested banner ID and extension.") parser.add_argument("--position", default=0, help="The position in the file to start the download.") parser.add_argument("--protocol", default=0x100, help="The BNFTP protocol version to use.") parser.add_argument("--hash", const="md5", nargs='?', help="Prints the hash of the completed file.") parser.add_argument("--no-write", dest="write", action='store_false', help="Keeps the file in memory and does not write it to disk.") args = parser.parse_args() ft = None if args.time: if args.time.isdigit(): ft = int(args.time) # Normal int elif args.time[0:2] == "0x": ft = int(args.time, 16) # Hex int else: ft = datetime.strptime(args.time, "%Y-%m-%d %H:%M:%S") kw = { "filetime": ft, "position": args.position, "protocol": args.protocol, "product": args.product, "bannerID": args.banner[0], "bannerExt": args.banner[1], "write": args.write } def download_started(size, name, ftime): print("Received BNFTP response:") print("\tFile name: %s" % name) print("\tSize : %i" % size) print("\tFiletime : %s" % ftime) def download_complete(): if args.hash: print("Hash: %s" % client.hash.hexdigest()) print("Download complete.") client = BnftpClient(args.server, args.port) client.started_callback = download_started client.completed_callback = download_complete # If a hashing algorithm other than the default was specified, initialize it. if args.hash and args.hash.lower() != "md5": client.hash = hashlib.new(args.hash) print("Requesting file '%s' as %s-%s from BNFTP at %s..." % (args.file, args.platform, args.product, args.server)) client.request(args.file, **kw)
38.289855
114
0.682059
305b318be47ab62eb64842bb01c784c6a1c0623e
8,596
py
Python
tensorflow_estimator/python/estimator/keras_premade_model_test.py
tirkarthi/estimator
5d962124f1c2ad5b2886ada53d5c604257b660b6
[ "Apache-2.0" ]
null
null
null
tensorflow_estimator/python/estimator/keras_premade_model_test.py
tirkarthi/estimator
5d962124f1c2ad5b2886ada53d5c604257b660b6
[ "Apache-2.0" ]
null
null
null
tensorflow_estimator/python/estimator/keras_premade_model_test.py
tirkarthi/estimator
5d962124f1c2ad5b2886ada53d5c604257b660b6
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for keras premade model in model_to_estimator routines.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf import numpy as np from tensorflow.python import keras from tensorflow.python.data.ops import dataset_ops from tensorflow.python.feature_column import dense_features from tensorflow.python.feature_column import feature_column_v2 as feature_column from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.keras.optimizer_v2 import adam from tensorflow.python.keras.optimizer_v2 import gradient_descent from tensorflow.python.keras.premade import linear from tensorflow.python.keras.premade import wide_deep from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary.writer import writer_cache from tensorflow_estimator.python.estimator import keras as keras_lib from tensorflow_estimator.python.estimator import run_config as run_config_lib from tensorflow_estimator.python.estimator.inputs import numpy_io _RANDOM_SEED = 1337 def gen_input_fn(x, y=None, batch_size=32, num_epochs=10, shuffle=False): def input_fn(): ds = tf.compat.v1.data.Dataset.from_tensor_slices((x, y) if y is not None else x) if shuffle: ds = ds.shuffle(1000) return ds.repeat(num_epochs).batch(batch_size) return input_fn def get_resource_for_simple_model(): input_name = 'input_1' output_name = 'output_1' np.random.seed(_RANDOM_SEED) x_train = np.random.uniform(low=-5, high=5, size=(64, 2)).astype('f') y_train = .3 * x_train[:, 0] + .2 * x_train[:, 1] x_test = np.random.uniform(low=-5, high=5, size=(64, 2)).astype('f') y_test = .3 * x_test[:, 0] + .2 * x_test[:, 1] train_input_fn = gen_input_fn( x=x_train, y=y_train, num_epochs=None, shuffle=False) evaluate_input_fn = gen_input_fn( x=randomize_io_type(x_test, input_name), y=randomize_io_type(y_test, output_name), num_epochs=1, shuffle=False) return (x_train, y_train), (x_test, y_test), train_input_fn, evaluate_input_fn def randomize_io_type(array, name): switch = np.random.random() if switch > 0.5: return array else: return {name: array} class KerasPremadeModelTest(tf.test.TestCase): def setUp(self): self._base_dir = os.path.join(self.get_temp_dir(), 'keras_estimator_test') tf.compat.v1.gfile.MakeDirs(self._base_dir) self._config = run_config_lib.RunConfig( tf_random_seed=_RANDOM_SEED, model_dir=self._base_dir) super(KerasPremadeModelTest, self).setUp() def tearDown(self): # Make sure nothing is stuck in limbo. tf.compat.v1.summary.FileWriterCache.clear() if os.path.isdir(self._base_dir): tf.compat.v1.gfile.DeleteRecursively(self._base_dir) keras.backend.clear_session() super(KerasPremadeModelTest, self).tearDown() def test_train_premade_linear_model_with_dense_features(self): vocab_list = ['alpha', 'beta', 'gamma'] vocab_val = [0.4, 0.6, 0.9] data = np.random.choice(vocab_list, size=256) y = np.zeros_like(data, dtype=np.float32) for vocab, val in zip(vocab_list, vocab_val): indices = np.where(data == vocab) y[indices] = val + np.random.uniform( low=-0.01, high=0.01, size=indices[0].shape) cat_column = tf.feature_column.categorical_column_with_vocabulary_list( key='symbol', vocabulary_list=vocab_list) ind_column = tf.feature_column.indicator_column(cat_column) keras_input = keras.layers.Input( name='symbol', shape=3, dtype=tf.dtypes.string) feature_layer = dense_features.DenseFeatures([ind_column]) h = feature_layer({'symbol': keras_input}) linear_model = linear.LinearModel(units=1) h = linear_model(h) model = keras.Model(inputs=keras_input, outputs=h) opt = gradient_descent.SGD(0.1) model.compile(opt, 'mse', ['mse']) train_input_fn = numpy_io.numpy_input_fn( x={'symbol': data}, y=y, num_epochs=20, shuffle=False) eval_input_fn = numpy_io.numpy_input_fn( x={'symbol': data}, y=y, num_epochs=20, shuffle=False) est = keras_lib.model_to_estimator( keras_model=model, config=self._config, checkpoint_format='saver') before_eval_results = est.evaluate(input_fn=eval_input_fn, steps=1) est.train(input_fn=train_input_fn, steps=30) after_eval_results = est.evaluate(input_fn=eval_input_fn, steps=1) self.assertLess(after_eval_results['loss'], before_eval_results['loss']) self.assertLess(after_eval_results['loss'], 0.05) def test_train_premade_linear_model(self): (x_train, y_train), _, train_inp_fn, eval_inp_fn = get_resource_for_simple_model() linear_model = linear.LinearModel(units=1) opt = gradient_descent.SGD(0.1) linear_model.compile(opt, 'mse', ['mse']) linear_model.fit(x_train, y_train, epochs=10) est = keras_lib.model_to_estimator( keras_model=linear_model, config=self._config, checkpoint_format='saver') before_eval_results = est.evaluate(input_fn=eval_inp_fn, steps=1) est.train(input_fn=train_inp_fn, steps=500) after_eval_results = est.evaluate(input_fn=eval_inp_fn, steps=1) self.assertLess(after_eval_results['loss'], before_eval_results['loss']) self.assertLess(after_eval_results['loss'], 0.1) def test_train_premade_widedeep_model_with_feature_layers(self): vocab_list = ['alpha', 'beta', 'gamma'] vocab_val = [0.4, 0.6, 0.9] data = np.random.choice(vocab_list, size=256) y = np.zeros_like(data, dtype=np.float32) for vocab, val in zip(vocab_list, vocab_val): indices = np.where(data == vocab) y[indices] = val + np.random.uniform( low=-0.01, high=0.01, size=indices[0].shape) cat_column = tf.feature_column.categorical_column_with_vocabulary_list( key='symbol', vocabulary_list=vocab_list) ind_column = tf.feature_column.indicator_column(cat_column) # TODO(tanzheny): use emb column for dense part once b/139667019 is fixed. # emb_column = feature_column.embedding_column(cat_column, dimension=5) keras_input = keras.layers.Input( name='symbol', shape=3, dtype=tf.dtypes.string) # build linear part with feature layer. linear_feature_layer = dense_features.DenseFeatures([ind_column]) linear_model = linear.LinearModel( units=1, name='Linear', kernel_initializer='zeros') combined_linear = keras.Sequential([linear_feature_layer, linear_model]) # build dnn part with feature layer. dnn_feature_layer = dense_features.DenseFeatures([ind_column]) dense_layer = keras.layers.Dense( units=1, name='DNNDense', kernel_initializer='zeros') combined_dnn = keras.Sequential([dnn_feature_layer, dense_layer]) # build and compile wide deep. wide_deep_model = wide_deep.WideDeepModel(combined_linear, combined_dnn) wide_deep_model._set_inputs({'symbol': keras_input}) sgd_opt = gradient_descent.SGD(0.1) adam_opt = adam.Adam(0.1) wide_deep_model.compile([sgd_opt, adam_opt], 'mse', ['mse']) # build estimator. train_input_fn = numpy_io.numpy_input_fn( x={'symbol': data}, y=y, num_epochs=20, shuffle=False) eval_input_fn = numpy_io.numpy_input_fn( x={'symbol': data}, y=y, num_epochs=20, shuffle=False) est = keras_lib.model_to_estimator( keras_model=wide_deep_model, config=self._config, checkpoint_format='saver') before_eval_results = est.evaluate(input_fn=eval_input_fn, steps=1) est.train(input_fn=train_input_fn, steps=20) after_eval_results = est.evaluate(input_fn=eval_input_fn, steps=1) self.assertLess(after_eval_results['loss'], before_eval_results['loss']) self.assertLess(after_eval_results['loss'], 0.1) if __name__ == '__main__': tf.test.main()
40.54717
85
0.727897