hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
6fd08494a3ca1279fc553e7ba2f5e4e6e8104fd1
8,400
py
Python
metrics/get_predictions_metrics.py
sparks-baird/RoboCrab
9b7577911e42c87b911ebb4d9d3e691a58c63cbe
[ "MIT" ]
44
2020-02-20T09:56:39.000Z
2022-03-09T08:49:31.000Z
metrics/get_predictions_metrics.py
sparks-baird/RoboCrab
9b7577911e42c87b911ebb4d9d3e691a58c63cbe
[ "MIT" ]
21
2020-02-24T14:30:05.000Z
2022-03-26T19:38:42.000Z
metrics/get_predictions_metrics.py
sparks-baird/RoboCrab
9b7577911e42c87b911ebb4d9d3e691a58c63cbe
[ "MIT" ]
13
2020-12-15T13:53:12.000Z
2022-03-31T12:25:26.000Z
import pandas as pd import os from utils.composition import _fractional_composition def norm_form(formula): comp = _fractional_composition(formula) form = '' for key, value in comp.items(): form += f'{key}{str(value)[0:9]}' return form def count_elems(string): count = 0 switch = 1 for c in string: if c.isalpha(): count += switch switch = 0 if c.isnumeric(): switch = 1 return count # %% if __name__ == '__main__': print('processing all model predictions and calculating metrics') print('this will take a few minutes...') # %% results_path = 'publication_predictions' benchmark_path = 'data/benchmark_data' test_directories = os.listdir(results_path) benchmark_props = os.listdir(benchmark_path) benchmark_test_directories = [test for test in test_directories if "benchmark" in test] dataset_results = {} dataset_preds = {} dataset_acts = {} test_maes = pd.DataFrame() df_stats = pd.DataFrame() for benchmark in benchmark_props: df_compositions = pd.DataFrame() df_preds = pd.DataFrame() df_acts = pd.DataFrame() models = [] for directory in benchmark_test_directories: df_train_orig = pd.read_csv(f'{benchmark_path}/{benchmark}/train.csv', keep_default_na=False, na_values=['']) df_val = pd.read_csv(f'{benchmark_path}/{benchmark}/val.csv', keep_default_na=False, na_values=['']) df_train = pd.concat([df_train_orig, df_val], ignore_index=True) df_train['formula'] = [norm_form(formula) for formula in df_train['formula']] df_train.index = df_train['formula'] files = os.listdir(f'{results_path}\{directory}') file = [file for file in files if benchmark in file and 'test' in file] if len(file) > 0: models.append(directory.split('_')[0]) file = file[0] df = pd.read_csv(f'{results_path}\{directory}\{file}', keep_default_na=False, na_values=['']) composition = df['formula'] pred = df['predicted'] act = df['actual'] print(f'processing {benchmark} {models[-1]}') df_compositions = pd.concat([df_compositions, composition], axis=1) df_preds = pd.concat([df_preds, pred], axis=1) df_acts = pd.concat([df_acts, act], axis=1) n_total = act.count() + df_val.shape[0] + df_train_orig.shape[0] df_stats.at[benchmark, 'mean_test'] = act.mean() df_stats.at[benchmark, 'std_test'] = act.std() df_stats.at[benchmark, 'n_test'] = act.count() df_stats.at[benchmark, 'mean_train'] = df_train['target'].mean() df_stats.at[benchmark, 'std_train'] = df_train['target'].std() df_stats.at[benchmark, 'n_train'] = df_train_orig.shape[0] df_stats.at[benchmark, 'n_val'] = df_val.shape[0] df_stats.at[benchmark, 'n_total'] = n_total df_stats.at[benchmark, 'prop_train'] = df_train_orig.shape[0] / n_total df_stats.at[benchmark, 'prop_val'] = df_val.shape[0] / n_total df_stats.at[benchmark, 'prop_test'] = act.count() / n_total df_compositions.columns = models df_preds.columns = models df_acts.columns = models df_diff = df_preds - df_acts df_mae = df_diff.abs().mean() test_maes[benchmark] = df_mae dataset_results[benchmark] = df_compositions dataset_preds[benchmark] = df_preds dataset_acts[benchmark] = df_acts maes = test_maes.T model_names = ['roost', 'mat2vec', 'onehot', 'elemnet', 'rf'] out_1 = maes[model_names] out = pd.concat([out_1, df_stats], axis=1) df_benchmark = out.copy() # %% results_path = 'publication_predictions' matbench_path = 'data/matbench_cv' test_directories = os.listdir(results_path) matbench_props = os.listdir(matbench_path) matbench_test_directories = [test for test in test_directories if "matbench" in test] dataset_results = {} dataset_preds = {} dataset_acts = {} test_maes = pd.DataFrame() df_stats = pd.DataFrame() for matbench in matbench_props: df_compositions = pd.DataFrame() df_preds = pd.DataFrame() df_acts = pd.DataFrame() models = [] for directory in matbench_test_directories: train_files = os.listdir(f'{matbench_path}/{matbench}') train_files = [file for file in train_files if 'train' in file] test_files = os.listdir(f'{results_path}/{directory}') test_files = [file for file in test_files if matbench in file and 'test' in file] for i, (train_file, test_file) in enumerate(zip(train_files, test_files)): df_train_orig = pd.read_csv(f'{matbench_path}/{matbench}/{train_file}', keep_default_na=False, na_values=['']) df_val = pd.read_csv(f'{matbench_path}/{matbench}/{train_file.replace("train", "val")}', keep_default_na=False, na_values=['']) df_train = pd.concat([df_train_orig, df_val], ignore_index=True) df_train['formula'] = [norm_form(formula) for formula in df_train['formula']] df_train.index = df_train['formula'] if len(file) > 0: models.append(directory.split('_')[0]+f'_{i}') file = file[0] df = pd.read_csv(f'{results_path}\{directory}\{test_file}', keep_default_na=False, na_values=['']) df.index = df['formula'].values composition = df['formula'] pred = df['predicted'] act = df['actual'] print(f'processing {matbench} {models[-1]}') df_compositions = pd.concat([df_compositions, composition], axis=1) df_preds = pd.concat([df_preds, pred], axis=1) df_acts = pd.concat([df_acts, act], axis=1) n_total = act.count() + df_val.shape[0] + df_train_orig.shape[0] df_stats.at[matbench, 'mean_test'] = act.mean() df_stats.at[matbench, 'std_test'] = act.std() df_stats.at[matbench, 'n_test'] = act.count() df_stats.at[matbench, 'mean_train'] = df_train['target'].mean() df_stats.at[matbench, 'std_train'] = df_train['target'].std() df_stats.at[matbench, 'n_train'] = df_train_orig.shape[0] df_stats.at[matbench, 'n_val'] = df_val.shape[0] df_stats.at[matbench, 'n_total'] = n_total df_stats.at[matbench, 'prop_train'] = df_train_orig.shape[0] / n_total df_stats.at[matbench, 'prop_val'] = df_val.shape[0] / n_total df_stats.at[matbench, 'prop_test'] = act.count() / n_total df_compositions.columns = models df_preds.columns = models df_acts.columns = models df_diff = df_preds - df_acts df_mae_cv = df_diff.abs() df_mae = pd.DataFrame() model_names = [] _ = [model_names.append(x[:-2]) for x in models if x[:-2] not in model_names] for j, model in enumerate(model_names): df_mae.loc[model, 0] = df_mae_cv.iloc[:, (j)*5:(j+1)*5].max(axis=1).mean() test_maes[matbench] = df_mae[0] dataset_results[matbench] = df_compositions dataset_preds[matbench] = df_preds dataset_acts[matbench] = df_acts maes = test_maes.T model_names = ['roost', 'mat2vec', 'onehot', 'elemnet', 'rf'] out_1 = maes[model_names] out = pd.concat([out_1, df_stats], axis=1) df_matbench = out.copy() # %% df_all = pd.concat([df_benchmark, df_matbench], axis=0, ignore_index=False) rename_dict = {'mat2vec': 'crabnet', 'onehot': 'hotcrab'} df_all = df_all.rename(columns=rename_dict) df_all.to_csv('metrics/all_metrics.csv', index_label='property')
43.076923
104
0.577738
2f12f4e95050f417c0829adab8a631326ae7c192
8,720
py
Python
Utils/download_packs_and_docker_images.py
mazmat-panw/content
024a65c1dea2548e2637a9cbbe54966e9e34a722
[ "MIT" ]
1
2022-03-15T13:16:24.000Z
2022-03-15T13:16:24.000Z
Utils/download_packs_and_docker_images.py
mazmat-panw/content
024a65c1dea2548e2637a9cbbe54966e9e34a722
[ "MIT" ]
87
2022-02-23T12:10:53.000Z
2022-03-31T11:29:05.000Z
Utils/download_packs_and_docker_images.py
henry-sue-pa/content
043c6badfb4f9c80673cad9242fdea72efe301f7
[ "MIT" ]
null
null
null
# Perquisites to run this script: # # 1. Python 3.8+ # 2. requests python lib should be installed (can be installed by running "pip install requests" or "pip3 install requests") # 3. docker is installed (if docker is not install, you can skip docker download using the `-sd` option) # 4. docker python is installed (install it by running "pip install docker" or "pip3 install docker" or use the `-sd` option) import argparse import os import tempfile from zipfile import ZIP_DEFLATED, ZipFile from pathlib import Path import requests ID_SET_URL = "https://storage.googleapis.com/marketplace-dist/content/id_set.json" BUCKET_PACKS_URL = "https://marketplace-dist.storage.googleapis.com/content/packs" def load_bucket_id_set(verify_ssl: bool) -> dict: """ Loads the bucket id_set.json""" r = requests.request(method='GET', url=ID_SET_URL, verify=verify_ssl) return r.json() def create_content_item_id_set(id_set_list: list) -> dict: """ Given an id_set.json content item list, creates a dictionary representation""" res = dict() for item in id_set_list: for key, val in item.items(): res[key] = val return res def zip_folder(source_path, output_path): """ Zips the folder and its containing files""" with ZipFile(output_path + '.zip', 'w', ZIP_DEFLATED) as source_zip: for root, dirs, files in os.walk(source_path, topdown=True): for f in files: full_file_path = os.path.join(root, f) source_zip.write(filename=full_file_path, arcname=f) def get_docker_images_with_tag(pack_names: dict, id_set_json: dict) -> set: """ Given a pack name returns its docker images with its latest tag""" print('Starting to collect docker images') integration_names_id_set = create_content_item_id_set(id_set_json['integrations']) script_names_id_set = create_content_item_id_set(id_set_json['scripts']) docker_images = set() for pack_d_name, pack_name in pack_names.items(): if pack_name not in id_set_json['Packs']: print(f"\tPack {pack_d_name} was not found in id_set.json.") continue content_items = id_set_json['Packs'][pack_name]['ContentItems'] integrations = content_items['integrations'] if 'integrations' in content_items else [] scripts = content_items['scripts'] if 'scripts' in content_items else [] if integrations: print(f"\t{pack_d_name} docker images found for integrations:") for integration in integrations: if 'docker_image' in integration_names_id_set[integration]: docker_image = integration_names_id_set[integration]['docker_image'] print(f"\t\t{docker_image} - used by {integration}") docker_images.add(docker_image) if scripts: print(f"\t{pack_d_name} docker images found for scripts:") for script in scripts: if 'docker_image' in script_names_id_set[script]: docker_image = script_names_id_set[script]['docker_image'] print(f"\t\t{docker_image} - used by {script}") docker_images.add(docker_image) return docker_images def get_pack_names(pack_display_names: list, id_set_json: dict) -> dict: """ Given pack_display_names try and parse it into a pack name as appears in content repo""" pack_names = dict() if 'Packs' not in id_set_json: raise ValueError('Packs is missing from id_set.json.') d_names_id_set = dict() # create display name id_set.json for pack_name, pack_value in id_set_json['Packs'].items(): d_names_id_set[pack_value['name']] = pack_name # create result given display name id_set.json for d_name in pack_display_names: if d_name not in d_names_id_set: print(f"Couldn't find pack {d_name}. Skipping pack.") continue pack_names[d_name] = d_names_id_set[d_name] return pack_names def download_and_save_packs(pack_names: dict, id_set_json: dict, output_path: str, verify_ssl: bool) -> None: """ Download and save packs under """ if 'Packs' not in id_set_json: raise ValueError('Packs missing from id_set.json.') id_set_packs = id_set_json['Packs'] print("Starting to download packs") temp_dir = tempfile.TemporaryDirectory() try: for pack_d_name, pack_name in pack_names.items(): if pack_name not in id_set_packs: print(f"\tCouldn't find {pack_d_name} in id_set.json. Skipping pack download.") continue pack_version = id_set_packs[pack_name]['current_version'] print(f"\tDownloading {pack_d_name} Pack") r = requests.request(method='GET', url=f'{BUCKET_PACKS_URL}/{pack_name}/{pack_version}/{pack_name}.zip', verify=verify_ssl) with open(os.path.join(temp_dir.name, pack_name + '.zip'), 'wb') as f: f.write(r.content) zip_folder(temp_dir.name, output_path) finally: temp_dir.cleanup() def download_and_save_docker_images(docker_images: set, output_path: str) -> None: """ Downloads and saves the docker images into docker.zip in output_path""" import docker # import docker only when required print("Starting to download docker images for given packs") cli = docker.from_env(timeout=120) temp_dir = tempfile.TemporaryDirectory() try: for image in docker_images: print(f"\tDownloading docker image: {image}") image_pair = image.split(':') image_data = cli.images.pull(image_pair[0], image_pair[1]) image_file_name = os.path.join(temp_dir.name, os.path.basename(f"{image_pair[0]}_{image_pair[1]}.tar")) with open(image_file_name, 'wb') as f: for chunk in image_data.save(named=True): f.write(chunk) zip_folder(temp_dir.name, output_path) finally: temp_dir.cleanup() print("Finished docker images download") def options_handler(): """Validates and parses script arguments. Returns: Namespace: Parsed arguments object. """ parser = argparse.ArgumentParser(description="Downloads XSOAR packs as zip and their latest docker images as tar.") parser.add_argument('-p', '--packs', help="A list of pack names as they appear in https://xsoar.pan.dev/marketplaceEither provided " "via a path to a file that contains the packs list (separated by new lines) or " "a string of comma separated packs (e.g. Base,AutoFocus)", required=True) parser.add_argument('-o', '--output_path', help="The path where the files will be saved to.", required=False, default=".") parser.add_argument('-sp', '--skip_packs', help="Don't download packs.", required=False, action='store_true') parser.add_argument('-sd', '--skip_docker', help="Don't download docker images.", required=False, action='store_true') parser.add_argument('--insecure', help="Skip certificate validation.", dest='feature', action='store_true') parser.set_defaults(skip_packs=False, skip_docker=False, insecure=False) return parser.parse_args() def main(): options = options_handler() output_path = options.output_path packs = options.packs if os.path.isfile(packs): pack_display_names = [] with open(packs) as file: for line in file: pack_display_names.append(line.rstrip()) else: pack_display_names = packs.split(',') verify_ssl = not options.insecure id_set_json = load_bucket_id_set(verify_ssl) pack_names = get_pack_names(pack_display_names, id_set_json) Path(output_path).mkdir(parents=True, exist_ok=True) if not options.skip_packs and pack_names: download_and_save_packs(pack_names, id_set_json, os.path.join(output_path, 'packs'), verify_ssl) else: print('Skipping packs.zip creation') if pack_names: docker_images = get_docker_images_with_tag(pack_names, id_set_json) if not options.skip_docker: download_and_save_docker_images(docker_images, os.path.join(output_path, 'docker')) else: print('Skipping dockers.zip creation') else: print('Skpping docker images collection since no packs were found') if __name__ == '__main__': main()
43.6
125
0.652638
e24849c1589ecafda5e401d1c491fc6ee9506089
11,840
py
Python
examples/Nolan/AFRL/Hipersonica/hyper23.py
Rapid-Design-of-Systems-Laboratory/beluga-legacy
d14713d8211b64293c4427005cf02fbd58630598
[ "MIT" ]
1
2019-03-26T03:00:03.000Z
2019-03-26T03:00:03.000Z
examples/Nolan/AFRL/Hipersonica/hyper23.py
Rapid-Design-of-Systems-Laboratory/beluga-legacy
d14713d8211b64293c4427005cf02fbd58630598
[ "MIT" ]
null
null
null
examples/Nolan/AFRL/Hipersonica/hyper23.py
Rapid-Design-of-Systems-Laboratory/beluga-legacy
d14713d8211b64293c4427005cf02fbd58630598
[ "MIT" ]
1
2019-07-14T22:53:52.000Z
2019-07-14T22:53:52.000Z
if __name__ == "__main__": import numpy as np import beluga.Beluga as Beluga import beluga.bvpsol as bvpsol import beluga.bvpsol.algorithms as algorithms import beluga.optim.Problem from beluga.optim.problem import * from beluga.continuation import * import logging # Import Libraries for Matrix Calculations from sympy import symbols, Matrix, Transpose, simplify, diff from sympy import sin from sympy import cos, acos from sympy import sqrt from sympy import exp from sympy import atan from numpy import pi writeEqn = True simpList = False if writeEqn: writeList = [] # Constants rho0, h_ref, A_ref, r_e, mass, mu = symbols('rho0, h_ref, A_ref, r_e, mass, mu') sig_h, sig_t, sig_v, sig_g, sig_r, sig_b, Dt = symbols('sig_h, sig_t, sig_v, sig_g, sig_r, sig_b Dt') theta_b = symbols('theta_b') # Primary States h, theta, v, gam = symbols('h, theta, v, gam') # Control a_trig, a_max, u, u_max = symbols('a_trig, a_max, u, u_max') # alpha = a_max*sin(a_trig) alpha = symbols('alpha') # Secondary States rho = rho0 * exp(-h/h_ref) Cl = 1.5658*alpha*180/pi + -0.00000 Cd = 1.6537*(alpha*180/pi)**2 + 0.0612 D = 0.5*rho*v**2*Cd*A_ref L = 0.5*rho*v**2*Cl*A_ref r = r_e + h # Primary State Rates h_dot = v*sin(gam) theta_dot = v*cos(gam)/r v_dot = -D/mass - mu*sin(gam)/r**2 gam_dot = L/(mass*v) + (v/r - mu/(v*r**2))*cos(gam) alpha_dot = u_max*sin(u) writeList = [h_dot, theta_dot, v_dot, gam_dot, alpha_dot] # Covariance Calculations p11, p12, p13, p14, \ p22, p23, p24, \ p33, p34, \ p44 \ = symbols('p11 p12 p13 p14 \ p22 p23 p24 \ p33 p34 \ p44') P = Matrix([[p11, p12, p13, p14], [p12, p22, p23, p24], [p13, p23, p33, p34], [p14, p24, p34, p44]]) F = Matrix([[diff(h_dot, h), diff(theta_dot, h), diff(v_dot, h), diff(gam_dot, h)], [diff(h_dot, theta), diff(theta_dot, theta), diff(v_dot, theta), diff(gam_dot, theta)], [diff(h_dot, v), diff(theta_dot, v), diff(v_dot, v), diff(gam_dot, v)], [diff(h_dot, gam), diff(theta_dot, gam), diff(v_dot, gam), diff(gam_dot, gam)]]).T G = Matrix([[0, 0], [0, 0], [1, 0], [0, 1]]) theta_r = theta - theta_b Rho = sqrt( r_e ** 2 + r ** 2 - 2 * r * r_e * cos(theta - theta_b)) # sqrt(2*r_e*(r_e + h)*(1 - cos(theta_r)) + h**2) H = Matrix([[diff(Rho, h), diff(Rho, theta), diff(Rho, v), diff(Rho, gam)]]) Q = Dt * Matrix([[sig_v ** 2, 0], [0, sig_g ** 2]]) R = Dt * Matrix([[sig_r ** 2]]) P_dot = (F*P + P*F.T - P*H.T*(R**-1)*H*P + G*Q*G.T) Dim = P_dot.shape for i in range(0, Dim[0]): for j in range(i, Dim[1]): # print(P_dot[i, j]) writeList.append(P_dot[i, j]) # h_new, theta_new, v_new, gam_new = symbols('h_new, theta_new, v_new, gam_new') # h_scale, theta_scale, v_scale, gam_scale = symbols('h_scale, theta_scale, v_scale, gam_scale') states = [h, theta, v, gam, a_trig, p11, p12, p13, p14, p22, p23, p24, p33, p34, p44] h_s, theta_s, v_s, gam_s, \ p11_s, p12_s, p13_s, p14_s, \ p22_s, p23_s, p24_s, \ p33_s, p34_s, \ p44_s = \ symbols('h_s, theta_s, v_s, gam_s, \ p11_s, p12_s, p13_s, p14_s, \ p22_s, p23_s, p24_s, \ p33_s, p34_s, \ p44_s') scales = [h_s, theta_s, v_s, gam_s, 1, p11_s, p12_s, p13_s, p14_s, p22_s, p23_s, p24_s, p33_s, p34_s, p44_s] h_n, theta_n, v_n, gam_n, \ p11_n, p12_n, p13_n, p14_n, \ p22_n, p23_n, p24_n, \ p33_n, p34_n, \ p44_n = \ symbols('h_n, theta_n, v_n, gam_n, \ p11_n, p12_n, p13_n, p14_n, \ p22_n, p23_n, p24_n, \ p33_n, p34_n, \ p44_n') states_new = [h_n, theta_n, v_n, gam_n, a_trig, p11_n, p12_n, p13_n, p14_n, p22_n, p23_n, p24_n, p33_n, p34_n, p44_n] # print(writeList) Z1 = zip(writeList, scales) scaledList = [] for item, Scale in Z1: # print(item) item = item/Scale Z2 = zip(states, states_new, scales) # print(item) # for state, new, scale in Z2: # print(state) # print(new) # print(scale) for state, new, scale in Z2: # print(new) item = item.subs(state, scale*new) # print(item) scaledList.append(item) k = 1 with open("eqns.txt", "w") as my_file: for item in scaledList: if simpList: # print('* ' + str(item)) item = simplify(item) # print('# ' + str(item)) my_file.write(str(item) + "\n") # print(" Wrote " + str(k) + "/" + str(len(scaledList))) k += 1 k = 1 alfa = symbols('alpha') with open("eqnsUnscaled.txt", "w") as my_file: for item in writeList: item = item.subs(a_max*sin(a_trig),alfa) my_file.write(str(item) + "\n") # print(" Wrote " + str(k) + "/" + str(len(writeList))) k += 1 ''' Start Optimal Control Calculations ''' # Read Covariance State Rates from File with open("eqns.txt", "r") as f: eqnsList = list(f) # for item in P_dot_eqns: # print(item) # Rename this and/or move to optim package? problem = beluga.optim.Problem('hyperKalman7') # problem = beluga.optim.Problem() # Define independent variables problem.independent('t', 's') # rho = 'rho0*exp(-h/H)' # Cl = '(1.5658*alfa + -0.0000)' # Cd = '(1.6537*alfa^2 + 0.0612)' # Cl = 'CLfunctio0n(alfa)' # Cd = 'CDfunction(alfa)' # D = '(0.5*'+rho+'*v^2*'+Cd+'*Aref)' # L = '(0.5*'+rho+'*v^2*'+Cl+'*Aref)' # r = '(re+h)' # Define equations of motion problem.state('h_n', eqnsList[0]+'+ ep/h_s*cos(u)', 'm') \ .state('theta_n', eqnsList[1], 'rad') \ .state('v_n', eqnsList[2], 'm/s') \ .state('gam_n', eqnsList[3], 'rad') \ .state('alpha', eqnsList[4], 'rad') \ .state('p11_n', eqnsList[5], 'm**2') \ .state('p12_n', eqnsList[6], 'm') \ .state('p13_n', eqnsList[7], 'm**2/s') \ .state('p14_n', eqnsList[8], 'm') \ .state('p22_n', eqnsList[9], 'rad')\ .state('p23_n', eqnsList[10], 'rad*m/s') \ .state('p24_n', eqnsList[11], 'rad**2') \ .state('p33_n', eqnsList[12], 'm**2/s**2') \ .state('p34_n', eqnsList[13], 'm/s') \ .state('p44_n', eqnsList[14], 'rad**2') \ # Define controls problem.control('u', 'rad') # Define costs # problem.cost['path'] = Expression('p11', 'm^2/s^2') # problem.cost['path'] = Expression('0.001', 's') problem.cost['terminal'] = Expression('p22_n', '1') # Define constraints problem.constraints() \ .initial('h_n-h_n_0', 'm') \ .initial('theta_n-theta_n_0', 'rad') \ .initial('v_n-v_n_0', 'm/s') \ .initial('gam_n-gam_n_0', 'rad') \ .initial('p11_n-p11_n_0', 'm**2') \ .initial('p12_n-p12_n_0', 'm') \ .initial('p13_n-p13_n_0', 'm**2/s') \ .initial('p14_n-p14_n_0', 'm') \ .initial('p22_n-p22_n_0', 'rad^2') \ .initial('p23_n-p23_n_0', 'rad*m/s') \ .initial('p24_n-p24_n_0', 'rad**2') \ .initial('p33_n-p33_n_0', 'm**2/s**2') \ .initial('p34_n-p34_n_0', 'm/s') \ .initial('p44_n-p44_n_0', 'rad**2') \ .terminal('h_n-h_n_f', 'm') \ .terminal('theta_n-theta_n_f', 'rad') # Define constants problem.constant('mu', 3.986e5*1e9, 'm^3/s^2') # Gravitational parameter, m^3/s^2 problem.constant('rho0', 1.2, 'kg/m^3') # Sea-level atmospheric density, kg/m^3 problem.constant('h_ref', 7500, 'm') # Scale height for atmosphere of Earth, m problem.constant('mass', 750/2.2046226, 'kg') # Mass of vehicle, kg problem.constant('r_e', 6378000, 'm') # Radius of planet, m problem.constant('A_ref', pi*(24*.0254/2)**2, 'm^2') # Reference area of vehicle, m^2 problem.constant('rn', 1/12*0.3048, 'm') # Nose radius, m problem.constant('Dt', 0.1, 's') # time step problem.constant('sig_v', 10.0, 'm/s**2') # var in v problem.constant('sig_g', 0.1*pi/180, 'rad/s') # var in gam problem.constant('sig_r', 100.0, 'm') # var in range problem.constant('theta_b', -2*pi/180, 'rad') # location of kalmanBeacon problem.constant('a_max', 10.0*pi/180, 'rad') problem.constant('u_max', 0.25*pi/180, 'rad/s') problem.constant('h_s', 1000, 'rad') problem.constant('theta_s', 1, 'rad') problem.constant('v_s', 100, 'rad') problem.constant('gam_s', 1, 'rad') problem.constant('p11_s', 1e5, 'rad') problem.constant('p12_s', 1e-2, 'rad') problem.constant('p13_s', 1e2, 'rad') problem.constant('p14_s', 1e-1, 'rad') problem.constant('p22_s', 1e-10, 'rad') problem.constant('p23_s', 1e-5, 'rad') problem.constant('p24_s', 1e-8, 'rad') problem.constant('p33_s', 1e1, 'rad') problem.constant('p34_s', 1e-3, 'rad') problem.constant('p44_s', 1e-6, 'rad') problem.constant('ep', 40, 'rad') problem.bvp_solver = algorithms.MultipleShooting(derivative_method='fd', tolerance=1e-4, max_iterations=1000, verbose=True, cached=False, number_arcs=16) # problem.bvp_solver = algorithms.SingleShooting(derivative_method='fd',tolerance=1e-4, max_iterations=1000, verbose=True, cached=False) problem.scale.unit('m', 1) \ .unit('s', 1) \ .unit('kg', 1) \ .unit('rad', 1) # Define quantity (not implemented at present) # Is this actually an Expression rather than a Value? # problem.quantity = [Value('tanAng','tan(theta)')] problem.guess.setup('auto', start=[80, 0, 50, -89*pi/180, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], costate_guess=[0, 0, 0, 0, 0.0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], time_integrate=2.5) # costate_guess=[0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # problem.guess.setup('auto',start=[80000,3.38575809e-21,5000,7.98617365e-02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],direction='forward',time_integrate=229.865209,costate_guess =[-1.37514494e+01,3.80852584e+06,-3.26290152e+03,-2.31984720e-14,0.00,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01]) # Figure out nicer way of representing this. Done? problem.steps.add_step().num_cases(6) \ .terminal('theta_n', 1*pi/180) \ .terminal('h_n', 0) # problem.steps.add_step().num_cases(15) \ # .terminal('theta_n', 5) # problem.steps.add_step().num_cases(21) \ # .terminal('theta', 10*pi/180) Beluga.run(problem, display_level=logging.DEBUG)
35.987842
288
0.509459
7a63af95b623349d41866798a766b2bfb8754e26
5,297
py
Python
src/esapy/api_growi.py
KosukeMizuno/esapy
9b4955f3e50a83f8336a5d155cd47c27c3a135ae
[ "MIT" ]
6
2020-02-25T00:53:09.000Z
2021-07-21T16:49:41.000Z
src/esapy/api_growi.py
KosukeMizuno/esapy
9b4955f3e50a83f8336a5d155cd47c27c3a135ae
[ "MIT" ]
28
2020-02-24T10:48:35.000Z
2021-07-25T18:01:00.000Z
src/esapy/api_growi.py
KosukeMizuno/esapy
9b4955f3e50a83f8336a5d155cd47c27c3a135ae
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import os from pathlib import Path import mimetypes import requests import json import uuid from urllib.parse import quote import hashlib # logger from logging import getLogger logger = getLogger(__name__) from .loadrc import KEY_GROWI_USERNAME def _set_proxy(proxy): if proxy is None: logger.debug('No proxy is addressed.') return logger.info('Addressed proxy: %s' % proxy) os.environ['HTTP_PROXY'] = proxy logger.debug('HTTP_PROXY={:s}'.format(os.environ['HTTP_PROXY'])) os.environ['HTTPS_PROXY'] = proxy logger.debug('HTTPS_PROXY={:s}'.format(os.environ['HTTPS_PROXY'])) def _get_growi_username(): return os.environ[KEY_GROWI_USERNAME] def get_team_stats(token=None, url=None, proxy=None): logger.info('Getting healthcheck of growi') _set_proxy(proxy) # get metadata res = requests.get(url + '/_api/v3/statistics/user', params=dict(access_token=token)) logger.debug(res) logger.debug(res.headers) if res.status_code == 200: pass else: raise RuntimeError('Getting team statistics failed.') print(res.json()) return res.json() def upload_binary(filename, token=None, url=None, proxy=None): path_bin = Path(filename) logger.info('Uploading binary data, path=%s' % str(path_bin)) logger.info(' filesize: %d' % path_bin.stat().st_size) _set_proxy(proxy) page_id = get_post_by_path('/user/' + _get_growi_username(), token, url, proxy)['_id'] # upload file logger.info('Posting binary...{:}'.format(path_bin.name)) with path_bin.open('rb') as imgfile: res = requests.post(url + '/_api/attachments.add', data=dict(page_id=page_id, access_token=token), files=dict(file=(path_bin.name, imgfile, mimetypes.guess_type(path_bin)[0])) ) logger.debug(res.headers) if res.status_code != 200: logger.warning('Upload failed, %s' % str(path_bin)) raise RuntimeError('Upload failed.') image_url = res.json()['attachment']['filePathProxied'] logger.info('The file has been uploaded successfully, url: %s' % image_url) return image_url, res def get_post(page_id, token=None, url=None, proxy=None): logger.info('Getting post/{:}'.format(page_id)) # post _set_proxy(proxy) payload = {'access_token': token, 'page_id': page_id} res = requests.get(url + '/_api/pages.get', params=payload) logger.debug(res) if res.status_code != 200: logger.warning('Getting post failed.') raise RuntimeError('Getting post failed.') d = res.json() logger.debug(d) return d['page'] def get_post_by_path(pagepath, token=None, url=None, proxy=None): logger.info('Getting post/{:}'.format(pagepath)) _set_proxy(proxy) payload = {'access_token': token, 'path': pagepath} res = requests.get(url + '/_api/pages.get', params=payload) logger.debug(res) logger.debug(res.headers) # logger.debug(res.text) if res.status_code != 200: logger.warning('Getting post failed.') raise RuntimeError('Getting post failed.') d = res.json() logger.debug(d) return d['page'] def create_post(body_md, token=None, url=None, name=None, proxy=None): logger.info('Creating new post') # post _set_proxy(proxy) if name is None: raise RuntimeError('`name` is required.') payload = {'access_token': token, 'body': body_md, 'path': '/user/' + _get_growi_username() + '/' + name} res = requests.post(url + '/_api/v3/pages/', data=payload) logger.debug(res) logger.debug(res.headers) if res.status_code == 409: raise RuntimeError('Page path is already existed. Retry with different name.') elif res.status_code != 201: raise RuntimeError('Create post failed.') logger.info('New post was successfully created.') d = res.json() logger.debug(d['data']['page']) pageurl = url + '/' + d['data']['page']['path'] logger.info('URL of the created post: %s' % pageurl) return pageurl, res def patch_post(page_id, body_md, name, token=None, url=None, proxy=None): logger.info('Updating post: {:}'.format(page_id)) page_dat = get_post(page_id, token, url, proxy) # post _set_proxy(proxy) payload = {'body': body_md, 'page_id': page_id, 'revision_id': page_dat['revision']['_id'] } logger.debug(payload) res = requests.post(url + f'/_api/pages.update?access_token={quote(token)}', data=payload, ) logger.debug(res) if res.status_code != 200: raise RuntimeError('Create post failed.') d = res.json() logger.debug(d) logger.debug(d['page']) pageurl = url + '/' + d['page']['path'] logger.info('New post was successfully created.') logger.info('URL of the created post: %s' % pageurl) return pageurl, res
28.175532
90
0.603738
342f41edd126c7ad0c1dd0e2d5eb76844d9467b7
1,430
py
Python
FeatureAssembler/fstrategies/ASTEmbedding/tool_io/readAndCompareResults.py
sed-inf-u-szeged/DeepWaterFramework
30e9c0145300e24834a3d4a7dde25002c638dd5a
[ "Apache-2.0" ]
6
2020-06-18T22:38:09.000Z
2022-01-13T14:32:56.000Z
FeatureAssembler/fstrategies/ASTEmbedding/tool_io/readAndCompareResults.py
sed-inf-u-szeged/DeepWaterFramework
30e9c0145300e24834a3d4a7dde25002c638dd5a
[ "Apache-2.0" ]
18
2020-01-13T08:32:53.000Z
2021-07-23T08:26:02.000Z
FeatureAssembler/fstrategies/ASTEmbedding/tool_io/readAndCompareResults.py
sed-inf-u-szeged/DeepWaterFramework
30e9c0145300e24834a3d4a7dde25002c638dd5a
[ "Apache-2.0" ]
2
2020-06-18T09:50:59.000Z
2021-03-18T04:52:53.000Z
import csv import sys import json def readDbhCsv(directory): retData = dict() filename=directory+"/dbh.csv" with open(filename, mode='r', encoding='utf-8' ) as resultFile: reader=csv.reader(resultFile, dialect='excel', delimiter = ";") data=list(reader) for i in range(len(data)): retData[data[i][3]]=json.loads(data[i][10].replace('\'','"')) return retData def compare(ref, data): if (data>ref): return "**"+'{:03.2f}'.format(data)+"** (+"+'{:2.0f}'.format(100*data-100*ref) +")" elif (data<ref): return "<u>"+'{:03.2f}'.format(data)+"</u> (-"+'{:2.0f}'.format(100*ref-100*data) +")" return '{:03.2f}'.format(data) def compareData(refData, data): for i in data: print ("|" + i + "|" + compare(refData[i]["precision"], data[i]["precision"]) + "|" + compare(refData[i]["recall"], data[i]["recall"]) + "|" + compare(refData[i]["accuracy"], data[i]["accuracy"]) + "|" +compare(refData[i]["fmes"], data[i]["fmes"]) + "|" + compare(refData[i]["completeness"], data[i]["completeness"]) + "|") if len(sys.argv) > 2: refData=readDbhCsv(sys.argv[1]) data=readDbhCsv(sys.argv[2]) #print(refData) print("|Algorithm | Precision | Recall | Accuracy | Fmes | Completness |") print("| --------- | --------- | ------ | -------- | ---- | ----------- |") compareData(refData, data)
32.5
94
0.537762
c3994e857ad786403ca45e6ddd0bf13f31707920
3,970
py
Python
dcodex_lectionary/migrations/0030_auto_20201119_2131.py
rbturnbull/dcodex_lectionary
9a4787eb353d09fef023cd82af8859a7ee041aee
[ "Apache-2.0" ]
null
null
null
dcodex_lectionary/migrations/0030_auto_20201119_2131.py
rbturnbull/dcodex_lectionary
9a4787eb353d09fef023cd82af8859a7ee041aee
[ "Apache-2.0" ]
2
2021-08-09T01:11:59.000Z
2021-08-09T01:12:49.000Z
dcodex_lectionary/migrations/0030_auto_20201119_2131.py
rbturnbull/dcodex_lectionary
9a4787eb353d09fef023cd82af8859a7ee041aee
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.0.11 on 2020-11-19 10:31 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('contenttypes', '0002_remove_content_type_name'), ('dcodex_lectionary', '0029_auto_20201116_2119'), ] operations = [ migrations.CreateModel( name='LectionaryDay', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', models.CharField(max_length=255)), ('polymorphic_ctype', models.ForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='polymorphic_dcodex_lectionary.lectionaryday_set+', to='contenttypes.ContentType')), ], options={ 'abstract': False, 'base_manager_name': 'objects', }, ), migrations.CreateModel( name='EothinaDay', fields=[ ('lectionaryday_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='dcodex_lectionary.LectionaryDay')), ('rank', models.IntegerField()), ], options={ 'abstract': False, 'base_manager_name': 'objects', }, bases=('dcodex_lectionary.lectionaryday',), ), migrations.CreateModel( name='FixedDay', fields=[ ('lectionaryday_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='dcodex_lectionary.LectionaryDay')), ('date', models.DateField(blank=True, default=None, null=True)), ], options={ 'ordering': ('date',), }, bases=('dcodex_lectionary.lectionaryday',), ), migrations.CreateModel( name='MiscDay', fields=[ ('lectionaryday_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='dcodex_lectionary.LectionaryDay')), ], options={ 'abstract': False, 'base_manager_name': 'objects', }, bases=('dcodex_lectionary.lectionaryday',), ), migrations.CreateModel( name='MovableDay', fields=[ ('lectionaryday_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='dcodex_lectionary.LectionaryDay')), ('day_of_week', models.IntegerField(choices=[(0, 'Sunday'), (1, 'Monday'), (2, 'Tuesday'), (3, 'Wednesday'), (4, 'Thursday'), (5, 'Friday'), (6, 'Saturday')])), ('period', models.CharField(choices=[('E', 'Easter'), ('P', 'Pentecost'), ('F', 'Feast of the Cross'), ('L', 'Lent'), ('G', 'Great Week'), ('T', 'Epiphany')], max_length=1)), ('week', models.CharField(max_length=31)), ('weekday_number', models.CharField(max_length=32)), ('earliest_date', models.CharField(max_length=15)), ('latest_date', models.CharField(max_length=15)), ], options={ 'abstract': False, 'base_manager_name': 'objects', }, bases=('dcodex_lectionary.lectionaryday',), ), migrations.AddField( model_name='lectioninsystem', name='lectionary_day', field=models.ForeignKey(blank=True, default=None, null=True, on_delete=django.db.models.deletion.CASCADE, to='dcodex_lectionary.LectionaryDay'), ), ]
47.261905
225
0.58262
a15539defe06aaaee59a56bdf879cfcb36c49150
2,371
py
Python
07-the-sum-of-its-parts.py
gosiqueira/advent-of-code-2018
04e784afadd71adcce7c33c6e07ed116b4d0a350
[ "MIT" ]
null
null
null
07-the-sum-of-its-parts.py
gosiqueira/advent-of-code-2018
04e784afadd71adcce7c33c6e07ed116b4d0a350
[ "MIT" ]
null
null
null
07-the-sum-of-its-parts.py
gosiqueira/advent-of-code-2018
04e784afadd71adcce7c33c6e07ed116b4d0a350
[ "MIT" ]
null
null
null
""" Day 07 - The Sum of Its Parts --- source: https://adventofcode.com/2018/day/7 """ import argparse import string import time from collections import deque from utils import get_input def the_sum_of_its_parts(verbose=False): instructions = get_input(day=7) tasks = {} for ch in string.ascii_uppercase: tasks[ch] = set() for inst in instructions: tasks[inst[36]].add(inst[5]) schedule = '' while len(schedule) < 26: for t, dep in tasks.items(): if t in schedule: continue if dep.issubset(set(schedule)): schedule += t break if verbose: print(f'The order the tasks should be: {schedule}') total_time = 0 workers = [{'remaining': 0, 'task': None} for _ in range(5)] queue = deque() done, doing = set(), set() while len(done) < 26: for k, v in tasks.items(): if k in done or k in doing or k in queue: continue if v.issubset(done): queue.append(k) while queue: avail_worker = None for i in range(5): if workers[i]['task'] is None: avail_worker = i break if avail_worker is None: break task = queue.popleft() print(f'Task taken: {task}') workers[avail_worker]['task'] = task workers[avail_worker]['remaining'] = ord(task) - 4 for i in range(5): if workers[i]['task']: workers[i]['remaining'] -= 1 if workers[i]['remaining'] == 0: task = workers[i]['task'] done.add(task) doing.remove(task) workers[i]['task'] = None total_time += 1 print(total_time, workers) if verbose: print(f'Time taken to complete all the steps: {total_time}') return schedule, total_time if __name__ == '__main__': parser = argparse.ArgumentParser(description='Advent of Code 2018 -- Day 07') parser.add_argument('--verbose', dest='verbose', action='store_true') args = parser.parse_args() tic = time.time() response = the_sum_of_its_parts(args.verbose) tac = time.time() print(*response) print(f'{tac - tic:.3f} s')
25.771739
81
0.537748
762639efb4dcf533016583515f36a965fdd98f1a
533
py
Python
djenealog/tables.py
nim65s/djenealog
3666cd65d22e118294f477b41f8e56b04b56a52d
[ "BSD-2-Clause" ]
null
null
null
djenealog/tables.py
nim65s/djenealog
3666cd65d22e118294f477b41f8e56b04b56a52d
[ "BSD-2-Clause" ]
2
2018-04-25T11:54:34.000Z
2020-03-09T07:11:35.000Z
djenealog/tables.py
nim65s/djenealog
3666cd65d22e118294f477b41f8e56b04b56a52d
[ "BSD-2-Clause" ]
null
null
null
import django_tables2 as tables from . import models class IndividuTable(tables.Table): edit = tables.Column(accessor="get_link", orderable=False) class Meta: model = models.Individu fields = ("prenom", "nom", "masculin", "parents", "edit") def render_masculin(self, value): return "♂" if value else "♀" class CoupleTable(tables.Table): edit = tables.Column(accessor="get_link", orderable=False) class Meta: model = models.Couple fields = ("mari", "femme", "edit")
23.173913
65
0.643527
ae244ebc1fd2cdd1307f87bf93cc983ef58bf53a
10,060
py
Python
pybind/slxos/v16r_1_00b/routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/af_ipv4_uc_and_vrf_cmds_call_point_holder/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v16r_1_00b/routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/af_ipv4_uc_and_vrf_cmds_call_point_holder/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v16r_1_00b/routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/af_ipv4_uc_and_vrf_cmds_call_point_holder/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
1
2021-11-05T22:15:42.000Z
2021-11-05T22:15:42.000Z
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import redistribute class af_ipv4_uc_and_vrf_cmds_call_point_holder(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-common-def - based on the path /routing-system/router/router-bgp/address-family/ipv4/ipv4-unicast/af-vrf/af-ipv4-uc-and-vrf-cmds-call-point-holder. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__bgp_redistribute_internal','__redistribute',) _yang_name = 'af-ipv4-uc-and-vrf-cmds-call-point-holder' _rest_name = '' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__redistribute = YANGDynClass(base=redistribute.redistribute, is_container='container', presence=False, yang_name="redistribute", rest_name="redistribute", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Redistribute information from another routing protocol', u'cli-incomplete-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='container', is_config=True) self.__bgp_redistribute_internal = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="bgp-redistribute-internal", rest_name="bgp-redistribute-internal", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Allow redistribution of iBGP routes into IGPs'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'routing-system', u'router', u'router-bgp', u'address-family', u'ipv4', u'ipv4-unicast', u'af-vrf', u'af-ipv4-uc-and-vrf-cmds-call-point-holder'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'router', u'bgp', u'address-family', u'ipv4', u'unicast', u'vrf'] def _get_bgp_redistribute_internal(self): """ Getter method for bgp_redistribute_internal, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/af_ipv4_uc_and_vrf_cmds_call_point_holder/bgp_redistribute_internal (empty) """ return self.__bgp_redistribute_internal def _set_bgp_redistribute_internal(self, v, load=False): """ Setter method for bgp_redistribute_internal, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/af_ipv4_uc_and_vrf_cmds_call_point_holder/bgp_redistribute_internal (empty) If this variable is read-only (config: false) in the source YANG file, then _set_bgp_redistribute_internal is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_bgp_redistribute_internal() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="bgp-redistribute-internal", rest_name="bgp-redistribute-internal", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Allow redistribution of iBGP routes into IGPs'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """bgp_redistribute_internal must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="bgp-redistribute-internal", rest_name="bgp-redistribute-internal", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Allow redistribution of iBGP routes into IGPs'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True)""", }) self.__bgp_redistribute_internal = t if hasattr(self, '_set'): self._set() def _unset_bgp_redistribute_internal(self): self.__bgp_redistribute_internal = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="bgp-redistribute-internal", rest_name="bgp-redistribute-internal", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Allow redistribution of iBGP routes into IGPs'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True) def _get_redistribute(self): """ Getter method for redistribute, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/af_ipv4_uc_and_vrf_cmds_call_point_holder/redistribute (container) """ return self.__redistribute def _set_redistribute(self, v, load=False): """ Setter method for redistribute, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/af_ipv4_uc_and_vrf_cmds_call_point_holder/redistribute (container) If this variable is read-only (config: false) in the source YANG file, then _set_redistribute is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_redistribute() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=redistribute.redistribute, is_container='container', presence=False, yang_name="redistribute", rest_name="redistribute", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Redistribute information from another routing protocol', u'cli-incomplete-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """redistribute must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=redistribute.redistribute, is_container='container', presence=False, yang_name="redistribute", rest_name="redistribute", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Redistribute information from another routing protocol', u'cli-incomplete-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='container', is_config=True)""", }) self.__redistribute = t if hasattr(self, '_set'): self._set() def _unset_redistribute(self): self.__redistribute = YANGDynClass(base=redistribute.redistribute, is_container='container', presence=False, yang_name="redistribute", rest_name="redistribute", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Redistribute information from another routing protocol', u'cli-incomplete-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='container', is_config=True) bgp_redistribute_internal = __builtin__.property(_get_bgp_redistribute_internal, _set_bgp_redistribute_internal) redistribute = __builtin__.property(_get_redistribute, _set_redistribute) _pyangbind_elements = {'bgp_redistribute_internal': bgp_redistribute_internal, 'redistribute': redistribute, }
63.27044
544
0.74672
5fa4c9a3b44213887af00e87cbfca8002d360f0d
3,408
py
Python
iommi/page__tests.py
yanhuixie/iommi
b6ae39c270b10b553a7ef2ab52e8c1c96489db0b
[ "BSD-3-Clause" ]
192
2020-01-30T14:29:56.000Z
2022-03-28T19:55:30.000Z
iommi/page__tests.py
yanhuixie/iommi
b6ae39c270b10b553a7ef2ab52e8c1c96489db0b
[ "BSD-3-Clause" ]
105
2020-03-29T21:59:01.000Z
2022-03-24T12:29:09.000Z
iommi/page__tests.py
yanhuixie/iommi
b6ae39c270b10b553a7ef2ab52e8c1c96489db0b
[ "BSD-3-Clause" ]
28
2020-02-02T20:51:09.000Z
2022-03-08T16:23:42.000Z
from platform import python_implementation import pytest from django.test import override_settings from iommi import ( Fragment, html, Page, ) from iommi._web_compat import ( Template, ) from iommi.member import _force_bind_all from iommi.part import as_html from tests.helpers import ( prettify, req, user_req, ) def test_simple_page(): class MyPage(Page): footer = html.div( html.hr(), ) my_page = MyPage() my_page.bind(request=req('GET')).render_to_response() my_page.bind(request=req('GET')).render_to_response() def test_page_constructor(): class MyPage(Page): h1 = html.h1() my_page = MyPage(parts__foo=html.div(_name='foo'), parts__bar=html.div()).refine_done() assert list(my_page.iommi_namespace.parts.keys()) == ['h1', 'foo', 'bar'] my_page = my_page.bind(request=None) assert list(my_page.parts.keys()) == ['h1', 'foo', 'bar'] @pytest.mark.skipif(python_implementation() == 'PyPy', reason='Intermittently fails on pypy for unknown reasons.') @override_settings( MIDDLEWARE_CLASSES=[], ) def test_page_render(): # Working around some weird issue with pypy3+django3.0 from django.conf import settings settings.DEBUG = False # end workaround class MyPage(Page): header = html.h1('Foo') body = html.div('bar bar') my_page = MyPage(parts__footer=html.div('footer')) my_page = my_page.bind(request=user_req('get')) response = my_page.render_to_response() expected_html = ''' <!DOCTYPE html> <html> <head> <title></title> </head> <body> <h1> Foo </h1> <div> bar bar </div> <div> footer </div> </body> </html> ''' prettified_expected = prettify(expected_html) prettified_actual = prettify(response.content) assert prettified_expected == prettified_actual def test_promote_str_to_fragment_for_page(): class MyPage(Page): foo = 'asd' page = MyPage().refine_done() assert isinstance(page.iommi_namespace.parts.foo, Fragment) def test_as_html_integer(): assert as_html(part=123, context={}) == '123' def test_page_context(): class MyPage(Page): part1 = Template('Template: {{foo}}\n') part2 = html.div(template=Template('Template2: {{foo}}')) class Meta: context__foo = 'foo' assert MyPage().bind(request=req('get')).__html__() == 'Template: foo\nTemplate2: foo' def test_invalid_context_specified(): class Nested(Page): class Meta: context__foo = 1 class Root(Page): nested = Nested() with pytest.raises(AssertionError) as e: root = Root().bind(request=None) _force_bind_all(root.parts) assert str(e.value) == 'The context property is only valid on the root page' def test_as_view(): view = Page(parts__foo='##foo##').as_view() assert '##foo##' in view(req('get')).content.decode() def test_title_basic(): assert '<h1>Foo</h1>' == Page(title='foo').bind(request=req('get')).__html__() def test_title_empty(): assert '' in Page().bind(request=req('get')).__html__() def test_title_attr(): assert '<h1 class="foo">Foo</h1>' == Page(title='foo', h_tag__attrs__class__foo=True).bind(request=req('get')).__html__()
24.875912
125
0.631455
b34a7a2b6f42413f938aa27d7894a8c779efa992
339
py
Python
csv_manager/views.py
Apfirebolt/CSV-File-Manager-in-Django
e708038c1f9951ec593b37bee5dd329268643af0
[ "MIT" ]
null
null
null
csv_manager/views.py
Apfirebolt/CSV-File-Manager-in-Django
e708038c1f9951ec593b37bee5dd329268643af0
[ "MIT" ]
null
null
null
csv_manager/views.py
Apfirebolt/CSV-File-Manager-in-Django
e708038c1f9951ec593b37bee5dd329268643af0
[ "MIT" ]
null
null
null
from django.shortcuts import render def handler404(request, exception): return render(request, '404.html') def handler403(request, exception): return render(request, '403.html') def handler500(request, exception): return render(request, '500.html') def handler400(request, exception): return render(request, '400.html')
19.941176
37
0.740413
902da8cbd33808618399125bb013b3cfef957b80
4,479
py
Python
src/sss/genkey.py
foundriesio/plug-and-trust-ssscli
f77c65d5b3de649d7db1c023ee41d871f77cd224
[ "Apache-2.0" ]
null
null
null
src/sss/genkey.py
foundriesio/plug-and-trust-ssscli
f77c65d5b3de649d7db1c023ee41d871f77cd224
[ "Apache-2.0" ]
null
null
null
src/sss/genkey.py
foundriesio/plug-and-trust-ssscli
f77c65d5b3de649d7db1c023ee41d871f77cd224
[ "Apache-2.0" ]
null
null
null
# # Copyright 2018-2020 NXP # SPDX-License-Identifier: Apache-2.0 # # """License text""" import logging from . import sss_api as apis from .keystore import KeyStore from .keyobject import KeyObject from .getkey import Get from .util import get_ecc_cypher_type log = logging.getLogger(__name__) class Generate: """ Generate key pair/public key of ecc/rsa """ def __init__(self, session_obj): """ Constructor :param session_obj: Instance of session """ self._session = session_obj self._ctx_ks = KeyStore(self._session) self._ctx_key = KeyObject(self._ctx_ks) self.key_obj_mode = apis.kKeyObject_Mode_Persistent def gen_ecc_public(self, key_id, curve_type, file_name, policy, encode_format=""): # pylint: disable=too-many-arguments """ Generate ecc public key :param key_id: Key index :param curve_type: ECC curve type :param file_name: File name to store public key :param policy: Policy to be applied :param encode_format: File format to store public key :return: Status """ if file_name[-4:] != '.pem' and file_name[-4:] != '.der': log.error("Unsupported file type. File type should be in pem or der format") return apis.kStatus_SSS_Fail status = self.gen_ecc_pair(key_id, curve_type, policy) if status != apis.kStatus_SSS_Success: return status get = Get(self._session) status = get.get_key(key_id, file_name, encode_format) return status def gen_ecc_pair(self, key_id, curve_type, policy): """ Generate ecc key pair :param key_id: Key index :param curve_type: ECC curve type :param policy: Policy to be applied :return: Status """ cypher_type, key_size = get_ecc_cypher_type(curve_type) key_type = apis.kSSS_KeyPart_Pair if key_size == 0: log.error("curve type not supported") return apis.kStatus_SSS_Fail status = self._gen_key_pair(key_id, key_size, key_type, cypher_type, policy) return status def gen_rsa_public(self, key_id, key_size, file_name, policy): """ Generate rsa public key :param key_id: Key index :param key_size: Key size to generate :param file_name: File name to store public key :param policy: Policy to be applied :return: Status """ if file_name[-4:] != '.pem' and file_name[-4:] != '.der': log.error("Unsupported file type. File type should be in pem or der format") return apis.kStatus_SSS_Fail status = self.gen_rsa_pair(key_id, key_size, policy) if status != apis.kStatus_SSS_Success: return status get = Get(self._session) status = get.get_key(key_id, file_name) return status def gen_rsa_pair(self, key_id, key_size, policy): """ Generate rsa key pair :param key_id: Key index :param key_size: RSA key size to generate :param policy: Policy to be applied :return: Status """ key_type = apis.kSSS_KeyPart_Pair cypher_type = apis.kSSS_CipherType_RSA_CRT status = self._gen_key_pair(key_id, key_size, key_type, cypher_type, policy) return status def _gen_key_pair(self, key_id, key_size, key_type, cypher_type, policy): # pylint: disable=too-many-arguments """ Generate key pair :param key_id: Key index :param key_size: Key size :param key_type: Key type :param cypher_type: Cypher type :param policy: Policy to be applied :return: Status """ # Key length calculation based on key bit length # if modulus of key_bit_len is non zero, then allocate extra byte if (key_size % 8) != 0: key_len = (key_size / 8) + 1 else: key_len = key_size / 8 status = self._ctx_key.allocate_handle(key_id, key_type, cypher_type, int(key_len), self.key_obj_mode) if status != apis.kStatus_SSS_Success: return status status = self._ctx_ks.generate_key(self._ctx_key, key_size, policy) if status != apis.kStatus_SSS_Success: return status status = self._ctx_ks.save_key_store() return status
33.177778
124
0.621121
2272a3280e0c69e50c6002475d88955fc50890e0
5,289
py
Python
tests/test_pack.py
genenetwork/cwltool
15539fba76993f951af9eba913bea6d677c74005
[ "Apache-2.0" ]
null
null
null
tests/test_pack.py
genenetwork/cwltool
15539fba76993f951af9eba913bea6d677c74005
[ "Apache-2.0" ]
null
null
null
tests/test_pack.py
genenetwork/cwltool
15539fba76993f951af9eba913bea6d677c74005
[ "Apache-2.0" ]
null
null
null
import json import os import tempfile from functools import partial from six import StringIO import pytest import cwltool.pack import cwltool.workflow from cwltool import load_tool from cwltool.load_tool import fetch_document, validate_document from cwltool.main import main, make_relative, print_pack from cwltool.pathmapper import adjustDirObjs, adjustFileObjs from cwltool.resolver import tool_resolver from .util import get_data, needs_docker def test_pack(): load_tool.loaders = {} document_loader, workflowobj, uri = fetch_document(get_data("tests/wf/revsort.cwl")) document_loader, _, processobj, metadata, uri = validate_document( document_loader, workflowobj, uri, [], {}) with open(get_data("tests/wf/expect_packed.cwl")) as packed_file: expect_packed = json.load(packed_file) packed = cwltool.pack.pack(document_loader, processobj, uri, metadata) adjustFileObjs(packed, partial(make_relative, os.path.abspath(get_data("tests/wf")))) adjustDirObjs(packed, partial(make_relative, os.path.abspath(get_data("tests/wf")))) assert "$schemas" in packed assert len(packed["$schemas"]) == len(expect_packed["$schemas"]) del packed["$schemas"] del expect_packed["$schemas"] assert packed == expect_packed def test_pack_single_tool(): load_tool.loaders = {} document_loader, workflowobj, uri = fetch_document( get_data("tests/wf/formattest.cwl")) document_loader, _, processobj, metadata, uri = validate_document( document_loader, workflowobj, uri, [], {}) packed = cwltool.pack.pack(document_loader, processobj, uri, metadata) assert "$schemas" in packed def test_pack_rewrites(): load_tool.loaders = {} rewrites = {} document_loader, workflowobj, uri = fetch_document(get_data("tests/wf/default-wf5.cwl")) document_loader, _, processobj, metadata, uri = validate_document( document_loader, workflowobj, uri, [], {}) cwltool.pack.pack(document_loader, processobj, uri, metadata, rewrite_out=rewrites) assert len(rewrites) == 6 cwl_missing_version_paths = [ "tests/wf/hello_single_tool.cwl", "tests/wf/hello-workflow.cwl" ] @pytest.mark.parametrize('cwl_path', cwl_missing_version_paths) def test_pack_missing_cwlVersion(cwl_path): """Test to ensure the generated pack output is not missing the `cwlVersion` in case of single tool workflow and single step workflow""" # Testing single tool workflow document_loader, workflowobj, uri = fetch_document(get_data(cwl_path)) document_loader, _, processobj, metadata, uri = validate_document( document_loader, workflowobj, uri, [], {}) # generate pack output dict packed = json.loads(print_pack(document_loader, processobj, uri, metadata)) assert packed["cwlVersion"] == 'v1.0' def test_pack_idempotence_tool(): """Test to ensure that pack produces exactly the same document for an already packed document""" # Testing single tool _pack_idempotently("tests/wf/hello_single_tool.cwl") def test_pack_idempotence_workflow(): """Test to ensure that pack produces exactly the same document for an already packed document""" # Testing workflow _pack_idempotently("tests/wf/count-lines1-wf.cwl") def _pack_idempotently(document): document_loader, workflowobj, uri = fetch_document( get_data(document)) document_loader, _, processobj, metadata, uri = validate_document( document_loader, workflowobj, uri, [], {}) # generate pack output dict packed = json.loads(print_pack(document_loader, processobj, uri, metadata)) document_loader, workflowobj, uri2 = fetch_document(packed) document_loader, _, processobj, metadata, uri2 = validate_document( document_loader, workflowobj, uri, [], {}) double_packed = json.loads(print_pack(document_loader, processobj, uri2, metadata)) assert packed == double_packed cwl_to_run = [ ("tests/wf/count-lines1-wf.cwl", "tests/wf/wc-job.json", False ), ("tests/wf/formattest.cwl", "tests/wf/formattest-job.json", True ), ] @needs_docker @pytest.mark.parametrize('wf_path,job_path,namespaced', cwl_to_run) def test_packed_workflow_execution(wf_path, job_path, namespaced): load_tool.loaders = {} document_loader, workflowobj, uri = fetch_document( get_data(wf_path), resolver=tool_resolver) document_loader, _, processobj, metadata, uri = validate_document( document_loader, workflowobj, uri, [], {}) packed = json.loads(print_pack(document_loader, processobj, uri, metadata)) assert not namespaced or "$namespaces" in packed wf_packed_handle, wf_packed_path = tempfile.mkstemp() with open(wf_packed_path, 'w') as temp_file: json.dump(packed, temp_file) normal_output = StringIO() packed_output = StringIO() normal_params = [get_data(wf_path), get_data(job_path)] packed_params = ['--debug', get_data(wf_packed_path), get_data(job_path)] assert main(normal_params, stdout=normal_output) == 0 assert main(packed_params, stdout=packed_output) == 0 assert json.loads(packed_output.getvalue()) == json.loads(normal_output.getvalue()) os.close(wf_packed_handle) os.remove(wf_packed_path)
34.122581
92
0.726035
46a1d62394f245ebdd51b0b2aee95597abd0c394
3,881
py
Python
webCrawler_scrapy/dbhelper.py
bobobo0826/scrapy_wallpaper
8f2eb9a05d49557feab04d9565be211a73e58184
[ "MIT" ]
null
null
null
webCrawler_scrapy/dbhelper.py
bobobo0826/scrapy_wallpaper
8f2eb9a05d49557feab04d9565be211a73e58184
[ "MIT" ]
null
null
null
webCrawler_scrapy/dbhelper.py
bobobo0826/scrapy_wallpaper
8f2eb9a05d49557feab04d9565be211a73e58184
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -* #import MySQLdb import scrapy #引入pymysql import pymysql #当成是mysqldb一样使用,当然也可以不写这句,那就按照pymysql的方式 pymysql.install_as_MySQLdb() from scrapy.utils.project import get_project_settings #导入seetings配置 class DBHelper(): '''这个类也是读取settings中的配置,自行修改代码进行操作''' def __init__(self): self.settings=get_project_settings() #获取settings配置,设置需要的信息 self.host=self.settings['MYSQL_HOST'] self.port=self.settings['MYSQL_PORT'] self.user=self.settings['MYSQL_USER'] self.passwd=self.settings['MYSQL_PASSWD'] self.db=self.settings['MYSQL_DBNAME'] #连接到mysql,不是连接到具体的数据库 def connectMysql(self): conn=pymysql.connect(host=self.host, port=self.port, user=self.user, passwd=self.passwd, db=self.db,#指定数据库名testdb charset='utf8') #要指定编码,否则中文可能乱码 return conn #连接到具体的数据库(settings中设置的MYSQL_DBNAME) def connectDatabase(self): conn=pymysql.connect(host=self.host, port=self.port, user=self.user, passwd=self.passwd, db=self.db, charset='utf8') #要指定编码,否则中文可能乱码 return conn #创建数据库 def createDatabase(self): '''因为创建数据库直接修改settings中的配置MYSQL_DBNAME即可,所以就不要传sql语句了''' conn=self.connectMysql()#连接数据库 print("1212121"+self.db) sql="create database if not exists "+self.db cur=conn.cursor() cur.execute(sql)#执行sql语句 cur.close() conn.close() #创建表 def createTable(self,sql): conn=self.connectDatabase() cur=conn.cursor() cur.execute(sql) cur.close() conn.close() #插入数据 def insert(self,sql,*params):#注意这里params要加*,因为传递过来的是元组,*表示参数个数不定 conn=self.connectDatabase() cur=conn.cursor(); cur.execute(sql,params) conn.commit()#注意要commit cur.close() conn.close() #更新数据 def update(self,sql,*params): conn=self.connectDatabase() cur=conn.cursor() cur.execute(sql,params) conn.commit()#注意要commit cur.close() conn.close() #删除数据 def delete(self,sql,*params): conn=self.connectDatabase() cur=conn.cursor() cur.execute(sql,params) conn.commit() cur.close() conn.close() '''测试DBHelper的类''' class TestDBHelper(): def __init__(self): self.dbHelper=DBHelper() #测试创建数据库testdb(settings配置文件中的MYSQL_DBNAME,直接修改settings配置文件即可) def testCreateDatebase(self): self.dbHelper.createDatabase() #测试创建表testtable def testCreateTable(self): sql="create table testtable(id int primary key auto_increment,name varchar(50),url varchar(200))" self.dbHelper.createTable(sql) #测试插入 def testInsert(self): sql="insert into testtable(name,url) values(%s,%s)" params=("test","test") self.dbHelper.insert(sql,*params) # *表示拆分元组,调用insert(*params)会重组成元组 def testUpdate(self): sql="update testtable set name=%s,url=%s where id=%s" params=("update","update","1") self.dbHelper.update(sql,*params) def testDelete(self): sql="delete from testtable where id=%s" params=("1") self.dbHelper.delete(sql,*params) if __name__=="__main__": testDBHelper=TestDBHelper() #testDBHelper.testCreateDatebase() #执行测试创建数据库 #testDBHelper.testCreateTable() #执行测试创建表 #testDBHelper.testInsert() #执行测试插入数据 #testDBHelper.testUpdate() #执行测试更新数据 #testDBHelper.testDelete() #执行测试删除数据
30.801587
105
0.581809
2350ff6eec4023fcc73d69bdc9ddff611b891a58
205
py
Python
app/app.py
jieyinybl/immoscore
0daf9e455a307aed522e2498804776362d6c17ae
[ "MIT" ]
null
null
null
app/app.py
jieyinybl/immoscore
0daf9e455a307aed522e2498804776362d6c17ae
[ "MIT" ]
null
null
null
app/app.py
jieyinybl/immoscore
0daf9e455a307aed522e2498804776362d6c17ae
[ "MIT" ]
null
null
null
from mara_app.app import MaraApp app = MaraApp() # from werkzeug.contrib.profiler import ProfilerMiddleware # app.wsgi_app = ProfilerMiddleware(app.wsgi_app, profile_dir='/tmp/') wsgi_app = app.wsgi_app
25.625
70
0.790244
8f77fcd785601a7a20f1d4d0681c03ec6f82b687
3,197
py
Python
PhoneProbes/eval.py
archiki/ASR-Accent-Analysis
da1dcb8e3a4476c392e01ed410cc47691d693882
[ "MIT" ]
12
2020-07-02T06:51:22.000Z
2022-03-22T19:40:42.000Z
PhoneProbes/eval.py
csalt-research/ASR-Accent-Analysis
da1dcb8e3a4476c392e01ed410cc47691d693882
[ "MIT" ]
1
2021-05-12T08:27:30.000Z
2021-05-28T21:24:53.000Z
PhoneProbes/eval.py
csalt-research/ASR-Accent-Analysis
da1dcb8e3a4476c392e01ed410cc47691d693882
[ "MIT" ]
3
2021-07-26T18:55:05.000Z
2022-02-14T15:17:17.000Z
import torch import torch.nn.functional as F from torch import nn from torch.utils.data import DataLoader from torch.autograd import Variable from model import PhoneNet from data_loader import PhoneDataset import argparse import pdb import time from tqdm import tqdm from torch.nn.parallel import DistributedDataParallel import multiprocessing from collections import OrderedDict # print(type(batch[1])) # return out_batch def eval(test_path,rep_type, batch_size, num_epochs, inp_dim0, inp_dim1,model_path, hidden_dim = 500, all_gpu = False): cuda = torch.cuda.is_available() test_set = PhoneDataset(rep_type, test_path) inp_dim = (inp_dim0, inp_dim1) # torch.set_num_threads(32) net = PhoneNet(inp_dim, hidden_dim) criterion = nn.CrossEntropyLoss() if(cuda): net = net.cuda() criterion = criterion.cuda() state_dict = torch.load(model_path) try: net.load_state_dict(state_dict) except: new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] new_state_dict[name] = v #net = torch.nn.DataParallel(net) net.load_state_dict(new_state_dict) if(not all_gpu): test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=True, num_workers = multiprocessing.cpu_count()//4, pin_memory = True) else: test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=True) print('Loading finished') # for epoch in range(num_epochs): train_loss = 0 test_loss = 0 train_total = 0 test_total = 0 train_correct = 0 test_correct = 0 net.eval() for rep, label in tqdm(test_loader): rep = Variable(rep) label = Variable(label) if(cuda): rep = rep.cuda() label = label.cuda() pred = net(rep) tloss = criterion(pred, label) test_loss += tloss.item() _, predicted = torch.max(pred.data, 1) test_total += label.size(0) test_correct += (predicted == label).sum().item() #calculate loss #calculate accuracy print("Test Accuracy {}".format(100*test_correct/test_total)) #print('Epoch: {}, Train Loss: {}, Test Loss: {}, Train Accuracy: {}, Test Accuracy: {}'.format(str(epoch), str(train_loss/train_total), \ # str(test_loss/test_total), str(100*train_correct/train_total), str(100*test_correct/test_total))) #torch.save(net.state_dict(), 'Weights_{}/Weights_{}.pth'.format(rep_type, str(epoch+1))) parser = argparse.ArgumentParser(description='Take command line arguments') #parser.add_argument('--train_path',type=str) parser.add_argument('--test_path',type=str) parser.add_argument('--rep_type',type=str) parser.add_argument('--learning_rate',type=float) parser.add_argument('--batch_size',type=int) parser.add_argument('--num_epochs',type=int) parser.add_argument('--use_model', action='store_true', default = False) parser.add_argument('--model_path', type= str) args = parser.parse_args() dim = {'spec':[161,1], 'conv':[1312,1], 'rnn_0': [1024,1], 'rnn_1': [1024,1], 'rnn_2': [1024, 1], 'rnn_3': [1024, 1], 'rnn_4': [1024,1]} #pdb.set_trace() if __name__ == '__main__': print(args.test_path.split('/')[-2]) print(args.rep_type) eval( args.test_path, args.rep_type, args.batch_size, 1, dim[args.rep_type][0], dim[args.rep_type][1], args.model_path)
34.010638
141
0.720988
4adbeea2b6ac2608aa77e390442913bb60daec86
920
py
Python
xlsxwriter/test/comparison/test_object_position17.py
hugovk/XlsxWriter
e97cc66637d9895480ee32cfb5e561d652d3787b
[ "BSD-2-Clause" ]
null
null
null
xlsxwriter/test/comparison/test_object_position17.py
hugovk/XlsxWriter
e97cc66637d9895480ee32cfb5e561d652d3787b
[ "BSD-2-Clause" ]
null
null
null
xlsxwriter/test/comparison/test_object_position17.py
hugovk/XlsxWriter
e97cc66637d9895480ee32cfb5e561d652d3787b
[ "BSD-2-Clause" ]
null
null
null
############################################################################### # # Tests for XlsxWriter. # # SPDX-License-Identifier: BSD-2-Clause # Copyright (c), 2013-2022, John McNamara, jmcnamara@cpan.org # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('object_position17.xlsx') def test_create_file(self): """Test the creation of a simple XlsxWriter file with image(s).""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.set_column(1, 1, 5, None, {'hidden': 1}) worksheet.insert_image('A9', self.image_dir + 'red.png', {'x_offset': 192}) workbook.close() self.assertExcelEqual()
24.864865
83
0.618478
1190e0deda18d8ab82e5bdab9249f996eb7e0b9e
1,023
py
Python
dns/rdtypes/ANY/SPF.py
Ashiq5/dnspython
5449af5318d88bada34f661247f3bcb16f58f057
[ "ISC" ]
1,666
2015-01-02T17:46:14.000Z
2022-03-30T07:27:32.000Z
dns/rdtypes/ANY/SPF.py
felixonmars/dnspython
2691834df42aab74914883fdf26109aeb62ec647
[ "ISC" ]
591
2015-01-16T12:19:49.000Z
2022-03-30T21:32:11.000Z
dns/rdtypes/ANY/SPF.py
felixonmars/dnspython
2691834df42aab74914883fdf26109aeb62ec647
[ "ISC" ]
481
2015-01-14T04:14:43.000Z
2022-03-30T19:28:52.000Z
# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license # Copyright (C) 2006, 2007, 2009-2011 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. import dns.rdtypes.txtbase import dns.immutable @dns.immutable.immutable class SPF(dns.rdtypes.txtbase.TXTBase): """SPF record""" # see: RFC 4408
36.535714
75
0.772239
879865cf0b47a9e17a6e95d834d9401129ca793b
3,821
py
Python
0.16/_downloads/plot_configuration.py
drammock/mne-tools.github.io
5d3a104d174255644d8d5335f58036e32695e85d
[ "BSD-3-Clause" ]
null
null
null
0.16/_downloads/plot_configuration.py
drammock/mne-tools.github.io
5d3a104d174255644d8d5335f58036e32695e85d
[ "BSD-3-Clause" ]
1
2020-10-29T19:53:46.000Z
2020-10-29T19:53:46.000Z
0.16/_downloads/plot_configuration.py
drammock/mne-tools.github.io
5d3a104d174255644d8d5335f58036e32695e85d
[ "BSD-3-Clause" ]
1
2021-04-12T12:45:31.000Z
2021-04-12T12:45:31.000Z
# -*- coding: utf-8 -*- """ ====================== Configuring MNE python ====================== This tutorial gives a short introduction to MNE configurations. """ import os.path as op import mne from mne.datasets.sample import data_path fname = op.join(data_path(), 'MEG', 'sample', 'sample_audvis_raw.fif') raw = mne.io.read_raw_fif(fname).crop(0, 10) original_level = mne.get_config('MNE_LOGGING_LEVEL', 'INFO') ############################################################################### # MNE-python stores configurations to a folder called `.mne` in the user's # home directory, or to AppData directory on Windows. The path to the config # file can be found out by calling :func:`mne.get_config_path`. print(mne.get_config_path()) ############################################################################### # These configurations include information like sample data paths and plotter # window sizes. Files inside this folder should never be modified manually. # Let's see what the configurations contain. print(mne.get_config()) ############################################################################### # We see fields like "MNE_DATASETS_SAMPLE_PATH". As the name suggests, this is # the path the sample data is downloaded to. All the fields in the # configuration file can be modified by calling :func:`mne.set_config`. ############################################################################### # # .. _tut_logging: # # Logging # ======= # Configurations also include the default logging level for the functions. This # field is called "MNE_LOGGING_LEVEL". mne.set_config('MNE_LOGGING_LEVEL', 'INFO') print(mne.get_config(key='MNE_LOGGING_LEVEL')) ############################################################################### # The default value is now set to INFO. This level will now be used by default # every time we call a function in MNE. We can set the global logging level for # only this session by calling :func:`mne.set_log_level` function. mne.set_log_level('WARNING') print(mne.get_config(key='MNE_LOGGING_LEVEL')) ############################################################################### # Notice how the value in the config file was not changed. Logging level of # WARNING only applies for this session. Let's see what logging level of # WARNING prints for :func:`mne.compute_raw_covariance`. cov = mne.compute_raw_covariance(raw) ############################################################################### # Nothing. This means that no warnings were emitted during the computation. If # you look at the documentation of :func:`mne.compute_raw_covariance`, you # notice the ``verbose`` keyword. Setting this parameter does not touch the # configurations, but sets the logging level for just this one function call. # Let's see what happens with logging level of INFO. cov = mne.compute_raw_covariance(raw, verbose=True) ############################################################################### # As you see there is some info about what the function is doing. The logging # level can be set to 'DEBUG', 'INFO', 'WARNING', 'ERROR' or 'CRITICAL'. It can # also be set to an integer or a boolean value. The correspondance to string # values can be seen in the table below. ``verbose=None`` uses the default # value from the configuration file. # # +----------+---------+---------+ # | String | Integer | Boolean | # +==========+=========+=========+ # | DEBUG | 10 | | # +----------+---------+---------+ # | INFO | 20 | True | # +----------+---------+---------+ # | WARNING | 30 | False | # +----------+---------+---------+ # | ERROR | 40 | | # +----------+---------+---------+ # | CRITICAL | 50 | | # +----------+---------+---------+ mne.set_config('MNE_LOGGING_LEVEL', original_level)
43.420455
79
0.55352
9652256664a0856948516ad9450b9edd8f91bab1
44,515
py
Python
google_images_download/google_images_download.py
buddydvd/google-images-download
368de9d4a54d22bd16d2d7b4be7e1a8db833f4f0
[ "MIT" ]
1
2021-06-30T06:16:18.000Z
2021-06-30T06:16:18.000Z
google_images_download/google_images_download.py
buddydvd/google-images-download
368de9d4a54d22bd16d2d7b4be7e1a8db833f4f0
[ "MIT" ]
null
null
null
google_images_download/google_images_download.py
buddydvd/google-images-download
368de9d4a54d22bd16d2d7b4be7e1a8db833f4f0
[ "MIT" ]
1
2021-03-23T19:21:35.000Z
2021-03-23T19:21:35.000Z
#!/usr/bin/env python # In[ ]: # coding: utf-8 ###### Searching and Downloading Google Images to the local disk ###### # Import Libraries import sys version = (3, 0) cur_version = sys.version_info if cur_version >= version: # If the Current Version of Python is 3.0 or above import urllib.request from urllib.request import Request, urlopen from urllib.request import URLError, HTTPError from urllib.parse import quote import http.client from http.client import IncompleteRead http.client._MAXHEADERS = 1000 else: # If the Current Version of Python is 2.x import urllib2 from urllib2 import Request, urlopen from urllib2 import URLError, HTTPError from urllib import quote import httplib from httplib import IncompleteRead httplib._MAXHEADERS = 1000 import time # Importing the time library to check the time of code execution import os import argparse import ssl import datetime import json import re import codecs import socket args_list = ["keywords", "keywords_from_file", "prefix_keywords", "suffix_keywords", "limit", "format", "color", "color_type", "usage_rights", "size", "exact_size", "aspect_ratio", "type", "time", "time_range", "delay", "url", "single_image", "output_directory", "image_directory", "no_directory", "proxy", "similar_images", "specific_site", "print_urls", "print_size", "print_paths", "metadata", "extract_metadata", "socket_timeout", "thumbnail", "language", "prefix", "chromedriver", "related_images", "safe_search", "no_numbering"] def user_input(): config = argparse.ArgumentParser() config.add_argument('-cf', '--config_file', help='config file name', default='', type=str, required=False) config_file_check = config.parse_known_args() object_check = vars(config_file_check[0]) if object_check['config_file'] != '': records = [] json_file = json.load(open(config_file_check[0].config_file)) for record in range(0,len(json_file['Records'])): arguments = {} for i in args_list: arguments[i] = None for key, value in json_file['Records'][record].items(): arguments[key] = value records.append(arguments) records_count = len(records) else: # Taking command line arguments from users parser = argparse.ArgumentParser() parser.add_argument('-k', '--keywords', help='delimited list input', type=str, required=False) parser.add_argument('-kf', '--keywords_from_file', help='extract list of keywords from a text file', type=str, required=False) parser.add_argument('-sk', '--suffix_keywords', help='comma separated additional words added after to main keyword', type=str, required=False) parser.add_argument('-pk', '--prefix_keywords', help='comma separated additional words added before main keyword', type=str, required=False) parser.add_argument('-l', '--limit', help='delimited list input', type=str, required=False) parser.add_argument('-f', '--format', help='download images with specific format', type=str, required=False, choices=['jpg', 'gif', 'png', 'bmp', 'svg', 'webp', 'ico']) parser.add_argument('-u', '--url', help='search with google image URL', type=str, required=False) parser.add_argument('-x', '--single_image', help='downloading a single image from URL', type=str, required=False) parser.add_argument('-o', '--output_directory', help='download images in a specific main directory', type=str, required=False) parser.add_argument('-i', '--image_directory', help='download images in a specific sub-directory', type=str, required=False) parser.add_argument('-n', '--no_directory', default=False, help='download images in the main directory but no sub-directory', action="store_true") parser.add_argument('-d', '--delay', help='delay in seconds to wait between downloading two images', type=int, required=False) parser.add_argument('-co', '--color', help='filter on color', type=str, required=False, choices=['red', 'orange', 'yellow', 'green', 'teal', 'blue', 'purple', 'pink', 'white', 'gray', 'black', 'brown']) parser.add_argument('-ct', '--color_type', help='filter on color', type=str, required=False, choices=['full-color', 'black-and-white', 'transparent']) parser.add_argument('-r', '--usage_rights', help='usage rights', type=str, required=False, choices=['labeled-for-reuse-with-modifications','labeled-for-reuse','labeled-for-noncommercial-reuse-with-modification','labeled-for-nocommercial-reuse']) parser.add_argument('-s', '--size', help='image size', type=str, required=False, choices=['large','medium','icon','>400*300','>640*480','>800*600','>1024*768','>2MP','>4MP','>6MP','>8MP','>10MP','>12MP','>15MP','>20MP','>40MP','>70MP']) parser.add_argument('-es', '--exact_size', help='exact image resolution "WIDTH,HEIGHT"', type=str, required=False) parser.add_argument('-t', '--type', help='image type', type=str, required=False, choices=['face','photo','clip-art','line-drawing','animated']) parser.add_argument('-w', '--time', help='image age', type=str, required=False, choices=['past-24-hours','past-7-days']) parser.add_argument('-wr', '--time_range', help='time range for the age of the image. should be in the format {"time_min":"MM/DD/YYYY","time_max":"MM/DD/YYYY"}', type=str, required=False) parser.add_argument('-a', '--aspect_ratio', help='comma separated additional words added to keywords', type=str, required=False, choices=['tall', 'square', 'wide', 'panoramic']) parser.add_argument('-si', '--similar_images', help='downloads images very similar to the image URL you provide', type=str, required=False) parser.add_argument('-ss', '--specific_site', help='downloads images that are indexed from a specific website', type=str, required=False) parser.add_argument('-p', '--print_urls', default=False, help="Print the URLs of the images", action="store_true") parser.add_argument('-ps', '--print_size', default=False, help="Print the size of the images on disk", action="store_true") parser.add_argument('-pp', '--print_paths', default=False, help="Prints the list of absolute paths of the images",action="store_true") parser.add_argument('-m', '--metadata', default=False, help="Print the metadata of the image", action="store_true") parser.add_argument('-e', '--extract_metadata', default=False, help="Dumps all the logs into a text file", action="store_true") parser.add_argument('-st', '--socket_timeout', default=False, help="Connection timeout waiting for the image to download", type=float) parser.add_argument('-th', '--thumbnail', default=False, help="Downloads image thumbnail along with the actual image", action="store_true") parser.add_argument('-la', '--language', default=False, help="Defines the language filter. The search results are authomatically returned in that language", type=str, required=False, choices=['Arabic','Chinese (Simplified)','Chinese (Traditional)','Czech','Danish','Dutch','English','Estonian','Finnish','French','German','Greek','Hebrew','Hungarian','Icelandic','Italian','Japanese','Korean','Latvian','Lithuanian','Norwegian','Portuguese','Polish','Romanian','Russian','Spanish','Swedish','Turkish']) parser.add_argument('-pr', '--prefix', default=False, help="A word that you would want to prefix in front of each image name", type=str, required=False) parser.add_argument('-px', '--proxy', help='specify a proxy address and port', type=str, required=False) parser.add_argument('-cd', '--chromedriver', help='specify the path to chromedriver executable in your local machine', type=str, required=False) parser.add_argument('-ri', '--related_images', default=False, help="Downloads images that are similar to the keyword provided", action="store_true") parser.add_argument('-sa', '--safe_search', default=False, help="Turns on the safe search filter while searching for images", action="store_true") parser.add_argument('-nn', '--no_numbering', default=False, help="Allows you to exclude the default numbering of images", action="store_true") args = parser.parse_args() arguments = vars(args) records = [] records.append(arguments) return records class googleimagesdownload: def __init__(self): pass # Downloading entire Web Document (Raw Page Content) def download_page(self,url): version = (3, 0) cur_version = sys.version_info if cur_version >= version: # If the Current Version of Python is 3.0 or above try: headers = {} headers['User-Agent'] = "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36" req = urllib.request.Request(url, headers=headers) resp = urllib.request.urlopen(req) respData = str(resp.read()) return respData except Exception as e: print(str(e)) else: # If the Current Version of Python is 2.x try: headers = {} headers['User-Agent'] = "Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.27 Safari/537.17" req = urllib2.Request(url, headers=headers) try: response = urllib2.urlopen(req) except URLError: # Handling SSL certificate failed context = ssl._create_unverified_context() response = urlopen(req, context=context) page = response.read() return page except: return "Page Not found" # Download Page for more than 100 images def download_extended_page(self,url,chromedriver): from selenium import webdriver from selenium.webdriver.common.keys import Keys if sys.version_info[0] < 3: reload(sys) sys.setdefaultencoding('utf8') options = webdriver.ChromeOptions() options.add_argument('--no-sandbox') options.add_argument("--headless") try: browser = webdriver.Chrome(chromedriver, chrome_options=options) except Exception as e: print("Looks like we cannot locate the path the 'chromedriver' (use the '--chromedriver' " "argument to specify the path to the executable.) or google chrome browser is not " "installed on your machine (exception: %s)" % e) sys.exit() browser.set_window_size(1024, 768) # Open the link browser.get(url) time.sleep(1) print("Getting you a lot of images. This may take a few moments...") element = browser.find_element_by_tag_name("body") # Scroll down for i in range(30): element.send_keys(Keys.PAGE_DOWN) time.sleep(0.3) try: browser.find_element_by_id("smb").click() for i in range(50): element.send_keys(Keys.PAGE_DOWN) time.sleep(0.3) # bot id protection except: for i in range(10): element.send_keys(Keys.PAGE_DOWN) time.sleep(0.3) # bot id protection print("Reached end of Page.") time.sleep(0.5) source = browser.page_source #page source #close the browser browser.close() return source #Correcting the escape characters for python2 def replace_with_byte(self,match): return chr(int(match.group(0)[1:], 8)) def repair(self,brokenjson): invalid_escape = re.compile(r'\\[0-7]{1,3}') # up to 3 digits for byte values up to FF return invalid_escape.sub(self.replace_with_byte, brokenjson) # Finding 'Next Image' from the given raw page def get_next_tab(self,s): start_line = s.find('class="ZO5Spb"') if start_line == -1: # If no links are found then give an error! end_quote = 0 link = "no_tabs" return link,'',end_quote else: start_line = s.find('class="ZO5Spb"') start_content = s.find('href="', start_line + 1) end_content = s.find('">', start_content + 1) url_item = "https://www.google.com" + str(s[start_content+6:end_content]) url_item = url_item.replace('&amp;', '&') start_line_2 = s.find('class="ZO5Spb"') start_content_2 = s.find(':', start_line_2 + 1) end_content_2 = s.find('"', start_content_2 + 1) url_item_name = str(s[start_content_2 + 1:end_content_2]) #print(url_item,url_item_name) return url_item,url_item_name,end_content # Getting all links with the help of '_images_get_next_image' def get_all_tabs(self,page): tabs = {} while True: item,item_name,end_content = self.get_next_tab(page) if item == "no_tabs": break else: tabs[item_name] = item # Append all the links in the list named 'Links' time.sleep(0.1) # Timer could be used to slow down the request for image downloads page = page[end_content:] return tabs #Format the object in readable format def format_object(self,object): formatted_object = {} formatted_object['image_format'] = object['ity'] formatted_object['image_height'] = object['oh'] formatted_object['image_width'] = object['ow'] formatted_object['image_link'] = object['ou'] formatted_object['image_description'] = object['pt'] formatted_object['image_host'] = object['rh'] formatted_object['image_source'] = object['ru'] formatted_object['image_thumbnail_url'] = object['tu'] return formatted_object #function to download single image def single_image(self,image_url): main_directory = "downloads" url = image_url try: os.makedirs(main_directory) except OSError as e: if e.errno != 17: raise pass req = Request(url, headers={ "User-Agent": "Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.27 Safari/537.17"}) response = urlopen(req, None, 10) data = response.read() response.close() image_name = str(url[(url.rfind('/')) + 1:]) if '?' in image_name: image_name = image_name[:image_name.find('?')] if ".jpg" in image_name or ".gif" in image_name or ".png" in image_name or ".bmp" in image_name or ".svg" in image_name or ".webp" in image_name or ".ico" in image_name: file_name = main_directory + "/" + image_name else: file_name = main_directory + "/" + image_name + ".jpg" image_name = image_name + ".jpg" try: output_file = open(file_name, 'wb') output_file.write(data) output_file.close() except IOError as e: raise e except OSError as e: raise e print("completed ====> " + image_name) return def similar_images(self,similar_images): version = (3, 0) cur_version = sys.version_info if cur_version >= version: # If the Current Version of Python is 3.0 or above try: searchUrl = 'https://www.google.com/searchbyimage?site=search&sa=X&image_url=' + similar_images headers = {} headers['User-Agent'] = "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36" req1 = urllib.request.Request(searchUrl, headers=headers) resp1 = urllib.request.urlopen(req1) content = str(resp1.read()) l1 = content.find('AMhZZ') l2 = content.find('&', l1) urll = content[l1:l2] newurl = "https://www.google.com/search?tbs=sbi:" + urll + "&site=search&sa=X" req2 = urllib.request.Request(newurl, headers=headers) resp2 = urllib.request.urlopen(req2) # print(resp2.read()) l3 = content.find('/search?sa=X&amp;q=') l4 = content.find(';', l3 + 19) urll2 = content[l3 + 19:l4] return urll2 except: return "Cloud not connect to Google Images endpoint" else: # If the Current Version of Python is 2.x try: searchUrl = 'https://www.google.com/searchbyimage?site=search&sa=X&image_url=' + similar_images headers = {} headers['User-Agent'] = "Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.27 Safari/537.17" req1 = urllib2.Request(searchUrl, headers=headers) resp1 = urllib2.urlopen(req1) content = str(resp1.read()) l1 = content.find('AMhZZ') l2 = content.find('&', l1) urll = content[l1:l2] newurl = "https://www.google.com/search?tbs=sbi:" + urll + "&site=search&sa=X" #print newurl req2 = urllib2.Request(newurl, headers=headers) resp2 = urllib2.urlopen(req2) # print(resp2.read()) l3 = content.find('/search?sa=X&amp;q=') l4 = content.find(';', l3 + 19) urll2 = content[l3 + 19:l4] return(urll2) except: return "Cloud not connect to Google Images endpoint" #Building URL parameters def build_url_parameters(self,arguments): if arguments['language']: lang = "&lr=" lang_param = {"Arabic":"lang_ar","Chinese (Simplified)":"lang_zh-CN","Chinese (Traditional)":"lang_zh-TW","Czech":"lang_cs","Danish":"lang_da","Dutch":"lang_nl","English":"lang_en","Estonian":"lang_et","Finnish":"lang_fi","French":"lang_fr","German":"lang_de","Greek":"lang_el","Hebrew":"lang_iw ","Hungarian":"lang_hu","Icelandic":"lang_is","Italian":"lang_it","Japanese":"lang_ja","Korean":"lang_ko","Latvian":"lang_lv","Lithuanian":"lang_lt","Norwegian":"lang_no","Portuguese":"lang_pt","Polish":"lang_pl","Romanian":"lang_ro","Russian":"lang_ru","Spanish":"lang_es","Swedish":"lang_sv","Turkish":"lang_tr"} lang_url = lang+lang_param[arguments['language']] else: lang_url = '' if arguments['time_range']: json_acceptable_string = arguments['time_range'].replace("'", "\"") d = json.loads(json_acceptable_string) time_range = ',cdr:1,cd_min:' + d['time_min'] + ',cd_max:' + d['time_min'] else: time_range = '' if arguments['exact_size']: size_array = [x.strip() for x in arguments['exact_size'].split(',')] exact_size = ",isz:ex,iszw:" + str(size_array[0]) + ",iszh:" + str(size_array[1]) else: exact_size = '' built_url = "&tbs=" counter = 0 params = {'color':[arguments['color'],{'red':'ic:specific,isc:red', 'orange':'ic:specific,isc:orange', 'yellow':'ic:specific,isc:yellow', 'green':'ic:specific,isc:green', 'teal':'ic:specific,isc:teel', 'blue':'ic:specific,isc:blue', 'purple':'ic:specific,isc:purple', 'pink':'ic:specific,isc:pink', 'white':'ic:specific,isc:white', 'gray':'ic:specific,isc:gray', 'black':'ic:specific,isc:black', 'brown':'ic:specific,isc:brown'}], 'color_type':[arguments['color_type'],{'full-color':'ic:color', 'black-and-white':'ic:gray','transparent':'ic:trans'}], 'usage_rights':[arguments['usage_rights'],{'labeled-for-reuse-with-modifications':'sur:fmc','labeled-for-reuse':'sur:fc','labeled-for-noncommercial-reuse-with-modification':'sur:fm','labeled-for-nocommercial-reuse':'sur:f'}], 'size':[arguments['size'],{'large':'isz:l','medium':'isz:m','icon':'isz:i','>400*300':'isz:lt,islt:qsvga','>640*480':'isz:lt,islt:vga','>800*600':'isz:lt,islt:svga','>1024*768':'visz:lt,islt:xga','>2MP':'isz:lt,islt:2mp','>4MP':'isz:lt,islt:4mp','>6MP':'isz:lt,islt:6mp','>8MP':'isz:lt,islt:8mp','>10MP':'isz:lt,islt:10mp','>12MP':'isz:lt,islt:12mp','>15MP':'isz:lt,islt:15mp','>20MP':'isz:lt,islt:20mp','>40MP':'isz:lt,islt:40mp','>70MP':'isz:lt,islt:70mp'}], 'type':[arguments['type'],{'face':'itp:face','photo':'itp:photo','clip-art':'itp:clip-art','line-drawing':'itp:lineart','animated':'itp:animated'}], 'time':[arguments['time'],{'past-24-hours':'qdr:d','past-7-days':'qdr:w'}], 'aspect_ratio':[arguments['aspect_ratio'],{'tall':'iar:t','square':'iar:s','wide':'iar:w','panoramic':'iar:xw'}], 'format':[arguments['format'],{'jpg':'ift:jpg','gif':'ift:gif','png':'ift:png','bmp':'ift:bmp','svg':'ift:svg','webp':'webp','ico':'ift:ico'}]} for key, value in params.items(): if value[0] is not None: ext_param = value[1][value[0]] # counter will tell if it is first param added or not if counter == 0: # add it to the built url built_url = built_url + ext_param counter += 1 else: built_url = built_url + ',' + ext_param counter += 1 built_url = lang_url+built_url+exact_size+time_range return built_url #building main search URL def build_search_url(self,search_term,params,url,similar_images,specific_site,safe_search): #check safe_search safe_search_string = "&safe=active" # check the args and choose the URL if url: url = url elif similar_images: print(similar_images) keywordem = self.similar_images(similar_images) url = 'https://www.google.com/search?q=' + keywordem + '&espv=2&biw=1366&bih=667&site=webhp&source=lnms&tbm=isch&sa=X&ei=XosDVaCXD8TasATItgE&ved=0CAcQ_AUoAg' elif specific_site: url = 'https://www.google.com/search?q=' + quote( search_term) + '&as_sitesearch=' + specific_site + '&espv=2&biw=1366&bih=667&site=webhp&source=lnms&tbm=isch' + params + '&sa=X&ei=XosDVaCXD8TasATItgE&ved=0CAcQ_AUoAg' else: url = 'https://www.google.com/search?q=' + quote( search_term) + '&espv=2&biw=1366&bih=667&site=webhp&source=lnms&tbm=isch' + params + '&sa=X&ei=XosDVaCXD8TasATItgE&ved=0CAcQ_AUoAg' #safe search check if safe_search: url = url + safe_search_string # print(url) return url #measures the file size def file_size(self,file_path): if os.path.isfile(file_path): file_info = os.stat(file_path) size = file_info.st_size for x in ['bytes', 'KB', 'MB', 'GB', 'TB']: if size < 1024.0: return "%3.1f %s" % (size, x) size /= 1024.0 return size #keywords from file def keywords_from_file(self,file_name): search_keyword = [] with codecs.open(file_name, 'r', encoding='utf-8-sig') as f: if '.csv' in file_name: for line in f: if line in ['\n', '\r\n']: pass else: search_keyword.append(line.replace('\n', '').replace('\r', '')) elif '.txt' in file_name: for line in f: if line in ['\n', '\r\n']: pass else: search_keyword.append(line.replace('\n', '').replace('\r', '')) else: print("Invalid file type: Valid file types are either .txt or .csv \n" "exiting...") sys.exit() return search_keyword # make directories def create_directories(self,main_directory, dir_name,thumbnail): dir_name_thumbnail = dir_name + " - thumbnail" # make a search keyword directory try: if not os.path.exists(main_directory): os.makedirs(main_directory) time.sleep(0.2) path = str(dir_name) sub_directory = os.path.join(main_directory, path) if not os.path.exists(sub_directory): os.makedirs(sub_directory) if thumbnail: sub_directory_thumbnail = os.path.join(main_directory, dir_name_thumbnail) if not os.path.exists(sub_directory_thumbnail): os.makedirs(sub_directory_thumbnail) else: path = str(dir_name) sub_directory = os.path.join(main_directory, path) if not os.path.exists(sub_directory): os.makedirs(sub_directory) if thumbnail: sub_directory_thumbnail = os.path.join(main_directory, dir_name_thumbnail) if not os.path.exists(sub_directory_thumbnail): os.makedirs(sub_directory_thumbnail) except OSError as e: if e.errno != 17: raise # time.sleep might help here pass return # Download Images def download_image_thumbnail(self,image_url,main_directory,dir_name,return_image_name,print_urls,socket_timeout,print_size): if print_urls: print("Image URL: " + image_url) try: req = Request(image_url, headers={ "User-Agent": "Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.27 Safari/537.17"}) try: # timeout time to download an image if socket_timeout: timeout = float(socket_timeout) else: timeout = 10 response = urlopen(req, None, timeout) data = response.read() response.close() path = main_directory + "/" + dir_name + " - thumbnail" + "/" + return_image_name try: output_file = open(path, 'wb') output_file.write(data) output_file.close() except OSError as e: download_status = 'fail' download_message = "OSError on an image...trying next one..." + " Error: " + str(e) except IOError as e: download_status = 'fail' download_message = "IOError on an image...trying next one..." + " Error: " + str(e) download_status = 'success' download_message = "Completed Image Thumbnail ====> " + return_image_name # image size parameter if print_size: print("Image Size: " + str(self.file_size(path))) except UnicodeEncodeError as e: download_status = 'fail' download_message = "UnicodeEncodeError on an image...trying next one..." + " Error: " + str(e) except HTTPError as e: # If there is any HTTPError download_status = 'fail' download_message = "HTTPError on an image...trying next one..." + " Error: " + str(e) except URLError as e: download_status = 'fail' download_message = "URLError on an image...trying next one..." + " Error: " + str(e) except ssl.CertificateError as e: download_status = 'fail' download_message = "CertificateError on an image...trying next one..." + " Error: " + str(e) except IOError as e: # If there is any IOError download_status = 'fail' download_message = "IOError on an image...trying next one..." + " Error: " + str(e) return download_status, download_message # Download Images def download_image(self,image_url,image_format,main_directory,dir_name,count,print_urls,socket_timeout,prefix,print_size,no_numbering): if print_urls: print("Image URL: " + image_url) try: req = Request(image_url, headers={ "User-Agent": "Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.27 Safari/537.17"}) try: # timeout time to download an image if socket_timeout: timeout = float(socket_timeout) else: timeout = 10 response = urlopen(req, None, timeout) data = response.read() response.close() # keep everything after the last '/' image_name = str(image_url[(image_url.rfind('/')) + 1:]) image_name = image_name.lower() # if no extension then add it # remove everything after the image name if image_format == "": image_name = image_name + "." + "jpg" elif image_format == "jpeg": image_name = image_name[:image_name.find(image_format) + 4] else: image_name = image_name[:image_name.find(image_format) + 3] # prefix name in image if prefix: prefix = prefix + " " else: prefix = '' if no_numbering: path = main_directory + "/" + dir_name + "/" + prefix + image_name else: path = main_directory + "/" + dir_name + "/" + prefix + str(count) + ". " + image_name try: output_file = open(path, 'wb') output_file.write(data) output_file.close() absolute_path = os.path.abspath(path) except OSError as e: download_status = 'fail' download_message = "OSError on an image...trying next one..." + " Error: " + str(e) return_image_name = '' absolute_path = '' #return image name back to calling method to use it for thumbnail downloads download_status = 'success' download_message = "Completed Image ====> " + prefix + str(count) + ". " + image_name return_image_name = prefix + str(count) + ". " + image_name # image size parameter if print_size: print("Image Size: " + str(self.file_size(path))) except UnicodeEncodeError as e: download_status = 'fail' download_message = "UnicodeEncodeError on an image...trying next one..." + " Error: " + str(e) return_image_name = '' absolute_path = '' except URLError as e: download_status = 'fail' download_message = "URLError on an image...trying next one..." + " Error: " + str(e) return_image_name = '' absolute_path = '' except HTTPError as e: # If there is any HTTPError download_status = 'fail' download_message = "HTTPError on an image...trying next one..." + " Error: " + str(e) return_image_name = '' absolute_path = '' except URLError as e: download_status = 'fail' download_message = "URLError on an image...trying next one..." + " Error: " + str(e) return_image_name = '' absolute_path = '' except ssl.CertificateError as e: download_status = 'fail' download_message = "CertificateError on an image...trying next one..." + " Error: " + str(e) return_image_name = '' absolute_path = '' except IOError as e: # If there is any IOError download_status = 'fail' download_message = "IOError on an image...trying next one..." + " Error: " + str(e) return_image_name = '' absolute_path = '' except IncompleteRead as e: download_status = 'fail' download_message = "IncompleteReadError on an image...trying next one..." + " Error: " + str(e) return_image_name = '' absolute_path = '' return download_status,download_message,return_image_name,absolute_path # Finding 'Next Image' from the given raw page def _get_next_item(self,s): start_line = s.find('rg_meta notranslate') if start_line == -1: # If no links are found then give an error! end_quote = 0 link = "no_links" return link, end_quote else: start_line = s.find('class="rg_meta notranslate">') start_object = s.find('{', start_line + 1) end_object = s.find('</div>', start_object + 1) object_raw = str(s[start_object:end_object]) #remove escape characters based on python version version = (3, 0) cur_version = sys.version_info if cur_version >= version: #python3 try: object_decode = bytes(object_raw, "utf-8").decode("unicode_escape") final_object = json.loads(object_decode) except: final_object = "" else: #python2 try: final_object = (json.loads(self.repair(object_raw))) except: final_object = "" return final_object, end_object # Getting all links with the help of '_images_get_next_image' def _get_all_items(self,page,main_directory,dir_name,limit,arguments): items = [] abs_path = [] errorCount = 0 i = 0 count = 1 while count < limit+1: object, end_content = self._get_next_item(page) if object == "no_links": break elif object == "": page = page[end_content:] else: #format the item for readability object = self.format_object(object) if arguments['metadata']: print("\nImage Metadata: " + str(object)) items.append(object) # Append all the links in the list named 'Links' #download the images download_status,download_message,return_image_name,absolute_path = self.download_image(object['image_link'],object['image_format'],main_directory,dir_name,count,arguments['print_urls'],arguments['socket_timeout'],arguments['prefix'],arguments['print_size'],arguments['no_numbering']) print(download_message) if download_status == "success": # download image_thumbnails if arguments['thumbnail']: download_status, download_message_thumbnail = self.download_image_thumbnail(object['image_thumbnail_url'],main_directory,dir_name,return_image_name,arguments['print_urls'],arguments['socket_timeout'],arguments['print_size']) print(download_message_thumbnail) count += 1 abs_path.append(absolute_path) else: errorCount += 1 #delay param if arguments['delay']: time.sleep(int(arguments['delay'])) page = page[end_content:] i += 1 if count < limit: print("\n\nUnfortunately all " + str( limit) + " could not be downloaded because some images were not downloadable. " + str( count-1) + " is all we got for this search filter!") return items,errorCount,abs_path # Bulk Download def download(self,arguments): #for input coming from other python files if __name__ != "__main__": for arg in args_list: if arg not in arguments: arguments[arg] = None ######Initialization and Validation of user arguments if arguments['keywords']: search_keyword = [str(item) for item in arguments['keywords'].split(',')] if arguments['keywords_from_file']: search_keyword = self.keywords_from_file(arguments['keywords_from_file']) # both time and time range should not be allowed in the same query if arguments['time'] and arguments['time_range']: raise ValueError('Either time or time range should be used in a query. Both cannot be used at the same time.') # both time and time range should not be allowed in the same query if arguments['size'] and arguments['exact_size']: raise ValueError('Either "size" or "exact_size" should be used in a query. Both cannot be used at the same time.') # both image directory and no image directory should not be allowed in the same query if arguments['image_directory'] and arguments['no_directory']: raise ValueError('You can either specify image directory or specify no image directory, not both!') # Additional words added to keywords if arguments['suffix_keywords']: suffix_keywords = [" " + str(sk) for sk in arguments['suffix_keywords'].split(',')] else: suffix_keywords = [''] # Additional words added to keywords if arguments['prefix_keywords']: prefix_keywords = [str(sk) + " " for sk in arguments['prefix_keywords'].split(',')] else: prefix_keywords = [''] # Setting limit on number of images to be downloaded if arguments['limit']: limit = int(arguments['limit']) else: limit = 100 if arguments['url']: current_time = str(datetime.datetime.now()).split('.')[0] search_keyword = [current_time.replace(":", "_")] if arguments['similar_images']: current_time = str(datetime.datetime.now()).split('.')[0] search_keyword = [current_time.replace(":", "_")] # If single_image or url argument not present then keywords is mandatory argument if arguments['single_image'] is None and arguments['url'] is None and arguments['similar_images'] is None and \ arguments['keywords'] is None and arguments['keywords_from_file'] is None: print('-------------------------------\n' 'Uh oh! Keywords is a required argument \n\n' 'Please refer to the documentation on guide to writing queries \n' 'https://github.com/hardikvasa/google-images-download#examples' '\n\nexiting!\n' '-------------------------------') sys.exit() # If this argument is present, set the custom output directory if arguments['output_directory']: main_directory = arguments['output_directory'] else: main_directory = "downloads" # Proxy settings if arguments['proxy']: os.environ["http_proxy"] = arguments['proxy'] os.environ["https_proxy"] = arguments['proxy'] ######Initialization Complete paths = {} for pky in prefix_keywords: for sky in suffix_keywords: # 1.for every suffix keywords i = 0 while i < len(search_keyword): # 2.for every main keyword iteration = "\n" + "Item no.: " + str(i + 1) + " -->" + " Item name = " + str(pky) + str(search_keyword[i] + str(sky)) print(iteration) print("Evaluating...") search_term = pky + search_keyword[i] + sky if arguments['image_directory']: dir_name = arguments['image_directory'] elif arguments['no_directory']: dir_name = '' else: dir_name = search_term + ('-' + arguments['color'] if arguments['color'] else '') #sub-directory self.create_directories(main_directory,dir_name,arguments['thumbnail']) #create directories in OS params = self.build_url_parameters(arguments) #building URL with params url = self.build_search_url(search_term,params,arguments['url'],arguments['similar_images'],arguments['specific_site'],arguments['safe_search']) #building main search url if limit < 101: raw_html = self.download_page(url) # download page else: raw_html = self.download_extended_page(url,arguments['chromedriver']) print("Starting Download...") items,errorCount,abs_path = self._get_all_items(raw_html,main_directory,dir_name,limit,arguments) #get all image items and download images paths[pky + search_keyword[i] + sky] = abs_path #dumps into a text file if arguments['extract_metadata']: try: if not os.path.exists("logs"): os.makedirs("logs") except OSError as e: print(e) text_file = open("logs/"+search_keyword[i]+".txt", "w") text_file.write(json.dumps(items, indent=4, sort_keys=True)) text_file.close() #Related images if arguments['related_images']: print("\nGetting list of related keywords...this may take a few moments") tabs = self.get_all_tabs(raw_html) for key, value in tabs.items(): final_search_term = (search_term + " - " + key) print("\nNow Downloading - " + final_search_term) if limit < 101: new_raw_html = self.download_page(value) # download page else: new_raw_html = self.download_extended_page(value,arguments['chromedriver']) self.create_directories(main_directory, final_search_term,arguments['thumbnail']) self._get_all_items(new_raw_html, main_directory, search_term + " - " + key, limit,arguments) i += 1 print("\nErrors: " + str(errorCount) + "\n") if arguments['print_paths']: print(paths) return paths #------------- Main Program -------------# def main(): records = user_input() for arguments in records: if arguments['single_image']: # Download Single Image using a URL response = googleimagesdownload() response.single_image(arguments['single_image']) else: # or download multiple images based on keywords/keyphrase search t0 = time.time() # start the timer response = googleimagesdownload() paths = response.download(arguments) #wrapping response in a variable just for consistency print("\nEverything downloaded!") t1 = time.time() # stop the timer total_time = t1 - t0 # Calculating the total time required to crawl, find and download all the links of 60,000 images print("Total time taken: " + str(total_time) + " Seconds") if __name__ == "__main__": main() # In[ ]:
49.516129
622
0.572841
3d478f4b46989fe06239d903f6be61f4d471af15
1,431
py
Python
Framework/SpriteText.py
EpicTofuu/Froggers
0395ef801fe11a7881fd32fd570bf3135a4a761f
[ "MIT" ]
1
2020-11-17T04:32:55.000Z
2020-11-17T04:32:55.000Z
Framework/SpriteText.py
EpicTofuu/Froggers
0395ef801fe11a7881fd32fd570bf3135a4a761f
[ "MIT" ]
null
null
null
Framework/SpriteText.py
EpicTofuu/Froggers
0395ef801fe11a7881fd32fd570bf3135a4a761f
[ "MIT" ]
null
null
null
import pygame from Sprite import * # all text is drawn as a sprite class SpriteText (Sprite): def __init__(self, text, size = 48, fontPath = None, font = None, colour = [255,255,255], Background = None): self.Background = Background # text background self._colour = colour # colour of text self._text = text # if there isn't any font specified, use the system default if fontPath is None: if font is None: self.Font = pygame.font.SysFont (None, size) else: self.Font = font else: self.Font = pygame.font.Font (fontPath, size) # draw the text through the constructor super().__init__(img = self.Font.render (self._text, True, self._colour, self.Background)) def update (self): super().update() # change the text def SetText (self, text): self._text = text self.UpdateText() # change the colour def SetColour (self, col): self._colour = col self.UpdateText() # call this to rerender the text def UpdateText (self): self.image = self.Font.render (self._text, True, self._colour, self.Background) self.rect.width = self.image.get_rect().width self.rect.height = self.image.get_rect().height # removes all instances from all groups def kill (self): super().kill()
31.8
113
0.599581
547f00581059eb0796a07be4063e8622c2a75c6f
335
py
Python
plugins/labels/kivy.py
lionzeye/reddelectrum
e39497aee08b08bed89efa10072d17fb1e37920c
[ "MIT" ]
null
null
null
plugins/labels/kivy.py
lionzeye/reddelectrum
e39497aee08b08bed89efa10072d17fb1e37920c
[ "MIT" ]
null
null
null
plugins/labels/kivy.py
lionzeye/reddelectrum
e39497aee08b08bed89efa10072d17fb1e37920c
[ "MIT" ]
null
null
null
from labels import LabelsPlugin from reddelectrum.plugins import hook class Plugin(LabelsPlugin): @hook def load_wallet(self, wallet, window): self.window = window self.start_wallet(wallet) def on_pulled(self, wallet): self.print_error('on pulled') self.window._trigger_update_history()
22.333333
45
0.698507
f009e8b7b040f8c20036b9ea9497e2b4fcfeb8db
7,664
py
Python
apps/beeswax/src/beeswax/management/commands/beeswax_install_examples.py
yongshengwang/builthue
c63af09d8284cc5a6f613bffd621ccdcac265ffc
[ "Apache-2.0" ]
1
2020-04-23T21:08:43.000Z
2020-04-23T21:08:43.000Z
apps/beeswax/src/beeswax/management/commands/beeswax_install_examples.py
yongshengwang/builthue
c63af09d8284cc5a6f613bffd621ccdcac265ffc
[ "Apache-2.0" ]
null
null
null
apps/beeswax/src/beeswax/management/commands/beeswax_install_examples.py
yongshengwang/builthue
c63af09d8284cc5a6f613bffd621ccdcac265ffc
[ "Apache-2.0" ]
1
2019-01-04T08:08:11.000Z
2019-01-04T08:08:11.000Z
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import simplejson from django.core.management.base import NoArgsCommand from django.contrib.auth.models import User from django.utils.translation import ugettext as _ from desktop.models import Document from hadoop import cluster import beeswax.conf from beeswax.models import SavedQuery, IMPALA from beeswax.design import hql_query from beeswax.server import dbms from beeswax.server.dbms import get_query_server_config, QueryServerException from useradmin.models import install_sample_user from desktop.lib.exceptions_renderable import PopupException LOG = logging.getLogger(__name__) class InstallException(Exception): pass class Command(NoArgsCommand): """ Install examples but do not overwrite them. """ def handle_noargs(self, **options): exception = None # Documents will belong to this user but we run the install as the current user try: sample_user = install_sample_user() self._install_tables(options['user'], options['app_name']) except Exception, ex: exception = ex try: self._install_queries(sample_user, options['app_name']) except Exception, ex: exception = ex Document.objects.sync() if exception is not None: pretty_msg = None if "AlreadyExistsException" in exception.message: pretty_msg = _("SQL table examples already installed.") if "Permission denied" in exception.message: pretty_msg = _("Permission denied. Please check with your system administrator.") if pretty_msg is not None: raise PopupException(pretty_msg) else: raise exception def _install_tables(self, django_user, app_name): data_dir = beeswax.conf.LOCAL_EXAMPLES_DATA_DIR.get() table_file = file(os.path.join(data_dir, 'tables.json')) table_list = simplejson.load(table_file) table_file.close() for table_dict in table_list: table = SampleTable(table_dict, app_name) try: table.install(django_user) except Exception, ex: raise InstallException(_('Could not install table: %s') % ex) def _install_queries(self, django_user, app_name): design_file = file(os.path.join(beeswax.conf.LOCAL_EXAMPLES_DATA_DIR.get(), 'designs.json')) design_list = simplejson.load(design_file) design_file.close() for design_dict in design_list: if app_name == 'impala': design_dict['type'] = IMPALA design = SampleDesign(design_dict) try: design.install(django_user) except Exception, ex: raise InstallException(_('Could not install query: %s') % ex) class SampleTable(object): """ Represents a table loaded from the tables.json file """ def __init__(self, data_dict, app_name): self.name = data_dict['table_name'] self.filename = data_dict['data_file'] self.hql = data_dict['create_hql'] self.query_server = get_query_server_config(app_name) self.app_name = app_name # Sanity check self._data_dir = beeswax.conf.LOCAL_EXAMPLES_DATA_DIR.get() self._contents_file = os.path.join(self._data_dir, self.filename) if not os.path.isfile(self._contents_file): msg = _('Cannot find table data in "%(file)s".') % {'file': self._contents_file} LOG.error(msg) raise ValueError(msg) def install(self, django_user): self.create(django_user) self.load(django_user) def create(self, django_user): """ Create table in the Hive Metastore. """ LOG.info('Creating table "%s"' % (self.name,)) db = dbms.get(django_user, self.query_server) try: # Already exists? db.get_table('default', self.name) msg = _('Table "%(table)s" already exists.') % {'table': self.name} LOG.error(msg) except Exception: query = hql_query(self.hql) try: results = db.execute_and_wait(query) if not results: msg = _('Error creating table %(table)s: Operation timeout.') % {'table': self.name} LOG.error(msg) raise InstallException(msg) except Exception, ex: msg = _('Error creating table %(table)s: %(error)s.') % {'table': self.name, 'error': ex} LOG.error(msg) raise InstallException(msg) def load(self, django_user): """ Upload data to HDFS home of user then load (aka move) it into the Hive table (in the Hive metastore in HDFS). """ LOAD_HQL = \ """ LOAD DATA INPATH '%(filename)s' OVERWRITE INTO TABLE %(tablename)s """ fs = cluster.get_hdfs() if self.app_name == 'impala': # Because Impala does not have impersonation on by default, we use a public destination for the upload. from impala.conf import IMPERSONATION_ENABLED if not IMPERSONATION_ENABLED.get(): tmp_public = '/tmp/public_hue_examples' fs.do_as_user(django_user, fs.mkdir, tmp_public, '0777') hdfs_root_destination = tmp_public else: hdfs_root_destination = fs.do_as_user(django_user, fs.get_home_dir) hdfs_destination = os.path.join(hdfs_root_destination, self.name) LOG.info('Uploading local data %s to HDFS table "%s"' % (self.name, hdfs_destination)) fs.do_as_user(django_user, fs.copyFromLocal, self._contents_file, hdfs_destination) LOG.info('Loading data into table "%s"' % (self.name,)) hql = LOAD_HQL % {'tablename': self.name, 'filename': hdfs_destination} query = hql_query(hql) try: results = dbms.get(django_user, self.query_server).execute_and_wait(query) if not results: msg = _('Error loading table %(table)s: Operation timeout.') % {'table': self.name} LOG.error(msg) raise InstallException(msg) except QueryServerException, ex: msg = _('Error loading table %(table)s: %(error)s.') % {'table': self.name, 'error': ex} LOG.error(msg) raise InstallException(msg) class SampleDesign(object): """Represents a query loaded from the designs.json file""" def __init__(self, data_dict): self.name = data_dict['name'] self.desc = data_dict['desc'] self.type = int(data_dict['type']) self.data = data_dict['data'] def install(self, django_user): """ Install queries. Raise InstallException on failure. """ LOG.info('Installing sample query: %s' % (self.name,)) try: # Don't overwrite model = SavedQuery.objects.get(owner=django_user, name=self.name, type=self.type) except SavedQuery.DoesNotExist: model = SavedQuery(owner=django_user, name=self.name) model.type = self.type # The data field needs to be a string. The sample file writes it # as json (without encoding into a string) for readability. model.data = simplejson.dumps(self.data) model.desc = self.desc model.save() LOG.info('Successfully installed sample design: %s' % (self.name,))
34.367713
113
0.689849
dbe483066088aff4c7af263e1da1e6dc7ac70ab1
4,169
py
Python
Hangman/Hangman_Game/py/entry2.py
mthavaf/hangman
eb86a23fc00fe73139a6fe74c978b3eb14cd909d
[ "MIT" ]
null
null
null
Hangman/Hangman_Game/py/entry2.py
mthavaf/hangman
eb86a23fc00fe73139a6fe74c978b3eb14cd909d
[ "MIT" ]
null
null
null
Hangman/Hangman_Game/py/entry2.py
mthavaf/hangman
eb86a23fc00fe73139a6fe74c978b3eb14cd909d
[ "MIT" ]
null
null
null
from tkinter import * #import pygame import pymysql def getWord(num): global guessedWord,wrongAttempts,gameOver,level,data level = num gameOver = 0 guessedWord = [] wrongAttempts = 8 conn = pymysql.connect(host="localhost",user="root",passwd="cout<<password;",db="hangman") cur = conn.cursor() if level == 1: cur.execute("SELECT word FROM easy ORDER BY RAND() LIMIT 1") data = cur.fetchone() data = data[0] elif level == 2: cur.execute("SELECT word FROM moderate ORDER BY RAND() LIMIT 1") data = cur.fetchone() data = data[0] elif level == 3: cur.execute("SELECT word FROM difficult ORDER BY RAND() LIMIT 1") data = cur.fetchone() data = data[0] else: pass for letter in data: guessedWord.append("-") for index in range(7): array.append(0) main('-',array,data,level) def callback(event): try: ch = chr(ord(event.char)) if gameOver == 0 and ch.isalpha(): main(chr(ord(event.char)),array,data,level) except: #pygame.init() #pygame.mixer.music.load("beep.wav") #me.mixer.music.play() pass def main(char,array,data,level): global wrongAttempts,gameOver w.delete(ALL) while (wrongAttempts != 0 and "-" in guessedWord): for index in range(len(data)): if char == data[index]: guessedWord[index] = char if char not in data: wrongAttempts = wrongAttempts - 1 guesssedWord = ''.join(guessedWord) drawCount = 7 - wrongAttempts for index in range(drawCount): array[index] = 1 w.create_text(250,50,font=("times roman", 30),text="HANGMAN",fill="#B0171F") w.create_text(750,150,text = "wrong attempts remaining : ") text = Label(master,text=wrongAttempts) text.place(x=835,y=142) w.create_text(750,170,text = "guess a character : ") if(array[0]): w.create_line(150,450,150,150, fill="#000000", width=4) w.create_line(300,150,150,150, fill="#000000", width=4) w.create_line(100,450,200,450, fill="#000000", width=4) w.create_line(300,150,300,200, fill="#000000", width=4) w.create_line(150,400,175,450, fill="#000000", width=4) w.create_line(150,400,125,450, fill="#000000", width=4) if(array[1]): img = PhotoImage(file="sadface.png") w.create_image(268,192, anchor=NW, image=img) if(array[2]): w.create_line(300,250,300,350, fill="#000000", width=4) if(array[3]): w.create_line(300,300,250,250, fill="#000000", width=4) if(array[4]): w.create_line(300,300,350,250, fill="#000000", width=4) if(array[5]): w.create_line(300,350,250,400, fill="#000000", width=4) if(array[6]): w.create_line(300,350,350,400, fill="#000000", width=4) w.create_text(750,200,text=guessedWord) if(wrongAttempts == 0 ): w.create_text(750,350,text = "the word was : "+str(data)) w.create_text(750,370,text = "you lost") gameOver = 1 if "-" not in guessedWord : w.create_text(750,350,text = "the word was : "+str(data)) w.create_text(750,370,text = "Congratulation!!!! YOU WON!!!!") gameOver = 1 Button(master, text='newgame', command = lambda:getWord(level)).place(x=830,y=300) Button(master, text='exit',command = lambda:exit(0)).place(x=900,y=400) mainloop() if __name__ == "__main__": array = [] master = Tk() w = Canvas(master, width=1000, height=500) w.pack() w.create_text(250,50,font=("times roman", 30),text="HANGMAN",fill="#B0171F") Button(master, text='simple',command = lambda:getWord(1)).place(x=700,y=50) Button(master, text='moderate',command = lambda:getWord(2)).place(x=800,y=50) Button(master, text='difficult',command = lambda:getWord(3)).place(x=920,y=50) w.focus_set() w.bind("<Key>",callback)
37.9
94
0.576157
08fa384a4080078af0c52e7feed410e81071c905
7,620
py
Python
kubernetes/client/models/v1_subject_access_review.py
fsduser/python
2b20069ebc05283352fbdc95bbdca2b6133a4175
[ "Apache-2.0" ]
1
2021-10-15T13:05:45.000Z
2021-10-15T13:05:45.000Z
kubernetes/client/models/v1_subject_access_review.py
belajarqywok/python
b15bea16a87ad03136a4627941ac437582ea4657
[ "Apache-2.0" ]
10
2020-10-01T03:15:01.000Z
2022-03-01T03:06:31.000Z
kubernetes/client/models/v1_subject_access_review.py
belajarqywok/python
b15bea16a87ad03136a4627941ac437582ea4657
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: release-1.19 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes.client.configuration import Configuration class V1SubjectAccessReview(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'api_version': 'str', 'kind': 'str', 'metadata': 'V1ObjectMeta', 'spec': 'V1SubjectAccessReviewSpec', 'status': 'V1SubjectAccessReviewStatus' } attribute_map = { 'api_version': 'apiVersion', 'kind': 'kind', 'metadata': 'metadata', 'spec': 'spec', 'status': 'status' } def __init__(self, api_version=None, kind=None, metadata=None, spec=None, status=None, local_vars_configuration=None): # noqa: E501 """V1SubjectAccessReview - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._api_version = None self._kind = None self._metadata = None self._spec = None self._status = None self.discriminator = None if api_version is not None: self.api_version = api_version if kind is not None: self.kind = kind if metadata is not None: self.metadata = metadata self.spec = spec if status is not None: self.status = status @property def api_version(self): """Gets the api_version of this V1SubjectAccessReview. # noqa: E501 APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources # noqa: E501 :return: The api_version of this V1SubjectAccessReview. # noqa: E501 :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """Sets the api_version of this V1SubjectAccessReview. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources # noqa: E501 :param api_version: The api_version of this V1SubjectAccessReview. # noqa: E501 :type: str """ self._api_version = api_version @property def kind(self): """Gets the kind of this V1SubjectAccessReview. # noqa: E501 Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501 :return: The kind of this V1SubjectAccessReview. # noqa: E501 :rtype: str """ return self._kind @kind.setter def kind(self, kind): """Sets the kind of this V1SubjectAccessReview. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501 :param kind: The kind of this V1SubjectAccessReview. # noqa: E501 :type: str """ self._kind = kind @property def metadata(self): """Gets the metadata of this V1SubjectAccessReview. # noqa: E501 :return: The metadata of this V1SubjectAccessReview. # noqa: E501 :rtype: V1ObjectMeta """ return self._metadata @metadata.setter def metadata(self, metadata): """Sets the metadata of this V1SubjectAccessReview. :param metadata: The metadata of this V1SubjectAccessReview. # noqa: E501 :type: V1ObjectMeta """ self._metadata = metadata @property def spec(self): """Gets the spec of this V1SubjectAccessReview. # noqa: E501 :return: The spec of this V1SubjectAccessReview. # noqa: E501 :rtype: V1SubjectAccessReviewSpec """ return self._spec @spec.setter def spec(self, spec): """Sets the spec of this V1SubjectAccessReview. :param spec: The spec of this V1SubjectAccessReview. # noqa: E501 :type: V1SubjectAccessReviewSpec """ if self.local_vars_configuration.client_side_validation and spec is None: # noqa: E501 raise ValueError("Invalid value for `spec`, must not be `None`") # noqa: E501 self._spec = spec @property def status(self): """Gets the status of this V1SubjectAccessReview. # noqa: E501 :return: The status of this V1SubjectAccessReview. # noqa: E501 :rtype: V1SubjectAccessReviewStatus """ return self._status @status.setter def status(self, status): """Sets the status of this V1SubjectAccessReview. :param status: The status of this V1SubjectAccessReview. # noqa: E501 :type: V1SubjectAccessReviewStatus """ self._status = status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1SubjectAccessReview): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1SubjectAccessReview): return True return self.to_dict() != other.to_dict()
33.130435
312
0.629134
22d85e1b2c909be8b15f080d08373d47a2e99883
1,784
py
Python
lyman/tools/fileutils.py
sgagnon/lyman
f2ca8c7e40a4f090e5ed8aaf47f87b71a0bc2cff
[ "BSD-3-Clause" ]
null
null
null
lyman/tools/fileutils.py
sgagnon/lyman
f2ca8c7e40a4f090e5ed8aaf47f87b71a0bc2cff
[ "BSD-3-Clause" ]
null
null
null
lyman/tools/fileutils.py
sgagnon/lyman
f2ca8c7e40a4f090e5ed8aaf47f87b71a0bc2cff
[ "BSD-3-Clause" ]
null
null
null
import os import json import os.path as op from nipype.utils.filemanip import fname_presuffix from nipype.interfaces.base import (BaseInterface, BaseInterfaceInputSpec, TraitedSpec, InputMultiPath, File, traits) class SaveParametersInput(BaseInterfaceInputSpec): exp_info = traits.Dict() in_file = traits.Either(InputMultiPath(File(exists=True)), File(exists=True)) class SaveParametersOutput(TraitedSpec): json_file = File(exists=True) class SaveParameters(BaseInterface): input_spec = SaveParametersInput output_spec = SaveParametersOutput _always_run = True def _run_interface(self, runtime): with open("experiment_info.json", "w") as fp: json.dump(self.inputs.exp_info, fp, sort_keys=True, indent=2) return runtime def _list_outputs(self): outputs = self._outputs().get() outputs["json_file"] = op.abspath("experiment_info.json") return outputs def dump_exp_info(exp_info, timeseries): """Dump the exp_info dict into a json file.""" json_file = op.abspath("experiment_info.json") with open(json_file, "w") as fp: json.dump(exp_info, fp, sort_keys=True, indent=2) return json_file def add_suffix(fname, suffix): """Insert a suffix into a filename before the extension.""" out_fname = fname_presuffix(fname, suffix="_" + suffix, use_ext=True) return out_fname def nii_to_png(fname, suffix=""): """Return a path to write a local png based on an image.""" out_fname = fname_presuffix(fname, suffix=suffix + ".png", newpath=os.getcwd(), use_ext=False) return out_fname
28.774194
78
0.647422
7f55d5076d31f420b5b039d80d39cbc69365c80f
1,851
py
Python
day5/part1.py
dcramer/aoc19
01581292773de71f1e4f1abfa02c2ada37e8857d
[ "BSD-3-Clause" ]
null
null
null
day5/part1.py
dcramer/aoc19
01581292773de71f1e4f1abfa02c2ada37e8857d
[ "BSD-3-Clause" ]
null
null
null
day5/part1.py
dcramer/aoc19
01581292773de71f1e4f1abfa02c2ada37e8857d
[ "BSD-3-Clause" ]
null
null
null
import itertools import math import sys valid_ops = sorted([1, 2, 3, 4, 99], reverse=True) def splitop(op): op = str(op) return int(''.join(op[-2:])), [int(o) for o in op[-3::-1]] def execute(data, input): def instr(offset, params): try: inst = params[offset - 1] except IndexError: inst = 0 return inst def param(data, pos, offset, params): value = data[pos + offset] inst = instr(offset, params) if inst == 0: try: return data[value] except IndexError as exc: raise Exception(f'Cannot find reference {value}') from exc if inst == 1: return value raise NotImplementedError(f'Invalid instruction: {inst}') output = None pos = 0 data_len = len(data) while pos < data_len: op, params = splitop(data[pos]) if op == 99: pos += 1 break elif op == 1: data[data[pos + 3] if instr(3, params) == 0 else pos + 3] = param(data, pos, 1, params) + param(data, pos, 2, params) pos += 4 elif op == 2: data[data[pos + 3] if instr(3, params) == 0 else pos + 3] = param(data, pos, 1, params) * param(data, pos, 2, params) pos += 4 elif op == 3: data[data[pos + 1] if instr(1, params) == 0 else pos + 1] = input pos += 2 elif op == 4: output = param(data, pos, 1, params) print('output', output) pos += 2 else: raise Exception(f'invalid opcode: {op}') return data, output def main(infile): with open(infile, 'r') as fp: data = [int(x) for x in fp.read().split(',')] input = 1 _, output = execute(data, input) print(output) main(sys.argv[1])
26.442857
129
0.508374
6ae5616d2d089ac5d4fdfddfce21b9a6a81109c1
4,844
py
Python
src/domainClient/models/domain_listing_admin_service_v1_model_inspection_details.py
diabolical-ninja/smart-property-search
0931c7c8195ec21cbd56768c9c84cea2927a9e1d
[ "MIT" ]
5
2021-04-12T04:10:42.000Z
2021-04-28T05:54:22.000Z
src/domainClient/models/domain_listing_admin_service_v1_model_inspection_details.py
diabolical-ninja/smart-property-search
0931c7c8195ec21cbd56768c9c84cea2927a9e1d
[ "MIT" ]
35
2020-05-26T14:21:37.000Z
2022-03-29T16:14:42.000Z
src/domainClient/models/domain_listing_admin_service_v1_model_inspection_details.py
diabolical-ninja/smart-property-search
0931c7c8195ec21cbd56768c9c84cea2927a9e1d
[ "MIT" ]
2
2020-05-26T14:02:12.000Z
2022-01-10T08:19:49.000Z
# coding: utf-8 """ Domain Group API V1 Provides public access to Domain's microservices # noqa: E501 OpenAPI spec version: v1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class DomainListingAdminServiceV1ModelInspectionDetails(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'inspection_description': 'str', 'inspections': 'list[DomainListingAdminServiceV1ModelInspection]' } attribute_map = { 'inspection_description': 'inspectionDescription', 'inspections': 'inspections' } def __init__(self, inspection_description=None, inspections=None): # noqa: E501 """DomainListingAdminServiceV1ModelInspectionDetails - a model defined in Swagger""" # noqa: E501 self._inspection_description = None self._inspections = None self.discriminator = None if inspection_description is not None: self.inspection_description = inspection_description if inspections is not None: self.inspections = inspections @property def inspection_description(self): """Gets the inspection_description of this DomainListingAdminServiceV1ModelInspectionDetails. # noqa: E501 Free text field for inspections # noqa: E501 :return: The inspection_description of this DomainListingAdminServiceV1ModelInspectionDetails. # noqa: E501 :rtype: str """ return self._inspection_description @inspection_description.setter def inspection_description(self, inspection_description): """Sets the inspection_description of this DomainListingAdminServiceV1ModelInspectionDetails. Free text field for inspections # noqa: E501 :param inspection_description: The inspection_description of this DomainListingAdminServiceV1ModelInspectionDetails. # noqa: E501 :type: str """ self._inspection_description = inspection_description @property def inspections(self): """Gets the inspections of this DomainListingAdminServiceV1ModelInspectionDetails. # noqa: E501 Inspection times of the listing # noqa: E501 :return: The inspections of this DomainListingAdminServiceV1ModelInspectionDetails. # noqa: E501 :rtype: list[DomainListingAdminServiceV1ModelInspection] """ return self._inspections @inspections.setter def inspections(self, inspections): """Sets the inspections of this DomainListingAdminServiceV1ModelInspectionDetails. Inspection times of the listing # noqa: E501 :param inspections: The inspections of this DomainListingAdminServiceV1ModelInspectionDetails. # noqa: E501 :type: list[DomainListingAdminServiceV1ModelInspection] """ self._inspections = inspections def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(DomainListingAdminServiceV1ModelInspectionDetails, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DomainListingAdminServiceV1ModelInspectionDetails): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
33.178082
138
0.643683
42d92b7d9de1aeb5b9b59852244f18a5de4bc9b9
984
py
Python
Task2/IGNORE_miscellaneousScripts/setup_ensemble.py
Jacob-L-Vincent/project-athena
d1d300e375941399f116cbaa4678a9ed7c6652db
[ "MIT" ]
1
2020-11-11T19:22:25.000Z
2020-11-11T19:22:25.000Z
Task2/IGNORE_miscellaneousScripts/setup_ensemble.py
Jacob-L-Vincent/project-athena
d1d300e375941399f116cbaa4678a9ed7c6652db
[ "MIT" ]
null
null
null
Task2/IGNORE_miscellaneousScripts/setup_ensemble.py
Jacob-L-Vincent/project-athena
d1d300e375941399f116cbaa4678a9ed7c6652db
[ "MIT" ]
null
null
null
""" Code pieces for collecting raw values from WDs on the input(s). @author: Isaac Keohane isackeohane95@gmail.com adapted from: Ying Meng (y(dot)meng201011(at)gmail(dot)com) """ import sys sys.path.append("../") from utils.model import load_pool from models.athena import Ensemble, ENSEMBLE_STRATEGY def setup_ensemble(trans_configs, model_configs, use_logits=False, useActiveList=True, customList=False, wdList=[]): # load the pool and create the ensemble pool, _ = load_pool(trans_configs=trans_configs, model_configs=model_configs, active_list=useActiveList, use_logits=use_logits, wrap=True, customList = customList, custom_wds = wdList ) athena = Ensemble(classifiers=list(pool.values()), strategy=ENSEMBLE_STRATEGY.MV.value) return athena
29.818182
68
0.606707
3ffec33bc5e5573cb59f993460f4847230e33c77
2,236
py
Python
config.py
darwinharianto/pvnet-rendering
8af589f9208fb2bad9bca3595f68ad7ca2563849
[ "Apache-2.0" ]
143
2019-04-12T09:09:43.000Z
2022-03-31T08:12:52.000Z
config.py
darwinharianto/pvnet-rendering
8af589f9208fb2bad9bca3595f68ad7ca2563849
[ "Apache-2.0" ]
66
2019-04-01T08:33:24.000Z
2022-02-14T07:11:14.000Z
config.py
darwinharianto/pvnet-rendering
8af589f9208fb2bad9bca3595f68ad7ca2563849
[ "Apache-2.0" ]
46
2019-04-07T06:53:40.000Z
2022-01-02T13:11:16.000Z
from easydict import EasyDict import os import sys import numpy as np cfg = EasyDict() """ Path settings """ cfg.ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) cfg.DATA_DIR = os.path.join(cfg.ROOT_DIR, 'data') cfg.MODEL_DIR = os.path.join(cfg.DATA_DIR, 'model') cfg.REC_DIR = os.path.join(cfg.DATA_DIR, 'record') cfg.FIGURE_DIR = os.path.join(cfg.ROOT_DIR, 'figure') cfg.BLENDER_DIR = os.path.join(cfg.ROOT_DIR, "blender") def add_path(): for key, value in cfg.items(): if 'DIR' in key: sys.path.insert(0, value) add_path() sys.path.extend([".", ".."]) """ Data settings """ cfg.LINEMOD = os.path.join(cfg.DATA_DIR, 'LINEMOD') cfg.LINEMOD_ORIG = os.path.join(cfg.DATA_DIR, 'LINEMOD_ORIG') cfg.OCCLUSION_LINEMOD = os.path.join(cfg.DATA_DIR, 'OCCLUSION_LINEMOD') cfg.YCB = os.path.join(cfg.DATA_DIR, 'YCB') cfg.SUN = os.path.join(cfg.DATA_DIR, "SUN") """ Rendering setting """ cfg.BLENDER_PATH = '/home/pengsida/Software/blender-2.79a-linux-glibc219-x86_64/blender' cfg.NUM_SYN = 10 cfg.WIDTH = 640 cfg.HEIGHT = 480 cfg.low_azi = 0 cfg.high_azi = 360 cfg.low_ele = -15 cfg.high_ele = 40 cfg.low_theta = 10 cfg.high_theta = 40 cfg.cam_dist = 0.5 cfg.MIN_DEPTH = 0 cfg.MAX_DEPTH = 2 cfg.render_K=np.array([[700., 0., 320.], [0., 700., 240.], [0., 0., 1.]],np.float32) cfg.linemod_K=np.array([[572.41140,0. ,325.26110], [0. ,573.57043,242.04899], [0. ,0. ,1. ]],np.float32) cfg.linemod_cls_names=['ape','cam','cat','duck','glue','iron','phone', 'benchvise','can','driller','eggbox','holepuncher','lamp'] cfg.occ_linemod_cls_names=['ape','can','cat','driller','duck','eggbox','glue','holepuncher'] cfg.linemod_plane=['can'] cfg.symmetry_linemod_cls_names=['glue','eggbox'] ''' pascal 3d + ''' cfg.PASCAL = os.path.join(cfg.DATA_DIR, 'PASCAL3D') cfg.pascal_cls_names=['aeroplane','bicycle','boat','bottle','bus','car', 'chair','diningtable','motorbike','sofa','train','tvmonitor'] cfg.pascal_size=128 ''' YCB ''' cfg.ycb_sym_cls=[21,20,19,16,13] # foam_brick extra_large_clamp large_clamp wood_block bowl cfg.ycb_class_num=21
26.305882
92
0.639535
07d024b60eaeec927203a504b8347a00cb76e9cc
990
py
Python
pyasdf/tags/time/tests/test_time.py
mdboom/pyasdf
ac4e9f85bf96206fdd6bc3d0708875c953c66dc5
[ "BSD-3-Clause" ]
null
null
null
pyasdf/tags/time/tests/test_time.py
mdboom/pyasdf
ac4e9f85bf96206fdd6bc3d0708875c953c66dc5
[ "BSD-3-Clause" ]
null
null
null
pyasdf/tags/time/tests/test_time.py
mdboom/pyasdf
ac4e9f85bf96206fdd6bc3d0708875c953c66dc5
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from __future__ import absolute_import, division, unicode_literals, print_function import six try: import astropy except ImportError: HAS_ASTROPY = False else: HAS_ASTROPY = True from astropy import time import numpy as np import pytest from .... import asdf from .... import yamlutil from ....tests import helpers @pytest.mark.skipif('not HAS_ASTROPY') def test_time(tmpdir): time_array = time.Time( np.arange(100), format="unix") tree = { 'large_time_array': time_array } helpers.assert_roundtrip_tree(tree, tmpdir) @pytest.mark.skipif('not HAS_ASTROPY') def test_isot(tmpdir): tree = { 'time': time.Time('2000-01-01T00:00:00.000') } helpers.assert_roundtrip_tree(tree, tmpdir) ff = asdf.AsdfFile(tree) tree = yamlutil.custom_tree_to_tagged_tree(ff.tree, ff) assert isinstance(tree['time'], six.text_type)
20.625
82
0.692929
4373e7eccb2a9f1a599ac7a4de289863fde3dea2
26,619
py
Python
sdk/cosmos/azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/models/__init__.py
ankitarorabit/azure-sdk-for-python
dd90281cbad9400f8080754a5ef2f56791a5a88f
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/cosmos/azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/models/__init__.py
ankitarorabit/azure-sdk-for-python
dd90281cbad9400f8080754a5ef2f56791a5a88f
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/cosmos/azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/models/__init__.py
ankitarorabit/azure-sdk-for-python
dd90281cbad9400f8080754a5ef2f56791a5a88f
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- try: from ._models_py3 import ARMProxyResource from ._models_py3 import ARMResourceProperties from ._models_py3 import ApiProperties from ._models_py3 import AutoUpgradePolicyResource from ._models_py3 import AutoscaleSettings from ._models_py3 import AutoscaleSettingsResource from ._models_py3 import BackupPolicy from ._models_py3 import Capability from ._models_py3 import CassandraKeyspaceCreateUpdateParameters from ._models_py3 import CassandraKeyspaceGetPropertiesOptions from ._models_py3 import CassandraKeyspaceGetPropertiesResource from ._models_py3 import CassandraKeyspaceGetResults from ._models_py3 import CassandraKeyspaceListResult from ._models_py3 import CassandraKeyspaceResource from ._models_py3 import CassandraPartitionKey from ._models_py3 import CassandraSchema from ._models_py3 import CassandraTableCreateUpdateParameters from ._models_py3 import CassandraTableGetPropertiesOptions from ._models_py3 import CassandraTableGetPropertiesResource from ._models_py3 import CassandraTableGetResults from ._models_py3 import CassandraTableListResult from ._models_py3 import CassandraTableResource from ._models_py3 import ClusterKey from ._models_py3 import Column from ._models_py3 import Components1Jq1T4ISchemasManagedserviceidentityPropertiesUserassignedidentitiesAdditionalproperties from ._models_py3 import CompositePath from ._models_py3 import ConflictResolutionPolicy from ._models_py3 import ConsistencyPolicy from ._models_py3 import ContainerPartitionKey from ._models_py3 import ContinuousModeBackupPolicy from ._models_py3 import CorsPolicy from ._models_py3 import CreateUpdateOptions from ._models_py3 import DatabaseAccountConnectionString from ._models_py3 import DatabaseAccountCreateUpdateParameters from ._models_py3 import DatabaseAccountGetResults from ._models_py3 import DatabaseAccountListConnectionStringsResult from ._models_py3 import DatabaseAccountListKeysResult from ._models_py3 import DatabaseAccountListReadOnlyKeysResult from ._models_py3 import DatabaseAccountRegenerateKeyParameters from ._models_py3 import DatabaseAccountUpdateParameters from ._models_py3 import DatabaseAccountsListResult from ._models_py3 import ErrorResponse from ._models_py3 import ExcludedPath from ._models_py3 import ExtendedResourceProperties from ._models_py3 import FailoverPolicies from ._models_py3 import FailoverPolicy from ._models_py3 import GremlinDatabaseCreateUpdateParameters from ._models_py3 import GremlinDatabaseGetPropertiesOptions from ._models_py3 import GremlinDatabaseGetPropertiesResource from ._models_py3 import GremlinDatabaseGetResults from ._models_py3 import GremlinDatabaseListResult from ._models_py3 import GremlinDatabaseResource from ._models_py3 import GremlinGraphCreateUpdateParameters from ._models_py3 import GremlinGraphGetPropertiesOptions from ._models_py3 import GremlinGraphGetPropertiesResource from ._models_py3 import GremlinGraphGetResults from ._models_py3 import GremlinGraphListResult from ._models_py3 import GremlinGraphResource from ._models_py3 import IncludedPath from ._models_py3 import Indexes from ._models_py3 import IndexingPolicy from ._models_py3 import IpAddressOrRange from ._models_py3 import Location from ._models_py3 import ManagedServiceIdentity from ._models_py3 import Metric from ._models_py3 import MetricAvailability from ._models_py3 import MetricDefinition from ._models_py3 import MetricDefinitionsListResult from ._models_py3 import MetricListResult from ._models_py3 import MetricName from ._models_py3 import MetricValue from ._models_py3 import MongoDBCollectionCreateUpdateParameters from ._models_py3 import MongoDBCollectionGetPropertiesOptions from ._models_py3 import MongoDBCollectionGetPropertiesResource from ._models_py3 import MongoDBCollectionGetResults from ._models_py3 import MongoDBCollectionListResult from ._models_py3 import MongoDBCollectionResource from ._models_py3 import MongoDBDatabaseCreateUpdateParameters from ._models_py3 import MongoDBDatabaseGetPropertiesOptions from ._models_py3 import MongoDBDatabaseGetPropertiesResource from ._models_py3 import MongoDBDatabaseGetResults from ._models_py3 import MongoDBDatabaseListResult from ._models_py3 import MongoDBDatabaseResource from ._models_py3 import MongoIndex from ._models_py3 import MongoIndexKeys from ._models_py3 import MongoIndexOptions from ._models_py3 import NotebookWorkspace from ._models_py3 import NotebookWorkspaceConnectionInfoResult from ._models_py3 import NotebookWorkspaceCreateUpdateParameters from ._models_py3 import NotebookWorkspaceListResult from ._models_py3 import Operation from ._models_py3 import OperationDisplay from ._models_py3 import OperationListResult from ._models_py3 import OptionsResource from ._models_py3 import PartitionMetric from ._models_py3 import PartitionMetricListResult from ._models_py3 import PartitionUsage from ._models_py3 import PartitionUsagesResult from ._models_py3 import PercentileMetric from ._models_py3 import PercentileMetricListResult from ._models_py3 import PercentileMetricValue from ._models_py3 import PeriodicModeBackupPolicy from ._models_py3 import PeriodicModeProperties from ._models_py3 import Permission from ._models_py3 import PrivateEndpointConnection from ._models_py3 import PrivateEndpointConnectionListResult from ._models_py3 import PrivateEndpointProperty from ._models_py3 import PrivateLinkResource from ._models_py3 import PrivateLinkResourceListResult from ._models_py3 import PrivateLinkServiceConnectionStateProperty from ._models_py3 import ProxyResource from ._models_py3 import RegionForOnlineOffline from ._models_py3 import Resource from ._models_py3 import SpatialSpec from ._models_py3 import SqlContainerCreateUpdateParameters from ._models_py3 import SqlContainerGetPropertiesOptions from ._models_py3 import SqlContainerGetPropertiesResource from ._models_py3 import SqlContainerGetResults from ._models_py3 import SqlContainerListResult from ._models_py3 import SqlContainerResource from ._models_py3 import SqlDatabaseCreateUpdateParameters from ._models_py3 import SqlDatabaseGetPropertiesOptions from ._models_py3 import SqlDatabaseGetPropertiesResource from ._models_py3 import SqlDatabaseGetResults from ._models_py3 import SqlDatabaseListResult from ._models_py3 import SqlDatabaseResource from ._models_py3 import SqlRoleAssignmentCreateUpdateParameters from ._models_py3 import SqlRoleAssignmentGetResults from ._models_py3 import SqlRoleAssignmentListResult from ._models_py3 import SqlRoleDefinitionCreateUpdateParameters from ._models_py3 import SqlRoleDefinitionGetResults from ._models_py3 import SqlRoleDefinitionListResult from ._models_py3 import SqlStoredProcedureCreateUpdateParameters from ._models_py3 import SqlStoredProcedureGetPropertiesResource from ._models_py3 import SqlStoredProcedureGetResults from ._models_py3 import SqlStoredProcedureListResult from ._models_py3 import SqlStoredProcedureResource from ._models_py3 import SqlTriggerCreateUpdateParameters from ._models_py3 import SqlTriggerGetPropertiesResource from ._models_py3 import SqlTriggerGetResults from ._models_py3 import SqlTriggerListResult from ._models_py3 import SqlTriggerResource from ._models_py3 import SqlUserDefinedFunctionCreateUpdateParameters from ._models_py3 import SqlUserDefinedFunctionGetPropertiesResource from ._models_py3 import SqlUserDefinedFunctionGetResults from ._models_py3 import SqlUserDefinedFunctionListResult from ._models_py3 import SqlUserDefinedFunctionResource from ._models_py3 import TableCreateUpdateParameters from ._models_py3 import TableGetPropertiesOptions from ._models_py3 import TableGetPropertiesResource from ._models_py3 import TableGetResults from ._models_py3 import TableListResult from ._models_py3 import TableResource from ._models_py3 import ThroughputPolicyResource from ._models_py3 import ThroughputSettingsGetPropertiesResource from ._models_py3 import ThroughputSettingsGetResults from ._models_py3 import ThroughputSettingsResource from ._models_py3 import ThroughputSettingsUpdateParameters from ._models_py3 import UniqueKey from ._models_py3 import UniqueKeyPolicy from ._models_py3 import Usage from ._models_py3 import UsagesResult from ._models_py3 import VirtualNetworkRule except (SyntaxError, ImportError): from ._models import ARMProxyResource # type: ignore from ._models import ARMResourceProperties # type: ignore from ._models import ApiProperties # type: ignore from ._models import AutoUpgradePolicyResource # type: ignore from ._models import AutoscaleSettings # type: ignore from ._models import AutoscaleSettingsResource # type: ignore from ._models import BackupPolicy # type: ignore from ._models import Capability # type: ignore from ._models import CassandraKeyspaceCreateUpdateParameters # type: ignore from ._models import CassandraKeyspaceGetPropertiesOptions # type: ignore from ._models import CassandraKeyspaceGetPropertiesResource # type: ignore from ._models import CassandraKeyspaceGetResults # type: ignore from ._models import CassandraKeyspaceListResult # type: ignore from ._models import CassandraKeyspaceResource # type: ignore from ._models import CassandraPartitionKey # type: ignore from ._models import CassandraSchema # type: ignore from ._models import CassandraTableCreateUpdateParameters # type: ignore from ._models import CassandraTableGetPropertiesOptions # type: ignore from ._models import CassandraTableGetPropertiesResource # type: ignore from ._models import CassandraTableGetResults # type: ignore from ._models import CassandraTableListResult # type: ignore from ._models import CassandraTableResource # type: ignore from ._models import ClusterKey # type: ignore from ._models import Column # type: ignore from ._models import Components1Jq1T4ISchemasManagedserviceidentityPropertiesUserassignedidentitiesAdditionalproperties # type: ignore from ._models import CompositePath # type: ignore from ._models import ConflictResolutionPolicy # type: ignore from ._models import ConsistencyPolicy # type: ignore from ._models import ContainerPartitionKey # type: ignore from ._models import ContinuousModeBackupPolicy # type: ignore from ._models import CorsPolicy # type: ignore from ._models import CreateUpdateOptions # type: ignore from ._models import DatabaseAccountConnectionString # type: ignore from ._models import DatabaseAccountCreateUpdateParameters # type: ignore from ._models import DatabaseAccountGetResults # type: ignore from ._models import DatabaseAccountListConnectionStringsResult # type: ignore from ._models import DatabaseAccountListKeysResult # type: ignore from ._models import DatabaseAccountListReadOnlyKeysResult # type: ignore from ._models import DatabaseAccountRegenerateKeyParameters # type: ignore from ._models import DatabaseAccountUpdateParameters # type: ignore from ._models import DatabaseAccountsListResult # type: ignore from ._models import ErrorResponse # type: ignore from ._models import ExcludedPath # type: ignore from ._models import ExtendedResourceProperties # type: ignore from ._models import FailoverPolicies # type: ignore from ._models import FailoverPolicy # type: ignore from ._models import GremlinDatabaseCreateUpdateParameters # type: ignore from ._models import GremlinDatabaseGetPropertiesOptions # type: ignore from ._models import GremlinDatabaseGetPropertiesResource # type: ignore from ._models import GremlinDatabaseGetResults # type: ignore from ._models import GremlinDatabaseListResult # type: ignore from ._models import GremlinDatabaseResource # type: ignore from ._models import GremlinGraphCreateUpdateParameters # type: ignore from ._models import GremlinGraphGetPropertiesOptions # type: ignore from ._models import GremlinGraphGetPropertiesResource # type: ignore from ._models import GremlinGraphGetResults # type: ignore from ._models import GremlinGraphListResult # type: ignore from ._models import GremlinGraphResource # type: ignore from ._models import IncludedPath # type: ignore from ._models import Indexes # type: ignore from ._models import IndexingPolicy # type: ignore from ._models import IpAddressOrRange # type: ignore from ._models import Location # type: ignore from ._models import ManagedServiceIdentity # type: ignore from ._models import Metric # type: ignore from ._models import MetricAvailability # type: ignore from ._models import MetricDefinition # type: ignore from ._models import MetricDefinitionsListResult # type: ignore from ._models import MetricListResult # type: ignore from ._models import MetricName # type: ignore from ._models import MetricValue # type: ignore from ._models import MongoDBCollectionCreateUpdateParameters # type: ignore from ._models import MongoDBCollectionGetPropertiesOptions # type: ignore from ._models import MongoDBCollectionGetPropertiesResource # type: ignore from ._models import MongoDBCollectionGetResults # type: ignore from ._models import MongoDBCollectionListResult # type: ignore from ._models import MongoDBCollectionResource # type: ignore from ._models import MongoDBDatabaseCreateUpdateParameters # type: ignore from ._models import MongoDBDatabaseGetPropertiesOptions # type: ignore from ._models import MongoDBDatabaseGetPropertiesResource # type: ignore from ._models import MongoDBDatabaseGetResults # type: ignore from ._models import MongoDBDatabaseListResult # type: ignore from ._models import MongoDBDatabaseResource # type: ignore from ._models import MongoIndex # type: ignore from ._models import MongoIndexKeys # type: ignore from ._models import MongoIndexOptions # type: ignore from ._models import NotebookWorkspace # type: ignore from ._models import NotebookWorkspaceConnectionInfoResult # type: ignore from ._models import NotebookWorkspaceCreateUpdateParameters # type: ignore from ._models import NotebookWorkspaceListResult # type: ignore from ._models import Operation # type: ignore from ._models import OperationDisplay # type: ignore from ._models import OperationListResult # type: ignore from ._models import OptionsResource # type: ignore from ._models import PartitionMetric # type: ignore from ._models import PartitionMetricListResult # type: ignore from ._models import PartitionUsage # type: ignore from ._models import PartitionUsagesResult # type: ignore from ._models import PercentileMetric # type: ignore from ._models import PercentileMetricListResult # type: ignore from ._models import PercentileMetricValue # type: ignore from ._models import PeriodicModeBackupPolicy # type: ignore from ._models import PeriodicModeProperties # type: ignore from ._models import Permission # type: ignore from ._models import PrivateEndpointConnection # type: ignore from ._models import PrivateEndpointConnectionListResult # type: ignore from ._models import PrivateEndpointProperty # type: ignore from ._models import PrivateLinkResource # type: ignore from ._models import PrivateLinkResourceListResult # type: ignore from ._models import PrivateLinkServiceConnectionStateProperty # type: ignore from ._models import ProxyResource # type: ignore from ._models import RegionForOnlineOffline # type: ignore from ._models import Resource # type: ignore from ._models import SpatialSpec # type: ignore from ._models import SqlContainerCreateUpdateParameters # type: ignore from ._models import SqlContainerGetPropertiesOptions # type: ignore from ._models import SqlContainerGetPropertiesResource # type: ignore from ._models import SqlContainerGetResults # type: ignore from ._models import SqlContainerListResult # type: ignore from ._models import SqlContainerResource # type: ignore from ._models import SqlDatabaseCreateUpdateParameters # type: ignore from ._models import SqlDatabaseGetPropertiesOptions # type: ignore from ._models import SqlDatabaseGetPropertiesResource # type: ignore from ._models import SqlDatabaseGetResults # type: ignore from ._models import SqlDatabaseListResult # type: ignore from ._models import SqlDatabaseResource # type: ignore from ._models import SqlRoleAssignmentCreateUpdateParameters # type: ignore from ._models import SqlRoleAssignmentGetResults # type: ignore from ._models import SqlRoleAssignmentListResult # type: ignore from ._models import SqlRoleDefinitionCreateUpdateParameters # type: ignore from ._models import SqlRoleDefinitionGetResults # type: ignore from ._models import SqlRoleDefinitionListResult # type: ignore from ._models import SqlStoredProcedureCreateUpdateParameters # type: ignore from ._models import SqlStoredProcedureGetPropertiesResource # type: ignore from ._models import SqlStoredProcedureGetResults # type: ignore from ._models import SqlStoredProcedureListResult # type: ignore from ._models import SqlStoredProcedureResource # type: ignore from ._models import SqlTriggerCreateUpdateParameters # type: ignore from ._models import SqlTriggerGetPropertiesResource # type: ignore from ._models import SqlTriggerGetResults # type: ignore from ._models import SqlTriggerListResult # type: ignore from ._models import SqlTriggerResource # type: ignore from ._models import SqlUserDefinedFunctionCreateUpdateParameters # type: ignore from ._models import SqlUserDefinedFunctionGetPropertiesResource # type: ignore from ._models import SqlUserDefinedFunctionGetResults # type: ignore from ._models import SqlUserDefinedFunctionListResult # type: ignore from ._models import SqlUserDefinedFunctionResource # type: ignore from ._models import TableCreateUpdateParameters # type: ignore from ._models import TableGetPropertiesOptions # type: ignore from ._models import TableGetPropertiesResource # type: ignore from ._models import TableGetResults # type: ignore from ._models import TableListResult # type: ignore from ._models import TableResource # type: ignore from ._models import ThroughputPolicyResource # type: ignore from ._models import ThroughputSettingsGetPropertiesResource # type: ignore from ._models import ThroughputSettingsGetResults # type: ignore from ._models import ThroughputSettingsResource # type: ignore from ._models import ThroughputSettingsUpdateParameters # type: ignore from ._models import UniqueKey # type: ignore from ._models import UniqueKeyPolicy # type: ignore from ._models import Usage # type: ignore from ._models import UsagesResult # type: ignore from ._models import VirtualNetworkRule # type: ignore from ._cosmos_db_management_client_enums import ( BackupPolicyType, CompositePathSortOrder, ConflictResolutionMode, ConnectorOffer, DataType, DatabaseAccountKind, DefaultConsistencyLevel, IndexKind, IndexingMode, KeyKind, NetworkAclBypass, NotebookWorkspaceName, PartitionKind, PrimaryAggregationType, PublicNetworkAccess, ResourceIdentityType, RoleDefinitionType, ServerVersion, SpatialType, TriggerOperation, TriggerType, UnitType, ) __all__ = [ 'ARMProxyResource', 'ARMResourceProperties', 'ApiProperties', 'AutoUpgradePolicyResource', 'AutoscaleSettings', 'AutoscaleSettingsResource', 'BackupPolicy', 'Capability', 'CassandraKeyspaceCreateUpdateParameters', 'CassandraKeyspaceGetPropertiesOptions', 'CassandraKeyspaceGetPropertiesResource', 'CassandraKeyspaceGetResults', 'CassandraKeyspaceListResult', 'CassandraKeyspaceResource', 'CassandraPartitionKey', 'CassandraSchema', 'CassandraTableCreateUpdateParameters', 'CassandraTableGetPropertiesOptions', 'CassandraTableGetPropertiesResource', 'CassandraTableGetResults', 'CassandraTableListResult', 'CassandraTableResource', 'ClusterKey', 'Column', 'Components1Jq1T4ISchemasManagedserviceidentityPropertiesUserassignedidentitiesAdditionalproperties', 'CompositePath', 'ConflictResolutionPolicy', 'ConsistencyPolicy', 'ContainerPartitionKey', 'ContinuousModeBackupPolicy', 'CorsPolicy', 'CreateUpdateOptions', 'DatabaseAccountConnectionString', 'DatabaseAccountCreateUpdateParameters', 'DatabaseAccountGetResults', 'DatabaseAccountListConnectionStringsResult', 'DatabaseAccountListKeysResult', 'DatabaseAccountListReadOnlyKeysResult', 'DatabaseAccountRegenerateKeyParameters', 'DatabaseAccountUpdateParameters', 'DatabaseAccountsListResult', 'ErrorResponse', 'ExcludedPath', 'ExtendedResourceProperties', 'FailoverPolicies', 'FailoverPolicy', 'GremlinDatabaseCreateUpdateParameters', 'GremlinDatabaseGetPropertiesOptions', 'GremlinDatabaseGetPropertiesResource', 'GremlinDatabaseGetResults', 'GremlinDatabaseListResult', 'GremlinDatabaseResource', 'GremlinGraphCreateUpdateParameters', 'GremlinGraphGetPropertiesOptions', 'GremlinGraphGetPropertiesResource', 'GremlinGraphGetResults', 'GremlinGraphListResult', 'GremlinGraphResource', 'IncludedPath', 'Indexes', 'IndexingPolicy', 'IpAddressOrRange', 'Location', 'ManagedServiceIdentity', 'Metric', 'MetricAvailability', 'MetricDefinition', 'MetricDefinitionsListResult', 'MetricListResult', 'MetricName', 'MetricValue', 'MongoDBCollectionCreateUpdateParameters', 'MongoDBCollectionGetPropertiesOptions', 'MongoDBCollectionGetPropertiesResource', 'MongoDBCollectionGetResults', 'MongoDBCollectionListResult', 'MongoDBCollectionResource', 'MongoDBDatabaseCreateUpdateParameters', 'MongoDBDatabaseGetPropertiesOptions', 'MongoDBDatabaseGetPropertiesResource', 'MongoDBDatabaseGetResults', 'MongoDBDatabaseListResult', 'MongoDBDatabaseResource', 'MongoIndex', 'MongoIndexKeys', 'MongoIndexOptions', 'NotebookWorkspace', 'NotebookWorkspaceConnectionInfoResult', 'NotebookWorkspaceCreateUpdateParameters', 'NotebookWorkspaceListResult', 'Operation', 'OperationDisplay', 'OperationListResult', 'OptionsResource', 'PartitionMetric', 'PartitionMetricListResult', 'PartitionUsage', 'PartitionUsagesResult', 'PercentileMetric', 'PercentileMetricListResult', 'PercentileMetricValue', 'PeriodicModeBackupPolicy', 'PeriodicModeProperties', 'Permission', 'PrivateEndpointConnection', 'PrivateEndpointConnectionListResult', 'PrivateEndpointProperty', 'PrivateLinkResource', 'PrivateLinkResourceListResult', 'PrivateLinkServiceConnectionStateProperty', 'ProxyResource', 'RegionForOnlineOffline', 'Resource', 'SpatialSpec', 'SqlContainerCreateUpdateParameters', 'SqlContainerGetPropertiesOptions', 'SqlContainerGetPropertiesResource', 'SqlContainerGetResults', 'SqlContainerListResult', 'SqlContainerResource', 'SqlDatabaseCreateUpdateParameters', 'SqlDatabaseGetPropertiesOptions', 'SqlDatabaseGetPropertiesResource', 'SqlDatabaseGetResults', 'SqlDatabaseListResult', 'SqlDatabaseResource', 'SqlRoleAssignmentCreateUpdateParameters', 'SqlRoleAssignmentGetResults', 'SqlRoleAssignmentListResult', 'SqlRoleDefinitionCreateUpdateParameters', 'SqlRoleDefinitionGetResults', 'SqlRoleDefinitionListResult', 'SqlStoredProcedureCreateUpdateParameters', 'SqlStoredProcedureGetPropertiesResource', 'SqlStoredProcedureGetResults', 'SqlStoredProcedureListResult', 'SqlStoredProcedureResource', 'SqlTriggerCreateUpdateParameters', 'SqlTriggerGetPropertiesResource', 'SqlTriggerGetResults', 'SqlTriggerListResult', 'SqlTriggerResource', 'SqlUserDefinedFunctionCreateUpdateParameters', 'SqlUserDefinedFunctionGetPropertiesResource', 'SqlUserDefinedFunctionGetResults', 'SqlUserDefinedFunctionListResult', 'SqlUserDefinedFunctionResource', 'TableCreateUpdateParameters', 'TableGetPropertiesOptions', 'TableGetPropertiesResource', 'TableGetResults', 'TableListResult', 'TableResource', 'ThroughputPolicyResource', 'ThroughputSettingsGetPropertiesResource', 'ThroughputSettingsGetResults', 'ThroughputSettingsResource', 'ThroughputSettingsUpdateParameters', 'UniqueKey', 'UniqueKeyPolicy', 'Usage', 'UsagesResult', 'VirtualNetworkRule', 'BackupPolicyType', 'CompositePathSortOrder', 'ConflictResolutionMode', 'ConnectorOffer', 'DataType', 'DatabaseAccountKind', 'DefaultConsistencyLevel', 'IndexKind', 'IndexingMode', 'KeyKind', 'NetworkAclBypass', 'NotebookWorkspaceName', 'PartitionKind', 'PrimaryAggregationType', 'PublicNetworkAccess', 'ResourceIdentityType', 'RoleDefinitionType', 'ServerVersion', 'SpatialType', 'TriggerOperation', 'TriggerType', 'UnitType', ]
48.398182
139
0.783162
a8998afc3d4d92d142fe13c4efd8453b9ca58b45
1,161
py
Python
http_request_builder.py
armiantos/CMPUT404-assignment-web-client
f3e2e685aaae4fda1ed399bcc73eb014a1ec9273
[ "Apache-2.0" ]
null
null
null
http_request_builder.py
armiantos/CMPUT404-assignment-web-client
f3e2e685aaae4fda1ed399bcc73eb014a1ec9273
[ "Apache-2.0" ]
null
null
null
http_request_builder.py
armiantos/CMPUT404-assignment-web-client
f3e2e685aaae4fda1ed399bcc73eb014a1ec9273
[ "Apache-2.0" ]
null
null
null
def build_http_request(method: str, path: str, host: str, extra_headers=[], body: str = "") -> str: """ Returns a valid HTTP request from the given parameters. Parameters: - `method` - valid HTTP methods (e.g. "POST" or "GET") - `path` - the path part of a URL (e.g. "/" or "/index.html") - `host` - the host of the endpoint (e.g. "google.com" or "ualberta.ca") - `extra_headers` - an optional list of strings to be included as part of the request headers (e.g. ["Content-Type": "application/json"]) - `body` - the optional body of the request (if any) Returns: A string representation of a valid HTTP request """ status_line = f"{method} {path} HTTP/1.1" headers = [ f"Host: {host}", "Connection: close", "User-Agent: sumitro-client/1.0" ] if len(extra_headers) > 0: headers.extend(extra_headers) payload = "\r\n" if len(body) > 0 or method == "POST": payload += body headers.append(f"Content-Length: {len(body)}") request_body = "\r\n".join([status_line, "\r\n".join(headers), payload]) return request_body
36.28125
99
0.596038
3e44ce3ad007c9a9079e2a432648dcd4ccaebe52
5,734
py
Python
ljdata/ds/JPEGBaseline/__init__.py
scaramallion/pylibjpeg-data
2ab4b8a65b070656eca2582bd23197a3d01cdccd
[ "MIT" ]
3
2020-03-07T21:54:09.000Z
2020-06-11T02:23:58.000Z
ljdata/ds/JPEGBaseline/__init__.py
scaramallion/pylibjpeg-data
2ab4b8a65b070656eca2582bd23197a3d01cdccd
[ "MIT" ]
2
2020-03-08T00:35:51.000Z
2020-07-19T23:42:13.000Z
ljdata/ds/JPEGBaseline/__init__.py
scaramallion/pylibjpeg-data
2ab4b8a65b070656eca2582bd23197a3d01cdccd
[ "MIT" ]
1
2020-03-07T21:49:07.000Z
2020-03-07T21:49:07.000Z
"""1.2.840.10008.1.2.4.50 - JPEG Baseline (Process 1)""" INDEX = { "color3d_jpeg_baseline.dcm" : { 'TransferSyntaxUID' : ('UI', '1.2.840.10008.1.2.4.50'), 'SamplesPerPixel' : ('US', 3), 'PhotometricInterpretation' : ('CS', 'YBR_FULL_422'), 'PlanarConfiguration' : ('US', 0), 'NumberOfFrames' : ('IS', '120'), 'Rows' : ('US', 480), 'Columns' : ('US', 640), 'BitsAllocated' : ('US', 8), 'BitsStored' : ('US', 8), 'HighBit' : ('US', 7), 'PixelRepresentation' : ('US', 0), }, "JPEGBaseline_1s_1f_u_08_08.dcm" : { 'TransferSyntaxUID' : ('UI', '1.2.840.10008.1.2.4.50'), 'SamplesPerPixel' : ('US', 1), 'PhotometricInterpretation' : ('CS', 'MONOCHROME2'), 'PlanarConfiguration' : ('US', 0), 'NumberOfFrames' : ('IS', '1'), 'Rows' : ('US', 100), 'Columns' : ('US', 100), 'BitsAllocated' : ('US', 8), 'BitsStored' : ('US', 8), 'HighBit' : ('US', 7), 'PixelRepresentation' : ('US', 0), 'ImageComments' : ( 'LT', ( "Created from SC_rgb_jpeg_dcmtk.dcm using IJG's cjpeg with " "-grayscale and -baseline flags" ) ), }, 'SC_rgb_dcmtk_+eb+cr.dcm' : { 'TransferSyntaxUID' : ('UI', '1.2.840.10008.1.2.4.50'), 'SamplesPerPixel' : ('US', 3), 'PhotometricInterpretation' : ('CS', 'RGB'), 'PlanarConfiguration' : ('US', 0), 'NumberOfFrames' : ('IS', '1'), 'Rows' : ('US', 100), 'Columns' : ('US', 100), 'BitsAllocated' : ('US', 8), 'BitsStored' : ('US', 8), 'HighBit' : ('US', 7), 'PixelRepresentation' : ('US', 0), }, 'SC_rgb_dcmtk_+eb+cy+n1.dcm' : { 'TransferSyntaxUID' : ('UI', '1.2.840.10008.1.2.4.50'), 'SamplesPerPixel' : ('US', 3), 'PhotometricInterpretation' : ('CS', 'YBR_FULL'), 'PlanarConfiguration' : ('US', 0), 'NumberOfFrames' : ('IS', '1'), 'Rows' : ('US', 100), 'Columns' : ('US', 100), 'BitsAllocated' : ('US', 8), 'BitsStored' : ('US', 8), 'HighBit' : ('US', 7), 'PixelRepresentation' : ('US', 0), }, 'SC_rgb_dcmtk_+eb+cy+n2.dcm' : { 'TransferSyntaxUID' : ('UI', '1.2.840.10008.1.2.4.50'), 'SamplesPerPixel' : ('US', 3), 'PhotometricInterpretation' : ('CS', 'YBR_FULL'), 'PlanarConfiguration' : ('US', 0), 'NumberOfFrames' : ('IS', '1'), 'Rows' : ('US', 100), 'Columns' : ('US', 100), 'BitsAllocated' : ('US', 8), 'BitsStored' : ('US', 8), 'HighBit' : ('US', 7), 'PixelRepresentation' : ('US', 0), }, 'SC_rgb_dcmtk_+eb+cy+np.dcm' : { 'TransferSyntaxUID' : ('UI', '1.2.840.10008.1.2.4.50'), 'SamplesPerPixel' : ('US', 3), 'PhotometricInterpretation' : ('CS', 'YBR_FULL_422'), 'PlanarConfiguration' : ('US', 0), 'NumberOfFrames' : ('IS', '1'), 'Rows' : ('US', 100), 'Columns' : ('US', 100), 'BitsAllocated' : ('US', 8), 'BitsStored' : ('US', 8), 'HighBit' : ('US', 7), 'PixelRepresentation' : ('US', 0), }, 'SC_rgb_dcmtk_+eb+cy+s2.dcm' : { 'TransferSyntaxUID' : ('UI', '1.2.840.10008.1.2.4.50'), 'SamplesPerPixel' : ('US', 3), 'PhotometricInterpretation' : ('CS', 'YBR_FULL_422'), 'PlanarConfiguration' : ('US', 0), 'NumberOfFrames' : ('IS', '1'), 'Rows' : ('US', 100), 'Columns' : ('US', 100), 'BitsAllocated' : ('US', 8), 'BitsStored' : ('US', 8), 'HighBit' : ('US', 7), 'PixelRepresentation' : ('US', 0), }, 'SC_rgb_dcmtk_+eb+cy+s4.dcm' : { 'TransferSyntaxUID' : ('UI', '1.2.840.10008.1.2.4.50'), 'SamplesPerPixel' : ('US', 3), 'PhotometricInterpretation' : ('CS', 'YBR_FULL'), 'PlanarConfiguration' : ('US', 0), 'NumberOfFrames' : ('IS', '1'), 'Rows' : ('US', 100), 'Columns' : ('US', 100), 'BitsAllocated' : ('US', 8), 'BitsStored' : ('US', 8), 'HighBit' : ('US', 7), 'PixelRepresentation' : ('US', 0), }, 'SC_rgb_jpeg_dcmtk.dcm' : { 'TransferSyntaxUID' : ('UI', '1.2.840.10008.1.2.4.50'), 'SamplesPerPixel' : ('US', 3), 'PhotometricInterpretation' : ('CS', 'YBR_FULL'), 'PlanarConfiguration' : ('US', 0), 'NumberOfFrames' : ('IS', '1'), 'Rows' : ('US', 100), 'Columns' : ('US', 100), 'BitsAllocated' : ('US', 8), 'BitsStored' : ('US', 8), 'HighBit' : ('US', 7), 'PixelRepresentation' : ('US', 0), }, 'SC_rgb_jpeg_lossy_gdcm.dcm' : { 'TransferSyntaxUID' : ('UI', '1.2.840.10008.1.2.4.50'), 'SamplesPerPixel' : ('US', 3), 'PhotometricInterpretation' : ('CS', 'RGB'), 'PlanarConfiguration' : ('US', 0), 'NumberOfFrames' : ('IS', '1'), 'Rows' : ('US', 100), 'Columns' : ('US', 100), 'BitsAllocated' : ('US', 8), 'BitsStored' : ('US', 8), 'HighBit' : ('US', 7), 'PixelRepresentation' : ('US', 0), }, 'SC_rgb_small_odd_jpeg.dcm' : { 'TransferSyntaxUID' : ('UI', '1.2.840.10008.1.2.4.50'), 'SamplesPerPixel' : ('US', 3), 'PhotometricInterpretation' : ('CS', 'YBR_FULL'), 'PlanarConfiguration' : ('US', 0), 'NumberOfFrames' : ('IS', '1'), 'Rows' : ('US', 3), 'Columns' : ('US', 3), 'BitsAllocated' : ('US', 8), 'BitsStored' : ('US', 8), 'HighBit' : ('US', 7), 'PixelRepresentation' : ('US', 0), }, }
36.993548
76
0.465992
cdcd6ef1d58f41937328ea7500a51a4923057b26
9,945
py
Python
tests/unit/cloud/clouds/test_openstack.py
babs/salt
c536ea716d5308880b244e7980f4b659d86fc104
[ "Apache-2.0" ]
19
2016-01-29T14:37:52.000Z
2022-03-30T18:08:01.000Z
tests/unit/cloud/clouds/test_openstack.py
babs/salt
c536ea716d5308880b244e7980f4b659d86fc104
[ "Apache-2.0" ]
223
2016-03-02T16:39:41.000Z
2022-03-03T12:26:35.000Z
tests/unit/cloud/clouds/test_openstack.py
babs/salt
c536ea716d5308880b244e7980f4b659d86fc104
[ "Apache-2.0" ]
64
2016-02-04T19:45:26.000Z
2021-12-15T02:02:31.000Z
""" :codeauthor: `Tyler Johnson <tjohnson@saltstack.com>` tests.unit.cloud.clouds.openstack_test ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ from salt.cloud.clouds import openstack from salt.utils import dictupdate from tests.support.mixins import LoaderModuleMockMixin from tests.support.mock import MagicMock, patch from tests.support.unit import TestCase # pylint: disable=confusing-with-statement class MockImage: name = "image name" id = "image id" class MockNode: name = "node name" id = "node id" flavor = MockImage() status = "node status" def __init__(self, image): self.image = image def __iter__(self): return iter(()) class MockConn: def __init__(self, image): self.node = MockNode(image) def get_image(self, *args, **kwargs): return self.node.image def get_flavor(self, *args, **kwargs): return self.node.flavor def get_server(self, *args, **kwargs): return self.node def list_servers(self, *args, **kwargs): return [self.node] class OpenstackTestCase(TestCase, LoaderModuleMockMixin): """ Unit TestCase for salt.cloud.clouds.openstack module. """ def setup_loader_modules(self): return { openstack: { "__active_provider_name__": "", "__opts__": { "providers": { "my-openstack-cloud": { "openstack": { "auth": "daenerys", "region_name": "westeros", "cloud": "openstack", } } } }, } } def test_get_configured_provider_bad(self): with patch.dict(openstack.__opts__, {"providers": {}}): result = openstack.get_configured_provider() self.assertEqual(result, False) def test_get_configured_provider_auth(self): config = { "region_name": "westeros", "auth": "daenerys", } with patch.dict( openstack.__opts__, {"providers": {"my-openstack-cloud": {"openstack": config}}}, ): result = openstack.get_configured_provider() self.assertEqual(config, result) def test_get_configured_provider_cloud(self): config = { "region_name": "westeros", "cloud": "foo", } with patch.dict( openstack.__opts__, {"providers": {"my-openstack-cloud": {"openstack": config}}}, ): result = openstack.get_configured_provider() self.assertEqual(config, result) def test_get_dependencies(self): HAS_SHADE = (True, "Please install newer version of shade: >= 1.19.0") with patch("salt.cloud.clouds.openstack.HAS_SHADE", HAS_SHADE): result = openstack.get_dependencies() self.assertEqual(result, True) def test_get_dependencies_no_shade(self): HAS_SHADE = (False, "Install pypi module shade >= 1.19.0") with patch("salt.cloud.clouds.openstack.HAS_SHADE", HAS_SHADE): result = openstack.get_dependencies() self.assertEqual(result, False) def test_list_nodes_full_image_str(self): node_image = "node image" conn = MockConn(node_image) with patch("salt.cloud.clouds.openstack._get_ips", return_value=[]): ret = openstack.list_nodes_full(conn=conn) self.assertEqual(ret[conn.node.name]["image"], node_image) def test_list_nodes_full_image_obj(self): conn = MockConn(MockImage()) with patch("salt.cloud.clouds.openstack._get_ips", return_value=[]): ret = openstack.list_nodes_full(conn=conn) self.assertEqual(ret[conn.node.name]["image"], MockImage.name) def test_show_instance(self): conn = MockConn(MockImage()) with patch("salt.cloud.clouds.openstack._get_ips", return_value=[]): ret = openstack.show_instance(conn.node.name, conn=conn, call="action") self.assertEqual(ret["image"], MockImage.name) def test_request_instance_should_use_provided_connection_if_not_None(self): fake_conn = MagicMock() patch_get_conn = patch("salt.cloud.clouds.openstack.get_conn", autospec=True) patch_utils = patch.dict( openstack.__utils__, {"cloud.check_name": MagicMock(), "dictupdate.update": dictupdate.update}, ) patch_shade = patch.object( openstack, "shade.exc.OpenStackCloudException", Exception, create=True ) with patch_get_conn as fake_get_conn, patch_utils, patch_shade: openstack.request_instance( vm_={"name": "fnord", "driver": "fnord"}, conn=fake_conn ) fake_get_conn.assert_not_called() def test_request_instance_should_create_conn_if_provided_is_None(self): none_conn = None patch_get_conn = patch("salt.cloud.clouds.openstack.get_conn", autospec=True) patch_utils = patch.dict( openstack.__utils__, {"cloud.check_name": MagicMock(), "dictupdate.update": dictupdate.update}, ) patch_shade = patch.object( openstack, "shade.exc.OpenStackCloudException", Exception, create=True ) with patch_get_conn as fake_get_conn, patch_utils, patch_shade: openstack.request_instance( vm_={"name": "fnord", "driver": "fnord"}, conn=none_conn ) fake_get_conn.assert_called_once_with() # According to # https://docs.openstack.org/shade/latest/user/usage.html#shade.OpenStackCloud.create_server # the `network` parameter can be: # (optional) Network dict or name or ID to attach the server to. # Mutually exclusive with the nics parameter. Can also be be a list of # network names or IDs or network dicts. # # Here we're testing a normal dictionary def test_request_instance_should_be_able_to_provide_a_dictionary_for_network(self): fake_conn = MagicMock() expected_network = {"foo": "bar"} vm_ = {"name": "fnord", "driver": "fnord", "network": expected_network} patch_utils = patch.dict( openstack.__utils__, {"cloud.check_name": MagicMock(), "dictupdate.update": dictupdate.update}, ) with patch_utils: openstack.request_instance(vm_=vm_, conn=fake_conn) call_kwargs = fake_conn.create_server.mock_calls[0][-1] self.assertDictEqual(call_kwargs["network"], expected_network) # Here we're testing the list of dictionaries def test_request_instance_should_be_able_to_provide_a_list_of_dictionaries_for_network( self, ): fake_conn = MagicMock() expected_network = [{"foo": "bar"}, {"bang": "quux"}] vm_ = {"name": "fnord", "driver": "fnord", "network": expected_network} patch_utils = patch.dict( openstack.__utils__, {"cloud.check_name": MagicMock(), "dictupdate.update": dictupdate.update}, ) with patch_utils: openstack.request_instance(vm_=vm_, conn=fake_conn) call_kwargs = fake_conn.create_server.mock_calls[0][-1] assert call_kwargs["network"] == expected_network # Here we're testing for names/IDs def test_request_instance_should_be_able_to_provide_a_list_of_single_ids_or_names_for_network( self, ): fake_conn = MagicMock() expected_network = ["foo", "bar", "bang", "fnord1", "fnord2"] vm_ = {"name": "fnord", "driver": "fnord", "network": expected_network} patch_utils = patch.dict( openstack.__utils__, {"cloud.check_name": MagicMock(), "dictupdate.update": dictupdate.update}, ) with patch_utils: openstack.request_instance(vm_=vm_, conn=fake_conn) call_kwargs = fake_conn.create_server.mock_calls[0][-1] assert call_kwargs["network"] == expected_network # Testing that we get a dict that we expect for create_server def test__clean_create_kwargs(self): params = { "name": "elmer", "image": "mirrormirror", "flavor": "chocolate", "auto_ip": True, "ips": ["hihicats"], "ip_pool": "olympic", "root_volume": "iamgroot", "boot_volume": "pussnboots", "terminate_volume": False, "volumes": ["lots", "of", "books"], "meta": {"full": "meta"}, "files": {"shred": "this"}, "reservation_id": "licenseandregistration", "security_groups": ["wanna", "play", "repeat"], "key_name": "clortho", "availability_zone": "callmemaybe", "block_device_mapping": [{"listof": "dicts"}], "block_device_mapping_v2": [{"listof": "dicts"}], "nics": ["thats", "me"], "scheduler_hints": {"so": "many"}, "config_drive": True, "disk_config": "donkey", "admin_pass": "password", "wait": False, "timeout": 30, "reuse_ips": True, "network": ["also", "a", "dict"], "boot_from_volume": True, "volume_size": 30, "nat_destination": "albuquerque", "group": "ledzeppelin", "userdata": "needmoreinput", "thisgetsdropped": "yup", } patch_utils = patch.dict( openstack.__utils__, {"dictupdate.update": dictupdate.update}, ) with patch_utils: ret = openstack._clean_create_kwargs(**params) params.pop("thisgetsdropped") self.assertDictEqual(params, ret)
36.29562
98
0.591252
1fe1cf7a83f186a26294a432f7012ef585af5e08
274
py
Python
pyibge/__init__.py
renanbirck/pyibge
f70ad060ab7d491fa61afa2b01181a2dd176e319
[ "MIT" ]
6
2019-06-15T03:40:11.000Z
2021-02-27T08:59:04.000Z
pyibge/__init__.py
renanbirck/pyibge
f70ad060ab7d491fa61afa2b01181a2dd176e319
[ "MIT" ]
null
null
null
pyibge/__init__.py
renanbirck/pyibge
f70ad060ab7d491fa61afa2b01181a2dd176e319
[ "MIT" ]
4
2017-10-09T21:30:06.000Z
2019-12-18T04:56:53.000Z
#!/usr/bin/env python3 # # pyIBGE: A module to access data from the Brazilian Institute of Geography and Statistics (IBGE) # (c) 2016 Renan Birck Pinheiro [renan.birck.pinheiro@gmail.com] from .extra_routines import state_to_id, period_to_date from .query import IBGEQuery
34.25
97
0.788321
4c1d921925d8409fd85e0126d81a5a21a1b9424a
186
py
Python
dikedata_api/tests.py
ddsc/dikedata-api
74776575a848863975793a9fde106161c655ee44
[ "MIT" ]
null
null
null
dikedata_api/tests.py
ddsc/dikedata-api
74776575a848863975793a9fde106161c655ee44
[ "MIT" ]
null
null
null
dikedata_api/tests.py
ddsc/dikedata-api
74776575a848863975793a9fde106161c655ee44
[ "MIT" ]
null
null
null
# (c) Nelen & Schuurmans. MIT licensed, see LICENSE.rst. from django.test import TestCase class ExampleTest(TestCase): def test_something(self): self.assertEquals(1, 1)
18.6
57
0.704301
e69892fd895e0852d48fed48e20638d6fd32f61a
2,145
py
Python
esp32_ds1307.py
tnoumar/esp32-libraries
98a7c9ba90ddb65c9eece2849f255142931e3e9a
[ "MIT" ]
1
2021-07-29T09:04:32.000Z
2021-07-29T09:04:32.000Z
esp32_ds1307.py
vittascience/esp32-libraries
98a7c9ba90ddb65c9eece2849f255142931e3e9a
[ "MIT" ]
null
null
null
esp32_ds1307.py
vittascience/esp32-libraries
98a7c9ba90ddb65c9eece2849f255142931e3e9a
[ "MIT" ]
null
null
null
from micropython import const # I2C-Address - DS1307 RTC_V1_ADDRESS = const(0x68) # registar overview - crtl & status reg RTC_CTRL_1 = const(0x00) RTC_CTRL_2 = const(0x01) # registar overview - time & data reg RTC_SECOND_ADDR = const(0x00) RTC_MINUTE_ADDR = const(0x01) RTC_HOUR_ADDR = const(0x02) RTC_WDAY_ADDR = const(0x03) RTC_DAY_ADDR = const(0x04) RTC_MONTH_ADDR = const(0x05) RTC_YEAR_ADDR = const(0x06) DAY_OF_WEEK = ["MON", "TUE", "WED", "THU", "FRI", "SAT", "SUN"] class DS1307: def __init__(self, i2c, addr=RTC_V1_ADDRESS): self._addr = addr self._i2c = i2c def decToBcd(self, val): return (val // 10) << 4 | (val % 10) def bcdToDec(self, val): return ((val >> 4) * 10) + (val & 0x0F) def reset(self): self._i2c.writeto_mem(self._addr, RTC_CTRL_1, '\x58') def fillByHMS(self, hour, minute, second): self._i2c.writeto_mem(self._addr, RTC_SECOND_ADDR, bytearray([self.decToBcd(second)])) self._i2c.writeto_mem(self._addr, RTC_MINUTE_ADDR, bytearray([self.decToBcd(minute)])) self._i2c.writeto_mem(self._addr, RTC_HOUR_ADDR, bytearray([self.decToBcd(hour)])) def fillByYMD(self, year, month, day): self._i2c.writeto_mem(self._addr, RTC_DAY_ADDR, bytearray([self.decToBcd(day)])) self._i2c.writeto_mem(self._addr, RTC_MONTH_ADDR, bytearray([self.decToBcd(month)])) self._i2c.writeto_mem(self._addr, RTC_YEAR_ADDR, bytearray([self.decToBcd(year-2000)])) def fillDayOfWeek(self, dayOfWeek): self._i2c.writeto_mem(self._addr, RTC_WDAY_ADDR, bytearray([self.decToBcd(DAY_OF_WEEK.index(dayOfWeek))])) def startClock(self): second = self._i2c.readfrom(self._addr, 1)[0] & 0x7f self._i2c.writeto_mem(self._addr, RTC_CTRL_1, bytearray([second])) def readTime(self): rdata = self._i2c.readfrom_mem(self._addr, RTC_SECOND_ADDR, 7) return ( self.bcdToDec(rdata[6]) + 2000, # year self.bcdToDec(rdata[5]), # month self.bcdToDec(rdata[4]), # day DAY_OF_WEEK[self.bcdToDec(rdata[3])], # weekday self.bcdToDec(rdata[2]), # hour self.bcdToDec(rdata[1]), # minute self.bcdToDec(rdata[0] & 0x7F), # second )
34.047619
110
0.69324
85ca6cf9633d0895a007f833038fc88ba0402d92
1,430
py
Python
torch2trt/converters/__init__.py
nuhpiskin/torch2trt
ce39d035d067cd6596dbed60aa05b37051915c74
[ "MIT" ]
null
null
null
torch2trt/converters/__init__.py
nuhpiskin/torch2trt
ce39d035d067cd6596dbed60aa05b37051915c74
[ "MIT" ]
null
null
null
torch2trt/converters/__init__.py
nuhpiskin/torch2trt
ce39d035d067cd6596dbed60aa05b37051915c74
[ "MIT" ]
null
null
null
# dummy converters throw warnings method encountered import tensorrt as trt from .dummy_converters import * # supported converters will override dummy converters from .AdaptiveAvgPool2d import * from .BatchNorm1d import * from .BatchNorm2d import * from .Conv import * from .Conv1d import * from .Conv2d import * from .ConvTranspose import * from .ConvTranspose2d import * from .Linear import * from .LogSoftmax import * from .activation import * from .adaptive_avg_pool2d import * from .adaptive_max_pool2d import * from .add import * from .avg_pool import * from .batch_norm import * from .cat import * from .chunk import * from .clamp import * from .compare import * from .div import * from .expand import * from .floordiv import * from .getitem import * from .identity import * from .instance_norm import * from .interpolate import * from .group_norm import * from .max import * from .max_pool2d import * from .mean import * from .min import * from .mod import * from .mul import * from .normalize import * from .ne import * from .narrow import * from .pad import * from .permute import * from .pow import * from .prelu import * from .prod import * from .relu import * from .relu6 import * from .sigmoid import * from .softmax import * from .split import * from .stack import * from .sub import * from .sum import * from .tanh import * from .tensor import * from .transpose import * from .unary import * from .view import *
23.064516
53
0.74965
1d07c1ee206e1db1c91d6b827c3c492d1f7b65e5
735
py
Python
techgig.py
heykush/Coding-Challenge-Scaper
da4c88d93faa21b3562b937d70575cb777010f5a
[ "Apache-2.0" ]
null
null
null
techgig.py
heykush/Coding-Challenge-Scaper
da4c88d93faa21b3562b937d70575cb777010f5a
[ "Apache-2.0" ]
null
null
null
techgig.py
heykush/Coding-Challenge-Scaper
da4c88d93faa21b3562b937d70575cb777010f5a
[ "Apache-2.0" ]
null
null
null
import requests from bs4 import BeautifulSoup from selenium import webdriver from time import sleep driver = webdriver.Chrome(r"C:\Users\gkush\Downloads\chromedriver.exe") url="https://www.techgig.com/challenge" r = requests.get(url) driver.get(url) content = driver.page_source.encode('utf-8').strip() soup = BeautifulSoup(content,"html.parser") sleep(2) ksite=driver.find_elements_by_xpath('//*[@class="contest-listing"]') liv=[] for i in ksite: lin=i.find_elements_by_xpath('//*[@class="contest-box prize-hiring-1"]') liv.extend(lin) lin1=i.find_elements_by_xpath('//*[@class="contest-box prize-hiring-2"]') liv.extend(lin1) for j in liv: print("\n=======================\n", j.text , end="\n")
27.222222
75
0.682993
cee0741bc2e3be8859b9ae592096c3453fd46ce9
4,359
py
Python
texar/modules/networks/conv_networks_test.py
Holmeswww/Text_Infilling
f63cd24bee5c62d7dedd8fb35c4e52aee20c39f3
[ "Apache-2.0" ]
87
2019-09-11T04:41:46.000Z
2022-03-23T02:37:52.000Z
texar/modules/networks/conv_networks_test.py
ysglh/texar
9c699e8143fd8ecb5d65a41ceef09c45832b9258
[ "Apache-2.0" ]
10
2019-10-01T16:09:17.000Z
2021-10-19T21:20:11.000Z
texar/modules/networks/conv_networks_test.py
ysglh/texar
9c699e8143fd8ecb5d65a41ceef09c45832b9258
[ "Apache-2.0" ]
20
2019-09-13T16:32:37.000Z
2021-06-03T07:14:11.000Z
# """ Unit tests for conv networks. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import tensorflow as tf import texar as tx from texar.modules.networks.conv_networks import Conv1DNetwork class Conv1DNetworkTest(tf.test.TestCase): """Tests :class:`~texar.modules.Conv1DNetwork` class. """ def test_feedforward(self): """Tests feed forward. """ network_1 = Conv1DNetwork() self.assertEqual(len(network_1.layers), 4) self.assertTrue(isinstance(network_1.layer_by_name("conv_pool_1"), tx.core.MergeLayer)) for layer in network_1.layers[0].layers: self.assertTrue(isinstance(layer, tx.core.SequentialLayer)) inputs_1 = tf.ones([64, 16, 300], tf.float32) outputs_1 = network_1(inputs_1) self.assertEqual(outputs_1.shape, [64, 128]) hparams = { # Conv layers "num_conv_layers": 2, "filters": 128, "kernel_size": [[3, 4, 5], 4], "other_conv_kwargs": {"padding": "same"}, # Pooling layers "pooling": "AveragePooling", "pool_size": 2, "pool_strides": 1, # Dense layers "num_dense_layers": 3, "dense_size": [128, 128, 10], "dense_activation": "relu", "other_dense_kwargs": {"use_bias": False}, # Dropout "dropout_conv": [0, 1, 2], "dropout_dense": 2 } network_2 = Conv1DNetwork(hparams) # nlayers = nconv-pool + nconv + npool + ndense + ndropout + flatten self.assertEqual(len(network_2.layers), 1+1+1+3+4+1) self.assertTrue(isinstance(network_2.layer_by_name("conv_pool_1"), tx.core.MergeLayer)) for layer in network_2.layers[1].layers: self.assertTrue(isinstance(layer, tx.core.SequentialLayer)) inputs_2 = tf.ones([64, 16, 300], tf.float32) outputs_2 = network_2(inputs_2) self.assertEqual(outputs_2.shape, [64, 10]) def test_unknown_seq_length(self): """Tests use of pooling layer when the seq_length dimension of inputs is `None`. """ network_1 = Conv1DNetwork() inputs_1 = tf.placeholder(tf.float32, [64, None, 300]) outputs_1 = network_1(inputs_1) self.assertEqual(outputs_1.shape, [64, 128]) hparams = { # Conv layers "num_conv_layers": 2, "filters": 128, "kernel_size": [[3, 4, 5], 4], # Pooling layers "pooling": "AveragePooling", "pool_size": [2, None], # Dense layers "num_dense_layers": 1, "dense_size": 10, } network = Conv1DNetwork(hparams) # nlayers = nconv-pool + nconv + npool + ndense + ndropout + flatten self.assertEqual(len(network.layers), 1+1+1+1+1+1) self.assertTrue(isinstance(network.layer_by_name('pool_2'), tx.core.AverageReducePooling1D)) inputs = tf.placeholder(tf.float32, [64, None, 300]) outputs = network(inputs) self.assertEqual(outputs.shape, [64, 10]) hparams_2 = { # Conv layers "num_conv_layers": 1, "filters": 128, "kernel_size": 4, "other_conv_kwargs": {'data_format': 'channels_first'}, # Pooling layers "pooling": "MaxPooling", "other_pool_kwargs": {'data_format': 'channels_first'}, # Dense layers "num_dense_layers": 1, "dense_size": 10, } network_2 = Conv1DNetwork(hparams_2) inputs_2 = tf.placeholder(tf.float32, [64, 300, None]) outputs_2 = network_2(inputs_2) self.assertEqual(outputs_2.shape, [64, 10]) def test_mask_input(self): """Tests masked inputs. """ network_1 = Conv1DNetwork() inputs_1 = tf.ones([3, 16, 300], tf.float32) seq_length = [10, 15, 1] outputs_1 = network_1(inputs_1, sequence_length=seq_length) self.assertEqual(outputs_1.shape, [3, 128]) if __name__ == "__main__": tf.test.main()
34.322835
77
0.571691
c97227d163fc11631da08a508114cfc008987e3f
1,929
py
Python
tests/ipc_test.py
atikur/mythril
d0a3858400b727bdc5c927487e0dcc69ca1ef14d
[ "MIT" ]
2
2018-04-13T00:07:28.000Z
2022-02-15T23:18:14.000Z
tests/ipc_test.py
vanessabridge/mythril
fb28d30f880057a735f0a932ad4c9bff4d50c2c3
[ "MIT" ]
null
null
null
tests/ipc_test.py
vanessabridge/mythril
fb28d30f880057a735f0a932ad4c9bff4d50c2c3
[ "MIT" ]
1
2020-10-11T21:49:05.000Z
2020-10-11T21:49:05.000Z
from unittest import TestCase from mythril.ipc.client import EthIpc class IpcTest(TestCase): client = None def setUp(self): self.client = EthIpc() def test_eth_coinbase(self): coinbase = self.client.eth_coinbase() self.assertTrue(coinbase.startswith("0x"), "coinbase should be a hex string") self.assertEqual(len(coinbase), 42, "coinbase is a string with length of 42") def test_eth_blockNumber(self): block_number = self.client.eth_blockNumber() self.assertGreater(block_number, 0, "we have made sure the blockNumber is > 0 for testing") def test_eth_getBalance(self): balance = self.client.eth_getBalance(address="0x0000000000000000000000000000000000000000") self.assertGreater(balance, 10000000, "specified address should have a lot of balance") def test_eth_getStorageAt(self): storage = self.client.eth_getStorageAt(address="0x0000000000000000000000000000000000000000") self.assertEqual(storage, '0x0000000000000000000000000000000000000000000000000000000000000000') def test_eth_getBlockByNumber(self): block = self.client.eth_getBlockByNumber(0) self.assertEqual(block["extraData"], "0x11bbe8db4e347b4e8c937c1c8370e4b5ed33adb3db69cbdb7a38e1e50b1b82fa", "the data of the first block should be right") def test_eth_getCode(self): # TODO: can't find a proper address for getting code code = self.client.eth_getCode(address="0x0000000000000000000000000000000000000001") self.assertEqual(code, "0x") def test_eth_getTransactionReceipt(self): transaction = self.client.eth_getTransactionReceipt(tx_hash="0xe363505adc6b2996111f8bd774f8653a61d244cc6567b5372c2e781c6c63b737") self.assertEqual(transaction["from"], "0x22f2dcff5ad78c3eb6850b5cb951127b659522e6") self.assertEqual(transaction["to"], "0x0000000000000000000000000000000000000000")
47.04878
161
0.75324
9f00ed665a3d7e3d865a1f146ea9ed4c15687557
11,833
py
Python
safe_transaction_service/notifications/tests/test_views.py
kanhirun/safe-transaction-service
9bd6103be7d77469a337b6f02c8e0693e7951e4c
[ "MIT" ]
2
2021-09-29T23:54:40.000Z
2021-11-26T15:22:15.000Z
safe_transaction_service/notifications/tests/test_views.py
kanhirun/safe-transaction-service
9bd6103be7d77469a337b6f02c8e0693e7951e4c
[ "MIT" ]
8
2022-03-15T18:39:45.000Z
2022-03-28T01:28:13.000Z
safe_transaction_service/notifications/tests/test_views.py
kanhirun/safe-transaction-service
9bd6103be7d77469a337b6f02c8e0693e7951e4c
[ "MIT" ]
1
2022-03-29T12:19:51.000Z
2022-03-29T12:19:51.000Z
import time import uuid from unittest import mock from django.urls import reverse from eth_account import Account from rest_framework import status from rest_framework.test import APITestCase from gnosis.safe.tests.safe_test_case import SafeTestCaseMixin from safe_transaction_service.history.tests.factories import \ SafeContractFactory from safe_transaction_service.notifications.models import (FirebaseDevice, FirebaseDeviceOwner) from ..utils import calculate_device_registration_hash from .factories import FirebaseDeviceFactory, FirebaseDeviceOwnerFactory class TestNotificationViews(SafeTestCaseMixin, APITestCase): def test_notifications_devices_create_view(self): response = self.client.post(reverse('v1:notifications:devices')) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) safe_address = Account.create().address safe_contract = SafeContractFactory(address=safe_address) self.assertEqual(FirebaseDevice.objects.count(), 0) data = { 'safes': [safe_address], 'cloudMessagingToken': 'A' * 163, 'buildNumber': 0, 'bundle': 'company.package.app', 'deviceType': 'WEB', 'version': '2.0.1', } response = self.client.post(reverse('v1:notifications:devices'), format='json', data=data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(FirebaseDevice.objects.count(), 1) device_uuid = response.data['uuid'] self.assertTrue(uuid.UUID(device_uuid)) # Same request should return a 400 because a new device with same push token cannot be created response = self.client.post(reverse('v1:notifications:devices'), format='json', data=data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) # Request with `uuid` should not create a new object data['uuid'] = device_uuid response = self.client.post(reverse('v1:notifications:devices'), format='json', data=data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(FirebaseDevice.objects.count(), 1) # Changing the token and using the uuid will change the cloud messaging token data['cloudMessagingToken'] = 'B' * 163 response = self.client.post(reverse('v1:notifications:devices'), format='json', data=data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(FirebaseDevice.objects.count(), 1) self.assertEqual(FirebaseDevice.objects.first().cloud_messaging_token, data['cloudMessagingToken']) # Add the same FirebaseDevice to another Safe safe_contract_2 = SafeContractFactory() data['safes'].append(safe_contract_2.address) response = self.client.post(reverse('v1:notifications:devices'), format='json', data=data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(safe_contract.firebase_devices.count(), 1) self.assertEqual(safe_contract_2.firebase_devices.count(), 1) self.assertEqual(FirebaseDevice.objects.count(), 1) self.assertEqual(FirebaseDevice.objects.first().safes.count(), 2) # Use not valid deviceType previous_device_type = data['deviceType'] data['deviceType'] = 'RANGER-MORPHER' response = self.client.post(reverse('v1:notifications:devices'), format='json', data=data) self.assertIn('is not a valid choice', response.content.decode()) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual(safe_contract.firebase_devices.count(), 1) data['deviceType'] = previous_device_type # Use not valid version previous_version = data['version'] data['version'] = 'Megazord' response = self.client.post(reverse('v1:notifications:devices'), format='json', data=data) self.assertIn('Semantic version was expected', response.content.decode()) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual(safe_contract.firebase_devices.count(), 1) data['version'] = previous_version # Remove one of the Safes data['safes'] = [safe_contract_2.address] response = self.client.post(reverse('v1:notifications:devices'), format='json', data=data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(safe_contract.firebase_devices.count(), 0) self.assertEqual(safe_contract_2.firebase_devices.count(), 1) def test_notifications_devices_create_with_signatures_view(self): safe_address = Account.create().address safe_contract = SafeContractFactory(address=safe_address) owner_account = Account.create() owner_account_2 = Account.create() self.assertEqual(FirebaseDevice.objects.count(), 0) unique_id = uuid.uuid4() timestamp = int(time.time()) cloud_messaging_token = 'A' * 163 safes = [safe_address] hash_to_sign = calculate_device_registration_hash(timestamp, unique_id, cloud_messaging_token, safes) signatures = [owner_account.signHash(hash_to_sign)['signature'].hex()] data = { 'uuid': unique_id, 'safes': [safe_address], 'cloudMessagingToken': cloud_messaging_token, 'buildNumber': 0, 'bundle': 'company.package.app', 'deviceType': 'WEB', 'version': '2.0.1', 'timestamp': timestamp, 'signatures': signatures, } response = self.client.post(reverse('v1:notifications:devices'), format='json', data=data) # self.assertIn('is not an owner of any of the safes', str(response.data['non_field_errors'])) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(response.data['owners_registered'], []) self.assertEqual(response.data['owners_not_registered'], [owner_account.address]) with mock.patch('safe_transaction_service.notifications.serializers.get_safe_owners', return_value=[owner_account.address]): response = self.client.post(reverse('v1:notifications:devices'), format='json', data=data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(response.data['uuid'], str(unique_id)) self.assertEqual(FirebaseDevice.objects.count(), 1) self.assertEqual(FirebaseDeviceOwner.objects.count(), 1) self.assertEqual(FirebaseDeviceOwner.objects.first().owner, owner_account.address) # Add another signature signatures.append(owner_account_2.signHash(hash_to_sign)['signature'].hex()) response = self.client.post(reverse('v1:notifications:devices'), format='json', data=data) # self.assertIn('is not an owner of any of the safes', str(response.data['non_field_errors'])) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(response.data['owners_registered'], [owner_account.address]) self.assertEqual(response.data['owners_not_registered'], [owner_account_2.address]) with mock.patch('safe_transaction_service.notifications.serializers.get_safe_owners', return_value=[owner_account.address, owner_account_2.address]): response = self.client.post(reverse('v1:notifications:devices'), format='json', data=data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(response.data['owners_registered'], [owner_account.address, owner_account_2.address]) self.assertEqual(response.data['owners_not_registered'], []) self.assertEqual(FirebaseDevice.objects.count(), 1) self.assertCountEqual(FirebaseDeviceOwner.objects.values_list('owner', flat=True), [owner_account.address, owner_account_2.address]) def test_notifications_devices_delete_view(self): safe_contract = SafeContractFactory() firebase_device = FirebaseDeviceFactory() firebase_device.safes.add(safe_contract) device_id = firebase_device.uuid FirebaseDeviceOwnerFactory(firebase_device=firebase_device) self.assertEqual(FirebaseDevice.objects.count(), 1) self.assertEqual(FirebaseDeviceOwner.objects.count(), 1) response = self.client.delete(reverse('v1:notifications:devices-delete', args=(device_id,)), format='json') self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) self.assertEqual(FirebaseDevice.objects.count(), 0) self.assertEqual(FirebaseDeviceOwner.objects.count(), 0) # Try to delete again if not exists response = self.client.delete(reverse('v1:notifications:devices-delete', args=(device_id,)), format='json') self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def test_notifications_devices_safe_delete_view(self): safe_contract = SafeContractFactory() firebase_device = FirebaseDeviceFactory() firebase_device_owner = FirebaseDeviceOwnerFactory(firebase_device=firebase_device) not_related_firebase_device_owner = FirebaseDeviceOwnerFactory() firebase_device.safes.add(safe_contract) device_id = firebase_device.uuid # Test not existing `safe_contract`, even if `device_id` is correct random_safe_address = Account.create().address self.assertEqual(firebase_device.safes.count(), 1) self.assertEqual(FirebaseDeviceOwner.objects.count(), 2) response = self.client.delete(reverse('v1:notifications:devices-safes-delete', args=(device_id, random_safe_address)), format='json') self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) self.assertEqual(firebase_device.safes.count(), 1) self.assertEqual(FirebaseDeviceOwner.objects.count(), 2) # Happy path response = self.client.delete(reverse('v1:notifications:devices-safes-delete', args=(device_id, safe_contract.address)), format='json') self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) self.assertEqual(firebase_device.safes.count(), 0) self.assertEqual(FirebaseDeviceOwner.objects.count(), 1) self.assertEqual(FirebaseDeviceOwner.objects.get(), not_related_firebase_device_owner) # Try to delete again and get the same result even if the Safe is not linked response = self.client.delete(reverse('v1:notifications:devices-safes-delete', args=(device_id, safe_contract.address)), format='json') self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) self.assertEqual(firebase_device.safes.count(), 0) self.assertEqual(FirebaseDeviceOwner.objects.count(), 1) # Remove not existing Safe should not trigger an error response = self.client.delete(reverse('v1:notifications:devices-safes-delete', args=(device_id, Account.create().address)), format='json') self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) self.assertEqual(firebase_device.safes.count(), 0) self.assertEqual(FirebaseDeviceOwner.objects.count(), 1)
55.294393
115
0.681653
ef652e2d3a91ac44dcf5abe6fc8889ab26a28b6c
8,954
py
Python
src/sasctl/_services/microanalytic_score.py
InvalidPointer/python-sasctl
bc40918fcde7439b9c2eff0e286469354b2e9fc9
[ "Apache-2.0" ]
null
null
null
src/sasctl/_services/microanalytic_score.py
InvalidPointer/python-sasctl
bc40918fcde7439b9c2eff0e286469354b2e9fc9
[ "Apache-2.0" ]
null
null
null
src/sasctl/_services/microanalytic_score.py
InvalidPointer/python-sasctl
bc40918fcde7439b9c2eff0e286469354b2e9fc9
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 # # Copyright © 2019, SAS Institute Inc., Cary, NC, USA. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """A stateless, memory-resident, high-performance program execution service.""" import re from collections import OrderedDict from math import isnan import six from .service import Service class MicroAnalyticScore(Service): """Micro Analytic Service (MAS) client.""" _SERVICE_ROOT = '/microanalyticScore' @classmethod def is_uuid(cls, id): """Check if the ID appears to be a valid MAS id. Indicates whether `id` appears to be a correctly formatted ID. Does **not** check whether a module with `id` actually exists. Parameters ---------- id : str Returns ------- bool Notes ----- Overrides the :meth:`Service.is_uuid` method since MAS modules do not currently use IDs that are actually UUIDs. """ # Anything that consists of only numbers, lowercase letters, # and underscores, and does not start with a number, looks like a # MAS id. return re.match('^[_a-z][_a-z0-9]+$', id) is not None list_modules, get_module, update_module, \ delete_module = Service._crud_funcs('/modules', 'module') def get_module_step(self, module, step): """Details of a single step in a given module. Parameters ---------- module : str or dict Name, id, or dictionary representation of a module step : str Name of the step Returns ------- RestObj """ module = self.get_module(module) r = self.get('/modules/{}/steps/{}'.format(module.id, step)) return r def list_module_steps(self, module): """List all steps defined for a module. Parameters ---------- module : str or dict Name, id, or dictionary representation of a module Returns ------- list List of :class:`.RestObj` instances representing each step. """ module = self.get_module(module) steps = self.get('/modules/{}/steps'.format(module.id)) return steps if isinstance(steps, list) else [steps] def execute_module_step(self, module, step, return_dict=True, **kwargs): """Call a module step with the given parameters. Parameters ---------- module : str or dict Name, id, or dictionary representation of a module step : str Name of the step return_dict : bool, optional Whether the results should be returned as a dictionary instead of a tuple kwargs : any Passed as arguments to the module step Returns ------- any Results of the step execution. Returned as a dictionary if `return_dict` is True, otherwise returned as a tuple if more than one value is returned, otherwise the single value. """ module_name = module.name if hasattr(module, 'name') else str(module) module = self.get_module(module) if module is None: raise ValueError("Module '{}' was not found.".format(module_name)) module = module.id step = step.id if hasattr(step, 'id') else step # Make sure all inputs are JSON serializable # Common types such as numpy.int64 and numpy.float64 are NOT serializable for k in kwargs.keys(): type_name = type(kwargs[k]).__name__ if type_name == 'float64': kwargs[k] = float(kwargs[k]) elif type_name == 'int64': kwargs[k] = int(kwargs[k]) body = {'inputs': [{'name': k, 'value': v} for k, v in six.iteritems(kwargs)]} # Convert NaN to None (null) before calling MAS for input in body['inputs']: try: if isnan(input['value']): input['value'] = None except TypeError: pass r = self.post('/modules/{}/steps/{}'.format(module, step), json=body) # Convert list of name/value pair dictionaries to single dict outputs = OrderedDict() for output in r.get('outputs', []): k, v = output['name'], output.get('value') # Remove padding from CHAR columns if isinstance(v, str): v = v.strip() outputs[k] = v if return_dict: # Return results as k=v pairs return outputs else: # Return only the values, as if calling another Python function. outputs = tuple(outputs.values()) if len(outputs) == 1: return outputs[0] else: return outputs def create_module(self, name=None, description=None, source=None, language='python', scope='public'): """Create a new module in MAS. Parameters ---------- name : str description : str source : str language : str { 'python', 'ds2' } scope : str { 'public', 'private' } Returns ------- RestObj """ if source is None: raise ValueError('The `source` parameter is required.') else: source = str(source) if language == 'python': t = 'text/x-python' elif language == 'ds2': t = 'text/vnd.sas.source.ds2' else: raise ValueError('Unrecognized source code language `%s`.' % language) data = {'id': name, 'type': t, 'description': description, 'source': source, 'scope': scope} r = self.post('/modules', json=data) return r def define_steps(self, module): """Map MAS steps to Python methods. Defines python methods on a module that automatically call the corresponding MAS steps. Parameters ---------- module : str or dict Name, id, or dictionary representation of a module Returns ------- module """ import types module = self.get_module(module) # Define a method for each step of the module for id in module.get('stepIds', []): step = self.get_module_step(module, id) # Method should have an argument for each parameter of the step arguments = [k['name'] for k in step.inputs] arg_types = [k['type'] for k in step.inputs] # Format call to execute_module_step() call_params = ['{}={}'.format(i, i) for i in arguments] # Set type hints for the function type_string = ' # type: ({})'.format(', '.join(arg_types)) # Method signature signature = 'def _%s_%s(%s, **kwargs):' \ % (module.name, step.id, ', '.join(a for a in arguments)) # MAS always lower-cases variable names # Since the original Python variables may have a different case, # allow kwargs to be used to input alternative caps arg_checks = ['for k in kwargs.keys():'] for arg in arguments: arg_checks.append(" if k.lower() == '%s':" % arg.lower()) arg_checks.append(" %s = kwargs[k]" % arg) arg_checks.append(" continue") # Full method source code # Drops 'rc' and 'msg' from return values code = (signature, type_string, ' """Execute step %s of module %s."""' % (step, module), '\n'.join([' %s' % a for a in arg_checks]), ' r = execute_module_step(module, step, {})'.format( ', '.join(call_params)), ' r.pop("rc", None)', ' r.pop("msg", None)', ' if len(r) == 1:', ' return r.popitem()[1]', ' return tuple(v for v in r.values())' ) code = '\n'.join(code) compiled = compile(code, '<string>', 'exec') env = globals().copy() env.update({'execute_module_step': self.execute_module_step, 'module': module, 'step': step}) func = types.FunctionType(compiled.co_consts[0], env, argdefs=tuple(None for x in arguments)) setattr(module, step.id, func) return module
31.528169
81
0.517199
e57e35683a98e760ffc2ccbea67e42947c9c3092
62,079
py
Python
torchbenchmark/models/hf_Bert/modeling.py
puririshi98/benchmark
79f554f1e1cf36f62994c78e0e6e5b360f554022
[ "BSD-3-Clause" ]
null
null
null
torchbenchmark/models/hf_Bert/modeling.py
puririshi98/benchmark
79f554f1e1cf36f62994c78e0e6e5b360f554022
[ "BSD-3-Clause" ]
null
null
null
torchbenchmark/models/hf_Bert/modeling.py
puririshi98/benchmark
79f554f1e1cf36f62994c78e0e6e5b360f554022
[ "BSD-3-Clause" ]
null
null
null
# coding=utf-8 # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model.""" from __future__ import absolute_import, division, print_function, unicode_literals import copy import json import logging import math import os import shutil import tarfile import tempfile import sys from io import open import torch from torch import nn from torch.nn import CrossEntropyLoss from torch.utils import checkpoint cached_path = lambda x: x from torch.nn import Module from torch.nn.parameter import Parameter import torch.nn.functional as F import torch.nn.init as init logger = logging.getLogger(__name__) PRETRAINED_MODEL_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz", } CONFIG_NAME = 'bert_config.json' WEIGHTS_NAME = 'pytorch_model.bin' TF_WEIGHTS_NAME = 'model.ckpt' def load_tf_weights_in_bert(model, tf_checkpoint_path): """ Load tf checkpoints in a pytorch model """ try: import re import numpy as np import tensorflow as tf except ImportError: print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions.") raise tf_path = os.path.abspath(tf_checkpoint_path) print("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: print("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split('/') # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any(n in ["adam_v", "adam_m"] for n in name): print("Skipping {}".format("/".join(name))) continue pointer = model for m_name in name: if re.fullmatch(r'[A-Za-z]+_\d+', m_name): l = re.split(r'_(\d+)', m_name) else: l = [m_name] if l[0] == 'kernel' or l[0] == 'gamma': pointer = getattr(pointer, 'weight') elif l[0] == 'output_bias' or l[0] == 'beta': pointer = getattr(pointer, 'bias') elif l[0] == 'output_weights': pointer = getattr(pointer, 'weight') else: pointer = getattr(pointer, l[0]) if len(l) >= 2: num = int(l[1]) pointer = pointer[num] if m_name[-11:] == '_embeddings': pointer = getattr(pointer, 'weight') elif m_name == 'kernel': array = np.ascontiguousarray(np.transpose(array)) try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise print("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model def gelu(x): return x * 0.5 * (1.0 + torch.erf(x / 1.41421)) #used only for triton inference def bias_gelu(bias, y): x = bias + y return x * 0.5 * (1.0 + torch.erf(x / 1.41421)) # used specifically for training since torch.nn.functional.gelu breaks ONNX export def bias_gelu_training(bias, y): x = bias + y return torch.nn.functional.gelu(x) # Breaks ONNX export def bias_tanh(bias, y): x = bias + y return torch.tanh(x) def swish(x): return x * torch.sigmoid(x) #torch.nn.functional.gelu(x) # Breaks ONNX export ACT2FN = {"gelu": gelu, "bias_gelu": bias_gelu, "bias_tanh": bias_tanh, "relu": torch.nn.functional.relu, "swish": swish} class LinearActivation(Module): r"""Fused Linear and activation Module. """ __constants__ = ['bias'] def __init__(self, in_features, out_features, act='gelu', bias=True): super(LinearActivation, self).__init__() self.in_features = in_features self.out_features = out_features self.act_fn = nn.Identity() # self.biased_act_fn = None # self.bias = None # if isinstance(act, str) or (sys.version_info[0] == 2 and isinstance(act, unicode)): # For TorchScript if bias and not 'bias' in act: # compatibility act = 'bias_' + act # self.biased_act_fn = ACT2FN[act] # else: self.act_fn = ACT2FN[act] else: self.act_fn = act self.weight = Parameter(torch.Tensor(out_features, in_features)) if bias: self.bias = Parameter(torch.Tensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.bias, -bound, bound) def forward(self, input): if not self.bias is None: return self.biased_act_fn(self.bias, F.linear(input, self.weight, None)) else: return self.act_fn(F.linear(input, self.weight, self.bias)) def extra_repr(self): return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self.bias is not None ) class BertConfig(object): """Configuration class to store the configuration of a `BertModel`. """ def __init__(self, vocab_size_or_config_json_file, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, output_all_encoded_layers=False): """Constructs BertConfig. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 and isinstance(vocab_size_or_config_json_file, unicode)): with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.output_all_encoded_layers = output_all_encoded_layers else: raise ValueError("First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)") @classmethod def from_dict(cls, json_object): """Constructs a `BertConfig` from a Python dictionary of parameters.""" config = BertConfig(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" with open(json_file, "r", encoding='utf-8') as reader: text = reader.read() return cls.from_dict(json.loads(text)) def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class BertNonFusedLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertNonFusedLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u) s = s * s s = s.mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias try: import apex #apex.amp.register_half_function(apex.normalization.fused_layer_norm, 'FusedLayerNorm') import apex.normalization from apex.normalization.fused_layer_norm import FusedLayerNormAffineFunction #apex.amp.register_float_function(apex.normalization.FusedLayerNorm, 'forward') #BertLayerNorm = apex.normalization.FusedLayerNorm APEX_IS_AVAILABLE = True except ImportError: print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.") #BertLayerNorm = BertNonFusedLayerNorm APEX_IS_AVAILABLE = False # class BertLayerNorm(Module): # def __init__(self, hidden_size, eps=1e-12): # super(BertLayerNorm, self).__init__() # self.shape = torch.Size((hidden_size,)) # self.eps = eps # self.weight = nn.Parameter(torch.ones(hidden_size)) # self.bias = nn.Parameter(torch.zeros(hidden_size)) # self.apex_enabled = APEX_IS_AVAILABLE # @torch.jit.unused # def fused_layer_norm(self, x): # return FusedLayerNormAffineFunction.apply( # x, self.weight, self.bias, self.shape, self.eps) # def forward(self, x): # if self.apex_enabled and not torch.jit.is_scripting(): # x = self.fused_layer_norm(x) # else: # u = x.mean(-1, keepdim=True) # s = (x - u) # s = s * s # s = s.mean(-1, keepdim=True) # x = (x - u) / torch.sqrt(s + self.eps) # x = self.weight * x + self.bias # return x BertLayerNorm = nn.LayerNorm class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids): seq_length = input_ids.size(1) position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = torch.reshape(x, new_x_shape) return x.permute(0, 2, 1, 3) def transpose_key_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = torch.reshape(x, new_x_shape) return x.permute(0, 2, 3, 1) def forward(self, hidden_states, attention_mask): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_key_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = F.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = torch.reshape(context_layer, new_context_layer_shape) return context_layer class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, attention_mask): self_output = self.self(input_tensor, attention_mask) attention_output = self.output(self_output, input_tensor) return attention_output class BertIntermediate(nn.Module): def __init__(self, config): super(BertIntermediate, self).__init__() self.dense_act = LinearActivation(config.hidden_size, config.intermediate_size, act=config.hidden_act) def forward(self, hidden_states): hidden_states = self.dense_act(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask): attention_output = self.attention(hidden_states, attention_mask) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) self.output_all_encoded_layers = config.output_all_encoded_layers self._checkpoint_activations = False @torch.jit.unused def checkpointed_forward(self, hidden_states, attention_mask): def custom(start, end): def custom_forward(*inputs): layers = self.layer[start:end] x_ = inputs[0] for layer in layers: x_ = layer(x_, inputs[1]) return x_ return custom_forward l = 0 num_layers = len(self.layer) chunk_length = math.ceil(math.sqrt(num_layers)) while l < num_layers: hidden_states = checkpoint.checkpoint(custom(l, l+chunk_length), hidden_states, attention_mask*1) l += chunk_length return hidden_states def forward(self, hidden_states, attention_mask): all_encoder_layers = [] if self._checkpoint_activations: hidden_states = self.checkpointed_forward(hidden_states, attention_mask) else: for i,layer_module in enumerate(self.layer): hidden_states = layer_module(hidden_states, attention_mask) if self.output_all_encoded_layers: all_encoder_layers.append(hidden_states) if not self.output_all_encoded_layers or self._checkpoint_activations: all_encoder_layers.append(hidden_states) return all_encoder_layers class BertPooler(nn.Module): def __init__(self, config): super(BertPooler, self).__init__() self.dense_act = LinearActivation(config.hidden_size, config.hidden_size, act="tanh") def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense_act(first_token_tensor) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.dense_act = LinearActivation(config.hidden_size, config.hidden_size, act=config.hidden_act) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) def forward(self, hidden_states): hidden_states = self.dense_act(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config, bert_model_embedding_weights): super(BertLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(bert_model_embedding_weights.size(1), bert_model_embedding_weights.size(0), bias=False) self.decoder.weight = bert_model_embedding_weights self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0))) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config, bert_model_embedding_weights): super(BertOnlyMLMHead, self).__init__() self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class BertOnlyNSPHead(nn.Module): def __init__(self, config): super(BertOnlyNSPHead, self).__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class BertPreTrainingHeads(nn.Module): def __init__(self, config, bert_model_embedding_weights): super(BertPreTrainingHeads, self).__init__() self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(nn.Module): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ def __init__(self, config, *inputs, **kwargs): super(BertPreTrainedModel, self).__init__() if not isinstance(config, BertConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `BertConfig`. " "To create a model from a Google pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ )) self.config = config def init_bert_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def checkpoint_activations(self, val): def _apply_flag(module): if hasattr(module, "_checkpoint_activations"): module._checkpoint_activations=val self.apply(_apply_flag) def enable_apex(self, val): def _apply_flag(module): if hasattr(module, "apex_enabled"): module.apex_enabled=val self.apply(_apply_flag) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs): """ Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict. Download and cache the pre-trained model file if needed. Params: pretrained_model_name_or_path: either: - a str with the name of a pre-trained model to load selected in the list of: . `bert-base-uncased` . `bert-large-uncased` . `bert-base-cased` . `bert-large-cased` . `bert-base-multilingual-uncased` . `bert-base-multilingual-cased` . `bert-base-chinese` - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `model.chkpt` a TensorFlow checkpoint from_tf: should we load the weights from a locally saved TensorFlow checkpoint cache_dir: an optional path to a folder in which the pre-trained models will be cached. state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models *inputs, **kwargs: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification) """ if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP: archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path] else: archive_file = pretrained_model_name_or_path # redirect to the cache, if necessary try: resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) except EnvironmentError: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name_or_path, ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), archive_file)) return None if resolved_archive_file == archive_file: logger.info("loading archive file {}".format(archive_file)) else: logger.info("loading archive file {} from cache at {}".format( archive_file, resolved_archive_file)) tempdir = None if os.path.isdir(resolved_archive_file) or from_tf: serialization_dir = resolved_archive_file else: # Extract archive to temp dir tempdir = tempfile.mkdtemp() logger.info("extracting archive file {} to temp dir {}".format( resolved_archive_file, tempdir)) with tarfile.open(resolved_archive_file, 'r:gz') as archive: archive.extractall(tempdir) serialization_dir = tempdir # Load config config_file = os.path.join(serialization_dir, CONFIG_NAME) config = BertConfig.from_json_file(config_file) logger.info("Model config {}".format(config)) # Instantiate model. model = cls(config, *inputs, **kwargs) if state_dict is None and not from_tf: weights_path = os.path.join(serialization_dir, WEIGHTS_NAME) state_dict = torch.load(weights_path, map_location='cpu' if not torch.cuda.is_available() else None) if tempdir: # Clean up temp dir shutil.rmtree(tempdir) if from_tf: # Directly load from a TensorFlow checkpoint weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME) return load_tf_weights_in_bert(model, weights_path) # Load from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if 'gamma' in key: new_key = key.replace('gamma', 'weight') if 'beta' in key: new_key = key.replace('beta', 'bias') if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') start_prefix = '' if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()): start_prefix = 'bert.' load(model, prefix=start_prefix) if len(missing_keys) > 0: logger.info("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: logger.info("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(error_msgs) > 0: raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( model.__class__.__name__, "\n\t".join(error_msgs))) return model class BertModel(BertPreTrainedModel): """BERT model ("Bidirectional Embedding Representations from a Transformer"). Params: config: a BertConfig class instance with the configuration to build a new model Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. Outputs: Tuple of (encoded_layers, pooled_output) `encoded_layers`: controled by `output_all_encoded_layers` argument: - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding to the last attention block of shape [batch_size, sequence_length, hidden_size], `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLS`) to train on the Next-Sentence task (see BERT's paper). Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = modeling.BertModel(config=config) all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertModel, self).__init__(config) self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.apply(self.init_bert_weights) self.output_all_encoded_layers = config.output_all_encoded_layers def forward(self, input_ids, token_type_ids, attention_mask): # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.embeddings.word_embeddings.weight.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output = self.embeddings(input_ids, token_type_ids) encoded_layers = self.encoder(embedding_output, extended_attention_mask) sequence_output = encoded_layers[-1] pooled_output = self.pooler(sequence_output) if not self.output_all_encoded_layers: encoded_layers = encoded_layers[-1:] return encoded_layers, pooled_output class BertForPreTraining(BertPreTrainedModel): """BERT model with pre-training heads. This module comprises the BERT model followed by the two pre-training heads: - the masked language modeling head, and - the next sentence classification head. Params: config: a BertConfig class instance with the configuration to build a new model. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size] `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size] with indices selected in [0, 1]. 0 => next sentence is the continuation, 1 => next sentence is a random sentence. Outputs: if `masked_lm_labels` and `next_sentence_label` are not `None`: Outputs the total_loss which is the sum of the masked language modeling loss and the next sentence classification loss. if `masked_lm_labels` or `next_sentence_label` is `None`: Outputs a tuple comprising - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and - the next sentence classification logits of shape [batch_size, 2]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForPreTraining(config) masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertForPreTraining, self).__init__(config) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids, attention_mask): encoded_layers, pooled_output = self.bert(input_ids, token_type_ids, attention_mask) sequence_output = encoded_layers[-1] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) return prediction_scores, seq_relationship_score class BertForMaskedLM(BertPreTrainedModel): """BERT model with the masked language modeling head. This module comprises the BERT model followed by the masked language modeling head. Params: config: a BertConfig class instance with the configuration to build a new model. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size] Outputs: if `masked_lm_labels` is not `None`: Outputs the masked language modeling loss. if `masked_lm_labels` is `None`: Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForMaskedLM(config) masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertForMaskedLM, self).__init__(config) self.bert = BertModel(config) self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None): encoded_layers, _ = self.bert(input_ids, token_type_ids, attention_mask) sequence_output = encoded_layers[-1] prediction_scores = self.cls(sequence_output) if masked_lm_labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) return masked_lm_loss else: return prediction_scores class BertForNextSentencePrediction(BertPreTrainedModel): """BERT model with next sentence prediction head. This module comprises the BERT model followed by the next sentence classification head. Params: config: a BertConfig class instance with the configuration to build a new model. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size] with indices selected in [0, 1]. 0 => next sentence is the continuation, 1 => next sentence is a random sentence. Outputs: if `next_sentence_label` is not `None`: Outputs the total_loss which is the sum of the masked language modeling loss and the next sentence classification loss. if `next_sentence_label` is `None`: Outputs the next sentence classification logits of shape [batch_size, 2]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForNextSentencePrediction(config) seq_relationship_logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertForNextSentencePrediction, self).__init__(config) self.bert = BertModel(config) self.cls = BertOnlyNSPHead(config) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None): _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask) seq_relationship_score = self.cls( pooled_output) if next_sentence_label is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) return next_sentence_loss else: return seq_relationship_score class BertForSequenceClassification(BertPreTrainedModel): """BERT model for classification. This module is composed of the BERT model with a linear layer on top of the pooled output. Params: `config`: a BertConfig class instance with the configuration to build a new model. `num_labels`: the number of classes for the classifier. Default = 2. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `labels`: labels for the classification output: torch.LongTensor of shape [batch_size] with indices selected in [0, ..., num_labels]. Outputs: if `labels` is not `None`: Outputs the CrossEntropy classification loss of the output with the labels. if `labels` is `None`: Outputs the classification logits of shape [batch_size, num_labels]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) num_labels = 2 model = BertForSequenceClassification(config, num_labels) logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config, num_labels): super(BertForSequenceClassification, self).__init__(config) self.num_labels = num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, num_labels) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None): _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask) pooled_output = self.dropout(pooled_output) return self.classifier(pooled_output) class BertForMultipleChoice(BertPreTrainedModel): """BERT model for multiple choice tasks. This module is composed of the BERT model with a linear layer on top of the pooled output. Params: `config`: a BertConfig class instance with the configuration to build a new model. `num_choices`: the number of classes for the classifier. Default = 2. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `labels`: labels for the classification output: torch.LongTensor of shape [batch_size] with indices selected in [0, ..., num_choices]. Outputs: if `labels` is not `None`: Outputs the CrossEntropy classification loss of the output with the labels. if `labels` is `None`: Outputs the classification logits of shape [batch_size, num_labels]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]]) input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]]) token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) num_choices = 2 model = BertForMultipleChoice(config, num_choices) logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config, num_choices): super(BertForMultipleChoice, self).__init__(config) self.num_choices = num_choices self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): flat_input_ids = input_ids.view(-1, input_ids.size(-1)) flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) _, pooled_output = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, self.num_choices) if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) return loss else: return reshaped_logits class BertForTokenClassification(BertPreTrainedModel): """BERT model for token-level classification. This module is composed of the BERT model with a linear layer on top of the full hidden state of the last layer. Params: `config`: a BertConfig class instance with the configuration to build a new model. `num_labels`: the number of classes for the classifier. Default = 2. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, ..., num_labels]. Outputs: if `labels` is not `None`: Outputs the CrossEntropy classification loss of the output with the labels. if `labels` is `None`: Outputs the classification logits of shape [batch_size, sequence_length, num_labels]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) num_labels = 2 model = BertForTokenClassification(config, num_labels) logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config, num_labels): super(BertForTokenClassification, self).__init__(config) self.num_labels = num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, num_labels) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): encoded_layers, _ = self.bert(input_ids, token_type_ids, attention_mask) sequence_output = encoded_layers[-1] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return loss else: return logits class BertForQuestionAnswering(BertPreTrainedModel): """BERT model for Question Answering (span extraction). This module is composed of the BERT model with a linear layer on top of the sequence output that computes start_logits and end_logits Params: `config`: a BertConfig class instance with the configuration to build a new model. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. Outputs: Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end position tokens of shape [batch_size, sequence_length]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForQuestionAnswering(config) start_logits, end_logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertForQuestionAnswering, self).__init__(config) self.bert = BertModel(config) # TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version # self.dropout = nn.Dropout(config.hidden_dropout_prob) self.qa_outputs = nn.Linear(config.hidden_size, 2) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids, attention_mask): encoded_layers, _ = self.bert(input_ids, token_type_ids, attention_mask) sequence_output = encoded_layers[-1] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) return start_logits, end_logits
48.423557
134
0.65378
2624c148bae85093e9ddb4a311244a475455bd01
5,497
py
Python
ci/build.py
TheButlah/SlimeVR-Tracker-ESP
0ec39b41eb59e4dd0b411f6407a34a3ffded3aea
[ "MIT" ]
4
2022-01-06T14:41:10.000Z
2022-03-11T02:27:47.000Z
ci/build.py
TheButlah/SlimeVR-Tracker-ESP
0ec39b41eb59e4dd0b411f6407a34a3ffded3aea
[ "MIT" ]
null
null
null
ci/build.py
TheButlah/SlimeVR-Tracker-ESP
0ec39b41eb59e4dd0b411f6407a34a3ffded3aea
[ "MIT" ]
null
null
null
import json import os import shutil from enum import Enum from textwrap import dedent from typing import List COLOR_ESC = '\033[' COLOR_RESET = f'{COLOR_ESC}0m' COLOR_GREEN = f'{COLOR_ESC}32m' COLOR_RED = f'{COLOR_ESC}31m' COLOR_CYAN = f'{COLOR_ESC}36m' COLOR_GRAY = f'{COLOR_ESC}30;1m' class Board(Enum): SLIMEVR = "BOARD_SLIMEVR" WROOM32 = "BOARD_WROOM32" class DeviceConfiguration: def __init__(self, platform: str, board: Board, platformio_board: str) -> None: self.platform = platform self.board = board self.platformio_board = platformio_board def get_platformio_section(self) -> str: section = dedent(f""" [env:{self.platformio_board}] platform = {self.platform} board = {self.platformio_board}""") if self.platform == "espressif32": section += dedent(""" lib_deps = ${env.lib_deps} lorol/LittleFS_esp32 @ 1.0.6 """) return section def filename(self) -> str: return f"{self.platformio_board}.bin" def build_header(self) -> str: sda = "" scl = "" imu_int = "" imu_int2 = "" battery_level = "" leds = True if self.board == Board.SLIMEVR: sda = "4" scl = "5" imu_int = "10" imu_int2 = "13" battery_level = "17" elif self.board == Board.WROOM32: sda = "21" scl = "22" imu_int = "23" imu_int2 = "25" battery_level = "36" else: raise Exception(f"Unknown board: {self.board.value}") return f""" #define IMU IMU_BNO085 #define SECOND_IMU IMU #define BOARD {self.board.value} #define BATTERY_MONITOR BAT_EXTERNAL #define PIN_IMU_SDA {sda} #define PIN_IMU_SCL {scl} #define PIN_IMU_INT {imu_int} #define PIN_IMU_INT_2 {imu_int2} #define PIN_BATTERY_LEVEL {battery_level} #define ENABLE_LEDS {leds.__str__().lower()} #define BATTERY_SHIELD_RESISTANCE 180 #define IMU_ROTATION DEG_90 #define SECOND_IMU_ROTATION DEG_90 """ def __str__(self) -> str: return f"{self.platform}@{self.board.value}" def get_matrix() -> List[DeviceConfiguration]: matrix: List[DeviceConfiguration] = [] configFile = open("./ci/devices.json", "r") config = json.load(configFile) for deviceConfig in config: matrix.append(DeviceConfiguration( deviceConfig["platform"], Board[deviceConfig["board"]], deviceConfig["platformio_board"])) return matrix def prepare() -> None: print(f"🡢 {COLOR_CYAN}Preparation{COLOR_RESET}") print(f" 🡢 {COLOR_GRAY}Backing up src/defines.h{COLOR_RESET}") shutil.copy("src/defines.h", "src/defines.h.bak") print(f" 🡢 {COLOR_GRAY}Backing up platformio.ini{COLOR_RESET}") shutil.copy("./platformio.ini", "platformio.ini.bak") print(f" 🡢 {COLOR_GRAY}Copying over build/platformio.ini{COLOR_RESET}") shutil.copy("./ci/platformio.ini", "platformio.ini") if os.path.exists("./build"): print(f" 🡢 {COLOR_GRAY}Removing existing build folder...{COLOR_RESET}") shutil.rmtree("./build") print(f" 🡢 {COLOR_GRAY}Creating build folder...{COLOR_RESET}") os.mkdir("./build") print(f" 🡢 {COLOR_GREEN}Success!{COLOR_RESET}") def cleanup() -> None: print(f"🡢 {COLOR_CYAN}Cleanup{COLOR_RESET}") print(f" 🡢 {COLOR_GRAY}Restoring src/defines.h...{COLOR_RESET}") shutil.copy("src/defines.h.bak", "src/defines.h") print(f" 🡢 {COLOR_GRAY}Removing src/defines.h.bak...{COLOR_RESET}") os.remove("src/defines.h.bak") print(f" 🡢 {COLOR_GRAY}Restoring platformio.ini...{COLOR_RESET}") shutil.copy("platformio.ini.bak", "platformio.ini") print(f" 🡢 {COLOR_GRAY}Removing platformio.ini.bak...{COLOR_RESET}") os.remove("platformio.ini.bak") print(f" 🡢 {COLOR_GREEN}Success!{COLOR_RESET}") def build() -> int: print(f"🡢 {COLOR_CYAN}Build{COLOR_RESET}") failed_builds: List[str] = [] code = 0 matrix = get_matrix() with open("./platformio.ini", "a") as f1: for device in matrix: f1.write(device.get_platformio_section()) for device in matrix: print(f" 🡢 {COLOR_CYAN}Building for {device.platform}{COLOR_RESET}") status = build_for_device(device) if status == False: failed_builds.append(device.platformio_board) if len(failed_builds) > 0: print(f" 🡢 {COLOR_RED}Failed!{COLOR_RESET}") for failed_build in failed_builds: print(f" 🡢 {COLOR_RED}{failed_build}{COLOR_RESET}") code = 1 else: print(f" 🡢 {COLOR_GREEN}Success!{COLOR_RESET}") return code def build_for_device(device: DeviceConfiguration) -> bool: success = True print(f"::group::Build {device}") with open("src/defines.h", "wt") as f: f.write(device.build_header()) code = os.system( f"platformio run -e {device.platformio_board}") if code == 0: shutil.copy(f".pio/build/{device.platformio_board}/firmware.bin", f"build/{device.filename()}") print(f" 🡢 {COLOR_GREEN}Success!{COLOR_RESET}") else: success = False print(f" 🡢 {COLOR_RED}Failed!{COLOR_RESET}") print(f"::endgroup::") return success def main() -> None: prepare() code = build() cleanup() os._exit(code) if __name__ == "__main__": main()
25.929245
102
0.617973
73448355aedee533025f0389d1b1b517535a68f3
232
py
Python
application.py
vanveele/docker-demo
eafd5dec9da5b103718749feaaecf4e6d3defba3
[ "MIT" ]
null
null
null
application.py
vanveele/docker-demo
eafd5dec9da5b103718749feaaecf4e6d3defba3
[ "MIT" ]
null
null
null
application.py
vanveele/docker-demo
eafd5dec9da5b103718749feaaecf4e6d3defba3
[ "MIT" ]
null
null
null
from flask import Flask import os app = Flask(__name__) @app.route("/") def hello(): ver = os.getenv('VERSION', 'undef') return "Hello World! Version: {}".format(ver) if __name__ == "__main__": app.run(host='0.0.0.0')
19.333333
49
0.633621
41ee78b6c443d34f7d49666d8b4e6e171ab614d4
412
py
Python
detagger.py
CrysthelAparicio/html-xml-detagger
5951d17062c2e301a37b127e5a1731d4acfe0c5a
[ "MIT" ]
null
null
null
detagger.py
CrysthelAparicio/html-xml-detagger
5951d17062c2e301a37b127e5a1731d4acfe0c5a
[ "MIT" ]
null
null
null
detagger.py
CrysthelAparicio/html-xml-detagger
5951d17062c2e301a37b127e5a1731d4acfe0c5a
[ "MIT" ]
null
null
null
import sys import re r = open(sys.argv[1], 'r') w = open(sys.argv[1] + '_detagged.txt', 'w') regex = re.compile(r'<.*?>') regex_tag_to_end_of_line = re.compile(r'<.*?\n') regex_start_of_line_to_tag = re.compile(r'^.*?>') for line in r: line = regex.sub(' ', line) line = regex_tag_to_end_of_line.sub('', line) line = regex_start_of_line_to_tag.sub('',line) w.write(line) w.close() r.close()
20.6
50
0.63835
4a27916aaed4e9d577d8960eb3a0d3ceb20db678
18,424
py
Python
sample_mods/distl/dist_col.py
kuanhanl/cappresse
31cd7d03414a930f7e2c21e1a3eb5e7dd25cc500
[ "MIT" ]
2
2019-09-26T20:56:06.000Z
2019-11-18T21:03:27.000Z
sample_mods/distl/dist_col.py
kuanhanl/cappresse
31cd7d03414a930f7e2c21e1a3eb5e7dd25cc500
[ "MIT" ]
6
2018-03-19T20:36:49.000Z
2018-04-13T15:27:29.000Z
sample_mods/distl/dist_col.py
kuanhanl/cappresse
31cd7d03414a930f7e2c21e1a3eb5e7dd25cc500
[ "MIT" ]
5
2018-10-04T18:51:02.000Z
2020-07-02T15:31:35.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from pyomo.core.base import ConcreteModel, Set, Constraint, Var,\ Param, Objective, minimize, sqrt, exp, Suffix, Expression, value from nmpc_mhe.aux.cpoinsc import collptsgen from nmpc_mhe.aux.lagrange_f import lgr, lgry, lgrdot, lgrydot from dist_col_mod import * from six import itervalues, iterkeys, iteritems from pyomo.opt import ProblemFormat, SolverFactory import re, os """ Version 03. Need a reference model that can initialize the reference steady-state model. """ __author__ = 'David M Thierry @dthierry' class DistDiehlNegrete(ConcreteModel): def __init__(self, nfe_t, ncp_t, **kwargs): ConcreteModel.__init__(self) steady = kwargs.pop('steady', False) _t = kwargs.pop('_t', 1.0) Ntray = kwargs.pop('Ntray', 42) # -------------------------------------------------------------------------------------------------------------- # Orthogonal Collocation Parameters section # Radau self._alp_gauB_t = 1 self._bet_gauB_t = 0 if steady: print("[I] " + str(self.__class__.__name__) + " NFE and NCP Overriden - Steady state mode") self.nfe_t = 1 self.ncp_t = 1 else: self.nfe_t = nfe_t self.ncp_t = ncp_t self.tau_t = collptsgen(self.ncp_t, self._alp_gauB_t, self._bet_gauB_t) # start at zero self.tau_i_t = {0: 0.} # create a list for ii in range(1, self.ncp_t + 1): self.tau_i_t[ii] = self.tau_t[ii - 1] # ======= SETS ======= # # For finite element = 1 .. NFE # This has to be > 0 self.fe_t = Set(initialize=[ii for ii in range(1, self.nfe_t + 1)]) # collocation points # collocation points for differential variables self.cp_t = Set(initialize=[ii for ii in range(0, self.ncp_t + 1)]) # collocation points for algebraic variables self.cp_ta = Set(within=self.cp_t, initialize=[ii for ii in range(1, self.ncp_t + 1)]) # create collocation param self.taucp_t = Param(self.cp_t, initialize=self.tau_i_t) self.ldot_t = Param(self.cp_t, self.cp_t, initialize= (lambda m, j, k: lgrdot(k, m.taucp_t[j], self.ncp_t, self._alp_gauB_t, self._bet_gauB_t))) #: watch out for this! self.l1_t = Param(self.cp_t, initialize= (lambda m, j: lgr(j, 1, self.ncp_t, self._alp_gauB_t, self._bet_gauB_t))) # -------------------------------------------------------------------------------------------------------------- # Model parameters self.Ntray = Ntray self.tray = Set(initialize=[i for i in range(1, Ntray + 1)]) self.feed = Param(self.tray, initialize=lambda m, t: 57.5294 if t == 21 else 0.0, mutable=True) self.xf = Param(initialize=0.32, mutable=True) # feed mole fraction self.hf = Param(initialize=9081.3) # feed enthalpy self.hlm0 = Param(initialize=2.6786e-04) self.hlma = Param(initialize=-0.14779) self.hlmb = Param(initialize=97.4289) self.hlmc = Param(initialize=-2.1045e04) self.hln0 = Param(initialize=4.0449e-04) self.hlna = Param(initialize=-0.1435) self.hlnb = Param(initialize=121.7981) self.hlnc = Param(initialize=-3.0718e04) self.r = Param(initialize=8.3147) self.a = Param(initialize=6.09648) self.b = Param(initialize=1.28862) self.c1 = Param(initialize=1.016) self.d = Param(initialize=15.6875) self.l = Param(initialize=13.4721) self.f = Param(initialize=2.615) self.gm = Param(initialize=0.557) self.Tkm = Param(initialize=512.6) self.Pkm = Param(initialize=8.096e06) self.gn = Param(initialize=0.612) self.Tkn = Param(initialize=536.7) self.Pkn = Param(initialize=5.166e06) self.CapAm = Param(initialize=23.48) self.CapBm = Param(initialize=3626.6) self.CapCm = Param(initialize=-34.29) self.CapAn = Param(initialize=22.437) self.CapBn = Param(initialize=3166.64) self.CapCn = Param(initialize=-80.15) self.pstrip = Param(initialize=250) self.prect = Param(initialize=190) def _p_init(m, t): ptray = 9.39e04 if t <= 20: return _p_init(m, 21) + m.pstrip * (21 - t) elif 20 < t < m.Ntray: return ptray + m.prect * (m.Ntray - t) elif t == m.Ntray: return 9.39e04 self.p = Param(self.tray, initialize=_p_init) self.T29_des = Param(initialize=343.15) self.T15_des = Param(initialize=361.15) self.Dset = Param(initialize=1.83728) self.Qcset = Param(initialize=1.618890) self.Qrset = Param(initialize=1.786050) # self.Recset = Param() self.alpha_T29 = Param(initialize=1) self.alpha_T15 = Param(initialize=1) self.alpha_D = Param(initialize=1) self.alpha_Qc = Param(initialize=1) self.alpha_Qr = Param(initialize=1) self.alpha_Rec = Param(initialize=1) def _alpha_init(m, i): if i <= 21: return 0.62 else: return 0.35 self.alpha = Param(self.tray, initialize=lambda m, t: 0.62 if t <= 21 else 0.35) # -------------------------------------------------------------------------------------------------------------- #: First define differential state variables (state: x, ic-Param: x_ic, derivative-Var:dx_dt #: States (differential) section zero_tray = dict.fromkeys(self.tray) zero3 = dict.fromkeys(self.fe_t * self.cp_t * self.tray) for key in zero3.keys(): zero3[key] = 0.0 def __m_init(m, i, j, t): if t < m.Ntray: return 4000. elif t == 1: return 104340. elif t == m.Ntray: return 5000. #: Liquid hold-up self.M = Var(self.fe_t, self.cp_t, self.tray, initialize=__m_init) #: Mole-fraction self.x = Var(self.fe_t, self.cp_t, self.tray, initialize=lambda m, i, j, t: 0.999 * t / m.Ntray) #: Initial state-Param self.M_ic = zero_tray if steady else Param(self.tray, initialize=0.0, mutable=True) self.x_ic = zero_tray if steady else Param(self.tray, initialize=0.0, mutable=True) #: Derivative-var self.dM_dt = zero3 if steady else Var(self.fe_t, self.cp_t, self.tray, initialize=0.0) self.dx_dt = zero3 if steady else Var(self.fe_t, self.cp_t, self.tray, initialize=0.0) # -------------------------------------------------------------------------------------------------------------- # States (algebraic) section # Tray temperature self.T = Var(self.fe_t, self.cp_ta, self.tray, initialize=lambda m, i, j, t: ((370.781 - 335.753) / m.Ntray) * t + 370.781) self.Tdot = Var(self.fe_t, self.cp_ta, self.tray, initialize=1e-05) #: Not really a der_var # saturation pressures self.pm = Var(self.fe_t, self.cp_ta, self.tray, initialize=1e4) self.pn = Var(self.fe_t, self.cp_ta, self.tray, initialize=1e4) # Vapor mole flowrate self.V = Var(self.fe_t, self.cp_ta, self.tray, initialize=44.0) def _l_init(m, i, j, t): if 2 <= t <= 21: return 83. elif 22 <= t <= 42: return 23 elif t == 1: return 40 # Liquid mole flowrate self.L = Var(self.fe_t, self.cp_ta, self.tray, initialize=_l_init) # Vapor mole frac & diff var self.y = Var(self.fe_t, self.cp_ta, self.tray, initialize=lambda m, i, j, t: ((0.99 - 0.005) / m.Ntray) * t + 0.005) # Liquid enthalpy # enthalpy self.hl = Var(self.fe_t, self.cp_ta, self.tray, initialize=10000.) # Liquid enthalpy # enthalpy self.hv = Var(self.fe_t, self.cp_ta, self.tray, initialize=5e+04) # Re-boiler & condenser heat self.Qc = Var(self.fe_t, self.cp_ta, initialize=1.6e06) self.D = Var(self.fe_t, self.cp_ta, initialize=18.33) # vol holdups self.Vm = Var(self.fe_t, self.cp_ta, self.tray, initialize=6e-05) self.Mv = Var(self.fe_t, self.cp_ta, self.tray, initialize=lambda m, i, j, t: 0.23 if 1 < t < m.Ntray else 0.0) self.Mv1 = Var(self.fe_t, self.cp_ta, initialize=8.57) self.Mvn = Var(self.fe_t, self.cp_ta, initialize=0.203) hi_t = dict.fromkeys(self.fe_t) for key in hi_t.keys(): hi_t[key] = 1.0 if steady else _t/self.nfe_t self.hi_t = hi_t if steady else Param(self.fe_t, initialize=hi_t) # -------------------------------------------------------------------------------------------------------------- #: Controls self.u1 = Param(self.fe_t, initialize=7.72700925775773761472464684629813E-01, mutable=True) #: Dummy self.u2 = Param(self.fe_t, initialize=1.78604740940007800236344337463379E+06, mutable=True) #: Dummy self.Rec = Var(self.fe_t, initialize=7.72700925775773761472464684629813E-01) self.Qr = Var(self.fe_t, initialize=1.78604740940007800236344337463379E+06) # -------------------------------------------------------------------------------------------------------------- #: Constraints for the differential states #: Then the ode-Con:de_x, collocation-Con:dvar_t_x, noisy-Expr: noisy_x, cp-Constraint: cp_x, initial-Con: x_icc #: Differential equations self.de_M = Constraint(self.fe_t, self.cp_ta, self.tray, rule=m_ode) self.de_x = Constraint(self.fe_t, self.cp_ta, self.tray, rule=x_ode) #: Collocation equations self.dvar_t_M = None if steady else Constraint(self.fe_t, self.cp_ta, self.tray, rule=M_COLL) self.dvar_t_x = None if steady else Constraint(self.fe_t, self.cp_ta, self.tray, rule=x_coll) #: Continuation equations (redundancy here) if self.nfe_t > 1: #: Noisy expressions self.noisy_M = None if steady else Expression(self.fe_t, self.tray, rule=M_CONT) self.noisy_x = None if steady else Expression(self.fe_t, self.tray, rule=x_cont) #: Continuation equations self.cp_M = None if steady else \ Constraint(self.fe_t, self.tray, rule=lambda m, i, t: self.noisy_M[i, t] == 0.0 if i < self.nfe_t else Constraint.Skip) self.cp_x = None if steady else \ Constraint(self.fe_t, self.tray, rule=lambda m, i, t: self.noisy_x[i, t] == 0.0 if i < self.nfe_t else Constraint.Skip) #: Initial condition-Constraints self.M_icc = None if steady else Constraint(self.tray, rule=acm) self.x_icc = None if steady else Constraint(self.tray, rule=acx) # -------------------------------------------------------------------------------------------------------------- #: Constraint section (algebraic equations) self.hrc = Constraint(self.fe_t, self.cp_ta, rule=hrc) self.gh = Constraint(self.fe_t, self.cp_ta, self.tray, rule=gh) self.ghb = Constraint(self.fe_t, self.cp_ta, rule=ghb) self.ghc = Constraint(self.fe_t, self.cp_ta, rule=ghc) self.hkl = Constraint(self.fe_t, self.cp_ta, self.tray, rule=hkl) self.hkv = Constraint(self.fe_t, self.cp_ta, self.tray, rule=hkv) self.lpself = Constraint(self.fe_t, self.cp_ta, self.tray, rule=lpm) self.lpn = Constraint(self.fe_t, self.cp_ta, self.tray, rule=lpn) self.dp = Constraint(self.fe_t, self.cp_ta, self.tray, rule=dp) self.lTdot = Constraint(self.fe_t, self.cp_ta, self.tray, rule=lTdot) self.gy0 = Constraint(self.fe_t, self.cp_ta, rule=gy0) self.gy = Constraint(self.fe_t, self.cp_ta, self.tray, rule=gy) self.dMV = Constraint(self.fe_t, self.cp_ta, self.tray, rule=dMV) self.dMv1 = Constraint(self.fe_t, self.cp_ta, rule=dMv1) self.dMvn = Constraint(self.fe_t, self.cp_ta, rule=dMvn) self.hyd = Constraint(self.fe_t, self.cp_ta, self.tray, rule=hyd) self.hyd1 = Constraint(self.fe_t, self.cp_ta, rule=hyd1) self.hydN = Constraint(self.fe_t, self.cp_ta, rule=hydN) self.dvself = Constraint(self.fe_t, self.cp_ta, self.tray, rule=dvm) # -------------------------------------------------------------------------------------------------------------- #: Control constraint self.u1_e = Expression(self.fe_t, rule=lambda m, i: self.Rec[i]) self.u2_e = Expression(self.fe_t, rule=lambda m, i: self.Qr[i]) self.u1_c = Constraint(self.fe_t, rule=lambda m, i: self.u1[i] == self.u1_e[i]) self.u2_c = Constraint(self.fe_t, rule=lambda m, i: self.u2[i] == self.u2_e[i]) # -------------------------------------------------------------------------------------------------------------- #: Suffixes self.dual = Suffix(direction=Suffix.IMPORT_EXPORT) self.ipopt_zL_out = Suffix(direction=Suffix.IMPORT) self.ipopt_zU_out = Suffix(direction=Suffix.IMPORT) self.ipopt_zL_in = Suffix(direction=Suffix.EXPORT) self.ipopt_zU_in = Suffix(direction=Suffix.EXPORT) def write_nl(self): """Writes the nl file and the respective row & col""" name = str(self.__class__.__name__) + ".nl" self.write(filename=name, format=ProblemFormat.nl, io_options={"symbolic_solver_labels": True}) def create_bounds(self): """Creates bounds for the variables""" for value in itervalues(self.M): value.setlb(1.0) for value in itervalues(self.T): value.setlb(200) for value in itervalues(self.pm): value.setlb(1.0) for value in itervalues(self.pn): value.setlb(1.0) for value in itervalues(self.L): value.setlb(0.0) for value in itervalues(self.V): value.setlb(0.0) for value in itervalues(self.x): value.setlb(0.0) for value in itervalues(self.y): value.setlb(0.0) for value in itervalues(self.hl): value.setlb(1.0) for value in itervalues(self.hv): value.setlb(1.0) for value in itervalues(self.Qc): value.setlb(0.0) for value in itervalues(self.D): value.setlb(0.0) for value in itervalues(self.Vm): value.setlb(0.0) for value in itervalues(self.Mv): value.setlb(0.155 + 1e-06) for value in itervalues(self.Mv1): value.setlb(8.5 + 1e-06) for value in itervalues(self.Mvn): value.setlb(0.17 + 1e-06) for value in itervalues(self.M): value.setub(1e+07) for value in itervalues(self.T): value.setub(500) for value in itervalues(self.pm): value.setub(5e+07) for value in itervalues(self.pn): value.setub(5e+07) for value in itervalues(self.L): value.setub(1e+03) for value in itervalues(self.V): value.setub(1e+03) for value in itervalues(self.x): value.setub(1.0) for value in itervalues(self.y): value.setub(1.0) for value in itervalues(self.hl): value.setub(1e+07) for value in itervalues(self.hv): value.setub(1e+07) for value in itervalues(self.Qc): value.setub(1e+08) for value in itervalues(self.D): value.setub(1e+04) for value in itervalues(self.Vm): value.setub(1e+04) for value in itervalues(self.Mv): value.setub(1e+04) for value in itervalues(self.Mv1): value.setub(1e+04) for value in itervalues(self.Mvn): value.setub(1e+04) @staticmethod def parse_ig_ampl(file_i): lines = file_i.readlines() dict = {} for line in lines: kk = re.split('(?:let)|[:=\s\[\]]', line) try: var = kk[2] # print(var) key = kk[3] key = re.split(',', key) actual_key = [] for k in key: actual_key.append(int(k)) actual_key.append(actual_key.pop(0)) actual_key = tuple(actual_key) value = kk[8] value = float(value) dict[var, actual_key] = value except IndexError: continue file_i.close() return dict def init_steady_ref(self): """If the model is steady, we try to initialize it with an initial guess from ampl""" cur_dir = os.path.dirname(__file__) ampl_ig = os.path.join(cur_dir, "iv_ss.txt") file_tst = open(ampl_ig, "r") if self.nfe_t == 1 and self.ncp_t == 1: somedict = self.parse_ig_ampl(file_tst) for var in self.component_objects(Var, active=True): vx = getattr(self, str(var)) for v, k in var.iteritems(): try: vx[v] = somedict[str(var), v] except KeyError: continue solver = SolverFactory('ipopt') someresults = solver.solve(self, tee=True) def equalize_u(self, direction="u_to_r"): """set current controls to the values of their respective dummies""" if direction == "u_to_r": for i in iterkeys(self.Rec): self.Rec[i].set_value(value(self.u1[i])) for i in iterkeys(self.Rec): self.Qr[i].set_value(value(self.u2[i])) elif direction == "r_to_u": for i in iterkeys(self.u1): self.u1[i].value = value(self.Rec[i]) for i in iterkeys(self.u2): self.u2[i].value = value(self.Qr[i])
40.942222
122
0.547981
7749968593dca61f8932979a24a68864c24e4e6e
18,297
py
Python
chainer/links/model/vision/googlenet.py
takeratta/chainer
02686e98cd6dc8f20979a1f3a79130f076cbfc6c
[ "MIT" ]
2
2018-02-05T07:25:48.000Z
2018-08-28T20:29:45.000Z
chainer/links/model/vision/googlenet.py
takeratta/chainer
02686e98cd6dc8f20979a1f3a79130f076cbfc6c
[ "MIT" ]
null
null
null
chainer/links/model/vision/googlenet.py
takeratta/chainer
02686e98cd6dc8f20979a1f3a79130f076cbfc6c
[ "MIT" ]
1
2018-08-23T01:34:57.000Z
2018-08-23T01:34:57.000Z
from __future__ import print_function import collections import os import numpy try: from PIL import Image available = True except ImportError as e: available = False _import_error = e import chainer from chainer.dataset.convert import concat_examples from chainer.dataset import download from chainer import function from chainer.functions.activation.relu import relu from chainer.functions.activation.softmax import softmax from chainer.functions.array.reshape import reshape from chainer.functions.math.average import average from chainer.functions.noise.dropout import dropout from chainer.functions.normalization.local_response_normalization import ( local_response_normalization) from chainer.functions.pooling.average_pooling_2d import average_pooling_2d from chainer.functions.pooling.max_pooling_2d import max_pooling_2d from chainer.initializers import constant from chainer.initializers import uniform from chainer import link from chainer.links.connection.convolution_2d import Convolution2D from chainer.links.connection.inception import Inception from chainer.links.connection.linear import Linear from chainer.serializers import npz from chainer.utils import argument from chainer.utils import imgproc from chainer.variable import Variable class GoogLeNet(link.Chain): """A pre-trained GoogLeNet model provided by BVLC. When you specify the path of the pre-trained chainer model serialized as a ``.npz`` file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset. If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use ``convert_caffemodel_to_npz`` classmethod instead. GoogLeNet, which is also called Inception-v1, is an architecture of convolutional neural network proposed in 2014. This model is relatively lightweight and requires small memory footprint during training compared with modern architectures such as ResNet. Therefore, if you fine-tune your network based on a model pre-trained by Imagenet and need to train it with large batch size, GoogLeNet may be useful. On the other hand, if you just want an off-the-shelf classifier, we recommend you to use ResNet50 or other models since they are more accurate than GoogLeNet. The original model is provided here: `<https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet>`_ Args: pretrained_model (str): the destination of the pre-trained chainer model serialized as a ``.npz`` file. If this argument is specified as ``auto``, it automatically downloads the caffemodel from the internet. Note that in this case the converted chainer model is stored on ``$CHAINER_DATASET_ROOT/pfnet/chainer/models`` directory, where ``$CHAINER_DATASET_ROOT`` is set as ``$HOME/.chainer/dataset`` unless you specify another value as a environment variable. The converted chainer model is automatically used from the second time. If the argument is specified as ``None``, all the parameters are not initialized by the pre-trained model, but the default initializer used in BVLC, i.e., ``chainer.initializers.LeCunUniform(scale=1.0)``. Note that, in Caffe, when weight_filler is specified as "xavier" type without variance_norm parameter, the weights are initialized by Uniform(-s, s), where :math:`s = \\sqrt{\\frac{3}{fan_{in}}}` and :math:`fan_{in}` is the number of input units. This corresponds to LeCunUniform in Chainer but not GlorotUniform. Attributes: ~GoogLeNet.available_layers (list of str): The list of available layer names used by ``__call__`` and ``extract`` methods. """ def __init__(self, pretrained_model='auto'): if pretrained_model: # As a sampling process is time-consuming, # we employ a zero initializer for faster computation. kwargs = {'initialW': constant.Zero()} else: # employ default initializers used in BVLC. For more detail, see # https://github.com/chainer/chainer/pull/2424#discussion_r109642209 kwargs = {'initialW': uniform.LeCunUniform(scale=1.0)} super(GoogLeNet, self).__init__( conv1=Convolution2D(3, 64, 7, stride=2, pad=3, **kwargs), conv2_reduce=Convolution2D(64, 64, 1, **kwargs), conv2=Convolution2D(64, 192, 3, stride=1, pad=1, **kwargs), inc3a=Inception(192, 64, 96, 128, 16, 32, 32), inc3b=Inception(256, 128, 128, 192, 32, 96, 64), inc4a=Inception(480, 192, 96, 208, 16, 48, 64), inc4b=Inception(512, 160, 112, 224, 24, 64, 64), inc4c=Inception(512, 128, 128, 256, 24, 64, 64), inc4d=Inception(512, 112, 144, 288, 32, 64, 64), inc4e=Inception(528, 256, 160, 320, 32, 128, 128), inc5a=Inception(832, 256, 160, 320, 32, 128, 128), inc5b=Inception(832, 384, 192, 384, 48, 128, 128), loss3_fc=Linear(1024, 1000, **kwargs), loss1_conv=Convolution2D(512, 128, 1, **kwargs), loss1_fc1=Linear(2048, 1024, **kwargs), loss1_fc2=Linear(1024, 1000, **kwargs), loss2_conv=Convolution2D(528, 128, 1, **kwargs), loss2_fc1=Linear(2048, 1024, **kwargs), loss2_fc2=Linear(1024, 1000, **kwargs) ) if pretrained_model == 'auto': _retrieve( 'bvlc_googlenet.npz', 'http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel', self) elif pretrained_model: npz.load_npz(pretrained_model, self) @property def functions(self): return collections.OrderedDict([ ('conv1', [self.conv1, relu]), ('pool1', [_max_pooling_2d, _local_response_normalization]), ('conv2_reduce', [self.conv2_reduce, relu]), ('conv2', [self.conv2, relu, _local_response_normalization]), ('pool2', [_max_pooling_2d]), ('inception_3a', [self.inc3a]), ('inception_3b', [self.inc3b]), ('pool3', [_max_pooling_2d]), ('inception_4a', [self.inc4a]), ('inception_4b', [self.inc4b]), ('inception_4c', [self.inc4c]), ('inception_4d', [self.inc4d]), ('inception_4e', [self.inc4e]), ('pool4', [_max_pooling_2d]), ('inception_5a', [self.inc5a]), ('inception_5b', [self.inc5b]), ('pool5', [_average_pooling_2d_k7]), ('loss3_fc', [_dropout, self.loss3_fc]), ('prob', [softmax]), # Since usually the following outputs are not used, they are put # after 'prob' to be skipped for efficiency. ('loss1_fc2', [_average_pooling_2d_k5, self.loss1_conv, relu, self.loss1_fc1, relu, self.loss1_fc2]), ('loss2_fc2', [_average_pooling_2d_k5, self.loss2_conv, relu, self.loss2_fc1, relu, self.loss2_fc2]) ]) @property def available_layers(self): return list(self.functions.keys()) @classmethod def convert_caffemodel_to_npz(cls, path_caffemodel, path_npz): """Converts a pre-trained caffemodel to a chainer model. Args: path_caffemodel (str): Path of the pre-trained caffemodel. path_npz (str): Path of the converted chainer model. """ # As CaffeFunction uses shortcut symbols, # we import CaffeFunction here. from chainer.links.caffe.caffe_function import CaffeFunction caffemodel = CaffeFunction(path_caffemodel) chainermodel = cls(pretrained_model=None) _transfer_googlenet(caffemodel, chainermodel) npz.save_npz(path_npz, chainermodel, compression=False) def __call__(self, x, layers=['prob'], **kwargs): """__call__(self, x, layers=['prob']) Computes all the feature maps specified by ``layers``. .. warning:: ``train`` argument is not supported anymore since v2. Instead, use ``chainer.using_config('train', train)``. See :func:`chainer.using_config`. Args: x (~chainer.Variable): Input variable. It should be prepared by ``prepare`` function. layers (list of str): The list of layer names you want to extract. Returns: Dictionary of ~chainer.Variable: A directory in which the key contains the layer name and the value contains the corresponding feature map variable. """ argument.check_unexpected_kwargs( kwargs, train='train argument is not supported anymore. ' 'Use chainer.using_config') argument.assert_kwargs_empty(kwargs) h = x activations = {} inception_4a_cache = None inception_4d_cache = None target_layers = set(layers) for key, funcs in self.functions.items(): if len(target_layers) == 0: break if key == 'loss1_fc2': h = inception_4a_cache elif key == 'loss2_fc2': h = inception_4d_cache for func in funcs: h = func(h) if key in target_layers: activations[key] = h target_layers.remove(key) if key == 'inception_4a': inception_4a_cache = h elif key == 'inception_4d': inception_4d_cache = h return activations def extract(self, images, layers=['pool5'], size=(224, 224), **kwargs): """extract(self, images, layers=['pool5'], size=(224, 224)) Extracts all the feature maps of given images. The difference of directly executing ``__call__`` is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls ``prepare`` and ``__call__`` functions. .. warning:: ``train`` and ``volatile`` arguments are not supported anymore since v2. Instead, use ``chainer.using_config('train', train)`` and ``chainer.using_config('enable_backprop', not volatile)`` respectively. See :func:`chainer.using_config`. Args: images (iterable of PIL.Image or numpy.ndarray): Input images. layers (list of str): The list of layer names you want to extract. size (pair of ints): The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is ``None``, but the resolutions of all the images should be the same. Returns: Dictionary of ~chainer.Variable: A directory in which the key contains the layer name and the value contains the corresponding feature map variable. """ argument.check_unexpected_kwargs( kwargs, train='train argument is not supported anymore. ' 'Use chainer.using_config', volatile='volatile argument is not supported anymore. ' 'Use chainer.using_config') argument.assert_kwargs_empty(kwargs) x = concat_examples([prepare(img, size=size) for img in images]) x = Variable(self.xp.asarray(x)) return self(x, layers=layers) def predict(self, images, oversample=True): """Computes all the probabilities of given images. Args: images (iterable of PIL.Image or numpy.ndarray): Input images. oversample (bool): If ``True``, it averages results across center, corners, and mirrors. Otherwise, it uses only the center. Returns: ~chainer.Variable: Output that contains the class probabilities of given images. """ x = concat_examples([prepare(img, size=(256, 256)) for img in images]) if oversample: x = imgproc.oversample(x, crop_dims=(224, 224)) else: x = x[:, :, 16:240, 16:240] # Use no_backprop_mode to reduce memory consumption with function.no_backprop_mode(), chainer.using_config('train', False): x = Variable(self.xp.asarray(x)) y = self(x, layers=['prob'])['prob'] if oversample: n = y.data.shape[0] // 10 y_shape = y.data.shape[1:] y = reshape(y, (n, 10) + y_shape) y = average(y, axis=1) return y def prepare(image, size=(224, 224)): """Converts the given image to the numpy array for GoogLeNet. Note that you have to call this method before ``__call__`` because the pre-trained GoogLeNet model requires to resize the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before calling. Args: image (PIL.Image or numpy.ndarray): Input image. If an input is ``numpy.ndarray``, its shape must be ``(height, width)``, ``(height, width, channels)``, or ``(channels, height, width)``, and the order of the channels must be RGB. size (pair of ints): Size of converted images. If ``None``, the given image is not resized. Returns: numpy.ndarray: The converted output array. """ if not available: raise ImportError('PIL cannot be loaded. Install Pillow!\n' 'The actual import error is as follows:\n' + str(_import_error)) if isinstance(image, numpy.ndarray): if image.ndim == 3: if image.shape[0] == 1: image = image[0, :, :] elif image.shape[0] == 3: image = image.transpose((1, 2, 0)) image = Image.fromarray(image.astype(numpy.uint8)) image = image.convert('RGB') if size: image = image.resize(size) image = numpy.asarray(image, dtype=numpy.float32) image = image[:, :, ::-1] image -= numpy.array([104.0, 117.0, 123.0], dtype=numpy.float32) # BGR image = image.transpose((2, 0, 1)) return image def _transfer_inception(src, dst, names): for name in names: chain = getattr(dst, 'inc{}'.format(name)) src_prefix = 'inception_{}/'.format(name) chain.conv1.W.data[:] = src[src_prefix + '1x1'].W.data chain.conv1.b.data[:] = src[src_prefix + '1x1'].b.data chain.proj3.W.data[:] = src[src_prefix + '3x3_reduce'].W.data chain.proj3.b.data[:] = src[src_prefix + '3x3_reduce'].b.data chain.conv3.W.data[:] = src[src_prefix + '3x3'].W.data chain.conv3.b.data[:] = src[src_prefix + '3x3'].b.data chain.proj5.W.data[:] = src[src_prefix + '5x5_reduce'].W.data chain.proj5.b.data[:] = src[src_prefix + '5x5_reduce'].b.data chain.conv5.W.data[:] = src[src_prefix + '5x5'].W.data chain.conv5.b.data[:] = src[src_prefix + '5x5'].b.data chain.projp.W.data[:] = src[src_prefix + 'pool_proj'].W.data chain.projp.b.data[:] = src[src_prefix + 'pool_proj'].b.data def _transfer_googlenet(src, dst): # 1 ################################################################# dst.conv1.W.data[:] = src['conv1/7x7_s2'].W.data dst.conv1.b.data[:] = src['conv1/7x7_s2'].b.data # 2 ################################################################# dst.conv2_reduce.W.data[:] = src['conv2/3x3_reduce'].W.data dst.conv2_reduce.b.data[:] = src['conv2/3x3_reduce'].b.data dst.conv2.W.data[:] = src['conv2/3x3'].W.data dst.conv2.b.data[:] = src['conv2/3x3'].b.data # 3, 4, 5 ########################################################### _transfer_inception(src, dst, ['3a', '3b', '4a', '4b', '4c', '4d', '4e', '5a', '5b']) # outputs ############################################################ dst.loss1_conv.W.data[:] = src['loss1/conv'].W.data dst.loss1_conv.b.data[:] = src['loss1/conv'].b.data dst.loss1_fc1.W.data[:] = src['loss1/fc'].W.data dst.loss1_fc1.b.data[:] = src['loss1/fc'].b.data dst.loss1_fc2.W.data[:] = src['loss1/classifier'].W.data dst.loss1_fc2.b.data[:] = src['loss1/classifier'].b.data dst.loss2_conv.W.data[:] = src['loss2/conv'].W.data dst.loss2_conv.b.data[:] = src['loss2/conv'].b.data dst.loss2_fc1.W.data[:] = src['loss2/fc'].W.data dst.loss2_fc1.b.data[:] = src['loss2/fc'].b.data dst.loss2_fc2.W.data[:] = src['loss2/classifier'].W.data dst.loss2_fc2.b.data[:] = src['loss2/classifier'].b.data dst.loss3_fc.W.data[:] = src['loss3/classifier'].W.data dst.loss3_fc.b.data[:] = src['loss3/classifier'].b.data def _max_pooling_2d(x): return max_pooling_2d(x, ksize=3, stride=2) def _local_response_normalization(x): return local_response_normalization(x, n=5, k=1, alpha=1e-4 / 5) def _average_pooling_2d_k5(x): return average_pooling_2d(x, ksize=5, stride=3) def _average_pooling_2d_k7(x): return average_pooling_2d(x, ksize=7, stride=1) def _dropout(x): return dropout(x, ratio=0.4) def _make_npz(path_npz, url, model): path_caffemodel = download.cached_download(url) print('Now loading caffemodel (usually it may take few minutes)') GoogLeNet.convert_caffemodel_to_npz(path_caffemodel, path_npz) npz.load_npz(path_npz, model) return model def _retrieve(name_npz, url, model): root = download.get_dataset_directory('pfnet/chainer/models/') path = os.path.join(root, name_npz) return download.cache_or_load_file( path, lambda path: _make_npz(path, url, model), lambda path: npz.load_npz(path, model))
41.024664
80
0.615183
e01d7f2fb3d7dea2928271a9ce27690cf02144dd
10,156
py
Python
AdminServer/appscale/admin/push_worker_manager.py
Honcharov12/appscale
be1cf90fcd24f1a5a88848f7eb73331b6e4e66d9
[ "Apache-2.0" ]
null
null
null
AdminServer/appscale/admin/push_worker_manager.py
Honcharov12/appscale
be1cf90fcd24f1a5a88848f7eb73331b6e4e66d9
[ "Apache-2.0" ]
null
null
null
AdminServer/appscale/admin/push_worker_manager.py
Honcharov12/appscale
be1cf90fcd24f1a5a88848f7eb73331b6e4e66d9
[ "Apache-2.0" ]
null
null
null
""" Keeps track of queue configuration details for push workers. """ import logging import json import os from datetime import timedelta from kazoo.exceptions import ZookeeperError from tornado import gen from tornado.ioloop import IOLoop from tornado.options import options from appscale.common.async_retrying import ( retry_children_watch_coroutine, retry_coroutine, retry_data_watch_coroutine ) from appscale.common.constants import (CONFIG_DIR, LOG_DIR, MonitStates, VAR_DIR) from appscale.common.monit_app_configuration import create_config_file from appscale.common.monit_app_configuration import MONIT_CONFIG_DIR from .utils import ensure_path # The number of tasks the Celery worker can handle at a time. CELERY_CONCURRENCY = 1000 # The directory where Celery configuration files are stored. CELERY_CONFIG_DIR = os.path.join(CONFIG_DIR, 'celery', 'configuration') # The safe memory in MB per Celery worker. CELERY_SAFE_MEMORY = 1000 # The directory where Celery persists state. CELERY_STATE_DIR = os.path.join('/', 'opt', 'appscale', 'celery') # The working directory for Celery workers. CELERY_WORKER_DIR = os.path.join(CONFIG_DIR, 'celery', 'workers') # The directory that workers use for logging. CELERY_WORKER_LOG_DIR = os.path.join(LOG_DIR, 'celery_workers') # The time limit of a running task in seconds. Extra time over the soft limit # allows it to catch up to interrupts. HARD_TIME_LIMIT = 610 # The soft time limit of a running task. TASK_SOFT_TIME_LIMIT = 600 # The worker script for Celery to use. WORKER_MODULE = 'appscale.taskqueue.push_worker' logger = logging.getLogger('appscale-admin') class ProjectPushWorkerManager(object): """ Manages the Celery worker for a single project. """ def __init__(self, zk_client, monit_operator, project_id): """ Creates a new ProjectPushWorkerManager. Args: zk_client: A KazooClient. monit_operator: A MonitOperator. project_id: A string specifying a project ID. """ self.zk_client = zk_client self.project_id = project_id self.monit_operator = monit_operator self.queues_node = '/appscale/projects/{}/queues'.format(project_id) self.watch = zk_client.DataWatch(self.queues_node, self._update_worker) self.monit_watch = 'celery-{}'.format(project_id) self._stopped = False @gen.coroutine def update_worker(self, queue_config): """ Updates a worker's configuration and restarts it. Args: queue_config: A JSON string specifying queue configuration. """ self._write_worker_configuration(queue_config) status = yield self._wait_for_stable_state() pid_location = os.path.join(VAR_DIR, 'celery-{}.pid'.format(self.project_id)) try: with open(pid_location) as pidfile: old_pid = int(pidfile.read().strip()) except IOError: old_pid = None # Start the worker if it doesn't exist. Restart it if it does. if status == MonitStates.MISSING: command = self.celery_command() env_vars = {'APP_ID': self.project_id, 'HOST': options.load_balancers[0], 'C_FORCE_ROOT': True} create_config_file(self.monit_watch, command, pid_location, env_vars=env_vars, max_memory=CELERY_SAFE_MEMORY) logger.info('Starting push worker for {}'.format(self.project_id)) yield self.monit_operator.reload() else: logger.info('Restarting push worker for {}'.format(self.project_id)) yield self.monit_operator.send_command(self.monit_watch, 'restart') start_future = self.monit_operator.ensure_running(self.monit_watch) yield gen.with_timeout(timedelta(seconds=60), start_future, IOLoop.current()) try: yield self.ensure_pid_changed(old_pid, pid_location) except AssertionError: # Occasionally, Monit will get interrupted during a restart. Retry the # restart if the Celery worker PID is the same. logger.warning( '{} worker PID did not change. Restarting it.'.format(self.project_id)) yield self.update_worker(queue_config) @staticmethod @retry_coroutine(retrying_timeout=10, retry_on_exception=[AssertionError]) def ensure_pid_changed(old_pid, pid_location): try: with open(pid_location) as pidfile: new_pid = int(pidfile.read().strip()) except IOError: new_pid = None if new_pid == old_pid: raise AssertionError @gen.coroutine def stop_worker(self): """ Removes the monit configuration for the project's push worker. """ status = yield self._wait_for_stable_state() if status == MonitStates.RUNNING: logger.info('Stopping push worker for {}.'.format(self.project_id)) yield self.monit_operator.send_command(self.monit_watch, 'stop') watch_file = '{}/appscale-{}.cfg'.format(MONIT_CONFIG_DIR, self.monit_watch) os.remove(watch_file) else: logger.debug('Not stopping push worker for {} since it is not running.'.format(self.project_id)) def celery_command(self): """ Generates the Celery command for a project's push worker. """ log_file = os.path.join(CELERY_WORKER_LOG_DIR, '{}.log'.format(self.project_id)) pidfile = os.path.join(VAR_DIR, 'celery-{}.pid'.format(self.project_id)) state_db = os.path.join(CELERY_STATE_DIR, 'worker___{}.db'.format(self.project_id)) return ' '.join([ 'celery', 'worker', '--app', WORKER_MODULE, '--pool=eventlet', '--concurrency={}'.format(CELERY_CONCURRENCY), '--hostname', self.project_id, '--workdir', CELERY_WORKER_DIR, '--logfile', log_file, '--pidfile', pidfile, '--time-limit', str(HARD_TIME_LIMIT), '--soft-time-limit', str(TASK_SOFT_TIME_LIMIT), '--statedb', state_db, '-Ofair' ]) def ensure_watch(self): """ Restart the watch if it has been cancelled. """ if self._stopped: self._stopped = False self.watch = self.zk_client.DataWatch(self.queues_node, self._update_worker) @gen.coroutine def _wait_for_stable_state(self): """ Waits until the worker's state is not pending. """ stable_states = (MonitStates.MISSING, MonitStates.RUNNING, MonitStates.UNMONITORED) status_future = self.monit_operator.wait_for_status( self.monit_watch, stable_states) status = yield gen.with_timeout(timedelta(seconds=60), status_future, IOLoop.current()) raise gen.Return(status) def _write_worker_configuration(self, queue_config): """ Writes a worker's configuration file. Args: queue_config: A JSON string specifying queue configuration. """ if queue_config is None: rates = {'default': '5/s'} else: queues = json.loads(queue_config)['queue'] rates = { queue_name: queue['rate'] for queue_name, queue in queues.items() if 'mode' not in queue or queue['mode'] == 'push'} config_location = os.path.join(CELERY_CONFIG_DIR, '{}.json'.format(self.project_id)) with open(config_location, 'w') as config_file: json.dump(rates, config_file) def _update_worker(self, queue_config, _): """ Handles updates to a queue configuration node. Since this runs in a separate thread, it doesn't change any state directly. Instead, it just acts as a bridge back to the main IO loop. Args: queue_config: A JSON string specifying queue configuration. """ # Prevent further watches if they are no longer needed. if queue_config is None: try: project_exists = self.zk_client.exists( '/appscale/projects/{}'.format(self.project_id)) is not None except ZookeeperError: # If the project has been deleted, an extra "exists" watch will remain. project_exists = True if not project_exists: self._stopped = True return False persistent_update_worker = retry_data_watch_coroutine( self.queues_node, self.update_worker ) main_io_loop = IOLoop.instance() main_io_loop.add_callback(persistent_update_worker, queue_config) class GlobalPushWorkerManager(object): """ Manages the Celery workers for all projects. """ def __init__(self, zk_client, monit_operator): """ Creates a new GlobalPushWorkerManager. """ self.zk_client = zk_client self.monit_operator = monit_operator self.projects = {} ensure_path(CELERY_CONFIG_DIR) ensure_path(CELERY_WORKER_DIR) ensure_path(CELERY_WORKER_LOG_DIR) ensure_path(CELERY_STATE_DIR) zk_client.ensure_path('/appscale/projects') zk_client.ChildrenWatch('/appscale/projects', self._update_projects) @gen.coroutine def update_projects(self, new_project_list): """ Establishes watches for each project's queue configuration. Args: new_project_list: A fresh list of strings specifying existing project IDs. """ to_stop = [project for project in self.projects if project not in new_project_list] for project_id in to_stop: yield self.projects[project_id].stop_worker() del self.projects[project_id] for new_project_id in new_project_list: if new_project_id not in self.projects: self.projects[new_project_id] = ProjectPushWorkerManager( self.zk_client, self.monit_operator, new_project_id) # Handle changes that happen between watches. self.projects[new_project_id].ensure_watch() def _update_projects(self, new_projects): """ Handles creation and deletion of projects. Since this runs in a separate thread, it doesn't change any state directly. Instead, it just acts as a bridge back to the main IO loop. Args: new_projects: A list of strings specifying all existing project IDs. """ persistent_update_project = retry_children_watch_coroutine( '/appscale/projects', self.update_projects ) main_io_loop = IOLoop.instance() main_io_loop.add_callback(persistent_update_project, new_projects)
36.532374
102
0.697026
1a3216d5de8a1019665eaddf0dfdc2e7d2377833
7,102
py
Python
FP_Growth/FPGrowth.py
Vyzrala/ZTED_Algorithms
bc4c70d4d350d0bb644e2973b6c6994b336d94c6
[ "MIT" ]
null
null
null
FP_Growth/FPGrowth.py
Vyzrala/ZTED_Algorithms
bc4c70d4d350d0bb644e2973b6c6994b336d94c6
[ "MIT" ]
null
null
null
FP_Growth/FPGrowth.py
Vyzrala/ZTED_Algorithms
bc4c70d4d350d0bb644e2973b6c6994b336d94c6
[ "MIT" ]
null
null
null
from typing import List, Dict, Tuple from collections import Counter from datasets import translation class Node: def __init__(self, key: str, counter: int, parent_node) -> None: self.key = key self.counter = counter self.parent = parent_node self.childs: Dict[str, Node] = {} self.link = None def increment_counter(self): pass def display(self, index: int=0) -> None: # print("{} [{}: {}]\n".format(" -"*(index), translation.get(self.key, self.key), self.counter)) print("{} [{}: {}]\n".format(" -"*(index), self.key, self.counter)) for child in self.childs.values(): child.display(index+1) def display_linked(self): current_node = self while current_node != None: print("[Key = {}]".format(current_node.key), end='') if current_node.link: print(" => ", end='') current_node = current_node.link print() class FPG: def __init__(self, min_support: int=2) -> None: self.minimum_support = min_support self.root_node = None self.support = None self.clean_dataset = None self.header_table: Dict[str, list] = {} self.conditional_pattern_base = {} self.fis = None def run(self, dataset: List[list]) -> Tuple[List[list], Dict[frozenset, int]]: self.initial_dataset = dataset wset = self.initial_dataset wset = [list(set(transaction)) for transaction in wset] # Make sure that items in transaction are uniqe ui = self.get_unique_items(wset) self.support = self.get_support(wset, ui) self.clean_dataset = self.preprocess_dataset(wset) return self.clean_dataset def display_info(self) -> None: # print("Initial dataset (minimum support = {}):".format(self.minimum_support), *self.initial_dataset, sep='\n') # print("Support:", *{list(k)[0]:v for k,v in self.support.items()}.items(), sep='\n') print("Cleaned and sorted dataset:", *self.clean_dataset, sep='\n') # print("Support table:") # print(*self.support.items(), sep='\n') print("\nTree:") self.print_tree() if self.header_table != {}: print("Header Table:") print(*self.header_table.items(), sep='\n') # print("Linked nodes:") # for v in self.header_table.values(): # v['nodes'][0].display_linked() if self.conditional_pattern_base != {}: print("Conditional pattern base:") print(*self.conditional_pattern_base.items(), sep='\n') if self.fis: print("Frequent item sets:", len(self.fis)) print(*self.fis, sep='\n') def print_tree(self) -> None: try: self.root_node.display() except: print("\tNo root node.\n") def get_unique_items(self, wset: List[list]) -> List[set]: unique_items = list(set(sum(wset, []))) return [frozenset([x]) for x in unique_items] def get_support(self, dataset: List[list], candidates: List[frozenset]) -> Dict[frozenset, int]: # support = {} # for transaction in dataset: # for item in candidates: # if item.issubset(transaction): # sub = frozenset(item) # if sub in support.keys(): # support[sub] += 1 # else: # support[sub] = 1 # support = sorted(support.items(), key=lambda x: x[1], reverse=True) # Sorting by value # support = {k:v for k, v in support if v >= self.minimum_support} # Filtering by minimum support value support = Counter(item for item in sum(dataset, [])) support = filter(lambda item: item[1]>=self.minimum_support, support.items()) support = sorted(support, key=lambda x:x[0]) support = sorted(support, key=lambda x:x[1], reverse=True) # support = {frozenset([k]):v for k,v in support} support = dict(support) return support def preprocess_dataset(self, dataset: List[list]) -> List[list]: # Cleaning and sorting dataset clean_dataset = [] # mask = [x for x in list(self.support)] mask = list(self.support.keys()) for transaction in dataset: clean_dataset.append(list(filter(lambda item: item in mask, transaction))) clean_dataset[-1].sort(key=lambda i: mask.index(i)) return clean_dataset def build_tree(self, dataset: List[list]) -> None: for k in self.support: self.header_table[k] = {'support': self.support[k], 'nodes': []} self.root_node = Node('NULL', 0, None) for transaction in dataset: self.insert_transaction(transaction, self.root_node) # Linking nodes for v in self.header_table.values(): if len(v['nodes']) > 1: for i in range(len(v['nodes'])-1): v['nodes'][i].link = v['nodes'][i+1] def insert_transaction(self, transaction: List[str], node: Node) -> None: if len(transaction) < 1: return key = transaction[0] if key in node.childs.keys(): node.childs[key].counter += 1 ################################################## increment by support else: node.childs[key] = Node(key, 1, node) self.header_table[key]['nodes'].append(node.childs[key]) if len(transaction) > 1: self.insert_transaction(transaction[1:], node.childs[key]) def get_prefix(self, node: Node): paths = [] while node: path = self.traverse_root(node) if len(path) > 1: paths.append([path[1:], node.counter]) node = node.link return paths def traverse_root(self, node: Node) -> list: tmp = node path = [] while tmp is not self.root_node: path.append(tmp.key) tmp = tmp.parent return path def get_CPB(self, key:str) -> List[list]: start_node = self.header_table[key]['nodes'][0] paths = self.get_prefix(start_node) dataset = [] for item in paths: dataset.append(item[0]) self.conditional_pattern_base[key] = dataset return dataset def mine_fis(self, header_parent, prefix, fis): reverse_header_keys = list(header_parent.keys())[::-1] for key in reverse_header_keys: new_fis = prefix.copy() new_fis.add(key) fis.append(new_fis) CPB = self.get_CPB(key) # Generate sub-tree tmp_fpg = FPG(self.minimum_support) tmp_clean_dataset = tmp_fpg.run(CPB) tmp_fpg.build_tree(tmp_clean_dataset) if tmp_fpg.header_table != {}: self.mine_fis(tmp_fpg.header_table, new_fis, fis) self.fis = fis
36.797927
120
0.558434
c5a71e1a26ed5ac11bfe58e7492eee40ff45f762
186
py
Python
POO/EX010/EX10B.py
0Fernando0/CursoPython
1dcfdb6556e41c6dedcba2857aa4382b2f81aa59
[ "MIT" ]
null
null
null
POO/EX010/EX10B.py
0Fernando0/CursoPython
1dcfdb6556e41c6dedcba2857aa4382b2f81aa59
[ "MIT" ]
null
null
null
POO/EX010/EX10B.py
0Fernando0/CursoPython
1dcfdb6556e41c6dedcba2857aa4382b2f81aa59
[ "MIT" ]
null
null
null
class A: def __new__(cls,*args,**kwargs): cls.nome = 'Fernando' return super().__new__(cls) def __init__(self): print('inicio...')
18.6
36
0.489247
b5d65e6553b5d8232ba618fef57743de51392303
2,665
py
Python
tests/unit/cli/test_ranged_argument.py
adrianfusco/cibyl
421fb537e21abddeecdde42c18f4de60425cc804
[ "Apache-2.0" ]
3
2022-02-17T18:07:07.000Z
2022-03-19T10:22:38.000Z
tests/unit/cli/test_ranged_argument.py
adrianfusco/cibyl
421fb537e21abddeecdde42c18f4de60425cc804
[ "Apache-2.0" ]
58
2022-02-14T14:41:22.000Z
2022-03-31T10:54:28.000Z
tests/unit/cli/test_ranged_argument.py
adrianfusco/cibyl
421fb537e21abddeecdde42c18f4de60425cc804
[ "Apache-2.0" ]
6
2022-02-14T19:21:26.000Z
2022-03-29T09:31:31.000Z
""" # Copyright 2022 Red Hat # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ from unittest import TestCase from cibyl.cli.ranged_argument import (EXPRESSION_PATTERN, RANGE_OPERATORS, VALID_OPS, Range) def is_valid_regex(match_obj, operator, operand): """Check that a string is matched correctly by the regex.""" operator_str = match_obj.group(1) operand_str = match_obj.group(2) return operand_str == operand and operator == operator_str class TestRange(TestCase): """Test helper module for ranged Arguments.""" def test_regex(self): """Check that the range regex works as intended.""" self.assertIsNone(EXPRESSION_PATTERN.search("abcd")) matched_str = EXPRESSION_PATTERN.search(">>4") self.assertTrue(is_valid_regex(matched_str, ">>", "4")) matched_str = EXPRESSION_PATTERN.search("!=4") self.assertTrue(is_valid_regex(matched_str, "!=", "4")) matched_str = EXPRESSION_PATTERN.search("<=45") self.assertTrue(is_valid_regex(matched_str, "<=", "45")) def test_Range(self): """Test that Range namedtuple works as intended.""" range1 = Range(">", "2") range2 = Range("<", "2") self.assertEqual(range1.operator, ">") self.assertEqual(range1.operand, "2") self.assertEqual(range2.operator, "<") self.assertEqual(range2.operand, "2") self.assertNotEqual(range1, range2) def test_range_operators(self): """Test that range operator dictionary works as intended.""" self.assertTrue(RANGE_OPERATORS["<"](2, 3)) self.assertTrue(RANGE_OPERATORS[">"](5, 3)) self.assertTrue(RANGE_OPERATORS[">="](3, 3)) self.assertTrue(RANGE_OPERATORS["<="](3, 3)) self.assertTrue(RANGE_OPERATORS["=="](3, 3)) self.assertTrue(RANGE_OPERATORS["="](3, 3)) self.assertTrue(RANGE_OPERATORS["!="](2, 3)) def test_valid_operators_str(self): """Test that VALID_OPS string contains all supported operators.""" for op in RANGE_OPERATORS: self.assertIn(op, VALID_OPS)
40.378788
78
0.657786
5093a8930e14019680620baa6093d3207f2e29ec
9,010
py
Python
experiments/tests/faker_populator.py
neuromat/portal
78c1f8c9e20c46d283b693d54d009bd19bda90de
[ "CC-BY-4.0" ]
3
2017-12-14T12:09:28.000Z
2021-07-02T02:26:55.000Z
experiments/tests/faker_populator.py
neuromat/portal
78c1f8c9e20c46d283b693d54d009bd19bda90de
[ "CC-BY-4.0" ]
null
null
null
experiments/tests/faker_populator.py
neuromat/portal
78c1f8c9e20c46d283b693d54d009bd19bda90de
[ "CC-BY-4.0" ]
1
2018-06-13T19:55:33.000Z
2018-06-13T19:55:33.000Z
from datetime import datetime from random import randint, choice from subprocess import call from django.contrib.auth import models from faker import Factory from experiments.models import Experiment, Study, Group, Researcher, \ Questionnaire # python manage.py shell < experiments/tests/faker_populator.py # TODO: when executing from bash command line, final line identifier breaks # imports. Kepping in Collaborator in same line. from experiments.models import Gender, ClassificationOfDiseases, Keyword, \ Step, TMSSetting, TMSDevice, CoilModel, TMSDeviceSetting from experiments.tests.tests_helper import create_classification_of_diseases, \ create_questionnaire, create_researcher from experiments.tests.tests_helper import create_experimental_protocol from experiments.tests.tests_helper import create_group, \ create_ethics_committee_info, create_step, create_tms_setting, \ create_tms_device, create_coil_model, create_tms_device_setting, \ create_tmsdata_objects_to_test_search, create_questionnaire_language from experiments.tests.tests_helper import create_keyword from experiments.tests.tests_helper import create_participant from nep import settings from nep.local_settings import BASE_DIR # Clear sqlite database and run migrate call(['rm', BASE_DIR + '/db.sqlite3']) call([BASE_DIR + '/manage.py', 'migrate']) fake = Factory.create() # Create api clients users (experiment owners) owner1 = models.User.objects.create_user(username='lab1', password='nep-lab1') owner2 = models.User.objects.create_user(username='lab2', password='nep-lab2') # Create group trustees group = models.Group.objects.create(name='trustees') # Create 2 trustee users and add them to trustees group trustee1 = models.User.objects.create_user( username='claudia', first_name='Claudia', last_name='Vargas', password='passwd' ) trustee2 = models.User.objects.create_user( username='roque', first_name='Antonio', last_name='Roque', password='passwd' ) group.user_set.add(trustee1) group.user_set.add(trustee2) for i in range(1, 4): experiment_owner1 = Experiment.objects.create( title=fake.word().title(), description=fake.text(), nes_id=i, owner=owner1, version=1, sent_date=datetime.utcnow(), status=Experiment.TO_BE_ANALYSED, data_acquisition_done=choice([True, False]) ) Study.objects.create( title=fake.word().title(), description=fake.text(), start_date=datetime.utcnow(), experiment=experiment_owner1 ) # to test search (necessary to approve experiment(s) in front-end or # directly in database) if i == 1: study = Study.objects.last() study.description = 'The brachial artery is the major blood vessel ' \ 'of the (upper) arm. It\'s correlated with ' \ 'plexus.' # We put a keyword with the string 'brachial plexus' in the study to # also be found by search test study.keywords.add('brachial plexus') study.save() create_ethics_committee_info(experiment_owner1) create_group(randint(1, 3), experiment_owner1) for i in range(4, 6): experiment_owner2 = Experiment.objects.create( title=fake.word().title(), description=fake.text(), nes_id=i, owner=owner2, version=1, sent_date=datetime.utcnow(), status=Experiment.TO_BE_ANALYSED ) # to test search (necessary to approve experiment(s) in front-end or # directly in database) if i == 4: experiment_owner2.title = 'Brachial Plexus' experiment_owner2.save() if i == 5: experiment_owner2.description = \ 'Brachial plexus repair by peripheral nerve ' \ 'grafts directly into the spinal cord in rats ' \ 'Behavioral and anatomical evidence of ' \ 'functional recovery' experiment_owner2.save() Study.objects.create( title=fake.word().title(), description=fake.text(), start_date=datetime.utcnow(), experiment=experiment_owner2 ) create_group(randint(1, 3), experiment_owner2) # to test search (necessary to approve experiment(s) in front-end or # directly in database) group = Group.objects.first() group.description = 'Plexus brachial (com EMG) is written in wrong order. ' \ 'Correct is Brachial plexus.' ic = ClassificationOfDiseases.objects.create( code='BP', description='brachial Plexus', abbreviated_description='brachial Plexus', parent=None ) group.inclusion_criteria.add(ic) group.save() # to test search with filter (necessary to approve experiment(s) in # front-end or directly in database) create_step(1, group, Step.EMG) # to test search with filter (necessary to approve experiment(s) in # front-end or directly in database) group = Group.objects.last() group.title = 'Brachial Plexus com EEG' group.save() create_step(1, group, Step.EEG) # to test search with filter (necessary to approve experiment(s) in # front-end or directly in database) group = Group.objects.get( id=(Group.objects.last().id + Group.objects.first().id) // 2 ) group.title = 'Brachial Plexus com EEG e EMG' group.save() create_step(1, group, Step.EEG) create_step(1, group, Step.EMG) # Create researchers associated to studies created above for study in Study.objects.all(): Researcher.objects.create(name=fake.name(), email='claudia.portal.neuromat@gmail.com', study=study) # to test search (necessary to approve experiment(s) in front-end or # directly in database) researcher = Researcher.objects.last() researcher.name = 'Yolanda Fuentes' researcher.save() # Create study collaborators (requires creating studies before) for study in Study.objects.all(): create_researcher(study, 'Pero', 'Vaz') # To test search (necessary to approve experiment(s) in front-end or # directly in database) # Create some keywords to associate with studies create_keyword(10) # Associate keywords with studies for study in Study.objects.all(): kw1 = choice(Keyword.objects.all()) kw2 = choice(Keyword.objects.all()) kw3 = choice(Keyword.objects.all()) study.keywords.add(kw1, kw2, kw3) # Create some entries for ClassificationOfDiseases create_classification_of_diseases(10) # Create genders gender1 = Gender.objects.create(name='male') gender2 = Gender.objects.create(name='female') # Create groups' experimental protocols and participants for group in Group.objects.all(): create_experimental_protocol(group) create_participant( randint(3, 7), group, gender1 if randint(1, 2) == 1 else gender2 ) ic1 = choice(ClassificationOfDiseases.objects.all()) ic2 = choice(ClassificationOfDiseases.objects.all()) group.inclusion_criteria.add(ic1, ic2) # Create TMSSetting from an experiment Approved, to test search. # Obs.: TO VERIFY SEARCH TMS things, change Experiment status to APPROVED # after run this faker populator experiment = Experiment.objects.first() create_tms_setting(1, experiment) tms_setting = TMSSetting.objects.last() tms_setting.name = 'tmssettingname' tms_setting.save() # Create TMSDeviceSetting from a TMSSetting to test search # Required creating TMSSetting from experiment Approved, first create_tms_device(1) tms_device = TMSDevice.objects.last() create_coil_model(1) coil_model = CoilModel.objects.last() create_tms_device_setting(1, tms_setting, tms_device, coil_model) tms_device_setting = TMSDeviceSetting.objects.last() tms_device_setting.pulse_stimulus_type = 'single_pulse' tms_device_setting.save() # Create TMSDevice to test search tms_device.manufacturer_name = 'Siemens' tms_device.save() # Create another TMSSetting and associate with same TMSDeviceSetting # created above to test searching create_tms_setting(1, experiment) tms_setting = TMSSetting.objects.last() tmsds = create_tms_device_setting(1, tms_setting, tms_device, coil_model) # Create TMSData to test search create_tmsdata_objects_to_test_search() ## # Create questionnaires ## experiment = Experiment.objects.last() group = experiment.groups.first() create_questionnaire(1, 'q1', group) questionnaire1 = Questionnaire.objects.last() # create valid questionnaire in English create_questionnaire_language( questionnaire1, settings.BASE_DIR + '/experiments/tests/questionnaire1.csv', 'en' ) # create valid questionnaire in Portuguese create_questionnaire_language( questionnaire1, settings.BASE_DIR + '/experiments/tests/questionnaire1_pt-br.csv', 'pt_br' ) # create valid questionnaire in French create_questionnaire_language( questionnaire1, settings.BASE_DIR + '/experiments/tests/questionnaire1_fr.csv', 'fr' ) # TODO: After populating models we call 'manage.py rebuild_index --noinput' to # TODO: rebuild haystack search index - to manually test searching. # TODO: why is necessary to keep two blank lines for script run until the end?
35.753968
79
0.734628
3a465ee1345fd954066261bdfb000a18869e6742
1,472
py
Python
Coding-interview-problems/Programs/prog03.py
gnsalok/algo-ds-python
6e37f9a536c634673451d9acaeb4968536fb0b8b
[ "MIT" ]
3
2021-12-17T17:12:23.000Z
2022-03-29T13:41:21.000Z
Coding-interview-problems/Programs/prog03.py
gnsalok/algo-ds-python
6e37f9a536c634673451d9acaeb4968536fb0b8b
[ "MIT" ]
null
null
null
Coding-interview-problems/Programs/prog03.py
gnsalok/algo-ds-python
6e37f9a536c634673451d9acaeb4968536fb0b8b
[ "MIT" ]
null
null
null
''' programs on fibonacci series ''' def fibonacci(size): a = 0 b = 1 print(a) print(b) for i in range(size-1): c = a + b a = b b = c print(c) def fibonacci_nth(n): a = 0 b = 1 if n < 0: print('invalid') return elif n == 0: return a elif n == 1: return b else: for i in range(2, n): c = a + b a = b b = c print(c) # returning b not c def fibonacci_nth_rec(n): if n < 0: print('invalid number') if n == 0: return 0 if n == 1 : return 1 return fibonacci_nth_rec(n-2) + fibonacci_nth_rec(n-1) fibstore = [0, 1] def fibonacci_memo(n): if n < 0: print('invalid') if n <= len(fibstore): return fibstore[n-1] else: fib = fibonacci_memo(n-2) + fibonacci_memo(n-1) fibstore.append(fib) return fib fibdict = {0: 0, 1: 1} def fibonacci_memo_2(n): if n < 0: print('invalid') return if n in fibdict.keys(): print('fib already in dict') return fibdict[n] else: fib = fibonacci_memo_2(n-2) + fibonacci_memo_2(n-1) fibdict[n] = fib return fib if __name__ == '__main__': fibonacci(8) print('*' * 20) fibonacci_nth(9) print('*' * 20) print(fibonacci_nth_rec(9)) # print(fibonacci_memo(10)) #print(fibonacci_memo_2(100))
18.871795
59
0.501359
6091cf291ef2a7972a015fb0bc955004a5dfdf74
2,336
py
Python
eng/tox/import_all.py
dubiety/azure-sdk-for-python
62ffa839f5d753594cf0fe63668f454a9d87a346
[ "MIT" ]
1
2022-02-01T18:50:12.000Z
2022-02-01T18:50:12.000Z
eng/tox/import_all.py
ellhe-blaster/azure-sdk-for-python
82193ba5e81cc5e5e5a5239bba58abe62e86f469
[ "MIT" ]
null
null
null
eng/tox/import_all.py
ellhe-blaster/azure-sdk-for-python
82193ba5e81cc5e5e5a5239bba58abe62e86f469
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # This script is used to verify package dependency by importing all modules import sys import argparse import logging import os from tox_helper_tasks import get_package_details from subprocess import check_call logging.getLogger().setLevel(logging.INFO) root_dir = os.path.abspath(os.path.join(os.path.abspath(__file__), "..", "..", "..")) # keyvault has dependency issue when loading private module _BearerTokenCredentialPolicyBase from azure.core.pipeline.policies # azure.core.tracing.opencensus and azure.eventhub.checkpointstoreblob.aio are skipped due to a known issue in loading azure.core.tracing.opencensus excluded_packages = [ "azure", "azure-mgmt", ] def should_run_import_all(package_name): return not (package_name in excluded_packages or "nspkg" in package_name) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Import all modules in package") parser.add_argument( "-t", "--target", dest="target_package", help="The target package directory on disk.", required=True, ) args = parser.parse_args() # get target package name from target package path pkg_dir = os.path.abspath(args.target_package) package_name, namespace, _, _, _ = get_package_details(os.path.join(pkg_dir, 'setup.py')) if should_run_import_all(package_name): # import all modules from current package logging.info( "Importing all modules from namespace [{0}] to verify dependency".format( namespace ) ) import_script_all = "from {0} import *".format(namespace) commands = [ sys.executable, "-c", import_script_all ] check_call(commands, cwd= root_dir) logging.info("Verified module dependency, no issues found") else: pass logging.error("Package {} is excluded from dependency check".format(package_name))
35.938462
148
0.636558
104399b42b3d6c624bc52fbaa571560bd48b4104
2,057
py
Python
plugins/lastlog.py
Perdu/poezio-1
ed645d9403ecf7bebfe2406f914868c3bbd1ef34
[ "Zlib" ]
null
null
null
plugins/lastlog.py
Perdu/poezio-1
ed645d9403ecf7bebfe2406f914868c3bbd1ef34
[ "Zlib" ]
null
null
null
plugins/lastlog.py
Perdu/poezio-1
ed645d9403ecf7bebfe2406f914868c3bbd1ef34
[ "Zlib" ]
null
null
null
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2018 Maxime “pep” Buquet # Copyright © 2019 Madhur Garg # # Distributed under terms of the zlib license. See the COPYING file. """ Search provided string in the buffer and return all results on the screen """ import re from typing import Optional from datetime import datetime from poezio.plugin import BasePlugin from poezio import tabs from poezio.text_buffer import Message, TextBuffer def add_line( text_buffer: TextBuffer, text: str, datetime: Optional[datetime] = None, ) -> None: """Adds a textual entry in the TextBuffer""" text_buffer.add_message( text, datetime, # Time None, # Nickname None, # Nick Color False, # History None, # User False, # Highlight None, # Identifier None, # str_time None, # Jid ) class Plugin(BasePlugin): """Lastlog Plugin""" def init(self): for tab in tabs.DynamicConversationTab, tabs.StaticConversationTab, tabs.PrivateTab, tabs.MucTab: self.api.add_tab_command( tab, 'lastlog', self.command_lastlog, usage='<keyword>', help='Search <keyword> in the buffer and returns results' 'on the screen') def command_lastlog(self, input_): """Define lastlog command""" text_buffer = self.api.current_tab()._text_buffer search_re = re.compile(input_, re.I) res = [] add_line(text_buffer, "Lastlog:") for message in text_buffer.messages: if message.nickname is not None and \ search_re.search(message.txt) is not None: res.append(message) add_line(text_buffer, "%s> %s" % (message.nickname, message.txt), message.time) add_line(text_buffer, "End of Lastlog") self.api.current_tab().text_win.pos = 0 self.api.current_tab().core.refresh_window()
28.569444
105
0.605737
03bc36335c57a7145118276da7b0c913c57dfb06
930
py
Python
tests/test_tradehub_get_username_check.py
Mai-Te-Pora/tradehub-python
8355b862f5cabeb9f5ee3d17682941116c95d08c
[ "MIT" ]
7
2021-01-18T07:50:22.000Z
2022-01-16T15:14:08.000Z
tests/test_tradehub_get_username_check.py
Mai-Te-Pora/tradehub-python
8355b862f5cabeb9f5ee3d17682941116c95d08c
[ "MIT" ]
13
2021-01-22T12:26:56.000Z
2021-03-07T09:24:49.000Z
tests/test_tradehub_get_username_check.py
Mai-Te-Pora/tradehub-python
8355b862f5cabeb9f5ee3d17682941116c95d08c
[ "MIT" ]
1
2022-01-16T15:14:13.000Z
2022-01-16T15:14:13.000Z
from tests import APITestCase, mainnet_client, USERNAME_DEVEL class TestTradeHubGetUsernameCheck(APITestCase): def setUp(self) -> None: self._client = mainnet_client def test_get_username_check_structure(self): """ Check if response match expected dict structure. :return: """ result: bool = self._client.get_username_check(USERNAME_DEVEL) self.assertIsInstance(result, bool, msg=f"Expected result to be type bool, got {type(result)} instead.") # TODO need test wallet self.assertTrue(result, msg=f"Expected username {USERNAME_DEVEL} to be taken.") result: bool = self._client.get_username_check(USERNAME_DEVEL.upper()) self.assertIsInstance(result, bool, msg=f"Expected result to be type bool, got {type(result)} instead.") self.assertFalse(result, msg=f"Expected username {USERNAME_DEVEL.upper()} to be not taken.")
37.2
112
0.698925
5d364aaffe15cdc117d31ab482f13f23b3b560c7
895
py
Python
utils/utils.py
LuChenLab/SCAPE
49c4063f1ec3ac2d72f935b61de4a18c66db754d
[ "MIT" ]
3
2022-03-15T05:22:29.000Z
2022-03-21T18:32:04.000Z
utils/utils.py
LuChenLab/SCAPE
49c4063f1ec3ac2d72f935b61de4a18c66db754d
[ "MIT" ]
3
2022-02-20T04:43:18.000Z
2022-03-19T12:19:56.000Z
utils/utils.py
LuChenLab/SCAPE
49c4063f1ec3ac2d72f935b61de4a18c66db754d
[ "MIT" ]
1
2022-03-21T18:32:15.000Z
2022-03-21T18:32:15.000Z
from collections import defaultdict from itertools import islice # This two fucntion were used for wraper the nested dict not lambda function def dict_list(): return defaultdict(list) def wrapdict(): return defaultdict(dict_list) def window(seq, n=2): """ Return a sliding window over a list """ it = iter(seq) result = list(islice(it, n)) if len(result) == n: yield result for elem in it: result = result[1:] + list((elem,)) yield result class AttrDict(dict): def __init__(self): dict.__init__(self) def __setattr__(self, name, value): self[name] = value def __getattr__(self, name): return self[name] class dotdict(dict): """ dot.notation access to dictionary attributes """ __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__
19.456522
76
0.642458
b207694baa808f6e49262a4ebd284a4c21dda7a2
8,635
py
Python
art/attacks/evasion/targeted_universal_perturbation.py
david-shmailov/adversarial-robustness-toolbox
ad8b94d3928abe218cd6ab2eed1c5c21f1d6e420
[ "MIT" ]
1
2022-01-31T15:17:20.000Z
2022-01-31T15:17:20.000Z
art/attacks/evasion/targeted_universal_perturbation.py
david-shmailov/adversarial-robustness-toolbox
ad8b94d3928abe218cd6ab2eed1c5c21f1d6e420
[ "MIT" ]
1
2022-03-18T00:41:02.000Z
2022-03-18T00:41:02.000Z
art/attacks/evasion/targeted_universal_perturbation.py
david-shmailov/adversarial-robustness-toolbox
ad8b94d3928abe218cd6ab2eed1c5c21f1d6e420
[ "MIT" ]
1
2022-03-22T05:30:31.000Z
2022-03-22T05:30:31.000Z
# MIT License # # Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2020 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module implements the universal adversarial perturbations attack `TargetedUniversalPerturbation`. | Paper link: https://arxiv.org/abs/1911.06502 """ from __future__ import absolute_import, division, print_function, unicode_literals import logging import random import types from typing import Any, Dict, Optional, Union, TYPE_CHECKING import numpy as np from art.attacks.attack import EvasionAttack from art.estimators.estimator import BaseEstimator from art.estimators.classification.classifier import ClassifierMixin from art.utils import projection if TYPE_CHECKING: from art.utils import CLASSIFIER_TYPE logger = logging.getLogger(__name__) class TargetedUniversalPerturbation(EvasionAttack): """ Implementation of the attack from Hirano and Takemoto (2019). Computes a fixed perturbation to be applied to all future inputs. To this end, it can use any adversarial attack method. | Paper link: https://arxiv.org/abs/1911.06502 """ attacks_dict = { "fgsm": "art.attacks.evasion.fast_gradient.FastGradientMethod", "simba": "art.attacks.evasion.simba.SimBA", } attack_params = EvasionAttack.attack_params + ["attacker", "attacker_params", "delta", "max_iter", "eps", "norm"] _estimator_requirements = (BaseEstimator, ClassifierMixin) def __init__( self, classifier: "CLASSIFIER_TYPE", attacker: str = "fgsm", attacker_params: Optional[Dict[str, Any]] = None, delta: float = 0.2, max_iter: int = 20, eps: float = 10.0, norm: Union[int, float, str] = np.inf, ): """ :param classifier: A trained classifier. :param attacker: Adversarial attack name. Default is 'deepfool'. Supported names: 'fgsm'. :param attacker_params: Parameters specific to the adversarial attack. If this parameter is not specified, the default parameters of the chosen attack will be used. :param delta: desired accuracy :param max_iter: The maximum number of iterations for computing universal perturbation. :param eps: Attack step size (input variation) :param norm: The norm of the adversarial perturbation. Possible values: "inf", np.inf, 2 """ super().__init__(estimator=classifier) self.attacker = attacker self.attacker_params = attacker_params self.delta = delta self.max_iter = max_iter self.eps = eps self.norm = norm self._targeted = True self._check_params() def generate(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> np.ndarray: """ Generate adversarial samples and return them in an array. :param x: An array with the original inputs. :param y: An array with the targeted labels. :return: An array holding the adversarial examples. """ if y is None: raise ValueError("Labels `y` cannot be None.") if self.estimator.nb_classes == 2 and y.shape[1] == 1: raise ValueError( "This attack has not yet been tested for binary classification with a single output classifier." ) logger.info("Computing targeted universal perturbation based on %s attack.", self.attacker) # Init universal perturbation noise = np.zeros_like(x[[0]]) fooling_rate = 0.0 targeted_success_rate = 0.0 nb_instances = len(x) # Instantiate the middle attacker and get the predicted labels attacker = self._get_attack(self.attacker, self.attacker_params) pred_y = self.estimator.predict(x, batch_size=1) pred_y_max = np.argmax(pred_y, axis=1) # Start to generate the adversarial examples nb_iter = 0 while targeted_success_rate < 1.0 - self.delta and nb_iter < self.max_iter: # Go through all the examples randomly rnd_idx = random.sample(range(nb_instances), nb_instances) # Go through the data set and compute the perturbation increments sequentially for _, (e_x, e_y) in enumerate(zip(x[rnd_idx], y[rnd_idx])): x_i = e_x[None, ...] y_i = e_y[None, ...] current_label = np.argmax(self.estimator.predict(x_i + noise)[0]) target_label = np.argmax(y_i) if current_label != target_label: # Compute adversarial perturbation adv_xi = attacker.generate(x_i + noise, y=y_i) new_label = np.argmax(self.estimator.predict(adv_xi)[0]) # If the class has changed, update v if new_label == target_label: noise = adv_xi - x_i # Project on L_p ball noise = projection(noise, self.eps, self.norm) nb_iter += 1 # Apply attack and clip x_adv = x + noise if hasattr(self.estimator, "clip_values") and self.estimator.clip_values is not None: clip_min, clip_max = self.estimator.clip_values x_adv = np.clip(x_adv, clip_min, clip_max) # Compute the error rate y_adv = np.argmax(self.estimator.predict(x_adv, batch_size=1), axis=1) fooling_rate = np.sum(pred_y_max != y_adv) / nb_instances targeted_success_rate = np.sum(y_adv == np.argmax(y, axis=1)) / nb_instances self.fooling_rate = fooling_rate self.targeted_success_rate = targeted_success_rate self.converged = nb_iter < self.max_iter self.noise = noise logger.info("Fooling rate of universal perturbation attack: %.2f%%", 100 * fooling_rate) logger.info("Targeted success rate of universal perturbation attack: %.2f%%", 100 * targeted_success_rate) return x_adv def _check_params(self) -> None: if not isinstance(self.delta, (float, int)) or self.delta < 0 or self.delta > 1: raise ValueError("The desired accuracy must be in the range [0, 1].") if not isinstance(self.max_iter, int) or self.max_iter <= 0: raise ValueError("The number of iterations must be a positive integer.") if not isinstance(self.eps, (float, int)) or self.eps <= 0: raise ValueError("The eps coefficient must be a positive float.") def _get_attack(self, a_name: str, params: Optional[Dict[str, Any]] = None) -> EvasionAttack: """ Get an attack object from its name. :param a_name: attack name. :param params: attack params. :return: attack object """ try: attack_class = self._get_class(self.attacks_dict[a_name]) a_instance = attack_class(self.estimator) # type: ignore if params: a_instance.set_params(**params) return a_instance except KeyError: raise NotImplementedError(f"{a_name} attack not supported") from KeyError @staticmethod def _get_class(class_name: str) -> types.ModuleType: """ Get a class module from its name. :param class_name: Full name of a class. :return: The class `module`. """ sub_mods = class_name.split(".") module_ = __import__(".".join(sub_mods[:-1]), fromlist=sub_mods[-1]) class_module = getattr(module_, sub_mods[-1]) return class_module
40.924171
120
0.651882
25aa5db4427e94d5a28b3047c44378aab71003d6
736
py
Python
data/products.py
IlyaLyamin/buynet
8cef028cbe06af8ce25bd2c9980a9a4cf94aac79
[ "MIT" ]
null
null
null
data/products.py
IlyaLyamin/buynet
8cef028cbe06af8ce25bd2c9980a9a4cf94aac79
[ "MIT" ]
null
null
null
data/products.py
IlyaLyamin/buynet
8cef028cbe06af8ce25bd2c9980a9a4cf94aac79
[ "MIT" ]
null
null
null
import sqlalchemy from .db_session import SqlAlchemyBase from sqlalchemy import orm from flask_login import UserMixin from sqlalchemy_serializer import SerializerMixin class Products(SqlAlchemyBase, UserMixin, SerializerMixin): __tablename__ = 'products' id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True, autoincrement=True) user_id = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('users.id')) product = sqlalchemy.Column(sqlalchemy.String, default='без названия') price = sqlalchemy.Column(sqlalchemy.Integer) photo = sqlalchemy.Column(sqlalchemy.String, default='default.jpg') about = sqlalchemy.Column(sqlalchemy.Text, default='Без описания') author = orm.relation('User')
40.888889
86
0.785326
3e6c902c81dee9cfcceb72611973d4e85842a12b
14,125
py
Python
imagenet/augment/augment_ops.py
sinemmy/fixmatch
3386d275fe59782936570b047dc66821ff96d5de
[ "Apache-2.0" ]
null
null
null
imagenet/augment/augment_ops.py
sinemmy/fixmatch
3386d275fe59782936570b047dc66821ff96d5de
[ "Apache-2.0" ]
null
null
null
imagenet/augment/augment_ops.py
sinemmy/fixmatch
3386d275fe59782936570b047dc66821ff96d5de
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Various ops for augmentation.""" import math import tensorflow.compat.v1 as tf import tensorflow_addons as tfa # Default replace value REPLACE_VALUE = 128 def blend(image1, image2, factor): """Blend image1 and image2 using 'factor'. A value of factor 0.0 means only image1 is used. A value of 1.0 means only image2 is used. A value between 0.0 and 1.0 means we linearly interpolate the pixel values between the two images. A value greater than 1.0 "extrapolates" the difference between the two pixel values, and we clip the results to values between 0 and 255. Args: image1: An image Tensor. image2: An image Tensor. factor: A floating point value above 0.0. Returns: A blended image Tensor. """ image1 = tf.cast(image1, tf.float32) image2 = tf.cast(image2, tf.float32) return tf.saturate_cast(image1 + factor * (image2 - image1), tf.uint8) def wrap(image): """Returns 'image' with an extra channel set to all 1s.""" shape = tf.shape(image) extended_channel = tf.ones([shape[0], shape[1], 1], image.dtype) extended = tf.concat([image, extended_channel], 2) return extended def unwrap(image): """Unwraps an image produced by wrap. Where there is a 0 in the last channel for every spatial position, the rest of the three channels in that spatial dimension are grayed (set to 128). Operations like translate and shear on a wrapped Tensor will leave 0s in empty locations. Some transformations look at the intensity of values to do preprocessing, and we want these empty pixels to assume the 'average' value, rather than pure black. Args: image: A 3D Image Tensor with 4 channels. Returns: image: A 3D image Tensor with 3 channels. """ image_shape = tf.shape(image) # Flatten the spatial dimensions. flattened_image = tf.reshape(image, [-1, image_shape[2]]) # Find all pixels where the last channel is zero. alpha_channel = tf.expand_dims(flattened_image[:, image_shape[2] - 1], 1) replace = tf.constant([REPLACE_VALUE, REPLACE_VALUE, REPLACE_VALUE, 1], image.dtype) # Where they are zero, fill them in with 'replace'. flattened_image = tf.where( tf.equal(alpha_channel, 0), tf.ones_like(flattened_image, dtype=image.dtype) * replace, flattened_image) image = tf.reshape(flattened_image, image_shape) image = tf.slice( image, [0, 0, 0], [image_shape[0], image_shape[1], image_shape[2] - 1]) return image def solarize(image, threshold=128): # For each pixel in the image, select the pixel # if the value is less than the threshold. # Otherwise, subtract 255 from the pixel. threshold = tf.saturate_cast(threshold, image.dtype) return tf.where(image < threshold, image, 255 - image) def solarize_add(image, addition=0, threshold=128): # For each pixel in the image less than threshold # we add 'addition' amount to it and then clip the # pixel value to be between 0 and 255. The value # of 'addition' is between -128 and 128 threshold = tf.saturate_cast(threshold, image.dtype) added_im = tf.cast(image, tf.int32) + tf.cast(addition, tf.int32) added_im = tf.saturate_cast(added_im, tf.uint8) return tf.where(image < threshold, added_im, image) def invert(image): """Inverts the image pixels.""" return 255 - tf.convert_to_tensor(image) def invert_blend(image, factor): """Implements blend of invert with original image.""" return blend(invert(image), image, factor) def color(image, factor): """Equivalent of PIL Color.""" degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image)) return blend(degenerate, image, factor) def contrast(image, factor): """Equivalent of PIL Contrast.""" grayscale_im = tf.image.rgb_to_grayscale(image) mean = tf.reduce_mean(tf.cast(grayscale_im, tf.float32)) mean = tf.saturate_cast(mean + 0.5, tf.uint8) degenerate = tf.ones_like(grayscale_im, dtype=tf.uint8) * mean degenerate = tf.image.grayscale_to_rgb(degenerate) return blend(degenerate, image, factor) def brightness(image, factor): """Equivalent of PIL Brightness.""" degenerate = tf.zeros_like(image) return blend(degenerate, image, factor) def posterize(image, bits): """Equivalent of PIL Posterize.""" shift = tf.cast(8 - bits, image.dtype) return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift) def rotate(image, degrees): """Equivalent of PIL Rotation.""" # Convert from degrees to radians degrees_to_radians = math.pi / 180.0 radians = degrees * degrees_to_radians # In practice, we should randomize the rotation degrees by flipping # it negatively half the time, but that's done on 'degrees' outside # of the function. image = tfa.image.transform_ops.rotate(wrap(image), radians) return unwrap(image) def translate_x(image, pixels): """Equivalent of PIL Translate in X dimension.""" image = tfa.image.translate_ops.translate(wrap(image), [-pixels, 0]) return unwrap(image) def translate_y(image, pixels): """Equivalent of PIL Translate in Y dimension.""" image = tfa.image.translate_ops.translate(wrap(image), [0, -pixels]) return unwrap(image) def shear_x(image, level): """Equivalent of PIL Shearing in X dimension.""" # Shear parallel to x axis is a projective transform # with a matrix form of: # [1 level # 0 1] image = tfa.image.transform_ops.transform( wrap(image), [1., level, 0., 0., 1., 0., 0., 0.]) return unwrap(image) def shear_y(image, level): """Equivalent of PIL Shearing in Y dimension.""" # Shear parallel to y axis is a projective transform # with a matrix form of: # [1 0 # level 1] image = tfa.image.transform_ops.transform( wrap(image), [1., 0., 0., level, 1., 0., 0., 0.]) return unwrap(image) def autocontrast(image): """Implements Autocontrast function from PIL using TF ops.""" def scale_channel(channel): """Scale the 2D image using the autocontrast rule.""" # A possibly cheaper version can be done using cumsum/unique_with_counts # over the histogram values, rather than iterating over the entire image. # to compute mins and maxes. lo = tf.cast(tf.reduce_min(channel), tf.float32) hi = tf.cast(tf.reduce_max(channel), tf.float32) # Scale the image, making the lowest value 0 and the highest value 255. def scale_values(im): scale = 255.0 / (hi - lo) offset = -lo * scale im = tf.cast(im, tf.float32) * scale + offset return tf.saturate_cast(im, tf.uint8) result = tf.cond(hi > lo, lambda: scale_values(channel), lambda: channel) return result # Assumes RGB for now. Scales each channel independently # and then stacks the result. s1 = scale_channel(image[:, :, 0]) s2 = scale_channel(image[:, :, 1]) s3 = scale_channel(image[:, :, 2]) image = tf.stack([s1, s2, s3], 2) return image def autocontrast_blend(image, factor): """Implements blend of autocontrast with original image.""" return blend(autocontrast(image), image, factor) def sharpness(image, factor): """Implements Sharpness function from PIL using TF ops.""" orig_im = image image = tf.cast(image, tf.float32) # Make image 4D for conv operation image = tf.expand_dims(image, 0) # SMOOTH PIL Kernel kernel = tf.constant( [[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=tf.float32, shape=[3, 3, 1, 1]) / 13. # Tile across channel dimension kernel = tf.tile(kernel, [1, 1, 3, 1]) strides = [1, 1, 1, 1] degenerate = tf.nn.depthwise_conv2d( image, kernel, strides, padding='VALID', dilations=[1, 1]) degenerate = tf.squeeze(tf.saturate_cast(degenerate, tf.uint8), [0]) # For the borders of the resulting image, fill in the values of the # original image. mask = tf.ones_like(degenerate) padded_mask = tf.pad(mask, [[1, 1], [1, 1], [0, 0]]) padded_degenerate = tf.pad(degenerate, [[1, 1], [1, 1], [0, 0]]) result = tf.where(tf.equal(padded_mask, 1), padded_degenerate, orig_im) # Blend the final result return blend(result, orig_im, factor) def equalize(image): """Implements Equalize function from PIL using TF ops.""" def scale_channel(im, c): """Scale the data in the channel to implement equalize.""" im = tf.cast(im[:, :, c], tf.int32) # Compute the histogram of the image channel. histo = tf.histogram_fixed_width(im, [0, 255], nbins=256) # For the purposes of computing the step, filter out the nonzeros. nonzero = tf.where(tf.not_equal(histo, 0)) nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1]) step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255 def build_lut(histo, step): # Compute the cumulative sum, shifting by step // 2 # and then normalization by step. lut = (tf.cumsum(histo) + (step // 2)) // step # Shift lut, prepending with 0. lut = tf.concat([[0], lut[:-1]], 0) # Clip the counts to be in range. This is done # in the C code for image.point. return tf.clip_by_value(lut, 0, 255) # If step is zero, return the original image. Otherwise, build # lut from the full histogram and step and then index from it. result = tf.cond(tf.equal(step, 0), lambda: im, lambda: tf.gather(build_lut(histo, step), im)) return tf.cast(result, tf.uint8) # Assumes RGB for now. Scales each channel independently # and then stacks the result. s1 = scale_channel(image, 0) s2 = scale_channel(image, 1) s3 = scale_channel(image, 2) image = tf.stack([s1, s2, s3], 2) return image def equalize_blend(image, factor): """Implements blend of equalize with original image.""" return blend(equalize(image), image, factor) def _convolve_image_with_kernel(image, kernel): num_channels = tf.shape(image)[-1] kernel = tf.tile(kernel, [1, 1, num_channels, 1]) image = tf.expand_dims(image, axis=0) convolved_im = tf.nn.depthwise_conv2d( tf.cast(image, tf.float32), kernel, strides=[1, 1, 1, 1], padding='SAME') # adding 0.5 for future rounding, same as in PIL: # https://github.com/python-pillow/Pillow/blob/555e305a60d7fcefd1ad4aa6c8fd879e2f474192/src/libImaging/Filter.c#L101 # pylint: disable=line-too-long convolved_im = convolved_im + 0.5 return tf.squeeze(convolved_im, axis=0) def blur(image, factor): """Blur with the same kernel as ImageFilter.BLUR.""" # See https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageFilter.py # pylint: disable=line-too-long # class BLUR(BuiltinFilter): # name = "Blur" # # fmt: off # filterargs = (5, 5), 16, 0, ( # 1, 1, 1, 1, 1, # 1, 0, 0, 0, 1, # 1, 0, 0, 0, 1, # 1, 0, 0, 0, 1, # 1, 1, 1, 1, 1, # ) # # fmt: on # # filterargs are following: # (kernel_size_x, kernel_size_y), divisor, offset, kernel # blur_kernel = tf.constant([[1., 1., 1., 1., 1.], [1., 0., 0., 0., 1.], [1., 0., 0., 0., 1.], [1., 0., 0., 0., 1.], [1., 1., 1., 1., 1.]], dtype=tf.float32, shape=[5, 5, 1, 1]) / 16.0 blurred_im = _convolve_image_with_kernel(image, blur_kernel) return blend(image, blurred_im, factor) def smooth(image, factor): """Smooth with the same kernel as ImageFilter.SMOOTH.""" # See https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageFilter.py # pylint: disable=line-too-long # class SMOOTH(BuiltinFilter): # name = "Smooth" # # fmt: off # filterargs = (3, 3), 13, 0, ( # 1, 1, 1, # 1, 5, 1, # 1, 1, 1, # ) # # fmt: on # # filterargs are following: # (kernel_size_x, kernel_size_y), divisor, offset, kernel # smooth_kernel = tf.constant([[1., 1., 1.], [1., 5., 1.], [1., 1., 1.]], dtype=tf.float32, shape=[3, 3, 1, 1]) / 13.0 smoothed_im = _convolve_image_with_kernel(image, smooth_kernel) return blend(image, smoothed_im, factor) def rescale(image, level): """Rescales image and enlarged cornet.""" # TODO(kurakin): should we do center crop instead? # TODO(kurakin): add support of other resize methods # See tf.image.ResizeMethod for full list size = image.shape[:2] scale = level * 0.25 scale_height = tf.cast(scale * size[0], tf.int32) scale_width = tf.cast(scale * size[1], tf.int32) cropped_image = tf.image.crop_to_bounding_box( image, offset_height=scale_height, offset_width=scale_width, target_height=size[0] - scale_height, target_width=size[1] - scale_width) rescaled = tf.image.resize(cropped_image, size, tf.image.ResizeMethod.BICUBIC) return tf.saturate_cast(rescaled, tf.uint8) NAME_TO_FUNC = { 'Identity': tf.identity, 'AutoContrast': autocontrast, 'AutoContrastBlend': autocontrast_blend, 'Equalize': equalize, 'EqualizeBlend': equalize_blend, 'Invert': invert, 'InvertBlend': invert_blend, 'Rotate': rotate, 'Posterize': posterize, 'Solarize': solarize, 'SolarizeAdd': solarize_add, 'Color': color, 'Contrast': contrast, 'Brightness': brightness, 'Sharpness': sharpness, 'ShearX': shear_x, 'ShearY': shear_y, 'TranslateX': translate_x, 'TranslateY': translate_y, 'Blur': blur, 'Smooth': smooth, 'Rescale': rescale, }
33.630952
151
0.661027
53504463a5832d9541809f18f90330f3b3262a82
44,269
py
Python
rl_server/myAlgo_1_server.py
888yzbt888/Pensieve-multiagent
b5409c949a4855afedc910de5dd6eabe076567cc
[ "MIT" ]
2
2018-06-20T07:23:15.000Z
2019-05-17T08:13:57.000Z
rl_server/myAlgo_1_server.py
888yzbt888/Pensieve-multiagent
b5409c949a4855afedc910de5dd6eabe076567cc
[ "MIT" ]
null
null
null
rl_server/myAlgo_1_server.py
888yzbt888/Pensieve-multiagent
b5409c949a4855afedc910de5dd6eabe076567cc
[ "MIT" ]
null
null
null
""" post_data:lastRequest(the order number of last chunk) lastquality(0-5,0 is the lowest quality) lastChunkSize(bit,kb/1024) lastChunkStartTime(ms from 1970.1.1) lastChunkFinishTime(ms from 1970.1.1) buffer(s) bufferAdjust(buffer time except the chunk played now) RebufferTime(s) bandwidthEst(kb/s) type(???) pastThroughput heartbeat input_dict:'log_file' 'last_bit_rate' 'last_total_rebuf' 'video_chunk_coount' 's_batch' """ #!/usr/bin/env python import multiprocessing import time import copy import socket from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer import SocketServer import base64 import urllib import sys import os import json import time import fcntl import matplotlib.pyplot as plt os.environ['CUDA_VISIBLE_DEVICES']='' import numpy as np import time import itertools ################## ROBUST MPC ################### S_INFO = 5 # bit_rate, buffer_size, rebuffering_time, bandwidth_measurement, chunk_til_video_end S_LEN = 8 # take how many frames in the past MPC_FUTURE_CHUNK_COUNT = 5 VIDEO_BIT_RATE = [300,750,1200,1850,2850,4300] # Kbps BITRATE_REWARD = [1, 2, 3, 12, 15, 20] BITRATE_REWARD_MAP = {0: 0, 300: 1, 750: 2, 1200: 3, 1850: 12, 2850: 15, 4300: 20} M_IN_K = 1000.0 BUFFER_NORM_FACTOR = 10.0 CHUNK_TIL_VIDEO_END_CAP = 48.0 TOTAL_VIDEO_CHUNKS = 448 DEFAULT_QUALITY = 0 # default video quality without agent REBUF_PENALTY = 4.3 # 1 sec rebuffering -> this number of Mbps SMOOTH_PENALTY = 1 TRAIN_SEQ_LEN = 100 # take as a train batch MODEL_SAVE_INTERVAL = 100 RANDOM_SEED = 42 RAND_RANGE = 1000 SUMMARY_DIR = './results' LOG_FILE = './results/log' # in format of time_stamp bit_rate buffer_size rebuffer_time video_chunk_size download_time reward NN_MODEL = None CHUNK_COMBO_OPTIONS = [] # past errors in bandwidth past_errors = [] past_bandwidth_ests = [] ################################ #multiprocessing share variables manager=multiprocessing.Manager() Que1=manager.list() Que2=manager.list() Dict1=manager.dict() Dict2=manager.dict() begin_time=time.time() QueOnline=manager.list() DictOnline={}#remember last quality for each IP MultiClientState={}# format:{"IP":[(int)heartbeat_time_not_request_time,(int)quality]} ################################ # video chunk sizes ''' size_video1 = [2354772, 2123065, 2177073, 2160877, 2233056, 1941625, 2157535, 2290172, 2055469, 2169201, 2173522, 2102452, 2209463, 2275376, 2005399, 2152483, 2289689, 2059512, 2220726, 2156729, 2039773, 2176469, 2221506, 2044075, 2186790, 2105231, 2395588, 1972048, 2134614, 2164140, 2113193, 2147852, 2191074, 2286761, 2307787, 2143948, 1919781, 2147467, 2133870, 2146120, 2108491, 2184571, 2121928, 2219102, 2124950, 2246506, 1961140, 2155012, 1433658] size_video2 = [1728879, 1431809, 1300868, 1520281, 1472558, 1224260, 1388403, 1638769, 1348011, 1429765, 1354548, 1519951, 1422919, 1578343, 1231445, 1471065, 1491626, 1358801, 1537156, 1336050, 1415116, 1468126, 1505760, 1323990, 1383735, 1480464, 1547572, 1141971, 1498470, 1561263, 1341201, 1497683, 1358081, 1587293, 1492672, 1439896, 1139291, 1499009, 1427478, 1402287, 1339500, 1527299, 1343002, 1587250, 1464921, 1483527, 1231456, 1364537, 889412] size_video3 = [1034108, 957685, 877771, 933276, 996749, 801058, 905515, 1060487, 852833, 913888, 939819, 917428, 946851, 1036454, 821631, 923170, 966699, 885714, 987708, 923755, 891604, 955231, 968026, 874175, 897976, 905935, 1076599, 758197, 972798, 975811, 873429, 954453, 885062, 1035329, 1026056, 943942, 728962, 938587, 908665, 930577, 858450, 1025005, 886255, 973972, 958994, 982064, 830730, 846370, 598850] size_video4 = [668286, 611087, 571051, 617681, 652874, 520315, 561791, 709534, 584846, 560821, 607410, 594078, 624282, 687371, 526950, 587876, 617242, 581493, 639204, 586839, 601738, 616206, 656471, 536667, 587236, 590335, 696376, 487160, 622896, 641447, 570392, 620283, 584349, 670129, 690253, 598727, 487812, 575591, 605884, 587506, 566904, 641452, 599477, 634861, 630203, 638661, 538612, 550906, 391450] size_video5 = [450283, 398865, 350812, 382355, 411561, 318564, 352642, 437162, 374758, 362795, 353220, 405134, 386351, 434409, 337059, 366214, 360831, 372963, 405596, 350713, 386472, 399894, 401853, 343800, 359903, 379700, 425781, 277716, 400396, 400508, 358218, 400322, 369834, 412837, 401088, 365161, 321064, 361565, 378327, 390680, 345516, 384505, 372093, 438281, 398987, 393804, 331053, 314107, 255954] size_video6 = [181801, 155580, 139857, 155432, 163442, 126289, 153295, 173849, 150710, 139105, 141840, 156148, 160746, 179801, 140051, 138313, 143509, 150616, 165384, 140881, 157671, 157812, 163927, 137654, 146754, 153938, 181901, 111155, 153605, 149029, 157421, 157488, 143881, 163444, 179328, 159914, 131610, 124011, 144254, 149991, 147968, 161857, 145210, 172312, 167025, 160064, 137507, 118421, 112270] ''' size_video1=[1756806,3091206,2210154,1845731,1817275,2069902,2117640,2061264,2237179,2132441,2044975,3789197,3250223,2487213,2149619,1765477, 2505293,2673223,2084351,2069989,1855189,2478422,2580412,2065841,2585352,1351167,1398486,1725385,2897186,4738096,1670320,1756062, 3048206,4866144,1843384,1584205,1884317,1858789,1038538,798577,2117675,2528940,1398909,3205655,2983891,2201743,2366969,2553838, 1501437,1267022,1644497,1367567,1203298,3427696,1968656,3096706,2066317,2634682,1694746,1434945,3173242,1693021,1682424,2113373, 3103217,2462552,2256905,2226073,1980055,2037901,2470135,2128194,2434345,1714265,1330462,2102803,1015863,865084,1634635,1229781, 1227461,1383375,1572941,1624467,1260343,2100804,1782111,3028204,1845902,1283138,1529032,1782594,1613129,1621860,1702228,1935782, 1908470,1820040,1542276,2025509,1672002,1681633,3771816,5057431,3537995,2803543,3831917,2709325,3627028,2349666,2466424,2215131, 2249004,1704399,1689433,1362005,1565350,2242939,2378241,2021904,2019269,1054954,2328052,2211591,2104177,2280895,1991117,1857563, 2209717,1711273,1293338,1289551,1976534,2284536,1925431,2869117,2469558,1435620,1240014,1811217,2988838,2552354,2365918,2065200, 2555376,1779921,2281000,2856816,2252510,1331370,1565606,1548717,3429310,1957226,1744946,1736383,2170169,2128049,2573352,2262965, 2877128,2632416,2110319,2309152,2087447,2303868,3110829,4470951,4276187,2646215,2596715,1701057,2932345,2622505,2362883,2360631, 3172401,3599259,2951048,1968506,2345232,1739989,1303134,1273197,1463247,1841675,2594747,3307177,1289034,2849319,2067334,1658999, 1451249,2074198,1510216,2665640,2975156,1903333,3534501,4269578,4256969,4212087,983135,527732,391690,1403108,1438881,1452557, 1917879,1613934,1871217,1188694,2512090,2858958,1531701,1008854,1003379,1815850,1586467,980482,1439500,2289989,2449550,3404941, 3365845,2830877,4573090,2648680,4028108,5273438,3649905,3386154,2446726,2965108,2245612,1832510,2071735,1755973,2019058,1360561, 1039489,1894295,1999107,1666014,2242594,1746466,2870885,2284279,1714119,2282746,1999381,2436148,1828361,2833893,2132959,1585105, 2275927,2131090,2951419,2197713,2049883,1657043,2195265,2978021,2007940,1712613,1729774,1533013,3056849,3034214,3327704,3120601, 2265234,1983515,2468537,2171814,1750435,1885298,2056222,2409637,1384308,1073859,1993041,2524543,2684433,2749667,1487433,2299203, 1711371,1882897,1979814,2600016,2829907,2024223,2435121,1745680,1733204,2311748,2360093,2962846,2530685,2333345,2573975,2688803, 1674837,2328829,2654846,2177220,1983637,1826992,1554600,1742047,1015182,1327517,1392909,1997961,2777906,2151277,1385355,1841831, 2576036,2248077,1670266,1921688,2513568,2592109,1866077,2254994,3076104,2892882,2637278,2258700,1223635,905654,900966,532695, 678430,1684441,1272715,1174559,1071726,1261171,1574531,1726304,1393375,1612197,1577541,1178594,1331352,1471475,1258708,1417142, 1337069,1753784,3098761,1712958,1487216,1749591,2094655,1655374,1838915,1632130,4455112,1103313,4325538,4260027,3363232,1966800, 2387229,2734086,2389536,2457011,2795839,2917015,2516264,2127460,2593348,3241121,3966814,3003788,1984507,2589085,2196063,1610600, 1378770,2396778,1976157,1717434,669393,1027820,1375132,1464032,1326640,1729066,1534541,1787945,2596315,3393474,2786962,3161567, 2753054,2801599,3086005,2440861,3156653,4016406,3399126,3785131,4186971,3408842,2612351,2792930,2184320,1364863,1291497,958698, 1640227,1815859,1795500,2069010,2016002,1406199,1373710,1718790,980021,862871,990244,1247321,1934872,1727416,1281950,1283997, 2167162,1437622,911988,1208836,1855819,1746139,2142901,3077141,2097075,1667617,2375729,1176383,1534788,2019092,1649060,1119606, 2066820] size_video2=[1248166,1909948,1437354,1206293,1202036,1374260,1394562,1352039,1499553,1420399,1360662,2352325,2206383,1618768, 1455386,1204706,1713574,1864652,1448970,1398569,1293903,1662378,1778570,1405415,1767145,754576,789631,1047145,1830919,3283497, 1110502,1143921,2082236,3252018,1219923,1071692,1295207,1266141,656576,503078,1354183,1699087,927720,2208172,2011759,1494987, 1602807,1716281,996382,808047,975928,884332,755695,2258444,1301747,2091230,1441438,1791927,1142314,948784,2118602,1134808,1088077, 1419506,2094634,1666971,1573121,1445975,1315146,1393944,1676874,1438847,1587400,1082750,855365,1309596,616101,522811,1009092, 755328,744447,856311,990560,994122,741287,1350804,1149553,2095051,1184299,762583,968586,1179001,1003173,998496,1057590,1243591, 1237504,1117387,937314,1261624,1166183,1171457,2696482,3460711,2432287,1831251,2639863,1888769,2576440,1610171,1708230,1492094, 1538209,1132001,1123038,874553,1004636,1426699,1544177,1349606,1360880,645082,1354293,1398892,1451433,1504901,1328553,1263252, 1509891,1153670,855640,864167,1392355,1511324,1301036,1948238,1647259,955411,816968,1185012,2007860,1648783,1522896,1335718, 1707248,1085428,1457959,1994052,1475727,828972,948348,933982,2382507,1225258,1097507,1118835,1448416,1390061,1695141,1496810, 1954410,1774003,1366911,1524592,1368957,1501570,2095420,3114760,2838416,1502515,1694876,1053663,2100929,1903225,1667629,1663218, 2248474,2551140,2051397,1347603,1626107,1164880,871909,857484,973494,1264289,1741906,2304449,845899,1950152,1361535,1096620, 956379,1374366,979791,1713882,1980346,1253742,2331705,2782848,2771738,2807548,644361,352430,247261,924748,983983,978337,1273457, 1072491,1233180,753303,1719760,1976297,1020941,643472,632199,1212648,1033471,622503,954344,1418860,1581120,2280953,2273723, 1722839,3004290,1786110,2762113,3508086,2471169,2290623,1631933,2022588,1501694,1221686,1392053,1162530,1350142,916630,692591, 1272848,1376995,1130650,1511110,1188451,1956043,1553905,1190117,1536041,1334153,1620445,1229638,1904189,1437879,1043343,1484736, 1389038,1962114,1379569,1348907,1083199,1464620,1986660,1331590,1086919,1129684,1020726,2049670,2077307,2244912,2092287,1502555, 1329093,1638317,1432601,1186820,1259056,1378272,1592067,894118,702494,1328338,1707818,1858005,1814721,965118,1491287,1130946, 1245095,1297373,1761282,1887826,1337368,1614799,1121034,1145238,1497043,1606601,2025110,1710529,1583480,1723662,1810776,1113208, 1547386,1774950,1421925,1206322,1187183,1004007,1147471,676151,894621,880733,1266385,1848743,1457129,887321,1185256,1683346, 1454053,1091702,1298560,1702106,1712364,1162421,1518078,2105991,1963481,1783520,1462072,721990,579786,589643,344866,427515, 1117244,806288,741042,675112,787869,1011434,1126209,885267,1055611,1018506,773227,870077,912214,776772,883886,862865,1150468, 2067548,1099289,945530,1150026,1362064,1050127,1197301,1075450,2836687,702922,2875327,2778004,2245324,1287876,1575207,1779274, 1563888,1703575,1879597,1981220,1706876,1336949,1679947,2160617,2693480,2009306,1332161,1758489,1457012,1054975,926778,1589787, 1315164,1139932,406770,664625,936523,928176,835472,1167407,994739,1185573,1740000,2319760,1837859,2103152,1854032,1873751,2125146, 1614715,2116308,2777412,2292582,2515009,2837060,2395144,1790486,1913686,1448776,902340,828891,617586,1081453,1195033,1179707, 1339413,1300244,935908,880962,1098413,618451,537171,620261,773863,1240249,1093356,802481,790748,1415323,837047,545014,773276, 1225405,1133886,1437142,2045825,1351366,1027020,1495764,704275,989618,1287214,1087634,718747,1318691] size_video3=[846285,1168830,924155,782361,776921,896171,904410,867529,987852,931970,884019,1388977,1386547,1061921,985293,802234, 1169255,1286193,995130,938950,889120,1097258,1199443,945496,1179962,430164,436726,624519,1113671,2138958,731588,732163,1371730, 2110792,788301,712212,865112,846544,419881,323168,854227,1103578,603737,1462476,1328702,995325,1062304,1130531,658362,515203, 564263,576357,481669,1439148,831514,1345162,986175,1206557,761735,621067,1371358,739751,691765,948480,1381127,1093177,1075045, 921199,858138,939164,1113522,952278,1002220,678313,545154,794368,368560,322602,627633,465516,454419,527661,617205,601121,418400, 838302,720424,1421671,743692,444613,590983,767637,605102,586040,629895,773906,770305,679673,553179,767895,798336,717269,1749944, 2232941,1630935,1191422,1750938,1335785,1831757,1108036,1190875,1006044,1040709,746704,736186,559337,646623,884342,996032,902282, 898520,388061,706020,837590,997771,984903,869629,841845,1003621,765322,549112,567129,962434,983686,849944,1297068,1068550,630926, 534534,753751,1297143,1033674,972729,860044,1146757,643290,916479,1371688,950221,503853,565079,558122,1579179,764904,684818,714375, 958026,897292,1095530,976392,1284670,1157384,849960,983202,885117,949242,1378747,2093615,1794015,892920,1070196,636000,1427417, 1358293,1161687,1148764,1556485,1755196,1391857,901239,1101441,767029,575457,571960,640246,852139,1153342,1551623,552146,1303983, 884697,728329,631483,890909,629541,1057592,1264644,812359,1495774,1802682,1794299,1809999,421592,234510,162002,598631,660455, 650412,831883,704816,796782,469916,1141450,1332339,673944,405808,393579,790772,668101,391316,620897,855778,987162,1437210,1494618, 1000189,1977624,1160710,1853267,2272158,1620476,1512714,1065616,1349832,985649,800298,916009,747151,878787,611733,458891,824552, 936781,763908,1005463,805397,1309198,1027202,824776,1018133,878999,1059264,816116,1245755,950480,675165,934743,881605,1262539, 836769,868241,689535,960324,1290799,875221,677750,719309,673009,1332185,1381609,1467929,1364835,972063,879023,1062308,925128, 796868,822789,917077,1038227,572879,460030,870647,1135715,1267450,1170787,608866,932475,718075,794316,835131,1173614,1226376, 873792,1039123,698256,744176,962960,1076340,1357311,1134278,1063750,1129502,1193512,731147,1008405,1172782,916351,714909,746975, 628955,733798,452985,599131,547008,788141,1187992,947166,556402,745185,1072325,919245,703608,867170,1130427,1110818,720520,1007762, 1397415,1311440,1185457,919927,415043,381670,384138,221070,272611,721164,508382,463087,418721,476494,636457,721220,555097,676089, 633209,496792,565895,553631,472079,531680,549381,738800,1333841,682133,579828,733952,859037,656064,756593,693793,1828137,431863, 1810452,1836670,1447052,837477,1007940,1130632,997037,1164277,1231827,1316193,1135411,817342,1051188,1391898,1762282,1306967, 877949,1172156,944666,677181,614653,1029902,861520,751279,251924,434194,637408,585673,517743,779377,624265,767662,1141932,1552512, 1182714,1350835,1216575,1221492,1437167,1047801,1352884,1866550,1498852,1594916,1933364,1666636,1216493,1299406,946556,587152, 523357,398282,698490,768546,747186,839672,816283,609526,551500,685818,385510,332617,384081,472836,784876,681576,495325,478054, 910864,486727,327909,490384,787676,714464,934579,1322102,836378,608941,898288,419176,631361,777189,710660,463377,848825] size_video4=[547035,706404,596043,524098,504228,582524,590858,552807,649725,609806,581924,835167,856359,720885,648993,549888,798544, 890208,680375,621228,612247,714936,801526,636640,781633,258480,256981,381833,668878,1316285,483083,470324,887319,1346096,488576, 476883,574255,560775,275294,213942,544631,721930,394905,956401,866807,668112,707053,752293,439005,328990,332676,381240,315599, 905000,536920,856841,676222,814761,511744,406110,872426,478738,441067,638082,902857,705191,735017,597647,564153,640146,744700, 634426,622405,429916,348023,473333,223233,207060,398798,297699,289124,338019,386894,376068,247323,529278,458771,954008,469848, 268451,367008,510493,384351,336696,365757,469230,466878,397890,306208,392038,480889,427503,1061331,1462570,1107397,788212,1201905, 958934,1296354,764232,834022,684159,703462,494688,476757,358278,421053,547982,651712,605673,604769,247633,362988,500301,679289, 636811,569262,554524,657393,500344,353603,370888,654913,640820,555403,854536,682544,425652,353977,482904,831613,646249,623250, 570778,781138,395629,591756,919672,608636,315279,348908,341251,1028395,493213,433388,461614,633669,582445,710571,635445,829185, 740760,520948,625161,572429,587024,885619,1366909,1096009,549068,693014,384613,967739,961765,802806,786390,1063204,1193221,938432, 594814,738128,514183,385394,386211,419937,569630,759702,1035614,363332,867267,584199,495296,418710,579747,407271,643695,793432, 532780,953519,1181184,1173164,1150240,278260,158326,109243,391560,447495,432372,541903,462974,514903,297437,746687,889772,446977, 261064,245091,514842,433432,248997,401709,510992,623671,875583,954252,565854,1282428,760254,1230934,1471145,1041466,1007408, 700685,908906,647372,531923,604648,480567,571680,415481,311725,528791,648577,526915,676767,544984,877852,681274,584479,682400, 587249,697584,541523,819236,635454,439248,575534,558134,795960,507237,560309,435884,630696,842280,584377,418701,452008,447495, 855620,910486,955619,874290,634816,588917,688253,601008,545601,546370,622967,696809,377403,307085,582646,767567,881993,759744, 380057,569142,450995,500151,533009,787180,796757,579408,665424,428991,486141,634709,724968,910350,755342,723301,744499,791097, 486696,650661,775896,589564,417632,460207,386577,461058,309090,401728,335814,488570,758867,599018,354581,449831,677583,583268, 452635,579431,752699,725899,457825,661835,924337,879308,792148,572914,236078,252664,248583,143285,173576,464535,323435,290071, 259483,286196,396866,459208,346403,429612,379429,317461,373328,334657,285622,316216,347387,474325,846736,421261,358587,460670, 540837,418151,473605,443747,1142146,266099,1139106,1226865,912006,544488,637168,726559,633507,783324,803464,874546,749552,490660, 644883,880869,1134430,839081,575502,778336,608858,437231,411106,666015,563343,500243,160495,290749,441946,380307,327141,528851, 386873,499151,742431,1004036,756402,854695,798836,797035,965829,672367,837390,1234139,962167,972983,1314591,1183313,847271,900132, 623507,383196,331639,259707,448397,491216,470078,535948,506772,404948,343057,429095,241972,208979,237532,289286,502020,428997, 308660,291778,588501,298147,204497,313212,504692,445722,619353,831848,511452,357941,535866,252048,403999,477594,454970,301303,551953] size_video5=[323113,418441,382004,337817,318822,366200,363903,346976,404249,383861,369141,500281,492772,467460,412406,364336,530546, 595068,453373,400416,406242,447605,508492,416723,492336,153985,149450,221825,389137,790219,302059,288733,540456,825815,285915, 304614,354511,356853,174974,139405,344879,446520,249322,594647,540016,434577,456950,491623,284629,206793,194787,245465,201172, 543139,328951,533104,446793,532154,333255,259306,513006,294784,273182,414589,562032,426081,491024,375053,356030,434816,485000, 415484,363173,267232,217152,268349,130234,129844,244414,183197,181289,211852,230048,232458,147458,323339,286466,621150,292710, 157388,224852,330448,244658,189794,208443,272864,272767,219585,160716,199810,281265,234643,623111,905443,715137,496016,757193, 653100,866715,509267,565709,439095,458179,317013,299723,220237,265702,326004,406891,398108,396428,161148,189747,289152,438311, 391808,350823,342642,404291,312421,215746,231048,419638,401633,350467,540680,413555,274948,226952,298374,504645,399332,385815, 376112,518000,240102,380381,592007,379115,193082,217973,203101,629581,312102,266984,289355,406154,364723,444534,405512,503590, 445920,301669,381944,350196,336701,533864,849909,638562,325653,440403,227952,636997,657734,525502,518535,689114,782104,610917, 376978,476526,340219,251135,252753,267845,366877,470621,673027,231795,555250,369340,329086,269267,364173,255834,373785,469492, 336207,598436,747522,744086,688734,182335,102883,71090,251738,294267,277818,338245,291138,317642,182073,467537,572660,290618, 163813,145742,323299,269998,151414,247136,299386,379185,511734,583799,309771,794744,474007,777870,916062,639704,663002,444759, 596148,410568,350269,389119,296238,363553,277452,211307,324543,445667,365955,459618,364370,580715,438804,412688,454548,384954, 449872,351636,532810,418362,278056,331408,337389,468421,287027,339677,265929,405248,543069,387402,240196,265294,288498,506694, 574841,596509,526249,403785,389295,440901,377555,376321,360924,424678,470015,246729,206103,391925,514724,604960,481393,227540, 320553,265336,292954,332903,526009,509974,379518,402580,247420,307887,399296,490999,599427,493224,485382,474936,511692,327348, 403054,509642,370452,220414,268766,223824,273431,210187,260215,194459,282781,458374,361910,222321,254376,398627,353268,277424, 373952,485170,458908,283968,415847,594244,581598,513771,336212,123056,159415,152039,84419,96964,296357,197550,174412,150205, 163490,234384,276420,206155,251134,207262,189865,234699,190492,162133,172192,208515,294919,506806,243271,208423,266189,317494, 252397,272579,266038,626921,160573,687288,805076,516668,334312,382256,432601,382803,509989,497589,559731,472280,271315,372954, 517170,690202,505692,358051,497198,379108,274271,264254,417412,356246,329139,100180,192502,302659,248706,201499,350511,223655, 308401,454270,637270,464928,511545,498959,503850,626394,410515,466441,761200,580059,554024,831652,823388,590577,625131,404481, 242549,205265,168423,277268,309949,278503,325049,292610,262838,201999,257126,143254,124497,137758,167697,308527,256226,182915, 168765,363172,179420,124656,188561,300983,262333,396335,493415,295359,207622,306053,145571,246429,285851,275563,186508,346649] size_video6=[122566,141690,156437,151455,131958,141687,134848,143568,169611,155749,144962,187567,189741,191607,169931,160854,236280, 279955,203736,174786,193874,187167,207081,196253,203820,58306,52004,70463,114188,248094,120126,105738,187819,288450,107224,132126, 132775,150099,72040,63120,142264,179063,113063,237672,222641,210179,206024,226841,125166,86270,76277,111752,86103,186977,124488, 195494,209856,232665,151864,114023,181418,107522,111914,191996,231947,145572,228523,165245,154746,217987,232697,199480,132247, 114355,92243,101533,44432,46959,92051,64667,69881,82966,70706,91967,52126,115033,106804,257487,110329,52198,86248,137809,98071, 59563,67579,89812,87619,65049,51508,66553,97090,69339,218786,350602,282395,196655,294150,274147,350502,229885,264751,188592,194004, 138597,129254,90055,113934,119577,163598,176947,176958,64953,63686,94317,174842,133878,119038,116797,143402,114567,79187,85619, 158887,158149,136588,211814,149475,111228,90166,110685,182666,164383,153601,193728,240841,89363,172541,249048,155912,72714,96738, 76146,210967,138516,104483,112952,166011,143486,173754,163990,184907,157542,102142,138713,132187,103266,186551,302474,233690,114527, 183684,86990,275527,303484,247110,243197,306068,333494,259092,161551,219694,163689,115479,115867,110157,165717,206413,316094,106605, 258595,167706,161871,126251,164223,106360,140197,171683,142022,226802,274115,317194,289925,80931,38396,28340,124143,139033,128434, 145168,122302,127194,68553,208520,246036,119157,62046,49114,123744,104524,56056,81724,107806,129717,178197,219082,87764,309996, 175234,291302,381763,260114,311747,197184,285496,184984,171407,180922,127859,167708,142347,108401,127627,229023,194597,231589, 188967,293808,207290,225385,222372,182989,208632,165647,262519,198122,119059,136057,151258,207737,126195,142675,116189,196934, 273298,169687,80087,89952,116953,203808,258544,276055,251654,191358,176143,185613,174725,183381,183890,208329,222059,115871,103659, 194619,263618,323870,232819,101175,148358,120409,137639,169775,286516,266060,186239,185178,111048,131835,191865,248460,308506, 263337,268120,252697,279984,174154,193877,250368,165544,97614,128553,106663,133692,98249,131557,84157,120094,191725,157144,106115, 103896,189100,153325,105096,185534,243798,242423,135512,204760,313395,292357,286477,158682,36035,72722,58693,21160,29201,149424, 93095,73211,52395,60533,84569,100012,78060,95461,63814,66318,90387,64036,46982,48426,64363,108625,183411,70708,64343,82518,105266, 82540,70162,71644,64605,51629,207652,169915,122208,106258,133986,162789,140802,190933,160253,206255,174223,70660,113933,173128, 261541,173884,115544,179952,131746,92096,84877,151907,131972,127129,27791,55798,115167,97179,63504,113963,41194,72340,149359, 210948,145277,142456,148052,171092,235134,102985,129884,278803,214629,183098,306658,352088,282790,309863,185129,100329,81350, 64536,120000,135855,104350,136764,97760,99442,67417,84531,36782,30662,33807,40182,96727,72553,43191,38019,107349,45983,30115, 45931,84315,65096,123915,152798,77492,43261,76665,36196,69589,62195,61628,33154,80528] def get_chunk_size(quality, index): if ( index < 0 or index > 448 ): return 0 # note that the quality and video labels are inverted (i.e., quality 8 is highest and this pertains to video1) sizes = {5: size_video1[index], 4: size_video2[index], 3: size_video3[index], 2: size_video4[index], 1: size_video5[index], 0: size_video6[index]} return sizes[quality] class my_socketserver(SocketServer.ThreadingTCPServer): allow_reuse_address=True daemon_threads=True def __init__(self,server_address,RequestHandlerClass): SocketServer.ThreadingTCPServer.__init__(self,server_address,RequestHandlerClass) def make_request_handler(input_dict): print('make req hndlr') class Request_Handler(BaseHTTPRequestHandler): def __init__(self, *args, **kwargs):#args: <socketobject>,('IP',port),<BaseHTTPServer> #print('init') self.input_dict = input_dict self.log_file = input_dict['log_file'] #self.saver = input_dict['saver'] self.s_batch = input_dict['s_batch'] #self.a_batch = input_dict['a_batch'] #self.r_batch = input_dict['r_batch'] BaseHTTPRequestHandler.__init__(self, *args, **kwargs) #print('init base class') ########### the broken pipe error ######## not debug yet def handle(self): try: BaseHTTPRequestHandler.handle(self) except socket.error: pass ############################################ def do_POST(self): #print('do_post') global Que1 content_length = int(self.headers['Content-Length']) post_data = json.loads(self.rfile.read(content_length)) #print post_data if ( 'pastThroughput' in post_data ): # @Hongzi: this is just the summary of throughput/quality at the end of the load # so we don't want to use this information to send back a new quality print "Summary: ", post_data elif('heartbeat' in post_data): if self.client_address[0] not in Que1: Que1.append(self.client_address[0]) #print('Que1',Que1[:]) #print self.client_address send_data="receive hb" self.send_response(200) self.send_header('Content-Type', 'text/plain') self.send_header('Content-Length', len(send_data)) self.send_header('Access-Control-Allow-Origin', "*") self.end_headers() self.wfile.write(send_data) else: ########## Algorithm write here! Now you get all info! ######### global begin_time t = float(time.time() - begin_time) q = int(post_data['lastquality']) global Dict1,Dict2 if self.client_address[0] in Dict1.keys(): tmp=Dict1[self.client_address[0]] tmp.append(t) Dict1[self.client_address[0]]=tmp tmp=Dict2[self.client_address[0]] tmp.append(q) Dict2[self.client_address[0]]=tmp else: Dict1[self.client_address[0]]=[t] Dict2[self.client_address[0]]=[q] #print(Dict1[self.client_address[0]],Dict2[self.client_address[0]]) global DictOnline,QueOnline for k in DictOnline: if k not in QueOnline[:]: DictOnline.pop(k) DictOnline[self.client_address[0]]=q # option 1. reward for just quality # reward = post_data['lastquality'] # option 2. combine reward for quality and rebuffer time # tune up the knob on rebuf to prevent it more # reward = post_data['lastquality'] - 0.1 * (post_data['RebufferTime'] - self.input_dict['last_total_rebuf']) # option 3. give a fixed penalty if video is stalled # this can reduce the variance in reward signal # reward = post_data['lastquality'] - 10 * ((post_data['RebufferTime'] - self.input_dict['last_total_rebuf']) > 0) # option 4. use the metric in SIGCOMM MPC paper rebuffer_time = float(post_data['RebufferTime'] -self.input_dict['last_total_rebuf']) # --linear reward-- reward = VIDEO_BIT_RATE[post_data['lastquality']] / M_IN_K \ - REBUF_PENALTY * rebuffer_time / M_IN_K \ - SMOOTH_PENALTY * np.abs(VIDEO_BIT_RATE[post_data['lastquality']] - self.input_dict['last_bit_rate']) / M_IN_K # --log reward-- # log_bit_rate = np.log(VIDEO_BIT_RATE[post_data['lastquality']] / float(VIDEO_BIT_RATE[0])) # log_last_bit_rate = np.log(self.input_dict['last_bit_rate'] / float(VIDEO_BIT_RATE[0])) # reward = log_bit_rate \ # - 4.3 * rebuffer_time / M_IN_K \ # - SMOOTH_PENALTY * np.abs(log_bit_rate - log_last_bit_rate) # --hd reward-- # reward = BITRATE_REWARD[post_data['lastquality']] \ # - 8 * rebuffer_time / M_IN_K - np.abs(BITRATE_REWARD[post_data['lastquality']] - BITRATE_REWARD_MAP[self.input_dict['last_bit_rate']]) self.input_dict['last_bit_rate'] = VIDEO_BIT_RATE[post_data['lastquality']] self.input_dict['last_total_rebuf'] = post_data['RebufferTime'] # retrieve previous state if len(self.s_batch) == 0: state = [np.zeros((S_INFO, S_LEN))] else: state = np.array(self.s_batch[-1], copy=True) # compute bandwidth measurement video_chunk_fetch_time = post_data['lastChunkFinishTime'] - post_data['lastChunkStartTime'] video_chunk_size = post_data['lastChunkSize'] # compute number of video chunks left video_chunk_remain = TOTAL_VIDEO_CHUNKS - self.input_dict['video_chunk_coount'] self.input_dict['video_chunk_coount'] += 1 # dequeue history record state = np.roll(state, -1, axis=1) # this should be S_INFO number of terms try: state[0, -1] = VIDEO_BIT_RATE[post_data['lastquality']] / float(np.max(VIDEO_BIT_RATE)) state[1, -1] = post_data['buffer'] / BUFFER_NORM_FACTOR state[2, -1] = rebuffer_time / M_IN_K state[3, -1] = float(video_chunk_size) / float(video_chunk_fetch_time) / M_IN_K # kilo byte / ms state[4, -1] = np.minimum(video_chunk_remain, CHUNK_TIL_VIDEO_END_CAP) / float(CHUNK_TIL_VIDEO_END_CAP) curr_error = 0 # defualt assumes that this is the first request so error is 0 since we have never predicted bandwidth if ( len(past_bandwidth_ests) > 0 ): curr_error = abs(past_bandwidth_ests[-1]-state[3,-1])/float(state[3,-1]) past_errors.append(curr_error) except ZeroDivisionError: # this should occur VERY rarely (1 out of 3000), should be a dash issue # in this case we ignore the observation and roll back to an eariler one past_errors.append(0) if len(self.s_batch) == 0: state = [np.zeros((S_INFO, S_LEN))] else: state = np.array(self.s_batch[-1], copy=True) # log wall_time, bit_rate, buffer_size, rebuffer_time, video_chunk_size, download_time, reward self.log_file.write(str(time.time()) + '\t' + str(VIDEO_BIT_RATE[post_data['lastquality']]) + '\t' + str(post_data['buffer']) + '\t' + str(rebuffer_time / M_IN_K) + '\t' + str(video_chunk_size) + '\t' + str(video_chunk_fetch_time) + '\t' + str(reward) + '\n') self.log_file.flush() # pick bitrate according to MPC # first get harmonic mean of last 5 bandwidths past_bandwidths = state[3,-5:] while past_bandwidths[0] == 0.0: past_bandwidths = past_bandwidths[1:] #if ( len(state) < 5 ): # past_bandwidths = state[3,-len(state):] #else: # past_bandwidths = state[3,-5:] bandwidth_sum = 0 for past_val in past_bandwidths: bandwidth_sum += (1/float(past_val)) harmonic_bandwidth = 1.0/(bandwidth_sum/len(past_bandwidths)) # future bandwidth prediction # divide by 1 + max of last 5 (or up to 5) errors max_error = 0 error_pos = -5 if ( len(past_errors) < 5 ): error_pos = -len(past_errors) max_error = float(max(past_errors[error_pos:])) future_bandwidth = harmonic_bandwidth/(1+max_error) past_bandwidth_ests.append(harmonic_bandwidth) # future chunks length (try 4 if that many remaining) last_index = int(post_data['lastRequest']) future_chunk_length = MPC_FUTURE_CHUNK_COUNT if ( TOTAL_VIDEO_CHUNKS - last_index < 5 ): future_chunk_length = TOTAL_VIDEO_CHUNKS - last_index # all possible combinations of 5 chunk bitrates (9^5 options) # iterate over list and for each, compute reward and store max reward combination max_reward = -100000000 best_combo = () start_buffer = float(post_data['buffer']) #start = time.time() for full_combo in CHUNK_COMBO_OPTIONS: combo = full_combo[0:future_chunk_length] # calculate total rebuffer time for this combination (start with start_buffer and subtract # each download time and add 2 seconds in that order) curr_rebuffer_time = 0 curr_buffer = start_buffer bitrate_sum = 0 smoothness_diffs = 0 last_quality = int(post_data['lastquality']) for position in range(0, len(combo)): chunk_quality = combo[position] index = last_index + position + 1 # e.g., if last chunk is 3, then first iter is 3+0+1=4 download_time = (get_chunk_size(chunk_quality, index)/1000000.)/future_bandwidth # this is MB/MB/s --> seconds if ( curr_buffer < download_time ): curr_rebuffer_time += (download_time - curr_buffer) curr_buffer = 0 else: curr_buffer -= download_time curr_buffer += 4 # linear reward bitrate_sum += VIDEO_BIT_RATE[chunk_quality] smoothness_diffs += abs(VIDEO_BIT_RATE[chunk_quality] - VIDEO_BIT_RATE[last_quality]) # log reward # log_bit_rate = np.log(VIDEO_BIT_RATE[chunk_quality] / float(VIDEO_BIT_RATE[0])) # log_last_bit_rate = np.log(VIDEO_BIT_RATE[last_quality] / float(VIDEO_BIT_RATE[0])) # bitrate_sum += log_bit_rate # smoothness_diffs += abs(log_bit_rate - log_last_bit_rate) # hd reward #bitrate_sum += BITRATE_REWARD[chunk_quality] #smoothness_diffs += abs(BITRATE_REWARD[chunk_quality] - BITRATE_REWARD[last_quality]) last_quality = chunk_quality # compute reward for this combination (one reward per 5-chunk combo) # bitrates are in Mbits/s, rebuffer in seconds, and smoothness_diffs in Mbits/s # linear reward reward = (bitrate_sum/1000.) - (4.3*curr_rebuffer_time) - (smoothness_diffs/1000.) # log reward # reward = (bitrate_sum) - (4.3*curr_rebuffer_time) - (smoothness_diffs) # hd reward #reward = bitrate_sum - (8*curr_rebuffer_time) - (smoothness_diffs) # Additional portion from multiagent mechanism # avg_btr=0 # adjust_weight=0.02 # for (k,v) in DictOnline.items(): # avg_btr+=VIDEO_BIT_RATE[v] # if len(DictOnline)!=0: # avg_btr/=len(DictOnline) # r_=combo[0]-avg_btr # + when hd # reward-=adjust_weight*r_ # ################# if ( reward > max_reward ): max_reward = reward best_combo = combo #print (best_combo[0],max_reward) # send data to html side (first chunk of best combo) send_data = 0 # no combo had reward better than -1000000 (ERROR) so send 0 if ( best_combo != () ): # some combo was good send_data = str(best_combo[0])#combo:(5,4,3,2,5),combo[0]:5 end = time.time() #print "TOOK: " + str(end-start) end_of_video = False if ( post_data['lastRequest'] == TOTAL_VIDEO_CHUNKS ): send_data = "REFRESH" end_of_video = True self.input_dict['last_total_rebuf'] = 0 self.input_dict['last_bit_rate'] = DEFAULT_QUALITY self.input_dict['video_chunk_coount'] = 0 self.log_file.write('\n') # so that in the log we know where video ends self.send_response(200) self.send_header('Content-Type', 'text/plain') self.send_header('Content-Length', len(send_data)) self.send_header('Access-Control-Allow-Origin', "*") self.end_headers() self.wfile.write(send_data) # record [state, action, reward] # put it here after training, notice there is a shift in reward storage if end_of_video: self.s_batch = [np.zeros((S_INFO, S_LEN))] else: self.s_batch.append(state) def do_GET(self): print('do_get') print >> sys.stderr, 'GOT REQ' self.send_response(200) #self.send_header('Cache-Control', 'Cache-Control: no-cache, no-store, must-revalidate max-age=0') self.send_header('Cache-Control', 'max-age=3000') self.send_header('Content-Length', 20) self.end_headers() self.wfile.write("console.log('here');") def log_message(self, format, *args): return return Request_Handler ###### onlineCheck ####### def onlineCheck(Que1_,Que2_,QueOL): while True: #print('updateQue') updateQue(Que1_,Que2_,QueOL) global Dict1,Dict2,MultiClientState,begin_time f=open("OLlist.json",'r') fcntl.flock(f,fcntl.LOCK_EX) try: MultiClientState=json.load(f) print(MultiClientState) except: MultiClientState={} for ip in MultiClientState.keys(): if int(time.time())-MultiClientState[ip][0]-10>0: MultiClientState.pop(ip) tmp={} try: tmp[QueOL[:][0]]=[time.time(),max(max(Dict2.values()))] except: pass MultiClientState.update(tmp) print(MultiClientState) fcntl.flock(f,fcntl.LOCK_UN) f.close() f=open("OLlist.json",'w') fcntl.flock(f,fcntl.LOCK_EX) json.dump(MultiClientState,f) fcntl.flock(f,fcntl.LOCK_UN) f.close() plot(Dict1,Dict2) time.sleep(5) def updateQue(Que1_,Que2_,QueOL): #print('_Que1',Que1_[:]) #print('_Que2',Que2_[:]) #print('_QueOnline',QueOL[:]) QueOL[:]=Que1_[:]+[item for item in Que2_[:] if item not in Que1_[:]] Que2_[:]=copy.copy(Que1_[:]) Que1_[:]=[] #print('Que1_',Que1_[:]) #print('Que2_',Que2_[:]) print('QueOnline_',QueOL[:]) ########################## ###########plot########### def plot(Dictt,Dictq): color_ = ['black', 'red', 'blue', 'green', 'gold', 'm'] c=0 for k in Dictt.keys(): plt.plot(Dictt[k], Dictq[k], color=color_[c%6]) #print(Dictt[k],Dictq[k]) plt.scatter(Dictt[k], Dictq[k], color=color_[c%6]) plt.title("MPC_1") plt.axis([-1,max(Dictt[k])*1.1,0,6]) c=c+1 plt.pause(1) ########################## def run(server_class=HTTPServer, port=8333, log_file_path=LOG_FILE):#port=8333 also needs to change in dash.all.min.js np.random.seed(RANDOM_SEED) if not os.path.exists(SUMMARY_DIR): os.makedirs(SUMMARY_DIR) # make chunk combination options for combo in itertools.product([0,1,2,3,4,5], repeat=5):#produce 6^5 samples like (5,5,3,3,1) CHUNK_COMBO_OPTIONS.append(combo) with open(log_file_path, 'wb') as log_file: s_batch = [np.zeros((S_INFO, S_LEN))] last_bit_rate = DEFAULT_QUALITY last_total_rebuf = 0 # need this storage, because observation only contains total rebuffering time # we compute the difference to get video_chunk_count = 0 input_dict = {'log_file': log_file, 'last_bit_rate': last_bit_rate, 'last_total_rebuf': last_total_rebuf, 'video_chunk_coount': video_chunk_count, 's_batch': s_batch} # interface to abr_rl server handler_class = make_request_handler(input_dict=input_dict) server_address = ('', port)#'localhost' #httpd = server_class(server_address, handler_class) httpd = my_socketserver(server_address, handler_class) print 'Listening on port ' + str(port) ####### onlineCheck ###### global Que1 global Que2 global QueOnline p = multiprocessing.Process(target=onlineCheck,args=(Que1,Que2,QueOnline)) p.start() p.deamon = True ########################## httpd.serve_forever() def main(): if len(sys.argv) == 2: trace_file = sys.argv[1] run(log_file_path=LOG_FILE + '_robustMPC_' + trace_file) else: run() if __name__ == "__main__": try: main() except KeyboardInterrupt: print "Keyboard interrupted." try: sys.exit(0) except SystemExit: os._exit(0)
64.626277
455
0.702794
8d4cb18ce2bee1b8d97e6219c898212a80f7b2e2
4,263
py
Python
plasma/cli/cli.py
bakaoh/plasma-mvp
91e04bd4e3a618fde009b27afaef9024b0515c6d
[ "Apache-2.0" ]
null
null
null
plasma/cli/cli.py
bakaoh/plasma-mvp
91e04bd4e3a618fde009b27afaef9024b0515c6d
[ "Apache-2.0" ]
null
null
null
plasma/cli/cli.py
bakaoh/plasma-mvp
91e04bd4e3a618fde009b27afaef9024b0515c6d
[ "Apache-2.0" ]
null
null
null
import click from ethereum import utils from plasma_core.constants import NULL_ADDRESS from plasma_core.transaction import Transaction from plasma_core.utils.utils import confirm_tx from plasma.client.client import Client from plasma.client.exceptions import ChildChainServiceError CONTEXT_SETTINGS = dict( help_option_names=['-h', '--help'] ) @click.group(context_settings=CONTEXT_SETTINGS) @click.pass_context def cli(ctx): ctx.obj = Client() def client_call(fn, argz=(), successmessage=""): try: output = fn(*argz) if successmessage: print(successmessage) return output except ChildChainServiceError as err: print("Error:", err) print("additional details can be found from the child chain's server output") @cli.command() @click.argument('amount', required=True, type=int) @click.argument('address', required=True) @click.pass_obj def deposit(client, amount, address): client.deposit(amount, address) print("Deposited {0} to {1}".format(amount, address)) @cli.command() @click.argument('blknum1', type=int) @click.argument('txindex1', type=int) @click.argument('oindex1', type=int) @click.argument('blknum2', type=int) @click.argument('txindex2', type=int) @click.argument('oindex2', type=int) @click.argument('cur12', default="0x0") @click.argument('newowner1') @click.argument('amount1', type=int) @click.argument('newowner2') @click.argument('amount2', type=int) @click.argument('key1') @click.argument('key2', required=False) @click.pass_obj def sendtx(client, blknum1, txindex1, oindex1, blknum2, txindex2, oindex2, cur12, amount1, newowner1, amount2, newowner2, key1, key2): if cur12 == "0x0": cur12 = NULL_ADDRESS if newowner1 == "0x0": newowner1 = NULL_ADDRESS if newowner2 == "0x0": newowner2 = NULL_ADDRESS # Form a transaction tx = Transaction(blknum1, txindex1, oindex1, blknum2, txindex2, oindex2, utils.normalize_address(cur12), utils.normalize_address(newowner1), amount1, utils.normalize_address(newowner2), amount2) # Sign it if key1: tx.sign1(utils.normalize_key(key1)) if key2: tx.sign2(utils.normalize_key(key2)) client_call(client.apply_transaction, [tx], "Sent transaction") @cli.command() @click.argument('key', required=True) @click.pass_obj def submitblock(client, key): # Get the current block, already decoded by client block = client_call(client.get_current_block) # Sign the block block.make_mutable() normalized_key = utils.normalize_key(key) block.sign(normalized_key) client_call(client.submit_block, [block], "Submitted current block") @cli.command() @click.argument('blknum', required=True, type=int) @click.argument('txindex', required=True, type=int) @click.argument('oindex', required=True, type=int) @click.argument('key1') @click.argument('key2', required=False) @click.pass_obj def withdraw(client, blknum, txindex, oindex, key1, key2): # Get the transaction's block, already decoded by client block = client_call(client.get_block, [blknum]) # Create a Merkle proof tx = block.transaction_set[txindex] block.merklize_transaction_set() proof = block.merkle.create_membership_proof(tx.merkle_hash) # Create the confirmation signatures confirmSig1, confirmSig2 = b'', b'' if key1: confirmSig1 = confirm_tx(tx, block.merkle.root, utils.normalize_key(key1)) if key2: confirmSig2 = confirm_tx(tx, block.merkle.root, utils.normalize_key(key2)) sigs = tx.sig1 + tx.sig2 + confirmSig1 + confirmSig2 client.withdraw(blknum, txindex, oindex, tx, proof, sigs) print("Submitted withdrawal") @cli.command() @click.argument('owner', required=True) @click.argument('blknum', required=True, type=int) @click.argument('amount', required=True, type=int) @click.pass_obj def withdrawdeposit(client, owner, blknum, amount): deposit_pos = blknum * 1000000000 client.withdraw_deposit(owner, deposit_pos, amount) print("Submitted withdrawal") if __name__ == '__main__': cli()
29.19863
85
0.688717
3a110b86aed7d9bbecbfadfa07d87fc44967fdb0
4,098
py
Python
application/app.py
mortbauer/webapp
e8d70bcf7e20f50a8e5ce7e6132f8b48dc7d150e
[ "MIT" ]
null
null
null
application/app.py
mortbauer/webapp
e8d70bcf7e20f50a8e5ce7e6132f8b48dc7d150e
[ "MIT" ]
null
null
null
application/app.py
mortbauer/webapp
e8d70bcf7e20f50a8e5ce7e6132f8b48dc7d150e
[ "MIT" ]
null
null
null
import json from flask import request, render_template, jsonify, url_for, redirect, g, Response from sqlalchemy.exc import IntegrityError from .utils.auth import generate_token, requires_auth, verify_token from .import models from .schemas import UserSchema, GroupSchema from .import constants from .import app, db, sockets user_schema = UserSchema() users_schema = UserSchema(many=True) @app.route('/', methods=['GET']) def index(): return render_template('index.html') @app.route('/<path:path>', methods=['GET']) def any_root_path(path): return render_template('index.html') @app.route('/api/current_user') @requires_auth def get_current_user(): return jsonify(result=g.current_user) @app.route("/api/users", methods=["GET"]) @requires_auth def get_users(): users = models.User.query.filter().all() result = users_schema.dump(users) return jsonify(result=result.data) @app.route("/api/user/<int:user_id>", methods=["GET"]) @requires_auth def get_user(user_id): user = models.User.query.filter_by(id=user_id).first() result = user_schema.dump(user) return jsonify(result=result.data) @app.route("/api/user/<int:user_id>", methods=["PUT"]) @requires_auth def set_usermeta(user_id): incoming = request.get_json() user = models.User.query.filter_by(id=user_id).first() user.username = incoming['username'] user.surname = incoming['surname'] db.session.commit() return jsonify({'msg':'updated usermeta %s'%user_id}) @app.route("/api/user", methods=["POST"]) def create_user(): incoming = request.get_json() if incoming and 'email' in incoming and 'password' in incoming: user = models.User( email=incoming["email"], password=incoming["password"] ) db.session.add(user) try: db.session.commit() except IntegrityError: return jsonify(message="User with that email already exists"), 409 new_user = models.User.query.filter_by(email=incoming["email"]).first() return jsonify(id=user.id,token=generate_token(new_user)) else: return jsonify(error=True), 400 @app.route("/api/get_token", methods=["POST"]) def get_token(): incoming = request.get_json() if incoming and 'email' in incoming and 'password' in incoming: user = models.User.get_user_with_email_and_password( incoming["email"], incoming["password"]) else: user = None if user: return jsonify(token=generate_token(user)) return jsonify(error=True), 403 @app.route("/api/is_token_valid", methods=["POST"]) def is_token_valid(): incoming = request.get_json() is_valid = verify_token(incoming["token"]) if is_valid: return jsonify(token_is_valid=True) else: return jsonify(token_is_valid=False), 403 @app.route("/api/transactions", methods=["GET"]) @requires_auth def get_transactions(): serialized = [] for tr in models.Transaction.query.filter().all(): serialized.append({ 'id':tr.id, 'amount':tr.amount, 'bic_blz':tr.bic_blz, 'iban_knr':tr.iban_knr, 'our_iban':tr.our_iban, 'date':tr.date.isoformat(), 'comment':tr.comment, 'transaction_number':tr.transaction_number, }) return jsonify({'result':serialized}) @sockets.route('/') def test_socket(ws): print('connected to {:}'.format(ws)) tr = { 'id':1, 'amount':1, 'bic_blz':1, 'iban_knr':1, 'our_iban':1, 'date':1, 'comment':'heeeello', 'transaction_number':1, } #ws.send(json.dumps({'action':{'type':constants.PUT_TRANSACTION,'payload':tr}})) i = 0 payload = {'action':{'type':constants.TRANSACTIONS_PUT,'payload':tr}} while not ws.closed: message = ws.receive() print('got %s'%message) if i == 0: msg = json.dumps(payload) print('sending: %s'%msg) ws.send(msg) i += 1
28.859155
84
0.630796
5b5beb06456c4202a95b04d36af44ff311cc420f
6,770
py
Python
test/util/bitcoin-util-test.py
im818/litecoin
c95cea081e28a1bfd6aae4a96d1f336ddffac08d
[ "MIT" ]
null
null
null
test/util/bitcoin-util-test.py
im818/litecoin
c95cea081e28a1bfd6aae4a96d1f336ddffac08d
[ "MIT" ]
null
null
null
test/util/bitcoin-util-test.py
im818/litecoin
c95cea081e28a1bfd6aae4a96d1f336ddffac08d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2014 BitPay Inc. # Copyright 2016-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test framework for litecoin utils. Runs automatically during `make check`. Can also be run manually.""" import argparse import binascii import configparser import difflib import json import logging import os import pprint import subprocess import sys def main(): config = configparser.ConfigParser() config.optionxform = str config.read_file(open(os.path.join(os.path.dirname(__file__), "../config.ini"), encoding="utf8")) env_conf = dict(config.items('environment')) parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() verbose = args.verbose if verbose: level = logging.DEBUG else: level = logging.ERROR formatter = '%(asctime)s - %(levelname)s - %(message)s' # Add the format/level to the logger logging.basicConfig(format=formatter, level=level) bctester(os.path.join(env_conf["SRCDIR"], "test", "util", "data"), "bitcoin-util-test.json", env_conf) def bctester(testDir, input_basename, buildenv): """ Loads and parses the input file, runs all tests and reports results""" input_filename = os.path.join(testDir, input_basename) raw_data = open(input_filename, encoding="utf8").read() input_data = json.loads(raw_data) failed_testcases = [] for testObj in input_data: try: bctest(testDir, testObj, buildenv) logging.info("PASSED: " + testObj["description"]) except: logging.info("FAILED: " + testObj["description"]) failed_testcases.append(testObj["description"]) if failed_testcases: error_message = "FAILED_TESTCASES:\n" error_message += pprint.pformat(failed_testcases, width=400) logging.error(error_message) sys.exit(1) else: sys.exit(0) def bctest(testDir, testObj, buildenv): """Runs a single test, comparing output and RC to expected output and RC. Raises an error if input can't be read, executable fails, or output/RC are not as expected. Error is caught by bctester() and reported. """ # Get the exec names and arguments execprog = os.path.join(buildenv["BUILDDIR"], "src", testObj["exec"] + buildenv["EXEEXT"]) execargs = testObj['args'] execrun = [execprog] + execargs # Read the input data (if there is any) stdinCfg = None inputData = None if "input" in testObj: filename = os.path.join(testDir, testObj["input"]) inputData = open(filename, encoding="utf8").read() stdinCfg = subprocess.PIPE # Read the expected output data (if there is any) outputFn = None outputData = None outputType = None if "output_cmp" in testObj: outputFn = testObj['output_cmp'] outputType = os.path.splitext(outputFn)[1][1:] # output type from file extension (determines how to compare) try: outputData = open(os.path.join(testDir, outputFn), encoding="utf8").read() except: logging.error("Output file " + outputFn + " can not be opened") raise if not outputData: logging.error("Output data missing for " + outputFn) raise Exception if not outputType: logging.error("Output file %s does not have a file extension" % outputFn) raise Exception # Run the test proc = subprocess.Popen(execrun, stdin=stdinCfg, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) try: outs = proc.communicate(input=inputData) except OSError: logging.error("OSError, Failed to execute " + execprog) raise if outputData: data_mismatch, formatting_mismatch = False, False # Parse command output and expected output try: a_parsed = parse_output(outs[0], outputType) except Exception as e: logging.error('Error parsing command output as %s: %s' % (outputType, e)) raise try: b_parsed = parse_output(outputData, outputType) except Exception as e: logging.error('Error parsing expected output %s as %s: %s' % (outputFn, outputType, e)) raise # Compare data if a_parsed != b_parsed: logging.error("Output data mismatch for " + outputFn + " (format " + outputType + ")") data_mismatch = True # Compare formatting if outs[0] != outputData: error_message = "Output formatting mismatch for " + outputFn + ":\n" error_message += "".join(difflib.context_diff(outputData.splitlines(True), outs[0].splitlines(True), fromfile=outputFn, tofile="returned")) logging.error(error_message) formatting_mismatch = True assert not data_mismatch and not formatting_mismatch # Compare the return code to the expected return code wantRC = 0 if "return_code" in testObj: wantRC = testObj['return_code'] if proc.returncode != wantRC: logging.error("Return code mismatch for " + outputFn) raise Exception if "error_txt" in testObj: want_error = testObj["error_txt"] # Compare error text # TODO: ideally, we'd compare the strings exactly and also assert # That stderr is empty if no errors are expected. However, bitcoin-tx # emits DISPLAY errors when running as a windows application on # linux through wine. Just assert that the expected error text appears # somewhere in stderr. if want_error not in outs[1]: logging.error("Error mismatch:\n" + "Expected: " + want_error + "\nReceived: " + outs[1].rstrip()) raise Exception def parse_output(a, fmt): """Parse the output according to specified format. Raise an error if the output can't be parsed.""" if fmt == 'json': # json: compare parsed data return json.loads(a) elif fmt == 'hex': # hex: parse and compare binary data return binascii.a2b_hex(a.strip()) else: raise NotImplementedError("Don't know how to compare %s" % fmt) if __name__ == '__main__': main()
38.465909
126
0.617134
cba923fa5a4f8ed9c2e8e052e7a4116d87e45d5b
1,760
py
Python
demos/demo_1_alignment/faces/make_collages.py
SourCherries/auto-face-align
365bd01c22da6f3a44190261786fcc585687ea50
[ "Apache-2.0" ]
13
2021-11-11T04:36:14.000Z
2022-03-08T00:20:54.000Z
demos/demo_1_alignment/faces/make_collages.py
SourCherries/auto-face-align
365bd01c22da6f3a44190261786fcc585687ea50
[ "Apache-2.0" ]
null
null
null
demos/demo_1_alignment/faces/make_collages.py
SourCherries/auto-face-align
365bd01c22da6f3a44190261786fcc585687ea50
[ "Apache-2.0" ]
null
null
null
import os import shutil import random from collage_maker import make_collage # ------------------------------------------------------------------------ # Helper function def getAllFiles(dirName): listOfFiles = list() for (dirpath, dirnames, filenames) in os.walk(dirName): listOfFiles += [os.path.join(dirpath, file) for file in filenames] return listOfFiles # ------------------------------------------------------------------------ # Temporarily copy images from all subfolders into a single folder temp_folder = "all-together" os.mkdir(temp_folder) for sub_folder in ["premium", "popular"]: listOfFiles = getAllFiles(sub_folder) images_A = [fn for fn in listOfFiles if os.path.splitext(fn)[1].lower() in ('.jpg', '.jpeg', '.png')] for fn in images_A: shutil.copy(fn, temp_folder) # listOfFiles = getAllFiles("popular") # images_B = [fn for fn in listOfFiles if os.path.splitext(fn)[1].lower() in ('.jpg', '.jpeg', '.png')] # for fn in images_B: # shutil.copy(fn, temp_folder) # ------------------------------------------------------------------------ # Create collage output = "collage_originals.png" width = 1024*2 #800 init_height = 256 #250 files = [os.path.join(temp_folder, fn) for fn in os.listdir(temp_folder)] images = [fn for fn in files if os.path.splitext(fn)[1].lower() in ('.jpg', '.jpeg', '.png')] random.shuffle(images) make_collage(images, output, width, init_height) # ------------------------------------------------------------------------ # Remove temporary folder for fn in images: os.remove(fn) os.rmdir(temp_folder) # END # ------------------------------------------------------------------------ # ------------------------------------------------------------------------
32.592593
105
0.522159
bc142b60a66fe3f76ccf4328b376b87e2f44a338
179
py
Python
xpulumi/pulumi_cli/__init__.py
sammck/xpulumi
1e25229cc5de113c6d4655ba81e391c29014aa5f
[ "MIT" ]
null
null
null
xpulumi/pulumi_cli/__init__.py
sammck/xpulumi
1e25229cc5de113c6d4655ba81e391c29014aa5f
[ "MIT" ]
null
null
null
xpulumi/pulumi_cli/__init__.py
sammck/xpulumi
1e25229cc5de113c6d4655ba81e391c29014aa5f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # # Copyright (c) 2022 Samuel J. McKelvie # # MIT License - See LICENSE file accompanying this package. # """Tools for working with standard Pulumi CLI"""
19.888889
59
0.715084
8e7d54568d44a3f6b2edb1725362f6de7e2aea13
775
py
Python
src/tests/part2/q234_test_linked_palin.py
hychrisli/PyAlgorithms
71e537180f3b371d0d2cc47b11cb68ec13a8ac68
[ "Apache-2.0" ]
null
null
null
src/tests/part2/q234_test_linked_palin.py
hychrisli/PyAlgorithms
71e537180f3b371d0d2cc47b11cb68ec13a8ac68
[ "Apache-2.0" ]
null
null
null
src/tests/part2/q234_test_linked_palin.py
hychrisli/PyAlgorithms
71e537180f3b371d0d2cc47b11cb68ec13a8ac68
[ "Apache-2.0" ]
null
null
null
from src.base.test_cases import TestCases from src.mappers.list2linkedlist import to_linkedlist class LinkedPalinTestCases(TestCases): def __init__(self): super(LinkedPalinTestCases, self).__init__() self.__add_test_case__('Test 1', to_linkedlist(['a', 'a', 'b', 'a', 'a']), True) self.__add_test_case__('Test 2', to_linkedlist(['a', 'a', 'b', 'b', 'a', 'a']), True) self.__add_test_case__('Test 3', to_linkedlist(['a', 'a', 'b', 'a', 'c']), False) self.__add_test_case__('Test 4', to_linkedlist(['a', 'a', 'b']), False) self.__add_test_case__('Test 4', to_linkedlist(['a', 'a']), True) self.__add_test_case__('Test 4', to_linkedlist(['a']), True) self.__add_test_case__('Test 4', to_linkedlist([]), True)
55.357143
93
0.63871
ce769dd2b588b49967e95c7511bae175dfc0462b
5,580
py
Python
headpose_estimation_pairs.py
MitchellX/deep-head-pose
b26ca3a437cf8fb201d35184ea14be681c0a8231
[ "Apache-2.0" ]
9
2021-05-10T11:42:58.000Z
2022-03-17T05:51:41.000Z
headpose_estimation_pairs.py
MitchellX/deep-head-pose
b26ca3a437cf8fb201d35184ea14be681c0a8231
[ "Apache-2.0" ]
null
null
null
headpose_estimation_pairs.py
MitchellX/deep-head-pose
b26ca3a437cf8fb201d35184ea14be681c0a8231
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 import dlib import sys, os, argparse import numpy as np import cv2 import torch from torch.autograd import Variable from torchvision import transforms import torch.backends.cudnn as cudnn import torchvision import torch.nn.functional as F from PIL import Image sys.path.append('code/') import datasets, hopenet, utils join = os.path.join class HeadPose: def __init__(self): cudnn.enabled = True batch_size = 1 self.gpu = 0 snapshot_path = '/home/xiangmingcan/notespace/deep-head-pose/hopenet_robust_alpha1.pkl' input_path = '/home/xiangmingcan/notespace/cvpr_data/celeba/' output = 'output/celeba.txt' face_model = '/home/xiangmingcan/notespace/deep-head-pose/mmod_human_face_detector.dat' out_dir = os.path.split(output)[0] name = os.path.split(output)[1] write_path = join(out_dir, "images_" + name[:-4]) if not os.path.exists(write_path): os.makedirs(write_path) if not os.path.exists(input_path): sys.exit('Folder does not exist') # ResNet50 structure self.model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) # Dlib face detection model self.cnn_face_detector = dlib.cnn_face_detection_model_v1(face_model) print 'Loading snapshot.' # Load snapshot saved_state_dict = torch.load(snapshot_path) self.model.load_state_dict(saved_state_dict) print 'Loading data.' self.transformations = transforms.Compose([transforms.Scale(224), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) self.model.cuda(self.gpu) print 'Ready to test network.' # Test the Model self.model.eval() # Change model to 'eval' mode (BN uses moving mean/var). total = 0 self.idx_tensor = [idx for idx in range(66)] self.idx_tensor = torch.FloatTensor(self.idx_tensor).cuda(self.gpu) # -------------- for image operation ------------------ def estimate(self, image): # image 是完整的路径 image = cv2.imread(image) cv2_frame = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Dlib detect dets = self.cnn_face_detector(cv2_frame, 1) yaw_predicted, pitch_predicted, roll_predicted = None, None, None for idx, det in enumerate(dets): # Get x_min, y_min, x_max, y_max, conf x_min = det.rect.left() y_min = det.rect.top() x_max = det.rect.right() y_max = det.rect.bottom() conf = det.confidence bbox_width = abs(x_max - x_min) bbox_height = abs(y_max - y_min) x_min -= 2 * bbox_width / 4 x_max += 2 * bbox_width / 4 y_min -= 3 * bbox_height / 4 y_max += bbox_height / 4 x_min = max(x_min, 0); y_min = max(y_min, 0) x_max = min(image.shape[1], x_max); y_max = min(image.shape[0], y_max) # Crop image img = cv2_frame[y_min:y_max,x_min:x_max] img = Image.fromarray(img) # Transform img = self.transformations(img) img_shape = img.size() img = img.view(1, img_shape[0], img_shape[1], img_shape[2]) img = Variable(img).cuda(self.gpu) yaw, pitch, roll = self.model(img) yaw_predicted = F.softmax(yaw) pitch_predicted = F.softmax(pitch) roll_predicted = F.softmax(roll) # Get continuous predictions in degrees. yaw_predicted = torch.sum(yaw_predicted.data[0] * self.idx_tensor) * 3 - 99 pitch_predicted = torch.sum(pitch_predicted.data[0] * self.idx_tensor) * 3 - 99 roll_predicted = torch.sum(roll_predicted.data[0] * self.idx_tensor) * 3 - 99 # # Print new frame with cube and axis # drawed_img = utils.draw_axis(image, yaw_predicted, pitch_predicted, roll_predicted, tdx =(x_min + x_max) / 2, tdy=(y_min + y_max) / 2, size =bbox_height / 2) return [yaw_predicted, pitch_predicted, roll_predicted] if __name__ == '__main__': dataset = sys.argv[1] method = sys.argv[2] flag = 0 if dataset == "ffhq": flag = 1 src = "/home/xiangmingcan/notespace/cvpr_data/" + dataset tgt = "/home/xiangmingcan/notespace/cvpr_result/" + dataset + '/' + method save_log = os.path.join("headPose/", dataset, method + ".txt") path = os.path.join("headPose/", dataset) if not os.path.exists(path): os.makedirs(path) logFile = open(save_log, 'w') img_list = os.listdir(tgt) sorted(img_list) headpose = HeadPose() for input_img in img_list: if '_mask' in input_img: continue eular_angles_result = headpose.estimate(os.path.join(tgt, input_img)) print(eular_angles_result) # reference image 的欧拉角 refer_img = input_img.split('-')[1] if flag: refer_img = refer_img[:-3] + 'png' eular_angles_refer = headpose.estimate(os.path.join(src, refer_img)) print(eular_angles_refer) vec1 = np.array(eular_angles_result) vec2 = np.array(eular_angles_refer) if (None in vec1) or (None in vec2): continue distance = np.linalg.norm(vec1 - vec2) print(distance) print('\n') logFile.write(str(distance)) logFile.write('\n') logFile.close()
32.631579
171
0.608781
3ad912f405c96df8a68213ac2052d7e82fe4870e
42,007
py
Python
numpy/core/setup.py
udaygp/numpy
1f35a1d6320fc4b30b62a619dd64d20aa7911334
[ "BSD-3-Clause" ]
null
null
null
numpy/core/setup.py
udaygp/numpy
1f35a1d6320fc4b30b62a619dd64d20aa7911334
[ "BSD-3-Clause" ]
null
null
null
numpy/core/setup.py
udaygp/numpy
1f35a1d6320fc4b30b62a619dd64d20aa7911334
[ "BSD-3-Clause" ]
null
null
null
from __future__ import division, print_function import imp import os import sys import shutil import pickle import copy import warnings import re from os.path import join from numpy.distutils import log from distutils.dep_util import newer from distutils.sysconfig import get_config_var from setup_common import * # Set to True to enable multiple file compilations (experimental) ENABLE_SEPARATE_COMPILATION = (os.environ.get('NPY_SEPARATE_COMPILATION', "1") != "0") # Set to True to enable relaxed strides checking. This (mostly) means # that `strides[dim]` is ignored if `shape[dim] == 1` when setting flags. NPY_RELAXED_STRIDES_CHECKING = (os.environ.get('NPY_RELAXED_STRIDES_CHECKING', "1") != "0") # XXX: ugly, we use a class to avoid calling twice some expensive functions in # config.h/numpyconfig.h. I don't see a better way because distutils force # config.h generation inside an Extension class, and as such sharing # configuration informations between extensions is not easy. # Using a pickled-based memoize does not work because config_cmd is an instance # method, which cPickle does not like. # # Use pickle in all cases, as cPickle is gone in python3 and the difference # in time is only in build. -- Charles Harris, 2013-03-30 class CallOnceOnly(object): def __init__(self): self._check_types = None self._check_ieee_macros = None self._check_complex = None def check_types(self, *a, **kw): if self._check_types is None: out = check_types(*a, **kw) self._check_types = pickle.dumps(out) else: out = copy.deepcopy(pickle.loads(self._check_types)) return out def check_ieee_macros(self, *a, **kw): if self._check_ieee_macros is None: out = check_ieee_macros(*a, **kw) self._check_ieee_macros = pickle.dumps(out) else: out = copy.deepcopy(pickle.loads(self._check_ieee_macros)) return out def check_complex(self, *a, **kw): if self._check_complex is None: out = check_complex(*a, **kw) self._check_complex = pickle.dumps(out) else: out = copy.deepcopy(pickle.loads(self._check_complex)) return out PYTHON_HAS_UNICODE_WIDE = True def pythonlib_dir(): """return path where libpython* is.""" if sys.platform == 'win32': return os.path.join(sys.prefix, "libs") else: return get_config_var('LIBDIR') def is_npy_no_signal(): """Return True if the NPY_NO_SIGNAL symbol must be defined in configuration header.""" return sys.platform == 'win32' def is_npy_no_smp(): """Return True if the NPY_NO_SMP symbol must be defined in public header (when SMP support cannot be reliably enabled).""" # Python 2.3 causes a segfault when # trying to re-acquire the thread-state # which is done in error-handling # ufunc code. NPY_ALLOW_C_API and friends # cause the segfault. So, we disable threading # for now. if sys.version[:5] < '2.4.2': nosmp = 1 else: # Perhaps a fancier check is in order here. # so that threads are only enabled if there # are actually multiple CPUS? -- but # threaded code can be nice even on a single # CPU so that long-calculating code doesn't # block. try: nosmp = os.environ['NPY_NOSMP'] nosmp = 1 except KeyError: nosmp = 0 return nosmp == 1 def win32_checks(deflist): from numpy.distutils.misc_util import get_build_architecture a = get_build_architecture() # Distutils hack on AMD64 on windows print('BUILD_ARCHITECTURE: %r, os.name=%r, sys.platform=%r' % (a, os.name, sys.platform)) if a == 'AMD64': deflist.append('DISTUTILS_USE_SDK') # On win32, force long double format string to be 'g', not # 'Lg', since the MS runtime does not support long double whose # size is > sizeof(double) if a == "Intel" or a == "AMD64": deflist.append('FORCE_NO_LONG_DOUBLE_FORMATTING') def check_math_capabilities(config, moredefs, mathlibs): def check_func(func_name): return config.check_func(func_name, libraries=mathlibs, decl=True, call=True) def check_funcs_once(funcs_name): decl = dict([(f, True) for f in funcs_name]) st = config.check_funcs_once(funcs_name, libraries=mathlibs, decl=decl, call=decl) if st: moredefs.extend([(fname2def(f), 1) for f in funcs_name]) return st def check_funcs(funcs_name): # Use check_funcs_once first, and if it does not work, test func per # func. Return success only if all the functions are available if not check_funcs_once(funcs_name): # Global check failed, check func per func for f in funcs_name: if check_func(f): moredefs.append((fname2def(f), 1)) return 0 else: return 1 #use_msvc = config.check_decl("_MSC_VER") if not check_funcs_once(MANDATORY_FUNCS): raise SystemError("One of the required function to build numpy is not" " available (the list is %s)." % str(MANDATORY_FUNCS)) # Standard functions which may not be available and for which we have a # replacement implementation. Note that some of these are C99 functions. # XXX: hack to circumvent cpp pollution from python: python put its # config.h in the public namespace, so we have a clash for the common # functions we test. We remove every function tested by python's # autoconf, hoping their own test are correct for f in OPTIONAL_STDFUNCS_MAYBE: if config.check_decl(fname2def(f), headers=["Python.h", "math.h"]): OPTIONAL_STDFUNCS.remove(f) check_funcs(OPTIONAL_STDFUNCS) for h in OPTIONAL_HEADERS: if config.check_func("", decl=False, call=False, headers=[h]): moredefs.append((fname2def(h).replace(".", "_"), 1)) for tup in OPTIONAL_INTRINSICS: headers = None if len(tup) == 2: f, args = tup else: f, args, headers = tup[0], tup[1], [tup[2]] if config.check_func(f, decl=False, call=True, call_args=args, headers=headers): moredefs.append((fname2def(f), 1)) for dec, fn in OPTIONAL_FUNCTION_ATTRIBUTES: if config.check_gcc_function_attribute(dec, fn): moredefs.append((fname2def(fn), 1)) for fn in OPTIONAL_VARIABLE_ATTRIBUTES: if config.check_gcc_variable_attribute(fn): m = fn.replace("(", "_").replace(")", "_") moredefs.append((fname2def(m), 1)) # C99 functions: float and long double versions check_funcs(C99_FUNCS_SINGLE) check_funcs(C99_FUNCS_EXTENDED) def check_complex(config, mathlibs): priv = [] pub = [] try: if os.uname()[0] == "Interix": warnings.warn("Disabling broken complex support. See #1365") return priv, pub except: # os.uname not available on all platforms. blanket except ugly but safe pass # Check for complex support st = config.check_header('complex.h') if st: priv.append(('HAVE_COMPLEX_H', 1)) pub.append(('NPY_USE_C99_COMPLEX', 1)) for t in C99_COMPLEX_TYPES: st = config.check_type(t, headers=["complex.h"]) if st: pub.append(('NPY_HAVE_%s' % type2def(t), 1)) def check_prec(prec): flist = [f + prec for f in C99_COMPLEX_FUNCS] decl = dict([(f, True) for f in flist]) if not config.check_funcs_once(flist, call=decl, decl=decl, libraries=mathlibs): for f in flist: if config.check_func(f, call=True, decl=True, libraries=mathlibs): priv.append((fname2def(f), 1)) else: priv.extend([(fname2def(f), 1) for f in flist]) check_prec('') check_prec('f') check_prec('l') return priv, pub def check_ieee_macros(config): priv = [] pub = [] macros = [] def _add_decl(f): priv.append(fname2def("decl_%s" % f)) pub.append('NPY_%s' % fname2def("decl_%s" % f)) # XXX: hack to circumvent cpp pollution from python: python put its # config.h in the public namespace, so we have a clash for the common # functions we test. We remove every function tested by python's # autoconf, hoping their own test are correct _macros = ["isnan", "isinf", "signbit", "isfinite"] for f in _macros: py_symbol = fname2def("decl_%s" % f) already_declared = config.check_decl(py_symbol, headers=["Python.h", "math.h"]) if already_declared: if config.check_macro_true(py_symbol, headers=["Python.h", "math.h"]): pub.append('NPY_%s' % fname2def("decl_%s" % f)) else: macros.append(f) # Normally, isnan and isinf are macro (C99), but some platforms only have # func, or both func and macro version. Check for macro only, and define # replacement ones if not found. # Note: including Python.h is necessary because it modifies some math.h # definitions for f in macros: st = config.check_decl(f, headers = ["Python.h", "math.h"]) if st: _add_decl(f) return priv, pub def check_types(config_cmd, ext, build_dir): private_defines = [] public_defines = [] # Expected size (in number of bytes) for each type. This is an # optimization: those are only hints, and an exhaustive search for the size # is done if the hints are wrong. expected = {} expected['short'] = [2] expected['int'] = [4] expected['long'] = [8, 4] expected['float'] = [4] expected['double'] = [8] expected['long double'] = [8, 12, 16] expected['Py_intptr_t'] = [4, 8] expected['PY_LONG_LONG'] = [8] expected['long long'] = [8] expected['off_t'] = [4, 8] # Check we have the python header (-dev* packages on Linux) result = config_cmd.check_header('Python.h') if not result: raise SystemError( "Cannot compile 'Python.h'. Perhaps you need to "\ "install python-dev|python-devel.") res = config_cmd.check_header("endian.h") if res: private_defines.append(('HAVE_ENDIAN_H', 1)) public_defines.append(('NPY_HAVE_ENDIAN_H', 1)) # Check basic types sizes for type in ('short', 'int', 'long'): res = config_cmd.check_decl("SIZEOF_%s" % sym2def(type), headers = ["Python.h"]) if res: public_defines.append(('NPY_SIZEOF_%s' % sym2def(type), "SIZEOF_%s" % sym2def(type))) else: res = config_cmd.check_type_size(type, expected=expected[type]) if res >= 0: public_defines.append(('NPY_SIZEOF_%s' % sym2def(type), '%d' % res)) else: raise SystemError("Checking sizeof (%s) failed !" % type) for type in ('float', 'double', 'long double'): already_declared = config_cmd.check_decl("SIZEOF_%s" % sym2def(type), headers = ["Python.h"]) res = config_cmd.check_type_size(type, expected=expected[type]) if res >= 0: public_defines.append(('NPY_SIZEOF_%s' % sym2def(type), '%d' % res)) if not already_declared and not type == 'long double': private_defines.append(('SIZEOF_%s' % sym2def(type), '%d' % res)) else: raise SystemError("Checking sizeof (%s) failed !" % type) # Compute size of corresponding complex type: used to check that our # definition is binary compatible with C99 complex type (check done at # build time in npy_common.h) complex_def = "struct {%s __x; %s __y;}" % (type, type) res = config_cmd.check_type_size(complex_def, expected=2*expected[type]) if res >= 0: public_defines.append(('NPY_SIZEOF_COMPLEX_%s' % sym2def(type), '%d' % res)) else: raise SystemError("Checking sizeof (%s) failed !" % complex_def) for type in ('Py_intptr_t', 'off_t'): res = config_cmd.check_type_size(type, headers=["Python.h"], library_dirs=[pythonlib_dir()], expected=expected[type]) if res >= 0: private_defines.append(('SIZEOF_%s' % sym2def(type), '%d' % res)) public_defines.append(('NPY_SIZEOF_%s' % sym2def(type), '%d' % res)) else: raise SystemError("Checking sizeof (%s) failed !" % type) # We check declaration AND type because that's how distutils does it. if config_cmd.check_decl('PY_LONG_LONG', headers=['Python.h']): res = config_cmd.check_type_size('PY_LONG_LONG', headers=['Python.h'], library_dirs=[pythonlib_dir()], expected=expected['PY_LONG_LONG']) if res >= 0: private_defines.append(('SIZEOF_%s' % sym2def('PY_LONG_LONG'), '%d' % res)) public_defines.append(('NPY_SIZEOF_%s' % sym2def('PY_LONG_LONG'), '%d' % res)) else: raise SystemError("Checking sizeof (%s) failed !" % 'PY_LONG_LONG') res = config_cmd.check_type_size('long long', expected=expected['long long']) if res >= 0: #private_defines.append(('SIZEOF_%s' % sym2def('long long'), '%d' % res)) public_defines.append(('NPY_SIZEOF_%s' % sym2def('long long'), '%d' % res)) else: raise SystemError("Checking sizeof (%s) failed !" % 'long long') if not config_cmd.check_decl('CHAR_BIT', headers=['Python.h']): raise RuntimeError( "Config wo CHAR_BIT is not supported"\ ", please contact the maintainers") return private_defines, public_defines def check_mathlib(config_cmd): # Testing the C math library mathlibs = [] mathlibs_choices = [[], ['m'], ['cpml']] mathlib = os.environ.get('MATHLIB') if mathlib: mathlibs_choices.insert(0, mathlib.split(',')) for libs in mathlibs_choices: if config_cmd.check_func("exp", libraries=libs, decl=True, call=True): mathlibs = libs break else: raise EnvironmentError("math library missing; rerun " "setup.py after setting the " "MATHLIB env variable") return mathlibs def visibility_define(config): """Return the define value to use for NPY_VISIBILITY_HIDDEN (may be empty string).""" if config.check_compiler_gcc4(): return '__attribute__((visibility("hidden")))' else: return '' def configuration(parent_package='',top_path=None): from numpy.distutils.misc_util import Configuration, dot_join from numpy.distutils.system_info import get_info, default_lib_dirs config = Configuration('core', parent_package, top_path) local_dir = config.local_path codegen_dir = join(local_dir, 'code_generators') if is_released(config): warnings.simplefilter('error', MismatchCAPIWarning) # Check whether we have a mismatch between the set C API VERSION and the # actual C API VERSION check_api_version(C_API_VERSION, codegen_dir) generate_umath_py = join(codegen_dir, 'generate_umath.py') n = dot_join(config.name, 'generate_umath') generate_umath = imp.load_module('_'.join(n.split('.')), open(generate_umath_py, 'U'), generate_umath_py, ('.py', 'U', 1)) header_dir = 'include/numpy' # this is relative to config.path_in_package cocache = CallOnceOnly() def generate_config_h(ext, build_dir): target = join(build_dir, header_dir, 'config.h') d = os.path.dirname(target) if not os.path.exists(d): os.makedirs(d) if newer(__file__, target): config_cmd = config.get_config_cmd() log.info('Generating %s', target) # Check sizeof moredefs, ignored = cocache.check_types(config_cmd, ext, build_dir) # Check math library and C99 math funcs availability mathlibs = check_mathlib(config_cmd) moredefs.append(('MATHLIB', ','.join(mathlibs))) check_math_capabilities(config_cmd, moredefs, mathlibs) moredefs.extend(cocache.check_ieee_macros(config_cmd)[0]) moredefs.extend(cocache.check_complex(config_cmd, mathlibs)[0]) # Signal check if is_npy_no_signal(): moredefs.append('__NPY_PRIVATE_NO_SIGNAL') # Windows checks if sys.platform=='win32' or os.name=='nt': win32_checks(moredefs) # Inline check inline = config_cmd.check_inline() # Check whether we need our own wide character support if not config_cmd.check_decl('Py_UNICODE_WIDE', headers=['Python.h']): PYTHON_HAS_UNICODE_WIDE = True else: PYTHON_HAS_UNICODE_WIDE = False if ENABLE_SEPARATE_COMPILATION: moredefs.append(('ENABLE_SEPARATE_COMPILATION', 1)) if NPY_RELAXED_STRIDES_CHECKING: moredefs.append(('NPY_RELAXED_STRIDES_CHECKING', 1)) # Get long double representation if sys.platform != 'darwin': rep = check_long_double_representation(config_cmd) if rep in ['INTEL_EXTENDED_12_BYTES_LE', 'INTEL_EXTENDED_16_BYTES_LE', 'MOTOROLA_EXTENDED_12_BYTES_BE', 'IEEE_QUAD_LE', 'IEEE_QUAD_BE', 'IEEE_DOUBLE_LE', 'IEEE_DOUBLE_BE', 'DOUBLE_DOUBLE_BE', 'DOUBLE_DOUBLE_LE']: moredefs.append(('HAVE_LDOUBLE_%s' % rep, 1)) else: raise ValueError("Unrecognized long double format: %s" % rep) # Py3K check if sys.version_info[0] == 3: moredefs.append(('NPY_PY3K', 1)) # Generate the config.h file from moredefs target_f = open(target, 'w') for d in moredefs: if isinstance(d, str): target_f.write('#define %s\n' % (d)) else: target_f.write('#define %s %s\n' % (d[0], d[1])) # define inline to our keyword, or nothing target_f.write('#ifndef __cplusplus\n') if inline == 'inline': target_f.write('/* #undef inline */\n') else: target_f.write('#define inline %s\n' % inline) target_f.write('#endif\n') # add the guard to make sure config.h is never included directly, # but always through npy_config.h target_f.write(""" #ifndef _NPY_NPY_CONFIG_H_ #error config.h should never be included directly, include npy_config.h instead #endif """) target_f.close() print('File:', target) target_f = open(target) print(target_f.read()) target_f.close() print('EOF') else: mathlibs = [] target_f = open(target) for line in target_f: s = '#define MATHLIB' if line.startswith(s): value = line[len(s):].strip() if value: mathlibs.extend(value.split(',')) target_f.close() # Ugly: this can be called within a library and not an extension, # in which case there is no libraries attributes (and none is # needed). if hasattr(ext, 'libraries'): ext.libraries.extend(mathlibs) incl_dir = os.path.dirname(target) if incl_dir not in config.numpy_include_dirs: config.numpy_include_dirs.append(incl_dir) return target def generate_numpyconfig_h(ext, build_dir): """Depends on config.h: generate_config_h has to be called before !""" # put private include directory in build_dir on search path # allows using code generation in headers headers config.add_include_dirs(join(build_dir, "src", "private")) target = join(build_dir, header_dir, '_numpyconfig.h') d = os.path.dirname(target) if not os.path.exists(d): os.makedirs(d) if newer(__file__, target): config_cmd = config.get_config_cmd() log.info('Generating %s', target) # Check sizeof ignored, moredefs = cocache.check_types(config_cmd, ext, build_dir) if is_npy_no_signal(): moredefs.append(('NPY_NO_SIGNAL', 1)) if is_npy_no_smp(): moredefs.append(('NPY_NO_SMP', 1)) else: moredefs.append(('NPY_NO_SMP', 0)) mathlibs = check_mathlib(config_cmd) moredefs.extend(cocache.check_ieee_macros(config_cmd)[1]) moredefs.extend(cocache.check_complex(config_cmd, mathlibs)[1]) if ENABLE_SEPARATE_COMPILATION: moredefs.append(('NPY_ENABLE_SEPARATE_COMPILATION', 1)) if NPY_RELAXED_STRIDES_CHECKING: moredefs.append(('NPY_RELAXED_STRIDES_CHECKING', 1)) # Check wether we can use inttypes (C99) formats if config_cmd.check_decl('PRIdPTR', headers = ['inttypes.h']): moredefs.append(('NPY_USE_C99_FORMATS', 1)) # visibility check hidden_visibility = visibility_define(config_cmd) moredefs.append(('NPY_VISIBILITY_HIDDEN', hidden_visibility)) # Add the C API/ABI versions moredefs.append(('NPY_ABI_VERSION', '0x%.8X' % C_ABI_VERSION)) moredefs.append(('NPY_API_VERSION', '0x%.8X' % C_API_VERSION)) # Add moredefs to header target_f = open(target, 'w') for d in moredefs: if isinstance(d, str): target_f.write('#define %s\n' % (d)) else: target_f.write('#define %s %s\n' % (d[0], d[1])) # Define __STDC_FORMAT_MACROS target_f.write(""" #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS 1 #endif """) target_f.close() # Dump the numpyconfig.h header to stdout print('File: %s' % target) target_f = open(target) print(target_f.read()) target_f.close() print('EOF') config.add_data_files((header_dir, target)) return target def generate_api_func(module_name): def generate_api(ext, build_dir): script = join(codegen_dir, module_name + '.py') sys.path.insert(0, codegen_dir) try: m = __import__(module_name) log.info('executing %s', script) h_file, c_file, doc_file = m.generate_api(os.path.join(build_dir, header_dir)) finally: del sys.path[0] config.add_data_files((header_dir, h_file), (header_dir, doc_file)) return (h_file,) return generate_api generate_numpy_api = generate_api_func('generate_numpy_api') generate_ufunc_api = generate_api_func('generate_ufunc_api') config.add_include_dirs(join(local_dir, "src", "private")) config.add_include_dirs(join(local_dir, "src")) config.add_include_dirs(join(local_dir)) config.add_data_files('include/numpy/*.h') config.add_include_dirs(join('src', 'npymath')) config.add_include_dirs(join('src', 'multiarray')) config.add_include_dirs(join('src', 'umath')) config.add_include_dirs(join('src', 'npysort')) config.add_define_macros([("HAVE_NPY_CONFIG_H", "1")]) config.add_define_macros([("_FILE_OFFSET_BITS", "64")]) config.add_define_macros([('_LARGEFILE_SOURCE', '1')]) config.add_define_macros([('_LARGEFILE64_SOURCE', '1')]) config.numpy_include_dirs.extend(config.paths('include')) deps = [join('src', 'npymath', '_signbit.c'), join('include', 'numpy', '*object.h'), 'include/numpy/fenv/fenv.c', 'include/numpy/fenv/fenv.h', join(codegen_dir, 'genapi.py'), ] # Don't install fenv unless we need them. if sys.platform == 'cygwin': config.add_data_dir('include/numpy/fenv') ####################################################################### # dummy module # ####################################################################### # npymath needs the config.h and numpyconfig.h files to be generated, but # build_clib cannot handle generate_config_h and generate_numpyconfig_h # (don't ask). Because clib are generated before extensions, we have to # explicitly add an extension which has generate_config_h and # generate_numpyconfig_h as sources *before* adding npymath. config.add_extension('_dummy', sources = [join('src', 'dummymodule.c'), generate_config_h, generate_numpyconfig_h, generate_numpy_api] ) ####################################################################### # npymath library # ####################################################################### subst_dict = dict([("sep", os.path.sep), ("pkgname", "numpy.core")]) def get_mathlib_info(*args): # Another ugly hack: the mathlib info is known once build_src is run, # but we cannot use add_installed_pkg_config here either, so we only # update the substition dictionary during npymath build config_cmd = config.get_config_cmd() # Check that the toolchain works, to fail early if it doesn't # (avoid late errors with MATHLIB which are confusing if the # compiler does not work). st = config_cmd.try_link('int main(void) { return 0;}') if not st: raise RuntimeError("Broken toolchain: cannot link a simple C program") mlibs = check_mathlib(config_cmd) posix_mlib = ' '.join(['-l%s' % l for l in mlibs]) msvc_mlib = ' '.join(['%s.lib' % l for l in mlibs]) subst_dict["posix_mathlib"] = posix_mlib subst_dict["msvc_mathlib"] = msvc_mlib npymath_sources = [join('src', 'npymath', 'npy_math.c.src'), join('src', 'npymath', 'ieee754.c.src'), join('src', 'npymath', 'npy_math_complex.c.src'), join('src', 'npymath', 'halffloat.c')] config.add_installed_library('npymath', sources=npymath_sources + [get_mathlib_info], install_dir='lib') config.add_npy_pkg_config("npymath.ini.in", "lib/npy-pkg-config", subst_dict) config.add_npy_pkg_config("mlib.ini.in", "lib/npy-pkg-config", subst_dict) ####################################################################### # npysort library # ####################################################################### # This library is created for the build but it is not installed npysort_sources=[join('src', 'npysort', 'quicksort.c.src'), join('src', 'npysort', 'mergesort.c.src'), join('src', 'npysort', 'heapsort.c.src'), join('src', 'private', 'npy_partition.h.src'), join('src', 'npysort', 'selection.c.src'), join('src', 'private', 'npy_binsearch.h.src'), join('src', 'npysort', 'binsearch.c.src'), ] config.add_library('npysort', sources=npysort_sources, include_dirs=[]) ####################################################################### # multiarray module # ####################################################################### # Multiarray version: this function is needed to build foo.c from foo.c.src # when foo.c is included in another file and as such not in the src # argument of build_ext command def generate_multiarray_templated_sources(ext, build_dir): from numpy.distutils.misc_util import get_cmd subpath = join('src', 'multiarray') sources = [join(local_dir, subpath, 'scalartypes.c.src'), join(local_dir, subpath, 'arraytypes.c.src'), join(local_dir, subpath, 'nditer_templ.c.src'), join(local_dir, subpath, 'lowlevel_strided_loops.c.src'), join(local_dir, subpath, 'einsum.c.src')] # numpy.distutils generate .c from .c.src in weird directories, we have # to add them there as they depend on the build_dir config.add_include_dirs(join(build_dir, subpath)) cmd = get_cmd('build_src') cmd.ensure_finalized() cmd.template_sources(sources, ext) multiarray_deps = [ join('src', 'multiarray', 'arrayobject.h'), join('src', 'multiarray', 'arraytypes.h'), join('src', 'multiarray', 'array_assign.h'), join('src', 'multiarray', 'buffer.h'), join('src', 'multiarray', 'calculation.h'), join('src', 'multiarray', 'common.h'), join('src', 'multiarray', 'templ_common.h.src'), join('src', 'multiarray', 'convert_datatype.h'), join('src', 'multiarray', 'convert.h'), join('src', 'multiarray', 'conversion_utils.h'), join('src', 'multiarray', 'ctors.h'), join('src', 'multiarray', 'descriptor.h'), join('src', 'multiarray', 'getset.h'), join('src', 'multiarray', 'hashdescr.h'), join('src', 'multiarray', 'iterators.h'), join('src', 'multiarray', 'mapping.h'), join('src', 'multiarray', 'methods.h'), join('src', 'multiarray', 'multiarraymodule.h'), join('src', 'multiarray', 'nditer_impl.h'), join('src', 'multiarray', 'numpymemoryview.h'), join('src', 'multiarray', 'number.h'), join('src', 'multiarray', 'numpyos.h'), join('src', 'multiarray', 'refcount.h'), join('src', 'multiarray', 'scalartypes.h'), join('src', 'multiarray', 'sequence.h'), join('src', 'multiarray', 'shape.h'), join('src', 'multiarray', 'ucsnarrow.h'), join('src', 'multiarray', 'usertypes.h'), join('src', 'multiarray', 'vdot.h'), join('src', 'private', 'lowlevel_strided_loops.h'), join('include', 'numpy', 'arrayobject.h'), join('include', 'numpy', '_neighborhood_iterator_imp.h'), join('include', 'numpy', 'npy_endian.h'), join('include', 'numpy', 'arrayscalars.h'), join('include', 'numpy', 'noprefix.h'), join('include', 'numpy', 'npy_interrupt.h'), join('include', 'numpy', 'npy_3kcompat.h'), join('include', 'numpy', 'npy_math.h'), join('include', 'numpy', 'halffloat.h'), join('include', 'numpy', 'npy_common.h'), join('include', 'numpy', 'npy_os.h'), join('include', 'numpy', 'utils.h'), join('include', 'numpy', 'ndarrayobject.h'), join('include', 'numpy', 'npy_cpu.h'), join('include', 'numpy', 'numpyconfig.h'), join('include', 'numpy', 'ndarraytypes.h'), join('include', 'numpy', 'npy_1_7_deprecated_api.h'), join('include', 'numpy', '_numpyconfig.h.in'), # add library sources as distuils does not consider libraries # dependencies ] + npysort_sources + npymath_sources multiarray_src = [ join('src', 'multiarray', 'alloc.c'), join('src', 'multiarray', 'arrayobject.c'), join('src', 'multiarray', 'arraytypes.c.src'), join('src', 'multiarray', 'array_assign.c'), join('src', 'multiarray', 'array_assign_scalar.c'), join('src', 'multiarray', 'array_assign_array.c'), join('src', 'multiarray', 'buffer.c'), join('src', 'multiarray', 'calculation.c'), join('src', 'multiarray', 'common.c'), join('src', 'multiarray', 'convert.c'), join('src', 'multiarray', 'convert_datatype.c'), join('src', 'multiarray', 'conversion_utils.c'), join('src', 'multiarray', 'ctors.c'), join('src', 'multiarray', 'datetime.c'), join('src', 'multiarray', 'datetime_strings.c'), join('src', 'multiarray', 'datetime_busday.c'), join('src', 'multiarray', 'datetime_busdaycal.c'), join('src', 'multiarray', 'descriptor.c'), join('src', 'multiarray', 'dtype_transfer.c'), join('src', 'multiarray', 'einsum.c.src'), join('src', 'multiarray', 'flagsobject.c'), join('src', 'multiarray', 'getset.c'), join('src', 'multiarray', 'hashdescr.c'), join('src', 'multiarray', 'item_selection.c'), join('src', 'multiarray', 'iterators.c'), join('src', 'multiarray', 'lowlevel_strided_loops.c.src'), join('src', 'multiarray', 'mapping.c'), join('src', 'multiarray', 'methods.c'), join('src', 'multiarray', 'multiarraymodule.c'), join('src', 'multiarray', 'templ_common.h.src'), join('src', 'multiarray', 'nditer_templ.c.src'), join('src', 'multiarray', 'nditer_api.c'), join('src', 'multiarray', 'nditer_constr.c'), join('src', 'multiarray', 'nditer_pywrap.c'), join('src', 'multiarray', 'number.c'), join('src', 'multiarray', 'numpymemoryview.c'), join('src', 'multiarray', 'numpyos.c'), join('src', 'multiarray', 'refcount.c'), join('src', 'multiarray', 'sequence.c'), join('src', 'multiarray', 'shape.c'), join('src', 'multiarray', 'scalarapi.c'), join('src', 'multiarray', 'scalartypes.c.src'), join('src', 'multiarray', 'usertypes.c'), join('src', 'multiarray', 'ucsnarrow.c'), join('src', 'multiarray', 'vdot.c'), ] blas_info = get_info('blas_opt', 0) if blas_info and ('HAVE_CBLAS', None) in blas_info.get('define_macros', []): extra_info = blas_info multiarray_src.append(join('src', 'multiarray', 'cblasfuncs.c')) else: extra_info = {} if not ENABLE_SEPARATE_COMPILATION: multiarray_deps.extend(multiarray_src) multiarray_src = [join('src', 'multiarray', 'multiarraymodule_onefile.c')] multiarray_src.append(generate_multiarray_templated_sources) multiarray_src.append(join('src', 'multiarray', 'templ_common.h.src')) config.add_extension('multiarray', sources=multiarray_src + [generate_config_h, generate_numpyconfig_h, generate_numpy_api, join(codegen_dir, 'generate_numpy_api.py'), join('*.py')], depends=deps + multiarray_deps, libraries=['npymath', 'npysort'], extra_info=extra_info) ####################################################################### # umath module # ####################################################################### # umath version: this function is needed to build foo.c from foo.c.src # when foo.c is included in another file and as such not in the src # argument of build_ext command def generate_umath_templated_sources(ext, build_dir): from numpy.distutils.misc_util import get_cmd subpath = join('src', 'umath') sources = [ join(local_dir, subpath, 'loops.h.src'), join(local_dir, subpath, 'loops.c.src'), join(local_dir, subpath, 'simd.inc.src')] # numpy.distutils generate .c from .c.src in weird directories, we have # to add them there as they depend on the build_dir config.add_include_dirs(join(build_dir, subpath)) cmd = get_cmd('build_src') cmd.ensure_finalized() cmd.template_sources(sources, ext) def generate_umath_c(ext, build_dir): target = join(build_dir, header_dir, '__umath_generated.c') dir = os.path.dirname(target) if not os.path.exists(dir): os.makedirs(dir) script = generate_umath_py if newer(script, target): f = open(target, 'w') f.write(generate_umath.make_code(generate_umath.defdict, generate_umath.__file__)) f.close() return [] umath_src = [ join('src', 'umath', 'umathmodule.c'), join('src', 'umath', 'reduction.c'), join('src', 'umath', 'funcs.inc.src'), join('src', 'umath', 'simd.inc.src'), join('src', 'umath', 'loops.h.src'), join('src', 'umath', 'loops.c.src'), join('src', 'umath', 'ufunc_object.c'), join('src', 'umath', 'ufunc_type_resolution.c')] umath_deps = [ generate_umath_py, join('src', 'multiarray', 'common.h'), join('src', 'umath', 'simd.inc.src'), join(codegen_dir, 'generate_ufunc_api.py'), join('src', 'private', 'ufunc_override.h')] + npymath_sources if not ENABLE_SEPARATE_COMPILATION: umath_deps.extend(umath_src) umath_src = [join('src', 'umath', 'umathmodule_onefile.c')] umath_src.append(generate_umath_templated_sources) umath_src.append(join('src', 'umath', 'funcs.inc.src')) umath_src.append(join('src', 'umath', 'simd.inc.src')) config.add_extension('umath', sources = umath_src + [generate_config_h, generate_numpyconfig_h, generate_umath_c, generate_ufunc_api], depends = deps + umath_deps, libraries = ['npymath'], ) ####################################################################### # scalarmath module # ####################################################################### config.add_extension('scalarmath', sources = [join('src', 'scalarmathmodule.c.src'), join('src', 'private', 'scalarmathmodule.h.src'), generate_config_h, generate_numpyconfig_h, generate_numpy_api, generate_ufunc_api], depends = deps + npymath_sources, libraries = ['npymath'], ) ####################################################################### # umath_tests module # ####################################################################### config.add_extension('umath_tests', sources = [join('src', 'umath', 'umath_tests.c.src')]) ####################################################################### # custom rational dtype module # ####################################################################### config.add_extension('test_rational', sources = [join('src', 'umath', 'test_rational.c.src')]) ####################################################################### # struct_ufunc_test module # ####################################################################### config.add_extension('struct_ufunc_test', sources = [join('src', 'umath', 'struct_ufunc_test.c.src')]) ####################################################################### # multiarray_tests module # ####################################################################### config.add_extension('multiarray_tests', sources = [join('src', 'multiarray', 'multiarray_tests.c.src')]) ####################################################################### # operand_flag_tests module # ####################################################################### config.add_extension('operand_flag_tests', sources = [join('src', 'umath', 'operand_flag_tests.c.src')]) config.add_data_dir('tests') config.add_data_dir('tests/data') config.make_svn_version_py() return config if __name__=='__main__': from numpy.distutils.core import setup setup(configuration=configuration)
41.79801
97
0.549408
862f5f3c9eea4790effc4a258bf761e618a4b6a9
1,220
py
Python
LeetCode/incomplete/522-Longest-Uncommon-Subsequence-II.py
PyroGenesis/Comprehensive-Coding-Solutions
46684c07f16e35a779c075946b1b96956f2797e8
[ "MIT" ]
null
null
null
LeetCode/incomplete/522-Longest-Uncommon-Subsequence-II.py
PyroGenesis/Comprehensive-Coding-Solutions
46684c07f16e35a779c075946b1b96956f2797e8
[ "MIT" ]
null
null
null
LeetCode/incomplete/522-Longest-Uncommon-Subsequence-II.py
PyroGenesis/Comprehensive-Coding-Solutions
46684c07f16e35a779c075946b1b96956f2797e8
[ "MIT" ]
null
null
null
# LeetCode imports from typing import List class Solution: def findLUSlength(self, strs: List[str]) -> int: n = len(strs) strs.sort(key=len) strs.reverse() def isSubSeq(string, parent): i, j = 0, 0 while i < len(string) and j < len(parent): if string[i] == parent[j]: i += 1 j += 1 # print(f'isSubSeq - string: {string}, parent: {parent}, {i == len(string)}') return i == len(string) for string_idx in range(n): string = strs[string_idx] is_subseq = False for potential_parent_idx in range(n): if string_idx == potential_parent_idx: continue potential_parent = strs[potential_parent_idx] if len(potential_parent) < len(string): break if isSubSeq(string, potential_parent): is_subseq = True break if not is_subseq: return len(string) return -1
30.5
89
0.443443
3733ced1a00ae45b2e08c01b962c2ae436fea55e
7,814
py
Python
openapi_spec_validator/validators.py
gcallaghan/openapi-spec-validator
3ab3411936faaee91246627f957ba6108cd47d44
[ "Apache-2.0" ]
null
null
null
openapi_spec_validator/validators.py
gcallaghan/openapi-spec-validator
3ab3411936faaee91246627f957ba6108cd47d44
[ "Apache-2.0" ]
null
null
null
openapi_spec_validator/validators.py
gcallaghan/openapi-spec-validator
3ab3411936faaee91246627f957ba6108cd47d44
[ "Apache-2.0" ]
null
null
null
import logging import string from jsonschema.validators import RefResolver from six import iteritems from openapi_spec_validator.exceptions import ( ParameterDuplicateError, ExtraParametersError, UnresolvableParameterError, ) from openapi_spec_validator.managers import ResolverManager log = logging.getLogger(__name__) def is_ref(spec): return isinstance(spec, dict) and '$ref' in spec class Dereferencer(object): def __init__(self, spec_resolver): self.resolver_manager = ResolverManager(spec_resolver) def dereference(self, item): log.debug("Dereferencing %s", item) if item is None or not is_ref(item): return item ref = item['$ref'] with self.resolver_manager.in_scope(item) as resolver: with resolver.resolving(ref) as target: return target class SpecValidator(object): def __init__(self, validator_factory, resolver_handlers): self.validator_factory = validator_factory self.resolver_handlers = resolver_handlers def validate(self, spec, spec_url=''): for error in self.iter_errors(spec, spec_url=spec_url): raise error def iter_errors(self, spec, spec_url=''): spec_resolver = self._get_resolver(spec_url, spec) dereferencer = self._get_dereferencer(spec_resolver) validator = self._get_validator(spec_resolver) yield from validator.iter_errors(spec) paths = spec.get('paths', {}) yield from self._iter_paths_errors(paths, dereferencer) components = spec.get('components', {}) yield from self._iter_components_errors(components, dereferencer) def _get_resolver(self, base_uri, referrer): return RefResolver( base_uri, referrer, handlers=self.resolver_handlers) def _get_dereferencer(self, spec_resolver): return Dereferencer(spec_resolver) def _get_validator(self, spec_resolver): return self.validator_factory.create(spec_resolver) def _iter_paths_errors(self, paths, dereferencer): return PathsValidator(dereferencer).iter_errors(paths) def _iter_components_errors(self, components, dereferencer): return ComponentsValidator(dereferencer).iter_errors(components) class ComponentsValidator(object): def __init__(self, dereferencer): self.dereferencer = dereferencer def iter_errors(self, components): components_deref = self.dereferencer.dereference(components) schemas = components_deref.get('schemas', {}) yield from self._iter_schemas_errors(schemas) def _iter_schemas_errors(self, schemas): return SchemasValidator(self.dereferencer).iter_errors(schemas) class SchemasValidator(object): def __init__(self, dereferencer): self.dereferencer = dereferencer def iter_errors(self, schemas): schemas_deref = self.dereferencer.dereference(schemas) for name, schema in iteritems(schemas_deref): yield from self._iter_schem_errors(schema) def _iter_schem_errors(self, schema): return SchemaValidator(self.dereferencer).iter_errors(schema) class SchemaValidator(object): def __init__(self, dereferencer): self.dereferencer = dereferencer def iter_errors(self, schema): schema_deref = self.dereferencer.dereference(schema) if 'allOf' in schema_deref: for inner_schema in schema_deref['allOf']: yield from self.iter_errors(inner_schema) required = schema_deref.get('required', []) properties = schema_deref.get('properties', {}).keys() extra_properties = list(set(required) - set(properties)) if extra_properties: yield ExtraParametersError( "Required list has not defined properties: {0}".format( extra_properties ) ) class PathsValidator(object): def __init__(self, dereferencer): self.dereferencer = dereferencer def iter_errors(self, paths): paths_deref = self.dereferencer.dereference(paths) for url, path_item in iteritems(paths_deref): yield from self._iter_path_errors(url, path_item) def _iter_path_errors(self, url, path_item): return PathValidator(self.dereferencer).iter_errors(url, path_item) class PathValidator(object): def __init__(self, dereferencer): self.dereferencer = dereferencer def iter_errors(self, url, path_item): path_item_deref = self.dereferencer.dereference(path_item) yield from self._iter_path_item_errors(url, path_item_deref) def _iter_path_item_errors(self, url, path_item): return PathItemValidator(self.dereferencer).iter_errors(url, path_item) class PathItemValidator(object): OPERATIONS = [ 'get', 'put', 'post', 'delete', 'options', 'head', 'patch', 'trace', ] def __init__(self, dereferencer): self.dereferencer = dereferencer def iter_errors(self, url, path_item): path_item_deref = self.dereferencer.dereference(path_item) parameters = path_item_deref.get('parameters', []) yield from self._iter_parameters_errors(parameters) for field_name, operation in iteritems(path_item): if field_name not in self.OPERATIONS: continue yield from self._iter_operation_errors( url, field_name, operation, parameters) def _iter_operation_errors(self, url, name, operation, path_parameters): return OperationValidator(self.dereferencer).iter_errors( url, name, operation, path_parameters) def _iter_parameters_errors(self, parameters): return ParametersValidator(self.dereferencer).iter_errors(parameters) class OperationValidator(object): def __init__(self, dereferencer): self.dereferencer = dereferencer def iter_errors(self, url, name, operation, path_parameters=None): path_parameters = path_parameters or [] operation_deref = self.dereferencer.dereference(operation) parameters = operation_deref.get('parameters', []) yield from self._iter_parameters_errors(parameters) all_params = list(set( list(self._get_path_param_names(path_parameters)) + list(self._get_path_param_names(parameters)) )) for path in self._get_path_params_from_url(url): if path not in all_params: yield UnresolvableParameterError( "Path parameter '{0}' for '{1}' operation in '{2}' " "was not resolved".format(path, name, url) ) return [] def _get_path_param_names(self, params): for param in params: param_deref = self.dereferencer.dereference(param) if param_deref['in'] == 'path': yield param_deref['name'] def _get_path_params_from_url(self, url): formatter = string.Formatter() path_params = [item[1] for item in formatter.parse(url)] return filter(None, path_params) def _iter_parameters_errors(self, parameters): return ParametersValidator(self.dereferencer).iter_errors(parameters) class ParametersValidator(object): def __init__(self, dereferencer): self.dereferencer = dereferencer def iter_errors(self, parameters): seen = set() for parameter in parameters: parameter_deref = self.dereferencer.dereference(parameter) key = (parameter_deref['name'], parameter_deref['in']) if key in seen: yield ParameterDuplicateError( "Duplicate parameter `{0}`".format(parameter_deref['name']) ) seen.add(key)
32.423237
79
0.67891
100b4eff6789424351f91453e5bc1cf4269b60bd
3,562
py
Python
bindings/python/ensmallen/datasets/string/ralstoniaeutrophajmp134.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
5
2021-02-17T00:44:45.000Z
2021-08-09T16:41:47.000Z
bindings/python/ensmallen/datasets/string/ralstoniaeutrophajmp134.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
18
2021-01-07T16:47:39.000Z
2021-08-12T21:51:32.000Z
bindings/python/ensmallen/datasets/string/ralstoniaeutrophajmp134.py
AnacletoLAB/ensmallen
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
3
2021-01-14T02:20:59.000Z
2021-08-04T19:09:52.000Z
""" This file offers the methods to automatically retrieve the graph Ralstonia eutropha JMP134. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def RalstoniaEutrophaJmp134( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Ralstonia eutropha JMP134 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.0 - homology.v11.5 - physical.links.v11.0 - physical.links.v11.5 - links.v11.0 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Ralstonia eutropha JMP134 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="RalstoniaEutrophaJmp134", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
32.981481
223
0.67799
645c1d0d08a8951d121ad71750179ecdef0a53ce
1,568
py
Python
backend/env/lib/python3.8/site-packages/gevent/testing/hub.py
lubitelpospat/CFM-source
4e6af33ee68c6f2f05b6952b64a6b3f0591d5b03
[ "MIT" ]
10
2021-03-23T03:46:19.000Z
2022-03-08T07:20:25.000Z
backend/env/lib/python3.8/site-packages/gevent/testing/hub.py
lubitelpospat/CFM-source
4e6af33ee68c6f2f05b6952b64a6b3f0591d5b03
[ "MIT" ]
7
2021-05-21T16:51:48.000Z
2022-03-12T00:50:26.000Z
backend/env/lib/python3.8/site-packages/gevent/testing/hub.py
lubitelpospat/CFM-source
4e6af33ee68c6f2f05b6952b64a6b3f0591d5b03
[ "MIT" ]
4
2021-04-21T00:49:34.000Z
2021-11-21T09:18:29.000Z
# Copyright (c) 2018 gevent community # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import absolute_import, print_function, division from gevent.hub import Hub from .exception import ExpectedException class QuietHub(Hub): EXPECTED_TEST_ERROR = (ExpectedException,) def handle_error(self, context, type, value, tb): if issubclass(type, self.EXPECTED_TEST_ERROR): # Don't print these to cut down on the noise in the test logs return return Hub.handle_error(self, context, type, value, tb)
43.555556
79
0.760842
0aa1ab7b4279c6c9ca678196684aac82b267c34c
1,240
py
Python
code/cfgs/TSUNAMIconfig.py
kensakurada/SceneChangeDet
0530e0162863fec0c5296188526f0d27e0109814
[ "MIT" ]
null
null
null
code/cfgs/TSUNAMIconfig.py
kensakurada/SceneChangeDet
0530e0162863fec0c5296188526f0d27e0109814
[ "MIT" ]
null
null
null
code/cfgs/TSUNAMIconfig.py
kensakurada/SceneChangeDet
0530e0162863fec0c5296188526f0d27e0109814
[ "MIT" ]
null
null
null
import os BASE_PATH = '/home/sakurada/work/src/SceneChangeDet/code' PRETRAIN_MODEL_PATH = os.path.join(BASE_PATH,'pretrain') DATA_PATH = '/projects/g-nedo-geospatial/work/sakurada/work/data/pcd/pcd_2018_0906_r4s4/set0' TRAIN_DATA_PATH = os.path.join(DATA_PATH+'/train') TRAIN_LABEL_PATH = os.path.join(DATA_PATH+'/train') TRAIN_TXT_PATH = os.path.join(DATA_PATH,'train.txt') VAL_DATA_PATH = os.path.join(DATA_PATH+'/test') VAL_LABEL_PATH = os.path.join(DATA_PATH+'/test') VAL_TXT_PATH = os.path.join(DATA_PATH,'test.txt') SAVE_PATH = '/projects/g-nedo-geospatial/work/sakurada/work/data/pcd_precut/SceneChangeDet/checkpoint/set0' SAVE_CKPT_PATH = os.path.join(SAVE_PATH,'ckpt_final') if not os.path.exists(SAVE_CKPT_PATH): os.makedirs(SAVE_CKPT_PATH) SAVE_PRED_PATH = os.path.join(SAVE_PATH,'prediction_final') if not os.path.exists(SAVE_PRED_PATH): os.makedirs(SAVE_PRED_PATH) TRAINED_BEST_PERFORMANCE_CKPT = os.path.join(SAVE_CKPT_PATH,'model_best.pth') INIT_LEARNING_RATE = 1e-7 DECAY = 5e-5 MOMENTUM = 0.90 MAX_ITER = 40000 BATCH_SIZE = 1 THRESHS = [0.1,0.3,0.5] THRESH = 0.1 LOSS_PARAM_CONV = 1 LOSS_PARAM_FC = 1 TRANSFROM_SCALES= (1024,224) T0_MEAN_VALUE = (128.793,108.267,98.685) T1_MEAN_VALUE = (166.814,136.916,122.396)
37.575758
107
0.778226
cbdc20894eb541af242719db73af364ed38396f7
923
py
Python
AppPkg/Applications/Python/Python-2.7.2/Tools/compiler/demo.py
CEOALT1/RefindPlusUDK
116b957ad735f96fbb6d80a0ba582046960ba164
[ "BSD-2-Clause" ]
2,757
2018-04-28T21:41:36.000Z
2022-03-29T06:33:36.000Z
AppPkg/Applications/Python/Python-2.7.2/Tools/compiler/demo.py
CEOALT1/RefindPlusUDK
116b957ad735f96fbb6d80a0ba582046960ba164
[ "BSD-2-Clause" ]
20
2019-07-23T15:29:32.000Z
2022-01-21T12:53:04.000Z
AppPkg/Applications/Python/Python-2.7.2/Tools/compiler/demo.py
CEOALT1/RefindPlusUDK
116b957ad735f96fbb6d80a0ba582046960ba164
[ "BSD-2-Clause" ]
449
2018-05-09T05:54:05.000Z
2022-03-30T14:54:18.000Z
#! /usr/bin/env python """Print names of all methods defined in module This script demonstrates use of the visitor interface of the compiler package. """ import compiler class MethodFinder: """Print the names of all the methods Each visit method takes two arguments, the node and its current scope. The scope is the name of the current class or None. """ def visitClass(self, node, scope=None): self.visit(node.code, node.name) def visitFunction(self, node, scope=None): if scope is not None: print "%s.%s" % (scope, node.name) self.visit(node.code, None) def main(files): mf = MethodFinder() for file in files: f = open(file) buf = f.read() f.close() ast = compiler.parse(buf) compiler.walk(ast, mf) if __name__ == "__main__": import sys main(sys.argv[1:])
23.666667
70
0.603467
0f7c15fc9ea65031ebad1c7efad966887a1be49e
4,063
py
Python
venv/lib/python2.7/site-packages/tensorflow/contrib/seq2seq/ops/gen_beam_search_ops.py
nainkunal933/subspace-clustering
17bae7cb632a9ca786f03dcd002848ca0a4058d1
[ "MIT" ]
null
null
null
venv/lib/python2.7/site-packages/tensorflow/contrib/seq2seq/ops/gen_beam_search_ops.py
nainkunal933/subspace-clustering
17bae7cb632a9ca786f03dcd002848ca0a4058d1
[ "MIT" ]
null
null
null
venv/lib/python2.7/site-packages/tensorflow/contrib/seq2seq/ops/gen_beam_search_ops.py
nainkunal933/subspace-clustering
17bae7cb632a9ca786f03dcd002848ca0a4058d1
[ "MIT" ]
1
2022-03-20T08:11:49.000Z
2022-03-20T08:11:49.000Z
"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. Original C++ source file: beam_search_ops.cc """ import collections as _collections from tensorflow.python.eager import execute as _execute from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import tensor_shape as _tensor_shape from tensorflow.core.framework import op_def_pb2 as _op_def_pb2 # Needed to trigger the call to _set_call_cpp_shape_fn. from tensorflow.python.framework import common_shapes as _common_shapes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.tf_export import tf_export @tf_export('GatherTree') def gather_tree(step_ids, parent_ids, max_sequence_lengths, end_token, name=None): r"""Calculates the full beams from the per-step ids and parent beam ids. On CPU, if an out of bound parent id is found, an error is returned. On GPU, if an out of bound parent id is found, a -1 is stored in the corresponding output value and the execution for that beam returns early. For a given beam, past the time step containing the first decoded `end_token` all values are filled in with `end_token`. TODO(ebrevdo): fill in the remainder of this docstring. Args: step_ids: A `Tensor`. Must be one of the following types: `int32`. `[max_time, batch_size, beam_width]`. parent_ids: A `Tensor`. Must have the same type as `step_ids`. `[max_time, batch_size, beam_width]`. max_sequence_lengths: A `Tensor` of type `int32`. `[batch_size]`. end_token: A `Tensor`. Must have the same type as `step_ids`. `[]`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `step_ids`. `[max_time, batch_size, beam_width]`. """ _ctx = _context.context() if _ctx.in_graph_mode(): _, _, _op = _op_def_lib._apply_op_helper( "GatherTree", step_ids=step_ids, parent_ids=parent_ids, max_sequence_lengths=max_sequence_lengths, end_token=end_token, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) else: _attr_T, _inputs_T = _execute.args_to_matching_eager([step_ids, parent_ids, end_token], _ctx) (step_ids, parent_ids, end_token) = _inputs_T max_sequence_lengths = _ops.convert_to_tensor(max_sequence_lengths, _dtypes.int32) _inputs_flat = [step_ids, parent_ids, max_sequence_lengths, end_token] _attrs = ("T", _attr_T) _result = _execute.execute(b"GatherTree", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "GatherTree", _inputs_flat, _attrs, _result, name) _result, = _result return _result _ops.RegisterShape("GatherTree")(None) def _InitOpDefLibrary(op_list_proto_bytes): op_list = _op_def_pb2.OpList() op_list.ParseFromString(op_list_proto_bytes) _op_def_registry.register_op_list(op_list) op_def_lib = _op_def_library.OpDefLibrary() op_def_lib.add_op_list(op_list) return op_def_lib # op { # name: "GatherTree" # input_arg { # name: "step_ids" # type_attr: "T" # } # input_arg { # name: "parent_ids" # type_attr: "T" # } # input_arg { # name: "max_sequence_lengths" # type: DT_INT32 # } # input_arg { # name: "end_token" # type_attr: "T" # } # output_arg { # name: "beams" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_INT32 # } # } # } # } _op_def_lib = _InitOpDefLibrary(b"\nt\n\nGatherTree\022\r\n\010step_ids\"\001T\022\017\n\nparent_ids\"\001T\022\030\n\024max_sequence_lengths\030\003\022\016\n\tend_token\"\001T\032\n\n\005beams\"\001T\"\020\n\001T\022\004type:\005\n\0032\001\003")
35.640351
248
0.71745
1e85d01327935714e4a049c0001f26e6ba4f90ec
6,325
py
Python
python/http_client/v1/polyaxon_sdk/models/v1_list_agents_response.py
mouradmourafiq/polyaxon-client
5fc32b9decc7305161561d404b0127f3e900c64a
[ "Apache-2.0" ]
null
null
null
python/http_client/v1/polyaxon_sdk/models/v1_list_agents_response.py
mouradmourafiq/polyaxon-client
5fc32b9decc7305161561d404b0127f3e900c64a
[ "Apache-2.0" ]
null
null
null
python/http_client/v1/polyaxon_sdk/models/v1_list_agents_response.py
mouradmourafiq/polyaxon-client
5fc32b9decc7305161561d404b0127f3e900c64a
[ "Apache-2.0" ]
1
2021-12-03T07:12:03.000Z
2021-12-03T07:12:03.000Z
#!/usr/bin/python # # Copyright 2018-2022 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ Polyaxon SDKs and REST API specification. Polyaxon SDKs and REST API specification. # noqa: E501 The version of the OpenAPI document: 1.18.2 Contact: contact@polyaxon.com Generated by: https://openapi-generator.tech """ try: from inspect import getfullargspec except ImportError: from inspect import getargspec as getfullargspec import pprint import re # noqa: F401 import six from polyaxon_sdk.configuration import Configuration class V1ListAgentsResponse(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'count': 'int', 'results': 'list[V1Agent]', 'previous': 'str', 'next': 'str' } attribute_map = { 'count': 'count', 'results': 'results', 'previous': 'previous', 'next': 'next' } def __init__(self, count=None, results=None, previous=None, next=None, local_vars_configuration=None): # noqa: E501 """V1ListAgentsResponse - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration.get_default_copy() self.local_vars_configuration = local_vars_configuration self._count = None self._results = None self._previous = None self._next = None self.discriminator = None if count is not None: self.count = count if results is not None: self.results = results if previous is not None: self.previous = previous if next is not None: self.next = next @property def count(self): """Gets the count of this V1ListAgentsResponse. # noqa: E501 :return: The count of this V1ListAgentsResponse. # noqa: E501 :rtype: int """ return self._count @count.setter def count(self, count): """Sets the count of this V1ListAgentsResponse. :param count: The count of this V1ListAgentsResponse. # noqa: E501 :type count: int """ self._count = count @property def results(self): """Gets the results of this V1ListAgentsResponse. # noqa: E501 :return: The results of this V1ListAgentsResponse. # noqa: E501 :rtype: list[V1Agent] """ return self._results @results.setter def results(self, results): """Sets the results of this V1ListAgentsResponse. :param results: The results of this V1ListAgentsResponse. # noqa: E501 :type results: list[V1Agent] """ self._results = results @property def previous(self): """Gets the previous of this V1ListAgentsResponse. # noqa: E501 :return: The previous of this V1ListAgentsResponse. # noqa: E501 :rtype: str """ return self._previous @previous.setter def previous(self, previous): """Sets the previous of this V1ListAgentsResponse. :param previous: The previous of this V1ListAgentsResponse. # noqa: E501 :type previous: str """ self._previous = previous @property def next(self): """Gets the next of this V1ListAgentsResponse. # noqa: E501 :return: The next of this V1ListAgentsResponse. # noqa: E501 :rtype: str """ return self._next @next.setter def next(self, next): """Sets the next of this V1ListAgentsResponse. :param next: The next of this V1ListAgentsResponse. # noqa: E501 :type next: str """ self._next = next def to_dict(self, serialize=False): """Returns the model properties as a dict""" result = {} def convert(x): if hasattr(x, "to_dict"): args = getfullargspec(x.to_dict).args if len(args) == 1: return x.to_dict() else: return x.to_dict(serialize) else: return x for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) attr = self.attribute_map.get(attr, attr) if serialize else attr if isinstance(value, list): result[attr] = list(map( lambda x: convert(x), value )) elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], convert(item[1])), value.items() )) else: result[attr] = convert(value) return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1ListAgentsResponse): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1ListAgentsResponse): return True return self.to_dict() != other.to_dict()
27.863436
120
0.594941
1cd53a7160479fd6d4a68eca68eca4dd0b9f0b52
715
py
Python
glue/core/qt/tests/test_style_dialog.py
HPLegion/glue
1843787ccb4de852dfe103ff58473da13faccf5f
[ "BSD-3-Clause" ]
550
2015-01-08T13:51:06.000Z
2022-03-31T11:54:47.000Z
glue/core/qt/tests/test_style_dialog.py
HPLegion/glue
1843787ccb4de852dfe103ff58473da13faccf5f
[ "BSD-3-Clause" ]
1,362
2015-01-03T19:15:52.000Z
2022-03-30T13:23:11.000Z
glue/core/qt/tests/test_style_dialog.py
HPLegion/glue
1843787ccb4de852dfe103ff58473da13faccf5f
[ "BSD-3-Clause" ]
142
2015-01-08T13:08:00.000Z
2022-03-18T13:25:57.000Z
import time from qtpy import QtCore from glue.core import Data from glue.core.tests.util import simple_session from ..style_dialog import StyleDialog class NonBlockingStyleDialog(StyleDialog): def exec_(self, *args): self.show() time.sleep(0.1) self.accept() def test_style_dialog(): # This is in part a regression test for a bug in Python 3. It is not a # full test of StyleDialog. session = simple_session() hub = session.hub collect = session.data_collection image = Data(label='im', x=[[1, 2], [3, 4]], y=[[2, 3], [4, 5]]) pos = QtCore.QPoint(10, 10) st = NonBlockingStyleDialog.dropdown_editor(image, pos)
22.34375
74
0.637762
159dcc6c35b4c0ec9b1e9d31057da94fde1ce933
6,017
py
Python
src/insulaudit/devices/onetouch/proto.py
bewest/insulaudit
2c0aa04a596775517a1e651723796dc19ea99ea7
[ "MIT" ]
22
2015-03-10T20:50:23.000Z
2020-11-28T13:23:54.000Z
src/insulaudit/devices/onetouch/proto.py
bewest/insulaudit
2c0aa04a596775517a1e651723796dc19ea99ea7
[ "MIT" ]
2
2016-03-13T12:56:34.000Z
2018-11-17T18:11:43.000Z
src/insulaudit/devices/onetouch/proto.py
bewest/insulaudit
2c0aa04a596775517a1e651723796dc19ea99ea7
[ "MIT" ]
10
2015-06-14T21:30:59.000Z
2018-09-13T19:01:43.000Z
from insulaudit.log import io, logger as log from insulaudit import lib, core from insulaudit.data import glucose import time HEADER = [ 0x11, 0x0D ] STX = 0x02 ETX = 0x03 TIMEOUT = 0.5 RETRIES = 3 def ls_long( B ): B.reverse( ) return lib.BangLong( B ) def ls_int( B ): B.reverse( ) return lib.BangInt( B ) def format_glucose( data ): """ >>> date, value = format_glucose( '''P "WED","11/10/10","01:46:00 ''' ... + '''"," 076 ","N","00", 00 099C''' ) >>> date.isoformat( ) '2010-11-10T01:46:00' >>> value 76 """ try: date = lib.parse.date( 'T'.join( data.replace( '"', '' ).split( ',' )[ 1:3 ]) ) value = int( data.split( '"' )[ 7 ].strip( ) ) except (IndexError, ValueError), e: log.info( data ) raise InvalidGlucose( data ) return date, value class OneTouch2Exception(core.CarelinkException): pass class InvalidResponse(OneTouch2Exception): pass class InvalidGlucose(InvalidResponse): pass class OneTouchCommand( core.Command ): code = HEADER response = '' def __call__( self, port ): self.response = port.readline( ).strip( ) return self.response def decode( self, msg ): return str( msg ) def isEmpty( self, response ): return response == '' class ReadSerial( OneTouchCommand ): code = list( bytearray( b'DM@' ) ) class ReadFirmware( OneTouchCommand ): code = list( bytearray( b'DM?' ) ) class ReadRFID( OneTouchCommand ): code = list( bytearray( b'DMID' ) ) class UltraSmartWakeUp1( OneTouchCommand ): code = bytearray( [ 0xB0, 0x04, 0x00, 0x00, 0x00, 0x00, 0x07 ] ) class UltraSmartWakeUp2( OneTouchCommand ): code = bytearray( [ 0x80, 0x25, 0x00, 0x00, 0x00, 0x00, 0x07, 0x80, 0x25, 0x00, 0x00, 0x00, 0x00, 0x08 ] ) def __call__(self, port ): return True class UltraSmartWakeUpStage1( OneTouchCommand ): #code = bytearray( [ 0x00, 0x96, 0x00, 0x00, 0x00, 0x00, 0x08 ] ) code = bytearray( [ 0x11, 0x0D, ] ) def __call__(self, port ): stuff = port.write("") #time.sleep(5) stuff = port.readlines( ) io.info( "RECIEVED HANDSHAKE REPLY: %s bytes" % len(stuff) ) io.info(lib.hexdump(bytearray( stuff ))) if len(stuff) > 0: return True return False class UltraSmartWakeUpStage2( OneTouchCommand ): code = bytearray( [ 0x80, 0x25, 0x00, 0x00, 0x00, 0x00, 0x08, 0x80, 0x25, 0x00, 0x00, 0x00, 0x00, 0x08, 0x11, 0x11, 0x0D, 0x0D, 0x44, 0x44, 0x4D, 0x4D, 0x53, 0x53, 0x0D, 0x0D, 0x0D, 0x0D, 0x11, 0x11, 0x0D, 0x0D, 0x44, 0x44, 0x4D, 0x4D, 0x53, 0x53, 0x0D, 0x0D, 0x0D, 0x0D, 0x00, 0x96, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x96, 0x00, 0x00, 0x00, 0x00, 0x08, 0x11, 0x11, 0x0D, 0x0D, 0x44, 0x44, 0x4D, 0x4D, 0x53, 0x53, 0x0D, 0x0D, 0x0D, 0x0D, 0x11, 0x11, 0x0D, 0x0D, 0x44, 0x44, 0x4D, 0x4D, 0x40, 0x40, 0x0D, 0x0D ] ) class ReadGlucose( OneTouchCommand ): code = list( bytearray( b'DMP' ) ) def __call__( self, port ): head = port.readline( ).strip( ) body = [ ] for line in port.readlines( ): try: body.append( format_glucose( line ) ) except InvalidGlucose, e: pass io.debug ( 'read glucose:head:%s:body.len:%s' % ( head, len(body) ) ) self.response = ( head, glucose.l2np( body ) ) return self.response def decode( self, msg ): return msg def isEmpty( self, *args ): return self.response[0] == '' class OneTouchUltra2( core.CommBuffer ): __timeout__ = 20 __pause__ = 02 def stage1_wakeup(self): io.info("wakeup: stage 1") command = UltraSmartWakeUpStage1( ) msg = bytearray( command.code ) for x in xrange( RETRIES ): self.write( str( msg ) ) #self.write( str( msg ) ) time.sleep( self.__pause__ ) response = command( self ) if response: break io.info( 'get response:%s' % ( response ) ) if not response: raise OneTouch2Exception("NOT A GOOD START") def stage2_wakeup(self): stage2a = [ 0x80, 0x25, 0x00, 0x00, 0x00, 0x00, 0x07 ] stage2b = [ 0x80, 0x25, 0x00, 0x00, 0x00, 0x00, 0x08 ] stage2c = [ 0x11, 0x0D, 0x44, 0x4D, 0x53, 0x0D, 0x0D ] stage2d = [ 0x11, 0x0D, 0x44, 0x4D, 0x53, 0x0D, 0x0D ] stage2e = [ 0x00, 0x96, 0x00, 0x00, 0x00, 0x00, 0x08 ] stage2f = [ 0x11, 0x0D, 0x44, 0x4D, 0x53, 0x0D ] stages = [ stage2a, stage2b, stage2c, stage2d, stage2e, stage2f, ] awake = False for stage in stages: msg = bytearray(stage) self.write( str( msg ) ) response = self.readlines( ) if len(response) > 0: io.info("got a response!!!") io.info(lib.hexdump(bytearray(response))) awake = True return awake def wakeup_smart( self ): io.info("begin wakeup") self.stage1_wakeup( ) self.stage2_wakeup( ) #stage2 = UltraSmartWakeUpStage2( ) #self.write( str( stage2.code ) ) #response_2 = stage2( self ) #self.write( str( wake1.code ) ) time.sleep( self.__pause__ ) def read_glucose( self ): header, body = self.execute( ReadGlucose( ) ) return header, body def wrap( self, data ): frame = HEADER + data + [ 0x0D ] return bytearray( frame ) def execute( self, command ): """ """ msg = self.wrap( command.code ) # empty meter's buffer before writing anything self.readlines( ) for x in xrange( RETRIES ): self.write( str( msg ) ) self.write( str( msg ) ) time.sleep( self.__pause__ ) io.info( 'dm read:%s' % x ); response = command( self ) if not command.isEmpty( response ): break io.info( 'get response:%r' % ( repr( response ) ) ) return command.decode( response ) class Link(OneTouchUltra2): pass if __name__ == '__main__': import doctest doctest.testmod( ) ##### # EOF
29.067633
76
0.590161
3c19fe5723da55805c9a14d9ca66ab3a99aa5421
1,728
py
Python
setup.py
kottilukkalarun/CosineSimilary
450c3bae10495109c3b3e494a0e91f46adfb623f
[ "MIT" ]
null
null
null
setup.py
kottilukkalarun/CosineSimilary
450c3bae10495109c3b3e494a0e91f46adfb623f
[ "MIT" ]
null
null
null
setup.py
kottilukkalarun/CosineSimilary
450c3bae10495109c3b3e494a0e91f46adfb623f
[ "MIT" ]
null
null
null
from distutils.core import setup setup( name = 'CosineSimilarityFinder', # How you named your package folder (MyLib) packages = ['SimilarityFinder'], # Chose the same as "name" version = '0.4', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'FINDS COSINE SIMILARITY BETWEEN TWO TEXTS', # Give a short description about your library author = 'ARUN KESAVAN KOTTILUKKAL', # Type in your name author_email = 'arunkottilukkal@outlook.in', # Type in your E-Mail url = 'https://github.com/kottilukkalarun/CosineSimilary', # Provide either the link to your github or to your website download_url = 'https://github.com/kottilukkalarun/CosineSimilary/archive/v_04.tar.gz', # I explain this later on keywords = ['COSINE SIMILARITY', 'TEXT SIMILARITY', 'STRING SIMILARITY'], # Keywords that define your package best install_requires=[ 'nltk', 'pandas', 'requests', 'scikit-learn', ], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
59.586207
146
0.674769
ac259ef12c963775ca6584eab63bba8a58af5196
2,454
py
Python
test/test_content_view.py
gustavs408650/looker_sdk_30
8b52449f216b2cb3b84f09e2856bcea1ed4a2b0c
[ "MIT" ]
null
null
null
test/test_content_view.py
gustavs408650/looker_sdk_30
8b52449f216b2cb3b84f09e2856bcea1ed4a2b0c
[ "MIT" ]
null
null
null
test/test_content_view.py
gustavs408650/looker_sdk_30
8b52449f216b2cb3b84f09e2856bcea1ed4a2b0c
[ "MIT" ]
1
2019-11-12T10:05:51.000Z
2019-11-12T10:05:51.000Z
# coding: utf-8 """ Looker API 3.0 Reference ### Authorization The Looker API uses Looker **API3** credentials for authorization and access control. Looker admins can create API3 credentials on Looker's **Admin/Users** page. Pass API3 credentials to the **/login** endpoint to obtain a temporary access_token. Include that access_token in the Authorization header of Looker API requests. For details, see [Looker API Authorization](https://looker.com/docs/r/api/authorization) ### Client SDKs The Looker API is a RESTful system that should be usable by any programming language capable of making HTTPS requests. Client SDKs for a variety of programming languages can be generated from the Looker API's Swagger JSON metadata to streamline use of the Looker API in your applications. A client SDK for Ruby is available as an example. For more information, see [Looker API Client SDKs](https://looker.com/docs/r/api/client_sdks) ### Try It Out! The 'api-docs' page served by the Looker instance includes 'Try It Out!' buttons for each API method. After logging in with API3 credentials, you can use the \"Try It Out!\" buttons to call the API directly from the documentation page to interactively explore API features and responses. ### Versioning Future releases of Looker will expand this API release-by-release to securely expose more and more of the core power of Looker to API client applications. API endpoints marked as \"beta\" may receive breaking changes without warning. Stable (non-beta) API endpoints should not receive breaking changes in future releases. For more information, see [Looker API Versioning](https://looker.com/docs/r/api/versioning) # noqa: E501 OpenAPI spec version: 3.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import looker_client_30 from looker_client_30.looker_sdk.content_view import ContentView # noqa: E501 from looker_client_30.rest import ApiException class TestContentView(unittest.TestCase): """ContentView unit test stubs""" def setUp(self): pass def tearDown(self): pass def testContentView(self): """Test ContentView""" # FIXME: construct object with mandatory attributes with example values # model = looker_client_30.models.content_view.ContentView() # noqa: E501 pass if __name__ == '__main__': unittest.main()
59.853659
1,639
0.757131
394f64845380a60bd70d44950f60d76bba837896
66
py
Python
test/test_preprocess.py
foldfelis/sqstate
a6a14a48d6ac7e41c55e2d62de3072074ba86ece
[ "MIT" ]
1
2021-07-14T08:23:54.000Z
2021-07-14T08:23:54.000Z
test/test_preprocess.py
akjmo97/sqstate
a6a14a48d6ac7e41c55e2d62de3072074ba86ece
[ "MIT" ]
10
2021-01-16T17:09:57.000Z
2021-01-29T16:03:45.000Z
test/test_preprocess.py
akjmo97/sqstate
a6a14a48d6ac7e41c55e2d62de3072074ba86ece
[ "MIT" ]
1
2021-07-02T07:15:21.000Z
2021-07-02T07:15:21.000Z
import sqstate.preprocess as pre class TestPreprocess: pass
11
32
0.772727
0e465ee0ed62186a0ca2ed3ae3f5b3fb8f47d102
2,298
py
Python
mud/piece_filter.py
akortman/mud
3b0fcff7b57a7fdc2f1c06d076cb0d6ed8eb5881
[ "MIT" ]
null
null
null
mud/piece_filter.py
akortman/mud
3b0fcff7b57a7fdc2f1c06d076cb0d6ed8eb5881
[ "MIT" ]
null
null
null
mud/piece_filter.py
akortman/mud
3b0fcff7b57a7fdc2f1c06d076cb0d6ed8eb5881
[ "MIT" ]
null
null
null
''' Usually, you want to restrict a dataset to a particular kind of Piece, e.g. 4/4 time. This module provides implementations of some predicate functions to use as filters. ''' def failure_reason(filter): if isinstance(filter, PieceFilter): return filter.why() return f"Failed on testing {filter.type}: filter" class PieceFilter(object): ''' Generic filter object. ''' def __init__(self): raise NotImplementedError def test(self, piece): raise NotImplementedError def __call__(self, piece): return self.test(piece) def why(self): return f"Unspecified rejection criteria ({type(self)})" class AtomicSlicable(PieceFilter): ''' Tests whether all events in a piece are contained in atomic slices when sliced to a given resolution. ''' def __init__(self, slice_resolution): self._slice_resolution = slice_resolution def test(self, piece): for bar in piece.bars(): for ts in bar.generate_slices(self._slice_resolution): if not ts.is_atomic_slice(): return False return True def why(self): return f"Not atomic slicable with resolution {self._slice_resolution}" class NotesWithinRange(PieceFilter): ''' Tests whether all notes are within a given note range. ''' def __init__(self, octave_range): raise NotImplementedError def test(self, piece): raise NotImplementedError def why(self): return f"Notes outside of range" class BarLengthIs(PieceFilter): ''' Tests whether the pieces are in the given time signatures. ''' def __init__(self, bar_length): self._bar_length = bar_length def test(self, piece): for bar in piece.bars(): if bar.length().in_beats() != self._bar_length: return False return True def why(self): return f"Bar length not {self._bar_length}" class IsMonophonic(PieceFilter): ''' Tests whether the piece is monophonic (no simultaneous pitches). ''' def __init__(self): pass def test(self, piece): return piece.is_monophonic() def why(self): return f"Piece is not monophonic"
26.413793
78
0.63577
2b443cc5355d5d17448d3afc8bce7c9469a1db5c
1,609
py
Python
cloudkittyclient/v2/client.py
NeCTAR-RC/python-cloudkittyclient
20003a58cec701dd39945246955d5434681e5184
[ "Apache-2.0" ]
19
2015-10-18T02:56:16.000Z
2019-07-19T16:33:08.000Z
cloudkittyclient/v2/client.py
NeCTAR-RC/python-cloudkittyclient
20003a58cec701dd39945246955d5434681e5184
[ "Apache-2.0" ]
1
2018-12-17T13:11:24.000Z
2018-12-17T13:11:24.000Z
cloudkittyclient/v2/client.py
NeCTAR-RC/python-cloudkittyclient
20003a58cec701dd39945246955d5434681e5184
[ "Apache-2.0" ]
11
2016-02-02T02:32:58.000Z
2022-02-11T02:22:56.000Z
# -*- coding: utf-8 -*- # Copyright 2018 Objectif Libre # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from cloudkittyclient.v1 import client from cloudkittyclient.v2 import dataframes from cloudkittyclient.v2.rating import modules from cloudkittyclient.v2 import scope from cloudkittyclient.v2 import summary # NOTE(peschk_l) v2 client needs to implement v1 until the v1 API has been # completely ported to v2 class Client(client.Client): def __init__(self, session=None, adapter_options={}, cacert=None, insecure=False, **kwargs): super(Client, self).__init__( session=session, adapter_options=adapter_options, cacert=cacert, insecure=insecure, **kwargs ) self.dataframes = dataframes.DataframesManager(self.api_client) self.scope = scope.ScopeManager(self.api_client) self.summary = summary.SummaryManager(self.api_client) self.rating = modules.RatingManager(self.api_client)
35.755556
78
0.677439
993af1509f9127592b735a7412939002c28e2d30
1,880
py
Python
tests/contract_tests/KT1TnwBxgK4ayHuxrti6KKkJpWBHXBYRCX6H/test_tnwbxg_updateBaker.py
konchunas/pytezos
65576d18bdf1956fae8ea21241b6c43a38921b83
[ "MIT" ]
98
2019-02-07T16:33:38.000Z
2022-03-31T15:53:41.000Z
tests/contract_tests/KT1TnwBxgK4ayHuxrti6KKkJpWBHXBYRCX6H/test_tnwbxg_updateBaker.py
konchunas/pytezos
65576d18bdf1956fae8ea21241b6c43a38921b83
[ "MIT" ]
152
2019-05-20T16:38:56.000Z
2022-03-30T14:24:38.000Z
tests/contract_tests/KT1TnwBxgK4ayHuxrti6KKkJpWBHXBYRCX6H/test_tnwbxg_updateBaker.py
konchunas/pytezos
65576d18bdf1956fae8ea21241b6c43a38921b83
[ "MIT" ]
34
2019-07-25T12:03:51.000Z
2021-11-11T22:23:38.000Z
from unittest import TestCase from os.path import dirname, join import json from pytezos.michelson.program import MichelsonProgram from pytezos.michelson.types.big_map import big_map_diff_to_lazy_diff from pytezos.michelson.forge import forge_micheline, unforge_micheline folder = 'dexter_usdtz_xtz' entrypoint = 'removeLiquidity' class MainnetOperationTestCaseTNWBXG(TestCase): @classmethod def setUpClass(cls): with open(join(dirname(__file__), f'', '__script__.json')) as f: script = json.loads(f.read()) cls.program = MichelsonProgram.match(script['code']) with open(join(dirname(__file__), f'', f'updateBaker.json')) as f: operation = json.loads(f.read()) cls.entrypoint = f'updateBaker' cls.operation = operation # cls.maxDiff = None def test_parameters_tnwbxg(self): original_params = self.program.parameter.from_parameters(self.operation['parameters']) py_obj = original_params.to_python_object() # pprint(py_obj) readable_params = self.program.parameter.from_parameters(original_params.to_parameters(mode='readable')) self.assertEqual(py_obj, readable_params.to_python_object()) self.program.parameter.from_python_object(py_obj) def test_lazy_storage_tnwbxg(self): storage = self.program.storage.from_micheline_value(self.operation['storage']) lazy_diff = big_map_diff_to_lazy_diff(self.operation['big_map_diff']) extended_storage = storage.merge_lazy_diff(lazy_diff) py_obj = extended_storage.to_python_object(try_unpack=True, lazy_diff=True) # pprint(py_obj) def test_parameters_forging(self): expected = self.operation['parameters'].get('value', {'prim': 'Unit'}) actual = unforge_micheline(forge_micheline(expected)) self.assertEqual(expected, actual)
39.166667
112
0.722872
7d51210d235aede3eeab7d1c30bfeef18e2115e4
1,126
py
Python
rasa_exp/nlu/tokenizers/simple_tokenizer.py
shfshf/rasa_exp
dd6db46c14c36f0ffe9602551836af43cebcfead
[ "Apache-2.0" ]
null
null
null
rasa_exp/nlu/tokenizers/simple_tokenizer.py
shfshf/rasa_exp
dd6db46c14c36f0ffe9602551836af43cebcfead
[ "Apache-2.0" ]
null
null
null
rasa_exp/nlu/tokenizers/simple_tokenizer.py
shfshf/rasa_exp
dd6db46c14c36f0ffe9602551836af43cebcfead
[ "Apache-2.0" ]
null
null
null
import logging import typing from typing import Any, Dict, Optional, Text, List from rasa.nlu.tokenizers.tokenizer import Token, Tokenizer from rasa.nlu.training_data import Message, TrainingData logger = logging.getLogger(__name__) if typing.TYPE_CHECKING: from rasa.nlu.model import Metadata class OneCharTokenizer(Tokenizer): """自定义中文分词组件""" # provides = ["tokens"] language_list = ["zh"] defaults = { "custom_dict": None, # Flag to check whether to split intents "intent_tokenization_flag": False, # Symbol on which intent should be split "intent_split_symbol": "_", } # default don't load custom dictionary def __init__(self, component_config: Dict[Text, Any] = None) -> None: super().__init__(component_config) def tokenize(self, message: Message, attribute: Text) -> List[Token]: text = message.get(attribute) tokenized = [i for i in text] tokens = [] offset = 0 for word in tokenized: tokens.append(Token(word, offset)) offset += len(word) return tokens
26.809524
73
0.652753
3060b102169b208a856b773ebd3cb7841408f650
4,461
py
Python
graphql/validation/tests/test_no_unused_variables.py
phil303/graphql-core
f983e19cc8cd818275621e2909fb485cf227fe0c
[ "MIT" ]
1
2021-01-13T15:06:53.000Z
2021-01-13T15:06:53.000Z
graphql/validation/tests/test_no_unused_variables.py
phil303/graphql-core
f983e19cc8cd818275621e2909fb485cf227fe0c
[ "MIT" ]
null
null
null
graphql/validation/tests/test_no_unused_variables.py
phil303/graphql-core
f983e19cc8cd818275621e2909fb485cf227fe0c
[ "MIT" ]
1
2020-07-23T17:53:27.000Z
2020-07-23T17:53:27.000Z
from graphql.language.location import SourceLocation from graphql.validation.rules import NoUnusedVariables from .utils import expect_fails_rule, expect_passes_rule def unused_variable(variable_name, op_name, line, column): return { 'message': NoUnusedVariables.unused_variable_message(variable_name, op_name), 'locations': [SourceLocation(line, column)] } def test_uses_all_variables(): expect_passes_rule(NoUnusedVariables, ''' query ($a: String, $b: String, $c: String) { field(a: $a, b: $b, c: $c) } ''') def test_uses_all_variables_deeply(): expect_passes_rule(NoUnusedVariables, ''' query Foo($a: String, $b: String, $c: String) { field(a: $a) { field(b: $b) { field(c: $c) } } } ''') def test_uses_all_variables_deeply_in_inline_fragments(): expect_passes_rule(NoUnusedVariables, ''' query Foo($a: String, $b: String, $c: String) { ... on Type { field(a: $a) { field(b: $b) { ... on Type { field(c: $c) } } } } } ''') def test_uses_all_variables_in_fragment(): expect_passes_rule(NoUnusedVariables, ''' query Foo($a: String, $b: String, $c: String) { ...FragA } fragment FragA on Type { field(a: $a) { ...FragB } } fragment FragB on Type { field(b: $b) { ...FragC } } fragment FragC on Type { field(c: $c) } ''') def test_variable_used_by_fragment_in_multiple_operations(): expect_passes_rule(NoUnusedVariables, ''' query Foo($a: String) { ...FragA } query Bar($b: String) { ...FragB } fragment FragA on Type { field(a: $a) } fragment FragB on Type { field(b: $b) } ''') def test_variable_used_by_recursive_fragment(): expect_passes_rule(NoUnusedVariables, ''' query Foo($a: String) { ...FragA } fragment FragA on Type { field(a: $a) { ...FragA } } ''') def test_variable_not_used(): expect_fails_rule(NoUnusedVariables, ''' query ($a: String, $b: String, $c: String) { field(a: $a, b: $b) } ''', [ unused_variable('c', None, 2, 38) ]) def test_multiple_variables_not_used(): expect_fails_rule(NoUnusedVariables, ''' query Foo($a: String, $b: String, $c: String) { field(b: $b) } ''', [ unused_variable('a', 'Foo', 2, 17), unused_variable('c', 'Foo', 2, 41) ]) def test_variable_not_used_in_fragments(): expect_fails_rule(NoUnusedVariables, ''' query Foo($a: String, $b: String, $c: String) { ...FragA } fragment FragA on Type { field(a: $a) { ...FragB } } fragment FragB on Type { field(b: $b) { ...FragC } } fragment FragC on Type { field } ''', [ unused_variable('c', 'Foo', 2, 41) ]) def test_multiple_variables_not_used_in_fragments(): expect_fails_rule(NoUnusedVariables, ''' query Foo($a: String, $b: String, $c: String) { ...FragA } fragment FragA on Type { field { ...FragB } } fragment FragB on Type { field(b: $b) { ...FragC } } fragment FragC on Type { field } ''', [ unused_variable('a', 'Foo', 2, 17), unused_variable('c', 'Foo', 2, 41) ]) def test_variable_not_used_by_unreferenced_fragment(): expect_fails_rule(NoUnusedVariables, ''' query Foo($b: String) { ...FragA } fragment FragA on Type { field(a: $a) } fragment FragB on Type { field(b: $b) } ''', [ unused_variable('b', 'Foo', 2, 17), ]) def test_variable_not_used_by_fragment_used_by_other_operation(): expect_fails_rule(NoUnusedVariables, ''' query Foo($b: String) { ...FragA } query Bar($a: String) { ...FragB } fragment FragA on Type { field(a: $a) } fragment FragB on Type { field(b: $b) } ''', [ unused_variable('b', 'Foo', 2, 17), unused_variable('a', 'Bar', 5, 17), ])
21.975369
85
0.516924
61247d8da8430ca6893ca1789461cc9c70467db6
3,898
py
Python
pytet_v0.3/matrix.py
tlsrbwls999/pytet
865cd9a4702b278cab0882d9e1ec15abb3a7396f
[ "Apache-2.0" ]
null
null
null
pytet_v0.3/matrix.py
tlsrbwls999/pytet
865cd9a4702b278cab0882d9e1ec15abb3a7396f
[ "Apache-2.0" ]
null
null
null
pytet_v0.3/matrix.py
tlsrbwls999/pytet
865cd9a4702b278cab0882d9e1ec15abb3a7396f
[ "Apache-2.0" ]
null
null
null
class MatrixError(Exception): pass class Matrix: nAlloc = 0 nFree = 0 def get_nAlloc(self): return Matrix.nAlloc def get_nFree(self): return Matrix.nFree def get_dy(self): return self._dy def get_dx(self): return self._dx def get_array(self): return self._array def __del__(self): Matrix.nFree += 1 def __alloc(self, cy, cx): if cy < 0 or cx < 0: raise MatrixError("wrong matrix size") self._dy = cy self._dx = cx self._array = [[0]*self._dx for i in range(self._dy)] #print(self.__array) Matrix.nAlloc += 1 def __init__(self, arg): if isinstance(arg, list): array = arg cy = len(array) cx = len(array[0]) self.__alloc(cy, cx) for y in range(cy): for x in range(cx): self._array[y][x] = array[y][x] return elif isinstance(arg, Matrix): other = arg cy = other._dy cx = other._dx self.__alloc(cy, cx) for y in range(cy): for x in range(cx): self._array[y][x] = other._array[y][x] return else: self.__alloc(0, 0) return def __str__(self): return 'Matrix(%d, %d)' % (self._dy, self._dx) def print(self): print('[', end=' ') for y in range(self._dy-1): print('[', end=' ') for x in range(self._dx-1): print(self._array[y][x], end=', ') print(self._array[y][self._dx-1], end=' ') print('],', end=' ') print('[', end=' ') for x in range(self._dx-1): print(self._array[self._dy-1][x], end=', ') print(self._array[self._dy-1][self._dx-1], end=' ') print(']', end=' ') print(']') def clip(self, top, left, bottom, right): cy = bottom - top cx = right - left temp = [[0]*cx for i in range(cy)] for y in range(cy): for x in range(cx): if (top+y >= 0) and (left+x >= 0) \ and (top+y < self._dy) and (left+x < self._dx): temp[y][x] = self._array[top+y][left+x] else: raise MatrixError("invalid matrix range") return Matrix(temp) def paste(self, other, top, left): for y in range(other._dy): for x in range(other._dx): if (top+y >= 0) and (left+x >= 0) \ and (top+y < self._dy) and (left+x < self._dx): self._array[top+y][left+x] = other._array[y][x] else: raise MatrixError("invalid matrix range") def __add__(self, other): if (self._dx != other._dx) or (self._dy != other._dy): raise MatrixError("matrix sizes mismatch") temp = [[0]*self._dx for i in range(self._dy)] for y in range(self._dy): for x in range(self._dx): temp[y][x] = self._array[y][x] + other._array[y][x] return Matrix(temp) def sum(self): total = 0 for y in range(self._dy): for x in range(self._dx): total += self._array[y][x] return total def mulc(self, coef): for y in range(self._dy): for x in range(self._dx): self._array[y][x] *= coef def anyGreaterThan(self, val): for y in range(self._dy): temp = [v for v in self._array[y] if v > val] if len(temp) > 0: return True return False
29.530303
84
0.452027
faa234c60116541c5f983eb0a3cc562bf0f3f29d
1,455
py
Python
flatten_dict.py
UPstartDeveloper/Problem_Solving_Practice
bd61333b3b056e82a94297e02bc05a17552e3496
[ "MIT" ]
null
null
null
flatten_dict.py
UPstartDeveloper/Problem_Solving_Practice
bd61333b3b056e82a94297e02bc05a17552e3496
[ "MIT" ]
null
null
null
flatten_dict.py
UPstartDeveloper/Problem_Solving_Practice
bd61333b3b056e82a94297e02bc05a17552e3496
[ "MIT" ]
null
null
null
def flatten_dictionary(dictionary): # init keys array new_dict = dict() keys = list() def make_key(keys, key): """Form the key""" new_key = ".".join(keys) if key != "": new_key = ".".join((new_key, key)) return new_key def flatten(flatten_dict, keys): # iterate over kv pair for key, value in flatten_dict.items(): # Base Case: if key normal if isinstance(value, dict) is False: # use what's in the keys array to form the new key if len(keys) > 0: key = make_key(keys, key) # add to a new dict, new_dict[key] = value # Recursive Case if leads to a nested dict: elif isinstance(value, dict) is True: # add to the keys array if key != "": keys.append(key) flatten(value, keys) # pop from the keys array if len(keys) > 0: keys.pop() # print(new_dict) # call the helper func flatten(dictionary, keys) # return the dictionary return new_dict """ diction = { "Key1" : "1", "Key2" : { "a" : "2", "b" : "3", "c" : { "d" : "3", "e" : { "" : "1" } } } } """ diction = {"": {"a": 1}, "b": 2} print(flatten_dictionary(diction))
25.526316
66
0.452921
8bf40651b3c721850d8504a21a53a6e461375d32
338
py
Python
Desafios/des098.py
vitormrts/ExerciciosPython
176b1c21e147670f7495678bdd4fc97241440d28
[ "MIT" ]
1
2021-02-07T18:58:57.000Z
2021-02-07T18:58:57.000Z
Desafios/des098.py
vitormrts/ExerciciosPython
176b1c21e147670f7495678bdd4fc97241440d28
[ "MIT" ]
null
null
null
Desafios/des098.py
vitormrts/ExerciciosPython
176b1c21e147670f7495678bdd4fc97241440d28
[ "MIT" ]
null
null
null
pessoa = dict() dados = [] pessoa['Nome'] = str(input('Nome: ')) pessoa['Nota'] = float(input(f'Média de {pessoa["Nome"]}: ')) if pessoa['Nota'] >= 5: pessoa['Situação'] = 'Aprovado' else: pessoa['Situação'] = 'Reprovado' dados.append(pessoa.copy()) for p in dados: for k, v in p.items(): print(f'{k} é igual a {v}')
24.142857
61
0.58284
258c4f86b6802d87073bc671867892fe134a32b8
840
py
Python
tests/opcodes/cases/test_and_36.py
juztin/pytezos-1
7e608ff599d934bdcf129e47db43dbdb8fef9027
[ "MIT" ]
1
2020-08-11T02:31:24.000Z
2020-08-11T02:31:24.000Z
tests/opcodes/cases/test_and_36.py
juztin/pytezos-1
7e608ff599d934bdcf129e47db43dbdb8fef9027
[ "MIT" ]
1
2020-12-30T16:44:56.000Z
2020-12-30T16:44:56.000Z
tests/opcodes/cases/test_and_36.py
tqtezos/pytezos
a4ac0b022d35d4c9f3062609d8ce09d584b5faa8
[ "MIT" ]
1
2022-03-20T19:01:00.000Z
2022-03-20T19:01:00.000Z
from unittest import TestCase from tests import abspath from pytezos.repl.interpreter import Interpreter from pytezos.michelson.converter import michelson_to_micheline from pytezos.repl.parser import parse_expression class OpcodeTestand_36(TestCase): def setUp(self): self.maxDiff = None self.i = Interpreter(debug=True) def test_opcode_and_36(self): res = self.i.execute(f'INCLUDE "{abspath("opcodes/contracts/and.tz")}"') self.assertTrue(res['success']) res = self.i.execute('RUN (Pair False False) None') self.assertTrue(res['success']) exp_val_expr = michelson_to_micheline('(Some False)') exp_val = parse_expression(exp_val_expr, res['result']['storage'].type_expr) self.assertEqual(exp_val, res['result']['storage']._val)
32.307692
84
0.686905
f451753d808d1e0491a8bba28157444b4b08d345
2,245
py
Python
plot_code/tau_delta_success.py
pondbooks/STL_SAC_NCSs_Ver2
bee0db08a33182419e2b3a0b49e5798bccf17bcd
[ "MIT" ]
1
2022-03-08T03:33:16.000Z
2022-03-08T03:33:16.000Z
plot_code/tau_delta_success.py
pondbooks/STL_SAC_NCSs_Ver2
bee0db08a33182419e2b3a0b49e5798bccf17bcd
[ "MIT" ]
null
null
null
plot_code/tau_delta_success.py
pondbooks/STL_SAC_NCSs_Ver2
bee0db08a33182419e2b3a0b49e5798bccf17bcd
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt plt.rcParams["font.family"] = "DejaVu Serif" # Font plt.rcParams["font.size"] = 10 # Size of word for i in range(14): data_nopretrain = np.loadtxt('tau_preprocess/success'+str(i)+'.csv',skiprows=1,delimiter=",") data_nopretrain_temp = data_nopretrain[:,1] data_nopretrain_temp = np.array([data_nopretrain_temp]) data_proposed_method = np.loadtxt('tau_delta_preprocess/success'+str(i)+'.csv',skiprows=1,delimiter=",") data_proposed_method_temp = data_proposed_method[:,1] data_proposed_method_temp = np.array([data_proposed_method_temp]) # Martix is [num of learning curve, steps] if i > 0: data_nopretrain_matrix = np.concatenate([data_nopretrain_matrix, data_nopretrain_temp]) data_proposed_method_matrix = np.concatenate([data_proposed_method_matrix, data_proposed_method_temp]) else: # i=0 data_nopretrain_matrix = data_nopretrain_temp data_proposed_method_matrix = data_proposed_method_temp data_len = len(data_proposed_method_temp[0]) print(data_len) steps = [] for i in range(data_len): steps.append((i+1)*10000) train_nopretrain_scores_mean = np.mean(data_nopretrain_matrix, axis=0) train_nopretrain_scores_std = np.std(data_nopretrain_matrix, axis=0) train_proposed_method_scores_mean = np.mean(data_proposed_method_matrix, axis=0) train_proposed_method_scores_std = np.std(data_proposed_method_matrix, axis=0) plt.figure() plt.xlabel("Learning Steps") plt.ylabel("Success Rate") # Plot Traing score and Test score plt.plot(steps, train_nopretrain_scores_mean,color="r", label="$\u03c4$-MDP") plt.plot(steps, train_proposed_method_scores_mean,color="b", label="$\u03c4 d$-MDP") # Plot standard distribution plt.fill_between(steps, train_nopretrain_scores_mean - train_nopretrain_scores_std, train_nopretrain_scores_mean + train_nopretrain_scores_std, color="r", alpha=0.15) plt.fill_between(steps, train_proposed_method_scores_mean - train_proposed_method_scores_std, train_proposed_method_scores_mean + train_proposed_method_scores_std, color="b", alpha=0.15) plt.xlim(0, 600000) plt.ylim(0., 1.01) plt.legend(loc="best") plt.grid() #plt.show() plt.savefig("success_rates_tau_d.png")
43.173077
186
0.773274
9617bcf3d2e5ffbbfda2b79409a5c6201807a592
13,568
py
Python
python/cuml/utils/input_utils.py
efajardo-nv/cuml
bc86714836284ed4752c267513e5d447e884e1c5
[ "Apache-2.0" ]
null
null
null
python/cuml/utils/input_utils.py
efajardo-nv/cuml
bc86714836284ed4752c267513e5d447e884e1c5
[ "Apache-2.0" ]
null
null
null
python/cuml/utils/input_utils.py
efajardo-nv/cuml
bc86714836284ed4752c267513e5d447e884e1c5
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2019-2020, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import cuml.utils.numba_utils import cudf import cupy as cp import numpy as np import rmm import warnings from collections import namedtuple from collections.abc import Collection from cuml.utils import rmm_cupy_ary from numba import cuda inp_array = namedtuple('inp_array', 'array pointer n_rows n_cols dtype') def get_dev_array_ptr(ary): """ Returns ctype pointer of a numba style device array """ return ary.device_ctypes_pointer.value def get_cudf_column_ptr(col): """ Returns pointer of a cudf Series """ return col.__cuda_array_interface__['data'][0] def get_dtype(X): """ Returns dtype of obj as a Numpy style dtype (like np.float32) """ if isinstance(X, cudf.DataFrame): dtype = np.dtype(X[X.columns[0]]._column.dtype) elif (isinstance(X, cudf.Series)): dtype = np.dtype(X._column.dtype) elif isinstance(X, np.ndarray): dtype = X.dtype elif cuda.is_cuda_array(X): dtype = X.dtype elif cuda.devicearray.is_cuda_ndarray(X): dtype = X.dtype else: raise TypeError("Input object not understood for dtype detection.") return dtype def input_to_dev_array(X, order='F', deepcopy=False, check_dtype=False, convert_to_dtype=False, check_cols=False, check_rows=False, fail_on_order=False): """ Convert input X to device array suitable for C++ methods. Acceptable input formats: * cuDF Dataframe - returns a deep copy always. * cuDF Series - returns by reference or a deep copy depending on `deepcopy`. * Numpy array - returns a copy in device always * cuda array interface compliant array (like Cupy) - returns a reference unless `deepcopy`=True. * numba device array - returns a reference unless deepcopy=True Parameters ---------- X : cuDF.DataFrame, cuDF.Series, numba array, NumPy array or any cuda_array_interface compliant array like CuPy or pytorch. order: string (default: 'F') Whether to return a F-major or C-major array. Used to check the order of the input. If fail_on_order=True method will raise ValueError, otherwise it will convert X to be of order `order`. deepcopy: boolean (default: False) Set to True to always return a deep copy of X. check_dtype: np.dtype (default: False) Set to a np.dtype to throw an error if X is not of dtype `check_dtype`. convert_to_dtype: np.dtype (default: False) Set to a dtype if you want X to be converted to that dtype if it is not that dtype already. check_cols: int (default: False) Set to an int `i` to check that input X has `i` columns. Set to False (default) to not check at all. check_rows: boolean (default: False) Set to an int `i` to check that input X has `i` columns. Set to False (default) to not check at all. fail_on_order: boolean (default: False) Set to True if you want the method to raise a ValueError if X is not of order `order`. Returns ------- `inp_array`: namedtuple('inp_array', 'array pointer n_rows n_cols dtype') A new device array if the input was not a numba device array. It is a reference to the input X if it was a numba device array or cuda array interface compliant (like cupy) """ if convert_to_dtype: X = convert_dtype(X, to_dtype=convert_to_dtype) check_dtype = False if isinstance(X, cudf.DataFrame): dtype = np.dtype(X[X.columns[0]]._column.dtype) if order == 'F': X_m = X.as_gpu_matrix(order='F') elif order == 'C': X_m = cuml.utils.numba_utils.row_matrix(X) elif (isinstance(X, cudf.Series)): if deepcopy: X_m = X.to_gpu_array() else: if X.null_count == 0: # using __cuda_array_interface__ support of cudf.Series for # this temporarily while switching from rmm device_array to # rmm deviceBuffer https://github.com/rapidsai/cuml/issues/1379 X_m = cuda.as_cuda_array(X._column) else: raise ValueError("Error: cuDF Series has missing/null values") elif isinstance(X, np.ndarray): dtype = X.dtype X_m = rmm.to_device(np.array(X, order=order, copy=False)) elif cuda.is_cuda_array(X): # Use cuda array interface to create a device array by reference X_m = cuda.as_cuda_array(X) if deepcopy: out_dev_array = rmm.device_array_like(X_m) out_dev_array.copy_to_device(X_m) X_m = out_dev_array elif cuda.devicearray.is_cuda_ndarray(X): if deepcopy: out_dev_array = rmm.device_array_like(X) out_dev_array.copy_to_device(X) X_m = out_dev_array else: X_m = X else: msg = "X matrix format " + str(X.__class__) + " not supported" raise TypeError(msg) dtype = X_m.dtype if check_dtype: if isinstance(check_dtype, type) or isinstance(check_dtype, np.dtype): if dtype != check_dtype: del X_m raise TypeError("Expected " + str(check_dtype) + "input but" + " got " + str(dtype) + " instead.") elif isinstance(check_dtype, Collection) and \ not isinstance(check_dtype, str): # The 'not isinstance(check_dtype, string)' condition is needed, # because the 'float32' string is a Collection, but in this # branch we only want to process collections like # [np.float32, np.float64]. if dtype not in check_dtype: del X_m raise TypeError("Expected input to be of type in " + str(check_dtype) + " but got " + str(dtype)) else: raise ValueError("Expected a type as check_dtype arg, but got " + str(check_dtype)) n_rows = X_m.shape[0] if len(X_m.shape) > 1: n_cols = X_m.shape[1] else: n_cols = 1 if check_cols: if n_cols != check_cols: raise ValueError("Expected " + str(check_cols) + " columns but got " + str(n_cols) + " columns.") if check_rows: if n_rows != check_rows: raise ValueError("Expected " + str(check_rows) + " rows but got " + str(n_rows) + " rows.") if not check_numba_order(X_m, order): if fail_on_order: raise ValueError("Expected " + order_to_str(order) + " major order, but got the opposite.") else: warnings.warn("Expected " + order_to_str(order) + " major order, " "but got the opposite. Converting data, this will " "result in additional memory utilization.") X_m = rmm_cupy_ary(cp.array, X_m, copy=False, order=order) X_m = cuda.as_cuda_array(X_m) X_ptr = get_dev_array_ptr(X_m) return inp_array(array=X_m, pointer=X_ptr, n_rows=n_rows, n_cols=n_cols, dtype=dtype) def convert_dtype(X, to_dtype=np.float32): """ Convert X to be of dtype `dtype` Supported float dtypes for overflow checking. Todo: support other dtypes if needed. """ if isinstance(X, np.ndarray): dtype = X.dtype if dtype != to_dtype: X_m = X.astype(to_dtype) if len(X[X == np.inf]) > 0: raise TypeError("Data type conversion resulted" "in data loss.") return X_m elif isinstance(X, cudf.Series) or isinstance(X, cudf.DataFrame): return X.astype(to_dtype) elif cuda.is_cuda_array(X): X_m = cp.asarray(X) X_m = X_m.astype(to_dtype) return cuda.as_cuda_array(X_m) else: raise TypeError("Received unsupported input type " % type(X)) return X def check_numba_order(dev_ary, order): if order == 'F': return dev_ary.is_f_contiguous() elif order == 'C': return dev_ary.is_c_contiguous() def order_to_str(order): if order == 'F': return 'column (\'F\')' elif order == 'C': return 'row (\'C\')' def input_to_host_array(X, order='F', deepcopy=False, check_dtype=False, convert_to_dtype=False, check_cols=False, check_rows=False, fail_on_order=False): """ Convert input X to host array (NumPy) suitable for C++ methods that accept host arrays. Acceptable input formats: * Numpy array - returns a pointer to the original input * cuDF Dataframe - returns a deep copy always * cuDF Series - returns by reference or a deep copy depending on `deepcopy` * cuda array interface compliant array (like Cupy) - returns a \ reference unless deepcopy=True * numba device array - returns a reference unless deepcopy=True Parameters ---------- X: cuDF.DataFrame, cuDF.Series, numba array, NumPy array or any cuda_array_interface compliant array like CuPy or pytorch. order: string (default: 'F') Whether to return a F-major or C-major array. Used to check the order of the input. If fail_on_order=True method will raise ValueError, otherwise it will convert X to be of order `order`. deepcopy: boolean (default: False) Set to True to always return a deep copy of X. check_dtype: np.dtype (default: False) Set to a np.dtype to throw an error if X is not of dtype `check_dtype`. convert_to_dtype: np.dtype (default: False) Set to a dtype if you want X to be converted to that dtype if it is not that dtype already. check_cols: int (default: False) Set to an int `i` to check that input X has `i` columns. Set to False (default) to not check at all. check_rows: boolean (default: False) Set to an int `i` to check that input X has `i` columns. Set to False (default) to not check at all. fail_on_order: boolean (default: False) Set to True if you want the method to raise a ValueError if X is not of order `order`. Returns ------- `inp_array`: namedtuple('inp_array', 'array pointer n_rows n_cols dtype') `inp_array` is a new device array if the input was not a NumPy device array. It is a reference to the input X if it was a NumPy host array """ if convert_to_dtype: X = convert_dtype(X, to_dtype=convert_to_dtype) check_dtype = False if isinstance(X, cudf.DataFrame): dtype = np.dtype(X[X.columns[0]]._column.dtype) if order == 'F': X_m = X.as_gpu_matrix(order='F') elif order == 'C': X_m = cuml.utils.numba_utils.row_matrix(X) X_m = X_m.copy_to_host() elif (isinstance(X, cudf.Series)): if X.null_count == 0: X_m = X.to_array() else: raise ValueError('cuDF Series has missing (null) values.') elif isinstance(X, np.ndarray): X_m = np.array(X, order=order, copy=deepcopy) elif cuda.is_cuda_array(X): # Use cuda array interface to create a device array by reference X_m = cuda.as_cuda_array(X) X_m = np.array(X_m.copy_to_host(), order=order) else: msg = "X matrix format " + str(X.__class__) + " not supported" raise TypeError(msg) dtype = X_m.dtype if check_dtype: if isinstance(check_dtype, type): if dtype != check_dtype: del X_m raise TypeError("Expected " + str(check_dtype) + "input but" + " got " + str(dtype) + " instead.") elif isinstance(check_dtype, Collection): if dtype not in check_dtype: del X_m raise TypeError("Expected input to be of type in " + str(check_dtype) + " but got " + str(dtype)) n_rows = X_m.shape[0] if len(X_m.shape) > 1: n_cols = X_m.shape[1] else: n_cols = 1 if check_cols: if n_cols != check_cols: raise ValueError("Expected " + str(check_cols) + " columns but got " + str(n_cols) + " columns.") if check_rows: if n_rows != check_rows: raise ValueError("Expected " + str(check_rows) + " rows but got " + str(n_rows) + " rows.") X_ptr = X_m.ctypes.data return inp_array(array=X_m, pointer=X_ptr, n_rows=n_rows, n_cols=n_cols, dtype=dtype)
33.173594
79
0.601415
d9b53737dcd4f1df9fd790329113b1488cdef923
199
py
Python
Python/Chapter03/progex03_5.py
msiplab/EicProgLab
4ca523d09c3b414fceda10f3cff055e94fbcc2a9
[ "MIT" ]
1
2021-04-16T04:26:05.000Z
2021-04-16T04:26:05.000Z
Python/Chapter03/progex03_5.py
msiplab/EicProgLab
4ca523d09c3b414fceda10f3cff055e94fbcc2a9
[ "MIT" ]
null
null
null
Python/Chapter03/progex03_5.py
msiplab/EicProgLab
4ca523d09c3b414fceda10f3cff055e94fbcc2a9
[ "MIT" ]
2
2020-06-30T02:11:18.000Z
2021-08-09T04:44:16.000Z
from person import Person def main(): taro = Person('太郎','アニメ') hanako = Person('花子','アイドル') print('太郎の気分:' + taro.kibun) print('花子の気分:' + hanako.kibun) if __name__ == '__main__': main()
14.214286
31
0.623116
fc568bbad86d5e77fcb85a897ac12efae61034a7
6,612
py
Python
sdk/python/pulumi_azure_native/sql/v20200801preview/get_managed_instance_vulnerability_assessment.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/sql/v20200801preview/get_managed_instance_vulnerability_assessment.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/sql/v20200801preview/get_managed_instance_vulnerability_assessment.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetManagedInstanceVulnerabilityAssessmentResult', 'AwaitableGetManagedInstanceVulnerabilityAssessmentResult', 'get_managed_instance_vulnerability_assessment', ] @pulumi.output_type class GetManagedInstanceVulnerabilityAssessmentResult: """ A managed instance vulnerability assessment. """ def __init__(__self__, id=None, name=None, recurring_scans=None, storage_account_access_key=None, storage_container_path=None, storage_container_sas_key=None, type=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if recurring_scans and not isinstance(recurring_scans, dict): raise TypeError("Expected argument 'recurring_scans' to be a dict") pulumi.set(__self__, "recurring_scans", recurring_scans) if storage_account_access_key and not isinstance(storage_account_access_key, str): raise TypeError("Expected argument 'storage_account_access_key' to be a str") pulumi.set(__self__, "storage_account_access_key", storage_account_access_key) if storage_container_path and not isinstance(storage_container_path, str): raise TypeError("Expected argument 'storage_container_path' to be a str") pulumi.set(__self__, "storage_container_path", storage_container_path) if storage_container_sas_key and not isinstance(storage_container_sas_key, str): raise TypeError("Expected argument 'storage_container_sas_key' to be a str") pulumi.set(__self__, "storage_container_sas_key", storage_container_sas_key) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def id(self) -> str: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="recurringScans") def recurring_scans(self) -> Optional['outputs.VulnerabilityAssessmentRecurringScansPropertiesResponse']: """ The recurring scans settings """ return pulumi.get(self, "recurring_scans") @property @pulumi.getter(name="storageAccountAccessKey") def storage_account_access_key(self) -> Optional[str]: """ Specifies the identifier key of the storage account for vulnerability assessment scan results. If 'StorageContainerSasKey' isn't specified, storageAccountAccessKey is required. """ return pulumi.get(self, "storage_account_access_key") @property @pulumi.getter(name="storageContainerPath") def storage_container_path(self) -> str: """ A blob storage container path to hold the scan results (e.g. https://myStorage.blob.core.windows.net/VaScans/). """ return pulumi.get(self, "storage_container_path") @property @pulumi.getter(name="storageContainerSasKey") def storage_container_sas_key(self) -> Optional[str]: """ A shared access signature (SAS Key) that has write access to the blob container specified in 'storageContainerPath' parameter. If 'storageAccountAccessKey' isn't specified, StorageContainerSasKey is required. """ return pulumi.get(self, "storage_container_sas_key") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetManagedInstanceVulnerabilityAssessmentResult(GetManagedInstanceVulnerabilityAssessmentResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetManagedInstanceVulnerabilityAssessmentResult( id=self.id, name=self.name, recurring_scans=self.recurring_scans, storage_account_access_key=self.storage_account_access_key, storage_container_path=self.storage_container_path, storage_container_sas_key=self.storage_container_sas_key, type=self.type) def get_managed_instance_vulnerability_assessment(managed_instance_name: Optional[str] = None, resource_group_name: Optional[str] = None, vulnerability_assessment_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetManagedInstanceVulnerabilityAssessmentResult: """ A managed instance vulnerability assessment. :param str managed_instance_name: The name of the managed instance for which the vulnerability assessment is defined. :param str resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param str vulnerability_assessment_name: The name of the vulnerability assessment. """ __args__ = dict() __args__['managedInstanceName'] = managed_instance_name __args__['resourceGroupName'] = resource_group_name __args__['vulnerabilityAssessmentName'] = vulnerability_assessment_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:sql/v20200801preview:getManagedInstanceVulnerabilityAssessment', __args__, opts=opts, typ=GetManagedInstanceVulnerabilityAssessmentResult).value return AwaitableGetManagedInstanceVulnerabilityAssessmentResult( id=__ret__.id, name=__ret__.name, recurring_scans=__ret__.recurring_scans, storage_account_access_key=__ret__.storage_account_access_key, storage_container_path=__ret__.storage_container_path, storage_container_sas_key=__ret__.storage_container_sas_key, type=__ret__.type)
44.675676
216
0.702662
9623aa1e71d06b5def859bf55974fd720b08b3d0
1,572
py
Python
functions/subsFunc.py
VMAJSTER/openstreamingplatform
f002246db922dab9a3f019f46001f3901326feaf
[ "MIT" ]
null
null
null
functions/subsFunc.py
VMAJSTER/openstreamingplatform
f002246db922dab9a3f019f46001f3901326feaf
[ "MIT" ]
null
null
null
functions/subsFunc.py
VMAJSTER/openstreamingplatform
f002246db922dab9a3f019f46001f3901326feaf
[ "MIT" ]
null
null
null
from app import app from flask_mail import Message from classes.shared import email from classes import settings from classes import subscriptions from classes import Sec from functions import system @system.asynch def runSubscription(subject, destination, message): with app.app_context(): sysSettings = settings.settings.query.first() finalMessage = message + "<p>If you would like to unsubscribe, click the link below: <br><a href='" + sysSettings.siteProtocol + sysSettings.siteAddress + "/unsubscribe?email=" + destination + "'>Unsubscribe</a></p></body></html>" msg = Message(subject=subject, recipients=[destination]) msg.sender = sysSettings.siteName + "<" + sysSettings.smtpSendAs + ">" msg.body = finalMessage msg.html = finalMessage email.send(msg) return True def processSubscriptions(channelID, subject, message): subscriptionQuery = subscriptions.channelSubs.query.filter_by(channelID=channelID).all() if subscriptionQuery: system.newLog(2, "Sending Subscription Emails for Channel ID: " + str(channelID)) subCount = 0 for sub in subscriptionQuery: userQuery = Sec.User.query.filter_by(id=int(sub.userID)).first() if userQuery is not None: result = runSubscription(subject, userQuery.email, message) subCount = subCount + 1 system.newLog(2, "Processed " + str(subCount) + " out of " + str(len(subscriptionQuery)) + " Email Subscriptions for Channel ID: " + str(channelID) ) return True
44.914286
238
0.689567
a6350f3cc364bb749fe1c4116550af41a0219f77
31,348
py
Python
tests/query_test.py
Jaymon/prom
b9eab53f9cc9870a3212e96129671c36a749aa94
[ "MIT" ]
8
2018-04-10T17:42:34.000Z
2022-01-14T09:20:23.000Z
tests/query_test.py
Jaymon/prom
b9eab53f9cc9870a3212e96129671c36a749aa94
[ "MIT" ]
85
2018-03-29T00:48:28.000Z
2021-10-16T07:31:02.000Z
tests/query_test.py
firstopinion/prom
b9eab53f9cc9870a3212e96129671c36a749aa94
[ "MIT" ]
3
2019-02-19T23:50:37.000Z
2021-05-12T02:07:57.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals, division, print_function, absolute_import import datetime import time from threading import Thread import sys import testdata #from testdata.threading import Thread from . import BaseTestCase, EnvironTestCase, TestCase, SkipTest from prom.query import ( Query, Bounds, Field, Fields, Iterator, #AllIterator, ) from prom.compat import * import prom class FieldTest(BaseTestCase): def test___new__(self): q = self.get_query() f = Field(q, "MAX(foo)") #f = Field("MAX(foo)", schema=testdata.mock(field_name="foo")) self.assertEqual("foo", f.name) self.assertEqual("MAX", f.function_name) class FieldsTest(BaseTestCase): def test_fields(self): q = self.get_query() fs = Fields() fs.append(Field(q, "foo", 1)) fs.append(Field(q, "foo", 2)) fs.append(Field(q, "bar", 3)) #fs.append(Field(q, "che", 4)) fields = fs.fields self.assertEqual(2, fields["foo"]) self.assertEqual(3, fields["bar"]) #self.assertEqual(4, fields["che"]) def test___bool__(self): fs = Fields() self.assertFalse(fs) q = self.get_query() fs.append(Field(q, "foo", 1)) self.assertTrue(fs) def test_names(self): q = self.get_query() fs = Fields() fs.append(Field(q, "foo", None)) fs.append(Field(q, "bar", None)) fs.append(Field(q, "foo", None)) self.assertEqual(["foo", "bar"], list(fs.names())) class BoundsTest(TestCase): def test___nonzero__(self): b = Bounds() self.assertFalse(b) def test_offset_from_page(self): lc = Bounds() lc.page = 2 self.assertEqual(1, lc.offset) lc = Bounds() lc.limit = 5 lc.page = 2 self.assertEqual(5, lc.offset) self.assertEqual(5, lc.limit) def test_non_paginate_limit(self): lc = Bounds() self.assertEqual((0, 0), lc.get()) lc.limit = 10 self.assertEqual((10, 0), lc.get()) lc.page = 1 self.assertEqual((10, 0), lc.get()) lc.offset = 15 self.assertEqual((10, 15), lc.get()) lc.page = 2 self.assertEqual((10, 10), lc.get()) lc.page = 3 self.assertEqual((10, 20), lc.get()) lc.page = 0 self.assertEqual((10, 0), lc.get()) with self.assertRaises(ValueError): lc.page = -10 lc.offset = 0 self.assertEqual((10, 0), lc.get()) with self.assertRaises(ValueError): lc.offset = -10 lc.limit = 0 self.assertEqual((0, 0), lc.get()) with self.assertRaises(ValueError): lc.limit = -10 def test_paginate_limit(self): lc = Bounds() lc.limit = 10 lc.paginate = True self.assertEqual(11, lc.limit_paginate) self.assertEqual((11, 0), lc.get()) lc.page = 3 self.assertEqual((11, 20), lc.get()) lc.offset = 15 self.assertEqual((11, 15), lc.get()) lc.paginate = False self.assertEqual((10, 15), lc.get()) class QueryTest(EnvironTestCase): def test_query_syntactic_sugar(self): Foo = self.get_orm_class() self.insert(Foo, 5) pk = Foo.query.select_pk().value_pk(3) self.assertEqual(3, pk) pkl = list(Foo.query.select_pk().values_pk([2])) self.assertEqual(2, pkl[0]) o = Foo.query.one_pk(1) self.assertEqual(1, o.pk) ol = list(Foo.query.get_pk([1])) self.assertEqual(1, ol[0].pk) def test_select_all(self): Foo = self.get_orm_class() q = Foo.query.select("*") self.assertRegex(q.render(), r"(?m)SELECT\s+\*\s+FROM") def test_schemas(self): Foo = self.get_orm_class() Bar = self.get_orm_class() bar_q = Bar.query.select_foo() foo_q = Foo.query.select_pk().in_foo(bar_q) schemas = foo_q.schemas self.assertEqual(2, len(schemas)) self.assertEqual(Foo.schema, schemas[0]) self.assertEqual(String(Bar.schema), String(schemas[1])) def test_render(self): q = self.get_query() q.is_foo(1) q.is_bar("two") r = q.render() self.assertRegex(r, r"foo[^=]+=\s*1") self.assertRegex(r, r"bar[^=]+=\s*'two'") def test_find_methods_1(self): q = self.get_query() opm, qm, fn = q.find_methods("eq_foo_bar") opm2, qm2, fn2 = q.find_methods("foo_bar_eq") self.assertEqual("eq_field", opm.__name__) self.assertEqual(opm2.__name__, opm.__name__) self.assertEqual("foo_bar", fn) self.assertEqual(fn2, fn) with self.assertRaises(AttributeError): q.find_methods("baklsdkf_foo_bar") with self.assertRaises(AttributeError): q.find_methods("baklsdkf_field") with self.assertRaises(AttributeError): q.find_methods("_field") with self.assertRaises(AttributeError): q.find_methods("baklsdkf") def test_find_methods_2(self): q = self.get_query() method_name = "is_{}".format(testdata.random.choice(list(q.schema.fields.keys()))) r = q.find_methods(method_name) self.assertEqual("is_field", r[0].__name__) self.assertTrue(r[2] in set(q.schema.fields.keys())) with self.assertRaises(AttributeError): q.find_methods("testing") q = self.get_query() q.orm_class = None tests = [ ("gt_foo_bar", ("gt_field", "foo_bar")), ] for t in tests: r = q.find_methods(t[0]) self.assertEqual(t[1][0], r[0].__name__) self.assertEqual(t[1][1], r[2]) def test_find_methods_3(self): q = Query() om, qm, fn = q.find_methods("one_pk") self.assertEqual(q.eq_field, om) self.assertEqual(q.one, qm) self.assertEqual("pk", fn) with self.assertRaises(AttributeError): q.find_methods("foo_pk") def test_like(self): _q = self.get_query() self.insert(_q, 5) for bar in ["bar che", "foo bar", "foo bar che"]: self.insert_fields(_q, bar=bar) count = _q.copy().like_bar("bar%").count() self.assertEqual(1, count) count = _q.copy().like_bar("%bar").count() self.assertEqual(1, count) count = _q.copy().like_bar("%bar%").count() self.assertEqual(3, count) count = _q.copy().nlike_bar("bar%").count() self.assertEqual(7, count) count = _q.copy().nlike_bar("%bar").count() self.assertEqual(7, count) count = _q.copy().nlike_bar("%bar%").count() self.assertEqual(5, count) count = _q.copy().like_bar("bar____").count() self.assertEqual(1, count) count = _q.copy().like_bar("____bar").count() self.assertEqual(1, count) count = _q.copy().like_bar("____bar____").count() self.assertEqual(1, count) def test_between(self): _q = self.get_query() self.insert(_q, 5) q = _q.copy() vals = list(q.select_pk().between_pk(2, 4)) self.assertEqual(3, len(vals)) for v in vals: self.assertTrue(v >= 2 and v <= 4) def test_ref_threading(self): basedir = testdata.create_modules({ "rtfoo.rtbar.tqr1": [ "import prom", "", "class Foo(prom.Orm):", " table_name = 'thrd_qr2_foo'", " one=prom.Field(int, True)", "", ], "rtfoo.rtbar.tqr2": [ "import prom", "from tqr1 import Foo", "", "class Bar(prom.Orm):", " table_name = 'thrd_qr2_bar'", " one=prom.Field(int, True)", " foo_id=prom.Field(Foo, True)", "" ] }) tqr1 = basedir.module("rtfoo.rtbar.tqr1") sys.modules.pop("rtfoo.rtbar.tqr2.Bar", None) #tqr2 = basedir.module("tqr2") def target(): q = tqr1.Foo.query.ref("rtfoo.rtbar.tqr2.Bar") f = tqr1.Foo() q = f.query.ref("rtfoo.rtbar.tqr2.Bar") t1 = Thread(target=target) # if we don't get stuck in a deadlock this test passes t1.start() t1.join() def test_query_ref_1(self): testdata.create_modules({ "qr2": "\n".join([ "import prom", "", "class Foo(prom.Orm):", " table_name = 'qr2_foo'", " foo=prom.Field(int, True)", " bar=prom.Field(str, True)", "" "class Bar(prom.Orm):", " table_name = 'qr2_bar'", " foo=prom.Field(int, True)", " bar=prom.Field(str, True)", " che=prom.Field(Foo, True)", "" ]) }) from qr2 import Foo as t1, Bar as t2 ti1 = t1.create(foo=11, bar='11') ti12 = t1.create(foo=12, bar='12') ti2 = t2.create(foo=21, bar='21', che=ti1.pk) ti22 = t2.create(foo=22, bar='22', che=ti12.pk) orm_classpath = "{}.{}".format(t2.__module__, t2.__name__) l = list(ti1.query.ref(orm_classpath).select_foo().is_pk(ti12.pk).get()) self.assertEqual(22, l[0]) self.assertEqual(1, len(l)) l = list(ti1.query.ref(orm_classpath).select_foo().is_pk(ti1.pk).get()) self.assertEqual(21, l[0]) self.assertEqual(1, len(l)) l = list(ti1.query.ref(orm_classpath).select_foo().is_pk(ti1.pk).get()) self.assertEqual(21, l[0]) self.assertEqual(1, len(l)) l = list(ti1.query.ref(orm_classpath).select_foo().is_pk(ti1.pk).get()) self.assertEqual(21, l[0]) self.assertEqual(1, len(l)) l = list(ti1.query.ref(orm_classpath).select_foo().get()) self.assertEqual(2, len(l)) def test_query_ref_2(self): testdata.create_modules({ "qre": "\n".join([ "import prom", "", "class T1(prom.Orm):", " table_name = 'qre_t1'", "" "class T2(prom.Orm):", " table_name = 'qre_t2'", " t1_id=prom.Field(T1, True)", "" "class T3(prom.Orm):", " table_name = 'qre_t3'", "" ]) }) from qre import T1, T2, T3 t1a = T1.create() t1b = T1.create() t2 = T2.create(t1_id=t1a.pk) classpath = "{}.{}".format(T2.__module__, T2.__name__) r = T1.query.ref(classpath).is_pk(t1a.pk).count() self.assertEqual(1, r) r = T1.query.ref(classpath).is_pk(t1b.pk).count() self.assertEqual(0, r) def test_null_iterator(self): """you can now pass empty lists to in and nin and not have them throw an error, instead they return an empty iterator""" _q = self.get_query() self.insert(_q, 1) q = _q.copy() r = q.in_foo([]).get() self.assertFalse(r) count = 0 for x in r: count += 0 self.assertEqual(0, count) self.assertEqual(0, len(r)) def test_field_datetime(self): _q = self.get_query() q = _q.copy() q.is__created(day=int(datetime.datetime.utcnow().strftime('%d'))) r = q.get() self.assertFalse(r) pk = self.insert(q, 1)[0] # get the object out so we can use it to query o = _q.copy().one_pk(pk) dt = o._created day = int(dt.strftime('%d')) q = _q.copy() q.in__created(day=day) r = q.get() self.assertEqual(1, len(r)) q = _q.copy() q.is__created(day=day) r = q.get() self.assertEqual(1, len(r)) q = _q.copy() q.in__created(day=[day, day + 1]) r = q.get() self.assertEqual(1, len(r)) def test_pk_fields(self): tclass = self.get_orm_class() q = tclass.query q.gte_pk(5).lte_pk(1).lt_pk(1).gte_pk(5) q.desc_pk() q.asc_pk() q.set_pk(None) for where_field in q.fields_where: self.assertEqual(where_field.name, "_id") for sort_field in q.fields_sort: self.assertEqual(sort_field.name, "_id") for set_field in q.fields_set: self.assertEqual(set_field.name, "_id") def test_get_pk(self): tclass = self.get_orm_class() t = tclass() t.foo = 1 t.bar = "bar1" t.save() t2 = tclass() t2.foo = 2 t2.bar = "bar2" t2.save() pks = [t.pk, t2.pk] res = tclass.query.get_pk(pks) self.assertEqual(2, len(res)) self.assertEqual(list(res.pk), pks) def test_value_query(self): _q = self.get_query() v = _q.copy().select_foo().value() self.assertEqual(None, v) count = 2 pks = self.insert(_q, count) o = _q.copy().one_pk(pks[0]) v = _q.copy().select_foo().is_pk(o.pk).value() self.assertEqual(o.foo, v) v = _q.copy().select_foo().select_bar().is_pk(o.pk).value() self.assertEqual(o.foo, v[0]) self.assertEqual(o.bar, v[1]) def test_pk(self): orm_class = self.get_orm_class() v = orm_class.query.select_pk().one() self.assertEqual(None, v) count = 2 self.insert(orm_class, count) v = orm_class.query.select_pk().asc_pk().one() self.assertEqual(1, v) def test_pks(self): orm_class = self.get_orm_class() q = self.get_query() v = list(orm_class.query.select_pk().get()) self.assertEqual(0, len(v)) count = 2 self.insert(orm_class, count) v = list(orm_class.query.select_pk().get()) self.assertEqual(2, len(v)) def test___iter__(self): count = 5 q = self.get_query() self.insert(q, count) rcount = 0 for t in q: rcount += 1 self.assertEqual(count, rcount) def test_has(self): q = self.get_query() self.assertFalse(q.has()) count = 1 self.insert(q, count) self.assertTrue(q.has()) def test_all(self): count = 10 q = self.get_query() self.insert(q, count) # if no limit is set then it should go through all results rcount = 0 for r in q.copy().all(): rcount += 1 self.assertEqual(count, rcount) # if there is a limit then all should only go until that limit rcount = 0 for r in q.copy().limit(1).all(): rcount += 1 self.assertEqual(1, rcount) # only go until the end of the results rcount = 0 for r in q.copy().limit(6).offset(6).all(): rcount += 1 self.assertEqual(4, rcount) def test_in_field(self): q = self.get_query() q.in_foo([]) self.assertEqual([], list(q.get())) q = self.get_query() q.in_foo([1, 2]) self.assertEqual(q.fields_where[0].value, [1, 2,]) q = self.get_query() q.in_foo([1]) self.assertEqual(q.fields_where[0].value, [1]) q = self.get_query() q.in_foo([1, 2]) self.assertEqual(q.fields_where[0].value, [1, 2]) q = self.get_query() q.in_foo(range(1, 3)) self.assertEqual(q.fields_where[0].value, [1, 2,]) q = self.get_query() q.in_foo((x for x in [1, 2])) self.assertEqual(q.fields_where[0].value, [1, 2,]) def test_set(self): q = self.get_query() field_names = list(q.schema.fields.keys()) fields = dict(zip(field_names, [None] * len(field_names))) q.set(**fields) self.assertEqual(fields, {f.name: f.value for f in q.fields_set}) q = self.get_query() q.set(fields) self.assertEqual(fields, {f.name: f.value for f in q.fields_set}) def test_select(self): q = self.get_query() fields_select = list(q.schema.fields.keys()) q.select(*fields_select[0:-1]) self.assertEqual(fields_select[0:-1], list(q.fields_select.names())) q = self.get_query() q.select(fields_select) self.assertEqual(fields_select, list(q.fields_select.names())) q = self.get_query() q.select(fields_select[0:-1], fields_select[-1]) self.assertEqual(fields_select, list(q.fields_select.names())) # make sure chaining works q = self.get_query() q.select(fields_select[0]).select(*fields_select[1:]) self.assertEqual(fields_select, list(q.fields_select.names())) def test_child_magic(self): orm_class = self.get_orm_class() class ChildQuery(Query): pass orm_class.query_class = ChildQuery q = orm_class.query q.is_foo(1) # if there is no error, it passed with self.assertRaises(AttributeError): q.aksdlfjldks_foo(2) def test_properties(self): q = self.get_query() r = q.schema self.assertTrue(r) r = q.interface self.assertEqual(r, q.orm_class.interface) self.assertTrue(r) q.orm_class = None self.assertFalse(q.schema) self.assertFalse(q.interface) def test___getattr__(self): q = self.get_query() q.is_foo(1) self.assertEqual(1, len(q.fields_where)) self.assertEqual("eq", q.fields_where[0].operator) with self.assertRaises(AttributeError): q.testsfsdfsdft_fieldname(1, 2, 3) def test_append_operation(self): tests = [ ("is_field", ["foo", 1], ["eq", "foo", 1]), ("not_field", ["foo", 1], ["ne", "foo", 1]), ("lte_field", ["foo", 1], ["lte", "foo", 1]), ("lt_field", ["foo", 1], ["lt", "foo", 1]), ("gte_field", ["foo", 1], ["gte", "foo", 1]), ("gt_field", ["foo", 1], ["gt", "foo", 1]), ("in_field", ["foo", (1, 2, 3)], ["in", "foo", [1, 2, 3]]), ("nin_field", ["foo", (1, 2, 3)], ["nin", "foo", [1, 2, 3]]), ] for i, t in enumerate(tests): q = self.get_query() cb = getattr(q, t[0]) r = cb(*t[1]) self.assertEqual(q, r) self.assertEqual(t[2][0], q.fields_where[0].operator) self.assertEqual(t[2][1], q.fields_where[0].name) self.assertEqual(t[2][2], q.fields_where[0].value) q = self.get_query() q.between_field("foo", 1, 2) self.assertEqual("gte", q.fields_where[0].operator) self.assertEqual("lte", q.fields_where[1].operator) def test_append_sort(self): tests = [ ("append_sort", [1, "foo"], [1, "foo"]), ("append_sort", [-1, "foo"], [-1, "foo"]), ("append_sort", [5, "foo"], [1, "foo"]), ("append_sort", [-5, "foo"], [-1, "foo"]), ("asc_field", ["foo"], [1, "foo"]), ("desc_field", ["foo"], [-1, "foo"]), ] q = self.get_query() for i, t in enumerate(tests): cb = getattr(q, t[0]) r = cb(*t[1]) self.assertEqual(q, r) self.assertEqual(t[2][0], q.fields_sort[i].direction) self.assertEqual(t[2][1], q.fields_sort[i].name) with self.assertRaises(ValueError): q.append_sort(0, "foo") def test_bounds_methods(self): q = self.get_query() q.limit(10) self.assertEqual((10, 0), q.bounds.get()) q.page(1) self.assertEqual((10, 0), q.bounds.get()) q.offset(15) self.assertEqual((10, 15), q.bounds.get()) q.page(2) self.assertEqual((10, 10), q.bounds.get()) q.page(3) self.assertEqual((10, 20), q.bounds.get()) q.page(0) self.assertEqual((10, 0), q.bounds.get()) q.offset(0) self.assertEqual((10, 0), q.bounds.get()) q.limit(0) self.assertEqual((0, 0), q.bounds.get()) def test_insert_and_update(self): orm_class = self.get_orm_class() q = orm_class.query o = orm_class(foo=1, bar="value 1") fields = o.to_interface() pk = q.copy().set(fields).insert() o = q.copy().one_pk(pk) self.assertLess(0, pk) self.assertTrue(o._created) self.assertTrue(o._updated) fields["foo"] = 2 fields["bar"] = "value 2" row_count = q.copy().set(fields).is_pk(pk).update() self.assertEqual(1, row_count) o2 = q.copy().one_pk(pk) self.assertEqual(2, o2.foo) self.assertEqual("value 2", o2.bar) self.assertEqual(o._created, o2._created) self.assertEqual(o._updated, o2._updated) def test_update_bubble_up(self): """ https://github.com/jaymon/prom/issues/11 """ orm = self.get_orm() orm.schema.set_field("che", prom.Field(str, False)) orm.foo = 1 orm.bar = "bar 1" orm.che = None orm.save() ret = orm.query.set_foo(2).set_bar("bar 2").not_che(None).update() self.assertEqual(0, ret) ret = orm.query.set_foo(2).set_bar("bar 2").is_che(None).update() self.assertEqual(1, ret) def test_delete(self): tclass = self.get_orm_class() first_pk = self.insert(tclass, 1)[0] with self.assertRaises(ValueError): r = tclass.query.delete() r = tclass.query.is_pk(first_pk).delete() self.assertEqual(1, r) r = tclass.query.is_pk(first_pk).delete() self.assertEqual(0, r) def test_get(self): TestGetTorm = self.get_orm_class() _ids = self.insert(TestGetTorm, 2) q = TestGetTorm.query for o in q.get(): self.assertEqual(type(o), TestGetTorm) self.assertTrue(o._id in _ids) self.assertFalse(o.is_modified()) def test_one(self): TestGetOneTorm = self.get_orm_class() _ids = self.insert(TestGetOneTorm, 2) q = TestGetOneTorm.query o = q.one() self.assertEqual(type(o), TestGetOneTorm) self.assertTrue(o._id in _ids) self.assertFalse(o.is_modified()) def test_copy(self): q1 = self.get_query() q2 = q1.copy() q1.is_foo(1) self.assertEqual(1, len(q1.fields_where)) self.assertEqual(0, len(q2.fields_where)) self.assertNotEqual(id(q1), id(q2)) self.assertNotEqual(id(q1.fields_where), id(q2.fields_where)) self.assertNotEqual(id(q1.bounds), id(q2.bounds)) def test_values_query(self): _q = self.get_query() count = 2 pks = self.insert(_q, count) vals = _q.copy().select_foo().values() self.assertEqual(count, len(vals)) for v in vals: self.assertTrue(isinstance(v, int)) vals = _q.copy().select_foo().select_bar().values() self.assertEqual(count, len(vals)) for v in vals: self.assertTrue(isinstance(v, list)) vals = _q.copy().select_foo().limit(1).values() self.assertEqual(1, len(vals)) def test_count(self): orm_class = self.get_orm_class() self.insert(orm_class, 10) self.assertEqual(5, orm_class.query.offset(5).count()) self.assertEqual(5, orm_class.query.limit(5).count()) self.assertEqual(10, orm_class.query.count()) class IteratorTest(BaseTestCase): def get_iterator(self, count=5, limit=5, page=0): q = self.get_query() self.insert(q, count) i = q.limit(limit).page(page).get() return i def test___repr__(self): """https://github.com/Jaymon/prom/issues/137""" orm_class = self.create_orms() it = orm_class.query.get() s = it.__repr__() self.assertNotEqual("[]", s) def test___init__(self): count = 10 orm_class = self.get_orm_class() self.insert(orm_class, count) q = orm_class.query.gt_pk(5) it = Iterator(q) self.assertLess(0, len(it)) for o in it: self.assertLess(5, o.pk) def test___getitem___slicing(self): count = 10 orm_class = self.get_orm_class() pks = self.insert(orm_class, count) it = orm_class.query.select_pk().asc_pk().get() list(it[-5:6]) return self.assertEqual(pks[-5:6], list(it[-5:6])) self.assertEqual(pks[2:5], list(it[2:5])) self.assertEqual(pks[2:], list(it[2:])) self.assertEqual(pks[:2], list(it[:2])) with self.assertRaises(ValueError): it[1:2:2] def test___getitem___positive_index(self): count = 10 orm_class = self.get_orm_class() pks = self.insert(orm_class, count) q = orm_class.query.asc_pk() it = Iterator(q) self.assertEqual(pks[0], it[0].pk) self.assertEqual(pks[-1], it[len(pks) - 1].pk) with self.assertRaises(IndexError): it[len(pks)] q = orm_class.query.offset(4).limit(2).asc_pk() it = Iterator(q) self.assertEqual(pks[4], it[0].pk) self.assertEqual(pks[5], it[1].pk) with self.assertRaises(IndexError): it[3] def test___getitem___negative_index(self): count = 10 orm_class = self.get_orm_class() pks = self.insert(orm_class, count) q = orm_class.query.asc_pk() it = Iterator(q) self.assertEqual(it[-1].pk, pks[-1]) self.assertEqual(it[-2].pk, pks[-2]) with self.assertRaises(IndexError): it[-(len(pks) + 5)] def test_copy(self): count = 10 orm_class = self.get_orm_class() self.insert(orm_class, count) q = orm_class.query.asc_pk() it1 = Iterator(q) it2 = it1.copy() it2.reverse() self.assertNotEqual(list(v for v in it1), list(v for v in it2)) def test_custom(self): """make sure setting a custom Iterator class works normally and wrapped by an AllIterator()""" count = 3 orm_class = self.get_orm_class() self.insert(orm_class, count) self.assertEqual(count, len(list(orm_class.query.get()))) class CustomIterator(Iterator): def ifilter(self, o): return not o.pk == 1 orm_class.iterator_class = CustomIterator self.assertEqual(count - 1, len(list(orm_class.query.get()))) self.assertEqual(count - 1, len(list(orm_class.query.all()))) def test_ifilter(self): count = 3 _q = self.get_query() self.insert(_q, count) l = _q.copy().get() self.assertEqual(3, len(list(l))) l = _q.copy().get() def ifilter(o): return o.pk == 1 l.ifilter = ifilter l2 = _q.copy().get() self.assertEqual(len(list(filter(ifilter, l2))), len(list(l))) def test_reverse(self): """Iterator.reverse() reverses the iterator in place""" count = 10 orm_class = self.get_orm_class() pks = self.insert(orm_class, count) pks.reverse() q = orm_class.query.asc_pk() it = Iterator(q) it.reverse() for i, o in enumerate(it): self.assertEqual(pks[i], o.pk) q = orm_class.query.asc_pk() it = Iterator(q) for i, o in enumerate(reversed(it)): self.assertEqual(pks[i], o.pk) def test_all_1(self): count = 15 q = self.get_query() pks = self.insert(q, count) self.assertLess(0, len(pks)) g = q.all() self.assertEqual(1, g[0].pk) self.assertEqual(2, g[1].pk) self.assertEqual(3, g[2].pk) self.assertEqual(6, g[5].pk) self.assertEqual(13, g[12].pk) with self.assertRaises(IndexError): g[count + 5] for i, x in enumerate(g): if i > 7: break self.assertEqual(9, g[8].pk) gcount = 0 for x in g: gcount += 1 self.assertEqual(count, gcount) gcount = 0 for x in g: gcount += 1 self.assertEqual(count, gcount) self.assertEqual(count, len(g)) g = q.all() self.assertEqual(count, len(g)) def test_all_limit(self): count = 15 q = self.get_query() self.insert(q, count) q.limit(5) g = q.all() self.assertEqual(3, g[2].pk) with self.assertRaises(IndexError): g[6] def test_values(self): count = 5 _q = self.get_query() self.insert(_q, count) g = _q.copy().select_bar().get() icount = 0 for v in g: self.assertTrue(isinstance(v, basestring)) icount += 1 self.assertEqual(count, icount) g = _q.copy().select_bar().select_foo().get() icount = 0 for v in g: icount += 1 self.assertTrue(isinstance(v[0], basestring)) self.assertTrue(isinstance(v[1], int)) self.assertEqual(count, icount) def test___iter__(self): count = 5 i = self.get_iterator(count) rcount = 0 for t in i: rcount += 1 self.assertEqual(count, rcount) rcount = 0 for t in i: self.assertTrue(isinstance(t, prom.Orm)) rcount += 1 self.assertEqual(count, rcount) def test___len__(self): count = 5 i = self.get_iterator(count) self.assertEqual(len(i), count) orm_class = i.orm_class i = orm_class.query.limit(3).get() self.assertEqual(3, len(i)) def test___getattr__(self): count = 5 i = self.get_iterator(count) rs = list(i.foo) self.assertEqual(count, len(rs)) with self.assertRaises(AttributeError): i.kadfjkadfjkhjkgfkjfkjk_bogus_field def test_pk(self): count = 5 i = self.get_iterator(count) rs = list(i.pk) self.assertEqual(count, len(rs)) def test_has_more(self): limit = 3 count = 5 q = self.get_query() pks = self.insert(q.orm_class, count) self.assertEqual(count, len(pks)) i = q.limit(limit).page(0).get() self.assertTrue(i.has_more()) return i = q.limit(limit).page(3).get() self.assertFalse(i.has_more()) i = q.limit(limit).page(1).get() self.assertTrue(i.has_more()) i = q.limit(0).page(0).get() self.assertFalse(i.has_more()) def test_has_more_limit(self): limit = 4 count = 10 q = self.get_query() pks = self.insert(q, count) it = q.select_pk().limit(limit).asc_pk().get() self.assertEqual(pks[:limit], list(it))
28.216022
90
0.540034